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Abstract

Virtual memory has been a vital contribution to computer systems, redefining memory
utilization and substantially ameliorating computer programming experience. However,
even being an inextricable element of modern architectures, virtual memory’s address
translation mechanism presents great performance overheads.

To overcome this, we propose DPART (Deterministically Indexed Address Translation
with Multiple Page Sizes via Partitioned Address Space). Concretely, our proposed
scheme partitions the virtual address space and allocates memory areas accordingly,
so that a virtual address’s most significant bits indicate the address’s used page size.
Leveraging this feature, we prototype a single set associative TLB structure accommo-
dating translations from all page sizes. In addition, we describe a supporting page table
managing to decode translations in less space.

Implemented in Linux 4.19, DPART achieves negligible TLB miss rates for most tested
configurations and shows superiority against other schemes. Not limited in its TLB
performance benefits, DPART characteristics promise low latencies, energy efficiency

and reduced chip size.

Keywords

Virtual Memory, Address Translation, TLB

iii






ITepiAndm

H ewcovixry uviun €xel anotehéoel plor LwTinic onpaciog GUVEIG(PORd GTo UTONOYLE TIXE
CUC TAUATA, ETMAVATEOCGOLORILOVTAC TN XEHOT TNG UVAUNG Xl BENTIOVOVTOC OUCLWONS TNV
TpoypoUaTIoTiXY eunclpla. 201600, TOEONO TOU OMOTENEL €Val AVAMOOTOGTO XOUUATL
UOVTEQVOV ORYLTEXTOVLXWY, O UNYXUVIOUOS UETAPEAONS BLELBOVOEWY TNG EMOVIXNC UVAUNG
TPOLGLALEL ONUAVTIXG XOGTOC GTNV ATOBOOT).

I va Eenepaotel autd to npdPAnua, npoteivoupe to DPART (Ntetepuvio uxd Aewxtiodo-
mnuévn Metdppaon AcuBivoewny pe IToxhamhd Meyédn Xehdbv yéon Aouepiopévou Xao-
pou Aeubivoenv). Xuyxexpiuéva, To oyfua Tou Tpoteivoupe dwopepilel Tov eovixd (ko
dleuBivoeny xou avabéter TUAHATO UVAUNG XATINATA €ToL o Te Ta 6e€iotepa Pmnepla wlag
ewovixnic BlebBuvone va dnadvouy to péyebog oeldoc mou yenotdonotel auty 1 diedBuvon,.
AZomoldhvtog autd To KopaxTNELo TIXd, xataoxeudlouyue €vo povadixd set associative TLB
mou @unolevel petagpdoeic and xdbe péyebog cexidoc. Emmpdobeto, mepuypdgpouue €va
unoc TNEWOUEVO Tivoxa GENBWY ToU xatapépvel va cuunti&el TNy anobrxeuor uetoped-
CEWV O ALYOTEQRO (WEO.

Thonowmuévo oe muprva Linux 4.19, to DPART xotagépver vo €xel auentoie Tuuég
aotoywyv TLB yia toug mepiocdtepog cuvdvacuols nopouéteny TLB mou avokbinxay,
EMBEXVVOVTOG AVWTEROTNTA OE OYEOT UE SANa o fuata. Xoplc Vo neplopileTton oTar TAEOVE-
XTHUATOL TOL amopeEouy amo TNy anddoct) Tou TLB tou, ta yapoxtneio tixd tou DPART uno-
OYOVTOL YUUNAOUE (POVOUS DLEXTALEEWONS, EVEQRYELXXT| ATOBOTIXOTNTA Xol UEWWHEVO Uéyebog

TOLTT.

Ag€lsic KAsou&

Ewovixy Mvrun, Metdgpaon Aweubivoewy, TLB
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Chapter 1

Extetapevn EXAnvixr
ITepidndn (Extended Greek

Summary)

1.1 Ewcayoyn

1.1.1 Ocowpntixdé YnoéBabeo

H ewoviny) pviun anotelel ula onuovTixy CUVELGPOEE GTOV TOUEN TOV UTONOYLO TIXWY
CUCTNUATWY, GUUBIANOVTUC TNV AMOBOTIXY XAl ACPUNY| SLYEIRLOT TOV TOPWY UVAUNG EVOS
CUGTAUATOS, Xl OLEUXONUVOVTAS ToV Tpoypaupationd. H euoviny| uvAun amotelel évay
exovIXo Y wpeo dieubivoewy yia xdbe Siepyacio, otov onolo Tng mopéyeTton N PeudaicOnon
OTL oXEDOV dmetpn pviun ebvar ot Sudbeot] g, Blxwg TNV ToeéuPact IANNWY BlEpYAoLOY.

[o 0 xenowwonoinon Twv QuUOLXMY TOPWY TOL UNXAVAULITOS, TO AELTOLVEYIXO GO TN
VN BAVEL TNV ATELXGVIOT) TV EXOVIXGDY (NOYXY) Bleublvoewy oe puowés. H Biadixaota
QUTAC TNE avTio Tolyiong ovoudletal Yetdgppaon dieubivoewy. Kdbe @popd mou ula diepyacio
yeewdletar Eva BEBOUEVO TN, O WO TNS ONAGVEL ol Elxovixy| Béon uviung xeetdleto,
To Aettoupyxd Peloxel TNV amoutolueVy UETAPEAOT, xou €Tol AouPdveton TN Quoixt| Béon
uvAuNg Tou eunepiéyel To {nToluevo Bedouévo. 3TN cuVEXEL, To deBOoUEVO auTO Unopel Vo
yenotpomoindel xoTdANNAAL Ao TO TEOYPAUUUAL.

Kaboe Ba frav xootofopo va amobnxedovion OXeg oL UETAPEACEC EVOSC CUC TAUATOS
EeYWELO T, XENOWOTOLELTAL O UNYAVIoUOC TNG oeNboTolinoNng. Juyxexpuléva, 2° UeTapedoelg
opyavwvovTow ot uio dour) 1) onola ovoudletar oeXida. AuTég oL UETAPEATELS Elvon orvoryxolo

Vo EIVOL CUVEYOUEVEG TOCO OF EXOVIXY) OGO XoL OE QUOIXY) UVAUT, xou va elvan eniong

1



Chapter 1. Extetauévny EMmxn) Heolhnyn (Extended Greek Summary)

evbuypapwopéves (ta teNevtadar = bits e mpdne diedBuvone va elvan {oo pe 0). Me
aUTHV TOV TEOTO, elval dpXeTd VoL amofNXEUTOUY Ol HETAPEATELS LOVO TV apliudy ceNiBoV,

OTWE POUVETOL GTO TORUXATW Ty UL

AlgbBuvan os geAida peysoug 2¢ ApPIBUOAC ZeAidag Offset

Figure 1.1: Yuotatixd euxovixyic diebbuvong

Muxpéc oehideg €yxouv To mAcovéxTnua vo amewxovilouv enoxpleg To dedouéva Tou
yeerdlovton and wlo diepyooia, xat elvon EVENIXTES 1S TPOS TN cLVOTUEEY TOUS GTNY XVELL
uviun. 201660, xS AYOTERES HETAPEACELC UTOPOVY VoL UTdEEoLY ot Uio xeY| ceXido.
SUVETWS, yiol EQUpUOYES UE LYNNT xeHom UvAuNg 6Tou xeeldlovTon TEpLocoTeEpeES GENDEC,
o TLB 8ev elvon ixovd var guNoZevioel OXeC TIG avoryXaleg UETAPEAOELS Xal TapaTneeitan
o oty anodoor) tou. T autd yenowonoolvTon yeyanitepa eYEDN ceENBwY, mou
OUWS €XOLY T OUIXY UELOVEXTAUATAL.

H doun otnv onola anobnxedovtor OXeg ol yetagpdoeic elvon o mivaxag ceXidbwy. O
Tivoxog oeNBwy elvon plor Bevdpixr) dour|, 1 omolo oTar PONNA TG TEELEXEL TIC {NTOVUEVES
UETAPEAOELS. X Tal IO yoLUEVa ENiTEDA, oL xOoUBol Tou delyvouv TEog 10 XATIAANAO xOuPo
Toudi mou meénel var axoloubnbel. H deuxtoddtnom yiveton drapepilovtag Tov exovind aplbud
oceNdoc oe TOon Yépr 6oa To emineda Tou Tivaxa oENBWY.

O mivaxog ceXidwv etvon pla dour| mou empépel uPNAolE Yedvoug TEdcPacTg, CUVETWKG,
Yo TNy eVpeot plog yetdgppaong exéyyetar mpta to TLB. To TLB arotekel plo pixpdtepen
0ot TOU TEPLEYEL €VOL UTOGUVONO HE TIC CUYVOTEQU XQETOULOTOLOVUEVES UETAUPEAOELS XAl
TPOGPEREL CNUAVTIXY UxpOTERO K eOVO TpooTéNaonc. To TLB enlong dewxtodotelton pe o
index pépog tng dieBuvorg, To omolo xabopilet éva utocivolo tou TLB 610 omolo unopet

vo xortowxel 1 {NToduevn ETdppAO.

1.1.2 3uvelwc@opd ALTAOUXTIXNAG

O unxavioude tne Yetdgpacng dieubivoemy etvon cuyvd Wwitepa xooTofopog e€outiog Tou
ouyvd xouniol euBuol evotoyiac Tou TLB. Enlong oe éva cuufatixd TLB, Noyw tov
olapopeTv Béocwy tou index pépoug ulag diedBuvong yio ta Sdpopa PeYED oeNdag,
N Voo THELEN TONNUTAGOY Yeyebwy elvan S0oxorn. H mopodoa Simhwpatixy deel autd to
eunodo ue to oy DPART. To DPARTpoogépet vietepuvio Tixd indexing oe petdppoon
oleufivoemy ue TONNATNG PEYEDT oeNBwY, Péow WG OLUUEQLONS TOU ELXOVIXO) YOEOU
olevbivoewy.

To oxAua yog cuvodeleTol amod:



1.2 To Xynua DPART 3

e To DPART TLB, pla povadixy| Sour| mou eunepléyel HETAPRAOELS amd O Tar ueyédn

oENOWY
e Thonoinon evéc nivaxa ceNidwv mou e€0LXOVOUEL TOV XDPO ATEXOVIOHS TOU

o Metoforéc 6T0 Aettoupyind oo tnua Linux 4.19 yio Ty unoo THEIEN TOV UNYXAVIGUOY

o

1.2 To YXyAuno DPART

1.2.1 Awpépion Euxxovixod Xwpou

To oyfua pag emdldxel va xofiep®dael plo auQUUOVOCHUOVTY] AVTIOTOIYIOT OVAUESH G TA N
de&iotepa bits (MSB) piog eovixrc SiedBuvong, xaw tou peyéhoug oelidac mou eunepléyet
™ 6ievbuvon auth. T vaemiteuy el xdt Tétolo, 0 eovixde xHpeog dievdivoewy dlauepileton
oe 2" unoyweous, 6Tou o xabévac avtinpocwnevel €va péyeboc. Ilopoxdten arnewxoviCeton

n mepinTworn v n = 2.

EIKOVIKOC, XWPOC dIEVBOVOEWY

0500000...| ™

> Slapéplon #00
0bO111...
0b01000..| )

> dlapéplon #01
0b01111...
0b10000..|

>~ dlapépion #10
0b10111...
0b11000..|

>~ dlapEplan #11
0b11111...| J

Figure 1.2: Awpéplon ewovixhc uviung

‘Onog mapatneeitar, 1) Texviny| auTy €xel wg anotéeoua xdbe Slopéplon va tpocdlopileton

povadixd and Tig TWwée Twv MSBs twv dieubivoewy mou mepiéyovton oe avthyv. T va
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TETUYOVUE TR TNV Tpoavagepbeioa olvdeor dlapepioewy xou peyédoug oenldag, TpoToTOL-
olue T avtioTolyec ouvapTthoelg Tou Linux mou elvar umetBuvee yia v avdbeorn véou
eovixol yweou. And ta Swbéoiwo peyédn celidac mou moapéyovion, avabétouue xdbe
(POPS TO XATINANNO, OVENOYA UE TNV TOALTIXY| TOL Ypnowonoteiton. Ol emhoyég mou €xouv

uioroindel efvon ou:
e LOWER
e CLOSER

e UPPER

TV onolwv ot oployol eivar ou e€ng:

page_sizejoper(length) = sup {ps | ps < length}

ps€avail _page_sizes

page _sizecpser(length) = arg min |log, (ps) — logy(length)|

ps€avail page sizes

page_sizeypper (length) = inf {ps | ps > length}

ps€avail page sizes
TéNog, avéhoya e To TARdog Twv MSBs nou yenowonowivTal, pog diveton UeyoaAUTERT
evehila wg mpog tar peyEdn oehidwy mou umopolv vo unocTnelyToly. AuTd avagpépovtal

CTOV ToPaXdTe TivaaL:

IT\v0oc MSBs Mev€0r oceXidwv
0 4K
2 4K, 2M, 1G
3 4K, 32K, 256K, 2M, 16M, 128M, 1G
4 4K, 8K, 32K, 64K, 256K, 512K, 2M, 4M,
16M, 32M, 128M, 256M, 1G, 2G, 8G
5 ONeC oL duvduelg Tou dvo and 4K fng 32G

Table 1.1: Awbéowo ueyedn oexidwv

1.3 To DPART TLB

‘Exovtag e€acpokioel Tov mpocdloptopd tou yeyéboug oenidac and ta MSBs tng eixovinrig

dievBuvong, unopolue va eExUETONAEUTOVUE aTH TN 6UVBEST TNy Llonoinoy tou TLB tou



1.8 To DPART TLB

OYAUATOS HOS.

