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Abstract

In this thesis, the eXtended Finite Element Method (XFEM) is implemented to model crack
interfaces. XFEM avoids the need of conforming the finite element mesh to the crack geome-
try each time the crack propagates. Instead the displacement field is allowed to be discontin-
uous across the crack interface, by enriching the finite dimensional spaces with appropriate
functions. Enrichment functions can be used to locally incorporate known behavior into the
polynomial approximation of traditional FEM. For domains containing cracks, fracture me-
chanics provides analytic expressions of the displacement field near the crack tip, in addition
to it being discontinuous across the crack body.

Predicting the crack propagation path is based on Linear Elastic Fracture Mechanics. The
stress intensity factors (SIFS) are evaluated to describe the singular stress field near the crack
tip and estimate the crack growth direction. A versatile and robust technique to calculate the
SIFs is the J-integral method, which is suitable for computations over a finite element mesh.

This thesis is concerned with crack propagation in brittle, linear elastic materials. XFEM is
applied to 2D structures under static loading. Although extending XFEM to 3D is straight-
forward, an accurate and efficient method to describe 3D crack geometries is the subject of
ongoing research. Instead this document delves into the details of crack propagation anal-
ysis. Many algorithms and implementation details are presented for XFEM, the J-integral
technique and the methods used to represent the crack geometries.

Alongside this document, C# code has been developed to implement the described theories
and algorithms. This code is freely available as part of the open source software MSolve for
structural analysis and design, developed by the Institute of Structural Analysis and Anti-
seismic Research at the National Technical University of Athens.
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Chapter 1

Introduction

1.1 Motivation
The Finite Element Method (FEM) is one of the most popular numerical methods for solving
partial differential equations. It has been successfully applied in many areas, such as civil
engineering, geomechanics, mechanical engineering, material science, electrical engineer-
ing, etc. In FEM the solution of the partial differential equation is derived from a variational
form of the original boundary value problem, called the weak form. The weak form is ex-
pressed as a relationship between integrals over the whole domain. This domain is divided
into non overlapping subdomains called elements. The solution is then approximated using
polynomials defined over each element. This approximation works well for smooth, piece-
wise differentiable functions, but cannot handle more complex ones, such as discontinuities
in the primary field or its gradient, singularities and high gradients.

The simulation of fracture phenomena has been a topic of growing interest over the past
decades. When a structure is subjected to high or cyclic loading, the resulting stress may
exceed the material strength locally and causes cracks to propagate from original imper-
fections. Extensive cracks lower the overall resistance of the structure and can result in
failure mechanisms. FEM is ill-suited to model cracks, as they represent discontinuities in
the displacement and strain fields. A number of modifications have been proposed, but they
typically lack in accuracy, have high computational cost and do not yield a methodology suit-
able for complex constitutive models nor behavior in general three dimensions. A notable
problem is the reliance on an updated mesh that conforms to the geometry of the cracks. As
the crack propagates, the mesh must be recreated and refined close to the crack, such that
no element is intersected by it. Not only is this computationally expensive, especially for
complex geometries and 3D problems, but the mapping of the intermediate fields between
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the old and new mesh also results in loss of accuracy. Some element free methods have been
proposed to model cracks too, such as the Element Free Galerkin method, but they come
with their own set of problems.

The eXxtended Finite ElementMethod (XFEM) takes another approach. It enriches the orig-
inal polynomial basis functions with additional ”enrichment” functions that can approximate
discontinuities in the displacement field. The approximated displacement field is allowed to
be discontinuous in the interior of any element, thus there is no need to generate a finite
element mesh that conforms to the evolving crack’s geometry. This is of great importance,
as it avoids the complexity and computational cost of regenerating and refining the mesh,
while the crack propagates. Furthermore, the enrichment basis is only added locally around
the crack (see Figure 1.1) and defines extra degrees of freedom. However, they are far fewer
than the ones required when refining the mesh around the crack.

Fig. 1.1 Modeling of discontinuities and voids: a) Physical domain with a crack and a hole.
b) FEM uses an adaptive mesh that must conform to the geometry of such interfaces. c)
XFEM uses a uniform mesh and only elements near the interfaces are enriched.

Moreover, XFEM can be applied to various problems where the solution field is non poly-
nomial and thus traditional FEM would fail. This is readily achievable by selecting suitable
enrichment functions that can approximate the expected field and are usually derived from
a priori knowledge of the solution. In crack propagation problems two classes of enrich-
ments are used: a) discontinuous functions across the crack body, b) asymptotic functions to
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model a displacement field with singular gradient around the crack tips. Other enrichment
functions can be used to model changes in the material properties, e.g. material interfaces
and inclusions in composite materials or multiphase fluids. Voids can also be modeled by
using enrichment functions that ignore the material at some regions, thus avoiding the need
to conform the mesh to internal boundaries (see Figure 1.1).

1.2 Enrichment of the approximation space
Assume the well known approximation field of FEM:

u(x) =
𝑀

∑
𝑖=1

𝑁𝑖(x)ū𝑖 (1.1)

where 𝑀 is the set of nodes of the discretization, 𝑁𝑖 are the basis or shape functions asso-
ciated with each node and ū𝑖 are the degrees of freedom (dofs), namely the nodal values of
the approximated field.

The shape functions of the FEM approximation are a Partition of Unity (PU) over the domain
of interest Ω. A PU can be defined as a set of global functions 𝑓𝑖(x) such that that:

• they have local support, i.e. there are subdomains Ω𝑒 ⊆ Ω where only a subset of them
has non-zero value.

• their sum is equal to 1 at each point of the solution domain

𝑀

∑
𝑖=1

𝑓𝑖(x) = 1 (1.2)

Equation (1.2) expresses the ability of the PU functions to represent constants, which is
crucial for the convergence of FEM. Moreover any arbitrary function 𝜓 can be recovered as

𝜓(x) =
𝑀

∑
𝑖=1

𝑓𝑖(x)𝜓(x) (1.3)

This provides a mathematical framework for the development of enriched solutions. In
XFEM and related methods the approximation field is enriched by multiplying the prob-
lem specific enrichment functions with basis functions that define a PU. There are two basic
ways to enrich the approximation function space:
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1.2.1 Extrinsic enrichment
In extrinsic enrichment, the approximation field is enriched with suitable functions 𝜓𝑘:

u(x) =
𝑀

∑
𝑖=1

𝑁𝑖(x)ū𝑖 +
𝑃

∑
𝑘=1

𝑀𝑘

∑
𝑗=1

�̄�𝑗(x)𝜓𝑘(x)ā𝑗𝑘 (1.4a)

u(x) =
𝑀

∑
𝑖=1

𝑁𝑖(x)ū𝑖 +
𝑀1

∑
𝑗=1

�̄�𝑗(x)𝜓1(x)ā𝑗1 +
𝑀2

∑
𝑗=1

�̄�𝑗(x)𝜓2(x)ā𝑗2 + ... (1.4b)

where

• 𝑀 is the set of nodes of the discretization, 𝑁𝑖 are the standard shape functions and ū𝑖
are the standard dofs, as in traditional FEM. In this case though, they do not necessarily
coincide with the nodal displacements

• 𝑃 are the unique enrichment functions and 𝑀𝑘 ⊆ 𝑀 is the subset of nodes that are
enriched with the function 𝜓𝑘 respectively.

• ā𝑘𝑗 are degrees of freedom associated with the enrichment 𝜓𝑘 at node 𝑗. These do
not represent the nodal values of the field u(x) and will be called enriched dofs in the
following.

• �̄�𝑗 are the shape functions that interpolate the enriched dofs over the domain. Like
the standard shape function, these are usually selected from the well known Lagrange
polynomials. However they do not have to be the same for a given approximation: in
general �̄�𝑗 ≠ 𝑁𝑖 and 𝑀𝑘 ≠ 𝑀 .

In (1.4) the first term of the right hand side is identical to the standard interpolation of the
FEM. The second term, called ”enriched interpolation” in the following, is then superim-
posed upon the standard interpolation.

1.2.2 Intrinsic enrichment
In intrinsic enrichment, the approximation field is enhanced by including new basis func-
tions:

u(x) =
𝑃

∑
𝑖=1

�̂�𝑖(x)ā𝑖 (1.5)



1.3 The eXtended Finite Element Method 5

where N̂𝑖 = {�̂�1
𝑖 , �̂�1

𝑖 , ...�̂�𝑀
𝑖 } is one of the 𝑃 enriched bases and ā𝑖 are coefficients obtained

by a weighted least-squares technique, usually Moving Least Squares. Intrinsic enrichment
does not introduce new dofs but has its own set of drawbacks concerning accuracy and com-
putational complexity. It is beyond the scope of this thesis and will not be developed further.

1.3 The eXtended Finite Element Method
The eXtended Finite Element Method is a partition of unity method (PUM) that uses extrin-
sic enrichment to model discontinuities or other non-smooth features. The main advantage
over the traditional FEM is the ability to generate the finite element mesh without consider-
ing the geometry of the discontinuity. Instead, specialized enrichment functions are used to
model the jump in the approximated field and the near tip singularity of its gradient. This
is particularly beneficial, when the geometry of the discontinuity moves over time. XFEM
avoids the need to update the mesh and project the intermediate solution to the new mesh.

Fig. 1.2 Modeling a crack in XFEM: enrichment of elements and nodes

In contrast with other PUMs, XFEM uses a local extrinsic enrichment of the approxima-
tion. Since the effects of discontinuities are generally local, the enrichment can be confined
to specific zones instead of the whole domain of the solution. This approach improves the
numerical solution by saving significant amounts of computing time, memory storage and
avoiding other issues. As shown in Figure 1.2, only nodes around the discontinuity are en-
riched.
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Three types of elements can be discerned: ”standard” elements where no node is enriched,
”enriched” elements where all nodes are enriched and ”blending” elements where only some
nodes are enriched. Blending elements are an important aspect of XFEM and any other local
PUM. The PU properties described in (1.2) and (1.3) do not hold in blending elements. As
a result spurious terms are introduced into the approximation field and the convergence rate
of XFEM is reduced. This difficulty is more pronounced when higher order finite elements
are used and various techniques to tackle it have been developed over the years.

1.4 Basic enrichment functions
In this section some basic enrichment functions are introduced, that will then be used to
model crack propagation using XFEM. First of all the signed distance function must be
defined as:

𝜙(x) = ‖x − x*‖ sign (nΓ𝑑 ⋅ (x − x*)) (1.6)

where x* is the closest point projection of x onto the discontinuity Γ𝑑 , and nΓ𝑑 is the normal
vector to the interface at point x*.

Fig. 1.3 The signed distance function.

Equation (1.6) is the general formula for calculating the signed distance of a point x from a
curve. Depending on the method chosen to represent the discontinuity, other more efficient
formulas may be available. It can be seen from (1.6) that the sign is different on the two sides
of a closed interface and each subdomain can be identified by the sign of 𝜙(x):
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𝜙(x)
⎧
⎪
⎨
⎪
⎩

> 0, if x ∈ Ω𝐴

= 0, if x ∈ Γ𝑑

< 0, if x ∈ Ω𝐵

(1.7)

It can be shown that the norm of the gradient of the signed distance is equal to unity, that
is, ‖∇𝜙‖ = 1. Obviously, the gradient of the signed distance function at the discontinuity is
indeed the unit normal nΓ𝑑 oriented to Ω𝐴, where 𝜙(x) > 0.

1.4.1 Heaviside function
In a crack propagation problem the jump of the displacement field across the crack is referred
to as a strong discontinuity. To model strong discontinuities the Heaviside function can be
used as an enrichment function:

𝐻(x) =
⎧⎪
⎨
⎪⎩

0, if 𝜙(x) < 0
1, if 𝜙(x) ≥ 0

(1.8)

or

𝐻(x) =
⎧
⎪
⎨
⎪
⎩

−1, if 𝜙(x) < 0
0, if 𝜙(x) = 0
1, if 𝜙(x) > 0

(1.9)

where 𝜙(x) is the signed distance defined in (1.6). Equation (1.8) is known as the Heaviside
step function, while (1.9) as the sign function. In the following (1.9) will be used. Obviously
the Heaviside enrichment function is discontinuous at the interface. Its derivative is the Dirac
delta function:

𝛿(x) =
⎧⎪
⎨
⎪⎩

0, if 𝜙(x) ≠ 0
∞, if 𝜙(x) = 0

(1.10)

However during numerical computations the Dirac function will only be evaluated at the
integration points, which will usually be selected such that they will not lie on the disconti-
nuity. Thus its value will be 0. In Figure 1.4 the one dimensional Heaviside function and its
derivative can be seen.



8 Introduction

Fig. 1.4 a) The Heaviside sign function. b) The Dirac 𝛿 function.

Using the Heaviside enrichment function, the approximation field can be written as

u(x) =
𝑀

∑
𝑖=1

𝑁𝑖(x)ū𝑖 +
𝑀1

∑
𝑗=1

�̄�𝑗(x)𝐻(x)c𝑗 (1.11)

Consider the one dimensional bar with 3 linear elements as depicted in Figure 1.5a. The
bar’s length is equal to 1. The middle element has a strong discontinuity at the location 𝑥𝑐 .
The Heaviside sign function is used to enrich the nodes 2 and 3 according to (1.9). The
signed distance is set as positive in the right side of the crack and negative at the left side.
The shape functions for both the standard and enriched approximation are the well known
linear shape functions 𝑁1(𝑥) = 1 − 𝑥 and 𝑁2(𝑥) = 𝑥. In Figure 1.5a the global numbering
of the shape functions and the enriched basis �̄�𝑗(𝑥)𝐻(𝑥) are shown. By applying (1.11), the
displacement value 𝑢(𝑥𝑘) at an enriched node 𝑘 is 𝑢(𝑥𝑘) = 𝑢𝑘 +𝐻(𝜙(𝑥𝑘))𝑐𝑘. Since 𝐻(𝜙(𝑥𝑘))
is not necessarily zero, this expression is not equal to the standard degree of freedom 𝑢𝑘.

As explained in the example above, the Kronecker-𝛿 property of the approximation is lost.
Consequently 𝑢(𝑥𝑘) ≠ 𝑢𝑘, which renders the imposition of essential boundary conditions
difficult. Furthermore, the interpretation of the results is more difficult as 𝑢(𝑥𝑘) has to be
constructed correctly by evaluating all terms in the approximation. It is therefore desirable to
have enrichment terms that vanish at all nodes, thereby recovering the Kronecker-𝛿 property
of standard FE approximations. This is achieved by shifting the approximation as

u(x) =
𝑀

∑
𝑖=1

𝑁𝑖(x)ū𝑖 +
𝑀1

∑
𝑗=1

�̄�𝑗(x)(𝐻(x) − 𝐻(x𝑗))c𝑗 (1.12)
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Fig. 1.5 Heaviside enrichment: a) Regular 𝑁𝑗(𝑥) 𝐻(𝑥) , b) Shifted 𝑁𝑗(𝑥)(𝐻(𝑥) − 𝐻(𝑥𝑗)).

Figure 1.5b depicts the shifted enrichment, where it can be seen that 𝑢(𝑥𝑘) = 𝑢𝑘. This means
that the standard degrees of freedom coincide with the nodal displacements. Therefore in-
terpreting the results and more importantly applying boundary conditions on these dofs is
straightforward. Moreover, it can be shown that this formulation is still able to reproduce the
enrichment function 𝐻(x) and generally any function 𝜓(x) exactly [32]. Thus it is recom-
mended to use shifted formulations and in the rest of this thesis this recommendation will
be followed. Finally in Figure 1.6 the two dimensional Heaviside function and the resulting
enriched basis of a quadrilateral finite element are shown.

Fig. 1.6 The 2D Heaviside and the corresponding enriched basis functions.



10 Introduction

1.4.2 Asymptotic tip functions
Cracks are open discontinuities and can be categorized into edge cracks or interior cracks
(see Figure 1.7). In both crack types there is an area around the crack tip (or crack tips in
case of interior cracks), where high or even singular gradients are present in the displacement
field, in addition to the discontinuity. To correctly simulate the behavior around crack tips,
specialized enrichment functions must be used, which model both the discontinuity across
the crack and the singularity at the tip.

Fig. 1.7 Cracks in 2D domains: a) An edge crack. b) An interior crack

These functions are developed from analytic solutions of simple cases and depend on the
particular physical model. In this thesis crack propagation in brittle, isotropic materials is
considered. The appropriate enrichment functions are then extracted from Linear Elastic
Fracture Mechanics (LEFM) analytic solutions. According to LEFM, the stress field is sin-
gular at the crack tip and the displacement field is contained in the span of the following four
asymptotic functions:

{𝐵𝑎(x)} = {𝐵1, 𝐵2, 𝐵3, 𝐵4} = {√𝑟 sin 𝜃
2 , √𝑟 cos 𝜃

2 , √𝑟 sin 𝜃
2 sin 𝜃, √𝑟 cos 𝜃

2 sin 𝜃}
(1.13)

where (𝑟, 𝜃) are the local polar coordinates at the crack tip as depicted in Figure 1.8.
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Fig. 1.8 Local cartesian and local polar coordinate system at a crack tip.

Figure 1.9 shows these four functions. They can then be used to enrich the approximation
as:

u(x) =
𝑀

∑
𝑖=1

𝑁𝑖(x)ū𝑖 +
𝑀𝑡𝑖𝑝

∑
𝑗=1

�̄�𝑗(x)
4

∑
𝑎=1

𝐵𝑎(x)b𝑎
𝑗 (1.14)

where b𝑎𝑗 are the enriched dofs associated with each of the four asymptotic crack tip func-
tions 𝐵𝑎(x). As mentioned in Section 1.4.1 it is preferable to use a shifted enrichment:

u(x) =
𝑀

∑
𝑖=1

𝑁𝑖(x)ū𝑖 +
𝑀𝑡𝑖𝑝

∑
𝑗=1

�̄�𝑗(x)
4

∑
𝑎=1

(𝐵𝑎(x) − 𝐵𝑎(x𝑗))b𝑎
𝑗 (1.15)

Fig. 1.9 Asymptotic tip functions for brittle isotropic materials.
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1.5 Outline
The rest of this document is organized as follows. Chapter 2 presents the governing equa-
tions of a body containing one or more cracks and develops the XFEM formulation for the
linear elastic analysis of that problem. In Chapter 3, the basics of Linear Elastic Fracture
Mechanics and the J-integral method are explained. In addition, the crack propagationmodel
for brittle materials is analyzed. Numerical integration in XFEM is not as straightforward as
in FEM. The most prominent integration schemes are detailed in Chapter 4.

Chapter 5 describes in detail techniques to represent the crack geometry and its interaction
with the finite element mesh, as required by XFEM. Numerical applications that demonstrate
the accuracy of the proposed methods are presented in Chapter 6. Concluding remarks re-
garding thewhole document are given in Chapter 7, while AppendixA clarifies all coordinate
systems and the transformations between them that are necessary for the implementation of
XFEM and the J-integral method.



Chapter 2

XFEM modeling of a fractured body

2.1 Introduction
This chapter presents how XFEM is applied to the analysis of a 2D structure that contains
one or more cracks. Static loading is assumed and nonlinearities due to the constitutive law
or large deformations are ignored. The purpose of this linear static analysis is to obtain the
discontinuous displacement, strain and stress fields.

The calculation of these fields is repeated at each iteration of a crack propagation simulation,
after determining the current configuration of the crack’s geometry. Then the crack grows
based on the theory covered in the next chapter. As mentioned earlier, a key advantage of
XFEM is that all computations are performed over the same finite element mesh, which
avoids having to conform the mesh to the crack interface each time the crack grows and
projecting the displacement field between the old and new meshes.

2.2 Governing equations of the problem

2.2.1 The strong form
Consider the 2D body shown in Figure 2.1, where:

• Ω is the domain, Γ is its external boundary and nΓ is the outward normal vector to Γ

• The external boundary is partitioned into Γ = Γ𝑢 ∪Γ𝑡. ũ is the prescribed displacement
on Γ𝑢 and ̃t is the prescribed traction on Γ𝑡.
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• Γ𝑑 is a discontinuity (edge crack) crossing the body and nΓ𝑑 is the normal vector to Γ𝑑 .
It is considered traction-free.

Fig. 2.1 Body with an edge crack

Assuming that the displacements remain small, the kinematic equations consist of the strain-
displacement relation:

ε = ε(u) = ∇𝑠𝑦𝑚u = ∇u + (∇u)𝑇

2 (2.1)

where u is the displacement field, ε is the strain tensor and ∇𝑠𝑦𝑚u denotes the symmetric
part of the ∇u tensor.

For a linear elastic material, the constitutive law is:

σ = σ(u) = C ∶ ε(u) (2.2)

where σ is the Cauchy stress tensor and C is the 4th rank stiffness tensor, which is constant
in this case (elastic material).

Given the kinematic equations, the constitutive law, the prescribed displacements and trac-
tions on the external boundaries, the traction free condition on the discontinuity and the body
force per unit volume b = b(x) applied to Ω, the strong form of the problem can then be
posed as:
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Find u(x), such that the equilibrium equation holds

∇ ⋅ σ + b = 0 𝑖𝑛 Ω (2.3)

with boundary conditions

u = ũ 𝑜𝑛 Γ𝑢 (2.4a)
σ ⋅ nΓ = 0 𝑜𝑛 Γ𝑢 (2.4b)
σ ⋅ nΓ = ̃t 𝑜𝑛 Γ𝑡 (2.4c)

σ ⋅ nΓ𝑑 = σ+ ⋅ nΓ𝑑 = σ− ⋅ nΓ𝑑 = 0 𝑜𝑛 Γ𝑑 (2.4d)

Note that the divergence of the stress tensor in (2.3) is a vector defined as

∇ ⋅ σ =
𝜗𝜎𝑖𝑗
𝜗𝑥𝑗

e𝑖 =
⎡
⎢
⎢
⎢
⎣

𝜗𝜎𝑥𝑥
𝜗𝑥 +

𝜗𝜎𝑥𝑦
𝜗𝑦

𝜗𝜎𝑦𝑥
𝜗𝑥 +

𝜗𝜎𝑦𝑦
𝜗𝑦

⎤
⎥
⎥
⎥
⎦

(2.5)

2.2.2 The Divergence theorem for discontinuous domains
The Divergence theorem (or Gauss-Green theorem) is necessary to derive the weak form that
is the basis of any finite element formulation. Given a continuous domainΩ,with boundary Γ
and a continuous vector fieldV, the integration of its divergence over the domain is equivalent
to the integration of the field itself over the boundary:

∫
Ω

∇ ⋅ V𝑑Ω = ∫
Γ

V ⋅ nΓ𝑑Γ (2.6)

where the divergence operator is used:

∇ ⋅ V = divV = [𝜗/𝜗𝑥 𝜗/𝜗𝑦] ⋅
[

𝑉𝑥
𝑉𝑦]

= 𝜗𝑉𝑥
𝜗𝑥 +

𝜗𝑉𝑦
𝜗𝑦 (2.7)
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Fig. 2.2 A two-dimensional domain Ω with an interior discontinuity Γ𝑑

In XFEM the domain Ω is discontinuous, but we can apply the Divergence theorem by split-
ting Ω into continuous subdomains, as demonstrated in [34]. Figure 2.2 depicts a 2D domain
Ω that is divided into two subdomains Ω+ and Ω− by a discontinuity Γ𝑑 . The external bound-
ary of domains Ω+ and Ω− are denoted as Γ+ and Γ−, with their outward unit normal vectors
being nΓ+ and nΓ− respectively. The curve Γ𝑑 , with the unit normal vector nΓ𝑑 oriented to
Ω+, consists of the actual discontinuity Γ𝑑1 with the unit normal vector nΓ𝑑1 and its extension
Γ𝑑2 with the unit normal vector nΓ𝑑2 , both oriented to Ω+. We can now apply the Divergence
theorem to Ω+ and Ω−, since they are continuous:

∫
Ω+

∇ ⋅ V𝑑Ω = ∫
Γ+

V ⋅ nΓ+𝑑Γ + ∫
Γ+

𝑑1

V+ ⋅ (−nΓ𝑑1) 𝑑Γ + ∫
Γ+

𝑑2

V ⋅ (−nΓ𝑑2) 𝑑Γ (2.8a)

∫
Ω−

∇ ⋅ V𝑑Ω = ∫
Γ−

V ⋅ nΓ−𝑑Γ + ∫
Γ−

𝑑1

V− ⋅ nΓ𝑑1𝑑Γ + ∫
Γ−

𝑑2

V ⋅ nΓ𝑑2𝑑Γ (2.8b)

where the values of V along the two sides of the discontinuity Γ+
𝑑1 and Γ−

𝑑1 are different
and denoted as V+ and V− respectively. Since the two subdomains span the whole domain
Ω = Ω+ ∪Ω− and Γ = Γ+ ∪Γ− and by noticing that the contour integrals along the extension
of the discontinuity Γ𝑑2 in (2.8) cancel out:
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∫
Ω

∇ ⋅ V𝑑Ω = ∫
Ω+

∇ ⋅ V𝑑Ω + ∫
Ω−

∇ ⋅ V𝑑Ω

= ∫
Γ+

V ⋅ nΓ+𝑑Γ + ∫
Γ−

V ⋅ nΓ−𝑑Γ − ∫
Γ+

𝑑1

V+ ⋅ nΓ𝑑1𝑑Γ

+ ∫
Γ−

𝑑1

V− ⋅ nΓ𝑑1𝑑Γ − ∫
Γ+

𝑑2

V ⋅ nΓ𝑑2𝑑Γ + ∫
Γ−

𝑑2

V ⋅ nΓ𝑑2𝑑Γ

= ∫
Γ

V ⋅ nΓ𝑑Γ − ∫
Γ𝑑

(V+ − V−) ⋅ nΓ𝑑 𝑑Γ

(2.9)

By defining the jump of the vector field across Γ𝑑 as JVK = V+ − V− the previous equation
becomes

∫
Ω

∇ ⋅ V𝑑Ω = ∫
Γ

V ⋅ nΓ𝑑Γ − ∫
Γ𝑑

JVK ⋅ nΓ𝑑 𝑑Γ (2.10)

For problems where the domain contains 𝑁𝑑 discontinuities, the following should be used
instead

∫
Ω

∇ ⋅ V𝑑Ω = ∫
Γ

V ⋅ nΓ𝑑Γ −
𝑁𝑑

∑
𝑖=1 ∫

Γ𝑑𝑖

JV𝑖K ⋅ nΓ𝑑𝑖
𝑑Γ (2.11)

2.2.3 The weak form
Let the space of admissible displacement fields (trial function space) be:

U = {u ∈ U | u = ũ on Γ𝑢 , u is discontinuous on Γ𝑑} (2.12)

Also define the space of weighting functions (test function space) as:

W = {w ∈ W | w = 0 on Γ𝑢 , w is discontinuous on Γ𝑑} (2.13)

Given the same kinematic equations, constitutive law, body force and boundary conditions
as described in Section 2.2.1 (actually (2.4a) is now embedded in the trial function), the weak
form of the problem can be written as:
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Find u ∈ U such that, ∀ w ∈ W

∫
Ω

ε(w) ∶ σ(u) 𝑑Ω = ∫
Ω

w ⋅ b 𝑑Ω + ∫
Γ𝑡

w ⋅ ̃t 𝑑Γ (2.14)

It is shown in [21] that the above satisfies the traction-free conditions on the two crack faces.
In fact the strong and weak form are equivalent. The derivation of the weak form follows,
where σ is used instead of the more verbose σ(u) for simplicity. We start from (2.3), multiply
with an arbitrary test function, integrate and apply the product rule of differentiation

∇ ⋅ σ + b = 0

⇔ ∫
Ω

w ⋅ (∇ ⋅ σ + b) 𝑑Ω = 0

⇔ ∫
Ω

w ⋅ (∇ ⋅ σ) 𝑑Ω + ∫
Ω

w ⋅ b 𝑑Ω = 0

⇔ ∫
Ω

∇ ⋅ (w ⋅ σ) 𝑑Ω − ∫
Ω

∇w ∶ σ 𝑑Ω + ∫
Ω

w ⋅ b 𝑑Ω = 0

(2.15)

We can now apply the discontinuous Divergence theorem (2.10) on the first integral of (2.15)

∫
Ω

∇ ⋅ (w ⋅ σ) 𝑑Ω = ∫
Γ

w ⋅ σ ⋅ nΓ 𝑑Γ − ∫
Γ𝑑

Jw ⋅ σK ⋅ nΓ𝑑 𝑑Γ

= ∫
Γ𝑡

w ⋅ σ ⋅ nΓ 𝑑Γ + ∫
Γ𝑢

w ⋅ σ ⋅ nΓ 𝑑Γ − ∫
Γ𝑑

(w
+ ⋅ σ+ ⋅ nΓ𝑑 − w− ⋅ σ− ⋅ nΓ𝑑 ) 𝑑Γ

(2.16)

By imposing the boundary conditions (2.4b), (2.4c) and (2.4d) the last two integrals are
eliminated from the previous equation

∫
Ω

∇ ⋅ (w ⋅ σ)𝑑Ω = ∫
Γ𝑡

w ⋅ ̃t𝑑Γ (2.17)

The gradient of the test vector field can be written as

∇w = ∇w + (∇w)𝑇

2 + ∇w − (∇w)𝑇

2 = ∇𝑠𝑦𝑚w + ∇𝑎𝑛𝑡w (2.18)
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where ∇𝑠𝑦𝑚w and ∇𝑎𝑛𝑡w are the symmetric and anti-symmetric parts of the ∇w tensor. Since
∇𝑎𝑛𝑡w is anti-symmetric and σ is symmetric, their product is

∇𝑎𝑛𝑡w ∶ σ = 0 (2.19)

Therefore the second integral of (2.15) becomes

∫
Ω

∇w ∶ σ 𝑑Ω = ∫
Ω

∇𝑠𝑦𝑚w ∶ σ 𝑑Ω + ∫
Ω

∇𝑎𝑛𝑡w ∶ σ 𝑑Ω

= ∫
Ω

ε(w) ∶ σ(u) 𝑑Ω
(2.20)

Substituting (2.17) and (2.20) into (2.15) results in the weak form

∫
Γ𝑡

w ⋅ ̃t 𝑑Γ − ∫
Ω

ε(w) ∶ σ(u) 𝑑Ω + ∫
Ω

w ⋅ b 𝑑Ω = 0

⇔ ∫
Ω

ε(w) ∶ σ(u) 𝑑Ω = ∫
Ω

w ⋅ b 𝑑Ω + ∫
Γ𝑡

w ⋅ ̃t 𝑑Γ
(2.21)

The inverse procedure will not be presented here as it is straightforward. In short, it involves
reversing the previous steps and substituting appropriate test functions to eliminate any extra
terms.

The weak form in matrix-vector notation

While developing the discretized equations, it is convenient to work with matrices instead
of tensors. The matrix-vector forms of the strain and stress tensors are respectively

ε =
⎡⎢⎢⎢⎣

𝜀𝑥𝑥
𝜀𝑦𝑦

2𝜀𝑥𝑦

⎤⎥⎥⎥⎦
(2.22a)

σ =
⎡⎢⎢⎢⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

⎤⎥⎥⎥⎦
(2.22b)
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Using the the symmetric property of the strain and stress tensors, we can expand the colon
product and write it in matrix notation:

ε ∶ σ = 𝜀𝑖𝑗 ⋅ 𝜎𝑖𝑗 = 𝜀𝑥𝑥𝜎𝑥𝑥 + 𝜀𝑥𝑦𝜎𝑥𝑦 + 𝜀𝑦𝑥𝜎𝑦𝑥 + 𝜀𝑦𝑦𝜎𝑦𝑦

= 𝜀𝑥𝑥𝜎𝑥𝑥 + 𝜀𝑦𝑦𝜎𝑦𝑦 + 2𝜀𝑥𝑦𝜎𝑥𝑦 = ε𝑇 ⋅ σ
(2.23)

The weak form can now be written in matrix-vector notation as

∫
Ω

ε(w)𝑇 ⋅ σ(u) 𝑑Ω = ∫
Ω

w𝑇 ⋅ b 𝑑Ω + ∫
Γ𝑡

w𝑇 ⋅ ̃t 𝑑Γ (2.24)

2.3 The extended finite element approximation
In any finite element method, the whole domain Ω is divided into smaller subdomains called
finite elements:

Ω = 𝑈Ω𝑒 (2.25)

The vector and tensor fields implicated in the weak form, or rather their approximations,
are defined over each element, by interpolating appropriate nodal values n the interior of
each Ω𝑒. Then the continuous problem is reduced to identifying these discrete nodal values,
commonly referred to as degrees of freedom (dofs).

2.3.1 The enriched displacement field
Tomodel the discontinuity of the crack interface in XFEM, the nodes of elements cut by it are
enriched with the Heaviside function, as demonstrated in Section 1.4.1. Also the asymptotic
tip enrichments (see Section 1.4.2) are applied to nodes surrounding the crack tip, in order
to model the local behavior of the displacement field there. By applying both, the XFEM
approximation of the displacement field inside the domain of an element Ω𝑒 becomes:

uℎ(x) = ∑
𝑖∈𝑀𝑠𝑡𝑑

𝑁𝑖(x)ū𝑖 + ∑
𝑗∈𝑀𝑐𝑟𝑎𝑐𝑘

𝑁𝑗(x) [𝐻(x) − 𝐻(x𝑗)] ̄c𝑗

+ ∑
𝑘∈𝑀𝑡𝑖𝑝

𝑁𝑘(x) ⋅
4

∑
𝑎=1

[𝐵𝑎(x) − 𝐵𝑎(x𝑗)] b̄𝑎
𝑘

(2.26)
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where:

• uℎ(x) is the finite element approximation of the displacement field.

• 𝑀𝑠𝑡𝑑 is the set of all nodes of the finite element and 𝑁𝑖(x) are the well known shape
functions.

• ū𝑖 = [𝑢𝑖𝑥 𝑢𝑖𝑦]
𝑇
are the nodal displacements associated with node 𝑖. They will also

be referred to as standard dofs.

• 𝑀𝑐𝑟𝑎𝑐𝑘 ⊂ 𝑀𝑠𝑡𝑑 and 𝑀𝑡𝑖𝑝 ⊂ 𝑀𝑠𝑡𝑑 are the sets of the element’s nodes that are enriched
with the Heaviside function 𝐻(x) and the asymptotic tip functions 𝐵𝑎(x) respectively.

• 𝑁𝑗(x) and 𝑁𝑘(x) are the shape functions used for interpolating the nodal Heaviside
and tip enrichment values respectively. Usually they are selected from the same basis
of shape functions as 𝑁𝑖(x).

• ̄c𝑗 = [𝑐𝑗𝑥 𝑐𝑗𝑦]
𝑇
and b̄𝑎

𝑘 = [𝑏𝑎
𝑘𝑥 𝑐𝑎

𝑘𝑦]
𝑇
are the values associated with each node 𝑗 that

is enriched with the Heaviside and asymptotic tip functions respectively. Henceforth
they will be referred to as artificial dofs.

Although (2.26) clearly describes the enriched displacement field, a slightly different nota-
tion, which includes all enrichments in a uniform way, is more convenient for further devel-
oping the method:

uℎ(x) = ∑
𝑖∈𝑀𝑠𝑡𝑑

𝑁𝑖(x)ū𝑖 +
4

∑
𝑒=0

∑
𝑗∈𝑀𝑒

𝑁𝑗(x) [𝜓𝑒(x) − 𝜓𝑒(x𝑗)] ā𝑗𝑒 (2.27)

where:

• 𝑒 = 0 corresponds to the Heaviside enrichment and 𝑒 = 1...4 to the asymptotic tip
enrichments.

• 𝑀𝑒 is the set of nodes enriched with the function 𝜓𝑒

• ā𝑗𝑒 = [𝑎𝑗𝑒𝑥 𝑎𝑗𝑒𝑦]
𝑇
are the artificial dofs associated with node 𝑗 and enrichment

function 𝜓𝑒

Equation (2.27) can be written in matrix-vector form as:

uℎ(x) = N𝑠𝑡𝑑(x) ⋅ ū + N𝑒𝑛𝑟(x) ⋅ ā (2.28)
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where:

N𝑠𝑡𝑑(x) =
[

⋯ 𝑁𝑖(x) 0 ⋯
⋯ 0 𝑁𝑖(x) ⋯]

ū =

⎡
⎢
⎢
⎢
⎢
⎣

⋮
𝑢𝑖𝑥
𝑢𝑖𝑦
⋮

⎤
⎥
⎥
⎥
⎥
⎦

N𝑒𝑛𝑟(x) =
[

⋯ 𝑁𝑗(x)[𝜓𝑒(x) − 𝜓𝑒(x𝑗)] 0 ⋯
⋯ 0 𝑁𝑗(x)[𝜓𝑒(x) − 𝜓𝑒(x𝑗)] ⋯]

ā =

⎡
⎢
⎢
⎢
⎢
⎣

⋮
𝑎𝑗𝑒𝑥
𝑎𝑗𝑒𝑦

⋮

⎤
⎥
⎥
⎥
⎥
⎦

After substituting the finite element approximation, (2.1) can be written in matrix-vector
form as:

ε = ε (uℎ) = B𝑠𝑡𝑑(x) ⋅ ū + B𝑒𝑛𝑟(x) ⋅ ā (2.29)

where the standard and enriched deformation matrices 𝐵𝑠𝑡𝑑(x) and 𝐵𝑒𝑛𝑟(x) are defined as:

B𝑠𝑡𝑑(x) = Δ ⋅ N𝑠𝑡𝑑(x) (2.30a)
B𝑒𝑛𝑟(x) = Δ ⋅ N𝑒𝑛𝑟(x) (2.30b)

with Δ denoting the matrix differential operator:

Δ =
⎡⎢⎢⎢⎣

𝜗/𝜗𝑥 0
0 𝜗/𝜗𝑦

𝜗/𝜗𝑦 𝜗/𝜗𝑥

⎤⎥⎥⎥⎦
(2.31)

The computation of the deformation matrices will be presented in detail in Section 2.5.3.
For now it suffices to state that their dimensions are (3 × number of standard dofs) and
(3 × number of artificial dofs) respectively.

So far the displacement field, dofs andmatrices concern an individual finite element. In order
to substitute them into the weak form, a global representation must be used. By collecting
all dofs of the domain in a single global vector (and using different numbering than when
examining each individual element) we have:

Ū = [⋯ 𝑢𝐼𝑥 𝑢𝐼𝑦 ⋯ 𝑎𝐽𝑒𝑥 𝑎𝐽𝑒𝑦 ⋯]
𝑇

(2.32)

where:

• I, J are global indices of nodes, albeit different than the local indices used for enumer-
ating element-wise vectors and matrices
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• All artificial dofs are placed after all standard dofs. This convention will be followed
for consistency from now on, however other numbering schemes may be used inter-
changeably.

To map the global dofs to the local dofs of each element, the boolean matrices T𝑠𝑡𝑑 and T𝑒𝑛𝑟

are defined for each element as:

ū = T𝑠𝑡𝑑 ⋅ Ū (2.33a)
ā = T𝑒𝑛𝑟 ⋅ Ū (2.33b)

Finite element approximation of the test function

Approximating the test (weighting) function is identical to approximating the trial function
(displacement field):

wℎ(x) = ∑
𝑖∈𝑀𝑠𝑡𝑑

𝑁𝑖(x)w̄𝑖 +
4

∑
𝑒=0

∑
𝑗∈𝑀𝑒

𝑁𝑗(x) [𝜓𝑒(x) − 𝜓𝑒(x𝑗)] p̄𝑗𝑒 (2.34)

where w̄𝑖 and p̄𝑗𝑒 are the standard and enriched nodal values used for the interpolation of
wℎ(x) throughout the element Ω𝑒. The shape and enrichment functions as well as the node
numbering are identical to before.

