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Abstract

The scope of this thesis is to develop and examine single and multi objective Metamodel-assisted
Evolutionary Algorithms (MAEA) for Generation Expansion Planning (GEP) models in the pres-
ence of high shares of generation by Renewable Energy Sources (RES). A GEP model may facilitate
decision making in mid towards long-term energy scheduling. Commonly, a GEP model is employed
to provide a road-map towards an affordable, sustainable and secure operation of a power system.
These road-maps are generated in the form of scenarios for the evolution of a power system and
are determined by considering both possible investments in capacity additions and the short-term
operation of the power system, e.g. to determine an economic and/or environmentally optimal
investment plan that is adequate to meet the growing power demand and exhibits a reliable short-
term operation. Such a problem can be formulated as an optimization problem.

The pursue for emission-free power system and the increasing shares of RES, triggered by
environmental considerations, have led to the introduction of various aspects to GEP models. Such
an aspect is to capture economic and technical challenges related to the short-term operation
of a power system with increased detail. This could be required to assess the synergy of the
conventional generating fleet with the increasing installations of RES. In particular, the variability
and uncertainty associated with the latter has been reported to increase the operational flexibility
requirements of future generating fleets. It has also been reported that underestimating these
requirements could have economic implications on the reliable and efficient short-term operation.
Towards this aim, endeavours have been made to integrate, within a GEP model, a more detailed
representation of the short-term operation of a power system in terms of spatial, temporal and
technical detail. However, the integration of GEP model with such detail can lead to an increased
computational cost. Therefore, simplifications are required.

Evolutionary Algorithms (EA) are nature-inspired algorithms which employ stochastic operators
to improve a set of candidate solutions. As derivative-free algorithms, EAs can be used as direct
search methods; this feature has rendered them applicable for complex optimization problems.
In addition, Multi-Objective EAs (MOEA) are well established approaches for Multi-Objective
Optimization (MOO). On the other hand, one main limitation is the relatively large number of
function evaluations required for the algorithm to converge. This can be binding for optimization
problems involving computational costly simulations. For such applications, EAs coupled with
Approximating Models (AM) have been developed which are commonly referred to as MAEAs or
Surrogate-Assisted EAs. The AMs replace in part the original models and provide an estimate for
the adequacy of a candidate solution to reduce the computational burden.

This thesis focuses on MAEA applications for single and multi objective GEP optimization
problems that include Simulation Models (SM) for the short-term operation of a power system.
The most important contributions of this thesis are the following:

1. A single objective multi-period GEP approach based on MAEAs is presented. The GEP
model includes a Simulation Model (SM) to provide an indicator of the cost of the short-term
operation. The adopted SM is an optimization model for the short-term operation of a power
system including simplifications e.g. spatial detail is not examined. However, it exhibits an
increased level of technical and temporal detail w.r.t. the context of long-term planning, and
it is adopted to assess on-line the operating flexibility of a candidate installed capacity. The



formulation exploits problem-specific characteristics. This is implemented by employing AMs
to provide an estimate of the SM’s output and reduce the number of simulations required to
achieve a near-optimal solution. The AMs are Radial Basis Functions (RBF). These are built
off-line and updated on-line to improve the accuracy of the achieved approximation. Both
local and global AMs are built in different stages of the search. Problem specialized operators
are developed to enhance the performance of the EA examined which is Differential Evolution
(DE). The performance of the MAEA and the problem-specialized operators are assessed.
The MAEA achieved satisfactory results based on the performed numerical experiments.
Moreover, among the developed problem-specialized operators, a repair heuristic, addressing
the constraint nature of the optimization problem, provided the largest improvement in the
performance of the base DE algorithm. The impact of including the SM is also examined. The
results indicate the importance of capturing operational flexibility requirements to adequately
assess the flexibility providers considered as investment options. The metrics employed to
examine the accuracy of the attained AMs indicated that a decent approximation had been
achieved. Therefore, a visual analysis of the sensitivity of the operating cost towards the
installed capacity of the derived near-optimal solution was carried out.

2. A multi-objective static GEP approach based on MAEAs is presented that aims at capturing
cost trade-offs emerging for a MOO GEP. Operational flexibility is assessed by an adopted
SM that includes technical, spatial and temporal detail. The approach is developed based
on MOEA and frameworks for surrogate-assisted derivative-free optimization. Approxima-
tion models are employed to address the computational restrictions. RBF and Polynomial
Regression (PR) are used as the AMs. These are updated on-line by criteria that prioritize
feasibility of the planning constraints, the spatial allocation of the attained training set w.r.t.
the search space, and a possible Hypervolume improvement. A local phase is also included in
which gradient-based local search is implemented employing local RBF, PR and an ensem-
ble model. The performance of the approach is examined on a MOO benchmark test suite.
Numerical experiments are carried out to assess the performance optimization approach on
a MOO GEP formulation neglecting the short-term operation and on five MOO GEP for-
mulations including a SM. The latter are repeated for two different levels of temporal detail.
The results attained suggest an acceptable performance of the optimization approach w.r.t.
the computational restriction. Moreover, the achieved accuracy of the AMs varied among the
numerical experiments. The main factors influencing the performance of the AMs are iden-
tified. An analysis of the derived cost trade-offs for each of the five formulations examined
can provide a detailed evaluation of the impact of a diverse set of alternatives. This could
reveal incentives required for strategic energy policy decision making. For example, based
on the extreme values of the non-dominated front attained for the considered operating and
investment cost functions, a 96% reduction of the investment cost could result in a nearly
40% increase of operating cost.

Decision support tools could facilitate the complex and evolving decision making process of GEP.
Economic, environmental and social criteria must be considered along with aspects that are pro-
gressively identified as essential. Towards this aim, the developed EA-based approaches have been
presented. Despite their heuristic nature, the results suggested that these could be promising tools
to support well established state-of-the-art GEP models that could facilitate decision makers, such
as investors and energy policy makers, when high shares of RES generation are considered.
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Chapter 1

Introduction

1.1 Context

A transition towards power systems with low-carbon emissions can be a major factor for sustain-
ability. Consequently, the share of energy generated by RES have been increasing in the past years
to meet environmental objectives (References [1, 2, 3, 4, 5]). It is desirable that such a transition
is achieved in an economic and environmental manner due to the high costs involved. These can
emanate from investments in new power plants expected to operate for a number of years and,
therefore, involve long-term planning. Long-term planning is a complex task since it considers
several aspects that can often be conflicting. Informed decision-making can contribute towards this
direction (Reference [6]).

In this context, the operational perspective of future generating fleets to optimally facilitate
the integration of high levels of RES has been a research field of growing interest (References
[1, 2, 3, 4, 5]). As the examined levels of RES penetration increase, their impact on short-term
operation and, consequently, on optimal long-term planning has been reported to be important.
This has been attributed (in part) to the fluctuating supply of RES and its interaction with the
conventional capacity (References [2, 3, 4]). In particular, efficient integration of generation by RES
may result in a reduction of the overall cost of short-term operation. However, high penetration
levels may require adequate operating flexibility to enable meeting the demand in an efficient
manner (References [7, 8]). Therefore, the adequacy of the conventional capacity is often examined
also in terms of operating flexibility (References [2, 4]). This could have a diverse impact on the
cost components included within long-term planning and the cost trade-offs that could emerge.

Adequately capturing the impact of increasing shares of RES generation on the short-term oper-
ation of a power system within the context of long-term planning is not straightforward (References
[7, 8, 2, 4, 9]). It implies that sufficient information (e.g. technical, temporal and spatial detail)
is considered regarding the short-term operation of a power system within a long-term planning
model (Reference [9]). This information is required to assess the operating flexibility of a candi-
date generating fleet. In general, even though the importance of such detail may vary based on
the examined system (Reference [10]), omitting an assessment of operating flexibility of a future
candidate fleet could have an impact on optimal planning.

On the other hand, high complexity and computational restrictions arise to integrate long-term
planning models with increased detail of power systems short-term operation. These derive from
the requirement of combining two complex models (References [7, 8]), i.e. models for long-term
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and short-term planning. Therefore, the computational tractability must be also addressed along
with the introduction of simplifications (References [9, 5]).

Over the years, EAs have become one of the well-established optimization techniques in a variety
of fields. Applications of EA presenting satisfactory results have been also reported for optimiza-
tion problems related to power systems (References [1, 11]). In general, EAs are nature-inspired
derivative-free algorithms that rely on stochastic operators to improve a number of candidate so-
lutions over a series of iterations. These have been mostly appropriate for optimization problems
involving complex (e.g. non-convex and/or non-differentiable) objective and constraints functions.
Moreover, EAs have been widely recognized as a promising approach for MOO problems (Refer-
ences [12, 13]). Despite some advantages, EAs exhibit limitations. For example, the absence of
gradient information (when such is available) can render EAs less applicable for optimization prob-
lems that can be easily addressed by classical optimization methodologies. In addition, EAs can
be rendered impractical for optimization problems involving computationally expensive objective
and/or constraint functions due to the low number of available evaluations (References [14, 15]).
Such problems can include a costly simulation model or an expensive experiment. A common
approach is to enhance EAs with AMs (i.e. Metamodels or Surrogate models). These, usually,
are termed in the relevant literature as MAEAs. Such approaches include AMs that are used to
provide a computationally cheap indicator of the adequacy of a solution and replace in part the
computational expensive model (Reference [16]). The context, scope and background of this thesis
are elaborated in Chapters 2 and 3 where background on GEP and EAs are provided.

1.2 Motivation and Aims

The motivation of this thesis emanates from the growing computational intensity of long-term
planning of power systems. These can be attributed to the importance of assessing the operating
flexibility of a candidate future generating fleet and to a number of new aspect included in a
GEP regarding the operation of a power system (References [1, 2, 3, 4, 5]). EA-based approaches
for long-term planning or short-term planning have been suggested within the relevant literature.
However, EA or MAEA-based approaches for long-term planning exhibiting increased detail of the
short-term operation by including a SM had not been identified. This could be attributed to the
computational cost associated with the latter. Therefore, the main scope of this thesis are MAEA-
based approaches for single and multi objective optimization problems relevant to the context of
long-term planning, specifically GEP models, including SMs for the short-term operation. Focus is
directed on including a SM within the optimization process. Developing an optimal SM is beyond
the scope of this thesis, therefore SMs are adopted with minor modification. These are included to
assess a candidate generating fleet by accounting for dynamics emerging from short-term operation.
The impact of including technical, temporal and spatial detail of the short-term operation in long-
term models has been highlighted in many recent studies (References [1, 2, 3, 4, 9]). Therefore, an
attempt is made to capture operating flexibility provided both by thermal (e.g. conventional) and
non-thermal units. These increase the computational cost and, consequently, MAEA are examined.

The MAEAs are developed for single and multi objective optimization and are based on
surrogate-assisted derivative-free optimization frameworks identified in the literature. Modifica-
tions driven by the specific application are included to enhance their efficiency.

The decision making process is highly complex since it involves several factors that must be
considered (References [1, 2]). For example, environmental, such as the reduction of Green House
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Gas (GHG) emissions, economic, such as profitability of the generating fleet, and/or social, such as
affordable and accessible energy, objectives are usually considered. The developed approaches aim
to serve as decision support tools to enhance decision making. Such an example is the assessment of
incentives for increasing the penetration levels of RES by examining possible RES support schemes
for which benefits or costs can be transferred to the consumers.

An enhanced assessment of a long-term plan may provide benefits to the investors, regulatory
authorities and consumers. These can arise from improved signals provided for the decision making
process. For example, adequate signals may influence the allocation of an investment budget among
difference investment options. Regulatory authorities could be influenced to provide incentives for
increasing the efficiency of the power system. An efficient and reliable operation of a power system
can benefit consumers.

This thesis focuses on MAEA’s applications for single and multi objective GEP optimization
problems that include Simulation Models (SM) for the short-term operation of a power system. A
brief overview of the most important contributions of this thesis are the following:

1. In this thesis, a multi-period GEP approach based on MAEAs is presented for enhancing
optimal GEP (Reference [17]). The approach focuses on high technical and temporal de-
tail for the context of long term planning. This had been motivated by the importance of
adequately capturing the operating flexibility requirements of a future candidate generating
fleet. For this task, a SM is included within the model. Due to the computational restric-
tions a MAEA approach had been developed. The AMs, based on RBF, are employed to
provide an estimate of the adequacy of a candidate generating fleet. Therefore, computation-
ally expensive simulations are replaced in part by computationally cheap cost indicators to
reduce the number of simulations required to achieve a near-optimal solution. Both local and
global AMs are built in different stages of the search. Moreover, the optimization approach
exploits problem-specific characteristic. Also, problem specialized operators are developed
to enhance the selected EA performance that is a DE algorithm. The results indicate that
satisfactory results are observed based on a series of numerical experiments carried out. A
repair heuristic, addressing the constraint nature of the optimization problem, provided the
largest improvement in the performance of the base DE algorithm. In addition, the metrics
employed to assess the quality of the attained AMs, in terms of accuracy, suggested that a
decent approximation had been achieved. Therefore, a visual analysis of the sensitivity of the
operating cost towards the installed capacity of the derived near-optimal solution is carried
out. This could serve as a simple approach to assess the sensitivity of the operating cost
towards the installed capacity of an attained near-optimal solution. The level of technical
detail included in a SM is examined by comparing two different SMs that were employed
in the approach. The results suggest that difference in the technical detail of the SMs may
influence the derived investment decisions, anticipated generating mix and cost. Adequately
capturing operational flexibility requirements within the context of long-term planning could
provide improved signals to decision makers.

2. A multi-objective static GEP approach based on MOO-MAEAs is presented that aims at
capturing cost trade-offs emerging for a MOO GEP. A SM including technical, spatial and
temporal detail is adopted to assess the operational flexibility on-line. The approach is de-
veloped based on MOEA and frameworks for surrogate-assisted derivative-free optimization.
The AM selected are the RBFs and the PR. These provide an estimate of the values of the
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objective functions considered and are employed to address the computational restrictions.
The criteria employed for updating the AM on-line prioritize feasibility of the planning con-
straints, the spatial allocation of the attained training set w.r.t. the search space, and possible
Hypervolume improvements. A gradient-based local search is implemented employing local
RBF, PR, and an ensemble model that serve as the local phase. The performance of the
MOO-MAEA approach is examined on a benchmark test suite. Also, numerical experiments
are carried out to assess the performance of the optimization approach on a MOO GEP for-
mulation, neglecting the short-term operation, and on five MOO GEP formulations including
the adopted SM. The results attained suggest an acceptable performance of the optimization
approach w.r.t. the computational restriction. Moreover, the achieved accuracy of the AMs
had varied among the numerical experiments. Main factors influencing the performance of
the AMs are identified. An analysis of the derived cost trade-offs for each of the five formula-
tions examined can provide a detailed evaluation of the attained near-optimal solutions and
the impact of a diverse set of alternatives. This could reveal incentives required for strategic
energy policy decision making.

1.3 Outline

This thesis consists of six Chapters. Chapter 2 and 3 provide the background for this thesis and
elaborate on its scope and aims. In particular, Chapter 2 provides an introduction and the relevant
literature to GEP with emphasis on long-term planning of power systems involving high levels of
RES penetration. Basic characteristic of a GEP model are presented. Challenges arising due to
the increasing shares of RES generation are discussed. An introduction to EAs and MAEAs is
provided in Chapter 3 presenting also the relevant literature. Chapter 4 presents a single-objective
multi-period GEP approach based on MAEAs. The approach includes problem-specific operators
that are examined regarding their impact on the algorithm performance. The impact of including
the SM and the technical detail is also examined. In Chapter 5, a static MOO GEP approach based
on MOO-MAEAs is presented. The approach aims towards examining cost trade-offs arising in the
presence of increased shares of generation by RES by a SM. A series of numerical experiments are
conducted to examine the efficiency of the optimization approach and identified limitations are
presented. Chapter 6 provides the concluding remarks of this thesis.
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Chapter 2

Generation Expansion Planning and
increased shares of Renewable Energy
Sources

This Chapter provides a background to the short and long term optimization models that are
considered in this thesis. Specifically, a brief introduction to long-term planning with a focus
on GEP is provided. Then, the considerations regarding short-term planning, with a focus on
the Unit Commitment Problem (UCP), are discussed. Moreover, the main challenges regarding
an efficient integration of RES generation are mentioned. Lastly, the relevant literature on GEP
models including aspects of the short-term operation is presented, which is the focus of the thesis.
Overall, the Chapter aims to elaborate on the motivation and scope of this thesis by providing
relevant background.

2.1 Brief note on long-term planning and Generation Expansion
Planning

Long-term planning is very broad and different categorizations based on different criteria such as
scope, focus, methodologies, and level of detail, can be made (Reference [9]). Such models are
mainly intended for generating scenarios and pathways to be analyzed w.r.t. to the scope under
examination. Focus is directed on long-term planning for which the scope is restricted to the
electrical power sector and for which the methodology is restricted to optimization models. More
specifically, this thesis is restricted to power planning models that focus on investment scenarios
in generation capacity, for the electrical power sector, accounting for short-term operation in the
presence of high shares of RES generation.

There are other categories with broader scopes such as energy system optimization models,
energy-economy models and integrated assessment models that are not discussed in this thesis.
Such models may account for other sectors of the energy system (e.g. transportation), consider
the interaction of the energy system and the entire economic system, or have a large-scale energy-
economic global scope. Furthermore, they may focus on scenarios for multiple regions/countries,
or global scenarios, for a few decades, or a century. Interested readers are referred to Reference [9]
for greater detail.
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One of the main focuses of such long-term power planning optimization models is to examine a
power system’s ability to satisfy the anticipated demand in a long-term planning horizon (years to
decades). Main considerations are the generating fleet and the transmission network which should
be both analyzed (Reference [2]). These commonly are examined in terms of technical, economic
and environmental efficiency, reliability and flexibility.

Specifically, models that focus on analyzing the existing generating fleet and its possible expan-
sion, are commonly referred to as GEP models (Reference [18]). In this case, possible investments
in capacity additions and/or the introduction of new generating units are examined considering
economic, reliability, and environmental criteria. One of the main factors that drives these addi-
tions is, usually, the anticipated demand growth. In addition, they may be required due to the
aging of the existing generating fleet which can lead to the decommissioning of old or inefficient
units. Moreover, they could be driven by policy factors, e.g. a low-carbon transition motivated by
the environmental factors.

Correspondingly, models with a focus on the analysis of the transmission network and its possible
expansion, i.e. transmission expansion planning (TEP), are commonly referred to as TEP models
(Reference [18]). In this case, the analysis focuses on the adequacy of the existing transmission
network in terms of efficiency and reliability. Similarly to GEP, an expansion in the transmission
network can be driven by the aging of the existing network and the anticipated demand growth.
However, there are also other motivations for TEP such as to facilitate RES integration, facilitate
power exchange among producers and consumers, and to create interconnections between isolated
regions.

Several models include both GEP and TEP (GEP-TEP) as it is important that both must be
analyzed within the context of long-term planning. It has been discussed (Reference [2]) that such
models may provide alternative and beneficial expansion plans and the examination of GEP and
TEP should be considered at least in parallel (even though not equally optimal).

The following Sections elaborate on GEP which is the focus of this thesis and TEP and GEP-
TEP are beyond its scope. Greater detail on the aforementioned can be found in References
[2, 1, 4, 18, 5].

2.1.1 Generation Expansion Planning

GEP models stand as one of the most important tools to support decision-making in power sector
long-term planning (References [2, 1, 4, 6]). Moreover, recent challenges introduced to power
sectors, such as new economic, technical, environmental, and regulatory issues, have gradually
forced a new GEP models to emerge that deviate from the traditional GEP framework. Categorizing
GEP models and approaches can be made in different ways considering different criteria. For
example, Reference [1] provided a comprehensive review of the GEP problem. They reviewed and
classified many studies on GEP from the perspective of five different factors, i.e. the liberalization
of the electricity industry, climate change, and environmental issues, recent revolution in generating
technologies, current regulatory policies, and emerging techniques in the fields of optimization and
modelling.

Such factors have motivated the development of many GEP models. In the following Sections,
he basic questions associated with the GEP process, the objectives and perspective of the planner,
the traditional approach for the inclusion of operation and uncertainty are provided.
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Generation Expansion Planning: Basic Decisions

Commonly, four basic questions are associated with a basic GEP: what, how much, where and
when (References [1, 4, 18]). In particular, a GEP model should provide the answers to the type
and size of the suggested capacity additions, where these should be located, and when should the
investments be carried out. Each of these questions is important to optimally identify the capacity
additions that adequately meet the demand growth over an examined long-term planning horizon.

� Type: Different investment options may exhibit different techno-economic characteristics.
The efficiency and reliability of the system are highly dependent on the synergy of the existing
and new capacity and consequently its techno-economic characteristics. For example, the
techno-economic characteristics of non-dispatchable RES generating technologies differ from
the ones of fossil fuel units.

� Size: Due to the different techno-economic characteristics of the investment options the opti-
mal size of capacity additions in each such option can differ. For example, the system could
benefit by larger/lower numbers of capacity additions, to the existing capacity, of a generating
technology type A in comparison to B. Moreover, possible capacity addition sizes could be
restricted by techno-economic characteristics.

� Location: The importance of location is, in general, associated with the network limitations
and the spatial distribution of the supply and demand (Reference [18]). For example, it may
be important to suggest the location of the optimal capacity additions to reduce possible
transmission losses. In addition, restrictions may emerge due to possible congestion, espe-
cially for cases of high shares of generation by RES (Reference [19]). Therefore, attaining
information regarding the location requires a representation of the transmission system within
GEP models. Models including the aforementioned representation are referred to as network-
constraint. On the contrary, when the representation of the transmission system is neglected
the model is referred to as a single-node model. In this case, both supply and demand are
assumed to be co-located on a single virtual node.

� Timing: A GEP model may consider a planning horizon spanning over a few years or decades
and the timing of implementing the investment options may be important. Therefore, there
are two main categories static models and dynamic models (Reference [18]). For a static
model, it is assumed that capacity additions are ordered or constructed at a single discrete
step during the beginning of the planning horizon, e.g. first year, and the final year of the
planning horizon is assumed as the target year. For dynamic models, a number of discrete
steps throughout the planning horizon are assumed (e.g. every five years). Within each step
an investment stage and a target year are then considered. Hereafter, dynamic models shall
be referred to as multi-period.

Generation Expansion Planning: Frameworks based on Industry structure

Based on the categorization made in Reference [1], there are different frameworks to approach GEP
w.r.t. the liberalization of the electricity industry structure. The first is the centralized approach
where a system-wide analysis is considered. It is carried out from the perspective, or under the
assumption, of a central planner which is interested in the most efficient expansion plan. This case
considers the traditional structure (monopoly - vertically integrated structure) of the power sector.

7



The second considers a market-based approach. It is implemented from the perspective of profit-
oriented agents that aim to maximize their own anticipated profits by expanding their production
capacity. Therefore, such agents are not responsible to meet the demand but are interested in
improving their participation, aiming at higher profits, in the electricity market. This case considers
a decentralized electricity industry structure (liberalized electricity industry). An intermediate case
arises when the transition from a monopoly towards a liberalized market is considered. In such,
the GEP problem may be addressed as a profit maximization problem, from the perspective of the
independent power producers, or a cost minimizing problem, from the perspective of utilities which
purchase generation from the independent power producers.

A central planner framework is adopted in this thesis. The central approach seeks for the
investments in capacity additions that satisfy the defined objective and limitations in an optimal
manner. Common objectives are cost minimization (e.g. total, generation, and/or investment cost)
or the maximization of social welfare. Despite satisfying the demand in a reliable manner, other
limitations may be also taken into consideration (e.g. environmental factor, regulatory objectives).
However, under a liberalized structure, a central approach does not necessarily imply that the
central agent actually implements the investments but rather provides incentives to private investors
to build them (Reference [18]) .

Generation Expansion Planning: Single and Multi objective optimization frameworks

Traditionally, GEP models consider a single-objective optimization (SOO) formulation (Reference
[1]). However, long-term planning could include many other objectives. For example, the environ-
mental, operational, regulatory, and/or social aspects are also important (References [1, 4]).

In general, a least-cost GEP model could aim at identifying the optimal capacity additions by
minimizing an aggregated cost function representing the system’s total cost (References [1, 4]). In
case more than one objectives are considered, then these can be included in a single aggregated
function. Including the aforementioned within a least-cost formulation requires an aggregated
weighted function for which the numerical differences must be scaled. This also could require
determining weights/preferences a priori which is not always trivial when the included objectives
cannot be easily expressed in monetary terms (e.g. monetary value of RES penetration) or their
preferences cannot be easily quantified (e.g. reducing the operating cost and achieving regulatory
goals). Moreover, the latter may include objectives that may be conflicting (e.g. an increase in the
total investment cost could, possibly, reduce the operation cost). Moreover, the output of a SOO
problem does not provide a set of solutions that reveal trade-offs among such terms. In these cases,
where different objectives are conflicting but included within a single function, the optimization
framework could be perceived as a weighted sum method. Moreover, some objectives can be imposed
as a set of limitations represented as constraint functions or penalty terms. Common examples of
such objectives expressed as limitations are the environmental and/or reliability factor (Reference
[20]).

Alternatively, multi-objective GEP frameworks have been proposed and their popularity has
been recently increased. Reference [3] attributes this increase to the growing importance of param-
eters such as RES, GHG emission, and energy security targets. Therefore, Multi-Criteria Decision
Making (MCDM) methods have been developed to support decision-making in the presence of mul-
tiple and conflicting objectives. Commonly, these approaches are categorized to Multi-attribute
decision-making and Multi-Objective Decision Making (References [4, 1]).

In multi-attribute decision-making approaches, discrete and predefined alternatives are com-
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pared based on a set of decision criteria (Reference [4]). This aims at ranking such alternatives
based on the overall preferences when the criteria are considered simultaneously. Reference [21]
discusses multi-attribute decision-making approaches applied to energy planning based on three
main categories; namely value measurement methods, goal programming, and outranking models.

On the contrary, Multi-Objective Decision Making focuses on cases where the number of decision
alternatives is large. Therefore, an optimization problem is formulated, commonly, considering the
criteria as objective functions and possible limitations as constrained functions. The output of
such a MOO problem is a number of possible solutions with equivalent quality w.r.t. the examined
conflicting objectives. In general, the most suitable solution must be determined a posteriori based
on a decision maker’s preference as each may be more suitable given different weights/preferences
(Reference [20]). Therefore, the aforementioned solutions can be analyzed in terms of trade-offs
during decision-making.

Different GEP frameworks have focused on different objectives, such as minimization of cost,
GHG emissions or risk related objectives, maximization of economic feasibility or reliability-related
objectives (References [1, 3, 4]). Reference [1] identifies the analytical hierarchy process, the utility
theory, the fuzzy set theory, the normal boundary intersection, the preference-order ranking and
the graphical representation using trade-off curves as the most popular approaches. It also discusses
the relatively low number of MOO based studies, in comparison to single-objective ones, despite
the recent advances in multi-criteria decision-making.

Generation Expansion Planning: Uncertainty and risk assessment

Long-term planning is subjected to uncertainties. Therefore, investment options should be evalu-
ated within GEP based on a series of risks posed by each candidate generation technology. Ref-
erence [2] summarized the basic risk components in the GEP process to the following categories:
economic, political, regulatory, environmental, technical, social, and climate. Also they provide a
relevant literature review regarding the state-of-the-art on risk assessment in GEP. Moreover, tech-
niques employed for considering uncertainties induced by RES in the planning process are discussed
in Reference [4]. In general, deterministic GEP models assume perfect information regarding such
uncertainties while stochastic GEP models attempt to account for the uncertainty of the GEP
problem by employing uncertainty modelling approaches (e.g. stochastic programming).

2.1.2 Generation Expansion Planning and Short-term operation

The main goal of a short-term model is to support decision-making towards the optimum schedul-
ing of available generating units in a power system and efficiently balance supply and demand
in a short-term planning horizon (one day up to two weeks). In practice, many electricity mar-
kets are structured as a Day-Ahead market and a balancing and ancillary market (Reference [18]).
Decision-making is usually implemented by the market operator or an Independent System Oper-
ator (ISO). Moreover, decision-making is implemented by privately-owned companies that submit
offers (supply and demand) in liberalized markets. From the ISO perspective, the main consid-
erations are the reliable, economic and environmental operation of the power system. Reliability
is considered to ensure that supply and demand in real-time operation are met. Some technical
characteristics/restrictions of generating units require that the available units are committed in
advance to attain an economical and efficient operation. Consequently, sufficient reserves should be
available in the Day-Ahead market for the real-time operation to account for uncertain events (e.g.
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transmission or generation outages, forecasting errors in demand or supply). Supply and demand
must be economically met at all times including also the possible imbalances. Based on the struc-
ture of an electricity market, generation cost (partly) determines the marginal price. Therefore,
the inefficient operation can impact the cost that is transferred to consumers and the profits of
investors. Consequently, techno-economical characteristics must be accounted for to determine a
feasible and optimal generation schedule.

Short-term operation: the merit order

Traditionally, the operational perspective, i.e. short-term operation, within the context of long-
term planning must be accounted for. However, until recently, historic load patterns have been
characterized by highly predictable and relatively slow time dynamics (Reference [8]). Therefore, a
common assumption made was that the demand and variable costs are the main forces affecting the
dispatch in different operating conditions. Specifically, detailed representation of the short-term
operation, including for example technical limitations of the generating fleet (e.g. unit ramping
limits) and/or operating requirements (e.g. operating reserves) had been mostly ignored. This
assumption enables the employment of a simpler representation of both the generation cost and
dispatch scheduling. One of the main approaches for capturing the short-term operation is based
on identifying a subset of operating conditions (Reference [18]). Commonly, these are derived based
on clustering and the load-duration-curves (LDC). A LDC is, in general, the aggregated and sorted
in descending order electricity consumption/demand (load). An important characteristic of the
LDC approach is that it maintains information of the historical data, e.g. correlation among load
levels in different locations, however, chronological information is not preserved, e.g. load patterns,
(Reference [18]).

Based on the aforementioned, the dispatch of an assumed available conventional generating fleet
can be determined based on the merit-order defined by their variable costs and using the LDC.
In particular and from an electricity-economic perspective of liberalized wholesale power markets,
the market-clearing equilibrium price (supply meets demand) could be determined by the most
expensive plant, among the existing ones, that is willing to produce (its variable cost determines,
and equals to, the market-clearing price) under specific assumptions (Reference [18]). Based on the
aforementioned, an estimation of an optimal dispatch could be determined by a merit order model.
The computational efficiency of such models can provide a useful framework for examining prices
and the dispatch in different market models.

There are different methods to capture short-term operation by merit-order-based models in
GEP. Such, is the Screening Curve method (Reference [22]). It can provide an estimate of the
total cost of thermal power plants per time period per unit of available capacity. Due to their
computational efficiency, Screening Curve method has been widely employed within GEP models
to provide this estimate of the least-cost option to generate electricity and identify an optimal
capacity mix. For the cases where variable RES generation, is considered modifications are required.
Commonly, the LDCs are replaced by the net LDC, i.e. the generation by variable RES is first
subtracted from the load and then sorted. This results in the loss of chronological information
which can have an impact on the attained investment decisions (Reference [23]). Moreover, the loss
of chronological information can render capturing the variations of generation by RES, thermal unit
operating limitations, demand-side management and/or storage capabilities challenging (Reference
[9]). Therefore, efforts have been made to improve the accuracy of this estimation (References
[24, 25, 26]).
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Short-term operation: the Unit Commitment Problem

Another main category of models for short-term generation scheduling are models for the UCP. Such
models are more technical-oriented as technical restrictions of the generating units are accounted
for.

In general, a UCP model includes two sub-problems: the Unit Commitment (UC) and the
Economic Dispatch (ED) problems. The former implies the definition of the operating status
of each unit for each scheduling period and the latter the load allocation among the committed
units. To determine the operating states and the production levels, the operating limitations of
the thermal generators are considered. Such limitations arise by the units’ technical and economic
characteristics, e.g. the unit ramping capability, the minimum and maximum production level,
the minimum on-line/off-line time constraints, up/down reserve requirement, and fuel consumption
cost. Moreover, commitment decisions need to be taken in advance. Therefore, the cost for bringing
a unit on-line (start-up cost) or switching it off-line (shut-down cost) is taken into account. Such cost
arises due to fuel consumption during the time a unit is heating up or cooling down. In addition
to efficiently meet the electricity demand, a set of other operating requirements are considered
regarding the reliability of the system (e.g. operating reserves or transmission limitations). From
a mathematical point of view, a UCP is a complex optimization problem that can be formulated
as a Mixed Integer Linear Programming (MILP) problem.

UCP models have been also presented to capture the short-term characteristics for longer
scheduling periods (up to a year). For example, Reference [27] suggested a long-term UCP model
including pumped storages. Computational tractability of the MILP is tackled by decomposition
methods. Reference [28] examines heuristic solutions for the long-term UCP including co-generation
plants. Reference [29] suggested a linear formulation to simulate a UCP for evaluating the curtail-
ment of RES generation and operational costs for large-scale power systems.

2.2 Long-term planning with increased detail in the representa-
tion of the short-term operation of a power system

The increasing penetration of generation from variable RES and its efficient integration within a
power system has led to integrating long-term planning models with a more detailed representation
of the short-term operation (Reference [2]). Variability and uncertainty of RES generation require
to be addressed during short-term planning to account for sufficient operating flexibility. As a
result, the value of operating flexibility must be also assessed during long-term planning to deter-
mine the optimal capacity additions when high shares of RES generation are considered. Operating
flexibility refers to the ability of the power system to respond to fluctuations and meet the net load
(the residual load to be met by conventional units after subtracting the contribution of intermittent
energy) within an acceptable time frame by adjusting supply. These are elaborated in the following
Sections and constitute one of the main motivations for this thesis. More specifically, some basic
characteristics of RES generation are provided. Then, the impact of accounting for short-term op-
eration in the context of long-term planning is discussed and a number of representative approaches
are presented.

11



2.2.1 Characteristics and integration of generation by Renewable Energy Sources

Main characteristics of electricity production by weather-dependent (e.g. wind farms and solar
photovoltaic installations) RES are the following:

� The output of RES installations is variable: This variability can be observed in different
time scales. For example, seasonal fluctuations can be observed within a year, e.g. solar
photovoltaic have higher output in summer months than in winter ones. Their output may
fluctuate within a day, e.g. the peak in generation by solar photovoltaic is usually observed
in midday while their output is zero during night hours. Besides, the output of RES may
vary in large percentages within short time-scales (intraday and intra-hourly) based on shifts
occurring in the weather conditions. In cases of rapid increases/decreases, the short-term
generation schedule should be able to meet such shifts.

� The output of RES installations is uncertain: Uncertainty of RES generation is a consequence
of their weather-dependent output. Specifically, the anticipated RES generation output is con-
sidered during the day-ahead scheduling. However, it cannot be perfectly forecasted. There-
fore, the generation schedule must be able to meet cases of overproduction or underproduction
of RES generation along with the other common uncertainties of generation scheduling, i.e.
load error forecasting or unexpected power plant outages.

� The marginal cost of RES generation is (almost) zero: The zeros marginal cost of RES gener-
ation has a number of implications regarding the operation and profitability of the generating
fleet (both for conventional and RES) and the final consumer price (Reference [30]). The neg-
ligible marginal cost of RES generation leads to efficient generation scheduling prioritizing it
and conventional (thermal) generators satisfy the remaining (residual) demand and provide
sufficient reserves. In a scenario of high shares of RES generation, and under current power
market design conditions, implications regarding to profitability of the generating fleet could
emerge (Reference [30]). For example, negative marginal prices have been observed in the
electricity markets’ operation.

� RES production is GHG emission-free: The necessity of tackling environmental issues (Refer-
ence [1]) has triggered the ongoing low-carbon transition of many power systems. A direction
towards the reduction of GHG emissions is the increase in the share of RES generation (Ref-
erence [31]). Since the production by RES does not omit GHG emissions, and if their dispatch
is prioritized in generation scheduling, their contribution towards meeting the demand can
replace energy production otherwise generated by fossil units.

2.2.2 Motivation for assessing operating flexibility within long-term planning

Including short-term dynamics within long-term planning is mostly motivated by the necessity for a
reliable operation of a power sector. Including higher detail concerning such dynamics may provide
additional, or in some cases more accurate, insight for evaluating scenarios and options in long-term
planning (References [7, 8]). Such is the case a transition towards higher shares of generation by
RES is considered where the value of operating flexibility should be also assessed.

The main source of increased operating flexibility requirements is based on the variability and
uncertainty of RES generation induced by their dependency on meteorological conditions; RES
output follows the fluctuations that occurred within the latter. More specifically, conventional
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generators should be able to provide the load following deviations among the forecasted load used
for unit commitment and the forecast load used in the real-time balancing market. At high RES
penetration levels, load following requirements are increased, as forecasting errors occurring due to
RES uncertainty and RES variability must be also accounted for. Moreover, the variability of the
net load in comparison to the variability of the load can result much higher. In such cases, flexible
generators could be required to operate more frequently and/or generators may be forced to more
frequent cycling w.r.t. their techno-economic characteristics. This may increase operating costs (e.g.
operation, maintenance, and start-up) of conventional base-load units. The aforementioned are
based on Reference [32] where these are discussed in detail. In addition, Reference [33] suggests that
increased wind generation levels might lead to operating flexible conventional units more frequently.
The importance of highly flexible and reliable units, of adequate interconnections and storage
capacity to be able to coop with uncertain and intermittent production of most RES installations, is
also highlighted. Reference [34] developed a linear programming model including several operating
constraints such as operating reserves and ramping ability of the units. They identified that the
generation share of base-load units could be replaced by generation from intermediate units due to
the penetration of wind power (attributed to its intermittency and variability), (ii) base-load units
ramping restrictions are important operating limitations to be considered, (iii) the transmission
system and energy storage can serve as operating flexibility providers, and (iv) peak-load technology
additions could be less necessary. Reference [35] outlines steps for relying primarily on variable RES
i.e. transition to zero carbon power systems with 100% RES. Specifically, 3 phases/steps towards
creating power systems with sufficient flexibility to maintain a reliable and stable operation are
presented. These steps are provided in the form of a comprehensive overview of policies, technical
changes, and institutional systems.

2.2.3 Flexibility providers

Operating flexibility is not restricted to the technical flexibility provided by thermal units. A review
on main flexibility providers is provided in Reference [36] which is a comprehensive literature study
on recent flexibility mechanisms in power systems with a high penetration level of generation by
variable RES. Main power system flexibility resources can be provided from both the demand and
supply side. Flexibility, from the supply side, is mostly represented by the available generating
fleet. For example, flexibility can be provided by (i) thermal generators, w.r.t. their short-term
techno-economic characteristics and limitations, (ii) non-thermal generators, such as conventional
hydro-power plants or storage facilities (discharging), which can smoothen the net-load. From
the demand-side, mechanisms such as demand response, smart grids, storage facilities (charging),
and possible interconnections with neighboring power systems can also contribute. Moreover, an
enhancement to the transmission system may also provide flexibility to the transmission system
and consequently mitigate possible congestion (Reference [2]). Lastly, the variable generation by
RES output cannot be controlled as effectively as the corresponding one of the conventional thermal
fleet. The main instrument for adjusting the former is through curtailment which is also restricted
by weather conditions. To be specific, curtailment is the voluntary reduction of RES output to a
lower level than the maximum available.
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2.2.4 Limitations and simplifications

One of the main restrictions in including a detailed representation of the short-term operation
in long-term planning, such as a GEP model, arises due to the computational restrictions. The
primary focus towards this direction follows the inclusion of main aspects of the UCP in long-term
models (Reference [9]). Both GEP and UCP models can be computationally challenging. A MILP
formulation of UCP can include detailed technical constraints on a unit level, (e.g. operating levels,
ramping capabilities, and minimum up/down times), system requirements on an hourly level (e.g.
load and reserve requirements) and a detail network representation (e.g. transmission system). On
the other hand, a long-term planning model can include techno-economic detail regarding a number
of investment options, a network representation to consider the location of such investment, and
a planning horizon spanning over a few years or decades. A combined GEP-UCP formulation
considering the aforementioned emerges as a large scale MILP formulation that requires significant
computational resources to be tackled (Reference [7]). Consequently, simplifications are introduced
to the representation of short-term operation in the context of long-term planning. An overview
of the aforementioned is included in Reference [9]. The simplifications are presented in terms
of the level of technical, temporal, and spatial detail used to describe the electric energy system.
Furthermore, endeavours have also been focused on suggesting methods to tackle the computational
intractability of such models. Such approaches are reviewed in Reference [2].

2.2.5 Impact of technical, temporal and spatial detail of short-term operation
on long-term planning

Capturing the impact of the intermittent output of RES generation on the short-term operation of
a power system within the context of long-term planning is not straightforward (References [1, 2, 3,
4, 9]). It implies that sufficient information is considered regarding: (i) technical detail (References
[7, 8, 37, 38]), e.g. technical characteristic of the operating units and system requirements, (ii)
temporal detail (References [39, 40, 41, 42, 43]), e.g. chronological information on an hourly level
including different operating conditions and seasonality, and (iii) spatial detail (References [44, 45]),
e.g. the available transmission system to consider possible congestion. Even though the importance
of neglecting RES variability can be system specific (Reference [10]), it increases with higher RES
penetration levels. In general, omitting technical, temporal and/or spatial detail may have an
impact on optimal planning. More specifically:

� Technical detail: Technical detail may have an impact on long-term planning as it may over-
estimate the operating flexibility of an examined installed capacity due to neglecting technical
restrictions. For example, References [7, 8] demonstrated that neglecting flexibility require-
ments can significantly affect the derived generation mix and lead to sub-optimal (cost and
GHG emission) generation portfolios that are infeasible to operate when high levels of RES
generation are considered. Reference [37] focus on the impact of operating reserve require-
ments on generation capacity investments following the large-scale integration of intermittent
RES generation. They revealed that neglecting such requirements and their allocation and
costs may result in underestimation of RES integration costs. They also suggest innovative
sizing and allocation strategies for operating reserves. Moreover, Reference [38] have demon-
strated that ignoring flexibility constraints could result in high deviations of the resulting
installed capacities in a case study focusing on Ireland.
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� Temporal detail: In general, limiting the impact of temporal detail may result in overestima-
tion of generation by RES and inflexible units and in an underestimation of the investments
in flexible generation. This is demonstrated in a number of studies. For example, Reference
[39] examined the influence of increasing temporal resolution on the optimal technology mix
through a model combining long time scales of climate change mitigation and power system
investments with short-term fluctuations of RES. Among their findings, an increase in flexible
technologies natural gas technologies had been observed by increasing temporal resolution.
Reference [40] presented an extension of the an energy planning tool to consider seasonal,
daily, and hourly supply and demand dynamics. Regarding temporal detail, they highlight
that lower resolution models can overestimate the optimum amount of investment in RES.
Moreover, has been examined by deriving a capacity mix from a GEP model that does not
include the restrictions of a UCP model and examine the dispatch decisions by employing one.
For example, Reference [41] focused on quantifying and analyzing the impact of simplifica-
tions considering temporal and technical detail. They demonstrated that a suitable approach
can be the appropriate selection of a set of historical days to represent an entire year. Refer-
ence [42] suggested a soft-linking methodology to verify the technical appropriateness of the
energy systems developed portfolio. They highlight that an energy system model can pro-
duce reliable portfolios that however may overvalue variable RES, undervalue other flexibility
providers (storage) and overestimate base-load operation. Towards this direction, Reference
[43] compared different approaches to select a representative set of days. By demonstrating
that increasing temporal detail may provide more robust results in the expense of a higher
computational cost, they propose an optimization-based approach for selecting representative
time periods and suggested indicators and metrics for the evaluation of representativeness.

� Spatial detail: Benefits may arise by spatial smoothing of RES generation due to spatial di-
versification. Moreover, limited representation of the transmission networks does not account
for challenges arising due to possible transmission congestion. For example, Reference [44]
assessed the impact of spatial resolution (spatial aggregation) on the investment planning
decisions by developing a linear programming model. Their results revealed that the relative
competitiveness of RES technologies may be affected and consequently lead to suboptimal
investments in capacity additions. Reference [45] developed a MILP model for the optimal
long-term energy planning of a power generation system. Within this context, the approach
focuses on a detailed representation of spatial and technical characteristics of short-term
operation. Among other findings, they identify the allocation of investment and capacity
additions derived by the model aimed towards balancing the demand excess and production
excess among the considered regions.

2.2.6 Representative approaches on Generation Expansion Planning models in-
tegrating dynamics of short-term operation

This Section focuses on long-term optimization models, and specifically GEP models, that focus on
increased shares of RES generation. The level of detail for which short-term dynamics are accounted
for differs and mostly relies on the scope and focus of each study. Due to the many different
perspectives, scopes and aims of the studies and models, some categories have been excluded.
Specifically, and following the categorization in Reference [3], non-optimization models such as
probabilistic, simulation, life cycle assessment, cost-benefit analysis, econometric, multi-criteria,
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system dynamics, and modern portfolio theory models have been excluded. Moreover, computable
general or partial equilibrium models have been excluded. In such models the GEP problem is
part of an optimum equilibrium solution of the whole economy or the energy system respectively
(Reference [3]). For greater detail on (i) integrating energy by RES in the GEP, (ii) integrating
short-term variations of the power system into integrated energy system models, and (iii) the state-
of-the-art on incorporating short-term dynamics on GEP decisions, the reader is kindly referred to
References [2, 3, 4]. Some representative approaches are presented in the following Section and have
been categorized in: (i) static GEP models including a UCP model, (ii) multi-period GEP models
including a UCP model, (iii) approaches focusing on computational restrictions, (iv) approaches
including flexibility metrics, (v) MOO approaches, and (vi) EA-based SOO and MOO approaches.
However, some of the following approaches could be included in more than one category.

Static GEP models including a UCP model

Efforts have been made towards merged GEP-UCP models to assess operational flexibility require-
ments and their impact on the output of the model. For example, Reference [7] presented a MILP
model for the optimal GEP problem, employing a full year representation with hourly time scale
and a series of clustered unit commitment constraints utilized to handle the computational cost.
The clustered unit commitment formulation considers integer variables for the UCP, in contrast to
the commonly formulated binary variable UCP, leading to significant computational time reduc-
tion. Reference [8] extends the aforementioned approach and examines the impact of operational
flexibility on the GEP, incorporating RES and emission reduction targets. Reference [46] proposed
a GEP model that embeds a convex relaxation of a UCP as a short-term operational model that is
a continuous and polynomially-solvable optimization problem. The investment decision variables
are the only integer variables of the model. They identify that neglecting operational flexibility
in GEP can lead to reserve shortage, load shedding, and curtailment of RES generation due to
under-investment in flexible capacity. Reference [47] proposed a model to determine the optimal
generating mix of a power sector by accounting for operational flexibility. The approach employs
an operational model to re-evaluate the installed capacity derived by a basic GEP model and itera-
tively seek for an improved solution. The advantage of this approach is that operating restrictions
are considered on a power plant level. Also, it demonstrates the importance of operational con-
straints related to thermal units on the investments and operational planning, w.r.t. the level of
RES generation. Reference [48] developed a novel capacity expansion model optimizing investment
decisions. The LP optimization model employs technical, economic and spatial characteristics to
aggregate units and a relaxed-integer formulation of a UCP model to reduce modelling complex-
ity. Storage technologies and policy constraints are also considered. They find that neglecting
flexibility constraints would significantly underestimate the curtailment rate and costs. Moreover,
they highlight the importance of lower storage cost to achieve affordable higher shares of RES
penetration.

Multi-period GEP models including a UCP model

Models considering a multi-period planning horizon have been also suggested. Such models aim
towards capturing additional variations in the critical parameters such as the investment costs
and fuel prices. For example, Reference [49] proposed an integrated model for GEP with high
shares of variable RES output that considers short-term operation by a simplified UCP formulation
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presented in Reference [50]. The model’s applicability was demonstrated considering a 10-year
planning horizon; a representative day was selected for each season. They compare the results with
a traditional GEP model and reveal that assuming average operating conditions can underestimate
the system costs. Moreover, they highlight the impact of RES variability on the operating conditions
can lead to sub-optimal GEP decisions. Reference [51] developed a multi-period multi-regional
GEP model that had been formulated as a MILP. It considers the annual constraints of the GEP
problem and the short-term constraints of a UCP. The approach considers many aspects of the
short-term operation and its representation exhibits a high level of technical, temporal, and spatial
detail. Computational restrictions had been addressed by selecting a representative day per month
over the long period to determine the optimal generation mix and energy planning details of the
power system. The model aims towards deriving the optimal power production mix, capacity
additions, and System Marginal Price. They find that higher RES penetration levels are correlated
to higher production shares of natural gas fired units and higher levels of electricity trading which
are attributed to flexibility requirements. Reference [52] developed a stochastic generation capacity
expansion planning model to assess environmental policies such as renewable portfolio standards
and carbon tax. Uncertainty from wind and load availability had been considered by adopting the
Gaussian copula method. Moreover, they provide a comparison with a target year model.

Approaches focusing on computational restrictions

Some approaches have focused on addressing the emerging computational complexity. Different
decomposition methods have been used such as Dantzig-Wolfe decomposition (Reference [53]) or
Nested Bender’s decomposition (Reference [54]). Reference [53] proposed a column generation
approach for optimizing the multi-period GEP problem with high integration of RES. The developed
GEP-UCP model had been formulated as a large scale MILP. Computational times were reduced by
employing Dantzig-Wolfe decomposition and a clustering technique. The study also highlights that
incorporating short-term constraints into the long-term planning horizon may provide noticeable
cost reductions. Reference [54] proposed a MILP model for the long-term planning of investments
in the power sector including a UCP model. Computational tractability had been addressed by
modelling approximations and aggregations. Moreover, an algorithm had been proposed based on
Nested Bender’s Decomposition for multi-period MILP problems including acceleration techniques
to improve the overall performance of the algorithm and achieve computational time reductions.

Approaches including operational flexibility metrics

A number of approaches have employed operational flexibility metrics. Reference [55] suggested
the use an off-line flexibility index that estimates the individual contribution of generating units to
the overall system flexibility. It considers the ramping capabilities and operating range of thermal
generators. Also, a unit construction and commitment algorithm is developed to determine the
optimal investments in flexible generating units. The approach aims in evaluating the flexibility
level provided and investigate the role of flexibility in generation planning and market operation.
Among other findings, they highlight the importance of a market design w.r.t. an efficient and
profitable deployment of flexibility resources. One of the main advantages of such off-line metrics
could be their computational efficiency. Towards this direction, Reference [56] formulated a metric,
termed the composite flexibility metric. It considers a large number of important technical flexibility
characteristics of generating units as indicators and the metric is adapted based on the whole
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generating fleet. It may serve as a metric for comparing different generation mixes. Moreover, the
value of the metric for a unit is adapted based on the flexibility characteristics of the remaining units
within the generation portfolio. Reference [57] suggested an integrated framework that includes
operational flexibility assessment metrics. The developed multi-period GEP-UCP model is indented
for high shares of intermittent RES. In addition, the framework includes methods to address the
computational burden induced by the resulting large-scale optimization problem. Their results
demonstrate that the inclusion of detailed short-term constraints within long-term planning is
important for high RES penetration levels as neglecting them may result in underestimation of the
required operational flexibility and the GHG emissions omitted.

Market-based approaches

Approaches employing a market-based framework have been suggested to assess the evolution of
electricity prices. For example, Reference [58] proposed a mid-term market-based power systems
planning model to including both GEP and TEP decisions at a yearly level and a model for the
UCP on an hourly level. The formulated MILP model aims at identifying the power mix, the
RES evolution, and the day-ahead prices and had been employed within their work to examine
the feasibility and impact of an interconnection of the mainland power system of Greece with the
autonomous power system of Crete. Reference [59] examined the impact of increasing wind share on
the optimal generation mix and the profitability of the generating capacities been. They developed
a GEP model including an hourly UCP model to analyze policies that support resource adequacy.
They find that higher wind shares reduce average electricity prices resulting in different implications,
regarding the profitability of each considered generator type, and generation expansion plans under
the three examined policies.

Approaches examining storage technologies as flexibility providers

Moreover, focus has been concentrated on capturing flexibility provided by non-thermal generators.
Reference [60] presented a MILP model for the optimal GEP at a future target-year. They identify
an increase in the role of storage-based technologies for the examined electricity systems and that
availability of different low-carbon technologies can impact the optimal capacity mix and generation
patterns. Reference [61], developed a MILP long-term investment model including a continuous
relaxation of the technology-clustered formulation of the short-term UCP. Moreover, energy services
and frequency control provided by storage technologies are also accounted for. Their results, derived
by the application on a full year, showed that integration of storage resources can facilitate RES
integration and lead to cost reductions. Moreover, they demonstrate that storage technologies could
reduce, to some extent, the requirements for flexible power plants and support inflexible ones.

Multi-objective optimization approaches

There are also many available MOO approaches considering RES integration for GEP and such
are reviewed in References [1, 3, 4]. For example, Reference [62] presented a multi-objective model
for expansion with high shares of RES. The model considered the minimization of the total cost,
the maximization of generation at the peak load, and the maximization of non-hydro RES gen-
eration contribution, as conflicting objectives. Their results indicate the potential importance of
solar power generation for the future Brazilian system. Reference [63] developed a multi-objective
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method considering also large-scale demand-side management and demand response technologies.
The objectives functions defined to determine an optimal mix of the renewable system had been set
as the maximization of RES contribution to the peak load, the minimization of monthly and yearly
intermittence, and the minimization of production cost. Reference [64] developed a multi-period
multi-objective GEP including cost, environmental and reliability objectives as the competing func-
tions. Also, reliability is evaluated by an analytical probabilistic approach. The optimization frame-
work is based on lexicographic optimization and the Normal Boundary Intersection method. They
find that the developed optimization framework derives efficient solutions that are evenly spread
on the Pareto front while ensuring that dominated solutions are not produced.

However, GEP studies that focus on capturing operating flexibility requirements, induced by
RES variability, by considering a detail representation of short-term operation are relatively limited.
This can be attributed to the high computational cost associated with GEP-UCP models or the
increased detailed required for the representation of short-term operation. Towards this direction,
Reference [65] suggested a MOO approach that considers operating flexibility as a separate objec-
tive function. It utilizes the composite flexibility metric (Reference [56]) that serves as an indicator
for the operational flexibility objective function. The optimization model considers also cost and
environmental objectives and a set of limitations regarding reliability. A MOEA (Reference [66]) is
employed for the MOO problem. They highlight the advantages of adopting a low modelling effort
approach for capturing operating flexibility and mention the computational challenges arising for
the case where a highly complex model would be included. Their results suggest the importance
of assessing operating flexibility and identifying potential correlations among the considered objec-
tives. Moreover, Reference [6] presented a MILP model for a mixed hydro–thermal–wind power
systems. A series of constraint SOO problems is carried out to generate solutions of the MOO prob-
lem. The objective function is set as the minimization of cost and emissions to identify extreme
solutions. Additional solutions are attained by varying the restrictions imposed on the generated
emissions. This had been implemented by setting the emission function as a constraint function.
The different scenarios produced are analyzed and their results suggest the importance of wind and
hydro capacity to meet environmental objective in a cost efficient manner.

EA based single and multi-objective approaches

Besides the approaches based on classical optimization methodologies, a number of heuristic and/or
meta-heuristic techniques have been employed in an attempt to address the GEP problem. In gen-
eral, classical optimization approaches exhibit an important advantage when applicable: they can
guarantee global optimal solutions in a finite number of steps (w.r.t. the mathematical formulation
of the optimization problem) which is important from a decision maker’s point of view. On the
contrary, heuristic or meta-heuristic approaches could be applicable for optimization problems that
include complex, non-smooth, non-convex and/or non-differentiable objective and constraints func-
tions. Moreover, heuristic techniques could provide satisfactory results within an acceptable time
limit for computationally expensive optimization problems. In addition, meta-heuristic population-
based approaches, such as EAs, are considered highly applicable for MOO problems (Reference
[12]).

EA-based approaches have been suggested for the GEP problem. Reference [67] provided a
review of heuristic techniques applied on the GEP problem. Moreover, heuristic and meta-heuristic
approaches have been discussed within the review provided in Reference [1], and mentioned with
focus on RES integration within Reference [4]. Reference [68] performed a comparative analysis of
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different EA approaches applied on the GEP problem.
EA based approaches to tackle the GEP problem as a SOO optimization problem have been

presented. A representative direction is the employment of Genetic Algorithms (GA). For example,
Reference [69] focuses on GEP for competitive markets. The developed model aimed at maximizing
the expected revenues of a generation company by considering the increased risks affecting their
activities in liberalized markets. Uncertainty by price volatility, reliability of generating units, de-
mand and investment, and operation costs had been represented in the presented model by the
inclusion of probability distribution functions and constraints. A GA and Monte Carlo simulation
had been employed to address the combinatorial nature of the problem and to sample values from
the probability distribution functions, respectively. Moreover, other EA based approaches have
been employed. For example, a modified DE algorithm has been proposed in Reference [70] which
focused on the impact of increasing penetration of solar power technology by a GEP model account-
ing for emission restrictions. They employ a DE algorithm to optimize the developed GEP model.
Through a comparative analysis they observed an increase in the installed capacity of the derived
optimized system when solar plants had been introduced as a possible capacity addition alternative
that resulted also in a reduction of the costs considered. Reference [71] suggested a DE-based
approach for the optimization of a GEP-TEP model considering thermal units. In the proposed
DE method, the population is clustered using the k-means method. Their numerical experiments,
on benchmark functions and the GEP-TEP model examined, reveal that the algorithm’s efficiency
is enhanced by the suggested modifications. Furthermore, approaches employing a Particle Swarm
Optimization algorithm have been suggested. Reference [72] developed a multi-stage GEP incor-
porating large scale energy storage systems. A Particle Swarm Optimization algorithm had been
employed to address the multi-stage mixed-integer non-linear programming model. They find that
energy storage systems can contribute to cost reduction and environmental pollution for systems
including variable RES and thermal generating capacity.

Reference [4] discusses that the number of MOO studies considering the GEP problem is still
much lower than for single-objective ones, despite the growth of MCDM methods utilization in re-
cent years. In some cases, EA based approaches have been employed for MOO formulations of the
GEP. A motivation for the latter could be that population-based approaches can provide a set of
solutions within a single run for MOO problems. For example, Reference [73] considered two differ-
ent formulations for the GEP problem using the elitist NSGA-II. The first formulation considered
the minimization of a total cost function and the sum of the normalized constraints violation. The
second formulation considered the minimization of the investment cost and the maximization of the
system’s reliability. Aiming at enhancing the algorithms efficiency, a Virtual Mapping Procedure
had been introduced to reduce the number of decision variables. Reference [74] further enhanced
the aforementioned optimization algorithm by including a controlled elitism mechanism. The ap-
proach considered investment and outage cost as conflicting objectives. Reference [75] suggested a
MOO framework for the transmission constrained GEP. The first objective is formulated as a total
cost function to be minimized and the second objective to be minimized is represented by the sum
of the normalized constraints violation. The elitist NSGA-II was employed. In general, the MOO
framework had been suggested to address the constraint nature of the optimization problem as they
demonstrate that the MOO approach had been more efficient than a constraint SOO framework
for handling the constraint SOO problem.

Furthermore, hybrid approaches have been also suggested. Such an example is Reference [76]
where a GEP model is developed, with a focus on thermal units, to identify the most economical
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investment planning considering also demand-side management programs, reliability and environ-
mental aspects and limitations. A GA-Benders’ decomposition method has been suggested to
optimize the model. The approach is based on a GA and includes Benders’ cuts. Their results indi-
cate economic and environmental benefits by gas-fired power plants and an improved performance
of the hybridized approach for small and medium size systems. Reference [77] employed a hybrid
EA for a long-term capacity model to endogenously derive the evolution of the marginal price and
examine the impact of relaxing quantitative energy objectives on the performance of the algorithm.

2.3 Discussion

Various GEP based modelling approaches with a wide range of objectives have been developed.
Such approaches are categorized and thoroughly discussed within recent review studies (References
[1, 2, 3, 4]). In general, such approaches differ (among other aspects) w.r.t. the inherent advantages
and limitations regarding the accounted techno-economical, temporal and spatial detail considered.
Moreover, the computational efficiency of such approaches may differ. GEP is known as a challeng-
ing problem due to its non-linearity, non-differentiability, high-dimensionality and discrete variables
included (Reference [1]).

Therefore, modelling and optimization methodologies/approaches introduce simplifications, re-
garding the aforementioned basic aspects, i.e. central or market based, decisions considered (size-
type-location-time), single node or network constraint, short-term representation detail, determin-
istic or stochastic modelling. Also, computational tractability should be addressed. Consequently,
a trade-off between modelling accuracy and computational tractability should be established.

The main focus of this thesis is to include key aspects of the short-term operation of a power
system within the context of long-term power planning. The examined level of detail is restricted
to hourly intervals to capture the short-term dynamics and technical limitations commonly ad-
dressed within a UCP model. Within the literature, the main focus in integrating long-term models
with short-term operation is also identified in employing simplified UCP models (Reference [9]).
Therefore, a more detailed representation of the short-term operation of a power system including
sub-hourly dynamics is beyond the scope of this thesis.

Successful applications of EAs for GEP can be identified in the literature. However, this thesis
discusses MAEA based approaches for GEP models including a SM considering UCP constraints.
This is motivated by the high computational cost required to perform multiple simulations which
are required for an EA to converge.

On the other hand, MAEAs have been successfully applied for examining the short-term opera-
tion of a power system. For example, Reference [78] proposed an efficient MAEA-based method for
solving power generating UCP with probabilistic unit outages. Moreover, Reference [79] employed
a surrogate-assisted DE algorithm for the short-term combined economic and emission hydrother-
mal optimization utilizing a master-slave level approach. These approaches, however, focus on the
short-term operation and long-term planning and investments decisions are not considered.

Moreover, hybridized EA approaches including repair heuristics have been suggested for op-
timizing the UCP. For example approaches which focus on a thermal UCP (References [80, 81]),
Reliability UCP (Reference [82]) and a MOO formulation (Reference [83]) have provided satis-
factory results. A number of customizations are developed in this thesis based on the problem
characteristics for GEP. These aim towards addressing the constraint optimization problem, the
discrete nature of decision variables and exploit problem characteristics. Some problem-customized
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operators (e.g. Virtual Mapping Procedure) for GEP have been also examined in Reference [73].
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Chapter 3

Evolutionary Algorithms

Evolutionary Algorithms are nature-inspired computational methods that have been frequently
employed in an attempt to tackle real-world optimization problems. In general, EAs are based
on the Darwinian principle of natural selection (Reference [84]). This principle states that under
specific conditions the evolution of organic beings can occur by natural selection. Their popularity
lies in some interesting properties they exhibit (e.g. derivative-free) rendering them suitable for
many applications. These are discussed in more detail within this Chapter. In the following
Sections, some preliminaries regarding Single and Multi-objective optimization are presented. Then,
the relevant literature on Evolutionary Algorithms and MAEAs are presented.

3.1 Preliminaries

In this thesis, Single and Multi-objective black-box optimization problems are considered. More-
over, some special cases of SOO, i.e. Linear Programming, Mixed-Integer Linear Programming,
and Integer Linear Programming, are also considered. The aforementioned problem formulations
along with some definitions are provided in the following Sections.

3.1.1 Single-objective optimization

Many engineering problems can be formulated as SOO problems. A SOO problem involving con-
straint functions can be formulated as follows:

minimize : f(x)

s.t. : G(x) ≤ 0

x ∈ S

(3.1)

where x = (x1, x2, ..., xn) is the decision vector of objective/decisions variables, n is the number
of decisions variables, f(x) is the objective function, G(x) = (g1(x), g2(x), ..., gk(x)) is a vector of
constraints, k is the number of constraint function, and S is the search space. The search space is
determined by the upper and lower limits of each variable x and x, respectively. In case a SOO
problem does not involve constraint functions (G(x)) then it is referred to as un-constraint.
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The constraint violation, cv(x), for a decision vector x can be provided by:

cv(x) =
k∑

i=1

[max(gi(x), 0)] (3.2)

A solution x is called feasible when cv(x) = 0. Correspondingly, a solution x is called infeasible
when cv(x) > 0. The objective of the optimization problem is to identify a feasible solution that
exhibits the minimum objective function value.

Moreover, some definitions regarding the function’s properties mentioned in this thesis are
provided:

� Multi-modal function: A function is referred to as multi-modal if it has more than one
optimum.

� Black-box function: A function is referred to as a black-box function when no specific
assumption are made or no information is available regarding the function’s properties, e.g.
differentiable or linearity.

� Expensive/costly function: A function is referred to as expensive or costly when it requires
significant computational resources (or money) to compute.

3.1.2 Multi-objective optimization

MOO refer to optimization problems that involve more than one conflicting objective functions.
Commonly, it is expressed as:

minimize F(x) = (f1(x), f2(x), ..., fm(x))

s.t. G(x) ≤ 0

x ∈ S

(3.3)

where x = (x1, x2, ..., xn) is the decision vector of objective/decisions variables, n is the number of
decisions variables, F(x) is the objective function vector, m is the number of objective functions,
G(x) = (g1(x), g2(x), ..., gk(x)) is the constraint function vector, k is the number of constraint
functions and S is the search space. The search space is determined by the upper and lower limits
of each variable x and x, respectively. In case m = 1 the above expression (3.3) represents a SOO
problem.

Definitions Reference [12] regarding Pareto optimality, and based on Reference [13], follow:

� Pareto dominance: A vector Fa dominates vector Fb, expressed as Fa ≺ Fb, if F ai ≤ F bi ,
∀i ∈ {1, 2, ...,m} and Fa 6= Fb.

� Pareto optimal solution: A feasible solution vector x∗ ∈ S is called a Pareto optimal solution,
if @y ∈ S such that F(x) ≺ F(x∗).

� Pareto set: The set of all Pareto optimal solutions is called the Pareto set:
PS = {x ∈ S| @ y ∈ S,F(y) ≺ F(x)}.

� Pareto front: The Pareto front refers to the image of the Pareto set in the objective space:
PF = {F(x)|x ∈ PS}.
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3.1.3 Linear Programming, Mixed-Integer Linear Programming and Integer
Linear Programming

A Linear Programming is commonly expressed as:

minimize f = CTx

s.t. Ax = b

x ≥ 0

x ∈ R

(3.4)

where C are the parameters for the linear objective function, A and b are the parameters and
the constraint bounds of the linear constraint functions, respectively. In case some of the decision
variables are restricted to integers then additional constraints are included. Then, the optimization
problem is referred to as Mixed-Integer Linear Programming (MILP). Correspondingly it is referred
to as Integer Linear Programming when all decision variables are restricted to integers.

3.2 Single and Multi objective optimization by Evolutionary Al-
gorithms

3.2.1 Basic characteristics and components of Evolutionary algorithms

EAs are frequently applied to optimization problems. In contrast to classical optimization method-
ologies, EA exhibit some differences regarding the search process. In general, EA are derivative-free
population-based algorithm involving stochastic operators within the search process.

EA approaches follow a concept deriving from evolution and the principle of natural selection.
Briefly, a number of individuals form a population that exists and evolves in an environment.
The individuals of the population exhibit unique traits/characteristics that define their fitness and
reproducing chances. These traits, or similar ones, are likely to be inherited by reproduction. The
restricted resources of the environment force the population members to compete for survival. The
fittest individuals survive or at least are more probable to survive if randomness is taken into
account. The overall fitness of the population, over a series of generations, tends to increase due
to selection pressure induced by the diverse traits within the population and the survival pressure.

The most important components of an EA are based on this evolution procedure. These com-
ponents are included in most EAs as operators but may differ on their implementation. A brief
description follows that does not focus on a particular EA. Consequently, the description is rather
general but may provide a simple and brief note on a general EA framework. For this description,
the categorization made in Reference [85], and discussed in Reference [86], is adopted*. Reference
[85] summarized the basic components of EAs to five categories. These include: (i) EA-based
representation, (ii) Initialization, (iii) Function evaluation, (iv) Evolution operators, and (v) EA
parameters. Reference [86] provides an introduction to EA and discussed the basic components of
an EA in eight steps. The eight steps consider: (i) EA-based representation, (ii) Function evalua-
tion, (iii) Population, (iv) Mating operator, (v) Variation operators, (vi) Environmental-Selection
operator, (vii) Initialization operator, and (viii) Termination condition.

*Some of the original category names have been altered for consistency.
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� Individual (Variable representation and encoding): Let x be a decision vector. The cardinality
of this decision vector represents the number of variables (different decisions) that must be
made. How each variable and its possible values are represented differs based on the encoding
used in an EA. More specifically, some EAs apply operators on representations of the decision
vectors, or their encoding, rather than on the actual decision vectors. The word encoding
is used to suggest a modelling approach employed for the decision variables within the EA.
Hereafter, the EA-based representation of a solution shall be referred to as an individual
and the actual solution/decision vector as a decision vector; regardless of the EA approach
discussed. Likewise, the word trait is used to suggest the EA-based encoding of a decision
variable. The decision vector and the corresponding individual could not always differ w.r.t.
the employed representation scheme.

� Population: A population is formed by a number of individuals. Therefore, the population at
a given instance is the pool of available solutions. The aim is to improve the overall fitness of
the population by maintaining more fit individuals over a series of iterations. These iterations
are referred to as generations.

� Fitness function: The fitness function is used to compare individuals. In the context of
optimization, the fitness function provides the quality indicator for an individual which is the
value of the objective function of an optimization problem or a transformation of the latter.

� Initialization operator: Commonly, an initialization operator randomly initializes the indi-
viduals to provide an initial population within the search space. In some cases, different
approaches could be applied when a priori information is available.

� Mating operator: A Mating operator determines which parents are selected to reproduce
offspring. In general, individuals that exhibit a high fitness value could be prioritized for
mating to increase elitism. Assuming that the high fitness observed for an individual is a
result of its traits, selecting such individuals as parents could produce offspring that have
inherited such traits. Offspring are the EA-based representation of decision vectors generated
by applying the EA operators on the parents within a generation.

� Recombination/Crossover operator: A Crossover operator combines a number of individuals
from the parent population and generates the offspring population. Depending on the EA
and the Crossover operator considered, the offspring may inherent a number of traits from
each parent without alterations. Then, the EA relies on the Mutation operator to introduce
new information.

� Mutation operator: A Mutation operator attempts to introduce small, random and unbiased
changes to an offspring. One of the main reasons for introducing such small changes is to
maintain a non-zero probability that an offspring can be generated at any point within the
search space.

� Environmental-Selection operator: An Environmental-Selection operator determines which
individuals shall form the population of the next generation among the available ones, e.g.
the parent and offspring population. This operator applies selection pressure by compar-
ing individuals, based on their fitness, and determines the most adequate ones that will be
preserved.
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� Termination operator/criteria: EA require termination criteria which is usually a user-defined
criterion. For example, some common approaches are a predefined number of function eval-
uations, a time limit or a progress-related criterion.

� User defined parameters: Commonly, EAs require parameters to be determined by the user,
e.g. the population size or other parameters required for the EA’s operators.

The differences in the aforementioned operators distinguish the EA families of algorithms but
are included in some form in most EAs. Moreover, the Mating, Crossover and Mutation operators
are also referred to as the Variation operators. Moreover, the combination of Variation, Mating,
and Environmental-Selection operators are also referred to as Evolution operators. In general EAs,
apply the Initialization operator and the Evolution operators are then iteratively applied until the
termination criteria are met.

3.2.2 Three major Evolutionary Algorithm paradigms

This Section presents a brief note on some major EA paradigms which are inspired by the principles
of biological evolution. The first two, i.e. Genetic Algorithms (References [87, 88]) and Evolution
Strategies (References [89, 90]), are among the earliest and most well-studied EAs approaches.
The third one presented is Differential Evolution (Reference [91]) that is a more recent EA family
of algorithms and has emerged as one of the most competitive ones (Reference [92]). However,
some important representative EAs such as Evolution Programming (Reference [93]), Estimation
of Distribution Algorithms (Reference [94]), Genetic Programming (Reference [95]) and Swarm
Intelligence based approaches such as Ant Colony Optimization (Reference [96]) and Particle Swarm
Optimization (Reference [97]) have not been included in this brief introduction.

Genetic Algorithms

GAs are probably the most widely-known EA approach. They mimic the genetic processes of
biological organisms to evolve a population over a series of generations. However, they had been
first introduced for studying adaptive systems (References [88, 98, 99, 100]). The classical GA
(simple GA - SGA) (References [101, 98]) adopts a binary representation for each variable (bit
strings-genes); a series of genes (expressing each decision variable) form each individual. Offspring
are generated as a recombination (1-Point crossover) of selected parents (Roulette wheel) from the
population and by probabilistic mutation applied on each bit independently (bit flip). Lastly, the
offspring population replaces the parent population. Over the years many other factors such as
elitism, real-coded representation, variation operators and self-adaptation of parameters have been
introduced to the GA. Some basic characteristics of a GA are the important role of the Crossover
operator, a relatively lower emphasis on the Mutation operator, and the stochastic nature of the
Mating operator. Modern GAs are frequently preferred for binary search spaces and have found
many applications especially for combinatorial optimization problems. Moreover, GA variants serve
as the search engine for state-of-the-art multi-objective and many-objective EA-based algorithms,
such as NSGA-II [66] and NSGA-III (References [102, 103]).

Evolution Strategies

Evolution strategies (ES) were introduced in References [89, 90]. The earliest ES algorithm was
comprised of a single parent and a single offspring. The offspring was generated (Mutation operator)
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by adding a random value drawn from a Gaussian distribution with mean zero and a standard
deviation σ (mutation step size). Then, the fitness value of the offspring was compared with the
parent and the fittest was preserved (Environmental-Selection). Two major directions led to what
is known today as the classical ES. The first regards developments regarding the adaptation of the
mutation parameters i.e. the introduction of the 1/5th rule (Reference [90]), the mutative self-
adaptation (Reference [90]) and the de-randomized self-adaptation (Reference [104]). The second
development regards the introduction of multi-membered ES variants. The (µ+λ) and (µ, λ)
notation was introduced to categorize multi-membered ES variants: µ is the number of parents,
λ is the number of offspring’s and the ”+” and ”,” refer to the Environmental-Selection operator
employed. The difference between the comma and plus schemes is that the first discards the
parents in each generation where the second maintains them. The (µ, λ) is usually preferred since
the property of forgetting solutions may assist in escaping local optima, could reduce the impact
of misadapted strategy parameters and could be more suitable for tracking the moving optimum
when dynamic functions are considered.

In general the classical ES initializes µ parents. The Crossover operator (Recombination) com-
bines the available information from a number of parents to generate a single new offspring. There
are many different recombination variants which differ based on the number of parents involved
(global and local) and the strategy used to produce the offspring (discrete and intermediate).
Specifically, local recombination implies that two parents are involved while global suggests more.
Offspring generated by discrete recombination inherent each component from each parent with
equal probability while intermediate recombination determines the offspring by averaging the com-
ponents of the parents. This is applied for both the decision vector and strategy parameter vector
and repeated to produce λ offspring. The derived strategy parameters of the offspring are then
mutated, by an adaptation strategy, and then used to mutate the offspring. The population of the
next generation is determined by the considered Environmental-Selection operator, i.e. the comma
or plus. Some basic characteristics of ES are the importance of the Mutation operator, specifically
the normally distributed mutations, and the variety in possible Crossover operators. However, the
most distinct characteristic is the inclusion of the strategy parameters within the EA-based encod-
ing representation; they are part of the individuals and evolve similarly to the decision variables.
This enables the self-adaptation of the strategy parameters which are used within the Mutation
Operator. Modern ES are more frequently applied on optimization problems involving real-valued
decision variables. The covariance matrix adaptation ES proposed in References [104, 105, 106]
which is based on improved self-adaptation of the mutation distributions is often termed as the
state-of-the-art ES algorithm. For a recent comprehensible overview of ES, the interested reader is
referred to Reference [107].

Differential Evolution

DE was proposed in Reference [91] and is among the most recent and popular EAs. Its relative
simplicity, scalability, and robust performance have contributed to this popularity (References [108,
92]). In brevity, the basic DE algorithm randomly initializes a population. Then, for each parent an
offspring is generated which is identical to the parent except for some variables which are mutated.
These are determined by the Crossover operator. The Mutation operator is implemented by adding
scaled differences of selected individuals to secondary parents. How to determine these selected
population members and secondary parents is based on the DE mutation strategy/variant employed,
i.e. the Mating operator is part of the Mutation operator. The binomial crossover is among the
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most frequently employed Crossover operators for DE (Reference [92]). It first uniformly selects
a single variable that will be mutated. A comparison is then performed independently for each
variable, to determine if the mutation is implemented for the remaining variables. This comparison
is made between a parameter (the crossover rate/probability in the range [0,1]) and a randomly
generated number in the range [0,1] using the uniform distribution. Lastly, the Environmental-
Selection operator is employed deterministically through pairwise comparisons based on the fitness
value. A main characteristic of DE is that the Mutation operator relies on scaled differences derived
from the evolving population and does not require specialized adaptation of the absolute step size
(References [108, 92]). Moreover, DE is relatively simple to implement and requires a low number
of parameters to be determined, i.e. a scaling factor, the crossover rate, and the population size.
Greater detail on the DE algorithm can be found in References [91, 92, 108, 109].

3.2.3 Single objective constraint evolutionary optimization

Constraint optimization problems (COP) can be challenging for EAs (Reference [85]). Information
regarding the feasibility of a solution is required to guide the search towards both promising and
feasible regions. Mechanisms aiming towards adequately addressing the aforementioned, namely
constraint handling techniques (CHT), have been included within EAs. There is a number of
different categorization made for CHT (References [110, 111]). Reference [112] provided a review
on such CHTs. Earlier taxonomies had been simplified to: (i) Penalty functions, (ii) Decoders, (iii)
Special Operators, and (iv) Separation of objective function and constraints. In addition, current
and emerging CHT are also discussed.

Penalty functions transform a COP into an unconstrained one by adding the constraint violation
multiplied by a penalty factor to the objective function. The most simple penalty function is
known as the death penalty. It eliminates or assigns an extremely high fitness value to all infeasible
solutions. This restricts extracting information from infeasible solutions. Commonly, there are
three main types of penalty functions that are employed: static (e.g. Reference [113]), dynamic
(e.g. Reference [114]) and adaptive (e.g. Reference [115]). Penalty functions include a penalty
factor which, usually, requires to be tuned. In brevity, static penalty functions maintain a constant
penalty factor. To reduce the impact of a predetermined value of a penalty factor, dynamic penalty
functions include a predefined alteration of the penalty factor. Adaptive penalty functions rely on
information attained during the search to adjust the penalty factor. A review on penalty functions
and EA has been provided in Reference [116].

