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Amoyopevetal 1 avtiypagn, omodnKevon kot Olvoun Tng mopovcos epyociog, €&
OAOKANPOL 1 TUNUOTOS OVTNG, Yo gumopikd okomd. Emtpémetar m avatvmmon,
amof1KeELOT Kol SLOVOUN Y10L OKOTO U1 KEPOOOKOTIKO, EKTOOEVTIKNG 1) EPEVVITIKNG
dOoNGC, VIO TV TPOVTAOEST VA AvaPEPETOL 1] T YN TPOEAELGONG KAl VO dtatnpeiTor TO
mopdv unvopa. Epomuata mov agopodv ) ypnom g epyasiog Yo KepOOoKOMKO
oKOTd TPEMEL VO, AmeLBVVOVTAL GTOV GLYYPAPEQL.

Ot amdyeLS KoL TOL COUTEPAGLATO TTOV TEPLEXOVTAL GE OVTO TO EYYPOPO EKPPALOVV TOV
oLYYPAPED KOt OV TPETEL VOL EPUNVEVDEL OTL AVTITPOCHOTEVOVV TIG EMIOTILEG FECELS TOV
EBvucod Metoofrov TToAvteyveiov.




IHeptinyn

2V emoyN KOG, LRAPYEL TPAYUOTIKY] OVAYKY] Yo UETAPAON GE TNAEMKOW®OVIOKA OlkTLo
EMONEVNC YeEVIAG, TO omoio Poacilovial e OmTIKEG 1veg Yo TNV UETOPOPAE OEOOUEVOV OE
T 0N TES avdtepeg Twv 100Ghps (N X100G). Ta FPGAS mov givat eEomMopéva Pe GEPLIKODG
TopTodékTeg ToAamA®Y yryadvpicov (serial multi-gigabit transceivers) éyovv Bpebel oto
EMIKEVTPO TOV EVOLOPEPOVTOC GE GYEDT LE TNV GYEJIAOT KOl KATOGKELT] SIKTLOK®MV VITOSOUMV
VYNAGV TayLTNTOV, KoOMG @oaiveTor va glval 1 TO GUUEEPOVCH EMAOYY| YO GUGTHLLOTO
diktdwong mov avalntovv vynio evpog Cavng (bandwidth), vynin mokvotnta, vyniég
eMOO0ELS, EVEMEID GYESIAGLOV, KOl TOAD KOAN GY€on KOGTOLG-0moTeEAesATIKOTNTAS. Onmg
vrodNAmvel To 6voud tovg, To FPGAS givar mpoypoappati{opeva «oto medion, pe v Evvola
OTL TO E0MOTEPIKO KOKAWMUO, UTOPEL VO, SIApOpP®mOEL LETA TNV KATOOKELT TOVE, KoM Kol v
tpomomoinfel yopig va xpeldletal 1 avaKATACKEVT TOVG, OmwG ota mapodoctakd ASICs. H
Mepikn Avadwopudpemon (Partial Reconfiguration) odnyei owtfv tovg v gvediéio éva frua
napanépa, divovtag tn dvvardotnta oe éva FPGA mov elvar evepyd va tpomomocel €va
KOUUATL TOL 660 TO VTOAOLTO GVOTNA GLVEXILEL Vo Agttovpyel Kavovika, yopic va Palet o
KIvOLUVO TNV 0KEPALOTNTO TV VITOAOYIGUMOV TOV EKTELOVVTOL GTA TUNUATO TG CVCKELNG TOL
OgvV avadlOpOpO®OVOVTOL. AVTH 1 TEYVIKT] 00NYEL TNV HEIOT TV TOPOV TTOL YpeldlovTat yio
va vhomomn el pia dedopévn Aettovpyia, pe EmakOA0VON Hel®ON 6TO KOGTOG KOL TNV EVEPYELNKT
KatavaAwmon, mopéyel eveMéia otoug aAyoplBpovs/TpoTdKoria oL givan dabésio o pia
EPOPHOYT| KO EMTOYVVEL TV VTOAOYIGTIKY| O10S1KAGI0 EMTPENTOVTAG GE VAL GLGTNHA VA Eivan
£TOLU0 VO avTOTOKPIOEL € VEEC AMAUTNOELS YPTYOPOTEPQ. XE QTN TNV EPYUGIQ TPOCTOONGUUE
va efgpevvioovpe v TEYvoAoyio TG Mepikng Avadwopopewong oe FPGAS kot vo
EPUPLLOCOVLLE T YVAOOT) TOL OTOKTNONKE Y10 VO VAOTOIGOVUE EVOL TNAETIKOIVOVIOKO GUGTI IO
vyYNAov g0povg Lmvng otn cvokevn Virtex®-7 H580T g Xilinx. Avti 1 cuokevn mpokvmTet
and TNV GLVEVMGT 000 EVOTHTOV TPoypappatiiopevng Aoykng (dnA. dvo FPGAS) kat piog
evotntog mopumodektdv 28Ghps pe 8 kavdiia (yvootoi og ogiplakoi mounodékteg GTZ) og éva
EVI010 TOT, EMTPEMOVTAG TNV YPTYOPN SCHVIEST] LETOED QLTAOV TOV TPIDOV EVOTHTMV KoL TNV
YOUNAT KatavaAwmon 1oybog. Kavovtag ypnom Kot TV oyt KaVIAIDY TNG EVOTNTOC UE TOVG
GTZ moumodékteg mov Swbéter n ovokevn Virtex®-7 H580T, kotoackevdooue &va amid
avad1OUOPPAOCLUO cVOTN O ToL TPocPépel 2X100G evpog Ldvng. Duoikd, dTav TPOKELTOL Yo
avadIOUOPPAOCIUN GVOTHUATE, TToL Otayelpilovtar kot emefepyalovian dedopévo o€ TOGO
VYNAOVG pLOUOVG, 0 YPOVOG AVASIOUOPPOOTG UTOPEL VAL EMNPEAGEL CNUOVTIKA TNV GUVOAIKN
Toug amodoon. o va Peltidoovpe TV TaxdTNTO OVASIAUOPPOCNC TOV GUOTNUATOS UAG,
eetdoope OAPOPES UPYLTEKTOVIKEC Kol oynuato avoadopudpeononc. H avadiapopeaotun
OPYLTEKTOVIKT] OTNV 07oi0 PACIGTAKOUE TEAIKA, YPNOUOTOLEL TNV VYNANG ToOTNTAG UV
block RAM (BRAM) tov FPGA kat pia povada mov avomtdydnke «amnd to undévy o€ yAdooo
TEPLYPOPNG VAKOD Yia va eléyyet tnv 00pa ICAP tov FPGA kot v pepikn avadlopdpewon
NG OLOKELNG MHog MECH NG O0pag avTAG. AVLTA 1 OPYUTEKTOVIKY HOG EMETPEYE Va
EKUETAAAEVTOVIE TANPMG TNV LYNAY puBuamddoon (high throughput) g 60pag ICAP, kot
£T01 V0L LEIMGOVE CNUAVTIKA TOV ¥povo avadtopopemonc. H tedevtaio miveAld 6to cuotnud
nag, 600nKe pe TV VAOTOINGT EVOG LIKPOETEEEPYAOT GTNV TPoypaupatilopevn Aoyikn (dnA.
a0 FPGAS) ¢ cvuokevnc, dote va dlevkoAvvOel 1 Stayeipton Tov GLGTHUATOG OO TOV «EEWD
KOGHO KOl £TCGL VO EMLTPONEL O ATOUAKPVOUEVOG EAEYYOG TNG UEPIKNG OVASIOUOPPOOTG TNG
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ovokevng. To amotédecua Mtov éva vRpdkd cvomua vVAKov-Aoyioukov (hardware-
software) oto onoio 1 2x100G gpappoyn wov Ba viomotovvtay BERTioTo KAOE POPAE GTO VAIKO,
UTopovGE EVKOAN VO KaBoploTel 0d 10 AoYIoUIKO (1] £vvola Tov «BonBolduevov omd To VKO,
TPOGIOPILOUEVOV OTO TO AOYIGUIKO).

Aggag Khawdwa: FPGA, Xilinx Virtex-7 H580T, Mepiki; Avadiopdpemon, GepLaKoi
Tounodékteg ToALamA®V yryadveiov, GTZ, BRAM, ICAP, MicroBlaze, Avadiapop@doieg
Apytektovikég, Etepoyevég tprodidotato FPGA, teyvoloyia SSI, N x100G epappoyés, omtucd

dlkTua emoOUEVNC YEVIAG







Abstract

Nowadays, the market need for Nx100G networking line cards and next-generation optics is
real. Field-Programmable Gate Arrays (FPGASs) equipped with high-speed, serial, Multi-
Gigabit Transceivers (MGTSs) have gained the interest of network developers, as they appear to
be the most advantageous choice for networking systems looking for high bandwidth, high
density, high performance, design flexibility and cost effectiveness. As their name denotes,
FPGAs are programmable “in the field”, meaning that their functionality can be defined after
the fabrication process and modified, if needed, without going to re-fabrication process, as
common ASICs. Partial Reconfiguration (PR) takes this advantage one step further, by allowing
an operating FPGA design to modify a part of itself, while the rest of the system continues to
function normally, without compromising the integrity of the computation running on those
parts of the device that are not being reconfigured. This technique leads to reduction of the
amount of resources required to implement a given function, with consequent reductions in cost
and power consumption, provides flexibility in the algorithms/protocols available to an
application and accelerates computing by enabling a design to be ready to correspond to new
computation requirements much faster. In this thesis, we tried to explore the PR technology on
FPGAs and apply the knowledge acquired to implement a high-bandwidth telecom system on
a Xilinx Virtex®-7 H580T device. This device, described by Xilinx as “The world’s first 3D
heterogeneous all programmable product”, combines two FPGA dices and an 8-channel
28Gbps transceiver die (GTZ serial transceivers) into a single package, while enabling fast
interconnection between them and power efficiency. By using all eight GTZ transceiver
channels available on the Virtex®-7 H580T device we built a simple reconfigurable system
that offers 2x100G bandwidth. Of course, for reconfigurable systems that manage and process
data at such a high rate, reconfiguration time has a deep impact on their overall performance.
So, in order to improve our system’s reconfiguration throughput, we examined several
architectures and reconfiguration schemes. The reconfigurable architecture on which we were
eventually based, utilizes the FPGA’s high-speed block RAM (BRAM) resources and a
hardware module developed from scratch in RTL to control the FPGA’s internal configuration
access port (ICAP) and the entire PR process through it. This architecture has allowed us to
fully exploit the ICAP’s high throughput capabilities, and thus significantly reduce the
reconfiguration time. The finishing touch to our reconfigurable system, was the implementation
of a microprocessor entirely within the device general-purpose memory and logic fabric in
order to facilitate the management of our system from the outside world and thus enable a user
to remotely control the Partial Reconfiguration of the device. The result was a hybrid hardware-
software system where the 2x100G application optimally implemented in the hardware each
time, could easily be defined by the software (the “hardware-enabled, software-defined”
concept).

Keywords: FPGA, Xilinx Virtex-7 H580T, Partial Reconfiguration, serial Multi-Gigabit
Transceivers, GTZ, BRAM, ICAP, MicroBlaze, Reconfigurable Computing, Heterogeneous
2.5D FPGA, SSI technology, Nx100G applications, next-generation optics







Evyaprotieg

Apykd Oa el vor e0YOPIETHCM TOV KaONYNTH K. ANUATPIO Zo0uvTpn Yo TV SLVATOTNTO TOV
pov €0moe Vo acyoAndm pe To oOyypovo Kol EVOLHQEPOV GVTIKEILEVO NG TOPOVONG
dmlopotikne. Emiong, 0o Mbsho va guyoplot|cm Tovg UETOSIOUKTOPIKODS EPELVNTEG
Kwovetavtivo Mapayko, Xpfoto Xmobopdakn kot [edpylo Aegviapn v 0 ovveyn
TapoKoAovONGN, TNV VITOGTAPIEN Kot TOV YPOVO TOL APLEPOCAY Y10 TV EKTOVICOT| TNG EPYOCTNG
avTG. Akoua, evyaplot® Bepud Tov kabnynm k. Hpaxin APpoudmovro o poAOG TOL 00io
NTav KaBopIGTIKOG GTNV TPAYLOTOTTOINGCT] TG LEAETNG OLTHG.

Téhog, Bo Bela va eVYUPICTHO® TOVS YOVEIG KO TOVG avOPOTOVG IOV HTAV KOVTA L0V, Y10l TV
AmEPLOPLOTN GTNPLEN TTOL HOV TTOPEiyaY G8 KOAES Kol SUGKOAEG OTIYUES KATA TNV OLAPKELD TOV

GTOVOMOV LLOV.

Anpntpng ATooToAdKNG,
AbBMva, 171 lovAiiov 2020
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Hepuinnrikngy Anodoon

Yy emoyn pog, m yxpnion tov Internet kot tov dwdiktvakdv wopwv (cloud services, e-
commerce, e-Health, streaming video, mobile internet, online gaming) mapovoialet
eviomootokn avénon. To yeyovog owtd, KabieTd amapaitnt TV YPHoN GVYXPOVEOV OTTIKMY
SIKTU®V 7OV UTOPOVV VO TPOGPEPOVY TTOAD UEYOAVTEPEG TOUXDTNTES UETOPOPAS OEQOUEVOV
(Nx100 Ghit/s) kot amodotikdTepT YpHon Tov drabécipov gvpovg {ovng (bandwidth) ce oyéon
pe T ovuPotikég miemuowvoviakég (evéelg (evobpuata, acvpuata). Tnv ido otiyun,
mopoaTnpeitot po addayn oIn Vo g Kiviong to televtaia xpovia, Kabdg T0c0 1 amaitnon
v ypnyopotepn tpdsPact 660 Kot 1 ¥poT POPNTMY GUCKELMV TNV EYOVV KATAGTHGEL TOAD
o SVVOIKT Kol ampOPAETTN. Xe aLTO TO TAAIG10, YiveTOl avaykaia 1 VIOBETON KAVOTOU®MY
TEYVOLOYLDV KOl OPYLTEKTOVIKMV OTA GUYYpOVA OTTIKA diKkTva, TOL B0 TOLG EMTPEYOLV VAL Elvarl
€LEMKTO KOl TKOVA VoL SLoXEPIOTOVV TV Suvapiky Kot av&avopevn diktvakn Kivior. Baouo
oToEl0 €VOG €VLEMKTOVL OmTIKOV SKTOLOL givarl ot gvéhiktol, emovapvOulopevol onTikol
nounodékteg (flexible optical transceivers), wavoi va dioyelptotody  SUVAUIKGE  TOVG
SLBECIUOVG SIKTLOKOVG TTOPOLS AVAAOYQ LE TIG AMOLTNOELS TNG TNAETIKOWVOVIOKNG Kivnong.
Avt 1 eveMéia cvpPdiel eTiong CNUAVTIKA GTHV OUKOVOULKT KOl OTOTEAEC LATIKY] KAMUAK®OGOT
/ avaPdaduion tov SIKTLaK®OV VTOdOUMY, KAODC Hog ETTPETEL VO EPaPUOlOVLE TIC TEAEVTOIEG
TEYVOLOYiEC OTTIKNG dlacvvdeog (1] ekelveg mov Taptdlovy KaADTEPO OTIC avAYKeS pog KGO
QOpa), EYOVTUC TAVTA MG GTOYO TO VYNAD g0POg LDOVNC, TNV YOUNAT KATAVAA®GT) 10(00G KUl TO
LELOUEVO KOGTOC.
Ta cVyypova kot o eEedtypéve FPGAS ov Tapéyovy vynAotepeg EMOOGELS, SUVATOTITEG Kot
YOPNTIKOTNTA, GE GUVILACUO HE TOAD O 1GYVPOVE GEIPLUKOVS TOUTOOEKTEC LTOPOVV VL
KOVOTIOIGOVV OAEG VTEG TIC AVAYKES TMV OTTIKAOV SIKTV®V EmOUEVNC YeVIAGS. Ta FPGAS &yovv
ONUAVTIKO POLO 6TOV EEOTAMGLO TV SIKTO®V, O)L LOVO ETELON LITOPOVY VO GUVOLALOVY LYNAN
eneepyaoTikn 1oY0 UE YOUNATY KOTOVOA®ON EVEPYELNG Kot WIKPO @Uotkd uéyebog, aAld Kot
AOY® ™G eveMlog Kot TG IKOVOTNTAG TOVG VO EXOVATPOYPUUUOTICOVTAL TOAAEG POPEC LETA
TNV KOTAGKELT TOVG 1) TNV TomofETNoN Tovg 6 KATol Guokevn. Emopuévac, yio cuotipata
SIKTVMOTG TTOL avalNToOOY LVYNAS gVPOg LMVNG, VYNAN TLKVOTITA, VYNAESG EMOOGELS, eveMia
oXEO0GHOD, Kol TOAD KOAN OYECN KOGTOLG-omoteAeopoTikoTnTag, T FPGAS mov eivan
eEOMMOUEVO. [LE GEIPLIKOVG TOUTOSEKTEG TOAAATAMV Yryadvpimv (Serial Multi-Gigabit
Transceivers) givat 1 Tpoeavic EmLoY.
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H avadiopopeooipdmra tov FPGAS 1o kobiotd pio gvéhktn -pe mAn0og eQoproydv-
TAOTEOPUE Kot o frdcwyun AOon Yo ypRyopn VLAOTOINGT Kol TPOTLAOTOINGT VE®DV
ocvotnuatov. Emmiéov, ta televtaia ypovia givar waitepa dtodedopuévn 1 ypnon tov FPGAS
Yoo TV vAomoinon  avadlUopeOCIUOY  VIoAOYIoTIKGOV ovotnudtev  (Reconfigurable
Computing systems). TTpokettat yio €1€poyeVeic TAATEOPLES TOV GLVVLALOVY THV gveMEia TOL
AOYIoUIKOD OV TPEYEL OF EMEEEPYACTEG YEVIKOD GKOTOV, LE TNV Omod0TIKOTNTO LOVAS®V
VYNNG eneEepyacTikig oyxbog, omwg 1o FPGAS. H kOpla dapopd e TIC «Topadoclokésy
OPYLTEKTOVIKEG EYKELTAL GTNV KOVOTNTO TOV VAIKOL va mpocapudletor Katd ) dudikacia
EKTELEOTG KOl VO LETAPAAAEL TOV EQVTO TOV «POPTAOVOVTAG EVA KavoOpylo KOKA®UM KABe
QOpa TovL o cuyKekpuévn epyacio to omottel. H Mepwn Avadiopdpewon (Partial
Reconfiguration) odnyei avtiv v guedi&ia éva Prpa mapoamépa, divovtog T dLvaTOTHTO GE
éva FPGA mov givar evepyd vo TPOTOTOMGEL VO KOUUATL TOV OGO TO LIOAOUTO GUGTNO
ocuveyiler va Aetovpyel Kavovikd, yoplc va Palet og xivduvo v okepodTNTO TOV
VTOAOYIGU®V OV EKTEAOVVTOL GTO TUHOTO TNG GUGKELNG OV dev avadlapopeavovtal. To
Bootkd GUYKPITIKE TAEOVEKTNUATO TNG MEPIKNG avadlapudpemong evoc FPGA, évavtl tov
EMOVATPOYPOUUUUTIGHOD OAOKANPNG TG GVGKELNC, lval OTL pag entTpEmel vo aAAdEovue T
Aerrovpyio Tov vAomoleitar oto FPGA Sduvaukd (on-the-fly) koi og ToAd pkpdTEPO YPpOviKo

dloTnua.

10 TAOio10 QVTAG TNG OITAMUATIKNG EPYUGING, SEPEVVOVUE TIG TPOKANGELS TNG LAOTOINGTG
EVOC OVASIOUOPPDOGIUOD TNAETIKOIVOVIOKOD GLGTHLOTOC DYNAOD gvpovg {dvng o€ uia
VynAwv emdocewv ovokevry FPGA. E&gpevvodue v  teyvoroyio g Mepikng
Avodtopdpemonc, e£etdlovtog JUPOPETIKES UPYITEKTOVIKEG KOl GYILOTU AVASUUOPPMONS
TpoKeWEVOL va PBedtidcovpe tov ypdvo avadopdpemons. Emmiéov, avipetonilovps Tig
TPOKANGELS TNG VAOTOINONG EVOG UIKPOETEEEPYATTH YPTOLLOTOUDVTAG ATOKAEIGTIKG KOl LOVO
nopovg Tov FPGA, dote va dievkodvvlel 1 dtoyeipion Tov CLGTAHATOS AT TOV «EEWY» KOGLO
(m.y. emuwowmvia pe €vav KeVIPIKO LTOAOYIOTH) KOl £TGL VO EMTPOTEL O OTOUAKPVOUEVOG
ENeYY0G TNG LEPIKNG aVASIOUOPO®ONG TNG GVOKELNC. [ T HEAETN HOg XPTOLOTOUCALE TN
ovokeun] XC7VH580T-G2HCG1155E g Xilinx, 1 onoia dtofétel ox1d eVOOUATOUEVOVGS
TOUTOOEKTEG VYNANG TOLTNTAG, KOOEVOG 0md TOVg 0moiovg Umopel vo Asttovpyet o€ puOpoHg
émg ka1 28,05 yryadveiov ava devtepdriento (Gbps). Ztnv ev Ady® GLOKELT VAOTOWGOUE OAT
OVTY] TNV AOYIKY] TOL GTOLTEITOL Y10, VO SIOLUOPPDCOVUE KOTAAANA KOl TOVG OY TG TOUTOOEKTES
TG, dnuovpydvtag Eva 2x100G tTnAEmKov®VIOKSO GOGTNLO, TOV 0010V To SOUIKA GTOLYEl
vAomotovvTay TavTo BéATiota oto VAKS (hardware), aAAdd n Aettovpyikdtntd tov propovoe vo

Kkaboprotel duvapkd amd to Aoyioukd (software).
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H avartoéiaxy nloarxéra VC7222

H mhoxéto VC7222 (PA. Zynpa 1) mapéyet Tov vAKO EOTAGUO Y10, TOV YOPOKTIPIOUO KOt THV
a&lohdynon tov GTH ka1t GTZ moumodektov mov dwtibevior oty cvokevy XC7VH580T-
G2HCG1155E. To XC7VH580T, puérog e otkoyévetog Xilinx Virtex®-7, dev eivan amhdg Eva
ocvvnbiopévo, povolbikd FPGA (6mov pe tov 6po «uovolBikd» gvvoolpe 0Tl vrdpyel pia
povadikn evomra mopttiov péoa oto toim). To XC7VH5S80T eivon éva amd ta tprodidotota
ohokinpopéva kukhopata g Xilinx (Xilinx® 2.5D ICs) to onoio éyetl oxediaotel pe yprion
™G teyxvoroyiag Stacked Silicon Interconnect (SSI). e pia cvokevny SSI oA amAég evoTnTEc-
pftpes mopttiov cuvoéoviar HeTad Tovg HEG® €VOG TOAD HEYAAOL SIKTVOL OLUGUVOIEGEWDY
TUPLTIOL KOl GVGKELALOVTAL GE £Vl EVIQLIO TOIT, EMTPEMOVTOG ETGL TNV EVOOUATMOGT TEPAGTLOV
TOGOTNTOV AOYIKNG OGVUVIEGNG, TOUTOOEKTMOV Kol KPOKVKA®UATIK®OV (0N-Chip) mopwv o€
pio pévo cvokevn. Kébe evomnra-pntpa mopitiov mov tepiéyetol o€ pio cuokevn SSI amoteAel
uio Eeyoploth meployn péoa oty cvokevt| mov ovoudaletol Super Logic Region (SLR). ‘Eva
peyaro diktvo mopwv dpopordynong, ot moépot SLL (Super Long Line), ypnowonotgitot yio
TNV GLVOESN NG AOYIKNG HeTall Tov dpopeTikdv SLR-meproydv g ocvokevrg. H SSI-
ovokevn XC7VH580T mov Oa pog amacyoAncel otny Topovca epyacio, EXEL TNV EMTALOV
WuotepdtnTa vo, givarl €1€poyevie, KOOMG 01 SLOPOPETIKEG EVOTNTEG-UNTPES TLPLTIOV TOV
mephappavet dgv givar Tovopotdtunes. o v akpipeta, 1o XC7VH580T amoteAeiton amd dHo
evomteg (SLRO xan SLR1) mpoypappetilopevng Aoyikng (dnA. dbo FPGAS) kai wo gvotnta
(SLR2) mopmodektiv 28Ghps pe 8 kavdiia (ceipraxoi moumodékteg GTZ).