Using the same shape function and deformation matrices, the matrix-vector forms of the test
function approximation and its corresponding strain are:

wℎ(x) = N𝑠𝑡𝑑(x) ⋅ w̄ + N𝑒𝑛𝑟(x) ⋅ p̄ (2.35a)
ε (wℎ) = B𝑠𝑡𝑑(x) ⋅ w̄ + B𝑒𝑛𝑟(x) ⋅ p̄ (2.35b)

where:

w̄ =

⎡
⎢
⎢
⎢
⎢
⎣

⋮
𝑤𝑖𝑥
𝑤𝑖𝑦
⋮

⎤
⎥
⎥
⎥
⎥
⎦

p̄ =

⎡
⎢
⎢
⎢
⎢
⎣

⋮
𝑝𝑗𝑒𝑥
𝑝𝑗𝑒𝑦

⋮

⎤
⎥
⎥
⎥
⎥
⎦
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Furthermore mapping from a global vector containing the test function dofs to the local dofs,
is performed using the same boolean matrices:

W̄ = [⋯ 𝑤𝐼𝑥 𝑤𝐼𝑦 ⋯ 𝑝𝐽𝑒𝑥 𝑝𝐽𝑒𝑦 ⋯]
𝑇

(2.36a)

w̄ = T𝑠𝑡𝑑 ⋅ W̄ (2.36b)
p̄ = T𝑒𝑛𝑟 ⋅ W̄ (2.36c)

2.3.2 Discretization of the governing equations
This section presents the derivation of the final linear system, by substituting the approx-
imated solutions and matrix-vector forms of the related quantities from Section 2.3.1 into
the weak form. In order to simplify the process, the arguments (x) of all quantities will be
dropped and (2.24) will be broken down to three integrals:

𝐼𝐾 = ∫
Ω

ε(w)𝑇 ⋅ σ(u) 𝑑Ω (2.37a)

𝐼𝑏 = ∫
Ω

w𝑇 ⋅ b 𝑑Ω (2.37b)

𝐼𝑡 = ∫
Γ𝑡

w𝑇 ⋅ ̃t 𝑑Γ (2.37c)

First we divide the domain into a set of 𝑀𝑒𝑙 finite elements. By decomposing the first in-
tegral into the sum of integrals over each finite element and substituting the test function
approximation

𝐼𝐾 = ∑
𝑒∈𝑀𝑒𝑙

∫
Ω𝑒

ε (wℎ)
𝑇 ⋅ σ (uℎ) 𝑑Ω𝑒

= ∑
𝑒∈𝑀𝑒𝑙

∫
Ω𝑒

(w̄𝑇 ⋅ B𝑇
𝑠𝑡𝑑 + p̄𝑇 ⋅ B𝑇

𝑒𝑛𝑟) ⋅ σ (uℎ) 𝑑Ω𝑒

= ∑
𝑒∈𝑀𝑒𝑙

⎡⎢⎢⎢⎣
w̄𝑇 ⋅ ∫

Ω𝑒

B𝑇
𝑠𝑡𝑑 ⋅ σ (uℎ) 𝑑Ω𝑒 + p̄𝑇 ⋅ ∫

Ω𝑒

B𝑇
𝑒𝑛𝑟 ⋅ σ (uℎ) 𝑑Ω𝑒

⎤⎥⎥⎥⎦

(2.38)
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Then we convert the nodal values to global dofs and pull them out of the sum

𝐼𝐾 = ∑
𝑒∈𝑀𝑒𝑙

⎡⎢⎢⎢⎣
W̄𝑇 ⋅ T𝑇

𝑠𝑡𝑑 ⋅ ∫
Ω𝑒

B𝑇
𝑠𝑡𝑑 ⋅ σ (uℎ) 𝑑Ω𝑒 + W̄𝑇 ⋅ T𝑇

𝑒𝑛𝑟 ⋅ ∫
Ω𝑒

B𝑇
𝑒𝑛𝑟 ⋅ σ (uℎ) 𝑑Ω𝑒

⎤⎥⎥⎥⎦

= W̄𝑇 ⋅ ∑
𝑒∈𝑀𝑒𝑙

⎡⎢⎢⎢⎣
T𝑇

𝑠𝑡𝑑 ⋅ ∫
Ω𝑒

B𝑇
𝑠𝑡𝑑 ⋅ σ (uℎ) 𝑑Ω𝑒 + T𝑇

𝑒𝑛𝑟 ⋅ ∫
Ω𝑒

B𝑇
𝑒𝑛𝑟 ⋅ σ (uℎ) 𝑑Ω𝑒

⎤⎥⎥⎥⎦
(2.39)

Then the stress of the trial field approximation is substituted in

𝐼𝐾 = W̄𝑇 ⋅ ∑
𝑒∈𝑀𝑒𝑙

⎡⎢⎢⎢⎣
T𝑇

𝑠𝑡𝑑 ⋅ ∫
Ω𝑒

B𝑇
𝑠𝑡𝑑 ⋅ C ⋅ (B𝑠𝑡𝑑 ⋅ ū + B𝑒𝑛𝑟 ⋅ ā) 𝑑Ω𝑒

+T𝑇
𝑒𝑛𝑟 ⋅ ∫

Ω𝑒

B𝑇
𝑒𝑛𝑟 ⋅ C ⋅ (B𝑠𝑡𝑑 ⋅ ū + B𝑒𝑛𝑟 ⋅ ā) 𝑑Ω𝑒

⎤⎥⎥⎥⎦

= W̄𝑇 ⋅ ∑
𝑒∈𝑀𝑒𝑙

⎡
⎢
⎢
⎢
⎣
T𝑇

𝑠𝑡𝑑 ⋅
⎛
⎜
⎜
⎜
⎝
∫
Ω𝑒

B𝑇
𝑠𝑡𝑑 ⋅ C ⋅ B𝑠𝑡𝑑 𝑑Ω𝑒 ⋅ ū + ∫

Ω𝑒

B𝑇
𝑠𝑡𝑑 ⋅ C ⋅ B𝑒𝑛𝑟 𝑑Ω𝑒 ⋅ ā

⎞
⎟
⎟
⎟
⎠

+T𝑇
𝑒𝑛𝑟 ⋅

⎛
⎜
⎜
⎜
⎝
∫
Ω𝑒

B𝑇
𝑒𝑛𝑟 ⋅ C ⋅ B𝑠𝑡𝑑 𝑑Ω𝑒 ⋅ ū + ∫

Ω𝑒

B𝑇
𝑒𝑛𝑟 ⋅ C ⋅ B𝑒𝑛𝑟 𝑑Ω𝑒 ⋅ ā

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎦

(2.40)
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At this point it is beneficial to notice that the integrals that remain are submatrices of the
element’s stiffness matrix. We denote them as:

k𝑠𝑠 = ∫
Ω𝑒

B𝑇
𝑠𝑡𝑑 ⋅ C ⋅ B𝑠𝑡𝑑 𝑑Ω𝑒 (2.41a)

k𝑠𝑒 = ∫
Ω𝑒

B𝑇
𝑠𝑡𝑑 ⋅ C ⋅ B𝑒𝑛𝑟 𝑑Ω𝑒 (2.41b)

k𝑒𝑠 = ∫
Ω𝑒

B𝑇
𝑒𝑛𝑟 ⋅ C ⋅ B𝑠𝑡𝑑 𝑑Ω𝑒 (2.41c)

k𝑒𝑒 = ∫
Ω𝑒

B𝑇
𝑒𝑛𝑟 ⋅ C ⋅ B𝑒𝑛𝑟 𝑑Ω𝑒 (2.41d)

Substituting (2.41) and (2.33) into (2.40)

𝐼𝐾 = W̄𝑇 ⋅ ∑
𝑒∈𝑀𝑒𝑙

[T𝑇
𝑠𝑡𝑑 ⋅ (k𝑠𝑠 ⋅ T𝑠𝑡𝑑 ⋅ Ū + k𝑠𝑒 ⋅ T𝑒𝑛𝑟 ⋅ Ū)

+T𝑇
𝑒𝑛𝑟 ⋅ (k𝑒𝑠 ⋅ T𝑠𝑡𝑑 ⋅ Ū + k𝑒𝑒 ⋅ T𝑒𝑛𝑟 ⋅ Ū)]

= W̄𝑇 ⋅ ∑
𝑒∈𝑀𝑒𝑙

(T𝑇
𝑠𝑡𝑑 ⋅ k𝑠𝑠 ⋅ T𝑠𝑡𝑑 + T𝑇

𝑠𝑡𝑑 ⋅ k𝑠𝑒 ⋅ T𝑒𝑛𝑟 + T𝑇
𝑒𝑛𝑟 ⋅ k𝑒𝑠 ⋅ T𝑠𝑡𝑑 + T𝑇

𝑒𝑛𝑟 ⋅ k𝑒𝑒 ⋅ T𝑒𝑛𝑟) ⋅ Ū

(2.42)

The sum represents the global stiffness matrix. By denoting

K = ∑
𝑒∈𝑀𝑒𝑙

(T𝑇
𝑠𝑡𝑑 ⋅ k𝑠𝑠 ⋅ T𝑠𝑡𝑑 + T𝑇

𝑠𝑡𝑑 ⋅ k𝑠𝑒 ⋅ T𝑒𝑛𝑟 + T𝑇
𝑒𝑛𝑟 ⋅ k𝑒𝑠 ⋅ T𝑠𝑡𝑑 + T𝑇

𝑒𝑛𝑟 ⋅ k𝑒𝑒 ⋅ T𝑒𝑛𝑟)

(2.43)
the previous equation becomes

𝐼𝐾 = W̄𝑇 ⋅ K ⋅ Ū (2.44)



2.3 The extended finite element approximation 27

Following similar steps, the ”body load integral” becomes

𝐼𝑏 = ∑
𝑒∈𝑀𝑒𝑙

∫
Ω𝑒

(wℎ)
𝑇 ⋅ b 𝑑Ω𝑒

= ∑
𝑒∈𝑀𝑒𝑙

∫
Ω𝑒

(w̄𝑇 ⋅ N𝑇
𝑠𝑡𝑑 + p̄𝑇 ⋅ N𝑇

𝑒𝑛𝑟) ⋅ b 𝑑Ω𝑒

= ∑
𝑒∈𝑀𝑒𝑙

⎛
⎜
⎜
⎜
⎝

W̄𝑇 ⋅ T𝑇
𝑠𝑡𝑑 ⋅ ∫

Ω𝑒

N𝑇
𝑠𝑡𝑑 ⋅ b 𝑑Ω𝑒 + W̄𝑇 ⋅ T𝑇

𝑒𝑛𝑟 ⋅ ∫
Ω𝑒

N𝑇
𝑒𝑛𝑟 ⋅ b 𝑑Ω𝑒

⎞
⎟
⎟
⎟
⎠

= W̄𝑇 ⋅ ∑
𝑒∈𝑀𝑒𝑙

⎛
⎜
⎜
⎜
⎝

T𝑇
𝑠𝑡𝑑 ⋅ ∫

Ω𝑒

N𝑇
𝑠𝑡𝑑 ⋅ b 𝑑Ω𝑒 + T𝑇

𝑒𝑛𝑟 ⋅ ∫
Ω𝑒

N𝑇
𝑒𝑛𝑟 ⋅ b 𝑑Ω𝑒

⎞
⎟
⎟
⎟
⎠

= W̄𝑇 ⋅ F𝑏

(2.45)

where F𝑏 is the global body force vector

F𝑏 = ∑
𝑒∈𝑀𝑒𝑙

(T𝑇
𝑠𝑡𝑑 ⋅ f 𝑏

𝑠𝑡𝑑 + T𝑇
𝑒𝑛𝑟 ⋅ f 𝑏

𝑒𝑛𝑟) (2.46)

while the standard and enriched parts of the element’s body force vector are respectively

f 𝑏
𝑠𝑡𝑑 = ∫

Ω𝑒

N𝑇
𝑠𝑡𝑑 ⋅ b 𝑑Ω𝑒 (2.47a)

f 𝑏
𝑒𝑛𝑟 = ∫

Ω𝑒

N𝑇
𝑒𝑛𝑟 ⋅ b 𝑑Ω𝑒 (2.47b)
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Similarly for the ”traction integral”:

𝐼𝑡 = ∑
𝑒∈𝑀𝑒𝑙

∫
Γ𝑒

(wℎ)
𝑇 ⋅ ̃t 𝑑Γ𝑒

= ∑
𝑒∈𝑀𝑒𝑙

∫
Γ𝑒

(w̄𝑇 ⋅ N𝑇
𝑠𝑡𝑑 + p̄𝑇 ⋅ N𝑇

𝑒𝑛𝑟) ⋅ ̃t 𝑑Ω𝑒

= ∑
𝑒∈𝑀𝑒𝑙

⎛
⎜
⎜
⎜
⎝

W̄𝑇 ⋅ T𝑇
𝑠𝑡𝑑 ⋅ ∫

Γ𝑒

N𝑇
𝑠𝑡𝑑 ⋅ ̃t 𝑑Γ𝑒 + W̄𝑇 ⋅ T𝑇

𝑒𝑛𝑟 ⋅ ∫
Γ𝑒

N𝑇
𝑒𝑛𝑟 ⋅ ̃t 𝑑Γ𝑒

⎞
⎟
⎟
⎟
⎠

= W̄𝑇 ⋅ ∑
𝑒∈𝑀𝑒𝑙

⎛
⎜
⎜
⎜
⎝

T𝑇
𝑠𝑡𝑑 ⋅ ∫

Γ𝑒

N𝑇
𝑠𝑡𝑑 ⋅ ̃t 𝑑Γ𝑒 + T𝑇

𝑒𝑛𝑟 ⋅ ∫
Γ𝑒

N𝑇
𝑒𝑛𝑟 ⋅ ̃t 𝑑Γ𝑒

⎞
⎟
⎟
⎟
⎠

= W̄𝑇 ⋅ F 𝑡

(2.48)

where F 𝑡 is the global traction force vector

F𝑡 = ∑
𝑒∈𝑀𝑒𝑙

(T𝑇
𝑠𝑡𝑑 ⋅ f 𝑡

𝑠𝑡𝑑 + T𝑇
𝑒𝑛𝑟 ⋅ f 𝑡

𝑒𝑛𝑟) (2.49)

while the standard and enriched parts of the element’s traction force vector are respectively

f 𝑡
𝑠𝑡𝑑 = ∫

Γ𝑒

N𝑇
𝑠𝑡𝑑 ⋅ ̃t 𝑑Γ𝑒 (2.50a)

f 𝑡
𝑒𝑛𝑟 = ∫

Γ𝑒

N𝑇
𝑒𝑛𝑟 ⋅ ̃t 𝑑Γ𝑒 (2.50b)

Substituting (2.44), (2.45), (2.48) into the weak form (2.24)

W̄𝑇 ⋅ K ⋅ Ū = W̄𝑇 ⋅ (F𝑏 + F 𝑡) (2.51)

This equation must hold ∀wℎ, which means it must hold ∀W̄ ∈ ℝnumber of dofs. Thus the
final linear system is obtained

K ⋅ Ū = F = F𝑏 + F 𝑡 (2.52)
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2.4 Selecting nodes for enrichment
Before diving into the construction of the elementary stiffness matrices and force vectors, it
is important to explain how the nodes are selected for enrichment with the Heaviside or/and
the asymptotic tip functions.

2.4.1 Enriching nodes with Heaviside function
For each node of the finite element mesh, its support is defined as the subdomain where the
basis function associated with that node 𝑁𝑖(x) is non-zero. In FEM related methods, this
support is local and includes the elements having that node as a vertex. In XFEM we are
also interested in the subdomain where the enriched basis function 𝑁𝑖(x) [𝜓(x) − 𝜓(x𝑖)] is
non zero. For 1st order (linear) finite elements, if a node is enriched then those two subdo-
mains coincide. An example of the local support of a node is given in Figure 2.3.

Fig. 2.3 Local support of a node

Normally a node would be enriched with the Heaviside function, if one of the elements be-
longing to its support is intersected by the crack, as done for node j in Figure 2.3. However
this is not always optimal. Consider the two configurations depicted in Figure 2.4. In (a)
the crack interface is aligned with the elements’ edges and nodes 1, 2 are enriched with the
Heaviside function since they lie directly on the crack. However nodes 3, 4 are not enriched,
since their support is not intersected by the interface.

In (b) the interface passes in a very small band of width ε along the element’s edges and
nodes 1, 2 are again enriched. Based on the criterion that a node is enriched if its support is
cut by the crack interface, nodes 3, 4 would also be enriched. However, this could lead to an
ill-conditioned or even singular stiffness matrix.
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Fig. 2.4 Effects of crack near edge. a) The crack is aligned with the mesh and nodes c, d
are not enriched. b) The crack is almost aligned with the mesh and nodes c, d should not be
enriched to avoid a singular stiffness matrix.

To understand why, consider that the support of node 3 lies almost entirely over the crack.
If an integration point x𝑘 of one of the elements comprising its support is above the crack
then

𝐻 (x𝑘) = 𝐻 (𝜑 (x𝑘)) = 1 (2.53a)
𝑁3 (x𝑘) [𝐻 (x𝑘) − 𝐻 (x3)] = 𝑁3 (x𝑘) ⋅ (1 − 1) = 0 (2.53b)

Therefore its contribution to the global stiffness matrix entries that correspond to the x and
y artificial dofs at node 3 is also 0. If all the integration points in the support of node 3 are
above the crack, then the whole rows (and columns) that correspond to the aforementioned
dofs are zero, resulting in a singular matrix.

If very few integration points are below the crack, then linear dependence is avoided, but
entries of these rows are much smaller in magnitude relative to the rest of the matrix, thus
increasing its condition number. Note that without the shifted enrichment, these rows will
not be zero but identical to the ones corresponding to standard dofs of node 3, since
𝑁3 (x𝑘) 𝐻 (x𝑘) = 𝑁3 (x𝑘), so the matrix is once more singular.
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Fig. 2.5 The nodal support is partitioned into 2 areas that are used in the criterion for Heav-
iside enrichment.

This can be overcome by the strategy described in [22]. For each node 𝑖, whose support 𝜔𝑖
is intersected by the crack:

• Partition its support into the two subdomains defined by the crack: 𝜔𝑖 = 𝜔+
𝑖 ∪ 𝜔−

𝑖 ,
with areas 𝐴𝑖 = 𝐴+

𝑖 + 𝐴−
𝑖 (see Figure 2.5).

• Calculate the following ratios

𝑟+ =
𝐴+

𝑖
𝐴𝑖

(2.54a)

𝑟− =
𝐴−

𝑖
𝐴𝑖

(2.54b)

• Node 𝑖 is not enriched with the Heaviside function if 𝑟+ ≤ 𝜀𝑡𝑜𝑙 OR 𝑟− ≤ 𝜀𝑡𝑜𝑙. Usually
a tolerance of 𝜀𝑡𝑜𝑙 = 10−4 is used, as proposed in [19].

An alternative criterion is to enrich a node only if both sides (above and below the crack inter-
face) of its support contain at least one integration point. This could be easier to implement,
depending on the integration rule that is selected.
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2.4.2 Enriching nodes with asymptotic tip functions
Twomethods have been proposed for selecting which nodes will be enriched with the asymp-
totic tip functions (1.13).

• In the ”crack tip enrichment element” scheme only the nodes of the element containing
the crack tip are enriched with the asymptotic tip functions, as shown in Figure 2.6a.
This was the first method proposed, but the support of the tip enrichment functions
vanishes, as the element size goes to zero. This hinders the convergence rate expected
by using a finer mesh.

• To overcome this difficulty Laborde et al. [29] proposed the ”fixed enrichment area”
scheme, which is illustrated in Figure 2.6b. According to this technique, all nodes
inside a circle centered around the crack tip are enriched with the tip functions. The
radius of this circle is fixed throughout the analysis, thereby guaranteeing that the
support of the tip enrichment functions is independent of the element mesh size. In
[29] the radius was set to 1/10th of the domain dimension, though that might be too
large for practical applications. Another approach is to set the radius of the enrichment
area equal to the J-integral domain radius 𝑟𝐽 described in Section 3.5.2.

Fig. 2.6 Strategies for selecting tip enriched nodes. a) The ”crack tip enrichment element”
scheme. b) The ”fixed enrichment area” scheme.
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2.4.3 Enriching nodes with both Heaviside and tip functions
Figure 2.6 illustrates an interesting detail: none of the nodes of the element containing the
crack tip is enriched with the Heaviside function, although their support is always intersected
by the crack interface. In the fixed enrichment area case, it is possible for a node to be en-
riched with both the Heaviside and the asymptotic tip functions, as long as that node does not
belong to the crack tip element. The first tip enrichment function introduces a discontinuity
in the displacement field (see Figure 1.9). This discontinuity coincides with the crack inter-
face near the crack tip, thusmodeling it with the Heaviside enrichment function is redundant.

If the crack was a straight line throughout the domain, only the tip functions would be nec-
essary to model it. In fact the original version of XFEM proposed in Belytschko et al. [21]
did not use any Heaviside enrichments. However if a crack is modeled as a series of line
segments, then the polar coordinates used in the asymptotic tip functions would have to be
transformed, in order to account for the kinks of the crack. This process is computationally
expensive, especially as the crack grows and includes many segments. In Moes et al. [20]
the Heaviside function enrichment was introduced, which handles both kinked and curved
lines elegantly and more efficiently.

Fig. 2.7 a) Crack modeled as a series of line segments. b) Crack modeled as a curved line.

Notice that the displacement field discontinuity introduced by the first asymptotic tip func-
tion is along the tangent line shown in Figure 2.7, which always intersects at least the element
containing the crack tip (”tip element”). In (a) the crack geometry is modeled as a series of
line segments. The tip element is only intersected by the last crack segment, which spans
beyond its boundaries and is always aligned with the tangent line. Consequently the tip ele-
ment’s nodes do not have to be enriched with the Heaviside function.
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If the last crack segment was completely inside the tip element, then the second to last seg-
ment would also intersect the tip element and the first asymptotic tip function’s discontinuity
would not suffice to model the discontinuity along the latter. Nevertheless, the length of the
segments is usually chosen to be larger than the element size, therefore that configuration is
unlikely. On the other hand, a curved crack geometry may be used in practice and it requires
enriching the tip element’s nodes with the Heaviside function for the same reason. Note that
curved cracks, such as Figure 2.7(b), are typically used alongside higher order finite elements
and level set methods.

2.4.4 Implementation details
This section details the main algorithms used in the numerical examples for enriching nodes
with the Heaviside or asymptotic tip functions. The first algorithm listed goes through the
whole procedure:

Algorithm 2.1 Enrich nodes with Heaviside and asymptotic tip functions
1: Let 𝑀𝐻 be the set of nodes to be enriched with the Heaviside function.
2: Let 𝑀𝑡 be the set of nodes to be enriched with the asymptotic tip functions.
3: Find the elements intersected by the crack.
4: for each of the intersected elements do
5: Add its nodes to 𝑀𝐻 .
6: Find the element containing the crack tip.
7: Add the tip element’s nodes to 𝑀𝑡.
8: If possible, remove the tip element’s nodes from 𝑀𝐻 .
9: if fixed area enrichment with a radius 𝑟𝑡 is employed then
10: Find all nodes that are inside a circle centered around the crack tip, with radius 𝑟𝑡.
11: Add these nodes to 𝑀𝑡.
12: Remove from 𝑀𝐻 nodes whose support is barely intersected by the crack.
13: Enrich all nodes in 𝑀𝐻 with the Heaviside function.
14: Enrich all nodes in 𝑀𝑡 with the asymptotic tip functions.

Remarks:

• The operations described in lines 3 and 6 depend on the code for the underlying repre-
sentation of the crack geometry. That code is responsible for their efficient implemen-
tation, such as avoid looking at all elements of the mesh, cache intersected elements,
etc. For more details see Chapter 5.
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• Similarly the operation described in line 10 should be efficiently implemented by the
code representing the finite element mesh.

• The condition mentioned in 8 for removing the tip element’s nodes from the set of
Heaviside enriched nodes is explained in Section 2.4.3. In short, nodes of the tip
element do not need to be enriched with Heaviside, if the crack geometry is piecewise
linear and the tip element is only intersected by the last line segment.

• Line 12 is further developed in Algorithm 2.2.

• In the case of interior cracks, there are two crack tips and the relevant steps should be
repeated for both.

Algorithm 2.2 Remove enrichments that cause singular stiffness matrix
1: Let 𝑀𝐻 be the set of nodes to be enriched with the Heaviside function, obtained by the

previous steps of Algorithm 2.1.
2: Let 𝑀𝑒𝑙 be a dictionary that maps elements to the areas 𝐴+

𝑒𝑙 and 𝐴−
𝑒𝑙 of their subdomains

above and below the crack interface respectively.
3: for each node 𝑛 in 𝑀𝐻 do
4: 𝐴+

𝑛 ← 0
5: 𝐴−

𝑛 ← 0
6: Find the elements to which this node belongs.
7: for each of these elements do
8: if 𝑀𝑒𝑙 does not contain this element yet then
9: Calculate the areas 𝐴+

𝑒𝑙, 𝐴−
𝑒𝑙 of this element’s subdomains.

10: Store the element, 𝐴+
𝑒𝑙 and 𝐴−

𝑒𝑙 in 𝑀𝑒𝑙.
11: Retrieve the elements areas 𝐴+

𝑒𝑙 and 𝐴−
𝑒𝑙 from 𝑀𝑒𝑙.

12: 𝐴+
𝑛 ← 𝐴+

𝑛 + 𝐴+
𝑒𝑙

13: 𝐴−
𝑛 ← 𝐴−

𝑛 + 𝐴−
𝑒𝑙

14: 𝑟+ ← 𝐴+
𝑛

𝐴+
𝑛 +𝐴−

𝑛
15: 𝑟− ← 𝐴−

𝑛
𝐴+

𝑛 +𝐴−
𝑛

16: if 𝑟+ < 𝜀𝑡𝑜𝑙 OR 𝑟− < 𝜀𝑡𝑜𝑙 then
17: Remove this node from 𝑀𝐻 .

Algorithm 2.2 lists the steps taken to ensure that nodes, whose support is barely intersected
by the crack interface, are not enriched with the Heaviside function. The importance of this
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and any relevant formulas are explained in Section 2.4.1. This algorithm is called by Algo-
rithm 2.1 at line 12.

Remarks:

• Since most of the elements will be investigated for multiple nodes, the computational
cost can be reduced by caching the areas of their subdomains in the dictionary de-
scribed in line 2. The areas are only computed once per element, stored and then
retrieved from 𝑀𝑒𝑙 whenever necessary.

• The operation in line 6 should be implemented by the code representing the finite
element mesh efficiently (e.g. the mesh structure stores elements connected to each
node, in addition to storing nodes connected to each element as usual).

• Line 9 is further developed in Algorithm 2.3.

• The tolerance 𝜀𝑡𝑜𝑙 used in line 16 is typically set to 10−4 as mentioned in Section 2.4.1.

In the numerical examples, the area of an element’s subdomains above and below the crack
interface is calculated by dividing the element into triangles, as illustrated in Figure 2.8, such
that:

• No triangle is intersected by the crack interface.

• The union of all triangles is the element and the areas of its subdomains are
𝐴+

𝑒𝑙 = ∑
𝑖

𝐴+
𝑖 and 𝐴−

𝑒𝑙 = ∑
𝑗

𝐴−
𝑗 respectively.

Fig. 2.8 Triangulation of a quadrilateral element that is is intersected by the crack interface
(a) or not (b).
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To obtain the decomposition into triangles, a constrained Dealuny algorithm may be applied
(see [16]), although the special properties of the Delauny triangles are not useful here. There-
fore any alternative algorithm can be used, as long as it can mesh the element’s domain into
subcells that conform to the crack interface. If an element is not intersected by the crack, the
Delauny algorithm will still divide it into triangles (see Figure 2.8b), even though it would
be more efficient to calculate the area of its polygonal boundary directly. The next listing
describes the algorithm implemented for calculating the area of an element’s subdomains,
after decomposing it into conforming triangles:

Algorithm 2.3 Calculate the areas of an element above and below the crack interface
1: 𝐴+

𝑒𝑙 ← 0
2: 𝐴−

𝑒𝑙 ← 0
3: Divide the element into triangles as depicted in Figure 2.8.
4: for each of these triangles do
5: Calculate its area 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 according to (2.55).
6: for each of the triangle’s vertices do
7: Find its sign distance to the crack interface 𝜑.
8: if 𝜑 ≠ 0 then ▷ If the node lies on the crack then 𝜑 = 0
9: break
10: if 𝜑 > 0 then
11: 𝐴+

𝑒𝑙 ←𝐴+
𝑒𝑙 + 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒

12: else
13: 𝐴−

𝑒𝑙 ←𝐴−
𝑒𝑙 + 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒

14: return 𝐴+
𝑒𝑙, 𝐴−

𝑒𝑙

The area of a triangle with vertices 1, 2, 3 can be obtained by

𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 =
|𝑥1 (𝑦2 − 𝑦3) + 𝑥2 (𝑦3 − 𝑦1) + 𝑥3 (𝑦1 − 𝑦2)|

2 (2.55)

Remarks:
• The operation in 7 is implemented by the method chosen to represent the crack geom-

etry. For more details see Chapter 5.

• In line 12 it is assumed that 𝜑 < 0. If the element contains a kink point of a piecewise
linear crack, it is possible that the triangulation will produce triangles whose vertices
all lie on the crack interface. This case should be checked and handled appropriately
(e.g. by using the signed distance of the triangle’s centroid).
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2.5 Implementation of the discretized governing equations
This section presents the derivation of the stiffness matrix of an enriched isoparametric fi-
nite element. We will denote the coordinates of the global cartesian system as x and the
coordinates of the element’s isoparametric system as ξ, with x = x(ξ). It is recommended to
read Appendix A first about details on the isoparametric formulation, the derivation of the
formulas used here and other aspects of the coordinate systems involved. Let us define:

• A standard basis/shape function 𝑁𝑖(ξ) associated with node 𝑖. These are selected from
the usual Lagrange polynomials. According to the isoparametric formulation, the stan-
dard shape functions 𝑁𝑖(ξ) are used to map from the natural coordinate system of the
element to the global cartesian coordinate system. However, none of the following
functions are involved in this mapping.

• An enriched basis function 𝑁𝑒𝑛𝑟
𝑗𝑒 (ξ) associated with node 𝑗 and enrichment function 𝑒

𝑁𝑒𝑛𝑟
𝑗𝑒 (ξ) = 𝑁𝑗(ξ) [𝜓𝑒(x(ξ)) − 𝜓𝑒(x𝑗)] (2.56)

• An enriched shape function 𝑁𝑗(ξ) associated with node 𝑗, used in the above enriched
basis function 𝑁𝑒𝑛𝑟

𝑗𝑒 (ξ). These are also regular Lagrange polynomials, although they
are not necessarily identical to the standard shape functions 𝑁𝑖(ξ). When using higher
order finite elements, it is preferable to enrich only a subset of the element’s nodes to
speed convergence, leading to different standard and enriched shape functions. This
follows from the fact that the error introduced by blending elements increases with
higher order elements. For linear finite elements the shape functions are identical. An
example is shown in Figure 2.9.

Fig. 2.9 A 9-nodes quadrilateral element enriched with asymptotic tip functions. It is prefer-
able to only enrich the nodes used in the linear shape functions.
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2.5.1 Enumerating degrees of freedom
The dof enumeration scheme that will be used for vectors and matrices in the rest of the
thesis is the following:

• First number all standard dofs based on the node, then axis.

• Afterwards number all enriched dofs based on the node, then enrichment, then axis.

Thus the nodal displacement vector is of the form: ū = [⋯ 𝑢𝑖𝑥 𝑢𝑖𝑦 ⋯ 𝑎𝑗𝑒𝑥 𝑎𝑗𝑒𝑦 ⋯]
𝑇

where

• 𝑖, 𝑗 are node indices.

• 𝑒 is the enrichment index. 𝑒 = 0 corresponds to the Heaviside function enrichment,
while 𝑒 = 1, 2, 3, 4 correspond to the asymptotic tip function enrichments.

• The vector’s length is 𝑛𝑠𝑡𝑑
𝑑𝑜𝑓𝑠+𝑛𝑒𝑛𝑟

𝑑𝑜𝑓𝑠, with 𝑛𝑠𝑡𝑑
𝑑𝑜𝑓𝑠 and 𝑛𝑒𝑛𝑟

𝑑𝑜𝑓𝑠 being the number of standard
and artificial dofs respectively.

Note that it is not necessary to include both standard and enriched parts in the same elemen-
tary vector or matrix. As can be seen in (2.43), (2.46) and (2.49), constructing the global
vectors and matrix considers the corresponding elementary subvectors or submatrices sepa-
rately.

Example

Consider the quadrilateral element depicted in Figure 2.10, where node 4 is enriched with
the Heaviside function and node 2 is enriched with both the Heaviside and asymptotic tip
functions. The order of dofs can be seen in the nodal displacement vector:

ū = [𝑢1𝑥 𝑢1𝑦 𝑢2𝑥 𝑢2𝑦 𝑢3𝑥 𝑢3𝑦 𝑢4𝑥 𝑢4𝑦 ⋯
⋯ 𝑎2 0𝑥 𝑎2 0𝑦 𝑎2 1𝑥 𝑎2 1𝑦 𝑎2 2𝑥 𝑎2 2𝑦 𝑎2 3𝑥 𝑎2 3𝑦 𝑎2 4𝑥 𝑎2 4𝑦 𝑎4 0𝑥 𝑎4 0𝑦]

𝑇
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Fig. 2.10 A quadrilateral element. Node 2 is enriched with both Heaviside and asymptotic
tip functions. Node 4 is enriched with only the Heaviside function.

2.5.2 Evaluating the basis functions and their derivatives

Shape functions

For the standard and enriched shape functions, there exist analytic formulas only with respect
to natural coordinates. Thus to differentiate with respect to global coordinates, the scalar
gradient transformations described in Appendix A.1.3 are needed. Using (A.10):

[𝑁𝑖,𝑥 (ξ) 𝑁𝑖,𝑦 (ξ)] = [𝑁𝑖,𝜉 (ξ) 𝑁𝑖,𝜂 (ξ)] ⋅ 𝐽 −1
𝑁𝐺 = [𝑁𝑖,𝜉 (ξ) 𝑁𝑖,𝜂 (ξ)] ⋅

[
𝜉,𝑥 𝜉,𝑦
𝜂,𝑥 𝜂,𝑦]

(2.57a)

[𝑁𝑗 ,𝑥 (ξ) 𝑁𝑗 ,𝑦 (ξ)] = [𝑁𝑗 ,𝜉 (ξ) 𝑁𝑗 ,𝜂 (ξ)] ⋅ 𝐽 −1
𝑁𝐺 = [𝑁𝑗 ,𝜉 (ξ) 𝑁𝑗 ,𝜂 (ξ)] ⋅

[
𝜉,𝑥 𝜉,𝑦
𝜂,𝑥 𝜂,𝑦]

(2.57b)

where

• 𝑁𝑖,𝜉 (ξ), 𝑁𝑖,𝜂 (ξ), 𝑁𝑗 ,𝜉 (ξ), 𝑁𝑗 ,𝜂 (ξ) can be easily computed from the analytic shape
function formulas.

• The inverse Jacobian matrix of the isoparametric mapping 𝐽 −1
𝑁𝐺 can be computed by

applying (A.4), (A.5) and (A.6)
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Heaviside enrichment

To calculate 𝜓0(x) = 𝐻(x):

1. First find the global coordinates using the isoparametricmapping x = x(ξ) =
𝑛𝑛𝑜𝑑𝑒𝑠
∑
𝑖=1

𝑁𝑖(ξ)x𝑖.

Note that only the standard shape functions are used for the mapping.

2. Apply the definition of 𝐻(x) from (1.9).

Differentiating the Heaviside function with respect to global coordinates results in the dirac
function

𝐻,𝑥 (x) = 𝐻,𝑦 (x) = 𝛿(x) =
⎧⎪
⎨
⎪⎩

∞ on the crack interface
0 everywhere else

(2.58)

However, using ∞ (or very large) values in the calculations will cause numerical problems.
Furthermore, all quantities containing the above derivatives will be integrated numerically.
It is highly unlikely that the coordinates of the integration points lie exactly on the crack
interface. In fact some integration rules guarantee that it will not happen (see Section 4.3).
Thus, it is reasonable to use the following simplification for the whole integration domain:

[𝜓0,𝑥 (x) 𝜓0,𝑦 (x)] = [𝐻,𝑥 (x) 𝐻,𝑦 (x)] = [0 0] (2.59)

Evaluating asymptotic tip enrichments

For each crack tip a local cartesian and a corresponding local polar coordinate systems are
defined. Details about these coordinate systems are presented in Appendix A.2. To evalu-
ate the asymptotic tip functions and their derivatives with respect to (w.r.t in short) global
cartesian coordinates:

1. The asymptotic tip enrichments are functions of the local polar coordinates, thus con-
verting the natural coordinates (𝜉, 𝜂) to local polar coordinates (𝑟, 𝜃) must be done first
of all:

(a) Convert natural coordinates (of an integration point) to global cartesian coordi-
nates, using the isoparametric mapping (A.1).

(b) Convert the global cartesian coordinates to local cartesian coordinates, using the
mapping (A.21).

(c) Convert the local cartesian coordinates to local polar coordinates, using the map-
ping (A.27).



42 XFEM modeling of a fractured body

2. Then evaluate the asymptotic tip functions and their derivatives with respect to local
polar coordinates

•

𝜓1(r) = 𝐵1(r) = √𝑟 ⋅ sin 𝜃
2 (2.60a)

𝜓1,𝑟 (r) = 1
2√𝑟

⋅ sin 𝜃
2 (2.60b)

𝜓1,𝜃 (r) = 1
2 ⋅ √𝑟 ⋅ cos 𝜃

2 (2.60c)

•

𝜓2(r) = 𝐵2(r) = √𝑟 ⋅ cos 𝜃
2 (2.61a)

𝜓2,𝑟 (r) = 1
2√𝑟

⋅ cos 𝜃
2 (2.61b)

𝜓2,𝜃 (r) = −1
2 ⋅ √𝑟 ⋅ sin 𝜃

2 (2.61c)

•

𝜓3(r) = 𝐵3(r) = √𝑟 ⋅ sin 𝜃
2 ⋅ sin 𝜃 (2.62a)

𝜓3,𝑟 (r) = 1
2√𝑟

⋅ sin 𝜃
2 ⋅ sin 𝜃 (2.62b)

𝜓3,𝜃 (r) = √𝑟 (
1
2 ⋅ cos 𝜃

2 ⋅ sin 𝜃 + sin 𝜃
2 ⋅ cos 𝜃) (2.62c)

•

𝜓4(r) = 𝐵4(r) = √𝑟 ⋅ cos 𝜃
2 ⋅ sin 𝜃 (2.63a)

𝜓4,𝑟 (r) = 1
2√𝑟

⋅ cos 𝜃
2 ⋅ sin 𝜃 (2.63b)

𝜓4,𝜃 (r) = √𝑟 (−1
2 ⋅ sin 𝜃

2 ⋅ sin 𝜃 + cos 𝜃
2 ⋅ cos 𝜃) (2.63c)
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3. Finally convert the above derivatives to derivatives with respect to global coordinates
using (A.38)

[𝜓𝑒,𝑥 (x) 𝜓𝑒,𝑦 (x)] = [𝜓𝑒,𝑟 (r) 𝜓𝑒,𝜃 (r)]⋅
[

𝑐𝑜𝑠𝛼 ⋅ 𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝛼 ⋅ 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝛼 ⋅ 𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝛼 ⋅ 𝑠𝑖𝑛𝜃
−𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝜃

𝑟 − 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝜃
𝑟 −𝑠𝑖𝑛𝛼 𝑠𝑖𝑛𝜃

𝑟 + 𝑐𝑜𝑠𝛼 𝑐𝑜𝑠𝜃
𝑟 ]

(2.64)

where 𝛼 is the counter-clockwise angle from the global 𝑥 axis to the local cartesian �̃�
axis.

Alternatively the following formulas can be used to calculate the derivatives w.r.t. local
cartesian coordinates (�̃�, ̃𝑦) directly

𝜓1,�̃� (r) = − 1
2√𝑟

⋅ sin 𝜃
2 𝜓1, ̃𝑦 (r) = 1

2√𝑟
⋅ cos 𝜃

2
𝜓2,�̃� (r) = 1

2√𝑟
⋅ cos 𝜃

2 𝜓2, ̃𝑦 (r) = 1
2√𝑟

⋅ sin 𝜃
2

𝜓3,�̃� (r) = − 1
2√𝑟

⋅ sin 3𝜃
2 ⋅ sin 𝜃 𝜓3, ̃𝑦 (r) = 1

2√𝑟 (sin 𝜃
2 + sin 3𝜃

2 ⋅ 𝑐𝑜𝑠𝜃)
𝜓4,�̃� (r) = − 1

2√𝑟
⋅ cos 3𝜃

2 ⋅ sin 𝜃 𝜓4, ̃𝑦 (r) = 1
2√𝑟 (cos 𝜃

2 + cos 3𝜃
2 ⋅ 𝑐𝑜𝑠𝜃)

(2.65)

Equations (2.65) incorporate the conversion from derivatives w.r.t. local polar coordinates
to derivatives w.r.t local cartesian coordinates. To transform the latter into derivatives w.r.t
global cartesian coordinates apply (A.36):

[𝜓𝑒,𝑥 (x) 𝜓𝑒,𝑦 (x)] = [𝜓𝑒,�̃� (r) 𝜓𝑒, ̃𝑦 (r)] [
𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼

−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼]
(2.66)

instead of using (2.64)

2.5.3 Deformation matrices
The standard and enriched basis matrices (also see (2.28)) are defined as

N𝑠𝑡𝑑(ξ) =
[

⋯ 𝑁𝑖(ξ) 0 ⋯
⋯ 0 𝑁𝑖(ξ) ⋯]

dimensions: (2 × 𝑛𝑠𝑡𝑑
𝑑𝑜𝑓𝑠) (2.67a)

N𝑒𝑛𝑟(ξ) =
[

⋯ 𝑁𝑒𝑛𝑟
𝑗𝑒 (ξ) 0 ⋯

⋯ 0 𝑁𝑒𝑛𝑟
𝑗𝑒 (ξ) ⋯]

dimensions: (2 × 𝑛𝑒𝑛𝑟
𝑑𝑜𝑓𝑠) (2.67b)



44 XFEM modeling of a fractured body

where only the submatrix corresponding to node 𝑖 is explicitly written. Similarly the standard
and enriched deformation matrices (also see (2.30)) and their respective dimensions are

B𝑠𝑡𝑑(ξ) = Δ ⋅ N𝑠𝑡𝑑(ξ) =
⎡⎢⎢⎢⎣

⋯ 𝑁𝑖,𝑥 (ξ) 0 ⋯
⋯ 0 𝑁𝑖,𝑦 (ξ) ⋯
⋯ 𝑁𝑖,𝑦 (ξ) 𝑁𝑖, 𝑥(ξ) ⋯

⎤⎥⎥⎥⎦
(3 × 𝑛𝑠𝑡𝑑

𝑑𝑜𝑓𝑠) (2.68a)

B𝑒𝑛𝑟(ξ) = Δ ⋅ N𝑒𝑛𝑟(ξ) =
⎡
⎢
⎢
⎢
⎣

⋯ 𝑁𝑒𝑛𝑟
𝑗𝑒 ,𝑥 (ξ) 0 ⋯

⋯ 0 𝑁𝑒𝑛𝑟
𝑗𝑒 ,𝑦 (ξ) ⋯

⋯ 𝑁𝑒𝑛𝑟
𝑗𝑒 ,𝑦 (ξ) 𝑁𝑒𝑛𝑟

𝑗𝑒 ,𝑥 (ξ) ⋯

⎤
⎥
⎥
⎥
⎦

(3 × 𝑛𝑒𝑛𝑟
𝑑𝑜𝑓𝑠) (2.68b)

where 𝑓,𝑥 (ξ) and 𝑓,𝑦 (ξ) denote differentiation with respect to 𝑥 and 𝑦 accordingly and

𝑁𝑒𝑛𝑟
𝑗𝑒 ,𝑥 (ξ) =

𝜗𝑁𝑗(ξ) [𝜓𝑒(x(ξ)) − 𝜓𝑒(x𝑗)]
𝜗𝑥 = 𝑁𝑗 ,𝑥 (ξ) [𝜓𝑒(x(ξ)) − 𝜓𝑒(x𝑗)] + 𝑁𝑗(ξ)𝜓𝑒,𝑥 (x(ξ))

(2.69a)

𝑁𝑒𝑛𝑟
𝑗𝑒 ,𝑦 (ξ) =

𝜗𝑁𝑗(ξ) [𝜓𝑒(x(ξ)) − 𝜓𝑒(x𝑗)]
𝜗𝑦 = 𝑁𝑗 ,𝑦 (ξ) [𝜓𝑒(x(ξ)) − 𝜓𝑒(x𝑗)] + 𝑁𝑗(ξ)𝜓𝑒,𝑦 (x(ξ))

(2.69b)

2.5.4 Stiffness matrices
To integrate matrices, vectors or any other function 𝑓(x) over a domain Ω𝑒 of an isopara-
metric element in the global cartesian system, we need to apply the well known ”change of
variables” technique:

• The global cartesian coordinates x = (𝑥, 𝑦) are replaced by the natural coordinates

ξ = (𝜉, 𝜂) using the isoparametric mapping x = x(ξ) =
𝑛𝑛𝑜𝑑𝑒𝑠
∑
𝑖=1

𝑁𝑖(ξ)x𝑖

• The original integral 𝐼 becomes

𝐼Ω𝑒 = ∫
Ω𝑒

𝑓(x)𝑑𝑥𝑑𝑦 =
1

∫
−1

1

∫
−1

𝑓(ξ) ⋅ |J𝑁𝐺(ξ)| 𝑑𝜉𝑑𝜂 (2.70)

where |J𝑁𝐺(ξ)| is the determinant of the direct isoparametric mapping’s Jacobian ma-
trix. It is also a function of the natural coordinates.
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• Then numerical integration is applied

𝐼Ω𝑒 =
1

∫
−1

1

∫
−1

𝑓(ξ) ⋅ |𝐽𝑁𝐺(ξ)| 𝑑𝜉𝑑𝜂 = ∑
𝑘∈𝑀𝐺𝑃

𝑓 (ξ𝑘) ⋅ |J𝑁𝐺 (ξ𝑘) | ⋅ 𝑤𝑘 (2.71)

where 𝑀𝐺𝑃 is the set of integration points defined by their natural coordinates ξ𝑘 and their
weight 𝑤𝑘. For more details on numerical integration in the context of XFEM refer to Chap-
ter 4.In actual applications, we are concerned with 3D problems that can be simplified to
2D plain stress or plain strain problems. The formulation presented so far is accurate, with
one exception. We are actually integrating over finite volumes, that is Ω𝑒 = 𝑉𝑒 = 𝑑𝑥𝑑𝑦𝑑𝑧,
where the third coordinate is the thickness of the domain 𝑑𝑧 = 𝑡(x). Therefore the above
equations are modified as

𝐼Ω𝑒 = ∫
Ω𝑒

𝑓(x)𝑑Ω𝑒 = ∫
Ω𝑒

𝑓(x) ⋅ 𝑡(x)𝑑𝑥𝑑𝑦 =
1

∫
−1

1

∫
−1

𝑓(ξ) ⋅ 𝑡(ξ) ⋅ |J𝑁𝐺(ξ)| 𝑑𝜉𝑑𝜂

⇔ 𝐼Ω𝑒 = ∑
𝑘∈𝑀𝐺𝑃

𝑓 (ξ𝑘) ⋅ 𝑡 (ξ𝑘) ⋅ |J𝑁𝐺 (ξ𝑘) | ⋅ 𝑤𝑘

(2.72)

The element’s stiffness matrix can thus be written as

k𝑒𝑙 =
[
k𝑠𝑠 k𝑠𝑒
k𝑒𝑠 k𝑒𝑒]

(2.73)

where the submatrices k𝑠𝑠, k𝑠𝑒, k𝑒𝑠, k𝑒𝑒 are repeated here for convenience:

k𝑠𝑠 = ∫
Ω𝑒

B𝑇
𝑠𝑡𝑑 (x𝑘) ⋅ C (x𝑘) ⋅ B𝑠𝑡𝑑 (x𝑘) 𝑑Ω𝑒 (2.74a)

k𝑠𝑒 = ∫
Ω𝑒

B𝑇
𝑠𝑡𝑑 (x𝑘) ⋅ C (x𝑘) ⋅ B𝑒𝑛𝑟 (x𝑘) 𝑑Ω𝑒 (2.74b)

k𝑒𝑠 = ∫
Ω𝑒

B𝑇
𝑒𝑛𝑟 (x𝑘) ⋅ C (x𝑘) ⋅ B𝑠𝑡𝑑 (x𝑘) 𝑑Ω𝑒 (2.74c)

k𝑒𝑒 = ∫
Ω𝑒

B𝑇
𝑒𝑛𝑟 (x𝑘) ⋅ C (x𝑘) ⋅ B𝑒𝑛𝑟 (x𝑘) 𝑑Ω𝑒 (2.74d)



46 XFEM modeling of a fractured body

and by applying (2.72)

k𝑠𝑠 = ∑
𝑘∈𝑀𝐺𝑃

B𝑇
𝑠𝑡𝑑 (ξ𝑘) ⋅ C (ξ𝑘) ⋅ B𝑠𝑡𝑑 (ξ𝑘) ⋅ 𝑡 (ξ𝑘) ⋅ |J𝑁𝐺 (ξ𝑘) |𝑤𝑘 (2.75a)

k𝑠𝑒 = ∑
𝑘∈𝑀𝐺𝑃

B𝑇
𝑠𝑡𝑑 (ξ𝑘) ⋅ C (ξ𝑘) ⋅ B𝑒𝑛𝑟 (ξ𝑘) ⋅ 𝑡 (ξ𝑘) ⋅ |J𝑁𝐺 (ξ𝑘) |𝑤𝑘 (2.75b)

k𝑒𝑠 = ∑
𝑘∈𝑀𝐺𝑃

B𝑇
𝑒𝑛𝑟 (ξ𝑘) ⋅ C (ξ𝑘) ⋅ B𝑠𝑡𝑑 (ξ𝑘) ⋅ 𝑡 (ξ𝑘) ⋅ |J𝑁𝐺 (ξ𝑘) |𝑤𝑘 (2.75c)

k𝑒𝑒 = ∑
𝑘∈𝑀𝐺𝑃

B𝑇
𝑒𝑛𝑟 (ξ𝑘) ⋅ C (ξ𝑘) ⋅ B𝑒𝑛𝑟 (ξ𝑘) ⋅ 𝑡 (ξ𝑘) ⋅ |J𝑁𝐺 (ξ𝑘) |𝑤𝑘 (2.75d)

Remarks:

• There is no actual need to assemble the whole stiffness matrix of the element k𝑒𝑙. As
seen in (2.43) we can work directly with the submatrices.

• The stiffness matrix of each element is symmetric, because we are concerned with
brittle, traction-free cracks. Hence only one of k𝑒𝑠 and k𝑠𝑒 needs to be computed,
while the other is obtained by

k𝑠𝑒 = k𝑇
𝑒𝑠 (2.76)

or vice versa, in order to reduce computation time.

2.5.5 Linear system assembly and solution
Assembling the stiffness matrix of each element into a global stiffness matrix and choosing
the right solver for the the linear system depend on each other. Assembling the body and
traction force vectors into a global right hand side vector is quite straightforward, since it
only has to follow the same dof numbering as the global stiffness matrix. Two common
strategies that are popular in FEM are:

• Assemble the elementary matrices into a global stiffness matrix in symmetric Skyline
format and use a direct solver. Stiffness matrices resulting from the problem described
in Section 2.2 are symmetric and positive definite, so one can use Cholesky factoriza-
tion. Factorization typically introduces a lot of fill-in, thus appropriate dof numbering
schemes and even the application of a renumbering step must be considered.



2.5 Implementation of the discretized governing equations 47

• Assemble the elementary matrices into a global stiffness matrix in Compressed Sparse
Rows (CSR) format and use an iterative solver, such as the Preconditioned Conjugate
Gradient algorithm. In iterative methods, one also has to take special care of the
preconditioner matrix used.