Other approaches rely on handling the constraints and objective functions separately. For
example, Reference [117] suggested employing two different evaluation functions for feasible and
infeasible individuals. These assigned higher fitness values to infeasible individuals, based on their
total constraint violation, such that feasible solutions are prioritized. This category includes also
approaches that handle the COP in two phases. For example, Reference [118] suggested an ap-
proach where in the first phase the search focuses on identifying a feasible solution and ignores
the objective function values. In the second phase, the search is focused on identifying feasible
individuals with improved objective function values. Moreover, many popular and state-of-the-art
CHT handle the constraints and objective function separately such as the Feasibility Rules, the
Stochastic Ranking, and the ε-constrained method and MOO-based approaches. The first adopts
a set of rules for comparing individuals that prioritizes feasible solutions (References [119, 120]).
Stochastic ranking (Reference [121]) introduced a user-defined probability factor to the comparison
of infeasible individuals. The approach ranks individuals based on a bubble-sort-like procedure.
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It aimed towards balancing objective and penalty functions stochastically to deviate from user-
defined penalty factors that could lead to over or under penalization. The ε constrained method
(Reference [122]) introduces relaxation, to the comparison among individual, for when a solution
is perceived as feasible. A COP can be transformed to MOO problem. Therefore, MOO-based ap-
proaches have been also frequently employed that consider either a bi-objective or a MOO problem
by Pareto-based and Non-Pareto based schemes. These are discussed in Reference [123].

EAs employing decoders search on a decoded search space which ensures that the solutions are
feasible. The decoded space is attained by mapping the feasible region of the search space and
facilitate the EA search (e.g. Reference [124]). However, decoders may exhibit implementation
complexity and increased computational cost (Reference [112]).

A special operator used as an CHT aims towards preserving the feasibility of a feasibility
solution by Variation operators or alter an infeasible to a feasible one by a repair heuristic. A
representative method based on repairing infeasible solutions and including specialized operators
to maintain feasibility is presented in Reference [125]. Another example is the gradient-based
mutation scheme presented in Reference [122] which is employed within a DE algorithm (including
also the ε constrained method) to repair infeasible offspring.

Approaches employing more that one CHT (i.e. hybrid or ensembles) have been also suggested.
For example, Reference [126] proposed an ensemble strategy to exploit distinct characteristics of
different CHT which are applied on interacting sub-populations. Reference [127] proposed an
adaptive trade-off model where different CHT are employed in different stages determined by the
feasibility of the evolving population.

3.2.4 Multi-objective evolutionary optimization

Many engineering problems can be formulated as MOO problems. Such are frequently encountered
in practical applications. A MOO problem involves identifying the best trade-off among more than
one conflicting objective, i.e. improvements in the value of one objective result in the deterioration
of another. In contrast to SOO, there is no single optimal solution but rather a number of Pareto
optimal solutions. The number of Pareto optimal solutions can be large or even infinite. Therefore,
it is computationally impractical to identifying the entire Pareto Front. Moreover, processing a
large number of Pareto optimal solutions may be impractical as well since a single best compromise
solution may be of interest (Reference [102]). Therefore, a common approach is to identify an
approximation of the Pareto Front.

A classical approach for MOO is to employ a weighted-sum which involves the transformation
of a MOO problem to a SOO problem. The augmented function is a weighted sum of the objective
functions. The main drawback to such an approach is that the output of the transformed SOO is a
non-dominated solution for the MOO (Reference [128]). However not all non-dominated solutions
can be always attained (e.g. the case of a concave PF). Furthermore, the weights of each function
need to be determined which is, usually, problem depended.

Population-based EAs exhibit advantages which render them applicable on many SOO problems
(e.g. derivative-free, simple implementation and flexible) and are highly applicable for MOO since
they can provide multiple non-dominated solutions within a single run (Reference [129]). The
earliest EA approach aiming towards multiple non-dominated solutions is the Vector-Evaluated
Genetic Algorithm (Reference [130]). Later, Reference [101] introduced the idea of relying on
dominance and niching rather than objective scores to rank the population. Early MOEA based
on dominance are the Multi-Objective Genetic Algorithm (Reference [131]), the Non-dominated
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Sorting Genetic Algorithm (Reference [132]) and the Niched Pareto Genetic Algorithm (Reference
[133]).

Many MOEA have been proposed since. These follow different MOEAs frameworks such as
Pareto-based methods, decomposition-based methods, and indicator-based methods. Some of the
main representative Pareto-based methods are the NSGA-II (Reference [66]), SPEA-2 (Reference
[134]) and PAES (Reference [135]). One main representative of decomposition-based methods is
the MOEA/D (Reference [136]). Representative indicator-based methods are the IBEA (Reference
[137]) and the HypE (Reference [138]) algorithms. There are also other categories of MOEA, such
as preference-based MOEA. A representative approach is NSGA-III (Reference [102]) which is an
EA for many-objective optimization and follows the NSGA-II framework. The aforementioned
categorization (Reference [13]) focuses on the Environmental-Selection operator used since it is an
important difference among EAs for MOO and SOO. However, modifications can be also included
in other operators as well. A review on EA-based MOO is available in Reference [13].

3.2.5 Problem-Specialized operators

Two main cases can be identified when EAs are applied to real-world optimization problems. The
first regards the case where an EA developed for black-box optimization is applied on the real-
world problem directly, for which no a priori information is available. An EA is then applied as
a direct search procedure and this is one of the advantages of EAs (Reference [129]). The second
case regards optimization problems where some a priori information is available. In this case, EAs
can be applied as in the previous case or an attempt to exploit the available a priori information
could be made.

More specifically, even though EAs are direct search procedures there might be also value in
problem-specific EAs (Reference [139]). This depends on an EAs scope and the available problem-
based information (Reference [140]). In general, a problem-specific EA may be outperformed by
an all-around EA in a number of problems but exhibit an improved performance on the class of
problems it has been designed for. This could lead to modifications to the EA which could introduce
some bias to the search. However, the effective inclusion of such bias depends on its correctness
and efficient integration within the EA. In Reference [139], some options to embed explicit and
implicit knowledge representation within the EA are described. Regarding explicit knowledge
representation, seeding initial solutions to the population which have been identified a priori as
promising (or feasible initial solutions when a constraint optimization problem is considered) could
provide benefits for the search. A second option regards the hybridization of EA (these are discussed
in the next Section). A third option regards the customization of the EA Variation operators. They
mention as possible options the inclusion of repair mechanisms, an adequate representation to
handle infeasible solutions and problem-customized Variation operator. Lastly, possible directions
to handle the EA parameters are mentioned as their values can have an impact on the performance
of an EA. The importance of the selection of the EA-based encoding scheme, the CHT, and the
representation of the solution space are mentioned as options for implicit knowledge representation.

3.2.6 Hybrid Evolutionary Algorithms

Hybrid EAs are understood as EAs merged with at least one different approach within a single
framework (Reference [86]). There is a variety of different types of hybridization, e.g. two differ-
ent EAs, an EA and a gradient-based solver, an EA and a problem-specific heuristic. Reference
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[141] provides a detailed categorization and discussion on such approaches. Moreover, hybrid EA
approaches are also discussed in Reference [86].

Usually, hybridization aims towards an improved performance attained by the synergy of the
combined approaches due to their distinct characteristics. An example is to attain an improved
trade-off between the exploration and exploitation of the search space by combining global and
local search techniques. The main representative of this direction is the category of Memetic
Algorithms (MA) which, based on the definition provided in Reference [142], include EA-based
approaches that are enhanced by the inclusion of one or more phases of local search and/or by
the use of problem-specific information. In general, MAs are inspired by Darwinian principles of
natural evolution and the idea of memes (Reference [143]). In the latter, a meme is defined as a
unit of cultural evolution capable of local refinements (Reference [144]). Two main MA categories
are the Baldwinian and Lamarckian search algorithms (Reference [145]). The former approaches
commonly select an individual that undergoes local search and for which only the fitness value is
updated based on the result of the local search. In contrast, a Lamarckian search algorithm implies
that the individual is replaced based on the result of the local search. In general, local search
can include a broad range of techniques/approaches ranging from simple permutation heuristics
searching in the vicinity of a base solution to gradient-based solvers (if applicable). A taxonomy of
MA approaches is provided in Reference [146].

There are many examples of hybrid EAs. Reference [147] proposed a self-adaptive DE algorithm
for SOO that employed a gradient-based solver (Quasi-Newton method) as a local search method.
Moreover, the aforementioned study is mostly known for introducing self-adaptation of learning
strategies and parameters to the DE algorithm. Applying local search to MOO problems is not
trivial. This emanates mostly from the requirement of selecting a search direction as more than one
objective functions are considered, i.e. to which extent should the local search focus on improving
each objective function. The earliest work addressing this issue is Reference [148] where a GA was
hybridized with a local search technique. In particular, the GA variation operators were applied
and the local search method was implemented. A scalar fitness with random weights was used for
determining the fitness for the selection of parents and for the local search. Employing a scalar
fitness with random weights for hybrid EAs for MOO has been further examined (e.g. Reference
[149]) and frequently employed rendering it among the most typical directions. A review on MA is
available in Reference [150].

3.3 Metamodel/Surrogate assisted Single and Multi objective op-
timization by Evolutionary Algorithm

Optimization problems that involve costly or expensive function evaluations, performing a large
number of function evaluations may be rendered impractical or too expensive (Reference [14]).
For example, the evaluation can include a time-consuming simulation model, i.e. it could take
a number of minutes to hours or even days to be completed. Another example is when a costly
physical experiment is involved. Towards this direction, different levels of approximation have been
introduced. Reference [151] differentiates three levels of approximation:

� Problem approximation: The original problem statement is replaced by a model that resem-
bles it and is more computationally efficient to solve.

� Function approximation: An original function (e.g. the objective function) is replaced by
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an alternate and explicit expression. The latter could be a model for which its output for a
given input should be an accurate estimate of the output of the original function for the same
input. The expression should be more computationally efficient than computing the original
function.

� Evolutionary approximation: There are two types of evolutionary approximations which are
EA specific (Reference [151]). These are fitness inheritance and fitness imitation. Fitness
inheritance (Reference [152]) suggests that the offspring inherit the fitness from the parents
used to generate them (e.g. assigning an average of the parents’ fitness). The second suggests
that the distance among population members can be used to estimate their fitness and usually
involves clustering techniques.

3.3.1 Approximation models: Metamodels/surrogate models

Different approximation modelling techniques have been proposed to replace the expensive simu-
lations or experiments by cheap AMs. In the following Sections, two major techniques that are
considered in this thesis, i.e. Polynomial Regression (PR) and Radial Basis Functions (RBF), are
presented. Other major representatives such as Gaussian Processes (Krigin), Artificial Neural Net-
works and Support Vector Machines have been omitted. However, interested readers are kindly
referred to Reference [153] for a detailed discussion.

Polynomial Regression

Polynomial Regression, or response surface methodology (Reference [154]), approximates a response
using a polynomial function which is a weighted sum of powers and products of the input. It is
commonly expressed in matrix notation f̂ = x̃Tβ where β is a vector of coefficients which defines
the complexity of the model and x̃ is a vector of the corresponding parameters (the aggregate of
powers and products based on the complexity of the model). For example, when a second-order
polynomial regression model including interactions among the dimensions (d) of the input vector
is considered, then x̃ is set as follows: x̃ = (x2

1, ..., x
2
d, x1, x2, ..., xd−1, xd, x1, x2, ..., xd, 1). Given a

number of data points (samples) the polynomial coefficients can be determined by the least-squares
method or a gradient-based method.

First-order or second-order PR models are, usually, employed in the context of optimization
due to limitations arising by the number of data points required w.r.t. the order of the polynomial
and the dimensions of the input vector. For example, the number of data points must exceed
(d+ 1)(d+ 2)/2 for a second-order polynomial model when the least-squares method is employed.
The prediction function using a second-order PR model is as follows:

f̂(x) = a0 +
d∑

i=1

[bixi] +
d∑

j=1

d∑

i=1

[ci,jxixj ] (3.5)

where f̂(x) is the estimation for point x and a0, b and c are weight coefficient parameters (elements
of the vector β). The polynomial can be further simplified to exclude the interactions among
variables:

f̂(x) = w0 +

d∑

i=1

[wixi] +

2d∑

i=d+1

[wix
2
i−d] (3.6)
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PR models are frequently employed for EA-based optimization (References [16, 15]). The gen-
eralization property renders them appropriate for smooth functions. However, for more complex
functions (e.g. multi-modal) PR models are less suitable except if smoothing the landscape is of
interest (Reference [155]). More detail on PR models can be found in Reference [154].

Radial Basis Function

RBF had been introduced in Reference [156]. An RBF is a real-valued function. Its output relies
on the distance (usually Euclidean norm ‖ · ‖) of an input point x to certain points c called the
centers. The value of a function f̂(x) at point x is a linear combination of a set of RBFs commonly
expressed as follows:

f̂(x) =

k∑

i=1

[λiφ(‖x− c(i)‖)] (3.7)

where k is the number of center points, λ are unknown weight coefficients and φ() represents the
kernel function.

Given k available data points (x), to be used as centers, and their corresponding function
values, F = (f1, f2, ..., fk), a linear system of equations can be solved to determine the values of
the unknown coefficients λ = (λ1, λ2, ..., λk):




φ(‖x(1) − x(1)‖) · · · φ(‖x(1) − x(k)‖)
φ(‖x(2) − x(1)‖) · · · φ(‖x(2) − x(k)‖)

...
. . .

...

φ(‖x(k) − x(1)‖) · · · φ(‖x(k) − x(k)‖)


 ·




λ1

λ2
...
λk


 =




f1

f2
...
fk


 (3.8)

Linear splines, cubic splines, thin-plate splines, and Gaussian functions are among the most
common choices for the kernel functions.

3.3.2 Infill criteria

In general, the accuracy of the AM could be improved by the inclusion of additional data points,
and a balance among local and global exploitation is desired (Reference [153]). Local exploitation
aims at exploiting information provided by the AM to improve its accuracy in a region of interest.
Global exploitation aims to improve the global accuracy of the AM by introducing additional data
points, to the dataset, that could lie in unexplored regions of the decision space (e.g. the most
spatially isolated regions). In the context of EA, the term exploration is also frequently employed to
express global exploitation. The criteria for selecting these additional data points are often referred
to as Infill criteria. Infill criteria are discussed thoroughly in References [157, 153].

3.3.3 Evolutionary Algorithms and Model Management

Optimization problems involving expensive functions are challenging due to the limited number
of function evaluations available. Focusing on EA, this poses a restriction for their successful
application. More specifically, EA rely on evolving a population for a number of generations to
converge. For computationally cheap optimization problems this is not binding as a large number
of function evaluations can be made available. On the contrary, for computationally expensive
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problems the number of available function evaluations could correspond to a limited number of
generations.

In this context, EA have been frequently coupled with AMs to attain acceptable results when
faced with computationally expensive optimization problems. In such cases, the AM are employed
to replace in part the expensive model (Reference [158]). Hereafter, the actual model shall be
referred to as as the True Model (TM). How to control the interaction among the AM and the TM
during the search is often termed as model management. EA-based approaches including model
management are often discussed in three categories (References [14, 15, 151, 158, 159]): (i) No
Evolution control, (ii) Fixed Evolution control, and (iii) Adaptive Evolution control.

In approaches that include no Evolution control, the AM would replace entirely the TM during
the search. This case could be acceptable when the AM is sufficient accurate, w.r.t. the TM,
as the AM is not re-examined based on information attained during the search. However, as
demonstrated in Reference [160], when the accuracy is not sufficient it could result in implications
for the EA-based search, since AM could include false optima that do not exist in the TM. For
example, the EA may converge to the global optimum of the AM which, however, is not the global
optimum, or even an optimum, of the TM (Reference [160]). In addition, the number of optima
in the AM could differ from that of the TM. Therefore, Reference [158] suggested three possible
directions: (i) increasing the number of data points, (ii) employing on-line sampling, and (iii)
employing regularization techniques. Off-line sampling refers to generating an AM prior to the
EA search while on-line sampling suggests introducing additional data points, identified during the
search, and then generating an updated AM.

In the context of on-line sampling, model management usually follows either the Evolution
Control framework or the Pre-selection framework. Evolution Control, Reference [158], included
two main methods to determine whether the fitness of an individual is evaluated using the AM or
TM:

� Controlled individuals: A number of individuals at each generation are evaluated using the
TM. The AM is used for the remaining individuals.

� Controlled generations: All individuals are evaluated using the TM in some generations. The
AM is used for all individuals in the remaining generations.

A third category considers a number of sub-populations that evolve based on different AM with
possibly different levels of accuracy based on island models including migrations (e.g. Reference
[161]). In this case, model management can be implemented on a population-based level.

The aforementioned framework introduces parameters. For example, the Controlled individuals
method introduces a parameter that is the number of individuals that are evaluated using the TM
in each generation. In case these parameters are user-defined, the model management strategy is
referred to as Fixed Evolution control.

However, when such parameters (e.g. the number of individuals evaluated using the TM) are
adapted on-line, then the model management strategy is referred to as Adaptive Evolution control.
These adaptation strategies, however, are not easy to define (References [14, 15]).

The Pre-selection framework (References [162, 163]) exhibits some similarities to the Controlled
individuals method. However, the Pre-selection framework suggests that offspring are pre-screened
using the AM and the selected ones are evaluated using the TM. Therefore, the Environmental-
Selection operator is performed only on individuals that have been evaluated using the TM.
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In the context of EA assisted by AM, a variety of different Infill criteria have been employed
such as random selection, best-performing individual based on the AM, distance-based criteria,
clustering-based, uncertainty in approximation, and/or ensembles. A number of representative
approaches are presented in Sections 3.3.7 and 3.3.8.

Moreover, AM can take part in any EA operator. For example, Reference [164] used the AM
indirectly. Its employment is restricted to the Initialization, Mutation and Crossover operators of
a GA and it is utilized to pre-screen offspring among a large pool of individuals.

3.3.4 Selection of an Approximating model

The selection of an AM can have an impact on the performance of the EA (Reference [165]). In
general, different factors, such as number of decision variables, objectives and constraints functions,
and the computational time for building the models, have to be considered when choosing an AM.
Moreover, the better choice of an AM can be problem specific, i.e. some AM can be rendered more
adequate than others for that specific problem. For example, Reference [166] examined through a
comparative study the performance of different AM on different problems. Their results indicate
that given a particular problem, different AMs may outperform others. Reference [167] provides
a comparison of popular metamodeling techniques. It discusses different metrics to evaluate the
accuracy of the AM and proposes the employment of a ranking preservation indicator. Among the
reviewed ones, an improved performance had been observed for RBF and Support Vector Machines.

3.3.5 Global and local Approximating model

A number of different approaches have been employed to select the data points used to build the
AM, given a set of available ones. In general, the selection can depend on the AM used. For
example, all available data points could be used. The motivation is that each of such data points
can provide important information regarding the search space which has been costly made available,
i.e. using the TM. However, the computational cost of building the AM could increase, given a
large number of data points.

Moreover, the AM accuracy depends on the selected data points used to build the model and
their ability to provide an approximation of the entire search space. For example, a comparison of
local and global models is included in Reference [167]. They identified that for problems involving
a larger number of dimensions, local AM models could be more suitable. For creating the local
models, different approaches have been suggested. For example, such could be based on a distance
criterion that prioritizes the nearest ones to a considered point in the search space (e.g. k-nearest
neighbors). Other examples prioritize the most recent entries or the best-performing entries in the
dataset. It should be mentioned that local models are frequently employed when the local search
is implemented (e.g. References [155, 168]).

3.3.6 Curse and Blessing of Uncertainty

In contrast to the case where the approximation error of the AM impedes the EA-based search, it is
worth mentioning that it can have also a positive impact in some cases. The negative and positive
impacts of this approximation error on the EA-based search are often referred to as the curse of
uncertainty and the blessing of uncertainty. These are discussed in Reference [169]. The former
implies that the approximation error could mislead the search (e.g. introducing false optima). An
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example of the latter is the case of multimodal functions where the AM could smoothen the search
space, i.e. the AM could provide a function with a lower number of minima in comparison to the
TM. This is examined within a generalized framework in Reference [155].

3.3.7 Representative approaches: Single Objective Optimization by Metamodel-
assisted Evolutionary Algorithms

Many Metamodel-assisted EA-based approaches are available for unconstrained SOO are available
(Reference [14]). For example, Reference [158] proposed the individual-based and generation-based
evolution control. They examined approach is based on the covariance matrix adaptation ES with
Neural Networks. Reference [162] introduced an inexact pre-evaluation phase to a GA algorithm.
This pre-selection is based on an RBF network and is built for each individual independently using
a distance criterion to select a subset of the available data points within the dataset. Reference
[170] suggested a surrogate-assisted DE approach. The DE approach employed includes a pool of
mutation and crossover strategies (ensemble). Due to the low computational cost of the AM, it is
utilized to evaluate the adequacy of the mutation strategies and parameter based on the performance
of offspring. The AM is built based on the evolving population, i.e. only the individuals within the
population are used.

Furthermore, Metamodel-assisted EA-based approaches for constraint SOO have been also sug-
gested. For example, Reference [123] developed an ES approach based on Fitness inheritance. The
feasibility rule is used as the CHT. In contrast to earlier approaches employing fitness inheritance,
two parameters are introduced: (i) the inheritance ratio and the replacement ratio. The first
determines the percentage of offspring to use the fitness inheritance mechanism and the second
determines the percentage of offspring with inherited fitness values to survive into the next gener-
ation. Reference [171] presented an ES based approach coupled with the stochastic ranking CHT.
Two distinct AM, based on the nearest neighbor regression model, are employed for the objective
function and the penalty function. Both global and local AM are examined. A comparison of three
selection strategies ((i) the best individual, (ii) random selection, and (iii) maximum distance to
the nearest neighbor) had been made and they identified that the first was more appropriate. The
number of offspring evaluated using the TM is controlled by iteratively re-examining the parent
population ranking order based on the Stochastic Ranking CHT. In case the ranking order is al-
tered, an additional offspring is evaluated by the TM. Reference [172] focused on high-dimensional
constrained optimization problems. The approach is based on Evolutionary Programming and RBF
models. A distinct RBF model is employed for the objective function and each constraint function.
Offspring generated by the Mutation operator of Evolutionary Programming are pre-screened based
on a set of rules that prioritizes feasibility. These serve as a CHT and, in contrast to the feasibility
rules, prioritize offspring with the lower number of constraint functions violated rather than sum
of the constraint violation. The best offspring produced from each parent, based on the prediction
of the AM, is selected to be costly evaluated.

Metamodel-assisted EA-based approaches have been proposed that include local search tech-
niques. For example, Reference [173] developed a surrogate-assisted MA. The approach includes a
global and a local phase that are implemented in each iteration. In the first, a GA is employed to
generate offspring. A Gaussian Process model is used to pre-select offspring that shall undergo local
search. Then, an RBF model is built by using the nearest neighbours and a gradient-based local
search is implemented based on the trust-region framework. Offspring generated by this procedure
are evaluated using the TM and the population is updated based on Lamarckian learning. Refer-
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ence [174] proposed a hybrid EA which is a MA based on Lamarckian learning. The GA approach
is enhanced by a local search strategy which employs RBF models and the trust-region framework
including an SQP solver to improve individuals of the evolving GA population. Reference [168]
proposed a DE based approach for SOO involving inequality constraints. The approach includes
a global and local phase in which new data points enter the archive for building the models. The
AMs used are (i) a generalized regression neural network for global search and (ii) a local RBF
model for local search. In the global phase, candidate solutions are generated by DE Variation
operators and are probabilistically selected based on the feasibility rules or an uncertainty-based
metric. The selected ones undergo gradient-based local search based on local RBF models built for
each of these offspring. The output of local search is used to update the evolving population.

However, there are other notable derivative-free approaches for computationally expensive global
optimization that are not EA-based. For example, Reference [175] is among the earliest approaches
employing an RBF model. Reference [176] introduced the Efficient Global Optimization (EGO)
algorithm. It is based on the Kriging model (Gaussian Process Model) and the expected improve-
ment metric. The latter is an indicator of the level of uncertainty of the estimation of the AM
for a given point provided by the Kriging model. The EGO approach attempts to identify points
that maximize the expected improvement metric. In Reference [177] an RBF-based approach is
used with a stochastic sampling procedure. A number of extensions of this approach have been
made available for specific types of optimization problems, e.g. COP (References [178, 179]), inte-
ger optimization problems (Reference [180]) and mixed-integer optimization problems (Reference
[181]).

3.3.8 Representative approaches: Multi Objective Optimization by Metamodel-
assisted Evolutionary Algorithms

This Section presents some representative MAEA for MOO problems. Some approaches have
extended the EGO algorithm (Reference [176]) for MOO problems. For example, Reference [182]
modified the EGO algorithm for MOO problems. The MOO problem is converted into a series
of SOO problems. In each iteration, a direction based on the weighting vector is selected and a
new data point is determined by maximizing the expected improvement using an EA. Reference
[183] proposed a multi-objective EA based on decomposition with the Gaussian process model
(MOEA/D-EGO). A number of SOO problems are formulated and a Gaussian process model is
built for each one. The expected improvements for the aforementioned sub-problems are optimized
at each generation by the MOEA/D algorithm. Among the generated offspring, a subset is pre-
screened to be costly evaluated by a rule-based selection. A MOEA/D algorithm extended with
RBF network has been also presented for computationally expensive problems (Reference [184]). It
employed different kernels for the RBF networks to derive different fitness landscapes. Competitive
results were attained by coupling the RBF network to the MOEA/D algorithm when compared to
the corresponding ones using the Gaussian process model.

MAEA for constraint MOO have been also presented. For example, Reference [185] proposed
an ES-based approach for SOO, COP and MOO. The AM is based on Gaussian random field
metamodels. The study focuses on different pre-screening criteria and indicates the importance
of exploiting confidence information provided by local Gaussian random field metamodels. Refer-
ence [186] employed RBF models for constrained MOO problems. An RBF model is used for each
objective and constraint functions. Two different variants are examined for generating new candi-
date points: (i) Generating uniform random individuals within the search space, and (ii) adding
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Gaussian-based perturbations to an isolated individual of the attained so-far Non-Dominated Front
(NDF). The aforementioned individual is selected based on its distance (objective space) to the
current NDF and the one exhibiting the largest minimum distance is prioritized. The selection of
new data points is based on a weighted ranking procedure that considers distances metrics for both
the decision and objective spaces and prioritizes feasible non-dominated solutions among the pool
generated.

In addition, hybrid MAEA that include local search have been presented. For example, Refer-
ence [187] proposed a metamodel-assisted MA based on RBF networks. An EA-based search is first
implemented for a few generations to create an initial dataset which is then updated by new entries
during the search. In the remaining generations pre-selection based on inexact pre-evaluation is
implemented. Within the latter, local metamodels are built for each individual which are utilized
for gradient-based local search. Among the newly generated offspring, the Environmental-Selection
of SPEA-2 (Reference [134]) is employed to determine which ones are costly evaluated. Reference
[188] suggested a multi rule approach. It employed an RBF model and included MOEA based
optimization. The introduced multi-rule approach includes selection of new data points based on
random sampling, the hypervolume metric, a distance metric for the decision space, and a distance
metric for the objective space. The aforementioned are applied on a pool of candidate solutions
generated by a MOEA employed to solve the MOO problem. Moreover, a local search (called gap
optimization problem) is also implemented by employing the MOEA to search within the vicinity of
an isolated (objective space) non-dominated individual. The hypervolume metric in then employed
to select a new data point from the pool generated by local search. Reference [155] proposed a
generalized framework for surrogate-assisted Memetic EA. It considers an ensemble of AM, includ-
ing Gaussian process, RBF and PR models, to exploit the unique characteristics of each AM and
smoothing of the search landscape provided by the low-order PR models. The EA is used to evolve
a population for a series of generations and create an initial dataset. Then, for each individual two
independent gradient-based local searches are implemented based on the weighted sum approach
using randomly generated weights. In the first, the function to be optimized is based on the ensem-
ble of the AM and in the second a low-order PR model is considered. An archive and replacement
scheme is employed to determine new entries. The generalized framework also includes a MA for
SOO. Reference [189] proposed the MOPLS-N algorithm. It is a population-based approach based
on RBF, Tabu Search and local search. The approach focuses on a parallel framework where each
worker implements local search on a center point. Center points are selected based on rules includ-
ing domination and distance criteria and a memory archive of previously points considered center
points. Candidate points are generated for each center point by a local search based on Gaussian
perturbations. A new point to be costly evaluated for each center point is selected by employing a
hypervolume-based metric or the maximum-minimum distance (decision space) that is determined
probabilistically. Alternatively, local search is skipped and an offspring generated by mutating the
center point is selected.

3.4 Discussion

Many EAs and MAEAs have been suggested to address black-box SOO and MOO problems. Satis-
factory results have been reported for a number of different optimization problems including SOO,
COP and MOO. Moreover, hybrid approaches have also been proposed. The brief introduction
presented in this Chapter aimed towards providing a background for EAs and MAEAs and is not
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extensive since the scope of this thesis is to examine MAEA-based approaches for GEP including
SMs of the short-term operation.

Successful applications have also been reported when the GEP problem is considered (Refer-
ences [1, 67]). The developed MAEAs, presented in the following Chapters, are based on such
frameworks and include modifications driven by the characteristics of the specific optimization
problems examined. These are discussed in the following Chapters.
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Chapter 4

Single objective Multi-period
Generation Expansion Planning by
Metamodel-assisted Evolutionary
Algorithms

4.1 Motivation and Aims

This Section presents a SOO Multi-period GEP approach based on MAEAs [17]. It had been
motivated by the growing computational intensity of GEP that is associated with the computational
requirements for capturing short-term dynamics in the context of long-term planning. The latter
is driven by the increasing shares of generation by RES. More specifically, an assessment of the
operating flexibility of a candidate generating fleet is required to derive optimal expansion plans
when higher RES penetration levels are considered. Moreover, the impact of technical, temporal
and spatial detail has been shown in the relevant literature to be important (Section 2.2.5). These
in turn have motivated the development of a series of GEP models which include increased detail
of the representation of the power system’s short-term operation. Along with the increase in detail,
the computational intensity of GEP has risen as well.

The approach aims at providing an investment road-map by capturing the impact of the re-
sulting installed capacity on the yearly operational cost of the system by a SM. This could be
of interest if a transition towards higher shares of RES generation is examined. An attempt to
include increased technical and temporal detail has been made by employing the SM for repre-
senting short-term operation and assess operational flexibility requirements. The SM serves as
a cost indicator of the operating cost for a candidate installed capacity. However, spatial detail
has not been included and assumptions have been made. Moreover, operating flexibility is as-
sessed by considering also non-thermal flexibility providers such as conventional hydropower and
storage installations. To address computational restrictions of the SM, unit aggregation has been
implemented and representative time periods have been employed.

Many EA-based approaches have been applied on GEP models. However, EA-based or MAEA-
based approaches had not been identified for GEP models embedding a SM of the short-term
operation of a power system that includes UCP constraints. This could be attributed to the
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computational cost of the such a model. To be specific, the computational burden of EA approaches
is mainly driven by the number of function evaluations required to converge to a near-optimal
solution if such a SM is not included (i.e. the computational cost of the objective function is low
and it may be evaluated multiple times). However, when a SM is included the computational cost
is driven by the cost of each simulation (i.e. a few simulations are available as the computational
cost of the objective function is high). The aforementioned had been the motivation for examining
a MAEA-based approach.

The main research goal had been to develop an efficient alternative for near-optimal solutions
that could be used in parallel to other mature and well-established GEP models as a decision
support tool. The developed problem-customized MAEA is based on DE and surrogate-assisted
frameworks identified in the literature. Problem-specific customizations are made to the formulation
of the optimization problem. Moreover, problem-specific operators are examined in an attempt
to improve the algorithm’s efficiency. AMs are utilized to limit the amount of computationally
expensive simulations required to achieve a near-optimal solution.

The approach is intended to support the decision-making process. Therefore, its applicability
is examined. Satisfactory results are presented for the examined cases and identified limitation are
discussed. The gain of including the SM and the corresponding impact on the resulting installed
capacity, the anticipated operation cost and generation mix is examined.

4.2 Problem statement and formulation

This Section presents the problem statement, the formulation of the cost terms used to determine
the objective and constraint functions of the SOO problem, and the formulation of the SM employed
to provide an estimate of the short-term operation.

4.2.1 Problem statement

The following constraint SOO problem is considered:

minimize f(x) = f chp(x) +
∑

yr

fxpyr (x)

s.t. G(x) ≤ 0

x ∈ S

(4.1)

where x = (x1, x2, ..., xn) is the vector of objective/decision variables, n is the number of decision
variables, f(x) is the objective function, G(x) = (g1(x), g2(x), ..., gk(x)) is the constraint function
vector, k is the number of constraint functions and S is the search space.

The case of a computationally expensive objective function (f(x)), computationally cheap con-
straint functions (Gchp(x)), bound constraints and x ∈ Zn is considered. Furthermore, it is assumed
that the minimization problem is restricted by a limited computational budget. A decision variable
is a positive integer (Z+) which represents the number of investments in a candidate technology
group. These investment decisions are considered in predefined step sizes. These steps are assumed
to represent unit sizes and shall be referred to as units hereafter. In particular, when referring to
units, a plant/generator or groups of plants/generators is implied.

The computationally expensive objective function (f(x)) is comprised by computationally cheap
and intensive/expensive terms. Each such term can be formulated as a function of the decision
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vector. The sum of cost terms (e.g. investment and Fixed operational and maintenance (FO&M)
cost) that do not require the output of a SM are termed as a computational cheap function (f chp(x)).
Correspondingly, cost terms (e.g. yearly variable cost) that require the output of a SM are termed as
computationally expensive functions (fxpyr (x)). The consideration of a function as cheap or intensive
is limited to the computational resources required to compute it (e.g. time) and not to its actual
impact on the objective function value.

4.2.2 Formulation of the cost terms

Cost terms are formulated as vectors. Each element of the vector represents the corresponding cost
in a year of the planning horizon. The following cost terms, which are frequently encountered in
GEP models, are considered (nomenclature are described in the List of Symbols):

1. Investment cost : The investment cost is assumed to be paid when the unit is ordered
(overnight). Therefore, the annual investment cost is formulated as the sum of the prod-
uct of the annual investment decisions, the corresponding net power output per unit and
the investment cost. Additionally, the salvage value of active investments at the end of the
planning horizon is subtracted by the total investment cost.

cinvyr =
∑

t

[(1− SFyr,t) · P cap stept · INCt · xinvyr,t], ∀yr (4.2)

The salvage factor, SF, is computed as follows:

SFyr,t =





0, if yr + CTt + LTt <= Y rz

1, elseif yr + CTt > Y rz
−1+(1+DR)(yr+CTt+LTt−Y rz−1)

−1+(1+DR)(CTt+LTt)
, otherwise

,∀yr, t (4.3)

Eq. 4.3 assumes that the value of a plant is equal to its investment cost and that it value
remains constant during its operational lifetime (Reference [190]).

2. Fixed operational and maintenance cost : FO&M cost in each year is formulated as the product
of each units FO&M cost and the corresponding installed capacity:

cfixedyr =
∑

t

[FOMt · icyr,t], ∀yr (4.4)

where the installed capacity is computed as the product of the number of available units and
their corresponding capacity step size:

icyr,t = nuyr,t · P cap stept , ∀yr, t (4.5)

The number of available units of each technology group still operational in each year considers
both the construction time and operational lifetime of each investment, such that:

nuyr,t = NUoldyr,t +





∑yr−CTt
z=yr−CTt−LTt [x

inv
yr,t], if yr − CTt > 0, yr − CTt − LTt ≥ 1∑yr−CTt

z=1 [xinvyr,t], elseif yr − CTt > 0, yr − CTt − LTt < 1

0, otherwise

, ∀yr, t

(4.6)
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3. Variable cost : The variable cost cvar is a vector including the sum of operating cost in each
year of the planning horizon:

cvaryr =
∑

tp

[Wtpc
oc
tp ],∀yr (4.7)

The operating cost is determined by a SM and the procedure is discussed in Section 4.2.3.

4.2.3 Simulation model - Problem approximation

The output of a SM is required to determine the variable cost (cvar), representing the yearly operat-
ing cost. The operating cost could be estimated by a SM, e.g. a simple function or an optimization
model. Moreover, given a GEP formulation and assuming a UCP optimization problem as a SM,
the merged problem may be re-formulated as a large scale MILP, however, such a combined GEP
and UCP model can be computationally challenging and, therefore, simplifications are introduced
(References [7, 8]).

The employed simulation model

A Clustered Unit Commitment (CUC) formulation based on References [7, 8, 191] is adopted as
the SM. It is a problem approximation of the traditional binary UCP which exhibits computa-
tional cost reduction and scalability properties. A CUC formulation attempts to capture operating
cost and limitations of a generating fleet based on unit aggregation and considering hourly resolu-
tion; demand and production chronological profiles are preserved. Similar or identical operational
characteristics are used to group units into clusters. The accepted level of similarity among units
forming a cluster constitutes a trade-off between computational gain and accurate representation
(Reference [191]). In general, a strict grouping criterion might lead to an improved representation
of the short-term operation of a power system, however, it could also be associated with a higher
computational cost. Moreover, integer variables are used to represent a unit’s status. In particular,
the number of units that are on-line, start-up or shut-down are represented within a cluster by
integer variables, rather than binary variables that indicate the status of each unit. The aforemen-
tioned could lead to a reduction in the number of variables and constraint functions. These scale
with the number of clusters rather than the number of units. For greater detail, interested readers
are kindly referred to References [7, 8, 191].

The selected SM is formulated as a CUC. The MILP optimization problem represents a simpli-
fied hydrothermal UCP. It is carried out independently for examined time periods. Newly added
units are assumed to be available on the beginning of each year. Additionally, RES technology
groups are aggregated as a single group of units, while Hydro-Storage (HS) units and Conventional
Hydro (CH) units are also represented by an aggregated unit each. An assumption is required to
implement the aforementioned aggregation. Specifically, it is assumed that the generating potential
of the aggregated groups (e.g. the inflows of the aggregated CH unit and the fixed capacity credits
employed for RES technology groups) increases linearly w.r.t. the installed capacity which is not in
general the case (Reference [48]). Moreover, variables representing RES curtailment, load shedding
and reserve shortage are included within the formulation to attain a solution of the SM for a given
installed capacity. This is implemented to provide a cost estimate for each examined installed ca-
pacity. Therefore, infeasibility of an installed capacity is penalized within the SM. This is required
since the SM must provide an output for each set of investment decisions. The formulation of the
selected SM is presented in Appendix A.
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The decision variables of the SM are not included in the investment level. Therefore, the
dimensionality of the latter depends only on the available technology groups and the examined
investment stages. Moreover, modifications to the SM such as the addition of cost terms (e.g.
emission related cost terms) or constraint functions (e.g. emission related limitations) do not affect
the GEP’s formulation and dimensionality. In general, other SM could, possibly, be adopted and
examined.

Temporal detail

The temporal detail of the planning horizon considers a number of future years (Y). Among the
latter some or all can be selected as target years (Ytrg ⊆ Y). These are the years that the SM is
employed to provide an estimate of the operation cost (cvar). In addition, target years include a
number of time periods (P). Each such time period is comprised by a set of hourly interval (H).
More specifically, temporal detail may be tuned considering the following:

� Number of target years: The SM is employed for the years of the planning horizon that are set
as target years and for the remaining ones an assumption is required. Selecting the number
of target years depends on the length of the planning horizon and the computational cost of
the SM. For example, the number of simulations available for each target year is expected to
decrease when the number of target years increases. In addition, the computational cost of
the SM can determine the number of available simulations.

� Number of time periods: The number of time periods for which the SM will be employed is also
required. Setting an entire year as a time period is computationally challenging (depending on
the size and formulation of the SM). Selecting an amount of representative days/weeks may
be a rational alternative. In this case, the SM is employed for each time period independently
under the assumption that these time periods can be simulated independently. Increasing
the temporal resolution can be achieved by introducing a larger number of time periods that
include a diverse set of operating conditions. However, this would also lead to an increased
computational cost of the SM.

� Number of hourly intervals: Each time period is comprised by a set of consecutive hourly
intervals. A larger number of hourly intervals could lead to a more accurate simulation but
also lead to an increase in the computational cost of the SM.

4.2.4 Formulation of the Single-Objective optimization problem

This Section presents the objective and constraint functions.

Objective function

The objective function is set as the sum of the discounted annual investment, fixed, and variable
cost.

TC =
∑

yr

[DDyr · (cinvyr + cfixedyr + cvaryr )] (4.8)

The yearly discount factor (DD), based on the discount rate (DR), is computed as follows:

DDyr = 1/(1 +DR)yr,∀yr (4.9)
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Planning constraints

The search space (S) is set as follows:

1. Non-negative integers variables: The annual numbers of investments are restricted to non-
negative integers:

xinv ∈ Nn
inv

(4.10)

where ninv is the dimensionality of the investment level, i.e. the product of the number of
technology groups (Tz) and years of the planning horizon (Y rz).

2. Maximum and minimum number of annual investments: An upper bound is applied on the
annual number of investments to define the search space:

0 ≤ xinvyr,t ≤ X
inv
yr,t, ∀yr, t (4.11)

and the lower bound is set as zero. Moreover, the upper bound should consider:

(a) A realistic estimation of the maximum annual investments (Xmax inv):

X
inv
yr,t ≤ Xmax inv

t ,∀yr, t (4.12)

(b) No investments can be constructed after the final year of the planning horizon

X
inv
yr,t = 0, ∀yr + CTt > Y rz, t (4.13)

(c) No investments can be made for technology groups that no new units are available as
investment options:

X
inv
yr,told = 0, ∀yr, told (4.14)

(d) Investments can be made during years which are set as investment stages:

X
inv
yr,t =

{
X
inv
yr,t, if yr ∈ YInvSt

0, otherwise
,∀yr, t (4.15)

3. Planning reserve margin constraint : The total installed capacity should be greater or equal
to a predefined required minimum limit:

∑

t

[icyr,t · CCt] ≥ RSyr, ∀yr (4.16)

For the sake of simplicity, the total capacity requirement (RS) is set equal to the projected
peak power demand increased by a reserve margin:

RSyr = (1 +RM)PD (4.17)

4. Maximum installed capacity constraint : The installed capacity of each generating technology
in each year may not exceed an upper bound. The latter may be limited by an estimate of the
available potential for each technology group, by restrictions posed to the installed capacity
or by restrictions to the maximum generation level of a technology group:

icyr,t ≤ ICyr,t, ∀yr, t (4.18)

where
ICyr,t = min(IC

ic
yr,t, (IC

g
yr,tTDyr)/(8760AVt), IC

ep
t ),∀yr, t (4.19)
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5. Minimum installed capacity constraint : Correspondingly, the minimum installed capacity for
each technology group in each year is limited as follows:

icyr,t ≥ ICyr,t ∀yr, t (4.20)

where
ICyr,t = max(ICicyr,t, (IC

g
yr,tTDyr)/(8760AVt), 0),∀yr, t (4.21)

4.3 Single-objective optimization approach

The optimization approach is based on DE and frameworks for surrogate-assisted derivative free
algorithms. In addition, modifications have been introduced in the form of specialized operators.
These are discussed in the following Sections.

4.3.1 Differential Evolution

The basic DE algorithm randomly initializes a population of NP individuals. The Mutation,
Crossover and Environmental-selection operators are applied to improve the initial population
throughout a series of generations. For each individual (target vector), an offspring (trial vector) is
generated through the Mutation and Crossover operators. The Environmental-selection operator
determines the trial vectors that replace the corresponding target vectors of the population.

4.3.2 Basic Differential Evolution operators

This Section presents the DE algorithm employed and its operators:

1. Variable representation: The following common notation is adopted for representing the ith

individual of the population:

xgeni = {xgeni,1 , x
gen
i,2 , . . . , x

gen
i,D } (4.22)

where D is the number of decision variables. The decision variables of the ith individual (xgeni )
are set as the investment decision variables (xinv) for which the value is not predetermined,

i.e. the upper and lower bounds are not equal (X
inv
yr,t 6= 0). The upper and lower bounds of

the search space (x and x) are determined in a similar manner based on the variable each
element refers to. For computing the objective and constraint functions, the values of xgeni
are remapped to determine the corresponding values of xinv. In addition, Eq. 4.6 is used as
a transformation function to determine the number of installed units (nu). Therefore, nu
are not considered as decision variables within the individual representation. In addition, the
constraint functions that determine the number of units (Eq. 4.6) are excluded since utilizing
them as transformation functions can guarantee their feasibility. Consequently, the objective
and constraint function are computed by using the derived values of xinv and nu.

2. Initialization operator : The initial population is randomly sampled within the search space:

x1
i,j = xj + (xj − xj) · Ui,j ,∀i, j (4.23)

where Ui,j denotes a randomly sampled number based on the uniform distribution, within
[0, 1], and drawn independently for each jth variable of the ith individual.
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3. Mutation operator : The operator generates a mutant vector, vgeni , based on scaled pairwise
differences of selected individuals from the population. The DE/rand/1 mutation scheme has
been adopted:

vgeni = xgen
ri1

+ F (xgen
ri2
− xgen

ri3
) (4.24)

where indices ri1,ri2 and ri3 are mutually exclusive integers randomly chosen once for each
mutant vector from the range [1, NP ], such that ri1 6= ri2 6= ri3 6= i and F is a user-defined
parameter for scaling the difference vectors. A bound handling method is then usually applied
to ensure the box constraints. The following is adopted:

vgeni,j =

{
min{xj , 2xj − vgeni,j }, if vgeni,j < xj
max{xj , 2xj − vgeni,j }, if vgeni,j > xj

, ∀i, j (4.25)

4. Crossover operator : A trial vector, ugeni , is formed by the crossover operator using the cor-
responding target (xgeni ) and mutant (vgeni ) vectors. The binomial and exponential crossover
are the two most common Crossover operators employed within DE algorithms (References
[108, 92]).

(a) Binomial crossover : It is performed on each of the D decision variables to determine
which values are selected for the trial vector from the mutant vector as follows:

ugeni,j =

{
vgeni,j , if randj ≤ CR or j = jrand

xgeni,j , else
,∀j (4.26)

where randj is a uniformly distributed random number in [0, 1] generated anew for each
j-th dimension, jrand is a randomly chosen index from [1, D] and the crossover rate,
CR, is a user-defined parameter.

(b) Exponential crossover : For implementing the exponential crossover the values of two
integer are required to be determined. The first integer (ncr) is randomly chosen from
[1, D]. This integer acts as the point, in a target vector from where the exchange of
components with a mutant vector initiates. The second integer, nl, suggest the number
of components that the trial vector will inherit from the mutant vector. Its value is
determined stochastically. In particular, its value is initially set as nl = 1. Then, a
uniformly distributed random number in [0, 1] is generated and compared to the crossover
rate (CR). nl is increased in steps of one (1) when the random value is lower than the
value of CR and nl does not equal D. The process is repeated until either of the
aforementioned conditions no longer hold. Once the values of ncr and nl are determined
the ith trial vector is obtained as follows:

ugeni,j =

{
vgeni,j , if j = 〈ncr〉D, 〈ncr + 1〉D, . . . , 〈ncr + nL − 1〉D,
xgeni,j , else

∀j (4.27)

where the angular brackets 〈.〉D denote the modulo function with modulus D.

5. Environmental-Selection operator : A pairwise comparison is implemented to determine the
trial vectors (ugeni ) that replace the corresponding individuals (xgeni ) and form the population
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of the next generation:

xgen+1
i =

{
ugeni , if f(ugeni ) ≤ f(xgeni )

xgeni , else
(4.28)

Eq. 4.28 assumes unconstrained minimization of the objective function. For constraint op-
timization problems a CHT is required. Many constraint handling techniques have been
suggested and employed with DE for constraint optimization problems (References [108, 92]).
Among the aforementioned, the Feasibility Rule (FR) (Reference [119]) is considered. FR
is a parameter-free CHT, which treats the values of the objective and constraints functions
separately. DE algorithms coupled with FR, usually, implement pairwise comparisons among
individuals (trial and target vectors). The selection is based on the following rules that
prioritizes feasibility of the constraint functions:

• Given two infeasible individuals, the one exhibiting the lower constraint violation is selected.

• Given a feasible individual and an infeasible one, the former is selected.

• Given two feasible individuals, the one having the lower objective function value is selected.

The constraint violation value of the ith individual can be computed as follows:

cvi =
∑

k

[max{gk(xgeni , 0}] (4.29)

Differential Evolution for discrete optimization problems

Some modifications are usually adopted when DE is employed for optimization problems involving
discrete decision variables (Reference [108]) as DE is commonly employed for real-coded variables.
For example, DE variants modified by transformation functions have been applied to a number of
optimization problems including discrete variables such as the UCP (e.g. References [81, 83]) and
the flow shops scheduling problem (e.g Reference [192]).

The approach for handling the discrete decision variables described in Reference [193] is selected.
Based on the latter, the DE operators may be applied on continuous values (floating-point/real
coded representation) and a truncation could be implemented to convert the real-valued points to
integers when the objective and constraint functions are required to be evaluated. Therefore, the
decision vector of an individual is not altered but a modified vector is derived from the latter and
used for computing its fitness. A nearest integer function is selected for this truncation to enforce
the integer constraints when computing the aforementioned functions. In addition, modifications
are introduced to the upper and lower bounds maintaining (a nearly) equal probability for each
integer to occur. For example, for the nearest integer function (b·e) employed:

x′j = xj + 0.5− e,∀j (4.30)

x′j = xj − 0.5,∀j (4.31)

where e is a sufficiently small number.

49



Restart mechanism

Restart mechanisms have been employed in DE to address the issue of stagnation (Reference [92]).
During specific stages the algorithm may result in (nearly) zero difference vectors, indicating that
the DE algorithm has converged, and/or failed to improve any individual for a series of generations.
A simple restart mechanism is employed to reinitialize some individuals. The criterion for imple-
menting the restart is set as a predefined number of generations (genrst) for which no improvement
has occurred in any individual. If the criterion is met, all individuals, except the best population
member, are reinitialized within the search space. Then, the DE algorithm proceeds to the next
generation. This restart may provide larger difference vectors, however, it does not guarantee that
the algorithm will escape a local optimum.

4.3.3 Examined Problem-customized operators

The DE algorithm is employed to serve as the search engine. Three simple problem-customized
operators are examined in an attempt to enhance its performance. Specifically, the three operators
are:

� A Randomized Repair Heuristic: It attempts to remap infeasible solutions within the feasible
region based on problem-customized criteria. Therefore, the operator aims towards addressing
challenges emerging due to the constraint nature of the optimization problem.

� A perturbation operator : It is based on perturbation schemes frequently encountered in com-
binatorial optimization and it is included to introduce diversity to the DE population by
implementing perturbations in an attempt to moderate the impact of handling the discrete
optimization variables.

� A Technology-group operator : The operator determines the EA-based representation of an
individual and includes a modification to the crossover scheme in an attempt to exploit a
priori knowledge of variable linkages.

The aforementioned operators are analysed in the following Sections.

Randomized Repair Heuristic

The Randomized Repair Heuristic (RRH) is presented in two Section. First, the aim and motivation
of developing the repair procedure is presented and then a description of the operator follows.
Aim and Motivation: There had been two main motivations for the RRH:

� The first goal is to repair infeasible solutions generated during the search. These infeasible
solutions are generated since the Variation operator cannot restrict their generation as ap-
plied in this approach. Infeasibility regarding the planning constraints is considered and a
distinction is made among the aforementioned:

– Constraints imposed on the installed capacity of each technology group (Eq. 4.20 and
4.18) are technology group specific and the repair procedure can be implemented inde-
pendently on the set of variables referring to a technology group.
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– Constraints imposed on the total installed capacity (Eq. 4.16) which is a function of
investment decisions from technology groups that include investment stages preceding
the year that the constraint function considers and for which an implemented investment
can be operational by that year.

Moreover, the infeasible solutions (i.e. the input to the RRH) do not violate constraints Eq.
4.11 and Eq. 4.10 as these are ensured by applying Eq. 4.25 and the nearest integer function,
respectively. Therefore, the aim of RRH is to repair constraint violation of Eq. 4.16, Eq. 4.18
and Eq. 4.20 while maintaining the feasibility of Eq. 4.10 and Eq. 4.11.

� Secondly, the RRH aims towards providing a diverse set of feasible solutions. Introducing
user-defined preferences has been avoided. Therefore, the repair procedure is implemented in
a stochastic manner following a set of predefined rules. Therefore, the bias introduced by the
inclusion of the repair heuristic has been limited.

The RRH can be applied to repair infeasible solutions generated by the DE algorithm and by the
refining strategies (presented in the Section 4.3.4).

� Within the DE algorithm, the RRH is applied on each generated infeasible individual. First,
a matrix x is defined by remapping the rounded values of an individual (e.g. xgeni or ugeni ).
The final output of RRH, i.e. the repaired x, is used to alter vector xgeni by replacing the
corresponding values. In addition, the resulting integer values of xgeni are stochastically set
as real values:

xgeni,j = xgeni,j − 0.5 + Ui,j , ∀j = 1, 2, . . . , D (4.32)

where Ui,j denotes a randomly sampled number based on the uniform distribution, within
[0, 1). This is implemented due to the adoption of a real-valued representation for the DE
algorithm.

� In a similar manner, an infeasible solution (vector) generated by perturbations is remapped
to a matrix form (x) when RRH is applied to repair infeasible solutions generated by the
refining strategies (Section 4.3.4). However, the resulting integer values of the RRH are not
stochastically set as real values in this case.

Description of the operator : The RRH includes three parts (namely Part A, B and C). The
output of each part serves as the input of the next. The input of Part A is the examined matrix x
that does not violate Eq. 4.10 and Eq. 4.11. Its output is modified (if required) to satisfy also Eq.
4.20. The output of Part B is modified (if required) to meet also Eq. 4.18. Lastly, the output of
Part C satisfies the planning constraints (Eq. 4.10, Eq. 4.11, Eq. 4.16, Eq. 4.18 and Eq. 4.20). A
step-by-step description of Part A, B and C follows:

1. Part A: The first part of the RRH considers Eq. 4.20. These constraints regard the minimum
limit of installed capacity of each technology group in each year of the planning horizon.
Consequently, the RRH can be applied independently for each such group and the process is
repeated sequentially until all lower limit constraints (Eq. 4.20) are satisfied as follows:

(a) A forward sweep is implemented to identify if the lower limit of the installed capacity
for an examined technology group (ttrial) is violated in any year.

(b) If no violation is identified, skip this step. Otherwise:
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i. Stochastically selected (with equal probability) an investment stage (yrtrial sel) prior
to the first identified violation (e.g. yrvio) from a pool of possible investment stages
(Ytrial). The pool includes the indices of the years (yrtrial) for the examined tech-
nology group for which:

A. An added investment can be operational (constructed) by the considered year:
yrtrial + CTttrial ≤ yrvio.

B. An added investment can remain operational by the considered year:
yrtrial + CTttrial + LTttrial ≤ yrvio.

C. An added investment does not violate the maximum number of investments (Eq.
4.11):
xyrtrial,ttrial + 1 ≤ Xyrtrial,ttrial

ii. Determine the number of investments to be stochastically added (nadd st) to the
selected investment stage (yrtrial sel). It is set as a randomly generated integer
drawn from the range [0, Xyrtrial sel,ttrial − xyrtrial sel,ttrial ].

iii. Update the investment variables:
xyrtrial sel,ttrial = xyrtrial sel,ttrial+min(nadd st, d(ICyrtrial sel,t−ICyrtrial sel,ttrial)/P

cap step
ttrial

e).
iv. Update the installed capacity (ic) and the number of units (nu).

(c) If all technology groups have been repaired then proceed to part B. Otherwise, repeat
the steps (1a-1c) for the remaining technology groups.

2. Part B: The second part of the RRH considers (Eq. 4.18). These constraints regard the
maximum limit of installed capacity of each technology group in each year of the planning
horizon. Similarly to part A, the RRH is applied independently for each technology group
and is repeated until all lower and upper limits (Eq. 4.20 and Eq. 4.18, respectively) are
satisfied as follows:

(a) A forward sweep is implemented to identify if the upper limit of the installed capacity
for a technology group (ttrial) is violated in any year.

(b) If no constraint violation is identified (Eq. 4.18), skip this step. Otherwise, remove the
most recently constructed investments prior to the year where the violation occurs as
follows:

i. The pool of possible investment stages (Ytrial) is determined to include the indices
of the years (yrtrial) for the examined technology group for which:

A. An investment is operational by the year the violation occurs:
yrtrial + CTttrial ≤ yrvio

B. An investment remains operational by the year the violation occurs:
yrtrial + CTttrial + LTttrial ≥ yrvio

C. At least one investment can be removed:
xyrtrial,ttrial > 0

ii. Select the investment stage (yrtrial sel) of the investment constructed preceding the
first identified violation (e.g. yrvio). In particular, set yrtrial sel as the largest value
of Ytrial.

iii. Determine the number of investments that should be removed (nrem) for the selected
year (yrtrial sel). It is set as the number of investments occurring in the selected
investment stage: nrem = xyrtrial sel
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iv. Update the investment variables:
xyrtrial sel,ttrial = xyrtrial sel,ttrial−min(nrem, d(ICyrtrial sel,ttrial−ICyrtrial sel,t)/P

cap step
ttrial

e).
v. Update the installed capacity (ic) and the number of units (nu).

(c) Update the lower limit (Eq. 4.20) constraint violation of the examined technology group
(ttrial).

(d) If no constraint violation (Eq. 4.20) is identified, skip this step. Otherwise, add in-
vestments to the examined technology group in a similar manner to Part A. However,
investments are added to investment stages prior to the year where the violation is
identified by prioritizing the preceding ones rather than stochastically selecting them.
Moreover, the number of added investments is always set as the required one to satisfy
the constraint violation (if possible) rather than determining it stochastically. The steps
are the following:

i. Select the possible investment stage (yrtrial sel) preceding to the first identified vi-
olation (e.g. yrvio). The pool of possible investment stages (Ytrial) includes the
indices of the years (yrtrial) for the examined technology group for which:

A. An added investment can be operational (constructed) by the considered year:
yrtrial + CTttrial ≤ yrvio.

B. An added investment can remain operational by the considered year:
yrtrial + CTttrial + LTttrial ≤ yrvio.

C. An added investment does not violate the maximum number of investments (Eq.
4.11):
xyrtrial,ttrial + 1 ≤ Xyrtrial,ttrial

ii. Set yrtrial sel as the largest value of Ytrial.
iii. Determine the number of investments that should be added (nadd) from the se-

lected investment stage (yrtrial sel). It is set as the number of available remaining
investments: nadd = Xyrtrial,ttrial − xyrtrial,ttrial .

iv. Update the investment variables:
xyrtrial sel,ttrial = xyrtrial sel,ttrial+min(nadd, d(ICyrtrial sel,t−ICyrtrial sel,ttrial)/P

cap step
ttrial

e).
v. Update the installed capacity (ic) and the number of units (nu).

vi. Repeat steps 2c-2d

(e) Update the constraint violation of the upper limit of the installed capacity for the ex-
amined technology group (ttrial).

(f) If no constraint violation is identified (Eq. 4.18), skip this step. Otherwise, repeat steps
2a-2f.

(g) If all technology groups have been repaired then proceed to part C. Otherwise, repeat
the steps (2a-2g) for the technology group not meeting the aforesaid condition.

3. Part C: The third part of the RRH considers Eq. 4.16. These constraints regard the planning
reserve margin in each year of the planning horizon. A forward sweep is implemented where
identified violations of the planning reserve margin constraint are sequentially repaired. The
part alters the investment decisions to serve the aforementioned constraint while ensuring
that the remaining constraints are not violated. It is implemented as follows:
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(a) Apply a forward sweep to identify if the planning reserve margin constraint is violated
in any year.

(b) If no constraint violation is identified (Eq. 4.18), skip this step. Otherwise, stochastically
(equal probability) select an investment stage prior to the first year for which a violation
is identified (yrvio) and add an investment to a stochastically (equal probability) selected
technology group in which one can be added in the selected investment stage. This is
iteratively repeated until the constraint violation of identified in the examined year
(yrvio) is met. The aforementioned are implemented as follows:

i. Set the pool of possible investment stages (Ytrial) to include the indices of the years
(yrtrial) for which:

A. yrtrial −min
∀t

(CTt) ≤ yrvio

B. yrtrial +max
∀t

(CTt + LTt) ≥ yrvio

ii. Set the pool of possible technology groups (Ttrial) to include the indices of all tech-
nology groups.

iii. Stochastically select an index yrtrial sel from Ytrial with equal probability.

iv. Remove technology group indices from Ttrial that do not satisfy the following con-
ditions:

A. An added investment does not violate the maximum number of investments (Eq.
4.11):
xyrtrial,ttrial + 1 ≤ Xyrtrial,ttrial

B. An added investment can be operational (constructed) by the considered year:
yrtrial sel + CTttrial ≤ yrvio

C. An added investment will remain operational by the considered year:
yrtrial + CTttrial + LTttrial ≥ yrvio

D. An added investment does not violate the upper limit of installed capacity:
icyy,t + P cap step

ttrial
≤ ICyy,ttrial , ∀yy ∈ [yrtrial + CTttrial , . . . , yr

trial + CTttrial +
LTttrial ]

v. If Ttrial is an empty set, then remove yrtrial sel from Ytrial. Otherwise,

A. Stochastically select an index from Ttrial with equal probability.

B. Update the investment variables:
xyrtrial sel,ttrial = xyrtrial sel,ttrial + 1.

C. Update the installed capacity (ic) and the number of units (nu).

D. Compute the constraint violation (Eq. 4.18) for year yrvio.

vi. If Ytrial is not an empty set, then skip this step. Otherwise,

A. Stochastically (equal probability) select a technology group index (ttrial) from a
pool that includes the indices of all technology groups.

B. Update the investment variables:
xyr,ttrial = Xyr,ttrial ,∀yr

C. Update the installed capacity (ic) and the number of units (nu).

D. Apply Part B for technology group ttrial.

E. Repeat steps 3a-3(b)vi.

54



vii. If a constraint violation (Eq. 4.18) for year yrvio is not identified, then repeat steps
3a-3b. Otherwise, repeat steps 3(b)ii-3(b)vii.

(c) The updated matrix x of RRH is provided as the output of the procedure.

Step 3(b)vi is included for the case where a feasible solution cannot be attained due to investments
placed in investment stages following the year in which the planning reserve margin constraint
violation occurs. The addition of an investment would lead to a constraint violation of the upper
limit of the installed capacity of a technology group and, therefore, Ytrial would result in an empty
set. An illustrative example is provided: Assume the case of a single technology group, a number
of investment stages and an upper limit of installed capacity enabling the inclusion of a single
investment. Given the aforesaid, Part C is unable to produce a feasible solution without step
3(b)vi if the year in which the investment becomes operational follows the one where a constraint
violation of the planning reserve margin occurs.

Technology-group operator

In this Section, the aim and motivation for developing the technology-group operator is presented.
Then a description of the operator follows.
Aim and Motivation: Reference [194] examined the impact of unnatural dependencies between
adjacent variables on the performance of the exponential crossover operator in widely used syn-
thetic benchmarks for black-box optimization. They identified that such unnatural dependencies
can be exploited by the exponential crossover operator. Arbitrary assuming such linkages, on the
other hand, may result in unintended biases. They suggested the Shuffled-Exponential crossover to
be coupled with the DE algorithm (instead of exponential crossover) to eliminate such unnatural
dependencies, unless there is some a priori knowledge that there are dependencies between consec-
utive variables. Motivated by the above, an operator that attempts to exploit a priori knowledge
of some dependencies is examined.

Some dependencies can be identified regarding the optimization problem considered in this
Chapter, since it is not a black-box optimization problem. These dependencies, even though not
strictly defined, are assumed to exist between variables referring to the same technology group.
This assumption is made since the investment decision variables of a technology group form a
trajectory of the installed capacity of the same technology group for the planning horizon. Each
trajectory is in term bounded by constraint functions (upper and lower limit of installed capacity)
which are a function of a subset of the optimization variables, i.e. decision variables of the same
technology group. Assuming a feasible solution, the number of such trajectories altered (more pre-
cisely the number of decision variables from different technology groups) can affect the number of
constraint violations of the installed capacity limit triggered (Eq. 4.18 and Eq. 4.20). On the other
hand, optimizing each trajectory independently is not applicable, since the remaining functions
(planning reserve margin constraints and the objective function) require the optimization of the
decision variables of all technology groups. The operator attempts to exploit the aforesaid link-
ages/dependencies among some variables by (i) predefining the lexicographic order of the decision
variables within the individual (decision vector) representation and (ii) restricting alterations made
to the target vector by the crossover operator to a subset of the technology groups.

Description of the operator : The operator includes two modifications: (i) to the individual
(decision vector) representation and (ii) to the crossover operator employed.
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� Individual (decision vector) representation: The decision variables are grouped in technol-
ogy blocks to focus on exploiting linkages among decision variables which refer to the same
technology group. In particular, all decision variables of a technology group are set adjacent,
within the corresponding block, and in ascending order, based on the investment stage that
it refers to. Therefore, the ith individual of the population is represented as follows:

xgeni = {xgeni,1 , x
gen
i,2 , . . . , x

gen
i,D } = {xgen blki,1 ,xgen blki,2 , . . . ,xgen blki,T z }, (4.33)

where
xgen blki,t = {xgeni,t,1, x

gen
i,t,2, . . . , x

gen

i,t,Dblk
t
},∀t (4.34)

where Dblk
t denotes the dimensionality of block t. For example, xgeni,t,2 corresponds to the

decision variable of the second available investment stage of technology group t.

� Crossover operator block modification (blk): A crossover operator is implemented for a num-
ber of blocks independently for each individual rather than once for each individual. An
integer, nblk, is employed to stochastically determine the number of blocks for which the
crossover operator will be implemented. The integer, nblk, is randomly selected from the
range [1, T z] with equal probability. Consequently, decision variables of some technology
groups are excluded as possible values to be inherited to the trial vector (from the mutant
vector) for values of integer nblk lower than Tz.

The modification affects the number of variables transferred from the mutant to the trial vector.
This can differ based on the selected crossover operator, the number of decision variables, the num-
ber of blocks and the dimensionality of each block. Moreover, each trajectory of a technology group
exhibits an equal probability to be selected to be altered regardless of the size of the corresponding
block (dimensionality). In addition, the probability of adopting variables of the same technology
group from a mutant vector, while rejecting those of other groups may be increased by applying
the technology-group operator. For example, if Tz technology blocks of equal dimensionality, the
binomial crossover scheme and a crossover rate equal to 1 are assumed, then the probability that
the trial vector adopts variables from both technology groups from the mutant vector is equal to
1. In contrast, the corresponding probability is (nearly) halved when the blk is used. However,
crossover operators (usually) ensure that the trial vector adopts at least one variable from the
mutant vector. Therefore, small block sizes or low values of the crossover rate have an impact on
the aforementioned effect. For example, for the special case of Cr=0 (which is not commonly used
in DE algorithms) at least one value would be adopted from the mutant vector for each select block
and consequently for nblk > 1 the aforesaid does not hold.

A step-by-step description for applying a selected crossover operator, including the modification,
on the ith individual follows:

1. Create set Ttrial which is a randomly shuffled permutation of set T.

2. Set the trial vector equal to the target vector:
ugeni = xgeni

3. Set nblk as a randomly generated integer from the range [1, T z].

4. Set counter c equal to one.
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5. If c > nblk then skip this step. Otherwise, apply the crossover operator to the selected block:

(a) Set ttrial as Ttrialc .

(b) Apply the crossover operator among xgen blk
i,ttrial

and vgen blk
i,ttrial

to generate and replace the

block ugen blk
i,ttrial

of the trial vector ugeni . vgen blk
i,ttrial

is the corresponding block of the vector

vgeni generated by the mutation operator.

(c) Update the counter:
c = c+ 1

(d) Repeat step 5.

Perturbation operator

In this Section, the aim and motivation for examining the perturbation operator (PO) is discussed.
Then a description of the operator follows.
Aim and Motivation: There had been two main motivations for the inclusion of a PO:

� To improve the timing of the investments (investment stages). An example is presented
that illustrates when such might be required: if an individual of the DE population x =
[{0.2, 0.3, .9, .8}, {0.3, 0.2, 4.9, 0}] is assumed, then the individual generated by applying the
rounding function is x = [{0, 0, 1, 1}, {0, 0, 5, 0}]. In addition, if it is assumed that the opti-
mal solution is x∗ = [{0, 1, 0, 1}, {0, 0, 5, 0}], then it can be seen that the optimal number of
investments has been identified, however, a single investment of the first block is misplaced.
The optimal solution can be generated by the DE variation operators by different ways de-
pending on the remaining individuals within the population. If it is assumed that x is set as
a base vector, the difference vectors result in scaled differences within the range [0.2, 1.2) and
[-1.4,-0.4) for the second and third decision variables, respectively, and the crossover operator
selects both decision variables to be inherited from the mutant to the trial vector. For the
remaining decision variables the difference vectors should be sufficiently low to ensure that the
corresponding integer values are not altered or such alterations are rejected by the crossover
operator. Moreover, these alterations could be made in steps (a number of generations):

1. An increase in value of the third decision variable while maintaining the value of the
second one (the following trial vector: u = [{0, 1, 1, 1}, {0, 0, 5, 0}]). However, the trial
vector could possibly result in a higher value of the objective function (induced by
higher investment and fixed cost and an insufficient reduction of the operating cost). In
this case, the generated trial vector would be rejected by the Environmental-selection
operator.

2. A decrease in value of the second decision variable while maintaining the value of the
third one (a trial vector: u = [{0, 0, 0, 1}, {0, 0, 5, 0}]). This could be an infeasible
solution which violates the lower limit of installed capacity. In this case, the trial vector
would undergo the repair process (RRH) and be altered stochastically to a feasible
solution if the RRH is included in the DE algorithm. Otherwise, it would be rejected by
the Environmental-selection operator if the Environmental-selection operator prioritizes
feasible individuals over infeasible ones (e.g. FR).
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The aforementioned example, attempts to illustrate that the optimization problem can require
reallocation of the values within the blocks if the optimal numbers of investments has been
identified.

� To generate diverse individuals for the population. A real-coded representation has been
adopted for representing the integer variables. The values of the difference vectors declines
as the population’s diversity declines and, in some cases, the difference vectors may not be
sufficiently large to alter the integer values and escape a specific region if required. This
might be of importance when the population converges prematurely. A larger perturbation
may generate a diverse solution from the existing ones within the population. This solution
could be infeasible and in this case the RRH is applied to remap the solution within the
feasible region. Due to the stochastic nature of the latter, a diverse feasible individual may
be generated.

Description of the operator : The PO is applied to a number of individuals with a probability of
pfPO to generate a block, vgen blk, for the trial vector. It includes three perturbation schemes based
on common schemes employed for combinatorial optimization. The first two attempt to improve
investment timing. The last scheme attempts to reduce the investment cost. More specifically,
for the first two schemes a block is generated that is a permutation of the elements within the
blocks of the target (xgen blki,t ) and, corresponding, base vector (xgen blk

ri1,t
). In the first scheme, two

decision variables within a technology-group block are switched similarly to Reciprocal exchange
(2-exchange). The second scheme shuffles investments decisions between a randomly determined
number of investment stages. The last scheme removes the investments from a randomly determined
number of investment stages of the target vector (xgen blki,t ). These are re-initialized near the lower
bound of each decision variable.

A step-by-step description for applying PO on the ith individual follows:

1. If a random number based on the uniform distribution from the range is greater than param-
eter pfPO, then skip this step. Otherwise:

(a) Create set Ttrial which is a randomly shuffled permutation of set T.

(b) Set ugeni equal to xgeni .

(c) Set nblk as a randomly generated integer from the range [1, T z].

(d) Set counter c equal to one.

(e) If c > nblk the skip this step. Otherwise, apply the crossover operator to the selected
block:

i. Randomly select an integer nPO from the range [1, 3].

ii. Set t as Ttrialc .

iii. If Dblk
t < 2 then set vgen blki,t equal to the block generated by using the DE operators

(ugen blki,t ). Otherwise, set vgen blki,t as xgen blki,t .

iv. If nPO 6= 1 or Dblk
t < 2, then skip this step. Otherwise:

A. Randomly select two exclusive elements µ and ν from [1, 2, . . . , Dblk
t ].

B. Set vgen blki,t,µ as xgen blk
ri1,t,ν

.

C. Set vgen blki,t,ν as xgen blk
ri1,t,µ

.
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v. If nPO 6= 2 or Dblk
t < 2, then skip this step. Otherwise:

A. Randomly select two elements µ and ν from [1, 2, . . . , Dblk
t ] such that µ < ν.

B. Set Ytrial as a randomly shuffled permutation of integers from [µ, µ+ 1, . . . , ν].

C. Set vgen blki,t,yr as xgen blk
ri1,t,Ytrial

yr
, ∀yr ∈ [µ, µ+ 1, . . . , ν].

vi. If nPO 6= 3 or Dblk
t < 2, then skip this step. Otherwise:

A. Randomly select two integer µ and ν from the range [1, 2, . . . Dblk
t ] such that

µ < ν.

B. Set vgen blki,t,yr as x′gen blkt,yr + Uyr[0, 1),∀yr ∈ [µ, µ+ 1, . . . , ν].

vii. Update the counter:
c = c+ 1

viii. Repeat step 1e.

ix. Set ugen blki,t as vgen blki,t .

4.3.4 Steps of the optimization approach

This Section presents the steps of the optimization approach. It follows a similar framework to
the surrogate-assisted derivative free algorithms proposed in References [168, 180]. The modifica-
tions emanate from the a priori knowledge available regarding the constraint optimization problem
considered. Some main differences are the following:

� A number of AM are maintained where each is built on a subset of the variables rather than
a single one built for the entire set of the decision variables. This is implemented to estimate
the variable cost of each considered target year based on the assumption that each cost may
be computed independently. This assumption can be made since the optimization problem is
not a black-box and the installed capacity of the technology groups is a function of investment
decisions. The dimensionality of each AM scales with the number of technology groups that
can exhibit different values of installed capacity in each target year. The number of AMs
scales with the number of target years. Two possible alternatives are to select a single AM
build for all investment decision variables or to select a single AM build for the installed
capacity of all target years. The first scales with the number of investment stages and the
number of technology groups. The second scales with the number of target years and the
number of technology groups that can exhibit different values of installed capacity in each
target year. In general, the performance of an AM can decrease as the number of dimensions
increases (Reference [167]).

� The approach exploits characteristics of the formulation, i.e. the objective function includes
computationally cheap and computationally expensive cost terms and constraint functions.

� Planning constraint functions are repaired externally by the RRH. Surrogate-assisted derivative-
free algorithms are coupled with CHT for black-box constraint optimization problems since
repair operators may not be easily available for such problems.

� The AMs are refined by solutions, chosen at different stages from an evolving DE population
and randomly generated solutions. The trajectories generated for the installed capacity by
the investment decision variables are considered within these selection processes.
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The optimization approach includes two main phases, the initialization phase and the optimiza-
tion phase. The initialization phase includes four main steps: (i) pre-processing a region of interest,
(ii) initializing the archives, (iii) creating the initial data points for each archive and (iv) supplying
initial solutions. The optimization phase includes the steps for evolving the population of the DE
algorithm and the steps for applying the refining strategies. These are discussed in the following
Sections.

Initialization: Pre-processing a region of interest

A region of interest is pre-processed for the provided data input. It aims towards defining a region
in which the initial data points will be created. This region is defined by an estimate of the
maximum (NU) and minimum (NU) limits of available units of each technology group in each
year. The limits are identified based on the planning constraints. They ensure that no feasible data
point exists outside these limits that respects the planning constraints. However, the limits do not
define the feasible region but rather exclude a number of infeasible data points. This aims towards
selecting initial data points from a smaller region and reduce the amount of costly simulations of
infeasible data points that do not necessarily facilitate the search.

Furthermore, the dimensionality dyr of each target year can then be determined based on
the technology groups for which the installed capacity is not predetermined. For any year that
the installed capacity is predetermined for all technology groups (NUyr,t = NUyr,t, ∀t) no AM is
required. For such target years, the operational cost needs to be computed once as its value is also
predetermined. Therefore, the total AMs required, Nsur, is at most Y rz − min

t
{CTt}, when all

years of the planning horizon are set as target years.
The procedure employed, to predefine limits that loosely consider the planning constraints and

define a region of interest, is implemented as follows:

NUyr,t = NU
new
yr,t +NUoldyr,t,∀yr, t (4.35)

NUyr,t = NUnewyr,t +NUoldyr,t,∀yr, t (4.36)

where NUnew and NU
new

are the minimum and maximum numbers of new units possibly installed
by partially considering Eq. 4.11 - 4.20. An upper limit is computed based on Eq. 4.11 and Eq.
4.18.

NU
new
yr,t = min

(⌊
ICyr,t −NUoldyr,t · Pnett

Pnett

⌋
, NUmaxyr,t −NUoldyr,t

)
, ∀yr, t (4.37)

where NUmax is the maximum amount of units in a technology group in each year computed
by using Eq. 4.6 and setting xinv as X. Then, a backward loop is implemented to consider the
operational lifetime of newly installed units and their maximum decrease.

NU
new
yr,t =





min(NU
new
yr,t , NU

new
yr+1,t +Xyr−CTt−LTt,t), if yr − CTt − LTt > 0

min{NUnewyr,t , NU
new
yr+1,t}, elseif yr − CTt > 0

0, otherwise

, ∀yr, t (4.38)

The lower limit is computed by considering Eq. 4.16 and Eq. 4.20. In particular, NUmin which
are the minimum units required to satisfy the planning reserve margin constraint (Eq. 4.16) is
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determined assuming that all other possible investments are implemented:

NUminyr,t =

RSyr −
∑

t′∈T,t′ 6=t
[NUyr,t′ · Pnett′ · CCt′ ]

Pnett · CCt
,∀yr, t (4.39)

NUminyr,t = max(dNUminyr,t e, 0), ∀yr, t (4.40)

Then, the minimum number of new units is computed as follows based on Eq. 4.20:

NUnewyr,t = max

(⌈
ICyr,t −NUoldyr,t · Pnett

Pnett

⌉
, NUminyr,t −NUoldyr,t, 0),∀yr, t (4.41)

For the lower limit both a backward and forward loop are implemented to consider the operational
lifetime of newly installed units and their maximum possible increase and decrease:

NUnewyr,t =





max{NUnewyr,t , NU
new
yr+1,t −Xyr−CTt−LTt,t}, if yr − CTt − LTt > 0

max(NUnewyr,t , NU
new
yr+1,t −Xyr−CTt,t), elseif yr − CTt > 0

0, otherwise

,∀yr, t (4.42)

NUnewyr,t =





max{NUnewyr,t , NU
new
yr−1,t −Xyr−CTt−LTt,t}, if yr − CTt − LTt > 0

max(NUnewyr,t , NU
new
yr−1,t −Xyr−CTt,t), elseif yr − CTt > 0

0, otherwise

,∀yr, t (4.43)

An illustration for pre-processing a region of interest is presented in Figure 4.1 using as input
data the data of the test case (Section 4.4.1). Figure 4.2 presents an illustration of the trajectories
of the installed capacity attained by a set of randomly generated solutions. Eq. 4.23 has been used
to generated 1000 solutions which are then rounded using the nearest-integer function. In addition,
these are provided as an input to the RRH to remap them within the feasible region.

