

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών

## Integrated Circuits Design for Process Monitoring of Capacitors

Διπλωματική Εργασία Βασίλειος Χονδρορρίζος

Επιβλέπων Καθηγητής Κιαμάλ Πεκμεστζή Καθηγητής Ε.Μ.Π.

Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων VLSI Αθήνα, Ιανουάριος 2020



Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών

## Integrated Circuits Design for Process Monitoring of Capacitors

Διπλωματική Εργασία Βασίλειος Χονδρορρίζος

Επιβλέπων Καθηγητής Κιαμάλ Πεκμεστζή Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή τη<br/>ν $24^{\eta}$ Ιανουαρίου 2020

...... Κιαμάλ Πεκμεστζή Παύλος-Πέτρος Σωτηριάδης Δημήτριος Σούντρης Καθηγητής Ε.Μ.Π. Αναπληρωτής Καθηγητής Ε.Μ.Π. Καθηγητής Ε.Μ.Π.

Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων VLSI Αθήνα, Ιανουάριος 2020 .....

#### Βασίλειος Χονδρορρίζος

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Βασίλειος Χονδρορρίζος, 2020 Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς το συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν το συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

# Περίληψη

Οι κατασκευαστές ημιαγωγών έχουν εισαγάγει πολλά εργαλεία για τον έλεγχο και την παρακολούθη ση της ποιότητας των διαδικασιών κατασκευής παθητικών στοιχείων και τρανζιστορ (PCM-Process Control Monitoring) κατα το σταδιο της δοκιμής. Το στάδιο της δοκιμής χρησιμοποιείται για την εύρεση αστοχιών που προέχυψαν χατά την παραγωγή, την "επιχύρωση" χάθε χατασχευασμένου chip και για την ταξινόμηση όλων των chip σε κατηγορίες (π.χ.pass/fail). Η παρακολούθηση και ο έλεγχος της διαδικασίας κατασκευής (PCM) επιτυγχάνεται με δομές δοκιμών (test structures) που τοποθετούνται μεταξύ γειτονικών chip στο wafer ή εντός των chip και εξάγουν δεδομέμα για τα στοιχεία που αποτελούν το chip, τα οποία αξιοποιούνται ώστε να επιτευχθεί η επικύρωση (επιλέγουμε ή απορρίπτουμε ενα chip ή ένα wafer ανάλογα με τα δεδομένα που εξάγονται από τις δομές δοχιμής) χαι η ταξινόμηση των chip. Αυτή η τεχνιχή έχει ορισμένους περιορισμούς όπως: το μέγεθος των δομών δοχιμής, τον χρόνο μέτρησης χαι την μεγάλη ποσότητα στατιστιχών δεδομένων υπό επεξεργασία. Παραδοσιακά, οι δομές δοχιμής αποτελούνται από τρανζίστορ, πυχνωτές, αντιστά σεις κλπ. Οι δακτυλιοειδείς ταλαντωτές έχουν επίσης αναπτυχθεί για δομές δοκιμών, δεδομένου ότι η μέτρηση της συχνότητάς τους είναι μια γρήγορη διαδικασία και η συσχέτιση της συχνότητας αυτής με την απόδοση των τρανζίστορ είναι γνωστή. Στη συνέχεια θα σχεδιαστούν δομές δοχιμής που βασίζονται όχι μόνο σε δακτυλιοειδείς ταλαντωτές αλλά και σε Cross-Coupled ταλαντωτή και στην μέθοδο CBCM (Charged-Based Capacitance Measurement). Στην παρούσα εργασία θα μελετήσουμε και θα σχεδιάσουμε δομές δοκιμών που θα χρησιμοποιηθούν για να χαρακτηρίσουν παθητικά στοιχεία (πυκνωτές) κατά το στάδιο της δοκιμής. Θα αναπτυχθεί μαθηματικός τύπος για την συσχέτιση μεταξύ της συχνότητας ή άλλων μεγεθών και της τιμής του πυκνωτή. Σε αυτή την εργασία οι δομές δοχιμής σχεδιάστηχαν στο  $\operatorname{Custom} \operatorname{IC} \operatorname{Design} \operatorname{Tool}$ της  $\operatorname{Cadence}^{\mathrm{I\!\!R}}$  σε τεχνολογία 45 nm.

#### Λέξεις-Κλειδιά

Νόμος του Moore, Process Variation, Process Control Monitoring (PCM), Monte Carlo, Process Models, Τεχνολογία 45nm, Δομές δικιμής

## Abstract

Semiconductor manufacturers have introduced many tools to control and monitor the quality of their fabrication processes (PCM-Process Control Monitoring) at test stage. The test stage is used to validate every fabricated chip and to sort all chips into categories (e.g. pass/fail). Process control monitoring (PCM) is achieved by scribe-line test structures which are placed between adjacent dies on a wafer or inside the chip. Through these test structures data is extracted for the devices that compose the chip. These data are utilized to achieve chip validation (data extracted by test structures are used for the selection or rejection of a chip or a whole wafer) and chip classification. This technique imposes some limitations such as scribe-line size, measurement time and large amount of statistical data. Traditionally, PCM scribe-lines consists of single devices such as transistors, capacitors and resistors. Ring oscillators have been also developed as test structures, mainly for digital process, since the measurement of their frequency is a fast task and the frequency correlation with transistor performance is well known. Subsequently, test structures based on Cross-Coupled oscillator and CBCM method (Charged-based Capacitance Measurement) will be designed. In this thesis, we will study and design test structures which will be used to characterize passive devices (capacitors). The correlation between the frequency or the current and the value of the capacitor will be developed. The test structures were designed in Cadence <sup>®</sup> Custom IC Design Tool at 45nm technology.

#### Keywords

Moore's Law, Process Variation, Process Control Monitoring (PCM), Monte Carlo, Process Models, 45nm technology, Test Structures

## Ευχαριστίες

Σε αυτό το σημείο θα ήθελα να ευχαριστήσω όσους με τη βοήθειά τους έπαιξαν ένα σημαντικό ρόλο στην ολοκλήρωση αυτής της διαδρομής. Πρώτα, την οικογένειά μου για την αγάπη, την στήριξη, την υπομονή και τις θυσίες τους. Ακόμα, εκείνους τους καθηγητές και βοηθούς που κόπιασαν για να μεταδώσουν γνώσεις και έμπνευση και ιδιαίτερα τον κ.Παναγόπουλο για την πολύτιμη συνδρομή του σε αυτή την εργασία. Θα ήθελα, επίσης, να ευχαριστήσω τους φίλους μου για τα υπέροχα χρόνια που περάσαμε μαζί και για την στήριξή τους σε στιγμές άγχους και αμφιβολίας. Τέλος θέλω να ευχαριστήσω τη Σόνια, που στάθηκε δίπλα μου όλα αυτά τα χρόνια και με στήριξε σε όλες τις δυσκολίες.

 $\Sigma \mathrm{ton} \; \mathrm{B}.$ 

\_\_\_\_\_

## Contents

| Ι | Eλ  | ληνικ          | ό Κείμενο                                                                               | <b>25</b> |
|---|-----|----------------|-----------------------------------------------------------------------------------------|-----------|
|   | 0.1 | Εισαγ          | ·<br>ωγή                                                                                | 27        |
|   |     | 0.1.1<br>0.1.2 | Ο Νόμος του MooreΑπόχλιση της τιμής γαραχτηριστικών παθητικών και ενεργητικών στοιχείων | 27        |
|   |     | 0              | ολοκληρωμενων χυκλωμάτων εξαιτίας της διαδικασίας κατασκευής                            | 28        |
|   | 0.2 | Περιγ          | ραφή Προβλήματος-Στόχος της εργασίας                                                    | 32        |
|   | 0.3 | Τα μο          | ντέλα των στοιχείων που χρησιμοποιήθηκαν για τις δομές δοκιμής και για τους             |           |
|   |     | πυχνω          | υτές υπό δοχιμή                                                                         | 32        |
|   |     | 0.3.1          | Τα μοντέλα των τρανζίστορ που χρησιμοποιήθηκαν για τις δομές δοκιμής                    | 32        |
|   |     | 0.3.2          | Το μοντέλο του πυκνωτή που χρησιμοποιήθηκε ως στοιχείο υπό δοκιμή                       | 34        |
|   | 0.4 | Δομή           | δοχιμής με δύο δαχτυλιοειδείς ταλαντωτές                                                | 34        |
|   |     | 0.4.1          | Μαθηματικός τύπος για τον υπολογισμό της πραγματικής τιμής του πυκνωτή                  |           |
|   |     |                | υπό δοκιμή                                                                              | 36        |
|   |     | 0.4.2          | Υπολογισμός της πραγματικής τιμής του πυκνωτή υπό μέτρηση μέσω προ-                     |           |
|   |     |                | σομοιώσεων Monte Carlo                                                                  | 37        |
|   | 0.5 | $\Delta$ ομή   | δοχιμής με έναν δαχτυλιοειδή ταλαντωτή χαι έναν πολυπλέχτη                              | 40        |
|   |     | 0.5.1          | Μαθηματικός τύπος για τον υπολογισμό της πραγματικής τιμής του πυκνωτή                  |           |
|   |     |                | υπό δοχιμή                                                                              | 41        |
|   |     | 0.5.2          | Υπολογισμός της πραγματικής τιμής του πυκνωτή υπό μέτρηση μέσω προ-                     |           |
|   |     |                | σομοιώσεων Monte Carlo                                                                  | 44        |
|   | 0.6 | Δομή           | δοχιμής που αποτελείται από έναν Cross-Coupled ταλαντωτή                                | 46        |
|   |     | 0.6.1          | Μαθηματικός τύπος για τον υπολογισμό της πραγματικής τιμής του πυκνωτή                  |           |
|   |     |                | υπό δοχιμή                                                                              | 46        |
|   |     | 0.6.2          | Υπολογισμός της πραγματιχής τιμής του πυχνωτή υπό μέτρηση μέσω προ-                     |           |
|   |     |                | σομοιώσεων Monte Carlo                                                                  | 47        |
|   | 0.7 | Δομή           | δοχιμής που αποτελείται από χύχλωμα CBCM                                                | 49        |
|   |     | 0.7.1          | Μαθηματικός τύπος για τον υπολογισμό της πραγματικής τιμής του πυκνωτή                  |           |
|   |     |                | υπό δοχιμή                                                                              | 49        |
|   |     | 0.7.2          | Υπολογισμός της πραγματικής τιμής του πυκνωτή υπό μέτρηση μέσω προ-                     |           |
|   |     |                | σομοιώσεων Monte Carlo                                                                  | 51        |

|          | 0.8  | $\Delta$ ομή δοχιμής που αποτελείται από παραλλαγμένο χύχλωμα $\operatorname{CBCM}$ $\ldots$ $\ldots$ | 52  |
|----------|------|-------------------------------------------------------------------------------------------------------|-----|
|          |      | 0.8.1 Μαθηματικός τύπος για τον υπολογισμό της πραγματικής τιμής του πυκνωτή                          |     |
|          |      | υπό δοχιμή                                                                                            | 52  |
|          |      | 0.8.2 Υπολογισμός της πραγματικής τιμής του πυκνωτή υπό μέτρηση μέσω προ-                             |     |
|          |      | σομοιώσεων Monte Carlo                                                                                | 53  |
| II       | Er   | nglish Text                                                                                           | 57  |
| 1        | Intr | oduction                                                                                              | 59  |
| <b>2</b> | Pro  | cess Variation                                                                                        | 61  |
|          | 2.1  | Definition                                                                                            | 61  |
|          | 2.2  | The Sources and Effects of Process Variation on IC                                                    | 62  |
|          |      | 2.2.1 Sources of Process Variation                                                                    | 62  |
|          |      | 2.2.2 Effects of Process Variation on IC                                                              | 62  |
|          | 2.3  | Process Models                                                                                        | 63  |
|          | 2.4  | Scales of Process Variation                                                                           | 63  |
|          | 2.5  | Process Control Monitoring (PCM)                                                                      | 64  |
|          | 2.6  | Problem description-Thesis target                                                                     | 65  |
| 3        | Mo   | dels of devices used at test structures and device under test                                         | 67  |
|          | 3.1  | Transistor models used for Test Structures                                                            | 67  |
|          | 3.2  | NMOS transistor model testing                                                                         | 69  |
|          | 3.3  | PMOS transistor model testing                                                                         | 74  |
|          | 3.4  | Capacitor models used for Devices Under Test (DUT)                                                    | 79  |
| 4        | Test | t structure using two Ring Oscillators                                                                | 83  |
|          | 4.1  | Process Monitoring of Capacitor's Value using two Ring Oscillators                                    | 83  |
|          | 4.2  | Mean Frequency Value, Standard Deviation and Spread                                                   | 87  |
|          | 4.3  | Estimation of the DUT's value using the test structure                                                | 91  |
|          |      | 4.3.1 Mathematical formula for DUT                                                                    | 91  |
|          |      | 4.3.2 Estimation of DUT's value, Monte Carlo Simulations and other graphs .                           | 91  |
|          |      | 4.3.3 Conclusions                                                                                     | 96  |
| <b>5</b> | Test | t structure using a single Ring Oscillator and a MUX                                                  | 99  |
|          | 5.1  | Process Monitoring of Capacitor's Value using a single Ring Oscillator with MUX                       | 99  |
|          | 5.2  | Estimation of the DUT's value using the test structure                                                | 103 |
|          |      | 5.2.1 Mathematical formula for DUT                                                                    | 103 |
|          |      | 5.2.2 Estimation of DUT's value, Monte Carlo Simulations and other graphs .                           | 103 |
|          |      | 5.2.3 Conclusions                                                                                     | 108 |

| 6  | Test  | t struc | ture using a single Cross-Coupled Oscillator                              | 111 |
|----|-------|---------|---------------------------------------------------------------------------|-----|
|    | 6.1   | Proces  | ss Monitoring of Capacitor's Value using a Cross-Coupled Oscillator       | 111 |
|    | 6.2   | Estin   | nation of the DUT's value using the test structure                        | 112 |
|    |       | 6.2.1   | Mathematical formula for DUT                                              | 112 |
|    |       | 6.2.2   | Estimation of DUT's value, Monte Carlo Simulations and other graphs $\ .$ | 112 |
|    |       | 6.2.3   | Conclusions                                                               | 116 |
| 7  | Test  | t struc | ture using CBCM                                                           | 119 |
|    | 7.1   | Proces  | ss Monitoring of Capacitor's Value using Charge-Based Capacitance Mea-    |     |
|    |       | surem   | ent (CBCM)                                                                | 119 |
|    | 7.2   | Estin   | nation of the DUT's value using the test structure                        | 123 |
|    |       | 7.2.1   | Mathematical formula for DUT                                              | 123 |
|    |       | 7.2.2   | Estimation of DUT's value, Monte Carlo Simulations and other graphs $\ .$ | 125 |
|    |       | 7.2.3   | Conclusions                                                               | 129 |
| 8  | Test  | t struc | ture using changed-CBCM                                                   | 131 |
|    | 8.1   | Proces  | ss Monitoring of Capacitor's Value using changed Charge-Based Capaci-     |     |
|    |       | tance   | Measurement                                                               | 131 |
|    | 8.2   | Estin   | nation of the DUT's value using the test structure                        | 134 |
|    |       | 8.2.1   | Mathematical formula for DUT                                              | 134 |
|    |       | 8.2.2   | Estimation of DUT's value, Monte Carlo Simulations and other graphs $\ .$ | 134 |
|    |       | 8.2.3   | Conclusions                                                               | 139 |
| 9  | Con   | nclusio | n                                                                         | 141 |
|    | 9.1   | Test S  | tructures comparison                                                      | 141 |
|    | 9.2   | Future  | e Work                                                                    | 142 |
| Bi | bliog | graphy  |                                                                           | 143 |

# List of Figures

| 1   | Νόμος του Moore: Ο αριθμός των τρανζίστορ σε διάφορα chips (1971-2017)                                       | 28 |
|-----|--------------------------------------------------------------------------------------------------------------|----|
| 2   | Process Corners                                                                                              | 30 |
| 3   | Κατηγορίες Process Variation                                                                                 | 31 |
| 4   | Σχηματικά τα μοντέλα τρανζίστορ που χρησιμοποιήθηκαν                                                         | 33 |
| 5   | Το χύχλωμα που χρησιμοποιήθηχε για την δοχιμή του μοντέλου nmos τρανζίστορ.                                  | 33 |
| 6   | Το χύχλωμα που χρησιμοποιήθηχε για την δοχιμή του μοντέλου pmos τρανζίστορ.                                  | 33 |
| 7   | Circuit used for capacitor testing                                                                           | 34 |
| 8   | Ο πρώτος δακτυλιοειδής ταλαντωτής παρέχει την συχνότητα αναφοράς $(f_{ref})$ και ο                           |    |
|     | δεύτερος παρέχει μια συχνότητα, η οποία επηρεασμένη από τον πυχνωτή υπό δοχιμή                               |    |
|     | $(f_{DUT})$                                                                                                  | 35 |
| 9   | ${ m O}$ αντιστροφέας που χρησιμοποείται για τους δαχτυλιοειδείς ταλαντωτές με $W_{nmos}$ =                  |    |
|     | $2 \mu m, W_{pmos} = 4 \mu m$ και $L_{nmos} = L_{pmos} = 80  \text{nm}$                                      | 35 |
| 10  | Ο αντιστροφέας που χρησιμοποείται για τους δακτυλιοειδείς ταλαντωτές με την ολική                            |    |
|     | παρασιτική χωρητικότητα που εισάγει                                                                          | 36 |
| 11  | Όταν το σήμα επιλογής είναι $0{ m V}$ παρέχεται η $f_{ref}$ και όταν το σήμα επιλογής είναι                  |    |
|     | $1 \mathrm{V}$ παρέχεται η $f_{DUT}$                                                                         | 40 |
| 12  | Ο current-starved αντιστροφέας που χρησιμοποείται για τα στάδια του ταλαντωτή                                |    |
|     | με $W_{nmos} = 8 \mu\text{m}, W_{pmos} = 16 \mu\text{m}$ και $L_{nmos} = L_{pmos} = 80 \text{nm}.$           | 41 |
| 13  | Ο πολυπλέκτης που χρησιμοποιείται στη δομή δοκιμής και αποτελείται ο δύο πύλες                               |    |
|     | διέλευσης με $W_{nmos} = 5\mu{ m m} = W_{pmos}$ και $L_{nmos} = L_{pmos} = 80{ m nm}.$                       | 42 |
| 14  | ${ m O}$ Cross-Coupled που χρησιμοποιείται ως δομή δοχιμής με $W_{nmos}$ = 2 $\mu{ m m}$ χαι $L_{nmos}$ =    |    |
|     | 80 nm                                                                                                        | 47 |
| 15  | Η Δομή δοχιμής με χύχλωμα ${ m CBCM}$ με $W_{nmos}$ = $2\mu{ m m},~W_{pmos}$ = $4\mu{ m m}$ και $L_{nmos}$ = |    |
|     | $L_{pmos} = 80 \mathrm{nm}$                                                                                  | 50 |
| 16  | Μη αλληλεπικαλυπτόμενα σήματα                                                                                | 50 |
| 17  | $\Delta$ ομή δοκιμής που αποτελείται από παραλλαγμένο κύκλωμα ${ m CBCM}$ με $W_{nmos}$ =                    |    |
|     | $2 \mu m$ , $W_{pmos} = 4 \mu m$ και $L_{nmos} = L_{pmos} = 80  \text{nm}$                                   | 53 |
| 1.1 | Moore's Law: The number of transistors on IC chips (1971-2017)                                               | 60 |
| 2.1 | Random and Systematic Variation                                                                              | 61 |
| 2.2 | Scales of Process Variation                                                                                  | 63 |

| 2.3  | Wafer with five PCM areas which contain the test structures                                                          | 65      |
|------|----------------------------------------------------------------------------------------------------------------------|---------|
| 3.1  | Σχηματικά τα μοντέλα τρανζίστορ που χρησιμοποιήθηκαν                                                                 | 67      |
| 3.2  | Pelgrom plot of $\sigma_{V_{th}}$ versus $\frac{1}{\sqrt{W_{th}}}$ , where the slope of the resulting line is termed |         |
|      | $\frac{A_{V_{th}}}{\Delta V_{th}}$                                                                                   | 69      |
| 3.3  | $\sqrt{2}$<br>Plot of $\sigma_{V_{th}}$ as a function of Gate Length for various Widths of transistors               | 69      |
| 3.4  | Circuit used for NMOS testing                                                                                        | 70      |
| 3.5  | a)<br>Monte Carlo simulation for $V_{th}$ in Saturation Mode<br>$(V_d{=}1{\rm V})$ , b)<br>Monte Carlo               |         |
|      | simulation for $V_{th}$ in Linear Mode $(V_d=0.5\mathrm{V})$                                                         | 7       |
| 3.6  | a)<br>Monte Carlo simulation for $I_d$ in Saturation Mode<br>$(V_d\!=\!\!1\mathrm{V})$ , b)<br>Monte Carlo           |         |
|      | simulation for $I_d$ in Linear Mode $(V_d = 0.5 \text{V})$                                                           | 72      |
| 3.7  | a)<br>Monte Carlo simulation for $g_m$ in Saturation Mode<br>$(V_d\!=\!\!1\mathrm{V})$ , b)<br>Monte Carlo           |         |
|      | simulation for $g_m$ in Linear Mode $(V_d=0.5V)$                                                                     | 7       |
| 3.8  | $I_d$ as a function of $V_d$ of NMOS transistor                                                                      | $7^2$   |
| 3.9  | $V_{th}$ as a function of gate lenght in saturation and linear mode of NMOS transistor.                              | $7^{4}$ |
| 3.10 | Circuit used for PMOS testing                                                                                        | 7       |
| 3.11 | a)<br>Monte Carlo simulation for $V_{th}$ in Saturation Mode<br>$(V_d=1V)$ , b)<br>Monte Carlo                       |         |
|      | simulation for $V_{th}$ in Linear Mode $(V_d=0.5V)$                                                                  | 7       |
| 3.12 | a)<br>Monte Carlo simulation for $I_d$ in Saturation Mode<br>$(V_d\!=\!\!1\mathrm{V})$ , b)<br>Monte Carlo           |         |
|      | simulation for $I_d$ in Linear Mode $(V_d=0.5\mathrm{V})$                                                            | 7'      |
| 3.13 | a)<br>Monte Carlo simulation for $g_m$ in Saturation Mode<br>$(V_d\!=\!\!1\mathrm{V})$ , b)<br>Monte Carlo           |         |
|      | simulation for $g_m$ in Linear Mode $(V_d=0.5V)$                                                                     | 73      |
| 3.14 | $I_d$ as a function of $V_d$ of PMOS transistor                                                                      | 79      |
| 3.15 | $V_{th}$ as a function of gate lenght in saturation and linear mode of PMOS transistor.                              | 79      |
| 3.16 | Circuit used for capacitor testing                                                                                   | 80      |
| 3.17 | Monte Carlo Simulation for 50fF capacitor                                                                            | 8       |
| 3.18 | Mean Capacitor Value as a function of Real Capacitor Value                                                           | 8       |
| 3.19 | Standard Deviation as a function of Real Capacitor Value                                                             | 8       |
| 3.20 | Spread as a function of Real Capacitor Value                                                                         | 8       |
| 4.1  | Bing Oscillator                                                                                                      | 8       |
| 4.2  | The First RO provides the reference frequency $(f_{rot})$ and the second RO provides                                 | 0.      |
|      | the frequency affected by DUT $(f_{DUT})$                                                                            | 84      |
| 4.3  | Inverter cell which is used for the Ring Oscillators with $W_{nmos} = 2 \mu m$ . $W_{nmos} =$                        |         |
|      | $4 \mu \text{m}$ and $L_{nmos} = L_{nmos} = 80 \text{ nm}$ .                                                         | 8       |
| 4.4  | a)Inverter stage with capacitances added by transistors, b)Inverter stage with                                       |         |
|      | total load capacitance $C_L = C_{gd} + C_{db1} + C_{db2} + C_w$                                                      | 8       |
| 4.5  | Mean Frequency Value $(f_{ref}, f_{DUT})$ with only capacitor variation, only transistor                             |         |
|      | variation and capacitor and transistor variation as a function of the number Ring                                    |         |
|      | Oscillators' stages when DUT is 50fF                                                                                 | 8       |

| 4.6  | Standard Deviation of Frequency Value $(f_{ref}, f_{DUT})$ with only capacitor varia-       |     |
|------|---------------------------------------------------------------------------------------------|-----|
|      | tion, only transistor variation and capacitor and transistor variation as a function        |     |
|      | of the number Ring Oscillators' stages when DUT is 50<br>fF $\hdots$                        | 87  |
| 4.7  | Spread of Frequency Value $(f_{ref}, f_{DUT})$ with only capacitor variation, only tran-    |     |
|      | sistor variation and capacitor and transistor variation as a function of the number         |     |
|      | Ring Oscillators' stages when DUT is 50fF                                                   | 88  |
| 4.8  | Mean Frequency Value $(f_{DUT})$ capacitor and transistor variation for DUTs rang-          |     |
|      | ing from 1fF-450fF as a function of the number Ring Oscillators' stages                     | 89  |
| 4.9  | Standard Deviation of Frequency Value $(f_{DUT})$ with capacitor and transistor vari-       |     |
|      | ation for DUTs ranging from 1fF-450fF as a function of the number Ring Oscil-               |     |
|      | lators' stages.                                                                             | 89  |
| 4.10 | Spread of Frequency Value $(f_{DUT})$ with capacitor and transistor variation for           |     |
|      | DUTs ranging from 1fF-450fF as a function of the number Ring Oscillators' stages.           | 90  |
| 4.11 | Spread of Estimated DUT Value as a function of expected by the designer DUT                 |     |
|      | Value when only DUT's variation is taken into account.                                      | 93  |
| 4.12 | Relative Error as a function of expected by the designer DUT Value when only                |     |
|      | DUT's variation is taken into account.                                                      | 93  |
| 4.13 | Spread of Estimated DUT Value as a function of real DUT Value when only                     |     |
|      | transistor's variation is taken into account                                                | 94  |
| 4.14 | Relative Error as a function of real DUT Value when only transistor's variation             |     |
|      | is taken into account                                                                       | 95  |
| 4.15 | Spread of Estimated DUT Value as a function of expected by the designer DUT                 |     |
|      | Value when capacitor's and transistor's variation are taken into account                    | 96  |
| 4.16 | Relative Error as a function of expected by the designer DUT Value when tran-               |     |
|      | sistor's and capacitor's variation are taken into account.                                  | 96  |
| 51   | When selection signal is 0V $f_{rec}$ is provided and when selection signal is 1V $f_{DUT}$ |     |
| 0.1  | is provided                                                                                 | 100 |
| 5.2  | Current starved Inverter cell which is used for the Ring Oscillator with $W_{nmos} =$       | 100 |
|      | $8\mu\text{m}, W_{pmos} = 16\mu\text{m} \text{ and } L_{nmos} = L_{pmos} = 80\text{nm}.$    | 101 |
| 5.3  | MUX that is used for this test structure and consists of two transmission gates             |     |
|      | with $W_{nmos} = 5 \mu \mathrm{m} = W_{nmos}$ and $L_{nmos} = L_{nmos} = 80 \mathrm{nm}$ .  | 102 |
| 5.4  | Spread of Estimated DUT Value as a function of expected by the designer DUT                 |     |
|      | Value when only DUT's variation is taken into account.                                      | 104 |
| 5.5  | Relative Error as a function of expected by the designer DUT Value when only                |     |
|      | DUT's variation is taken into account.                                                      | 105 |
| 5.6  | Spread of Estimated DUT Value as a function of real DUT Value when only                     |     |
|      | transistor's variation is taken into account.                                               | 106 |
| 5.7  | Relative Error as a function of real DUT Value when only transistor's variation             |     |
|      | is taken into account.                                                                      | 106 |

