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Me gmpOAAEN TAVTOG SIKOUMULOTOC.

Amayopevetal 1 avtypoaet], arodnkevon Kot dtovoun e mapovoag epyaciog, €€ oAoKANPOL N
TUMHOTOS VTG, Yo EUTOPIKO okomd. Emitpémeton n avatdmmon, amodnkevon Kot dtovoun yio
OKOTO U1 KEPOOGKOTIKO, EKTUOEVTIKNG 1] EPEVVNTIKNG PVOMG, VIO TNV TPoHTHOESN VoL avapEpeTaL
N Y1 TPOEAEVONG Kol va dtatnpeitat To mapov pivopa. Epotmuata mov apopodv tn ypron mg
epyaciog ylo kepOOGKOMIKO GKOTO TPEMEL VoL ameLOHVOVTAL TPOG TOV GLYYPOPEQ.

Ol améyelg Kol To. GCUUTEPACUOTO TOV TEPLEYOVIOL GE OWTO TO £YyYpapo ekepdlovv Tov
oLYYPOQEN KOl OV TPETEL Vo EpUNVELDEL OTL avTImpocwneLOVV TIG emionueg 0éaelg Tov EBvikon
MetooBiov [Torvteyveiov.






Iepiinyn

Zfuepa, vag oAogva ovEavopevog aplipog omd dedopéva yopaktnpilel TV Enoyn HOC, ETELON
OLAAEYOVTOL [e EDKOAO Kol GOMVO TPOTO Amd SLUPOPES GLOKEVEG TTOL EIVOL GUVOEOEUEVEG GTO
dwdiktvo. O YEPIoHOG OVTOV TOV OEOOUEVOV ATOLTEL TOPOLVS, TOV TOPEXOVTOL EVKOAN OO TO
VTOAOYIGTIKO VEPOG, 0AAG Kot vEa gpyareia Tov va emtoyvvovy T dadikacio. [Ipog avth v
KateLOLVOT|, N KATAVEUNUEVT] EKTEAECT] TOV OLEPYOSLDY KOl 1] AEIOTOINGCT TNG VYNANG TOOTNTOG
OV TPOGPEPEL 1| LVIUN €VAVTL TOL GKANPOoD diokov eivar vyiotng onpoacioc. To Spark eivat éva
EPYOAELD TOL EKUETAALEVETAL OVTEG TIC OVO TOPATNPNOELS Kot Lropel va xerpiletor evkola peyalo
Oyxo dedopévov. H BEATIoT ekTédeon) TV TPOYpAUUATOV TOV, OLmS, e€aptdtal og peydro Badbud
Ao TN 6OOoTN PUOUICT HOG GEPAS TOPAUETPOV, Ol 0TToleg HaAoTa ival TOAAES GE aplBuo.

2y mopovca epyacia, oyedidlovpe évo cvotnuo mov ektedel avtoépotn pHOon TV
nopapéTpmv Tov Spark, avédioya e TNV PapLOYN TOL EKTEAEITAL KOl TO HEYEDOC TV dESOUEVDV
glo6oov avts.  Evromilovpe t1g mopapétpovg mov €yovv T peyoAdtepn emidpocmn oTnv
EKTEAECT) TOV EPAPLOYDOV KOl OKLypa@ovpe T peBodoroyia yio ™ puOuion tovg pe okomd v
eloy1otomoinom Tov xpdvou ektédeons. Katomy, evoopotdvoope t Avon pog oto Spark péow
€VOG wWrapper script Kot TopEYOVIE GTOV ¥PNOTN TNV IKOVOTNTO VO TPEYEL TNV EVTOAN spark-submit
mov Ba €Tpeye, PE TN OPopd OTL 1 AVTIGTOLYN EVIOAN TOL B0 EKTEAECTEL GTNV TPAYUATIKOTITA
gtvar avt] mov ypnowomotel ™ Pértiom mapoaperponoinon.  Téhog, mapovoidlovpe v
EMTAYLVOT| TNG EKTEAEONG OV TETVYOAUE Y10 VO GUVOAO EQPUPLOYADV, LE XPNOTN TOV OTOiwV
KOTOUGKEVAGOLE TO GUOTNUA, KOOMG Kot GAADV AyVOCTOV EQUPUOYDOV Y10 VO EVIOTIGOVUE TNV
wavoTTa yevikevong g PeAtiotomomtikng ikavotntag e pebodoroyiog pog.

AéEarg Khewdra — Spark, pOOuon mapopétpov, Peltiotomoinom, emidpacn TopapETP®V,
povtelomoinon enidoong






Abstract

Nowadays, there is an ever-increasing number of data that characterizes our era, since they are
easy and cheap to collect from various devices connected to the Internet. Manipulating big data
demands resources, which are provided from the cloud in a convenient way, and some tools to
speed up the process. Towards this direction, the distributed execution of processes as well as the
exploitation of the high speed that the use of memory has to offer over the hard disk is of utmost
importance. Spark is a tool that takes advantage of these remarks and can manipulate easily a vast
volume of data. Achieving an optimal execution of its workloads, though, depends to a great extent
on the appropriate tuning of a large number of parameters.

In this thesis, we design a framework that tunes in an automated way Spark’s parameters,
depending on the workload and the size of the input data. We locate the parameters with the
greatest impact on the execution of the applications and we form a methodology to tune them
accordingly so as to minimize the execution time. Next, we integrate our solution into Spark,
with the use of a wrapper script and we provide the user the chance to run a simple spark-submit
command but actually executing the one with the optimal configuration. Finally, we present
the speedup we achieved for the set of applications we used to construct the framework as well
as for other unseen applications in order to evaluate the framework’s ability to generalize its
optimization capacity.

Keywords — Spark, parameter tuning, optimization, parameter impact, performance modeling






Evyoprotieg

Apywcd, Ba nBela va ek@paom TNV ELYVOROGUVT LoV 6Tov eMPBAEnOvVTA pov, Kadnynth EMIIT
Anpntplo Xovvtpn, 0 OmOl0g PE EUMGTEVTNKE KOl HOV £3MGE TNV €VKOPIO VO EKTOVIC® TN
dumAopatikn pov epyacia 6to Epyaostipio Mikpobmoroyiotav kot Pnelaxov Zvommudtov (Mi-
crolab) oto EMII.

Emiong, 0o 0eha va guxoplotom Tov HETASIOOKTOPIKO €pELVNTH KOl KaOnynty Zotplo
E0on Ko Tov vToymeo 010akTopa Anpocsfévn Macovpo yia ™ Bonfela kat T cuvepyasio TOVG
ka0’ OAN TN ddpKeEln TG NMAGUATIKNAG pov. H cvveyng emkotvovia pog kotd tn Odpkela g
OMA®UOTIKNG pe PonOnce vo amoKTGm YPNYOPOTEPL YVAOOCELS GYETIKES LLE TO OVTIKEILEVO, Ol
omoieg etvar epopurocieg oe TOAAOVG TOUELG TNG CVYYPOVIG TEXVOLOYIOG KOl TOV GLGTHUATOV
vroroyiot®v. TlapdAinAa pe glonyoyov 6TV €PELVNTIKN TPOcEyylon K epyacio. Oa M0eia,
EMIONG, VO ELYOPLOTNC® KOL TOV PETATTUYLAKO GLVEPYATN TOV Epyactnpiov Aytdéa Tlevetdmovio
OV NTOV TAVTO TOPAOV KoL 0GYOA0VTAY AUEGH e OO0 HIKTLOKO TPOPAN O TPOEKVTTE.

Axopa, 0o MBela va gvyapiotiom Tovg yovelg pov Niko kot ['ewpyla, v adepen pov
Kovotavtiva kot toug gidovg pov, wiaitepa tov BAacson, yio v aydmn toug Kot 1 Stopkn ToVg
vrootpign. Télog, Eva peydAo evyaploT®d 6To ayopt Lov Avdpéa, 0 0Toiog e OTNPIEE LLE VOOV
G€ OTIYUEG TTEONC KO QLYY OLG.
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Exterapévn epiinyn

1 Ewoayoyn

2T onuepVN EMOYN, TOL YOPOKTNPILETOL OO TOV TEPAGTIO OYKO JEGOUEVOV TOV EYOVIE VO
amoOnkevovpe kot va emeEepyaldpoote kadnuepvd, sivor Tpoovig n omovdatdtnta epyoreiwv
omwg to Cloud, apov emitpénel 6Tovg YpNoTEG TPOGPACT) G VAIKOVS TOPOLS OTOoTE TO BEAnGOLV.
INo tov yepiopd tov oroéva avlavopevav dedopévayv, akoun, eival ypNoYog o YEPIGUOG
TOVG UE KOTOVEUNUEVO TPOTO Kot 1 a§tomoinon og peyoAvtepo Pabud e pvnung RAM évavtt
ToV GKANPOY dlokov dote va avénbei 1 emidoon. To onpaviikdtepo epyareio mov meTvYAivEL
avtd ta 0vo omoutovpeva eivar 1o Apache spark, 1o omoio pmopel va yewpileton apkeTa
petabytes dedoUEVOV, KATOVEUNUEVA GE GVOTAOEG OO TOAAOVG TPAYUATIKOVS 1 KOl EIKOVIKOVG
eEumnpetTéC, LE EVTLTMGLUKN TaOTNTO KOOGS TEPLopilel TIG avayvAGELS KL EYYPOUPES GTO dIGKO
KOTO TNV EKTEAEOT TAPAAANA®V AEITOVPYLOV.

To Apache Spark dra0étet €va peyaho apBud mapapéTpov tpog pHouion mov Eemepva tig 100.
Onwc eaivetal otnv eikéva 1, n ahdoyn g TapapeTpomoinong Tov spark umopel vo ennpedoet
OMULOVTIKA TNV EMLO00T, Yio akpPdg o idta dedopéva 16000v. Avti M emidpacn eEaptdtot omd
NV €QOPUOYN Kol umopel va eivar pikpotepn, Omwg oty mepintmon tov Bayes, 1 kot apkeTd
neydAn 6mwg oto SVM. Xvykekpyéva, to SVM €xet petafAntomta mov og kapio mepintwon dg
Bewpeiton opeAnTéR Kot 1IGOVTOL LE:

t — s
variation = —= " — 1(.25

min

19



Exretouévny lepidnyn 2. Avrouaromomuévy ueBodoloyia yio. ™ pdluion twv epopuoywy tov Spark
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Figure 1: Katovour tov ypovov eKTEAEONC Y10 SLUPOPETIKEG TOPAUETPOTOGELS AV EPAPLOYN

o v eritevén g PEATIOTNC amdd0oMG, AoOV, sival amapaitnn 1 pLOUIoT KATOolWwV
TOPAUETPOV OO TOV TPOYPUUUOTIOTH, KAODG 1 TPOETAEYUEVN T TOVG UTOPEL va punv eivor
KOV VO EKUETAOALEVTEL GTO £MOKPO TIG SVVATOTNTES TOV GLYKEKPLUEVOL GUOTHUATOG. ATO VT
yiveTol ELEavig M avayKn oVTOROTOTOINONG TG S1001KAGTNG ETAOYNG QVTMOV TOV TIUMV, OCTE VO
EMLTLYYAVETOL YPIYOPO KL EDKOANL, YWPIG LEYOAN avAEN TOV avOp®OTIVOL TTOPayovTal, TO KAAVTEPO
dvvato amotédecpa. Ilpoteivovpe, Aowmdv, éva framework mov avtopatomolel ™ pvOon twv
TOPAUETPOV TOL spark, AapBdvovtag vtoyn Tig avaykes Tig Kb epapproync.

Kémoleg mapdpetpotl, ®6t000, 0V EXOVV LEYAAT EMIOPACT) GTNV EMIOOCT TOV EPAPUOYDV OTOTE
etvar onuavtikd va Tig Egxympicovpe dote v pHetwBovv ot dlooTtdcelg Tov mpofAanuatog. IIpog
avT TV KatevBuvon, Aowmodv, to framework pog evromilet TG o GNUAVTIKES TAPAUETPOVS LUE TN
Bonbeta Tov otatiotikov 1eot Kruskal-Wallis kot akolovOwg ywpilel Tig epaployEc o€ opdoeg e
Baomn Kkdmola TapaTANGLE TOVG YOPUKTNPIOTIKA o€ eMinedo apyltekTovikne. 'Emeita kataokevdlet
KO YPNOLOTTOLEL LOVTEAL UNYOVIKNG LEONOoNG Yo TV TPOPAEYT) TOL YPOVOL EKTEAEGTC OPIOUEVAOV
TPOYPAUUATOV Y10 SIOPOPETIKA HeYEON apyeimv 16600V Kot O1OPOPETIKA SLOVOGUOTO TIUDV TOV
ONUOVTIKOV 0VTOV TOPaUETpwV. Me autd ta povtéda emkowvovel 0 BEATIGTOTOMTAG OGTE VA
OTTOKTNGEL YPYOPT] TANPOPOPNON TTEPL TOV YPOVOV EKTEAECTG KO VO OEIOAOYNOEL TIG OLAPOPES
VIOYNPLEG AVGEC. Me avtd ToV TPOTO KATAANYEL TN AVGT oV £lye TV KaAvtepn a&loAdynon,
oV TTETVYE ONAON TOV EAAYIOTO YPOVO EKTEAEGNC, KO Oivel TN BEATIOTN TTOPAUETPOTOINGT TOL
APOPA TO GLYKEKPUUEVO PUNYAVNLLOL TTOL JBETOVLE, Yol ol EK TV EPAPUOYDV TOV LEAETIOMUE
Kot yo o péyeog apyeiov €16660v oV opilovpe.

2  Avtopatomoumpévn pegBoooioyio Yo T pOOHION TOV £QAPROYAOV TOV
Spark
Onwg culintOnie 6To TPOoNyovLEVO KEQPAANLO, O KAOOPIGUOS TMV TTLO CTLLOVTIK®OV TOPAUETPOV
tov Spark eivar g dvokoAn dwdwkacia. H peBodoroyio mov mpoteivovpe Paciletar otov

KaBopopd tovg pe €val amOALTO EMGTNUOVIKO TPOTO, YWPIG vo akoAovOrcovpe 66 HOG
VILayopeVEL M AOYIKN Kot TO €VOTIKTO pog. Me avtd 1oV TPOTO GTOXEVOVUE GTNV €VPECT EVOG

20



Exretouévny lepidnyn 2. Avtouaromomuévy ueBodoloyia yio. t pdluion twv epopuoywy tov Spark

apKeTA oKPPovg TPOTOL VO PEATIGTOTOIOVLE OTOLONTTOTE EPAPLLOYT.

Yvykekppéva n pebodoroyia pag yopileton oe 4 Pacikés ehoelc. XV TPAOTN ACT), TOV
TEPLYPAPETOL GTOV TOUEN 2.2, EKTELOVLLE L0 GEWPA TEPOUATOV KOl LEAETALE TNV EMIOPOAOT TOV
SPOP®V TOPAPETP®V DGTE Vo dovue moleg a&ilel va emavapubuictodyv. Xtn devtepn @don,
oL TEPLYpapeTan otov Topéa 2.3.1, eKTELOVUE oL GEWPE TEPAUATOV Y10 VO OT|LLOVPYNGOVUE TO
GUVOAO OV Oa YPNGUYLOTOMGOLLE YOl TNV EKTAIOELON TOV HOVIEAWV oG KL €metta yopilovpe
TIC €Qapuoyég mov Ba ypnowomomBovv vy v ekmaidgvon o€ opdoeg mapouoiwy. XtV
Tpitn @domn, mov meprypdpetan otov Topéa 2.3.2, eAéyyovue apkeTovg alyopifuovg dote va
KOTOOGKEVAGOLE EVOL LOVTELO v OpAd0 TTov vo umopel vo mpoPAéyel pe axpifela 1o ypovo
EKTEAEOTC OGS EPOPUOYNG Y10 CLYKEKPIUEVO UEYEDOG dEAOUEVOV KOl TAPOUETPOTOINGT. ZTNV
TETOPTN Kot TEAgLTaio PAom, mov meptypdpetor otov topéa 2.4, To HOVIEAD EMKOWV®OVOHV
pe évav alyopiduo Peitiotomoinong mov ta ypnowpomolel yuoo vo. afloloyel TIG VTOYNPLEG
TOPOULETPOTOMGELS YPNYOPO KL EVKOAN, YMPIG VO OaTEITOL 1) EKTEAECT] TTEWPOUATOV, DOTE VO
dmaoeL T PEATIOTN TOPAUETPOTOINGT.