Figure 4.1: The figure presents an illustration for pre-processing a region of interest.
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Figure 4.2: The figure presents the trajectories of the installed capacity for a set of randomly
generated solutions (blue lines) in comparison to the pre-preprocessed upper (black diamonds) and
lower limits (black squares) of the region of interest (grey areas). Also, the trajectories of the
installed capacity for the repaired solutions attained by the RRH are provided (right column).

Initialization: Initialization of archives

A database is created that includes two types of archives (Aarhvyr and Sarhv) which are initialized to

an empty state. Archives Aarhvyr are used to store all unique data points costly evaluated which are
the pairs of number of installed units (nuyr) and their costly evaluated function output (cvaryr ) of a

target year yr. Archive Sarhv is the solution archive in which unique pairs of investment decisions
(x) and their corresponding objective function value (TC(x)) are stored.

Initialization: Initial data points

The initial data points for each archive Aarhvyr are generated in this step. The data points are

generated within the region of interest (NU and NU) using Latin hypercube sampling (Reference
[195]). Then, the nearest integer function is employed to round the data points to integers (Ref-
erence [180]). These must ensure the condition regarding the minimum number of unique data
points for the RBF model employed. The data points are generated anew for any archive (Aarhvyr )
for which the aforementioned condition is not met. The number of initial data points must also
be met when a user-supplied minimum number of data points is included. All unique data points
generated are evaluated using the SM and the values of each pair (nuyr and cvaryr ) are stored in the

corresponding archive Aarhvyr .

The archives (Aarhvyr ) are used to build the AMs which are updated when additional data points
enter the archive. The variables are assumed to be continuous for building the latter even though
the prediction is computed only for integer points, as in Reference [180].
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Initialization: Initial solutions

Initial solutions may improve the accuracy of the prediction near a user-supplied estimate since
data points would be evaluated for an initial solution and enter the archives. Therefore, if the
estimate is a decent solution that is near to the actual minimum then it could possibly reduce the
costly function evaluations required to identify the specific region. Such an estimate could be the
output of a different model. In case such is not available, an initial point based on the formulation
of the objective function, and its cost terms, could be generated. It is assumed that an estimate
is not available and a number of initial points are generated by optimization runs carried out by
the DE algorithm (Section 4.3.1) and using the AMs for computing the fitness of the individuals.
The selected optimization problems are based on the defined aggregated cost function and the
formulation presented in Section 4.2:

1. The solution exhibiting the minimum value of the investment and fixed cost terms (f chp(x)).
A decent estimate could be near the aggregated minimum value these cost terms assuming that
investment and fixed cost are an important cost factor to determine the optimal investment
decisions. The following optimization problem is considered:

minimize f chp(xinv) =
∑

yr

[DDyr · (cinvyr + cfixedyr )] +
∑

yrfxd

[DDyrfxdc
var
yrfxd ]

s.t.(4.11− 4.20)

(4.44)

where yrfxd denotes the indices of years for which the installed capacity is predetermined.
The second term of Eq. 4.44 has been included for the sake of completeness since its value is
predetermined by the input data and is a constant value.

2. The solution exhibiting the maximum value of the investment and fixed cost terms. If these
cost terms have a negligible impact on the aggregated cost function, then a decent estimate
could be near their aggregated maximum value assuming that the introduction of new and effi-
cient investments triggers a reduction on the total operating cost. The following optimization
problem is considered:

maximize f chp(xinv)

s.t.(4.11− 4.20)

(4.45)

3. The solution exhibiting the minimum value of variable cost based on the initial prediction of
the AMs. This solution could identify a region where the sum of the operating cost is low
assuming that a decent approximation is available. The following optimization problem is
carried out once for each different AM employed using the available data points:

minimize fxp tot(xinv) =
∑

yr∼
[f̂xpyr∼(xinv)] =

∑

yr∼
[DDyr∼ · ĉvaryr∼ ]

s.t.(4.11− 4.20)

(4.46)

where yr∼ denotes the indices of years for which an AM is required. ĉvaryr∼ is the corresponding
prediction of cost term cvaryr∼ attained by the AM.
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These optimization problems are solved successively. For each initial solution derived, the
operating costs (cvar) are computed by the costly model for any vector nuyr that has not been
stored in the corresponding archive (Aarhvyr ). The value of the objective function (TC(xinv)) is then

computed and stored in archive Sarhv. A solution stored in archive Sarhv is compared, based on the
true objective function, with the best-found solution (xbest). The best-found solution is updated in
case a lower function value has been achieved. These are repeated each time an initial solution is
generated.

Evolve a DE population

The optimization phase follows the Initialization phase. A DE population is evolved for a predefined
number of generations (nG) or function evaluation FESDE . The predictions of the AMs are used
to compute the fitness of the individuals. The optimization problem considered is the following:

minimize T̂C(xinv) = f chp(xinv) +
∑

yr∼
[f̂xpyr∼(xinv)]

s.t.(4.11− 4.20) (4.47)

The DE algorithm described in Section 4.3.1 is employed including some modifications:

1. Population initialization: The DE population is initialized by selecting up to NP top per-
forming solutions from the archive Sarhv. This is implemented to supply the DE algorithm
with promising solutions identified in prior steps. In case the archive includes less than NP
solutions then the remaining individuals are randomly initialized within the search space (Eq.
4.23).

2. Restart mechanism: If the restart mechanism is applied, then the best individual of the
population is compared to the best-found solution. In case it exhibits a lower prediction
than the best-found solution it is stored in the archive (Sarhv). The SM is employed, the
values are stored in the archives and the AMs are updated if required. The re-initialized
population generated by the restart mechanism (as described in Section 4.3.2) is then used
for the remaining generations.

When the termination criteria have been met, the best individual of the population is identified. It
is set as the next solution to be costly evaluated. Therefore, the installed capacity is computed, new
data points are costly evaluated and the total cost is computed if new data points are introduced.
The archives (Aarhvyr and Sarhv), the current best solution found, and the AMs are also updated if
required. Th DE population is evolved once for each different AM employed.

Optimization Cycle

An Optimization Cycle consists of the sequential application of two stages: (i) refining the AMs
and (ii) applying the DE algorithm. Within each optimization cycle the AMs are refined on-line,
by adding new data points, and the DE algorithm is utilized to identify an improved solution based
on the updated AMs:

1. The AMs are refined: Two refining strategies are employed to select solutions from a pool
of candidate solutions generated by random perturbations. The first includes the Crowding
Distance Metric and the second employs the prediction of local AMs as a sampling criteria.
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2. The DE population is evolved: The DE algorithm is employed to evolve a population for
nG generations and identify an improved solution. In this case, the AMs are built using all
available data points.

These are discussed in the following Sections.

Optimization Cycle - Refining the approximation models: pool of candidate solutions

A number of surrogate-assisted derivative-free algorithms generate a large pool of candidate solu-
tions by applying randomized perturbations on the best-found solution, or by randomly generating
candidate solutions within the search space (References [177, 178, 179, 180, 181, 186]). The pool
of candidate solutions is used with selection criteria to identify the next data point to be evaluated
using the costly model. A similar stochastic approach is implemented to generate a pool of candi-
date solutions. Three different approaches are employed. The first two use the best-found solution
to generate candidate solutions within its vicinity. The third generates a number of candidate so-
lutions within the search space to ensure sufficient diversity. More specifically, these are generated
as follows:

1. Candidate solutions generated by adding or removing a single investment from decision vari-
ables of the best-found solution (xbest): The alteration of xbest (to add or remove an invest-
ment) is determined with equal probability. Each decision variable exhibits a probability to
be altered (user-defined parameter pfpert = 0.1).

2. Candidate solutions generated by applying the PO on the best-found solution (xbest): The
target vector is set as xbest and the candidate solutions of the previous step are set as base
vectors to alter a number of technology blocks determined by the technology-group operator
(blk).

3. Candidate solutions generated by re-initialization: A number of solutions are generated within
the search space by applying Eq. 4.23.

The size of the pool of candidate solutions is determined by a user-defined parameter rNP .
Constraint violations of these solutions are then repaired by applying: (i) the nearest integer
function to satisfy 4.10, (ii) Eq. 4.25 to respect Eq. 4.11, and (iii) the RRH to repair solutions
violating the remaining planning constraints (Eq. 4.16-4.20).

Furthermore, the RRH is used as a local search technique rather than to remap points within
the feasible region. It is applied to remap the candidate solutions within the feasible vicinity of the
best-found solution. More specifically, the solutions are remapped to follow similar trajectories of
installed capacity to the corresponding ones of xbest. This is implemented by introducing bias to
the repair process by altering the upper and lower limits of the installed capacity as follows:

ICbiasedyr,t = Pnett max(nubestyr,t − dri · (NUyr,t −NUyr,t)e, NUyr,t), ∀yr, t (4.48)

IC
biased
yr,t = Pnett min(nubestyr,t + dri · (NUyr,t −NUyr,t)e, NUyr,t),∀yr, t (4.49)

where IC
biased

and ICbiased are biased upper and lower limits, respectively. nubest is the number
of available units generated by applying Eq. 4.6 for xbest. These limits replace the initial limits of
the installed capacity and are included in the RRH. It is applied to each candidate solution that
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derives an installed capacity violating these limits. ri is a user-defined parameter in the range
(0, 1] included to control the size of the sub-region of interest. A pool of values can be adopted for
each refining strategy and generate different sizes for the sub region, e.g. ri = {1, 0.75, 0.5, 0.25}.
The size of the pool and its values controls global and local search. In particular, the size of a
pool defines the number of solutions selected by each refining strategy and the values control the
maximum difference of the number of available units in each year of a candidate solution to the
corresponding on of the best-found solution.

A number of candidate solutions are removed from the pool to form the final output of this
step. The removed solutions are:

1. Candidate solutions that have been stored in archive Sarhv: a candidate solution for which
the value of the Euclidean Distance towards any solution in archive Sarhv is lower than one
is removed.

2. Candidate solutions that are not unique: a candidate solution for which the value of the
Euclidean Distance towards any other candidate is lower than one. A single replicate is
preserved.

In case all candidate solutions are removed by the previous step, then candidate solutions are
generated anew and the RRH is implemented without including any bias. If the latter does not
identify a new candidate solution, the process is repeated by generating candidate solutions within
the search space by applying Eq. 4.23. The output of the aforementioned steps should be a pool
of candidate solutions which are feasible w.r.t. the planning constraints and have not been stored
in the archive.

Moreover, a sampling criterion could select a candidate solution that has not been stored in
archive Sarhv. However, the resulting number of available units (nu) could be a combination of
data points available in archives Aarhvyr . In such a case, the candidate solution is stored in Sarhv and
the next candidate solution, prioritized by the sampling criterion, is examined. The aforementioned
steps are repeated to select a candidate solution for which at least one new data point is required
to be computed by the SM (the data point is not available in archives Aarhvyr ).

Optimization Cycle - Refining the approximation models: Sampling criteria

This Section presents the sampling criteria employed within the refining strategies. The selection
is made from the pool of candidate solution generated by the steps presented in Section 4.3.4 based
on: (i) the Crowding Distance (CD) metric, or (ii) the minimum prediction attained by locally
trained AMs.

Selection based on the Crowding Distance metric:
References [12, 119] suggested the Crowding Distance metric for MOO. Similar metrics has been
also included in other surrogate-based approaches to select data points (e.g. References [196, 197]).
A metric based on the CD is adopted to identify solutions that are isolated in an attempt to
distribute data points spatially. The metric is based on measuring distances between archived
and the generated candidate solutions. Its value is computed by comparing the newly generated
candidate solutions (Section 4.3.4) with the ones in archive Sarhv. The candidate solution from the
pool exhibiting the highest CD(z) is selected to be costly evaluated since it is the most isolated
based on the metric value. The latter is computed for each candidate solution as follows:

CD(z) =
∑

s

[(‖z− z(s)‖)2] (4.50)
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where s is the index of the archived solutions (Sarhv) and z is a vector including the normalized
values of x for which the values are not predetermined i.e. the upper bound is greater than zero.

Values are normalized based on the corresponding upper bound of each variable (X
inv

).
Selection based on locally trained AMs:

A number of surrogate-assisted algorithms have employed AMs that are built by using a subset of
the available data points, since the accuracy of the approximation depends on the sufficiency of the
data points used to build the model. Two examples regarding surrogate-assisted DE algorithms
are References [168, 170]. Reference [170] employed an AM that is built in each generation using
as data points the available individuals of the evolving DE population. Reference [168] included
a local phase within the DE-based MAEA. The local phase employs the interior-point method to
solve an optimization problem for each individual of the DE population. An RBF model is used
to replace the true function in the optimization problem of the local phase. The model is trained
using a number of archived data points that are nearest to the considered individual.

The locally trained models are employed in an attempt to exclude distant data points that do
not necessarily improve the approximation accuracy. The training set is determined based on the
trajectory of the installed capacity generated by the best-found solution. In particular, the sub-
region of interest, that had been defined to generated the pool of candidate points, is utilized to
determine the number of data points that will be used to train the local AMs. This is implemented
by selecting all data points that are within the aforementioned region. Consequently, the size of the
region of interest (determined by parameter ri) can influence the number of available data points
that will be used. However, if the minimum required number of data points for building the AM
are not attained, additional data points outside the region of interest are included. The additional
data points are selected by prioritizing the nearest ones (Euclidean Distance). The local AMs are
built for the selected data points and are utilized to select a candidate solution, from the pool, that
exhibits the minimum value of the prediction (T̂C(xinv)).

Optimization Cycle - Evolve the DE population

The DE algorithm is employed to identify an improved solution when the AMs have been refined
assuming that an improvement has been achieved regarding their accuracy. The procedure follows
the steps described in Section 4.3.4.

4.3.5 Pool of Approximating models

The employed RBF model is described in Reference [198]. Specifically, Reference [180] is followed
for this selection and for the implemented procedure since the aforementioned RBF model had been
included within the surrogate-assisted model proposed for discrete global optimization problems.
In addition, this selection is made since: (i) the underlying functions of the optimization problem
in this case are also deterministic, (ii) the RBF model may provide an accurate prediction for
the available data points, and (iii) RBFs have been reported to perform well on high dimensional
problems (References [166, 167]). Moreover, it the employed RBF model has also been successfully
adopted in other surrogate-assisted derivative-free algorithms (e.g. References [178, 179, 181]). The
prediction function is computed as follows:

f̂(x) =

np∑

s=1

λsφ(‖x− x(s)‖) + ρ(x) (4.51)
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where f̂(x) is the prediction for the underlying function, xs are the available data points, np is the
number of available data points, λ = (λ1, λ2, ..., λnp) are coefficients, φ(·) is the kernel function and
‖·‖ is the Euclidean norm. ρ(x) is a polynomial tail of which the order depends on the RBF kernel.
A linear polynomial tail is adopted ρ(x) = bTx+a (Reference [175]), where b = (b1, . . . , bd)

T ∈ Rd,
and a ∈ R. A linear system of equations is solved in order to determine parameters λ, b and a
(Reference [175]):

[
Φ P
PT 0

] [
λ
c

]
=

[
F
0

]
, (4.52)

where

Φ =




φ(‖x(1) − x(1)‖) φ(‖x(1) − x(2)‖) · · · φ(‖x(1) − x(np)‖)
φ(‖x(2) − x(1)‖) φ(‖x(2) − x(2)‖) · · · φ(‖x(2) − x(np)‖)

...
...

. . .
...

φ(‖x(np) − x(1)‖) φ(‖x(np) − x(2)‖) · · · φ(‖x(np) − x(np)‖)


 ,P =




x(1) 1
x(2) 1

...
...

x(np) 1


 , c =




b1
b2
...
bd
a



,

while 0 is are a null matrix/vector.
The pool of AMs includes three different kernel functions: the linear, the cubic RBF and the

Thin Plate Spline (TPS) kernel functions. All three kernel functions are used since it is not easy
to estimate a priori which function interpolates the underlying function more accurately.

4.4 Set-up of the Numerical Experiments

The following Sections present the considered test case, implementation notes, the numerical ex-
periments and the employed performance metrics.

4.4.1 Test case

The test case is loosely based on the Greek Power system (Reference [199]). More specifically, the
data input are modified data inspired by the aforementioned system. These are presented in Ap-
pendix C. The power system is assumed isolated and interconnections are neglected. In addition,
network limitations are not considered and the examined system is assumed as a single-zone de-
sign. Therefore, it is assumed that the examined system exhibits sufficient (internal) transmission
capacity.

The planning horizon is set as 15 years considering an investment stage every three years, i.e.
YInvSt = {1, 4, . . . , 13}. All years within the planning horizon have been assumed as target years.
However, for the first two years of the planning horizon the installed capacity is predetermined.
The number of representative days has been set as one per month. For each year of the planning
horizon 12 time periods have been selected (one for each month). In total 180 days are considered
within the planning horizon. The weight factors W are set based on the number of days within
each month under the assumption that the operational cost of a representative day of a month is
equal to the average cost of a day within that month.

The thermal units considered are Lignite plants, Natural gas-fired plants and Natural gas-fired
peak plants. For the test case these serve as base, intermediate and peak units, respectively.
These shall be referred hereafter as thermal unit one (TU1), thermal unit two (TU2) and thermal
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unit three (TU3), respectively. The aggregated RES technology groups considered are solar PV’s
(SPV) and wind farms (WF). An aggregated CH unit and an aggregated HS unit are also assumed.
Smaller plants, other technology groups and imports/exports are neglected. A decommissioning
plan is generated based on the expected operational lifetime of each existing plant. For the sake
of simplicity, old plants are assumed to have the same characteristics as new plants. The techno-
economic data of the different technology groups are based on Reference [200] and have been
modified for the test case.

The scenario considered assumes that the RES generation share should range within a minimum
(30%) and maximum (60%) level by the 10th year of the planning horizon. This has been imple-
mented by setting the lower and upper limits, for both the WF and SPV technology groups, as
15% and 30% of the total demand, respectively. The anticipated availability (AV) of the two RES
technology groups is set equal to the mean of their corresponding hourly capacity factors (PPres).
Additionally, upper and lower limitations are included for the installed capacity of the remaining
technology groups which are active starting from the 10th year of the planning horizon. These data
serve as the input for an illustrative example. Therefore, the results presented are dependent on
the data assumptions made and may alter, to some extent, under different input data.

4.4.2 Implementation notes

The implementation has been developed within Matlab. The available LP and MILP have been
employed with default parameters. All parameters associated with the DE and MAEA algorithms
are presented in Table 4.1. The Matlab implementation of Reference [180] has been also used to
develop the optimization approach.

Parameters DE Value Parameters MAEA Value

NP 50 rNP 3000
CRpool [0.1, 0.2, 1][201] NSinit 2(dyr + 1)[180]
Fpool [0.6, 0.7, . . . , 1][201] pfPO 0.05
FESDE 2.5 · 103D pfpert 0.1
nG 1500 riCD

pool [1, 0.75, 0.5, 0.25]

genrst 150 riLS
pool [1, 0.75, 0.5, 0.25]

Table 4.1: Parameter settings of the SOO MAEA.

4.4.3 Numerical experiments

In this Section, the numerical experiments conducted are presented. Specifically, the following sets
have been carried out:

� The performance of the problem-customized MAEA is examined on a test case representing
a modified version of a real power sector. This aims towards examining the ability of the
MAEA to identify promising data points to be costly evaluated and locate a near-optimal
solution when a SM is included. Two different optimization problems are examined:

1. In the first, the SM is set as a model that does not include constraints of a UCP that
are included in the CUC formulation. The aforementioned model exhibits a lower level
of technical detail in comparison to the CUC model (Appendix A). The formulation is
presented in Appendix B.
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2. In the second, the SM is set as the CUC model presented in Appendix A.

For each optimization problem, the accuracy of the Underlying Function Approximation
(UFA) achieved by the AMs is also examined. Based on the aforementioned results, the
derived near-optimal solution is used to analyse the evolution of the installed capacity and
the generation mix.

� The performance of the DE variant is assessed on three optimization problems. This aims
towards examining the DE algorithm performance when the AMs are accurate. Moreover, the
impact of the examined problem-customized operators is assessed by repeating the optimiza-
tion runs for a number of variants that include combinations of the examined operators. This
aims towards identifying the most competitive variants. The first optimization problem is of
the form presented in Eq. 4.44. The second optimization problems is of the form presented
in Eq. 4.47. A dataset attained using the MAEA, including the SMCUC (Appendix A), is
employed for building the AM and no additional data points are costly evaluated. This is
repeated for each type of RBF kernel function. The third optimization problem exhibits the
same set up (as the second) except that a dataset attained using the MAEA including the
SMED (Appendix B) is used.

� The performance of the problem-customized MAEA is examined on a constraint minimization
problem for which the global optimum is known. The objective function of the formulated
optimization problem is set as the sum of squared deviations of the installed capacity towards
a predefined targeted one. Moreover, the constraint functions of the GEP model are included.

� The near-optimal solutions derived by employing the aforementioned two SMs (SMED and
SMCUC) are examined. A third case is also included for which no SM has been used. In
particular, the objective function considers only investment and fixed cost (the optimization
problem is of the form presented in Eq. 4.44. The comparison aims towards examining the
impact of the level of technical detail of the SM on the results.

These are presented in more detail in the following Sections.

Minimizing the computational cheap function using the examined DE variants

The optimization problem presented in Section 4.2 is considered. However,the operational cost term
is excluded for this set of numerical experiments. Thus, the optimization problems aims towards
the minimization of the total investment and fixed costs restricted by the planning constraints (as
in Eq. 4.44). This optimization problem can be solved by using a MILP solver and its output can
be used as a point of reference. Problem-customized DE variants are employed for solving the same
optimization problem. Consequently, the results attained by the latter may be compared to the
solution derived by the MILP solver to indicate the performance of the modified DE variants.

These DE variants are generated by including combinations of the examined operators (RRH,
blk and PO) for three different crossover operators: the Binomial (bin), Exponential (exp) and
Shuffled-Exponential (expS). Moreover, FR is used as the CHT when RRH is not included. For
comparing the results of variants including RRH with the ones including FR it is important to
consider that RRH heuristically repairs infeasible solutions, i.e. the computational time of RRH in
comparison to the FR is higher. The number of independent runs is set to 100 for each variant.
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Minimizing the prediction function attained by the approximation models for the
SMCUC using the examined DE variants

The aforementioned numerical experiment is repeated. However, the operational cost term is
included in this set of numerical experiments. The optimization problem is of the form presented
in Eq. 4.47. A dataset attained by an independent run of the MAEA and the SMCUC is used for
computing the parameters of the AM. Moreover, no new data point are included in the dataset
during the optimization runs since the aim of this numerical experiment is to examine the problem-
customized DE variants on the GEP formulation (Section 4.2) by assuming that the AMs are
perfectly accurate. This numerical experiment is repeated for each of the three employed RBF
kernel functions. Hereafter, each such set shall be referred to as SMCUC-Lin, SMCUC-Cub and
SMCUC-TPS based on the RBF kernel function used to construct the AM (the linear, cubic or
TPS, respectively).

Minimizing the prediction function attained by the approximation models for the
SMED using the examined DE variants

The numerical experiment set-up is similar to the one including the SMCUC. However, the dataset
attained by employing the MAEA and using the SMED is used for computing the parameters of the
AM. In this case, each set of numerical experiment shall be referred to as SMED-Lin, SMED-Cub
and SMED-TPS based on the RBF model used to construct the AM (the linear, cubic or TPS RBF
model, respectively).

Application of the MAEA to identify a targeted installed capacity

The objective function of the formulated optimization problem is set as the sum of squared devia-
tions of the installed capacity towards a predefined targeted one. Moreover, the constraint functions
of the GEP model are included. The constraint minimization problem considered is of the following
form:

minimize F (x) =
∑

yr∼
[fxpyr∼(x)]

s.t.(4.11− 4.20) (4.53)

where fxpyr∼(x) =
∑
t

[(nutargyr∼,t − nuyr∼,t(x))2], ∀yr∼. The AMs are employed to estimated the func-

tions fxpyr∼(x). This numerical experiment is repeated twice. In particular, in the first set the
targeted installed capacity is set as the solution derived by minimizing investment and fix cost.
The optimization approach (Section 4.3) is employed for the minimization problem which is re-
peated 100 independent times. In the second, 100 different installed capacities are set as targeted
installed capacity to examine the performance of the approach when such are located in different
regions of the search space. A single independent run is performed for each targeted installed ca-
pacity. These solutions are randomly sampled and repaired by the nearest integer function and the
RRH. The termination criteria for the MAEA had been set as a maximum limit of exact evalua-
tions (TotSim = 1000) or a successful identification of the global optimum (F (xbest) = 0). In these
cases no computationally cheap functions (f chp(x)) had been considered and the initial solutions
are randomly generated and repaired by the nearest integer function and the RRH.
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Application of the MAEA on the test case using the SMED and SMCUC

The MAEA (Section 4.3) is employed to optimize the GEP model presented in Section 4.2. In
the first case, the SM presented in Appendix B is employed (SMED case). In the second, the SM
presented in Appendix A is used (SMCUC case). The data input presented in Appendix 4.4.1 are
used. A simulation is considered as computing a data point for a year of the planning horizon. The
termination criteria for the MAEA has been set as a maximum number of simulations (TotSim =
500). The number of independent runs is set to 30 for each of the two cases.

4.4.4 Performance metrics

The metrics employed for measuring the accuracy of the UFA are presented in this Section. The
accuracy is measured according to the Root Mean Square Error (RMSE), the Mean Absolute Error
(MAE) and Coefficient of determination metrics (R2) by employing a leave-one-out cross validation
approach. The metrics are computed independently for each AM.

� The value of the RMSE metric is computed as follows:

RMSE =

√∑np
i=1[(f̂(xi)− f(xi))2]

np
(4.54)

where f(xi) is the true value of an objective function for xi, f̂(xi) is the corresponding
prediction of the AM built by excluding data point xi from the dataset and np is the number
of available data points within the dataset. Lower values indicate a more accurate AM and
the ideal value is 0.

� The value of the MAE metric is computed as follows:

MAE =

∑np
i=1 [|(f̂(xi)− f(xi)|]

np
(4.55)

Once again, lower values indicate a more accurate AM and the ideal value is 0.

� The value of the R2 metric is computed as follows:

R2 = 1−
∑np

i=1[(f̂(xi)− f(xi))
2]

∑np
i=1[(f̂(xi)− fmean)2]

(4.56)

where fmean is the mean value of the available (archived) values of the objective function.
For this metric, higher values are preferred which indicate a more accurate AM. The best
possible value is 1.

4.5 Results

This Section presents the results of the numerical experiments, the comparison of the results based
on the employed SM, the quality of the attained AM and a visual analysis of the sensitivity of the
variable cost towards the attained installed capacity.
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4.5.1 Results of the numerical experiments

Results of the numerical experiments using the examined DE variants

The results attained on the test cases are presented in this Section. The mean and standard
deviation of the relative difference of the best-found solution in each independent run (f bf ) towards
the value of the best-found solution over all independent runs of all variants (f∗) is presented

(f
bf−f∗
f∗ ). For the case where the minimization problem does not include the prediction of the AMs,

the solution attained by the MILP solver is used to determine f∗. Moreover, the Success Rate
(SR) and Average number of Restarts (AR) is also presented for each variant. The SR suggests
the number of independent runs that a variant identified f∗. The maximum possible number is
100 which is the number of independent runs. AR indicates the average number of restarts that
have occurred in each independent run. The results are presented in Tables 4.2-4.8. Moreover,
results attained by the Wilcoxon rank sum test are provided in Appendix D. These present if the
attained sets of the variants including all examined operators differ in a statistically significant
manner from the variants including the same crossover operator but different combinations of the
examined operators.

� Minimizing the computational cheap function using the examined DE variants: The results
indicate that the variants including the RRH are the most competitive. The SR is 100/100
for the variants including the Binomial Crossover Operator and the RRH. Variants including
the Exponential or Shuffled Exponential Crossover Operator have also 100/100 SR except
for the variants excluding both the blk and PO, which present a 98/100 and 99/100 value
of the SR, respectively. On the contrary, the variants excluding RRH have identified the
best-found solution at most once. This suggests an improved performance attained by the
inclusion of RRH. The impact of the blk and PO, when RRH is included, is not clear due
to the high values of SR. However, a comparison of the variants excluding the RRH suggests
an improvement attained by the blk, since the mean value of variants including the blk is
consistently lower in comparison to the mean of the variants excluding it. Moreover, it is
observed that no restarts are triggered when RRH is excluded.

� Minimizing the prediction function attained by the AMs for the SMED using the examined DE
variants: The results of the SMED-Lin, SMED-Cub and SMED-TPS cases suggest an improved
performance attained by the inclusion of RRH and/or blk based on the mean values and the
SR metric. In general, the most competitive variants include RRH and blk or RRH, blk and
PO. The results indicate that the selection of a Crossover operator is less important when
the examined operators are included. However, a comparison of the corresponding values of
the AR reveals that the inclusion of PO and blk affects the number of restarts triggered for
the variants including the Exponential or Shuffled Exponential Crossover Operator and the
RRH.

� Minimizing the prediction function attained by the AMs for the SMCUC using the examined DE
variants: Similar observations can be made by examining the performance of the variants on
the optimization problem including the AMs for the SMCUC. For example, variants including
RRH and blk or RRH, blk and PO had provided the highest values of SR metric.

Based on this results, the most competitive performance is attained by the DE variants including
the RRH and blk and the ones including the RRH, blk and PO. Moreover, among the three ex-
amined operators the highest gain had been attained by RRH. This could suggest that exploiting
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domain-specific knowledge by repair heuristics within the employed DE algorithm may be prior-
itized. Convergence plots for the DE/rand/1/bin variants including the examined operators is
provided in Figure 4.3 for the SMCUC-Cub case. For the remaining numerical experiments the
DE/rand/1/bin/RRH/blk/PO has been used.

Table 4.2: Results attained by the examined DE variants for 100 independent runs of the optimiza-
tion problem including the computational cheap function.

DE/rand/1/bin DE/rand/1/exp DE/rand/1/expS

Operators Mean SD SR AR Mean SD SR AR Mean SD SR AR

/FR 5.92E-03 3.09E-03 0 0.00 3.03E-02 1.34E-02 0 0.00 2.73E-02 1.00E-02 0 0.00
/FR/blk 2.55E-03 1.66E-03 0 0.00 3.21E-03 2.05E-03 0 0.00 4.06E-03 2.12E-03 0 0.00
/FR/PO 6.99E-03 3.13E-03 1 0.00 2.87E-02 1.20E-02 0 0.00 2.57E-02 1.07E-02 0 0.00

/FR/blk/PO 2.65E-03 1.74E-03 1 0.00 3.85E-03 1.91E-03 1 0.00 4.00E-03 2.25E-03 0 0.00
/RRH 0.00E+00 0.00E+00 100 1.47 8.18E-06 6.56E-05 98 1.00 9.39E-07 9.39E-06 99 0.98

/RRH/blk 0.00E+00 0.00E+00 100 1.00 0.00E+00 0.00E+00 100 1.00 0.00E+00 0.00E+00 100 1.00
/RRH/PO 0.00E+00 0.00E+00 100 1.16 0.00E+00 0.00E+00 100 0.98 0.00E+00 0.00E+00 100 0.95

/RRH/blk/PO 0.00E+00 0.00E+00 100 1.00 0.00E+00 0.00E+00 100 1.00 0.00E+00 0.00E+00 100 1.00

Table 4.3: Results attained by the examined DE variants for 100 independent runs of the optimiza-
tion problem including the prediction of the SMED-Lin.

DE/rand/1/bin DE/rand/1/exp DE/rand/1/expS

Operators Mean SD SR AR Mean SD SR AR Mean SD SR AR

/FR 1.58E-03 7.36E-04 2 0.00 7.63E-03 3.24E-03 0 0.00 6.53E-03 2.61E-03 0 0.00
/FR/blk 1.06E-03 5.42E-04 4 0.00 1.43E-03 6.62E-04 0 0.00 1.55E-03 6.17E-04 0 0.00
/FR/PO 1.80E-03 7.25E-04 0 0.00 7.54E-03 2.76E-03 0 0.00 6.50E-03 2.13E-03 0 0.00

/FR/blk/PO 1.25E-03 5.10E-04 1 0.00 1.63E-03 6.33E-04 0 0.00 1.68E-03 6.67E-04 0 0.00
/RRH 0.00E+00 0.00E+00 100 1.14 9.28E-06 4.09E-05 95 0.76 1.52E-05 7.00E-05 95 0.67

/RRH/blk 0.00E+00 0.00E+00 100 1.00 0.00E+00 0.00E+00 100 1.00 0.00E+00 0.00E+00 100 1.00
/RRH/PO 0.00E+00 0.00E+00 100 1.01 1.75E-06 1.75E-05 99 0.58 2.84E-05 7.82E-05 87 0.52

/RRH/blk/PO 0.00E+00 0.00E+00 100 1.00 0.00E+00 0.00E+00 100 0.99 0.00E+00 0.00E+00 100 0.99

Table 4.4: Results attained by the examined DE variants for 100 independent runs of the optimiza-
tion problem including the prediction of the SMED-Cub.

DE/rand/1/bin DE/rand/1/exp DE/rand/1/expS

Operators Mean SD SR AR Mean SD SR AR Mean SD SR AR

/FR 1.49E-03 6.71E-04 0 0.00 7.58E-03 3.18E-03 0 0.00 6.56E-03 2.55E-03 0 0.00
/FR/blk 9.67E-04 5.64E-04 2 0.00 1.33E-03 5.49E-04 0 0.00 1.42E-03 5.97E-04 1 0.00
/FR/PO 1.68E-03 6.19E-04 1 0.00 7.26E-03 2.85E-03 0 0.00 6.44E-03 1.98E-03 0 0.00

/FR/blk/PO 1.00E-03 5.00E-04 1 0.00 1.51E-03 6.02E-04 0 0.00 1.49E-03 6.64E-04 0 0.00
/RRH 0.00E+00 0.00E+00 100 1.11 2.47E-05 6.62E-05 87 0.70 3.21E-05 1.21E-04 91 0.54

/RRH/blk 0.00E+00 0.00E+00 100 1.00 0.00E+00 0.00E+00 100 1.00 0.00E+00 0.00E+00 100 1.00
/RRH/PO 0.00E+00 0.00E+00 100 1.04 1.40E-05 5.36E-05 93 0.66 2.20E-05 8.49E-05 92 0.52

/RRH/blk/PO 0.00E+00 0.00E+00 100 1.00 0.00E+00 0.00E+00 100 0.98 0.00E+00 0.00E+00 100 1.00
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Table 4.5: Results attained by the examined DE variants for 100 independent runs of the optimiza-
tion problem including the prediction of the SMED-TPS.

DE/rand/1/bin DE/rand/1/exp DE/rand/1/expS

Operators Mean SD SR AR Mean SD SR AR Mean SD SR AR

/FR 1.58E-03 8.28E-04 1 0.00 7.63E-03 3.25E-03 0 0.00 6.34E-03 2.13E-03 0 0.00
/FR/blk 1.03E-03 5.30E-04 1 0.00 1.41E-03 6.24E-04 0 0.00 1.59E-03 6.83E-04 1 0.00
/FR/PO 1.84E-03 7.11E-04 0 0.00 6.94E-03 2.69E-03 0 0.00 6.69E-03 2.19E-03 0 0.00

/FR/blk/PO 1.09E-03 5.50E-04 0 0.00 1.50E-03 6.53E-04 1 0.00 1.41E-03 5.98E-04 0 0.00
/RRH 0.00E+00 0.00E+00 100 1.10 1.86E-05 7.52E-05 93 0.69 3.22E-05 1.41E-04 92 0.59

/RRH/blk 0.00E+00 0.00E+00 100 1.00 0.00E+00 0.00E+00 100 1.00 0.00E+00 0.00E+00 100 1.00
/RRH/PO 0.00E+00 0.00E+00 100 1.01 1.12E-05 5.94E-05 96 0.62 5.14E-05 1.85E-04 89 0.56

/RRH/blk/PO 0.00E+00 0.00E+00 100 1.00 0.00E+00 0.00E+00 100 1.00 0.00E+00 0.00E+00 100 1.00

Table 4.6: Results attained by the examined DE variants for 100 independent runs of the optimiza-
tion problem including the prediction of the SMCUC-Lin.

DE/rand/1/bin DE/rand/1/exp DE/rand/1/expS

Operators Mean SD SR AR Mean SD SR AR Mean SD SR AR

/FR 1.59E-03 5.32E-04 0 0.00 5.32E-03 2.01E-03 0 0.00 4.64E-03 1.80E-03 0 0.00
/FR/blk 1.13E-03 4.30E-04 0 0.00 1.38E-03 4.97E-04 0 0.00 1.35E-03 4.29E-04 0 0.00
/FR/PO 1.80E-03 5.60E-04 0 0.00 5.13E-03 1.80E-03 0 0.00 4.63E-03 1.63E-03 0 0.00

/FR/blk/PO 1.14E-03 4.19E-04 0 0.00 1.46E-03 4.75E-04 0 0.00 1.43E-03 5.31E-04 0 0.00
/RRH 1.87E-06 6.85E-06 93 1.00 1.95E-05 5.04E-05 70 0.35 1.22E-05 2.61E-05 65 0.34

/RRH/blk 8.01E-07 4.58E-06 97 0.99 8.01E-07 4.58E-06 97 0.93 2.67E-07 2.67E-06 99 0.90
/RRH/PO 1.87E-06 6.85E-06 93 1.00 2.59E-05 6.91E-05 70 0.27 2.33E-05 5.54E-05 66 0.25

/RRH/blk/PO 0.00E+00 0.00E+00 100 0.91 8.01E-07 4.58E-06 97 0.73 2.67E-07 2.67E-06 99 0.69

Table 4.7: Results attained by the examined DE variants for 100 independent runs of the optimiza-
tion problem including the prediction of the SMCUC-Cub.

DE/rand/1/bin DE/rand/1/exp DE/rand/1/expS

Operators Mean SD SR AR Mean SD SR AR Mean SD SR AR

/FR 1.55E-03 5.21E-04 0 0.00 5.60E-03 2.07E-03 0 0.00 4.56E-03 1.62E-03 0 0.00
/FR/blk 1.04E-03 3.93E-04 0 0.00 1.24E-03 3.85E-04 0 0.00 1.32E-03 4.79E-04 0 0.00
/FR/PO 1.66E-03 6.47E-04 0 0.00 5.12E-03 1.89E-03 0 0.00 4.54E-03 1.59E-03 0 0.00

/FR/blk/PO 1.17E-03 4.65E-04 0 0.00 1.32E-03 4.90E-04 0 0.00 1.37E-03 5.14E-04 0 0.00
/RRH 3.74E-06 9.32E-06 86 1.00 1.75E-05 4.14E-05 61 0.40 2.65E-05 6.09E-05 62 0.27

/RRH/blk 8.01E-07 4.58E-06 97 0.97 1.07E-06 5.26E-06 96 0.87 8.01E-07 4.58E-06 97 0.82
/RRH/PO 3.47E-06 9.03E-06 87 1.00 1.76E-05 3.73E-05 64 0.30 2.56E-05 5.43E-05 60 0.32

/RRH/blk/PO 1.07E-06 5.26E-06 96 0.91 8.01E-07 4.58E-06 97 0.69 1.87E-06 6.85E-06 93 0.60

75



Figure 4.3: Convergence plots of the DE/rand/1/bin variants including combinations of the exam-
ined operators (RRH, blk and PO) for the SMCUC-Cub case. Each step represents 200 generations

(abscissa). The ordinate depicts the relative errors (f
bf−f∗
f∗ ).
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Table 4.8: Results attained by the examined DE variants for 100 independent runs of the optimiza-
tion problem including the prediction of the SMCUC-TPS.

DE/rand/1/bin DE/rand/1/exp DE/rand/1/expS

Operators Mean SD SR AR Mean SD SR AR Mean SD SR AR

/FR 1.54E-03 5.75E-04 0 0.00 5.36E-03 2.36E-03 0 0.00 4.65E-03 1.79E-03 0 0.00
/FR/blk 1.10E-03 4.64E-04 0 0.00 1.25E-03 4.34E-04 0 0.00 1.35E-03 4.51E-04 0 0.00
/FR/PO 1.58E-03 5.54E-04 0 0.00 5.13E-03 1.69E-03 0 0.00 4.92E-03 1.52E-03 0 0.00

/FR/blk/PO 1.21E-03 4.29E-04 0 0.00 1.33E-03 4.81E-04 0 0.00 1.46E-03 4.49E-04 0 0.00
/RRH 2.40E-06 7.68E-06 91 1.00 1.27E-05 2.39E-05 66 0.37 2.64E-05 4.92E-05 57 0.29

/RRH/blk 1.07E-06 5.26E-06 96 0.97 1.60E-06 6.38E-06 94 0.83 8.01E-07 4.58E-06 97 0.83
/RRH/PO 2.67E-06 8.05E-06 90 1.00 1.30E-05 2.95E-05 69 0.24 3.32E-05 8.02E-05 59 0.24

/RRH/blk/PO 2.67E-07 2.67E-06 99 0.89 8.01E-07 4.58E-06 97 0.72 1.07E-06 5.26E-06 96 0.59

Application of the MAEA on the test case using the SMED and SMCUC

Table 4.9 present the statistical results of the computational experiments examining the application
of the MAEA on the test case including the SMED and SMCUC. It can be seen that the optimization
approach had identified the same near-optimal solution in both examined cases. Moreover, Figure

4.4 presents the relative error (f
bf−f∗
f∗ ) of the best-found-solution in the archive in comparison to

the best-found-solution among all independent runs (f∗).
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Table 4.9: The table presents the statistical results of the computational experiments examining
the application of the MAEA on the test case including the SMED and SMCUC. The distribution
of the function values for the best-found solution derived for the 30 independent runs on the SMED

case are presented in Table 4.9a. Similarly, the results for the SMCUC case are presented in Table
4.9b.

TC(xbest)

Min (e) 1.647e+10
Max (e) 1.647e+10
Mean (e) 1.647e+10
SD (e) 0.00E+00
SR 30/30

(a) Statistical results for SMED case.

TC(xbest)

Min (e) 1.895E+10
Max (e) 1.895E+10
Mean (e) 1.895E+10
SD (e) 0.00E+00
SR 30/30

(b) Statistical results for the SMCUC.

Figure 4.4: The figure presents the progress plot of the two examined cases (SMED and SMCUC)

based on the relative difference of the best archived solution (f
bf−f∗
f∗ ). The best-found solution

among all independent runs is set as f∗.
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Application of the MAEA to identify a targeted installed capacity

The results of the numerical experiments for the two cases that utilized the MAEA to identify
a targeted installed capacity which had been set as the global optimum for the constraint mini-
mization problem are presented in Table 4.10. In the case in which the solution minimizing the
investment and fix cost had been set as the objective, the MAEA identified the installed capacity
in all independent runs. Moreover, for the second case in which randomly generated and repaired
solutions had been used to determined the targeted installed capacity the MAEA identified the
installed capacity in 99/100 independent runs. The value of the best-found solution based on the
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entries in the archives is presented in Figure 4.5. These results indicate that the MAEA approach
could consistently identify the targeted installed capacity.

Table 4.10: Table 4.10a presents the simulations utilized by the MAEA to identify the global
optimum for the constraint minimization problem where a targeted installed capacity had been
considered. Table 4.10b depicts the simulations utilized by the MAEA in which the randomly
generated solutions are considered for setting the targeted installed capacity.

Number of sim.

Min (Sim.) 241.00
Max (Sim.) 453.00
Mean (Sim.) 328.68
SD (Sim.) 50.90
SR 100/100

(a) Targeted installed capacity case for 100 inde-
pendent runs.

Number of sim.

Min (Sim.) 361.00
Max (Sim.) 989.00
Mean (Sim.) 502.94
SD (Sim.) 106.95
SR 99/100

(b) Randomly generated targeted installed ca-
pacity case for 100 independent runs.

Figure 4.5: The figure presents the progress plot of the two examined cases regarding the targeted
installed capacity. The value of the best archived solution (f bf ) is depicted in logarithmic scale.
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4.5.2 Comparison of the solutions attained by the simulation models

In this Section the derived near-optimal solutions attained by employing the SMED and SMCUC are
examined. The solution derived by the MILP solver for the formulation excluding a SM (noSM)
is also presented to serve as a point of reference since the investment and FO&M cost terms had
been an important cost factor to determine the near-optimal capacity additions. Each derived
solution is post-processed using both available SMs. More specifically, noSM-SMED and noSM-

78



SMCUC represent the solution derived by the MILP solver and post-processed by the SMED and
SMCUC, respectively. Similarly, SMCUC-SMED and SMED-SMCUC refer to the solutions derived by
the SMED and SMCUC and post-processed by SMCUC and SMED, respectively. The comparison is
carried out in terms of derived investment decisions, values of cost terms and generation mix.

Comparison of the attained investment decisions and the installed capacity

Figure 4.6 presents the derived investment decisions for the three examined cases. Moreover, the
corresponding installed capacity for each solution are depicted. Some differences in the attained
investment decisions are observed. For example, capacity additions in CH are made to ensure the
minimum required capacity in the noSM case. In contrast, an increase is observed when the SMED

or the SMCUC is included. An increase is also observed in SPV capacity additions. These can be
attributed to the assumed techno-economic characteristics of CH and SPV, e.g. zero generating
cost and relatively higher investment cost. The inclusion of the variable cost term decreased the
capacity additions in TU2 and TU3. In general, the noSM case suggests which combination of
investment should be made when the operating perspective is neglected. Therefore, alterations
made to the investment decisions by the SMED or the SMCUC can be attributed to a sufficient
variable cost reduction to render a higher investment and FO&M cost more cost-efficient.

Moreover, differences have been attained also among the SMED and the SMCUC cases. For
example, (i) a reduction is observed in capacity additions in TU1 and TU3, (ii) an increase in HS
installed capacity, and (iii) a minor increase in SPV units are observed when the SMCUC is included.
These differences emerge since the aspects of the short-term operation of the power system included
within the employed SMs (SMED or the SMCUC) differs (Appendices B and A).

Comparison of the attained values of the cost terms

Table 4.11 and Figure 4.7 present the values of the cost terms for the examined cases during the
planning horizon. The total cost values using the same SM exhibit relatively small differences
which however have had an impact on the derived solutions. It can be observed that the variable
cost of a near-optimal solution processed by the SMED is lower in comparison to when SMCUC

is used. Moreover, the derived solution by the optimization approach including SMCUC exhibits
a lower operating cost in comparison to the one derived by SMED when post processed by the
SMCUC. In addition, the corresponding comparison among the SMED and SMCUC-SMED cases
suggests that the former exhibits a lower value of the cost term. This can be attributed to the
differences in technical detail of the SMs since different anticipated generations schedules and cost
are obtained. These resulted to an alteration of the ranking of the solutions. Consequently, the
near-optimal solution attained by employing the SMCUC could have been identified when the SMED

had been employed and rejected as less cost-efficient. More specifically, Figure 4.7 indicates that
the SMED underestimates the operating cost for a candidate generating fleet rendering it more
cost-efficient than others that could be less efficient when examined with a model including higher
detail (SMCUC).

Comparison of the attained based on the derived generating mix

Differences are also observed in the derived anticipated generation mix. These are presented in
Figure 4.8. In particular, the anticipated generation of each technology group is depicted for the
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Figure 4.6: The figure presents the derived investment decisions and the corresponding installed
capacities for the three examined cases (noSM, SMED and SMCUC).
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(a) Comparison of investment decisions per technology group and investment stage.

(b) Comparison of installed capacity per technology group w.r.t. the region of interest.
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Figure 4.7: The figure presents the values of the cost terms based on the near-optimal solution
attained for the examined cases (SMED and SMCUC). The values of the cost terms derived by post-
processing are also presented (noSM-SMED, noSM-SMCUC, SMED-SMCUC and SMCUC-SMED).
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Table 4.11: Total cost and values of cost terms for the noSM-SMED, noSM-SMCUC, SMED, SMED-
SMCUC, SMCUC-SMED and SMCUC cases. The relative differences of the total cost and the aggre-
gated discounted variable cost for each near-optimal solution are also presented.

noSM-SMED noSM-SMCUC SMED SMED-SMCUC SMCUC-SMED SMCUC

TC [be] 16.565 19.055 16.465 18.950 16.476 18.950
Relative Diff. -0.131 - -0.131 - -0.131 -∑

yr
[DDyrcinv

yr ] [be] 3.519 3.519 3.650 3.650 3.665 3.665

∑
yr

[DDyrc
fixed
yr ] [be] 3.571 3.571 3.553 3.553 3.544 3.544

∑
yr

[DDyrcvaryr )] [be] 9.475 11.965 9.263 11.748 9.267 11.740

Relative Diff. -0.208 - -0.212 - -0.211 -

examined near-optimal solution and the SMs (noSM-SMED, noSM-SMCUC, SMED, SMCUC-SMED

and SMED-SMCUC and SMCUC). However, comparisons should be restricted to generation levels
derived for the same near-optimal solutions (e.g. SMCUC-SMED and SMCUC). For example, TU1
are utilized more frequently when the SMED is used in comparison to SMCUC. On the contrary,
TU2 are utilized more frequently when the SMCUC is used in comparison to SMED. Moreover,
TU3 and HS are not utilized when SMED is used. A low level of curtailment is also observed, in
comparison to the RES penetration level, for the cases employing the SMCUC. In addition, CH
exhibit identical generation levels due to the energy content restrictions included in both SMs.

Figure 4.8: The figure presents the total production based on the near-optimal solutions attained
for the examined cases (SMED and SMCUC) and the ones derived by post-processing (noSM-SMED,
noSM-SMCUC, SMED-SMCUC and SMCUC-SMED). Reserve shortage is not included in the SMED

models.
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The differences in the generation mix arise due to the derived generation scheduled be each
SM. Figures 4.9, 4.10 and 4.11 present the generation schedules of the final year for the three
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near-optimal solutions computed by both SMs. The differences observed in Figures 4.9-4.11 for the
generation schedules among the pairwise comparisons are consistent over all examined time periods
(days) for the final year of the planning horizon. These could be attributed to the lower technical
detail included in SMED in comparison to the SMCUC. In particular, omitting a representation of
the technical restriction of a UCP in the SM resulted to underestimate the operational flexibility
requirements and, therefore, flexibility providers, such as HS, are rendered less necessary. For
example, the absence of ramping restriction in the SMED resulted to generating schedules for which
thermal units are anticipated to ramp up or down in higher ratios. The operating statuses of
thermal units, reserve requirements and the corresponding costs are also not captured. On the
contrary, the generation schedule derived by th SMCUC determines the statuses of thermal units
by including restrictions on their operation, such as on/off statuses, minimum up/down times and
ramping limitations, and the reserve requirements of the system. Consequently, the aforementioned
indicate that the level of technical detail that a SM exhibits can have an impact on the signals
provided by examining the anticipated generation mix.

The SMCUC considers aspects of the short-term operation. Reference [191] examined the ap-
plicability of a CUC formulation to represent a UCP and identify that despite some limitations it
may capture aspects of the short-term operation. For the context of long-term planning, it could
exhibit acceptable accuracy when computational limitations are considered. However, assumptions
have been made regarding the temporal, technical and spatial detail of the short-term operation.
Since the SMCUC formulation is a problem approximation of a detailed UCP, the presented results
could suggest the importance of including an SM that could capture main aspects of the short-term
operation of a power system within long-term multi-period planning. This is required to adequately
assess thermal and non-thermal flexibility providers since including limited restriction on thermal
units may underestimate operational flexibility requirements and, consequently, the utilization of
flexibility providers.

4.5.3 Quality of the approximation

In this Section, the quality of the UFA is assessed since the approximation serves as a replacement of
the computationally expensive simulations. Attaining an accurate UFA could be important as high
errors might imply that it is less likely that the optimization algorithm has converged to an near-
optimal solution. However, relatively large errors do not necessarily imply that the approximation
is not adequate for EA-based search (Reference [14]).

In particular, the values of the performance metrics employed (Section 4.4.4) are presented for
the global AMs in this Section. The derived datasets from the numerical experiments including
the SMED and SMCUC are examined. For assessing the accuracy of the UFA, the data points of
each interdependent run are used which are available in the attained datasets and include up to
500 data points in total. However, the number of data points in each archive of each target year
can differ due to the occurred allocation during the optimization run. This has an impact on the
values of the metrics and should be considered. Moreover, the normalized values of the RMSE
(NRMSE) and MAE (NMAE) metrics are also depicted to facilitate the comparison of the UFA
for each target year.

UFA accuracy for the SMED case: Figure 4.12 presents the values of the metrics for the case
including the SMED. Based on the metrics employed it can be seen that a decent UFA has been
achieved.

UFA accuracy for the SMCUC case: The values of the metrics for the case including the SMCUC
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Figure 4.9: The figure presents the attained generation schedule for the near-optimal solution
derived without including a SM and post-processed by the SMED (noSM-SMED) in comparison to
the post-processed generation schedule by the SMCUC (noSM-SMCUC).
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(a) Generation schedule attained by noSM-SMED.
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(b) Generation schedule attained by noSM-SMCUC.
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Figure 4.10: The figure presents the attained generation schedule for the near-optimal solution
derived by SMED in comparison to the post-processed generation schedule by the SMCUC (SMED-
SMCUC).
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(a) Generation schedule attained by SMED.
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(b) Generation schedule attained by SMED-SMCUC.
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Figure 4.11: The figure presents the attained generation schedule for the near-optimal solution
derived by SMCUC in comparison to the post-processed generation schedule attained by the SMED

(SMCUC-SMED).
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(a) Generation schedule attained by SMCUC-SMED.
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(b) Generation schedule attained by SMCUC.
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are presented in Figure 4.12. The values of the metrics indicate that an acceptable UFA has been
achieved.

Since the errors are not relatively high, the values of the metrics could imply that the algorithm
had not converged to the same near-optimal solution due to a highly inaccurate UFA in both the
SMED and SMCUC cases. A comparison of the values of the metrics suggests that the UFA for the
SMED is more accurate than the one achieved for the SMCUC case. Moreover, the values of the
metrics for the first half of the planning horizon indicate an improved UFA in comparison to the
remaining ones in both cases. This could be associated to differences in the size of the region of
interest, in the dimensionality of the target years and/or in the possible combination of installed
capacities in each target year.

4.5.4 Sensitivity of the variable cost by a visual analysis

The output of the SOO optimization problem is a near-optimal solution. However, it may be of
interest to examine the sensitivity of the cost terms towards the attained installed capacity in
specific target years. This could provide information on the impact of the attained investment
decisions. More specifically, investment cost is an important factor for determining an optimal
expansion plan. However, it could be of interest to examine the impact of higher or lower capacity
additions in specific technology groups on the operating cost.

The optimization approach includes external archives (archives Aarhvyr and Sarhv) which are used
to store the data points that have been costly evaluated and are used to built the AMs during the
search. These archives are an output of the approach.

The archives are employed to provide an visual illustration of the sensitivity of the variable cost
w.r.t. the installed capacity. This may provide information regarding the results of the model and
could be further processed to reveal some general trends. However, the quality of such a visual
illustration can be limited by the attained accuracy of the AMs since a decent approximation is
required. Moreover, the quality of the approximation relies on the data points selected during an
independent optimization run.

The visual illustration is attained by computing all possible combinations of pairs of technology
groups within the region of interest. The installed capacity of the remaining technology groups,
attained by the near-optimal solution, are remain constant.

The prediction of the variable cost for the combinations generated by the aforesaid procedure are
then attained using the AMs (the linear, cubic and TPS RBF) using the dataset of an independent
optimization run. Also, the corresponding variable cost is computed for these combinations by the
SMCUC model to serve as a point of reference for a comparison. However, if the computational
cost of the SMCUC is increased (e.g. an increase in the temporal resolution) attaining the point
of reference can be rendered computational expensive. In such a case, the accuracy of the derived
visualization can be based mostly on the metrics employed to assess the UFA. A number different
combinations can be selected to be examined for each target year of the planning horizon. In
general, higher errors at specific areas of the region of interest indicate that the quality of the
approximation would benefit by the addition of a data point, in the archive, near that area.

Four examples are presented which are based on the near-optimal solution derived using the
SMCUC (Figures 4.13 and 4.14). The first two present the sensitivity of the variable cost towards
the installed capacity for the final year of the planning horizon w.r.t. two flexibility providers (TU3
and HS) and two RES technology groups (SPV and WF). For the remaining two examples, the
SPVs-HS and CH-WF pairs are examined.
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Figure 4.12: The figure presents the values of the RMSE, NRMSE, MAE, NMAE and R2 metrics.
The first, second and third row correspond to the values of the metrics for the linear, cubic and
TPS RBF models for the case where SMED is employed. Correspondingly, the fourth, fifth and
sixth row depict the values of the metrics for the linear, cubic and TPS RBF models for the case
where SMCUC is employed.
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The figures indicate that some technology groups are prioritized (e.g. SPVs over WFs) due
to the assumed techno-economic characteristic of the examined technology groups. In addition,
it is observed that an increase in the installed capacity of the technology groups triggers variable
cost reduction. Despite some observable errors in the approximation, cost reduction is in general
captured by the AMs, suggesting that investment and FO&M cost had highly influenced the derived
near-optimal investment schedule. More specifically:

� TU3-HS : A decreasing trend is observed for the variable cost of the final year of the planning
horizon when the installed capacity of the HS and TU3 is increased. Assuming that both
technology groups are flexibility providers, HS additions have been prioritized over TU3
additions due to the techno-economic characteristics.

� SPV-WF : A similar pattern for the variable cost is also observed for increased numbers of
installed SPV and WF capacity. However, for the highest numbers of installed SPV and WF
capacity (w.r.t. the region of interest) an increase is observed.

� SPV-HS : This pair includes a RES technology group and a flexibility provider. It is observed
that an increase in the capacity additions of both technology groups suggests a reduction of
the variable cost. On the contrary, for high levels of SPV capacity installations an increase in
the variable cost is observed when the installed capacity of HS is reduced. Also, an increase
in the HS installed capacity, beyond a required level, does not alter the variable cost since
the excess capacity is not utilized.

� CH-WF : In contrast to the SPV-WF comparison, an increase in the installed units of both
technology groups may trigger variable cost reduction. The generation cost of both afore-
mentioned technology groups is assumed zero which has contributed to this result. Moreover,
the output of CH units may be controlled, to a certain extent, in comparison to SPV and
an efficient allocation of the available generation by CH could provide operational flexibility.
This can be attributed to the limited technical restrictions considered for CH (e.g. ramping
capabilities).

4.6 Discussion, limitations and future research directions

The results derived by this approach may provide some insights to decision makers regarding the
challenges arising for a transition towards higher shares of RES generation. However, the approach
is indented to be used in parallel to other models since there are some important limitations that
should be regarded when analysing its results. In particular, limitations arise from the problem
formulation. For example:

1. The formulated optimization problem does not necessarily capture the operation of a real
market and its participants’ behaviour. Therefore, a future direction may be to consider a
wider range of market conditions.

2. A deterministic GEP model has been examined. However, long-term planning involves un-
certainty deriving from various sources (e.g. fuel prices and demand growth).
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Figure 4.13: The figure presents the prediction (blue circles) of the employed AMs for the installed
capacity of the TU3-HS and SPV-WF pairs. The corresponding value of the cost term attained
by the SM are also presented (black circles). The installed capacity for the near-optimal solution
derived is marked with a red circle.
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Figure 4.14: The figure presents the prediction (blue circles) of the employed AMs for the installed
capacity of the SPV-HS and CH-WF pairs. The corresponding value of the cost term attained
by the SM are also presented (black circles). The installed capacity for the near-optimal solution
derived is marked with a red circle.
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3. Assumptions have been made regarding the power system. It had been represented by a single
zone and the location of new units has not been considered. Consequently, an extension of
the examined formulation to evaluate also the location of new units could be of interest.

4. An expansion of the transmission grid could be also important when examining high shares
of RES generation. Herein, a combined GEP and TEP formulation has not been examined
and could be considered as a future direction.

Furthermore, the SM employed is based on the CUC context, which has been demonstrated
to capture aspects of operational flexibility (References [7, 8, 191]). However, the inclusion of a
CUC-based model as the SM exhibits also some limitations. For example:

1. Unit aggregation has been implemented which could have an impact on the representation of
the short-term operation of the power system in comparison to a unit based approach (e.g.
a single linear segment is employed to represent the generation cost of a group of units).
However, unit aggregation can be an acceptable simplification to address the computational
restrictions (Reference [202]).

2. The operation cost has been computed for a series of independent days. This may lead to
underestimating the impact of the initial state of thermal units and the ability of storage
units to transfer stored energy. This could be (in part) moderated by considering longer time
periods and increasing the computational cost of the SM.

3. The SM aims towards capturing hourly dynamics. However, accounting for sub-hourly dy-
namics may lead to a detailed evaluation of the operational flexibility of an examined set of
capacity additions or of a generation schedule (Reference [203]).

4. The spatial detail of the short-term operation has not been considered. For example, network-
related limitations, interactions with neighbouring sectors, benefits arising from spatial smooth-
ing of RES generation and trade flows have been neglected.

5. The maintenance scheduling has not been considered in detail.

Most of the aforementioned limitations emanate from attempts made to limit the computational
cost of the SM since it is a mixed-integer optimization problem. Nevertheless, focus had not been
directed on suggesting an optimal SM for a power sector (e.g. a long-term UCP), but rather, an
overall optimization approach that can be modified to consider a SM.

Moreover, due to the heuristic nature of the optimization approach, the model may serve mostly
as an approximation for GEP that could be adopted when a computationally expensive SM is
employed. The main aspects influencing the optimality of the final solution can be categorized to
the following:

1. The efficiency of the optimization algorithm: An attempt to examine the efficiency of the
algorithm has been made by carrying out a number of numerical experiments. However,
the algorithm relies on stochastic operators and heuristic mechanisms to converge and, in
contrast to mathematical optimization methods, optimality guarantees can not be provided.
Some main aspects that could influence the algorithm’s efficiency are the following:

(a) The size of the search space (e.g. the dimensionality of the problem and number of
possible combinations).
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(b) The size of the feasible region (e.g. the number of feasible combinations).

(c) The landscape of the search space (e.g. a highly multi-modal function).

2. The accuracy of the UFA: The AMs are used to provide an estimate of the TM. It is built
based on selected data points which are a subset of all possible combinations. Therefore, a
poor UFA could be misleading in some cases. However, error metrics can be computed to
provide an indication regarding its accuracy. Some main aspects that could influence the
algorithm’s efficiency related to the UFA are the following:

(a) High dimensionality (e.g. a large number of technology groups): RBF models have been
employed, as the latter have been reported to be more scalable in comparison to other
AMs (References [166, 167]). However, problems involving a large number of variables
for which the AM is built upon may impact the number of simulation required to attain
an accurate approximation (References [14, 167]).

(b) The size of the region of interest (i.e. the region defined by the restrictions on the lower
and upper limit of installed capacity in each year): A larger region of interest includes a
larger number of possible combinations. More importantly, a region of interest including
unrealistic cases of installed capacity could have an impact on the UFA. Evaluating
such unrealistic cases, using the SM, could result in data points to enter the archive that
exhibit relatively extremely high cost values. Such examples could be installed capacities
that exhibit large values of load shedding and/or reserve shortage as these are associated
with high penalty cost parameters. These may have an impact on the UFA accuracy.
Therefore, unrealistic cases should be restricted as much as possible based on available a
priori knowledge. Towards mitigating the latter, a pre-processing step had been included
to define the region of interest. Nevertheless, data points exhibiting extreme values may
still enter the dataset. The latter may have a relatively lower impact on the locally
trained AMs as such data points might be omitted from the dataset used to train the
local models. This could be the case when such points exhibit a sufficient distance from
the resulting installed capacity of the best-found solution.

(c) The fitness landscape: It may have an impact on the UFA as it is in general challenging
to build an approximate model that has the same global optimum as the underlying
function, especially for highly multi-modal functions (Reference [14]).

3. The selected SM : A SM should represent the power sector operation as accurately as possible
to facilitate as a cost indicator. However, simplifications are required to reduced the com-
putational burden to acceptable levels. Main characteristics of a SM that could affect the
optimality of the final solution are the following:

(a) The computational cost of the SM. A SM associated with a lower computational cost
may enable a higher limit of costly function evaluations in comparison to a SM with
a higher computational cost. Subsequently, a larger number of function evaluations
enables a larger number of data points to enter the archive and, consequently, could
(possibly) lead to an improved UFA.

(b) The level of technical, temporal and spatial detail of the SM. The latter may have an
impact on the output of the approach. In particular, the AMs are employed to estimate
the output of the SM. Therefore, the ability of a SM to provide an accurate indication
of the short-term operation of a power system is important.
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(c) The ability of the SM to provide an optimal solution for a given installed capacity.
Assuming that the SM is an optimization problem, it is also critical that the solver
employed for this optimization problem is able to provide an optimal solution since the
output of the aforementioned is used to generate the indicator. For example, a heuristic
SM that provides a sub-optimal solution to be used as the indicator could underestimate
the adequacy of an examined installed capacity.
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Chapter 5

Multi-objective Generation Expansion
Planning with increased shares of
renewable energy sources by
Multi-objective Metamodel-assisted
Evolutionary Algorithms

5.1 Motivation and Aims

In this Chapter, a static MOO GEP model for supporting GEP is presented. It aims towards
examining cost trade-offs of a computational expensive MOO GEP to facilitate decision-making.
Focus is directed on including aspects of short-term operation of a power system within the MOO
GEP model. More specifically, it deviates from the existing MOO GEP literature as it attempts to
assess operational flexibility requirements and their impact on the considered cost terms by relying
on the outcome of a short-term SM. The latter is employed to provide a decent approximation of
the UCP. This, however, results in high computational cost.

Towards addressing computational tractability a MOO approach is employed. It is based on
frameworks proposed for surrogate-assisted derivative-free optimization. More specifically, the
MOO approach includes (i) approximation by AM (Metamodels/surrogate models), (ii) MOEA,
(iii) local search and (iv) on-line sampling. It can be perceived as a Memetic Metamodel-assisted
Multi-objective EA. Numerical experiments are conducted on a series of test cases to examine its
efficiency, tractability and limitations. Moreover, five different economic-environmental MOO GEP
variants are examined and trade-offs among the considered cost terms are analysed. The results
indicate satisfactory performance of the optimization approach.

5.2 Problem statement and formulation

This Section presents the problem statement, the formulation of the cost terms used to determine
the objective functions of the MOO problem and the formulation of the SM employed to provide
an estimate of the short-term operation. Lastly, the objective and constraint functions of the five
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MOO GEP variants are presented.

5.2.1 Problem statement

Multi-objective optimization refer to optimization problems with more than one conflicting objec-
tives. Commonly, it is expressed as:

minimize F(x) = (f1(x), f2(x), ..., fm(x))

s.t. G(x) ≤ 0

x ∈ S

(5.1)

where x = (x1, x2, ..., xn) is the vector of objective/decision variables, n is the number of decision
variables, F(x) is the objective function vector, m is the number of objective functions, G(x) =
(g1(x), g2(x), ..., gk(x)) is the constraint function vector, k is the number of constraint functions
and S is the search space.

The case of computationally expensive objective functions, computationally cheap constraint
functions, bound constraints and x ∈ Zn is considered. In addition, it is assumed that the mini-
mization problem is restricted by a limited computational budget. Moreover, a limit to the number
of considered objectives functions is imposed (m = 2), i.e. many-objective optimization problems
are not examined. In particular, GEP formulations with two computationally expensive objective
functions and computationally cheap constraint functions are examined. It is assumed that a de-
cision variable is a positive integer (Z+) which represents the number of capacity additions in a
candidate technology group. Investments decisions, therefore, are considered in predefined step
sizes.

The cost terms, objectives and constraints functions of the formulation are described in the
following Sections.

5.2.2 Formulation of the cost terms

A number of different objectives have been considered to examined the corresponding trade-offs.
The cost terms that are included in these objectives are formulated as follows (nomenclature is
described in the List of Symbols):

� Investment cost: The investment cost is computed based on the capacity additions, the
investment cost of each step of capacity additions and the step size:

cinv =
∑

∀a,g
[xinva,g ICa,gP

cap step
a,g ] (5.2)

� Fixed operational and maintenance cost: FO&M is assumed as a function of the installed
capacity and a cost parameter:

cfom =
∑

∀a,g
[(xinva,g + IUa,g)FOMa,gP

cap step
a,g ] (5.3)

� Green policy support cost: For the sake of simplicity, a Feed-in-Tariff (FIT) scheme with a
fixed price as the green policy is assumed. In addition, RES curtailment is assumed to be
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fully compensated. Therefore, Green Policy Support Cost (GPSC) is computed as follows:

cgp =
∑

∀a,gres
[(xinva,gres + IUa,gres)P

cap step
a,gres Prresa,gres

∑

∀h
[Avresa,gres,h]] (5.4)

� Generation cost: Generation cost is assumed as a function of the fuel cost of the generating
capacity:

cgen =
∑

∀a,g,h
[pa,g,hC

L
g + xsua,g,hC

su
g + xsda,g,hC

sd
g ] (5.5)

� Emission cost: Emission cost is assumed as a linear function of the power output of each
generating technology and the corresponding emission factors:

cem =
∑

∀a,g,h
[pa,g,hEFa,g,h]Cem (5.6)

� Variable operational and maintenance cost: The variable operational and maintenance (VO&M)
cost is assumed as a function of the thermal unit outputs and cost parameters:

cvom =
∑

∀a,g,h
[pa,g,hV OMg] (5.7)

VO&M cost for RES and hydro technology groups has been assumed to be negligible. Alter-
natively, it could be included in a similar manner.

� RES penetration: RES penetration is represented in monetary terms as the total RES output
that contributes to satisfy the demand and is not curtailed voluntarily:

crp =
∑

∀a,h
[presa,h − εca,h]Crp (5.8)

The anticipated RES generation is computed as follows:

presa,h =
∑

∀gres
[(xinva,gres + IUa,gres)P

cap step
a,gres Avresa,gres,h],∀a, h (5.9)

� Non-served Energy cost: The NSE cost derives from the case where the installed capacity
is insufficient to satisfy the demand and/or the reserves. It also includes the case where it
cannot satisfy the aforementioned in an economic manner:

cnse =
∑

∀a,h
[εra,hC

r + εda,hC
d] (5.10)

� Curtailment cost: Curtailment cost is represented by the loss in value from an excess in hydro
or RES generation:

ccs =
∑

∀a,h
[εsa,hC

s + εca,hC
c] (5.11)

97



All cost terms have been converted to monetary terms. Within a MOEA-based approach, some
of the included parameters may be unnecessary based on the objective functions defined and have
been introduced mainly for consistency.

Based on the simplifications/assumptions made, a distinction can be drawn between the afore-
mentioned cost terms. Specifically, cinv, cfom and cgp can be computed considering only investment
decisions (i.e. xinv) and neglecting short-term operation. On the contrary, cost terms cgen, cem,
cvom, crp, ccs and cnse could be computed based on an approximation of the short-term operation
of a power system.

Let v = {p, xsu,xsd, εr, εd, εc, εs} be a vector that includes all values required to compute
cost terms cgen, cem, cvom, crp, ccs and cnse. Then the values of v could be determined by a SM
that considers the capacity additions fixed. The outcome of the SM can be utilized to compute
the corresponding cost terms. Within the formulation, vector v is not considered as a set of
optimization variables of the MOO problem but rather it is assumed as the output of a black-box
which represents the outcome of a simulation run. The vector v must be computed anew for each
state of capacity additions and its values are then employed to compute the corresponding cost
terms. The input of the black-box is assumed as the set of capacity additions. The output of the
former is a single vector v which represents the outcome of a simulation run.

There are some prerequisites that must be considered. First, it must be ensured that the
SM provides a solution for each state of capacity additions. Therefore, a SOO SM needs to be
formulated adequately to penalize infeasibility when no feasible solution exists for a given set of
capacity additions. Secondly, a state of capacity additions can correspond only to a single output of
the SM. If a selected SM is a SOO problem that does not exhibit a unique global optimal solution
then a one-to-one relationship between capacity additions and each cost term can not be established
when more than one optimal solutions of the SOO SM are considered. In many cases, non-unique
global optimal solutions of a SOO SM could be restricted by its formulation or the data input.
Therefore, an assumption is made. In particular, a single simulation run is carried out for each set
of capacity additions and it is assumed that the outcome derived is the representative one for that
state of capacity additions. Moreover, the simulations correspond to the computationally expensive
part of the approach. Therefore, performing a single simulation may be acceptable as from each
state of capacity additions an indicator/approximation of the short-term operation is required. In
the worst case, in which the SOO problems for all states of capacity additions exhibit non-unique
global optimal solutions, the indicators are based on a set of non-unique global optimal solutions
attained by each SOO SM.

5.2.3 Simulation model - Problem approximation

The modelling formulation of the Fast Unit Commitment model, proposed in Reference [29], is
selected as the SM for approximating a UCP. An advantage of this model is the absence of bi-
nary/integer variables within the formulation. The latter accounts for technical detail by including
a relaxation of the integer constraints of the units status and modifications to the UCP constraints.
In comparison to other SMs with higher computational cost, it may provide an approximation of
the UCP with a relatively low computational cost. This may enable an increase in the temporal
and spatial detail and also an increase in the maximum accepted number of available simulations.
A representation based on continuous variables to approximate the unit statuses of the UCP within
the context of long-term planning has been presented in other works (e.g. Reference [48]).

The selected SM is adopted with some modifications. The modifications are made to consider

98



the cases where the installed capacity is inadequate to serve the demand, i.e to address infeasible
installed capacities (short-term constraint violations). In addition, the cost of emissions and con-
straints for hydro generation are included. Moreover, a simplified fuel cost function is assumed; the
minimum fuel cost of the on-line capacity is not captured, however, it can be easily included. The
initial state has been assumed as an optimization variable. This assumption is made to replace a
user-defined assumption regarding the initial state. Nevertheless, the impact of the latter on the
results should be moderated as the number of hourly time periods increases. The formulation of
the SM, including the modifications made, is presented in Appendix E and for greater detail the
reader is kindly referred to Reference [29].

5.2.4 Formulation of the Multi-objective optimization problems

Let vector x represent the set of optimization variables converted from the matrix xinv. In par-
ticular, the matrix xinv (representing the capacity additions in each technology group and area) is
converted to the vector x which includes all elements of the former:

x = {xinv1,1 , x
inv
1,2 , . . . , x

inv
1,gz, x

inv
2,1 , x

inv
2,2 , . . . , x

inv
2,gz, x

inv
az,1, x

inv
az,2, . . . , x

inv
az,gz} (5.12)

The search space (S) is set as follows:

Xa,g ≤ xinva,g ≤ Xa,g, ∀a, g (5.13)

x ∈ Z (5.14)

where X and X are the lower and upper limits of capacity additions.

Objective functions: Based on Sections 5.2.2 and 5.2.3, the five pairs of objective functions, which
constitute the MOO GEP variants examined, are the following:

1. Aggregated Cost and Emission Cost (AC1-EM) variant:

� Minimizing the sum of investment, FO&M, generation, VO&M, GPSC and curtailment
cost:

l1(x) = cinv + cfom + cgen + cvom + cgp + ccs (5.15)

� Minimizing emission cost:
l2(x) = cem (5.16)

The results of this variant aim in an approximation set of the PF considering economic and
environmental objectives. It corresponds to a variant of the frequently examined economical
and environmental MOO GEP problem. The main difference can be identified in the way
cost terms are computed as is the impact of capacity additions on each cost term are assessed
by the SM.

2. Aggregated Cost and RES penetration (AC2-RP) variant:

� Minimizing the sum of investment, FO&M, generation, VO&M, emission, GPSC and
curtailment cost:

l1(x) = cinv + cfom + cgen + cvom + cem + cgp + ccs (5.17)
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� Maximizing RES penetration:
l2(x) = (−1)crp (5.18)

This second variant also considers an economic and environmental MOO GEP. However, the
formulation focuses on examining RES penetration and curtailment. For example, emission
cost reduction induced by other sources, such as generation by hydro or low-carbon emission
thermal units, is not considered within the environmental objective. Therefore, the aim of
the second objective is restricted towards efficiently increasing the level of RES penetration.

3. Operation Cost and GPSC (OC1-GS) variant:

� Minimizing the sum of FO&M, generation, VO&M, emission and curtailment cost:

l1(x) = cfom + cgen + cvom + cem + ccs (5.19)

� Minimizing GPSC:
l2(x) = cgp (5.20)

The results of this case aim in providing an approximation set of the Pareto front considering
economical and green policy objectives. The results may assist in examining the trade-
off among support cost of an energy policy and operation cost, since such costs could be
transferred to the consumers.

4. Operation Cost and Investment Cost (OC2-IC) variant:

� Minimizing generation, FO&M, VO&M, emission, GPSC, and curtailment cost:

l1(x) = cgen + cfom + cvom + cem + cgp + ccs (5.21)

� Minimizing investment cost:
l2(x) = cinv (5.22)

The results of this case aim in providing an approximation set of the Pareto front consider-
ing operational cost and investment cost as conflicting objectives. The results may assist in
examining the effect of higher/lower investment cost and their impact on short-term opera-
tion. The aforementioned may indicate the importance of increased investment levels, when
required, and suggest technology groups for which possible incentives should be provided.

