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Abstract

In this work, a novel solution to the optimal motion planning problem is pro-
posed, through a continuous, deterministic and provably correct approach, with
guaranteed safety and which is based on a parametrized Artificial Potential Field
(APF). In particular, Reinforcement Learning (RL) is applied to adjust appro-
priately the parameters of the underlying potential field towards minimizing
the Hamilton-Jacobi-Bellman (HJB) error. The proposed method, outperforms
consistently a Rapidly-exploring Random Trees (RRT*) method and consists a
fertile advancement in the optimal motion planning problem. Finally this work
gives rise to a new outlook on solutions for the aforementioned problem.



Περίληψη

Στην παρούσα εργασία, μια καινοτόμος λύση στο πρόβλημα του βελτίστου σχε-

διασμού πορείας προτείνεται, μέσω μιας συνεχούς αιτιοκρατικής και αποδεδειγμένα

σωστής προσέγγισης, με εξασφαλισμένη ασφάλεια πλοήγησης, και η οποία είναι

βασισμένη σε παραμετροποιημένα Τεχνητά Αρμονικά Πεδία. Συγκεκριμένα, ε-

φαρμόζεται Ενισχυτική Μάθηση προκειμένου να προσαρμοστούν καταλλήλως οι

παράμετροι του αντίστοιχου δυναμικού πεδίου προκειμένου να ελαχιστοποιηθεί το

σφάλμα της εξίσωσης Hamilton-Jacobi-Bellman. Η προτεινόμενη μέθοδος υ-

περισχύει συστηματικά έναντι μιας μεθόδου Rapidly-exploring Random Trees
και συνιστά σημείο γόνιμης προόδου στο πρόβλημα βέλτιστου σχεδιασμού πορε-

ίας. Τέλος, η παρούσα εργασία παρέχει νέες προοπτικές σε λύσεις για το ανωτέρω

πρόβλημα.
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Chapter 1

Introduction

1.1 Optimal Motion Planning

Motion planning problems have always been a main focus point of control system
theory and robotics. While they might appear to be a classic control theory
problem, where traditional methods can be used to control the motion of a
robot, certain peculiarities give this type of problems a different flavor. Such
peculiarities might be specific restrictions pertaining to the motion of a robot
(e.g. non-holonomic constraints) or possible obstacles in the workspace of a
robot, calling for the establishment of robust control techniques that will ensure
safety during the navigation and convergence to a desired goal position. The
aforementioned issues have been tackled in various ways, and safe techniques
for navigation have long been established. However, the same cannot be put
forward when considering optimality in such problems. While efforts have been
made towards the goal of optimizing the motion of actors in a workspace, the
problem is in no way considered trivial yet, and we believe that there is room
for exploring novel solutions and ameliorating the existing results in the related
literature.

In this work, we intend to explore the application of Reinforcement Learn-
ing methods in optimizing the motion of a robot moving in a two-dimensional
constrained, but fully known workspace with internal fixed obstacles. In partic-
ular, an offline solution to the underlying optimization problem is formulated in
such a way that ensures safety and convergence with mathematical rigor using
robust principles and tools from the successive approximation theory [22]. Sub-
sequently, we establish an on-line reinforcement learning approach for optimizing
the motion of a moving robot with respect to a specific utility function, with
great emphasis on the rigorous proof of safety and convergence. The motivation
behind the online approach stems from the fact that in real-world problems,
not all trajectories of a workspace are of use, but rather specific starting-ending
point combinations are needed. Therefore, an online approach is not only suffi-
cient, but also advantageous with respect to computational complexity. Finally,
the prospect of implementing the online scheme in unknown workspaces further
motivates the latter’s formulation.
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1.2 Significance

This work presents a novel approach whose significance lies not only in its nov-
elty, but more so in its provable nature. Most existing methods for addressing
the optimal motion planning problem are probabilistic in nature and can not
provide deterministically optimal solutions. While the method itself consist a
new tool for engineering disciplines, it moreover opens up new pathways and
provides with fresh insight on possible approaches in solving the optimal motion
planning problem, further adding to its value.

1.3 Related Work

Since the early days of robotics, many research efforts have been devoted to
the motion planning problem and thus many approaches have been formulated.
Such approaches can be generally classified as discrete methods, e.g., Configura-
tion Space Decomposition methodologies [24]-[4], Probabilistic Sampling meth-
ods, e.g., Rapidly Exploring Random Trees [7]-[27] or Probabilistic Roadmaps
[11]-[3] and others such as Manifold Samples [16]. On the other hand, the
Optimal motion planning problem has been approached via Receding Horizon
control [17]-[21] and Path Homotopy Invariants [2]-[6].

A specific class of solutions to the motion planning problem, and one that
aims at addressing both safety and convergence aspects are the APFs, as in-
troduced in [8]. This class of solutions encompasses both information for safety
and convergence in the form of the gradient of a potential field. However, APFs
entail problems of unwanted local equilibria due to their inherent construction
and the topology of the workspace [10]. Rimon and Koditschek managed to pro-
duce a family of APFs, namely Navigation Functions (NF) that are applied to
a transformed version of the physical workspace in the form of a sphere world1.
Along with providing a constructive transformation for mapping workspaces
with star-shaped obstacles (sets with a point from which any ray crosses the
boundary once) to the aforementioned sphere worlds, Rimon and Koditschek
aleviated some of the issues of the APFs as well. However, extensive tuning is
required to get rid of local minima and in practice these functions prove difficult
to be implemented (see [20]).

Aiming at tackling the shortcomings of APFs, a specific sub-category of the
latter was introduced, namely the Artificial Harmonic Potential Fields (AHPF)
[14]-[9]. The AHPFs are free of local minima by construction, and negate many
of the issues of previous NFs. In the present work, the natural progress of previ-
ous research efforts [18], leads to inheriting all the strong points of AHPFs and
introducing a robust solution to the optimal motion planning problem. In or-
der to accomplish this, a novel approach will be introduced, encompassing past
work on Reinforcement Learning Optimization [25], re-framed and adapted for
a specific family of AHPF-inspired motion controllers. Our work provides a
deterministic and mathematically rigorous approach that exceeds the capabili-
ties of previous probabilistic approaches. The implementation of Reinforcement
Learning is pivotal in the current approach, as it overcomes the need for solv-
ing a very hard non-linear partial differential equation for calculating the cost

1A Euclidean sphere world of dimension N is formed by removing from the interior of a
large N-dimensional ball a finite number of non-overlapping smaller balls.

CHAPTER 1. INTRODUCTION
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function. Additionally, the latter is rigorously proven to converge under mild
assumptions.

1.4 Chapter Overview

In the following section we will first present the optimal motion planning prob-
lem, along with preliminary mathematical and control theory tools. After-
wards we will formulate an off-line solution to the above problem using a set of
parametrized controllers, after which, a subsequent on-line solution will be pre-
sented. Subsequently, the main results of this work will be presented. Finally
we will discuss the scope of the above work and future research efforts.

CHAPTER 1. INTRODUCTION
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Chapter 2

The Optimal Motion Plan-
ning Problem

2.1 Problem Formulation

Consider a point robot operating within a bounded and connected workspace
G ⊂ R2 with M inner distinct obstacles Oi ⊂ G, i = 1, ...,M and a desired
position p0 ∈ W , G−∪Mi=1Oi. Let p = [x, y]T ∈ W denote the robot’s position.
The robot is considered to have full knowledge of the aforementioned workspace
characteristics, as well as of its position. The robot’s motion is described by the
single integrator model:

ṗ = u, p(0) = p̄ ∈ W (2.1)

where p ∈ W is the state-vector, u ∈ R2 is a control input (i.e., velocity com-
mand) and p̄ ∈ W denotes the initial position. Now, consider the optimal motion
planning problem of minimizing a cost function that consists of a state-related
term, namely Q(p; p0) and a control input-related term, namely R(u). Hence,
the following value function should be subject to minimization:

V (p̄; p0) =

∫ ∞
0

[Q(p(τ ; p̄); p0) +R(u(τ))] dτ,

∀p̄ ∈ W
(2.2)

where p̄ is the initial state of the system p̄ = p(0) and p0 denotes the goal
position. The goal of this Thesis is to present a novel solution, i.e. controller
forms for the dynamics of Eq. (2.1), that consist both optimal -w.r.t. the cost
function of Eq. (2.2)- and safe policies that converge to the desired position.
Great emphasis is given to the rigorous proof that the proposed controllers will
satisfy the above criteria. Finally we aim at presenting both off-line and on-line
Reinforcement Learning (RL) policies for solving the aforementioned problem.