STEP 1: Parameter analysis STEP 2: Clustering the workloads STEP 3: Performance modeling per cluster STEP 4: Optimization

Config PCM
| Vector Inputdata | | vecror

Training Set

L

| Modeling Technique |

Performance Evaluate
Model

Collect exec
. KRUSKAL
time
WALLIS

TEST

Figure 2: Amewcovion g tpotevopevng pebodoroyiog ylo avtdpotn pobuon tov topapétpmy tov Spark

2.1 TIleypopatikod 6TIGLHO Kl EMEENYOELS

O)la ta mepapota Tpoypotomodnkay oe va server, Pe £vo YELOOKOTAVEUNUEVO TPOTO, LE
xpnomn tov Hadoop Distributed File System (HDFS) avti yioa 10 tomkd cvotnua apyeiov. O
server pag etvan eEomcpévog pe 48 Intel(R) Xeon(R) CPU E5-2658A v3 2.20GHz 12-mHpnvoug
emeEepyaotés, 125 GB pvqun kot 1 TB oxdnpd dicko. H L1 instruction cache 6mwg emiong ko n
data cache eivar 32 KB, n L2 cache ivar 256 KB kot L3 cache givar 30.72 MB. To Aettovpykd
ocvotnua givar Linux, éxdoon 4.15.0-101-generic. H neipapotikny Apache Spark ékdoon givar 1.6.0
ka1 1 €ékdoon tov Hadoop eivorn 2.6.0.

To benchmarks mov emiéyOnkav yoo v avamtoén g avtopatoromuévng pebodoroyiog
pag, O0nwg emiong Kt avtd mov Ba eA&yEovv TV KOVOTNTO TOV GUGTNHUOTOS VO YEVIKEVEL TO
CLUTEPAGIATO TOV LE OTMOTEAECUATIKO TPOTO OKOUO KOl GE (YVMOOTES EPUPUOYES, TPOEPYOVTOL
and to HiBench Benchmark Suite. To HiBench mepiéyet d1dpopec epappoyég 0nme adyopiOpong
punyovikng pdbnong kot cuvaptoelg sql. Emiéyovpe 12 benchmarks ywo avémtoén, ta onoia
napovctdlovtal otov mivaka 1, dote va Egovpe peydin Paon yvaooelg Kot 6 yio ELeyyo, To omoia
napovctdlovtol 6Tov Tivakao 2.
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Exretouévny lepidnyn 2. Avrouaromomuévy ueBodoloyia yio. ™ pdluion twv epopuoywy tov Spark
Méyeboc Agdopévav yia kdbe katnyopio
Benchmark YuvTopgvon Tiny Small Large
Bayesian Classification Bayes 93.1 MB | 111.7 MB 377.1 MB
K-means clustering Kmeans 1.3MB | 602.4 MB 4GB
Support Vector Machine SVM 8 MB 800.6 MB 20 GB
Aggregate Aggr 543 KB 3.7MB 372 MB
Join Join 1992 KB | 19.2 MB 191.9 MB
Scan Scan 206.2KB | 20.1 MB 201 MB
PageRank PR 10.8 KB 1.8 MB 259.9 MB
Linear Regression Linear 4 GB 16 GB 48 GB
Gradient Boosting Trees GBT 11.3KB | 408.4 KB 16MB
Sort Sort 36 KB 3.2 MB 328.4 MB
Latent Dirichlet Allocation LDA 21.7MB | 97.5 MB 258.7 MB
TeraSort TS 3.2 MB 320 MB 32GB
Table 1: Iepapatikd benchmarks yio avantoén
MéyeBog Agdopévev yia kabe KoTnyopio
Benchmark Xuovtépgvon Tiny Small Large
Alternating Least Squares ALS 67.4 KB 6 MB 120.6 MB
Logistic Regression LR 808.4 KB 80 MB 8 GB
Random Forest RF 11.3 KB | 408.4 KB 8 MB
Principal Components Analysis PCA 88.4 KB 8 MB 32.1 MB
Singular Value Decomposition SVD 805 KB 16 MB 64 MB
WordCount WwC 36.2KB | 328.4 MB 32GB

Table 2: Ilepapatikd benchmarks yio €éleyyo

[Ipo@avdg, o1 TANPOPOPieg TOV EIVOL YPTGULES Y10 TOV YOPAKTNPIGUO LG EQAPLLOYNS APOPOVV
TN OYETIKY L€ TOVG ENEEEPYAOTES, LU TO OIKTLO KOL LE TN UVIUN CUUTEPIPOPE. ZVYKEKPUUEVO,
avtd mov mpénet va, peretn el etvar to IPC, 1 ouyvotta, 1 enidoon TV Kpuemv Lvinuov Kot ot
npocPdaoelg otn pvnun. To tpodypappo PCM (Performance Counter Monitor) ivot £va Tpoypappo
¢ intel mov Tpéxel 6TO TAPAGKNVIO KOTA TO XPOVO EKTEAECTG HLOG EQAPHOYNG KO GUAAEYEL OAES
TIG TOPATAVE® TANPOPOPIES. ZVYKEKPLUEVQ, LE TN ANEN TNG EKTEAEONG TG EPOPLOYNG, CLAAEYOVTOL
og éva apyelo .csv TéG mov Aapfavovtay ava 0.1 sec, OTmg eiye oploTel, Kol 0popovV oe EMinedo
OPYLTEKTOVIKNG TN CUUTEPIPOPE TG AvTO To apyeio meprapfdver mtolvdpiOeg otmieg, oL
TPOGPEPOLY TANPOPOPIES TPMTO YEVIKA Y100 TO GUOTNHO KO LETA Yoo cuykeKpEva sockets kot
mopnvec. Ot mAnpogopieg tov apyeiov mov agoroyninkav g peyaidtepnsg onposciog yio avtd
oL BEAOVE VO TETVYOVE €IV OVTEC TOVL APOPOVY TO GLGTNHO Kot Vot o1 €ENG:
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Exretouévny lepidnyn 2. Avtouaromomuévy ueBodoloyia yio. t pdluion twv epopuoywy tov Spark

PCM Merpwkny Ileprypoagi)

PhysIPC% [T 00og evtoradv avd kdkho poroyrot (IPC), tolhaniaclocpévo
pe tov oplbpd tov vnudteov kdbe mwoprve (2 threads/core)
Kol dwupepévo pe to péyoto odvvatd IPC (4) ko Eavd
moAlomAacacpévo pe 100%

TotalQPIout H extipnon kivnong oto QuickPath Interconnect (QPI), dniadn
TO GUVOAO T®V dedoEVMY 6 MB Tov Byaivouv amd Toug Tuprveg
1 ta sockets H€cm TV GLVOEGEDV TOL dIKTOLOL dlachvdeans QPI

READ Ot avayvooetg amod T pvhiun mov £ywvoy oe GB
WRITE Ot gyypagég otn pviun mov £ywvav oe GB
AFREQ H ovyvémmra OSwoupepévn pe TNV OVOUOOTIKY]  oLYvVOTNTO

tov enefepyaostn (2.10 GHz), efopdvtog 1o ¥poévo mov ©
EMEEEPYUOTNG KOLLATOL

L3MISS To m\0og twv misses otnv cache emumédov 3 petpnuévo oe
EKOTOLLVPLOL

L2MISS To mBog twv misses otnv cache emmédov 2 petpnuévo ce
EKOTOLLLVPLO

L3HIT To mocootd TV hits otnv cache emmédov 3

L2HIT To mocootd TV hits otnv cache emmédov 2

Table 3: Znpoviuég PCM petpikég

2.2 ®AXH 1: E&gpedvnon ko Ilegpikomi) tov y@dpov AvalTnons TV TopopiTPOV TOL
Spark

Xe avtn ™ eaon N pebodoroyia mov opicape TpoPAETEL TO YOAMIIGHA TOL YDPOL aval)TNoNG
HE TOV KOOOPIGUO TOV TOPOUETP®V OV £YOLV TN UEYAADTEPN EMIOPOCT OTNV EMIOOCN TMV
EPOPUOYDV, OOTE va Kpotnbodv povo avtés. Apywd, €ywve pla mpodTn eKKoOApon TOV
TOPAUETPOV KO 0POPEONKAY KATOLEG TTOV ALPOPOVGAV OTAL OVOUAGIES, SLOOPOUEG GTO GUGTN LA
apyelov kot dAheg meplrtég mAnpogopieg mov o Ba ypnoipevav 6to va yivel T0 GVCTNUA O
amodotikd. Emedéynoav pe avtd tov tpomo 99 mapdpetpor mov Ba propovcav va Bempnbodv
OMUOVTIKES, KOl AKOAOVONCE TEPATEP® AVAAVGT TOVS TPOKELUEVOL Vo, dlamioTmBel 1 emidpaon
TOVG GTO YPOVO EKTEAEONG TOV TMEPOUATOV KOl KOT ENEKTOCT M €MIdpAcY] TOvg (impact) oTig
EQOPUOYEC.

H mpotewvopevn pebodoroyio pog otnpileton otov OpenTuner, Oyt povo Katd T Sodtkacio
™G PBertioTonoinong aArd kot yoo TV mopaywyn toxaiov tapapetporomoemv. O OpenTuner
elvar éva epyareio mov umopel va ypnoporomei yio avtdpatn pvduion tpoypappdromv, doniodn
va SOKIUALEL O1APOPES TYLES Y10, TIG TOPAUETPOVG TTOL AVTE TPOSPEPOVY KOl VO KOTAANYEL GE AVTEG
oV B KAVOUV TNV EKTEAECT] TOV TTPOYPALULOTOS O OTOOO0TIKY, UE PAON KATOOL UETPIKT TOL
Eyovpe opicel. Xe avtd T0 6TAd10, OUWS, OV opilovue KAmOolo LETPIKN OAAG avTIOETOC Pyaivoupe
amo TN Olepyacio Kot TV EMAVAKOAOVUE TOALEG POPES, TaPAYOVTOG TUYOLN SVOCUATO TOV dEV
a&lohoyovvtat pe Kdmolo Tpomo.

[Ipokeévov va yiver n avdivon oavty, peletOnke TOAD KoAd TO €VPOG TIUDV KaOE
TOPOUETPOL KL EMEAEYNGAV TPELS OVIUTPOCOTEVTIKEG TIUEG, 1| TPOETIAEYIEVY, pio peyohdTepn
Kot pion ikpotepn Otav eMPOKELTO Yol OPOUNTIKES TIUES EVA Y10 TIG VITOAOUTEG TEPUTTACELG
tomofeTOnKav amAd ot EVOALOKTIKES TIES. X1 cLvEXEwn, TapnyOnoav 300 tuyaio dwovdcpoTa
He dtapopeg TIHEG o€ KAOE TapAUETPO - petalh avtdv mov elyape opioet - pe ) fondeia Tov open-
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Tuner. Ta dtavdopoata avtd giyav ™ LopeN:
conf; = {ci1, Cia, .., Cijy ..y Cigg }, 1 < 1< 300

, OOV T0 con f; lvon 1 1-00TY| TOPOUETPOTOINGT) KOl TO ¢;; £IVOL 1 T TNG j-OOTHG TAPAUETPOV
TNV 1-00TN TOPAUETPOTOINGT.

ExteAléotnke, pdaiota, pion cOVIoun avaivon tov dtovucsudtov yoo vo emBefoimbel 0t eivon
EMOPKMOC SLOPOPETIKA LETAED TOVS Ko AmOdElyTNKE OTL OAN TOL SLOVOGHATO 0VA 2 SLEPEPAY HETAED
T0VG 0€ mePLocoTEPES amd 40 mapapueTpoug.

Metd Vv mopoywyn ToV SIQOPETIKOV TOPAUETPOTOMGE®Y, 1| neBodoroyia pag mpoPfrémet
TNV €KTELEOT] LG GEPAG TEPOUATOV. ZVvyKeKpéva, ektedéotnkay to. 7 mpota benchmarks
tov mivaxo 1 ywo tiny, small kot large peyéfn 6edopévov eiddov kot yio tig 300 dopopeTiKég
TOPaUEPOTOMOELS. Ta OmOTEAECUATA TOV TOPATAVE TEPOUATOV NTOV £VO GOVOAO A0 TOVLG
avtioToyovg ¥povovg ektéleonc t = {t1,ta, .., t;, .., t300}. T va Swmotebei n onuacio wag
TOPOUETPOV £YVE TASIVOUNOT TOV XPOVOV eKTEAEONG ME PBdom TV TN Tov gixe 1 dedouévn
TOPAUETPOC OTNV €V AOY® TOPAUETPOTOINCT|, ONLOVPYDOVTOG 166p10pa dSavOcpata pe To TAN00¢
TOV OVTITPOCOTEVTIKMOV TYLMV TOL £lyav EMAEYEL.

2T OULVEKEW, OVTA TO OVOCUOTO TPOPOSOTOVVIOL GTN CLUVAPTNOTN 7oL EKTEAEL TO
teot Kruskal-Wallis yio va damotoBel av ot péocot 6pot toug da@épovy onuovtikd. Ag
ypnowonomdnke ANOVA teot yiati ta dedopéva avikovv oe Kotavoués mov Pacilovror og
TEWPAPATIKA dedOpUEVA Kal Ogv umopovv vo. Bewpnbovv kavovikés. Ta va agloloynbel to
OTOTEAEGLLA TOV TEGT, TOTE ONANOT 1 apykn vobeon emPePardverar, TiBetan Eva OpLo amodoyng
pvalue% wote va eacpaitotel 6TL | TOavoTTO Voo HeTpnBovv dtapopeTikol pEGol 0pot dtav
ot xotavopég etvan ioeg etvan kbt tov 5%. Otav, Aowmdv, to pvalue mov emotpépeTon givor
peyorvtepo amod 0.05 tote 1 apykn vobeon emPefordveTal Kot dEV LIAPYEL GNUOVTIKT Stopopd
OTOVG LECOVE OPOVE, EVA av elval LuKpOTEPO cupPaivel To avtifero.

Ta density plots tov mopakdto oynpatog anetoviCovv dV0 AVIUTPOCOTEVTIKE TapadelypLoTa,
napovctdlovtag tn Swdikacio mov akoiovdnOnke yw tov KaBopopd TG onuaciog Kabe
TOPOUETPOV. ZVYKEKPIUEVA, ELYVOVV TNV KOTAVOUY TOV ¥POVOL EKTEAEONS Y10l 3 SLOPOPETIKEG
TIEG Tov Aapfdvovv ot Tapapetpotl. To TpdTO dtdrypoppo amerkovilet pion GNUAVTIKY TOPAUETPO
KL o0TO yivetat epeavég a@ov yio v Tiun] 0.4 £xovpe onUOVTIKY LETAKIVIION TNG KOTAVOUNG TPOG
ta. aprotepd. To 6e0TEPO O1AYPOLLLLO AVTIGTOLXEL GE LT OMUAVTIKT TOPAUETPO.

Estimation of impact of spark.memory.fraction Estimation of impact of spark.io.compression.codec
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Figure 3: Density plots 610popeTIKOV TOPAUETP®V
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Extetouévn Hepiinyn

2. Avtouaromomuévy ueBodoloyia yio. t pdluion twv epopuoywy tov Spark

Hapaperpog

Heprypagi

spark.executor.instances

To mAn0oc TV executors

spark.executor.cores

To mAn0og TV TuprveVv oL Xpnoiorotel kabe executor

spark.task.cpus

To mAn00¢ TV TUPNVOV TTOL decevovTaL Yo KabE task

spark.shuffle.compress

To kotd méco Ba cvumiestobv To apyeie €£600V Kotd TN
dwdkocio Tov map

spark.executor.memory

To péyeBog g pviung mov ypnotponoteitat ava executor

spark.memory.fraction

To m0606T0 TOV GEOPOV, APOD TOL APULPEGOVUE TN OECUEVUEVT
Y. TO GUOTNHO KOl YlOL TO OVTIKEILEVO TOL spark pvAun tov
300 MB, mov 6o ypnowomombei eite yio ektédeon eite yuo
amofnKkevon

spark.memory.storageFraction

To mocootd tng pviung mov €xet dwatebel yo ektéheon
N omobnikevon mov Oa ypnopwomowmbel ocvykekpluéva yio
amobnkevon

spark.serializer

H «\éion mov ypnoiponoteiton yio GEIPLOTOINGT TOV UVIIKELEVOV
mov Ba otokodv eviog Tov SiktOov 1| mov YpewdleTton va
amoONKELTOVV GE GEPLOTOUNUEVT LOPON

spark.scheduler.maxRegisteredResourcesWaitingTime

O péyiotog 1pdVoS aVOLOVIG Yol KOTOYMPNOT TOP®Y UEYPL Va.
EekvnoeL N xpovodpopordynomn

spark.default.parallelism

To mpoemieypévo minbog dapepicemv (partitions) oto RDDs
OV EMOTPEPETOL OO UETOCYNUOTIOLOVS Omwg join, reduce-
ByKey kon parallelize

spark.sql.shuffle.partitions

To mAnBog tov dwpepicemv TOL YPNOLUOTOOVVTAL KOTH TO
OVOKATELLD OESOUEVAOV Y1 EVGELS KOt 0fpoicelg

spark.cleaner.periodicGC.interval

To 660 cuyva ekteAeital GLALOYT CKOLTSIOV

spark.io.compression.lz4.blockSize

To péyebog tov pmhok o€ bytes mov ypnollonolEiTol KOTA TN
ocvunieon pe LZ4 mov givat kot 1o TpOEMAEYIEVO

spark.yarn.am.memory

To péyebog g pvnqung mov ypnoomoteitat yio tov YARN Ap-
plication Master katd v ektéheon o€ client mode