| 5.8  | Spread of Estimated DUT Value as a function of expected by the designer DUT Value when capacitor's and transistor's variation are taken into account | 108 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.9  | Relative Error as a function of expected by the designer DUT Value when capac-                                                                       |     |
|      | itor's and transistor's variation are taken.                                                                                                         | 108 |
| 6.1  | Cross-Coupled Oscillator used as Test Structure with $W_{nmos} = 2\mu m$ and $L_{nmos} =$                                                            |     |
|      | 80 nm                                                                                                                                                | 112 |
| 6.2  | Spread of Estimated DUT Value as a function of expected by the designer DUT                                                                          |     |
|      | Value when only DUT's variation is taken into account.                                                                                               | 113 |
| 6.3  | Relative Error as a function of expected by the designer DUT Value when only                                                                         |     |
|      | DUT's variation is taken into account.                                                                                                               | 114 |
| 6.4  | Spread of Estimated DUT Value as a function of real DUT Value when only                                                                              |     |
|      | transistor's variation is taken into account.                                                                                                        | 115 |
| 6.5  | Relative Error as a function of real DUT Value when only transistor's variation                                                                      |     |
|      | is taken into account.                                                                                                                               | 115 |
| 6.6  | Spread of Estimated DUT Value as a function of expected by the designer DUT                                                                          |     |
|      | Value when capacitor's and transistor's variation are taken into account                                                                             | 116 |
| 6.7  | Relative Error as a function of expected by the designer DUT Value when tran-                                                                        |     |
|      | sistor's and capacitor's variation are taken into account.                                                                                           | 117 |
| 7.1  | Test structure using Charge-Based Capacitance Measurement with $W_{nmos} = 2\mu m$ ,                                                                 |     |
|      | $W_{pmos} = 4 \mu \text{m}$ and $L_{nmos} = L_{pmos} = 80 \text{nm}$                                                                                 | 120 |
| 7.2  | These non-overlapping NMOS and PMOS signals ensure no short circuit current                                                                          | 120 |
| 7.3  | Typical input and output voltage waveforms and the capacitor current waveform                                                                        |     |
|      | during switching of the CMOS inverter                                                                                                                | 122 |
| 7.4  | Waveforms V1 (NMOS) and V2 (PMOS)                                                                                                                    | 122 |
| 7.5  | $I_{ref}$ and $I_{DUT}$ waveforms when $C_{DUT} = 1 \mathrm{fF}$                                                                                     | 123 |
| 7.6  | $V_{out}$ waveform when $C_{DUT} = 1  \text{fF}$                                                                                                     | 123 |
| 7.7  | $I_{ref}$ and $I_{DUT}$ waveforms when $C_{DUT} = 100\mathrm{fF}$                                                                                    | 124 |
| 7.8  | $V_{out}$ waveform when $C_{DUT} = 100\mathrm{fF}$                                                                                                   | 124 |
| 7.9  | Spread of Estimated DUT Value as a function of expected by the designer DUT                                                                          |     |
|      | Value when only DUT's variation is taken into account.                                                                                               | 126 |
| 7.10 | Relative Error as a function of expected by the designer DUT Value when only                                                                         |     |
|      | DUT's variation is taken into account                                                                                                                | 126 |
| 7.11 | Spread of Estimated DUT Value as a function of real DUT Value when only                                                                              |     |
|      | transistor's variation is taken into account. $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$                                         | 127 |
| 7.12 | Relative Error as a function of real DUT Value when only transistor's variation                                                                      |     |
|      | is taken into account                                                                                                                                | 128 |
| 7.13 | Spread of Estimated DUT Value as a function of expected by the designer DUT                                                                          |     |
|      | Value when capacitor's and transistor's variation are taken into account                                                                             | 129 |

| 7.14 | Relative Error as a function of expected by the designer DUT Value when tran-                                                                                                     |     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | sistor's and capacitor's variation are taken into account                                                                                                                         | 129 |
| 8.1  | Test structure using changed Charge-Based Capacitance Measurement with $W_{nmos} =$                                                                                               |     |
|      | $2\mu\mathrm{m}, W_{pmos} = 4\mu\mathrm{m} \text{ and } L_{nmos} = L_{pmos} = 80\mathrm{nm}$                                                                                      | 131 |
| 8.2  | Waveform V (NMOS and PMOS)                                                                                                                                                        | 132 |
| 8.3  | $I_{ref}$ and $I_{DUT}$ waveforms when $C_{DUT} = 1  \text{fF} \dots \dots$ | 132 |
| 8.4  | $V_{out}$ waveform when $C_{DUT} = 1  \text{fF}$                                                                                                                                  | 133 |
| 8.5  | $I_{ref}$ and $I_{DUT}$ waveforms when $C_{DUT} = 100  \text{fF}$                                                                                                                 | 133 |
| 8.6  | $V_{out}$ waveform when $C_{DUT} = 100  \text{fF}$                                                                                                                                | 134 |
| 8.7  | Spread of Estimated DUT Value as a function of expected by the designer DUT                                                                                                       |     |
|      | Value when only DUT's variation is taken into account.                                                                                                                            | 135 |
| 8.8  | Relative Error as a function of expected by the designer DUT Value when only                                                                                                      |     |
|      | DUT's variation is taken into account                                                                                                                                             | 136 |
| 8.9  | Spread of Estimated DUT Value as a function of real DUT Value when only                                                                                                           |     |
|      | transistor's variation is taken into account.                                                                                                                                     | 137 |
| 8.10 | Relative Error as a function of real DUT Value when only transistor's variation                                                                                                   |     |
|      | is taken into account.                                                                                                                                                            | 137 |
| 8.11 | Spread of Estimated DUT Value as a function of expected by the designer DUT                                                                                                       |     |
|      | Value when capacitor's and transistor's variation are taken into account                                                                                                          | 138 |
| 8.12 | Relative Error as a function of expected by the designer DUT Value when tran-                                                                                                     |     |
|      | sistor's and capacitor's variation are taken into account.                                                                                                                        | 139 |

## List of Tables

| 1  | Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν<br>υπόψιν μόνο οι αποχλίσεις των γαρακτηριστιχών του πυχνωτή                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 2  | Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|    | υπόψιν μόνο οι αποκλίσεις των χαρακτηριστικών των τρανζίστορ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39         |
| 3  | Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν<br>υπόψιν οι αποχλίσεις των χαραχτηριστιχών των τρανζίστορ και του πυχνωτή υπό                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|    | δοχιμή                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39         |
| 4  | Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 1  | υπόψιν μόνο οι αποχλίσεις των γαρακτηριστιχών του πυχνωτή                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44         |
| 5  | Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| -  | υπόψιν μόνο οι αποκλίσεις των χαρακτηριστικών των τρανζίστορ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45         |
| 6  | Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| -  | υπόψιν οι αποχλίσεις των χαραχτηριστιχών των τρανζίστορ και του πυχνωτή υπό                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|    | δοχιμή                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45         |
| 7  | Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|    | υπόψιν μόνο οι αποκλίσεις των χαρακτηριστικών του πυκνωτή                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48         |
| 8  | $\Delta$ εδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
|    | υπόψιν μόνο οι αποκλίσεις των χαρακτηριστικών των τρανζίστορ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48         |
| 9  | $\Delta$ εδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
|    | υπόψιν οι αποκλίσεις των χαρακτηριστικών των τρανζίστορ και του πυκνωτή υπό                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|    | δοχιμή                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48         |
| 10 | $\Delta$ εδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
|    | υπόψιν μόνο οι αποκλίσεις των χαρακτηριστικών του πυκνωτή                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51         |
| 11 | $\Delta$ εδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
|    | υπόψιν μόνο οι αποκλίσεις των χαρακτηριστικών των τρανζίστορ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51         |
| 12 | Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|    | Sound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52         |
| 12 | $\Delta c \delta c u c v c \delta c v c v$                                     | 02         |
| 10 | $\Delta = 00 \mu e v \pi = 00 e g a portar and the possible of mome the carto of the order exhibition \Delta = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ۲ <i>1</i> |
|    | (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1) | 04         |

| 14  | Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν<br>υπόψιν μόνο οι αποκλίσεις των χαρακτηριστικών των τρανζίστορ                | 54  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 15  | Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν<br>υπόψιν οι αποκλίσεις των χαρακτηριστικών των τρανζίστορ και του πυκνωτή υπό |     |
|     | δοχιμή                                                                                                                                                    | 55  |
| 4.1 | Data extracted from Monte Carlo Simulation in which only capacitor's variation was taken into account                                                     | 92  |
| 4.2 | Data extracted from Monte Carlo Simulation in which only transistor's variation was taken into account                                                    | 94  |
| 4.3 | Data extracted from Monte Carlo Simulation in which capacitor's and transistor's variation were taken into account                                        | 95  |
| 5.1 | Data extracted from Monte Carlo Simulation in which only capacitor's variation                                                                            |     |
| 5.2 | was taken into account                                                                                                                                    | 104 |
| 53  | was taken into account                                                                                                                                    | 105 |
| 0.0 | variation was taken into account                                                                                                                          | 107 |
| 6.1 | Data extracted from Monte Carlo Simulation in which only capacitor's variation                                                                            | 110 |
| 6.2 | was taken into account          Data extracted from Monte Carlo Simulation in which only transistor's variation                                           | 113 |
| 63  | was taken into account                                                                                                                                    | 114 |
| 0.0 | variation were taken into account                                                                                                                         | 116 |
| 7.1 | Data extracted from Monte Carlo Simulation in which only capacitor's variation                                                                            | 195 |
| 7.2 | Data extracted from Monte Carlo Simulation in which only transistor's variation                                                                           | 120 |
| 79  | was taken into account                                                                                                                                    | 127 |
| 1.3 | variation were taken into account                                                                                                                         | 128 |
| 8.1 | Data extracted from Monte Carlo Simulation in which only capacitor's variation                                                                            |     |
| 8.2 | was taken into account                                                                                                                                    | 135 |
| 0.2 | was taken into account                                                                                                                                    | 136 |
| 8.3 | Data extracted from Monte Carlo Simulation in which capacitor's and transistor's variation were taken into account                                        | 138 |
| 9.1 | Comparative table based on Spread                                                                                                                         | 141 |

| 9.2 | Comparative table based on Relative Error | 141 |
|-----|-------------------------------------------|-----|
|-----|-------------------------------------------|-----|

# Μέρος Ι

Ελληνικό Κείμενο

#### 0.1 Εισαγωγή

#### 0.1.1 Ο Νόμος του Moore

Από τα μέσα του 20ου αιώνα η ανάπτυξη της τεχνολογίας ηλεκτρονικών κυκλωμάτων ήταν ταχεία. Αυτή η εξέλιξη έχει οδηγήσει σε μείωση του μεγέθους των στοιχείων (ενεργών και παθητικών).

Ο νόμος του Moore είναι η παρατήρηση ότι ο αριθμός των τρανζίστορ σε ένα πυχνό ολοκληρωμένο κύκλωμα διπλασιάζεται περίπου κάθε δύο χρόνια. Η παρατήρηση πήρε το όνομά της από τον Gordon Moore, συνιδρυτή της Fairchild Semiconductor και Διευθύνον Σύμβουλο της Intel, του οποίου η εργασία του 1965 περιγράφει κάθε χρόνο διπλασιασμό του αριθμού των στοιχείων ανά ολοκληρωμένο κύκλωμα. Αναμένεται ότι αυτός ο ρυθμός ανάπτυξης θα συνεχιστεί για τουλάχιστον μια ακόμη δεκαετία. Το 1975, αναθεώρησε την πρόβλεψη του, προβλέποντας πλέον έναν σύνθετο ετήσιο ρυθμό ανάπτυξης 41,4%.

Ο νόμος του Moore είναι στενά συνδεδεμένος με την κλιμάχωση των MOSFET (scaling), γνωστή και ως κλιμάχωση Dennard, καθώς η ταχύτατη κλιμάχωση και η δραματική μείωση του μεγέθους των MOSFETs πυριτίου είναι η βασική κινητήρια δύναμη πίσω από το νόμο του Moore.

Η πρόβλεψη του Moore αποδείχθηκε ακριβής για αρκετές δεκαετίες και χρησιμοποιήθηκε στη βιομηχανία ημιαγωγών για να καθοδηγήσει τον μακροπρόθεσμο προγραμματισμό των εταιρειών και να θέσει στόχους για τα τμήματα έρευνας και ανάπτυξης (R&D). Η προόδος στα ψηφιακά ηλεκτρονικά συστήματα συνδέεται στενά με το νόμο του Moore: οι τιμές των μικροεπεξεργαστών προσαρμοσμένες στην ποιότητα, αύξηση χωρητικότητας μνήμης (RAM και flash), βελτίωση αισθητήρων και αύξηση των pixels στις ψηφιακές φωτογραφικές μηχανές. Η ψηφιακή ηλεκτρονική έχει συμβάλει στην παγκόσμια οικονομική ανάπτυξη στα τέλη του 20ού και στις αρχές του 21ου αιώνα. Ο νόμος του Moore περιγράφει την κινητήρια δύναμη της τεχνολογικής αλλά και της κοινωνικής αλλαγής, της παραγωγικότητας και της οικονομικής ανάπτυξης.

Ο νόμος του Moore είναι μια παρατήρηση και προβολή μιας ιστορικής τάσης και όχι ένας φυσικός νόμος. Αν και το ποσοστό αύξησης των τρανζίστορ διατηρήθηκε σχεδόν σταθερό από το 1975 έως το 2012, ήταν ταχύτερο κατά την πρώτη δεκαετία από την εκπόνηση της εργασίας. Σε γενικές γραμμές, δεν είναι λογικό να τηρείται αυτή η πρόβλεψη για τεράστιο χρονικό διάστημα. Ο Διεθνής Τεχνολογικός Χάρτης για τους Ημιαγωγούς προέβλεπε το 2010 ότι η ανάπτυξη θα επιβραδυνόταν γύρω στο 2013. Το 2015 ο Gordon Moore προέβλεπε ότι ο ρυθμός προόδου θα φθάσει στον κορεσμό, κάτι που, όπως φαίνεται και στο παρακάτω σχήμα δεν επιβεβαιώθηκε (Σχ.1). [1]



Σχήμα 1: Νόμος του Moore: Ο αριθμός των τρανζίστορ σε διάφορα chips (1971-2017)

#### 0.1.2 Απόκλιση της τιμής χαρακτηριστικών παθητικών και ενεργητικων στοιχείων ολοκληρωμενων κυκλωμάτων εξαιτίας της διαδικασίας κατασκευής

#### Ορισμός

Το Process Variation είναι η απόχλιση της πραγματιχής τιμής ορισμένων χαραχτηριστιχών των τρανζίστορ (W, L,  $T_{ox}$ ,  $V_{th}$ ) και των παθητιχών στοιχείων από την τιμή που θα ήθελε ο σχεδιαστής, η οποία οφείλεται στην διαδιχασία κατασχευής τους. Το ποσοστό της απόχλισης της τιμής των χαραχτηριστιχών χαθίσταται ιδιαίτερα μεγάλο σε μιχρότερες τεχνολογίες (<65nm), καθώς η απόχλιση της τιμής των χαραχτηριστιχών που αναφέρθηχαν (μήχος, πλάτος) γίνεται μεγαλύτερο ποσοστό του μήχους ή του πλάτους του στοιχείου. Επίσης όσο πιο μιχρές τιμές χαραχτηριστιχών δίνει μια τεχνολογία, τόσο τα χαραχτηριστιχά αυτά προσεγγίζουν τις θεμελιώδεις διαστάσεις όπως το μέγεθος των ατόμων και το μήχος χύματος του φωτός που χρησιμοποιείται για τη σχεδίαση μασχών λιθογραφίας[2].

Η τυχαία απόκλιση των χαρακτηριστικών (random variation) μπορεί να οριστεί ως απόκλιση γύρω από την ονομαστική τιμή (Mean Value), ενώ η συστηματική απόκλιση των χαρακτηριστικών (systematic variation) μπορεί να οριστεί ως η απόκλιση της ονομαστικής τιμής από την αναμενόμενη. Η τυχαία απόκλιση μπορεί να προσδιοριστεί με τη μέτρηση της τυπικής απόκλισης (σ) [3].

## Οι πηγές της απόκλισης χαρακτηριστικών των στοιχείων και τα αποτελέσματά της στην κατασκευή ολοκληρωμένων κυκλωμάτων

Κύριες πηγές αποκλίσεων είναι:

- πάχος οξειδίου πύλης (για MOSFET τρανζίστορ)
- τυχαία διακύμανση προσμίξεων
- Γεωμετρία Συσκευής, Λιθογραφία στην περιοχή των νανομέτρων

Πιο συγκεκριμένα, οι πηγές απόκλισης χαρακτηριστικών για τα CMOS μπορούν να κατηγοριοποιηθούν σε δύο ομάδες. Η πρώτη ομάδα αποτελείται από ιστορικές πηγές οι οποίες θα συνεχίσουν να προσφέρουν προκλήσεις για τους κατασκευαστές. Αυτή η ομάδα περιλαμβάνει πηγές απόκλισης χαρακτηριστικών λόγω εγγύτητας υλικών, λόγω τραχύτητας ακμών (LER-Line Edge Roughness), λόγω διακύμανσης της απόστασης μεταξύ δύο τυπομένων γραμμών (LWR-Line Width Roughness) και λόγω αποκλίσεων στο διηλεκτρικό υλικό της πύλης (π.χ.αποκλίσεις πάχους οξειδίου) [3]. Η διαχείριση αυτών των πηγών αποκλίσεων απαιτεί τη συνέχιση βελτιώσεων όσο αφορά την κατασκευή των στοιχείων.

Η δεύτερη ομάδα περιλαμβάνει πηγές απόχλισης που έχουν εμφανιστεί ως σημαντικές προκλήσεις τα τελευταία χρόνια. Αυτή η ομάδα περιλαμβάνει την τυχαία διαχύμανση προσμείξεων (RDF-Random Dopant Fluctuations), η οποία σχετίζεται με τις εμφυτεύσεις των προσμίξεων και την απόχλιση που σχετίζεται με την χοχχιώδη υφή του υλικού της πύλης (πύλες πολυπυριτίου) [3]. Απαιτείται να αναπτυχθούν νέες χαινοτομίες και στρατηγικές βελτίωσης για την αντιμετώπιση των προβλημάτων που δημιουργούν οι παραπάνω πηγές αποχλίσεων.

To Process Variation (απόκλιση της τιμής των χαρακτηριστικών των στοιχείων) προκαλεί μετρήσιμη και προβλέψιμη απόκλιση της εξόδου όλων των κυκλωμάτων, αλλά ιδιαίτερα των αναλογικών κυκλωμάτων. Εάν η απόκλιση των χαρακτηριστικών των στοιχείων των ολοκληρωμένων κυκλωμάτων προκαλεί μεγάλες αποκλίσεις στην έξοδο του κυκλώματος, τότε η συνολική απόδοση και ακρίβεια του κυκλώματος μειώνεται [2].

Αν και η συνεχής διαδικασία κλιμάκωσης των CMOS τρανζίστορ οδηγεί σε πολλά πλεονεκτήματα όσο αφορά συσκευές και κυκλώματα, το ποσοστό απόκλισης των χαρακτηριστικών (process variation) αυξάνεται όσο μικρότερα γινονται τα στοιχεια. Οι αποκλίσεις στα χαρακτηριστικά των στοιχείων μπορεί προκαλέσουν αποκλίσεις από τις αναμενόμενες τιμές εξόδου. Αυτές οι παραμετρικές αποκλίσεις μπορούν να επηρεάσουν σημαντικά την απόδοση κυκλωμάτων υψηλής ταχύτητας και χαμηλής ισχύος.

Η πρώτη αναφορά απόκλισης χαρακτηριστικών (process variation) σε ημιαγωγούς ήταν από τον William Shockley, συν-εφευρέτη του τρανζίστορ.

Μια ανάλυση της συστηματικής απόκλισης (systematic variation) πραγματοποιήθηκε από τους Schemmert και Zimmer το 1974 με την εργασία τους σχετικά με την ευαισθησία τάσης κατωφλίου [2]. Αυτή η έρευνα εξέτασε την επίδραση που είχε το πάχος οξειδίου στην τάση κατωφλίου των στοιχείων MOS. Επιπλέον, λόγω της διαδικασίας κλιμάκωσης, οι πυκνωτές χαρακτηρίζονται από τυχαία και συστηματική απόλιση. Έτσι, οι πυκνωτές έχουν στην πραγματικότητα μια τιμή η οποία είναι διαφορετική από αυτή που αναμένει ο σχεδιαστής. Αυτό θα μπορούσε να προκαλέσει αποκλίσεις από την αναμενόμενη έξοδο ενός ολοκληρωμένου κυκλώματος.

#### **Process Models**

Τα εργοστάσια παραγωγής ημιαγωγών διεξάγουν αναλύσεις σχετικά με τη μεταβλητότητα των χαρακτηριστικών των τρανζίστορ (μήκος, πλάτος, πάχος οξειδίου, κλπ.) και των παθητικών στοιχείων. Αυτές οι μετρήσεις καταγράφονται και παρέχονται σε πελάτες όπως και στις εταιρείες ημιαγωγών [2]. Αυτό το σύνολο αρχείων αναφέρεται γενικά ως "model files" και χρησιμοποιείται από τα εργαλεία EDA (Electronic automation design) για την προσομοίωση κυκλωμάτων.

Τυπικά, τα παραπάνω μοντέλα περιλαμβάνουν τα process corners, τα οποία προσομοιώνουν το κύκλωμα σε καταστάσεις όπου έχουμε τις ακραίες αποκλίσεις των χαρακτηριστικών των στοιχειων από τα οποία αποτελείται. Αυτά συνήθως είναι το ονομαστικό σημείο (TT), η γρήγορη γωνία (FF), η αργή γωνία (SS), και τα SF και FS (Σχ.2) [2]. Οι αποκλίσεις των χαρακτηριστικών των τρανζίστορ συμπυκνώνονται στην απόκλιση της τάσης κατωφλίου από αυτή που θέλει ο σχεδιαστής.



Σχήμα 2: Process Corners

#### Κατηγορίες του Process Variation

Το σχήμα παρακάτω (Σχ.3) συνοψίζει τους ορισμούς των τεσσάρων διαφορετικών κατηγοριών του process variation. [4].



Σχήμα 3: Κατηγορίες Process Variation

#### Παραχολούθηση Διαδιχασιών-Process Control Monitoring (PCM)

Οι δομές δοχιμής, οι οποίες παρέχουν διάφορες μετρήσεις που αφορούν τα χαραχτηριστιχά των στοιχείων των χυχλωμάτων (PCM-Process Control Monitoring), είναι μέρος του SPC (Statistical Process Control). Χρησιμοποιούνται για τον χαραχτηρισμό των στοιχείων και τον έλεγχο της τεχνολογίας. Επίσης, οι δομές αυτές χρησιμοποιούνται για τον χαραχτηρισμό παθητικών στοιχείων (π.χ. πυχνωτές).

Η επικύρωση (validation) της απόδοσης κυκλώματος σε σχέση με τις προδιαγραφές του κυκλώματος χωρίζεται σε δύο κύρια μέρη. Η επαλήθευση (verification) και τα στάδια της δοκιμής (test stages) εντοπίζονται πριν και μετά την κατασκευή των chip αντιστοίχως. Η επαλήθευση του κυκλώματος κατά τη διάρκεια του σχεδιασμού βασίζεται σε προσομοιώσεις, τα αποτελέσματα των οποίων εξαρτώνται ιδιαίτερα από την ακρίβεια των μοντέλων. Το στάδιο δοκιμής χρησιμοποιείται για να να ταξινομηθεί κάθε chip που έχει κατασκευαστεί σε κατηγορίες (π.χ. pass/fail).

Ειδικά αν τα αποτελέσματα της επαλήθευσης μέσω προσομοίωσης και τα αποτελέσματα του σταδίου δοκιμής δεν ταιριάζουν τότε η τεχνολογία με την οποία κατασκευάζεται το chip ελεγχεται για την αποδοση της. Έτσι τα αποτελέσματα των δομών δοκιμής PCM καθίστανται ενδιαφέροντα και για τα αναλογικά κυκλώματα. Τα δεδομένα από τις δομές αυτές είναι αναγκαία για την αποτελεσματική ανάλυση των κυκλωμάτων και των εξόδων τους.

Μόνο λίγες περιοχές χρησιμοποιούνται για το SPC στις οποίες όμως υπάρχουν πολλές δομές δοχιμής (test structures). Οι δομές δοχιμών PCM χοστίζουν χώρο στο wafer και χρόνο μέτρησης. Ο αριθμός των δομών αυτών και η προσπάθεια που καταβαλλεται για τις διάφορες μετρήσεις εξαρτώνται από τις προδιαγραφές και την πολυπλοκότητα της τεχνολογίας που χρησιμοποιείται. Έτσι, μερικές εκατοντάδες έως και χιλιάδες δεδομένα εξάγονται και αναλύονται κατά τη διάρκεια της κατασχευής των chips [5].

#### 0.2 Περιγραφή Προβλήματος-Στόχος της εργασίας

Λόγω της κλιμάκωσης που περιγράφεται παραπάνω, τα τρανζίστορ και τα παθητικά στοιχεία είναι αδύνατο να είναι ιδανικά και να έχουν ακριβώς την αναμενόμενη συμπεριφορά. Με βάση όσα περιγράφηκαν παραπάνω τα τρανζίστορ αλλα και τα παθητικα στοιχεια χαρακτηρίζονται συχνά από αποκλίσεις των χαρακτηριστικών τους (process variation) από τις τιμές που θα ήθελε ο σχεδιαστής. Για παράδειγμα σε ενα chip ενός wafer χάποιοι από τους πυχνωτές που χρησιμοποιούνται μπορεί να έχουν τιμή διαφορετική από αυτή που θα ήθελε ο σχεδιαστής του chip. Γι αυτό τον λόγο οι κατασκευαστές έχουν εισαγάγει πολλά εργαλεία για τον έλεγχο και την παρακολούθηση της ποιότητας των διαδικασιών παραγωγής (PCM-Process Control Monitoring). Σε αυτή την εργασία προτείνουμε διάφορες δομές δοχιμής (test structures), οι οποίες βρίσχονται σε χάποια σημεία του wafer και μετρούν την πραγματική τιμή πολύ μικρών πυκνωτών. Οι προτεινόμενες δομές δοκιμής λειτουργούν μόνο χατά την διάρχεια του testing (έπειτα τιθενται εχτός λειτουργίας) χαι δίνουν χρήσιμες πληροφορίες όσο αφορά τις πραγματικές τιμές στοιχείων των κυκλωμάτων. Αν λοιπόν, οι μετρήσεις που γίνονται (εδώ για την τιμή των πυχνωτών) είναι εντός των ορίων που έχουν τεθεί τότε το wafer περνά στον πελάτη. Σε διαφορετική περίπτωση καταστρέφεται και επανακατασκευάζεται μέχρι όλα τα δεδομένα που εξάγονται από τις δομές δοχιμών να είναι εντός των ορίων που έχουν τεθεί.

# 0.3 Τα μοντέλα των στοιχείων που χρησιμοποιήθηκαν για τις δομές δοκιμής και για τους πυκνωτές υπό δοκιμή

# 0.3.1 Τα μοντέλα των τρανζίστορ που χρησιμοποιήθηκαν για τις δομές δοκιμής

Στην εργασία αυτή δημιουργήθηκαν και χρησιμοποιήθηκαν μοντέλα τρανζίστορ MOSFET (τεχνολογία 45nm). Για τις παραμέτρους των τρανζίστορ χρησιμοποιήθηκαν μοντέλα πρόβλεψης τεχνολογίας (PTM-Predictive Technology Models) [6]. Παρέχουν ακριβή και προσαρμόσιμα αρχεία μοντέλων για διάφορες τεχνολογίες τρανζίστορ. Αυτά τα πρότυπα αρχεία μοντέλων είναι συμβατά με τους προσομοιωτές κυκλωμάτων, όπως το Spectre.

Για τον καθορισμό της τυπικής απόκλισης της τάσης κατωφλίου  $V_{th}$ , του ρεύματος  $I_d$  και του κέρδους  $g_m$  χρησιμοποιούνται Monte Carlo προσομοιώσεις στα κυκλώματα των Σχημάτων 5 και 6.

Τα μοντέλα για τα τρανζίστο<br/>ρ που δημιουργήσαμε είναι ουσιαστικά τα παρακάτω $(\Sigma \chi.4):$ 

Το  $\sigma_{V_{th}}$  δίνεται από τον παραχάτω τύπο:

$$\sigma_{\Delta V_{th}} = \frac{A_{V_{th}}}{\sqrt{W \cdot L}} \implies \sigma_{V_{th}} = \frac{A_{V_{th}}}{\sqrt{2 \cdot W \cdot L}} \tag{1}$$

όπου  $A_{v_{th}} = 1.92 \,\mathrm{mV} \cdot \mu\mathrm{m}$ 

Τα παραπάνω τρανζίστορ έχουν την αναμενόμενη συμπεριφορά όσο αφορα τα μεγέθη  $V_{th}$ ,  $I_d$  και  $g_m$ . Συνεπώς χρησιμοποιήσαμε τα μοντέλα που δημιουργήσαμε για να κατασκευάσουμε τις

Τα μοντέλα των στοιχείων που χρησιμοποιήθηκαν για τις δομές δοκιμής και για τους πυκνωτές υπό δοκιμή 33



Σχήμα 4: Σχηματικά τα μοντέλα τρανζίστορ που χρησιμοποιήθηκαν



Σχήμα 5: Το κύκλωμα που χρησιμοποιήθηκε για την δοκιμή του μοντέλου nmos τρανζίστορ



Σχήμα 6: Το χύχλωμα που χρησιμοποιήθηκε για την δοκιμή του μοντέλου pmos τρανζίστορ

διάφορες δομές δοχιμής.

# 0.3.2 Το μοντέλο του πυχνωτή που χρησιμοποιήθηκε ως στοιχείο υπό δοκιμή

Σε αυτή την εργασία δημιουργήθηκαν μοντέλα πυκνωτών και χρησιμοποιήθηκαν ως στοιχεία υπό δοκιμή. Αυτά τα μοντέλα εισάγουν απόκλιση χαρακτηριστικών (process variation) και στα στοιχεία υπο δοκιμή. Επίσης βασίζονται και σε άλλες διάφορες ρεαλιστικές παραμέτρους των πυκνωτών.

