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Abstract 

 

The current diploma thesis estimates the efficiency of a Mewis propeller duct utilizing a 

performance monitoring system. The analysis includes operational data of a three-year period 

for two sister vessels, Vessel 1 and Vessel 2, with the former being the one that has the duct 

installed during dry-dock. Once the collected data are processed and corrected, three Key 

Performance Indicators (KPIs) are calculated to monitor the performance of the vessels for 

different operational periods, such as pre-dry-dock and post-dry-dock, as well as for different 

loading conditions (ballast and laden). The KPI analysis aims at evaluating the duct’s efficiency 

through the indicators’ fluctuations over time as well as through a comparison between the two 

vessels’ performances. Finally, a multiple linear regression model is developed in order 

estimate the fuel oil consumption based on weather and sea travel related variables, such as 

the wind speed, the ship’s speed, her draft, trim and rudder angle. The occurring model offers 

a prediction for the fuel consumption, which is used in different scenarios in order to provide 

an alternative estimate of performance and, thus, an evaluation of the duct’s efficiency. 
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1 Introduction 
 

Ships are complicated energy systems whose operations require the harmonic and effective 

cooperation of various subsystems. They are able to produce great amounts of “work”, whether 

that is measured in produced kW (power) or tons of cargo (transportation ability), but also 

consume a lot of energy to achieve that. The shipping industry has been trying for a long time 

to tip the balance of this “give and take” relationship in favor of the produced work, which 

represents the financial income when the economics’ aspect of the system is brought to the 

equation.  

The term of “efficiency” has been introduced to better describe the aforementioned relationship. 

Efficiency can be defined as a fraction; its numerator expresses the produced result and its 

denominator is the total “sacrifices” made for that particular result to be achieved. For example, 

the efficiency of an engine is its produced work over the total energy consumption while the 

efficiency of a financial investment is the value of the gains over the value of the invested 

capital. Consequently, a vessel’s propulsive efficiency could be defined as the total travelled 

distance over the consumed energy or, alternatively, as the effective propulsive power over the 

overall power consumption. When the propulsive efficiency is examined over time, then 

another term is introduced; the ship’s performance.  

The performance of a vessel is an operational parameter that the industry aims to improve. By 

achieving that, a vessel can reach the same results with less effort or improved results with the 

same effort. Reducing the amount of consumed fuel needed to reach a certain speed is an 

example of improved performance. Since performance is an operational parameter, a popular 

method to increase it is through the installation of various appliances and machinery designed 

to improve certain operational aspects and activities. One category of these energy-saving 

appliances involves installations that are positioned at the area of the ship’s propeller, aiming 

to increase its efficiency and, thus, the vessel’s overall propulsive performance. Such upgrades 

include the Kort nozzle, the wake-equalizing duct, the Mewis duct, the Schneekluth wake 

equalizing duct, the pre-swirl stator, the propeller boss cap fin and other.  

Two main problems arise when examining the potential installation of an energy device. The 

first one is about selecting the most suitable of the available technologies, the one that offers an 

optimal solution to the problem under consideration. The second one is the evaluation of the 

benefits of the device and its effect on performance. In the constantly evolving and competitive 

global shipping market, ship performance is measured by financial units rather than physical 

ones. As a result, the installation of an energy-saving appliance may be considered redundant 

despite its positive impact on propulsion, simply because the magnitude of the improvement 

weights less than the financial investment or the time required. Therefore, the most important 

question concerning energy-saving devices is not whether it helps but rather how much it does 

and whether its installation is a profitable investment. 
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1.1 Mewis duct 

 

Of the aforementioned propeller-related energy-saving devices, the one examined in the 

particular study is the Mewis duct. The Mewis duct is a hull appendage with an integrated fin 

system located forward of the propeller, mounted in its inflow region. It is usually used in 

tankers and high block coefficient ships. It manages to improve the propeller’s efficiency due 

to its three main operation principles [1]: 

▪ Wake field equalization: The duct strengthens and accelerates the hull’s wake into the 

propeller and also produces a net forward thrust. 

▪ Reduction of propeller hub vortex: An improved slipstream behind the duct 

significantly reduces the hub vortex with corresponding thrust deduction, leading to 

improved thrust and better inflow to the rudder. 

▪ Contra-rotating swirl: Due individually placed fins a pre-swirl in counter direction is 

generated, recovering the rotational energy from the slipstream and reducing the 

rotational flow losses of the propeller. 

The Mewis duct provides with a better streamlined and directed flow into the propeller, 

reducing its losses and therefore improving its efficiency. The power savings offered vary 

from 3%, for multipurpose vessels, up to 8%, for tankers and bulk carriers, with an average 

value of 6.5%. However, its true efficiency relies on a variety of factors and is ship-specific. 

Additional advantages of the Mewis duct include the low installation time (approximately 4 

days), the reduction of cavitation and vibrations as well as that it requires no service  

 

 

Figure 1: The Mewis duct. 
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1.2 Purpose and study structure 

 

The Mewis duct was introduced in the market in 2010 as a propulsive, energy-saving device 

promising energy savings of up to 8%. However, its potential is subject to various factors that 

constitute the ship’s hydrodynamic profile and, therefore, each vessel should perform 

individual hydrodynamic analysis and/or model tests before installing the Mewis duct in order 

to evaluate its actual efficiency. The purpose of this study is to suggest an alternative method 

of evaluating the duct’s efficiency. Performance monitoring involves measuring various 

physical quantities that affect a vessel’s performance by onboard sensors with pre-arranged 

frequency and for a defined amount of time. As a result, a database that characterizes the 

vessel and its operation under different scenarios and conditions is created. The real-time data 

describe the vessel’s behavior under various circumstances and can, thus, be used to evaluate 

the effect of these circumstances or events on the vessel’s performance. As suggested by 

Hasselaar (2010) [2], performance monitoring offers multiple benefits as it facilitates the 

assessment of the hull and engine condition, it evaluates the ship’s design by comparing the 

true operational parameters with the designed ones and it optimizes the sailing performance 

as the true, optimal and ship-specific operation point can be found. The current study utilizes 

vessel data gathered before and after the installation of a Mewis duct in order to assess its 

actual, real-operation impact on the propulsive performance. Furthermore, a sister vessel that 

did not had a duct installed is also monitored for the same period, in order to provide with a 

solid comparison that underlines the long-term effect of the Mewis duct. 

An overview of the proposed procedure for the evaluation of the Mewis duct efficiency is 

presented in Figure 2. Firstly, real-time operational data are collected, by a variety of sensors 

and measuring devices, and corrected by sets of filters. The data processing procedure, 

described in the Data analysis chapter, is fundamental for the study as it eliminates outliers 

that distort the relationships among the physical quantities, eventually creating the final 

dataset that is the basis of the performance analysis. Once the operational data are filtered, 

Key Performance Indicators are calculated to quantify the vessels’ performance. The study of 

the KPIs, conducted in the Key performance indicators chapter, is crucial as it reveals the 

effect of the Mewis duct on performance. Finally, a regression model is produced in the 

Regression analysis chapter to fit the available operational data and provide with predictions 

about the fuel oil consumption (FOC) for different operational scenarios. The regression 

analysis is a different approach for evaluating the duct’s efficiency, utilizing the FOC 

performance-related variable. 
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Figure 2: Study structure scheme. 
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2 Data analysis 
 

The monitored physical quantities, which constitute the variables of the problem under study, 

are presented along with the onboard devices that are responsible for their measuring. The 

acquired data are shortly analyzed with the help of some parameter vs parameter scatter plots 

that visualize the expected relationships among the physical quantities. The initial data analysis 

includes the identification of these relationships. 

As it can be observed, the measured data are not entirely aligned with the relationships among 

the physical quantities that occur from the general scientific understanding. For the analysis to 

be more accurate and solid, the initial data, once plotted and accessed, need to be properly 

processed in order to cause a reduction in bias. By omitting values that are not in accordance 

with the scientific theory a reliable dataset can be created and used as the basis of the regression 

model whose aim is to provide a realistic approximation of the real-life situations occurring in 

sea travel. 

The data correction can be achieved by the application of certain filters that accurately identify 

and reject the “undesirable” parameter values. Due to the analysis being time-bound, it should 

be noted that in case a single parameter value is considered “undesirable” then all the other 

parameter values measured at the same moment will be automatically omitted. Despite 

disregarding possibly “desirable” values, the proposed method allows for an examination of the 

parameters through time without causing a significant distortion of the dataset mainly because 

of its big size (over 100,000 points for each vessel). 

The first part of the filtering process aims to create a general framework of the analysis by 

setting threshold values for some parameters. All measurements below the threshold values are 

discarded, thus reducing the dataset. By these simple preliminary filters, values with no physical 

meaning, such as negative ship speeds or negative fuel consumptions, are excluded from the 

new dataset. Furthermore, data, such as low water speeds or low engine power, considered to 

be measured during port procedures and cargo handling are effectively omitted through this 

procedure. The data points associated with port operations cannot accurately represent the 

relationships among the physical quantities, and thus create outlier regions in the graphs. By 

excluding the lower speed and engine-related values the “in port” data are not taken into 

consideration in the new dataset, limiting the amount of distortion.  

The second part of the filtering process aims to further reduce the dataset by identifying and 

omitting outlying data points. To achieve that, the relationships among the physical quantities 

are utilized. Firstly, the correlations among the variables are calculated, resulting in a better 

understanding of the level of co-dependency among them. Afterwards, highly correlated 

variables are paired and filtered through a process that omits values of one parameter, called 

“primary”, based on the outliers of the other, called “secondary”. The process, which is 

explained analytically in the respective chapter, effectively pairs highly correlated parameters 

and manages to significantly reduce the outlying data points, creating a final filtered dataset 

that sets the standards for an accurate regression analysis. 
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2.1 Data collection 

 

Measured parameters 

 

The evaluation of the efficiency of the Mewis duct relies on the operational data of the 

two sister vessels provided by the LAROS platform. The collected data concern an 

operational period of three years, beginning in June 2014 and ending in June 2017. The 

measuring period covers both the pre-duct and the after-duct periods, allowing the 

conduction a comparative analysis between the two periods as well as between the two 

sister vessels. 

The physical quantities monitored by the LAROS platform are presented in Table 1. 

 

Measured physical quantity Parameter name Units 

Speed over ground SOG knots (kn) 

Speed through water STW knots (kn) 

Main engine power EP kilowatts (kW) 

Mean draft  TM meters (m) 

Shaft’s revolutions RPM revolutions per minute (rpm) 

Wind speed WS meters per second (m/s) 

Main engine’s fuel oil 

consumption 
FOC tons/day 

Aft draft TA meters (m) 

Fore draft TF meters (m) 

Rudder angle RA degrees (deg) 
Table 1: Monitoring parameters. 

FOC values should not be mistakenly considered to represent the overall fuel 

consumption for one operational day. Instead, as the rest of the parameters, FOC is 

measured every 15 minutes in tons per day units.  

The trim of the vessel is also calculated: TRIM = TA − TF. 

The measured data are to serve as the basis of the KPI analysis that will help in the 

estimation of the duct’s efficiency as well as of the regression model that will be 

developed to estimate the fuel oil consumption. For that to be achieved, the initial data 

need to be filtered for outliers, data points that do not correspond with the relationships 

among the physical quantities or that do not have a physical meaning (i.e. negative speed 

values). In order to visualize the outlier data points the following graphs are plotted for 

the initial data points: SOG – STW, EP – STW, EP – RPM, EP – FOC, FOC – RPM, TM 

– TRIM. The graphs and the occurring outlier data are discussed in the Initial data analysis 

chapter. 
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2.1.1 Measuring devices  

 

The measuring devices that are required onboard for the monitoring of the above 

parameters are summarized in Table 2. 

 

Device Parameter 

Global Positioning System (GPS) SOG 

Speed log STW 

Shaft torque meter EP, RPM 

Mass flow meter FOC 

Anemometer WS 

Pressure sensor TM, TA, TF 

Rudder angle indicator RA 
Table 2: Onboard measuring devices. 

Global Positioning System (GPS) 

The GPS retrieves information about the ship’s position in global coordinates (longitude, 

latitude). The vessel’s speed over ground (SOG) is obtained from the arithmetical 

derivation of the vessel’s position. The GPS’s operation requires constant communication 

with a system of satellites, for the location of the ship’s position, and has an accuracy of 

a few meters. 

 

Speed logs 

Two popular sensors are utilized for the measurement of the vessel’s speed through water. 

a) Doppler log: An acoustic speed log based on the Doppler effect in which the wave 

lengths of moving objects appear to shift in relation to the observer. This shift can 

be converted to speed, thereby producing a very accurate result. The Dual Axis 

Doppler Speed Log utilizes the Doppler shifted returns from high frequency 

acoustic energy transmitted into water to provide precise speed data, distance 

travelled, and water depth below the transducer. The transmitted signal is scattered 

back from the sea bottom and/or scatters in the water mass. The system amplifies 

the received signals and processes them to determine the Doppler shift. 

b) Electromagnetic log: The electromagnetic log works by generating a small 

alternating current in a transducer producing an electromagnetic field in the 

adjacent water. As the vessel moves through the water, the voltage proportional to 

the speed is generated at 90 degrees to the direction of travel. This signal voltage is 

detected by the probes and transmitted to the master electronic unit where it is 

amplified and processed digitally before being passed to the speed and distance 

displays. 
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Shaft torque meter 

The shaft torque meter is a piece of equipment the measures the torque and the rotational 

speed of the shaft, and multiplies them to estimate the transmitted power’s value. The 

instrument consists of strain gauges, arranged on a ring and mounted directly on the shaft 

for the continuous monitoring and logging the aforementioned values. The basic principal 

of operation is that any deformations of the strain gauges are transferred into voltages 

deviations which determine the strain of the shaft. 

 

Mass flow meter 

The most reliable way to measure the fuel consumption in a ship is to use mass flow 

meters, also known as Coriolis mass flow meters, because they eliminate the need for 

converting the volumetric flow into a mass flow, according to the fuel’s density 

estimations. The reason is that the Coriolis acceleration induces oscillations to the tubes 

of the device that depend on the mass flow in them. As a result, the magnitude and the 

frequency of these oscillations help determine the fuel mass flow through the tubes. 

 

Anemometer 

The wind anemometer is a device that measures both, the relative speed and direction of 

the wind with respect to the ship’s orientation. It consists of a helicoid propeller and a 

vane the measure the wind’s speed and direction, respectively. The angular displacement 

of the vane helps estimate the wind’s relative direction, while the rotational speed of the 

helicoid propeller helps estimate the wind speed. 

 

Pressure sensor 

The draft of the ship can be estimated by the hydrostatic pressure on the hulls bottom 

surface. Sensors that measure the pressure are placed on the outer surface of hull’s bottom 

and can deduce the instantaneous draft of the hull at the position in which they are 

installed. From the measurement of the draft in two different longitudinal positions of the 

hull, the ship’s trim can be calculated. 

 

Rudder angle indicator 

The rudder angle indicator is an electrical device that measures the actual angle of the 

rudder. It consists of the two parts, the transmitter which is mounted on the steering 

system of the ship (steering gear room) and the receiver which is placed in the wheelhouse 

and displays the transmitter’s signal. The measuring accuracy is usually below the range 

of ±0.5° for common angles and ±1.5° for hard over rudder. 
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2.1.2 Initial data analysis 

 

  

  

  
Figure 3: Initial data – scatter plots (Vessel 1). 
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Figure 4: Initial data – histograms (Vessel 1). 
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As it can be observed above, the SOG – STW graph depicts the linear relationship between the 

two speed variables (over ground and through water). However, there are points that deviate 

from the main diagonal of the graph, forming the following outlier regions: 

▪ SOG ≈ 0  & STW > 2 

▪ 5 < SOG < 10 & 11 < STW < 14  

▪ 10 < SOG < 15 & 8 < STW < 10 

▪ SOG > 2 & STW < 2  

▪ SOG > 5 & 2 < STW < 4 

▪ SOG < 0 (speed cannot be negative) 

▪ STW < 0 (speed cannot be negative) 

 

The EP – STW is a curve that expresses the power-speed relationship. However, the two vertical 

regions of data points (“columns”) for 0 < STW < 2 and 4 < STW < 8 should be considered 

outlier areas as they obviously do not correspond with the expected curve. Moreover, data 

points of negative speed through water values and/or negative engine power values are also 

outlier as they do not have any physical meaning. Finally, the horizontal line associated with 

very low engine speed values (EP ≈ 0) clearly deviates from the main plot area and must 

therefore be omitted.  

The EP – RPM and FOC – RPM graphs are very similar, a fact that is verified by the strongly 

linear relationship developed between the fuel oil consumption and the engine power (FOC – 

EP graph).  The EP/FOC variables are connected with the shaft’s revolutions (RPM) through a 

relationship that expresses the propeller law: P = c ∙ na ,3 ≤ a ≤ 4. The graphs reveal the 

presence of three P = c ∙ na curves, each associated with different propulsion conditions 

(weather conditions and level of hull fouling). The upward displacement of a propeller curve 

expresses the increased resistance of the vessel due to severer weather conditions and/or 

increased hull fouling. As it can be understood, these curves contain valuable information of 

the vessel’s performance and shall not be eliminated during the data correction process. On the 

other hand, the vertical “columns” of data at RPM ≈ 0, RPM ≈ 40 and RPM ≈ 50, as well as 

the horizontal line for EP ≈ 0 (only for the EP – RPM graph) and the area of RPM > 100 (only 

for the FOC – RPM graph) are all considered outlier regions and their omission is vital. 

The FOC – EP graph, as mentioned above, successfully expresses the linear relationship 

between the two variables. The only outlier region defined is the vertical line for EP ≈ 0. 

Finally, the Trim – Mean draft graph has the form of a large “cloud” of data points, which is 

defined within the following limits: 4 < Tm < 17 and −5 < Trim < 5. The data correction 

process should effectively split the “cloud” into two smaller ones, each related with one of the 

two general loading conditions: Ballast – lower Tm values and Laden – greater Tm values. The 

middle area of the draft is, thus, considered an outlier region and has probably occurred by the 

constant changes of draft during the in-port operations of the vessel (loading and un-loading). 
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Figure 5: Initial data – scatter plots (Vessel 2). 
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Figure 6: Initial data – histograms (Vessel 2). 
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As it can be observed above, the SOG – STW graph depicts the linear relationship between the 

two speed variables (over ground and through water). However, there are points that deviate 

from the main diagonal of the graph, forming the following outlier regions: 

▪ 0 < SOG < 5 & STW > 2  

▪ SOG > 10 & STW < 6  

▪ SOG < 0 (speed cannot be negative) 

▪ STW < 0 (speed cannot be negative) 

 

The EP – STW graph depicts a curve that expresses the power-speed relationship and has no 

significant outlier regions. 

