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Cover:
• On the upper left navigation of a point agent in an unknown 3-dimensional sphere
world using the proposed automatically tuned Navigation Function is shown and
compared to a manually tuned Navigation Function trajectory.

• On the upper middle a point agent navigates a known 3-dimensional everywhere
partially sufficiently curved world, which includes tori, ellipsoids of one bounded
eccentricity and a partially sufficiently curved supertorus.

• On the upper right the obstacle function resulting as the solution of the partial
differential equation of the Navigation Function inverse problem is shown. The
experimental trajectories used are from grasping experiments.

• On the lower left the trajectories using the previous obstacle function are compared
to the experimental ones, within a principal component subspace of the hand con-
figuration space.

• On the lower middle a human hand is driven using the Navigation Function with the
B-Spline obstacle function found.

• On the lower right, local Linear Temporal Logic specifications are provided to indi-
vidual agents of a multi-agent system, each synthesizes a hybrid controller, then
decentralized verification occurs and where needed, the connectivity is triggered
and maintained utilizing follower agents.
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Chapter 1

Preface

1.1 Abstract

This work has four main contributions:

1. Extending Navigation Functions for exploring unknown sphere worlds;
2. Extending Navigation Functions for everywhere partially sufficiently curved worlds;
3. Formulating and solving the inverse problem of finding an unknown obstacle func-
tion corresponding to experimental trajectories to use it in a Navigation Function;

4. Decentralized hybrid control of Multi-Agent systems from local Linear Temporal
Logic specifications under limited communication using Navigation Functions.

The first one is provided in Part I and extends Koditschek-Rimon Navigation Functions
to unknown sphere worlds, for which automatic tuning of the exponent parameter is de-
veloped. This algorithm replaces previous manual tuning with provably correct automatic
tuning. The lower bound used is here improved by orders of magnitude compared to the
original proof. The computational complexity of updating for discovered obstacles is here
examined. An updating algorithm with computational complexity linear in the number of
already discovered obstacles is constructed. Moreover, Navigation Functions are extended
for unbounded worlds. This work has been published in [125].

The second one, Part II, concerns the extension of Koditschek-Rimon Navigation func-
tions to complicated geometries and topologies without the need for diffeomorphisms.
The most general class of worlds to which this type of Navigation Functions is directly
applicable is investigated. This leads to a geometric condition characterizing tractable
worlds. In particular, those worlds which are everywhere partially sufficiently curved,
that is, those worlds for which every obstacle boundary point has at least one sufficient
principal curvature. A principal curvature is termed sufficient if its associated tangent
sphere with diameter the radius of principal curvature is included within the obstacle. The
Navigation Function theory is then reformulated and proved for these worlds. This work
has been submitted as [124].

In Part III the Inverse Problem of Navigation Functions is considered. It consists of
finding an obstacle function from available feasible trajectories measured in experiments.
This obstacle function should be such, that using it in a Koditschek-Rimon Navigation
Function will solve the Motion Planning problem similarly to the experimental trajectories.
The problem is formulated as the solution of a Partial Differential Equation by gradient
minimization of an appropriately selected cost functional. The successful solution depends
on the construction of this functional, which requires careful consideration.
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The application of this newmethod is demonstrated using results from human grasping
experiments. By training the Navigation Function in the primary principal component
subspace of the hand configuration space, grasping hand movements very similar to those
produced by humans are achieved. This work has been submitted as [126].

The work in Part IV considers Multi-Agent systems. Local Linear Temporal Logic (LTL)
specifications are independently provided to each agent. Then each constructs a hybrid
controller comprised of a discrete supervising automaton resulting from the LTL and con-
tinuous Navigation Function controllers. Moreover, connectivity maintenance control is im-
plemented between agents requesting it, when triggered by their specifications. Follower
agents are utilized to maintain this connectivity. Formal verification of the constructed
controllers takes place by Model Checking when agents acquire path-connectedness and
can interchange their languages and automata. This work has been submitted as [123].

1.2 Περίληψη

Η εργασία αυτή περιλαμβάνει τέσσερεις κύριες συνεισφορές:
1. Επέκταση της μεθόδου των Συναρτήσεων Πλοήγησης (Navigation Functions) για
την εξερεύνηση άγνωστων σφαιρικών κόσμων·

2. Επέκταση της μεθόδου των Συναρτήσεων Πλοήγησης σε κόσμους μερικώς ικανώς
καμπύλους σε κάθε συνοριακό σημείο·

3. Διατύπωση και επίλυση του Αντίστροφου Προβλήματος εύρεσης μίας άγνωστης
συνάρτησης εμποδίου, αντιστοιχούσας σε πειραματικώς καταγεγραμμένες τροχιές,
προς χρήση εντός μίας Συνάρτησης Πλοήγησης·

4. Αποκεντρωμένος υβριδικός έλεγχος πολυ-πρακτορικών συστημάτων από προδια-
γραφές διατυπωμένες σε Γραμμική Χρονική Λογική, υπό περιορισμένες δυνατότητες
επικοινωνίας, με χρήση Συναρτήσεων Πλοήγησης.

Η πρώτη συνεισφορά αποτελεί το αντικείμενο του Μέρος I και επεκτείνει τη μορφή των
Συναρτήσεων Πλοήγησης κατά Koditschek-Rimon σε άγνωστους σφαιρικούς χώρους, για
τους οποίους αναπτύσσεται η αυτόματη ρύθμιση της παραμέτρου του εκθέτη. Ο αλγόριθ-
μος αυτός αντικαθιστά την πρώτερη ανθρώπινη ρύθμιση με αποδεδειγμένα ορθή αυτόματη
ρύθμιση. Το εδώ χρησιμοποιούμενο ελάχιστο όριο της παραμέτρου είναι βελτιωμένο κατά
τάξεις μεγέθους συγκρινόμενο με την αρχική απόδειξη. Εξετάζεται και η υπολογιστική
πολυπλοκότητα ανανέωσης για νεο-ευρεθέντα εμπόδια. Κατασκευάζεται ένας αλγόριθμος
ανανέωσης με γραμμική υπολογιστική πολυπλοκότητα ως προς το πλήθος των ήδη ανα-
καλυφθέντων εμποδίων. Επιπροσθέτως, οι Συναρτησεις Πλοήγησης επεκτεινονται και σε
μη φραγμένους χώρους. Η εργασία αυτή έχει δημοσιευθεί στο [125].

Η δεύτερη συνεισφορά, Μέρος II, αφορά στην επέκταση των Συναρτήσεων Πλοήγη-
σης τύπου Koditschek-Rimon σε περίπλοκες γεωμετρίες και τοπολογίες δίχως την ανάγκη
χρήσης Διαφορίσιμων Απεικονίσεων Χώρου (Diffeomorphisms). Συγκεκριμένα, διερευνά-
ται ποιά είναι η πλέον γενική κατηγορία κόσμων στους οποίους είναι εφαρμόσιμος αυτός
ο τύπος Συναρτήσεων Πλοήγησης. Τούτο οδηγεί σε μία γεωμετρική συνθήκη η οποία χα-
ρακτηρίζει τους αποδεκτούς κόσμους. Συγκεκριμένα, πρόκειται για τους χώρους οι οποίοι
είναι παντού μερικώς αρκούντως καμπύλοι, δηλαδή εκείνοι στους οποίους κάθε συνοριακό
σημείο εμποδίου διαθέτει τουλάχιστον μία ικανή κύρια καμπυλότητα. Μία κύρια καμπυλό-
τητα ονομάζεται ικανή εφόσον η σε αυτή αντιστοιχούσα εφαπτόμενη σφαίρα, με διάμετρο
την ακτίνα της κύριας καμπυλότητας, περιλαμβάνεται εντός του εμποδίου. Κατόπιν, η θε-
ωρία των Συναρτήσεων Πλοήγησης επαναδιατυπώνεται και αποδεικνύεται για αυτούς τους
κόσμους. Η εργασία αυτή έχει υποβληθεί στο [124].
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Στο Μέρος III θεωρείται το Αντίστροφο Πρόβλημα των Συναρτήσεων Πλοήγησης.
Συνίσταται στην εύρεση μίας συνάρτησης εμποδίου από διαθέσιμες πραγματοποιήσιμες
τροχιές καταγραφείσες σε πειράματα. Η συνάρτηση εμποδίου οφείλει να είναι τέτοια, ώστε
η αντικατάστασή εντός μίας Συνάρτησης Πλοήγησης τύπου Koditschek-Rimon να επιλύει
το Πρόβλημα Σχεδιασμού Κίνησης παρομοίως με τις πειραματικές τροχιές. Το πρόβλημα
διατυπώνεται ως η επίλυση μίας Μερικής Διαφορικής Εξίσωσης με ελαχιστοποίηση διά από-
τομης καθόδου ενός καταλλήλως επιλεγμένου συναρτησιακού κόστους. Η επιτυχής λύση
εξαρτάται από την κατασκευή τούτου του συναρτησιακού, η οποία απαιτεί προσεκτική
μελέτη.

Η νέα μέθοδος αναδεικνύεται με εφαρμογή της χρησιμοποιώντας αποτελέσματα από
πειράματα αρπαγής αντικειμένων από ανθρώπους. Εκπαιδεύοντας μία Συνάρτηση Πλοή-
γησης στον πρωτεύοντα υπόχωρο του ιδιοσυστήματος στο χώρο στάσης (Configuration
Space) του ανθρωπίνου χεριού, αναπαράγονται αυτομάτως κινήσεις αρπαγής με χέρι πολύ
παρόμοιες με τις ανθρώπινες. Η εργασία αυτή έχει υποβληθεί στο [126].

Η εργασία στο Μέρος IV αφορά σε πολυ-πρακτορικά συστήματα. Σε κάθε πράκτορα δί-
νονται τοπικώς προδιαγραφές διατυπωμένες σε Γραμμική Χρονική Λογική (Linear Temporal
Logic - LTL), ανεξαρτήτως μεταξύ τους. Στη συνέχεια, κάθε πράκτορας κατασκευάζει έναν
υβριδικό ελεγκτή αποτελούμενο από ένα διακριτό επιβλέπον αυτόματο προκύπτον από
τις προδιαγραφές LTL και Συναρτήσεις Πλοήγησης ως συνεχείς ελεγκτές. Επιπροσθέτως,
εφαρμόζεται έλεγχος διατήρησης συνδεσιμότητας μεταξύ πρακτόρων που την απαιτούν,
όταν αυτό ζητείται από τις προδιαγραφές τους. Ακόλουθοι πράκορες αξιοποιούνται για τη
διατήρηση αυτής της συνδεσιμότητας. Τυπική επαλήθευση των κατασκευασμένων ελεγ-
κτών λαμβάνει χώρο με Έλγχο Μοντέλου (Model Checking) όταν οι πράκτορες αποκτούν
συνδεσιμότητα και μπορούν να ανταλλάξουν τις γλώσσες και τα αυτόματά τους. Η εργασία
αυτή έχει υποβληθεί στο [123].
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Unknown Sphere Worlds





Chapter 2

Navigation Function Tuning

2.1 Introduction

A fundamental problem in robotics is motion planning [2–4, 6]. A great variety of man-
ifestations exists and equally numerous different solution approaches. Among them we
may mention sampling-based [5], combinatorial [1] and feedback methods for continuous
spaces [14], as well as combinations of methods [66, 67].

The basic motion planning problem over continuous space can be defined as finding
a safe path from an initial to a desired configuration [3]. Safety requires avoidance of
collisions with obstacles, while a successful plan should also converge to the desired des-
tination. By appropriately constructing a feedback control plan over continuous space,
trajectory generation and trajectory tracking can be integrated, leading to closed-loop
feedback motion planning.

Artificial Potential Fields are one class of closed-loop feedback motion planning meth-
ods to solve the motion planning problem. They were introduced by Khatib [14–17] and
utilize a scalar potential field constructed over the workspace, as shown in Fig. 2.1a. The
negated gradient of this field repels from obstacles and attracts to the destination. An
agent driven by this negated gradient safely reaches the desired configuration. For cer-
tain obstacle worlds local minima arise, which can trap the agent and prevent successful
attainment of the desired configuration.

Numerous other methods to construct potential fields have followed, as for example
harmonic functions constructed through solution of partial differential equations1 [9–11],
harmonic function combined with the panel method [18, 19] and superquadric artificial
potential fields [34].

In order to overcome the problem of local minima, Navigation Functions (NF) have
been proposed by Rimon and Koditschek [28], Fig. 2.1b. These are also scalar fields
over the free space. After showing that complete disappearance of stationary points is
unobtainable, they defined an almost globally asymptotically stable scalar potential field.
Subject to conditions, only a subset of Lebesgue measure zero traps the agent in the
set of remaining saddle points, which are unstable equilibria. But in real applications,
finite computation arithmetic renders it practically impossible for an agent to remain in a
measure zero set.

The motion planning problem can be abstracted from the geometric to a topological

1Note that a different harmonic function is constructed using that method, for each different destination.
This is fundamentally different from the work presented in Part III, where a partial differential equation is
solved to find a single obstacle function, which can then be used for any destination.
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viewpoint. Avoiding obstacles is equivalent to remaining in the same connected com-
ponent of free space in which the agent started. The path can be first generated in
a convenient “model” space which captures the problem’s topological structure. As a
second step, geometric detail is introduced. Geometrically complicated real obstacles are
diffeomorphically mapped to their simpler images in model space. The inverse deiffeo-
morphism is used to transform the constructed path from the model space to real space.
In particular, the NF potential is defined on a sphere world and diffeomorphically mapped
to real space.

As discussed in [20], this method can be applied to any spherical agent moving in a
workspace with obstacles, whose configuration space connected components are sphere
worlds. In the case of a non-point agent, the Minkowski sum of agent with obstacles leads
to the configuration space.

This may lead to loss of configuration space connectivity. Detecting whether initial and
desired configurations belong to the same connected component of free space requires
running the navigation algorithm and each connected component has been mapped to a
sphere world and the algorithm fails, then inital and final configurations belong to different
connected components. It may also lead to multiply connected obstacle topologies, which
are not diffeomorphic to spheres. Overcoming such a limitation constitutes one of the
subjects treated in Part II. Here we are concerned with sphere worlds.

Global knowledge is needed in the original navigation function formulation. This re-
quirement is relaxed in [25, 26] by defining polynomial NFs and in [32] by implementing
C2 switches for multi-agent systems with finite sensing radii.

Tuning hinders implementation. The NF field is shaped by a parameter. As proved
in [23] there exists a lower bound on this tuning parameter which clears the field of
local minima other than the destination. They become saddles and the potential a NF. In
addition to existence, calculation of this lower bound is outlined, but no explicit formula is
provided. In consequence, using NFs until now required manual adjustment of the tuning
parameter. This is also true for extensions of the NF methodology to multi-agent systems
[12, 27, 33].

This work develops an algorithm to calculate the tuning parameter for theoretically
guaranteed navigation. The lower bound used is improved compared to the original for-
mulation. The improvement is achieved by cancellation of terms with equivalent effects.
Direct substitution of sphere centers and radii suffices to find the desired lower bound.

