

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Μελέτη του «Κτιρίου Γεωτεχνικής» του ΕΜΠ ως μεταλλικό πλαίσιο με συνδέσμους δυσκαμψίας

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Αθανασία-Κωνσταντίνα Α. Κουδουνά

Επιβλέπων: Παύλος Θανόπουλος

Αθήνα, Ιούλιος 2020

EMK **ΔE 2020/24**

Κουδουνά Α. Α. (2020). Μελέτη του «Κτιρίου Γεωτεχνικής» του ΕΜΠ ως μεταλλικό πλαίσιο με συνδέσμους δυσκαμψίας Διπλωματική Εργασία ΕΜΚ ΔΕ 2020/24 Εργαστήριο Μεταλλικών Κατασκευών, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα

Koudouna A. A. (2020). Design of the building of the "Department of Geotechnical Engineering" of NTUA as a steel frame with concentric braces Diploma Thesis EMK ΔE 2020/24 Institute of Steel Structures, National Technical University of Athens, Greece

Πίνακας Περιεχομένων

Π	ίνακας	Περιεχομένων	1
Π	ερίληψ	η	3
A	bstract	-	5
E	υχαρισι	rίες	7
1	Εισ	αγωγή	9
	1.1	Αντικείμενο της εργασίας	9
	1.2	Περιγραφή της κατασκευής	9
	1.3	Υλικά κατασκευής	15
2	Δρά	σεις	17
	2.1	Μόνιμα φορτία	17
	2.2	Κινητά φορτία	
	2.3	Δράσεις χιονιού	20
	2.4	Δράσεις ανέμου	20
	2.4.1	Υπολογισμός βασικών μεγεθών για την εκτίμηση των δράσεων ανέμου	21
	2.4.2	Εξωτερικές πιέσεις επί κατακόρυφων τοίχων	26
	2.4.3	Εσωτερικές πιέσεις επί κατακόρυφων τοίχων	30
	2.4.4	Τελική Πίεση Ανέμου	35
	2.5	Σεισμικές δράσεις	35
	2.6	Θερμοκρασιακές μεταβολές	41
	2.7	Συνδυασμοί δράσεων	41
	2.7.1	Συντελεστές Ασωαλείας	42
	2.7.2	Οριακή Κατάσταση Αστογίας	
	2.7.3	Οριακή Κατάσταση Λειτουργικότητας	44
	2.7.4	Συνδυασμοί δράσεων κτιρίου	44
3	Σχε	διασμός και ανάλυση κατασκευής	47
	3.1	Στατικό προσομοίωμα	47
	3.2	Στατική ανάλυση	48
	3.3	Δυναμική ανάλυση	48
4	Δια	στασιολόγηση και έλεγχος μελών	51
	4.1	Κατάταξη διατομών – βασικές αργές	51
	4.2	Δάπεδο – Σύμμικτες πλάκες	55
	4.3	Διαστασιολόγηση δευτερευουσών δοκών – σύμμικτες διαδοκίδες	59
	431	Κατάταξη σύμμικτης δοκού	61
	4.3.2	Έλεννος στη φάση κατασκευής	61
	4.3.3	Έλεγχος στη φάση λειτουργίας	63
	4.3.4	Διατμητική Σύνδεση	70
	4.4	Διαστασιολόγηση κύριων δοκών – δοκοί πλαισίων ροπής	72
	441	Κατάταξη κύοιας δοκού	74
	447	Έλεννος στη φάση λειτουονίας	

4.5	Διαστασιολόγηση υποστυλωμάτων	77
4.5	.1 Κατάταξη υποστυλώματος	
4.5	.2 Έλεγχος στη φάση λειτουργίας	78
4.6	Ικανοτικοί έλεγχοι	82
4.6	.1 Έλεγχος διαγώνιων συνδέσμων δυσκαμψίας	
4.6	.2 Έλεγχος υποστυλωμάτων	85
4.6	.3 Έλεγχος δοκών	86
4.6	.4 Έλεγχος απόληξης κλιμακοστασίου	
5 Σι	νδέσεις	
5.1	Έδραση	91
5.2	Σύνδεση κύριας δοκού – υποστυλώματος	92
5.3	Σύνδεση διαδοκίδας - υποστυλώματος	93
5.4	Σύνδεση κατακόρυφων συνδέσμων δυσκαμψίας - υποστυλώματος	94
6 Στ	μπεράσματα	97
7 Bı	βλιογραφία	99
Παράρτ	ημα Α	

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΜΚ ΔΕ 2020/24

Μελέτη του «Κτιρίου Γεωτεχνικής» του ΕΜΠ ως μεταλλικό πλαίσιο με συνδέσμους δυσκαμψίας

Αθανασία Α. Κουδουνά (Επιβλέπων: Παύλος Θανόπουλος)

Περίληψη

Αντικείμενο της παρούσας διπλωματικής εργασίας είναι ο αντισεισμικός σχεδιασμός και η μελέτη ενός μεταλλικού κτιρίου εργαστηρίων και γραφείων, με Α΄ και Β΄ υπόγειο, ισόγειο και δώμα. Το κτίριο αυτό είναι η έδρα του τομέα Γεωτεχνικής της σχολής Πολιτικών Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου, στην περιοχή Ζωγράφου. Ο φέρων οργανισμός του υφιστάμενου κτιρίου αποτελείται αποκλειστικά από οπλισμένο σκυρόδεμα.

Στην παρούσα εργασία μελετάται ένας εναλλακτικός φέρων οργανισμός αποτελούμενος από μεταλλικά στοιχεία και στοιχεία οπλισμένου σκυροδέματος. Συγκεκριμένα, τα δάπεδα του κτιρίου αποτελούνται από σύμμικτες πλάκες, οι οποίες είναι διατμητικά συνδεδεμένες με τις δευτερεύουσες δοκούς και προσφέρουν διαφραγματική λειτουργία. Στο κτίριο έχουν τοποθετηθεί κατακόρυφοι σύνδεσμοι δυσκαμψίας κατά τις δύο διευθύνσεις, προκειμένου να εξασφαλιστεί η αμεταθετότητα των πλαισίων. Ο υπόλοιπος φορέας αποτελείται από μεταλλικές δοκούς και μεταλλικά υποστυλώματα.

Η μελέτη του κτιρίου πραγματοποιήθηκε μέσω του λογισμικού Robot Structural Analysis της Autodesk και βασίστηκε στις ισχύουσες διατάξεις του Ευρωκώδικα και του Ελληνικού Αντισεισμικού Κανονισμού (ΕΑΚ 2000).

Αρχικά, υπολογίζονται οι επί μέρους δράσεις από τις οποίες καταπονείται το κτίριο, καθώς και οι συνδυασμοί φορτίσεων, οι οποίοι λαμβάνονται υπόψη κατά την επίλυση του φορέα.

Εν συνεχεία, εκτελείται διαστασιολόγηση και έλεγχος των μελών της κατασκευής, τόσο για τα στατικά φορτία, όσο και για τα σεισμικά. Συγκεκριμένα, για την ανάλυση της σύμμικτης πλάκας, χρησιμοποιήθηκε το λογισμικό SymDeck Designer, της εταιρίας Ελαστρον.

Ακολούθως, υπολογίζονται και ελέγχονται οι συνδέσεις της κατασκευής, για το φορέα που προέκυψε από τη διαστασιολόγηση.

Τέλος, καταγράφονται τα συμπεράσματα που προέκυψαν από την μελέτη, μαζί με ορισμένα από τα πλεονεκτήματα του χάλυβα ως φέροντα οργανισμό.

NATIONAL TECHNICAL UNIVERSITY OF ATHENS FACULTY OF CIVIL ENGINEERING INSTITUTE OF STEEL STRUCTURES

DIPLOMA THESIS EMK ΔE 2020/24

Design of the building of the "Department of Geotechnical Engineering" of NTUA as a steel frame with concentric braces

Athanasia A. Koudouna (supervised by Pavlos Thanopoulos)

Abstract

The subject of this thesis is the seismic design and structural analysis of a steel building containing laboratories and offices, with A' and B' basement, ground floor and flat roof. The building hosts the Department of Geotechnical Engineering of School of Civil Engineering at the National Technical University of Athens, located in the area of Zographou. The bearing structure of the existing building consists entirely of reinforced concrete.

The alternative bearing structure, studied in this thesis, consists of steel and reinforced concrete components. In particular, the floors of the building are composed of composite slabs, which are shear-bonded to secondary beams and act as rigid diaphragm. Vertical stiffeners have been installed in both directions of construction, to ensure the integrity of the frames. The rest of the bearing structure consists of steel beams and steel columns.

The design of this building was carried out through the *Autodesk Robot Structural Analysis* program, and it was based on the existing regulations of Eurocodes and Greek Seismic Code EAK 2000.

Firstly, the loads strain of the structure, as well as the combinations of actions used to resolve the structure, are obtained.

Subsequently, the analysis and design of all members, both for static and seismic loads, is performed. The analysis of the composite slab is conducted via the *Elastron SymDeck Designer* program.

Next, the bolt connections between the members of building under study are designed and assessed.

Finally, the conclusions of this study are presented, along with some of the advantages and of steel used as bearing structure.

Ευχαριστίες

Στο πλαίσιο της συγγραφής της παρούσας διπλωματικής εργασίας, θα ήθελα να ευχαριστήσω όλους εκείνους που άμεσα ή έμμεσα συνέβαλαν στην ολοκλήρωση αυτής της προσπάθειας.

Θα ήθελα πρωτίστως να ευχαριστήσω το Λέκτορα του Τομέα Δομοστατικών και επιβλέποντα της εργασίας, κ. Παύλο Θανόπουλο, για την πολύτιμη βοήθεια και συνεχή καθοδήγηση που μου παρείχε καθ' όλη την διάρκεια εκπόνησής της. Η επιστημονική αρωγή του αλλά και η εμπιστοσύνη που έδειξε στο πρόσωπό μου, έδρασαν καταλυτικά στην ολοκλήρωση της εργασίας.

Ακόμη, θα ήθελα να ευχαριστήσω την οικογένειά μου για την υποστήριξή της σε όλες τις πτυχές της ζωής μου. Τα εφόδια που μου παρείχαν, υλικά και ψυχικά, αποτελούν πανάκεια για κάθε δυσκολία που μπορεί να εμφανιστεί.

Θερμές ευχαριστίες οφείλω επίσης στους φίλους και τις φίλες μου για την συμπαράστασή τους. Καθένας τους ξεχωριστά, αποτελεί μία συνιστώσα στην ζωή μου γεμάτη ευγνωμοσύνη.

Τέλος, ιδιαίτερες ευχαριστίες οφείλω από καρδιάς στον Παναγιώτη, που με το ενδιαφέρον, την αγάπη και την υπομονή του, με στήριξε με τον μοναδικό του τρόπο, στην ολοκλήρωση των σπουδών μου.

1 Εισαγωγή

1.1 Αντικείμενο της εργασίας

Το αντικείμενο της παρούσας εργασίας είναι ο αντισεισμικός σχεδιασμός και η μελέτη ενός μεταλλικού κτιρίου εργαστηρίων και γραφείων, με Α΄ και Β΄ υπόγειο, ισόγειο και δώμα. Συγκεκριμένα, μελετάται το κτίριο στο οποίο έχει την έδρα του ο τομέας Γεωτεχνικής της σχολής Πολιτικών Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου.

Το υπό μελέτη κτίριο (στην παρούσα εργασία θα αναφέρεται ως «Κτίριο Γεωτεχνικής») έχει κατασκευαστεί με φέροντα οργανισμό αποκλειστικά από οπλισμένο σκυρόδεμα.

Μέχρι πρότινος, το οπλισμένο σκυρόδεμα ήταν το βασικό υλικό του φέροντος οργανισμού για τα συνήθη οικοδομικά έργα. Ωστόσο, τα πλεονεκτήματα του δομικού χάλυβα ως υλικό του φέροντος οργανισμού - τα οποία θα αναλυθούν στη συνέχεια - είναι ιδιαίτερα σημαντικά και για το λόγο αυτό παρατηρείται ολοένα και περισσότερο πλέον στις σύγχρονες κατασκευές. Ενδεικτικά, κάποια από τα πλεονεκτήματα του χάλυβα είναι ο μειωμένος χρόνος κατασκευής, η μεγάλη αντοχή και δυσκαμψία ως προς το βάρος του, το μειωμένο ίδιο βάρος της κατασκευής και η καλή αντισεισμική συμπεριφορά.

Ο φορέας αποτελείται από μεταλλικές δοκούς, οι οποίες έχουν σύμμικτη λειτουργία με την πλάκα σκυροδέματος των ορόφων, μεταλλικά υποστυλώματα και κατακόρυφους συνδέσμους δυσκαμψίας, οι οποίοι τοποθετήθηκαν για να εξασφαλίσουν την απαιτούμενη πλευρική δυσκαμψία της κατασκευής.

Για τον σχεδιασμό και την μελέτη του κτιρίου χρησιμοποιήθηκαν οι εξής ισχύοντες κανονισμοί:

- Ευρωκώδικας 0: Βάσεις Σχεδιασμού
- Ευρωκώδικας 1: Βασικές Αρχές Σχεδιασμού και Δράσεις στις κατασκευές
- Ευρωκώδικας 3: Σχεδιασμός Κατασκευών από Χάλυβα
- Ευρωκώδικας 4: Σχεδιασμός Σύμμικτων Κατασκευών
- Ελληνικός Αντισεισμικός Κανονισμός (Ε.Α.Κ 2000)

1.2 Περιγραφή της κατασκευής

Το κτίριο Γεωτεχνικής, το οποίο περιέχει γραφεία και εργαστήρια, αποτελείται από Α΄ υπόγειο, Β΄ υπόγειο, ισόγειο και δώμα, συνολικού ύψους 11.65 m. Το τελικό ύψος, λόγω της απόληξης του κλιμακοστασίου στο δώμα, ανέρχεται στα 14.90 m. Τα στατικά ύψη κάθε ορόφου επιλέχθηκαν βάσει του υφιστάμενου στατικού σχεδίου του κτιρίου και είναι τα εξής: 3.60 m για το Β΄ υπόγειο:, 4.30 m για το Α΄ υπόγειο, 3.75 m για το Ισόγειο και 3.25 m για την απόληξη του κλιμακοστασίου. Στις Εικόνα 1.1 και Εικόνα 1.2 παρουσιάζεται το υφιστάμενο κτίριο Γεωτεχνικής.

Εικόνα 1.1: Κτίριο Γεωτεχνικής, Πολυτεχνειούπολη Ζωγράφου (Google Maps).

Εικόνα 1.2: Κτίριο Γεωτεχνικής, Πολυτεχνειούπολη Ζωγράφου, όψη εισόδου.

Αναφορικά με το συνολικό στατικό ύψος κάθε ορόφου, υπάρχει επαρκής διαφορά μεταξύ ολικού ύψους και καθαρού ύψους, λόγω των υλικών που παρεμβάλλονται ενδιάμεσα (σωληνώσεις, επικαλύψεις, φωτισμός, ψευδοροφή, πλάκα σκυροδέματος κλπ.).

Το υφιστάμενο κτίριο σε κάτοψη έχει διαστάσεις $(X \times Y)$ 59 m × 20.40 m, με αρμό κτιρίου στη διεύθυνση Y. Στην παρούσα μελέτη, λάβαμε ως στατικό φορέα τον μισό, μέχρι τον αρμό, θεωρώντας ότι είναι δύο ανεξάρτητα κτίρια. Το δεύτερο κτίριο είναι παρόμοιο σε διαστάσεις και απαιτήσεις, επομένως ο σχεδιασμός του θα είναι σε πλήρη αντιστοιχία με αυτό που παρουσιάζεται στη διπλωματική εργασία. Η κάτοψη του κτιρίου σε κάθε όροφο είναι ίδια, διαστάσεων $(X \times Y)$ 29.45m × 20.40 m. Οι εικόνες που ακολουθούν (Εικόνα 1.3 - Εικόνα 1.7) παρουσιάζουν το στατικό φορέα που μελετήθηκε σε όλες τις διευθύνσεις.

Εικόνα 1.3: Τρισδιάστατη απεικόνιση του κτιρίου στο Robot.

Εικόνα 1.4: Τρισδιάστατη απεικόνιση με χρωματική διαβάθμιση των μελών του κτιρίου στο Robot.

Εικόνα 1.5: Κάτοψη του κτιρίου στο Robot.

Εικόνα 1.6: Τομή X-X του κτιρίου στο Robot.

Í,

Εικόνα 1.7: Τομή Υ-Υ του κτιρίου στο Robot.

Σχετικά με τα μέλη του φορέα που καλούνται να παραλάβουν τα κατακόρυφα φορτία, κάθε όροφος αποτελείται από σύμμικτη πλάκα (τραπεζοειδές χαλυβδόφυλλο και έγχυτο σκυρόδεμα) συνολικού πάχους 15 cm, η οποία εδράζεται μέσω διατμητικών ήλων πάνω σε δευτερεύουσες δοκούς (διαδοκίδες), προσφέροντας διαφραγματική λειτουργία στο οριζόντιο επίπεδο. Οι διαδοκίδες εδράζονται αμφιαρθρωτά στις κύριες δοκούς και έχουν τον διαμήκη άξονα τους στον καθολικό άξονα Υ. Οι κύριες δοκοί στηρίζονται επίσης αμφίπακτα στα υποστυλώματα, τα οποία είναι αρθρωμένα στο έδαφος, και σχηματίζουν πλαίσια ροπής.

Για την παραλαβή των οριζόντιων δράσεων στην κατασκευή, έχουν τοποθετηθεί κατακόρυφοι σύνδεσμοι δυσκαμψίας στις δύο διευθύνσεις.

Σχετικά με την τοιχοποιία, χρησιμοποιήθηκε θερμομονωτικό πάνελ πολυουρεθάνης της εταιρείας ΕΛΑΣΤΡΟΝ, που συνηθίζεται σε κτίρια γραφείων και εργαστηρίων. Συγκεκριμένα επιλέχθηκε ECOPANEL WLC πλαγιοκάλυψης κρυφής στήριξης πάχους 120 mm. Αναλυτικά η δομή της τοιχοποιίας παρουσιάζεται στις δυο εικόνες που ακολουθούν (Εικόνα 1.8 και Εικόνα 1.9).

Εικόνα 1.8: Πάνελ πολυουρεθάνης Ecopanel WLC.

Εικόνα 1.9: Δομή πάνελ πλαγιοκάλυψης Ecopanel WLC.

1.3 Υλικά κατασκευής

Στην παρούσα ενότητα παρουσιάζονται τα χαρακτηριστικά των υλικών κατασκευής τα οποία χρησιμοποιούνται στην παρούσα εργασία.

Δομικός Χάλυβας

Ο δομικός χάλυβας είναι το βασικό υλικό από το οποίο συντίθεται ο φέρων οργανισμός του κτιρίου. Ο χάλυβας που χρησιμοποιήθηκε σε όλα τα στοιχεία της κατασκευής (πλην των κατακόρυφων συνδέσμων δυσκαμψίας) είναι κατηγορίας S275 με τα εξής χαρακτηριστικά:

- Ειδικό βάρος: γ = 78.5 kN/m³.
- Όριο διαρροής: $f_y = 275$ MPa.
- Εφελκυστική αντοχή: $f_u = 430$ MPa.
- Μέτρο ελαστικότητας: *E* = 210,000 MPa.
- Λόγος Poisson: v = 0.3.
- Μέτρο διάτμησης: G = E / [2(1+v)] = 81,000 MPa.
- Συντ. θερμικής διαστολής: $\alpha_T = 12 \ge 10^{-6}$ (για *T* < 1000 °C).

Ο χάλυβας που χρησιμοποιήθηκε για τους κατακόρυφους συνδέσμους δυσκαμψίας είναι κατηγορίας S235 με τα εξής χαρακτηριστικά:

- Ειδικό βάρος: γ = 78.5 kN/m³.
- Όριο διαρροής: $f_v = 235$ MPa.
- Εφελκυστική αντοχή: $f_u = 360$ MPa.
- Μέτρο ελαστικότητας: *E* = 210,000 MPa.
- Λόγος Poisson: v = 0.3.
- Μέτρο διάτμησης: G = E / [2(1+v)]=81000 MPa.
- Συντ. θερμικής διαστολής: $\alpha_T = 12 \ge 10.6$ (για T < 1000 °C).

Σκυρόδεμα

Για τη σύμμικτη πλάκα του κτιρίου, καθώς και για την πλάκα έδρασης των θεμελίων, χρησιμοποιήθηκε σκυρόδεμα C25/30, του οποίου οι τιμές σχεδιασμού είναι:

- Μέτρο ελαστικότητας: *E* = 30.5 GPa.
- Ειδικό βάρος: γ = 25 kN/m3.
- Αντοχή: $f_{ck} = 25$ MPa.
- Σταθερά Poisson: v = 0.2.

Χάλυβας οπλισμού Β500C

Η πλάκα αποτελείται από σκυρόδεμα, το οποίο οπλίζουμε με χάλυβα ποιότητας B500C. Οι τιμές σχεδιασμού είναι:

- Χαρακτηριστική τιμή ορίου διαρροής: *f_{vk}* = 500 MPa.
- Μέτρο Ελαστικότητας: *E* = 210,000 MPa.
- Λόγος Poisson στην ελαστική περιοχή: v = 0.3.
- Ειδικό βάρος: γ = 78.5 kN/m³.

Χαλυβδόφυλλο

Χρησιμοποιήθηκε το χαλυβδόφυλλο SYMDECK 73 πάχους 1 mm (Εικόνα 1.10), το οποίο είναι τραπεζοειδούς σχήματος, ποιότητας \$320 σύμφωνα με τον Ευρωκώδικα 4:

- Όριο διαρροής: $f_{yp} = 320$ MPa. Εφελκυστική αντοχή: $f_{up} = 390$ MPa.

Εικόνα 1.10: Γεωμετρία τραπεζοειδούς χαλυβδόφυλλου Symdeck 73.

Κοχλίες

Στις μεταλλικές συνδέσεις χρησιμοποιήθηκαν κοχλίες ποιότητας 8.8 με τα εξής χαρακτηριστικά:

- Όριο διαρροής $f_{yb} = 640$ MPa.
- Εφελκυστική αντοχή f_{ub} = 800 MPa.

2 Δράσεις

Στο πλαίσιο του σχεδιασμού μιας κατασκευής, είναι απαραίτητο να προσδιοριστούν, με ικανοποιητικό βαθμό αξιοπιστίας, οι δράσεις που θα ασκηθούν σε αυτή, οι οποίες είναι πιθανόν να εμφανιστούν καθ' όλη την διάρκεια ζωής της κατασκευής. Στόχος είναι να καθοριστούν οι απαιτήσεις που πρέπει να πληρούν τα μέλη που συνιστούν την κατασκευή, ώστε να παραμένει κατάλληλη καθ' όλη τη διάρκεια της χρήσης για την οποία προορίζεται.

Ανάλογα με τη χρήση, την μορφή και τη θέση του έργου, προσδιορίζονται οι δράσεις για την ανάλυση του φορέα, ώστε να προκύψουν τα δυσμενέστερα εντατικά και παραμορφωσιακά μεγέθη.

Οι δράσεις που λαμβάνονται υπόψη στην παρούσα μελέτη υπολογίζονται σύμφωνα με τις διατάξεις του Ευρωκώδικα 1 (EN-1991-1-1) [7] και ταξινομούνται στις παρακάτω κατηγορίες ανάλογα με τον χρόνο:

- Móvi $\mu \epsilon \zeta$ (*G*) (permanent)
- Μεταβλητές (Q) (variable)
- Τυχηματικές (A) (accidental)

Ειδική αναφορά πρέπει να γίνει στις Σεισμικές Δράσεις που, λόγω της έντονης σεισμικής δραστηριότητας που παρουσιάζει η Ελλάδα, επηρεάζουν σημαντικά τον σχεδιασμό και είναι καθοριστικές σε ό,τι αφορά στη διαστασιολόγηση αλλά και στην τελική μόρφωση των κατασκευών.

Στις ενότητες που ακολουθούν περιγράφονται οι δράσεις που λήφθηκαν υπόψη κατά τη μελέτη του κτηρίου Γεωτεχνικής.

2.1 Μόνιμα φορτία

Με τον όρο Μόνιμα Φορτία νοούνται όλες οι δράσεις, οι οποίες αναμένεται να επενεργήσουν κατά τη διάρκεια μιας δεδομένης περιόδου αναφοράς και για την οποία η διαφοροποίηση του μεγέθους τους στο χρόνο είναι αμελητέα. Στην κατηγορία αυτή περιλαμβάνονται όλα τα κατακόρυφα φορτία (το βάρος των μελών και της πλάκας, οι επικαλύψεις, οι τοίχοι πλήρωσης ή ακόμα και κάποιου είδους σταθερός εξοπλισμός στο έργο) που δρουν καθ' όλη την διάρκεια ζωής του έργου.

Οι δράσεις που λαμβάνονται υπόψη ως μόνιμες είναι οι εξής:

- Τδιο βάρος (Ι.Β.) της κατασκευής και των λοιπών φερόμενων στοιχείων επ' αυτής (δοκοί, υποστυλώματα), το οποίο υπολογίστηκε από το λογισμικό ανάλυσης Robot Structural Analysis.
- I.B. σύμμικτης πλάκας, ίσο με 2.73 kPa, το οποίο υπολογίστηκε απευθείας από το λογισμικό Symdeck Designer.
- πρόσθετα μόνιμα (επικαλύψεις, ψευδοροφές, services), ίσα με 1.5 kPa.
- Ι.Β. τοιχοποιίας, ίσο με 1.4 kN/m (στις περιμετρικές δοκούς).

Να σημειωθεί ότι για την τοιχοποιία χρησιμοποιήθηκε θερμομονωτικό πάνελ πολυουρεθάνης της εταιρείας ΕΛΑΣΤΡΟΝ και συγκεκριμένα επιλέχθηκε ECOPANEL WLC πλαγιοκάλυψης κρυφής στήριξης πάχους 120 mm. Αναλυτικά, τα χαρακτηριστικά του πετάσματος παρουσιάζονται στις εικόνες που ακολουθούν (Εικόνα 2.1 και Εικόνα 2.2).

Τύπος Πάνελ	Εξωτερικό Πάχος Ελασμάτων (mm)	Εσωτερικό Πάχος Ελασμάτων (mm)	D (mm)	Βάρος Πάνελ (kg/m ²)	Συντελεστής Θερμοπερατότητας U (W/m ² K)	Μέγιστο Μήκος Παραγωγής (m)
WLC 40	0.45	0.40	40	8.67	0.62	16.0
WLC 50	0.45	0.40	50	9.05	0.48	
WLC 60	0.45	0.40	60	9.43	0.39	
WLC 80	0.45	0.40	80	10.19	0.28	
WLC 100	0.45	0.40	100	10.95	0.2	
WLC 120	0.45	0.40	120	11.71	0.18	

Εικόνα 2.1: Χαρακτηριστικά πάνελ πλαγιοκάλυψης Ecopanel WLC.

Εικόνα 2.2: Συνδεσμολογία πάνελ πλαγιοκάλυψης Ecopanel WLC.

Σύμφωνα με την Εικόνα 2.1, το βάρος για το WLC 120 είναι 11.71 kg/m², ήτοι 0.14 kN/m². Προσθέτοντας και δύο πυράντοχες γυψοσανίδες (πάχους 12.5mm η καθεμία), βάρους 20 kg/m² (ήτοι 0.20 kN/m²), προκύπτει: 0.14 + 0.20 = 0.34 kN/m².

Για ύψος ορόφου 3.90m (μέσος όρος), το γραμμικό φορτίο ανά μέτρο δοκού προκύπτει ίσο με 0.34 kN/m² × 3.90m = 1.4 kN/m.

2.2 Κινητά φορτία

Στην κατηγορία Κινητά ή Μεταβλητά Φορτία περιλαμβάνονται τα κατακόρυφα φορτία που προκύπτουν από τη χρήση του κτιρίου και προέρχονται από την παρουσία ανθρώπων, επίπλων, κινητού εξοπλισμού κλπ. Λόγω της φύσης των φορτίων αυτών δεν είναι ακριβής η τιμή και η θέση τους, γι' αυτό προσδιορίζονται στατιστικά και οι τιμές τους δίνονται από κανονισμούς. Οι μεταβλητές δράσεις, λαμβάνονται ως ομοιόμορφα κατανεμημένες και θα πρέπει να τοποθετούνται κατά τον πλέον δυσμενή τρόπο στο φορέα, ώστε να καλύπτονται όλες οι δυσμενείς φορτίσεις.

Προκειμένου να γίνει ο καθορισμός των επιβαλλόμενων φορτίων, οι επιφάνειες των κτιρίων κατατάσσονται σε κατηγορίες, αναλόγως με τη χρήση τους.

Οι εσωτερικές επιφάνειες της κατασκευή καθώς και το βατό δώμα, σύμφωνα με τον Πίνακας 2.1 του Ευρωκώδικα 1 (EN 1991-1-1) [7], είναι κατηγορίας B (ισόγειο – χώροι γραφείων) και κατηγορίας C5 (Α΄ και Β΄ υπόγειο – εργαστήρια). Επομένως, τα συγκεντρωμένα φορτία θα αγνοηθούν.

Κατηγορία	Συγκεκριμένη Χρήση	Παράδειγμα		
В	Χώροι γραφείων			
С	Χώροι στους οποίους οι άνθρωποι μπορεί να συναθροισθούν (με εξαίρεση τους χώρους που κατατάσσονται στις κατηγορίες Α,Β, και D1)	C5: Χώροι επιρρεπείς σε μεγάλα πλήθη, π.χ. για δημόσιες εκδηλώσεις όπως αίθουσες συναυλιών, κλειστά γήπεδα, εξέδρες γηπέδων, εξώστες και χώροι πρόσβασης, πλατφόρμες σιδηροδρόμων.		

Πίνακας 2.1: Ευρωκώδικας 1 - Κατηγορίες χρήσης επιφανειών κτιρίων.

Πίνακας 2.2: Ευρωκώδικας 1 - Επιβαλλόμενα φορτία δαπέδων κτιρίων.

Κατηγορίες φορτιζόμενων επιφανειών	q _k [kN/m ²]	Q _k [KN]
Κατηγορία Α		
- Δάπεδα	1,5 έως 2,0	2,0 έως 3,0
- Σκάλες	2,0 έως 4,0	2,0 έως 4,0
- Μπαλκόνια	<u>2,5 έως</u> 4,0	<u>2,0</u> έως 3,0
Κατηγορία Β	2,0 έως <u>3,0</u>	1,5 έως <u>4,5</u>
Κατηγορία C		
- C1	2,0 έως 3,0	3,0 έως 4,0
- C2	3,0 έως 4,0	2,5 έως 7,0 (4,0)
- C3	3,0 έως 5,0	4,0 έως 7,0
- C4	4,5 έως 5,0	3,5 έως 7,0
- C5	<u>5,0</u> έως 7,5	3,5 έως <u>4,5</u>
Κατηγορία D		
- D1	4,0 έως 5,0	3,5 έως 7,0 (4,0)
- D2	4,0 έως 5.0	3,5 έως <u>7,0</u>

Από τους παραπάνω πίνακες (Πίνακας 2.1 και

Πίνακας 2.2) από τον Ευρωκώδικα 1 (ΕΝ 1991-1-1) [7], προκύπτουν τα παρακάτω ωφέλιμα φορτία:

- Δάπεδο ισογείου και βατό δώμα: $q_k = 2 \text{ kN/m}^2$ Δάπεδο Α΄ και Β΄ υπογείου: $q_k = 7.5 \text{ kN/m}^2$

Επίσης, ως κινητό φορτίο λήφθηκε και επιπλέον φορτίο που λαμβάνει υπόψη τα οποιαδήποτε εσωτερικά ενδιάμεσα χωρίσματα στους ορόφους. Στο υπό μελέτη κτίριο λήφθηκε το φορτίο αυτό ως, $q_k = 0.8 \text{ kN/m}^2$, σύμφωνα με τον σημείωση 6.3.1.2(8) του EN 1991-1-1 [7] (Εικόνα 2.3):

```
    για μετακινήσιμα χωρίσματα με ίδιον βάρος ≤1,0 kN/m μήκους τοίχου:
q<sub>k</sub>=0,5 kN/m<sup>2</sup>
```

- για μετακινήσιμα χωρίσματα με ίδιον βάρος ≤2,0 kN/m μήκους τοίχου: q_k=0,8 kN/m²
- για μετακινήσιμα χωρίσματα με ίδιον βάρος ≤3,0 kN/m μήκους τοίχου: q_k=1,2 kN/m^{2.}

Εικόνα 2.3: Ισοδύναμο φορτίο χωρισμάτων επί των δαπέδων.

2.3 Δράσεις χιονιού

Τα φορτία λόγω χιονιού αντιμετωπίζονται ορίζοντας μία συγκεκριμένη απλή τιμή φορτίου, με πιθανές μειώσεις για απότομες κλίσεις στεγών. Η ορθότερη προσέγγιση είναι η χρησιμοποίηση κατάλληλου χάρτη, που δίνει βασικές εντάσεις των φορτίων χιονιού για ένα συγκεκριμένο υψόμετρο και περίοδο αναφοράς. Εν συνεχεία, μπορούν να εφαρμοστούν διορθώσεις για διαφορετικά υψόμετρα ή διάρκεια ζωής σχεδιασμού.

Τα φορτία λόγω γιονόπτωσης προσδιορίζονται με βάση τις διατάξεις του Ευρωκώδικα 1 -(ΕΝ 1991-1-3) [8]. Τα φορτία αυτά αναφέρονται σε κτίρια ή σε έργα πολιτικού μηγανικού γενικά, για υψόμετρο κάτω των 1500 m. Θεωρούνται ως στατικά, δρώντας κατά τη διεύθυνση της βαρύτητας, οφειλόμενα σε συσσωρεύσεις χιονιού σε μέρος ή μέρη της στέγης, και κατατάσσονται στις χρονικά μεταβλητές, αλλά πάγιες (σταθερές στον χώρο) δράσεις (όπως αυτές ορίζονται στον ΕΝ 1991 [8]). Το γιόνι συσσωρεύεται στις στέγες των κτιρίων με διαφόρους τρόπους, αναλόγως τον τύπο της στέγης, τα θερμικά χαρακτηριστικά, την τραχύτητα της επιφάνειάς της, το ποσό της θερμότητας που εκλύεται κάτω από τη στέγη, την απόσταση των γειτονικών κτιρίων, τον περιβάλλοντα χώρο και τις κλιματολογικές συνθήκες της περιοχής όπου βρίσκεται η κατασκευή. Ιδιαίτερη σημασία έχει το κατά πόσο είναι εκτεθειμένη η οροφή στον άνεμο, οι μεταβολές της θερμοκρασίας καθώς και η πιθανότητα συγκέντρωσης λόγω κατακρήμνισης ή βροχόπτωσης. Σε ειδικές περιπτώσεις, όπως όταν οι καταγραφές της χιονόπτωσης δίνουν ακραίες τιμές, οι οποίες δε μπορούν να αξιοποιηθούν μέσω των στατικών μεθόδων, το χιόνι μπορεί να θεωρείται τυχηματική δράση. Για την εκτίμηση του φορτίου γιονιού, συνήθως θεωρείται αργικά το ομοιόμορφο γιόνι που συγκεντρώνεται υπό συνθήκες νηνεμίας, ενώ η τελική μορφή προκύπτει για συνθήκες που επικρατούν άνεμοι. Για τοποθεσίες όπου επικρατούν κανονικές συνθήκες (δηλαδή χωρίς πιθανότητα να λάβει χώρα εξαιρετική χιονόπτωση ή μετατόπιση λόγω ανέμων), θα εφαρμόζεται ο συνδυασμός που αντιστοιχεί σε καταστάσεις διαρκείας ή παροδικές.

Στην παρούσα μελέτη, το φορτίου το χιονιού δεν λαμβάνεται υπόψη, καθώς το φορτίου λόγω βατού δώματος υπερτερεί.

2.4 Δράσεις ανέμου

Σύμφωνα με τον Ευρωκώδικα 1 (EN 1991-1-4) [9], για κτίρια και έργα ύψους μέχρι 200 m, οι δράσεις ανέμου στις κατασκευές κατατάσσονται στις μεταβλητές σταθερές δράσεις και αναπαρίστανται με ένα απλοποιημένο σύνολο πιέσεων ή δυνάμεων των οποίων οι επιδράσεις είναι ισοδύναμες με τις ακραίες επιδράσεις του στροβιλώδους ανέμου. Λαμβάνεται υπόψη η ταυτόχρονη επιρροή και άλλων δράσεων επί της κατασκευής (π.χ. χιόνι, κυκλοφορία, πάγος) που είναι δυνατόν να επιφέρουν αλλαγές στην επιφάνεια αναφοράς ή σε κάποιους συντελεστές, καθώς επίσης και αλλαγές του σχήματος κατά την φάση κατασκευής, που θα μπορούσαν να αλλάξουν την εξωτερική και εσωτερική πίεση ή τα δυναμικά χαρακτηριστικά. Τα φορτία ανέμου είναι πολύ σημαντικά στις Μεταλλικές Κατασκευές, ενώ πολλές φορές αποτελούν τη κρίσιμη φόρτιση (πχ. κτίρια μεγάλου ύψους). Μάλιστα, ο άνεμος λόγω της φύσης του μπορεί σε κάποιες κατασκευές να προκαλέσει ακόμα και φαινόμενα ταλάντωσης, όμως σε κατασκευές με μεγάλη δυσκαμψία σαν αυτή που μελετάται, η δυναμική αυτή επίδραση είναι αμελητέα και τα φορτία θεωρούνται στατικά.

Οι τιμές των φορτίων που παράγονται λόγω των πιέσεων του ανέμου υπολογίζονται αναλυτικά παρακάτω, σύμφωνα με τους αντίστοιχους πίνακες του κανονισμού (EN1991-1-4:2005 [9]). Σύμφωνα με τις διατάξεις του Ευρωκώδικα, ως δράση του ανέμου επί των κατασκευών θεωρείται η πίεση που αναπτύσσεται από την ανάσχεση της ροής του ανέμου. Από τις αναπτυσσόμενες πιέσεις προκύπτουν δυνάμεις κάθετες προς την προσβαλλόμενη επιφάνεια. Η δράση του ανέμου σε μία κατασκευή προσδιορίζεται από την πίεση αιχμής και από τους κατάλληλους αεροδυναμικούς συντελεστές.

Η σημαντικότερη παράμετρος που προσδιορίζει τις δράσεις αυτές είναι η ταχύτητα του ανέμου και ο σχεδιασμός γίνεται με βάση τη μέγιστη πίεση που θα εμφανιστεί στη διάρκεια ζωής του έργου. Η ταχύτητα του ανέμου επηρεάζεται από ένα πλήθος παραγόντων, όπως: η γεωγραφική θέση της κατασκευής, η φυσική της θέση, η τοπογραφία της περιοχής στην οποία θα κατασκευαστεί, οι διαστάσεις του κτιρίου, η μέση ταχύτητα ανέμου, το σχήμα της κατασκευής, η κλίση της στέγης και η διεύθυνση του ανέμου.

Τα στοιχεία αυτά εισάγονται στους υπολογισμούς με κατάλληλους συντελεστές και σχέσεις που θα δώσουν τις τελικές τιμές για τον σχεδιασμό.

Στην παρούσα μελέτη, έχει θεωρηθεί άνεμος κάθετα στην πρόσοψη, λόγω ύπαρξης κτιρίων εκατέρωθεν. Ακολουθούν, οι υπολογισμοί των δράσεων του ανέμου για το υπό μελέτη κτίριο.

2.4.1 Υπολογισμός βασικών μεγεθών για την εκτίμηση των δράσεων ανέμου

Βασική Ταχύτητα Ανέμου

Η βασική ταχύτητα ανέμου V_b δίνεται από την ακόλουθη σχέση:

$$V_b = c_{dir} c_{season} V_{b,o} \tag{2.1}$$

όπου, c_{dir} είναι ο συντελεστής διεύθυνσης (ίσος με 1.0), c_{season} είναι ο συντελεστής εποχής (ίσος με 1.0) και $V_{b,o}$ η θεμελιώδης τιμή της βασικής ταχύτητας του ανέμου.

Σύμφωνα με το Εθνικό Προσάρτημα, η θεμελιώδης τιμή της βασικής ταχύτητας του ανέμου για τις περιοχές με απόσταση μεγαλύτερη των 10 km από την ακτή (πλην των νησιών), ορίζεται $\omega \zeta V_b = 27$ m/s.

Βασική ανεμοπίεση

Η βασική ανεμοπίεση ανέμου q_b δίνεται από την ακόλουθη σχέση:

$$q_b = 0.5 \,\rho \, V_b^2 \tag{2.2}$$

όπου $\rho = \rho_{air} = 1.25 \text{ kg/m}^3$ και V_b η βασική ταχύτητα ανέμου. Επομένως, προκύπτει ότι η βασική ανεμοπίεση είναι ίση με:

$$q_b = 0.5 \times 1.25 \times 27 = 455.63 \text{ kg/ms}^2 = 0.455 \text{ kN/m}^2$$

Μέση Ταχύτητα Ανέμου

Η μέση ταχύτητα ανέμου $V_m(z)$ συναρτήσει του ύψους z δίνεται από την ακόλουθη σχέση:

$$V_m(z) = c_r(z)c_0(z)V_b$$
(2.3)

όπου, $c_0(z)$ ο συντελεστής τοπογραφικής διαμόρφωσης (προτεινόμενη τιμή 1.0) και $c_r(z)$ ο συντελεστής τραχύτητας.

Για τον άνεμο ισχύει η θεωρία του οριακού στρώματος και η ταχύτητά του θεωρείται ότι μεταβάλλεται καθ' ύψος με λογαριθμικό τρόπο (ισχύει μέχρι ύψους $z_{max} = 200$ m). Η μεταβολή αυτή της ταχύτητας του ανέμου, για τις διάφορες τραχύτητες εδάφους, δίνεται από τον συντελεστή τραχύτητας και υπολογίζεται από την σχέση:

$$c_r(z) = k_r \ln\left(\frac{z}{z_0}\right) \gamma \iota \alpha \ z_{min} \le z \ \le \ z_{max}$$
(2.4)

όπου, z₀ το μήκος τραχύτητας και k_r ο συντελεστής εδάφους που υπολογίζεται ως:

$$k_r = 0.19 \left(\frac{z_0}{z_{0,II}}\right)^{0.07} \tag{2.5}$$

Οι τιμές του μήκους τραχύτητας z_0 , καθώς και το ελάχιστο ύψος z_{min} , για τις διάφορες κατηγορίες εδαφών και παραμέτρων εδάφους, δίνονται στον Πίνακας 2.3 (EN 1991-1-4 [9]).

	Κατηγορία εδάφους	z ₀ (m)	Z _{min} (m)
0	Θάλασσα ή παράκτια περιοχή εκτεθειμένη σε θάλασσα	0.003	1
Ι	Λίμνες ή επίπεδες και οριζόντιες περιοχές με αμελητέα βλάστηση και χωρίς εμπόδια	0.01	1
Π	Περιοχή με χαμηλή βλάστηση όπως γρασίδι και μεμονωμένα εμπόδια (δέντρα, κτίρια) σε απόσταση μεταξύ τους τουλάχιστον 20 φορές το ύψος των εμποδίων	0.05	2
ш	Περιοχή με κανονική κάλυψη βλάστησης ή με κτίρια ή με μεμονωμένα εμπόδια με μέγιστη απόσταση το πολύ 20 φορές το ύψος των εμποδίων (όπως χωρία, προάστια, μόνιμα δάση)	0.3	5
IV	Περιοχή όπου τουλάχιστον το 15% της επιφάνειας καλύπτεται με κτίρια και το μέσο ύψος τους ξεπερνά τα 15m	1.0	10

Πίνακας 2.3: Κατηγορίες εδάφους και παράμετροι εδάφους

Η περιοχή όπου βρίσκεται το υπό μελέτη κτίριο είναι κατηγορίας ΙΙΙ, και επομένως οι παράμετροι που προκύπτουν από τον Πίνακας 2.3 είναι $z_0 = 0.3$ m, $z_{\min} = 5$ m και $z_{0,\text{II}} = 0.05$ (κατηγορία εδάφους ΙΙ).