These will not be further explained here, as a detailed presentation of either approach is out
of the scope of this thesis. In the code accompanying the text the first approach has been
implemented, albeit without any special numbering techniques. It is worthwhile to consider
the global stiffness and right hands side vector assembly though.

One approach is to use the boolean matrices mapping global dofs to local (element) dofs, as
presented in (2.33). Note that the composition of T𝑠𝑡𝑑 and T𝑒𝑛𝑟 might be different, since it
depends on the dof numbering schemes of both global and local dofs. With these boolean
matrices defined, the assembly of the global stiffness matrix, global body force vector and
global traction force vector from their elementary counterparts are described in equations
(2.43), (2.46) and (2.49) respectively.

However these formulas are inefficient. The matrix-vector and especially matrix-vector mul-
tiplications have very high complexity, though this can be alleviated by storing the boolean
matrices in a sparse storage format. Nevertheless the intermediate matrices and vectors that
are ultimately summed in equations (2.43), (2.46) and (2.49) are still too large, having di-
mensions:

• (number of global dofs × number of global dofs) for the matrices

• (number of global dofs × 1) for the vectors

Consequently they require significant memory and the summation part of the formulas has
high complexity:

• 𝑂 ((number of global dofs)2) for the matrix additions

• 𝑂(number of global dofs) for the vector additions

A more efficent approach is to use a dictionary that maps each local dof to a global dof for
each element. During assembly, after allocating memory for the global matrix and right
hand side vector, each entry of the element’s stiffness matrix, body force vector and traction
force vector is added to the appropriate position specified by global row and column indices,
which are in turn obtained by applying the dictionary to the local row and column of the
entry. The process can also be parallelized while dealing with an individual element, since
the global positions of the same element’s entries do not overlap.





Chapter 3

Crack propagation with LEFM

3.1 Introduction
This chapter explores a model that predicts the propagation of an existing crack based on Lin-
ear Elastic FractureMechanics (LEFM). LEFM is appropriate for brittle materials, where the
nonlinear zone ahead of the crack tip is negligible. The most notable contributions to the
field are Inglis’ stress analysis for bodies with elliptic holes, Griffith’s fracture energy theory
based on the first law of thermodynamics, the introduction of the energy release rate and the
stress intensity factors (SIFs) by Irwin and Eshelby’s J-integral method, which provides a ro-
bust computational framework for computing the SIFs. The following sections will elaborate
on these theories and detail the computational steps required for their implementation.

3.2 Basics of Linear Elastic Fracture Mechanics

3.2.1 The stress intensity factors
Consider the infinitely spanning plate shown in Figure 3.1, which contains a crack of length
2𝑎 and is subjected to equalbiaxial tension. In [3] Westergard used Airy stress functions and
rectangular coordinates expressed as complex numbers to find the stress distribution near the
crack tip, which is illustrated in Figure 3.2. Westergaard’s solution doesn’t apply to uniaxial
stress and requires significant work for evaluating the stress at points not on the local �̃� axis.
Nevertheless, it provides a lot of insight about the stress field in the vicinity of the crack tip.
This solution assumes that the material is elastic and the crack faces traction-free. Otherwise
the singularity dominated zone around the crack tip is replaced by a plastic zone.
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Fig. 3.1 Infinite plate with a crack under tension.

Fig. 3.2 Τhe stress distribution near the crack tip: Westergard’s exact solution is drawn in
green, while Irwin’s approximate solution is drawn in red.

In [5] Irwin used polar coordinates to greatly simplify the previous solution. This approxi-
mate solution diverges from Westergard’s further away from the crack tip. Nevertheless, for
crack propagation only the near-tip conditions are necessary and Irwin’s formulas with polar
coordinates not only are much easier to use, but also incorporate the stress intensity factor.
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Along the �̃� axis of the local cartesian system defined at the crack tip, stress components in
the local cartesian system are obtained as

�̃�𝑥𝑥(r) =
�̃�∞√𝜋𝑎
√2𝜋𝑟

⋅ cos 𝜃
2 (1 − sin 𝜃

2 sin 3𝜃
2 ) (3.1a)

�̃�𝑦𝑦(r) =
�̃�∞√𝜋𝑎
√2𝜋𝑟

⋅ cos 𝜃
2 (1 + sin 𝜃

2 sin 3𝜃
2 ) (3.1b)

�̃�𝑥𝑦(r) =
�̃�∞√𝜋𝑎
√2𝜋𝑟

⋅ cos 𝜃
2 sin 𝜃

2 sin 3𝜃
2 (3.1c)

In the equations above note that

• All three expressions include the term 1
√𝑟

which dictates the dependence of stress on
the distance from the crack tip and reflects the singularity at 𝑟 = 0.

• Each expressions contains a function of 𝜃 alone, separated from 𝑟 and 𝑎.

• All numerators contain the expression �̃�∞√𝜋𝑎. This combination of �̃�∞ and 𝑎 com-
pletely describes the severity of the stress state at the crack tip. Irwin [5] recognized
this and introduced the term stress intensity factor (SIF) to describe the expression:

𝐾 = �̃�∞√𝜋𝑎 (3.2)

3.2.2 Strain energy release rate
During his experiments on the theoretical strength of glass rods of various diameters, Griffith
observed that the tensile strength of the glass rods decreased as their diameter increased.
This size dependency is caused by the presence of internal flaws in the material as proposed
by Inglis in [1]. In order to correctly describe the failure of solid materials, Griffith [2]
introduced a thermodynamic criterion for fracture, instead of comparing the stress field to
the tensile strength. This criterion considers the total change in energy of a cracked body
in terms of the crack length increase. Consider a continuum body with an existing internal
crack under arbitrary loading. The first law of thermodynamics states that the change in total
energy is proportional to the amount of performed work and the change of heat content:

𝑑
𝑑𝑡 (𝑈𝑘 + 𝑈𝑠 + 𝑈Γ) = 𝑑

𝑑𝑡(𝑊 + 𝑄) (3.3)
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where 𝑈𝑘 is the kinetic energy, 𝑈𝑠 is the total internal strain energy, 𝑈Γ is the surface energy,
𝑊 is the external work and 𝑄 is the heat provided to the system. For an adiabatic quasi-static
system 𝑑𝑄

𝑑𝑡 = 𝑑𝑈𝑘
𝑑𝑡 = 0 and (3.3) can be simplified to

𝑑
𝑑𝑡 (𝑈𝑠 + 𝑈Γ) = 𝑑

𝑑𝑡(𝑊 ) (3.4)

As all the changes with respect to time are caused by change in the flaw’s length, (3.4) can
be rewritten in terms of its half-length 𝑎

𝜗𝑊
𝜗𝑎 = 𝜗𝑈𝑠

𝜗𝑎 + 𝜗𝑈Γ
𝜗𝑎 (3.5)

which represents the energy balance between the work supplied to the body by the external
load, the surface energy dissipated due to the crack growth and the strain energy. The latter
can be decomposed into an elastic 𝑈 𝑒

𝑠 and a plastic 𝑈 𝑒
𝑝 part

𝑈𝑠 = 𝑈 𝑒
𝑠 + 𝑈 𝑝

𝑠 (3.6)

The potential energy of the system is defined as

Π = 𝑈 𝑒
𝑠 − 𝑊 (3.7)

In [6] Irwin introduced the strain energy release rate, defined as

𝐺 = −𝜗Π
𝜗𝑎 (3.8)

Using (3.5) the energy release rate can be expressed as

𝐺 = −𝜗Π
𝜗𝑎 = 𝜗𝑊

𝜗𝑎 − 𝜗𝑈 𝑒
𝑠

𝜗𝑎
= 𝜗𝑈Γ

𝜗𝑎 + 𝜗𝑈𝑠
𝜗𝑎 − 𝜗𝑈 𝑒

𝑠
𝜗𝑎

= 𝜗𝑈Γ
𝜗𝑎 + 𝜗𝑈 𝑝

𝑠
𝜗𝑎

(3.9)

For brittle materials 𝑈 𝑝
𝑠 = 0 and the previous reduces to

𝐺 = −𝜗Π
𝜗𝑎 = 𝜗𝑈Γ

𝜗𝑎 = 2𝛾𝑠 (3.10)
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where 𝛾𝑠 represents the energy required to break atomic bonds per unit surface area. Using
Inglis’ solution for the near tip stress field of the plate shown in Figure 3.1, the potential
energy is

Π = Π𝑜 − �̃�2
∞ 𝜋𝑎2

2Ε∗ (3.11)

where Π𝑜 is the potential energy of an uncracked plate and 𝐸∗ is the effective Young’s mod-
ulus. The energy release rate can now be calculated as

𝐺 = −𝜗Π
𝜗𝑎 = �̃�2

∞ 𝜋𝑎
Ε∗ (3.12)

Introducing Irwin’s definition of the stress intensity factor 𝐾 = �̃�∞√𝜋𝑎, the relationship
between the energy release rate and the SIF is obtained

𝐺 = 𝐾2

𝐸∗ (3.13)

3.2.3 Fracture toughness
Griffith noticed that after a critical stress 𝜎𝑓 is reached, the energy balance becomes unstable,
which can be observed by the crack suddenly propagating throughout the structure. Using
(3.12) this failure stress can be expressed as

𝜎𝑓 = √2𝛾𝑠𝐸∗

𝜋𝑎 = √𝐺𝑐𝐸∗

𝜋𝑎 (3.14)

where 𝐺𝑐 is the critical energy release rate. Expressing the previous equation with respect
to the stress intensity factor, Griffith’s failure criterion can be written as

𝐺𝑐 = 𝐾2
𝑐

𝐸∗ (3.15)

where
𝐾𝑐 = 𝜎𝑓 √𝜋𝑎 (3.16)

is Irwin’s critical SIF [5]. 𝐾𝑐 is an important material property called ”fracture toughness”
and it controls how the crack grows:

• If 𝐺 < 𝐺𝑐 ⇔ 𝜎 < 𝜎𝑓 ⇔ 𝐾 < 𝐾𝑐 , the crack can propagate if the system is supplied
with additional external work. This is called stable fracture.
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• If 𝐺 > 𝐺𝑐 ⇔ 𝜎 > 𝜎𝑓 ⇔ 𝐾 > 𝐾𝑐 , the crack propagates without additional external
work. This situation is called unstable fracture and it can lead to catastrophic failure,
as a crack suddenly propagates completely through a part. In technical lingo, it is said
that the crack grows ”spontaneously”.

3.2.4 Fracture modes of an existing crack
Figure 3.3 depicts the three basic ways an existing crack can be loaded and subsequently
extended. Assuming the crack plane coincides with the plane (�̃�, ̃𝑦) and the crack front
coincides with the plane (�̃�, ̃𝑧), the three modes are:

• Mode I or opening mode corresponds to an opening of the crack faces normal to each
other, that is parallel to ̃𝑦 axis, under the action of tensile load. The theory presented
in in the previous sections applies to this fracture mode.

• Mode II or (in-plane) sliding mode corresponds to a relative displacement of the crack
faces parallel to �̃� axis, under shear stress acting parallel to the crack plane and per-
pendicular to the crack front.

• Mode III or (out-of-plane) tearing mode corresponds to a relative displacement of the
crack faces parallel to ̃𝑧 axis, under shear stress acting parallel to the crack plane and
parallel to the crack front.

Fig. 3.3 The three basic modes of crack extension. a) Mode I: opening, b) Mode II: sliding,
c) Mode III: tearing
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Each fracture mode can be examined separately to obtain analytic solutions of the displace-
ment, strain and stress fields around the crack tip. Before presenting these, the stress intensity
factors for the three fracture modes must be defined as

𝐾I = lim
𝑟→0

�̃�𝑦𝑦(𝑟, 0)√2𝜋𝑟 (3.17a)

𝐾II = lim
𝑟→0

�̃�𝑥𝑦(𝑟, 0)√2𝜋𝑟 (3.17b)

𝐾III = lim
𝑟→0

�̃�𝑦𝑧(𝑟, 0)√2𝜋𝑟 (3.17c)

The displacement and stress fields for all three modes are reviewed in [33]. In the following
equations, the vector and tensor components refer to the local cartesian system defined at the
crack tip, but they are expressed as functions of local polar coordinates (see Figure 3.4):

Fig. 3.4 The local cartesian (blue) and local polar (red) coordinate systems defined at the
crack tip.

• In mode I loading the displacement field around the crack tip is

̃𝑢𝑥 = 𝐾I
2𝜇 √

𝑟
2𝜋 cos 𝜃

2 (𝜅 − 1 + 2 sin2 𝜃
2) (3.18a)

̃𝑢𝑦 = 𝐾I
2𝜇 √

𝑟
2𝜋 sin 𝜃

2 (𝜅 + 1 − 2 cos2 𝜃
2) (3.18b)

̃𝑢𝑧 =
⎧⎪
⎨
⎪⎩

0 plain strain
−𝜈 ̃𝑧

𝐸 (�̃�𝑥𝑥 + �̃�𝑦𝑦) plane stress
(3.18c)
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and the stress field is obtained as

�̃�𝑥𝑥 = 𝐾I

√2𝜋𝑟
cos 𝜃

2 (1 − sin 𝜃
2 sin 3𝜃

2 ) (3.19a)

�̃�𝑦𝑦 = 𝐾I

√2𝜋𝑟
cos 𝜃

2 (1 + sin 𝜃
2 sin 3𝜃

2 ) (3.19b)

�̃�𝑧𝑧 =
⎧⎪
⎨
⎪⎩

𝜈 (�̃�𝑥𝑥 + �̃�𝑦𝑦) plane strain
0 plane stress

(3.19c)

�̃�𝑥𝑦 = 𝐾I

√2𝜋𝑟
sin 𝜃

2 cos 𝜃
2 cos 3𝜃

2 (3.19d)

�̃�𝑥𝑧 = �̃�𝑦𝑧 = 0 (3.19e)

• In mode II loading the displacement field around the crack tip is

̃𝑢𝑥 = 𝐾II
2𝜇 √

𝑟
2𝜋 sin 𝜃

2 (𝜅 + 1 + 2 cos2 𝜃
2) (3.20a)

̃𝑢𝑦 = −𝐾II
2𝜇 √

𝑟
2𝜋 cos 𝜃

2 (𝜅 − 1 − 2 sin2 𝜃
2) (3.20b)

̃𝑢𝑧 =
⎧⎪
⎨
⎪⎩

0 plane strain
−𝜈 ̃𝑧

𝐸 (�̃�𝑥𝑥 + �̃�𝑦𝑦) plane stress
(3.20c)

and the stress field is obtained as

�̃�𝑥𝑥 = − 𝐾II

√2𝜋𝑟
sin 𝜃

2 (2 + cos 𝜃
2 cos 3𝜃

2 ) (3.21a)

�̃�𝑦𝑦 = 𝐾II

√2𝜋𝑟
sin 𝜃

2 cos 𝜃
2 cos 3𝜃

2 (3.21b)

�̃�𝑧𝑧 =
⎧⎪
⎨
⎪⎩

𝜈 (�̃�𝑥𝑥 + �̃�𝑦𝑦) plane strain
0 plane stress

(3.21c)

�̃�𝑥𝑦 = 𝐾II

√2𝜋𝑟
cos 𝜃

2 (1 − sin 𝜃
2 sin 3𝜃

2 ) (3.21d)

�̃�𝑥𝑧 = �̃�𝑦𝑧 = 0 (3.21e)
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• In mode III loading the displacement field around the crack tip is

̃𝑢𝑥 = ̃𝑢𝑦 = 0 (3.22a)

̃𝑢𝑧 = 𝐾III
2𝜇 √

𝑟
2𝜋 sin 𝜃

2 (3.22b)

and the stress field is obtained as

�̃�𝑥𝑥 = �̃�𝑦𝑦 = �̃�𝑧𝑧 = �̃�𝑥𝑦 = 0 (3.23a)

�̃�𝑥𝑧 = − 𝐾III

√2𝜋𝑟
sin 𝜃

2 (3.23b)

�̃�𝑦𝑧 = 𝐾III

√2𝜋𝑟
cos 𝜃

2 (3.23c)

where the following material properties are used:

• 𝐸 is the Young’s modulus and 𝜈 is the Poisson’s ratio of the material.

• 𝜇 is the shear modulus of the material defined as

𝜇 = 𝐸
2(1 + 𝜈) (3.24)

• 𝜅 is Kolosov’s constant defined as

𝜅 =
⎧⎪
⎨
⎪⎩

3 − 4𝜈 for plane strain problems
3 − 𝜈
1 + 𝜈 for plane stress problems

(3.25)

Usually the crack is not loaded in one of the threemodes, but as a combination of them, which
is referred to as mixed-mode loading. In mixed-mode loading the displacement, strain and
stress fields are calculated by combining the respective fields of the three modes. In LEFM
this is a simple superimposition:

𝑢𝑡𝑜𝑡
𝑖𝑗 = 𝑢𝐾I

𝑖𝑗 + 𝑢𝐾II
𝑖𝑗 + 𝑢𝐾III

𝑖𝑗 (3.26a)

𝜎𝑡𝑜𝑡
𝑖𝑗 = 𝜎𝐾I

𝑖𝑗 + 𝜎𝐾II
𝑖𝑗 + 𝜎𝐾III

𝑖𝑗 (3.26b)

It can also be seen as linear combination with the stress intensity factors of each mode acting
as coefficients. This means that the relative SIF magnitudes determine how displacements
and stresses develop around an existing crack tip. Therefore, the SIFs play an important role
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in determining the direction of the crack growth, which will be elaborated in Section 3.4.2.

Note that the asymptotic tip functions used for enrichment in XFEM are derived from (3.18),
(3.20) and (3.22) by extracting the necessary basis functions of the function space where the
displacement field components belong to. Mode III loading is ignored in 2D problems, so
its contribution will not be present in what follows.

3.3 The J-integral method for crack propagation

Fig. 3.5 J-integral contour around a crack tip

From Section 3.2.2 it is evident that the energy release rate and the stress intensity factors
are inextricably linked to each other. Computing the SIFs is a necessary part of crack prop-
agation analysis and there are many numerical techniques that provide solutions. One of
the most flexible and popular ones is the J-integral method, which identifies the SIFs after
calculating the energy release rate.

3.3.1 Original form
In [4] Eshelby defined a number of contour integrals that were path independent, based on
the theorem of energy conservation. Originally they were applied for elastic analysis, but
Rice [9] recognized their value in calculating the energy release rate of fractured structures.
For the contour Γ depicted in Figure 3.5, the two dimensional form of the contour J-integral
can be written in vector and component form respectively
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𝐽 = ∫
Γ

𝑤 𝑑𝑦 − t ⋅ 𝜗ũ
𝜗�̃�𝑑Γ (3.27a)

𝐽 = ∫
Γ

(𝑤 𝛿1𝑗 − �̃�𝑖𝑗
𝜗 ̃𝑢𝑖
𝜗�̃� ) ̃𝑛𝑗𝑑Γ (3.27b)

where

• Γ is an arbitrary closed counter-clockwise contour.

• 𝑤 is the strain energy defined as

𝑤 =
̃𝜀𝑖𝑗

∫
0

�̃�𝑖𝑗𝑑 ̃𝜀𝑖𝑗 = 1
2�̃�𝑖𝑗 ̃𝜀𝑖𝑗 (3.28)

• ̃𝑢𝑗 and ̃𝜎𝑖𝑗 are the local cartesian components of the displacement and stress field re-
spectively.

• n is the outward normal vector to the contour Γ.

• t = σ̃ ⋅ n is the traction vector on the ”plane” normal to n.

• 𝛿 is the Kroenecker delta

𝛿𝑖𝑗 =
⎧⎪
⎨
⎪⎩

1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

(3.29)

The J-integral defined in (3.27) is path independent. If it is applied on a contour around the
crack tip, then it represents the variation in potential energy for an infinitesimal virtual crack
extension 𝑑𝑎, which is equivalent to the fracture energy release for linear elastic materials
[9]

𝐽 = −𝜗Π
𝜗𝑎 = 𝐺 (3.30)

However that equivalence only holds under the following assumptions:

• The body is subjected to monotonic loading, that is no unloading takes place

• There is no body force b = 0

• The crack interface is traction-free
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• Small deformations and isothermal conditions

In addition to the elastic energy release, the path-independence of the J-integral allows the
evaluation of the nonlinear elastic energy release rate and the elastoplastic work far from
the crack tip. Furthermore, the contour J-integral has been extended to dynamic loading,
cohesive cracks and the presence of body forces. In [12] Atluri develops amodified J-integral
formulation for the presence of body force b̃ (expressed in local cartesian system)

𝐽 = ∫
Γ

(𝑤 𝑑𝑦 − t𝜗ũ𝜗�̃�𝑑Γ) − ∫
Ω

b̃𝜗ũ
𝜗�̃�𝑑Ω (3.31)

3.3.2 Interaction integrals
In 2D mixed-mode crack problems there are two SIFs, thus calculating them from the J-
integral requires some extra work. The interaction integral method provides a solution to
this problem. Consider two states of the cracked body:

• State (1) is the real state of the body. Its displacement, strain and stress fields will
be denoted as ̃𝑢(1)

𝑖 , ̃𝜀(1)
𝑖𝑗 and �̃�(1)

𝑖𝑗 in the following. Note that this state corresponds to
the current configuration of the system, meaning it will change every time the crack
propagates.

• State (2) is an auxiliary state, whose fields will be denoted as ̃𝑢(2)
𝑖 , ̃𝜀(2)

𝑖𝑗 and �̃�(2)
𝑖𝑗 in

the following. Since they are virtual states, they can be selected appropriately to find
a relationship between the mixed-mode SIFs and the interaction integrals. However
there is a constraint: their fields must satisfy both the equilibrium equation and the
traction-free boundary condition on the crack surface.

By applying (3.27) for the superposition of these two states, the J-integral is

𝐽 (1+2) = ∫
Γ

[
1
2 (�̃�(1)

𝑖𝑗 + �̃�(2)
𝑖𝑗 ) ( ̃𝜀(1)

𝑖𝑗 + ̃𝜀(2)
𝑖𝑗 ) 𝛿1𝑗 − (�̃�(1)

𝑖𝑗 + �̃�(2)
𝑖𝑗 )

𝜗
𝜗�̃� ( ̃𝑢(1)

𝑖 + ̃𝑢(2)
𝑖 )] ̃𝑛𝑗𝑑Γ

(3.32)
Expanding the previous expression we get

𝐽 (1+2) = 𝐽 (1) + 𝐽 (2) + 𝐼 (1,2) (3.33)
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where 𝐽 (1), 𝐽 (2) are the J-integrals for the real and auxiliary state respectively, while 𝐼 (1,2) is
called the interaction integral of the two states and is defined as

𝐼 (1,2) = ∫
Γ

(
𝑤(1,2) 𝛿1𝑗 − �̃�(1)

𝑖𝑗
𝜗 ̃𝑢(2)

𝑖
𝜗�̃� − �̃�(2)

𝑖𝑗
𝜗 ̃𝑢(1)

𝑖
𝜗�̃� )

̃𝑛𝑗𝑑Γ (3.34)

where 𝑤(1,2) is the interaction strain energy defined as

𝑤(1,2) = 1
2 (�̃�(1)

𝑖𝑗 ̃𝜀(2)
𝑖𝑗 + �̃�(2)

𝑖𝑗 ̃𝜀(1)
𝑖𝑗 ) (3.35)

For linear elastic materials

̃ε(1) ⋅ σ̃(2) = ̃ε(1) ⋅ C ⋅ ̃ε(2) = ̃ε(2) ⋅ C ⋅ ̃ε(1) = ̃ε(2) ⋅ σ̃(1) (3.36)

and (3.35) can be written as

𝑤(1,2) = �̃�(1)
𝑖𝑗 ̃𝜀(2)

𝑖𝑗 = �̃�(2)
𝑖𝑗 ̃𝜀(1)

𝑖𝑗 (3.37)

For 2D mixed-mode problems the energy release rate is linked to the stress intensity factors
𝐾I and 𝐾II according to

𝐽 = 𝐺 =
𝐾2

I + 𝐾2
II

𝐸∗ (3.38)

where 𝐸∗ is the effective Young’s modulus

𝐸∗ =
⎧⎪
⎨
⎪⎩

𝐸
1 − 𝜈2 for plane strain problems

𝐸 for plane stress problems
(3.39)

The J-integral of the superposition of the two states can also be written as [9]

𝐽 (1+2) = 𝐽 (1) + 𝐽 (2) + 2
𝐸∗ (𝐾 (1)

I 𝐾 (2)
I + 𝐾 (1)

II 𝐾 (2)
II ) (3.40)

Comparing (3.33) and (3.40) the interaction integral can be expressed as

𝐼 (1,2) = 2
𝐸∗ (𝐾 (1)

I 𝐾 (2)
I + 𝐾 (1)

II 𝐾 (2)
II ) (3.41)

It was mentioned previously that we can arbitrarily choose the auxiliary states. Fields that
result in 𝐾 (2)

I = 0 XOR 𝐾 (2)
II = 0 are good candidates, since the remaining non-zero SIF can

then be directly obtained by the interaction integral using (3.41):
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1. First assume that auxiliary state (2) is in pure Mode I. This leads to

𝐾 (2)
I = 1 (3.42a)

𝐾 (2)
II = 0 (3.42b)

and the real Mode I SIF can be obtained by the interaction integral 𝐼 (1, I)

𝐾 (1)
I = 𝐸∗

2 𝐼 (1, I) (3.43)

2. Then assume that auxiliary state (2) is in pure Mode II. This leads to

𝐾 (2)
I = 0 (3.44a)

𝐾 (2)
II = 1 (3.44b)

and the real Mode II SIF can be obtained by the interaction integral 𝐼 (1, II)

𝐾 (1)
II = 𝐸∗

2 𝐼 (1, II) (3.45)

It should be noted that evaluation of the interaction integral requires careful attention as
the real fields (state 1) are usually obtained from the finite element solution in the global
cartesian or isoparametric coordinate system, while the auxiliary fields (state 2) are defined
in the local crack tip polar system. Therefore, necessary transformations are required to use
a unified coordinate system.

3.3.3 Equivalent Domain Integral
The countour J-integral is not optimal for calculations over a finite element mesh. Although
the contour can be selected to pass through the finite elements’ integration points, in practice
this technique rarely exhibits path independence and the result becomes mesh dependent.
A more accurate approach, which is also more suitable for FE methods, is the Equivalent
Domain Integral (EDI) presented in [13]. The EDI method transforms the contour integral
into an area integral using the divergence theorem. Consider the crack tip and the contour
integrals shown in Figure 3.6, where

• �̃� and ̃𝑦 are the axes of the local cartesian system defined at the crack tip.

• Γ1 and Γ3 are two contours defined around the crack tip.
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• n are unit normal vectors orientated outwards.

• 𝐴Γ is the area between the two contours.

Fig. 3.6 J-integral contours around a crack tip, their normal vectors and the area between
them.

By applying the divergence theorem to (3.27), the area form of the J-integral is obtained as

𝐽 = ∫
ΑΓ

(�̃�𝑖𝑗
𝜗 ̃𝑢𝑖
𝜗�̃� − 𝑤 𝛿1𝑗)

𝜗𝑞
𝜗�̃�𝑗

𝑑𝐴 (3.46)

where 𝑞(x) is a sufficiently smooth scalar field that is unity on Γ3 and vanishes on Γ1. As
stated in Section 3.3.2, the interaction integrals are the ones actually used for the calculation
of the SIFs. Their area form is

𝐼 (1,2) = ∫
ΑΓ

(
�̃�(1)

𝑖𝑗
𝜗 ̃𝑢(2)

𝑖
𝜗�̃� + �̃�(2)

𝑖𝑗
𝜗 ̃𝑢(1)

𝑖
𝜗�̃� − 𝑤(1,2) 𝛿1𝑗)

𝜗𝑞
𝜗�̃�𝑗

𝑑𝐴 (3.47)
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3.4 Crack propagation criteria
At each time step of a crack propagation analysis, after evaluating the stress intensity factors,
it must be determined if the crack propagates, in which direction it propagates and what is
the propagation length. After these requirements are met, the analysis can progress to the
next iteration or terminate, if necessary.

3.4.1 Failure criteria
The crack propagation analysis stops if one of the following criteria is met:

• The crack tip has reached the boundary of the domain, causing it to snap into two
pieces. In this case the body can no longer bear loads without deforming infinitely
and the new stiffness matrix would be singular. Typically, the crack propagation di-
rection and length are estimated (see Sections 3.4.2 and 3.4.3) and then it is determined
whether the crack extension exceeds the domain’s boundaries.

• The strain energy release rate has exceeded a critical value, leading to failure of the
material. After this point, the crack would grow uncontrollably (”spontaneously”)
without requiring additional work to be input into the system.

For the latter criterion consider the ideal case of an infinite plate in uniaxial stress discussed
in Section 3.2.2. Recall that failure occurs when the actual stress intensity factor 𝐾 exceeds
the critical value defined in (3.16). In mixed-mode loading conditions the crack propagates
as long as it is supplied by external work and there is no failure, which is represented by
a combination of the mixed-mode SIFS being lower than a critical value. During a crack
propagation analysis, the crack will continue to grow as long as

𝐾eff < 𝐾Ic (3.48)

where

• 𝐾Ic is a material property called fracture toughness. The linear elastic fracture tough-
ness of a material is usually measured as the Mode I critical stress intensity factor,
hence the notation 𝐾Ic. Its units are Pa √m.
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• 𝐾eff is a characteristic measure that incorporates all stress intensity factors. For 2D
problems the following expressions can be used

𝐾eff = √𝐾2
I + 𝐾2

II (3.49a)

𝐾eff = (𝐾4
I + 8𝐾4

II)
1/4 (see [11]) (3.49b)

𝐾eff = 𝐾I cos3 𝜃𝑐
2 − 3

2𝐾II cos 𝜃𝑐
2 sin 𝜃𝑐 (see [31]) (3.49c)

where 𝜃𝑐 is the crack propagation angle, which will be described in the next section.

3.4.2 Crack propagation direction
This section describes alternative theories to predict the crack propagation angle 𝜃𝑐 , which
is defined as the angle from the line segment containing the current crack tip to a new line
segment that will contain the new crack tip, as illustrated in Figure 3.7.

Fig. 3.7 Graphical representation of the crack propagation angle 𝜃𝑐 and crack propagation
length Δ𝛼.

Maximum circumferential tensile stress

The maximum circumferential (or hoop) stress criterion was first developed by Erdogan and
Sih [7] based on the stress state near a crack tip. According to it, the crack propagates in a
radial direction perpendicular to the direction of maximum tension, that is the propagation
direction is perpendicular to the plane for which the circumferential stress 𝜎𝜃𝜃 is maximum.
It can be identified as the plane where the circumferential stress 𝜎𝜃𝜃 is principal and the shear
stress stress vanishes 𝜎𝑟𝜃 = 0, with these two stress components being expressed in the local
polar coordinate system defined at the crack tip. In the case of brittle materials, the plastic
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zone around the crack tip is negligible, which permits the use of the asymptotic stress ex-
pressions presented in Section 3.2.4. However note that the following procedure cannot be
used for ductile materials, where the plastic zone is significant.

For mixed-mode loading, the circumferential and shear stress can be obtained by transform-
ing (3.19) and (3.21) to the local polar coordinate system defined at the crack tip

𝜎𝜃𝜃 = 𝐾I

4√2𝜋𝑟 (3 cos 𝜃
2 + cos 3𝜃

2 ) + 𝐾II

4√2𝜋𝑟 (−3 sin 𝜃
2 − 3 sin 3𝜃

2 ) (3.50a)

𝜎𝑟𝜃 = 𝐾I

4√2𝜋𝑟 (sin 𝜃
2 + sin 3𝜃

2 ) + 𝐾II

4√2𝜋𝑟 (cos 𝜃
2 + 3 cos 3𝜃

2 ) (3.50b)

Setting the shear stress 𝜎𝑟𝜃 = 0 results in

1
2𝜋𝑟 cos 𝜃

2 [
1
2𝐾I sin 𝜃 + 1

2𝐾II (3 cos 𝜃 − 1)] = 0 (3.51)

The above can be solved to obtain the crack propagation angle 𝜃𝑐

𝜃𝑐 =
⎧
⎪
⎨
⎪
⎩

2 ⋅ atan1
4

⎡
⎢
⎢
⎣

𝐾I
𝐾II

− sign(𝐾II)√(
𝐾I
𝐾II)

2
+ 8

⎤
⎥
⎥
⎦

𝐾II ≠ 0

0 𝐾II = 0
(3.52)

which means that

• 𝜃𝑐 < 0 if 𝐾II > 0.

• 𝜃𝑐 > 0 if 𝐾II < 0.

• 𝜃𝑐 = 0 if 𝐾II = 0, that is pure Mode I conditions.

An efficient expression of the crack propagation angle is presented in [27]

𝜃𝑐 = 2 ⋅ atan −2𝐾II/𝐾I

1 + √1 + 8(𝐾II/𝐾I)2
(3.53)

Note that 𝜃𝑐 is defined as a counter-clockwise angle from the tangent line at the crack tip,
that is from the local �̃� axis, to the direction of the crack growth. Applying the previous
equations, results in 𝜃𝑐 ∈ (−70.5288𝑜, 70.5288𝑜) as shown in Figure 3.8.
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Fig. 3.8 The range of values of the crack propagation angle 𝜃𝑐 , obtained by the maximum
circumferential stress criterion.

Minimum strain energy

The minimum strain energy density criterion was first proposed by Sih [10]. According
to this criterion, the crack propagates in the direction where the material has its minimum
strength. The crack propagates from the tip in a direction 𝜃𝑐 , along which the strain energy
density at a critical distance is a minimum. The strain energy density function is defined as

𝑑𝑊
𝑑𝐴 = 1

2 [𝜎𝑟𝑟
𝜗𝑢𝑟
𝜗𝑟 + 𝜎𝜃𝜃 (

𝑢𝑟
𝑟 + 1

𝑟
𝜗𝑢𝜃
𝜗𝜃 ) + 𝜎𝑟𝜃 (

1
𝑟

𝜗𝑢𝑟
𝜗𝜃 + 𝜗𝑢𝜃

𝜗𝑟 − 𝑢𝜃
𝑟 )] (3.54)

where 𝑑𝐴 = 𝑟 𝑑𝑟 𝑑𝜃. By substituting the polar expressions of the asymptotic displacement
and stress fields around the crack tip and after considerable manipulations, the strain energy
density can be expressed in a quadratic form:

𝑑𝑊
𝑑𝐴 = 1

𝑟 (𝑎11𝐾2
I + 2𝑎12𝐾I𝐾II + 𝑎22𝐾2

II) (3.55)

where the coefficients are functions of 𝜃:

𝑎11 = 1
16𝜇 (1 + cos 𝜃)(𝜅 − cos 𝜃) (3.56a)

𝑎12 = 1
16𝜇 sin 𝜃 (2 cos 𝜃 − 𝜅 + 1) (3.56b)

𝑎22 = 1
16𝜇 [(𝜅 + 1)(1 − cos 𝜃) + (1 + cos 𝜃)(3 cos 𝜃 − 1)] (3.56c)
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Note that (3.55) ceases to be valid if 𝑟 becomes indefinitely small and a critical value 𝑟𝑜
that designates a core region is defined. In any case, the magnitude of the the strain density
energy is denoted by 𝑆 and called the stress energy density factor:

𝑆 = 𝑎11𝐾2
I + 2𝑎12𝐾I𝐾II + 𝑎22𝐾2

II (3.57)

This factor depends on 𝜃 through the coefficients 𝑎𝑖𝑗 and therefore gives a description of the
local energy density on any radial plane intersecting the crack tip. The crack propagation
angle 𝜃𝑐 can be obtained by minimizing 𝑆 with respect to 𝜃. As in Section 3.4.2, 𝜃𝑐 is the
counter-clockwise angle from the tangent line at the crack tip to the direction of the crack
growth.

3.4.3 Crack propagation length
This section is concerned with the selection of the crack propagation length Δ𝐿. Obtaining
both 𝜃𝑐 and Δ𝐿 is necessary for the determination of the crack extension.

Constant propagation length

The simplest approach is to use a constant value as the crack propagation length in each
iteration. In [20] the crack growth length was chosen as ΔL = 0.5 * initial crack length or
ΔL = 1 * initial crack length. Some constraints to take into consideration when selecting the
propagation length are:

• The crack propagation length must be greater than the mesh size:

If the propagation length is smaller than the dimensions of the element containing the
crack tip, it is possible that the new crack tip will also lie within the same element. For
a piece-wise linear representation of the crack (successive line segments), this means
that during the next iteration there will be an element containing the crack tip and a
kink point. After two iterations that element will contain two kink points.

Although there is no problem in theory or in the XFEM formulation, these configura-
tions pose a significant challenge for the accurate representation of the crack’s geom-
etry. For explicit crack geometry representations (see Section 5.2), more complicated
computational geometry algorithms must be employed, which are inevitably less effi-
cient. For implicit crack geometry representations (see Section 5.3), like the Level Set
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Method, the accuracy of the representation and thus of the whole analysis is reduced.

Therefore it is recommended that

Δ𝐿 > max element dimension (3.58)

• The crack propagation length must be greater than the J-integral domain radius 𝑟𝐽 :

Since J-integral is path independent only for straight cracks [23], the presence of non-
collinear crack segments tends to deteriorate the accuracy in computing the stress in-
tensity factors. Therefore it is recommended that

Δ𝐿 > 𝑟𝐽 (3.59)

• The crack propagation length should be as small as possible:

As long as the previous two constraints are satisfied, smaller propagation lengths mean
that the piece-wise linear approximation of the crack’s path is more accurate. To im-
prove the accuracy in general, use a finer mesh, shorter crack growth increments and
also reduce the J-integral domain radius to match the new mesh size and propagation
length.

Paris law

In fatigue crack problems the crack propagation length is determined by the Paris’ law, which
was introduced in [8]. Paris’ law gives the advancement 𝑑𝐿 of fatigue crack per loading cycle
𝑑𝑁 as a function of the amplitude of stress intensity factor Δ𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛:

𝑑𝐿
𝑑𝑁 = 𝐶 ⋅ Δ𝐾𝑚 for Δ𝐾𝑡ℎ < Δ𝐾 < 𝐾𝐼𝑐 (3.60)

where

• 𝐶 , 𝑚 are material properties called Paris constants.

• 𝐾𝐼𝑐 is the fracture toughness as defined in Section 3.4.1.

• Δ𝐾𝑡ℎ is called fatigue threshold and signifies the value below which the crack does
not propagate.
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Figure 3.9 illustrates the development of a fatigue crack in typical alloys:

1. Region I begins at Δ𝐾𝑡ℎ and ends when the slope of the curve 𝑑𝐿
𝑑𝑁 becomes linear. In

this region crack propagation is difficult to predict since it depends on microstructure
and flow properties of the material.

2. In region II (Δ𝐾𝑡ℎ < Δ𝐾 < 𝐾𝐼𝑐) the fatigue crack growth is governed by Paris’ law.
If region II includes the dominating part of the fatigue life, which is reasonable for
most engineering structures, then the crack propagation length can be estimated using
Paris’ law.

3. In region III the fracture toughness 𝐾𝐼𝑐 is exceeded, the crack growth rate accelerates
and finally failure occurs.

Fig. 3.9 Fatigue crack growth: the Paris law applies to region B.

By applying Paris’ law for mixed-mode problems, the crack propagation length after 𝑁 cy-
cles is obtained by

Δ𝐿 = 𝑁 ⋅ 𝐶 ⋅ Δ𝐾𝑚
eff (3.61)
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where Δ𝐾eff can be defined similarly to (3.49) as

Δ𝐾eff = √Δ𝐾2
I + Δ𝐾2

II (3.62a)

Δ𝐾eff = (Δ𝐾4
I + 8Δ𝐾4

II)
1/4 (see [11]) (3.62b)

Δ𝐾eff = Δ𝐾I cos3 𝜃𝑐
2 − 3

2Δ𝐾II cos 𝜃𝑐
2 sin 𝜃𝑐 (see [31]) (3.62c)

3.5 Implementation of crack propagation in XFEM
This section contains details about the implementation of the crack propagation phase of
the analysis. The main objective is to calculate the stress intensity factors. Once they are
obtained, the crack propagates according to the criteria presented in Section 3.4.

3.5.1 Numerical form of the interaction integrals
To obtain the stress intensity factors one has to first compute the interaction integrals and
then apply (3.43) and (3.45). The Equivalent Domain Integral method (see Section 3.3.3)
is more suited to integrating within a FE method framework. Based on it, the interaction
integrals can be written as

𝐼 (1,2) = ∫
ΑΓ

(
�̃�(1)

𝑖𝑗
𝜗 ̃𝑢(2)

𝑖
𝜗�̃� + �̃�(2)

𝑖𝑗
𝜗 ̃𝑢(1)

𝑖
𝜗�̃� − 𝑤(1,2) 𝛿1𝑗)

𝜗𝑞
𝜗�̃�𝑗

𝑑𝐴

= ∑
𝑒∈𝑀𝑒𝑙

⎡
⎢
⎢
⎢
⎣
∫
Ω̃𝑒

(
�̃�(1)

𝑖𝑗
𝜗 ̃𝑢(2)

𝑖
𝜗�̃� + �̃�(2)

𝑖𝑗
𝜗 ̃𝑢(1)

𝑖
𝜗�̃� − 𝑤(1,2) 𝛿1𝑗)

𝜗𝑞
𝜗�̃�𝑗

𝑑�̃�𝑑 ̃𝑦
⎤
⎥
⎥
⎥
⎦

= ∑
𝑒∈𝑀𝑒𝑙

𝐼 (1,2)
𝑒

(3.63)

where

• 𝑀𝑒𝑙 is the set of elements comprising the integration domain ΑΓ. Details about the
determination of the integration domain are given in Section 3.5.2.
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• 𝐼 (1,2)
𝑒 is the contribution of element 𝑒 to the global interaction integral 𝐼 (1,2):

𝐼 (1,2)
𝑒 = ∫

Ω̃𝑒

𝑓𝐽 (x̃) 𝑑�̃�𝑑 ̃𝑦 (3.64)

• 𝑓𝐽 (x̃) is used for convenience in place of the integrand, which in this case is a scalar
field.

The integration subdomains Ω̃𝑒 are defined in the the crack tip’s local cartesian coordinate
system. However, the integrals can only be computed in the natural coordinate system of
each isoparametric element. Therefore, the integration domains need to be transformed from
the tip’s local cartesian to the global cartesian and then to each element’s natural coordinate
system. These transformations are done by applying the ”change of variables” technique:

𝐼 (1,2)
𝑒 = ∫

Ω̃𝑒

𝑓𝐽 (x̃)𝑑�̃�𝑑 ̃𝑦 = ∫
Ω𝑒

𝑓𝐽 (x)|J𝐺𝐿|𝑑𝑥𝑑𝑦

⇔ 𝐼 (1,2)
𝑒 =

1

∫
−1

1

∫
−1

𝑓𝐽 (ξ) |J𝐺𝐿| |J𝑁𝐺(ξ)| 𝑑𝜉 𝑑𝜂

(3.65)

where

• |J𝑁𝐺(ξ)| is the determinant of the mapping from each element’s natural system to the
global cartesian system. It is also a (non-constant) function of the natural coordinates
and its calculation is presented in Appendix A.1.2.

• |J𝐺𝐿| is the determinant of the mapping from the global cartesian to the crack tip’s
local cartesian system. In Appendix A.2.2 it is shown that

|J𝐺𝐿| = |Q| =
|

𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼
−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼|

= 1 (3.66)
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Once transformed to the natural coordinate system, the interaction integrals are computed
numerically:

𝐼 (1,2) =
1

∫
−1

1

∫
−1

𝑓𝐽 (ξ) ⋅ 1 ⋅ |J𝑁𝐺(ξ)| 𝑑𝜉 𝑑𝜂

= ∑
𝑘∈𝑀𝐺𝑃

𝑓𝐽 (ξ𝑘) |J𝑁𝐺 (ξ𝑘)| 𝑤𝑘

(3.67)

where 𝑀𝐺𝑃 is the set of integration points defined by their natural coordinates ξ𝑘 and their
weight 𝑤𝑘. For details on selecting the integration points in the context of XFEM refer to
Chapter 4.

The interaction integrals for the whole domain can now be written as

𝐼 (1,2) = ∑
𝑒∈𝑀𝑒𝑙

⎧⎪
⎨
⎪⎩

∑
𝑘∈𝑀𝐺𝑃

[(
�̃�(1)

𝑖𝑗
𝜗 ̃𝑢(2)

𝑖
𝜗�̃� + �̃�(2)

𝑖𝑗
𝜗 ̃𝑢(1)

𝑖
𝜗�̃� − 𝑤(1,2) 𝛿1𝑗)

𝜗𝑞
𝜗�̃�𝑗

|J𝑁𝐺| 𝑤𝑘]
⎫⎪
⎬
⎪⎭

(3.68)

Remarks:

• Before using (3.68), 3 fields must be computed for the real state (1), the auxiliary states
(2) = (I) and the auxilliary state (2) = (II): displacement gradient, strain tensor and
stress tensor. Furthermore, the gradient of weighting function 𝑞(x), which is a scalar
field, must be calculated too.

• These fields are represented in different coordinate systems and they must be con-
verted to the crack tip’s local cartesian system, as required by (3.68). The global
cartesian system could also be used, but it would require different equations than the
ones presented in this and the following sections.

• First of all, the natural coordinates of each integration point ξ𝑘 must be transformed
to the other coordinate systems, since many of the involved analytic formulas are ex-
pressed there:

1. Natural to global cartesian, using (A.1)

2. Global cartesian to local cartesian, using (A.21)

3. Local cartesian to local polar, using (A.27)
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• The integration domain is converted to the natural system, while the fields of interest
in (3.68) are converted to the local cartesian system.

• (3.68) must be applied for both auxiliary states thus computing two interaction inte-
grals 𝐼 (1,I) and 𝐼 (1,II).