The EP – RPM and FOC – RPM graphs are very similar, a fact that is verified by the strongly 

linear relationship developed between the fuel oil consumption and the engine power (FOC – 

EP graph).  The EP/FOC variables are connected with the shaft’s revolutions (RPM) through a 

relationship that expresses the propeller law: P = c ∙ na ,3 ≤ a ≤ 4. The two graphs contain few 

outlier data points, mostly for very low rpm values (RPM ≈ 0). 

The FOC – EP graph, as mentioned above, successfully expresses the linear relationship 

between the two variables. The only outlier regions defined are the vertical line for EP ≈ 0 and 

the horizontal line for FOC ≈ 0. 

Finally, the Trim – Mean draft graph has the form of a large “cloud” of data points, which is 

defined within the following limits: 2 < Tm < 14 and −10 < Trim < 10. The data correction 

process should effectively split the “cloud” into two smaller ones, each related with one of the 

two general loading conditions: Ballast – lower Tm values and Laden – greater Tm values. The 

middle area of the draft is, thus, considered an outlier region and has probably occurred by the 

constant changes of draft during the in-port operations of the vessel (loading and un-loading). 
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2.2 Data correction – Part I: Threshold values  

 

The chapter’s aim is to process the initial data obtained by the LAROS platform by applying 

some filters according to the student’s understanding of the dataset and the relationships which 

exist among the examined parameters. In order to allow a comparison between the two vessels 

in terms of performance, the exact same set of filters is applied to both of their datasets. 

Through this filtering process, an important step towards a smoother, corrected dataset is made 

as the student defines the framework of the problem under consideration. As a result, the 

occurring dataset expresses the relationships among the physical quantities as well as the 

overall nature of the problem in a more reliable and realistic manner.  

 

2.2.1 Speed correction 

 

Speed is one of the main parameters under examination as it is highly correlated with 

most of the physical quantities of the dataset. As described at the previous chapter, speed 

is measured through the SOG (speed over ground) and STW (speed through water) 

variables which should both receive non-negative values as the sensors calculate the 

speed’s absolute values, not its vectors. Moreover, low water speeds are considered to 

occur at ports where the vessels may spend time waiting for berths to become available, 

for pilots to lead them in the port or for maneuvering. As a consequence, STW values of 

less than 3 knots are omitted from the dataset in order to reduce the “in port” outliers. To 

sum up, the following two filter were applied to the speed parameters: 

i. SOG ≥ 0 knots 

ii. STW ≥ 3 knots 
 

2.2.2 Power correction 

 

Engine power (EP) along with the fuel consumption (FOC) and the shaft’s revolutions 

(RPM) are the engine-related parameters of the study. The three parameters demonstrate 

high correlation which is in terms with the general understanding of the co-dependency 

of these physical values. As explained above, the data measured during port operations 

should not be included in the final dataset of the analysis as bias will be caused. To 

achieve that, the following filters were applied to the mentioned parameters: 

i. EP ≥ 1000 kW 

ii. FOC ≥ 3 tons/day 

iii. RPM ≥ 20 
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2.2.3 Filters application and occurring graphs 

 

By applying the filters analyzed in the previous page the dataset is partially corrected 

since outlying (e.g. port-related) or simply miscalculated data (e.g. negative values of 

speed) are omitted. The resulting improvement can be observed with the help of the 

following scatter plots. The black colored data points are the initial data points that are 

rejected by the set of threshold filters while the yellow ones fulfil the initial criteria.                                                                               

  

  

  
Figure 7: Scatter plots for Vessel 1 (Data correction – Part 1) 
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Figure 8: Scatter plots for Vessel 2 (Data correction – Part 1) 
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2.2.4 Graph analysis: Comparison with the initial plots 

 

The first part of the data correction process manages to improve the dataset by omitting 

a significant number of outliers. However, it can be observed that further filters need to 

be applied for the dataset to better express the relationships among the physical quantities. 

The SOG – STW linear relationship is depicted by the main diagonal line shown in the 

respective graphs. The threshold filter successfully eliminates some sets of horizontal 

outlier lines that deviate from the main diagonal. However, this elimination is limited to 

lower values of the two speeds and as a result the rejected points are located at the upper 

left and lower right areas of the plots. Further filtering shall allow the complete omission 

of the outlier data points which are located in following main regions: 

Vessel 1: {
SOG ≈ 0 and STW > 4 

5 < SOG < 9 and 11 < STW < 14
SOG > 10 and 8 < STW < 10

 

Vessel 2: {
10 < SOG and 3 < STW < 6
0 < SOG < 5 and 5 < STW

 

The EP – STW diagram is affected less by the preliminary filtering. The impact is greater 

on Vessel 1 as the left vertical column of outliers is eliminated due to omission of low 

water speeds. In addition, the horizontal line corresponding to near-zero engine power is 

rejected due to the threshold value applied on the EP parameter. However, the central 

column of outliers consists a region that requires further filtering to be omitted. As far as 

Vessel 2 is concerned, no significant improvement is noticed as the horizontal lines 

deviating from the power-speed curves to the left remain intact. 

The EP – RPM relationship is presented by a curve that can be defined by an expression 

of the propeller law. While the curve presents no significant outlier regions for the dataset 

of Vessel 2, the case is different for Vessel 1. The graph clearly depicts three curves that 

express different power-revolutions relationships (different hull fouling, different 

weather conditions etc.) and three vertical lines that are interpreted as outlier regions. The 

implementation of the initial filter manages to eliminate the far-left line which is 

associated with near-zero RPM values. This is achieved due to the threshold value set for 

the shaft’s revolutions. While an important improvement is made, the complete correction 

of the dataset requires the elimination of the remaining two vertical outlier lines (RPM ≈

40 & RPM ≈ 50). 

The fuel consumption is expected to be linearly connected with the engine’s power, a 

relationship that is clearly depicted in the above graphs. The main outlier regions concern 

vertical lines at near-zero power values (for Vessel 1 and Vessel 2) and a horizontal line 

for near-zero fuel consumption values (for Vessel 2 only). Through the application of the 

threshold filters the outlier areas are successfully eliminated providing a graph that 

requires no further correction. 
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Similar to the EP – RPM graph, the FOC – RPM graph of Vessel 1 depicts three curves 

that are expressions of the propeller law for different weather conditions and hull fouling. 

Once again, the outliers are shown as vertical lines (RPM ≈ 0, RPM ≈ 40 & RPM ≈ 50) 

as well as a region locates at the far-right side of the graph (RPM > 100). The latter area 

along with the RPM ≈ 0 line is eliminated by the initial filters. However, the remaining 

two vertical lines are not identified as outliers and need to rejected by the next filtering 

procedure. As far as Vessel 2 is concerned, the FOC – RPM graph presents just a single 

outlier region at RPM ≈ 0 which is successfully eliminated. 

The Trim – Mean Draft graph is expected to have data points concentrated in two main 

“clouds”, each representing a different loading condition (laden or ballast). The 

implementation of the filters on Vessel 1 leads to a dataset which is significantly closer 

to that expectation as in-port and maneuvering conditions, in which the draft is altered 

constantly, are neglected. As a result, two main clouds are formed (5 < Tm < 8 & 12 <

Tm < 17) along with a central outlier region that remains intact and shall be omitted 

during the next filtering process. The filters’ impact is weaker on Vessel 2 as there are 

two significant diagonal lines that deviate from the laden (right) cloud of drafts. Despite 

this fact, the formation of the two clouds is clearly depicted and the elimination of outliers 

is significant. 
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2.3 Data correction – Part II: Outlier detection 

 

The chapter’s aim is to further process the data obtained by the filtering process of the previous 

part by exploiting the relationships that characterize the physical quantities. As a first step, the 

correlations among the variables are estimated and used as a measure of their co-dependency. 

Through the filtering process described, some possible filters are evaluated based on their 

effect on the dataset, which is depicted by scatter plots. Finally, once each filter’s efficiency 

is assessed, an optimal combination of filters is chosen and applied to the data points, thus 

providing the final filtered dataset to be used as the basis of the regression analysis. 

 

2.3.1 Correlation calculation: Pearson coefficients 

  

The correlation among the examined parameters, obtained from the first filtering process, 

is calculated with the help of Pearson correlation coefficients. Given two parameters x, y 

the Pearson correlation coefficient (PCC) of the pair (x,y) is calculated by the following 

formula: 

PCCxy =
∑ (xi − x̅) ∙ (yi − y̅n

i=1 )

√∑ (xi − x̅)2n
i=1 ∙ √∑ (yi − y̅)2n

i=1

 

• xi : the data points of parameter x. 

• x̅ ∶ the mean value of the x dataset. 

• yi : the data points of parameter y. 

• y̅ ∶ the mean value of the y dataset. 

• n ∶ the total number of datapoints. 

   

The calculated coefficients are gathered and presented in Table 3 and Table 4.  

 

 SOG STW TM RPM WS FOC TA TF RA EP 

SOG 1          

STW 0.832 1         

TM 0.137 0.277 1        

RPM 0.702 0.885 0.501 1       

WS -0.041 0.049 0.309 0.346 1      

FOC 0.467 0.617 0.445 0.788 0.364 1     

TA 0.137 0.277 0.998 0.507 0.313 0.444 1    

TF 0.138 0.277 0.998 0.494 0.304 0.444 0.992 1   

RA 0.045 -0.006 -0.165 -0.076 -0.119 -0.037 -0.170 -0.161 1  

EP 0.466 0.616 0.437 0.787 0.366 0.999 0.436 0.436 -0.032 1 
Table 3: Pearson correlation coefficients (Vessel 1). 
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 SOG STW TM RPM WS FOC TA TF RA EP 

SOG 1          

STW 0.460 1         

TM 0.055 0.261 1        

RPM 0.432 0.814 0.533 1       

WS -0.236 -0.210 -0.101 -0.175 1      

FOC 0.396 0.732 0.518 0.954 -0.118 1     

TA 0.062 0.269 0.992 0.543 -0.108 0.527 1    

TF 0.049 0.250 0.993 0.515 -0.093 0.503 0.971 1   

RA -0.012 -0.048 -0.164 -0.077 0.106 -0.096 -0.166 -0.159 1  

EP 0.400 0.742 0.525 0.960 -0.125 0.985 0.535 0.509 -0.077 1 
                                              Table 4: Pearson correlation coefficients (Vessel 2). 

 Not 

correlated 

 Slightly 

correlated 

 Highly 

correlated 

 Totally 

correlated 

 

The Pearson coefficients have values between +1 and -1, where: 

• +1 indicates a total positive linear correlation. 

• -1 indicates a total negative linear correlation. 

• 0 indicates no linear correlation. 

The blue colored cells represent Pearson coefficients with small absolute values, 

indicating that the respective parameters are not correlated. On the other hand, the green 

cells concern highly correlated quantities with greater absolute Pearson coefficients. The 

orange cells contain intermediate values, which indicate a slight correlation between the 

physical quantities. Finally, the matrices’ diagonals have a “+1” Pearson value since the 

correlation between a value and its self is obviously a total positive linear one. 

The highly correlated values (green cells) help in identifying some possible pairs of 

values for the second filtering process. Although, it should be noted that high correlation 

is not an absolute criterion. Each pair of highly correlated values should be tested in order 

to safely determine whether it effectively eliminates the outlier regions of the graphs 

without omitting “desirable” set of data. Not correlated pairs of variables (coefficients’ 

values close to 0) are not tested. 

After careful consideration, the following pairs are chosen for evaluation: 

 

• Speed through water (STW) ↔ Speed over ground (SOG) 

• Speed through water (STW) ↔ Engine power (EP) 

• Engine power (EP) ↔ Shaft’s revolutions (RPM) 

• Engine power (EP) ↔ Fuel oil consumption (FOC) 

• Shaft’s revolutions (RPM) ↔ Fuel oil consumption (FOC) 

• Mean draft (TM) ↔ Trim (TF-TA) 
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2.3.2 Filtering procedure 

 

The following filtering procedure is utilized for the detection and rejection of outlying 

data points [3]: 

1. Choose a primary parameter X whose values are to be filtered. 

2. Divide the parameter values into groups with range v. 

3. Choose a secondary parameter Y which is correlated with the primary parameter. 

4. For each group Gi of X calculate the mean, mYi
, and the standard deviation, σYi

, 

of the respective Y values. 

5. Define an “outlier threshold” k which is to be multiplied with the standard 

deviation 𝜎𝑌𝑖
.  

6. For every respective value of Y in the Gi group, Yij, test if the following inequality 

is fulfilled: 

|Yij − mYi
| ≤ k ∙ σYi

 

7. If the inequality is not fulfilled the data point is rejected.  

An example is given in order to provide a better understanding of the above method. 

Let the primary parameter X be the engine power (EP) and the secondary parameter 

Y be the shaft’s revolutions (RPM). The following hypothetical dataset is examined: 

 1 2 3 4 5 6 7 8 9 10 

EP (kW) 2000 2150 2300 2730 2870 3020 3350 3680 3800 3990 

RPM 51.15 52.40 53.59 56.74 65.00 58.68 60.75 62.68 50.00 64.39 
Table 5: Values of the hypothetical dataset. 

By plotting the EP-RPM curve two outliers are spotted: (65,2870) and (55,3800). 

 

Figure 9: EP – RPM curve (hypothetical dataset). 
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A range v of 1000 kW is chosen so that the power values are divided into the 

following groups: [2000,3000), [3000,4000). For each group of power values, a 

group of the respective RPM values is created:  

• For the [2000,3000) group → Y1:{51.15, 52.40, 53.59, 56.74, 65}. 

• For the [3000,4000) group → Y2:{58.68, 60.75, 62.68, 50, 64.39}. 

 

The mean values and the standard deviations of Y1 and Y2 are calculated: 

• mY1
=  55.78 • mY2

= 59.30  

• σY1
= 5.56 • σY2

= 5.62 

 

 1 2 3 4 5 6 7 8 9 10 

RPM 51.15 52.40 53.59 56.74 65.00 58.68 60.75 62.68 55.00 64.39 

𝐦𝐘𝐢
 55.78 59.30 

𝛔𝐘𝐢
 5.56 5.62 

|𝐘𝐢𝐣 − 𝐦𝐘𝐢
| 4.63 3.38 2.19 0.97 9.22 0.62 1.45 3.38 9.30 5.09 

|𝐘𝐢𝐣 − 𝐦𝐘𝐢
|

𝛔𝐘𝐢

 0.83 0.61 0.39 0.17 1.66 0.11 0.26 0.60 1.66 0.91 

Table 6: Outlier detection (hypothetical dataset). 

As it can be noticed, in the particular dataset, the “desirable” points are within 1 

standard deviation from the mean values. By picking a suitable value for the constant 

k, the outliers are omitted. The 5th and 8th data points do not fulfill the inequality 

|Yij − mYi
| ≤ k ∙ σYi

 for k values less than 1.66, and as a result a 1 ≤ k ≤ 1.5 value 

can successfully filter these “undesirable” data points.  

However, for the real examined dataset, k receives greater values (2 ≤ k ≤ 3) since 

there can be multiple curves representing the relationships between two values, whose 

data points would be falsely discarded if a low k value were applied. For example, the 

EP-RPM graph can have different P = c ∙ na curves, each representing a different 

weather condition and/or hull fouling condition. These points-curves, despite 

deviating from the main EP-RPM curve, should not be omitted since they contain 

valuable information that provides a solid understanding of the effect of certain 

phenomena, such as the hull fouling, on the vessels’ performance. 

The described process is applied for the 6 pairs of values that are chosen in the 

previous paragraph according to the correlation coefficients. For each pair, the 

process is applied twice by swapping the primary and secondary variables. Each of 

the total 12 single-filter processes is analyzed in the following paragraphs, as to the 

way they affect the relationships among the physical quantities, which are depicted 

by graphs. Once the impact of each filter is assessed, the optimal combination of 

filters can be found. 
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2.3.2.1 Speed through water – Speed over ground 

 

The STW and SOG variables are filtered according to the process described in the 

“Filtering procedure” paragraph. The outlier threshold k and the range v values are 

shown in Table 7: 

 

Case 
Primary: STW  Primary: SOG 

Secondary: SOG Secondary: STW 

k 2 2 

v 0.5 kn 0.5 kn 
Table 7: Outlier threshold and range values (STW-SOG). 

 

Both cases are analyzed with the help of graphs for both vessels. For the case in 

which STW is the primary parameter, the respective filter is called “STW_SOG” 

while for the one in which SOG is the primary parameter, the filter is called 

“SOG_STW”. The occurring scatter plots contain data points colored in blue, red or 

green. The blue points are the ones that are omitted by the threshold filters that are 

applied during the first part of data correction. The red points are the ones that fulfill 

the criteria set by the first filtering procedure but are omitted due to the applied 

single-filter under consideration (STW_SOG, SOG_STW). Finally, the green data 

points are the ones that meet the standards set by the threshold filters and the applied 

single filter. Presented below are the graphs that are significantly affected by the 

application of the filter. The effect of the filter on all graphs can be found in the 

figures included in Appendix A: Data correction – Part II filters. 
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Figure 10: Filter STW_SOG – Vessel 1. 

 

Figure 11: Filter STW_SOG – Vessel 2. 
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The effects of the application of the “STW_SOG” filter on the dataset can be 

observed with the help of the SOG – STW graphs. The filter has an insignificant 

effect on the other variables and the relationships that are formed among them, a 

conclusion that can be easily verified by the graphs’ lack of outlier points (red 

points). 

For Vessel 1, the filter manages to eliminate some of the remaining sets of horizontal 

data points that deviate from the main diagonal which represents the linear 

relationship between the two speed variables. More specifically, data points in the 

following regions are successfully omitted by the filter: 

▪ SOG ≈ 0  & STW > 4 

▪ 5 < SOG < 9 & 11 < STW < 14  

▪ SOG > 10 & 8 < STW < 10 

As far as Vessel 2 is concerned, the filter helps in further eliminating outliers without 

being able to identify all of them. The lower right area of the graph (0 < SOG <

5 & STW > 5) is successfully identified as an outlier region and therefore omitted 

by the filter. However, the upper left region (SOG > 10 & 3 < STW < 6) contains 

sets of horizontal data points that deviate from the main diagonal line and should be 

considered as outliers. The filter fails to trace that outlier area.  