2.2 Preliminaries

In this section the main theoretical tools and the background that are used in
this Thesis will be briefly presented.
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2.2.1 Optimal Control

Optimization problems lie at the heart of systems’ control theory and has thus
been a main focal point for many researchers since the dawn of the field. Con-
sider the continuous time non-linear system in the general form:

ẋ = f(x) + g(x)u (2.3)

with state x(t) ∈ Rn control input u(t) ∈ Rm and the usual assumptions required
for the existence of unique solutions and an equilibrium point at x = 0. The
equilibrium at 0 is considered without loss of generality as can be easily showed
with a simple transformation. We assume that system is stabilizable on a set
Ω ⊆ Rn ; that is, there exists a continuous control function u(t) such that the
closed loop system (2.3) is asymptotically stable on Ω. Then consider that such
a control policy that satisfies the asymptotic stability of the system (2.3) has a
specific form – is a known function in terms of the state vector x –, and can be
expressed in terms of any parameters k ∈ RN0−1 . Under this assumption the
second term of the right-hand side of Eq. (2.3) can be written as:

g(x)u = g(x)u(x, k) = h(x, k(x)) ∈ Rn (2.4)

So, Eq. (2.3) becomes:
ẋ = f(x) + h(x, k) (2.5)

where from now on k ∈ RN0−1 are considered the tunable parameters of the
control policy. Now define a cost function with its value associated with the
feedback control policy u = µ(x, k) given by:

V µ(x(t)) =

∫ ∞
t

r(x(τ), u(x(τ), k(x(τ))))dτ (2.6)

where r(x, u) a positive definite, real-valued utility function. A policy is called
admissible if it is continuous, stabilizes the system, and has finite associated
cost. If the cost is smooth, then an infinitesimal equivalent to (2.6) can be
found by differentiation to be the equation:

r(x, µ(x, k)) + (∇V µ)T (f(x) + g(x)µ(x, k(x(τ)))), V (0) = 0 (2.7)

where ∇V µ denotes the gradient of the cost function ∇V µ with respect to x.
This is the continuous time Bellman equation. It can be defined based on the
continuous time Hamiltonian function:

H(x, µ(x),∇V µ) = r(x, µ(x, k(x(τ)))) + (∇V µ)T (f(x) + g(x)µ(x, k(x(τ))))
(2.8)

The optimal value satisfies the continuous time Hamilton-Jacobi-Bellman equa-
tion; therefore, the optimal values of the tuning parameters k will satisfy it as
well:

k∗ = arg min
k

H(x, µ(x),∇V ∗) (2.9)

2.2.2 Harmonic Artificial Potential Fields

Several approaches have been implemented in order to solve motion planning
problems, one of which with great significance to this Thesis consists a class

CHAPTER 2. THE OPTIMAL MOTION PLANNING PROBLEM
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of Artificial Potential Fields (APF), namely the Harmonic Artificial Potential
Fields (HAPF). The HAPF ψ used here is the same as used in [18]. Therefore,
we construct a potential on the extended harmonic space with point sources
at the desired configuration vd = B(T (p0)) and as well as with the points
vi = B(T (∂Oi)), i = 1, ...,M with the disjoint Jordan curves that consist the
obstacles. The mapping B(T (·)) is a two-part transformation that maps the
workspace W to the full plane R2 and will be discussed thoroughly later. The
potential field is as follows:

φ(v, k) = kd·ln
(
‖v − vd‖

2

)
−

M∑
i=1

ki · ln
(
‖v − vi‖

2

)
(2.10)

where kd > 0 and ki ≥ 0 the tuning parameters denoted by the vector k =
[kd, k1, ..., kN0

]. Now we define a reference field ψ based in φ as in [18], given by

ψ(v, k) =
1 + tanh(w · φ)

2
(2.11)

where w ∈ R+ a non-negative scaling constant. Additionally, the gradient of ψ
with respect to v is given by

∇vψ(v, k) = w · 1 + tanh2(w · φ)

2
· ∇vφ(v, k) (2.12)

which is bounded and well-defined for all v ∈ B(D) . And the ∇vφ:

∇vφ = kd
v − vd
‖v − vd‖2

−
M∑
i=1

ki
v − vi
‖v − vi‖2

(2.13)

The above field has been proven sufficient for navigation [18].

2.2.3 Neural Networks and Reinforcement Learning Meth-
ods

Neural Networks (NN) have long been used to approximate sufficiently well
functions within certain compact sets [19]. Consider a function V : RN → R.
The latter can be approximated as follows:

V (p) = VL(p) =

L∑
j=1

wjφj(p) + ε(p) = wT · φ(p) + ε(p), p ∈ RN (2.14)

where ε(p) the estimation error of the NN. The above is essentially a single-layer

NN with activation functions (basis functions) φ(p) = [φ1(p), φ2(p), · · · , φL(p)]
T

:

RN → RL and respective NN weights w = [w1, w2, · · · , wL]
T ∈ RL. For the

scope of this Thesis, the respective theory by Khalaf et al. [1] will hold and
more specifically the results of pp.782-786. These NN will be applied in the
context of RL methods that will be presented here.

Three main RL processes are examined within the scope of this Thesis,
namely a successive approximation theory application [1] for the off-line ap-
proach along with linear regression on on-line sampled data [12] and a differen-
tial adaptive law [26] for t he on-line approach.

CHAPTER 2. THE OPTIMAL MOTION PLANNING PROBLEM
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• Successive Approximation Theory The main concept of the succes-
sive approximation theory is the application of an iterative process through
which better approximations for a given function can be obtained by util-
ising the previous approximation.

• Linear Regression on samples This method consists of taking samples
of the state variable and the system input along the trajectory and per-
forming linear regression on the integral reinforcement form of the cost
function in order to improve the policy of the robot.

• On-line adaptive law The last method essentially minimizes the approx-
imation error of the Hamilton-Jacobi-Bellman (HJB) through a steepest-
descent tuning law for the weights of the NN.

CHAPTER 2. THE OPTIMAL MOTION PLANNING PROBLEM



Chapter 3

Off-line Solution using Parametrized
Controllers

Having presented the foundations of this Thesis, we are ready to proceed with
presenting solutions to the proposed problem of optimizing the motion of a
robot.

3.1 A Set of Parametrized Control Policies Based
on HAPFs

3.1.1 A Proposed Parametrized Controller Form

Having presented the basics of HAPFs we will now introduce a family of parametrized
control policies u = h(p, k) to the aforementioned problem, where k denotes the
control parameter vector. First, assume that we have a diffeomorphic trans-
formation1 from W onto the punctured plane denoted by f : W → R2 −
{V1, ...,VM} that satisfies f(p0) = V0 and f(∂Oi) = Vi, i = 1, ...,M . The
proposed parametrized solution is given as:

h(p, k) , P (p) · k = −J−1
f (p) · g(p) ·A · k, (3.1)

where the control-parameter vector k , [k0, k1, · · · , kM ]
T ∈ RM+1 is analogous

to the harmonic potential field weights, A is a square matrix of the following
form:

A =


1 1 · · · 1
0 1 0 0
...

...
. . . 0

0 0 0 1

 ∈ R(M+1)×(M+1) (3.2)

1The adopted transformation is the composition of a diffeomorphism that maps all points
inside W onto the open punctured unit disk [18], with a diffeomorphism that maps the unit
disk onto R2 [14].