Io ™ xenon evog TLB elvon anopoitnta ta peyédn tag, index, offset tng exovixnig
oevhuvone. To offset elvon pe v andotaon mou €xel ula dievBuvorn and v aexh TNg
ocendag mou v eumepiéyel. To index agopd ta opéowg emdueva bits xou elvon ta LSBs
Tou aptdpol oeXlboag Tou yenoiwomololvToL Ylot Vo 0ETod0TNBEl TO XAUTINANNO set Tou
TLB. To tag anotekel 10 unONOLTO XOPUATL TNS EcoVIXT SlevBuvang xau (petdleTon YL Vo
ouyxpwel pe to mepieyouevo evog TLB entry étol dhote va amogavbel edv pio petdppoon

elvow 1 {nroduevn.

PS1 idx
n MSBs PS(2"-1) idx ... PS2idx PSO0 idx
va | | [ (IO
n MSBs — large tag large offset --eveeeeeeee

Ej PS idxs tag masks offset masks

yvyy ¢¢¢¢ llll

| (2-1)x1 | (2r-1)x1 o (2n1)x1
MUX / . MUX - MUX /

Y T T
true idx tag mask offset mask
large large
tag . offset .
true tag true offset

Figure 1.3: Elpeon twv tunudtweyv tag, index xou offset piog eixovixric diebbuvong

Y10 mapandve oy fua Tapovaldleton o TeéToC Xeong Twv MSBs tng diebbuvong yio tov
TPOGOLOPIOUS AUTWY TWV TELOYV TOCOTATWY. TEEWC TONUTNEXTEC UE ETUNOYEN TA XUTANNNNL
MSBs tng diebbuvorng, xdbe popd emhéyouy eite To xatdAANAo index, elte v embuunty
udoxa mou Oo eappoctel 6TO YeYaAUTERO duvaTod tag 1 offset €tol wote va mapayfolv Ta
XATIANTAA avTioToLy e HEYEDT.

[Topddelyuo TETOLWV LOOKWY QAUVETAL GTO GYHUL TOU 0XONOUDEL:



Chapter 1. Extetauévny EMmxn) Heolhnyn (Extended Greek Summary)

PSO0 offset mask

KX
PS1 offset mask _
VA %//%'—‘%////%

Ii Iarge tag |arge offset

Figure 1.4: Xpron paoxdv yia edpeor tag xau offset

H eqopuoyn autidv Tov Haoxov éxel wg cuvénela ot éva zero padding tou e€aryouevou
tag. Kdti tétolo mopouctdlel TAEOVEXTAUATH OGOV 0POEd TNV OUOLOUOEPIo XOUL T1) LOVIDLXO-
o TV tags. Buyxexpuéva, apxxd xdbe tag, cuvemde xou xdbe xatoywenon tou TLB
€yel .oomandy) bits. Emnhéov, unopel var amoderydel 611 Sieubivoeic mou avixouy oe dapope-
Tixég oehideg Bo amewcovilovtan xou pe Sapopetixd tags. H amddeln avtrig tng npdtaong
yweiletar o dVo oxékn. To mpwto oxélog agopd dieubivoelc Tou avixouy oe GeNdeg
{Blou peyéboug. Auty n neplntwon elvon TeTplPéVn xabde BlapopeTinés cenideg Ba €youv
OlapopeTnd page numbers, X3t TOU UTOBNAWVEL XAl SLUPORETIXY tags ol AUTd ATOTENOU-
vian ano (oou mARBoug bits. To deltepo oxélog agopd dieubivoelg mou avixouv oce
oe\ideg BlapopeTixol peyéboug. e autrhv TV mepintwor, Aoyw Tou zero padding mou
€xel egappootel, To MSBs twv avtiotoiywy tags etvon eubuypapuiopéva. ‘Oung autd etvan
dlapopeTnd, e€antiog tTng WLOTNTAG Tou partitioning.

O cuLVBLUCUOE TWV ETUYEENUATWY TNG OUOLOUOPGIAC XAl TNG UOVOBXOTNTAS EXEL 1
ATOTENECUO VO UTOROVY UETAPEACELS omd ONat Tl UEYEDN GENBWY Vor cuVUTEEYOLY GTO (BL0
TLB.

| Tag |

| Tag |

Figure 1.5: Aoyr tov xoatayweroewy tou TLB




1.4 O Hlvaxag XeAidwy tov DPART

1.4 O ITivoxoc Xelidwv tov DPART

Yy nopoloa evotnTa TapouctdleTon 0 Tivaxag GeENBY Tou UTOC TNEICEL TO TY AU Uog.
Yto onuelo autd onuewdveton 6T To péyebog ceNidog elval Evar YAPUXTNELOTIXG TOU

unyaviopol mou uetayelpiletar plo SiedBuvor, xou oyl g Blag e dievBuvong.  Autd

emTEENEL 6TOV Tivoxa GeENBwY pag vo Aertoupyel elte amoxkeloTixd pe oenideg 4KB, elte

WE To undpyov oyfua tou unootneiler Transparent Huge Pages [10].

PGD idx PUD idx PMD idx PTE idx offset

VAin a 32K page 9 hits 9 bits 9 hits 6 bits 15 hits

Figure 1.6: Yuctatxd diebuvong mou avtictolyel oe oenida 32KB

Yy ulonolnon mou exuetarleveTan T UeYEDN oeNibwy mou mpoopéper to DPART,
TPUTNEOVUE apyIxd OTL 0 aplBudg oehidag Bev elvon ev yEvel TOANATAdGIO Tou 9, Onwg
gatvetar oto oyua 1.6. Kdbe obvolo x6uPwv tou mivaxa ceXlBwv dung mou anodnxebeton
oe plo oeida TNC uvAuNg amotelelton and 29 Oéoeic. Autd OUWC €YEL WG CLVETELN, TO
TelevTaio eminedo Tou mivaxo TERLEYEL AyoTepa amo 9 bits xou ou oehidec mou Peloxovion
ot QUNNA ToL VoL éxouv Aybtepec amd 20 xatayweroec. Kdt tétolo anewovileton oo
TapoXdTw oyhfua 1.7.

To yeyovog autd Bev amotenel PELOVEXTNUA Aol GENIBEC TOU TENEUTAOU ETLTEGOU
umopolV TAéoV vor GUUTTUY D00V EE0IXOVOUDVTOC ETOL ONUAVTIXG YWRO. LNUELOVETHL, OTL
TO oYU AUTO EVOL TOUNGYLIOTOV VWTERO antd TOV Tivoxa GEADBwWY Twv transparent huge
pages.

Ta Bruota tpoonéNaong Tou tivaxa ceXidwy ot Tepintwon actoyiog tou TLB avorypdgo-

VIO TOROXATO:

Avaryvapion peyéboug oehidag uéow twv MSBs tne dievbBuvang

E€oywy? tov index yia ta didpopa enineda xan tou offset

Aldoylon Twv EMTEdOY aveXoya pe To Tporyolueva indices

Yuvévwon @uotxol aplbuol ceidag mou Peednxe ye to offset v Tov mpoodioploud

e puoxhc BlevBuvong

Evnuépwon tou TLB e tov guoxd aplfud cexidog



Chapter 1. Extetauévny EMmxn) Heolhnyn (Extended Greek Summary)

4k PTEs
(2° entries each)
4k PMDs
4k PUDs (2° entries each)
(2° entries each)
PGD
(2° entries)
4k PGDs
32k PGDs 32k PUDs 32k PTEs
(2° entries each) 32k PMDs (2° entries each)
(2° entries each)
256k PGDs
| |
| |
16M PUDs
16M PGDs (2° entries each) 16M PMDs
(2° entries each)

Figure 1.7: Modified page table under the third approach

1.5 EmnunAéov Beltwwosic

Ytov nupriva Tou Linux yenowwonoieiton avdbeon dieubivocwy amd Tig uPnidTepeS TPOC TIg
younotepeg. Kdti tétoto twpa petapedleton ot xdbe partition Eeywpeiotd. ¢ anotéleoua,
evtonileton cuupdenomn ota texeutalo sets tou TLB agol ol mpdhteg oeideg nou avartifevton
oo xdbe partition éyouv (oo index (to peyoritepo duvatd). To gavouevo autd anexovile-
Tou oo oo 1.8 ().

I Ty avTipeTomoY Tou, tpootabolue Vo Bl 0COVUE TIC HETAPEACELS 0 Ta Bldpopa sets
EXUETOANEVOUEVOL TV Blapoponoioewy o ta MSBs tou xdbe partition. I'a vo mparypatonol-
fioovpe auTAV TNV Bidyuo, epapuolovpe xatdAANAT Tedcn XOR avdueco ota MSBs xou

70 index. To anotéreopa paiveton oto oy 1.8 (B).



1.5 Emniéov Belrdosc

virtaul address space

TLB sets

0b00...110...111

0b00...111...111

0b01...110...111

0b01...111...111

0b10...110...111

0b10...111...111

0b11...110...111

0pb11...111...111

virtaul address space

TLB sets

0b00...110...111

0b00...111...111

0b01...110...111

0b01...111...111

0b10...110...111

0b10...111...111

0b11...110...111

0pb11...111...111

Figure 1.8: Ilupdderypo xatovourc petagppdocwy ota set tou TLB mpwv (o) xou petd ()
TOV UNYAVIoUO BLdyuong
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Mia emimhéov Bertiwon tou DPART agopd tnv anewdvior tou cweol. Luyxexpiéva,
0 0WEPOC GE TONNG TEOYEduUaTo Tolpvel Ueydhes Blactdoeic xou xofde anewxovileton ye
oENDES Uxpol peyéboug ouvendyeton o YaunAég anodooelc. o v enthuon awtod tou
TEOPAUATOC, AMOCXOTOVUE G TNV ATEXOVICT] TOU GwEO\ GE XATOLA DLUUEQRLOT] TOU ELXOVIXOU
XOEOV TOU XEMNOLWOTOLEL UEYONVTERES GENDEC.

Kdt tétol0 otny napoloa @don éxel uiononbel uévo oe eninedo npocopoiwong. Xe éva
Tparyotixd oo Tnua, x4t tétolo Bo urtopoloe va emiteuybel ue mowxihoug Tpdmous. Apyixd,
Ba unopoloe epbooV 0 RO Eenepdoel xdmotlo xpLthpto peyéboug, va petagpepbel tote o
ulo dlopépton mou yenowonolel ueyohutepo péyebog. Mio dNAN AUoT eumepiéyetl Tny ueloon
Tou oplou xdTw amd To omolo YENOLOTOLE(TUL 0 CWEOS, ETOL WOTE UEYUNES ATELXOVIOELS
VO TIROY HATOTIOLOUVTOL OO avVUUES UeTapedoels. Téhog, mpoteivoupe tny petafols) tng
aEY NS TOL CLEOY XaTd TNV exxivoT NS dlepyaoiog, EToL WOTE Vo uny yeelao el 1 UeTapopd

TOU OF OLAPORPETLXY| OLUUEQLOT) 0Py OTERQL.

1.6 AZ&wo\oynonm

Ye auThy TNV eVOTNTA PaivOVTOL TOL ATOTENECUATA O Ta TELRduoTa Tou SLeryOnxay oyetind

ue to mtocootd actoxwy TLB. Ye olbyxplon tébnxay ta mapoxdtw névie oyfuato

conventional

hugepages split

hugepages merged

dpart _skew b

¢ RMM

To mpdto oyfua yenotwonoiel anoxieilctxd oexideg 4KB. To 800 endueva apopolv
transparent huge pages oe Eexwplotd ¥ xowwd TLB. H dur) pac uébodoc yenowponotel 5
MSBs vyia partitioning, closer moAitixy, xau etvon eEonAloPEVN Ye aupOTERES TIC fENTIC TOTIOL-
fioec. Téxog o RMM anotehel T0 dvo @edryuo Tng avducTc wog xa arnobnxelel teployég
avbalpetou uixoug oe wia fully associative dou.