Οι προσομοιώσεις AC στην συχνότητα του 1kHz με το παρακάτω κύκλωμα (Σχ.7) χρησιμοποιούνται για να ελέγξουν εάν το μοντέλο που χρησιμοποιείται έχει τα αναμενόμενα αποτελέσματα.



 $\Sigma$ χήμα 7: Circuit used for capacitor testing

Οι παρακάτω υπολογισμοί χρησιμοποιούνται για την εξαγωγή της τιμής του πυκνωτή από τη προσομοίωση AC:

$$Y(s) = \frac{I_{cap}}{V_{cap}} = j\omega C \implies I_{cap} = j\omega C$$
<sup>(2)</sup>

αφού  $V_{cap} = a cm = 1V$  είναι:

$$\Im I_{cap} = \omega C \Longrightarrow C = \frac{\Im I_{cap}}{2\pi f}$$
(3)

Βάζοντας στον τελικό τύπο (3), τα δεδομένα που προέκυψαν απο προσομοιώσεις προκύπτει ότι ο πυκνωτής λειτουργεί κατά τα αναμενόμενα. Συνεπώς μπορούμε να χρησιμοποιήσουμε το συγκεκριμένο μοντέλο για να προσομοιώσουμε τα στοιχεία υπό δοκιμή.

#### 0.4 Δομή δοχιμής με δύο δαχτυλιοειδείς ταλαντωτές

Υπάρχουν πολλοί τρόποι χαρακτηρισμού των πυκνωτών μέσα από την συχνότητα ταλάντωσης. Ο απλούστερος τρόπος είναι να χρησιμοποιηθούν δύο ίδιοι δακτυλιοειδείς ταλαντωτές (Σχ.8). Κάθε ταλαντωτής αποτελείται από 55 στάδια. Κάθε στάδιο εδώ είναι ένας απλός αντιστροφέας (Σχ.9). Ο πρώτος δακτυλιοειδής ταλαντωτής παρέχει την συχνότητα αναφοράς ( $f_{ref}$ ) και ο δεύτερος παρέχει

μια συχνότητα, η οποία είναι άμεσα επηρεασμένη από τον πυκνωτή υπό δοκιμή  $(f_{DUT})$ . Μέσω αυτών των δύο συχνοτήτων και της καθυστέρησης του αντιστροφέα, λαμβάνουμε την τιμή του πυκνωτή υπό δοκιμή  $(C_{DUT})$ . Στην εργασία αυτή τα στοιχεία υπό δοκιμή είναι μόνο πυκνωτές.



Σχήμα 8: Ο πρώτος δακτυλιοειδής ταλαντωτής παρέχει την συχνότητα αναφοράς  $(f_{ref})$  και ο δεύτερος παρέχει μια συχνότητα, η οποία επηρεασμένη από τον πυκνωτή υπό δοκιμή  $(f_{DUT})$ 



 $\Sigma$ χήμα 9: Ο αντιστροφέας που χρησιμοποείται για τους δακτυλιοειδείς ταλαντωτές με  $W_{nmos} = 2 \, \mu m$ ,  $W_{pmos} = 4 \, \mu m$  και  $L_{nmos} = L_{pmos} = 80 \, nm$ 

Καθένας από τους παραπάνω αντιστροφείς θεωρείται ότι εισάγει την ίδια παρασιτική χωρητικότητ<br/>α $C_L$ όπως φαίνεται στο Σχήμα 10.



Σχήμα 10: Ο αντιστροφέας που χρησιμοποείται για τους δακτυλιοειδείς ταλαντωτές με την ολική παρασιτική χωρητικότητα που εισάγει

# 0.4.1 Μαθηματικός τύπος για τον υπολογισμό της πραγματικής τιμής του πυκνωτή υπό δοκιμή

Λόγω των παρασιτικών χωρητικοτήτων που εισάγονται από τα τρανζίστορ MOSFET του αντιστροφέα, υπάρχει καθυστέρηση για κάθε στάδιο  $(t_d)$ . Ο τύπος για την καθυστέρηση διάδοσης κάθε σταδίου είναι γνωστός και δίνεται παρακάτω [7], [8]:

$$t_d = \frac{C_L \cdot V_{dd}}{2 \cdot I_{osc}} \tag{4}$$

όπου:

 $C_L:$ η ολική παρασιτική χωρητικότητα αντιστροφέα

 $V_{dd}$ : η τάση τροφοδοσίας

*Iosc*: το ρεύμα ταλάντωσης

Προχειμένου να έχουμε έναν τελικό τύπο που υπολογίζει την τιμή του στοιχείου υπό δοχιμή, υποθέτουμε ότι οι δύο ταλαντωτές είναι πανομοιότυποι χαι δεν επηρεάζονται από αποχλίσεις χαραχτηριστιχών (process variation). Αυτό σημαίνει ότι χάθε στάδιο έχει το ίδιο  $C_L$ , το ίδιο  $I_{osc}$ χαι έτσι την ίδια χαθυστέρηση διάδοσης  $(t_d)$ . Η συχνότητα ταλάντωσης του πρώτου ταλαντωτή δαχτυλίων δίνεται παραχάτω:

$$f_{ref} = \frac{1}{2Nt_d} \tag{5}$$

όπου:

Ν: ο αριθμός σταδίων
#### td: η καθυστέρηση διάδοσης σταδίου

Είναι προφανές ότι η συχνότητα ταλάντωσης εξαρτάται από το χρόνο καθυστέρησης σταδίων και από τον αριθμό της των σταδίων. Στην εφαρμογή μας, το τελευταίο στάδιο του δεύτερου ταλαντωτή έχει φορτίο, το οποίο είναι το στοιχείο υπό δοκιμή. Επομένως, το τελευταίο στάδιο έχει διαφορετική καθυστέρηση διάδοσης  $(t'_d)$  από τα άλλα στάδια. Η συχνότητα ταλάντωσης του δεύτερου ταλαντωτή δίνεται παρακάτω [7]:

$$f_{DUT} = \frac{1}{2 \cdot (N-1) \cdot t_d + 2 \cdot t'_d}$$
(6)

όπου:

$$t'_{d} = \frac{(C_L + C_{DUT}) \cdot V_{dd}}{2 \cdot I'_{osc}}$$
(7)

όπου:

 $I_{osc}^{'}$ : το ρεύμα που διαρέει τον κλάδο του αντιστροφεα του τελευταίου σταδίου που αποτελέιται από το NMOS τρανζίστορ.

Προχειμένου να εχτιμηθεί η πραγματιχή τιμή του πυχνωτή υπό δοχιμή χρησιμοποιώντας αυτή τη δομή δοχιμών, είναι σημαντιχό να επιτευχθεί ένας τελιχός μαθηματιχός τύπος. Χρησιμοποιώντας τις εξισώσεις (4), (5), (6), (7) έχουμε τον τύπο για την τιμή του πυχνωτή υπό μέτρηση (C<sub>DUT</sub>):

$$C_{DUT} = \frac{1}{N \cdot V_{dd} \cdot f_{ref}} \cdot \left[ \frac{I'_{osc} (N \cdot f_{ref} - f_{DUT} \cdot (N-1))}{f_{DUT}} - I_{osc} \right]$$
(8)

Αν υποθέσουμε ότι  $I_{osc} = I_{osc}'$  τότε:

$$C_{DUT} = \frac{I_{osc}}{N \cdot V_{dd} \cdot f_{ref}} \cdot \left[ \frac{N \cdot f_{ref} - f_{DUT} \cdot (N-1)}{f_{DUT}} - 1 \right]$$
(9)

Σε αυτό το σημείο να σημειώσουμε ότι για να εξαχθεί η τιμή του εκάστοτε ρεύματος από ένα chip του wafer χρειάζεται κάποια άλλη δομή με την οποία δεν ασχολούμαστε σε αυτή την εργασία.

## 0.4.2 Υπολογισμός της πραγματικής τιμής του πυκνωτή υπό μέτρηση μέσω προσομοιώσεων Monte Carlo

Κατά τη διάρχεια του testing με τις δομές δοχιμής αν ολα ήταν ιδανιχά (χανένα χαραχτηριστιχό στοιχείου του χυχλώματος δεν αποχλίνει από την τιμή που έδωσε ο σχεδιαστής και οι δομές δοχιμής είναι τελείως αχριβής) τότε για παράδειγμα μετρώντας έναν πυχνωτή με πραγματιχή τιμή 10fF, η μέτρηση θα έδειχνε αχριβώς 10fF. Όμως τίποτα από τα παραπάνω δεν ισχύει στην πραγματιχότητα γιατί χάθε στοιχείο έχει χάποια απόχλιση στα χαραχτηριστιχά του από αυτά που θέλει ο σχεδιαστής ταπό τα μεγέθη που θέλει ο σχεδιαστής έχουν όλα τα στοιχεία του χυχλώματος, εξάγουμε το Σχετιχό σφάλμα και το spread για να ξέρουμε σε τι διάστημα είναι πιθανό να βρίσχεται η μέτρηση ενός πυχνωτή για τον οποίο ξέρουμε μόνο την τιμή που του έδωσε ο σχεδιαστής και όχι την πραγματιχή του τιμή.

Να σημειωθεί ότι στην περίπτωση στην οποία στις προσομοιώσεις Monte Carlo απόχλιση χαραχτηριστιχών από αυτα που θέλει ο σχεδιαστης έχουν μόνο οι πυχνωτές χαι στην περίπτωση στην οποία απόχλιση χαραχτηριστιχών έχουν και τα τρανζίστορ και οι πυχνωτές τότε η τιμή των πυχνωτών υπό δοχιμή στους παραχάτω πίναχες είναι αυτή που έχει δώσει ο σχεδιαστής και η εχτιμώμενη τιμή πυχνωτή είναι η τιμή την οποία μετράμε με τις δομές δοχιμής. Στην περίπτωση στην οποία στις προσομοιώσεις Monte Carlo απόχλιση χαραχτηριστιχών από αυτα που θέλει ο σχεδιαστης έχουν μόνο τα τραγζίστορ τότε η τιμή των πυχνωτών υπό δοχιμή στους παραχάτω πίναχες είναι η πραγματιχή τιμή που έχουν οι πυχνωτές χαι η εχτιμώμενη τιμή πυχνωτή είναι η τιμή την οποία μετράμε με τις δομές δοχιμής. Συνεπώς όσο αφορά την αχρίβεια μέτρησης, μας ενδιαφέρει χυρίως η περίπτωση στην οποία αποχλίσεις εισάγουν μόνο τα τρανζίστορ αφού στην περίπτωση αυτή μετράμε την τιμή ενός πυχνωτή η οποία είναι γνωστή σε εμάς χαι με αυτόν τον τρόπο μπορούμε να υπολογίσουμε το πραγματιχό σφάλμα μέτρησης.

#### Προσομοιώσεις με process variation μόνον για τον πυχνωτή υπό δοχιμή

Σε αυτές τις προσομοιώσεις ελήφθησαν υπόψιν μόνο οι αποκλίσεις των χαρακτηριστικών του πυκνωτή υπό μετρηση. Υποθέτουμε ότι τα τρανζίστορ είναι ιδανικά και ότι τα στάδια του κάθε ταλαντωτή και οι ταλαντωτές μεταξύ τους είναι πανομοιότυποι. Η εκτιμώμενη τιμή πυκνωτή και η τυπική απόκλιση εξήχθησαν απευθείας από την προσομοίωση. Με βάση αυτά τα δεδομένα δημιουργήσαμε τον παρακάτω πίνακα 1.

| Πυκνωτές υπό δοκιμή (fF) | Εκτιμώμενη τιμή πυκνωτή (fF) | Τυπική απόκλιση (f) | Spread (%)    | Σφάλμα (fF) | Σχετικό σφάλμα (%) |
|--------------------------|------------------------------|---------------------|---------------|-------------|--------------------|
| 1                        | -0,2447                      | 0,0475              | 19,4115243155 | -1,2447     | -124,47            |
| 10                       | 8,676                        | 0,527               | 6,0742277547  | -1,324      | -13,24             |
| 20                       | 19,37                        | 1,052               | 5,4310789881  | -0,63       | -3,15              |
| 30                       | 29,6                         | 1,487               | 5,0236486486  | -0,4        | -1,3333333333      |
| 40                       | 40,04                        | 1,929               | 4,8176823177  | 0,04        | 0,1                |
| 50                       | 50,18                        | 2,407               | 4,7967317656  | 0,18        | 0,36               |
| 60                       | 60,26                        | 2,914               | 4,835711915   | 0,26        | 0,43333333333      |
| 70                       | 70,06                        | 3,278               | 4,6788467028  | 0,06        | 0,0857142857       |
| 80                       | 79,84                        | 3,768               | 4,7194388778  | -0,16       | -0,2               |
| 90                       | 89,55                        | 3,768               | 4,2077051926  | -0,45       | -0,5               |
| 100                      | 99,07                        | 4,583               | 4,6260220046  | -0,93       | -0,93              |

Πίναχας 1: Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν υπόψιν μόνο οι αποχλίσεις των χαραχτηριστικών του πυχνωτή

#### Προσομοιώσεις με process variation μόνον για τα τρανζίστορ

Ο πίναχας 2 φτιάχτηκε με δεδομένα από προσομοιώσεις Monte Carlo. Σε αυτές τις προσομοιώσεις ελήφθησαν υπόψιν μόνο οι αποχλίσεις των χαραχτηριστικών των τρανζίστορ. Υποθέτουμε ότι ο πυχνωτής υπό δοχιμή είναι ιδανικός. Οι ταλαντωτές δεν είναι πανομοιότυποι επειδή χάθε τρανζίστορ εισάγει διαφορετική απόχλιση χαραχτηριστικών και επομένως χάθε στάδιο διαφορετική καθυστέρηση. Η εχτιμώμενη τιμή πυχνωτή και η τυπική απόχλιση εξήχθησαν απευθείας από την προσομοίωση. Με βάση αυτά τα δεδομένα δημιουργήσαμε τον παραχάτω πίναχα.

| Πυκνωτές υπό δοκιμή (fF) | Εκτιμώμενη τιμή πυκνωτή (fF) | Τυπική απόκλιση (f) | Spread (%)    | $\Sigma$ φάλμα (fF) | Σχετικό σφάλμα (%) |
|--------------------------|------------------------------|---------------------|---------------|---------------------|--------------------|
| 1                        | -0,2474                      | 0,08573             | 34,6523848019 | -1,2474             | -124,74            |
| 10                       | 8,66                         | 0,4852              | 5,6027713626  | -1,34               | -13,4              |
| 20                       | 19,42                        | 1,01                | 5,2008238929  | -0,58               | -2,9               |
| 30                       | 29,55                        | 1,442               | 4,8798646362  | -0,45               | -1,5               |
| 40                       | 40,16                        | 1,956               | 4,8705179283  | 0,16                | 0,4                |
| 50                       | 50,25                        | 2,386               | 4,7482587065  | 0,25                | 0,5                |
| 60                       | 60,3                         | 2,859               | 4,7412935323  | 0,3                 | 0,5                |
| 70                       | 70,04                        | 3,26                | 4,6544831525  | 0,04                | 0,0571428571       |
| 80                       | 79,95                        | 3,753               | 4,6941838649  | -0,05               | -0,0625            |
| 90                       | 89,65                        | 4,22                | 4,7071946458  | -0,35               | -0,3888888889      |
| 100                      | 99,26                        | 4,625               | 4,6594801531  | -0,74               | -0,74              |

Πίναχας 2: Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν υπόψιν μόνο οι αποχλίσεις των χαραχτηριστικών των τρανζίστορ

# Προσομοιώσεις με process variation για τον πυκνωτή υπό δοκιμή και για τα τρανζίστορ

Ο παραχάτω πίναχας 3 φτιάχτηκε με δεδομένα από προσομοιώσεις Monte Carlo. Σε αυτές τις προσομοιώσεις ελήφθησαν υπόψιν οι αποχλίσεις των χαραχτηριστιχών του πυχνωτή υπό δοχιμή χαι των τρανζίστορ. Τώρα, οι ταλαντωτές δεν είναι πανομοιότυποι επειδή χάθε τρανζίστορ μπορεί να εισαγάγει διαφορετική απόχλιση χαραχτηριστιχών. Επίσης, ο πυχνωτής υπό δοχιμή δεν είναι ιδανιχός. Η εχτιμώμενη τιμή του πυχνωτή χαι η τυπιχή απόχλιση εξήχθησαν απευθείας από την προσομοίωση. Με βάση αυτά τα δεδομένα δημιουργήσαμε τον παραχάτω πίναχα.

| Πυκνωτές υπό δοκιμή (fF) | Εκτιμώμενη τιμή πυκνωτή (fF) | Τυπική απόκλιση (f) | Spread (%)     | $\Sigma$ φάλμα (fF) | Σχετικό σφάλμα (%) |
|--------------------------|------------------------------|---------------------|----------------|---------------------|--------------------|
| 1                        | -0,2482                      | 0,9768              | 393,5535858179 | -1,2482             | -124,82            |
| 10                       | 8,652                        | 0,7302              | 8,439667129    | -1,348              | -13,48             |
| 20                       | 19,3                         | 1,475               | 7,6424870466   | -0,7                | -3,5               |
| 30                       | 29,51                        | 2,128               | 7,2111148763   | -0,49               | -1,6333333333      |
| 40                       | 39,91                        | 2,792               | 6,9957404159   | -0,09               | -0,225             |
| 50                       | 50,04                        | 3,469               | 6,9324540368   | 0,04                | 0,08               |
| 60                       | 60,1                         | 4,173               | 6,9434276206   | 0,1                 | 0,16666666667      |
| 70                       | 69,88                        | 4,753               | 6,8016599886   | -0,12               | -0,1714285714      |
| 80                       | 79,66                        | 5,429               | 6,8152146623   | -0,34               | -0,425             |
| 90                       | 89,43                        | 6,043               | 6,7572402997   | -0,57               | -0,6333333333      |
| 100                      | 98.84                        | 6,655               | 6,7331040065   | -1,16               | -1,16              |

Πίναχας 3: Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν υπόψιν οι αποχλίσεις των χαραχτηριστιχών των τρανζίστορ χαι του πυχνωτή υπό δοχιμή

Είναι προφανές ότι όταν οι αποκλίσεις των χαρακτηριστικών των τρανζίστορ αγνοούνται (Πίνακας 1), οι τιμές του Spread είναι μικρότερες από την περίπτωση που δεν παραβλέπονται οι αποκλίσεις χαρακτηριστικών κανενός στοιχείου.(Πίνακας 3). Αυτό σημαίνει ότι τα τρανζίστορ των σταδίων των ταλαντωτών εισάγουν αποκλίσεις χαρακτηριστικών οι οποίες επηρεάζουν σημαντικά την τελική μέτρηση όσο αφορά το Spread. Είναι σημαντικό να βρεθεί τρόπος να μειωθεί η επιρροή των αποκλίσεων αυτών στις μετρήσεις μας.

Αχόμη παρατηρούμε ότι η δομή μετρά ιχανοποιητικά πυχνωτές στο διάστημα 20fF-100fF (Σχετικό σφάλμα<3%). Μειονέχτημα αποτελεί το γεγονός ότι είναι απαραίτητο να μετρηθούν ρεύματα.

# 0.5 Δομή δοκιμής με έναν δακτυλιοειδή ταλαντωτή και έναν πολυπλέκτη

Ένας άλλος τρόπος για τον χαραχτηρισμό των πυχνωτών μέσω της συχνότητας ταλάντωσης περιγράφεται παραχάτω. Σε αυτή την ενότητα χρησιμοποιούνται ένας μόνο δαχτυλιοειδής ταλαντωτής και ένας πολυπλέχτης (MUX) (Σχ.13) (αναμένουμε μειωμένο Spread) για τη μέτρηση της τιμής του πυχνωτή υπό δοχιμή μέσω της συχνότητας ταλάντωσης (Σχ.11). Ο ταλαντωτής αποτελείται από 53 στάδια. Κάθε στάδιο εδώ είναι ένας current-starved αντιστροφέας (Σχ.12). Χρησιμοποιώντας τον πολυπλέχτη και ένα σήμα επιλογής, επιτυγχάνουμε να έχουμε στην έξοδο του ίδιου ταλαντωτή και τη συχνότητα αναφοράς ( $f_{ref}$ ) και τη συχνότητα που επηρεάζεται από τον πυχνωτή υπό δοχιμή ( $f_{DUT}$ ) ανάλογα με την τιμή του σήματος επιλογής. Όταν το σήμα επιλογής είναι 0V, η συχνότητα εξόδου είναι η συχνότητα αναφοράς ( $f_{ref}$ ). Όταν το σήμα επιλογής είναι 1V, η συχνότητα εξόδου είναι η συχνότητα που επηρεάζεται από τον πυχνωτή υπό δοχιμή ( $f_{DUT}$ ) [9]. Μέσω αυτών των δύο συχνοτήτων χαι της χαθυστέρησης του current-starved αντιστροφέα, λαμβάνουμε την τιμή του πυχνωτή υπό δοχιμή ( $C_{DUT}$ ).



Σχήμα 11: Όταν το σήμα επιλογής είναι 0V παρέχεται η  $f_{ref}$  και όταν το σήμα επιλογής είναι 1V παρέχεται η  $f_{DUT}$ 



Σχήμα 12: O current-starved αντιστροφέας που χρησιμοποείται για τα στάδια του ταλαντωτή με  $W_{nmos} = 8\,\mu\text{m}, W_{pmos} = 16\,\mu\text{m}$  και  $L_{nmos} = L_{pmos} = 80\,\text{nm}.$ 

# 0.5.1 Μαθηματικός τύπος για τον υπολογισμό της πραγματικής τιμής του πυκνωτή υπό δοκιμή

Λόγω των χωρητικοτήτων που εισάγονται από τα τρανζίστορ MOSFET που αποτελούν τους αντιστροφείς κάθε σταδίου, υπάρχει καθυστέρηση διάδοσης για κάθε στάδιο  $(t_d)$ , εκτός από τα δύο τελευταία στάδια του ταλαντωτή (τα τελευταία δύο στάδια, 520 και 530, έχουν διαφορετική καθυστέρηση διάδοσης). Για την καθυστέρηση του current-starved αντιστροφέα χρησιμοποιείται ο ίδιος





τύπος με την καθυστέρηση του απλού αντιστροφέα (για όλα τα στάδια εκτός από το 520 και το 530 στάδιο) [7], [10]:

$$t_d = \frac{C_L \cdot V_{dd}}{2 \cdot I_{C_L}} \tag{10}$$

όπου:

CL: η ολική παρασιτική χωρητικότητα του current-starved αντιστροφέα

V<sub>dd</sub>: η τάση τροφοδοσίας

 $I_{C_L}$ : το ρεύμα που ρέει μέσω των τρανζίστορ NMOS του current-starved αντιστροφέα στο έδαφος.

Κάθε ένα από τα στάδια του ταλαντωτή εισάγει χάποιες χωρητικότητες εξαιτίας των τρανζίστορ που χρησιμοποιούνται. Κάθε current-starved αντιστροφέας παρουσιάζει χωρητικότητα  $C_L$ . Επιπλέον, ο πολυπλέκτης εισάγει χωρητικότητα  $C_{MUX}$  η οποία οδηγείται από έναν από τους δύο αντιστροφείς του τελευταίου σταδίου ανάλογα με την τιμή του σήματος επιλογής. Επίσης, σε οποιαδήποτε περίπτωση (είτε το σήμα επιλογής είναι 0V είτε 1V) υπάρχει ένας current-starved αντιστροφέας του οποίου η έξοδος δεν συνδέεται πουθενά (float). Αυτός ο αντιστροφέας εισάγει μια χωρητικότητα  $C_{float}$  που οδηγείται από το 52ο στάδιο. Ως αποτέλεσμα το 52ο στάδιο οδηγεί όχι μόνο την χωρητικότητα  $C_L$  αλλά και την  $C_{float}$ . Όταν το σήμα επιλογής είναι 0V ( $f_{ref}$  η συχνότητα εξόδου) το 53ο στάδιο (τελευταίο στάδιο) οδηγεί την  $C_L$  και την  $C_{MUX}$ . Όταν το σήμα επιλογής είναι 1V ( $f_{DUT}$  η συχνότητα εξόδου) το 53ο στάδιο (τελευταίο στάδιο) οδηγεί την  $C_L$ , την  $C_{MUX}$  και τον πυκνωτή υπό δοκιμή υπό δοκιμή  $C_{DUT}$ .

Για το 52ο στάδιο ο μαθηματικός τύπος για την καθυστέρηση διάδοσης και στις δύο περιπτώσεις (είτε το σήμα επιλογής είναι 0V είτε 1V) είναι:

$$t_{d_{52nd-stage}} = \frac{(C_L + C_{float}) \cdot V_{dd}}{2 \cdot I_{C_L - C_{float}}} \tag{11}$$

όπου:

CL: η ολική παρασιτική χωρητικότητα current-starved αντιστροφέα

 $C_{float}$ : η χωρητικότητα που εισάγεται από τον αντιστροφέα του οποίου η έξοδος δεν συνδέεται πουθενά

V<sub>dd</sub>: η τάση τροφοδοσίας

 $I_{C_L-C_{float}}$ : το ρεύμα που ρέει μέσω των εξής χωρητικοτήτων που προκαλλούν καθυστέρηση διάδοσης:  $C_L$  και  $C_{float}$ .

Για το 53<br/>ο στάδιο, ο μαθηματικός τύπος για την καθυστέρηση μετάδοσης όταν το σήμα επιλογής είνα<br/>ι $0V\;(f_{ref})$ είναι:

$$t_{d_{53rd-stage-ref}} = \frac{(C_L + C_{MUX}) \cdot V_{dd}}{2 \cdot I_{C_L - C_{MUX}}} \tag{12}$$

όπου:

CL: η ολική παρασιτική χωρητικότητα current-starved αντιστροφέα

C<sub>MUX</sub>: η χωρητικότητα που εισάγεται από τον πολυπλέκτη

V<sub>dd</sub>: η τάση τροφοδοσίας

 $I_{C_L-C_{MUX}}$ : το ρεύμα που ρέει μέσω των εξής χωρητικοτήτων που προκαλλούν καθυστέρηση διάδοσης:  $C_L$  και  $C_{MUX}$ .

Για το 53ο στάδιο, ο μαθηματικός τύπος για την καθυστέρηση μετάδοσης όταν το σήμα επιλογής είναι 1V  $(f_{DUT})$  είναι:

$$t_{d_{53rd-stage-DUT}} = \frac{(C_L + C_{MUX} + C_{DUT}) \cdot V_{dd}}{2 \cdot I_{C_L - C_{MUX} - C_{DUT}}}$$
(13)

όπου:

 $C_L:$ η ολική παρασιτική χωρητικότητα current-starved αντιστροφέα

C<sub>MUX</sub>: η χωρητικότητα που εισάγεται από τον πολυπλέκτη

C<sub>DUT</sub>: ο πυχνωτής υπό δοχιμή

V<sub>dd</sub>: η τάση τροφοδοσίας

 $I_{C_L-C_{MUX}-C_{DUT}}$ : το ρεύμα που ρέει μέσω των εξής χωρητιχοτήτων που προχαλλούν χαθυστέρηση διάδοσης:  $C_L$ ,  $C_{MUX}$  και  $C_{DUT}$ .