The above algorithm enables safe tuning globally. The lower bound computation
can be rearranged to efficiently update for discovered obstacles. In more detail, initial-
izing constraints for a new obstacle has time computational complexity Θ(Mz), where
Mz the number of the until then known obstacles. Updating those constraints related
to already known obstacles upon discovering new obstacles can as well be arranged to
require Θ(Mz). Moreover, there is the option to apply these calculated constraints only
when necessary. If this is also implemented, it allows for provably correct locally oriented
tuning, for a finite total number of obstacles, in an a priori unknown sphere world.
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Figure 2.1: An artificial potential field (APF) and a Navigation Function (NF) scalar potential
field. The APF is defined over a world with three obstacles: two ellipses and a disk. The
NF is over the sphere world of Fig. 2.5 for k = 2.

2.2 Definition

2.2.1 Sphere world

A compact connected subset of n-dimensional euclidean space En, n ∈ N, whose
boundary is formed by the disjoint union of a finite number of (n−1)-dimensional spheres2
is called a sphere world. Let the number of spheres be M + 1 where M ∈ N.

Compactness requires a finite sub-cover to exist for every open cover of the sphere
world. The sphere world’s boundary is formed of spheres. Therefore a finite boundary
should be the set covering the sphere world and its internal boundaries. This boundary
should be formed of spheres, but since these spheres constitute a disjoint set, only a
single sphere can form the outer boundary. The space bounded by this outer sphere is
called the workspace and is defined as

W , {q ∈ En : ∥q∥2 ≤ ρ20} (2.1)

where 0 < ρ0 ∈ R is the radius of the bounding sphere, having its center at the origin 0 ∈
En. The workspace includes both the sphere world and the internal spherical boundaries.
There remain M smaller spheres which bound the obstacles

Oj , {q ∈ En : ∥q − qj∥2 < ρ2j}, j ∈ I1 , {1, 2, . . . ,M} (2.2)

where 0 < ρj ∈ R each spherical obstacle’s radius, qj ∈ En its center. Let I0 ,
{0, 1, . . . ,M}.

The outer spherical boundary ∂W defines the zeroth obstacle, which is that part of the
Euclidean space En external to the workspace W

O0 , En \W (2.3)

The free space F remains after removing all the obstacles Oj from the workspace W

F , W \
∪
j∈I1

Oj (2.4)

2Hereinafter sphere will refer to an (n− 1)-dimensional sphere.
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Since the workspace W is a superset of the sphere world F the internal spherical bound-
aries ∂Oj of F should be subsets of W . W is a sphere of radius ρ0. Each sphere Oj ⊂ W
is contained in W . This imposes a constraint on the radii ρj, j ∈ I1.

Suppose Oj intersects O0, in which case

Oj ∩ O0 ̸= ∅ ⇐⇒

∃q ∈ En :

{
q ∈ Oj

q ∈ ∂W

}
⇐⇒

∃q ∈ En :

{
∥q − qj∥ ≤ ρj
∥q∥ = ρ0

} (2.5)

For Oj and W to be disjoint Oj ∩ W = ∅ the first inequality should never be true, this
requirement is equivalent to the constraint

∥q − qj∥ > ρj, ∀j ∈ I1 (2.6)

It is now shown that ∥q − qj∥ > ρj is equivalent to ρ0 > ∥qj∥ + ρj. First let us prove that
ρ0 > ∥qj∥+ ρj implies ∥q − qj∥ > ρj.

ρ0 > ∥qj∥+ ρj, ∀j ∈ I1 ⇐⇒

ρ0 − ∥qj∥ > ρj, ∀j ∈ I1
q∈∂W
=⇒

∥q∥ − ∥qj∥ > ρj, ∀j ∈ I1
∥q−qj∥≥∥q∥−∥qj∥

=⇒
∥q − qj∥ ≥ ∥q∥ − ∥qj∥ > ρj, ∀j ∈ I1 =⇒

∥q − qj∥ > ρj, ∀j ∈ I1

(2.7)

Proof of the opposite, that ∥q − qj∥ > ρj implies ρ0 > ∥qj∥+ ρj, requires careful selection
of the vector q ∈ ∂W . Because ∂W is a spherical boundary, it is always possible to select
a q parallel to qj. Because qj ∈ Oj ⊂ Wj =⇒ qj ∈ Wj and from definition of Wj it follows
that ∥qj∥ ≤ ρ0 = ∥q∥. Let λ ∈ (0, 1]. Then

qj = λq (2.8)

and it follows that

∥q∥ − ∥qj∥ = ∥q∥ − ∥λq∥ = ∥q∥ − |λ| ∥q∥
λ>0
= ∥q∥ − λ ∥q∥ = (1− λ) ∥q∥ 1≥λ

= |1− λ| ∥q∥
= ∥(1− λ)q∥ = ∥q − λq∥ = ∥q − qj∥

(2.9)
Provided that the center qj of obstacle Oj is within the external boundary sphere O0, as
expressed by qj = λq, it is now easy to show that if ∥q − qj∥ > ρj{

∥q∥ − ∥qj∥ = ∥q − qj∥
∥q − qj∥ > ρj

}
=⇒ ∥q∥ − ∥qj∥ > ρj ⇐⇒

ρ0 − ∥qj∥ > ρj ⇐⇒
ρ0 > ∥qj∥+ ρj

(2.10)

The constraint ρ0 > ∥qj∥+ ρj is illustrated graphically in Fig. 2.2a.
Any two C-obstacles Oi,Oj are disjoint.

Oi ∩ Oj = ∅ ⇐⇒

∄q ∈ En :

{
∥q − qi∥ ≤ ρi
∥q − qj∥ ≤ ρj

}
, ∀j ∈ I1 =⇒

∄q ∈ En : ∥q − qi∥+ ∥q − qj∥ ≤ ρi + ρj, ∀j ∈ I1 ⇐⇒
∄q ∈ En : ∥qi − q∥+ ∥q − qj∥ ≤ ρi + ρj, ∀j ∈ I1

(2.11)
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Figure 2.2: Graphical illustration of constraints.

Again from the triangular inequality ∥qi − q∥+ ∥q − qj∥ ≥ ∥qi − q + q − qj∥ = ∥qi − qj∥, so

∄q ∈ En : ∥qi − qj∥ ≤ ρi + ρj, ∀j ∈ I1 ⇐⇒
∥qi − qj∥ > ρi + ρj, ∀j ∈ I1

(2.12)

The opposite can be proved by contradiction. The constraint ∥qi − qj∥ > ρi+ρj is illustrated
graphically in Fig. 2.2b.

2.2.2 Sphere world subsets

Let3 Bi (εi) denote the open n-dimensional spherical annulus4 around a workspace
obstacle Oj

Bi (εi) , {q ∈ En : 0 < βi(q) < εi}, i ∈ I0 (2.13)

where 0 < εi ∈ R, ∀i ∈ I0 parameters specifying the annuli widths. Function βi is defined
in subsection 2.3.2 where ε is discussed in more detail. Note that the obstacle’s boundary
∂Oj = β−1

i (0) is not included, nor the outer boundary of β−1
i (εi). Every Bi (εi) is an open

set. The closure of Bi (εi), that is the union of set Bi (εi) with its inner boundary β−1
i (0)

and its outer boundary β−1
i (εi) is denoted by Bi (εi), and is defined as

Bi (εi) , {q ∈ En : 0 ≤ βi(q) ≤ εi}
= Bi (εi) ∪ β−1

i (0) ∪ β−1
i (εi)

(2.14)

Let us define the outer radius

ρBi
=
∥∥β−1(εi)− qi

∥∥ =
√

εi + ρ2i (2.15)

3Note that in [23] a global parameter ε is defined. This parameter is obtained as mini∈εI0
{εI0} ≤ εi, ∀i ∈

I0. (the subscript i is indicative of the dependence on each obstacle separately, the actual subscripts used
are slightly different). Therefore they place more severe constraints on the lower bound than required by
the problem. To avoid this and obtain a smaller lower bound, separate εi are explicitly denoted and used
for the spherical annuli Bi.

4[23], §3.1, p.425: An n-ball “without a core”.
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Figure 2.3: The geometric meaning of βi(εi), εi as squares of tangetial linear segments
and of the radius ρBi

.

of the closure Bi (εi). This diameter will prove useful for associating geometric meaning
to the algebraic expressions. Its geometric meaning is illustrated in Fig. 2.3.

The following sets are defined for convenience and illustrated in Fig. 2.5:

1) Destination point Fd , {qd}
2) Free space boundary ∂F , β−1(0) =

∪
i∈I0 β

−1
i (0)

3) Set “near” internal obstacles F0 (εI1) ,
∪

i∈I1 Bi (εi) \Fd

4) Set “near” workspace boundary F1 (εI0) , B0(ε0) \ (Fd ∪F0 (εI1))

5) Set “away” from obstacles F2 (εI0) , F \ (Fd ∪ ∂F ∪F0 (εI1) ∪F1 (εI0)).
where εI0 , {εi}i∈I0 , εI1 , {εi}i∈I1.

Additionally the assumption is made that each εi, i ∈ I1 is small enough to guarantee

F0 (εI1) ⊂ F ⇐⇒ {Bi (εi) ∩ Oj = ∅, ∀j ∈ I0, ∀i ∈ I1} (2.16)

which is equivalent to the following constraints5 on each εi, i ∈ I1

εi < (∥qi − qj∥ − ρj)
2 − ρ2i , εi3j, ∀j ∈ I0 \ i, ∀i ∈ I1 (2.17)

This inequality for j ̸= 0 ensures that internal obstacles Oi, i ∈ I1 enlarged by balls Bi (εi)
do not intersect other internal obstacles Oj, j ∈ I1 \ i. For j = 0 it ensures that internal
obstacles Oi, i ∈ I1 enlarged by balls Bi (εi) do not intersect the 0th obstacle O0.

The equivalence in now to be proved by application of inequalities (2.10) and (2.12)

5In [23] no symbols are assigned to these upper bounds.
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qj

∂Oj

ρj
qi

∂Bi(εi)

ρBi

∂B0(ε0)

Figure 2.4: The geometric meaning of the constraints εi3j.

(since Bi (εi) ∪ Oi is a ball as well)

F0 (εI1) ⊂ F ⇐⇒{
Bi (εi) ∩ Oj = ∅, ∀i, j ∈ I1
Bi (εi) ∩ O0 = ∅, ∀i ∈ I1

}
⇐⇒{

∥qi − qj∥ > ρBi
+ ρj, ∀i, j ∈ I1

∥qi − q0∥+ ρBi
< ρ0, ∀i ∈ I1

}
⇐⇒{

∥qi − qj∥ >
√

εi + ρ2i + ρj, ∀i, j ∈ I1
∥qi∥+

√
εi + ρ2i < ρ0, ∀i ∈ I1

}
q0=0∈En∧εi,ρi>0,∀i∈I1⇐⇒

∥qi − qj∥ − ρj >
√

εi + ρ2i︸ ︷︷ ︸
>0

> 0, ∀i, j ∈ I1

0 <
√

εi + ρ2i︸ ︷︷ ︸
>0

< ρ0 − ∥qi∥ , ∀i ∈ I1

 ⇐⇒{
(∥qi − qj∥ − ρj)

2 > εi + ρ2i , ∀i, j ∈ I1
εi + ρ2i < (ρ0 − ∥qi∥)2 , ∀i ∈ I1

}
⇐⇒{

εi < (∥qi − qj∥ − ρj)
2 − ρ2i , ∀i, j ∈ I1

εi < (ρ0 − ∥qi∥)2 − ρ2i , ∀i ∈ I1

}

(2.18)

The geometric equivalent of the above derivation is given in Fig. 2.4.

2.3 Problem Statement

We consider a holonomic agent whose state x is governed by the control law

ẋ(t) = − (∇qφ) (x(t)) (2.19)

where φ is a NF on F as defined later. As proved in [23] this solves the motion planning
problem in F .

We are interested in an algorithm to tune the analytic potential field φ to make it a
NF while exploring unknown sphere worlds. It is also desirable to reduce the effect on φ
of obstacles distant to the agent, in a provably correct way. This scheme should be also
applicable to a priori known worlds diffeomorphic [23, 25, 29] to sphere worlds.
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F0(εI1)

F1(εI0)

F2(εI0)
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0 (0)

B0(ε0)

β−1
0 (ε0)

β−1
i (εi)

q

{qd} = Fd

β−1
i (0)
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q0

qi

ρ0

ρi

ρd = 0
√
ε0

√
εi

Oi

Figure 2.5: Sets defined on a sphere world.
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2.3.1 Navigation function definition

A Navigation Function is defined6 on a compact connected analytic manifold with
boundary M ⊂ En as a map φ : M → [0, 1] which is

1. Analytic7 on M : locally convergent power series exists (Taylor expansion).
2. Polar on M : unique minimum exists at qd ∈ M (Harold Calvin Marston Morse
1892-1977).

3. Morse on M : all critical points are non-degenerate.
4. Admissible on M : uniformly maximal on ∂F (Morris W. Hirsch).

2.3.2 The Koditschek-Rimon navigation function

In [23] a navigation function for sphere worlds, φ : F → [0, 1], is proposed which is
the composition of three functions

φ(q) , σd ◦ σ ◦ φ̂(q) (2.20)

The function φ̂ is polar, almost everywhere Morse, and analytic; it attains a uniform height
on ∂F by blowing up to +∞ there. Its image is “squashed” by the diffeomorphism
σ : [0,∞)→ [0, 1] defined as

σ , x

1 + x
(2.21)

resulting in a polar, admissible, and analytic function which is non-degenerate onF except
at one point - the destination. This last flaw is repaired by σd.

They distinguish between “good” and “bad” subsets of F . When a point belongs to
the “good” set, we expect the negative gradient lines to lead to it (here it is just the
destination {qd}). The “bad” subset includes all the boundary points of the free space,
and we expect the cost at such a point to be high. Let γ and β denote analytic real valued
maps whose zero-levels, i.e. γ−1(0), β−1(0), are respectively the “good” and “bad” sets.

The function φ̂ is defined to be

φ̂(q) , γ(q)

β(q)
(2.22)

where γ : F → [0,∞) is8

γ(q) , γk
d (q), k ∈ N \ {0, 1}

γd(q) , ∥q − qd∥2
}

=⇒ γ(q) = ∥q − qd∥2k (2.23)

and β : F → [0,∞) is
β(q) ,

∏
j∈I0

βj(q) ≥ 0, ∀q ∈ F (2.24)

where

β0(q) , ρ20 − ∥q∥
2

βj(q) , ∥q − qj∥2 − ρ2j , ∀j ∈ I1

}
=⇒ βi(q) =

∣∣∥q − qi∥2 − ρ2i
∣∣ , ∀i ∈ I0 (2.25)

6[23], Definition 1, p.417.
7It is important to note that it suffices to require that φ ∈ C2[M , [0, 1]].
8The parameter k controls the attractivity of the destination qd.
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The “omitted product” is denoted by

β̄i ,
∏

j∈I0\i

βj ≥ 0, ∀q ∈ F . (2.26)

Due to the parameter k in φ̂, the destination point is a degenerate critical point. To
counteract this effect, the “distortion” σd : [0, 1]→ [0, 1],

σd(x) , (x)
1
k = k
√
x, k ∈ N \ {0, 1} (2.27)

is introduced, to change qd to a non-degenerate critical point.
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2.4 Proof of Correctness

2.4.1 Proof overview

Quite informally the whole proof can be summarized as following. Show that k can
be linked to obstacle neighbourhood widths εI0 so that changing εI0 no critical points
escape “away” from obstacles. Any critical points are now trapped near obstacles. Then
shrink εI0 until the obstacle neighbourhoods are so tight around them that nominima or
degenerate points arise9.