Onog golveton oTo EMOUEVA OYNUATA, TO OXAUA LIS XATAPEPVEL Vo Tpooeyyioel TNy
anédoon tou RMM, eve efvon cuyxpitind aveytepo and 1000 T0 cupfotind oyfud, 660 xau

auT6 oL Xdvel yerion THP.
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Figure 1.9: Pubudc aotoyioc TLB yio petafoariopevo (o) mhRfoc xatoywerioewy xou (b)
associativity

1.7 Erni\oyog

H BeXtiotomoinon tng ewmovixrc uviung eivar évog and toug xaboplotixols topels otny
aO&nomn e anddoong evdg uTtohoyio 1xol cucThuatog. To oyfuc Tou TpoTelvouyE amOTENE
ulo amodotiny| uébodo uetdgpaorng dieubivoewy. Trootneilovtag ToXNG ueyEdn oehidwv o
i xowr) dour) TLB, to DPART xartogpépvel vo €xel e€atpeTind younAd To606 Té oo Toylag.
Extég and v entdoor tou TLB tou 6uwg, 1o DPART eunepiéyel emnéov TAeovexThua-
ta. H ankétnta tou design tou undoyeton Yauniols povous amoOXEIoNG Xl EVEQYELNXT
xatavéAwor. Emniéov, 1 povadiny| dour) TLB cupBdiielr otn yelwon tou yeyédoug tou
eneepyaoth. H alloNéynon tov napamdve emniéov onuelwy anoterel UEANOVTIXT GOUNEL.
e authy evidocovTal eTioNC UNOTOLOELS TTOU EEYOVTAL VO TENELOTIOLACOUY Xal VoL EEN-
Eouv tov umyavioud pag. Autéc agopolv 6To xopudTL TNe Sloelplone puotxic uviung,
NV évtadn 0To Aoylouxd NG PEATIOUEVNS OTELXOVIONE TOU GmEOoU, UNYAVIOUOSC TOU Vol
xaBopilel to uéyebog oeNidag mou tpénet va yenolponondel and pécw o TAOUCILY XpLTNplwy,

%o TENOC UNOTIONGT GTO UAIXO.






Chapter 2

Introduction

2.1 Brief Problem Formulation

Virtual memory has substantially contributed to the establishment of efficient and se-
cure memory utilization, while also enhancing a programmer’s productivity. However,
despite its incontrovertible benefits, in modern computer systems virtual memory’s ad-
dress translation mechanism has become a major bottleneck in demanding applications’
performance.

Emerging technologies such Intel’s 3D XPoint [27], Hybrid Memory Cube (HMC) [51]
and High Bandwidth Memory (HBM) [34] in combination with increasing capacity de-
mands by heavy workload applications, highlight the importance of optimizing virtual
memory while also maintaining affordable power consumption. Basu et al. have found
that applications can spend up to 51% of execution cycles in TLB misses with 4KB
pages and 10% of execution cycles using 2MB superpages [15]. Also, recent research
has shown that NUMA systems, which are broadly used nowadays, may even experience

performance degradation under large pages [25].

2.2 Contribution

In an effort to overcome most address translation schemes’ inability to encounter the
aforementioned problems, we propose DPART (Deterministically Indexed Address Trans-
lation with Multiple Page Sizes via Partitioned Address Space). DPART manages to
tackle the problem of address translation by a single TLB structure accommodating va-
rious page sizes, and a deterministic mechanism that defines a priori the page size of

a specific translation. To achieve this, DPART performs a partition of the virtual ad-

13
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dress space and allocates pages accordingly, so that their most significant bits indicate
their used page size. Our software and hardware co-design scheme is transparent to the

application, and includes:

e DPART TLB, a single deterministic set associative structure that may accommo-

date any power of two page size
e Outlines on the implementation of a page table optimizing its representation space

e Operating system support in Linux 4.19 enabling our mechanisms

We also provide software-based simulation results using our modified, to be supported
by Linux kernel 4, version of BadgerTrap TLB miss instrumentation tool [24]. We find
that DPART’s TLB miss rates are negligible for most size configurations. This results
in vastly outperforming conventional TLB and the THP mechanism [10] and behaving
similarly to RMM [35], while being set associative, in contrast to RMM’s Range TLB

which is limited by full associativity and as a result lack of scalability.

2.3 Document Outline

This section denotes the organization of the rest of this document. Chapter 3 covers
the background needed to fully understand the concepts presented in following chapters.
Chapter 4 is the core part of this thesis analyzing DPART. Through this process, a
two page size case elucidating our approach is presented, which is followed by our full
system accompanied by its respective software mechanisms, TLB and page table. In
the end of this chapter, two optimizations are provided boosting the performance of our
method. Chapter 5 presents the results of our experiments while previously providing
their methodology. This chapter ends with a section discussing DPART’s performance
and other probable superior attributes not illustrated by our simulations. A chapter
devoted to related work is included in 6, enumerating and discussing other address
translation schemes in current bibliography, and comparing them to DPART. Concluding
the main-matter, chapter 7 presents future work and final concluding remarks. Finally,

a bibliography chapter and an appendix are included in the end of the document.



Chapter 3
Background

This chapter covers the background needed to comprehend this work. Initially, a de-
scription of virtual memory is provided (3.1). In Section 3.2 the paging mechanism is
explained, and afterwards the page table and TLB structures are examined in 3.3 and
3.4 respectively. Later-on in 3.5, we overview some Linux structures and operations,

useful for our approach.

3.1 Virtual Memory Overview

Before virtual memory, it was the programmer’s responsibility to manage the memory
storage (referring to both primary and secondary memory) used by a program. To render
it functionable, the programmer had to slice a program into blocks (overlays) and map
them into memory. As a result, programmers needed to rewrite programs, and authors
needed to rewrite documents, when the content of a program module, the capacity of a
local memory, or the configuration of a network changed [22].

The first system implementing virtual memory was Atlas Computer at the University
of Manchester in 1959 [37]. Virtual memory, as stated by Bhattacharjee and Lustig [17],
is an idealized abstraction of the storage resources that are actually available on a given
machine. Concretely, virtual memory is an address space, where a single process maps
its data. Each process would ideally want to use abundant memory for its needs, without
being concerned about other processes. With virtual memory, this illusion is provided,
and a process can use virtual (logical) addresses without any restriction. However, to use
a system’s real resources, a mapping should be established between the physical memory
and each process’s virtual memory.

This mapping is called address translation, and is managed by the operating system

15
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using both software and hardware means.

Virtual AddressSpace — Physical AddressSpace

Each time a process accesses some data, the program code indicates which virtual
address is needed, and the operating system provides the translation of this virtual
address. The physical address obtained by this translation shows the location of the
requested data in physical memory, enabling read and write operations to be performed
to this data on behalf of the process.

All those translations though, consist of data themselves and consequently have to be
also stored in physical memory. Hence, questions arise regarding how those translations
are stored and accessed. The answers to those questions will be provided in the following

sections.

3.2 Paging

In modern systems where many processes with large memory requirements are running
simultaneously, having to store a translation for every memory address used by every
program would not be affordable. To overcome this, paging is used. More specifically,
a program’s virtual address space is divided into blocks named pages. Now, a virtual
page is mapped to a physical page, each consisting of contiguous addresses. Under this

mechanism, only one translation per page is required.

Address in 2* sized page Page Number Offset

Figure 3.1: Virtual address components

A page containing 2% addresses is named a 2% Byte page, since each physical address
contains one Byte of data. We will be also referring to them as 2% pages. Pages are
aligned in both virtual and physical address space. Hence, all the addresses residing
in the same 2% page differ only in the last x bits. This address part is called page
offset and the rest is called page number or page frame number (Figure 3.1). Due to
alignment, a physical address is obtained by the concatenation of the physical page
number (received by address translation) and the page offset (invariant between virtual
and physical space).

Most architectures use 4KB pages. Apart from the 4KB base page size, the x86-64
architecture also supports 2MB and 1GB pages with the mechanism of Transparent Huge
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Pages (THP) [10, 8]. Additionally, other architectures support more sizes [44, 12, 46].
Large pages enable the existence of even fewer translations as they can accommodate
even more addresses. As it will be shown in the following sections, this induces many
benefits. On the other hand, large pages present higher internal fragmentation, meaning
that there is a higher probability that a non-negligible part of the page will remain
unused. In addition, for a fixed size of physical memory, the page size is inversely
proportional to the number of pages frames that can be accommodated into the physical
memory. As a result, pages have to compete for fewer entries. On the contrary, smaller
pages are more versatile. By versatility we mean that smaller memory parts can be
swapped from main memory, whereas in large pages a small and frequently accessed

memory section has to be accompanied by the rest of the page it resides in.

3.3 Page Table

Having a larger number of virtual pages than physical pages is the basis for the illusion
of an essentially unbounded amount of virtual memory [45]. Specifically in the x86-64
architecture, a virtual address consists of 48 bits, rendering the virtual address space able
to map 2*B = 248TB of data. Also, x86-64 now offers 57bit virtual addresses [2,
31] resulting in an 128PB virtual memory size. Even in page-level, having to store
248TB/4K B = 236 translations would require more than the main memory of many
of today’s systems. However, processes generally use a tiny fraction of their virtual
memory.

The data structure where all translations are stored is the page table. Leveraging
the above observation, the page table manages to efficiently store the sparse virtual
memory useful regions through a radix-tree structure. In this tree structure, the leaves
contain the desired translations, and the nodes in the previous levels point to the appro-
priate subsequent node, finally leading to the translation needed. The traversal of the
page table in order to find a translation is called page walk.

Pages are used to store any structure in physical memory, and the page table is not an
exception. One single page is used to store the entries of the top level, named PGD (page
global directory). The next levels are stored via a set of pages also named directories.
As mentioned, a small portion of virtual memory has to be mapped, as a result, the
only existent directories are the ones ultimately pointing to needed translations. On
the contrary, at any level of the page table, the pointer to the next level can be null,
indicating that there are no valid virtual addresses in that range [2].

Referring to 4KB pages (address’s 12 LSBs used as page offset), the page number
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part of a virtual address is divided into 4 9bit parts (48 — 12 = 4 -9). Those parts
are used as indices to traverse through the 4 levels of a page table (in the case of 57bit

addresses, the page table consists of 5 levels). In a 64bit architecture, each directory can

4AKB __ 212.23bits __ 929
64bits —  26bits

Figure 3.2 summarizes the aforementioned concepts, illustrating a page walk.

contain up to entries, explaining why 9 bits are uses for indexing.

Virtual Address

| 9 bits ‘ 9 bits 9 bits | 9 bits | 12 bits
' |
PTEs
(2° entries each)
PMDs
PUDs (2° entries each)
(2° entries each) 1
PGD Lo .
R /' - —
(2? entries)

Physical Address  J &

PFN Offset

Figure 3.2: Page walk in a 4 level page table

Even if the page table manages to store translations using a little amount of memory,
traversing its layers by accessing each time the appropriate directory in memory, may
produce high latency cost. Future memory technologies will enable even larger memory
capacities [27, 51, 34] , where a 5 level page table will be inevitable, provoking up to 5
memory accesses and even more latency. Many hardware features are implemented in
order to reduce the cost of a page walk, such as hardware walkers, translation caches
and complex TLB structures [42]. Being one of the most fundamental improvisations in

address translation, the TLB is analyzed in the next section.

3.4 The TLB Mechanism

The Translation Lookup Buffer (TLB) is an address translation cache. Being a hardware

part of a processor core’s memory-management unit (MMU) and small in size, the TLB
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can access it’s data in one CPU cycle [45].

As in memory cache, to reduce search time a common TLB operates under index-
based search, also supporting associativity. The virtual page number part of an address
is now furtherly split into the tag and the index parts, as shown in Figure 3.3. The index
part shows the candidate set of the TLB that may contain the desired translation. To

establish this, the tags contained in this set are compared to the address’s tag.

X+a X 0

Address in 2* sized page Tag Offset

TLB of 22 sets

Figure 3.3: Virtual address TLB components

Taking both the TLB and the page table into account, assuming that all translations

are stored in main memory, the total cost of address translation is the following;:

cost(addr _tr) =cost(T LBlookup) - P[T L Bhit]+
(cost(T LBlookup) + cost(page_walk)) - P[TLBmiss]
= cost(addr _tr) =cost(T LBlookup) + cost(page_walk) - P[T LBmiss|

Effort to minimize this cost are pertaining to two orthogonal approaches

e reducing cost(page walk)

e reducing P[T'LBmiss] while maintaining cost(T L Blookup) relatively small

3.5 Virtual Memory Allocation

Each process’s virtual memory possesses a number of characteristic memory regions that
are mapped either in the top or the bottom of the virtual address space, such as exe-

cutable code, static data, the heap (controlled by the program break) and the program’s
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stack. The bounds of all those quantities are stored in the memory descriptor of a pro-
cess (structure mm_struct). The value of those bounds, indicating the growth of each
corresponding memory region are illustrated for an example benchmark in Figure 3.4.
The scale of the quantities presented in the figure should be considered. Regions in low
addresses manage to grow until address 0x3000000, occupying a total of 48MBs, whereas
high addresses regions subsume into less than 8kB. As it can be inferred, the free space

in-between is huge.

OxTfffffffefe2

Ox7fffffffe’3e

0x66d000
OxTfffffffe73e

0x666f5c
OxTEffffffe728

0x666a60 0x2e6e000
OxTEEEE£Efe4bO
0x466a5c
0x400000
brk — env_end
start_brk — env_start
end_data arg_end
—— start_data arg_start
end Eode —— start_stack
—— start_code

Figure 3.4: Memory regions bounds in GemsFDTD benchmark

What lies in-between is the memory mapping segment. This space contains regions
allocated by the mmap system call. In general, for allocations greater than or equal to
the limit specified (in bytes) by M_MMAP_THRESHOLD that can’t be satisfied from the free
list, the memory-allocation functions employ mmap instead of increasing the program
break. Allocating memory using mmap has the significant advantage that the allocated
memory blocks can always be independently released back to the system. (By contrast,
the heap can be trimmed only if memory is freed at the top end) [4].