11
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and g(p) defines a vector basis:

g(p) =

M∏
i=0

tanh
(
‖f(p)− Vi‖2

)
·

·

[
f(p)− V0

‖f(p)− V0‖2
,
−f(p) + V1

‖f(p)− V1‖2
, ...,

−f(p) + VM
‖f(p)− VM‖2

] (3.3)

with Jf (p) denoting the Jacobian of the transformation f(p). The above for-
mulation is a direct analog to the gradient of a classic harmonic potential field,
enhanced in a way that fits the needs of the optimization process that follows.
We will later show that this formulation, besides safety, ensures convergence as
well. Furthermore, we have further simplified the problem of stability and safety
of the robot incorporating the matrix A in (3.1). As shown in [14], for safe nav-
igation the weight of the attractive term has to be greater than the sum of the
weights of all the repulsive ones. It is evident that such formulation can be quite
tedious especially when considering an optimization approach. Nevertheless, in
our formulation, the equivalent constraint boils down to:

ki > 0, i = 0, ..,M (3.4)

owing to the adopted form of matrix A in (3.2) (notice that the weight of the
attractive term is the sum of all ki). We will prove analytically how our method
will ensure safety and convergence after discussing the optimization problem, as
our solution for the vector k will ensure both optimality and (3.4). Hence, we
consider the following value function:

V (p̄; p0) =

∫ ∞
0

[Q(p(τ ; p̄); p0) +W (k(τ))] dτ (3.5)

for all p̄ ∈ W, where

Q(p; p0) = β · ‖p− p0‖2, β > 0 (3.6)

and

W (k) = γ ·
M∑
i=0

∫ ki

α(p)

(
vi

α2(p)
− 1

vi

)
dvi, γ > 0 (3.7)

with α(p) = 1√
1+M

ū√
‖P (p)‖2+1

for an upper bound of the velocity ū. Note that

the term of Eq. (3.7) can also be written as:

W (k) = γ ·
M∑
i=0

[
1

2

((
ki
α(p)

)2

− 1

)
− ln

(
ki
α(p)

)]
(3.8)

In classical control problems, the input-related cost is quadratic. However, in
our approach, (3.7) is used to ensure safety and convergence. Notice that the
selection of W is not heuristic since through its minimization all components of
k remain positive. Moreover, the lower bound of the integral in (3.7) ensures
that the parameters ki are such that an upper bound of the velocity control
signal is minimized. To see that, consider the control vector form:

u = P (p) · k (3.9)

CHAPTER 3. OFF-LINE SOLUTION USING PARAMETRIZED
CONTROLLERS
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The following are true

‖u‖2 = ‖P (p) · k‖2 ≤ ‖P (p)‖2 · ‖k‖2 (3.10)

Considering now that with the form of the function W (k) - and for reasons that
will later become clear, the values ki of the control will eventually converge to
the value of the lower limit of the integral of Eq. (3.7). Therefore, setting this
value - let α denote this lower limit of the integral - equal to

α(p) =
1√

1 +M

‖u‖max,desired√
‖P (p)‖2 + 1

(3.11)

Then

‖k‖2 =

M∑
i=0

ki
2 =

M∑
i=0

1√
1 +M

‖u‖max,desired√
‖P (p)‖2 + 1

=

=
‖u‖max,desired√
‖P (p)‖2 + 1

(3.12)

And consequently
‖u‖2 ≤ ‖P (p)‖2 · ‖k‖2 ⇒

‖u‖2 ≤ ‖P (p)‖2
‖u‖2max,desired
‖P (p)‖2 + 1

⇒

‖u‖2 ≤
‖u‖2max,desired

1
‖P (p)‖2 + 1

(3.13)

This means that, if the norm ‖P (p)‖ becomes large, – e.g. on positions where the
value of the pseudo-gradient is large – then the control vector will be bounded
by the desired value. Additionally ‖P (p)‖ = 0 and the control bound is well
defined as in the first equation. Finally, a proper norm for the term ‖P (p)‖
needs to be chosen. This should be chosen on the basis of low computational
cost. We therefore propose the Frobenius norm.

3.1.2 Proposed Transformation

In the present work the transformation f comprises of two parts, namely a first
transformation which maps the boundary of the workspace to the unit circle and
the boundaries of the obstacles to points inside the latter, while also mapping
all points inside the workspace to the open unit disk, excluding the boundary
and a second transformation, which maps the unit disk at infinity and all inside
points to the two-dimensional plane. Assume these transformations as follows,
denoting the unit disk as D.

q(p) : G −
M⋃
i=1

Oi → D − {Q1, ...,QM} (3.14)

while also satisfying:

q(p0) = Q0 and q(∂Oi) = Qi, i = 1, ...,M (3.15)

CHAPTER 3. OFF-LINE SOLUTION USING PARAMETRIZED
CONTROLLERS



14

And the second transformation:

v(q) : D → R2 (3.16)

while also satisfying:

v(Q0) = V0 , v(Qi) = Vi, i = 1, ...,M and v(∂D)→∞ (3.17)

For the first part, the transformation presented in [18] will be used as is, while
we propose for the second part of the transformation the following form

v(q) =
q

1− ‖q‖2
(3.18)

and its inverse Jacobian, with q = [x, y]
T

:

J−1
v (p) =

 (x2−y2−1)(x2+y2−1)
1+‖q‖2

2xy(x2+y2−1)
1+‖q‖2

2xy(x2+y2−1)
1+‖q‖2 − (x2−y2+1)(x2+y2−1)

1+‖q‖2

 (3.19)

If we consider the respective Jacobians of the transformations as Jq(p) and
Jv(q) it can be easily shown that, for two vectors v ∈ R2 and p ∈ W that
satisfy:

v = v(q(p)) (3.20)

the following is true
ṗ = J−1

q (p) · J−1
v (q) · v̇ (3.21)

and therefore
J−1
f (p) = J−1

q (p) · J−1
v (q(p)) (3.22)

3.1.3 Proposed Parametrized Controller and HAPFs

At this point we will discuss the form of the control function h(p, k) of Eq. (3.1).
In order to understand this formulation, consider the following scalar field on
the workspace W with the parameter k ∈ RM+1:

φ(p, k) = ψ(p, k) ·A · k (3.23)

where ψ is the following vector field:

ψ(v, k) = ψ(f(p), k) =[
ln

(
‖f(p)− V0‖

2

)
,−ln

(
‖f(p)− V1‖

2

)
, ...,−ln

(
‖f(p)− VM‖

2

)]
(3.24)

The gradient of the above field is the following:

∇vψ(p, k) =

[
f(p)− V0

‖f(p)− V0‖2
,− f(p)− V1

‖f(p)− V1‖2
, ...,− f(p)− VM

‖f(p)− VM‖2

]
(3.25)

Note that this resembles heavily the gradient of the Artificial Potential Field as
defined in Section 2.2.2 if the gradient ∇pφ of Eq. (2.13) were to be written in
the following form:

∇vφ = ∇vψ(p, k) ·


kd
k1

...
kN

 (3.26)
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Now we can understand the formulation of Eq. (3.1) or better yet the formula-
tion of Eq. (3.1) as:

ṗ = −J−1
f (p) ·

(
M∏
i=0

tanh
(
‖f(p)− Vi‖2

))
· ∇vψ(p, k) ·A · k (3.27)

This is evidently a direct analogue to an Gradient of an Artificial Potential
Field, being a scaled version of the latter, with the scaling ensuring that the
control input remains bounded.