It has been proved that no critical points exist on the free space boundary10 ∂F and
that the destination qd is a non-degenerate global minimum11. Any other critical points
can only exist in F0 (εI1) ∪F1 (εI0) ∪F2 (εI0).

Then the set “away” from obstacles F2 (εI0) is cleared of critical points12. Specifically
for any εI0 the tuning parameter k can always be selected such that no critical points
remain in F2 (εI0).

So, provided we select k ≥ N(εI0) any remaining critical points can only arise in
F0 (εI1) ∪F1 (εI0). We can then select εi, i ∈ I0 to

1. Avoid critical points in F1 (εI0) “near” workspace boundary13. This means that any
critical points other than qd can only arise in set F0 (εI1) “near” internal obstacles.

2. Avoid local minima in14 F0 (εI1). That is, ensure arising critical points are either
saddles or local maxima15.

3. Ensure that all critical points arising in F0 (εI1) are non-degenerate16. This guar-
antees that they can be categorized and they remain disjoint. They are proved to
be saddles.

Note that in [23] ε′0i, ε′′0i, ε1, ε′2i, ε′′2i, i ∈ I1 are defined. Of these ε1 applies to B0(ε1).
These indices are changed to better serve the present treatment17.

The parameters defined here are

εi, εiu, i ∈ I0 and ε′i0, ε
′′
i0, ε

′
i2, ε

′′
i2, εi3j, εi3, εi03, εi23, i ∈ I1 (2.28)

defined as

0 < εi < εiu ,
{
ε0u, i = 0

min{ε′i0, ε′′i0, ε′i2, ε′′i2, εi3}, i ∈ I1
(2.29)

and
εi3 , min

j∈I0\i
{εi3j}, εi03 , min{ε′i0, εi3}, εi23 , min{ε′i2, εi3} (2.30)

and the definition of ε0u, ε′i0, ε′′i0, ε′i2, ε′′i2 will follow in the next sections, while εi3j have
already been defined in (2.17). With this notation εi applies to annulus Bi of obstacle
Oi, i ∈ I0. The definitions used herein relate to those of [23] as follows

9In this section firstly ε = mini∈I0{εi} is used in a detailed derivation of the Koditschek-Rimon statements.
Then the limitations of this derivation are noted and an altered expression is derived.
10[23], Proposition 3.3, p.427.
11[23], Proposition 3.2, pp.426-427.
12[23], Proposition 3.4, p.427.
13[23], Proposition 3.7, p.432.
14[23], Proposition 3.6, p.429.
15Note that the proof leads also to the result that they are never local maxima, so critical points other

than qd are always saddles.
16[23], Proposition 3.9, p.433.
17The index 1 does not correspond to 0th obstacle index 0.
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Table 2.1: Notation used
herein compared to [23].

Here [23]

ε0u ε1
ε′i0 ε′0i
ε′′i0 ε′′0i
ε′i2 ε′2i
ε′′i2 ε′′2i
εiu, i ∈ I1 none
mini∈I1{ε′i0, ε′′i0} ε0
mini∈I1{ε′i2, ε′′i2} ε2
mini∈I0{εi} ε
εi none

The upper bounds denoted here by εi3, εi3j are not assigned any symbols in [23].
In consequence of the above definitions there are two alternatives for definining the

sets Bi,F0,F1,F2 as either functions of a single global18 “width” ε, or as functions of
the set of “widths” εi.

In the first case, as developed in [23], the domains are functions of a single parameter
ε

Bi (εi) ,F0(ε),F1(ε),F2(ε) (2.31)

whereas in the second case the domain functions are functions of M + 1 parameters
{εi}i∈I0

Bi (εi) , i ∈ I0 F0 (εI1) ,F1 (εI0) ,F2 (εI0) (2.32)

The second formulation appears at first to be computationally more demanding. But since
ε results as the minimum of the set εI0, this is not true. We need to caclulate all εi before
determining ε. So there is no additional burden in the second case. Interestingly, as we
are to show, the second method leads to better results19.

2.4.2 Determining a lower bound N(εI0) on k

2.4.2.1 Require norm inequality of gradient components

Proposition20: For every set εI0 there exists a positive integer N (εI0) such that if
k ≥ N (εI0) then there are no critical points of φ̂ in F2 (εI0).

18Which is selected as ε = mini∈I0{εi} to ensure all required constraints are met for the potential to be
a navigation function.
19Better is to be understood as closer to the real supremum desired.
20[23], Proposition 3.4, p.428.
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At a critical point qc ∈ Cφ̂ ∩F2 (εI0) the gradient is zero

∇φ̂ = 0 ∈ En see Appendix for∇φ̂⇐⇒
γk−1
d

β2
(kβ∇γd − γd∇β) = 0 ∈ En

β,γd ̸=0,∀q∈F2(εI0)⇐⇒

kβ∇γd − γd∇β = 0 ∈ En ⇐⇒
kβ∇γd = γd∇β =⇒

∥kβ∇γd∥ = ∥γd∇β∥
β,γd,k>0,∀q∈F2(εI0)⇐⇒

kβ ∥∇γd∥ = γd ∥∇β∥
see Appendix for∥∇γd∥=2

√
γd⇐⇒

kβ2
√
γd = γd ∥∇β∥ ⇐⇒

2kβ =
√
γd ∥∇β∥

β ̸=0,∀q∈F2(εI0)⇐⇒

k =
1

2

√
γd ∥∇β∥

β

(2.33)

A sufficient condition for this equality not to hold is
1

2

√
γd ∥∇β∥

β
̸= k, ∀q ∈ F2 (εI0) (2.34)

There are two alternatives, either

k <
1

2

√
γd ∥∇β∥

β
, ∀q ∈ F2 (εI0) (2.35)

or

k >
1

2

√
γd ∥∇β∥

β
, ∀q ∈ F2 (εI0) (2.36)

and also a mix of the two. Let us examine the first alternative. Since21 infq∈F2(εI0)
{γd} = 0

and β, ∥∇β∥ are both bounded in F2 (εI0) it follows that{
k < 1

2

√
γd∥∇β∥

β
, ∀q ∈ F2 (εI0)

infq∈F2(εI0)
{1
2

√
γd∥∇β∥

β
} = 0

}
=⇒ k < 0 (2.37)

which cannot be, since k ∈ N \ {0, 1}. As a result, the alternative k < 1
2

√
γd∥∇β∥

β
is not

possible.
The only possible alternative remaining is k > 1

2

√
γd∥∇β∥

β
, ∀q ∈ F2 (εI0).

It suffices to find a k always greater than 1
2

√
γd∥∇β∥

β
, without calculating this expression.

Assume that we find an upper bound N on 1
2

√
γd∥∇β∥

β
. Then setting k greater than or

equal to this upper bound N , i.e. N ≤ k, will ensure that k is greater than the expression
1
2

√
γd∥∇β∥

β
.

We seek an upper bound on the left side of the above inequality. Since

1

2

√
γd ∥∇β∥

β
=

1

2

√
γd

∥∥∇∏i∈I0 (βi)
∥∥

β

=
1

2

√
γd

∥∥∥∑i∈I0

(∏
j∈I0\i (βj)∇βi

)∥∥∥
β

=
1

2

√
γd

∥∥∑
i∈I0

(
β̄i∇βi

)∥∥
β

(2.38)

21This follows from the fact that in general qd may be a single point excluded from F2 (εI0) and that
γd(qd) = 0.
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application of the triangular inequality leads to

1

2

√
γd

∥∥∑
i∈I0

(
β̄i∇βi

)∥∥
β

≤ 1

2

√
γd

∑
i∈I0

(∥∥β̄i∇βi

∥∥)
β

β̄i>0,∀q∈F2(εI0)
=

1

2

√
γd

∑
i∈I0

(
β̄i ∥∇βi∥

)
β

=
1

2

√
γd
∑
i∈I0

(
β̄i

β
∥∇βi∥

)
=

1

2

√
γd
∑
i∈I0

(∏
j∈I0\i βj∏
j∈I0 βj

∥∇βi∥

)

=
1

2

√
γd
∑
i∈I0

(
1

βi

∥∇βi∥
)

=⇒

1

2

√
γd

∥∥∑
i∈I0

(
β̄i∇βi

)∥∥
β

≤ 1

2

√
γd
∑
i∈I0

(
∥∇βi∥
βi

)
(2.39)

So it suffices to seek an upper bound on 1
2

√
γd
∑

i∈I0

(
∥∇βi∥
βi

)
since this will also be

an upper bound on N(εI0). This upper bound is supF2(εI0)

{
1
2

√
γd
∑

i∈I0

(
∥∇βi∥
βi

)}
.

Finding the exact supremum is not easily analytically tractable. An alternative would
be to select a computational search method, but this would be computationally intensive
(requiring time not available in a real-time implementation) and would lack the required
guarantees. After all, why search for the global maximum of an auxiliary function, when
the original problem was that anyway!

For these reasons we approach to find an approximation to the supremum. As
expected, there is not a single way for determining such an approximation. In [23] an
unfavorable22 approximation is derived.

This results primarily because the function 1
2

√
γd
∑

i∈I0

(
∥∇βi∥
βi

)
includes βi(q) twice.

The one βi is directly visible in the denominator. The other one is in the norm ∥∇βi∥.
Shortly stated, they bound the maximum of max

{
a
b

}
by max{a}

min{b} . But note that βi

arises in both the nominator and denominator. So they end up with (coarsly) max{βi}
min{βi} . As

expected, this estimate is considerably larger than the alternative.
The alternative would be to first cancel the similar terms βi. Then βi remains in either

the nominator or the denominator (here the denominator). As a result the approximate
bound will be only max{βi} or only 1

min{βi} . Both differ obviously from their product.
In the following two sections both the original and the modified derivations are pre-

sented and in the final section of this part they are compared in the limit.

2.4.2.2 Koditschek-Rimon formula

Since ε = mini∈I0{εi} defines the boundary23
∪

i∈I0 β
−1
i (ε) of F2 (ε), for all βi(q)

0 < ε ≤ βi(q), ∀q ∈ F2 (ε) , ∀i ∈ I0 =⇒
1

βi(q)
≤ 1

ε
, ∀q ∈ F2 (ε) , ∀i ∈ I0

(2.40)

22Their supremum approximation is theoretically perfect, but computationally not applicable, because
it yields too large k exponent values.
23Caution: although the free space F boundary is β−1(0), the boundary of the space “away” from the

obstacles F2 (ε) is not β−1(ε). The reason for this is that when on the free space boundary, exactly one
βi(q) becomes zero, forcing the whole product β(q) to become zero (like a veto). On the contrary, when on
the boundary of a closed ball Bi (ε) the corresponding βi(q) = ε, but this cannot force the product β(q) to
ε.
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Substitution of 1
βi(q)
≤ 1

ε
yields

1

2

√
γd
∑
i∈I0

(
∥∇βi∥
βi

)
≤ 1

2

√
γd
∑
i∈I0

(
∥∇βi∥

ε

)
=

1

2

1

ε

√
γd
∑
i∈I0

(∥∇βi∥) (2.41)

The inequality constraint for k is imposed in the set “away” from the obstacles q ∈ F2 (ε) ⊂
F ⊂ W , so the function values are less than or equal to their maximum values over the
workspace W . Note that γd < maxW {γd} , ∀q ∈ F2 (ε), because maxW {γd} is attained
on the boundary ∂B0(ε0) and this boundary is excluded from F2 (ε). Therefore instead
of writing

1

2

1

ε

√
γd
∑
i∈I0

(∥∇βi∥) ≤
1

2

1

ε
max

W
{√γd}

∑
i∈I0

max
W
{∥∇βi∥} (2.42)

we can replace ≤ with < in the previous inequality to obtain
1

2

1

ε

√
γd
∑
i∈I0

(∥∇βi∥) <
1

2

1

ε
max

W
{√γd}

∑
i∈I0

max
W
{∥∇βi∥} (2.43)

Let us now define
NKR(ε) ,

1

2

1

ε
max

W
{√γd}

∑
i∈I0

max
W
{∥∇βi∥} (2.44)

This NKR(ε) is an upper bound on 1
2

√
γd∥∇β∥

β
, so by setting

k ≥ NKR(ε) (2.45)

we ensure that all critical points are “pushed” to the set “near” the obstacles24

({qd} ∪ ∂F ∪F0 (ε) ∪F1 (ε)).