Samtec Bullsﬁze Connector SuperClock-2 Module
Pads for GTZ Transceivers Digilent USB JTAG
&iw USB-to-UART Programming Port

Virtex-7 XC7VH580T- Reference
G2HCG1155E FPGA Clocks

JTAG Connector

Power Status LEDs

GTH Transceiver
Power Supply

PMBus Connector Module

STZ Traénscelnver
ower Su|
Module RS,

........

General Purpose D:p
Switches, Leds, Push
Buttons, and Test I/0

D'"e'er?'s'?lnw%cc Inputs

t
w el Samtec BullsEye Connector
Pads for GTH Transceivers
and Reference Clocks

VITA 57.1 FMC-HPC
Connectors

Zxnua 1: H avarttuéiakn mAakéto VC7222.
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To oynuatikd ddypappa e tiakétag VC7222 gaivetar 1o Zynua 2.

Power In
12V

GTH Transceivers
QUAD 113
QUAD 114
QUAD 115
QUAD 213
QUAD 214
QUAD 215

GTZ Transceivers
OCTAL 300A
OCTAL 300B

|

Virtex-7 FPGA

FMC1 Interface
High-Performance I/O

FMC2 Interface
High-Performance /O

Analog/Digital
Converter (XADC)

Ta mo onuavtikd yapoktnprotikd tng mhaxétag VC7222 eivat:

System ACE SD . le—12V
Controller ] XC7VH580T-G2HCG1155E 7 Series ey
FPGA Power Source ™| GTH Power Module e 3.3y
On-board Regulation: USBto UART | | Interface - PMBus
Bridge |
VCCINT 1.0V, 20A |
VCCBRAM .0V, 10A Select VO Termination 7 Series ‘_:_12\}
ey
gggigﬁjg:’;% oa | ! and VTT Jacks <—| GTZ Power Module :Ii\év
VCCO_HP 1.8V, 10A [ Interface | PMBus
VCCO_0 1.8V, 7.5A I 12C Bus | q_T
| Management |
| GTH and GTZ I
Board Utility Power I PMBus T Power Monitoring :
On-board Regulation: | I T |
| |
5.0V, 10A -~ e > 4
3.3V, 18A
2.5V, 18A Push Buttons,
DIP Switches, User Clocks
and LEDs
BV —»=|
3.3V —=| SuperClock-2 Module
2.5V —=f Interface
VCCO_HP —»

Zxnua 2: Zxnuotiko Sdiaypauua tne VC7222.

Virtex-7 XC7VH580T-G2HCG1155E FPGA

Onboard power supplies for all necessary voltages

Terminal blocks for optional use of external power supplies

Digilent USB JTAG programming port
System ACE™ SD controller

Power module supporting Virtex-7 FPGA GTH transceiver power requirements

Power module supporting Virtex-7 FPGA GTZ transceiver power requirements
A fixed, 200 MHz 2.5V LVDS oscillator wired to multi-region clock capable (MRCC)

Inputs

Two pairs of differential MRCC inputs with SMA connectors

SuperClock-2 module supporting multiple frequencies

Six Samtec BullsEye connector pads for the GTH transceivers and reference clocks

Two Samtec BullsEye connector pads for the GTZ transceivers and two pairs of SMA

connectors for GTZ transceiver reference clocks
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e Power status LEDs

e General purpose DIP switches, LEDs, pushbuttons, and test I/O

e Two VITA 57.1 FPGA mezzanine card (FMC) high pin count (HPC) connectors
e USB-to-UART bridge

e 12Cbus

e PMBus connectivity to onboard digital power supplies

e Active cooling for the FPGA

Mepikn Avadauopowon (Partial Reconfiguration)

‘Eva. peydho mheovéktnua tov FPGAS, o0nmg vrodnidvel to dvoud tovg, gival Ott gival
TPOYPOUUATILOUEVO «OTO TTESTIOM LLE TNV £VVOL0L OTL TO ECMTEPIKO KOKAMUA SILUOPPDVETOL UETE
TNV KATUCKELN, KOl pmopel vo tpomomon0el yopic va ypelaotel n avakatackevny tovg. H
Mepikr; AvodtapdpemoTn TpoY®PAasl dVTO TO CKETTIKO Eva B0l TOPATEPO, EMTPETOVTOS TN
uepikn tpomonoinon evog evepyod FPGA, 660 to vtoloimo kdkAwua cuveyilel va Agttovpyet
KOVOVIKA, yopic vo emnpedlel TV AETOLPYID. TOV UEPDY TOL OEV OVUSIUUOPPDOVOVTOL.
Yrapyovv moArol Adyol mov N Mepikny Avadloapopemon Umopei va eivat enoeeine. Mepucoi
oand avtovg ivat:
o  Meimon tov peyébovg tov FPGA mov amatteiton yio vo viomomOei o Asttovpyia, pe
avtioToyn Helwomn 6To KOGTOG Kol TNV KOTAVAAWMGT) EVEPYELUG.
e  Eveliéio oty emioyn alyopiBuov Kot Tp@tokdAAov mov eivarl dtbéciuo og pio
EPAPUOYT.
e Bektinon oty avoyn cpoiudtov tov FPGA.
e  Emutdyvvon tov avadiaplop@ovEVOD VITOAOYIGLOD.
e Emupémer m Oonuovpyla véwv epapuoydv oe FPGA, mov dwpopetikd Oo nfrav
advVOTO Vo VAOTOIN 00UV,
Onwg amekoviletar Kol 6T0 SAypOUUR PONG TOV TOPAKATEO CYNUATOC, 1 OodiKacio TG
Mepikfic  Avadlopdpemong  omoartel Ty vAomoinon  TOAAUTADV  SLOUOPPOCEMV
(configurations) ot onoieg telikd kataAyouv og ohka bitstreams yuo kéOe configuration, wou
pepwcd bitstreams yio kdbe avadiapopeoduevo gpyodreio. O aplBpodg TV ATAITOOUEVOV
configurations mowilel avdroyo pe Tov apBud tov epyareinv mov yperdletor vo vAoTon0oiv.
Ouwg, 6ha ta configurations popalovror v 6o otatikn Aoy (Aoywn 1 omoio dev
avadiapopeavetor). H ataticy Aoywm e&dyeton and to apywd configuration kot eicdyeton o
O6A0 ta emokolovBa configurations kot étol, oe kdPe configuration dSapépsr udvo n

VOO0 LOPPOVIEVT] AOYIKT], EVD 1] GTATIKT AOYIKT UEVEL TAVOUOLOTUTN).
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RTL Description
of Static Design

|

Synthesis

|

static design checkpoint
(static_synth.dcp)

Create Pblocks (Floorplanning),

add constraints

i=1

Y

i=i+1

N RTL Descriptions
of N different RMs

|

Synth of
N RMs

save N design
checkpoints

RM_1.dcp
RM_2.dcp

RM_N.dcp

Add new RMs to the

Implementation

I

valid design

A

save full

routed design Yes

Remove RMs

full_impl_1.dcp
full_impl_2.dcp

I

Static-only design checkpoint
(static_impl.dcp)

full_impl_N.dcp

static design

A

Yes

v

Open N full routed
design checkpoints

l

Designs are

Y

compatible

Yes

Y
Generate full and partial
bitstreams for each
implementation

impl_L.bit
impl_2.bit

RM_1.bit
RM_2.bit

impl_N.bit RM_N.bit

Zxnua 3: Atadikaoia Mepikrc Avadiauopewong.
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H m\eioynoio tov FPGA cvokevmv, vtootpilovv apketons S10popeTIKoNS TPOTOVS LE TOVG
0moiovg pmopel KAmo10G Vo, OPTOGCEL éva. Leptkd Dbitstream otnv 16N TpoypappaTiopuévn Kot
EVEPYN GULOKELN YO VO TNV OVAOIOUOPPMOCEL UEPIKMDG. TNV TEPIMTOOT TNG GUGKELNC
XC7VH580T-G2HCG1155E  oavwtoi o1

tpomor  doudpemong  (configuration  modes)

ocuvoyilovrol og e&ng:

Configuration Mode | Max Clock Rate | Max Data Width | Maximum Bandwidth
ICAP 100 MHz 32 bits 3,2 Ghits/s
SelectMAP (Slave) 100 MHz 32 bits 3,2 Ghits/s
Serial Mode (Slave) 100 MHz 1 bit 100 Mbits/s
JTAG 20 MHz 1 bit 20 Mbits/s

Mivakag 1: Tpomot UePLKC avadiauoppwaonc the cuokeung XC7TVHS580T.

Kd&Be tpémoc dtopopemong otov mapamdve mivoka Baciletal og pio cuyKekplpévn demapn
dapdpemong (avtég eivar ot ICAP, SelectMAP, Serial, JTAG) kot €xet pia péytot Bempnrikn
T pubuanddoong avaroya pe to péyloto mAdrtog (o€ bits) tov avrtictoygov datapath mov
YPNOLOTOLEITAL OO TNV EKAGTOTE SEMAPT KAl TNV HEYIOTI GLYVOTNTO POAOYIOD UEYPL TNV
omoia pmopet (Bempntikd) avth 1 SlETAPT Vo Elval AEITOLPYIKT).

And tov Iivaka 1 yiveton epeavég 0Tt To poviKo SLUCTNLO TOV OTALTEITOL Y10 VO, OAOKAT pmBel
1N LEPIKN OVOSIOUOPP®O P0G GUGKELNG EMNPEALETOL AUESO OO TOV TPOTO SLOUOPPHOOTG TOV
0o emAé€ovpie vo ypnoomoticovpie. [lpopoavac, o xpdvoc avadlopdpemong oxetileTol Aueca
pue to péyebog tov upepkov bitstream. Qotdco, Otav wkdue ywoo évo peptkd bitstream
OLYKEKPIEVOD  peyébovg, 1 ToydTNTO  avadlouopemong  e€aptatal  GueGH  amd TNV
apytektovikn avadapopemnong (Reconfigurable Architecture - RA) mov ypnowomoteita.
Avéloya pe to pEGo TOL YPNOUOTOLEiTAL Yo TNV amobniKevon Tov peptkod bitstream, tnv
SlETOEN JUOPPOONG TOL EMALYETAL YO0 TNV HEPIKN avadoudpemon tov FPGA, kot tov
Tpomo pe Tov omoio draPaletan To bitstream omd to péco amobKeELONG Kol ATOGTELAETOL GTIV
EMAEYUEVN JlEMOPT OLOUOPPMOOTG, UTOPOVUE VO SNIULOVPYHCOVUE OLAPOPES OPYLTEKTOVIKEC
avadLoUOPPMOOTNG TTOL KaOeUio VoL TPOGPEPEL S10POPETIKY TOYHTNTA OVOSIAUOPPOCTC.

g TEPUTTMOGELS GAV TNV JIKT| LG, OOV £VO AVOSLOUOPPAOCILO GOGTN IO TPETEL VO SIOXEIPIOTEL
Kot vo ene&epyaotel dedopéva o€ mhpa TOAD vYNAoLS puBpods, 0 ¥POVOS aVASIAUOPPOCTC
UTOPEL VO EXNPEACEL OTUOVTIKG TNV GUVOAIKT] TOV 0t000CT. £T0 TAAICI0 awTo, eEeTdoape
TEVTE OLOPOPETIKES  APYITEKTOVIKEG  ovadlapopewong (RAS) tov omoiov ot ToydTTeg
avadloUOpPMOONG TAPOVCIAlovTal 6TOV TapaKATo Tivaka (onueidvetal 6Tt To péyebog tov

pepukov bitstream mov ypnoonomdnke oe K4be TEPITTO®OTN EIVOL EVOEIKTIKO KOl MG EK TOVTOV
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TEPLUEVOVUE OVOLOYO QTOTEAECUOTA/OLopOpES Yoo bitstreams peyoddtepov M kpOTEPOL

uey£boug):
Partial Bitstream | Partial Bitstream | Reconfiguration
Name of RA ) ) Throughput
Format Size Time
EXT_JTAG it 681.660 Bytes 926,02 msec 5,889071 Mbits/s
EXT_HWICAP 709 sec 7,690064 Kbits/s
INT_HWICAP ) 37,599270 msec | 145,009623 Mbits/s
.bin 681.532 Bytes

INT_HWICAP_ASYNC 19,669035 msec | 277,199974 Mbits/s
INT_CUSTOM_ICAP 1,703860 msec 3,199943 Ghits/s

Mivakacg 2: Toyutnteg avadlauop@wonc twv SLapopwV QPXLITEKTOVIKWV.

H npdm and tig apyirektovikég avadiapdpewong tov Ilivaxa 2 pe ovopo «EXT_JTAG»,
Baciletar onv demapn JTAG kot £yl copmeptAnedel edd POVO Yo AOYoLg GVOYKPLoNGS, KAOMG
OmOTEAEL TNV O AmAN KO GLYVA XpNolponoovpevn péBodo HePIKNG avadtaudpO®ONG LG
ovokevng FPGA. Ot vidhoneg 1éo0epic apyrrektovikég Paciloviar otnv oemapn ICAP kot
uropotv va BempnBodv ot KOPIEG APYITEKTOVIKEG OV OMUOVPYNCOUE GTNV TPOCTADELD VOl
BeATidoovUE TNV TOYOTNTO, AVOSIOUOPPOGCTC TOV GUGTHLATOS LLOG.

H owienapn ICAP eivar ecmtepikn, emTpénel v eyypaern 0ed0uEVOY SLOUOPPOONC GTNV
oVoKeLT (KOTA TNV PEPIKT] aVASIOUOPP®GCT) BVTNC) LE TOV UEYoTo duvato puoud tov 3,2 Gbps
(BA. Tivakag 1) kot givatl 100VIKY Y10 TPOGOPUOGUEVES OTIS AVAYKES TOV ¥pnotn Avoeic. H
xpion ¢ ICAP Baciletol 6ToVg €6MTEPIKOVG TPOYPUUUOTILOUEVOVE TOPOLG KOL TO, SOLUKE
KuKAouatikd ototyeio (primitives) evog FPGA kot emopévmg givor pio diemapn mov umopet
névta va ypnowomombel petd amd pio TpdT SUOPP®CT OAGKANPNG TNG GVCKELNG UE TO

Kat@AANA0 olkd bitstream.

ICAPE2
— |(31:0) O(31:0) (m—
—— CLK
—— csIB

—— RDWRB

Zxnua 4: ICAPE2 primitive.

INo va anoktioovpe tpdcPaon (€yypapn/avayvmaon) oTnV ECOTEPIKT UV SIOHOPPOONG TNG
ovokevng XC7VHS80T péow tng demagpng ICAP, eivar arapaitnn n ypnon tov ICAPE2
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primitive (BA. Zynua 4) kobmg emiong Kot evOg EAEYKTH Y10, TNV 001 YNoT T®V GNUATOV EAEYYOV

avtov (dni. CLK, CSIB and RDWRB). Avdloya pe v Aettovpyia mov entteleiton po® tov

ICAPE2 (gyypaor/avayvwon), o eheyktng eivolr emiong vmedBuvog Yy TNV OTOGTOAN

dedopévav dapopemnong oty Bopa eyypaeng | [31:0] (ebv RDWRB=0) 1 v napaiafpn

dedopévav dtapopemong and v B0pa avayvoong O [31:0] (eav RDWRB=1).

H Xilinx éyet dnpuovpynoet ko dabétel dwpedv 610 kowd évav tétolo eheyktn ICAP mov

ovopaletar AXT HWICAP. TTpoketton yio pio. £€Toin mpog yp1on Hovada mov vAomoteitol €5

OAOKANPOL GTNV TPOYPOULOTICONEV] AOYIKT KOl Tovg Topovg tov FPGA kot m omoia

YPNOLUOTOMONKE GTIG TPEIG TPDTES KVPLES apLTEKTOVIKES oG (ONA. «EXT_HWICAP», «INT_
HWICAP», «INT_ HWICAP_ASYNC»). An6 ta otoyyeia tov Ilivaxa 2, mapatnpodpe 61t ot

TAYVTNTES OVOSIOUOPPOCNG OVTMV TOV TPLDV UPYITEKTOVIKAV NTAV TOAD HKPOTEPES A0 TNV

péytotn Bewpntikn T pvBuoamddoons g demaeng ICAP (3,2 Gbps). Anodsiydnke o6t n

xpnon dwdrwv (buses) mov Pacifovior ce kabiepopéva TP®TOKOAAL emikowvoviog (m.y.

Advanced Microcontroller Bus Architecture — AMBA) vy v peta@opd 6edopéveov

dapopemong tov uepikov bitstream amd v uviun mov givar amodnkevpéva, oty BHpa

eyypapng tov ICAPE2, amotelel 1o peyadditepo eumdo1o TNy ToOTITO OVASIUUOPOOGCTG LLOGC

apyrtektovikng. ' vo Eemepdoovpe to umddio avtd, avamtoape «amnd to undévy o Verilog

HDL tov dké poag ereykt ICAP yuo tnv vAomoinon g avadiopopeOGIUNG OPYITEKTOVIKNG

«INT_CUSTOM_ICAP» Tov @aiveTon 6T0 TOpOKATO GY1LL0L;

Clk

reset

custom_icap_controller
AXI4-Lite Interface trigger
axi_clk; CLK —»
BRAM
clka <« ——CSIB—>
ICAP
addra «~——addra —RDWRB-»>
Custom State

douta din Machine —1(31:0)—
ena T - /- »
T axi_resetn ——> busy >
ready————>

Zxnua 5: H apyitektovikn avadiauoppwonc « INT_CUSTOM _ICAP».

To avadwpopemcipo oy «INT_CUSTOM_ICAP» Baciletol oty moAd bWnAng ToydTnTog

pviun block RAM (BRAM) tov FPGA yia v oofnikevon 1@v e30péEvav Sloldpemocns Tov

uepukov bitstream, kabdc ko otov dikng pog katackevng ereyktn ICAP mov dtoucuvdéer pe
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aueco Tpdmo (dNA. xwpig Vv ypnomn dwimv erikovoviag) tnv uviun BRAM pe 1o ICAPE2
primitive. O eheyxtg ICAP mov Katackevadcale, VAOTOLEL, 0VGLOTIKG, 6To VAKO (hardware)
pio punyovn kotactdoswv (State machine) péowm g omoiog ta dedopéva SOUOPPOONS TOV
etvan amodnkevpéva oty BRAM amostélovtol oty Bupa eyypaeng tov ICAPE2 primitive
KG0e Qopd OV TVPOSOTOVUE TNV UEPIKT] AVOSIOUOPPMCN TNG CLOKEVNG HOC. XTO Xynua 6

QOIVETOL TO OLAYPALLLE POTIS TNG EV AOY® UNYOVIG KOTAGTAGE®V.

Reset

BEGIN
Set addrato 0
Set CSIB high
Set busy low
Set ready low

Trigger is asserted

STATE 1
Increase addra by 1

Set busy high

STATE 2

Increase addra by 1

STATE_3

Increase addra by 1

Not the last word in BRAM

STATE_4
Set CSIB low
Set RDWRB low

Send 32-bit word to port I of ICAP
Increase addra by 1

Is the last word in BRAM

!

END
Set CSIB low
Set RDWRB low
Send last 32-bit word to port |
Set ready high

Zxnuo 6: Aldypaupa pong Unyavic KAtaoTACEWVY YLa TNV UEPLKH avadSLoUOppwan).
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O uikpoereéepyaotijs MicroBlaze

H avadiopopeaciun apyitektovik «INT_CUSTOM_ICAP» (PA. Zxnua 5) evioyodnke
TEPALTEP®, LE TNV EVOOUATOOT TOV dOMK®OV TNG Hovddwv o€ éva cOGTNUO POCIOUEVO GE
wikpoeme€epyootn (BA. Zynuo 7). Oleg ov povadeg vikov (hardware) oavtod TovL
eneepyaoTikKoh GLOTNUATOS (ONA. O UIKPOENEEEPYAOTNG, 1] VI KOl TOL TEPLPEPELKA TOV,
KTA.) VAOTOMONKOV e ATOKAEIGTIKY XPTOT| TG TPOYPALUATILOUEVIC AOYIKT|G KOL TV TOP®V
0V FPGA. O pikpoene&epyaotig Hmopodoe Vo EMIKOVMVEL e £VAV KEVIPIKO DTOAOYIOTH HECH
oepuakng 0vpag (USB-UART Bridge) ot étot va dievkoAdver v dloyeipion Tov
OVOOIOUOPPAOCIUOD GUGTAUOTOC oG amd Tov «E€m» kocpo. TMa va emrevybei avto,

Baociothkape oTig £Totueg Tpog ypron povadeg tng Xilink, MicroBlaze kot AXI UART Lite.

microblaze local memory

(-] dimiy el 0
DL ) iy brar_if_ertie
kL 0| (. uBiaze local mem
—tovs B MOk B PR || - B _PomTA
AT T 1 A |||-+ener_posre
" N A Contrelles I G
Haze =
Diag! fimb_v10 imh_bram _if_mtr
[||-+rerenmer o . L
e clk_wiz_1_100M = = - 1w |ame
_clk_wiz_| . Mi - e Al -
m— = i icroslaze ;! i s o e a0 L T
reset il [ e _in tus_ et reseed0:0) il I N =y X
ox_rwaet_in eaphel_mael 0 e a ETErY B (LD, L T TAM Cantrelier an_timer_01
detug syt iierennnea e | o Memory Bus (LHE) L o
ke st
o] genersivoud |
! —tammemgl  generateoatl
troeze i
5 o ack et custom_icap_cartroler_rom
— J [|-+omson_porrs
———— bl
weita
R gty
custom jcap contcter | e
: p y L )
-+500_ 1 Block Memory Generator
i 5 B ]
R R
Il ke 17:0] fud
$——a00_ax_sewin
ap_controller_v1.0 (Pre-Praducuon]
ARl Interoned axi_uartite 0
ena [T L [ s5an )
o I "
axi_aresain Fiesmipt=

o it

2xnua 7: To Baowouevo otov uikpoeneéepyaotr) MicroBlaze cuotnua mou vAomotujdnke oto FPGA.