5. Aggregated Cost and Aggregated Penalties (AC3-AP) variant:

� Minimizing investment, FO&M, generation, VO&M, emission and GPSC cost:

f1(x) = cinv + cfom + cgen + cvom + cem + cgp (5.23)

� Minimizing a NSE and curtailment cost terms:

f2(x) = cnse + ccs (5.24)

The last variant is formulated to examine the trade off between aggregated cost and the
aggregated penalty cost terms. This case could be also perceived as a reformulated SOO
GEP for which the penalty cost deriving from short-term operation has been set as a second
objective.
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Depending on the data input, the pairs of examined objectives could not always be conflicting.
Moreover, NSE cost is added to the objectives as a penalty cost term in an attempt to exclude
solutions exhibiting NSE from the NDF. For the first four MOO GEP variants it is included as
follows:

f1(x) = l1(x) + wpen · pen(x) (5.25)

f2(x) = l2(x) + wpen · pen(x) (5.26)

where pen(x) = cnse and wpen = 1. The latter is a weight parameter for scaling (or excluding
wpen = 0) the penalty term.

Constraint functions: In addition, the MOO problems are subjected to the following constraint
functions (G(x)):

� Reserve margin constraint: The constraint imposes a lower limit to the total installed capacity
and it is set as the peak demand, PD, increased by a reserve margin, RM .

(1 +RM)PD ≤
∑

∀a,g
[(xinva,g + IUa,g)P

cap step
a,g ] (5.27)

The feasible region could be further limited by including an upper limit on the total installed
capacity.

� Maximum capacity additions constraint: It is assumed that the total capacity additions are
limited by an upper limit, TCA, as follows:

∑

∀a
[xinva,g ] ≤ TCAg,∀g (5.28)

The total constraint violation (cv(x)) for the decision vector x is computed as follows:

cv(x) =
k∑

i=1

max(gi(x), 0)

CV max
i

(5.29)

where CV max
i is the maximum possible constraint violation of the ith constraint function (gi(x)).

It is included to normalize the constraint violation values within the range [0,1]. The maximum
values are made available a priori by setting xinva,g = 0, ∀a, g and xinva,g = Xa,g, ∀a, g for Eq. 5.27 and
Eq. 5.28, respectively.

5.3 Multi-objective optimization approach

This Section presents the employed MOO approach. It is based on MOEA and surrogate-assisted
derivative-free optimization. The NSGA-III algorithm (References [102, 103]) has been used as
the base MOEA that is modified to by including AMs. These modifications are made based on
proposed frameworks for surrogate-assisted derivative-free optimization identified in the literature
(References [155, 168, 187, 188, 189, 186, 204, 205]).

To determine the steps of the approach and based on the aforementioned references, the following
have been considered as important for attaining satisfactory results:
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� To generate an appropriate pool of data points (PDP): Data points to be costly evaluated are
selected among a pool of candidate/available ones. Therefore, the pool should include data
points that are of interest for the search.

� To achieve a decent approximation of the underlying functions (UFA): The refining strategies
should select the data points, to be costly evaluated, that could be most beneficial for the
search, w.r.t. the exploration and exploitation of the search space. A poor approximation
may be a result of low quality of data sampling or the properties of a selected AM. Moreover,
a poor approximation may be attained due to the function characteristics which could render
a decent UFA highly challenging. In this case the underlying functions are the output of
an optimization problem (i.e. the values of the objective functions computed based on the
output of the SM).

� To achieve a decent Pareto Front Approximation (PFA): Given a perfect UFA and an ideal
PDP, the refining strategies should select data points to be costly evaluated that would result
in a well-converged and well-distributed NDF. The latter should be a decent approximation
of the PF.

For example, refining strategies that utilize the prediction function may prioritize sub-optimal data
points in case the UFA is sufficiently poor to alter their ranking and if the PDP includes both ideal
data points and sub-optimal ones. Similarly, sub-optimal data points could be selected if the ideal
ones are not available (regardless of the UFA accuracy). Moreover, the refining strategies should
be adequate to select a subset of the available data points to provide a decent PFA given an ideal
PDP and a perfect UFA due to the computational restrictions.

The presented approach includes a global and local phase to benefit from (i) global and local
AM, and (ii) global and local search. There is a number of approaches that employs a global
and local phase to balance exploration and exploitation, global and local AM (e.g. References
[155, 168, 188, 189, 204, 205]) and global and local gradient-based (e.g. References [155, 168, 204])
or non-gradient-based (e.g. Reference [206]) search. These have been discussed in more detail in
Chapter 3.

For selecting sampling criteria, the frameworks of References [188, 189] are followed. In partic-
ular, the Maximum-Minimum Distance Criterion (MMDC) and a Hypervolume based metric are
used within the refining strategies. Both criteria are included within the multi-rule based strategy
of the GOMORS algorithm (Reference [188]) and within the MOPLS algorithm (Reference [189])
by using a probability factor. The refining strategies of the global phase are based on the multi-rule
strategy of the GOMORS algorithm where a number of candidate solutions are selected by each
rule. However, a sequence of steps is included to determine the rule which will be employed to
select a candidate solution for each AM included within the pool of available ones. In addition, a
CHT is included to address infeasible solutions. The CHT selected for prioritizing feasibility within
the steps of the refining strategy is the Feasibility Rules (Reference [119]).

5.3.1 Steps of the optimization approach

Given the above, the optimization approach includes three distinct phases (i) the initialization
phase, (ii) the global phase and (iii) the local phase. The last two are iteratively repeated. From
here on, such an iteration will be referred to as an optimization cycle. Within the latter, a PDP is
generated and selected refining strategies determine new data points to be costly evaluated in an
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attempt to gradually identify a NDF. These three phases are presented in the following Sections.
The components and motivations of each phase are first discussed and then presented in a step-by-
step manner.

Initialization Outline

Within the initialization phase the required data and the parameters are supplied. Moreover, the
initial dataset (archive) is constructed. Two criteria are included for the latter. The first regards
the user-supplied decimal to which all data points are rounded to. The second is the minimum
distance criterion, based on the Euclidean distance, which restricts data points to enter the dataset
that violate a minimum distance to any archived data point (similarly to Reference [180]).

Moreover, additional data points could be supplied based on available a priori information.
Such data points may improve the approximation in regions of interest. Some initial estimates
could be identified based on the considered cost terms (Section 5.2.2). For example, (i) a data point
representing the minimum capacity additions could minimize the investment cost and FO&M terms,
(ii) a data point representing the maximum capacity additions could present low NSE cost, and
(iii) a data point representing the maximum capacity additions for thermal technology groups and
the minimum for hydro and RES could present low curtailment cost and low GPSC. Alternately,
initial points could be supplied by a different model if available.

Initialization step-by-step

The steps for the initialization are the following:

1. Provide the input data and parameters.

2. Generate a pool of data points by the Latin Hypercube sampling within the bound of the
search space.

3. Round the data points values to a predefined decimal based on user-defined parameter dvTol

(for integers the parameter is set as dvTol = 1) using the following equation:

xi = bxidvTole/dvTol, ∀i = 1, 2, ..., D (5.30)

4. Remove data points that violate minimum distance criterion:

(a) Compute the Euclidean distances among all data points.

(b) Remove any data point that violates a minimum distance threshold value, distmin.

5. If the pool includes at least npinit data points and these ensure the minimum required rank
for the matrix used to build each AM considered, then skip this step. Otherwise, repeat Steps
2-5.

6. If additional (user-supplied) data points are provided then:

(a) Compute the Euclidean distance between the user-supplied data point and the data
points of the pool.

(b) Remove any user-supplied data point that violates the minimum distance criterion.
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(c) Include the remaining ones to the pool.

7. Evaluate all data points in the pool using the expensive model.

8. Store the data points and the corresponding objective and constraint function values in the
dataset.

9. Perform Environmental-Selection among the archived data points to determine the current
population.

10. Set the union and evolving populations as empty sets.

Subsequently, the algorithm proceeds to the iterative phase. The latter includes the global
phase and local phase which are discussed in the following Sections.

Optimization Cycle - Outline of the Global phase

The available AMs are built independently using all data points within the dataset; a maximum
threshold might be required, when a relatively large number of costly evaluations are available. This
threshold even though not considered in this Chapter, could be based on (i) a distance criterion,
(ii) the most recent, or (iii) the best performing entries of the dataset.

Moreover, a procedure is employed that attempts to moderate the impact of outliers in the
dataset, i.e. archived data points that exhibit extreme function values. The impact of extremely
high values has been considered here. Simply removing such outliers may result in loss of costly
information attained by a computationally expensive simulation. The procedure included generates
a modified dataset which is used for building the global models. A modified dataset is created and
the procedure is implemented independently for each objective function. Function values, in the
modified dataset, that exceed an upper limit are set to the largest value that does not exceed this
limit. The upper limit is set as the median and three standard deviations of the function values
in the modified dataset. This is repeated until (i) no alterations are required or (ii) the largest
value for the considered objective function in the modified dataset, which is lower than the upper
limit, is equal to the minimum value of the modified dataset of the considered objective function.
The median value is selected as it ensures that at least half of the dataset will not be affected.
A median-based rule has been suggested in Reference [180]. Three standard deviation have been
selected to limit the alterations mostly to outliers. The modified values are then used to build each
global model.

The next step of the global phase is to generate an appropriate PDP. First, a Union population
is generated by evolving sub-populations separately for a predefined number of generations utilizing
a MOEA. When evolving the sub-populations, the AM replaces the TM for computing the objective
function values. However, constraint functions are computed based on the true functions as they
are considered computationally cheap. Moreover, individuals are rounded (see Eq. 5.30) only for
computing their fitness.

The number of sub-populations that will evolve are determined by the number of available AMs
as one is selected for each sub-population among the pool of available models. Moreover, a set of
Variations operator is selected to evolve each sub-population from the pool of available ones. The
latter aims towards reducing the impact of a selected one on the performance of the optimization
approach. In this context, the combination of AM and Variations operator should be altered in
each optimization cycle (if possible) to provide a diverse set of combinations.

104



The initial population of each sub-population is determined by applying the Environmental-
Selection operator on a population including (if available): (i) the archived data points, (ii) the
evolving population derived during the global phase of the previous optimization cycle, (iii) data
points generated during the local phase of previous optimization cycle, and (iv) a population
generated anew by Latin Hypercube sampling. The evolving population and data points generated
during the local phase are included since in each optimization cycle only a subset of the available
data points are archived. Therefore, some promising individuals identified during the previous
optimization cycle are available to be costly evaluated in the proceeding one. Such individuals
could survive in the evolving population for a number of optimization cycles depending on the
Environmental-Selection operator employed.

The evolving population is formed by merging the attained sub-populations once the termination
criteria have been met. A new set of data points is generated by Latin Hypercube sampling to
ensure sufficient diversity. The evolving population is combined with the latter to form the Union
population. The individuals of the latter are rounded (see Eq. 5.30). Moreover, data points within
the Union population, that have been costly evaluated (or violate the minimum distance criterion
to the archived data points) are removed. The Union population is then checked to ensure that
at least one new data point is available. If this is not the case, the Latin Hypercube sampling is
employed to a generated a new set of data points which are checked in comparison to the archived
points regarding the distance criterion. The latter is repeated until at least one new data point is
available (and increasing also the number of data points generated by Latin Hypercube sampling).
The Union population then represents the PDP from which the refining strategies will select a
subset to be costly evaluated using the TM.

The refining strategy attempts to select the most adequate data point from the PDP to be costly
evaluated. Both exploration of the search space and exploitation of the AM are considered. The
Expected Hypervolume Improvement (EHI) metric is included for exploitation as it may identify
a data point that would improve the Hypervolume (HV) of the current NDF. It is implemented
under the assumption of a sufficiently accurate UFA. The MMDC is included to assist towards the
exploration of the search space by selecting data points that are in low density areas of the search
space (decision or objective space).

An attempt to improve the exploration of the search space is made by including the MMDC.
It could introduce new data point to the dataset that lie in unexplored regions of the objective
or decision space (Reference [188]). The MMDC selects a data point, among available ones, that
exhibits the maximum minimum Euclidean distance towards a second set of data points. More
specifically, the minimum Euclidean distance for the ith candidate data point is computed as follows:

distmini = min
∀s

(‖yi − ys‖) (5.31)

where if the minimum Euclidean distance is computed for the decision space, yi and ys are the
decision vectors of the ith candidate data point and of the sth archived data point, respectively.
Correspondingly, if the objective space is considered then yi and ys are the objective function
vectors of the ith candidate data point and of the sth archived data point, respectively.

A focus on exploitation is made by the inclusion of the Hypervolume metric. It is the volume of
the objective space dominated by an objective function vector and bounded by a reference vector.
It is a quality indicator frequently employed to compare the performance of different MOEAs as it
is strictly monotonic with regard to Pareto dominance. An estimation of the Hypervolume value
can be provide by Monte Carlo simulation to address the computational cost of its exact evaluation
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that scales with the number of objective functions.
Therefore, the maximum EHI metric is included to identify a data point that would provide the

largest improvement to the hypervolume of the current population. It is termed expected as it relies
on the AM predictions and assumes a sufficiently accurate UFA. The EHI of the ith individual, for
a set of non-dominated points Y, is computed as follows:

EHIi = HV (Y′′)−HV (Y) (5.32)

where Y′′ is a set of non-dominated points. It is a subset of a set Y′ where Y′ = yi ∪ Y. The
elements of Y′′ are selected from Y′ such that: (i) Y′′ includes only non-dominated points, and (ii)
the number of elements within set Y′′ does not exceed a maximum limit imposed. For example,
assuming a population of NP individuals the EHI is computed to respect the maximum population
size by removing elements of Y′ if required. This is implemented to ensure that the computational
cost does not increase due to the large number of data points. Moreover, it is implemented as in
some cases the number of data points that should be supplied for decision-making may be restricted.

The EHI metric is computed to select a data point from the PDP for each AM. For all com-
parisons made within the refining strategies the objective functions’ predictions are employed for
both the archived and candidate data points. This is implemented as the AM might preserve the
ranking of the solution despite the error in the prediction (Reference [167]). For the constraint
functions the true function is used.

Moreover, the EHI metric is computed only in specific cases to limit the computational cost of
the metric. In particular, the series of steps first prioritizes feasibility. Given a set of feasible data
points, then diversity is considered only if a positive value of the EHI metric is not anticipated
i.e. there are no data points in the Union population that dominate or are non-dominated to
the NDF points of the Archived population. In this case, the selection is made from the pool of
individuals that could enter the current population by using the MMDC. In the remaining cases,
the EHI metric is computed for individuals that are at least non-dominated to the individuals of the
Archived population and, therefore, could provide a positive value of the aforementioned metric.

More specifically, POP b u, POP b a and POP b c are determined by the Environmental-Selection
operator. POP b u and POP b a represent the best populations derived from the Union population
and Archived population, respectively. POP b c represents the data points from POP u that could
enter the current population if the predictions are accurate. The population size of POP b c, POP b u

and POP b a is determined based on the minimum among the number of available individuals and
the user-defined population size. Then, feasibility is prioritized by checking if there is a feasible data
point in POP b u. When all individuals in POP b u are infeasible then the selection is made based
on the minimum constraint violation. Moreover, the EHI metric is not computed if no new data
point would enter the current population based on the AM predictions, i.e. POP b c is an empty
set. In this case, feasibility is prioritized by removing infeasible individuals from POP b u and an
individual is selected from POP b u based on the MMDC (objective space) considering POP a. This
is also the case when no feasible solution has entered the dataset so far. In the remaining cases,
POP b c includes feasible solutions that could enter the current population, based on the predictions
of the considered AM. Therefore, the feasible non-dominated individuals of POP b a, POP b c and
POP b a ∪ POP b c are identified (NDF a, NDF b c and NDF b c&a, respectively). Archived data
points are removed from NDF b c&a which then represents the candidate data points that are at
least non-dominated to the individuals of POP b a. The EHI metric is not computed if NDF b c&a

is an empty set as a HV improvement is not possible based on the predictions of the considered
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AM. The selection is then made from POP b c based on the MMDC (objective space) w.r.t. the
POP b a to increase the diversity of the best archive population.

Consequently, the EHI metric is only computed for each individual of NDF b c&a. It is iteratively
computed by including an individual of NDF b c&a in NDF a. Then the Environmental-Selection
operator is applied on the derived combined population to ensure that it does not exceed the
predefined population size limit. The NDF of the aforementioned population is then identified for
which the new HV value is computed. The EHI metric for an individual is computed by subtracting
the initial HV value (for NDF a) from the value attained by its inclusion. Once the values of the EHI
metric have been attained independently for each individual of NDF b c&a, then the one exhibiting
the maximum value is selected. In case the EHI metric maximum value is zero then the selection
is made from POP b c based on the MMDC (objective space) w.r.t. the POP b a.

This selection process is repeated for each available AM to select a data point for each AM. In
each such iteration, a modified Archived population is utilized that includes the Archived population
and the selected data points which have not been costly evaluated. In addition, the selected point
is removed from the Union population so that it is excluded from the next selection process. In a
similar manner, all individuals of the Union population that violate the minimum distance criterion
to selected data points are also excluded.

Once a data point has been selected based on each AM, a data point is then selected based
on the MMDC (decision space). Such a candidate is selected to assist towards the exploration
of the search space as it may select a data point that is in a low density area of the search space
(decision or objective space). The data point is selected from the Union population and the MMDC
is computed w.r.t. the modified archived data points.

The global phase concludes by computing the selected data points using the true model and
storing the relevant data in the archive. The termination criteria are then considered.

Optimization Cycle - The Global phase step-by-step

The steps of the global phase are presented in this Section. Four major steps comprise the global
phase which are the following:

1. Build each global AM:

(a) Create a copy, i.e. F′, of the function values F which are available in the dataset.

(b) For each of the M objective functions:

i. Set f equal to the median and 3 standard deviations of the function values of the
mth objective function of F′.

ii. Set f equal to maximum function value, which also is lower than f , of the mth

objective function of F′.

iii. If the maximum function value of the mth objective function of F′ is greater than f
and f is greater than the minimum function value of the mth objective function of
F′ then:

A. Update f ′m,s as follows: f ′m,s = min(f ′m,s, f), ∀s
B. Repeat step 1(b)i-1(b)iii.

(c) Use F′ to build the AMs for each objective function m and for each available model k.
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2. Generate a PDP:

(a) For each of the K available AMs:

i. Select the vth set of Variation operators from the V available ones, where v =
〈k + cntr〉V + 1 and cntr is the optimization cycle counter.

ii. Generate a population, POP lhs, by Latin Hypercube sampling.

iii. Create a combined population: POP all = POP lhs ∪ POP evl ∪ POP a ∪ POP ls
iv. Employ the AMs to compute the objective functions predictions of POP all.

v. Employ the TM to compute the constraint violation of POP all.

vi. Determine the parent population POP par by applying the Environmental-Selection
operator on a combined population POP lhs ∪ POP evl ∪ POP a ∪ POP ls.

vii. Apply the vth set of Variation operators to create an offspring population (POP off ).

viii. Employ the AMs to compute the objective functions predictions of POP off .

ix. Employ the TM to compute the constraint violation of POP off .

x. Apply the Environmental-Selection operator on POP off∪POP par to update POP par.

xi. Repeat steps 2(a)vii-2(a)xi if the termination condition has not been met.

xii. Set POP par as the kth sub-population (POP spk ).

(b) Update the evolving population: POP evl = POP sp1 ∪ POP sp2 ... ∪ POP spK
(c) Create a population by Latin Hypercube sampling (POP lhs).

(d) Create the Union population: POP u = POP evl ∪ POP lhs

(e) Update POP u by applying the rounding function (Eq. 5.30) to each individual.

(f) Iteratively check and remove individuals from POP u so that the remaining ones are
unique, i.e. the minimum Euclidean distance among two individuals of POP u should be
greater than zero.

(g) Remove any individuals from POP u that violates the minimum distance criterion to-
wards the Archived population.

(h) If POP u is not an empty set, the skip this step, otherwise:

i. Replace POP u by a population generated by Latin Hypercube sampling. Larger
population sizes could be considered for this step.

ii. Repeat steps 2e-2h.

3. Refine the dataset:

(a) Set POP sel as empty.

(b) For each of the K available AMs:

i. If POP u is not empty, then skip this step. Otherwise:

A. Go to step 4.

ii. Employ the AMs to compute the objective functions predictions for both POP u

and POP a ∪ POP sel.
iii. Employ the TM to compute the constraint violation for both POP u and POP a ∪

POP sel.
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iv. Apply the Environmental-Selection operator on population POP u to derive POP b u.

v. Apply the Environmental-Selection operator on population POP a∪POP sel to derive
POP b a.

vi. Apply the Environmental-Selection operator on a combined population POP c ∪
POP u to derive POP b a.

vii. Remove any individual from POP b c that is a member of POP a ∪ POP sel.
viii. If POP b u includes a feasible individual, then skip this step. Otherwise:

A. Select xsel from POP b u based on the minimum constraint violation.

B. Go to step 3(b)xix.

ix. If POP b c is not empty and POP a∪POP sel includes a feasible individual, then skip
this step. Otherwise:

A. Remove infeasible solutions from POP b u.

B. Normalize each objective function value of POP b u and POP a ∪ POP sel based
on the corresponding maximum and minimum values of each function within
these populations.

C. Select xsel from POP b u based on the MMDC (objective space) w.r.t. POP a ∪
POP sel.

D. Go to step 3(b)xix.

x. Perform Non-dominating sorting on POP b a to identify NDF a.

xi. Perform Non-dominating sorting on POP b c to identify NDF b c.

xii. Perform Non-dominating sorting on a combined population including the individu-
als within NDF a and NDF b c to generate the NDF of the combined populations
(NDF b c&a).

xiii. Remove any archived data points from NDF b c&a. The latter represents the candi-
date points that are at least non-dominated to the individuals of POP b a.

xiv. If NDF b c&a is not empty, then skip this step. Otherwise:

A. Set the EHI improvement to zero: EHI = 0.

B. Go to step 3(b)xviiiA.

xv. Compute the HV old for NDF a as follows:

A. Normalize and replace each objective function values of the individuals inNDF b c&a

and NDF a based on the corresponding maximum and minimum values of each
function within these populations.

B. Set a reference point at (1.1,1.1).

C. Compute the HV old of NDF a.

xvi. For each individuals in NDF b c&a compute the EHI as follows:

A. Include the selected individual of NDF b c&a in NDF a and form a temporary
population.

B. Apply the Environmental-Selection operator to the aforementioned temporary
population to maintain a population of up to NP individuals.

C. Perform Non-dominated sorting (NDS) on the aforementioned population to
identify the NDF.

D. Compute the HV new for the individuals forming the aforementioned NDF.
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E. Compute the EHI by subtracting HV old from HV new.

xvii. If the maximum attained EHI is not greater than zero, then skip this step. Other-
wise:

A. Select xsel from NDF b c&a based on the maximum EHI value.

xviii. If the maximum attained EHI is greater than zero, then skip this step. Otherwise:

A. Select xsel from POP b c based on the MMDC (objective space) w.r.t. POP b a.

xix. Include xsel in the selected population to be evaluated (POP sel).

xx. Remove individuals from POP u that violate minimum distance criterion to xsel.

(c) If POP u is empty, then skip this step. Otherwise:

i. Apply to all individuals of POP u:

cv′i =

{
cvi, if U(0, 1) ≤ pfMMDC

0, otherwise
, ∀i (5.33)

ii. If the minimum value of cv′ is not greater than zero, then, select xsel from POP u

based on the MMDC (decision space) w.r.t. POP a ∪ POP sel. Otherwise:

A. Remove all individuals from POP u for which cv′i is greater than zero.

B. Select xsel from POP u based on the MMDC (decision space) w.r.t. POP a ∪
POP sel.

iii. Include xsel in POP sel.

4. Perform expensive function evaluations:

(a) If POP sel is empty then, skip this step. Otherwise:

i. Perform expensive function evaluations for each individual of POP sel and store the
data points in the archive. The termination criteria are then considered.

Optimization Cycle - Outline of the Local phase

Locally trained models are built for selected individuals of the current NDF. The MMDC (objective
space) is employed to select up to µ isolated NDF members. It is computed by normalizing the
function values of the NDF members w.r.t. the current population. The user defined parameter µ
is included to limit the maximum number of NDF members that will undergo local search. Such
individuals are included in a population that will undergo local search, i.e. POP lc.

Moreover, an additional point is included within POP lc. Two adjacent NDF members that
exhibit the largest Euclidean distance (objective space) among them are identified. Then, an
additional point is generated along the line (decision space) connecting these two individuals. More
specifically, a weighted average of these individuals is produced. The weight is randomly generated
based on the uniform distribution. This is implemented under the assumption that the mapping
from the decision space to the objective space is not highly non-linear. In such a case, the offspring
produced could lie among the two individuals used to produce the offspring and applying local
search on the aforementioned could generate a promising data point. On the other hand, if the
mapping is highly non-linear then the offspring produced by the aforementioned step is a rather
arbitrary point that will undergo local search.
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A local AM is built independently for each individual of POP lc. A model is assigned from
the pool of available models to each individual of POP lc. The pool consists the available models
and an additional model that is the weighted sum of the predictions of the models (ensemble).
For building each model, the nearest N lc dp data points (Euclidean Distance) to the considered
individual are selected as in other approaches including local models (e.g. References [155, 168]).
Additional data points are included when the rank of the matrix created, using the selected data
points, is inadequate to built the AM. In this case, a sub-region of the search space is defined
and all data points within the bounds of the region are included. This is implemented based on a
parameter, RI, which is a percentage of the search space. Its value increases in user-defined steps
until the condition is met, e.g. ri = 10%. The parameters of the trained model are checked, as the
data points may be inadequate to train the models, and additional points are included if needed
by increasing the value of RI. Moreover, the AMs are built using the augmented function which
is the weighted sum of the normalized function values; the function values are normalized based
on the maximum and minimum corresponding values of the selected data points used to built the
models.

For each such individual of POP lc, local search is implemented using the locally trained models
and a gradient-based non-linear solver. This is similar to the proposed local search in Reference
[168] for SOO and in Reference [155] for MOO. When a MOO is considered, an augmented function
is defined which is a weighted sum of the objective functions including arbitrary weights that are
generated anew for each considered individual (Reference [148]). The latter is a typical approach
for MA-MOEA. For surrogate-assisted MOO, the framework proposed in Reference [155] is consid-
ered. Local search is implemented based on Sequential Quadratic Programming. The non-lineal
optimization problem neglects decision variables constraints regarding the step sizes (dvTol), i.e.
the relaxed problem is solved even if decision variables are restricted to integers and the latter are
assumed to be continuous. The locally built AM are utilized for computing the objective function
value. However, the TM is employed for the constraint function since the aforementioned are com-
putationally cheap. Moreover, the individual undergoing local search is used as the initial point
for local search. The box constraints are set as the region defined by the maximum and minimum
values of the data points used to built the local model. A minimum upper and lower range for
each variable of the initial point is also considered, i.e. the variable step size and the minimum
percentage (parameter RI) of the search space, both, restricted by the actual box-constraints.

The output of the local search (xlc) should be at least non-dominated to the individual to
which local search was applied to. However, local search is implemented by ignoring the decision
variable constraints regarding the step sizes. Therefore, xlc is further processed by rounding it to
the required predefined decimal. N lc sr offspring are generated by stochastically rounding xlc and
one offspring is generated by deterministically rounding xlc. For stochastically rounding xlc the
modulus, w.r.t. the decimal tolerance, is used as the probability. These are implemented, in an
attempt to generated a number of offspring within the vicinity of xlc. Among these offspring the
selected, as the output of the local search, offspring is determined based on the minimum prediction
and minimum distance criterion and by prioritizing feasible offspring. The selected offspring then
enters a population (POP ls) that includes the offspring generated by local search.

Once this has been repeated for all individual in POP lc, a PDP is generated by local search
(POP ls). Among this PDP, up to µ are selected to be computed using the TM and then stored in
the archive. The selection is based on the MMDC (decision space). Furthermore, feasible solutions
are prioritized.
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Costly evaluating the selected individuals and storing them in the archive is the final step of
the local phase. This is also the final step of the optimization cycle. Subsequently, it proceeds to
the next optimization cycle if the termination criteria has not been met.

Optimization Cycle - The Local phase step-by-step

The local phase aims towards identifying improved data points within the vicinity of the best
performing individuals of the archive population. This phase employs locally trained AMs for
each considered individual and a gradient-based local search. The steps of the local phase are the
following:

1. Apply the Environmental-Selection operator on POP a to determine the current population
(POP cur). The true function values are used that are available in the dataset.

2. Apply NDS on POP cur to identify the individuals forming the NDF (NDF cur).

3. Set NDF cur as the population that will undergo local search (POP lc).

4. If there are less than µ individuals in POP lc, then skip this step. Otherwise:

(a) Normalize the objective function values of the NDF cur and POP a based on the corre-
sponding maximum and minimum function values of the POP a.

(b) Select the µ individuals from POP lc (objective space) that exhibit the largest minimum
distance towards the Archived population.

(c) Set POP lc as the selected µ individuals.

5. If NDF cur includes only one individual, then skip this step. Otherwise:

(a) Normalize the objective function values of NDF cur and POP a based on the correspond-
ing maximum and minimum function values of POP a.

(b) For each objective function m, sort the individuals from NDF cur based on their normal-
ized objective function value and identify the pair of adjacent individuals that exhibits
the maximum Euclidean distance (objective space) to each other.

(c) Identify and extract (xa and xb) the single pair of succeeding individuals that exhibit
the maximum to each other Euclidean distance in the objective space.

(d) Generate an offspring, xab, which is located (decision space) along the line connecting
the selected pair of individuals:

xabj = κxaj + (1− κ)xbj ,∀j = 1, 2, ..., D (5.34)

where κ = U(0, 1) and U(0, 1) is a randomly generated number draw from the uniform
distribution in the range [0,1].

(e) Include offspring xab in POP lc.

6. Associate an AM model to each individual of POP lc as follows:

(a) Generate a list of indices Kpool = (1, 2, ...,K + 1) where each index refers to one of the
available AM and the last is the ensemble AM.
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(b) Randomly shuffle the order of the indices in Kpool.

(c) For each of the i individuals in POP lc, determine the index of the model that will be
used (ki) as follows:

ki = 1 + 〈i〉K+1 (5.35)

7. For each i individual of POP lc build a locally trained AM:

(a) Select the N lc dp data points that exhibit the minimum Euclidean Distance (decision
space) from POP a.

(b) If the data points are sufficient to build the ki model (or models for the ensemble case)
then, skip this step. Otherwise:

i. Set RI = 0. Parameter RI is a percentage of the search space which defines the
bound of the sub-region for the ith individual of POP ls.

ii. Update parameter RI based on the user-defined parameter ri: RI = RI + ri.

iii. Define the bounds of a sub-region based on parameter RI as follows:

xsrj = min(x
(i)
j +DXj , xj),∀j = 1, 2, ..., D (5.36)

xsrj = max(x
(i)
j −DXj , xj), ∀j = 1, 2, ..., D (5.37)

where DXj = max(RI(xj − xj), 1/dvTol),∀j = 1, 2, ..., D.

iv. Include all data points within this sub-region until the condition is met.

v. If the condition is met (sufficient data points to build the ki AM) skip this step,
otherwise repeat 7(b)ii-7(b)v by increasing the value of parameter RI in predefined
steps until the condition is met.

(c) Normalize each of the objective function values of the selected data points, for building
the local model, based on their corresponding maximum and minimum function values

(f
lc
m and f lc

m
).

(d) Randomly generate weight parameters (wm) for each of the M objective functions such
that

∑M
m=1[wm] = 1.

(e) Build the ki model from Kpool (or models for the ensemble case) for an aggregated
function which is the weighted sum of the normalized objective functions:

fagg =
∑M

m=1[wm(fm − f lcm)/(f
lc
m − f lcm + ε)].

8. For each i individual of POP lc perform local search as follows:

(a) Define the search region for the local search: It is restricted based on the variable step
size, a minimum percentage (parameter ri) of the search space, the data points used
to built the local model and the actual box-constraints. In particular, the local search
region is defined as follows:

i. The upper bounds for each variable are set as follows:

xlsj = max(URminj , URmaxj ),∀j = 1, 2, ..., D (5.38)
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where URmin is the minimum upwards range for each variable, computed as follows:

URminj = min(x
(i)
j + 1/dvTol, xj),∀j = 1, 2, ..., D (5.39)

URmax is the maximum upwards range for each variable. It considers the actual
upper bounds of the variable, a maximum range based on a percentage of the search
space (parameter ri) and the range of the data points used to build the local AM.
It is computed for the jth decision variable as follows:

URmaxj = min(xj , x
(i)
j +RI(xj − xj), x(i)

j + (1 + sc)(max(x
(i)
j , s

(1)
j , . . . , s

(nsls)
j )− x(i)

j )
(5.40)

where sc is a user defined parameter (e.g. sc = .1) that scales the maximum dif-
ference of the decision variable value of the data points to the corresponding one of

the individual. s
(n)
j is the jth decision variable of the nth data point from the total

nsls selected data points to build the local model of individual x(i).

ii. In a similar manner, the lower bounds for local search are computed as follows:

xlsj = min(DRminj , DRmaxj ), ∀j = 1, 2, ..., D (5.41)

where DRmin is the minimum downwards range for each variable, computed as
follows:

DRminj = max(x
(i)
j − 1/dvTol, xj), ∀j = 1, 2, ..., D (5.42)

The maximum downwards range, DRmaxj , for the jth decision variable is computed
as follows:

DRmaxj = max(xj , x
(i)
j −RI(xj − xj), x(i)

j − (1 + sc)(x
(i)
j −min(x

(i)
j , s

(1)
j , . . . , s

(nsls)
j )
(5.43)

(b) Apply local search for the relaxed SOO problem. The locally AMs are utilized for com-
puting the objective function value and the TM is employed for the constraint function.
Moreover, the individual undergoing local search is used as the initial point for local
search within the region defined by xlsj and xlsj .

(c) Select offspring:

i. Set xsel as empty.

ii. Generate xlc d by rounding xlc to the required decimal (Eq. 5.30).

iii. Generate N lc sr offspring to form xlc s by stochastically rounding xlc to the required
decimal. The ith offspring is generated as follows:

xlc si,j =

{
bxlcsi,j dvTolc/dvTol, if dvTol〈xlcsi,j 〉1/dvTol ≤ U [0, 1]

dxlcsi,j dvTole/dvTol, otherwise
,∀j = 1, 2, ..., D (5.44)

iv. Compute the minimum distance of each offspring (xlc s and xlc d) to POP a.

v. Remove any offspring that violates the minimum distance criterion to POP a.

vi. If all offspring have been removed, then skip this step. Otherwise: Compute the
objective function predictions, based on the local AMs, and the constraint violation
for the remaining offspring.
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vii. If all offspring have been removed, then skip this step. Otherwise: If there is a
feasible offspring, then set xsel as the feasible offspring presenting the minimum
prediction. Otherwise set xsel as the offspring with the minimum constraint viola-
tion.

(d) If xsel is empty, then skip this step. Otherwise: Store xsel in the population attained by
local search, POP ls.

9. If POP ls is empty, then skip this step. Otherwise:

(a) Set POP sel as an empty set.

(b) Create a copy of POP ls (i.e. POP ′ls).

(c) If there are at least µ feasible individuals in POP ls, then:

i. Remove any infeasible individual from POP ′ls.

ii. Select the individual from POP ′ls based on the MMDC w.r.t. POP a ∪ POP sel.
iii. Compute the Euclidean distance of each individual in POP ′ls w.r.t. POP a∪POP sel.
iv. Remove any individual from POP ′ls that violates the minimum distance criterion.

v. If POP sel includes µ entries or POP ′ls is an empty set, then skip this step. Other-
wise, repeat steps 9(c)iii-9(c)v.

(d) If there are less that µ feasible individuals in POP ls, then:

i. Select the individual from POP ′ls based on the MMDC w.r.t. POP a ∪ POP sel.
ii. Compute the distance of each individual in POP ′ls w.r.t. POP a ∪ POP sel.
iii. Remove any individual from POP ′ls that violates the minimum distance criterion.

iv. If POP sel includes µ entries or POP ′ls is an empty set, then skip this step. Other-
wise, repeat steps 9(d)ii-9(d)iv.

10. Expensive function evaluations: The final step of the local phase is to compute the selected
data points (POP sel) using the expensive model and store the relevant data in the archive.
The termination criteria are then considered.

5.3.2 Pool of Approximating models

Employing a pool of AM is made based on the curse and blessing of uncertainty which are thor-
oughly discussed in References [155, 169]. More specifically, relying on the prediction of different
AM within the search may reduce the impact of the curse of uncertainty, i.e. inaccurate AMs may
result in the search to stall or converge to false optimum, and exploit the effect of the blessing of
uncertainty, i.e. AMs may smooth the search space and could contribute in accelerating and/or
improving convergence. Therefore, the framework presented in Reference [155] is followed.

The pool of AM includes two model types. The first is a RBF model and the second is a low
order PR model. The ensemble model included in the local phase is the sum (equal weight) of the
prediction of these models. The AM is build based on the np available data points in the dataset.
The vector x(s) is used to suggest the sth archived data point. Moreover, a model is built for each
objective function.
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1. PR model : A simplified low (second) order PR model has been employed where the terms
capturing the interactions among variables have been excluded. The prediction function for
the mth objective function at point x is computed as follows:

f̂m(x) = β0 +

d∑

i=1

[βixi] +

2d∑

i=d+1

[βix
2
i−d] (5.45)

The least square method is used to estimate the unknown coefficients of the PR model.

y = XΘ (5.46)
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The solution of the following system of equation determines an estimation Θ̂ of the unknown
coefficients:

Θ̂ = (XTX)−1XTy, (5.47)

The aforementioned PR model requires at least 2d+1 data point to determine the values of
the coefficients which is also the minimum number of required linearly independent rows of
matrix X.

2. RBF model : The RBF model described in Section 4.52 is used with a cubic kernel function.

5.3.3 Pool of Variation operators

The pool of Variation operators includes a GA variant and a DE variant. The GA variant (Reference
[207]) includes the modified tournament selection (Reference [103]), simulated binary crossover
(Reference [208]) and the polynomial mutation (Reference [12]). The DE variant (Reference [209])
includes a DE/rand/1 mutation scheme and polynomial mutation. More specifically, the steps for
the real-coded GA variant to generate a set of offspring are the following:

1. Apply the tournament selection to identify the parent population.

2. Apply the Simulated binary crossover based on the parent population to generate the offspring
population.

3. Modify the offspring population by polynomial mutation.

Correspondingly, the steps of the DE variant are the following:

1. Apply DE/rand/1/bin to generate the trial vectors (offspring).

2. Modify the offspring by Polynomial mutation.
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5.3.4 Environmental-Selection operator

The Environmental-Selection operator of NSGA-III (References [102, 103]) has been employed.
NSGA-III is reference-point-based Many-objective EA that is based on the NSGA-II framework
(Reference [66]). Even though the case of many-objectives is not considered, NSGA-III exhibits
some interesting features which are relevant for this application: it can perform well with low
population sizes, it can handle different scales of the objectives and it can include a user-defined
preferred part of the Pareto-optimal front by defining representative reference points (Reference
[102]). For greater detail, interested readers are kindly referred to References [102, 103].

5.4 Set-up of the Numerical Experiments

In this Section, the numerical experiments conducted are presented. Specifically, the following two
sets have been carried out:

� The performance of the algorithm is examined since it is a heuristic approach. Therefore, it
has been applied on a series of computationally cheap test cases.

� The applicability of the approach is examined on a computationally expensive test case. The
results aim in examining trade-offs among different cost terms in MOO GEP considering
flexibility constraints.

A detailed comparison of the optimization approach with other efficient surrogate-assisted
derivative-free algorithms available within the literature has not been carried out for three main
reasons. Firstly, it is hard to provide a fair comparison due to the inclusion of different operators
(e.g. AMs or search engines employed) and different focuses (e.g. constraint or unconstrained
problems). Secondly, the examined optimization approach for MOO GEP is based on such frame-
works. Lastly, the scope of the numerical experiments is not to propose a new surrogate-assisted
derivative-free algorithm but to examine the attained trade-offs from the application of one on a
MOO GEP.

The following Sections present the considered test case, implementation notes, the numerical
experiments and the employed performance metrics.

5.4.1 Test case

The test case is loosely based on the Greek Power sector [199] and serves purely as an illustrative
example. The data are mostly based on data retrieved by ENTSO-e (Reference [210]) and ADMIE
(Reference [199]). For the GEP level, a single target year is assumed (temporal detail). Two
different areas are considered (spatial detail) to represent, to some extent, the north and south
zones of the examined test case. The network limitations are assumed not binding among the
two regions, however a limit has been imposed. Moreover, the test case is assumed isolated and
the interaction with neighbouring power sectors has been omitted. Regarding technical detail, six
candidate technologies have been assumed as possible capacity addition options. Three different
thermal candidate units (TU1, TU2 and TU3), conventional hydro (CH), wind farms (WF) and
solar photovoltaic (SPV) have been assumed. The latter can be included in each of the two areas.
Furthermore, a distinction is made between the old and new capacity of thermal units, i.e. their
technical-economical characteristics are assumed different. In addition, yearly investment cost is
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used for the assumed investment options which is derived based on the total investment cost.
It is also assumed that up to 20 steps (X) of the capacity additions can be made in each area
and technology group and a total of 20 steps are available (TCA). Moreover, other important
flexibility providers, such as storage, expansions in the transmission system, demand-side products
and interconnections, have been neglected. Moreover, the data used for the test case assumes zero
shut-down cost. The data input are analytically presented in Appendix F.

5.4.2 Implementation notes

The approach is developed in Matlab within the Platemo platform [211] using available implemen-
tations, algorithms and operators. For local search the Sequential Quadratic Programming (SQP)
solver available within Matlab is employed with a 500 FES limit. The Matlab implementation of the
employed RBF and PR models (References [180, 181]) is used. The parameters of the optimization
approach are presented in Table 5.1.

Parameter Value Parameter Value

Max FES 500 Max Gen 100
µ 5 F 0.5
sc 0.1 CR 1
dvTol [1, 10−10] ri 0.1
distmin [1, 10−4] N lc dp 2(d+ 1)
npinit 2(d+ 1) pfMMDC 0.9

Table 5.1: Parameter settings of the optimization approach. For the ZDT test cases parameters
dvTol and distmin have been set as dvTol = 10−10 and distmin = 10−4 while for the remaining cases
their values have been set as dvTol = 1 and distmin = 1.

For all independent runs a restriction of 500 FES limit of the true functions has been imposed,
i.e. Max FES = 500. It should be highlighted that constraint functions (planning constraints) are
not considered as a FES in all numerical experiments since we examine only the case of a MOO
GEP with computationally expensive objective functions and computationally cheap constraint
functions. In particular, the cost of computing the latter is negligible as within the formulation
they do not require the output of the SM, i.e. they are computationally cheap functions of the
capacity additions.

5.4.3 Numerical experiments

The employed optimization approach is examined on the following sets of computational experi-
ments:

� Modified computationally cheap test suite:

Five well-know MOO test problems which are part of the ZDT test suite (Reference [212]) are
examined i.e. ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6. The aforementioned are real-parameter
unconstrained MOO problems that exhibit different characteristic, e.g. convex, non-convex,
disconnected and/or multi-modal. However, the variables are rounded to a predefined decimal
during the search, since the optimization approach considers discrete steps. In particular,
variables are considered in discrete steps (dvTol = 10−10), e.g. the range of a real parameter
in [0, 1] is altered to [0, dvTol, ..., 1]. This consequently, diverges from the original test suite.
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Therefore, to make this clear the test suite should be perceived as modified. Moreover, the
results derived for the ZDT test suite using an implementation (Reference [211]) of NSGA-III
for 500, 10000 and 50000 FES are also presented as a point of reference. The performance of
the two algorithms should not be directly compared due to the unfairness of the comparison;
NSGA-III is not intended for computationally expensive MOO problems and the solver time
is much lower.

� Computationally cheap MOO GEP test case without including a SM:

The second case is a computationally cheap MOO GEP problem that does not require the
output of a SM, i.e. short-term operation and the corresponding cost terms are omitted.
Specifically, two objectives function are considered:

1. Minimization of the sum of investment, FO&M and GPSC cost:

f1(x) = cinv + cfom + cgp (5.48)

2. Maximization of the anticipated RES generation:

f2(x) = (−1)carp (5.49)

where carp is a cost term representing the anticipated RES generation (by modifying Eq.
5.8) and it is computed as follows:

carp = Crp
∑

∀a,h
[presa,h] (5.50)

where Crp = 1.

The aforementioned MOO problem is subjected to the planning constraint functions (Section
5.2.4). This test case, hereafter, will be referred to as MOOGEP-noSM. Since the data input
may have an impact on the results, the numerical experiment is repeated for a case where
the existing capacity is omitted (greenfield case). Correspondingly, it will be referred to as
MOOGEP-noSM-GF. Despite the differences in the objective space, a main difference among
the two cases regards the planning reserve margin constraint (Eq. 5.27) which can not be
violated in the MOOGEP-noSM case. Therefore, the infeasible region, which is determined
by the planning constraints, in the MOOGEP-noSM-GF is larger. The user defined initial
points suggested in Section 5.3.1 are not supplied.

� Computationally cheap GEP with the temporal resolution set at one day: Each of the pre-
sented cases (Section 5.2.4) is examined using the optimization approach. For this numerical
experiment, temporal resolution has been limited to 24h (tfes < 1sec). The data input of the
first day is used. The five presented test cases will be referred to as MOOGEP-(XXX)-1D,
e.g. MOOGEP-(AC1-EM)-1D. This numerical experiment is also repeated for the greenfield
case and, correspondingly, the five problems will be referred to as MOOGEP-(XXX)-1D-GF.
The test cases (MOOGEP-(XXX)-1D and MOOGEP-(XXX)-1D-GF ) also differ with regard
to the feasible data points that are penalized internally, e.g. the supplied initial point rep-
resenting the minimum capacity additions is feasible in the MOOGEP-(XXX)-1D case and
infeasible in MOOGEP-(XXX)-1D-GF. It also exhibits an extremely high function value due
to high NSE cost for the MOOGEP-(XXX)-1D-GF cases.
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� Large scale MOO GEP considering flexibility constraints: The formulations presented in
Section 5.2.4 are considered to examine the trade-offs of the examined cost terms in MOO
GEP. The numerical experiments are repeated as in the corresponding computationally cheap
numerical experiment. However, the temporal resolution is set at 4 weeks. Each week is
computed independently and the cost terms are summed, i.e. each day/week is assumed
to have an equal weight. These test cases shall be referred to MOOGEP-(XXX)-4W and
MOOGEP-(XXX)-4W-GF for when the existing capacity or the greenfield case are consid-
ered, respectively.

5.4.4 Performance metrics

This Section presents the performance metrics employed to assess the PFA and UFA.

Performance metrics of PFA

The Hypervolume metric (Reference [213]) has been employed to assess the performance of the
optimization approach. It is a Pareto-compliant metric. It may assess both the convergence and
diversity of an attained population. It defines the volume enclosed by a population and a user-
specified reference point (Reference [214]). The HV metric is computed as follows:

HV 1 =
H(NDF pop f )

H(PF ∗)
(5.51)

where HV 1 is the fraction of the HV computed for the NDF of the data points attained from
a single run (H(NDF pop f )) and the HV of the PF (H(PF ∗)). Since an estimation of the PF
of each GEP test case is not available, the HV values are computed w.r.t. a NDF generated by
applying NDS on the feasible data points of all 25 independent runs using the 500 FES limit.
Hereafter, an NDF derived by the aforementioned procedure shall be referred to as the best-found
Non-Dominated Front(NDF*); the NDF* could deviate from the true PF.

Note that function values are normalized based on the maximum and minimum values of each
corresponding function value in PF ∗ (or in NDF* when required). Any population member ex-
ceeding these maximum values is removed. The reference point is set at (1.1,1.1).

Moreover, the HV metric is also employed to estimate the feasible objective space dominated
by each final NDF and account for the initially supplied data points:

HV 2 =
H(NDF pop f )−H(NDF pop in)

H(PF ∗)−H(NDF pop in)
(5.52)

where H(NDF pop f ) is the HV computed for the NDF from the feasible dataset of a single run.
H(NDF pop in) is the HV computed for the NDF attained by the feasible data points of the initial
dataset of the same run. The HV of the PF (H(PF ∗)) is replaced by H(NDF ∗) when the former
is not available. In this case, function values are normalized based on the maximum and minimum
values of all attained feasible solutions within the datasets. Any population member exceeding
these maximum values is removed and the reference point is set at (1.1,1.1).

This metric accounts for the progress attained regarding the dominated feasible objective space
w.r.t. the initial sample. It should be highlighted that the HV is computed based on the entire
dataset attained during each run and differences in the number of solutions in the resulting NDFs
of the runs are not considered.
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In general, higher values of HV 1 and HV 2 suggest an improved performance; in both cases the
ideal values are 1.

Performance metrics of UFA

The metrics employed for measuring the accuracy of the UFA are presented in this Section. The
accuracy is measured according to the Root Mean Square Error (RMSE) and the Coefficient of
determination metrics by employing a leave-one-out cross validation approach. The metrics are
computed independently for each AM and each objective function.

� The value of the RMSE metric is computed as follows:

RMSE =

√∑np
i=1[(f̂(xi)− f(xi))2]

np
(5.53)

where f(xi) is the true value of an objective function for xi, f̂(xi) is the corresponding
prediction of the AM built by excluding data point xi from the dataset and np is the number
of available data points within the dataset. Lower values indicate a more accurate AM and
the ideal value is 0.

� The value of the R2 metric is computed as follows:

R2 = 1−
∑np

i=1[(f̂(xi)− f(xi))
2]

∑np
i=1[(f̂(xi)− fmean)2]

(5.54)

where fmean is the mean value of the available true values of the objective function. For this
metric, higher values are preferred which indicate a more accurate AM and the best possible
value is 1.

5.5 Results

This Section presents the results of the numerical experiments presented in Section 5.4.

5.5.1 Performance of optimization approach on computationally cheap test
cases

In the following Sections the results of the numerical experiments, described in Section 5.4.3, are
presented. For each, a visual illustration of the attained NDF, the values of the HV based metrics
and the performance of the UFA are presented.

Modified computationally cheap test suite (ZDT)

Figure 5.1 presents a visual comparison of non-dominated trade-offs attained by the results for the
min, median and max HV1 in comparison to the true PF (it does not consider the discrete steps)
of each of the five ZDT problems. Moreover, the attained datasets during all 25 optimization runs
and the NDF* are also depicted. Figure 5.2 depicts the attained HV1 and HV2 values for each of
the five test cases within the 500 FES limit imposed. Moreover, Figure 5.3 provides the attained
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results by the implementation of NSGA-III for 500, 10000 and 50000 FES to serve as a point of
reference.

It can be seen that satisfactory results have been attained for the problems ZDT1, ZDT2 and
ZDT3 within the limited FES considered. The optimization approach in ZDT6 had been less
successful. It provided a few true PF members in each independent run. On the contrary, it had
been unsuccessful in providing any true PF member within the limited FES considered for the
ZDT4 problem. Each ZDT test case exhibits distinct challenges (Reference [212]). However, the
corresponding ones for problems ZDT4 and ZDT6 are harder to address in this case. In particular,
the problem ZDT6 exhibits a low density of solutions near the PF and the problem ZDT4 includes
highly multimodal functions and a large number of local Pareto-optimal fronts; the problem ZDT4
is a challenging test case even when perfect information of the functions is available (Reference
[66]).

In general, the deterioration in the performance of the approach could be attributed to the poor
UFA attained. This might be a result of the aforementioned characteristics of the test functions
(ZDT4 and ZDT6) for which attaining a decent UFA is rendered highly challenging. This can be
seen in Figure 5.4 where the values of the performance metrics employed to assess the attained
UFA are presented. More specifically, the values of the metrics indicate that the attained UFA
is less accurate in cases ZDT4 and ZDT6 in comparison to the remaining cases. Consequently,
even if the evolution search performs ideally, the algorithm is likely to converge to false optima,
within the limited FES considered, due to a poor UFA. In addition, the case of stalling to a local
Pareto-optimal front even when a perfect UFA has been achieved cannot be excluded since the
ZDT4 test case exhibits a large number of local Pareto-optimal fronts.

Furthermore, the minimum distance criterion and the variable decimal tolerance can also exclude
a number of possible solutions. An improved solution that exhibits a lower minimum distance to
a data point in the archive than the threshold value cannot be costly evaluated. This, however,
depends on the user-defined parameters and the location of the archived data points.

Computationally cheap GEP test cases neglecting short-term operation

Figure 5.5 presents the results for the min, median and max HV in comparison to the NDF* for
each of the MOOGEP-noSM and MOOGEP-noSM-GF problems. It also presents the combined
dataset attained during all 25 optimization runs and the NDF*. Moreover, the results derived by
NSGA-III for 50000 FES limit are presented. In addition, it presents the corresponding HV1 and
HV2 values. The values of the metrics employed to assess the UFA are presented in Figure 5.6.

The results of NSGA-III are presented to serve only as a point of reference and examine if the
employment of the AMs has mislead the search. It is stressed that the comparison is not fair to any
extent. For example, the NSGA-III: (i) had not been developed with a focus on computationally
expensive optimization problems, (iii) exhibits a much lower solver time, (iv) does not include a
gradient-based local search solver, and (v) does not include a decimal tolerance or a minimum
distance criterion. More importantly, the number of solutions in the NDF attained by the dataset
can exceed the population sized of NSGA-III which has an impact on the computed HV metrics.
Lastly, the optimization approach could be roughly perceived as a variant of NSGA-III. Therefore,
it should be made clear that the results do not undermine the performance of NSGA-III.

By comparing the attained NDFs by the NSGA-III and the optimization approach it can be
observed that both provided satisfactory results. Also, it can be noticed that the AMs had not
mislead the search and an acceleration w.r.t. the FES employed had been achieved. This can be
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seen in Figure 5.6 where the values of the RMSE and R2 are presented. The attained values suggest
that a decent UFA had been achieved. Moreover, by comparing the performance of the algorithms
among the two examined cases (MOOGEP-noSM and MOOGEP-noSM-GF ), the results indicate
that the infeasible region defined by the planning constraint and the differences of considering the
existing capacity have not heavily affected the performance of the optimization approach.

Computationally cheap GEP with limited temporal resolution (one day)

Figure 5.7 presents the combined dataset attained during all 25 optimization runs and the corre-
sponding NDF*. Furthermore, the results for the min, median and max HV in comparison to the
NDF* are presented for the MOOGEP-(XXX)-1D and MOOGEP-(XXX)-1D-GF cases, respec-
tively. Figure 5.8 depicts the corresponding serial progress for the HV1 and HV2 values w.r.t. each
NDF*. The values of the RMSE and R2 metrics are presented in Figures 5.9 and 5.10 for each
MOOGEP-(XXX)-1D and MOOGEP-(XXX)-1D-GF case, respectively.

The results for each of the five different MOO problems in each test case considered were satis-
factory. Moreover, some differences can be observed among the results attained for the MOOGEP-
(XXX)-1D and MOOGEP-(XXX)-1D-GF test cases. Specifically, the optimization approach per-
formed more robustly when the existing capacity had been considered (Fig. 5.8). These differences
had not been observed in the MOOGEP-noSM and MOOGEP-noSM-GF test cases and, there-
fore, could be induced due to the inclusion of the SM. More specifically, it could be attributed to
challenges emerging by large numerical differences among the function values of the attained data
points caused by high penalty costs. This can be observed by comparing the attained datasets (Fig.
5.7) and the corresponding NDFs of each test case. These numerical differences have an impact
on the UFA accuracy as the metrics suggest a better UFA accuracy for the MOOGEP-(XXX)-1D
cases in comparison to the MOOGEP-(XXX)-1D-GF cases (Fig. 5.9 and 5.10).

The cases differ also w.r.t. the costs derived by the existing capacity, which is not assumed as
a capacity addition option in the greenfield cases. Consequently this should be considered when
directly comparing the numerical values of the attained NDFs. Moreover, the results are not
analyzed in terms of trade-offs since a limited temporal resolution (1 day) had been considered.
Such are discussed in the following Section.

5.5.2 Examining trade-offs in MOO GEP considering flexibility constraints

This Section presents the results for the large scale test problems where the five MOO GEP variants
described in Section 5.2.4 are considered. First, the performance of the optimization algorithm is
assessed and the quality of the UFA in each problem is presented. Then the emerging trade-offs
are analysed for each MOO instance.

Performance of the optimization approach

Figure 5.11 presents the combined dataset attained during all 25 optimization runs and the cor-
responding NDF*. The results for the min, median and max HV in comparison to the NDF* are
presented for the MOOGEP-(XXX)-4W and MOOGEP-(XXX)-4W-GF, respectively. Figures 5.12
depicts the corresponding serial progress for the HV1 and HV2 values w.r.t. each NDF*.

The attained NDFs (Fig. 5.11) and the serial progress observed for the values of the HV
metrics (Fig. 5.12) could imply an acceptable performance. This is clearer for the attained for
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the MOOGEP-(XXX)-4W cases. For some of the greenfield cases (MOOGEP-(XXX)-4W-GF ) a
larger number of FES is required as indicate by the results, e.g. MOOGEP-AC2-RP-4W-GF (Fig.
5.12). Figures 5.13 and 5.14 present the attained values of the metrics employed to assess the UFA.

The increase in temporal detail alters the search space (it results in a different optimization
problem). This restricts the extent for which the comparison among the results derived for dif-
ferent temporal detail can be made. However, some observations can be made by comparing the
datasets attained from the numerical experiment including one day (MOOGEP-(XXX)-1D) and
the equivalent ones attained by setting the temporal detail to four weeks (MOOGEP-(XXX)-4W ).
In particular, it is noticed that a larger number of extreme cases are introduced in the dataset of
the former. This could imply that a higher number of states that include penalties are selected to
be costly evaluated. Moreover, the NDF* attained have been also affected as cost terms are derived
based on a larger set of operating conditions.

A reduction in the UFA accuracy is observed based on the metrics employed. These indicate that
the level of accuracy attained in the cases including lower temporal detail had not been achieved.
This is consistent over all MOOGEP-(XXX)-4W cases. It is observed that the highest values of
the metrics are attained for cases MOOGEP-AC2-RP-4W and MOOGEP-AC2-RP-4W-GF. This
might suggest that the penalty term included in the objective function of the remaining cases has an
impact on the UFA accuracy. More specifically, a larger set of operating conditions are examined in
the case where temporal detail is increased. A number of data points evaluated by the SM could be
penalized internally. This penalization adds a high cost to the objective function and, therefore, the
increase in the objective function value is relatively large in comparison to the difference emerging
among data points that are not penalized. Consequently, the underlying function exhibits a large
increase of its value at points that are penalized.

Analysis of the derived cost term values and capacity additions

In this Section, the emerging trade-offs among the cost terms are discussed. In particular, for each
MOOGEP-(XXX)-4W test case the evolution of these cost terms are examined along the attained
NDF. The corresponding capacity additions are presented to facilitate the analysis. For each of
these test case the NDF of the independent run presenting the highest value of the HV1 metric is
discussed.

There are two limitations regarding the follow analysis. Firstly, it is based on the attained PFA
which relies on the performance of the approach. Secondly, the implications of this analysis are
bounded by assumptions made regarding the formulation of the optimization problem, e.g. the
selected SM and the data input of the test case. Moreover, emerging trade-offs can be problem-
specific as these are based on the data input of an examined test case.

Figures 5.15-5.19 present the values of the derived cost terms along the attained NDFs for
the MOOGEP-(XXX)-4W test cases. Figures 5.20-5.24 present the corresponding values of the
decision vectors. It can be seen that different trade-offs can emerge for each one.

� MOOGEP-AC1-EM-4W : Aiming towards a higher emission reduction is associated with
higher investment, FO&M, generating and GPSC cost in comparison to lower aggregated
cost (Fig. 5.15). Moreover, aiming towards lower emission cost results in higher RES pen-
etration including also a low level of RES curtailment. Furthermore, a shift in the selected
capacity additions of thermal units (from TU1 to TU2 in area 2) can be observed (Fig. 5.20)
near the lowest levels of achieved emission cost. The latter has an impact on the trends of
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the cost terms. More specifically, capacity additions in TU2 are prioritized for achieving the
lower emission reductions due to the lower emission factor of TU2 in comparison to TU1.
Lower emission cost can be attributed to the high level of capacity additions in WF, SPV and
CH. Among the aforementioned, WF are prioritized. Capacity additions tend to be allocated
in both areas suggesting that the location might be important.

� MOOGEP-AC2-RP-4W : The results indicate that higher RES penetration levels are asso-
ciated with higher investment, FO&M, GPSC and curtailment cost in comparison to lower
aggregated cost (Fig. 5.16). In contrast, lower generating, VO&M and emission cost are
observed for the former. This can be attributed to the increase in RES capacity additions
(Fig. 5.21). Once again, WF are prioritized among the non-thermal technology groups and
TU1 are prioritized among the conventional thermal units. Capacity additions are also made
in TU3 for the highest achieved levels of RES penetration. Moreover, capacity additions in
RES technology groups tend to be allocated in both areas suggesting that the location might
be important in contrast to capacity addition in TU1. Capacity additions are not made for
CH. This can be anticipated as the contribution of CH generation is not accounted for in the
environmental function and, therefore, such capacity additions could be motivated merely by
a reduction in the value of the aggregated cost objective function (AC2). In a similar manner,
a lower number of capacity additions are made in conventional thermal units (TU1, TU2 and
TU3).

� MOOGEP-OC1-GP-4W : The results indicate that lower operating cost (OC1) are associ-
ated with higher investment, FO&M and GPSC in comparison to lower GPSC (Fig. 5.17).
However, lower GPSC are associated with higher generating, VO&M and emission cost in
comparison to lower operating cost (OC1). As anticipated, lower levels of RES penetration
are attained for lower GPSC. These can be attributed to the observed higher RES capacity
additions (Fig. 5.22) made for achieving lower operating cost that results in higher investment
cost. Consequently, the FO&M cost is also increased. CH capacity additions are prioritized
along the NDF implying that such are beneficial for both objective functions. In general,
capacity additions are made in TU1, RES and CH. Regarding spatial allocation TU1, CH
and RES capacity additions are made in both areas.

� MOOGEP-OC2-IC-4W : The results indicate that lower operating cost (OC2) are associated
with higher investment, FO&M and GPSC and lower generating and emission cost in compar-
ison to lower GPSC (Fig. 5.18). In comparison, to the MOOGEP-OC1-GP-4W case where
CH had been highly prioritized, such capacity additions are made here only for the lowest
levels of operating cost (OC2) (Fig. 5.23). Moreover, a larger number of capacity additions in
TU1, RES and CH is observed for lower values of operating cost (OC2) which consequently
increases the value of the second objective that is comprised by the investment cost (IC).

� MOOGEP-AC3-AP-4W : The results indicate a single solution as optimal (Fig. 5.19). This
implies the aforementioned solution could minimize both considered objective functions. In-
terestingly, the aggregated function prioritizes only a limited number of capacity additions in
TU1 (Fig. 5.24). Consequently, the aforementioned suggests that the benefits from capacity
additions in other technology groups are not sufficient to produce a solution with a lower
value of the aggregated objective function. This can be also attributed to the sufficiency of
the existing capacity to meet the planning reserve margin constraint.
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Overall, the result indicate that a detail assessment of optimal capacity additions on a cost
term level may provide additional information. Given different objective functions, different NDFs
may be generated. The set of alternative solution provided as PFA can be analysed to identify the
optimal one which can be determined based on the decision makers preferences.
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5.5.3 Figures

This Section includes all figures mentioned within the Results Section.

Modified computationally cheap test suite (ZDT)

This Section includes four figures. Figure 5.1 presents the distribution of the data points (objective
space) included within the combined datasets and the NDFs derived for the ZDT test cases. An
estimation of the PF is provided for the comparison. For each such estimation 1000 points have
been used except for ZDT3 which includes 1066 points. Figure 5.2 presents the values of the HV1
and HV2 metrics for the ZDT test cases. Figure 5.4 presents the values of the RMSE and R2. Figure
5.3 presents the results derived for NSGA-III for different limits of available FES in comparison to
the attained ones within the 500 FES limit.

Figure 5.1: The combined datasets (blue dots) and the corresponding NDF ∗ (red X mark) for
each ZDT test case are presented in the upper five sub-figures. The lower five present the NDFs of
a single run which exhibit the maximum (blue circles), median (cyan squares) and minimum (red
diamonds) value of the HV1 metric. Moreover, an estimation of the PF is presented for comparison
(black crosses). For problem ZDT4, the HV2 metric has been used as the HV1 metric is equal to
zero for all 25 runs.
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Figure 5.2: Box plots of the HV1 (left) and HV2 (right) metrics for the ZDT test cases.
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Figure 5.3: NDFs attained by NSGA-III for each ZDT test cases (blue triangles) for 500 FES
(first row), 10000 FES (second row) and 50000 FES (third row). The corresponding NDFs (red
circles) attained within the 500 FES limit by the optimization approach are also presented in each
sub-figure. The NDFs exhibiting the median value of the HV1 metric among the 25 independent
runs have been selected. For problem ZDT4, the HV2 metric has been used for this selection as
the HV1 values are all equal to zero.
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Figure 5.4: The figure presents the values of the RMSE (first and second rows) and R2 (third and
fourth rows) metrics for the ZDT test cases. The first and third row present the metric values for
the first objective function. In a similar manner, the second and fourth row present the metric
values for the second objective function. Each sub-figure includes four box plots presenting the
values of the metrics for the RBF and PR models of each independent run without and with the
inclusion of the outlier technique, namely: RBF, RBF+OT, PR and PR+OT.
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Computationally cheap GEP test cases neglecting short-term operation

This Section includes Figure 5.5 which presents the combined dataset the NDFs attained for a 500
FES limit and the corresponding values of the HV1 and HV2 metrics. Moreover, a comparison is
provided to the results derived by employing NSGA-III for a 50k FES limit.

Figure 5.5: Results derived for the MOOGEP-noSM (upper row) and MOOGEP-noSM-GF (lower
row) test cases employing the optimization approach for a 500 FES limit and NSGA-III for a 50k
FES limit. The feasible data points (blue dots) and infeasible data points (red dots) from the
combined dataset and the corresponding NDF ∗ (black crosses) for each test case are presented in
the sub-figures of the first column. The sub-figures of the second column present the NDFs of a
single run which exhibit the maximum (blue circles), median (cyan squares) and minimum (red
diamonds) value of the HV1 metric in comparison to the corresponding NDF ∗ (black crosses). In
a similar manner, the corresponding results for NSGA-III (50k FES limit) are presented in the sub-
figures of the third column. The box plots within the final two columns present the attained values
for the HV1 (left) and HV2 (right) metrics as derived for the MOOGEP-noSM and MOOGEP-
noSM-GF test cases. The numerical scales of the sub-figures corresponding to the MOOGEP-noSM
and MOOGEP-noSM-GF cases differ.
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Figure 5.6: The figure presents the values of the RMSE (first and second columns) and R2 (third
and fourth columns) metrics for the MOOGEP-noSM and MOOGEP-noSM-GF test cases. The
first row presents the metric values for the first objective function. In a similar manner, the second
row presents the metric values for the second objective function. Each sub-figure includes four box
plots presenting the values of the metrics for the RBF and PR models of each independent run
without and with the inclusion of the outlier technique, namely: RBF, RBF+OT, PR and PR+OT.
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Computationally cheap GEP with limited (1day) temporal detail

This Section includes four figures. Figure 5.7 presents the combined datasets, the NDFs attained
for a 500 FES limit for each of the MOOGEP-(XXX)-1D and MOOGEP-(XXX)-1D-GF test cases.
The corresponding values of the HV1 and HV2 metrics are presented in 5.8. Figure 5.9 presents
the values of the RMSE and R2 metrics for the MOOGEP-(XXX)-1D cases. In a similar manner,
Figure 5.10 presents the values of the RMSE and R2 metrics for the MOOGEP-(XXX)-GF-1D
cases.
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Figure 5.7: Results derived for the MOOGEP-(XXX)-1D and MOOGEP-(XXX)-1D-GF test cases
employing the optimization approach for a 500 FES limit. The feasible data points (blue dots)
and infeasible data points (red dots) from the combined dataset and the corresponding NDF ∗

(black crosses) for each MOOGEP-(XXX)-1D test case are presented in the sub-figures of the first
row. The second row present the NDFs of a single run which exhibit the maximum (blue circles),
median (cyan squares) and minimum (red diamonds) value of the HV1 metric in comparison to
the attained NDF ∗ (black crosses) for each MOOGEP-(XXX)-1D test case. The third and fourth
rows correspond to the results for the MOOGEP-(XXX)-1D-GF cases.
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Figure 5.8: The figure presents the HV1 (first and third rows) and HV2 (second and fourth rows)
values for the MOOGEP-(XXX)-1D (first and second rows) and MOOGEP-(XXX)-1D-GF (third
and fourth rows) test cases. The first step of each box plot represents the value attained by the
initially supplied data points of each independent run. Each of the remaining steps corresponds to
the HV values attained by the datasets including up to i ∗ 100 data points (FES), e.g. the third
step (3) represents the HV values for the independent datasets including up to 300 data points.
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Figure 5.9: The figure presents the values of the RMSE (first and second rows) and R2 (third and
fourth rows) metrics for the MOOGEP-(XXX)-1D test cases. The first and third row present the
metric values for the first objective function while the second and fourth row correspond to the
ones of the second objective function. Each sub-figure includes four box plots presenting the values
of the corresponding metrics for the RBF and PR models of each independent run without and
with the inclusion of the outlier technique, namely: RBF, RBF+OT, PR and PR+OT. For the
MOOGEP-AC3-AP-1D case 2 runs had not attained a value including a penalty term and these
are excluded from computing the R2 metric.
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Figure 5.10: The figure presents the values of the RMSE (first and second rows) and R2 (third and
fourth rows) metrics for the MOOGEP-(XXX)-1D-GF test cases in a similar manner to Fig. 5.9.
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Examining trade-offs in MOO GEP considering flexibility constraints

This Section includes four figures. Figure 5.11 presents the combined datasets, the NDFs attained
for a 500 FES limit for each of the MOOGEP-(XXX)-4W and MOOGEP-(XXX)-4W-GF test
cases. The corresponding values of the HV1 and HV2 metrics are presented in 5.12. Figures 5.13
and 5.14 present the values of both, the RMSE and R2, metrics for the MOOGEP-(XXX)-4W and
for the MOOGEP-(XXX)-4W-GF cases, respectively.
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Figure 5.11: Results derived for the MOOGEP-(XXX)-4W and MOOGEP-(XXX)-4W-GF test
cases employing the optimization approach for a 500 FES limit. The feasible data points (blue
dots) and infeasible data points (red dots) from the combined dataset and the corresponding NDF ∗

(black crosses) for each MOOGEP-(XXX)-4W test case are presented in the sub-figures of the first
row. The second row present the NDFs of a single run which exhibit the maximum (blue circles),
median (cyan squares) and minimum (red diamonds) value of the HV1 metric in comparison to
the attained NDF ∗ (black crosses) for each MOOGEP-(XXX)-4W test case. The third and fourth
rows correspond to the results for the MOOGEP-(XXX)-4W-GF cases.
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Figure 5.12: The figure presents the serial progress of the HV1 (first and third rows) and HV2 (sec-
ond and fourth rows) values for the MOOGEP-(XXX)-4W (first and second rows) and MOOGEP-
(XXX)-4W-GF (third and fourth rows) test cases. Each step represents an addition of 100 FES to
the FES limit.
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Figure 5.13: The figure presents the values of the RMSE and R2 metrics for the MOOGEP-(XXX)-
4W test cases.
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Figure 5.14: The figure presents the values attained for the RMSE and R2 metrics for the MOOGEP-
(XXX)-4W-GF test cases.
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Cost terms and capacity additions for cases including the existing capacity

This Section includes ten figures. In each figure (Figures 5.15 -5.19) the evolution of the cost term
values along the attained NDF for one of the five MOOGEP-(XXX)-4W test cases is presented.
Correspondingly, Figures 5.20 -5.24 present the capacity additions along the attained NDF for each
of the five MOOGEP-(XXX)-4W test cases.
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Figure 5.15: The figure presents the cost term values along the attained NDF for the MOOGEP-
AC1-EM-4W test case. The colour of the dots indicates that the cost term participates in the AC1
function (blue), in the EM function (red), in none (black) or both functions (cyan). All values are
in monetary terms.
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(a) Cost term values for the corresponding AC1 function values of the best attained NDF of a single inde-
pendent run based on the HV1 metric.

5.00 5.50 6.00 6.50 7.00 7.50 8.00

EM 10
8

2.00

4.00

6.00

8.00

10.00

c
in

v

10
8

5.00 5.50 6.00 6.50 7.00 7.50 8.00

EM 10
8

3.00

3.50

4.00

4.50

5.00

c
fo

m

10
8

5.00 5.50 6.00 6.50 7.00 7.50 8.00

EM 10
8

5.00

6.00

7.00

8.00

c
g

p

10
7

5.00 5.50 6.00 6.50 7.00 7.50 8.00

EM 10
8

4.00

5.00

6.00

7.00

8.00

c
g

e
n

10
8

5.00 5.50 6.00 6.50 7.00 7.50 8.00

EM 10
8

1.20

1.30

1.40

1.50

1.60

c
v

o
m

10
8

5.00 5.50 6.00 6.50 7.00 7.50 8.00

EM 10
8

5.00

6.00

7.00

8.00

c
e

m

10
8

5.00 5.50 6.00 6.50 7.00 7.50 8.00

EM 10
8

6.00

8.00

10.00

12.00

c
rp

10
6

5.00 5.50 6.00 6.50 7.00 7.50 8.00

EM 10
8

0.00

5.00

10.00

15.00

c
c

s

10
5

5.00 5.50 6.00 6.50 7.00 7.50 8.00

EM 10
8

-1.00

-0.50

0.00

0.50

1.00

c
n

s
e

(b) Cost term values for the corresponding EM function values of the best attained NDF of a single inde-
pendent run based on the HV1 metric.
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Figure 5.16: The figure presents the cost term values along the attained NDF for the MOOGEP-
AC2-RP-4W test case. The colour indicates that the cost term participates in the AC2 function
(blue), in the RP function (red), in none (black) or both functions (cyan), respectively. All values
are in monetary terms.
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(a) Cost term values for the corresponding AC2 function values of the best attained NDF of a single inde-
pendent run based on the HV1 metric.
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(b) Cost term values for the corresponding RP function values of the best attained NDF of a single inde-
pendent run based on the HV1 metric.
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Figure 5.17: The figure presents the cost term values along the attained NDF for the MOOGEP-
OC1-GP-4W test case. The colour indicates that the cost term participates in the OC1 function
(blue), in the GP function (red), in none (black) or both functions (cyan), respectively. All values
are in monetary terms.
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(a) Cost term values for the corresponding OC1 function values of the best attained NDF of a single inde-
pendent run based on the HV1 metric.

4.00 5.00 6.00 7.00 8.00 9.00

GP 10
7

4.00

5.00

6.00

7.00

8.00

c
in

v

10
8

4.00 5.00 6.00 7.00 8.00 9.00

GP 10
7

4.60

4.80

5.00

5.20

c
fo

m

10
8

4.00 5.00 6.00 7.00 8.00 9.00

GP 10
7

4.00

5.00

6.00

7.00

8.00

c
g

p

10
7

4.00 5.00 6.00 7.00 8.00 9.00

GP 10
7

3.40

3.60

3.80

4.00

4.20

c
g

e
n

10
8

4.00 5.00 6.00 7.00 8.00 9.00

GP 10
7

1.30

1.35

1.40

1.45

1.50

c
v

o
m

10
8

4.00 5.00 6.00 7.00 8.00 9.00

GP 10
7

5.80

6.00

6.20

6.40

6.60

c
e

m

10
8

4.00 5.00 6.00 7.00 8.00 9.00

GP 10
7

6.00

8.00

10.00

12.00

c
rp

10
6

4.00 5.00 6.00 7.00 8.00 9.00

GP 10
7

-1.00

-0.50

0.00

0.50

1.00

c
c

s

4.00 5.00 6.00 7.00 8.00 9.00

GP 10
7

-1.00

-0.50

0.00

0.50

1.00

c
n

s
e

(b) Cost term values for the corresponding GP function values of the best attained NDF of a single inde-
pendent run based on the HV1 metric.
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Figure 5.18: The figure presents the cost term values along the attained NDF for the MOOGEP-
OC2-IC-4W test case. The colour indicates that the cost term participates in the OC2 function
(blue), in the IC function (red), in none (black) or both functions (cyan), respectively. All values
are in monetary terms.
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(a) Cost term values for the corresponding OC2 function values of the best attained NDF of a single inde-
pendent run based on the HV1 metric.
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(b) Cost term values for the corresponding IC function values of the best attained NDF of a single independent
run based on the HV1 metric.
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Figure 5.19: The figure presents the cost term values along the attained NDF for the MOOGEP-
AC3-AP-4W test case. The colour indicates that the cost term participates in the AC3 function
(blue), in the AP function (red), in none (black) or both functions (cyan), respectively. All values
are in monetary terms.

1.99 1.99 1.99 1.99 1.99 1.99

AC3 10
9

1.80

1.80

1.80

1.80

1.80

c
in

v

10
8

1.99 1.99 1.99 1.99 1.99 1.99

AC3 10
9

3.12

3.12

3.12

3.12

3.12

c
fo

m

10
8

1.99 1.99 1.99 1.99 1.99 1.99

AC3 10
9

4.34

4.34

4.34

4.34

4.34

c
g

p

10
7

1.99 1.99 1.99 1.99 1.99 1.99

AC3 10
9

4.99

4.99

4.99

4.99

4.99

c
g

e
n

10
8

1.99 1.99 1.99 1.99 1.99 1.99

AC3 10
9

1.64

1.64

1.64

1.64

1.64
c

v
o

m
10

8

1.99 1.99 1.99 1.99 1.99 1.99

AC3 10
9

7.90

7.90

7.90

7.90

7.90

c
e

m

10
8

1.99 1.99 1.99 1.99 1.99 1.99

AC3 10
9

6.41

6.41

6.41

6.41

6.41

c
rp

10
6

1.99 1.99 1.99 1.99 1.99 1.99

AC3 10
9

-1.00

-0.50

0.00

0.50

1.00

c
c

s

1.99 1.99 1.99 1.99 1.99 1.99

AC3 10
9

-1.00

-0.50

0.00

0.50

1.00

c
n

s
e

(a) Cost term values for the corresponding AC3 function values of the best attained NDF of a single inde-
pendent run based on the HV1 metric.
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Figure 5.20: The figure presents the decision vector values along the attained NDF for the
MOOGEP-AC1-EM-4W test case. Blue colour indicates the capacity additions made in area 1
and red is used for area 2. The total capacity additions are presented in black colour.
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Figure 5.21: The figure presents the decision vector values along the attained NDF for the
MOOGEP-AC2-RP-4W test case. Blue colour indicates the capacity additions made in area 1
and red is used for area 2. The total capacity additions are presented in black colour.
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Figure 5.22: The figure presents the decision vector values along the attained NDF for the
MOOGEP-OC1-GP-4W test case. Blue colour indicates the capacity additions made in area 1
and red is used for area 2. The total capacity additions are presented in black colour.
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Figure 5.23: The figure presents the decision vector values along the attained NDF for the
MOOGEP-OC2-IC-4W test case. Blue colour indicates the capacity additions made in area 1
and red is used for area 2. The total capacity additions are presented in black colour.
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Figure 5.24: The figure presents the decision vector values along the attained NDF for the
MOOGEP-AP3-AP-4W test case. Blue colour indicates the capacity additions made in area 1
and red is used for area 2. The total capacity additions are presented in black colour.
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5.6 Discussion, limitations and future research directions

The derived results indicate that the proposed framework may constitute a promising approach
for examining trade-offs within MOO GEP. The result are further discussed in this Section based
on the performance of the optimization approach and the GEP model’s resolution indicating also
limitations and future research directions.