Επομένως, για ύψος κτιρίου z = 11.65 m και για τις παραπάνω τιμές, από την Εξ. (2.5) προκύπτει συντελεστής εδάφους ίσος με $k_r = 0.215$. Ακολούθως, από την Εξ. (2.4) προκύπτει συντελεστής τραχύτητας ίσος με c_r (z) = 0.7867.

Από την Εξ. (2.3), η μέση ταχύτητα του ανέμου υπολογίζεται ίση με $V_m(z) = 21.24$ m/s.

Μέση Ένταση Στροβιλισμού

Η μέση ένταση στροβιλισμού $I_v(z)$, συναρτήσει του ύψους z, δίνεται από την ακόλουθη σχέση:

$$I_{\nu}(z) = \frac{\sigma_{\nu}}{V_{m}(z)} = \frac{k_{I}}{c_{0}(z)\ln\left(\frac{z}{z_{0}}\right)} \quad \gamma \iota \alpha \ z_{min} \le z \le z_{max}$$
(2.6)

όπου k_I είναι ο συντελεστής στροβιλισμού (ίσος με 1.0). Η μέση ταχύτητα στροβιλισμού προκύπτει ίση με $I_v(z) = 0.273$.

Πίεση Ταχύτητας Αιχμής

Η πίεση ταχύτητας αιχμής $q_p(z)$, συναρτήσει του ύψους z, δίνεται από την ακόλουθη σχέση:

$$q_p(z) = [1 + 7I_v(z)] \frac{1}{2} \rho V_m^2(z)$$
(2.7)

Από την Εξ. (2.7), η πίεση ταχύτητας αιχμής, η οποία περιλαμβάνει μέσες και μικρής διάρκειας διακυμάνσεις ταχύτητας, προκύπτει ίση με $q_p(z) = 0.82$ kN / m².

Συντελεστής Εξωτερικής Πίεσης

Οι συντελεστές εξωτερικής πίεσης c_{pe} δίνουν την επίδραση του ανέμου στις εξωτερικές επιφάνειες του κτιρίου και εξαρτώνται από το σχήμα και την μορφή της προσβαλλόμενης επιφάνειας Α.

Στην Εικόνα 2.4 φαίνεται η γραφική απεικόνιση της μεταβολής της πίεσης c_{pe} συναρτήσει της φορτιζόμενης επιφάνειας και οι τιμές που προκύπτουν για τους συντελεστές εξωτερικής πίεσης είναι:

$$\begin{aligned} c_{pe} &= c_{pe,1}, & \forall \iota \alpha A \leq 1 \text{ m}^2 \\ c_{pe} &= c_{pe,1} + (c_{pe,10} - c_{pe,1}) \log A, & \forall \iota \alpha 1 \text{ m}^2 \leq A \leq 1 \text{ m}^2 \\ c_{pe} &= c_{pe,10}, & \forall \iota \alpha A \geq 10 \text{ m}^2 \end{aligned}$$

Εικόνα 2.4: Μεταβολή του συντελεστή εξωτερικής πίεσης για επιφάνειες μεταξύ 1m² και 10m².

Εξωτερικές πιέσεις σε κατακόρυφους τοίχους με ορθογωνική κάτοψη

Στην παρακάτω Εικόνα 2.5 φαίνεται ο τρόπος προσδιορισμού του ύψους αναφοράς z_e για τους προσήμενους τοίχους, συναρτήσει του ύψους h και του πλάτους b του κτιρίου. Στους υπήνεμους και τους παράπλευρους τοίχους, το ύψος αναφοράς λαμβάνεται ίσο με το ύψος του κτιρίου. Στην Εικόνα 2.6 φαίνονται οι ζώνες υποδιαίρεσης των κατακόρυφων επιφανειών και

στον Πίνακας 2.4 δίνονται οι συντελεστές εξωτερικής πίεσης $c_{pe,10}$ και $c_{pe,1}$ συναρτήσει του λόγου h/b και των ζωνών υποδιαίρεσης των κατακόρυφων τοίχων της κατασκευής.

Εικόνα 2.5: Ύψη αναφοράς z_e συναρτήσει του ύψους h και του πλάτους b, και κατανομή πιέσεων.

Εικόνα 2.6: Καθορισμός ζωνών για κατακόρυφους τοίχους.

Πίνακας 2.4: Προτεινόμενες τιμές συντελεστών εξωτερικής πίεσης για κατακόρυφους τοίχους κτιρίων ορθογωνικής κάτοψης.

Ζώνη		A	E	3	(C	1	D		E
h/d	Cpe,10	Cpe,1	Cpe,10	Cpe,1	Cpe,10	Cpe,1	Cpe,10	Cpe,1	Cpe,10	Cpe,1
5	-1,2	-1,4	-0,8	- <mark>1</mark> ,1	-0,5		+0,8	+1,0	-0,7	
1	-1,2	-1,4	-0,8	- <mark>1</mark> ,1	-0,5		+0,8	+1,0	-0,5	
<mark>≤ 0,25</mark>	-1,2	- <mark>1</mark> ,4	-0,8	-1,1	-0,5		+0,7	+1,0	-0,3	

Στην παρούσα μελέτη, το ύψος αναφοράς λαμβάνεται ίσο με το ύψος του κτιρίου, δηλαδή $z_e = h = 11.65 \text{ m}$, λόγω του ότι $h \leq b$. Σημειώνεται ότι όλες οι επιφάνειες των κατακόρυφων τοίχων, χωρισμένοι σε ζώνες, είναι σε εμβαδόν μεγαλύτερες των 10 m². Επομένως στους επόμενους υπολογισμούς θα λάβουμε για συντελεστές εξωτερικών πιέσεων $c_{pe,i} = c_{pe,10,i}$.

2.4.2 Εξωτερικές πιέσεις επί κατακόρυφων τοίχων

Η πίεση του ανέμου, η οποία δρα κάθετα στις εξωτερικές επιφάνειες μιας κατασκευής, υπολογίζεται από την σχέση:

$$w_e = q_p(z_e)c_{pe} \tag{2.8}$$

όπου c_{pe} ο συντελεστές εξωτερικής πίεσης και $q_p(z)$ η πίεση ταχύτητας αιχμής.

Υπολογισμός εξωτερικών πιέσεων

Στην παρούσα μελέτη, θεωρούμε ότι έχουμε άνεμο μόνο κατά την διεύθυνση της πρόσοψης κατά + $Y(\theta = 0^{\circ})$, λόγω ύπαρξης κτιρίων εκατέρωθεν του υπό εξέταση κτιρίου.

<u>Διεύθυνση ανέμου $\theta = 0^{\circ}$ </u>

Τα δεδομένα για το υπό μελέτη κτίριο είναι: h = 11.65 m, b = 29.45 m, d = 20.40 m, $q_{p(zi)} = 0.82$ kN / m². Επιπλέον, σύμφωνα με την Εικόνα 2.6 ισχύει, $e = \min(b; 2h) = 23.30$ m.

Επειδή $e \ge d$, σύμφωνα με την Εικόνα 2.6, το κτίριο χωρίζεται σε 2 ζώνες (A, B).

- Zώνη A: Mήκος: $\frac{e}{5} = 4.66$ m $\frac{h}{a} = 0.57$ άρα $c_{pe} = c_{pe,10} = -1.2$ (Πίνακας 2.4) $w_e = -0.984$ kN/m² (2.8) • Zώνη B: Mήκος: $d - \frac{e}{5} = 15.74$ m $\frac{h}{a} = 0.57$ άρα $c_{pe} = c_{pe,10} = -0.8$ (Πίνακας 2.4) $w_e = -0.656$ kN/m² (2.8) • Zώνη D: Mήκος (όλο το μήκος της προσήνεμης): b = 29.45 m $\frac{h}{a} = 0.57$ άρα με γραμμική παρεμβολή προκύπτει $c_{pe} = c_{pe,10} = 0.743$ (Πίνακας 2.4) $w_e = 0.609$ kN/m² (2.8)
 - Ζώνη Ε:

Μήκος: b = 29.45 m

 $\frac{h}{d}$ = 0.57 άρα με γραμμική παρεμβολή προκύπτει $c_{pe} = c_{pe,10} = -0.385$ (Πίνακας 2.4)

 $w_e = -0.32 \text{ kN/m}^2$ (2.8)

Οι εξωτερικές πιέσεις από επιφανειακές μετατράπηκαν σε γραμμικές στις δοκούς, βάσει του πλάτους επιρροής κάθε οριζόντιας δοκού. Οι τελικές εξωτερικές πιέσεις ανά στάθμη υπολογίζονται ως εξής:

Ζώνη D:

Στάθμη 1: 0.609 $\frac{kN}{m^2}$ × 3.95 m = 2.41 kN/m Στάθμη 2: 0.609 $\frac{kN}{m^2}$ × 4.025 m = 2.45 kN/m Στάθμη 3: 0.609 $\frac{kN}{m^2}$ × 1.875 m = 1.14 kN/m Στάθμη 4: 0.609 $\frac{kN}{m^2}$ × 1.625 m = 0.99 kN/m

Ζώνη Ε:

Στάθμη 1:
$$-0.32 \frac{\text{kN}}{\text{m}^2} \times 3.95 \text{ m} = -1.26 \text{ kN/m}$$

Στάθμη 2: $-0.32 \frac{\text{kN}}{\text{m}^2} \times 4.025 \text{ m} = -1.29 \text{ kN/m}$
Στάθμη 3: $-0.32 \frac{\text{kN}}{\text{m}^2} \times 1.875 \text{ m} = -0.60 \text{ kN/m}$
Στάθμη 4: $-0.32 \frac{\text{kN}}{\text{m}^2} \times 1.625 \text{ m} = -0.52 \text{ kN/m}$

Ζώνη Α:

Στάθμη 1: $-0.984 \frac{\text{kN}}{\text{m}^2} \times 3.95 \text{ m} = -3.89 \text{ kN/m}$ Στάθμη 2: $-0.984 \frac{\text{kN}}{\text{m}^2} \times 4.025 \text{ m} = -3.96 \text{ kN/m}$ Στάθμη 3: $-0.984 \frac{\text{kN}}{\text{m}^2} \times 1.875 \text{ m} = -1.85 \text{ kN/m}$ Στάθμη 4: $-0.984 \frac{\text{kN}}{\text{m}^2} \times 1.625 \text{ m} = -1.60 \text{ kN/m}$

Ζώνη Β:

$$\begin{split} &\Sigma \tau \acute{\alpha} \theta \mu \eta \; 1: \; -0.656 \, \frac{kN}{m^2} \times 3.95 \; m = -2.59 \; kN/m \\ &\Sigma \tau \acute{\alpha} \theta \mu \eta \; 2: \; -0.656 \, \frac{kN}{m^2} \times 4.025 \; m = -2.64 \; kN/m \\ &\Sigma \tau \acute{\alpha} \theta \mu \eta \; 3: \; -0.656 \, \frac{kN}{m^2} \times 1.875 \; m = -1.23 \; kN/m \\ &\Sigma \tau \acute{\alpha} \theta \mu \eta \; 4: \; -0.656 \, \frac{kN}{m^2} \times 1.625 \; m = -1.07 \; kN/m \end{split}$$

Στα παρακάτω σχήματα (Εικόνα 2.7 - Εικόνα 2.10) φαίνονται τα γραμμικά εξωτερικά φορτία ανά στάθμη.

↓↓ kN/m Cases: 6 (anemos we)

₩ kN/m Cases: 6 (anemos we)

Εικόνα 2.7: Στάθμη 1 – εξωτερικές πιέσεις ανέμου.

Εικόνα 2.8: Στάθμη 2 – εξωτερικές πιέσεις ανέμου.

Εικόνα 2.9: Στάθμη 3 – εξωτερικές πιέσεις ανέμου.

Εικόνα 2.10: Στάθμη 4 – εξωτερικές πιέσεις ανέμου.

ľ.

2.4.3 Εσωτερικές πιέσεις επί κατακόρυφων τοίχων

Ο συντελεστής εσωτερικής πίεσης c_{pi} εξαρτάται από το μέγεθος και την κατανομή των ανοιγμάτων στη συνολική επιφάνεια του κτιρίου. Θεωρούμε αμελητέα τα ανοίγματα σε σχέση με την ολική επιφάνεια του κτιρίου. Συνεπώς δεν μπορεί να θεωρηθεί επαρκής η εκτίμηση του συντελεστή μ (λόγος ανοιγμάτων). Από τις κανονιστικές διατάξεις (EN 1991-1-4 [9]) προτείνεται να λαμβάνονται και οι δύο περιπτώσεις φορτίσεως ($c_{pi} = + 0.2$ και $c_{pi} = -0.3$), εφόσον δεν υπάρχει δεσπόζουσα πλευρά ανοιγμάτων της κατασκευής και να συνδυάζονται με τις εξωτερικές πιέσεις.

$$w_{pi} = q_p(z_i)c_{pi} \tag{2.9}$$

- Για $c_{pi} = 0.2$ προκύπτει $w_{pi} = 0.164$ kN/m² (θετική εσωτερική πίεση)
- Για $c_{pi} = -0.3$ προκύπτει $w_{pi} = -0.246$ kN/m² (αρνητική εσωτερική πίεση)

Οι εσωτερικές πιέσεις από επιφανειακές μετατράπηκαν σε γραμμικές στις δοκούς, βάσει του πλάτους επιρροής κάθε οριζόντιας δοκού. Οι τελικές εσωτερικές πιέσεις ανά στάθμη υπολογίζονται ως εξής:

• $c_{pi} = 0.2$:

Στάθμη 1: 0.164 $\frac{kN}{m^2}$ × 3.95 m = 0.65 kN/m Στάθμη 2: 0.164 $\frac{kN}{m^2}$ × 4.025 m = 0.66 kN/m Στάθμη 3: 0.164 $\frac{kN}{m^2}$ × 1.875 m = 0.31 kN/m Στάθμη 4: 0.164 $\frac{kN}{m^2}$ × 1.625 m = 0.27 kN/m

 $c_{pi} = -0.3:$ Στάθμη 1: -0.246 $\frac{kN}{m^2} \times 3.95 \text{ m} = -0.97 \text{ kN/m}$ Στάθμη 2: -0.246 $\frac{kN}{m^2} \times 4.025 \text{ m} = -1 \text{ kN/m}$ Στάθμη 3: -0.246 $\frac{kN}{m^2} \times 1.875 \text{ m} = -0.46 \text{ kN/m}$ Στάθμη 4: -0.246 $\frac{kN}{m^2} \times 1.625 \text{ m} = -0.4 \text{ kN/m}$

Στα παρακάτω σχήματα (Εικόνα 2.11 - Εικόνα 2.18) φαίνονται τα γραμμικά εσωτερικά φορτία του ανέμου ανά στάθμη.

tt kN/m Cases: 7 (anemos wp cpi = 0,2)

Εικόνα 2.11: Στάθμη 1 – εσωτερικές πιέσεις ανέμου για $\mathbf{c}_{pi}=0.2.$

₩ kN/m Cases: 7 (anemos wp cpi = 0,2)

Εικόνα 2.12: Στάθμη 2 – εσωτερικές πιέσεις ανέμου για $c_{\rm pi}=0.2.$

Εικόνα 2.13: Στάθμη 3 – εσωτερικές πιέσεις ανέμου για $c_{\rm pi}=0.2.$

Εικόνα 2.14: Στάθμη 4 – εσωτερικές πιέσεις ανέμου για $c_{\rm pi}=0.2.$

Εικόνα 2.15: Στάθμη 1 – εσωτερικές πιέσεις ανέμου για $c_{\rm pi}$ = - 0.3.

Εικόνα 2.16: Στάθμη 2 – εσωτερικές πιέσεις ανέμου για $c_{\rm pi}$ = - 0.3.

Εικόνα 2.17: Στάθμη 3 – εσωτερικές πιέσεις ανέμου για $c_{\rm pi}$ = - 0.3.

t

ť.

₩ kN/m Cases: 8 (anemos wp cpi -0.3)

₩ kN/m

Εικόνα 2.18: Στάθμη 4 – εσωτερικές πιέσεις ανέμου για $c_{\rm pi}$ = - 0.3.

Εσωτερικές πιέσεις λόγω ανεμοπίεσης επί της στέγης

Όπως και στην περίπτωση του σκελετού του κτιρίου έτσι και στο κλιμακοστάσιο επί της στέγης οι εσωτερικές πιέσεις που προκαλούνται από τον άνεμο είναι φορτία κατακόρυφα τα οποία δρουν ευμενώς για την κατασκευή και δε θα ληφθούν υπόψη.

2.4.4 Τελική Πίεση Ανέμου

Οι εσωτερικές πιέσεις δρουν ταυτόχρονα με τις εξωτερικές πιέσεις και έτσι η τελική πίεση προκύπτει από την διαφορά μεταξύ των πιέσεων στις δύο επιφάνειες, λαμβάνοντας υπόψη το πρόσημό τους. Η πίεση, που κατευθύνεται προς την επιφάνεια λαμβάνεται ως θετική, ενώ η αναρρόφηση, το διάνυσμα της οποίας απομακρύνεται από την επιφάνεια, λαμβάνεται ως αρνητική.

2.5 Σεισμικές δράσεις

Κατά τη διάρκεια του σεισμού αναπτύσσονται στο έδαφος επιταχύνσεις (οριζόντιες και κατακόρυφες), που έχουν ως συνέπεια τη δημιουργία αδρανειακών δυνάμεων επί των κατασκευών. Από τις δυνάμεις αυτές, οι οριζόντιες θεωρούνται οι πλέον σοβαρές (κυρίως λόγω μεγέθους), χωρίς όμως αυτό να σημαίνει, ότι και οι κατακόρυφες δε μπορούν να αποβούν καταστροφικές υπό ορισμένες συνθήκες. Η χώρα μας βρίσκεται σε μια εξαιρετικά σεισμογενή περιοχή και ως εκ τούτου οι σεισμικές δράσεις παίζουν σημαντικό ρόλο στο σχεδιασμό των κατασκευών. Ως σεισμικές δράσεις σχεδιασμού θεωρούνται οι ταλαντώσεις του κτιρίου λόγω του σεισμού, οι οποίες ονομάζονται σεισμικές διεγέρσεις ή σεισμικές δονήσεις. Οι σεισμικές δράσεις κατατάσσονται επίσης στις τυχηματικές, και δεν συνδυάζονται με άλλες τυχηματικές δράσεις, όπως επίσης δεν συνδυάζονται με τις δράσεις λόγω ανέμου. Είναι αδρανειακές δυνάμεις που προέρχονται από την αντίσταση της μάζας της κατασκευής στην μεταδιδόμενη σε αυτήν κίνηση από το έδαφος. Κατά συνέπεια, οι σεισμικές δράσεις εξαρτώνται από την φύση της σεισμικής κίνησης του εδάφους (καθοριζόμενη από την επιτάχυνση, την ταχύτητα, τη χρονική διάρκεια και τη διεύθυνση) και τη συμπεριφορά της κατασκευής (καθοριζόμενη από την ακάσβεση, τις ιδιότητες του υλικού κ.τ.λ.).

Η ανάλυση της κατασκευής στην παρούσα διπλωματική εργασία πραγματοποιείται με βάση τις διατάξεις του Ελληνικού Αντισεισμικού Κανονισμού (Ε.Α.Κ 2000 [17]). Ο Ε.Α.Κ έχει τρείς βασικούς στόχους:

- Την προστασία της ανθρώπινης ζωής στη περίπτωση σεισμού υψηλής έντασης
- Τον περιορισμό των βλαβών σε στοιχεία του φέροντα οργανισμού υπό το σεισμό σχεδιασμού και την δυνατότητα επιδιόρθωσης αυτών, καθώς και την ελαχιστοποίηση των βλαβών για σεισμούς μικρότερης έντασης και με μεγαλύτερη πιθανότητα εμφάνισης.
- Την διασφάλιση της ελάχιστης στάθμης λειτουργιών της κατασκευής ανάλογα με τη χρήση και τη σημασία της, όταν η κατασκευή υποστεί σεισμό με τα χαρακτηριστικά του σεισμού σχεδιασμού.

Η μέθοδος υπολογισμού των σεισμικών δράσεων που χρησιμοποιεί ο Ε.Α.Κ. 2000 [17] είναι η Δυναμική Φασματική Μέθοδος. Σύμφωνα με αυτή γίνεται πλήρης ιδιομορφική ανάλυση του συστήματος, υπολογισμός της μέγιστης σεισμικής απόκρισης για κάθε ιδιομορφή ταλάντωσης και, τέλος, τετραγωνική επαλληλία των μεγίστων ιδιομορφικών αποκρίσεων.

Η ένταση των εδαφικών σεισμικών διεγέρσεων καθορίζεται συμβατικά με μια μόνο παράμετρο, που είναι η μέγιστη σεισμική επιτάχυνση a_{gr} , και καθορίζεται ανάλογα με τη ζώνη σεισμικής επικινδυνότητας στην οποία βρίσκεται το έργο. Η χώρα μας χωρίζεται σε τρείς Ζώνες Σεισμικής Επικινδυνότητας (Ι, ΙΙ, ΙΙΙ) τα όρια των οποίων καθορίζονται στον χάρτη σεισμικής επικινδυνότητας (Εικόνα 2.19). Σε κάθε ζώνη αντιστοιχεί μια τιμή σεισμικής επιτάχυνσης, η οποία έχει πιθανότητα υπέρβασης 10% στα 50 έτη (ή περίοδο επαναφοράς 457 έτη). Για την υπό μελέτη κατασκευή, γίνεται η θεώρηση πως βρίσκεται στη Ζώνη Σεισμικής Επικινδυνότητας Ι.

Εικόνα 2.19: Χάρτης Ζωνών Σεισμικής Επικινδυνότητας της Ελλάδος.

Σε κάθε ζώνη αντιστοιχεί μια τιμή σεισμικής επιτάχυνσης a_{gr} που έχει ληφθεί από τον χάρτη ζωνών στο Εθνικό Προσάρτημα [17], και σύμφωνα με τα σεισμολογικά δεδομένα έχει πιθανότητα υπέρβασης 10% στα 50 έτη, με βάση τη σχέση $a_g = a_{gr} \times \gamma_i$, όπου γ_i ο συντελεστής σπουδαιότητας. Για ζώνη σεισμικής επικινδυνότητας i = I, η σεισμική επιτάχυνση του εδάφους είναι $a_{gr} = 0.16g$.

Ζώνη	$a_{ m gR}/g$
Z1	0.16
Z2	0.24
Z3	0.36

Πίνακας 2.5: Τιμές αναφοράς α_{gR} της μέγιστης σεισμικής επιτάχυνσης σε έδαφος κατηγορίας Α.

Από άποψη σεισμικής επικινδυνότητας, τα εδάφη κατατάσσονται σε πέντε βασικές κατηγορίες (A, B, C, D και E) που καθορίζονται από την στρωματογραφία και τα χαρακτηριστικά του εδάφους, και μπορεί να χρησιμοποιηθούν για να αποτιμήσουν την επιρροή των τοπικών εδαφικών συνθηκών στη σεισμική δράση. Το παρόν κτίριο εδράζεται σε έδαφος κατηγορίας B (αποθέσεις πολύ πυκνής άμμου, χαλικιών ή πολύ σκληρής αργίλου, πάχους τουλάχιστον αρκετών δεκάδων μέτρων, που χαρακτηρίζονται από βαθμιαία βελτίωση των μηχανικών ιδιοτήτων με το βάθος) σύμφωνα με τον Πίνακας 2.6 του Ευρωκώδικα 8 [16]. Οι τιμές των παραμέτρων που καθορίζουν το οριζόντιο φάσμα ελαστικής απόκρισης δίνονται στον Πίνακας 2.7 του Ευρωκώδικα 8 [16].

Κατηγορία Εδάφους	Περιγραφή στρωματογραφίας	Παράμετροι		
		$v_{s,30} ({ m m/s})$	N _{SPT} (κρούσεις/30cm)	$c_{\rm u}$ (kPa)
А	Βράχος ή άλλος βραχώδης γεωλογικός σχηματισμός, που περιλαμβάνει το πολύ 5 m ασθενέστερου επιφανειακού υλικού.	> 800	_	_
В	Αποθέσεις πολύ πυκνής άμμου, χαλίκων, ή πολύ σκληρής αργίλου, πάχους τουλάχιστον αρκετών δεκάδων μέτρων, που χαρακτηρίζονται από βαθμιαία βελτίωση των μηχανικών ιδιοτήτων με το βάθος.	360 – 800 –	> 50	> 250
С	Βαθιές αποθέσεις πυκνής ή μετρίως πυκνής άμμου, χαλίκων ή σκληρής αργίλου πάχους από δεκάδες έως πολλές εκατοντάδες μέτρων.	180 – 360	15 - 50	70 - 250
D	Αποθέσεις χαλαρών έως μετρίως χαλαρών μη συνεκτικών υλικών (με ή χωρίς κάποια μαλακά στρώματα	< 180	< 15	< 70

Πίνακας 2.6: Κατηγορία Εδάφους σύμφωνα με τον Ευρωκώδικα 8.

	συνεκτικών υλικών), ή κυρίως μαλακά έως μετρίως σκληρά συνεκτικά υλικά.			
E	Εδαφική τομή που αποτελείται από ένα επιφανειακό στρώμα ιλύος με τιμές v _s κατηγορίας C ή D και πάχος που ποικίλλει μεταξύ περίπου 5m και 20m, με υπόστρωμα από πιο σκληρό υλικό με v _s > 800 m/s.			
<i>S</i> ₁	Αποθέσεις που αποτελούνται, ή που περιέχουν ένα στρώμα πάχους τουλάχιστον 10 m μαλακών αργίλων/ιλών με υψηλό δείκτη πλαστικότητας (PI > 40) και υψηλή περιεκτικότητα σε νερό.	< 100 (ενδεικτι κό)	_	10 - 20
<i>S</i> ₂	Στρώματα ρευστοποιήσιμων εδαφών, ευαίσθητων αργίλων, ή οποιαδήποτε άλλη εδαφική τομή που δεν περιλαμβάνεται στους τύπους Α – Ε ή S ₁			

Πίνακας 2.7: Τιμές παραμέτρων που καθορίζουν το οριζόντιο φάσμα ελαστικής απόκρισης (Τύπου 1).

Κατηγορία Εδάφους	S	$T_{\rm B}(s)$	$T_{\rm C}(s)$	$T_{\mathrm{D}}(s)$
А	1.0	0.15	0.4	2.5
В	1.2	0.15	0.5	2.5
С	1.15	0.20	0.6	2.5
D	1.35	0.20	0.8	2.5
Е	1.4	0.15	0.5	2.5

Τα κτίρια κατατάσσονται σε τέσσερις κατηγορίες σπουδαιότητας ανάλογα με τις κοινωνικοοικονομικές συνέπειες που μπορεί να έχει ενδεχόμενη καταστροφή ή διακοπή της λειτουργίας τους. Σε κάθε κατηγορία σπουδαιότητας αντιστοιχεί μια τιμή του συντελεστή σπουδαιότητας γ_I (Πίνακας 2.8). Για κατηγορία σπουδαιότητας ΙΙ (συνήθη κτίρια κατοικιών και γραφείων, βιομηχανικά κτίρια, ξενοδοχεία κτλ.) ο συντελεστής σπουδαιότητας είναι γ_i = 1.00.

Κατηγορία Σπουδαιότητας	I	П	III	IV
Συντελεστής Σπουδαιότητας γ_i	0.80	1.00	1.20	1.40

Πίνακας 2.8: Τιμές του Συντελεστή Σπουδαιότητας γ_i.

Ο συντελεστής συμπεριφοράς q εισάγει την μείωση των σεισμικών επιταχύνσεων της πραγματικής κατασκευής λόγω μετελαστικής συμπεριφοράς, σε σχέση με τις επιταχύνσεις που προκύπτουν υπολογιστικά σε απεριόριστα ελαστικό σύστημα. Εκφράζει, γενικά, την ικανότητα ενός δομικού συστήματος να απορροφά ενέργεια μέσω πλάστιμης συμπεριφοράς ορισμένων μελών του, χωρίς να μειώνεται δραστικά η αντοχή του. Μέγιστες τιμές του συντελεστή q δίνονται στον Πίνακας 2.9, ανάλογα με το είδος του υλικού κατασκευής και τον τύπο του δομικού συστήματος. Οι τιμές αυτές ισχύουν εφόσον για το σεισμό σχεδιασμού έχουμε έναρξη διαρροής του συστήματος (πρώτη πλαστική άρθρωση) και με την περαιτέρω αύξηση της φόρτισης είναι δυνατός ο σχηματισμός αξιόπιστου μηχανισμού διαρροής με τη δημιουργία ικανού αριθμού πλαστικών αρθρώσεων.

Πίνακας	2.9 :	Ανώτερες	οριακές	τιμές	αναφοράς	$\tau\omega\nu$	συντελεστών	συμπεριφοράς	για	συστήματα
κανονικά	σε όψ	νη, για Κατι	γγορίες Π	λαστιμ	ιότητας Μέ	ση (Κ	ΠΜ) και Υψηλ	λή (ΚΠΥ).		

στατιγός τνηός	Κατηγορία Πλαστιμότητας			
	КПМ	КПҮ		
α) Πλαίσια παραλαβής ροπών	4	$5\alpha_{\rm u}/\alpha_{\rm l}$		
β) Πλαίσιο με συνδέσμους χωρίς εκκεντρότητα Διαγώνιοι σύνδεσμοι Σύνδεσμοι μορφής V	4 2	4 2,5		
γ) Πλαίσια με έκκεντρους συνδέσμους	4	$5\alpha_{\rm u}/\alpha_{\rm l}$		
δ) Αντεστραμμένο εκκρεμές	2	$2\alpha_{\rm u}/\alpha_{\rm l}$		
 ε) Συστήματα με πυρήνες από σκυρόδεμα ή τοιχώματα από σκυρόδεμα 	Βλέπε Κεφάλαιο 5			
στ) Πλαίσιο παραλαβής ροπών με συνδέσμους χωρίς εκκεντρότητα	4	$4\alpha_{\rm u}/\alpha_{\rm l}$		
ζ) Πλαίσια παραλαβής ροπών με τοιχοπληρώσεις				
Ασύνδετες τοιχοπληρώσεις από σκυρόδεμα ή τοιχοποιία, σε επαφή με το πλαίσιο	2	2		
Συνδεδεμένες τοιχοπληρώσεις από οπλισμένο σκυρόδεμα	Βλέπε Κεφάλαιο 7			
Τοιχοπληρώσεις μονωμένες έναντι του πλαισίου (βλέπε πλαίσια ροπών)	4	$5\alpha_{\rm u}/\alpha_{\rm l}$		

Για το κτίριο επιλέχθηκε Κατηγορία Μέσης Πλαστιμότητας. Ο συντελεστής συμπεριφοράς για τον φορέα επιλέχθηκε q = 1.5. Επίσης, το κτίριο αποτελεί κοχλιωτή κατασκευή και θα θεωρήσουμε ότι το ζ (απόσβεση) είναι ίσο με $\zeta = 5\%$.

Η σεισμική κίνηση σε ένα δεδομένο σημείο στην επιφάνεια προσομοιώνεται με το ελαστικό φάσμα απόκρισης. Η οριζόντια σεισμική δράση περιγράφεται από δύο ορθογώνιες συνιστώσες

(X και Y) που θεωρούνται ανεξάρτητες μεταξύ τους και εκφράζονται από το ίδιο φάσμα απόκρισης.

Για τις οριζόντιες συνιστώσες της σεισμικής δράσης το φάσμα σχεδιασμού, S_d (T), ορίζεται ως εξής (EK8 [16]; Εικόνα 2.20):

$$0 \le T \le T_B$$
: $S_d(T) = a_g S\left[\frac{2}{3} + \frac{T}{T_B}\left(\frac{2.5}{q} - \frac{2}{3}\right)\right]$ (2.10)

$$T_B \le T \le T_C: \quad S_d(T) = a_g S \frac{2.5}{q} \tag{2.11}$$

$$T_c \le T \le T_D: \quad S_d(T) \begin{cases} = a_g S \frac{2,5}{q} \left[\frac{T_c}{T} \right] \\ \ge \beta a_g \end{cases}$$
(2.12)

$$T_D \le T: \quad S_d(T) \begin{cases} = a_g S \frac{2,5}{q} \left[\frac{T_C T_D}{T^2} \right] \\ \ge \beta a_g \end{cases}$$
(2.13)

όπου S_d (T) είναι η φασματική επιτάχυνση σχεδιασμού, T είναι η περίοδος ταλάντωσης ενός γραμμικού συστήματος μίας ελεύθερης κίνησης, a_g είναι η εδαφική επιτάχυνση σχεδιασμού σε έδαφος κατηγορίας B ($a_g = \gamma_i \cdot a_{gR}$), T_B είναι η περίοδος κάτω ορίου του κλάδου σταθερής φασματικής επιτάχυνσης, T_C είναι η περίοδος άνω ορίου του κλάδου σταθερής φασματικής επιτάχυνσης, T_D είναι η περίοδου που ορίζει την αρχή της περιοχής σταθερής μετακίνησης του φάσματος, S είναι ο συντελεστής εδάφους, q είναι συντελεστής συμπεριφοράς, και β είναι συντελεστής κατώτατου ορίου για το οριζόντιο φάσμα σχεδιασμού (συνιστώμενη τιμή $\beta = 0.2$).

Εικόνα 2.20: Μορφή του ελαστικού φάσματος απόκρισης.

Όλα τα παραπάνω δεδομένα της σεισμικής διέγερσης εισήχθησαν στο *Robot* για υπολογιστεί ο σεισμός κατά X και κατά Y. Ως συμμετέχουσα μάζα ορίστηκε η μάζα που προέρχεται από τα μόνιμα φορτία G (ίδιο βάρος κατασκευής, βάρος μηχανολογικού εξοπλισμού, βάρος τοιχοποιίας) και τα κινητά φορτία Q, πολλαπλασιασμένα με τον συντελεστή 0.3.

Επίσης, υπέρ της ασφαλείας, υποθέσαμε ότι κατά την διάρκεια του σεισμού από τους δύο κατακόρυφους διαγώνιους συνδέσμους δυσκαμψίας κάθε φατνώματος λειτουργεί μόνο ο εφελκυόμενος. Έτσι οι διαγώνιες μπορούν να αναπτύξουν, ως εφελκυόμενα στοιχεία, σημαντικές πλαστικές παραμορφώσεις προ της αστοχίας τους.

2.6 Θερμοκρασιακές μεταβολές

Τα θερμοκρασιακά φορτία θεωρούνται έμμεσες δράσεις και κατατάσσονται στις μεταβλητές δράσεις. Υπολογίζονται σύμφωνα με την Ενότητα 1.5 του Ευρωκώδικα 1 [10], που παρέχει οδηγίες για τα φορτία λόγω θερμοκρασιακών μεταβολών.

Οι δράσεις που οφείλονται σε θερμοκρασιακές μεταβολές υπολογίζονται θεωρώντας ομοιόμορφη μεταβολή θερμοκρασίας στα στοιχεία του φορέα, που οφείλεται στην μεταβολή θερμοκρασίας περιβάλλοντος (καλοκαίρι - χειμώνας), και προσδιορίζοντας τις χαρακτηριστικές τιμές μέγιστης διακύμανσης. Προκειμένου να λάβουμε υπόψη τα φορτία που επιβάλλονται στην κατασκευή από σύστολο-διαστολές θα θεωρήσουμε μεταβολή θερμοκρασίας $\Delta T = \pm 20^{\circ}C$ (ομοιόμορφη αύξηση ή μείωση της θερμοκρασίας ολόκληρου του φέροντος οργανισμού σε σχέση με τη θερμοκρασία συναρμολόγησής του).

Στη συγκεκριμένη μελέτη δεν θα ληφθούν υπόψη τα θερμοκρασιακά φορτία.

2.7 Συνδυασμοί δράσεων

Ο σχεδιασμός - μελέτη μιας κατασκευής αποσκοπεί στο να καταδείξει ότι, υπό ορισμένες παραδεκτές πιθανότητες, η κατασκευή δεν θα βρεθεί σε μια ακραία κατάσταση κατά την οποία θεωρείται πλέον ακατάλληλη για τον σκοπό για τον οποίο κατασκευάστηκε και ονομάζεται εν γένει «οριακή κατάσταση». Σύμφωνα με τον Ευρωκώδικα 1 (ΕΝ 1991-1-6 [11]) Διακρίνονται δε σε δύο κατηγορίες, τις Οριακές Καταστάσεις Αστοχίας και τις Οριακές Καταστάσεις Λειτουργικότητας που περιγράφονται παρακάτω.

Οριακές Καταστάσεις Αστοχίας (Ultimate Limit States - ULS) είναι οι οριακές καταστάσεις που συνδέονται με κατάρρευση ή με ισοδύναμες μορφές αστοχίας του φορέα ή τμήματός του και σχετίζονται με την ασφάλεια των ανθρώπων, την ασφάλεια του φορέα και την προστασία των περιεχομένων.

Οριακές Καταστάσεις Λειτουργικότητας (Serviceability Limit States - SLS) είναι οι οριακές καταστάσεις που συνδέονται με συνθήκες πέραν των οποίων δεν πληρούνται πλέον οι καθορισμένες λειτουργικές απαιτήσεις για το φορέα ή για μέλος αυτού. Αφορούν δε τις λειτουργικές απαιτήσεις από φορέα ή δομικό μέλος υπό συνθήκες συνήθους χρήσης, την άνεση των χρηστών και την εξωτερική εμφάνιση των δομικών στοιχείων (π.χ. έντονη καμπτική παραμόρφωση ή εκτεταμένη ρηγμάτωση).

Ανάλογα με το είδος, την μορφή και τη θέση της κατασκευής, προσδιορίστηκαν οι διάφορες χαρακτηριστικές τιμές των δράσεων, οι οποίες επενεργούν σε αυτή. Οι δράσεις αυτές πολλαπλασιαζόμενες με κατάλληλους συντελεστές (επιμέρους συντελεστές ασφαλείας γ), συνδυάζονται μεταξύ τους καταλλήλως (συντελεστές συνδυασμού Ψ) για κάθε μια από τις δύο οριακές καταστάσεις και στη συνέχεια εφαρμόζονται επί του φορέα.

2.7.1 Συντελεστές Ασφαλείας

Οι επιμέρους συντελεστές ασφαλείας χρησιμοποιούνται, προκειμένου να ληφθούν υπόψη πιθανές δυσμενείς αποκλίσεις ή πιθανή μη ακριβής προσομοίωση των δράσεων, καθώς και αβεβαιότητες στον προσδιορισμό των αποτελεσμάτων των δράσεων (εντατικά μεγέθη, μετακινήσεις κλπ.).

Οι τιμές των επιμέρους συντελεστών για την περίπτωση ελέγχου αστοχίας ενός κτιρίου ή μέλους δίνονται στον πίνακα που ακολουθεί (Πίνακας 2.10).

	Οριακή κατάσι	αση αστοχίας	Οριακή κατάσταση	λειτουργικότητας
	Δυσμενής επιρροή	Ευμενής επιρροή	Δυσμενής επιρροή	Ευμενής επιρροή
ŶG	1.35	1.00	1.00	1.00
ŶQ	1.50	0	1.00	0

Πίνακας 2.10: Συντελεστές Ασφαλείας.

Ο συντελεστής σπουδαιότητας (γ_I) της κατασκευής αντιστοιχεί στις κατηγορίες σπουδαιότητας στις οποίες κατατάσσονται οι κατασκευές, ανάλογα με τον κίνδυνο που συνεπάγεται για τον άνθρωπο, αλλά και για τις κοινωνικοοικονομικές συνέπειες που μπορεί να έχει ενδεχόμενη καταστροφή τους ή διακοπή της λειτουργίας τους (βλ. ΕΝ 1998 [16] και ΕΑΚ 2000 [17]).

Η πιθανότητα χρονικής σύμπτωσης των μέγιστων τιμών διαφόρων ανεξάρτητων δράσεων είναι μικρή. Για το λόγο αυτό κατά την εξέταση των συνδυασμών των μεταβλητών δράσεων εισάγονται οι συντελεστές συνδυασμού Ψ (Πίνακας 2.11). Οι συντελεστές αυτοί εκφράζουν το ποσοστό της χαρακτηριστικής τιμής μιας δράσης, το οποίο, για την εξεταζόμενη κατάσταση, έχει μεγάλη πιθανότητα χρονικής ταύτισης με άλλες δράσεις.

Δράσεις	$oldsymbol{\varPsi}_{ heta}$	Ψ_{I}	Ψ_2
Επιβαλλόμενα φορτία σε κτήρια, κατηγορία (βλέπε ΕΝ 1991-1-1)			
Κατηγορία Α: κατοικίες, συνήθη κτήρια κατοικιών	0.7	0.5	0.3
Κατηγορία Β: χώροι γραφείων	0.7	0.5	0.3
Κατηγορία C: χώροι συνάθροισης	0.7	0.7	0.6
Κατηγορία D: χώροι καταστημάτων	0.7	0.7	0.6
Κατηγορία Ε: χώροι αποθήκευσης	1.0	0.9	0.8
Κατηγορία F: χώροι κυκλοφορίας οχημάτων βάρος			
οχημάτων ≤ 30kN	0.7	0.7	0.6
Κατηγορία G: χώροι κυκλοφορίας οχημάτων			
30kN < βάρος οχημάτων ≤ 160kN	0.7	0.5	0.3
Κατηγορία Η: στέγες	0	0	0
Φορτία χιονιού επάνω σε κτήρια (βλέπε ΕΝ 1991-1-3)*			
Φιλανδία, Ισλανδία, Νορβηγία, Σουηδία	0.70	0.50	0.20
Υπόλοιπα Κράτη Μέλη του CEN για τοποθεσίες που	0.70	0.50	0.20
βρίσκονται σε υψόμετρο Η > 1000 m			
Υπόλοιπα Κράτη Μέλη του CEN για τοποθεσίες που	0.50	0.20	0
βρίσκονται σε υψόμετρο Η ≤ 1000 m			
Φορτία ανέμου σε κτήρια (βλέπε ΕΝ 1991-1-4)	0.6	0.2	0
			-
Θερμοκρασία (μη-πυρκαϊάς) σε κτήρια (βλέπε ΕΝ 1991-1-5)	0.6	0.5	0

Πίνακας 2.11: Προτεινόμενες τιμές των συντελεστών Ψ για κτήρια.