Άρα ο μαθηματικός τύπος για τη συχνότητα αναφοράς ( $f_{ref}$  που παρέχεται όταν το σήμα επιλογής είναι 0V) είναι:

$$f_{ref} = \frac{1}{2 \cdot (N-2) \cdot t_d + 2 \cdot t_{d_{52nd-stage}} + 2 \cdot t_{d_{53rd-stage-ref}}}$$
(14)

όπου:

Ν: ο αριθμός των σταδίων του ταλαντωτή

Ο μαθηματικός τύπος για τη συχνότητα που επηρεάζεται από τον πυκνωτή υπό δοκιμή (f<sub>DUT</sub> που παρέχεται όταν το σήμα επιλογής είναι 1V) είναι:

$$f_{DUT} = \frac{1}{2 \cdot (N-2) \cdot t_d + 2 \cdot t_{d_{52nd-stage}} + 2 \cdot t_{d_{53rd-stage-DUT}}}$$
(15)

όπου:

Ν: ο αριθμός των σταδίων του ταλαντωτή

Κάνοντας την υπόθεση  $I_{C_L-C_{MUX}} = I_{C_L-C_{MUX}-C_{DUT}} = I$  και με την βοήθεια των εξισώσεων (10), (11), (12), (13), (14), (15) καταλήγουμε στον τελικό τύπο για την τιμή του πυκνωτή υπό μέτρηση:

$$C_{DUT} = \frac{f_{ref} - f_{DUT}}{V_{dd} \cdot f_{ref} \cdot f_{DUT}} \cdot I$$
(16)

όπου:

Ι: το ρεύμα το οποίο αναφέρεται στην υπόθεση που κάναμε

## 0.5.2 Υπολογισμός της πραγματικής τιμής του πυκνωτή υπό μέτρηση μέσω προσομοιώσεων Monte Carlo

#### Προσομοιώσεις με process variation μόνον για τον πυκνωτή υπό δοκιμή

Ο πίναχας 4 παραχάτω φτιάχτηκε με δεδομένα από προσομοιώσεις Monte Carlo. Σε αυτές τις προσομοιώσεις ελήφθησαν υπόψιν μόνο οι αποχλίσεις των χαραχτηριστικών του πυκνωτή υπό δοχιμή. Υποθέτουμε ότι τα τρανζίστορ είναι ιδανικά και ότι τα στάδια του ταλαντωτή είναι πανομοιότυπα. Η εχτιμώμενη τιμή του πυκνωτή και η τυπική απόκλιση εξήχθησαν απευθείας από την προσομοίωση.

| Πυκνωτές υπό δοκιμή (fF) | Εκτιμώμενη τιμή πυκνωτή (fF) | Τυπική απόκλιση (f) | Spread (%)   | $\Sigma$ φάλμα (fF) | Σχετικό σφάλμα (%) |
|--------------------------|------------------------------|---------------------|--------------|---------------------|--------------------|
| 1                        | 1,462                        | 0,08334             | 5,7004103967 | 0,462               | 46,2               |
| 10                       | 9,864                        | 0,5411              | 5,4856042174 | -0,136              | -1,36              |
| 20                       | 19,39                        | 0,9777              | 5,0422898401 | -0,61               | -3,05              |
| 30                       | 29,86                        | 1,504               | 5,03683858   | -0,14               | -0,4666666667      |
| 40                       | 41,15                        | 2,044               | 4,9671931956 | 1,15                | 2,875              |
| 50                       | 50,31                        | 2,417               | 4,804213874  | 0,31                | 0,62               |
| 60                       | 61,27                        | 2,915               | 4,7576301616 | 1,27                | 2,11666666667      |
| 70                       | 72,41                        | 3,378               | 4,6651015053 | 2,41                | 3,4428571429       |
| 80                       | 84,67                        | 4,867               | 5,7481988898 | 4,67                | 5,8375             |
| 90                       | 97,45                        | 5,564               | 5,7095946639 | 7,45                | 8,2777777778       |
| 100                      | 109,5                        | 5,83                | 5,3242009132 | 9,5                 | 9,5                |

Πίναχας 4: Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν υπόψιν μόνο οι αποχλίσεις των χαραχτηριστιχών του πυχνωτή

#### Προσομοιώσεις με process variation μόνον για τα τρανζίστορ

Ο πίναχας 5 φτιάχτηκε με δεδομένα από προσομιώσεις Monte Carlo. Σε αυτές τις προσομοιώσεις ελήφθησαν υπόψιν μόνο οι αποκλίσεις των χαρακτηριστικών των τρανζίστορ. Υποθέτουμε ότι ο πυκνωτής υπό δοκιμή είναι ιδανικός. Τα τρανζίστορ του ταλαντωτή όμως δεν είναι πανομοιότυπα επειδή κάθε τρανζίστορ μπορεί να εισάγει διαφορετική απόκλιση χαρακτηριστικών.

| Πυκνωτές υπό δοκιμή (fF) | Εκτιμώμενη τιμή πυκνωτή (fF) | Τυπική απόκλιση (f) | Spread (%)   | Σφάλμα (fF) | Σχετικό σφάλμα (%) |
|--------------------------|------------------------------|---------------------|--------------|-------------|--------------------|
| 1                        | 1,441                        | 0,1464              | 10,159611381 | 0,441       | 44,1               |
| 10                       | 9,823                        | 0,4929              | 5,0178153314 | -0,177      | -1,77              |
| 20                       | 19,66                        | 1,038               | 5,2797558494 | -0,34       | -1,7               |
| 30                       | 30,11                        | 1,52                | 5,0481567586 | 0,11        | 0,3666666667       |
| 40                       | 40,37                        | 2,119               | 5,248947238  | 0,37        | 0,925              |
| 50                       | 50,63                        | 2,674               | 5,2814536836 | 0,63        | 1,26               |
| 60                       | 62,3                         | 3,345               | 5,3691813804 | 2,3         | 3,8333333333       |
| 70                       | 72,74                        | 4,013               | 5,5169095408 | 2,74        | 3,9142857143       |
| 80                       | 84,78                        | 4,594               | 5,4187308327 | 4,78        | 5,975              |
| 90                       | 96,93                        | 5,116               | 5,2780356959 | 6,93        | 7,7                |
| 100                      | 109,5                        | 5,748               | 5,2493150685 | 9,5         | 9,5                |

Πίναχας 5: Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν υπόψιν μόνο οι αποκλίσεις των χαρακτηριστικών των τρανζίστορ

# Προσομοιώσεις με process variation για τον πυκνωτή υπό δοκιμή και για τα τρανζίστορ

Ο πίναχας 6 γίνεται με δεδομένα από προσομοιώσεις Monte Carlo. Σε αυτές τις προσομοιώσεις ελήφθησαν υπόψιν οι αποκλίσεις των χαρακτηριστικών του πυκνωτή υπό δοκιμή και των τρανζίστορ. Τώρα, κάθε στάδιο του ταλαντωτή δεν είναι πανομοιότυπο με τα υπόλοιπα στάδια, επειδή κάθε τρανζίστορ μπορεί να εισάγει διαφορετική απόκλιση χαρακτηριστικών. Επίσης λαμβάνεται υπόψιν η απόκλιση χαρακτηριστικών των τρανζίστορ του πολυπλέκτη. Επιπλέον, ο πυκνωτής υπό δοκιμή εδώ δεν είναι ιδανικός.

| Πυκνωτές υπό δοκιμή (fF) | Εκτιμώμενη τιμή πυκνωτή (fF) | Τυπική απόκλιση (f) | Spread (%)    | Σφάλμα (fF) | Σχετικό σφάλμα (%) |
|--------------------------|------------------------------|---------------------|---------------|-------------|--------------------|
| 1                        | 1,442                        | 0,1495              | 10,3675450763 | 0,442       | 44,2               |
| 10                       | 9,766                        | 0,6999              | 7,1667007987  | -0,234      | -2,34              |
| 20                       | 19,58                        | 1,459               | 7,4514811032  | -0,42       | -2,1               |
| 30                       | 29,96                        | 2,311               | 7,7136181575  | -0,04       | -0,1333333333      |
| 40                       | 40,15                        | 3,066               | 7,6363636364  | 0,15        | 0,375              |
| 50                       | 50,46                        | 3,87                | 7,6694411415  | 0,46        | 0,92               |
| 60                       | 61,49                        | 4,757               | 7,7362172711  | 1,49        | 2,4833333333       |
| 70                       | 72,42                        | 5,618               | 7,7575255454  | 2,42        | 3,4571428571       |
| 80                       | 84,49                        | 6,65                | 7,8707539354  | 4,49        | 5,6125             |
| 90                       | 96,52                        | 7,618               | 7,8926647327  | 6,52        | 7,244444444        |
| 100                      | 109,1                        | 8,64                | 7,919340055   | 9,1         | 9,1                |

Πίναχας 6: Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν υπόψιν οι αποχλίσεις των χαραχτηριστιχών των τρανζίστορ χαι του πυχνωτή υπό δοχιμή

Είναι προφανές ότι όταν η απόκλιση των χαρακτηριστικών των τρανζίστορ αγνοείται (Πίνακας 4), το Spread είναι μικρότερο από την περίπτωση που δεν παραβλέπεται η απόκλιση αυτή για κανένα στοιχείο της δομής δοκιμής (Πίνακας 6).

Ειδικά όταν ο πυκνωτής είναι πολύ μικρός (1fF), το spread όταν λαμβάνεται υπόψη μόνο η απόκλιση χαρακτηριστικών του πυκνωτή είναι 5,7%, αλλά όταν δεν παραβλέπεται η απόκλιση χαρακτηριστικών κανενός στοιχείου της δομής, τότε το spread σχεδόν διπλασιάζεται. Αυτό σημαίνει ότι η απόκλιση των χαρακτηριστικών των τρανζίστορ των σταδίων του ταλαντωτή και του πολυπλέκτη θα μπορούσε να διαστρεβλώσει την εκτίμηση του πυκνωτή υπό δοκιμή. Παρόλα αυτά είναι εμφανές πως οι αποκλίσεις αυτές επηρεάζουν λιγότερο τις μετρήσεις μικρών πυκνωτών από ότι τις μετρήσεις μικρων πυκνωτών με την προηγούμενη υλοποίηση.

Όσο για τους πυχνωτές που είναι μεγαλύτεροι από 10fF, όταν λαμβάνεται υπόψη μόνο η απόχλιση χαραχτηριστικών του πυχνωτή υπό δοχιμή τότε το spread είναι περίπου 5%. Όταν λαμβάνουμε υπόψιν την απόχλιση χραχτηριστικών όλων των στοιχείων, τότε το spread είναι περίπου 7%. Αυτό σημαίνει ότι η μέτρηση των μεγαλύτερων πυχνωτών επηρεάζεται λιγότερο από την απόχλιση χαραχτηριστικών των τρανζίστορ της δομής από ότι η μέτρηση των μιχρών πυχνωτών. Παρόλα αυτά η επιρροή των αποχλίσεων για τις μετρήσεις μεγαλύτερων πυχνωτών παραμένει υψηλή και σε αυτή την υλοποίηση.

Η δομή μετρά ικανοποιητικά πυκνωτές στο διάστημα 10fF-50fF (Σχετικό σφάλμα< 3%).

# 0.6 Δομή δοχιμής που αποτελείται από έναν Cross-Coupled ταλαντωτή

Ένας άλλος τρόπος για τον χαραχτηρισμό των πυχνωτών μέσω της συχνότητας ταλάντωσης περιγράφεται παραχάτω. Σε αυτή την ενότητα θα χρησιμοποιηθεί ένας ταλαντωτής cross-coupled για τη μέτρηση της τιμής του πυχνωτή υπό δοχιμή μέσω της συχνότητας ταλάντωσης [11]. Αναμένουμε πολύ μιχρότερη επιρροή των αποχλίσεων χαραχτηριστιχών στις μετρήσεις μας από ότι στις προηγούμενες υλοποιήσεις.

Ο πυχνωτής που χρησιμοποιείται για αυτόν τον ταλαντωτή είναι στην πραγματιχότητα ο πυχνωτής υπό δοχιμή. Η δοχιμαστιχή δομή που περιγράφεται σε αυτό το τμήμα παρουσιάζεται παραχάτω (Σχ.14).

# 0.6.1 Μαθηματικός τύπος για τον υπολογισμό της πραγματικής τιμής του πυκνωτή υπό δοκιμή

Ο μαθηματικός τύπος που περιγράφει τη συχνότητα ταλάντωσης για τους LC ταλαντωτές [11] φαίνεται παρακάτω:

$$\omega_{osc} = \frac{1}{\sqrt{L \cdot C}} \implies f_{osc} = \frac{1}{2\pi\sqrt{L \cdot C}} \tag{17}$$

όπου:





L: τιμή του πηνίου που χρησιμοποιείται στον ταλαντωτή

C: τιμή του πυχνωτή που χρησιμοποιείται στον ταλαντωτή

Χρησιμοποιώντας την εξίσωση (17) και υποθέτοντας ότι  $C = C_{DUT}$  έχουμε τον τύπο για την τιμή του πυκνωτή υπό δοκιμή  $(C_{DUT})$ :

$$f_{osc} = \frac{1}{2\pi\sqrt{L \cdot C_{DUT}}} \Longrightarrow C_{DUT} = \frac{1}{4\pi^2 \cdot f_{osc}^2 \cdot L}$$
(18)

## 0.6.2 Υπολογισμός της πραγματικής τιμής του πυκνωτή υπό μέτρηση μέσω προσομοιώσεων Monte Carlo

#### Προσομοιώσεις με process variation μόνον για τον πυκνωτή υπό δοκιμή

Ο πίνακας 7 παρακάτω φτιάχτηκε με δεδομένα από προσομοιώσεις Monte Carlo. Σε αυτές τις προσομοιώσεις ελήφθησαν υπόψιν μόνο οι αποκλίσεις των χαρακτηριστικών του πυκνωτή υπό δοκιμή. Υποθέτουμε ότι τα τρανζίστορ είναι ιδανικά. Η εκτιμώμενη τιμή του πυκνωτή και η τυπική απόκλιση εξήχθησαν απευθείας από την προσομοίωση.

#### Προσομοιώσεις με process variation μόνον για τα τρανζίστορ

Ο πίναχας 8 φτιάχτηκε με δεδομένα από προσομιώσεις Monte Carlo. Σε αυτές τις προσομοιώσεις ελήφθησαν υπόψιν μόνο οι αποκλίσεις των χαρακτηριστικών των τρανζίστορ. Υποθέτουμε ότι ο

| Πυκνωτές υπό δοκιμή (fF) | Εκτιμώμενη τιμή πυκνωτή (fF) | Τυπική απόκλιση (f) | Spread (%)   | $\Sigma$ φάλμα (fF) | Σχετικό σφάλμα (%) |
|--------------------------|------------------------------|---------------------|--------------|---------------------|--------------------|
| 1                        | 5,178                        | 0,17898             | 3,4565469293 | 4,178               | 417,8              |
| 10                       | 13,48                        | 0,4582              | 3,3991097923 | 3,48                | 34,8               |
| 20                       | 23,25                        | 0,9549              | 4,1070967742 | $^{3,25}$           | 16,25              |
| 30                       | 33,25                        | 1,448               | 4,354887218  | 3,25                | 10,8333333333      |
| 40                       | 43,35                        | 1,944               | 4,4844290657 | 3,35                | 8,375              |
| 50                       | 53,45                        | 2,437               | 4,5594013096 | $^{3,45}$           | 6,9                |
| 60                       | 63,6                         | 2,922               | 4,5943396226 | 3,6                 | 6                  |
| 70                       | 73,73                        | 3,418               | 4,6358334464 | 3,73                | 5,3285714286       |
| 80                       | 83,72                        | 3,9                 | 4,6583850932 | 3,72                | 4,65               |
| 90                       | 94,11                        | 4,402               | 4,6775050473 | 4,11                | 4,56666666667      |
| 100                      | 104,3                        | 4,885               | 4,6836049856 | 4,3                 | 4,3                |

Πίναχας 7: Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν υπόψιν μόνο οι αποχλίσεις των χαραχτηριστιχών του πυχνωτή

πυχνωτής υπό δοχιμή είναι ιδανιχός. Τα τρανζίστορ της δομής όμως δεν είναι πανομοιότυπα μεταξύ τους επειδή χάθε τρανζίστορ μπορεί να εισάγει διαφορετική απόχλιση χαραχτηριστικών.

| Πυκνωτές υπό δοκιμή (fF) | Εκτιμώμενη τιμή πυκνωτή (fF) | Τυπική απόκλιση (f) | Spread (%)   | Σφάλμα (fF) | Σχετικό σφάλμα (%) |
|--------------------------|------------------------------|---------------------|--------------|-------------|--------------------|
| 1                        | 5,18                         | 0,01084             | 0,2092664093 | 4,18        | 418                |
| 10                       | 13,51                        | 0,005971            | 0,0441968912 | 3,51        | 35,1               |
| 20                       | 23,32                        | 0,0035891           | 0,0153906518 | 3,32        | 16,6               |
| 30                       | 33,36                        | 0,008962            | 0,0268645084 | 3,36        | 11,2               |
| 40                       | 43,51                        | 0,009851            | 0,0226407722 | 3,51        | 8,775              |
| 50                       | 53,65                        | 0,00893             | 0,0166449208 | 3,65        | 7,3                |
| 60                       | 63,84                        | 0,00986             | 0,0154448622 | 3,84        | 6,4                |
| 70                       | 74,01                        | 0,01003             | 0,0135522227 | 4,01        | 5,7285714286       |
| 80                       | 84,22                        | 0,03887             | 0,0461529328 | 4,22        | 5,275              |
| 90                       | 94,47                        | 0,01117             | 0,0118238594 | 4,47        | 4,96666666667      |
| 100                      | 104,7                        | 0,01597             | 0,0152531041 | 4,7         | 4,7                |

Πίναχας 8: Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν υπόψιν μόνο οι αποχλίσεις των χαραχτηριστικών των τρανζίστορ

# Προσομοιώσεις με process variation για τον πυκνωτή υπό δοκιμή και για τα τρανζίστορ

Ο πίναχας 9 γίνεται με δεδομένα από προσομοιώσεις Monte Carlo. Σε αυτές τις προσομοιώσεις ελήφθησαν υπόψιν οι αποχλίσεις των χαραχτηριστιχών του πυχνωτή υπό δοχιμή χαι των τρανζίστορ. Τώρα, τα τρανζίστορ της δομής δεν είναι πανομοιότυπα μεταξύ τους, επειδή χάθε τρανζίστορ μπορεί να εισάγει διαφορετιχή απόχλιση χαραχτηριστιχών. Επιπλέον, ο πυχνωτής υπό δοχιμή εδώ δεν είναι ιδανιχός αλλά εισάγει χαι αυτός απόχλιση χαραχτηριστιχών.

| Πυκνωτές υπό δοκιμή (fF) | Εκτιμώμενη τιμή πυκνωτή (fF) | Τυπική απόκλιση (f) | Spread (%)   | Σφάλμα (fF) | Σχετικό σφάλμα (%) |
|--------------------------|------------------------------|---------------------|--------------|-------------|--------------------|
| 1                        | 5,117                        | 0,20583             | 4,0224741059 | 4,117       | 411,7              |
| 10                       | 13,48                        | 0,4573              | 3,3924332344 | 3,48        | 34,8               |
| 20                       | 23,25                        | 0,9553              | 4,1088172043 | 3,25        | 16,25              |
| 30                       | 33,24                        | 1,452               | 4,3682310469 | 3,24        | 10,8               |
| 40                       | 43,35                        | 1,944               | 4,4844290657 | 3,35        | 8,375              |
| 50                       | 53,46                        | 2,438               | 4,5604190049 | 3,46        | 6,92               |
| 60                       | 63,6                         | 2,929               | 4,6053459119 | 3,6         | 6                  |
| 70                       | 73,25                        | 3,391               | 4,6293515358 | 3,25        | 4,6428571429       |
| 80                       | 83,91                        | 3,936               | 4,6907400787 | 3,91        | 4,8875             |
| 90                       | 94,11                        | 4,401               | 4,6764424609 | 4,11        | 4,56666666667      |
| 100                      | 104,3                        | 4,887               | 4,6855225312 | 4,3         | 4,3                |

Πίναχας 9: Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν υπόψιν οι αποχλίσεις των χαραχτηριστικών των τρανζίστορ και του πυχνωτή υπό δοχιμή

Είναι προφανές ότι στην περίπτωση που οι αποκλίσεις των χαρακτηριστικών των τρανζίστορ

παραβλέπονται (Πίναχας 7), το spread της εκτιμώμενης μέσης τιμής πυκνωτή είναι σχεδόν το ίδιο με την περίπτωση που όλα τα στοιχεία εισάγουν αποκλίσεις χαρακτηριστικών (Πίνακας 9). Αυτό σημαίνει ότι τα τρανζίστορ εισάγουν αποκλίσεις χαρακτηριστικών που έχουν σχεδόν αμελητέα επίδραση στις τελικές μετρήσεις.

Όμως αυτή η δομή δοχιμής δεν διαθέτει ιδιαίτερη αχρίβεια υπολογισμού λόγω των χωρητικοτήτων που εισάγουν τα τρανζίστορ, οι οποίες δεν αφαιρούνται από τον τελικό τύπο. Παρόλα αυτά είναι μεγάλης σημασίας το γεγονός ότι δεν χρειάζεται να μετρήσουμε χάποιο ρεύμα για να έχουμε την τελιχή μέτρηση, χαθώς σε γενιχές γραμμές η μέτρηση του ρεύματος πάνω σε wafer είναι δύσχολη διαδιχασία.

## 0.7 Δομή δοχιμής που αποτελείται από χύχλωμα CBCM

Ένας άλλος τρόπος για τον χαρακτηρισμό πυκνωτών περιγράφεται παρακάτω. Σε αυτή την ενότητα θα περιγράψουμε μια μέθοδο η οποία μετρά την αληθή τιμή των πυκνωτών χωρίς οποιαδήποτε ταλάντωση. Αυτή η μέθοδος ονομάζεται CBCM (Charge-Based Capacitance Measurement) [12].

Στις πύλες των τρανζίστορ εφαρμόζονται μη αλληλεπικαλυπτόμενα σήματα V1 και V2 όπως φαίνεται στο Σχήμα 16 παρακάτω. Ο σκοπός αυτών των μη αλληλεπικαλυπτόμενων σημάτων είναι να εξασφαλίσουν ότι μόνο ένα από τα δύο τρανζίστορ κάθε κλάδου θα είναι "ON" (η δομή δοκιμής αποτελείται από δύο κλάδους ψευδό-αντιστροφέων) και θα διαρρέται από ρεύμα κάθε στιγμή. Αυτό μας εξασφαλίζει ότι -αφού τα τρανζίστορ μπορούν να γίνουν OFF όπως είδμε παραπάνω- δεν θα υπάρχει ρεύμα κατευθείαν από την τροφοδοσία στη γη. Ένα τέτοιο ρεύμα θα μπορούσε με διάφορους τρόπους να εισάγει σφάλμα στις μετρήσεις μας. Τα ρεύματα που χρειαζόμαστε μετριούνται στην πηγή του PMOSFET. Η πραγματική κυματομορφή αυτού του ρεύματος δεν είναι σημαντική -το μέσο ρεύμα πρέπει να μετρηθεί.

# 0.7.1 Μαθηματικός τύπος για τον υπολογισμό της πραγματικής τιμής του πυκνωτή υπό δοκιμή

Τα ρεύματα  $I_{ref}$  και  $I_{DUT}$  που φαίνονται στο σχήμα 15 δίνονται από τους παρακάτω τύπους:

$$I_{ref} = C_L \cdot V_{dd} \cdot f \tag{19}$$

όπου:

 $C_L$ : η ολική παρασιτική χωρητικότητα που εισάγεται λόγω των τρανζίστο<br/>ρ $V_{dd}$ : η τάση τροφοδοσίας"

f: η συχνότητα του σήματος V2 όπως φαίνεται στο Σχήμα 16

$$I_{DUT} = (C_L + C_{DUT}) \cdot V_{dd} \cdot f \tag{20}$$

όπου:

C<sub>DUT</sub>: ο πυχνωτής υπό δοχιμή



Σχήμα 15: Η Δομή δοκιμής με κύκλωμα CBCM με  $W_{nmos} = 2\,\mu{
m m}, W_{pmos} = 4\,\mu{
m m}$  και  $L_{nmos} = L_{pmos} = 80\,{
m nm}$ 



Σχήμα 16: Μη αλληλεπικαλυπτόμενα σήματα

Η αληθής τιμή του πυκνωτή υπό δοκιμή δίνεται από τον παρακάτω παρακάτω τύπο χρησιμοποιώντας τις σχέσεις (19) και (20):

$$I_{DUT} - I_{ref} = C_{DUT} \cdot V_{dd} \cdot f \implies C_{DUT} = \frac{I_{DUT} - I_{ref}}{V_{dd} \cdot f}$$
(21)

## 0.7.2 Υπολογισμός της πραγματικής τιμής του πυκνωτή υπό μέτρηση μέσω προσομοιώσεων Monte Carlo

#### Προσομοιώσεις με process variation μόνον για τον πυχνωτή υπό δοχιμή

Ο πίναχας 10 παραχάτω φτιάχτηκε με δεδομένα από προσομοιώσεις Monte Carlo. Σε αυτές τις προσομοιώσεις ελήφθησαν υπόψιν μόνο οι αποχλίσεις των χαραχτηριστικών του πυχνωτή υπό δοχιμή. Υποθέτουμε ότι τα τρανζίστορ είναι ιδανικά. Η εχτιμώμενη τιμή του πυχνωτή και η τυπική απόχλιση εξήχθησαν απευθείας από την προσομοίωση.

| Πυκνωτές υπό δοκιμή (fF) | Εκτιμώμενη τιμή πυκνωτή (fF) | Τυπική απόκλιση (f) | Spread $(\%)$ | Σφάλμα (fF) | Σχετικό σφάλμα (%) |
|--------------------------|------------------------------|---------------------|---------------|-------------|--------------------|
| 1                        | 1,124                        | 0,05382             | 4,7882562278  | 0,124       | 12,4               |
| 10                       | 10,62                        | 0,49                | 4,6139359699  | 0,62        | 6,2                |
| 20                       | 20,7                         | 0,9649              | 4,661352657   | 0,7         | 3,5                |
| 30                       | 30,69                        | 1,439               | 4,6888237211  | 0,69        | 2,3                |
| 40                       | 40,65                        | 1,916               | 4,7134071341  | 0,65        | 1,625              |
| 50                       | 50,6                         | 2,393               | 4,7292490119  | 0,6         | 1,2                |
| 60                       | 60,54                        | 2,87                | 4,7406673274  | 0,54        | 0,9                |
| 70                       | 70,48                        | 3,348               | 4,7502837684  | 0,48        | 0,6857142857       |
| 80                       | 80,42                        | 3,826               | 4,7575230042  | 0,42        | 0,525              |
| 90                       | 90,35                        | 4,304               | 4,7636967349  | 0,35        | 0,3888888889       |
| 100                      | 100,3                        | 4,781               | 4,7666999003  | 0,3         | 0,3                |

Πίναχας 10: Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν υπόψιν μόνο οι αποχλίσεις των χαραχτηριστιχών του πυχνωτή

#### Προσομοιώσεις με process variation μόνον για τα τρανζίστορ

Ο πίναχας 11 φτιάχτηκε με δεδομένα από προσομιώσεις Monte Carlo. Σε αυτές τις προσομοιώσεις ελήφθησαν υπόψιν μόνο οι αποκλίσεις των χαρακτηριστικών των τρανζίστορ. Υποθέτουμε ότι ο πυκνωτής υπό δοκιμή είναι ιδανικός. Τα τρανζίστορ της δομής όμως δεν είναι πανομοιότυπα μεταξύ τους επειδή κάθε τρανζίστορ μπορεί να εισάγει διαφορετική απόκλιση χαρακτηριστικών.

| Πυκνωτές υπό δοκιμή (fF) | Εκτιμώμενη τιμή πυκνωτή (fF) | Τυπική απόκλιση (f) | Spread (%)   | $\Sigma$ φάλμα (fF) | Σχετικό σφάλμα (%) |
|--------------------------|------------------------------|---------------------|--------------|---------------------|--------------------|
| 1                        | 1,128                        | 0,007292            | 0,6464539007 | 0,128               | 12,8               |
| 10                       | 10,66                        | 0,00595             | 0,0558161351 | 0,66                | 6,6                |
| 20                       | 20,78                        | 0,00657             | 0,0316169394 | 0,78                | 3,9                |
| 30                       | 30,8                         | 0,009631            | 0,0312694805 | 0,8                 | 2,66666666667      |
| 40                       | 40,8                         | 0,01504             | 0,0368627451 | 0,8                 | 2                  |
| 50                       | 50,79                        | 0,02146             | 0,0422524119 | 0,79                | 1,58               |
| 60                       | 60,77                        | 0,02836             | 0,0466677637 | 0,77                | 1,2833333333       |
| 70                       | 70,75                        | 0,03511             | 0,0496254417 | 0,75                | 1,0714285714       |
| 80                       | 80,72                        | 0,04135             | 0,0512264618 | 0,72                | 0,9                |
| 90                       | 90,69                        | 0,04885             | 0,0538648142 | 0,69                | 0,76666666667      |
| 100                      | 100,7                        | 0,05592             | 0,055531281  | 0,7                 | 0,7                |

Πίναχας 11: Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν υπόψιν μόνο οι αποχλίσεις των χαραχτηριστιχών των τρανζίστορ

# Προσομοιώσεις με process variation για τον πυχνωτή υπό δοχιμή χαι για τα τρανζίστορ

Ο πίναχας 12 γίνεται με δεδομένα από προσομοιώσεις Monte Carlo. Σε αυτές τις προσομοιώσεις ελήφθησαν υπόψιν οι αποχλίσεις των χαραχτηριστιχών του πυχνωτή υπό δοχιμή χαι των τρανζίστορ. Τώρα, τα τρανζίστορ της δομής δεν είναι πανομοιότυπα μεταξύ τους, επειδή χάθε τρανζίστορ μπορεί να εισάγει διαφορετιχή απόχλιση χαραχτηριστιχών. Επιπλέον, ο πυχνωτής υπό δοχιμή εδώ δεν είναι ιδανιχός αλλά εισάγει χαι αυτός απόχλιση χαραχτηριστιχών.

| Πυκνωτές υπό δοκιμή (fF) | Εκτιμώμενη τιμή πυκνωτή (fF) | Τυπική απόκλιση (f) | Spread (%)   | Σφάλμα (fF) | Σχετικό σφάλμα (%) |
|--------------------------|------------------------------|---------------------|--------------|-------------|--------------------|
| 1                        | 1,123                        | 0,05498             | 4,8958147818 | 0,123       | 12,3               |
| 10                       | 10,62                        | 0,4906              | 4,6195856874 | 0,62        | 6,2                |
| 20                       | 20,7                         | 0,9646              | 4,6599033816 | 0,7         | 3,5                |
| 30                       | 30,68                        | 1,44                | 4,6936114733 | 0,68        | 2,26666666667      |
| 40                       | 40,64                        | 1,917               | 4,7170275591 | 0,64        | 1,6                |
| 50                       | 50,59                        | 2,385               | 4,7143704289 | 0,59        | 1,18               |
| 60                       | 60,53                        | 2,873               | 4,7464067405 | 0,53        | 0,8833333333       |
| 70                       | 70,47                        | 3,341               | 4,7410245495 | 0,47        | 0,6714285714       |
| 80                       | 80,41                        | 3,829               | 4,7618455416 | 0,41        | 0,5125             |
| 90                       | 90,34                        | 4,3                 | 4,759796325  | 0,34        | 0,3777777778       |
| 100                      | 100,3                        | 4,786               | 4,7716849452 | 0,3         | 0,3                |

Πίναχας 12: Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν υπόψιν οι αποχλίσεις των χαραχτηριστικών των τρανζίστορ και του πυχνωτή υπό δοχιμή

Είναι προφανές ότι στην περίπτωση που οι αποκλίσεις των χαρακτηριστικών των τρανζίστορ παραβλέπονται (Πίνακας 10), το spread της εκτιμώμενης μέσης τιμής πυκνωτή είναι σχεδόν το ίδιο με την περίπτωση που όλα τα στοιχεία εισάγουν αποκλίσεις χαρακτηριστικών (Πίνακας 12). Αυτό σημαίνει ότι τα τρανζίστορ εισάγουν αποκλίσεις χαρακτηριστικών που έχουν σχεδόν αμελητέα επίδραση στις τελικές μετρήσεις.