Overall, the filter manages to identify a significant amount of outlier data points 

without omitting areas of desirable data points. Despite its effect being limited to the 

SOG – STW graphs, the filter will be used in the data correction process as it aids 

towards a better representation of the linear relationship that characterizes the two 

speeds. 
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Figure 12: Filter SOG_STW – Vessel 1. 

 

Figure 13: Filter SOG_STW – Vessel 2. 
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The effects of the application of the “SOG_STW” filter on the dataset can be 

observed with the help of the SOG – STW graphs. The filter has an insignificant 

effect on the other variables and the relationships that are formed among them, a 

conclusion that can be easily verified by the graphs’ lack of outlier points (red 

points). 

For Vessel 1, the filter has a similar effect on the graph as the previous one. 

However, two significant differences can be observed. Firstly, the “SOG_STW” 

filter fails to eliminate the horizontal set of data points that corresponds to near zero 

speed over ground in contrast with the “STW_SOG” filter. On the other hand, the 

“SOG_STW” filter successfully identifies the upper right outlier region (SOG >
10 & STW > 13) which the previous filter neglects.  

As far as Vessel 2 is concerned, the filter helps in further eliminating outliers without 

being able to identify all of them. In contrast with the previous filter, it manages to 

identify the upper left region (SOG > 10 & 3 < STW < 6) as an outlier area that 

does not correspond with the linearly expressed relationship between the two 

variables. However, the filter fails to omit the lower right area of the graph (0 <

SOG < 5 & STW > 5), which is successfully discarded by the previous filter. 

Overall, the filter manages to identify a significant amount of outlier data points 

without omitting areas of desirable data points. It can be understood that the 

“SOG_STW” and “STW_SOG” filters complete one another in such manner that no 

significant outlier regions remain undetected. Thus, they should be both included in 

the data correction process. 
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2.3.2.2 Engine power – Speed through water 

 

The EP and STW variables are filtered according to the process described in the 

“Filtering procedure” paragraph. The outlier threshold k and the range v values are 

shown in Table 8 Table 8: Outlier threshold and range values (EP-STW).: 

 

Case 
Primary: EP Primary: STW 

Secondary: STW Secondary: EP 

k 2 2 

v 100 kW 0.5 kn 
Table 8: Outlier threshold and range values (EP-STW). 

 

Both cases are analyzed with the help of graphs for both vessels. For the case in 

which EP is the primary parameter, the respective filter is called “EP_STW” while 

for the one in which STW is the primary parameter, the filter is called “STW_EP”. 

The occurring scatter plots contain data points colored in blue, red or green. The 

blue points are the ones that are omitted by the threshold filters that are applied 

during the first part of data correction. The red points are the ones that fulfill the 

criteria set by the first filtering procedure but are omitted due to the applied single-

filter under consideration (EP_STW, STW_EP). Finally, the green data points are 

the ones that meet the standards set by the threshold filters and the applied single 

filter. Presented below are the graphs that are significantly affected by the 

application of the filter. The effect of the filter on all graphs can be found in the 

figures included in Appendix A: Data correction – Part II filters. 
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                Figure 14: Filter EP_STW – Vessel 1.                                           Figure 15: Filter EP_STW – Vessel 2. 
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The effects of the application of the “EP_STW” filter on the dataset can be observed 

with the help of the EP – STW, EP – RPM and FOC – RPM graphs. The filter has 

an insignificant effect on the other variables and the relationships that are formed 

among them, a conclusion that can be easily verified by the graphs’ lack of outlier 

points (red points). 

For Vessel 1, the filter manages to eliminate the upper middle area of the EP – STW 

graph (3 < STW < 8 & EP > 8,000) but fails to identify outlier points of lower 

engine power values. Moreover, it successfully omits the data points that form a 

vertical line at RPM ≈ 40 but only for greater values of engine power/fuel 

consumption. Despite that rather positive effect, the filter falsely eliminates data 

points that belong to the P = c ∙ na curves that correspond with fouled hull and/or 

bad weather conditions.  

As far as Vessel 2 is concerned, the filter has limited and insignificant effect failing 

to further correct the dataset. 

Overall, the filter manages to identify a small amount of outlier data points but also 

omits areas of desirable data points. Since these areas (P = c ∙ na curves) are of high 

importance in understanding the physical relationship between the 

power/consumption and the shaft’s revolutions, the filter will not be used in the data 

correction process. 
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Figure 16: Filter STW_EP – Vessel 1. 
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Figure 17: Filter STW_EP – Vessel 2. 
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The effects of the application of the “STW_EP” filter on the dataset can be observed 

with the help of the EP – STW, EP – RPM, FOC – RPM and FOC – EP graphs. The 

filter has an insignificant effect on the other variables and the relationships that are 

formed among them, a conclusion that can be easily verified by the graphs’ lack of 

outlier points (red points). 

For Vessel 1, the filter manages to eliminate some outlying data points of the EP – 

STW graph that correspond with significantly high-power values but also falsely 

discards various data points that belong to higher power – speed curves, which are 

probably associated with greater hull fouling and/or worse weather conditions. 

Furthermore, the filter identifies only a small number of outliers in the EP - RPM 

and FOC - RPM graphs (at RPM ≈ 40) for great values of power/consumption 

while it omits a far greater amount of desirable data points that belong to the 

power/consumption – revolutions curves. Finally, the application of the filter causes 

the upper right area of the FOC -EP graph to be omitted, an outcome that is 

considered undesirable since the graph is already sufficiently corrected. 

As far as Vessel 2 is concerned, the filter manages to eliminate a significant amount 

of outlier data points of the EP – STW graph but also discards various data points 

that belong to higher power – speed curves, which are probably associated with 

greater hull fouling and/or worse weather conditions. The filter has a negative effect 

on the already sufficiently corrected power-related graphs since it omits data points 

associated with greater rpm and power values. 

Overall, the filter, while managing to identify some outlier data point, also omits 

areas of desirable data points that are vital in the representation of the physical 

relationships among the variables. As a consequence, it will not be included in the 

data correction process. 
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2.3.2.3 Engine power – Fuel oil consumption 

 

The EP and FOC variables are filtered according to the process described in the 

“Filtering procedure” paragraph. The outlier threshold k and the range v values are 

shown in Table 9: 

 

Case 
Primary: EP Primary: FOC 

Secondary: FOC Secondary: EP 

k 2.5 2.5 

v 100 kW 0.5 tons/day 
Table 9: Outlier threshold and range values (EP-FOC). 

 

Both cases are analyzed with the help of graphs for both vessels. For the case in 

which EP is the primary parameter, the respective filter is called “EP_FOC” while 

for the one in which FOC is the primary parameter, the filter is called “FOC_EP”. 

The occurring scatter plots contain data points colored in blue, red or green. The 

blue points are the ones that are omitted by the threshold filters that are applied 

during the first part of data correction. The red points are the ones that fulfill the 

criteria set by the first filtering procedure but are omitted due to the applied single-

filter under consideration (EP_FOC, FOC_EP). Finally, the green data points are the 

ones that meet the standards set by the threshold filters and the applied single filter. 

Presented below are the graphs that are significantly affected by the application of 

the filter. The effect of the filter on all graphs can be found in the figures included 

in Appendix A: Data correction – Part II filters. 
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Figure 18: Filter EP_FOC – Vessel 1. 
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Figure 19: Filter EP_FOC – Vessel 2. 
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The effects of the application of the “EP_FOC” filter on the dataset can be observed 

with the help of the EP – STW, EP – RPM, FOC – RPM and FOC – EP graphs. The 

filter has an insignificant effect on the other variables and the relationships that are 

formed among them, a conclusion that can be easily verified by the graphs’ lack of 

outlier points (red points). 

For Vessel 1, the filter manages to eliminate a few outlier points located at the upper 

middle area of the EP – STW graph (STW ≈ 6 & EP ≈ 16,000) but fails to identify 

outlier points of lower engine power values. In addition to the above, the filter falsely 

identifies data points that belong to the power-speed curves as outliers (9 < STW <

12 & 15,000 < EP < 17,000). Moreover, it falsely eliminates data points that 

belong to the power/consumption - revolution curves (60 < RPM < 80 & FOC >

50, EP > 15,000) that correspond with fouled hull and/or bad weather conditions, 

while managing to omit only a few true outliers (RPM ≈ 40 & FOC > 50, EP >

15,000). Finally, the application of the filter causes the upper right area of the FOC 

- EP graph to be omitted, an outcome that is considered undesirable since the graph 

is already sufficiently corrected. 

As far as Vessel 2 is concerned, the filter has limited and insignificant effect failing 

to further correct the dataset. 

Overall, the filter manages to identify a small amount of outlier data points while 

omitting significant areas of desirable data points. Therefore, it will not be utilized 

in the data correction process. 
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Figure 20: Filter FOC_EP – Vessel 1. 
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Figure 21: Filter FOC_EP – Vessel 2. 
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The effects of the application of the “FOC_EP” filter on the dataset can be observed 

with the help of the EP – STW, EP – RPM, FOC – RPM and FOC – EP graphs. The 

filter has an insignificant effect on the other variables and the relationships that are 

formed among them, a conclusion that can be easily verified by the graphs’ lack of 

outlier points (red points). 

For Vessel 1, the filter manages to eliminate a few outlier points located at the upper 

middle area of the EP – STW graph (STW ≈ 6 & EP ≈ 16,000) but fails to identify 

outlier points of lower engine power values. In addition to the above, the filter falsely 

identifies data points that belong to the power-speed curves as outliers (9 < STW <

12 & 15,000 < EP < 17,000). Moreover, it falsely eliminates data points that 

belong to the power/consumption - revolution curves (60 < RPM < 80 & FOC >

50, EP > 15,000) that correspond with fouled hull and/or bad weather conditions, 

while managing to omit only a few true outliers (RPM ≈ 40 & FOC > 50, EP >

15,000). Finally, the application of the filter causes the upper right area of the FOC 

- EP graph to be omitted, an outcome that is considered undesirable since the graph 

is already sufficiently corrected. 

As far as Vessel 2 is concerned, while the filter manages to eliminate a few outlier 

data points associated with high values of shaft’s revolutions (RPM ≈ 90) it also 

discards a far greater amount of data points that characterize the linear relationship 

between the fuel consumption and the engine power. 

Overall, the filter has an almost similar effect with the previous on, managing to 

identify a small amount of outlier data points while omitting significant areas of 

desirable data points. Therefore, it will not be utilized in the data correction process. 
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2.3.2.4 Engine power – Shaft’s revolutions 

 

The EP and RPM variables are filtered according to the process described in the 

“Filtering procedure” paragraph. The outlier threshold k and the range v values are 

shown in Table 10: 

 

Case 
Primary: EP Primary: RPM 

Secondary: RPM Secondary: EP 

k 2.5 2.5 

v 100 kW 0.5 rpm 
Table 10: Outlier threshold and range values (EP-RPM). 

 

Both cases are analyzed with the help of graphs for both vessels. For the case in 

which EP is the primary parameter, the respective filter is called “EP_RPM” while 

for the one in which RPM is the primary parameter, the filter is called “RPM_EP”. 

The occurring scatter plots contain data points colored in blue, red or green. The 

blue points are the ones that are omitted by the threshold filters that are applied 

during the first part of data correction. The red points are the ones that fulfill the 

criteria set by the first filtering procedure but are omitted due to the applied single-

filter under consideration (EP_RPM, RPM_EP). Finally, the green data points are 

the ones that meet the standards set by the threshold filters and the applied single 

filter. Presented below are the graphs that are significantly affected by the 

application of the filter. The effect of the filter on all graphs can be found in the 

figures included in Appendix A: Data correction – Part II filters. 

 

 

 

 

 

 

 

 

 

 



Data analysis 

43 

 

 

 

 

 

                     Figure 22: Filter EP_RPM – Vessel 1.                                      Figure 23: Filter EP_RPM – Vessel 2. 
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The effects of the application of the “EP_RPM” filter on the dataset can be observed 

with the help of the EP – STW, EP – RPM and FOC – RPM graphs. The filter has 

an insignificant effect on the other variables and the relationships that are formed 

among them, a conclusion that can be easily verified by the graphs’ lack of outlier 

points (red points). 

For Vessel 1, the filter successfully eliminates the outlier points located at the upper 

middle area of the EP – STW graph (3 < STW < 8 & EP > 9,000) without 

omitting any group of desirable data points. Moreover, it manages to identify the 

outlier points that form the 3 vertical lines on the EP – RPM and FOC – RPM graphs 

(RPM ≈ 40, RPM ≈ 50 and RPM ≈ 52). The 3 vertical lines are the main outlier 

regions in the two graphs and their omission is crucial for the correction of the 

dataset. The filter successfully eliminates them for FOC > 30, EP > 8,000. 

However, it fails to identify the remaining lower parts of the vertical lines. 

As far as Vessel 2 is concerned, the filter has limited and insignificant effect failing 

to further correct the dataset. 

Overall, the filter manages to identify a significant amount of outlier data points 

without omitting any desirable areas. Despite the fact that its effect on the Vessel 2 

dataset is limited, it greatly aids at the identification of outliers concerning Vessel 1. 

Therefore, it shall be applied at the data correction procedure. 
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Figure 24: Filter RPM_EP – Vessel 1. 
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Figure 25: Filter RPM_EP – Vessel 2. 
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The effects of the application of the “RPM_EP” filter on the dataset can be observed 

with the help of the EP – STW, EP – RPM, FOC – RPM and FOC – EP graphs. The 

filter has an insignificant effect on the other variables and the relationships that are 

formed among them, a conclusion that can be easily verified by the graphs’ lack of 

outlier points (red points). 

For Vessel 1, the filter eliminates two regions of the EP – STW graph. The first 

region (4 < STW < 8 & EP > 13,000) is successfully identified as an outlier area, 

however the second region (8 < STW < 12 & EP > 12,000) should be considered 

as a part of the power – speed curves which are associated with greater hull fouling 

and/or worse weather conditions and thus, its elimination is not correct. 

Furthermore, the filter identifies only a small number of outliers in the EP - RPM 

and FOC - RPM graphs (RPM ≈ 40 & FOC > 50, EP > 14,000) for great values of 

power/consumption while it omits a far greater amount of desirable data points that 

belong to the 3rd power/consumption – revolutions curve (50 < RPM < 70 & 40 <

FOC < 60, 10,000 < EP < 16,000). Finally, the application of the filter causes the 

upper right area of the FOC -EP graph to be omitted, an outcome that is considered 

undesirable since the graph is already sufficiently corrected. 

As far as Vessel 2 is concerned, the filter manages to eliminate a significant amount 

of outlier data points of the EP – STW graph but also discards various data points 

that belong to higher power – speed curves, which are probably associated with 

greater hull fouling and/or worse weather conditions. The filter has a negative effect 

on the already sufficiently corrected power-related graphs since it omits data points 

associated with greater rpm and power values. In addition to the above, it completely 

discards the graphs’ areas for 40 < RPM < 50 causing an important loss of 

information concerning the relationship between the power/consumption and the 

shaft’s revolutions 

Overall, the filter manages to identify just a few outlier points for Vessel 1 while 

omitting a far greater amount of desirable data and thus distorting the dataset. Since 

the filter impedes the formation of the dataset that better expresses the relationships 

among the physical quantities rather than facilitating it, it will not be applied in the 

data correction process. 
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2.3.2.5 Fuel oil consumption – Shaft’s revolutions 

 

The FOC and RPM variables are filtered according to the process described in the 

“Filtering procedure” paragraph. The outlier threshold k and the range v values are 

shown in Table 11: 

 

Case 
Primary: FOC Primary: RPM 

Secondary: RPM Secondary: FOC 

k 2.5 2.5 

v 0.5 tons/day 0.5 rpm 
Table 11: Outlier threshold and range values (FOC-RPM). 

 

Both cases are analyzed with the help of graphs for both vessels. For the case in 

which FOC is the primary parameter, the respective filter is called “FOC_RPM” 

while for the one in which RPM is the primary parameter, the filter is called 

“RPM_FOC”. The occurring scatter plots contain data points colored in blue, red or 

green. The blue points are the ones that are omitted by the threshold filters that are 

applied during the first part of data correction. The red points are the ones that fulfill 

the criteria set by the first filtering procedure but are omitted due to the applied 

single-filter under consideration (FOC_RPM, RPM_FOC). Finally, the green data 

points are the ones that meet the standards set by the threshold filters and the applied 

single filter. Presented below are the graphs that are significantly affected by the 

application of the filter. The effect of the filter on all graphs can be found in the 

figures included in Appendix A: Data correction – Part II filters. 
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                Figure 26: Filter FOC_RPM – Vessel 1.                                      Figure 27: Filter FOC_RPM – Vessel 2. 
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The effects of the application of the “FOC_RPM” filter on the dataset can be 

observed with the help of the EP – STW, EP – RPM and FOC – RPM graphs. The 

filter has an insignificant effect on the other variables and the relationships that are 

formed among them, a conclusion that can be easily verified by the graphs’ lack of 

outlier points (red points). 

For Vessel 1, the filter successfully eliminates the outlier points located at the upper 

middle area of the EP – STW graph (3 < STW < 8 & EP > 9,000) without 

omitting any group of desirable data points. Moreover, it manages to identify the 

outlier points that form the 3 vertical lines on the EP – RPM and FOC – RPM graphs 

(RPM ≈ 40, RPM ≈ 50 and RPM ≈ 52). The 3 vertical lines are the main outlier 

regions in the two graphs and their omission is crucial for the correction of the 

dataset. The filter successfully eliminates them for FOC > 30, EP > 8,000. 

However, it fails to identify the remaining lower parts of the vertical lines. 

As far as Vessel 2 is concerned, the filter omits a significant amount of data 

concerning the power/consumption-related graphs, which are already sufficiently 

corrected and require no further filtering. 