spark.scheduler.revive.interval

H 6udpken tov Saotipatog yi tov ypovodpoporoynti vo
EMOVAPEPEL TIC TPOCPOPEG TOPWV Yo, Tov gpyatn (worker) vo
extedéoet Ta tasks

spark.locality.wait.process

PoBpilet to xpovo avaplovig yio TV TOTIKOTNTA TOV SIEPYACLDV.
Emnpedler tasks mov mpoomafodv vo mpoomeldcovy dedopéva
oL &ival TPOoWPVA  amoBnKEVUEVE GE MG GUYKEKPILEVT
depyacia evog executor

spark.shuffle.sort.bypassMergeThreshold

Opilel éva katdPA dote vo amo@edyeTal 1 TaEvounoT HECH
GLYYDOVELONG OV VLAPYOLY AydTEPES drapepioels and ovTég Tov
opilet avto 1o 10 reduce kabmg kot ov dev LLAPYEL ABpoton and
TNV TAEVPE TOV map

spark.shuftle.io.preferDirectBufs

To katd mdco ypnowwomowovvtal buffers ext0g cwPOD
TPOKEWEVOL Vo HewwBel M ovAloyn okoLTOWDV KOTA TN
S16pKED. TOV OVOKATELOTOG OEGOUEVMV KOl TNG UETAKIVIIONG
cache blocks

spark.task.maxFailures

To mANn00¢ TV amoTu IOV Yo £va cuykekpluévo task péypt va
gykatorelpOei n epyacio

spark.files.openCostInBytes

To eKTILOEVO KOGTOG Y10 TO AVOLYLLOL OpYEIOV, LETPNUEVO LLE TOV
apdud tov bytes Tov propovv va Steffactovv TapdAAnio

spark.shuffle.file.buffer

To péyebog tov eviog pviung buffer yo kébe avokdtepo oe
apyeia

spark.cleaner.referenceTracking.blocking

To kotd OG0 To Vo oV kabapilel Tpémel vo. pmAokdpel 6T
tasks kaBopiopatog ektog tov shuffle mov eléyyeton amd GAin
TOPAPETPO

spark.kryoserializer.buffer.max

To péywoto emrpentd péyebog buffer katd ™ ceplomoinon e
Kryo serializer

Table 4: Enuavtikéc Tapauetpot Spark
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To omoteléopata tov TEGT dev €deléav mPopavmg o€ Ol ta benchmarks akpifmg Tig
idleg onuavtikég mapopétpovs.  Kdmoeg, oénwg spark.executor.memory, spark.task.cpus, hi-
bench.yarn.executor.cores, 0E10A0YNONKAV GE OAES TIG TEPUTTOCELS OG CTLLOVTIKES, EVA Y10 AAAES
10 amoTéAEG O EEAPTHONKE OO TA YOPOUKTNPLOTIKA TOV TPOYPELUOTOC 1] KOO Kot 0td TO PEYeBog
TV dedopEvaV £16000v. Telkd kpiOnke 6TL 23 TapAUETPOL Elval GLVOAKE Ol TO GNUOVTIKES Yo
TNV EKTEAECT] OAMV TOV TEWPAUATOV Hog. AVTEG TapoLGLAlovTal GTOV Ttivaka 4.

2.3 IIpoPreyn Ermidoong Hopaperportompévov EQappoy®v tov Spark

[Ipoxeévou va Bpebel n PéATIOT TTOpOpETpOTOiNOT OGS EQAPUOYNG, Elvorl amapaitnTo Vo
dokipdlovtor ToAAEG VTOYNPLEG ADoELS Kot va aSloAoyovvion pe Paon po petpkn. [pémet,
AOuOV, VO KOTOGKELOOTEL £voL LOVTEAO TTOV Ba evruep@vel oTrypaio Tov BEATIOTOTOMTY Y10 TO
xPOVO eKTéELEONC oG voynelag Abons. Ot epappoyég avantuéng tov mivaxka 1 dpmg mov Ha
YPNOOTONO0VV SL0PEPOVY CULAVTIKA LETAED TOVG OE OAPOPES LETPIKES YU A0V emimédov. [
avtd 0 AHYO0 B YOPLETOVV GE OUASES TAPUTANCLOV EQAPUOYDV Kat Ba vAomombel Eva povtélo
TPOPAEYMS ovaL OpAdaL.

2.3.1 ®AZXH 2: Opadonoinon tov E@appoyov

Onwg éxer o avaeepbei, o1t TANpopopieg mov lvar YPNCILES Y10 TOV YOPOKTNPIGUO LIOG
epoproyng mapovotdlovior otov mivoka 3.  XUvendg, Yo vo opadomombodv ot QapurOYEG
exterovvTaLl TapaAAnAa pe 10 PCM mpoypoppo Yoo TV TPOETAEYUEVT] TOPOUETPOTOINGT Kot
peydro péyebog dedopévav €10dov. Ta ke extédeon mapdyetor £va csv apyeio to (to omoio
Ba kadovpue PCM trace). Kdabe othin avtov tov apyeiov aviiotolyel o€ pio peTpikn Kou pmopet
va Bewpnbel éva oo oG ™G HETPIKNG oL petafdAietor pe 1o ¥pdvo. O yopiopds Tov
EQOPUOYDV GE OLAOES EYIVE LE TNV TTAPAY®YT| EVOG VEOL GVVOETOL ONUATOG TTOL LTOAOYILETAL MG O
YEOUETPIKOG HEGOG TOV OPYIKAOV CUATOV avd KEM. XVVETADS TO VEQ GNLOTA EXOVV TO 1010 UNKOG
LLE TOL TOALQL KO TOL KEALGL TOVG TEPLEYOVV TO YEMUETPIKO PLEGO TV AVTICTOLY®V KEADY TOV OPYIKOV:

new = {geo _t1,geo t2,...,geo tn}
, omov geo woovtan pue v/ PhysI PC% - TotalQPlout - ... - L2HIT

Avtd o véa onuato Tov dnpovpynnkay Bempovpe 4Tl Eltval avIITPOS®TEVTIKG TV bench-
marks kot SMNAOTIKE TOL YPOVOL EKTEAEONG TOVG. XVVEMMS, UTOPOVV Vo, ypnoiponombodv o
évav alyopiBpo cvotadomoinong yo va Bpebodv opotdtnteg petalld avt®dv Kot vo, emitevydei o
YOPIGUOC TOVG o€ opadeg (clusters).

Epdcov éva ofjua amoterel pio ypovikn oepd, o alyopifuog mov ypnoiponomdnke givol o
TimeSeriesKMeans tng BipAioOnkng tslearn ¢ Python kot 1 eknaidevon €yve mive oto time
series dataset mwov meprapPaver to 12 véo oNHOTa e TOVG YEOUETPIKOVG HLEGOVG OVEL YPOVIKN
oTyun| Kabe epappoync. Emedn, opwmg, oev elyav tpé€et 6Aa ta benchmarks yia 1o 1610 ypovikd
dlotnpa, oev £xouv Kot 1o 1010 punkog. Me t PonOeta g PipAtodnkng tslearn tng Python yw
™V avéAvon Tev time series, T, ekTeELOVLE emavadetypotoinyia (resampling) oo ofjpoto Ko
To petacynuatitoope Ola va €xovv pnkog 2000 tpudv. A@ov dokipudlovtat d1dpopesg TIHES Yo
Tov apluo tov clusters KabmG Kkt yio T HETPIKN TTOL Bl ypnoiponomOel yio ToV VTOAOYIGUO TV
amootdoewv (euclidean, dtw, softdtw), katoAnyovpe OTL N TO AVIITPOCOTEVTIKY OUAOOTOINGN
TOV EQAPUOYDOV Elval 0T TOL TPOKVTTEL Otd TN petpikn softdtw pe v mopdpetpo yaupa ion
pe 0.005 ko 6 clusters:

26



Exretouévny lepidnyn 2. Avtouaromomuévy ueBodoloyia yio. t pdluion twv epopuoywy tov Spark

No Cluster Benchmarks
Cluster 0 Aggr, Scan
Cluster 1 Bayes,Linear,Sort
Cluster 2 Kmeans, SVM
Cluster 3 Join,GBT,LDA
Cluster 4 PR

Cluster 5 TS

Table 5: Opadomoinon Twv benchmarks avirtuéng

2.3.2 ®AZXH 3: Movtehomoinon tov EQappoyav

[Ipokeévonv va Kataokevaotel éva training set wovo vo eKTaldeDoEL Vo LOVTEAO TTOL
va mpoPAémel pe emTuyio. TN CLUTEPIPOPE TWV EPOPUOYADV GE TUYOIES TOPAUETPOTOLCELS,
aKolovOnoe pio CEPA EKTETAUEVOV TEWPOUATOV TOL avoapépoviotl oto 12 dapopetikd bench-
marks mov opodomomnOnkay TponyoLUEVOS. ATO TO GHVOAD TMV TOPATAVE® TEPUUATOV, KATO TO
YVOOTA, KpaTHONKE 0 YPOVOG EKTEAECTG.

[Ipokeévov va yivel €@Kty 1 OTOTEAECUATIKY] TPOPAEYT TV YPOVOV EKTEAEOTG TMV
12 benchmarks kotackevdletor éva poviélo mpdPreyng ava cluster, Ommg Tovicape Kot
nmponyovpévms. Kabe povtédo mpofreyng ekmodevetor ®ote va pabaivel kadhd ™ coumeptoopd
TOV EQOPLOYDV TOV OVIIKOVV GTI GUYKEKPIULEVT OULAd, LE TNV EATTION OTL Ba UItopel va YeEVIKEDTEL
TN YVAOGT TOL Y10 VO TPOPAEYEL KO TIG VEEG AYVIOGTEG GE QVTO EPOPLOYES EAEYYOV.

To training set tov kaBevdg Bo amotedeitan amd TIG TOPAUETPOTOMGELS TTOL XPTGLLOTOM ONKALY
OTIG TPELG TPONYOVUEVES GEPEG TEPAUATOV, TO HEYEDOG TV JESOUEVODV €GOS0V KOl KATOEG
ninpoeopiec and to default pcm trace, evd 10 response vector Ba givar ot avtictoryot ypdvor
extéheonc. Ta features tov training set mov apopovv to default pcm trace eivor 9 k1 voAoyilovtan
and T0 PHEGO OpO TOL KAOE CNUATOC/UETPIKNG TOV pcm. Avti va ypnoipuonmolovpe time series,
ONAad”, KPATALE LOVASIKT TN Yo TO KOE onpal, 1 ooio vroAoyiletal ¢ 0 HEGOG OPOC OAWMV TV
TILOV TOV, Yopic resampling oe unkoc 2000. Avtd ta emmAéov features eivon arapaitnto ®oTe va
dtapopomotovvtal ot TPoPAEYELS HeTalhd TV dtapopetikdv benchmarks mov £yovv avatebel oto
010 cluster. To oynua 4 anekovilel TG 16000V Kot TNV ££000 TWV LOVTEAMV.

O alyopBpog mov emhéybnke yo v vAomoinomn towv poviélwv givor o Random Forest, o
onoiog amodeiynke vo vepéyet Evavtt ToA®V dAlwv regression algorithms g PifAodnkng
sklearn tng python. H ernidoon tov povtélmv, pdiiota, £ivol IKovomomtika KaAr kabmg e Kapio
mepinTon dgv TEPTEL KAT® omd to 0.73, evd yevikd Kiveital og akpifeia peyardtepn tov 0.85.
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Figure 4: Ileprypaon e166dmv kKot €£6600 TV HOVTEA®Y

2.4 ®AXH 4: KaBopropog g Bértiotng Moapaperpomoinong EQappoyov tov Spark

O Baowdg otdéyog avthig g pebodoroyiag €€ apyng Mrav m edpeon ™S PEATIOTNG
TOPOLUETPOTOINONG YO TNV EKTEAECT] LIOG GLYKEKPIUEVNG €papuoyng oto spark. Tlpopavag
oMot o1 aAyopBpot Bertiotonoinong akolovBobv v 1010 yevikn mopeia. Aoxipalovv, oniadn,
SLOPOPETIKEG TOPAUETPOTOINGELS, KIVOVLEVOL LE EEXMPLOTOVS TPOTOVE GTO YDPO OvaTNONG, Kot
OTLLEUDVOLV TO OTOTEAEGLLOTA Y10 VO KATAANEOVV 6TO BEATIOTO.

H dwdwkacia g Bertiotonoinong pumopel va yivel ebkoAa pe ypnon tov OpenTuner. Avtog
TPOGPEPEL TANOOG TEYVIKMV TTOV SLOPEPOVY GTOV TPOTO SLAGYIGNG TOL YDpov avaltnone. Kapia
amd avtég dev eyyvdton 0Tt B Ppet €va oMKO e€AdyloTO TOL YPOVOL EKTEAEOMG, OAAG Eva
KavomoTikd Tomikd eAdyioto. Eivon, emiong, dvvotd va dnuovpynbodv HETOTEYVIKEG TOL
AmoTELOVVTAL OO £VOL GUVOLO EMUEPOVS TEXVIKMV, G€ KaBeUd amd T1g onoieg dapotpaletat Eva
uépog tov mpoPinuoatos. H mo yvoom petateyvikng eivor n multi-armed bandit with sliding win-
dow, area under the curve credit assignment (AUC Bandit). Ot 814@opeg TEYVIKES AVOTTOGGOVV £VOL
€0POC GTPATNYIKAOV Kol €IVOL PTIYUEVEG DOTE VoL AELTOVPYOVV BEATIOTO GE SLOPOPETIKOVS TOTOVG
YOPOV avalTnong, dpa SV VITAPYEL KATOLN TOV VO, DVTEPEYEL TOV AAL®V G OAN T TPOPA LT

H teyvikn mov emhéybnke otnv mpokeévn nepintmon eivan ot yevetikol alyopiBpot. Avtoi
dratnpovy évay TAnBuopd mavadv AVcE®V, TPAYUATOTOOVV avalTnon o€ TOAAEG KaTeLBOVoELg
Kot VTooTNPIlovV KATOYPOET] KOl OVTUALAY TANPOQOPLOV UETAED QVTOV TOV KATELOOVGE®V.
O mnBvopog veictotal H. TPOCOUOUMUEVT] YEVETIKN €EEMEN YPNOUOTOIOVTOS O1APOPOVG
YEVETIKOUG TEAECTES OTMG 1 EMAOYT], 1] SCTAVP®ON Kol 1| LETAALAEN.

Etvar, emiong, apketd amhol otnv viomoinon tovg. Apywkd, o I'evetucdg AAyopiBuog
ToPAYEL TOAMATAG OvVTiypa@o TG HETOPANTNC/ YEVVITIKOD KOOIKO, GLVIOMG e TuYoies TIUES,
dnpovpymvtag £va TANBuepd Aoemv. Kdabe Avor (Tiég yio Tig TapapéTpous Tov GLGTNHLOTOC)
dokipdleTon Yo T0 TOCO KOVIQ QEPVEL TNV AVTIOPOGT TOL GLGTNUATOG TNV £mBounTn, UECH
LG GLVAPTNONG OV OiVEL TO HETPO KOVOTNTOG TNG AVOTG Kot 1) omoia ovoudletal cuvaptnon
wavomtog (Z.I). Or Moegig mov Ppickoviat o kovtd oty enBuunt, 6€ GYEon Ue TS GAAEC,
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COUP®VO PE TO UETPO TOL pog dtvel n Z.I, avamoapdyovtalr oty €mOUEVN YEVIO ADGE®V Kol
AopBavouv po toyoaio petdAroln. Eravaiappdvoviog avti m dradikacio yio apkeTES YEVIES, OL
TUYOiES LETAAAAEELS GE GLVOLOCUO e TNV EMPIOOT KOL AVOTAPUY®YN TV YOVISI®V/ADGEDY TOL
nAno1dlovy KaATEP TO EMBLUNTO amoTEAES A B TapdyovV Eva Yovidlo/Avom Ttov Ba mTeptEyet Tig
TILES Y10 TIG TP AUETPOVS TTOV IKAVOTOL0VV 060 KoAvTepa YiveTon v X.1. O akydpiBpog teppatilet
elte 0tav moapayBel kdmolog péytotog apluog yevewv gite 6tav emtevyHel kmolo KavomonTikd
anotéleoua amo ™ Z.1. yio tov minfocud.

2uyKeKPYEVO amd OAOVG TOVG YEVETIKOVG alyopifpovg tov OpenTuner avtdc mov emAEyONKe
elvar 0 ga-PX. T'iw v extéreon tov Perticromomy|, opiotnke wdA évag configuration manip-
ulator, 6nw¢ Bérer o OpenTuner, o omoiog 6p1Ge TOV YOPO avalRTNONG TOL TPOPANUATOS. XN
OULVEYELD, 1] GLVAPTNOT run OPIGTNKE UE TETO0 TPOTO MOTE VO POTA TO AVTIIGTOLYO LOVTEAOD Yo
70 YPOVO EKTEAECOTG TOL LEVYOVS EQPOPUOYN-OEOOUEVO YO TNV EV AOY® TOPOUETPOTOINCT), DOTE VO
NV 0ELOAOYNGEL TN GUVEYELN KO VO, KATAANEEL GTNV KAADTEPT dUVATH. ZVVOAIKA, 1) TPOTEWVOLEVT
pebodoroyia pog maipvel v kKAaoikr spark-submit evToAn Kot and Ticm Tpéyel oAn T dtadtkacio
7OV OmEKOVILETOL 0TO GYNUA 5, KOTAANYOVTOG GTNV EKTEAECT] TNG EQOPUOYNG HE TN PEATIOT
TOPALETPOTOINGT.