Γενικά, αυτή η δομή δοκιμής μπορεί να μετρήσει με ακρίβεια (Σχετικό σφάλμα<3%) όλους τους πυκνωτές στην περιοχή 30 fF - 100 fF με χαμηλό Spread.

Μειονέκτημα αποτελεί το γεγονός ότι πρέπει να μετρηθούν τα 2 ρεύματα.

# 0.8 Δομή δοχιμής που αποτελείται από παραλλαγμένο χύχλωμα CBCM

Αυτή η δομή δοχιμής είναι παρόμοια με αυτή του προηγούμενου χεφαλαίου. Η μόνη διαφορά είναι ότι αντί για ψευδο-αντιστροφείς χάθε χλάδος είναι ένας χανονιχός αντιστροφέας. Αυτό σημαίνει ότι οι πύλες των τρανζίστορ PMOS και NMOS του ίδιου χλάδου δέχονται το ίδιο σήμα. Το χύχλωμα της δομής δοχιμής παρουσιάζεται παραχάτω (Σχ.17).

# 0.8.1 Μαθηματικός τύπος για τον υπολογισμό της πραγματικής τιμής του πυκνωτή υπό δοκιμή

Ο μαθηματικός τύπος που μας δίνει την πραγματική τιμή του πυκνωτή είναι ίδιος με αυτόν του προηγούμενου κεφαλαίου:



Σχήμα 17: Δομή δοχιμής που αποτελείται από παραλλαγμένο χύχλωμα CBCM με  $W_{nmos} = 2\,\mu m$ ,  $W_{pmos} = 4\,\mu m$  και  $L_{nmos} = L_{pmos} = 80\,nm$ 

$$C_{DUT} = \frac{I_{DUT} - I_{ref}}{V_{dd} \cdot f} \tag{22}$$

όπου:

V<sub>dd</sub>: η τάση τροφοδοσίας

f: η συχνότητα του σήματος που δέχονται οι πύλες των τρανζίστορ

CDUT: ο πυχνωτής υπό δοχιμή

## 0.8.2 Υπολογισμός της πραγματικής τιμής του πυκνωτή υπό μέτρηση μέσω προσομοιώσεων Monte Carlo

#### Προσομοιώσεις με process variation μόνον για τον πυκνωτή υπό δοκιμή

Ο πίναχας 13 παραχάτω φτιάχτηκε με δεδομένα από προσομοιώσεις Monte Carlo. Σε αυτές τις προσομοιώσεις ελήφθησαν υπόψιν μόνο οι αποχλίσεις των χαραχτηριστιχών του πυχνωτή υπό δοχιμή. Υποθέτουμε ότι τα τρανζίστορ είναι ιδανιχά. Η εχτιμώμενη τιμή του πυχνωτή χαι η τυπιχή απόχλιση εξήχθησαν απευθείας από την προσομοίωση.

| Πυκνωτές υπό δοκιμή (fF) | Εκτιμώμενη τιμή πυκνωτή (fF) | Τυπική απόκλιση (f) | Spread (%)   | $\Sigma$ φάλμα (fF) | Σχετικό σφάλμα (%) |
|--------------------------|------------------------------|---------------------|--------------|---------------------|--------------------|
| 1                        | 1,066                        | 0,05083             | 4,7682926829 | 0,066               | 6,6                |
| 10                       | 10,29                        | 0,4848              | 4,7113702624 | 0,29                | 2,9                |
| 20                       | 20,3                         | 0,9596              | 4,7270935961 | 0,3                 | 1,5                |
| 30                       | 30,24                        | 1,432               | 4,7354497354 | 0,24                | 0,8                |
| 40                       | 40,15                        | 1,906               | 4,7471980075 | 0,15                | 0,375              |
| 50                       | 50,04                        | 2,378               | 4,7521982414 | 0,04                | 0,08               |
| 60                       | 59,92                        | 2,852               | 4,7596795728 | -0,08               | -0,1333333333      |
| 70                       | 69,79                        | 3,328               | 4,7685914888 | -0,21               | -0,3               |
| 80                       | 79,69                        | 3,817               | 4,7898105157 | -0,31               | -0,3875            |
| 90                       | 89,84                        | 4,286               | 4,7707034728 | -0,16               | -0,1777777778      |
| 100                      | 99,47                        | 4,77                | 4,7954157032 | -0,53               | -0,53              |

Πίναχας 13: Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν υπόψιν μόνο οι αποχλίσεις των χαραχτηριστιχών του πυχνωτή

## Προσομοιώσεις με process variation μόνον για τα τρανζίστορ

Ο πίναχας 14 φτιάχτηκε με δεδομένα από προσομιώσεις Monte Carlo. Σε αυτές τις προσομοιώσεις ελήφθησαν υπόψιν μόνο οι αποκλίσεις των χαρακτηριστικών των τρανζίστορ. Υποθέτουμε ότι ο πυκνωτής υπό δοκιμή είναι ιδανικός. Τα τρανζίστορ της δομής όμως δεν είναι πανομοιότυπα μεταξύ τους επειδή κάθε τρανζίστορ μπορεί να εισάγει διαφορετική απόκλιση χαρακτηριστικών.

| Πυκνωτές υπό δοκιμή (fF) | Εκτιμώμενη τιμή πυκνωτή (fF) | Τυπική απόκλιση (f) | Spread (%)   | $\Sigma$ φάλμα (fF) | Σχετικό σφάλμα (%) |
|--------------------------|------------------------------|---------------------|--------------|---------------------|--------------------|
| 1                        | 1,07                         | 0,003199            | 0,2989719626 | 0,07                | 7                  |
| 10                       | 10,33                        | 0,01019             | 0,0986447241 | 0,33                | 3,3                |
| 20                       | 20,37                        | 0,01532             | 0,0752086402 | 0,37                | 1,85               |
| 30                       | 30,35                        | 0,02073             | 0,0683031301 | 0,35                | 1,16666666667      |
| 40                       | 40,3                         | 0,02507             | 0,0622084367 | 0,3                 | 0,75               |
| 50                       | 50,22                        | 0,03181             | 0,0633412983 | 0,22                | 0,44               |
| 60                       | 60,14                        | 0,03837             | 0,0638011307 | 0,14                | 0,23333333333      |
| 70                       | 70,05                        | 0,04351             | 0,0621127766 | 0,05                | 0,0714285714       |
| 80                       | 79,99                        | 0,05219             | 0,0652456557 | -0,01               | -0,0125            |
| 90                       | 89,89                        | 0,05773             | 0,0642229391 | -0,11               | -0,1222222222      |
| 100                      | 99.84                        | 0.08065             | 0.0807792468 | -0.16               | -0.16              |

Πίναχας 14: Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν υπόψιν μόνο οι αποχλίσεις των χαραχτηριστιχών των τρανζίστορ

# Προσομοιώσεις με process variation για τον πυκνωτή υπό δοκιμή και για τα τρανζίστορ

Ο πίναχας 15 γίνεται με δεδομένα από προσομοιώσεις Monte Carlo. Σε αυτές τις προσομοιώσεις ελήφθησαν υπόψιν οι αποχλίσεις των χαραχτηριστιχών του πυχνωτή υπό δοχιμή χαι των τρανζίστορ. Τώρα, τα τρανζίστορ της δομής δεν είναι πανομοιότυπα μεταξύ τους, επειδή χάθε τρανζίστορ μπορεί να εισάγει διαφορετιχή απόχλιση χαραχτηριστιχών. Επιπλέον, ο πυχνωτής υπό δοχιμή εδώ δεν είναι ιδανιχός αλλά εισάγει χαι αυτός απόχλιση χαραχτηριστιχών.

| Πυκνωτές υπό δοκιμή (fF) | Εκτιμώμενη τιμή πυκνωτή (fF) | Τυπική απόκλιση (f) | Spread (%)   | $\Sigma$ φάλμα (fF) | Σχετικό σφάλμα (%) |
|--------------------------|------------------------------|---------------------|--------------|---------------------|--------------------|
| 1                        | 1,07                         | 0,003199            | 0,2989719626 | 0,07                | 7                  |
| 10                       | 10,33                        | 0,01019             | 0,0986447241 | 0,33                | 3,3                |
| 20                       | 20,37                        | 0,01532             | 0,0752086402 | 0,37                | 1,85               |
| 30                       | 30,35                        | 0,02073             | 0,0683031301 | 0,35                | 1,16666666667      |
| 40                       | 40,3                         | 0,02507             | 0,0622084367 | 0,3                 | 0,75               |
| 50                       | 50,22                        | 0,03181             | 0,0633412983 | 0,22                | 0,44               |
| 60                       | 60,14                        | 0,03837             | 0,0638011307 | 0,14                | 0,2333333333       |
| 70                       | 70,05                        | 0,04351             | 0,0621127766 | 0,05                | 0,0714285714       |
| 80                       | 79,99                        | 0,05219             | 0,0652456557 | -0,01               | -0,0125            |
| 90                       | 89,89                        | 0,05773             | 0,0642229391 | -0,11               | -0,1222222222      |
| 100                      | 99.84                        | 0.08065             | 0.0807792468 | -0,16               | -0,16              |

Πίναχας 15: Δεδομένα που εξάγονται από τη προσομοίωση Monte Carlo στην οποία ελήφθησαν υπόψιν οι αποχλίσεις των χαραχτηριστικών των τρανζίστορ και του πυχνωτή υπό δοχιμή

Είναι προφανές ότι στην περίπτωση που οι αποκλίσεις των χαρακτηριστικών των τρανζίστορ παραβλέπονται (Πίνακας 13), το spread της εκτιμώμενης μέσης τιμής πυκνωτή είναι σχεδόν το ίδιο με την περίπτωση που όλα τα στοιχεία εισάγουν αποκλίσεις χαρακτηριστικών (Πίνακας 15). Αυτό σημαίνει ότι τα τρανζίστορ εισάγουν αποκλίσεις χαρακτηριστικών που έχουν σχεδόν αμελητέα επίδραση στις τελικές μετρήσεις.

Γενικά, αυτή η δομή δοκιμής μπορεί να μετρήσει με ακρίβεια (Σχετικό σφάλμα< 3%) όλους τους πυκνωτές στην περιοχή 10fF – 100fF με χαμηλό Spread. Παρατηρούμε ότι η δομή δοκιμής αυτή έχει μεγαλύτερη ακρίβεια από την προηγούμενη υλοποίηση.

Μειονέκτημα αποτελεί και σε αυτή την περίπτωση το γεγονός ότι πρέπει να μετρηθούν τα 2 ρεύματα.

# Part II

# English Text

# Introduction

Since the mid-20th century the development of electronics technology has been rapid. This development has also led to a decrease in the size of the devices (active and passive).

Moore's law is the observation that the number of transistors in a dense integrated circuit doubles about every two years. The observation is named after Gordon Moore, the co-founder of Fairchild Semiconductor and CEO of Intel, whose 1965 paper described a doubling every year in the number of components per integrated circuit, and projected this rate of growth would continue for at least another decade. In 1975, looking forward to the next decade, he revised the forecast to doubling every two years, a compound annual growth rate of 41.4%.

The period is often quoted as 18 months because of a prediction by Intel executive David House (being a combination of the effect of more transistors and the transistors being faster). Moore's law is closely related to MOSFET scaling, also known as Dennard scaling, as the rapid scaling and miniaturization of silicon MOSFETs is the key driving force behind Moore's law.

Moore's prediction proved accurate for several decades and has been used in the semiconductor industry to guide long-term planning and to set targets for research and development. Advancements in digital electronics are strongly linked to Moore's law: quality-adjusted microprocessor prices, memory capacity (RAM and flash), sensors, and even the number and size of pixels in digital cameras. Digital electronics has contributed to world economic growth in the late twentieth and early twenty-first centuries. Moore's law describes a driving force of technological and social change, productivity, and economic growth.

Moore's law is an observation and projection of a historical trend and not a physical or natural law. Although the rate held steady from 1975 until around 2012, the rate was faster during the first decade. In general, it is not logically sound to extrapolate from the historical growth rate into the indefinite future. For example, the 2010 update to the International Technology Roadmap for Semiconductors predicted that growth would slow around 2013, and in 2015, Gordon Moore foresaw that the rate of progress would reach saturation. [1]



Figure 1.1: Moore's Law: The number of transistors on IC chips (1971-2017)

Because of this scaling, transistors and passive devices are impossible to be ideal.

# 2

# **Process Variation**

## 2.1 Definition

Process variation is the naturally occurring variation in the attributes of transistors (length, widths, oxide thickness) and passive devices when integrated circuits are fabricated. The amount of process variation becomes particularly pronounced at smaller process nodes (< 65nm) as the variation becomes a larger percentage of the full length or width of the device and as feature sizes approach the fundamental dimensions such as the size of atoms and the wavelength of usable light for patterning lithography masks [2]. Random variation can be defined as variation around a mean, whereas Systematic variation can be defined as the movement of the mean (Fig.2.1). Random variation in devices can be determined by measuring the standard deviation ( $\sigma$ ) [3].



Figure 2.1: Random and Systematic Variation

## 2.2 The Sources and Effects of Process Variation on IC

#### 2.2.1 Sources of Process Variation

The main sources of variations are:

- gate oxide thickness (for MOSFET transistors)
- random dopant fluctuations
- Device Geometry, Lithography in nanometer region

More specifically, Variation sources in the CMOS front end can be categorized into two groups. The first group consists of historical variation sources that will continue to offer challenges moving forward. This group includes patterning proximity effects, line-edge roughness (LER) and linewidth roughness (LWR) and variations in the gate dielectric (oxide thickness variations) [3]. Long-term variation management requires continuing to drive aggressive improvements for these historical sources.

The second group includes variation sources that were historically of minor impact but have emerged as significant challenges in recent years. This group includes random dopant fluctuation (RDF) and variation associated with gate material granularity (poly gates and metal gates) [3]. Long-term variation management requires focused effort on understanding these sources so that new innovations and continual improvement strategies can be developed to address them.

Process variation causes measurable and predictable variance in the output performance of all circuits but particularly analog circuits due to mismatch. If the variance causes the measured or simulated performance of a particular output metric (bandwidth, gain, rise time, etc.) to fall below or rise above the specification for the particular circuit or device, it reduces the overall yield for that set of devices [2].

#### 2.2.2 Effects of Process Variation on IC

Although continuous CMOS process scaling brings many advances to devices/circuits, process variations still exist and degrade performance of circuits. Variations that arise due to processing and masking limitations, can cause random deviations from designed parameter values. These parametric variations can significantly impact yield and performance of high-speed, low power circuits. The study of process variations has greatly increased in importance due to aggressive technology scaling.

The first mention of variation in semiconductors was by William Shockley, the co-inventor of the transistor, in his 1961 analysis of junction breakdown.

An analysis of systematic variation was performed by Schemmert and Zimmer in 1974 with their paper on threshold-voltage sensitivity [2]. This research looked into the effect that the oxide thickness and implantation energy had on the threshold voltage of MOS devices. In addition, because of process scaling, capacitors are characterized by random and systematic variation. So capacitors actually have a value that is different from what the designer expects. This could cause (as well as the transistor variation) deviations from the expected output of an integrated circuit.

### 2.3 Process Models

Semiconductor foundries run analyses on the variability of attributes of transistors (length, width, oxide thickness, etc.) and passive devices. These measurements are recorded and provided to customers [2]. This set of files are generally referred to as "model files" in the industry and are used by EDA(Electronic design automation) tools for simulation of designs.

Typically process models include process corners based on Front End Of Line (FEOL) conditions. These often are centered at a typical or nominal (TT) point and will also contain Fast (FF), Slow (SS), Slow-Fast (SF) and Fast-slow (FS) corners [2].

## 2.4 Scales of Process Variation

Figure below (Fig.2.2) summarizes the definitions of four different scales of process variation. Lot-to-lot represents process variation existing in different lots. Wafer-to-wafer process variations lie in different wafers within a lot. Die-to-die means variation in different dies within a wafer. Within-die denotes variation in the identical device or circuit within a die [4].



Figure 2.2: Scales of Process Variation

## 2.5 Process Control Monitoring (PCM)

Design for manufacturing and yield techniques become more important for cooperation of wafer fabrication (FAB) and circuit design. If design of analog/mixed signal circuits is coming to technology limits this topic becomes more interesting for the design. It is interesting for both company structures with in-house FAB and FAB less.

Process control monitor (PCM) test structures are part of the SPC (statistical process control). They are used to characterize and to control the technology in reference to the technology specification such as threshold voltage  $V_{th}$ . Also PCMs are used in order to characterize passive devices (ex. capacitors). So the PCM test structures are developed and optimized for technology purposes. The PCM test structures are located beside the chip area of the customer on the wafer and are processed by the same technology steps.

The validation of circuit performance in reference to circuit specification is divided into two main parts. Verification and test stages are located before and after wafer fabrication respectively. Verification of the circuit during the design stage is based on simulation, whose results depend particularly on the accuracy of models. The test stage is used to validate every fabricated chip and to sort all chips into categories (e.g. pass/fail).

Especially if the results of verification via simulation and chip test does not match then the technology performance is checked. So results of PCM test structures becomes interesting for the analog designer too. PCM data experiences are necessary for efficient analysis.

Only few PCM areas which covers a lot of single PCM test structures are used for SPC by FAB. Figure below (Fig.2.3) shows an example of five PCM areas which are distributed over the wafer. PCM test structures cost wafer area and measurement time. Hence the PCM area is reserved for concerns of the FAB but is not provided for circuit design issues. Number and measurement effort of the test structures depend on specification and complexity of the technology. In general the measuring is extracting some properties of every test structure [5]. Thus a couple of hundred up to thousands of data are measured and analysed during wafer fabrication.

Criteria for PCM test structures from the view of the FAB are:

- Technology sensitive to control and verify the specification
- Correlation to technology steps to support debugging
- Less area consumption
- Fast and efficient measurement to save costs



Figure 2.3: Wafer with five PCM areas which contain the test structures.

## 2.6 Problem description-Thesis target

Due to the scaling described at chapter 1, transistors and passive devices are impossible to be ideal and have exactly the expected behavior. This means that transistors and passive devices are often characterized by process variation. For example on chip -which is part of a wafersome of the capacitors used may have a different value than the chip designer would like. For this reason manufacturers have introduced many tools to control and monitor the quality of production processes (PCM-Process Control Monitoring). In this work we propose various test structures, which are located in some parts of the chip and measure the actual value of very small capacitors. The proposed test structures work only during testing and provide useful information for the actual devices' values. If, therefore, the measurements made (in this thesis for the capacitor value) are within the limits set then the wafer passes to the customer. Otherwise it is destroyed and reconstructed until all data extracted from the test structures are within the set limits.

# 3 Models of devices used at test structures and device under test

## 3.1 Transistor models used for Test Structures

In this thesis MOSFET transistor models (45nm Technology) were created and used. Predictive Technology Models (PTM) [6] were used for parameters' values. They provide accurate, customizable, and predictive model files for transistor and interconnect technologies. These predictive model files are compatible with standard circuit simulators, such as Spectre, and scalable with a wide range of process variations.

Typical process models (TT, SS, SF, FS, FF) and Monte Carlo simulations are used in order to define the Standard Deviation of Threshold Voltage  $(V_{th})$ ,  $I_d$  and  $g_m$ .

The schematic illustration of the transistor models used is shown below:



Figure 3.1: Σχηματικά τα μοντέλα τρανζίστορ που χρησιμοποιήθηκαν

$$I_D = K \frac{W}{L} (V_{GS} - V_{th})^2 \implies I_D = K \frac{W}{L} (V_{GS} - (V_{th_{nom}} - \Delta V_{th}))^2$$
$$\implies I_D = K \frac{W}{L} ((V_{GS} - \Delta V_{th}) - V_{th_{nom}})^2$$

#### Threshold Voltage $(V_{th})$ benchmarking

To benchmark random  $V_{th}$  variation, it is necessary to have an analytical expression for variation as a function of fundamental process parameters.

In the pioneering work of Mizuno [13] , the analytical expression for  $\sigma_{V_{th}}$  in planar devices

due to random dopant fluctuations was shown to be:

$$\sigma_{V_{th}} = \frac{(4 \cdot q^3 \cdot \varepsilon_{si} \cdot \phi_\beta)^{\frac{1}{4}}}{2} \cdot \frac{T_{ox}}{\varepsilon_{ox}} \cdot \frac{N_{tot}^{\frac{1}{4}}}{\sqrt{L \cdot W}}$$
(3.1)

where the key features are a linear dependence on the oxide thickness  $(T_{ox})$ , an inverse squareroot dependence on the effective length and width (L and W), and an fourth-root dependency on  $N_{tot}$  (where  $N_{tot}$  is the total doping concentration per unit volume of the same type of species).

An expression of a similar form was shown by Stolk [14] with slightly different coefficients as:

$$\sigma_{V_{th}} = \frac{(4 \cdot q^3 \cdot \varepsilon_{si} \cdot \phi_\beta)^{\frac{1}{4}}}{\sqrt{3}} \cdot \frac{T_{ox}}{\varepsilon_{ox}} \cdot \frac{N_{tot}^{\frac{1}{4}}}{\sqrt{L \cdot W}}$$
(3.2)

The random variation of transistor pairs is determined by measuring the difference in  $V_{th}$ ( $\Delta V_{th}$ ) between a number of sets of closely spaced paired transistors (e.g., all the transistor pairs on a wafer) and computing the standard deviation of the difference  $\Delta V_{th}$  ( $\sigma_{\Delta V_{th}}$ ). This paired transistor result is divided by  $\sqrt{2}$  to obtain the random  $\sigma_{V_{th}}$  for the individual device as in [3]:

$$\sigma_{random-pair} = \sigma(V_{th_A} - V_{th_B}) = \sigma(\Delta V_{th})$$
(3.3)

$$\sigma_{random-one-device} = \frac{\sigma(V_{th_A} - V_{th_B})}{\sqrt{2}} = \frac{\sigma(\Delta V_{th})}{\sqrt{2}} = \sigma(V_{th})$$
(3.4)

Systematic variation is determined by taking the rms difference between the total and random variation as in [3]:

$$\sigma_{systematic-one-device} = \sqrt{(\sigma_{V_{th-pop}})^2 - \left(\frac{\sigma(\Delta V_{th})}{\sqrt{2}}\right)^2}$$
(3.5)

where the total variation  $(\sigma_{V_{th-pop}})$  is determined by taking the standard deviation of the entire population of transistors.

In benchmarking  $\sigma_{V_{th}}$ , an assumption is made of an inverse square-root dependence on Land W, where  $\sigma_{V_{th}}$  is plotted versus  $\frac{1}{\sqrt{WL}}$ , and the slope of the resulting line is termed  $A_{V_{th}}$ (Fig.3.2) [3]. In fact, this constant is extracted from the Pelgrom Plot which is generated from experimental data.  $A_{V_{th}}$  is always a technology dependent constant and it is given by the formula:

$$\sigma_{V_{th}} = \frac{A_{V_{th}}}{\sqrt{2 \cdot W \cdot L}} \tag{3.6}$$

In this work, where 45 nm technology is used,  $A_{V_{th}} = 1.92 \text{ mV} \cdot \mu \text{m}$ .

In this thesis, in order to to extract  $V_{th}$  value and variation we used constant current method [15].

Plot of  $\sigma_{V_{th}}$  versus Gate Length for various Widths of transistors is shown above (Fig.3.3). As we expected  $\sigma_{V_{th}}$  decreases not linearly as the gate length increases because  $\sigma_{V_{th}} \propto \frac{1}{\sqrt{W_{tL}}}$ .



Figure 3.2: Pelgrom plot of  $\sigma_{V_{th}}$  versus  $\frac{1}{\sqrt{W \cdot L}}$ , where the slope of the resulting line is termed  $\frac{A_{V_{th}}}{\sqrt{2}}$ 



Figure 3.3: Plot of  $\sigma_{V_{th}}$  as a function of Gate Length for various Widths of transistors

## 3.2 NMOS transistor model testing

The circuit below (Fig.3.4) is used for the simulations regarding NMOS.

We use for example a NMOS transistor with  $W = 2 \mu m$  and L = 80 nm. Using Monte Carlo simulations the graphs below are extracted.



Figure 3.4: Circuit used for NMOS testing

Mean Value of  $V_{th}$  is bigger in Linear Mode than in Saturation Mode (Fig.3.5, 3.9). This occurs because of a short-channel effect in MOSFET called Drain-Induced Barrier Lowering (DIBL) which is referring originally to a reduction of threshold voltage of the transistor at higher drain voltages. In short-channel devices the drain is close enough to gate, the channel, and so a high drain voltage can open the bottleneck and turn on the transistor prematurely [16].

Since there is  $\sigma_{V_{th}}$  there will obviously be  $\sigma_{I_d}$  and  $\sigma_{g_m}$  as it appears above (Fig.3.6, 3.7). Graphs that present  $I_d$  and  $g_m$  versus  $V_g$  are as we expect [17].

Also we can observe that all samples of Monte Carlo simulations for  $I_d$  and  $g_m$  appears between slow corner (ss corner) and fast corner (ff corner).

In the Figure 3.6 we observe that when the transistor is off  $(V_g < V_{th})$  we notice a greater variation than when the transistor is on  $(V_g > V_{th})$ .

 $g_m$  is given by  $g_m=\frac{dI_d}{dV_g}$  (Fig.3.7).

The graph at Figure 3.8 is as expected at a normal NMOS transistor.

In addition it is well-known that  $V_{th}$  is directly affected by channel's length as observed below (Fig.3.9). For NMOS transistor as the channel's length increases, so does the  $V_{th}$  for both modes as expected [18].



Figure 3.5: a) Monte Carlo simulation for  $V_{th}$  in Saturation Mode  $(V_d{=}1{\rm V})$  , b) Monte Carlo simulation for  $V_{th}$  in Linear Mode  $(V_d{=}0.5{\rm V})$ 



(b)

Figure 3.6: a) Monte Carlo simulation for  $I_d$  in Saturation Mode  $(V_d\!=\!\!1\mathrm{V})$  , b) Monte Carlo simulation for  $I_d$  in Linear Mode  $(V_d\!=\!\!0.5\mathrm{V})$


(b)

Figure 3.7: a) Monte Carlo simulation for  $g_m$  in Saturation Mode  $(V_d{=}1{\rm V})$  , b) Monte Carlo simulation for  $g_m$  in Linear Mode  $(V_d{=}0.5{\rm V})$ 



Figure 3.9:  $V_{th}$  as a function of gate lenght in saturation and linear mode of NMOS transistor.

# 3.3 PMOS transistor model testing

The circuit below (Fig.3.10) is used for the simulations regarding PMOS.

We use for example a PMOS transistor with  $W = 2 \mu m$  and L = 80 nm. Using Monte Carlo simulations the graphs below are extracted.

Mean Value of  $V_{th}$  (absolute value) is bigger in Linear Mode than in Saturation Mode



Figure 3.10: Circuit used for PMOS testing

(Fig.3.11). This occurs because of DIBL effect.

Since there is  $\sigma_{V_{th}}$  there will obviously be  $\sigma_{I_d}$  and  $\sigma_{g_m}$  as it appears above (Fig.3.12, 3.13). Graphs that present  $I_d$  and  $g_m$  versus  $V_g$  are as we expect [17].

Also we can observe that all samples of Monte Carlo simulations for  $I_d$  and  $g_m$  appears between slow corner (ss corner) and fast corner (ff corner).

In the Figure 3.12 we observe that when the transistor is off we notice a greater variation than when the transistor is on. Also we observe that PMOS current is lower than NMOS current. This is a technology feature. If we want equal current at a circuit we must increase PMOS width or decrease PMOS length.

 $g_m$  is given by  $g_m = \frac{dI_d}{dV_g}$  (Fig.3.13).

The graph at Figure 3.14 is as expected at a normal NMOS transistor.