Overall, the filter achieves a similar result for Vessel 1 data points as the “EP_RPM” 

filter, without managing to overcome its inability to eliminate the lower parts of the 

vertical lines of the EP – RPM and FOC – RPM graphs. Despite its successful 

treatment of the Vessel 1 dataset, the filter falsely eliminates desirable data points 

of the power related graphs of Vessel 2. The graphs are already sufficiently corrected 

and require no further filtering. It can be understood that since the “EP_RPM” 

achieves similar results without affecting the Vessel 2 dataset, it is preferred over 

the “FOC_RPM” filter.  
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Figure 28: Filter RPM_FOC – Vessel 1 
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Figure 29: Filter RPM_FOC – Vessel 2. 
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The effects of the application of the “RPM_FOC” filter on the dataset can be 

observed with the help of the EP – STW, EP – RPM, FOC – RPM and FOC – EP 

graphs. The filter has an insignificant effect on the other variables and the 

relationships that are formed among them, a conclusion that can be easily verified 

by the graphs’ lack of outlier points (red points). 

For Vessel 1, the filter eliminates two regions of the EP – STW graph. The first 

region (4 < STW < 8 & EP > 13,000) is successfully identified as an outlier area, 

however the second region (8 < STW < 12 & EP > 12,000) should be considered 

as a part of the power – speed curves which are associated with greater hull fouling 

and/or worse weather conditions and thus, its elimination is not correct. 

Furthermore, the filter identifies only a small number of outliers in the EP - RPM 

and FOC - RPM graphs (RPM ≈ 40 & FOC > 50, EP > 14,000) for great values of 

power/consumption while it omits a far greater amount of desirable data points that 

belong to the 3rd power/consumption – revolutions curve (50 < RPM < 70 & 40 <

FOC < 60, 10,000 < EP < 16,000). Finally, the application of the filter causes the 

upper right area of the FOC -EP graph to be omitted, an outcome that is considered 

undesirable since the graph is already sufficiently corrected. 

As far as Vessel 2 is concerned, the filter manages to eliminate a significant amount 

of outlier data points of the EP – STW graph but also discards various data points 

that belong to higher power – speed curves, which are probably associated with 

greater hull fouling and/or worse weather conditions. The filter has a negative effect 

on the already sufficiently corrected power-related graphs since it omits data points 

associated with greater rpm and power values. In addition to the above, it completely 

discards the graphs’ areas for 40 < RPM < 50 causing an important loss of 

information concerning the relationship between the power/consumption and the 

shaft’s revolutions 

Overall, the filter manages to identify just a few outlier points for Vessel 1 while 

omitting a far greater amount of desirable data and thus distorting the dataset. Since 

the filter impedes the formation of the dataset that better expresses the relationships 

among the physical quantities rather than facilitating it, it will not be applied in the 

data correction process. 
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2.3.2.6 Mean draft – Trim 

 

The TM and TRIM variables are filtered according to the process described in the 

“Filtering procedure” paragraph. The outlier threshold k and the range v values are 

shown in Table 12: 

 

Case 
Primary: TM Primary: TRIM 

Secondary: TRIM Secondary: TM 

k 2.5 2.5 

v 0.5 tons/day 0.5 rpm 
Table 12: Outlier threshold and range values (TM-TRIM). 

 

Both cases are analyzed with the help of graphs for both vessels. For the case in 

which TM is the primary parameter, the respective filter is called “TM_TRIM” while 

for the one in which TRIM is the primary parameter, the filter is called “TRIM_TM”. 

The occurring scatter plots contain data points colored in blue, red or green. The 

blue points are the ones that are omitted by the threshold filters that are applied 

during the first part of data correction. The red points are the ones that fulfill the 

criteria set by the first filtering procedure but are omitted due to the applied single-

filter under consideration (TM_TRIM, TRIM_TM). Finally, the green data points 

are the ones that meet the standards set by the threshold filters and the applied single 

filter. Presented below are the graphs that are significantly affected by the 

application of the filter. The effect of the filter on all graphs can be found in the 

figures included in Appendix A: Data correction – Part II filters. 
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Figure 30: Filter TM_TRIM – Vessel 1     Figure 31: Filter TM_TRIM – Vessel 2. 
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The effects of the application of the “TM_TRIM” filter on the dataset can be 

observed with the help of the EP – STW, EP – RPM and FOC – RPM graphs. The 

filter has an insignificant effect on the other variables and the relationships that are 

formed among them, a conclusion that can be easily verified by the graphs’ lack of 

outlier points (red points). 

For Vessel 1, the filter successfully eliminates the vertical column of outliers located 

at the middle area of the EP – STW graph (6 < STW < 8) without omitting any 

group of desirable data points. Moreover, it manages to identify the outlier points 

that form the lower part of the vertical line (RPM ≈ 40 & FOC < 30, EP <

8,000) of the EP -RPM and FOC – RPM graphs. 

As far as Vessel 2 is concerned, the filter has limited and insignificant effect, failing 

to further correct the dataset. 

Overall, the filter manages to identify a significant amount of outlier data points 

without omitting any desirable areas. Despite the fact that its effect on the Vessel 2 

dataset is limited and that it fails to improve the draft related graphs, it completes 

the correction of the power/consumption related graphs since it eliminates the lower 

part of the vertical outlier line that is corrected by the “EP_RPM” filter. Therefore, 

the implementation of the filter is crucial for the creation of a more accurate dataset. 
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Figure 32: Filter TRIM_TM – Vessel 1. 

 

Figure 33: Filter TRIM_TM – Vessel 2. 
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The effects of the application of the “TRIM_TM” filter on the dataset can be 

observed with the help of the Trim – Tm graphs. The filter has an insignificant effect 

on the other variables and the relationships that are formed among them, a 

conclusion that can be easily verified by the graphs’ lack of outlier points (red 

points). 

For Vessel 1, the filter successfully eliminates the middle area of the Trim – Tm 

graph (8 < Tm < 12) that should be considered an outlier region. The application 

of the filter helps the formation of two “cloud” regions of data points on the graph, 

which represent the ballast and laden conditions of the vessel. 

As far as Vessel 2 is concerned, the filter manages to identify the majority of the 

outliers and removes the inconsistent diagonal lines that distort the dataset. As a 

result, two discrete areas of drafts are formed, indicating a clear distinction between 

the ballast and the laden condition. 

Overall, the filter manages to identify a significant amount of outlier data points 

without omitting any desirable areas. Through its application two bunches of data 

points are form in the Trim – Tm graphs, each representing the ballast and laden 

condition of the vessel. The filter is essential in correcting draft/trim values and will 

be used in the data correction process. 
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2.3.2.7 Multifilter  

 

The complete and solid correction of the dataset is achieved by the application of a 

multifilter that effectively combines the selected single filters. The multifilter 

contains the following sub-filters: 

 

 

 

 

The application of the multifilter leads to the creation of the following graphs. The 

occurring scatter plots contain data points colored in blue, red or green. The blue 

points are the ones that are omitted by the threshold filters that are applied during 

the first part of data correction. The red points are the ones that fulfill the criteria set 

by the first filtering procedure but are omitted due to the applied multifilter. Finally, 

the green data points are the ones that meet the standards set by the threshold filters 

and the applied multifilter. 

The final graphs indicate that the threshold filters applied at the first part of the data 

correction, along with the multifilter applied at the second part manages to eliminate 

the vast majority of the outlier data points without omitting desirable data areas that 

provide valuable information on the performance of the vessels. The filtered dataset 

better describes the relationships among the physical quantities and thus, can be used 

as the solid basis of a reliable regression model, as well as of an accurate KPI 

analysis. 

 

 

 

 

 

 

Filter 
Primary 

parameter 

Secondary 

parameter 

Outlier 

threshold k 
Range v 

SOG_STW SOG STW 2 0.5 kn 

STW_SOG STW SOG 2  0.5 kn 

EP_RPM EP RPM 2.5 100 kW 

TM_TRIM TM TRIM 2.5 0.5 m 

TRIM_TM TRIM TM 2.5 0.5 m 

Table 13: Multifilter’s single filters. 
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Figure 34: Multifilter Vessel 1. 
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Figure 35: Multifilter Vessel 2. 
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3 Key performance indicators 
 

The aim of the chapter is to calculate some key performance indicators that depict the changes 

in the performance level of the two vessels and to identify the different operational conditions 

throughout the examined period of time (i.e. the period prior to dry-dock). Key performance 

indicators (KPIs) are used as a quantitative method of performance measurement. A KPI 

analysis shall be able to depict alterations in performance and reach a solid conclusion 

concerning the impact of the propeller duct on Vessel 1. 

 

 

The following three KPIs are calculated and analyzed over the monitoring period: 

• KPIa = P/n3: It corresponds to the propeller curve coefficient [4]. When the KPI’s 

value decreases, the vessel’s performance increases since less engine power is required 

to maintain constant shaft’s revolutions (constant denominator) and greater rpm can be 

achieved for the same level of engine power (constant numerator). 

 

• KPIb = FOC/P: It expresses the specific fuel oil consumption (SFOC). When the KPI’s 

value decreases, the vessel’s performance increases since the less amount of fuel is 

required to maintain the same engine power (constant denominator) and more power 

can be achieved by consuming the same amount of oil (constant numerator). 

 

• KPIc = V/FOC: It expresses the fuel efficiency [5]. When the KPI’s value increases, the 

vessel’s performance also increases since for the same amount of consumed fuel higher 

speed through water is achieved (constant denominator) and for the same speed value 

less fuel is required (constant numerator). This KPI is calculated separately for the two 

loading conditions (ballast and laden). 
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The vessels’ performance throughout the observation period is expressed by KPI – time plots 

that can successfully depict performance-related fluctuations. In order to identify the KPIs’ 

trends over time, the datasets are divided into the following time periods: 

 

Vessel 1: {

Period 1A: before propeller polishing
Period 1B: between propeller polishing and dry − dock

Period 1C: after dry − dock
 

Vessel 2: {
Period 2A: before dry − dock

Period 2B: after dry dock
 

 

Changes in performance, expressed by the KPIs, can be mainly explained by three events: 

• Dry-dock: a repair process which includes the cleaning of the hull. As a result, the ship’s 

resistance is reduced and its propulsion performance is improved. 

• Propeller polishing (only for Vessel 1): a repair which greatly improves the propeller’s 

efficiency and, thus, the overall performance of the vessel. 

• Duct installation: a fitting procedure that aims at improving the propeller’s efficiency 

and whose impact should be evaluated by the KPI analysis. 

 

Vessel 1 had its propeller polished prior to the dry-dock during which the Mewis duct was 

installed. It can be understood that the time period between the two actions (Period 1B) should 

be examined separately from the initial period, during which the vessel monitoring begun, and 

the final period, during which the vessel operates with a duct. Separating Period 1B from the 

others is an essential step towards the accurate estimation of the duct’s effect on the first vessel’s 

performance since it allows a solid comparison between the two vessels, given that Vessel 2 

did not had its propeller polished.  

Prior to the KPI analysis, three corrections, different from those of the previous chapter, are 

applied to the divided dataset in order to improve the KPIs’ calculations. The first correction 

aims at reducing the variance of the draft values by concentrating them around two reference 

values (ballast and laden drafts). The second one takes into account the effect of the weather on 

the dataset and sets boundaries on the wind speed and the rudder angle, two previously not 

filtered parameters. Finally, the engine power and the fuel oil consumption are corrected by the 

Admiralty Coefficient.  

 

 

 



Key performance indicators 

65 

 

3.1 Draft correction 

 

The drafts of the vessel are expected to form “cloud” regions when plotted, an expectation 

which is met by the corrected dataset produced in the previous chapter. Each region represents 

a different loading condition. In the current study, the loading conditions that are analyzed are 

the “laden” and the “ballast” and as a result the dataset is divided into two groups, one for 

each condition. 

In order to better define these loading conditions, the dataset is further filtered according to 

the following: 

▪ For each of the two groups (laden and ballast) the mode value of the mean draft is 

calculated (Tm mode) . 
▪ For each data point the following deviation is calculated: 

Tdev =
|Tm − Tm mode|

Tm mode 
 

▪ If Tdev > 10% then the data point is omitted. 

 

The result of the above filtered is expressed via the following scatter plots. The blue points 

are the ones that are within ±10% of the mode values. The black points are omitted. 

  
Figure 36: Trim – Mean Draft graph (10% draft correction). 

The mean draft values are calculated for both vessels and for both loading conditions  

 

 Ballast Laden 

Vessel 1 6.927 15.561 

Vessel 2 5.158 12.859 
Table 14: Mean drafts. 
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3.2 Weather correction 

 

The quality and accuracy of the KPIs can be significantly improved through the application 

of a weather correction. By neglecting anomalies and bias caused due to extreme weather 

conditions, the calculated KPIs can better quantify and depict the alterations in the vessels’ 

performance in sea travel. 

In order to achieve the above correction, the following criteria are set [6]: 

Wind Speed (WS) < 8 m/s 

−5 < Rudder Angle (RA) < 5 deg 

Any data point that fails to comply with the wind speed and rudder angle limitations is not 

taken into account in the KPI analysis. Extreme wind speeds can cause significant variations 

of power and propulsion related parameters such as the engine power or the speed through 

water. In addition, big rudder angles indicate a sudden change of course or an in-port 

maneuvering which instantaneously distort the dataset. 

 

3.3 Admiralty correction 

 

The KPIs calculation is partly based on the engine power (EP) and fuel oil consumption (FOC) 

parameters. These parameters are corrected by the Admiralty Coefficient A which is defined: 

A =
∇

2
3 ∙ V3

P
=

∇
des

2
3 ∙ Vdes

3

Pdes
 

For equal ship speed V = Vdes the propulsion power is: 

P = Pdes ∙ (
∇

∇des
)

2
3

 

 

Each power value is corrected by the quantity (
∇

∇des
)

2

3
. However, the vessels’ displacements 

are not included in the initial data provided by LAROS. In order to overcome this setback, the 

following assumption is made [7]: 

(
∇

∇des
)

 

~ (
T

Tdes
)

 

 

As a result, the engine power and the fuel oil consumption, whose relationship is linear, are 

corrected by the quantity (
T

Tdes
)

2

3
. The Tdes is equal to the mean draft, ballast or laden 

depending on the loading condition. 
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3.4 KPI Analysis 

 

The three KPIs are calculated and plotted over the examined time period. The KPI – time 

graphs along with their analysis are presented below. It should be noted that Period 1C and 

Period 2B (after dry-dock) are divided into two sub-periods: one for the first year after dry-

dock and one for the second and a half year. The graphs are accompanied with trendlines that 

help in identifying the trends of the KPI values in different time periods.  

The analysis includes the evaluation of the KPIs’ fluctuations over time and the consequent 

changes in the vessels’ performance. An explanation of these alterations, deriving from 

known events or actions that are expected to affect performance, is provided.  

Once the graph analysis is accomplished, a comparison is made between the two vessels, for 

each KPI, in order to estimate the duct’s effect and its magnitude. 
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Figure 37: KPIa – time (Vessel 1) 

 

Figure 38: KPIb – time (Vessel 1) 
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Figure 39: KPIc – time (Vessel 1 – Ballast) 

 

Figure 40: KPIc – time (Vessel 1 – Ballast) 
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3.4.1 KPIa – Vessel 1 

 

As it can be observed in the graph above, KPIa (P/n3) presents an upward trend (red line) 

durng the period 1A, prior to the propeller polishing, starting from 0.045 and increasing 

just a bit over 0.050. Given that KPIa value and vessel performance are inversely 

proportianal, it can be concluded that the first period of monitoring is associated with a 

decreasing performance.  

Once the propeller is polished, the KPIa value is reduced by approximately 50% (from 

0.050 to 0.025). This reduction depicts the great impact of the propeller polish on the 

vessel’s performance. For the remaining Period 1B, the trendline (yellow line) has  a 

slightly negative slope which indicates a insignificant increase in performance levels.  

During Period 1C (1st year afte dry-dock), the KPIa trendline (green line) is almost parallel 

to the previous one, indicating a similar downward trend that is associated with incerasing 

performance. However, the trenline is slightly over the one that characterizes the propeller 

polishing period and only manages to reach KPIa values of under 0.025 at the end of the 

measuring period (after almost a year) while 1B trendline achieves such low values in just 

a few months. It can be understood that the effect of the dry-dock during the first year of 

operation is important but not as strong as the one of the propeller polishing.  

During the second year after the duct installation, the KPIa trendline follows a similar 

pattern with the previous one. While its values are slighlty increased at first, the trendline’s 

negative gradient causes a small reduction in KPIa values.The trendline shows that the 

KPIa values remain relatively constant and as a result no significant improvement in 

performance is achieved during the two years following the duct installation. 

While the reducton caused by the propeller polishing was about 50%, the further reduction 

in KPIa values taking place during the 1C period was less than 15%. Despite this fact, the 

duct’s effect should be considered positive since the increased performance levels, which 

are achieved by the propeller polishing, remain constant for a significant amount of time 

while also having a small, yet existant, increasing trend (due to the trendlines’ downward 

trend). If the increase of hull fouling is also taken into consideration, it can be estimated 

that the duct significantly increases performace as it manages to maintain the decreasing 

trend of KPIa despite the additional obstacle of hull fouling, whose impact grows as time 

passes. 
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3.4.2 KPIb – Vessel 1 

 

As it can be observed in the graph above, KPIb (FOC/P) receives high values during the 

first monitoring period. The trendline (red line) values drop from over 0.0035 to just under 

0.0035 showing that the poor performance levels have a small increasing trend.  

Once the propeller is polished, KPIb values are reduced by approximately 5%, reaching 

values of just over 0.0033. Despite the small reduction that is associated with an 

insignificant imporovement in performance, the trenline of Period 1B (yellow line) 

indicates a decreasing trend in KPIb values that further increases performance and 

underlines the positive contribution of the propeller polishing on the vessel’s propulsion. 

During Period 1C (1st year afte dry-dock), the KPIa trendline (green line) receives values 

that are significanty smaller than those of the 1B trendline, a fact that reveals an 

improvement in performance after the dry-dock. At the beginning of the 1st year after dry-

dock, a decrease of about 10% is noted in the KPIb trendline values. Despite the fact that 

the trendline shows an upward trend, which is associated with decreasing performance, 

the examined KPIb values are significantly lower during Period 1C (1st year) than during 

Period 1B. 