Mio bare-metal pappoyn mov kteleiton otov pukpoeneéepyaoct MicroBlaze givar vrehbuvn
Y10 TNV TOPOSATNGT TNG LEPIKNG OVAIAULOPPOOTG TNG CLOKEVNG PAGEL TNG IGO0V TOL dEYETAUL

Ot TOV YPNOTI TOV KEVIPIKOD VITOAOYIOTH LECH TNG GEPLOKNG BOpag.

To avadrapuopoacyo 2x100G cictiua

>10 Zynua 8 mapovotdleTol amAomoinuéva OAOKAN PO T0 GOGTN L0 Y10 TO 07010 EPUPUOCOLE TO
TOPOTOVD oYU avadtopudpemonc (PA. Zyfua 7). Bacilopevol o avthy TV anAoveTELUEVN
OYMNUOTIKY AEIKOVIOT| LTOPOVUE VA PavTOoTOOUE OTL TO TEAKO pog design cuvtifetat amd Tig
e&nc évreka dopukéc povadeg (hardware modules):
o sys clk module: ypnoipomoteiton yioo v mapaywyn onudtev ypoviouod (clock
signals) 6Amv TV VIOAOITOV HOVAS®V Kol KUKAOUATIKOV otolyeiov tov hardware

design pag.
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e pr_controller module: mpoxettar Yo amlomomuévn avamopdcTacy Olov TOV
MicroBlaze ocvotiuatog mov @aivetar oto Lynua 7. Emopévog, avty n povada
OTOTEAEITOL, OLOLHOTIKA, OMO TOAAEG UKPOTEPEG VROUOVADES, TOL  YOAPWV
ATAOVGTEVOG OUMG, Oev eppavifovtal.

e gtz_raw_data_init module: 6nwc n povada pr_controller, £tol kot owt 1 povada
OTOTELEITOL OTO TOAAEG PIKPOTEPEG VITOLOVASEG TOV VAOTTOMONKOV pE TNV PonBeta Tov
7 series FPGAs Transceivers Wizard LogiCORE™ [P (Wizard) tg Xilinx. Avtr 0
povada, pog dtvel tn SuvatodTNTo Vo SIUOPPDOCGOVUE OTTMG ETOVUODE TOVEC OYTMD
emoavapvdilopevoug GTZ moumodékteg tng ovokevng XC7VHS80T, kot va toug
evoopotd®@oovus oto design pag. Méow avtig TG Lovadog yivetal diaitepa amin 1
dacvvdeon TG Aoyikng Tov ypriotn (user logic) mov viomoigitor oto FPGA pe 1o
KavaAlo v GTZ TopmodekT®VY Y10, TNV OTOGTOAN Kot ANyn 0e00UEVOV.

o 8x FRAME_GEN modules: oytd yevvitpieg dedopévov (pia yio kéOe mound GTZ)
ouvdedepéves oty povado gtz raw_data init. Kabe pio amd 11 oytd yevwnTpleg
(FRAME_GEN_0 - FRAME_GEN _7) tpogodotei éva amd ta oxtd kavaka GTZ pe

Oed0UEVE TTPOG LETAOOON.

SLRO & SLR1

FRAME_GEN_1 160 Bits
FRAME_GEN_2 160 Bits

pr_controller - - Q

N

I

FRAME_GEN_3 160 Bits g

2

FRAME_GEN_4 160 Bits IS

sys_clk =
FRAME_GEN_5 160 Bits
FRAME_GEN_6 160 Bits
FRAME_GEN_7 160 Bits

[] static Logic scattered between SLRO and SLR1
[ Reconfigurable Logic placed in SLR1
Il GTZ-Dedicated SLR (SLR2)

Zxnuo 8: Amdomotnuévn oxnuatikn aneikovion tov HW design mou vAomotridnke.

Io v mepintoon g povadag FRAME_GEN 0 mov avtistotyei otov 1° mopmodéktn (GT_0)
onpovpynoape VO OPOPETIKES YEVVNTPIEG TIC OMOIE UTOPOVCOUE VO EVOAAUGGOVUE
dvvapkd (otn B€omn g Hovadag avTtig) HECH TNG UEPIKNG OVOSIOAUOPP®ONG TNG CLGKELNG
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nag. ‘Etol, éyovtog TpoypaploTicel TV GUOKELT UOG KOl EVD 0T AELTOVPYOVOE KAUVOVIKA,
umopovoope vo  oAAGlovpe TNV AEltovpyio. OV VAOTOWOVVIOV oW TNV HOVAdO
FRAME_GEN 0, yopig va ennpedletor 1 Aettovpyio, Tov voOAoutov cvotiuatog. Me v
YPNOM EVOG SCOPE TOAD VYNADV EMOOGEDY, UTOPOVGOLE VO TOPAKOAOVHOVLE TO, SESOUEVA TTOV
e&énepmay ot moumoi GTZ kol €161 vo TOPATNPOVUE TO OMOTEAEGUOTO TNG MEPIKNG

avadlopOPPMOONG TS CLGKEVTG LLOG GE Eva TPayRaTkO mepBdAlov epyactnpiov.

31




32




Introduction

Information Technologies (ITs) have turned out to be part and parcel of our society, having a
deep impact on the modern social and economic way of living, and enriching our daily lives
with a variety of services from media entertainment (e.g. video) to more sensitive and safety-
critical applications (e.g. e-commerce, e-Health, first responder services, etc.). Mostly driven
by streaming video, HD video, cloud computing and mobile networking (migrating from 4G to
5G), consumer market’s demand for network bandwidth is steadily increasing. If specialists'
predictions hold true, then over the next few decades almost every physical device and everyday
object we see (e.g. clothes, cars, trains, etc.) will also be connected to Internet Protocol (IP)
networks (Internet of Things - 10T). Also, according to Cisco’s Visual Network Index (VNI),
that tracks and forecasts bandwidth growth, global IP traffic is projected to reach 396 Exabytes
(EB) per month in 2022 (Figure 1.1).
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Figure 1.1: Global IP Traffic Forecast from Cisco VNI for 2017-2022.

Offering extremely high bandwidth, low power loss, low security risk and resilience to
electromagnetic interference (EMI), small in size and light in weight, optical fibers are the clear

choice in order to manage the dynamic and ever-increasing internet traffic. At this time, the
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majority of network infrastructure is connected via optical fiber. Optical fibers will keep
replacing copper wire, as the communications industry is moving to the next-generation optics,
developing Nx100G line cards for networking systems [1].

Optical fiber is, undoubtedly, the medium to be used in order to support the needs of today’s
and tomorrow’s telecommunication networks. However, being able to transfer big amounts of
data really fast, without the ability to manage and process them at a similar rate, would be
useless. Obviously, electronic systems should also scale with this bandwidth demand. The
challenge faced by system designers is not only processing the incoming data, but managing
the data flow in and out of semiconductor devices. Because the number of pins on these devices
does not scale proportionally with transistor count and logic capacity, each pin must allow the
accommodation of more total traffic. With the advantages of fewer pins, simpler system
clocking, lower cost and lower EMI, high-speed serial interfaces are ideal for managing traffic
on- and off-chip [2].

New and more sophisticated Field-Programmable Gate Arrays (FPGAS) that deliver greater
capacity, performance and features, along with more robust serial transceivers supporting
higher line rates, can meet next-generation networking requirements. FPGAs play a critical role
in networking equipment, not only because of their ability to combine high performance
processing with low power consumption and small physical size, but also because of their
flexibility and ability to rapidly implement the latest networking standards, even as these
standards continue to evolve. Consequently, for systems that need high bandwidth, high
density, high performance, design flexibility and low cost, FPGAs with high-speed serial 1/0
(Input/Output) are the clear choice [1], [2].

In addition to all these advantages mentioned, FPGAs can also support reconfigurable
computing systems. Reconfigurable computing is the concept that bridges the gap between the
separate worlds of hardware (HW) and software (SW) design, combining the flexibility of
software running on general purpose processors with the efficiency of high-performance
computing platforms, such as FPGAs. The key-feature of reconfigurable computing is the
ability to adapt the hardware by “loading a new circuit” on the reconfigurable fabric upon the
requirements of the system. Partial Reconfiguration (PR) technology, offered by FPGAs, takes
this asset one step further, allowing designers to change hardware’s functionality on the fly, by
reconfiguring only a limited and predefined part of the FPGA while the remainder of the device
continues to operate normally. The key advantages of PR are the reconfiguration “on-the-fly”
stated above (without shutting down the system), as well as the reduced reconfiguration time

compared to the reconfiguration of the entire fabric.
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1.1 Motivation and Thesis Objectives

The continuous evolution of networks leads to ever-bigger network infrastructure(s) that is (are)
very hard to be managed, with increased resource and energy demands. For this reason, along
with the efforts to fulfill the insatiable need for high-speed and increased bandwidth networks,
network service providers are also looking for ways to reduce capital expenses (CapEX) and
operating expenses (OpEX). Responding to this need, some revolutionary technologies like
Network Function Virtualization (NFV) and Software Defined Networks (SDN) have been
introduced to simplify the network management and bring innovation through network
programmability. Software-based networks are aiming to reduce the dependency on the
underlying physical network (hardware), providing many benefits when compared with
traditional hardware-based network architectures, such as faster service enablement, ease of
deployment and management, reduced equipment costs, better scalability, availability,
flexibility and fine-grain control of traffic. On the other hand, traditional networks that are
mainly based and implemented on dedicated appliances (hardware) using Application Specific
Integrated Circuits (ASICs), are known to offer significant performance and power efficiency
advantages compared with virtual and software-based networks. Service providers have been
brought face to face with the eternal problem of finding this architecture that best combines
high efficiency with high flexibility.
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Figure 1.2: Processing efficiency vs flexibility.

As the above handy graph from Microsoft (Figure 1.2), FPGA seems to be the technology to

bridge the gap between the efficiency of a hardware-based architecture and the flexibility
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offered by software. Especially, by using the technique of Partial Reconfiguration, just a single
FPGA is able to support different network applications/protocols by loading different bit
images at any time, really fast, and without disturbing networking flows and services. This
flexibility, offered by FPGAs, through their programmability, is a significant characteristic that
enables networks to support fast time to market for new services and efficient scaling, while
preserving the performance and power efficiency of a hardware-centric approach [3]. Of course,
when it comes to systems which are expected to manage and process data at extremely high
rates, reconfiguration time has a deep impact on the system’s overall performance.

In the context of this thesis, we investigate the challenges of implementing a reconfigurable
telecom system in high-performance FPGAs. We are exploring the technique of Partial
Reconfiguration, examining different architectures and reconfiguration schemes in order to
improve the reconfiguration time. Additionally, we deal with the challenges of synthesizing an
embedded soft processor core onto the FPGA to better control the partial reconfiguration flow
(“on-the-fly” changes on hardware’s functionality), and to facilitate the management of our
system from the outside world (e.g. communication with another processor). For our study we
employed Xilinx’s XC7VH580T-G2HCG1155E FPGA device, hosting eight embedded high-
speed transceivers, each of which is able to operate at serial bit rates up to 28.05 Gigabits per
second (Gbps). We implement in the target-device all this functionality and logic needed to
properly configure its eight transceivers, resulting in a telecom system with a total bandwidth
of 2x100 Gbps, whose functionality can be dynamically defined by a software application
running on the embedded soft processor core, while its components are efficiently implemented

in hardware.

1.2 Chapter Overview

The remainder of this thesis is organized as follows:

e In Chapter 2, we focus on the theoretical background required for understanding the
core concepts of FPGAs and serial multi-gigabit transceivers, thus also showing how
these two technologies complement each other. In addition, we introduce the reader to
our target-device (i.e. the XC7VH580T-G2HCG1155E) and the VC7222 evaluation
board which provides the hardware environment for characterizing and evaluating the
serial multi-gigabit transceivers available on the XC7VH580T device.

e In Chapter 3, we first deal with the technical background of this thesis; Partial
Reconfiguration is discussed along with the XC7VH580T available interfaces to

perform PR and limitations to the reconfigurable fabric. After that we present the
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various reconfigurable architectures that were tested and compared in terms of
reconfiguration time in the context of this thesis.

In Chapter 4, we present in detail the workflow that was followed to implement our
reconfigurable, high-bandwidth telecom system on the VC7222 evaluation board. We
discuss the structure and role of each individual component in the hardware design, the
PR workflow and the procedure for setting up the VC7222 board to test and
demonstrate our design on real hardware.

Finally, in Chapter 5, we summarize our work and refer to issues we did not have the

chance to work on and which could be regarded as future work.
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Background on FPGAs
& Multi-Gigabit

Transceivers

In the context of this thesis we are going to use the Xilinx’s VC7222 Evaluation Board,
featuring the high-end XC7VH580T FPGA device which include special hard-wired multi-
gigabit transceiver blocks. In order to familiarize the reader with the main concepts concerning
Field-Programmable Gate Arrays (FPGASs) and serial Multi-Gigabit Transceivers (MGTS), in
this chapter we are going to provide the necessary background and theoretical knowledge, along
with some brief historical references regarding the necessities and reasons that led to the
emergence and establishment of these technologies. In Section 2.1 FPGAs are introduced. In
Section 2.2 basic information about serial MGTs is provided. Finally, in Section 2.3 our target
board (VC7222) is presented.

2.1 Field-Programmable Gate Arrays

For many years, the design of digital circuits used to be something that only big companies was
able to do. It used to be a very time-consuming and costly process, since it was mainly based
on creating Application Specific Integrated Circuits (ASICs), which involves the
interconnection of large amounts of individual chips, in order to implement various complex
logic functions. This situation changed by the introduction of Field Programmable Gate Arrays
(FPGASs) which, undoubtedly, brought one of the greatest revolutions in the design of digital
circuits. Unlike the ASICs, FPGAs are not custom manufactured to perform only one specific
task. They are a particular type of digital Integrated Circuits (1Cs) whose functionality can be
defined at run time [4].

As it is indicated from its full name, FPGA is essentially an array of logic gates (Gate Array)
which can be programmed and reconfigured over and over again, at any time and any place

(Field Programmable), being able to implement almost any digital circuit that we can imagine.
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Programming of these logic gates within an FPGA, involves the loading of a bit image, named
bitstream, on the FPGA device. Several technologies can be used in order to store the
configuration bitstream in an FPGA.

The majority of commercially available FPGAs is based on Static Random-Access Memory
(SRAM) technology. Some vendors may also offer device families of FPGAs based on Flash
memory or Antifuse technology. FPGAs that hold their configuration patterns in SRAM
memory-cells (Figure 2.1) are more energy-intensive, but offer higher densities, more
flexibility and better performance. SRAM memory cells are volatile. This means that SRAM-
based FPGAS can’t keep configuration data without power source. For this reason, these
devices always need to be programmed (configured) when power is first applied to the system.
For the purpose of this thesis, we are only interested in FPGA devices that are based on SRAM

technology, so any information provided for FPGAs, is referred to SRAM-based devices.

Since we have decided on the underlying technology we are interested in, we should take a
closer look at the internal structure and the building blocks of an (SRAM-based) FPGA in order
to better understand why and how this device can be so flexible.

bitline ~bitline

Vdd

wordline

Figure 2.1: SRAM cell.

2.1.1 Architectural structure of an FPGA

The internal structure of an FPGA may be very complex and its structural blocks can vary from
vendor to vendor or even from family to family (for FPGAs of the same vendor). In fact,
different vendors, often, don’t even use the same terminology in order to refer to these building
blocks (we are going to use Xilinx’s terminology when it is needed). However, typically, an
FPGA consists of three basic components: a large array of general-purpose configurable Logic
Cells (LCs), hard-wired blocks specialized for certain tasks (e.g. memory and arithmetic
operations) and a network of flexible programmable interconnects for their linking. Combining

configurable LCs with dedicated-functionality blocks reduces power consumption of an FPGA
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and increases its performance. LCs are combined together to form larger structures named
Configurable Logic Blocks (CLBs). Along with CLBs, specific-functionality blocks are
provided within an FPGA, like RAM memory blocks (Block RAMs), Digital Signal Processing
blocks (DSPs), input/output blocks (I0Bs) and even more complicated components such as
Digital Clock Manager (DCM), DRAM memory controller, etc. [5].

Configurable
Interconnects 8 8 8 8 DCM
| | | | 1 | |
[ [ [
10B o — - -4 — 10B
CLB CLB Block DSP CLB
10B —_—t —t- RAM -1— —_ 10B
0B e —_ - -1 —_— 10B
CLB CLB Block DSP CLB
10B —T1 —t- RAM -1+— — 10B
m m m o m m
o 0 e 0Q o Q

Figure 2.2: A highly simplified architectural layout of FPGA [5].

DSP blocks and CLBs can be configured to perform arithmetic and logic operations (add,
multiply, compare, etc.), like the arithmetic logic unit (ALU) of a processor. Contrary to a
processor’s ALU whose architecture is fixed and designed in a general-purpose manner to
execute various operations, the CLBs can be programmed with just the operations needed by
the application, resulting in increased compute efficiency. Operations’ results and data, are
stored in registers present in CLBs, DSPs and block RAM, and are able to directly flow from
the output of one block into the input of another using a network of flexible programmable
interconnects. Thus, there are no inefficiencies like processor cache misses. FPGA data can be
streamed between operators, and these operators can be fully pipelined, establishing links
between them by using configurable interconnects. In a few words, FPGAs allow us to create
a massive array of application-specific ALUs that enable both instruction and data-level
parallelism [5]. In the following subsections, we make a quick reference to FPGA’s building
blocks.
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Logic Cells (LCs) & Configurable Logic Blocks (CLBs)

Logic cell is the fundamental building block of an FPGA. LCs are the reason why FPGAs are
able to take on many different hardware configurations. There is not a strict standard to the
internal structure of an LC, but generally it comprises an N-input (typically 4-input or 6-input)
Look-Up Table (LUT) being able to compute any N-input logic function, one or more registers
that can be configured either as flip-flops (synchronous storage) or as latches (asynchronous
storage) and an assortment of other elements, such as multiplexers (muxes) and XOR gates,

that implement some special carry and control logic.
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Figure 2.3: A simplified view of a CLB and its components.

As Figure 2.3 depicts, a number of LCs (typically two) are combined into a single unit named
slice, and then several slices (typically two or four), linked by dedicated interconnect, are

grouped together to form a CLB.

Specialized Blocks

CLBs enable us to implement an extremely wide range of circuits. However, there are some
known basic functions, which are often required by several applications, and the
implementation of which demands the interconnection of a large number of CLBs, resulting in

complex and inefficient designs with excessively high area requirements. For this reason,
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FPGAs are further strengthened with ready-to-use silicon components specialized for certain
tasks, such as BRAMs, multipliers, DSPs, IOBs and in some cases even more complicated
components, like memory controllers, Ethernet MACs, high-speed MGTs or embedded
MiCroprocessors.

Configurable Interconnects

CLBs and the specialized blocks of an FPGA are able to communicate really fast with each
other through a network of programmable interconnects. In fact, a big array of tracks running
vertically and horizontally across the chip, creates a huge number of preexisting physical
connections between FPGA’s blocks. Eventually, programmable interconnects, located at the
intersection points of the tracks, are to define which of the connections will be active.
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Figure 2.4: Configurable routing architecture within an FPGA [6].

2.1.2 Programming methods

Approaching the issue of programming an FPGA in a general and abstract way, we could say
that our ultimate goal through this process is to properly use and configure FPGA’s resources
(building blocks and associated interconnections) in order to implement a digital circuit in it.
So, programming an FPGA, essentially, involves the design of an electronic circuit. An
obvious, but also very primitive way of designing an electronic circuit is based on creating
schematics, in which all the circuit fundamental elements (e.g. logic gates) and the connections
between them are drawn, by hand or using a Computer-Aided Design (CAD) tool, one by one.
In the case of a modern FPGA, that requires an enormous number of logic to be correctly

configured, it’s impossible for a human designer to manually reprogram each element
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individually. Programming of an FPGA is, usually, done by using specific CAD tools that are
able to receive the description of a digital circuit at a higher level of abstraction and undertake
the hard work of “drawing” the respective schematic on behalf of us. Most of these tools allow
us to describe the desired circuits in more than one way, each of which offers a different level
of abstraction. In the following subsections, we make a quick reference to the three more

dominant description ways.

Hardware Description Languages (HDLS)

The most common way to describe our design is by using a Hardware Description Language
(HDL), like Verilog or VHDL. HDLs offer the Register-Transfer Level (RTL) abstraction,
modeling a synchronous digital circuit in terms of the flow of digital signals (data) between
hardware registers, and the logical operations performed on those signals [7].

Intellectual Property (IP) cores

Today’s advanced CAD tools, supporting and encouraging the Electronic Design Automation
(EDA) “trend”, provide us with a huge library of Intellectual Property (IP) cores. IP core is a
reusable and pre-designed block of logic or data that, ideally, is able to easily be inserted into
any vendor technology or design methodology. Universal Asynchronous Receiver-Transmitter
(UART), Ethernet controllers, Peripheral Component Interconnect (PCI) interfaces, Dynamic
Random-Access Memory (DRAM) controllers, Central Processing Units (CPUs) are some
example-components that can be designed stand alone as IP cores. IP cores offer such a level
of abstraction that allow us to describe very complex and sophisticated designs extremely fast
and easily, without even having to know the details of how these pre-designed “‘sub-circuits”
(IP cores) are described and implemented. The tool, using suitable libraries, can directly map
each IP core to the corresponding RTL implementation, allowing us to use these cores as black

boxes.

