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Abstract

In this thesis, the optimal design of an observer for the determination of the propeller’s
power demand is investigated, during the charging of the propulsion system of the ship.
The main purpose is to use this observer, for the operation of an optimal system controller.

The design of the observer is based on the comparison of two proposed models, the
first of which calculates the torque of the propeller, using basic propulsion principles, and
the second also gives an estimate of the propeller torque coefficient. The equations gov-
erning the two systems are used to construct the corresponding Extended Kalman Filter
observers. These observers are able to apply to real-time sensors and filter their measure-
ments, thus removing unwanted disturbances-sounds.

In the next stage of this work, the feasibility of using a shaft speed prediction system in
a short future horizon is investigated. The purpose is to ensure the best possible operation
of the propulsion control system. It is found that for this problem, the method of neural
networks gives accurate and reliable predictions.

The complete modeling of the propulsion system is carried out, based on the technical
characteristics of the available experimental testbed of LME. The implementation of the
simulations takes place in MATLAB/Simulink programming environment and both the
use of a duct propeller and the use of a controllable pitch propeller are tested.
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Chapter 1

Introduction

Problem Framework

The growing global environmental concern and the intensification of the effort to reduce
pollutant emissions have rapidly changed the operating conditions of the shipping indus-
try. The need for fleets to increase their efficiency and adapt quickly to new regulations,
makes it as urgent as possible to research and use advanced control technologies on ship
propulsion energy management systems. Many recent researches and works have focused
on the most accurate possible modeling of the ship dynamics but also on the provision of
some basic system states required for automatic control. Designing a Model Predictive
Controller for the ship’s energy management needs, also becomes necessary for a number
of additional issues related to the operation of ships, such as: performance monitoring,
navigation control, thrust loss estimation, ventilation detection, power fluctuations and
fuel reduction, wear and tear reduction in high sea state, hull fouling detection and main-
tenance.

The basic principles and mathematical formulas for ship resistance and propulsion
should be applied, to model the ship’s propulsion plant and obtain feedback control in-
formation in sea going, transient, port or other ship operating conditions. In addition
to performing simulations, a key advantage of ship modeling is saving time adjusting the
pre-installation propulsion control systems during sea trials, as this can be done during
shop tests.

In order to achieve high vessel control performanc all propulsion system states should
be available. In practise, this is often difficult due to reasons such as the inability to place
a sufficient number of sensors, the high cost of specialized sensors installation or the uncer-
tainties regarding the propulsion plant, propeller and ship resistance characteristics over
time. Therefore, propeller torque (and its coefficient), along with propeller law constant
could be estimated using observers. The observer signals can be more accurate, less ex-
pensive to produce, and more reliable than sensed signals, reducing the phase lag inherent
in the sensor. In general, observers offer designers an inviting alternative to adding new
sensors or upgrading existing ones. In some cases, the observer can be used to enhance
system performance. The adaptive propeller observation scheme can be upgrated to the
corresponding Extended Kalman Filter (EKF) observer so as to filter and reconstract
noisy sensors’ measurements during actual operating conditions. EKF has been recently
the subject of extensive research and application, particularly in the area of autonomous
or assisted navigation.

13



14 Chapter 1. Introduction

Figure 1.1: System’s Layout

To maximize the efficiency of the propulsion control system, it is advisable to predict
shaft rotational speed within a sufficient future horizon. Many methods have been pro-
posed for various system states prediction. In this work, a Neural Network (NN) model
is described as a well performed deterministic prediction approach to this problem. Al-
though neural networks were firstly inspired by the goal to model a biological neuron, they
have since diverged and become a matter of engineering and machine learning. For certain
types of problems artificial NNs are among the most effective learning methods currently
known.

Literature Review

As mentioned above, the basic initial requirement was the appropriate modeling of the
ship’s propulsion plant. Several bibliographic references focus on the ship’s basic mod-
eling principles, such as [2] or [3]. To perform simulations, a type of ship with similar
horsepower levels was chosen with those of the internal combustion engine of the available
experimental testbed at LME and the complete modeling of the ship was based on [4]. In
order to simulate realistic sea states, it was deemed necessary to develope a model for the
production of irregular waves. The toolbox presented in [4] (based on [1]) was used for
this purpose.
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In recent years several observer models have been proposed for marine applications
such as those described in [5], [6]. For the appropriate observer choise, two adaptive
propeller estimation schemes were tested in this work, based on the models described
in [7]. The first one arises from the main ship propulsion dynamics equations and the
second depends on the torque coefficient estimation. Both of them were used to compose
the corresponding Extended Kalman Filter observers, for noisy measurements and dis-
turbance estimation. The main EKF mathematical formulas and state estimation theory
are described extensively in [8], [9] and its implementation can be done using the corre-
sponding EKF algorithms in MATLAB/Simulink. The basic idea is that given the output
measurement (shaft rotational speed) and the control input (engine torque) the EKF
observer filters, reconstrucs and estimates the states in interest of the propulsion system
(filtered shaft rotational speed and propeller torque as disturbance). In [7] also a thrust
estimation scheme is proposed but with some application restrictions mentioned in fourth
Chapter.

The propeller load characteristics can be used by the control system to estimate fu-
ture load demand, if the future rotational speed is known/predicted. For this purpose a
Markov Chain and a Neural Network model were tested. In [10] a Markov Chain that
models the power request dynamics is proposed ,to improve the prediction capabilities of
model predictive control, while in [11], [12] Markov Chain performance is compared to
other stohastic models. The architecture of Neural Networks is described and formulated
in detail in a number of bibliographic references such as [13], [14].

Thesis Objective

In this thesis observer models were investigated in order to provide an accurate propeller
load torque estimation to the controller of the modeled propulsion system. In particu-
lar, two main observation schemes were implemented both in adaptive and Kalman Filter
form. Initially, the basic characteristics of the modeling system were listed, through the
mathematical principles of ship resistance and propulsion. The type of vessel, the main
propulsion engine and the propeller were selected. In order to obtain the most complete
and accurate results possible, simulations were performed for both ducted propeller and
controllable pitch propeller and the appropriate observer gains were selected. The simula-
tions were performed considering sea wave disturbance, in order to approach real operating
conditions, both during acceleration and during towing. The observed results were com-
pared with the actual ones of the modeling, in order to confirm observervs’ efficiency.
To predict shaft rotational speed, it has been shown that a feedforward neural network
makes it possible to give highly accurate estimates in a 10-second horizon. To select the
appropriate structure and architecture of the neural network, a number of simulations
were performed and the training times, regression were evaluated.

The rest structure of this thesis is organized as follows: In Chapter 2, a brief review
of state estimation theory and Kalman Filter formula is illustrated. In Chapter A, the
propulsion plant of the ship is modeled. The propeller load observer models are designed
in Chapter 3 and the shaft speed prediction models are described in Chapter 4. The
evaluation of the performance of the tested models takes place in Chapter 5 alongth
with their corresponding simulation results. In Chapter ?? the experimental facility is
presented, along with the installed engine sensors and the data acquisition system. Finally,
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the conclusions of this work are presented in Chapter 6.



Chapter 2

State Observers in Control Theory

In this chapter, the state estimation and filtering theory are presented. After the im-
portance and the applications of the observers are mentioned, an extensive description
of their mathematical formulas is given. In the first section the main parts of the state
estimation theory are recorded, through the description of a general observer model. This
is the Generalized Extended State Observer, which is used in Chapter 3, for the design of
the adaptive propeller load observer. The Kalman filter and its uses are then described.
In the last section an extension of the Kalman filter for nonlinear systems is introduced.
This filter, called the Extended Kalman Filter, composes a realistic version of the proposed
propeller load observer.

2.1 State Estimation Theory

In order to present state estimation theory in the most clear way possible it is necessary
to define what the term state means. The states of a system are those variables that pro-
vide a complete representation of the internal condition or status of the system at a given
instant of time [9]. To achieve feedback control, a basic requirement is that all system
states are available. In fact, this is often difficult due to the following reasons:

• The inability to place a sufficient number of sensors.

• The high cost of specialized sensors installation. Sensor cost can substantially raise
the total cost of a control system. In many cases, the sensors and their associated
cabling are among the most expensive components in the system.

• The inability to measure some quantities due to their position. The objects being
measured may be inaccessible for such reasons as harsh environments and relative
motion between the controller and the sensor.

• Sensors usually induce significant errors such as stochastic noise, cyclical errors, and
limited responsiveness.

Therefore, some or all system states are estimated by observers. The observer signals
can be more accurate, less expensive to produce, and more reliable than sensed signals.
Observers offer designers an inviting alternative to adding new sensors or upgrading ex-
isting ones. In some cases, the observer can be used to enhance system performance. It
can be more accurate than sensors or can reduce the phase lag inherent in the sensor.
Observers can also provide observed disturbance signals, which can be used to improve

17



18 Chapter 2. State Observers in Control Theory

disturbance response. In other cases, observers can reduce system cost by augmenting
the performance of a low-cost sensor so that the two together can provide performance
equivalent to a higher cost sensor [15].

The general concept of estimating the states of a system by observers is discribed
,according to [16], [17]. State observers consist of a mathematical model, which is similar
to the system’s model. Given the output variables y and the control variables u, the
observer estimates the state variables x̂. The state vector contains these variables. It
describes the state of the dynamic system and represents its degrees of freedom. As
mentioned above, the variables in the state vector cannot be measured directly but they
can be inferred from values that are measurable. A gain matrix K is also chosen so that
the error between the system states and the estimated states converges rapidly to zero.
If the observer estimates all state variables of the system, regardless of whether some
state variables are available for direct measurement, it is called a ”full-order observer”.
There are times when this is not necessary, when it is needed observation of only the
unmeasurable state variables, but not of those that are directly measurable as well. An
observer that estimates fewer state variables, is called a ”reduced-order observer”. If the
order of the reduced-order state observer is the minimum possible, the observer is called
a ”minimum-order observer”.

A prerequisite for state estimation is that the system is observable. The system is said
to be completely observable if every state x(t0) can be determined from the observation of
y(t) over a finite time interval t0 ≤ t ≤ t1. The system is, therefore, completely observable
if every transition of the state eventually affects every element of the output vector.

Similar state estimation formulas are proposed in [18], [19], [20] ,while in [21] different
models of observers are examined. In this section the Extended State Observer (ESO)
formula is proposed ,based on [22]. Generalized form of ESO (for non integral systems) is
presented in the next subsection.

An uncertain system with the order of n under the standard consideration is usually
an integral chain system, described as follows:



ẋ1 = x2

ẋ2 = x3

...

ẋn = f(x1, ..., xn, w(t), t) + bu

y = x1


(2.1.1)

where x1, ..., xn are the states, u is the control input, y is the output, w(t) is the exter-
nal disturbance, b is a system parameter and f(x1, ..., xn, w(t), t) represents the uncertain
function.

In the framework of ESO, an augmented variable

xn+1 = f(x1, ..., xn, w(t), t) (2.1.2)

is introduced to linearize system 2.1.1. Combining 2.1.1 with 2.1.2, the extended state
equation is given by:
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ẋ1 = x2

ẋ2 = x3

...

ẋn = xn+1 + bu

ẋn+1 = z(t)

y = x1


(2.1.3)

with z(t) = ḟ(x1, ..., xn, w(t), t).

In order to estimate the states, a linear ESO is designed as:



˙̂x1 = x̂2 − g1(x̂1 − y)

˙̂x2 = x̂3 − g2(x̂1 − y)

...