The expression 1
2
1
ε
maxW

{√
γd
}∑

i∈I0 maxW {∥∇βi∥} is not calculable in this form and
needs further manipulation. The maxima maxW

{√
γd
}
and maxW {∥∇βi∥} are derived in

section A.5. Substituting these in the NKR(ε) equation results in

NKR(ε) ,
1

2

1

ε
max

W
{√γd}

∑
i∈I0

max
W
{∥∇βi∥}

=
1

2

1

ε
(ρ0 + ∥qd∥)

∑
i∈I0

(2 (ρ0 + ∥qi∥))

=
1

ε
(ρ0 + ∥qd∥)

∑
i∈I0

(ρ0 + ∥qi∥)

=
1

ε
(ρ0 + ∥qd∥)

(
(M + 1)ρ0 +

∑
i∈I0

(∥qi∥)

)
∥q0∥=0
=

=
1

ε
(ρ0 + ∥qd∥)

(
(M + 1)ρ0 +

∑
i∈I1

(∥qi∥)

)

= (ρ0 + ∥qd∥)
∑
i∈I0

ρ0 + ∥qi∥
ε

(2.46)

Hence the condition to clear F2 (ε) of critical points becomes

k ≥ NKR(ε) = (ρ0 + ∥qd∥)
∑
i∈I0

ρ0 + ∥qi∥
ε (2.47)

24Including the workspace boundary, which defines obstacle O0.
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2.4.2.3 Alternative (improved) formula

Let us follow another course and substitute the norms ∥∇βi∥ , i ∈ I0 as functions of
βi, i ∈ I0

∥∇β0∥ = 2
√
ρ20 − β0, ∥∇βi∥ = 2

√
βi + ρ2i , ∀i ∈ I0 (2.48)

in the upper bound of (2.39)

1

2

√
γd
∑
i∈I0

(
∥∇βi∥
βi

)
=

1

2

√
γd

[
2
√

ρ20 − β0

β0

+
∑
i∈I1

2
√

βi + ρ2i
βi

]

=
√
γd

[√
ρ20 − β0

β0

+
∑
i∈I1

√
βi + ρ2i
βi

]

=
√
γd

[√
ρ20
β2
0

− 1

β0

+
∑
i∈I1

√
ρ2i
β2
i

+
1

βi

]

=
√
γd

√(ρ0
β0

)2

− 1

β0

+
∑
i∈I1

√(
ρi
βi

)2

+
1

βi


=
√
γd

[√
1

β0

(
ρ20
β0

− 1

)
+
∑
i∈I1

√
1

βi

(
ρ2i
βi

+ 1

)]

(2.49)

where the final three arrangements of the same expression aim to assist further insight.
This bounding function in F2 (εI0) is bounded above by its maximum

√
γd

[√
ρ20
β2
0

− 1

β0

+
∑
i∈I1

√
ρ2i
β2
i

+
1

βi

]
≤ max

F2(εI0)


√
γd︸︷︷︸

≥0,∀q∈F2(εI0)

[√
ρ20
β2
0

− 1

β0

+
∑
i∈I1

√
ρ2i
β2
i

+
1

βi

]
︸ ︷︷ ︸

≥0,∀q∈F2(εI0)



≤ max
F2(εI0)

{√γd} max
F2(εI0)


√

ρ20
β2
0

− 1

β0︸ ︷︷ ︸
≥0∀q∈F2(εI0)

+
∑
i∈I1

√
ρ2i
β2
i

+
1

βi︸ ︷︷ ︸
≥0∀q∈F2(εI0)


max{a+b}≤max{a}+max{b},∀a,b≥0

≤

≤ max
F2(εI0)

{√γd}

[
max

F2(εI0)

{√
ρ20
β2
0

− 1

β0

}
+
∑
i∈I1

max
F2(εI0)

{√
ρ2i
β2
i

+
1

βi

}]

= max
F2(εI0)

{√γd}

[√
max

F2(εI0)

{
ρ20
β2
0

− 1

β0

}
+
∑
i∈I1

√
max

F2(εI0)

{
ρ2i
β2
i

+
1

βi

}]
(2.50)

Now the maxima to be substituted are firstly

max
F2(εI0)

{(
ρ0
β0

)2

− 1

β0

}
≤

(
max

F2(εI0)

{
ρ0
β0

})2

− min
F2(εI0)

{
1

β0

}

=

(
ρ0

minF2(εI0)
{β0}

)2

− 1

maxF2(εI0)
{β0}

=

(
ρ0
ε0

)2

− 1

ρ20

(2.51)
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because
0 < ε0 ≤ β0, ∀q ∈ F2 (εI0) =⇒ min

F2(εI0)
{β0} ≥ ε0 (2.52)

and according to25 section A.5

F2 (εI0) ⊂ W =⇒ max
F2(εI0)

{β0} ≤ max
W
{β0} = ρ20 (2.53)

Secondly

max
F2(εI0)

{(
ρi
βi

)2

+
1

βi

}
=

(
max

F2(εI0)

{
ρi
βi

})2

+ max
F2(εI0)

{
1

βi

}

=

(
ρi

minF2(εI0)
{βi}

)2

+
1

minF2(εI0)
{βi}

=

(
ρi
εi

)2

+
1

εi
, ∀i ∈ I1

(2.54)

since
0 < εi ≤ βi,∀q ∈ F2 (εI0) =⇒ min

F2(εI0)
{βi} ≥ εi, ∀q ∈ I1 (2.55)

Note again that

F2 (εI0) ⊆ W \ {∂O0 ∪B0 (ε0)} =⇒ max
F2(εI0)

{√γd} < max
W
{√γd} (2.56)

where the maximum maxW

{√
γd
}
is derived in section A.5. From the previous

1

2

√
γd
∥∇β∥
β
≤ max

F2(εI0)
{√γd}

[√
max

F2(εI0)

{
ρ20
β2
0

− 1

β0

}
+
∑
i∈I1

√
max

F2(εI0)

{
ρ2i
β2
i

+
1

βi

}]

≤ (ρ0 + ∥qd∥)

[√
ρ20
ε20
− 1

ρ20
+
∑
i∈I1

√
ρ2i
ε2i

+
1

εi

] (2.57)

Let Qi : R→ R,∀i ∈ I0

Q0 (x) ,
√

ρ20
x2
− 1

x
, Q00 ,

√
ρ20
ε20
− 1

ρ20

Qi (x) ,
√

ρ2i
x2

+
1

x
, Qii , Qi(εi), i ∈ I1

(2.58)

Note that

Q0 (β0) =
1

2

∥∇β0∥
β0

, Qi (βi) =
1

2

∥∇βi∥
βi

(2.59)

25Generally maxF2(εI0)
{β0} and maxW {β0} do not differ substantially and if the wrold center is free

space, they are equal.
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and while Q00 is an upper bound on the maximum of maxF2(εI0)
{Q0 (β0)}, the Qii, ∀i ∈ I1

is equal to the respective maximum maxF2(εI0)
{Qi (βi)}

Q00 =

√
ρ20
ε20
− 1

ρ20
≥ max

F2(εI0)

{
1

2

2
√

ρ20 − β0

β0

}
=

1

2
max

F2(εI0)

{
∥∇β0∥
β0

}
= max

F2(εI0)
{Q0 (β0)}

Qii =

√
ρ2i
ε2i

+
1

ε2i
= max

F2(εI0)

{
1

2

2
√

ρ2i + βi

βi

}
=

1

2
max

F2(εI0)

{
∥∇βi∥
βi

}
= max

F2(εI0)
{Qi (βi)} , ∀i ∈ I1

(2.60)
therefore

Qii ≥
1

2
max

F2(εI0)

{
∥∇βi∥
βi

}
= max

F2(εI0)
{Qi (βi)} , ∀i ∈ I0 (2.61)

Let us define

N(εI0) , (ρ0 + ∥qd∥)

[√
ρ20
ε20
− 1

ρ20
+
∑
i∈I1

√
ρ2i
ε2i

+
1

εi

]
= (ρ0 + ∥qd∥)

∑
i∈I0

Qii (2.62)

This N(εI0) is an upper bound on
1
2

√
γd∥∇β∥

β
, so by selecting a k satisfying

N(εI0) ≤ k (2.63)

we ensure that all critical points are “pushed” to the set “near” the obstacles26

({qd} ∪ ∂F ∪F0 (εI1) ∪F1 (εI0)).

2.4.2.4 Comparison of the original and modified formulas

We can compare the two expressions derived as lower bounds for k. This is accom-
plished by dividing them

N(εI0)

NKR(ε)
=

(ρ0 + ∥qd∥)
[√

ρ20
ε20
− 1

ρ20
+
∑

i∈I1

√
ρ2i
ε2i

+ 1
εi

]
1
ε
(ρ0 + ∥qd∥)

(
(M + 1)ρ0 +

∑
i∈I1 (∥qi∥)

) =

√
ρ20
ε20
− 1

ρ20
+
∑

i∈I1

√
ρ2i
ε2i

+ 1
εi∑

i∈I0
ρ0+∥qi∥

ε

(2.64)
Usually the following approximations are valid

ρ20 ≫ ε0 =⇒ ρ20
ε0
≫ 1 =⇒ ρ20

ε0

1

ε0
≫ 1

ε0
≫ 1

ρ20
=⇒ ρ20

ε20
− 1

ρ0
≈ ρ20

ε20

ρ2i ≫ εi =⇒ ρ2i
εi
≫ 1 =⇒ ρ2i

εi

1

εi
≫ 1

εi
=⇒ ρ2i

ε2i
+

1

εi
≈ ρ2i

ε2i

(2.65)

26Including the workspace boundary, which defines obstacle O0.
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Their adoption leads to

N(εI0)

NKR(ε)
≈

√
ρ20
ε20

+
∑

i∈I1

√
ρ2i
ε2i∑

i∈I0
ρ0+∥qi∥

ε

=

∑
i∈I0

ρi
εi∑

i∈I0
ρ0+∥qi∥

ε

=
∑
i∈I0

(
ρi
εi

1∑
j∈I0

ρ0+∥qj∥
ε

)

=
∑
i∈I0

(
ε

εi

1∑
j∈I0

ρ0+∥qj∥
ρi

)
=
∑
i∈I0

 ε

εi

1∑
j∈I0

(
ρ0
ρi
+

∥qj∥
ρi

)


=
∑
i∈I0

mini∈I0{εi}
εi

1∑
j∈I0

(
ρ0
ρi
+

∥qj∥
ρi

)


(2.66)

Because mini∈I0{εi} ≤ εi,∀i ∈ I0 and ρi < ρ0 it follows that N({εi}) < NKR(ε) (provided
ρ2i ≫ εi,∀i ∈ I1). Usually mini∈I0{εi} ≪ εi,∀i ∈ I0 and ρi ≪ ρ0 and as a result N(εI0) ≪
NKR(ε). That the proposed lower limit on k is better has been shown.
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2.4.3 ε0u calculation

The squared “width” ε0 of B0(ε0) will be determined to clear the 0th obstacle neigh-
bourhood B0(ε0) of critical points27. Because we have asserted a changed lower bound
N(εI0) on k the following Proposition28 will be shown to still hold.

Proposition 1 (Proposition 3.7 [23]). If k ≥ N (εI0), then there exists an ε0u such that φ̂
has no critical points on F1 (εI0), as long as ε0 < ε0u.

Proof. It is first convenient to bound B0(ε0) away from the ball of radius given by the
destination point qd, as follows. If

ε0 < ρ20 − ∥qd∥
2 (2.67)

then because

β0 < ε0, ∀q ∈ F1 (εI0)
β0=ρ20−∥q∥2
⇐⇒ ρ20 − ∥q∥

2 < ε0, ∀q ∈ F1 (εI0) (2.68)

it follows that
∥q∥ > ∥qd∥ , ∀q ∈ F1 (εI0) (2.69)

This is a sufficient condition for ∇β0 to point away from the destination, i.e. ∇γd ·∇β0 < 0
on B0(ε0), because

1

4
∇γd · ∇β0 = −(q − qd) · q = q · qd − ∥q∥2 ≤ ∥q∥ (∥qd∥ − ∥q∥) < 0 (2.70)

Now, ∇φ̂ is non-vanishing on F1 (εI0), since its inner-product with ∇γd, according to
subsection A.3.7 is given by

∇φ̂ · ∇γd =
γk
d

β2
(4kβ −∇β · ∇γd)

=
γk
d

β2

(
4kβ −

(
β0∇β̄0 · ∇γd + β̄0∇β0 · ∇γd

))
> β0

γk
d

β2

(
4kβ̄0 −∇β̄0 · ∇γd

) (2.71)

If k is large enough

k >
1

4

∇β̄0 · ∇γd
β̄0

, ∀q ∈ F1 (εI0) (2.72)

the term ∇φ̂ · ∇γd will be positive. But k ≥ N(εI0) is sufficient for this to be true, since

1

4

∇β̄0 · ∇γd
β̄0

≤ 1

2

∥∥∇β̄0

∥∥√γd
β̄0

≤ 1

2

√
γd
∑
i∈I1

β̄i

β
∥∇βi∥

≤ (ρ0 + ∥qd∥)
∑
i∈I1

√
ρ2i
ε2i

+
1

εi
= (ρ0 + ∥qd∥)

∑
i∈I1

Qii

< (ρ0 + ∥qd∥)
∑
i∈I0

Qii = N(εI0) ≤ k

(2.73)

since by definition of F1 (εI0), εi ≤ βi, ∀i ∈ I1. The proof is completed by choosing

ε0u , ρ20 − ∥qd∥
2 (2.74)

27In [23] ε1 is used for the variable we have chosen to denote with ε0 for the sake of clarity, since we are
here interested in using all the εi in the proposed algorithm.
28[23], Proposition 3.7, pp.432-433.
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2.4.4 ε′′i2 calculation

In [23] the upper bounds ε′′i2 on εi are derived in the form

1

4

minBi(εi23)

{√
β̄i ∥∇βi∥

}
maxBi(εi23)

{√∣∣v̂TD2β̄iv̂
∣∣} (2.75)

which, combined with negative definiteness in the tangent space, ensure non-degeneracy
of the critical points in F0 (εI1) (near the internal obstacles), which are the only critical
points of φ̂ remaining.

We can observe that β̄i and D2β̄i arise in nominator and denominator, respectively.
This leads to the same problem as when determining NKR(ε) in subsection 2.4.2.

From within the terms β̄i, D
2β̄i the various βj, j ̸= i come. So we have the same βj in

both nominator and denominator. After manipulation we end up dividing minBi(εi23)
{βj}

by maxBi(εi23)
{βj}, which results in a very ill valued constraint. In the present section an

alternative formulation is presented.
What is different here? Observe that if we avoid βj showing up in both numerator and

denominator, the result will not be minBi(εi23)
{βj} divided by maxBi(εi23)

{βj} any more. To
achieve this we can cancel the arising βj. This can be done by dividing both numerator
and benominator by β̄i. But this should be done before applying min{} and max{}.