3.2 An Optimal Solution using the Proposed Parametrized
Controllers

3.2.1 Optimal Parameter Vector Form

Let us define the Hamiltonian associated with the adopted value function (3.5)
as:

H(p, k,∇V (p)) = ∇V (p)TP (p)k +Q(p; p0) +W (k) (3.28)

Hence, the Bellman optimality equation is formed as follows:

∇V ∗(p)TP (p)k∗ +Q(p; p0) +W (k∗) = 0 (3.28*)

from which the optimal control vector k∗ is derived by the first optimality

condition ∂H(p,k,∇V ∗)
∂k |k=k∗ = 0, as:

k∗

α2(p)
− 1

k∗
= − 1

γ
(∇V ∗(p))TP (p) (3.29)

that forms a simple quadratic equation. Solving (3.29) for k∗ and keeping only
the positive roots to establish safe navigation, we obtain the optimal control
vector k∗ = [k∗0 , k

∗
1 , ..., k

∗
M ] as:

k∗i =
α2(p)Γi(p)+

√
(α2(p)Γi(p))

2+4α2(p)

2 , i = 0, 1, ..,M (3.30)

where Γi(p) denotes the i-th element of the vector

Γ(p) = − 1

γ
(∇V ∗(p))TP (p)

Furthermore, it is evident that with this formulation all elements k∗i of this
vector are strictly positive by construction:

Proposition 1. The values for the elements of k given by Eq. 3.30 are strictly
positive.

Proof. Consider the i-th element of the vector k:

ki =
α2(p)Γi(p) +

√
α2(p)Γi(p)

2
+ 4α(p)

2

We now assume that ki ≤ 0, and we get:
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α2(p)Γi(p) +

√
(α2(p)Γi(p))

2
+ 4α(p)

2
≤ 0⇒√

(α2(p)Γi(p))
2

+ 4α(p) ≤ −α2(p)Γi(p)⇒(
α2(p)Γi(p)

)2
+ 4 ≤

(
α2(p)Γi(p)

)2 ⇒
4 ≤ 0

We have obviously reached a contradiction, therefore, ki > 0.

Additionally, notice that if we had an analytical expression for the value
function V ∗(p) we would be able to directly compute the optimal control vector
k∗. However that is not the case, since in our formulation, one should replace
the term k∗ from (3.30) in (3.28*) and then solve a non-linear partial differential
equation, which is rather hard to solve. Nevertheless, we shall remedy this issue
employing, first the successive approximation theory [22] in an offline setting,
and then RL to provide an online solution.

3.2.2 Primary Stability Analysis

We will now prove the stability of the system. Consider a system as described
in the problem formulation, which obeys the dynamics of the single integrator
model with the proposed controller form. For reasons of completeness we provide
the aforementioned equation here as well

ṗ = −J−1
f (p) ·

(
M∏
i=0

tanh
(
‖f(p)− Vi‖2

))
· ∇vψ(p, k) ·A · k (3.27 revisited)

where it is obvious that the gradient ∇ψ is

∇vψ(v, k) =

[
v − V0

‖v − V0‖2
,− v − V1

‖v − V1‖2
, ...,− v − VM

‖v − VM‖2

]
(3.25*)

and the field ψ(v, k) :

ψ(v, k) =[
ln

(
‖v − V0‖

2

)
,−ln

(
‖v − V1‖

2

)
, ...,−ln

(
‖v − VM‖

2

)]
(3.24*)

Lemma 1. The controller (3.1) is stabilizing for p = p0 ∈ W

Proof. Consider what happens as p approaches p0. First consider first the fol-
lowing form:

lim
x→0

tanh(x)

x
= lim
x→0

e2x − 1

x (e2x + 1)
(3.31)

This is a 0/0 form and since both the numerator and denominator are continu-
ous, continuously differentiable functions, we can apply de l’Hospital’s rule:

lim
x→0

tanh(x)

x
=

2e2x

e2x + 1 + x(2e2x + 1)
= 1 (3.32)
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Therefore,

lim
p→p0

tanh(‖f(p)− V0‖2)

‖f(p)− V0‖2
· (f(p)− V0) =

= (f(p0)− V0) = 0

(3.33)

It is now evident that because of the form of Eq. (3.1), h(p0, k) = 0.

Lemma 2. ∀p0 ∈ W, V (p0) is finite.

Proof. Since Eq. (2.2) is an infinite-time integral, we need to show that for
p = p0 the quantity in the integral is - or tends to - zero. For the term Q(p; p0)
it is evident that Q(p0; p0) = 0. For the function W (k) note that in Lemma (1)
we have proven that g(p0) = 0. Therefore, the Eq. (3.30) takes the form:

k∗i (p0)

α2(p0)
− 1

k∗i (p0)
= 0 (3.30*)

This equation has a single root at ki = α(p0) , rendering W (k(p0)) = 0. One
can also see that Eq. (3.30*) renders immediately W (k(p0)) zero. Therefore,
since W (k(p0)) + Q(p; p0) = 0, the integral of the Value Function of Eq. (2.2)
is finite.

Remark 1. From Lemma 1 it is evident that the same holds true for p→ pi, i =
1, ...,M .

We are now ready to tackle the stability of the system.

Proposition 2. The control method provided herein assures safety w.r.t. the
obstacles and the boundary.

Proof. We have already proven in Proposition 1 that the parameters k are always
positive. Furthermore, considering Lemma 1 it is evident that if the robot
approaches an obstacle, then due to the form of the chosen controller, the only
direction that will be imposed on the robot is the one that drives it radially
away from the obstacle. Generally our method directly inherits the properties
of the harmonic potential fields - see [15] - .

Proposition 3. Assume a workspace as defined in the problem formulation.
The system under the control law (3.1) - or (3.27) - with the components of the
parameter vector k following the law of Eq. 3.30 converges asymptotically at p0

for almost every point in W except for some subset Ω ⊂ W, where Ω is the set
of critical points of the vector field of Equation (3.25) other than the desired
goal and the obstacles.

Proof. We propose as a candidate for a Lyapunov function the value function
of Eq. (2.2)

V (p; p0) =

∫ ∞
0

r(p, p0, k)dτ =

∫ ∞
0

[Q(p, p0) +W (k)] dτ (2.2 revisited)

• This function is positive ∀p ∈ W−{p0} as can be easily shown considering

that Q(p) = ‖p− p0‖2 > 0 ∀p ∈ W − p0 and W (k) > 0 ∀ki > 0, i =
1, ...,M , considering Proposition (1), where it is proved that the condition
for positive elements of k is true under the proposed parameter tuning
law.
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• Furthermore, all sublevel sets of V are bounded, as p→∞⇒ V(p)→∞

• Additionally, V (p) = 0 ⇐⇒ p = p0.

This is true, as one can easily see that both functions Q(p; p0) and W (k)
are positive. Therefore for the integral of Eq. (2.2) to be zero, these two
terms must both be zero. It is obvious that Q(p; p0) = 0 ⇐⇒ p = p0.
Furthermore, considering the proof of Lemma 1

g(p0) = 0 (3.34)

and thus, substituting in Eq. (3.29) we reach the conclusion thatW (k(p0)) =
0. It is evident that these two functions and therefore the Luyapunov
Candidate are zero iff p = p0. These first three points mean that our
Lyapunov candidate is positive definite.

• Lastly we will show that V̇ is negative:

V̇ = ∇VpT ṗ = ∇VpTPk (3.35)

where

P = −J−1
f (p) ·

(
M∏
i=0

tanh
(
‖f(p)− Vi‖2

))
· ∇vψ(p, k) ·A

Notice that from Eq. (2.2) we have:

V̇ = −Q(p, p0)−W (k) < 0 ∀p ∈ W − Ω− {p0}

And it is obvious that V̇ = 0 ⇐⇒ p = p0 What has been said thus far proves
stability for the set W − Ω where Ω is the set of critical points of the vector
field of Equation (3.25) other than the desired goal and the obstacles. We are
not able to prove anything more on that part, however we will tackle this on
the implementation of the off-line approach.

3.2.3 Successive Approximation of the Value Function

In this section, we prove that a method for successively approximating the Value
Function of (2.2) is valid. First, we define an admissible control policy.

Definition 1 (Admissible Control). A control vector k(p) is defined to be
admissible with respect to (2.2) on W, denoted by k(p) ∈ Ψ(W), if k(p) is
continuous on W, k(p) stabilizes the system on W and V (p) is finite for all
p ∈ W.