2.7.2 Οριακή Κατάσταση Αστοχίας

Οι οριακές καταστάσεις αστοχίας σχετίζονται με απώλεια ισορροπίας του φορέα, αστοχία λόγω υπερβολικών παραμορφώσεων, μετατροπή του φορέα ή μέρος του σε μηχανισμό θραύσης και απώλεια της ευστάθειας του και αστοχία λόγω κόπωσης, που θέτουν σε κίνδυνο ανθρώπινες ζωές. Ο συνδυασμοί των δράσεων στην οριακή κατάσταση αστοχίας καθορίζονται σύμφωνα με τις διατάξεις του ΕΝ 1991-1-6 [11], και είναι οι εξής:

- Καταστάσεις διαρκείας ή παροδικές: $\Sigma \gamma_{G,i} G_{k,i}$ "+" $\gamma_P P$ "+" $\gamma_{O,i} Q_{k,i}$ "+" $\Sigma \gamma_{O,i} \psi_{0,i} Q_{k,i}$
- Τυχηματικές καταστάσεις: $\Sigma G_{k,j} "+" P"+" A_d "+"(\psi_{1,1} \dot{\eta} \psi_{2,1}) Q_{k,1} "+" \Sigma \psi_{2,i} Q_{k,i}$
- Καταστάσεις σεισμού:
 Σ $G_{k,j}$ "+" P"+" A_{ED} "+"Σ $\psi_{2,i}Q_{k,i}$

Η μορφή των συνδυασμών είναι συμβολική και το σύμβολο του αθροίσματος δεν σημαίνει εδώ αλγεβρική ή γεωμετρική άθροιση, αλλά απλώς επαλληλία δράσεων (δηλαδή ταυτόχρονη

συνύπαρξη των διαφόρων δράσεων). Οι προτεινόμενες τιμές των συντελεστών Ψ, σύμφωνα με το Εθνικό Προσάρτημα [11], δίνονται στον Πίνακας 2.11.

2.7.3 Οριακή Κατάσταση Λειτουργικότητας

Οι οριακές καταστάσεις λειτουργικότητας σχετίζονται με συνθήκες πέρα των οποίων δεν πληρούνται πλέον οι καθορισμένες λειτουργικές απαιτήσεις για το φορέα ή για μέλος αυτού (μετατοπίσεις, ταλαντώσεις, ρηγματώσεις κλπ.). Οι συνδυασμοί των δράσεων στην οριακή κατάσταση λειτουργικότητας καθορίζονται σύμφωνα με τις διατάξεις του ΕΝ 1991-1-6 [11] και είναι οι εξής:

- Χαρακτηριστικός συνδυασμός:
 Σ $G_{k,i}$ "+" P"+" $Q_{k,i}$ "+"Σ $\psi_{0,i}Q_{k,i}$
- Συχνός συνδυασμός:
 ΣG_{k,i} "+" P"+"ψ₁₁Q_{k1}"+"Σψ_{2i}Q_{ki}
- Οιονεί μόνιμος συνδυασμός:
 ΣG_{k,i}"+" P"+"Σψ_{2,i}Q_{k,i}

Οι προτεινόμενες τιμές των συντελεστών Ψ, σύμφωνα με το Εθνικό Προσάρτημα [11], δίνονται στον Πίνακας 2.11.

2.7.4 Συνδυασμοί δράσεων κτιρίου

Στον Πίνακας 2.12 δίνονται συγκεντρωτικά όλα τα φορτία που ασκούνται στην κατασκευή και οι αντίστοιχοι συντελεστές Ψ.

Φορτία	Συμβολισμός	$oldsymbol{\varPsi}_{ heta}$	Ψ_1	Ψ_2
Μόνιμα	G	-	-	-
Κινητά	Q	0.7	0.5	0.3
Άνεμος	W _i	0.6	0.2	0

Πίνακας 2.12: Φορτία κατασκευής και αντίστοιχοι συντελεστές ψ.

Οριακή κατάσταση αστοχίας

Καταστάσεις διαρκείας ή παροδικές

- i. Βασικό μεταβλητό τα κινητά: $1.35 \cdot G + 1.50 \cdot Q + 1.50 \cdot 0.60 \cdot W + 1.50 \cdot 0.50 \cdot S + 1.5 \cdot 0.6 \cdot T$
- ii. Βασικό μεταβλητό ο άνεμος: $1.35 \cdot G + 1.50 \cdot W + 1.50 \cdot 0.70 \cdot Q + 1.50 \cdot 0.50 \cdot S + 1.5 \cdot 0.6 \cdot T$
- iii. Βασικό μεταβλητό το χιόνι: $1.35 \cdot G + 1.5 \cdot S + 1.5 \cdot 0.7 \cdot Q + 1.5 \cdot 0.6 \cdot W + 1.5 \cdot 0, 6 \cdot T$
- iv. Βασικό μεταβλητό η θερμοκρασία: 1.35·G + 1.5·T + 1.50·0.7·Q + 1.50·0.6·W + 1.50·0.5·S

Τυχηματικές δράσεις

Δεν ασκούνται τυχηματικές δράσεις στον φορέα, άρα οι συνδυασμοί που θα προέκυπταν αν λαμβάναμε την τιμή A = 0 ως τιμή της τυχηματικής δράσης καλύπτονται από αυτούς που προκύπτουν για καταστάσεις διαρκείας ή παροδικές.

Καταστάσεις σεισμού

- i. $G + 0.30 \cdot Q \pm 1.00 \cdot E_X \pm 0.30 \cdot E_Y$
- ii. $G + 0.30 \cdot Q \pm 0.30 \cdot E_X \pm 1.00 \cdot E_Y$

Οριακή κατάσταση λειτουργικότητας

Χαρακτηριστικός συνδυασμός

- *i.* Βασικό μεταβλητό τα κινητά: $G + Q + 0.60 \cdot W + 0.50 \cdot S + 0.6 \cdot T$
- ii. Βασικό μεταβλητό ο άνεμος: $G + W + 0.70 \cdot Q + 0.50 \cdot S + 0.6 \cdot T$
- iii. Βασικό μεταβλητό το χιόνι: $G + S + 0.70 \cdot Q + 0.60 \cdot S + 0.6 \cdot T$
- iv. Βασικό μεταβλητό η θερμοκρασία: $G + T + 0.70 \cdot Q + 0.50 \cdot S + 0.6 \cdot W$
- Συχνός συνδυασμός
 Καλύπτεται από του
 - Καλύπτεται από τους χαρακτηριστικούς συνδυασμούς.
- Οιονεί μόνιμος συνδυασμός
 Καλύπτεται από τους χαρακτηριστικούς συνδυασμούς.

3 Σχεδιασμός και ανάλυση κατασκευής

3.1 Στατικό προσομοίωμα

Το λογισμικό προσομοίωσης που χρησιμοποιήθηκε για την ανάλυση του φορέα και το λεπτομερή έλεγχο των μελών είναι το Robot Structural Analysis, της Autodesk [23]. Συγκεκριμένα στο λογισμικό εισήχθη ο φορέας μόνο με τα μεταλλικά στοιχεία, χωρίς τη σύμμικτη πλάκα, η οποία αναλύθηκε στο αντίστοιχο λογισμικό της εταιρίας Eλαστρον, Symdeck Designer [24]. Για το λόγο αυτό οι δευτερεύουσες δοκοί ελέγχθηκαν μέσω αναλυτικών υπολογισμών (ως σύμμικτες δοκοί και όχι αμιγώς χαλύβδινες). Η προσομοίωση της διαφραγματικής λειτουργίας που προσφέρει η πλάκα στο οριζόντιο επίπεδο έγινε δίνοντας στο λογισμικό την επιλογή «rigid links» (ενώθηκαν όλοι οι κόμβοι του κάθε ορόφου). Με τον τρόπο αυτό δεσμεύθηκαν οι οριζόντιες μετακινήσεις U_X και U_Y της πλάκας.

× ×

Εικόνα 3.1: Προσομοίωση διαφραγματικής λειτουργίας πλάκας σκυροδέματος.

Τα ίδια βάρη των στοιχείων υπολογίστηκαν αυτόματα από το λογισμικό. Το φορτίο της πλάκας, τα πρόσθετα μόνιμα, τα κινητά, τα φορτία χιονιού και ανέμου εισήχθησαν ως επιφανειακά ή γραμμικά ομοιόμορφα κατανεμημένα φορτία τοποθετημένα σε επιφάνειες φόρτισης (claddings) που μεταφέρουν τα φορτία στα μέλη του φορέα (load distribution).

×

Εικόνα 3.2: Κατανομή φορτίων (load distribution).

Σχετικά με τους συνδέσμους δυσκαμψίας, τέθηκαν ως «truss bars» ώστε να δέχονται μόνο αξονικές δυνάμεις. Στα αμφιαρθρωτά μέλη της κατασκευής χρησιμοποιήθηκε η επιλογή «releases» και χαρακτηρίστηκαν ως «pinned-pinned», δημιουργώντας έτσι αρθρώσεις στα άκρα τους.

Τα υποστυλώματα είναι ορισμένα ανά στάθμη, με πλήρη αποκατάσταση συνέχειας. Τα υποστυλώματα είναι αρθρωμένα στη βάση τους (στο έδαφος). Ο προσανατολισμός τους είναι τέτοιος ώστε ο ισχυρός τους άξονας να βρίσκεται στην διεύθυνση Y και ο ασθενής άξονας στην διεύθυνση X.

3.2 Στατική ανάλυση

Υπάρχουν δύο μέθοδοι στατικής ανάλυσης που μπορούν να πραγματοποιηθούν για την ανάλυση μίας κατασκευής:

- Ελαστική στατική ανάλυση: μπορεί να χρησιμοποιείται σε όλες τις περιπτώσεις.
- Πλαστική στατική ανάλυση: μπορεί να χρησιμοποιείται μόνο όπου η κατασκευή έχει ικανοποιητική δυνατότητα στροφής στις θέσεις των πλαστικών αρθρώσεων. Λαμβάνονται υπόψη οι επιδράσεις της μη γραμμικότητας του υλικού κατά τον υπολογισμό των αποτελεσμάτων των δράσεων επί του φορέα, ενώ η σχέση τάσεωνπαραμορφώσεων του υλικού είναι πάντα γραμμική.

3.3 Δυναμική ανάλυση

Η δυναμική ανάλυση της κατασκευής, πραγματοποιήθηκε με τη μέθοδο της ιδιομορφικής ανάλυσης φάσματος απόκρισης. Η μέθοδος περιλαμβάνει ιδιομορφική ανάλυση με την οποία υπολογίζονται οι ιδιομορφές της κατασκευής και στη συνέχεια ιδιομορφική και χωρική επαλληλία αυτών.

Όλα τα δεδομένα της σεισμικής διέγερσης εισήχθησαν στο λογισμικό για να υπολογιστούν τα σεισμικά φορτία κατά X και Y.

Ως συμμετέχουσα μάζα ορίστηκε η μάζα που προέρχεται από τα μόνιμα φορτία G και τα κινητά φορτία Q πολλαπλασιασμένα με τον συντελεστή 0.3.

Με τη μέθοδο CQC (Complete quad atic combination) υπολογίστηκαν από το λογισμικό οι μέγιστες αποκρίσεις ανά διεύθυνση σεισμού, υλοποιώντας την επαλληλία των ιδιομορφικών αποκρίσεων.

Στον Πίνακας 3.1 παρουσιάζονται οι τιμές των ιδιομορφών του κτιρίου σύμφωνα με το λογισμικό και στις Εικόνα 3.3 και Εικόνα 3.4 φαίνεται η παραμόρφωση της κατασκευής για τις δεσπόζουσες ιδιομορφές της διεύθυνσης X και Y.

Εικόνα 3.3: 1η ιδιομορφή, μεταφορική κατά Υ.

Frequency: 2,38 (Hz) Cases: 44 (Modal)

Εικόνα 3.4: 2η ιδιομορφή, μεταφορική κατά Χ.

ΠΕΡΙΠΤΩΣΗ / ΙΔΙΟΜΟΡΦΗ	ΣYXN. (Hz)	ΠΕΡ. (sec)	ΣXET.MAZA. UX (%)	ΣXET.MAZA .UY (%)	ΣXET.MAZA .UZ (%)	TPEX.MAZ. UX (%)	TPEX.MAZ. UY (%)	TPEX.MAZ. UZ (%)
44/1	2.38	0.42	0.22	80.91	0.00	0.22	80.91	0.00
44/ 2	2.88	0.35	84.86	81.14	0.00	84.64	0.24	0.00
44/3	3.92	0.26	84.86	81.50	0.00	0.00	0.36	0.00
44/4	6.28	0.16	84.87	97.67	0.00	0.01	16.17	0.00
44/ 5	7.07	0.14	84.87	97.67	0.01	0.00	0.00	0.01
44/6	7.55	0.13	84.88	97.67	0.09	0.01	0.00	0.07
44/7	7.56	0.13	84.91	97.67	0.09	0.03	0.00	0.00
44/ 8	7.62	0.13	85.81	97.67	0.41	0.90	0.00	0.32
44/9	7.71	0.13	98.44	97.68	0.42	12.63	0.00	0.01
44/ 10	7.89	0.13	98.44	97.68	0.47	0.00	0.00	0.04
45/1	2.38	0.42	0.22	80.91	0.00	0.22	80.91	0.00
45/ 2	2.88	0.35	84.86	81.14	0.00	84.64	0.24	0.00
45/3	3.92	0.26	84.86	81.50	0.00	0.00	0.36	0.00
45/4	6.28	0.16	84.87	97.67	0.00	0.01	16.17	0.00
45/ 5	7.07	0.14	84.87	97.67	0.01	0.00	0.00	0.01
45/6	7.55	0.13	84.88	97.67	0.09	0.01	0.00	0.07
45/ 7	7.56	0.13	84.91	97.67	0.09	0.03	0.00	0.00
45/ 8	7.62	0.13	85.81	97.67	0.41	0.90	0.00	0.32
45/ 9	7.71	0.13	98.44	97.68	0.42	12.63	0.00	0.01
45/10	7.89	0.13	98.44	97.68	0.47	0.00	0.00	0.04
46/1	2.38	0.42	0.22	80.91	0.00	0.22	80.91	0.00
46/ 2	2.88	0.35	84.86	81.14	0.00	84.64	0.24	0.00
46/3	3.92	0.26	84.86	81.50	0.00	0.00	0.36	0.00
46/4	6.28	0.16	84.87	97.67	0.00	0.01	16.17	0.00
46/ 5	7.07	0.14	84.87	97.67	0.01	0.00	0.00	0.01
46/6	7.55	0.13	84.88	97.67	0.09	0.01	0.00	0.07
46/ 7	7.56	0.13	84.91	97.67	0.09	0.03	0.00	0.00
46/ 8	7.62	0.13	85.81	97.67	0.41	0.90	0.00	0.32
46/ 9	7.71	0.13	98.44	97.68	0.42	12.63	0.00	0.01
46/10	7.89	0.13	98.44	97.68	0.47	0.00	0.00	0.04
47/1	2.38	0.42	0.22	80.91	0.00	0.22	80.91	0.00
47/2	2.88	0.35	84.86	81.14	0.00	84.64	0.24	0.00
47/3	3.92	0.26	84.86	81.50	0.00	0.00	0.36	0.00
47/4	6.28	0.16	84.87	97.67	0.00	0.01	16.17	0.00
47/5	7.07	0.14	84.87	97.67	0.01	0.00	0.00	0.01
47/6	7.55	0.13	84.88	97.67	0.09	0.01	0.00	0.07
47/7	7.56	0.13	84.91	97.67	0.09	0.03	0.00	0.00
47/8	7.62	0.13	85.81	97.67	0.41	0.90	0.00	0.32
47/9	7.71	0.13	98.44	97.68	0.42	12.63	0.00	0.01
47/10	7.89	0.13	98.44	97.68	0.47	0.00	0.00	0.04

Πίνακας 3.1: Ιδιομορφές του κτιρίου σύμφωνα με το Robot.

Παρατηρούμε ότι κατά τη διεύθυνση X η δεσπόζουσα ιδιομορφή είναι η 2^η, με ιδιοπερίοδο T = 0.35 sec και ποσοστό ιδιομορφικής μάζας 84.64%. Για τη διεύθυνση Y, η δεσπόζουσα ιδιομορφή είναι η 1^η, με ιδιοπερίοδο T = 0.42 sec και ποσοστό ιδιομορφικής μάζας 80.91%.

4 Διαστασιολόγηση και έλεγχος μελών

Στο κεφάλαιο αυτό θα γίνει παρουσίαση των επιμέρους μελών από τα οποία αποτελείται ο φορέας, τα εντατικά μεγέθη των οποίων έχουν προκύψει σύμφωνα με τη στατική και δυναμική ανάλυση (βλ. Κεφάλαιο 0). Ο έλεγχος και η διαστασιολόγηση του φορέα έγιναν σύμφωνα με τις κανονιστικές διατάξεις του Ευρωκώδικα 2 [12], του Ευρωκώδικα 3 [13,14] και του Ευρωκώδικα 4 [15]. Η επιλογή των διατομών προκύπτει μέσω επαναληπτικής διαδικασίας, ώστε να προσδιοριστούν η μέθοδος ανάλυσης για τον υπολογισμό των εντατικών μεγεθών, καθώς και οι αντοχές.

Στην παράγραφο αυτή θα ελεγχθούν επίσης και τα βέλη κάμψης από τα δυσμενέστερα μέλη κάθε ομάδας στοιχείων στην οριακή κατάσταση λειτουργικότητας, και θα συγκριθούν με τις αντίστοιχες τιμές βελών κάμψης που ορίζει το Εθνικό Προσάρτημα του ΕΝ 1991-1-1 [7] (Πίνακας 4.1).

Φορέας	δ_{max}	δ_2
Μη βατές στέγες	L/200	L/250
Πατώματα και βατές στέγες	L/250	L/300

Πίνακας 4.1: Όρια κατακόρυφων βελών σύμφωνα με το Εθνικό Προσάρτημα.

4.1 Κατάταξη διατομών – βασικές αρχές

Ο σχεδιασμός ενός φορέα, και των στοιχείων από τα οποία αποτελείται, προϋποθέτει την επιλογή μιας κατάλληλης μεθόδου ανάλυσης και ελέγχου. Η επιλογή αυτή αφορά αφενός στην ανάλυση, μέσω της οποίας προσδιορίζονται τα εντατικά και παραμορφωσιακά μεγέθη, και αφετέρου στον τρόπο υπολογισμού της αντοχής των διατομών.

Ανάλογα με τη ροπή αντοχής, τη στροφική ικανότητα και την αντοχή σε λυγισμό, οι διατομές κατατάσσονται σε τέσσερις κατηγορίες:

- Κατηγορία 1: Είναι διατομές που μπορούν να σχηματίσουν πλαστική άρθρωση με την απαιτούμενη από την πλαστική ανάλυση στροφική ικανότητα, χωρίς μείωση της αντοχής τους.
- Κατηγορία 2: Είναι διατομές που μπορούν να αναπτύξουν την πλαστική ροπή αντοχής τους, αλλά έχουν περιορισμένη δυνατότητα στροφής λόγω τοπικού λυγισμού.
- Κατηγορία 3: Είναι διατομές στις οποίες η τάση στην ακραία θλιβόμενη ίνα του χαλύβδινου μέλους, υποθέτοντας ελαστική κατανομή των τάσεων, μπορεί να φτάσει την αντοχή διαρροής, αλλά ο τοπικός λυγισμός είναι πιθανόν να εμποδίσει την ανάπτυξη της πλαστικής ροπής αντοχής.
- Κατηγορία 4: Είναι διατομές στις οποίες τοπικός λυγισμός θα συμβεί πριν την ανάπτυξη της τάσης διαρροής σε ένα ή περισσότερα μέρη της διατομής.

Κατηγορία διατομής	Ροπή αντοχής			
1 & 2	Πλαστική ροπή	$M_{pl} = W_{pl} f_y$		
3	Ελαστική ροπή	$M_{el} = W_{el} f_y$		
4	Ροπή τοπικού λυγισμού	$M_0 < M_{el}$		

Πίνακας 4.2: Ροπές αντοχής ανά κατηγορία διατομής.

Η κατάταξη μιας διατομής εξαρτάται από τη γεωμετρία της και από τη φόρτιση που επιβάλλεται σε αυτή. Κάθε διατομή συντίθεται από διάφορα πλακοειδή στοιχεία, όπως ο κορμός και τα πέλματα, τα οποία μπορεί να ανήκουν καθένα σε διαφορετική κατηγορία αλλά η κατάταξη της διατομής γίνεται με τη δυσμενέστερη εκ των θλιβομένων στοιχείων.

Στους πίνακες που ακολουθούν (Πίνακας 4.3, Πίνακας 4.4 και Πίνακας 4.5) φαίνονται οι γενικοί κανόνες για την κατάταξη των διατομών:

	Εσωτερικά θλιβόμενα τμήματα						
	ic	t-		t		c t,	Άξονας κάμψης
	с	Ľ.		[†] t	⁺ t		Άξονας Κάμψης
Κατηγορία	Tur	ιμα που υπόκει σε κάμψη	παι Τμήμα	που υπόκειται σε θλίψη	Ti	μήμα που υπόκ τε κάμψη και θλ	ειται ἰψη
Κατανομή τάσεων στα τμήματα (θλίψη θετική)	2	¢	Ę	1, +		+	c
1		$c/t \leq 72 \cdot \epsilon$	c	$t \leq 33 \cdot \epsilon$	όταν (a>0,5:c/t≤ a≤0,5:c/t≤	$\frac{396 \cdot \epsilon}{13 \cdot a - 1}$ $\frac{36 \cdot \epsilon}{a}$
2		$c/t \leq 83 \cdot \epsilon$	c	/t ≤ 38 - ε	όταν (όταν (a>0,5:c/t≤ a≤0,5:c/t≤	$\frac{456 \cdot \epsilon}{13 \cdot a - 1}$ $\frac{41, 5 \cdot \epsilon}{a}$
Κατανομή τάσεων στα τμήματα (θλίψη θετική)				f, +		, , , , , , , , , , , , , , , , , , ,	
3	3 $c/t \le 124 \cdot \epsilon$ $c/t \le 42 \cdot \epsilon$ $\psi > -1: c/t \le \frac{42 \cdot \epsilon}{0.67 + 0.33 \cdot \psi}$ $\psi \le -1^{*}: c/t \le 62 \cdot \epsilon \cdot (1 - \psi) \cdot \sqrt{(-\psi)}$						
c - /225	(F	fy	235	275	355	420	460
ε = √235 /	'y	3	1,00	0,92	0,81	0,75	0,71

Πίνακας 4.3: Κατάταξη εσωτερικών θλιβόμενων τμημάτων.

Προεξέχοντα πέλματα						
t†	Elaric Sigra					
			Τυρία Β		as kaun ka a	iun
Κατηγορία	θλίωη		Άκρο σε θλ	lwn	Άκοο σε εα	οελκυσμό
Κατανομή τάσεων στα τμήματα (θλίψη θετική)		-				
1	$c / t \leq 9 \cdot \epsilon$		$c/t \leq \frac{9 \cdot \epsilon}{a}$		c/t≤-	9·ε 1·√α
2	2 $c/t \le 10 \cdot \epsilon$ $c/t \le \frac{10 \cdot \epsilon}{q}$ $c/t \le \frac{10 \cdot \epsilon}{q}$		c/t≤-	10·ε α·√α		
Κατανομή τάσεων στα τμήματα (θλίψη θετική)) (+	-				¥ Ţ
3	3 $c/t \le 14 \cdot \epsilon$ $c/t \le 21 \cdot \epsilon \cdot \sqrt{k_{\sigma}}$					
$\epsilon = \sqrt{235/1}$	f _y f _y ε	235 1,00	275 0,92	355 0,81	420 0,75	460 0,71

Πίνακας 4.4: Κατάταξη προεξεχόντων πελμάτων.

Πίνακας 4.5: Κατάταξη σωληνωτών διατομών.

		Σωλι t-		μές		
Κατηγορία	Διατομή σε κάμψη και/ή θλίψη					
1		$d/t \le 50 \cdot \epsilon^2$				
2	$d/t \le 70 \cdot \epsilon^2$					
$d/t \le 90 \cdot \epsilon^2$ ΣΗΜΕΙΩΣΗ Για $d/t > 90 \cdot \epsilon^2$ βλέπε ΕΝ 1993-1-6.						
	fy	235	275	355	420	460
$\varepsilon = \sqrt{235}/$	f _γ ε	1,00	0,92	0,81	0,75	0,71
	ε ²	1,00	0,85	0,66	0,56	0,51

4.2 Δάπεδο – Σύμμικτες πλάκες

Σύμμικτες πλάκες ονομάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούνται από χαλυβδόφυλλα και επί τόπου έγχυτο σκυρόδεμα. Τα πλεονεκτήματα από τη χρήση συνίστανται στα εξής:

- Απαιτούνται γενικώς μικρότεροι χρόνοι κατασκευής.
- Αποφεύγεται η χρήση ξυλοτύπου.
- Επιτυγχάνεται η γεφύρωση μεγαλύτερων ανοιγμάτων με αντίστοιχη μείωση των μεταλλικών διαδοκίδων.

Το βασικό συστατικό των σύμμικτων πλακών είναι τα χαλυβδόφυλλα που λειτουργούν αρχικά κατά τη φάση κατασκευής ως μεταλλότυπος για το έγχυτο σκυρόδεμα, μεταφέροντας τα φορτία της σκυροδέτησης. Μετά την πήξη του σκυροδέματος η παραλαβή των λοιπών φορτίων κατά τη διάρκεια ζωής της κατασκευής γίνεται από τη σύμμικτη δράση των δύο υλικών που λειτουργούν πλέον ως σύμμικτη πλάκα. Στη σύμμικτη πλάκα προβλέπεται συνήθως ένας ελαφρύς οπλισμός που αφενός μεν προστατεύει το σκυρόδεμα από ρηγμάτωση, αφετέρου δε μπορεί να χρησιμοποιηθεί για την παραλαβή των αρνητικών ροπών των στηρίξεων στην περίπτωση που επιλεγεί το στατικό σύστημα της συνεχούς δοκού πολλών ανοιγμάτων.

Εικόνα 4.1: Διαμόρφωση της σύμμικτης πλάκας.

Η μελέτη και ο σχεδιασμός των σύμμικτων πλακών σύμφωνα με τις διατάξεις του Ευρωκώδικα 4 [15] περιλαμβάνει δύο στάδια, το χαλυβδόφυλλο στη φάση κατασκευής και την σύμμικτη πλάκα στη φάση λειτουργίας. Κατά τη φάση κατασκευής, δηλαδή πριν τη σκλήρυνση του σκυροδέματος, επιδιώκεται το προβλεπόμενο στατικό σύστημα να έχει την ικανότητα παραλαβής της έντασης που δημιουργεί το νωπό σκυρόδεμα και τα λοιπά φορτία διάστρωσης. Ο φορέας παραλαβής της έντασης είναι το γυμνό χαλυβδόφυλλο με τις στηρίξεις, που στην ουσία είναι ο μεταλλότυπος της πλάκας. Μετά την πήξη του σκυροδέματος, ο σχεδιασμός αφορά στη φάση λειτουργίας, όπου χαλυβδόφυλλο και σκυρόδεμα δρουν σύμμικτα ως ενιαία πλάκα. Η ένταση που προκαλούν τα φορτία που επιβάλλονται στην πλάκα κατά την διάρκεια ζωής του έργου παραλαμβάνονται σ' αυτή τη φάση από τη σύμμικτη δράση των δύο υλικών.

Για το σχεδιασμό του υπό μελέτη κτιρίου χρησιμοποιήθηκε το χαλυβδόφυλλο SYMDECK 73 της εταιρείας ΕΛΑΣΤΡΟΝ, το οποίο είναι ένα γαλβανισμένο προφίλ τραπεζοειδούς σχήματος ιδανικό για την κατασκευή σύμμικτων πλακών μεγάλων ανοιγμάτων. Τα χαρακτηριστικά του χαλυβδόφυλλου SYMDECK 73 φαίνονται στις δυο εικόνες που ακολουθούν (Εικόνα 4.2 και Εικόνα 4.3).

Εικόνα 4.2: Γεωμετρία τραπεζοδειδούς χαλυβδόφυλλου Symdeck 73.

Πάχος	t (mm)	0.75	0.80	1.00	1.25
Βάρος	G (kg/m²)	9.81	10.47	13.08	16.36
Επιφάνεια	A(cm²/m)	12.76	13.53	16.96	21.31
Ροπή αδρανείας	ly(cm⁴/m)	110.01	117.33	147.22	184.43
Ροπή αντίστασης	Wy(cm³/m)	27.57	29.48	36.99	42.23

Εικόνα 4.3: Γεωμετρικά και αδρανειακά χαρακτηριστικά του τραπεζοειδούς χαλυβδόφυλλου SYMDECK 73 ανά μέτρο πλάτους διατομής.

Οι πλάκες σχεδιάστηκαν για μία τυπική τομή του με συνολικό ύψος h = 150 mm και χαλυβδόφυλλο SYMDECK 73, πάχους t = 1.00 mm και ύψους $h_p = 7.3$ cm. Τοποθετήθηκαν συνεχή χαλυβδόφυλλα με τις νευρώσεις κάθετες στις δευτερεύουσες δοκούς.

Οι έλεγχοι που διενεργήθηκαν, σε φάση κατασκευής και λειτουργίας, με χρήση του λογισμικού Symdeck Designer της εταιρίας ΕΛΑΣΤΡΟΝ, στην περιοχή των πολλών συνεχόμενων ανοιγμάτων, παρουσιάζονται στη συνέχεια.

Στην Εικόνα 4.4 απεικονίζονται τα δεδομένα που εισήχθησαν στο λογισμικό Symdeck Designer.

er Sym Deck Designer 2 ογείο Βοήθεια Language		×
🕼 🖭 🤣 i Πληροφορίες		
	α/α L (m) q 16 1.46 8.3 17 1.46 8.3 18 1.46 8.3 Τδιο βάρος = 2.73 Πρόσθετα μόνιμα = 1.5	(ktV/m²)
	Σχεδίαση φορι γ _c = 1.35 γ _c	έα = 1.50
Γενικά στοιχεία Φάση κατασκευής Φάση λειτουργίας Έλεγχος Πυραντοχής	10 10	[=
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>Rd,S</i> cNm/m Nm/m kN/m
$t = 1.00 \forall mm \gamma_{M1} = 1.00 A_S = 2.010 cm^2/m$	k = 0.0144 M	IPa
$S: 500 \vee MPa \qquad \gamma_c = 1.15$	V _{1.Rd}	
h = 0.15 m $c = 0.03$ m		
Fe: 320 🗸 G MPa		

Εικόνα 4.4: Στατικό μοντέλο συνεχόμενης σύμμικτης πλάκας (πολλών ανοιγμάτων).

Φάση Κατασκευής

Στη φάση κατασκευής ο σχεδιασμός γίνεται με βάση τις οριακές καταστάσεις αστοχίας και λειτουργικότητας. Ειδικότερα ελέγχεται η δυνατότητα παραλαβής της ροπής κάμψης που προκαλούν τα δρώντα φορτία από το χαλυβδόφυλλο με το δεδομένο στατικό σύστημα. Η οριακή κατάσταση αντοχής διεξάγεται σύμφωνα με τις διατάξεις του Ευρωκώδικα 3 [13] που αφορούν στις λεπτότοιχες διατομές ψυχρής διαμόρφωσης. Στην περίπτωση που για δεδομένο πάχος χαλυβδόφυλλου ο έλεγχος δεν ικανοποιείται, προβλέπονται ενδιάμεσες στηρίξεις στο χαλυβδόφυλλο. Τέλος, θα πρέπει τα βέλη κάμψης που δημιουργούνται να είναι εντός των ορίων που καθορίζονται από τον Ευρωκώδικα 4 [15].

Στην Εικόνα 4.5 απεικονίζεται ο έλεγχος της σύμμικτης πλάκας για τη φάση κατασκευής, στο λογισμικό Symdeck Designer.

Εικόνα 4.5: Έλεγχοι σύμμικτης πλάκας στη φάση κατασκευής.

Φάση Λειτουργίας

Στη φάση λειτουργίας, το στατικό σύστημα του φορέα θεωρείται αυτό που προκύπτει μετά την απομάκρυνση των τυχόν ενδιάμεσων υποστυλώσεων. Στη φάση λειτουργίας διεξάγονται έλεγχοι που αφορούν στην ικανότητα παραλαβής της έντασης της πλάκας έναντι αρνητικής και θετικής ροπής κάμψης, καθώς και έναντι κατακόρυφης και διαμήκους διάτμησης. Επίσης ελέγχονται οι παραμορφώσεις της σύμμικτης πλάκας οι οποίες θα πρέπει να είναι συμβατές με προκαθορισμένα όρια. Ο παραπάνω σχεδιασμός έναντι των οριακών καταστάσεων αστοχίας έχει ως σκοπό την αποτροπή των μορφών αστοχίας που περιγράφηκαν στα προηγούμενα.

Στην Εικόνα 4.6 απεικονίζεται ο έλεγχος της σύμμικτης πλάκας για τη φάση λειτουργίας, στο λογισμικό Symdeck Designer.

Εικόνα 4.6: Έλεγχοι σύμμικτης πλάκας στη φάση λειτουργίας.

4.3 Διαστασιολόγηση δευτερευουσών δοκών – σύμμικτες διαδοκίδες

Η σύμμικτη πλάκα εδράζεται και συνδέεται διατμητικά στις διαδοκίδες, οπότε μεταφέρει τα επιφανειακά της φορτία σε αυτές ως γραμμικά φορτία, μέσω του πλάτους επιρροής της κάθε δοκού. Οι διαδοκίδες τρέχουν τη διαμήκη έννοιά τους κατά τον καθολικό άξονα Υ και είναι κάθετες στις αυλακώσεις του χαλυβδόφυλλου (της σύμμικτης πλάκας).

Εικόνα 4.7: Σιδηροδοκός διπλού-Τ διατμητικά συνδεδεμένη με τραπεζοειδές χαλυβδόφυλλο.

Εξαιτίας της διατμητικής σύνδεσης με τη σύμμικτη πλάκα στο άνω πέλμα τους και του γεγονότος ότι είναι αμφιέρειστες (μόνο θετικές ή μηδενικές ροπές) είναι πλευρικά εξασφαλισμένες (δεν κινδυνεύουν σε στρεπτοκαμπτικό λυγισμό). Υπόκεινται μόνο σε κατακόρυφα εντατικά μεγέθη, και άρα καταπονούνται σε κάμψη και διάτμηση.

Στη φάση κατασκευής που το σκυρόδεμα είναι ακόμα νωπό και δεν έχει αποκτήσει την θλιπτική αντοχή του, καλούνται οι χαλύβδινες διατομές να αναλάβουν μόνες τους τα κατακόρυφα φορτία, ήτοι το ίδιο βάρος της καθώς και από το νωπό σκυρόδεμα μαζί με το χαλυβδόφυλλο. Κατά τη φάση κατασκευής μπορεί να χρησιμοποιηθεί ή όχι προσωρινή υποστήριξη στη δοκό. Ο έλεγχος παραμορφώσεων στην οριακή κατάσταση λειτουργικότητας είναι ο πλέον κρίσιμος για την ύπαρξη ή όχι προσωρινής υποστήριξης.

Η σύμμικτη λειτουργία επιτυγχάνεται με την χρήση διατμητικών ήλων που εξασφαλίζουν την συνεργασία της χαλύβδινης διατομής με την πλάκα σκυροδέματος. Στη φάση λειτουργίας το σκυρόδεμα έχει αναπτύξει την θλιπτική αντοχή και η διατομή μας είναι σύμμικτη, της οποίας οι αντοχές είναι σημαντικά μεγαλύτερες. Στην φάση αυτή η διατομή καταπονείται από το σύνολο των φορτίων της κατασκευής (μόνιμα, κινητά, φορτία χιονιού, κλπ.).

Τέλος, η διαφραγματική λειτουργία της πλάκας σκυροδέματος εμποδίζει τον λυγισμό του θλιβόμενου πέλματος, καθώς και την στροφή της δοκού και δεν απαιτείται ο έλεγχος ευστάθειας έναντι στρεπτοκαμπτικού-πλευρικού λυγισμού.

Εικόνα 4.8: Δευτερεύουσες δοκοί (διαδοκίδες) IPE 300.

Για τον σχεδιασμό και τον έλεγχο των διαδοκίδων επιλέχθηκε η δοκός που παρουσιάζει τα δυσμενέστερα εντατικά μεγέθη. Η δοκός έχει μήκος L = 5.95 m και απέχει από τις γειτονικές δοκούς 1.46 m. Η διατομή που επιλέχθηκε είναι η πρότυπη ελατή διατομή IPE 300.

<i>h</i> (mm)	<i>b</i> (mm)	<i>t</i> _w (mm)	t_f (mm)	<i>r</i> (mm)	<i>A</i> (cm ²)	<i>G</i> (kN/m)
300	150	7.1	10.7	15	53.81	0.42
$W_{pl,y}$ (cm ³)	$A_{\nu z}(\mathrm{cm}^2)$	I_z (cm ⁴)	I_w (cm ⁶)	$I_t (\mathrm{cm}^4)$	I_y (cm ⁴)	$Wel_{y}(cm^{3})$
628.4	25.68	8356	125900	20.12	3892	557.1

Πίνακας 4.6: Γεωμετρικά και αδρανειακά χαρακτηριστικά διατομής IPE 300.

Στους υπολογισμούς ροπών αντοχής σύμμικτης δοκού, αφαιρείται από το πάχος της πλάκας d, το ύψος του χαλυβδόφυλλου h_p. Επομένως, η σύμμικτη δοκός αποτελείται από τη σιδηροδοκό, ένα κενό ίσο με το ύψος του χαλυβδόφυλλου h_p και σκυρόδεμα πάχους h_c .

Το πλάτος επιρροής είναι: $b_{eff} = \frac{2L_e}{8} = 149$ cm.

Άρα η διατομή της σύμμικτης δοκού για τον υπολογισμό της ροπής αντοχής αποτελείται από σκυρόδεμα πάχους 7.7 cm και πλάτους 140 cm, ένα κενό πάχους 7.3 cm και τη πρότυπη ελατή διατομή IPE 300.

4.3.1 Κατάταξη σύμμικτης δοκού

Πέλμα: Το πέλμα της σιδηροδοκού συνδέεται διατμητικά με την πλάκα σκυροδέματος. Όλη η διατομή της σιδηροδοκού εφελκύεται όπως αποδεικνύεται παρακάτω. Επομένως, το πέλμα είναι κατηγορίας 1, βάσει του Πίνακας 4.4.

Κορμός: Η θέση του ουδέτερου άξονα z₀ υπολογίζεται από την εξίσωση:

$$z_0 = \frac{A_a f_{yd}}{b_{eff} f_{cd}} \tag{4.1}$$

όπου $A_a = 53.81 \text{ cm}^2$, $f_{yd} = 27.5 \text{ kN/cm}^2$, $f_{cd} = 1.42 \text{ kN/cm}^2$. Προκύπτει ότι $z_0 = 7.01 \text{ cm} < 7.7 \text{ cm}$, και άρα ο ουδέτερος άξονας βρίσκεται εντός της

πλάκας σκυροδέματος.

Συνεπώς, ολόκληρος ο κορμός βρίσκεται υπό εφελκυσμό. Τελικά, η διατομή είναι κατηγορίας 1 και θα γίνει πλαστικός έλεγχος (βλ. Πίνακας 4.3, Πίνακας 4.4).

4.3.2 Έλεγχος στη φάση κατασκευής

Στην φάση κατασκευής, το σκυρόδεμα είναι νωπό και δεν έχει ανακτήσει την αντοχή του. Συνεπώς τα κατακόρυφα φορτία παραλαμβάνονται αποκλειστικά από την σιδηροδοκό. Τα φορτία τα οποία λαμβάνονται υπόψη στη φάση κατασκευής είναι:

- Τδιο βάρος χαλύβδινης διατομής: $G_{\iota.\beta.ipe} = 0.42 \text{ kN/m}$
- Τδιο βάρος νωπού σκυροδέματος: $G_{\iota,\beta,\nu\omega\pi\sigma\delta\sigma\kappa\nu\rho} = \gamma'_c h'_c = 2.95 \text{ kN/m}^2 = 4.34 \text{ kN/m}$ όπου $h'_c = h_c + \frac{h_p}{2} = 11.35$ cm: το ισοδύναμο πάχος σκυροδέματος εντός της σύμμικτης

πλάκας και $\gamma'_{c} = 26 \ kN/m^{3}$ το ειδικό βάρος του σκυροδέματος

- Τδιο βάρος χαλυβδόφυλλου: $G_{symdeck73} = 0.128 \times 1.46 = 0.19 \text{ kN/m}$
- $Q_c = 1.50 \text{ kPa} = 2.21 \text{ kN/m}$ (πρόσθετα φορτία σκυροδέτησης σύμφωνα με τον Πίνακας 4.7)

Δράση	Φορτιζόμενη επιφάνεια	Φορτίο σε kN/m ² 10 % του ιδίου βάρους του σκυροδέματος, αλλ' όχι μικρότερο από 0,75 και όχι μεγαλύτερο από 1,5 Συμπεριλαμβάνει τα Q _{ca} και Q _{cf}		
(α)	Μέσα στην επιφάνεια εργασίας 3 m x 3 m (ή το μήκος του ανοίγματος, αν είναι μικρότερο)			
(β)	Εξω από την επιφάνεια εργασίας	0,75 με κάλυψη του Q _{ca}		
(Y)	Πραγματική επιφάνεια	Το ίδιο βάρος των ξυλοτύπων και φερόντων στοιχείων (Q _∞) και το βάρος του νωπού σκυροδέματος για το πάχος σχεδιασμού (Q _α)		

Πίνακας 4.7: Κατασκευαστικά φορτία κατά τη σκυροδέτηση

Στη συνέχεια, η δοκός ελέγχεται στη φάση κατασκευής χωρίς υποστύλωση, σε οριακή κατάσταση αστοχίας (Ενότητα 4.3.2.1) και οριακή κατάσταση λειτουργικότητας (Ενότητα 4.3.2.24.3.2.2).

4.3.2.1 Οριακή Κατάσταση Αστοχίας (ΟΚΑ)

- Φορτίο σχεδιασμού: q = 1.35G + 1.5Q = 8.93 kN/m = 0.0893 kN/cm
- Το στατικό προσομοίωμα της διαδοκίδας στην φάση κατασκευής είναι αμφιέριστη δοκός.
- Δρώσα ροπή: M_{Ed} = $\frac{qL^2}{8}$ = 39.52 kNm
- Δρώσα τέμνουσα: V_{Ed} = $\frac{qL}{2}$ = 26.57 kN
- Αντοχή διατομής σε κάμψη: $M_{pl,Rd} = \frac{W_{pl}f_y}{\gamma_{M0}} = 172.81 \text{ kNm} > M_{Ed}$
- Αντοχή διατομής σε διάτμηση: $V_{pl,Rd} = \frac{A_v f_y / \sqrt{3}}{\gamma_{M0}} = 326.18 \text{ kN} > V_{Ed}$

Συνεπώς δεν απαιτείται ενδιάμεση υποστύλωση.

Έλεγχος απομείωσης ροπής αντοχής: $0.5V_{pl,Rd} = 163.09 \ kN > V_{Ed}$ άρα δεν απαιτείται απομείωση ροπής αντοχής.

4.3.2.2 Οριακή Κατάσταση Λειτουργικότητας (ΟΚΛ)

Κατά τη φάση κατασκευής χωρίς προσωρινή υποστήριξη το στατικό προσομοίωμα είναι αμφιέρειστη δοκός.

Θα γίνει πρώτα ο έλεγχος παραμορφώσεων στην οριακή κατάσταση λειτουργικότητας για να δούμε αν είναι κρίσιμο το βέλος κάμψης της σιδηροδοκού από τα ίδια βάρη

Φορτίο σχεδιασμού: q = 1G + 1Q = 7.16 kN/m = 0.0716 kN/cm

Βέλος στη μέση της δοκού:

$$\delta_m = \frac{5}{384} \frac{(G_{tot} + Q_{tot})L^4}{E_a I_e}$$
(4.2)

Βέλος κάμψης: $\delta_1 = 0.2 \text{ cm} < \delta_{max} = \frac{L}{250} = 2.38 \text{ cm}$

4.3.3 Έλεγχος στη φάση λειτουργίας

4.3.3.1 Οριακή Κατάσταση Αστοχίας (ΟΚΑ)

Πρόκειται για αμφιέρειστη δοκό επομένως οι ροπές είναι θετικές.