The performance of the approach has been examined revealing satisfactory results. Specifically,
it provided a NDF which had been a decent PFA in most cases examined w.r.t. the considered
computational restrictions. However, it should be considered that the framework is based on a
heuristic approach when analysing its results. For example, a poor UFA impeded the algorithm
from providing a decent PFA in the case of highly multimodal functions (i.e. ZDT4).

Moreover, additional limitations may arise due to the included operators. For example, high
dimensionality (number of different types of candidate capacity additions and areas) may have
an impact on the algorithms performance. Specifically, high dimensionality may impact the AMs
and/or the EA (mating operators) performance which both have been reported to suffer from the
curse of dimensionality. Therefore, larger values of available Max FES and Max Gen should
be considered for high dimensional problems. Different ranges have been examined within the
numerical experiments, i.e. 10 variables (ZDT4 and ZDT6), 12 variables (all GEP test cases) and
30 variables (ZDT1, ZDT2 and ZDT3).

The optimization approach has been examined using RBF and PR models as AMs, a DE
and a GA variant as Variation operators and the Environmental-Selection operator of NSGA-III.
The results suggested a satisfactory performance. However, many other AMs and corresponding
operators can be identified within the literature and could, possibly, be examined.
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Lastly, the inclusions of data points that present extreme values may have some impact on the
performance of the algorithm. Such data points arise mostly due to the penalty term. In general,
low penalty parameters may result in an augmented function for which the global optimum is
located within the penalized region. On the other hand, high values of the penalty term may
deteriorate the UFA accuracy within the region which is not penalized. There are some other
possible directions to reduce the impact of the aforementioned: i) the penalty term can be set as an
additional objective function increasing, however, the number of objective functions, ii) the penalty
term could be scaled by a predefined parameter which requires tuning, iii) the search space can be

limited, i.e. the Xinv
a,g and X

inv
a,g , to exclude a number of unrealistic cases which requires a priori

information and the inclusion of bias. The local AMs could be less sensitive to the aforementioned
since in some cases extreme data points might be excluded from the dataset.

The GEP model presented considers cost terms commonly included within GEP formulations.
A main advantage of this framework is that such cost terms are computed by considering short-
term operation (when applicable). Therefore, operational flexibility, to some extent, is considered
implicitly. In general, technical (e.g. operational flexibility constraints), temporal (e.g. a year
of operation on an hourly resolution) and spatial detail (e.g. two different areas including power
exchange limitations among them) have been accounted for by including a SM. The latter is based
on the model presented in [29] and included for providing a decent approximation of a UCP in a
relatively low computational cost. For the purposes of this study and possibly for the context of
long-term planning which involves uncertainty by various other sources, it could be appropriate.
However, it remains a problem approximation of a UCP model. Within this context, different SM
that may provide the required output (the vector v) for computing the objective functions can be
examined within the presented framework.

The results indicate that investment and FO&M cost are an important cost factor for deter-
mining a set of optimal alternatives. For example, aggregated cost functions including the afore-
mentioned suggest a limited number of capacity additions in comparison to the ones focusing on
the short-term operation. This could imply the importance of incentives to support optimal invest-
ments in capacity additions. Overall, a larger number of capacity additions resulted to operating
cost reductions (e.g. generation and emission cost) and increased levels of RES penetration. For
example, the extreme values of the best non-dominated front attained (Figure 5.11) for the consid-
ered operating and investment cost functions suggest that a 96% reduction (from 0.809 beto 0.032
be) of the investment cost could result in a nearly 40% increase of operating cost (from 1.656 beto
2.313 be).

There are additional cost sources that could be examined, e.g. the cost of transmission losses or
the cost of an expansion in the transmission system. Moreover, MOO GEP can consider many other
objectives within a multi-period GEP formulation. Limitations arise also due to the assumptions
and simplifications made when formulating the objective functions. For example, the GPSC should
consider more market conditions and the impact of RES penetration on the system marginal price.
For example, the determined objective function does not capture benefits arising from the reduction
of operating cost. Therefore, the impact of a policy supporting RES penetration should be assessed
both in terms of cost and benefits arising on short-term operation. This is shown by the attain
NDF of the MOOGEP-OC1-GP-4W case. Furthermore, thermal units fuel and emission cost
functions are in general non-linear. Moreover, the output of RES technology groups and CH has
been assumed to increase linearly w.r.t. the capacity additions. Also, some data input that are
characterized as stochastic have been assumed deterministic, e.g. RES generation and the demand.
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Chapter 6

Concluding remarks

This Chapter summarizes the main contributions of this dissertation.

6.1 Conclusions

Chapter 4 presents a MAEA-based approach for SOO multi-period GEP. It aimed at capturing
challenges considering the transition towards higher shares of generation by RES and is intended to
be used in parallel to other mature and well-established GEP models. Approximation models had
been employed within the MAEA-based approach to estimate the output of a SM. The latter serves
as a cost indicator of the short-term operation of a power system. In general, the computational
time is highly depended to the computational cost of the SM. Assuming a SM adequate to capture
operational restrictions, the inclusion of the AMs aimed towards attaining a near-optimal solution
by utilizing a limited number of simulations.

The first objective had been to examine the applicability of the developed approach. Therefore,
a series of numerical experiments had been carried out. The results for the test case examined
suggested that satisfactory results had been attained. More specifically, the targeted installed
capacity had been identified within the predefined limit of simulations. In addition, the approach
identified consistently a near-optimal solution for the two SM included. Moreover, the assessment
of the quality of the approximation attained indicates that the estimated errors, based on the
metrics employed, are not very large. These errors were not sufficient to restrict the algorithm
from attaining the same near-optimal solution. Moreover, a visual analysis has been also conducted
to examine the sensitivity of the operating cost towards the installed capacity revealing that the
AMs had capture it in an acceptable manner. These indicated that an increase in investments in
capacity additions could have triggered operating cost reductions for the final year of the planning
horizon.

Consequently, the developed MAEA-based GEP model could constitute a promis-
ing approach to identify near-optimal solutions for SOO multi-period GEP including
a SM of the short-term operation of a power system. In addition, employing the AMs
to perform a visual analysis could be a simple approach to assess the sensitivity of
the operating cost towards the installed capacity of an attained near-optimal solution
assuming that a decent approximation has been achieved.

The second objective considered had been to evaluate the possible gain of including problem-
customized operators (i.e. the RRH, blk and PO) based on domain-specific knowledge. These had
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been developed and examined as enhancements to a basic DE algorithm. A series of numerical
experiments for DE variants including combinations of the aforementioned had been carried out
and their impact on the performance of the algorithm had been evaluated. The results derived
suggest that the variants including the RRH and blk or the RRH, blk and PO had been the most
competitive. However, the highest gain had been achieved by the inclusion of the RRH.

Therefore, problem-specific operators could be relevant to enhance the performance
of an EA applied on a GEP formulation. More importantly, an operator that repairs
infeasible solutions generated by an EA population should be prioritized when the
optimization problem involves constraint functions for which information regarding
the constraint functions is available.

The third objective considered had been to assess the impact of including a SM when increased
shares of generation by RES are examined. The importance of technical, temporal and spatial
detail of the short-term operation represented in a long-term model had been examined in recent
studies (these are discussed in Section 2.2.5). Therefore, the results attained by including different
SMs had been compared. Specifically, three cases had been considered. The first, which served as a
point of reference, did not include a SM and the operating cost had not been evaluated. Therefore, a
near-optimal solution had been attained based on investment and FO&M cost. The second included
a SM that captures the operating cost, however, it presented relatively lower technical detail (cost
and limitations arising from restriction of the UCP are omitted). The third included a SM based on
the CUC framework that exhibited high technical detail w.r.t. the context of long-term planning.
The comparison had focused on technical detail. Temporal detail had remained constant among the
two SMs, while spatial detail had been neglected. Moreover, non-thermal flexibility providers had
been included as investment options in all three cases. Based on the attained results, differences had
been observed in the derived near-optimal solution (investment decisions), the derived generating
mix and cost of each near-optimal solution when evaluated by both SM. The differences in the
generating mix suggested a decrease in the utilization of the flexibility providers when an installed
capacity had been evaluated by the SM including less technical detail. This had been attributed
to the omission of technical restrictions which had rendered the utilization of flexibility providers
less necessary. Consequently, differences in the corresponding operating cost had emerged. These
had been adequate to shift the ranking of the installed capacity perceived as more cost-efficient
and had led to the differences in the derived investment decisions.

For this reason, the technical detail of the short-term operation represented in a
selected SM employed to assess a candidate generating fleet within a multi-stage GEP
model could be important to efficiently meet the operating flexibility requirements and
examine the available flexibility providers, when such are considered as investment
options.

Chapter 4 presents a MAEA-based approach for MOO static GEP. It had aimed at capturing
cost trade-offs by assessing flexibility requirements and their impact on the considered cost terms.
This had been implemented by including a short-term SM that had been used to provide an
indicator of the short-term operation. To address computational restrictions, AMs are employed
to provide an estimate of the output of the SM. The approach is developed based on frameworks
for surrogate-assisted derivative-free optimization.

The first objective had been to examine the performance of the approach. This had been
implemented by carrying out a series of numerical experiments. The aforementioned included a
MOO test suite (modified ZDT). The results derived regarding the performance of the optimization
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approach had been satisfactory given the computational restrictions. More specifically, a decent
PFA had been achieved for the ZDT1,ZDT2 and ZDT3 problems. However, the optimization
approach had been less successfully on the ZDT4 and ZDT6 problems. This had been attributed
to the poor UFA achieved. Particularly, it had been observed a decent UFA for highly multi-
modal functions had not been achieving within the predetermined limit of function evaluations
that had resulted to a poor PFA. In comparison to a base algorithm, used as a point of reference,
an acceleration of the convergence rate had been achieved if a focus on computational restrictions
is made.

Consequently, the MOO-MAEA based approach can attain an acceptable PFA
within a predefined limit of function evaluations. However, for complex MOO (e.g.
including a large number of local optima) achieving a decent UFA is rendered highly
challenging. This can restrict the optimization approach from attaining an acceptable
PFA.

Apart from the modified ZDT test suite, a series of numerical experiments had been carried out
on MOO-GEP variants. Five different MOO-GEP problems had been formulated with different
pairs of objective functions. The SM and the considered planning constraint functions are included
in each MOO-GEP variant. Moreover, a sixth case had been examined which neglected short-
term operation which corresponds to a computationally cheap MOO problem. The optimization
approach had been applied on a test case loosely based on a real power sector that had considered
the existing capacity and the greenfield case. The numerical experiments for the five MOO-GEP
variants had been examined by including two different levels of temporal detail for the shot-term
operation. In particular, in the first set a single day and in the second four weeks had been selected.
Spatial and technical detail not had been altered in all cases.

The results for the two cases (i.e. existing capacity and greenfield case) regarding the perfor-
mance of the optimization approach on the computationally cheap cases suggest that an acceptable
PFA had been achieved. These had been comparable to a base algorithm, intended for compu-
tationally cheap optimization problems, despite the computational restrictions imposed on the
optimization approach. Moreover, an acceptable UFA had been achieved based on the metrics
employed to assess its quality. By comparing the results for the two cases (existing capacity and
greenfield cases), it had been observed that the performance of the approach had not been consid-
erably affected. This is shown by the metrics employed to assess the algorithms performance and
the quality of the UFA.

Therefore, the MOO-MAEA based approach can attain an acceptable PFA within
a predefined limit of function evaluations for a computationally cheap MOO-GEP
model. However, for a computationally cheap model a MOEA could be also employed
since the computational restrictions are not binding.

The results for the ten cases (i.e. existing capacity and greenfield cases for each of the five MOO-
GEP variants) regarding the performance of the optimization approach on the computationally
cheap cases including a SM with limited temporal detail suggest that an acceptable PFA had been
achieved. Given the computational restrictions imposed on the optimization approach, the serial
progress of the Hypervolume metrics suggest a progressive increase of the PFA accuracy. However,
the inclusion of the SM can affect the performance of the optimization approach as a relatively lower
UFA had been achieved. This is evident in the greenfield cases as for the cases including existing
capacity a relatively decent UFA had been achieved. The impact on the accuracy of the UFA had
been attributed to numerical differences arising due to the penalty cost term attained by the SM
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and included in the objective functions. In particular, the highest levels of UFA accuracy had been
attained for the variant including the penalty term as one of the objective functions. Moreover, the
distribution of the data point within the objective space indicates that a higher number of data
points exhibit installed capacities that are penalized for the greenfield cases in comparison to the
considering the existing capacity. Nevertheless, the Hypervolume metrics and the visual analysis of
the PFA suggest the decrease in the accuracy of the UFA had not heavily affected the performance
of the optimization approach.

Hence, the MOO-MAEA-based approach can attain an acceptable PFA within a
predefined limit of function evaluations for a computationally cheap MOO-GEP model
including a SM limited temporal detail. However, the inclusion of a SM can affect the
accuracy of the UFA. One of the main factors identified for this effect is the CHT used
to address infeasible installed capacity, since the penalty terms can exhibit relevantly
high cost values.

The final ten cases (i.e. existing capacity and greenfield cases for each of the five MOO-GEP
variants) are an illustration of the application of the MOO-MAEA-based approach. These had
included a SM with increased temporal detail. Satisfactory results regarding the performance of
the optimization approach had been attained w.r.t. the computational restrictions. In particular,
the serial progress of the metrics employed for assessing the PFA indicates that the approximation
of the PFA could be acceptable given the computational restriction. Also, it suggests that an
increase in the available simulations could improve the PFA accuracy in some cases. Moreover,
the results had also demonstrated that numerical differences arising due to the inclusion of the
penalty cost term had affected the UFA accuracy. This had been observed for all cases except for
the ones including the penalty term as a separate objective function. Moreover, the Hypervolume
metrics and the visual analysis of the PFA suggest that the decrease in the accuracy of the UFA
had not impeded the optimization approach from attaining a decent PFA w.r.t. the computational
restrictions.

Therefore, the MOO-MAEA-based approach can constitute a promising approach
for an analysis of emerging cost trade-offs in MOO-GEP including a SM for assessing
operational flexibility. However, a trade-off among computational burden and PFA
accuracy is also identified.

The second objective had been to examine the cost trade-off that had emerged. The results
of the five cases considering the existing capacity had been used. The analysis had been based
on the derived NDF and under the assumption that it represents a decent PFA (i.e.these cannot
be termed as the PF). The results of the analysis highlight the importance of interpreting the
results on a cost term level. In particular, given different objectives different conclusions can be
drawn regarding the near-optimal capacity additions as anticipated. This had been attributed to
the impact of each cost term on each an aggregated function. The first economic-environmental
formulation (MOOGEP-AC1-EM-4W ) suggested that a decrease in emission cost can be associated
with higher aggregated cost. The second economic-environmental formulation (MOOGEP-AC2-
RP-4W ) suggested an increase of the level of RES penetration can be associated with higher
aggregated cost. Both formulations indicated that investments in GHG-free capacity additions or
new efficient thermal installation are required. The third formulation (MOOGEP-OC1-GP-4W )
had considered an operational and RES policy formulation. Capacity additions are prioritized
for RES and CH and thermal base-load units. The results suggested that a reduction of the
operating cost requires an increase in the GPSC. This could imply that when assessing possible
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support schemes for RES (e.g. FIT) the benefits of an increased GPSC could trigger operating
cost reductions which could have an impact on the prices observed by the consumers. The forth
formulation (MOOGEP-OC2-IC-4W ) indicated that higher investment cost can lead to operating
cost reductions. Thus, highlighting the importance of incentives for capacity additions in cost
efficient technology groups. The fifth formulation MOOGEP-AC3-AP-4W suggested that a limited
number of investments (in base-load units) are required to attain a cost efficient power system. This
had been attributed to the impact of specific cost terms (e.g. investment and FO&M cost) on the
objective function value which had rendered less efficient more capacity additions.

Therefore, a cost term analysis based on a MOO-GEP approach could identify
trade-offs and provide an assessment of capacity additions on a cost term level. Due
to the different aspects and objectives that can be considered in a GEP formulation,
Many-objective optimization approaches are suggested as a promising extension.

The importance of GEP models with increased technical, temporal, and spatial detail of the
short-term operation of a power system for efficiently integrating high shares of RES has been
stressed throughout the literature (References [1, 2, 3, 4, 9]). Given the above, this thesis focused
on integrating GEP models with SMs for the short-term operation of a power system within a
MAEA framework. Considering the computational restrictions and the satisfactory results for the
SOO and MOO problems examined, the developed approaches could be promising to facilitate the
decision making process and support well established GEP models.

The following Section provides a note on future research directions.

6.2 Future research directions

Limitations have been identified and discussed in previous Section. Based on the aforesaid, a
number of future research directions that could be considered are the following:

1. The formulation exploits the modelling flexibility provided by EAs. Different SMs, for the
short-term operation of a power system could be examined.

2. There are many objectives involved in the decision making process of a GEP. An extension of
the MOO approach to consider a larger number of objectives (Many-objective optimization)
of a Multi-stage GEP including SM of the short-term operation could be of interest.

3. The scope of this thesis had not included GEP-TEP formulations. Due to the importance of
TEP, especially for the case of high shares of generation by RES, accounting for the expansion
of the transmission system with increased spatial detail could be considered to capture also
a wider range of market conditions and the role of electricity trading.

4. Computational efficient metrics have been suggested to assess operational flexibility of an
installed capacity. It would be of interest to examine if such metrics can be exploited during
the search to select new data points.

5. There are other frameworks for surrogate-assisted derivative-free optimization that have not
been examined in this thesis. Also, different AMs, EA operators and refining strategies could
be possibly examined.

6. Long-term and short-term planning involve uncertainty and a risk assessment could be rep-
resented in the presented approaches.
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7. Extending the formulation of the GEP model to account for emerging challenges such as the
integration of electric vehicles.
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Appendix A

Simulation model based on Cluster
Unit Commitment

This Section presents the SMCUC used to provide an indicator of the short-term operation of a
power system. The CUC formulation is adopted which is based on References [7, 8, 191]. The
formulation of the cost terms, objective and constraint functions are presented in the following
Sections.

A.1 Cost terms - SM

In this Section the cost terms considered in the SM are presented. These are the start-up and
shut-down cost, generation cost, RES curtailment cost, load shedding cost and reserve shortage
cost and are computed as follows:

1. Start-up and shut-down cost : Start-up and shut-down cost is computed as a fixed cost added
for each start-up and shut-down of a unit:

csusd =
∑

g

∑

h

[usug,hSUCg + usdg,hSDCg] (A.1)

2. Generation cost : The generation cost is computed based on fixed and variable cost parameters
of each group of generating units:

cgen =
∑

g

∑

h

[uong,hC
fixed
g + pg,hC

var
g ] (A.2)

3. RES curtailment cost : RES curtailment cost is set as the total curtailed RES generation
penalized by a curtailment cost factor:

ccurt = PCcurt
∑

h

[εcurth ] (A.3)

4. Load shedding cost : Load shedding is penalized by a cost factor as follows:

cls = PC ls
∑

h

[εlsh ] (A.4)
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5. Reserve shortage cost : Reserve shortage is penalized by a cost factor as follows:

crs = PCrs
∑

h

[εrsh ] (A.5)

A.2 Objective function - SM

The objective function is set as the minimization of total operating cost. An aggregated objective
function is considered which is the sum of start-up and shut-down cost, generation cost, RES
curtailment cost, load shedding cost and reserve shortage cost.

minimize oc = csusd + cgen + ccurt + cls + crs (A.6)

A.3 Constraint functions

The adopted formulation considers basic constraints regarding the power balance and reserves of the
system, technical limitations of the thermal units, the CH aggregated unit and the HS aggregated
unit.

1. Logical constraints: The number of on-line units is controlled by the number of units starting-
up and shutting-down in previous hours:

uong,h+1 = uong,h − usdg,h + usug,h,∀g, h ∈ [1, . . . , hz − 1] (A.7)

2. Demand constraints: The total generation should meet the total demand at each hour of the
examined scheduling period:

∑

g

[pg,h] + pchh + pph − psth + P
res
h − εcurth + εlsh = Demh, ∀h (A.8)

where the total RES output (P
res

) in each hour is computed as follows:

P
res
h =

∑

tres

[PP restres,hAUtresP
net
tres ],∀h (A.9)

3. Reserve requirements constraints: Reserves are assumed to be available for mitigating the
impact of possible unit outages and deviations of the actual load from the anticipated one:

εrsh +
∑

g

[rg,h] = rrh, ∀h (A.10)

where reserve requirements (rr) are assumed as a percentage of the expected demand and a
percentage of the expected RES output:

rrh = RRdem(Demh − εlsh ) +RRres(P
res
h − εcurth ),∀h (A.11)

The maximum reserve requirements in each hour (RR) can be computed (Eq. A.11) by
assuming zeros load shedding and RES curtailment, i.e. εlsh = 0 and εcurth = 0. These reserve
requirements are a rather simplified formulation. A more detailed consideration of operating
reserves has been considered in References [8, 37].
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4. Minimum up time constraints: A committed unit must remain on-line for a minimum number
of time intervals before it can be shut-down:

uong,h ≥
MUTg∑

hh=1

[usug,h−hh],∀g, h (A.12)

5. Minimum down time constraints: A unit that has been shut-down must remain off-line for a
number of time intervals before it can be brought on-line:

AUg − uong,h ≥
MDTg∑

hh=1

[usdg,h−hh],∀g, h (A.13)

6. Ramp rate constraints: A unit can adjust its power output at a limited rate based on its
ramping capabilities. The constraints accounts also for start-up and shut-down limitations:

pg,h+1 + rg,h+1 − pg,h ≤ RUg(uong,h − usdg,h)

+ SUgu
su
g,h − P gusdg,h

,∀h ∈ [1, . . . , hz − 1], g (A.14)

pg,h + rg,h − pg,h+1 ≤ RDg(u
on
g,h − usdg,h)

+ SDgu
sd
g,h − P gusug,h

, ∀h ∈ [1, . . . , hz − 1], g (A.15)

7. Minimum operating point : The lower operating point limit of the generating units is set as
follows:

pg,h ≥ uong,hP g,∀g, h (A.16)

8. Maximum operating point : The maximum power limit of the generating units, considering
also the start-up and shut-down capabilities, is formulated as follows:

pg,h+1 + rg,h+1 ≤ P guong,h+1 − (P g − SUg)usug,h,∀h ∈ [1, . . . , hz − 1], g (A.17)

pg,h + rg,h ≤ P guong,h − (P g − SDg)u
sd
g,h,∀g, h (A.18)

9. HS energy content constraints: HS units are modelled by an aggregated unit. The energy
content is limited by a minimum and maximum level scaled by the available HS units:

∑

ths

[AUthsP
net
ths E

hs
h,ths ] ≤ echsh ≤

∑

ths

[AUthsP
net
ths E

hs
h,ths ], ∀h (A.19)

where the energy content in each hour is computed as follows:

echsh+1 = echsh −
pph+1

Effp
+ psth+1Eff

st, ∀h ∈ [1, . . . , hz − 1], (A.20)

10. CH energy content constraints: The energy content constraints of the CH aggregated unit
are set as follows:

ecchh+1 = ecchh −
pchh+1

Eff ch
+
∑

tch

[AUtchIn
ch
h,tchP

ch
h,tch ], ∀h ∈ [1, . . . , hz − 1] (A.21)
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where the energy content in each hour is set as follows:

∑

tch

[AUtchP
net
tch E

ch
h,tch ] ≤ ecchh ≤

∑

tch

[AUtchP
net
tch E

ch
h,tch ],∀h (A.22)

For high levels of CH installed capacity, that are adequate to restrict a feasible solution,
excess hydro should also be considered and penalized.

11. Status constraints: The non-negative integer variables, representing the status of the thermal
units are restricted by the available units within each group:

uong,h, u
sd
g,h, u

su
g,h ∈ {0, 1, . . . , AUg}, ∀g, h (A.23)

12. HS status constraints: The HS aggregated unit may not generate and store simultaneously:

uhsh ∈ {0, 1},∀h (A.24)

13. Variable upper and lower bounds:

0 ≤ pg,h ≤ AUgP g, ∀g, h (A.25)

0 ≤ rg,h ≤ AUgP g,∀g, h (A.26)

0 ≤ psth ≤ (1− uhsh )
∑

ths

[AUthsP
st
h,ths ],∀h (A.27)

0 ≤ pph ≤ uhsh
∑

ths

[AUthsP
p
h,ths ], ∀h (A.28)

0 ≤ pchh ≤
∑

tch

[AUtchP
ch
h,tch ], ∀h (A.29)

0 ≤ εlsh ≤ Demh, ∀h (A.30)

0 ≤ εrsh ≤ RRh,∀h (A.31)

0 ≤ εcurth ≤ P resh ,∀h (A.32)
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Appendix B

Simulation model based on a
simplified Economic Dispatch

This Section presents the SMED. The formulation of the cost terms, objective and constraint
functions are presented in the following Sections.

B.1 Cost terms

The cost terms considered in the SMED are presented in this Section. These are the generation
cost, RES curtailment cost and load shedding cost and are computed as follows:

1. Generation cost : The generation cost is computed as the sum of variable cost of each group
of generating units:

cgen =
∑

g

∑

h

[pg,hAV Cg] (B.1)

2. RES curtailment cost : RES curtailment cost is set as the total curtailed RES generation
penalized by a curtailment cost factor:

ccurt = PCcurt
∑

h

[εcurth ] (B.2)

3. Load shedding cost : Load shedding is penalized by a cost factor as follows:

cls = PC ls
∑

h

[εlsh ] (B.3)

B.2 Objective function

The objective function is set as the minimization of total operational cost which considers the sum
of generation cost, RES curtailment cost and load shedding cost.

minimize oc = cgen + ccurt + cls + crs (B.4)
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B.3 Constraint functions

The following basic constraints regarding the power balance and reserves of the system, technical
limitations of the thermal units and the CH and HS aggregated units are included:

1. Demand constraints: Eq. A.8.

2. HS energy content constraints: Eq. A.19.

3. CH energy content constraints: Eq. A.21.

4. HS status constraints: A relaxed-integer variable is used to represent the HS aggregated unit’s
status. Eq. A.24 is modified to:

0 ≤ uhsh ≤ 1,∀h (B.5)

5. Variable upper and lower bounds: Eq. A.25, Eq. A.27, Eq. A.28, Eq. A.29, Eq. A.30 and
Eq. A.32.
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Appendix C

Data input used for the test case in
Chapter 4

The data input (Section 4.4.1) are presented in this Section.

Table C.1: Technical and economic characteristics of the assumed technology groups.

Pcap step INC FO&M Cvar Cfixed CT LT CC Xmax inv

[MW] [Me/MW] [e/MW] [e/MW] [e] [years] [years] [1] [1]
TU1 283 1.550 33000 32 2100 4 40 0.80 3
TU2 429 0.850 21000 40 1320 3 25 0.60 2
TU3 150 0.486 12000 66 950 3 20 0.30 3
CH 100 1.200 12000 0 0 5 45 0.50 10
HS 250 1.175 3400 0 0 3 45 0.50 3
WF 100 1.200 15000 0 0 2 25 0.20 15
SPV 100 0.895 13000 0 0 2 25 0.25 15

Table C.2: Technical, economic and operational characteristics of thermal units.

P P MUT MDT SUC SDC RU RD SU SD
[MW] [MW] [h] [h] [e] [e] [MW] [MW] [MW] [MW]

TU1 155 280 8 8 10000 5000 56 56 211 211
TU2 147 420 4 4 6000 2000 126 126 273 273
TU3 30 150 1 1 1500 500 150 150 150 150

Table C.3: Assumed restrictions on the installed capacity of each technology group. The restrictions

on the installed capacity (ICic and IC
ic

) and on the generation levels (ICg and IC
g
) are assumed

to be active starting from the 10th year of the planning horizon.

ICep ICic IC
ic

ICg IC
g

[GW] [GW] [GW] [1] [1]
TU1 10.0 3.0 6.0 - -
TU2 10.0 3.0 8.0 - -
TU3 10.0 0.0 1.5 - -
CH 10.0 2.5 5.0 - -
HS 10.0 0.0 4.0 - -
WF 10.0 - - .15 .30
SPV 10.0 - - .15 .30
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Table C.4: System-related data input.

GrR RM RRdem RRres PCcurt PCls PCrs DR
[%] [1] [1] [1] [e/MW] [e/MW] [e/MW] [1]
2 0.1 0.05 0.05 150 10000 10000 0.05

Table C.5: Assumed data input for the HS aggregated unit.

Effp Effst Ehs init Ehs final Ehs E
hs

[1] [1] [1] [1] [1] [1]
0.9 0.8 2.5 2.5 0.5 7

Table C.6: Assumed demand profile for days one to six for the first year of the planning horizon.
Demand profiles are scaled based on the growth rate for the successive years.

D1 D2 D3 D4 D5 D6
[MW] [MW] [MW] [MW] [MW] [MW]

H1 3893.4 3178 3001.6 3687.6 3712.24 3133.2
H2 3796.1 3174.5 2963.8 2916.9 3436.86 3057.6
H3 3603.6 3020.5 2849.7 3276.7 3275.16 3048.5
H4 3434.2 2995.3 2809.1 2965.2 3243.8 3107.3
H5 3384.5 3066.7 2909.2 3280.2 3118.36 3192
H6 3420.2 3403.4 3166.1 3662.4 3201.66 3605.7
H7 3475.5 3952.2 3589.6 3849.3 3558.38 4085.2
H8 3620.4 4291 3886.4 4043.9 3981.74 4426.8
H9 3978.8 4460.4 4049.5 4109 4275.74 4657.8
H10 4390.4 4451.3 4074 4106.9 4381.58 4809.7
H11 4749.5 4409.3 4095 4106.9 4258.1 4834.2
H12 4810.4 4427.5 4123.7 4074.7 3985.66 4818.1
H13 4568.2 4392.5 4097.1 3904.6 3663.24 4535.3
H14 4117.4 4205.6 3914.4 3834.6 3556.42 4253.2
H15 4090.1 4186.7 3862.6 3558.8 3534.86 4066.3
H16 4146.8 4135.6 3723.3 3581.9 3595.62 4079.6
H17 4407.2 4189.5 3686.9 3576.3 3724 4230.1
H18 4823 4778.9 4074 3824.8 3933.72 4282.6
H19 4905.6 4915.4 4501.7 4285.4 4366.88 4384.1
H20 4863.6 4929.4 4512.2 4227.3 4582.48 4559.8
H21 4741.8 4681.6 4294.5 3832.5 4365.9 4171.3
H22 4501 4216.1 3627.4 3609.9 4073.86 3890.6
H23 4308.5 3924.2 3623.9 3287.9 3759.28 3709.3
H24 3978.1 3558.8 3268.3 4025.7 3502.52 3320.8
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Table C.7: Assumed demand profile for days seven to twelve for the first year of the planning
horizon. Demand profiles are scaled based on the growth rate for the successive years.

D7 D8 D9 D10 D11 D12
[MW] [MW] [MW] [MW] [MW] [MW]

H1 4004.7 4148.9 3658.9 2981.3 2997.4 3297
H2 3850 4010.3 3522.4 2925.3 2910.6 3246.6
H3 3754.8 3929.8 3455.9 2874.9 2832.9 3150
H4 3779.3 3929.8 3461.5 2921.1 2810.5 3087.7
H5 3767.4 3885.7 3572.1 3007.2 2963.8 3142.3
H6 4188.8 4196.5 3838.8 3124.8 3281.6 3504.9
H7 4692.8 4736.2 4314.8 3454.5 3739.4 4215.4
H8 5137.3 5177.2 4700.5 3739.4 4011.7 4623.5
H9 5374.6 5463.5 4892.3 3947.3 4152.4 4967.2
H10 5527.2 5688.9 5012 4095.7 4186 5071.5
H11 5687.5 5893.3 5137.3 4151 4183.9 5120.5
H12 5802.3 6094.9 5250.7 4164.3 4148.2 5179.3
H13 5764.5 6169.8 5140.1 3970.4 4104.1 5106.5
H14 5646.2 6062.7 4900.7 3703.7 3963.4 4844
H15 5559.4 5947.2 4778.9 3598 3882.2 4959.5
H16 5466.3 5843.6 4746 3591 3952.9 5100.2
H17 5399.8 5808.6 4765.6 3728.9 4208.4 5396.3
H18 5229 5688.9 4679.5 4089.4 4643.1 5681.2
H19 5164.6 5632.9 4881.1 4223.1 4708.9 5695.2
H20 5149.9 5859 4824.4 3994.2 4641.7 5610.5
H21 5119.8 5625.2 4412.8 3679.9 4442.2 5303.9
H22 4940.6 5335.4 4227.3 3446.8 4089.4 4863.6
H23 4683 5149.2 4073.3 3345.3 3787.7 4526.2
H24 4292.4 4636.1 3693.2 3026.8 3543.4 4250.4

Table C.8: Assumed SPV profile for days one to six.

D1 D2 D3 D4 D5 D6
[1] [1] [1] [1] [1] [1]

H1 0 0 0 0 0 0
H2 0 0 0 0 0 0
H3 0 0 0 0 0 0
H4 0 0 0 0 0 0
H5 0 0 0 0 0.0024545 0.012273
H6 0 0 0 0.12727 0.058091 0.091364
H7 0.00045455 0.0036364 0.022727 0.30727 0.22541 0.25864
H8 0.058636 0.12636 0.17591 0.65136 0.41359 0.42318
H9 0.24409 0.385 0.38091 0.49409 0.56209 0.51955
H10 0.43182 0.56636 0.55409 0.64955 0.66273 0.57864
H11 0.58864 0.67636 0.68 0.61591 0.68564 0.60455
H12 0.66455 0.72818 0.74636 0.78 0.64268 0.59409
H13 0.63545 0.71409 0.75227 0.61727 0.53264 0.59409
H14 0.53545 0.63409 0.68045 0.56045 0.39191 0.53591
H15 0.33773 0.47909 0.54636 0.53364 0.24095 0.45773
H16 0.087727 0.24545 0.34455 0.33727 0.15341 0.31818
H17 0.00090909 0.031364 0.11045 0.14818 0.081409 0.15545
H18 0 0 0.0027273 0.027727 0.017591 0.047727
H19 0 0 0 0 0 0.0059091
H20 0 0 0 0 0 0
H21 0 0 0 0 0 0
H22 0 0 0 0 0 0
H23 0 0 0 0 0 0
H24 0 0 0 0 0 0

164



Table C.9: Assumed SPV profile for days one to six.

D7 D8 D9 D10 D11 D12
[1] [1] [1] [1] [1] [1]

H1 0 0 0 0 0 0
H2 0 0 0 0 0 0
H3 0 0 0 0 0 0
H4 0 0 0 0 0 0
H5 0.0022727 0 0 0 0 0
H6 0.082273 0.067273 0.046818 0.010909 0 0
H7 0.24864 0.22273 0.19091 0.15909 0.063636 0.0086364
H8 0.42636 0.40182 0.38045 0.365 0.28318 0.14045
H9 0.585 0.56591 0.55136 0.55227 0.48091 0.31091
H10 0.69591 0.68909 0.66818 0.68182 0.62045 0.45909
H11 0.75364 0.76318 0.72455 0.74955 0.69455 0.54636
H12 0.76273 0.78636 0.73136 0.76227 0.70773 0.57773
H13 0.72318 0.765 0.68455 0.72136 0.66273 0.54636
H14 0.64455 0.69636 0.58545 0.62227 0.55409 0.43864
H15 0.53455 0.57818 0.45182 0.46909 0.37864 0.27045
H16 0.39227 0.42091 0.29318 0.27227 0.17636 0.10182
H17 0.23136 0.24409 0.14045 0.094091 0.025909 0.0036364
H18 0.096364 0.095455 0.032727 0.0036364 0 0
H19 0.017273 0.0081818 0 0 0 0
H20 0 0 0 0 0 0
H21 0 0 0 0 0 0
H22 0 0 0 0 0 0
H23 0 0 0 0 0 0
H24 0 0 0 0 0 0

Table C.10: Assumed WF profile for days one to six.

D1 D2 D3 D4 D5 D6
H1 0.26157 0.28787 0.34268 0.18013 0.21459 0.14975
H2 0.23526 0.28286 0.35647 0.16447 0.25906 0.15727
H3 0.21772 0.286 0.3643 0.1604 0.30103 0.15602
H4 0.19579 0.28161 0.36116 0.1557 0.31136 0.15163
H5 0.18233 0.2506 0.34049 0.14349 0.30385 0.14975
H6 0.18139 0.21803 0.33485 0.13441 0.30009 0.14192
H7 0.17262 0.20206 0.33454 0.1366 0.28036 0.12877
H8 0.15946 0.18389 0.32421 0.1864 0.25624 0.12
H9 0.14537 0.17544 0.29289 0.12971 0.24246 0.12
H10 0.13315 0.17011 0.27472 0.12908 0.22022 0.12689
H11 0.13096 0.16667 0.27002 0.14725 0.20362 0.13754
H12 0.13253 0.16541 0.27096 0.14725 0.19955 0.14913
H13 0.13284 0.16573 0.27065 0.15915 0.19517 0.14506
H14 0.13691 0.16792 0.2647 0.16541 0.1911 0.13785
H15 0.14318 0.16792 0.26125 0.17011 0.18201 0.14255
H16 0.14224 0.16949 0.2553 0.1698 0.16009 0.15539
H17 0.14192 0.16416 0.25468 0.1723 0.16886 0.18076
H18 0.14662 0.16166 0.26971 0.1864 0.1626 0.17324
H19 0.16353 0.16667 0.26063 0.19517 0.17418 0.1817
H20 0.17732 0.17136 0.25374 0.20018 0.18796 0.18796
H21 0.18076 0.18076 0.2528 0.20331 0.21083 0.20018
H22 0.17105 0.19078 0.23964 0.19298 0.22116 0.21803
H23 0.16855 0.19987 0.22367 0.19454 0.20926 0.21928
H24 0.17011 0.21709 0.22336 0.19172 0.19767 0.19579
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Table C.11: Assumed WF profile for days seven to twelve.

D7 D8 D9 D10 D11 D12
[1] [1] [1] [1] [1] [1]

H1 0.12251 0.24998 0.28098 0.13503 0.29915 0.4
H2 0.12282 0.26752 0.29383 0.13785 0.2813 0.37275
H3 0.12438 0.28286 0.3336 0.14224 0.2719 0.35302
H4 0.12501 0.28568 0.3502 0.14036 0.26282 0.32421
H5 0.12877 0.28631 0.36148 0.14349 0.24935 0.32702
H6 0.12783 0.28944 0.37087 0.14662 0.2387 0.33736
H7 0.12626 0.27378 0.35145 0.14694 0.22148 0.30635
H8 0.12783 0.27315 0.34456 0.1366 0.22336 0.29477
H9 0.13065 0.27879 0.34895 0.13221 0.21834 0.2719
H10 0.13566 0.27879 0.34143 0.12846 0.20613 0.24309
H11 0.14067 0.26595 0.32107 0.12877 0.19517 0.24497
H12 0.14506 0.24747 0.31043 0.13159 0.18389 0.24872
H13 0.15132 0.22649 0.2932 0.13315 0.19391 0.25405
H14 0.15007 0.21928 0.28819 0.13566 0.18734 0.25875
H15 0.15289 0.20488 0.28192 0.13472 0.18013 0.25687
H16 0.15727 0.1889 0.25749 0.13409 0.17074 0.23839
H17 0.15758 0.17544 0.24089 0.13221 0.16322 0.26157
H18 0.15477 0.16416 0.22837 0.13065 0.15758 0.24591
H19 0.15664 0.16573 0.22179 0.12846 0.16291 0.22523
H20 0.15477 0.16761 0.22085 0.13002 0.16291 0.20362
H21 0.1579 0.16072 0.23588 0.13253 0.15727 0.18953
H22 0.15477 0.15915 0.23588 0.13566 0.15414 0.1911
H23 0.15696 0.15351 0.22868 0.1413 0.14412 0.18922
H24 0.15383 0.15226 0.23087 0.14224 0.13566 0.18013

Table C.12: Assumed inflows profile for days one to six.

D1 D2 D3 D4 D5 D6
[1] [1] [1] [1] [1] [1]

H1 0.28596 0.34339 0.26198 0.2137 0.15021 0.035637
H2 0.28615 0.34335 0.26178 0.21377 0.14996 0.035577
H3 0.28635 0.34331 0.26157 0.21384 0.14971 0.035517
H4 0.28654 0.34327 0.26137 0.21392 0.14946 0.035457
H5 0.28673 0.34323 0.26117 0.21399 0.14921 0.035397
H6 0.28693 0.3432 0.26096 0.21406 0.14897 0.035337
H7 0.28712 0.34316 0.26076 0.21414 0.14872 0.035277
H8 0.28731 0.34312 0.26056 0.21421 0.14847 0.035217
H9 0.28751 0.34308 0.26035 0.21428 0.14822 0.035157
H10 0.2877 0.34304 0.26015 0.21436 0.14797 0.035097
H11 0.28789 0.343 0.25994 0.21443 0.14772 0.035037
H12 0.28809 0.34297 0.25974 0.2145 0.14748 0.034977
H13 0.28828 0.34293 0.25954 0.21457 0.14723 0.034917
H14 0.28847 0.34289 0.25933 0.21465 0.14698 0.034857
H15 0.28867 0.34285 0.25913 0.21472 0.14673 0.034797
H16 0.28886 0.34281 0.25893 0.21479 0.14648 0.034737
H17 0.28905 0.34278 0.25872 0.21487 0.14623 0.034676
H18 0.28925 0.34274 0.25852 0.21494 0.14599 0.034616
H19 0.28944 0.3427 0.25832 0.21501 0.14574 0.034556
H20 0.28963 0.34266 0.25811 0.21508 0.14549 0.034496
H21 0.28983 0.34262 0.25791 0.21516 0.14524 0.034436
H22 0.29002 0.34258 0.25771 0.21523 0.14499 0.034376
H23 0.29021 0.34255 0.2575 0.2153 0.14474 0.034316
H24 0.29041 0.34251 0.2573 0.21538 0.14449 0.034256
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Table C.13: Assumed inflows profile for days seven to twelve.

D7 D8 D9 D10 D11 D12
[1] [1] [1] [1] [1] [1]

H1 0.0275 0.10843 0.13788 0.12435 0.16142 0.19413
H2 0.027537 0.10861 0.13778 0.12441 0.16146 0.19419
H3 0.027574 0.10879 0.13768 0.12448 0.1615 0.19424
H4 0.027612 0.10897 0.13758 0.12454 0.16154 0.19429
H5 0.027649 0.10915 0.13748 0.1246 0.16157 0.19435
H6 0.027686 0.10933 0.13738 0.12466 0.16161 0.1944
H7 0.027723 0.10951 0.13728 0.12472 0.16165 0.19445
H8 0.02776 0.10969 0.13718 0.12479 0.16169 0.19451
H9 0.027798 0.10987 0.13708 0.12485 0.16172 0.19456
H10 0.027835 0.11005 0.13698 0.12491 0.16176 0.19461
H11 0.027872 0.11023 0.13688 0.12497 0.1618 0.19467
H12 0.027909 0.11041 0.13678 0.12504 0.16184 0.19472
H13 0.027946 0.11059 0.13668 0.1251 0.16187 0.19477
H14 0.027983 0.11077 0.13658 0.12516 0.16191 0.19482
H15 0.028021 0.11095 0.13648 0.12522 0.16195 0.19488
H16 0.028058 0.11113 0.13638 0.12528 0.16199 0.19493
H17 0.028095 0.11131 0.13628 0.12535 0.16203 0.19498
H18 0.028132 0.11149 0.13618 0.12541 0.16206 0.19504
H19 0.028169 0.11167 0.13608 0.12547 0.1621 0.19509
H20 0.028207 0.11185 0.13598 0.12553 0.16214 0.19514
H21 0.028244 0.11203 0.13588 0.12559 0.16218 0.1952
H22 0.028281 0.11221 0.13578 0.12566 0.16221 0.19525
H23 0.028318 0.11239 0.13568 0.12572 0.16225 0.1953
H24 0.028355 0.11257 0.13558 0.12578 0.16229 0.19536

Table C.14: Assumed parameters for initial and final CH energy content.

D1 D2 D3 D4 D5 D6
[1] [1] [1] [1] [1] [1]

Initial 714.4713 844.3752 958.041 941.8031 958.041 893.0891
Final 718.6617 848.4347 957.5172 942.3443 955.9458 888.759

D7 D8 D9 D10 D11 D12
[1] [1] [1] [1] [1] [1]

Initial 763.1852 633.2814 617.0434 600.8054 617.0434 600.8054
Final 758.9948 632.7576 616.5021 601.3292 616.5021 604.472
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Table C.15: Assumed parameters for the hourly maximum CH energy content of days one to six.

D1 D2 D3 D4 D5 D6
[1] [1] [1] [1] [1] [1]

H1 1071.9688 1266.8165 1437.0288 1412.7384 1436.9306 1339.363
H2 1072.2307 1267.0702 1436.9961 1412.7723 1436.7997 1339.0924
H3 1072.4926 1267.3239 1436.9634 1412.8061 1436.6687 1338.8218
H4 1072.7545 1267.5776 1436.9306 1412.8399 1436.5378 1338.5511
H5 1073.0165 1267.8313 1436.8979 1412.8737 1436.4068 1338.2805
H6 1073.2784 1268.0851 1436.8651 1412.9076 1436.2759 1338.0099
H7 1073.5403 1268.3388 1436.8324 1412.9414 1436.1449 1337.7392
H8 1073.8022 1268.5925 1436.7997 1412.9752 1436.014 1337.4686
H9 1074.0641 1268.8462 1436.7669 1413.0091 1435.883 1337.198
H10 1074.326 1269.0999 1436.7342 1413.0429 1435.7521 1336.9273
H11 1074.5879 1269.3536 1436.7015 1413.0767 1435.6211 1336.6567
H12 1074.8498 1269.6074 1436.6687 1413.1105 1435.4902 1336.3861
H13 1075.1117 1269.8611 1436.636 1413.1444 1435.3592 1336.1154
H14 1075.3736 1270.1148 1436.6032 1413.1782 1435.2283 1335.8448
H15 1075.6355 1270.3685 1436.5705 1413.212 1435.0973 1335.5742
H16 1075.8974 1270.6222 1436.5378 1413.2459 1434.9664 1335.3035
H17 1076.1593 1270.876 1436.505 1413.2797 1434.8354 1335.0329
H18 1076.4212 1271.1297 1436.4723 1413.3135 1434.7044 1334.7623
H19 1076.6831 1271.3834 1436.4396 1413.3474 1434.5735 1334.4916
H20 1076.945 1271.6371 1436.4068 1413.3812 1434.4425 1334.221
H21 1077.2069 1271.8908 1436.3741 1413.415 1434.3116 1333.9504
H22 1077.4688 1272.1446 1436.3413 1413.4488 1434.1806 1333.6797
H23 1077.7307 1272.3983 1436.3086 1413.4827 1434.0497 1333.4091
H24 1077.9926 1272.652 1436.2759 1413.5165 1433.9187 1333.1385

Table C.16: Assumed parameters for the hourly maximum CH energy content of days seven to
twelve.

D7 D8 D9 D10 D11 D12
[1] [1] [1] [1] [1] [1]

H1 1144.516 949.8893 925.5313 901.2408 925.5313 901.4373
H2 1144.2541 949.8566 925.4974 901.2736 925.4974 901.6664
H3 1143.9922 949.8238 925.4636 901.3063 925.4636 901.8956
H4 1143.7303 949.7911 925.4298 901.3391 925.4298 902.1248
H5 1143.4683 949.7584 925.3959 901.3718 925.3959 902.3539
H6 1143.2064 949.7256 925.3621 901.4045 925.3621 902.5831
H7 1142.9445 949.6929 925.3283 901.4373 925.3283 902.8123
H8 1142.6826 949.6602 925.2944 901.47 925.2944 903.0414
H9 1142.4207 949.6274 925.2606 901.5027 925.2606 903.2706
H10 1142.1588 949.5947 925.2268 901.5355 925.2268 903.4998
H11 1141.8969 949.5619 925.193 901.5682 925.193 903.7289
H12 1141.635 949.5292 925.1591 901.601 925.1591 903.9581
H13 1141.3731 949.4965 925.1253 901.6337 925.1253 904.1873
H14 1141.1112 949.4637 925.0915 901.6664 925.0915 904.4164
H15 1140.8493 949.431 925.0576 901.6992 925.0576 904.6456
H16 1140.5874 949.3983 925.0238 901.7319 925.0238 904.8747
H17 1140.3255 949.3655 924.99 901.7646 924.99 905.1039
H18 1140.0636 949.3328 924.9562 901.7974 924.9562 905.3331
H19 1139.8017 949.3 924.9223 901.8301 924.9223 905.5622
H20 1139.5398 949.2673 924.8885 901.8629 924.8885 905.7914
H21 1139.2779 949.2346 924.8547 901.8956 924.8547 906.0206
H22 1139.016 949.2018 924.8208 901.9283 924.8208 906.2497
H23 1138.7541 949.1691 924.787 901.9611 924.787 906.4789
H24 1138.4922 949.1363 924.7532 901.9938 924.7532 906.7081
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Table C.17: Assumed parameters for the hourly minimum CH energy content of days one to six.

D1 D2 D3 D4 D5 D6
[1] [1] [1] [1] [1] [1]

H1 357.3229 422.2722 479.0096 470.9128 478.9769 446.4543
H2 357.4102 422.3567 478.9987 470.9241 478.9332 446.3641
H3 357.4975 422.4413 478.9878 470.9354 478.8896 446.2739
H4 357.5848 422.5259 478.9769 470.9466 478.8459 446.1837
H5 357.6722 422.6104 478.966 470.9579 478.8023 446.0935
H6 357.7595 422.695 478.955 470.9692 478.7586 446.0033
H7 357.8468 422.7796 478.9441 470.9805 478.715 445.9131
H8 357.9341 422.8642 478.9332 470.9917 478.6713 445.8229
H9 358.0214 422.9487 478.9223 471.003 478.6277 445.7327
H10 358.1087 423.0333 478.9114 471.0143 478.584 445.6424
H11 358.196 423.1179 478.9005 471.0256 478.5404 445.5522
H12 358.2833 423.2025 478.8896 471.0368 478.4967 445.462
H13 358.3706 423.287 478.8787 471.0481 478.4531 445.3718
H14 358.4579 423.3716 478.8677 471.0594 478.4094 445.2816
H15 358.5452 423.4562 478.8568 471.0707 478.3658 445.1914
H16 358.6325 423.5407 478.8459 471.082 478.3221 445.1012
H17 358.7198 423.6253 478.835 471.0932 478.2785 445.011
H18 358.8071 423.7099 478.8241 471.1045 478.2348 444.9208
H19 358.8944 423.7945 478.8132 471.1158 478.1912 444.8305
H20 358.9817 423.879 478.8023 471.1271 478.1475 444.7403
H21 359.069 423.9636 478.7914 471.1383 478.1039 444.6501
H22 359.1563 424.0482 478.7804 471.1496 478.0602 444.5599
H23 359.2436 424.1328 478.7695 471.1609 478.0166 444.4697
H24 359.3309 424.2173 478.7586 471.1722 477.9729 444.3795

Table C.18: Assumed parameters for the hourly minimum CH energy content of days seven to
twelve.

D7 D8 D9 D10 D11 D12
[1] [1] [1] [1] [1] [1]

H1 381.5053 316.6298 308.5104 300.4136 308.5104 300.4791
H2 381.418 316.6189 308.4991 300.4245 308.4991 300.5555
H3 381.3307 316.6079 308.4879 300.4354 308.4879 300.6319
H4 381.2434 316.597 308.4766 300.4464 308.4766 300.7083
H5 381.1561 316.5861 308.4653 300.4573 308.4653 300.7846
H6 381.0688 316.5752 308.454 300.4682 308.454 300.861
H7 380.9815 316.5643 308.4428 300.4791 308.4428 300.9374
H8 380.8942 316.5534 308.4315 300.49 308.4315 301.0138
H9 380.8069 316.5425 308.4202 300.5009 308.4202 301.0902
H10 380.7196 316.5316 308.4089 300.5118 308.4089 301.1666
H11 380.6323 316.5206 308.3977 300.5227 308.3977 301.243
H12 380.545 316.5097 308.3864 300.5337 308.3864 301.3194
H13 380.4577 316.4988 308.3751 300.5446 308.3751 301.3958
H14 380.3704 316.4879 308.3638 300.5555 308.3638 301.4721
H15 380.2831 316.477 308.3525 300.5664 308.3525 301.5485
H16 380.1958 316.4661 308.3413 300.5773 308.3413 301.6249
H17 380.1085 316.4552 308.33 300.5882 308.33 301.7013
H18 380.0212 316.4443 308.3187 300.5991 308.3187 301.7777
H19 379.9339 316.4333 308.3074 300.61 308.3074 301.8541
H20 379.8466 316.4224 308.2962 300.621 308.2962 301.9305
H21 379.7593 316.4115 308.2849 300.6319 308.2849 302.0069
H22 379.672 316.4006 308.2736 300.6428 308.2736 302.0832
H23 379.5847 316.3897 308.2623 300.6537 308.2623 302.1596
H24 379.4974 316.3788 308.2511 300.6646 308.2511 302.236
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Table C.19: Assumed initial units of the system and decommissioning plan.

Year TU1 TU2 TU3 CH HS WF SPV
[1] [1] [1] [1] [1] [1] [1] [1]
1 16 10 1 29 1 18 22
2 16 10 1 29 1 18 22
3 16 10 1 29 1 18 22
4 16 10 1 29 1 18 22
5 16 10 1 25 1 18 22
6 16 10 1 25 1 18 22
7 16 9 1 25 1 18 22
8 15 9 1 21 1 18 22
9 14 9 1 18 1 18 22
10 13 9 1 18 1 17 22
11 10 9 1 18 1 16 22
12 8 8 1 15 1 15 22
13 7 7 1 15 1 15 22
14 6 6 1 15 1 13 22
15 6 6 1 15 1 13 22
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Appendix D

Statistical tests for the DE variants

This Section presents the results of Wilcoxon rank sum test (the Matlab implementation has been
used) for the DE variants examined. The DE variants including all examined operators are tested
against the variants including combinations of the examined operators. The test result ’TRUE’
indicates a rejection of the null hypothesis, and ’FALSE’ indicates a failure to reject the null
hypothesis at the 5% significance level.

Table D.1: The table presents the results of the Wilcoxon rank sum test for the noSM case.

DE/rand/1/bin
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO
Two-sided TRUE TRUE TRUE TRUE FALSE FALSE FALSE
Left-tailed TRUE TRUE TRUE TRUE FALSE FALSE FALSE
Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 5.64E-39 5.63E-39 2.16E-38 2.15E-38 NaN NaN NaN
p-value (Left-tailed) 2.82E-39 2.82E-39 1.08E-38 1.08E-38 1.00E+00 1.00E+00 1.00E+00
p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

DE/rand/1/exp
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO
Two-sided TRUE TRUE TRUE TRUE FALSE FALSE FALSE
Left-tailed TRUE TRUE TRUE TRUE FALSE FALSE FALSE
Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 5.64E-39 5.63E-39 5.64E-39 2.16E-38 1.58E-01 NaN NaN
p-value (Left-tailed) 2.82E-39 2.82E-39 2.82E-39 1.08E-38 7.92E-02 1.00E+00 1.00E+00
p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.23E-01 1.00E+00 1.00E+00

DE/rand/1/expS
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO
Two-sided TRUE TRUE TRUE TRUE FALSE FALSE FALSE
Left-tailed TRUE TRUE TRUE TRUE FALSE FALSE FALSE
Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 5.64E-39 5.64E-39 5.64E-39 5.64E-39 3.22E-01 NaN NaN
p-value (Left-tailed) 2.82E-39 2.82E-39 2.82E-39 2.82E-39 1.61E-01 1.00E+00 1.00E+00
p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 8.44E-01 1.00E+00 1.00E+00
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Table D.2: The table presents the results of the Wilcoxon rank sum test for the SMED-Lin case.

DE/rand/1/bin
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO
Two-sided TRUE TRUE TRUE TRUE FALSE FALSE FALSE
Left-tailed TRUE TRUE TRUE TRUE FALSE FALSE FALSE
Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 8.14E-38 1.12E-36 5.64E-39 2.16E-38 NaN NaN NaN
p-value (Left-tailed) 4.07E-38 5.59E-37 2.82E-39 1.08E-38 1.00E+00 1.00E+00 1.00E+00
p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

DE/rand/1/exp
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO
Two-sided TRUE TRUE TRUE TRUE TRUE FALSE FALSE
Left-tailed TRUE TRUE TRUE TRUE TRUE FALSE FALSE
Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 5.64E-39 5.64E-39 5.64E-39 5.64E-39 2.42E-02 NaN 3.22E-01
p-value (Left-tailed) 2.82E-39 2.82E-39 2.82E-39 2.82E-39 1.21E-02 1.00E+00 1.61E-01
p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.88E-01 1.00E+00 8.44E-01

DE/rand/1/expS
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO
Two-sided TRUE TRUE TRUE TRUE TRUE FALSE TRUE
Left-tailed TRUE TRUE TRUE TRUE TRUE FALSE TRUE
Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 5.64E-39 5.64E-39 5.64E-39 5.64E-39 2.42E-02 NaN 2.03E-04
p-value (Left-tailed) 2.82E-39 2.82E-39 2.82E-39 2.82E-39 1.21E-02 1.00E+00 1.02E-04
p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.88E-01 1.00E+00 1.00E+00

Table D.3: The table presents the results of the Wilcoxon rank sum test for the SMED-Cub case.

DE/rand/1/bin
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO

Two-sided TRUE TRUE TRUE TRUE FALSE FALSE FALSE
Left-tailed TRUE TRUE TRUE TRUE FALSE FALSE FALSE

Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 5.64E-39 8.14E-38 2.16E-38 2.16E-38 NaN NaN NaN
p-value (Left-tailed) 2.82E-39 4.07E-38 1.08E-38 1.08E-38 1.00E+00 1.00E+00 1.00E+00

p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

DE/rand/1/exp
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO

Two-sided TRUE TRUE TRUE TRUE TRUE FALSE TRUE
Left-tailed TRUE TRUE TRUE TRUE TRUE FALSE TRUE

Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 5.64E-39 5.64E-39 5.64E-39 5.64E-39 2.03E-04 NaN 7.31E-03
p-value (Left-tailed) 2.82E-39 2.82E-39 2.82E-39 2.82E-39 1.01E-04 1.00E+00 3.65E-03

p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.96E-01

DE/rand/1/expS
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO

Two-sided TRUE TRUE TRUE TRUE TRUE FALSE TRUE
Left-tailed TRUE TRUE TRUE TRUE TRUE FALSE TRUE

Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 5.64E-39 2.16E-38 5.64E-39 5.64E-39 2.23E-03 NaN 4.04E-03
p-value (Left-tailed) 2.82E-39 1.08E-38 2.82E-39 2.82E-39 1.11E-03 1.00E+00 2.02E-03

p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.99E-01 1.00E+00 9.98E-01
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Table D.4: The table presents the results of the Wilcoxon rank sum test for the SMED-TPS case.

DE/rand/1/bin
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO

Two-sided TRUE TRUE TRUE TRUE FALSE FALSE FALSE
Left-tailed TRUE TRUE TRUE TRUE FALSE FALSE FALSE

Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 2.16E-38 2.15E-38 5.64E-39 5.63E-39 NaN NaN NaN
p-value (Left-tailed) 1.08E-38 1.08E-38 2.82E-39 2.82E-39 1.00E+00 1.00E+00 1.00E+00

p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

DE/rand/1/exp
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO

Two-sided TRUE TRUE TRUE TRUE TRUE FALSE TRUE
Left-tailed TRUE TRUE TRUE TRUE TRUE FALSE TRUE

Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 5.64E-39 5.64E-39 5.64E-39 2.16E-38 7.31E-03 NaN 4.44E-02
p-value (Left-tailed) 2.82E-39 2.82E-39 2.82E-39 1.08E-38 3.66E-03 1.00E+00 2.22E-02

p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.96E-01 1.00E+00 9.78E-01

DE/rand/1/expS
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO

Two-sided TRUE TRUE TRUE TRUE TRUE FALSE TRUE
Left-tailed TRUE TRUE TRUE TRUE TRUE FALSE TRUE

Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 5.64E-39 2.16E-38 5.64E-39 5.64E-39 4.04E-03 NaN 6.78E-04
p-value (Left-tailed) 2.82E-39 1.08E-38 2.82E-39 2.82E-39 2.02E-03 1.00E+00 3.39E-04

p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.98E-01 1.00E+00 1.00E+00

Table D.5: The table presents the results of the Wilcoxon rank sum test for the SMCUC-Lin case.

DE/rand/1/bin
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO
Two-sided TRUE TRUE TRUE TRUE TRUE FALSE TRUE
Left-tailed TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 5.64E-39 5.64E-39 5.64E-39 5.64E-39 7.30E-03 8.27E-02 7.30E-03
p-value (Left-tailed) 2.82E-39 2.82E-39 2.82E-39 2.82E-39 3.65E-03 4.14E-02 3.65E-03
p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.96E-01 9.60E-01 9.96E-01

DE/rand/1/exp
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO
Two-sided TRUE TRUE TRUE TRUE TRUE FALSE TRUE
Left-tailed TRUE TRUE TRUE TRUE TRUE FALSE TRUE
Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 1.62E-38 1.62E-38 1.62E-38 1.62E-38 2.54E-07 1.00E+00 2.32E-07
p-value (Left-tailed) 8.11E-39 8.11E-39 8.11E-39 8.11E-39 1.27E-07 5.02E-01 1.16E-07
p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 5.02E-01 1.00E+00

DE/rand/1/expS
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO
Two-sided TRUE TRUE TRUE TRUE TRUE FALSE TRUE
Left-tailed TRUE TRUE TRUE TRUE TRUE FALSE TRUE
Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 8.10E-39 8.10E-39 8.10E-39 8.10E-39 4.45E-10 1.00E+00 9.45E-10
p-value (Left-tailed) 4.05E-39 4.05E-39 4.05E-39 4.05E-39 2.22E-10 5.03E-01 4.73E-10
p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 5.03E-01 1.00E+00
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Table D.6: The table presents the results of the Wilcoxon rank sum test for the SMCUC-Cub case.

DE/rand/1/bin
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO

Two-sided TRUE TRUE TRUE TRUE TRUE FALSE TRUE
Left-tailed TRUE TRUE TRUE TRUE TRUE FALSE TRUE

Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 2.26E-38 2.26E-38 2.26E-38 2.26E-38 1.38E-02 7.04E-01 2.30E-02
p-value (Left-tailed) 1.13E-38 1.13E-38 1.13E-38 1.13E-38 6.90E-03 6.51E-01 1.15E-02

p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.93E-01 3.52E-01 9.89E-01

DE/rand/1/exp
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO

Two-sided TRUE TRUE TRUE TRUE TRUE FALSE TRUE
Left-tailed TRUE TRUE TRUE TRUE TRUE FALSE TRUE

Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 1.62E-38 1.62E-38 1.62E-38 1.62E-38 4.43E-10 7.04E-01 3.80E-09
p-value (Left-tailed) 8.11E-39 8.11E-39 8.11E-39 8.11E-39 2.21E-10 3.52E-01 1.90E-09

p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 6.51E-01 1.00E+00

DE/rand/1/expS
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO

Two-sided TRUE TRUE TRUE TRUE TRUE FALSE TRUE
Left-tailed TRUE TRUE TRUE TRUE TRUE FALSE TRUE

Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 5.79E-38 5.79E-38 5.79E-38 5.79E-38 7.83E-08 1.97E-01 2.29E-08
p-value (Left-tailed) 2.89E-38 2.89E-38 2.89E-38 2.89E-38 3.91E-08 9.03E-01 1.15E-08

p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.83E-02 1.00E+00

Table D.7: The table presents the results of the Wilcoxon rank sum test for the SMCUC-TPS case.

DE/rand/1/bin
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO

Two-sided TRUE TRUE TRUE TRUE TRUE FALSE TRUE
Left-tailed TRUE TRUE TRUE TRUE TRUE FALSE TRUE

Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 8.10E-39 8.10E-39 8.10E-39 8.10E-39 9.72E-03 1.77E-01 5.41E-03
p-value (Left-tailed) 4.05E-39 4.05E-39 4.05E-39 4.05E-39 4.86E-03 8.84E-02 2.71E-03

p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.95E-01 9.13E-01 9.97E-01

DE/rand/1/exp
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO

Two-sided TRUE TRUE TRUE TRUE TRUE FALSE TRUE
Left-tailed TRUE TRUE TRUE TRUE TRUE FALSE TRUE

Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 1.62E-38 1.62E-38 1.62E-38 1.62E-38 1.67E-08 3.09E-01 1.35E-07
p-value (Left-tailed) 8.11E-39 8.11E-39 8.11E-39 8.11E-39 8.37E-09 1.54E-01 6.73E-08

p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 8.47E-01 1.00E+00

DE/rand/1/expS
/RRH/blk/PO vs /FR /FR/blk /FR/PO /FR/blk/PO /RRH /RRH/blk /RRH/PO

Two-sided TRUE TRUE TRUE TRUE TRUE FALSE TRUE
Left-tailed TRUE TRUE TRUE TRUE TRUE FALSE TRUE

Right-tailed FALSE FALSE FALSE FALSE FALSE FALSE FALSE
p-value (Two-sided) 2.26E-38 2.26E-38 2.26E-38 2.26E-38 6.84E-11 7.04E-01 3.13E-10
p-value (Left-tailed) 1.13E-38 1.13E-38 1.13E-38 1.13E-38 3.42E-11 6.51E-01 1.57E-10

p-value (Right-tailed) 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 3.52E-01 1.00E+00
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Appendix E

Simulation model based on Fast Unit
Commitment

The SM used is adopted from Reference [29]. It is formulated as a SOO problem. Some modifica-
tions to the formulation have been included which are mentioned in Section 5.2.3.

The optimization variables of the sub-problem, where v ∈ Rn and n the dimensionality of v,
are v = {xon,xsu,xsd, εd, εr, εc, εs,p,pH ,pTr,xon(init),xsu(init),pinit}.

The mathematical formulation of the SOO problem is of the following form:

minimize TC(v)

s.t. E.4− E.37

v ∈ <n

(E.1)

The equations included within the sub-problem are the following:

� Objective Function: The objective function is set as the minimization of the total operation
cost of the considered hourly time periods.

TC =
∑

∀a,g,h
[(CLg + EF emg Cem)pa,g,h] +

∑

∀a,g,h
[Csug x

su
a,g,h + Csdg x

sd
a,g,h] +

∑

∀a,h
[εda,h]Cd +

∑

∀a,h
[εra,h]Cr

+
∑

∀a,h
[εca,h]Cc +

∑

∀a,h
[εsa,h]Cs

(E.2)

The fuel and emission cost term (first sum term) could be altered to the following if sufficient
data are available:

cf&em =
∑

∀a,g,h
[pa,g,h(Cslg + EF slg C

em) + xona,g,hOLg(C
min f
g − Cslg + Cem(EFming − EF sl emg ))]

(E.3)
where Csl and EF sl are parameters based on the slope of the fuel and emission functions,
respectively. Cmin f and EFming are the minimum fuel cost and emission factor per unit of
on-line capacity. Eqs. 5.5 and 5.6 should be updated correspondingly.
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� Demand constraint: The demand constraint should ensure that supply meets demand in each
hour. ∑

g

[pa,g,h] + pHa,h + (P
res
a,h − εca,h) +

∑

m∈Ψz

[pTra,m] = Da,h − εda,h, ∀a, h (E.4)

� Reserve constraint: The reserve constraint ensures that sufficient capacity is on-line to mod-
erate the impact of uncertainty.

∑

g

[xona,g,h]+pHa,h+(P
res
a,h−εca,h)+εra,h+

∑

m∈Ψzm

[pTra,zm] ≥ (1+Rfd)(Da,h−εda,h)+Rf res(P
res
a,h−εca,h),∀a, h

(E.5)

� Operation status constraint:

xona,g,h = xona,g,h−1 + xsua,g,h − xsda,g,h∀a, g, h (E.6)

� Operation status constraint for initial hour:

xona,g,1 = xon(init)
a,g + xsua,g,1 − xsda,g,1∀a, g (E.7)

� Ramp up constraints:

pa,g,h − pa,g,h−1 ≤ OLg(xsua,g,h − xsda,g,h) +RUg(x
on
a,g,h − xsua,g,h − xsda,g,h+1), ∀a, g, h (E.8)

� Ramp up constraints for first hour:

pa,g,1 − pinita,g ≤ OLg(xsua,g,1 − xsda,g,1) +RUg(x
on
a,g,1 − xsua,g,1 − xsda,g,2), ∀a, g (E.9)

� Ramp up constraints for last hour:

pa,g,hz − pa,g,hz−1 ≤ OLg(xsua,g,hz − xsda,g,hz) +RUg(x
on
a,g,hz − xsua,g,hz), ∀a, g (E.10)

� Ramping down constraints:

pa,g,h − pa,g,h−1 ≥ OLg(xsua,g,h − xsda,g,h)−RDg(x
on
a,g,h − xsua,g,h − xsua,g,h−1),∀a, g, h (E.11)

� Ramping down constraints for first hour:

pa,g,1 − pinita,g ≥ OLg(xsua,g,1 − xsda,g,1)−RDg(x
on
a,g,1 − xsua,g,1 − xsu(init)

a,g ), ∀a, g (E.12)

� Operating limits constraints:

pa,g,h ≤ OLg(xona,g,h − xsua,g,h − xsda,g,h+1) +OLgx
su
a,g,h +OLgx

sd
a,g,h+1,∀a, g, h (E.13)

xona,g,hOLg ≤ pa,g,h ≤ xona,g,hOLg,∀a, g, h (E.14)

� Operating limits constraints for last hour:

pa,g,hz ≤ OLg(xona,g,hz − xsua,g,hz) +OLgx
su
a,g,hz,∀a, g (E.15)
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� Operating limits constraints of initial production:

xon(init)
a,g OLg ≤ pinita,g ≤ xon(init)

a,g OLg,∀a, g (E.16)

� Minimum on-line time limits constraints for first hour:

0 ≤ xsda,g,1 ≤ xon(init)
a,g , ∀a, g (E.17)

� Minimum on-line time limits constraints for first MT on hours except first hour:

0 ≤ xsda,g,h+1 ≤ xona,g,h −
h−1∑

τ=0

[xsua,g,h−τ ],∀a, g, 1 ≤ h ≤MT ong (E.18)

� Minimum on-line time limits constraints for all hours except first MT on hours:

0 ≤ xsda,g,h+1 ≤ xona,g,h −
MT on

g −2∑

τ=0

[xsua,g,h−τ ],∀a, g,MT ong ≤ h ≤ hz − 1 (E.19)

� Minimum off-line time limits constraints for first hour:

0 ≤ xsua,g,1 ≤ P a,g − xon(init)
a,g , ∀a, g (E.20)

� Minimum off-line time limits constraints for first MT off hours except first hour:

0 ≤ xsua,g,h+1 ≤ P a,g − xona,g,h −
h−1∑

τ=0

[xsda,g,h−τ ], ∀a, g, 1 ≤ h ≤MT offg (E.21)

� Minimum off-line time limits constraints for all hours except first MT off hours:

0 ≤ xsua,g,h+1 ≤ P a,g − xona,g,h −
MT off

g −2∑

τ=0

[xsda,g,h−τ ],∀a, g,MT offg ≤ h ≤ hz − 1 (E.22)

� Hydro reservoir final hour constraints:

ECinita P
H
a +

hz∑

τ=0

[Inflowsa,hP
H
a ]− 1

EffH

hz∑

τ=0

[pHa,h]−
hz∑

τ=0

[εsa,h] = ECfinala P
H
a , ∀a (E.23)

� Hydro minimum and maximum reservoir limits constraints:

ECaP
H
a ≤ ECinita P

H
a +

h∑

τ=0

[Inflowsa,hP
H
a ]− 1

EffHa

h∑

τ=0

[pHa,h]−
h∑

τ=0

[εsa,h] ≤ ECaPHa ,∀a, h

(E.24)
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� Upper and lower constraints of variables:

0 ≤ xona,g,h ≤ P a,g, ∀a, g, h (E.25)

0 ≤ xsua,g,h ≤ P a,g, ∀a, g, h (E.26)

0 ≤ xsda,g,h ≤ P a,g, ∀a, g, h (E.27)

0 ≤ xon(init)
a,g ≤ P a,g,∀a, g (E.28)

0 ≤ xsu(init)
a,g ≤ P a,g,∀a, g (E.29)

0 ≤ εca,h ≤ P
res
a,g ,∀a, h (E.30)

0 ≤ εsa,h ≤ P
H
a,g, ∀a, h (E.31)

0 ≤ εda,h ≤ Da,h,∀a, h (E.32)

0 ≤ εra,h ≤ (1 + rfd)Da,h + rf resP
res
a,h,∀a, h (E.33)

− P Trzm ≤ pTrzm ≤ P
Tr
zm, zm ∈ Ψz (E.34)

0 ≤ pHa,h ≤ P
H
a ,∀a, h (E.35)

0 ≤ pa,g,h ≤ P a,g,∀a, g, h (E.36)

0 ≤ pinita,g,h ≤ P a,g,∀a, g (E.37)
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Appendix F

Data input for the test case used in
Chapter 5

The data input (Section 5.4.1) are presented in this Section.

Table F.1: Technical characteristics of the assumed technology groups.

area P P OL OL RU′ RD′ RU RD MTon MToff

[MW] [MW] [1] [1] [MW] [MW] [1] [1] [h] [h]

TU1old 1 300 129 1 0.43 135 135 0.45 0.45 11 11
TU2old 1 400 140 1 0.35 200 200 0.5 0.5 3 3
TU3old 1 150 45 1 0.3 150 150 1 1 1 1
TU1 1 300 129 1 0.43 135 135 0.45 0.45 8 8
TU2 1 400 140 1 0.35 200 200 0.5 0.5 2 2
TU3 1 150 45 1 0.3 150 150 1 1 1 1
SPV 1 100 0 1 0 0 0 0 0 0 0
WF 1 100 0 1 0 0 0 0 0 0 0
CH 1 250 0 1 0 0 0 0 0 0 0
TU1old 2 300 129 1 0.43 135 135 0.45 0.45 11 11
TU2old 2 400 140 1 0.35 200 200 0.5 0.5 3 3
TU3old 2 150 45 1 0.3 150 150 1 1 1 1
TU1 2 300 129 1 0.43 135 135 0.45 0.45 8 8
TU2 2 400 140 1 0.35 200 200 0.5 0.5 2 2
TU3 2 150 45 1 0.3 150 150 1 1 1 1
SPV 2 100 0 1 0 0 0 0 0 0 0
WF 2 100 0 1 0 0 0 0 0 0 0
CH 2 250 0 1 0 0 0 0 0 0 0
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Table F.2: Economic characteristics of the assumed technology groups.

area IC FOM VOM Csu Csd CL EFem Prres

[e/MW] [e/MW] [e/MW] [e/MW] [e/MW] [e/MW] [tCO2 eq/MW] [e/MW]

TU1old 1 0 21600 3.3 86.0536 0 11.3134 1038.774 0
TU2old 1 0 9200 1.6 44.3159 0 45.7463 427.4658 0
TU3old 1 0 8300 1.6 52.5044 0 62.7378 586.2388 0
TU1 1 50000 21600 3.3 58.6536 0 8.608 790.3716 0
TU2 1 20000 9200 1.6 26.3059 0 37.859 353.7648 0
TU3 1 18000 8300 1.6 20.3944 0 52.2815 488.5323 0
SPV 1 52000 10700 0 0 0 0 0 80
WF 1 112000 9180 0 0 0 0 0 100
CH 1 42222.22 23800 0 0 0 0 0 0
TU1old 2 0 21600 3.3 86.0536 0 11.3134 1038.774 0
TU2old 2 0 9200 1.6 44.3159 0 45.7463 427.4658 0
TU3old 2 0 8300 1.6 52.5044 0 62.7378 586.2388 0
TU1 2 50000 10700 3.3 58.6536 0 8.608 790.3716 0
TU2 2 20000 9180 1.6 26.3059 0 37.859 353.7648 0
TU3 2 18000 23800 1.6 20.3944 0 52.2815 488.5323 0
SPV 2 52000 10700 0 0 0 0 0 80
WF 2 112000 9180 0 0 0 0 0 100
CH 2 42222.22 23800 0 0 0 0 0 0

Table F.3: Restrictions on the capacity additions for the assumed technology groups.

Pcap step TCA X1 X2 X1 X2 IU1 IU2

[MW] [1] [1] [1] [1] [1] [1] [1]

TU1old 300 0 0 0 0 0 9 4
TU2old 400 0 0 0 0 0 2 7
TU3old 150 0 0 0 0 0 0 1
TU1 300 20 20 20 0 0 0 0
TU2 400 20 20 20 0 0 0 0
TU3 150 20 20 20 0 0 0 0
SPV 100 20 20 20 0 0 10 10
WF 100 20 20 20 0 0 10 15
CH 250 20 20 20 0 0 6 6

Table F.4: Assumed data input for the CH capacity.

area effH Inflows ECinit ECfinal EC EC
[1] [1] [1] [1] [1] [1]

1 1.1111 0.1 10 10 11 9
2 1.1111 0.1 10 10 11 9

Table F.5: System-related data input.