During the second year after the duct installation, the KPIa trendline follows a similar 

pattern with the previous one, having a significant increasing trend. Trendline values 

continue to increase causing KPIb values to eventually surpass the limits of the yellow 

line (Period 1B), in about two years after the dry-dock. The continuing upward trend 

indicates that KPIb is expected to receive high values, similar to those prior to propeller 

polishing.   

Despite the fact that for KPIb the dry-dock has a greater positive impact than the propeller 

polishing, it can be assumed that the incease in performace is related to the hull cleaning 

rather than the duct installation, since performance is steadily reduced as time goes by, an 

observation that can be explained by an increase in hull fouling. The propeller duct may 

have slowed the deteriotation of performance levels, a hypothesis that cannot be verified 

by the current graphs, but it has definitely failed to improve performance in the long-term, 

being less efficient than hull cleaning.  
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3.4.3 KPIc Ballast – Vessel 1 

 

As it can be observed in the graph above, KPIc Ballast (V/FOC) receives extremely low 

values, which are associated with low fuel efficiency and thus, poor performance, during 

the first monitoring period. In addition to that, the trendline (red line) has a negative slope 

that causes KPIc Ballast values to further decrease (from 0.35 to 0.26). 

Once the propeller is polished, KPIc Ballast values skyrocket from around 0.26 to 0.65 

(150% increase), with the yellow trendline receiving that are far greater that those of the 

red line. This increase in performance becomes greater as the Period 1B trendline 

presents a steep upward trend that leads to just over 0.9 KPIc Ballast values at the end of 

the period. The overall 150-200% increase in KPIc Ballast values along with the positive 

slope of the trendline indicate that the impact of the propeller polishing on performance 

is enormous.  

During Period 1C (1st year afte dry-dock), the KPIc Ballast trendline (green line) receives 

values that are greater than 1, surpassing the performance levels achieved during the 1B 

Period. Initially, the trendline’s value is increased by over 50% compared with the 1B 

trendline (from 0.9 to 1.4), a fact that indicates the positive effect of the dry-dock repairs. 

As the time passes, the trendline’s values are decreased, however, never dropping below 

the 1 threshold.  

During the second year after the duct installation, the KPIc Ballast trendline continues its 

downward pattern, taking values from around 0.9 (at the beginning of the period) to 

around 0.65 (towards the end of the period). Despite the deterioration of performance, it 

can be observed that, two years after the dry-dock, KPIc Ballast values approach the 

initial values of Period 1B. 

Despite the fact that for KPIc Ballast the dry-dock has a greater positive impact than the 

propeller polishing, it can be assumed that the incease in performace is related to the hull 

cleaning rather than the duct installation, since performance is steadily reduced as time 

goes by, an observation that can be explained by an increase in hull fouling. The propeller 

duct may have slowed the deteriotation of performance levels, a hypothesis that cannot 

be verified by the current graphs, but it has definitely failed to improve performance in 

the long-term, being less efficient than hull cleaning.  
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3.4.4 KPIc Laden – Vessel 1 

 

As it can be observed in the graph above, KPIc Laden (V/FOC) receives extremely low 

values, which are associated with low fuel efficiency and thus, poor performance, during 

the first monitoring period. However, the trendline (red line) presents an upward trend 

managing to almost double the KPIc Laden value from around 0.15 to just over 0.3. 

Once the propeller is polished, KPIc Laden values are increased by about 60% (from 0.3 

to 0.5), indicating a significant increase in performance. However, the trendline’s (yellow 

line) downward trend causes the KPIc values to drop to pre-polishing period’s levels 

towards the end of Period 1B. As a result, while the propeller polishing successfully 

increases performance levels, this increase is not long-term. 

During Period 1C (1st year afte dry-dock), the KPIc Laden trendline receives values that 

are greater than 0.4, surpassing the performance levels achieved during the end of Period 

1B. At the beginning of Period 1C, KPIc Laden values are increased by about 30%, a fact 

that reveals the positive contribution of the dry-dock repairs in the performance of the 

vessel. The trendline (green line) has an increasing trend, causing the KPIc Ballast values 

to increase from 0.44 to 0.48 (around 10% increase) in one year. This improvement 

contradicts the expected deterioration in performance due to hull fouling and thus, 

underlines the positive effect of the duct installation. 

During the second year after the duct installation, the KPIc Laden trendline continues its 

upward pattern, and, despite being slightly reduced at first, manages to overcome the 

increaased hull fouling and maintain the achieved level of performance. 

The dry-dock trendlines indicate that the KPIc Laden values are successfully maintained 

between 0.4 and 0.5 with an upward trend that is associated with increased efficiency. 

Despite the effect of hull fouling, which becomes greater as time goes by, not only are 

the KPIc Laden values not decreased but they are also steadily increased. This long-term 

improvement highlights the positive impact of the duct on the vessel’s overall 

performance. 
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Figure 41: KPIa – time (Vessel 2). 

 

Figure 42: KPIb – time (Vessel 2). 
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Figure 43: KPIc – time (Vessel 2 – Ballast). 

 

Figure 44: KPIc – Time (Vessel 2 – Laden). 



Key performance indicators 

76 

 

3.4.5 KPIa – Vessel 2 

 

As it can be observed in the graph above, KPIa receives relatively higher values during 

the pre-dry-dock period than it does during the post-dry-dock period. The trendline (red 

line) reaches an overall maximum of about 0.0235 at the beginning of Period 2A. 

However, the gradient of the line is negative, a fact that indicates an improvement in 

terms of performance as time goes by. Towards the end of Period 2A, KPIa’s has a value 

of about 0.021 (10% decrease). 

During Period 2B (1st year afte dry-dock), the KPIa trendline’s values (green line) are 

initially reduced by about 10%, receiving values under 0.020 and around 0.0185. Despite 

this reduction in KPIa values, which is associated with an increase in performance, the 

trendline has an upward trend that eventually causes KPIa values to return to pre-dry-

dock levels one year after dry-dock (first part of Period 2B). This deterioration in 

performance can be explained by the hull fouling which gradually increases after the dry-

dock repairs. Despite the increase in KPIa values, the threshold value set at the end of 

Period 2A (end of red line) is just slightly surpassed by Period 2B’s fisrts trendline many  

months after the dry-dock. 

During the second year after dry-dock, the KPIa values become steadier, with the 

trendline (magenta line) becoming almost horizontal with an insignificant negative slope. 

Despite the expected increase of hull fouling, the performace is no further deteriorated 

after the first year of the post-dry-dock period. Performance seems to have been 

stabilized, with KPIa receiving values around 0.021.  

Overall, dry-dock initially reduces KPIa values by about 10% and, as the time passes, its 

effect becomes less significant, probably due to the re-fouling of the hull. However, KPIa 

is finally stabilized at slightly smaller values, a fact that undelines the small, yet existant, 

long-term impact of the dry-dock repairs. 
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3.4.6 KPIb – Vessel 2 

 

As it can be observed in the graph above, KPIb receives relatively higher values during 

the pre-dry-dock period than it does during the post-dry-dock period. The trendline (red 

line) is approximately stable and its initial values are around 0.0042. The slightly negative 

slope of the trendline causes KPIb values to drop to around 0.0041 towards the end of 

Period 2A, a decrease that is rather insignificant. 

During Period 2B (1st year afte dry-dock), the KPIa trendline’s values (green line) are 

initially increased by about 10%, a result that is not anticipated as performance is 

expected to increase after dry-dock and hull cleaning repairs. A possible explanation for 

this contradiction is the vertical column of data points that can be spotted at the begging 

of Period 2B, which is probably an area of undetected outliers that causes a slight 

distortion in the KPIb’s calcalation. This assumption is stregthened when the trendline is 

examined, as its significant negative gradient quickly reduces the KPIb values and 

eventually causes them to drop below 0.0040, revealing the positive impact of the dry-

dock repairs. 

During the second year after dry-dock, the trendline (magenta line) receives values under 

0.0040, an evidence of the dry-dock’s long term impact. The trendline’s upward term can 

be explained by the gradual hull fouling, whose impact becomes greater as time passes.  

Overall, similarly to the previous KPI values, the KPIb values are initially reduced by 

the dry-dock repairs, an effect that becomes less significant in the long-term, causing 

performance to return close to its pre-dry-dock levels in about two years. 
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3.4.7 KPIc Ballast – Vessel 2 

 

As it can be observed in the graph above, KPIc Ballast receives relatively lower values 

during the pre-dry-dock period than it does during the post-dry-dock period. In addition 

to that, the trendline (red line) has a negative slope causing an overall reduction of 25% 

during Period 2A (from 0.72 to 0.54), an evidence of the deterioration of performance 

before the dry-dock. 

During Period 2B (1st year afte dry-dock), the KPIc Ballast trendline’s values (green line) 

begin to increase as the line’s gradient is positive. The improvement in performance levels 

is gradual and significant, as an overall 50% increase is achieved towards the end of the 

first post-dry-dock year (from 0.54 to 0.8). The fuel efficiency in the ballast condition 

maanges to reach higher levels, a fact that indicates the dry-dock’s significant impact on 

the particular KPI. 

During the second year after dry-dock, the trendline (magenta line) continues its upward 

trend but with a smaller gradiend. Despite the expected deterioration in performance due 

to the increased hull fouling, not only KPIc Ballast values are not decreased, but they also 

manage to achieve a further increase of more than 10% (from 0.8 to 0.9).  

Overall, the long-term effect of the dry-dock is extremely positive for the particular KPI 

as the trendlines’ values are almost doubled in the two year period following the dry-

docking.  
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3.4.8 KPIc Laden – Vessel 2 

 

As it can be observed in the graph above, KPIc Laden receives relatively lower values 

during the pre-dry-dock period than it does during the post-dry-dock period. However, 

the trendline (red line) has an upward trend that increases KPIc Laden values from 0.3 to 

about 0.43 (40% increase), thus achieving a significant and unexpected increase in 

performance prior to the dry-dock 

During Period 2B (1st year afte dry-dock), the KPIc Laden trendline’s values (green line) 

are initially increased by about 10%, a result that is anticipated as performance is 

expected to increase after dry-dock and hull cleaning repairs. Despite that, the increase 

is followed by a downward trend that cause the KPIc Laden values to eventually drop at 

0.38 towards the end of the first post-dry-dock year, an indication of the weakening of 

the dry-dock’s effect on performance. 

During the second year after dry-dock, the trendline (magenta line) is almost horizontal 

and stabilizes KPIc Laden values at around 0.40. Despite the expected increase of hull 

fouling, the performace is no further deteriorated after the first year of the post-dry-dock 

period. 

Overall, while the dry-dock manages to achieve a small increase in KPIc Laden values 

in the short-term, its impact seems to weaken in the long-term, causing KPIc Laden 

values to drop to pre-dry-dock levels.  
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3.4.9 Comparison 

 

The first graph is the scatter plot of KPIa – time for both vessels. The moving mean of 

KPIa is plotted in the second graph. Blue and green are the colors representing the data 

of Vessel 1 while magenta and red are the ones indicating Vessel 2’s data points. 

 

Figure 45: KPIa – time (Both Vessels). 

 

Figure 46: KPIa (moving mean) – time (Both Vessels). 
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As it can be observed in the graphs above, that initial difference between the two vessels’ 

KPIas is significant. In the pre-dry-dock period (Periods 1A and Period 2A respectively) 

Vessel 1 receives KPIa values of around 0.045 while Vessel 2 receives values that are 

almost half in size (about 0.023). In addition to that, the trendline of Vessel 1 has an 

upward trend while that of Vessel 2 a downward one, a fact that creates even greater 

difference in the vessels’ KPIas. Towards the end of Period 1A, the KPIa values of Vessel 

1 are more than double those of Vessel 2. The gap between the two KPIas depicts the 

significant difference in the performance levels of the two similar vessels and highlights 

the poor efficiency of Vessel 1. 

Once Vessel 1 has its propeller polished, its KPIa collapses to nearly half its previous 

values (from 0.045 to 0.026) managing to cover the majority of difference with Vessel 

2’s KPIa. The magnitude of the drop as well as the time it took to happen are accurately 

depicted at the moving mean graph in the form of an almost vertical line. The polishing 

of the propeller improves Vessel 1’s performance in such way that an expected common 

level of performance is approached. Apart from narrowing the difference, the propeller 

polishing seems to create ground for further improvement as Period 1B’s trendline is 

almost parallel to that of Period 2A, indicating that the two KPIas decrease at similar 

rates. As a result, the performance gap between the two vessels is temporarily stabilized. 

The two KPIas initially react differently to the dry-dock repairs. Vessel 1’s KPIa is 

increased from 0.026 to around 0.0275 (less than 10% increase) while Vessel 2’s is 

significantly reduced (about 20%). However, this widening of the gap between the two 

KPIas has a short-term effect, as the trendline of Period 1C is downward while that of 

Period 2B upward. The contrast between the two trends reveals that while the 

performance of Vessel 2 is gradually deteriorating, a result that can be expected due to 

the increasing hull fouling, Vessel 1’s performance is actually improved despite the 

fouling. This contradictory pattern can be explained by the duct installation which 

manages to decrease KPIa for Vessel 1 in the long-term, when the effect of the hull 

cleaning repair is weakened. 

During the second year after the dry-dock, Vessel 2’s trendline seems to have stabilized 

at a value of 0.0215 while Vessel 1’s continues to decrease, but at a lower rate. The 

reduction of Vessel 1’s reduction rate is anticipated as the fouling occurring two years 

after the dry-dock is definitely more severe. However, due to the increased performance 

achieved by the duct, the KPIa of Vessel 1 continues its slight decrease. As a result, the 

vessel’s performance gap reaches an overall minimum at the end of the measuring period 

(0.0235 vs 0.0215).  

The impact of the duct is revealed as time passes and the effect of the propeller polishing 

and hull cleaning are weakened. Despite the fact that propeller polishing manages to 

breach the initially huge gap, it is due to the duct that not only is the main ground 

maintained but also a further narrowing of the difference is achieved in the long-term.  
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The first graph is the scatter plot of KPIb – time for both vessels. The moving mean of 

KPIb is plotted in the second graph. Blue and green are the colors representing the data 

of Vessel 1 while magenta and red are the ones indicating Vessel 2’s data points. 

 

 

Figure 47: KPIb – time (Both Vessels). 

 

Figure 48: KPIb (moving mean) – time (Both Vessels). 
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As it can be observed in the above graphs, the specific fuel oil consumption of Vessel 1 

is less than that of Vessel 2 throughout the examined period of time. Initially, during the 

beginning of Periods 1A and 2A, Vessel 1’s KPIb receives values around 0.0036 while 

Vessel 2’s around 0.0042. In addition to that, while both trendlines have a negative slope, 

the Period 1A’s slope is greater and as a consequence KPIb reduces at a faster pace for 

Vessel 1 than it does for Vessel 2, widening the initial performance gap (about 15% 

difference at the end of Period 1A). 

Once Vessel 1 has its propeller polished, Vessel 1’s KPIb values drop to around 0.0033 

(about 10% reduction) while the respective trendline becomes almost parallel to that of 

Period 2A, causing the two KPIbs to decrease at a similar rate. Despite the positive impact 

of the propeller polishing on Vessel 1’s KPIb which is depicted by the slight drop of the 

values, its effect is not long-standing as the reduction rate is lowered (slope of the 

trendline).  

The two KPIbs initially react differently to the dry-dock repairs. Vessel 1’s KPIa is 

reduced from 0.0033 to 0.0029 (12% decrease) while Vessel 2’s is significantly increased 

from 0.0041 to 0.0045 (about 10%). However, this widening of the gap between the two 

KPIas has a short-term effect, as the trendline of Period 1C is slightly upward while that 

of Period 2B steeply downward. By the end of Period 1C, however, the gap remains 

significant and greater than the initial one (0.0031 vs 0.0040) as the vessels’ initial 

reactions to the dry-dock have not been counterbalanced by the trends. The effect of the 

dry-dock seems to last longer for Vessel 2 than it does for Vessel 1, whose performance 

deteriorates towards the end of the first post-dry-dock year.  

During the second year after the dry-dock, Vessel 1’s trendline is almost identical to the 

previous one, indicating that the performance patterns are not altered as time passes. As 

a result, KPIb continues to rise for Vessel 1, an action that is anticipated due to the 

increase of hull fouling, and eventually reaches pre-dry-dock values (around 0.0034). As 

far as Vessel 2 is concerned, its KPIb also follows an upward trend during the second 

post-dry-dock year. However, Period 2B’s trendline has a smaller gradient, in absolute 

terms, than Period 1C’s and as a result the initial difference between KPIbs is gradually 

reduced (3.1 vs 3.75 → 3.4 vs 3.9).  

Overall, and despite the various fluctuations, the KPIb difference between the two vessels 

is not significantly reduced throughout the examined period. Moreover, Vessel 2’s 

performance seems to improve slightly over time, while Vessel 1’s improves but only for 

the short-term. The effect of the duct is not depicted in the particular KPI as the 

deterioration of Vessel 1’s performance, due to the hull fouling and the weakening of the 

dry-dock effect, is not counterbalanced in the long run. 
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The first graph is the scatter plot of KPIc (Ballast) – time for both vessels. The moving 

mean of KPIc Ballast is plotted in the second graph. Blue and green are the colors 

representing the data of Vessel 1 while magenta and red are the ones indicating Vessel 

2’s data points. 

 

 

Figure 49: KPIc – time (Ballast – Both Vessels) 

 

Figure 50: KPIc (moving mean) – time (Ballast – Both Vessels) 
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As it can be observed in the above graphs, the Vessel 2’s fuel efficiency is initially higher 

than Vessel 1’s, reaching more than double KPIc Ballast values (0.72 vs 0.35). The 

trendlines of Periods 1A and 2A are both downward, with that latter having a smaller 

slope which indicates that the deterioration of KPIc Ballast, and thus of performance, is 

slower for Vessel 2. As a consequence, towards the end of period 1A, the difference 

between the two KPIc Ballast is slightly increased (0.65 vs 0.27). 

Once Vessel 1 has its propeller polished a significant alteration in performance is noticed. 

Vessel 1’s KPIc Ballast values are instantly increased by about 150% (from 0.26 to 0.64) 

causing the Period 1B’s trendline to surpass the Period 2A’s one very quickly. In addition 

to that, the Vessel 1’s trendline is steeply upward in contrast with the Period 2A’s 

trendline which is downward. As a result, the performance gap between the two vessels 

is widened as time goes by, with Vessel 1’s KPIc Ballast reaching a value of 0.92 while 

the respective value of Vessel 2 is less than 0.58. This significant alteration in Vessel 1’s 

performance underlines the positive effect of the propeller polishing, which manages to 

increase fuel efficiency by a rate of about 150% in a small period of time. 