Run with Performance

default Model of cluster
configuration

Iterative Search

Optimization

spark-submit with \ !
default configuration ~l Algorithm
L
Optimized

Configuration

| N spark-submit with
/ optimal configuration

Figure 5: Agopoimwon g mpotevopevng pebodoroyiag oto Spark

3 Ilewpopotika Amoteréopata Kot ASloloynon

3.1 A&wroynon ota Benchmarks Avéartoing

Metd and epappoyn g pebodoroyiag pog oe 6Aa ta {evyn benchmark-péyebog dedopévov
cLAAEXOMKOY o1 BéATIoTOl YpOVOL ToV TPOPAEPONKAY KAOMG KOl Ol TAPAUETPOTOMGELS UE TIG
omoieg emtevyOnkay avtol. TN cLVEKELD, aKOAOVONGE TPAYUATIKY EKTEAEST GTO 1010 GVOTNHA
oAV TV mopomdve (evydv pe TIC PEATIOTEC TAPAUETPOTOMGELS Yoo v dlamotwdel OGO
KOADTEPO NTAV TO AMOTEAEGLOL OO TO AVTICTOLYO UE TNV TPOEMAEYUEVT] TOPOUETPOTOINGT OALA
Koty vo aEtodoyn0el n akpifeio tov povtélmv pog.

To amoteréopata £6e1&av TOAD KaAn axpifela otic tpoPAdyels, eKTOG Amd KATOEG TEPUTTOCELS
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EPOPUOYMY TTOV OVTIOTOLYOVV 6To Tpito cluster, kabmg exel eviomlotav kdmolog B6pvPog. To
oynua 6 mapovstalel o speedup mov emtTvYYAvETAL, ONANSY TO KAACHO TNG EKTEAEGNG LE TNV
TPOEMAEYLEVN TAPOUETPOTTOINGT TOL AOTEAEL 1] O1KN Lo BEATIOTN EKTELEST] KATOTLY LETPNGEWG.

Speedup of best solutions per developing benchmark

N Tiny
31.9 B Small
30 3 Large

18 5 =
141413 1319 1.41.5] 121212 Ligw=®  1o0n111 1112 L7 1.41.5] 15,012 LS 1418

Bayes Kmeans SVM Aggreg Join Scan Pagerank Linear GBT Sort LDA Terasort
Benchmarks

Figure 6: Zoykpion speedups yia 0Aa ta benchmarks avantoéng kot peyéon dedopévav 16000V

[Mopatnpodpe 6tL 0 podvog extéreons petmdnke yior OAa ta (ebyn epoproyn-oedopéva e
YPNOM NG TopapeTpomoinong mov enédele N mpotevopevn pebodoroyia pog. Axkounm, OAeg ot
EPAPLOYES BEATIOVOVTAL GNUAVTIKE, TANV TOV Scan Ttov metvyaivel oprakn Peitioon. To péyioto
speedup metvyaivel 31.9x o6tav 10 SVM exktekeitar pe 20 GB péyeBog dedopévav. Avtd sivar
AOYIKO oG Kol TPOKELITOL Y100 EQAPLOYN TTov gfvor Kou compute Ko data intensive Kol GUVETMOG
Vdpyel TAN00G TOPAUETP®V TOL UTOPOVV VO EMNPEACOVY CNUAVTIKA TNV ekTéAEoN TG To
néco speedup yu 0 ta {evyn epappoymv-oedopévey eival 3.07x. Télog, eivor eppaveg Ot
N PeAtimon mov TeTLYOIVOLLE KOTA TN YEVIKT TEPITT®MOT aEAVETAL 0G0 aEAVETOL Kot TO UEYeBog
TOV 0E00UEVAV, YEYOVOS VYIGTNG ONUOGTOG Yol TV ETOYN LOG Tov yopaktnpiletol amd oloéva
avéavopeva dedopéva.

3.2 A&wiroynon ota Benchmarks EAéyyov

H peydin xavotopio tov £pyov pog ivat 6t pmopel emiong va PEATICTOTOEL TV EKTEAECT] LILOG
AyvooTNG ePapUOYNS OV dev ExeL xpnoipononBel otn Slodikacio TG EKTAIOEVONG TOV LOVTEAWMV.
Avtdg glvar, GAM®aoTE, 0 AOYOS TTOV APLEPDOGALLE YPOVO KOt TPOSTAOELD TNV £0PEST TNE GVVOEGNG
HETAED TOV PACIKAOV YOPAKTNPIOTIKOV LING EQAPLOYNG OE EMIMEIO OPYLTEKTOVIKTG KOl TOV YPOVOL
OV OTTOLTEITON Y10l TV EKTEAECT TNG.

3.2.1 Avda0Oeon Cluster ka1 Akpifera Movtélov

Mo va agorloyncovpe ) pebodoroyio Hog TAVE G Hid AYVOGTN EQAPUOYN TOV GUVOVTALE
Yoo TPATN POopa Kot dev Exel ypnopomombel ot drodikacion TG EKTOIOELONG TOV LOVIEAOL
TPETEL TPOTO, VOL TNV EKTEAEGOVUE oL POPE DGTE KOTA TO YVOOTh vo. cLALEEOVIE To PCM trace.
Me tov 1010 TpOTO OV TEPLYPAPNKE TPLY, Tapdyovtal véa onuata yio Kaféva ek twv bench-
marks eA&yyov, pe ypron tov yewpeTpkoy pEcov. Aoy poptwhel o poviédo tov clustering
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oV TapNYON TponyovuEvms, epapuoletar n néBodog predict mavm oto time series dataset mov
neptiappdvel Ta véa onpata eAEyxov. Avtn €xel o anotélecpa v avadeon pidg etikétog (la-
bel) og k4O epappoyn, n onoia dNAdvet pe moto cluster £xetl aviiotoyiotel. Ta amoteléopata g
OLOJOTOINGNG Y10 TIG AYVMOTEG EPAPUOYES POIVOVTOL GTOV TIVOKQ 6.

Benchmark | Cluster 0 | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5
ALS Ve
LR v
RF v
PCA v
SVD v
WwC v

Table 6: AvdBeon cluster ota benchmarks eAéyyov

H napoandve avabeon deiyvel mowo and to TPONyOLUHEVMG KOATAOKEVACUEVA LOVTEAD TPEMEL
va ypnoworombei yioo v wpdPAreyn tov ypodvov extédeong Kabe epapupoyns. Ilpokepévov
va petpnBeil n axpifela TV HOVIEA®V OTIS AYVOGTEG EQAUPUOYEC EAEYYOV, EKTEAOVUE U0 GEPA
TELPOLATOV Y10, VO LETPTICOVLE TOVG TPALYLATIKOVG YPOVOLS ekTéEAEONG Yo 100 TOPAUETPOTOINGELG
KO Y10, TIG TPELS KATNYopiec LeEYEDOVE OESOUEVOV EIGOIOV DGTE VO LTOPEGOVIE VO GUYKPIVOVLLE E
115 mpoPAepbeioeg Tipés. O mivakag 7 deiyvet to cluster oto omolo £xel avatebel kébe benchmark
kot 10 2 okop mov emtuyydver ové katnyopia peyEovc.

Benchmark | No Cluster | Score-Tiny | Score-Small | Score-Large
ALS 1 <0 <0 <0
Logistic 2 0.77 0.81 0.53
RF 1 0.92 0.77 0.66
PCA 3 0.64 0.91 <0
SVD 1 0.80 <0 <0
WwC 1 0.68 0.70 0.92

Table 7: Xxop avd benchmark gléyyov

To oynuo 7 mapovcidlel to speedup mov emrLYYAvVETAL, ONAAOT TO KAAGUO TNG EKTEAEONG
HE TNV TPOETMAEYUEVT] TOPOAUETPOTOINGT OV ATOTEAEL M O1kN pog PEATIOT eKTEAEGT KOTOTLY
HETPNOEMG, LOVO Y10 T (EVYN EQAPLOYDV-OEOOUEVMV TOV TETVYOLE L] OPVNTIKO GKOP.
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Speedup of best solutions per developing benchmark
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Figure 7: Zdykpiom speedups yio 6Aa ta {evyn benchmark-dedopéva pe pn apvntikd cKop

[apatnpodpe Ot ot ypdvor ektéheong v Oha ta (edyn mov métvuyov Oetikd R? okop,
BeAtidvovTal OTOV TPEYOVV LE TV TAPOUETPOTOINCT) TOV EMAEYOVE AVTL Y10, TV TPOETIAEYLEV.
Emiong, n Beltioon mov emruyydvetal oe avTég TIG TEPIMTOGELS glvar onuovtiky. To péyioto
speedup metvyaivel 8.5x dtav to LR tpéyet pe 8 GB péyebog dedopévmv. Avtd givor Loyiko piog
ko epappoyn LR eivor kot compute kot data intensive Kot cuvenmg vapyel TAN00¢ TapapéTpwv
OV UTOPOVV VoL EMNPEAGOVY onpavTika TNV ektédeon e To péco speedup yuo 6Aa T {evyn
epoppoymv-oedopévay etvar 2.01 x. Téhog, eivar eppavég 6t 1 Perticoon mov meTvyaivove KATA
T YeVIKN Tepintmon av&avetatl 060 avédvetatl Kot To HEYeBog Tmv 0e00UEVOV GAAN Lo POopdL.
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Chapter 1

Introduction

1.1 Rise of distributed, in-memory computing

Cloud computing is a relatively new technology that has been of utmost importance for the
past few years. It is the on-demand availability of computer system resources, especially data
storage (cloud storage) and computing power, without direct active management by the user. In
other words, the cloud is comprised of software and services residing and operating on the Internet
instead of a local computer or on-premise network of servers.

Cloud computing is one of the most important technological innovations of the 21st century.
This is because it has seen the fastest adoption into the mainstream than any other technology in the
domain. This adoption has been fueled mainly by the ever-increasing number of smartphones and
mobile devices that can access the internet. Cloud computing is not just for organizations and busi-
nesses; it is also useful for the average person as well. It enables people to run software programs
without installing them on their computers; it enables them to store and access their multimedia
content via the internet, it enables them to develop and test programs without necessarily having
servers and so on.

Moreover, it is helping the society cope with future problems such as managing big data, cyber-
security and quality control. Every year more and more enterprises engage in the practice of cloud
computing or using remote servers hosted on the Internet to store, manage, and process critical
data. Before the cloud era, teams often found it difficult to share insights widely. Coordination
was cumbersome, sharing was difficult and transferring data, especially large amounts of it, was
slow. The cloud has reduced many of these limitations, making it easy for teams to coordinate
across any distance and to widely share data, ideas and information.

The benefits of the cloud are hard to overestimate. The most significant ones are:

» Accessibility: It facilitates the access of applications and data from any location worldwide
and from any device with an internet connection.

» Cost savings: It offers businesses with scalable computing resources hence saving them on
the cost of acquiring and maintaining them.

* Security: Cloud providers have strived to implement the best security standards and proce-
dures in order to protect client’s data saved in the cloud.

* Disaster recovery: It offers the most efficient means for enterprises to backup and restore
their data and applications in a fast and reliable way.
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 Scalability: It is the best option for businesses with fluctuating workloads since cloud in-
frastructure scales depending on the demands of the business.

Cloud’s greatest advantage, though, is that it has emerged as an absolutely vital tool for big data.
This is a field that treats ways to analyze, systematically extract information from, or otherwise deal
with data sets that are too large or complex to be dealt with by traditional data-processing appli-
cation software. Data sets grow rapidly, to a certain extent because they are increasingly gathered
by cheap and numerous information-sensing Internet of things devices. The world’s technological
per-capita capacity to store information has roughly doubled every 40 months since the 1980s; as
of 2012, every day 2.5 exabytes (2.5%260 bytes) of data are generated. Based on an IDC report
prediction, the global data volume was predicted to grow exponentially from 4.4 zettabytes to 44
zettabytes between 2013 and 2020. By 2025, IDC predicts there will be an astonishing number of
163 zettabytes of data.

Data with many cases (rows) offer greater statistical power, while data with higher complexity
(more attributes or columns) may lead to a higher false discovery rate. Big data challenges in-
clude capturing data, data storage, data analysis, search, sharing, transfer, visualization, querying,
updating, information privacy and data source. Big data was originally associated with three key
concepts: volume, variety, and velocity. When we handle big data, we may not sample but simply
observe and track what happens, so big data often includes data whose sizes exceed the capacity of
traditional software to process within an acceptable time and value. The current usage of the term
big data, though, tends to refer to the use of predictive analytics, user behavior analytics, or certain
other advanced data analytics methods that extract value from data, rather than to a particular size
of data set.

Big data processing used to be cumbersome, and expensive. This also meant that big data
efforts were reactionary, providing insights from out-of-date data. Businesses, however, need to
be proactive and able to access, analyze and act upon the most recent data. Cloud-enabled big
data, less so. No more data warehouses, no more hiring dedicated programmers just to run basic
analyses. No more sweating collection, compiling, or analysis. And with the best big data tools,
even presentation features are built right in. For example, when gathering customer analytics, with
the cloud and big data, companies can quickly gather data from multiple sales, marketing, and web
analytics, clickstream data, call center, and inventory sources. Then, without needing to use their
own massive servers but instead the cloud, companies can compile the data, analyze it, quickly
refine it into a presentation, and then act on it.

However, in the field of big data analytics collecting the necessary system resources, which
can be done easily via the cloud, is not the only important thing for achieving good performance.
In order to speed up the computation process when such big data are involved, it is important to
do some scaling out. This means that many computers (or autonomous processes that run on the
same physical computer) work together in order to solve a computational problem. This problem
is divided into many tasks, each of which is solved by one or more computers (autonomous pro-
cesses), which communicate with each other via message passing. In this way the time needed
to solve the problem is reduced to the time needed to solve the most time-consuming task, plus
the time needed for communicating and aggregating the results. This distributed way of running
a computation has been proven to be more effective and less costly than scaling up, which means
adding more resources to a unique computer in order to execute a process faster.

Another important aspect of handling big data in an efficient way is the in-memory computing.
This means using a type of middleware software that allows one to store data in RAM, across a
cluster of computers, and process it in parallel. As it is already known, RAM is roughly 5,000
times faster than traditional spinning disk. So this, along with the parallel processing, makes the
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computations significantly faster. Frameworks that provide in-memory computing are nowadays
preferred for many different tasks and have become highly popular.

Each year, there seem to be more and more distributed frameworks on the market to manage
data volume, variety, and velocity, but not all of them support in-memory computing. The most
important ones are:

* Apache Hadoop: It’s a general-purpose form of distributed processing that has several com-
ponents such as the Hadoop Distributed File System (HDFS), which stores files in a Hadoop-
native format and parallelizes them across a cluster, YARN, a schedule that coordinates ap-
plication runtimes and MapReduce, the algorithm that actually processes the data in parallel.
Hadoop is built in Java, and is accessible through many programming languages for writing
MapReduce code.

» Apache Spark: It is also a top-level Apache project focused on processing data in parallel
across a cluster, but the biggest difference is that it works in-memory. Whereas Hadoop reads
and writes files to HDFS, Spark processes data in RAM using a concept known as an RDD,
Resilient Distributed Dataset.

» Apache Flink: It is a framework and distributed processing engine for stateful computations
over unbounded and bounded data streams. Flink has been designed to run in all common
cluster environments and perform computations at in-memory speed and at any scale.

* Disco MapReduce: It is a lightweight, open-source framework for distributed computing
based on the MapReduce paradigm. It is powerful and usage of Python makes it robust and
easy-to-use. Disco distributes and replicates the data, and schedules jobs efficiently. The
framework helps build and query in real-time indices with billions of keys and values, using
DiscoDB and it also provides its own file system, Disco Distributed File System (DDFS).

The most popular framework is undoubtedly the Apache Spark. The in-memory computing
it provides and its DAGs enable optimizations between steps make it a lot faster for iterative and
interaction applications than the frameworks that use on-disk computing. Finally, spark has very
strong community support and a good number of contributors, so this is the framework that we
have chosen to work with.

1.2 Motivation

Apache Spark, as well as the other frameworks mentioned in the previous section, offers a great
number of parameters for tuning. Modifying their value from the default can affect more or less
the performance of the execution, depending on the significance of this particular parameter.

Zhibin Yu et al. [1] state that there are 41 parameters that can be easily tuned and significantly
affect performance. Zhendong Bei et al. [2] state that there are 29 parameters that are important
and determine the application’s execution time. The two papers may disagree on the number of the
significant parameters but they both agree on the fact that parameters can actually have a powerful
effect on an application’s performance. Their disagreement leads us to study further the parameters
of the spark framework and search once again for the most important ones.