3.5.2 Determining the J-integral domain
Recall from Section 3.3.3 that the interaction integrals used for calculating the SIFs are
defined in the area between an inner and outer contour, which are illustrated in Figure 3.6.
In practice the inner contour Γ3 is chosen to degenerate into the crack tip. The outer contour
Γ1 is selected to be the outer boundary of the elements intersected by a circle with radius 𝑟𝐽 :

𝑟𝐽 = 𝑘 ⋅ ℎ𝑙𝑜𝑐𝑎𝑙 (3.69)

where

• ℎ𝑙𝑜𝑐𝑎𝑙 is the mesh size in the vicinity of the crack tip. It can be estimated as the char-
acteristic length of the element containing the crack tip

ℎ𝑙𝑜𝑐𝑎𝑙 = √𝐴tip element (3.70)

• 𝑘 is a magnification factor. Moes et al. [20] proposes 𝑘 = 2.

Nevertheless, it is important that the J-integral domain radius 𝑟𝐽 does not exceed the crack
propagation length Δ𝑎, since the J-integral is path independent only for straight cracks [23].
The crack geometry is usually modeled by a series of line segments. If 𝑟𝐽 > Δ𝐿, the in-
tegration domain will include more segments than just the one containing the crack tip and
they will not be collinear. This will introduce errors into the computation the stress inten-
sity factors. Hence, it is recommended in [28] to bound the J-integral domain radius in the
following interval, so that the integrals are path and mesh independent:

1.5ℎ𝑙𝑜𝑐𝑎𝑙 < 𝑟𝐽 < Δ𝐿 (3.71)

According to what is stated above, the interaction integrals of (3.47) need to be calculated
over all elements that are inside the circle with center the crack tip and radius 𝑟𝐽 or inter-
sected by it. However by appropriately selecting the weighting function 𝑞(x), a more efficient
domain can be selected. As will be described in Section 3.5.3, 𝜗𝑞

𝜗�̃�𝑗
= 0 ⇒ 𝐼 (1,2) = 0 in

the subdomain Ω𝑒 of each element that lies completely inside the circle. Therefore these
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elements can be excluded and the J-integral domain radius is composed of all elements that
are intersected by the circle C(tip, r𝐽 ).

3.5.3 Weight function
As stated in Section 3.3.3 the weighting function 𝑞(x) is a smooth function that has unity
value at the inner contour and zero value at the outer contour. A convenient function is
depicted in Figure 3.10 and defined as

• 𝑞(x) = 1 for nodes inside the circle C(crack tip, r𝐽 )

• 𝑞(x) = 0 for nodes outside the circle C(crack tip, r𝐽 )

• Inside the elements 𝑞(x) is obtained using the isoparametric interpolation, which sat-
isfies the smoothness requirement

𝑞(x(ξ)) =
𝑛nodes

∑
𝑖=1

𝑁𝑖(ξ)𝑞𝑖 (3.72)

where

– 𝑛nodes are the element’s nodes used for the isoparametric mapping

– 𝑞𝑖 are the nodal weight values described in the previous two bullets: 𝑞𝑖 = 0 or 1

Fig. 3.10 The weighting function q
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In order to obtain the necessary derivative 𝜗𝑞
𝜗�̃�𝑗

at an integration point ξ𝑘 the following cal-

culations are required:

1. Compute the derivatives of the weight function with respect to the natural coordinates
of the element

ξ∇𝑞 = [𝑞,𝜉 𝑞,𝜂] =
[

𝑛nodes
∑
𝑖=1

Ν𝑖,𝜉 𝑞𝑖
𝑛nodes
∑
𝑖=1

Ν𝑖,𝜂 𝑞𝑖]
(3.73)

2. Transform them to derivatives with respect to the global cartesian coordinates using
the chain rule as described in (A.10)

x∇𝑞 = ξ∇𝑞 ⋅ J−1
𝑁𝐺

[𝑞,𝑥 𝑞,𝑦] = [𝑞,𝜉 𝑞,𝜂] ⋅
[

𝜉,𝑥 𝜉,𝑦
𝜂,𝑥 𝜂,𝑦]

(3.74)

3. Finally, transform the latter to the local cartesian coordinate system defined at the
crack tip using (A.35)

x̃∇𝑞 = x∇𝑞 ⋅ J−1
𝐺𝐿

[𝑞,�̃� 𝑞, ̃𝑦] = [𝑞,𝑥 𝑞,𝑦] ⋅
[

𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝑎 ]

(3.75)

where 𝛼 is the angle from the global 𝑥 to the local �̃� axis (see Figure A.3).

Note that for all elements of the integration domain that are completely inside the circle
C(crack tip, r𝐽 ), (3.72) becomes

𝑞 =
𝑛nodes

∑
𝑖=1

𝑁𝑖 ⋅ 1 = 1 (3.76)

which leads to
ξ∇𝑞 = x∇𝑞 = x̃∇𝑞 = [0 0] (3.77)

As a result (3.47) reduces to
𝐼 (1,2) = 0 (3.78)
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which means that the interaction integrals only need to be calculated for elements intersected
by the circle C(crack tip, r𝐽 ). Moreover, only the weight values of nodes that are inside the
circle need to be stored, or rather references to these nodes themselves since their weights are
unity. This can significantly reduce the memory requirements of corresponding algorithms.

3.5.4 Fields of real state
To compute the displacement gradient, strain tensor and stress tensor of the real state, we go
through the well known procedure of interpolating the nodal displacements, differentiating
the shape functions and using the constitutive matrix. All computations are done using the
natural coordinates of each integration point ξ𝑘 directly.

Note that although the aim here is to use these fields in the interaction integral calculations,
the same procedure can be used when the fields themselves are of interest, e.g. as output
to be examnied by the engineer. Since these quantities are met in more than just state (1)
calculations and to reduce verbosity, the (1) superscripts that appear in (3.68) will not be
written explicitly here.

Nodal displacements of element

First of all the nodal displacements of each element must be retrieved. The J-integral com-
putations typically occur right after solving the linear system of the current real state. Thus
the nodal values at the global standard and artificial degrees of freedom are available as a
unified vector. In this section we will follow the same dof numbering as in Section 2.3.1,
meaning all artificial dofs are placed after all standard dofs. We will also use the boolean
matrices T𝑠𝑡𝑑 and T𝑒𝑛𝑟 defined there, in order to map from the global dofs to the element’s
standard and artificial dofs respectively. Equations (2.32) and (2.33) are repeated here for
convenience:

Ū = [⋯ 𝑢𝐼𝑥 𝑢𝐼𝑦 ⋯ 𝑎𝐽𝑒𝑥 𝑎𝐽𝑒𝑦 ⋯]
𝑇

(3.79a)

ū = T𝑠𝑡𝑑 ⋅ Ū (3.79b)
ā = T𝑒𝑛𝑟 ⋅ Ū (3.79c)

where

• Ū are the nodal displacements at the global standard and artificial dofs, obtained by
solving the linear system at the current iteration of the analysis.
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• ū are the nodal displacements at the element’s standard dofs.

• ā are the nodal displacements at the element’s artificial dofs.

Displacement gradient of real state

Before proceeding to the actual computations, some previous equations from Sections 2.3.1
and 2.5 are repeated here for convenience. In XFEM the displacement field inside an isopara-
metric element is given by (2.27):

u(ξ) = ∑
𝑖∈𝑀𝑠𝑡𝑑

𝑁𝑖(ξ)ū𝑖 +
4

∑
𝑒=0

∑
𝑗∈𝑀𝑒

𝑁𝑗(ξ) [𝜓𝑒(x(ξ)) − 𝜓𝑒(x𝑗)] ā𝑗𝑒

= ∑
𝑖∈𝑀𝑠𝑡𝑑

𝑁𝑖(ξ)ū𝑖 +
4

∑
𝑒=0

∑
𝑗∈𝑀𝑒

𝑁𝑒𝑛𝑟
𝑗𝑒 (ξ)ā𝑗𝑒

where the enriched basis function 𝑁𝑒𝑛𝑟
𝑗𝑒 (ξ) associated with node 𝑗 and enrichment function

𝑒 and its derivatives with respect to global cartesian coordinates have been defined in (2.56)
and (2.69) respectively as

𝑁𝑒𝑛𝑟
𝑗𝑒 (ξ) = 𝑁𝑗(ξ) [𝜓𝑒(x(ξ)) − 𝜓𝑒(x𝑗)]

𝑁𝑒𝑛𝑟
𝑗𝑒 ,𝑥 (ξ) = 𝑁𝑗 ,𝑥 (ξ) [𝜓𝑒(x(ξ)) − 𝜓𝑒(x𝑗)] + 𝑁𝑗(ξ) 𝜓𝑒,𝑥 (x(ξ))

𝑁𝑒𝑛𝑟
𝑗𝑒 ,𝑦 (ξ) = 𝑁𝑗 ,𝑦 (ξ) [𝜓𝑒(x(ξ)) − 𝜓𝑒(x𝑗)] + 𝑁𝑗(ξ) 𝜓𝑒,𝑦 (x(ξ))

and

• 𝑒 = 0 corresponds to the Heaviside enrichment and 𝑒 = 1...4 to the asymptotic tip
enrichments.

• 𝑀𝑠𝑡𝑑 is the set of all nodes of the finite element and 𝑁𝑖(x) are the well known shape
functions.

• 𝑀𝑒 is the set of nodes enriched with the function 𝜓𝑒(x(ξ)) and 𝑁𝑗(ξ) are the corre-
sponding shape functions, which are also Lagrange polynomials but different from the
standard shape functions 𝑁𝑖(ξ) in the general case.

• ū𝑖 = [𝑢𝑖𝑥 𝑢𝑖𝑦]
𝑇
are the standard nodal displacements associated with the node 𝑗.
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• ā𝑗𝑒 = [𝑎𝑗𝑒𝑥 𝑎𝑗𝑒𝑦]
𝑇
are the artificial nodal displacements associated with the node 𝑗

and the enrichment function 𝜓𝑒

The displacement field’s gradient with respect to global cartesian coordinates can now be
computed as

𝑢𝑥,𝑥 (ξ) = ∑
𝑖∈𝑀𝑠𝑡𝑑

𝑁𝑖,𝑥 (ξ) ̄𝑢𝑖𝑥 +
4

∑
𝑒=0

∑
𝑗∈𝑀𝑒

𝑁𝑒𝑛𝑟
𝑗𝑒 ,𝑥 (ξ) ̄𝑎𝑗𝑒𝑥 (3.81a)

𝑢𝑥,𝑦 (ξ) = ∑
𝑖∈𝑀𝑠𝑡𝑑

𝑁𝑖,𝑦 (ξ) ̄𝑢𝑖𝑥 +
4

∑
𝑒=0

∑
𝑗∈𝑀𝑒

𝑁𝑒𝑛𝑟
𝑗𝑒 ,𝑦 (ξ) ̄𝑎𝑗𝑒𝑥 (3.81b)

𝑢𝑦,𝑥 (ξ) = ∑
𝑖∈𝑀𝑠𝑡𝑑

𝑁𝑖,𝑥 (ξ) ̄𝑢𝑖𝑦 +
4

∑
𝑒=0

∑
𝑗∈𝑀𝑒

𝑁𝑒𝑛𝑟
𝑗𝑒 ,𝑥 (ξ) ̄𝑎𝑗𝑒𝑦 (3.81c)

𝑢𝑦,𝑦 (ξ) = ∑
𝑖∈𝑀𝑠𝑡𝑑

𝑁𝑖,𝑦 (ξ) ̄𝑢𝑖𝑦 +
4

∑
𝑒=0

∑
𝑗∈𝑀𝑒

𝑁𝑒𝑛𝑟
𝑗𝑒 ,𝑦 (ξ) ̄𝑎𝑗𝑒𝑦 (3.81d)

where the derivatives of the shape functions 𝑁𝑖(ξ), 𝑁𝑗(ξ) are calculated according to (2.57)
and the derivatives of the enrichment functions 𝜓𝑒(x) are calculated according to (2.59) and
(2.64). Finally the displacement gradient must be converted from the global cartesian to the
local cartesian coordinate system defined at the crack tip. This is performed by applying
(A.47):

x̃∇ũ = Q ⋅ x∇u ⋅ J−1
𝐺𝐿

⇔
[

̃𝑢𝑥,�̃� ̃𝑢𝑥, ̃𝑦
̃𝑢𝑦,�̃� ̃𝑢𝑦, ̃𝑦]

=
[

𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼
−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼]

⋅
[

𝑢𝑥,𝑥 𝑢𝑥,𝑦
𝑢𝑦,𝑥 𝑢𝑦,𝑦]

⋅
[

𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 ]

(3.82)

where 𝛼 is the counter-clockwise angle from the global cartesian 𝑥 axis to the local cartesian
�̃� axis.
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Strain tensor of real state

The global cartesian components of the strain tensor can be computed by simply applying
the definition (2.1):

⎡⎢⎢⎢⎣

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

𝑢𝑥,𝑥
𝑢𝑦, 𝑦

1
2 (𝑢𝑥,𝑦 +𝑢𝑦,𝑥 )

⎤⎥⎥⎥⎦
(3.83)

Then they must be converted to the local cartesian system using (A.53)

̃𝜀𝑥𝑥 =
𝜀𝑥𝑥 + 𝜀𝑦𝑦

2 +
𝜀𝑥𝑥 − 𝜀𝑦𝑦

2 𝑐𝑜𝑠2𝛼 + 𝜀𝑥𝑦𝑠𝑖𝑛2𝛼

̃𝜀𝑦𝑦 =
𝜀𝑥𝑥 + 𝜀𝑦𝑦

2 +
𝜀𝑥𝑥(x) − 𝜀𝑦𝑦

2 𝑐𝑜𝑠2𝛼 − 𝜀𝑥𝑦𝑠𝑖𝑛2𝛼

̃𝜀𝑥𝑦 = 𝜀𝑥𝑦𝑐𝑜𝑠2𝛼 −
𝜀𝑥𝑥 − 𝜀𝑦𝑦

2 𝑠𝑖𝑛2𝛼

(3.84)

Alternatively, the local cartesian components of the strain tensor could be directly (no con-
versions from other systems) obtained by applying (2.1) on the local cartesian displacement
gradient, which is more efficient since it would have to be computed anyway

⎡⎢⎢⎢⎣

̃𝜀𝑥𝑥
̃𝜀𝑦𝑦
̃𝜀𝑥𝑦

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

̃𝑢𝑥,�̃�
̃𝑢𝑦, ̃𝑦

1
2 ( ̃𝑢𝑥, ̃𝑦 + ̃𝑢𝑦,�̃� )

⎤⎥⎥⎥⎦
(3.85)

Stress tensor of real state

The global cartesian components of the stress tensor can be computed by using the consti-
tutive law (2.2):

⎡⎢⎢⎢⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

⎤⎥⎥⎥⎦
= 𝐸∗

1 − (𝜈∗)2

⎡⎢⎢⎢⎣

1 𝜈∗ 0
𝜈∗ 1 0
0 0 1 − 𝜈∗

⎤⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎣

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

⎤⎥⎥⎥⎦
(3.86)

where

• 𝐸∗ is the effective Young’s modulus

𝐸∗ =
⎧⎪
⎨
⎪⎩

𝐸
1 − 𝜈2 for plane strain problems

𝐸 for plane stress problems
(3.87)
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• 𝜈∗ is the effective Poisson’s ratio

𝜈∗ =
⎧⎪
⎨
⎪⎩

𝜈
1 − 𝜈 for plane strain problems

𝜈 for plane stress problems
(3.88)

Then they must be converted to the local cartesian system using (A.53)

�̃�𝑥𝑥 =
𝜎𝑥𝑥 + 𝜎𝑦𝑦

2 +
𝜎𝑥𝑥 − 𝜎𝑦𝑦

2 𝑐𝑜𝑠2𝛼 + 𝜎𝑥𝑦𝑠𝑖𝑛2𝛼

�̃�𝑦𝑦 =
𝜎𝑥𝑥 + 𝜎𝑦𝑦

2 +
𝜎𝑥𝑥(x) − 𝜎𝑦𝑦

2 𝑐𝑜𝑠2𝛼 − 𝜎𝑥𝑦𝑠𝑖𝑛2𝛼

�̃�𝑥𝑦 = 𝜎𝑥𝑦𝑐𝑜𝑠2𝛼 −
𝜀𝑥𝑥 − 𝜎𝑦𝑦

2 𝑠𝑖𝑛2𝛼

(3.89)

Alternatively, the local cartesian components of the stress tensor could be directly (no con-
versions from other systems) obtained by applying the constitutive law for the local cartesian
strains, which is more efficient since they would have to be computed anyway

⎡⎢⎢⎢⎣

�̃�𝑥𝑥
�̃�𝑦𝑦
�̃�𝑥𝑦

⎤⎥⎥⎥⎦
= 𝐸∗

1 − (𝜈∗)2

⎡⎢⎢⎢⎣

1 𝜈∗ 0
𝜈∗ 1 0
0 0 1 − 𝜈∗

⎤⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎣

̃𝜀𝑥𝑥
̃𝜀𝑦𝑦
̃𝜀𝑥𝑦

⎤⎥⎥⎥⎦
(3.90)

3.5.5 Fields of Mode I auxiliary state
The displacement and stress fields are expressed as function of the coordinates of the local
polar system defined at the crack tip. Therefore we must first transform the natural coordi-
nates of each integration point ξ𝑘 to the global cartesian (A.1), then to the local cartesian
(A.21) and finally to the local polar (A.27) system. Also note that the (I) superscript of the
displacement, strain and stress fields presented below is dropped, since the notation would
become too heavy.

Displacement gradient of Mode I

By setting 𝐾 (2)
I = 1 (see (3.42)) and after some trigonometric manipulations, the local carte-

sian components of the displacement field from (3.18) can be written as

̃𝑢𝑥 = 1
2𝜇 √

𝑟
2𝜋 cos 𝜃

2(𝜅 − cos 𝜃) = 𝑠𝑜 ⋅ 𝑠𝑟 ⋅ 𝑠(I)1 (3.91a)

̃𝑢𝑦 = 1
2𝜇 √

𝑟
2𝜋 sin 𝜃

2(𝜅 − cos 𝜃) = 𝑠𝑜 ⋅ 𝑠𝑟 ⋅ 𝑠(I)2 (3.91b)
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where for convenience the following notation has been introduced:

𝑠𝑜 = 1
2𝜇√2𝜋

= 𝑐𝑜𝑛𝑠𝑡 (3.92a)

𝑠𝑟 = √𝑟 = 𝑠𝑟(𝑟) (3.92b)

𝑠(I)1 = cos 𝜃
2(𝜅 − cos 𝜃) = 𝑠(I)1 (𝜃) (3.92c)

𝑠(I)2 = sin 𝜃
2(𝜅 − cos 𝜃) = 𝑠(I)2 (𝜃) (3.92d)

The relevant derivatives of the above 1D temporary functions are

𝑠𝑟,𝑟 = 1
2√𝑟

(3.93a)

𝑠(I)1 ,𝜃 = −1
2 sin 𝜃

2(𝜅 − cos 𝜃) + cos 𝜃
2 sin 𝜃 (3.93b)

𝑠(I)2 ,𝜃 = 1
2 cos 𝜃

2(𝜅 − cos 𝜃) + sin 𝜃
2 sin 𝜃 (3.93c)

The displacement field’s gradient with respect to local polar coordinates can now be calcu-
lated as

r∇ũ =
⎡⎢⎢⎢⎣

̃𝑢𝑥,𝑟 ̃𝑢𝑥,𝜃

̃𝑢𝑦,𝑟 ̃𝑢𝑦,𝜃

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

𝑠𝑜 ⋅ 𝑠𝑟,𝑟 ⋅𝑠(I)1 𝑠𝑜 ⋅ 𝑠𝑟 ⋅ 𝑠(I)1 ,𝜃

𝑠𝑜 ⋅ 𝑠𝑟,𝑟 ⋅𝑠(I)2 𝑠𝑜 ⋅ 𝑠𝑟 ⋅ 𝑠(I)2 ,𝜃

⎤⎥⎥⎥⎦
(3.94)

Lastly the displacement field’s gradient with respect to local cartesian coordinates can be
obtained using (A.48):

x̃∇ũ = r∇ũ ⋅ J−1
𝑃 𝐿

⇔
[

̃𝑢𝑥,�̃� ̃𝑢𝑥, ̃𝑦
̃𝑢𝑦,�̃� ̃𝑢𝑦, ̃𝑦]

=
[

̃𝑢𝑥,𝑟 ̃𝑢𝑥,𝜃
̃𝑢𝑦,𝑟 ̃𝑢𝑦,𝜃]

⋅
[

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃

𝑟
𝑐𝑜𝑠𝜃

𝑟 ]
(3.95)

Strain tensor of Mode I

The local cartesian components of the strain tensor can be directly (no conversions from
other systems) obtained by simply applying (2.1)

̃𝜀𝑥𝑥 = ̃𝑢𝑥,�̃� (3.96a)
̃𝜀𝑦𝑦 = ̃𝑢𝑦, ̃𝑦 (3.96b)

̃𝜀𝑥𝑦 = 1
2 ( ̃𝑢𝑥, ̃𝑦 + ̃𝑢𝑦,�̃� ) (3.96c)
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Stress tensor of Mode I

The local cartesian components of the stress tensor can be directly (no conversions from
other systems) obtained by using (3.19), after substituting 𝐾I = 1

�̃�𝑥𝑥 = 1
√2𝜋𝑟

cos 𝜃
2 (1 − sin 𝜃

2 sin 3𝜃
2 ) (3.97a)

�̃�𝑦𝑦 = 1
√2𝜋𝑟

cos 𝜃
2 (1 + sin 𝜃

2 sin 3𝜃
2 ) (3.97b)

�̃�𝑥𝑦 = 1
√2𝜋𝑟

sin 𝜃
2 cos 𝜃

2 cos 3𝜃
2 (3.97c)

3.5.6 Fields of Mode II auxiliary state
The displacement and stress fields are expressed as function of the coordinates of the local
polar system defined at the crack tip. Therefore we must first transform the natural coordi-
nates of each integration point ξ𝑘 to the global cartesian (A.1), then to the local cartesian
(A.21) and finally to the local polar (A.27) system. Also note that the (II) superscript of the
displacement, strain and stress fields presented below is dropped, since the notation would
become too heavy.

Displacement gradient of Mode II

By setting 𝐾 (2)
II = 1 (see (3.44)) and after some trigonometric manipulations, the local carte-

sian components of the displacement field from (3.20) can be written as

̃𝑢𝑥 = 1
2𝜇 √

𝑟
2𝜋 sin 𝜃

2(2 + 𝜅 + cos 𝜃) = 𝑠𝑜 ⋅ 𝑠𝑟 ⋅ 𝑠(II)1 (3.98a)

̃𝑢𝑦 = 1
2𝜇 √

𝑟
2𝜋 cos 𝜃

2(2 − 𝜅 − cos 𝜃) = 𝑠𝑜 ⋅ 𝑠𝑟 ⋅ 𝑠(II)2 (3.98b)
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where for convenience the following notation has been introduced:

𝑠𝑜 = 1
2𝜇√2𝜋

= 𝑐𝑜𝑛𝑠𝑡 (3.99a)

𝑠𝑟 = √𝑟 = 𝑠𝑟(𝑟) (3.99b)

𝑠(II)1 = sin 𝜃
2(2 + 𝜅 + cos 𝜃) = 𝑠(II)1 (𝜃) (3.99c)

𝑠(II)2 = cos 𝜃
2(2 − 𝜅 − cos 𝜃) = 𝑠(II)2 (𝜃) (3.99d)

The relevant derivatives of the above 1D temporary functions are

𝑠𝑟,𝑟 = 1
2√𝑟

(3.100a)

𝑠(II)1 ,𝜃 = 1
2 cos 𝜃

2(2 + 𝜅 + cos 𝜃) − sin 𝜃
2 sin 𝜃 (3.100b)

𝑠(II)2 ,𝜃 = −1
2 sin 𝜃

2(2 − 𝜅 − cos 𝜃) + cos 𝜃
2 sin 𝜃 (3.100c)

The displacement field’s gradient with respect to local polar coordinates can now be calcu-
lated as

r∇ũ =
⎡⎢⎢⎢⎣

̃𝑢𝑥,𝑟 ̃𝑢𝑥,𝜃

̃𝑢𝑦,𝑟 ̃𝑢𝑦,𝜃

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

𝑠𝑜 ⋅ 𝑠𝑟,𝑟 ⋅𝑠(II)1 𝑠𝑜 ⋅ 𝑠𝑟 ⋅ 𝑠(II)1 ,𝜃

𝑠𝑜 ⋅ 𝑠𝑟,𝑟 ⋅𝑠(II)2 𝑠𝑜 ⋅ 𝑠𝑟 ⋅ 𝑠(II)2 ,𝜃

⎤⎥⎥⎥⎦
(3.101)

Lastly the displacement field’s gradient with respect to local cartesian coordinates can be
obtained using (A.48):

x̃∇ũ = r∇ũ ⋅ J−1
𝑃 𝐿

⇔
[

̃𝑢𝑥,�̃� ̃𝑢𝑥, ̃𝑦
̃𝑢𝑦,�̃� ̃𝑢𝑦, ̃𝑦]

=
[

̃𝑢𝑥,𝑟 ̃𝑢𝑥,𝜃
̃𝑢𝑦,𝑟 ̃𝑢𝑦,𝜃]

⋅
[

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃

𝑟
𝑐𝑜𝑠𝜃

𝑟 ]
(3.102)
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Strain tensor of Mode II

The local cartesian components of the strain tensor can be directly (no conversions from
other systems) obtained by simply applying (2.1)

̃𝜀𝑥𝑥 = ̃𝑢𝑥,�̃� (3.103a)
̃𝜀𝑦𝑦 = ̃𝑢𝑦, ̃𝑦 (3.103b)

̃𝜀𝑥𝑦 = 1
2 ( ̃𝑢𝑥, ̃𝑦 + ̃𝑢𝑦,�̃� ) (3.103c)

Stress tensor of Mode II

The local cartesian components of the stress tensor can be directly (no conversions from
other systems) obtained by using (3.21), after substituting 𝐾II = 1

�̃�𝑥𝑥 = −1
√2𝜋𝑟

sin 𝜃
2 (2 + cos 𝜃

2 cos 3𝜃
2 ) (3.104a)

�̃�𝑦𝑦 = 1
√2𝜋𝑟

sin 𝜃
2 cos 𝜃

2 cos 3𝜃
2 (3.104b)

�̃�𝑥𝑦 = 1
√2𝜋𝑟

cos 𝜃
2 (1 − sin 𝜃

2 sin 3𝜃
2 ) (3.104c)

3.5.7 Overview
Algorithm 3.1 summarizes the procedure of finding the crack propagation angle and length,
after the global displacements are obtained by solving the linear system at a given iteration
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Algorithm 3.1 Crack propagation
Input: Ū are the displacements at the standard and artificial dofs, obtained by solving
the linear system.

1: Determine the radius 𝑟𝐽 of the J-integral’s outer contour, as described in Section 3.5.2.
2: Find the set 𝑀𝑒𝑙 of elements that are intersected by the outer contour, as described in

Section 3.5.2.
3: Find all nodes that are inside the outer contour and store them in a set 𝑀𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙. When-

ever the nodal weights 𝑞𝑖 are required: 𝑞𝑖 =
⎧⎪
⎨
⎪⎩

1, 𝑖 ∈ 𝑀𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

0, 𝑖 ∉ 𝑀𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
4: Initialize the interaction integrals: 𝐼 (1,I) ← 0 and 𝐼 (1,II) ← 0.
5: for each element ∈ 𝑀𝑒𝑙 do
6: Find the element’s nodal displacements using (3.79).
7: Use one of the integration rules described in Chapter 4 to obtain its set of integration

points 𝑀𝐺𝑃 .
8: for each integration point (𝜉𝑘, 𝜂𝑘, 𝑤𝑘) ∈ 𝑀𝐺𝑃 do
9: Transform its natural coordinates ξ𝑘 to global cartesian x𝑘, then local cartesian

x̃𝑘 and finally local polar r𝑘 coordinates.
10: Calculate the gradient of the weight function 𝑞 with respect to local cartesian

coordinates, as described in Section 3.5.3.
11: Calculate the local cartesian displacement gradient, strain tensor and stress ten-

sor of the real state, according to Section 3.5.4
12: Calculate the local cartesian displacement gradient, strain tensor and stress ten-

sor of the mode I auxiliary state, according to Section 3.5.5.
13: Calculate the local cartesian displacement gradient, strain tensor and stress ten-

sor of the mode II auxiliary state, according to Section 3.5.6.
14: Calculate the contributions of this integration point to the interaction integrals

using (3.68) and add them to 𝐼 (1,I) and 𝐼 (1,II).

15: Calculate the stress intensity factors 𝐾I and 𝐾II using (3.43) and (3.45).
16: Let 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 ←𝑓𝑎𝑙𝑠𝑒 be a boolean value that signals whether failure has occurred or not.
17: If failure has occurred according to Section 3.4.1, set 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 ← 𝑡𝑟𝑢𝑒.
18: Determine the crack propagation angle 𝜃𝑐 using one of the criteria presented in Sec-

tion 3.4.2.
19: Determine the crack propagation length Δ𝐿 using one of the criteria presented in Sec-

tion 3.4.3: constant propagation length for static crack growth problems or Paris’ law
for fatigue crack growth problems.

20: Find the global cartesian position of the new crack tip. If it lies outside the domain’s
boundaries, set 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 ← 𝑡𝑟𝑢𝑒.
Output: Return the crack propagation angle 𝜃𝑐 , the crack propagation length Δ𝐿 and
the failure flag 𝑓𝑎𝑖𝑙𝑢𝑟𝑒.
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The full crack propagation analysis, from the moment a cracked body is loaded until failure
occurs, is presented in Algorithm 3.2. This quasi-static analysis is suitable for bodies under
static loading and without any material or geometric non-linearity. It can also be used for
fatigue-crack propagation problems. In this case, the amplitude of the actual dynamic loads
Δ𝑃 must applied to the cracked body and the crack propagation length is calculated using
Paris’ law.

Algorithm 3.2 Quasi-static analysis
Input: Mesh, material properties, boundary conditions (including loads), initial crack
geometry, max iterations 𝑛𝑖𝑡𝑒𝑟

1: Initialize the crack geometry
2: for 𝑖𝑡𝑒𝑟 from 1 to 𝑛𝑖𝑡𝑒𝑟 do
3: Enrich the appropriate nodes with Heaviside and/or asymptotic tip functions.
4: Evaluate the enrichment functions at the nodes and store those values in a dictionary

𝑛𝑜𝑑𝑎𝑙Ψ ⟨𝑛𝑜𝑑𝑒𝑗 , [⋯ 𝜓𝑒 (x𝑗) ⋯]⟩.
5: Enumerate standard and artificial dofs.
6: Assemble the global stiffness matrixK and the global force vector F from the corre-

sponding stiffness matrices k𝑒, traction and body force vectors f𝑒𝑡 +f𝑒𝑏 of each element
𝑒.

7: Solve the linear systemK⋅Ū = F to obtain the nodal displacements Ū at the standards
and artificial dofs.

8: Plot the current crack geometry as well as the displacement, strain and stress fields,
if they are requested by the user.

9: Input Ū into Algorithm 3.1, in order to obtain the crack propagation angle 𝜃𝑐 , the
crack propagation length Δ𝐿 and the failure flag 𝑓𝑎𝑖𝑙𝑢𝑟𝑒.

10: if 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 == 𝑡𝑟𝑢𝑒 then
11: Notify user that failure has occured.
12: break
13: else
14: Update the crack geometry using 𝜃𝑐 and Δ𝐿
15: Plot the final crack geometry as well as the displacement, strain and stress fields.

Remarks:

• The operations described in lines 1 and 14 are performed according to the method
chosen for modeling the crack geometry. For more details see Chapter 5.
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• In line 5, the order of dofs should be considered alongside the linear system solver,as
described in Section 2.5.5.



Chapter 4

Numerical integration in XFEM

4.1 Introduction
In traditional FEM, the integrands that appear in the weak form are created by multiplying
and dividing the polynomial shape function derivatives and thus they are polynomials them-
selves. The Gaussian quadrature technique guarantees the exact integration of polynomials
with the minimum number of required integration points, which depends on the polyno-
mial’s degree. Since it is also naturally coupled with the isoparametric formulation, it has
been established as the de facto integration rule in FEM.

However XFEM uses non-polynomial enriched basis functions, which means that the in-
tegrands are not polynomials too. Using Gaussian quadrature introduces a substantial loss
in accuracy, even if the number of integration points is increased. As a result, alternative
integration rules must be developed, that are consistent with the enrichment functions and
the geometry of discontinuities. In crack propagation problems, the following cases must be
considered:

• Elements that are intersected by the crack interface. These elements feature discontin-
uous basis functions due to the Heaviside enrichment. This translates into integrands
that are discontinuous over the integration domain Ω𝑒, but still polynomial in the sub-
domains above and below the crack interface.

• Elements with nodes that are enriched by the asymptotic tip functions. The derivatives
of these functions introduce a 1

√𝑟
singularity in the integration over the elements’

domains. Such elements are:

– The element containing the crack tip.
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– Elements around the crack tip with all their nodes enriched with the asymptotic
tip functions, according to the fixed enrichment area scheme (see Section 2.4.2)

– Blending elements where some nodes are enriched with the asymptotic tip func-
tions, while others are not.

• Elements of the previous case may also feature a jump (discontinuity) across the crack
interface. This discontinuity is modeled by the first asymptotic function √𝑟 sin 𝜃

2 . It
is present in the crack tip element and in all other elements that have at least one node
enriched by the asymptotic tip functions and are intersected by the tangent line at the
crack tip (though not after the crack ends).

Note that the above do not concern:

• Elements without any enriched nodes (standard elements).

• Blending elements that have Heaviside enriched nodes, but are not intersected by the
crack themselves, in which case the integrands are polynomials. Note that blending
elements with at least one node that is enriched with the asymptotic tip functions do
not belong in this case.

These elements can use the regular Gaussian quadrature without any accuracy loss. Indeed,
applying themore complicated integration rules presented in the next sections over the whole
domain, would dramatically increase the computational cost for no reason.

Numerical integration is also used for the computation of the J-integral, or rather the in-
teraction integrals (see Section 3.3.2). The Equivalent Domain Integral is typically used
(see Section 3.3.3), which requires the evaluation of the integral in (3.47) over the J-integral
domain described in Section 3.5.2. The integrand of (3.47) contains terms that are both
discontinuous across the crack interface and singular (1/r singularity again). The former is
a concern only for the elements that are actually intersected by the crack, but the latter ap-
plies to all elements in the J-integral domain. Even standard elements feature this singularity
since it originates from the asymptotic displacement and stress fields assumed in the aux-
iliary states, as described in Section 3.3.2. Therefore appropriate integration rules must be
employed for all elements of the J-integral domain.
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4.2 Integration with sub-quadrilaterals
This method was originally proposed by Dolbow in [19]. The element’s domain is divided
into quadrilateral subdomains and then a conventional Gaussian quadrature is applied for
integrating over each of these sub-quads. A different number of sub-quads and a different
number of integration points per sub-quad can be used for enriched elements intersected by
the crack, tip enriched elements or tip blending elements. Figure 4.1 illustrates this integra-
tion rule.

Fig. 4.1 Numerical integration of enriched elements using sub-quadrilaterals

Contrary to Section 4.3, it is neither necessary nor possible to conform the sub-quads to the
geometry of the crack. This inescapably results in an inexact integration, but the accuracy
can be increased by using more sub-quads and more integration points per sub-quad. In
practice, it is observed that by doing so adequate accuracy can be achieved. Consider an
element in Figure 4.1 that is intersected by the crack interface, but without nodes enriched
with asymptotic tip functions:

• When integrating over a sub-quad that is not intersected by the crack, the integrand is
polynomial, since the discontinuities of the basis functions lie outside this sub-quad’s
domain. As a result the integration with conventional Gauss quadratures is exact.
There is not even a need to increase the order of the Gauss quadrature, therefore the
same integration points as in FEM can be used.
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• When integrating over a sub-quad that is intersected by the crack, the conventional
Gauss quadrature used is unsuitable for the discontinuous integrand. Error is intro-
duced in this sub-quad, as would happen if the Gauss quadrature was applied over the
whole element. However the error is now much smaller, since only a few sub-quads
are affected, while the rest are integrated exactly. Increasing the number of sub-quads,
further increases the accuracy of the integration over the whole element.

For elements with tip enriched nodes, the integrands contain singular terms. Applying the
conventional Gauss quadrature for the sub-quads is inexact, even if they are not intersected
by the crack interface. Still, the accuracy can be increased by partitioning the element into
more sub-quads and also by using a higher order Gauss quadrature, i.e. more integration
points per sub-quad.

4.2.1 Implementation
First of all, the domain of a quadrilateral isoparametric element needs to be divided into sub-
quadrilaterals, as shown in Figure 4.2. It is much more convenient to apply this partition at
the natural coordinate system directly, resulting in a partition into sub-rectangles. Thus any
integral that has been expressed with respect to natural coordinates can be written as:

𝐼 =
1

∫
−1

1

∫
−1

𝑔(ξ)𝑑𝜉𝑑𝜂 =
𝑛𝑞𝑢𝑎𝑑𝑠

∑
𝑞=1

𝜉2

∫
𝜉1

𝜂2

∫
𝜂1

𝑔(ξ)𝑑𝜉𝑑𝜂 (4.1)

where

• The integrand includes the determinant of the isoparametric mapping’s Jacobian ma-
trix:

𝑔(𝜉, 𝜂) = 𝑓(ξ) ⋅ |J𝑁𝐺| (4.2)

For example in (2.70) 𝑓(ξ) represents the original integrand, which is multiplied with

|J𝑁𝐺| during the change of variables technique.

• 𝜉1, 𝜉2, 𝜂1, 𝜂2 are the limits of each sub-rectangle 𝑞 in the natural system, as depicted
in Figure 4.2
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Fig. 4.2 Numerical integration of enriched elements using sub-quadrilaterals

An auxiliary coordinate system (𝑠, 𝑡) can be defined for each sub-rectangle. The mapping
from this auxiliary system to the natural system is a linear transformation (without any rota-
tion):

𝜉 = 𝜉2 − 𝜉1
2 𝑠 + 𝜉1 + 𝜉2

2 (4.3a)

𝜂 = 𝜂2 − 𝜂1
2 𝑡 + 𝜂1 + 𝜂2

2 (4.3b)

The Jacobian matrix of the direct mapping and its determinant are

J𝐴𝑁 =
[

𝜉,𝑠 𝜉,𝑡
𝜂,𝑠 𝜂,𝑡]

=
[

𝜉2−𝜉1
2 0
0 𝜂2−𝜂1

2 ]
(4.4a)

|J𝐴𝑁 | = 𝜉2 − 𝜉1
2

𝜂2 − 𝜂1
2 (4.4b)

Applying the change of variables technique between the natural and auxiliary system

𝐼𝑞 =
𝜉2

∫
𝜉1

𝜂2

∫
𝜂1

𝑔(ξ)𝑑𝜉𝑑𝜂 =
1

∫
−1

1

∫
−1

𝑔(s) |J𝐴𝑁 (s)| 𝑑𝑠𝑑𝑡 (4.5)
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Now the integral is again evaluated over [−1, 1] × [−1, 1] and the conventional Gauss-
Legendre quadrature can be applied

𝐼𝑞 =
1

∫
−1

1

∫
−1

𝑔(s) |J𝐴𝑁 | 𝑑𝑠𝑑𝑡 = ∑
𝑘∈𝑀𝐺𝑃 (𝑞)

𝑔 (s𝑘) ⋅ |J𝐴𝑁 (s𝑘)| ⋅ �̂�𝑘 (4.6)

where

• 𝑀𝐺𝑃 (𝑞) is the set of integration points of the quadrilateral 𝑞.

• s𝑘 and �̂�𝑘 are their coordinates in the auxiliary system and their weights. Both these
can be obtained by the well known Gauss-Legendre quadrature formulas or tables.

Since 𝑔 (s𝑘) will be evaluated in the natural coordinate system and most finite element rou-
tines do not have knowledge of this auxiliary system anyway, it is more convenient to express
the integration points in terms of natural coordinates and incorporate |J𝐴𝑁 | into the weights:

𝜉𝑘 = 𝜉2 − 𝜉1
2 𝑠𝑘 + 𝜉1 + 𝜉2

2 (4.7a)

𝜂𝑘 = 𝜂2 − 𝜂1
2 𝑡𝑘 + 𝜂1 + 𝜂2

2 (4.7b)

𝑤𝑘 = 𝜉2 − 𝜉1
2

𝜂2 − 𝜂1
2 �̂�𝑘 (4.7c)

The triplets (𝜉𝑘, 𝜂𝑘, 𝑤𝑘) can now be used the same way conventional Gauss points would
be, thus abstracting the whole sub-quads procedure. Therefore the integral over the whole
element can be written as

𝐼 =
1

∫
−1

1

∫
−1

𝑔(ξ)𝑑𝜉𝑑𝜂 =
𝑛𝑞𝑢𝑎𝑑𝑠

∑
𝑞=1

∑
𝑘∈𝑀𝐺𝑃 (𝑞)

𝑔 (ξ𝑘) ⋅ 𝑤𝑘 (4.8)

All steps described above are summarized in Algorithm 4.1:
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Algorithm 4.1 Integration over an element partitioned into sub-quadrilaterals
Input: 𝑛𝜉 , 𝑛𝜂 are the number of rectangles along the 𝜉, 𝜂 axis of the element respectively.
Usually 𝑛𝜉 = 𝑛𝜂.
Input: (𝑠𝑘, 𝑡𝑘, �̂�𝑘) are the Gauss points obtained by using Gauss-Legendre quadrature
for each sub-quad and 𝑛𝐺𝑃 is their number

1: 𝐿𝜉 ←
2
𝑛𝜉

2: 𝐿𝜂 ←
2
𝑛𝜂

3: for 𝑖 from 1 to 𝑛𝜉 do
4: for 𝑗 from 1 to 𝑛𝜂 do
5: 𝜉1 ← −1 + 𝐿𝜉 ∗ (𝑖 − 1)
6: 𝜉2 ← −1 + 𝐿𝜉 ∗ 𝑖
7: 𝜂1 ← −1 + 𝐿𝜂 ∗ (𝑗 − 1)
8: 𝜂2 ← −1 + 𝐿𝜂 ∗ 𝑗
9: for 𝑘 from 1 to 𝑛𝐺𝑃 do
10: 𝜉𝑘 ←𝜉2 − 𝜉1

2 ∗ 𝑠𝑘 + 𝜉1 + 𝜉2
2

11: ℎ𝑘 ←𝜂2 − 𝜂1
2 ∗ 𝑡𝑘 + 𝜂1 + 𝜂2

2
12: 𝑤𝑘 ←𝜉2 − 𝜉1

2 ∗ 𝜂2 − 𝜂1
2 ∗ �̂�𝑘

Output: The 𝑛𝜉 ⋅𝑛𝜂 ⋅𝑛𝐺𝑃 integration points in the natural system, as (𝜉𝑘, 𝜂𝑘, 𝑤𝑘) triplets.

4.2.2 Advantages and drawbacks
In general the sub-quads of each isoparametric quadrilateral element form a curvilinear grid
in the global cartesian system, which can be obtained bymapping a rectilinear grid in the nat-
ural coordinate systemwith the standard shape functions. This can be observed in Figure 4.2,
where the the element’s domain is partitioned into sub-rectangles in the natural coordinate
system. Moreover the integration takes place in the natural coordinate system, where the
sub-divisions are square or at least rectangular. If the partition was performed in the global
coordinate system, as in Section 4.3, the global coordinates of the integration points would
have to be converted to natural coordinates, which would require using the cumbersome in-
verse isoparametric mapping.
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Consequently, the subdivision of this method is very easy to implement and computationally
efficient. It can also be extended to higher order elements and 3D or non linear problems
without any additional complications. Its main drawback is the reduced accuracy, but that
can be mitigated significantly, by using more sub-quads and more integration points per
sub-quad. Note that doing so will increase the computational cost, so a satisfactory trade-off
solution should be sought.

On the other hand, this method cannot be applied for triangular finite elements, which dom-
inate unstructured meshes. Nevertheless, one could develop similar partitioning methods
that are computationally efficient, but like the quadrilateral version do not take the crack
geometry onto consideration, thus exhibiting decreased accuracy.

4.3 Integration with sub-triangles
A second approach that was also proposed in [19] is to divide an element that is intersected
by the crack interface into sub-triangles, such that their edges conform to the crack. None
of these triangles is intersected by the crack, and thus conventional Gauss quadrature can be
applied for integrating over each one.

Fig. 4.3 Numerical integration of enriched elements using sub-triangles
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Contrary to Section 4.2, this integration rule is exact for elements that do not have nodes en-
riched with asymptotic tip functions, since the integrands are continuous in all sub-triangles.
As before, there is no need to use more integration points for these elements than classical
FEM uses. On the other hand, integrating over elements with tip enriched nodes involves
singular terms ( 1

√𝑟
) in the integrand. Such integrations are not exact but accuracy can be

increased by using more sub-triangles and more integration points per sub-triangle, similar
to Section 4.2. To increase the number of sub-triangles, once completing the initial trian-
gulation that conforms to the crack geometry, further divide the produced sub-triangles into
smaller ones. Typically these improvements are employed at least for the element containing
the crack tip.

It is not necessary to use only triangles for the element partition. Quadrilaterals and even
polygons with known integration rules could be used, as long as no such sub-division is in-
tersected by the crack interface. For elements without singularities, such sub-divisions can
be more efficient than triangles, since less integration points are needed in total.

Nevertheless, triangles are easy to work with and will be preferred in this thesis. More
importantly, triangular meshes are very popular and there are a lot of algorithms, the most
famous of which is the Delauny triangulation. In this case however, a constrained Dalauny
triangulation algorithm is needed in order to guarantee that sub-triangles conform to the
crack geometry.