To do this we return to a previous step in the original proof. There it is required29 that
the following expression30 be positive(

1− 1

k

)
β̄i ∥∇βi∥2 − β2

i

∣∣r̂Ti D2β̄ir̂i
∣∣− 2βiβ̄i > 0 ⇐⇒[

1

2

(
1− 1

k

)
β̄i ∥∇βi∥2 − 2βiβ̄i

]
︸ ︷︷ ︸

∗

+

[
1

2

(
1− 1

k

)
β̄i ∥∇βi∥2 − β2

i

∣∣r̂Ti D2β̄ir̂i
∣∣]︸ ︷︷ ︸

∗∗

> 0
(2.76)

where r̂i , ∇βi

∥∇βi∥ . If we require
31 that k ≥ 2, then

2 ≤ k ⇐⇒ 0 <
1

k
≤ 1

2
⇐⇒ −1

2
≤ −1

k
< 0 ⇐⇒ 1

2
≤ 1− 1

k
< 1 (2.77)

and therefore the term (∗) is greater than the expression

1

2

(
1

2

)
β̄i ∥∇βi∥2 − 2βiβ̄i ≤

1

2

(
1− 1

k

)
β̄i ∥∇βi∥2 − 2βiβ̄i (2.78)

29[23], p.435.
30In the original placing the || and substituting ε for βi in p.435 are done simultaneously to then seek a

positive lower bound for the worst case within Bi (εi). Here || is placed to enable further manipulation, but
βi is retained and only at the end is bounded by ε′′i2.
31Note that if we allow k = 1 then the origin remains degenerate even after diffeomorphism σd(x). In

case there is no boundary ∂W , then for the navigation function to have the radial unboundedness property
q → ∞ =⇒ φ → ∞ so that it can serve as a Lyapunov candidate function stricter conditions on k are
needed, namely M < k as proved in section 3.1.
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Then a sufficient condition we can impose to ensure that term (∗) be positive, is

0 <
1

4
β̄i ∥∇βi∥2 − 2βiβ̄i = β̄i

[
1

4
∥∇βi∥2 − 2βi

]
β̄i>0,∀q∈Bi(εi)⇐⇒

0 <
1

4
∥∇βi∥2 − 2βi ⇐⇒

0 <
1

8
∥∇βi∥2 − βi ⇐⇒

βi <
1

8
∥∇βi∥2 ⇐⇒

βi <
1

8

[
2
√
βi + ρ2i

]2
⇐⇒

βi <
1

8
4
(
βi + ρ2i

)
⇐⇒

βi <
1

2
βi +

1

2
ρ2i ⇐⇒

1

2
βi <

1

2
ρ2i ⇐⇒

∥q − qi∥2 − ρ2i < ρ2i ⇐⇒

∥q − qi∥2 < 2ρ2i
0<∥q−qi∥,ρi,∀q∈Bi(εi)⇐⇒

∥q − qi∥ < ρi
√
2

(2.79)

In [23] it is required that βi <
1
8
∥∇βi∥ ,∀q ∈ Bi (εi), for which a sufficient condition is

imposed

εi <
1

8
min
Bi(εi)

{
∥∇βi∥2

}
=

1

8
(2ρi)

2 =
1

8
4ρ2i =

1

2
ρ2i (2.80)

and ε′i2 is defined as
1
2
ρ2i . This leads to

βi < εi <
1

2
ρ2i ,∀q ∈ Bi (εi) =⇒

βi <
1

2
ρ2i ⇐⇒ ∥q − qi∥2 − ρ2i <

1

2
ρ2i ⇐⇒

∥q − qi∥2 <
3

2
ρ2i

0<∥q−qi∥,ρi,∀q∈Bi(εi)⇐⇒ ∥q − qi∥ < ρi

√
3

2
= ρi
√
2

1√
2

√
3

2
=
(
ρi
√
2
) √3

2

(2.81)

whereas, as already shown, requiring that

βi < ρ2i ⇐⇒ ∥q − qi∥ < ρi
√
2 (2.82)

It is now obvious that
ρi
√
2(

ρi
√
2
)√

3
2

=
2√
3
≈ 1.1547 (2.83)

so the selection
ε′i2 , ρ2i , ∀i ∈ I1 (2.84)

is slightly better.
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Let us now examine the term (∗∗). Since k ≥ 2

1

2

(
1− 1

k

)
β̄i ∥∇βi∥2 − β2

i

∣∣r̂Ti D2β̄ir̂i
∣∣ ≥ 1

4
β̄i ∥∇βi∥2 − β2

i

∣∣r̂Ti D2β̄ir̂i
∣∣

≥ 1

4
β̄i ∥∇βi∥2 − β2

i 2
∑
j∈I0\i

 ∏
l∈I0\{i,j}

βl +
∑

l∈I0\{i,j}

 ∏
m∈I0\{i,j,l}

βm

 ∥∇βj∥ ∥∇βl∥

 (2.85)

The inequality

∣∣r̂Ti D2β̄ir̂i
∣∣ ≤ 2

∑
j∈I0\i

 ∏
l∈I0\{i,j}

βl +
∑

l∈I0\{i,j}

 ∏
m∈I0\{i,j,l}

βm

 ∥∇βj∥ ∥∇βl∥

 (2.86)

is proved in subsection A.6.1. A sufficient condition for the term (∗∗) to be positive is

0 <
1

4
β̄i ∥∇βi∥2 − β2

i 2
∑
j∈I0\i

 ∏
l∈I0\{i,j}

βl +
∑

l∈I0\{i,j}

 ∏
m∈I0\{i,j,l}

βm

 ∥∇βj∥ ∥∇βl∥

 , ∀q ∈ Bi (εi)

(2.87)
This expression can be rearranged as following. It is now that we divide both numerator
and denominator by β̄i.

1

4
β̄i ∥∇βi∥2 − β2

i 2
∑
j∈I0\i

 ∏
l∈I0\{i,j}

βl +
∑

l∈I0\{i,j}

 ∏
m∈I0{i,j,l}

βm

 ∥∇βj∥ ∥∇βl∥


=

1

4
β̄i2

2
√
βi + ρ2i

2

− β2
i 2
∑
j∈I0\i

 ∏
l∈I0\{i,j}

βl +
∑

l∈I0\{i,j}

 ∏
m∈I0\{i,j,l}

βm

 ∥∇βj∥ ∥∇βl∥


=

4

4
β̄i

(
βi + ρ2i

)
− 2β2

i

∑
j∈I0\i

 β

βiβj

+
∑

l∈I0\{i,j}

(
β

βiβjβl

∥∇βj∥ ∥∇βl∥
)

= β̄i

(
βi + ρ2i

)
− 2β2

i

∑
j∈I0\i

 β

βi

1

βj

+
β

βi

∥∇βj∥
βj

∑
l∈I0\{i,j}

(
∥∇βl∥
βl

)
= β̄i

(
βi + ρ2i

)
− 2β2

i β̄i

∑
j∈I0\i

 1

βj

+
∥∇βj∥
βj

∑
l∈I0\{i,j}

(
∥∇βl∥
βl

)
= β̄i

(βi + ρ2i
)
− 2β2

i

∑
j∈I0\i

 1

βj

+
∥∇βj∥
βj

∑
l∈I0\{i,j}

(
∥∇βl∥
βl

)

= β̄i

(βi + ρ2i
)
− 2β2

i


1
β0

+
2
√

ρ20−β0

β0

∑
l∈I1\i

(
2
√

βl+ρ2l
βl

)
+
∑

j∈I1\i

(
1
βj

+
2
√

βj+ρ2j
βj

(
2
√

ρ20−β0

β0
+
∑

l∈I1\{i,j}

(
2
√

βl+ρ2l
βl

)))


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= β̄i

(βi + ρ2i
)
− 2β2

i

 1
β0

+ 4
√

ρ20
β2
0
− 1

β0

∑
l∈I1\i

(√
ρ2l
β2
l
+ 1

βl

)
+
∑

j∈I1\i

(
1
βj

+ 4

√
ρ2j
β2
j
+ 1

βj

(√
ρ20
β2
0
− 1

β0
+
∑

l∈I1\{i,j}

(√
ρ2l
βl
+ 1

βl

)))



= β̄i

βi + ρ2i − 2β2
i

∑
j∈I0\i

 1

βj

+ 4Qj (βj)
∑

l∈I0\{i,j}

Ql (βl)


(2.88)

We can now require that this expression be positive

β̄i

βi + ρ2i − 2β2
i

∑
j∈I0\i

 1

βj

+ 4Qj (βj)
∑

l∈I0\{i,j}

Ql (βl)

 > 0, ∀q ∈ Bi (εi)
β̄i>0,∀q∈Bi(εi)⇐⇒

βi + ρ2i > 2β2
i

∑
j∈I0\i

 1

βj

+ 4Qj (βj)
∑

l∈I0\{i,j}

Ql (βl)

, ∀q ∈ Bi (εi) ⇐⇒

βi + ρ2i

2
∑

j∈I0\i

(
1
βj

+ 4Qj (βj)
∑

l∈I0\{i,j}Ql (βl)
) > β2

i , ∀q ∈ Bi (εi) ⇐⇒

√√√√ βi + ρ2i

2
∑

j∈I0\i

(
1
βj

+ 4Qj (βj)
∑

l∈I0\{i,j}Ql (βl)
) > βi,∀q ∈ Bi (εi)

(2.89)
A sufficient condition for the inequality to hold is√√√√ minBi(εi23)

{βi + ρ2i }

maxBi(εi23)

{
2
∑

j∈I0\i

(
1
βj

+ 4Qj (βj)
∑

l∈I0\{i,j}Ql (βl)
)} > εi > βi > 0,∀q ∈ Bi (εi)

(2.90)
Let

βmin
ji , min

Bi(εi23)
{βj} , βmax

ji , max
Bi(εi23)

{βj} (2.91)

Q0i ,
√

ρ20
(βmin

0i )2
− 1

(βmax
0i )

(2.92)

Qji , Qj(β
min
ji ) (2.93)

and because

min
Bi(εi23)

{
βi + ρ2i

}
= min

Bi(εi23)
{βi}+ min

Bi(εi23)

{
ρ2i
} min

Bi(εi23)
{βi}=0

= ρ2i (2.94)

it follows that the above is equivalent to

ε′′i2 ,
ρi√√√√2

∑
j∈I0\i

(
1

βmin
ji

+ 4Qji

∑
l∈I0\{i,j}

Qli

) > εi > βi > 0, ∀q ∈ Bi (εi) , i ∈ I1

(2.95)
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2.4.5 ε′′i0 calculation

2.4.5.1 Issues with original ε′′i0

In [23] the upper bounds ε′i0, ε′′i0 on εi are derived as

∥qd − qi∥2 − ρ2i ,
minBi(ε′i0)

{
2 |ν(q)| β̄2

i

}
maxBi(ε′i0)

{
1
2
β̄i∇β̄i · ∇γd + γdv̂T

[(
1− 1

k

)
∇β̄i∇β̄T

i − β̄iD2β̄i

]
v̂
} (2.96)

respectively. Note that ε′i0 in Bi(·) is mandatory to derive the above bound. To proceed
further and substitute specific expressions for minima and maxima from the Appendix the
additional constraint εi < εi3 should be placed. This leads to εi03 instead of ε′i0 in Bi(·).
For ε′′i2 in subsection 2.4.4 this change has been made from the start.

But here ε′i0 is not yet changed because there is an issue associated with the specific
selection of ε′i0 as ∥qd − qi∥ − ρ2i in [23]. Even when εi03 replaces ε′i0, if ε′i0 ≤ εi3 then
εi03 = min {ε′i0, εi3} = ε′i0 so the issue remains. For this reason in what follows firstly ε′i0 is
redefined to avoid the issue and then εi03 can be used without problems.

There are several issues with (2.96). The first concerns bounding correctly |ν(q)|. This
is addressed in subsubsection 2.4.5.2. The second is similar to those treated previously for
NKR(ε) in subsection 2.4.2 and for ε′′i2 in subsection 2.4.4. Namely appearance of the same

terms βj, j ̸= i in both nominator and denominator. This again leads to the
min

Bi(ε
′
i0

)
{βj}

max
Bi(ε

′
i0

)
{βj}

problem. If we divide β̄2
i in the denominator before taking the fraction min{}, we can

avoid this problem.

2.4.5.2 Derivation of original ε′i0 and ε′′i0

The nominator of ε′′i0 according to [23] is

min
Bi(ε′i0)

{
2 |νi(q)| β̄2

i

}
≥ 2 min

Bi(ε′i0)
{|νi(q)|} min

Bi(ε′i0)

{
β̄2
i

}
(2.97)

while for us here it will initially be

min
Bi(ε′i0)

{2 |νi(q)|} = 2 min
Bi(ε′i0)

{|νi(q)|} (2.98)

and then improved to

min
Bi(ε′i0)

{
2
|νi(q)|
γd(q)

}
= 2 min

Bi(ε′i0)

{
|νi(q)|
γd(q)

}
(2.99)

In cases (2.97) and (2.98) the lower bound minBi(ε′i0)
{|νi(q)|} arises. There are two issues

in [23] concerning minBi(ε′i0)
{|νi(q)|}:

1. In p.431, when going from the inequality after (12) to the inequality withmin{·},max{·}
the function νi(q) is written ν(q). Hereinafter it is proved that the missing index i
is a typographic error.

2. The selection of ε′i0 , ∥qd − qi∥2 − ρ2i leads to 0 ≥ εi and needs to be altered.
These concerns have been treated in what follows. It is important to note that the correc-
tion applies to both the alternative formula developed in this section and to that obtained
by direct continuation of the Koditschek and Rimon derivation.
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It is now necessary to find an expression for the term minBi(ε′i0)
{|νi(q)|} appearing in

the nominator. To explore the change from νi(q) to ν(q) and prove that it is a typographic
error, the formula for ε′′i0 is derived in greater detail here.

By taking a k ≥ N(εI0) we have “pushed” all the critical points32 qc out of the set
F2 (εI0) “away” from the obstacles, to the set F0 (εI1) “near” the internal obstacles33

Oj, j ∈ I1.
Now the critical points withinF0 (εI1) should be further “pushed” towards the obstacles

by narrowing F0 (εI1). This will place them so close to their nearby obstacle, that the
steepness of its repulsive effect on the potential will not allow a minimum to form at any
of the critical points34. Only a maximum or saddle may form35.

For a non-degenerate critical point qc not to be a local minimum the Hessian matrix
(D2φ̂) (qc) should posess at least one negative eigenvalue at the critical point qc.

If the Hessian (D2φ̂)(q) (second derivative) is non-degenerate (non-zero determinant),
then the function’s curvature may be deduced from it. If positive definite (all eigenvalues
positive) then the critical point is a local minimum. If negative definite (negative eigenval-
ues) it is a local maximum and if both positive and negative eigenvalues exist then there
are directions with positive curvature and other directions with negative curvature of the
function at the same critical point, so a saddle forms there.

We will require at least one negative eigenvalue of the Hessian (D2φ̂)(q) to arise at
the direction defined by the unit vector v̂ orthogonal to the repulsive gradient ∇βi at qc.
The selected test direction is tangential to level sets of βi. Its unit vector is defined36 as

t̂i ,
(
∇βi(q)

∥∇βi(q)∥

)⊥
(2.100)

Requiring that at least one negative eigenvalue exists at qc makes it impossible for qc to be
a local minimum. The only free parameter constrained by this requirement is an εi small
enough for a negative eigenvalue to exist37.