The two KPIc Ballast initially react differently to the dry-dock repairs. Vessel 1’s KPIc 

Ballast is significantly increased from 0.92 to 1.43 (50% decrease) while Vessel 2’s 

decreases from 0.54 to 0.49 (about 10%). However, this widening of the gap between the 

two KPIas has a short-term effect, as the trendline of Period 1C is downward while that 

of Period 2B upward. By the end of Period 1C, however, the gap remains significant (1.00 

vs 0.73) as the vessels’ initial reactions to the dry-dock have not been counterbalanced 

by the trends. The effect of the dry-dock seems to last longer for Vessel 2 than it does for 

Vessel 1, whose performance deteriorates towards the end of the first post-dry-dock year.  

During the second year after the dry-dock, Vessel 1’s trendline continues its downward 

pattern, indicating that performance is reduced as the time passes, a phenomenon that is 

possibly explained by the constantly increasing hull fouling. On the other hand, Vessel 

2’s trendline, despite suffering an initial drop, continues its upward trend but at a lower 

slope, causing the KPIc Ballast values to increase at a lower rate. Eventually, Vessel’s 2 

trendline surpasses Vessel 1’s and the performance gap between the two vessels continues 

to grow given their trends. Towards the end of the measuring period, the difference 

between the two KPIc Ballast is about 0.3 (0.62 vs 0.89) with Vessel 1’s values returning 

to a similar level as the one achieved at the beginning of Period 1B (propeller polishing). 

Overall, despite Vessel 1’s initial increased performance due to the propeller polishing 

and the dry-dock, Vessel 2 manages to reach higher KPIc Ballast values in the long-term. 

The effect of the duct is not depicted in the particular KPI as the deterioration of Vessel 

1’s performance, due to the hull fouling and the weakening of the dry-dock effect, is not 

counterbalanced in the long run. 
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The first graph is the scatter plot of KPIc (Laden) – time for both vessels. The moving 

mean of KPIc Laden is plotted in the second graph. Blue and green are the colors 

representing the data of Vessel 1 while magenta and red are the ones indicating Vessel 

2’s data points. 

 

 

Figure 51: KPIc – time (Laden – Both Vessels). 

 

Figure 52: KPIc (moving mean) – time (Laden – Both Vessels). 
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As it can observed in the graphs above, Vessel 1’s KPIc Laden values are initially significantly 

low (around 0.17) while Vessel’s 2 are higher (around 0.29), with Period 2A beginning after 

the end of Period 1B (propeller polishing). The initial low values are counterbalanced by the 

upward trends of the Period 1A’s and Period 2A’s trendline, which cause the KPIc Laden 

values to reach 0.31 and 0.43 respectively (80% increase vs 40% increase). The initial 

performance gap between the two is narrowed due to Vessel 1’s higher increase rate (greater 

slope). 

Once Vessel 1 has its propeller polished, its KPIc Laden is increased to 0.5 (about 60% 

increase), managing to surpass Vessel 2’s values by significantly improving fuel efficiency. 

However, the effect of the propeller polishing is gradually weakened and Period 1B’s trendline 

is downward. As a result, at the end of the period, Vessel 1’s KPIc Laden values are decreased 

by 30% (from 0.5 to 0.36), approaching the pre-polishing performance level. It can be 

understood that while the propeller polishing manages to instantly increase fuel efficiency, 

and thus performance, its effect is quickly reduced.  

Initially, the two vessels reactions to the dry-dock repairs are similar. Vessel’s 1 KPIc Laden 

is increased by about 20% (from 0.36 to 0.44) while Vessel 2’s also increases but a slower 

rate (10% increase from 0.43 to 0.48). Due to Period 1B’s downward trend and Period 2A’s 

upward, Period 2B’s trendline manages to surpass Period 1C’s for a small period of time. 

However, Vessel 1’s trendline is slightly upward, achieving KPIc Laden values of around 

0.475 (almost 10% increase) by the end of the first post-dry-dock year, while Vessel 2’s 

trendline is downward and the respective KPIc Laden is reduced by about 20% in the first 

post dry-dock year (from 0.48 to 0.38).  

At the second post-dry-dock year, Vessel 2’s KPIc Laden initially increases to 0.41 and 

continues its decline, but at a lower rate, reaching values around 0.39 at the end of the 

measuring period. On the other hand, Vessel 1’s trendline is steeply upward and manages to 

counterbalance an initial 15% reduction of KPIc Laden values (from 0.475 to 0.415) reaching 

values around 0.48, greater than those achieved during the first post-dry-dock year.  

Overall, Vessel 1 manages to reach KPIc Laden values that approach the overall maximum 

achieved during the propeller polishing, towards the end of the measuring period, when the 

effect of the propeller polishing and the dry-dock is severely weakened if not complete 

eliminated. At the same time, Vessel 2’s KPIc Laden follows a more anticipated pattern by 

initially increasing after dry-dock and eventually declining due to the weakening of the dry-

dock’s impact. The difference in the performance pattern of the two vessels can be explained 

by the propeller duct which successfully manages not only to preserve the KPIc Ballast values 

achieved after dry-dock but also to increase them, counterbalancing the negative effect of hull 

fouling and achieving greater fuel efficiency in the long run. 
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4 Regression analysis 
 

Regression analysis is a procedure for estimating the relationship between a dependent 

variable (the response) and one or more independent variables (the predictors) [8]. The aim of 

this chapter is to produce a preliminary model that can predict the fuel oil consumption 

(response) of the two vessels in the post dry-dock era, which is divided into two parts, one for 

the first post dry-dock year (DD1) and one for the second (DD2). 

 

As observed by the FOC – EP graphs, the relationship between the two variables is linear and, 

thus, a linear regression model predicting the consumption given the shaft power is expected 

to produce solid results, as shown in the PhD thesis of L. G. Aldous [9]. However, this study 

aims to create a preliminary regression model that makes predictions for the fuel oil 

consumption through the utilization of other sea travel related variables such as the speed 

through water, the mean draft, the trim, the wind speed and the rudder angle. For the speed 

variable (STW), its square value is also examined along with the rest of the variables as it 

appears to better approach the observed FOC – STW relationship.  

 

The regression dataset is based on the dataset produced in the Data analysis chapter and the 

extra filters and corrections applied at the Key performance indicators chapter are ignored. 

However, an additional filter concerning the speed through water is applied, omitting speed 

values less than 8 knots. This elimination of slow speeds, which account for a very limited 

portion of the dataset, causes an improvement of the regression models and leads to better 

predictions of the fuel consumption without defying the natural aspect of the problem since 

such vessels rarely travel in speeds under 8 knots. 

 

Initially, the chapter introduces some basic principles and statistical quantities of regression 

analysis. Afterwards, the correlation of the variables is calculated and a regression model is 

selected by a “best subsets” analysis. The main characteristics of the model are presented and 

discussed before a case study is performed to allow for comparisons between the two time 

periods and the two vessels, under different operational scenarios. 
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4.1 Multiple linear regression  

 

A population model for a multiple linear regression model that relates a y variable to p x 

variables can be written as: 

 

yi = β0 + β1 ∙ xi 1 + β2 ∙ xi 2 + ⋯ + βp ∙ xi p + εi 

where: 

▪ yi : the i-th observation of the dependent variable. 

▪ xij : the i-th observation of the j-th independent variable. 

▪ β0 : the regression intercept term. 

▪ βj : the slope coefficient of the j-th independent variable. 

▪ εi : the error term of the i-th observation (normal distribution). 

 

It can be understood that the model relies on the assumption that there is a linear relationship 

between the independent variable and the predictors. Each β coefficient represents the change 

in the mean response, E(y), per unit increase in the associated predictor variable when all the 

other predictors are held constant. The intercept term, β0, represents the mean response, E(y), 

when all the predictors are zero. 

The MLR model that makes predictions for the y variable can be written as: 

yî = b0 + b1 ∙ xi 1 + b2 ∙ xi 2 + ⋯ + bp ∙ xi p 

where: 

▪ yî : the predicted/fitted value of the i-th observation of the dependent variable y. 

▪ xij : the i-th observation of the j-th independent variable. 

▪ bj : the sample estimates of the βj coefficients and are calculated as follows: 

 

Let the following 2-predictor MLR model: 

 

yi = β0 + β1 ∙ xi 1 + β2 ∙ xi 2 + εi 

 

that can be written in matrix form: 

Y = X ∙ B + E → [
y1

y2

⋮
] = [

1 xi 1 xi 2

1 xi+1 1 xi+1 2 
⋮ ⋮ ⋮

] ∙ [

β0

β1

β2

] + [
ε1

ε2

⋮
] 

then: B = (XT ∙ X)−1 ∙ XT ∙ Y, where X is the design matrix and Y the observed 

dependent variable. 

A residual (error) term is calculated for each observation: 

ei = yi − yî 
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4.2 Coefficient of determination  
 

The coefficient of determination, commonly known as R2, is a very significant characteristic 

of regression models. It explains how much of the variation in the response can be explained 

by the variation in the independent variables. Let y be the dependent variable and f the fitted 

value predicted by the regression model. Then, R2 can be calculated by the following formula: 

R2 = 1 −
SSRES

SSTOT
 

where: 

▪ SSTOT = ∑ (yi − y̅)2
  : the total sum of squares of the dependent variable. y̅ is the mean 

value of y. 

▪ SSRES = ∑(yi − fi)
2 : the residual sum of squares. 

R2 receives values in the [0, 1] interval that express the fitting of the regression model: 

▪ R2 = 0 : The model always predicts y̅. The outcome cannot be predicted by any of the 

independent variables. 

▪ R2 = 1 : The model always predicts the observed yi value and has no residuals. The 

outcome can be predicted without error from the independent variables. 

 

R2 increases as more predictors are added to the model. However, it should be noted that 

adding predictors to a model can actually lead to worse predictions despite the increase of the 

coefficient of determination. By adding many variables to a model, it becomes overly 

customized to fit the peculiarities and the random noise of the sample rather than reflecting 

the entire population. This phenomenon is known as overfitting and is a common problem in 

regression models.  

Sometimes an adjusted R2 is used in regression analysis to account for the spurious increase 

of the coefficient of determination when extra predictors are added to the model. For a model 

with n data points and p independent variables the adjusted R2 is calculated by the following 

formula: 

RADJ
2 = 1 − (1 − R2) ∙

n − 1

n − p − 1
 

Finally, the predicted R2 is calculated as: 

RPRED
2 = 1 −

PRESS

SSTOT
 

where the predictive residual error sum of squares, or PRESS, is calculated as the sum of the 

squares of all the resulting prediction errors that occur by removing each observation in turn 

and refitting the model with the remaining observations.  
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4.3 Multicollinearity - Variance inflation factors 

 

In a multiple linear regression model, one must not only account for the relationships between 

each predictor and the response but also for the relationships among the predictors. In an ideal 

regression model, all the independent variables are correlated with the dependent one but not 

with each other. However, that ideal model cannot be achieved as the predictors correlate with 

each other, either highly or lowly. Multicollinearity occurs when a predictor of the model can 

be linearly predicted from the other independent variables with a substantial degree of 

accuracy. The presence of collinearity causes the coefficients of the model to change 

erratically in response to small changes in the data. While the phenomenon does not reduce 

the reliability of the model and its predicting strength within the sample dataset, it may 

produce a regression model that gives invalid results about individual predictors and cannot 

distinguish which variables are redundant with respect to others. 

The severity of multicollinearity can be quantified by the Variance Inflation Factors (VIFs). 

The numerical value of VIF is the percentage to which the variance (i.e. standard error 

squared) is inflated for each coefficient due to multicollinearity. For example, a VIF = 1.8 

suggests that the variance of the particular coefficient is 80% greater than it would be if there 

was no multicollinearity. 

A Variance Inflation Factor is calculated for each independent variable of the model according 

to the following procedure: 

▪ Assume the following regression model: 

y = β0 + β1 ∙ x1 + β2 ∙ x2 + ⋯ + βp ∙ xp + ε  

▪ For each independent variable xj,  a regression model is calculated with xj as the 

response and the rest of the variables as the predictors. For example, for the x1 variable 

the following model is produced: 

x1 = a0 + a2 ∙ x2 + a3 ∙ x3 + ⋯ ap ∙ xp 

▪ The coefficient of determination Rj
2 is calculated for the above model. The variance 

inflation factor of the xj variable is given by the following formula: 

VIFj =
1

1 − Rj
2 

As a result, it can be understood that high values of VIF are indicators of multicollinearity 

since they occur for high values of Rj
2, which suggest that the respective predictor can be 

accurately linearly predicted by the rest of the independent variables. On the other hand, VIF’s 

minimum value is 1 and indicates that the examined variable is not correlated with the others. 

The VIF’s threshold value for the presence of collinearity is a subject of debate. As a rule of 

thumb, VIF’s threshold is taken at 10 but some conservative approaches reduce it to 5 or even 

2.5.   
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4.4 Standard deviation 

 

The regression analysis includes the calculation of the standard deviation S of the distance 

between the data values (y) and the fitted values (f) (standard error). S is measured in the units 

of the response. 

S = √
∑ (xi − x̅)2N

1

n − 1
 

where 𝑥 = y − f and n is the number of observations in the sample. 

 

4.5 Standard error of coefficient 

 

In a regression model the standard error of the coefficient (SE) is calculated for each predictor 

variable x according to the following formula: 

SE =
S

√∑ (xi − x̅)2
i

 

where S is the standard error of the model. 

The standard error of the coefficient is always positive and it measures how precisely the 

model estimates the coefficient's unknown value. The smaller the standard error the more 

precise the estimate. 

 

4.6 T-value 

 

The T-statistic is the ratio of the departure of the estimated value of a parameter from its 

hypothesized value to its standard error. In regression models, the T-value is used to measure, 

for each variable (including the constant), the ratio between the coefficient b and its standard 

error (SE). The T-value is calculated by the following formula: 

T − value =
b 

SE 
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4.7 Mallow’s Cp 

 

The regression analysis often incudes a preliminary procedure called best subsets, which aims 

to identify the subset or subsets that best meet some fitting criteria, such as a large R2 value 

or a small Mean Squared Error (MSE = S2). During this process, a statistical quantity named 

Mallow’s Cp is calculated in order to assess the size of the bias introduced into the responses 

by the presence of a model that lacks important predictors, an underspecified model. 

Mallow’s Cp is calculated for each one of the examined regression models (all the possible 

combinations among the predictors) by the following formula: 

Cp = k + 1 +
(MSEj − MSEall)

MSEall
∙ (n − k − 1) 

where: 

▪ k : the number of the variables of the examined model. 

▪ n : the number of observations (data points). 

▪ MSEj : the mean squared error of the examined model. 

▪ MSEall : the mean squared error of the unique model that combines all the predictors. 

 

Ideally, Mallow’s Cp would be calculated with the help of the population’s variance, σ2, but 

that is not possible. Instead the mean squared error of the model containing all the candidate 

predictors (MSEall) is used as an estimate of σ2. For this to be done, it is assumed that the full 

model containing all the variables has no bias, an assumption that may not be valid but cannot 

be tested without additional information. The usage of MSEall also guarantees that the full 

model has a Cp = k + 1. 

Models with a small value of Mallow’s Cp have a small estimated total variation in predicted 

responses. When Cp is near or below k + 1 the bias is low or none but when it is much greater 

than k + 1 the bias is significant. Since the full model’s Cp is always equal to k + 1, Mallow’s 

Cp should not be used to assess its bias. 

In general, when conducting a best subset analysis, the model or models with Cp values near 

k + 1 are more preferable for selection. If no such model exists, it can be an indicator that 

some important predictors may be missing.  
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4.8 F-value 

 

Let y express the dependent variable and f present the fitted value which is predicted by the 

regression model. The F-value of the model is calculated as: 

F − value =
SSREG/DFREG

SSRES/DFRES
=

R2

1 − R2
∙

n − p − 1

p
 

where: 

▪ SSREG = ∑(fi − y̅)2 : the regression sum of squares. 

▪ DFREG = p : the degrees of freedom of the regression model and p is the number of 

the model’s predictors. 

▪ SSRES = ∑(yi − fi)
2 : the residual sum of squares. 

▪ DFRES = n − 1 − p : the degrees of freedom of the residuals (error) and n is the 

number of observations. 

 

The F-value is also calculated for each independent variable as: 

 

F − value =
SSADJ REG

SSRES/DFRES
=

SSADJ REG

S2
 

where: 

 

▪ SSADJ REG : the adjusted regression sum of squares of the independent variable. 

▪ SSRES = ∑(yi − fi)
2 : the residual sum of squares. 

▪ DFRES = n − 1 − p : the degrees of freedom of the residuals (error) and n is the 

number of observations. 

The adjusted regression sum of squares of each independent variable occurs as follows: 

▪ The respective variable is removed from the model and a new model is formed with 

the rest variables as the predictors. 

▪ For the new model, the new regression sum of squares is calculated. 

▪ The difference between the regression sums of squares of the two models is the 

adjusted regression sum of squares of the removed predictor. 

It can be understood that the SSADJ REG quantifies the amount of variation in the response data 

that is explained by the respective term of the model. 
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4.9 P-value 

 

The P-value is a probability that measures the evidence against the null hypothesis. Lower 

probabilities provide stronger evidence against the null hypothesis.  

To determine whether each main effect and the interaction effect is statistically significant, 

the P-value of each term is compared to a significance level α that is usually set at 0.05. The 

alpha value indicates the percentage of the risk of concluding that an effect exists when it does 

not. If the P-value is greater than the selected significance level then the effect is not 

statistically significant, whereas if its equal or less then the effect of the term is statistically 

significant. 

The P-value of the model as well as of each predictor is calculated with the help of T-value as 

follows: 

P − value = 2 ∙ (1 − T(x|v)) = 2 ∙ (1 − ∫
Γ(

ν + 1
2 )

Γ(
ν
2) 

∙
1

√ν ∙ π
∙

1

(1 +
t2

ν
)

ν+1
2

dt

x

−∞

 

where: 

▪ x = T − value : the absolute t value of the model or the independent variable. 

▪ ν = n − 1 − p : the degrees of freedom of the error, for a model with n data points 

and p predictors. 