4.3.1 Implementation
Partition of element into sub-triangles

First of all, the element’s domain needs to be divided into sub-triangles. Assuming that the
crack geometry is piece-wise linear (rather than curved):

1. Identify the following points of interest inside the element:

• crack tip

• kink points: points where two consecutive crack segments meet

• intersection points: points where the crack segments intersect the element’s bound-
aries.

The determination of these points depends on the method chosen to model that crack
geometry and will be elaborated in Sections 5.2.5 and 5.3.5.
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2. Convert the global cartesian coordinates of these points to natural coordinates using
the inverse isoparametric mapping described in Appendix A.1.4. In this thesis, only
first order elements (tri3, quad4) are considered, for which there exist analytic ex-
pressions. For higher order elements, iterative numerical methods would have to be
employed, hence increasing the computational cost.

The element’s nodes also need to be converted to the natural system. However this is
trivial as the natural coordinates of nodal points are standard. E.g. the bottom-left node
of a quad4 element is always placed at (𝜉, 𝜂) = (−1, −1). The nodes, crack tip, kink
points and intersection points are inputted into the constrained Delauny triangulation
and will be called ”triangulation points” from now on.

3. In addition to the triangulation points, the crack segments are also needed as input
for the constrained Delauny triangulation. Mapping these line segments to the natural
coordinate system is complicated in general. However, for first order elements the
direct and inverse isoparametric mappings are linear transformations, thus lines are
mapped into lines. Thismeans that the crack segments in the natural coordinate system
can be defined simply by their end points (crack tip, intersection points, kink points).

4. Using the triangulation points and crack segments as input, apply the constrained
Delauny triangulation in the natural system to obtain 3 vertices (𝜉𝑖, 𝜂𝑖) for each sub-
triangle. Since triangulation algorithms are a subject of Computational Geometry and
out of this thesis’ scope, the reader is referred to [16] for more details.

Determination of integration points

Any integral that has been expressed with respect to natural coordinates can be written as:

𝐼 =
1

∫
−1

1

∫
−1

𝑔(ξ)𝑑𝜉𝑑𝜂 =
𝑛𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠

∑
𝑡=1 ∫

Ω𝑡

𝑔(ξ)𝑑𝜉𝑑𝜂 (4.9)

where
• The integrand includes the determinant of the isoparametric mapping’s Jacobian ma-

trix:
𝑔(𝜉, 𝜂) = 𝑓(ξ) ⋅ |J𝑁𝐺| (4.10)

For example in (2.70) 𝑓(ξ) represents the original integrand, which is multiplied with

|J𝑁𝐺| during the change of variables technique.
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• Ω𝑡 is the domain of the sub-triangle 𝑡 in the natural coordinate system, as depicted in
Figure 4.4

Fig. 4.4 Numerical integration of enriched elements using sub-quadrilaterals

As with the partition into the sub-quads, we define an auxiliary coordinate system (𝑠, 𝑡) for
each sub-triangle, as shown in Figure 4.4. The mapping from this auxiliary system to the
natural system is a linear transformation, identical to the one used in the isoparametric for-
mulation:

ξ = (1 − 𝑠 − 𝑡)ξ1 + 𝑠ξ2 + 𝑡ξ3 (4.11)

where ξ1, ξ2, ξ3 are the natural coordinates of the triangle’s vertices, obtained by the trian-
gulation algorithm. The Jacobian matrix of the direct mapping is

J𝐴𝑁 =
[

𝜉,𝑠 𝜉,𝑡
𝜂,𝑠 𝜂,𝑡]

=
[

𝜉2 − 𝜉1 𝜉3 − 𝜉1
𝜂2 − 𝜂1 𝜂3 − 𝜂1]

(4.12)

and its determinant is

|J𝐴𝑁 | = (𝜉2 − 𝜉1) (𝜂3 − 𝜂1) − (𝜉3 − 𝜉1) (𝜂2 − 𝜂1)
= 𝜉1 (𝜂2 − 𝜂3) + 𝜉2 (𝜂3 − 𝜂1) + 𝜉3 (𝜂1 − 𝜂2)

(4.13)

Note that |J𝐴𝑁 | = 2𝐴𝑡, with 𝐴𝑡 being the area of the triangle in the natural system. Applying
the change of variables technique between the natural and auxiliary system leads to

𝐼𝑡 = ∫
Ω𝑡

𝑔(ξ)𝑑𝜉𝑑𝜂 = ∫
Ω̂𝑡

𝑔(s) |J𝐴𝑁 (s)| 𝑑𝑠 𝑑𝑡 (4.14)
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Now the integral is evaluated over the reference triangle in the auxiliary system. The tra-
ditional symmetrical Gauss quadrature can be applied on this reference triangle, resulting
in

𝐼𝑡 = ∫
Ω̂𝑡

𝑔(s) |J𝐴𝑁 (s)| 𝑑𝑠 𝑑𝑡 = ∑
𝑘∈𝑀𝐺𝑃 (𝑡)

𝑔 (s𝑘) ⋅ |J𝐴𝑁 (s𝑘)| ⋅ �̂�𝑘 (4.15)

where

• 𝑀𝐺𝑃 (𝑡) is the set of integration points of the sub-triangle 𝑡.

• s𝑘 and �̂�𝑘 are their coordinates in the auxiliary system and their weights. Both these
can be obtained by the well known symmetrical Gauss quadrature formulas or tables.

Note that sometimes symmetrical Gauss quadrature is written as

∫
Ω𝑡

𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 1
2 ∑

𝑘∈𝑀𝐺𝑃

𝑓 (𝑥𝑘, 𝑦𝑘) 𝑤𝑘

In this thesis the 1
2 is assumed to be incorporated into the weights of symmetrical

Gauss quadrature.

Since 𝑔 (s𝑘) will be evaluated in the natural coordinate system and most finite element rou-
tines do not have knowledge of this auxiliary system anyway, it is more convenient to express
the integration points in terms of natural coordinates and incorporate |J𝐴𝑁 | into the weights:

𝜉𝑘 = (1 − 𝑠𝑘 − 𝑡𝑘) 𝜉1 + 𝑠𝑘𝜉2 + 𝑡𝑘𝜉3 (4.16a)
𝜂𝑘 = (1 − 𝑠𝑘 − 𝑡𝑘) 𝜂1 + 𝑠𝑘𝜂2 + 𝑡𝑘𝜂3 (4.16b)

𝑤𝑘 = [𝜉1 (𝜂2 − 𝜂3) + 𝜉2 (𝜂3 − 𝜂1) + 𝜉3 (𝜂1 − 𝜂2)] �̂�𝑘 (4.16c)

The triplets (𝜉𝑘, 𝜂𝑘, 𝑤𝑘) can now be used the same way conventional Gauss points would be,
thus abstracting the whole sub-triangles procedure. Therefore the integral over the whole
element can be written as

𝐼 =
1

∫
−1

1

∫
−1

𝑔(ξ)𝑑𝜉𝑑𝜂 =
𝑛𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠

∑
𝑡=1

∑
𝑘∈𝑀𝐺𝑃 (𝑡)

𝑔 (ξ𝑘) ⋅ 𝑤𝑘 (4.17)
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Note that the partition of the element into sub-triangles that conform to the crack geome-
try was performed in the natural coordinate system. An alternative approach would be to
triangulate directly in the global cartesian system. Indeed that would eliminate the need
to convert the triangulation points and crack segments to the natural system. The inverse
isoparametric mapping of line segments is exact for first order elements, but approximations
might be necessary for higher order.

Furthermore, all integration points would be determined in the auxiliary system and then
mapped to the global cartesian system. However, their coordinates would have to be con-
verted to the natural system as well, where many quantities (e.g. shape functions) are de-
fined in X-FEM. This would require even more computations, as there are more integration
points than triangulation points. Moreover, the integral of (4.17) would be defined in the
global cartesian system and instead of (𝜉𝑘, 𝜂𝑘, 𝑤𝑘) triplets, the integration points would be
expressed as (𝑥𝑘, 𝑦𝑘, 𝑤𝑘) triplets.

While this is not a problem by itself, it deviates from the formulation presented so far. All
the integrals introduced in Chapters 2 and 3 are transformed from the global cartesian to the
natural system and the Jacobian’s determinant |J𝑁𝐺| is present in all equations. This is also
how most coding implementations would handle integration. Therefore, it is preferable to
be consistent and perform the triangulation in the natural coordinate system.

4.3.2 Advantages and drawbacks
The main advantage of this method is its ability to perform exact integration, independently
of the mesh size, over elements where the displacement field exhibits discontinuities but not
singularities. As the crack propagates, most enriched or blending elements fall under this
category and thus this method exhibits higher accuracy than the one in Section 4.2. How-
ever this requires an element partition that conforms to the crack geometry, which is much
more cumbersome than the simple partition of Section 4.2. It also necessitates the use of
computational geometry algorithms and depends on the method used for modeling the crack
geometry.

Moreover, the triangulation points must be converted from the global cartesian to each ele-
ment’s natural system. This is adds yet another layer of computations, which are cumbersome
for higher order elements. In various problems data must be stored at each integration point.
For example if the material is non linear, applying the non linear constitutive law requires
storing the strain history at each integration point. As the crack propagates, its geometry
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changes, resulting in different partitions of the same element at different iterations, until the
crack tip moves away from said element. As the sub-triangles change over time, so do their
integration points, creating the need to transfer data between the old and new ones.

Another concern is that this technique requires the crack geometry to be linear or piece-wise
linear inside the elements. Curved cracks must first be linearized, resulting in a loss of accu-
racy. Nevertheless, non linear problems, higher order elements and curved cracks are out of
the scope of this thesis and thus partitioning into sub-triangles is a valid alternative for the
simple cases examined here.



Chapter 5

Geometric aspects

5.1 Introduction
XFEM removes the need of conforming the finite element mesh to the crack interface by
appropriately enriching certain nodes. Nevertheless, the crack geometry is still an important
aspect of many procedures when using XFEM for crack propagation problems. The accu-
rate description and update of the crack geometry and its interaction with the mesh are quite
tricky even for 2D problems.

The most common operations that involve the crack geometry are:

• Determining the local cartesian and local polar system at each crack tip.

• Calculating the signed distance from any point to the crack interface.

• Finding which elements are intersected by the crack and which contain crack tips.
The nodes of the former elements will be enriched with Heaviside function, while the
nodes of the latter, will be enriched with asymptotic tip functions.

• Decomposing an element into sub-polygons that conform to the the crack geometry.
This is necessary for certain integration rules (see Section 4.3) and for calculating the
subareas of the local support of a node above and below the crack (see Sections 2.4.1
and 2.4.4). In practice, the element is decomposed into triangles, since triangulation
algorithms are readily available, such as the constrained Delauny triangulation.

• Updating the crack representation during propagation. In a 2D setting the crack grows
from the tips, according to the direction and length described in Sections 3.4.2 and 3.4.3.
The rest of the existing crack body remains the same.
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In general, two categories of crack representation methods can be observed:

• Explicit crack descriptions. The crack is represented as a collection of geometric
primitives: straight line segments in 2D and flat triangles in 3D. Updating the crack
geometry is easily performed by adding a new building block to the existing crack.
Crack-mesh interactions also reduce to interactions of the mesh with these primitives.
However, such operations tend to require cumbersome computational geometry algo-
rithms that cannot be easily extended to 3D.

• Implicit crack descriptions. These are usually adaptations of the Level Set Method
(LSM) for describing curves. They store the signed distance (level set function) from
the mesh nodes to the crack. The crack curve is identified as the locus of all points with
a zero level set. Implicit methods tend to be more efficient in crack-mesh interaction
operations and can be intuitively extended to 3D problems. However, their accuracy
depends on the mesh size and the order of the finite elements. In addition to not being
exact, there are complications in the geometry update procedures as well.

5.2 Explicit crack geometry description
In this section a basic explicit crack description for 2D problems will be presented. The crack
geometry is modeled as a polyline, which is a piece-wise linear curve, that is, it consists of a
series of straight line segments. Such a crack can be seen in Figure 5.1. In this approach, the
line segments or the vertices of the polyline must be explicitly stored in the correct order.

For interior cracks, the crack tips coincide with the first and last vertex of the polyline. For
exterior cracks, there is only one crack tip and its corresponding end of the polyline, while
the other end is called the crack ”mouth”. All other vertices are called kink points, since
they belong to exactly two line segments with generally different orientation.
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Fig. 5.1 Explicit crack description. The crack is represented as a series of straight line seg-
ments.

The local cartesian coordinate systems at the start and end crack tip are defined by the orien-
tation of the first and last line segment. These orientations are defined as counter-clockwise
angles 𝛼1 and 𝛼2 from the global x axis to the line segments, or more accurately to their
extensions outwards, as shown in Figure 5.1.

5.2.1 Signed distances
Figure 5.2 illustrates the contours of the signed distance function 𝜑(x) at all points of the
plane, with the crack interface corresponding to the contour 𝜑 = 0. 𝜑(x) is often called
the level set function. To calculate the signed distance of an arbitrary point, the closest line
segment or vertex of the polyline must first be identified. For example, consider Figure 5.1:

• The signed distance of 𝑃1 is the distance of 𝑃1 to the segment 𝑉1𝑉2 with a positive
sign.

• 𝑃2 is close to two line segments. Its signed distance is the minimum distance of 𝑃1 to
the segments 𝑉2𝑉3 and 𝑉3𝑉4 with a positive sign.

• 𝑃3 associatedwith vertex𝑉3 instead of any line segment. Its signed distance is− |𝑃3𝑉3|.
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Fig. 5.2 Contours of the signed distance function 𝜑(x).

There are various ways to calculate the signed distance of a point 𝑃 to a line segment. When
dealing with a polyline, an efficient approach is to use a local cartesian coordinate system
(�̂�, ̂𝑦) for each line segment, as depicted in Figure 5.4. This local system has the following
properties:

• Its origin is placed at the start of each line segment 𝑉𝑖𝑉𝑖+1, that is at the vertex with
the lowest index 𝑉𝑖.

• The local �̂� axis is collinear with the segment itself.

• The positive local 𝑉𝑖 ̂𝑦 half-axis is oriented towards the region where signed distances
are positive.

Fig. 5.3 Local coordinate system of a crack segment.
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To use the coordinate system of segment 𝑆𝑖 with vertices 𝑉𝑖, 𝑉𝑖+1, first convert the global
coordinates (𝑥, 𝑦) of 𝑃 to local coordinates (�̂�, ̂𝑦). This is similar to the local cartesian system
defined at the crack tip, which is described in Appendix A.2.1. In this case:

x̂ = Q𝑖 ⋅ x + b𝑖 (5.1)

where

• Q𝑖 is an orthonormal rotation matrix

Q𝑖 =
[

𝑐𝑜𝑠𝛼𝑖 𝑠𝑖𝑛𝛼𝑖
−𝑠𝑖𝑛𝛼𝑖 𝑐𝑜𝑠𝛼𝑖]

(5.2)

• b is an offset vector
b𝑖 = −Q𝑖 ⋅ x𝑉𝑖 (5.3)

• x𝑉𝑖 are the global coordinates of the start vertex of the line segment.

• 𝛼𝑖 is the counter clockwise angle from global 𝑥 axis to local �̂� axis.

The signed distance is now easily obtained as 𝜑(x) = ̂𝑦. The �̂� coordinate of the point is
also quite useful, since it determines if the point 𝑃 should be associated with the segment
𝑆𝑖. Consider Figure 5.4a, where the lines that are perpendicular to the segment 𝑆𝑖 and pass
through its vertices are drawn. Three regions can then be identified:

• The region before the segment Ω(𝑖)
1 : x ∈ Ω(𝑖)

1 ⇔ �̂� < 0

• The region where points are associated with the segment Ω(𝑖)
2 : x ∈ Ω(𝑖)

2 ⇔ 0 ≤ �̂� ≤ 𝐿𝑖,
where 𝐿𝑖 is the length of the segment.

• The region after the segment Ω(𝑖)
3 : x ∈ Ω(𝑖)

3 ⇔ �̂� > 𝐿𝑖

Generally only points in Ω(𝑖)
2 are associated with the segment 𝑆𝑖. However, points are asso-

ciated with the first segment when x ∈ Ω(first)
1 ∪ Ω(first)

2 . Similarly points are associated with
the last segment when x ∈ Ω(last)

2 ∪ Ω(last)
3 .
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Fig. 5.4 Determining the signed distance of a point.

For a given point 𝑃 , only the signed distances to the segments it is associated with must be
considered.

• If there is only one segment associated with 𝑃 , then that signed distance is used as
𝜑(𝑃 ).

• If two or more segments are associated with 𝑃 , then 𝜑(𝑃 ) is the signed distance with
the minimum absolute value, of all signed distances of 𝑃 to the relevant segments:

𝐼 = 𝑚𝑖𝑛𝑎𝑟𝑔 (|𝑑𝑖|) (5.4a)

𝜑(𝑃 ) = 𝑑𝐼 (5.4b)

For example, in Figure 5.4b 𝑃1 is associated with segments 𝑆𝑖−1 and 𝑆𝑖, since 𝑃1 ∈
Ω(𝑖−1)

2 ∪ Ω(𝑖)
2 . The corresponding signed distances are 𝑑1 and 𝑑2, with |𝑑1| < |𝑑2|.

Therefore 𝜑 (𝑃1) = 𝑑1.

• It is also possible that 𝑃 is not associated with any segment, which means that
𝑃 ∉ Ω(𝑗)

2 , ∀𝑗. Also note that 𝑃 ∈ Ω(𝑖−1)
3 ∪ Ω(𝑖)

1 for some 𝑖. In this case:

– The absolute distance is defined as the distance between 𝑃 and the vertex 𝑉𝑗

|𝜑(𝑃 )| = |𝑃 𝑉𝑖| (5.5)
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– To determine the sign of 𝜑(𝑃 ), consider the counter-clockwise angle from seg-
ment 𝑆𝑖 to 𝑆𝑖−1. If that angle is convex, then 𝜑(𝑃 ) < 0. Conversely if the that
angle is non convex, than 𝜑(𝑃 ) > 0. It is easier to work with the propagation
angle 𝜃𝑐 instead of the angle between the segments. In this approach

𝜑(𝑃 ) =
⎧⎪
⎨
⎪⎩

− |𝑃 𝑉𝑖| , 𝜃𝑐 > 0

+ |𝑃 𝑉𝑖| , 𝜃𝑐 < 0
(5.6)

For example consider 𝑃2 in Figure 5.4b. It is not associated with any segments, since
𝑃2 ∈ Ω(𝑖−1)

3 ∪ Ω(𝑖)
1 . In addition 𝜃𝑐 > 0. Thus 𝜑 (𝑃2) = − |𝑃2𝑉𝑖|. On the other hand,

𝜃𝑐 < 0 in Figure 5.4c. Therefore 𝜑 (𝑃1) = + |𝑃1𝑉𝑖|.

For an efficient implementation, 𝐿𝑖,Q𝑖 and b𝑖 and 𝜃𝑐 should be stored for each line segment
when it is first added to the polyline. The following listing describes an algorithm to calcu-
late the signed distance of an arbitrary point, according to the rules described above.

During an XFEM analysis, Algorithm 5.1 will be called for each integration point. Note that
for each integration point, all line segments are iterated resulting in a complexity of 𝑂 (𝑛𝑆).
Even though, more efficient versions are possible, e.g. by terminating the iteration over the
segments once all the relevant ones have been found, by caching which segments are relevant
for the integration points of the same element, etc, the complexity remains 𝑂 (𝑛𝑆). This
inefficiency is an inherent disadvantage of explicit descriptions, since they are composed of
multiple elementary shapes: line segments in 2D and flat triangles in 3D.
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Algorithm 5.1 Calculation of the signed distance from an arbitrary point to the polyline.
Input: 𝑉 , 𝑆, Θ are lists containing the 𝑛𝑆 + 1 vertices, 𝑛𝑆 segments and 𝑛𝑆 − 1 prop-
agation angles of the crack polyline. Segment 𝑆[𝑖] has 𝑉 [𝑖], 𝑉 [𝑖 + 1] as vertices. Its
propagation angle from the previous segment is Θ[𝑖 − 1], since there is no such angle
for the first segment.
Input:𝐿, 𝑄, 𝑏 are lists containing the lengths, rotation matrices and offset vectors of the
𝑛𝑆 segments.
Input: x are the global coordinates of the point 𝑃 in question.

1: Let 𝐷 be a list of the signed distances to various segments or vertices encountered.
2: 𝑖𝑠Ω3 ← false ▷ a flag signaling if 𝑃 is in the Ω3 region of the last processed segment
3: x̂← 𝑄[1] ⋅ x + 𝑏[1] according to (5.1) ▷ Process first line segment
4: if �̂� ≤ 𝐿[1] then
5: Add ̂𝑦 to 𝐷.
6: else
7: 𝑖𝑠Ω3 ← true
8: for 𝑖 from 2 to 𝑛𝑆 − 1 do ▷ Process subsequent line segments
9: x̂ ← 𝑄[𝑖] ⋅ x + 𝑏[𝑖] according to (5.1)
10: if �̂� < 0 then
11: if 𝑖𝑠Ω3 = true then
12: 𝑑 ← −𝑠𝑖𝑔𝑛 (Θ[𝑖 − 1]) ‖x̂ − 𝑉 [𝑖]‖ according to (5.6)
13: Add 𝑑 to 𝐷.
14: 𝑖𝑠Ω3 ← false
15: else if �̂� ≤ 𝐿[𝑖] then
16: Add ̂𝑦 to 𝐷.
17: 𝑖𝑠Ω3 ← false
18: else
19: 𝑖𝑠Ω3 ← true
20: x̂← 𝑄[𝑛𝑆] ⋅ x + 𝑏[𝑛𝑆] according to (5.1) ▷ Process last line segment
21: if �̂� < 0 then
22: if 𝑖𝑠Ω3 = true then
23: 𝑑 ← −𝑠𝑖𝑔𝑛 (Θ[𝑛𝑆 − 1]) ‖x̂ − 𝑉 [𝑛𝑆]‖ according to (5.6)
24: Add 𝑑 to 𝐷.
25: else
26: Add ̂𝑦 to 𝐷.
27: Find the index 𝑗 into 𝐷 for which |𝐷[𝑗]| is minimum.

Output: The signed distance of point: 𝜑(𝑃 ) = 𝐷[𝑗]
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5.2.2 Detecting tip elements
Determining if an element contains the crack tip is equivalent to figuring out if the crack tip is
inside or on the boundary of the polygonal outline of the finite element. This is vary common
computational geometry procedure called point-in-polygon. In this case, the outline of finite
elements are convex polygons. A simple test to determine if a point 𝑃 is inside a convex
polygon is illustrated in Figure 5.5.

1. For each edge 𝑒𝑘 = 𝑉𝑖𝑉𝑗 of the polygon, form the triangle with vertices (𝑃 , 𝑉𝑖, 𝑉𝑗)
and calculate its area 𝐴𝑘 according to (2.55).

2. Calculate the the sum of all triangles’ areas.

3. Calculate the area of the convex polygon according to

𝐴𝑝𝑜𝑙 = 1
2 |(𝑥1𝑦2 − 𝑦1𝑥2) + (𝑥2𝑦3 − 𝑦2𝑥3) + ⋯ + (𝑥𝑛𝑦1 − 𝑦𝑛𝑥1)| (5.7)

where the vertices of the polygon 1, 2, ⋯ 𝑛 are numbered in a counter-clockwise order.

4. If this sum is equal to the area of the polygon, then the point lies inside the polygon
or on its boundary. Otherwise it lies outside.

Fig. 5.5 Point in polygon test: a) Point inside polygon, b) Point outside polygon, c) Point on
polygon boundary

The previous test includes points inside the polygon and on its boundary in the same group,
which is desired when identifying tip elements. Some care must be taken regarding the tol-
erance of the equivalence between the area of the polygon and the sum of triangles’ areas.
Of course, there are other various other procedures, e.g. ray casting algorithms, that may be
more efficient and robust.
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Note that more than one elements will be identified as tip elements, if the crack tip lies on an
element edge or a node. While this is very improbable to happen during crack propagation,
it is still quite possible in the first iteration, if the mesh is aligned with the initial crack
geometry. All elements, whose outline contains or passes through a crack tip, must have
their nodes enriched with the asymptotic tip functions. In any case, such mesh dependencies
can be avoided by using a fixed area enrichment scheme (see Section 2.4.2).

5.2.3 Intersection with line segments
Before delving into the interaction of the crack polyline with the mesh’s elements, it is ben-
eficial to go over the relative positions of two line segments. Figure 5.6 depicts the possible
configurations we will be interested in. More distinctions could be made, but they would not
be useful for the purposes of this chapter.

Fig. 5.6 Relative positions of two line segments.

A computational geometry method for determining the relative position and possible inter-
section point of two line segments will be presented in the following:
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• Some important properties of the cross product of two vectors v,w in 2D are

v × w =
|
|
|
||

𝑣𝑥 𝑣𝑦 0
𝑤𝑥 𝑤𝑦 0
0 0 1

|
|
|
||

= 𝑣𝑥 𝑤𝑦 − 𝑣𝑦 𝑤𝑥 (5.8a)

(−v) × w = −(v × w) (5.8b)

w × v = −(v × w) (5.8c)

v × w = 0 ⇔ v,w are parallel (5.8d)

• Assume two line segments defined by their end points 𝑆1 = (x1, x2) and
𝑆2 = (x1, x2), as depicted in Figure 5.7. Their parametric forms are

𝑆1 = {x1 + 𝑎 (x2 − x1) ∶ 𝑎 ∈ [0, 1]} (5.9a)
𝑆2 = {x3 + 𝑏 (x4 − x3) ∶ 𝑏 ∈ [0, 1]} (5.9b)

• If the vectors x2 − x1 and x4 − x3 are parallel, that is if

(x2 − x1) × (x4 − x3) = 0 (5.10)

– If the vectors x2 − x1 and x3 − x1 are parallel, that is if

(x2 − x1) × (x3 − x1) = 0 (5.11)

then project x3 − x1 and x4 − x1 onto x2 − x1

𝑎3 = (x3 − x1) ⋅ (x2 − x1)
(x2 − x1) ⋅ (x2 − x1)

(5.12a)

𝑎4 = (x4 − x1) ⋅ (x2 − x1)
(x2 − x1) ⋅ (x2 − x1)

(5.12b)

∗ If (𝑎3 < 0 AND 𝑎4 < 0) OR (𝑎3 > 1 AND 𝑎4 > 1) then the two segments
are collinear disjoint (see Figure 5.7b).

∗ Else they are collinear overlapping.

– Else if (x2 − x1) × (x3 − x1) ≠ 0 the two line segments are parallel (see Fig-
ure 5.7c).
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• Else if (x2 − x1) × (x4 − x3) ≠ 0 then the lines passing through the vectors x2 − x1
and x4 − x3 intersect at the point

x1 + 𝑎0 (x2 − x1) = x3 + 𝑏0 (x4 − x3) (5.13)

Multiplying (5.13) with × (x4 − x3)

x1 × (x4 − x3) + 𝑎0 (x2 − x1) × (x4 − x3) = x3 × (x4 − x3) + 𝑏0 (x4 − x3) × (x4 − x3)
𝑎0 (x2 − x1) × (x4 − x3) = (x3 − x1) × (x4 − x3)

𝑎0 = (x3 − x1) × (x4 − x3)
(x2 − x1) × (x4 − x3)

(5.14)

Similarly, by multiplying with × (x2 − x1)

𝑏0 = (x1 − x3) × (x2 − x1)
(x4 − x3) × (x2 − x1)

= (x3 − x1) × (x2 − x1)
(x2 − x1) × (x4 − x3)

(5.15)

– If 𝑎0 ∈ [0, 1] AND 𝑏0 ∈ [0, 1], then the intersection of the two lines lies on the
segments 𝑆1 and 𝑆2. The two segments intersect at the point x1 + 𝑎0 (x2 − x1).

– Else they are disjoint (see Figure 5.7a).

Fig. 5.7 Computing the intersection of two line segments.
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5.2.4 Detecting elements intersected by the crack
To determine if an element is intersected by the crack polyline, one has to check if any line
segment of the crack intersects or overlaps with any edge of the element, as demonstrated
in Section 5.2.3. This requires iterating over all segments or at least until a segment that
intersects the element boundary is found. This is an inefficient operation with 𝑂 (𝑛𝑆) com-
plexity. As in Section 5.2.1, this inefficiency is inherent for explicit crack descriptions.

Some examples are given in Figure 5.8. Note that if two successive vertices lie inside the
element, the line segment between them will not intersect any element edge. However, the
segments before and after it will indeed intersect element edges, so the element will be cor-
rectly flagged as intersected. Nevertheless, such configurations introduce a lot of problems
(e.g. for J-integrals) and should generally be avoided by selecting the element size to be
sufficiently smaller than the crack propagation length.

Fig. 5.8 Elements intersected by the polyline.

5.2.5 Triangulation of elements
The aim here is to identify the points and line segments that will be used as input for a
constrained triangulation algorithm. The points will become vertices and the line segments
edges of the triangular mesh. The points of interest are:

• The crack tip(s)

• The rest of the polyline’s vertices, also called kink points

• Intersection points of crack segments with element edges

• The element’s nodes
The line segments of interest are defined by the points of interest, except for the nodes. Han-
dling crack tips is the same as handling all other vertices of the polyline, when identifying
the points and segments of interest. In contrast, when using the integration described in
Section 4.3, one needs to take spacial care of the tip elements, e.g. by further refining the
triangular mesh.
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Figures 5.9 to 5.11 depict some of the possible relative positions of an element and a line
segment, along with the corresponding triangular meshes. To reduce the number of possi-
bilites, no distinction is made whether the vertices of the line segment are tips or kink points.

An intersection point between a line segment and an element edge is identified only if their
relative position is intersecting (see Figure 5.6). Depending on howmany intersection points
can be identified for a given crack segment:

• If there are 2 intersection points, then the segment in between them will be used as
input to the triangulation algorithm.

Fig. 5.9 Possible configurations of an element and a line segment: 2 intersection points.

• If there is 1 intersection point and a vertex of the crack segment is inside the element,
then the segment between that vertex and the intersection point will be used as input
to the triangulation algorithm.
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Fig. 5.10 Possible configurations of an element and a line segment: 1 intersection point.

• If there are 0 intersection points and both vertices of the crack segment lie inside
the element, then the whole crack segment will be used as input to the triangulation
algorithm.

Fig. 5.11 Possible configurations of an element and a line segment: 0 intersection points.

Algorithm 5.2 describes the whole procedure for triangulating an element. As before, it is an
inefficient 𝑂 (𝑛𝑆) operation, since all segments of the polyline are iterated. A more efficient
version could terminate the iterations, once a batch of consecutive intersecting elements is
completed. That only works when the crack does not intersect the same element after that
first batch, which is reasonable for most problems with an sufficiently fine mesh. However
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even then, the complexity would remain 𝑂 (𝑛𝑆). Especially for elements not intersected by
the crack, all segments are iterated.

Algorithm 5.2 Create triangular mesh for an element.
Input: 𝑉 ,𝑆 are lists containing the 𝑛𝑆+1 vertices and 𝑛𝑆 segments of the crack polyline.
Segment 𝑆[𝑖] has 𝑉 [𝑖], 𝑉 [𝑖 + 1] as vertices.
Input: The element, its nodes and edges.

1: Let 𝑀𝑃 and 𝑀𝑆 be sets containing the points and segments that will be used as input
to the constrained triangulation algorithm. They do not accept duplicate entries.

2: for each node of the element do
3: Add the node to 𝑀𝑃 .
4: for each edge of the element do
5: Add the edge to 𝑀𝑆 .
6: for i from 1 to 𝑛𝑆 + 1 do
7: if 𝑉 [𝑖] is inside or on the boundary of the element (see Section 5.2.2) then
8: Add the vertex 𝑉 [𝑖] to 𝑀𝑃 .
9: for i from 1 to 𝑛𝑆 do
10: Let𝑀𝐼 be the set of 𝑛𝑀𝐼 unique intersection points of segment𝑆[𝑖]with the element

edges.
11: for each edge of the element do
12: Find the intersection point of the segment 𝑆[𝑖] and the edge, if there is one.
13: Add this intersection point to 𝑀𝐼 and 𝑀𝑃 .
14: if 𝑛𝑀𝐼 = 2 then
15: Add a new segment (𝑀𝐼 [1], 𝑀𝐼 [2]) to 𝑀𝑆 .
16: else if 𝑛𝑀𝐼 = 1 then
17: if 𝑉 [𝑖] ∈ 𝑀𝑃 AND 𝑉 [𝑖] ≠ 𝑀𝐼 [1] then
18: Add a new segment (𝑉 [𝑖], 𝑀𝐼 [1]) to 𝑀𝑆 .
19: if 𝑉 [𝑖 + 1] ∈ 𝑀𝑃 AND 𝑉 [𝑖 + 1] ≠ 𝑀𝐼 [1] then
20: Add a new segment (𝑉 [𝑖 + 1], 𝑀𝐼 [1]) to 𝑀𝑆 .
21: else ▷ No intersection points found
22: if 𝑉 [𝑖] ∈ 𝑀𝑃 AND 𝑉 [𝑖 + 1] ∈ 𝑀𝑃 then
23: Add a new segment (𝑉 [𝑖], 𝑉 [𝑖 + 1]) to 𝑀𝑆 .
24: Launch the constrained triangulation algorithm with 𝑀𝑃 and 𝑀𝑆 as input.

Output: The vertices (𝑃1, 𝑃2, 𝑃3) of all sub-triangles.
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5.2.6 Geometry initialization
Initializing the crack description given a starting line segment is trivial:

1. Initialize the collections that store the vertices, segments, crack propagation angles
and any other data that will be stored throughout the propagation analysis.

2. Add the initial line segment 𝑉1𝑉2 and its vertices to the respective collections.

3. Calculate the orientation of the initial segment

𝑎 = 𝑎𝑡𝑎𝑛2 (
𝑦2 − 𝑦1
𝑥2 − 𝑥1 ) (5.16)

and store the local coordinate systems at the crack tips, defined by

• The tip coordinates: 𝑉1 and 𝑉2 for the start and end tip respectively.

• The counter-clockwise angle from global 𝑥 to local �̃� axis: 𝑎1 = 𝑎+𝜋 and 𝑎2 = 𝑎
for the start and end tip respectively.

5.2.7 Geometry update
Updating the crack geometry is also very straightforward and efficient for explicit crack de-
scriptions. Algorithm 5.3 describes the procedure for propagating the polyline from a given
crack tip.
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Algorithm 5.3 Update the explicit crack geometry.
Input: 𝑉 , 𝑆, Θ are lists containing the 𝑛𝑆 + 1 vertices, 𝑛𝑆 segments and 𝑛𝑆 − 1 prop-
agation angles of the crack polyline. Segment 𝑆[𝑖] has 𝑉 [𝑖], 𝑉 [𝑖 + 1] as vertices. Its
propagation angle from the previous segment is Θ[𝑖 − 1], since there is no such angle
for the first segment.
Input: 𝑎1, 𝑎2 are the counter-clockwise angles from global 𝑥 to local �̃� axes of the
coordinate systems defined at the start and end tip respectively.
Input: 𝜃𝑐 is the crack propagation direction, defined as the counter-clockwise angle
from the extension of the segment containing the crack tip to the new segment.
Input:Δ𝐿 is the crack propagation length.

1: if propagating from the start tip then
2: 𝑎1 ← 𝑎1 + 𝜃𝑐

3: Δx← [Δ𝐿 cos 𝑎1 Δ𝐿 sin 𝑎1]
𝑇

4: xnew ← 𝑉 [1] + Δx
5: Add the new tip xnew to the start of the vertices list 𝑉 .
6: Add a new segment (xnew, 𝑉 [1]) to the start of the segments list 𝑆.
7: Add the opposite propagation angle −𝜃𝑐 to the start of the propagation angles Θ.
8: Overwrite the local system at the start tip with the new one: (xnew, 𝑎1).
9: else
10: 𝑎2 ← 𝑎2 + 𝜃𝑐

11: Δx← |Δ𝐿 cos 𝑎2 Δ𝐿 sin 𝑎2|
𝑇

12: xnew ← 𝑉 [𝑛𝑆 + 1] + Δx
13: Add the new tip xnew to the end of the vertices list 𝑉 .
14: Add a new segment (𝑉 [𝑛𝑆 + 1], xnew) to the end of the segments list 𝑆.
15: Add the the propagation angle 𝜃𝑐 to the end of the propagation angles Θ.
16: Overwrite the local system at the end tip with the new one: (xnew, 𝑎2).
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5.3 Implicit crack geometry description
In this section a crack geometry description based on the Level Set Method (LSM) will be
presented. LSMwas originally proposed in [15] to trackmoving interfaces. In this technique,
a time dependent function 𝜑(x, 𝑡) is defined over the domain and the interface of interest 𝛾(𝑡)
coincides with the contour 𝜑(x, 𝑡) = 0, as illustrated in Figure 5.12:

𝛾(𝑡) = {x ∈ ℝ𝟚 ∶ 𝜑(x, 𝑡) = 0} (5.17)

Fig. 5.12 The Level Set Method for tracking a moving interface: the interface of interest
corresponds to 𝜑(x, 𝑡) = 0 at any time.

The level set function 𝜑(x, 𝑡) is evaluated at the nodes of a fixed mesh and interpolated inside
each element, if necessary. The unit normal vector to the interface can be evaluated as

n = ∇𝜑
‖∇𝜑‖ (5.18)

The nodal level sets are initialized by calculating the signed distance of each node to an initial
curve 𝛾(𝑡0)

𝜑(x, 𝑡0) = ‖x − x*‖ sign(n ⋅ (x − x*)) (5.19)
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where x* is the point on 𝛾(𝑡0) that is closest to x. To update the interface when it moves
with a velocity v normal to the interface, the nodal level sets are updated by solving the
Hamilton-Jacobi equation

𝜗𝜑
𝜗𝑡 + v ‖∇𝜑‖ = 0 (5.20)

5.3.1 LSM for crack geometries
The Level Set Method provides an efficient and elegant technique to describe the crack ge-
ometry. It couples naturally with XFEM, since the level set function 𝜑(x) is evaluated over a
fixed mesh and is also used in XFEM as the signed distance. In addition, it can be extended
to 3D problems more easily than explicit crack descriptions. Using LSM for modelling the
geometry of cracks was first proposed by Stolarska et al. [24] and has been established as
the most common approach ever since. To represent the crack interface, the following level
set functions are utilized, as illustrated in Figure 5.13:

• A level set function 𝜑(x) to describe the crack body. It extends outwards in a direction
tangential to the crack at each crack tip. It is evaluated as the signed distance of a point
to the crack interface Γ𝑐 or its extension.

• A level set function 𝜓(x) to describe a line perpendicular to Γ𝑐 at the crack tip. It is
evaluated as the signed distance of a point to that orthogonal line. The sign of 𝜓(x)
is negative in the half plane that contains the crack interface and positive in the half
plane that contains its extension.

Fig. 5.13 LSM representation of a crack interface.
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The crack interface is defined as the locus of points with the property

Γ𝑐 = {x ∈ ℝ2 ∶ 𝜑(x, 𝑡) = 0 AND 𝜓(x) ≤ 0} (5.21)

The crack tip is implied as the intersection of the two zero level sets

𝜑 (x𝑇 ) = 0 AND 𝜓 (x𝑇 ) = 0 (5.22)

For interior cracks two level set functions 𝜓1(x) and 𝜓2(x) are needed, one for each crack
tip. To use the same equations as for the edge crack case above, a unified level set function
can be defined:

𝜓(x) = max (𝜓1(x), 𝜓2(x)) (5.23)

Regarding the implementation of the method, the following quantities need to be stored and
updated at each iteration of the crack propagation analysis:

• The ”body” level set 𝜑(x) at each node.

• The ”tip” level sets 𝜓𝑗(x) at each node. For interior cracks it is more convenient to
store both 𝜓1(x) and 𝜓2(x), instead of 𝜓(x), in order to differentiate between the two
crack tips, even though it requires more memory.

• The current global coordinates of the crack tips x𝑇1 , x𝑇2 . While this technically devi-
ates from a pure implicit crack description, crack tip coordinates simplify many of the
procedures that will be presented afterwards, are easy to calculate and require negli-
gible memory.

• Likewise, the local coordinate systems defined at each crack tip are also convenient to
handle explicitly. Each one is fully described by its origin, that is the already stored
crack tip, and a counter-clockwise angle from global 𝑥 to local �̃� axis.

5.3.2 Level set and signed distance functions
When solving crack propagation problems with XFEM, the signed distance from a point 𝑃
to the crack interface is needed for the Heaviside enrichment function. By describing the
crack geometry with LSM, this signed distance is identical to the ”body” level set function
𝜑(x), which is calculated at each node of the mesh and stored. Two cases can be identified:

• 𝑃 is a node. In this case, 𝜑(x) is usually already stored for this node and only needs to
be retrieved from the appropriate data structure. The calculation of 𝜑(x) for the node
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is performed when initializing or updating the crack geometry description. For more
details see Sections 5.3.6 and 5.3.7.

• 𝑃 is an integration point inside a given element. In the elements’ interior 𝜑(x) can be
interpolated using the nodal level set values and the shape functions of that element.
For an isoparametric finite element and an integration point ξ:

𝜑(x(ξ)) = ∑
𝑖∈𝑀𝑛𝑜𝑑𝑒𝑠

𝑁𝑖(ξ) ⋅ 𝜑𝑖 (5.24)

where 𝑀𝑛𝑜𝑑𝑒𝑠 is the set of the element’s nodes and 𝑁𝑖(ξ) are the standard shape functions of
the element. Compared to explicit crack descriptions (see Section 5.2.1), LSM provides a
way to calculate the signed distances of integration points, that is very simple, efficient and
easy to extend to 3D problems.

The ”tip” level set functions 𝜓𝑗(x) can also be interpolated inside each element

𝜓𝑗(x(ξ)) = ∑
𝑖∈𝑀𝑛𝑜𝑑𝑒𝑠

𝑁𝑖(ξ) ⋅ 𝜓𝑗𝑖 (5.25)

It is important to note that the crack geometry depends on the order of the finite elements.
For first order elements, the shape functions and hence 𝜑(x) are linear inside each element.
Therefore only piecewise linear cracks can be described. For curved cracks higher order el-
ements must be used. Nevertheless, the crack geometries covered thus far are indeed piece-
wise linear, since a propagation angle and length define the update at each iteration of the
analysis.

5.3.3 Detecting tip and intersected elements
The LSM crack description also provides a straightforward way to determine if an element
is intersected by the crack or it contains the crack tip, in order to enrich its nodes with the
appropriate function. An example is given in Figure 5.14.

• Find the minimum and maximum nodal level sets of the element:

𝜑𝑚𝑖𝑛, 𝜑𝑚𝑎𝑥, 𝜓𝑚𝑖𝑛
𝑗 , 𝜓𝑚𝑎𝑥

𝑗 , 𝜓𝑚𝑖𝑛, 𝜓𝑚𝑎𝑥
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• The element contains the crack tip 𝑗 if

𝜑𝑚𝑖𝑛 ⋅ 𝜑𝑚𝑎𝑥 ≤ 0 AND 𝜓𝑚𝑖𝑛
𝑗 ⋅ 𝜓𝑚𝑎𝑥

𝑗 ≤ 0 (5.26)

• The element is intersected by the the crack interface, but does not contain the crack
tip, if

𝜑𝑚𝑖𝑛 ⋅ 𝜑𝑚𝑎𝑥 ≤ 0 AND 𝜓𝑚𝑎𝑥 < 0 (5.27)

Fig. 5.14 Detecting tip and intersected elements using the nodal level sets.

5.3.4 Intersection with line segments
Before delving into the generation of a triangular mesh that conforms to the crack interface
when the latter intersects an element, the intersection of the implicit crack with an edge of the
element needs to be explained. Assuming first order finite elements, both the crack and the
element edges are linear. In [25] a simple test was proposed: a line segment with vertices x1
and x2 is intersected by the crack if 𝜑1 ⋅𝜑2 < 0, as illustrated in Figure 5.15. The intersection
point can be located in global coordinates as

x𝐼 = x1 + 𝜆 (x2 − x1) (5.28a)

𝜆 = ‖x𝐼 − x1‖
‖x2 − x1‖

= 𝜑𝐼 − 𝜑1
𝜑2 − 𝜑1

= −𝜑1
𝜑2 − 𝜑1

∈ (0, 1) (5.28b)
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Fig. 5.15 Intersection of a line segment with the implicit crack interface.

Considering that the crack interface is not an infinite line, the above criterionmust be adapted
to account for the crack tip 𝑗. In this thesis, the following analysis is proposed to accurately
determine the relative positions of a line segment and the crack interface:

• If 𝜑1 ⋅ 𝜑2 > 0 the crack and segment are disjoint or parallel as seen in Figure 5.16.

Fig. 5.16 Relative positions of a line segment and the crack interface: a) Disjoint, b) Parallel

• If 𝜑1 = 0 AND 𝜑2 = 0 the crack and segment are collinear.

– If 𝜓𝑗1 > 0 AND 𝜓𝑗2 > 0 they are collinear disjoint (see Figure 5.17a).

– If 𝜓𝑗1 < 0 AND 𝜓𝑗2 < 0 they overlap (see Figure 5.17b).

– If𝜓𝑗1 ⋅𝜓𝑗2 ≤ 0 they overlap and the tip 𝑗 lies on the segment (see Figure 5.17c,d).



5.3 Implicit crack geometry description 127

Fig. 5.17 Relative positions of a line segment and the crack interface: collinear

• The crack or its extension passes through only one node. Without loss of generality
the case 𝜑1 = 0 AND 𝜑2 ≠ 0 will be presented:

– If 𝜓𝑗1 > 0 the crack and segment are disjoint (see Figure 5.18a).

– If 𝜓𝑗1 < 0 the crack intersects the segment at node 1 (see Figure 5.18b).

– If 𝜓𝑗1 = 0 the crack intersects the segment at node 1, which coincides with the
crack tip 𝑗 (see Figure 5.18c).