Μέγιστη δρώσα ροπή από όλους τους συνδυασμούς φορτίσεων (με τη βοήθεια του Robot):

 $max M_{Ed,y} = 121.02 \text{ kNm}$

Μέγιστη δρώσα τέμνουσα από όλους τους συνδυασμούς φορτίσεων (με τη βοήθεια του *Robot*):

$$\max V_{Ed,z} = 81.35 \text{ kN}$$

Εικόνα 4.9: Διάγραμμα ροπών κάμψης δευτερεύουσας δοκού στη φάση λειτουργίας (kNm).

Εικόνα 4.10: Διάγραμμα τεμνουσών δευτερεύουσας δοκού στη φάση κατασκευής (kN).

Έλεγχος έναντι κάμψης

Πλαστική ροπή αντοχής δίνεται από τη σχέση:

$$M_{pl,Rd} = A_a f_{yd} \left(z_a - \frac{z_0}{2} \right) \tag{4.3}$$

όπου za το κέντρο βάρους της σιδηροδοκού, το οποίο υπολογίζεται από την εξίσωση:

$$z_a = h_c + (A_1 z_1 + A_2 z_2 + A_3 z_3) \frac{1}{A_1 + A_2 + A_3}$$
(4.4)

Το κέντρο βάρους υπολογίζεται
ίσο με $z_a = 24.18$ cm, και άρα βάσει της Εξ. (4.3) προκύπτει:

$$M_{pl,Rd} = 306 \text{ kNm}$$

Ακολουθεί ο έλεγχος επάρκειας:

$$\max M_{Ed,v} = 121.02 \text{ kNm} < M_{pl,Rd} = 306 \text{ kNm}$$

Συνεπώς, η διατομή επαρκεί.

Έλεγχος έναντι διάτμησης

Οι δρώσες τέμνουσες παραλαμβάνονται αποκλειστικά από τον κορμό της σιδηροδοκού. Η αναπτυσσόμενη οριακή τάση κατά Von Mises είναι ίση με $f_{vk}/\sqrt{3}$.

Έλεγχος λεπτόκορμης δοκού:

$$\frac{h_w}{t_w} = 35.01 < 72 \ e/\eta = 72$$

Άρα, η διατομή δεν είναι λεπτόκορμη και δεν κινδυνεύει σε τοπικό λυγισμό (κύρτωση). Συνεπώς, έχουμε κορμό κατηγορίας 1 άρα θα γίνει πλαστικός έλεγχος.

Αντοχή σε τέμνουσα:

$$V_{pl,z,Rd} = A_{\nu}(f_{\nu k}/\sqrt{3})/\gamma_M \tag{4.5}$$

όπου $A_v = A - 2bt_f + (t_w + 2r)t_f = 25.68 \text{ cm}^2$ για ελατές διατομές Ι ή Η, και $\gamma_M = 1.25$ ο επιμέρους συντελεστής ασφαλείας χάλυβα έναντι θραύσης.

Συνεπώς, σύμφωνα με την Εξ. (4.5) προκύπτει $V_{pl,z,Rd} = 326.18$ kN. Ακολουθεί ο έλεγχος επάρκειας:

$$maxV_{Ed,z} = 81.35 \text{ kN} < V_{pl,z,Rd} = 326.18 \text{ kN}$$

Συνεπώς, η διατομή επαρκεί.

4.3.3.2 Οριακή Κατάσταση Λειτουργικότητας (ΟΚΛ)

Για να υπολογίσουμε το βέλος της σύμμικτης δοκού πρέπει να υπολογίζουμε τα αδρανειακά χαρακτηριστικά της σύμμικτης δοκού. Για να το πετύχουμε αυτό θα χρειαστεί να τα υπολογίσουμε μέσω της μεθόδου της ισοδύναμης διατομής.

Για να λάβουμε υπόψη φαινόμενα όπως ο ερπυσμός και η συστολή ξήρανσης στο σκυρόδεμα θεωρούμε $E'_{cm} = \frac{E_{cm}}{2} = 15.25$ GPa. Για τον χάλυβα S275 ισχύει, $E_a = 210$ GPa.

Η ροπή αδράνειας σύμμικτης δοκού δίνεται από τη σχέση:

$$I_e = I_{y,\sigma \circ \mu \mu \iota \kappa \tau \eta \varsigma} = I_{a,0} + A_\alpha (z_a - z_e)^2 + \frac{I_{c,0}}{\eta} + \frac{A_c}{\eta} (z_c - z_e)^2 + A_s (z_s - z_e)^2$$
(4.6)

όπου, $I_a = I_y = 8356 \ cm^4$

$$I_{c} = \frac{1}{12} b_{eff} h^{3} = 5668.62 \ cm^{4}$$
$$\eta = \frac{E_{a}}{E_{c}} = 13.77$$

Εμβαδό διατομής:

$$A_e = A_a + A_s + \frac{A_c}{\eta} \tag{4.7}$$

Απλοποιητικά αγνοώ την συνεισφορά του θλιβόμενου οπλισμού πλάκας άρα $A_c = 0$. Άρα το εμβαδό διατομής είναι ίσο με $A_e = 137.13 \text{ cm}^2$. Κέντρο βάρους S από την ίνα σκυροδέματος:

$$z_e = \frac{A_a z_a + A_s z_s + \frac{A_c z_c}{\eta}}{A_c}$$
(4.8)

Επομένως το κέντρο βάρους ισούται με $z_e = 14.11 \text{ cm}$

Συνεπώς σύμφωνα με την Εξ. (4.6) προκύπτει ροπή αδράνειας σύμμικτης δοκού ίση με $I_e = 31124.71 \ cm^4$.

Φορτία στη φάση λειτουργίας:

 $\begin{aligned} G_{\iota,\beta,ipe} &= 0.42 \text{ kN/m} \\ G_{\sigma\nu\mu\mu} &= 2.73 \times 1.46 = 4 \text{ kN/m} \\ G_{\pi\rho\sigma\sigma\theta} &= 1.5 \times 1.46 = 2.21 \text{ kN/m} \\ \text{'Apa } G_{tot} &= 6.63 \text{ kN/m} = 0.0663 \text{ kN/cm} \\ Q_{tot} &= (7.5 + 0.8) \times 1.46 = 12.2 \text{ kN/m} = 0.122 \text{ kN/cm} \end{aligned}$

Επομένως προκύπτει: $G_{tot} + Q_{tot} = 0.1883$ kN/cm

Βέλος στη μέση της δοκού:

$$\delta_m = \frac{5}{384} \frac{(G_{tot} + Q_{tot})L^4}{E_a I_e}$$
(4.9)

Υπολογίζεται από την Εξ. (4.2) ότι $\delta_2 = 0.47$ cm. Όμως το συνολικό βέλος αθροίζοντας το βέλος κατά την φάση σκυροδέτησης με το βέλος κατά τη φάση λειτουργίας, αφού η δοκός συνεχίζει να κάμπτεται από την προηγούμενη θέση της, ήτοι: $\delta_{tot} = \delta_1 + \delta_2 = 0.2 + 0.47$ cm = 0.67 cm $< \delta_{max} = \frac{L}{250} = 2.38$ cm, άρα είναι εντός του επιτρεπόμενου ορίου.

4.3.3.3 Συμπληρωματικός έλεγχος ακραίας διαδοκίδας (OKA)

Στην αντοχή της σύμμικτης δοκού συμβάλλει σε μεγάλο ποσοστό η πλάκα σκυροδέματος. Για το λόγο αυτό είναι σημαντικό να ελέγξουμε και τις δοκούς που βρίσκονται στην παρειά του κτιρίου, στις οποίες το συνεργαζόμενο πλάτος είναι το μισό. Αυτό σημαίνει ότι η αντοχή τους είναι σαφώς μειωμένη και δεν είναι σίγουρο ότι επαρκούν στις καταπονήσεις που μπορεί να είναι εξίσου σημαντικές με αυτές των ενδιάμεσων δοκών.

Η δυσμενέστερη δοκός έχει μήκος L = 5.50 m και απέχει από τις γειτονικές δοκούς 1.46 m. Η διατομή που επιλέχθηκε είναι η πρότυπη ελατή διατομή IPE 300.

Το πλάτος επιρροής είναι: $b_{eff} = \frac{L_e}{8} = 69$ cm. Μέγιστη δρώσα ροπή από όλους τους συνδυασμούς φορτίσεων (με τη βοήθεια του *Robot*):

$$\max M_{Ed,v} = 210.12 \text{ kNm}$$

Μέγιστη δρώσα τέμνουσα από όλους τους συνδυασμούς φορτίσεων (με τη βοήθεια του Robot):

$$\max V_{Ed,z} = 152.81 \text{ kN}$$

Σύμφωνα με την Εξίσωση (4.1) η θέση του ουδέτερου άξονα δεν είναι στην πλάκα σκυροδέματος, επομένως η ακραία δοκός θα επιλυθεί με ελαστική ανάλυση.

Εικόνα 4.11: Διάγραμμα ροπών κάμψης ακραίας δευτερεύουσας δοκού στη φάση κατασκευής (kNm).

Εικόνα 4.12: Διάγραμμα τεμνουσών ακραίας δευτερεύουσας δοκού στη φάση κατασκευής (kN).

Έλεγχος έναντι κάμψης

Μέθοδος Ισοδύναμης διατομής - Στάδιο Ι: Αρηγμάτωτη διατομή, σκυρόδεμα υπό θλίψη

Σύμφωνα με την μέθοδο αυτή, η σύμμικτη διατομή μετατρέπεται σε ισοδύναμη διατομή χάλυβα, συνεπώς το εμβαδό διατομής σύμφωνα με την Εξίσωση (4.7) ισούται με: $A_e = 92.39 \text{ cm}^2$

Το κέντρο βάρους της σιδηροδοκού είναι ίσο με $z_a = 30$ cm (Εξ. (4.4)).

Κέντρο βάρους S από την ίνα σκυροδέματος: $z_e = 19$ cm. (Εξίσωση (4.8)

Συνεπώς σύμφωνα με την Εξ. (4.6) προκύπτει ροπή αδράνειας ισοδύναμης διατομής ίση με $I_e = 23912.60 \ cm^4$ και ύψος ισοδύναμης διατομής: $h_t = h_c + h_p + h_a = 45 \ cm$.

Οι ροπές αντίστασης υπολογίζονται από τις κάτωθι εξισώσεις:

Σιδηροδοκός κάτω πέλμα:

$$W_{au} = \frac{I_e}{h_u} \tag{4.10}$$

Σιδηροδοκός άνω πέλμα:

$$W_{a0} = \frac{I_e}{z_e - d} \tag{4.11}$$

Οπλισμός σκυροδέματος:

$$W_s = -\frac{I_e}{z_e - z_s} \tag{4.12}$$

Σκυρόδεμα κάτω πέλμα:

$$W_{cu} = -\frac{I_e}{Z_e - d}\eta = W_{a0}\eta \tag{4.13}$$

Σκυρόδεμα άνω πέλμα:
$$W_{c0} = -\frac{I_e}{Z_e}\eta\tag{4.14}$$

Όπου $h_u = h_t - z_e$ είναι η απόσταση από το κέντρο βάρος.

Οι ελαστικές ροπές αντοχής σκυροδέματος και χάλυβα προκύπτουν από τις εξισώσεις:

$$M_{el,c} = W_{c0} 0.85 f_{cd} \tag{4.15}$$

$$M_{el,a} = W_{au} f_{au} \tag{4.16}$$

Στον

Πίνακας 4.8 φαίνονται οι ροπές σύμφωνα με τα παραπάνω:

Εξεταζόμενη ίνα	Ροπή αντίστασης (cm³)	Ελαστική Ροπή αντοχής (kNm)
Άνω ίνα σκυροδέματος	-17258	-244.5
Κάτω ίνα Σκυροδέματος	-80709	
Άνω ίνα Χάλυβα	-5861	
Κάτω ίνα Χάλυβα	923	253.7

Π/	$D_{-} D_{-} = -2$	······································			S
11100K0C4.8	$: PO\pi EC$	αντιστασης και	$OO\pi EC$	αντογής	$o_1 \alpha \tau_0 u_{nc}$.
			, p ee,	S	

Η ελαστική ροπή αντοχής προκύπτει από την εξίσωση (4.17):

$$M_{el,Rd} = \min\{M_{el,c}; M_{el,a}\}$$
(4.17)

Συνεπώς προκύπτει η ελαστική ροπή αντοχής ίση με $M_{el,Rd} = 244.50$ kNm. Ακολουθεί ο έλεγχος επάρκειας:

$$\max M_{Ed,v} = 210.12 \text{ kNm} < M_{el,Rd} = 244.50 \text{ kNm}$$

Συνεπώς, η διατομή επαρκεί.

Έλεγχος έναντι διάτμησης

Σύμφωνα με την Εξίσωση (4.5), η αντοχή σε τέμνουσα ισούται με: $V_{pl,Rd} = 326.20$ kN. Ακολουθεί ο έλεγχος επάρκειας:

 $maxV_{Ed,z} = 152.81 \text{ kN} < V_{pl,z,Rd} = 326.20 \text{ kN}$

Συνεπώς, η διατομή επαρκεί.

4.3.3.4 Συμπληρωματικός έλεγχος ακραίας διαδοκίδας (ΟΚΛ)

Σύμφωνα με τις εξίσωση (4.9), το βέλος στη μέση της δοκού ισούται με: $\delta_m = 0.45 \text{ cm} < \delta_{max} = \frac{L}{250} = 2.2 \text{ cm}$. Άρα είναι εντός του επιτρεπόμενου ορίου.

4.3.4 Διατμητική Σύνδεση

Η διατμητική σύνδεση μεταξύ σιδηροδοκού και πέλματος σκυροδέματος εξασφαλίζεται μέσω διάταξης διατμητικών συνδέσμων, ο οποίοι μεταφέρουν τη διάτμηση που αναπτύσσεται στη διεπιφάνεια των δυο υλικών. Ως διατμητικούς συνδέσμους θα χρησιμοποιήσουμε ήλους κεφαλής. Οι σύνδεσμοι αυτοί προτιμώνται λόγω του εύκολου τρόπου κατασκευής τους και του πλεονεκτικού ρόλου της κεφαλής τους η οποία εμποδίζει την ανύψωση της πλάκας σκυροδέματος και την αποκόλλησή της από τη δοκό.

Στην περίπτωσή μας επιλέχθηκε πλήρης διατμητική σύνδεση, ώστε οι ήλοι να παραλαμβάνουν όλη τη διαμήκη διάτμηση, και έτσι να εμποδίζεται πλήρως η ολίσθηση μεταξύ σιδηροδοκού και πλάκας σκυροδέματος.

Εν συνεχεία, υπολογίζεται η διαμήκης διάτμηση (Ενότητα 4.3.4.1) και καθορίζονται οι διατμητικοί ήλοι κεφαλής (Ενότητα 4.3.4.2).

4.3.4.1 Διαμήκης Διάτμηση

Η διαμήκης διάτμηση προσδιορίζεται με πλαστική ανάλυση, καθώς και οι αντοχές των διατομών προέκυψαν με πλαστική ανάλυση.

Σε όλο το τμήμα της δοκού βρισκόμαστε μεταξύ μηδενικών και θετικών ροπών (αμφιέρειστες δοκοί). Επομένως, η διαμήκης διάτμηση V₁ δίνεται από τη σχέση:

$$V_1 = \Sigma T_1 = D^+ = Z^+ = A_a f_{yd} \tag{4.18}$$

Για $A_a = 53.81$ cm² και $f_{yd} = 27.5$ kN/cm² (δες Ενότητα 0), η διαμήκης διάτμηση είναι ίση με $V_1 = 1479.76$ kN.

4.3.4.2 Διατμητικοί ήλοι κεφαλής

Επιλέγονται ήλοι κεφαλής διαμέτρου d = 19 mm, ύψους h = 125 mm και εφελκυστικής αντοχής fu = 500 MPa.

Πρέπει να ικανοποιούνται τα κάτωθι κριτήρια:

- Διάμετρος ήλου: $d = 19 \text{ mm} < 2.5t_f = 2.5 \times 10.7 = 25 \text{ mm}$ (ικανοποιείται)
- Υψος ήλου: $h_{sc} = 125 \text{ mm} > h_p = 73 \text{ mm}$ (ικανοποιείται)
- $h_{sc} = 125 \text{ mm} < h = 150 \text{ mm}$ (ικανοποιείται)
- Υπερκάλυψη σκυροδέματος: $c_{nom} = h h_{sc} = 25 \text{ mm} ≥ 25 \text{ mm}$ (ικανοποιείται)

Αντοχή ήλου

Η παραλαμβανόμενη από τον ήλο δύναμη εξαρτάται από την αντοχή του ήλου σε διάτμηση (P_{v,Rd}) και από την αντοχή του σκυροδέματος σε σύνθλιψη άντυγας (P_{b,Rd}). Συνεπώς, η οριακή αντοχή του ήλου εντός συμπαγούς πλάκας σκυροδέματος προσδιορίζεται ως η ελάχιστη τιμή από τις σχέσεις:

$$P_{\nu,Rd} = \frac{0.8f_u\left(\frac{\pi d^2}{4}\right)}{\gamma_\nu} \tag{4.19}$$

$$P_{b,Rd} = 0.29ad^2 \sqrt{f_{ck} E_{cm} / \gamma_{\nu}} \tag{4.20}$$

όπου $\gamma_v = 1.25$ και $\alpha = 1$.

Η αντοχή του ήλου υπολογίζεται ως $P_{Rd} = min\{P_{v,Rd}; P_{b,Rd}\} = 81.77$ kN

Οι υπολογισμοί ισχύουν για συμπαγή πλάκα σκυροδέματος. Στην περίπτωσή μας (σύμμικτη πλάκα με χαλυβδόφυλλο) η αντοχή του ήλου μειώνεται με έναν μειωτικό συντελεστή kt. Αυτό συμβαίνει γιατί δεν υπάρχει επαρκές σκυρόδεμα πίσω από τον ήλο λόγω του μεταλλικού χαλυβδόφυλλου οπότε και μειώνεται η αντοχή του. Ο μειωτικός αυτός συντελεστής δίνεται από τη σχέση:

$$k_{t} = \frac{0.7}{\sqrt{N_{r}}} \frac{b_{0}}{h_{p}} \left(\frac{h}{h_{p}} - 1\right) \le 1$$
(4.21)

Όπου Ν_r: ο αριθμός των διατμητικών ήλων σε κάθε αυλάκωση στη σύνδεση με τη δοκό $(N_r \leq 2)$. Τοποθετούνται δύο σειρές επομένως $N_r = 2$. Ο μειωτικός συντελεστής υπολογίζεται $k_t = 0.35.$

Συνεπώς η αντοχή του ήλου προκύπτει: $P'_{Rd} = k_t P_{Rd} = 28.62$ kN.

Κατανομή ήλων

Για την πλαστική κατανομή συνδέσμων κατά μήκος της δοκού χρειάζεται να πληρούνται οι εξής προϋποθέσεις:

Όλκιμοι ήλοι κεφαλής (16mm < d < 22mm) και (h > 4d = 76 mm): ισχύει Διατομές κατηγορίας 1 ή 2: ισχύει

 $M_{pl,Rd}/M_{pl,a,Rd} \le 2.5$ ήτοι 306/172.81 $= 1.77 \le 2.5$: ισχύει

Συνεπώς η κατανομή των ήλων θα γίνει με πλαστική ανάλυση.

Ο απαραίτητος αριθμός συνδέσμων για να αναπτυχθεί πλήρης διατμητική σύνδεση είναι:

 $n_f = \frac{\dot{A}_a f_{yd}}{P'_{Rd}} = \frac{1479.76}{28.62} = 51.7$. Οι ήλοι τοποθετούνται σε δύο σειρές επομένως τελικά επιλέγονται 52 σύνδεσμοι, 26 ήλοι σε κάθε σειρά.

Αποστάσεις ήλων: ομοιόμορφη κατανομή ($L_{cr} = L$) $\Delta_l = \frac{L_{cr}}{n_f} = \frac{595}{26} = 23$ cm

Έλεγχος αποστάσεων ήλων

Διαμήκεις αποστάσεις

min $e = 5d_s = 5 \times 1.9 = 9.5 < 18.6$ cm ικανοποιείται $\max e = \min\{6h_c; 80 \text{ cm}\} = \min\{6 \times 1.5; 80\} = 80 \text{ cm} > 18.6 \text{ cm}$ ικανοποιείται

Εγκάρσιες αποστάσεις

Αν τοποθετούνται n > 1 ήλοι στην ίδια θέση της δοκού πρέπει 19mm = $d_s < 2.5t_f$ = 25mm.

Ελάχιστη απόσταση: min $s = 2.5d_s = 2.5 \times 19 = 47.5$ mm = 4.75cm.

Μέγιστη απόσταση ήλου από άκρο πέλματος: $9t_f \varepsilon = 9 \times 10.7 \times \sqrt{\frac{235}{275}} = 89 \text{ mm} = 8.9 \text{ cm}.$ Βάσει των παραπάνω, επιλέγονται δύο ήλοι ανά 23 cm.

4.4 Διαστασιολόγηση κύριων δοκών – δοκοί πλαισίων ροπής

Οι διαδοκίδες εδράζονται στο ζύγωμα των πλαισίων αμφιαρθρωτά, μεταφέροντας τα επιφανειακά φορτία των πλακών ως συγκεντρωμένα κατακόρυφα φορτία. Επίσης, επί του ζυγώματος εδράζονται και οι επιμέρους τοιχοποιίες.

Οι κύριες δοκοί επιλέχθηκαν να μην είναι διατμητικά συνδεδεμένες με τη σύμμικτη πλάκα και επομένως όχι σύμμικτες στη φάση λειτουργίας. Έτσι οι κύριες δοκοί δεν είναι πλευρικά εξασφαλισμένες λόγω της πλάκας σκυροδέματος και υπόκεινται σε στρεπτοκαμπτικό λυγισμό. Ωστόσο, η σύνδεση τους με τις διαδοκίδες ανά μικρά διαστήματα (~1.5 m) εξασφαλίζουν τα πέλματα σε θλίψη. Συνεπώς, η επίδραση του στρεπτοκαμπτικού λυγισμού δεν είναι ιδιαίτερα σημαντική.

Λόγω του διαφράγματος που δημιουργείται από την σύμμικτη πλάκα, οι κύριες δοκοί δεν καταπονούνται από αξονικές δυνάμεις. Οι διατομές και τα μέλη ελέγχονται σε οριακή κατάσταση αστοχίας (OKA) και λειτουργικότητας (OKA) στην φάση λειτουργίας.

Εικόνα 4.13: Κύριες δοκοί ΗΕΑ 300.

Ενδεικτικά παρουσιάζεται ο έλεγχος για τη δυσμενέστερη δοκό του Β΄ υπογείου (HEA 300) μήκους L = 5.9 m.

<i>h</i> (mm)	<i>b</i> (mm)	<i>t</i> _w (mm)	$t_f(\mathrm{mm})$	<i>r</i> (mm)	<i>A</i> (cm ²)	<i>G</i> (kN/m)
290	300	8.5	14.0	27	112.50	0.88
$W_{pl,y}$ (cm ³)	$A_{\nu z}(\mathrm{cm}^2)$	I_z (cm ⁴)	I_w (cm ⁶)	I_t (cm ⁴)	I_y (cm ⁴)	$W_{el,y}(\mathrm{cm}^3)$
1383	37.28	6310	1200000	85.17	18260	1260

Πίνακας 4.9: Γεωμετρικά και αδρανειακά χαρακτηριστικά διατομής ΗΕΑ 300.

Τα δρώντα εντατικά μεγέθη από τα οποία καταπονείται η δυσμενέστερη κύρια δοκός είναι τα εξής:

- Ροπή κάμψης: $M_{ed,y}$ = 310.47 kNm Τέμνουσα δύναμη: $V_{ed,z}$ = 249.83 kN

Εικόνα 4.14: Διάγραμμα ροπών κάμψης κύριας δοκού (kNm).

Εικόνα 4.15: Διάγραμμα τεμνουσών κύριας δοκού (kN).

Η κύρια δοκός δε δέχεται αξονική δύναμη ($N_{ed} = 0$), παρά το γεγονός ότι στην κατασκευή δρουν και οριζόντια φορτία, λόγω του ότι στη σύμμικτη πλάκα έχω διαφραγματική λειτουργία στο επίπεδο του κάθε ορόφου.

Οι έλεγχοι που πρέπει να γίνουν είναι οι εξής:

- σε στρεπτοκαμπτικό λυγισμό
- σε κάμψη
- σε διάτμηση

4.4.1 Κατάταξη κύριας δοκού

Η κύρια δοκός υπόκειται σε εγκάρσια φορτία. Γι' αυτό ελέγχεται σε κάμψη και διάτμηση. Ειδικότερα κατά την κατάταξη της διατομής, ελέγχουμε τον κορμό σε κάμψη και το πέλμα σε θλίψη.

Από τον έλεγχο και σύμφωνα με τους Πίνακας 4.3 και Πίνακας 4.4, προκύπτει η διατομή Κατηγορίας 1. Επομένως θα γίνει πλαστική ανάλυση.

4.4.2 Έλεγχος στη φάση λειτουργίας

4.4.2.1 Οριακή Κατάσταση Αστοχίας (ΟΚΑ)

Έλεγχος σε στρεπτοκαπτικό λυγισμό

Αντοχή διατομής σε κάμψη: $M_{pl,Rd} = \frac{W_{pl}f_y}{\gamma_{M0}} = 380.44 \text{ kNm}$

Αντοχή διατομής σε πλευρικό λυγισμό: $M_{b,Rd} = \chi_{LT} W_y \frac{f_y}{\gamma_{M1}} = 346.67 \text{ kNm}$ Όπου χ_{LT} ο μειωτικός συντελεστής για πλευρικό λυγισμό δίνεται από την σχέση $\chi_{LT} = \frac{1}{\varphi_{LT} + \sqrt{\varphi_{LT}^2 - \overline{\lambda}_{LT}^2}} = 0.91 \le 1$

Επομένως προκύπτει ότι $M_{b,Rd} = 346.67 \text{ kNm} > M_{Ed,y} = 310.47 \text{ kNm}$ (ικανοποιείται)

Έλεγχος σε κάμψη

Καλύπτεται από τον έλεγχο έναντι στρεπτοκαμπτικού λυγισμού (ευμενέστερος ο έλεγχος σε κάμψη).

Έλεγχος σε διάτμηση

Αντοχή διατομής σε διάτμηση: $V_{pl,Rd} = \frac{A_{\nu}f_{\nu}/\sqrt{3}}{\gamma_{M0}} = 591.87 \text{ kN} > V_{Ed,z} = 249.83 \text{ kN}$ (ικανοποιείται)

 $V_{ed,z}/V_{pl,Rd} = 0.42 < 0.50$ συνεπώς δεν απαιτείται απομείωση ροπής λόγω τέμνουσας

4.4.2.2 Οριακή Κατάσταση Λειτουργικότητας (ΟΚΛ)

Μέγιστη παραμόρφωση

 $\delta_z = 0.8 \text{ cm} < \delta_{max} = \frac{L}{250} = 2.4 \text{ cm}$

Παραμόρφωση λόγω μεταβλητών δράσεων

$$\delta_{z,inst} = 0.5 \text{cm} < \delta_2 = \frac{L}{300} = 2 \text{cm}$$

Παρακάτω στην Εικόνα 4.16 παρατίθενται οι έλεγχοι σε ΟΚΑ και ΟΚΛ στην φάση λειτουργίας, με τη βοήθεια του λογισμικού Robot Structural Analysis.

KPOYD FAFEXOV			
MEΛΟΣ: 59 漥ŀn	ΣHMEIO: 3	ΣΥΝ	ΤΕΤΑΓΜΕΝΕΣ: x = 1.00 L = 5.9
ΦΟΡΤΙΑ:			
ΚΥΡΙΑΡΧΗ ΦΟΡΤΙΣΗ:	OULS /2/ 1*1.35 + 2*1.35 + 3*1	1.35 + 4*1.35 + 5*1.50 + 6*0	.90 + 8*0.90 + 10*1.50
YAIKO:	00 h (7)		
$s_{2/5}(s_{2/5})$ fy = 2/5.	00 MPa		
	ΟΙ ΔΙΑΤΟΜΗΣ: ΗΕΑ 300		
h=29.0 cm	gM0=1.00	gM1=1.00	
p=30.0 cm	Ay=94.85 cm2	Az=37.28 cm2	Ax=112.53 cm2
.w=0.9 cm	Iy=18263.50 cm4	Iz=6309.56 cm4	Ix=75.30 cm4
f=1.4 cm	Wply=1383.40 cm3	Wplz=641.18 cm3	
ΕΣΩΤΕΡΙΚΕΣ ΔΥΝΑΜΕ	ΙΣ ΚΑΙ ΑΝΤΟΧΕΣ:		
$N_E d = 0.00 kN$	My,Ed = -310.47 kN*m	$Mz_Ed = 0.00 \text{ kN*m}$	Vy,Ed = -0.00 kN
Nc, Rd = 3094.52 kin	$My,Ed,max = -510.4 / KN^{+}m$	$Mz_{e}Ed_{max} = -0.00 \text{ kN}^{*}m$	Vy, I, Rd = 1505.91 kN
ND,R.d - 5094.52 KIN	$MN = 380.44 kN^{1}m$	$MN_7 Rd = 176.32 kN*m$	$V_{2}Ed = -249.85 \text{ km}$ $V_{7}TRA = 501.87 \text{ km}$
	Mb.Rd = 346.67 kN*m	WIN,2,100 - 170.52 KIN III	TtEd = -0.00 kN*m
			TAEH Δ IATOMH $\Sigma = 2$
2 = 1.00 Ler,low=2.95 m	Mcr = 849.93 kN*m Lam_LT = 0.67	КАМПҮЛН,L1 - b fi,LT = 0.71	XL1 = 0.88 XLT,mod = 0.91
		$\mathbf{\vee}$	
N REPI TON AEO	NA y:		IA z:
	kyy = 1.00		kzz = 1.00
ΕΞΙΣΩΣΕΙΣ ΕΛΕΓΧΟΥ:			
ΕΛΕΓΧΟΣ ΜΗΚΟΥΣ ΔΙ	ΑΤΟΜΗΣ:		
$N_E d/N_C, Kd = 0.00 < 1.00$	(0.2.4.(1))	< 1.00 (6.2.0.1 (6))	
$V_v Ed/V_v T Rd = 0.00 < 1$	00 (62.6-7)	(1.00 (0.2.3.1.(0))	
Vz,Ed/Vz,T,Rd = 0.42 < 1.0	00 (6.2.6-7)		
Tau,ty,Ed/(fy/(sqrt(3)*gN	(10)) = 0.00 < 1.00 (6.2.6)		
Tau,tz,Ed/(fy/(sqrt(3)*gN	10)) = 0.00 < 1.00 (6.2.6)		
ΟΛΙΚΟΣ ΕΛΕΓΧΟΣ ΣΤ.	4ΘΕΡΟΤΗΤΑΣ ΜΕΛΟΥΣ:		
My,Ed,max/Mb,Rd = 0.90	< 1.00 (6.3.2.1.(1))	-N(1) + 1*N(- E d//) ($P_{1}(-) (1) = 0.00 < 1.00 (6.2.2 (1))$
$N Ed/(X_7 N Rk/gM1) + k$	vy*My,Ed,max/(XLT*My,Rk)	M(1) + kzz*Mz Ed max/(Mz)	$Rk/\sigma M1 = 0.90 < 1.00 (0.3.3.(4))$
) ·	
ΟΡΙΑΚΕΣ ΜΕΤΑΚΙΝΗΣ	ΕΙΣ		
ΕΚΤΡΟΠΕΣ (ΤΟ)	ΠΙΚΟ ΣΥΣΤΗΜΑ):		
uz = 0.8 cm < uz max = L/	250.00 = 2.4 cm 13 SLS /4/ 1*1 00 + 2*1 00 + 3	EIIAAHOEY *1 00 + 4*1 00 + 5*1 00 + 10	ETAI 0*1 00
KYPIAPXH &OPTISH.	1.00 1.1.00 1.2 1.00 1.3	1.00 - 4 1.00 - 5 1.00 - 1	
$WPLAPXH \Phi OPTI\SigmaH:$ uinst.z = 0.5 cm < uinst.	$max_z = L/300.00 = 2.0 \text{ cm}$	ENAAHOEY	ETAI
KIPLAPXH ΦΟΡΤΙΣΗ: u inst,z = 0.5 cm < u inst, KIPLAPXH ΦΟΡΤΙΣΗ:	$\max_{x,z} = L/300.00 = 2.0 \text{ cm}$ 1*5 + 1*10	ΕΠΑΛΗΘΕΥ	ETAI
$KYPL4PXH \Phi OPTISH:$ u inst,z = 0.5 cm < u inst, KYPL4PXH $\Phi OPTISH:$	max,z = L/300.00 = 2.0 cm 1*5 + 1*10	ΕΠΑΛΗΘΕΥ	ETAI

ALATOMH OK !!!

Εικόνα 4.16: Έλεγχοι σε ΟΚΑ και ΟΚΛ – Κύρια δοκός.

4.5 Διαστασιολόγηση υποστυλωμάτων

Τα υποστυλώματα υπόκεινται σε θλίψη και διαξονική κάμψη. Οι κύριες δοκοί, αλλά και ορισμένες δευτερεύουσες δοκοί, μεταβιβάζουν τα γραμμικά τους φορτία στα υποστυλώματα ως συγκεντρωμένα. Με τον τρόπο αυτό τα υποστυλώματα δέχονται από τις κατακόρυφες φορτίσεις σημαντικές θλιπτικές δυνάμεις.

Τα υποστυλώματα επίσης αποτελούν μέρος των φατνωμάτων, μαζί με τους κατακόρυφους συνδέσμους δυσκαμψίας, τα οποία είναι σχεδιασμένα να παραλαμβάνουν τις οριζόντιες φορτίσεις.

Ωστόσο εξαιτίας του γεγονότος ότι είναι αρθρωμένα στη βάση τους (στο έδαφος), υπάρχει λειτουργία δικτυώματος για τα συγκεκριμένα φατνώματα και τις οριζόντιες φορτίσεις καλούνται να παραλάβουν ουσιαστικά μόνοι τους οι κατακόρυφοι σύνδεσμοι δυσκαμψίας. Επομένως, οι δρώσες ροπές στα υποστυλώματα είναι πολύ μικρές (ουσιαστικά αμελητέες) και μπορούμε απλουστευτικά να θεωρήσουμε ότι τα υποστυλώματα καταπονούνται μόνο σε λυγισμό.

Λόγω εργοστασιακών προδιαγραφών και για την βελτιστοποίηση του σχεδιασμού, σχεδιάστηκαν ξεχωριστά τα υποστυλώματα ανά όροφο.

Εικόνα 4.17: Υποστυλώματα ΗΕΑ 340.

Ενδεικτικά παρουσιάζεται ο έλεγχος για το δυσμενέστερο υποστύλωμα του Β΄ υπογείου (ΗΕΑ 340) ύψους H = 3.60 m.

<i>h</i> (mm)	<i>b</i> (mm)	t_w (mm)	$t_f(\mathrm{mm})$	A (cm ²)	$W_{pl,z}(\mathrm{cm}^3)$
330	300	9.5	16.5	133.5	755.9
$W_{pl,y}$ (cm ³)	I_y (cm ⁴)	I_z (cm ⁴)	I_t (cm)	<i>i</i> _z (cm)	<i>i_y</i> (cm)
1850	27690	7436	127.2	7.46	14.4

Πίνακας 4.10: Γεωμετρικά και αδρανειακά χαρακτηριστικά διατομής ΗΕΑ 340.

4.5.1 Κατάταξη υποστυλώματος

Για την κατάταξη της διατομής, ελέγχουμε τον κορμό και το πέλμα σε θλίψη. Από τον έλεγχο και σύμφωνα με τους Πίνακας 4.3 και Πίνακας 4.4, προκύπτει ο κορμός και το πέλμα κατηγορία 1. Επομένως η διατομή είναι Κατηγορίας 1. Επομένως θα γίνει πλαστικός έλεγχος.

4.5.2 Έλεγχος στη φάση λειτουργίας

4.5.2.1 Οριακή Κατάσταση Αστοχίας (ΟΚΑ)

Το υποστύλωμα καταπονείται σε :

- λυγισμό (το δυσμενέστερο)
- κάμψη (αμελητέα)
- διάτμηση (αμελητέα)

Τα εντατικά μεγέθη του υποστυλώματος είναι :

- $N_{Ed} = 1337.17 \text{ kN}$
- $M_{y,Ed} = 27.07 \text{ kNm}$
- $M_{z,Ed} = 1.49 \text{ kNm}$

Εικόνα 4.19: Διάγραμμα εντατικού μεγέθους $M_{y,\text{Ed}}$ (kNm), υποστυλώματος ισογείου.

Εικόνα 4.20: Διάγραμμα εντατικού μεγέθους M_{z,Ed} (kNm), υποστυλώματος ισογείου.

Λυγισμός περί τον τοπικό άξονα Υ

Ύψος υποστυλώματος: $L_z = 3.6$ m Ισοδύναμο μήκος λυγισμού: $L_{cr,z} = 3.6$ m Μειωτικός συντελεστής $\chi = 0.97$

Λυγισμός περί τον τοπικό άξονα Ζ (κρίσιμος έναντι τουΥ)

Ύψος υποστυλώματος: $L_z = 3.6$ m Ισοδύναμο μήκος λυγισμού: $L_{cr,z} = 3.6$ m Μειωτικός συντελεστής $\chi = 0.81$ Επομένως προκύπτει ότι η αντοχή του θλιβόμενου μέλους έναντι λυγισμού ισούται με: $N_{b,Rd} = \frac{\chi A f_y}{\gamma_{M1}} = 2963.93$ kN > $N_{ed} = 1337.17$ kN Επομένως η διατομή επαρκεί έναντι λυγισμού.

Παρακάτω στην Εικόνα 4.21 παρατίθεται ο έλεγχος σε ΟΚΑ στην φάση λειτουργίας με τη βοήθεια του λογισμικού *Robot Structural Analysis*.

4.5.2.2 Οριακή Κατάσταση Λειτουργικότητας (ΟΚΛ)

Μετατοπίσεις κόμβων κατά Υ

$$\delta_y = 0.1 \text{ cm} < \delta_{max} = \frac{L}{150} = 2.4 \text{ m}$$

Παρακάτω στην Εικόνα 4.21 παρατίθεται ο έλεγχος σε ΟΚΑ στην φάση λειτουργίας με τη βοήθεια του λογισμικού *Robot Structural Analysis*.