˙̂xn = x̂n+1 − gn(x̂1 − y) + bu

˙̂xn+1 = −gn+1(x̂1 − y)


(2.1.4)

where x̂1, x̂2, ..., x̂n and ˆxn+1 are estimates of states x1, x2, ..., xn and xn+1 , respectively,
and g1, g2, ..., gn+1 are the observer gains to be designed.

Substracting 2.1.3 from 2.1.4, the error system is written as:



ė1 = e2 − g1e1

ė2 = e3 − g2e1

...

ėn = en+1 − gne1

ėn+1 = −gn+1e1 − z(t)


(2.1.5)

where ei = x̂i−xi(i = 1, 2, ..., n+1) represents the estimation error. By properly choosing
the observer gains g1, g2, ..., gn+1, the bounded stability of 2.1.5 is guaranteed under the
assumption that z(t) is bounded.

The standard ESO control law is usually designed as:

u = Kxx−
sn+1

b
(2.1.6)

where Kx is the feedback control gain.
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Generalized Extended State Observer

The standerd ESO method ,presented above, is possibly not available for the following
simple second-order system:

ẋ1 = x1 − 2x2 + f(x1, x2, w(t), t)

ẋ2 = x1 + x2 + u
(2.1.7)

System 2.1.7 does not satisfy the standard formulation as 2.1.1 in the following two
aspects. On the one hand 2.1.7, does not satisfy the integral chain form. On the other
hand, the uncertainties f(x1, x2, w(t), t) enter the system with a different channel from the
control input u, i.e., the so-called matching condition is not satisfied. For the aforemen-
tioned case, the standard ESO law is no longer available. Thus, it is imperative to develop
GESO for general systems which do not satisfy the standard formulation of system 2.1.1.

For the sake of simplicity, the following single-input-single-output system with mis-
matched uncertainties is considered (as the proposed GESO method is able to extend to
multiple-input-multiple-output system with almost no modification).

ẋ = Ax+Buu+Bdf(x,w(t), t)

ym = Cmx

y0 = c0x

(2.1.8)

where x ∈ Rn , u ∈ R , v ∈ R , ym ∈ Rr and y0 ∈ R are the state vector, input, external
disturbance, measurable outputs and controlled output, respectively. f(x,w(t), t) is the
uncertain function in terms of and w. A with dimension n× n, Bu with dimension n× 1,
Bd with dimension n × 1, Cm with dimensions r × n and c0 with dimension 1 × n are
system matrices, respectively.

In 2.1.8, uncertainty function f(x,w(t), t) is the lumped disturbance, which is a gener-
alized concept, possibly including external disturbances, unmodeled dynamics, parameter
variations and complex nonlinear dynamics which may be difficult for the feedback part
to handle.

Equation 2.1.8 represents a more general class of systems 2.1.1 as compared with that
of system since system 2.1.8 is not confined to integral chain form and may subject to
mismatched uncertainties. The matching case is a special case of 2.1.8, by simply taking
Bu = λBd , λ ∈ R.

Similar to the standard ESO case, adding an external variable

xn+1 = f(x,w(t), t) (2.1.9)

to linearize system 2.1.8, the extended system equation is obtained

˙̄x = Āx̄+ B̄uu+ Lz(t)

ym = C̄mx̄ (2.1.10)
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where variables

x̄ =

[
x

xn+1

]
, z(t) =

df(x,w(t), t)

dt

and matrices

Ā =

[
An×n (Bd)n×1

01×n 01×1

]
(n+1)×(n+1)

B̄u =

[
(Bu)n×1

01×1

]
(n+1)×1

L =

[
0n×1

11×1

]
(n+1)×1

C̄m =
[
Cm 0r×1

]
r×(n+1)

.
For system 2.1.10, the ESO is designed as follows:

˙̄̂x = Āˆ̄x+ B̄uu+G(ym − ŷm)

ŷm = C̄m ˆ̄x
(2.1.11)

where ˙̄̂x =
[
x̂T , x̂n+1

]T
, x̂ and x̂n+1 are the estimates of the state variable x̂ , x and

xn+1 in 2.1.10, respectively. Matrix G with dimensions (n × 1) × r is the observer gain
to be designed.

In the presence of mismatched uncertainties, the standard ESO law u = Kxx− d̂ (where
d̂ = x̂n+1 and Kx is the feedback control gain) cannot effectively compensate the uncer-
tainties in 2.1.8.

The composite control law is disigned accoriding to 2.1 as follows:

u = Kxx+Kdd̂ (2.1.12)

or

u = Kxx̂+Kdd̂ (2.1.13)

where Kx is the feedback control gain and Kd is the disturbance compensation gain, de-
signed as:

Kd = −[c0(A+BuKx)−1Bu]−1c0(A+BuKx)−1Bd. (2.1.14)

Note that the disturbance compensation gain Kd in 2.1.14 is a general case and suitable
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for both matching and mismatching cases. For the matching case, i.e., Bu = λBd ,
λ ∈ R, it can be obtained from 2.1.14 that the disturbance compensation gain reduces to
Kd = −1/λ.

Figure 2.1: GESO and control layout

The state and disturbance estimation errors are defined as:

ex = x̂− x (2.1.15a)

ed = d̂− d (2.1.15b)

where d̂ = x̂n+1 represents the estimate of system uncertainties.

Combining 2.1.10, 2.1.11 and 2.1.15a, with 2.1.15b, the estimation error equation
is given by:

ė = Aee− Lz(t) (2.1.16)

where

e =

[
ex
ed

]
, Ae = Ā−GC̄m. (2.1.17)

It should be highlighted that, although there are similarities between the presented
GESO and the other state estimation techniques, they have different focuses, so different
design philosophies as the motivations are different. The main objective in GESO is to
minimize the influence of the disturbance and uncertainty on the output provided that
the disturbance has been estimated. Therefore, GESO formula was used to design the
adaptive propeller load torque observer described in Chapter 3.
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2.2 Kalman Filter

In actual operating conditions the sensors’ measurements are contaminated with noise and
cannot be used directly by the system’s controller. The signals should therefore be filtered
and reconstructed by an observer of a different type from the one presented in the previous
section. This work is carried out by the ”Kalman Filter” observer. Kalman filtering is
an algorithm that uses a series of measurements observed over time, containing statistical
noise and other inaccuracies, and produces estimates of unknown variables that tend to
be more accurate than those based on a single measurement alone, by estimating a joint
probability distribution over the variables for each timeframe.

According to [23] the Kalman filter is essentially a set of mathematical equations that
implement a predictor-corrector type estimator that is optimal in the sense that it min-
imizes the estimated error covariance ,when some presumed conditions are met. Since
the time of its introduction, the Kalman filter has been the subject of extensive research
and application, particularly in the area of autonomous or assisted navigation. This is
likely due in large part to advances in digital computing that made the use of the filter
practical, but also to the relative simplicity and robust nature of the filter itself. Rarely do
the conditions necessary for optimality actually exist, and yet the filter apparently works
well for many applications in spite of this situation.

A brief description of the Kalman filtering theory is recorded in [9], while in [23] a
more extensive approach to this subject takes place. Detailed description for recursive
estimation method are also available on [24]. In this work, the main Kalman filter algory-
thm is presented ,according to [8].

The Kalman filter is a recursive predictive filter that is based on the use of state space
techniques and recursive algorithms. It estimates the state of a dynamic system. This
dynamic system can be disturbed by some noise, mostly assumed as white noise. To
improve the estimated state the Kalman filter uses measurements that are related to the
state but disturbed as well. As shown in Fig. 2.2, the Kalman filter consists of two steps:

a. the prediction,

b. the correction.

Figure 2.2: Kalman Filter process
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In the first step the state is predicted with the dynamic model. In the second step it
is corrected with the observation model , so that the error covariance of the estimator is
minimized. In this sense it is an optimal estimator. This procedure is repeated for each
time step with the state of the previous time step as initial value. Therefore the Kalman
filter is called a recursive filter.

The basic components of the Kalman filter are the state vector, the dynamic model
and the observation model, which are described below.

State Vector

As described in 2.1 the state vector x̄ contains the variables of interest. The state
vector has two values at the same time, that is the a priori value, the predicted value
before the update, and the a posteriori value, the corrected value after the update. In the
following the a priori value is marked by x̄− and the a posteriori value by x̄+.

Dynamic Model

The dynamic model describes the transformation of the state vector over time. It can
usually be represented by a system of differential equations ,as in 2.1.10. For the sake of
simplicity, the following dynamic model is considered.

˙̄x =
d

dt
x̄ = f(x̄(t), w̄(t)) (2.2.1)

In the linear case this can easily be rewritten as:

˙̄x = F · x̄(t) + b̄(t) (2.2.2)

where F is the dynamic matrix and is constant, x̄(t) is the state vector and b̄(t) is the
dynamic noise which is usually assumed as white noise and has the covariance matrix Q(t).

Observation Model

The observation model represents the relationship between the state and the mea-
surements. In the linear case the measurements can be described by a system of linear
equations, which depend on the state variables. Usually the observations are made at
discrete time steps ti

l̄(ti) = H · x̄(ti) + q̄(ti) (2.2.3)

where l̄(ti) is the vector of the observations at the epoch ti, H is the observation matrix
and w(ti) is the noise of the measurement process with the covariance matrix R(ti). Like
the dynamic matrix, in a linear system the observation matrix H is a constant matrix as
well.
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Kalman Filter Algorithm

a. Prediction

Like mentioned before, the prediction is the first step of the Kalman filter. The predicted
state, or better the a priori state is calculated by neglecting the dynamic noise and solving
the differential equations that describe the dynamic model.

˙̄x− = F · x̄−(t) (2.2.4)

The state vector at time t can be expressed by a Taylor series with respect to an approx-
imate state x̄−(t0).

x̄−(t) = x̄−t0 + ˙̄x−(t0)(t− t0) +
1

2
¨̄x−(t0)(t− t0)2 + ... (2.2.5)

By using equation 2.2.4 this can be written as.

x̄−(t) = x̄−t0 + F · x̄−(t0)(t− t0) +
1

2
F 2 · x̄−(t0)(t− t0)2 + ... (2.2.6)

Thus the solution x̄−(t) of the differential equations, in other words the actual predicted
state is a linear combination of the initial state x̄−(t0).

x̄−(t) = Φt
0 · x̄−(t0) (2.2.7)

Φt
0 is called the state transition matrix, which transforms any initial state x̄(t0) to its

corresponding state x̄(t) at time t.

From the equations 2.2.4 and 2.2.7:

˙̄x−(t) = F · x̄−(t) = F · Φt
0 · x̄−(t0) (2.2.8)

and by using 2.2.7 again, it can be seen that:

˙̄x−(t) =
d

dt
x̄−(t) =

d

dt
[Φt

0 · x̄−(t0)] = [
d

dt
Φt

0] · x̄−(t0) (2.2.9)

By comparing 2.2.8 and 2.2.9 it follows that:

d

dt
Φt

0 = F · Φt
0 (2.2.10)

with the initial matrix Φ0
0 = I, because x̄(t0) = I · x̄(t0).
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The covariance matrix P−(ti) of the predicted state vector is obtained with the law of
error propagation.

P−(ti) = Φti
ti−1
· P (ti−1) · (Φti

ti−1
)T +Q (2.2.11)

In the more generalized form, where also the covariance matrix of the noise Q is a function
of time, the covariance matrix is.