Fig. 5.18 Relative positions of a line segment and the crack interface: the crack passes
through one node only

• If 𝜑1 ⋅ 𝜑2 < 0 the crack or its extension intersects the segment at a point x𝐼 that lies
between the two vertices and can be obtained by (5.28). To differentiate between the
various cases, 𝜓𝑗𝐼 must be calculated. Since 𝜓𝑗 is always linear

𝜓𝑗𝐼 = 𝜓𝑗 (x𝐼) = 𝜓𝑗1 + 𝜆 (𝜓𝑗2 − 𝜓𝑗1) (5.29)

where 𝜆 is the same as in (5.28). The following cases can be identified:
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– If 𝜓𝑗𝐼 > 0 the crack and segment are disjoint (see Figure 5.19a, b).

– If 𝜓𝑗𝐼 < 0 the crack and segment intersect at x𝐼 (see Figure 5.19c).

– If 𝜓𝑗𝐼 = 0 the crack and segment intersect at x𝐼 , which coincides with the crack
tip 𝑗 (see Figure 5.19d).

Fig. 5.19 Relative positions of a line segment and the crack interface: The crack intersects
the segment

The following algorithm finds the intersection point of the crack interface with a line segment
between vertices x1 and x2, according to the previous rules. No intersection point is returned,
if they are collinear, parallel or disjoint.
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Algorithm 5.4 Find the intersection point of a line segment between two nodes with the
implicit crack interface, unless they are collinear, parallel or disjoint.

Input: Φ, Ψ1, Ψ2 are lists containing the values of the ”body”, ”start tip” and ”end tip”
level set functions at each node of the mesh respectively.
Input: 𝑋 are the global coordinates of each node of the mesh.
Input: 𝑝1 and 𝑝2 are the indices of the two nodes.

1: if Φ [𝑝1] ∗ Φ [𝑝2] < 0 then
2: 𝜆 ← −Φ[𝑝1]

Φ[𝑝2]−Φ[𝑝1]
3: x𝐼 ← 𝑋 [𝑝1] + 𝜆 ∗ (𝑋 [𝑝2] − 𝑋 [𝑝1])
4: 𝜓1Ι ← Ψ1 [𝑝1] + 𝜆 ∗ (Ψ1 [𝑝2] − Ψ1 [𝑝1])
5: 𝜓2Ι ← Ψ2 [𝑝1] + 𝜆 ∗ (Ψ2 [𝑝2] − Ψ2 [𝑝1])
6: if 𝜓1Ι ≤ 0 AND 𝜓2Ι ≤ 0 then
7: return x𝐼

8: else if Φ [𝑝1] = 0 AND Φ [𝑝2] ≠ 0 then
9: if Ψ1 [𝑝1] ≤ 0 AND Ψ2 [𝑝1] ≤ 0 then
10: return 𝑋 [𝑝1]
11: else if Φ [𝑝2] = 0 AND Φ [𝑝1] ≠ 0 then
12: if Ψ1 [𝑝2] ≤ 0 AND Ψ2 [𝑝2] ≤ 0 then
13: return 𝑋 [𝑝2]
14: else
15: return null ▷ or any construct that denotes an invalid return value

5.3.5 Triangulation of elements
For first order finite elements the crack interface is linear in each element’s region, therefore
there cannot be any kink points inside the elements. While this makes LSM unable to model
the real crack geometry exactly, it greatly simplifies the generation of a conforming triangular
mesh. A constrained triangulation algorithm can be used to create the conforming mesh. Its
input is:

• The element nodes and edges (line segments).

• The intersection points of the crack with the element edges, the crack tips and the
segments defined by these points.
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Algorithm 5.5 iterates over all edges of a given element, similar to the explicit crack descrip-
tion. The intersection points and the corresponding segments are aggregated in two sets 𝑀𝑃
and 𝑀𝑆 , which do not accept duplicate entries. The following notes are useful to better
understand and validate the algorithm:

• If an intersection point coincides with a node or a crack tip, it can be safely added to
𝑀𝑃 , which should automatically handle duplicate entries. Likewise, line segments
that overlap with edges or other segments can be safely added to 𝑀𝑆 .

• If the element is intersected by the crack, but does not contain any crack tips:

– It usually has two intersection points, either of which could coincide with a node
(Figure 5.20a, b, c).

– It is possible that the crack passes through only one node, which is the single
intersection point (Figure 5.20d).

– In case the crack is collinear with an element edge, no intersection points will
be found for that edge when Algorithm 5.4 is used. The two nodes of that edge
will be correctly identified as intersection points, when the other edges are pro-
cessed (Figure 5.20e). Nevertheless, adding them and the edge to 𝑀𝑃 and 𝑀𝑆
respectively, does not affect the triangulation.

Fig. 5.20 Possible configurations of an elements and the crack interface: intersected element
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• If the element contains a crack tip:

– If the tip is an interior point of the element, only one intersection point will be
identified, which could lie on a node or not (Figure 5.21a,b). In this case, the
tip must be added to 𝑀𝑃 and the segment between the tip and that intersection
point must be added to 𝑀𝑆 .

– If the tip lies on the element’s boundary (even on a node) and the crack does not
intersect the element at any other point, then only the tip will be detected as an
intersection point (Figure 5.21c,d). In this case, no line segment is defined.

– If the tip lies on the element’s boundary and the crack intersects the element at
another point, then two intersection points will be detected. The tip, the other
intersection point, both or none could coincide with a node (Figure 5.21e,f,g,h).
Since the tip is one of the intersection points, adding it to 𝑀𝑃 will have no ad-
verse effect.

– If the crack is collinear with an element edge, no intersection points will be found
for that edge when Algorithm 5.4 is used. However, one or both nodes of that
edge will be correctly identified as intersection points, when the other edges are
processed (Figure 5.21i,j,k). In this case, it may be necessary to add the tip to
𝑀𝑃 . The triangulation will not be affected by adding the line segment between
the crack tip and the node that does not coincide with it to 𝑀𝑆 .

Fig. 5.21 Possible configurations of an elements and the crack interface: tip element
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Algorithm 5.5 Create triangular mesh for an element.
Input: Φ, Ψ1, Ψ2 are lists containing the values of the ”body”, ”start tip” and ”end tip”
level set functions at each node of the mesh.
Input: 𝑋 is a list containing the global coordinates of the 𝑛𝑛𝑜𝑑𝑒𝑠 nodes of the element
Input: x𝑇1 , x𝑇2 are the global coordinates of the crack tips.

1: Let𝑀𝑃 and𝑀𝑆 be sets containing the 𝑛𝑀𝑃 points and 𝑛𝑀𝑆 segments that will be used as
input to the constrained triangulation algorithm. These data structures reject duplicate
entries.

2: Initialize the flags: 𝑖𝑠𝑇 𝑖𝑝1 ← false, 𝑖𝑠𝑇 𝑖𝑝2 ← false, 𝑖𝑠𝐶𝑢𝑡 ← false
3: if the element contains the crack tip 1, according to (5.26) then
4: 𝑖𝑠𝑇 𝑖𝑝1 ← true
5: else if the element contains the crack tip 2, according to (5.26) then
6: 𝑖𝑠𝑇 𝑖𝑝2 ← true
7: else if the element is intersected by the crack, according to (5.27) then
8: 𝑖𝑠𝐶𝑢𝑡 ← true
9: for i from 1 to 𝑛𝑃 do
10: Add the node 𝑋[𝑖] to 𝑀𝑃 .
11: Specify this node 𝑝1 = 𝑖 and the next one 𝑝2 = (𝑖 modulo 𝑛𝑃 ) + 1.
12: Add the edge (𝑋 [𝑝1] , 𝑋 [𝑝2]) to 𝑀𝑆 .
13: if 𝑖𝑠𝑇 𝑖𝑝1 = true OR 𝑖𝑠𝑇 𝑖𝑝2 = true OR 𝑖𝑠𝐶𝑢𝑡 = true then
14: Find the intersection point of the edge between nodes 𝑝1 and 𝑝2, using Algo-

rithm 5.4 and add it to 𝑀𝑃 .

15: if 𝑖𝑠𝑇 𝑖𝑝1 = true then
16: Add the first tip 𝑇1 to 𝑀𝑃 .
17: else if 𝑖𝑠𝑇 𝑖𝑝2 = true then
18: Add the second tip 𝑇2 to 𝑀𝑃 .
19: Assert: 𝑛𝑀𝑃 ≤ 2
20: if 𝑛𝑀𝑃 = 2 then Add the line segment between 𝑀𝑃 [1] and 𝑀𝑃 [2] to 𝑀𝑆 .

21: Launch the constrained triangulation algorithm with 𝑀𝑃 and 𝑀𝑆 as input.
Output: The vertices (𝑃1, 𝑃2, 𝑃3) of all sub-triangles.

Remarks:

• Algorithm 5.5 corresponds to interior cracks. For edge cracks, only one tip is involved
and the algorithm needs to be adjusted slightly.
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• If the element contains a crack tip, it is explicitly added to the intersection points. It is
generally a good idea to store the coordinates of the current crack tips, as an explicit
crack description would do.

• Regarding the assertion in line 19, the lack of kink points means that at most two
intersection points are possible, including the crack tip. This is true even if an element
edge is collinear with the crack interface, as was described in detail previously.

5.3.6 Geometry initialization
This section presents the initialization of the tracked quantities, given a starting line segment
𝑇1𝑇2. In [24] the tip level sets are initialized as

𝜓𝑗(x) = (x − x𝑇𝑗 ) ⋅ n̂𝑗 (5.30)

where n̂𝑗 is the tangent unit vector at the crack tip 𝑗, heading outwards. In other words 𝜓𝑗(x)
is the projection of the vector from the crack tip 𝑗 to the point of interest onto n̂𝑗 .

This thesis proposes the use of a local coordinate system for the line segment 𝑇1𝑇2, which
was introduced in Section 5.2.1 and is illustrated in Figure 5.22. The two approaches are
equivalent, but the coordinate system of the segment facilitates the computation of other
necessary quantities as well:

1. The rotation angle of the segment’s local coordinate system with respect to global 𝑥
axis is

𝛼 = 𝑎𝑡𝑎𝑛2
(

𝑦𝑇2 − 𝑦𝑇1

𝑥𝑇2 − 𝑥𝑇1 )
(5.31)

2. The tip coordinate systems are defined as (x𝑇1 , 𝛼 + 𝜋) and (x𝑇2 , 𝛼)

3. Convert the coordinates of each node from the global system x𝑖 to the segment’s local
system x̂𝑖 using (5.1).

4. The ”body” level set is calculated as the signed distance of the node to the segment

𝜑 (x𝑖) = ̂𝑦𝑖 (5.32)
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5. The ”tip” level sets are calculated as the projections of x𝑖 − x𝑇𝑗 onto n̂𝑗

𝜓1 (x𝑖) = −�̂�𝑖 (5.33a)
𝜓2 (x𝑖) = �̂�𝑖 − 𝐿 (5.33b)

where 𝐿 is the length of the line segment.

Fig. 5.22 Using the local coordinate system of a crack segment to calculate the level sets and
other necessary quantities.

5.3.7 Geometry update
To update the level sets 𝜑𝑡 to 𝜑𝑡+1 and 𝜓 𝑡

𝑗 to 𝜓 𝑡+1
𝑗 , [24] uses the Hamilton-Jacobi equation

(5.20). For crack propagation problems the displacement

Δx = Δ𝑡 v = x𝑡+1
𝑇𝑗

− x𝑡
𝑇𝑗

(5.34)

orthogonal to the front 𝜓 𝑡+1
𝑗 = 0 is known instead of the velocity. The complete procedure

is:

1. Rotate the current front 𝜓 𝑡
𝑗 = 0 such that it is parallel to 𝜓 𝑡+1

𝑗 , as depicted in Fig-
ure 5.23. To perform this, the rotated current level sets are calculated as

𝜓𝑟𝑜𝑡
𝑗 = (𝑥 − 𝑥𝑡

𝑇𝑗 )
Δ𝑥

‖Δx‖ + (𝑦 − 𝑦𝑡
𝑇𝑗 )

Δ𝑦
‖Δx‖ (5.35)
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2. Since the crack body does not move at all, most ”body” level sets should not be up-
dated. Thus two regions can be identified

Ωupdate = {x ∈ ℝ2 ∶ 𝜓𝑟𝑜𝑡
𝑗 > 0} (5.36a)

Ωno update = {x ∈ ℝ2 ∶ 𝜓𝑟𝑜𝑡
𝑗 ≤ 0} (5.36b)

The new level sets are then calculated as the signed distances of the nodes to the new
segment in the direction of Δx. In [24] the following is used

x ∈ Ωno update ∶ 𝜑𝑡+1 = 𝜑𝑡

x ∈ Ωupdate ∶ 𝜑𝑡+1 = ± |(x − x𝑡
𝑇𝑗 ) × Δx

‖Δx‖|

= ± |(𝑥 − 𝑥𝑡
𝑇𝑗 )

Δ𝑦
‖Δx‖ − (𝑦 − 𝑦𝑡

𝑇𝑗 )
Δ𝑥

‖Δx‖|

(5.37)

3. Noting that by construction
‖∇𝜓𝑗‖ = 1 (5.38)

the ”tip” level sets can now be updated using the adapted Hamilton-Jacobi equation

𝜓 𝑡+1
𝑗 = 𝜓 𝑡

𝑗 − ‖Δx‖ (5.39)

Fig. 5.23 Updating the level sets
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For the purposes of this thesis, an equivalent procedure is proposed, using the local coor-
dinate system of the new segment Δx = x𝑡+1

𝑇𝑗
− x𝑡

𝑇𝑗
. Algorithm 5.6 describes the crack’s

propagation from tip 𝑗, taking into account that

• The end result of (5.35) and (5.39) is that new level set contour 𝜓 𝑡+1
𝑗 = 0 is a line

orthogonal to the crack interface at the new crack tip. The same could be achieved by
using (5.33)b.

• The signed distance can be easily calculated using (5.32), which also provides the sign
unlike (5.37).

• As shown in Figure 5.23, Ωno update can also be defined as

Ωno update = {x ∈ ℝ2 ∶ 𝜓 𝑡+1
𝑗 (x) + ‖Δx‖ ≤ 0} (5.40)

Algorithm 5.6 Update the implicit crack geometry.
Input: 𝑋 is a list containing the global coordinates of the 𝑛𝑛𝑜𝑑𝑒𝑠 nodes of the element
Input: Φ, Ψ𝑗 are lists containing the values of the ”body” and ”tip” 𝑗 level set functions
at each node of the mesh.
Input: x𝑗 are the global coordinates of the crack tip 𝑗.
Input: 𝑎𝑗 is the counter-clockwise angle from global 𝑥 to local �̃� axis of the coordinate
system defined at the crack tip 𝑗.
Input: 𝜃𝑐 is the crack propagation direction, defined as the counter-clockwise angle
from the extension of the segment containing the crack tip to the new segment.
Input: Δ𝐿 is the crack propagation length.

1: 𝑎𝑗 ← 𝑎𝑗 + 𝜃𝑐

2: Δx← [Δ𝐿 cos 𝑎𝑗 Δ𝐿 sin 𝑎𝑗]
𝑇

3: x𝑛𝑒𝑤
𝑗 ← x𝑗 + Δx

4: Overwrite the local system at the tip 𝑗 with the new one: (x
𝑛𝑒𝑤
𝑗 , 𝑎𝑗).

5: For the local coordinate system of the new segment (x𝑗 , x𝑛𝑒𝑤
𝑗 ), find its rotation matrix

Q and offset vector b, according to (5.2) and (5.3).
6: for i from 1 to 𝑛𝑛𝑜𝑑𝑒𝑠 do
7: x̂ ← Q ⋅ x + b
8: Ψ𝑗[𝑖] ← �̂� − Δ𝐿
9: if �̂� > 0 then
10: Φ[𝑖] ← ̂𝑦
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5.3.8 Tip coordinate system
Instead of the explicit coordinate system at the crack tip, which is presented in detail in
Appendix A.2, the level sets could be used for the operations necessary in XFEM, resulting
in a purely implicit method. In [24] the following mapping between the global cartesian and
local polar systems is proposed:

𝑟 = √𝜑2(ξ) + 𝜓2(ξ) (5.41a)

𝜃 = 𝑎𝑡𝑎𝑛2 (
𝜑(ξ)
𝜓(ξ)) (5.41b)

and to determine the local cartesian axes, which are required in J-integral computations:

• Direction of local �̃� axis
̃e𝑥 = x∇𝜓 (5.42)

• Direction of local ̃𝑦 axis
̃e𝑦 = e𝑧 × x∇𝜓 (5.43)

where e𝑧 = [0 0 1]

Elaborating on these, the Jacobian of the mapping in (5.41) is

J𝑁𝑃 =
[

𝑟,𝜉 𝑟,𝜂
𝜃,𝜉 𝜃,𝜂]

=
[

𝑟,𝜑 𝜑, 𝜉 + 𝑟,𝜓 𝜓, 𝜉 𝑟,𝜑 𝜑, 𝜂 + 𝑟,𝜓 𝜓, 𝜂
𝜃,𝜑 𝜑, 𝜉 + 𝜃,𝜓 𝜓, 𝜉 𝜃,𝜑 𝜑, 𝜂 + 𝜃,𝜓 𝜓, 𝜂]

(5.44)

where

𝑟,𝜑 = 𝜑
𝑟 (5.45a)

𝑟,𝜓 = 𝜓
𝑟 (5.45b)

𝜃,𝜑 = 𝜓
𝑟2 (5.45c)

𝜃,𝜓 = −𝜑
𝑟2 (5.45d)
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and the derivatives of the level sets functions with respect to the natural coordinates can be
calculated using the shape functions

𝜑,𝜉 =
𝑛𝑛𝑜𝑑𝑒𝑠

∑
𝑖=1

𝑁𝑖,𝜉 (ξ) 𝜑𝑖 (5.46a)

𝜑,𝜂 =
𝑛𝑛𝑜𝑑𝑒𝑠

∑
𝑖=1

𝑁𝑖,𝜂 (ξ) 𝜑𝑖 (5.46b)

𝜓,𝜉 =
𝑛𝑛𝑜𝑑𝑒𝑠

∑
𝑖=1

𝑁𝑖,𝜉 (ξ) 𝜓𝑖 (5.46c)

𝜓,𝜂 =
𝑛𝑛𝑜𝑑𝑒𝑠

∑
𝑖=1

𝑁𝑖,𝜂 (ξ) 𝜓𝑖 (5.46d)

To compute the gradient of 𝜓 needed in (5.42) and (5.43)

x∇𝜓 = [𝜓,𝑥 𝜓,𝑦] = [𝜓,𝜉 𝜓,𝜂] ⋅ J−1
𝑁𝐺 (5.47)

where J−1
𝑁𝐺 is the Jacobian of the isoparametricmapping defined inAppendixA.1.2. Further-

more, the derivatives of the asymptotic tip functions𝐵𝑒 with respect to the global coordinates
can be obtained according to (A.10)

[𝐵𝑒,𝑥 𝐵𝑒,𝑦] = [𝐵𝑒,𝜉 𝐵𝑒,𝜂] ⋅ J−1
𝑁𝐺 (5.48)

The derivatives of Ψ𝑒 with respect to the natural coordinates can in turn be calculated using
the chain rule for the mapping from natural to local polar coordinates (5.41)

[𝐵𝑒,𝜉 𝐵𝑒,𝜂] = [𝐵𝑒,𝑟 𝐵𝑒,𝜃] ⋅ J−1
𝑃 𝑁 = [𝐵𝑒,𝑟 𝐵𝑒,𝜃] ⋅ J𝑁𝑃 (5.49)

where

• The Jacobian J𝑁𝑃 was defined in (5.44).

• The derivatives of the asymptotic tip functions with respect to the local polar coordi-
nates 𝐵𝑒,𝑟 and 𝐵𝑒,𝜃 where presented in Section 2.5.2.

5.3.9 LSM drawbacks
It is obvious that LSM provides a way to describe crack geometries that is elegant, efficient
and couples intuitively with XFEM. However, it is not without complications, most of which
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stem from the fact that it cannot represent kinked cracks accurately. This section lists themost
prominent sources of inaccuracy when using LSM. Most of these only apply for piecewise
linear cracks and first order finite elements.

Incorrect nodal level sets

Using the level set update rule described in (5.37)may result in nodes having incorrect signed
distances, which are equal to the level set values 𝜑. When the crack propagates from x𝑡

𝑇 to
x𝑡+1

𝑇 , five regions can be identified between the lines 𝜓 𝑡 = 0, 𝜓 𝑡+1 +Δ𝐿 = 0 and the bisector
of the convex angle between the crack segments that meet on x𝑡

𝑇 .

Fig. 5.24 Important regions during geometry update.

Figure 5.24 illustrates these regions. Observe that Ωupdate = Ω3 ∪ Ω4 ∪ Ω5 and
Ωno update = Ω1 ∪ Ω2. Table 5.1 presents the differences in the signed distance of the LSM
crack description, when (5.37) is used, and the explicit crack description, which is considered
exact.
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LSM crack description: Explicit crack description:
Region φ = signed distance to φ = signed distance to

Ω1 segment x𝑡
𝑇 − x𝑡−1

𝑇 segment x𝑡
𝑇 − x𝑡−1

𝑇
Ω2 segment x𝑡

𝑇 − x𝑡−1
𝑇 vertex x𝑡

𝑇
Ω3 segment x𝑡+1

𝑇 − x𝑡
𝑇 segment x𝑡+1

𝑇 − x𝑡
𝑇

Ω4 segment x𝑡+1
𝑇 − x𝑡

𝑇 segment x𝑡+1
𝑇 − x𝑡

𝑇
Ω5 segment x𝑡+1

𝑇 − x𝑡
𝑇 segment x𝑡

𝑇 − x𝑡−1
𝑇

Table 5.1 Signed distances using LSM vs the explicit crack description

Note that other implicit or hybrid crack geometry descriptions, such as the Vector Level Set
method introduced in [26], use geometry update rules that produce the same nodal signed
distances as the explicit crack description.

Inability to represent kink points exactly

As mentioned in Section 5.3.2, employing first order finite elements, means that the shape
functions and consequently the zero level set 𝜑 = 0 are linear inside each element. Changes
in direction are observed only on element edges. If the original crack interface is piecewise
linear, then it cannot be represented exactly inside elements that should contain kink points,
as shown in Figure 5.25.

This inaccuracy causes incorrect signed distances in elements containing kink points. If the
signed distance of an integration point has the wrong sign, then the Heaviside enrichment
also has the opposite sign and error is introduced in the XFEM approximation. This is made
worse by the fact that nodal level sets are not always correct in elements near kink points, as
described in the previous section.

Consider the case of calculating the level sets 𝜑 as the correct signed distances of the nodes
to the crack interface, as depicted in Figure 5.24. Even then, using linear shape functions for
elements in Ω2 or intersected by the bisector would result in an inexact approximation of the
signed distances of integration points.

On the other hand, refining the mesh does mitigate this issue. With a finer mesh, the zero
level set curve 𝜑 = 0 matches the original crack geometry more closely (see Figure 5.25).
Moreover, the fraction of elements with erroneous enrichments is smaller, which improves
the quality of the discretized weak form.
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Fig. 5.25 Mesh dependency of the implicit crack description: a) Coarse mesh, b) Fine mesh

Incorrect intersections with element edges

Identifying the intersection point of the implicit crack geometry, that is the curve 𝜑 = 0,
with the element edges is an important kernel, used extensively when generating a triangular
mesh that conforms to the crack. To do so, (5.28) is applied, which assumes that 𝜑 is linear
along the element edge. However, this is not the case for elements that would contain the
kink points of the original crack. It is possible that the nodal level sets of an edge belonging
to such an element are calculated as signed distances to different crack segments. In this
case, 𝜑 is no longer linear along the element edge and (5.28) cannot locate the intersection
point.

Examples:

• In Figure 5.26a, b the intersection point of 𝜑 = 0 with one edge of a quadrilateral or
triangular element differ from the intersection point of the same edge with the actual
crack.

• If the element containing the kink point is not intersected by the crack at consecutive
edges, then the intersection points might be pinpointed accurately (see Figure 5.26c).
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• An extreme case is portrayed in Figure 5.26d. The crack intersects the same edge
twice, causing the level sets of its node to have the same sign. As a result 𝜑1 ⋅ 𝜑2 > 0
and no intersection point can be determined at all by (5.28).

Fig. 5.26 Failure to correctly locate intersection points of crack and element, when nodal
level sets are used.

Note that the intersection points cannot be located correctly for all elements where the nodal
level sets are calculated as signed distances to different crack segments. Nevertheless, only
the elements containing the kink points of the original crack are intersected by 𝜑 = 0. For
the rest of these elements, no intersection points are identified anyway.

Incorrect detection of intersected and tip elements

To determine if an element is intersected by the crack interface or if it contains the crack tip,
(5.27) and (5.26) respectively are proposed in [24]. However, these tests may fail in certain
configurations of the mesh and the crack interface.

• In Figure 5.27a, element (5-6-9-8) is neither intersected by the crack nor does it contain
the crack tip. Nevertheless

𝜑𝑚𝑖𝑛 = 𝜑 (x6) < 0
𝜑𝑚𝑎𝑥 = 𝜑 (x8) > 0
𝜓𝑚𝑖𝑛 = 𝜓 (x5) < 0
𝜓𝑚𝑎𝑥 = 𝜓 (x9) > 0
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Thus 𝜑𝑚𝑖𝑛 ⋅ 𝜑𝑚𝑎𝑥 ≤ 0 AND 𝜓𝑚𝑖𝑛
𝑗 ⋅ 𝜓𝑚𝑎𝑥

𝑗 ≤ 0, so (5.26) will flag it as a tip element.

• In Figure 5.27a, element (1-2-5-4) is intersected by the crack, but does not contain the
crack tip. Nevertheless

𝜑𝑚𝑖𝑛 = 𝜑 (x2) < 0
𝜑𝑚𝑎𝑥 = 𝜑 (x4) > 0
𝜓𝑚𝑖𝑛 = 𝜓 (x1) < 0
𝜓𝑚𝑎𝑥 = 𝜓 (x5) > 0

Thus 𝜑𝑚𝑖𝑛 ⋅ 𝜑𝑚𝑎𝑥 ≤ 0 AND 𝜓𝑚𝑖𝑛
𝑗 ⋅ 𝜓𝑚𝑎𝑥

𝑗 ≤ 0, so (5.26) will flag it as a tip element.
At the same time (5.27) will not flag it as an intersected element.

Fig. 5.27 Configurations where an element is incorrectly flagged as containing the crack tip.

To remedy this, Algorithm 5.7 is proposed in this thesis as a novel criterion for detecting tip
and intersected elements. It utilizes the intersection points between the element edges and
the curve 𝜑 = 0 (see (5.28)). By examining the level sets 𝜓 evaluated at the intersection
points (see (5.29)), the element can be characterized correctly.
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Algorithm 5.7 Determine if an element is intersected by the crack interface or if it contains
the crack tip.

Input: 𝑋 is a list containing the global coordinates of the 𝑛𝑛𝑜𝑑𝑒𝑠 nodes of the element
Input: Φ, Ψ are lists containing the values of the ”body” and ”tip” level set functions
of the 𝑛𝑛𝑜𝑑𝑒𝑠 nodes of the element.

1: Go over all nodes of the element and find 𝜑𝑚𝑖𝑛, 𝜑𝑚𝑎𝑥, 𝜓𝑚𝑖𝑛, 𝜓𝑚𝑎𝑥

2: if 𝜑𝑚𝑖𝑛 ⋅ 𝜑𝑚𝑎𝑥 > 0 then
3: return ”standard”
4: else
5: if 𝜓𝑚𝑖𝑛 > 0 then
6: return ”standard”
7: else if 𝜓𝑚𝑎𝑥 < 0 then
8: return ”intersected”
9: else
10: Go over each element edge and apply (5.28) and (5.29) to determine two inter-

section points (x𝐴, x𝐵) and their level sets (𝜓𝐴, 𝜓𝐵).
11: if x𝐴 = x𝐵 then
12: if 𝜓𝐴 > 0 then
13: return ”standard”
14: else if 𝜓𝐴 < 0 then
15: return ”intersected”
16: else ▷ 𝜓𝐴 = 0
17: return ”tip”
18: else
19: if 𝜓𝐴 > 0 AND 𝜓𝐵 > 0 then
20: return ”standard”
21: else if 𝜓𝐴 < 0 AND 𝜓𝐵 < 0 then
22: return ”intersected”
23: else ▷ 𝜓𝐴 ⋅ 𝜓𝐵 ≤ 0
24: return ”tip”

Output: ”tip” if the element contains the crack tip, ”intersected” if the element is in-
tersected by the crack interface (but does not contain the tip), ”standard” in all other
cases.

Remarks:

• It is evident that Algorithm 5.7 accurately characterizes the elements in Figure 5.27.
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• The (extremely unlikely) case of 𝜑 = 0 passing through only one node of the element
is also covered in line 11.

• Algorithm 5.7 depends on the exact identification of intersection points between the
element edges and 𝜑 = 0. As elaborated in Section 5.3.9, the intersection points of
elements containing kink points, are unlikely to be located properly. To prevent this,
it is recommended that the tip elements do not also contain kink points. Nevertheless,
such configurations pose complications in many other aspects of XFEM and crack
propagation and should be avoided in general. This can be achieved by selecting the
element size to be sufficiently smaller than the crack propagation length.

Issues with using the level sets for the tip coordinate system

In Section 5.3.8, the level set functions are used instead of an explicit local coordinate system.
To achieve this, 𝜑 replaces the local cartesian ̃𝑦 coordinate and 𝜓 replaces the local cartesian
�̃� coordinate. While 𝜓 = �̃� is always correct, 𝜑 ≠ ̃𝑦 for curved or kinked cracks in general,
as illustrated in Figure 5.28. However, if 𝜑 is evaluated for elements whose nodes are closest
to the crack segment that contains the crack tip, then 𝜑 = ̃𝑦 indeed. Therefore, the J-integral
(see Section 3.5.2) and fixed enrichment area (see Section 2.4.2) radii should be selected
such that they are sufficiently smaller than the crack propagation length (see Section 3.4.3).

Fig. 5.28 Using the level sets as the local cartesian coordinates at a crack tip.

Another complication of using the level sets as local cartesian coordinates is rooted in the
piecewise linear nature of the crack interface. As depicted in Figure 5.29, 𝜑 is discontinuous
along the border between Ω𝑢𝑝𝑑𝑎𝑡𝑒 and Ω𝑛𝑜 𝑢𝑝𝑑𝑎𝑡𝑒, no matter how these are selected. In turn,
this causes the polar coordinates (𝑟, 𝜃), calculated by (5.41), to also exhibit discontinuities.



146 Geometric aspects

As a result, spurious oscillations and decreased accuracy in the computation of the interac-
tion integrals and the stress intensity factors may be observed. Errors can also be introduced
in the XFEM approximation of the near tip displacement field. This is more probable when
the fixed enrichment area scheme (see Section 2.4.2) is employed, since the local polar co-
ordinates are more likely to be evaluated in the region where they are discontinuous.

Fig. 5.29 Discontinuous level sets and local polar coordinates.

This issue was discovered by Duflot [30]. In the same paper, various update rules for the
level sets are investigated and an acceptable one is proposed. In the numerical examples of
this thesis, the issue is circumvented by simply using an explicit coordinate system at the
crack tip.



Chapter 6

Numerical examples

6.1 Introduction
This chapter demonstrates the application of XFEM on a number of examples involving
crack propagation.

• The first example is a somewhat detailed presentation of the various aspects of XFEM,
whenmodeling a double cantilever beamwith an edge crack. Intermediate results, like
stiffness matrices and displacements, as well as the stress intensity factors (SIFs) are
given.

• The second example examines the effect of various parameters, such as mesh size and
J-integral radius, on the accuracy of the predicted SIFS for an infinite plate with a
finite interior crack.

• The third example demonstrates a crack propagating from an I-beam with an edge
crack above the fillet.

• The fourth example presents a crack growth simulation in a double cantilever beam.
The performance of LSM is compared to the explicit crack description.

The generation of the finite element mesh is performed via the same 𝐶# code used for the
rest of the analysis, for uniform and rectilinear meshes. On the other hand, unstructured
meshes are generated using the open source software Gmsh ([35]).
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6.2 XFEM modeling of a double cantilever beam

6.2.1 Problem formulation
The first example is a cantilever beam with an edge crack under pure Mode I loading. The
model is depicted in Figure 6.1 and can be fully described by the following:

• The width of the beam 𝐿 = 20𝑐𝑚 and the length is 3𝐿.

• The crack mouth is placed at (60, 10) and the crack tip at the center (30, 10).

• The left edge is fixed: the 𝑥 and 𝑦 degrees of freedom of the nodes along 𝑥 = 0 are
constrained.

• A displacement of 𝑢𝑜 = 0.5𝑚𝑚 is prescribed on the top right and bottom right node:
𝑢7𝑦 = −𝑢6𝑦 = 𝑢𝑜

• The beam is in plane strain condition.

• Material properties: Young’s modulus 𝐸 = 2 ⋅ 106 𝑘𝑔
𝑐𝑚2 , Poisson ratio 𝑣 = 0.3.

Fig. 6.1 A double cantilever beam.

At first the model is analyzed for a single step using XFEM under the following considera-
tions:

• A uniform mesh of 3× Quad4 elements is used, exactly as in Figure 6.1.

• The nodes of the elements containing the crack tip are enriched with the asymptotic
tip functions. The nodes of the elements intersected by the crack are enriched with the
Heaviside function, unless they belong to the tip element too.
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• The integration with sub-quads (see Section 4.2) is employed for the computation of
the stiffness matrices. Enriched and tip blending elements are split into 8 × 8 sub-
quads, and each sub-quad contains 2 × 2 integration points. For standard elements
and blending elements with Heaviside enriched nodes only, the conventional Gauss-
Legendre quadrature is used (2 × 2 integration points in this case).

The purpose of this example is to present in detail the steps involved in XFEM. The next two
sections provide the stiffness matrices of each element and the displacements obtained after
solving the linear system of the whole domain.

6.2.2 Stifness matrices
The stiffness matrix of element 𝑚 has the form

K𝑚 =
[
K𝑚

𝑠𝑠 (K𝑚
𝑒𝑠)

𝑇

K𝑚
𝑒𝑠 K𝑚

𝑒𝑒 ]
(6.1)

The naming of freedom degrees is subject to the following rules

• 𝑢𝑖𝑗 are the actual displacements

• 𝑐𝑖𝑗 are artificial dofs introduced due to enrichment with the Heaviside function

• 𝑏𝑒
𝑖𝑗 are artificial dofs introduced due to enrichment with the asymptotic tip functions

• 𝑖 is the node index, 𝑗 = 𝑥 or 𝑦

• 𝑒 is the index of the tip enrichment function

For all three elements, the standard submatrix is the same

K𝑚
𝑠𝑠 = 106

𝑢1𝑥 𝑢1𝑦 𝑢2𝑥 𝑢2𝑦 𝑢3𝑥 𝑢3𝑦 𝑢4𝑥 𝑢4𝑦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1.1538 0.4808 −0.7692 0.0962 −0.5769 −0.4808 0.1923 −0.0962 𝑢1𝑥
0.4808 1.1538 −0.0962 0.1923 −0.4808 −0.5769 0.0962 −0.7692 𝑢1𝑦

−0.7692 −0.0962 1.1538 −0.4808 0.1923 0.0962 −0.5769 0.4808 𝑢2𝑥
0.0962 0.1923 −0.4808 1.1538 −0.0962 −0.7692 0.4808 −0.5769 𝑢2𝑦

−0.5769 −0.4808 0.1923 −0.0962 1.1538 0.4808 −0.7692 0.0962 𝑢3𝑥
−0.4808 −0.5769 0.0962 −0.7692 0.4808 1.1538 −0.0962 0.1923 𝑢3𝑦

0.1923 0.0962 −0.5769 0.4808 −0.7692 −0.0962 1.1538 −0.4808 𝑢4𝑥
−0.0962 −0.7692 0.4808 −0.5769 0.0962 0.1923 −0.4808 1.1538 𝑢4𝑦

(6.2)
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For element 1, the enriched-standard submatrix is

K1
𝑒𝑠 = 106

𝑢1𝑥 𝑢1𝑦 𝑢2𝑥 𝑢2𝑦 𝑢3𝑥 𝑢3𝑦 𝑢4𝑥 𝑢4𝑦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

0.5706 0.4029 −0.6656 0.1365 −0.5930 −0.0415 0.6880 −0.4979 𝑏1
2𝑥

0.3585 0.0273 0.0011 −0.3598 0.1414 0.0002 −0.5010 0.3323 𝑏1
2𝑦

0.3116 −0.0104 −0.0183 0.1197 −0.2368 −0.4130 −0.0565 0.3037 𝑏2
2𝑥

0.1352 0.5440 −0.0623 0.4825 −0.3776 −0.5554 0.3047 −0.4711 𝑏2
2𝑦

0.4763 0.2440 −0.5966 0.0983 −0.2021 0.0220 0.3223 −0.3642 𝑏3
2𝑥

0.1857 −0.0443 0.0425 −0.3766 0.1379 0.1484 −0.3660 0.2725 𝑏3
2𝑦

0.8779 0.7126 −0.9909 0.1582 −1.0410 −0.0452 1.1540 −0.8256 𝑏4
2𝑥

0.6708 0.0848 −0.0903 −0.4805 0.2599 −0.1001 −0.8404 0.4958 𝑏4
2𝑦

−0.6880 −0.4979 0.5930 −0.0415 0.6656 0.1365 −0.5706 0.4029 𝑏1
3𝑥

−0.5010 −0.3323 0.1414 −0.0002 0.0011 0.3598 0.3585 −0.0273 𝑏1
3𝑦

−0.0565 −0.3037 −0.2368 0.4130 −0.0183 −0.1197 0.3116 0.0104 𝑏2
3𝑥

−0.3047 −0.4711 0.3776 −0.5554 0.0623 0.4825 −0.1352 0.5440 𝑏2
3𝑦

0.3223 0.3642 −0.2021 −0.0220 −0.5966 −0.0983 0.4763 −0.2440 𝑏3
3𝑥

0.3660 0.2725 −0.1379 0.1484 −0.0425 −0.3766 −0.1857 −0.0443 𝑏3
3𝑦

−1.1540 −0.8256 1.0410 −0.0452 0.9909 0.1582 −0.8779 0.7126 𝑏4
3𝑥

−0.8404 −0.4958 0.2599 0.1001 −0.0903 0.4805 0.6708 −0.0848 𝑏4
3𝑦

(6.3)

The enriched-enriched submatrix K1
𝑒𝑒 is split for viewing convenience into two submatrices

by dividing its columns

K1
𝑒𝑒 =

[
k1

1 k1
2

(16 × 8) (16 × 8)]
(6.4)
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k1
1 = 106

𝑏1
2𝑥 𝑏1

2𝑦 𝑏2
2𝑥 𝑏2

2𝑦 𝑏3
2𝑥 𝑏3

2𝑦 𝑏4
2𝑥 𝑏4

2𝑦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1.2050 −0.2530 −0.1213 0.3409 0.7563 −0.1004 2.0829 −0.4456 𝑏1
2𝑥

−0.2530 2.1231 0.3546 0.1312 −0.0348 1.3000 −0.4699 3.8834 𝑏1
2𝑦

−0.1213 0.3546 1.9547 0.1789 −0.2373 0.2316 −0.1859 0.6445 𝑏2
2𝑥

0.3409 0.1312 0.1789 0.9658 0.2325 −0.0463 0.5926 0.3353 𝑏2
2𝑦

0.7563 −0.0348 −0.2373 0.2325 0.5939 −0.0007 1.2619 −0.0390 𝑏3
2𝑥

−0.1004 1.3000 0.2316 −0.0463 −0.0007 0.8505 −0.1716 2.3459 𝑏3
2𝑦

2.0829 −0.4699 −0.1859 0.5926 1.2619 −0.1716 3.6368 −0.8472 𝑏4
2𝑥

−0.4456 3.8834 0.6445 0.3353 −0.0390 2.3459 −0.8472 7.1362 𝑏4
2𝑦

−1.0852 −0.0076 −0.2473 −0.4158 −0.6900 −0.0636 −1.8860 −0.0150 𝑏1
3𝑥

0.0076 −2.0107 −0.4411 −0.4721 −0.1174 −1.1835 0.0472 −3.7348 𝑏1
3𝑦

0.2473 −0.4411 0.8163 0.0045 −0.0229 −0.2771 0.4167 −0.7596 𝑏2
3𝑥

−0.4158 0.4721 −0.0045 −0.0809 −0.2477 0.3117 −0.7086 0.7870 𝑏2
3𝑦

0.6900 −0.1174 −0.0229 0.2477 0.3648 −0.0336 1.2357 −0.2262 𝑏3
3𝑥

−0.0636 1.1835 0.2771 0.3117 0.0336 0.6626 −0.1480 2.2229 𝑏3
3𝑦

−1.8860 −0.0472 −0.4167 −0.7086 −1.2357 −0.1480 −3.2766 −0.0863 𝑏4
3𝑥

0.0150 −3.7348 −0.7596 −0.7870 −0.2262 −2.2229 0.0863 −6.9241 𝑏4
3𝑦

(6.5)

k1
2 = 106

𝑏1
3𝑥 𝑏1

3𝑦 𝑏2
3𝑥 𝑏2

3𝑦 𝑏3
3𝑥 𝑏3

3𝑦 𝑏4
3𝑥 𝑏4

3𝑦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1.0852 0.0076 0.2473 −0.4158 0.6900 −0.0636 −1.8860 0.0150 𝑏1
2𝑥

−0.0076 −2.0107 −0.4411 0.4721 −0.1174 1.1835 −0.0472 −3.7348 𝑏1
2𝑦

−0.2473 −0.4411 0.8163 −0.0045 −0.0229 0.2771 −0.4167 −0.7596 𝑏2
2𝑥

−0.4158 −0.4721 0.0045 −0.0809 0.2477 0.3117 −0.7086 −0.7870 𝑏2
2𝑦

−0.6900 −0.1174 −0.0229 −0.2477 0.3648 0.0336 −1.2357 −0.2262 𝑏3
2𝑥

−0.0636 −1.1835 −0.2771 0.3117 −0.0336 0.6626 −0.1480 −2.2229 𝑏3
2𝑦

−1.8860 0.0472 0.4167 −0.7086 1.2357 −0.1480 −3.2766 0.0863 𝑏4
2𝑥

−0.0150 −3.7348 −0.7596 0.7870 −0.2262 2.2229 −0.0863 −6.9241 𝑏4
2𝑦

1.2050 0.2530 0.1213 0.3409 −0.7563 −0.1004 2.0829 0.4456 𝑏1
3𝑥

0.2530 2.1231 0.3546 −0.1312 −0.0348 −1.3000 0.4699 3.8834 𝑏1
3𝑦

0.1213 0.3546 1.9547 −0.1789 −0.2373 −0.2316 0.1859 0.6445 𝑏2
3𝑥

0.3409 −0.1312 −0.1789 0.9658 −0.2325 −0.0463 0.5926 −0.3353 𝑏2
3𝑦

−0.7563 −0.0348 −0.2373 −0.2325 0.5939 0.0007 −1.2619 −0.0390 𝑏3
3𝑥

−0.1004 −1.3000 −0.2316 −0.0463 0.0007 0.8505 −0.1716 −2.3459 𝑏3
3𝑦

2.0829 0.4699 0.1859 0.5926 −1.2619 −0.1716 3.6368 0.8472 𝑏4
3𝑥

0.4456 3.8834 0.6445 −0.3353 −0.0390 −2.3459 0.8472 7.1362 𝑏4
3𝑦

(6.6)
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For element 2, the enriched-standard submatrix is

K2
𝑒𝑠 = 106

𝑢1𝑥 𝑢1𝑦 𝑢2𝑥 𝑢2𝑦 𝑢3𝑥 𝑢3𝑦 𝑢4𝑥 𝑢4𝑦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−0.5761 −0.0974 0.6166 −0.4467 0.6529 0.4062 −0.6934 0.1379 𝑏1
2𝑥