ΓΚΡΟΥΠ ΕΛΕΓΧΟΥ: ΜΕΛΟΣ: 233	ΣHMEIO: 2	ΣΥΝ	ΙΤΕΤΑΓΜΕΝΕΣ: x = 0.50 L = 1.80
ΦΟΡΤΙΑ: ΚΥΡΙΑΡΧΗ ΦΟΡΤΙΣΗ:	9 ULS /2/ 1*1.35 + 2*1.35 + 3*	*1.35 + 4*1.35 + 5*1.50 + 6*(0.90 + 8*0.90 + 10*1.50
YAIKO: \$275 (\$275) fy = 27	5.00 MPa		
ПАРАМЕТРР	ΟΙ ΔΙΑΤΟΜΗΣ: ΗΕΑ 340		
h=33.0 cm	gM0=1.00	gM1=1.00	
b=30.0 cm	Ay=110.39 cm2	Az=44.95 cm2	Ax=133.47 cm2
tw=0.9 cm	Iy=27693.10 cm4	Iz=7436.00 cm4	Ix=123.00 cm4
tf=1.7 cm	Wply=1850.62 cm3	Wplz=755.96 cm3	
ΕΣΟΤΕΡΙΚΕΣ ΛΥΝΛΝ	ΕΙΣ ΚΑΙ ΔΝΤΟΧΕΣ·		
N.Ed = 1334.67 kN	Mv.Ed = 4.04 kN*m	Mz.Ed = 0.05 kN*m	Vv.Ed = -0.03 kN
Nc.Rd = 3670.51 kN	My,Ed,max = 8.08 kN*m	$Mz_Ed_max = 0.11 kN*m$	Vy.c.Rd = 1752.64 kN
Nb,Rd = 2963.93 kN	My,c,Rd = 508.92 kN*m	Mz,c,Rd = 207.89 kN*m	$V_{z,Ed} = 2.24 \text{ kN}$
	MN,y,Rd = 371.89 kN*m	MN,z,Rd = 203.70 kN*m	Vz,c,Rd = 713.69 kN
			TAEH Δ IATOMH $\Sigma = 1$
	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ:		
	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: MOY: Ι ΑΞΟΝΑ γ:		AEONA z:
	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: MOY: I AΞΟΝΑ y: Lam_y = 0.29	100 ПЕРІ ТОN А Lz = 3.60 m	AEONA z: Lam_z = 0.56
	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: MOY: Lam_y = 0.29 Xy = 0.97 Xy = 0.00	Lz = 3.60 m Lcr,z = 3.60 m	AEONA z: Lam_z = 0.56 Xz = 0.81
TAPAMETPOI AYFIE TAPAMETPOI AYFIE TAPAMETPOI AYFIE TAPAMETPOI AYFIE TAPAMETPOI TAPA TAPAMETPOI TAPA	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: ΜΟΥ: N AΞΟΝΑ y: Lam_y = 0.29 Xy = 0.97 kzy = 0.40	Lz = 3.60 m Lcr,z = 3.60 m Lamz = 48.23	AEONA z: Lam_z = 0.56 Xz = 0.81 kzz = 0.68
ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ Ι	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: ΜΟΥ: <i>I</i> AΞΟΝΑ y: <i>Lam_y</i> = 0.29 <i>Xy</i> = 0.97 <i>kzy</i> = 0.40 7:	Lz = 3.60 m Lcr,z = 3.60 m Lamz = 48.23	AEONA z: Lam_z = 0.56 Xz = 0.81 kzz = 0.68
ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ Ι	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: MOY: Lam_y = 0.29 Xy = 0.97 kzy = 0.40 /: MIATOMHΣ:	Lz = 3.60 m Lcr,z = 3.60 m Lamz = 48.23	AEONA z: Lam_z = 0.56 Xz = 0.81 kzz = 0.68
ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΕΡΙ ΤΟΝ Lcr,y = 3.60 m Lamy = 24.99 ΕΞΙΣΩΣΕΙΣ ΕΛΕΓΧΟΥ ΕΛΝς.Rd = 0.36 < 1.00	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: MOY: Lam_y = 0.29 Xy = 0.97 kzy = 0.40 /: ULATOMHΣ: 0 (6.2.4(1))	Lz = 3.60 m Lcr,z = 3.60 m Lamz = 48.23	AEONA z: Lam_z = 0.56 Xz = 0.81 kzz = 0.68
ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΕΡΙ ΤΟΝ Lcr, y = 3.60 m Lamy = 24.99 ΕΞΙΣΩΣΕΙΣ ΕΛΕΓΧΟΥ EAFLY ΔΛΝ, Rd = 0.36 < 1.00	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: MOY: Lam_y = 0.29 Xy = 0.97 kzy = 0.40 /: ILATOMHΣ: 0 (6.2.4.(1)) + (MZ,Ed/MN,z,Rd)^1.82 = 0.0	$ \begin{array}{c} \hline 1 \\ Lz = 3.60 \text{ m} \\ Lcr, z = 3.60 \text{ m} \\ Lamz = 48.23 \end{array} $ $0 < 1.00 (6.2.9.1.(6))$	AEONA z: Lam_z = 0.56 Xz = 0.81 kzz = 0.68
ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ Ιω ΠΕΡΙ ΤΟΝ Lcr,y = 3.60 m Lamy = 24.99 ΕΞΙΣΩΣΕΙΣ ΕΛΕΓΧΟΥ EAFLY ΔΛΝ, κ, Rd = 0.36 < 1.00	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: ΜΟΥ: <i>L</i> am_y = 0.29 Xy = 0.97 kzy = 0.40 <i>Y</i> : <i>LLTOMHΣ</i> : 0 (6.2.4.(1)) + (Mz,Ed/MN,z,Rd)^1.82 = 0.0 1.00 (6.2.6.(1)) 0 (6.2.6.(1))	$ \begin{array}{c} \hline 1 \\ Lz = 3.60 \text{ m} \\ Lcr, z = 3.60 \text{ m} \\ Lamz = 48.23 \end{array} $ $0 < 1.00 (6.2.9.1.(6))$	AEONA z: Lam_z = 0.56 Xz = 0.81 kzz = 0.68
ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΕΡΙ ΤΟΝ Lcr,y = 3.60 m Lamy = 24.99 ΕΞΙΣΩΣΕΙΣ ΕΛΕΓΧΟΥ EΔ/Νc,Rd = 0.36 < 1.00	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: MOY: Lam_y = 0.29 Xy = 0.97 kzy = 0.40 /: ILATOMHΣ: 0 (6.2.4.(1)) + (Mz,Ed/MN,z,Rd)^1.82 = 0.0 1.00 (6.2.6.(1)) .00 (6.2.6.(1)) .140EPOTHTAΣ ΜΕΛΟΥΣ:	$ \begin{array}{c} \hline Lz = 3.60 \text{ m} \\ Lcr, z = 3.60 \text{ m} \\ Lamz = 48.23 \end{array} $ $0 < 1.00 (6.2.9.1.(6))$	AEONA z: Lam_z = 0.56 Xz = 0.81 kzz = 0.68
ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΕΡΙ ΤΟΝ Lcr,y = 3.60 m Lamy = 24.99 ΕΞΙΣΩΣΕΙΣ ΕΛΕΓΧΟΥ EΔ(Nc,Rd = 0.36 < 1.00)	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: MOY: Lam_y = 0.29 Xy = 0.97 kzy = 0.40 /: LATOMHΣ: 0 (6.2.4.(1)) + (Mz,Ed/MN,z,Rd)^1.82 = 0.0 1.00 (6.2.6.(1)) .00 (6.2.6.(1)) .00 (6.2.6.(1)) .140EPOTHTAΣ ΜΕΛΟΙΣ: bda,max = 210.00 Lambda	DEPI TON A Lz = 3.60 m Lcr,z = 3.60 m Lamz = 48.23	AΞΟΝΑ z: Lam_z = 0.56 Xz = 0.81 kzz = 0.68 0.00 ΣΤΑΘΕΡΟ
ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΕΡΙ ΤΟΝ Lcr,y = 3.60 m Lamy = 24.99 ΕΞΙΣΩΣΕΙΣ ΕΛΕΓΧΟΥ E4/Nc,Rd = 0.36 < 1.00	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: MOY: Lam_y = 0.29 Xy = 0.97 kzy = 0.40 	DEPI TON A Lz = 3.60 m Lcr,z = 3.60 m Lamz = 48.23 0 < 1.00 (6.2.9.1.(6)) z = 48.23 < Lambda,max = 21 /gM1) + kyz*Mz,Ed,max/(M	AEONA z: Lam_z = 0.56 Xz = 0.81 kzz = 0.68 0.00 ΣΤΑΘΕΡΟ z,Rk/gM1) = 0.39 < 1.00 (6.3.3.(4))
ΠΑΡΑΜΕΤΡΟΙ ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΕΡΙ ΤΟΝ Lcr,y = 3.60 m Lamy = 24.99 ΕΞΙΣΩΣΕΙΣ ΕΛΕΓΧΟΥ E4/Nc,Rd = 0.36 < 1.00	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: ΜΟΥ: Lam_y = 0.29 Xy = 0.97 kzy = 0.40 ILATOMHΣ : 0 (62.4.(1)) + (Mz,Ed/MN,z,Rd)^1.82 = 0.0 1.00 (62.6.(1)) ILAOEPOIHTAS MEAOYS: bda,max = 210.00 Lambda, kyy*My,Ed,max/(XLT*My,Rk/	DEPI TON A Lz = 3.60 m Lcr,z = 3.60 m Lamz = 48.23 0 < 1.00 (6.2.9.1.(6)) z = 48.23 < Lambda,max = 21 /gM1) + kyz*Mz,Ed,max/(Mz gM1) + kyz*Mz,Ed,max/(Mz	AEONA z: Lam_z = 0.56 Xz = 0.81 kzz = 0.68 0.00 ΣΤΑΘΕΡΟ z,Rk/gM1) = 0.39 < 1.00 (6.3.3.(4)) Rk/gM1) = 0.46 < 1.00 (6.3.3.(4))
ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΕΡΙ ΤΟΝ Ly = 3.60 m Lamy = 24.99 ΕΞΙΣΩΣΕΙΣ ΕΛΕΓΧΟΥ ΕΔΑΝς.Rd = 0.36 < 1.00	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: ΜΟΥ: <i>Lam_y</i> = 0.29 <i>Xy</i> = 0.97 <i>kzy</i> = 0.40 <i>(b.2.4.(1))</i> <i>(c.2.4.(1))</i> <i>(c.2.6.(1))</i> <i>(c.2.6.(1))</i> <i>(c.2.6.(1))</i> <i>ΓΑΘΕΡΟΙΗΤΑΣ ΜΕΛΟΥΣ:</i> bda,max = 210.00 <i>Lambda</i> <i>kyy*My</i> ,Ed,max/(XLT*My,Rk/ <i>Xzy*My</i> ,Ed,max/(XLT*My,Rk/ ΣΕΙΣ	DEPI TON A Lz = 3.60 m Lcr,z = 3.60 m Lamz = 48.23 0 < 1.00 (6.2.9.1.(6)) z = 48.23 < Lambda,max = 21 /gM1) + kyz*Mz,Ed,max/(Mz, gM1) + kzz*Mz,Ed,max/(Mz,	AEONA z: Lam_z = 0.56 Xz = 0.81 kzz = 0.68 0.00 ΣΤΑΘΕΡΟ z,Rk/gM1) = 0.39 < 1.00 (6.3.3.(4)) Rk/gM1) = 0.46 < 1.00 (6.3.3.(4))
ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΕΡΙ ΤΟΝ Ly = 3.60 m Ler, y = 3.60 m Lamy = 24.99 ΕΞΙΣΩΣΕΙΣ ΕΛΕΓΧΟΥΣ Δ N,Ed/Nc,Rd = 0.36 < 1.00	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: ΜΟΥ: <i>Lam_y</i> = 0.29 <i>Xy</i> = 0.97 <i>kzy</i> = 0.40 /: <i>LATOMHΣ</i> : 0 (6.2.4.(1)) + (MZEd/MN,z,Rd)^1.82 = 0.0 1.00 (6.2.6.(1)) <i>TAΘΕΡΟΤΗΤΑΣ ΜΕΛΟΥΣ</i> : bda,max = 210.00 Lambda kyy*My,Ed,max/(XLT*My,Rk/ XZT*My,Rd,max/(XLT*My,Rk/ ΣΕΙΣ	DEPI TON A Lz = 3.60 m Lcr,z = 3.60 m Lamz = 48.23 0 < 1.00 (6.2.9.1.(6)) yz = 48.23 < Lambda,max = 21 /gM1) + kyz*Mz,Ed,max/(Mz gM1) + kzz*Mz,Ed,max/(Mz	AEONA z: Lam_z = 0.56 Xz = 0.81 kzz = 0.68
ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΕΡΙ ΤΟΝ Ly = 3.60 m Lamy = 24.99 ΕΞΙΣΩΣΕΙΣ ΕΛΕΓΧΟΥΣ Δ Ν,Ed/Nc,Rd = 0.36 < 1.00	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: MOY: Lam_y = 0.29 Xy = 0.97 kzy = 0.40 /: LATOMHΣ : 0 (6.2.4.(1)) + (MZEd/MN,z,Rd)^1.82 = 0.0 1.00 (6.2.6.(1)) TAΘΕΡΟΤΗΤΑΣ ΜΕΛΟΥΣ: bda,max = 210.00 Lambda kyy*My,Ed,max/(XLT*My,Rk/ ΔΕΙΣ DIIIKO ΣΥΣΤΗΜΑ): ΔΕΝ.ΑΝ	DEPI TON A Lz = 3.60 m Lcr,z = 3.60 m Lamz = 48.23 0 < 1.00 (6.2.9.1.(6)) z = 48.23 < Lambda,max = 21 /gM1) + kyz*Mz,Ed,max/(Mz gM1) + kzz*Mz,Ed,max/(Mz	AEONA z: Lam_z = 0.56 Xz = 0.81 kzz = 0.68 0.00 ΣΤΑΘΕΡΟ z,Rk/gM1) = 0.39 < 1.00 (6.3.3.(4)) Rk/gM1) = 0.46 < 1.00 (6.3.3.(4))
ΠΑΡΑΜΕΤΡΟΙ ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΕΡΙ ΤΟΝ Lcr,y = 3.60 m Lamy = 24.99 ΕΞΙΣΩΣΕΙΣ ΕΛΕΓΧΟΥ ΕΔΑΓΧΟΣ ΜΗΚΟΥΣ Δ Ν,Ed/Nc,Rd = 0.36 < 1.00	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: MOY: Lam_y = 0.29 Xy = 0.97 kzy = 0.40 (6.2.4.(1)) + (Mz,Ed/MNz,Rd)^1.82 = 0.0 (100 (6.2.6.(1)) 1.00 (6.2.6.(DEPI TON A Lz = 3.60 m Lcr,z = 3.60 m Lamz = 48.23 0 < 1.00 (6.2.9.1.(6)) z = 48.23 < Lambda,max = 21 /gM1) + kyz*Mz,Ed,max/(Mz, gM1) + kyz*Mz,Ed,max/(Mz, GA1YOHKE	AEONA z: Lam_z = 0.56 Xz = 0.81 kzz = 0.68 0.00 ΣΤΑΘΕΡΟ z,Rk/gM1) = 0.39 < 1.00 (6.3.3.(4)) Rk/gM1) = 0.46 < 1.00 (6.3.3.(4))
ΠΑΡΑΜΕΤΡΟΙ ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΕΡΙ ΤΟΝ Ly = 3.60 m Lamy = 24.99 ΕΞΙΣΩΣΕΙΣ ΕΛΕΓΧΟΥ ΕΛΕΓΧΟΣ ΜΗΚΟΥΣ Δ Ν,Ed/Nc,Rd = 0.36 < 1.00	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: MOY: Lam_y = 0.29 Xy = 0.97 kzy = 0.40 (6.2.4.(1)) + (MZ,Ed/MN,Z,Rd)^1.82 = 0.0 1.00 (6.2.6.(1)) IAOEPOIHIAS MEAOYS: bda,max = 210.00 Lambda, kyy*My,Ed,max/(XLT*My,Rk/ Xz (TENIKO SYSTHMA): ΔΕΝ ΑΝ (XLT*MY,Rk/ ΣΕΙΣ DIIKO SYSTHMA): ΔΕΝ ΑΝ (13 SIS (1/18100 + 28100 + 13 SIS (1/18100 + 28100 + 13 SIS (1/18100 + 28100 + 13 SIS (1/18100 + 28100 + (13 SIS (1/18100 + 28100 + (1/1800 +	ПЕРІ ТОЛ А Lz = 3.60 m Lcr,z = 3.60 m Lamz = 48.23 0 < 1.00 (6.2.9.1.(6)) z = 48.23 < Lambda,max = 21 /gM1) + kyz*Mz,Ed,max/(Mz, gM1) + kyz*Mz,Ed,max/(Mz, GANYOHKE ЕПАЛНОЕУ 3*1 00 + 4*1 00 + 5*1 00 + 5	AEONA z: Lam_z = 0.56 Xz = 0.81 kzz = 0.68 0.00 ΣΤΑΘΕΡΟ z,Rk/gM1) = 0.39 < 1.00 (6.3.3.(4)) ,Rk/gM1) = 0.46 < 1.00 (6.3.3.(4)) TETAI
ΠΑΡΑΜΕΤΡΟΙ ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΕΡΙ ΤΟΝ Ly = 3.60 m Lamy = 24.99 ΕΞΙΣΩΣΕΙΣ ΕΛΕΓΧΟΥ EΔ(Nc,Rd = 0.36 < 1.00)	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: MOY: Lam_y = 0.29 Xy = 0.97 kzy = 0.40 (6.2.4.(1)) + (MZEd/MNZ,Rd)^1.82 = 0.0 (100 (6.2.6.(1)) IAOEPOTHTAS MEAOYS: bda,max = 210.00 Lambda, kyy*My,Ed,max/(XLT*My,Rk/ ELIS DILIKO SYSTHMA): ΔΕΝΑΝ (XLT*MY,Rk/ ΣΕΙΣ DILIKO SYSTHMA): ΔΕΝΑΝ (150.00 = 2.4 cm : 13 SLS /1 / 1*1.00 + 2*1.00 + L/150.00 = 2.4 cm	ПЕРІ ТОN А Lz = 3.60 m Lcr,z = 3.60 m Lamz = 48.23 0 < 1.00 (6.2.9.1.(6)) z = 48.23 < Lambda,max = 21 /gM1) + kyz*Mz,Ed,max/(Mz, gM1) + kyz*Mz,Ed,max/(Mz, gM1) + kzz*Mz,Ed,max/(Mz, GM1) + kz*Mz,Ed,max/(Mz, GM1) + kzz*Mz,Ed,max/(Mz, GM1) + kzx^{M} + kz^{M} + kz^{M	AEONA z: Lam_z = 0.56 Xz = 0.81 kzz = 0.68 0.00 ΣΤΑΘΕΡΟ z,Rk/gM1) = 0.39 < 1.00 (6.3.3.(4)) Rk/gM1) = 0.46 < 1.00 (6.3.3.(4)) TETAI *0.60 + 7*0.60 + 10*1.00 FTAI
ΠΑΡΑΜΕΤΡΟΙ ΠΑΡΑΜΕΤΡΟΙ ΛΥΓΙΣ ΠΕΡΙ ΤΟΝ Ly = 3.60 m Lamy = 24.99 ΕΞΙΣΩΣΕΙΣ ΕΛΕΓΧΟΥ ΕΔΑΓΧΟΣ ΜΗΚΟΥΣ Δ Ν,Ed/Nc,Rd = 0.36 < 1.00	ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ: MOY: AΞΟΝΑ y: Lam_y = 0.29 Xy = 0.97 kzy = 0.40 /: ILATOMHΣ : 0 (6.2.4.(1)) + (MZ,Ed/MN,Z,Rd)^1.82 = 0.0 1.00 (6.2.6.(1)) ITAΘΕΡΟΙΗΤΑΣ ΜΕΛΟΥΣ: bda,max = 210.00 Lambda, kyy*My,Ed,max/(XLT*My,Rk/ xzy*My,Ed,max/(XLT*My,Rk/ ΣΕΙΣ DIIIKO ΣΥΣΤΗΜΑ): ΔΕΝ.ΑΝ Σ (ΓΕΝΙΚΟ ΣΥΣΤΗΜΑ): ΔΕΝ.ΑΝ Σ (ΓΕΝΙΚΟ ΣΥΣΤΗΜΑ): ΔΕΝ.ΑΝ Σ (ΓΕΝΙΚΟ ΣΥΣΤΗΜΑ): ΔΕΝ.ΑΝ Σ (150.00 = 2.4 cm : 13 SLS // 1*1.00 + 2*1.00 + L/150.00 = 2.4 cm	ПЕРІ ТОN А Lz = 3.60 m Lcr,z = 3.60 m Lamz = 48.23 0 < 1.00 (6.2.9.1.(6)) z = 48.23 < Lambda,max = 21 /gM1) + kyz*Mz,Ed,max/(Mz, gM1) + kyz*Mz,Ed,max/(Mz, GM1) + kzz*Mz,Ed,max/(Mz, GM1) + kzz*Mz,Ed,m	AEONA z: Lam_z = 0.56 Xz = 0.81 kzz = 0.68 0.00 ΣΤΑΘΕΡΟ z,Rk/gM1) = 0.39 < 1.00 (6.3.3.(4)) Rk/gM1) = 0.46 < 1.00 (6.3.3.(4)) TETAI *0.60 + 7*0.60 + 10*1.00 ETAI *1.00 + 7*1.00 + 10*0.70

Εικόνα 4.21: Έλεγχοι σε ΟΚΑ και ΟΚΛ – Υποστύλωμα.

4.6 Ικανοτικοί έλεγχοι

4.6.1 Έλεγχος διαγώνιων συνδέσμων δυσκαμψίας

Σε δικτυωτούς συνδέσμους χωρίς εκκεντρότητα, η ανάληψη των οριζόντιων δράσεων γίνεται κυρίως από ράβδους καταπονούμενες σε αξονική δύναμη. Στο υπό μελέτη κτίριο, οι κατακόρυφοι σύνδεσμοι καλούνται να παραλάβουν τις οριζόντιες δράσεις, από τις οποίες οι δυσμενέστερες είναι οι σεισμικές και με βάση αυτές διαστασιολογούνται. Οι διαγώνιοι σύνδεσμοι που βρίσκονται υπό θλίψη αγνοούνται κατά την ανάλυση, υπέρ της ασφαλείας. Για να εξασφαλιστεί ότι οι διαγώνιοι θα συμπεριφερθούν κατά τον επιθυμητό τρόπο, πρέπει η ανηγμένη λυγηρότητα να είναι:

$$\overline{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}} = \frac{L_{cr}}{i} \frac{1}{\lambda_1} \le 1.5$$
(4.22)

όπου A το εμβαδόν διατομής, f_y το όριο διαρροής, N_{cr} το ιδεατό κρίσιμο φορτίο Euler διαγωνίου, L_{cr} το ισοδύναμο μήκος λυγισμού, i η ακτίνα αδράνειας περί τον αντίστοιχο άξονα, λ_I η οριακή (χαρακτηριστική) λυγηρότητα κατά Euler. Για χάλυβα S235 ισχύει $\lambda_1 = \pi \sqrt{\frac{E}{f_y}} = 93.9$.

Οι διαγώνιοι σύνδεσμοι συνδέονται στο μέσο τους, με αποτέλεσμα το μήκος λυγισμού τους να είναι ίσο με το 50% του πραγματικού μήκους, τόσο εντός όσο και εκτός επιπέδου:

 $L_{cr} = 0.5 L_{\delta \iota \alpha \gamma}$

Επιλέγεται κοίλη τετραγωνική διατομή TCAR.

Εικόνα 4.22: Κατακόρυφοι σύνδεσμοι δυσκαμψίας διατομής TCAR 120x6.3.

4.6.1.1 Έλεγχος ανηγμένης λυγηρότητας

Παρακάτω ακολουθεί ο υπολογισμός της ανηγμένης λυγηρότητας για κάθε μέλος. Σε όλους τους υπολογισμούς κρίσιμος είναι ο ασθενής άξονας των διατομών.

 Διαγώνιος Β΄ υπογείου (TCAR 120x6.3) με i = 4.6 cm λ̄ = ^L_{cr} 1/_i = ³⁴⁸/_{4.6} 1/_{93.9} = 0.81 ≤ 1.5

 Διαγώνιος Α΄ υπογείου (TCAR 120x6.3) με i = 4.6 cm

$$\overline{\lambda} = \frac{L_{cr}}{i} \frac{1}{\lambda_1} = \frac{367}{4.6} \frac{1}{93.9} = 0.85 \le 1.5$$

- $\Delta \iota \alpha \gamma \omega \nu \iota \varsigma I \text{ Groye}(\delta \nu \text{ (TCAR 90x5)} \mu \epsilon \text{ i} = 3.43 \text{ cm}$ $\overline{\lambda} = \frac{L_{cr}}{i} \frac{1}{\lambda_1} = \frac{352}{3.43} \frac{1}{93.9} = 1.10 \le 1.5$
- Διαγώνιος Απόληξης κλιμακοστασίου (TCAR 90x5) με i = 3.43 cm $\overline{\lambda} = \frac{L_{cr}}{i} \frac{1}{\lambda_1} = \frac{319}{3.43} \frac{1}{93.9} = 1 \le 1.5$

4.6.1.2 Έλεγχος σε εφελκυσμό

Οι διαγώνιοι ελέγχονται σε εφελκυσμό, ο οποίος προκύπτει μόνο από τα σεισμικά φορτία, αφού τα κατακόρυφα φορτία δεν προκαλούν αξονικές δυνάμεις στις διαγωνίους.

Η πλαστική αντοχή σχεδιασμού δίνεται από την σχέση:

$$N_{pl,Rd} = A \frac{f_y}{\gamma_{M0}} \tag{4.23}$$

- Μέγιστη εφελκυστική δύναμη από σεισμικούς συνδυασμούς για διατομή TCAR 120x6.3:
 $N_s = 404.47 \text{ kN} < N_{pl,Rd} = 669.75 \text{ kN}$
- Μέγιστη εφελκυστική δύναμη από σεισμικούς συνδυασμούς για διατομή TCAR 90x5: $N_s = 202.19 \text{ kN} < N_{pl,Rd} = 396.68 \text{ kN}$

Εικόνα 4.24: Αξονική δύναμη δυσμενέστερου συνδέσμου δυσκαμψίας διατομής TCAR 120x6.3.

Εικόνα 4.25: Αξονική δύναμη δυσμενέστερου συνδέσμου δυσκαμψίας διατομής TCAR 90x5.

4.6.1.3 Υπολογισμός υπεραντοχής

Καθ' υπέρβαση του ΕΑΚ 2000 [17], προσεγγίζοντας τις διατάξεις του Ευρωκώδικα 8 [16], υπολογίζουμε ανά όροφο τις υπεραντοχές Ω_i για τους συνδέσμους δυσκαμψίας. Για κάθε όροφο λαμβάνεται ως $\Omega = min\Omega_i$, όπου $\Omega_i = \frac{N_{pl,Rd,i}}{N_{Ed,i}}$

- Β' υπόγειο (TCAR 120x6.3) $\Omega = \frac{N_{pl,Rd,i}}{N_{Ed,i}} = \frac{669.75}{404.47} = 1.66$ • A' υπόγειο (TCAR 120x6.3)
- $\Omega = \frac{N_{pl,Rd,i}}{N_{Ed,i}} = \frac{669.75}{356.95} = 1.88$ Isóysio (TCAR 90x5)
- $\Omega = \frac{N_{pl,Rd,i}}{N_{Ed,i}} = \frac{396.68}{202.19} = 1.96$
- Απόληξη κλιμακοστασίου (TCAR 90x5) $\Omega = \frac{N_{pl,Rd,i}}{N_{Ed,i}} = \frac{396.68}{16.92} = 23.44$

Στον τελευταίο όροφο η αξονική δύναμη είναι υποδεέστερη σε σχέση με τους κατώτερους ορόφους, επομένως δεν θα ληφθεί υπόψη για τον υπολογισμό του Ω.

Για να εξασφαλιστεί ομοιόμορφη πλαστιμότητα καθ' ύψος του πλαισίου πρέπει η μέγιστη τιμή της υπεραντοχής να μην ξεπερνάει την ελάχιστη τιμή της υπεραντοχής κατά περισσότερο από 25%:

$$\frac{\Omega_{max} - \Omega_{min}}{\Omega_{min}} = \frac{1.96 - 1.66}{1.66} = 0.18 < 0.25$$
 (ικανοποιείται)

4.6.2 Έλεγχος υποστυλωμάτων

Σύμφωνα με τον ΕΑΚ 2000, τα υποστυλώματα ελέγχονται σε λυγισμό υπό την επίδραση του σεισμικού συνδυασμού, αλλά με τα μεγέθη δυσμενέστερου σεισμικής έντασης πολλαπλασιασμένα επί τον συντελεστή ικανοτικής μεγέθυνσης, ο οποίος δίνεται από την σχέση:

$$\alpha_{cd} = \frac{1.20N_{Pdi} - N_{Vdi}}{N_{Edi}} < q$$
(4.24)

όπου, N_{Pdi} η υπολογιστική αντοχή εφελκυόμενης διαγωνίου, N_{Vdi} η εφελκυστική δύναμη της ίδιας διαγωνίου υπό την επίδραση των μη σεισμικών δράσεων του σεισμικού συνδυασμού (N_{vdi} = 0), N_{Edi} η εφελκυστική δύναμη της διαγωνίου μόνον υπό τη σεισμική δράση του συνδυασμού.

Το δυσμενέστερο υποστύλωμα βάσει του οποίου διαστασιολογήθηκε όλη η ομάδα των υποστυλωμάτων βρίσκεται στο ίδιο φάτνωμα μαζί με συνδέσμους δυσκαμψίας κατά Υ.

Ο συντελεστής ικανοτικής μεγέθυνσης για το δυσμενέστερο υποστύλωμα, σύμφωνα με την Εξ. (4.24), ισούται με: $\alpha_{cd} = \frac{1.20 \times 669.75}{404.75} = 1.98 > q = 1.5$. Συνεπώς λαμβάνεται $a_{cd} = 1.5$. Η μέγιστη δρώσα αξονική θλιπτική δύναμη υποστυλώματος υπό την επίδραση σεισμικού

συνδυασμού ορίζεται: G + 0.3Q + (X + 0.3Y + 0.3Z).

Επομένως, θα γίνει ο έλεγχος λυγισμού του υποστυλώματος για τη θλιπτική δύναμη υπό τη φόρτιση: G + 0.3Q + 1.5(X + 0.3Y + 0.3Z).

Για την παραπάνω φόρτιση προκύπτει δρώσα θλιπτική δύναμη υποστυλώματος: $N'_{Ed} = 807.42 \text{ kN}.$

- Λυγισμός περί τοπικό άξονα Υ:
 $l_{cr} = 3.60 \text{ m}$ $\bar{\lambda}_{av} = 0.29 < 1.5$ $\chi_y = 0.97$
- Λυγισμός περί τοπικό άξονα Ζ:
 $l_{cr} = 3.60 \text{ m}$ $\bar{\lambda}_{av} = 0.56 < 1.5$ $\chi_y = 0.81$

Βάσει των παραπάνω, κρίσιμος είναι ο λυγισμός περί τον z-z, άρα προκύπτει: $N_{b,Rd} = \chi_z N_{pl,Rd} = 0.81 \times 3670.51 = 2963 > N'_{Ed}$ (ικανοποιείται)

4.6.3 Έλεγχος δοκών

Οι δοκοί δεν επιβαρύνονται από τους σεισμικούς συνδυασμούς, λόγω της διαφραγματικής λειτουργίας. Συγκεκριμένα. ενώ οι δοκοί αποτελούν την οριζόντια συνιστώσα της δύναμης των ράβδων δικτύωσης, η δύναμη αυτή μεταφέρεται και τελικώς παραλαμβάνεται από τη πλάκα - διάφραγμα του ορόφου μέσω της διατμητικής σύνδεσης δοκών-πλάκας. Άρα δεν απαιτείται ικανοτικός σχεδιασμός τους ($N_{Ed} = 0$).

4.6.4 Έλεγχος απόληξης κλιμακοστασίου

Για την διαστασιολόγηση των μελών της απόληξης του κλιμακοστασίου στο δώμα, ισχύουν τα εξής:

- Έχει σχεδιαστεί σύμμικτη πλάκα στην οροφή του, επομένως υπάρχει διαφραγματική λειτουργία και άρα οι δοκοί είναι πλευρικά εξασφαλισμένες.
- Τα υποστυλώματα αποτελούν συνέχεια των κατώτερων (HEA 340) και θεωρούμε ότι συνεχίζουν και στην απόληξη του κλιμακοστασίου.
- Οι διαγώνιοι σύνδεσμοι δυσκαμψίας αναλύθηκαν στην Ενότητα 4.6.1.

5 Συνδέσεις

Μία μεταλλική κατασκευή αποτελείται από επιμέρους προκατασκευασμένα μέλη, τα οποία μεταφέρονται στο έργο και συνδέονται κατάλληλα μεταξύ τους, ώστε να συνθέσουν το συνολικό φορέα. Ομοίως, κάθε προκατασκευασμένο μέλος αποτελείται από επιμέρους τμήματα, τα οποία συνδέονται μεταξύ τους. Σε αυτό το πλαίσιο, σκοπός των συνδέσεων είναι:

- η διαμόρφωση των μελών και των προκατασκευασμένων τμημάτων
- η αποκατάσταση της συνέχειας των μελών και των επιμέρους τμημάτων

Η σύνδεση ορίζεται ως το σύνολο των φυσικών επιμέρους τμημάτων που συνδέουν μηχανικά τα συνδεόμενα μέρη. Ανάλογα με τα εντατικά μεγέθη που παραλαμβάνουν, οι συνδέσεις διακρίνονται σε:

- Απλές συνδέσεις: οι συνδέσεις που παραλαμβάνουν και μεταφέρουν μόνο δυνάμεις (αξονικές και τέμνουσες), επιτρέποντας τις στροφές που προκύπτουν λόγω των δράσεων σχεδιασμού, χωρίς να αναπτύσσουν σημαντικές ροπές (π.χ. συνδέσεις δοκών υποστυλωμάτων, οι οποίες μεταφέρουν την τέμνουσα της δοκού στο υποστύλωμα, ή αρθρωτές συνδέσεις δικτυωμάτων, οι οποίες μεταφέρουν στους κόμβους τις αξονικές δυνάμεις των ράβδων του δικτυώματος).
- Συνδέσεις ροπής: οι συνδέσεις που παραλαμβάνουν δυνάμεις και ροπές (π.χ. οι αποκαταστάσεις συνέχειας των διατομών των μελών, οι πλαισιακές συνδέσεις δοκών υποστυλωμάτων, ή οι πακτώσεις των υποστυλωμάτων στη βάση τους).

Ανάλογα με τον τρόπο σύνδεσης, οι συνδέσεις κατατάσσονται σε:

- συνδέσεις με μηχανικά μέσα (κοχλίες, ήλους, πείρους, κλπ.)
- συγκολλητές συνδέσεις

Παρακάτω παρουσιάζονται οι εξής συνδέσεις:

- Έδραση υποστυλωμάτων. Χρησιμοποιήθηκαν κοχλίες M20, 8.8.
- Σύνδεση υποστυλώματος με διαδοκίδα. Χρησιμοποιήθηκαν κοχλίες M22, 8.8.
- Σύνδεση υποστυλώματος με κύρια δοκό. Χρησιμοποιήθηκαν κοχλίες M27, 8.8.
- Σύνδεση κατακόρυφων συνδέσμων δυσκαμψίας με υποστύλωμα: Χρησιμοποιήθηκαν κοχλίες M22 8.8 και M20 8.8.

Οι έλεγχοι οι οποίοι έγιναν είναι οι εξής:

i. Αντοχή κορμού κοχλία σε διάτμηση:

$$F_{\nu,Rd} = \frac{m \, n \, \alpha_{\nu} \, f_{ub} A_{\nu}}{\gamma_{M2}} \tag{5.1}$$

όπου $\alpha_v = 0.6$ για κοχλίες ποιότητας 4.6, 5.6 και 8.8, *n* τα επίπεδα διάτμησης, *m* το πλήθος των κοχλιών, A_v περιοχή τομής κοχλίων, f_{ub} η εφελκυστική αντοχή του κοχλία, $\gamma_{M2} = 1.25$ ο επιμέρους συντελεστής ασφαλείας.

ii. Αντοχή κοχλία σε εφελκυσμό:

$$F_{t,Rd} = \frac{k_2 f_{ub} A_s}{\gamma_{M2}} \tag{5.2}$$

όπου $k_2 = 0.9$, f_{ub} η εφελκυστική αντοχή του κοχλία, $\gamma_{M2} = 1.25$ ο επιμέρους συντελεστής ασφαλείας, A_s η ενεργός διατομή του κοχλία.

Αντοχή άντυγας οπής σε σύνθλιψη:

$$F_{b,Rd} = \frac{m k_1 a_b f_u d t}{\gamma_{M2}}$$
(5.3)

όπου d η διάμετρος κοχλία, m το πλήθος των κοχλιών, t το πάχος του ελάσματος, f_u η αντοχή χάλυβα, $\gamma_{M2} = 1.25$ ο επιμέρους συντελεστής ασφαλείας, k_I συντελεστής που δίνεται από την σχέση $k_1 = min\left\{\frac{2.8e_2}{d_0} - 1.7; \frac{1.4p_2}{d_0} - 1.7; 2.5\right\}$, a_b συντελεστής που δίνεται από την σχέση $a_b = min\left\{1; \frac{f_{ub}}{f_u}; \frac{e_1}{3d_0}; \frac{p_1}{3d_0} - 1/4\right\}$.

iv. Έλεγχος πλαστιμότητας:

$$F_{b,Rd} \le F_{v,Rd} \tag{5.4}$$

v. Αντοχή σχεδιασμού της συγκόλλησης σε διάτμηση:

$$f_{\nu w,d} = \frac{f_u / \sqrt{3}}{\beta_w \gamma_{M2}} \tag{5.5}$$

όπου β_w ο συντελεστής συσχέτισης εξωραφών, f_u η αντοχή χάλυβα, $\gamma_{M2} = 1.25$ ο επιμέρους συντελεστής ασφαλείας.

vi. Έλεγχος αποστάσεων:

Οι έλεγχοι των αποστάσεων φαίνονται στους Πίνακας 5.1 και Πίνακας 5.2, σύμφωνα με τις διατάξεις του EN 1193 – 1 – 8.

····· · · · · · · · · · · · · · · · ·	Ελάχιστη	Μέγιστη				
		Κατασκευές από χάλυβες που συμφωνούν με το ΕΝ 10025 εκτός εκείνων που συμφωνούν με το ΕΝ 10025-5		Κατασκευές από χάλυβες που συμφωνούν με το ΕΝ 10025-5		
		Χάλυβας εκτεθειμένος σε καιρικές συνθήκες ή άλλα διαβρωτικά περιβάλλοντα	Χάλυβας μη εκτεθειμένος	Χάλυβας χωρίς προστασία		
Απόσταση από άκρο e ₁	$1,2d_0$	4t + 40 mm		Η μεγαλύτερη από 8t ή 125 mm		
Απόσταση από άκρο e2	$1,2d_0$	4t + 40 mm		Η μεγαλύτερη από 8t ή 125 mm		
Απόσταση <i>e</i> 3 σε επιμήκεις οπές	$1,5d_0^{(4)}$					
Απόσταση <i>e</i> 4 σε επιμήκεις οπές	$1,5d_0^{(4)}$					
Βήμα <i>p</i> 1	$2,2d_0$	Η μικρότερη από 14 <i>t</i> ή 200 mm	Η μικρότερη από 14t ή 200 mm	Η μικρότερη από 14t _{min} ή 175 mm		
$ ext{B}$ ήμα $p_{1,0}$		Η μικρότερη από 14 <i>t</i> ή 200 mm				
Βήμα $p_{1,i}$		Η μικρότερη από 28t ή 400 mm				
Βήμα $p_2^{-5)}$	$2,4d_0$	Η μικρότερη από 14 <i>t</i> ή 200 mm	Η μικρότερη από 14t ή 200 mm	Η μικρότερη από 14t _{min} ή 175 mm		

Πίνακας 5.1: Μέγιστες και ελάχιστες αποστάσεις μεταξύ κοχλιών και ήλων και από τα άκρα.

Πίνακας 5.2: Σύμβολα για τις αποστάσεις από τα άκρα και τις αποστάσεις μεταξύ των μέσων σύνδεσης.

5.1 Έδραση

Στις Εικόνα 5.1 και Εικόνα 5.2 απεικονίζεται η έδραση του υποστυλώματος στο έδαφος και στον Πίνακας Α.1 παρουσιάζονται οι έλεγχοι αντοχής σε κάμψη, διάτμηση καθώς και η αντοχή των συγκολλήσεων για την συγκεκριμένη σύνδεση, μέσω του λογισμικού *Robot Structural Analysis*.

Εικόνα 5.1: Τρισδιάστατη απεικόνιση έδρασης υποστυλώματος.

Εικόνα 5.2: Όψεις έδρασης υποστυλώματος.

5.2 Σύνδεση κύριας δοκού – υποστυλώματος

Στις Εικόνα 5.3 και Εικόνα 5.4 απεικονίζεται η σύνδεση του υποστυλώματος με την κύρια δοκό και στον Πίνακας Α.2 παρουσιάζονται οι έλεγχοι αντοχής σε κάμψη, διάτμηση καθώς και η αντοχή των συγκολλήσεων για την συγκεκριμένη σύνδεση, μέσω του λογισμικού *Robot Structural Analysis*.

Εικόνα 5.3: Όψεις σύνδεσης υποστυλώματος με κύρια δοκό.

Εικόνα 5.4: Τρισδιάστατη απεικόνιση σύνδεσης υποστυλώματος με κύρια δοκό.

5.3 Σύνδεση διαδοκίδας - υποστυλώματος

Στις Εικόνα 5.5 και Εικόνα 5.6 απεικονίζεται η σύνδεση του υποστυλώματος με την κύρια δοκό και στον Πίνακας Α.3 παρουσιάζονται οι έλεγχοι αντοχής σε κάμψη, διάτμηση καθώς και η αντοχή των συγκολλήσεων για την συγκεκριμένη σύνδεση, μέσω του λογισμικού *Robot Structural Analysis*.

Εικόνα 5.5: Τρισδιάστατη απεικόνιση σύνδεσης υποστυλώματος με διαδοκίδα.

Εικόνα 5.6: Όψεις σύνδεσης υποστυλώματος με διαδοκίδα.

5.4 Σύνδεση κατακόρυφων συνδέσμων δυσκαμψίας - υποστυλώματος

Η σύνδεση της διαγωνίου με το υποστύλωμα σχεδιάζεται ως κοχλιωτή. Ένα έλασμα θα συγκολληθεί με εξωραφές στο υποστύλωμα και στην διαδοκίδα. Σε αυτό το έλασμα συνδέονται κοχλιωτά τα ελάσματα της διαγωνίου κοίλης τετραγωνικής διατομής.

Ο κατακόρυφος σύνδεσμος δυσκαμψίας είναι μέλος από το οποίο απαιτείται η απορρόφηση σεισμικής ενέργειας, γι' αυτό το λόγο επιθυμείται η διαρροή να γίνεται στην βασική διατομή της διαγωνίου και όχι στο έλασμα σύνδεσης, όπως αναφέρετε στις διατάξεις του ΕΝ 1998.

Στις Εικόνα 5.7 και Εικόνα 5.8 απεικονίζεται η σύνδεση του κατακόρυφου συνδέσμου δυσκαμψίας με το υποστύλωμα και την διαδοκίδα, καθώς και η κατανομή του φορτίου.

Ο σχεδιασμός και ο έλεγχος της σύνδεσης πραγματοποιήθηκε με την βοήθεια του λογισμικού *IDEA StatiCa* [25]. Οι έλεγχοι συγκόλλησης των ελασμάτων και των κοχλιώσεων φαίνονται στον Πίνακας Α.4.

Εικόνα 5.7: Τρισδιάστατη απεικόνιση σύνδεσης κατακόρυφου συνδέσμου δυσκαμψίας με υποστύλωμα και διαδοκίδα.

Εικόνα 5.8: Απεικόνιση κατανομής φορτίων σύνδεσης κατακόρυφου συνδέσμου δυσκαμψίας με υποστύλωμα και διαδοκίδα.

6 Συμπεράσματα

Η παρούσα διπλωματική εργασία αποσκοπεί στον αντισεισμικό σχεδιασμό ενός μεταλλικού κτιρίου εργαστηρίων και γραφείων με συνδέσμους δυσκαμψίας. Ο σχεδιασμός του κτιρίου γίνεται με βάση την επάρκειά του σε καταστάσεις αστοχίας και λειτουργικότητας. Από τη μελέτη προέκυψε ότι η κατασκευή είναι ικανή να παραλάβει τις καταπονήσεις από τα προβλεπόμενα φορτία σχεδιασμού, αφού τα αποτελέσματα όλων των ελέγχων που πραγματοποιήθηκαν βρέθηκαν εντός των προβλεπομένων από τους κανονισμούς ορίων.

Τελικά, τα συμπεράσματα στα οποία καταλήγουμε μετά από την επίλυση των προβλημάτων και την ολοκλήρωση της μελέτης της κατασκευής είναι τα εξής:

- Η μεγάλη ολκιμότητα του χάλυβα έχει σαν αποτέλεσμα την πολύ καλή απόκριση σε συνθήκες σεισμού.
- Η χρήση μεταλλότυπου για τις πλάκες σκυροδέματος οδηγεί σε πιο βέλτιστες λύσεις καθώς το μικρό βάρος της πλάκας σκυροδέματος δεν απαιτεί μεγάλη ποσότητα οπλισμού.
- Τα μεταλλικά κτίρια είναι πιο ευέλικτες κατασκευές, τόσο όσον αφορά τη σχεδίαση όσο και την αντιμετώπιση των φορτίων, από αντίστοιχα κτίρια οπλισμένου σκυροδέματος. Αυτό συμβαίνει λόγω του μικρού ιδίου βάρους των στοιχείων των κτιρίων και της ανθεκτικότητας του χάλυβα ως δομικού υλικού.
- Τα μεταλλικά κτίρια μπορούν να κατασκευάζονται σε μια αρκετά σύντομη χρονική περίοδο λόγω της τυποποίησης των διατομών και του υψηλού ποσοστού προκατασκευής των μελών τους και ο εντοπισμός και η αποκατάσταση των βλαβών επιτυγχάνεται σχετικά πιο εύκολα σε σχέση με τις υπόλοιπες συμβατικές κατασκευές από οπλισμένο σκυρόδεμα.
- Η διαφραγματική λειτουργία της πλάκας αποτρέπει την αξονική καταπόνηση των οριζόντιων δοκών. Αυτό έχει ως αποτέλεσμα οι δοκοί να καταπονούνται μόνο από κατακόρυφα φορτία.
- Απαίτηση αύξησης των ανοιγμάτων που παρέχει μεγαλύτερη ελευθερία στη διαμόρφωση των χώρων και επιτρέπει τροποποιήσεις σε μελλοντικές αλλαγές χρήσης.
- Χρήση τυποποιημένων συστημάτων για προσόψεις, διαχωριστικούς τοίχους, κλίμακες κλπ., εύκολα συνδεόμενων με το χαλύβδινο σκελετό.
- Η μείωση των τιμών των προϊόντων χάλυβα μέσω αύξησης της παραγωγικότητας, η οποία επιτεύχθηκε με τη χρήση αυτόματων μεθόδων κοπής, διάτρησης και συγκόλλησης.
- Η μείωση των τιμών της πυροπροστασίας μέσω χρήσης νέων, ελαφρύτερων υλικών προστασίας επί του ακατέργαστου χάλυβα.

Συμπερασματικά, τα χαλύβδινα οικοδομικά έργα θεωρούνται σήμερα σύγχρονες, γρήγορες και οικονομικές κατασκευές. Η παρούσα εργασία μελετά ένα κτίριο το οποίο περιλαμβάνει τόσο χώρους εργαστηρίων όσο και γραφείων, και κατά συνέπεια είναι αντιπροσωπευτικό ως προς τις ανάγκες που καλείται να καλύψει ένα κτίριο εντός της Πολυτεχνειούπολης. Από αυτή τη σκοπιά, η παρούσα εργασία θα μπορούσε να αξιοποιηθεί σε μελλοντικές μελέτες τέτοιου είδους κτιρίων με φέροντα οργανισμό από χάλυβα.