P−(ti) = Φti
ti−1
· P (ti−1) · (Φti

ti−1
)T +

∫ ti

ti−1

Q(t)dt (2.2.12)

b. Correction

In the correction step the predicted state vector x̄−(ti) is improved with observations made
at the epoch ti ,thus the a posteriori state has the form

x̄+(ti) = x̄−(ti) + ∆x̄(ti) (2.2.13)

with the covariance matrix.

P+(ti) = P−(ti) + ∆P (ti) (2.2.14)

The Kalman filter is an optimal filter, this means that the state variances in the state
covariance matrix P+ are minimized. As P− is already known from the prediction step,
it follows that ∆P is minimized.

∆P (ti) = E[∆x̄(ti)∆x̄(ti)
T ] (2.2.15)

This combination is complied with

∆x̄(ti) = P−HT (HP−HT +R(ti))
−1 · (l̄(ti)−Hx̄−(ti)) (2.2.16)

⇒ ∆x̄(ti) = K(ti) · (l̄(ti)− l̄−(ti)) (2.2.17)

where

K(t) = P−HT (HP−HT +R(ti))
−1 (2.2.18)

K is called the gain matrix. The difference (l̄(ti)− l̄−(ti)) is called the measurement resid-
ual. It reflects the discrepancy between the predicted measurement l̄(ti) = Hx̄(ti) and the
actual measurement l̄(ti).
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Finally, the corrected state is obtained by:

x̄+(ti) = x̄−(ti) +K(ti) · (l̄(ti)− l̄−(ti)) (2.2.19)

In this equation the estimated state and the measurements are weighted and combined to
calculate the corrected state. That means, if the measurement covariance is much smalles
than that of the predicted state, the measurement’s weight will be high and the predicted
state’s will be low. And so the uncertainty can be reduced.

The covariance matrix of the a posteriori state is given with the law of error propaga-
tion by:

P+(ti) =P−(ti)−K(ti)HP
−(ti)

=(I −K(ti)H)P−(ti)
(2.2.20)
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2.3 Extended Kalman Filter

All of the previous discussion to this point has considered linear filters for linear systems.
In practice the dynamic or the observation model are nonlinear. Thus, linear systems do
not exist. All systems are ultimately nonlinear. Even the simple relationship of Ohm’s
Law is only an approximation over a limited range. If the voltage across a resistor exceeds
a certain threshold, then the linear approximation breaks down.

However, many systems are close enough to linear that linear estimation approaches
give satisfactory results. But “close enough” can only be carried so far. Eventually, a
system is run across that does not behave linearly even over a small range of operation,
and linear approaches for estimation no longer give good results. In this case, nonlinear
estimators should be used.

Nonlinear filtering can be a difficult and complex subject. It is certainly not as mature,
cohesive, or well understood as linear filtering. There is still a lot of room for advances
and improvement in nonlinear estimation techniques. However, some nonlinear estimation
methods have become (or are becoming) widespread. These techniques include nonlinear
extensions of the Kalman filter, unscented filtering, and particle filtering. In [25] and [26]
some of non linear systems are presented and compared extensively. In this work, the
Extended Kalman Filter algorythm is described, since it was used to design the corre-
sponding propeller load observer in Chapter 3.

Thus continuing the reference to the [8], extended Kalman filter was discovered by
Stanley F. Schmidt. After Kalman presented his results about Kalman filtering, Schmidt
immediately began applying it to the space navigation problem for the upcoming Apollo
project for manned exploration of the moon. In this process, he invented the extended
Kalman filter.

This Kalman filter linearizes about the current estimated state. Thus the system must
be represented by continuously differentiable functions. One disadvantage of this version
of the Kalman filter for nonlinear systems is that it needs more time-consuming calcula-
tions. The implementation for linear systems can be made more efficient by pre-computing
the dynamic matrix F , the state transition matrix Φ and the observation matrix H. But
for nonlinear systems, these are functions of the state and consequently change with every
time step and cannot be pre-computed.

a. Prediction

In the nonlinear case the dynamic matrix F is a function of the state to be estimated. So
the predicted state is calculated by solving the differential equations in the following form.

˙̄x(t) = f(x̄−(t)) (2.3.1)

By representing this equation by a Taylor series with respect to x at the predicted state
x̄−(ti) and assuming that the higher order terms can be neglected, the dynamic matrix
F (ti) can be calculated with:
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F (ti) =
∂f(x̄)

∂x̄

∣∣∣∣
x̄=x̄−(ti)

(2.3.2)

And now the other steps of the prediction can be calculated as shown with calculations
2.2.10 and 2.2.12, but it should be noted that, now the used matrices are not constant
like in the linear case, but depend on the time step.

d

dt
Φti
ti−1

= F (ti) · Φti
ti−1

(2.3.3)

P−(ti) = Φti
ti−1
· P (ti−1) · (Φti

ti−1
)T +

∫ ti

ti−1

Q(t)dt (2.3.4)

b. Correction

Like the differential equations in the prediction step the corresponding nonlinear observa-
tion equations are linearized with the Taylor series about the predicted state x̄−(ti) and
higher order terms are neglected.

Thus, the approximate observation matrix is

H(ti) =
∂h(x̄)

∂x̄

∣∣∣∣
x̄=x̄−(ti)

(2.3.5)

In that case the predicted measurement l̄−(ti) for calculating the measurement residual
(l̄(ti)− l̄−(ti)) is

l̄−(ti) = h(x̄−(ti)) (2.3.6)

Further on, the formulas can be used to calculate the corrected state and its covariance
matrix like in the linear case but with time depend matrices.

x̄+(ti) = x̄−(ti) +K(l̄(ti)− l̄−(ti)) (2.3.7)

and

P+(ti) = (I −K(ti)H(ti))P
−(ti) (2.3.8)

with

K(ti) = P−H(ti)
T (H(ti)P

−H(ti)
T +R(ti))

−1 (2.3.9)
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Chapter 3

Propeller Load Observer Design

The knowledge of the propeller load disturbance is necessary for the full operation of the
model predictive control system. In actual marine conditions propeller load can not be
measured or calculated by the corresponding equations presented in the previous sections
due to the following reasons.

• The cost of the shaft dynamometer for loading measurements is extremely high.

• In order to calculate the propeller load by equation A.3.14a, velocity Va should be
measured. But GPS navigation sensor’s latency cannot serve fast real-time control.

• Propulsion load fluctuations causes unpredictable measurements that are difficult to
obtain.

• Environmental uncertainties that affect the propulsion plant are difficult to deter-
mine and are not taken into account in the ship modeling equations described in the
previous chapter.

It was therefore considered necessary to design an observer in order to assess the
state parameters required in the ship’s propulsion control plant. In addition to the needs
of ship’s automatic control, the propeller observer ensures reduced power consumption,
higher vessel efficiency and high quality performance monitoring for improving fault de-
tection and thrust allocation in different propeller working conditions.

In this chapter two adaptive propeller estimation schemes are proposed ,based on [7].
The first one arises from the main ship propulsion dynamics equations and the second
depends on torque coefficient estimation. Both of them are used to compose the corre-
sponding Extended Kalman Filter observers in the second section ,for noisy measurements.
A linear thrust estimation method is also presended ,using the torque coefficient. Finally,
the propeller law and the method of calculating its power are mentioned.

31
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3.1 Adaptive Models

In [7] two types of adaptive observers are proposed for propeller load torque estimation.
The first arises directly from the shaftline dynamics presented in A.3.4 and is based on
linear estimation. The second model is an alternative load torque estimation scheme based
on nonlinear parameter estimation. In both methods it is assumed that the only available
measurements are the shaft rotational speed and the engine torque.

3.1.1 Propeller Load Torque Observer

The GESO estimation formula, presented extensively in 2.1, was used to design the pro-
peller load torque observer. The system described in A.3.18 can be written in statespace
form ,similar to 2.1.11.

ẋ = Ax+Bu

y = Cx
(3.1.1)

where

x =

[
ωshaft

Qload

]
is the state vector, u =

[
nmQeng

]
is the input vector

and y is the output.

The rest matrices are defined as follows.

A =

0 − 1

Jshaft
0 0

 , B =

 1

Jshaft
0

 , C =
[
1 0

]
.

The disturbance Qload is unknown and has to be estimated by the observer.

The system is observable from y, since the observability matrix:

Ob =

[
C
CA

]
=

1 0

0 − 1

Jshaft

 has full rank.
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Using the control plant model described in A.3.18 the proposed propeller load torque
observer is:

˙̂ωshaft =
1

Jshaft
(u− Q̂load) + ga(y − ŷ)

˙̂
Qload = gb(y − ŷ)

(3.1.2)

where ω̂shaft , Q̂load are the observer estimates of the corresponding state variables ωshaft

, Qload and ga , gb are the observer gains.

On matrix form G =
[
ga gb

]T
, the observation plant system in 3.1.1 can be written

as follows.

˙̂x = Ax̂+Bu+Gỹ

ŷ = Cx̂
(3.1.3)

The observer error can be also calculated by subtracting 3.1.3 from 3.1.1. Thus

˙̃x = Ax+Bu− (Ax̂+Bu+Gỹ) = Ax̃−Gỹ = Ax̃−GCx̃ = Fx̃ (3.1.4)

where F = A−GC =

ga 1

Jshaft
gb 0

.

Observer Tuning

The main objective in load torque observer tuning is to minimize the influence of the
disturbance and uncertainty on the output, provided that the actual disturbance is be-
ing estimated. For the appropriate observer gains choice, the pole placement method was
used. The values of the observer poles pi depend on the error dynamics x̂ - x of the system
and are foud from:

pi =

−ga ±
√
g2
a +

4gb
Jshaft

2
(3.1.5)
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The main parameters of the observer performance are the undamped natural frequence
ωn and damping ratio ζ as they directly affect the selected gains as follows.

ωn =

√
−gb
Jshaft

, ζ =
gaJshaft

2
√
−gbJshaft

(3.1.6)

According to [17] the desired values of the poles should be chosen so that the state ob-
server responds at least two to five times faster than the closed-loop system considered ,so
that the observation error converge quickly to zero. The damping ratio could be chosen
in the range 0.7 < ζ < 1.1. The natural frequency depends on the specific thruster of the
propeller. Thus ζ = 0.7 , ωn = 125rad/s were chosen and the observer gains became:

ga = 2ζωn = 175

gb = −Jshaftω2
n = −25812.5

(3.1.7)

The evaluation of the performance of the observer was carried out through simulations,
the conclusions of which are recorded in Chapter 5. A suitable model was designed for
the simulations, based on the characteristics of the observer mentioned above and in the
following figure its layout is presented.
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3.1.2 Torque Coefficient Estimation

An alternative load torque estimation scheme based on nonlinear parameter estimation is
also presented in [7].

As shown in A.3.14a, the propeller load torque can be calculated from the following
formula.

Qload =
π

8
CQρ[V 2

a + (0.7πnshaftD)2]D3 (3.1.8)

In the above equation, however, it becomes necessary to know both the CQ coefficient
and the propeller inflow velocity Va (which is very difficult to measure in real vessels).
Equation 3.1.8 can be rewritten in the form of equation A.3.13a as follows.

Qload = KQρD
5nshaft|nshaft| =

KQρD
5

4π2
ωshaft|ωshaft| (3.1.9)

where KQ coefficient is defind as in A.3.15a.