We start by writing the requirement of existence of negative eigenvalues at the tan-
gential direction (the direction defined by t̂i)

t̂Ti
(
D2φ̂

)
(qc)t̂i < 0 (2.101)

32[23], p.437: Cφ is the set of critical points. Note that in p.430 these points are denoted with q, but
when defining v̂ a critical point is denoted by qc (q critical). This is a typographic mistake, occuring also in
a previous publication by the same authors, [31]. Here a critical point is denoted only by qc.
33Also remember that ε0u ensures that no critical points exist in F1 (εI0) either (the 0th obstacle’s zone).
34Remember that complete dissapearance of all critical points is impossible, as proved using the Poincare-

Hopf theorem, [23], § 2.2, pp.415-417.
35Recall that critical point non-degeneracy within F0 (εI1) is ensured by ε′′i2.
36The definition of v̂ in [23], p.430 has typographic mistakes. Furthermore note that v̂ is used in [23] in

three different ways: as any unit tangent vector (normal to βi gradient ∇βi), as a radial unit vector (parallel
to βi gradient ∇βi) and as any unit vector (to prove a generally used inequality). To avoid ambiguities here
we separately define a tangential unit vector wrt βi as t̂i, a radial unit vector wrt βi as r̂i and a unit vector
without specified direction as v̂. This v̂ is used to prove inequalities applying to both t̂i and r̂i.
37It turns out that more than one constraints on εi arise from this requirement.
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qi

ρi

∞∞

φ̂(q)

qc (
∇βi

∥∇βi∥

)⊥∇βi

∥∇βi∥

Figure 2.6: Curvatures, saddle and tangential test direction t̂i

Note that

{
γk−1
d (qc) =

(
∥qc − qd∥2

)k−1
= ∥qc − qd∥2k−2 ≥ 0

qc ∈ F0 =⇒ qc ̸= qd ⇐⇒ qc − qd ̸= 0 ∈ En ⇐⇒ ∥qc − qd∥ ̸= 0 ∈ R

}
=⇒ γk−1

d (qc) > 0

qc ∈ F0 =⇒
{

qc ∈
∪

i∈I1 Bi (εi) =⇒ βi(qc) > 0, ∀i ∈ I1
qc /∈ β−1

0 (0) =⇒ β0(qc) > 0

}
=⇒

∏
i∈I0 βi(qc) > 0 ⇐⇒ β(qc) > 0


=⇒ β2(qc)

γk−1
d (qc)

> 0

(2.102)
By multiplying both sides of inequality (2.101) by β2(qc)

γk−1
d (qc)

> 0, which does not change the
inequality direction, we get

β2(qc)

γk−1
d (qc)

t̂Ti
(
D2φ̂

)
(qc)t̂i < 0 (2.103)

The above expression is equal to

β2

γk−1
d

t̂Ti (D
2φ̂)(qc)t̂i =2β̄i

(
1

4
∇βi · ∇γd − γd

)
︸ ︷︷ ︸

νi(qc)

+ βi

(
1

2
∇β̄i · ∇γd + γdt̂

T
i

[(
1− 1

k

)
∇β̄i∇β̄T

i

β̄i

−D2β̄i

]
t̂i

) (2.104)

Because νi(q) =
1
4
∇βi · ∇γd − γd substitution in (2.104) yields

β2

γk−1
d

t̂Ti (D
2φ̂)(qc)t̂i =2β̄iνi(qc)

+ βi

(
1

2
∇β̄i · ∇γd + γdt̂

T
i

[(
1− 1

k

)
∇β̄i∇β̄T

i

β̄i

−D2β̄i

]
t̂i

) (2.105)

If we now substitute equation (2.105) in inequality (2.103) the constraint takes the form

2β̄iνi(qc) + βi

(
1

2
∇β̄i · ∇γd + γdt̂

T
i

[(
1− 1

k

)
∇β̄i∇β̄T

i

β̄i

−D2β̄i

]
t̂i

)
< 0 (2.106)
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By definition
βj(q) > 0, ∀j ∈ I0, ∀q ∈ F0 (εI1) =⇒

β̄i(q) =
∏

j∈I0\i

βj(q) > 0, ∀q ∈ F0 (εI1)
(2.107)

Multiplying (2.106) by β̄i(q) > 0 yields

β̄i

(
2β̄iνi(qc) + βi

(
1

2
∇β̄i · ∇γd + γdt̂

T
i

[(
1− 1

k

)
1

β̄i

∇β̄i∇β̄T
i −D2β̄i

]
t̂i

))
< 0 ⇐⇒

2β̄2
i νi(qc) + βi

(
1

2
β̄i∇β̄i · ∇γd + γdt̂

T
i

[(
1− 1

k

)
∇β̄i∇β̄T

i − β̄iD
2β̄i

]
t̂i

)
< 0 ⇐⇒

βi︸︷︷︸
>0

(
1

2
β̄i∇β̄i · ∇γd + γdt̂

T
i

[(
1− 1

k

)
∇β̄i∇β̄T

i − β̄iD
2β̄i

]
t̂i

)
︸ ︷︷ ︸

Gi

< −2 β̄2
i︸︷︷︸

>0

νi(qc)

(2.108)
There are four cases of νi(qc), Gi signs, summarized in Table 2.2, leaving case 0 for

later. So if we allow νi(qc) > 0 then Gi can only be negative. On the contrary, if we

Table 2.2: Cases of νi(qc) and Gi signs and
inequality truth value.

Case νi(qc) Gi LHS RHS Inequality

1 > 0 > 0 > 0 < 0 FALSE
2 > 0 < 0 < 0 < 0 ?
3 < 0 > 0 > 0 > 0 ?
4 < 0 < 0 < 0 > 0 TRUE

constrain νi(qc) < 0 then Gi need only be constrained when Gi > 0. This is advantageous
in that Gi > 0 can divide the inequality without changing its sign and there is only one case
for which the inequality constraint should be applied. Therefore the expression developed
later will ensure the inequality holds in case Gi > 0 and it will always be applied as a
constraint, without having to determine the sign of Gi.

The constraint νi(qc) < 0 is due to be analyzed both geometrically and analytically.
But before that, an important note should be made.

To find an upper bound on the denominator Gi of ε′′i0 it is argued hereinafter that

max
Bi(εi)

{Gi} ≤ max
Bi(εi)

{|Gi|} (2.109)

therefore a positive upper bound is guaranteed to be found. As a result an upper bound
constraint will certainly be placed on ε from every obstacle Oi.

But this constraint is not needed if actually Gi(qc) < 0 at the critical point qc within
Bi (εi). Because only an upper bound on |Gi(qc)| is calculated and used andGi(qc) remains
unknown, that is why the constraint is imposed, while it may not be needed (depending
on Gi(qc)). It is very “costly” to determine if it is needed or not.

If Gi(qc) was computed and resulted negative, then of course it would be impossible
to require that

εi < 2
−β̄2

i νi(qc) > 0

Gi < 0
< 0 (2.110)
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because εi > 0 by definition. A contradiction?
This apparent contradiction arises due to the fact that in such a case division of the

inequality by Gi < 0 would change its sign, so that the correct requirement would be

εi >
−2β̄2

i νi(qc) > 0

Gi < 0
< 0 (2.111)

which is always true38 since εi > 0 by definition.
The conclusion is that unnecessary constraints will most probably be placed on ε by

some of the obstacles (those for which Gi(qc) < 0). This is on the safe side.
Note that the case νi(qc) = 0 has been ruled out and that if Gi(qc) = 0 the inequality

will be satisfied as in the case that Gi(qc) < 0.
Now the constraint νi(q) < 0 is analyzed. The function νi(q) is first defined39 as

νi(q) =
1

4
∇βi · ∇γd − γd = (qd − qi) · (q − qd) (2.112)

Its maximum is derived using Lagrange multipliers40

max
Bi(εi)

{νi(q)} =
(√

ε+ ρ2i − ∥qd − qi∥
)
∥qd − qi∥ (2.113)

Therefore, if we require√
εi + ρ2i < ∥qd − qi∥ ⇐⇒√

εi + ρ2i − ∥qd − qi∥ < 0
qd ̸=qi,∀i∈I1 =⇒ qd−qi ̸=0 =⇒ ∥qd−qi∥>0⇐⇒(√

εi + ρ2i − ∥qd − qi∥
)
∥qd − qi∥ < 0

max
Bi(εi)

{νi(q)}=
(√

εi+ρ2i−∥qd−qi∥
)
∥qd−qi∥

⇐⇒

max
Bi(εi)

{νi(q)} < 0 =⇒

νi(q) < 0, ∀q ∈ Bi (εi)
Bi(εi)⊂Bi(εi) =⇒ maxBi(εi)

{νi(q)}≤max
Bi(εi)

{νi(q)}
=⇒

νi(q) < 0, ∀q ∈ Bi (εi)
qc∈Bi(εi)
=⇒

νi(qc) < 0
(2.114)

the desired constraint is imposed. This is equivalent to requesting for εi that, since εi+ρ2i >
0 and ∥qd − qi∥ > 0 √

εi + ρ2i < ∥qd − qi∥ ⇐⇒

εi + ρ2i < ∥qd − qi∥2 ⇐⇒
εi < ∥qd − qi∥2 − ρ2i

(2.115)

This is essentially the requirement that qd /∈ Bi (εi). It is important to keep this in mind
for later.
38It is a requirement satisfied without the need to be imposed as a constraint.
39[23], p.428.
40[23], Lemma 3.5, pp.428-429.
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2.4.5.3 Geometry of ε′i0

Here the condition√
εi + ρ2i < ∥qd − qi∥ =⇒ νi(q) < 0, ∀q ∈ Bi (εi) (2.116)

is illustrated geometrically. First note that
√
εi + ρ2i = ρBi

as defined in (2.15) so the
condition can be written

ρBi
< ∥qd − qi∥ =⇒ νi(q) < 0, ∀q ∈ Bi (εi) (2.117)

Let us start with

νi(q) = (qd − qi) · (q − qd) = ∥qd − qi∥ ∥q − qd∥ cos(−θ) (2.118)

where θ = ̂(q − qd, qi − qd). By definition

Bi (εi) =
{
q ∈ En|0 < βi < εi

}
=
{
q ∈ En|0 < ∥q − qi∥2 − ρ2i < εi

}
=⇒

0 < ∥q − qi∥2 − ρ2i < εi, ∀q ∈ Bi (εi)
ρi>0,εi+ρ2i>0,∥q−qi∥≥0

=⇒

ρi < ∥q − qi∥ <
√
εi + ρ2i , ∀q ∈ Bi (εi) ⇐⇒

ρi < ∥q − qi∥ < ρBi
, ∀q ∈ Bi (εi)

(2.119)

Comparing this result to (2.117) we see that it is equivalent to qd /∈ Bi (εi). The annulus
Bi (εi) has outer radius ρBi

and center qi. This outer radius is constrained to be smaller
than distance ∥qd − qi∥ of destination qd from center qi. As a result Bi (εi) is small enough
to not include qd.

Furthermore the vectors qd− qi and q− qd are shown in Fig. 2.7. Function νi(q) is their
inner product. Vector qd − qi is constant with respect to q. Since q ∈ Bi (εi) the vector
q − qd remains within the cone AqdB. As long as ρBi

< ∥qi − qd∥ the cone’s aperture
remains less than π and ∥q − qd∥ > 0 so the inner product νi(q) remains negative.

2.4.5.4 Zeroing of original ε′′i0

Returning to the required inequality (2.108) when Gi > 0, divide both sides by Gi to
get

ζ1 ,
−2β̄2

i νi(q)
1
2
β̄i∇β̄i · ∇γd + γdt̂Ti

[(
1− 1

k

)
∇β̄i∇β̄T

i − β̄iD2β̄i

]
t̂i

> βi(qc) (2.120)

If we select an εi > 0 such that{
ζ1 ≥ εi

qc ∈ Bi (εi)
p.425
=⇒ εi > βi(qc) > 0

}
=⇒ ζ1 ≥ εi > βi(qc) =⇒ ζ1 > βi(qc) (2.121)

The constraint replacing ζ1 > βi(qc) is

ζ1 ≥ εi ⇐⇒
−2β̄2

i νi(q)
1
2
β̄i∇β̄i · ∇γd + γdt̂Ti

[(
1− 1

k

)
∇β̄i∇β̄T

i − β̄iD2β̄i

]
t̂i
≥ εi, qc ∈ Bi (εi)

(2.122)
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qi

ρBi
=
√
εi + ρ2i

qd

ρiθ

minBi(εi)
{∥q − qd∥}

∥qd − qi∥

q ∈ Bi (εi)

Bi (εi)

B

A

q − qd

qd − qi

Figure 2.7: Geometry of νi(q).

Note that since ζ1 > 0 there is no problem of over-constraining εi to 0 ≥ εi. This note will
prove useful in the sequel.

Because (nom stands for nominator, den for denominator)

ζ1 =
nom(qc) > 0

den(qc) > 0
≥ |nom(qc)| > 0

den(qc) > 0
≥ min

Bi(εi)

{
|nom(qc)| > 0

den(qc) > 0

}
≥

minBi(εi) {|nom(q)|} > 0

maxBi(εi) {den(q)} > 0
(2.123)

provided εi < ∥qd − qi∥2 − ρ2i and

Bi (εi) ⊂ Bi (εi) =⇒

{
minBi(εi) {|nom(q)|} ≥ minBi(εi)

{|nom(q)|} ≥ 0

maxmax
Bi(εi)

{den(q)}≥Bi(εi) {den(q)} > 0
(2.124)

it is

ζ1 ≥
minBi(εi) {|nom(q)|} > 0

maxBi(εi) {den(q)} > 0
≥

minBi(εi)
{|nom(q)|} ≥ 0

maxBi(εi)
{den(q)} > 0

, ζ2 (2.125)

But before replacing the constraint ζ1 ≥ εi with the constraint ζ2 ≥ εi we must ensure
that

min
Bi(εi)

{|nom(q)|} > 0 (2.126)

By the requirement applied previously that qd /∈ Bi (εi) in the form

νi(qc) < 0 ⇐= εi < ∥qd − qi∥2 − ρ2i (2.127)

νi(qc) has a negative supremum in Bi (εi) with an absolute value min{|νi(qc)|} < 0. Notice
that had we required just that εi ≤ ∥qd − qi∥2 − ρ2i , even in the open annulus Bi (εi) the
upper bound would be 0.
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qi

∥qd − qi∥

qd

ρi

Bi(∥qd − qi∥2 − ρ2i )

∂Bi(∥qd − qi∥2 − ρ2i )

√
∥qd−

qi∥
2 − ρ2i

Figure 2.8: Zeroing of ε′′i0 if ε′i0 is set to ∥qd − qi∥2 − ρ2i and used to find minBi(ε′i0)
{νi(q)}.

The minimum is zero because in this case qd ∈ ∂Bi(∥qd − qi∥2 − ρ2i ) and hence ∃q ∈
Bi(∥qd − qi∥2 − ρ2i ), namelly qd ∈ Bi(∥qd − qi∥2 − ρ2i ), such that ∥q − qd∥ = ∥qd − qd∥ = 0,
so the inner product νi(q) minimum is νi(qd) = 0.

In [23]41 it is noted that if

εi,KR < ε′i,KR =⇒ Bi(εi,KR) ⊆ Bi(ε′i,KR) =⇒ ζ2(εi,KR) ≥ ζ2(ε
′
i,KR) (2.128)

then the constraint ζ2(εi,KR) > εi can be replaced by the constraint ζ2(ε′i,KR) > εi.
But the correct check is whether

ζ2(εi,KR) ≥ ζ2(ε
′
i,KR) > 0 (2.129)

Using the argument ζ2(εi,KR) ≥ ζ2(ε
′
i,KR) in [23] the expression

ε′i,KR = ∥qd − qi∥2 − ρ2i (2.130)

is defined42 as ε′0i. The concequence is that

min
Bi(ε′i0)

{|νi(q)|} = min
Bi(∥qd−qi∥2−ρ2i )

{|νi(q)|} = 0 (2.131)

beacuse the closed n-dimensional spherical annulus Bi(∥qd − qi∥2 − ρ2i ) includes the des-
tination configuration qd on its boundary ∂Bi(∥qd − qi∥2 − ρ2i ), as can be observed in
Fig. 2.8

More rigorously, since |νi(q)| = |(qd − qi) · (q − qd)|, if q ∈ Bi(∥qd − qi∥2 − ρ2i ), it is
possible that q = qd and then |νi(q)| = |(qd − qi) · (qd − qd)| = 0

If |νi(q)| = 0 then min
Bi(∥qd−qi∥2−ρ2i )

{|nom(q)|} = 0 =⇒ ζ2 = 0. So if the constraint
ζ1 ≥ εi were replaced by ζ2 ≥ εi then{

ζ2 ≥ εi
ζ2 = 0

}
=⇒ 0 ≥ εi (2.132)

41The parameter εi,KR is an upper bound on εi.
42[23], p.431.
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which cannot be, since by definition εi > 0 (If εi = 0 the open spherical annuli around the
obstacles become of zero width and the sets “near” the obstacles become empty.).