7 Βιβλιογραφία

- Βάγιας Ι., Ερμόπουλος Ι., Ιωαννίδης Γ., (2013): «Σχεδιασμός δομικών έργων από χάλυβα με παραδείγματα εφαρμογής». Εκδόσεις Κλειδάριθμος
- Βάγιας Ι., Ερμόπουλος Ι., Ιωαννίδης Γ., (2005): «Σχεδιασμός δομικών έργων από χάλυβα με βάση τα τελικά κείμενα των Ευρωκωδίκων». Εκδόσεις Κλειδάριθμος
- 3. Βάγιας Ι., Γαντές Χ., Ερμόπουλος Ι., Ιωαννίδης Γ.,(2013): «Παραδείγματα εφαρμογής σε ειδικά θέματα μεταλλικών κατασκευών». Εκδόσεις Κλειδάριθμος
- 4. Βάγιας Ι. (2003):«Σιδηρές κατασκευές Ανάλυση και διαστασιολόγηση». Εκδόσεις Κλειδάριθμος
- Ερμόπουλος Ι.(2005): «Ευρωκώδικας 1-Βάσικές αρχές σχεδιασμού και δράσεις επί των κατασκευών: Ερμηνευτικά σχόλια και παραδείγματα εφαρμογής». Εκδόσεις Κλειδάριθμος
- 6. Βάγιας Ι. (2010): «Σύμμικτες Κατασκευές από χάλυβα και οπλισμένο σκυρόδεμα». Εκδόσεις Κλειδάριθμος
- 7. EN-1991-1-1, Ευρωκώδικας 1, «Βασικές αρχές σχεδιασμού και δράσεις στις κατασκευές», Μέρος 1-1: Γενικές δράσεις-Πυκνότητες, ίδιον βάρος επιβαλλόμενα φορτία σε κτίρια, CEN, Απρίλιος 2002
- 8. EN-1991-1-3, Ευρωκώδικας 1, «Βασικές αρχές σχεδιασμού και δράσεις στις κατασκευές», Μέρος 1-3:Γενικές δράσεις-Φορτία χιονιού, CEN, Ιούλιος 2003
- 9. EN-1991-1-4, Ευρωκώδικας 1, «Βασικές αρχές σχεδιασμού και δράσεις στις κατασκευές», Μέρος 1-4: Δράσεις Ανέμου, CEN, Απρίλιος 2005
- 10. ΕΝ 1991-1-5, Ευρωκώδικας 1, «Γενικές Δράσεις Θερμικές δράσεις», Μέρος 1-5: Γενικές Δράσεις - Θερμικές δράσεις, CEN, Σεπτέμβριος 2003
- EN 1991-1-6, Ευρωκώδικας 1, «Γενικές δράσεις Δράσεις κατά τη διάρκεια της κατασκευής», Μέρος 1-6: Γενικές δράσεις – Δράσεις κατά τη διάρκεια της κατασκευής, CEN, Ιανουάριος 2005
- 12. EN-1992-1-1, Ευρωκώδικας 2, «Σχεδιασμός φορέων από σκυρόδεμα», Μέρος 1-1: Γενικοί κανόνες και κανόνες για κτίρια, CEN, Δεκέμβριος 2004
- 13. EN-1993-1-3, Ευρωκώδικας 3, «Σχεδιασμός κατασκευών από χάλυβα», Μέρος 1-1: Γενικοί κανόνες και κανόνες για κτίρια, CEN, Ιούνιος 2004
- 14. EN-1993-1-8, Ευρωκώδικας 3, «Σχεδιασμός κατασκευών από χάλυβα», Μέρος 1-8: Σχεδιασμός κόμβων, CEN, Απρίλιος 2004
- 15. EN-1994-1-1, Ευρωκώδικας 4, «Σχεδιασμός σύμμικτων φορέων από χάλυβα και σκυρόδεμα», Μέρος 1-1: Γενικοί κανόνες και κανόνες για κτίρια, CEN, Σεπτέμβριος 2004
- 16. ΕΝ 1998-1-1, Ευρωκώδικας 8, «Αντισεισμικός σχεδιασμός», Μέρος 1: Γενικοί κανόνες, σεισμικές δράσεις και κανόνες για κτίρια, CEN, Δεκέμβριος 2004.
- 17. Ο.Α.Σ.Π.- Σ.Π.Μ.Ε (2001): Ελληνικός Αντισεισμικός Κανονισμός (Ε.Α.Κ 2000)
- Έλαστρον A.E.B.E., «Τεχνικό εγχειρίδιο χαλυβδόφυλλου Symdeck 73», διαθέσιμο στον σύνδεσμο: https://www.elastron.gr/media/uploads_file/2018/12/03/p1ctq8lu6511801k31s7shu0ahng

https://www.elastron.gr/media/uploads_file/2018/12/03/p1ctq8lu6511801k31s7shu0ahng.pdf

- 19. Έλαστρον A.E.B.E., «Πάνελ πλαγιοκάλυψης κρυφής στηριξης Τεχνικό εγχειρίδιο ecopanel easypanel wlc», διαθέσιμο στους συνδέσμους: <u>https://www.elastron.gr/gr/el/products/core-panels/wall-panels-concealed-fix-core/ https://www.elastron.gr/media/uploads_file/2017/06/27/p1bjl8nbhemim1goqaca1cn5a 8j5.pdf</u>
- 20. Μπήτρος Συμμετοχική Α.Ε., «Κοίλοι τετράγωνοι δοκοί μαύροι και γαλβανισμένοι», διαθέσιμο στον σύνδεσμο:

https://www.bitros.gr/index.php?option=com_content&task=view&id=35&Itemid=16

- 21. Παρουσιάσεις μαθήματος «Σιδηρές κατασκευές ΙΙ», Σχολή Πολιτικών Μηχανικών ΕΜΠ, Εργαστήριο Μεταλλικών Κατασκευών, 2018
- 22. Ασκήσεις μαθήματος «Σιδηρές κατασκευές ΙΙ», Σχολή Πολιτικών Μηχανικών ΕΜΠ, Εργαστήριο Μεταλλικών Κατασκευών, 2018
- 23. Robot Structural Analysis Proffesional 2019 of Autodesk tutorial
- 24. Symdeck Designer, Έλαστρον A.E.B.E. tutorial
- 25. IDEA StatiCa Steel Connection tutorial

Παράρτημα Α

Στο παρόν παράρτημα γίνεται παράθεση των αποτελεσμάτων των ελέγχων που πραγματοποιήθηκαν για τις συνδέσεις των μελών του φορέα (βλ. Κεφάλαιο 5). Συγκεκριμένα, στον Πίνακας Α.1 παρουσιάζονται τα αποτελέσματα ελέγχου έδρασης του υποστυλώματος, στον Πίνακας Α.2 παρουσιάζονται τα αποτελέσματα ελέγχου σύνδεσης κύριας δοκού με υποστύλωμα και στον Πίνακας Α.3 παρουσιάζονται τα αποτελέσματα ελέγχου σύνδεσης διαδοκίδας με υποστύλωμα. Οι παραπάνω έλεγχοι πραγματοποιήθηκαν μέσω του λογισμικού Robot Structural Analysis [23]. Στον Πίνακας Α.4 παρουσιάζονται τα αποτελέσματα ελέγχου σύνδεσης σύνδεσης κατακόρυφων συνδέσμων δυσκαμψίας με υποστύλωμα και διαδοκίδα. Ο συγκεκριμένος έλεγχος πραγματοποιήθηκε μέσω του λογισμικού IDEA StatiCa [25].

Connectio	on no.:	1		
Structure	bars:	233		
Geome	try			
Colum	n			
Section:	HEA 340			
Bar no.:	233			
$L_c =$	3.60	[m]	Column length	
α =	0.0	[Dea]	Inclination angle	
h _c =	330	[mm]	Height of column section	
b _{fc} =	300	[mm]	Width of column section	
t _{wc} =	10	[mm]	Thickness of the web of column section	
t _{fc} =	17	[mm]	Thickness of the flange of column section	
$r_c =$	27	[mm]	Radius of column section fillet	
$A_c =$	133.47	[cm ²]	Cross-sectional area of a column	
	27693.10	[cm ⁴]	Moment of inertia of the column section	
Material:	S275	[0]		
f _{ve} =	275.00	[MPa]	Resistance	
fuc =	430.00	[MPa]	Yield strength of a material	
Colum	n hase		5	4
	250	[mm]	Longth	
lpd -	330	[[]]]	Width	
D _{pd} –	320	[[]]]	Thickness	
l _{pd} =	20	luuul	Thickness	
Materiai:	S 275	[MD - 1	Desistance	7
T _{ypd} =	275.00	[MPa]	Resistance	_
$T_{upd} =$	430.00	[MPa]	rield strength of a material	
Anchor	age			
The shea	r plane pa	sses throu	gh the UNTHREADED portion of the bolt.	7
Class =	8.8		Anchor class	
f _{yb} =	640.00	[MPa]	Yield strength of the anchor material	
f _{ub} =	800.00	[MPa]	Tensile strength of the anchor material	
d =	20	[mm]	Bolt diameter	
A _s =	2.45	[cm ²]	Effective section area of a bolt	
A _v =	3.14	[cm ²]	Area of bolt section	
n _v =	2		Number of bolt columns	
n _H =	2		Number of bolt rows	
e _H =	165	[mm]	Horizontal spacing	
e _V =	150	[mm]	Vertical spacing	
Anchor o	limension	S		
L ₁ =	60	[mm]		
L ₂ =	300	[mm]		
L ₃ =	40	[mm]		
Anchor p	olate			
I _p =	50	[mm]	Length	
b _p =	50	[mm]	Width	
t _p =	10	[mm]	Thickness	
Material:	S275	-		
f _y =	275.00	[MPa]	Resistance	

I_{wd} =50[mm]Length b_{wd} =50[mm]Width t_{wd} =10[mm]ThicknessMaterial factors γ_{M0} =1.00Partial safety factor γ_{M2} =1.25Partial safety factor γ_{C} =1.50Partial safety factorSpread footingL =450[mm]L =450[mm]Spread footing length
w_{wd} 50 $[mm]$ Width b_{wd} 10 $[mm]$ Width t_{wd} 10 $[mm]$ ThicknessMaterial factors γ_{M0} 1.00 Partial safety factor γ_{M2} 1.25 Partial safety factor γ_{c} 1.50 Partial safety factorSpread footingL = 450 [mm]Spread footing length
t_{wd} =10[mm]ThicknessMaterial factors γ_{M0} =1.00Partial safety factor γ_{M2} =1.25Partial safety factor γ_{C} =1.50Partial safety factorSpread footingL =450L =450[mm]Spread footing lengthSpread footing length
Material factors γ_{M0} =1.00Partial safety factor γ_{M2} =1.25Partial safety factor γ_{C} =1.50Partial safety factorSpread footingL =450[mm]Spread footing length
γ_{M0} =1.00Partial safety factor γ_{M2} =1.25Partial safety factor γ_{C} =1.50Partial safety factorSpread footingL =450[mm]Spread footing lengthDenetified in the set of
Mode Partial safety factor γ_{M2} = 1.25 Partial safety factor γ_{C} = 1.50 Partial safety factor Spread footing Spread footing length D 1500 Formal footing length
γ_{C} = 1.50 Partial safety factor Spread footing L = 450 [mm] Spread footing length
Spread footing L = 450 [mm] Spread footing length D = 1500 [mm] Spread footing length
L = 450 [mm] Spread footing length
L – 450 [iiiii] Spread looting tengun
R - 1500 Imml Spread footing width
$H = \frac{800}{[mm]}$ Spread footing width
$f_{\rm re} = 20.00$ [MPa] Characteristic resistance for compression
t = 30 [mm] Thickness of leveling layer (grout)
$f_{g} = 12.00$ [MPa] Characteristic resistance for compression
$C_{ex,g} = 12.000$ [Wir a] Characteristic resistance for compression $C_{ex,g} = 0.30$ Coeff of friction between the base plate and concrete
a _p = 6 [mm] Footing plate of the column base
Loads
Case: 9: ULS /1/ 1*1.35 + 2*1.35 + 3*1.35 + 4*1.35 + 5*1.50 + 6*0.90 + 7*0.90 + 10*1.50
N _{i.Ed} = -1337.17 [kN] Axial force
V _{j,Ed,y} = 0.03 [kN] Shear force
V _{j,Ed,z} = -2.24 [kN] Shear force
Results
Compression zone
COMPRESSION OF CONCRETE
frd = 13.33 [MPa] Design compressive resistance EN 1992-1:[3.1.6.(1)
$f_i = 17.46$ [MPa] Design bearing resistance under the base plate [6.2.5.(7)]
$c = t_{\rm p} \sqrt{(f_{\rm Vp}/(3^*f_{\rm r}^*\gamma_{\rm M0}))}$
c = 46 [mm] Additional width of the bearing pressure zone [6.2.5.(4)
b _{eff} = 72 [mm] Effective width of the bearing pressure zone under the flange [6.2.5.(3]
b _{eff} =72 [mm]Effective width of the bearing pressure zone under the flange[6.2.5.(3)]l _{eff} =320 [mm]Effective length of the bearing pressure zone under the flange[6.2.5.(3)]
b_{eff} =72[mm]Effective width of the bearing pressure zone under the flange[6.2.5.(3)] l_{eff} =320[mm]Effective length of the bearing pressure zone under the flange[6.2.5.(3)] A_{c0} =231.45[cm²]Area of the joint between the base plate and the foundationEN 1992-1:[6.7.(3)]
b_{eff} =72[mm]Effective width of the bearing pressure zone under the flange[6.2.5.(3)] l_{eff} =320[mm]Effective length of the bearing pressure zone under the flange[6.2.5.(3)] A_{c0} =231.45[cm²]Area of the joint between the base plate and the foundationEN 1992-1:[6.7.(3)] A_{c1} =1654.36[cm²]Maximum design area of load distributionEN 1992-1:[6.7.(3)]
b_{eff} =72[mm]Effective width of the bearing pressure zone under the flange[6.2.5.(3)] l_{eff} =320[mm]Effective length of the bearing pressure zone under the flange[6.2.5.(3)] A_{c0} =231.45[cm²]Area of the joint between the base plate and the foundationEN 1992-1:[6.7.(3)] A_{c1} =1654.36[cm²]Maximum design area of load distributionEN 1992-1:[6.7.(3)] F_{rdu} = $A_{c0}*f_{cd}*\sqrt{(A_{c1}/A_{c0})} \le 3*A_{c0}*f_{cd}$ Image: Comparison of the comparison of t
b_{eff} =72[mm]Effective width of the bearing pressure zone under the flange[6.2.5.(3)] l_{eff} =320[mm]Effective length of the bearing pressure zone under the flange[6.2.5.(3)] A_{c0} =231.45[cm²]Area of the joint between the base plate and the foundationEN 1992-1:[6.7.(3)] A_{c1} =1654.36[cm²]Maximum design area of load distributionEN 1992-1:[6.7.(3)] F_{rdu} = $A_{c0}^*f_{cd}^*\sqrt{(A_{c1}/A_{c0})} \le 3^*A_{c0}^*f_{cd}$ EN 1992-1:[6.7.(3)] F_{rdu} =825.06[kN]Bearing resistance of concreteEN 1992-1:[6.7.(3)]
b_{eff} =72[mm]Effective width of the bearing pressure zone under the flange[6.2.5.(3)] l_{eff} =320[mm]Effective length of the bearing pressure zone under the flange[6.2.5.(3)] A_{c0} =231.45[cm²]Area of the joint between the base plate and the foundationEN 1992-1:[6.7.(3)] A_{c1} =1654.36[cm²]Maximum design area of load distributionEN 1992-1:[6.7.(3)] F_{rdu} = $A_{c0}^* f_{cd}^* \sqrt{(A_{c1}/A_{c0})} \le 3^* A_{c0}^* f_{cd}$ EN 1992-1:[6.7.(3)] F_{rdu} =825.06[kN]Bearing resistance of concreteEN 1992-1:[6.7.(3)] β_j =0.67Reduction factor for compression[6.2.5.(7)]
b_{eff} =72[mm]Effective width of the bearing pressure zone under the flange[6.2.5.(3)] l_{eff} =320[mm]Effective length of the bearing pressure zone under the flange[6.2.5.(3)] A_{c0} =231.45[cm²]Area of the joint between the base plate and the foundationEN 1992-1:[6.7.(3)] A_{c1} =1654.36[cm²]Maximum design area of load distributionEN 1992-1:[6.7.(3)] F_{rdu} = $A_{c0}^{*}f_{cd}^{*}\sqrt{(A_{c1}/A_{c0})} \le 3^*A_{c0}^{*}f_{cd}$ EN 1992-1:[6.7.(3)] F_{rdu} = 825.06 [kN]Bearing resistance of concreteEN 1992-1:[6.7.(3)] β_{j} = 0.67 Reduction factor for compression[6.2.5.(7)] f_{jd} = $\beta_{j}^{*}F_{rdu}/(b_{eff}^{*} _{eff})$ Entrace in the second
beff =72[mm]Effective width of the bearing pressure zone under the flange[6.2.5.(3)] l_{eff} =320[mm]Effective length of the bearing pressure zone under the flange[6.2.5.(3)] A_{c0} =231.45[cm²]Area of the joint between the base plate and the foundationEN 1992-1:[6.7.(3)] A_{c1} =1654.36[cm²]Maximum design area of load distributionEN 1992-1:[6.7.(3)] A_{c1} = $A_{c0}*f_{cd}*\sqrt{(A_{c1}/A_{c0})} \le 3*A_{c0}*f_{cd}$ EN 1992-1:[6.7.(3)] F_{rdu} = $A_{25.06}$ [kN]Bearing resistance of concreteEN 1992-1:[6.7.(3)] β_{j} = 0.67 Reduction factor for compression[6.2.5.(7)] f_{jd} = $\beta_{j}*F_{rdu}/(b_{eff}*l_{eff})$ [MPa]Design bearing resistance[6.2.5.(7)]
b_{eff} =72[mm]Effective width of the bearing pressure zone under the flange[6.2.5.(3)] l_{eff} =320[mm]Effective length of the bearing pressure zone under the flange[6.2.5.(3)] A_{c0} =231.45[cm²]Area of the joint between the base plate and the foundationEN 1992-1:[6.7.(3)] A_{c1} =1654.36[cm²]Maximum design area of load distributionEN 1992-1:[6.7.(3)] F_{rdu} = $A_{c0}*f_{cd}*\sqrt(A_{c1}/A_{c0}) \le 3*A_{c0}*f_{cd}$ EN 1992-1:[6.7.(3)] F_{rdu} = 825.06 [kN]Bearing resistance of concreteEN 1992-1:[6.7.(3)] β_j =0.67Reduction factor for compression[6.2.5.(7)] f_{jd} =23.76[MPa]Design bearing resistance[6.2.5.(7)] $A_{c,n}$ =670.63[cm²]Bearing area for compression[6.2.8.2.(1)]
b_{eff} =72[mm]Effective width of the bearing pressure zone under the flange[6.2.5.(3)] l_{eff} =320[mm]Effective length of the bearing pressure zone under the flange[6.2.5.(3)] A_{c0} =231.45[cm²]Area of the joint between the base plate and the foundationEN 1992-1:[6.7.(3)] A_{c1} =1654.36[cm²]Maximum design area of load distributionEN 1992-1:[6.7.(3)] F_{rdu} = $A_{c0}^* f_{cd}^* \sqrt{(A_{c1}/A_{c0})} \le 3^* A_{c0}^* f_{cd}$ EN 1992-1:[6.7.(3)] F_{rdu} = 825.06 [kN]Bearing resistance of concreteEN 1992-1:[6.7.(3)] β_j =0.67Reduction factor for compression[6.2.5.(7)] f_{jd} = $\beta_j^* F_{rdu}/(b_{eff}^* l_{eff})$ [6.2.5.(7)] f_{jd} =23.76[MPa]Design bearing resistance[6.2.5.(7)] $A_{c,n}$ =670.63[cm²]Bearing area for compression[6.2.8.2.(1)] $F_{c,Rd,i} = A_{c,i}^* f_{jd}$ Image and for compression[6.2.8.2.(1)]
b_{eff} =72[mm]Effective width of the bearing pressure zone under the flange[6.2.5.(3)] l_{eff} =320[mm]Effective length of the bearing pressure zone under the flange[6.2.5.(3)] A_{c0} =231.45[cm²]Area of the joint between the base plate and the foundationEN 1992-1:[6.7.(3)] A_{c1} =1654.36[cm²]Maximum design area of load distributionEN 1992-1:[6.7.(3)] F_{rdu} = $A_{c0}^* f_{cd}^* \sqrt{(A_{c1}/A_{c0})} \le 3^* A_{c0}^* f_{cd}$ EN 1992-1:[6.7.(3)] F_{rdu} = 825.06 [kN]Bearing resistance of concreteEN 1992-1:[6.7.(3)] β_j = 0.67 Reduction factor for compression[6.2.5.(7)] f_{jd} = $\beta_j^* F_{rdu}/(b_{eff}^* l_{eff})$ [mPa]Design bearing resistance[6.2.8.2.(1)] f_{jd} =23.76[MPa]Design bearing resistance[6.2.8.2.(1)] $F_{c,Rd,i}$ = $A_{c,i}^* f_{jd}$ [mm][fearing resistance of concrete for compression[6.2.8.2.(1)]

N _{j,Rd} =	F _{c,Rd,n}											
N _{j,Rd} =	1593.	72 [(N] Re	sistance of a spread footing for axial compression	า	[6.2.8.2.(1)]						
Conn	ection	capa	city ch	eck								
N _{j,Ed} / N	N _{j,Rd} ≤ 1,	0 (6.24	4)	0.84 < 1.00 ve	erified	(0.84)						
Shear	r											
BEARI	NG PR	ESSUF		N ANCHOR BOLT ONTO THE BASE PLATE								
Shear	force V	j,Ed,y										
α _{d,y} = 1	.29	Co	eff. taking	g account of the bolt position - in the direction of s	shear	[Table 3.4]						
α _{b,y} = 1	.00	Co	eff. for re	sistance calculation F _{1,vb,Rd}		[Table 3.4]						
k _{1,y} = 2	.50	Co	eff. taking	g account of the bolt position - perpendicularly to t	the direction of shear	[Table 3.4]						
F _{1,vb,Rd,}	$y = k_{1,y}^{*}$	α _{b,y} *f _{up}	*d*t _p / γ _{M2}	2								
F _{1,vb,Rd} ,	y = 344	.00 [<n] res<="" td=""><td>sistance of an anchor bolt for bearing pressure on</td><td>to the base plate</td><td>[6.2.2.(7)]</td></n]>	sistance of an anchor bolt for bearing pressure on	to the base plate	[6.2.2.(7)]						
Shear	force V	j,Ed,z										
$\alpha_{d,z} = 1$.40	Co	eff. taking	g account of the bolt position - in the direction of s	shear	[Table 3.4]						
$\alpha_{b,z} = 1$.00	Co	eff. for re	sistance calculation F _{1,vb,Rd}	the allowed and a features	[Table 3.4]						
K _{1,z} = ∠	- 50			g account of the bolt position - perpendicularly to	the direction of shear	[Table 3.4]						
F1,vb,Rd,	$z = K_{1,z}$	$\alpha_{b,z}$ T _{up}	$\alpha^{-1}t_{p} / \gamma_{M2}$	2	to the base plate	[6 2 2 (7)]						
Γ1,vb,Rd, SHEΔF				I T	to the base plate	[0.2.2.(7)]						
		.25		Coeff for resistance calculation Earth and		[6 2 2 (7)]						
$A_{vh} =$	3	.14	[cm ²]	Area of bolt section		[6.2.2.(7)]						
$f_{ub} =$	800	.00	[MPa]	Tensile strength of the anchor material		[6.2.2.(7)]						
γ _{M2} =	1	.25	<u></u>	Partial safety factor		[6.2.2.(7)]						
F _{2,vb,Rd}	$= \alpha_b * f_{ub}$	*A _{vb} /γ _M	2	·								
$F_{2,vb,Rd}$	= 49	.86	[kN]	Shear resistance of a bolt - without lever arm		[6.2.2.(7)]						
α _M =	2.00		Factor	related to the fastening of an anchor in the found	ation	CEB [9.3.2.2]						
M _{Rk,s} =	0.75	[kN*m]	Charac	steristic bending resistance of an anchor		CEB [9.3.2.2]						
I _{sm} =	50	[mm]	Lever a	arm length		CEB [9.3.2.2]						
γ _{Ms} =	1.20		Partial	safety factor		CEB [3.2.3.2]						
$F_{v,Rd,sm}$	= α _M *Μ	I _{Rk,s} /(I _{sn}	n [*] γMs)	T								
F _{v,Rd,sm}	= 25	.13	[kN]	Shear resistance of a bolt - with lever arm		CEB [9.3.1]						
CONC	RETE P	RY-OL	JT FAILL									
N _{Rk,c} =	70	.25	[kN]	Design uplift capacity		CEB [9.2.4]						
к ₃ =	2	1.00		Pactor related to the anchor length		CEB [9.3.3]						
γ _{Mc} –	_ / ×N	.10				СЕВ [3.2.3.1]						
Fv,Rd,cp ⊑	- K3 INR	k,c/γMc Ω5		Concrete registance for priviout failure		CER [0 2 1]						
	FTF F			Concrete resistance for pry-out failure		CED [9.5.1]						
Shear	force V		ALONE									
VRk c v	1144.	J,E0, y	<u>.</u>			CEB						
=	89	[KN]	Characte	eristic resistance of an anchor		[9.3.4.(a)]						
ΨΑ,V,y =	0.11		Factor re	elated to anchor spacing and edge distance		CEB [9.3.4]						
Ψh,V,y =	1.08		Factor re	alated to the foundation thickness		CEB [9.3.4.(c)]						
ψs,∨,y =	0.74		Factor re	alated to the influence of edges parallel to the she	ar load direction	[9.3.4.(d)]						
		,										
----------------------------	------------------------------------	----------------------	---------------------------------------	--	---------------------------------	----------	-----------	---------------	--------------------	--	--	--
V _{Rk,c,y} 0 =	1144. 89	[kN]	Charact	teristic resistance o	of an anchor				CEB [9.3.4.(a)]			
Ψec,V,y =	1.00		Factor ta	aking account a gr al anchors in a gro	roup effect when different	shear lo	ads are	acting on the	CEB [9.3.4.(e)]			
Ψ _α ,ν,y =	1.00		Factor r	related to the angle	e at which the shear load i	s applie	d		CEB [9.3.4.(f)]			
Ψucr,V,y =	1.00		Factor r	related to the type	of edge reinforcement use	ed			CEB [9.3.4.(g)]			
ү _{Мс} =	2.16		Partial s	Partial safety factor								
F _{v,Rd,c,y}	= V _{Rk,c,}	⁰ *ΨΑ,ν	,y [*] ψ _{h,V,y} *γ	Ψs,V,y [*] Ψec,V,y [*] Ψ _α ,V,y [*] V	Ψucr,V,y/YMc							
F _{v,Rd,c,y}	= 47	.32	[kN]	Concrete resista	nce for edge failure				CEB [9.3.1]			
Shear	force V	j,Ed,z										
V _{Rk,c,z} 0 =	111. 05	[kN]	Charact	Characteristic resistance of an anchor								
ΨA,V,z =	1.00		Factor r	related to anchor s	pacing and edge distance	•			CEB [9.3.4]			
Ψh,V,z =	1.00		Factor r	elated to the found	dation thickness				CEB [9.3.4.(c)]			
Ψs,V,z	1.00		Factor r	elated to the influe	ence of edges parallel to th	ne shea	r load di	rection	CEB			
=									[9.3.4.(d)]			
Ψec,V,z	1.00		Factor ta	aking account a gr	roup effect when different	shear lo	ads are	acting on the	CEB (م) / CEB			
-))(_)/-				ai anchors in a gro	Jup				[3.3.4.(C)] CEB			
Ψ _α ,v,z =	1.00		Factor r	actor related to the angle at which the shear load is applied [9.3.4.(f)								
Ψucr,∨,z =	1.00		Factor r	actor related to the type of edge reinforcement used								
γ _{Mc} =	2.16		Partial s	safety factor					CEB [3.2.3.1]			
$F_{v,Rd,c,z}$	= V _{Rk,c,}	2 ⁰ *ΨΑ,V	,z [*] ψ _{h,V,z} *ι	$\psi_{s,V,z}^*\psi_{ec,V,z}^*\psi_{\alpha,V,z$	Ψucr,V,z/γMc							
$F_{v,Rd,c,z}$	= 51	.41	[kN]	Concrete resista	nce for edge failure				CEB [9.3.1]			
SPLIT	ring R	ESIST	ANCE									
C _{f,d} =	0.3	30	Co	oeff. of friction betw	veen the base plate and co	oncrete			[6.2.2.(6)]			
N _{c,Ed} =	1337.	17 [(N] Co	ompressive force					[6.2.2.(6)]			
$F_{f,Rd} = 0$	C _{f,d} *N _{c,E}	d										
F _{f,Rd} =	401	.15	[kN]	Slip resistance					[6.2.2.(6)]			
SHEAF	R CHEC	K										
V _{j,Rd,y} =	n _b *min	(F _{1,vb,F}	$H_{d,y}, F_{2,vb,F}$	$F_{v,Rd,sm}, F_{v,Rd,cp},$	$F_{v,Rd,c,y}$) + $F_{f,Rd}$							
V _{j,Rd,y} =	501	.68	[kN]	Connection resis	tance for shear				CEB [9.3.1]			
V _{j,Ed,y} /	V _{j,Rd,y} ≤	1,0			0.00 < 1.00	veri	fied		(0.00)			
V _{j,Rd,z} =	n _b *min	(F _{1,vb,F}	$H_{d,z}, F_{2,vb,F}$	$F_{v,Rd,sm}, F_{v,Rd,cp},$	$F_{v,Rd,c,z}$) + $F_{f,Rd}$							
V _{j,Rd,z} =	501	.68	[kN]	Connection resis	tance for shear			1	CEB [9.3.1]			
V _{j,Ed,z} /	V _{i,Rd,z} ≤	1,0			0.00 < 1.00	veri	fied		(0.00)			
V _{i,Ed,y} /	V _{i,Rd,y} +	$V_{i,Ed,z}$	/ V _{i,Rd,z} ≤	§ 1,0	0.00 < 1.00	veri	fied		(0.00)			
Weld	s betw	veen t	<u>he colu</u>	umn and the ba	ase plate							
σ ⊥ =	66	.59	[MPa]	Normal stress in	a weld				[4.5.3.(7)]			
τ_ =	66	.59	[MPa]	Perpendicular ta	ngent stress				[4.5.3.(7)]			
τ _{yll} =	0	.00	[MPa]	Tangent stress p	parallel to $V_{j,Ed,y}$				[4.5.3.(7)]			
τ _{zII} =	-0	.63	[MPa]	Tangent stress p	earallel to V _{j,Ed,z}				[4.5.3.(7)]			
β _W =	0	.85		Resistance-dependent coefficient								

$\sigma_{\perp} / (0.9^* f_u / \gamma_{M2})) \le 1.0 (4.1)$	0.22 < 1.00	verified	(0.22)
$\sqrt{(\sigma_{\perp}^2 + 3.0 (\tau_{VII}^2 + \tau_{\perp}^2))} / (f_u/(\beta_W^*\gamma_{M2}))) \le 1.0 (4.1)$	0.33 < 1.00	verified	(0.33)
$\sqrt{(\sigma_{\perp}^2 + 3.0 (\tau_{zll}^2 + \tau_{\perp}^2))} / (f_u/(\beta_W^*\gamma_{M2}))) \le 1.0 (4.1)$	0.33 < 1.00	verified	(0.33)

Connection conforms to the code

Ratio 0.84

α =	-0.	0 [Deg]	Inclination angle		
h _b =	29	0 [mm]	Height of beam sectior	า	
b _f =	30	0 [mm]	Width of beam section		
t _{wb} =		9 [mm]	Thickness of the web o	of beam section	
t _{fb} =	1	4 [mm]	Thickness of the flange	e of beam section	
r _b =	2	7 [mm]	Radius of beam sectio	n fillet	
r _b =	2	7 [mm]	Radius of beam sectio	n fillet	
A _b =	112.5	3 [cm ²]	Cross-sectional area o	f a beam	
I _{xb} =	18263.5	0 [cm⁴]	Moment of inertia of th	e beam section	
Material:	S275			1	
f _{yb} =	275.00	[MPa]	Resistance		
Bolts					
The shear	plane pas	ses throug	gh the UNTHREADED po	ortion of the bolt.	
d =			27	[mm] Bolt diameter	
Class =			8.8	Bolt class	
F _{tRd} =			264.38	[kN] Tensile resistance	of a bolt
n _h =			2	Number of bolt col	lumns
n _v =			6	Number of bolt rov	vs
h1 =			40	[mm] Distance between	first bolt and upper edge of front plate
Horizontal	spacing e	i = 120	[mm]		<u></u>
Vertical sp	acing p _i =	105;	80;80;130;80 [mm]		
Plate					
h _p =	640	[mm]	Plate height		
b _p =	300	[mm]	Plate width		
t _p =	25	[mm]	Plate thickness		
Material:	S	275			
f _{yp} =	275	5.00 [M	Pa] Resistance		
Lower s	tiffener				
W _d =	300	[mm]	Plate width		
t _{fd} =	15	[mm]	Flange thickness		
$h_d =$	250	[mm]	Plate height		
t _{wd} =	20	[mm]	Web thickness		
I _d =	400	[mm]	Plate length		
α =	32.0	[Deg]	Inclination angle		
Material:	S	275	· · · · · · · · · · · · · · · · · · ·		
f _{ybu} =	275	5.00 [M	Pa] Resistance		
Column	stiffene	r	·		
Upper					
h _{su} =	297	[mm]	Stiffener height		
b _{su} =	145	[mm]	Stiffener width		
t _{hu} =	15	[mm]	Stiffener thickness		
Material:	S 275				
f _{ysu} =	275.00	[MPa]	Resistance		
Lower			1		
h _{sd} =	297	[mm]	Stiffener height		
b _{sd} =	145	[mm]	Stiffener width		
t _{hd} =	15	[mm]	Stiffener thickness		
I			1		

f _{ysu} =		275.00 [MPa] Resistance					
Fillet w	velds							
a _w =	10	[mm]	Web weld					
a _f =	9	[mm]	Flange weld					
a _s =	6	[mm]	Stiffener weld					
a _{fd} =	5	[mm]	Horizontal weld					
Materi	al factor	5						
γ _{M0} =	1.00		Partial safety factor	[2.2]				
γ _{M1} =	1.00		Partial safety factor	[2.2]				
γ _{M2} =	1.25		Partial safety factor	[2.2]				
γ _{M3} =	1.25		Partial safety factor	[2.2]				
Loads			-					
Ultimate	limit state							
Case 🤤): ULS /2	/ 1*1.35	5 + 2*1.35 + 3*1.35 + 4*1.35 + 5*1.	.50 + 6*0.90 + 8*0.90 +				
: 1	0*1.50							
M _{b1,Ed} =	310.47	[kN*m]	Bending moment in the right beam					
V _{b1,Ed} =	249.83	[kN]	Shear force in the right beam					
$M_{b2,Ed} =$	296.85	[kN*m]	Bending moment in the left beam					
$V_{b2,Ed} =$	239.53	[kN]	Shear force in the left beam					
$M_{c1,Ed} =$	8.08	[kN*m]	Bending moment in the lower column					
$V_{c1,Ed} =$	-2.24	[KN]	Shear force in the lower column					
$N_{c1,Ed} =$	-1332.18	[KN]	Axial force in the lower column					
$W_{c2,Ed} =$	-5.54	נגוא־mj נגאז	Shoar force in the upper column					
V c2,Ed -	-686 26		Axial force in the upper column					
Dogulto	000.20	[Ki k]						
Nesuit:	• .							
Beam 1	resistance	es						
SHEAR		1						
A _{vb} =		87.2	8 [cm ²] Shear area	EN1993-1-1:[6.2.6.(3)]				
$V_{cb,Rd} = A$	A_{vb} (f _{yb} / $\sqrt{3}$)	/ γ _{M0}						
$V_{cb,Rd} = 1$	385.72	[KN] De	esign sectional resistance for shear	EN1993-1-1:[6.2.6.(2)]				
V _{b1,Ed} / V	$\frac{cb,Rd}{C} \ge 1,0$			(0.18)				
	G-FLAST	1383 40	[cm ³] Plastic section modulus	EN1003 1 1:16 2 5 (2)]				
	Write fue / ve	1000.10		LIN 1993-1-1.[0.2.3.(2)]				
Mb pl Rd =	380.44 [w (N*m] Pla	J stic resistance of the section for bending (with	out stiffeners) EN1993-1-1:[6.2.5.(2)]				
BENDIN	G ON THE		T SURFACE WITH PLATE OR CONNECTED					
W _{el} =	2554.78	[cm ³]	Elastic section modulus	EN1993-1-1:[6.2.5]				
M _{cb,Rd} = V	W _{el} f _{yb} / γ _{M0}		•					
M _{cb,Rd} =	702.57	[kN*m]	Design resistance of the section for bending	EN1993-1-1:[6.2.5]				
BENDIN	g with ay		CE ON THE CONTACT SURFACE WITH PLA	TE OR CONNECTED ELEMENT				
n =		0.00	Ratio of the axial force to the sectional resis	stance EN1993-1-1:[6.2.9.1.(5)]				
M _{Nb,Rd} =	M _{cb,Rd} (1 - r	ı)						
M _{Nb,Rd} = 702.57 [kN*m] Reduced resistance (axial force) of the section for bending EN1993-1-1:[6.2.9.2.(1)]								
FLANGE	AND WEE	B - COMPR	RESSION					
$M_{cb,Rd} =$	702.57	[kN*m]	Design resistance of the section for bending	EN1993-1-1:[6.2.5]				
h _f =	524	[mm]	Distance between the centroids of flanges	[6.2.6.7.(1)]				