In order to be absolutely sure that a significant improvement in an app’s performance can be
achieved by reconfiguring spark’s parameters, we ran a little experiment. Specifically, we ran the
Bayes, Kmeans and the SVM benchmarks from the HiBench Suite for a large data size and for 100
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different configurations, the default and other 99 randomly chosen ones. The goal is to observe
the performance variation, which we define as follows.

o tmax - tmm
PETyar =
tmin

The results are shown in the figure that follows.

Execution time distribution

100+ P T
— T __

Bayes Kmeans SVM
Benchmark

Figure 1.1: Execution time distribution for different spark configurations per benchmark

As shown in the figure, a different tuning of an application’s parameters can affect significantly
its performance for the exact same input dataset. Depending on the workload, this impact can be
smaller, as in the case of Bayes, or can be as large as 10.25, as in the case of SVM. In any case,
the variation is not negligible and, therefore, it is worth finding the most important parameters and
create a program to autotune an application to run with the optimal configuration.

1.3 Objectives and Contributions

As it has already been stated, the default configuration that is proposed from the apache spark
framework cannot always accomplish a small enough execution time and, as a result, it becomes
necessary for the user to change some of the parameters based on the program’s and the machine’s
characteristics. Finding the best configuration, though, is not a task that can be easily done manu-
ally because of the number of different parameters and the range of the possible values for them.
Some of the parameters do not have a great impact on performance, so it is very important to distinct
them in order to reduce the dimensions of the problem. This can be done with some experiments
and with the use of statistic Kruskal Wallis test.

Even so, the search space remains very large and, evidently, the optimization process needs to
be automated. OpenTuner’s optimizers are apt for that job. They produce candidate configuration
vectors and move through the search space based on the time results each of them brings, with
the objective to minimize execution time. However, in order to measure the execution time and
evaluate the solutions, it would be necessary to run repeatedly an application on spark with the
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different configurations and collect the results. This might take an enormous amount of time since,
in certain cases, one only execution could take up to 1-3 hours. Therefore, experiments only ran
to collect enough data to train a model, based on the random forest algorithm, which could be later
used for predicting execution times and inform the optimizer on the spot. There is certainly a loss
in accuracy but the optimization process becomes a matter of seconds.

The most important aspiration is to make the predicting model achieve high scores of accuracy
even on unseen applications that have not been used at the training process. In order to do that,
all the different applications that were executed to collect training data were separated to groups
based on their similarity in some characteristics relative to their behavior on an architecture level.
For each group there was constructed a different prediction model that was used only on applica-
tions that are assigned to this group. This made it possible to predict with some accuracy unseen
applications by checking in which group they belong to and using the model of that group.

Consequently, an automated tuning of spark parameters has been made possible, through the
use of regression models that predict the execution time of an application, which offers a significant
improvement in performance over the default configuration.
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Related Work

As mentioned before, there has already been a few papers trying to optimize the execution of
programs running on spark. This is not surprising at all, since the default configuration is most of
the times not satisfyingly good.

First, the Spark official web site provides a performance tuning guide for Spark workloads [3],
but this is a manual approach and the user cannot easily take advantage of it without having a deep
knowledge of Spark. In contrast, our approach is automated and the user runs the workload he
wants with an optimal configuration without doing anything.

Also, Zhibin Yu et al. [1] distinguished 41 parameters and proposed a methodology to find
the optimal values for them with the use of genetic algorithms, by collecting execution time in-
formation from a performance model. Specifically, they used an hierarchical modeling technique,
employing regression trees as sub models, instead of creating a single sophisticated model. This
was proven to create more accurate models that resist the overfitting problem and produce more
reliable results with lower error rate. However, this work builds a single performance model for
all the experimented benchmarks and for that reason it cannot generalize the results to unknown
applications. Instead, the model can only predict the behavior of the benchmarks that have been
used in the training process. Therefore their methodology can only be applied to a limited number
of workloads, while ours can be used to optimize even unknown applications, though sometimes
with lower accuracy.

Moreover, Zhendong Bei et al. [2] used genetic algorithms and a performance model based
on a three-step random forest to find the optimal configuration. They produced one model for
each benchmarks because their behaviors are significantly different and a single model could not
be satisfyingly accurate. They also showed that their results remained accurate enough even with
different workloads used in the training process. Guolu Wang et al. [10] selected 14 parameters and
proposed to tune Spark configurations by using decision tree modeling and search the parameter
space with the use of Recursive Random Search algorithm. However, these works again cannot
generalize the results to unknown applications. Instead, the model can only predict the behavior of
the benchmarks that have been used in the training process. Therefore their methodology can only
be applied to the limited number of the experimented workloads, while ours takes into account
the deep architectural characteristics of a workload and can be used to optimize even unknown
applications.

Furthermore, Liang Bao et al. [4] proposed a tuning method that runs under a time constraint,
using a smaller-scale testbed. In order to build a predictive model, they only ran the complete job
on small samples of the input data provided by the user and collected the corresponding times,
making assumptions about what the execution time of the whole input data would be. The model
was built using random forest algorithm and the search of the exploration space was then made
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with the Latin hypercube sampling, instead of genetic algorithms that we used. This new insight
they provide is interesting but, even though more time consuming on its production process, our
work produced a script that can be used on the spot, with minimum effort and time cost for the user.
Also, their results have only been tested on one datasize so they may not scale out appropriately.

It is also important to point out that the above papers select the important parameters based
on intuition, common logic and the spark team’s recommendations. In contrast, we based the
parameter selection on a whole process of experiments and statistical analysis of the produced
results with the Kruskal Wallis test. Therefore, our study of the parameters’ significance is better
established.

In addition, Tatsuhiro Chiba et al. [5] carefully characterize the memory, network, JVM, and
garbage collection behavior of TPC-H queries on Spark. Then they manage to optimize the per-
formance of Spark workloads by reducing the garbage collection overhead and by increasing the
IPC. However, this work only focuses on TPC-H workloads while ours focuses on general-purpose
Spark applications.

Finally, Ayat Fekry et al. [6] propose a methodology to find the cluster setups and the resources
to be allocated, concerning number of CPUs, network bandwidth, memory/disk size etc, so that
a certain workload will run optimally. In this direction, also, Kewen Wang et al. [7] propose a
model driven methodology to increase spark performance by identifying possible data locality and
task distribution problems and recommend ways to address these problems. Even though finding
the appropriate cluster setup for a workload and addressing some data locality problems is of great
importance, it should be combined with a tuning of some more of the internal spark parameters,
such as the one we have proposed, in order to actually achieve an optimized execution.

Kay Ousterhout et al. [8] propose a block analysis approach to systematically analyze the
bottleneck of Spark programs using two SQL workloads. While this work provides a good perfor-
mance analysis tool and reveal some bottlenecks of the SQL-like programs, it does not optimize
general Spark programs such as those implementing machine learning algorithms. In contrast,
our framework provides an approach to automatically optimize the performance of general Spark
programs. Yao Zhao et al. [9] tried to improve the performance of Spark programs by applying
adaptive tuning of the serialization techniques, while we take into account a large set of Spark
configuration parameters, instead of only the serialization aspect.

Moreover, Juwei Shi et al. [24] compared the MapReduce with Spark and provided interesting
insights but they do not propose an approach to improve the performance of Spark workloads.
Kenli Lietal. [25] propose a stochastic dynamic level scheduling algorithm which could be applied
in optimizing Spark workloads.

Another class of related work is to optimize the configurations of MapReduce/Hadoop work-
loads. Herodotou et al. propose to build analytical performance models first and then leverage
genetic algorithm to search the optimum configurations for Hadoop workloads [26, 27, 28]. Adem
et al. [29] suggest using a statistic reasoning technique named response surface (RS) to con-
struct performance models for MapReduce/Hadoop programs and then implement the models in a
MapReduce simulator. These studies work well for Hadoop workloads but Spark workloads are
significantly different from Hadoop workloads from design concepts to implementation, imply-
ing that the configuration techniques for the Hadoop workloads can not be easily extended for the
Spark workloads.

In summary, there are pioneer studies on the field of finding the optimal spark configuration
and minimizing an application’s execution time. Table 2.1 shows the basic methodology that each
of them follows. However, to our best knowledge, there has been no study yet that has achieved,
on some extent, to optimize even unseen applications with the use of a model built on information
extracted by a group of similar workloads.
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Main Writer Description

Spark website Manual tuning guide

Zhibin Yu Spark parameter selection and use of hierarchical modeling and
genetic algorithms

Zhendong Bei Spark parameter selection and use of three-step random forest
based model per benchmark and genetic algorithms

Guolu Wang Spark parameter selection and use of decision tree modeling and
Recursive Random Search algorithm

Liang Bao Random forest modeling on small samples of data and Latin Hy-
percube sampling for optimal solution searching

Tatsuhiro Chiba Characterization of memory, network, JVM, and garbage collec-
tion behavior of TPC-H queries on Spark and improvement of
those

Ayat Fekry Search of optimal cluster setup and resource allocation for Spark

Kewen Wang Model for predicting data locality and task distribution problems
in Spark and addressing them

Kay Ousterhout Block analysis to systematically analyze the bottleneck of Spark
programs using two SQL workloads

Yao Zhao Adaptive tuning of the serialization techniques in Spark

Juwei Shi Comparing MapReduce with Spark

Kenli L1 Scheduling algorithm for Spark workload optimization

Herodotos Herodotou

Performance model selection and genetic algorithms for Hadoop
workloads optimization

Adem

Use of Response Surface based model for Hadoop workloads and
implementation of them in a MapReduce simulator.

Dimitra Nikitopoulou

Well established parameter selection, spark workloads clustering
based on architectural metrics and use of random forest modeling
per cluster and genetic algorithms

Table 2.1: Studies about spark and hadoop applications’ performance improvement
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The Apache Spark Framework

Spark [15, 16] is a general-purpose distributed data processing engine that is suitable for use
in a wide range of circumstances. On top of the Spark core data processing engine, there are
libraries for SQL, machine learning, graph computation, and stream processing, which can be used
together in an application. It supports a range of programming languages, including Java, Python,
R, and Scala. Spark’s capabilities are accessible via a set of rich APIs, all designed specifically for
interacting quickly and easily with data at scale. These APIs are well-documented and structured
in a way that makes it straightforward for data scientists and application developers to quickly
put Spark to work. Last but not least, Spark is designed for speed, operating both in memory
and on disk, making it perfect for the processing of big data. Its jobs perform multiple operations
consecutively, in memory, and only spilling to disk when required by memory limitations. Spark
offers an integrated whole, a data pipeline that is easier to configure, easier to run, and easier to
maintain.

Spark introduces an abstraction called resilient distributed datasets (RDDs). An RDD is a
read-only collection of objects partitioned across a set of machines that can be rebuilt if a partition
is lost. What is stored is not the actual data but the way towards their computation from other
stored data, when this becomes necessary (lazy evaluation). Users can explicitly cache an RDD in
memory across machines and reuse it in multiple MapReduce-like parallel operations. Without this
innovation, data would be read from the disk every time and the time cost would be significantly
larger. Caching RDDs is very useful in machine learning operations such as applying a function
repeatedly to the same dataset to optimize a parameter or even when querying repeatedly the same
large dataset.

3.1 Apache Spark Overview and Architecture

The Apache Spark framework uses a master—slave architecture that consists of a driver, which
runs as a master node, and many executors that run across as worker nodes in the cluster. Driver
Program in the Apache Spark architecture calls the main program of an application and creates
SparkContext. A SparkContext consists of all the basic functionalities.

Spark Driver and SparkContext collectively watch over the job execution within the cluster.
Spark Driver works with the Cluster Manager to manage various other jobs. Cluster Manager does
the resource allocating work. Spark Context takes the job, breaks the job in tasks and distribute
them to the worker nodes. Worker nodes are the slave nodes whose job is to basically execute the
tasks. These tasks work on the partitioned RDD, perform operations, collect the results and return
to the main Spark Context.
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Worker node

Driver Program
Spark Context Cluster Manager
; Worker node

Executor

Figure 3.1: Apache Spark architecture

SparkContext supports many cluster managers such as Standalone, Yarn [22], Mesos [30],
Kubernetes [31], which allocate resources so that the workers can execute their tasks. The one
that has been selected is Hadoop YARN (Yet Another Resource Negotiator).

YARN has two basic components:

* Resource Manager: It manages the resources for all system applications and it consists of the
Scheduler and an Application Manager. The Scheduler is responsible for allocating resources
to the various running applications without monitoring or tracking of status for the applica-
tion and offering guarantees about restarting failed tasks either due to application failure or
hardware failures. The Application Manager is responsible for accepting job-submissions,
negotiating the first container for executing the application specific ApplicationMaster and
provides the service for restarting the ApplicationMaster container on failure.

* Node Manager: It is the per-machine framework agent who is responsible for containers,
monitoring their resource usage (cpu, memory, disk, network) and reporting the same to the
ResourceManager

MapReduce Status ———»

Job Submission ------ >
Node Status e >
Resource Request ----..---.p

Figure 3.2: YARN architecture
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The Resource Manager is only one along the computer cluster whereas the Node Managers are
as many as the machines. Being unique, the resource manager is responsible for all the different
applications of the system.

The per-application manager is the Application Master, which negotiates resources with the
Resource Manager and works with the Node Managers for the execution and monitoring of tasks.
If the system runs on cluster mode, the ApplicationMaster is also responsible for executing the
driver, so the client initiating the application is free to leave. However, if it runs on client mode,
which is used in this diploma, the driver runs inside the client ans so it must remain present.

3.2 Apache Spark Properties

Because of the in-memory nature of most Spark computations, Spark programs can be bottle-
necked by any resource in the cluster: CPU, network bandwidth, or memory. Most often, if the
data fits in memory, the bottleneck is network bandwidth, but sometimes, there is also need for
some tuning, such as storing RDDs in serialized form, to decrease memory usage.

¢ Spark Memory Distribution

Memory in spark is divided in 3 different regions:

— Reserved Memory: This is the memory reserved by the system and its size is hardcoded
at 300 MB.

— User Memory: This is the memory pool that remains after the allocation of Spark Memory,
and it can be used to store data structures that would be used in RDD transformations.

— Spark Memory: This is the memory pool managed by Apache Spark. Its size can be
calculated as (Java Heap—Reserved Memory) x spark.memory. fraction. It is further
divided into 2 categories:

* Storage Memory: This pool is used for both storing Apache Spark cached data and
for temporary space serialized data unroll. Also all the broadcast variables are stored
there as cached blocks.

* Execution Memory: This pool is used for storing the objects required during the exe-
cution of Spark tasks. It also supports spilling on disk if not enough memory is avail-
able, but the blocks from this pool cannot be forcefully evicted by other threads (tasks).

(spark.memory.fraction)

60% . 40% . 300MB

Unified Memory Region

Execution Storage

50% ' 50% |

(spark.memory.storageFraction)

Figure 3.3: Spark Memory Distribution
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¢ Data Serialization

Serialization plays an important role in the performance of any distributed application. Formats
that are slow to serialize objects into, or consume a large number of bytes, will greatly slow
down the computation. Spark provides two serialization libraries, Java serialization, which is
flexible but often quite slow and leads to large serialized formats for many classes, and Kryo
serialization which is significantly faster and more compact than Java serialization, but does not
support all Serializable types.

¢ Data shuffling

Shuftling is a process of redistributing data across partitions, that may or may not cause moving
data across JVM processes or even over the wire (between executors on separate machines).
Shuftling is the process of data transfer between stages. By default, shuffling does not change
the number of partitions, but their content.

¢ Level of Parallelism

Clusters will not be fully utilized unless the level of parallelism for each operation is set high
enough. The default is set to the largest parent RDD’s number of partitions.

o Garbage collection

JVM garbage collection can be a problem when there are large data in terms of the RDDs stored
by a program. When Java needs to evict old objects to make room for new ones, it will need
to trace through all Java objects and find the unused ones. Spark offers the opportunity to the
programmer to choose how often garbage collection is triggered, to disable it and in general to
do some tuning on it.

3.3 Apache Spark Parameters

Spark has over a hundred parameters configured at default values, which are presented in the
spark’s configuration webpage [32]. Obviously, not all of them have the same impact on the per-
formance of the applications. Some refer to names, paths in the file system and other similar
information that could not in any case affect performance, so they were not taken into account.
The ones that were deemed as possibly significant are 99 and they concern a wide range of config-
urations that can be applied on the spark system. Reducing this number of parameters even more
could actually hide some that are significant, so we chose to test all of them.

Some of them control primary characteristics such as memory size and number of cores to be
used by the executors and the driver, or offheap memory and memory fraction to be used for storage
and execution. Others decide important information about the reduce task, the shuffling and the
compression processes, the data serialization and the broadcast behavior. There are also plenty
parameters that define the Spark UI and the garbage collection behavior and others that control
the manipulation of files and remote procedure calls (RPC). Moreover, some of them control the
behavior of the scheduling process, the waiting time in order to achieve locality and the speculative
execution of tasks. Finally, there are parameters that configure the task execution and others that
activate executor blacklisting and control some important aspects of it.
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An automated framework for tuning spark
applications

As discussed in the previous chapters, determining the most efficient parameters of Spark work-
loads is a challenging task. Former scientific efforts have proposed frameworks that are able to
automate the regulation of spark parameters. However, none of the existing papers have presented
a well established study about the significance of the different spark parameters that they chose to
reconfigure. Moreover, an effort to optimize unseen spark workloads has not yet been made, in
spite of the great importance it would have.