Of course an εi > ∥qd − qi∥2 − ρ2i would not be allowable even if it did not result in
εi ≤ 0. The reason is that it has been imposed as a constraint to ensure νi(qc) < 0.
Therefore we are already confined within εi < ∥qd − qi∥2 − ρ2i .

The conclusion of this analysis is that we cannot replace ζ1(ε
′
i0) by ζ2(ε

′
i0) and set

ε′i0 , ∥qd − qi∥2 − ρ2i . The parameter ε′i0 should be smaller than ∥qd − qi∥2 − ρ2i to avoid qd
from being included in the closure of the open ball Bi(ε

′
i0) specified by ε′i0.

2.4.5.5 Correct selection of ε′i0

Unlike Koditschek and Rimon, I select

ε′i0 , λ′
i0

(
∥qd − qi∥2 − ρ2i

)
(2.133)

where λ′
i0 ∈ (0, 1) is a scaling factor of our choice. If λ′

i0 ∈ (0, 1) is selected close to 1 then

λ′
i0 → 1− =⇒ |νi(q)| → 0+ =⇒ εi → 0+ (2.134)

an undesired behaviour. If λ′
i0 ∈ (0, 1) is selected close to 0, then

λ′
i0 → 0+ =⇒ ε′i0 → 0+ =⇒ εi → 0+ (2.135)

again the same undesired behaviour. Note also that

ε′i0 → 0+ =⇒ |νi(q)| → ((∥qd − qi∥ − ρi) ∥qd − qi∥)− (2.136)

Tthis particular limit is proved in what follows.
So an intermediate selection is desired. Now the νi(qc) < 0 constrain follows from the

constraint (slightly different)

εi < ε′i0 = λ′
i0

(
∥qd − qi∥2 − ρ2i

)
< ∥qd − qi∥2 − ρ2i (2.137)

And it is guaranteed that

νi(q) < 0, ∀q ∈ Bi(ε′i0) ⊂ Bi(∥qd − qi∥2 − ρ2i ) (2.138)

so it is also guaranteed that

ζ1(εi,KR) ≥ ζ1(ε
′
i0) ≥ ζ2(ε

′
i0) > 0 (2.139)

with43 εi,KR < ε′0i.
So the constraint now imposed on εi is

ζ2(ε
′
i0) =

minBi(ε′i0)
{|nom(q)|} > 0

maxBi(ε′i0)
{den(q)} > 0

≥ εi (2.140)

This means that, provided q ∈ Bi (εi) and qd /∈ Bi (εi), the desired minimum is

min
Bi(εi)

{|νi(q)|} = −
(
∥qd − qi∥ −

√
εi + ρ2i

)
∥qd − qi∥ (2.141)

43For example εi,KR may be an ε1 or ε2 < ε′0i imposed by other considerations.
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Selecting ε′i0 = λ′
i0

(
∥qd − qi∥2 − ρ2i

)
the minimum becomes

min
Bi(ε′i0)

{|νi(q)|} = −
(
∥qd − qi∥ −

√
ε′i0 + ρ2i

)
∥qd − qi∥

= −
(
∥qd − qi∥ −

√
λ′
i0

(
∥qd − qi∥2 − ρ2i

)
+ ρ2i

)
∥qd − qi∥

= −
(
∥qd − qi∥ −

√
λ′
i0 ∥qd − qi∥2 + (1− λ′

i0)ρ
2
i

)
∥qd − qi∥

(2.142)

2.4.5.6 Denominator

We have remedied the nominator min{|ν(q)|} and are now about to divide both nom-
inator and denominator of (2.120) by β̄i to obtain

−2νi(q)
1
2
β̄i∇β̄i·∇γd+γd t̂

T
i [(1− 1

k)∇β̄i∇β̄T
i −β̄iD2β̄i]t̂i

β̄2
i

=
−2νi(q)

1
2
∇β̄i

β̄i
· ∇γd + γdt̂Ti

[(
1− 1

k

) ∇β̄i

β̄i

∇β̄T
i

β̄i
− D2β̄i

β̄i

]
t̂i

(2.143)

We have justified why we use as a constraint the nominator min{} divided by the denom-
inator max{}. The nominator minimum minBi(εi03)

{−2νi(q)} = −2maxBi(εi03)
{νi(q)} =

2minBi(εi03)
{|νi(q)|} has been found in (2.143).

Let us focus on the denominator to cancel similar terms contained in it.

1

2

∇β̄i

β̄i

· ∇γd + γdt̂
T
i

[(
1− 1

k

)
∇β̄i

β̄i

∇β̄T
i

β̄i

− D2β̄i

β̄i

]
t̂i

=
1

2

∇β̄i

β̄i

· ∇γd + γd

(
1− 1

k

)(
t̂Ti

[
∇β̄i

β̄i

∇β̄T
i

β̄i

]
t̂i

)
− γdt̂

T
i

D2β̄i

β̄i

t̂i

(2.144)

At this point the term t̂Ti D
2β̄it̂i has appeared. This term had also appeared in subsec-

tion 2.4.4. Actually there, its absolute value had appeared. That was because the term
had been already substituted by its absolute value to bound the worst case.

Retaining the actual term can prove advantageous. It can be expanded and allow us
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to split terms

t̂Ti
D2β̄i

β̄i

t̂i =
1

β̄i

t̂Ti
∑
j∈I0\i

2
β̄i

βj

I +
∇βj

βj

∑
l∈I0\{i,j}

(
β̄i
∇βT

l

βl

) t̂i

= t̂Ti

∑
j∈I0\i

2I

βj

+
∇βj

βj

∑
l∈I0\{i,j}

(
∇βT

l

βl

) t̂i

=
∑
j∈I0\i

 2

βj

t̂Ti It̂i + t̂Ti

∇βj

βj

∑
l∈I0\{i,j}

(
∇βT

l

βl

) t̂i


=
∑
j∈I0\i

 2

βj

∥∥t̂i∥∥2 + t̂Ti

∇βj

βj

∑
l∈I0\{i,j}

(
∇βT

l

βl

) t̂i


=
∑
j∈I0\i

 2

βj

+ t̂Ti

∇βj

βj

∑
l∈I0\{i,j}

(
∇βT

l

βl

) t̂i


=
∑
j∈I0\i

 2

βj

+

 1

βj

∑
l∈I0\{i,j}

(
t̂Ti ∇βj∇βT

l t̂i
1

βl

)
= 2

∑
j∈I0\i

(
1

βj

)
+
∑
j∈I0\i

 1

βj

∑
l∈I0\{i,j}

(
t̂Ti ∇βj∇βT

l t̂i
1

βl

)

(2.145)

We are now able to return to (2.144) and substitute our result

1

2

∇β̄i

β̄i

· ∇γd + γd

(
1− 1

k

)(
t̂Ti

[
∇β̄i

β̄i

∇β̄T
i

β̄i

]
t̂i

)

− γd

2 ∑
j∈I0\i

(
1

βj

)
+
∑
j∈I0\i

 1

βj

∑
l∈I0\{i,j}

(
t̂Ti ∇βj∇βT

l t̂i
1

βl

) (2.146)

then group terms (redefining Gi as its previous definition divided by β̄2
i )

1
2
∇β̄i

β̄i
· ∇γd

+γd
(
1− 1

k

) (
t̂Ti

[
∇β̄i

β̄i

∇β̄T
i

β̄i

]
t̂i

)
−γd

∑
j∈I0\i

(
1
βj

∑
l∈I0\{i,j}

(
t̂Ti ∇βj∇βT

l t̂i
1
βl

))


︸ ︷︷ ︸
Ai

−

2γd ∑
j∈I0\i

(
1

βj

)
︸ ︷︷ ︸

Bi

= Ai −Bi

(2.147)
where Bi = 2γd

∑
j∈I0\i

1
βj

> 0, ∀q ∈ Bi (εi). We want to find

max
Bi(εi03)

{Ai −Bi} = max
Bi(εi03)

{Ai}+ max
Bi(εi03)

{−Bi}
Bi>0
= max

Bi(εi03)
{Ai} − min

Bi(εi03)
{Bi} (2.148)

Recall that Gi = Ai −Bi.
We need not impose the constraint under consideration (ε′′i0 > εi) if Gi < 0. In

subsubsection 2.4.5.2 our limitation was that we could not check Gi’s sign. So we decided
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to impose the constraint in every case, even if in the cases it is not needed (which we
found difficult to examine for the general situation).

But now we are in a position to check some cases when Gi < 0. If44 |Ai| < Bi then{
|Ai| < Bi ⇐⇒ |Ai| −Bi < 0

Ai ≤ |Ai| ⇐⇒ Ai −Bi ≤ |Ai| −Bi

}
=⇒ Ai −Bi < 0 ⇐⇒ Gi < 0 (2.149)

The =⇒ above stresses the fact that we do not always conclude Gi < 0 when it is true,
but some times we are able to tell. Anyway, to be able to avoid placing unnecessary
constraints in some cases is more useful than never. In such a case it suffices for that
particular obstacle i, to require just ε′i0 > εi and not also ε′′i0 > εi.

Continuing with the case |Ai| > Bi, for which we still do not know the sign of Gi, an
upper bound on maxBi(εi03)

{Ai} would prove useful. Let us first proceed with bounding
|Ai| from above. By application of the triangular inequality

|Ai| =
1

2

∇β̄i

β̄i

· ∇γd + γd

(
1− 1

k

)(
t̂Ti

[
∇β̄i

β̄i

∇β̄T
i

β̄i

]
t̂i

)

− γd
∑
j∈I0\i

 1

βj

∑
l∈I0\{i,j}

(
t̂Ti ∇βj∇βT

l t̂i
1

βl

)
≤
∣∣∣∣12∇β̄i

β̄i

· ∇γd
∣∣∣∣+ ∣∣∣∣γd(1− 1

k

)(
t̂Ti

[
∇β̄i

β̄i

∇β̄T
i

β̄i

]
t̂i

)∣∣∣∣
+

∣∣∣∣∣∣γd
∑
j∈I0\i

 1

βj

∑
l∈I0\{i,j}

(
t̂Ti ∇βj∇βT

l t̂i
1

βl

)∣∣∣∣∣∣

(2.150)

Each of the three terms comprising this upper bound on |Ai| is bounded individually. By
the triangular and Schwarz inequalities

∣∣∣∣12∇β̄i

β̄i

∇γd
∣∣∣∣ = 1

2

∣∣∣∣∣∣
∑
j∈I0\i

(
β̄i

βjβ̄i

∇βj∇γd
)∣∣∣∣∣∣ = 1

2

∣∣∣∣∣∣
∑
j∈I0\i

(
∇βj

βj

∇γd
)∣∣∣∣∣∣

≤ 1

2

∑
j∈I0\i

∣∣∣∣∇βj

βj

∇γd
∣∣∣∣ ≤ 1

2

∑
j∈I0\i

(
∥∇βj∥
βj

∥∇γd∥
)

=
1

2
2
√
γd

2
√

ρ20 − β0

β0

+
∑
j∈I1\i

2
√

βj + ρ2j

βj

 = 2
√
γd
∑
j∈I0\i

Qj (βj)

(2.151)

In subsection A.6.2 the inequality
∣∣v̂TabTv̂∣∣ ≤ ∥a∥ ∥b∥ is proved for any unit vector v̂ and

vectors a, b ∈ En. Since the tangential unit vector t̂i is a unit vector{ ∣∣v̂TabTv̂∣∣ ≤ ∥a∥ ∥b∥ , {∀v̂ ∈ En| ∥v̂∥ = 1}
t̂i ∈ En ∧

∥∥t̂i∥∥ = 1

}
=⇒

∣∣t̂Ti abTt̂i∣∣ ≤ ∥a∥ ∥b∥ . (2.152)

44we have shown and know that Bi > 0 but the sign of Ai remains undetermined.
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Using this inequality we derive

∣∣∣∣γd(1− 1

k

)(
t̂Ti

[
∇β̄i

β̄i

∇β̄T
i

β̄i

]
t̂i

)∣∣∣∣ ≤ γd

∥∥∇β̄i

∥∥2
β̄2
i

=

(
√
γd

∥∥∇β̄i

∥∥
β̄i

)2

=

√γd
∥∥∥∑j∈I0\i

β̄i

βj
∇βj

∥∥∥
β̄i

2

=

√γd
∥∥∥∥∥∥
∑
j∈I0\i

∇βj

βj

∥∥∥∥∥∥
2

≤

√γd ∑
j∈I0\i

∥∥∥∥∇βj

βj

∥∥∥∥
2

=

√γd ∑
j∈I0\i

∥∇βj∥
βj

2

=

√γd
2
√

ρ20 − β0

β0

+
∑
j∈I1\i

2
√
βj + ρ2j

βj

2

=

2
√
γd
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j∈I0\i

Qj (βj)

2

= 4γd

∑
j∈I0\i

Qj (βj)

2

(2.153)

since γd > 0, ∀q ∈ Bi (εi)− {qd} and 1− 1
k
≤ 1. Also by

∣∣t̂Ti abTt̂i∣∣ ≤ ∥a∥ ∥b∥
∣∣∣∣∣∣γd

∑
j∈I0\i

 1

βj

∑
l∈I0\{i,j}

(
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l t̂i
1

βl
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βj
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2
√
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(2.154)

which is the same procedure as followed in subsection A.6.1. Here we wanted to separate
t̂Ti D

2β̄it̂i, to form Ai and Bi, that is why we did not use directly that result.
Let

βmin
ji , min

Bi(εi03)
{βj} , βmax

ji , max
Bi(εi03)

{βj} (2.155)

for Q0i, Qji, and define

γmin
di , min

Bi(εi03)
{γd} , γmax

di , max
Bi(εi03)

{γd} (2.156)
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The previous results lead to

−2νi(q)
1
2
β̄i∇β̄i·∇γd+γd t̂

T
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k)∇β̄i∇β̄T
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(2.157)

2.4.5.7 Diminishing nominator lower bound

Pairing ∇β̄i with β̄i by dividing the nominator β̄2
i in the denominator has proved ad-

vantageous. It removes β̄i from the nominator and cancels it with β̄i terms in
∥∥∇β̄i

∥∥,
when bounding the denominator from above.