KQ =
π

8
CQ

[(
Va

nshaftD

)2

+ (0.7π)2

]
D3 and ωshaft = 2πnshaft (3.1.10)

In this case, by determining the KQ coefficient, the propeller load torque can be calculated
directly, without the knowledge of any further parameter. Thus, equation A.3.13a is used
instead of A.3.14a.

As an alternative to the load torque observer presented in the previous subsection, it
is possible to use a nonlinear online parameter estimation scheme to find an estimate K̂Q

of the propeller torque coefficient.

As in propeller load observer, the parameter estimation scheme is based on the shaft
dynamics A.3.18, with the addition of the torque equation 3.1.10. The control plant
model is rewritten as follows.

ω̇shaft =
1

Jshaft
(nmQeng −

KQρD
5

4π2
ωshaft|ωshaft|) (3.1.11)

Defining the input u as in 3.1.1 and the unknown parameter θ as follows,

θ =
KQρD

5

4π2
(3.1.12)

the system in 3.1.11 ,which is affine in θ, becomes:
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ω̇shaft = f(ωshaft, u, θ) = F (ωshaft)θ + g(ωshaft, u) (3.1.13)

where

f(ωshaft, u, θ) =
1

Jshaft
(u− θωshaft|ωshaft|)

F (ωshaft) =
∂f(ωshaft, u, θ)

∂θ
= −

ωshaft|ωshaft|
Jshaft

g(ωshaft, u) =
1

Jshaft
u

The proposed nonlinear parameter estimation scheme is then described by the follow-
ing equations

K̂Q =
4π2

ρD5
θ̂

θ̂ = −g0
|ωshaft|3

3Jshaft
+ z

ż = g0
ωshaft|ωshaft|

J2
shaft

(u− θ̂ωshaft|ωshaft|)

(3.1.14)

where g0 is the estimation scheme gain.

Observer Tuning

Appropriate choice of the gain g0 in the KQ estimation scheme 3.1.14 is highly dependent
on the application. If the gain is chosen high, the scheme will estimate the instantaneous
loading of the propeller, such that Qload from 3.1.9 will be comparable to 3.1.2 from the
previous section. If g0 is chosen low, the high-frequency disturbances in the load torque
will not be captured. Instead, an average torque coefficient will be estimated. Taking into
account the operating range (and the fluctuations) of the selected tugboat and performing
a number of simulations, it was observed that the ideal scheme gain value is the following
one.

g0 = 0.005 (3.1.15)

The evaluation of the performance of the estimation scheme was carried out through
simulations, the conclusions of which are recorded in Chapter 5. A suitable model was
designed for the simulations, based on the characteristics of the KQ estimation method
mentioned above and in the following figure its layout is presented.
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3.1.3 Propeller Thrust Estimation and Application Restrictions

In marine guidance, navigation, and control (GNC) systems, the low level thruster con-
trollers have traditionally received less attention compared to the guidance system and
the high-level plant control. More recently, also the issue of thruster dynamics and control
has received more attention because the knowledge of the propeller thrust, together with
the thrust induced pressure force on the hull, is fundamental to achieve high vessel control
performance. Many resent researches ,as [34], have focused on individual subjects of thrust
control. The knowledge of the propeller thrust, either measured or estimated, could also
allow the design of controllers for reducing power fluctuations and wear and tear in high
sea state. Moreover, the performance monitoring is also useful for improving fault detec-
tion and thrust allocation in different propeller working conditions. These considerations
motivate the development of schemes to estimate the propeller thrust because, in general,
its measurement is not available.

The thrust estimation scheme was designed according to [7] and [6]. It was based on
the observer torque estimates ,as found before and on a linear relation between thrust and
torque coefficients. Due to the working principles of the propeller, the thrust and torque
are closely coupled. According to Lerbs (1952) research on the effect of roughness on open
propellers a change ∆KQ of KQ implies a proportional change ∆KT of KT , i. e.:

∆KT = ct∆KQ (3.1.16)

where ct is a constant.

This implies that KT and KQ (and their estimates K̂T , K̂Q) can be linearly related
by:

KT = atKQ + bt ⇒ K̂T = atK̂Q + bt (3.1.17)

where at , bt are propeller constants inferred from the open-water characteristics and were
chosen as:

at = 7.52

bt = −0.04
(3.1.18)

Propeller thrust estimation T̂load can then be found via A.3.13b.

T̂load = K̂TρD
4n̂shaft|n̂shaft| =

K̂TρD
4

4π2
ω̂shaft|ω̂shaft| (3.1.19)
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Although the linear relationship proposed above for calculating propeller thrust through
torque is stable for a large range of propeller operating conditions, including varying ad-
vance ratios, there are cases in which the thrust estimation scheme model does not give
correct estimates. Indicative cases in which there may be problems with unreliable esti-
mates are the following.

• In significant changes of the vessel’s operating draught, the estimated thrust shows
an offset from the actual one. Although the relationship between thrust and torque
coefficients continues to be almost linear, it becomes necessary to perform new sim-
ulations and redefine parameters at and bt. Therefore, for draught changes, the
thrust estimation model parameters cannot be maintained and must be changed
accordingly.

• A similar problem with the previous one is also presented in cases of change in the
propeller efficiency due to wear and tear or fouling. When a ship performs a marine
operation, propellers are often affected by thrust losses due to cross flow, ventilation,
in-and-out-of water effects, wave-induced water velocities, interaction between the
vessel hull and the propeller and between propellers. Propellers may thus work far
from ideal conditions therefore and thrust estimates via the proposed method may
not be accurate.

• Thrust estimation scheme described above gives good estimations for a large range
of advance ratio. However, when the shaft speed is reversed, the propeller works for
a short time outside that range of advance ratio and thrust estimates deviate from
the actual values. Thus, thrust-torque coefficients relationship is more accurate for
positive shaft rotational speed.

• KT −KQ relationship is not hold equally well for ducted propellers, since the shapes
of the KT and KQ curves are inherently different from corresponding curves of FPP
or CPP. As noted in [7], for values of coefficient KQ greater than 0.04 the relation-
ship between KT and KQ is not linear and equation 3.1.17 cannot be applied.

Attached to the following summary table are the basic design parameters of the pro-
peller observer models described in this section.

Scheme - Model Propeller Torque Estimation Gains

Propeller Load Torque Observer ga = 175 gb = −25812.5
Torque Coefficient Estimation g0 = 0.05

Scheme - Model Propeller Thrust Estimation Parameters

Thrust - Torque Coefficients Relationship at = 7.52 bt = −0.04

Table 3.1: Propeller Observers’ Design Parameters
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3.2 Kalman Filter Models

The design of the adaptive observer models presented above was based on the assumption
that the only available measurements are the engine speed and torque, with almost zero
noise levels (zero noise disturbances were considered). In actual operating conditions these
sensors’ measurements are contaminated with noise and cannot be used directly by the
controller. The signals should therefore be filtered and reconstructed by the observer. For
a more realistic observing approximation Kalman Filter was implemented for both state
estimation methods described in the previous section. Many Kalman Filter implementa-
tions have proposed for ship sensors and navigation systems, as in [5]. Since the torque
coefficient estimation system is nonlinear, Extended Kalman Filter was used for both the
propeller load torque observer and the torque coefficient estimation scheme.

The description of the basic design parameters of the two observer models, with the
Extended Kalman Filter is based on section 2.3 and follows below.

The Extended Kalman Filter estimates the states of a discrete-time nonlinear system
using the first-order discrete-time extended Kalman filter algorithm. Considering a plant
with states x, input u, output y, similar to 3.1.1 but also with process noise w, and
measurement noise v (both with Gaussian distributions), it is assumed that the plant can
be represented as a nonlinear system 3.3.

Figure 3.3: Extended Kalman Filter Plant

The filter’s algorithm is a two-step process: the first step predicts the state of the sys-
tem, and the second step uses noisy measurements to refine the optimal estimate of system
state, as shown in 3.4. The Extended Kalman Filter linearizes the nonlinear functions
around the mean of the current state estimates. At each time step, the linearization is
performed locally and the resulting Jacobian matrices are then used in the prediction and
update states of the filter algorithm.
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Figure 3.4: State Estimation Probability Density Function

The algorithm computes the state estimates x̂ of the system using state transition f
and measurement h functions. The systems equations of the observers tested in the pre-
vious section were used to compose these functions and the observation system has the
following form.

x[k] = f(x[k − 1], us[k − 1]) + w[k − 1]

y[k] = h(x[k], um[k]) + v[k]
(3.2.1)

Here f is a nonlinear state transition function that describes the evolution of states x
from one time step to the next. The nonlinear measurement function h relates x to the
measurements y at time step k. w and v are the zero-mean, uncorrelated process and mea-
surement noises, respectively. These functions can also have additional input arguments
that are denoted by us and um in the equations.

The noise terms in both equations are additive. That is, x[k] is linearly related to the
process noise w[k − 1], and y[k] is linearly related to the measurement noise v[k]. The
process and measurement noise terms are assumed to be drawn from Gaussian and white
distribution, with zero mean and covariance matrices Q and R, respectively:

w[k] ∼ (0, Q[k])

v[k] ∼ (0, R[k])
(3.2.2)
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In order to design the Kalman observers, the corresponding state transition and mea-
surement functions had to be expressed in the appropriate form. Given the state transition
and measurement functions, the performance of the Kalman filter is determined by the
choice of the corresponding noise covariances Q and R. By increasing the values of these
coefficients, the observed values converge to their actual values, but are infected with more
noise. By lowering Q and R, the observed values become smoother, but deviate from their
actual values. A large number of simulations were performed to select the appropriate
noise covariances, both in the case of the propeller load torque observer and in the case of
the torque coefficient estimation. Thus, covariances that ensure satisfactory convergence
were selected, along with good noise filtration.

3.2.1 Propeller Load Torque Observer

Knowing that the available measurement of shaft rotational speed ωshaft[k] is contami-
nated with noise disturbances, the main design characteristics of this Kalman Filter obser-
vation model were based on the scheme equations presented in 3.1.1 and were identified
as follows.

State Transition Function

x[k] = x[k − 1] +

 1

Jshaft
(u[k − 1]−Qload[k − 1])

0

 dt (3.2.3)

where dt→ 0.01

Measurement Function

y[k] = ωshaft[k] (3.2.4)

Noise Covariances

The state transition and measurement noise covariances were chosen as follows.

Q[k] = 5000

R[k] = 200
(3.2.5)
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3.2.2 Torque Coefficient Estimation

The main design characteristics of this Kalman Filter observation model were based on
the scheme equations presented in 3.1.2 were identified as follows.

State Transition Function

x[k] = x[k − 1] +

 1

Jshaft
(u[k − 1]− θ[k − 1]ωshaft[k − 1]|ωshaft[k − 1]|)

0

 dt (3.2.6)

where dt→ 0.01

Measurement Function

y[k] = ωshaft[k] (3.2.7)

Noise Covariances

The state transition and measurement noise covariances were chosen as follows.

Q[k] = 0.0007

R[k] = 5
(3.2.8)

The evaluation of the performance of the Extended Kalman Filter models was carried
out through simulations, the conclusions of which are recorded in Chapter 5. The simula-
tion models were designed using the EKF Matlab Simulink block, according to observation
characteristics mentioned above.

Attached to the following summary table are the basic design parameters of the pro-
peller observer models described in this section.