High-Level Synthesis (HLS)

High-Level Synthesis (HLS) is a design methodology that provides an even higher level of
abstraction in digital circuit description than the methods mentioned above. HLS tools are able
to take the description of a design in a High-Level Language, like C++, as input and turn it into
an RTL implementation. HLS has made FPGAs accessible to a wider range of developers and

has been very effective in reducing time to market.
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2.1.3 Development flow

In most cases, the description of a design is not only based on one particular way from those
mentioned in the previous subsection 2.1.2, but is a result of a combination of them. No matter
which description way/ways will be used, we can finally make one, single description of our
design at the RTL level. After that, we are able to map the design to a specific FPGA
architecture through a fully automated process, offered by the CAD tools. As depicted in Figure
2.5 below, this process comprises the following steps: Synthesis, Implementation and Bitstream

Generation.
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Figure 2.5: A typical FPGA design flow.

In the Synthesis stage, the tool, after analyzing the hierarchy of our design, recognizing the
functionality described and optimizing our design for the device architecture we are targeting
for, transforms the RTL-specified design into a netlist of logic gates. The next stage is called
Implementation. This stage is broken down to three main steps. First, the logical netlist is
optimized to better fit into the available resources on the target FPGA device (Optimization)
[8]. After that, the tool places logic blocks from the optimized netlist onto specific sites in the
FPGA device we are targeting for (Placement) [8]. Finally, the proper programmable switches
are activated in order to establish all the connections between the previously placed logic blocks

(Routing). Once the design is successfully placed and routed, the tool, in the last stage called
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Bitstream Generation, creates the final bitstream. This is a particular type of binary file that
carries all the necessary information to specify the state of each individual element inside the
FPGA. This file is all that an FPGA needs in order to be programmed. The bitstream can be
downloaded on the FPGA device and configure it to perform the operations of the design we
initially described.

2.2 Serial Multi-Gigabit Transceivers

The most common approach to transfer big amounts of data between two or more digital devices
connected on a circuit, is using a bus [9]. Bus is a group of tracks (signal lines) that enables the
communication between the devices attached to it in parallel mode, allowing multiple data bits

to be transferred over multiple channels at the same time.

Other

. n-bit Bus FPGA
Device —

Figure 2.6: Use a bus to transfer data between devices [9].

As digital devices are continuously increasing in size and processing power, buses are also
increasing in width (from 8-bit to 16-bit, from 16-bit to 32-bit, from 32-bit to 64-bit and so
forth) in order for the devices to exchange data at rates comparable to those at which they
process them.

Particularly in regards to FPGA devices, 1/0 resources and communication with outside world
have become the main bottleneck to their vast capability in parallel data processing and their
extremely high performance. So, finding a way to efficiently exchange data with outside
devices is very important and crucial for their overall performance.

However, increasing buses’ width is not a panacea. The problem is that this consumes a lot of
pins on each device and requires a lot of tracks to connect the devices together, leading to high-
cost solutions. Routing these tracks such that they are all the same length, impedance and so
forth becomes really painful and difficult as devices grow in complexity [9]. Furthermore,
increasing buses’ size makes it really hard to deal with crosstalk effect, simultaneous switching
output (SSO) noise, electromagnetic interference (EMI) problems and Signal Integrity (SI)
issues generally. Gigabit serial 1/O appears to be a more attractive solution (than the traditional
data bus) to the complex problem of increasing the I/0 bandwidth of a device while taking into

account all the other parameters mentioned above.
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For this reason, particularly in recent years, special attention was devoted by FPGAs’ vendors
to equip their devices with hard-wired serial multi-gigabit transceiver (MGT) blocks. And by
transceiver we mean the outcome of integrating both a transmitter and a receiver in a single

device.
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Figure 2.7: Use MGTs to transfer data between devices [9].

A Multi-Gigabit Transceiver is more or less a Serializer/Deserializer (SerDes) that is able of
running at line rates of 1Gigabit/second and more. So, MGTSs enable devices to transfer parallel
data as stream of serial bits, making it easier and cheaper to transfer more data over longer

distances by using less 1/O pins and connections, compared to buses.
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Figure 2.8: A highly simplified depiction of an MGT block [9].

47




As Figure 2.8 depicts, in case of transmission, bytes (8-bits) of data are delivered from FPGA
fabric to the transceiver block using an 8-bit bus. Data are initially encoded using a proper
encoding scheme (8b/10b in this simplified example), and then pass through a polarity flipper
which turns zeros into aces and vice versa (the flipper may be bypassed if it is not required). A
FIFO (First In — First Out) is used between the encoder and the polarity flipper in order to
temporarily store data when bits are pulled out from the transmitter in a lower rate than that
with which they are presented to it. Finally, a serializer converts the parallel data, coming out
of the polarity flipper, into a stream of serial bits, and pass them to a particular buffer that
transmits each one of them as a differential pair of signals [9]. Respectively, the receiver
subblock converts an incoming stream of serial bits into 10-bits words and following the reverse
procedure passes bytes (8-bits) of data to FPGA fabric for processing.

Figure 2.8 is an extremely simplified representation of an MGT block, and we use it just in
order to make a smooth introduction to the basic elements that, typically, make up a Multi-
Gigabit Transceiver. For the purposes of the above oversimplified example, we assumed an 8-
bit width data bus and an 8b/10b encoder. However, the size of data bus, the encoding scheme
and some other parameters are directly dependent on the type (family) of the transceiver that is
used. In fact, the MGT blocks embedded in FPGAs typically have a number of configurable
(programmable) features (e.g. comma detection, pre-emphasis, equalization, etc.), and thus,
when programming the FPGA, we are able to define the size of data bus, the encoding scheme,
the transmitting/receiving data rates, etc. by selecting between a few valid and permissible
choices. This is why just a single FPGA device with embedded MGTs is able to support and
implement not only multiple known and predefined interface standards (e.g. XAUI, PCI

Express, Aurora, etc.) but custom protocols as well.

2.3 VC7222 Evaluation Board

The VC7222 board (Figure 2.9) provides the hardware environment for characterizing and
evaluating the GTH and GTZ transceivers available on the XC7VH580T-G2HCG1155E FPGA
device. The XC7VH580T, member of the Xilinx Virtex®-7 family, is not just an ordinary,
monolithic FPGA (and by “monolithic” we mean that there is one silicon die in the package).
XC7VH580T is one of Xilinx® 2.5D ICs that is designed using the Stacked Silicon
Interconnect (SSI) technology. An SSI device is one in which multiple silicon dies are
connected together via silicon interconnect, and packaged into a single device. An SSI device
enables high-bandwidth connectivity between multiple dies by providing a much greater

number of connections. It also imposes much lower latency and consumes dramatically lower
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power than either a multiple FPGA or a multi-chip module approach, while enabling the
integration of massive quantities of interconnect logic, transceivers, and on-chip resources
within a single package. Every single die slice contained in an SSI device is a Super Logic
Region (SLR). Special routing resources running between SLRs, the Super Long Line (SLL)
resources, are used to connect the logic from one region to the next [10]. Our target-device (i.e.
the XC7VH580T) has the further peculiarity of being heterogeneous, since the SLR
components it comprises are not identical. Actually, the XC7VH580T is made up of two FPGA
die slices (SLRO and SLR1) and an 8-channel 28Gbps transceiver die (SLR2).
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Pads for GTZ Transceivers Digilent USB JTAG

Programming Port
Gz USB-to-UART 9 9
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Power Status LEDs
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Figure 2.9: The VVC7222 Evaluation Board [11].

The VC7222 board features can be summarized as follows [12]:
o Virtex-7 XC7VH580T-G2HCG1155E FPGA
e Onboard power supplies for all necessary voltages
o Terminal blocks for optional use of external power supplies
e Digilent USB JTAG programming port
e System ACE™ SD controller
e Power module supporting Virtex-7 FPGA GTH transceiver power requirements

e Power module supporting Virtex-7 FPGA GTZ transceiver power requirements

49




A fixed, 200 MHz 2.5V LVDS oscillator wired to multi-region clock capable (MRCC)
Inputs

Two pairs of differential MRCC inputs with SMA connectors

SuperClock-2 module supporting multiple frequencies

Six Samtec BullsEye connector pads for the GTH transceivers and reference clocks
Two Samtec BullsEye connector pads for the GTZ transceivers and two pairs of SMA
connectors for GTZ transceiver reference clocks

Power status LEDs

General purpose DIP switches, LEDs, pushbuttons, and test I/0

Two VITA 57.1 FPGA mezzanine card (FMC) high pin count (HPC) connectors
USB-to-UART bridge

12C bus

PMBus connectivity to onboard digital power supplies

Active cooling for the FPGA

The VC7222 board block diagram is shown in the following figure [12]:
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Figure 2.10: The VC7222 Board Block Diagram [12].
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Partial Reconfiguration

In this chapter we will focus on the technique of Partial Reconfiguration (PR) in FPGA. First,
we give a generic overview of this technique in Section 3.1. In Section 3.2 we describe the
workflow that was followed to implement the PR through the Xilinx’s Vivado® Design Suite.
In Section 3.3 we discuss about the different modes and interfaces that can be used to download
(full and partial) configuration files (i.e. bitstreams) to our target-device. Finally, in Section 3.4
we present the various reconfigurable architectures that were tested and compared in terms of

reconfiguration time in the context of this thesis.

3.1 Overview

The key advantage of FPGAs is their flexibility to be programmed and re-programmed at any
time and any place (“in the field”). Partial Reconfiguration (PR) takes this advantage one step
further, by allowing partial modification of an operating FPGA design, while the rest of the
design continues to function normally. This is done by loading a partial configuration file,
usually a partial BIT file. After a full BIT file configures the FPGA, partial BIT files can be
downloaded to modify reconfigurable regions in the FPGA without compromising the integrity

of the applications running on those parts of the device that are not being reconfigured [13].

FPGA

Reconfig
Block “A”

Figure 3.1: Basic premise of Partial Reconfiguration [13].
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As shown above (Figure 3.1), the function implemented in Reconfig Block “A” is modified by
downloading one of several partial BIT files, Al.bit, A2.bit, A3.bit or A4.bit. The logic in the
FPGA design is divided into two different types, reconfigurable logic and static logic. The gray
area of the FPGA block represents static logic and the block portion labeled Reconfig Block
“A” represents reconfigurable logic. The static logic remains functioning and is unaffected by
the loading of a partial BIT file. The reconfigurable logic is replaced by the contents of the
partial BIT file. Usually, we refer to Reconfig Block “A” as Reconfigurable Partition (RP),
while partial BIT files (Al.bit, A2.bit, etc.) constitute the Reconfigurable Modules (RMs) of
this RP [13].

Partial bitstreams, that are delivered during normal device operation to replace functionality in
a pre-defined device region, have the same structure as full bitstreams. They are fully self-
contained, so they are delivered to an appropriate configuration port. Loading a partial bitstream
into an FPGA does not require knowledge of the physical location of the RM. All addressing,
header, and footer details are contained within partial bitstreams, just as they would be for full
configuration bitstreams. The only difference is that partial bitstreams are limited to specific
address sets to program only a specific part of the device. The size of a partial bitstream is
directly proportional to the size of the region it is reconfiguring. For example, if the
Reconfigurable Partition is composed of 20% of the device resources, the partial bitstream is
roughly 20% the size of the full design bitstream. This is why partial reconfiguration is much
faster than a standard full configuration of a device [13].

Apart from the module-based PR, where a limited, pre-defined part of the FPGA is completely
reconfigured with a new (partial) design, FPGAs can also support a difference-based PR.
Difference-based PR is only useful when the different partial designs described by two (or
more) Reconfigurable Modules have common logic, and therefore the differences between
them are very small. In this case, we can take the PR one step further by reconfiguring just the
part of the Reconfigurable Partition that is related with these differences. A difference-based
partial bitstream is generated based only on the differences between two Reconfigurable
Modules, and, consequently, its size is even smaller than that of the equivalent module-based
partial bitstream. In the context of this thesis, we will only deal with the module-based PR as it

is the most widely used and considered one.
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PR advantages

PR makes it possible to time multiplex hardware dynamically on a single FPGA device,
offering multiple benefits, such as:

e Reducing the size of the FPGA required to implement a given function, with
consequent reductions in cost and power consumption.

e Providing flexibility in the choices of algorithms or protocols available to an
application without hindering overall application functionality (in terms of powering
off the device)

e Enabling new techniques in design security

e Improving FPGA fault tolerance

e Accelerating configurable computing

In addition to reducing size, weight, power and cost, PR also enables new types of FPGA
projects that would otherwise be impossible to implement [13].

PR limitations

Not all logic resources are permitted to be actively reconfigured. Global logic and clocking
resources must be placed in the static region to not only remain operational during
reconfiguration, but to benefit from the initialization sequence that occurs at the end of a full
device configuration. The eligible resources that can be placed in a Reconfigurable Module in
our device includes [13]:

e All logic components that are mapped to a CLB slice in the device. This includes LUTs
(Look-Up Tables), FFs (flip-flops), SRLs (Shift Registers), RAMs (Random Access
Memories) and ROMs (Read-Only Memories).

e Block Ram and FIFO

e DSP blocks: DSP48E1

e PCle® (PCI Express): Entered using PCle IP

All other logic must remain in static logic and must not be places in an RM, including [13]:
e Clocks and Clock Modifying Logic - Includes BUFG, BUFR, MMCM, PLL, and
similar components
e 1/Oand I/O related components (ISERDES, OSERDES, IDELAYCTRL, etc.)
e Serial transceivers (MGTSs) and related components
e Individual architecture feature components (such as BSCAN, STARTUP, XADC, etc.)
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3.2

Xilinx Partial Reconfiguration Workflow

The Xilinx Vivado® Partial Reconfiguration design flow is similar to a standard design flow,

with some notable differences. The implementation software automatically manages the low-

level details to meet the silicon requirements. Our role is to define the size and location of the

reconfigurable area via the floorplan utility. The following steps summarize the Vivado PR

workflow [13]:

1. Synthesize the static and Reconfigurable Modules separately.

2. Create physical constraints (Pblocks) to define the reconfigurable regions.

3. Setthe HD.RECONFIGURABLE property on each Reconfigurable Partition.

4. Implement a complete design (static and one Reconfigurable Module per
Reconfigurable Partition) in context.

5. Save a design checkpoint for the full routed design.

6. Remove Reconfigurable Modules from this design and save a static-only design
checkpoint.

7. Lock the static placement and routing.

8. Add new Reconfigurable Modules to the static design and implement this new
configuration, saving a checkpoint for the full routed design.

9. Repeat Step 8 until all Reconfigurable Modules are implemented.

10. Run a verification utility (pr_verify) on all configurations.

11. Create bitstreams for each configuration.
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Figure 3.2: Partial Reconfiguration Workflow.
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As depicted in the flowchart in Figure 3.2, PR flow requires the implementation of multiple
configurations which ultimately results in full bitstreams for each configuration, and partial
bitstreams for each Reconfigurable Module. The number of configurations required varies by
the number of modules that need to be implemented. However, all configurations share the
same top-level, or static, placement and routing results. These static results are exported from
the initial configuration, and imported by all subsequent configurations using checkpoints. The
static logic remains identical in every configuration and only the reconfigurable logic differs
[13]. Therefore, although each Reconfigurable Module is free to use and configure the
programmable logic within the corresponding Reconfigurable Partition, their interface with the
unchanged static design must also be kept unchanged, so that they can properly fit into the
reconfigurable region defined in the floorplanning step (Step 2). This is a very important

constraint to remember when processing a PR design.

3.3 Configuration Modes in Virtex-7 VH580T

As already mentioned in the previous chapter, our target-device is a member of Virtex®-7
family. Virtex®-7 is one of the four families that Xilinx® 7 series FPGAs comprise. Almost
all 7 Series devices support the same configuration interfaces and the same configuration
modes. In the following subsections we are going to describe in detail how we can use these
interfaces in order to configure our target-device, first, with a full and, later, with a partial

configuration file.

3.3.1 External Configuration Interfaces

The simplest way to configure the XC7VH580T FPGA device with a full or partial bitstream
is via JTAG, using one of the following options:

e USB JTAG connector

e System ACE SD

e JTAG cable connector
JTAG is a well-known standard, used by the industry for prototyping and debugging and is the
default interface used to configure the device through Vivado Logic Analyzer, regardless of
whether we use a full or a partial bitstream. The VC7222 board comes with an embedded USB-
to-JTAG configuration module which allows a host computer to access the board JTAG chain

using a standard A to micro-B USB cable. Alternately, the FPGA can be configured via system
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ACE from a Secure Digital (SD) memory card. Finally, a JTAG connector is available to
provide access to the JTAG chain using one of Xilinx’s configuration cables—Platform Cable
USB, Platform Cable USB Il or Parallel Cable IV (PCIV) [12].

JTAG is one of the five external configuration interfaces available on Xilinx® 7 series FPGA
devices. The other four external interfaces that can be used are the SelectMAP interface, the
serial interface, the Serial Peripheral Interface (SPI) and the Byte Peripheral Interface (BPI).
When one of the SPI or BPI interfaces is used, the FPGA loads (or boots) itself from an external
SPI or BPI nonvolatile flash memory device, respectively. In this case, the FPGA acts as a
Master. The device itself controls the configuration process by driving the configuration clock
(CCLK) from an internal oscillator. In the case of serial and SelectMAP interfaces, the FPGA
is usually configured by an external smart source (such as a microprocessor, DSP processor,
microcontroller, PC, or board tester). During such an externally controlled configuration
process, the FPGA acts as a Slave, and the CCLK is an input to it. When using the serial or the
SelectMAP interface, 7 series FPGAs can also support the Master mode for configuration from
legacy serial PROMs (when applicable) or for custom, CPLD-based configuration state
machines driven by the FPGA CCLK [14].

In any case, there are two general configuration datapaths. The first is the serial datapath that
is used to minimize the device pin requirements. The second datapath is the 8-bit, 16-bit, or 32-
bit datapath used for higher performance or access (or link) to industry-standard interfaces,
ideal for external data sources like processors, or x8- or x16-parallel flash memory [14].

To sum up, each one of the external configuration interfaces corresponds to one or more

configuration modes and bus width, shown in Table 3.1 below.

Configuration Mode M[2:0] Bus Width CCLK Direction
Master Serial 000 x1 Output
Master SPI 001 x1, X2, x4 Output
Master BPI 010 x8, x16 Output
Master SelectMAP 100 X8, x16 Output
JTAG only 101 x1 Not Applicable (N/A)
Slave SelectMAP 110 x8, x16, x32 Input
Slave Serial 111 x1 Input

Table 3.1: 7 Series FPGA Configuration Modes [14].

In the case of standard full configuration of a 7 series device, any of the external configuration

modes listed above (Table 3.1) can be used to load the full configuration bitstream into the
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FPGA device. However, only a few of them are able to support the PR. We discuss this in more
detail in the subsection 3.3.3.

Setting Configuration Options

The specific configuration mode is selected by setting the appropriate level on the dedicated
mode input pins M[2:0] of the FPGA. The M2, M1 and MO mode pins should be set at a constant
DC voltage level, either through pull-up or pull-down resistors (< 1 kQ), or tied directly to
ground or VCCO_0 [14].

Although, a unique JTAG configuration mode setting is available (101), the JTAG interface
can be used at any time regardless of the mode pin settings.

The configuration mode with which the bitstream will be loaded into the device, is an
information embedded also in the bitstream and can be defined in the Vivado configuration
dialog “Edit Device Properties” or through Tcl (Tool Command Language) commands, during
a typical Vivado® PR design flow. More specifically, after our static design has successfully
passed the Synthesis stage, and before we move on to the next stage of its Implementation, apart
from creating physical constraints (Pblocks) to define the reconfigurable regions we can also
create some additional constraints related to the configuration mode. Figure 3.3 below, shows

how we can select the configuration mode using the Vivado-GUI (Graphical User Interface).
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'l Edit Device Properties

Use this dialog to edit the programming and configuration properties for your current design; default values are set
automatically.
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Configuration Select up to two device configuration modes. JTAG is always selected. Selecting a check box
e p—————— assigns a mode and dicking an image displays details.
Startup
Encryption [] Prohibit usage of the configuration pins as user IfO and persist after configuration
Readback
Reset configuration mode
LUNE
— CCLK
[ ™Master Serial
T~ o
N b - : 2.5
st 5%
L=/ =
= [[E3=1
EE
1
Slave Serial
Help Reset all Cancel

(b)

Figure 3.3: Configuration mode selection in Vivado-GUI.

3.3.2 Internal Configuration Access Port (ICAP)

Apart from the external interfaces presented in the previous subsection, Xilinx® 7 series
FPGAs also feature an internal interface for the purpose of configuring the device, named
Internal Configuration Access Port (ICAP). In 7 series FPGAs the ICAP interface is available
through the use of ICAPE2 primitive (Figure 3.4). The ICAPE2 primitive is a design element
gives us post-configuration access to the configuration functions of the FPGA from the FPGA

fabric. Using this component, commands and data can be written to and read from the
configuration logic.
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ICAPE2

— (31:0) O(31:0) ——
—_—t CLK
-1 CSIB

—— RDWRB

Figure 3.4: ICAPE2 primitive [15].

As shown in Figure 3.4 above, the ICAPE2 primitive has two dedicated and independent, 32-
bits width read and write ports. The CSIB input port is the active low ICAP enable, and the
RDWRB input port is to select the ICAP operation (read from (1) or write to (0) device’s
internal configuration memory).

An ICAP controller is always necessary to drive primitive’s control signals (i.e. CLK, CSIB
and RDWRB) during access to the configuration memory. Depending on the ICAP operation,
the controller is also responsible to deliver the configuration data to the write port | [31:0] (if
RDWRB=0) or to monitor the output of the read port O [31:0] (in case that RDWRB=1). Xilinx
has created two pieces of intellectual property (IP) specifically for the control of the ICAPE2
primitive, the Xilinx® AXI Hardware Internal Configuration Access Port (HWICAP)
LogiCORE™ IP core and the Xilinx® Partial Reconfiguration Controller IP core. Alternately,
we can create our HDL description of a hardware module that implements a custom state
machine for controlling the ICAPE2.