It is evident that the proposed parametrized control policies are admissi-
ble. Moreover, the Hamilton-Jacobi-Bellman equation is linear w.r.t. the value
function, which motivates why we adopt successive approximation. The lat-
ter was introduced by ([22]) and later expanded by ([1]) for bounded controls.
Nevertheless, we shall further prove the validity of this approach in our case,
effectively expanding it for a control vector obeying only lower bounds, through
the use of the appropriately selected function W (k) in (3.7). Notice that the
successive approximation technique is applied to (3.28) and (3.30). Hence, the
following lemma proves how (3.30) can be used to improve the tuning policy for
the control vector k(p).
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Lemma 3 (Admissibility of Control). If at the j-th step k(j) ∈ Ψ(W), and
V (j) ∈ C1(W) satisfies the equation H(p, k(j),∇V (j)) = 0, then the new control

vector k(j+1) =
[
k

(j+1)
0 , k

(j+1)
1 , · · · , k(j+1)

M

]
∈ R(M+1), derived by the solution of

the equation is:

k
(j+1)
i =

α2(p)Γ
(j)
i (p)+

√(
α2(p)Γ

(j)
i (p)

)2
+4α2(p)

2 ,

i = 0, · · · ,M
(3.36)

where Γi(p) denotes the i-th element of the vector

Γ(p) = − 1

γ
(∇V ∗(p))TP (p)

is an admissible control vector for (3.1) on W.

Proof. To show admissibility, notice that V (j) ∈ C1(W) and the fact that the
transformation f , its Jacobian as well as the field g(p) are continuous for all
p ∈ W implies the continuity of k(j+1). Since V (j) is positive definite it attains
a minimum at p0 ∈ W, and thus,∇V (j) should vanish there. It is also easy to see
that u(j+1)(p0) = 0. Taking the derivative of V (j) along the system trajectory
ṗ = P (p)k(j+1) we have:

V̇ (j)(p, k(j+1)) =
(
∇V (j)

p

)T
P (p)k(j+1) (3.37)

Writing the HJB equation for this control yields:

H(p,∇V (j)) = −
(
∇V (j)(p)

)T
· P (p) · k(j) −Q−W (k(j)) = 0 (3.38)

Adding the above expression to Eq. (3.37) yields:

V̇ (j)(p, k(j+1)) =

−
(
∇V (j)

p

)T
P (p) ·

[
k(j) − k(j+1)

]
−Q−W (k(j)) =

= γ

M∑
i=0

(
k

(j+1)
i

α(p)2 − 1

k
(j+1)
i

)[
k

(j)
i − k

(j+1)
i

]
−Q−W (k(j)) =

γ

M∑
j=0

[
−
∫ k

(j)
i

α(p)

(
vi

α(p)2 − 1
vi

)
dvi −

(
k

(j+1)
i

α(p)2 − 1

k
(j+1)
i

)(
k

(j+1)
i − k(j)

i

)]
−Q

The quantity −Q is always negative, and owing to the mean value theorem:

−
∫ k

(j)
i

α(p)

(
vi

α(p)2 − 1
vi

)
dvi −

(
k

(j+1)
i

α(p)2 − 1

k
(j+1)
i

)(
k

(j+1)
i − k(j)

i

)
≤ 0

this term is also negative. Refer to the appendix for a detailed proof. Therefore
V̇ (j)(p, k(j+1)) < 0 and V (j)(p) is a Lyapunov function for k(j+1) on W. From
definition 1 k(j+1) is admissible on W.

We will now prove that with each iteration, the policy k(j+1) is an improving
policy.

CHAPTER 3. OFF-LINE SOLUTION USING PARAMETRIZED
CONTROLLERS



20

Lemma 4 (Control Improvement). Under the current formulation for the cost
function, if V (j+1) is the unique positive-definite function that satisfies the equa-
tion H(V (j+1), k(j+1)) = 0, then V ∗(p) ≤ V (j+1)(p) ≤ V (j)(p) , ∀p ∈ W.

Proof. Along the trajectories of ṗ = P (p) · k(j+1) , ∀p ∈ W we have:

V (j+1)(p)− V (j)(p) =

=

∫ ∞
0

[
Q
(
p(τ, p, k(j+1)); p0

)
+W (k(j+1)(p(τ, p, k(j+1))))

]
dτ

−
∫ ∞

0

[
Q
(
p(τ, p, k(j+1)); p0

)
+W (k(j)(p(τ, p, k(j+1))))

]
dτ =

= −
∫ ∞

0

(
∇p
(
V (j+1) − V (j)

))T
P (p) · k(i+1)dτ

(3.39)

Now consider the two HJB equations expressed for the two successive approxi-
mations:

H(p,∇V (j+1)) =
(
∇V (j+1)(p)

)T
· P (p) · k(j+1) +Q+W (k(j+1)) = 0

H(p,∇V (j)) = −
(
∇V (j)(p)

)T
· P (p) · k(j) −Q−W (k(j)) = 0

Adding these two equations yields:

−
(
∇V (j+1)(p)

)T
· P (p) · k(j+1) +W (k(j+1))+

+
(
∇V (j)(p)

)T
· P (p) · k(j) −W (k(j)) = 0

and solving for the first term:

−
(
∇V (j+1)(p)

)T
· P (p) · k(j+1) =

W (k(j+1))−W (k(j))−
(
∇V (j)(p)

)T
· P (p) · k(j)

Substituting the above in Eq. (3.39) yields:

V (j+1)(p)− V (j)(p) =

=

∫ ∞
0

[
W (k(j+1))−W (k(j))−

(
∇V (j)(p)

)T
· P (p)

(
k(j) − k(j+1)

)]
dτ

With some more work:

W (k(j+1))−W (k(j)) = γ

M∑
i=0

∫ k
(j+1)
i

k
(j)
i

(
vi

α(p)2 −
1

vi

)
dv

and

−
(
∇V (j)(p)

)T
· P (p)

(
k(j) − k(j+1)

)
= −γ

M∑
i=0

(
k

(j+1)
i

α(p)2 −
1

k
(j+1)
i

)(
k

(j+1)
i − k(j)

i

)
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Putting it all together we get:

V (j+1)(p)− V (j)(p) =

= γ

M∑
i=0

∫ k
(j+1)
i

k
(j)
i

(
vi

α(p)2 −
1

vi

)
dv −

M∑
i=0

(
k

(j+1)
i

α(p)2 −
1

k
(j+1)
i

)(
k

(j+1)
i − k(j)

i

)
=

= γ

M∑
i=0

[∫ k
(j+1)
i

k
(j)
i

(
vi

α(p)2 −
1

vi

)
dv −

(
k

(j+1)
i

α(p)2 −
1

k
(j+1)
i

)(
k

(j+1)
i − k(j)

j

)]

Due to the fact that the function f(x) = x
α −

1
x is monotonically increasing

∀x ∈ R+ and from the geometrical meaning of the last expression we conclude
that:

V (j+1)(p)− V (j)(p) ≤ 0

Refer to the appendix for a detailed proof. For the second part of the inequality,
lets assume that there exists a value function after some number of iterations
that has the property V ∗(p) ≥ V (j+1)(p). Since by definition V ∗(p) is the opti-
mal value function for the optimal control k∗, if there existed a value function
field that resulted in reduced cost for the system, then the initial cost function
and the related control would not be the optimal. We conclude that this ap-
proximation procedure has to be bounded by V ∗(p) and therefore we conclude
that:

V ∗(p) ≤ V (j+1)(p) ≤ V (j)(p) , ∀p ∈ W (3.40)

3.2.4 Stability Analysis for the whole workspace

Now we are ready to tackle the full proof for stability.

Proposition 4. Assume a workspace as defined in the problem formulation.
The system under the control law (3.1) - or (3.27) - with the components of
the parameter vector k starting from a value k0

i > 0, i = 1, ...,M and following
the adaptive law of (3.30) converges asymptotically at p0 for almost every point
in W except for some subset Ω ⊂ W, where Ω is the set of critical points of
the vector field of Equation (3.25) other than the desired goal and the obstacles.
Following the successive approximation starting from a set of initial parameters
k such that the control has the properties of an harmonic field, the set Ω consists
of zero or one-dimensional sets that are saddles, and therefore the only stability
point is the desired orientation.