Rfd Rfres RM Cd Cr Cc Cs Cem pTr

[1] [1] [1] [e/MW] [e/MW] [e/MW] [e/MW] [e/tCO2 eq] [MW]
0.1 0.05 0.15 10000 10000 150 150 0.018 1500
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Table F.6: Total demand of the first week.

W1D1 W1D2 W1D3 W1D4 W1D5 W1D6 W1D7
[MW] [MW] [MW] [MW] [MW] [MW] [MW]

H1 6198.5 5671.6 6048.9 6130.3 6332.7 6425.1 6070.9
H2 5762.9 5231.6 5458.2 5621 5791.5 5822.3 5599
H3 5635.3 5240.4 5471.4 5637.5 5800.3 5761.8 5574.8
H4 5308.6 5007.2 5324 5412 5638.6 5551.7 5324
H5 4996.2 4780.6 5107.3 5228.3 5448.3 5310.8 5042.4
H6 4790.5 4810.3 5093 5212.9 5501.1 5121.6 4907.1
H7 4761.9 5119.4 5476.9 5615.5 5890.5 5109.5 4980.8
H8 4676.1 5573.7 6106.1 6230.4 6527.4 5166.7 4981.9
H9 4732.2 6109.4 6795.8 7035.6 7241.3 5440.6 5166.7
H10 5132.6 6692.4 7581.2 7851.8 7991.5 5795.9 5616.6
H11 5604.5 6965.2 7755 8036.6 8078.4 6095.1 6110.5
H12 6064.3 7199.5 7849.6 8191.7 8089.4 6543.9 6448.2
H13 6145.7 7360.1 7877.1 8341.3 8155.4 6850.8 6675.9
H14 5745.3 7386.5 7854 8250 8077.3 6668.2 6463.6
H15 5090.8 7126.9 7577.9 7791.3 7892.5 5989.5 5882.8
H16 5033.6 6986.1 7324.9 7613.1 7873.8 5943.3 5808
H17 5322.9 7114.8 7464.6 7804.5 8168.6 6246.9 6094
H18 5926.8 7546 8010.2 8419.4 8751.6 6829.9 6645.1
H19 6655 7936.5 8427.1 8969.4 9128.9 7502 7472.3
H20 6761.7 7922.2 8400.7 8939.7 9060.7 7624.1 7583.4
H21 6787 7784.7 8301.7 8787.9 8936.4 7470.1 7450.3
H22 6564.8 7482.2 7859.5 8112.5 8335.8 7174.2 7143.4
H23 6198.5 6890.4 7157.7 7365.6 7550.4 6728.7 6609.9
H24 6167.7 6653.9 6855.2 7055.4 7126.9 6531.8 6405.3

Table F.7: Total demand of the second week.

W2D1 W2D2 W2D3 W2D4 W2D5 W2D6 W2D7
[MW] [MW] [MW] [MW] [MW] [MW] [MW]

H1 5549.5 5715.6 5811.3 5782.7 5687 5140.3 5380.1
H2 4955.5 5172.2 5252.5 5174.4 5064.4 4648.6 5014.9
H3 4899.4 5086.4 5149.1 5042.4 4890.6 4521 4695.9
H4 4736.6 4930.2 4930.2 4841.1 4683.8 4301 4224
H5 4647.5 4823.5 4823.5 4736.6 4448.4 4126.1 3932.5
H6 4711.3 4911.5 4896.1 4842.2 4395.6 4137.1 3847.8
H7 5204.1 5365.8 5342.7 5241.5 4375.8 4314.2 3804.9
H8 5915.8 6034.6 6067.6 5860.8 4459.4 4523.2 3768.6
H9 6806.8 6867.3 6912.4 6682.5 4912.6 5038 4103
H10 7396.4 7365.6 7471.2 7156.6 5317.4 5523.1 4556.2
H11 7367.8 7359 7445.9 7289.7 5429.6 5800.3 4867.5
H12 7381 7420.6 7477.8 7299.6 5421.9 5885 4852.1
H13 7398.6 7419.5 7455.8 7272.1 5434 5963.1 4611.2
H14 7323.8 7333.7 7483.3 7150 5415.3 5993.9 4225.1
H15 7142.3 7201.7 7378.8 6895.9 5281.1 5777.2 3824.7
H16 6988.3 6948.7 7224.8 6718.8 5291 5684.8 3803.8
H17 6920.1 6893.7 7203.9 6803.5 5347.1 5729.9 3914.9
H18 6695.7 6722.1 7048.8 6642.9 5244.8 5695.8 3853.3
H19 6584.6 6570.3 7078.5 6506.5 5286.6 5848.7 3952.3
H20 6941 6946.5 7388.7 6870.6 5528.6 6382.2 4325.2
H21 7907.9 7877.1 8032.2 7404.1 6114.9 7504.2 5320.7
H22 7711 7838.6 7856.2 7169.8 5858.6 7361.2 5553.9
H23 6974 7123.6 7141.2 6723.2 5838.8 6605.5 5285.5
H24 6452.6 6584.6 6569.2 6400.9 5711.2 5819 5066.6
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Table F.8: Total demand of the third week.

W3D1 W3D2 W3D3 W3D4 W3D5 W3D6 W3D7
[MW] [MW] [MW] [MW] [MW] [MW] [MW]

H1 6994.9 7368.9 7541.6 7697.8 7520.7 7284.2 7040
H2 6426.2 6782.6 6945.4 7150 6936.6 6778.2 6557.1
H3 6068.7 6446 6579.1 6724.3 6584.6 6409.7 6154.5
H4 5905.9 6244.7 6345.9 6518.6 6351.4 6162.2 5940
H5 5791.5 6157.8 6187.5 6366.8 6204 6031.3 5793.7
H6 5817.9 6130.3 6189.7 6370.1 6199.6 5935.6 5683.7
H7 5970.8 6329.4 6381.1 6514.2 6347 5852 5472.5
H8 6870.6 7134.6 7213.8 7322.7 7132.4 6275.5 5673.8
H9 7884.8 8191.7 8252.2 8377.6 8101.5 7022.4 6113.8
H10 8679 9012.3 9156.4 9258.7 8867.1 7770.4 6597.8
H11 8983.7 9288.4 9435.8 9573.3 9111.3 8153.2 7027.9
H12 9266.4 9557.9 9708.6 9823 9243.3 8450.2 7422.8
H13 9473.2 9774.6 9948.4 10044.1 9367.6 8647.1 7620.8
H14 9553.5 9810.9 10063.9 10060.6 9342.3 8609.7 7560.3
H15 9320.3 9593.1 9905.5 9790 9075 8250 7327.1
H16 8873.7 9249.9 9551.3 9509.5 8791.2 7857.3 7145.6
H17 8602 8948.5 9256.5 9282.9 8624 7724.2 7102.7
H18 8461.2 8945.2 9102.5 9311.5 8605.3 7742.9 7249
H19 8533.8 9023.3 9002.4 9276.3 8748.3 7824.3 7355.7
H20 8544.8 8993.6 8950.7 9124.5 8641.6 7801.2 7419.5
H21 8545.9 8983.7 8902.3 9016.7 8655.9 7781.4 7576.8
H22 8907.8 9130 9152 9103.6 8771.4 8241.2 8207.1
H23 8651.5 8742.8 8892.4 8747.2 8421.6 8074 8273.1
H24 8033.3 8206 8368.8 8214.8 7901.3 7604.3 7898

Table F.9: Total demand of the fourth week.

W4D1 W4D2 W4D3 W4D4 W4D5 W4D6 W4D7
[MW] [MW] [MW] [MW] [MW] [MW] [MW]

H1 5232.7 5446.1 5478 5581.4 5563.8 5537.4 5416.4
H2 4804.8 5093 5073.2 5161.2 5138.1 5190.9 5058.9
H3 4628.8 4891.7 4873 4952.2 4801.5 4957.7 4771.8
H4 4543 4792.7 4761.9 4792.7 4722.3 4766.3 4621.1
H5 4514.4 4781.7 4739.9 4765.2 4774 4723.4 4554
H6 4634.3 4846.6 4842.2 4884 4901.6 4735.5 4548.5
H7 5135.9 5361.4 5327.3 5353.7 5384.5 4909.3 4524.3
H8 5930.1 6069.8 6089.6 6096.2 6076.4 5172.2 4527.6
H9 6593.4 6762.8 6760.6 6762.8 6761.7 5858.6 4941.2
H10 7243.5 7353.5 7365.6 7321.6 7207.2 6548.3 5539.6
H11 7372.2 7476.7 7445.9 7471.2 7395.3 6956.4 6053.3
H12 7551.5 7647.2 7550.4 7653.8 7558.1 7230.3 6392.1
H13 7653.8 7730.8 7636.2 7758.3 7630.7 7366.7 6554.9
H14 7667 7659.3 7590 7773.7 7607.6 7310.6 6381.1
H15 7528.4 7410.7 7401.9 7489.9 7389.8 6893.7 5843.2
H16 7060.9 7020.2 6949.8 7104.9 6991.6 6342.6 5434
H17 6699 6773.8 6758.4 6871.7 6780.4 6196.3 5362.5
H18 6754 6910.2 6749.6 6954.2 6856.3 6255.7 5580.3
H19 6777.1 7014.7 6803.5 7071.9 7015.8 6477.9 5952.1
H20 7487.7 7825.4 7626.3 7851.8 7793.5 7394.2 6785.9
H21 7958.5 8220.3 8032.2 8173 8024.5 7527.3 7004.8
H22 7558.1 7617.5 7555.9 7579 7452.5 7064.2 6794.7
H23 6759.5 6748.5 6745.2 6831 6713.3 6411.9 6257.9
H24 6067.6 6083 6167.7 6178.7 6144.6 5901.5 5746.4
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Table F.10: Demand ratio for the first week in area one. The remaining demand is the corresponding
one for area two (the sum of the ratios equals 1).

W1D1 W1D2 W1D3 W1D4 W1D5 W1D6 W1D7
[1] [1] [1] [1] [1] [1] [1]

H1 0.32312 0.32556 0.29534 0.35962 0.35412 0.2046 0.39157
H2 0.25831 0.29827 0.29454 0.30557 0.44665 0.30874 0.39896
H3 0.46294 0.31366 0.39318 0.38824 0.37195 0.28105 0.40782
H4 0.30689 0.36517 0.34613 0.42011 0.43973 0.40291 0.37668
H5 0.33406 0.33531 0.41071 0.42112 0.30798 0.37343 0.45013
H6 0.41538 0.38936 0.40568 0.32559 0.3944 0.36362 0.30179
H7 0.37168 0.30558 0.35034 0.35887 0.345 0.29508 0.324
H8 0.33287 0.40735 0.27337 0.3598 0.37723 0.36389 0.351
H9 0.17108 0.40344 0.38848 0.27903 0.33482 0.31492 0.35174
H10 0.21153 0.39047 0.33143 0.33542 0.38002 0.45259 0.38991
H11 0.41749 0.49721 0.36128 0.34011 0.3255 0.36769 0.29907
H12 0.19825 0.27808 0.29413 0.27062 0.31303 0.39118 0.35666
H13 0.31373 0.33374 0.40445 0.39022 0.26441 0.42885 0.38573
H14 0.35315 0.38775 0.34837 0.31517 0.35971 0.3246 0.28243
H15 0.31426 0.28149 0.32237 0.30825 0.45692 0.3359 0.36124
H16 0.36025 0.43558 0.29497 0.36219 0.39198 0.34833 0.37945
H17 0.35621 0.35511 0.27279 0.33922 0.28227 0.41668 0.36469
H18 0.27552 0.36207 0.3457 0.40829 0.40361 0.29363 0.3924
H19 0.27955 0.33404 0.42458 0.4074 0.30195 0.33249 0.40601
H20 0.27914 0.33436 0.38712 0.34476 0.3438 0.36495 0.2237
H21 0.31643 0.39324 0.40308 0.31389 0.27817 0.34886 0.26723
H22 0.41037 0.3515 0.23248 0.22073 0.44804 0.3631 0.33462
H23 0.31414 0.35824 0.38078 0.38334 0.35988 0.43751 0.41286
H24 0.26849 0.31861 0.3126 0.34063 0.41039 0.36428 0.39327

Table F.11: Demand ratio for the second week in area one. The remaining demand is the corre-
sponding one for area two (the sum of the ratios equals 1).

W2D1 W2D2 W2D3 W2D4 W2D5 W2D6 W2D7
[1] [1] [1] [1] [1] [1] [1]

H1 0.2263 0.41132 0.27505 0.3374 0.28977 0.38331 0.37639
H2 0.3248 0.31035 0.34311 0.38052 0.42021 0.32608 0.36729
H3 0.39112 0.4555 0.42934 0.31195 0.33972 0.40205 0.32177
H4 0.33995 0.38997 0.40096 0.33728 0.44956 0.39103 0.39008
H5 0.40035 0.32165 0.41926 0.35764 0.34858 0.34494 0.44265
H6 0.38066 0.35007 0.30226 0.37787 0.25347 0.2958 0.34734
H7 0.38295 0.3188 0.38006 0.31615 0.30294 0.44273 0.37182
H8 0.39166 0.34368 0.40859 0.30754 0.35035 0.26001 0.336
H9 0.33109 0.31596 0.37886 0.32653 0.36691 0.39392 0.34577
H10 0.40577 0.41437 0.39182 0.36199 0.32359 0.31761 0.31354
H11 0.31664 0.3391 0.30735 0.30395 0.29716 0.29752 0.30496
H12 0.31023 0.42833 0.32613 0.39534 0.34926 0.28385 0.41628
H13 0.29813 0.31084 0.33488 0.34278 0.26926 0.37587 0.42623
H14 0.35102 0.36553 0.32921 0.28018 0.39079 0.34878 0.32488
H15 0.31905 0.31723 0.34785 0.35948 0.44989 0.35812 0.33468
H16 0.25985 0.37687 0.39744 0.39219 0.38741 0.38028 0.39696
H17 0.34735 0.33357 0.32292 0.25283 0.35997 0.33641 0.28813
H18 0.35889 0.2973 0.39106 0.36235 0.36864 0.33207 0.34835
H19 0.26138 0.44898 0.4036 0.32792 0.39237 0.36762 0.34382
H20 0.47544 0.44337 0.4037 0.39018 0.28314 0.34338 0.3363
H21 0.37283 0.44162 0.30652 0.33562 0.43082 0.21632 0.31229
H22 0.22848 0.30757 0.30095 0.32665 0.37459 0.35038 0.27378
H23 0.37357 0.32974 0.43794 0.34977 0.39847 0.31448 0.3631
H24 0.37802 0.38512 0.3574 0.3337 0.37371 0.37313 0.43653
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Table F.12: Demand ratio for the third week in area one. The remaining demand is the corre-
sponding one for area two (the sum of the ratios equals 1).

W3D1 W3D2 W3D3 W3D4 W3D5 W3D6 W3D7
[1] [1] [1] [1] [1] [1] [1]

H1 0.27004 0.37381 0.30709 0.29071 0.28971 0.40617 0.37734
H2 0.36962 0.36399 0.39075 0.33881 0.40106 0.32109 0.38677
H3 0.33896 0.31487 0.35786 0.34598 0.35955 0.32948 0.3878
H4 0.37969 0.28959 0.37856 0.36655 0.35136 0.29987 0.25126
H5 0.45252 0.36238 0.34496 0.36923 0.37776 0.32546 0.36649
H6 0.34998 0.27437 0.32018 0.2971 0.39971 0.28698 0.43045
H7 0.26532 0.38625 0.31439 0.37658 0.28639 0.45024 0.30257
H8 0.36658 0.37327 0.34322 0.35236 0.31661 0.36523 0.34875
H9 0.40751 0.36935 0.39735 0.40169 0.39554 0.36816 0.36779
H10 0.39953 0.3831 0.39235 0.31981 0.40263 0.35289 0.32416
H11 0.33179 0.3065 0.33538 0.33754 0.32864 0.29664 0.30563
H12 0.37102 0.35935 0.45922 0.32792 0.38444 0.38382 0.38186
H13 0.30082 0.25742 0.40872 0.35135 0.40991 0.33738 0.34446
H14 0.36379 0.35031 0.42829 0.3871 0.36237 0.44553 0.36553
H15 0.45428 0.25669 0.3664 0.35427 0.39224 0.39577 0.37891
H16 0.37197 0.4715 0.32574 0.41421 0.30752 0.30299 0.32622
H17 0.3144 0.33191 0.23176 0.36693 0.23467 0.43717 0.31393
H18 0.29868 0.33583 0.35021 0.23464 0.43505 0.27926 0.41851
H19 0.28575 0.25324 0.40338 0.26638 0.30812 0.37421 0.29449
H20 0.29996 0.33691 0.37268 0.30661 0.32888 0.32361 0.34256
H21 0.29633 0.26104 0.32709 0.3281 0.39213 0.40881 0.3618
H22 0.2553 0.25536 0.29891 0.30867 0.30192 0.31226 0.42942
H23 0.27328 0.38102 0.37295 0.33052 0.39442 0.35007 0.36286
H24 0.34122 0.40953 0.35023 0.30341 0.44411 0.2873 0.35348

Table F.13: Demand ratio for the fourth week in area one. The remaining demand is the corre-
sponding one for area two (the sum of the ratios equals 1).

W4D1 W4D2 W4D3 W4D4 W4D5 W4D6 W4D7
[1] [1] [1] [1] [1] [1] [1]

H1 0.32247 0.32463 0.39213 0.3335 0.40069 0.27757 0.36252
H2 0.31726 0.41111 0.3312 0.42001 0.32455 0.3278 0.37344
H3 0.33566 0.34892 0.40609 0.37609 0.28677 0.42439 0.3428
H4 0.27908 0.39429 0.30876 0.29975 0.35788 0.37356 0.32329
H5 0.40595 0.35958 0.36069 0.40689 0.39493 0.35726 0.36425
H6 0.35373 0.31552 0.314 0.35766 0.4059 0.3181 0.34909
H7 0.29579 0.25203 0.39967 0.39871 0.41209 0.31436 0.4325
H8 0.35073 0.3726 0.31091 0.39898 0.33008 0.31515 0.40571
H9 0.31785 0.32334 0.36381 0.39607 0.33303 0.42235 0.36867
H10 0.43099 0.37285 0.35363 0.30884 0.38918 0.42629 0.35852
H11 0.33256 0.34553 0.36359 0.34967 0.3123 0.28272 0.40335
H12 0.29583 0.21087 0.31644 0.33129 0.40328 0.30883 0.40903
H13 0.46201 0.34093 0.25986 0.37776 0.27563 0.32939 0.31935
H14 0.36178 0.37985 0.3052 0.35623 0.45639 0.27269 0.34326
H15 0.41266 0.29989 0.34853 0.30815 0.36369 0.25765 0.28115
H16 0.40151 0.30376 0.38738 0.41437 0.31233 0.38861 0.32271
H17 0.32036 0.42608 0.3458 0.38793 0.34939 0.3479 0.40828
H18 0.29549 0.382 0.39988 0.29897 0.34755 0.32845 0.46093
H19 0.36047 0.3724 0.35437 0.26528 0.37543 0.34398 0.34304
H20 0.37596 0.36268 0.3029 0.39316 0.25174 0.33986 0.36136
H21 0.25989 0.34475 0.35437 0.32804 0.37302 0.34029 0.32227
H22 0.35431 0.37802 0.29036 0.41234 0.3151 0.29567 0.3043
H23 0.33097 0.32833 0.37491 0.31711 0.28944 0.48744 0.36001
H24 0.3674 0.32646 0.32812 0.34334 0.36699 0.35029 0.34256
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Table F.14: SPV capacity factors for the first week in area one.

W1D1 W1D2 W1D3 W1D4 W1D5 W1D6 W1D7
[1] [1] [1] [1] [1] [1] [1]

H1 0 0 0 0 0 0 0
H2 0 0 0 0 0 0 0
H3 0 0 0 0 0 0 0
H4 0 0 0 0 0 0 0
H5 0 0 0 0 0 0 0
H6 0 0 0 0 0 0 0
H7 0.00041321 0 0 0.00041078 0 0 0
H8 0.052888 0.043209 0.0084207 0.043263 0.019432 0.023402 0.019059
H9 0.23657 0.20083 0.032987 0.14467 0.0819 0.10523 0.12552
H10 0.37666 0.39531 0.047562 0.20406 0.13449 0.22842 0.29073
H11 0.47178 0.53128 0.062995 0.22787 0.15617 0.31001 0.45487
H12 0.58539 0.57346 0.063914 0.21188 0.18427 0.30261 0.48634
H13 0.52839 0.55275 0.046781 0.16224 0.1902 0.25796 0.43986
H14 0.4888 0.48513 0.028402 0.10433 0.17428 0.17853 0.35781
H15 0.27318 0.25039 0.041655 0.039057 0.12679 0.086689 0.24992
H16 0.081101 0.066896 0.012411 0.0094945 0.039141 0.027838 0.091093
H17 0.00077022 0.0011484 0.00042678 0 0.0012706 0.00040161 0.0018657
H18 0 0 0 0 0 0 0
H19 0 0 0 0 0 0 0
H20 0 0 0 0 0 0 0
H21 0 0 0 0 0 0 0
H22 0 0 0 0 0 0 0
H23 0 0 0 0 0 0 0
H24 0 0 0 0 0 0 0

Table F.15: SPV capacity factors for the first week in area two.

W1D1 W1D2 W1D3 W1D4 W1D5 W1D6 W1D7
[1] [1] [1] [1] [1] [1] [1]

H1 0 0 0 0 0 0 0
H2 0 0 0 0 0 0 0
H3 0 0 0 0 0 0 0
H4 0 0 0 0 0 0 0
H5 0 0 0 0 0 0 0
H6 0 0 0 0 0 0 0
H7 0.00041098 0 0 0.00038796 0 0 0
H8 0.048591 0.051616 0.0081423 0.041984 0.017953 0.024124 0.020737
H9 0.22098 0.20571 0.028759 0.15259 0.073784 0.10885 0.12229
H10 0.36808 0.44191 0.051303 0.18223 0.12831 0.26273 0.29729
H11 0.50748 0.53635 0.063393 0.22974 0.15168 0.28881 0.42832
H12 0.58686 0.54344 0.063701 0.18722 0.16712 0.31098 0.45223
H13 0.57752 0.49653 0.046411 0.15533 0.16453 0.26376 0.42552
H14 0.50084 0.47121 0.030894 0.1087 0.17781 0.17864 0.37505
H15 0.29421 0.26345 0.041366 0.045642 0.12608 0.087104 0.25377
H16 0.079986 0.066346 0.01251 0.0088977 0.039058 0.027973 0.093368
H17 0.00081173 0.0011747 0.00040428 0 0.00125 0.00039634 0.0019799
H18 0 0 0 0 0 0 0
H19 0 0 0 0 0 0 0
H20 0 0 0 0 0 0 0
H21 0 0 0 0 0 0 0
H22 0 0 0 0 0 0 0
H23 0 0 0 0 0 0 0
H24 0 0 0 0 0 0 0
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Table F.16: SPV capacity factors for the second week in area one.

W2D1 W2D2 W2D3 W2D4 W2D5 W2D6 W2D7
[1] [1] [1] [1] [1] [1] [1]

H1 0 0 0 0 0 0 0
H2 0 0 0 0 0 0 0
H3 0 0 0 0 0 0 0
H4 0 0 0 0 0 0 0
H5 0 0 0 0 0 0 0
H6 0.10912 0.01468 0.011386 0.0222 0 0.0054802 0.023298
H7 0.26294 0.48015 0.090911 0.136 0.11358 0.16912 0.1603
H8 0.5607 0.17761 0.22425 0.3585 0.36783 0.34668 0.50753
H9 0.42956 0.39227 0.37307 0.53768 0.52194 0.63949 0.47871
H10 0.57607 0.53448 0.52281 0.50459 0.61119 0.50601 0.47942
H11 0.52114 0.47835 0.61845 0.69873 0.68278 0.74396 0.67243
H12 0.69595 0.54081 0.65916 0.68969 0.71035 0.67631 0.61647
H13 0.53577 0.60237 0.51916 0.68364 0.69974 0.713 0.49849
H14 0.50654 0.55953 0.27168 0.59418 0.59306 0.55793 0.4238
H15 0.46659 0.37896 0.38547 0.53219 0.54137 0.53369 0.34388
H16 0.31298 0.2487 0.27925 0.329 0.28508 0.35091 0.20349
H17 0.12861 0.08307 0.12171 0.1431 0.17315 0.16579 0.10963
H18 0.026989 0.025095 0.019998 0.036522 0.019358 0.034533 0.024621
H19 0 0 0 0 0 0 0
H20 0 0 0 0 0 0 0
H21 0 0 0 0 0 0 0
H22 0 0 0 0 0 0 0
H23 0 0 0 0 0 0 0
H24 0 0 0 0 0 0 0

Table F.17: SPV capacity factors for the second week in area two.

W2D1 W2D2 W2D3 W2D4 W2D5 W2D6 W2D7
[1] [1] [1] [1] [1] [1] [1]

H1 0 0 0 0 0 0 0
H2 0 0 0 0 0 0 0
H3 0 0 0 0 0 0 0
H4 0 0 0 0 0 0 0
H5 0 0 0 0 0 0 0
H6 0.11003 0.015285 0.011784 0.022109 0 0.0051701 0.025925
H7 0.26136 0.48858 0.098487 0.15544 0.12838 0.15998 0.16797
H8 0.54254 0.18454 0.23282 0.32958 0.33899 0.35822 0.55073
H9 0.41005 0.44447 0.39271 0.53039 0.52834 0.69909 0.48461
H10 0.58312 0.51347 0.4772 0.51718 0.64578 0.5055 0.49784
H11 0.58504 0.48675 0.56164 0.64886 0.69892 0.68773 0.61337
H12 0.73224 0.49972 0.62561 0.69647 0.65965 0.70746 0.61883
H13 0.52896 0.57098 0.55865 0.73121 0.73256 0.72267 0.42836
H14 0.53965 0.55003 0.2909 0.6628 0.65999 0.6409 0.38006
H15 0.50952 0.41353 0.40781 0.5473 0.51102 0.52795 0.32546
H16 0.28669 0.21597 0.24708 0.3468 0.30868 0.33263 0.19796
H17 0.12881 0.082624 0.13632 0.14378 0.16965 0.17533 0.096935
H18 0.026274 0.026361 0.018536 0.037514 0.019448 0.036979 0.025451
H19 0 0 0 0 0 0 0
H20 0 0 0 0 0 0 0
H21 0 0 0 0 0 0 0
H22 0 0 0 0 0 0 0
H23 0 0 0 0 0 0 0
H24 0 0 0 0 0 0 0
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Table F.18: SPV capacity factors for the third week in area one.

W3D1 W3D2 W3D3 W3D4 W3D5 W3D6 W3D7
[1] [1] [1] [1] [1] [1] [1]

H1 0 0 0 0 0 0 0
H2 0 0 0 0 0 0 0
H3 0 0 0 0 0 0 0
H4 0 0 0 0 0 0 0
H5 0.0019119 0.0018506 0.0019159 0.0020948 0.0015584 0.0012398 0.0016443
H6 0.070567 0.069793 0.070398 0.076214 0.063746 0.062647 0.073619
H7 0.2272 0.21734 0.21339 0.22456 0.18763 0.19034 0.22041
H8 0.39289 0.35324 0.3554 0.37639 0.36824 0.30985 0.32041
H9 0.49181 0.50984 0.52655 0.50257 0.50182 0.44523 0.52833
H10 0.66415 0.60788 0.59721 0.54511 0.5576 0.57667 0.59445
H11 0.6943 0.69984 0.68595 0.62735 0.68227 0.62043 0.62129
H12 0.72852 0.64031 0.58998 0.68131 0.61659 0.63982 0.62601
H13 0.6421 0.63689 0.6567 0.61775 0.6019 0.66264 0.64671
H14 0.59042 0.5555 0.58359 0.59381 0.53174 0.59732 0.44639
H15 0.45946 0.41898 0.43807 0.42558 0.45991 0.47043 0.41822
H16 0.3421 0.32824 0.34563 0.34078 0.35261 0.34483 0.3286
H17 0.19973 0.1914 0.19987 0.18979 0.19305 0.20968 0.1942
H18 0.084155 0.086303 0.084562 0.094477 0.095632 0.083058 0.087028
H19 0.015961 0.014201 0.014635 0.015214 0.015557 0.014991 0.015861
H20 0 0 0 0 0 0 0
H21 0 0 0 0 0 0 0
H22 0 0 0 0 0 0 0
H23 0 0 0 0 0 0 0
H24 0 0 0 0 0 0 0

Table F.19: SPV capacity factors for the third week in area two.

W3D1 W3D2 W3D3 W3D4 W3D5 W3D6 W3D7
[1] [1] [1] [1] [1] [1] [1]

H1 0 0 0 0 0 0 0
H2 0 0 0 0 0 0 0
H3 0 0 0 0 0 0 0
H4 0 0 0 0 0 0 0
H5 0.0018268 0.00208 0.0019679 0.0021007 0.0017183 0.0012314 0.0015253
H6 0.072027 0.066853 0.069583 0.067949 0.067865 0.068471 0.071709
H7 0.21398 0.2065 0.21828 0.22805 0.20332 0.19312 0.22104
H8 0.36321 0.39211 0.39351 0.38147 0.35471 0.35179 0.3542
H9 0.53803 0.54011 0.49414 0.49576 0.52242 0.43435 0.5066
H10 0.57667 0.60167 0.57784 0.57581 0.60208 0.57164 0.59167
H11 0.61842 0.63201 0.63954 0.64169 0.69998 0.63462 0.62085
H12 0.74083 0.59599 0.63777 0.61945 0.62997 0.65602 0.61212
H13 0.58092 0.61568 0.66085 0.58578 0.60464 0.5781 0.56891
H14 0.57112 0.52826 0.53515 0.57286 0.58706 0.56056 0.51548
H15 0.48892 0.44121 0.44143 0.49132 0.46754 0.45351 0.4618
H16 0.36852 0.2764 0.32195 0.34857 0.34096 0.33522 0.33512
H17 0.216 0.20832 0.19692 0.21024 0.19251 0.21222 0.19846
H18 0.083658 0.084673 0.079808 0.088167 0.093211 0.087598 0.093406
H19 0.01519 0.013941 0.01334 0.015438 0.016201 0.01481 0.014406
H20 0 0 0 0 0 0 0
H21 0 0 0 0 0 0 0
H22 0 0 0 0 0 0 0
H23 0 0 0 0 0 0 0
H24 0 0 0 0 0 0 0
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Table F.20: SPV capacity factors for the fourth week in area one.

W4D1 W4D2 W4D3 W4D4 W4D5 W4D6 W4D7
[1] [1] [1] [1] [1] [1] [1]

H1 0 0 0 0 0 0 0
H2 0 0 0 0 0 0 0
H3 0 0 0 0 0 0 0
H4 0 0 0 0 0 0 0
H5 0 0 0 0 0 0 0
H6 0.010457 0.0095215 0.0076058 0.00707 0.0067303 0.0049736 0.0041989
H7 0.14204 0.13556 0.12642 0.10854 0.12152 0.11737 0.10836
H8 0.30936 0.3383 0.31163 0.25418 0.2924 0.29005 0.2654
H9 0.48457 0.50549 0.42201 0.42942 0.50703 0.43363 0.42641
H10 0.58592 0.56737 0.53151 0.54258 0.54764 0.57962 0.48366
H11 0.63528 0.67617 0.53563 0.60048 0.64531 0.62961 0.61459
H12 0.67097 0.76445 0.66259 0.61645 0.6178 0.60321 0.62568
H13 0.62769 0.60555 0.48925 0.53879 0.57879 0.56642 0.56418
H14 0.54391 0.52957 0.41994 0.49751 0.59224 0.50535 0.50286
H15 0.43908 0.40468 0.29903 0.37478 0.33963 0.35655 0.33492
H16 0.26527 0.25358 0.18089 0.20928 0.21861 0.19717 0.19984
H17 0.085292 0.083992 0.059204 0.068088 0.07057 0.066844 0.070062
H18 0.0035073 0.0034375 0.0020288 0.0020836 0.0019809 0.0016215 0.00116
H19 0 0 0 0 0 0 0
H20 0 0 0 0 0 0 0
H21 0 0 0 0 0 0 0
H22 0 0 0 0 0 0 0
H23 0 0 0 0 0 0 0
H24 0 0 0 0 0 0 0

Table F.21: SPV capacity factors for the fourth week in area two.

W4D1 W4D2 W4D3 W4D4 W4D5 W4D6 W4D7
[1] [1] [1] [1] [1] [1] [1]

H1 0 0 0 0 0 0 0
H2 0 0 0 0 0 0 0
H3 0 0 0 0 0 0 0
H4 0 0 0 0 0 0 0
H5 0 0 0 0 0 0 0
H6 0.010345 0.010098 0.0080917 0.0063485 0.0065007 0.0052216 0.0044252
H7 0.14817 0.13872 0.12585 0.12442 0.13488 0.12843 0.10438
H8 0.31337 0.33879 0.26146 0.29 0.29897 0.28487 0.24946
H9 0.50141 0.50723 0.44744 0.43904 0.4287 0.43012 0.39721
H10 0.68552 0.60654 0.52555 0.50911 0.56963 0.59333 0.52481
H11 0.67378 0.64854 0.59991 0.67275 0.62006 0.55621 0.51644
H12 0.74545 0.64325 0.58195 0.65908 0.6631 0.62951 0.58411
H13 0.63939 0.6667 0.50909 0.57105 0.58205 0.60034 0.53239
H14 0.58552 0.56543 0.47852 0.49146 0.5023 0.50119 0.48574
H15 0.44252 0.42818 0.32927 0.37001 0.35025 0.36246 0.37361
H16 0.27496 0.24414 0.17135 0.19574 0.2088 0.18522 0.2132
H17 0.084534 0.079501 0.06053 0.066655 0.063363 0.072793 0.06606
H18 0.0037428 0.0032734 0.0018863 0.0019716 0.002161 0.0015532 0.0012775
H19 0 0 0 0 0 0 0
H20 0 0 0 0 0 0 0
H21 0 0 0 0 0 0 0
H22 0 0 0 0 0 0 0
H23 0 0 0 0 0 0 0
H24 0 0 0 0 0 0 0
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Table F.22: WF capacity factors for the first week in area one.

W1D1 W1D2 W1D3 W1D4 W1D5 W1D6 W1D7
[1] [1] [1] [1] [1] [1] [1]

H1 0.21499 0.098049 0.14336 0.34805 0.5059 0.32556 0.5489
H2 0.16049 0.11753 0.17707 0.31768 0.45171 0.33908 0.52776
H3 0.16328 0.11267 0.18405 0.28936 0.4591 0.38965 0.54526
H4 0.11828 0.078685 0.1954 0.29604 0.39214 0.37815 0.45515
H5 0.098925 0.071696 0.17356 0.25032 0.3998 0.36008 0.46435
H6 0.10206 0.045963 0.2037 0.25387 0.40444 0.33482 0.35437
H7 0.09053 0.030402 0.22906 0.20016 0.40104 0.35082 0.3707
H8 0.059441 0.024689 0.22929 0.17047 0.39998 0.38337 0.28202
H9 0.045337 0.030547 0.28727 0.1447 0.3497 0.26546 0.35205
H10 0.025146 0.031675 0.33989 0.1568 0.35485 0.32774 0.38046
H11 0.019551 0.024525 0.3653 0.17107 0.36748 0.3601 0.43061
H12 0.023666 0.015302 0.42186 0.19108 0.32379 0.45336 0.41691
H13 0.022736 0.015783 0.48165 0.21027 0.36014 0.43936 0.4299
H14 0.032314 0.017854 0.45918 0.25627 0.3737 0.50349 0.44216
H15 0.04108 0.025199 0.43507 0.2928 0.32724 0.52608 0.4099
H16 0.04016 0.02946 0.44136 0.2875 0.30563 0.55073 0.39793
H17 0.038155 0.034833 0.43504 0.29674 0.27526 0.60024 0.42573
H18 0.042527 0.027671 0.43058 0.35578 0.241 0.55563 0.45545
H19 0.073034 0.028417 0.38634 0.376 0.27927 0.52146 0.41281
H20 0.090003 0.038182 0.41776 0.38829 0.28505 0.55078 0.40182
H21 0.093915 0.064271 0.39714 0.43715 0.31836 0.60411 0.42256
H22 0.077153 0.086939 0.36877 0.44838 0.31276 0.56706 0.3997
H23 0.082114 0.1133 0.39696 0.46427 0.29278 0.56403 0.37062
H24 0.074491 0.12982 0.34864 0.44962 0.28438 0.51768 0.32412

Table F.23: WF capacity factors for the first week in area two.

W1D1 W1D2 W1D3 W1D4 W1D5 W1D6 W1D7
[1] [1] [1] [1] [1] [1] [1]

H1 0.2139 0.10398 0.14706 0.33159 0.46548 0.30836 0.51963
H2 0.17337 0.1217 0.18734 0.30513 0.47166 0.35812 0.53398
H3 0.15688 0.12401 0.18323 0.28757 0.39129 0.40144 0.47275
H4 0.12502 0.095196 0.18477 0.28186 0.43894 0.3819 0.48188
H5 0.097842 0.068092 0.18177 0.25726 0.40623 0.38275 0.42922
H6 0.10426 0.053124 0.22473 0.24519 0.42403 0.3709 0.42442
H7 0.08421 0.028168 0.19704 0.20893 0.391 0.3687 0.38519
H8 0.062303 0.024441 0.27291 0.17347 0.40222 0.3837 0.3377
H9 0.045729 0.030652 0.27451 0.16272 0.39925 0.27989 0.34918
H10 0.024333 0.028527 0.35595 0.15541 0.37736 0.31671 0.38798
H11 0.020895 0.021874 0.37251 0.1736 0.35779 0.36141 0.40671
H12 0.021898 0.015063 0.45406 0.18858 0.35811 0.40614 0.46201
H13 0.022116 0.017502 0.42032 0.1995 0.35097 0.45243 0.42541
H14 0.030357 0.018735 0.44477 0.24292 0.35287 0.47287 0.42958
H15 0.039932 0.025459 0.40119 0.2672 0.34948 0.56608 0.41239
H16 0.036203 0.029443 0.45261 0.26878 0.27297 0.56782 0.35043
H17 0.039486 0.034582 0.40341 0.3153 0.26811 0.54933 0.40353
H18 0.049197 0.02854 0.47041 0.33644 0.26741 0.54876 0.43816
H19 0.072265 0.030565 0.4344 0.367 0.27874 0.57897 0.44142
H20 0.093494 0.038547 0.43944 0.41072 0.30748 0.59094 0.42459
H21 0.094606 0.062648 0.40439 0.47644 0.31303 0.60577 0.3771
H22 0.080135 0.076622 0.38215 0.47574 0.34143 0.51888 0.3832
H23 0.077279 0.10692 0.3736 0.458 0.30962 0.58517 0.33013
H24 0.07977 0.12569 0.38346 0.45391 0.31847 0.57844 0.32985
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Table F.24: WF capacity factors for the second week in area one.

W2D1 W2D2 W2D3 W2D4 W2D5 W2D6 W2D7
[1] [1] [1] [1] [1] [1] [1]

H1 0.093119 0.090834 0.2245 0.1511 0 0.00096982 0.023257
H2 0.069846 0.066284 0.27175 0.084124 0.016512 0.0034433 0.037421
H3 0.067821 0.038353 0.27675 0.16627 0.013503 0.0073597 0.073161
H4 0.056578 0.038924 0.22576 0.17239 0.015939 0.026697 0.043389
H5 0.040919 0.030493 0.22728 0.12563 0.0014967 0.026257 0.047626
H6 0.027906 0.046041 0.33969 0.0086264 0.016227 0.022646 0.068528
H7 0.02915 0.057031 0.33796 0.14448 0.027019 0.026653 0.070298
H8 0.10379 0.048099 0.20125 0.068848 0.021999 0.02142 0.076815
H9 0.01987 0.04683 0.29199 0.053735 0.022109 0.020115 0.079028
H10 0.018614 0.025999 0.18028 0.041163 0.004883 0.017374 0.085945
H11 0.044971 0.020866 0.24739 0.03125 0.01547 0.021205 0.117
H12 0.044463 0.036057 0.23907 0.073967 0.0025005 0.027482 0.15662
H13 0.062192 0.03963 0.2033 0.058515 0.020266 0.022991 0.14256
H14 0.072224 0.047621 0.18386 0.040901 0.020999 0.022561 0.13065
H15 0.079803 0.038208 0.18581 0.031714 0.017862 0.020387 0.2071
H16 0.081187 0.037342 0.22279 0.020469 0.012633 0.01523 0.17489
H17 0.088447 0.084901 0.20595 0.0043235 0.0048457 0.0067093 0.16997
H18 0.11474 0.05434 0.24101 0.0036199 0.0032987 0.0062626 0.16261
H19 0.1135 0.089777 0.23565 0.0039875 0.0020168 0.0059217 0.15051
H20 0.1276 0.13542 0.21817 0.0048408 0.0025437 0.0081224 0.1691
H21 0.13415 0.16785 0.19831 0.0042843 0.0034783 0.012118 0.16271
H22 0.11333 0.18844 0.17022 0.0014373 0.0014553 0.011625 0.22591
H23 0.11722 0.20417 0.15464 0.00088686 0.00093708 0.018997 0.20052
H24 0.11578 0.317 0.16144 0.00045838 0.00093422 0.083661 0.19717

Table F.25: WF capacity factors for the second week in area two.

W2D1 W2D2 W2D3 W2D4 W2D5 W2D6 W2D7
[1] [1] [1] [1] [1] [1] [1]

H1 0.099084 0.084505 0.24476 0.1634 0 0.00099296 0.026134
H2 0.065692 0.057928 0.26266 0.092438 0.017176 0.0033691 0.036443
H3 0.065193 0.03762 0.27942 0.17837 0.012481 0.0073776 0.078771
H4 0.06286 0.038782 0.21263 0.17806 0.015365 0.02618 0.041615
H5 0.041148 0.028821 0.2128 0.12558 0.0014177 0.026157 0.044646
H6 0.027226 0.046983 0.32056 0.008783 0.016476 0.022331 0.070794
H7 0.031919 0.051012 0.31889 0.15497 0.025502 0.02608 0.06641
H8 0.10624 0.047028 0.19075 0.069704 0.02322 0.02042 0.075196
H9 0.01746 0.045437 0.2757 0.062013 0.019207 0.017931 0.075503
H10 0.019294 0.031546 0.17911 0.043387 0.0050438 0.019558 0.08882
H11 0.044441 0.020011 0.28189 0.031352 0.01797 0.025668 0.11544
H12 0.048434 0.034429 0.2564 0.070998 0.0024634 0.027402 0.15423
H13 0.057602 0.045535 0.23362 0.060737 0.019671 0.024077 0.1444
H14 0.079495 0.043393 0.20148 0.043211 0.019439 0.021447 0.12422
H15 0.079112 0.035078 0.17511 0.029388 0.018002 0.018624 0.22567
H16 0.070467 0.036019 0.20763 0.018041 0.012516 0.016267 0.17345
H17 0.079467 0.089093 0.21997 0.004111 0.0050228 0.0070099 0.16489
H18 0.096905 0.051539 0.23591 0.0041267 0.0033463 0.0063747 0.15956
H19 0.11598 0.077027 0.21883 0.0037998 0.0020135 0.0061528 0.15955
H20 0.12585 0.15464 0.1985 0.0043265 0.0022578 0.0090889 0.14136
H21 0.1314 0.18057 0.19658 0.0044785 0.0037489 0.013104 0.17471
H22 0.10696 0.20006 0.19304 0.0013712 0.0014004 0.012442 0.23708
H23 0.12457 0.20358 0.17379 0.0009519 0.00091734 0.018293 0.20492
H24 0.1157 0.31193 0.14538 0.00047517 0.00095965 0.07857 0.18679
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Table F.26: WF capacity factors for the third week in area one.

W3D1 W3D2 W3D3 W3D4 W3D5 W3D6 W3D7
[1] [1] [1] [1] [1] [1] [1]

H1 0.0076309 0.061625 0.11444 0.14758 0.30675 0.14295 0.067629
H2 0.0083374 0.090674 0.113 0.18891 0.32494 0.18642 0.17637
H3 0.010893 0.11052 0.14378 0.20017 0.30059 0.18394 0.21504
H4 0.01206 0.11174 0.15498 0.26363 0.35002 0.16829 0.2002
H5 0.018509 0.13017 0.16374 0.3199 0.37459 0.17285 0.15937
H6 0.014892 0.11931 0.1517 0.31654 0.41749 0.16309 0.15865
H7 0.013642 0.10332 0.13824 0.36582 0.37014 0.16396 0.15822
H8 0.016364 0.10504 0.12826 0.39142 0.3811 0.14207 0.15113
H9 0.02206 0.12421 0.12606 0.38907 0.37392 0.13493 0.18089
H10 0.02503 0.13673 0.1352 0.43057 0.36456 0.13593 0.24537
H11 0.036788 0.13399 0.10832 0.38553 0.36436 0.11079 0.25063
H12 0.040956 0.1244 0.11583 0.38456 0.32348 0.11879 0.25971
H13 0.049306 0.10328 0.12561 0.33695 0.3229 0.11279 0.28664
H14 0.044279 0.093801 0.13647 0.34901 0.28167 0.12637 0.28502
H15 0.054167 0.10218 0.16647 0.35954 0.25035 0.11192 0.26724
H16 0.058186 0.1074 0.16226 0.34135 0.22441 0.10231 0.24983
H17 0.059319 0.09258 0.1691 0.33547 0.19319 0.09 0.24191
H18 0.056837 0.067528 0.12937 0.31235 0.1428 0.078008 0.2314
H19 0.062321 0.07934 0.12675 0.2462 0.15766 0.069429 0.2258
H20 0.056216 0.081891 0.13825 0.32438 0.16157 0.07088 0.27564
H21 0.060108 0.08247 0.14275 0.29823 0.17066 0.058904 0.29105
H22 0.057409 0.090868 0.13722 0.28618 0.15013 0.068612 0.28328
H23 0.058017 0.083889 0.1349 0.2587 0.13124 0.080318 0.31143
H24 0.052335 0.089316 0.13823 0.314 0.14535 0.07 0.29823

Table F.27: WF capacity factors for the third week in area two.

W3D1 W3D2 W3D3 W3D4 W3D5 W3D6 W3D7
[1] [1] [1] [1] [1] [1] [1]

H1 0.0075595 0.062447 0.10934 0.15032 0.2918 0.14913 0.069974
H2 0.0077987 0.090232 0.11832 0.18977 0.3173 0.18042 0.17561
H3 0.011529 0.11248 0.12852 0.20017 0.32505 0.18791 0.20178
H4 0.011602 0.11146 0.16786 0.25272 0.32312 0.16974 0.21204
H5 0.016244 0.12374 0.17167 0.29363 0.38002 0.16882 0.19441
H6 0.015055 0.12115 0.16383 0.35476 0.42448 0.16341 0.15719
H7 0.01371 0.091199 0.13614 0.38749 0.39485 0.1855 0.14857
H8 0.015079 0.10897 0.13253 0.40893 0.34084 0.15246 0.15668
H9 0.018917 0.12996 0.12609 0.38914 0.38327 0.13099 0.18976
H10 0.028308 0.13532 0.12633 0.4063 0.36222 0.13725 0.22549
H11 0.032955 0.12554 0.10529 0.38258 0.3874 0.11045 0.25478
H12 0.040253 0.11288 0.10651 0.36185 0.38766 0.12053 0.27857
H13 0.054378 0.098655 0.13069 0.36181 0.29247 0.099402 0.27807
H14 0.051458 0.090142 0.13703 0.35801 0.30079 0.13489 0.28038
H15 0.055071 0.10196 0.15907 0.36205 0.2625 0.12473 0.28218
H16 0.057834 0.10698 0.16822 0.34753 0.22348 0.10779 0.24206
H17 0.060938 0.093161 0.16339 0.33713 0.16931 0.091447 0.2211
H18 0.055547 0.083521 0.12318 0.28893 0.14639 0.07619 0.20079
H19 0.055095 0.077983 0.1136 0.30188 0.1534 0.068732 0.24442
H20 0.058758 0.098942 0.1375 0.31185 0.15554 0.067971 0.27975
H21 0.064697 0.086139 0.13909 0.28805 0.16355 0.060291 0.26019
H22 0.053338 0.092628 0.13351 0.29532 0.16794 0.07136 0.2769
H23 0.059288 0.089903 0.12826 0.27045 0.13655 0.080019 0.30115
H24 0.055174 0.08484 0.13465 0.29591 0.13442 0.073952 0.3213
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Table F.28: WF capacity factors for the fourth week in area one.

W4D1 W4D2 W4D3 W4D4 W4D5 W4D6 W4D7
[1] [1] [1] [1] [1] [1] [1]

H1 0.054069 0.027796 0.023216 0.097975 0.04213 0.16014 0.067871
H2 0.070785 0.033057 0.020143 0.097906 0.049287 0.15213 0.073155
H3 0.073237 0.038317 0.016565 0.07138 0.055521 0.15939 0.072434
H4 0.085467 0.031063 0.014026 0.070868 0.045402 0.1617 0.066236
H5 0.091178 0.040897 0.014875 0.070333 0.04942 0.14697 0.07038
H6 0.092742 0.041413 0.018774 0.061986 0.05119 0.16695 0.064544
H7 0.07726 0.042333 0.015257 0.071066 0.036889 0.17235 0.067094
H8 0.078519 0.029866 0.0083928 0.038763 0.024341 0.14429 0.052032
H9 0.071618 0.022748 0.010159 0.028983 0.022985 0.11311 0.035382
H10 0.045716 0.017496 0.010719 0.030573 0.020703 0.12467 0.025442
H11 0.049206 0.017529 0.012086 0.045666 0.03393 0.12363 0.033649
H12 0.051004 0.020947 0.016995 0.055569 0.068005 0.10588 0.044864
H13 0.03562 0.023632 0.031624 0.078437 0.097152 0.12646 0.055642
H14 0.040022 0.026419 0.024803 0.08643 0.10991 0.11791 0.056456
H15 0.036061 0.029386 0.020815 0.070785 0.13971 0.12111 0.061948
H16 0.034078 0.027845 0.012226 0.079933 0.13203 0.13292 0.058851
H17 0.025684 0.021418 0.015968 0.062249 0.14252 0.12374 0.060382
H18 0.021174 0.019897 0.027979 0.05174 0.14434 0.1244 0.055488
H19 0.018219 0.016045 0.038722 0.043243 0.13124 0.106 0.047435
H20 0.016854 0.018222 0.06201 0.038299 0.17254 0.090824 0.050035
H21 0.015422 0.02267 0.068816 0.035893 0.17359 0.10199 0.058683
H22 0.017304 0.028016 0.080758 0.03713 0.16691 0.097504 0.035316
H23 0.022133 0.036926 0.089587 0.036703 0.14802 0.083662 0.031995
H24 0.022821 0.036989 0.09143 0.045451 0.17018 0.075567 0.031077

Table F.29: WF capacity factors for the fourth week in area two.

W4D1 W4D2 W4D3 W4D4 W4D5 W4D6 W4D7
[1] [1] [1] [1] [1] [1] [1]

H1 0.053766 0.027943 0.025325 0.10318 0.035405 0.17329 0.070455
H2 0.074392 0.031537 0.020625 0.091683 0.04705 0.16361 0.068976
H3 0.080957 0.037033 0.016379 0.07819 0.054187 0.15908 0.072922
H4 0.084048 0.033586 0.015402 0.070304 0.048553 0.1443 0.066793
H5 0.090927 0.041768 0.015214 0.071118 0.049842 0.13879 0.065699
H6 0.091724 0.044639 0.017787 0.061276 0.050365 0.18283 0.063445
H7 0.077825 0.045918 0.014785 0.070878 0.043696 0.16834 0.063904
H8 0.082774 0.028265 0.0083193 0.040729 0.027446 0.14485 0.051353
H9 0.066935 0.023801 0.010015 0.032367 0.025135 0.11073 0.037223
H10 0.051977 0.01676 0.010407 0.03128 0.0232 0.12812 0.027049
H11 0.044223 0.015201 0.0115 0.044227 0.037163 0.12611 0.038299
H12 0.047062 0.020596 0.017027 0.052623 0.061417 0.11246 0.05085
H13 0.039651 0.023471 0.029495 0.075456 0.093064 0.13783 0.057066
H14 0.039027 0.029489 0.026459 0.085185 0.11161 0.12473 0.056516
H15 0.038174 0.02524 0.019355 0.085675 0.12338 0.11003 0.053418
H16 0.035442 0.026679 0.013436 0.07335 0.13444 0.13576 0.058501
H17 0.028343 0.022771 0.015912 0.058601 0.15293 0.11557 0.057105
H18 0.023029 0.018569 0.025629 0.052324 0.13896 0.12212 0.051909
H19 0.018027 0.016828 0.043029 0.041557 0.13953 0.11241 0.052138
H20 0.016326 0.01774 0.060595 0.037697 0.16368 0.092757 0.051425
H21 0.014742 0.02151 0.070097 0.036949 0.16197 0.1056 0.051045
H22 0.017445 0.028137 0.079261 0.039324 0.13741 0.1091 0.03316
H23 0.020394 0.038046 0.086013 0.03875 0.15054 0.081623 0.035567
H24 0.023813 0.03659 0.084324 0.047645 0.14276 0.078695 0.030447
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[180] J. Müller, C. A. Shoemaker, R. Piché, So-i: a surrogate model algorithm for expensive non-
linear integer programming problems including global optimization applications, Journal of
Global Optimization 59 (4) (2014) 865–889.
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Περίληψη

Σκοπός αυτής της Διδακτορικής Διατριβής είναι να αναπτύξει και να εξετάσει τη εφαρμογή Εξελικτι-
κών Αλγορίθμων υποβοηθούμενων από μεταπρότυπα (Metamodel-assisted Evolutionary Algorithms,
MAEA) για μονο- και πολυ- κριτηριακή βελτιστοποίηση του προβλήματος επέκτασης δυναμικότητας
παραγωγής ισχύος (Generation Expansion Planning, GEP) με υψηλό μερίδιο παραγωγής από Ανανε-
ώσιμες Πηγές Ενέργειας (Renewable Energy Sources, RES). ΄Ενα μοντέλο GEP μπορεί να συμβάλει
στη διαδικασία λήψης αποφάσεων για τον μεσοπρόθεσμο και μακροπρόθεσμο προγραμματισμό παραγω-
γής ενέργειας. Συνήθως, αποσκοπεί στην παραγωγή σεναρίων για την οικονομικά αποδοτική, βιώσιμη
και ασφαλή λειτουργία ενός συστήματος ισχύος που καθορίζονται λαμβάνοντας υπόψη τόσο τις πιθανές
επενδύσεις σε προσθήκες δυναμικότητας όσο και τη βραχυπρόθεσμη λειτουργία του συστήματος ισχύος,
π.χ. ο προσδιορισμός ενός οικονομικού και/ή περιβαλλοντικά βέλτιστου επενδυτικού πλάνου για την
κάλυψη της αυξανόμενης ζήτησης ενέργειας και παρουσιάζει αξιόπιστη βραχυπρόθεσμη λειτουργία. ΄Ενα
τέτοιο πρόβλημα μπορεί να διατυπωθεί ως πρόβλημα βελτιστοποίησης.
Η επιδίωξη ενός συστήματος ισχύος χωρίς εκπομπές ρύπων και τα αυξανόμενα μερίδια παραγω-

γής των RES οδήγησαν στην εισαγωγή διαφόρων νέων παραμέτρων στα μοντέλα GEP. Μια τέτοια
παράμετρος είναι ο εντοπισμός οικονομικών και τεχνικών προκλήσεων που σχετίζονται με τη βραχυ-
πρόθεσμη λειτουργία του συστήματος ισχύος που θα μπορούσε να είναι απαραίτητη για την αξιολόγηση
της συνέργειας της εγκατεστημένης ισχύος και των αυξανόμενων εγκαταστάσεων RES. Συγκεκριμένα,
η παραγωγή από RES χαρακτηρίζεται από μεταβλητότητα και αβεβαιότητα. ΄Εχει αναφερθεί στη βιβλιο-
γραφία ότι αυτά αναμένεται να αυξήσουν τις απαιτήσεις σε λειτουργική ευελιξία και ότι η υποτίμηση
τέτοιων απαιτήσεων θα μπορούσε να έχει οικονομικές επιπτώσεις στη βραχυπρόθεσμη λειτουργία του
συστήματος ισχύος. Συνεπώς, έχουν γίνει προσπάθειες για την αύξηση του επιπέδου λεπτομέρειας της
μοντελοποίησης της βραχυπρόθεσμης λειτουργίας ενός συστήματος ισχύος σε όρους χωρικής, χρονικής
και τεχνικής λεπτομέρειας που εισάγεται σε ένα μοντέλο GEP. Ωστόσο, αυτό μπορεί να οδηγήσει σε
αυξημένο υπολογιστικό κόστος, και παράλληλα, είναι απαραίτητο να εισάγονται απλοποιήσεις.
Οι Εξελικτικοί Αλγόριθμοι (EA) είναι αλγόριθμοι εμπνευσμένοι από τη φύση που εφαρμόζουν στο-

χαστικούς τελεστές για να βελτιώσουν ένα σύνολο υποψηφίων λύσεων. Αυτοί δεν βασίζονται στη
χρήση παραγώγων και μπορούν να χρησιμοποιηθούν ως μέθοδοι άμεσης αναζήτησης για σύνθετα προ-
βλήματα βελτιστοποίησης. Επιπλέον, EA για πολυκριτηριακή βελτιστοποίηση (Multi-Objective EA,
MOEA) είναι αποδοτικές μέθοδοι για πολυκριτηριακά προβλήματα βελτιστοποίησης (Multi-Objective
Optimization, MOO). ΄Ενα βασικό τους μειονέκτημα είναι ο σχετικά μεγάλος αριθμός αξιολογήσεων
που απαιτείται για τη σύγκλιση του αλγορίθμου που μπορεί να είναι απαγορευτικό για προβλήματα που
περιλαμβάνουν υπολογιστικά δαπανηρές προσομοιώσεις. Για τέτοιες εφαρμογές, οι EA χρησιμοποιο-
ύνται σε συνδυασμό με μοντέλα προσέγγισης (Approximating Models, AM) τα οποία στη βιβλιογραφία
αναφέρονται ωςMAEA. Τα AM αντικαθιστούν εν μέρει τα αρχικά μοντέλα για να παρέχουν μια εκτίμη-
ση της επάρκειας μιας υποψήφιας λύσης για μείωση του υπολογιστικού κόστους.
Αυτή η Διδακτορική Διατριβή επικεντρώνεται σε εφαρμογέςMAEA σε GEP ενός ή πολλών στόχων

που περιλαμβάνουν μοντέλο προσομοίωσης (Simulation Models, SM) για τη βραχυπρόθεσμη λειτουργία
ενός συστήματος ισχύος. Οι σημαντικότερες συνεισφορές της είναι οι ακόλουθες:

1. Παρουσιάζεται μια προσέγγιση, βασισμένη σε MAEA, για GEP πολλαπλών περιόδων και ενός
στόχου που περιλαμβάνει SM. Το επιλεγμένο από τη βιβλιογραφία SM είναι ένα μοντέλο βελτιστο-
ποίησης για τη βραχυπρόθεσμη λειτουργία ενός συστήματος ισχύος που περιλαμβάνει παραδοχές,



π.χ. η χωρική λεπτομέρεια δεν εξετάζεται. Ωστόσο, παρουσιάζει σχετικά αυξημένο επίπεδο τε-
χνικής και χρονικής λεπτομέρειας για το πλαίσιο του μακροπρόθεσμου προγραμματισμού. Το SM
εισάγεται για την αξιολόγηση της λειτουργικής ευελιξίας κατά την διαδικασίας βελτιστοποίησης
του προβλήματος. Συγκεκριμένα χαρακτηριστικά του προβλήματος αξιοποιούνται για την επίλυ-
σή του. Αυτό υλοποιείται μέσα από την χρήση των AM έτσι ώστε να παρέχουν μια εκτίμηση
του SM και να μειώσουν το υπολογιστικό κόστος. Τα εξεταζόμενα ΑΜ είναι οι Συναρτήσεις
Ακτινικής Βάσης (Radial Basis Function, RBF). Γίνεται χρήση τοπικών και ολικών AM που α-
νανεώνονται κατά τη διάρκεια της βελτιστοποίησης. Επίσης, εξετάζονται εξειδικευμένοι τελεστές
που στοχεύουν στη βελτίωση της απόδοση του EA που εξετάστηκε ο οποίος είναι ο αλγόριθμος
της Διαφορικής Εξέλιξης (Di�erential Evolution, DE). Με βάση τα αποτελέσματα των υπολο-
γιστικών πειραμάτων, η απόδοση του MAEA κρίνεται ικανοποιητική λαμβάνοντας υπόψη τους
περιορισμούς λόγω υπολογιστικού κόστος. Επιπλέον, η ευρετική τεχνική διόρθωσης των περιο-
ρισμών του προβλήματος βελτιστοποίησης παρείχε τη μεγαλύτερη βελτίωση στην απόδοση του
αλγόριθμου βάσης μεταξύ των εξειδικευμένοι τελεστών που αναπτύχθηκαν. Επίσης, εξετάζεται η
επίδραση της ενσωμάτωσης του SM. Τα αποτελέσματα υποδηλώνουν τη σημασία της ενσωμάτω-
σης τεχνικών που να εξετάζουν την λειτουργική ευελιξία για την επαρκή αξιολόγηση παρόχων
ευελιξίας όταν αυτοί θεωρούνται ως επενδυτικές επιλογές. Η αξιολόγηση της ακρίβειας των
AM έδειξε ότι αυτή ήταν αποδεκτή με βάση τους δείκτες που χρησιμοποιήθηκαν. Επομένως,
πραγματοποιήθηκε οπτική ανάλυση της ευαισθησίας του λειτουργικού κόστους σε σχέση με την
εγκατεστημένη δυναμικότητα παραγωγής ισχύος.

2. Παρουσιάζεται μια προσέγγιση, βασισμένη σε MAEA, για ένα στατικό μοντέλο GEP που στοχε-
ύει στην ανάλυση αντικρουόμενων στόχων σε MOO GEP. Η λειτουργική ευελιξία αξιολογείται
από ένα, επιλεγμένο από τη βιβλιογραφία, SM που περιλαμβάνει τεχνική, χωρική και χρονική λε-
πτομέρεια της βραχυπρόθεσμης λειτουργίας ενός συστήματος ισχύος. Η μεθοδολογία αναπτύσσε-
ται με βάση τη σχετική βιβλιογραφία για τουςMOEA και τη βελτιστοποίηση με μεταπρότυπα χωρίς
χρήση παραγώγων. Ως AM επιλέχθηκαν τα RBF και η Πολυωνυμική Παλινδρόμηση (Polynomial
Regression, PR). Αυτά ανανεώνονται με κριτήρια που δίνουν προτεραιότητα στις εφικτές λύσεις,
τη χωρική κατανομή του αποθηκευμένου συνόλου λύσεων στον χώρο αναζήτησης και πιθανές
βελτιώσεις του υπερόγκου. Η διαδικασία περιλαμβάνει τοπική αναζήτηση με χρήση παραγώγων,
τοπικά RBF, PR και ένα μοντέλο που αποτελεί συνδυασμό αυτών. Η απόδοση του MAEA εξε-
τάζεται σε συναρτήσεις αναφοράς για MOO προβλήματα, σε MOO GEP χωρίς SM και σε πέντε
MOO GEP που συμπεριλαμβάνουν το SM. Τα τελευταία επαναλαμβάνονται για δύο διαφορετικά
επίπεδα χρονικής λεπτομέρειας. Τα αποτελέσματα υποδηλώνουν αποδεκτή απόδοση του αλγορίθ-
μου λαμβάνοντας υπόψη τους περιορισμούς λόγω υπολογιστικού κόστος. Επιπλέον, η ακρίβεια
των ΑΜ διέφερε μεταξύ των προβλημάτων που εξετάστηκαν και αναφέρονται παράγοντες που
την επηρέασαν. Ανάλυση του συνόλου εναλλακτικών λύσεων σε επίπεδο συντελεστών κόστους
μπορεί να προσφέρει μια λεπτομερή αξιολόγηση αυτών συμβάλλοντας στον προσδιορισμό απαιτο-
ύμενων κινήτρων για τη λήψη αποφάσεων στρατηγικής ενεργειακής πολιτικής. Για παράδειγμα, με
βάση τις ακραίες τιμές του μετώπου μη-κυριαρχούμενων λύσεων για τις συναρτήσεις λειτουργικού
κόστους και κόστους επένδυσης που εξετάστηκαν, η μείωση κατά 96% του κόστους επένδυσης
θα μπορούσε οδηγήσει σε μια αύξηση σχεδόν 40% του λειτουργικού κόστους.

Εργαλεία υποστήριξης αποφάσεων θα μπορούσαν να συνεισφέρουν στη σύνθετη και εξελισσόμενη δια-
δικασία λήψης αποφάσεων ενός GEP. Τα οικονομικά, περιβαλλοντικά και κοινωνικά κριτήρια πρέπει να
λαμβάνονται υπόψη μαζί με άλλες πτυχές που προοδευτικά αναγνωρίζονται ως απαραίτητες. Παρά την
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ευρετική τους φύση, τα αποτελέσματα έδειξαν ότι οι προσεγγίσεις που αναπτύχθηκαν θα μπορούσαν
να είναι υποσχόμενα εργαλεία για την υποστήριξη καθιερωμένων μοντέλων GEP ώστε να συμβάλλουν
στη διαδικασία λήψης αποφάσεων όταν λαμβάνονται υπόψη υψηλά μερίδια παραγωγής από RES.
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Κεφάλαιο 1

Εισαγωγή

1.1 Αντικείμενο

Η μετάβαση προς συστήματα ισχύος με εκπομπές χαμηλών εκπομπών διοξειδίου του άνθρακα μπορεί να
είναι ένας σημαντικός παράγοντας για τη βιωσιμότητα τους. Κατά συνέπεια, το μερίδιο της ενέργειας
που παράγεται από RES έχει αυξηθεί τα τελευταία χρόνια για την επίτευξη περιβαλλοντικών στόχων
[1, 2, 3, 4, 5]. Είναι επιθυμητό να επιτευχθεί μια τέτοια μετάβαση με οικονομικά αποδοτικό και περιβαλ-
λοντικά φιλικό τρόπο λόγω του υψηλού κόστους. Αυτά μπορεί να προέρχονται από επενδύσεις σε νέους
σταθμούς ηλεκτροπαραγωγής που αναμένεται να λειτουργούν για αρκετά χρόνια και, συνεπώς, περι-
λαμβάνουν μακροπρόθεσμο σχεδιασμό. Ο μακροπρόθεσμος σχεδιασμός είναι σύνθετος, δεδομένου ότι
μπορεί να εξετάζει πολλούς στόχους οι οποίοι μπορούν συχνά να είναι αντικρουόμενοι. Η ενημερωμένη
λήψη αποφάσεων μπορεί να συμβάλει προς αυτήν την κατεύθυνση [6].
Σε αυτό το πλαίσιο, τα επιχειρησιακά/λειτουργικά χαρακτηριστικά του μελλοντικού εγκατεστη-

μένου δυναμικού παραγωγής ισχύος για τη βέλτιστη ενσωμάτωση υψηλών επιπέδων RES είναι ενεργό
ερευνητικό πεδίο με αυξανόμενο ενδιαφέρον [1, 2, 3, 4, 5]. Αυτό γιατί όσο αυξάνονται τα επίπεδα διείσ-
δυσης των RES, ο αντίκτυπός τους στη βραχυπρόθεσμη λειτουργία και, κατά συνέπεια, στο βέλτιστο
μακροπρόθεσμο προγραμματισμό έχει αναφερθεί να γίνεται πιο σημαντικός λόγω της μεταβαλλόμενης
παραγωγής των RES και της αλληλεπίδρασή της με το συμβατικό εγκατεστημένο δυναμικό παραγωγής
ισχύος [2, 3, 4]. Συγκεκριμένα, η ενσωμάτωση της παραγωγής από RES μπορεί να οδηγήσει σε μείωση
του συνολικού κόστους στη βραχυπρόθεσμη λειτουργία. Ωστόσο, στο σενάριο υψηλών επιπέδων διε-
ίσδυσης μπορεί να απαιτηθεί ταυτόχρονα επαρκή λειτουργική ευελιξία για την αποδοτική ικανοποίηση
της ζήτησης [7, 8]. Ως εκ τούτου, η επάρκεια της εγκατεστημένου δυναμικού εξετάζεται συχνά και ως
προς τη λειτουργική του ευελιξία [2, 4].
Ο επαρκής εντοπισμός του αντίκτυπου της αύξησης των μεριδίων παραγωγής RES στη βραχυπρόθε-

σμη λειτουργία ενός συστήματος ισχύος στο πλαίσιο του μακροπρόθεσμου προγραμματισμού εμπεριέχει
προκλήσεις [7, 8, 2, 4, 9]. Συγκεκριμένα, σε ένα μακροπρόθεσμο μοντέλο σχεδιασμού χρειάζεται η εισα-
γωγή επιπέδου τεχνικής, χρονικής και χωρικής λεπτομέρειας έτσι ώστε να λαμβάνει υπόψη με σχετική
ακρίβεια τη βραχυπρόθεσμη λειτουργία ενός συστήματος ισχύος [9]. Αυτό απαιτείται για την αξιολόγη-
ση της λειτουργικής ευελιξίας ενός υποψήφιου μελλοντικού δυναμικού παραγωγής ισχύος. Η σημασία
του επιπέδου ανάλυσης μπορεί να ποικίλλει ανάλογα με το εξεταζόμενο σύστημα [10], όμως η παράληψη
αυτής της αξιολόγησης θα μπορούσε να έχει αντίκτυπο στον βέλτιστο σχεδιασμό.
Από την άλλη πλευρά, η ενσωμάτωση λεπτομέρειας της βραχυπρόθεσμη λειτουργίας σε μοντέλα για

τον μακροπρόθεσμα σχεδιασμό οδηγεί σε αυξημένη πολυπλοκότητα και υπολογιστικό κόστος. Αυτό
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προκύπτει από την απαίτηση για τον συνδυασμό δύο σύνθετων μοντέλων [7, 8], δηλαδή των μοντέλων
για μακροπρόθεσμο και βραχυπρόθεσμο σχεδιασμό. Επομένως, το υπολογιστικό κόστος πρέπει επίσης
να αντιμετωπιστεί μαζί με την ταυτόχρονη εισαγωγή παραδοχών και απλουστεύσεων [9, 5].
Οι EA έχουν γίνει μια από τις καθιερωμένες τεχνικές βελτιστοποίησης και έχουν βρει εφαρμογές

σε ποικιλία προβλημάτων όπως και σε προβλήματα βελτιστοποίησης που σχετίζονται με συστήματα
ισχύος [1, 11]. Οι EA είναι αλγόριθμοι εμπνευσμένοι από τη φύση και βασίζονται σε στοχαστικούς
τελεστές για να βελτιώσουν μια σειρά υποψηφίων λύσεων σε βάθος επαναλήψεων. Κρίνονται κατάλ-
ληλοι επιλύτες για προβλήματα βελτιστοποίησης που περιλαμβάνουν περίπλοκες (π.χ. μη κυρτές ή/και
μη παραγωγίσιμες) αντικειμενικές συναρτήσεις και συναρτήσεις περιορισμών. Επιπλέον, οι EA έχουν
αναγνωριστεί ευρέως για την απόδοσή τους σε προβλήματα MOO [12, 13]. Παρ΄ όλα αυτά, οι E-
A παρουσιάζουν και μειονεκτήματα. Για παράδειγμα, η απώλεια της πληροφορίας για την παράγωγο,
όταν αυτή είναι διαθέσιμη, μπορεί να καταστήσουν τους EA λιγότερο πρακτικούς για προβλήματα βελ-
τιστοποίησης που μπορούν να αντιμετωπιστούν εύκολα με κλασικές μεθοδολογίες βελτιστοποίησης.
Επιπλέον, η εφαρμογή EA μπορεί να καταστεί (πρακτικά) ανέφικτη για προβλήματα βελτιστοποίησης
που περιλαμβάνουν υπολογιστικά ακριβές συναρτήσεις στόχου και/ή περιορισμών λόγω του χαμηλού
αριθμού διαθέσιμων αξιολογήσεων [14, 15]. Τέτοια προβλήματα μπορεί να ενσωματώνουν ένα δαπανηρό
μοντέλο προσομοίωσης ή ένα ακριβό πείραμα. Μια κοινή προσέγγιση είναι η υποβοήθηση EA με AM.
Τέτοιες προσεγγίσεις περιλαμβάνουν AM που χρησιμοποιούνται για την παροχή ενός υπολογιστικά
φτηνού δείκτη της επάρκειας μιας λύσης και αντικαταστούν εν μέρει το υπολογιστικά ακριβό μοντέλο
[16].

1.2 Βασικά κίνητρα και στόχοι

Βασικό κίνητρο αυτής της Διατριβής ήταν οι αυξανόμενες υπολογιστικές απαιτήσεις του μακροπρόθε-
σμου προβλήματος επέκτασης δυναμικότητας παραγωγής ισχύος. Αυτές μπορούν να αποδοθούν στην
σημασία της αξιολόγησης της λειτουργικής ευελιξίας ενός υποψηφίου εγκατεστημένου δυναμικού πα-
ραγωγής ισχύος αλλά και στην ενσωμάτωση νέων παραμέτρων στο GEP [1, 2, 3, 4, 5]. Εφαρμογές
EA στο GEP έχουν προταθεί στη σχετική βιβλιογραφία. Ωστόσο, εφαρμογές βασισμένες σε EA ή σε
MAEA για τον μακροπρόθεσμο σχεδιασμό που να εμπεριέχει σχετικά αυξημένη λεπτομέρεια για τη βρα-
χυπρόθεσμη λειτουργία ενός συστήματος ισχύος μέσω μοντέλου προσομοίωσης δεν είχαν εντοπιστεί.
Αυτό θα μπορούσε να αποδοθεί στο υπολογιστικό κόστος που σχετίζεται με μια τέτοια προσέγγιση.
Ως εκ τούτου, το κύριο πεδίο αυτής της Διατριβής είναι οι προσεγγίσεις που βασίζονται σε MAEA για
μονο- και πολυ- κριτηριακή βελτιστοποίηση του προβλήματος GEP με υψηλό μερίδιο παραγωγής από
RES. Οι προσεγγίσεις που αναπτύσσονται εστιάζουν στη εισαγωγή ενός τέτοιου SM στη διαδικασία
βελτιστοποίησης και όχι στην ανάπτυξη ενός βέλτιστου SM για τη βραχυπρόθεσμη λειτουργία ενός
συστήματος ισχύος. Συνεπώς, SM που εντοπίστηκαν στη βιβλιογραφία χρησιμοποιήθηκαν με μικρές
τροποποιήσεις και εισάγονται για την αξιολόγηση υποψήφιων λύσεων λαμβάνοντας υπόψη δυναμικές
που προκύπτουν από τη βραχυπρόθεσμη λειτουργία του συστήματος ισχύος. Ταυτόχρονα, εξετάζεται η
λειτουργική ευελιξία που μπορούν να παρέχουν τόσο θερμικές όσο και μη θερμικές μονάδες. Αυτές οι
απαιτήσεις οδηγούν σε αύξηση του υπολογιστικού κόστους και, κατά συνέπεια, εξετάζονται οι MAEA.
Οι MAEA που έχουν αναπτυχθεί για προβλήματα βελτιστοποίησης ενός και πολλαπλών στόχων

για το GEP βασίζονται σε πλαίσια για βελτιστοποίηση υποβοηθούμενη από μεταπρότυπα χωρίς χρήση
παραγώγων που εντοπίστηκαν στη βιβλιογραφία. Ταυτόχρονα, εξετάζονται εξειδικευμένοι τελεστές που
εστιάζουν στη βελτίωση της απόδοσης του EA.
Η διαδικασία λήψης αποφάσεων του GEP είναι πολύπλοκη καθώς περιλαμβάνει πολλούς παράγοντες
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που πρέπει να ληφθούν υπόψη [1, 2]. Μερικοί από αυτούς τους παράγοντες μπορεί να είναι περιβαλλο-
ντικοί, όπως μείωση των εκπομπών αερίων του θερμοκηπίου (Green House Gas, GHG), οικονομικοί,
όπως η κερδοφορία και βιωσιμότητα των παραγωγών ηλεκτρικής ενέργειας, ή/και κοινωνικοί, όπως
οικονομικά προσιτή ενέργεια. Τα εργαλεία υποστήριξης αποφάσεων που αναπτύχθηκαν στοχεύουν να
συμβάλουν στην διαδικασία λήψη αποφάσεων. ΄Ενα τέτοιο παράδειγμα είναι η αξιολόγηση των κινήτρων
για την αύξηση των επιπέδων διείσδυσης των RES εξετάζοντας πιθανούς μηχανισμούς στήριξης RES
των οποίων τα οφέλη και κόστη μπορούν να μεταφερθούν στους καταναλωτές.
Η βελτιωμένη αξιολόγηση ενός μακροπρόθεσμου σχεδίου μπορεί να προσφέρει οφέλη σε επενδυ-

τές, ρυθμιστικές αρχές και καταναλωτές. Αυτά μπορεί να προκύψουν από βελτιωμένα σήματα που θα
μπορούσαν να προκύψουν από τη ανάλυση των αποτελεσμάτων για τη διαδικασία λήψης αποφάσεων,
π.χ. στην κατανομή ενός διαθέσιμου επενδυτικού κεφαλαίου μεταξύ υποψήφιων επενδύσεων ή στη δια-
μόρφωση κίνητρων από ρυθμιστικές αρχές για προώθηση επενδύσεων στοχεύοντας προς την αύξηση
της αποδοτικότητας του συστήματος ισχύος. Η αποδοτική και αξιόπιστη λειτουργία του συστήματος
μπορεί να ωφελήσει τους τελικούς καταναλωτές. Οι σημαντικότερες συνεισφορές της Διδακτορικής
Διατριβής συνοψίζονται πιο κάτω:

1. Παρουσιάζεται ένα μοντέλο GEP πολλαπλών περιόδων που βασίζεται σε μονοκριτηριακή βελ-
τιστοποίηση με χρήση MAEA [17]. Το μοντέλο περιλαμβάνει σχετικά αυξημένη τεχνική και
χρονική λεπτομέρειες για τους στόχους του μακροπρόθεσμου προγραμματισμού. ΄Ενα SM συμπε-
ριλαμβάνεται στο GEP μοντέλο λόγω της σημασίας του επαρκούς εντοπισμού των απαιτήσεων
λειτουργικής ευελιξίας ενός μελλοντικού εγκατεστημένου δυναμικού παραγωγής ισχύος . Για την
αντιμετώπιση των υπολογιστικών απαιτήσεων αναπτύχθηκε μια προσέγγιση βασισμένη σεMAEA.
Τα AM, που βασίζονται σε RBF, χρησιμοποιούνται για να παρέχουν μια εκτίμηση της επάρκειας
της λειτουργικής ευελιξίας. Επομένως, οι υπολογιστικά ακριβές προσομοιώσεις αντικαθίστανται
εν μέρει από υπολογιστικά φθηνούς δείκτες κόστους για τη μείωση του αριθμού των προσο-
μοιώσεων που απαιτούνται για την επίτευξη σχεδόν βέλτιστης λύσης. Τόσο τα τοπικά όσο και
τα ολικά AM χρησιμοποιούνται σε διαφορετικά στάδια της αναζήτησης. Επιπλέον, η προσέγγιση
βελτιστοποίησης εκμεταλλεύεται συγκεκριμένα χαρακτηριστικά του προβλήματος. Συγκεκριμένα,
αναπτύσσονται εξειδικευμένοι τελεστές για την βελτίωση της απόδοσης του επιλεγμένου EA που
ένας αλγόριθμος DE. Τα αποτελέσματα ήταν ικανοποιητικά με βάση τα υπολογιστικά πειράματα
που πραγματοποιήθηκαν. Πιο συγκεκριμένα, μια ευρετική τεχνική διόρθωσης, που στοχεύει στην
αντιμετώπιση προκλήσεων που εισάγονται λόγο των συναρτήσεων περιορισμών στο πρόβλημα
βελτιστοποίησης, παρείχε τη μεγαλύτερη βελτίωση στην απόδοση του εξεταζόμενου αλγόριθμου
βάσης. Επιπλέον, οι μετρήσεις που χρησιμοποιήθηκαν για την αξιολόγηση της ποιότητας προσέγ-
γισης από AM, όσο αφορά την ακρίβεια, υποδηλώνουν ότι αυτή ήταν σχετικά ακριβής. Επομένως,
πραγματοποιήθηκε οπτική ανάλυση της ευαισθησίας του λειτουργικού κόστους προς την εγκατε-
στημένη δυναμικότητα παραγωγής ισχύος για τη λύση που εντοπίστηκε. Η επίδραση του επίπεδου
τεχνικής λεπτομέρειας που περιλαμβάνεται στο SM εξετάζεται μέσω μιας συγκριτικής μελέτης. Τα
αποτελέσματα υποδηλώνουν ότι διαφορετικά επίπεδα τεχνικής λεπτομέρειας μπορεί να επηρεάσουν
τις παραγόμενες επενδυτικές αποφάσεις, τα αναμενόμενα επίπεδα παραγωγής της εγκατεστημένης
δυναμικότητας παραγωγής ισχύος και το αναμενόμενο κόστος. Αυτά τονίζουν τη σημασία της
επαρκούς αξιολόγησης των απαιτήσεων λειτουργικής ευελιξίας στο πλαίσιο του μακροπρόθεσμου
προγραμματισμού για την εξαγωγή βελτιωμένων σημάτων για τη λήψη αποφάσεων.