In any case, the only way to make the ICAP interface available for use, is to properly configure
our device, implementing a design (into the programmable logic of the FPGA) that instantiates
the ICAPE2 primitive and its controller. These two modules (ICAP primitive and the associated
controller) should operate without interruption throughout a reconfiguration process, and thus
the ICAP interface cannot be used for a full device reconfiguration with a full bitstream. The

ICAP internal interface supports only partial reconfiguration (PR) of a 7 series device.

Xilinx’s 7 series, monolithic FPGAs have two instances of the ICAP interface known as the top
ICAPE2 and the bottom ICAPEZ2. Since top and bottom ICAP have shared resources in fabric,
only one of them can be used at a particular instance of time. The tools automatically use the
top ICAPE2 by default. The bottom ICAP site can only be used for a second ICAP component.
However, the XC7VH580T FPGA we are targeting for, is not just a simple, monolithic 7 series
device. XC7VH580T is a 2.5D IC that is designed using the Stacked Silicon Interconnect (SSI)
technology. SSI devices have multiple Super Logic Regions (SLRs), each with its own pair of

ICAPE2 primitives (top and bottom). One SLR is defined as the master, while the others are
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the slaves. Global configuration functions are controlled, by default, from the master SLR, so
the ICAPE2 of the master SLR is able to read from and write to all other SLRs. A very important
thing to keep in mind when dealing with SSI devices, is that, unlike 7 series monolithic devices,
there are circumstances in which ICAP read / write access is restricted as identified in Table
3.1 below [14]:

Device Type Configuration Mode | ICAP Access to Configuration Memory
Monolithic Devices All modes Entire Device
Master SLR ICAP Slave SLR ICAP
) SPIX1, JTAG Slave SLR
SSI Devices Master SLR Only
SPIx2, SPIx4 N/A
All Other Modes Entire Device Slave SLR

Table 3.2: ICAP Access to configuration memory [14].

As we can see, if the configuration mode is set to JTAG or to one of the SPI modes (x1, X2 or
x4) Master ICAP cannot access configuration memory in slave SLRs. Partial reconfiguration
must use the ICAP within the local SLR when one of the SPIx1 or JTAG modes is selected,
while ICAP in slave SLRs cannot be used at all when configuring in SPIx2 or SPIx4 modes.
As JTAG mode is always available independent of the mode pins, the JTAG mode pin setting

is not recommended for SSI devices [14].

Since SSI devices have multiple SLRs and multiple ICAPE2 resources, we should provide the
Vivado tool with specific instructions on how the instantiated ICAP(s) will be mapped on to
specific primitive(s). More specifically, after our static design has successfully passed the
Synthesis stage, and before we move on to the next stage of its Implementation, apart from
providing constraints for the Pblocks to define the reconfigurable regions (floorplanning), we
should also provide LOC constraints for the ICAP site(s) (putting them all on a separate SLR,

in case that more than one ICAPE2 primitives are used).
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Figure 3.5: Clock regions with ICAPE2 resources in VH580T: X0Y1 (SLRO) & X0Y4 (SLR1).

The XC7VH580T comprises two FPGA die slices (SLRO and SLR1) and an 8-channel 28Gbps
transceiver die (SLR2) in the same package. Since the SLR2 is a die dedicated to transceivers,
there are no ICAPE2 resources in it. Each of the two other SLRs (SLRO and SLR1) has a pair
of ICAPE2 primitives (top and bottom), located in a specific site within them (see the
highlighted clock regions in Figure 3.5). So, in order, for example, to place an instantiated
ICAPE2 primitive, named “master_icap”, in the master SLR of our target-device, we should

create a Vivado XDC constraints file as follows (lines beginning with # are just comments):

# ICAP location constraints
# Force the instantiated ICAPE2 to the top site 1in the
# SLRO(master-SLR) of the XC7VH580T

set_property LOC ICAP_XOY1l [get_cells master_icap]

3.3.3 Downloading configuration files to the XC7VH580T FPGA

Table 3.3 summarizes the configuration modes supported by the XC7VH580T FPGA,
indicating which of them can be used to load a full configuration bitstream into our target-

device, and which ones are available in a case of partial reconfiguration of this device.
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Configuration Mode | M[2:0] | Full Configuration | Partial Reconfiguration
Master Serial 000 No
Master SPI 001 No
= § Master BPI 010 No
(=
= & [ Master SelectMAP 100 Yes No
s o
o E JTAG only 101 Yes
Slave SelectMAP 110 Yes
Slave Serial 111 Yes
(7p)
< 5]
s ICAP N/A No Yes
£2

Table 3.3: XC7VH580T configuration modes.

Full Configuration Bitstreams

All PR designs start with a standard configuration of the full device using a full configuration
bitstream [13]. In order to download a full configuration file to the XC7VH580T device, we
can use any of its external configuration modes. The only one internal configuration mode of

our target-device (i.e. ICAP) is not meant to be used for a full-device configuration.

Partial Bitstreams

As shown in Table 3.3 above, partial reconfiguration of our target-device is supported using
the following configuration modes [13]:

e JTAG: A good interface for quick and easy testing or debug. Can be driven with the
Vivado Logic Analyzer. JTAG interface can be used at any time regardless of the mode
pin settings (M[2:0]) for loading both full and partial bitstreams to the XC7VH580T
device.

e Slave SelectMAP or Slave Serial: A good choice to perform full configuration and
Partial Reconfiguration over the same interface. Let’s assume that the configuration
pins have been set to one of these two external configuration modes and that we have
already delivered a full bitstream through this mode. To keep using the selected
external configuration mode for loading a partial bitstream, the configuration pins
must be reserved for use after the initial configuration. This is achieved by setting the
BITSTREAM.CONFIG.PERSIST property before the Bitstream Generation stage of

a standard PR design flow. The Tcl command syntax to set this property is:
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set_property BITSTREAM.CONFIG.PERSIST Yes [current_design]

We should keep in mind, however, that when configuration pins are persisted, the ICAP

is disabled; the two features are mutually exclusive [13].

o |CAP: A good choice for user configuration solutions. ICAP interface is an internal

one. Its use is based on the device's internal programmable resources and primitives,

and therefore it’s an interface always available for use after a first, proper configuration

of the full device. Requires the creation of an ICAP controller as well as logic to drive

the ICAP interface. Furthermore, in order to use the ICAP interface after the initial

configuration (regardless of the external configuration mode used) we must ensure that
the BITSTREAM.CONFIG.PERSIST property is not set. The corresponding Tcl

command is:

set_property BITSTREAM.CONFIG.PERSIST No [current_design]

When it comes to partial reconfiguration, master modes are not directly supported. In fact, SPI

and BPI flash memories can be used to store partial bitstreams, but we cannot use the

corresponding interfaces to deliver a stored bitstream. The static design would need to be

connected to the flash via user 10, and a controller would be used to fetch bitstreams for
delivery to the ICAP [13].

Each of the above configuration modes has a maximum theoretical bandwidth depending on

the maximum data width of the corresponding datapath and the maximum clock frequency up

to which the corresponding configuration interface can, theoretically, be operational. Table 3.4

below, summarizes the maximum bandwidths for these configuration modes in the
XC7VH580T-G2HCG1155E which is a -2G speed grade, SLR-based Virtex-7 HT device.

Configuration Mode

Max Clock Rate

Max Data Width

Maximum Bandwidth

ICAP (1) 100 MHz 32 bits 3.2 Ghits/s
SelectMAP (Slave) 100 MHz 32 bits 3.2 Ghits/s
Serial Mode (Slave) 100 MHz 1 bit 100 Mbits/s

JTAG 20 MHz 1 bit 20 Mbits/s

Table 3.4: Maximum Bandwidths for configuration modes in XC7VH580T-G2HCG1155E.

(1) As specified in the Xilinx® documentation [16], the ICAP of an SLR can only be clocked at the
maximum frequency of 100 MHz if it is used to access the configuration memory in this
particular SLR. A Slave SLR ICAP can only access configuration memory within the local SLR.
However, a Master SLR ICAP gives us access to the entire device. If the Master ICAP is used to
access the configuration memory in Slave SLRs, it should not be clocked beyond the 70 MHz,
and thus, the corresponding maximum bandwidth is decreased to 2.24 Gbits/s.
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3.4 Evaluation of various Reconfigurable Architectures

The speed of partial reconfiguration is directly related to the size of the partial bitstream.
However, for a partial bitstream of a specific size, the reconfiguration time depends directly on
the reconfigurable architecture (RA) used. Depending on the storage medium of the partial
configuration file, the configuration interface used, and the way in which we read this file from
the storage medium and deliver it to the selected configuration interface, we can build several

reconfigurable architectures, each with a different configuration throughput.

In the context of this thesis we dealt with five different reconfigurable architectures. The
configuration throughput of each of them is presented in the Table 3.5 below. The first one
named as EXT_JTAG uses the JTAG interface, while the other four RAs are based on the ICAP.
In any case, exactly the same physical constraints were imposed, during the phase of
floorplanning the reconfigurable partitions (RPs). Consequently, in all five cases the
reconfigurable regions (RRs) were identical in terms of size, location and resources, and thus
the amount of data needed to be sent to the FPGA’s configuration memory each time was the
same. The minor size difference (namely 128 bytes) observed in the following table between
the partial bitstream used in the EXT_JTAG case and those used in the other four RAs, is due
to the fact that the (equivalent) partial configuration files had different formats.

More specifically, in the first case where the JTAG interface was used, we had the possibility
to download partial bitstreams to the XC7VH580T device as .bit configuration data files.
Bitstreams (either full or partial) are generated by default as .bit files from the Vivado design
tool, when the write_bitstream command is executed. BIT files are binary configuration data
files containing a 128-byte header to provide general information about the bitstream name, the
FPGA device, the user ID, etc. As these first 128 bytes of a BIT file are not configuration data,
they are not meant to be downloaded to the FPGA. So, this file type is mainly used to program
devices form the Vivado device programmer with a programming cable. For custom
configuration solutions, the header information is useless; we just need a bitstream which will
contain pure configuration data. Such a file format, is provided by a .bin configuration file, that
is generated from Xilinx’s Vivado design tool by running the write_bitstream command with
the -bin_file argument. BIN files, that were used in any other case except the EXT_JTAG, are
binary configuration data files containing only the device programming data, without the header
information found in a standard binary BIT file [17].

Anyway, an arbitrary size of bitstream was selected for our experimentation. It is noted that we

expect similar results/differences for smaller or bigger (in size) bitstreams.
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Partial Bitstream | Partial Bitstream | Reconfiguration
Name of RA _ ) Throughput
Format Size Time
EXT _JTAG .bit 681,660 Bytes 926.02 msec 5.889071 Mbits/s
EXT_HWICAP 709 sec 7.690064 Kbits/s
INT_HWICAP ] 37.599270 msec 145.009623 Mbits/s
.bin 681,532 Bytes

INT_HWICAP_ASYNC 19.669035 msec 277.199974 Mbits/s
INT_CUSTOM_ICAP 1.703860 msec 3.199943 Ghits/s

Table 3.5: Configuration throughputs of the various Reconfigurable Architectures.

The JTAG-based architecture has been included in Table 3.5 only for comparison purposes,
because it is a commonly followed approach for reconfiguration and the easiest one to deploy
as well. The other four ones are considered to be our main architectures implemented in the
effort to improve the reconfiguration speed. A really important feature, common to all four
main architectures, is the implementation of a microprocessor entirely within the device
general-purpose memory and logic fabric. The inclusion of a microprocessor in the hardware
design facilitates the management of our reconfigurable system from the outside world (e.g.
easy and flexible communication with a host-computer) enabling us to remotely control the PR
of our device. The result is a hybrid hardware-software system where the functionality that will
be optimally implemented in the hardware can be easily defined by the software (the “hardware-
enabled, software-defined” concept).

In order to ensure that the global reset events are properly synchronized across all elements in
the Reconfigurable Module (RM), and that all Super Long Lines (SLLs) are contained within
the static portion of the design (since they are not partially reconfigurable), a Reconfigurable
Region (RR) must be fully contained within a single SLR [13]. In the light of the above, the
Pblock that was drawn once and used in all cases (remember that the same constraints were
always imposed) to define the RR during the floorplanning stage, was entirely placed in the
SLR1. In any of the ICAP-based RAs, the instantiated ICAP was also placed in the SLR1, so

that it can be clocked at the maximum possible frequency of 100 MHz.

Towards accomplishing the evaluation of the various RAs, two key-components of Xilinx’s
Vivado® Design Suite 2016.3 were used; the Vivado 2016.3 tool for implementing any
hardware design to be loaded on the FPGA fabric, and the Xilinx Software Development Kit
(SDK) 2016.3 for developing applications to be executed by an embedded soft processor core,
in the cases where the implemented HW design comprised such a module.

The following five subsections provide details about each RA listed in Table 3.5.
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3.4.1 The “EXT _JTAG?” architecture

In this case, partial bitstreams are stored in the memory of an external, smart device; on a
common Personal Computer (PC) to be precise. Using a standard A to micro-B USB cable, we

are able to deliver partial bitstreams to the JTAG interface through Vivado’s Hardware

Manager.
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Figure 3.6: Simplified representation of “EXT_JTAG” architecture.

Given the data provided in Table 3.4, and the fact that our main objective is to implement the
PR of our device in the shortest possible timeframe, we should have never been interested in
this architecture. This is why we never tried to push this architecture to its limits in terms of
reconfiguration throughput. However, the maximum bandwidth of the configuration interface
used in an RA, is not the only factor that can limit the RA’s overall configuration throughput,
and thus, using a higher bandwidth configuration interface does not necessarily mean an RA
with better configuration throughput (this will become even more evident when looking at the
“EXT_HWICAP” architecture). So, taking into account the fact that this RA offers the most
simple and standard way to download bitstreams (full or partial) to any modern FPGA device,
it seems quite sensible to know exactly how fast the PR can happen in this case, before making

any further effort.

Nevertheless, one thing we must definitely do to achieve the maximum possible reconfiguration
throughput, is to base our RA on either the SelectMAP or the ICAP, since only through one of
these configuration ports the data can be written to the FPGA’s configuration memory at the
highest possible rate of 3.2 Gigabits per second (Table 3.4). Being a good choice for custom
user configuration solutions, the ICAP interface was used to access the device’s internal

configuration memory in all our attempts that followed.
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3.4.2 The “EXT_ HWICAP” architecture

Like the “EXT _JTAG”, the “EXT_HWICAP” also relies on an external PC device to store the
partial bitstreams. However, in this architecture partial bitstreams are delivered to the ICAP
interface of the FPGA device, through the Xilinx’s AXI HWICAP IP core. Using a standard A
to mini-B USB cable, the host computer is able to communicate with the FPGA through the
USB-to-UART bridge of the VC7222 board. For the purposes of this architecture, a Xilinx’s
soft IP core named AXI UART Lite is implemented in the FPGA to provide the controller
interface for asynchronous serial data transfer. Both AXI HWICAP and AXI UART Lite are
connected to an embedded soft-core processor of Xilinx named MicroBlaze, which is also
implemented in the FPGA fabric to control the operation of these two IP cores. More
specifically, a software application running on MicroBlaze is responsible for reading bitstream
configuration data from the serial input through the AX1 UART Lite core and delivering them
to the ICAP interface through the AXI HWICAP core. A user of the host computer can send
the configuration data to the serial input using a terminal emulation application, such as
HyperTerminal, TeraTerm, etc. The software application executed on MicroBlaze, also prints
proper messages to this terminal, assisting and guiding the user to go through the PR process.
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Figure 3.7: Simplified representation of “EXT_HWICAP” architecture.

The entire design was clocked at 100 MHz (the maximum operating frequency recommended
by Xilinx for the ICAP). All the IP cores used were customized in the Vivado IP Integrator.
The baud rate of the AXI UART Lite core was set to 9600 bits per second and the number of
data bits in the serial frame was eight. The read and write FIFOs of the AXI HWICAP core was
of Block RAM type, the depth of each of them was set to the maximum allowed value, and the
data width of the ICAPE2 primitive, which is automatically instantiated through use of the AXI
HWICAP, was set to 32 bits.
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Comparing this RA with the previously presented one (i.e. “EXT_JTAG”), we can notice that
the time required for PR completion was significantly increased, despite the fact that a higher
bandwidth configuration interface was used. This is due to the serial port which is a very slow
interface. Furthermore, the reconfiguration time is getting worse due to the MicroBlaze which
acts as a proxy between the host computer and the FPGA fabric. In order to benefit from the
ICAP’s high throughput capability, we must find a way to store the bitstream configuration data
closer to the MicroBlaze embedded soft-core processor. Since our target-board (i.e. the
VC7222) does not feature any (external to the FPGA) type of SRAM or DRAM component
memory, the embedded memory resources in our target-device (i.e. the XC7VH580T) are the
only ones that can be used to store the partial bitstreams closer to the MicroBlaze. But even if
there were more than one option, using the FPGA’s embedded memory resources will always
be the best one in terms of speed and performance. The primary drawback of this approach, is
that we are only allowed to generate very limited capacity memories; is not only that the amount
of these memory resources is very small, but also that they should primarily be used for the

needs of the design implemented each time in the FPGA device.

3.4.3 The “INT_HWICAP?” architecture

Like the “EXT_HWICAP?”, the “INT_HWICAP” also uses the AXI HWICAP IP core to access
the FPGA’s internal configuration memory. However, in this case partial bitstreams are pre-
loaded into the FPGA’s BRAM memory. This time, the software application running on
MicroBlaze retrieves configuration data stored into the device’s Block RAM and delivers them
to the ICAP interface through the AXI HWICAP core.
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Figure 3.8: Simplified representation of “INT_HWICAP” architecture.
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Again, the entire design was clocked at 100 MHz, the read and write FIFOs of the AXI
HWICAP core was of Block RAM type, the depth of each of them was set to the maximum
allowed value, and the data width of the ICAPE2 primitive was 32 bits. The AXI UART Lite
IP core was also used in this case, but is not illustrated in Figure 3.8, as it is not actually a vital
module for this RA,; it was added just to allow the user of an external computer device to
communicate and interact with the MicroBlaze, through the USB-to-UART bridge, and thus
manage the PR via the software running on the embedded microprocessor.

Towards storing partial bitstreams into the device’s Block RAM, the Xilinx® LogiCORE™ IP
Block Memory Generator (BMG) core was used. The BMG IP core is an advanced memory
constructor that generates area and performance-optimized memories using embedded Block
RAM resources in Xilinx FPGAs [18]. This core was customized in the Vivado IP Integrator
in such a way that it can operate like a Stand-Alone, Single Port ROM. The Width and Depth
values that were used for read operation in the memory port was set to 32 bits and 170,383
respectively, resulting in a memory with a storage capacity of 170,383*32 bits or 681,532 Bytes
(i.e. the size of a partial bitstream). The generated ROM was initialized with the configuration
data of a partial bitstream, and the MicroBlaze was able to access them through a fast, local bus
that was connecting the MicroBlaze processor data port (i.e. the DLMB interface) to the high-
speed, BRAM-based ROM. The LogiCORE™ IP Local Memory Bus (LMB) core, whose
frequency and latency are optimized for use with MicroBlaze [19], was instantiated in our
design to implement this fast, local bus. To this end, the Local Memory Bus (LMB) Block RAM
(BRAM) Interface controller IP core was also added to the design to provide the interface
between the BMG core and the Data (D) side LMB core.

The configuration throughput has increased significantly in this case, but judging from the
ICAP’s maximum theoretical bandwidth, there is still room for improvement. However, in this
RA the operating frequency (f) and the data width of the ICAPE2 primitive were 100 MHz and
32 bits respectively, and, additionally, the high-speed, BRAM-based ROM could potentially
feed the ICAPE2 with 32 bits of configuration data per clock cycle (cc = 1/f = 10ns). Therefore,
connecting the on-chip block RAM to the ICAPE2 primitive through the MicroBlaze and the
associated processor buses, is the main bottleneck to the configuration throughput of this RA.

The following two architectures will verify the veracity of the above claim.

3.4.4 The “INT HWICAP_ASYNC?” architecture

The “INT_HWICAP_ASYNC?” architecture is just like the “INT _HWICAP” described above.

The only difference in this case, is that the whole design, except for the ICAPE2 primitive, was
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clocked at 200 MHz. In order to keep the ICAP clock at 100 MHz, we had to set the “Enable
Async” property of the AXI HWICAP IP core. By doubling the frequency at which the
MicroBlaze, the BMG core, the AXI HWICAP core, as well as the associated data buses and
interconnections were operated, the reconfiguration time was decreased by almost half. This
result strongly confirms the fact that using all these modules (MicroBlaze, BMG, HWICAP,
LMB, AXI Interconnects, etc.) to deliver the configuration data from the BRAM to the ICAP
by a software application, is the only factor that keeps the configuration throughput of this
architecture at a lower level than the ICAP’s theoretical maximum bandwidth. This led to the

implementation of our last RA described in the following subsection.

3.45 The “INT CUTOM _ICAP?” architecture

The last architecture named “INT_CUSTOM_ICAP” is similar to the “INT _HWICAP” one.
The partial bitstreams are stored in the FPGA’s BRAM memory and the device’s internal
configuration memory is accessed through the ICAP interface. The key difference between
these two architectures is that in the case of “INT _CUSTOM_ICAP” architecture, the whole
process of retrieving the partial bitstream stored in Block RAM and delivering it to the ICAP
interface, is not carried out by a software application, but from a hardware module developed
from scratch in RTL to implement a custom state machine in the FPGA fabric. ICAPE2
primitive is automatically instantiated by this custom ICAP controller, which is able to connect
directly (without any processor bus) the output port of the BRAM memory to the input port of
the ICAP primitive.
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Figure 3.9: Simplified representation of “INT_CUSTOM_ICAP” architecture.
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In this case the AXI HWICAP and the MicroBlaze IP cores become useless. However, the
MicroBlaze microprocessor is also used by this architecture along with the AXI UART Lite
core, just to enable the management of PR via software. More specifically, a software
application running on MicroBlaze waits until it receives the appropriate input from the user of
an external computer through the USB-to-UART bridge. MicroBlaze then triggers the custom
ICAP controller, which in turn writes the configuration data stored in BRAM to device’s
internal configuration memory through the ICAP primitive. Since, the MicroBlaze and the AXI
UART Lite are not actually vital modules of this RA, they are not illustrated in Figure 3.9. The
whole design was clocked at 100 MHz. As can be seen from Table 3.5, this RA allows us to
fully exploit the ICAP’s high throughput capabilities, and therefore this is the architecture on
which we will base the implementation of our final hardware, partially reconfigurable, design.
The following chapter provides more details on how the Custom ICAP Controller, and more

generally this entire RA, are implemented.
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System Integration

As already mentioned, the ultimate goal of this thesis is to develop a system which will make
use of the high-bandwidth GTZ transceivers available on the XC7VHS580T, and will be capable
of being partially reconfigured within a very short timeframe. The 7 series FPGAs Transceivers
Wizard LogiCORE™ IP (Wizard) was used to configure and simplify the use of the eight serial
GTZ transceivers in the Virtex®-7 XC7VH580T device. Based on the example design that can
be generated by this Wizard, we built the reconfigurable system depicted in Figure 4.2. This
system was implemented through the use of Xilinx’s Vivado 2016.3 Integrated Design
Environment (IDE) tool, part of the Vivado Design Suite 2016.3, by adopting a hierarchical,
functional, unit-based design approach in which the whole design was described as a
combination of smaller, cooperating hardware modules. Our (hierarchical) design has one top-
level module that is the root of the design hierarchy. The top-level module comprises eleven
instances from four different basic building modules (Figure 4.1). Two of them, namely the
sys_clk and the gtz_raw_data_gt_frame_gen Verilog modules, are just single elements, while
the two others are more complex Verilog modules within which several lower-level (Verilog)
modules are instantiated. In other words, each of the gtz_raw_data_init and the pr_controller

is a collection of lower-level module instances.

gtz_raw_data_exdes.v (top module)
| gtz _raw_data_init.v
| gtz raw_data_gt_frame_gen.v (1 per transceiver)
| sys clkwv
| pr_controller.v

Figure 4.1: Design hierarchy.