Our framework is based upon finding the most significant parameters in a purely scientific and
not intuitive way and it aims at finding an accurate enough way to optimize any spark workload.
Specifically, our framework consists of four steps. In the first step, described in section 4.2, we
perform some experiments and study the significance of each of the 99 parameters so as to decide
which of them are worth reconfiguring. In the second step, described in section 4.4.2, we execute a
series of experiments to create our training dataset and then we perform a clustering of the different
applications that we have selected to use for developing and testing the results, in order to split them
into groups of similar ones. In the third step, described in section 4.4.3, we test several regression
algorithms to make a representative model of each group/cluster that predicts accurately enough
the execution time of an application-input pair for a certain configuration. In the fourth and final
step, described in section 4.5, the models are fed to an optimization algorithm, which uses them
for evaluating the different configuration vectors easily and quickly, and producing the optimal
configuration.

STEP 1: Parameter analysis STEP 2: Clustering the workloads STEP 3: performance modeling per cluster STEP 4: Optimization

Random 23 i Performance
Config ;
P araater Benchmrk | et date | fenerator | et dote _
Benchmark | [inputdata| |parameter | generator Vector Vector Model
generator R
LR s e Iterative Search
T L I —
SPARK raining 5 Algorithm
SPARK 4
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|, onfiguration

Collect exec

| Collect |
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Figure 4.1: Overview of the proposed framework for spark parameters auto-tuning
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4.1 Experimental Setup and Specifications

All the experiments were executed on a single server, in a pseudo distributed way, with the use
of the Hadoop Distributed File System (HDFS) [23] instead of the local file system. Our server
is equipped with 48 Intel(R) Xeon(R) CPU E5-2658A v3 2.20GHz 12-core processors, 125 GB
memory and 1 TB hard disk. The L1 instruction cache as well as the data cache are 32 KB, the L2
cache is 256 KB and the L3 cache is 30.72 MB. The operating system is Linux, release 4.15.0-101-
generic. The experimental Apache Spark version is 1.6.0 and the Hadoop version is 2.6.0. The
data block size of HDFS is left to the default value 128 MB.

The benchmarks selected for developing our automated framework, as well as those used for
validating its ability to produce good results even on unknown workloads come from the HiBench
Benchmark Suite [11]. The in-memory version of HiBench has different kinds of workloads, in-
cluding machine learning, sql functions and web search. These benchmarks represent a sufficiently
broad set of typical Spark workload behaviors. We select 12 benchmarks for developing, which are
shown in table 4.1, so that we have a powerful knowledge base and 6 benchmarks for validating,

shown in table 4.2.

Input Data Size for each category

Benchmark Abbr. Tiny Small Large
Bayesian Classification Bayes | 93.1MB | 111.7 MB | 377.1 MB
K-means clustering Kmeans | 1.3MB | 602.4 MB 4GB
Support Vector Machine SVM 8 MB 800.6 MB 20 GB

Aggregate Aggr 543 KB 3.7 MB 372 MB
Join Join 1992KB | 192MB | 191.9 MB
Scan Scan | 206.2KB | 20.1 MB | 201 MB
PageRank PR 10.8 KB 1.8 MB | 259.9 MB
Linear Regression Linear 4GB 16 GB 48 GB
Gradient Boosting Trees GBT 11.3 KB | 408.4 KB 16MB
Sort Sort 36 KB 32MB | 3284 MB
Latent Dirichlet Allocation | LDA 21.7MB | 97.5MB | 258.7 MB
TeraSort TS 3.2 MB 320 MB 3.2GB

Table 4.1: Experimented benchmarks for developing

Input Data Size for each category

Benchmark Abbr. Tiny Small Large
Alternating Least Squares ALS | 67.4KB 6 MB 120.6 MB
Logistic Regression LR | 808.4 KB 80 MB 8 GB
Random Forest RF 11.3KB | 408.4KB 8 MB
Principal Components Analysis | PCA | 88.4 KB 8 MB 32.1 MB
Singular Value Decomposition | SVD | 805 KB 16 MB 64 MB
WordCount WC 36.2KB | 3284MB | 3.2GB

Table 4.2: Experimented benchmarks for validating

Evidently, the information that is helpful at characterizing an application concern CPU, network
and memory behavior. Specifically, what needs to be studied is IPC, frequency, cache behavior
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and memory 0. Performance Counter Monitor (PCM) [33] is an intel program that can run in the
background, while an application is running, and measure all the above system information. What
it actually does is collect in a .csv file with numerous columns wide information that concerns the
application’s behavior on an architecture level. This information was received every 0.1s, as it was
defined, throughout the application’s execution. The columns of the PCM file (metrics) that were
evaluated as most significant are the ones shown in table 4.3.

PCM Metric Description

PhysIPC% Instructions per cycle (IPC), multiplied by the number of threads
per core (2 threads/core) and divided by the maximum IPC (4) and
again multiplied by 100%

TotalQPIout  Traffic estimation in the QuickPath Interconnect (QPI), which is
the size of data and non-data in MB that go out of the CPUs and
sockets through the links of the interconnection network QPI

READ The memory reads in GB

WRITE The memory writes in GB

AFREQ Frequency divided by nominal CPU frequency (2.10 GHz), ex-
cluding the time when CPU is sleeping

L3MISS Number of cache line misses in the level 3 cache, measured in
millions

L2MISS Number of cache line misses in the level 2 cache, measured in
millions

L3HIT The cache hit ratio in cache level 3

L2HIT The cache hit ratio in cache level 2

Table 4.3: Important PCM Metrics

Firstly, we distinguish the three metrics that concern number of reads and writes from/to the
memory and the IPC so as to make a categorization concerning compute and data intensive bench-
marks. Figures 4.2 and 4.3 show the respective READ, WRITE and IPC trace signal plots for two
of our 12 developing workloads as derived from the PCM tool. In the first figure, that corresponds
to the PR benchmark, we have large values of memory reads and writes and an IPC that goes up
and down, probably due to the stalls that the memory accesses cause. On the other hand, the second
figure that corresponds to the LDA benchmark maintains a high IPC throughout its execution and
has few reads and writes in memory.
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Figure 4.3: LDA as example of compute intensive application

By constructing plots as the ones above, we managed to characterize all of the developing and
validating benchmarks as compute or/and data intensive. The rest of the plots are presented in
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the Appendix A. The ones considered as data intensive have high memory accesses throughout
their execution and an IPC that has many spikes while the ones considered as compute intensive
maintain a high IPC percentage throughout their execution and rare and low memory accesses. If
high IPC and often memory accesses coexist then the benchmark is characterized as both compute
and data intensive. The results of our characterization is shown in table 4.4.

Benchmark | Compute-Intensive | Data-Intensive
Bayes v v
Kmeans v
SVM v v
Aggr v
Join v
Scan v
PR v
Linear v v
GBT v
Sort v
LDA v
TS v v
ALS v
LR v v
RF v
PCA v
SVD v v
WC v

Table 4.4: Characterization of the benchmarks

4.2 STEP 1: Exploration and Pruning of Spark Parameters Design Space

In this step, our framework attempts to prune the spark parameters design space by determining
which of them are the most important ones, meaning those that cause a significant difference in
performance (for better or worse) if their value is changed from the default. Reconfiguring them,
in away that takes into account the primary characteristics of the application as well as those of the
machine on which the application runs, can improve the performance significantly and reduce the
execution time.

As stated before, what was deemed as possibly significant, were 99 parameters that needed to
be further analyzed in order to make assumptions for their impact on the execution time of the
applications. This analysis was done by running different applications a number of times, using
each time a randomly selected configuration vector. The results of those experiments were then
used for statistical analysis.

Our proposed framework relies on OpenTuner [12, 13] not only for the optimization process,
but also for the creation of these randomly created configurations. OpenTuner is a framework
that can be used for autotuning a program, which means searching among the possible values of its
parameters and come up with a configuration that optimizes its execution based on some objective.
These possible values form the search space and they are defined by a configuration manipulator.
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This manipulator includes a set of parameter objects which OpenTuner will search over. A run
function is also needed to be defined, so as to evaluate the fitness of a given configuration in the
search space and produce a result. This result is a database record type containing many other
optional fields such as time, accuracy, and energy, which are possible optimization objectives. In
this step, however, we do not define an objective, but instead we exit the process and call it from
the start multiple times because we want randomly created vectors that are not evaluated based on
any objective.

In order to make this configuration manipulator, three representative values were selected for
every parameter (except for booleans) from within their accepted range. Specifically, for arithmetic
values the default value was selected, one significantly higher and one significantly lower and on
the other cases the alternative values were chosen.

OpenTuner was then used to make 300 configuration vectors randomly selected from within
the search space. A brief analysis of these vectors showed that they all differed from each other in
at least 40 parameters. The configuration vectors looked like this:

conf; = {ci1, Cia, -, Cij, -, Cige }, 1 < i < 300

, where con f; is the i-th configuration and c;; is the value of j-th parameter in the i-th configuration.

After the different configurations have been created, the framework performs a series of exper-
iments. Specifically, the first seven benchmarks from table 4.1 were executed for tiny, small and
large input datasizes and for the 300 configurations. Seven applications were selected with differ-
ent memory and CPU behavior so that the results could be compared to each other and generalized
more accurately. In order to change the configuration in spark it is necessary to load a properties
file that contains parameter-value pairs like this:

hibench.yarn.executor.num 4]
spark.task.cpus 1
spark.shuffle.compress true
spark.memory. fraction 0.5
spark.scheduler.maxRegisteredResourcesWaitingTime 10s
spark.sgl.shuffle.partitions 75
spark.cleaner.periodicGC.interval Smin
spark.io.compression.lz4.blockSize 64k

Figure 4.4: Content of file spark.conf

The result of the previous experiments described above was a vector of the corresponding ex-
ecution times ¢t = {t1,%s,..,t;,..,t300}. In order to establish the importance of a parameter, the
execution times were grouped by the value of this parameter on each configuration. Thus, there
were created as many different vectors as the representative values chosen for the parameter.

For example, if for the first parameter ¢;; in the first 5 configurations we have

* 11 =trueand t; = 25.1
* ¢y1 = true and t5 = 26.1
* c31 = falseand t3 = 35.1
e ¢y1 =trueand t, = 24.5

* c51 = falseand t5 = 34.1

then
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o tyue = {25.1,26.1,24.5}
° tfalse = {351,341}

We emphasize that for parameters such as spark.kryoserializer.buffer.max that needs for
spark.serializer to be set at the KryoSerializer value in order to take effect, only those configu-
ration vectors that satisfied this condition were used at the grouping stage.

4.2.1 Kruskal Wallis Test

After these newly created vectors (groups) have been created, the framework performs a
Kruskal-Wallis test [19] on them. This is a non-parametric method for testing whether samples
originate from the same distribution. The function checks if the means of the vectors differ signif-
icantly. Since the values belong to distributions that cannot be considered as normal because they
are based on experimental data, the one-way analysis of variance (ANOVA) test cannot be used
instead.

The Kruskal-Wallis tests the null hypothesis HO, which states that samples in all groups are
drawn from populations with the same mean values. The alternative hypothesis states that at least
two of the groups have mean values that differ. The algorithm returns a p-value. In order to find
out if the null hypothesis is confirmed or rejected, the programmer needs to set an acceptance rate.
We set that limit at 5%. This guarantees that the possibility to show different means when the
distributions are actually the same is below 5%. Thus, when the p-value returned is greater than
0.05 the null hypothesis is confirmed and there is no significant difference in the means, while
if it is lower the null hypothesis is rejected. Evidently, a confirmed HO indicates an insignificant
parameter and a rejected HO a significant one.

The below density plots depict two representative examples, showing the process followed to
determine the importance of each spark parameter. Specifically, they depict the execution time
distribution for the three different values chosen for the given parameter. The first diagram, obvi-
ously, depicts a significant parameter since for the value 0.4 we have a shift of the distribution to the
left. The second one has no such significant shift so it corresponds to an insignificant parameter.
Such figures for the rest of the parameters are shown in the Appendix B.
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Figure 4.5: Density plots of different parameters

After comparing the results of the test for every benchmark-input pair, it was decided that the
most significant parameters in general case were actually 23, which are shown in table 4.5. They
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affect spark’s environment either directly or through the cluster manager yarn. The cases with a
rejected HO were actually more, but the ones that had the default and not another value significantly
better, according to the density plots, were not taken into account.
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Parameter

Description

spark.executor.instances

The number of executors

spark.executor.cores

The number of cores used by each executor

spark.task.cpus

Number of cores allocated for each task

spark.shuffle.compress

Whether to compress map output files

spark.executor.memory

Amount of memory to use per executor process

spark.memory.fraction

Fraction of (heap space - 300MB) used for execution and stor-
age. The lower this is, the more frequently spills and cached data
eviction occur. The purpose of this configuration is to set aside
memory for internal metadata, user data structures, and imprecise
size estimation in the case of sparse, unusually large records

spark.memory.storageFraction

Amount of storage memory immune to eviction, ex-
pressed as a fraction of the size of the region set aside by
spark.memory.fraction. The higher this is, the less working
memory may be available to execution and tasks may spill to
disk more often

spark.serializer

Class to use for serializing objects that will be sent over the net-
work or need to be cached in serialized form

spark.scheduler.maxRegisteredResourcesWaitingTime

Maximum amount of time to wait for resources to register before
scheduling begins

spark.default.parallelism

Default number of partitions in RDDs returned by transformations
like join, reduceByKey, and parallelize when not set by user

spark.sql.shuffle.partitions

The number of partitions used during data shuffling for joins and
aggregations

spark.cleaner.periodicGC.interval

How often to trigger a garbage collection

spark.io.compression.lz4.blockSize

Block size in bytes used in LZ4 compression, in the case when
LZ4 compression codec is used. Lowering this block size will
also lower shuffle memory usage when LZ4 is used

spark.yarn.am.memory

Amount of memory to use for the YARN Application Master in
client mode

spark.scheduler.revive.interval

The interval length for the scheduler to revive the worker resource
offers to run tasks

spark.locality.wait.process

Customize the locality wait for process locality. This affects tasks
that attempt to access cached data in a particular executor process

spark.shuffle.sort.bypassMergeThreshold

Avoid merge-sorting data if there is no map-side aggregation and
there are at most this many reduce partitions

spark.shuftle.io.preferDirectBufs

Whether to use off-heap buffers to reduce garbage collection dur-
ing shuffle and cache block transfer

spark.task.maxFailures

Number of failures of any particular task before giving up on the
job

spark.files.openCostInBytes

The estimated cost to open a file, measured by the number of bytes
could be scanned at the same time. This is used when putting
multiple files into a partition

spark.shuftle.file.buffer

Size of the in-memory buffer for each shuffle file output stream.
These buffers reduce the number of disk seeks and system calls
made in creating intermediate shuffle files

spark.cleaner.referenceTracking.blocking

Controls whether the cleaning thread should block on cleanup
tasks

spark.kryoserializer.buffer.max

Maximum allowable size of Kryo serialization buffer

Table 4.5: Selected Spark Parameters
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4.3 Per-application Impact of important spark parameters

Since the various workloads are different from each other, for example some are data and
others compute intensive, the Kruskal Wallis test did not show for every benchmark exactly
the same important parameters. Some of them, such as spark.executor.memory, spark.task.cpus,
spark.executor.cores, were deemed in all cases as important, while the rest were not. The result
depends on the characteristics of the application as well as the size of the input data. The following
diagram shows an example of the impact of all the 23 parameters considered as important for a
randomly selected benchmark-datasize pair, which is PR with a small input dataset. Such diagrams
were built for all the benchmarks that participated in the parameter analysis process. The parame-
ters that are significant and reject the null hypothesis of the test are those who go over the red line
at 0.95, since we have selected a p-value equal to 0.05. It becomes clear that not all 23 of them
have a great impact on the execution of this particular benchmark. Based on the above procedure,
the importance on a per-application basis were determined, which are shown in Table 4.6.
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Figure 4.6: Impact of parameters on the execution of PR with small input size

56



Chapter 4 4.4. Performance Prediction of tuned spark applications

Parameter Bayes | Kmeans | SVM | Aggr | Join | Scan | PR
spark.executor.instances v v v v v v v
spark.executor.cores v v v v v v v
spark.task.cpus v v v v v v v
spark.shuffle.compress v
spark.executor.memory v v v v v v v
spark.memory.fraction v v v v
spark.memory.storageFraction v
spark.serializer v v v
spark.scheduler.maxRegisteredResourcesWaitingTime v v v v v
spark.default.parallelism v
spark.sql.shuftle.partitions v
spark.cleaner.periodicGC.interval v v v
spark.io.compression.lz4.blockSize v v v v v
spark.yarn.am.memory v v v
spark.scheduler.revive.interval v v v v v
spark.locality.wait.process v v v v v
spark.shuffle.sort.bypassMergeThreshold v v v
spark.shuffle.io.preferDirectBufs v v
spark.task.maxFailures v
spark.files.openCostInBytes v v v
spark.shuffle.file.buffer v v
spark.cleaner.referenceTracking.blocking v v v
spark.kryoserializer.buffer.max v

Table 4.6: Important Spark Parameters per benchmark

4.4 Performance Prediction of tuned spark applications

4.4.1 End-to-end

As it has already been mentioned, in order to find the optimal configuration of an application,
it is necessary to try multiple candidate configurations and evaluate them based on the execution
time. However, since measuring that time for a lot of experiments can be very time consuming and
it is not a very good idea for it to be done during the optimization process, we need to find a way
to estimate it with as much accuracy as possible. This can be done by adding another stage before
the one of the optimization, the modeling stage.