▪ Τ : Τ-distribution’s cumulative distribution function.  

▪ Γ(x) = (x − 1)! : the gamma-function. 

 

Alternatively, The P-value of the model as well as of each predictor is calculated with the help 

of F-value as follows: 

P − value = 1 − F(x|v1, v2) = 1 − ∫
Γ(

v1 + v2

2 )

Γ(
v1

2 ) ∙ Γ(
v2

2 )
∙ (

v1

v2
)

v1
2 ∙

t
v1
2

−1

[1 + (
v1

v2
) ∙ t]

v1+v2
2

x

0

dt 

where:  

▪ x = F − value : the absolute f value of the model or the independent variable. 

▪ v1 : the degrees of freedom of the model (equal to the sum of independent variables) 

or of the independent variable (equals 1). 

▪ v2 = n − 1 − p : the degrees of freedom of the error, for a model with n data points 

and p predictors. 

▪ F : F-distribution’s cumulative distribution function.  

▪ Γ(x) = (x − 1)! : the gamma-function. 
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4.10 Correlation 

 

The correlation among the variables of the regression (possible predictors and response) is 

quantified by the Pearson Correlation Coefficients which are presented below. 

 𝐒𝐓𝐖 𝐒𝐓𝐖𝟐 𝐓𝐌 𝐖𝐒 𝐑𝐀 𝐓𝐑𝐈𝐌 𝐅𝐎𝐂 

𝐒𝐓𝐖 1       
𝐒𝐓𝐖𝟐 0.997 1      

𝐓𝐌 0.179 0.138 1     
𝐖𝐒 0.121 0.114 0.099 1    
𝐑𝐀 −0.022 −0.013 −0.198 −0.051 1   

𝐓𝐑𝐈𝐌 −0.166 −0.122 −0.938 −0.060 0.159 1  
𝐅𝐎𝐂 0.842 0.837 0.391 0.454 −0.056 −0.322 1 

Table 15: Pearson correlation coefficients (Regression – Vessel 1 – DD1). 

 𝐒𝐓𝐖 𝐒𝐓𝐖𝟐 𝐓𝐌 𝐖𝐒 𝐑𝐀 𝐓𝐑𝐈𝐌 𝐅𝐎𝐂 

𝐒𝐓𝐖 1       

𝐒𝐓𝐖𝟐 0.997 1      
𝐓𝐌 0.198 0.167 1     
𝐖𝐒 0.033 0.016 0.379 1    
𝐑𝐀 0.055 0.062 −0.264 −0.141 1   

𝐓𝐑𝐈𝐌 −0.217 −0.187 −0.855 −0.372 0.189 1  
𝐅𝐎𝐂 0.725 0.714 0.529 0.494 −0.119 −0.459 1 

Table 16: Pearson correlation coefficient (Regression – Vessel 1 – DD2). 

 

 𝐒𝐓𝐖 𝐒𝐓𝐖𝟐 𝐓𝐌 𝐖𝐒 𝐑𝐀 𝐓𝐑𝐈𝐌 𝐅𝐎𝐂 

𝐒𝐓𝐖 1       

𝐒𝐓𝐖𝟐 0.997 1      
𝐓𝐌 0.147 0.130 1     
𝐖𝐒 −0.006 −0.010 −0.318 1    
𝐑𝐀 0.113 0.122 −0.218 0.113 1   

𝐓𝐑𝐈𝐌 −0.142 −0.135 −0.643 0.105 0.151 1  
𝐅𝐎𝐂 0.668 0.665 0.130 −0.237 −0.110 −0.279 1 

Table 17: Pearson correlation coefficient (Regression – Vessel 2 – DD1). 

 𝐒𝐓𝐖 𝐒𝐓𝐖𝟐 𝐓𝐌 𝐖𝐒 𝐑𝐀 𝐓𝐑𝐈𝐌 𝐅𝐎𝐂 

𝐒𝐓𝐖 1       
𝐒𝐓𝐖𝟐 0.997 1      

𝐓𝐌 0.444 0.412 1     
𝐖𝐒 −0.205 −0.208 −0.124 1    
𝐑𝐀 −0.016 −0.008 −0.264 −0.040 1   

𝐓𝐑𝐈𝐌 −0.440 −0.433 −0.592 0.077 0.227 1  
𝐅𝐎𝐂 0.766 0.760 0.613 −0.224 −0.174 −0.434 1 

Table 18: Pearson correlation coefficient (Regression – Vessel 2 – DD2). 
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4.11 Best subsets 

 

A best subsets analysis is conducted in order to determine the most suitable regression model 

for the examined dataset and variables. The results of this analysis are presented in the tables 

below. More specifically, for each possible number of variables the best two models are 

picked and their respective R2, Mallow’s Cp, and S are shown. 

 

Number of 

variables 
𝐑𝟐 𝐂𝐩 S 𝐒𝐓𝐖 𝐒𝐓𝐖𝟐 TM TRIM WS RA 

𝟏 70.89 30647 4.525 ✓      

𝟏 70.06 31944 4.589  ✓     

𝟐 83.49 10823 3.408 ✓    ✓  

𝟐 83.09 11460 3.449  ✓   ✓  

𝟑 89.28 1726 2.747  ✓ ✓  ✓  

𝟑 88.20 3424 2.882 ✓  ✓  ✓  

𝟒 89.95 663 2.659 ✓ ✓ ✓  ✓  

𝟒 89.89 758 2.667  ✓ ✓ ✓ ✓  

𝟓 90.30 114 2.612 ✓ ✓ ✓ ✓ ✓  

𝟓 90.00 592 2.653 ✓ ✓ ✓  ✓ ✓ 

𝟔 90.37 7 2.603 ✓ ✓ ✓ ✓ ✓ ✓ 
Table 19: Best subsets (Vessel 1 – DD1). 

 

Number of 

variables 
𝐑𝟐 𝐂𝐩 S 𝐒𝐓𝐖 𝐒𝐓𝐖𝟐 TM TRIM WS RA 

𝟏 52.50 37391 5.757 ✓      

𝟏 50.94 39417 5.850  ✓     

𝟐 74.61 8676 4.208 ✓    ✓  

𝟐 74.27 9121 4.237  ✓   ✓  

𝟑 80.52 1003 3.686  ✓ ✓  ✓  

𝟑 79.99 1690 3.736 ✓  ✓  ✓  

𝟒 81.14 208 3.628  ✓ ✓ ✓ ✓  

𝟒 80.68 807 3.672 ✓  ✓ ✓ ✓  

𝟓 81.23 91 3.619  ✓ ✓ ✓ ✓ ✓ 

𝟓 81.21 119 3.621 ✓ ✓ ✓ ✓ ✓  

𝟔 81.30 7 3.613 ✓ ✓ ✓ ✓ ✓ ✓ 
Table 20: Best subsets (Vessel 1 – DD2). 
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Number of 

variables 
𝐑𝟐 𝐂𝐩 S 𝐒𝐓𝐖 𝐒𝐓𝐖𝟐 TM TRIM WS RA 

𝟏 44.65 13411 6.794 ✓      

𝟏 44.23 13674 6.820  ✓     

𝟐 63.30 1835 5.533  ✓ ✓    

𝟐 62.78 2156 5.572 ✓  ✓    

𝟑 64.56 1054 5.437  ✓ ✓ ✓   

𝟑 64.22 1264 5.463  ✓ ✓  ✓  

𝟒 65.45 504 5.369  ✓ ✓ ✓  ✓ 

𝟒 65.22 643 5.386  ✓ ✓ ✓ ✓  

𝟓 66.16 64 5.313  ✓ ✓ ✓ ✓ ✓ 

𝟓 65.62 400 5.355 ✓ ✓ ✓ ✓  ✓ 

𝟔 66.25 7 5.306 ✓ ✓ ✓ ✓ ✓ ✓ 
Table 21: Best subsets (Vessel 2 – DD1). 

 

Number of variables 𝐑𝟐 𝐂𝐩 S 𝐒𝐓𝐖 𝐒𝐓𝐖𝟐 TM TRIM WS RA 

𝟏 58.75 7330 6.456 ✓      

𝟏 57.78 7946 6.531  ✓     

𝟐 68.61 1020 5.632  ✓ ✓    

𝟐 68.00 1410 5.687 ✓  ✓    

𝟑 69.20 641 5.579  ✓ ✓   ✓ 

𝟑 68.90 835 5.606  ✓ ✓  ✓  

𝟒 69.65 356 5.538  ✓ ✓ ✓  ✓ 

𝟒 69.54 424 5.548  ✓ ✓  ✓ ✓ 

𝟓 69.96 156 5.510  ✓ ✓ ✓ ✓ ✓ 

𝟓 69.92 185 5.514 ✓ ✓ ✓ ✓  ✓ 

𝟔 70.20 7 5.488 ✓ ✓ ✓ ✓ ✓ ✓ 
Table 22: Best subsets (Vessel 2 – DD2). 
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It can be observed that Vessel 1’s regression models have greater R2 values than Vessel 2’s 

which cannot surpass the 70% threshold that is easily achieved by almost all Vessel 1’s 

models. As a result, Vessel’s 1 dataset provides better FOC predictions than Vessel 2’s.  

Speed is the most important independent variable of the FOC regression models as it solely 

explains a lot of the variation of the predicted fuel oil consumption, something depicted by 

the big R2 values of the single-variable models. While STW appears to have a slight advantage 

in terms of R2 in the single-variable models, STW2is preferred when 3 or more variables are 

included in a model. Both variables are highly correlated with FOC as well as with each other. 

As a consequence, only one of them is included in the final model in order to avoid 

multicollinearity problems. Due to its better predictions in multi-variable models as well as to 

its better approach of the true FOC – STW relationship, STW2is preferred over STW. 

With the exception of the case Vessel 2 – DD1, the fuel oil consumption is more correlated 

with the mean draft than it is with the trim. This relative advantage of TM is shown in the 

above models as when only one of two variables can be picked, TM is always preferred over 

TRIM. Taking the above into account along with the fact that in all cases mean draft and trim 

are highly correlated, the chosen regression model shall contain the TM variable but not the 

TRIM one. If both predictors were picked, their respective VIFs would be high indicating the 

presence of multicollinearity which would affect the model and should be avoided. 

The addition of the wind speed variable (WS) significantly increases R2 and reduces the Cp 

and S values for Vessel 1’s models. As a result, WS is the second more significant variable 

and is chosen right after the speed variables. However, its impact is less significant on Vessel 

2’s models, for which the TM variable is more crucial. Overall, WS introduces the impact of 

the weather to the models and manages to improve their prediction without causing 

multicollinearity since it is not significantly correlated with any of the other predictors. As a 

result, it is chosen as a predictor of the regression.  

The addition/subtraction of the rudder angle variable (RA) to/from a model has very little 

impact on the calculated statistical quantities, a fact that clearly indicates its statistical 

insignificance to the regression analysis. This conclusion perfectly agrees with the low 

correlation of RA with FOC which is quantified by the Pearson Correlation Coefficients of 

the previous paragraph. 

The 3-variable model that is chosen (STW2 − TM − WS) provides satisfactory R2 values, 

compared with the maximum possible ones that are achieved by the 6-variable model without 

including many predictors, a choice that may cause overfitting or lead to an unnecessarily 

complicated model. The model used by A. A Safaei et al. (2019) [10], utilizes the speed 

through water, the displacement and the wave height to predict the fuel oil consumption of 4 

VLCCs, achieving high R2 values. Similarly, the current model combines 3 physical quantities 

that characterize sea travel; the vessel’s speed, its loading condition (expressed by the mean 

draft rather than the displacement) and the weather conditions (expressed by the wind speed 

rather than the wave height).The chosen predictors are lowly correlated and, thus, the risk of 

multicollinearity is avoided. 
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4.12 Regression models 

 

The following models are chosen for the four examined case (vessels & years). TM is the 

mean draft in meters, WS the wind speed in m/s and STW the speed through water in knots. 

The fuel oil consumption (FOC) is calculated in tons/day.  

 

Vessel 1 – DD1 

 

FOC = −16.19712 + 0.51255 ∙ TM + 0.30107 ∙ WS + 0.21118 ∙ STW2 

 

Term Coefficient SE coefficient T-value P-value VIF 

Constant −16.19712 0.11943 −135.618 0.000 - 
TM 0.51255 0.00548 93.498 0.000 1.027 
WS 0.30107 0.00237 127.264 0.000 1.020 

𝐒𝐓𝐖𝟐 0.21118 0.00075 282.671 0.000 1.030 
Table 23: Regression model’s coefficients (Vessel 1 – DD1). 

 

S  𝐑𝟐  𝐑𝟐 𝐚𝐝𝐣𝐮𝐬𝐭𝐞𝐝 𝐑𝟐 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 Mallow’s 𝐂𝐩 

𝟐. 𝟕𝟒𝟕 89.276% 89.274% 89.269% 1726 
Table 24: Regression model summary (Vessel 1 – DD1). 

 

Source 
Degrees of 

Freedom 
𝐒𝐒𝐀𝐃𝐉 𝐑𝐄𝐆 𝐌𝐒𝐀𝐃𝐉 𝐑𝐄𝐆 F-value P-value 

Regression 3 951289 317096 42032.551 0.000 
TM 1 65950 65950 8741.958 0.000 
WS 1 122186 122186 16196.248 0.000 

𝐒𝐓𝐖𝟐 1 602793 602793 79902.901 0.000 
Error 15147 114270 8 − − 
Total 15150 − − − − 

Table 25: Regression model – analysis of variance (Vessel 1 – DD1). 
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Vessel 1 – DD2 

 

FOC = −13.05877 + 0.61781 ∙ TM + 0.32492 ∙ WS + 0.19678 ∙ STW2 

 

Term Coefficient SE coefficient T-value P-value VIF 

Constant −13.05877 0.13953 −93.594 0.000  − 
TM 0.61781 0.00700 88.315 0.000 1.205 
WS 0.32492 0.00262 123.908 0.000 1.171 

𝐒𝐓𝐖𝟐 0.19678 0.00086 230.138 0.000 1.032 
Table 26: Regression model’s coefficients (Vessel 1 – DD2). 

 

S  𝐑𝟐  𝐑𝟐 𝐚𝐝𝐣𝐮𝐬𝐭𝐞𝐝 𝐑𝟐 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 Mallow’s 𝐂𝐩 

𝟑. 𝟔𝟖𝟔 80.524% 80.521% 80.516% 1003 
Table 27: Regression model summary (Vessel 1 – DD2). 

 

Source 
Degrees of 

Freedom 
𝐒𝐒𝐀𝐃𝐉 𝐑𝐄𝐆 𝐌𝐒𝐀𝐃𝐉 𝐑𝐄𝐆 F-value P-value 

Regression 3 1364482 454827 33474.157 0.000 
TM 1 105976 105976 7799.582 0.000 
WS 1 208611 208611 15353.216 0.000 

𝐒𝐓𝐖𝟐 1 719634 719634 52963.291 0.000 
Error 24289 330025 14 − − 
Total 24292 1694507 − − − 

Table 28: Regression model – analysis of variance (Vessel 1 – DD2). 

 

 

 

 

 

 

 

 

 

 



Regression analysis 

103 

 

Vessel 2 – DD1 

 

FOC = −8.65822 + 1.01502 ∙ TM − 0.26713 ∙ WS + 0.17884 ∙ STW2 

 

Term Coefficient SE coefficient T-value P-value VIF 

Constant −8.65822 0.20848 −41.530 0.000  − 
TM 1.01502 0.01095 92.712 0.000 1.133 
WS −0.26713 0.01149 −23.249 0.000 1.114 

𝐒𝐓𝐖𝟐 0.17884 0.00122 146.559 0.000 1.018 
Table 29: Regression model’s coefficients (Vessel 2 – DD1). 

 

S  𝐑𝟐  𝐑𝟐 𝐚𝐝𝐣𝐮𝐬𝐭𝐞𝐝 𝐑𝟐 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 Mallow’s 𝐂𝐩 

𝟓. 𝟒𝟔𝟑 64.218% 64.213% 64.204% 1254 
Table 30: Regression model summary (Vessel 2 – DD1). 

 

Source 
Degrees of 

Freedom 
𝐒𝐒𝐀𝐃𝐉 𝐑𝐄𝐆 𝐌𝐒𝐀𝐃𝐉 𝐑𝐄𝐆 F-value P-value 

Regression 3 1122540 374180 12537.751 0.000 
TM 1 256529 256529 8595.578 0.000 
WS 1 16131 16131 540.511 0.000 

𝐒𝐓𝐖𝟐 1 641039 641039 21479.492 0.000 
Error 20958 625476 30 − − 
Total 20961 1748016 − − − 

Table 31: Regression model – analysis of variance (Vessel 2 – DD1). 
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Vessel 2 – DD2 

 

FOC = −7.22912 + 1.13224 ∙ TM − 0.14341 ∙ WS + 0.17122 ∙ STW2 

 

Term Coefficient SE coefficient T-value P-value VIF 

Constant −7.22912 0.20693 −34.935 0.000  − 
TM 1.13224 0.01401 80.830 0.000 1.207 
WS −0.14341 0.01073 −13.361 0.000 1.047 

𝐒𝐓𝐖𝟐 0.17122 0.00128 133.546 0.000 1.242 
Table 32: Regression model’s coefficients (Vessel 2 – DD2). 

 

S  𝐑𝟐  𝐑𝟐 𝐚𝐝𝐣𝐮𝐬𝐭𝐞𝐝 𝐑𝟐 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 Mallow’s 𝐂𝐩 

𝟓. 𝟔𝟎𝟔 68.898% 68.893% 68.882% 835 
Table 33: Regression model summary (Vessel 2 – DD2). 

 

Source 
Degrees of 

Freedom 
𝐒𝐒𝐀𝐃𝐉 𝐑𝐄𝐆 𝐌𝐒𝐀𝐃𝐉 𝐑𝐄𝐆 F-value P-value 

Regression 3 1328415 442805 14088.709 0.000 
TM 1 205347 205347 6533.527 0.000 
WS 1 5611 5611 178.521 0.000 

𝐒𝐓𝐖𝟐 1 560539 560539 17834.651 0.000 
Error 19080 599680 31 − − 
Total 19083 1928095 − − − 

Table 34: Regression model – analysis of variance (Vessel 2 – DD2). 
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The constant term is in all cases negative and its absolute value is reduced by almost 50% 

from Vessel 1’s models to Vessel 2’s. On the other hand, while a unit change of Vessel 2’s 

mean draft causes about one-unit change of the fuel consumption, Vessel 1’s TM has about 

half the impact of FOC. Finally, despite a slight gradual reduction of STW2 coefficients from 

the first case (Vessel 1 – DD1) to the last (Vessel 2 – DD2), all values are close to each other, 

ranging from approximately 0.17 to 0.21. 