The sys_clk module generates clock signals for the needs of our design. The gtz_raw_data_init
instantiates eight properly configured GTZ transceivers and offers an easy way to interface the
user logic with them. This module is connected to eight frame generators, which are eight
different instances of the gtz_raw_data_gt_frame_gen Verilog module. Each frame generator
is dedicated to a particular transceiver channel to provide transmission data to it. The
FRAME_GEN_0 module, which corresponds to the first transceiver (GT_0) of the GTZ
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transceiver octal, is defined as a reconfigurable one. The logic within this generator will be able
to be modified without disturbing the smooth operation of the rest of the design, through the
Partial Reconfiguration (PR) of our device. Finally, based on the conclusions drawn in the
Section 3.4, some additional logic was implemented as part of the static logic for the PR needs.
This additional logic is described by a suitable block-design (BD) created in the Vivado IP

Integrator and instantiated into the top-level module through the pr_controller.

SLRO & SLR1
160 Bits ) Decoupler | 160 Bits )
FRAME_GEN_1 160 Bits
FRAME_GEN 2 160 Bits @
pr_controller =
I
=
FRAME_GEN_3 160 Bits %
IQ_
=1
FRAME_GEN_4 160 Bits o
=
sys_clk =
FRAME_GEN_5 160 Bits
FRAME_GEN_6 160 Bits
FRAME_GEN_7 160 Bits

] Static Logic scattered between SLRO and SLR1
[ Reconfigurable Logic placed in SLR1
Il GTZ-Dedicated SLR (SLR2)

Figure 4.2: Simplified view of the HW design implemented.

The purpose of this chapter is to describe in detail the process followed for the system
integration in the context of this thesis. To this end, Section 4.1 first provides some basic
information on the 7 Series Transceiver Channel Architecture. After that, Section 4.2 introduces
the reader to the 7 series FPGAs Transceivers Wizard LogiCORE™ IP and the example design
that can be generated for any instance of this Wizard IP core. This section also deals with the
gtz_raw_data_exdes, sys clk, gtz raw_data gt frame_gen and gtz_raw_data_init modules,
since they are directly related to the generated example design. Section 4.3 presents the
pr_controller and the associated HW/SW modules. In Section 4.4 we describe the methodology
followed to generate the final (full and partial) bitstreams, and, finally, in Section 4.5 we discuss

the VC7222 board experimental setup.
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4.1 7 Series Transceiver Architecture

In Chapter 2, the Section 2.2 focused on introducing the broader concept of serial Multi-Gigabit
Transceivers (MGTSs), a specific category of which are the Xilinx’s GTZ transceivers.
Following this introduction, and since the use of the GTZ transceivers available on the Virtex-
7 XC7VH580T-G2HCG1155E FPGA is one of the main objectives of this thesis, a more
detailed presentation on the special features and topology of a GTZ channel primitive would
enhance the completeness of the information contained in this document. However, the
information that is specific to the GTZ transceivers, and is provided in the 7 Series FPGAs GTZ
Transceivers user guide (UG478), is confidential. In this context, the general architecture of a
7 series transceiver channel is presented below, just to familiarize the reader with some common

definitions and terminology used throughout this chapter.

7 series transceivers are based on the following architecture [2]:

e Transmitter (TX) / Receiver (RX) Package

o Physical Medium Attachment Sublayer (PMA). The PMA includes a serial / parallel
interface (PISO, SIPO), phase-locked loop (PLL), clock data recovery (CDR), pre-
emphasis, and equalization blocks.

e Physical Coding Sublayer (PCS). The PCS contains logic-to-process parallel data and
includes FIFO, coding/decoding, and gearbox functionality.

e FPGA logic interface (fabric)

Figure 4.3 illustrates an abstract diagram of a 7 series transceiver channel [2].

. . ]
Serial Transceiver Channel
O
e =| PISO - X - & e
"I PCS 17 “| Emphasis |
Logic
o PLL B .
g Serial
3 l [~ Channel
R
RX
o RX RX 0]
W [T PCS T SIPO [= CDR B Equalization [* | &
Logic 5
o
v 1y
2-SDC :2: © Adaptation
PCS | PMA

Figure 4.3: 7 Series Transceiver Channel Architecture [2].
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Both PCS and PMA are contained within the physical layer of the Open Systems
Interconnection (OSI) reference model. The PMA sublayer acts as a SerDes block, the major
features of which (i.e. TX pre-emphasis and post-emphasis, TX differential swing, RX
equalization, PLL divider settings) are controllable. This layer provides a medium-independent
means for the PCS to support various serial physical media [20]. The PCS acts as an interface
between the logic implemented in the FPGA (fabric) and the PMA, offering also several
configurable features such as data encoding/decoding schemes, scrambling/descrambling, data
width conversion, FIFOs, etc. The implementation of these blocks for each type of 7 series

transceivers is different based on the connectivity and performance requirements.

4.2 Transceivers Wizard and the associated Example Design

The 7 series FPGAs Transceivers Wizard LogiCORE™ IP (Wizard) automates the task of
creating HDL wrappers to configure Xilinx® 7 series FPGA on-chip transceivers. The menu-
driven interface allows for configuring one or more high speed serial transceivers using either
pre-defined templates supporting popular industry standards, or from scratch to support a wide
variety of custom protocols. In addition, the Wizard can produce an example design, test bench,
and scripts for simple simulation and hardware usage demonstration. The files generated by the
Wizard can be summarized as follows [21]:
e Transceiver wrapper, which includes:
o Specific serial transceiver configuration parameters set using the Wizard.
o Transceiver primitive selected using the Wizard.
e Example design demonstrating the modules required to simulate the wrapper. These
include:
o FRAME_GEN module which generates a user-definable data stream for
simulation analysis.
o FRAME_CHECK module: tests for correct transmission of data stream for
simulation analysis.

e Test bench: top-level testbench demonstrating how to stimulate the design.

This Wizard supports and covers all the types of Gigabit Transceivers (GTs) in Xilinx’s 7 Series
FPGAs (e.g. GTH, GTZ, etc.). The structure and the content of the transceiver wrapper,
example design, and testbench files can vary depending on the GT type we are targeting for
and the specific configuration of the target-GTs; however, the relationship of these files can

generally be considered to be, as illustrated in Figure 4.4 [21].
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Figure 4.4: Structure of the Transceiver Wrapper, Example Design, and Test Bench [21].

4.2.1 Customizing and Generating the Core

The 7 series FPGAs Transceivers Wizard is not present in the Vivado IP Integrator (IP1). To

customize and generate a transceiver core (and its associated example design) through the

Vivado IDE we should use the Vivado IP catalog. The exact wizard wrapper steps followed for

the purposes of this thesis are listed below:

1.
2.
3.

Open Vivado Design Suite. Select “Create New Project” and click “Next”.

Select the project name/path and click “Next”.

Select “RTL Project” to permit running the example design and click “Do not specify
sources at this time”. Click “Next”.

Select the “Parts” option and click the “xc7vh580thcg1155-2G™. Click “Next”, and
then click “Finish”.
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5. Under the Project Manager in the Flow Navigator panel, select “IP Catalog” and
search for “7 Series FPGAs Transceivers Wizard” (see Figure 4.5).
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A QT e md ok B (E
4 Project Manager N = L Cores | Interfaces Search: I?Senes FPGAs Transceivers Wizz
. 3 -] Design Sources
@ Project Settings -5 Constraints | Name ~1 AXIS
Oﬁ Add Sources =1+ Simulation Sources Z [El-[& Vivado Repository
";J Language Templates 1 sim_1 = B =] FPGA Features and Design
ﬁ e - [=-[= 10 Interfaces
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B
4 TP Integrator a
. Hierarchy | Libraries | Compile Order
7* Create Block Design = = i—ﬂ
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RGeS Start from scratch. or use an industry standard Y < b
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Figure 4.5: IP Catalog Window.

6. Double-click “7 Series FPGAs Transceivers Wizard” to bring up the 7 Series FPGA
Transceiver Customize IP dialog box.

7. Page 1 of the Wizard (Figure 4.6) allows us to determine the component name, the GT
type, the line rate, the reference clock frequency. Additionally, this page specifies a
protocol template.

a) Inthe “Component Name” field, the string “gtz_raw_data” was entered as the name
for the Wizard instance.

b) Inthe “GT Type” field the “GTZ” was selected (the number of options available in
this field depends on the device chosen in Project Options; as already mentioned
the xc7vh580thcg1155-2G features 6XxGTH-Quad and 1xGTZ-Octal).

c) In the “Octal selection” field the “GTZE2_OCTALO” was selected (the number of
available octals depends on the target device and package; in our case there is one
GTZ octal, so there is no other option).

d) Inorder to be able to manually set all parameters (e.g. Tx /Rx Line Rate, Clocking,
PCS options, etc.) the “Start from scratch” protocol was selected.

e) Inthe “Multi Lane Mode” field, the “x8 Channels Oto7” was selected. The “Master

Slave Mode” was used to enable one of the channels as the master and the other as
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i_j: Customize [P

7 Series FPGAs Transceivers Wizard (3.6)

slaves. In addition, the “Configure all selected GTZ channels identically” checkbox
was selected to configure all the eight channels selected identically.

The line rate for both TX and RX was set to the maximum possible value of 28.05
Gb/s (“Rx Line Rate” must be the same as “Tx Line Rate”). Finally, the
“REFCLKO” was selected as the Reference Clock Source and it was set to 255MHz.

ﬁj Documentation | IP Location L Switch to Defaults

Component Mame |gtz_raw_data

Line rate, GT Selection | Clocking | PCS Options | Optional Ports and Features | Summary

GT Type

Octal selection

Protocol Template

(D GETH @Gtz

GTZE2_OCTALD GTZE2_OCTAL1

Mote: Both Octals are configured identically(except for docking), re-run the wizard to generate a wrapper
for the other octal with a different configuration

Configure all selected GTZ channels identically  Multi Lane Mode | 8 Channels 0to7 Master Slave Mode

Protocol Tx Line Rate (Gbps) Rx Line Rate (Gbps) Ref Clock Source
Identical Configuration Start from scratch - |28.05 25.05 REFCLKD -
Channel 0 Start from scratch =~ |28.05 28.05 REFCLKD
Channel 1 Start from scratch A 28.05 28.05 REFCLKO
Channel 2 Start from scratch h 28.05 28.05 REFCLKD
Channel 3 Start from scratch = |28.08 28.05 REFCLKD
Channel 4 Start from scratch - 28.05 28.05 REFCLKOD
Channel 5 Start from scratch h 28.05 28.05 REFCLKD
Channel 6 Start from scratch = |28.08 28.05 REFCLKD
Channel 7 Start from scratch =~ |28.05 28.05 REFCLKD
REFCLKO Source | 255.000 - REFCLK1 Source  233.750
0K Cancel

Figure 4.6: Line Rates and Transceiver Selection — GTZ Page 1.

8. The second page of the Wizard (Figure 4.7) allows us to select the clocking for the

octal and the enabled channels within the octal (remember that all the eight channels

of the GTZ octal were enabled on page 1 of the Wizard).

a)

b)

The “TXOUTCLK LANEO” and “RXOUTCLK LANEO” were selected as the
sources for the “TXOUTCLK<0-1>” and “RXOUTCLK<0-3>” of the octal
respectively.

The DRP CLK was selected to be sourced from the “DRPCLKO0”.

Finally, the “TXUSRCLKO” and “RXUSRCLKO” were selected for the
“TXUSRCLK_SEL_LANE” and “RXUSRCLK_SEL_LANE” respectively, for each
channel. The channel we wished to configure each time, was selected from the
image on the right (GTZ_CH<0-7>).
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7 Series FPGAs Transceivers Wizard (3.6) !
m Documentation [ IP Location [ Switch to Defaults

Component Name |gtz_raw_data

Line rate, GT Selection Clocking | PCS Options | Optional Ports and Features | Summary

Octal Clocking

B | um:t: RXOUTCLE A
TX/RX Clock Selection
GTZ_CH3
TXOUTCLKD | TXOUTCLK LANED ~
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OK Cancel

Figure 4.7: Octal and Channel Clocking — GTZ Page 2.

9. Page 3 of the Wizard (Figure 4.8) allows us to select the data width and Physical Coding
Sublayer (PCS) mode options.
a) The data width for each of the eight channels enabled on “Line Rate, GT Selection”
tab (i.e. page 1) was set to 160 bits. The options shown here are dependent on the
line rates entered on page 1; for a channel with line rate of 28.05 Ghps, only 160-
bit mode is applicable.
b) Depending on the data width and the protocol selected, there is a number of options
for the PCS mode (e.g. 100GBASER, 64B/66B, RAW) which was set to the RAW
mode for all eight channels. This means that no data encoding / decoding scheme

was used.
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Q: Customize IP

7 Series FPGAs Transceivers Wizard (3.6)

i) Documentation [ IP Location ([3) Switch to Defaults
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Figure 4.8: PCS Options — GTZ Page 3.

10. In the 4" page of the Wizard (Figure 4.9) we are allowed to select the optional ports to

bring out to the example top and multi-transceiver wrapper. Nothing was selected here.

ﬂ Customize [P

7 Series FPGAs Transceivers Wizard (3.6)

“ Documentation [ IP Location (£ Switch to Defaults

Component Name | gtz_raw_data

Line rate, GT Selection rC\oddng rPCS Opﬁon/s/y Optional Ports and Features rSummary

Optional Ports

|
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Figure 4.9: Optional Ports and Features — GTZ Page 4.
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11. Finally, the 5" page of the Wizard (Figure 4.10) provides a summary of the selected
configuration parameters. After reviewing the settings, we clicked “Generate” in the

Generate Output Products window that pops up by clicking “OK” in the summary page.

ﬁ Customize IP
7 Series FPGAs Transceivers Wizard (3.6) !
ﬁﬂ Documentation |[ =) IP Location £ Switch to Defaults

Component Name | gtz_raw_data

Line rate, GT Selection | Clocking | PCS Options | Optional Ports and Features: Summary

General Settings
Component Name: gtz_raw_data
Configured GTs: 8
Protocol Line Rate Refclk Data Width FIB mode TXOUTCLK TXUSRCLK RXOUTCLK RXUSRCLK
(Gbps) (MHz) (bits) (MHz) (MHz) (MHz) (MHz)
Channel 0 | Start_from_scratch 28.05 255.000 180 RAW_MODE 175.313 175.313 175.313 175.313
Channel 1 | Start_from_scratch 28.05 255.000 180 RAW_MODE 175.313 175.313 175.313 175.313
Channel 2 | Start_from_scratch 28.05 255.000 160 RAW_MODE 175.313 175.313 175.313 175.313
Channel 3 | Start_from_scratch 28.05 255.000 180 RAW_MODE 175.313 175.313 175.313 175.313
Channel 4 | Start_from_scratch 28.05 255.000 160 RAW_MODE 175.313 175.313 175.313 175.313
Channel 5 | Start_from_scratch 28.05 255.000 180 RAW_MODE 175.313 175.313 175.313 175.313
Channel 6 Start_from_scratch 28.05 255.000 160 RAW_MODE 175.313 175.313 175.313 175.313
Channel 7 | Start_from_scratch 28.05 255.000 180 RAW_MODE 175.313 175.313 175.313 175.313
oK Cancel

Figure 4.10: Summary — GTZ Page 5.

4.2.2 The core’s Example Design

Following the procedure described in the previous subsection we can generate an instance of
the 7 series FPGAs Transceivers Wizard IP core with the desired features. In addition to
customizing and generating this IP core, the Wizard enables us to produce a really useful
example design that provides a starting point for integrating the customized core into our
system, including reference clock buffers and example system-level constraints.

For this purpose, after the product generation is complete, in the Project Manager panel, in the
Sources window, we have to right-click the core name “gtz_raw_data” (gtz_raw_data.xci) and

select “Open IP Example Design” as shown in Figure 4.11.
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Figure 4.11: Open IP Example Design for the customized core.

A totally new Vivado project is created for the needs of the example design, which opens
automatically in a new Vivado window. By default, the names of the new project and its source
files (e.g. Verilog, XDC constraint files, etc.) are directly related to the core name; in our case
the whole Vivado project was named “gtz_raw_data_ex” (this was also the name of the
project’s root directory). Along with several other Verilog modules, the gtz_raw_data_exdes,
the sys_clk, the gtz_raw_data_gt_frame_gen, and the gtz_raw_data_init were generated in the
context of the example design of our customized core.

In addition, the Wizard created the following two files with all the major timing and physical
constraints for the example design:

1) gtz_raw_data_exdes.xdc: a Xilinx® Design Constraints (XDC) file including timing
constraints (like create_clock, set false_path, and create_generated clock) for the
example design. An XDC file is essentially a set of Tcl commands that the Vivado Tcl
interpreter sequentially reads and parses. This file can be found under the
gtz_raw_data_ex/gtz_raw_data_ex.srcs/constrs_1/imports/example_design directory,
or through the Vivado GUI, in the Project Manager panel, in the Sources window, under

the constraint set named “constrs_1" (see Figure 4.12).
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Figure 4.12: Hierarchy in the “gtz_raw_data_ex” Vivado project.

2) v7ht.tcl: a Vivado Tcl script containing physical constraints for the example design.
This file is actually a collection of Tcl commands that imposes three different types of
physical constraints:

o Netlist constraints, such as DON’T_TOUCH and LOCK_PINS, that are set
on netlist objects (i.e. ports, pins, nets or cells) to require the compilation tool
to handle them in special way.

o Placement constraints, like PACKAGE_PIN, PROHIBIT, BEL, and LOC,
that are applied to cells to control their locations within the device.

o Routing constraints, like FIXED_ROUTE, that are applied to net objects to
control their routing resources.

All these constraints concern exclusively the GTZ transceivers’ design elements, and
without them, it would be impossible to properly use the GTZ transceivers available
on the XC7VH580T-G2HCG1155E FPGA. The v7ht.tcl file was generated under the
gtz_raw_data_ex/gtz_raw_data_ex.srcs/sources_1/ip/gtz_raw_data/tcl directory

(remember that the “gtz_raw_data_ex” is the project’s root directory).

The rest of this subsection will provide details on how the, generated by the Wizard, modules

and constraints were modified and used for the needs of our final design.

The “gtz_raw_data_exdes” module

As already mentioned, the gtz_raw_data_exdes is intended to be the top-level module of our
design. In other words, the gtz_raw_data_exdes will be the wrapper of the entire design to be

implemented in the FPGA. To this end, this module was modified to contain one instance of
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the sys_clk module, one instance of the gtz_raw_data_init module, one instance of the
pr_controller module (we will discuss this module further in the next section), eight instances
of the gtz_raw_data_gt_frame_gen module (one per GTZ channel), and all the data objects
(e.g. wires, regs, etc.) needed to enable interconnection and communication between these
modules.

Furthermore, the gtz_raw_data_exdes creates some Input / Output (I1/O) ports to be assigned to
physical pins on the FPGA device, thus enabling the HW design implemented in it (i.e. in the
FPGA) to make use of other modules that are installed, along with the FPGA, on the VC7222
board (e.g. clock sources, general purpose DIP switches, LEDs, pushbuttons, USB-to-UART

Bridge, connector pads for the transceivers, etc.).

D

b
X

User Pushbutton -
(SW4) 1

AN SRRt ST LT SR S A X

Figure 4.13: Modules on VC7222 board used by the final design.

As Figure 4.13 illustrates, our final design needs to be boosted by the following hardwired
modules available on the VC7222 board:

e 200 MHz 2.5V LVDS oscillator: this oscillator (connected to multi-region clock
capable (MRCC) inputs on the FPGA) is the source of a 200 MHZ, free running,
differential System/board clock used to drive the FPGA logic in our design.

e User Pushbutton SW4 (active high): force the pr_controller module and all the eight
frame generators (instances of the gtz_raw_data_gt_frame_gen module) to be reset by

pushing this button.
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o Connector for USB to UART bridge: the AXI UART Lite soft IP core of Xilinx,
instantiated into the pr_controller module, is brought out to a mini-B USB connector
on our target-board.

e GTZ SMA Connectors: the GTZ reference clocks (CLKO and CLK1) are brought out
to two pairs of differential SMA (SubMiniature version A) transceiver clock inputs.

e GTZ Connector Pads (300A & 300B): the GTZ octal is brought out to two connector
pads, which interface with Samtec BullsEye connectors used with the Samtec HDR-
155805-01-BEYE cable assembly. As shown in Figure 4.14, the GTZ channels 0 — 3
are brought out to the GTZ 300A connector, while the GTZ channels 4 — 7 are brought
out to the GTZ 300B connector. The TXi and RXi in the figure below (0 <i < 7),
illustrate the transmitter and receiver of the i GTZ channel respectively, and each of

them is a differential pair of signals.
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GTZ Connector Pad GTZ 300A Connector Pinout GTZ 300B Connector Pinout

Figure 4.14: A — GTZ Connector Pad. B— GTZ 300A Connector Pinout. C— GTZ 300B Connector Pinout [12].