Proof. Consider the approach described in the present section. In order to com-
plete the proof of Proposition (3) we need to prove that the subset Ω contains
at most one-dimensional lines. Starting from a constant set of k parameters,
observe that the control scheme consists of a harmonic field suitable for nav-
igation - scaled by the factor of the multiple of tanh() terms - . This means
that the set Ω will initially contain only lines of points. Now consider that we
have proved that with each iteration of the approximation the value of the value
function decreases or stays the same ∀p ∈ W - see Lemma (4). We will now
assume that the initial lines or points of the set Ω ”shift” in W. Noting that
the cost function is infinite at those points - since staying at these points would
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render the infinite-time integral of Eq. (2.2) infinite - this means that a point
that previously had a bounded value now attains an infinite value. However we
have reached a contradiction since we have proven that the value function at
each point from one iteration to another must decrease or stay constant. We
conclude that the zero or one-dimensional subsets of Ω stay this way during our
approximation process.

3.3 Neural Network Approximate HJB Solution

A it has been stated numerous times in the previous chapters, the nonlinear dif-
ferential equation that was introduced by substituting Eq. (3.30) to Eq. (3.28*)
is very hard to solve, and solutions are not guaranteed. In order however to im-
plement what has been discussed so far, we will to propose a method to suitably
approximate the value function using a Neural Network and the successive ap-
proximation method proposed in ([1]) that was further expanded upon here.
This approximation will be in the sense of least squares approximation, and will
be based on the Hamilton Jacobi Bellman equation as presented in ([1]). This
will provide a fast, computationally practical and efficient approach for finding
nearly optimal solutions to the motion planning problem.

3.3.1 Approximation of V (p) using NN

Neural Networks have long been used to approximate smooth functions on pre-
scribed compact sets ([13]). In our case V (i)(p) is approximated as

V
(i)
L (p) =

L∑
j=1

wijφj(p) = (w
(i)
L )T · φL(p) (3.41)

which effectively is a single-hidden-layer neural network with L newrons - acti-
vation functions - σj(p) ∈ C1(W) and wij the weights of the activation functions.
This is also written in vector notation. The weights are tuned in order to min-
imize the error of the approximation - in a least squares sense - over a number
of samples taken on the workspace W. In order now to prove, for this ap-
proximation, convergence in the mean, existence of the approximation in the
least-squares sense and uniqueness of the approximation as well as admissibility
of ki+1

L we refer the reader to ([1]) as the result of Khalaf et. al can directly be
applied here as well. The equations for the approximation of the HJB are the
following

wL = −〈∇φL(p)P (p)k,∇φL(p)P (p)k〉−1·
〈Q+W,∇φL(p)P (p)k〉

(3.42)

where 〈f, g〉 =
∫
W fgdp a Lebesgue integral, and as stated in ([1]), if we choose

the basis functions of the NN to be linearly independent, then

〈∇φL(p)P (p)k,∇φL(p)P (p)k〉
is full rank and therefore invertible. Having solved for wL, the improved control
vector k = [k0, k1, ..., kM ] is given by:

ki =
α2(p)Γi(p)+

√
(α2(p)Γi(p))

2+4α2(p)

2 , i = 0, 1, ..,M (3.43)
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where Γi(p) denotes the i-th element of the vector

Γ(p) = − 1

γ
wTL∇φL(p)P (p)

It is evident that a relevant form is implemented for the other formulation of
the W term in the optimization function, that is the analogous to Eq. (??).
Calculating wL from Eq. (3.42) directly however is expensive computationally.
We will resort to introducing sampling on our workspace W so as to calculate
the weights of the approximation of the value function. The terms of (3.42) can
be rewritten as

X = b∇φL(p)P (p)k|p1
· · ·

· · · ∇φL(p)P (p)k|pNcT
(3.44)

Y = bQ+W|p1
· · ·Q+W|pNc (3.45)

where the N in pN symbolizes the number of samples inW. It is proved in ([1])
that the above imply that the weights wL can be calculated by

wL,N = −
(
XTX

) (
XTY

)
(3.46)

In ([1]) Monte Carlo techniques are proposed to calculate the integral of (3.42).
We will propose our own sampling techniques in this work. Rather than using
Eq. (3.46) directly, more computationally steady methods are used.

3.3.2 Choice of Basis Functions

A descent approximation of the cost function necessitates choosing a suitable
for the application set of basis functions. These functions should be linearly
independent and, in order to satisfy certain conditions later during the on-
line implementation, we choose radial basis functions. More specifically, we
choose a two dimensional Gaussian bell function σ(p) : R2 → R. Note that
the domain of the σ function is not necessarily limited to the workspace W. It
is simply imperative that the linear combination of the basis functions should
have good approximation capabilities on this set. For example, we may choose
- as we will - to place some Gaussian functions outside the border of W and
inside the boundaries of the obstacles, in order to improve the neural network’s
approximation capabilities. The basis functions are given by the formula

φi(p) = e
−
(
x−xi
µx,i

)2
−
(
y−yi
µy,i

)2

i = 1, ..., L , p = [x, y]
T ∈ W, pi = [xi, yi]

T ∈ S ⊂ R2
(3.47)

where pi i = 1, ..., L the centre of the ith basis function and µx,i, µy,i are the
standard deviations of the Gaussian distribution around the two axis x, y re-
spectively. We have to choose, first of all, the set S ⊂ R2 in which we will
place the functions, a proper distribution of the basis functions on S, and the
parameters µx,i, µy,i of the distribution. Herein, we choose the following:

• We choose S ⊂ R2 such that one or two basis functions lie outside the
boundary of the workspace W (heuristically).
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• We choose a Cartesian uniform distribution of points pi ∈ S.

• We choose constant values µx,i = µx, µy,i = µy , i = 1, ..., L which comes
directly from the above uniform distribution of points pi ∈ S according to
a desired overlapping percentage λ ∈ (0, 1).

This value is chosen equal to:

µx = µy =

√
−∆x2

2ln(λ)
(3.48)

Where ∆x = ∆y is the constant distance between to adjacent points of the
uniform distribution of basis function centres in S.

Non Uniform Distribution of BF centres

We can also define the above parameters of the BFs w.r.t. a non-uniform dis-
tribution. Mainly, the values µx,i, µy,i can be chosen as

µx,i =

√
−∆x2

i

2ln(λ)

µy,i =

√
−∆y2

i

2ln(λ)

(3.49)

where for the distance ∆xi many methods can be considered, e.g. taking the
mean value of K << L distances from the K nearest neighbours of the ith BF.
The form of this BF is given in figure 3.1.

3.3.3 Sampling Techniques

In this section the sampling techniques used are presented. Since the navigation
theory used here is based on harmonic potentials it would be beneficial if the
sampling on the workspace W resulted in a uniform distribution of points on
the harmonic space consisting of the unit disk D.

Probability Density Based Sampling Technique

Let’s consider the uniform distribution on the disk, that relates to a constant
density function g. The probability that any point q lies within the disk should
be equal to 1, therefore

P (q ∈ D) =

∫∫
AD

g(q)dA = 1⇒

g(q)AD = 1⇒

g(q) =
1

AD
=

1

π

(3.50)
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Figure 3.1: Basis Function

Now we need to calculate the accumulative probability function of a random
point q ∈ D. Consider

P (q = [x, y]
T

) =
1

π

∫∫
A(x,y)

dA =
1

π

∫∫ [ρ,θ]

(0,0)

rdrdu⇒

P (x, y) =
1

π

[
1

2
r2u

][ρ,θ]

[0,0]

=
1

2π
ρ(x, y)θ(x, y)⇒

P (x, y) =
1

2π

(
x2 + y2

)
Atan2(y, x) =

=
1

2π
‖q‖2Atan2 (q(p) · e2, q(p) · e1)

where e1,e2 the cartesian basis vectors. We can express this accumulative proba-
bility function with respect to a point on the workspaceW, using the respective
transformation.