Constructing a model that predicts accurately the performance of any spark application is not
a trivial process. Spark workloads can have very different performance behaviors from each other
and, thus, one model cannot be accurate enough for all of them. A certain grouping of the work-
loads needs to take place, so that one model is built for a set of similar applications. In order to find
similarities and differences among different workloads, it is necessary to find a way to study the
basic characteristics of an application, concerning CPU, memory and network behavior, and use
a clustering algorithm in order to split the different applications into groups. The workloads that
will be studied and used to construct the different models are the developing benchmarks shown
in table 4.1, hoping to extract from them as much useful information as possible. The primary
objective here is to produce results that can be generalized to other applications too.
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4.4.2 STEP 2: Clustering Inference
4.4.2.1 Production of Representative Signals per Benchmark

As already stated, the information that is helpful at characterizing an application concern CPU,
network and memory behavior. Specifically, our framework evaluates the similarity between dif-
ferent workloads by testing their IPC, frequency, cache behavior and memory 10, which are mea-
sured with the use of the PCM metrics shown in table 4.3. Therefore, in order to be characterized
and clustered the benchmarks needed to be executed alongside PCM program, so that they could be
monitored. The configuration was selected to be the default and the input data size large, because
a small dataset would lead to a short execution of the application and would bring little useful
information.

On each execution a csv file was created, which we will call PCM trace. Every column of
this trace corresponds to a metric and can be considered as a signal of that metric, which changes
through time. The division of the benchmarks into groups was done with the help of a complex
signal that is calculated as the element-wise geometric means of the initial signals. This means
that the new signal has the same length as the old ones and its cells contain the geometric means
of the corresponding cells of the old signals like this:

new = {geo_t1,geo t2,...,geo tn}

, where geo equals </ PhysI PC% - TotalQPlout - ... - L2HIT

In this way, every benchmark has its own complex signal that summarizes its most important
characteristics.

4.4.2.2 Kmeans clustering algorithm

The above signals can be used in a clustering algorithm in order to separate the applications
into clusters (groups). Since a signal is a kind of time series, the algorithm that was used is Time-
SeriesKmeans of Python’s tslearn library [34] and the training was done over the time series dataset
of the 12 signals.

However, since the benchmarks did not run for the same amount of time, their length differs.
With tslearn’s help for data series analysis the signals are resampled and reformed to have length
of 2000 values. In this way, all three metrics used for both cluster assignment and barycenter
computation of kmeans can be used, including euclidean that needs time series of the same length.

After testing different values for the number of clusters to be produced, as well as for the metric
to be used for calculating distances (euclidean, dtw, softdtw), we conclude that the best clustering
of the applications is the one described in table 4.7 that produces 6 clusters using the metric softdtw
with the default number of iterations for the barycenter computation process and gamma parameter
equal to 0.005.

Figure 4.7 visualizes the 6 time series clusters that were created. The centroid, which represents
the cluster, is depicted with red color and the benchmark signals that belong to each cluster are
depicted with gray color.
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No Cluster Benchmarks
Cluster 0 Aggr, Scan
Cluster 1 Bayes,Linear,Sort
Cluster 2 Kmeans, SVM
Cluster 3 Join,GBT,LDA
Cluster 4 PR

Cluster 5 TS

Table 4.7: Clustering developing benchmarks
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Figure 4.7: Time-series clustering of developing applications

4.4.3 STEP 3: Model Inference
4.4.3.1 Experiments

During the modeling stage, a series of experiments ran so as to collect data that can be used
for training a model to predict successfully an application’s behavior in random configurations.
Initially, like in the previous series of experiments that concerned the parameter analysis, there
were produced 300 vectors with random values for the 23 important parameters. This time these
values were selected between 6 representative values for every parameter (except for booleans)
from within their accepted range. Specifically, for arithmetic values there was selected the default
value and both higher and lower values so that the domain is well covered. For the non arithmetic
again there were used all the alternatives. Then, every one of the 12 benchmarks that form our
knowledge base was executed for the 300 different configurations and for input datasizes tiny,
small and large.

Next, another series of experiments followed. The configurations that were used had 22 of the
23 important parameters at their default value and the one left every time had another value selected
from the 5 representative ones (except in case of spark.executor.memory where 10 possible values
were tested), without the default. Therefore, in every execution only one parameter was written in
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the spark properties file. Obviously, the number of experiments that ran for each parameter equal
the number of the possible values that it can take, minus the default. The size of the input data at
these executions was large.

Finally, in order to be more thorough, another series of experiments was executed. This was
similar with in logic with the previous one, except this time the rest 22 important parameters were
given random values and not their default. For the assignment of random values on the parameters,
OpenTuner was once again used. The size of the input data at these executions was large.

All the above experiments took a significant amount of time, between 1 and 2 months, but this
is time spent on the construction of the optimization script and not time that will delay the user
of the script, so it is not as bad. From these experiments, we stored not only the execution times
but also the PCM traces because we will also study shortly and try to model the benchmarks on an
energy level.

4.4.3.2 Description of Model Inputs and Outputs

As aforementioned, not only one model was built for all the applications but instead six, which
is as many as the different clusters that were produced. Each model is trained with the collected
data of the benchmarks that belong to the cluster it represents and learns their behavior. What it
actually does is try to extend its existing knowledge so as to make accurate predictions about the
execution time of similar applications in case a random configuration is used.

The features that will be used in the construction of the training sets are the 23 important pa-
rameters, the input datasize, and the important information from the PCM trace of the default
execution. The training set of a model that corresponds to a cluster with a unique application will
have the above information for this particular application only, while those who have more will
have this information for all of them. The features that concern the PCM trace are 9 and they
are calculated as the average of each important metric/column of the trace. Therefore, instead of
using time series and passing a signal as input to the model, we hold only one value per signal,
which is calculated as the average of all its values without resampling. These extra features that
are relevant to PCM help the model learn the connection between the basic characteristics of an
application and its execution time. The target output or else the predicted value is the running time
of the application.

The figure that follows shows the logic that was described above, with the interior of the model
being a black box, which will be studied in the next section.
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Figure 4.8: Description of features and target output of the model

4.4.3.3 Comparing Algorithms for the Performance Models

Our performance model is based upon a regression algorithm because we need to predict a
continuous variable like execution time. A great category of such algorithms is the linear (linear,
ridge, lasso, elastic net, bayes ridge and SGD), in which the dependent value is a linear combination
of the independent (features) like this:

J(w, ) = wy + w1y + ... + Wy,

However, there are also other algorithms that can model more complex relations between the
features and the target output, such as SVM, K Nearest Neighbors, Gaussian Process, Decision
trees, Random forest and Multi-layer Perceptron. Since our problem is complex enough, with 33
features, these algorithms will probably achieve higher accuracy.

With the help of Python’s library sklearn [35] we used all the above algorithms to build different
models for the clusters and then we evaluated them in order to compare them to each other and find
the best. Before they are fed to the model, the training sets that were constructed pass through the
process of standard scaling, so that they have mean value equal to 0 and standard deviation equal to
1 (normal distribution). This was done because it was observed that it causes a slight improvement
on accuracy.

Most of the algorithms that were used, offer some parameters to the programmer for tuning
that play a vital role in the model’s learning capacity. For this reason, a Randomized search was
executed in order to test random combinations of values for them and find out towards which
direction lie the most effective ones based on their accomplished score. After that, we define in
a grid the winning values and some that are close to them and run a Grid search that tests all
possible combinations and finds the most effective configuration. This optimal configuration of
each algorithm was used when running it and collecting the accuracy (score) it achieved.

The table that follows shows in every column the best score that was achieved for this particular
cluster for each of the regression algorithms that were used. The scores where calculated using the
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method score” - that uses the R? metric - in different testing sets that were selected with KFold’s
help. The KFold method splits the train/test datasets into n_splits = k consecutive folds, after
shuffling them, as we defined. Each fold is then used as a validation set while the k - 1 remaining
folds form the training set. Every one of the k iterations gives a score that is held in a list and at
the end of the loop the average of the list is calculated. The final score that is described in table 4.8
is the maximum score that was achieved among all the different executions for different values in
variable n_splits.

Algorithm | Score-C0 | Score-C1 | Score-C2 | Score-C3 | Score-C4 | Score-C5
Linear 0.51 0.36 0.40 0.34 0.39 0.41
Ridge 0.52 0.36 0.40 0.34 0.39 0.41
Lasso 0.16 0.31 0.31 0.33 0.35 0.39

ElasticNet 0.43 0.30 0.29 0.30 0.33 0.38

BayesRidge 0.52 0.36 0.40 0.34 0.39 0.42

SGD 0.51 0.32 0.19 0.22 0.38 0.43
SVR 0.75 0.36 <0 0.28 0.27 0.38

kNeighbors 0.78 0.35 0.50 0.23 0.28 0.16

GaussProc 0.77 0.51 0.56 0.49 0.36 0.31

DecisTree 0.83 0.83 0.90 0.88 0.80 0.56

«<— RF 0.90 0.87 0.93 0.92 0.85 0.73
MLP 0.87 0.71 0.88 0.76 0.50 0.40

Table 4.8: Model scores of each cluster per algorithm

Obviously the linear algorithms, as anticipated, cannot train highly accurate models for our 33-
dimension problem. The SVM, K-neighbors and Gausian Process regressors, also do not have a
good enough behavior. On the other hand, the MLP regressor with a neural network of 100 neurons
in only one hidden layer can produce much better results but only for clusters whose training set
contains data from more than one applications. Finally, the algorithms that seem to make the most
effective modeling are the two that are based on decision tree learning, with random forest being
the best of them in every cluster. The models built with the Random Forest algorithm are accurate
enough, achieving in most cases scores greater than 0.90 and in the worst case a score of 0.73,
which again is the best one for this particular cluster.

Since the models that learn better our problem and make more accurate predictions are those
that are built with the Random Forest algorithm, these are the ones that were selected for modeling
the clusters. This algorithm operates by constructing a multitude of decision trees at training time
and outputting the mean prediction of the individual trees. It inserts randomness at splitting the
nodes when a tree is being constructed, such as selecting a random subset of features, in order to
reduce the model’s variance. In this way, it manages to outmatch Decision Tree learning because
of its lack of overfitting. This means that Random Forest algorithm does not train the system to
stay too close to a specific dataset because this would cause problems in its ability to generalize
its predictions.

Although the R? is a good metric to evaluate a regression model’s accuracy statistically, it might
hide large errors for particular predictions due to outliers. To address this issue, below we present
the error distribution of our prediction models using scatter plots. The three scatter plots depict
100 real measurements and the 100 corresponding model predictions for benchmark Kmeans and
for three different inputa datasize categories for 100 randomly selected configurations. The x axis
represents the real measurements and the y denotes the predicted execution times. This figure
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clearly shows that the models are fairly accurate across the entire Spark configuration space; all
100 data points for each benchmark are located around the corresponding bisector, indicating that
the predictions are close to the real measurements. This indicates that there are not many outliers
in the predictions of our performance models, which is good for quickly finding the optimum
configuration for a Spark workload.

Y
S

Predicted
s o o N
S 3 3 3

w
S

N
(s}

»
S

Figure 4.9: Prediction of execution time versus real measurement for different input sizes of Kmeans
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4.4.3.4 Energy Models

However, in every program execution, time is not the only performance metric of interest. The
greatest concern of all programmers is the trade-off between minimizing execution time and energy
consumption. Therefore, we also tried to build a model to predict the energy that was consumed
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by each differently configured spark execution.

In order to measure the energy consumption, the PCM trace was used once again. It offers
information about DRAM and processor energy consumption in Joules. These two metrics are
two different target outputs, so there were built distinct models for the energy modeling. The
algorithm that was used for modeling is Random Forest regression and the clustering remains the

same. The score results are shown in table 4.9.
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Energy | Score-C0 | Score-C1 | Score-C2 | Score-C3 | Score-C4 | Score-C5
PROC 0.78 0.86 0.91 0.74 0.91 0.60
DRAM 0.73 0.88 0.91 0.73 0.92 0.50

Table 4.9: Model scores of each cluster per energy metric

Obviously, predicting the energy has not been as accurate as predicting the execution time,
especially on the DRAM level. Improving these models, though, would need deeper digging on an
architecture level, which would delay us significantly. Therefore, the study of energy consumption
was set aside and the minimize energy objective was finally not used alongside the minimize time
objective at the optimization stage for the time being.

4.5 STEP 4: Determining the Optimal Configuration of Spark Applications

The final step that completes our framework is finding the optimal configuration to run each
application so that its execution time is minimized. This was done with the help of an optimizing
algorithm, which can explore different candidate solutions and move through the search space
based on the time results each of them brings, with the objective to minimize execution time. This
optimizing process can be done easily with the help of the OpenTuner framework [12, 13].

4.5.1 Comparing Optimization Algorithms

OpenTuner offers a number of techniques (42) that differ on the way the search space is being
explored. None of them guarantees that it will end up finding the global minimum of the execution
time, but only a good enough local minimum. It is also possible to build a metatechnique, which
is a technique made up of a collection of other techniques. When the metatechnique gets allocated
tests, it incrementally decides how to divide theses tests among its sub-techniques. The most
famous metatechnique is the AUC Bandit, which has been created to find the optimal solution
to the problem of the multi-armed bandit. This is the problem of picking levers to pull on a slot
machine with many arms each with an unknown payout probability.

Unfortunately, there is no technique that always outperforms all the others and that should be
selected in every optimization problem. However, there are certain techniques, such as the Ban-
dit, the particle swarm optimization, differential evolution and the genetic algorithms that usually
produce interesting results, so the selection will be done among those.

After running the optimization process on the same pair of application-dataset for all the above
techniques, it was obvious that the particle swarm optimization and the differential evolution could
not compete with the others as they produced significantly worse results. The bandit and the ge-
netic algorithm came up with quite similar results and therefore we selected the one that seemed
insignificantly better and took less time to run, which was the genetic algorithm.

4.5.2 Genetic Algorithm

The Genetic algorithm belongs to the larger class of evolutionary algorithms. They are com-
monly used to generate high-quality solutions to optimization and search problems by relying on
biologically inspired operators such as mutation, crossover and selection.

In a genetic algorithm, a population of candidate solutions to an optimization problem evolves
toward better solutions. Each candidate solution has a set of properties which can be mutated and

64



Chapter 4 4.5. STEP 4: Determining the Optimal Configuration of Spark Applications

altered. The evolution usually starts from a population of randomly generated individuals, and is
an iterative process, with the population in each iteration called a generation. In each generation,
the fitness of every individual in the population is evaluated; the fitness is usually the value of
the objective function in the optimization problem being solved. The more fit individuals are
selected from the current population, and each individual’s genome is modified (recombined and
possibly randomly mutated) to form a new generation. The new generation of candidate solutions
is then used in the next iteration of the algorithm. Commonly, the algorithm terminates when
either a maximum number of generations has been produced, or a satisfactory fitness level has
been reached for the population.

The OpenTuner offers five different genetic algorithms that differ on the crossover operator.
Specifically, they differ on the way that the permutation variables, that correspond to the parents,
will be combined with one another in order to produce the offspring. With the word permutation
we mean the OpenTuner’s parameter type that assigns an order to a given list of values. All of
them have a mutation rate of 0.1 and a crossover rate of 0.8. The five different algorithms are:

1. ga-PX: As the flag ”"PX” states, a random cut point is chosen in the first parent and all of his
elements up to this point are reordered according to their order in the second parent.

2. ga-PMX: As the flag "PMX” states, a random section of the first parent, the size of which is
controlled by a hyper-parameter, is replaced with the corresponding section in second. The
displaced elements in the first parent are moved to the old position of the elements displacing
them.

3. ga-CX: As the flag ”CX” states, elements of the first parent are repeatedly replaced with the
element at the same index in the second one. This is done until a cycle is reached and the
original permutation is valid again. The initial replacement index is random.

4. ga-OXI: As the flag ”OX1” states, a subpath from the second parent is exchanged into the
first, while maintaining the order of the remaining elements in the first parent. The size of
the exchanged section is controlled by a hyper-parameter.

5. ga-OX3: As the flag OX3” states, a subpath from the second parent is exchanged into the
first, while maintaining the order of the remaining elements in the first parent. The two
cutting points for the sub-paths are different, as opposed to the previous algorithm. The size
of the exchanged section is controlled by a hyper-parameter.