Pertaining to the memory mapping segment, two other interesting fields of a process’s
memory descriptor are the mmap list and the mm _rb red-black tree. Those two fields
are two distinct data structures containing the same thing; all the memory areas in the
memory mapping segment. The former stores them in a linked list, whereas the latter
stores them in a red-black tree. Although the kernel would normally avoid the extra
baggage of using two data structures to organize the same data, the redundancy comes

in handy here. The mmap data structure, as a linked list, allows for simple and efficient
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traversing of all elements. On the other hand, the mm_rb data structure, as a red-black
tree, is more suitable to searching for a given element [41].

A red-black tree is the appropriate data structure to use when it is needed to be
modified frequently (a thorougher examination is presented in Appendix A). In virtual
memory areas management, insert operations accompany the commonly used mmap sys-
tem call. Each time a new virtual memory area needs to be mapped, a search takes place
in the memory descriptor’s red-black tree field, looking for a suitable gap. According to
the kernel configuration, this search occurs either by taking left or right nodes first under
consideration. The above two design options result in bottom-up and top-down alloca-
tion respectively. More specifically, if not explicitly specified by providing an address
preference (strict under the MAP_FIXED flag), the operating system allocates virtual space
starting from lower addresses and growing to higher ones in bottom-up allocation. The
contrary holds for top-down. After subsequent space has been found under the above
logic, the memory descriptor’s mmap list and red black tree can be updated. Maintain-
ing one of those allocation policies consistently results in the creation of large contiguous

virtual address space regions enhancing the benefits of large pages.






Chapter 4

The DPART Scheme

This chapter describes our proposed mechanism, DPART (Deterministically Indexed
Address Translation with Multiple Page Sizes via Partitioned Address Space). In the
beginning (4.1), the characteristics of an ideal hypothetical address translation scheme
are presented. Afterwards, after introducing a simplified scheme implementing the idea
behind DPART (4.2), we present the details of our technique (4.3). Last but not least,
in 4.4 two optimizations are exhibited that complete the implementation of DPART.

4.1 Description of an Ideal Address Translation Scheme

In general, to achieve efficient address translation, a mechanism should ideally possess

the following characteristics:

e Multiple page sizes

Simple, straightforward internal mechanisms

Index-based TLB lookup

Proper index bits selection

Determinism and correctness

Uniformity

Multiple page sizes are vastly important as they optimize the space needed to encode
the virtual memory to physical memory mapping. The utilization of only a small sized

page would result in redundant translations in the mapping of a large virtual memory

23
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area, and on the contrary side, using only a large sized page would result in big physical
memory space waste when having to translate small memory areas. Consequently, it is
substantial that an address translation scheme be able to adapt to the size of the memory
amount needed to be used each time. To address this problem, an efficient mechanism
should provide a wide page size granularity. The more the sizes, the better translations
will adapt to the virtual memory areas length variety.

Much of the related work presents complicated mechanisms, existing either to com-
pute a translation, or to support the implemented mechanism while often running in the
background. Some of those mechanisms include prediction logic [11, 19, 42, 43, 49], col-
lection and processing of metadata [50, 52|, or need to run searches on multiple different
structures simultaneously [53]. It should also be noted that those mechanisms become
more and more complicated or even inaccurate when using more page sizes. To combine
high performance and energy efficiency, an ideal scheme should only consist of simple,
straightforward mechanisms that would neither impose high latencies, nor provoke high
energy consumption.

A TLB adhering to a powerful address translation scheme should also support index-
based search. Indexing reduces the TLB search domain only to a specific subset of
entries. This results in a significant reduction of the search overhead. If index-based
search cannot be supported, then we are forced to rely on fully associative TLBs. Fully
associative structures’ average search time is proportional to their size. Hence they are
not scalable, and limited only to few entries that may not be able to support demanding
tasks efficiently.

Again pertaining to indexing, it is crucial that the index bits be juxtaposing to
the offset bits. If not, then either the index and offset part of a virtual address will
share common bits, or extra bits will exist in-between. Both of the preceding induce
problems degrading address translation performance. In the case that index and offset
parts have bits in common, then the same page will be mapped in multiple TLB sets.
This is practically equivalent to using a smaller page size whose offset matches the LSBs
remaining before the beginning of the index part, as a single translation in the TLB
embodies only mappings that differ in solely those remaining bits. On the contrary, if
the index part of an address is selected to be placed towards the address’s MSBs, then the
tag part shortens. A linear tag size reduction results in an exponential conflict increase.
In a contiguous address space, for every bit the index part is shifted rightwards, the
number of addresses mapped into the same set doubles, confining the benefits of small
sets associativity.

By determinism and correctness, we mean that if an address translation logic deter-
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mines that a translation is located in a specific TLB set, then this should be accurate.
Speculation mechanisms, where determinism is absent have non-negligible overheads in
a misprediction scenario |11, 19, 49]. Even if those cases may occur rarely due to high
prediction accuracy, completely distinguishing them is definitely an improvisation. Also,
as already denoted, prediction accuracy will heavily deteriorate when having to chose
between more classes (i.e. page sizes). As a result, determinism is also essential for scal-
ability. In addition, devastating security leaks may be induced by speculative execution
of memory operations as it has already been done in Spectre [38] and Meltdown [40]. In
order to be avoided, those dangers should be carefully handled, sometimes by stalling
execution or furtherly validating a translation before committing it [43].

At last, the distribution of translations over the TLB entries should approach a
uniform distribution. If on the contrary many translations are accumulated in an entries
subset, two bad things can happen. Firstly, in the case that many translations are hosted
by some few, specific entries, if the number of translations exceeds the number of those
entries, some of those translations will be evicted. In an extreme case, lets assume that
N translations are mapped in a set of N — 1 TLB entries, and the corresponding virtual
addresses of those translations are accessed cyclically. This would result in a 0% hit
rate. To solve this problem, we should augment the number of candidate entries where
those translations can be hosted. Thus we should reduce accumulation by increasing
uniformity. Secondly, in a non-uniform distribution, a portion of the TLB structure may
be rarely utilized. Since TLB is a costful resource, underusing it is not affordable.

To achieve all of the above six features with little tradeoff, would result in a flawless
scheme. Of course, high performance may be achieved by satisfying most but not all of
those characteristics and by mitigating the effect of the rest. Is it possible though to

create a scheme fulfilling all of them? The answer is affirmative, as DPART does so.

4.2 Two Page Sizes Initiative

Let us first formulate the problem which renders multiple page size translation difficult.
For the sake of simplicity, we will be referring to a scheme supporting two page sizes
only, 4KB and 2M.

We wish to equip our address translation scheme with both multiple page sizes sup-
port and index-based TLB lookup. As shown in Section 3.4, depending on the size of
the page that an address belongs to, a different number of bits is used as page offset.
Thus, the index part of the address, starting directly after the offset part, is located in

different positions for different page sizes. Figure 4.1 depicts this difference.
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12+a 12 0

21+a_.-""' 21 0
Address in 2M page

Figure 4.1: Index bits position in different page sizes

It is now cogent that with the absence of a-priori knowledge about the page size that
has been used, it is impossible to determine which bits should be used for index. At this
point though, one should question how do we determine other quantities characterizing
a TLB entry, or general entries in computer architecture structures. The answer is by
special bits such as valid, dirty, etc. However, the approach to introduce a new special
bit invokes several challenges, some of them concerning when and how this bit’s value

will be determined.

virtual address space isomorphic space

physical address space

4KB pages area

0b0111...
0b1000...

2MB pages area

0bl111...

Figure 4.2: Hypothetical isomorphic layer between virtual and physical address space

A much simpler approach is to make this special bit a part of the virtual address.
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To imagine how this would work, one could construct an isomorphism of the virtual
address space (Figure 4.2). At the isomorphic space, addresses corresponding to 4KB
pages will be mapped at the upper space’s half and 2MB page addresses will reside in
the lower half. Thus, all addresses belonging to 4KB and 2MB pages will start with a 0
or 1 respectively. Under this approach, reading the address’s MSB will reveal the page
size that was used for its translation.

In Section 4.3.1, we will see that instead of creating a second level of virtual memory,

we will apply the aforementioned rule to the virtual address space itself.

}/ISB PS1 idx PSO0 idx
VA ‘
MSB large tag Bt large offset - :
PS1 idx PS1 tag mask PS1 offset mask
PS0 idx ‘ PSO0 tag mask PS0 offset mask
‘ i

v Y ¢ ¢ _ :
Lo2xl Lo2x1 Lo2x1

. MUX . MUX \ MUX /

Y T T
true idx tag mask offset mask
large large
tag . offset 4’.

true tag true offset

Figure 4.3: Address tag, index and offset identification with 2 supported page sizes

Now that we have a virtual address whose MSB denotes the page size that should
be used, the TLB mechanism should be straight-forward. Figure 4.3 shows the detailed
hardware mechanisms. The MSB is used as the select line at 3 multiplexers. The one
responsible to compute the true index part of the address takes as input the two possible

index parts (for 4KB and 2MB pages). Those quantities (illustrated with hatch pattern
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and named PSi idx on Figure 4.3) are defined deterministically and universally for any
address.

As for the other 2 multiplexers, they contribute to the computation of the address
true tag and offset. The input lines in each of them are constant masks, which can be
constructed at hardware level. The masks for each page size are shown in Figure 4.4.
After the multiplexers determine which masks should be used, they are passed to AND
gates, alongside with what is shown as large tag and large offset. Those quantities are
defined by the largest tag and offset possible for both page sizes. It is clear that the
large tag corresponds to the tag that should be used for 4KB pages and contains the
2MB page tag, and the large offset corresponds to the offset that should be used for 2MB
pages and contains the 4KB smaller offset. After the application of the AND gates, the
true tag and true offset are output.

It may be referred that one instead could use the appropriate bits corresponding
to the various page size’s tags and offsets directly to the multiplexers’ gates. This
though would require extravagant hardware support for more page sizes. The presented
technique instead, uses constant inputs to the multiplexers, and needs two extra set of
bits from the virtual address, the large tag and offset. Of course, as in the case of the

index bits, those virtual address sections are deterministic and universal for all addresses.

PSO0 offset mask 0 00O 11111

PS1 offset mask 1111 11111

VA %///// W
]

. ;
|arge tag O |arge offset eereeeneeendd :

PS0 tag mask 111111 1111

PS1 tag mask 111111 0 00O

Figure 4.4: Tag and offset masks

Now that the appropriate index, tag, and offset for each page size are determined, a

TLB lookup can take place with no further modifications.
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4.3 DPART

DPART is the generalization of the previous scheme for arbitrarily many page sizes.
Hence, it can be inferred that to identify the appropriate page size, we will be using more
MSBs this time. Other than that, the previous logic remains the same; all addresses
which belong to a specific page size, will be mapped at a specific virtual address space
segment, characteristic of this page size. To elucidate how we manage to establish this
MSBs and page size identification connection, we will initially delve into the software

part of our technique.

4.3.1 Virtual Address Space Partitioning

As it was stated in Section 4.2, our goal is to force virtual addresses to reside in specific
regions of the virtual address space depending on the page they should be mapped with.
Those virtual address space regions will be called partitions. More specifically, we will
be partitioning the virtual address space into 2" equal sized partitions, where n denotes
the number of virtual address MSBs we will be using for our identification. Obviously, in
such a scheme, up to 2™ page sizes can be supported. For instance, figure 4.5 illustrates

the case of n = 2.

virtaul address space

0500000 ™

> #00 partition
0b00111...
0501000

>~ #01 partition
0b01111...
0510000

> #10 partition
0b10111...
0b11000.. )

> #11 partition
0b1111l...| )

Figure 4.5: Virtual address space partition
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We should denote that despite any differences, the idea of partitioning the virtual
address space and using an address’s MSBs for proper allocation is observed in bibliog-
raphy by Basu in his PhD thesis [14] and in another instance by Keppel and Pham in a
2019’s patent [36]. His approach will later be presented in the related work Chapter 6.

At this point, we will describe how we manage to consistently map and retain memory
in the desired partition. As explained in Section 3.5, at the mapping of a new virtual
memory area, the Linux kernel uses mechanisms to search virtual memory, and find an
appropriate gap to map this area. This procedures takes place for example in mmap,
mremap system calls and shared memory operations. The domain of the predescribed
search is limited by the low_limit, high_limit fields of a vm_unmapped_area_info
structure. Those limits are architecture specific and in an unmodified Linux kernel their
values are often set in the extrema of the allowed virtual space given to a process (i.e.
TASK_UNMAPPED_BASE, TASK_SIZE), depending on the kernel configuration.

Going into the details of this unmapped area search, a gap is defined by the the start
of a virtual memory area (vma) and the end of its preceding vma (vma->vma_prev). To
make a selected gap compatible for an assignment of a length, the following conditions
must hold:

gap_start < info — high limit-length
gap_end > info — low_limit + length
gap _end — gap_start > length
where gap start, gap end denote the vma->vma_prev->end and vma->start respec-
tively.
info->low_limit info->high_limit

length

v
vma->vm_prev W/M vma

gap_start gap_end

vma - vm_prev - vm_end vma - vm_start

Figure 4.6: Virtual memory area search
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At first glance, those inequalities may seem counterintuitive, as the gap’s lower bound
is compared with the search domain’s upper bound of the first inequality and vica verca.
A thorougher examination though, shows that those inequalities together are sufficient
to render a gap able to accommodate a length sized new area. The first two inequalities
assure that the allowed search limits enclose the desired gap with a margin of length,
and the third inequality ensures that the area to be mapped fits.