In addition it is well-known that  $V_{th}$  for PMOS transistors is directly affected -as for NMOS transistors- by channel's length as observed below (Fig.3.15). For PMOS transistor as the channel's length increases, so does the  $V_{th}$  (absolute values) for both modes as expected [18].



(b)

Figure 3.11: a) Monte Carlo simulation for  $V_{th}$  in Saturation Mode ( $V_d=1V$ ), b) Monte Carlo simulation for  $V_{th}$  in Linear Mode ( $V_d=0.5V$ )



(b)

Figure 3.12: a) Monte Carlo simulation for  $I_d$  in Saturation Mode  $(V_d\!=\!\!1\mathrm{V})$  , b) Monte Carlo simulation for  $I_d$  in Linear Mode  $(V_d\!=\!0.5\mathrm{V})$ 



(b)

Figure 3.13: a) Monte Carlo simulation for  $g_m$  in Saturation Mode  $(V_d{=}1{\rm V})$  , b) Monte Carlo simulation for  $g_m$  in Linear Mode  $(V_d{=}0.5{\rm V})$ 



Figure 3.14:  $I_d$  as a function of  $V_d$  of PMOS transistor.



Figure 3.15:  $V_{th}$  as a function of gate lenght in saturation and linear mode of PMOS transistor.

# 3.4 Capacitor models used for Devices Under Test (DUT)

In this thesis capacitor models were created and used as devices under test (DUT). These models introduce variation to DUTs. AC simulations at 1kHz frequency with the circuit below (Fig.3.16) are used in order to check if the model that is used has the expected results.



Figure 3.16: Circuit used for capacitor testing

Calculations below are used to extract the capacitor value from the DC simulation:

$$Y(s) = \frac{I_{cap}}{V_{cap}} = j\omega C \implies I_{cap} = j\omega C$$
(3.7)

because  $V_{cap} = acm = 1V$ 

$$\Im I_{cap} = \omega C \implies C = \frac{\Im I_{cap}}{2\pi f}$$
(3.8)

Below (Fig.3.17) there is the result of a Monte Carlo simulation for a capacitor 50fF using the model that was created for this thesis.



Figure 3.17: Monte Carlo Simulation for 50fF capacitor

Using Monte Carlo Simulations for capacitors (1fF-100fF) some usefull data are extracted

(Fig.3.18, 3.19, 3.20). With these data graphs below are created which are characteristic for capacitor's model.



Mean Capacitor Value

Figure 3.18: Mean Capacitor Value as a function of Real Capacitor Value



Standard Deviation

Figure 3.19: Standard Deviation as a function of Real Capacitor Value

It is obvious that spread of Mean Capacitor Value is constant for every capacitor value as expected.



Figure 3.20: Spread as a function of Real Capacitor Value

# 4

# Test structure using two Ring Oscillators

The previous chapters were necessary in order to describe the overall architecture of the test structures.

Traditionally, PCM scribe-lines consists of single devices such as transistors, capacitors and resistors. Ring oscillators have been also developed, mainly for digital process, since the measurement of their frequency is a fast task and the frequency correlation with transistor performance is well known.

A ring oscillator (Fig.4.1) is a device consisting of an odd number of inverting stages (usually inverters) in which the output voltage oscillates between binary levels (0V-Bias voltage). Each inverter delays the input signal for a certain period of time (the gate-delay time) at the output of the final stage, the total delay time is equal to the product of single gate-delay time multiplied by the number of stages [19].



Figure 4.1: Ring Oscillator

# 4.1 Process Monitoring of Capacitor's Value using two Ring Oscillators

There are many ways to characterize capacitors through oscillation's frequency. The simplest way to implement a Process Control Monitor is to use two identical Ring Oscillators (Fig.4.2). Each oscillator consists of 55 inverting stages. Each stage here is a simple inverter (Fig.4.3). The first Ring Oscillator provides a reference frequency ( $f_{ref}$ ) and the second Ring Oscillator provides a frequency, which is obviously directly affected by the Device Under Test (DUT)

 $(f_{DUT})$ . Through these two frequencies and inverter's delay, we get the value of the DUT  $(C_{DUT})$ . In this thesis DUTs are only capacitors.



Figure 4.2: The First RO provides the reference frequency  $(f_{ref})$  and the second RO provides the frequency affected by DUT  $(f_{DUT})$ 

Due to the capacitances introduced by the MOSFET transistors, there is propagation delay for each inverting stage  $(t_d)$  (Fig.4.4). The formula for each stage's propagation delay is wellknown and is given below [7], [8] :

$$t_d = \frac{C_L \cdot V_{dd}}{2 \cdot I_{osc}} \tag{4.1}$$

where:

 $C_L$ : inverter's total load capacitance

 $V_{dd}$ : Bias Voltage

 $I_{osc}$ : oscillation's current

In order to get a final formula which calculates the value of the DUT, we assume that the two Ring Oscillators are identical and are not affected by process variation. This means that each inverting stage has the same  $C_L$ , the same  $I_{osc}$  and so the same propagation delay  $(t_d)$ . The oscillation's frequency of the first Ring Oscillator is well-known and it is given below:

$$f_{ref} = \frac{1}{2Nt_d} \tag{4.2}$$

where:

N: number of inverting stages

 $t_d$ : stage's propagation delay



Figure 4.3: Inverter cell which is used for the Ring Oscillators with  $W_{nmos} = 2\,\mu m$ ,  $W_{pmos} = 4\,\mu m$ and  $L_{nmos} = L_{pmos} = 80\,nm$ 

It is obvious that oscillation frequency depends on stages delay time since the number of stages in a fixed structure is constant.

In our implementation, the last stage of the second Ring Oscillator drives a load, which is the DUT. So this last stage has obviously different propagation delay  $(t_d^{'})$  than the other delay stages. The oscillation's frequency of the second Ring Oscillator is given below [7]:

$$f_{DUT} = \frac{1}{2 \cdot (N-1) \cdot t_d + 2 \cdot t'_d}$$
(4.3)

where:

$$t'_{d} = \frac{(C_L + C_{DUT}) \cdot V_{dd}}{2 \cdot I'_{osc}}$$
(4.4)



(b)

Figure 4.4: a) Inverter stage with capacitances added by transistors, b) Inverter stage with total load capacitance  $C_L=C_{gd}+C_{db1}+C_{db2}+C_w$ 

# 4.2 Mean Frequency Value, Standard Deviation and Spread

Monte Carlo simulations are made for this implementation in order to extract some usefull information, for example Mean Frequency Value, Standard Deviation and Spread.

Below graphs will be presented that lead us to significant conclusions about our implementation:



Figure 4.5: Mean Frequency Value  $(f_{ref}, f_{DUT})$  with only capacitor variation, only transistor variation and capacitor and transistor variation as a function of the number Ring Oscillators' stages when DUT is 50fF



Figure 4.6: Standard Deviation of Frequency Value  $(f_{ref}, f_{DUT})$  with only capacitor variation, only transistor variation and capacitor and transistor variation as a function of the number Ring Oscillators' stages when DUT is 50fF

Now useful conclusions could be extracted. Initially, Mean Frequency Value and Standard



Spread of Mean Frequency Value (#delay stages)

#delay\_5 tages Figure 4.7: Spread of Frequency Value  $(f_{ref}, f_{DUT})$  with only capacitor variation, only transistor

variation and capacitor and transistor variation as a function of the number Ring Oscillators' stages when DUT is 50fF

Deviation decrease as the number of Ring Oscillator stages increases as shown in the graphs (Fig.4.5, 4.6). But the most usefull conclusion is that Spread decrease as shown in the graph (Fig.4.7). That is why many inverting stages are used. The most obvious decrease is observed when we have only capacitor variation. This means that the more inverting stages a Ring Oscillator has, the less the output frequency is affected by process variation introduced by the DUT. There is a slight decrease in the output frequency ( $f_{DUT}$ ) spread when this implementation is affected by capacitor and transistor variation (Fig.4.7). It is crucial to eliminate the effect of variation because it leads to an error in the final estimation of the DUT value.



Figure 4.8: Mean Frequency Value  $(f_{DUT})$  capacitor and transistor variation for DUTs ranging from 1fF-450fF as a function of the number Ring Oscillators' stages.



Figure 4.9: Standard Deviation of Frequency Value  $(f_{DUT})$  with capacitor and transistor variation for DUTs ranging from 1fF-450fF as a function of the number Ring Oscillators' stages.



Spread of Mean Frequency Value (#delay stages)

Figure 4.10: Spread of Frequency Value  $(f_{DUT})$  with capacitor and transistor variation for DUTs ranging from 1fF-450fF as a function of the number Ring Oscillators' stages.

Here it is important to point out some conclusions that led us to choose this particular test structure. Firstly, the Mean Frequency Value and the Standard Deviation decrease as the inverting stages increase as shown at the graphs (Fig.4.8, 4.9). In addition, it is obvious that Spread of Frequency Value ( $f_{DUT}$ ) (with capacitor and transistor variation) decreases as the number of inverting stages increases. 55 stages are used because after this, it is observed that Spread of Frequency Value remains constant. Larger decrease in spread is observed for the larger DUTs (Fig.4.10).

# 4.3 Estimation of the DUT's value using the test structure

# 4.3.1 Mathematical formula for DUT

In order to estimate the value of the DUT using this test structure, it is significant to reach a final mathematical formula. Using the equations (4.1), (4.2), (4.3), (4.4) we have the formula for the value of DUT ( $C_{DUT}$ ):

$$C_{DUT} = \frac{1}{N \cdot V_{dd} \cdot f_{ref}} \cdot \left[ \frac{I'_{osc} (N \cdot f_{ref} - f_{DUT} \cdot (N-1))}{f_{DUT}} - I_{osc} \right]$$
(4.5)

If we assume that  $I_{osc} = I'_{osc}$  then:

$$C_{DUT} = \frac{I_{osc}}{N \cdot V_{dd} \cdot f_{ref}} \cdot \left[ \frac{N \cdot f_{ref} - f_{DUT} \cdot (N-1)}{f_{DUT}} - 1 \right]$$
(4.6)

The assumption  $I_{osc} = I'_{osc}$  is true if we can obtain a sufficient transistor size, such that the current at each stage remains the same regardless of the load it drives. Only in this way (4.6) will be accurate.

This way we can find the value of DUT if the average value of the oscillation current is known. At this point, we must point out that in order to extract currents' values a different structure must be used. We do not deal with this structure in this work.

## 4.3.2 Estimation of DUT's value, Monte Carlo Simulations and other graphs

Cadence Virtuoso with Spectre simulator is used in this thesis in order to extract simulations and usefull data.

Three Monte Carlo simulations are implemented for each DUT. At first, only DUT's variation is introduced. After Monte Carlo simulation is made with variation only for the transistors of the inverting stages. At last Monte Carlo simulations are made with the variation of transistors and capacitor (DUT). This separation is made to make it obvious if the transistors of the test structure (transistors of each inverting stage) introduce a variation that distorts the estimation of DUT's Value.

During testing with test structures if all devices were ideal (no device adds process variation which means that no devices' characteristic deviates from the value given by the designer and the test structures are completely accurate) then for example by measuring a capacitor 10fF measurement would show exactly 10fF. But none of the assumptions above are real because each device introduce process variation, so their characteristics may have different values than designer wants. So through Monte Carlo simulations, in which all devices have process variation, we extract the Relative Error and the Spread in order to predict what values are possible for the measurement of the capacitor. The only thing that we know when we measure a capacitor

through test structures is the value the designer gave it, not its actual value.

Note that in the case where the Monte Carlo simulations takes into account only capacitor's process variation and in the case where the Monte Carlo simulations takes into account transistors' and capacitor's process variation, the value of Capacitors under Test (DUT Value) are the values that the designer wants to be and the Estimated Mean Capacitor Value is the value that is measured through test structures. In the case where Monte Carlo simulations take into account only transistors' process variation, then the value of Capacitors under Test (DUT Value) are the real values of the capacitors and the Estimated Mean Capacitor Value is the value that is measured through test structures. These notes refer to the following tables and graphs.

Simulations with only Capacitor's Variation The Table 4.1 below is made with data from Monte Carlo simulation. In this simulation only DUT's variation was taken into account. We assume that transistors are ideal and that inverting stages and the Ring Oscillators are identical. Estimated Capacitor Value and Standard Deviation were directly extracted from the simulation. Spread, Error and Relative Error (Relative Error= $\frac{Error}{CapacitorUnderTest}$ ) were also calculated.

| Capacitors under test (fF) | Estimated Mean Capacitor Value (fF) | Standard Deviation (f) | Spread (%)    | Error (fF) | Relative Error (%) |
|----------------------------|-------------------------------------|------------------------|---------------|------------|--------------------|
| 1                          | -0,2447                             | 0,0475                 | 19,4115243155 | -1,2447    | -124,47            |
| 10                         | 8,676                               | 0,527                  | 6,0742277547  | -1,324     | -13,24             |
| 20                         | 19,37                               | 1,052                  | 5,4310789881  | -0,63      | -3,15              |
| 30                         | 29,6                                | 1,487                  | 5,0236486486  | -0,4       | -1,33333333333     |
| 40                         | 40,04                               | 1,929                  | 4,8176823177  | 0,04       | 0,1                |
| 50                         | 50,18                               | 2,407                  | 4,7967317656  | 0,18       | 0,36               |
| 60                         | 60,26                               | 2,914                  | 4,835711915   | 0,26       | 0,4333333333       |
| 70                         | 70,06                               | 3,278                  | 4,6788467028  | 0,06       | 0,0857142857       |
| 80                         | 79,84                               | 3,768                  | 4,7194388778  | -0,16      | -0,2               |
| 90                         | 89,55                               | 3,768                  | 4,2077051926  | -0,45      | -0,5               |
| 100                        | 99,07                               | 4,583                  | 4,6260220046  | -0,93      | -0,93              |

Table 4.1: Data extracted from Monte Carlo Simulation in which only capacitor's variation was taken into account

According to Table 4.1, graphs were plotted from which significant conclusions were extracted.



Figure 4.11: Spread of Estimated DUT Value as a function of expected by the designer DUT Value when only DUT's variation is taken into account.



Figure 4.12: Relative Error as a function of expected by the designer DUT Value when only DUT's variation is taken into account.

It is obvious that Spread of Estimated DUT Value and the Relative Error of the estimation decrease (not linear) for DUTs smaller than  $20 \, \text{fF}$  and then remain constant (Fig.4.11, 4.12). This proves that the test structure cannot accurately calculate the value of small capacitors (<  $10 \, \text{fF}$ ) even if the two Ring Oscillators are identical. In general it is more difficult to calculate accurately the value of very small capacitors than estimate the value of big capacitors.

Simulations with only transistor's Variation The Table 4.2 below is made with data from Monte Carlo simulation. In this simulation only transistor's variation was taken into account. We assume that the DUT is ideal. The Ring Oscillators are not identical because each transistor may introduce a different variation. Estimated Capacitor Value and Standard Deviation were directly extracted from the simulation. Spread, Error and Relative Error were also calculated.

| Capacitors under test (fF) | Estimated Mean Capacitor Value (fF) | Standard Deviation (f) | Spread (%)    | Error $(fF)$ | Relative Error (%) |
|----------------------------|-------------------------------------|------------------------|---------------|--------------|--------------------|
| 1                          | -0,2474                             | 0,08573                | 34,6523848019 | -1,2474      | -124,74            |
| 10                         | 8,66                                | 0,4852                 | 5,6027713626  | -1,34        | -13,4              |
| 20                         | 19,42                               | 1,01                   | 5,2008238929  | -0,58        | -2,9               |
| 30                         | 29,55                               | 1,442                  | 4,8798646362  | -0,45        | -1,5               |
| 40                         | 40,16                               | 1,956                  | 4,8705179283  | 0,16         | 0,4                |
| 50                         | 50,25                               | 2,386                  | 4,7482587065  | 0,25         | 0,5                |
| 60                         | 60,3                                | 2,859                  | 4,7412935323  | 0,3          | 0,5                |
| 70                         | 70,04                               | 3,26                   | 4,6544831525  | 0,04         | 0,0571428571       |
| 80                         | 79,95                               | 3,753                  | 4,6941838649  | -0,05        | -0,0625            |
| 90                         | 89,65                               | 4,22                   | 4,7071946458  | -0,35        | -0,3888888889      |
| 100                        | 99,26                               | 4,625                  | 4,6594801531  | -0,74        | -0,74              |

Table 4.2: Data extracted from Monte Carlo Simulation in which only transistor's variation was taken into account

According to Table 4.2 graphs were plotted from which significant conclusions were extracted.



Spread of Estimated DUT Value

Figure 4.13: Spread of Estimated DUT Value as a function of real DUT Value when only transistor's variation is taken into account

It is obvious that Spread of Estimated DUT Value and the Relative Error of the estimation decrease (not linear) for DUTs smaller than 20fF and then remain constant. (Fig.4.13, 4.14). This proves that the test structure cannot accurately calculate the value of small capacitors (< 10fF). In the same time this test structure could accurately estimate the values of bigger capacitors as shown at Table 4.2 when the transistors of the inverting stages introduce variation. Although the Spread remains high even for measurement of big capacitors.



Figure 4.14: Relative Error as a function of real DUT Value when only transistor's variation is taken into account

Simulations with DUT's and transistor's Variation The Table 4.3 below is made with data from Monte Carlo simulation. In this simulation DUT's and transistor's variation were taken into account. Now the Ring Oscillators are not identical because each transistor may introduce a different variation. Also the DUT is not ideal because it introduces variation in our calculations. Estimated Capacitor Value and Standard Deviation were directly extracted from the simulation. Spread, Error and Relative Error were also calculated.

| Capacitors under test (fF) | Estimated Mean Capacitor Value (fF) | Standard Deviation (f) | Spread (%)     | Error (fF) | Relative Error (%) |
|----------------------------|-------------------------------------|------------------------|----------------|------------|--------------------|
| 1                          | -0,2482                             | 0,9768                 | 393,5535858179 | -1,2482    | -124,82            |
| 10                         | 8,652                               | 0,7302                 | 8,439667129    | -1,348     | -13,48             |
| 20                         | 19,3                                | 1,475                  | 7,6424870466   | -0,7       | -3,5               |
| 30                         | 29,51                               | 2,128                  | 7,2111148763   | -0,49      | -1,6333333333      |
| 40                         | 39,91                               | 2,792                  | 6,9957404159   | -0,09      | -0,225             |
| 50                         | 50,04                               | 3,469                  | 6,9324540368   | 0,04       | 0,08               |
| 60                         | 60,1                                | 4,173                  | 6,9434276206   | 0,1        | 0,16666666667      |
| 70                         | 69,88                               | 4,753                  | 6,8016599886   | -0,12      | -0,1714285714      |
| 80                         | 79,66                               | 5,429                  | 6,8152146623   | -0,34      | -0,425             |
| 90                         | 89,43                               | 6,043                  | 6,7572402997   | -0,57      | -0,6333333333      |
| 100                        | 98.84                               | 6.655                  | 6,7331040065   | -1.16      | -1.16              |

Table 4.3: Data extracted from Monte Carlo Simulation in which capacitor's and transistor's variation were taken into account

According to Table 4.3 graphs were plotted from which significant conclusions were extracted.

It is obvious that Spread of Estimated DUT Value and the Relative Error of the estimation decrease (not linear) for DUTs smaller than 20fF and then remain constant. (Fig.4.15, 4.16). This proves that the test structure cannot accurately calculate the value of small capacitors (< 10fF). In the same time this test structure could accurately estimate the values of bigger capacitors as shown at Table 4.2 when the transistors of the inverting stages introduce variation. Although the Spread still remains high.



Figure 4.15: Spread of Estimated DUT Value as a function of expected by the designer DUT Value when capacitor's and transistor's variation are taken into account.



alue when capacitor's and transistor's variation are taken into account.

Figure 4.16: Relative Error as a function of expected by the designer DUT Value when transistor's and capacitor's variation are taken into account.

# 4.3.3 Conclusions

In order to draw conclusions, it is necessary to compare the tables and graphs above. Particular importance should be given to the comparison of Tables 4.1 and 4.3. Table 4.1 consists of data for which only the capacitor's variation has been taken into account. Table 4.3 consists of data for which capacitor's and transistor's variation have been taken into account.

It is obvious that when transistor's variation is ignored (Table 4.1) the Spread of Estimated Mean Capacitor Value is lower than the case when no device variation is ignored (Table 4.3) almost for every DUT. This means that transistors of inverting stages introduce variation which greatly affects the final measurement regarding Spread. It is observed that measurements with this implementation are more sensitive to variations when very small capacitors are measured. This is why Relative Error and Spread have big values when we measure small capacitors (<  $10 \,\mathrm{fF}$ ).

The structure measures sufficient capacitors in the range 20 fF-100 fF (Relative Error < 3%) (Table 4.2).

A disadvantage is that currents must be measured, which is a difficult process.

In order to have accurate estimations, a way to decrease transistor's variation must be found.

# 5

# Test structure using a single Ring Oscillator and a MUX

# 5.1 Process Monitoring of Capacitor's Value using a single Ring Oscillator with MUX

Another way to characterize capacitors through oscillation's frequency is described below. In this section a single Ring Oscillator and a MUX (Fig.5.3) are used in order to measure capacitor's value through oscillation's frequency (Fig.5.1). The oscillator consists of 53 inverting stages. Each stage here is current starved inverter (not a simple inverter). DC voltage "Control nmos" is always 1V and DC voltage "Control pmos" is always 0V. In this way transistors which have these gate voltages are always ON (Fig.5.2). Using the MUX (Fig.5.3) and a selection signal we manage to obtain reference frequency  $(f_{ref})$  and frequency affected by the device under test  $(f_{DUT})$  from the same Ring Oscillator depending on the value of the selection signal. When selection signal is 0V the output frequency is the reference frequency  $(f_{ref})$ . When selection signal is 1V the output frequency is the frequency affected by the device under test  $(f_{DUT})$  [9]. Through these two frequencies and inverter's delay, we get the value of the DUT  $(C_{DUT})$ .

Due to the capacitances introduced by the MOSFET transistors, there is propagation delay for each inverting stage  $(t_d)$  except for the two last stages of the Ring Oscillator (the last two stages, 52nd and 53rd, have different propagation delay). For the current starved inverter's delay the same formula as for the simple inverter's delay is used (all stages except for 52nd and 53rd stage) [7], [10] :

$$t_d = \frac{C_L \cdot V_{dd}}{2 \cdot I_{C_L}} \tag{5.1}$$

where:

 $C_L$ : current starved inverter's total load capacitance

 $V_{dd}$ : bias voltage

 $I_{C_L}$ : current that flows through NMOS transistors of the current starved inverter to the ground.

Each of the cells above introduces some capacitances because of the transistors that are used. The Current Starved Inverter cell introduces capacitance  $C_L$ . In addition MUX introduces  $C_{MUX}$ 



Figure 5.1: When selection signal is 0V  $f_{ref}$  is provided and when selection signal is 1V  $f_{DUT}$  is provided.

that is driven by one of the current starved inverters of the last stage. Moreover, in any case (whether the selection signal is 0V or 1V) there is a floating current starved inverter at the last stage. This floating current starved inverter adds a capacitance  $C_{float}$  that is driven by the 52nd stage. As a result 52nd stage drives not only  $C_L$  but also  $C_{float}$ . When selection signal is 0V ( $f_{ref}$  is the output frequency) 53rd stage (last stage) drives  $C_L$  and  $C_{MUX}$ . When selection signal is 1V ( $f_{DUT}$  is the output frequency) 53rd stage (last stage) drives  $C_L$ ,  $C_{MUX}$  and the device under test  $C_{DUT}$ .

For the 52nd stage the mathematical formula for the propagation delay in both cases (whether the selection signal is 0V or 1V) is:

$$t_{d_{52nd-stage}} = \frac{(C_L + C_{float}) \cdot V_{dd}}{2 \cdot I_{C_L - C_{float}}}$$
(5.2)

where:

 $C_L$ : inverter's total load capacitance

 $C_{float}$ : capacitance added by floating current starved inverter

 $V_{dd}$ : bias voltage

 $I_{C_L-C_{float}}$ : This is the current that flows through these capacitancies that cause propagation delay  $(C_L \text{ and } C_{float})$ .

For the 53rd stage the mathematical formula for the propagation delay when the selection signal is 0V ( $f_{ref}$  is provided) is:

$$t_{d_{53rd-stage-ref}} = \frac{(C_L + C_{MUX}) \cdot V_{dd}}{2 \cdot I_{C_L - C_{MUX}}}$$
(5.3)



Figure 5.2: Current starved Inverter cell which is used for the Ring Oscillator with  $W_{nmos} = 8 \,\mu m$ ,  $W_{pmos} = 16 \,\mu m$  and  $L_{nmos} = L_{pmos} = 80 \,nm$ .

where:

 $C_L$ : inverter's total load capacitance

 $C_{MUX}\colon$  capacitance added by MUX

 $V_{dd}$ : bias voltage

 $I_{C_L-C_{MUX}}$ : This is the current that flows through these capacitancies that cause propagation delay  $(C_L \text{ and } C_{MUX})$ .



Figure 5.3: MUX that is used for this test structure and consists of two transmission gates with  $W_{nmos} = 5\,\mu\text{m} = W_{pmos}$  and  $L_{nmos} = L_{pmos} = 80\,\text{nm}$ .

For the 53rd stage the mathematical formula for the propagation delay when the selection signal is 1V ( $f_{DUT}$  is provided) is:

$$t_{d_{53rd-stage-DUT}} = \frac{(C_L + C_{MUX} + C_{DUT}) \cdot V_{dd}}{2 \cdot I_{C_L - C_{MUX} - C_{DUT}}}$$
(5.4)

where:

 $C_L$ : inverter's total load capacitance

 $C_{MUX}$ : capacitance added by MUX

 $C_{DUT}$ : device under test

 $V_{dd}\colon$  bias voltage

 $I_{C_L-C_{MUX}-C_{DUT}}$ : This is the current that flows through these capacitancies that cause propagation delay  $(C_L, C_{MUX} \text{ and } C_{DUT})$ .

So the mathematical formula for the reference frequency  $(f_{ref}$  provided when selection signal is 0V) is:

$$f_{ref} = \frac{1}{2 \cdot (N-2) \cdot t_d + 2 \cdot t_{d_{52nd-stage}} + 2 \cdot t_{d_{53rd-stage-ref}}}$$
(5.5)

where:

N: number of inverting stages

The mathematical formula for the frequency affected by DUT ( $f_{DUT}$  provided when selection signal is 1V) is:

$$f_{DUT} = \frac{1}{2 \cdot (N-2) \cdot t_d + 2 \cdot t_{d_{52nd-stage}} + 2 \cdot t_{d_{53rd-stage-DUT}}}$$
(5.6)

where:

N: number of inverting stages

# 5.2 Estimation of the DUT's value using the test structure

# 5.2.1 Mathematical formula for DUT

In order to estimate the value of the DUT using this test structure, it is significant to reach a final mathematical formula. For this reason we must make some assumptions in order to deembed  $C_L$  and  $C_{MUX}$ . The assumption  $I_{C_L-C_{MUX}} = I_{C_L-C_{MUX}-C_{DUT}} = I$  must be made. To make our assumption closer to reality, we used large transistors for each stage. This is why current starved inverters were used instead of simple inverters. Also we assume that all inverting stages are identical which implies that they introduce identical capacitancies  $C_L$ . Using the equations (5.1), (5.2), (5.3), (5.4), (5.5) ,(5.6) and the assumptions above we reach the formula for the value of DUT ( $C_{DUT}$ ):

$$C_{DUT} = \frac{f_{ref} - f_{DUT}}{V_{dd} \cdot f_{ref} \cdot f_{DUT}} \cdot I$$
(5.7)

where:

I: the current that is discussed above

This way we can find the value of DUT if the average value of the current I is known.

## 5.2.2 Estimation of DUT's value, Monte Carlo Simulations and other graphs

Monte Carlo simulations are implemented for each DUT. At first, only DUT's variation is introduced. After Monte Carlo simulation is made with variation introduced by capacitor and transistors of the inverting stages. This separation is made to make it obvious if the transistors of the test structure (transistors of each inverting stage) introduce a variation that distorts the estimation of DUT's Value.

### Simulations with only Capacitor's Variation

The Table 5.1 below is made with data from Monte Carlo simulation. In this simulation only DUT's variation was taken into account. We assume that transistors are ideal and that inverting

stages are identical. Estimated Capacitor Value and Standard Deviation were directly extracted from the simulation. Spread, Error and Relative Error were also calculated.

| Capacitors under test (fF) | Estimated Mean Capacitor Value (fF) | Standard Deviation (f) | Spread (%)   | Error $(fF)$ | Relative Error (%) |
|----------------------------|-------------------------------------|------------------------|--------------|--------------|--------------------|
| 1                          | 1,462                               | 0,08334                | 5,7004103967 | 0,462        | 46,2               |
| 10                         | 9,864                               | 0,5411                 | 5,4856042174 | -0,136       | -1,36              |
| 20                         | 19,39                               | 0,9777                 | 5,0422898401 | -0,61        | -3,05              |
| 30                         | 29,86                               | 1,504                  | 5,03683858   | -0,14        | -0,4666666667      |
| 40                         | 41,15                               | 2,044                  | 4,9671931956 | 1,15         | 2,875              |
| 50                         | 50,31                               | 2,417                  | 4,804213874  | 0,31         | 0,62               |
| 60                         | 61,27                               | 2,915                  | 4,7576301616 | 1,27         | 2,11666666667      |
| 70                         | 72,41                               | 3,378                  | 4,6651015053 | 2,41         | 3,4428571429       |
| 80                         | 84,67                               | 4,867                  | 5,7481988898 | 4,67         | 5,8375             |
| 90                         | 97,45                               | 5,564                  | 5,7095946639 | 7,45         | 8,2777777778       |
| 100                        | 109,5                               | 5,83                   | 5,3242009132 | 9,5          | 9,5                |

Table 5.1: Data extracted from Monte Carlo Simulation in which only capacitor's variation was taken into account

According to Table 5.1, graphs were plotted from which significant conclusions were extracted.