The slightly better algorithm from the above, which was the one that was finally selected, is
the ga-PX.

In order to run the optimizer, a configuration manipulator was created, defining six different
values for all the arithmetic parameters except for the spark.executor.memory. This parameter was
considered very significant and, since it has a large domain, eight possible values were chosen
instead of six. For the non arithmetic parameters, the manipulator once again contained all the
possible alternative values. Next, the run function was defined in such a way that it would evaluate
the fitness of the given configuration by asking the appropriate model for this configuration’s output
time. In order to find out which the appropriate model is, the optimizer runs a script that searches
for the csv file that contains the PCM trace and assigns to it a label corresponding to a specific
cluster.
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4.5.3 Integration of proposed framework with apache spark

Our work offers a wrapper script that takes the standard spark-submit command and internally
runs the workload one time to collect the PCM trace and assign a cluster to it. Then, it uses the
appropriate model for the optimizer to evaluate configurations and end up to the optimal one, with
which the spark-submit command will finally be executed. This process described is shown in
figure 4.10.

Run with Performance

default Model of cluster
configuration

Iterative Search

P Optimization
spark-submit with % PCM vector \ X
default configuration ~1  Algorithm
-k
Optimized
Configuration
| N spark-submit with
optimal configuration
9 vy

Figure 4.10: Description of the wrapper script of our framework
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Experimental Results and Evaluation

5.1 Exploration on Developing Workloads

Our autotuning framework was executed for all the different developing application-dataset
pairs and returned the best configuration and the predicted execution time of it. It is reminded that
the optimization’s process results are as accurate as the model predictions allow them to be. Next,
each application ran with the selected best configurations ten times in order to measure the average
time that its execution actually cost. The following table shows the default, the best measured and
the best predicted execution time of each application, with three columns per data size category.

Tiny Small Large
App Default | Meas Pred | Default | Meas Pred | Default | Meas Pred
Bayes | 41.921 | 30.462 | 30.015 | 43.963 | 32.480 | 30.469 | 63.024 | 48.239 | 43.07
Kmeans | 29.787 | 23.791 | 26.207 | 71.889 | 46.270 | 38.783 | 1351.1 | 58.202 | 55.367
SVM 44.125 | 31.573 | 35.735 | 54.002 | 36.108 | 39.423 | 2643.2 | 82.894 | 82.707
Aggreg | 76.123 | 61.873 | 59.364 | 76.632 | 63.059 | 58.638 | 79.847 | 66.129 | 59.604
Join 77.398 | 68.259 | 65.426 | 131.53 | 75.034 | 86.813 | 130.63 | 79.247 | 114.94
Scan 58.39 | 56.883 | 56.881 | 60.215 | 56.856 | 56.549 | 63.701 | 60.516 | 57.991
PR 23.637 | 22.467 | 24.1 30.791 | 26.433 | 27.704 | 265.82 | 79.75 | 71.157
Linear | 43.702 | 25.257 | 32.541 | 106.89 | 35.653 | 37.761 | 248.56 | 60.653 | 61.752
GBT 41.126 | 30.064 | 31.839 | 88.265 | 57.63 | 60.02 | 540.97 | 249.33 | 219.63
Sort 29.908 | 19.844 | 22.14 | 23.696 | 22.749 | 23.496 | 29.767 | 24.488 | 27.389
LDA 116.54 | 72374 | 117.72 | 644.84 | 248.55 | 167.45 | 1580.6 | 632.31 | 607.77
TS 30.843 | 21.287 | 21.659 | 40.626 | 25.29 | 28.467 | 197.52 | 52.782 | 54.261

Table 5.1: Comparing default, best measured and best predicted execution time for developing benchmarks

The figures that follow visualize the above results. The figure for the tiny datasize follows in
the next page. It shows that for every benchmark we have achieved reduction of its execution time
except for Scan, which almost did not improve at all. This is because Scan is a compute intensive
program, with the default value for the CPU-related parameters being suitable, and with the mem-
ory related parameters not being important enough. Also, the measured time is very close to the
predicted one, except for the LDA benchmark, with which we achieved a remarkable optimization
but not a good prediction accuracy. The lack of prediction accuracy is not unexpected since figure
4.7 shows that the 4th cluster, where LDA benchmark belongs, has some noise that can sometimes
lower the prediction accuracy.
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Figure 5.1: Comparing default, best measured and best predicted execution time for developing benchmarks
and tiny size of input data

For small and large datasets there are presented two distinct figures for each category because
of the different scaling in the time axis.

The figure for the small datasize is:
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Figure 5.2: Comparing default, best measured and best predicted execution time for developing benchmarks
and small size of input data

For small input datasize again we have achieved reduction of the execution times, and in the
cases of Join, Linear and LDA a very important one indeed, and it starts being obvious that while
the input data size increases these improvements will become more and more significant since the
memory related parameters will become of great significance. In case of Scan and Sort the execu-
tion time almost did not improve at all, because as we stated before the default values happened
to be nearly the best that could be acquired. The prediction accuracy remains very good, maybe
except for LDA again, which was underestimated and Join that was slightly overestimated, for the
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same reason we stated before about the fourth cluster.
The figure for the large datasize is:
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Figure 5.3: Comparing default, best measured and best predicted execution time for developing benchmarks

and large size of input data

For large input datasizes the only model prediction that is not very good is the one of the join
benchmark, for the reason that we have stated. The improvement is very important on nearly all
the applications, and as we had predicted is very much greater as the data size increases. Once

again Scan and Sort almost did not improve at all.

In order to visualize better the improvement shown in the above three diagrams we present
below a speedup diagram that shows what fraction of the default execution time is the best that we

achieved, per benchmark and input datasize.
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Figure 5.4: Comparing speedups for all the developing benchmarks and inputs

There are plenty of interesting observations to be made here. First, the execution times of all
program-pairs running with our optimal configurations are shorter than those of the same program-
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pairs running with the default configurations. Second, our framework improves the performance
significantly for all the developing benchmarks except Scan, where we obtain marginal perfor-
mance improvements. The maximum speedup achieves 31.9x when SVM runs with 20 GB of
data, which can be explained by the fact that SVM is a benchmark both compute and data inten-
sive and therefore there is a great number of parameters that affect significantly its performance.
The average speedup for all the program-input pairs is 3.07x. Third, the performance improve-
ment for a benchmark made by our framework generally increases when the input data size of that
benchmark increases. This is a very significant property for our era because one of the impor-
tant features of data analytics is that the amount of data increases rapidly. Therefore, our results
demonstrate that our framework can improve in most cases the performance of Spark workloads
significantly.

5.2 Exploration on Unseen Workloads

The great innovation of our tuning framework is that it can also be used to optimize the execu-
tion of an unseen application that has not been used in our knowledge base. This is the reason why
we put so much effort on trying to find the connection between the behavior of a workload on an
architecture level and the execution time.

5.2.1 Cluster Assignment and Model Scores

In order to run a new application optimally using our method, the only experiment that needs
to be done is running the workload with the default configuration and large size, so that the PCM
trace file is collected. From this file, as described before, new signals are produced with the help
of the geometric means and create a time series dataset. After the clustering model that was built
before has been loaded, the method ”predict” is applied on the dataset and it assigns a label on this
particular application we ran. This label shows which cluster corresponds to this workload and the
results for the validating applications are shown in the table 5.2.

Benchmark | Cluster 0 | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5
ALS v
LR v
RF v
PCA v
SVD v
wC v

Table 5.2: Assigning validating benchmarks to clusters

The above assignment shows which of the previously created models is the one that should
be used to predict the execution time of each of the unknown applications. In order to evaluate
the accuracy of the models in the unknown workloads, we need to run a series of experiments so
that we can measure the real execution times of some configurations and then compare them to
the predicted ones. Therefore, each of the validating benchmarks was executed for the 100 first
different configuration vectors that were produced in the first series of experiments we ran, and for
input data sizes tiny, small and large. The measured execution times of these experiments are used
as testing sets in the model of the cluster to which they belong, so that its prediction ability can be
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evaluated. The table that follows shows for each application the cluster to which it is assigned and
the R? score that the corresponding model achieves for every input data size category.

Benchmark | No Cluster | Score-Tiny | Score-Small | Score-Large
ALS 1 <0 <0 <0
Logistic 2 0.77 0.81 0.53
RF 1 0.92 0.77 0.66
PCA 3 0.64 0.91 <0
SVD 1 0.80 <0 <0
WwC 1 0.68 0.70 0.92

Table 5.3: Score per validating benchmark

Evidently, our methodology produces accurate enough results for most of the validating bench-
marks and for all the datasize categories. The ALS benchmark, though, cannot be accurately pre-
dicted whatever the input data size.Also, with SVD and PCA the good predictions cannot keep up
with the input data size increase. In spite of these inaccuracies, our modeling technique’s achieve-
ments are remarkable. It accomplishes a satisfying accuracy in many cases in predicting unseen
applications and so, the optimal configuration that is proposed even in this case is very close to the
actual best, which is more than it has ever been achieved before by other autotuning frameworks.

We also present two scatter plots that correspond to different benchmark-input pairs. The first
represents the WC-large pair that, according to table 5.3, has a score of 0.92 and the second repre-
sents the RF-large with a score of 0.66. This difference in the accuracy is obvious, because in the
second figure the points are not as close to the bisector.
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Figure 5.5: Error distribution illustrating prediction versus real measurement for validating benchmarks

5.2.2 Result Analysis and Evaluation

In order to test also the optimization results, our autotuning framework was executed for all the
different validating application-dataset pairs and returned the best configuration and the predicted
execution time of it. Next, each application ran with the selected best configurations ten times in
order to measure the average time that its execution actually cost. The following table shows the
default, the best measured and the best predicted execution time of each application, with three
columns per data size category.
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Tiny Small Large
App | Default | Meas Pred | Default | Meas Pred Default Meas Pred
ALS | 30.876 | 34.447 | 25.271 | 36.337 | 41.479 | 26.984 | 86.214 67.102 | 26.236
LR 3633 | 25.618 | 26.197 | 45.932 | 31.292 | 35.896 | 1516.179 | 178.573 | 56.771
RF | 32467 | 21.659 | 22.324 | 36.500 | 24.652 | 24.199 | 32.864 29.892 | 25.477
PCA | 48.382 | 37.861 | 32.252 | 93.429 | 62.576 | 62.232 | 322.852 | 185.411 | 77.172
SVD | 38.896 | 29.723 | 28.213 | 71.889 | 74.284 | 27.525 | 337.659 | 350.852 | 30.762
WC | 31.790 | 20.810 | 26.273 | 31.792 | 24.825 | 29.725 | 62.492 36.551 | 36.470

Table 5.4: Comparing default, best measured and best predicted execution time for validating benchmarks

The figures that follow visualize the above results. The figure for the tiny datasize shows that
for every benchmark we have achieved reduction of its execution time except obviously for ALS
that could not be well predicted by our models, according to table 5.3. As we have stated, our
autotuning framework can be as accurate as the model allows it to be, so the ALS results are never
to be trusted. In all other cases, however, where the models had a good enough accuracy, we have
accomplished a satisfying improvement.

60

Improvement in execution time per benchmark

Il Default
I Measured Best
50+ 3 Predicted Best [

401

30+

Time (s)

20 -

10 +

ALS LogReg RandFor PCA SvD Wordcount
Benchmarks

Figure 5.6: Comparing default, best measured and best predicted execution time for validating benchmarks
and tiny size of input data

For small input datasize again we have achieved reduction of its execution time except obvi-
ously for ALS and SVD that could not be well predicted by our models, according to table 5.3.
The predictions are, however, accurate enough for the rest of the cases, as expected. Once again
we notice that as the input data size increases the improvements tend to be more significant, which
begins to show especially with the PCA benchmark.
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Figure 5.7: Comparing default, best measured and best predicted execution time for validating benchmarks
and small size of input data

For large datasets there are presented two distinct figures because of the different scaling in the
time axis. We notice this time that the only benchmark that did not improve is the SVD. However,
the improvement of PCA and ALS is not to be trusted because, as the table 5.3 shows it has not
been accomplished with the help of our models but out of luck. It is obvious, however, that because
of its data intensive character PCA can afford to be greatly improved. The RF benchmark does
not accomplish a good enough reduction of the execution time, even though the improvement
becomes greater as the input data become larger, probably because of it not being data intensive
and the memory-related parameters having low importance.
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Figure 5.8: Comparing default, best measured and best predicted execution time for validating benchmarks
and large size of input data

In order to visualize better the improvement shown in the above three diagrams we present
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below a speedup diagram that shows what fraction of the default execution time is the best that we
achieved, per benchmark and input datasize. The diagrams contain only the program-input pairs
which our models could predict accurately and not those that were improved by chance.
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Figure 5.9: Comparing speedups for all the validating benchmarks and inputs with no negative scores

We notice that the execution times of all program-data pairs with predicting R? score of our
models greater than zero, when running with our optimal configurations are shorter than those of
the same program-pairs running with the default configurations. Also, our framework improves
the performance significantly for all the validating benchmarks. The maximum speedup achieves
8.5x when LR runs with 8§ GB of data. The LR benchmark, as well as the representative of the
cluster benchmarks Kmeans and SVM we commented before, present a remarkable improvement.
It is an application both compute and data intensive so there are plenty parameters that affect
significantly its performance end therefore it gets so much improved. The average speedup for all
the program-input pairs is 2.01 x. Finally, the performance improvement for a benchmark made
by our framework generally increases when the input data size of that benchmark increases.

5.3 Comparison with a Model Free Optimization Process

The insertion of the model in our optimization process has been made, as it has already been
explained, so that our optimizer can evaluate candidate solutions with negligible delays. In this
section we will try to apply the optimizer directly on spark, testing 200 different configurations,
and check the time overhead and the number of different configurations that need to be tested for
each program-input pair to find a solution as good as ours. The results are shown in table 5.5.

We notice that sometimes the optimizer that evaluates the candidate solutions directly on spark
can produce results as good as ours with a small time overhead of less than ten minutes. In many
cases though, this could take a much greater amount of time, such as nearly an hour or even several
hours. This difference has undoubtedly a lot to do with the model accuracy that each benchmark-
input pair can achieve. However, in the general case, our modeling technique saves a lot of time
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and makes our optimizer actually useful for a programmer who does not have time to spare, so it

Small Large
Benchmark | No configs Time No configs | Time
Bayes 35 1645s 4 292s
Kmeans 4 450s 12 2831s
SVM > 200 >12763s 4 442s
Aggr 32 2658s 8 656s
Join 8 905s 36 3356s
Scan 4 321s 4 364s
PR 4 156s 36 5096s
Linear 8 611s 8 818s
GBT 60 4403s 8 3020s
Sort 4 177s 4 160s
LDA 4 889s 4 2419s
TS > 200 >9289s 60 4750s
ALS 4 213s 4 406s
LR 134 6210s 104 23533s
RF 8 303s 28 1314s
PCA 76 6461s 4 1038s
SVD 4 325s 4 1135s
WwC 4 133s 4 218s

should most definitely be preferred over the on spark optimizer.
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Chapter 6

Conclusion and Future Work

In this thesis, we first investigate the impact that the different Spark parameters have on the
performance of Spark workloads. We find that 23 of them affect the performance significantly
and, thus, reconfiguring them can lead to remarkable differences in execution time.

However, manually configuring Spark workloads without in-depth knowledge of it is extremely
challenging because of the massive number of configuration parameters that exist and their wide
range of possible values. To address this issue, we propose and implement an automated frame-
work for auto-tuning of spark applications. It first collects basic architectural characteristics of
a workload and uses them to cluster different applications and construct accurate performance
models for each cluster. Subsequently, our framework employs genetic algorithm to search the
optimum configuration for each workload by taking the performance predicted by its performance
model and the configuration parameter values as inputs. This pioneer idea to cluster applications
before building models for them, offers the chance to use the framework even on unseen appli-
cations that have not been used to train none of the different performance models, and achieve in
most cases satisfying results. We use six representative unseen Spark workloads, each with three
input data sets to evaluate our framework. The results show that it can speed up most of these 18
program-input pairs up to 8.5 x and with an average of 2.01 x, achieving generally more speedup
when the sizes of workload input data increase, which is a very nice property for big data analytics.

In the future it is worth further experimenting with the use of our framework on different ma-
chine setups. Primarily, there is need to experiment in a distributed way, on a multi-node cluster.
In this way we will also test the cluster deploy mode of yarn cluster manager, or even change the
cluster manager to kubernetes and hopefully even notice greater speedups.

Also, as aforementioned, a complete study of our problem on an energy level would be very
interesting. It is worth finding the right architectural characteristics needed to be taken into ac-
count when building the models in order to make them accurate enough. Then it will be possible
to modify, or to be more accurate, to make an extra version of our wrapper script that sets its ob-
jective to both minimize time and energy. These values, of course, will once again come from the
performance and energy models respectively.
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Appendix A

Low level metric plots to characterize
benchmarks
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Appendix B

Density plots showing the significance of all

spark parameters
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