$F_{c,fb,Rd} = M_{cb,Rd} / h_f$									
$F_{c,fb,Rd} = 1340.38$ [kN] Resistance of the compress	sed flange and	d web		[6.2.6.7.(1)]					
WEB OR BRACKET FLANGE - COMPRESSION - LEVE	L OF THE BE	AM BOI	TOM FLANGE						
Bearing:									
$\beta = 0.0$ [Deg] Angle between the front plate an	d the beam								
γ = 32.0 [Deg] Inclination angle of the bracket p	= 32.0 [Deg] Inclination angle of the bracket plate								
b _{eff,c,wb} = 259 [mm] Effective width of the web for cor	npression			[6.2.6.2.(1)]					
A_{vb} = 37.28 [cm ²] Shear area			EN1993-1-1:[6.2.6.(3)]						
$\omega = 1.00$ Reduction factor for interaction w	/ith shear			[6.2.6.2.(1)]					
$\sigma_{\text{com,Ed}} = 176.79$ [MPa] Maximum compressive stress in	web			[6.2.6.2.(2)]					
k _{wc} = 1.00 Reduction factor conditioned by a	compressive s	stresses		[6.2.6.2.(2)]					
$A_s = 43.72$ [cm ²] Area of the web stiffener				EN1993-1-1:[6.2.4]					
$F_{c,wb,Rd1} = [\omega k_{wc} b_{eff,c,wb} t_{wb} f_{yb} / \gamma_{M0} + A_s f_{yb} / \gamma_{M0}] \cos(\gamma) / sir$	η(γ - β)								
F _{c,wb,Rd1} = 2611.81 [kN] Beam web resistance				[6.2.6.2.(1)]					
Buckling:									
due =	208 [m Heig	aht of co	mpressed web	[6 2 6 2 (1)]					
	m]			[0.2.0.2.(1)]					
λ _p =	0.9 Plate 3 elem	e slende nent	rness of an	[6.2.6.2.(1)]					
ρ =	0.8 Red 4 buck	luction fa kling	actor for element	[6.2.6.2.(1)]					
$\lambda_s =$	2.3 7 Stiffe	ener sle	enderness EN1993 1:[6.3.1						
χ =	1.0 Buck	kling coe	efficient of the EN1993-1-						
$F_{c,wb,Rd2} = [\omega K_{wc} \rho b_{eff,c,wb} t_{wb} f_{yb} / \gamma_{M1} + A_s \chi f_{yb} / \gamma_{M1}] \cos(\gamma)$				[0.0.1.2]					
$F_{aub Bd2} = [2459, 80]$ [kN] Beam web resistance				[6 2 6 2 (1)]					
				[0.2.0.2.(1)]					
Final resistance.									
$F_{c,wb,Rd,low} = 10111 (F_{c,wb,Rd1}, F_{c,wb,Rd2})$				[6 2 6 2 (1)]					
Column resistances				[0.2.0.2.(1)]					
	<u>,</u>	1		IE 0 (0)]					
$M_{b1,Ed} = 310.47$ [kN*m] Bending moment (right bea	<u>m)</u>			[5.3.(3)]					
$M_{b2,Ed} = 2.96.63$ [kN m] Bending moment (left beam	1)			[5.3.(3)]					
$V_{c1,Ed} = -2.24$ [KN] Shear force (lower column)				[5.3.(3)]					
z = 519 [mm] Lever arm				[5.5.(5)]					
$\sum_{i=1}^{n} \frac{ i i i }{ i i i } = \frac{ i i i }{ i i i }$				[0.2.3]					
$V_{wp,Ed} = (V_{b1,Ed} - V_{b2,Ed})/2 - (V_{c1,Ed} - V_{c2,Ed})/2$	eh nanel	1		[5 3 (3)]					
$\Delta = 44.95$ [cm ²] Shear area of the column web			[0.0.(0)] N1003_1_1/6_2_6 (3)]						
$A_{vs} = 44.95$ [cm ²] Shear area			-N1993-1-1.[0.2.0.(3)]						
$n_{VC} = \frac{1}{1} \frac{1}{2} 1$	of stiffeners			[6 2 6 1 (A)]					
$M_{\rm res} = \frac{1}{200}$ [mm] Distance between the cellulous	flange for ho	nding		[0.2.0.1.(4)]					
$v_{\text{Pl,fc,Rd}} = 0.02$ [KN°m] Plastic resistance of the upper transverse stifferen for heading [6.2.6.1.(4)									
M_{1} , M_{2} , M	bending	[0.2.0.1.(4)]							
$\frac{1}{1} \frac{1}{1} \frac{1}$				[0.2.0.1.(4)]					
$v_{\text{wp,Kd}} = 0.3$ (Δv_{s} iy,wc) / (v_{s} YMO) + Will (4 Wipl,fc,Rd / Us), (2 Wi	pi,tc,Rd · Wpl,stu,F	kd ' IVIpl,s	sti, Kd / / Us /	[6 2 6 1]					
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$		ver	ified	(0, 04)					

	aring:							· · · ·		-			
wc -	=				10	[mm]	Effective th	ickness of	the co	lumn web		[6.2.6.2.(6)]	
D _{eff,}	_{c,wc} =				311	[mm]	Effective wi	Effective width of the web for compression				[6	.2.6.2.(1)
٨	_				44 95	[cm ²	Shear area					E	N1993-1
-VC	-				44.95]						1:	[6.2.6.(3)
9 =					1.00		Reduction f	Reduction factor for interaction with shear				[6	.2.6.2.(1)
Jcor	_{n,Ed} =				103.3	[MP a]	Maximum c	ompressiv	ve stre	ss in web		[6	.2.6.2.(2)
<wc< td=""><td>=</td><td></td><td></td><td></td><td>1.00</td><td></td><td>Reduction f stresses</td><td>actor con</td><td>ditioned</td><td>d by compre</td><td>essive</td><td>[6</td><td>.2.6.2.(2)</td></wc<>	=				1.00		Reduction f stresses	actor con	ditioned	d by compre	essive	[6	.2.6.2.(2)
4 _s =	=				43.57	[cm ²]	Area of the	web stiffe	ner		E	EN1993-1	1-1:[6.2.4
c,w	$c_{Rd1} = \alpha$	k _{wc} b _{eff,c,}	_{wc} t _{wc} f _{yc} /	/ γ _{M0} + A _s			1						
ys /		009 87	[kN]	Colum	n web re	sistar	nce					61	262(1)
C,W		009.07		Colum		515101						Į0.	.2.0.2.(1)
	-	242	[mm]		of comp		dwob		1			16	262(1)
JWC	-	243	[mm]		anderne	6556	an element					<u>ان ان ا</u>	. <u>2.0.2.(1)</u>
\ _р =	-	0.99		Prate Si		55 UI		kling				<u>סן</u>	.2.0.2.(1)
<u>) =</u>	_	0.81		Reducti				kiing				טן 11000 1 1	.2.0.2.(1)
λ _s =		2.76		Sumene	r siende	rness	<u>, , , , , , , , , , , , , , , , , , , </u>				EN	N1993-1-1:[6.3.1.2]	
χ _s =		1.00		Buckling	g coeffic	ient c	of the stiffene	er			EN	11993-1-7	1:[6.3.1.2
c,w	$r_{c,Rd2} = \alpha$	o k _{wc} ρ b _{eff}	_{f,c,wc} t _{wc} f _y	_{/c} / γ _{M1} + Α	A _s χ _s f _{ys} /	γM1						/	() -
Fc,w	$r_{c,Rd2} = 1$	853.83	[kN]	Colum	n web re	sistai	nce					6.2.6.2.(*	1)]
Fina	al resista	ance:											
Ec.	c.Rd.low =	Min (Fau		`									
- <u>, , , ,</u>	-,,		c,Rd1,Ic,	wc,Rd2)									
F _{c,w}	_{c,Rd} = 18	353.83	[kN]	wc,Rd2) Column	web re	sistar	nce				[6.2.6.2.(1	1)]
F _{c,w} Ge	ometr	ical par	[kN] [kN]	Column	web re:	sistar tion	nce				[6.2.6.2.(1	1)]
<u>Ge</u> Ge	ometr	ical par E LENGT	[kN] [kN] ramete: THS AND	Column rs of a c	owebree connec ETERS	sistar tion - COI	LUMN FLAM	IGE				6.2.6.2.(1	1)]
Ge Ge FFF	ec,Rd = 18 Cometr ECTIVI	ical par E LENGT	[kN] [kN] ramete: HS AND e	rs of a (PARAM	onnec Connec ETERS	sistar tion - COI	LUMN FLAN	IGE	l _{eff,} ;	2 leff,cp,g	[l _{eff,nc,g}	6.2.6.2.(1)] eff,2,g
Ge EFF	ometr ECTIVI 34	ical par E LENGT	c ,Rd1, 1 c, [kN] camete HS AND 90	rs of a (PARAM -	web resonance connec ETERS 94	sistar tion - COI Ie 186	LUMN FLAN ff,cp leff,nc 5 186	IGE I_{eff,1} 186	l eff, 186	2 leff,cp,g 0	[leff,nc,g 0	6.2.6.2.(1)] eff,2,g 0
Ge EFI Nr 1	ometr ECTIVI 34 34	ical par ical par E LENGT 	[kN] ramete rHS AND 90 90	Column rs of a (PARAM e _x - -	web res connec ETERS 94 80	sistar tion - COI 180 211	LUMN FLAN ff,cp leff,nc 5 186 L 269	IGE eff,1 186 211	l eff,2 186 269	2 l eff,cp,g 0 186	[leff,nc,g 0 186	6.2.6.2.(1 leff,1,g 0 186	<pre>I)] Ieff,2,g 0 186</pre>
EFI Nr 1 2	C ,Rd = 18 C D E C T V E C T V M 34 34 34	ical par ical par E LENGT m _x - -	e [kN] ramete: 'HS AND 90 90 90	wc,Rd2) Column rs of a (PARAM ex - - -	e web res connec ETERS 94 80 80	sistar tion - COI 186 211 211	Ince LUMN FLAi ff,cp leff,nc 5 186 1 269 1 247	IGE 186 211 211	l eff,2 186 269 247	2 l eff,cp,g 0 186 160	[0 186 80	6.2.6.2.(1 leff,1,g 0 186 80	 Ieff,2,g 0 186 80
F _{c,M} Ge EFI 1 2 3 4	c,Rd = 1 8 cometr - FECTIVI 34 34 34 34 34	ical par ical par E LENGT 	e [kN] ramete HS AND 90 90 90 90 90	wc.Rd2) Column rs of a (PARAM e _x - - - - -	web res connec ETERS 94 80 105	sistar tion - COI 186 211 211 211	Ince LUMN FLAN ff,cp leff,nc 5 186 1 269 1 247 1 247	NGE leff,1 186 211 211 211	I eff,3 186 269 247 247	2 l eff,cp,g 0 186 160 210	[0 186 80 105	6.2.6.2.(1 leff,1,g 0 186 80 105	 I eff,2,g 0 186 80 105
5	Rd 18 Cometr 18 Cometr 18 Cometr 18 Sometr 18	ical pai ical pai E LENGT 	e 90 90 90 90 90 90 90 90 90 90 90 90 90	wc.Rd2) Column rs of a (PARAM e _x - - - - - - -	web res connec ETERS 94 80 105 105	sistar tion - COI 186 211 211 211 211	Ince LUMN FLAN ff,cp leff,nc 5 186 1 269 1 247 1 247 1 247	IGE Ieff,1 186 211 211 211 211 211	l eff, 186 269 247 247 247	2 leff,cp,g 0 186 160 210 210	l eff,nc,g 0 186 80 105 105	6.2.6.2.(1 leff,1,g 0 186 80 105 105	Image: left diagram 0 186 80 105 105
5 6	c,Rd = 18 ometr ECTIVI 34 34 34 34 34 34 34 34	ical pai ical pai E LENGT - - - - - -	e [kN] ramete: 'HS AND 90 90 90 90 90 90 90 90 90 90 90 90 90	wc.Rd2) Column rs of a (PARAM ex - - - - - - - -	web res connec ETERS 94 80 105 105 80	sistar tion - COI 186 211 211 211 211 211	Image: Non-Section 1 Image: No	IGE 186 211 211 211 211 211 211	l eff,2 186 269 247 247 247 247 246	2 l eff,cp,g 0 186 160 210 210 186	[0 186 80 105 105 162	6.2.6.2.(1 leff,1,g 0 186 80 105 105 162	 I)] Ieff,2,g 0 186 80 105 105 162
5 6 5 6 5 6 5 6 5 6 5 6 5 6	c.Rd = 18 ometri ECTIVI 34 34 34 34 34 34 34 34 34 54 5 ECTIVI	ical pai ical pai E LENGT - - - - - - - - - - - - -	Image: c. Ref 1 , 1 c. [k] [kN] camete: HS AND 90	wc.Rd2) Column rs of a (PARAM ex - - - - - - PARAM	web res connec ETERS 94 80 105 105 80	sistar tion - COI 186 211 211 211 211 211 - FRC	Ince ff,cp leff,nc 5 186 1 269 1 247 1 247 1 247 2 247 2 247 2 247 2 247 2 247 2 247	IGE 186 211 211 211 211 211 211	l eff, 186 269 247 247 247 247 246	2 l eff,cp,g 0 186 160 210 210 186	[0 186 80 105 162	6.2.6.2.(1 leff,1,g 0 186 80 105 105 162	I)] leff,2,g 0 186 80 105 162
5 6 6 7 7 8 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8	c.Rd = 18 ometri ECTIVI m 34 34 34 34 34 34 34 34 5 ECTIVI m	ical pai ical pai E LENGT - - - - E LENGT m _x	e 90	wc.Rd2) Column rs of a (PARAM ex - - - - - PARAM ex	web res connec ETERS 94 80 105 105 80	sistar tion - COI 180 211 211 211 211 211 - FRC Ie	Ince LUMN FLAI ff,cp leff,nc 5 186 1 269 1 247 2 247 2 247 2 247 2 247 2 247 2 247 2 246 DNT PLATE ff,cp leff,nc	IGE Ieff,1 186 211 211 211 211 211 211 211	leff,3 186 269 247 247 247 246	 2 leff,cp,g 0 186 160 210 210 186 	[0 186 80 105 105 162	6.2.6.2.(1 leff,1,g 0 186 80 105 105 162 leff,1,g	 leff,2,g 0 186 80 105 105 162
Ge Ff Nr 1 2 3 4 5 6 Ff Nr 1 2 3 4 5 6	c.Rd = 18 ometri ECTIVI m 34 34 34 34 34 34 34 34 34 34 44	ical par ical par E LENGT - - - - E LENGT E LENGT m _x 30	c. Rd1 , f c. [kN] camete PO 90	wc.Rd2) Column rs of a (PARAM ex - - - - - PARAM Parameter Parameter <td>web res connec ETERS 94 80 105 105 80 ETERS 94</td> <td>sistar tion - COI 180 211 211 211 211 211 211 - FRC 18 18</td> <td>Ince LUMN FLAN ff,cp leff,nc 5 186 1 269 1 247 2 247 2 247 2 247 2 247 2 246 DNT PLATE leff,nc 7 145</td> <td>NGE leff,1 186 211 211 211 211 211 211 211 145 272</td> <td>Ieff, 186 269 247 247 247 246 Ieff, 145</td> <td> 2 leff,cp,g 0 186 160 210 210 186 </td> <td>leff,nc,g 0 186 80 105 162</td> <td>6.2.6.2.(1 leff,1,g 0 186 80 105 105 162 leff,1,g - -</td> <td>I)] Ieff,2,g 0 186 80 105 162 Ieff,2,g - - - -</td>	web res connec ETERS 94 80 105 105 80 ETERS 94	sistar tion - COI 180 211 211 211 211 211 211 - FRC 18 18	Ince LUMN FLAN ff,cp leff,nc 5 186 1 269 1 247 2 247 2 247 2 247 2 247 2 246 DNT PLATE leff,nc 7 145	NGE leff,1 186 211 211 211 211 211 211 211 145 272	Ieff, 186 269 247 247 247 246 Ieff, 145	 2 leff,cp,g 0 186 160 210 210 186 	leff,nc,g 0 186 80 105 162	6.2.6.2.(1 leff,1,g 0 186 80 105 105 162 leff,1,g - -	I)] Ieff,2,g 0 186 80 105 162 Ieff,2,g - - - -
Ge Ff Nr 1 2 3 4 5 6 Ff Nr 1 2 3 4 5 6 Ff Nr 1 2 3 4 5 6 Ff Nr 1 2 2 6 6 Ff Nr 1 2 6 6 Ff Nr 1 2 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	c,Rd = 1.8 ometri ECTIVI 34 34 34 34 34 34 34 34 34 44 44 44	ical pai ical pai E LENGT - - - - E LENGT m _x 30 -	c. Rd1 , F c. [kN] camete: FB AND 90	wc.Rd2) Column rs of a (PARAM ex - - - - - - - - - - - - -	web res connec connec p 94 80 105 105 80 ETERS p 94 80 P 94 80 ETERS p 94 80 ETERS p 94 80	Sister tion - COI 186 211 <td>Ince LUMN FLAN ff,cp leff,nc 5 186 1 269 1 247 2 247 2 247 2 247 2 247 2 247 1 246 DNT PLATE leff,nc 7 145 3 342</td> <td>NGE leff,1 186 211 211 211 211 211 211 211 145 279 279</td> <td>Ieff,3 186 269 247 247 247 246 Ieff,3 145 342</td> <td> 2 leff,cp,g 0 186 160 210 210 186 </td> <td>leff,nc,g 0 186 80 105 162 leff,nc,g - 236 0</td> <td>6.2.6.2.(1 leff,1,g 0 186 80 105 105 162 leff,1,g - 220 0</td> <td>I)] Ieff,2,g 0 186 80 105 162 Ieff,2,g - 236 0</td>	Ince LUMN FLAN ff,cp leff,nc 5 186 1 269 1 247 2 247 2 247 2 247 2 247 2 247 1 246 DNT PLATE leff,nc 7 145 3 342	NGE leff,1 186 211 211 211 211 211 211 211 145 279 279	Ieff,3 186 269 247 247 247 246 Ieff,3 145 342	 2 leff,cp,g 0 186 160 210 210 186 	leff,nc,g 0 186 80 105 162 leff,nc,g - 236 0	6.2.6.2.(1 leff,1,g 0 186 80 105 105 162 leff,1,g - 220 0	I)] Ieff,2,g 0 186 80 105 162 Ieff,2,g - 236 0
5, % Ge EFI 1 2 3 4 5 6 EFF Nr 1 2 3 4 5 6 EFF Nr 1 2 3 4 5 6 8 8 7 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	c,Rd = 1.8 ometri ECTIVI 34 34 34 34 34 34 34 34 34 44 44 44 44 44	ical pai ical pai E LENGT - - - - - E LENGT mx 30 - - - - - - - - - - - - - - - - - -	Participation Camete Framete Participation Paritipation Paritipation	wc.Rd2) Column rs of a (PARAM ex - - - - - - - - - - - - -	web res connec connec p 94 80 105 105 80 ETERS 94 80 94 80 94 80 80 94 80 80	Image: star tion - COI 186 211	Ince LUMN FLAN ff,cp leff,nc 5 186 2 269 1 247 2 247 2 247 2 247 2 246 DNT PLATE ff,cp leff,nc 7 145 3 342 3 290	IGE Ieff,1 186 211 211 211 211 211 211 145 279 279	Ieff,3 186 269 247 247 247 342 29 342 29	 2 leff,cp,g 0 186 160 210 210 186 	leff,nc,g 0 186 80 105 162 leff,nc,g - 236 80 -	6.2.6.2.(1 leff,1,g 0 186 80 105 162 leff,1,g - 220 80 105	 leff,2,g 0 186 80 105 162 leff,2,g - 236 80 4.4.5
Ge Ff Nr 1 2 3 4 5 6 Ff Nr 1 2 3 4 5 6 Ff 1 2 5 6 Ff	c,Rd = 18 ometri ECTIVI 34 34 34 34 34 34 34 34 34 44 44 44 44 44	ical pai ical pai E LENGT - - - - - E LENGT m _x 30 - - - - - - - - - - - - - - - - - -	c. Ref 1, F c. [kN] camete: HS AND 90	wc.Rd2) Column rs of a (PARAM ex - - - - - - - - - - - - -	web res connec ETERS 94 80 105 80 ETERS 94 80 105 80 24 80 80 105 80 250 94 80 105 94 80 105	Image: star Image:	Ince LUMN FLAN ff,cp leff,nc 5 186 2 269 1 247 2 247 2 247 2 247 2 246 DNT PLATE ff,cp leff,nc 7 145 9 290 9 290	IGE Ieff,1 186 211 211 211 211 211 211 145 279 279 279	Ieff,3 186 269 247 247 247 246 Inff,3 145 342 290 290	 2 leff,cp,g 0 186 160 210 210 186 	leff,nc,g 0 186 80 105 162 leff,nc,g - 236 80 105	6.2.6.2.(1 leff,1,g 0 186 80 105 162 leff,1,g - 220 80 105	I)] Ieff,2,g 0 186 80 105 162 Ieff,2,g - 236 80 105
5,% Ge EFI Nr 1 2 3 4 5 6 FF Nr 1 2 3 4 5 6 FF Nr 1 2 3 4 5 6 FF 1 2 3 4 5 6 FF 1 2 3 4 5 6 FF 1 2 3 4 5 6 6 FF 1 2 3 4 5 6 5 6 7 1 1 2 3 4 5 6 7 1 1 2 3 4 5 6 7 1 1 2 3 4 5 6 1 1 2 3 4 5 5 1 1 2 3 4 5 5 1 1 2 3 4 5 5 1 1 2 3 4 5 5 1 1 2 3 4 5 5 1 1 2 3 4 5 5 1 1 1 2 3 4 5 5 1 1 1 1 2 3 4 5 5 1 1 1 1 1 1 1 1	ic.Rd = 18 ometri ic.Rd = ic.Rd = 18 ometri ic.Rd = ic.Rd = 18 ic.Rd = 14 ic.Rd = 14 ic.Rd = 16 ic.Rd<	ical pai ical pai E LENGT - - - - E LENGT mx 30 - - - - - - - - - - - - - - - - - -	c. Roll r.c. [kN] camete: HS AND 90	wc.Rd2) Column rs of a (PARAM ex - - - - - - PARAM ex 40 - - - - - - - - - - - - -	web res Description 94 80 105 105 80 ETERS 94 80 105 105 105 80 ETERS 94 80 105 105 105	Lisistar Image: constraint of the second	Ince Ince Image: state st	IGE Ieff,1 186 211 211 211 211 211 211 211 21	Ieff,3 186 269 247 247 247 246 Inff,3 145 342 290 290	 2 leff,cp,g 0 186 160 210 210 186 2 leff,cp,g - 220 160 210 210 	leff,nc,g 0 186 80 105 162 leff,nc,g - 236 80 105 105	6.2.6.2.(1 leff,1,g 0 186 80 105 105 162 leff,1,g - 220 80 105 105 105	I)] Ieff,2,g 0 186 80 105 162 Ieff,2,g - 236 80 105 105
$ \frac{5.5}{12} = \frac{5.5}{2} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{5} \frac{1}{6} \frac{1}{5} \frac{1}$	c.Rd = 18 ometri ECTIVI m 34 34 34 34 34 34 34 34 44 44 44 44 44 44 44 44 44	ical pai ical pai E LENGT - - - - E LENGT mx 30 - - - - - - - - - - - - - - - - - -	Image: c_i,Rd1 , f c_i [kN] ramete: HS AND 90	wc.Rd2) Column rs of a (PARAM ex - - - - - - PARAM ex 40 - - - - - - - - - - - - -	web res connec ETERS 94 80 105 105 80 105 94 80 105 105 94 80 105 94 80 105 105 80 105 80	Image: second	ff,cp leff,nc 5 186 1 269 2 247 2 247 2 247 2 247 2 247 2 342 2 342 2 90 2 290 2 290 2 290	IGE Ieff,1 186 211 211 211 211 211 211 211 21	Ieff,3 186 269 247 247 247 246 Ieff,3 342 290 290 290 290 290	 2 2 186 160 210 210 186 2 4 <l< td=""><td>leff,nc,g 0 186 80 105 162 leff,nc,g - 236 80 105 105 162</td><td>6.2.6.2.(1 leff,1,g 0 186 80 105 162 leff,1,g - 220 80 105 105 105 105 105 105 105 10</td><td> leff,2,g 0 186 80 105 162 leff,2,g - 236 80 105 105 105 105 185 </td></l<>	leff,nc,g 0 186 80 105 162 leff,nc,g - 236 80 105 105 162	6.2.6.2.(1 leff,1,g 0 186 80 105 162 leff,1,g - 220 80 105 105 105 105 105 105 105 10	 leff,2,g 0 186 80 105 162 leff,2,g - 236 80 105 105 105 105 185
$F_{0,M}$ $F_{0,M}$	c.Rd = 18 ometri ECTIVI m 34 34 34 34 34 34 34 34 44 44 44 44 44 44 44 44 44	ical pai ical pai E LENGT - - - - - - - - - - - - -	Image: c., Roll 1, 1 c. [kN] ramete: HS AND 90	wc.Rd2) Column rs of a (PARAM ex - - - PARAM ex - - - - - PARAM ex 40 - <	web res connec ETERS 94 80 105 105 80 ETERS 94 80 105 80 105 80 105 94 80 105 80 105 80 105 80 105 80	Sistar tion - COI le 186 211	Ince LUMN FLAN ff,cp leff,nc 5 186 2 269 1 247 2 247 2 247 2 247 2 247 1 246 DNT PLATE leff,nc 7 145 3 342 2 90 2 290 2 290 2 290 2 290	NGE leff,1 186 211 211 211 211 211 211 211 21	Ieff,3 186 269 247 247 247 246 Ieff,3 342 290 290 290 290	 2 leff,cp,g 0 186 160 210 210 186 	leff,nc,g 0 186 80 105 162 - 236 80 105 105 162	6.2.6.2.(1 leff,1,g 0 186 80 105 105 162 leff,1,g - 220 80 105 105 105 105 105 105 105 10	 leff,2,g 0 186 80 105 162 leff,2,g - 236 80 105 105 105 105 185
$F_{c,M}$ $F_{c,M}$	c.Rd = 18 ometric T ECTIVI m 34 34 34 34 34 34 34 34 34 44 44 44 44 44 44 44 44 44	ical pai ical pai E LENGT - - - - - E LENGT m _x 30 - - - - - - - - - - - - - - - - - -	Image: c., Roll 1, 1 c. [k] [kN] ramete: Image: First And 0 90 <td>wc.Rd2) Column rs of a (PARAM ex - - - - PARAM ex - - - - PARAM ex 40 - <</td> <td>web res connec ETERS 94 80 105 80 ETERS 94 80 105 80 105 94 80 105 80 105 80 105 80 105 80 105 80 b am flange</td> <td>Image: sister Image: sister</td> <td>ff,cp leff,nc 5 186 1 269 1 247 2 247 2 247 2 247 1 246 DNT PLATE 145 9 342 9 290 9 290 9 290 9 290</td> <td>NGE leff,1 186 211 211 211 211 211 211 211 21</td> <td>Ieff,3 186 269 247 247 247 246 Ideff,3 342 290 290 290 290</td> <td> 2 leff,cp,g 0 186 160 210 210 186 </td> <td>leff,nc,g 0 186 80 105 162 leff,nc,g - 236 80 105 105 162</td> <td>6.2.6.2.(1 leff,1,g 0 186 80 105 105 162 leff,1,g - 220 80 105 105 105 185</td> <td> leff,2,g 0 186 80 105 162 leff,2,g - 236 80 105 105 105 185 </td>	wc.Rd2) Column rs of a (PARAM ex - - - - PARAM ex - - - - PARAM ex 40 - <	web res connec ETERS 94 80 105 80 ETERS 94 80 105 80 105 94 80 105 80 105 80 105 80 105 80 105 80 b am flange	Image: sister	ff,cp leff,nc 5 186 1 269 1 247 2 247 2 247 2 247 1 246 DNT PLATE 145 9 342 9 290 9 290 9 290 9 290	NGE leff,1 186 211 211 211 211 211 211 211 21	Ieff,3 186 269 247 247 247 246 Ideff,3 342 290 290 290 290	 2 leff,cp,g 0 186 160 210 210 186 	leff,nc,g 0 186 80 105 162 leff,nc,g - 236 80 105 105 162	6.2.6.2.(1 leff,1,g 0 186 80 105 105 162 leff,1,g - 220 80 105 105 105 185	 leff,2,g 0 186 80 105 162 leff,2,g - 236 80 105 105 105 185
$\mathbf{F}_{c,M}^{m}$ Ge F N r 1 2 3 4 5 6 F F N r 1 2 3 4 5 6 n n x a	c.Rd = 18 ometric ECTIVI # 34 34 34 34 34 34 34 34 34 34 44 44 44 44 44 44 44 44 44	ical pai ical pai	Image: c. Red 1, 1 c. [kN] Image: c. Red 1, 1 c. [kN] Camete: c. Red 1, 1 c. [kN] Camete: c. Red 1, 1 c. [kN] PO 90	wee,Rd2) Column rs <of a<="" th=""> PARAM ex - - - - - - - - - - - - PARAM ex 40 -</of>	web res connec ETERS 94 80 105 80 105 80 105 80 105 80 105 80 105 80 105 80 105 80 105 80 105 80 105 80 105 80 105 80 105 80	Image: sister	ff,cp leff,nc 5 186 2 269 1 247 2 247 2 247 2 247 2 247 1 247 2 247 2 247 1 246 DNT PLATE ff,cp leff,nc 7 145 9 290 9 290 9 290 9 290	NGE left,1 186 211 211 211 211 211 211 211 21	Ieff,3 186 269 247 247 247 246 Interf,2 145 342 290 290 290 290	 2 leff,cp,g 0 186 160 210 210 186 2 leff,cp,g - 220 160 210 210 220 	leff,nc,g 0 186 80 105 162 leff,nc,g - 236 80 105 185	6.2.6.2.(1	 leff,2,g 0 186 80 105 162 leff,2,g - 236 80 105 105 185
GeFI Nr 1 2 3 4 5 6 FI Nr 1 2 3 4 5 6 FI Nr 1 2 3 4 5 6 FI Nr 1 2 3 4 5 6 Nr 1 2 3 4 Nr 1 2 3 4 5 6 Nr 1 2 3 4 Nr 1 2 3 Nr	c.Rd = 18 ometri ECTIVI 34 34 34 34 34 34 34 34 34 44 44 44 44 44 44 44 44 44	ical pai ical pai	ic.Rail (, if c, ic.Rail (, if c, ic.Rail (, if c, ic.Rail (, ic.Rai	wc.Rd2) Column rS of a (PARAM PARAM PARAM 40	web res connec ETERS 94 80 105 105 80 105 80 105 80 105 80 105 80 105 80 105 80 105 80 105 80 105 80 105 80 105 80 105 80 b am flang ter edge rizontal	Image: second	ff,cp leff,nc 5 186 1 269 1 247 2 247 2 247 2 247 2 247 1 247 2 247 2 247 2 247 2 247 2 247 2 246 DNT PLATE ff,cp leff,nc 2 290 2 290 2 290 2 290 2 290 2 290 2 290 2 290 2 290 2 290	NGE left,1 186 211 211 211 211 211 211 211 21	Ieff, 186 269 247 247 247 246 Inf, 342 290 290 290 290	 2 leff,cp,g 0 186 160 210 210 186 2 220 160 210 210 220 	leff,nc,g 0 186 80 105 162 leff,nc,g - 236 80 105 185	6.2.6.2.(1	 leff,2,g 0 186 80 105 162 leff,2,g - 236 80 105 105 185

m	– Bolt distance from the web									
I _{eff,cp}	 Effective length for a single bolt in the circular failure mode 									
I _{eff,nc}	- Effective length f	or a single bolt in the non-ci	rcular failure mod	е						
I _{eff,1}	 Effective length for a single bolt for mode 1 									
I _{eff,2}	 Effective length for a single bolt for mode 2 									
I _{eff,cp,g}	 Effective length for a group of bolts in the circular failure mode 									
l _{eff,nc,g}	 Effective length for a group of bolts in the non-circular failure mode 									
I _{eff,1,g}	 Effective length for a group of bolts for mode 1 									
l _{eff,2,g}	 Effective length feature 	or a group of bolts for mode	2							
Connect	tion resistance f	or bending								
F _{t,Rd} =	264.38 [kN]	Bolt resistance for tension			[Table 3.4]					
B _{p,Rd} =	433.31 [kN]	Punching shear resistance	of a bolt		[Table 3.4]					
F _{t,fc,Rd}	– column fla	inge resistance due to bend	ing							
F _{t,wc,Rd}	– column we	eb resistance due to tension	l							
F _{t,ep,Rd}	 resistance 	e of the front plate due to be	nding							
F _{t,wb,Rd}	 resistance 	e of the web in tension								
F _{t,fc,Rd} = Mi	in (F _{T,1,fc,Rd} , F _{T,2,fc,Rd}	, F _{T,3,fc,Rd})			[6.2.6.4] , [Tab.6.2]					
$F_{t,wc,Rd} = \omega$	$b_{eff,t,wc} t_{wc} f_{yc} / \gamma_{M0}$				[6.2.6.3.(1)]					
$F_{t,ep,Rd} = M$	lin (F _{T,1,ep,Rd} , F _{T,2,ep,F}	_{Rd} , F _{T,3,ep,Rd})			[6.2.6.5] , [Tab.6.2]					
$F_{t,wb,Rd} = b_d$	_{eff,t,wb} t _{wb} f _{yb} / γ _{M0}				[6.2.6.8.(1)]					
RESISTAN	NCE OF THE BOLT	ROW NO. 1								
F _{t1,Rd,comp}	- Formula		F _{t1,Rd,comp}	Con	nponent					
F _{t1,Rd} = Mir	n (F _{t1,Rd,comp})		385.55	Bolt	row resistance					
$F_{t,fc,Rd(1)} = 3$	385.55		385.55	Colu	umn flange - tension					
$F_{t,wc,Rd(1)} =$	442.73		442.73	Colu	ımn web - tension					
$F_{t,ep,Rd(1)} =$	479.03		479.03	Fror	nt plate - tension					
$B_{p,Rd} = 866$	6.62		866.62	Bolt	s due to shear punching					
$V_{wp,Rd}/\beta = 1$	15643.37		15643.37	Web	o panel - shear					
$F_{c,wc,Rd} = 1$	853.83		1853.83	Colu	Imn web - compression					
$F_{c,fb,Rd} = 13$	340.38		1340.38	Bea	m flange - compression					
$F_{c,wb,Rd} = 2$	459.80		2459.80	Bea	m web - compression					
RESISTAN	NCE OF THE BOLT	ROW NO. 2	-							
F _{t2,Rd,comp}	- Formula		F _{t2,Rd,comp}	Con	nponent					
$F_{t2,Rd} = Mir$	n (F _{t2,Rd,comp})		426.86	Bolt	row resistance					
$F_{t,fc,Rd(2)} = 4$	426.86		426.86	Colu	umn flange - tension					
$F_{t,wc,Rd(2)} =$	492.16		492.16	Colu	ımn web - tension					
$F_{t,ep,Rd(2)} =$	528.77		528.77	Fror	nt plate - tension					
$F_{t,wb,Rd(2)} =$	652.63		652.63	Bea	m web - tension					
$B_{p,Rd} = 866$	5.62		866.62	Bolt	s due to shear punching					
V _{wp,Rd} /β - Σ	$\sum_{1} F_{ti,Rd} = 15643.37$	- 385.55	15257.82	Web	o panel - shear					
F _{c,wc,Rd} - ∑	$_{1}^{1} F_{tj,Rd} = 1853.83 - 3$	385.55	1468.28	Colu	Imn web - compression					
F _{c,fb,Rd} - ∑ ₁	['] F _{tj,Rd} = 1340.38 - 3	885.55	954.82	Bea	m flange - compression					
$F_{c,wb,Rd}$ - \sum	1 ['] F _{tj,Rd} = 2459.80 - 3	385.55	2074.25	Bea	m web - compression					
RESISTAN	NCE OF THE BOLT	ROW NO. 3	•							
Ft3,Rd,comp	- Formula		F _{t3,Rd,comp}	Con	nponent					
$F_{t3,Rd} = Mir$	า (F _{t3,Rd,comp})		157.65	Bolt	row resistance					
$F_{t,fc,Rd(3)} = 4$	415.93		415.93	Colu	umn flange - tension					
$F_{t,wc,Rd(3)} =$	492.16		492.16	Colu	umn web - tension					
$F_{t,ep,Rd(3)} =$	528.77	nt plate - tension								

Franciscom - Formula	Ft3 Bd comp	Component
$F_{t,wh} Rd(3) = 652.63$	652.63	Beam web - tension
$B_{p,Rd} = 866.62$	866.62	Bolts due to shear punching
$V_{\text{WD} \text{ Bd}}/\beta - \Sigma_1^2 F_{\text{ti} \text{ Bd}} = 15643.37 - 812.41$	14830.96	Web panel - shear
F_{cwc} Rd - Σ_1^2 Ft Rd = 1853.83 - 812.41	1041.42	Column web - compression
$F_{c,first} = \frac{1}{2} F_{tirst} = \frac{1}{2} \frac{1}{4} $	527.96	Beam flange - compression
$F_{c,wb,Rd} - \Sigma_1^2 F_{t,Rd} = 2459.80 - 812.41$	1647.39	Beam web - compression
$F_{tfc} Rd(3+2) - \sum_{2}^{2} F_{ti} Rd = 591.05 - 426.86$	164.19	Column flange - tension - group
$F_{twc} Rd(3+2) - \sum_{2}^{2} F_{ti} Rd = 584.51 - 426.86$	157.65	Column web - tension - group
$F_{t fc} Rd(3+2) - \sum_{2}^{2} F_{t i} Rd = 591.05 - 426.86$	164.19	Column flange - tension - group
$F_{t,wc,Rd(3+2)} - \sum_{2}^{2} F_{ti,Rd} = 584.51 - 426.86$	157.65	Column web - tension - group
$F_{t.ep, Bd(3+2)} - \sum_{2}^{2} F_{ti, Bd} = 859.46 - 426.86$	432.60	Front plate - tension - group
$F_{t,wb,Rd(3+2)} - \sum_{2}^{2} F_{ti,Rd} = 739.55 - 426.86$	312.69	Beam web - tension - group
$F_{ten Bd(3+2)} - \sum_{2}^{2} F_{ti Bd} = 859.46 - 426.86$	432.60	Front plate - tension - group
$F_{t,wh} Bd(3+2) - \sum_{2}^{2} F_{ti,Bd} = 739.55 - 426.86$	312.69	Beam web - tension - group
RESISTANCE OF THE BOLT ROW NO. 4		
Ft4 Ed comp - Formula	Ft4 Rd comp	Component
$E_{44}Rd = Min\left(F_{44}Rdcomp\right)$	137.69	Bolt row resistance
$F_{tc} Rd(4) = 415.93$	415.93	Column flange - tension
$F_{tuc} Rd(4) = 492.16$	492.16	Column web - tension
$F_{top, Pd(4)} = 528.77$	528.77	Front plate - tension
$F_{t,teb} = 652 63$	652.63	Beam web - tension
$B_{p,Rd} = 866.62$	866.62	Bolts due to shear punching
$V_{\rm up} {\rm pd}/\beta - \sum_{k}^{3} E_{k} {\rm pd} = 15643.37 - 970.06$	14673 31	Web papel - shear
$F_{\text{curr}} = \sum_{i=1}^{3} F_{\text{curr}} = 1853.83 = 970.06$	883 77	Column web - compression
$F_{c,wc,Rd} = \sum_{i=1}^{3} F_{i,Rd} = 1000.00 = 070.00$	370 31	Beam flange - compression
$F_{c,ib,Rd} = \sum_{i} F_{ij,Rd} = 101000 - 070000$	1489 74	Beam web - compression
$\frac{F_{i,k}}{F_{i,k}} = \frac{F_{i,k}}{F_{i,k}} $	253.96	Column flange - tension - group
$F_{\text{tup}} = \frac{1}{2} \left(\frac{1}{2} + \frac{3}{2} \right) = \sum_{n=1}^{3} F_{\text{tip}} = \frac{1}{2} \left(\frac{1}{4} + \frac{3}{4} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{3}{4} \right)$	283.79	Column web - tension - group
$F_{4,WC,1G(4+3)} = \sum_{j=1}^{2} F_{ij}R_{ij} = 824.67 - 584.51$	240.16	Column flange - tension - group
$\frac{F_{1,0}, R_{0}(4+3+2)}{F_{1,0} R_{0}(4+3+2)} = \sum_{n=1}^{2} \frac{F_{1,0}}{r_{1,0}} = \frac{722}{20} = \frac{584}{51} = \frac{51}{20}$	137.69	Column web - tension - group
$\frac{F_{1,0}(4+3+2)}{F_{1,0}} = \frac{5}{2} + \frac{1}{2} + \frac{1}{$	240.16	Column flange - tension - group
$\frac{F_{1,0},F_{1,0}}{F_{1,0}} = \frac{F_{1,0}}{F_{1,0}} = \frac{F_{1,0}}{F$	137.69	Column web - tension - group
$E_{ten Bd(4+3)} - \sum_{3}^{3} E_{ti Bd} = 715.56 - 157.65$	557.91	Front plate - tension - group
$F_{\text{twb}} Bd(4+3) - \sum_{3}^{3} F_{\text{ti}} Bd = 432.44 - 157.65$	274.79	Beam web - tension - group
$F_{ten Bd(4+3+2)} - \sum_{3}^{2} F_{ti Bd} = 1243.48 - 584.51$	658.97	Front plate - tension - group
$F_{twb} Rd(4 + 3 + 2) - \sum_{3}^{2} F_{ti} Rd = 984.99 - 584.51$	400.48	Beam web - tension - group
$F_{ten Bd(4+3+2)} - \sum_{3}^{2} F_{ti Bd} = 1243.48 - 584.51$	658.97	Front plate - tension - group
$F_{t,wb} Rd(4 + 3 + 2) - \sum_{3}^{2} F_{ti} Rd = 984.99 - 584.51$	400.48	Beam web - tension - group
RESISTANCE OF THE BOLT ROW NO. 5		
Ets Ed comp - Formula	Fts Bd comp	Component
$F_{15} \text{ Rd} = \text{Min} \left(F_{15} \text{ Rd comp} \right)$	94.74	Bolt row resistance
$F_{tfc} Rd(5) = 415.93$	415.93	Column flange - tension
$F_{twc} Rd(5) = 492.16$	492.16	Column web - tension
$F_{t.ep. Bd(5)} = 528.77$	528.77	Front plate - tension
$F_{t wb Rd(5)} = 652.63$	652.63	Beam web - tension
$B_{p,Bd} = 866.62$	866.62	Bolts due to shear punching
$V_{\text{WD} Bd}/\beta - \Sigma_1^4 F_{\text{ti}Bd} = 15643.37 - 1107.75$	14535.61	Web panel - shear
$F_{c,wc,Rd} - \sum_{1}^{4} F_{tl,Rd} = 1853.83 - 1107.75$	746.08	Column web - compression

F _{t5,Rd,comp} - Formula			F _{t5,Rd,comp}	Component				
$F_{c,fb,Rd} - \sum_{1}^{4} F_{tj,Rd} = 1340.38 - 1107$.75		232.62	Beam flange	e - compressior	l		
$F_{c,wb,Rd} - \sum_{1}^{4} F_{tj,Rd} = 2459.80 - 1107$	7.75		1352.05	Beam web -	compression			
$F_{t,fc,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 467.23 - 13$	7.69		329.54	Column flan	ge - tension - g	Iroup		
$F_{t,wc,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 489.52 - 13$	37.69		351.82	Column web	- tension - gro	up		
$F_{t,fc,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 645.23 -$	295.34		349.89	Column flan	ge - tension - g	Iroup		
$F_{t,wc,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 621.02 -$	- 295.34		325.67	Column web	- tension - gro	up		
$F_{t,fc,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 1058.2$	29 - 722.20		336.08	Column flan	Column flange - tension - group			
$F_{t,wc,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 816.9$	4 - 722.20		94.74	Column web	Column web - tension - group			
$F_{t,fc,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 1058.2$	29 - 722.20		336.08	Column flan	ge - tension - g	Iroup		
$F_{t,wc,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 816.9$	14 - 722.20		94.74	Column web	- tension - gro	up		
$F_{t,ep,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 768.02 - 13$	37.69		630.33	Front plate -	tension - grou	р		
$F_{t,wb,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 490.88 - 13$	37.69		353.18	Beam web -	tension - group	D		
$F_{t,ep,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 1121.69$	- 295.34		826.35	Front plate -	tension - grou	р		
$F_{t,wb,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 677.88$ -	- 295.34		382.53	Beam web -	tension - group	o		
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 1627.$	49 - 722.20		905.28	Front plate -	tension - grou	р		
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 1230.$.43 - 722.20		508.22	Beam web -	tension - group	o		
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 1627$	49 - 722.20		905.28	Front plate -	tension - grou	р		
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 1230.$.43 - 722.20		508.22	Beam web -	tension - group	o		
RESISTANCE OF THE BOLT RO	W NO. 6							
F _{t6,Rd,comp} - Formula			F _{t6,Rd,comp}	Component				
F _{t6,Rd} = Min (F _{t6,Rd,comp})			91.74	Bolt row resi	stance			
$F_{t,fc,Rd(6)} = 415.18$			415.18	Column flan	ge - tension			
$F_{t,wc,Rd(6)} = 492.16$			492.16	Column web	- tension			
$F_{t,ep,Rd(6)} = 528.77$			528.77	Front plate -	tension			
$F_{t,wb,Rd(6)} = 652.63$			652.63	Beam web -	tension			
B _{p,Rd} = 866.62			866.62	Bolts due to	shear punching	g		
$V_{wp,Rd}/\beta - {\Sigma_1}^5 F_{ti,Rd} = 15643.37 - 12$	02.49		14440.88	Web panel -	shear			
$F_{c,wc,Rd} - \sum_{1}^{5} F_{tj,Rd} = 1853.83 - 1202$	2.49		651.34	Column web	Column web - compression			
$F_{c,fb,Rd} - \sum_{1}{}^{5} F_{tj,Rd} = 1340.38 - 1202$.49		137.88	Beam flange - compression				
$F_{c,wb,Rd} - \sum_{1}^{5} F_{tj,Rd} = 2459.80 - 1202$	2.49		1257.31	Beam web - compression				
$F_{t,fc,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 594.09 - 94$.74		499.36	Column flange - tension - group				
$F_{t,wc,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 586.64 - 94$	4.74		491.90	Column web	- tension - gro	up		
$F_{t,fc,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 827.71 -$	232.43		595.28	Column flan	Column flange - tension - group			
$F_{t,wc,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 723.68$ -	- 232.43		491.25	Column web	- tension - gro	up		
$F_{t,fc,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1005.7$	70 - 390.08		615.62	Column flan	ge - tension - g	Iroup		
$F_{t,wc,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 798.6$	3 - 390.08		408.55	Column web	- tension - gro	up		
$F_{t,fc,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 141$	8.76 - 816.94		601.82	Column flan	ge - tension - g	Iroup		
$F_{t,wc,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 908$	8.68 - 816.94		91.74	Column web	- tension - gro	up		
$F_{t,ep,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 836.89 - 94$	1.74		742.15	Front plate -	tension - grou	р		
$F_{t,wb,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 678.16 - 94$	4.74		583.42	Beam web -	tension - group	C		
$F_{t,ep,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 1220.90$	- 232.43		988.47	Front plate -	tension - grou	р		
$F_{t,wb,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 923.60$ -	- 232.43	691.17	Beam web -	tension - group	C			
$F_{t,ep,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1583$	42 - 390.08	1193.34	Front plate - tension - group					
$F_{t,wb,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1110.$.60 - 390.08		720.52	Beam web - tension - group				
$F_{t,ep,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 208$		1263.42	Front plate - tension - group					
$F_{t,wb,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 166$	63.15 - 816.94	846.21	Beam web - tension - group					
SUMMARY TABLE OF FORCES	SUMMARY TABLE OF FORCES							
Nr h _j F _{tj,Rd}	F _{t,fc,Rd}	F _{t,wc,Rd}	F _{t,ep,Rd}	$F_{t,wb,Rd}$	F _{t,Rd}	$\mathbf{B}_{p,Rd}$		