To ensure that a vma will be mapped in the partition of our preference, we first
modify the vm_unmapped_area_info struct’s limits to make them match the partition’s
bounds. Secondly, we need the mapped virtual memory areas to be aligned based on
the page size to be used. To achieve this, we include alignment operations in some
parts of the code, and slightly modify the presented inequalities. At this procedure,
we neither lose any of the optimizations of the operating system implementation (for
example, virtual memory areas are still likely to be mapped continuously), nor cancel
any of its policies, such as top-down assignment. We instead use any policy specifically

in the partition we are working on, instead of the whole virtual memory.

4.3.2 Usage of Multiple Page Sizes

Now that we have established a mechanism that maps virtual memory areas to the
desired partition, we are free to utilize them.

We will be using the first and last partitions for 4KB pages. We are using the basic
page size for both of those partitions, because in current systems the low addresses are
used for the text segment, data segment, bss segment and heap, and high addresses are
used for the stack [47]. The above makes using two partitions equivalent to using no
partitions, as they would both refer to 4KB pages. As a result, we are never using a
single MSB in our scheme. We should now denote that by virtual address space, we
mean the user space, defined by 47 bits (a virtual address consists of 48 bits and the
second half of this address space is used by the kernel) [3]|. In 5-level paging this becomes
56 bits [2, 31], but this case is beyond the focus of this thesis.

It may be stated that devoting a certain number of bits within the address reduces
the virtual memory available for each page size, while before all the address space was
available for all sizes. This though, should not be considered an issue. In our approach,
we will be using up to 5 bits. From now on, we will be referring to these bits as partition
bits. The size of each virtual memory partition remains huge, as it is shown in Table 4.1.
Zero partition bits pertain to an unmodified system where the whole user space’s size is
indicated.

At this point, we present which page size will be representing each partition. Table 4.2
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shows all the page sizes that will be used and Figure 4.7 depicts how those page sizes

are distributed over the partitions. It may be observed that at the case of 5 bits, since

going over 32GB pages is extravagant, we repeat the utilization of the same page size

in some partitions. This is done in large pages, as those have the highest probability of

exceeding their 4TB partition, even if such a scenario is still nearly impossible.

Partition bits Partition size (4-level PT) Partition size (5-level PT)

0

[SA" U V]

128TB 64PB
32TB 16PB
16TB 8PB
8TB 4PB
4TB 2PB

Table 4.1: Partition sizes for 4-level and 5-level page tables

Partition bits

Page sizes

0
2
3

4

5

4K pages only
4K, 2M, 1G pages
4K, 32K, 256K, 2M, 16M, 128M, 1G pages

4K, 8K, 32K, 64K, 256K, 512K, 2M, 4M,
16M, 32M, 128M, 256M, 1G, 2G, 8G pages

all power of 2 page sizes from 4K to 32G

Table 4.2: Available page sizes under each partitioning scheme

Now, one should question what is the criterion of choosing a page size during the

allocation of some memory. We are introducing three policies for this purpose.

e LOWER

e CLOSER

¢ UPPER
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2 partition hits 3 partition hits 4 partition bits 5 partition bits
4k 4k
4k 8k
8k 16k
Ak 32k
32k 64k
32k 128k
64k 256k
512k
256k M
256k 2M
512k 4M
2M 8M
2M 16M
2M 32M
4M 64M
128M
16M 256M
16M 512M
32M 1G
1G 1G
128M 2G
128M 2G
256M 4G
4G
16 8G
16 8G
2G 16G
ak 16G
8G 32G
4k 32G
4k 32G
4k

Figure 4.7: Page size utilized for each partition

For a virtual memory area of size length, in those policies we are picking pages form
the directly lower, closer and upper page size respectively. Providing an exact definition

of them, if avail page sizes is the set of the sizes denoted in Table 4.2, then:

page_sizejoper(length) = sup {ps | ps < length}

ps€avail _page_sizes

page_Sizecoser(length) = arg min |log2 (ps) — log, (length)|

ps€avail page sizes

page_sizeypper(length) = inf {ps | ps > length}

ps€avail _page_sizes
Ostensibly, LOWER is a conservative policy that would use more pages and reduce

space waste. UPPER is a more aggressive policy aiming to minimize the number of
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pages used paying the tradeoff of redundancy. Obviously, CLOSER tries to incorporate
the advantages of both LOWER and UPPER by providing a solution in the middle.
Furthermore, an example of the following policies is provided in Table 4.3 from which

advantages of each of them can be inferred.

Length Policy
LOWER CLOSER UPPER
150kB 32kB 256kB 256kB
250kB 32kB 256kB 256kB
35kB 32kB 256kB 32kB

Table 4.3: Page assignment examples for each policy under 3 bits partitioning

One may notice that a mechanism strictly allocating contiguous virtual memory
areas to the appropriate partition may include implementation gaps concerning memory
areas’ size modification through a process’s runtime. In detail, the mremap system call
may expand (or shrink) an existing memory mapping [6]. The behavior of mremap is
determined by the flag MREMAP_MAYMOVE, the existence of which allows the operating
system to move the whole mapping in another part of virtual memory. Under this
flag, our logic can be implemented without any constraints. However, under its absence
the new virtual memory area size may not adhere to its memory partition page size
indication.

To confront this issue, we loosen the strictness of our model, allowing the existence
of memory regions formed by those circumstances. This avoids costful memory areas
movements and simplifies our approach. However, the negative consequences of this
selection, is that now more small pages may be used for an expanded memory area,
and conversely, larger pages may be used for shrunk memory areas. We observe that
implications of those advantages to performance are minor. Even if the remapped area
doubles in size, only a few extra pages should be used (at most one in CLOSER and
UPPER policies). The shrinking case is very rare, but still it may only present as much
page internal fragmentation as the memory area size reduction. To furtherly support our
design choice, in large virtual memory areas size modification cases, the MREMAP_MAYMOVE

is present, preventing any unwanted results.
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4.3.3 DPART TLB

At this subsection, details are going to be provided regarding the TLB that accompanies
our scheme.

The structure of the TLB entries remain exactly the same as in modern architectures
hardware. Specifically, in Figure 4.8 the form of the TLB entries corresponding to a base
size page and a larger one, is shown. To achieve this uniformity, in the case of a large
page, we add zeroes to the end of its (smaller) tag, until it matches in bit size a 4KB
page tag. It is easy to show that this transformation preserves the uniqueness of tags

between different pages.

Tag

4K page TLB entry flags ObXXXXXXKXXKKKXK PFN
Tag

Larger page TLB entry flags Dbxxxxxxxxxx0000 PFN

Figure 4.8: TLB entries structure

In detail, let addrl, addr2 be two addresses that have been translated via different
pages and their translations have been found in the same TLB set. The nM .S Bs function
outputs the MSBs of a portion whose number is equal to the quantity of partition bits.
We will prove that having the same tag is impossible, by contradiction. The case where

the addresses respective page sizes are equal is ommitted as trivial.

Suppose page size(addrl) # page size(addr2)

tag(addrl) = tag(addr2)
= nMSBs(tag(addrl)) = nM SBs(tag(addr2))

n<|tag|
_

)
)
nMSBs(addrl) = nMSBs(addr2)
DPART loglg page_size(addrl) = page_size(addr2), a contradiction
As a result, finding a tag in a specific TLB set, deterministically defines its underlying
virtual page.

The mechanism that is used to identify the tag, index and offset components of a
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virtual address, is the same as the one described in Section 4.2. Its general case for n

partition bits is shown in Figure 4.9

PS1 idx
n MSBs PS(2"-1) idx ... PS2idx PSO0 idx
v L[ (I
n MSBs large tag large offset oo

Ej PS idxs tag masks offset masks

YVYVY l ¢ # ¢ l l i l_

A\ (2-1)x1 (2n-1)x1 (2n-1)x1
TLUMUX " MUX "\ MUX

\J T T
true idx tag mask offset mask
large large
tag . offset .
. true tag true offset

Figure 4.9: Address tag, index and offset identification for 2" — 1 supported page sizes

After having identified the true tag and index, a TLB lookup takes place (Fig-
ure 4.10). If the required tag is not found in the indexed set, we encounter a TLB
miss, exactly like in the conventional TLB. On a hit, we consider two cases on whether
the physical address space is aligned at the used page level or not. In the case where
the physical memory alignment is in concordance with the virtual memory alignment, to
obtain the correct physical address, we only have to concatenate the page frame number
form the TLB with the true offset. On the contrary, if physical memory is only aligned
at base page size level, then we have to perform an addition operation between the true
offset and the first physical address of the desired page. This address is simply found
by zero-padding the page frame number stored in the TLB with as many zeroes as the

number of bits the smallest offset has.
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TLB

true idx > flags | tag | PFN

Aligned Physical

=? No
Address Space Case YES T :
TLB miss

PA= PFN true offset ‘ true tag

Non-Aligned Physical
Address Space Case

el e N -
min

offset
hits Os

Figure 4.10: TLB mechanism

Physical memory management is not implemented in this thesis, and is included
in the future work. However, it is estimated that due to the shortage of physical me-
mory (contrasting with the abundance of virtual memory), alignment requirement at the
level of large pages may result in inability to find a suitable contiguous physical address
space, and thus smaller pages should be used. On the contrary, if a hardware addition
is to be implemented, as described in the non-alignment case, then its overhead should

be evaluated.

4.3.4 DPART Page Table

At this point, the modifications on the page table implementation are presented. In
Section 3.3 the page table was introduced. In Figure 4.11 we remind its radix tree
structure, with each directory consisting of 29 entries.

As also stated in the Background chapter, a virtual address is divided into compo-
nents that are used as indices for the page walk and as offset after a page table entry
has been found. Since each directory includes 22 entries, 9 bits are used for indexing.
Figure 4.12 shows the bits that are used for those purposes, for each page size currently

supported in Linux.
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PTEs
(2° entries each)

PMDs
PUDs (2° entries each)
(2° entries each)

PGD
(2° entries)

Figure 4.11: Part of page table

Figure 4.12 also shows how 48bit addresses (user and kernel space combined), and
the support of 4KB, 2MB and 1GB page sizes fit perfectly together. Removing the offset
part from an address (which is determined by the page size), the remaining address bits
are always a multiple of 9, same as the number of bits used as indices during a page

walk.

PGD idx PUD idx PMD idx PTE idx offset
VAin a 4K page

PGD idx PUD idx PMD idx offset
VAin a 2M page

PGD idx PUD idx offset

VAin a 1G page

Figure 4.12: Addresses page table components

What happens though with the extra page sizes that DPART supports? There are
three different approaches.

The simpler one, requiring no OS or HW modifications, is to treat all addresses
as if they were translated by 4KB pages. This is possible, since the page size is not
an attribute of an address, but an attribute of the mechanisms that manipulates that

address. As a result, the TLB can still exploit all the advantages of our scheme. In a
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TLB miss, a page walk should occur (in 4KB page logic), the physical address would
be loaded, and then, in possibly larger page logic (according to the DPART TLB), the
page frame number should be extracted and stored in the TLB. Even though the page
frame number in the TLB differs from the page table entry in their bits quantity, this
does not consist of a problem.

Performance-wise, as shown in Section 3.4, for constant TLB lookup time, the over-
head of address translation is linear to the cost of a page walk multiplied by the TLB
miss rate (assuming that the probability of a page fault is negligible).

cost(addr _tr) = cost(T LBlookup) + cost(page walk) - P[T'LBmiss]

The adoption of 4KB pages forces us in modern systems to suffer 4 memory accesses
(or 5 in 5-level paging [2, 31]) in a page table traversal. As a result, to optimize address
translation, effort is given in reducing the TLB miss rate, rendering TLB the primary
factor virtual memory’s performance. Thus, leaving the page table system as it is, would
not be considered harmful. Obviously, this does not imply that optimizing it would not
be beneficial. Here is where the second approach comes.

So, considering the second approach, it expands the idea from the previous method.
What it proposes is to treat addresses as 4KB, 2MB or 1GB. As it was previously
explained, treating an address with different page size mechanisms each time is perfectly
acceptable. So after identifying the page size determined by DPART using the address’s
MSBs, what we do is to select from the 4KB, 2MB, 1GB sizes the largest one not
exceeding the identified page size. Afterwards, we initialize a page walk as if the address
was mapped with that selected size.

This technique takes advantage of the incorporation of larger pages in the page table
mechanism. First of all, pages with size of at least 2MB will result in fewer memory
accesses, as they would need to access 3 or 2 directories instead of 4. Secondly, less size
is needed to store the page table. Take for example a single 1GB page translation. Its
representation under 4KB pages would require 23°~12 = 218 PTEs. The only drawback
is that during TLB update, we should provide the appropriate PFN by extracting the
correct number of bits from the physical address according to the page size specified by
DPART logic, as we also had to do in the previous method.

The steps of this approach are:

e Page size identification using the address’s MSBs
e Select the largest size from 4KB, 2MB, 1GB, not exceeding the identified page size

e Extraction of index and offset components according to the selected page size
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e Page walk according to indices previously obtained
e Concatenation of PTE with offset to receive physical address
e Computation of PFN according to the identified page size

e TLB update with PFN

The third approach, even being trickier, furtherly improves the previous one. Under
this solution, we treat all addresses under the size indicated by DPART. Obviously,
this solution fully leverages the advantages of large pages, also resulting in shorter page
walks and smaller page table space in memory. The challenge of this method refers to
page sizes whose offset is not in the form of 48 — 9%k. Those pages should be examined

meticulously. Figure 4.13 shows one of them.