Towards interconnecting the final design implemented in the XC7VH580T-G2HCG1155E
with the aforementioned modules on the VC7222 board, the gtz_raw_data_exdes was modified
to have the following ports (lines beginning with // are just comments in Verilog):

//
// I/0 ports of the top-level module
//

module gtz_raw_data_exdes
(
// GTZ octal signals
output wire OCTO_GTO_TXP_OUT,
output wire OCTO_GTO_TXN_OUT,
input wire OCTO_GTO_RXP_IN,
input wire OCTO_GTO_RXN_IN,
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output wire OCTO_GT1_TXP_OUT,
output wire OCTO_GT1_TXN_OUT,
input wire OCT@_GT1_RXP_IN,
input wire OCT@_GT1_RXN_IN,

output wire OCTO_GT2_TXP_OUT,
output wire OCT@_GT2_TXN_OUT,
input wire OCT@O_GT2_RXP_IN,
input wire OCTO_GT2_RXN_IN,

output wire OCTO_GT3_TXP_OUT,
output wire OCTO_GT3_TXN_OUT,
input wire OCT@_GT3_RXP_IN,
input wire OCT@_GT3_RXN_IN,

output wire OCTO_GT4_TXP_OUT,
output wire OCTO_GT4_TXN_OUT,
input wire OCT@_GT4_RXP_IN,
input wire OCTO_GT4_RXN_IN,

output wire OCTO_GT5_TXP_OUT,
output wire OCTO_GT5_TXN_OUT,
input wire OCTO_GT5_RXP_IN,
input wire OCT@_GT5_RXN_IN,

output wire OCTO_GT6_TXP_OUT,
output wire OCTO_GT6_TXN_OUT,
input wire OCT@_GT6_RXP_IN,
input wire OCT@_GT6_RXN_IN,

output wire OCTO_GT7_TXP_OUT,
output wire OCTO_GT7_TXN_OUT,
input wire OCTO_GT7_RXP_IN,
input wire OCTO_GT7_RXN_IN,

// GTZ reference clocks

(* CLOCK_BUFFER_TYPE = "NONE" *) input wire OCTO_REFCLKOP_IN,
(* CLOCK_BUFFER_TYPE = "NONE" *) input wire OCT@_REFCLK®N_IN,
(* CLOCK_BUFFER_TYPE = "NONE" *) input wire OCT@_REFCLK1P_IN,
(* CLOCK_BUFFER_TYPE = "NONE" *) input wire OCT@_REFCLKIN_IN,

// System Clock
input wire SYSCLK_P_IN,
input wire SYSCLK_N_IN,

// Universal Asynchronous Receiver-Transmitter (UART)
input wire UART_RXD,
output wire UART_TXD,

// Reset Pushbutton - SW4
input wire HARD_RESET

)5

The interconnection is eventually achieved by mapping each of the top-level module’s ports
(described in Verilog as shown above) to a specific physical pin on the FPGA. For this purpose,

the following constraints were added in the gtz_raw_data_exdes.xdc file:

# Map I/0 ports of the top-level module to specific
# pins on the XC7VH580T-G2HCG1155E FPGA, based on the
# VC7222 board master XDC file
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# REFCLK

set_property PACKAGE_PIN E17 [get_ports OCTO_REFCLKOP_IN]
set_property PACKAGE_PIN E16 [get_ports OCTO_REFCLKON_IN]
set_property PACKAGE_PIN E21 [get_ports OCTO_REFCLK1P_IN]
set_property PACKAGE_PIN E20 [get_ports OCTO_REFCLKIN_IN]

# System Clock - 200MHz diff clock
PACKAGE_PIN AL24 [get_ports SYSCLK_P_IN]
IOSTANDARD LVDS [get_ports SYSCLK_P_IN]
PACKAGE_PIN AL25 [get_ports SYSCLK_N_IN]
IOSTANDARD LVDS [get_ports SYSCLK_N_IN]

set_property
set_property
set_property
set_property

# UART

set_property
set_property
set_property
set_property

# Reset PB -
set_property
set_property

PACKAGE_PIN AK10 [get_ports UART_TXD]
TOSTANDARD LVCMOS18 [get_ports UART_TXD]
PACKAGE_PIN AL10 [get_ports UART_RXD]
TOSTANDARD LVCMOS18 [get_ports UART_RXD]

PushButton2(Sw4)
PACKAGE_PIN AM22 [get_ports HARD_RESET]
IOSTANDARD LVCMOS18 [get_ports HARD RESET]

# TX - RX Pins

set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property

PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN

c29
c28
A28
A27
Cc26
Cc25
A25
A24
c17
Cie
Al16
A15
ci14
Cc13
A13
Al12
c23
c22
A22
A21
Cc20
c19
A19
A18
c11
cie
Al0
A9

c8

c7

A7

A6

[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports

0CT@_GT@_TXP_OUT]
0CT@_GT@_TXN_OUT]
0CT@_GT1_TXP_OUT]
0CT@_GT1_TXN_OUT]
0CT@_GT2_TXP_OUT]
0CT@_GT2_TXN_OUT]
0CTO_GT3_TXP_OUT]
0CTO_GT3_TXN_OUT]
0CTO_GT4_TXP_OUT]
0CTO_GT4_TXN_OUT]
0CTO_GT5_TXP_OUT]
0CT@_GT5_TXN_OUT]
0CT@_GT6_TXP_OUT]
0CT@_GT6_TXN_OUT]
0CT@_GT7_TXP_OUT]
0CT@_GT7_TXN_OUT]
0CTO_GT@_RXP_IN]
0CTO_GTO_RXN_IN]
0CTO_GT1_RXP_IN]
0CTO_GT1_RXN_IN]
0CTO_GT2_RXP_IN]
0CTO_GT2_RXN_IN]
0CTO_GT3_RXP_IN]
0CT@_GT3_RXN_IN]
0CTO_GT4_RXP_IN]
0CTO_GT4_RXN_IN]
0CT@_GT5_RXP_IN]
0CT@_GT5_RXN_IN]
0CT@_GT6_RXP_IN]
0CT@_GT6_RXN_IN]
0CT@_GT7_RXP_IN]
0CT@_GT7_RXN_IN]

The “sys_clk” module

This module takes the differential clock sourced by the 200 MHz 2.5V LVDS oscillator as
input, and generates a single-ended clock running at 100 MHz. The differential system clock is
divided down internally using a 7 series FPGAs Mixed-Mode Clock Manager (MMCM) to
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satisfy timing constraints. To this end, the MMCME2_ADV primitive is instantiated (and used)
into the sys_clk module.

The “gtz_raw_data_init” module

This is the main transceiver wrapper, used to:
e Instantiate individual transceiver wrappers, which in turn instantiate the selected
transceivers with settings for the selected protocol.
e Instantiate modules to perform the necessary reset sequence for each GTZ channel in
the octal.

e Interface the user logic with the GTZ transceivers.

The “gtz_raw_data_gt frame_gen” module

This module has two input ports for receiving clock and reset signals, and one 160-bit width
output port that can be connected, through the gtz_raw_data_init module, to a GTZ channel to
provide data for transmission. At the positive edge of the clock signal, a word of 160 bits is
made available by the frame generator to the corresponding GTZ transceiver in order for it to
be transmitted as a stream of serial bits. In case that the reset signal is asserted, all 160 bits of
this module’s output signal are set to zero. Otherwise, the gtz_raw_data_gt_frame_gen obtains
the data to be transmitted, from a 512-word ROM (a word consists of 160 bits) implemented in
the FPGA’s internal memory resources. Starting from the ROM’s 1% address, the module reads
one word per clock cycle from the memory, until it reads all 512 words and starts all over again
from the beginning. The ROM is created and initialized by the gtz_raw_data gt frame_gen

module itself.

module gtz_raw_data_gt_frame_gen

(
output reg [159:0] TX_DATA_OUT,

input wire USER_CLK,
input wire SYSTEM_RESET
)

In order for each channel of the GTZ-octal to have its own, dedicated frame generator, this
module is instantiated eight times in the top-level module of our design. The i instance of the
gtz_raw_data_gt_frame_gen, FRAM GEN i (0 <i < 7), is connected to the i transceiver,
GT i (0<i<7), of the GTZ-octal through the gtz_raw_data_init module. The reset signal of
each FRAM GEN i (where 0 < i < 7), is driven by the HARD_RESET signal of the
gtz_raw_data_exdes module, so that all eight frame generators can be reset simultaneously by
simply pressing the Pushbutton SW4 available on the VC7222 board.
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Being the only one reconfigurable frame generator, FRAME_GEN_0 differs from all the others

in the following respects:

The FRAME_GEN_O comes in three flavors. The first one called
FRAME_GEN_0_dummy, is used just to synthesize the static logic before the Partial
Reconfiguration (PR) workflow. For this reason, the FRAME_GEN_0_dummy only
contains a top file with definitions of the signals seen outside the generator and no
additional logic. The two others, called FRAME_GEN_0 v1 and FRAME_GEN_0 v2,
are the Reconfigurable Modules to be loaded in the Reconfigurable Region (RR) of our
device. FRAME_GEN_0_v1 and FRAME_GEN_0_v2 are interchangeable and each of
them contains all the logic needed to implement a regular frame generator (e.g. create
and initialize a ROM, provide output data, etc.). What makes the FRAME_GEN_0_v1
different from the FRAME_GEN_0_v2, is the data that each of them provides to the
corresponding transceiver (GT_0).
Because the logic inside the Reconfigurable Partition is modified while the device is
operating, the static logic connected to outputs of Reconfigurable Modules (RMs) must
ignore all incoming data during the PR procedure. The reconfigurable logic is in an
unknown state during reconfiguration and RMs do not output valid data until PR is
complete and the RMs are reset. In the light of the above, the necessary logic was added
in the top-level module (i.e. the gtz raw_data exdes) in order to implement the
following:

o The output of the FRAME_GEN_0 is not directly connected to the GT_0; it is one
of the two (160-bit width) input signals of a 2-to-1 multiplexer (mux). The second
input signal of this multiplexer is a word of 160 zero bits. The mux has one 160-bit
width output port connected to the GT_0 through the gtz_raw_data_init module. If
the mux’s selector signal is asserted, the second input signal (i.e. the one containing
160 zero bits) is sent to the multiplexer’s output and, consequently, to the GT_0
transceiver. Otherwise, the mux allows the output of the FRAME_GEN_0 to pass
through it unaffected. The mux’s selector is driven by the busy signal of the
pr_controller module which is asserted as long as the PR takes place (we will
discuss this module further in the next section).

o Apart from the HARD_RESET signal of the gtz_raw_data_exdes module, the busy
signal generated by the pr_controller module also drives the reset signal of the
FRAME_GEN_O. The busy signal, which is asserted during the PR procedure,
forces the logic within the FRAME_GEN_0 to be automatically reset after each PR.
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4.3 The “pr _controller”

The last modification made to the example-design presented in the previous section, was to

implement some additional logic (as part of the static logic) to enable the PR of our device in

the manner described in subsection 3.4.5 above. This additional logic is provided by a suitable

block-design (BD) created in the Vivado IP Integrator, within the “gtz_raw_data_ex” Vivado

project. The pr_controller is essentially the wrapper around the block design; it is used to

instantiate the BD into our top-level module (i.e. the gtz_raw_data_exdes) and is defined as
follows (Table 4.1):

module pr_controller

(

input wire Clk,
output wire busy,
input wire ena,
output wire ready,

input wire reset_rtl,

input wire uart_rtl_rxd,
output wire uart_rtl_txd,

)3

. . . Width .
Signal Direction (bits) Description
All IP cores within the block design are synchronous to this
Clk input 1 100 MHz clock signal. It is provided by the sys_clk module
presented in the previous section.
busy output 1 This signal is asserted as long as the Partial Reconfiguration
(PR) takes place.
It controls the operation of the read-only memory generated
. using the Block Memory Generator IP core. When deasserted,
ena input 1 .
no Read or reset operations are performed on the port A of
this memory. This signal was always asserted.
It is asserted just for one clock cycle to indicate that PR has
ready output 1
been successfully completed.
Active high reset signal for the entire BD. This input is driven
reset rtl input 1 by the HARD_RESET signal of the gtz raw_data_exdes
module.
uart rtl rxd input 1 Input signal of the UART Lite IP core to receive data. It is
- - connected to the UART_RXD port of the gtz_raw_data_exdes.
uart il txd output 1 Output signal of the UART Lite IP core to transmit data. It is
- connected to the UART_TXD port of the gtz_raw_data_exdes.

Table 4.1: 1/0 signals of the “pr_controller” wrapper.

Figure 4.15 shows the said block-design, the IP cores of which are presented in the following

subsections.
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Figure 4.15: The “pr_controller”—related Block Design.

4.3.1 MicroBlaze™ Processor

The MicroBlaze™ embedded processor is a reduced instruction set computer (RISC) core,
optimized for implementation in Xilinx® FPGAs. The following figure shows a functional

block design of the MicroBlaze core [22].
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Figure 4.16: Block Design of MicroBlaze Core [22].
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The MicroBlaze is a highly configurable processor which, as a soft-core, is implemented
entirely in the FPGA resources (LUTs, BRAMs, DSPs, etc.). It is organized as a Harvard
architecture with separate bus interface units for data and instruction accesses. MicroBlaze does

not separate data accesses to 1/0 and memory; it uses memory-mapped 1/O. The processor has

up to three interfaces for memory accesses [22]:

Local Memory Bus (LMB)

ARM Advanced Microcontroller Bus Architecture (AMBA) Advanced eXtensible
Interface 4 (AXI4) for peripheral access.

ARM AMBA® AXI4 or AXI Coherency Extension (ACE) for cache access.

In the context of this thesis the MicroBlaze was used as a 32-bit processor configured to have

the following interfaces:

1)

2)

3)

4)

Local memory Bus Instruction Interface (ILMB): provides access to fast local
memory for instructions.

Local memory Bus Data Interface (DLMB): provides access to fast local memory
for data and vectors.

Peripheral AXI Data Interface (M_AXI_DP): this interface connects to peripheral
1/0 using AXI4-Lite.

Core Interface: miscellaneous signals for: clock, reset, interrupt.

The local memory of the MicroBlaze processor, as well as the axi_uartlite_0, axi_timer_0, and

custom_icap_controller peripherals that were connected to it, were memory-mapped in the

"Address Editor” window of the IP Integrator as shown in the following figure:

&= Diagram 3 | B Address Editor X

aQ
=
5]

[
=
i

o

Cell Slave Interface Base Name  Offset Address Range  High Address
=I-{F microblaze_0
j"ﬂ Data (32 address bits : 4G
= axi_timer_0 5_AXI Reg 0x41C0_0000 59K Ox41C0_FFFF

w
m axi_uartlite_0 S_ANI Reg Ox4060_0000 o4 ~ Oxd4060 FFFF
m microblaze_local_memory/dimb_bram_if cotlr  SLMB Mem 0x0000_0000 64 + 0x0000_FFFF
i = ustom_icap_controller S00_AXI S00_AXI_reg Ox44A0 0000 64 = Oxd44n0 FFFF
I B8 Instruction (32 address bits : 4G
‘- =m microblaze_local_memoryjiimb_bram_if cntr  SLMB Mem 0x0000_0000 64 ~ 0x0000_FFFF

Figure 4.17: Memory-mapped slaves of the MicroBlaze system.

As we can see, the instruction and data memory ranges were made to overlap by mapping them

both to the same physical memory.

95




4.3.2 MicroBlaze Local Memory

The MicroBlaze processor needs to use a memory to store instructions and data of SW
applications running on it. To this end, the Xilinx® LogiCORE™ IP Block Memory Generator
(BMG) core was used to create a fast, local memory out of block RAM resources available on
the FPGA device. The BMG core (named uBlaze_local_mem) was configured as a True Dual-
Port RAM with 32-bits address interfaces, and 64 KBytes storage capacity. The True Dual-Port
RAM provides two ports, A and B, as illustrated in Figure 4.15. Read and Write accesses to the
memory are allowed on either port. The BMG core was used in “BRAM Controller” mode, so
that each of its ports (i.e. A and B) can be connected to the corresponding MicroBlaze LMB
interface (i.e. DLMB and ILMB) through a dedicated set of IP cores composed by a Local
Memory Bus (LMB) and an LMB BRAM Interface Controller (see Figure 4.15).

4.3.3 Processor System Reset

The Xilinx LogiCORE™ IP Processor System Reset Module core provides customized resets
for the entire MicroBlaze system, including the processor, the interconnect and peripherals [23].
The ext_reset_in port of this IP core was exposed as reset_rtl to the pr_controller wrapper in
order to be connected to the HARD_RESET signal of the top-level module (i.e.
gtz_raw_data_exdes). As a result, the entire MicroBlaze system could be reset by pressing the
SW4 Pushbutton available on the VC7222 board.

4.3.4 AXI Interconnect

AXI Interconnect IP connects one or more AXI memory-mapped Master devices to one or more
AXI memory-mapped Slave devices. The devices can vary in terms of data width, clock domain
and AXI sub-protocol (AX14, AXI3, or AXI4-Lite) [24]. In our case this IP core was used in a
1-to-3 configuration in order for the MicroBlaze (Master device) to access the following three
memory-mapped Slave peripherals (see Figure 4.15): the axi_uartlite_0, the axi_timer_0, and

the custom_icap_controller.

4.35 AXI Timer

The LogiCORE™ IP AXI Timer is a 32/64-bit timer module that interfaces to the AXI4-Lite

interface [25]. This IP core was used in 64-bit mode to measure the reconfiguration time.
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4.3.6 AXI Uartlite

The LogiCORE™ IP AXI Universal Asynchronous Receiver Transmitter (UART) Lite core
provides between UART signals and the AMBA® AXI interface and also provides a controller
interface for asynchronous serial data transfer. This soft LogiCORE™ IP core is designed to
interface with the AXI4-Lite protocol [26]. The core was customized in the Vivado IP Integrator
as follows:

e Baud Rate = 9600 bits per second (bps)

e Number of data bits in the serial frame =8

e Parity was not used
The rx (receive data) and tx (transmit data) signals of this core, bundled in the UART interface,
are exposed as uart_rtl_rxd and uart_rtl_txd, respectively, to the pr_controller wrapper in order
to be matched with the UART_RXD and UART_TXD signals of the gtz_raw_data_exdes module

(respectively).

4.3.7 custom_icap_controller_rom

The custom_icap_controller_rom is the second instance of the Xilinx® LogiCORE™ IP Block
Memory Generator (BMG) core in our Block Design (the first one was the uBlaze_local_mem
used as a True Dual-Port RAM for the needs of processor’s local memory). As already
mentioned, the BMG core uses embedded Block Memory primitives in Xilinx® FPGAS to
extend the functionality and capability of a single primitive to memories of arbitrary widths and
depths. Sophisticated algorithms within the BMG core produce optimized solutions to provide

convenient access to memories for a wide range of configurations [18].

i N
||/ <=Bram_PoRTA
—  Paddra[17:0]
— Ppcka
= douta[31:0]

— Pprena

| !
4

Figure 4.18: The “custom_icap_controller_rom”.
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In the case of custom_icap_controller_rom, our device’s BRAM resources are used to generate
a read-only memory storing the partial bitstream that will be loaded in the Reconfigurable
Region of the device when PR is performed on it. This core was configured as a Single Port
ROM in the Vivado IP Integrator. The Width and Depth values that were used for read operation
in the memory port named Port A, was set to 32 bits and 170,383 respectively, resulting in a
memory with a storage capacity of 170,383*32 bits or 681,532 Bytes (i.e. the size of a partial
bitstream). The custom_icap_controller (which will be presented in the following subsection)
was directly connected to the custom_icap_controller_rom without the need for using any
memory controller (e.g. LMB or AXI), buses, or interconnects that implement a standard and
predefined communication protocol. So, unlike the uBlaze _local_mem, in this case the BMG
core was used in “Stand Alone” mode, and the 1/O signals that are associated with the Port A
and are bundled in the BRAM_PORTA interface, were handled individually as described in the

following table:

. . . Width .
Signal | Direction (bits) Description
Input provided by the custom_icap_controller. It addresses the
addra input 18 memory space for the Port A Read operation. The width of this
port is determined by the memory depth (27 < 170,383 < 218),
. Port A clock connected to the Clk signal of the pr_controller
clka input 1 . .
wrapper. Port A Read operations are synchronous to this clock.
Data output from Read operations through port A. As already
douta output 32 mentioned, the width was set to 32 bits. This output signal was
monitored by the custom_icap_controller.
If asserted, it enables all operations through Port A. It was
ena input 1 exposed as ena to the pr_controller wrapper and its value was
always set to 1.

Table 4.2: 1/0 signals of the “custom_icap_controller_rom”.

Finally, the custom_icap_controller_rom was configured to be initialized with the contents of
a partial bitstream file, by selecting the “Load Init File” option in the “Other Options” tab of
the BMG configuration window. Unfortunately, the bitstream cannot be loaded directly into the
BRAM using the Xilinx’s BMG core. This IP core only supports .coe files for memory
initialization. A file of COE format is a text file which specifies two parameters [18]:
e memory_initialization_radix:  The radix of the wvalues in the
memory_initialization_vector. Valid choices are 2, 10, or 16.
e memory_initialization_vector: Defines the contents of each memory element. Each
value is LSB-justified and assumed to be in the radix defined by
memory_initialization_radix. The values (or coefficients) can be separated by a space,

a comma, or by placing one value in each line with a carriage return.
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In the light of the above, we developed a C application that automates the conversion of a BIN
file, generated by the Vivado tool to contain bitstream configuration data, into the equivalent
COE file with the radix be set to 16 (i.e. hexadecimal system is used). This simple app takes a
.bin file as input and does the followings:

1) Itcreates a .coe output file setting the memory_initialization_radix to 16.

2) Starting from the beginning, it reads 32-bit words of binary data from the .bin file and
writes them in hexadecimal format to the .coe file, until reading the entire .bin file.

3) The 32-bit words (i.e. coefficients) written to the .coe file, are separated by placing one
value in each line with a carriage return. The last coefficient is followed by the
semicolon (;) special character indicating the end of the memory _initialization_vector.

Figure 4.19 shows the first twenty-five lines of the .coe file used to initialize the
custom_icap_controller_rom (according to Table 3.5 the size of the .bin file containing the
partial bitstream is 681,532 Bytes or 170,383 32-bit words, and therefore the equivalent .coe
file, a small part of which is shown in the figure below, consists of 170,385 (170,383 + 2) lines).

memory_initialization radix=16;
2 memory _initialization wvector=

3 FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
11 000000BB
12 11220044
3 FFFFFFFF
FFFFFFFF
RLS95566
20000000
30008001
00000007
19 20000000
20 20000000
21 3001s001
22 036059093
23 3000C001
24 00000100
25 3000R001

Figure 4.19: Sectional view of the COE converted partial bitstream file.