EKF Scheme - Model State Transition Noise Q[k] Measurement Noise R[k]

Propeller Load Torque Observer 5000 200
Torque Coefficient Estimation 0.0007 5

Table 3.2: Extended Kalman Filter Propeller Observers’ Design Parameters
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3.3 Propeller Law Constant and Power Estimation

Propeller Law connects shaft rotational speed with propeller power by the following equa-
tion.

Pload = c · n3
shaft = c ·

ω3
shaft

8π3
(3.3.1)

where c is the propeller law constant. The value of constant c proves to be particularly
important for performance monitoring, as it is directly affected by the level of hull fouling
and the weather operating conditions.

It is also known that the propeller torque is connected to its power through the following
equation.

Pload = 2π · nshaft ·Qload = ωshaft ·Qload (3.3.2)

Combining equations 3.3.1 and 3.3.2 results:

Qload = c ·
n2
shaft

2π
= c ·

ω2
shaft

8π3
(3.3.3)

Having estimated the rotational speed and propeller torque through the observers an-
alyzed in the previous sections, it is now possible to determine both the propeller law
constant c and the power. The evaluation of these estimates is carried out in Chapter 5
for each model through the corresponding simulations.
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Chapter 4

Shaft Rotational Speed Prediction

The observation schemes presented in the previous chapters are based on the assumption
that the only available measurements are the shaft speed and the engine torque. To
maximize the efficiency of the propulsion control system and ensure better fuel economy,
it is advisable to predict shaft rotational speed within a sufficient future horizon. Many
methods have been proposed for various system states prediction. In this chapter, a Neural
Network (NN) model is described as a well performed deterministic prediction approach
to our problem. A Markov Chain prediction model is also being presented, although its
performance is not satisfactory in this case.

Dataset

As mentioned above, the focus is on engine rotational speed predictions over 1 to 10 steps
prediction horizon. Engine speed was chosen, as it is the reference input to the controller
of the propulsion plant. Moreover, engine rotational speed expresses either the ship cruis-
ing velocity or the propeller load during maneuvering. In order to train the predition
models, it became necessary to provide sufficient relevant data. Specifically, speed data
of a tugboat were taken during four consecutive days of operation, in the area of Panama
Canal. Using the propulsion plant model, these data where converted to engine rotational
speed.

4.1 Markov Chain Prediction Model

Markov Chain has been used as a prediction model in many automatic control applica-
tions. In [10] a Markov chain that models the power request dynamics is proposed ,to
improve the prediction capabilities of model predictive control, while in [11], [12] Markov
chain performance is compared to other stohastic models.

The following is a brief overview of the Markov Chain prediction method.

A Markov chain is a stochastic model describing a sequence of possible events in which
the probability of each event depends only on the state attained in the previous event. A
simple Markov Chain model is shown in the following figure.

47
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Figure 4.1: Two-State Markov Chain process diagram

In the example illustrated above, there are two states A and B. If the system is in
state A at the time instant t, then at the time instant t+ 1, the system could be in state
A (with probability 0.5) or in state B (with probability 0.5). Similary, if the system is
in state B at the time instant t, then at the time instant t + 1, the system could be in
state B (with probability 0.1) or in state A (with probability 0.9). The Markov Chain is
defined by the state transition probability matrix as follows.

A B

P = A 0.5 0.5
P = B 0.9 0.1

Table 4.1: Markov Chain State Transition Probability Matrix

The Markov Chain prediction implementantion was based on state transition proba-
bility matrix, where the states capture the possible shaft rotational speeds during ship
operation. The state transition probability matrix can be calculated by frequency count
of shaft speed transitioning between discrete intervals over a suitable sample time window.
Having the probability table, it is possible to predict future speeds over to tested horizon
(10steps). Thus, for a previous state, the next predicted state is the one that equalls
to the corresponding maximum probability state of the probability matrix. In order to
implement Markov Chain prediction model and perform simulations, the following brief
algorithm was used.
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Algorithm 1: Markov Chain Prediction Model Algorithm

1 Train Data: selected data in matrix all ships;
2 for all elements in Train Data do
3 Find unique elements;
4 Sort unique elements;
5 Put elements in a 2D matrix, in the form of 4.1;

6 end
7 Compose State Transition Probability Matrix p, based on the frequency of unique

elements;
8 Test Data: tested data in matrix MT.(ship);
9 for all elements in Test Data do

10 Find the equal (or closest) element in State Transition Probability Matrix p;
11 For this element, find the maximum probability and the corresponding

predicted element;

12 end
13 Repeat the above prediction method for the next 9 future horizon steps giving the

previous state values as input to for-loop;
14 Plot the predicted values along with the actual values and compare them;

Although the evaluation of the performance of this prediction model is carried out in
Chapter 5, a significant drawback of the use of the Markov chain should be noted at this
point. As mentioned in the definition of the Markov model, the prediction of the method
is based on a single input value of the previous state and not on a sufficient number of
multiple previous state values, that ”show” the course of the testing data. Given that
the next prediction is based solely on the state with the highest probability in the state
transition probability matrix, it is possible that in many cases the model deviates from
the actual values. This prediction model proves to be particularly effective in cases where
the training data is quite similar to the testing data and in cases where the object of
the study is to find the state transition probability matrix and not the future forecasts.
Otherwise, the model should be updated at each time step depending on the actual state
measurements, which, however, are often not available.
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4.2 Neural Network Prediction Model

Neural networks have emerged in the past few years as an area of unusual opportunity for
research, development and application to a variety of real world problems. Many books
as [13], [14], [35], [36] and also scientific papers as [37] have focused on extensive descrip-
tions of neural networks or their applications in new technological problems. In addition
to the above literature, information for neural networks is also obtained from [38].

The following is a brief presentation of the Neural Network prediction method.

Neural networks are computing systems inspired by the biological neural networks
that constitute animal and human brains. These systems learn to progressively improve
their performance for a specified task by considering examples, generally and without task
specific programming. This is done by analyzing example data manually labeled without
having any priori knowledge about the data or the application. This closely resembles the
way humans and animals learn to execute tasks. Although neural networks were firstly
inspired by the goal to model a biological neuron, they have since diverged and become
a matter of engineering and machine learning. Neural network learning methods pro-
vide a robust approach to approximating real-valued, discrete-valued, and vector-valued
target functions. For certain types of problems, such as learning to interpret complex
real-world sensor data, artificial neural networks are among the most effective learning
methods currently known. A neural network derives its computing power through, first,
its masively parallel distributed structure and second, its ability to learn and therefore
generalize. Generalization refers to the neural network producing reasonable outputs for
inputs not encountered during training (learning). These two information-processing ca-
pabilities make it possible for neural networks to solve complex (large-scale) problems that
are currently intractable.

A neural network consists of many processing elements joined together to form an
appropriate network with adjustable weighting functions for each input. These processing
elements are called neurons and are usually organized into a sequence of layers with full
or random connections between layers. Typically, there are three or more layers: an input
layer where data are presented to the network through an input buffer, an output layer
with a buffer that holds the output response to a given input, and one or more intermedi-
ate or ”hidden” layers. According to [35], the simplest Neural Network model (Perceptron
with a single neuron) consist of 3 basic elements:

1. A set of synapses or connecting links, each of which is characterized by a weight
or strength of its own. Specifically, a signal xj at the input of synapse j connected
to neuron k is multiplied by the synaptic weight wkj . Thus, neurons are connected
with each other with synapses and each neuron receives signals from its dendrites
and produces output signals along its one axon. The axon eventually connects to
the dendrites of other neurons and so on. In the computational model of a neuron
the signals that travel across the axons interact multiplicatively.

2. An order for summing the input signals, weighted by the respective synapses of the
neuron.

3. An activation function for limiting the amplitude of the output of a neuron.
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Figure 4.2: Nonlinear Model of a Neuron

In mathematical terms, a neuron k of 4.2 model may be described as follows:

uk =
n∑

j=1

wkjxj (4.2.1)

and

yk = φ(uk + bk) (4.2.2)

where x1, x2,...,xm are the input signals, wk1, wk2,...,wkm are the synaptic weights of
neuron k, uk is the linear combiner output due to the input signals, bk is the bias which
has the effect of increasing or lowering the net input of the activation function (depending
on whether it is positive or negative, respectively), φ() is the activation function and yk
is the output signal of the neuron. The use of bias has the effect of applying an affine
transformation to the output uk of the linear combiner in the model, as shown by:

vk = uk + bk (4.2.3)

In particular, depending on whether the bias bk is positive or negative, the relationship
between the induced local field or activation potential vk, of neuron k and the linear com-
biner output uk is modified accordingly.

The bias bk is an external parameter of artificial neuron k and equations 4.2.1, 4.2.2
could be formulated through 4.2.3 ,as follows.

vk =
n∑

j=1

wkjxj (4.2.4)

and

yk ≈ φ(vk) (4.2.5)
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The activation function, denoted by φ(v), defines the output of a neuron in terms of the
inducted local field v. Some common activation functions are described below.

• Sigmoid: The mathematical form the sigmoid non-linearity is σ(x) = 1/(1 + e−z).
It takes a real valued number and squashes it in the range between 0 and 1. In
particular, negative numbers become 0 and positive numbers become 1. Although
the sigmoid function was frequently used in the past, it is very rarely used nowadays
mostly because when it saturates at either 0 or 1 the gradient becomes almost 0 and
because it is not zero centered.

• Tanh: The tanh non-linearity squashes a real-valued number to the range [−1, 1].
Like the sigmoid neuron it’s activations saturate but it’s output is zero centered.
Therefore, it’s always preferred to the sigmoid non-linearity.

• ReLU: The Rectified non-Linear Unit has become very popular in the last few years.
It computes the function f(x) = max(0, x). Thus, the activation is simply thresh-
olded at 0. It was found to greatly accelerate the convergence of stochastic gradient
descend due to its non-linear non-saturating form.

The above architecture of a Neural Network consisting of a single neuron which can
be used as a linear classifier obviously limits the networks capabilities and has little more
to offer in comparison to classic machine learning algorithms. The networks used to-
day (deep neural networks) are networks that consist of numerous layers of neurons that
are connected in an acyclic graph. The outputs of the neurons of a layers become in-
puts for the neurons of the next layer and so on. Typically, a deep neural network
will consist of an input layer of neurons and an output layer as well as any number of
hidden layers in between that connect the above to layers ,as shown in Fig. 4.3. In
general, three fundamentally different classes of network architectures may be identified:
Single − Layer Feedforward Networks, Multi − Layer Feedforward Networks and
Recurrent Networks.

Figure 4.3: Neural Network with a single Hidden Layer
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Neural Network Type and Parameters

It is noted that various types of neural networks were examined in order to select and
implement the most appropriate one. This choice was based on the following criteria.

• Performance and Accuracy

• Regression

• Training Time

Since 10 previous steps are required to ensure predictions of 10 steps forward, the first
type of neural network to be examined was the Time Delay Neural Network (TDNN). It
has been observed that this neural network does not provide a good estimate at all, with
estimates deviating considerably from the actual ones. The Nonlinear Auto Regresive
Neural Network (NARX) was also tested, but it was found to has low performance and
regression, with very long training time. In the end, the Feed Forward Neural Network
(FFNN) was chosen, which in a short training time ensures great accuracy in predictions
and good regression.