PGD idx PUD idx PMD idx PTE idx offset

VAin a 32K page 9 hits 9 bits 9 bits 6 bits 15 hits

Figure 4.13: 32KB page address page table components

In this example involving an address that belongs to a 32KB page, 6 bits have to be
used for the last page table level indexing. As a result, the PTE chunks will accommodate
26 instead of 27 entries. A page table under this scheme is shown in Figure 4.14. The
consequence of this method is leaving some empty space in certain pages used to store
the last level of the page table tree structure. At the extreme case, some of these pages
may have only 1 entry. This would be caused for example in 1MB pages (with their page
offset being equal to 20), as 48 =9+ 9 + 9+ 1 + 20.

However, instead of this being a drawback, it gives us space for further optimization.
Specifically, the pages storing the last level of the page walk which contain extra space,
can be combined into fewer pages. For example, two PTE chunks referring to 8KB
pages having 28 entries each, can be stored in the same page, as also four chunks of 27
entries, etc. To make this possible, let us consider that the contents of the previous page
directories are pointers to the next ones. So, the only change appearing is that those
pointers will now not always point to the beginning of a page. The above enables us to
represent the page table in significantly less space.

Even without this optimization though, this approach is still superior to the previous
one. Pages including fewer that 29 entries now manage to encode their information in less

space, and using instead one of the 4KB, 2MB, 1GB sizes would only lead to redundant
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entries. Of course, if needed, due to the abundance of available page sizes in DPART, the
exclusion of some page sizes that may be considered space consuming, is easily tolerable.
It should be also noted, that a further advantage of this method is the fact that, as now
the TLB and the page table function under the same page sizes, the PTE obtained by a
page walk is the same as the PFN that has to be filled in a TLB entry.

4k PTEs
(2° entries each)
4k PMDs
4k PUDs (2° entries each)
(2° entries each)
PGD
(2° entries)
4k PGDs
32k PGDs 32k PUDs 32k PTEs
(2° entries each) 32k PMDs (2° entries each)
(2° entries each)
256k PGDs
| |
I |
16M PUDs
16M PGDs (2° entries each) 16M PMDs
(2° entries each)

Figure 4.14: Modified page table under the third approach

Concluding this approach, the steps for its implementation would become:
e Page size identification using the address’s MSBs

Extraction of index and offset components according to the identified page size

Page walk according to indices previously obtained

Concatenation of PTE with offset to receive physical address

TLB update with PTE
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4.4 Further Optimizations

Up to this point, DPART has been completely established, having discussed the virtual
address space partitioning enabling page size identification, the page size selection pro-
cess, and also the TLB and page table that would support this scheme. This section

introduces two further improvements aiming to optimize DPART’s TLB hit rates.

4.4.1 Skewing

In the Linux kernel, memory allocation in the virtual address space happens either in
top-down (most commonly) or bottom-up logic. More specifically, in top-down logic
for example, when asked to find a new empty virtual memory area the Linux kernel
begins searching from the highest address allowed and continues to lower addresses as
it traverses the memory’s red-black tree (see Section 3.5). The opposite happens in
bottom-up logic. The above method results in the creation of contiguous memory regions,

providing multiple advantages, such as the ability to merge virtual memory areas.

virtaul address space

0p00111111...111

T

0b01111111...111

0b10111111...111

0b11111111...111

Figure 4.15: Top-down memory allocation in each partition

However, this creates a performance impediment for our scheme. Let’s focus on top-
down assignment. As it observed in Figure 4.15, in each partition, the majority of bits in

addresses initially allocated are all 1s. Obviously, the same holds for the index part of an
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address. Consequently, the first pages to be allocated from each partition will all map to
the last TLB set. Similarly, the second page to be allocated from each partition, having
all but the last index’s bits equal to 1, will map to the next-to-last set. Figure 4.16 shows
that.

virtaul address space

TLB sets

0b00...110...111

0pb00...111...111

0b01...110...111

O0p0l1...111...111

0p10...110...111

0b10...111...111

Opl1l...110...111

Ob11...111...111

Figure 4.16: Bottom TLB sets accumulation (pages not in scale)

This accumulation in the last TLB sets violates the uniformity characteristic men-
tioned in 4.1, leading to performance degradation. To overcome this, inspired by Seznec’s
ideas [55, 56|, we are targeting to skew the destination of a page in the TLB. Seznec
proposes a scheme where an address can be mapped on different TLB set ways accord-
ing to its page size. To do so, each TLB way is indexed using a different hash function.
Those functions, to increase diffusion over the TLB entries, often apply XOR operations
and each of them uses different address’s bits.

In DPART, we are keeping Seznec’s core idea of spreading translations and define
a simpler skewing scheme exploiting DPART’s partition bits. Since an address’s MSBs
differ accordingly to the page size, to get our skewed index we simply apply an XOR
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operation between the index and the partition bits. This will result in a constant shift
of the set used by pages in each partition, spreading translations deterministically over
the TLB sets.

skew_idx_a (address, idx, idx_bits)
skew = CROP_LSB(address, address_bits - partition_bits);
skew = KEEP_LSB(skew, idx_bits);
return XOR(idx, skew);

Listing 4.1: Skew a pseudocode

skew_idx_b (address, idx, idx_bits)
if (partition_bits > idx_bits)
skew = CROP_LSB(address, address_bits - idx_bits);
else
skew = CROP_LSB(address, address_bits - partition_bits);
skew = ZERO_PAD(skew, idx_bits - partition_bits);

return XOR(idx, skew);

Listing 4.2: Skew b pseudocode

partition bits long index

skewed (a) long index skewed (b) long index

partition bits short index

skewed (a) short index skewed (b) short index

Figure 4.17: Skewing schemes for indices longer or shorter than partition bits
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As index bits may differ in number with partition bits and, the XOR operation can
be applied in various ways. We propose two different skewing mechanisms (named skew
a, b). The pseudocodes of those mechanisms are presented in Listings 4.1 and 4.2. To
explain the functionality of those two methods, Figure 4.17 illustrates their application.
In the upper/lower part of Figure 4.17, one can see the skewed index in the case where
partition bits are less/more than the TLB index bits, respectively.

At this point, we may observe the advantage of this skewing mechanism. To do so,
let’s recall the problematic behavior presented in Figure 4.16. In Figure 4.18 we show
how the skew b method would redistribute page translations over the TLB, and solve

the accumulation problem completely.

virtaul address space

TLB sets

0b00...110...111

0b00...111...111

0b01...110...111

0bo01...111...111

0b10...110...111

0b10...111...111

Obl1l...110...111

0bl1...111...111

Figure 4.18: Page skewing (pages not in scale)

Another solution to the accumulation problem would suggest to create more TLBs,
and use one for every page size, according to the partition bits. This has two severe
weaknesses. First of all, the TLBs corresponding to page sizes that are used in low

frequency, will be heavily underutilized, resulting in waste. Secondly, this approach is
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not scalable, and it would not be affordable to use DPART with many page sizes, as we
would need a new TLB structure for each of them. On the contrary, with the skewing
schemes, we are fully utilizing the single TLB for all memory translations, potentially

filling all its entries.

4.4.2 The Heap Overhead

Another optimization is referring to the mapping of the heap. As shown in Section 3.5,
a process’s heap is located in the beginning of its virtual address space, controlled by the
program break. Since the heap resides in the very first virtual memory partition, 4KB
pages are used for its mapping. For the majority of large memory regions allocation,
instead of the heap, anonymous mappings are used, directing those regions in the desired
partitions. For further optimization though, our intention is to also map the heap using
a larger page size.

This requires some OS changes. In a modified brk system call, we chose whether
to map the requested area directly after the current program break (in the 4KB page
area), or to map it using DPART logic. The criterion of this choice is whether a brk
increment is large enough to require larger pages. Nevertheless, many programs are
incrementing their program break gradually with small steps and such an opportunity
may never arise. However, using gperftools’ TCMalloc [9], the heap size is reduced, and
any gradual program break increments coalesce enabling this optimization. Also, even
without TCMalloc, at every brk call, we could evaluate the heap’s length, and if it is
large enough, we can remap it to a different partition. Other implementations would
suggest modifying M_MMAP_THREASHOLD or the start_brk portion at the initialization of
a process.

At the scope of this thesis, we implement this optimization on simulation level, rather
than modifying the operating system. What we do is to identify the boundaries of the
heap (defined in mm->start_brk, mm->brk), and use the appropriate page size in this

region, without remapping it.

4.5 Restrictions

In this section we analyze the limitations of our method. First of all, DPART requires
an architecture supporting multiple page sizes. In contrary, other schemes may be or-
thogonal to such a design option such as [15, 35| and be able to function independently.

In addition, to support our scheme we need to use large pages at the first access of

a data that is backed by a corresponding large memory allocation. This is implemented
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by preallocation on reservation. Other schemes relying to high contiguity also require
such an option [35] and notice that on-demand paging is more costful due to the high
TLB miss rates that schemes supporting eager paging but limiting those miss ratios. Of
course, it may be argued that a program may include big memory allocation calls and
end up not using all the requested space, resulting in an unnecessary waste. This can be
confronted by adding limitations in our policies, as discussed in the future work section
(7.1).

Furthermore, our scheme is sensitive to external fragmentation. More specifically, in
order to allocate a page, sufficient physical memory should exist. Otherwise, physical
space should be found, or smaller pages should be used. However, this is analogous to
any other method trying to leverage the advantages of superpages. The physical memory
management part is also discussed in 7.1.

In computer architecture, everything is about tradeoff. We state that despite the
above limitations of our method, the immediate page size identification that we offer,
unlocking the benefits of a broad variety of page sizes will subsume to a positive result.

Experiments showing the advantages of our method follow in the next chapter.






Chapter 5
Experiments

To evaluate our approach, it is necessary to measure a system’s performance running
DPART’s logic under heavy memory workloads. At this stage, having implemented
DPART’s logic into the Linux kernel, we construct software-running TLB simulators,
attempting to output the TLB hit rates that a hardware TLB abiding by DPART"s rules
would. However, under this logic, it is not possible to correctly measure the benefits that
would arise from the simplicity of DPART. Those benefits, primarily concerning system
mechanisms latency and energy consumption, are analyzed in Section 5.4.

In order to make the aforementioned evaluation valuable, we compare DPART with
other address translation schemes, including the conventional 4KB pages scheme. To
achieve this, we build their respective TLB simulators which are discussed later, in
Subsection 5.1.3.

On the whole, in this chapter we present the methodology of our simulations (5.1),
analyze the benchmarks being used (5.2), and finally present (5.3) and discuss (5.4) the

results extracted.

5.1 Methodology

5.1.1 System

For our measurements we used a virtualized environment, whose host system included

the components named in Table 5.1. The virtualization emulator used was QEMU [16].

49
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microarchitecture Kaby Lake
processor Intel(R) Core(TM) i5-7600 CPU, 4 cores, 3.50GHz
(O1] Linux 4.19.50
2M/4M pages, 4-way, 32 entries
L1 DTLB 1G pages, 4-way, 4 entries

4K pages, 4-way, 64 entries

2M/4M pages, fully, 8 entries
4K, 8-way, 128 entries

L2 TLB 4K /2M pages, 6-way, 1536 entries

L1 ITLB

Table 5.1: System configuration

For our benchmarks, instead of using glibc’s malloc library function, we used TC-

Malloc [9]. The effect of TCMalloc in our benchmarks is analyzes in Section 5.2.

5.1.2 Simulating TLB Misses

To evaluate our scheme, we aim to measure our TLB’s hit ratio. To do this we have
several options. Performance counters for Linux (PCL or perf) is a kernel-based subsys-
tem that provides a framework for collecting and analyzing performance data [7]. This
would allow us to capture a hardware TLB’s metrics while not having to experience
simulation time overheads. On the other extrema, Pin [33] and other simulation tools
enable a wide variety of actions during an application’s runtime, however significantly
increase execution time. Since we neither have a hardware implemented component, not
we want to endure the time overhead of full system simulations, we aim to use an ad-hoc
tool, instrumenting specifically TLB misses.

BadgerTrap, created by Gandhi et al. is such a tool, implemented for Linux kernel
version 3 [24]. BadgerTrap marks the PTEs of a specified process, and each time a TLB
miss occurs, it is converted into a page fault. Afterwards, a handler of our choice is
called, and at its completion, a page walk takes place so that at the instruction restart
the translation is existent in the TLB and execution proceeds.

One of our contributions in this thesis was writing a version of BadgerTrap compatible
for Linux kernel 4. Now, to measure performance, in the TLB miss handler we initiate a
lookup of our TLB software structures for the virtual address that caused that miss. As
the set of addresses we work on consists of the ones causing TLB misses, this is of only

a subset of the total addresses that an application accesses. However, it is a common
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ground for all different experiments that we aim to hold, and hence our goal, which is

comparison, is effectively achieved.

5.1.3 Software TLB Simulators

This subsection enumerates the experiments that are to be held. These experiments may
be categorized under two groups; comparison between all different DPART setups, and
comparison between only some selected DPART setups and other address translation

schemes. The exact tests of each category are to be specified below.