Nr	h	j	F _{tj,}	Rd	F _{t,fc,Rd}	F _{t,wc,I}	Rd	F _{t,ep,Rd}	$\mathbf{F}_{t,wb,Rd}$	F _{t,Rd}	B _{p,Rd}
1	571		385.55	5	385.55	442.73	47	9.03	-	528.77	866.62
2	466		426.8	5	426.86	492.16	52	28.77	652.63	528.77	866.62
3	386		157.65	5	415.93	492.16	52	28.77	652.63	528.77	866.62
4	306		137.69	9	415.93	492.16	52	28.77	652.63	528.77	866.62
5	176		94.74		415.93	492.16	52	28.77	652.63	528.77	866.62
6	96		91.74		415.18	492.16	52	28.77	652.63	528.77	866.62
CONNECTION RESISTANCE FOR BENDING M _{j,Rd}											
M _{i,F}	$_{Rd} = \sum h_i$	F _{ti,Rd}									
Mi.F	Rd = 5	547.74	[kN*	m] (Connection resi	stance fo	r bendir	ng		[6.2]	
Mb1	. _{Ed} / M _{i.F}	_d ≤ 1,0				0.57 <	1.00	-	verified		(0.57)
Connection resistance for shear											
α_{v}	=	0.60)		Coefficient for c	alculation	n of F _{v B}	4			[Table 3.4]
ßı f	=	0.99	9		Reduction facto	or for long	connec	tions			[3.8]
F _V F	ed = 1	217.01	_ [k]	11	Shear resistand	e of a sir	ale bolt				[Table 3.4]
Ft R	d max =	264.38	3 [k]	J]	Tensile resistar	ice of a s	inale bo	lt			[Table 3.4]
F _b s	d int =	244.78	<u> </u>	<u>1</u>	Bearing resista	nce of an	interme	diate bolt			[Table 3.4]
E _b F	$R_{d,ext} = 3$	170.28	3 [k]	v]	Bearing resista	nce of an	outerm	ost bolt			[Table 3.4]
Nr	F.	DA N	E.	Ed N	Fri Pri M	F.	Ed M	F _{fi Ed}		Fvi Bd	
1	528.7	7	0.00	, L u,N	385.55	218.5	, со, м 64	218.54	305.89	• vj,ru	
2	528.7	7	0.00		426.86	241.9	5	241.95	292.16		
3	528.7	7	0.00		157.65	89.36	5	89.36	381.63		
4	4 528.77 0.00		137.69	78.05		78.05	388.26				
5	528.7	7	0.00		94.74	53.70)	53.70	402.54		
6	528.77 0.00 91.74		91.74	52.00)	52.00	403.53				
F _{ti E}		Solt row	resista	nce fo	or simple tensio	n					
F _{ti} E		orce di	ue to av	cial for	ce in a bolt row	,					
Fti F	ам — Е	Bolt row	resista	nce fo	or simple bendir	na					
F _{ti E}	ам — F	orce d	ue to m	omen	t in a bolt row						
F _{ti E}	id – N	/laximu	m tensi	le forc	e in a bolt row						
F _{vi}	а. — F	Reduce	d bolt re	ow res	istance						
E+i F											
F ₄₁ E	$\mathbf{M} = \mathbf{M}_{i}$,Ru, F +: Da		d							
F ₊₁ c	$a = F_{ii} = c$	<u>Eu • ij, Ru</u>		u							
F _{vi}	.u : ,∟u ⊳a = Min	(n _b E _v	=d (1 - F	ti Ed/ (1	4 nh Ft Rd max).	n _b Fy Rd	n _h F _h Pd))			
Vie	$\frac{1}{1}$ = n ∇	ⁿ F		<u>у, сч.</u> (n gradinaxy)	1 V,Ita /	11 5,114				ITable 3.41
V _{j,R}	$\frac{d - \ln Z}{d - 2}$	1 v j,Rd 174 03		J1	Connection res	istance fo	rshoar				[Table 3.4]
V],R V	a = 2	< 1.02	- [[[]	v]	Connection res		1 00		verified		(0, 11)
V b1	old ros	iston	20			0.11 <	1.00		Vermeu		(0.11)
••		istan		- 2							
								[4.5.3.2(2)]			
Awy	=	1	43.55	[cm	Area of nori	zontai we	elas				[4.5.3.2(2)]
Awz	_	070	88.06	[cm ⁻	Area of vert	ical welds	5				[4.5.3.2(2)]
lwy	_	0/2	JZ.J⊥			nerua of		arrangeme	ni wiin respe	ct to the nor. axi	s [4.5.3.2(5)]
σ⊥n	_{lax} =τ⊥max	=	11.42		aj inormai stre	ss in a W					[4.5.3.2(6)]
σ_{\perp} =	•τ _⊥ =	-	01.16		aj Stress in a	vertical w	eld				[4.5.3.2(5)]
τ ₁₁ =	$\tau_{II} = 28.37$ [MPa] Tangent stress						[4.5.3.2(5)]				
βw	=		0.85		Correlation	coefficier	nt				[4.5.3.2(7)]
√[σ	$1 max^{2} + 3$	$3^*(\tau_{\perp max})$	2)] $\leq f_{u}/$	(B _w *γ _M	2)	142.85	< 404	.71	verified		(0.35)

$\sqrt{[\sigma_{\perp max}]^2}$	2 + 3*($\tau_{\perp max}^{2}$)]	$\leq f_u/(\beta_w^*\gamma)$	_{M2})	142	142.85 < 404.71 verified		(0.35)		
√[σ _⊥ ² + 3	3*(τ _⊥ ² +τ _{II} ²)] ≤	i f _u /(β _w *γ _{M2}	2)	131	.82 < 404.	71	verified		(0.33)
σ _⊥ ≤ 0.9)*f _u /γ _{M2}			71.	42 < 309.60)	verified		(0.23)
Conne	ection stiff	ness							
t _{wash} =	6	[mm]	Washe	r thickness					[6.2.6.3.(2)]
h _{head} =	19	[mm]	Bolt he	ad height				[6.2.6.3.(2)]	
h _{nut} =	27	[mm]	Bolt nu	t height					[6.2.6.3.(2)]
L _b =	77	[mm]	Bolt ler	ngth					[6.2.6.3.(2)]
k ₁₀ =	10	[mm]	Stiffnes	ss coefficient	of bolts				[6.3.2.(1)]
STIFFN	ESSES OF	BOLT RO	ws						
Nr	hj		k ₃	k 4	k ₅	k	eff,j	k _{eff,j} h _j	k _{eff,j} h _j ²
						Sum		24.64	889.78
1	571	0		0	77	0		0.00	0.00
2	466	4		20	35	2		11.00	512.61
3	386	2		8	13	1		4.50	173.75
4	306	2		11	17	1		4.51	138.10
5	176	2		11	17	1		2.60	45.72
6	96	4		17	30	2		2.04	19.60
$K_{eff,j} = 1$	$\frac{1}{(\sum_{3})^{\circ}(1 + K_{i,j})}$))							[6.3.3.1.(2)]
Z _{eq} = ∑j	K _{eff,j} Nj [−] / ∑j K	_{eff,j} N _j					1		[0,0,0,4,(0)]
Z _{eq} =	361	[mm]	Equiva	lent force arm	1				[6.3.3.1.(3)]
k _{eq} = ∑j	k _{eff,j} h _j / z _{eq}	1 10	· · ·		ss:				[0, 0, 0, 4, (4)]
K _{eq} =		mmj jeq	uivalent	stiffness coe	efficient of a bo	it arrangem	ent		[6.3.3.1.(1)]
$A_{vc} = 4$	4.95 [cm ⁻]	Shear ar	rea					EN	11993-1-1:[6.2.6.(3)]
β =	0.04	I ransfor	mation p	parameter					[5.3.(7)]
z =	361 [mm]	Lever ar	m			I	4	-	[6.2.5]
к ₁ =	108 [mm]	Stimness		ent of the col	umn web pane	I SUDJECTED	to snear	-	[6.3.2.(1)]
к ₂ =	∞				npressed colui	nn web			[0.3.2.(1)]
S _{j,ini} – E	Zeq / <u>Σ</u> i (I /	$K_1 \neq 1/K_2$		<u>q)</u> rotational atif	faces		1		[0.3.1.(4)]
Sj,ini −	1/1540.10								[0.3.1.(4)]
μ=	1.0	0	Stiffn	ess coefficier	nt of a connecti	on			[6.3.1.(6)]
$S_j = S_{j,in}$	_{ni} / μ[6.3.1.(4)]	<u> </u>		-				
S _j =	171546.18	kN*m]	Final	rotational stif	Iness				[6.3.1.(4)]
Connec	ction classif	ication du	ue to sti	ffness.					
S _{j,rig} =	50766.34	[kN*m]	Stiffne	ess of a rigid o	connection				[5.2.2.5]
S _{j,pin} =	3172.90	[kN*m]	Stiffne	ess of a pinne	d connection				[5.2.2.5]
$S_{i,ini} \ge S_i$	i,rig RIGID								

Connection conforms to the code

Ratio 0.57

Πίνακας Α.3: Αποτελέσματα ελέγχου σύνδεσης υποστυλώματος με διαδοκίδα.

Autodesk Robot Structural Analysis Professional 2019 **Calculation of the beam-column (web) connection** EN 1993-1-8:2005/AC:2009

OK

Ratio **0.96**

General

Connection no.:	2	
Connection name:	Beam-column	(web)
Structure node:	86	
Structure bars:	241, 79	

300

[mm]

8 8

Geometry Column

h_b =

Colui	nn			
Section	n: HEA 340			
Bar no.	: 241			
α =	-90.0	[Deg]	Inclination angle	
h _c =	330	[mm]	Height of column section	
b _{fc} =	300	[mm]	Width of column section	
t _{wc} =	10	[mm]	Thickness of the web of column section	
t _{fc} =	17	[mm]	Thickness of the flange of column section	
r _c =	27	[mm]	Radius of column section fillet	
A _c =	133.47	[cm ²]	Cross-sectional area of a column	
I _{yc} =	27693.10	[cm ⁴]	Moment of inertia of the column section	
Materia	al: \$275			
f _{yc} =	275.00	[MPa] [Design resistance	
f _{uc} =	430.00	[MPa]]	ensile resistance	
Beam	l			
Section	n: IPE 300			
Bar no.	: 79			
α =	0.0	[Dea]	Inclination angle	

Height of beam section

Section:	IPI	E 300			
b _b =		150	[mm]	Width of beam section	
t _{wb} =		7	[mm]	Thickness of the web of beam section	
t _{fb} =		11	[mm]	Thickness of the flange of beam section	
r _b =		15	[mm]	Radius of beam section fillet	
A _b =		53.81	[cm ²]	Cross-sectional area of a beam	
I _{yb} =	83	56.11	[cm ⁴]	Moment of inertia of the beam section	
Material	: S2	275			
f _{yb} =	275	5.00 [N	MPa] D	esign resistance	
f _{ub} =	430	0.00 [N	MPa] T	ensile resistance	
Angle					
Section:	CAE	100x1	0		
h _k =	I	10	0 [mm]	Height of angle section	7
b _k =		10	0 [mm]	Width of angle section	7
t _{fk} =		1	.0 [mm]	Thickness of the flange of angle section	
r _k =		1	.2 [mm]	Fillet radius of the web of angle section	7
l _k =		24	5 [mm]	Angle length	
Material	: S2	275			—
f _{yk} =	275	5.00 [N	MPa] [D	esign resistance	
f _{uk} =	430	0.00 [N	MPa] T	ensile resistance	
Bolts					
Bolts c	connectin	g colu	mn wit	h angle	
The she	ar plane pa	sses thro	ough the	UNTHREADED portion of the bolt.	
Class =	8.8		Bolt o	lass	
d =	22	[mm]	Bolt o	liameter	
d ₀ =	24	[mm]	Bolt o	pening diameter	
A _s =	3.03	[cm ²]	Effec	tive section area of a bolt	
A _v =	3.80	[cm ²]	Area	of bolt section	
f _{ub} =	800.00	[MPa]	Tens	le resistance	
k =	1		Numl	per of bolt columns	
w =	4		Num	per of bolt rows	
e1 =	33	[mm]	Leve	of first bolt	
p ₁ =	60	[mm]	Vertio	al spacing	
Bolts o	connectin	g angle	e with	beam	
The she	ar plane pa	sses thre	ough the	UNTHREADED portion of the bolt.	
Class =	8.8		Bolt o	lass	
d =	22	[mm]	Bolt o	liameter	
d ₀ =	24	[mm]	Bolt o	pening diameter	
A _s =	3.03	[cm ²]	Effec	tive section area of a bolt	
A _v =	3.80	[cm ²]	Area	of bolt section	
f _{ub} =	800.00	[MPa]	Tens	le resistance	
k =	1		Numl	per of bolt columns	
w =	4		Numl	per of bolt rows	
e1 =	33	[mm]	Leve	of first bolt	
p ₁ =	60	[mm]	Vertio	al spacing	
Mater	ial factor	S			
γ _{M0} =	1.00		Partia	I safety factor	[2.2]

γ _{M0} =		1.00		Partial safety factor						[2.2]
γ _{M2} =		1.25		Partial safety factor						[2.2]
Load	ls									
Case :	9: 10*	ULS / 1.50	1/ 1*1.3	5 + 2*1.35 + 3*1.35 + 4*1	.35 +	5*1.50) + 6*0.90) +	7*0.90 +	
N _{b,Ed} =	=	0.00	[kN]	Axial force						
V _{b,Ed} =	= 1	84.45	[kN]	Shear force						
M _{b,Ed} :	=	-0.00	[kN*m]	Bending moment						
Resu	lts									
Bolts	s con	nectin	ig colum	n with angle						
Bolt	capa	cities								
F _{v,Rd} =	145	.97 [(N] Shear	bolt resistance in the unthreaded	d portion	of a bol	t		F _{v,Rd} = 0.6*f _u	_b * Α _v *m/γ _{M2}
F _{t,Rd} =	174	.53 [H	(N] Tensi	le resistance of a single bolt	-				F _{t,Rd} = 0.	9*f _u *A _s /γ _{M2}
Bolt b	earin	g on th	e column	web			•			
Direct	ion x	-								
k _{1x} =		1.80	C	Coefficient for calculation of $F_{b,Rd}$		k _{1x} = 1	min[2.8*(e ₁ /	d ₀)-1	.7, 1.4*(p ₁ /d	₀)-1.7, 2.5]
$k_{1x} > 0$	0.0			1.80 > 0.00	V	/erified				
$\alpha_{bx} =$		1.00	С	oefficient for calculation of $F_{b,Rd}$				α _{bx} =	=min[e ₂ /(3*d	₀), f _{ub} /f _u , 1]
$\alpha_{bx} > 0$	0.0			1.00 > 0.00		verified				
F _{b,Rd1x}	= 12	9.41	[kN] B	earing resistance of a single bolt				Ft	_{o,Rd1x} =k _{1x} *α _b	_κ *f _u *d*t _i /γ _{M2}
Direct	ion z									
k _{1z} =		2.50	Co	pefficient for calculation of F _{b,Rd}			ł	(_{1z} =n	nin[2.8*(e ₂ /d	₀)-1.7, 2.5]
k _{1z} > ().0	1		2.50 > 0.00	Ve	erified				/_ /_
$\alpha_{bz} =$	0.	58	Coef	ricient for calculation of F _{b,Rd}		αь	$p_z = \min[e_1/(3)]$	ʻd ₀),	p ₁ /(3*d ₀)-0.2	25, f _{ub} /f _u , 1]
$\alpha_{bz} > 0$	0.0	04 05	ELN II	0.58 > 0.00	verified	1			1. *	+5 + 1+1 /
Fb,Rd1z	<u>= 1</u>	04.85	[KIN]	Bearing resistance of a single bo	DIL			Ft	$\alpha_{\rm Rd1z} = \kappa_{1z}^{\alpha} \alpha_{\rm bz}$	<u>z</u> ^Tu^ Ϥ ˆt _i /γ _{M2}
Bolt b	bearin	g on th	e angle							
Direct	ion x	1 0 0				<u> </u>		-1.) 4	7 4 4*/ /-	
$K_{1x} =$		1.80	0			K _{1x} =I	$min[2.8^{(e_1/e_1/e_1/e_1/e_1/e_1/e_1/e_1/e_1/e_1/$	d ₀)-1	.7, 1.4^(p ₁ /d	₀)-1.7, 2.5]
κ _{1x} > ().0	0 10	6	1.80 > 0.00	V	/enned			-min[o //2*d) f /f 11
$\alpha_{bx} - \alpha_{bx} > 0$	2.0	0.49	C			vorified		α _{bx} -	-mm[e ₂ /(3 u	0), lub/lu, l]
$\alpha_{bx} > 0$	- 6	6 22		earing resistance of a single bolt		vermeu		E.	k. *a.	*f *d*t////
Direct	ion z	0.22						1	D,Rd2x-K1x Ub	(iu u u/γm2
k ₁₇ =		2.38	Co	Defficient for calculation of Fb.Rd			ŀ	(₁,=m	nin[2.8*(e ₂ /d	a)-1.7. 2.51
$k_{1z} > 0$).0		1-	2.38 > 0.00	Ve	erified	-			o,,]
$\alpha_{bz} =$	0.	45	Coef	ficient for calculation of F _{b,Rd}		αь	_z =min[e ₁ /(3*	'd ₀),	p ₁ /(3*d ₀)-0.2	25, f _{ub} /f _u , 1]
α_{bz} > (0.0		l	0.45 > 0.00	verified					-
F _{b,Rd2z}	=	81.42	[kN]	Bearing resistance of a single bo	olt			F	$_{\rm 0,Rd2z}$ = $k_{1z}^*\alpha_{bz}$	z*f _u *d*t _i /γ _{M2}
Forc	es ac	ting o	n bolts i	n the column - angle conn	ection					
Bolt s	hear	U								
e =	69	[mm]	Distance b beam web	etween centroid of a bolt group o	of an ang	le and c	enter of the			
M ₀ =	6.32	2 [kN*m]	Real bend	ing moment					M ₀ =0	0.5*V _{b,Ed} *e
F _{Vz} =	23.0	[kN]	Componer	nt force in a bolt due to influence	of the sh	ear force	e		F _{Vz} =0	.5* V _{b,Ed} /n

Bolt s	hear									
e =	69	[mm]	Distance between centroid beam web	of a bolt group of	an angle ar	nd center of	the			
F _{Mx} =	31.6 1	[kN]	Component force in a bolt o	mponent force in a bolt due to influence of the moment $F_{Mx}= M_0 ^*z_i/\sum z_i^2$						
F _{x,Ed}	31.6 1	[kN]	Design total force in a bolt o	on the direction x				$F_{x,Ed} = F_{Nx} + F_{Mx}$		
F _{z,Ed} =	23.0 6	[kN]	Design total force in a bolt o	on the direction z				$F_{z,Ed} = F_{Vz} + F_{Mz}$		
F _{Ed} =	39.1 3	[kN]	Resultant shear force in a b	oolt				$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$		
F _{Rdx} =	66.2 2	[kN]	Effective design capacity of	ective design capacity of a bolt on the direction x						
F _{Rdz} =	81.4 2	[kN]	Effective design capacity of	a bolt on the dire	ection z			F _{Rdz} =min(F _{bRd1z} , F _{bRd2z})		
$ F_{x,Ed} $	≤ F _{Rdx}			31.61 < 66	.22	verified		(0.48)		
F _{z,Ed}	≤ F _{Rdz}			23.06 < 81	.42	verified		(0.28)		
F _{Ed} ≤	F _{v,Rd}			39.13 < 145.	97	verified		(0.27)		
Bolt t	ension						•			
e =	70	[mm]	Distance between centroid web	of a bolt group a	nd center of	column				
M _{0t} =	6.43	[kN*m]	Real bending moment	Real bending moment M _{0t} =0.5*(
F _{t,Ed} =	$F_{t,Ed} = \begin{bmatrix} 32 \cdot 1 \\ 6 \end{bmatrix} [kN]$ Tensile force in the outermost bolt $F_{t,Ed} = M_{0t} * Z_{max} / \sum_{i=1}^{2} F_{t,Ed} = M_{0t} * Z_{max} / \sum_{i=1}^{2} F$						$F_{t,Ed} = M_{0t} * z_{max} / \sum_{i}^{2} + 0.5 * N_{b2,Ed} / n$			
F _{t,Ed} ≤	$F_{t,Rd}$		•	32.16 < 174.	53	verified		(0.18)		
Simul	taneou	us acti	on of a tensile force and a	shear force in a	a bolt					
F _{v.Ed} =	: 3	9.13	[kN] Resultant shear	force in a bolt			F	$v_{\text{Ed}} = \sqrt{[F_{x \text{Ed}}]^2 + [F_{z \text{Ed}}]^2]}$		
F _{v Ed} /F	$F_{v Rd} + F$	-t Ed/(1.	4*Ft Rd) ≤ 1.0	0.40 < 1.00		verified		(0.40)		
Rolts	conn	ectin	σ angle with heam	I						
Dolta Dolta			g angle with beam							
BOIL	сарас	illes								
F _{v,Rd} =	:291.	94 [k	N] Shear bolt resistance in	n the unthreaded	portion of a	bolt	F	$v_{v,Rd}$ = 0.6*f _{ub} *A _v *m/ γ_{M2}		
Bolt b	earing	on th	e beam							
Direct	ion x									
k _{1x} =	1	.80	Coefficient for cale	culation of F _{b,Rd}	k1	_x = min[2.8*(e ₁ /d ₀)-1.7	7, 1.4*(p ₁ /d ₀)-1.7, 2.5]		
$k_{1x} > 0$).0		1.8	80 > 0.00	verifi	ed				
$\alpha_{bx} =$	0	.69	Coefficient for calc	ulation of F _{b,Rd}			α _{bx} =	min[e ₂ /(3*d ₀), f _{ub} /f _u , 1]		
$\alpha_{bx} > 0$	0.0		0.	69 > 0.00	verit	ied				
F _{b,Rd1x}	= 67	.17	[kN] Bearing resistance	e of a single bolt			F _{b,}	$_{Rd1x}$ = k_{1x} * α_{bx} * f_{u} * d * t_{i} / γ_{M2}		
Direct	ion z									
k _{1z} =	2	.50	Coefficient for calcu	ulation of F _{b,Rd}			k _{1z} =mi	n[2.8*(e ₂ /d ₀)-1.7, 2.5]		
$k_{1z} > 0$).0		2.5	0 > 0.00	verifie	d				
α_{bz} =	0.5	58	Coefficient for calculat	tion of F _{b,Rd}		α _{bz} =min[e ₁	/(3*d ₀), p	o1/(3*d ₀)-0.25, f _{ub} /f _u , 1]		
$\alpha_{bz} > 0$	0.0		0.58 >	0.00	verified					
F _{b,Rd1z}	= 7	8.36	[kN] Bearing resistan	ce of a single bo	lt		F _{b,}	$_{Rd1z}$ = k_{1z} * α_{bz} * f_{u} * d * t_{i}/γ_{M2}		
Bolt b	earing	on th	e angle							
Direct	ion x									
k _{1x} =	1	1.80	Coefficient for cal	culation of F _{b,Rd}	ŀ	(1x=min[2.8*)	e ₁ /d ₀)-1.	7, 1.4*(p ₁ /d ₀)-1.7, 2.5]		

	^				1 0			I		
$K_{1x} > 0$.0				1.8	30 > 0.00	veriti	ea		
$\alpha_{bx} =$	0	.49		Coefficient	for calc	ulation of F _{b,Rd}			α_{i}	$_{bx}=min[e_2/(3*d_0), f_{ub}/f_u, 1]$
$\alpha_{bx} > 0$	0.0				Ο.	49 > 0.00	veri	fied		
$F_{b,Rd2x}$	= 132	.44	[kN]	Bearing re	sistance	e of a single bolt				$F_{b,Rd2x}=k_{1x}^*\alpha_{bx}^*f_u^*d^*t_i/\gamma_{M2}$
Directi	on z									
k _{1z} =	2	.38		Coefficient	for calc	ulation of F _{b,Rd}			k _{1z} =	=min[2.8*(e ₂ /d ₀)-1.7, 2.5]
k _{1z} > 0	.0				2.3	8 > 0.00	verifie	d		
$\alpha_{bz} =$	0.4	5	С	oefficient for	calculat	tion of F _{b,Rd}		α_{bz} =min	[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
$\alpha_{bz} > 0$	0.0		1	C	.45 >	0.00	verified			
F _{b.Rd2z}	= 16	2.83	[kN]	Bearing	resistan	ce of a single bo	olt			$F_{b,Rd2z} = k_{1z} \alpha_{bz} f_{\mu} d^{t}_{i}/\gamma_{M2}$
Force	es act	ίησ Δι	n holf	s in the ar	ole - l	eam connec	tion			
Bolte	hoar	ing vi		.5 in the ar			tion			
	70	[mm]	Dieter	an hotwoon	oontroid	l of a halt group	and contar a	foolumn	wah	
e –	12 0	[[1]]	Distai	ice between	centroic	i ol a bolt gloup	and center o	Column	web	
M ₀ =	12.0]	Real b	pending mor	ent					M ₀ =M _{b,Ed} +V _{b,Ed} *e
F _{Nx} =	0.00	[kN]	Comp	onent force i	n a bolt	due to influence	of the longit	udinal for	ce	F _{Nx} = N _{b,Ed} /n
F _{Vz} =	46.1 1	[kN]	Comp	onent force i	n a bolt	due to influence	of the shear	force		F _{Vz} = V _{b,Ed} /n
F _{Mx} =	64.3 3	[kN]	Comp direct	onent force i	n a bolt	due to influence	of the mome	ent on the	х	$F_{Mx} = M_0 ^* z_i / \sum (x_i^2 + z_i^2)$
F _{Mz} =	0.00	[kN]	Comp direct	onent force i	n a bolt	due to influence	of the mome	ent on the	z	$F_{Mz} = M_0 ^* x_i / \sum (x_i^2 + z_i^2)$
F _{x,Ed} =	64.3 3	[kN]	Desig	n total force i	n a bolt	on the direction	x			$F_{x,Ed} = F_{Nx} + F_{Mx}$
F _{z,Ed} =	46.1 1	[kN]	Desig	n total force i	n a bolt	on the direction	z			$F_{z,Ed} = F_{Vz} + F_{Mz}$
F _{Ed} =	79.1 5	[kN]	Resul	tant shear fo	rce in a	bolt				$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$
F _{Rdx} =	67.1 7	[kN]	Effect	ive design ca	pacity o	of a bolt on the d	irection x			F _{Rdx} =min(F _{bRd1x} , F _{bRd2x})
F _{Rdz} =	78.3 6	[kN]	Effect	ive design ca	pacity o	of a bolt on the d	irection z			F _{Rdz} =min(F _{bRd1z} , F _{bRd2z})
IF _{x Ed} l :	≤ F _{Rdx}	I				64.33 < 6	7.17	verified		(0.96)
IF _{z Ed}	≤ F _{Rdz}					46.11 < 78	3.36	verified		(0.59)
$F_{Ed} \leq F$	v.Rd					79.15 < 291	.94	verified		(0.27)
Vorif	"aatio	n of f	h o co	ation due	to blo	alt tooring (o	rial farma)			
vern	Icatio		ine se	ction due		ek tearing (a	xiai iorce)			
Angl	e									
A _{nt} =	10.	30 [cm²]Net a	rea of the se	ction in	tension				
A _{nv} =	4.	60 [cm²	²]Area	of the section	n in she	ar				
V _{effRd} =	444.	55 [kN]] Desię	gn capacity o	f a secti	on weakened by	/ openings	١	/ _{effRd} =f _u */	A _{nt} /γ _{M2} + (1/√3)*f _y *A _{nv} /γ _{M0}
0.5*Nt	_{b,Ed} ≤∖	/ _{effRd}			0.00	< 444.55	ver	ified		(0.00)
Bean	1									
A _{nt} =	7.	67 [0	cm ²]	Net area of	he sect	ion in tension				
A _{nv} =	5.	40 [0	cm ²]	Area of the	section i	in shear				
V _{effRd} =	349.	45 [[kN]	Design capa	city of a	a section weaker	ned by openi	ngs \	/ _{effRd} =f _u */	A _{nt} /γ _{M2} + (1/√3)*f _v *A _{nv} /γ _{M0}
N _{b,Ed}	≤ V _{effRd}					0.00 < 349	9.45	verified		(0.00)
Verif	icatio	n of t	he se	ction due	to blo	ck tearing (c	hear force)		
	icatit	11 01 1		cuon uut	10 010	in that mg (8		,		
Angle	e									

A _{nt} = 2.30 [cm ²] Net area of the section in tension		
$A_{nv} = 12.85 [cm^2]$ Area of the section in shear		
V _{effRd} = 243.58 [kN] Design capacity of a section weakened by openings	V _{effRd} =0.5	$f_{u}^{*}A_{nt}/\gamma_{M2} + (1/\sqrt{3})^{*}f_{y}^{*}A_{nv}/\gamma_{M0}$
$ 0.5*V_{b,Ed} \le V_{effRd}$ 92.22 < 243.58	erified	(0.38)
Beam		
$A_{nt} = \begin{bmatrix} 2.70 \\ [cm2] \end{bmatrix}$ Net area of the section in tension		
$A_{nv} = [11.08]$ [cm ²] Area of the section in shear		
V _{effRd} = 222.26 [kN] Design capacity of a section weakened by ope	nings V _{effRd} =0.5	$f_{u}^{A_{nt}/\gamma_{M2}} + (1/\sqrt{3})^{f_{y}^{A_{nv}/\gamma_{M0}}}$
$ V_{b,Ed} \le V_{effRd}$ 184.45 < 222.26	verified	(0.83)
Verification of angle section weakened by openings		
At = 12.25 [cm ²] Area of tension zone of the gross section	n	
$A_{t,net} = 7.45$ [cm ²] Net area of the section in tension		
$0.9^{*}(A_{t,net}/A_{t}) \ge (f_{y}^{*}\gamma_{M2})/(f_{u}^{*}\gamma_{M0}) \qquad 0.55 < 0.80$		
W _{net} = 89.46 [cm ³] Elastic section modulus		
M _{c,Rdnet} = 24.60 [kN*m] Design resistance of the section for bending	g	$M_{c,Rdnet} = W_{net} * f_{yp} / \gamma_{M0}$
$ M_0 \le M_{c,Rdnet}$ 6.43 < 24.60	verified	(0.26)
$A_v = 24.50$ [cm ²] Effective section area for shear		A _v = I _a *t _{fa}
V _{pl,Rd} = 388.99 [kN] Design plastic resistance for shear		$V_{pl,Rd}=(A_v*f_y)/(\sqrt{3}*\gamma_{M0})$
$ 0.5^*V_{b,Ed} \le V_{pl,Rd}$ 92.22 < 388.99	verified	(0.00)
Verification of a beam section weakened by openings		
A _t = 10.65 [cm ²] Area of tension zone of the gross section	n	
$A_{t,net} = 7.24$ [cm ²] Net area of the section in tension		
$0.9^{*}(A_{t,net}/A_{t}) \ge (f_{y}^{*}\gamma_{M2})/(f_{u}^{*}\gamma_{M0}) \qquad 0.61 < 0.80$		
W _{net} = 94.09 [cm ³] Elastic section modulus		
M _{c,Rdnet} = 25.88 [kN*m] Design resistance of the section for bending	g	$M_{c,Rdnet} = W_{net} f_{yp} / \gamma_{M0}$
$ M_0 \le M_{c,Rdnet}$ 12.87 < 25.88	verified	(0.50)
$A_v = 21.30$ [cm ²] Effective section area for shear		
A _{v,net} = 14.48 [cm ²] Net area of a section effective for shear		A _{vnet} =A _v -n _v *d ₀
V _{pl,Rd} = 338.18 [kN] Design plastic resistance for shear		$V_{pl,Rd} = (A_{v,net} f_y) / (\sqrt{3} \gamma_{M0})$

Connection conforms to the code

Ratio 0.96

	A 7 /	<u>~</u> ′	10	,	C /	c /
LINGRAC A 4.	Δποτελεσματα	C I CMMON	σ uvac σ nc	VATAVAANAAN	σ was σ was σ was σ	$\lambda M \omega $
111744445 7.7.	Anoishcouutu	GIGYIUU		καιακορύψων	0000000000	000 Kuu ψ iu \Box .
	•	110	17			

Beams and columns

Name	Cross- section	β – Direction [°]	γ- Pitch [°]	α - Rotation [°]	Offset ex [mm]	Offset ey [mm]	Offset ez [mm]	Forces in
С	7 - HEA340A	0.0	-90.0	0.0	0	0	0	Node
B1	6 - IPE300	-90.0	0.0	0.0	0	0	0	Node
D2	5 - CHS120,6.3	-90.0	45.0	0.0	0	0	0	Node

Cross-sections

Name	Material
7 - HEA340A	S 275
6 - IPE300	S 275
5 - CHS120,6.3	S 235
9 - L100X10	S 275

Bolts

Name	Bolt assembly	Diameter [mm]	fu [MPa]	Gross area [mm ²]
M22 8.8	M22 8.8	22	800.0	380
M20 8.8	M20 8.8	20	800.0	314

Load effects (equilibrium not required)

Name	Member	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
LE1	B1	0.0	10.9	35.5	0.0	0.0	0.0
	D2	401.8	0.0	0.0	0.0	0.0	0.0

Check Summary

Name	Value	Status
Analysis	100.0%	OK
Plates	0.8 < 5%	OK
Bolts	88.7 < 100%	OK
Welds	99.9 < 100%	OK
Buckling	Not calculated	

Plates

Name	Material	Thickness	Loads	σ _{Ed} [MPa]	٤_{Pl} г%1	Status
		[]			[/0]	
C-bfl 1	S 275	11.5	LE1	194.3	0.0	OK
C-tfl 1	S 275	11.5	LE1	137.0	0.0	OK
C-w 1	S 275	8.5	LE1	275.1	0.1	OK
B1-bfl 1	S 275	10.7	LE1	151.6	0.0	OK
B1-tfl 1	S 275	10.7	LE1	115.9	0.0	OK
B1-w 1	S 275	7.1	LE1	271.3	0.0	OK
D2	S 235	6.3	LE1	236.7	0.8	OK
CLEAT1 a-bfl 1	S 275	10.0	LE1	275.1	0.1	OK
CLEAT1 a-w 1	S 275	10.0	LE1	275.1	0.0	OK
CLEAT1 b-bfl 1	S 275	10.0	LE1	178.9	0.0	OK
CLEAT1 b-w 1	S 275	10.0	LE1	220.1	0.0	OK
SP1	S 275	20.0	LE1	275.4	0.2	OK
CPL1	S 275	15.0	LE1	275.8	0.4	OK

STIFF1a	S 275	15.0	LE1	155.8	0.0	OK
STIFF1b	S 275	15.0	LE1	147.6	0.0	OK
WID1	S 275	15.0	LE1	271.3	0.0	OK

Design data

Material	f _y [MPa]	ε _{lim} [%]
S 275	275.0	5.0
S 235	235.0	5.0

Symbol explanation

ε _{Pl}	Strain
σ_{Ed}	Eq. stress
f _y	Yield strength
ε _{lim}	Limit of plastic strain

Bolts

	Name	Grade	Loads	F _{t,Ed} [kN]	V [kN]	Ut _t [%]	F _{b,Rd} [kN]	Ut _s [%]	Ut _{ts} [%]	Status
	B1	M22 8.8 - 1	LE1	12.3	11.6	7.1	103.4	17.0	15.0	OK
	B2	M22 8.8 - 1	LE1	4.1	9.5	2.4	107.7	14.4	9.8	OK
+++++++	B3	M22 8.8 - 1	LE1	4.6	8.5	2.6	109.0	12.7	9.2	OK
	B4	M22 8.8 - 1	LE1	12.0	8.4	6.9	107.2	11.4	12.1	ОК
	B5	M22 8.8 - 2	LE1	31.7	2.3	18.2	115.3	2.0	15.0	OK
	B6	M22 8.8 - 2	LE1	5.6	3.0	3.2	160.8	2.6	4.9	OK
₽₽₽₽	B7	M22 8.8 - 2	LE1	6.9	4.5	4.0	160.8	3.9	6.7	OK
	B8	M22 8.8 - 2	LE1	38.6	6.0	22.1	101.1	6.0	21.0	ОК
	B9	M22 8.8 - 2	LE1	22.4	1.4	12.9	160.8	1.2	10.4	OK
	B10	M22 8.8 - 2	LE1	2.9	2.5	1.7	160.8	2.1	3.3	OK
$ +^{12}+^{11}+^{10}+^{9} $	B11	M22 8.8 - 2	LE1	4.1	3.8	2.3	160.8	3.2	4.9	OK

	B12	M22 8.8 - 2	LE1	30.2	4.7	17.3	88.9	5.3	16.4	OK
	B13	M20 8.8 - 3	LE1	29.0	69.3	20.5	132.5	73.6	88.3	OK
181718 1314 1314 15	B14	M20 8.8 - 3	LE1	0.9	65.8	0.6	127.5	69.9	70.4	OK
	B15	M20 8.8 - 3	LE1	6.4	64.0	4.5	127.5	68.0	71.3	OK
	B16	M20 8.8 - 3	LE1	28.9	69.7	20.5	132.5	74.1	88.7	OK
	B17	M20 8.8 - 3	LE1	0.2	67.0	0.1	127.5	71.2	71.3	OK
	B18	M20 8.8 - 3	LE1	5.9	66.2	4.2	127.5	70.4	73.4	OK

Design data

Name	F _{t,Rd} [kN]	B _{p,Rd} [kN]	F _{v,Rd} [kN]	
M22 8.8 - 1	174.5	223.7	116.4	
M22 8.8 - 2	174.5	190.2	116.4	
M20 8.8 - 3	141.1	306.4	94.1	

Symbol explanation

$F_{t,Rd}$	Bolt tension resistance EN 1993-1-8 tab. 3.4
$F_{t,Ed}$	Tension force
$B_{\text{p,Rd}}$	Punching shear resistance
V	Resultant of shear forces Vy, Vz in bolt
$F_{v,Rd}$	Bolt shear resistance EN_1993-1-8 table 3.4
$F_{\text{b},\text{Rd}}$	Plate bearing resistance EN 1993-1-8 tab. 3.4
Utt	Utilization in tension
Uts	Utilization in shear
Ut _{ts}	Utilization in tension and shear EN 1993-1-8 table 3.4
10	

Welds (Plastic redistribution)

Item	Edge	Materi al	Thro at th. [mm]	Lengt h [mm]	Load s	σ _{w,Ed} [MP a]	ε _{ΡΙ} [%]	σ [MP a]	т _{іі} [MP а]	т _□ [MP а]	Ut [%]	Ut _c [%]	Statu s
B1- bfl 1	SP1	S 275	□6.0 □	370	LE1	396. 7	0. 0	241. 7	-41.4	- 176. 8	98. 0	58. 1	ОК
		S 275	□6.0 □	370	LE1	133. 3	0. 0	31.1	-73.8	12.3	32. 9	20. 3	OK
CPL 1	D2-arc 15	S 235	□6.3	200	LE1	353. 1	0. 2	-53.1	201. 2	11.6	98. 1	40. 6	OK
CPL	D2-arc	S 235	□6.3	200	LE1	353.	0.	-52.3	- 201.	11.9	98.	40.	OK

1	18					1	2		2		1	9	
CPL 1	D2-arc 47	S 235	□6.3	200	LE1	353. 1	0. 2	-52.1	201. 3	12.1	98. 1	40. 6	ОК
CPL 1	D2-arc 50	S 235	□6.3	200	LE1	353. 1	0. 2	-53.4	- 201. 2	11.5	98. 1	40. 9	ОК
C-bfl 1	STIFF1 a	S 275	□5.0 □	119	LE1	167. 8	0. 0	-10.9	-96.7	-2.3	41. 5	28. 0	ОК
		S 275	□5.0 □	119	LE1	149. 2	0. 0	10.8	85.9	-2.1	36. 9	23. 0	ОК
C-w 1	STIFF1 a	S 275	□5.0 □	243	LE1	398. 9	1. 4	234. 5	-6.1	186. 2	98. 6	49. 7	ОК
		S 275	□5.0 □	243	LE1	398. 0	0. 9	140. 8	8.5	- 214. 8	98. 3	27. 1	ОК
C-tfl 1	STIFF1 a	S 275	□5.0 □	119	LE1	157. 4	0. 0	-7.5	90.8	1.3	38. 9	26. 6	ОК
		S 275	□5.0 □	119	LE1	140. 1	0. 0	13.7	-80.4	-4.9	34. 6	21. 9	ОК
C-bfl 1	STIFF1 b	S 275	□5.0 □	119	LE1	138. 4	0. 0	15.0	-79.1	7.2	34. 2	22. 4	ОК
		S 275	□5.0 □	119	LE1	146. 1	0. 0	-21.8	82.2	14.1	36. 1	24. 6	ОК
C-w 1	STIFF1 b	S 275	□5.0 □	243	LE1	397. 4	0. 5	116. 2	-7.5	219. 3	98. 2	27. 2	ОК
		S 275	□5.0 □	243	LE1	398. 0	0. 9	244. 7	9.2	- 181. 0	98. 4	46. 9	ОК
C-tfl 1	STIFF1 b	S 275	□5.0 □	119	LE1	114. 7	0. 0	13.3	65.6	5.0	28. 3	18. 1	ОК
		S 275	□5.0 □	119	LE1	137. 9	0. 0	-2.0	-79.4	-6.2	34. 1	23. 9	ОК
C-w 1	SP1	S 275	□6.0 □	380	LE1	403. 4	4. 2	152. 9	-85.6	197. 8	99. 7	41. 5	ОК
		S 275	□6.0 □	380	LE1	396. 6	0. 0	97.0	220. 1	29.3	98. 0	32. 2	ОК
C-w 1	WID1	S 275	□6.0 □	90	LE1	404. 4	4. 8	169. 2	35.9	209. 0	99. 9	69. 7	ОК
		S 275	□6.0 □	90	LE1	399. 9	2. 1	259. 2	37.5	- 171. 8	98. 8	76. 7	ОК
B1- tfl 1	WID1	S 275	□6.0 □	100	LE1	396. 8	0. 1	139. 2	206. 8	57.1	98. 1	52. 9	OK
		S 275	□6.0 □	100	LE1	390. 9	0. 0	51.2	- 104. 8	- 197. 6	96. 6	46. 3	ОК

Design data

	β _w [-]	σ _{w,Rd} [MPa]	0.9 σ [MPa]		
S 275	0.85	404.7	309.6		
S 235	0.80	360.0	259.2		

Symbol explanation

ε _{Pl}	Strain
$\sigma_{w,\text{Ed}}$	Equivalent stress
$\sigma_{w,\text{Rd}}$	Equivalent stress resistance
σ_{\Box}	Perpendicular stress
т	Shear stress parallel to weld axis
T□	Shear stress perpendicular to weld axis
0.9 σ	Perpendicular stress resistance - 0.9*fu/γM2
β_w	Corelation factor EN 1993-1-8 tab. 4.1
Ut	Utilization
Utc	Weld capacity utilization

Buckling

Buckling analysis was not calculated.

Code settings

Item	Value	Unit	Reference
Умо	1.00	-	EN 1993-1-1: 6.1
<u>Үм</u> 1	1.00	-	EN 1993-1-1: 6.1
Y _{M2}	1.25	-	EN 1993-1-1: 6.1
Үмз	1.25	-	EN 1993-1-8: 2.2
Yc	1.50	-	EN 1992-1-1: 2.4.2.4
Yinst	1.20	-	ETAG 001-C: 3.2.1
Joint coefficient βj	0.67	-	EN 1993-1-8: 6.2.5
Effective area - influence of mesh size	0.10	-	
Friction coefficient - concrete	0.25	-	EN 1993-1-8
Friction coefficient in slip-resistance	0.30	-	EN 1993-1-8 tab 3.7
Limit plastic strain	0.05	-	EN 1993-1-5

Weld stress evaluation	Plastic redistribution		
Detailing	No		
Distance between bolts [d]	2.20	-	EN 1993-1-8: tab 3.3
Distance between bolts and edge [d]	1.20	-	EN 1993-1-8: tab 3.3
Concrete breakout resistance	Yes		ETAG 001-C
Use calculated αb in bearing check.	Yes		EN 1993-1-8: tab 3.4
Cracked concrete	No		
Local deformation check	No		
Local deformation limit	0.03	-	CIDECT DG 1, 3 - 1.1
Geometrical nonlinearity (GMNA)	Yes		Large deformations for hollow sections