The neural network creation and training was developed in Matlab, using the following
commands in order.

net = feedforwardnet(hiddenlayers)

net = train(net, x, t)
(4.2.6)

where:

• Hidden layers as well as the number of neurons in each layer represent the structure
of the NN. The number of hidden layers and number of neurons determine the perfor-
mance of the neural network. In general, as the number of hidden layers and neurons
increase, so does the quality of predictions. However, a large increase in the number
of these does not lead to the expected improvement of the forecast, overloading the
network and at the same time significantly increasing its training time or leading
to overfitted results. Taking into account the variation of the collected dataset and
performing a number of simulations, it was observed that the ideal NN structure is
with 1 hidden layer of 10 neurons, as shown in 4.4. With this structure, satisfactory
performance of the neural network is ensured, while minimizing its training time.

Figure 4.4: Neural Network structure
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• x variable represents the given inputs. The previous 10 steps of each dataset element
are given as input data to the neural network.

• t variable represents the given targets. The next 10 steps of each dataset element
are given as output data to the neural network. For the tugboat collected dataset,
it was observed that the neural network gives very good predictions up to 10 steps
forward.

The following function was used to connect the neural network to the power plant
control model presented in this work.

gensim(net) (4.2.7)

This function creates a Simulink system containing a block that simulates neural network
net. The modeling sample time is 400 ms. This time value is obtained from the number of
data taken into account for the simulation and is characterized as particularly satisfactory
for the speed and reliability of the system predictions.

The evaluation of the performance of the Feed Forward Neural Network prediction
model was carried out through simulations, the conclusions of which are recorded in Chap-
ter 5.



Chapter 5

Observer and Prediction Models
Implementation

Figure 5.1: Observer and Predictor Implementation

55
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This chapter lists the results-diagrams of the simulations performed, to evaluate the
performance of the models presented in the previous chapters. The main conclusions from
the execution of the simulations are recorded and the models are compared. This chapter
consists of two parts. The first part refers to the implemented models of propeller observer
and the second to the models for predicting the rotational speed of the shaft.

The MATLAB/Simulink programming environment was used to perform the simulations
and compile the necessary codes. There are a number of bibliographic sources available
for quick and effective learning of the program, such as: [39] and [40].

5.1 Propeller Load Observation Models

In this section, the simulations of the two observer models are presented, both in adaptive
form (3.1.1 , 3.1.2) and in Kalman Filter format (3.2.1 , 3.2.2). For each of the four
models in total, the corresponding propeller thrust estimation is attached, based on 3.1.3.
The estimate of the propeller law constant c based on 3.3 is also recorded.

Fast and slow acceleration simulations were performed (settings: Figs. 5.2 and 5.16), which
are presented in common diagrams, but also simulation of towing (settings: Figs. 5.12 and
5.26). In every case, it was considered a wave of 1.2 meters significant high and 0.8 rad/s
peak frequency, as presented in A.4. Simulations were performed for both Duct Propeller
(DuctP) and Controllable Pitch Propeller (CPP).

The diagrams showing the simulation results are summarized in the following table. For
each type of propeller, the slow-fast acceleration simulation diagrams are recorded, with
sea wave disturbance, while in parentheses () the corresponding towing simulation dia-
grams are recorded.
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Duct

Propeller Load Observer
Torque Coefficient
Estimation Scheme

Performance
Thrust

Performance
Thrust

Estimation Estimation

Adaptive
Form

Fig. 5.3 Fig. 5.4 Fig. 5.5 Fig. 5.6

Kalman
Filter

Fig. 5.7 Fig. 5.8
Fig. 5.3

(Fig. 5.13)
Fig. 5.10

(Fig. 5.14)

Propeller Law
Constant

Fig. 5.11 (Fig. 5.15)

CPP

Propeller Load Observer
Torque Coefficient
Estimation Scheme

Performance
Thrust

Performance
Thrust

Estimation Estimation

Adaptive
Form

Fig. 5.17 Fig. 5.18 Fig. 5.19 Fig. 5.20

Kalman
Filter

Fig. 5.21 Fig. 5.22
Fig. 5.23

(Fig. 5.27)
Fig. 5.24

(Fig. 5.28)

Propeller Law
Constant

Fig. 5.25 (Fig. 5.29)

Table 5.1: Simulations

5.1.1 Duct Propeller (DuctP)

The settings made to the engine speed controller are shown in the second figure of 5.2,
with the final reference value being 1775 rpm.

Figure 5.2: Engine setup during slow and fast ship acceleration with wave disturbance
(DuctP).
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The figure 5.3 shows the performance of the adaptive observer 3.1.1, in relation to
the actual values and then in the figure 5.4 the corresponding thrust estimation of the
propeller is presented.

Figure 5.3: Adaptive Observer performance (DuctP).

Figure 5.4: Thrust Estimation Scheme performance of 5.3 (DuctP).
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The figure 5.5 shows the performance of the adaptive torque coefficient estimation
scheme 3.1.2, in relation to the actual values and then in the figure 5.6 the corresponding
thrust estimation of the propeller is presented.

Figure 5.5: Adaptive Torque Koefficient Estimation Scheme performance (DuctP).
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Figure 5.6: Thrust Estimation Scheme performance of 5.5 (DuctP).
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The figure 5.7 shows the performance of the Kalman Filter observer 3.2.1, in relation
to the actual values and then in the figure 5.8 the corresponding thrust estimation of the
propeller is presented.

Figure 5.7: Kalman Filter Observer performance (DuctP).

Figure 5.8: Thrust Estimation Scheme performance of 5.7 (DuctP).
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The figure 5.9 shows the performance of the Kalman Filter torque coefficient esti-
mation scheme 3.2.2, in relation to the actual values and then in the figure 5.10 the
corresponding thrust estimation of the propeller is presented.

Figure 5.9: Kalman Filter Torque Koefficient Estimation Scheme performance (DuctP).
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Figure 5.10: Thrust Estimation Scheme performance of 5.9 (DuctP).
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The figure 5.11 shows the estimation of the propeller law constant c based on 3.3.

Figure 5.11: Propeller Law Constant Estimation (DuctP).
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The settings made to the engine speed controller during towing are shown in the sec-
ond figure of 5.12, with the final reference value being 1775 rpm.

Figure 5.12: Engine setup during ship towing with wave disturbance (DuctP).
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The diagrams of the observer performance, the thrust estimation and the estimation
of the propeller law constant c follow, respectively.

Figure 5.13: Kalman Filter Observer performance (DuctP).
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Figure 5.14: Thrust Estimation Scheme performance of 5.13 (DuctP).

Figure 5.15: Propeller Law Constant Estimation (DuctP).
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5.1.2 Controllable Pitch Propeller (CPP)

The propeller pitch is adjusted as shown in the first figure of 5.16. The settings made to
the engine speed controller are shown in the third figure of 5.16, with the final reference
value being 1775 rpm.

Figure 5.16: Engine and Pitch setup during slow and fast ship acceleration with wave
disturbance (CPP).
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The figure 5.17 shows the performance of the adaptive observer 3.1.1, in relation to
the actual values and then in the figure 5.18 the corresponding thrust estimation of the
propeller is presented.

Figure 5.17: Adaptive Observer performance (CPP).

Figure 5.18: Thrust Estimation Scheme performance of 5.17 (CPP).
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The figure 5.19 shows the performance of the adaptive torque coefficient estimation
scheme 3.1.2, in relation to the actual values and then in the figure 5.20 the corresponding
thrust estimation of the propeller is presented.

Figure 5.19: Torque Koefficient Adaptive Estimation Scheme performance (CPP).
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Figure 5.20: Thrust Estimation Scheme performance of 5.19 (CPP).



72 Chapter 5. Observer and Prediction Models Implementation

The figure 5.21 shows the performance of the Kalman Filter observer 3.2.1, in relation
to the actual values and then in the figure 5.22 the corresponding thrust estimation of
the propeller is presented.

Figure 5.21: Kalman Filter Observer performance (CPP).

Figure 5.22: Thrust Estimation Scheme performance of 5.21 (CPP).
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The figure 5.23 shows the performance of the Kalman Filter torque coefficient esti-
mation scheme 3.2.2, in relation to the actual values and then in the figure 5.24 the
corresponding thrust estimation of the propeller is presented.

Figure 5.23: Torque Koefficient Kalman Filter Estimation Scheme performance (CPP).
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Figure 5.24: Thrust Estimation Scheme performance of 5.23 (CPP).
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The figure 5.25 shows the estimation of the propeller law constant c based on 3.3.

Figure 5.25: Propeller Law Constant Estimation (CPP).
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The propeller pitch is adjusted as shown in the first figure of 5.26. The settings made
to the engine speed controller during towing are shown in the second figure of 5.26.

Figure 5.26: Engine and Pitch setup during ship towing with wave disturbance (CPP).
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The diagrams of the observer performance, the thrust estimation and the estimation
of the propeller law constant c follow, respectively.

Figure 5.27: Kalman Filter Observer performance (CPP).
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Figure 5.28: Thrust Estimation Scheme performance of 5.27 (CPP).

Figure 5.29: Propeller Law Constant Estimation (CPP).
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5.1.3 Results Analysis

As shown in Figures 5.3, 5.5 of the duct propeller but also in the corresponding Figures
5.17, 5.19 of the controllable pitch propeller, the performance of both the propeller load
observer 3.1.1 and the torque coefficient estimation scheme 3.1.2 is particularly high.
Despite the relatively high significant wave height and frequent fluctuations, both models
adapt quickly, ensuring satisfactory accuracy at the observed values. It is noted, however,
that during abrupt changes in engine speed, during acceleration or towing there is a slight
deviation from the actual values. In conclusion, both adaptive observation models can be
used with great efficiency in cases where the measurements used do not have high noise
levels.

As shown in Figures 5.7, 5.9 of the duct propeller but also in the corresponding Fig-
ures 5.21, 5.23 of the controllable pitch propeller, the performance of both Kalman Filter
models (3.2.1, 3.2.2) is satisfactory. Measurements are filtered and reconstracted with
great accuracy, limiting noise. The observed values follow the course of the corresponding
actual values with small error and small time shift. It can be shown, however, that in
the case of the torque estimation scheme 3.2.2, smoother results are obtained, but just
as accurate as in the case of the propeller load observer. This is probably due to the fact
that the system is regulated by lower noise covariances.

In each thrust diagram it can be observed that there is a deviation from the actual
values, during acceleration (0 − 5 s in fast acceleration and 0 − 55 s in slow accelera-
tion) or towing. As mentioned in subsection 3.1.3, this is due to the fact that the linear
relationship 3.1.17 applies locally to small changes in speed. Thus, until it is stabilized
around a certain range, the specific model displays offset.

As expected, the estimated value of propeller law constant c is stabilized, with small
changes, near a certain value. Fast or slow acceleration does not so drastically affect the
change in this constant as parameters such as weather operating conditions or hull fouling.

Regarding the type of propeller, it is easy to understand that in the case of the control-
lable pitch propeller the results are more accurate and smooth. This is due to the fact that
the C − series of CPP have been designed much more recently than the corresponding
of the DuctP. The ability to change the pitch of the propeller while changing its speed,
allows the propeller to adapt quicker ,during the acceleration of the ship, passing through
more efficient operating points.