2. Παρουσιάζεται ένα στατικό μοντέλοGEP πολλών αντικειμένων στόχων που βασίζεται σεMAEAς
και στοχεύει στην ανάλυση αντικρουόμενων στόχων και συντελεστών κόστους που προκύπτουν
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για έναMOO GEP. Εισάγεται ένα SM που περιλαμβάνει τεχνική, χωρική και χρονική λεπτομέρεια
για την αξιολόγηση της λειτουργικής ευελιξίας κατά την αναζήτηση βέλτιστης λύσης. Ο MAEA
βασίζεται σε MOEA και στη βελτιστοποίηση προβλημάτων με χρήση μεταπροτύπων και χωρίς
χρήση παραγώγων. Τα AM που επιλέγονται είναι τα RBF και PR. Αυτά παρέχουν μια εκτίμη-
ση των τιμών των αντικειμενικών συναρτήσεων που εξετάζονται και χρησιμοποιούνται για την
αντιμετώπιση του υπολογιστικού κόστους. Τα κριτήρια που χρησιμοποιήθηκαν για την ανανέωση
του αρχείο που χρησιμοποιούν τα AM δίνουν προτεραιότητα στη ικανοποίηση των συναρτήσεων
περιορισμού του μακροπρόθεσμου σχεδιασμού, στη χωρική κατανομή του συνόλου λύσεων στο
χώρο αναζήτησης που είναι αποθηκευμένες στο αρχείο και σε πιθανές βελτιώσεις του υπερόγκου.
Επίσης, εφαρμόζεται τοπική αναζήτηση με χρήση παραγώγων χρησιμοποιώντας RBF, PR και ένα
συνδυασμό των δυο μοντέλων. Αυτά δημιουργούνται τοπικά και χρησιμεύουν ως τοπική φάση
για τοπική αναζήτηση. Η απόδοση του MAEA εξετάζεται συναρτήσεις αναφοράς. Επίσης, διε-
ξάγονται υπολογιστικά πειράματα για την αξιολόγηση του MAEA σε MOO GEP προβλήματα.
Στα πρώτα δεν εξετάζεται η βραχυπρόθεσμη λειτουργία ενώ σε πέντε παραλλαγές MOO GEP
συμπεριλαμβάνεται το επιλεγμένο SM. Τα αποτελέσματα που επιτεύχθηκαν ήταν ικανοποιητικά
λαμβάνοντας υπόψη τους υπολογιστικό περιορισμούς. Επιπλέον, η επιτευχθείσα ακρίβεια των
AM δεν ήταν σταθερή μεταξύ των διάφορων προβλημάτων που εξετάστηκαν. Συνεπώς, ανα-
φέρονται κύριοι παράγοντες που εντοπίστηκαν και επηρέασαν την ακρίβεια του AM. Για κάθε
ένα από τα πέντε MOO GEP εξετάζονται τα αποτελέσματα σε επίπεδο συντελεστών κόστους.
Τα αποτελέσματα μπορούν να παρέχουν μια λεπτομερή ανάλυση του συνόλου λύσεων σε επίπεδο
συντελεστών κόστους για την ανάλυση των διαφορετικών εναλλακτικών. Αυτό θα μπορούσε να
συμβάλει στο προσδιορισμών απαιτούμενων κινήτρων για τη λήψη αποφάσεων σχετικών με τη
στρατηγική ενεργειακή πολιτική.

1.3 Δομή

Η δομή της Διατριβής έχει οριστεί ως εξής: Τα Κεφάλαια 2 και 3 παρουσιάζουν μια σύντομη ανασκόπηση
της σχετικής βιβλιογραφίας έτσι ώστε να εξηγηθούν πιο αναλυτικά το αντικείμενο και οι στόχοι της
Διατριβής. Συγκεκριμένα, στο Κεφάλαιο 2 παρουσιάζεται βιβλιογραφία σχετική με το GEP με έμφαση
στο μακροπρόθεσμο σχεδιασμό συστημάτων ισχύος με υψηλό μερίδιο RES. Ταυτόχρονα παρουσιάζονται
βασικά χαρακτηριστικά των μοντέλων GEP και προκλήσεις σχετικές με την αύξηση του μεριδίου των
RES. Στο Κεφάλαιο 3, παρουσιάζεται βιβλιογραφία σχετική με τους EA και τους EA υποβοηθούμενους
από μεταπρότυπα. Το μονοκριτηριακό μοντέλο που αναπτύχθηκε παρουσιάζεται στο Κεφάλαιο 4 ενώ
το πολυκριτηριακό μοντέλο στο Κεφάλαιο 5. Στο Κεφάλαιο 6 παρουσιάζονται τα τελικά συμπεράσματα.
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Κεφάλαιο 2

Προγραμματισμός επέκτασης
παραγωγής και αυξημένα μερίδια
παραγωγής από ανανεώσιμες πηγές
ενέργειας

Αυτό το κεφάλαιο παρέχει ένα υπόβαθρο για τα βραχυπρόθεσμα και μακροπρόθεσμα μοντέλα βελτιστο-
ποίησης. Συγκεκριμένα, παρέχεται μια σύντομη εισαγωγή στον μακροπρόθεσμο σχεδιασμό με έμφαση
στο GEP. Στη συνέχεια, παρέχεται μια σημείωση για τον βραχυπρόθεσμο προγραμματισμό, με έμφαση
στο Πρόβλημα Δέσμευσης Μονάδων (Unit Commitment Problem, UCP). Επιπλέον, αναφέρονται οι
κύριες προκλήσεις σχετικά με την αποτελεσματική εισαγωγή της παραγωγής από RES σε ένα σύστημα ι-
σχύος. Τέλος, παρουσιάζεται η σχετική βιβλιογραφία για την ενσωμάτωση πτυχών της βραχυπρόθεσμης
λειτουργίας σε μακροπρόθεσμα μοντέλα, η οποία αποτελεί το επίκεντρο της Διατριβής. Το κεφάλαιο
στοχεύει στην παρουσίαση του πεδίου αυτής της Διατριβής παρέχοντας σχετικό υπόβαθρο.

2.1 Σύντομη σημείωση για τον μακροπρόθεσμο προγραμματι-
σμό και τον προγραμματισμό επέκτασης παραγωγής

Ο μακροπρόθεσμος προγραμματισμός είναι ευρύ πεδίο και έχουν παρουσιαστεί διαφορετικές κατηγο-
ριοποιήσεις με βάση διαφορετικά κριτήρια [9]. Τέτοια μοντέλα προορίζονται κυρίως για τη δημιουργία
σεναρίων. Η Διατριβή αυτή εστιάζει στον μακροπρόθεσμο σχεδιασμό για τον οποίο το πεδίο περιο-
ρίζεται στον τομέα της ηλεκτρικής ενέργειας και για τον οποίο η μεθοδολογία περιορίζεται σε μοντέλα
βελτιστοποίησης. Πιο συγκεκριμένα, αυτή η Διατριβή περιορίζεται σε μοντέλα σχεδιασμού επέκτασης
δυναμικότητας ισχύος, για τον τομέα της ηλεκτρικής ενέργειας, που εξετάζουν την βραχυπρόθεσμη
λειτουργία του συστήματος ισχύος με υψηλά μερίδια παραγωγής από RES.
΄Ενας από τους κύριους στόχους μοντέλων μακροπρόθεσμου προγραμματισμού είναι η εξέταση της

ικανότητας ενός συστήματος ισχύος να ικανοποιεί την αναμενόμενη ζήτηση σε έναν μακροπρόθεσμο
ορίζοντα προγραμματισμού (έτη έως δεκαετίες). Βασικά ζητήματα που εξετάζονται είναι η δυναμικότη-
τα παραγωγής ισχύος και το δίκτυο μεταφοράς [2]. Αυτά εξετάζονται συνήθως σε όρους τεχνικής,
οικονομικής και περιβαλλοντικής αποτελεσματικότητας, αξιοπιστίας και ευελιξίας.
Συγκεκριμένα, τα μοντέλα που επικεντρώνονται στην ανάλυση της εγκατεστημένης δυναμικότητα
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παραγωγής ισχύος και της πιθανής επέκτασής της, αναφέρονται συνήθως ως μοντέλα GEP [18]. Σε
αυτήν την περίπτωση, εξετάζονται πιθανές επενδύσεις σε δυναμικότητα και/ή η εισαγωγή νέων μονάδων
παραγωγής λαμβάνοντας υπόψη οικονομικά κριτήρια, την αξιοπιστία του συστήματος και περιβαλλοντικά
κριτήρια. ΄Ενας από τους κύριους παράγοντες που οδηγεί σε αυτές τις προσθήκες είναι, συνήθως, η
αναμενόμενη αύξηση της ζήτησης. Επιπλέον, μπορεί να απαιτούνται λόγω της απόσυρσης μονάδων ή
από παράγοντες που σχετίζονται με ενεργειακή πολιτική.
Αντίστοιχα, τα μοντέλα με έμφαση στην ανάλυση του δικτύου μεταφοράς και την πιθανή επέκτασή

του, δηλαδή τον σχεδιασμό επέκτασης του συστήματος μεταφοράς (Transmission Expansion Planning,
TEP), αναφέρονται συνήθως ως μοντέλα TEP [18]. Σε αυτήν την περίπτωση, η ανάλυση επικεντρώνε-
ται στην επάρκεια του υπάρχοντος δικτύου μεταφοράς όσον αφορά την αποτελεσματικότητα και την
αξιοπιστία. Ομοίως με το GEP, η ανάγκη για επέκταση του δικτύου μεταφοράς μπορεί να πηγάζει
από την μη αποδοτική λειτουργία του υπάρχοντος δικτύου και την αναμενόμενη αύξηση της ζήτησης.
Ωστόσο, υπάρχουν και άλλα κίνητρα για το TEP, όπως νέες εγκαταστάσεις από RES και η δημιουργία
διασυνδέσεων μεταξύ απομονωμένων περιοχών. Πολλά μοντέλα περιλαμβάνουν τόσο τοGEP όσο και το
TEP (GEP-TEP), καθώς είναι σημαντικό και τα δύο να αναλύονται στο πλαίσιο του μακροπρόθεσμου
προγραμματισμού. Τέτοια μοντέλα (GEP-TEP) μπορεί να παρέχουν εναλλακτικά σχέδια επέκτασης και
η εξέταση των GEP και TEP πρέπει να εξετάζεται τουλάχιστον παράλληλα [2]. Οι ακόλουθες ενότητες
αφορούν το GEP που αποτελεί το επίκεντρο αυτής της Διατριβής.

2.1.1 Προγραμματισμός επέκτασης παραγωγής

Τα μοντέλα GEP αποτελούν ένα από τα πιο σημαντικά εργαλεία για τη στήριξη της λήψης αποφάσεων
στον μακροπρόθεσμο σχεδιασμό του τομέα της ενέργειας [2, 1, 4, 6]. Επιπλέον, οι πρόσφατες προ-
κλήσεις που παρουσιάστηκαν στους τομείς της ενέργειας, όπως νέα οικονομικά, τεχνικά, περιβαλλοντικά
και ρυθμιστικά ζητήματα, ανάγκασαν τη σταδιακή δημιουργία μοντέλων που αποκλίνουν από το παρα-
δοσιακό πλαίσιο του GEP. Η κατηγοριοποίηση των μοντέλων GEP μπορεί να γίνει με διαφορετικούς
τρόπους λαμβάνοντας υπόψη διαφορετικά κριτήρια. Η Αναφορά [1] παρουσιάζει μια ταξινόμηση μελετών
σχετικά με το GEP με βάση διάφορους παράγοντες όπως την απελευθέρωση της αγοράς ηλεκτρικής
ενέργειας, περιβαλλοντικά ζητήματα, νέες αναδυόμενες τεχνολογίες, την ενεργειακή πολιτική και τις
αναδυόμενες τεχνικές στους τομείς βελτιστοποίησης και μοντελοποίησης. Τέτοιοι παράγοντες έχουν
οδηγήσει στην ανάπτυξη πολλών μοντέλων GEP.

Προγραμματισμός επέκτασης παραγωγής: Βασικές αποφάσεις

Συνήθως, τέσσερις βασικές ερωτήσεις σχετίζονται με ένα μοντέλο GEP: τι, πόσο, πού και πότε
[1, 4, 18]. Συγκεκριμένα, ένα μοντέλο GEP πρέπει να παρέχει τις απαντήσεις στον τύπο και το
μέγεθος των προτεινόμενων προσθηκών ικανότητας, πού πρέπει να εγκατασταθούν, και πότε πρέπει
να πραγματοποιηθούν οι επενδύσεις. Κάθε μία από αυτές τις ερωτήσεις είναι σημαντική για τον βέλτι-
στο προσδιορισμό των επενδύσεων σε δυναμικότητα παραγωγής ισχύος που ικανοποιούν επαρκώς την
αύξηση της ζήτησης σε έναν εξεταζόμενο μακροπρόθεσμο ορίζοντα προγραμματισμού.

Προγραμματισμός επέκτασης παραγωγής: Πλαίσια βασισμένα στη δομή της αγο-
ράς ηλεκτρικής ενέργειας

Υπάρχουν διαφορετικά πλαίσια προσέγγισης του GEP με βάση την απελευθέρωση της αγορά ηλεκτρικής
ενέργειας [1]. Η πρώτη είναι η κεντρική προσέγγιση όπου η ανάλυση γίνεται με βάση όλο το σύστημα.
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Η δεύτερη βασίζεται στην απελευθέρωση της αγοράς ηλεκτρικής ενέργειας. Σε αυτή τη Διατριβή
υιοθετείται ένα κεντρικό πλαίσιο σχεδιασμού. Η κεντρική προσέγγιση στοχεύει στον καθορισμό των
επενδύσεων σε προσθήκες δυναμικότητας παραγωγής ισχύος που ικανοποιούν τον προκαθορισμένο
στόχο και τους περιορισμούς με τον βέλτιστο τρόπο. Τέτοιοι στόχοι είναι η ελαχιστοποίηση του κόστους
(π.χ. συνολικό, παραγωγή ή/και επενδυτικό κόστος) ή η μεγιστοποίηση της κοινωνικής πρόνοιας.

Σχεδιασμός επέκτασης παραγωγής: Πλαίσια βελτιστοποίησης ενός και πολλα-
πλών στόχων

Παραδοσιακά, τα μοντέλα GEP θεωρούν τη διαμόρφωση προβλήματος βελτιστοποίησης ενός στόχου
(Single Objective Optimization, SOO) [1]. Ωστόσο, ο μακροπρόθεσμος προγραμματισμός περιλαμ-
βάνει πολλούς άλλους στόχους [1, 4]. ΄Ενα μοντέλο GEP θα μπορούσε να στοχεύει στην ελαχιστο-
ποίηση της συνάρτησης συνολικού κόστους που αντιπροσωπεύει το συνολικό κόστος του συστήματος.
Σε περίπτωση που περισσότεροι από ένας στόχοι λαμβάνονται υπόψη, τότε αυτοί μπορούν να συμπερι-
ληφθούν σε μια ενιαία σταθμισμένη συνάρτηση στόχος. Ορισμένοι στόχοι μπορούν να επιβληθούν ως
ένα σύνολο περιορισμών που αντιπροσωπεύονται ως περιορισμοί ή όροι ποινής [19].
Εναλλακτικά, έχουν προταθεί πολυ-κριτηριακές προσεγγίσεις GEP λόγω της αυξανόμενης σημα-

σίας παραμέτρων όπως τα RES, οι εκπομπές αερίων του θερμοκηπίου και αξιοπιστίας [3]. Επομένως,
έχουν εφαρμοστεί μέθοδοι λήψης αποφάσεων πολλαπλών κριτηρίων (Multi Criteria Decision Making,
MCDM) για την υποστήριξη της λήψης αποφάσεων παρουσία πολλαπλών και αντικρουόμενων στόχων.
Συνήθως, αυτές οι προσεγγίσεις κατηγοριοποιούνται στη λήψη αποφάσεων πολλαπλών χαρακτηριστι-
κών και στη λήψη αποφάσεων πολλαπλών στόχων [1, 4].
Σε προσεγγίσεις λήψης αποφάσεων πολλαπλών χαρακτηριστικών, διακριτές και προκαθορισμένες

εναλλακτικές λύσεις συγκρίνονται με βάση ένα σύνολο κριτηρίων απόφασης [4]. Αντίθετα, η λήψη
αποφάσεων πολλαπλών στόχων εστιάζει σε περιπτώσεις όπου ο αριθμός των εναλλακτικών αποφάσεων
είναι μεγάλος. Επομένως, διαμορφώνεται ένα πρόβλημα βελτιστοποίησης, λαμβάνοντας συνήθως υπόψη
τα κριτήρια ως αντικειμενικές συναρτήσεις και τους πιθανούς περιορισμούς. Γενικά, η καταλληλότερη
λύση πρέπει να προσδιορίζεται εκ των υστέρων βάσει της προτίμησης του υπεύθυνου λήψης αποφάσεων
[19]. Διαφορετικοί στόχοι έχουν εξεταστεί σε μοντέλα GEP όπως η ελαχιστοποίηση του κόστους,
των εκπομπών αερίων του θερμοκηπίου ή στόχοι που σχετίζονται με την αξιοπιστία του συστήματος
[1, 3, 4].

Προγραμματισμός επέκτασης παραγωγής: Αβεβαιότητα και αξιολόγηση κινδύνου

Ο μακροπρόθεσμος προγραμματισμός υπόκειται σε αβεβαιότητες. Τα βασικά στοιχεία κινδύνου στη
διαδικασία GEP έχουν κατηγοριοποιηθεί στα ακόλουθα [2]: οικονομικά, πολιτικά, ρυθμιστικά, περι-
βαλλοντικά, τεχνικά, κοινωνικά και κλιματικά. Τα ντετερμινιστικά μοντέλα GEP θεωρούν ακριβή πλη-
ροφορία σχετικά με αυτές τις αβεβαιότητες, ενώ τα στοχαστικά μοντέλα χρησιμοποιούν προσεγγίσεις
μοντελοποίησης αβεβαιότητας (π.χ. στοχαστικός προγραμματισμός) [4].

2.1.2 Προγραμματισμός επέκτασης παραγωγής και βραχυπρόθεσμη λει-
τουργία

Ο κύριος στόχος ενός βραχυπρόθεσμου μοντέλου είναι να υποστηρίξει τη λήψη αποφάσεων προς τον
βέλτιστο προγραμματισμό των διαθέσιμων μονάδων παραγωγής σε ένα σύστημα ισχύος για να εξισορ-
ροπήσει την προσφορά και τη ζήτηση σε ένα βραχυπρόθεσμο ορίζοντα προγραμματισμού (μία ημέρα έως
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δύο εβδομάδες). Με βάση τη δομή της αγοράς ηλεκτρικής ενέργειας, το κόστος παραγωγής (εν μέρει)
καθορίζει την οριακή τιμή. Επομένως, η ανεπαρκής λειτουργία της μπορεί να επηρεάσει το κόστος
που μεταφέρεται στους καταναλωτές και τα κέρδη των επενδυτών. Κατά συνέπεια, πρέπει να ληφθούν
υπόψη τα τεχνοοικονομικά χαρακτηριστικά των μονάδων για τον καθορισμό ενός εφικτού και βέλτιστου
προγράμματος παραγωγής.

Βραχυπρόθεσμη λειτουργία: η σειρά ένταξης

Παραδοσιακά, πρέπει να ληφθεί υπόψη η βραχυπρόθεσμη λειτουργία στο πλαίσιο του μακροπρόθεσμου
προγραμματισμού. Ωστόσο, μέχρι πρόσφατα, τα ιστορικά μοτίβα ζήτησης χαρακτηρίζονταν από δυνα-
μικά προβλέψιμες και σχετικά αργές χρονικές δυναμικές [8]. Συνεπώς, μια κοινή υπόθεση ήταν ότι η
ζήτηση και το μεταβλητό κόστος είναι οι κύριες δυνάμεις που επηρεάζουν την κατανομή φορτίου σε
διαφορετικές συνθήκες λειτουργίας. Αυτό επιτρέπει την χρήση πιο χαμηλής λεπτομέρειας όσο αφορά
τη βραχυπρόθεσμη λειτουργία στο GEP. Με βάση τα προαναφερθέντα, μια βέλτιστη κατανομή φορτίου
των μονάδων παραγωγής μπορεί να καθοριστεί με βάση το μεταβλητό κόστος τους (merit-order) και
τις καμπύλες διάρκειας φορτίου (Load Duration Curve, LDC). Η υπολογιστική αποτελεσματικότητα
τέτοιων μοντέλων μπορεί να παρέχει ένα χρήσιμο πλαίσιο για την εξέταση των τιμών και την κατανομή
φορτίου σε διάφορα μοντέλα [18].
Για τις περιπτώσεις όπου εξετάζεται η παραγωγή από RES, εισάγονται τροποποιήσεις. Συνήθως, οι

ΛΔ῝ς αντικαθίστανται από τις καμπύλες καθαρής διάρκειας φορτίου (Net-Load Duration Curves, NL-
DC) όπου η παραγωγή από RES αφαιρείται από το φορτίο. ΄Ενα χαρακτηριστικό τέτοιων προσεγγίσεων
είναι η απώλεια χρονικής λεπτομέρειας όσο αφορά την κατανομή φορτίου που θα μπορούσε να επηρεάσει
τις επενδυτικές αποφάσεις [20]. Επιπλέον, η απώλεια της χρονικής λεπτομέρειας μπορεί να καταστήσει
δύσκολη την αναλυτική εξέταση της μεταβλητότητας της παραγωγής από RES, την επίδραση των τε-
χνικών περιορισμών των θερμικών μονάδων ή/και τις δυνατότητες αποθήκευσης [9]. Επομένως, έχουν
γίνει προσπάθειες για τη βελτίωση της ακρίβειας τέτοιων προσεγγίσεων [21, 22, 23].

Βραχυπρόθεσμη λειτουργία: το πρόβλημα δέσμευσης μονάδων

Μια άλλη κύρια κατηγορία μοντέλων για το βραχυπρόθεσμο προγραμματισμό είναι μοντέλα για το U-
CP. Σε γενικές γραμμές, ένα μοντέλο UCP περιλαμβάνει δύο προβλήματα: το πρόβλημα δέσμευσης
μονάδων και το πρόβλημα οικονομικής κατανομή φορτίου. Το πρώτο αφορά τον ορισμό της κατάστασης
λειτουργίας κάθε μονάδας για κάθε περίοδο προγραμματισμού και το δεύτερο την κατανομή φορτίου
μεταξύ των δεσμευμένων μονάδων. Συγκεκριμένα, ένα μοντέλο UCP λαμβάνει υπόψη τεχνικούς περιο-
ρισμούς των μονάδων, οικονομικά και τεχνικά χαρακτηριστικά των μονάδων και κριτήρια αξιοπιστίας
για τον καθορισμό του προγράμματος παραγωγής και της αποδοτικής ικανοποίησης της ζήτησης. ΄Ενα
UCP είναι ένα σύνθετο πρόβλημα βελτιστοποίησης που μπορεί να διατυπωθεί ως πρόβλημα Μικτού
Γραμμικού Προγραμματισμού (Mixed Integer Linear Programming, MILP). Μακροπρόθεσμα μοντέλα
UCP έχουν επίσης παρουσιαστεί που εξετάζουν μεγαλύτερες περιόδους προγραμματισμού (έως ένα
έτος) [24, 25, 26].
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2.2 Μακροπρόθεσμος προγραμματισμός με αυξημένη λεπτο-
μέρεια της βραχυπρόθεσμης λειτουργίας ενός συστήμα-
τος ισχύος

Η αυξανόμενη διείσδυση της παραγωγής από RES και η αποτελεσματική ενσωμάτωσή της σε ένα
σύστημα ισχύος έχει οδηγήσει στην εισαγωγή αυξημένης λεπτομέρειας της βραχυπρόθεσμης λειτουργίας
σε μοντέλα του μακροπρόθεσμου σχεδιασμού [2]. Αυτό γιατί η μεταβλητότητα και η αβεβαιότητα της
παραγωγής RES πρέπει να ληφθούν υπόψη για να εξεταστούν οι ανάγκες σε λειτουργική ευελιξία.
Η λειτουργική ευελιξία αναφέρεται στην ικανότητα του συστήματος ισχύος να ανταποκρίνεται στις
διακυμάνσεις και να ικανοποιεί το καθαρό φορτίο εντός ενός αποδεκτού χρονικού πλαισίου με ρύθμιση
της προσφοράς. Ως αποτέλεσμα, η αξία της λειτουργικής ευελιξίας πρέπει επίσης να εκτιμηθεί κατά
τη διάρκεια του μακροπρόθεσμου προγραμματισμού όταν λαμβάνονται υπόψη υψηλά μερίδια παραγωγής
από RES.

2.2.1 Βασικά χαρακτηριστικά της παραγωγής από ανανεώσιμες πηγές ε-
νέργειας

Τα κύρια χαρακτηριστικά της παραγωγής ηλεκτρικής ενέργειας από RES που εξαρτώνται από τις και-
ρικές συνθήκες είναι οι ακόλουθες:

� Η παραγωγή ηλεκτρικής ενέργειας από RES είναι μεταβλητή: Αυτή η μεταβλητότητα μπορεί να
παρατηρηθεί σε διαφορετικές χρονικές κλίμακες.

� Η παραγωγή ηλεκτρικής ενέργειας από RES εμπεριέχει αβεβαιότητα: Η αβεβαιότητα της παρα-
γωγής από RES είναι συνέπεια της εξάρτησης τους από τις μετεωρολογικές συνθήκες.

� Το οριακό κόστος της παραγωγής ηλεκτρικής ενέργειας από RES είναι αμελητέο: Το αμελητέο
οριακό κόστος της παραγωγής RES οδηγεί σε προτεραιότητα της παραγωγής αυτής κατά την
κατανομή φορτίου [27].

� Η παραγωγή ηλεκτρικής ενέργειας από RES είναι απαλλαγμένη από εκπομπές GHG: Η αύξηση
του μεριδίου παραγωγής ηλεκτρικής ενέργειας από RES μπορεί να συμβάλει στη μείωση των
εκπομπών GHG [28].

2.2.2 Ανάγκη για την αξιολόγηση της λειτουργικής ευελιξίας στο μακρο-
πρόθεσμο σχεδιασμό

Η ανάγκη ενσωμάτωσης αυξημένης λεπτομέρειας της βραχυπρόθεσμης λειτουργίας ενός συστήματος
ισχύος στον μακροπρόθεσμο προγραμματισμό οφείλεται κυρίως στην ανάγκη για αξιόπιστη λειτουργία
ενός συστήματος ισχύος. Αυτό μπορεί να παρέχει πρόσθετες, ή σε ορισμένες περιπτώσεις πιο ακρι-
βείς, πληροφορίες για την αξιολόγηση σεναρίων και επιλογών στον μακροπρόθεσμο προγραμματισμό
[7, 8, 29, 30]. Η αύξηση των απαιτήσεων λειτουργικής ευελιξίας οφείλεται στη μεταβλητότητα και την
αβεβαιότητα της παραγωγής από RES. Πιο συγκεκριμένα [31], οι συμβατικές μονάδες θα πρέπει να
μπορούν να ικανοποιούν τη ζήτηση μετά από τις αποκλίσεις μεταξύ του προβλεπόμενου φορτίου που
χρησιμοποιείται για τη δέσμευση μονάδων και του φορτίου που χρησιμοποιείται στην αγορά εξισορρόπη-
σης σε πραγματικό χρόνο. Σε υψηλά επίπεδα διείσδυσης RES τα σφάλματα πρόβλεψης που προκύπτουν
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λόγω της αβεβαιότητας και της μεταβλητότητας των RES πρέπει επίσης να ληφθούν υπόψη. Η μεταβλη-
τότητα του καθαρού φορτίου σε σύγκριση με τη μεταβλητότητα του φορτίου μπορεί να είναι αυξημένη.
Σε τέτοιες περιπτώσεις, οι ευέλικτες μονάδες μπορεί να λειτουργούν πιο συχνά και/ή οι μονάδες μπορεί
να υποχρεωθούν σε συχνότερες εκκινήσεις. Επίσης, το μερίδιο της παραγωγής των μονάδων βάσης θα
μπορούσε να αντικατασταθεί από παραγωγή από ενδιάμεσες μονάδες λόγω της διείσδυσης της αιολικής
ενέργειας, οι τεχνικοί περιορισμοί ρυθμού ανάληψης και απόρριψης φορτίου των μονάδων βάσης είναι
σημαντικοί περιορισμοί που πρέπει να λαμβάνονται υπόψη, το σύστημα μεταφοράς και η αποθήκευση ε-
νέργειας μπορούν να χρησιμεύσουν ως πάροχοι λειτουργικής ευελιξίας, και η προσθήκη μονάδων αιχμής
μπορεί να είναι λιγότερο απαραίτητη [32].

2.2.3 Πάροχοι λειτουργικής ευελιξίας

Η λειτουργική ευελιξία δεν περιορίζεται στην τεχνική λειτουργική ευελιξία που παρέχουν οι θερμικές
μονάδες. Από την πλευρά της προσφοράς, λειτουργική ευελιξία προσφέρεται κυρίως από τις μονάδες πα-
ραγωγής ηλεκτρικής ενέργειας (θερμικές και μη-θερμικές μονάδες) [33]. Από την πλευρά της ζήτησης,
λειτουργική ευελιξία μπορεί να προσφέρουν συστήματα ανταπόκρισης στη ζήτηση, έξυπνα ενεργειακά
δίκτυα (Smart Energy Grid), αποθηκευτικές μονάδες και διασυνδέσεις με άλλα δίκτυα [2, 33]. ΄Ο-
σο αφορά τα RES, ο βασικός μηχανισμός ελέγχου της παραγωγής τους είναι η εκούσια μείωση της
παραγωγής τους.

2.2.4 Υπολογιστικοί περιορισμοί και απλοποιήσεις

΄Ενας από τους κύριους περιορισμούς για την ενσωμάτωση μιας λεπτομερούς αναπαράστασης της βραχυ-
πρόθεσμης λειτουργίας στον μακροπρόθεσμο σχεδιασμό, όπως ένα μοντέλο GEP, είναι οι υπολογιστικοί
περιορισμοί. Μια βασική τεχνική για αυτή την ενσωμάτωση είναι η ένταξη των κύριων πτυχών του UCP
σε μακροπρόθεσμα μοντέλα [9]. Και τα δύο μοντέλα GEP και UCP είναι υπολογιστικά απαιτητικά [7].
Συνεπώς σε ένα μοντέλο που αποτελεί συνδυασμό αυτών εισάγονται παράλληλα απλοποιήσεις. Οι απλο-
ποιήσεις σχετίζονται με το επίπεδο τεχνικής, χρονικής και χωρικής λεπτομέρειας που χρησιμοποιείται
για την περιγραφή του συστήματος ισχύος [9]. Επιπλέον, έχουν εξεταστεί προσεγγίσεις που εστιάζουν
στην αντιμετώπιση του υπολογιστικού κόστους τέτοιων μοντέλων [2].

2.2.5 Επιπτώσεις χαμηλής τεχνικής, χρονικής και χωρικής λεπτομέρειας
της βραχυπρόθεσμης λειτουργίας στον μακροπρόθεσμο σχεδιασμό

Η μελέτη της επίδρασης της μεταβαλλόμενης παραγωγής από RES στη βραχυπρόθεσμη λειτουργία
ενός συστήματος ισχύος στο πλαίσιο του μακροπρόθεσμου προγραμματισμού θα πρέπει να μπορεί να
λαμβάνει υπόψη: (i) τεχνική λεπτομέρεια [7, 8, 34, 35], (ii) χρονική λεπτομέρεια [36, 37, 38, 39, 40],
και (iii) χωρική λεπτομέρεια [41, 42]. Η επίδραση της μεταβλητότητας της παραγωγής από RES στη
βραχυπρόθεσμη λειτουργία ενός συστήματος ισχύος μπορεί να εξαρτάται από το σύστημα ισχύος υπό
εξέταση [10] άλλα αυτή αυξάνεται με υψηλότερα επίπεδα διείσδυσης των RES. Γενικά, η παράλειψη
τεχνικών, χρονικών και / ή χωρικών λεπτομερειών μπορεί να έχει αντίκτυπο στον βέλτιστο σχεδιασμό.
Πιο συγκεκριμένα:

� Τεχνική λεπτομέρεια: Ο περιορισμός της τεχνικής λεπτομέρειας μπορεί να έχει αντίκτυπο στον
μακροπρόθεσμο σχεδιασμό καθώς μπορεί να υπερεκτιμήσει την λειτουργική ευελιξία του συστήμα-
τος ισχύος λόγω της μη εξέτασης των τεχνικών περιορισμών.
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� Χρονική λεπτομέρεια: Ο περιορισμός της χρονικής λεπτομέρειας μπορεί να οδηγήσει σε υπερε-
κτίμηση της παραγωγής από RES και από μη ευέλικτες μονάδες και σε υποτίμηση των επενδύσεων
σε λειτουργικά ευέλικτες μονάδες.

� Χωρική λεπτομέρεια: Η ενσωμάτωση χωρικής λεπτομέρειας μπορεί να οδηγήσει στον εντοπισμό
πιθανού οφέλους από τη εξομάλυνση της παραγωγής RES λόγω χωρικής διαφοροποίησης και
προκλήσεων που σχετίζονται με πιθανή συμφόρηση του συστήματος μεταφοράς.

2.2.6 Αντιπροσωπευτικά μοντέλα επέκτασης παραγωγής που ενσωματώνουν
αυξημένη λεπτομέρεια της βραχυπρόθεσμης λειτουργίας

Αυτή η ενότητα εστιάζει σε μοντέλα βελτιστοποίησης για το GEP, που εστιάζουν σε υψηλά μερίδια πα-
ραγωγής από RES. Ορισμένες αντιπροσωπευτικές προσεγγίσεις έχουν κατηγοριοποιηθεί σε: (i) στατικά
μοντέλα GEP που περιλαμβάνουν μοντέλο για το UCP [7, 8, 43, 44, 45], (ii) μοντέλα GEP πολλαπλών
περιόδων που περιλαμβάνουν μοντέλο για το UCP [46, 47, 48], (iii) προσεγγίσεις που εστιάζουν σε υπο-
λογιστικούς περιορισμούς [49, 50], (iv) προσεγγίσεις που περιλαμβάνουν δείκτες λειτουργικής ευελιξίας
[51, 52, 53], (v) προσεγγίσεις που εστιάζουν στην δομή της αγορά ηλεκτρικής ενέργειας [54, 55], (vi)
προσεγγίσεις που εξετάζουν την επίδραση τεχνολογιών αποθήκευσης ηλεκτρικής ενέργειας [56, 57],
και (vii) προσεγγίσεις MOO [6, 58, 59, 60, 61]. Εκτός από τις προσεγγίσεις που βασίζονται σε κλα-
σικές μεθόδους βελτιστοποίησης, έχουν χρησιμοποιηθεί ευρετικές και/ή μετα-ευρετικές τεχνικές στο
πρόβλημα του GEP.
Γενικά, οι κλασικές προσεγγίσεις βελτιστοποίησης παρουσιάζουν ένα σημαντικό πλεονέκτημα όταν

αυτές εφαρμόζεται: μπορούν να εγγυηθούν βέλτιστες λύσεις σε έναν αριθμό βημάτων σε προβλήματα
βελτιστοποίησης που μπορούν να εφαρμοστούν. Αντιθέτως, ευρετικές ή μετα-ευρετικές προσεγγίσεις
θα μπορούσαν να εφαρμοστούν σε σύνθετα μονο- και πολύ- κριτητριακά προβλήματα βελτιστοποίη-
σης. Επιπλέον, οι ευρετικές τεχνικές θα μπορούσαν να παρέχουν ικανοποιητικά αποτελέσματα εντός
αποδεκτού χρονικού ορίου για υπολογιστικά δαπανηρά προβλήματα βελτιστοποίησης. Συνεπώς, έχουν
αναπτυχθεί προσεγγίσεις SOO [62, 63, 64, 65, 66, 67, 68, 69] και MOO [70, 71, 72] που βασίζονται σε
EA.

2.3 Συζήτηση

΄Εχουν αναπτυχθεί διάφορες προσεγγίσεις GEP που εξετάζουν ένα ευρύ φάσμα στόχων. Τέτοιες
προσεγγίσεις διαφέρουν στα εγγενή πλεονεκτήματα και τους περιορισμούς τους σχετικά με την τεχνο-
οικονομική, χρονική και χωρική λεπτομέρεια που ενσωματώνουν. Επιπλέον, το υπολογιστικό κόστος
και η απόδοση τέτοιων προσεγγίσεων μπορεί να διαφέρει. Το GEP είναι γνωστό ως ένα σύνθετο
πρόβλημα λόγω της μη γραμμικότητάς του, του αυξημένου αριθμού μεταβλητών και των διακριτών με-
ταβλητών που εμπεριέχει [1]. Επομένως εισάγονται απλουστεύσεις στην μοντελοποίηση και στο τρόπο
επίλυσης για να αντιμετωπιστεί το υπολογιστικό κόστος. Κατά συνέπεια, απαιτείται η εξισορρόπηση
της ακρίβειας της μοντελοποίησης και του υπολογιστικού κόστους.
Ο κύριος στόχος αυτής της Διατριβής είναι να συμπεριλάβει βασικές πτυχές της βραχυπρόθεσμης

λειτουργίας ενός συστήματος ισχύος στο πλαίσιο του μακροπρόθεσμου προγραμματισμού ισχύος μέσω
μοντέλου προσομοίωσης. Το εξεταζόμενο επίπεδο λεπτομέρειας περιορίζεται σε ωριαία διαστήματα
για τον εντοπισμό προκλήσεων που αφορούν το βραχυπρόθεσμο προγραμματισμό και που εξετάζονται
συνήθως σε ένα μοντέλο UCP [9]. Οι προσεγγίσεις που παρουσιάζονται βασίζονται σε EA και συ-
γκεκριμένα σε MAEA για την αντιμετώπιση του υπολογιστικού κόστους. Προσεγγίσεις βασισμένες σε
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MAEA έχουν εφαρμοστεί επιτυχώς για την εξέταση της βραχυπρόθεσμης λειτουργίας ενός συστήματος
ισχύος όταν δηλαδή ο μακροπρόθεσμος προγραμματισμός δεν λαμβάνεται υπόψη [73, 74]. Επιπλέον, οι
MAEA που παρουσιάζονται περιλαμβάνουν υβριδισμό όπως ευρετικές επιδιόρθωσης μη εφικτών λύσεων
ή τοπική αναζήτηση.
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Κεφάλαιο 3

Εξελικτικοί Αλγόριθμοι

Οι EA είναι υπολογιστικές μέθοδοι εμπνευσμένες από τη φύση που έχουν χρησιμοποιηθεί συχνά σε
σύνθετα προβλήματα βελτιστοποίησης. Γενικά, οι EA βασίζονται στην αρχή της φυσικής επιλογής του
Δαρβίνου [75]. Συγκεκριμένα χαρακτηριστικά των EA, που παρουσιάζονται στις ακόλουθες ενότητες,
τους καθιστούν κατάλληλους για πολλές εφαρμογές.

3.1 Εισαγωγικά

Σε αυτή τη Διατριβή, λαμβάνονται υπόψη μονο- και πολύ-κριτηριακά προβλήματα βελτιστοποίησης μα-
ύρου κουτιού (black-box). Επιπλέον, εξετάζονται ορισμένες ειδικές περιπτώσεις SOO, όπως Γραμμικός
Προγραμματισμός, Μικτός-Ακέραιος Γραμμικός Προγραμματισμός και Ακέραιος Γραμμικός Προγραμ-
ματισμός. Αυτές οι διατυπώσεις παρουσιάζονται στο πλήρες κείμενο.

3.1.1 Βασικά χαρακτηριστικά των εξελικτικών αλγορίθμων

Οι EA βασίζονται σε χρήση πληθυσμού λύσεων και χρησιμοποιούν στοχαστικούς τελεστές στη διαδι-
κασία αναζήτησης για να βελτιώσουν τις λύσεις αυτές.
Τα πιο σημαντικά μέρη ενός EA είναι εμπνευσμένα από την φυσική εξέλιξη και την αρχή της φυσικής

επιλογής [75]. Αυτά τα στοιχεία περιλαμβάνονται στους περισσότερους EA ως τελεστές, αλλά διαφέρουν
στον τρόπο υλοποίησής τους. Τα βασικά μέρη ενός EA είναι [76, 77]:

� ΄Ατομο (αναπαράσταση και κωδικοποίηση): ΄Ενα άτομο του πληθυσμού αναπαριστά μια υποψήφια
λύση του προβλήματος δηλαδή το διάνυσμα μεταβλητών απόφασης. Ο τρόπος με τον οποίο κάθε
μεταβλητή απόφασης αντιπροσωπεύεται σε ένα άτομο καθορίζεται με βάση την κωδικοποίηση που
χρησιμοποιείται σε ένα EA.

� Πληθυσμός: Ο πληθυσμός είναι το σύνολο των διαθέσιμων λύσεων. Ο στόχος είναι να βελτιωθεί η
συνολική καταλληλότητα του πληθυσμού μετά από μια σειρά επαναλήψεων. Αυτές οι επαναλήψεις
αναφέρονται ως γενιές.

� Συνάρτηση καταλληλότητας: Η συνάρτηση καταλληλότητας χρησιμοποιείται για τη σύγκριση
ατόμων και παρέχει τον δείκτη καταλληλότητας για ένα άτομο που μπορεί να είναι η τιμή της
αντικειμενικής συνάρτησης ενός προβλήματος βελτιστοποίησης.
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� Τελεστής αρχικοποίησης: Συνήθως, ένας τελεστής αρχικοποίησης παρέχει έναν αρχικό πληθυσμό
στο χώρο αναζήτησης.

� Τελεστής επιλογής γονέων: ΄Ενας τελεστής επιλογής γονέων καθορίζει ποιοι γονείς επιλέγονται
για αναπαραγωγή απογόνων.

� Τελεστής ανασυνδυασμού: ΄Ενας τελεστής ανασυνδυασμού συνδυάζει έναν αριθμό ατόμων από
τον πληθυσμό των γονέων και δημιουργεί τον πληθυσμό των απογόνων.

� Τελεστής μετάλλαξης: ΄Ενας τελεστής μετάλλαξης αποσκοπεί στο να εισαγάγει μικρές αλλαγές
στους απογόνους. ΄Ενας από τους κύριους λόγους για την εισαγωγή τέτοιων μικρών αλλαγών
είναι η διατήρηση μη μηδενικής πιθανότητας δημιουργίας ενός απογόνου σε οποιοδήποτε σημείο
εντός του χώρου αναζήτησης.

� Τελεστής περιβαλλοντικής επιλογής: ΄Ενας τελεστής περιβαλλοντικής επιλογής καθορίζει ποιοι
γονείς και απόγονοι θα σχηματίσουν τον πληθυσμό της επόμενης γενιάς.

� Κριτήρια τερματισμού: Ο EA απαιτεί κριτήρια τερματισμού που είναι συνήθως καθορίζονται από
τον χρήστη.

� Παράμετροι που προσδιορίζονται από τον χρήστη: Οι EA απαιτούν τον προσδιορισμό παραμέτρων
από τον χρήστη, π.χ. το μέγεθος του πληθυσμού ή άλλες παραμέτρους που απαιτούνται για τους
τελεστές των EA. Αντιπροσωπευτικοί EA είναι οι Γενετικοί Αλγόριθμοι [78, 79], οι Στρατηγικές
Εξέλιξης [80, 81] και η Διαφορική Εξέλιξη [82, 83].

3.1.2 Εξελικτικοί αλγόριθμοι και βελτιστοποίηση υπό περιορισμούς

Για προβλήματα βελτιστοποίησης υπό περιορισμούς (Constraint Optimization Problem, COP) εισάγο-
νται τεχνικές χειρισμού περιορισμών (Constraint Handling Techniques, CHT) στους EA. Βασικές
κατηγορίες CHT είναι οι συναρτήσεις ποινής, οι αποκωδικοποιητές, οι ειδικοί τελεστές και οι τεχνικές
που χειρίζονται ξεχωριστά την αντικειμενική συνάρτηση και τους περιορισμούς, και προσεγγίσεις που
χρησιμοποιούν περισσότερες από μια CHT [84, 85, 86].

3.1.3 Πολύ-κριτηριακή Βελτιστοποίηση με χρήση εξελικτικών αλγορίθμων

Πολλά προβλήματα βελτιστοποίησης μπορούν να διατυπωθούν ως προβλήματα MOO. ΄Ενα πρόβλημα
MOO περιλαμβάνει τον εντοπισμό ενός συνόλου λύσεων (το μέτωπο μη-κυριαρχούμενων λύσεων) όταν
εξετάζονται περισσότεροι από έναν αντικρουόμενοι στόχοι. Σε τέτοια περίπτωση μπορεί να μην υπάρχει
μία βέλτιστη λύση, αλλά ένα σύνολο βέλτιστων λύσεων Pareto.
Μια κλασική προσέγγιση για προβλήματα MOO είναι η μετατροπή ενός σε ένα πρόβλημα SOO

με χρήση σταθμισμένου αθροίσματος. Η εξαγωγή μια λύσης από την επίλυση ενός SOO είναι μια μη
κυριαρχούμενη λύση για το MOO [87] ωστόσο το κύριο μειονέκτημα μιας τέτοιας προσέγγισης είναι
ότι η δεν μπορούν να επιτευχθούν πάντα όλες οι μη κυριαρχούμενες λύσεις. ΄Ενα βασικό πλεονέκτημα
που καθιστά τους EA ως εφαρμόσιμες μεθόδους για MOO είναι η χρήση πληθυσμού που επιτρέπει
την εξαγωγή πολλαπλών μη κυριαρχούμενων λύσεων σε μία μόνο εκτέλεση [88]. Συνεπώς έχουν
αναπτυχθεί πολλοί MOEA [13] όπως μέθοδοι βασισμένες στο Παρετο [89, 90, 91], μέθοδοι βασισμένες
στην αποδόμηση (δεςομποσιτιον) [92] και μέθοδοι που χρησιμοποιούν δείκτες [93, 94]. Μια άλλη
κατηγορία αφορά MOEA που αποσκοπούν στην εισαγωγή προτιμήσεων κατά την αναζήτηση. Μια
αντιπροσωπευτική προσέγγιση είναι ο NSGA-III [95].
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3.1.4 Εξειδικευμένοι τελεστές

Δύο περιπτώσεις που μπορούν να εντοπιστούν όταν οι EA εφαρμόζονται σε προβλήματα βελτιστοποίη-
σης πραγματικού κόσμου. Η πρώτη αφορά την περίπτωση κατά την οποία ένας EA που αναπτύχθηκε για
βελτιστοποίηση μαύρου κουτιού εφαρμόζεται απευθείας στο πρόβλημα του πραγματικού κόσμου. ΄Ενας
EA μπορεί να εφαρμοστεί ως διαδικασία άμεσης αναζήτησης και αυτό είναι ένα από τα πλεονεκτήματα
των EA [88]. Η δεύτερη περίπτωση αφορά προβλήματα βελτιστοποίησης όπου υπάρχει διαθέσιμη πλη-
ροφορία για το πρόβλημα βελτιστοποίησης. Σε αυτήν την περίπτωση, οι EA μπορούν να εφαρμοστούν
όπως στην προηγούμενη περίπτωση ή θα μπορούσε να γίνει προσπάθεια εκμετάλλευσης της διαθέσι-
μης πληροφορίας. Μια τεχνική για εκμετάλλευση της διαθέσιμης πληροφορίας είναι οι εξειδικευμένοι
τελεστές [96, 97].

3.1.5 Υβριδικοί εξελικτικοί αλγόριθμοι

Υβριδικοί EA είναι EA που συνδυάζονται με τουλάχιστον μία διαφορετική μέθοδο [77]. Παραδείγματα
υβριδοποίησης είναι ο συνδυασμός δύο διαφορετικών EAς, ο συνδυασμός ενός EA και μιας κλασσικής
μεθόδου βελτιστοποίησης που κάνει χρήση της παραγώγου, ή ο συνδυασμός ενός EA με εξειδικευ-
μένους τελεστές. Συνήθως, ο υβριδισμός στοχεύει στη βελτίωση της απόδοσης του EA από τον
συνδυασμό των διακριτών χαρακτηριστικών κάθε μεθόδου. Οι Μιμητικοί αλγόριθμοι (Memetic Algo-
rithms, MA) περιλαμβάνουν προσεγγίσεις που βασίζονται σε EA στους οποίους εισάγονται τεχνικές
τοπικής αναζήτησης [98].

3.2 Μονο- και πολύ-κριτηριακή βελτιστοποίηση με χρήση εξε-
λικτικών αλγορίθμων υποβοηθούμενων από μεταπρότυπα

Για προβλήματα βελτιστοποίησης που περιλαμβάνουν υπολογιστικά δαπανηρές αντικειμενικές συναρ-
τήσεις, η εκτέλεση μεγάλου αριθμού αξιολογήσεων μπορεί να καταστεί ανέφικτη ή υπολογιστικά δα-
πανηρή [14]. Σε αυτή τη περίπτωση γίνεται χρήση τεχνικών που βασίζονται σε προσεγγίσεις. Τρία
επίπεδα προσέγγισης που αναφέρονται στη βιβλιογραφία είναι [99]:

� Προσέγγιση προβλήματος: Η αρχική διατύπωση του προβλήματος αντικαθίσταται από ένα μοντέλο
που εισάγει απλοποιήσεις και είναι υπολογιστικά λιγότερο δαπανηρό.

� Προσέγγιση συνάρτησης: Μια αρχική συνάρτηση αντικαθίσταται από μια εναλλακτική έκφραση.
Η έκφραση θα πρέπει να είναι υπολογιστικά λιγότερη δαπανηρή από την αρχική συνάρτηση.

� Εξελικτική προσέγγιση: Είναι τεχνικές που αφορούν συγκεκριμένα τους EA όπως η κληρονομιά
καταλληλότητας και η απομίμηση καταλληλότητας [99].

3.2.1 Μοντέλα προσέγγισης: Μεταπρότυπα

΄Εχουν προταθεί διάφορες τεχνικές προσέγγισης για την αντικατάσταση των δαπανηρών προσομοιώσεων
ή πειραμάτων από υπολογιστικά φθηνά AM [100]. Δύο τεχνικές που εξετάζονται σε αυτή τη Διατριβή
είναι η PR και τα RBF και αυτές παρουσιάζονται αναλυτικότερα στο πλήρες κείμενο.
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3.2.2 Συμπληρωματικά Κριτήρια

Η ακρίβεια της προσέγγισης ενός AM θα μπορούσε να βελτιωθεί με την εισαγωγή πρόσθετων δεδομένων
που χρησιμοποιούνται για την εκπαίδευση των AM με βάση συμπληρωματικά κριτήρια [100, 101]. Γενικά
επιθυμείται μια ισορροπία μεταξύ τοπικής και ολικής εκμετάλλευσης για την επιλογή επιπλέον δεδομένων
[100]. Το πρώτο στοχεύει στην βελτίωση της ακρίβειας του AM σε μια περιοχή ενδιαφέροντος. Το
δεύτερο στοχεύει στη βελτίωση ακρίβειας του AM σε όλο το χώρο αναζήτησης.

3.2.3 Εξελικτικοί αλγόριθμοι και διαχείριση μεταπροτύπων

Για προβλήματα βελτιστοποίησης που περιλαμβάνουν υπολογιστικά δαπανηρές προσομοιώσεις ο αριθ-
μός προσομοιώσεις που μπορούν να γίνουν είναι περιορισμένος. Αυτό μπορεί να είναι αποτρεπτικό για
την επιτυχή εφαρμογή των EA καθώς αυτοί, συνήθως, βασίζονται στην χρήση μεγάλου αριθμού αξιο-
λογήσεων για να συγκλίνουν. Συνεπώς, οι EA έχουν συζευχθεί με AM για να επιτύχουν αποδεκτά
αποτελέσματα σε υπολογιστικά δαπανηρά προβλήματα βελτιστοποίησης. Σε τέτοιες περιπτώσεις, τα
μεταπρότυπα χρησιμοποιούνται για να αντικαταστήσουν εν μέρει το πραγματικό μοντέλο (True Model,
TM) [102]. Τέτοιες προσεγγίσεις μπορούν να χωριστούν σε τρεις κατηγορίες [14, 15, 99, 102, 103]:
(i) Χωρίς ΄Ελεγχο Εξέλιξης, (ii) Σταθερός ΄Ελεγχος Εξέλιξης και (iii) Προσαρμοστικός ΄Ελεγχος
Εξέλιξης.
Στο πλαίσιο της δειγματοληψίας κατά την διάρκεια της εξέλιξης του πληθυσμού ενός EA, η δια-

χείριση μοντέλων ακολουθεί συνήθως είτε το πλαίσιο ΄Ελεγχος Εξέλιξης (Evolution Control) είτε το
πλαίσιο Προεπιλογής (Pre-selection). Ο ΄Ελεγχος Εξέλιξης, [102] παρέχει δύο κύριες μεθόδους για να
προσδιοριστεί εάν η καταλληλότητα ενός ατόμου αξιολογείται χρησιμοποιώντας το AM ή το TM:

� Ελεγχόμενα άτομα: ΄Ενας αριθμός ατόμων σε κάθε γενιά αξιολογείται χρησιμοποιώντας το TM.
Το AM χρησιμοποιείται για τα υπόλοιπα άτομα.

� Ελεγχόμενες γενιές: ΄Ολα τα άτομα αξιολογούνται χρησιμοποιώντας το TM σε μερικές γενιές.
Το AM χρησιμοποιείται για όλα τα άτομα στις υπόλοιπες γενιές.

Μια τρίτη κατηγορία εφαρμόζει διαχείριση μοντέλων σε επίπεδο πληθυσμού για την περίπτωση όπου
γίνεται χρήση πέραν του ενός υποπληθυσμού που εξελίσσονται με βάση διαφορετικό AM και πιθανώς
διαφορετικά επίπεδα ακρίβειας [104]. Επιπλέον, το AM μπορεί να συμβάλει σε οποιονδήποτε τελεστή
ενός EA [105]. Στο πλαίσιο Προεπιλογής [106, 107] γίνεται χρήση των AM σε κάθε γενιά για να
επιλέξει απογόνους που θα αξιολογηθούν χρησιμοποιώντας το TM και η επιλογή του πληθυσμού για
την επόμενη γενιά γίνεται πάντα μεταξύ ατόμων που έχουν αξιολογηθεί με βάση το TM.

3.2.4 Επιλογή μοντέλου προσέγγισης

Η επιλογή ενός AM μπορεί να έχει αντίκτυπο στην απόδοση του EA [108, 109, 110]. Παράγοντες όπως
ο αριθμός των μεταβλητών απόφασης, οι συναρτήσεις στόχου, περιορισμοί και ο υπολογιστικός χρόνος
για την κατασκευή των μοντέλων, πρέπει να λαμβάνονται υπόψη κατά την επιλογή ενός AM.

3.2.5 Ολικό και τοπικό μοντέλο προσέγγισης

΄Εχουν εξεταστεί διάφορες τεχνικές για την επιλογή των σημείων που έχουν αξιολογηθεί χρησιμο-
ποιώντας το TM και θα χρησιμοποιηθούν για την κατασκευή του AM. Για παράδειγμα, μπορούν να

16



χρησιμοποιηθούν όλα τα διαθέσιμα σημεία εφόσον κάθε ένα από αυτά μπορεί να παρέχει σημαντικές πλη-
ροφορίες σχετικά με το χώρο αναζήτησης [110]. Ωστόσο, το υπολογιστικό κόστος κατασκευής του AM
θα μπορούσε να αυξηθεί για μεγάλο αριθμό δεδομένων. Επιπλέον, η ακρίβεια του AM εξαρτάται από
τα επιλεγμένα δεδομένα που χρησιμοποιούνται για την κατασκευή του μοντέλου και την ικανότητά τους
να παρέχουν μια ικανοποιητική προσέγγιση ολόκληρου του χώρου αναζήτησης [111, 112]. Συνεπώς,
έχουν προταθεί MAEA που κάνουν χρήση τοπικών AM.

3.2.6 Κατάρα και ευλογία της αβεβαιότητας του μοντέλου προσέγγισης

Το σφάλμα προσέγγισης του AM μπορεί να αποτρέψει τον εντοπισμό βέλτιστης λύσης από ένα EA.
΄Ομως μπορεί να έχει και θετικό αντίκτυπο σε ορισμένες περιπτώσεις. ΄Ενα τέτοιο παράδειγμα είναι συ-
ναρτήσεις πολλών ακρότατων όπου ένα AM θα μπορούσε να οδηγήσει σε εξομάλυνση της αντικειμενικής
συνάρτησης. Οι αρνητικές και θετικές επιπτώσεις αυτού του σφάλματος προσέγγισης στην αναζήτηση
που βασίζεται σε EA αναφέρονται συχνά ως κατάρα της αβεβαιότητας και ευλογία της αβεβαιότητας
[111, 113].

3.2.7 Αντιπροσωπευτικές προσεγγίσεις

΄Εχουν παρουσιαστεί αρκετές προσεγγίσεις στην βιβλιογραφία με βάση τους EA που βασίζονται σε με-
ταπρότυπα για SOO [14, 102, 106, 114], για SOO υπό περιορισμούς [115, 116, 117] και προσεγγίσεις που
περιλαμβάνουν τεχνικές τοπικής αναζήτησης [112, 118, 119]. Επίσης, έχουν παρουσιαστεί προσεγγίσεις
για υπολογιστικά δαπανηρά SOO που δεν βασίζονται σε EA [120, 121, 122, 123, 124, 125]. Αντίστοι-
χα, έχουν παρουσιαστεί αρκετές προσεγγίσεις στην βιβλιογραφία με βάση τους EA που βασίζονται σε
μεταπρότυπα για MOO [126, 127, 128], για MOO υπό περιορισμούς [129, 130] και προσεγγίσεις που
περιλαμβάνουν τεχνικές τοπικής αναζήτησης [111, 131, 132, 133]. Οι αντιπροσωπευτικές προσεγγίσεις
αυτές παρουσιάζονται αναλυτικότερα στο πλήρες κείμενο της Διατριβής.

3.3 Συζήτηση

Στην βιβλιογραφία εντοπίζονται αποδοτικοί EA και MAEA για προβλήματα βελτιστοποίησης μαύρου
κουτιού. Επιπλέον, αυτοί παρουσιάζουν ικανοποιητικά αποτελέσματα σε πολλά προβλήματα βελτιστο-
ποίησης όπως SOO, COP και MOO. Επίσης, έχουν παρουσιαστεί στην βιβλιογραφία εφαρμογές σε
προβλήματα βελτιστοποίησης που αφορούν το GEP [1, 62]. Οι MAEA που παρουσιάζονται στα επόμε-
να κεφάλαια βασίζονται στους EA και MAEA και εμπεριέχουν τροποποιήσεις που πηγάζουν από το
πρόβλημα βελτιστοποίησης στο οποίο εφαρμόστηκαν.
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Κεφάλαιο 4

Σχεδιασμός επέκτασης της
δυναμικότητας παραγωγής ισχύος με
χρήση εξελικτικών αλγορίθμων
υποβοηθούμενων από μεταπρότυπα

4.1 Κίνητρο και στόχος

Το Κεφάλαιο αυτό παρουσιάζει ένα μοντέλο GEP πολλών χρονικών περιόδων (multi-period) βασι-
σμένο σε EA υποβοηθούμενους από μεταπρότυπα [17]. Βασικό κίνητρο για την εξέταση ενός τέτοιου
μοντέλου ήταν οι αυξανόμενες υπολογιστικές απαιτήσεις για ένα μοντέλο GEP. Αυτές σχετίζονται με
την εισαγωγή SM που παρουσιάζουν σχετικά αυξημένη λεπτομέρεια της βραχυπρόθεσμης λειτουργία
ενός συστήματος ισχύος, στο πλαίσιο του μακροπρόθεσμου προγραμματισμού. Η απαίτηση για αύξηση
στο επίπεδο λεπτομέρειας πηγάζει από την ανάγκη εξέτασης της λειτουργικής ευελιξίας για τον καθο-
ρισμό ενός βέλτιστου πλάνου επέκτασης παραγωγής όταν λαμβάνεται υπόψη η αύξηση του μεριδίου των
RES.
Συγκεκριμένα, το μοντέλο στοχεύει στο προσδιορισμό ενός σχεδίου επέκτασης παραγωγής λαμβάνο-

ντας υπόψη τις απαιτήσεις σε λειτουργική ευελιξία μέσω ενός SM του βραχυπρόθεσμου προγραμματι-
σμού. Το επιλεγμένο SM χαρακτηρίζεται από αυξημένη χρονική και τεχνική λεπτομέρεια. Συνεπώς,
γίνονται παραδοχές όσο αφορά τη χωρική λεπτομέρεια η οποία δεν εξετάζεται. Επίσης, εξετάζονται
πάροχοι λειτουργικής ευελιξίας που δεν είναι θερμικές μονάδες όπως υδροηλεκτρικές και αποθηκευτι-
κές μονάδες. Για την αντιμετώπιση της αύξησης του υπολογιστικού κόστους του SM χρησιμοποιείται
ομαδοποίηση μονάδων (unit aggregation) και χρήση αντιπροσωπευτικών χρονικών περιόδων.
Αλγόριθμοι βασισμένοι σε EA έχουν εφαρμοστεί επιτυχώς σε μοντέλα GEP. Παρ΄ όλα αυτά, τέτοιες

εφαρμογές δεν εντοπίστηκαν σε GEP μοντέλα που ενσωματώνουν SM που εμπεριέχουν περιορισμούς
του βραχυπρόθεσμου προγραμματισμού (UCP) παραγωγής ηλεκτρικής ενέργειας.
Ο κύριος στόχος ήταν να αναπτυχθεί μια αποτελεσματική εναλλακτική για εντοπισμό βέλτιστων, ή

έστω βελτιωμένων, λύσεων που θα μπορούσε να χρησιμοποιηθεί παράλληλα με καθιερωμένα μοντέλα
GEP ως εργαλείο υποστήριξης αποφάσεων. Ο τροποποιημένος MAEA που αναπτύχθηκε βασίζεται
στη βελτιστοποίηση με EA υποβοηθούμενους από μεταπρότυπα και στη DE. Επίσης, εισάγονται τροπο-
ποιήσεις σε μορφή τελεστών βασιζόμενοι σε συγκεκριμένα χαρακτηριστικά του προβλήματος βελτιστο-
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ποίησης. Τα AM χρησιμοποιούνται για να μειώσουν τον αριθμό των προσομοιώσεων που απαιτούνται
για τον εντοπισμό μιας βελτιωμένης λύσης.
Εξετάζεται η απόδοση του αλγορίθμου και των τροποποιήσεων που εξετάστηκαν μέσα από υπολο-

γιστικά πειράματα. Ταυτόχρονα, αναλύεται για την επίδραση της εισαγωγής του SM με βάση τη τελική
εγκατεστημένη ισχύ, τα αναμενόμενα κόστη και το μείγμα παραγωγής.

4.2 Μαθηματική διατύπωση προβλήματος

Σε αυτήν την ενότητα παρουσιάζεται η διατύπωση του προβλήματος, των συντελεστών κόστους που
χρησιμοποιούνται για τον προσδιορισμό των συναρτήσεων στόχων και των περιορισμών του μονοκριτη-
ριακού προβλήματος βελτιστοποίησης. Επίσης, παρουσιάζεται το μοντέλο προσομοίωσης που χρησιμο-
ποιείται για την παροχή μιας εκτίμησης της βραχυπρόθεσμης λειτουργίας του συστήματος ισχύος.

4.2.1 Μαθηματική διατύπωση προβλήματος βελτιστοποίησης

Εξετάζεται το πιο κάτω μονοκριτηριακό πρόβλημα βελτιστοποίησης:

minimize f(x) = f chp(x) +
∑

yr

fxpyr (x)

s.t. G(x) ≤ 0

x ∈ S

(4.1)

όπου x = (x1, x2, ..., xn) είναι το διάνυσμα μεταβλητών απόφασης/σχεδιασμού, n είναι ο αριθμός
μεταβλητών απόφασης, f(x) είναι η αντικειμενική συνάρτηση, G(x) = (g1(x), g2(x), ..., gk(x)) είναι το
διάνυσμα συναρτήσεων περιορισμού, k είναι ο αριθμός συναρτήσεων περιορισμού και S είναι ο χώρος
αναζήτησης.
Συγκεκριμένα, εξετάζεται η περίπτωση μιας συνάρτησης στόχου με αυξημένο υπολογιστικό κόστος,

συναρτήσεων περιορισμού χαμηλού υπολογιστικού κόστους (Gchp(x)), και περιορισμούς στα άνω και
κάτω όρια των μεταβλητών απόφασης. Επίσης, εξετάζεται η περίπτωση ακέραιων μεταβλητών σχεδια-
σμού (Zn). Θεωρείται ότι το πρόβλημα βελτιστοποίησης περιορίζεται από έναν προκαθορισμένο άνω
όριο σε υπολογιστικό κόστος.
Οι μεταβλητών απόφασης είναι θετικοί ακέραιοι (Z+) που αντιπροσωπεύουν τον αριθμό των ε-

πενδύσεων σε υποψήφιες τεχνολογίες παραγωγής ενέργειας. Το ύψος κάθε βήματος επένδυσης είναι
προκαθορισμένο και αντιπροσωπεύει μια μονάδα παραγωγής ισχύος ή μια ομάδα μονάδων παραγωγής
ισχύος.
Η αντικειμενική συνάρτησης στόχου (f(x)) αποτελείται από συντελεστές κόστους με αυξημένο

ή αμελητέο υπολογιστικό κόστος. Κάθε συντελεστής κόστους μπορεί να θεωρηθεί ως συνάρτηση
του διανύσματος μεταβλητών απόφασης. Το άθροισμα των συντελεστών κόστους που δεν αποτελούν
μέρος του SM (κόστος επένδυσης, σταθερά λειτουργικά κόστη και κόστη συντήρησης) θεωρείται ως
μια υπολογιστικά αμελητέου κόστους συνάρτηση (f chp(x)). Αντίστοιχα, οι συντελεστές κόστους που
υπολογίζονται με τη χρήση του SM (π.χ. ετήσια μεταβλητά κόστη) θεωρούνται ως υπολογιστικά ακριβές
συναρτήσεις (fxp(x)). Διευκρινίζεται ότι το υπολογιστικό κόστος μιας συνάρτησης δεν υποδηλώνει την
επίδρασή της στην τιμή της συνάρτησης στόχου.
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4.2.2 Συντελεστές κόστους

Οι συντελεστές κόστους ορίστηκαν σαν διανύσματα όπου κάθε στοιχείο υποδηλώνει την τιμή σε ένα
έτος του υπό εξέταση χρονικού ορίζοντα. Πιο κάτω παρουσιάζονται επιγραμματικά οι συντελεστές
κόστους που εξετάστηκαν:

1. Κόστος επένδυσης:

cinvyr =
∑

t

[(1− SFyr,t) · P cap step
t · INCt · xinvyr,t],∀yr (4.2)

όπου:

SFyr,t =





0, if yr + CTt + LTt <= Y rz

1, elseif yr + CTt > Y rz
−1+(1+DR)(yr+CTt+LTt−Y rz−1)

−1+(1+DR)(CTt+LTt)
, otherwise

, ∀yr, t (4.3)

2. Σταθερά λειτουργικά κόστη και κόστη συντήρησης:

cfixedyr =
∑

t

[FOMt · icyr,t], ∀yr (4.4)

3. Μεταβλητά κόστη:

cvaryr =
∑

tp

[Wtpc
oc
tp ],∀yr (4.5)

Τα λειτουργικά κόστη υπολογίζονται με χρήση του SM το οποίο παρουσιάζεται στην ενότητα
4.2.3.

Επίσης, η εγκατεστημένη δυναμικότητα παραγωγής ισχύος και ο αριθμός αντιπροσωπευτικών
μονάδων υπολογίζονται ως εξής:

icyr,t = nuyr,t · P cap step
t , ∀yr, t (4.6)

όπου

nuyr,t = NUold
yr,t +





∑yr−CTt

z=yr−CTt−LTt
[xinvyr,t], if yr − CTt > 0, yr − CTt − LTt ≥ 1∑yr−CTt

z=1 [xinvyr,t], elseif yr − CTt > 0, yr − CTt − LTt < 1

0, otherwise

, ∀yr, t

(4.7)

4.2.3 Μοντέλο προσομοίωσης - Προσέγγιση προβλήματος

Το SM χρησιμοποιείται για να προσδιορίσει τα μεταβλητά κόστη σε κάθε έτος του χρονικού ορίζοντα.
Εναλλακτικά, η διατύπωση ενός ενοποιημένου προβλήματος βελτιστοποίησης (GEP και UCP) ως ένα
ενιαίο MILP είναι εφικτή αλλά μπορεί να είναι υπολογιστικά ακριβή [7, 8].
Για την προσομοίωση της βραχυπρόθεσμης λειτουργίας ενός συστήματος ισχύος επιλέγηκε το μο-

ντέλο Clustered UC (CUC) [7, 8, 134]. Αυτό αποτελεί προσέγγιση του προβλήματος UCP. Εισάγει
απλοποιήσεις στη διατύπωση του προβλήματος ώστε να μειώσει το υπολογιστικό κόστος της προσομοίω-
σης. Η βασική απλοποίηση που εισάγεται αφορά τη χρήση ακεραίων μεταβλητών για τον προσδιορισμών
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του επιπέδου λειτουργίας ομάδων μονάδων παραγωγής ισχύος αντί για χρήση δυαδικών μεταβλητών για
καθορισμό του επιπέδου λειτουργίας κάθε μονάδας. Αυτό επιτυγχάνεται με ομαδοποίηση μονάδων με
βάση τα τεχνικά τους χαρακτηριστικά. Το CUC παρά την εισαγωγή απλοποιήσεων αποτελεί ικανοποι-
ητική προσέγγιση της βραχυπρόθεσμης λειτουργίας του συστήματος ισχύος όσο αφορά το πλαίσιο του
μακροπρόθεσμου προγραμματισμού [7, 8, 134].
Το επιλεγμένο SM διατυπώθηκε με βάση το CUC. Συγκεκριμένα, το πρόβλημα βελτιστοποίησης

είναι ένα MILP που αντιπροσωπεύει ένα απλοποιημένο UCP με θερμικές και υδροηλεκτρικές μονάδες
παραγωγής ισχύος. Επίσης, λαμβάνεται υπόψη η παραγωγή από RES και αποθηκευτικές μονάδες βασι-
σμένες στην αντλησιοταμίευση (Hydro-Storage, HS). Το προαναφερθέν πρόβλημα επιλύεται ανεξάρτητα
για ένα προκαθορισμένο αριθμό χρονικών περιόδων για κάθε έτος για το οποίο απαιτείται η χρήση του
SM. Η διατύπωση του προβλήματος βελτιστοποίησης παρουσιάζεται αναλυτικά στο εδάφιο ;;.
Επίσης, οι μεταβλητές σχεδιασμού του SM δεν αποτελούν μεταβλητές απόφασης του μακροπρόθε-

σμου προγραμματισμού καθώς το SM επιλύεται ανεξάρτητα. Συνεπώς, ο αριθμός των μεταβλητών
απόφασης του μακροπρόθεσμου προγραμματισμού επηρεάζεται μόνο από τον αριθμό των διάφορων
επενδυτικών επιλογών και τα καθορισμένα στάδια που μπορούν να υλοποιηθούν αυτές. Επίσης, θα μπο-
ρούσαν να εξεταστούν διαφορετικά SM καθώς η επιλογή ενός SM δεν επηρεάζει άμεσα τη μαθηματική
διατύπωση του προβλήματος του μακροπρόθεσμου προγραμματισμού.

Χρονική λεπτομέρεια

Η χρονική λεπτομέρεια που εισάγεται στο μοντέλο διαχωρίζεται σε τρία επίπεδα. Το πρώτο επίπεδο
αφορά τα έτη στόχοι (Ytrg ⊆ Y) για τα οποία γίνεται χρήση του SM για προσδιορισμό του λειτουργικού
κόστους. Το δεύτερο επίπεδο αφορά τον αριθμό χρονικών περιόδων (P) εντός ενός έτους στόχος για τα
οποία επιλύονται ανεξάρτητα προβλήματα βελτιστοποίησης. Το τρίτο επίπεδο αφορά τον αριθμό ωριαίων
διαστημάτων (H) που εμπεριέχει κάθε χρονική περίοδος. Αύξηση κάθε επιπέδου χρονικής λεπτομέρειας
μπορεί να οδηγήσει σε αύξηση της ακρίβειας του μοντέλου αλλά και αύξηση του υπολογιστικού κόστους.

4.2.4 Διατύπωση μονοκριτηριακού προβλήματος βελτιστοποίησης

Στο εδάφιο αυτό παρουσιάζεται η συνάρτηση στόχος και οι συναρτήσεις περιορισμού του προβλήματος.

Αντικειμενική συνάρτηση

Η αντικειμενική συνάρτηση ορίστηκε ως το άθροισμα του ετήσιου κόστους επένδυσης, σταθερού
κόστους και μεταβλητού κόστους λαμβάνοντας υπόψη και τον συντελεστή αναγωγής.

TC =
∑

yr

[DDyr · (cinvyr + cfixedyr + cvaryr )] (4.8)

όπου:
DDyr = 1/(1 +DR)yr,∀yr (4.9)

Συναρτήσεις περιορισμών

1. Θετικές ακέραιες μεταβλητές:
xinv ∈ Nninv

(4.10)
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2. Μέγιστος και ελάχιστος αριθμός ετήσιων επενδύσεων:

0 ≤ xinvyr,t ≤ X
inv
yr,t, ∀yr, t (4.11)

Το άνω όριο του αριθμού των επενδύσεων λαμβάνει υπόψη:

(αʹ) Μια ρεαλιστική εκτίμηση του άνω ορίου των επενδύσεων σε κάθε επενδυτικό στάδιο:

X
inv
yr,t ≤ Xmax inv

t , ∀yr, t (4.12)

(βʹ) Το χρόνο κατασκευής των μονάδων έτσι ώστε αυτές να μπορούν να είναι λειτουργικές εντός
του υπό εξέταση χρονικού ορίζοντα:

X
inv
yr,t = 0, ∀yr + CTt > Y rz, t (4.13)

(γʹ) Τις μονάδες που θεωρούνται ως επενδυτικές επιλογές:

X
inv
yr,told = 0, ∀yr, told (4.14)

(δʹ) Τα έτη που έχουν οριστεί ως επενδυτικά στάδια:

X
inv
yr,t =

{
X

inv
yr,t, if yr ∈ YInvSt

0, otherwise
,∀yr, t (4.15)

3. Περιθώριο ασφαλείας σχεδιασμού:
∑

t

icyr,t · CCt ≥ RSyr, ∀yr (4.16)

4. Μέγιστη εγκατεστημένη δυναμικότητα παραγωγής ισχύος κάθε τεχνολογίας:

icyr,t ≤ ICyr,t, ∀yr, t (4.17)

όπου
ICyr,t = min(IC

ic
yr,t, (IC

g
yr,tTDyr)/(8760AVt), IC

ep
t ),∀yr, t (4.18)

5. Ελάχιστη εγκατεστημένη δυναμικότητα παραγωγής ισχύος κάθε τεχνολογίας:

icyr,t ≥ ICyr,t ∀yr, t (4.19)

όπου
ICyr,t = max(ICic

yr,t, (IC
g
yr,tTDyr)/(8760AVt), 0),∀yr, t (4.20)

4.3 Προσέγγιση μονοκριτηριακής βελτιστοποίησης

Σε αυτό το εδάφιο παρουσιάζεται η μέθοδος που χρησιμοποιήθηκε για τη μονοκριτηριακή βελτιστοπο-
ίηση του προβλήματος. Αυτή βασίζεται στη DE και σε πλαίσια για βελτιστοποίηση με χρήση μεταπρο-
τύπων χωρίς χρήση της παραγώγου. Επίσης παρουσιάζονται τροποποιήσεις στη μορφή εξειδικευμένων
τελεστών.
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4.3.1 Αλγόριθμος Διαφορικής Εξέλιξης

Βασικοί τελεστές του αλγορίθμου Διαφορικής Εξέλιξης

Ο βασικός αλγόριθμος DE αρχικοποιεί ένα αριθμό (NP ) από υποψήφιες λύσεις στο χώρο αναζήτη-
σης. Οι τελεστές μετάλλαξης, διασταύρωσης και επιλογής χρησιμοποιούνται για να βελτιώσουν τον
πληθυσμό λύσεων σε βάθος γενιών (επαναλήψεων). Για κάθε άτομο του πληθυσμού παράγεται ένας
απόγονος μέσω των τελεστών μετάλλαξης και διασταύρωσης. Ο τελεστής επιλογής καθορίζει αν ο α-
πόγονος θα αντικαταστήσει τον γονέα στο πληθυσμό. Ως μέθοδος διαχείρισης περιορισμών εξετάστηκε
η τεχνική Κανόνες Εφικτότητας (Feasibility rules) [135]. Οι προαναφερθέντες τελεστές ενός βασικού
DE αλγορίθμου [136, 137] περιγράφονται αναλυτικά στο αντίστοιχο εδάφιο του πλήρους κειμένου.