4.3.8 custom_icap_controller

The custom_icap_controller instantiates the ICAPE2 primitive (see Subsection 3.3.2) in our
design and implements a custom state machine through which the partial bitstream stored in the
custom_icap_controller_rom is delivered to the ICAPE2 write port to replace functionality in
a pre-defined device region during normal device operation. This module was implemented

writing Verilog HDL code from scratch. To make it easy for this module to be distributed to
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third parties, as well as to be integrated into a microprocessor-based system (e.g. MicroBlaze,

Zynq) so that it can be controlled by a SW application running on the microprocessor, the RTL
was packaged as an AXI IP core (Figure 4.20) with the help of the Vivado® IDE Create and

Package New IP wizard.

¢ ™
= BS00_AXI y
LIS j—
=din[31:0] Y
ready m—

=0 axi_aclk

Q=00 _gxi_aresen

e

addra[17:0] wm

A

Figure 4.20: The “custom_icap_controller”.

Table 4.3 describes how custom_icap_controller communicates and interacts with the rest of

the HW design.

Signal

Direction

Width
(bits)

Description

S00_AXI

input/output

N/A

Group of 1/0 signals implementing a Slave AXI4-Lite
interface of 32-bit data width. This interface enables
MicroBlaze to access the custom_icap_controller
through register reads and writes over an AXI bus.

s00_axi_aclk

input

AXI clock connected to the CIk signal of the
pr_controller wrapper. All operations are synchronous to
this clock.

s00_axi_aresetn

input

Active-Low, AXI reset signal provided by the Processor
System Reset module.

addra

output

18

Output port connected to the homonym port of the
custom_icap_controller_rom. It addresses the memory
space for the Read operations through port A of the
custom_icap_controller_rom module.

din

input

32

Data input from Read operations through port A of the
custom_icap_controller_rom module. It is connected to
the dout port of the custom_icap_controller_rom.

busy

output

This signal is asserted as long as the Partial
Reconfiguration (PR) takes place. It is exposed as busy
to the pr_controller wrapper in order to be connected to
the SYSTEM_RESET port of the FRAME_GEN_0.

ready

output

1

It is asserted just for one clock cycle to indicate that PR
has been successfully completed.

Table 4.3: /0 signals of the “custom_icap_controller”.

The custom state machine controlling the partial reconfiguration process directly drives the pins

of the ICAP primitive as shown in Figure 4.21.
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custom_icap_controller
< AXI4-Lite Interface ——trigger
Clk axi_clk; CLK —
BRAM L
clka |« ——CSIB—>|
ICAP
addra «——addra —RDWRB-»>
Custom State
douta din Machine —1(31:0)
ena 1
T axi_resetn ——> ————busy —>
1 ready———>
reset

Figure 4.21: Custom state machine interface to the BMG core and ICAPE2 primitive.

While in rest mode, the custom state machine disables the ICAP by pulling the CSIB pin high,
and sets the busy, the ready and all bits of the addra signal to zero. The PR process is triggered
by means of an external trigger supplied by the user to the MicroBlaze through the serial port,
and the MicroBlaze in turn propagates the trigger signal to the custom state machine through
its AXI4-Lite interface (the next subsection provides more details on how the MicroBlaze is
involved in this process). The moment the PR process is triggered the busy pin is pulled high
and addra is increased by one. The output data provided by the BMG core (i.e. the
custom_icap_controller_rom) are not valid during this clock cycle. For each of the next two
clock cycles the custom state machine just increases the addra by one without sending data to
the ICAP, since the output data from BRAM are still invalid. After that, the custom state
machine reads a 32-bit configuration word from the douta port of the BMG core per clock
cycle, and delivers it to the input port, I, of the ICAP by pulling the CSIB and RDWRB pins low
to enable the ICAP and write operations to it. When the last 32-bit configuration word of the
partial bitstream stored in BRAM is sent to the ICAP, the custom state machine also asserts the
ready signal for one clock cycle, and then goes into rest mode. This whole process is illustrated

by the flow diagram of the state machine in Figure 4.22.
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Setaddrato 0
Set CSIB high
Set busy low

Set ready low

Trigger is asserted

STATE_1

e Increase addra by 1
Set busy high

STATE_2

Increase addra by 1

STATE_3

e Increase addra by 1

Not the last word in BRAM

STATE_4
Set CSIB low
Set RDWRB low

Send 32-bit word to port | of ICAP
Increase addra by 1

Is the last word in BRAM

!

END
Set CSIB low
Set RDWRB low
Send last 32-bit word to port |
Set ready high

Figure 4.22: Partial reconfiguration state machine flow diagram.




It is essential to bear in mind that the bit-swap rule applies to the 7 series FPGA ICPAE2
interface. As shown in Figure 4.23, bit swapping is the swapping of the bits within a byte [14].

Hex: A B C D
Binary: 1_ 0_1 O0Of1 O 1 1(1_1_0 0|1 1 O

Swapped 1 1 0 1|0 1 0 1|1 0 1 1]u0v 0 1
Binary:

Bit-
S:Napped D S B 3

Hex:

Figure 4.23: Bit swapping two bytes of data (OXABCD).

Since the BIN files generated by the Vivado tool are never bit swapped, the custom state
machine should also undertake the task of swapping the bits within the bytes of each 32-bit
configuration word in the partial bitstream. The following table shows an example of how the
0xAA995566 configuration word of the partial bitstream is bit swapped within each byte by the

custom state machine, before it is sent to the port | of the ICAP.

[31:24] [23:16] [15:8] [7:0]
Bitstream Format OxAA 0x99 0x55 0x66
Bit Swapped 0x55 0x99 OXAA 0x66

Table 4.4: Bit swap example of the 0xAA995566 configuration word.

4.3.9 Bare-Metal Application Development

The way in which the MicroBlaze soft processor controls the operation of its peripherals (i.e.
the axi_uartlite_0, the axi_timer_0, and the custom_icap_controller) is determined by a bare-
metal application developed and compiled for a MicroBlaze system using the Xilinx SDK
2016.3 tool. This SW application enables the user of a host PC (personal computer) to trigger
the PR process using a serial terminal program (e.g. PuTTY). More specifically, using a
standard A to mini-B USB cable, the host PC is able to communicate with the soft processor
through the axi_uartlite_0 IP core. Assuming that the host PC user has opened a serial
connection at the relevant port and baud rate (i.e. 9600 bps) by using a serial terminal program,
the SW app will print the following message to the terminal: “Would you like to change

device’s configuration? [Y/n]”. If the user’s answer is ‘yes’, the application sends a trigger
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signal to the custom_icap_controller and the PR process begins. The SW app also sends a start
signal to the axi_timer_0 to measure the reconfiguration time. Finally, when the PR of our
device ends, a new message is displayed on the terminal console informing the user that the
device was successfully reconfigured and how long this process took. Since this application
runs directly on hardware level without the support of any operating system (bare-metal), the

processor’s peripherals are accessed through register reads/writes.

4.4 Bitstream Generation

In order to generate the full and partial bitstreams for our design, the Xilinx PR workflow
described in Section 3.2 was followed. However, since the partial bitstream corresponding to
the reconfigurable logic must be stored in the custom_icap_controller_rom (see subsection

4.3.7) and thus be part of the static logic, we had to perform three iterations of this workflow:

1% Iteration

e Step 1 — Synthesize the static logic and the two RMs (i.e. FRAME_GEN 0 v1 and

FRAME_GEN_0 v2), separately:
The respective design checkpoints were saved as static_synth.dcp, RM1_synth.dcp and
RM2_syth.dcp. As regards the static logic, the first time we perform this step, there is
no partial bitstream that we can store in the custom_icap_controller_rom. In fact, we
cannot even know the required memory capacity for the (BRAM-based) ROM (the
partial-bitstream size is directly related to the size of the RR defined in Step 3). In this
context, the BMG core was initially configured as a stand-alone, non-initialized Single
Port ROM, setting its capacity to the minimum possible, to reduce the synthesis time
of the static logic.

e Step 2 — Open the static_synth.dcp in a Vivado project and read the RM1_synth.dcp in
order to add the FRAME_GEN_0 vl RM to the static design. In addition, set the
HD.RECONFIGURABLE property on the Reconfigurable Partition of our design, and
impose all constraints contained in the gtz_raw_data_exdes.xdc and v7ht.tcl files.

e Step 3 - Impose physical constraints to define the Reconfigurable Region
(Floorplanning):

The first time we perform this step, we create these constraints by drawing a Pblock in
the device window of Vivado project. In order to be able to impose exactly the same

constraints for the next two times we will perform this step, we saved them as fplan.xdc.
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Step 4 — Implement the complete design and save a design checkpoint for the full
routed design as RM1_impl.dcp.

Step 5 — Remove the FRAME_GEN_0_v1 RM from the full routed design, lock the
static placement and routing, and save a static-only design checkpoint as
static_only_impl.dcp.

Step 6 — Add the FRAME_GEN_0_v2 RM to the static-only design by reading the
RM2_syth.dcp and implement this new configuration, saving a checkpoint for the full
routed design as RM2_impl.dcp.

Step 7 — Run the verification utility (pr_verify) on the two configurations (i.e.
RM1_impl.dcp and RM2_impl.dcp) and create (full and partial) bitstreams for each of

them.

2" Jteration

Step 1 — Synthesize the static logic and the two RMs (i.e. FRAME_GEN_0 v1 and
FRAME_GEN_0 v2), separately:

Knowing the size of a partial bitstream and provided that the physical constraints
associated with the RR definition never change (see Step 3), the second time we
performed this step, the custom_icap_controller_rom was reconfigured in order to set
its capacity to the bitstream’s size. This change in the ROM’s capacity, causes changes
to the static logic that also affect the reconfigurable one. As a result, the partial
bitstreams generated from the first iteration do not correspond to the new design, and
therefore they should not be used to initialize the custom_icap_controller_rom.

Step 2 — Open the static_synth.dcp in a Vivado project and read the RM1_synth.dcp in
order to add the FRAME_GEN 0 vl RM to the static design. In addition, set the
HD.RECONFIGURABLE property on the Reconfigurable Partition of our design, and
impose all constraints contained in the gtz_raw_data_exdes.xdc and v7ht.tcl files.
Step 3 - Impose physical constraints to define the Reconfigurable Region
(Floorplanning):

Impose the physical constraints contained in the fplan.xdc file (created the first time
this step was performed) to ensure that the partial bitstreams that will be generated in
the seventh step of this iteration, will be of exactly the same size as the ones generated
the first time we performed the Step 7. Otherwise, we may need to start again from the
beginning by redefining the custom_icap_controller_rom capacity.

Step 4 — Implement the complete design and save a design checkpoint for the full

routed design as RM1_impl.dcp.
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Step 5 — Remove the FRAME_GEN_0_v1 RM from the full routed design, lock the
static placement and routing, and save a static-only design checkpoint as
static_only_impl.dcp.

Step 6 — Add the FRAME_GEN_0_v2 RM to the static-only design by reading the
RM2_syth.dcp and implement this new configuration, saving a checkpoint for the full
routed design as RM2_impl.dcp.

Step 7 — Run the verification utility (pr_verify) on the two configurations (i.e.
RM1_impl.dcp and RM2_impl.dcp) and create (full and partial) bitstreams for each of
them:

More specifically, one full and a partial bitstream were stored in both BIT and BIN file

formats for each implementation, as shown in the table below.

RM1_impl.dcp RM2_impl.dcp
_ RM1.bit RM2.bit
Full Bitstreams
RM1.bin RM2.bin
. ) RM1_partial.bit RM2_partial.bit
Partial Bitstreams
RM1_partial.bin RM2_partial.bin

Table 4.5: Full and partial bitstreams for each implementation.

3" Iteration

Step 1 — Synthesize the static logic and the two RMs (i.e. FRAME_GEN_0_v1 and
FRAME_GEN_0 v2), separately:

The third (and last) time this step is performed, the custom_icap_controller_rom is
reconfigured in order to be initialized with the contents of the previously created file,
RM2_partial.bin. Given that the physical constraints associated with the RR definition
never change, this slight change in the ROM’s content does not affect the
reconfigurable logic. As a result, the partial bitstreams that will be generated in the
seventh step of this iteration, will be identical with the ones generated the second time
we performed the Step 7.

Step 2 — Open the static_synth.dcp in a Vivado project and read the RM1_synth.dcp in
order to add the FRAME_GEN_0 vl RM to the static design. In addition, set the
HD.RECONFIGURABLE property on the Reconfigurable Partition of our design, and
impose all constraints contained in the gtz_raw_data_exdes.xdc and v7ht.tcl files.
Step 3 - Impose physical constraints to define the Reconfigurable Region

(Floorplanning):
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Impose the physical constraints contained in the fplan.xdc file created the first time this
step was performed.

o Step 4 — Implement the complete design and save a design checkpoint for the full
routed design as RM1_impl.dcp.

o Step 5 — Remove the FRAME_GEN_0 vl RM from the full routed design, lock the
static placement and routing, and save a static-only design checkpoint as
static_only_impl.dcp.

e Step 6 — Add the FRAME_GEN_0_v2 RM to the static-only design by reading the
RM2_syth.dcp and implement this new configuration, saving a checkpoint for the full
routed design as RM2_impl.dcp.

e Step 7 — Run the verification utility (pr_verify) on the two configurations (i.e.
RM1_impl.dcp and RM2_impl.dcp) and create (full and partial) bitstreams for each of
them.

4.5 Experimental Setup

This section provides a procedure for setting up the Virtex®-7 FPGA VC7222 GTH and GTZ

Transceiver Characterization Board to test and demonstrate our design on real hardware.

1. Make sure the following modules are installed on the VC7222 board:
e The 7 series GTZ transceiver power module that supplies MGTZAVCC,
MGTZVCCL and MGTZVCCH voltages to the FPGA GTZ transceivers.
e The SuperClock-2 module (Figure 4.24) that provides programmable, LVDS
(low-voltage differential signaling) clock outputs for the GTZ transceivers

reference clock (in our case the frequency is preset to 255.00 MHz).

SI570_CLK_P

r
.

Figure 4.24: SuperClock-2 Module Output Clock SMA Locations [27].

2. Connect the GTZ reference clock CLKO (see Figure 4.13) to the SuperClock-2 module
as follows (note that the GTZ reference clock CLK1 can be left disconnected):

e REFCLKO_P — SMA connector — CLKOUT1_P (on SuperClock-2 module)
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e REFCLKO_N — SMA connector — CLKOUT1_N (on SuperClock-2 module)
Attach a Samtec BullsEye cable to each of the GTZ Quads, i.e. the Q300A and the
Q300B (see Figure 4.13) and connect the transmit and receive cables as follows (see
Figure 4.14 to identify the location of the P and N pins of the GTZ transmitters and
receivers lanes):

e Screw down a 50Q2 SMA terminator onto each of the sixteen receive cables

(RXi Pand RXi N, 0<i<7), since we do not intend to use the GTZ receivers.

e Screw down a 50Q SMA terminator onto one of the two transmit cables (either
the P or the N) of each transmitter lane. The eight transmit cables left (one per
transmitter), will be connected to a powerful and high-performance scope to
monitor the GTZ transmitters output data.

Connect a host computer to the VC7222 board using a standard-A plug to micro-B plug
USB cable. The standard-A plug connects to a USB port on the host computer and the
micro-B plug connects to the Digilent USB JTAG configuration port on the VC7222
board.

With the board powered ON, start Vivado Design Suite on the host computer and use
the Vivado Hardware Manager to detect and open our hardware target (i.e. the
XC7VH580T device) in a new Hardware Manager window.

Configure the SuperClock-2 module so that it will provide a 255 MHz frequency clock
source. For this purpose, the setup_scm2_225 00_GTZ.tcl script provided by Xilinx in
the context of VC7222 IBERT Getting Started Guide (UG971) [27] can be used. More
specifically, click Tools > Run Tcl Script (in the Vivado window), navigate to the
setup_scm2_225_00_GTZ.tcl (in the Run Script window that pops up) and click OK.
Configure the FPGA by downloading the RM1.bit to the XC7VH580T device through
the (always available) JTAG interface, with the help of Vivado Hardware Manager.
Note that the RM1.bit is the full configuration file generated the 3 time we performed
the 7" step of the bitstream generation process described in the previous section
(Section 4.4). At this point we will be able to monitor the data generated by the frame
generators on scope’s display.

Enable communication between the host computer and the MicroBlaze soft processor
through the serial port:

e Connect the host computer to the VC7222 board using a standard-A plug to
mini-B plug USB cable. The standard-A plug connects to a USB port on the
host computer and the mini-B plug connects to the board’s connector providing
the USB-to-UART bridge.
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e Open a serial terminal application (e.g. PuTTY) and set the terminal
configuration to the COM port where the Silicon Laboratories USB-UART
bridge is connected. Set the baud rate to 9600, data to 8 bits, no parity or flow
control, and 1 stop bit with no delays.

9. Launch the bare-metal application described in subsection 4.3.9 on the MicroBlaze. A
message will be displayed on the terminal console asking for user input.
10. Trigger the PR process and notice that the GT_0 output signal displayed on the scope

changes.
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Conclusions and future

directions

5.1 Summary

In the context of this thesis, we had the opportunity to explore the Partial Reconfiguration
technology on FPGAs and apply the knowledge acquired to implement a high-bandwidth
telecom system on a Virtex-7 H580T device. This device is not just an ordinary, monolithic
FPGA; it is actually the result of combining two FPGA dices and an 8-channel 28Ghbps
transceiver die (GTZ transceivers) into a single package using Xilinx’s SSI technology.

Our high-bandwidth, reconfigurable system makes use of all eight GTZ transceiver channels
available on the Virtex®-7 H580T device. Each GTZ channel was configured to transmit raw
data (that is, non-encoded data) at the maximum possible line rate of 28.05 Gbps. The
transmission data were generated and provided to each channel by a (dedicated to the channel)
hardware module called frame generator, and they were monitored (in a real-world
environment) using a special, high-performance scope.

The logic implemented by the first frame generator (that is, the one corresponding to the first
transceiver of the GTZ transceiver octal) was defined as reconfigurable, so that it can be
dynamically modified through the Partial Reconfiguration of our device. To this end, two
hardware modules were constructed as different flavors of the first frame generator, and also a
third, “dummy” hardware module containing only definitions of the signals seen outside the
two aforementioned generators and no additional logic. The “dummy” module was necessary
to synthesize the static design and was used as a black-box in which the different flavors of the
first frame generator were loaded prior the implementation of the various configurations. In
addition, we implemented all this logic needed to isolate outcoming signals from the
Reconfigurable Partitions to the rest of the system during Partial Reconfiguration and reset the
Reconfigurable Modules to a known initial state after reconfiguring was done.

In the direction of improving our system’s reconfiguration throughput, five different
reconfigurable architectures were tested and compared in terms of reconfiguration time. One of

the things we primarily had to do towards reducing the reconfiguration time, was to make use
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of the high-speed embedded memory resources in our target-device (i.e. the XC7VH580T) by
storing the partial bitstream configuration data in the (on-chip) Block RAM. With our efforts
being focused on BRAM-based architectures, we realized that the reconfiguration speed was
mainly limited by the buses used to connect the configuration controller (i.e. one of the ready-
to-use ICAP controllers provided by Xilinx) to the (BRAM-based) memory where the partial
bitstream was stored. The only way to overcome this limitation, is to create a custom ICAP
controller which could directly connect the (BRAM-based) memory output port to the ICAP
input port. In the light of the above, we developed from scratch in RTL a hardware module to
implement a custom state machine through which the partial bitstream stored in the Block RAM
is delivered to the ICAP write port. By comparing the throughput of this architecture to the
maximum theoretical throughput of the ICAP it was established that it allows us to fully exploit
the ICAP’s high throughput capabilities. However, being BRAM-based, the main disadvantage
of this architecture is the limited amount of BRAM available to store configuration data.

Finally, to further enhance our reconfigurable system, a microprocessor was implemented
entirely within the device general-purpose memory and logic fabric, by using Xilinx’s soft IP
core, MicroBlaze. The inclusion of a microprocessor in the hardware design facilitates the
management of our system from the outside world (e.g. easy and flexible communication with
a host-computer) enabling us to remotely control the Partial Reconfiguration of our device. The
result is a hybrid hardware-software system where the functionality that will be optimally
implemented in the hardware can be easily defined by the software (the “hardware-enabled,

software-defined” concept).

5.2 Final Thoughts and Future Work

During this work, we encountered many difficulties in our efforts to:

o use the high performance GTZ transceivers and put them under our full control in a
real-world environment.

e improve our system’s reconfiguration throughput by exploring the unique and not so
known nature of a heterogeneous, SSI device and constructing a custom configuration
controller.

e implement a MicroBlaze based hardware design, creating, essentially, a hybrid device
which is both software and hardware programmable.

Having overcome all these challenges, we, eventually, built a reconfigurable system whose sole
intention was to demonstrate the “proof of concept”. However, during the development of this

thesis, we had in mind the greater picture of the technologies used. Based on the acquired
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knowledge, we could implement a more sophisticated system for it to be able to operate in a
real-world scenario. We could extend, for instance, the functionality of our high-bandwidth
telecom system in order to implement a hardware accelerated Software-Defined Radio (SDR)
system. SDR is a communication system where components that are traditionally implemented
in hardware (e.g. mixers, filters, amplifiers, modulators/demodulators, encoders/decoders etc.)
are instead implemented by means of software. This gives the ability to a system to change
transmission protocols and a single device can be used in a wide variety of communication
schemes. However, performing computationally-intensive signal processing algorithms in
software is inefficient or even practically impossible in the case of a telecom system that needs
to operate reliably at extremely high rates (just like the one proposed here). On the contrary,
our reconfigurable system could function as an ideal SDR that implements efficiently all these
tasks in hardware.

Another interesting endeavor, would be to further increase the reconfiguration throughput of
our system by trying to overclock the ICAP. It has been shown in the literature ([28], [29]) that
by adding custom hardware to control the ICAP (just like in our case), it is possible to clock
the ICAP above the Xilinx-recommended 100 MHz. Although, none of these projects deals
with a Virtex-7, heterogeneous SSI device, it is quite possible that we will be able to clock the
ICAP above 200 MHz, since the reconfigurable architecture proposed in this thesis is based on
a custom ICAP controller and BRAM (the maximum clock frequency of which, according to
the Xilinx documentation [18], is 450 MHz). So, to investigate the maximum clock frequency
of the ICAP in the proposed architecture, we should gradually increase the frequency at which
our RA’s components are clocked, until the reconfiguration process fails. If our predictions

hold true, then the (already short) reconfiguration time could be reduced by at least half.
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