5.2 Shaft Rotational Speed Prediction Models

In this section, the simulations of the two prediction models (Markov Chain and Neural
Network) are presented in the corresponding Figures 5.30, 5.31. The simulation was
performed for a specific period of time (2500 s) during the operation of the tugboat. For
the Neural Network model, also the performance and error diagrams are attached.
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Figure 5.32: NN Performance

Figure 5.33: Error Histogram



5.2 Shaft Rotational Speed Prediction Models 83

5.2.1 Results Analysis and Models Comparison

Observing the displayed diagrams, it is easy to see that the Neural Network gives much
more accurate predictions than the Markov Chain model. More specifically, in the Markov
model, although the forecasts tend to follow the course of the actual values, they deviate
from them very quickly. From the very first step, the predictions are not reliable, while as
the steps progress, the predictions are expected to worsen. It is also noted ,from Figure
5.30, that after the fifth step, the model underfunctions even more. As mentioned in
4.1, this is due to the fact that the estimates of this model depend exclusively on the
previous state and not on a sufficient number of previous values. Therefore, the estimated
values are limited to a specific set, with the highest probabilities in the state transition
probability matrix. In contrast to the Markov model, the Neural Network takes into
account states at an horizon of 10 previous steps, giving significantly more accurate results.
It can be observed that as the prediction step increases, so does the deviation from the
corresponding real values. However, the overall performance and regression of the neural
network is particularly high, even though its training time is short. It can also be noted
,from Figure 5.31, that the neural network predictions follow the course of the target
values, with both small error and small time shift. The largest deviations are observed in
the very high and very low speed values, but also in its abrupt alternations. This is due to
the speed variation in the collected dataset, which consist of constant speed segments and
intense accelerations and decelerations due to the tugboat operation. In conclusion, for the
operation of the MPC, the neural network described above gives satisfactory predictions
up to 10 steps forward.
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Chapter 6

Conclusions and Future Work

Conclusions

In this work, two observer models were investigated in order to use them in the energy
management system of the ship’s propulsion plant. At the initial stage, the ship was fully
modeled, based on the principles of resistance and propulsion. The type of ship, its main
propulsion engine, its propeller and other technical characteristics were selected. After it
was tested that this modeling adequately corresponds to the actual operating conditions
of a tugboat, observers were designed to assess some states of the system, such as the
propeller load torque and the toque coefficient. Observation equations have been used to
build both adaptive models and Kalman Filter models. Through a number of simulations
in cases of slow, fast acceleration and towing, it was found that the observers respond very
efficiently, giving accurate estimates and successfully filtering out the noisy measurements
of the sensors. It was also observed from the simulations that the results in the case of the
controllable pitch propeller are smoother and more reliable due to its ability to change its
step during changes in its speed. A linear model for determining propeller thrust through
its estimated torque was examined. It has been found that for a certain range of values
of the propeller angle of attack, this method can be applied with very satisfactory per-
formance, but in cases of rapid changes in speed it deviates significantly from the actual
values. In order to ensure the best possible control of the propulsion system, two models of
predicting the future shaft speed were studied. It was concluded that the neural network
gives accurate predictions in a time horizon of 10 seconds, with the mean square error
converging quickly to zero. Data from real operating conditions of a tugboat were used to
train the model.

Suggestions for Future Work

In this thesis observer models were designed ,using the ship’s basic propulsion principles.
The evaluation of the performance of these schemes was carried out through simulations.
It is suggested to experimentally implement them and to investigate their response using
the experimental testbed of LME. The simulation conditions and the noise covariances in
the Kalman Filter observers could be alterated, in order to find the optimal ones and to
approach effective realistic operating conditions. Regarding the neural network, its use is
suggested, along with the observer so as to ensure high efficiency of the closed loop control
system.
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Appendix A

Ship Propulsion Plant Modeling

In order to design the propeller load observer, it was necessary to select and model a ship
type. In the previus diploma-thesis [4], a complete modeling of the ship was carried out
and the present work was based on its content. Initially, in this chapter the type of ship
being modeled is presented. The basic formulas that govern the principles of resistance
and propulsion of the ship are described and its basic parts are analyzed, such as the main
engine, the gearbox, the shaftline and the propeller. To perform the simulations, a model
describing the state of the sea in case of irregular waves is also produced.

A.1 Ship Type

In order to dimension the propulsion system and make simulations, it was deemed neces-
sary to select a type of ship that is similar to the main features of the experimental testbed
(see Chapter ??). Due to the small horsepower of the internal combastion engine of the
experimental testbed and the hybrid PTI / PTO device, the tugboat was chosen as the
type of ship, in which the most complex charging scenarios are presented. More specifi-
cally, the Stan Tug 1205 tugboat, manufactured by DAMEN, was selected. This tugboat,
shown in the following figure, has two internal combustion engines, of approximately the
same power and speed as that of the experimental testbed. The main particulars of the
ship are recorded in the table below.

Length overall 13.08 m
Beam overall 5.28 m
Depth at sides 2.30 m
Draught aft 1.80 m
Displacement 58 t
Max Speed 8.8 knots
Max Bollard Pull 8 t

Main Engine Volvo D9 MH
MCR 221 kW at 1800 - 2200 RPM

Table A.1: Main Pariculars of DAMEN Stan Tug 1205

89



90 Appendix 1 A. Ship Propulsion Plant Modeling

Figure A.1: DAMEN Stan Tug 1205
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A.2 Ship Dynamics and Resistance

During the longitudinal movement of the ship, Newton’s 2nd Law applies. Therefore,
through the composition of the forces exerted on the ship, the acceleration is calculated.
By integrating accelaration ship velocity can be also calculated.

∑
F = ma = m

dVs
dt

(A.2.1)

As a mass of the ship, its displacement is taken as well as its hydrodynamic mass, which
for tugboats amounts to approximately 5% of the displacement. Therefore:

m = Mdisp +Mhyd (A.2.2)

According to [27]:

dVs
dt

=
Np(1− t)Tp −R+ FB.P.

Mdisp +Mhyd
(A.2.3)

where:

• Np(1− t)Tp
with Tp the thrust produced by each propeller, Np the number of propellers available
on the vessel and t (thrust deduction factor) the rate of reduction of propulsion due
to the hull propeller interaction in the stern area.

• R
the resistance of the tugboat, which is a direct function of its speed. It consists of
two parts, the calm water frictional resistance and the additional resistance of the
ship due to the waves.

• FB.P.

(Bollard Pull) the external force which acts on the ship during tug operations.
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A.3 Ship Propulsion

A.3.1 Diesel Engine

For the simulations, the data of the propulsion engine identified in a previous diploma-
thesis [28] were used. In that work, a complete modeling of the main diesel engine was
carried out. More specifically, the Scania 12.7L I6 engine was modeled, with the following
technical characteristics.

Maximum Torque 1950 Nm at 1200 RPM
MCR 254 kW at 1300 - 2200 RPM

Table A.2: Scania Engine Particulars

The engine torque Qeng results from the regulation of the fuel supply, through a PI
controller.
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A.3.2 Shaftline Gearbox and Efficiency

GearBox

A gearbox is inserted between the engine and the propeller of the ship, in order to achieve
the optimal speed reduction and to ensure efficient operation of the propeller. The gear
ratio of the selected tugboat is:

GearRatio = igb = 3.82

Therefore, the speed of the propeller shaft after the gear box is:

nshaft =
neng
igb

(A.3.1a)

ωshaft =
ωeng

igb
(A.3.1b)

The operating torque of the propeller shaft arises as a direct consequence of the principle
of conservation of energy and is:

Qshaft = igbQeng (A.3.2)

Also a consequence of the principle of conservation of energy are the following relations
between the moments of inertia before and after the gearbox.

1

2
Jshaftω

2
shaft =

1

2
Jengω

2
eng

1

2
Jshaft

ωeng

igb

2
=

1

2
Jengω

2
eng

Jshaft
i2gb

= Jeng

Jshaft = i2gbJeng

(A.3.3)

Shaftline Efficiency

Gearbox Efficiency
The arrangement of the gearbox consists of bearings and other structural elements which
come into contact with the shaft, causing friction losses and reducing its efficiency. A
good estimate of the efficiency of the gearbox is given through the engine (or propeller)
nominal torque, by the following formula.

ngb =
Qeng

Qnom
=
Qshaft

Qload
(A.3.4)

Shaft Efficiency
Power transmission from the main engine to the ship’s propeller is via the shaft. The sup-
port of the shaft on bearings implies the development of local friction during its rotation,
resulting in losses during power transmission and the reduction of the efficiency of the
shaftline system. A widely held estimate of the shaft efficiency is as follows:

nsl = 1− a2nshaft +
a1

1− a2
(a2nshaft − n2

shaft) (A.3.5a)



94 Appendix 1 A. Ship Propulsion Plant Modeling

nsl = 1− a2ωshaft +
a1

1− a2
(a2ωshaft − ω2

shaft) (A.3.5b)

Setting the parameter values as a1 = a2 = 0.01 the shaftline efficiency at maximum oper-
ating speed becomes nsl = 0.98.

Relative Rotative Efficiency
The relative rotative efficiency nr accounts for the differences in torque absorption char-
acteristics of a propeller when operating at similar conditions in a mixed wake and open
water flows. In most cases the value of relative rotative efficiency lies close to unity and
is related to the actual torque of the propeller as follows:

Qload =
Qprop

nr
(A.3.6)

For the simulations, it was considered that the relative rotative efficiency is nr = 1.02

A.3.3 Propeller

The propeller diameter of the selected tugboat is:

D = 1.05 m (A.3.7)

with

z = 4 (A.3.8)

blades.

The ship’s hull efficiency is determined by effective wake fraction w and thrust deduc-
tion t. The wake fraction is the actual percentage of the wake, due to the presence of the
hull in front of the propellers and the thrust deduction is the rate of reduction of thrust
due to the operation of the propeller in the stern area. The values of these coefficients are
determined by empirical formulas [32] and are calculated as:

w = 0.15 , t = 0.13 (A.3.9)

The propulsion velocity of the propeller is determined by the following type:

Va = Vs(1− w) + V w (A.3.10)

where Vs is the velocity of the ship and w is the effective wake fraction, as defined above.
Vw is the velocity of the wave that is presented as a disturbance in the propeller region of
the ship and is analyzed in A.4.

The angle of attack of the propeller blade at 70% of propeller radius is denoted by β
and is the angle formed by the recommended speed of Va and 0.7 pinpD seen from the
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horizontal axis, which is perpendicular to the axis of rotation of the propeller.

β = arctan

(
Va

0.7πnpD

)
(A.3.11)

where Va is the propulsion velocity of the propeller, np is the propeller rotational speed in
rps and D is the propeller diameter.

Figure A.2: Angle β

The actual propeller torque Qp and thrust Tp are influenced by many parameters. As
presented in [7] Qp and Tp can in general be formulated as functions of the shaft speed np
in revolutions-per-second (rps), time-varying states xp (e.g. pitch ratio, advance velocity,
submergence), and fixed thruster parameters θp (e.g. propeller diameter, geometry, posi-
tion):

Qp = fQ(np, xp, θp) (A.3.12a)

Tp = fT (np, xp, θp) (A.3.12b)

More specifically, propeller the torque and thrust are determined by the corresponding
coefficients as follows.

Qp = KQρD
5n2

p (A.3.13a)

Tp = KTρD
4n2

p (A.3.13b)
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The last two equations can also be written and functioned by the torque and thrust coef-
ficients CQ and CT

Qp =
π

8
CQρ[V 2

a + (0.7πnpD)2]D3 (A.3.14a)

Tp =
π

8
CTρ[V 2

a + (0.7πnpD)2]D2 (A.3.14b)

where:

KQ =
π

8
CQ

[(
Va
npD

)2

+ (0.7π)2

]
(A.3.15a)

KT =
π

8
CT

[(
Va
npD

)2

+ (0.7π)2

]
(A.3.15b)

It is noted that the density of seawater is taken as follows:

ρ = 1025
kg

m3

The torque and thrust coefficients are determined by the following technical characteristics
of the propeller.