P (x, y) =
1

2π
‖q(p)‖2Atan2 (q(p) · e2, q(p) · e1) (3.51)

Now, to obtain a point that follows the above distribution, we propose the
following algorithm. Observe that P (p) ∈ [0, 1]. For N sample points in the
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workspace W:

Algorithm 1: Probability Density Based Sampling Technique

initialization;
while i < N do
• Produce a uniformly distributed random number r ∈ [0, 1]
• Solve for p the following equation

P (x, y)− r = 0⇒
1

2π
‖q(p)‖2Atan2 (q(p) · e2, q(p) · e1)− r = 0

i← i+ 1
end

Distribution Based Sampling Technique

We would also like to propose a second sampling technique that is based on
an already known distribution of points on the disk space. For this purpose,
consider the well-known “Sunflower Seed” distribution on a disk of singular
radius. The distribution in polar coordinates is the following:

r =
√
nN

θ =
2π

φ2
n

whereN the total number of points, n = 0, 1, . . . , N a sequence that produces
the N points and finally φ is the Golden ratio. In cartesian coordinates the
vector q ∈ D is equal to:

q =

√ n
N cos

(
2π
φ2 n

)
√

n
N sin

(
2π
φ2 n

)
In order to find the respective points p, remember that q = f(p).Therefore, we
need to solve the equation – given that an explicit or computational form of
p = f−1(q) is not available-

r(p) = f(p)− q(n) = 0, for n = 0, 1, ...N

This equation can be very hard to find a solution to. However, the problem
might be easier to solve if it is considered as an optimization problem

p∗ = arg min
p
‖r(p)‖2

It is obvious that the above process can be implemented for any known distri-
bution of points on the disk space D. In the application of the present work,
a stochastically enhanced sequential quadratic programming – SQP – method
was used to ensure the validity of the sampled points.
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3.4 Algorithm for the solution of the Optimal
Motion Planning Problem using the Pro-
posed Parametrized Controllers

Having presented all the necessary proofs for the application of on off-line pro-
cedure for the solution of the optimal motion planning problem, the algorithmic
process to be implemented is the following:

Algorithm 2: Algorithm for the Neural Network Approximation of
the Value Function

• Sampling;
Select N points pi, i = 1, · · · , N within the workspace W.
• Initialize;

Select an initial control vector k(0) = [1, 1, ..., 1]
T ∈ R(M+1), which is an

admissible policy.
while Weights have not Converged do
• Weights Improvement Step: Solve the following linear
regression problem:

(w(j))
T
X = −Y

where

X = [∇φ(p)P (p)k(j)|p1
, · · · ,

· · · ,∇φ(p)P (p)k(j)|pN ]T
and

Y = [Q(p; p0) +W (k(j))|p1
, · · · ,

· · · , Q(p; p0) +W (k(j))|pN ]T
• Policy Improvement Step: Update the control vector

k(j+1) =
[
k

(j+1)
0 , k

(j+1)
1 , · · · , k(j+1)

M

]
∈ R(M+1):

k
(j+1)
i =

α2(p)Γ
(j)
i (p)+

√(
α2(p)Γ

(j)
i (p)

)2
+4α2(p)

2 ,

i = 0, · · · ,M

where Γ
(j)
i the i-th element of the vector

Γ(j) = − 1
γ (w(j))T∇φ(p)P (p)

j ← j + 1

end
Upon convergence set the control law of the system as follows:

u = P (p) · k(j)
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Chapter 4

On-line Solution using Parametrized
Controllers

4.1 On-line Implementation of the Parametrized
Controllers

We provide an online approach to tackle the optimal motion planning problem,
in order to optimize the path of the robot for a given starting-ending point
pair. Reinforcement Learning will be applied in the form of an actor structure
in order to minimize the HJB error, thus approximating the value function of
the optimization problem. Employing the approximation capabilities of NN, the
unknown value function may be modelled as:

V (p) =

L∑
i=1

wiφi(p) + ε(p) = wT · φ(p) + ε(p)

where w , [w1, · · · , wL]
T ∈ RL, φ(p) , [φ1(p), · · · , φL(p)] ∈ RL, and ε(p)

denote the optimal weights that minimize the modelling error ε(p) over the
workspace W for a given regressor vector φ(p). Following the optimality condi-
tion, the optimal control vector is given by:

k(w) = −α
2(p)

2γ
PT (p)∇φT (p)w+

+

√(
α2(p)

16γ
P (p)T∇φT (p)w

)2

+ α2(p)

(4.1)

In the online approach, the estimation ŵ of the unknown ideal w will be provided
by a gradient scheme that aims at minimizing the error in the HJB equation:

e(ŵ) = ŵT∇φ(p)P (p)k(ŵ) +Q(p; p0) +W (k(ŵ)) (4.2)

where k(ŵ) denotes the estimation of the control vector provided by (4.1) based
on the estimation of the NN weights. Hence, we formulate the tuning law for
the NN weight estimates to minimize the cost function:

E =
1

2
eT (ŵ)e(ŵ)
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In particular, a normalized gradient estimation scheme is adopted as follows:

˙̂w = −a σ2

ms

[
ŵT∇φ(p)P (p)k(ŵ) +Q(p; p0) +W (k(ŵ))

]
(4.3)

with a > 0, where

σ2 , ∂e(ŵ)
∂ŵ = ∇φ(p)P (p)k(ŵ)+

+α2(p)
2γ

[
ŵT∇φ(p)P (p) + γ

(
k(ŵ)
α2(p) −

1
k(ŵ)

)]
×

×

 (ŵT∇φ(p)P (p))√√√√(α2(p)
γ ŵT∇φ(p)P (p)

)2

+4α2(p)

− 1

 (∇φ(p)P (p))
T

and ms = (σT2 σ2 + 1)2.

Theorem 5. The closed loop system ṗ = P (p) ·k(ŵ) with the adaptive law (4.3)
guarantees that the trajectory for almost any initial position in the workspace
converges safely to the desired position p0.

Proof. We adopt the Lyapunov candidate function:

L(p, ŵ) = V (p) +
1

2
w̃Ta−1w̃ (4.4)

where V (p) is the unknown value function and w̃ = w−ŵ denotes the parametric
error. It is easy to see that the above is always positive except for p = p0 and
w̃ = 0. Now consider the dynamics of the weight estimation (4.3) in the following
compact form:

˙̂w = −a σ2

ms
e(ŵ) (4.5)

Notice that the error in (4.2) can be written via a Taylor series expansion around
ŵ as follows:

e = −σT2 w̃ + e1 (4.6)

where e1 denotes the effect of the higher order terms. Hence, we may write:

˙̃w = α
σ2

ms
e = − α

ms
σ2σ

T
2 w̃ +

ae1

ms
σ2 (4.7)

which leads to:

L̇ = ∇V T (p)P (p)k(ŵ)−
[

1

ms
w̃Tσ2σ

T
2 w̃

]
+

[
e1

ms
w̃Tσ2

]
Adding and subtracting wT∇φ(p)P (p)k(w) and invoking the Hamilton-Jacobi-
Bellman equation, we obtain:

L̇ ≤ −
[

1

ms
w̃Tσ2σ

T
2 w̃

]
+

[
e1

ms
w̃Tσ2

]
+wT∇φ(p)P (p)K̃(w̃)w̃ −Q(p; p0)−W (k(ŵ)) + ε
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where K̃(w̃) = dk(w)
dw |w=w̃ and ε involves all modelling error terms. Hence, we

conclude:
L̇ ≤ −Q(p; p0)−W (k(ŵ))−

−‖σ2σ
T
2 ‖

ms
|w̃|2 +

[
B +

e1

ms

∣∣σT2 ∣∣] |w̃|+ ε

Notice that, assuming persistently excited neurons, the above expression pro-
vides essentially a lower bound to ‖w̃‖ for which the Lyapunov candidate is
negative, which provides convergence as shown in [19].