## Spread of Estimated DUT Value

Figure 5.4: Spread of Estimated DUT Value as a function of expected by the designer DUT Value when only DUT's variation is taken into account.

It is obvious that Spread of Estimated DUT Value decreases (not linear) for DUTs with values until **70fF**. After this value, Spread takes unexpected values (Fig.5.4).

Relative Error also decreases until DUT value is 10 fF. After this value Relative Error remains almost constant till DUT value is 70 fF (Fig.5.5).

In addition, it is obvious the test structure cannot accurately calculate the value of small capacitors  $(<10 \,\mathrm{fF})$  even if transistors do not introduce variation.



Figure 5.5: Relative Error as a function of expected by the designer DUT Value when only DUT's variation is taken into account.

# Simulations with only transistor's Variation

The Table 5.2 below is made with data from Monte Carlo simulation. In this simulation only transistor's variation was taken into account. We assume that the DUT is ideal. The transistors of Ring Oscillator are not identical because each transistor may introduce a different variation. Estimated Capacitor Value and Standard Deviation were directly extracted from the simulation. Spread, Error and Relative Error were also calculated.

| Capacitors under test (fF) | Estimated Mean Capacitor Value (fF) | Standard Deviation (f) | Spread (%)   | Error (fF) | Relative Error (%) |
|----------------------------|-------------------------------------|------------------------|--------------|------------|--------------------|
| 1                          | 1,441                               | 0,1464                 | 10,159611381 | 0,441      | 44,1               |
| 10                         | 9,823                               | 0,4929                 | 5,0178153314 | -0,177     | -1,77              |
| 20                         | 19,66                               | 1,038                  | 5,2797558494 | -0,34      | -1,7               |
| 30                         | 30,11                               | 1,52                   | 5,0481567586 | 0,11       | 0,3666666667       |
| 40                         | 40,37                               | 2,119                  | 5,248947238  | 0,37       | 0,925              |
| 50                         | 50,63                               | 2,674                  | 5,2814536836 | 0,63       | 1,26               |
| 60                         | 62,3                                | 3,345                  | 5,3691813804 | 2,3        | 3,8333333333       |
| 70                         | 72,74                               | 4,013                  | 5,5169095408 | 2,74       | 3,9142857143       |
| 80                         | 84,78                               | 4,594                  | 5,4187308327 | 4,78       | 5,975              |
| 90                         | 96,93                               | 5,116                  | 5,2780356959 | 6,93       | 7,7                |
| 100                        | 109,5                               | 5,748                  | 5,2493150685 | 9,5        | 9,5                |

Table 5.2: Data extracted from Monte Carlo Simulation in which only transistor's variation was taken into account



According to Table 5.2 graphs were plotted from which significant conclusions were extracted.

Figure 5.6: Spread of Estimated DUT Value as a function of real DUT Value when only transistor's variation is taken into account.



Figure 5.7: Relative Error as a function of real DUT Value when only transistor's variation is taken into account.

It is obvious that Spread of Estimated DUT Value decreases (not linear) and then remains

### almost constant (Fig.5.6).

Relative Error also decreases until DUT value is 30 fF. After this value Relative Error remains almost constant until DUT value is 50 fF. Until 70 fF the relative error of estimation is lower than 4% (Fig.5.7).

In addition, it is obvious the test structure cannot accurately calculate the value of small capacitors ( $< 10 \, \text{fF}$ ). In the same time this test structure could accurately estimate the values of bigger capacitors as shown at Table 5.2 when only transistor's variation is taken into account.

From these observations we can conclude that the test structure can accurately measure capacitors from 10fF to 70fF when considering only transistor's variation.

# Simulations with DUT's and transistor's Variation

The Table 5.3 below is made with data from Monte Carlo simulation. In this simulation DUT's and transistor's variation were taken into account. Now each stage of Ring Oscillators is not identical with the other stages because each transistor may introduce a different variation. Variation also introduced by transistors of MUX. In addition, the DUT is not ideal because it introduces variation in our calculations. Estimated Capacitor Value and Standard Deviation were directly extracted from the simulation. Spread, Error and Relative Error were also calculated.

| Capacitors under test (fF) | Estimated Mean Capacitor Value (fF) | Standard Deviation (f) | Spread (%)    | Error (fF) | Relative Error (%) |
|----------------------------|-------------------------------------|------------------------|---------------|------------|--------------------|
| 1                          | 1,442                               | 0,1495                 | 10,3675450763 | 0,442      | 44,2               |
| 10                         | 9,766                               | 0,6999                 | 7,1667007987  | -0,234     | -2,34              |
| 20                         | 19,58                               | 1,459                  | 7,4514811032  | -0,42      | -2,1               |
| 30                         | 29,96                               | 2,311                  | 7,7136181575  | -0,04      | -0,1333333333      |
| 40                         | 40,15                               | 3,066                  | 7,6363636364  | 0,15       | 0,375              |
| 50                         | 50,46                               | 3,87                   | 7,6694411415  | 0,46       | 0,92               |
| 60                         | 61,49                               | 4,757                  | 7,7362172711  | 1,49       | 2,48333333333      |
| 70                         | 72,42                               | 5,618                  | 7,7575255454  | 2,42       | 3,4571428571       |
| 80                         | 84,49                               | 6,65                   | 7,8707539354  | 4,49       | 5,6125             |
| 90                         | 96,52                               | 7,618                  | 7,8926647327  | 6,52       | 7,244444444        |
| 100                        | 109,1                               | 8,64                   | 7,919340055   | 9,1        | 9,1                |

Table 5.3: Data extracted from Monte Carlo Simulation in which capacitor's and transistor's variation was taken into account

The Spread of Estimated DUT Value decreases (not linear) until 10fF. After there is a slight increase and then it remains almost constant until 70fF (Fig.5.8).

Relative Error also decreases until DUT value is 30 fF. After this value Relative Error remains almost constant until DUT value is 50 fF. Until 70 fF the relative error of estimation is lower than 4% (Fig.5.9).

In addition, it is obvious the test structure cannot accurately calculate the value of small capacitors  $(< 10 \, \text{fF})$ .



Figure 5.8: Spread of Estimated DUT Value as a function of expected by the designer DUT Value when capacitor's and transistor's variation are taken into account.



Figure 5.9: Relative Error as a function of expected by the designer DUT Value when capacitor's and transistor's variation are taken.

# 5.2.3 Conclusions

In order to draw conclusions, it is necessary to compare the tables and graphs above. Particular importance should be given to the comparison of Tables 5.1 and 5.3. Table 5.1 consists of data
for which only the capacitor's variation has been taken into account. Table 5.3 consists of data for which capacitor's and transistor's variation have been taken into account.

It is obvious that when transistor's variation is ignored (Table 5.1) the Spread of Estimated Mean Capacitor Value is lower than the case when no device variation is ignored (Table 5.3) almost for every DUT. This means that transistors of inverting stages introduce variation that could distort the etsimation of DUT. Especially when DUT is very small (1fF), Spread of estimation when only DUT's variation is taken into account is 5,7%, but when the variation of any device is not ignored, then the spread almost doubles. This means that transistors of inverting stages introduce variation that could distort the etsimation of DUT. This is why Relative Error and Spread have big values when we measure small capacitors (< 10fF). Although we could observe that spread of measurement of small capacitors with this test structure is lower than the spread with the previous test structure.

As for DUTs greater than 10 fF, when only DUT's variation is taken into account then the spread is around 5%. When considering the variations of all devices, then the spread is about 7%. This means that the measurement of larger DUTs is less affected by the variation introduced by the transistors of the test structure than the measurement of small DUTs.

The structure measures sufficient capacitors in the range 10 fF-50 fF (Relative Error < 3%) (Table 4.2).

A disadvantage is that currents must be measured, which is a difficult process.

In order to decrease the spread at our estimations, a way to decrease transistor's variation must be found.

# 6

# Test structure using a single Cross-Coupled Oscillator

# 6.1 Process Monitoring of Capacitor's Value using a Cross-Coupled Oscillator

Another way to characterize capacitors through oscillation's frequency is described below. In this section a Cross-Coupled Oscillator will be used in order to measure capacitor's (DUT) Value through oscillation's frequency. We expect smaller effect of process variation on our measurements because this test structure is simpler than the previous. The way that this circuit makes oscillation is well-known [11].

The Cross-Coupled oscillator is a LC oscillator consists of two transistors, two inductors and a capacitor. In order to design the Cross-Coupled oscillator MOSFET transistors (two NMOS transistors) are used. The transistor models which are described previously are used also here. The capacitor used for this oscillator is actually the Device Under Test and the Cross-Coupled oscillator is the test structure. Inductors introduce almost no process variation.

A disadvantage of this test structure is that inductors are in general very big devices. Therefore this test structure takes a lot of space.

In addition, here we must assume that transistors add no capacitance  $(C_L \rightarrow 0)$ . In order to make this assumption closer to reality we use as small transistors as possible. Although these transistors could not be very small because this test structure cannot oscillate when transistors are very small and the capacitor big.

The test structure described at this section is shown below (Fig.6.1).

The mathematical formula that describes the oscillation frequency for LC oscillators is wellknown [11] and it is shown below:

$$\omega_{osc} = \frac{1}{\sqrt{L \cdot C}} \implies f_{osc} = \frac{1}{2\pi\sqrt{L \cdot C}}$$
(6.1)

where:

L: value of one of the two inductors used

C: value of the capacitor used



Figure 6.1: Cross-Coupled Oscillator used as Test Structure with  $W_{nmos} = 2\,\mu m$  and  $L_{nmos} = 80\,nm$ 

# 6.2 Estimation of the DUT's value using the test structure

### 6.2.1 Mathematical formula for DUT

In order to estimate the value of the DUT using this test structure, it is significant to reach a final mathematical formula. As we already said the capacitor of the LC oscillator is actually here the DUT. Using the equation (6.1) and assuming that  $C = C_{DUT}$  we have the formula for the value of DUT ( $C_{DUT}$ ):

$$f_{osc} = \frac{1}{2\pi\sqrt{L \cdot C_{DUT}}} \implies C_{DUT} = \frac{1}{4\pi^2 \cdot f_{osc}^2 \cdot L}$$
(6.2)

For this test structure, it is obvious that no current appears at the mathematical formula. So it is not necessary to measure any current. This is a very significant observation because it is very difficult to measure current on the wafer, especially for nanoscale ICs.

### 6.2.2 Estimation of DUT's value, Monte Carlo Simulations and other graphs

Monte Carlo simulations are implemented for each DUT. At first, only DUT's variation is introduced. After Monte Carlo simulation is made with variation only for the transistors. At last Monte Carlo simulations are made with the variation of transistors and capacitor (DUT). This separation is made to make it obvious if the transistors of the test structure introduce a variation that distorts the estimation of DUT's Value. Simulations with only Capacitor's Variation The Table 6.1 below is made with data from Monte Carlo simulation. In this simulation only DUT's variation was taken into account. We assume that transistors are ideal and perfectly matched. Estimated Capacitor Value and Standard Deviation were directly extracted from the simulation. Spread, Error and Relative Error were also calculated.

| Capacitors under test (fF) | Estimated Mean Capacitor Value (fF) | Standard Deviation (f) | Spread (%)   | Error (fF) | Relative Error (%) |
|----------------------------|-------------------------------------|------------------------|--------------|------------|--------------------|
| 1                          | 5,178                               | 0,17898                | 3,4565469293 | 4,178      | 417,8              |
| 10                         | 13,48                               | 0,4582                 | 3,3991097923 | 3,48       | 34,8               |
| 20                         | 23,25                               | 0,9549                 | 4,1070967742 | 3,25       | 16,25              |
| 30                         | 33,25                               | 1,448                  | 4,354887218  | 3,25       | 10,8333333333      |
| 40                         | 43,35                               | 1,944                  | 4,4844290657 | 3,35       | 8,375              |
| 50                         | 53,45                               | 2,437                  | 4,5594013096 | 3,45       | 6,9                |
| 60                         | 63,6                                | 2,922                  | 4,5943396226 | 3,6        | 6                  |
| 70                         | 73,73                               | 3,418                  | 4,6358334464 | 3,73       | 5,3285714286       |
| 80                         | 83,72                               | 3,9                    | 4,6583850932 | 3,72       | 4,65               |
| 90                         | 94,11                               | 4,402                  | 4,6775050473 | 4,11       | 4,56666666667      |
| 100                        | 104,3                               | 4,885                  | 4,6836049856 | 4,3        | 4,3                |

Table 6.1: Data extracted from Monte Carlo Simulation in which only capacitor's variation was taken into account

According to Table 6.1 graphs were plotted from which significant conclusions were extracted.



Spread of Estimated DUT Value

Figure 6.2: Spread of Estimated DUT Value as a function of expected by the designer DUT Value when only DUT's variation is taken into account.

We can observe that the Relative Error of the estimation decreases (not linear) for bigger DUTs (Fig.6.3) but it remains high (Relative Error>4%). Figure 6.3 proves that this test structure has not very good accuracy, especially for smaller DUTs, when only capacitor's variation is taken into account.

Spread is almost constant (Fig.6.2) when only capacitor's variation is taken into account.



Figure 6.3: Relative Error as a function of expected by the designer DUT Value when only DUT's variation is taken into account.

Simulations with only transistor's Variation The Table 6.2 below is made with data from Monte Carlo simulation. In this simulation only transistor's variation was taken into account. We assume that the DUT is ideal. The transistors are not identical because each transistor may introduce a different variation. Estimated Capacitor Value and Standard Deviation were directly extracted from the simulation. Spread, Error and Relative Error were also calculated.

| Capacitors under test (fF) | Estimated Mean Capacitor Value (fF) | Standard Deviation $(f)$ | Spread (%)   | Error $(fF)$ | Relative Error (%) |
|----------------------------|-------------------------------------|--------------------------|--------------|--------------|--------------------|
| 1                          | 5,18                                | 0,01084                  | 0,2092664093 | 4,18         | 418                |
| 10                         | 13,51                               | 0,005971                 | 0,0441968912 | 3,51         | 35,1               |
| 20                         | 23,32                               | 0,0035891                | 0,0153906518 | 3,32         | 16,6               |
| 30                         | 33,36                               | 0,008962                 | 0,0268645084 | 3,36         | 11,2               |
| 40                         | 43,51                               | 0,009851                 | 0,0226407722 | 3,51         | 8,775              |
| 50                         | 53,65                               | 0,00893                  | 0,0166449208 | 3,65         | 7,3                |
| 60                         | 63,84                               | 0,00986                  | 0,0154448622 | 3,84         | 6,4                |
| 70                         | 74,01                               | 0,01003                  | 0,0135522227 | 4,01         | 5,7285714286       |
| 80                         | 84,22                               | 0,03887                  | 0,0461529328 | 4,22         | 5,275              |
| 90                         | 94,47                               | 0,01117                  | 0,0118238594 | 4,47         | 4,96666666667      |
| 100                        | 104,7                               | 0,01597                  | 0,0152531041 | 4,7          | 4,7                |

Table 6.2: Data extracted from Monte Carlo Simulation in which only transistor's variation was taken into account

According to Table 6.2 graphs were plotted from which significant conclusions were extracted.

We can observe that the Relative Error of the estimation decreases (not linear) for bigger DUTs (Fig.6.5) but even in this case it remains high. Figure 6.5 proves that this test structure has not very good accuracy, especially for smaller DUTs.

Spread is bigger when DUT is smaller than 10fF. This is because the circuit is more sensitive to process variation of transistors when measuring very small capacitors. For DUTs bigger than 10fF Spread remains almost constant (Fig.6.4) when only transistors' variation is taken into account. In general transistors in this test structure introduce almost no variation (Spread < 1%).



Figure 6.4: Spread of Estimated DUT Value as a function of real DUT Value when only transistor's variation is taken into account.





**Simulations with DUT's and transistor's Variation** The Table 6.3 below is made with data from Monte Carlo simulation. In this simulation DUT's and transistor's variation were taken into account. Now the transistors are not identical because each transistor may introduce a different variation. Also the DUT is not ideal because it introduces variation in our calculations. Estimated Capacitor Value and Standard Deviation were directly extracted from the simulation. Spread, Error and Relative Error were also calculated.

| Capacitors under test (fF) | Estimated Mean Capacitor Value (fF) | Standard Deviation (f) | Spread (%)   | Error (fF) | Relative Error (%) |
|----------------------------|-------------------------------------|------------------------|--------------|------------|--------------------|
| 1                          | 5,117                               | 0,20583                | 4,0224741059 | 4,117      | 411,7              |
| 10                         | 13,48                               | 0,4573                 | 3,3924332344 | 3,48       | 34,8               |
| 20                         | 23,25                               | 0,9553                 | 4,1088172043 | 3,25       | 16,25              |
| 30                         | 33,24                               | 1,452                  | 4,3682310469 | 3,24       | 10,8               |
| 40                         | 43,35                               | 1,944                  | 4,4844290657 | 3,35       | 8,375              |
| 50                         | 53,46                               | 2,438                  | 4,5604190049 | 3,46       | 6,92               |
| 60                         | 63,6                                | 2,929                  | 4,6053459119 | 3,6        | 6                  |
| 70                         | 73,25                               | 3,391                  | 4,6293515358 | 3,25       | 4,6428571429       |
| 80                         | 83,91                               | 3,936                  | 4,6907400787 | 3,91       | 4,8875             |
| 90                         | 94,11                               | 4,401                  | 4,6764424609 | 4,11       | 4,56666666667      |
| 100                        | 104,3                               | 4,887                  | 4,6855225312 | 4,3        | 4,3                |

Table 6.3: Data extracted from Monte Carlo Simulation in which capacitor's and transistor's variation were taken into account

According to Table 6.3 graphs were plotted from which significant conclusions were extracted.



Spread of Estimated DUT Value

Figure 6.6: Spread of Estimated DUT Value as a function of expected by the designer DUT Value when capacitor's and transistor's variation are taken into account.

We can observe that the Relative Error of the estimation decreases (not linear) (Fig.6.7) but it still remains high. Figure 6.7 proves that this test structure has not very good accuracy, especially for smaller DUTs, when capacitor's and transistors' variation is taken into account.

Spread is almost constant (Fig.6.6) when capacitor's and transistors' variation is taken into account. Graph 6.6 is almost the same with graph 6.2 when only capacitor's variation is taken into account. It proves that transistors add almost no process variation.

### 6.2.3 Conclusions

In order to draw conclusions, it is necessary to compare the tables and graphs above. Particular importance should be given to the comparison of Tables 6.1 and 6.3. Table 6.1 consists of data for which only the capacitor's variation has been taken into account. Table 6.3 consists of data



Figure 6.7: Relative Error as a function of expected by the designer DUT Value when transistor's and capacitor's variation are taken into account.

for which capacitor's and transistor's variation have been taken into account.

It is obvious that when transistor's variation is ignored (Table 6.1) the Spread of Estimated Mean Capacitor Value is almost the same with the case when no device variation is ignored (Table 6.3). This means that transistors introduce variation which has almost negligible effect on the final measurements regarding Spread as we noticed above. We have to notice that using small dimensions of the transistors leads to increased process variation  $\left(\sigma \Delta V_{th} = \frac{A_{v_{th}}}{\sqrt{W \cdot L}}\right)$ . But as we have already said the effect of transistors' process variation does not distort the final measurements.

Unfortunately, the Relative Error in each case proves in general that this test structure is not very accurate. This happens because we cannot calculate and substract from our final measurements the value of the capacitances added by transistors  $(C_L)$ . We have assumed that  $C_L = 0$  which is not true even for very small transistors.

Despite its not very good measurement accuracy and the large space it occupies, this test structure has a very significant advantage. It is the only test structure that we propose in this work, which in the final formula that calculating the actual capacitor value does not include the measurement of any current. This is very significant because it is very difficult to measure currents on a nanoscale chip of wafer.

# 7

# Test structure using CBCM

# 7.1 Process Monitoring of Capacitor's Value using Charge-Based Capacitance Measurement (CBCM)

Another way to characterize capacitors is described below. In this section we will describe a method which characterizes capacitors without any oscillation. This method called Charge-Based Capacitance Measurement (CBCM) [12]. This test structure is completely simple and consists of 4 transistors and the DUT. We expect small effect of process variation on our measurements because this test structure is simple. The left and the right branch of the structure are actually pseudo-inverters. The circuit of test structure is shown below (Fig.7.1).

The left and right branches are both driven by two non-overlapping signals V1 and V2 as shown in Figure 7.2 below. These can be either generated off-chip or on-chip [12]. At this thesis we do not implement any on-chip non overlapping clock circuit. The purpose of these non-overlapping waveforms is to ensure that only one of the two transistors on either the left or right branch is conducting current at any given time in order to avoid short-circuit current. This current could introduce error at our measurements. When the PMOS transistor turns on, current flows from  $V_{dd}$  to charge the DUT. This amount of charge will then be subsequently discharged through the NMOS transistor into ground. The currents that are useful are measured at the source of the PMOSFET (or, alternatively at the source of the NMOSFET). The actual waveform of this charging current is not important - only its DC or average current value needs to be measured.

In order to measure the DUT we assume that the transistors of the two branches are perfectly matched. The left branch is the reference branch and the current that flows left branch's transistors  $(I_{ref})$  is measured at the source of PMOS transistor. This current is described by the mathematical formula below:

$$I_{ref} = C_L \cdot V_{dd} \cdot f \tag{7.1}$$

where:



Figure 7.1: Test structure using Charge-Based Capacitance Measurement with  $W_{nmos} = 2\,\mu m$ ,  $W_{pmos} = 4\,\mu m$  and  $L_{nmos} = L_{pmos} = 80\,nm$ 



Figure 7.2: These non-overlapping NMOS and PMOS signals ensure no short circuit current

 $C_L$ : total capacitance that left branch's transistors introduce

 $V_{dd}$ : bias voltage

f: frequency of V2 signal (Fig.7.2)

The right branch is the branch that drives the DUT  $(C_{DUT})$  and the current that flows right branch's transistors  $(I_{DUT})$  is measured at the source of PMOS transistor. The right branch's transistors introduce also capacitance as left branch's transistors. We made the assumption that branches are perfectly matched, so  $C_L$  is the same for both branches. Obviously f and  $V_{dd}$ are the same for both structures. The current  $I_{DUT}$  is described by the mathematical formula below:

$$I_{DUT} = (C_L + C_{DUT}) \cdot V_{dd} \cdot f \tag{7.2}$$

In order to prove equations (7.1) and (7.2) definition of average switching power dissipation of inverter must be used:

$$P_{avg} = \int_0^T v(t) \cdot i(t) dt \Longrightarrow$$

$$P_{avg} = \frac{1}{T} \left[ \int_{0}^{\frac{T}{2}} V_{out}(t) \cdot \left( -C \cdot \frac{dV_{out}(t)}{dt} \right) dt + \int_{\frac{T}{2}}^{T} (V_{dd} - V_{out}(t)) \cdot \left( C \cdot \frac{dV_{out}(t)}{dt} \right) dt \right] \Longrightarrow$$

$$P_{avg} = \frac{1}{T} \left[ \left( -C \cdot \frac{V_{out}(t)^{2}}{2} \right) \Big|_{0}^{\frac{T}{2}} + \left( V_{dd} \cdot V_{out}(t) \cdot C - C \cdot \frac{V_{out}(t)^{2}}{2} \right) \Big|_{\frac{T}{2}}^{T} \right] \Longrightarrow$$

$$P_{avg} = C \cdot V_{dd}^{2} \cdot f \qquad (7.3)$$

Using the definition of power  $P_{avg} = I \cdot V_{dd}$  at equation (7.3):

$$I \cdot V_{dd} = C \cdot V_{dd}^2 \cdot f \implies I = C \cdot V_{dd} \cdot f \tag{7.4}$$

Here we have assumed that NMOS transistors of each branch conduct current from 0 to  $\frac{T}{2}$  and respectively PMOS transistors conduct current from  $\frac{T}{2}$  to T. In this case this is not true. NMOS and PMOS transistors actually conduct current for less time than  $\frac{T}{2}$  (Fig.7.4) and the current waveforms are not as expected because NMOS transistors are faster than PMOS at 45nm technology (Fig.7.5, 7.7). To make this assumption closer to reality pulse widths of signals V1 and V2 are very similar.

When  $C_{DUT} = 1$  fF the waveforms of currents and output voltage are shown at Figures 7.5 and 7.6. We assume that period T is between 25ns and 75ns (Fig.7.6). So  $\frac{T}{2} = 50$ ns. In order to prove the equations (7.1) and (7.2) we have assumed that NMOS transistors of each branch conduct current from 0 to  $\frac{T}{2}$  and respectively PMOS transistors conduct current from  $\frac{T}{2}$  to T. This is not happening in this case as shown. There is an error at our assumption because at time period  $[\frac{T}{2}, \frac{T}{2} + 2.5$  ns], when no transistor is "ON",  $V_{out} > V_{dd}$ . In this way we integrate an area at this time period which cause an error at our assumption. For this reason an error is introduced at measurement of small capacitors.

When  $C_{DUT} = 100 \,\text{fF}$  we can observe at Figure 7.8 that the error of the assumption is not

that big as in the case when  $C_{DUT} = 1 \text{ fF}$  because at the time period of the error  $\left[\frac{T}{2}, \frac{T}{2} + 2.5 \text{ ns}\right]$  smaller area is integrated in equation 7.4. We need to assume that currents (Fig.7.7) flow as expected at a normal inverter (Fig.7.3). In general the error of the assumption is smaller for bigger DUTs.



Figure 7.3: Typical input and output voltage waveforms and the capacitor current waveform during switching of the CMOS inverter



Figure 7.4: Waveforms V1 (NMOS) and V2 (PMOS)



Figure 7.5:  $I_{ref}$  and  $I_{DUT}$  waveforms when  $C_{DUT} = 1 \, \text{fF}$ 



Figure 7.6:  $V_{out}$  waveform when  $C_{DUT} = 1 \, \text{fF}$ 

# 7.2 Estimation of the DUT's value using the test structure

## 7.2.1 Mathematical formula for DUT

In order to estimate the value of the DUT using this test structure, it is significant to reach a final mathematical formula. Subtracting (7.2) from the (7.1) we reach the following mathematical



Figure 7.7:  $I_{ref}$  and  $I_{DUT}$  waveforms when  $C_{DUT} = 100\,\mathrm{fF}$ 



Figure 7.8:  $V_{out}$  waveform when  $C_{DUT}=100\,\mathrm{fF}$ 

formula:

$$I_{DUT} - I_{ref} = C_{DUT} \cdot V_{dd} \cdot f \implies C_{DUT} = \frac{I_{DUT} - I_{ref}}{V_{dd} \cdot f}$$
(7.5)

In this formula we can observe that  $C_L$  is completely substructed. This is very significant because there is no way to measure accurately this capacitance.

### 7.2.2 Estimation of DUT's value, Monte Carlo Simulations and other graphs

Monte Carlo simulations are implemented for each DUT. At first, only DUT's variation is introduced. After Monte Carlo simulation is made with variation only for the transistors. At last Monte Carlo simulations are made with the variation of transistors and capacitor (DUT). This separation is made to make it obvious if the transistors of the test structure introduce a variation that distorts the estimation of DUT's Value.

Simulations with only Capacitor's Variation The Table 7.1 below is made with data from Monte Carlo simulation. In this simulation only DUT's variation was taken into account.We assume that transistors are ideal and perfectly matched. Estimated Capacitor Value and Standard Deviation were directly extracted from the simulation. Spread, Error and Relative Error were also calculated.

| Capacitors under test (fF) | Estimated Mean Capacitor Value (fF) | Standard Deviation (f) | Spread (%)   | Error (fF) | Relative Error (%) |
|----------------------------|-------------------------------------|------------------------|--------------|------------|--------------------|
| 1                          | 1,124                               | 0,05382                | 4,7882562278 | 0,124      | 12,4               |
| 10                         | 10,62                               | 0,49                   | 4,6139359699 | 0,62       | 6,2                |
| 20                         | 20,7                                | 0,9649                 | 4,661352657  | 0,7        | 3,5                |
| 30                         | 30,69                               | 1,439                  | 4,6888237211 | 0,69       | 2,3                |
| 40                         | 40,65                               | 1,916                  | 4,7134071341 | 0,65       | 1,625              |
| 50                         | 50,6                                | 2,393                  | 4,7292490119 | 0,6        | 1,2                |
| 60                         | 60,54                               | 2,87                   | 4,7406673274 | 0,54       | 0,9                |
| 70                         | 70,48                               | 3,348                  | 4,7502837684 | 0,48       | 0,6857142857       |
| 80                         | 80,42                               | 3,826                  | 4,7575230042 | 0,42       | 0,525              |
| 90                         | 90,35                               | 4,304                  | 4,7636967349 | 0,35       | 0,3888888889       |
| 100                        | 100,3                               | 4,781                  | 4,7666999003 | 0,3        | 0,3                |

Table 7.1: Data extracted from Monte Carlo Simulation in which only capacitor's variation was taken into account

According to Table 7.1 graphs were plotted from which significant conclusions were extracted.