• z: Number of Blades

•
P

D
: Pitch Ratio

•
AE

A0
: Expanded Area Ratio

Therefore, CQ and CT coefficients vary depending on the type of propeller. The pro-
peller of the proposed tugboad is ducted with fixed pitch and nozzle, but simulations have
also been performed for controllable pitch propeller. In each of the two cases, the torque
and thrust coefficients are defined, using propellers of the Wageningen series.
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Ducted Fixed Pitch Propeller

For this case

Wageningen Ka4− 70, with Nozzle 19A

was selected, with the following technical characteristics.

• z = 4

•
P

D
= 1.2

•
AE

A0
= 0.7

Fourier series were used to determine the torque and thrust coefficients, with the data
given in. In this case the the angle of attack of the propeller blade β takes values in
[-90◦,270◦].

CQ =
1

10

20∑
k=0

{A(k) cos(kβ) +B(k) sin(kβ)}

CT =
20∑
k=0

{A(k) cos(kβ) +B(k) sin(kβ)}

CTn =
20∑
k=0

{A(k) cos(kβ) +B(k) sin(kβ)}

(A.3.16)

It is noted that A(k) and B(k) are different for CQ, CT and CTn and their values are
obtained from table B.1 given in [3]. The coefficient CTn represents the part of the thrust
produced by the propeller due to the existence of the nozzle. The factor CT includes the
factor CTn but both are calculated for completeness reasons. The dimensionless coeffi-
cients CQ, CT and CTn are displayed in Fig. A.3

The moment of inertia of the mass and the moment of inertia of the hydrodynamic mass
of the propeller are respectively:

JM = 7.25 kgm2

JW = 9.27 kgm2
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Figure A.3: Torque and Thrust Dimensionless Coefficients

Controllable Pitch Propeller

For this case

Wageningen C4− 40

was selected, with the following technical characteristics.

• z = 4

•
(
P

D

)
max

= 1.2

•
AE

A0
= 0.4

MC440 program of MARIN research intitution 1 were used to determine the torque
and thrust coefficients. In this case the the angle of attack of the propeller blade β takes

values in [-90◦,90◦] and the pitch ratio
P

D
is not constant. In ship stopping or retreating,

the propeller does not rotate in the opposite direction, but the pitch is changed to negative
values, maintaining the propeller rotation at the same time. The dimensionless coefficients

CQ and CT are displayed in 3D, depending on the angle β and the pitch ratio
P

D
, in the

corresponding figures A.4 and A.5. These coefficients can also displayed in 2D, as seen
in B.1 and B.2

The moment of inertia of the mass and the moment of inertia of the hydrodynamic mass
of the propeller are respectively:

1https://www.marin.nl/
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JM = 6.11 kgm2

JW = 6.24 kgm2

Figure A.4: Torque Coefficient in 3D display
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Figure A.5: Thrust Coefficient in 3D display
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The selected propellers are capable of producing thrust that overcomes the resistance of
the tugboat at maximum speed and the maximum bollard pull at lower operation speeds.

A.3.4 Shaftline Dynamics

During the rotational movement of the shaft, Newton’s 2nd Law applies. Therefore,
through the composition of the torques exerted on the shaft, the rotational speed is cal-
culated.

∑
Q = Jω̇ (A.3.17)

Using the relations of the previous section and due to the presence of a gearbox, the above
equation can be written as:

Jshaftω̇shaft = nmQeng −Qload ⇒ ω̇shaft =
1

Jshaft
(nmQeng −Qload) (A.3.18)

where:

• nm = nslngb
the mechanical efficiency of the gearbox and the shaftline system, which results as
a product of the individual efficiencies nsl and ngb.

• Jshaft
the moment of inertia of the system, which consists of:

– the moment of inertia of the moving parts of the engine around the crankshaft, ie
the pistons, the thrusters, the knobs, with which the crankshafts are connected
to each other and finally the flywheel together with the flange at the engine
outlet .

– the moment of inertia of the shafts, the electric motor-generator and the moving
parts of the gearbox.

– the moment of inertia of the propeller, but also of the water trapped between
its blades.

• Qeng

torque generated by the engine in the case of simulations results from the regulation
of the fuel supply, as analyzed in A.3.1.

• Qload

the torque that represents the propeller load is estimated by the observer designed
in Chapter 3 and is compared to its actual value Qp, as calculated by the formulas
described in the previous subsection.
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A.4 Sea Wave Disturbance

In order to make simulations in case of wave disturbances, it was deemed necessary to
develop a model for the production of irregular sea waves. The toolbox included in [1] was
used for this purpose. The basic characteristics of the wave disturbance were thus defined
,according to [33].

The direction of the wave is defined by the angle β, which is 0◦ for the same direction
of propagation speed of the wave, with that of the ship and 180◦ for the opposite direction
(frontal waves). For the waves, it was assumed that they are one-directional, that is, all
their components have the same direction. Irregular waves can be analyzed in infinite
regular waves, having the following basic characteristics.

• Hs the significant wave height.

• ωp the peak frequency.

• ζi the amplitude of each contributing regular wave i.

• ωi the frequency of each contributing regular wave i.

• εi the phase of each contributing regular wave i.

It is noted that ζi and ωi depend on Hs and ωp, while εi results from a random distri-
bution in [0, 2π].

The water surface elevation is given by the following formula.

ζ(t) =
n∑

i=1

ζi cos(ωit+ εi) (A.4.1)

n represents the number of regular waves, which are components of irregular waves, as
said above. For the simulations, n = 28 was obtained.

It is noted that the moving ship ”observs” the random wave differently from the sta-
tionary observer. For this reason, the meeting frequencies ωei must be calculated. Also
assuming that the sea water is deep, the wave number is:

ki =
ω2
i

g
(A.4.2)

Therefore, the meeting frequencies are calculated as follows.

ωei = ωi − kiVship cos(β) ⇒ ωei = ωi −
ω2
i

g
Vship cos(β) (A.4.3)

Since the propeller is submerged below the sea surface, the effect of each regular wave must
be multiplied by the condition e−hpropki , where hprop = 1.4m is the depth at which the
center of the propeller washer is immersed in the sinking state. So the wave disturbance
at that depth is:
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ζ(t) =
n∑

i=1

ζi cos(ωeit+ εi)e
−hpropki (A.4.4)

By differentiating the above equation, the velocity of the water due to the wave is ob-
tained, in the area of the propeller, regardless of the wave-ship interaction.

ζ̇(t) =
n∑

i=1

ζiωei sin(ωeit+ εi)e
−hpropki (A.4.5)

In the above equation − ensures that an incidental (frontal) wave, with a propagation
speed opposite that of the ship, causes an increase in the speed of progress, while a wave
in the same direction as that of the ship causes a decrease.

vw(t) = −ζ̇(t) cos(β) (A.4.6)

The added resistance is calculated using experimental or simulation data for the ship sea-
keeping response at each frequency that contributes to the irregular wave, as shown in
??. As such

Rw(t) =
N∑
i=1

Rwd,i(Vship, ζi,
g

ωi
) (A.4.7)

The characteristics of the regular waves that contribute to the irregular wave formation
are selected based on a specific wave spectrum, where the sea state is defined from the sig-
nificant wave height Hs (mean value of the 1/3 highest free surface elevation observations)
and the peak frequency ωp, which is the wave frequency at which occurs the maximum
spectral density.

The peak frequency ,for waves in the North Sea, is calculated as follows:

ωp =
2π

4.883 + 2.68H0.54
s

(A.4.8)

The simulation of the sea state ,with waves, is displayed in 3D, in Fig. A.4
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Figure A.6: Water free surface elevation with one-directional irregular waves, β = 180◦,
generated with [1] toolbox



Appendix B

Propeller Torque and Thrust
Coefficients Calculation Data

The following table shows the hydrostatic data used to calculate the torque and thrust
coefficients for the corresponding case of ducted propeller. In the case of the controllable
pitch propeller, the illustrations of CQ and CT in 2D are also attached, as a supplement
to the corresponding 3Ds presented in A.4 and A.5.
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k T-A(k) T-B(k) Tn-A(k) Tn-B(k) Q-A(k) Q-B(k)

0 -9.0888E-02 0.0000E+00 -1.0166E-01 0.0000E+00 4.3800E-02 0.0000E+00

1 1.7959E-01 -1.1026E+00 1.8593E-02 -2.7769E-01 3.5299E-01 -1.2949E+00

2 1.4956E-01 6.1459E-02 1.3408E-01 3.5459E-02 -1.0917E-02 5.9030E-02

3 6.5675E-02 1.3715E-01 4.3767E-02 7.2317E-02 4.7062E-02 9.3540E-02

4 5.2107E-03 -1.7280E-02 1.3604E-02 -8.3408E-03 -1.0779E-02 -6.1148E-03

5 -6.8232E-03 9.6579E-02 1.8658E-02 4.4854E-03 -1.0193E-02 1.6121E-01

6 -6.2896E-03 5.8809E-03 2.6598E-03 -3.7642E-03 -8.8824E-04 1.4624E-02

7 1.8178E-02 -2.2587E-02 2.4907E-02 7.5727E-04 -3.7893E-02 -5.3549E-02

8 6.0694E-03 -1.4819E-02 4.7924E-03 -8.8802E-03 -7.0346E-03 -3.1589E-03

9 6.1942E-03 -1.0398E-02 3.6556E-03 4.0541E-04 -8.0130E-03 1.4382E-02

10 2.6482E-03 -2.9324E-03 3.9850E-03 -1.2811E-03 7.2622E-03 9.9836E-03

11 1.2137E-02 4.0913E-03 1.0643E-02 -5.5230E-03 -5.4390E-03 3.8781E-02

12 -3.5705E-03 -4.4436E-03 2.5495E-04 -6.3566E-03 -2.0068E-03 -4.6749E-03

13 3.2985E-03 -1.2190E-03 2.9347E-03 -2.5338E-03 3.9281E-03 1.4944E-02

14 -8.8652E-04 -2.2551E-03 3.6599E-04 -2.0504E-03 -6.5256E-04 -6.3253E-03

15 6.9807E-03 -3.2272E-03 1.3115E-03 -3.8485E-03 1.5414E-02 2.2275E-03

16 -1.7560E-04 1.7533E-03 -1.3511E-03 -6.3908E-04 3.0356E-03 7.1826E-03

17 2.1643E-03 1.4875E-03 1.7101E-03 -1.0819E-03 5.9073E-03 1.0229E-03

18 3.5362E-04 4.5353E-05 3.3765E-04 -9.6321E-04 4.1433E-03 -5.9201E-03

19 2.5772E-03 -8.8702E-04 -3.9681E-04 -2.0969E-03 4.6102E-03 -1.4814E-03

20 -1.8279E-03 -9.4609E-04 -1.1814E-03 -1.9298E-04 -5.7423E-04 -4.3092E-03

Table B.1: A(k) and B(k) for the calculations of CT , CTn and CQ of Wageningen Ka4−

70, with
P

D
= 1.2
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Figure B.1: Torque Coefficient in 2D display



108Appendix 2 B. Propeller Torque and Thrust Coefficients Calculation Data

Figure B.2: Thrust Coefficient in 2D display
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