0.1447 −0.0116 −0.5074 0.1534 0.4466 0.2093 −0.0839 −0.3511 𝑏1
2𝑦

−0.3169 0.1912 0.0064 −0.3055 0.2602 0.6160 0.0503 −0.5017 𝑏2
2𝑥

0.0741 −0.5989 −0.1503 −0.4879 0.6160 0.5640 −0.5399 0.5227 𝑏2
2𝑦

−0.3465 −0.0401 0.6299 −0.3154 0.1996 0.0319 −0.4830 0.3236 𝑏3
2𝑥

0.2205 0.3637 −0.4575 0.6283 0.0323 −0.3913 0.2047 −0.6007 𝑏3
2𝑦

−1.0099 −0.1968 0.9579 −0.7050 1.1464 0.7570 −1.0944 0.1448 𝑏4
2𝑥

0.0773 −0.3142 −0.6785 0.1323 0.7565 0.4690 −0.1552 −0.2870 𝑏4
2𝑦

0.6088 0.4692 −1.5676 0.5747 −0.8682 0.3841 1.8270 −1.4280 𝑏1
5𝑥

0.1519 −0.6876 0.5441 −2.6683 0.8941 1.9723 −1.5901 1.3835 𝑏1
5𝑦

0.6461 0.2835 −0.4437 0.1139 −0.4835 −0.3163 0.2810 −0.0811 𝑏2
5𝑥

0.3846 0.5336 −0.1197 0.1748 −0.1839 −0.4397 −0.0810 −0.2687 𝑏2
5𝑦

0.7929 0.4607 −0.8469 0.1655 −0.6141 −0.1115 0.6680 −0.5146 𝑏3
5𝑥

0.4333 0.0818 −0.0159 −0.2705 0.0968 −0.1469 −0.5142 0.3356 𝑏3
5𝑦

0.6641 0.4752 −0.3785 −0.0551 −0.6017 −0.2305 0.3161 −0.1896 𝑏4
5𝑥

0.6174 0.6414 −0.3373 0.3583 −0.0911 −0.6384 −0.1890 −0.3613 𝑏4
5𝑦

−1.8270 −1.4280 0.8682 0.3841 1.5676 0.5747 −0.6088 0.4692 𝑏1
8𝑥

−1.5901 −1.3835 0.8941 −1.9723 0.5441 2.6683 0.1519 0.6876 𝑏1
8𝑦

0.2810 0.0811 −0.4835 0.3163 −0.4437 −0.1139 0.6461 −0.2835 𝑏2
8𝑥

0.0810 −0.2687 0.1839 −0.4397 0.1197 0.1748 −0.3846 0.5336 𝑏2
8𝑦

0.6680 0.5146 −0.6141 0.1115 −0.8469 −0.1655 0.7929 −0.4607 𝑏3
8𝑥

0.5142 0.3356 −0.0968 −0.1469 0.0159 −0.2705 −0.4333 0.0818 𝑏3
8𝑦

−0.3161 −0.1896 0.6017 −0.2305 0.3785 −0.0551 −0.6641 0.4752 𝑏4
8𝑥

−0.1890 0.3613 −0.0911 0.6384 −0.3373 −0.3583 0.6174 −0.6414 𝑏4
8𝑦

0.6934 0.1379 −0.6529 0.4062 −0.6166 −0.4467 0.5761 −0.0974 𝑏1
3𝑥

−0.0839 0.3511 0.4466 −0.2093 −0.5074 −0.1534 0.1447 0.0116 𝑏1
3𝑦

0.0503 0.5017 0.2602 −0.6160 0.0064 0.3055 −0.3169 −0.1912 𝑏2
3𝑥

0.5399 0.5227 −0.6160 0.5640 0.1503 −0.4879 −0.0741 −0.5989 𝑏2
3𝑦

−0.4830 −0.3236 0.1996 −0.0319 0.6299 0.3154 −0.3465 0.0401 𝑏3
3𝑥

−0.2047 −0.6007 −0.0323 −0.3913 0.4575 0.6283 −0.2205 0.3637 𝑏3
3𝑦

1.0944 0.1448 −1.1464 0.7570 −0.9579 −0.7050 1.0099 −0.1968 𝑏4
3𝑥

−0.1552 0.2870 0.7565 −0.4690 −0.6785 −0.1323 0.0773 0.3142 𝑏4
3𝑦

(6.7)
K2

𝑒𝑒 is split for viewing convenience into four submatrices by dividing its columns

K2
𝑒𝑒 =

[
k2

1 k2
2 k2

3 k2
4

(32 × 8) (32 × 8) (32 × 8) (32 × 8)]
(6.8)
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k2
1 = 106

𝑏1
2𝑥 𝑏1

2𝑦 𝑏2
2𝑥 𝑏2

2𝑦 𝑏3
2𝑥 𝑏3

2𝑦 𝑏4
2𝑥 𝑏4

2𝑦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3.0196 −0.5191 −0.5159 0.4124 1.9575 −0.7877 2.2076 −0.3823 𝑏1
2𝑥

−0.5191 4.4572 0.5011 0.9909 −0.7970 2.9112 −0.2305 5.2198 𝑏1
2𝑦

−0.5159 0.5011 3.7414 0.0872 −1.2502 0.1638 0.6077 1.0307 𝑏2
2𝑥

0.4124 0.9909 0.0872 2.6385 0.1663 0.9452 1.0345 1.4335 𝑏2
2𝑦

1.9575 −0.7970 −1.2502 0.1663 3.0158 −0.6434 1.4736 −0.5134 𝑏3
2𝑥

−0.7877 2.9112 0.1638 0.9452 −0.6434 4.6826 −0.3256 2.8348 𝑏3
2𝑦

2.2076 −0.2305 0.6077 1.0345 1.4736 −0.3256 4.8646 −0.0839 𝑏4
2𝑥

−0.3823 5.2198 1.0307 1.4335 −0.5134 2.8348 −0.0839 8.1103 𝑏4
2𝑦

−1.9820 0.5447 2.4985 −0.5732 −1.8389 −0.3746 −1.7851 0.9694 𝑏1
5𝑥

0.9324 2.2031 −0.0012 3.1013 −0.2271 0.2816 1.3215 2.2579 𝑏1
5𝑦

0.2764 0.1857 −1.2176 −0.3677 0.9223 0.1610 −0.4334 0.0251 𝑏2
5𝑥

0.2259 1.4234 −0.3536 0.5947 0.1449 2.3371 0.0597 0.7102 𝑏2
5𝑦

−0.1235 0.5936 0.2680 −0.4765 0.4327 0.3455 −1.4820 0.6108 𝑏3
5𝑥

0.7287 1.7169 −0.5199 1.9425 0.3908 2.8466 0.5918 0.8339 𝑏3
5𝑦

0.9031 −0.2499 −1.3446 −0.3298 1.2432 −0.1697 0.1809 −0.5340 𝑏4
5𝑥

−0.2251 2.7053 −0.3477 0.0330 −0.1557 2.0542 −0.4898 2.7632 𝑏4
5𝑦

0.0348 −0.6363 0.2877 1.3010 0.2494 −0.9987 1.5896 0.6412 𝑏1
8𝑥

−0.5436 −2.1444 1.8585 −0.1977 −0.8378 −2.9134 1.0412 −1.1022 𝑏1
8𝑦

−0.1492 0.2335 −0.4445 −0.6037 0.1581 0.1274 −0.5639 0.3323 𝑏2
8𝑥

0.2973 1.2803 −0.6033 1.0283 0.1280 1.0023 0.3344 1.1030 𝑏2
8𝑦

−0.2621 −0.0611 0.0066 −0.5893 0.4067 −0.3204 −0.9755 −0.2200 𝑏3
8𝑥

0.0415 1.9645 −0.5878 1.1667 −0.3198 2.2895 −0.2223 1.5055 𝑏3
8𝑦

0.1608 −0.4244 −0.4132 0.4528 −0.0727 −0.2738 0.6353 −0.8864 𝑏4
8𝑥

−0.4664 −1.8310 0.4480 −1.7991 −0.2713 −1.3633 −0.8866 −1.6254 𝑏4
8𝑦

−0.9639 −0.0491 −0.6394 −0.4483 −1.3047 −0.0358 −2.6648 −0.5448 𝑏1
3𝑥

0.0491 −3.3390 −0.2940 −1.7389 0.0584 −2.9983 −0.5041 −4.6157 𝑏1
3𝑦

0.6394 −0.2940 2.1119 0.0045 −0.3063 −0.4244 0.8268 −0.3963 𝑏2
3𝑥

−0.4483 1.7389 −0.0045 0.7689 −0.4526 1.4427 −0.4192 2.0420 𝑏2
3𝑦

1.3047 0.0584 −0.3063 0.4526 1.4819 0.0467 2.0428 0.6081 𝑏3
3𝑥

−0.0358 2.9983 0.4244 1.4427 −0.0467 2.0738 0.5281 4.4724 𝑏3
3𝑦

−2.6648 0.5041 −0.8268 −0.4192 −2.0428 0.5281 −3.0614 0.0740 𝑏4
3𝑥

0.5448 −4.6157 −0.3963 −2.0420 0.6081 −4.4724 −0.0740 −5.6645 𝑏4
3𝑦

(6.9)
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k2
2 = 106

𝑏1
5𝑥 𝑏1

5𝑦 𝑏2
5𝑥 𝑏2

5𝑦 𝑏3
5𝑥 𝑏3

5𝑦 𝑏4
5𝑥 𝑏4

5𝑦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1.9820 0.9324 0.2764 0.2259 −0.1235 0.7287 0.9031 −0.2251 𝑏1
2𝑥

0.5447 2.2031 0.1857 1.4234 0.5936 1.7169 −0.2499 2.7053 𝑏1
2𝑦

2.4985 −0.0012 −1.2176 −0.3536 0.2680 −0.5199 −1.3446 −0.3477 𝑏2
2𝑥

−0.5732 3.1013 −0.3677 0.5947 −0.4765 1.9425 −0.3298 0.0330 𝑏2
2𝑦

−1.8389 −0.2271 0.9223 0.1449 0.4327 0.3908 1.2432 −0.1557 𝑏3
2𝑥

−0.3746 0.2816 0.1610 2.3371 0.3455 2.8466 −0.1697 2.0542 𝑏3
2𝑦

−1.7851 1.3215 −0.4334 0.0597 −1.4820 0.5918 0.1809 −0.4898 𝑏4
2𝑥

0.9694 2.2579 0.0251 0.7102 0.6108 0.8339 −0.5340 2.7632 𝑏4
2𝑦

12.4321 −4.8960 0.8240 −1.6902 3.1138 −3.1255 0.1337 −0.5371 𝑏1
5𝑥

−4.8960 17.0180 −1.3594 3.3215 −2.4441 6.3657 −0.4646 3.0697 𝑏1
5𝑦

0.8240 −1.3594 2.6386 0.4593 1.6477 0.2535 1.8688 0.9391 𝑏2
5𝑥

−1.6902 3.3215 0.4593 3.9208 0.2142 4.6991 0.9085 2.7293 𝑏2
5𝑦

3.1138 −2.4441 1.6477 0.2142 4.0634 0.0102 1.3863 0.6447 𝑏3
5𝑥

−3.1255 6.3657 0.2535 4.6991 0.0102 7.8957 0.6848 2.8035 𝑏3
5𝑦

0.1337 −0.4646 1.8688 0.9085 1.3863 0.6848 3.0809 0.8593 𝑏4
5𝑥

−0.5371 3.0697 0.9391 2.7293 0.6447 2.8035 0.8593 4.6936 𝑏4
5𝑦

1.0711 −0.4211 −2.7033 −2.2896 −3.8357 −2.5456 −3.5475 −2.1844 𝑏1
8𝑥

0.4211 −0.4646 −2.2317 −5.1104 −2.3531 −6.4674 −2.2519 −5.7623 𝑏1
8𝑦

2.7033 −2.2317 1.6267 −0.0624 1.3253 −0.2536 0.8906 0.2809 𝑏2
8𝑥

−2.2896 5.1104 0.0624 2.1235 −0.0524 3.3908 0.3556 1.8426 𝑏2
8𝑦

3.8357 −2.3531 1.3253 0.0524 3.0119 −0.1624 1.3991 0.4183 𝑏3
8𝑥

−2.5456 6.4674 0.2536 3.3908 0.1624 5.7528 0.5289 2.8592 𝑏3
8𝑦

−3.5475 2.2519 −0.8906 0.3556 −1.3991 0.5289 −0.3275 0.0171 𝑏4
8𝑥

2.1844 −5.7623 0.2809 −1.8426 0.4183 −2.8592 −0.0171 −2.0410 𝑏4
8𝑦

0.0348 0.5436 0.1492 0.2973 0.2621 0.0415 0.1608 0.4664 𝑏1
3𝑥

0.6363 −2.1444 0.2335 −1.2803 −0.0611 −1.9645 0.4244 −1.8310 𝑏1
3𝑦

−0.2877 1.8585 −0.4445 0.6033 0.0066 0.5878 0.4132 0.4480 𝑏2
3𝑥

1.3010 0.1977 0.6037 1.0283 0.5893 1.1667 0.4528 1.7991 𝑏2
3𝑦

−0.2494 −0.8378 0.1581 −0.1280 0.4067 0.3198 0.0727 −0.2713 𝑏3
3𝑥

−0.9987 2.9134 −0.1274 1.0023 0.3204 2.2895 −0.2738 1.3633 𝑏3
3𝑦

1.5896 −1.0412 0.5639 0.3344 0.9755 −0.2223 0.6353 0.8866 𝑏4
3𝑥

−0.6412 −1.1022 0.3323 −1.1030 −0.2200 −1.5055 0.8864 −1.6254 𝑏4
3𝑦

(6.10)
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k2
3 = 106

𝑏1
8 𝑏1

8𝑦 𝑏2
8𝑥 𝑏2

8𝑦 𝑏3
8𝑥 𝑏3

8𝑦 𝑏4
8𝑥 𝑏4

8𝑦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎥
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⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

0.0348 −0.5436 −0.1492 0.2973 −0.2621 0.0415 0.1608 −0.4664 𝑏1
2𝑥

−0.6363 −2.1444 0.2335 1.2803 −0.0611 1.9645 −0.4244 −1.8310 𝑏1
2𝑦

0.2877 1.8585 −0.4445 −0.6033 0.0066 −0.5878 −0.4132 0.4480 𝑏2
2𝑥

1.3010 −0.1977 −0.6037 1.0283 −0.5893 1.1667 0.4528 −1.7991 𝑏2
2𝑦

0.2494 −0.8378 0.1581 0.1280 0.4067 −0.3198 −0.0727 −0.2713 𝑏3
2𝑥

−0.9987 −2.9134 0.1274 1.0023 −0.3204 2.2895 −0.2738 −1.3633 𝑏3
2𝑦

1.5896 1.0412 −0.5639 0.3344 −0.9755 −0.2223 0.6353 −0.8866 𝑏4
2𝑥

0.6412 −1.1022 0.3323 1.1030 −0.2200 1.5055 −0.8864 −1.6254 𝑏4
2𝑦

1.0711 0.4211 2.7033 −2.2896 3.8357 −2.5456 −3.5475 2.1844 𝑏1
5𝑥

−0.4211 −0.4646 −2.2317 5.1104 −2.3531 6.4674 2.2519 −5.7623 𝑏1
5𝑦

−2.7033 −2.2317 1.6267 0.0624 1.3253 0.2536 −0.8906 0.2809 𝑏2
5𝑥

−2.2896 −5.1104 −0.0624 2.1235 0.0524 3.3908 0.3556 −1.8426 𝑏2
5𝑦

−3.8357 −2.3531 1.3253 −0.0524 3.0119 0.1624 −1.3991 0.4183 𝑏3
5𝑥

−2.5456 −6.4674 −0.2536 3.3908 −0.1624 5.7528 0.5289 −2.8592 𝑏3
5𝑦

−3.5475 −2.2519 0.8906 0.3556 1.3991 0.5289 −0.3275 −0.0171 𝑏4
5𝑥

−2.1844 −5.7623 0.2809 1.8426 0.4183 2.8592 0.0171 −2.0410 𝑏4
5𝑦

12.4321 4.8960 −0.8240 −1.6902 −3.1138 −3.1255 0.1337 0.5371 𝑏1
8𝑥

4.8960 17.0180 −1.3594 −3.3215 −2.4441 −6.3657 0.4646 3.0697 𝑏1
8𝑦

−0.8240 −1.3594 2.6386 −0.4593 1.6477 −0.2535 −1.8688 0.9391 𝑏2
8𝑥

−1.6902 −3.3215 −0.4593 3.9208 −0.2142 4.6991 0.9085 −2.7293 𝑏2
8𝑦

−3.1138 −2.4441 1.6477 −0.2142 4.0634 −0.0102 −1.3863 0.6447 𝑏3
8𝑥

−3.1255 −6.3657 −0.2535 4.6991 −0.0102 7.8957 0.6848 −2.8035 𝑏3
8𝑦

0.1337 0.4646 −1.8688 0.9085 −1.3863 0.6848 3.0809 −0.8593 𝑏4
8𝑥

0.5371 3.0697 0.9391 −2.7293 0.6447 −2.8035 −0.8593 4.6936 𝑏4
8𝑦

−1.9820 −0.9324 −0.2764 0.2259 0.1235 0.7287 0.9031 0.2251 𝑏1
3𝑥

−0.5447 2.2031 0.1857 −1.4234 0.5936 −1.7169 0.2499 2.7053 𝑏1
3𝑦

−2.4985 −0.0012 −1.2176 0.3536 0.2680 0.5199 1.3446 −0.3477 𝑏2
3𝑥

−0.5732 −3.1013 0.3677 0.5947 0.4765 1.9425 −0.3298 −0.0330 𝑏2
3𝑦

1.8389 −0.2271 0.9223 −0.1449 0.4327 −0.3908 −1.2432 −0.1557 𝑏3
3𝑥

−0.3746 −0.2816 −0.1610 2.3371 −0.3455 2.8466 −0.1697 −2.0542 𝑏3
3𝑦

−1.7851 −1.3215 0.4334 0.0597 1.4820 0.5918 0.1809 0.4898 𝑏4
3𝑥

−0.9694 2.2579 0.0251 −0.7102 0.6108 −0.8339 0.5340 2.7632 𝑏4
3𝑦

(6.11)
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k2
4 = 106

𝑏1
3𝑥 𝑏1

3𝑦 𝑏2
3𝑥 𝑏2

3𝑦 𝑏3
3𝑥 𝑏3

3𝑦 𝑏4
3𝑥 𝑏4

3𝑦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−0.9639 0.0491 0.6394 −0.4483 1.3047 −0.0358 −2.6648 0.5448 𝑏1
2𝑥

−0.0491 −3.3390 −0.2940 1.7389 0.0584 2.9983 0.5041 −4.6157 𝑏1
2𝑦

−0.6394 −0.2940 2.1119 −0.0045 −0.3063 0.4244 −0.8268 −0.3963 𝑏2
2𝑥

−0.4483 −1.7389 0.0045 0.7689 0.4526 1.4427 −0.4192 −2.0420 𝑏2
2𝑦

−1.3047 0.0584 −0.3063 −0.4526 1.4819 −0.0467 −2.0428 0.6081 𝑏3
2𝑥

−0.0358 −2.9983 −0.4244 1.4427 0.0467 2.0738 0.5281 −4.4724 𝑏3
2𝑦

−2.6648 −0.5041 0.8268 −0.4192 2.0428 0.5281 −3.0614 −0.0740 𝑏4
2𝑥

−0.5448 −4.6157 −0.3963 2.0420 0.6081 4.4724 0.0740 −5.6645 𝑏4
2𝑦

0.0348 0.6363 −0.2877 1.3010 −0.2494 −0.9987 1.5896 −0.6412 𝑏1
5𝑥

0.5436 −2.1444 1.8585 0.1977 −0.8378 2.9134 −1.0412 −1.1022 𝑏1
5𝑦

0.1492 0.2335 −0.4445 0.6037 0.1581 −0.1274 0.5639 0.3323 𝑏2
5𝑥

0.2973 −1.2803 0.6033 1.0283 −0.1280 1.0023 0.3344 −1.1030 𝑏2
5𝑦

0.2621 −0.0611 0.0066 0.5893 0.4067 0.3204 0.9755 −0.2200 𝑏3
5𝑥

0.0415 −1.9645 0.5878 1.1667 0.3198 2.2895 −0.2223 −1.5055 𝑏3
5𝑦

0.1608 0.4244 0.4132 0.4528 0.0727 −0.2738 0.6353 0.8864 𝑏4
5𝑥

0.4664 −1.8310 0.4480 1.7991 −0.2713 1.3633 0.8866 −1.6254 𝑏4
5𝑦

−1.9820 −0.5447 −2.4985 −0.5732 1.8389 −0.3746 −1.7851 −0.9694 𝑏1
8𝑥

−0.9324 2.2031 −0.0012 −3.1013 −0.2271 −0.2816 −1.3215 2.2579 𝑏1
8𝑦

−0.2764 0.1857 −1.2176 0.3677 0.9223 −0.1610 0.4334 0.0251 𝑏2
8𝑥

0.2259 −1.4234 0.3536 0.5947 −0.1449 2.3371 0.0597 −0.7102 𝑏2
8𝑦

0.1235 0.5936 0.2680 0.4765 0.4327 −0.3455 1.4820 0.6108 𝑏3
8𝑥

0.7287 −1.7169 0.5199 1.9425 −0.3908 2.8466 0.5918 −0.8339 𝑏3
8𝑦

0.9031 0.2499 1.3446 −0.3298 −1.2432 −0.1697 0.1809 0.5340 𝑏4
8𝑥

0.2251 2.7053 −0.3477 −0.0330 −0.1557 −2.0542 0.4898 2.7632 𝑏4
8𝑦

3.0196 0.5191 0.5159 0.4124 −1.9575 −0.7877 2.2076 0.3823 𝑏1
3𝑥

0.5191 4.4572 0.5011 −0.9909 −0.7970 −2.9112 0.2305 5.2198 𝑏1
3𝑦

0.5159 0.5011 3.7414 −0.0872 −1.2502 −0.1638 −0.6077 1.0307 𝑏2
3𝑥

0.4124 −0.9909 −0.0872 2.6385 −0.1663 0.9452 1.0345 −1.4335 𝑏2
3𝑦

−1.9575 −0.7970 −1.2502 −0.1663 3.0158 0.6434 −1.4736 −0.5134 𝑏3
3𝑥

−0.7877 −2.9112 −0.1638 0.9452 0.6434 4.6826 −0.3256 −2.8348 𝑏3
3𝑦

2.2076 0.2305 −0.6077 1.0345 −1.4736 −0.3256 4.8646 0.0839 𝑏4
3𝑥

0.3823 5.2198 1.0307 −1.4335 −0.5134 −2.8348 0.0839 8.1103 𝑏4
3𝑦

(6.12)
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For element 3, the enriched-standard submatrix is

K3
𝑒𝑠 = 106

𝑢1𝑥 𝑢1𝑦 𝑢2𝑥 𝑢2𝑦 𝑢3𝑥 𝑢3𝑦 𝑢4𝑥 𝑢4𝑦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1.7149 −0.8565 0.4495 −0.1875 1.9864 1.4529 −0.7210 −0.4089 𝑏1
5𝑥

−0.7524 −3.1836 0.0565 −1.2452 1.8416 1.9412 −1.1456 2.4877 𝑏1
5𝑦

−0.5859 −0.0923 0.4937 −0.3045 0.4322 0.3967 −0.3399 0.0001 𝑏2
5𝑥

−0.0062 −0.3250 −0.258 0.0022 0.3967 0.2623 −0.1322 0.0605 𝑏2
5𝑦

−0.8861 −0.1059 0.7856 −0.5179 0.6699 0.6183 −0.5694 0.0055 𝑏3
5𝑥

0.0518 −0.4165 −0.4677 0.0650 0.6183 0.3509 −0.2025 0.0007 𝑏3
5𝑦

−0.6002 −0.1564 0.4595 −0.2638 0.5208 0.4045 −0.3801 0.0157 𝑏4
5𝑥

−0.0867 −0.4173 −0.1934 −0.0751 0.4045 0.3552 −0.1244 0.1372 𝑏4
5𝑦

−0.0962 −0.0481 0.4808 −0.2404 0.1923 −0.1442 −0.5769 0.4327 𝑐6𝑥
0.0481 0.3846 −0.2404 0.9615 −0.3365 −0.7692 0.5288 −0.5769 𝑐6𝑦
0.5769 0.4327 −0.1923 −0.1442 −0.4808 −0.2404 0.0962 −0.0481 𝑐7𝑥
0.5288 0.5769 −0.3365 0.7692 −0.2404 −0.9615 0.0481 −0.3846 𝑐7𝑦
0.7210 −0.4089 −1.9864 1.4529 −0.4495 −0.1875 1.7149 −0.8565 𝑏1

8𝑥
−1.1456 −2.4877 1.8416 −1.9412 0.0565 1.2452 −0.7524 3.1836 𝑏1

8𝑦
−0.3399 −0.0001 0.4322 −0.3967 0.4937 0.3045 −0.5859 0.0923 𝑏2

8𝑥
0.1322 0.0605 −0.3967 0.2623 0.2583 0.0022 0.0062 −0.3250 𝑏2

8𝑦
−0.5694 −0.0055 0.6699 −0.6183 0.7856 0.5179 −0.8861 0.1059 𝑏3

8𝑥
0.2025 0.0007 −0.6183 0.3509 0.4677 0.0650 −0.0518 −0.4165 𝑏3

8𝑦
0.3801 0.0157 −0.5208 0.4045 −0.4595 −0.2638 0.6002 −0.1564 𝑏4

8𝑥
−0.1244 −0.1372 0.4045 −0.3552 −0.1934 0.0751 −0.0867 0.4173 𝑏4

8𝑦

(6.13)

The enriched-enriched submatrix is split for viewing convenience into three submatrices by
dividing its columns

K3
𝑒𝑒 =

[
k3

1 k3
2 k3

3
(20 × 8) (20 × 4) (20 × 8)]

(6.14)
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k3
1 = 106

𝑏1
5𝑥 𝑏1

5𝑦 𝑏2
5𝑥 𝑏2

5𝑦 𝑏3
5𝑥 𝑏3

5𝑦 𝑏4
5𝑥 𝑏4

5𝑦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

13.8705 5.1975 2.0502 0.7177 3.5374 1.2159 1.5609 0.6104 𝑏1
5𝑥

5.1975 26.4649 0.6792 5.2796 1.1345 9.0905 0.7534 3.7132 𝑏1
5𝑦

2.0502 0.6792 1.0978 0.1690 1.8224 0.2346 0.8431 0.2228 𝑏2
5𝑥

0.7177 5.2796 0.1690 2.0517 0.2457 3.5826 0.2339 1.2216 𝑏2
5𝑦

3.5374 1.1345 1.8224 0.2457 3.0754 0.3500 1.3168 0.3216 𝑏3
5𝑥

1.2159 9.0905 0.2346 3.5826 0.3500 6.3480 0.3304 1.9734 𝑏3
5𝑦

1.5609 0.7534 0.8431 0.2339 1.3168 0.3304 0.8690 0.2818 𝑏4
5𝑥

0.6104 3.7132 0.2228 1.2216 0.3216 1.9734 0.2818 1.1805 𝑏4
5𝑦

0.4821 0.3534 0.0516 0.1686 0.0696 0.3110 0.1284 0.0187 𝑐6𝑥
−0.3694 −3.1250 0.0302 −0.5783 0.0747 −0.9925 −0.0792 −0.3827 𝑐6𝑦

0.0520 0.3002 −0.2908 −0.1317 −0.4045 −0.1302 −0.3397 −0.2405 𝑐7𝑥
0.3549 0.5303 −0.2701 0.2323 −0.3665 0.5778 −0.3384 −0.0906 𝑐7𝑦

−1.2547 −0.3663 −2.4493 0.4146 −4.2686 0.8166 −1.8219 0.0597 𝑏1
8𝑥

0.3663 −5.2272 0.6772 −4.2286 1.1769 −8.0132 0.3599 −2.1031 𝑏1
8𝑦

2.4493 0.6772 0.6863 0.0623 1.1889 0.1070 0.5433 0.0438 𝑏2
8𝑥

0.4146 4.2286 −0.0623 1.0571 −0.0935 1.9883 −0.0289 0.6293 𝑏2
8𝑦

4.2686 1.1769 1.1889 0.0935 2.0743 0.1618 0.8866 0.0825 𝑏3
8𝑥

0.8166 8.0132 −0.1070 1.9883 −0.1618 3.7371 −0.0319 1.0742 𝑏3
8𝑦

−1.8219 −0.3599 −0.5433 −0.0289 −0.8866 −0.0319 −0.5445 −0.0180 𝑏4
8𝑥

−0.0597 −2.1031 0.0438 −0.6293 0.0825 −1.0742 0.0180 −0.6988 𝑏4
8𝑦

(6.15)

k3
2 = 106

𝑐6𝑥 𝑐6𝑦 𝑐7𝑥 𝑐7𝑦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

0.4821 −0.3694 0.0520 0.3549 𝑏1
5𝑥

0.3534 −3.1250 0.3002 0.5303 𝑏1
5𝑦

0.0516 0.0302 −0.2908 −0.2701 𝑏2
5𝑥

0.1686 −0.5783 −0.1317 0.2323 𝑏2
5𝑦

0.0696 0.0747 −0.4045 −0.3665 𝑏3
5𝑥

0.3110 −0.9925 −0.1302 0.5778 𝑏3
5𝑦

0.1284 −0.0792 −0.3397 −0.3384 𝑏4
5𝑥

0.0187 −0.3827 −0.2405 −0.0906 𝑏4
5𝑦

0.9615 −0.4808 0.0000 0.0000 𝑐6𝑥
−0.4808 1.9231 0.0000 0.0000 𝑐6𝑦

0.0000 0.0000 0.9615 0.4808 𝑐7𝑥
0.0000 0.0000 0.4808 1.9231 𝑐7𝑦
0.0520 −0.3549 0.4821 0.3694 𝑏1

8𝑥
−0.3002 0.5303 −0.3534 −3.1250 𝑏1

8𝑦
0.2908 −0.2701 −0.0516 0.0302 𝑏2

8𝑥
−0.1317 −0.2323 0.1686 0.5783 𝑏2

8𝑦
0.4045 −0.3665 −0.0696 0.0747 𝑏3

8𝑥
−0.1302 −0.5778 0.3110 0.9925 𝑏3

8𝑦
−0.3397 0.3384 0.1284 0.0792 𝑏4

8𝑥
0.2405 −0.0906 −0.0187 −0.3827 𝑏4

8𝑦

(6.16)
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k3
1 = 106

𝑏1
8𝑥 𝑏1

8𝑦 𝑏2
8𝑥 𝑏2

8𝑦 𝑏3
8𝑥 𝑏3

8𝑦 𝑏4
8𝑥 𝑏4

8𝑦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1.2547 0.3663 2.4493 0.4146 4.2686 0.8166 −1.8219 −0.0597 𝑏1
5𝑥

−0.3663 −5.2272 0.6772 4.2286 1.1769 8.0132 −0.3599 −2.1031 𝑏1
5𝑦

−2.4493 0.6772 0.6863 −0.0623 1.1889 −0.1070 −0.5433 0.0438 𝑏2
5𝑥

0.4146 −4.2286 0.0623 1.0571 0.0935 1.9883 −0.0289 −0.6293 𝑏2
5𝑦

−4.2686 1.1769 1.1889 −0.0935 2.0743 −0.1618 −0.8866 0.0825 𝑏3
5𝑥

0.8166 −8.0132 0.1070 1.9883 0.1618 3.7371 −0.0319 −1.0742 𝑏3
5𝑦

−1.8219 0.3599 0.5433 −0.0289 0.8866 −0.0319 −0.5445 0.0180 𝑏4
5𝑥

0.0597 −2.1031 0.0438 0.6293 0.0825 1.0742 −0.0180 −0.6988 𝑏4
5𝑦

0.0520 −0.3002 0.2908 −0.1317 0.4045 −0.1302 −0.3397 0.2405 𝑐6𝑥
−0.3549 0.5303 −0.2701 −0.2323 −0.3665 −0.5778 0.3384 −0.0906 𝑐6𝑦

0.4821 −0.3534 −0.0516 0.1686 −0.0696 0.3110 0.1284 −0.0187 𝑐7𝑥
0.3694 −3.1250 0.0302 0.5783 0.0747 0.9925 0.0792 −0.3827 𝑐7𝑦

13.8705 −5.1975 −2.0502 0.7177 −3.5374 1.2159 1.5609 −0.6104 𝑏1
8𝑥

−5.1975 26.4649 0.6792 −5.2796 1.1345 −9.0905 −0.7534 3.7132 𝑏1
8𝑦

−2.0502 0.6792 1.0978 −0.1690 1.8224 −0.2346 −0.8431 0.2228 𝑏2
8𝑥

0.7177 −5.2796 −0.1690 2.0517 −0.2457 3.5826 0.2339 −1.2216 𝑏2
8𝑦

−3.5374 1.1345 1.8224 −0.2457 3.0754 −0.3500 −1.3168 0.3216 𝑏3
8𝑥

1.2159 −9.0905 −0.2346 3.5826 −0.3500 6.3480 0.3304 −1.9734 𝑏3
8𝑦

1.5609 −0.7534 −0.8431 0.2339 −1.3168 0.3304 0.8690 −0.2818 𝑏4
8𝑥

−0.6104 3.7132 0.2228 −1.2216 0.3216 −1.9734 −0.2818 1.1805 𝑏4
8𝑦

(6.17)

6.2.3 Displacements
After assembling the global stiffness matrix from the elementary sub-matrices of the pre-
vious section and calculating the global force vector, and the linear system is solved. The
displacements along the standard and artificial degrees of freedom are:
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6.2.4 Crack propagation step
This section presents the computation of the stress intensity factors. The domain, material
properties and XFEM parameters are exactly the same as in Section 6.2.1, with the following
exceptions

• The mesh is refined. A uniform mesh consisting of Quad4 elements is used, as illus-
trated in Figure 6.2.

• To calculate the interaction integrals over all elements in the J-integral domain, the
integration with sub-quads is employed (see Section 4.2). All elements are split into
8 × 8 sub-quads, and each sub-quad contains 4 × 4 integration points.

Fig. 6.2 Uniform mesh for the DCB.

The J-integral domain consists of the elements intersected by a circle centered at the crack
tip and with radius 𝑟𝐽 . The computation is performed for various ratios of this J-integral
radius over the element size, as well as for various element sizes. The J-integral and Mode
I stress SIF for each case are given in Table 6.1 and Table 6.2 respectively. The Mode II sif
is not included as 𝐾II = 0 in all cases. It can be observed that

• As the mesh is refined, both 𝐽 and 𝐾I converge.

• Increasing the ratio of the J-integral radius over the element size improves the accuracy
until a certain point, around 2.0 - 3.0. After that the accuracy is increasedmuch slower.

J-integral J-integral radius / element size
1 2 3 4 5

Mesh
15x45 2.2701 2.1317 2.1190 2.1171 2.1153
25x75 2.2552 2.1229 2.1137 2.1128 2.1115
45x135 2.2359 2.1083 2.1013 2.1012 2.1003

Table 6.1 The values of J-integral using various meshes and ratios of J-integral radius per
element size
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KI
J-integral radius / element size

1 2 3 4 5

Mesh
15x45 2233.6804 2164.5234 2158.0247 2157.0788 2156.1421
25x75 2226.2993 2160.0050 2155.3326 2154.9041 2154.2405
45x135 2216.7518 2152.5914 2148.9863 2148.9365 2148.5228

Table 6.2 The values of 𝐾I using various meshes and J-integral radius per element size ratios

6.3 Finite crack in an infinite plate

6.3.1 Problem formulation
The second example involves a finite crack inside an infinite plate subjected to a far field
uniaxial tension, as illustrated in Figure 6.3. For this particular problem, an analytic solution
is provided in [14]

𝐾I = 𝜎√𝜋𝛼 cos2 𝛽 (6.19a)
𝐾II = 𝜎√𝜋𝛼 cos 𝛽 sin 𝛽 (6.19b)

where 𝛼 half the crack length, 𝛽 is the angle between global x axis and the crack and 𝜎 is the
far field uniform tensile load.

Fig. 6.3 Infinite plate with finite crack under tension.
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Modeling the problem has been done according to the following:

• The width of the plate is𝑤 = 200𝑐𝑚, which is significantly larger than the crack length
2𝛼 = 4𝑐𝑚. There is no way to exactly model an infinite plate. At best a high 𝑤/𝛼 ratio
can be selected.

• Plane stress problem with material properties: Young’s modulus 𝐸 = 2.1 ⋅ 106 𝑘𝑔
𝑐𝑚2 ,

Poisson ratio 𝑣 = 0.3 and thickness 𝑡 = 1𝑐𝑚.

• To simulate the boundary conditions of this infinite plate, all nodes along the bottom
horizontal edge of the plate are constrained, while the uniform tension 𝜎 = 2000 𝑘𝑔

𝑐𝑚2 is
applied on the top horizontal edge. While this serves to replicate the stress conditions
of the original problem, inevitably some errors are introduced, especially for lower
𝑤/𝛼 ratios.

• The structured rectilinear finite element mesh shown in Figure 6.4 is employed in order
to reduce the computational cost of the analysis. This mesh is fine near the crack and
coarse in the rest of the domain. The mesh size of the fine region can be controlled to
study the convergence of the method.

• The numerical integration is performed according to Section 4.2. To construct the
stiffness matrices, elements that are intersected by the crack or contain a crack tip, are
split into 8 × 8 subquads and each subquad is integrated using 2 × 2 integration points.
To compute the interaction integrals, all elements in the J-integral domain are split
into 8 × 8 subquads and each subquad is integrated using 4 × 4 integration points.

Fig. 6.4 Rectilinear mesh that gets finer near the crack.
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6.3.2 Sensitivity to mesh size
At first the convergence of the method as the mesh gets refined is investigated. For a hori-
zontal angle (𝛽 = 0) the analytic solution is

𝐾𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐
I = 𝜎√𝜋𝛼 cos2 𝛽 = 5013.2565 𝑘𝑔

𝑐𝑚
3
2

(6.20a)

𝐾𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐
II = 𝜎√𝜋𝛼 cos 𝛽 sin 𝛽 = 0 (6.20b)

𝐽 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 =
𝐾2

I + 𝐾2
II

𝐸∗ = 11.9680 (6.20c)

Tomeasure the convergence, the mesh is refined to different degrees quantified by the ratio of
the crack length to the (finest) element size 2𝛼/ℎ. The radius of the J-integral outer contour to
the element size is set to 𝑟𝐽 /ℎ = 3. Table 6.3 aggregates the computed 𝐽 , 𝐾I, 𝐾II for various
values of 2𝛼/ℎ. The relative error in the J-integral and in 𝐾I are displayed in Figure 6.5. It
can be observed that the accuracy of the method improves as the mesh is refined. Note that
these results correspond to only one of the crack tips (the rightmost one). They are almost
identical to the respective 𝐽 , 𝐾I, 𝐾II computed at the other tip.

Crack length /
element size Jnumeric Knumeric

I Knumeric
II

1.0 57.7404 11011.5762 0.0000
1.5 41.4483 9329.5970 0.0000
2.0 27.7129 7628.7001 0.0000
2.5 22.9903 6948.3606 0.0000
3.0 14.5143 5520.8781 0.0000
3.5 12.9094 5206.7030 0.0000
4.0 12.0625 5033.0086 0.0000
4.5 12.0753 5035.6946 0.0000
5.0 11.9961 5019.1456 0.0000
5.5 12.0192 5023.9750 0.0000
6.0 11.9835 5016.5116 0.0000

Table 6.3 J-integral and SIFs for meshes of various size.
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Fig. 6.5 Effect of mesh size on the accuracy of 𝐾I and J-intεgral.

6.3.3 Sensitivity to J-integral radius
Next the effect of the J-integral radius is investigated, by setting the mesh size constant to
2𝛼/ℎ = 4 and the crack angle to 𝛽 = 0. The resulting 𝐽 , 𝐾I, 𝐾II for various values of 𝑟𝐽 /ℎ
are shown in Table 6.4, while the relative errors are plotted in Figure 6.6. It can be observed
that by increasing the the J-integral radius, the accuracy initially improves, then remains
constant and then rapidly deteriorates. The latter is due to the J-integral radius exceeding
the crack length, which causes the J-integral to be computed only from elements without any
discontinuities. As mentioned in Section 3.5.2, the J-integral ceases to be path independent
when the radius of the outer contour exceeds the crack length.

Fig. 6.6 Effect of the J-integral radius on the accuracy of 𝐾I and J-intgral.
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J-integral radius /
element size Jnumeric Knumeric

I Knumeric
II

1.0 12.4661 5116.5311 0.0000
1.5 12.4661 5116.5311 0.0000
2.0 11.8953 4998.0064 0.0000
2.5 11.8664 4991.9317 0.0000
3.0 12.0625 5033.0086 0.0000
3.5 12.0625 5033.0086 0.0000
4.0 14.3200 5483.7963 0.0000
4.5 14.3262 5484.9755 0.0000
5.0 21.8983 6781.3356 0.0000
5.5 21.9056 6782.4610 0.0000
6.0 27.7423 7632.7477 0.0000
Table 6.4 J-integral and SIFs for various J-integral domains.

6.3.4 Sensitivity to crack angle
Finally, different values of the crack angle 𝛽 are considered, while the mesh size and J-
integral radius are constant: 2𝛼/ℎ = 4 and 𝑟𝐽 /ℎ = 3. The evolution of the analytic and
computed SIFs and J-integrals as the crack angle changes is shown in Table 6.5 and Fig-
ure 6.7.

Crack
angle (o)

Janalytic Kanalytic
I Kanalytic

II Jnumeric Knumeric
I Knumeric

II

0 11.9680 5013.2565 0.0000 12.3174 5085.9087 0.4609
10 11.6071 4862.0884 857.3174 11.9420 4933.6146 858.8236
20 10.5680 4426.8169 1611.2296 10.8958 4500.9774 1619.3447
30 8.9760 3759.9424 2170.8038 9.1877 3815.9458 2175.4961
40 7.0231 2941.8997 2468.5470 6.8380 2922.3058 2412.4633
50 4.9449 2071.3568 2468.5470 5.0125 2124.7158 2451.9174
60 2.9920 1253.3141 2170.8038 3.0999 1327.0431 2179.1658
70 1.4000 586.4396 1611.2296 1.4544 661.1053 1617.7553
80 0.3609 151.1682 857.3174 0.3776 227.5216 860.9657
90 0.0000 0.0000 0.0000 0.0028 77.0290 0.0000

Table 6.5 J-integral and SIFs for various J-integral domains.
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Fig. 6.7 Effect of the crack angle on the stress intensity factors.

6.4 Crack propagation from a fillet

6.4.1 Problem formulation
This example shows the propagation from a crack in an I-beam. The configuration of the
problem is taken from experimental work found in [18] and is depicted in Figure 6.8. The
computational domain is outlined by dashed lines. Themodel of the problem is characterized
by

• The structure is in plane stress condition. It is subjected to a load 𝑃 = 20𝑘𝑁 , applied
at the top boundary.

• Two sets of boundary conditions are considered:

– The global 𝑦 degree of freedom is constrained for all nodes along the bottom
boundary, in order to simulate a very thick, rigid I-beam.

– The global 𝑦 degree of freedom is constrained only for the corner nodes of the
bottom boundary, in order to simulate a very thin, flexible I-beam.

• The beam is made of steel: 𝐸 = 210𝐺𝑃 𝑎, 𝑣 = 0.3

• The initial crack has a length of 5𝑚𝑚.
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Fig. 6.8 Crack in the lower part of an I-beam.

Figure 6.9 illustrates the unstructured mesh used. The mesh is refined near the fillets to better
conform to the curved geometry. Simultaneously the crack is expected to pass through that
area, so the accuracy of XFEM is further increased. Although a triangular mesh is viable,
it resulted in lower accuracy during testing, therefore 4-nodes quadrilateral finite elements
were selected.

Fig. 6.9 Unstructured mesh for the I-beam.

6.4.2 Crack path
An explicit crack description (see Section 5.2) is employed to model the crack. The simula-
tion progresses for 12 iterations, with a constant propagation length Δ𝐿 = 5𝑚𝑚. The crack
paths for the rigid (upper path) and flexible (lower path) I-beam are illustrated in Figure 6.10.
In the same figure, the crack paths for the two I-beams from [24] are also plotted with dashed
lines. It can be concluded that the results presented here are in agreement with the ones in
[24].
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Fig. 6.10 Crack propagation for the rigid (upper path) and flexible (lower path) I-beam. The
reference paths (dashed lines) were published in [24].

6.5 Crack growth in a double cantilever beam

6.5.1 Problem formulation
This example is taken from [21] and involves a crack propagating in a double cantilever beam,
which is shown in Figure 6.11. The computational model is described in the following:

• The dimensions of the DCB are ℎ = 3.94 in and 𝐿 = 3ℎ = 11.82 in.

• The right side of the DCB is fixed (constrained x,y dofs on all nodes with 𝑥 = 𝐿),
while a tensile load 𝑃 = 197 lbs is applied on the top left and bottom left nodes.

• The structure is in plane stress conditions and the material properties are
𝐸 = 3 ⋅ 107 psi and 𝑣 = 0.3.

• The first crack segment is horizontal at half the beam’s height and has length
𝑎 = 3.95 in. An extra crack segment is added with length 𝑑𝑎 = 0.5 in and at a slight
angle 𝑑𝜃 = 5.71𝑜. Without this kinking, the crack would propagate in pure Mode I,
provided the mesh and boundary conditions are symmetric.
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• The crack advances quasi-statically at various propagation lengths. An explicit crack
description is used to model the crack interface, as described in Section 5.2.

Fig. 6.11 Crack propagation in a double cantilever beam

At first, a sample analysis with a coarse uniform mesh was executed to obtain the general
area where the crack is expected to pass. Then the mesh was refined in that area in order to
improve the accuracy of XFEMandmake sure that consecutive crack tips do not lie inside the
same element. This significantly deteriorates the quality of the J-integral (see Section 3.5.2)
and the crack geometry descriptions (see Sections 5.2 and 5.3) and should always be avoided.
The resulting rectilinear mesh is shown in Figure 6.12.

Fig. 6.12 Rectilinear mesh for the DCB. The area where the crack is expected to pass is
refined.

6.5.2 Sensitivity to propagation length
This section investigates the effect of the growth length on the crack path. A constant mesh of
8777 elements is used, while the crack is allowed to propagate with various growth lengths.
The ratio of the J-integral radius over the element size is fixed at 𝑟𝐽 /ℎ𝑒𝑙 = 2.0. Figure 6.13
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illustrates the resulting crack paths. It can be observed that the growth length significantly
affects the crack path, with smaller lengths resulting in more accurate predictions.

Fig. 6.13 Effect of the propagation length on the crack path

6.5.3 Sensitivity to mesh size
The crack path also depends on the element size, albeit at a lower degree. To examine
the convergence of the crack paths when the mesh is refined, a series of independent crack
propagation analyses were performed over different meshes. In all cases the growth length
was fixed at 𝑑𝐿 = 0.3 in. The ratio of the J-integral radius over the element size was also
constant and equal to 𝑟𝐽 /ℎ𝑒𝑙 = 2.0. The crack paths are compared in Figure 6.14. It can be
seen that the predicted crack path quickly converges, and thus its sensitivity to the mesh size
is not as high as the sensitivity to the growth length.

Fig. 6.14 Effect of the mesh size on the crack path
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6.5.4 Implicit vs explicit crack geometry description
Finally the accuracy of LSM (see Section 5.3) is compared to that of the explicit crack de-
scription. The predicted paths of the two methods for two mesh sizes are depicted in Fig-
ure 6.15. The ”exact” path is computed on a very fine mesh of 7803 elements, using the
explicit crack description, which does not introduce inaccuracies in the geometric opera-
tions, unlike LSM. As in the previous section, the growth length is fixed at 𝑑𝐿 = 0.3 in and
the ratio of the J-integral radius over the element size at 𝑟𝐽 /ℎ𝑒𝑙 = 2.0. It can be concluded
from Figure 6.15, that both methods offer comparable accuracy, even on coarse meshes. As
expected, the explicit description is more accurate, but this advantage is mitigated when the
mesh is refined.