The above controller can be summed up in the following block diagram:

Figure 4.1: Block Diagram of the On-line Controller
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Chapter 5

Simulation Results

In this section we will present the results of the offline solution, followed by a
comparison between the online approach and an RRT* method. For the pro-
posed algorithm, a grid of 15×15 neurons, consisting of Radial Basis Functions
(RBFs), were used. All simulations were implemented with Matlab on a PC
running Windows 10, on an intel-i7 quad-core processor. For the RTT* ap-
proach, a traditional quadratic form for the input part of the cost function was
used. An artificial workspace was designed, with a square outer boundary of
side lengths equal to 10[m], and three inner disk obstacles, as presented in Fig.
5.2. The goal position was p0 = (1, 1) for all runs. In Fig. 5.1, we illustrate
the approximation of the value function and the respective vector field that re-
sulted from the successive value function approximation of Algorithm 2. The
approximation exhibits the desired behaviour, with large values away from the
minimum at the goal position. In Fig. 5.2 we present four trajectories that
resulted from various starting points, along with the same trajectories for the
RRT* method. In Fig. 5.3, we present the respective tree graphs for each tra-
jectory of the RRT* method. Finally, Table 5.1 includes the results for every
run, including the start-end point configurations, the computed cost for each
method and the corresponding run time. It is evident that our method consis-
tently outperforms the RRT* optimization method, both in cost function value,
and in run time. Additionally, our method produces smooth trajectories. The
offline method outperforms the online one as expected, however, the trajectories
of the online approach tend to match the offline ones as time progresses and the
learning process evolves towards the optimal parameter estimates. Finally, all
of the aforementioned trajectories exhibit both safety and convergence, as it has
been rigorously proven.
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Figure 5.1: The offline vector field and value function approximation.

Figure 5.2: The online trajectories (solid lines), the offline trajectories (dashed
lines) and the RRT* trajectories (star points).
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Figure 5.3: The RRT* graphs and trajectories.

Traj.
#

Start
Pos.[m]

Goal
Pos.[m]

Cost
Online

Cost
RTT

Run T.
Online [s]

Run T.
RRT [s]

1 (-4,0) (1,1) 576 830 440 601
2 (0,4) (1,1) 177 361 192 718
3 (1,-4) (1,1) 346 827 395 640
4 (4,-4) (1,1) 770 988 435 612

Table 5.1: Comparative Simulation Results
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Chapter 6

Discussion & Future Research

The results of this work are both promising and intriguing. They provide a
provably correct solution to the optimal motion planning problem, with both
safety and convergence assured by the structure of the parametrized controller.
The method both improves the value of a cost function for a given initial policy
and consistently outperforms another approach, namely an RRT-Star method.
Furthermore, the deterministic nature of the proposed method is an added ad-
vantage.

As for future directions, the method will be expanded with more general con-
troller structures, so as to improve not only the computational characteristics,
but also the span of the controller basis. The need for an expensive transfor-
mation will be negated and a better, with respect to the given value function,
control policy can be adopted. Furthermore, concerning the energy term for
the value function, a form with physical meaning -e.g. energy input minimiza-
tion term- can be adopted. Finally, a more general form can be used to extend
the present work to unknown workspaces. The above will be implemented using
harmonic series approximations for bounded, fully known workspaces, while un-
known workspaces will be tackled with point sources in a sequentially discovered
unknown workspace.
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Chapter 7

Appendix

7.1 Proofs

7.1.1 Proof for Lemma 3

Lemma 6. The following is true:

−
∫ k

(i)
j

1

(
vi −

1

vi

)
dvi −

(
k

(i+1)
j − 1

k
(i+1)
j

)(
k

(i+1)
j − k(i)

j

)
≤ 0

Proof. Consider the function f(x) =
∫ x

1

(
vi − 1

vi

)
dvi and its derivative f ′(x) =

x − 1
x . The expression to be proven becomes, considering the points a = k

(i)
j ,

b = k
(i+1)
j :

− f(a)− f ′(b)(b− a) ≤ 0

Further consider that f(x) ≥ 0 , ∀x ∈ R+. We now begin the proof. • For

a > b, we need to prove that f(a)
a−b ≥ f

′(b).
We have:

f(a)

a− b
≥ f ′(b) ⇐⇒

f(a)

a− b
≥ f(a)− f(b)

a− b
≥ f ′(b)

This is easily proven as :

∃ x0 ∈ [b, a] : f ′(x0) =
f(a)− f(b)

a− b

Therefore we need to prove that f ′(x0) ≥ f ′(b), which is easily found to be
true since it is evident that f ′(x) is monotonically increasing ∀x ∈ R+. • For

b > a, we need to prove that f(a)
a−b ≤ f

′(b). The proof is in the same logic as the

previous one and is therefore omitted here. Since ∀a, b ∈ R+ we have proven
that −f(a)− f ′(b)(b− a) ≤ 0, the proof is complete.
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7.1.2 Proof for Lemma 4

Lemma 7. The following it true:

∫ k
(i+1)
j

k
(i)
j

(
vj −

1

vj

)
dv −

(
k

(i+1)
j − 1

k
(i+1)
j

)(
k

(i+1)
j − k(i)

j

)
≤ 0

Proof. Consider the function f(x) =
∫ x

1

(
vi − 1

vi

)
dvi and its derivative f ′(x) =

x − 1
x . The expression to be proven becomes, considering the points a = k

(i)
j ,

b = k
(i+1)
j :

f(b)− f(a) ≤ f ′(b)(b− a)

• For a < b, we need to prove that f(b)−f(a)
b−a ≤ f ′(b). This is easy as:

∃ x0 ∈ [a, b] : f ′(x0) =
f(b)− f(a)

b− a

And therefore we need to prove that:

f ′(x0) ≤ f ′(b)

Which is easily found to be true since f ′(x) is monotonically increasing ∀x ∈ R+.

• For a > b, we need to prove that f(a)−f(b)
a−b ≥ f ′(b). The proof is the same

as before and is therefore omitted here. Since ∀a, b ∈ R+ we have proven that
f(b)− f(a) ≤ f ′(b)(b− a), the proof is complete.

7.1.3 Proof for Basis Functions

In this section we will prove the form of Eq. 3.48. Consider two Basis Functions
of a set of uniformely distributed functions, the distance between the two given
by ∆x in the x direction and ∆y in the y direction. Then the two functions will
have the following form - one is considered as centred at [0, 0].

σ1(p) = e
−( x

µx
)
2−
(
y
µy

)2

σ2(p) = e
−( x−∆x

µx
)
2−
(
y−∆y
µy

)2

Consider that these two have the same form - they come from a simple trans-
lation. We will now consider that we would like for the two functions to have
a specific point of overlap λ as a specific point of intersection at the diagonal
line that passes through the two centres of the functions. Therefore at the point
x = ∆x

2 and y = ∆y
2

σ1 = σ2 =

= e
−( ∆x

2µx
)
2−
(

∆y
2µy

)2

= λ
(7.1)
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If we consider there to be axisymmetric, µx = µy = µ(
∆x

2µx

)2

+

(
∆y

2µy

)2

= −ln(λ)⇒

1

2

(
∆x

µ

)2

= −ln(λ)⇒

µ =

√
−∆x2

2ln(λ)

Note that the above choice of µ values worked better for the online approach,

whereas a choice of µ =
√
−∆x2

4ln(λ) seemed to work better for the offline approach

- for the same overlapping parameter λ -. This change relates to choosing a
different point of intersection for setting the overlapping equal to the desired
value. The first refers to the point being between ”diagonal” neurons and the
second being between neurons lying on the same vertical/horizontal axis.
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7.2 Software Structures

7.2.1 Off-line method Software

Herein the software structures for each method will be presented.
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7.2.2 On-line method Software

The on-line method utilizes mostly the same functions as the Off-line one, there-
fore only the main structure of the algorithm will be presented.
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