Αλγόριθμος Διαφορικής Εξέλιξης για προβλήματα βελτιστοποίησης με ακέραιες
μεταβλητές απόφασης

Ο βασικός αλγόριθμος DE συνήθως τροποποιείται όταν αυτός εφαρμόζεται σε προβλήματα βελτιστο-
ποίησης που περιέχουν μεταβλητές απόφασης που περιορίζονται σε ακεραίους [136]. Παραλλαγές του
αλγορίθμου DE έχουν εφαρμοστεί σε διάφορα τέτοια προβλήματα βελτιστοποίησης [138, 139, 140].
Η τεχνική που επιλέχθηκε βασίζεται στο χειρισμό των ακέραιων μεταβλητών ως συνεχείς και τη

χρήση συνάρτησης στρογγυλοποίησης για τη μετατροπή τους σε ακεραίους [141]. Αυτό υλοποιείται
μόνο για τη παραγωγή εισόδου για τον υπολογισμό των συναρτήσεων στόχου και περιορισμών.

Μηχανισμός επανεκκίνησης

΄Εχουν χρησιμοποιηθεί διάφοροι μηχανισμοί επανεκκίνησης μαζί με τη DE για την αντιμετώπιση της
περίπτωσης πρόωρης σύγκλισης [137]. Χρησιμοποιήθηκε ένας τέτοιος μηχανισμός που αρχικοποιεί
εκ νέου τον πληθυσμό όταν δεν υπάρξει βελτίωση σε κάποιο άτομο του πληθυσμού για ένα αριθμό
επαναλήψεων (genrst). Αυτό δεν εφαρμόζεται στο καλύτερο άτομο του πληθυσμού που διατηρείται
εντός του πληθυσμού. ΄Ενας τέτοιος μηχανισμός μπορεί να εισάγει καινούργια πληροφορία στο πληθυσμό
αλλά δεν μπορεί να εγγυηθεί ότι ο αλγόριθμος θα καταφέρει να διαφύγει από ένα τοπικό βέλτιστο.

4.3.2 Εξειδικευμένοι τελεστές

Ο αλγόριθμος DE χρησιμοποιήθηκε σαν αλγόριθμος βάσης που καθοδηγεί την αναζήτηση. Τρεις
εξειδικευμένοι τελεστές εξετάστηκαν για να βελτιώσουν την απόδοσή του. Συγκεκριμένα:

� Ευρετική επιδιόρθωση με τυχαιότητα (Randomized Repair Heuristic, RRH): Ο τελεστής επιδιορ-
θώνει λύσεις που παραβιάζουν τις συναρτήσεις περιορισμών του μακροπρόθεσμου προγραμματι-
σμού. Η επιδιόρθωση βασίζεται σε μια αλληλουχία βημάτων που ορίστηκε με βάση χαρακτηριστικά
του προβλήματος. Επίσης, εισάγεται τυχαιότητα στη διαδικασία επιδιόρθωσης ενός ατόμου έτσι
ώστε να διασφαλιστεί η ανακατασκευή ποικίλων λύσεων που δεν παραβιάζουν τις συναρτήσεις
περιορισμών του μακροπρόθεσμου προγραμματισμού. Συνεπώς, ο τελεστής αυτός επικεντρώνεται
στην αντιμετώπιση του προβλήματος βελτιστοποίησης με έμφαση στις συναρτήσεις περιορισμών.

� Τελεστής διατάραξης (Perturbation Operator, PO): Τελεστές διατάραξης εφαρμόζονται συχνά σε
προβλήματα διακριτής (συνδυαστικής) βελτιστοποίησης. Εξετάστηκε ένας τελεστής που βασίζεται
σε μηχανισμούς που παράγουν τέτοιες διαταράξεις/μεταβολές στα διανύσματα των ατόμων του
πληθυσμού. Η χρήση του στοχεύει στην δημιουργία ποικιλίας απογόνων και στην αντιμετώπιση
προκλήσεων που προκύπτουν από το χειρισμό διακριτών μεταβολών.
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� Τελεστής ομαδοποίησης με βάση τεχνολογικά κριτήρια (Technology-group operator): Ο τελεστής
καθορίζει την αλληλουχία της αναπαράστασης των μεταβλητών απόφασης για ένα άτομο και
εισάγει τροποποιήσεις στην εφαρμογή του τελεστή διασταύρωσης (blk). Αυτό βασίστηκε στην
πιθανή ύπαρξη συνδέσεων μεταξύ μεταβλητών απόφασης. ΄Εχει αναφερθεί ότι τέτοιες συνδέσεις
όταν υπάρχουν μπορούν να επηρεάσουν την απόδοση των τελεστών διασταύρωσης [142].

4.3.3 Βήματα της μεθόδου βελτιστοποίησης

Στο εδάφιο αυτό αναφέρονται τα βήματα της μεθόδου βελτιστοποίησης που χρησιμοποιήθηκε. Αυ-
τή βασίζεται σε αλγόριθμους [112, 124] για βελτιστοποίηση χωρίς χρήση παραγώγου και με χρήση
μεταπροτύπων. Οι τροποποιήσεις που εισάγονται βασίζονται σε χαρακτηριστικά του προβλήματος. Συ-
γκεκριμένα:

� Χρησιμοποιούνται ένας αριθμός από AM όπου κάθε ένα εκπαιδεύεται για ένα υποσύνολο των
μεταβλητών αντί για ένα AM το οποίο εκπαιδεύεται με βάση το σύνολο των μεταβλητών απόφασης.
Αυτό γίνεται ώστε κάθε AM να παρέχει την εκτίμηση του μεταβλητού κόστους για ένα έτος
υποθέτοντας ότι το μεταβλητό κόστος κάθε έτους μπορεί να υπολογιστεί ανεξάρτητα. Αυτή
η υπόθεση γίνεται εφόσον το πρόβλημα βελτιστοποίησης δεν είναι μαύρου κουτιού (black-box)
και βασίζεται στο ότι ο αριθμός των εγκατεστημένων μονάδων είναι συνάρτηση των μεταβλητών
απόφασης. Συνεπώς, ο αριθμός των διαστάσεων κάθε AM αυξάνει με τον αριθμό τεχνολογιών
παραγωγής ισχύος που μπορούν να έχουν διαφορετικές τιμές εγκατεστημένης δυναμικότητας
παραγωγής ισχύος σε κάθε έτος. Αντίστοιχα, ο αριθμός των AM που χρησιμοποιούνται αυξάνει
με τον αριθμό των ετών στόχος.

� Οι συναρτήσεις περιορισμού που αφορούν το μακροπρόθεσμο προγραμματισμό επιδιορθώνονται
με τη χρήση του RRH. Αλγόριθμοι για βελτιστοποίηση τύπου μαύρου κουτιού χωρίς χρήση
παραγώγου και με χρήση μεταπροτύπων συνδυάζονται με τεχνικές χειρισμού περιορισμών για
προβλήματα που εμπεριέχουν περιορισμούς καθώς τελεστές επιδιόρθωσης μη-εφικτών λύσεων
δεν είναι πάντα διαθέσιμοι.

� Τα AM ανανεώνονται με εισαγωγή καινούργιων δεδομένων από λύσεις επιλεγμένες σε διαφορετικά
στάδια από ένα πληθυσμό DE και από στοχαστικά παραγόμενες λύσεις. Η καμπύλη εξέλιξης της
εγκατεστημένης δυναμικότητας παραγωγής ισχύος κάθε τεχνολογίας λαμβάνεται υπόψη σε αυτές
τις διαδικασίες επιλογής.

Η μέθοδος βελτιστοποίησης αποτελείται από δυο φάσεις. Η πρώτη αφορά την αρχικοποίηση και
η δεύτερη αφορά την αναζήτηση βέλτιστη λύσης του προβλήματος. Τα βήματα αυτά παρουσιάζονται
αναλυτικά στο πλήρες κείμενο της Διατριβής. Τα βασικά στάδια της πρώτης φάσης είναι τα ακόλουθα:

� Προσδιορισμός περιοχής ενδιαφέροντος με βάση τους περιορισμούς του προβλήματος.

� Αρχικοποίηση των εξωτερικών αρχείων (αρχείο λύσεων και αρχεία προσομοιώσεων) όπου αποθη-
κεύονται εντοπισμένες λύσεις και τα αποτελέσματα των υπολογιστικά δαπανηρών προσομοιώσεων.

� Δημιουργία αρχικών σημείων για τα αρχεία προσομοιώσεων. Για τα αρχικά σημεία αυτά εφαρ-
μόζονται υπολογιστικά δαπανηρές προσομοιώσεις. Εκπαίδευση των AM με βάση τα αρχικά σημεία
αυτά.
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� Εισαγωγή αρχικών λύσεων, όταν αυτές είναι διαθέσιμες, και παραγωγή αρχικών λύσεων με χρήση
τουDE αλγορίθμου που αναπτύχθηκε. Υπολογιστικά δαπανηρές προσομοιώσεις εφαρμόζονται για
κάθε νέο συνδυασμό εγκατεστημένη ισχύς που προκύπτει από μια τέτοια λύση και το αποτέλεσμα
αυτών αποθηκεύεται στα αρχεία. Στη συνέχεια τα AM ανανεώνονται με βάση τα νέα αρχεία.
Επίσης, η καλύτερη λύση που έχει εντοπιστεί ορίζεται ως αυτή που εμφανίζει την ελάχιστη τιμή
στο αρχείο λύσεων η οποία ανανεώνεται κάθε φορά που εισέρχεται σε αυτό μια νέα λύση.

Τα βασικά στάδια της δεύτερης φάσης είναι τα ακόλουθα:

� Εφαρμόζεται ο DE αλγόριθμος για προκαθορισμένο αριθμό γενιών στο συνολικό πρόβλημα ελαχι-
στοποίησης με βάση την εκτίμηση των AM. Η καλύτερη λύση που εντοπίζεται αποθηκεύεται στο
αρχείο λύσεων αν δεν έχει αποθηκευτεί. Υπολογιστικά δαπανηρές προσομοιώσεις εφαρμόζονται
για κάθε νέο συνδυασμό εγκατεστημένη ισχύς που προκύπτει από μια νέα λύση. Στη συνέχεια
ανανεώνονται τα αρχεία, τα AM και η καλύτερη λύση που έχει εντοπιστεί. Αυτό επαναλαμβάνεται
σειριακά για κάθε ένα διαθέσιμο είδος AM.

� Παραγωγή υποψήφιων λύσεων μεταβάλλοντας την καλύτερη λύση που έχει βρεθεί και παράγοντας
στοχαστικά υποψήφιες λύσεις στο χώρο αναζήτησης [122, 123, 124, 125, 130, 143]. Οι υποψήφιες
λύσεις στην συνέχεια επιδιορθώνονται με χρήση του RRH μεταβάλλοντας τα όρια της περιοχής
ενδιαφέροντος με βάση την εγκατεστημένη ισχύ της καλύτερης λύσης που έχει εντοπιστεί. Αυτό
αποσκοπεί στη χρήση του RRH ως τεχνική τοπικής αναζήτησης. Τα όρια μεταβάλλονται με βάση
μια παράμετρο (ri) που καθορίζει το εύρος της περιοχής ενδιαφέροντος.

� Επιλογή υποψήφιας λύσης με βάση το κριτήριο της απόστασης πλήθους (Crowding Distance
[12, 135]) από το σύνολο των υποψήφιων λύσεων που δημιουργήθηκαν. Το κριτήριο λαμβάνει
υπόψη την Ευκλείδεια απόσταση των λύσεων σε σχέση με τις λύσεις αποθηκευμένες στο αρχείο
λύσεων. Η υποψήφια λύση που παρουσιάζει την μέγιστη τιμή του δείκτη επιλέγεται. Στη συνέχεια
εφαρμόζονται οι υπολογιστικά δαπανηρές προσομοιώσεις για κάθε νέο συνδυασμό εγκατεστημένη
ισχύς που προκύπτει από την επιλεγμένη λύση, ανανεώνονται τα αρχεία και η καλύτερη λύση
που έχει εντοπιστεί. Η παραγωγή υποψήφιων λύσεων και η επιλογή επαναλαμβάνεται για κάθε
διαφορετική τιμή της παραμέτρου (ri).

� Η παραγωγή υποψήφιων λύσεων επαναλαμβάνεται και η επιλογή γίνεται με βάση την εκτίμηση
AM που εκπαιδεύονται τοπικά. Επιλέγεται μια νέα υποψήφια λύση που παρουσιάζει την ελάχιστη
τιμή της συνάρτησης με βάση την εκτίμηση των τοπικών AM. Τα σημεία που χρησιμοποιούνται
για την εκπαίδευση των τοπικών AM επιλέγονται με βάση το χωρίο που ορίζεται από την περιοχή
ενδιαφέροντος. Ακολούθως γίνονται οι υπολογιστικά δαπανηρές προσομοιώσεις για κάθε νέο
συνδυασμό εγκατεστημένη ισχύς που προκύπτει από την επιλεγμένη λύση, ανανεώνονται τα αρχεία
και η καλύτερη λύση που έχει εντοπιστεί. Αυτά επαναλαμβάνονται για κάθε διαφορετική τιμή της
παραμέτρου (ri) και για κάθε διαθέσιμο είδος AM.

� Τα βήματα της δεύτερης φάσης επαναλαμβάνονται μέχρι να ικανοποιηθούν τα κριτήρια τερματι-
σμού.

4.3.4 Επιλεγμένα μοντέλα προσέγγισης

Η επιλογή AM γίνεται με βάση την Αναφορά [124] όπου γίνεται χρήση μοντέλου RBF [144] για πρόβλη-
μα ολικής βελτιστοποίησης με ακέραιες μεταβλητές. Συγκεκριμένα, θεωρείται ότι είναι διαθέσιμα τρία
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μοντέλα RBF οποία διαφέρουν ως προς τη συνάρτηση πυρήνα (kernel) τους. Τα AM αυτά παρουσι-
άζονται αναλυτικότερα στο πλήρες κείμενο της Διατριβής.

4.4 Υπολογιστικά πειράματα και αποτελέσματα

Το σύστημα που εξετάστηκε είναι μια απλουστευμένη μορφή του Ελληνικού συστήματος παραγωγής
ισχύος. Η χρήση ορισμένων δεδομένων που βασίζονται σε αυτό το σύστημα αποσκοπεί κυρίως στην
δημιουργία ενός ενδεικτικού παραδείγματος.

4.4.1 Υπολογιστικά πειράματα

Τα υπολογιστικά πειράματα που έγιναν είναι τα εξής:

� Εξέταση του MAEA με χρήση δυο διαφορετικών SM. Ο MAEA εφαρμόζεται στο πρόβλημα
βελτιστοποίησης και εξετάζεται η επίδοσή του για την εισαγωγή δυο διαφορετικών SM. Το πρώτο
SM παρουσιάζει χαμηλότερη τεχνική λεπτομέρεια (SMED) σε σχέση με το δεύτερο (SMCUC).
Επίσης τίθεται άνω όριο στον αριθμό δαπανηρών προσομοιώσεων (500). Με βάση το τελικό
αρχείο προσομοιώσεων των τρεξιμάτων εξετάζεται η ακρίβεια της εκτίμησης που επιτεύχθηκε
από τα AM. Τα ανεξάρτητα τρεξίματα του MAEA επαναλήφθηκαν 30 φορές.

� Εξέταση του DE αλγορίθμου και των εξειδικευμένων τελεστών. Συγκεκριμένα δημιουργήθηκαν
24 παραλλαγές του αλγορίθμου βάσης από την εισαγωγή συνδυασμών αυτών των τελεστών.
Η εξέταση έγινε σε τρία προβλήματα. Το πρώτο πρόβλημα βελτιστοποίησης εμπεριέχει στην
συνάρτηση κόστους μόνο το κόστος επένδυσης και τα σταθερά κόστη λειτουργίας και συντήρησης.
Για τα άλλα δυο προβλήματα γίνεται χρήση των AM για εκτίμηση του μεταβλητού κόστους
και επαναλαμβάνονται για κάθε διαθέσιμο AM. Συγκεκριμένα, στο δεύτερο πρόβλημα το AM
εκπαιδεύεται με βάση το τελικό αρχείο προσομοιώσεων ενός τρεξίματος με χρήση του MAEA
και του SMED. Στο τρίτο το AM εκπαιδεύεται με βάση το τελικό αρχείο προσομοιώσεων ενός
τρεξίματος με χρήση του MAEA και του SMCUC. Τα ανεξάρτητα τρεξίματα κάθε παραλλαγής
του DE αλγορίθμου επαναλήφθηκαν 100 φορές.

� Εξέταση του MAEA σε πρόβλημα βελτιστοποίησης όπου η συνάρτηση στόχος ορίστηκε ως η
ελαχιστοποίηση της απόκλισης από μια συγκεκριμένη εγκατεστημένης ισχύ. Δυο περιπτώσεις
εξετάστηκαν. Στη πρώτη ορίστηκε ως στόχος η λύση που ελαχιστοποιεί το κόστος επένδυσης
και τα σταθερά κόστη λειτουργίας και συντήρησης. Τα ανεξάρτητα τρεξίματα του MAEA επα-
ναλήφθηκαν 100 φορές. Στη δεύτερη περίπτωση ορίστηκαν 100 διαφορετικές λύσεις ως στόχος.
Το άνω όριο στον αριθμό δαπανηρών προσομοιώσεων ορίστηκε στις 1000 προσομοιώσεις.

� Ανάλυση των αποτελεσμάτων που εξήχθησαν με χρήση των δυο διαφορετικών SM και σύγκρισή
τους σε σχέση με ένα σενάριο αναφοράς όπου δεν εισάγεται SM για την εξαγωγή των επενδυτικών
επιλογών.

4.4.2 Αποτελέσματα

Τα αποτελέσματα των υπολογιστικών πειραμάτων που έγιναν είναι τα εξής:

� Στα δυο προβλήματα όπου εξετάστηκε ο MAEA εντοπίστηκε συστηματικά λύση (30/30) εντός
του ορίου με χρήση δυο διαφορετικών SM. Επίσης η ακρίβεια της προσέγγισης των AM, με βάση
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τους δείκτες που χρησιμοποιήθηκαν για την εξέταση κρίθηκε ικανοποιητική. Συνεπώς, το σφάλμα
της προσέγγισης των AM δεν ήταν αρκετό έτσι ώστε να εμποδίσει την σύγκλιση του αλγορίθμου
στις περιπτώσεις που εξετάστηκαν.

� Τα αποτελέσματα των υπολογιστικών πειραμάτων που αφορούν την επίδοση των 24 παραλλαγών
του DE αλγορίθμου και των εξειδικευμένων τελεστών υποδηλώνουν ότι οι παραλλαγές του DE
αλγορίθμου που ενσωματώνουν του τελεστές RRH και blk και αυτές που και ενσωματώνουν του
τελεστές RRH, blk, PO ήταν οι πιο αποδοτικές.

� Στα δυο προβλήματα όπου εξετάστηκε ο MAEA και η συνάρτηση στόχος ορίστηκε ως η ελαχι-
στοποίηση της απόκλισης από μια συγκεκριμένη εγκατεστημένης ισχύ η απόδοση του αλγορίθμου
κρίθηκε ικανοποιητική. Στην πρώτη περίπτωση όπου ορίστηκε ως στόχος η λύση που ελαχιστο-
ποιεί το κόστος επένδυσης και τα σταθερά κόστη λειτουργίας και συντήρησης η βέλτιστη λύση
εντοπίστηκε συστηματικά (100/100). Στη δεύτερη περίπτωση όπου ορίστηκαν 100 διαφορετι-
κές λύσεις ως στόχος η βέλτιστη λύση εντοπίστηκε συστηματικά (99/100) εντός του άνω ορίου
δαπανηρών προσομοιώσεων.

� Κατά τη σύγκριση των λύσεων που εντοπίστηκαν στα δυο προβλήματα όπου εξετάστηκε οMAEA
με χρήση δυο διαφορετικών SM παρατηρήθηκαν διαφορές στις επενδυτικές επιλογές που αποδόθη-
καν στη χρήση διαφορετικού SM. Αυτό οφείλεται στις διαφορές κατά την εκτίμηση του κόστους
των δυο SM. Εξετάζοντας τα εκτιμώμενα επίπεδα παραγωγής κάθε τεχνολογίας παρατηρήθηκε
ότι στο χαμηλότερο επίπεδο τεχνικής λεπτομέρειας του (SMED) τα επίπεδα παραγωγής παρόχων
ευελιξίας ήταν μειωμένα σε σχέση με το SMCUC καθώς τα χαμηλότερα επίπεδα τεχνικής λε-
πτομέρειας επέτρεπαν σε μη ευέλικτες μονάδες να παρουσιάζουν μεγαλύτερα επίπεδα παραγωγής
υποτιμώντας έτσι τα επίπεδα παραγωγής πιο ευέλικτων μονάδων.

� Επίσης, έγινε χρήση του τελικού αρχείου προσομοιώσεων για την εξέταση της ευαισθησίας του
μεταβλητού κόστους ως προς την εγκατεστημένη ισχύ της λύσης που εντοπίστηκε με χρήση
του MAEA και του SMCUC. Η ευαισθησία του μεταβλητού κόστους εξετάστηκε με βάση την
εκτίμηση των AM για συνδυασμούς εγκατεστημένης ισχύος τεχνολογιών. Η εκτίμηση αυτή συ-
γκρίθηκε με τις αντίστοιχες τιμές με χρήση του TM και παρατηρήθηκε ότι η εκτίμηση παρουσίαζε
ικανοποιητική ακρίβεια.
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Κεφάλαιο 5

Προγραμματισμός επέκτασης
παραγωγής με υψηλό μερίδιο
παραγωγής από ανανεώσιμες πηγές
ενέργειας: Πολυκριτηριακή
βελτιστοποίηση με χρήση
εξελικτικών αλγορίθμων
υποβοηθούμενων από μεταπρότυπα

5.1 Κίνητρα και στόχοι

Σε αυτό το Κεφάλαιο, παρουσιάζεται μια προσέγγιση για ένα στατικό MOO GEP. Αυτή στοχεύει προς
εξέταση αντικρουόμενων στόχων και συντελεστών κόστους ενός υπολογιστικού ακριβού MOO GEP
για τη διευκόλυνση της λήψης αποφάσεων. Η προσέγγιση εστιάζει στη συμπερίληψη πτυχών της βρα-
χυπρόθεσμης λειτουργίας ενός συστήματος ισχύος εντός τουMOO GEP. Πιο συγκεκριμένα, αποκλίνει
από την βιβλιογραφία MOO GEP καθώς οι απαιτήσεις σε λειτουργική ευελιξία και ο αντίκτυπός τους
σε συντελεστές κόστους εξετάζονται μέσω ενός SM για τη βραχυπρόθεσμη λειτουργία του συστήματος
ισχύος. Η ενσωμάτωση του SM όμως οδηγεί σε αύξηση του υπολογιστικού κόστους.
Για την αντιμετώπιση του υπολογιστικού κόστους αναπτύσσεται μια προσέγγιση MOO με βάση

πλαίσια για βελτιστοποίηση υποβοηθούμενη από AM και χωρίς χρήση παραγώγων. Πιο συγκεκριμένα,
η προσέγγισηMOO περιλαμβάνει (i) μεταπρότυπα, (ii)MOEA, (iii) τοπική αναζήτηση και (iv) ανανέω-
ση των AM κατά την διάρκεια του τρεξίματος. Τα υπολογιστικά πειράματα περιλαμβάνουν την εξέταση
της προσέγγισης MOO σε συναρτήσεις αναφοράς και σε οικονομικά-περιβαλλοντικά MOO GEP προ-
βλήματα βελτιστοποίησης. Επιπλέον, αναλύονται οι μη κυριαρχούμενες λύσεις που εντοπίστηκαν και οι
αντίστοιχοι συντελεστές κόστους. Τα αποτελέσματα υποδηλώνουν ικανοποιητική απόδοση της MOO
προσέγγισης.
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5.2 Μαθηματική διατύπωση προβλήματος

Αυτή η Ενότητα παρουσιάζει τη μαθηματική διατύπωση του προβλήματος βελτιστοποίησης, των συντε-
λεστών κόστους που χρησιμοποιούνται για τον προσδιορισμό των αντικειμενικών συναρτήσεων και τη
μαθηματική διατύπωση του SM που χρησιμοποιείται για την εκτίμηση της βραχυπρόθεσμης λειτουργίας
του συστήματος ισχύος. Τέλος, παρουσιάζονται οι αντικειμενικές συναρτήσεις και οι περιορισμοί πέντε
παραλλαγών MOO GEP.

5.2.1 Μαθηματική διατύπωση προβλήματος βελτιστοποίησης

Εξετάζεται το πιο κάτω πρόβλημα ΜΟΟ:

minimize F(x) = (f1(x), f2(x), ..., fm(x))

s.t. G(x) ≤ 0

x ∈ S

(5.1)

όπου x = (x1, x2, ..., xn) είναι το διάνυσμα μεταβλητών απόφασης, n ο αριθμός μεταβλητών απόφασης,
F(x) το διάνυσμα αντικειμενικών συναρτήσεων, m ο αριθμός αντικειμενικών συναρτήσεων, G(x) =
(g1(x), g2(x), ..., gk(x)) το διάνυσμα περιορισμών του προβλήματος, k ο αριθμός περιορισμών του προ-
βλήματος και S ο χώρος αναζήτησης.
Εξετάζεται η περίπτωση των υπολογιστικά δαπανηρών αντικειμενικών συναρτήσεων, υπολογιστικά

φθηνών περιορισμών και x ∈ Zn. Συνεπώς, θεωρείται ότι το πρόβλημα ελαχιστοποίησης περιορίζε-
ται από το υπολογιστικό κόστος των αντικειμενικών συναρτήσεων. Επιπλέον, επιβάλλεται ένα όριο
στον αριθμό των αντικειμένων συναρτήσεων που θεωρούνται στόχοι (m = 2), δηλαδή δεν εξετάζονται
προβλήματα βελτιστοποίησης πολλών αντικειμενικών στόχων. Συγκεκριμένα, εξετάζονται προβλήματα
βελτιστοποίησης GEP με δύο υπολογιστικά δαπανηρές αντικειμενικές συναρτήσεις και υπολογιστικά
φθηνούς περιορισμούς. Οι μεταβλητές απόφασης θεωρούνται ως θετικοί ακέραιοι (Z+) που αντιπρο-
σωπεύουν τον αριθμό των επενδύσεων σε μια υποψήφια τεχνολογία σε μια περιοχή. Το μέγεθος κάθε
μιας τέτοιας επένδυσης θεωρείται προκαθορισμένο.

5.2.2 Συντελεστές κόστους

Πιο κάτω παρουσιάζονται οι συντελεστές κόστους που εξετάστηκαν και χρησιμοποιήθηκαν για τη δια-
τύπωση των αντικειμενικών συναρτήσεων:

� Κόστος επένδυσης:

cinv =
∑

∀a,g
[xinva,g ICa,gP

cap step
a,g ] (5.2)

� Σταθερά κόστη λειτουργίας και συντήρησης:

cfom =
∑

∀a,g
[(xinva,g + IUa,g)FOMa,gP

cap step
a,g ] (5.3)

� Κόστος μηχανισμού στήριξης RES (Green Policy Support Cost, GPSC):

cgp =
∑

∀a,gres
[(xinva,gres + IUa,gres)P

cap step
a,gres Prresa,gres

∑

∀h
[Avresa,gres,h]] (5.4)
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� Κόστος παραγωγής:

cgen =
∑

∀a,g,h
[pa,g,hC

L
g + xsua,g,hC

su
g + xsda,g,hC

sd
g ] (5.5)

� Κόστος εκπομπών διοξειδίου του άνθρακα:

cem =
∑

∀a,g,h
[pa,g,hEFa,g,h]C

em (5.6)

� Μεταβλητά κόστη λειτουργίας και συντήρησης:

cvom =
∑

∀a,g,h
[pa,g,hV OMg] (5.7)

� Διείσδυση RES:

crp =
∑

∀a,h
[presa,h − εca,h]Crp (5.8)

όπου:
presa,h =

∑

∀gres
[(xinva,gres + IUa,gres)P

cap step
a,gres Avresa,gres,h], ∀a, h (5.9)

� Κόστος μη εξυπηρετούμενης ενέργειας:

cnse =
∑

∀a,h
[εra,hC

r + εda,hC
d] (5.10)

� Κόστος μείωσης παραγωγής από RES ή υδροηλεκτρικών μονάδων:

ccs =
∑

∀a,h
[εsa,hC

s + εca,hC
c] (5.11)

Με βάση τις παραδοχές που έγιναν, μπορεί να γίνει διάκριση μεταξύ των συντελεστών κόστους
που παρουσιάστηκαν. Συγκεκριμένα, cinv, cfom και cgp μπορούν να υπολογιστούν λαμβάνοντας υπόψη
μόνο τις επενδυτικές αποφάσεις (xinv). Αντίθετα, οι συντελεστές κόστους cgen, cem, cvom, crp, ccs

και cnse θα μπορούσαν να υπολογιστούν με βάση μια προσομοίωση της βραχυπρόθεσμης λειτουργίας
ενός συστήματος ισχύος. Για τον υπολογισμό αυτών των συντελεστών κόστους γίνεται χρήση ενός
SM του οποίου η είσοδος είναι οι επενδυτικές αποφάσεις. Η έξοδος του SM είναι ένα διάνυσμα v = {p,
xsu,xsd, εr, εd, εc, εs} το οποίο χρησιμοποιείται για να υπολογιστούν οι συντελεστές κόστους. Δηλαδή,
το αποτέλεσμα του SM θεωρείται ως το αποτέλεσμα της προσομοίωσης της βραχυπρόθεσμης λειτουργίας
ενός συστήματος ισχύος.
Για την εφαρμογή αυτού απαιτείται ότι το SM παρέχει ένα αποτέλεσμα της προσομοίωσης για κάθε

είσοδο. Επίσης, σε περίπτωση όπου το SM είναι ένα πρόβλημα βελτιστοποίησης το οποίο παρουσι-
άζει πέραν της μιας βέλτιστης λύσης γίνεται η παραδοχή ότι η λύση αυτή, δηλαδή το αποτέλεσμα της
προσομοίωσης, είναι μοναδική.
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5.2.3 Μοντέλο προσομοίωσης και προσέγγιση του προβλήματος

Το μοντέλο Fast Unit Commitment [26] επιλέγεται ως το SM για την προσέγγιση ενός UCP. Σε αυτό
εισάγονται κάποιες τροποποιήσεις που σχετίζονται με την συγκεκριμένη εφαρμογή. ΄Ενα πλεονέκτημα
αυτού του μοντέλου είναι η απουσία ακέραιων μεταβλητών. Συγκεκριμένα, το μοντέλο βελτιστοπο-
ίηση είναι πρόβλημα γραμμικού προγραμματισμού. Αντίστοιχα μοντέλα προσέγγισης, βασιζόμενα σε
πρόβλημα γραμμικού προγραμματισμού, έχουν εφαρμοστεί για την εξέταση του βραχυπρόθεσμου προ-
γραμματισμού ενός συστήματος ισχύος στο πλαίσιο του μακροπρόθεσμου προγραμματισμού [45].

5.2.4 Διατύπωση πολυκριτηριακών προβλημάτων βελτιστοποίησης

Μεταβλητές Απόφασης: ΄Εστω x το διάνυσμα μεταβλητών απόφασης παραγόμενο από το μητρώο xinv

ως εξής:
x = {xinv1,1 , x

inv
1,2 , . . . , x

inv
1,gz, x

inv
2,1 , x

inv
2,2 , . . . , x

inv
2,gz, x

inv
az,1, x

inv
az,2, . . . , x

inv
az,gz} (5.12)

όπου:
Xa,g ≤ xinva,g ≤ Xa,g, ∀a, g (5.13)

x ∈ Z (5.14)

Αντικειμενικές συναρτήσεις: Με βάση του συντελεστές κόστους που παρουσιάστηκαν, ορίζονται οι
παρακάτω πέντε συνδυασμοί αντικειμενικών συναρτήσεων που αντιπροσωπεύουν τα πέντε MOO GEP
παραλλαγές που εξετάστηκαν:

1. Συνολικό κόστος και κόστος εκπομπών (AC1-EM):

� Ελαχιστοποίηση συνολικού κόστους (AC1):

l1(x) = cinv + cfom + cgen + cvom + cgp + ccs (5.15)

� Ελαχιστοποίηση κόστος εκπομπών (EM):

l2(x) = cem (5.16)

2. Συνολικό κόστος και διείσδυση των RES (AC2-RP):

� Ελαχιστοποίηση συνολικού κόστους (AC2):

l1(x) = cinv + cfom + cgen + cvom + cem + cgp + ccs (5.17)

� Μεγιστοποίηση διείσδυσης των RES (RP):

l2(x) = (−1)crp (5.18)

3. Λειτουργικού κόστους και GPSC (OC1-GS):

� Ελαχιστοποίηση λειτουργικού κόστους (OC1):

l1(x) = cfom + cgen + cvom + cem + ccs (5.19)
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� Ελαχιστοποίηση GPSC (GS):
l2(x) = cgp (5.20)

4. Λειτουργικού κόστους και κόστους επένδυσης (OC2-IC):

� Ελαχιστοποίηση λειτουργικού κόστους (OC2):

l1(x) = cgen + cfom + cvom + cem + cgp + ccs (5.21)

� Ελαχιστοποίηση κόστους επένδυσης (IC):

l2(x) = cinv (5.22)

5. Συνολικό κόστος και συνολικό κόστος ποινής (AC3-AP):

� Ελαχιστοποίηση συνολικού κόστους (AC3):

f1(x) = cinv + cfom + cgen + cvom + cem + cgp (5.23)

� Ελαχιστοποίηση συνολικού κόστους ποινής (AP):

f2(x) = cnse + ccs (5.24)

Επιπλέον, το κόστος μη εξυπηρετούμενης ενέργειας προστίθεται στους στόχους των τεσσάρων πρώτων
παραλλαγών MOO GEP ως όρος κόστους ποινής σε μια προσπάθεια αποκλεισμού λύσεων που εμφα-
νίζουν κόστος μη εξυπηρετούμενης ενέργειας από το μέτωπο μη κυριαρχούμενων λύσεων ως εξής:

f1(x) = l1(x) + wpen · pen(x) (5.25)

f2(x) = l2(x) + wpen · pen(x) (5.26)

όπου pen(x) = cnse και wpen = 1. Η παράμετρος wpen είναι ο συντελεστής ποινής.

Περιορισμοί: Στις πέντε MOO GEP παραλλαγές εισάγονται οι ακόλουθοι περιορισμοί (G(x)):

� Περιθώριο ασφαλείας:

(1 +RM)PD ≤
∑

∀a,g
[(xinva,g + IUa,g)P

cap step
a,g ] (5.27)

� Μέγιστος αριθμός επενδύσεων: ∑

∀a
[xinva,g ] ≤ TCAg,∀g (5.28)

Η συνολική παραβίαση των περιορισμών (cv(x)) υπολογίζεται ως εξής:

cv(x) =
k∑

i=1

max(gi(x), 0)

CV max
i

(5.29)

όπου CVmax το διάνυσμα που περιλαμβάνει τις μέγιστες τιμές των παραβιάσεων κάθε περιορισμού.
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5.3 Προσέγγιση Πολυκριτηριακής βελτιστοποίησης

Αυτή η ενότητα παρουσιάζει την προσέγγιση του MOO. Βασίζεται σε MOEA και βελτιστοποίηση με
χρήση μεταπροτύπων. Ο αλγόριθμος NSGA-III [95, 145] έχει χρησιμοποιηθεί ως ο βασικός MOEA ο
οποίος τροποποιείται με τη συμπερίληψη AM. Αυτές οι τροποποιήσεις γίνονται με βάση προτεινόμενα
πλαίσια βελτιστοποίησης με χρήση μεταπροτύπων [111, 112, 130, 131, 132, 133, 146, 147].
Για τον προσδιορισμό των βημάτων της προσέγγισης και με βάση τις προαναφερθείσες αναφορές,

τα ακόλουθα θεωρήθηκαν σημαντικά για την επίτευξη ικανοποιητικών αποτελεσμάτων:

� Η δημιουργία κατάλληλων υποψήφιων σημείων (Pool of Data Points, PDP).

� Η επίτευξη αποδεκτής προσέγγισης από τα AM (Underlying Functions Approximation, UFA).

� Η επίτευξη αποδεκτής προσέγγισης του μετώπου Pareto (Pareto Front Approximation, PFA).

Η προσέγγιση που παρουσιάζεται περιλαμβάνει ολική και τοπική φάση αναζήτησης για να επωφεληθεί
από (i) ολικά και τοπικά AM [111, 112, 132, 133, 146, 147], και (ii) ολική και τοπική αναζήτηση
[111, 112, 146, 148].
Δυο κριτήρια επιλογής σημείων από το PDP ενσωματώθηκαν με βάση τις Αναφορές [132, 133].

Συγκεκριμένα, επιλέχθηκε το κριτήριο μέγιστης-ελάχιστης απόστασης (Maximum-Minimum Distance
Criterion, MMDC) και ένα κριτήριο βασισμένο στον υπερόγκο (Hypervolume). Ως CHT χρησιμοποιο-
ύνται τα Feasibility Rules [135].

5.3.1 Βήματα της προσέγγισης βελτιστοποίησης

Η προσέγγιση βελτιστοποίησης περιλαμβάνει τρεις διαφορετικές φάσεις (i) την αρχικοποίηση φάση, (ii)
την ολική φάση και (iii) την τοπική φάση. Τα δύο τελευταία επαναλαμβάνονται σειριακά. Μια τέτοια
επανάληψη θεωρείται ως ένας κύκλος βελτιστοποίησης.
Η φάση αρχικοποίηση περιλαμβάνει την εισαγωγή των απαιτούμενων δεδομένων και τον προσδιορι-

σμό του αρχικού συνόλου σημείων (αρχείο) που υπολογίζονται με το υπολογιστικά δαπανηρό μοντέλο.
Επιπλέον, πρόσθετα σημεία, σε περιοχές ενδιαφέροντος του χώρου αναζήτησης, θα μπορούσαν να ει-
σαχθούν αν αυτά είναι διαθέσιμα.
Η φάση της ολικής αναζήτησης περιλαμβάνει την εκπαίδευση των διαθέσιμων AM, τη δημιουργία

μιας PDP με χρήση MOEA και AM και την επιλογή υποψήφιων σημείων που θα υπολογιστούν με
χρήση του SM. Συγκεκριμένα, πληθυσμοί εξελίσσονται ανεξάρτητα με χρήση διαφορετικών MOEA και
AM. Οι τελικοί πληθυσμοί ενώνονται για τη δημιουργία της PDP. Σε αυτή εισάγονται τυχαία σημεία
και σημεία που παρήχθησαν σε προηγούμενους κύκλους βελτιστοποίησης. Με τη δημιουργία της PDP
εφαρμόζονται μια σειρά από κανόνες και τα κριτήρια MMDC και Hypervolume για τον προσδιορισμών
των υποψήφιων σημείων που θα υπολογιστούν με χρήση του SM και θα αποθηκευτούν στο αρχείο
λύσεων.
Η φάση της τοπικής αναζήτησης περιλαμβάνει την εκπαίδευση τοπικών AM για επιλεγμένες λύσεις

του μετώπου μη-κυριαρχούμενων λύσεων του αρχείου και σε υποψήφιες λύσεις που παράγονται από
αυτές. Σε αυτές εφαρμόζεται τοπική αναζήτηση βασιζόμενη σε τοπικά AM και βελτιστοποίηση με
χρήση παραγώγων.
Οι τρεις φάσεις και τα βήματα της προσέγγισης βελτιστοποίησης που αναπτύχθηκε παρουσιάζονται

αναλυτικότερα στο πλήρες κείμενο της Διατριβής.
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5.3.2 Μοντέλα προσέγγισης

Ως διαθέσιμα AM θεωρούνται τα μοντέλα RBF και PR. Η χρήση διαφορετικών AM αποσκοπεί στην
αντιμετώπιση της κατάρας της αβεβαιότητας και στην εκμετάλλευση της ευλογίας της αβεβαιότητας [111,
113]. Επιπλέον, στην φάση της τοπικής αναζήτησης γίνεται χρήση ενός AM που αποτελεί συνδυασμό
(άθροισμα της εκτίμησης) των RBF και PR.

5.3.3 Τελεστές εξέλιξης

Γίνεται χρήση διαφορετικών EA για την εξέλιξη κάθε υπό πληθυσμού. Οι δυο διαφορετικοί συνδυασμοί
τελεστών που εξετάστηκαν βασίζονται σε Γενετικούς αλγορίθμους [149] και σε DE [150].

5.3.4 Τελεστής επιλογής

Εξετάστηκε ο τελεστής επιλογής του NSGA-III [95, 145] που βασίζεται στον NSGA-II [89]. Ο NSGA-
III αναπτύχθηκε για προβλήματα βελτιστοποίησης πολλών στόχων και εμπεριέχει μηχανισμό για εισα-
γωγή προτιμήσεων στην αναζήτηση.

5.4 Υπολογιστικά πειράματα και αποτελέσματα

Τα υπολογιστικά πειράματα που έγιναν αποσκοπούν στην εξέταση της απόδοσης του αλγορίθμου και
στην εξαγωγή και ανάλυση κάθε μετώπου μη-κυριαρχούμενων λύσεων για τις πέντε MOO GEP πα-
ραλλαγές που παρουσιάστηκαν. Το σύστημα που εξετάστηκε είναι μια απλουστευμένη μορφή του Ελ-
ληνικού συστήματος παραγωγής ενέργειας με βάση τα δεδομένα εισόδου που θεωρήθηκαν [151, 152].
Η προσέγγιση υλοποιήθηκε στη Matlab χρησιμοποιώντας την πλατφόρμα Platemo [153] και την υλο-
ποίηση των RBF και PR μοντέλων [124, 125].

5.4.1 Υπολογιστικά πειράματα

Τα υπολογιστικά πειράματα που έγιναν είναι τα ακόλουθα:

� Εξέταση της MOO προσέγγισης σε συναρτήσεις αναφοράς (ZDT test suite [154]). Στις συναρ-
τήσεις αυτές εισάγονται τροποποιήσεις καθώς η MOO προσέγγιση αναπτύχθηκε για προβλήματα
βελτιστοποίησης με ακέραιες μεταβλητές. Σε αυτές εφαρμόζεται και ο NSGA-III του οποίου τα
αποτελέσματα χρησιμεύουν ως σημείο αναφοράς.

� Εξέταση της MOO προσέγγισης σε υπολογιστικά φθηνό MOO GEP πρόβλημα το οποίο δεν
εμπεριέχει SM. Συγκεκριμένα:

1. Ελαχιστοποίηση κόστους επένδυσης, σταθερού κόστους λειτουργίας και συντήρησης και
GPSC:

f1(x) = cinv + cfom + cgp (5.30)

2. Μεγιστοποίηση της αναμενόμενης παραγωγής από RES:

f2(x) = (−1)carp (5.31)
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όπου carp είναι η εκτιμώμενη παραγωγή από RES:

carp = Crp
∑

∀a,h
[presa,h] (5.32)

όπου Crp = 1.

Το υπολογιστικό πείραμα επαναλαμβάνεται δυο φορές. Στην πρώτη λαμβάνεται υπόψη η υφι-
στάμενη κατάσταση του συστήματος ισχύος (MOOGEP-noSM ) ενώ στην δεύτερη θεωρείται ότι
δεν υπάρχουν εγκατεστημένες μονάδες (MOOGEP-noSM-GF ). Σε αντίθεση με την περίπτω-
ση που δεν υπάρχουν εγκατεστημένες μονάδες και με βάση τα δεδομένα εισόδου η υφιστάμενη
κατάσταση δεν παραβιάζει τους περιορισμούς. Συνεπώς, τα δυο προβλήματα βελτιστοποίησης
διαφέρουν και ως προς το μέγεθος του χώρου εφικτών λύσεων. Εφαρμόζονται 25 ανεξάρτητα
τρεξίματα με όριο τους 500 υπολογισμούς των αντικειμενικών συναρτήσεων.

� Εξέταση της MOO προσέγγισης στις πέντε MOO GEP παραλλαγές με χρονική λεπτομέρεια
του SM ορισμένη στη 1 ημέρα (24h). Συνεπώς, το υπολογιστικό κόστος δεν είναι ιδιαίτερα
αυξημένο (< 1sec). Οι πέντε MOO GEP παραλλαγές που λαμβάνουν υπόψη την υφιστάμε-
νη κατάσταση αναφέρονται ως MOOGEP-(XXX)-1D (π.χ. MOOGEP-(AC1-EM)-1D) ενώ οι
πέντεMOO GEP παραλλαγές που δεν λαμβάνουν υπόψη την υφιστάμενη κατάσταση αναφέρονται
ως MOOGEP-(XXX)-1D-GF . Σε αυτή τη περίπτωση οι παραλλαγές MOOGEP-(XXX)-1D και
MOOGEP-(XXX)-1D-GF διαφέρουν και ως προς τον αριθμό των σημείων στο χώρο αναζήτη-
σης που παρουσιάζουν ποινή κατά την αξιολόγησή του από το SM. Εφαρμόζονται 25 ανεξάρτητα
τρεξίματα για κάθε παραλλαγή με όριο τις 500 προσομοιώσεις με χρήση του SM.

� Εξέταση της MOO προσέγγισης στις πέντε MOO GEP παραλλαγές με αυξημένη χρονική λε-
πτομέρεια του SM ορισμένη στις 4 βδομάδες. Το SM εφαρμόζεται ανεξάρτητα σε κάθε εβδομάδα
και η άθροιση του κόστους λαμβάνει υπόψη ίση βαρύτητα στα κόστη που προκύπτουν για κάθε
βδομάδα. Οι πέντε MOO GEP παραλλαγές που λαμβάνουν υπόψη την υφιστάμενη κατάσταση
αναφέρονται ωςMOOGEP-(XXX)-4W ενώ οι πέντεMOO GEP παραλλαγές που δεν λαμβάνουν
υπόψη την υφιστάμενη κατάσταση αναφέρονται ως MOOGEP-(XXX)-4W-GF . Εφαρμόζονται 25
ανεξάρτητα τρεξίματα για κάθε παραλλαγή με όριο τις 500 προσομοιώσεις με χρήση του SM. Τα
αποτελέσματα για τις MOOGEP-(XXX)-4W παραλλαγές αναλύονται ως προς το μέτωπο μη-
κυριαρχούμενων λύσεων που εντοπίστηκε και τις τιμές των συντελεστών κόστους σε κάθε ένα
από τα μέτωπα αυτά.

5.4.2 Αποτελέσματα

Τα αποτελέσματα των υπολογιστικών πειραμάτων που έγιναν είναι τα ακόλουθα:

� Εξέταση της MOO προσέγγισης σε προβλήματα αναφοράς: Τα αποτελέσματα για τα προβλήματα
αναφοράς ZDT1, ZDT2 και ZDT3 ήταν ικανοποιητικά εντός του ορίου προσομοιώσεων που
τέθηκε με βάση και τους δείκτες υπερόγκου που χρησιμοποιήθηκαν. Στα προβλήματα αναφοράς
ZDT4 και ZDT6 η απόδοση του αλγορίθμου δεν ήταν εξίσου ικανοποιητική καθώς το PFA
ήταν χαμηλής ακρίβειας. Αυτό αποδόθηκε σε προκλήσεις που σχετίζονται με συγκεκριμένες
συναρτήσεις των προβλημάτων αναφοράς όπως ο αυξημένος αριθμός τοπικών ακρότατων (ZDT4)
και η αραιή κατανομή λύσεων κοντά στο μέτωπο Pareto (ZDT6) τα οποία φαίνεται να επηρέασαν
την ακρίβεια του UFA. Συγκεκριμένα, η ακρίβεια του UFA στις συναρτήσεις των προβλημάτων
αναφοράς ZDT4 και ZDT6 δεν ήταν όσο υψηλή όσο στα προβλήματα ZDT1, ZDT2 και ZDT3.
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� Εξέταση της MOO προσέγγισης σε υπολογιστικά φθηνό MOO GEP πρόβλημα το οποίο δεν ε-
μπεριέχει SM: Τα αποτελέσματα για τα προβλήματα MOOGEP-noSM και MOOGEP-noSM-GF

ήταν ικανοποιητικά με βάση και τους δείκτες υπερόγκου που χρησιμοποιήθηκαν και τους περιορι-
σμούς σε υπολογιστικό κόστος που τέθηκαν. Η σύγκριση των αποτελεσμάτων με τα αντίστοιχα
του NSGA-III υποδηλώνουν ότι η εισαγωγή των AM επιτάχυνε την σύγκλιση και δεν απέτρεψε
την εξαγωγή ενός ικανοποιητικού PFA. Επιπλέον, η ακρίβεια του UFA ήταν ικανοποιητική με
βάση τους δείκτες που χρησιμοποιήθηκαν. Η σύγκριση των αποτελεσμάτων για τα προβλήμα-
τα MOOGEP-noSM και MOOGEP-noSM-GF υποδηλώνει ότι η απόδοση του αλγορίθμου δεν
επηρεάστηκε από τις διαφορές στο μέγεθος του χώρου των εφικτών λύσεων.

� Εξέταση της MOO προσέγγισης στις πέντε MOO GEP παραλλαγές με χρονική λεπτομέρεια του
SM ορισμένη στη 1 ημέρα (24h): Αντίστοιχα, τα αποτελέσματα για τα προβλήματα MOOGEP-

(XXX)-1D και MOOGEP-(XXX)-1D-GF ήταν ικανοποιητικά με βάση τους δείκτες υπερόγκου
που χρησιμοποιήθηκαν και τους περιορισμούς σε υπολογιστικό κόστος που τέθηκαν. Σε αντίθεση
με τα προβλήματα MOOGEP-noSM και MOOGEP-noSM-GF , εντοπίστηκαν διαφορές όσο αφο-
ρά την επίδοση της MOO προσέγγισης στα προβλήματα MOOGEP-(XXX)-1D και MOOGEP-

(XXX)-1D-GF . Συγκεκριμένα, η ακρίβεια του UFA στις παραλλαγές MOOGEP-(XXX)-1D-GF

φαίνεται να επηρεάστηκε από την εισαγωγή λύσεων που παρουσιάζουν ποινή με βάση το SM.

� Εξέταση της MOO προσέγγισης στις πέντε MOO GEP παραλλαγές με αυξημένη χρονική λε-
πτομέρεια του SM ορισμένη στις 4 βδομάδες: Τα αποτελέσματα για τα προβλήματα MOOGEP-

(XXX)-4W και MOOGEP-(XXX)-4W-GF ήταν αποδεκτά με βάση τους περιορισμούς σε υ-
πολογιστικό κόστος που τέθηκαν. Οι δείκτες υπερόγκου που χρησιμοποιήθηκαν υποδηλώνου
σταδιακή βελτίωση του μετώπου μη κυριαρχούμενων λύσεων. Σε κάποιες παραλλαγές (π.χ.
MOOGEP-AC2-RP-4W-GF ) οι δείκτες υποδηλώνουν ότι η αύξηση των διαθέσιμων υπολογι-
στικά δαπανηρών προσομοιώσεων θα μπορούσε να οδηγήσει σε βελτίωση του μετώπου μη κυ-
ριαρχούμενων λύσεων. Επιπλέον, η ακρίβεια του UFA επηρεάστηκε από την εισαγωγή λύσεων
που παρουσιάζουν ποινή με βάση το SM.

� Ανάλυση των μετώπων μη κυριαρχούμενων λύσεων και των αντίστοιχων συντελεστών κόστους:
Τα αποτελέσματα του κάθε μετώπου μη κυριαρχούμενων λύσεων που εντοπίστηκαν για τα προ-
βλήματα MOOGEP-(XXX)-4W αναλύονται. Μεταξύ των πέντε παραλλαγών εντοπίζονται δια-
φορετικές λύσεις ανάλογα με τους στόχους που τέθηκαν και εξετάζεται η επίδραση των στόχων
αυτών στην εξέλιξη των τιμών των συντελεστών κόστους στο κάθε μετώπου μη κυριαρχούμενων
λύσεων. Συγκεκριμένα, δεδομένων διαφορετικών συναρτήσεων στόχου, μπορούν να εξαχθούν
διαφορετικά συμπεράσματα σχετικά με βάση τις προσθήκες δυναμικότητας. Αυτό είχε αποδοθεί
στην επίδραση κάθε συντελεστή κόστους σε κάθε αντικειμενική συνάρτηση. Η πρώτη διατύπωση
που εμπεριέχει οικονομικούς και περιβαλλοντικούς στόχους (MOOGEP-AC1-EM-4W ) υποδη-
λώνει ότι η μείωση του κόστους εκπομπών μπορεί να σχετίζεται με υψηλότερο συνολικό κόστος.
Η δεύτερη οικονομική-περιβαλλοντική διατύπωση (MOOGEP-AC2-RP-4W ) υποδηλώνει ότι η
αύξηση του επιπέδου διείσδυσης RES μπορεί να σχετίζεται με υψηλότερο συνολικό κόστος. Και
οι δύο διατυπώσεις έδειξαν ότι απαιτούνται επενδύσεις σε προσθήκες δυναμικότητας που δεν
παράγουν εκπομπές GHG ή σε νέες θερμικές εγκαταστάσεις. Η τρίτη διατύπωση (MOOGEP-

OC1-GP-4W ) είχε εξετάσει το συνολικό λειτουργικό κόστος και το κόστος ενός μηχανισμού
στήριξης RES. Με βάση τα αποτελέσματα προτεραιότητα δόθηκε σε μονάδες RES, υδροηλεκτρι-
κές μονάδες και θερμικές μονάδες βάσης. Τα αποτελέσματα υποδηλώνουν ότι η μείωση του λει-
τουργικού κόστους απαιτεί αύξηση του GPSC. Η τέταρτη διατύπωση (MOOGEP-OC2-IC-4W )
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υποδηλώνει ότι υψηλότερο επενδυτικό κόστος μπορεί να οδηγήσει σε μείωση του λειτουργικού
κόστους. Τα αποτελέσματα που είχαν εξαχθεί για τη πέμπτη διατύπωση (MOOGEP-AC3-AP-

4W ) υποδηλώνουν ότι απαιτείται ένας περιορισμένος αριθμός επενδύσεων (σε μονάδες βάσης) για
την επίτευξη ενός αποτελεσματικού οικονομικού συστήματος ισχύος. Αυτό είχε αποδοθεί στην
επίδραση συγκεκριμένων συντελεστών κόστους (π.χ. κόστος επένδυσης και σταθερού κόστους
λειτουργίας και συντήρησης) στην τιμή της αντικειμενικής συνάρτησης που είχε καταστήσει πε-
ρεταίρω προσθήκες ως λιγότερο αποτελεσματικές.
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Κεφάλαιο 6

Συμπεράσματα

Το Κεφάλαιο 4 παρουσιάζει μια μονοκριτηριακή προσέγγιση βασισμένη σε MAEA, για το GEP πολ-
λαπλών περιόδων. ΄Εχει ως στόχο την αντιμετώπιση προκλήσεων που σχετίζονται με μια μετάβαση
προς υψηλότερα μερίδια παραγωγής από RES και προορίζεται να χρησιμοποιείται παράλληλα με άλλα
καθιερωμένα μοντέλα GEP. Τα AM χρησιμοποιήθηκαν στο πλαίσιο των MAEA για να προσφέρουν
μια εκτίμηση της τιμής που θα προέκυπτε από τη χρήση του SM. Το τελευταίο χρησιμεύει ως δείκτης
κόστους της βραχυπρόθεσμης λειτουργίας ενός συστήματος ισχύος. Γενικά, ο υπολογιστικός χρόνος
εξαρτάται σε μεγάλο βαθμό από το υπολογιστικό κόστος του SM. Υποθέτοντας ότι γίνεται χρήση ε-
νός SM το οποίο μπορεί να εντοπίσει τις απαιτήσεις σε λειτουργική ευελιξία, η συμπερίληψη των AM
στοχεύει στην επίτευξη λύσης χρησιμοποιώντας μόνο έναν περιορισμένο αριθμό προσομοιώσεων.
Ο πρώτος στόχος που τέθηκε ήταν να εξεταστεί η δυνατότητα εφαρμογής του MAEA που ανα-

πτύχθηκε. Ως εκ τούτου, πραγματοποιήθηκε μια σειρά υπολογιστικών πειραμάτων. Τα αποτελέσματα
που αφορούν την απόδοση του MAEA ήταν ικανοποιητικά. Συγκεκριμένα, η εγκατεστημένη δυναμι-
κότητα παραγωγής ισχύος είχε εντοπιστεί, όταν αυτή είχε τεθεί σαν συνάρτηση στόχος, εντός ενός
προκαθορισμένου ορίου προσομοιώσεων. Επιπλέον, η λύση που προέκυπτε για τα δύο SM που εξε-
τάστηκαν λήφθηκε συστηματικά. Επίσης, η αξιολόγηση της ποιότητας της προσέγγισης που επιτεύχθη-
κε από τα AM υποδηλώνει ότι τα εκτιμώμενα σφάλματα, με βάση του δείκτες που χρησιμοποιήθηκαν,
δεν ήταν πολύ υψηλά. Αυτά τα σφάλματα δεν ήταν επαρκή για να αποτρέψουν τον MAEA από την
επίτευξη της ίδιας λύσης. Κάνοντας χρήση των AM, πραγματοποιήθηκε μια οπτική ανάλυση για την
εξέταση της ευαισθησίας του λειτουργικού κόστους προς την εγκατεστημένη δυναμικότητα παραγωγής
ισχύος. Αυτή έδειξε ότι η αύξηση των επενδύσεων σε προσθήκες δυναμικότητας παραγωγής ισχύος θα
μπορούσε να οδηγήσει σε μείωση του λειτουργικού κόστους για το τελικό έτος του χρονικού ορίζοντα
προγραμματισμού.
Κατά συνέπεια, το μοντέλο GEP με βάση τους MAEA θα μπορούσε να αποτε-

λέσει μια υποσχόμενη προσέγγιση για τον εντοπισμό λύσεων για μονοκριτηριακό
πρόβλημα βελτιστοποίησης πολλαπλών περιόδων GEP το οποίο συμπεριλαμβάνει
ένα SM της βραχυπρόθεσμης λειτουργίας ενός συστήματος ισχύος. Επιπλέον, τα
AM θα μπορούσαν να χρησιμοποιηθούν για οπτική ανάλυση της ευαισθησίας του
λειτουργικού κόστους προς την εγκατεστημένη δυναμικότητα παραγωγής ισχύος
μιας λύσης, αν επιτευχτεί αποδεκτή ακρίβεια της προσέγγισης από τα AM.
Ο δεύτερος στόχος που εξετάστηκε ήταν η αξιολόγηση του πιθανού κέρδος της εισαγωγής εξει-

δικευμένων τελεστών που αναπτύχθηκαν για το συγκεκριμένο πρόβλημα (RRH, blk και PO). Αυτοί
είχαν εξεταστεί ως πιθανές βελτιώσεις για έναν βασικό αλγόριθμο DE. Πραγματοποιήθηκε μια σει-
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ρά από υπολογιστικά πειράματα σε παραλλαγές του βασικού αλγορίθμου DE, συμπεριλαμβανομένων
συνδυασμών των προαναφερθέντων και αξιολογήθηκε η επίδρασή τους στην απόδοση του αλγορίθμου.
Τα αποτελέσματα που προέκυψαν υποδηλώνουν ότι οι παραλλαγές που συμπεριελάμβαναν τους RRH
και blk ή τους RRH, blk και PO ήταν οι πιο ανταγωνιστικές. Ωστόσο, το υψηλότερο κέρδος είχε
επιτευχθεί με τη εισαγωγή του RRH.
Επομένως, εξειδικευμένοι τελεστές θα μπορούσαν να συμβάλλουν στην βελ-

τίωση της απόδοσης ενός EA στο πρόβλημα που εξετάστηκε. Συγκεκριμένα,
προτείνεται έμφαση σε τελεστές που επιδιορθώνουν ανέφικτες λύσεις, οι οπο-
ίες παράγονται από έναν πληθυσμό ΕΑ, όταν ο EA εφαρμόζεται σε προβλήματα
βελτιστοποίησης υπό περιορισμούς για τα οποία υπάρχει διαθέσιμη πληροφορία
σχετικά με τις συναρτήσεις περιορισμού.
Ο τρίτος στόχος που τέθηκε ήταν η εκτίμηση του αντίκτυπου της εισαγωγής ενός SM όταν εξε-

τάζονται αυξημένα μερίδια παραγωγής από RES. Εξετάστηκαν τρεις περιπτώσεις. Η πρώτη, η οποία
ορίστηκε ως σημείο αναφοράς, δεν περιλάμβανε SM. Επομένως, η λύση είχε επιτευχθεί με βάση μόνο
το κόστος επένδυσης και το σταθερό κόστος λειτουργίας και συντήρησης. Η δεύτερη περίπτωση λαμ-
βάνει υπόψη το λειτουργικό κόστος με χρήση ενός SM, ωστόσο, αυτό παρουσιάζει σχετικά χαμηλή
τεχνική λεπτομέρεια (το κόστος και οι περιορισμοί που προκύπτουν από συναρτήσεις περιορισμών του
UCP παραλείπονται). Η τρίτη περίπτωση περιελάμβανε ένα SM βασισμένο στο CUC, που παρουσιάζει
υψηλή τεχνική λεπτομέρεια για το πλαίσιο του μακροπρόθεσμου προγραμματισμού. Συνεπώς, αυτή η
σύγκριση εστιάζει στην επίδραση της ενσωμάτωσης τεχνικής λεπτομέρειας του βραχυπρόθεσμου προ-
γραμματισμού. Η χρονική λεπτομέρεια τέθηκε σταθερή μεταξύ των δύο SM, ενώ η χωρική λεπτομέρεια
δεν εξετάστηκε. Επιπλέον, μη θερμικές μονάδες που μπορούν να λειτουργήσουν και σαν πάροχοι
λειτουργικής ευελιξίας είχαν συμπεριληφθεί ως επενδυτικές επιλογές και στις τρεις περιπτώσεις. Τα
αποτελέσματα έδειξαν ότι η επιλογή ενός SM μπορεί να είναι επηρεάσει τις παραγόμενες λύσεις (ε-
πενδυτικές αποφάσεις), το εκτιμώμενο μείγμα παραγωγής και το συνολικό κόστος κάθε λύσης όταν
αξιολογείται και από τα δύο SM. Οι διαφορές στο μείγμα παραγωγής προκύπτουν κυρίως από τη μειω-
μένη χρήση των παρόχων λειτουργικής ευελιξίας όταν μια εγκατεστημένη δυναμικότητα παραγωγής
ισχύος είχε αξιολογηθεί από το SM το οποίο συμπεριελάμβανε χαμηλότερη τεχνική λεπτομέρεια. Αυτό
είχε αποδοθεί στην παράλειψη τεχνικών περιορισμών που κατέστησαν λιγότερο απαραίτητη τη χρήση
παρόχων λειτουργικής ευελιξίας.
Για το λόγο αυτό, η τεχνική λεπτομέρεια της βραχυπρόθεσμης λειτουργίας

ενός συστήματος ισχύος που εισάγεται σε ένα SM για ένα μοντέλο GEP και
χρησιμοποιείται για την εκτίμηση της απόδοσης μια υποψήφιας εγκατεστημένης
δυναμικότητας παραγωγής ισχύος, μπορεί να είναι σημαντική για να εντοπιστούν
αποτελεσματικά οι απαιτούμενες ανάγκες σε λειτουργική ευελιξία και να αξιολο-
γηθούν κατάλληλα οι πάροχοι λειτουργικής ευελιξίας, όταν αυτοί θεωρούνται ως
επενδυτικές επιλογές.
Το Κεφάλαιο 5 παρουσιάζει ένα στατικό GEP που βασίζεται σε MAEA για MOO. Είχε ως στόχο

την ανάλυση αντικρουόμενων στόχων και συντελεστών κόστους που προκύπτουν για ένα MOO GEP.
Οι τιμές των συντελεστών κόστους υπολογίζονταν με βάση ένα SM έτσι ώστε να αξιολογηθούν οι
ανάγκες σε λειτουργική ευελιξία και να μελετηθεί το αντίκτυπό τους στους συντελεστές κόστους. Το
SM είχε χρησιμοποιηθεί για να παρέχει έναν δείκτη της βραχυπρόθεσμης λειτουργίας του συστήματος
ισχύος. AM χρησιμοποιούνται για να παρέχουν μια εκτίμηση του αποτελέσματος ενός SM για την
μείωση του υπολογιστικού κόστους. Ο MAEA αναπτύχθηκε με βάση πλαίσια για βελτιστοποίηση με
χρήση μεταπροτύπων και χωρίς χρήση παραγώγου.
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Ο πρώτος στόχος ήταν να εξεταστεί η απόδοση του MAEA. Αυτό είχε υλοποιηθεί πραγματο-
ποιώντας υπολογιστικά πειράματα. Τα προαναφερθέντα περιελάμβαναν συναρτήσεις αναφοράς MOO
(χρησιμοποιήθηκαν τα προβλήματα ZDT με μικρές τροποποιήσεις). Τα αποτελέσματα που προέκυψαν
σχετικά με την απόδοση του MAEA, λαμβάνοντας υπόψη τους υπολογιστικούς περιορισμούς, ήταν
ικανοποιητικά. Συγκεκριμένα, είχε επιτευχθεί αξιοπρεπές PFA για τα προβλήματα ZDT1, ZDT2 και
ZDT3. Ωστόσο, τα αποτελέσματα ήταν λιγότερο ικανοποιητικά στα προβλήματα ZDT4 και ZDT6. Αυ-
τό αποδόθηκε στο χαμηλό UFA που επιτεύχθηκε. Συγκεκριμένα, είχε παρατηρηθεί ότι η ακρίβεια του
UFA, εντός του προκαθορισμένου ορίου αξιολογήσεων της συνάρτησης, ήταν χαμηλή σε συναρτήσεις
με μεγάλο αριθμό τοπικών ακροτάτων (multi-modal) που είχε οδηγήσει σε χαμηλής ακρίβειας PFA.
Σε σύγκριση με τον αλγόριθμο βάσης, που χρησιμοποιήθηκε ως σημείο αναφοράς, είχε επιτευχθεί επι-
τάχυνση του ρυθμού σύγκλισης εάν η σύγκριση εστιαστεί στο υπολογιστικό κόστος των συναρτήσεων.
Κατά συνέπεια, ο MAEA που αναπτύχθηκε μπορεί να επιτύχει ένα αποδεκτό

PFA εντός ενός προκαθορισμένου ορίου αξιολογήσεων συνάρτησης. Ωστόσο, για
σύνθετα MOO (π.χ. συναρτήσεων που εμπεριέχουν ένα μεγάλου αριθμό τοπικών
ακροτάτων) η επίτευξη αποδεκτού UFA καθίσταται εξαιρετικά δύσκολη. Αυτό
μπορεί να αποτρέψει την επίτευξη ενός αποδεκτού PFA.
Εκτός από τα προβλήματα που βασίζονταν στις συναρτήσεις αναφοράς, πραγματοποιήθηκε μια σει-

ρά υπολογιστικών πειραμάτων σε παραλλαγές MOO-GEP. Πέντε διαφορετικά προβλήματα MOO-GEP
είχαν διατυπωθεί με διαφορετικά ζεύγη αντικειμενικών συναρτήσεων. Το SM και οι συναρτήσεις περιορι-
σμού του μακροχρόνιου προγραμματισμού περιλαμβάνονται σε κάθε παραλλαγή αυτών των MOO-GEP.
Επιπλέον, εξετάστηκε μια έκτη περίπτωση που αμελούσε τη βραχυπρόθεσμη λειτουργία του συστήματος
ισχύος και αντιστοιχεί σε ένα υπολογιστικά φθηνό MOO πρόβλημα. Η προσέγγιση βελτιστοποίησης
είχε εφαρμοστεί σε μια απλοποιημένη μορφή ενός πραγματικού τομέα ισχύος, που είχε λάβει υπόψη την
εγκατεστημένη δυναμικότητα παραγωγής ισχύος και σε μια δεύτερη όπου έγινε η θεώρηση μηδενικής
εγκατεστημένη δυναμικότητα παραγωγής ισχύος (green�eld case). Τα υπολογιστικά πειράματα για τις
πέντε παραλλαγές MOO-GEP είχαν εξεταστεί για δύο διαφορετικά επίπεδα χρονικής λεπτομέρειας για
τη βραχυπρόθεσμη λειτουργία του συστήματος ισχύος. Συγκεκριμένα, είχαν επιλεγεί (i) μια αντιπρο-
σωπευτική ημέρα και (ii) τέσσερις αντιπροσωπευτικές εβδομάδες. Η χωρική και τεχνική λεπτομέρεια
είχε παραμένει σταθερή σε όλες τις περιπτώσεις.
Τα αποτελέσματα για τις δύο περιπτώσεις (υφιστάμενη και μηδενικής εγκατεστημένη δυναμικότητα

παραγωγής ισχύος) σχετικά με την απόδοση της μεθόδου βελτιστοποίησης στις υπολογιστικά φθη-
νές περιπτώσεις υποδηλώνουν ότι είχε επιτευχθεί ένα αποδεκτό PFA. Αυτά ήταν συγκρίσιμα με έναν
αλγόριθμο βάσης, που έχει αναπτυχτεί για προβλήματα βελτιστοποίησης με υπολογιστικά φθηνές συναρ-
τήσεις, παρά τους υπολογιστικούς περιορισμούς που επιβλήθηκαν. Επιπλέον, επιτεύχθηκε ένα αποδεκτό
UFA με βάση τους δείκτες που χρησιμοποιήθηκαν για την αξιολόγηση της ακρίβειάς του. Συγκρίνο-
ντας τα αποτελέσματα για τις δύο περιπτώσεις (υφιστάμενη και μηδενικής εγκατεστημένη δυναμικότητα
παραγωγής ισχύος), παρατηρήθηκε ότι η απόδοση του αλγορίθμου δεν επηρεάστηκε σημαντικά με βάση
τους δείκτες που είχαν χρησιμοποιηθεί για την αξιολόγηση της απόδοσης των αλγορίθμων.
Ως εκ τούτου, η μέθοδος βασισμένη σεMAEA μπορεί να επιτύχει ένα αποδεκτό

PFA εντός ενός προκαθορισμένου ορίου αξιολογήσεων της συνάρτησης για ένα
υπολογιστικά φθηνό μοντέλο MOO-GEP. Ωστόσο, για ένα υπολογιστικά φθη-
νό μοντέλο GEP θα μπορούσε επίσης να χρησιμοποιηθεί ένας MOEA, καθώς οι
υπολογιστικές ανάγκες δεν είναι δεσμευτικές.
Τα αποτελέσματα για τις δέκα περιπτώσεις (υφιστάμενη και μηδενικής εγκατεστημένη δυναμικότητα

παραγωγής ισχύος) υποδηλώνουν ότι είχε επιτευχθεί ένα αποδεκτό PFA σχετικά με την απόδοση της
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βελτιστοποίησης με χρήση του MAEA στις υπολογιστικά φθηνές περιπτώσεις, συμπεριλαμβανομένου
ενός SM με περιορισμένη χρονική λεπτομέρεια. Δεδομένων των υπολογιστικών περιορισμών που επι-
βλήθηκαν, η σειριακή πρόοδος των δεικτών βασισμένων στον υπερόγκο υποδηλώνουν μια προοδευτική
αύξηση της ακρίβειας του PFA. Ωστόσο, η συμπερίληψη του SM μπορεί να επηρεάσει την απόδοση
του αλγορίθμου. Αυτό παρατηρήθηκε στις περιπτώσεις μηδενικής εγκατεστημένης δυναμικότητας πα-
ραγωγής ισχύος καθώς είχε επιτευχθεί σχετικά χαμηλότερης ακρίβειας UFA, ενώ για τις περιπτώσεις
συμπεριλαμβανομένης της υφιστάμενης δυναμικότητας αυτή ήταν αποδεκτή.
Συνεπώς, ο αλγόριμθος MAEA για MOO που εξετάστηκε μπορεί να επιτύχει

ένα αποδεκτό PFA μέσα σε ένα προκαθορισμένο όριο αξιολογήσεων των συναρ-
τήσεων στόχου για ένα υπολογιστικά φθηνό μοντέλο MOO-GEP, το οποίο περι-
λαμβάνει ένα SM με περιορισμένη χρονική λεπτομέρεια. Ωστόσο, η συμπερίληψη
ενός SM μπορεί να επηρεάσει την ακρίβεια του UFA. ΄Ενας από τους κύριους πα-
ράγοντες που εντοπίστηκαν είναι η τεχνική χειρισμού των περιορισμών του SM
(συνάρτηση Ποινής) που χρησιμοποιείται για την αντιμετώπιση της περίπτωση α-
νεπαρκούς εγκατεστημένης δυναμικότητας παραγωγής ισχύος, δεδομένου ότι οι
όροι ποινής μπορούν να παρουσιάζουν σχετικά υψηλές τιμές κόστους.
Οι τελικές δέκα περιπτώσεις (υφιστάμενη και μηδενικής εγκατεστημένη δυναμικότητα παραγωγής

ισχύος) αποτελούν ένα πιο ολοκληρωμένο παράδειγμα εφαρμογής του MAEA καθώς το SM παρου-
σιάζει αυξημένη χρονική λεπτομέρεια. Τα αποτελέσματα σχετικά με την απόδοση του MAEA είχαν
κριθεί ικανοποιητικά. Συγκεκριμένα, η σειριακή πρόοδος των δεικτών που είχαν χρησιμοποιηθεί για
την αξιολόγηση του PFA υποδηλώνουν ότι η απόδοση θα μπορούσε να είναι αποδεκτή δεδομένων των
υπολογιστικών περιορισμών. Επίσης, οι δείκτες υποδηλώνουν ότι αύξηση του αριθμού των διαθέσι-
μων προσομοιώσεων (υπολογιστικό κόστος) θα μπορούσε να είχε οδηγήσει σε βελτίωση της ακρίβεια
του PFA σε ορισμένες από τις περιπτώσεις. Επίσης, τα αποτελέσματα είχαν δείξει ότι οι αριθμητικές
διαφορές που προέκυψαν λόγω της συμπερίληψης του συντελεστή κόστους ποινής είχε επηρεάσει την
ακρίβεια του UFA. Αυτό είχε παρατηρηθεί για όλες τις περιπτώσεις που εξετάστηκαν εκτός από αυτές
που περιλαμβάνουν την ποινή ως ξεχωριστή αντικειμενική συνάρτηση. Επιπλέον, οι δείκτες που βασίζο-
νται στον υπερόγκο και η οπτική ανάλυση του PFA υποδηλώνουν ότι η μείωση της ακρίβειας του UFA
δεν είχε αποτρέψει την επίτευξη ενός αποδεκτού PFA, με βάση και τους υπολογιστικούς περιορισμούς.
Συνεπώς, ο MAEA μπορεί να αποτελεί υποσχόμενη προσέγγιση για την α-

νάλυση των αντικρουόμενων στόχων και συντελεστών κόστους σε MOO-GEP,
που συμπεριλαμβάνουν SM της βραχυπρόθεσμης λειτουργίας ενός συστήματος
ισχύος για την αξιολόγηση της λειτουργικής ευελιξίας. Ωστόσο, αναφέρεται ότι
το χαμηλό υπολογιστικό κόστος και η ακρίβεια του PFA μπορούν επίσης να είναι
αντικρουόμενα.
Τα αποτελέσματα των πέντε περιπτώσεων που λάμβαναν υπόψη την υφιστάμενη εγκατεστημένη δυ-

ναμικότητα παραγωγής ισχύος χρησιμοποιήθηκαν για την εξέταση των συντελεστών κόστους που είχαν
προκύψει για τους συνδυασμούς συναρτήσεων στόχων που είχαν οριστεί. Η ανάλυση βασίστηκε στο
παραγόμενο το μέτωπο μη κυριαρχούμενων λύσεων υποθέτοντας ότι αυτό αποτελεί μια αποδεκτή PFA.
Τα αποτελέσματα της ανάλυσης αφορούν την επίδραση των συντελεστών κόστους στις συναρτήσεις
στόχου που θεωρήθηκαν και στο μέτωπο μη κυριαρχούμενων λύσεων που επιτεύχθηκε
Επομένως, η ανάλυση της επίδρασης των συντελεστών κόστους των αντι-

κρουόμενων συναρτήσεων στόχου ενός MOO-GEP θα μπορούσε να παρέχει μια
λεπτομερή αξιολόγηση των προσθηκών δυναμικότητας σε επίπεδο συντελεστών
κόστους.
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