Fig. 6.15 LSM vs explicit crack geometry description



Chapter 7

Conclusions and future work

7.1 Summary
In this thesis the eXtended Finite Element Method was studied for crack propagation prob-
lems. By employing XFEM, there is no need to update the mesh at each time step, so that it
conforms to the crack interface. Instead the polynomial basis of the classic FEM is enriched
with special functions. These enrichment functions enable the approximated displacement
field to incorporate the effects of the crack interface and crack tip.

The crack propagation model presented in this work is based on Linear Elastic Fracture Me-
chanics. LEFM provides a way to estimate the displacement and stress fields around the
crack tip for brittle materials. To predict how the crack propagates, the stress intensity fac-
tors are needed. These can be accurately calculated using the J-integral method, which is
well suited for computations over a finite element mesh.

XFEM is a versatile framework that allows the enrichment of the finite dimensional approx-
imation with any problem specific function. By doing so, various non-polynomial solutions
can be sought, as long as some information about the approximation field is known. In the
case of a cracked body, the jumps in the displacement field and the near tip displacement
field are modeled by enriching with the Heaviside and asymptotic tip functions respectively.

Discretizing the governing equations and arriving at the linear system describing the equi-
librium is similar to traditional FEM. A novelty of XFEM is the introduction of artificial
degrees of freedom for each enrichment function. In turn this results in the stiffness matri-
ces and force vectors containing terms related to these dofs, after integrating the enriched
basis functions. Another important difference is the need for special integration rules, since
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the integrands may contain discontinuous or singular terms.

XFEM removes the burden of needing a mesh that conforms to the crack interface, at the cost
of introducing some degree of coupling between them. To implement XFEM for crack prop-
agation problems, a significant amount of crack geometry-mesh interactions are required.
Modeling the crack is performed using an explicit or implicit approach. Explicit crack de-
scriptions tend to be more accurate, while implicit ones couple naturally with XFEM and
are more efficient computationally.

XFEM has the potential to produce highly accurate solutions, without significantly deviating
from the well known workflow of tradition FEM. Nevertheless, attention to some details is
important, as concluded from the numerical examples. Selecting the appropriate mesh size
needs to be considered alongside the selection of the crack propagation length and the radius
of the J-integral domain. Although numerical integration is crucial to achieve the required
accuracy, applying one of the specialized integration schemes is quite straightforward. Re-
fining the mesh does indeed result in better approximations, however the convergence rate
is often lower than expected.

For the needs of this thesis, XFEM and the crack propagation module has been in imple-
mented in C# code. Object oriented programming is closer to the real domain and affords
a high level of abstraction for all the details involved in XFEM and mesh-geometry inter-
actions. This code is freely available as part of the open source MSolve software [36] for
structural analysis and design, developed by the Institute of Structural Analysis and Anti-
seismic Research at the National Technical University of Athens.

7.2 Lines of future work
XFEM has met with increasing interest over the past years and has been applied successfully
to various problems. The current code implements XFEM for crack propagation problems
covering all basic aspects. Nevertheless, it has to be extended to accommodate more ad-
vanced cases.

3D problems: Extending theXFEM formulation, including the integration schemes, to three
dimensions is straightforward. Somemodification to the J-integral method are necessary, but
the main hurdle is how to accurately and efficiently describe the interaction of 3D crack ge-
ometries with the finite element mesh. Although implicit methods are far easier to extended



7.2 Lines of future work 175

to 3D, special care must be taken to mitigate their many inherent inaccuracies.

Convergence: Convergence analysis of XFEM is more complicated than traditional FEM.
In general, h-refinement (using finer meshes) exhibits slower convergence than expected.
This can be attributed mainly to blending elements, that is elements where only some of the
nodes are enriched and the partition of unity no longer holds. Different blending strategies
need to be considered and implemented. Additionally, this thesis only dealt with first order
finite element. Using higher order elements usually results in an increase of the error intro-
duced by blending elements and reduced convergence rate. An approach to be considered is
enriching only the nodes used in the first order interpolation (for enriched elements), while
the standard shape functions are polynomials of higher degree.

Other fracture mechanics models: The fracture model presented in Chapter 3 is based on
LEFM. LEFM is suitable for brittle material where the nonlinear zone ahead of the crack tip
is negligible. As can be seen in Figure 7.1a, this zone is dominated by the singularity in the
stress fields. Moreover, the crack faces are traction-free over their entire length.

Fig. 7.1 Fracture models: a) Brittle fracture, b) Cohesive fracture, c) Ductile fracture

This model cannot accurately describe the behavior of quasi-brittle materials, such as con-
crete and geomaterials. In this case, the region in front of the crack tip is called fracture
process zone (FPZ) and can no longer be ignored. The material exhibits nonlinear behavior
in the FPZ, due to plasticity and microcracking, thus requiring a cohesive constitutive rela-
tion to properly model fracture phenomena. In the cohesivemodel, the damagedmaterial can
still still transfer stresses in the FPZ and the characteristic singularity of LEFM is avoided,
as illustrated in Figure 7.1b. Another key difference is that cohesive forces are developed
between the two crack faces, therefore a traction separation law is needed for the FPZ.
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Crack propagation in ductile materials, such as steel, progresses according to Ductile Frac-
ture Mechanics. In this case, fracture is preceded by large plastic deformations and the plas-
tic energy release rate near the crack tip is not negligible as in LEFM. In Ductile Fracture
Mechanics, the FPZ grows larger and a damage-plasticity model is required to simulate the
material behavior. The damage-plasticity model can be applied over the whole domain or it
can be localized at the FPZ, but the latter typically results in ill-posed governing equations.
At any rate, both material and geometric nonlinearities must be considered, due to plastic
constitutive laws and large deformations respectively.

Finally, a crack tends to branch as it propagates in reality. This can be modeled in XFEM
using junction enrichment functions. Furthermore, bimaterial crack propagation problems
can be solved with minor modifications using the XFEM framework. To do so, the crack is
modeled using the Heaviside and tip functions, while the bimaterial interface can be mod-
eled with the ramp function. The ramp function 𝜓(x) = |𝜑(x)| introduces a jump in the
strain/stress field, while the displacement field remains continuous across the bimaterial in-
terface.
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Appendix A

Coordinate systems and transformations

There are four coordinate systems involved in crack propagation analysis with XFEM:

• A global cartesian system, which is the original system where all physical quantities
are defined. Its coordinates will be denoted as x = (𝑥, 𝑦).

• A natural system for each finite element, which is used in the isoparametric formula-
tion. Its coordinates will be denoted as ξ = (𝜉, 𝜂).

• A local cartesian system defined at the crack tip, whose �̃� axis is aligned with the crack
and points outwards. Its coordinates will be denoted as x̃ = (�̃�, ̃𝑦).

• A local polar system defined at the crack tip, which is a polar transformation of the tip
cartesian system listed above. Its coordinates will be denoted as r = (𝑟, 𝜃).

This appendix presents all necessary transformations of points and fields between those sys-
tems.
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A.1 Isoparametric formulation

Fig. A.1 The isoparametric mapping for a quadrilateral element with 4 nodes. Left: the
global cartesian coordinate system. Right: the element’s natural coordinate system.

A.1.1 The isoparametring mapping
Figure A.1 displays a quadrilateral finite element with 4 nodes, the global cartesian and the
element’s natural coordinate system. The direct mapping is defined for transforming the
natural coordinates ξ = (𝜉, 𝜂) of a point to global coordinates x = (𝑥, 𝑦):

𝑥 = 𝑥(ξ) =
𝑛𝑛𝑜𝑑𝑒𝑠

∑
𝑖=1

𝑁𝑖(ξ)𝑥𝑖 (A.1a)

𝑦 = 𝑦(ξ) =
𝑛𝑛𝑜𝑑𝑒𝑠

∑
𝑖=1

𝑁𝑖(ξ)𝑦𝑖 (A.1b)

where

• 𝑛𝑛𝑜𝑑𝑒𝑠 is the number of the element’s nodes.

• 𝑥𝑖 and 𝑦𝑖 are the global coordinates of node 𝑖.

• 𝑁𝑖(ξ) are the shape functions used for interpolating nodal values over the element’s
domain. They are drawn from the space of Lagrange polynomials.

• The element’s nodes must be numbered either clockwise or anti-clockwise in both
coordinate systems. Here an anti-clockwise numbering is adopted.
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The shape functions of the 4-noded quadrilateral element (Quad4) depicted in Figure A.1
are:

𝑁1(ξ) = 1
4(1 − 𝜉)(1 − 𝜂) (A.2a)

𝑁2(ξ) = 1
4(1 + 𝜉)(1 − 𝜂) (A.2b)

𝑁3(ξ) = 1
4(1 + 𝜉)(1 + 𝜂) (A.2c)

𝑁4(ξ) = 1
4(1 − 𝜉)(1 + 𝜂) (A.2d)

Fig. A.2 The isoparametric mapping for a triangular element with 3 nodes. Left: the global
cartesian coordinate system. Right: the element’s natural coordinate system.

The shape functions of the 3-noded triangular element (Tri3) depicted in Figure A.2 are:

𝑁1(ξ) = 1 − 𝜉 − 𝜂 (A.3a)
𝑁2(ξ) = 𝜉 (A.3b)
𝑁3(ξ) = 𝜂 (A.3c)

Note that for both Quad4 and Tri3 the shape functions are (bi)linear functions of the natural
coordinates, hence the terms linear or first order finite elements.
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A.1.2 Jacobian of the isoparametric mapping
The Jacobian matrix of the direct mapping is

J𝑁𝐺 =
[

𝑥,𝜉 𝑥,𝜂
𝑦,𝜉 𝑦,𝜂]

=
⎡
⎢
⎢
⎢
⎢
⎣

𝑛𝑛𝑜𝑑𝑒𝑠
∑
𝑖=1

𝑁𝑖,𝜉 (ξ) 𝑥𝑖
𝑛𝑛𝑜𝑑𝑒𝑠
∑
𝑖=1

𝑁𝑖,𝜂 (ξ) 𝑥𝑖
𝑛𝑛𝑜𝑑𝑒𝑠
∑
𝑖=1

𝑁𝑖,𝜉 (ξ) 𝑦𝑖
𝑛𝑛𝑜𝑑𝑒𝑠
∑
𝑖=1

𝑁𝑖,𝜂 (ξ) 𝑦𝑖

⎤
⎥
⎥
⎥
⎥
⎦

(A.4)

where 𝑓,𝜉 and 𝑓,𝜂 denote the differentiation of 𝑓 with respect to 𝜉 and 𝜂 respectively. Its
determinant will be called Jacobian determinant henceforth and can be calculated as

|J𝑁𝐺| = 𝑥,𝜉 𝑦,𝜂 −𝑥,𝜂 𝑦,𝜉 (A.5)

The inverse mapping (global to natural coordinates) does not generally have analytic formu-
las. Even though the mapping itself is rarely used in classic FEM, its Jacobian is important
and typically obtained by inversing J𝑁𝐺

J𝐺𝑁 = J−1
𝑁𝐺 =

[
𝜉,𝑥 𝜉,𝑦
𝜂,𝑥 𝜂,𝑦]

= 1

|J𝑁𝐺|
[

𝑦,𝜂 −𝑥,𝜂
−𝑦,𝜉 𝑥,𝜉 ]

(A.6)

and its determinant is

|J𝐺𝑁 | = 1

|J𝑁𝐺|
(A.7)

A.1.3 Transformation of fields and their derivatives
Scalar fields

A scalar field 𝑓 is independent of the coordinate system used, thus there is no transformation
necessary 𝑓(x) = 𝑓(ξ).

Scalar field derivatives

To differentiate a scalar field 𝑓 with respect to the global coordinates 𝑥, 𝑦:

• If the analytic expression of 𝑓(x) is known, simply calculate

x∇𝑓(x) = [𝑓 ,𝑥 (x) 𝑓 ,𝑦 (x)] (A.8)

where x∇ denotes the gradient operator with respect to global coordinates
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• Otherwise differentiate with respect to natural coordinates and apply the chain rule

𝜗𝑓
𝜗𝑥 = 𝜗𝑓

𝜗𝜉
𝜗𝜉
𝜗𝑥 + 𝜗𝑓

𝜗𝜂
𝜗𝜂
𝜗𝑥

𝜗𝑓
𝜗𝑦 = 𝜗𝑓

𝜗𝜉
𝜗𝜉
𝜗𝑦 + 𝜗𝑓

𝜗𝜂
𝜗𝜂
𝜗𝑦

(A.9)

or

x∇𝑓(x) = [𝑓 ,𝑥 (x) 𝑓 ,𝑦 (x)] = [𝑓 ,𝜉 (ξ) 𝑓 ,𝜂 (ξ)] ⋅
[

𝜉,𝑥 𝜉,𝑦
𝜂,𝑥 𝜂,𝑦]

⇔ x∇𝑓(x) = ξ∇𝑓(ξ) ⋅ J−1
𝑁𝐺

(A.10)

As seen in the previous equations, the chain rule is conveniently written as a right multipli-
cation with the inverse of the direct mapping’s Jacobian matrix, given that the gradient is
written as a row vector. This notation will be kept throughout the thesis.

Vector fields

Unlike scalar fields, the representation of a vector field F is defined with respect to a coordi-
nate system. In fact, the components of a vector field are the scalar coefficients of the coor-
dinate system’s basis vectors. Therefore the same vector will have different representations
(components) in different coordinate systems. Fortunately in the case of the isoparametric
formulation, all vector fields of interest are typically represented only in the global cartesian
system, so there is not any need to transform them. The following notation will be adopted:

• F(x) denotes the analytic expression with respect to the global coordinates that pro-
duces the global components of the vector field.

F(x) =
[

𝐹𝑥(x)
𝐹𝑦(x)]

(A.11)

• F̄(ξ) denotes the analytic expression with respect to the natural coordinates that pro-
duces the natural components of the vector field. As stated before, this will not be
used, since only the representation of the vector in the global system is needed.

• F(ξ) denotes the analytic expression with respect to the natural coordinates that pro-
duces the global components of the vector field. Often an analytic expression is known
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only with respect to the natural coordinates, even though the representation of the vec-
tor refers to the global cartesian system.

F(ξ) =
[

𝐹𝑥(ξ)
𝐹𝑦(ξ)]

(A.12)

Vector field derivatives

The gradients of a vector field with respect to (w.r.t. in short) the two coordinate systems are

• Global cartesian components and derivatives w.r.t global cartesian coordinates:

x∇F(x) =
[

𝐹𝑥,𝑥 (x) 𝐹𝑥,𝑦 (x)
𝐹𝑦,𝑥 (x) 𝐹𝑦,𝑦 (x)]

(A.13)

• Global cartesian components but derivatives w.r.t natural coordinates:

ξ∇F(ξ) =
[

𝐹𝑥,𝜉 (ξ) 𝐹𝑥,𝜂 (ξ)
𝐹𝑦,𝜉 (ξ) 𝐹𝑦,𝜂 (ξ)]

(A.14)

Contrary to the field itself, the gradient of a vector field must be transformed between the two
coordinate systems if its analytic expression in the desired system is unknown. To transform
the gradient of a vector field from the natural to the global system, the chain rule is applied
again. Note that each row contains the derivatives of the same vector component. This is
similar to scalar field gradients being written as row vectors. Therefore the chain rule can
be implemented by right multiplying each row of the vector field’s gradient with the inverse
of the (direct) mapping’s Jacobian matrix.

x∇F(x) = ξ∇F(ξ) ⋅ J−1
𝑁𝐺

⇔
[

𝐹𝑥,𝑥 (x) 𝐹𝑥,𝑦 (x)
𝐹𝑦,𝑥 (x) 𝐹2,𝑦 (x)]

=
[

𝐹𝑥,𝜉 (ξ) 𝐹𝑥,𝜂 (ξ)
𝐹𝑦,𝜉 (ξ) 𝐹𝑦,𝜂 (ξ)]

⋅
[

𝜉,𝑥 𝜉,𝑦
𝜂,𝑥 𝜂,𝑦]

(A.15)

Tensor fields

The two tensors that appear most often are the strain and stress tensor. Of course the gradient
of the displacement field is also a second order tensor, but it is covered in the previous section
about vector fields. Similar to vectors, these tensors are represented (their components) in
the global cartesian system. In addition, note that the strain tensor and indirectly the stress
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tensor are derived from the gradient of the displacement field with respect to the global
cartesian coordinates. Thus there is no need to transform them between the two systems.
One usually calculates the components of the strain or stress tensor in the global cartesian
system, expressed as functions of the natural coordinates, and uses those (e.g. in the weak
form, for stress recovery, etc.).

A.1.4 The inverse isoparametric mapping
The inverse mapping (global to natural coordinates) does not generally have analytic for-
mulas. Unlike traditional FEM, in XFEM it may be used for some integration schemes (see
Section 4.3). Typically numerical methods are used to obtain an approximation of the inverse
transformation. However, for first order finite elements (3-node triangle, 4-node quadrilat-
eral in 2D and 4-node tatrahedron, 8-node hexahedron in 3D) the direct mapping is linear
and there exist unique inverse mappings with analytic formulas.

Inverse mapping of an isoparametric 3-noded triangular element

The inverse mapping of an isoparametric triangular element with 3 nodes can be easily de-
rived by expanding the direct mapping and solving for the the natural coordinates ξ = (𝜉, 𝜂):

𝑥 = (1 − 𝜉 − 𝜂)𝑥1 + 𝜉𝑥2 + 𝜂𝑥3 ⇔ (𝑥2 − 𝑥1)𝜉 + (𝑥3 − 𝑥1)𝜂 = 𝑥 − 𝑥1 (A.16a)

𝑦 = (1 − 𝜉 − 𝜂)𝑦1 + 𝜉𝑦2 + 𝜂𝑦3 ⇔ (𝑦2 − 𝑦1)𝜉 + (𝑦3 − 𝑦1)𝜂 = 𝑦 − 𝑦1 (A.16b)

Using Cramer’s rule for this 2×2 linear system

𝜉 =
𝐷𝜉
𝐷 (A.17a)

𝜂 =
𝐷𝜂
𝐷 (A.17b)

𝐷 =
|
𝑥2 − 𝑥1 𝑥3 − 𝑥1
𝑦2 − 𝑦1 𝑦3 − 𝑦1|

(A.17c)

𝐷𝜉 =
|
𝑥 − 𝑥1 𝑥3 − 𝑥1
𝑦 − 𝑦1 𝑦3 − 𝑦1|

(A.17d)

𝐷𝜂 =
|
𝑥2 − 𝑥1 𝑥 − 𝑥1
𝑦2 − 𝑦1 𝑦 − 𝑦1|

(A.17e)
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Therefore

𝜉 = (𝑥 − 𝑥1)(𝑦3 − 𝑦1) − (𝑥3 − 𝑥1)(𝑦 − 𝑦1)
(𝑥2 − 𝑥1)(𝑦3 − 𝑦1) − (𝑥3 − 𝑥1)(𝑦2 − 𝑦1) (A.18a)

𝜂 = (𝑥2 − 𝑥1)(𝑦 − 𝑦1) − (𝑥 − 𝑥1)(𝑦2 − 𝑦1)
(𝑥2 − 𝑥1)(𝑦3 − 𝑦1) − (𝑥3 − 𝑥1)(𝑦2 − 𝑦1) (A.18b)

Note that above 𝐷 ≠ 0 is assumed. This is the case for any non degenerate triangle, since

• No two vertices coincide (precondition 1)

• The three vertices do not lie on the same line (precondition 2)

Suppose 𝐷 = 0 ⇔ (𝑥2 − 𝑥1)(𝑦3 − 𝑦1) − (𝑥3 − 𝑥1)(𝑦2 − 𝑦1) = 0

• Case 1: 𝑥2 − 𝑥1 ≠ 0 AND 𝑥3 − 𝑥1 ≠ 0

𝐷 = 0⇔ 𝑦3 − 𝑦1
𝑥3 − 𝑥1

= 𝑦2 − 𝑦1
𝑥2 − 𝑥1

⇒ (x3 −x1) ∥ (x2 −x1) which violates precondition 2

• Case 2: 𝑥2 − 𝑥1 = 0

𝐷 = 0⇔ (𝑥3−𝑥1)(𝑦2−𝑦1) = 0⇔
⎧
⎪
⎨
⎪
⎩

𝑥3 − 𝑥1 = 0 which violates precondition 2
𝑂𝑅

𝑦2 − 𝑦1 = 0 which violates precondition 1

• Case 3: 𝑥3 − 𝑥1 = 0

𝐷 = 0⇔ (𝑥2−𝑥1)(𝑦3−𝑦1) = 0⇔
⎧
⎪
⎨
⎪
⎩

𝑥2 − 𝑥1 = 0 which violates precondition 2
𝑂𝑅

𝑦3 − 𝑦1 = 0 which violates precondition 1
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Inverse mapping of an isoparametric 4-noded quadrilateral element

The inverse mapping of an isoparametric quadrilateral element with 4 nodes (Quad4) is
developed by Hua. Here only the necessary formulas will be presented. For their detailed
derivation, the reader is referred to [17]. To transform the global coordinates x = (𝑥, 𝑦) of a
point to the natural coordinates ξ = (𝜉, 𝜂):

1. Calculate the following coefficients from the global coordinates of the point and the
element’s nodes

⎡⎢⎢⎢⎣

𝑎1 𝑎2
𝑏1 𝑏2
𝑐1 𝑐2

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

1 −1 1 −1
−1 1 1 −1
−1 −1 1 1

⎤⎥⎥⎥⎦
⋅

⎡
⎢
⎢
⎢
⎢
⎣

𝑥1 𝑦1
𝑥2 𝑦2
𝑥3 𝑦3
𝑥4 𝑦4

⎤
⎥
⎥
⎥
⎥
⎦

(A.19a)

𝑑1 = 4𝑥 − (𝑥1 + 𝑥2 + 𝑥3 + 𝑥4) (A.19b)
𝑑2 = 4𝑦 − (𝑦1 + 𝑦2 + 𝑦3 + 𝑦4) (A.19c)

2. Calculate the following (2×2) determinants

𝑎𝑏 = −𝑏𝑎 = 𝑎1 ⋅ 𝑏2 − 𝑎2 ⋅ 𝑏1 (A.20a)
𝑎𝑐 = 𝑎1 ⋅ 𝑐2 − 𝑎2 ⋅ 𝑐1 (A.20b)

𝑎𝑑 = −𝑑𝑎 = 𝑎1 ⋅ 𝑑2 − 𝑎2 ⋅ 𝑑1 (A.20c)
𝑏𝑐 = −𝑐𝑏 = 𝑏1 ⋅ 𝑐2 − 𝑏2 ⋅ 𝑐1 (A.20d)
𝑏𝑑 = −𝑑𝑏 = 𝑏1 ⋅ 𝑑2 − 𝑏2 ⋅ 𝑑1 (A.20e)

𝑑𝑐 = 𝑑1 ⋅ 𝑐2 − 𝑑2 ⋅ 𝑐1 (A.20f)
(A.20g)

3. Depending on the above coefficients and determinants, refer to Table A.1, in order to
calculate the natural coordinates (𝜉, 𝜂)
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Case Condition Solution
1 𝑎1𝑎2𝑎𝑏𝑎𝑐 ≠ 0 ξ is the solution of: 𝑎𝑏𝜉2 + (𝑐𝑏 + 𝑑𝑎)𝜉 + 𝑑𝑐 = 0
2 𝑎1 = 0 AND 𝑎2𝑐1 ≠ 0 that lies in the interval [-1.0, 1.0]
3 𝑎2 = 0 AND 𝑎1𝑏2 ≠ 0 𝜂 = (𝑎𝑑 + 𝑏𝑎𝜉)/𝑎𝑐
4 𝑎1𝑎2 ≠ 0 AND 𝑎𝑏 = 0 𝜉 = (𝑎1𝑑𝑐)/(𝑏1𝑎𝑐 + 𝑎1𝑎𝑑) 𝜂 = 𝑎𝑑 /𝑎𝑐
5 𝑎1𝑎2 ≠ 0 AND 𝑎𝑏 = 0 𝜉 = 𝑎𝑑 /𝑎𝑏 𝜂 = (𝑎1𝑑𝑏)/(𝑐1𝑎𝑏 + 𝑎1𝑎𝑑)
6 All other cases 𝜉 = 𝑑𝑐/(𝑎1𝑑2 + 𝑏𝑐) 𝜂 = 𝑏𝑑 /(𝑎2𝑑1 + 𝑏𝑐)

Table A.1 Solutions of the inverse Quad 4 transformation.

Note that the shape functions (A.2) are assumed to implement the mapping illustrated in
Figure A.1, where (𝜉1, 𝜂1) is mapped to (𝑥1, 𝑦1) and so forth. In addition the node numbering
is anti-clockwise. If the nodes are numbered clockwise or if (𝜉1, 𝜂1) is mapped to a node with
different coordinates than (𝑥1, 𝑦1) (and so forth), then (A.19) needs to be modified too.

A.2 Crack tip coordinate systems
At each crack tip a local cartesian system and its corresponding local polar system are de-
fined, such that:

• The local �̃� axis is parallel to the line tangent to the crack at the crack tip and oriented
away from the crack.

• The local ̃𝑦 axis can be obtained by rotating the local �̃� axis 90𝑜 counter-clockwise.

• 𝛼 ∈ (−𝜋, 𝜋] is the counter-clockwise angle from global x axis to local �̃� axis.
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Fig. A.3 The local cartesian (red) and local polar (green) coordinate systems defined at each
tip of an interior crack.

A.2.1 The local coordinate systems around the crack tip
To transform the global coordinates of a point to the local cartesian system of the tip, the
following mapping is used

x̃ = Q ⋅ x + b (A.21)

where

• Q is the following orthonormal rotation matrix:

Q =
[

𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼
−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼]

(A.22a)

QΤ = Q−1 (A.22b)

• b =
[

�̃�𝑜
̃𝑦𝑜]

are the local cartesian coordinates of the global system’s origin 𝑂(0, 0).
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The inverse mapping, that is from the tip’s local cartesian system to the global cartesian
system, is defined similarly to (A.21)

x = Q−1 ⋅ x̃ + x𝑇

⇔ x = Q𝑇 ⋅ x̃ + x𝑇

(A.23)

or it can be derived by multiplying (A.21) with Q𝑇

Q𝑇 ⋅ x̃ = Q𝑇 ⋅ Q ⋅ x + Q𝑇 ⋅ b

⇔ Q−1 ⋅ Q ⋅ x = Q𝑇 ⋅ x̃ − Q𝑇 ⋅ b

⇔ x = Q𝑇 ⋅ x̃ − Q𝑇 ⋅ b

(A.24)

where x𝑇 =
[

𝑥𝑇
𝑦𝑇 ]

are the global coordinates of the local cartesian system’s origin, i.e. the

crack tip T, which are known. Thus b can now be obtained from

− Q𝑇 ⋅ b = x𝑇

⇔ b = −Q ⋅ x𝑇

(A.25)

The local polar coordinate system defined at the crack tip uses the usual polar conversion.
Define

• The direct mapping: from the local polar to the local cartesian coordinate system

�̃� = 𝑟 ⋅ 𝑐𝑜𝑠𝜃 (A.26a)
̃𝑦 = 𝑟 ⋅ 𝑠𝑖𝑛𝜃 (A.26b)

• The inverse mapping: from the local cartesian to the local polar coordinate system

𝑟 = √�̃� 2 + ̃𝑦 2 ∈ [0, ∞) (A.27a)

𝜃 = atan2(
̃𝑦

�̃�) ∈ (−𝜋, 𝜋] (A.27b)
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where atan2(y/x) is a common variation of the arctangent function, that returns angles cov-
ering a whole circle and is provided in most programming languages.

A.2.2 Jacobians of the mappings between crack tip systems
The Jacobian matrix of the direct mapping from global to local cartesian coordinate system
is

J𝐺𝐿 =
[

�̃�,𝑥 �̃�,𝑦
̃𝑦,𝑥 ̃𝑦,𝑦]

=
[

𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼
−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼]

= Q (A.28)

while the Jacobian matrix of the inverse mapping from global to local cartesian coordinate
system is

J𝐿𝐺 =
[

𝑥,�̃� 𝑥, ̃𝑦
𝑦,�̃� 𝑦, ̃𝑦]

= J−1
𝐺𝐿 = Q−1

⇔ J𝐿𝐺 = J−1
𝐺𝐿 = Q𝑇 =

[
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 ]

(A.29)

and the determinants are

|J𝐺𝐿| = |J𝐿𝐺| = 𝑐𝑜𝑠2𝛼 + 𝑠𝑖𝑛2𝛼 = 1 (A.30)

Note that these Jacobian matrices and their determinants are constants, since 𝑎 is constant for
each crack configuration. For all other mappings examined in this section and the previous
one, the Jacobian matrices and their determinants depend on the coordinates of the point
they are evaluated at.

The Jacobian matrix of the direct mapping from local polar to local cartesian coordinate
system is

J𝑃 𝐿 =
[

�̃�,𝑟 �̃�,𝜃
̃𝑦,𝑟 ̃𝑦,𝜃]

=
[

𝑐𝑜𝑠𝜃 −𝑟𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑟𝑐𝑜𝑠𝜃 ]

(A.31)

and its determinant is

|J𝑃 𝐿| = 𝑟 (𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃) = 𝑟 (A.32)
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The Jacobian matrix of the inverse mapping from local cartesian to local polar coordinate
system can be calculated by inversing J𝑃 𝐿

J𝐿𝑃 =
[

𝑟,�̃� 𝑟, ̃𝑦
𝜃,�̃� 𝜃, ̃𝑦]

= J−1
𝑃 𝐿 = 1

|J𝑃 𝐿|
[

𝑟𝑐𝑜𝑠𝜃 −(−𝑟𝑠𝑖𝑛𝜃)
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 ]

⇔ J𝐿𝑃 = J−1
𝑃 𝐿 =

[
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃
𝑟

𝑐𝑜𝑠𝜃
𝑟 ]

(A.33)

and its determinant is

|J𝐿𝑃 | = 1

|J𝑃 𝐿|
= 1

𝑟 (A.34)

A.2.3 Transformation of fields and their derivatives
Only the transformations that are actually applied will be presented here.

Scalar fields

A scalar field 𝑓 is independent of the coordinate system used, thus there is no transformation
necessary 𝑓(x) = 𝑓(x̃) = 𝑓(r).

Scalar field derivatives

Let

• x∇𝑓(x) = [𝑓 ,𝑥 (x) 𝑓 ,𝑦 (x)]

• x̃∇𝑓(x̃) = [𝑓 ,�̃� (x̃) 𝑓 , ̃𝑦 (x̃)]

• r∇𝑓(r) = [𝑓 ,𝑟 (r) 𝑓 ,𝜃 (r)]

be the gradients (row vectors as before) of the scalar field with respect to the global cartesian,
local cartesian and local polar coordinates accordingly. To convert the gradient between two
of these systems, the chain rule is applied or equivalently a multiplication with the Jacobian
matrix of the inverse mapping (see Appendix A.1.3):



A.2 Crack tip coordinate systems 195

• Global cartesian to local cartesian ( x∇𝑓(x) → x̃∇𝑓(x̃)). Multiply with J−1
𝐺𝐿 = Q𝑇 :

x̃∇𝑓(x̃) = x∇𝑓(x) ⋅ J−1
𝐺𝐿

⇔ [𝑓 ,�̃� (x̃) 𝑓 , ̃𝑦 (x̃)] = [𝑓 ,𝑥 (x) 𝑓 ,𝑦 (x)] ⋅
[

𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 ]

(A.35)

• Local cartesian to global cartesian ( x̃∇𝑓(x̃) → x∇𝑓(x)). Multiply with
J−1

𝐿𝐺 = J𝐺𝐿 = Q:

x∇𝑓(x) = x̃∇𝑓(x̃) ⋅ J−1
𝐿𝐺

⇔ [𝑓 ,𝑥 (x) 𝑓 ,𝑦 (x)] = [𝑓 ,�̃� (x̃) 𝑓 , ̃𝑦 (x̃)] ⋅
[

𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼
−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼]

(A.36)

• Local polar to local cartesian ( r∇𝑓(r) → x̃∇𝑓(x̃)). Multiply with J−1
𝑃 𝐿:

x̃∇𝑓(x̃) = r∇𝑓(r) ⋅ J−1
𝑃 𝐿

⇔ [𝑓 ,�̃� (x̃) 𝑓 , ̃𝑦 (x̃)] = [𝑓 ,𝑟 (r) 𝑓 ,𝜃 (r)] ⋅
[

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃

𝑟
𝑐𝑜𝑠𝜃

𝑟 ]
(A.37)

• Local polar to global cartesian ( r∇𝑓(r) → x∇𝑓(x)). A useful shortcut:

x∇𝑓(x) = r∇𝑓(r) ⋅ J−1
𝑃 𝐿 ⋅ J−1

𝐿𝐺

⇔ [𝑓 ,𝑥 (x) 𝑓 ,𝑦 (x)] = [𝑓 ,𝑟 (r) 𝑓 ,𝜃 (r)] ⋅
[

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃

𝑟
𝑐𝑜𝑠𝜃

𝑟 ]
⋅

[
𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼

−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼]

⇔ [𝑓 ,𝑥 (x) 𝑓 ,𝑦 (x)] = [𝑓 ,𝑟 (r) 𝑓 ,𝜃 (r)] ⋅
[

𝑐𝑜𝑠𝛼 ⋅ 𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝛼 ⋅ 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝛼 ⋅ 𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝛼 ⋅ 𝑠𝑖𝑛𝜃
−𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝜃

𝑟 − 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝜃
𝑟 −𝑠𝑖𝑛𝛼 𝑠𝑖𝑛𝜃

𝑟 + 𝑐𝑜𝑠𝛼 𝑐𝑜𝑠𝜃
𝑟 ]

(A.38)

Vectors

Let

• 𝑃1 and 𝑃2 be two points

• 𝑃1 (𝑥1, 𝑦1) and 𝑃2 (𝑥2, 𝑦2) be their representations in the global cartesian system
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• 𝑃1 (�̃�1, ̃𝑦1) and 𝑃2 (�̃�2, ̃𝑦2) be their representations in the local cartesian system

• v = ⃖⃖⃖⃖⃖⃖⃗𝑃1𝑃2 be a vector

The vector’s components are defined with respect to the coordinates of its end points

• v =
[

𝑥2 − 𝑥1
𝑦2 − 𝑦1]

= x2 − x1 is its representation in the global cartesian system.

• ṽ =
[

�̃�2 − �̃�1
̃𝑦2 − ̃𝑦1]

= x̃2 − x̃1 is its representation in the local cartesian system.

To convert the vector’s components from the local cartesian to the global cartesian system,
we need to convert the coordinates of its end points with (A.21):

ṽ = x̃2 − x̃1 = Q ⋅ x2 + b − (Q ⋅ x1 + b) = Q ⋅ (x2 − x1)

⇔ ṽ = Q ⋅ v
(A.39)

Conversely, to transform the vector’s components from the global cartesian to the local carte-
sian system

v = Q𝑇 ⋅ ṽ (A.40)

Vector fields

Define F be a vector field and its representations:

• F(x) =
[

𝐹𝑥(x)
𝐹𝑦(x)]

are its components in the global cartesian coordinate system, ex-

pressed as functions of global cartesian coordinates.

• F̃(x̃) =
[

̃𝐹𝑥(x)
̃𝐹𝑦(x)]

are its components in the local cartesian coordinate system, expressed

as functions of local cartesian coordinates.

• F̃(r) =
[

̃𝐹𝑥(r)
̃𝐹𝑦(r)]

are its components in the local cartesian coordinate system, expressed

as functions of local polar coordinates.

No vector of interest needs to be represented in the local polar system, however its analytic
expression may only be known in the local polar system. This is similar to Appendix A.1.3.
Since the components are identical we can write
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F̃(r) = F̃(x̃) (A.41)

On the other hand, the vector representation needs to be converted from the global cartesian
to the local cartesian system, according to (A.39)

F̃(x̃) = Q ⋅ F(x)

⇔
[

̃𝐹𝑥(x)
̃𝐹𝑦(x)]

=
[

𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼
−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼]

⋅
[

𝐹𝑥(x)
𝐹𝑦(x)]

(A.42)

and from the local cartesian to the global cartesian system according to (A.40):

F(x) = Q𝑇 ⋅ F̃(x̃)

⇔
[

𝐹𝑥(x)
𝐹𝑦(x)]

=
[

𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 ]

⋅
[

̃𝐹𝑥(x)
̃𝐹𝑦(x)]

(A.43)

Vector field derivatives

The gradients of the vector field involved are

• Global cartesian components, derivatives with respect to global cartesian coordinates
(w.r.t in short):

x∇F(x) =
[

𝐹𝑥,𝑥 (x) 𝐹𝑥,𝑦 (x)
𝐹𝑦,𝑥 (x) 𝐹𝑦,𝑦 (x)]

(A.44)

• Local cartesian components, derivatives w.r.t. local cartesian coordinates:

x̃∇F̃(x̃) =
[

̃𝐹𝑥,�̃� (x̃) ̃𝐹𝑥, ̃𝑦 (x̃)
̃𝐹𝑦,�̃� (x̃) ̃𝐹𝑦, ̃𝑦 (x̃)]

(A.45)

• Local cartesian components, derivatives w.r.t local polar coordinates:

r∇F̃(r) =
[

̃𝐹𝑥,𝑟 (r) ̃𝐹𝑥,𝜃 (r)
̃𝐹𝑦,𝑟 (r) ̃𝐹𝑦,𝜃 (r)]

(A.46)

To convert the gradient of a vector field between two coordinate systems:

• Each row of the vector field’s gradient contains the derivatives of the same component.
To apply the chain rule, right multiply with the direct mapping’s inverse Jacobian
matrix.



198 Coordinate systems and transformations

• Each column of the vector field’s gradient can be seen as a vector itself. To trans-
form its components between to cartesian systems, left multiply with the appropriate
rotation matrix.

The following two transformations are useful:

• x∇F(x) → x̃∇F̃(x̃) :

x̃∇F̃(x̃) = Q ⋅ x∇F(x) ⋅ J−1
𝐺𝐿

⇔
[

̃𝐹𝑥,�̃� (x̃) ̃𝐹𝑥, ̃𝑦 (x̃)
̃𝐹𝑦,�̃� (x̃) ̃𝐹𝑦, ̃𝑦 (x̃)]

=
[

𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼
−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼]

⋅
[

𝐹𝑥,𝑥 (x) 𝐹𝑥,𝑦 (x)
𝐹𝑦,𝑥 (x) 𝐹𝑦,𝑦 (x)]

⋅
[

𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 ]

(A.47)

• r∇F̃(r) → x̃∇F̃(x̃). Only the chain rule needs to be applied here, since the compo-
nents of the two vector field gradients refer to the same coordinate system :

x̃∇F̃(x̃) = r∇F̃(r) ⋅ J−1
𝑃 𝐿

⇔
[

̃𝐹𝑥,�̃� (x̃) ̃𝐹𝑥, ̃𝑦 (x̃)
̃𝐹𝑦,�̃� (x̃) ̃𝐹𝑦, ̃𝑦 (x̃)]

=
[

̃𝐹𝑥,𝑟 (r) ̃𝐹𝑥,𝜃 (r)
̃𝐹𝑦,𝑟 (r) ̃𝐹𝑦,𝜃 (r)]

⋅
[

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃

𝑟
𝑐𝑜𝑠𝜃

𝑟 ]
(A.48)

Tensor fields

Assume a symmetric second order tensor T. Its components in the global cartesian and local
cartesian system are respectively

T(x) =
[

𝑇𝑥𝑥(x) 𝑇𝑥𝑦(x)
𝑇𝑦𝑥(x) 𝑇𝑦𝑦(x)]

(A.49a)

T̃(x̃) =
[

̃𝑇𝑥𝑥(x̃) ̃𝑇𝑥𝑦(x̃)
̃𝑇𝑦𝑥(x̃) ̃𝑇𝑦𝑦(x̃)]

(A.49b)

The only such tensors of interest in our problem domain are the strain and stress tensor. Their
components are always in the global cartesian or local cartesian system. Nevertheless, it is
possible that analytic formulas for those components only exist w.r.t. local polar coordinates.
Therefore, conversions are needed between the global cartesian and local cartesian sytems,
but not between the local cartesian and local polar system.
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The gradient of a vector field, such as the displacement field, is a second order tensor, albeit
not a symmetric one. Equation (A.47) is also used for tensor conversions between global
and local cartesian systems. Especially for symmetric tensors, (A.47) can be simplified into
the well known formulas for rotating tensors:

T̃(x̃) = Q ⋅ T(x) ⋅ J−1
𝐺𝐿

⇔
[

̃𝑇11(x̃) ̃𝑇𝑥𝑦(x̃)
̃𝑇𝑥𝑦(x̃) ̃𝑇𝑦𝑦(x̃)]

=
[

𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼
−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼]

⋅
[

𝑇𝑥𝑥(x) 𝑇𝑥𝑦(x)
𝑇𝑥𝑦(x) 𝑇𝑦𝑦(x)]

⋅
[

𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 ]

⇔
[

̃𝑇𝑥𝑥(x̃) ̃𝑇𝑥𝑦(x̃)
̃𝑇𝑥𝑦(x̃) ̃𝑇𝑦𝑦(x̃)]

=
[

𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼
−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼]

⋅
[

𝑇𝑥𝑥(x)𝑐𝑜𝑠𝛼 + 𝑇𝑥𝑦(x)𝑠𝑖𝑛𝛼 −𝑇𝑥𝑥(x)𝑠𝑖𝑛𝛼 + 𝑇𝑥𝑦(x)𝑐𝑜𝑠𝛼
𝑇𝑥𝑦(x)𝑐𝑜𝑠𝛼 + 𝑇𝑦𝑦(x)𝑠𝑖𝑛𝛼 −𝑇𝑥𝑦(x)𝑠𝑖𝑛𝛼 + 𝑇𝑦𝑦(x)𝑐𝑜𝑠𝛼]

(A.50)

These are equivalent to

̃𝑇𝑥𝑥(x̃) = 𝑇𝑥𝑥(x) ⋅ 𝑐𝑜𝑠2𝛼 + 𝑇𝑥𝑦(x) ⋅ 𝑐𝑜𝑠𝛼 ⋅ 𝑠𝑖𝑛𝛼 + 𝑇𝑥𝑦(x) ⋅ 𝑐𝑜𝑠𝛼 ⋅ 𝑠𝑖𝑛𝛼 + 𝑇𝑦𝑦(x) ⋅ 𝑠𝑖𝑛2𝛼
̃𝑇𝑥𝑦(x̃) = −𝑇𝑥𝑥(x) ⋅ 𝑐𝑜𝑠𝛼 ⋅ 𝑠𝑖𝑛𝛼 + 𝑇𝑥𝑦(x) ⋅ 𝑐𝑜𝑠2𝛼 − 𝑇𝑥𝑦(x) ⋅ 𝑠𝑖𝑛2𝛼 + 𝑇𝑦𝑦(x) ⋅ 𝑐𝑜𝑠𝛼 ⋅ 𝑠𝑖𝑛𝛼
̃𝑇𝑥𝑦(x̃) = −𝑇𝑥𝑥(x) ⋅ 𝑐𝑜𝑠𝛼 ⋅ 𝑠𝑖𝑛𝛼 − 𝑇𝑥𝑦(x) ⋅ 𝑠𝑖𝑛2𝛼 + 𝑇𝑥𝑦(x) ⋅ 𝑐𝑜𝑠2𝛼 + 𝑇𝑦𝑦(x) ⋅ 𝑐𝑜𝑠𝛼 ⋅ 𝑠𝑖𝑛𝛼
̃𝑇𝑦𝑦(x̃) = 𝑇𝑥𝑥(x) ⋅ 𝑠𝑖𝑛2𝛼 − 𝑇𝑥𝑦(x) ⋅ 𝑐𝑜𝑠𝛼 ⋅ 𝑠𝑖𝑛𝛼 − 𝑇𝑥𝑦(x) ⋅ 𝑐𝑜𝑠𝛼 ⋅ 𝑠𝑖𝑛𝛼 + 𝑇𝑦𝑦(x) ⋅ 𝑐𝑜𝑠2𝛼

(A.51)

By using the following trigonometric transformations

𝑐𝑜𝑠2𝛼 = 1 + 𝑐𝑜𝑠2𝛼
2 (A.52a)

𝑠𝑖𝑛2𝛼 = 1 − 𝑐𝑜𝑠2𝛼
2 (A.52b)

𝑐𝑜𝑠𝛼 ⋅ 𝑠𝑖𝑛𝛼 = 𝑠𝑖𝑛2𝛼
2 (A.52c)

the well known formulas for transforming a tensor from the global to the local cartesian
system are obtained

̃𝑇𝑥𝑥(x̃) =
𝑇𝑥𝑥(x) + 𝑇𝑦𝑦(x)

2 + 𝑇𝑥𝑥(x) − 𝑇2(x)
𝑦𝑦 𝑐𝑜𝑠2𝛼 + 𝑇𝑥𝑦(x)𝑠𝑖𝑛2𝛼

̃𝑇𝑦𝑦(x̃) =
𝑇𝑥𝑥(x) + 𝑇𝑦𝑦(x)

2 + 𝑇𝑥𝑥(x) − 𝑇2(x)
𝑦𝑦 𝑐𝑜𝑠2𝛼 − 𝑇𝑥𝑦(x)𝑠𝑖𝑛2𝛼

̃𝑇𝑥𝑦(x̃) = ̃𝑇𝑦𝑥(x̃) = 𝑇𝑥𝑦(x)𝑐𝑜𝑠2𝛼 −
𝑇𝑥𝑥(x) − 𝑇𝑦𝑦(x)

2 𝑠𝑖𝑛2𝛼

(A.53)
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