We can observe that the Relative Error of the estimation decreases (not linear) for bigger DUTs (Fig.7.10). Figure 7.10 proves that this test structure can very accurately calculate the value of capacitors bigger than  $30 \, \text{fF}$  (Relative Error < 3% for DUTs bigger than  $30 \, \text{fF}$ ) when only capacitor's variation is taken into account.

Spread is almost constant (Fig.7.9) when only capacitor's variation is taken into account.



Figure 7.9: Spread of Estimated DUT Value as a function of expected by the designer DUT Value when only DUT's variation is taken into account.



Figure 7.10: Relative Error as a function of expected by the designer DUT Value when only DUT's variation is taken into account.

Simulations with only transistor's Variation The Table 7.2 below is made with data from Monte Carlo simulation. In this simulation only transistor's variation was taken into account. We assume that the DUT is ideal. The transistors are not identical because each transistor may introduce a different variation. Estimated Capacitor Value and Standard Deviation were directly extracted from the simulation.Spread, Error and Relative Error were also calculated.

According to Table 7.2 graphs were plotted from which significant conclusions were extracted.

| Capacitors under test (fF) | Estimated Mean Capacitor Value (fF) | Standard Deviation $(f)$ | Spread (%)   | Error $(fF)$ | Relative Error (%) |
|----------------------------|-------------------------------------|--------------------------|--------------|--------------|--------------------|
| 1                          | 1,128                               | 0,007292                 | 0,6464539007 | 0,128        | 12,8               |
| 10                         | 10,66                               | 0,00595                  | 0,0558161351 | 0,66         | 6,6                |
| 20                         | 20,78                               | 0,00657                  | 0,0316169394 | 0,78         | 3,9                |
| 30                         | 30,8                                | 0,009631                 | 0,0312694805 | 0,8          | 2,6666666667       |
| 40                         | 40,8                                | 0,01504                  | 0,0368627451 | 0,8          | 2                  |
| 50                         | 50,79                               | 0,02146                  | 0,0422524119 | 0,79         | 1,58               |
| 60                         | 60,77                               | 0,02836                  | 0,0466677637 | 0,77         | 1,2833333333       |
| 70                         | 70,75                               | 0,03511                  | 0,0496254417 | 0,75         | 1,0714285714       |
| 80                         | 80,72                               | 0,04135                  | 0,0512264618 | 0,72         | 0,9                |
| 90                         | 90,69                               | 0,04885                  | 0,0538648142 | 0,69         | 0,76666666667      |
| 100                        | 100.7                               | 0.05592                  | 0.055531281  | 0.7          | 0.7                |

Table 7.2: Data extracted from Monte Carlo Simulation in which only transistor's variation was taken into account



Figure 7.11: Spread of Estimated DUT Value as a function of real DUT Value when only transistor's variation is taken into account.

We can observe that the Relative Error of the estimation decreases (not linear) for bigger DUTs (Fig.7.12). Figure 7.12 proves that this test structure can very accurately calculate the value of capacitors bigger than  $30 \, \text{fF}$  (Relative Error < 3% for DUTs bigger than  $30 \, \text{fF}$ ) when only transistors' variation is taken into account.

Spread is bigger when DUT is smaller than 10 fF. This is because the circuit is more sensitive to process variation of transistors when measuring very small capacitors. For DUTs bigger than 10 fF Spread remains almost constant (Fig.7.11) when only transistors' variation is taken into account. In general transistors in this test structure introduce almost no variation (Spread < 1%).



Figure 7.12: Relative Error as a function of real DUT Value when only transistor's variation is taken into account.

Simulations with DUT's and transistor's Variation The Table 7.3 below is made with data from Monte Carlo simulation. In this simulation DUT's and transistor's variation were taken into account. Now the transistors are not identical because each transistor may introduce a different variation. Also the DUT is not ideal because it introduces variation in our calculations. Estimated Capacitor Value and Standard Deviation were directly extracted from the simulation. Spread, Error and Relative Error were also calculated.

According to Table 7.3 graphs were plotted from which significant conclusions were extracted.

| Capacitors under test (fF) | Estimated Mean Capacitor Value (fF) | Standard Deviation (f) | Spread (%)   | Error (fF) | Relative Error (%) |
|----------------------------|-------------------------------------|------------------------|--------------|------------|--------------------|
| 1                          | 1,123                               | 0,05498                | 4,8958147818 | 0,123      | 12,3               |
| 10                         | 10,62                               | 0,4906                 | 4,6195856874 | 0,62       | 6,2                |
| 20                         | 20,7                                | 0,9646                 | 4,6599033816 | 0,7        | 3,5                |
| 30                         | 30,68                               | 1,44                   | 4,6936114733 | 0,68       | 2,26666666667      |
| 40                         | 40,64                               | 1,917                  | 4,7170275591 | 0,64       | 1,6                |
| 50                         | 50,59                               | 2,385                  | 4,7143704289 | 0,59       | 1,18               |
| 60                         | 60,53                               | 2,873                  | 4,7464067405 | 0,53       | 0,8833333333       |
| 70                         | 70,47                               | 3,341                  | 4,7410245495 | 0,47       | 0,6714285714       |
| 80                         | 80,41                               | 3,829                  | 4,7618455416 | 0,41       | 0,5125             |
| 90                         | 90,34                               | 4,3                    | 4,759796325  | 0,34       | 0,3777777778       |
| 100                        | 100,3                               | 4,786                  | 4,7716849452 | 0,3        | 0,3                |

| Table 7.3:  | Data    | extracted  | from  | Monte | Carlo | Simulation | in | which | capacitor's | s and | $\operatorname{transist}$ | or's |
|-------------|---------|------------|-------|-------|-------|------------|----|-------|-------------|-------|---------------------------|------|
| variation w | vere ta | ken into a | ccoun | t     |       |            |    |       |             |       |                           |      |

We can observe that the Relative Error of the estimation decreases (not linear) for bigger DUTs (Fig.7.14). Figure 7.14 proves that this test structure can very accurately calculate the value of capacitors bigger than 30fF (Relative Error< 3% for DUTs bigger than 30fF) when capacitor's and transistors' variation is taken into account.

Spread is almost constant (Fig.7.13) when capacitor's and transistors' variation is taken into account.



Figure 7.13: Spread of Estimated DUT Value as a function of expected by the designer DUT Value when capacitor's and transistor's variation are taken into account.



Figure 7.14: Relative Error as a function of expected by the designer DUT Value when transistor's and capacitor's variation are taken into account.

## 7.2.3 Conclusions

In order to draw conclusions, it is necessary to compare the tables and graphs above. Particular importance should be given to the comparison of Tables 7.1 and 7.3. Table 7.1 consists of data for which only the capacitor's variation has been taken into account. Table 7.3 consists of data for which capacitor's and transistor's variation have been taken into account.

It is obvious that when transistor's variation is ignored (Table 7.1) the Spread of Estimated Mean Capacitor Value is almost the same with the case when no device variation is ignored (Table 7.3). This means that transistors introduce variation which has almost negligible effect on the final measurements regarding Spread.

Also it is obvious that when transistors' variation is introduced, the accuracy of the Estimation of the Mean Capacitor's Value is not greatly affected. We have to note that using small dimensions of the transistors leads to increased process variation  $\left(\sigma\Delta V_{th} = \frac{A_{V_{th}}}{\sqrt{W \cdot L}}\right)$ . But as we have already said the effect of transistor's process variation on the measurements for this test structure remains negligible.

In general this test structure can accurately measure all capacitors in the range 30 fF - 100 fF (Relative Error < 3%) with low Spread.

A disadvantage is that currents must be measured, which is a difficult process.

In order to have more accurate estimations, a way to decrease the relative error of our measurements must be found.

# 8

# Test structure using changed-CBCM

# 8.1 Process Monitoring of Capacitor's Value using changed Charge-Based Capacitance Measurement

This test structure is similar with that in chapter 7. The only difference is that instead of pseudoinverters each branch is a normal inverter. This means that PMOS and NMOS transistors' gates of the same branch have the same signal (Fig.8.2). The circuit of test structure is shown below (Fig.8.1).



Figure 8.1: Test structure using changed Charge-Based Capacitance Measurement with  $W_{nmos} = 2\,\mu m$ ,  $W_{pmos} = 4\,\mu m$  and  $L_{nmos} = L_{pmos} = 80\,nm$ 



Figure 8.2: Waveform V (NMOS and PMOS)

When  $C_{DUT} = 1 \,\text{fF}$  the waveforms of currents and output voltage are shown at Figures 8.3 and 8.4. We assume that period T is between 25ns and 75ns (Fig.8.4). So  $\frac{T}{2} = 50 \,\text{ns}$ . In order to prove the equations (7.1) and (7.2) that are used in this chapter too, we have assumed that NMOS transistors of each branch conduct current from 0 to  $\frac{T}{2}$  and respectively PMOS transistors conduct current from  $\frac{T}{2}$  to T. This assumption is true in this case as shown at Figure 8.4. In this case, we integrate no area that causes error to our measurement.



Figure 8.3:  $I_{ref}$  and  $I_{DUT}$  waveforms when  $C_{DUT}=1\,{\rm fF}$ 



Figure 8.4:  $V_{out}$  waveform when  $C_{DUT} = 1 \, \text{fF}$ 

When  $C_{DUT} = 100 \,\text{fF}$  we can observe at Figure 8.6 that there is no error at the assumption. We need to assume again that currents (Fig.8.5) flow as expected (Fig.7.3).



Figure 8.5:  $I_{ref}$  and  $I_{DUT}$  waveforms when  $C_{DUT}=100\,\mathrm{fF}$ 



Figure 8.6:  $V_{out}$  waveform when  $C_{DUT} = 100 \, \text{fF}$ 

# 8.2 Estimation of the DUT's value using the test structure

## 8.2.1 Mathematical formula for DUT

Obviously the mathematical formula that calculates the DUT is the same with 7.5:

$$C_{DUT} = \frac{I_{DUT} - I_{ref}}{V_{dd} \cdot f} \tag{8.1}$$

In this chapter the only assumption that is made is that current waveform is as expected (Fig.7.3). NMOS transistors of each branch conduct current from 0 to  $\frac{T}{2}$  and respectively PMOS transistors conduct current from  $\frac{T}{2}$  to T.

### 8.2.2 Estimation of DUT's value, Monte Carlo Simulations and other graphs

Monte Carlo simulations are implemented for each DUT. At first, only DUT's variation is introduced. After Monte Carlo simulation is made with variation only for the transistors. At last Monte Carlo simulations are made with the variation of transistors and capacitor (DUT). This separation is made to make it obvious if the transistors of the test structure introduce a variation that distorts the estimation of DUT's Value.

Simulations with only Capacitor's Variation The Table 8.1 below is made with data from Monte Carlo simulation. In this simulation only DUT's variation was taken into account. We assume that transistors are ideal and perfectly matched. Estimated Capacitor Value and

Standard Deviation were directly extracted from the simulation. Spread, Error and Relative Error were also calculated.

| Capacitors under test (fF) | Estimated Mean Capacitor Value (fF) | Standard Deviation (f) | Spread (%)   | Error (fF) | Relative Error (%) |
|----------------------------|-------------------------------------|------------------------|--------------|------------|--------------------|
| 1                          | 1,066                               | 0,05083                | 4,7682926829 | 0,066      | 6,6                |
| 10                         | 10,29                               | 0,4848                 | 4,7113702624 | 0,29       | 2,9                |
| 20                         | 20,3                                | 0,9596                 | 4,7270935961 | 0,3        | 1,5                |
| 30                         | 30,24                               | 1,432                  | 4,7354497354 | 0,24       | 0,8                |
| 40                         | 40,15                               | 1,906                  | 4,7471980075 | 0,15       | 0,375              |
| 50                         | 50,04                               | 2,378                  | 4,7521982414 | 0,04       | 0,08               |
| 60                         | 59,92                               | 2,852                  | 4,7596795728 | -0,08      | -0,1333333333      |
| 70                         | 69,79                               | 3,328                  | 4,7685914888 | -0,21      | -0,3               |
| 80                         | 79,69                               | 3,817                  | 4,7898105157 | -0,31      | -0,3875            |
| 90                         | 89,84                               | 4,286                  | 4,7707034728 | -0,16      | -0,1777777778      |
| 100                        | 99,47                               | 4,77                   | 4,7954157032 | -0.53      | -0.53              |

Table 8.1: Data extracted from Monte Carlo Simulation in which only capacitor's variation was taken into account

According to Table 8.1, graphs were plotted from which significant conclusions were extracted.





Figure 8.7: Spread of Estimated DUT Value as a function of expected by the designer DUT Value when only DUT's variation is taken into account.

We can observe that the Relative Error of the estimation decreases (not linear) for bigger DUTs (Fig.8.8). Figure 8.8 proves that this test structure can very accurately calculate the value of capacitors bigger than 10 fF (Relative Error < 3% for DUTs bigger than 10 fF) when only capacitor's variation is taken into account.

Spread is almost constant (Fig.8.7) when only capacitor's variation is taken into account.



Figure 8.8: Relative Error as a function of expected by the designer DUT Value when only DUT's variation is taken into account.

Simulations with only transistor's Variation The Table 8.2 below is made with data from Monte Carlo simulation. In this simulation only transistor's variation was taken into account. We assume that the DUT is ideal. The transistors are not identical because each transistor may introduce a different variation. Estimated Capacitor Value and Standard Deviation were directly extracted from the simulation. Spread, Error and Relative Error were also calculated.

| Capacitors under test (fF) | Estimated Mean Capacitor Value (fF) | Standard Deviation (f) | Spread (%)   | Error (fF) | Relative Error (%) |
|----------------------------|-------------------------------------|------------------------|--------------|------------|--------------------|
| 1                          | 1,07                                | 0,003199               | 0,2989719626 | 0,07       | 7                  |
| 10                         | 10,33                               | 0,01019                | 0,0986447241 | 0,33       | 3,3                |
| 20                         | 20,37                               | 0,01532                | 0,0752086402 | 0,37       | 1,85               |
| 30                         | 30,35                               | 0,02073                | 0,0683031301 | 0,35       | 1,16666666667      |
| 40                         | 40,3                                | 0,02507                | 0,0622084367 | 0,3        | 0,75               |
| 50                         | 50,22                               | 0,03181                | 0,0633412983 | 0,22       | 0,44               |
| 60                         | 60,14                               | 0,03837                | 0,0638011307 | 0,14       | 0,23333333333      |
| 70                         | 70,05                               | 0,04351                | 0,0621127766 | 0,05       | 0,0714285714       |
| 80                         | 79,99                               | 0,05219                | 0,0652456557 | -0,01      | -0,0125            |
| 90                         | 89,89                               | 0,05773                | 0,0642229391 | -0,11      | -0,1222222222      |
| 100                        | 99,84                               | 0,08065                | 0,0807792468 | -0,16      | -0,16              |

Table 8.2: Data extracted from Monte Carlo Simulation in which only transistor's variation was taken into account

According to Table 8.2 graphs were plotted from which significant conclusions were extracted.

We can observe that the Relative Error of the estimation decreases (not linear) for bigger DUTs (Fig.8.10). Figure 8.10 proves that this test structure can very accurately calculate the value of capacitors bigger than 10fF (Relative Error<3,3% for DUTs bigger than 10fF).

Spread is bigger when DUT is smaller than 10fF. This is because the circuit is more sensitive to process variation of transistors when measuring very small capacitors. For DUTs bigger than 20fF Spread remains almost constant (Fig.7.11) when only transistors' variation is taken into account. In general transistors in this test structure introduce almost no variation (Spread < 1%).



Figure 8.9: Spread of Estimated DUT Value as a function of real DUT Value when only transistor's variation is taken into account.



Figure 8.10: Relative Error as a function of real DUT Value when only transistor's variation is taken into account.

**Simulations with DUT's and transistor's Variation** The Table 8.3 below is made with data from Monte Carlo simulation. In this simulation DUT's and transistor's variation were taken into account. Now the transistors are not identical because each transistor may introduce a different variation. Also the DUT is not ideal because it introduces variation in our calculations. Estimated Capacitor Value and Standard Deviation were directly extracted from the simulation. Spread, Error and Relative Error were also calculated.

| Capacitors under test (fF) | Estimated Mean Capacitor Value (fF) | Standard Deviation (f) | Spread (%)   | Error (fF) | Relative Error (%) |
|----------------------------|-------------------------------------|------------------------|--------------|------------|--------------------|
| 1                          | 1,07                                | 0,05139                | 4,8028037383 | 0,07       | 7                  |
| 10                         | 10,29                               | 0,4859                 | 4,7220602527 | 0,29       | 2,9                |
| 20                         | 20,29                               | 0,9613                 | 4,7378018728 | 0,29       | 1,45               |
| 30                         | 30,24                               | 1,434                  | 4,7420634921 | 0,24       | 0,8                |
| 40                         | 40,14                               | 1,907                  | 4,7508719482 | 0,14       | 0,35               |
| 50                         | 50,03                               | 2,38                   | 4,7571457126 | 0,03       | 0,06               |
| 60                         | 59,91                               | 2,854                  | 4,7638123852 | -0,09      | -0,15              |
| 70                         | 69,78                               | 3,332                  | 4,7750071654 | -0,22      | -0,3142857143      |
| 80                         | 79,67                               | 3,809                  | 4,7809715075 | -0,33      | -0,4125            |
| 90                         | 89,55                               | 4,296                  | 4,797319933  | -0,45      | -0,5               |
| 100                        | 99,44                               | 4,757                  | 4,7837892196 | -0.56      | -0,56              |

Table 8.3: Data extracted from Monte Carlo Simulation in which capacitor's and transistor's variation were taken into account

According to Table 8.3 graphs were plotted from which significant conclusions were extracted.



Figure 8.11: Spread of Estimated DUT Value as a function of expected by the designer DUT Value when capacitor's and transistor's variation are taken into account.

We can observe that the Relative Error of the estimation decreases (not linear) (Fig.8.12). Figure 8.12 proves that this test structure can very accurately calculate the value of capacitors bigger than 10fF (Relative Error< 3% for DUTs bigger than 10fF) when capacitor's and transistors' variation is taken into account.

Spread is almost constant (Fig.8.11) when capacitor's and transistors' variation is taken into account.



Figure 8.12: Relative Error as a function of expected by the designer DUT Value when transistor's and capacitor's variation are taken into account.

#### 8.2.3 Conclusions

In order to draw conclusions, it is necessary to compare the tables and graphs above. Particular importance should be given to the comparison of Tables 8.1 and 8.3. Table 8.1 consists of data for which only the capacitor's variation has been taken into account. Table 8.3 consists of data for which capacitor's and transistor's variation have been taken into account.

It is obvious that when transistor's variation is ignored (Table 8.1) the Spread of Estimated Mean Capacitor Value is almost the same with the case when no device variation is ignored (Table 8.3). This means that transistors introduce variation which has almost negligible effect on the final measurements regarding Spread.

Also it is obvious that when transistors' variation is introduced, the accuracy of the Estimation of the Mean Capacitor's Value is not greatly affected. This is proven if we compare Table 8.3 with Table 8.1. This test structure is more accurate -regarding Relative Error- than the test structure described at chapter 7. We have to notice that using small dimensions of the transistors leads to increased process variation  $\left(\sigma_{V_{th}} = \frac{A_{V_{th}}}{\sqrt{2 \cdot W \cdot L}}\right)$ . But as we have already said the effect of transistor's process variation on the measurements for this test structure remains negligible.

In general this test structure can accurately measure all capacitors in the range 10 fF - 100 fF (Relative Error<3%) with low Spread. In general the measurement of capacitor's value is more accurate with this test structure than with the previous implementation.

A disadvantage is that currents must be measured, which is a difficult process.

Finally, we managed to to decrease the error of the assumption made at chapter 7.

# 9

# Conclusion

In this final chapter, we present a brief synopsis of our work. Following that, we conclude by mentioning a few possible extensions and improvements that could be developed in the future.

We must notice that, as part of this work, other types of oscillators such as Hartley, Peltz, differential Ring oscillators and various simple Ring Oscillator-based structures have been tested as well. None of them led to results we wanted.

# 9.1 Test Structures comparison

Finally, we would like to compare the proposed test structures. This is the reason why the Tables 9.1 and 9.2 are introduced. In this way we could conclude which implementation is better in each case.

| Spread of Estimated DUT Value (%)            | 1fF    | 10fF | 20fF | 30fF | 40fF | 50fF | 60fF | 70fF | 80fF | 90fF | 100fF |
|----------------------------------------------|--------|------|------|------|------|------|------|------|------|------|-------|
| Implementation with two RO                   | 393,55 | 8,44 | 7,64 | 7,21 | 6,99 | 6,93 | 6,94 | 6,8  | 6,82 | 6,75 | 6,73  |
| Implementation with single RO and MUX        | 10,36  | 7,17 | 7,45 | 7,71 | 7,63 | 7,66 | 7,73 | 7,75 | 7,87 | 7,89 | 7,91  |
| Implementation with Cross-Coupled Oscillator | 4,022  | 3,39 | 4,1  | 4,37 | 4,48 | 4,56 | 4,6  | 4,63 | 4,69 | 4,68 | 4,68  |
| Implementation with CBCM                     | 4,89   | 4,62 | 4,66 | 4,69 | 4,72 | 4,71 | 4,75 | 4,74 | 4,76 | 4,76 | 4,77  |
| Implementation with changed CBCM             | 4,8    | 4,72 | 4,74 | 4,74 | 4,75 | 4,76 | 4,76 | 4,77 | 4,78 | 4,8  | 4,78  |

Table 9.1: Comparative table based on Spread

| Relative Error (%)                           | 1fF    | 10fF      | 20fF  | 30fF | 40fF  | 50fF | 60fF | 70fF | 80fF | 90fF | 100fF |
|----------------------------------------------|--------|-----------|-------|------|-------|------|------|------|------|------|-------|
| Implementation with two ROs                  | 124,82 | $13,\!48$ | 3,5   | 1,63 | 0,225 | 0,08 | 0,17 | 0,17 | 0,42 | 0,63 | 1,16  |
| Implementation with single RO and MUX        | 44,2   | 2,34      | 2,1   | 0,13 | 0,375 | 0,92 | 2,48 | 3,45 | 5,61 | 7,24 | 9,1   |
| Implementation with Cross-Coupled Oscillator | 411,7  | 34,8      | 16,25 | 10,8 | 8,375 | 6,92 | 6    | 4,64 | 4,89 | 4,56 | 4,3   |
| Implementation with CBCM                     | 12,3   | 6,2       | 3,5   | 2,27 | 1,6   | 1,18 | 0,88 | 0,67 | 0,51 | 0,38 | 0,3   |
| Implementation with changed CBCM             | 7      | 2,9       | 1,45  | 0,8  | 0,35  | 0,06 | 0,15 | 0,31 | 0,41 | 0,5  | 0,56  |

Table 9.2: Comparative table based on Relative Error

At this point we have to notice that the implementation with the Cross-Coupled Oscillator has the lowest spread of estimated DUT value (Table 9.1). This is what we expect because it has only two transistors. Very low spread also have the implementations with CBCM circuit and changed CBCM circuit. In addition, we can observe that implementation with changed CBCM has the lowest Relative Error (so the best accuracy) for the measurement of the most DUTs (Table 9.2). Even when another implementation has lower Relative Error for the measurement of a DUT, implementation with changed CBCM has still a very good accuracy.

Due to these facts, we conclude that the best test structure for the characterization of capacitors in the range 1fF-80fF is the implementation with changed CBCM. For the characterization of capacitors in the range 90fF-100fF best test structure is the implementation with CBCM because its Relative Error is the best that we achieved and it has low Spread.

Unfortunately, implementation with the lowest Spread has the highest Relative Error for the measurement of almost every DUT.

## 9.2 Future Work

Although we have implemented four test structure with good accuracy, we are sure that there is room for more development.

At first, a way in order to deembed current as a factor of the final mathematical formulas which calculate the real value of DUT must be found. Especially, at nanoscale integrated circuits it is very difficult to measure the current. This research concerns the test structures described in chapters 4, 5, 7 and 8.

In addition, area of research could be to find a way to reduce Spread in our measurements.

Finally, it would be interesting to search what happens of Spread and Relative Error when we change transistors' dimensions.

# Bibliography

- Wikipedia contributors. Moore's law Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/ 924740408. [Online; accessed 7-November-2019]. 2019.
- [2] Wikipedia contributors. Process variation (semiconductor) Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Process<sub>v</sub>ariation(semiconductor)oldid = 905758541. [Online; accessed 7-November-2019]. 2019.
- [3] Kelin J Kuhn, Martin D Giles, David Becher, Pramod Kolar, Avner Kornfeld, Roza Kotlyar, Sean T Ma, Atul Maheshwari, and Sivakumar Mudanai. "Process technology variation". In: *IEEE Transactions on Electron Devices* 58.8 (2011), pp. 2197–2208.
- [4] Choongyeun Cho, Daeik D Kim, Jonghae Kim, Jean-Olivier Plouchart, Daihyun Lim, Sangyeun Cho, and Robert Trzcinski. "Decomposition and analysis of process variability using constrained principal component analysis". In: *IEEE Transactions on Semiconductor Manufacturing* 21.1 (2008), pp. 55–62.
- [5] Udo Sobe. "Simulation and Analysis of Analog Circuit and PCM (Process Control Monitor) Test Structures in Circuit Design". In: (2007).
- [6] Predictive Technology Model (PTM). http://ptm.asu.edu/.
- [7] Sadegh Biabanifard, S Mehdi Hosseini Largani, and Shahrouz Asadi. "Delay time analysis of combined CMOS ring oscillator". In: International Journal of Electronics and Electrical Engineering 4.2 (2015), pp. 53–64.
- [8] Walter Schneider. "Analytical Inverter Delay Modeling Using Matlab's Curve Fitting Toolbox". In: *arXiv preprint arXiv:1801.00005* (2017).
- [9] Loïc Welter, Philippe Dreux, Jean-Michel Portal, and Hassen Aziza. "Embedded highprecision frequency-based capacitor measurement system". In: 2013 IEEE 19th International On-Line Testing Symposium (IOLTS). IEEE. 2013, pp. 116–121.
- [10] Mohammad Hassan Montaseri and H Miar Naimi. "Novel power supply independent ring oscillator". In: Proceedings of the 9th WSEAS Int. conf. on Electronics, Hardware, Wireless and Optical Communications. 2010, pp. 80–87.
- [11] Mojtaba Daliri and Mohammad Maymandi-Nejad. "Analytical model for CMOS crosscoupled LC-tank oscillator". In: IET Circuits, Devices & Systems 8.1 (2014), pp. 1–9.

- [12] James C Chen, Dennis Sylvester, and Chenming Hu. "An on-chip, interconnect capacitance characterization method with sub-femto-farad resolution". In: *IEEE Transactions* on Semiconductor Manufacturing 11.2 (1998), pp. 204–210.
- [13] Tomohisa Mizuno, J Okumtura, and Akira Toriumi. "Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET's".
   In: *IEEE Transactions on Electron Devices* 41.11 (1994), pp. 2216–2221.
- Peter A Stolk, Frans P Widdershoven, and DBM Klaassen. "Modeling statistical dopant fluctuations in MOS transistors". In: *IEEE Transactions on Electron devices* 45.9 (1998), pp. 1960–1971.
- [15] Antonios Bazigos, Matthias Bucher, Joachim Assenmacher, Stefan Decker, Wladyslaw Grabinski, and Yannis Papananos. "An adjusted constant-current method to determine saturated and linear mode threshold voltage of MOSFETs". In: *IEEE Transactions on Electron Devices* 58.11 (2011), pp. 3751–3758.
- [16] Wikipedia contributors. Drain-induced barrier lowering Wikipedia, The Free Encyclopedia. [Online; accessed 11-November-2019]. 2019. URL: https://en.wikipedia.org/w/ index.php?title=Drain-induced\_barrier\_lowering&oldid=924140031.
- [17] Adel S. Sedra and Kenneth C. Smith. *Microelectronic Circuits*. fifth. Oxford University Press, 2004.
- [18] A. Srivastava. "Threshold voltage dependence on channel length in small geometry MOS-FETs". In: *physica status solidi (a)* 99.1 (1987), pp. 303-308. DOI: 10.1002/pssa. 2210990136. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/pssa. 2210990136. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa. 2210990136.
- [19] Wikipedia contributors. Ring oscillator Wikipedia, The Free Encyclopedia. [Online; accessed 10-November-2019]. 2019. URL: https://en.wikipedia.org/w/index.php? title=Ring\_oscillator&oldid=887052003.