Despite the variations described above, the most notable difference between the two vessels’ 

model is the coefficients concerning wind speed. Vessel 1’s models have positive WS 

coefficients (around 0.3) while Vessel 2’s negative ones. This change of sign reflects both a 

physical phenomenon and a statistical one. It can be implied that throughout the measuring 

period, Vessel 2 experienced more journeys/travel hours of favorable winds that aided the 

vessel’s navigation while Vessel 1 had fewer hours of fair winds. As a result, the increase of 

wind speed is a favorable phenomenon for Vessel 2’s navigation as it reduces the amount of 

fuel needed to reach a certain speed, whereas such increase has a opposite effect on Vessel 1, 

forcing it to increase the fuel consumption in order to overcome the added wind resistance. 

Despite the possible validity of the above assumption, for its proper assessment an additional 

physical quantity is needed: the wind speed’s (relative) direction. If the direction of the wind 

speed is to be provided then a more proper evaluation of the above assumption can be 

conducted by introducing another predictor to the regression models and assessing its effect 

on the response variable. However, the data for the wind direction are not available for the 

examined vessels so such an assessment cannot be made. Instead, despite the sign 

contradiction, the discussed 3-variable model is used for both vessels in this preliminary 

regression analysis. Due to the larger amount of fitting of Vessel 1’s models (higher R2 

values), it can be assumed that in a more complete and solid model, the WS coefficient would 

be positive.  

With the exception of the above inconsistency, the chosen model has an adequate 

performance. The variables P – values are extremely small (less than 10−16), a fact that 

indicates their statistical significance, mainly due to the vast amount of data points. In 

addition, the calculated Variance Inflation Factors of the selected predictors are very low (just 

above 1), suggesting that there are no multicollinearity problems in the models as the 

independent variables are not significantly correlated, a conclusion also confirmed by the 

Pearson correlation coefficients (Correlation).  

The fitting of the chosen model is depicted by FOCpredicted vs FOCobserved graphs for each 

examined case. To provide a better visualization of the model’s fitting, the ideal fitting line 

y = x is shown in red. 
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Figure 53: FOCpredicted vs FOCobserved (regression fitting). 
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4.13 Case study 

 

For the selected 3-variable regression model, a case study is performed in order to evaluate 

and compare the FOC predictions between the two examined periods (DD1 & DD2) as well 

as between the two vessels (Vessel 1 & Vessel 2). Four different cases are examined with each 

case concerning a different wind speed and loading condition (expressed by the mean draft). 

The 4 examined cases are: 

▪ Case 1: WS = 0 m/s & Tm = Tballast 

▪ Case 2: WS = 0 m/s & Tm = Tladen 

▪ Case 3: WS = 10 m/s & Tm = Tballast 

▪ Case 4: WS = 10 m/s & Tm = Tladen 

where the mean draft for the ballast and the laden condition are the values calculated in the 

Draft correction paragraph.  

The first part of the case study (Part A: DD1 vs DD2) is concerned with the comparison of 

fuel oil consumption values between the two examined periods (DD1 & DD2) for both 

vessels. Predictions are provided by the selected regression model whose predictors’ values 

differ from case to case (WS & TM). Six different characteristic speed through water values 

are examined: STW = 10 − 15 kn. 

The second part of the case study (Part B: Vessel 1 vs Vessel 2) is concerned the comparison 

of fuel oil consumption values between the two vessels (Vessel 1 & Vessel 2) for each 

examined period. In contrast with the previous part, Part B does not focus on a specific speed 

through water value. Instead, the FOC − STW2 curve of each vessel is produced by the 

respective regression model for Case 1 and Case 2. The vessels’ curves are plotted in a 

common figure and compared over time (DD1 & DD2) for a range of STW values. 

Only Cases 1 and 2 are examined at Part B due to the contradiction between the WS 

coefficients’ sign (positive for Vessel 1 and negative for Vessel 2). It can be understood that 

a comparison involving the wind speed between the two vessels cannot be supported.   
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4.13.1 Part A: DD1 vs DD2 

 

Vessel 1’s fuel oil consumptions for each case and examined speed through water value 

are summarized in Table 35. 

 

STW 
CASE 1 CASE 2 CASE 3 CASE 4 

DD1 DD2 DD1 DD2 DD1 DD2 DD1 DD2 

10 knots 
8.47 10.90 12.90 16.23 11.48 14.15 15.91 19.48 

𝟐𝟗% 𝟐𝟔% 𝟐𝟑% 𝟐𝟐% 

11 knots 
12.91 15.03 17.33 20.37 15.92 18.28 20.34 23.61 

𝟏𝟔% 𝟏𝟖% 𝟏𝟓% 𝟏𝟔% 

12 knots 
17.76 19.56 22.19 24.89 20.77 22.81 25.20 28.14 

𝟏𝟎% 𝟏𝟐% 𝟏𝟎% 𝟏𝟐% 

13 knots 
23.04 24.48 27.47 29.81 26.05 27.73 30.48 33.06 

𝟔% 𝟗% 𝟔% 𝟖% 

14 knots 
28.74 29.79 33.17 35.12 31.76 33.04 36.18 38.37 

𝟒% 𝟔% 𝟒% 𝟔% 

15 knots 
34.87 35.50 39.29 40.83 37.88 38.75 42.30 44.08 

𝟐% 𝟒% 𝟐% 𝟒% 
Table 35: FOC predicted values Vessel 1 (Regression – Case study: Part A). 

 

As it can be observed in the above tables that Vessel 1 generally consumes less fuel oil 

when travelling at lower speeds, a prediction that is in accordance with the real-time 

operation expectations. Furthermore, in each case, the predicted FOC is greater for DD2 

than for DD1. However, the increase becomes significantly smaller as the speed rises, 

leading to insignificant differences (2-6%) for STW = 14 − 15 kn. Through the 

comparison of the percentages for the pairs Case 1 – Case3 and Case 2 – Case 4 it can be 

understood that while wind speed generally increases FOC (positive coefficient) it has no 

significant effect on the relative DD1 - DD2 differences, which mainly depend on STW 

and TM. Another observation is that greater drafts (laden condition) cause about a “+2%” 

increase in the aforementioned gap for all speed except the lowest one. Overall, while the 

duct’s long-term effect is not depicted by the predicted FOC values, the stabilization of 

the values between DD1 and DD2, expressed by the percentage difference, for the high 

speeds indicates an increased performance that may be related to the Mewis duct. 

However, this is but an assumption that may or may not be verified by the high level of 

uncertainty that lies within the 2-6% difference. 
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Vessel 2’s fuel oil consumptions for each case and examined speed through water value 

are summarized in Table 36. 

 

STW 
CASE 1 CASE 2 CASE 3 CASE 4 

DD1 DD2 DD1 DD2 DD1 DD2 DD1 DD2 

10 knots 
14.46 15.73 22.28 24.45 11.79 14.30 19.61 23.02 

𝟗% 𝟏𝟎% 𝟐𝟏% 𝟏𝟕% 

11 knots 
18.22 19.33 26.03 28.05 15.55 17.89 23.36 26.61 

𝟔% 𝟖% 𝟏𝟓% 𝟏𝟒% 

12 knots 
22.33 23.27 30.15 31.99 19.66 21.83 27.48 30.55 

𝟒% 𝟔% 𝟏𝟏% 𝟏𝟏% 

13 knots 
26.80 27.55 34.62 36.27 24.13 26.11 31.95 34.83 

𝟑% 𝟓% 𝟖% 𝟗% 

14 knots 
31.63 32.17 39.45 40.89 28.96 30.74 36.78 39.46 

𝟐% 𝟒% 𝟔% 𝟕% 

15 knots 
36.82 37.14 44.63 45.85 34.15 35.70 41.96 44.42 

𝟏% 𝟑% 𝟓% 𝟔% 
Table 36: FOC predicted values Vessel 2 (Regression – Case study: Part A). 

 

As it can be observed in the above tables that Vessel 2 generally consumes less fuel oil 

when travelling at lower speeds, a prediction that is in accordance with the real-time 

operation expectations. Furthermore, in each case, the predicted FOC is greater for DD2 

than for DD1. However, this increase becomes smaller as the speed rises, leading to 1 −

7% differences for STW = 14 − 15 kn. While the increase of draft leads to greater FOC 

values, wind speed has an opposite effect that is expressed by the negative coefficient of 

the WS variable. Wind speed seems to significantly increase the relative difference of 

FOC between DD1 and DD2 while TM has a more limited effect. 

Overall, the assumption made for Vessel 1 seems to be invalid if the patterns of Vessel 2 

are taken into consideration. While the consumption is higher in the DD2 period, the 

relative difference is gradually reduced as speed is increased for both vessels. This 

similarity does not allow for the relative reduction to be attributed to the Mewis duct. 
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4.13.2 Part B: Vessel 1 vs Vessel 2 

 

Case 1 

Vessel 1 is predicted to consume less fuel oil than Vessel 2 for both periods DD1 and 

DD2. The difference in FOC between the vessels is greater for lower speeds (about 6 

tons/day for DD1 and 5 tons/day for DD2) and reduces as speed increases. The difference 

is minimized (about 1.5 ton/day) at 15 knots. Both vessels’ FOC values increase during 

DD2, however, Vessel 2’s increase is smaller, causing the difference between the fuel 

consumption of the vessels to drop during the second post dry-dock year. 

 

Figure 54: FOC – STW2 (Case 1 – DD1). 

 

Figure 55: FOC – STW2 (Case 1 – DD2). 
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Case 2 

Vessel 1 is predicted to consume less fuel oil than Vessel 2 for both periods DD1 and 

DD2. Compared with Case 1’s (Ballast condition), Case 2’s fuel consumptions are 

generally greater, a fact that is expected due to the added cargo weight. In the laden 

condition, the difference in consumption between the two vessels is greater than the one 

in the ballast condition, underlining Vessel 1’s added performance advantage in increased 

drafts which can be attributed to the Mewis duct. Once again, the gap between the vessels’ 

FOC is reduced with the increase of speed. 

 

 

Figure 56: FOC – STW2 (Case 2 – DD1). 

 

Figure 57: FOC – STW2 (Case 2 – DD2). 
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5 Conclusions 
 

The diploma thesis attempts to evaluate the propulsive efficiency of an energy-saving device, 

the Mewis propeller duct, through the utilization of a practical performance monitoring 

framework. For this purpose, two sister vessels are monitored for a three-year period, during 

which one had a Mewis duct installed. The task is to assess the duct’s effect by performing 

comparison between the pre-duct and the post-duct era as well as between the two sister vessels 

for the same period. The study approaches the problem via two routes; a Key Performance 

Indicator (KPI) analysis and a regression model. 

The first step of performance monitoring is the measurement of propulsion-related physical 

quantities by onboard measuring devices. A database is created as the output of this procedure. 

The examined dataset of the current thesis contains more than 200,000 data points gathered 

during a three-year period. It can be understood that one major prerequisite for proper 

conclusions to be drawn, is a vast database that quantifies the vessel’s behavioral patterns 

through time and allows for the evaluation of the long-term impact of performance-altering 

events, such as a hull cleaning repair or a duct installation. The occurring database contains 

various points that do not correspond with the physical relationships that bind the measured 

quantities or that simply do not have a physical meaning. These points occur either due to the 

devices’ miscalculations or while the vessel is in non-operational state, such as waiting to enter 

a port or being loaded. Since the propulsive efficiency is under consideration, such points that 

do not represent sea-travel data need to be omitted; that is achieved through a data correction 

process whose aim is to detect the outliers and eliminate them without discarding desirable data 

that provide valuable information. This procedure, while belonging to the initial steps of 

performance monitoring evaluation methods, should be considered of vital importance as it is 

responsible for “cleaning” the dataset from points that cause distortion between the 

measurements and the true physical relationships among the quantities. Therefore, a corrected 

dataset is the solid basis of the evaluation method performed, which, in the particular case, is 

the KPI analysis and the regression analysis. 

The Key performance indicators chapter attempts to quantify, for both vessels, the 

performance’s fluctuations via three KPIs. The first KPI (KPIa = P/n3) shows that while 

Vessel 2 performance is higher at first, Vessel 1 manages to narrow the gap once its propeller 

is polished. Despite the expectation for this improvement to be short-term, Vessel 1’s 

performance, expressed by KPIa, has a constantly upward trend, even towards the end of the 

examined period when the effect of dry-dock repairs is significantly weakened. On the other 

hand, Vessel 2 notices an increase in performance after dry-dock, which has a one-year lasting 

upward trend, while its performance seems to have been stabilized for the rest of the examined 

period. The difference in the long-term trends of KPIa underline the effect of the Mewis duct 

on Vessel 1; when the effects of the propeller polishing and the other dry-dock repairs, such as 

the hull cleaning, are weakened by time, Vessel 1 shows an improving performance trend that 

is attributed to the only event with long-term impacts, the Mewis duct fitting. Despite the 

revealing results occurring from the study of KPIa, KPIb (P/FOC) and KPIc (V/FOC) (for the 
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ballast condition) do not depict the effect of the Mewis duct, which is, however, highlighted 

when KPIc is examined in the laden condition. Vessel 1’s KPIc laden is initially lower that 

Vessel 2’s, a fact that is translated in initially higher performance levels for the latter. Despite 

that Vessel 1’s performance is boosted by the propeller polishing, the boost seems to be short-

term as the performance’s trendline is declining. Both vessels notice an increase in their 

respective KPIc laden values right after dry-dock. This increase is accompanied with gradual 

improvement of performance over time for Vessel 1, while Vessel 2 shows a constantly 

deteriorating performance. Once again, when the vessels’ performance is examined in the long 

run, it can be noticed that Vessel 1’s steadily rises while Vessel 2’s declines. These 

contradicting patterns are explained when the duct’s impact is brought into the equation; as the 

time passes and the hull is slowly fouled again, Vessel 1 achieves greater results than Vessel 2 

in the laden loading condition. As a result, it can be deduced that in greater drafts, which occur 

for loaded ships, the effect of the Mewis duct is enhanced. 

The Regression analysis chapter aims to approach the problem under a different scope. The post 

dry-dock era is divided into two sub-periods (DD1 & DD2) for which regression models are 

produced as an attempt to predict the fuel oil consumption given some sea-travel related values, 

specifically the speed through water, the wind speed, the rudder angle, the ship’s mean draft 

and trim. Out of the available predictors, only three (STW, WS, TM) are chosen for the final 

models which achieve satisfactory fitting without being overcomplicated or affected by 

multicollinearity. Vessel 1’s models provide more solid predictions, in terms of R2 and standard 

error, than Vessel 2’s, for which the wind speed’s coefficients are negative signifying that FOC 

increases as WS increases. This contradiction between the two vessels models may be attributed 

to Vessel 2 experiencing fairer winds than Vessel 1 that aided its propulsion instead of 

increasing wind resistance. This, however, remains an assumption that cannot be verified unless 

the relative direction of the wind speed is provided. If the lower R2 values of Vessel 2 models 

are also taken into account, it can be understood that the regression would provide significantly 

better predictions if the relative wind speed direction is introduced along with other weather-

related data, such as the wave height. Despite the presented limitations of the discussed 

preliminary regression models, some important conclusions can be drawn concerning the 

examined predictors. The rudder angle is very loosely correlated with FOC and as a 

consequence its contribution to the model is insignificant. On the other hand, speed through 

water, and especially its square value, can alone explain a lot of the variation in the predictions 

(R2) and its participation in the model is vital. As far as the mean draft and trim are concerned, 

it is important that one of them is used in the model as predictions are improved. Their high 

correlation with each other advises against their simultaneous use which introduces 

multicollinearity to the models. Finally, the wind speed is also considered a valuable predictor 

that, if combined with the relative wind direction and other weather-related variables, can lead 

to solid FOC predictions and highly fitted models. Part A of the case study does not reveal the 

effect of the duct. Part B provides more encouraging results. For both the ballast and the laden 

no-wind cases, Vessel 1 is predicted to consume less than Vessel 2 for the entire period. This 

performance advantage is increased for the laden condition, a fact that is in terms with the 

enhanced duct effect in the greater drafts revealed by KPIc laden. 
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Figure 58: Filter STW_SOG – Vessel 1. 



Appendix A: Data correction – Part II filters 

118 

 

  

  

  
 

Figure 59: Filter STW_SOG – Vessel 2. 
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Figure 60: Filter SOG_STW – Vessel 1. 
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Figure 61: Filter SOG_STW – Vessel 2. 
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Figure 62: Filter EP_STW – Vessel 1. 
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Figure 63: Filter EP_STW – Vessel 2. 
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Figure 64: Filter STW_EP – Vessel 1. 
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Figure 65: Filter STW_EP – Vessel 2. 
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Figure 66: Filter EP_FOC – Vessel 1. 
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Figure 67: Filter EP_FOC – Vessel 2. 
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Figure 68: Filter FOC_EP – Vessel 1. 
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Figure 69: Filter FOC_EP – Vessel 2. 
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Figure 70: Filter EP_RPM – Vessel 1. 
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Figure 71: Filter EP_RPM – Vessel 2. 

 

 



Appendix A: Data correction – Part II filters 

131 

 

  

  

  
 

Figure 72: Filter RPM_EP – Vessel 1. 
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Figure 73: Filter RPM_EP – Vessel 2. 
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Figure 74: Filter FOC_RPM – Vessel 1. 

 

 

 



Appendix A: Data correction – Part II filters 

134 

 

  

  

  
 

Figure 75: Filter FOC_RPM – Vessel 2. 
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Figure 76: Filter RPM_FOC – Vessel 1. 
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Figure 77: Filter RPM_FOC – Vessel 2. 
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Figure 78: Filter TM_TRIM – Vessel 1. 
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Figure 79: Filter TM_TRIM – Vessel 2. 
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Figure 80: Filter TRIM_TM – Vessel 1. 
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Figure 81: Filter TRIM_TM – Vessel 2. 

 