5.1.3.1 Comparison of Different DPART Configurations

We are going to simulate DPART under 6 configurations. Those configurations are
summarized in Table 5.2. As one can observe, those 6 configurations derive from the
combinations of the two optimizations added to the basic DPART scheme, as mentioned
in 4.4.1 and 4.4.2.

no skewing skewing pattern A skewing pattern B

no heap optimization dpart nonbrk dpart nonbrk skew a  dpart nonbrk skew b

heap optimization dpart dpart skew a dpart skew b

Table 5.2: DPART simulations configurations

Furthermore, at OS-level, DPART presents two configurable options:
e partitioning bits
e page size selection policy

And in the process of simulating a TLB following our logic, we can modify the

parameters of:
e TLB entries
e TLB associativity

Our initial goal is to investigate how the number of partitioning bits and affect
our scheme’s efficiency. To do so, we perform simulations based on the parameters of

Table 5.3 under all configurations in Table 5.2.
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Partitioning Bits Policy @ TLB size TLB associativity

2 CLOSER 32 4
3 CLOSER 32 4
4 CLOSER 32 4
5 CLOSER 32 4

Table 5.3: Simulation parameters on varying partition bits

In the above parameter selection, one can observe that a TLB with a small number
of entries has been selected. This has been chosen in order to produce lower hit rates and

render any differences between the compared parameter combinations distinguishable.

5.1.3.2 Comparison Between DPART and Other Address Translation Schemes

In continuation, we need to observe how TLB entries and associativity affect our proposed
scheme, and simultaneously compare it to other address translation schemes. The TLBs

we will be simulating derive from the systems that are listed below:

conventional

hugepages split

hugepages merged

dpart skew b

¢ RMM

All TLBs are using LRU replacement policy.

In detail, the conventional TLB refers to translation based solely on 4KB pages, as
in the majority of today’s systems with disabled hugepages mechanisms.

Hugepages merged and hugepages split, refer to Transparent Hugepages (THP) [10,
8]. Specifically, modern architectures include a shared 1536 entries L2 TLB supporting
both 4KB and 2MB pages and a separate 16 entries TLB for 1G pages only [32, 1].
The split TLB consists of three subTLBs, one for each page size (4KB, 2MB, 1GB).
Those subTLBs are considered to be accessed in parallel and LRU policy is implemented
separately in each subTLB. In our models, the merged TLB accommodates pages of all
4KB, 2MB, 1GB sizes in its entries and LRU policy is implemented in this structure as
a whole, regardless of the page size of the entry to be evicted. Those two TLB patters
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were selected to be simulated since they represent the two extrema functionality cases

of a TLB supporting hugepages.

Partitioning Bits Policy @ TLB size TLB associativity
5 CLOSER 4 4
5 CLOSER 8 4
5 CLOSER 16 4
5 CLOSER 32 4
5 CLOSER 64 4
5 CLOSER 128 4
5 CLOSER 256 4
5 CLOSER 512 4
5 CLOSER 1024 4

Table 5.4: Simulation parameters on varying TLB size

Partitioning Bits Policy @ TLB size TLB associativity
5 CLOSER 64 1
5 CLOSER 64 2
5 CLOSER 64 4
5 CLOSER 64 8
5 CLOSER 64 16
5 CLOSER 64 32
5 CLOSER 64 64

Table 5.5: Simulation parameters on varying TLB associativity

RMM (Redundant Memory Mappings) is a scheme introduced by Karakostas et

al. [35]. In RMM, a region of arbitrary size, defined by its start and end, is representing

a virtual memory area. Since those regions are neither aligned, nor their length is neces-

sarily a power of 2, indexing is not possible. As a result, a TLB under RMM logic (named

Range TLB) can only be fully associative, and hence, can only be sustainable with a

small number of entries. Despite its associativity limitation, since RMM can support

any positive integer as page size, it ensures to produce the lowest number of translations,

given an arbitrary virtual memory state (exactly one translation for each virtual memory
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area). Consequently, RMM is going to be an upper bound in our analysis, representing
the perfect TLB hit rate, and we are going to simulate it with arbitrarily many entries.

The DPART TLB that is used in our comparisons incorporates both available opti-
mizations, and as it will be shown, it was selected as it presented the best performance
of other DPART TLB:s.

To put all models into the test, simulations under the parameter combinations of
Tables 5.4 and 5.5 will be held. In addition, to provide a fair comparison, a final diagram
will be provided, which will depict the performance of each system under parameters of

equivalent cost.

5.2 Benchmark Analysis

For our simulations, we used 6 benchmarks from the SPEC CPU 2006 benchmark
suite, that present high memory workloads, and have also been selected in prior related
work [35, 50].

In order to understand the functions of those benchmarks, we create a histogram
based on the occurrence of their system calls. We isolate the system calls of our interest,
referring to memory manipulation and access. To create those histograms, we initially
run the benchmarks under the strace call. Afterwards, since many child processes have
forked through our benchmark running system, we identify the PID of the desired ap-
plication by spotting any execve system calls. Finally, we are able to collect information
concerning those PIDs only. The results are shown in Figure 5.1.

By running this procedure both before and after incorporating TCMalloc into our
system, we are able to also evaluate its effect. Our first observation is a vast reduction
of brk calls under TCMalloc. As promised in 4.4.2, now fewer brk calls take place,
eliminating the gradual slow increment of the heap area, providing tenable ground for
our pertinent optimization.

Another observation refers to the extinction of mremap system calls from soplex, and
in general reduction of mmap and munmap calls. This comes from TCMalloc’s ability
to compact those calls and result in not only contiguous areas that will be useful in this
work, but also faster execution and space efficient representation of small objects.

Finally, read and write operations remain approximately invariant, while mprotect,

open, and close system calls increase.
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Figure 5.1: System calls frequency with/without TCMalloc
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5.3 Results

Having analyzed the environment behind our simulations, we are ready to proceed to

their results.

5.3.1 First Results

Before putting DPART into the test with heavy workloads, we perform an initial test
validating that our scheme operates properly. To do so, we construct the microbench-
mark whose pseudocode is presented in 5.1. What this program essentially does is to
allocate a contiguous space of pages 4KB pages and cyclically access an element from
each page cycles times. This would thrash a conventional TLB for values of pages

larger than the TLB’s entries.

addr = mmap (NULL, pages*page_size, ...);

for (i=0; i<pages*page_size; i+=page_size)

assign(addr[il);

for (j=0; j<cycles; j++)

for (i=0; i<pages*page_size; it+=page_size)

access (addr[i]);

Listing 5.1: Tlb miss microbenchmark pseudocode

We run the microbenchmark for an input of pages = 100000, cycles = 100 ac-
companied by a 3 partitioning bit 32 entries, 4-way associative non-optimized DPART TLB
simulator. Out of the total 10100433 lookups provoked by the instrumented host TLB
misses, the DPART TLB manage to experience only 11 misses. This is owing to the fact
that our model managed to allocate a page of appropriate size including the whole addr

array.

5.3.2 OS Changes Execution Time Overhead

Our next analysis aims to ascertain that our operating system modifications do not
provoke any significant time overheads, we measure the execution time of each benchmark
both at their absence and existence. To get those measurements, for each benchmark
we repeated execution three times and received their arithmetic mean. The results are

illustrated in Figure 5.2.
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Figure 5.2: Execution time with/without DPART OS modifications

As it can be observed, no time overhead is observed, and any minor differences are

due to randomness.

5.3.3 Comparison of Different DPART Configurations Results

Hereby, we present the outputs from simulations run under Table 5.3 for every DPART con-
figuration of Table 5.2. The results being very rich, we provide the outputs for each
benchmark in the Appendix and present below the geometric mean of the received por-
tions. The geometric mean is selected as it conveys proportionally changes of the separate
benchmarks to the final result. Since we intend to depict TLB miss rates, which can
approach zero values, we compute the geometrical mean of the benchmarks’ TLB hit

rates, and subtract from the 100 percent mark. Equivalently:
1
output _miss_rate = 100 — ( H benchmark_hit_rate) benchmarks] O,
benchmarks

In Figure 5.3 we present those TLB miss metrics for a 32 entries 4-way associative
TLB.
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Miss rates geometric mean across all benchmarks

2 3 B dpart
100 7 8 R N dpart scew a

o o 3 dpart scew b
B dpart nonbrk
I dpart nonbrk scew a
[ dpart nonbrk scew b
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40 4

tib miss rate (%)

20 4

partition bits

Figure 5.3: TLB miss rates for variant partitioning bits

Miss rates are expected to be high due to the small TLB structure’s size. As pre-
viously stated, this selection was made in order to make our models’ differences easily
observable. Additionally, the reason why high miss rates are observed in few partition
bits (especially in 2) is that the selected policy may not have enough available page sizes
to assign a well fitting one to a virtual address space. As a result, many small pages
may be used for an area that would be mapped more effectively under a larger size.

The best performing scheme is the skew b heap optimized implementation under 5
bits partitioning. This configuration is challenged to be compared with the other schemes

of paragraph 5.1.3.2.

5.3.4 Comparison Between DPART and Other Address Translation
Schemes Results

Bar plots including the aforementioned comparisons follow. Figure 5.4 (a) indicates the
performance of the 5 different models in a TLB size sensitivity analysis and Figure 5.4 (b)
denotes TLB miss rates in a TLB associativity sensitivity analysis.

As we can observe, in all occasions the DPART selected scheme is remarkably close
to RMM’s Range TLB, our upper bound. The only cases that present low performance
for all schemes are corresponding to TLBs with 8 or less entries. In the case of a 16-
entries 4-way set associative TLB, DPART suffers a 1.561% miss rate, being far superior
than the conventional and hugepages schemes, whereas the 16 entries fully associative
Range TLB presents a 1.1097% miss rate, being slightly better. In all other scenarios,
DPART manages to experience a geometric mean TLB miss rate below 0.0005%.

Split and merged huge pages TLBs manage to also offer great performance but only
in either a large number of TLB entries, or in highly associative cases. Last, considering

the conventional TLB, it fails to present miss rates below 75% in all tested scenarios.
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Detailed scores considering all benchmarks separately are included in Appendix C,
also demonstrating DPART’s high performance.

Last but not least, Figure 5.5 includes a comparison where RMM Range TLB’s
number of entries equals the other schemes’ associativity. This test is provided because
Range TLB lacks the ability to be indexed and consequently its average lookup time is
proportional to its full size. On the contrary, other TLBs supporting index-based search

offer an average lookup time proportional the their associativity.

Miss rates geometric mean across all benchmarks
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Figure 5.5: Same associativity TLBs comparison

In both cases presented, DPART TLB achieves TLB miss ratios below 1079 (we
output values rounded to 6 decimal digits). Other schemes’ resulted miss rates are

above 40% and 20% percent in 4-way and 8-way associative cases, respectively.

5.4 Discussion

The previous sections render DPART’s ability to perform well in big-memory workloads
irrefutable. Additionally, our scheme manages to achieve those explicitly low TLB miss
rates while retaining all ideal characteristics presented in Section 4.1.

DPART manages to support any power of two page size in an index-based search TLB

avoiding mirroring or high conflicts that would derive from any compromise regarding
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the position of the index bits in a virtual address. Aside from deterministic indexing,
our scheme manages to distribute stored translations uniformly across all TLB sets, thus
possessing high scalability. As a result, DPART can effectively support TLBs of many
entries, contrasting to RMM that also depicted superior performance.

However, perhaps the most vital DPART’s advantages don’t lie in TLB’s reach en-
hancement. Execution time is not only reduced by TLB hit rate improvement, but also
by TLB miss penalty reduction. Our simple mechanism are estimated to present low
latencies, thus ameliorating computing performance even more.

Considering required modifications, as for software, only minor operating system
changes are required, which, as showed, do not have any impact on execution time.
Regarding hardware, both TLB and page table do not need to change their entries’
structure. The biggest amendment lies in the addition of 3 multiplexers and 2 and
logic gates having deterministically defined and often constant inputs. When inputs are
constant, such as the masks we use to obtain the true tag and offset, they can be stored
in immutable registers or other hardware units without affecting performance.

Another major advantage that was not evaluated at the scope of this thesis regards
power consumption. Circumventing mechanisms running in parallel, verification pro-
cesses or any other complex procedures, we estimate that DPART’s straightforward,
deterministic and simple operations will result in low energy costs.

One extra point worth mentioning is that the ability to incorporate all translations
for all page sizes in a single TLB structure will contribute in aspects such as chip size

reduction and construction cost.






Chapter 6

Related Work

In current bibliography, many efforts have been made targeting to optimize address
translation. This chapter presents the majority of the work that is closely related to this

thesis.

6.1 Range Based Schemes

An early attempt to reduce the address translation overhead by Basu et al. is the direct
segment [15]. Under this scheme, a contiguous range of the process’s virtual address
space is mapped with a direct segment while the rest of the address space is mapped
via conventional page mapping. Due to high contiguity that virtual memory of heavy
workloads may present, the direct segment manages to achieve great TLB miss rate
reduction. However, this mechanism requires the programmer to explicitly allocate a
segment during startup, and cannot support more than one contiguous memory area.

The scheme used in our experiments, based on the idea of direct segments and sub-
stantially improving it, is RMM by Karakostas et al. [35]. RMM operates in parallel
with standard paging and automatically detects contiguous address space ranges to sub-
sequently map them in the range table structure. Ostensibly, the range table is a fully
associative structure accommodating multiple direct segments, while it provides trans-
parency to the application. RMM’s most significant disadvantage is its lack of scalability.
Since ranges are arbitrarily sized memory areas they cannot be indexed and consequently
can reside only in fully associative structures.

DPART manages to overcome range based schemes’ limitations by offering indexing
TLBs while absence of arbitrary memory areas size representation is not an issue due to

the wide variety of page sizes that offers.
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6.2 Leveraging Contiguity

Many schemes attempt to benefit from contiguity that mappings may present. Pham et
al. propose Coalesced Large-Reach TLBs (CoLT) to coalesce multiple page translations
into single TLB entries [52]. Observing that contiguity can actually increase with greater
system load, Pham constructs three CoLT schemes depending on associativity, while
always having to study translations in parallel with execution to detect contiguity. Pham
develops this work and constructs Clustered TLB mapping small set of contiguous virtual
pages to clustered sets of physical pages [53]. However, as shown in prior work [35] can
only offser limited reductions in overheads and for only small-memory workloads, while
outperformed by THP on big-memory workloads.

Another coalescing mechanism was proposed by Park et al. [50]. In their proposed
hybrid coalescing technique, the operating system records contiguity status and computes
the anchor distance, being the amount of contiguous pages to be stored with a single entry
each time. At every context switch the anchor distance is reset, while the underlying
software mechanism to determine it runs frequently updating the page table and TLB,
costing milliseconds.

Last, MIX TLBs is a recent work by Cox and Bhattacharjee [21]. Working in the same
scope with this thesis, they create energy efficient set-associative structures supporting
multiple page sizes. However, they use only the set-indexing scheme of base page size
resulting in index bits being a part of larger pages offset, violating the proper index
bits selection principle of Section 4.1. As a result, mirroring may be present, potentially
mapping a large page to all TLB sets. To overcome this, MIX TLBs coalesce contiguous
superpages into the same TLB entry. To have a positive tradeoff, as many coalesced
pages as potential mirrors are needed. This statement is not guaranteed and no general
assumptions may be extracted with certitude about this method.

Apart from other drawbacks stated, coalesced techniques may restrict the maximum

size of concatenated translations, and hence limit the TLB reach.

6.3 Prediction Based Mechanisms

Learning techniques have been applied in computer architecture, often with great success.
Recently, Hashemi et al. for example have shown that machine learning methods can be
applied in architecture components such as the prefetching mechanism, demonstrating
superior performance in terms of precision and recall [30].

Speculation has also largely been applied in page size prediction. Pertaining to
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architectures supporting many page sizes, to address the page size determination issue,
predicting mechanisms are frequently used. Bradford et al. introduce various prediction
tables receiving as input the PC, register value, and register names [19]. However, when
facing a misprediction, as many TLB lookups as the number of the available page sizes
have to occur. Papadopoulou et al. improve this idea by predicting only between base
page size and superpage page size, including 64KB, 512KB, 4MB [49]. Having only two
classes to chose from, misprediction rates can fall to no more than 1.2%. A disadvantage
of this method is that it violates the "Proper index bits selection” desired characteristic
of address translation, mentioned in Section 4.1. To overcome this, the same paper
leveraged Seznec’s skewing scheme [56] in order to compute indices as a function of
the appropriate address bits depending on the page size. Even with this methodology
though, the misprediction overhead is not entirely eliminated, and still TLB structures
for all page sizes have to be accessed sequentially.

In another speculation-based mechanism, Alverti et al. design a scheme where the
virtual to physical address offset is extracted, exploiting the concept of memory regions
(continuous memory mappings of arbitrary size) [11]. After an address translation is
predicted, the CPU enters speculative execution mode, while a verification page walk
runs in the background. In the misprediction case, the scheme’s pipeline flushes and the
instruction replays.

Recent work by Kraska et al. has shown that all existing index structures can be
replaced with other types of models such as deep-learning models, resulting in superiority
in both speed and space [39]. The above results inspired Margaritov et al. to index the
top levels of the page table via learning mechanisms [42|. However, even achieving
99.9% accuracy, this approach presents latency overheads failing to outperform the page
table radix tree mechanism’s access time. As a result, Margaritov et al. switched to
optimizing the page table through prefetching mechanisms [43]. Their successful scheme
prefetches the deeper levels of the page table aiming to lower page walk costs. This
being an orthogonal approach to fiame, can furtherly improve our proposed page table
mechanism.

Learning techniques fail to provide 100% correct predictions violating the determin-
ism/correctness address translation desired characteristic. DPART on the other hand,
provides deterministically and efficiently computes page size and no speculation is nec-

essary.
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6.4 Address Space Partitioning

The core idea of this thesis also appear in prior bibliography. An early work in which
virtual address space partitioning takes place is Opportunistic Virtual Caching (OVC)
by Basu et al. [13]. Basu divides the virtual space into two partitions (named physical
and virtual) according to the highest order bit of the address range. Then, cache lookups
with their virtual address in the virtual partition can use the virtual address to cache
data.

Later, Basu in his PhD devoted a chapter in his proposed "merged-associative TLB” [14].
This scheme applies a very similar address space partition as this thesis does in order
to determine page size. The proposed TLB though consists of multiple sub-TLBs, one
for each page size, demolishing the ability to scale and differing from our approach. In
addition, Basu states that his model did not enable any reduction in number of TLB
misses comparing to a Split TLB supporting two page sizes.

Another work by Keppel et al. submitted as a patent incorporates the same mecha-
nism [36]. In this work, the address’s valid bits are used for page size indication through
a page size set-probe group association logic.vA continuation of this approach is to sup-
port multiple page sizes by again including a TLB with several sub-TLBs that each holds
a different page size.

The latter two schemes, being the most resembling to our approach fail to use a single
TLB for all operations. We manage to do so by ensuring tag uniqueness and provide
tenable ground for coexistence of addresses representing multiple page sizes, alongside

with all the advantages of this feature.

6.5 Groundbreaking Approaches

Other attempts to imporve address translation performance include major modifications
in virtual memory. SpaceJMP by Hajj et al. uses multiple address spaces as first-class
objects enabling process threads to switch between them [28]. SpaceJMP is developed
in the DragonFly BSD and Barrelfish operating systems. A significant advantage of this
approach relates to sharing large memory quantities.

In order to overcome address translation limitations presented by conventional mech-
anisms, Picorel et al, developed near-memory translation mechanisms [54]. Bringing pro-
cesses closer to memory benefits from the physical data proximity. The Mondrian Data
Engine is an example of a system implementing a near-memory processing architecture

and demonstrates significant performance boost [23].
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Another groundbreaking technique is Devirtualizing Memory (DVM) by Haria et
al. [29]. Concept of DVM is the (approximately) identical mapping between virtual and
physical address space. In this manner, address translation becomes trivial distinguishing
overheads of walking hierarchical page tables, and only a validation mechanism is needed.

Last, Swift proposes file-only memory in order to achieve constant memory operations
independent of size[48]|. This may be done by leveraging the operating systems ability to
manage large quantities of persistent data efficiently through the file system. This entails
a complete redesign of memory management for both operating systems and language
runtimes.

While those approaches may promise great advantages, their implementation requires
redefining both software and hardware features. Thus, the adoption of some of them by
market systems may be considered distant. On the other hand, DPART requires minor
changes in both software and hardware elements and may retain immutable crucial
elements such as TLB entries structure and page table. As a result its incorporation in

today’s systems may be considered easier.






Chapter 7

Conclusion and Future Work

7.1 Future Work

In this thesis, our address translation scheme, DPART, has been presented. DPART con-
sists of a sufficiently established mechanism whose core functionalities have been fully
implemented. Also, our scheme has been evaluated and shown promising TLB perfor-
mance in our software-based simulations. At this point, future directions considering
our mechanism arise, including steps towards the completion of DPART and additional

evaluation methods that will unveil even more advantages of our technique.

7.1.1 Further Implementation

Having demonstrated superior performance through our software experiments, a hard-
ware implementation of DPART may considered as a next step. Hardware components
pertaining to the extraction mechanism of the desired TLB offset, index and tag, and
a possible optimization considering the page walker, have been thoroughly analyzed in
theoretical level.

A software feature of our modeled that is not fully implemented yet, is the physical
memory management section. More specifically, one should consider the case in which
a sufficiently large contiguous physical memory area needed to map a requested page
does not exist. At this point, we only examine such availability in virtual address space.
Thanks to the fact that Linux supports Transparent Huge Pages [8], the baseline of the
aforementioned mechanism already exists, and only few adjustments have to be made.
At the absence of adequate physical space, our scheme benefits from the abundance of
available page sizes, since degradation to a smaller page size may still result in the usage

of pages large enough to boost performance. On the contrary, in THP such degradation
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options would be equivalent to reducing a page size by the factor of 29.

An addition needed for the completion of DPART refers to implications that a change
of memory permissions may have. In detail, the system call mprotect may alter the
access protections of a process’s memory pages [5]. Since mprotect functions on base
page size level, this may be problematic to our design, as a large page may be divided into
segments of different permissions, and a single page should have unique permissions. To
overcome this, we may consider two approaches; either page demolition to pages of equal
permission bits, or modification of mprotect so that it functions on addresses aligned
to the page size specified by DPART. The second approach is strongly preferred as the
former would require remaps to the appropriate virtual memory partition.

The last software feature that has not been implemented regards the brk optimization
(Section 4.4.2). The usage of larger pages for the mapping of the heap is now achieved in
simulation level, while software implementations have been described but not executed.

Recent research showing that large pages may be harmful to NUMA systems [25]
encourage us to include another point worth considering in this future work section. In
detail, to improve system’s total performance, the selection of the appropriate page size
may not be correlated with the application’s request only. Many other factors including
process information, machine state and the system’s current characteristics may play a
crucial role in determining the optimal page size. Such a holistic approach, requiring to
collect system information and to use them judiciously in order to determine appropriate

allocation parameters should be considered.

7.1.2 Further Evaluation

The simulation-based experiments that were held, successfully depicted DPART’s ability
to experience remarkably low TLB miss rates. However, its simplicity may yield great
benefits in other performance factors too. Power consumption ameliorated by simple
and low latency mechanisms, reduced chip size offered by the existence of a single TLB
structure supporting all page sizes, and total execution time reduction (which remains
our primary goal) enabled by the our design, are some such instances. To evaluate the
above, we need to use full system simulators such as pin [33].

In addition, since our scheme performed miss rates close to zero in the vast majority
of the tested configurations under SPEC CPU 2006, we may attempt to use alternative,
probably more recent benchmark suites, presenting heavier memory workloads. Last but
not least, to furtherly illustrate DPART’s advantages or weaknesses and precisely rank it
among other implementations, it is crucial that more existing address translation schemes

be compared with our logic.
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7.2 Concluding Remarks

Because of its big overhead, virtual memory optimization is one of key factors to opti-
mize a computer system’s performance. DPART is our proposition to efficient address
translation. Our scheme was analyzed in chapter 4 where its mechanisms were initially
introduced. Ostensibly, the simplicity straightforwardness and deterministic nature of
those mechanisms will result in low latencies and power consumption. A meticulous eval-
uation of our scheme is provided later-on in chapter 5. As it was observed, DPART’s
TLB manages to achieve excellent performance, producing constantly approximately
equal results with the upper bound of our analysis, the fully associative Range TLB. The
importance of address translation optimization results in abundant relevant research. In
Chapter 6 we presented some of the most significant and most closely related to our ap-
proach work, discussing how their drawbacks may be circumvented by our scheme. Last,
future work exists that would contribute in the evolution and thorougher evaluation of

our model.
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A. Red-Black Trees

A red-black is a binary tree satisfying the following properties [26, 20|:

e Every node is either red or black.

The root is black.

Every leaf (NIL) is black.

If a node is red, then both its children are black.

For each node, all simple paths from the node to descendant leaves contain the

same number of black nodes.

A red-black tree is approximately balanced. To provide an intuition for this argu-
ment, we show that a 3-node chain cannot be a red-black tree. In Figure A.1 all the
possible coloring combinations are presented (on a black root). Colorings in A.1 (a),
(b), (c) violate the last property and A.1 (d) is not a valid red-black tree since it has

two consecutive red nodes.

(a) Two black nodes (b) A red and a black node (c) A black and a red node (d) Two red nodes
following the root following the root following the root following the root

A LA A

Figure A.1: All possible 3-node chain trees violate the red-black tree properties

It can be proven that a red-black tree with n internal nodes has height of at most
2log(n 4+ 1). The intuition of this argument is that taking only the black nodes into
account, we have a perfectly balanced tree, and the red nodes (limited by not being
consecutive) can only double the height of the tree.

This tree’s height limitation results in O(logn) tree operations (search, min, max,
insertion, deletion). In a tree modification (insertion or deletion), node rearrangements
and recolorings have to be performed and due to the red-black tree’s properties, those
operations can be performed efficiently maintaining the O(logn) total cost. In compa-
rison to AVL trees for example, AVL are more balanced but may cause more rotations

during an insertion or deletion, rendering those operation more costful.
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B. TLB Size Sensitivity Test for All Benchmarks
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D. TLB Associativity Sensitivity Test for All Benchmarks
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Figure D.1: TLB miss rates for 5 partitioning bits on variant associativity
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