This relieves the nominator of the unwanted lower bound minBi(εi03)

{
β̄i

}
and re-

duces the calculated upper bound on the denominator. As a result the ill-valued fraction
min

Bi(εi03)
{β̄i}

max
Bi(εi03)

{β̄i} is avoided. Essentially we avoid ignoring that the same function is embedded

in both denominator and nominator.
After advancing with this cancellation we are still left with a nominator −2νi(q). Its

lower bound is minBi(εi03)
{−2νi(q)}. This lower bound has a small value and we would

like to replace it. In order to achieve this it is useful to explore this term’s behavior.
As already noted ε′i0 < ∥qd − qi∥2 − ρ2i =⇒ νi(q) < 0,∀q ∈ Bi (εi) so

min
Bi(εi03)

{−νi(q)} =− max
Bi(εi03)

{νi(q)}

=

(
∥qi − qd∥ −

√
ε′i0 + ρ2i

)
∥qi − qd∥

= min
Bi(εi03)

{√
γd(q)

}√
γd(qi)

(2.158)
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This result should be expected, since

νi(q) =
1

4
∇βi · ∇γd − γd

=
1

4
[2(q − qi)] · [2(q − qd)]− ∥q − qd∥2

= (q − qi) · (q − qd)− (q − qd) · (q − qd)

= (qd − qi) · (q − qd)

= −1

4
[2(qi − qd)] · [2(q − qd)]

= −1

4
∇γd(qi) · ∇γd(q)

(2.159)

Following from this, by application of Schwarz inequality

|νi(q)| =
∣∣∣∣−1

4
∇γd(qi) · ∇γd(q)

∣∣∣∣
=

1

4
|∇γd(qi) · ∇γd(q)|

≤ 1

4
∥∇γd(qi)∥ ∥∇γd(q)∥

=
1

4
2 ∥qi − qd∥ 2 ∥q − qd∥

=
√
γd(qi)

√
γd(q)

(2.160)

The above restatement of |νi(q)| in terms of
√
γd(qi) and

√
γd(q) offers valuable insight.

It demonstrates that |νi(q)| is bounded from above and below.
For a given obstacle center qi the euclidean distance between qi and qd is fixed and

equal to
√
γd(qi) = ∥qi − qd∥. But the second term

√
γd(q) = ∥q − qd∥, the distance

of a point q in Bi(ε′i0) from qd, is still free to vary between minBi(εi03)

{√
γd(q)

}
and

maxBi(εi03)

{√
γd(q)

}
.

The bounds depend on Bi(ε′i0), which is defined by ρi and ε′i0, a spherical annulus of
inner diameter ρi and outer diameter ρ′0i =

√
ε′i0 + ρ2i < ∥qi − qd∥ =

√
γd(qi).

The closer the destination qd to the obstacle’s boundary ∂Oi the narrower the above
bounds. As proved in subsubsection A.5.2.1

min
Bi(εi03)

{√
γd(q)

}
= ∥qi − qd∥ −

√
ε′i0 + ρ2i = ∥qi − qd∥ − ρ′0i

max
Bi(εi03)

{√
γd(q)

}
= ∥qi − qd∥+

√
ε′i0 + ρ2i = ∥qi − qd∥+ ρ′0i

(2.161)

These bounds on
√
γd(q) within Bi(ε′i0) are illustrated in Fig. 2.9.

The closer we choose destination qd to obstacle Oi the smaller the ramaining space
available to vary Bi(ε′i0) (reduce it by choosing a smaller ε′i0 hence smaller ρ′i0) to increase
minBi(εi03)

{√
γd(q)

}
provided we have to also satisfy the constraint qd /∈ Bi(ε′i0).

This we would prefer to avoid to prevent ε′′i0 from becoming impractically small when qd
is close to an ∂Oi.We will accomplish this by recognizing a similar effect in the denominator,
as we have already done with β̄i, and cancelling these effects.
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qi
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qd ρi
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′
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minBi(εi03)

{√
γd(q)

}

maxBi(εi03)

{√
γd(q)

}∥qi − qd∥ =
√

γd(qi)
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qd ρi
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{√
γd(q)

}
Figure 2.9: Extrema of

√
γd(q) within Bi(ε′i0) as qd is placed closer to an obstacle.
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2.4.5.8 Nominator behavior

Let us now look at the denominator to find a
√

γd(q)

1

2

∇β̄i

β̄i

· ∇γd + γdt̂
T
i

[(
1− 1

k

)
∇β̄i

β̄i

∇β̄T
i

β̄i

− D2β̄i

β̄i

]
t̂i (2.162)

We see γd and ∇γd. Obviously γd(q) incorporates a
√

γd(q), but what about ∇γd(q)?
As already shown when bounding the denominator from above, a term of the denom-

inator upper bound is

∣∣∣∣12∇β̄i

β̄i

∇γd
∣∣∣∣ = 2

√
γd

√ ρ20
β2
0

− 1

β0

+
∑
j∈I1\i

√
ρ2j
β2
j

+
1

βj

 (2.163)

so if divide the denominator by
√
γd(q) it will cancel in the procedure of determining an

upper bound.
The nominator lower bound includes minBi(εi03)

{√
γd(q)

}
. This tends to 0+ as qd →

∂Oi. So we expect that dividing the nominator by
√

γd(q) will raise to nonzero the lower
bound limit as qd → ∂Oi. The new lower bound is

min
Bi(εi03)

{
−2νi(q)√

γd(q)

}
= min

Bi(εi03)

{
−2−1

4
∇γd(qi) · ∇γd(q)
1
2
2
√
γd(q)

}

= min
Bi(εi03)

{
∇γd(qi) ·

(
∇γd(q)
∥∇γd(q)∥

)}
= min

Bi(εi03)
{∇γd(qi) · v̂d(q)}

(2.164)

were

v̂d(q) ,
∇γd(q)
∥∇γd(q)∥

=⇒ ∥v̂d(q)∥ =
∥∥∥∥ ∇γd(q)∥∇γd(q)∥

∥∥∥∥ = 1,∀q ̸= qd (2.165)

This expectation is false. Expecting to cancel minBi(εi03)

{√
γd(q)

}
in the lower bound

by dividing the nominator by
√

γd(q) (not its lower bound) does not solve the problem
because the nominator has one more effect in it, the inner product ∇γd(qi) · ∇γd(q).

The inner product prevents us from remedying the lower bound problem by just using a√
γd(q) from the denominator. The angle in the inner product needs more to be annealed.
Having overviewed what is following, we can now examineminBi(εi03)

{∇γd(qi) · v̂d(q)}.
Our approach will be geometric, Fig. 2.10, saving detailed analytical treatment for the final
expression.

It is true that
∇γd(qi) · v̂d(q) = ∥∇γd(qi)∥ ∥v̂d(q)∥ cos θ (2.166)

where45 θ = ̂(q − qd, qi − qd) ∈ [θmin, θmax] ⊂ (−π
2
, π
2
) and in what follows only half of the

interval (−π
2
, π
2
), i.e. [0, π

2
), will be considered, due to symmetry.

45Note that ε′i0 < ∥qd − qi∥2 − ρ2i =⇒ qd /∈ Bi(ε′i0) =⇒ θ /∈ [−π,−π
2 ] ∪ [π2 , π).
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Figure 2.10: Nominator lower bound.
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For a given obstacle ∥∇γd(qi)∥ = 2 ∥qi − qd∥ is fixed, so

min
Bi(εi03)

{∇γd(qi) · v̂d(q)} = min
Bi(εi03)

{2 ∥qi − qd∥ cos θ}

= 2 ∥qi − qd∥ min
Bi(εi03)

{cos θ}

= 2 ∥qi − qd∥ cos max
Bi(εi03)

{θ}

(2.167)

since θ ∈ [0, θmax] ⊂ [0, π
2
].

Clearly θmax is the angle between the tangent from qd to the sphere with center qi and
radius ρ′i0 which constitutes the annulus’ Bi(ε′i0) outer boundary and the line through qi
and qd. This implies

θmax = arcsin

(
ρ′i0

∥qi − qd∥

)
= arcsin

(
ρ′i0√
γd(qi)

)
(2.168)

Now that we have expressed the nominator minimum as a function of θmax

min
Bi(εi03)

{
−2νi(q)√

γd(q)

}
= 2 ∥qi − qd∥ cos θmax (2.169)

let us place qd closer to ∂Oi and observe what happens tp θmax, as shown in Fig. 2.10.
We see that

θmax →
π

2

−
=⇒ cos θmax → 0+ (2.170)

So the nominator lower bound again tends to 0.

2.4.5.9 Nominator lower bound improvement observed

Although the nominator lower bound still tends to zero when qd goes close to an
obstacle, there has been an improvement. This can be shown by considering the lower
bound before

min
Bi(εi03)

{−2νi(q)} =
(
∥qi − qd∥ −

√
ε′i0 + ρ2i

)
∥qi − qd∥

=
(√

γd(qi)− ρ′i0

)
∥qi − qd∥

=
(√

γd(qi)− ρ′i0

)√
γd(qi)

(2.171)

and after dividing by
√

γd(q)

min
Bi(εi03)

{
−2νi(q)√

γd(q)

}
= ∥∇γd(qi)∥ cos θmax = 2

√
γd(qi)− (ρ′i0)

2 (2.172)

where the latter expression can be derived by application of the Pythagorean Theorem
for euclidean space, see Fig. 2.11.
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ρi

√ γd(
qi)
− (ρ

′
i0
)2

θmax

√
γd(qi)− ρ′i0

√
γd(qi)

Figure 2.11: Nominator old and new lower bound comparison.

The fraction of lower bounds before and after the change is

minBi(εi03)
{−2νi}

minBi(εi03)

{
−2νi(q)√

γd(q)

} =

(√
γd(qi)− ρ′i0

)√
γd(qi)

2
√

γd(qi)− (ρ′i0)
2

=
(
√

γd(qi)− ρ′i0)
√
γd(qi)

2

√√
γd(qi)

2 − (ρ′i0)
2

=

√
γd(qi)

2

√√
γd(qi)− ρ′i0√
γd(qi) + ρ′i0

(2.173)

so its limit is

lim√
γd(qi)→(ρ′i0)

+

minBi(εi03)
{−2νi}

minBi(εi03)

{
−2νi(q)√

γd(q)

} = lim√
γd(qi)→(ρ′i0)

+

(√
γd(qi)

2

√√
γd(qi)− ρ′i0√
γd(qi) + ρ′i0

)
= 0+

(2.174)

2.4.5.10 Final nominator improvement

To prevent diminishing of the nominator lower bound we can divide the nominator by
γd(q). This results in an unwanted effect, which will be shown to be less problematic than
the initial expression for ε′′i0.

The effect is that, unfortunately, the denominator does not uniformly incorporate a
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second
√

γd(q). The resulting expression is

−2 νi(q)
γd(q)

1
2
∇β̄i

β̄i
· ∇γd

γd
+ t̂Ti

[(
1− 1

k

) ∇β̄i

β̄i

∇β̄T
i

β̄i
− D2β̄i

β̄i

]
t̂i

(2.175)

The ∇γd(q)
γd

corresponds to 1√
γd(q)

in the denominator upper bound, leading to (because as

shown later the nominator lower bound will be 1)

1

maxBi(εi03)
{Ai} 1

min
Bi(εi03)

{γd(q)}
+maxBi(εi03)

{Bi}

=
minBi(εi03)

{γd(q)}
maxBi(εi03)

{Ai}+maxBi(εi03)
{Bi}minBi(εi03)

{γd(q)}

(2.176)

which is clearly an improvement over the previous expression

minBi(εi03)
{γd(q)}

√
γd(qi)

maxBi(εi03)
{Ai}

√
maxBi(εi03)

{γd(q)}+maxBi(εi03)
{Bi}maxBi(εi03)

{γd(q)}
(2.177)

The nominator improvement is

−2 νi(q)
γd(q)

= −2
−1

4
∇γd(qi) · ∇γd(q)

γd(q)

= 2
∇γd(qi) · ∇γd(q)
2
√

γd(q)2
√

γd(q)

= 2
∇γd(qi)
∥∇γd(q)∥

∇γd(q)
∥∇γd(q)∥︸ ︷︷ ︸

v̂d(q)

= 2
∇γd(qi) · v̂d(q)
∥∇γd(q)∥

= 2
∥∇γd(qi)∥ ∥v̂d(q)∥ cos θ

∥∇γd(q)∥

= 2
2 ∥qi − qd∥ cos θ

2 ∥q − qd∥
= 2

ri
r
cos θ

(2.178)

where ri , ∥qi − qd∥ , r , ∥q − qd∥ and the polar coordinates used are shown in Fig. 2.12.
Note that although the problem is defined in the n-dimensional Euclidean spaceEn, finding
the nominator lower bound reduces to a 2-dimensional subspace problem, because of
sphere symmetry.

2.4.5.11 Nominator lower bound: geometric intuition

Before finding the nominator minimum on the semi-annulus D of Fig. 2.12 let us first
explore the underlying geometric intuition. Omitting the scaling factor of 2, the function
to be minimized over the semi-annulus is

f(r, θ) =
ri
r
cos θ =

ri cos θ

r
=

∥∥projectionq−qd
qi − qd

∥∥
∥q − qd∥

(2.179)
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qi = (ri, 0)

ρ′i0

qd = (0, 0)

ρiθ
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q1
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Figure 2.12: Nominator constant lower bound calculation.

Select an angle θ which determines the direction q− qd. Since qi− qd is given selecting
θ fixes the projection of qi − qd on q − qd.

There remains to select q ∈ D on the semiline whose direction is determined by θ.
Observe that selecting

1. q1 =⇒ ∥q1 − qd∥ < ∥qi − qd∥ cos θ =⇒ 1 < f(r, θ)
2. q2 =⇒ ∥q2 − qd∥ = ∥qi − qd∥ cos θ =⇒ 1 = f(r, θ)
3. q3 =⇒ ∥q3 − qd∥ > ∥qi − qd∥ cos θ =⇒ 1 > f(r, θ)

And that q3 yields the minimum f(r, θ) on a given direction.
The global minimum over D is attained at q8 = (ri+ρ′i0, 0). This will be formally proved

in subsubsection 2.4.5.12, where the nomiantor lower bound is found to be

2
ri

ri + ρ′i0
cos 0 = 2

1

1 +
ρ′i0
ri

ρ′i0<ri =⇒
ρ′i0
ri

<1

> 2
1

2
= 1 (2.180)

2.4.5.12 Nominator lower bound: analytical calculation

We may treat the (symmetric) problem in either polar (r, θ) ∈ R × [0, π] or cartesian
coordinates (x, y) ∈ R2. Let us choose cartesian coordinates to minimize

f(r, θ) =
ri
r
cos θ =

ri√
x2 + y2

x√
x2 + y2

=
rix

x2 + y2
= f(x, y) (2.181)

subject to
0 ≤ y

ρ2i ≤ (x− ri)
2 + y2 ≤ (ρ′i0)

2 (2.182)

defining domain D, where 0 < ρi < ρ′i0 < ri.

Domain Interior

(0, 0) ∈ D ⇐⇒
{

y = 0 ≤ 0
r2i ≤ r2i + 02 ≤ (ρ′i0)

2

}
⇐⇒

{
y = 0 ≤ 0

ρi ≤ ri ≤ ρ′i0

}
(2.183)
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a contradiction since46 ρi < ρ′i0 < ri. Therefore47 (0, 0) /∈ D and hence f(x, y) is differen-
tiable everywhere in D with gradient

∇x,yf(x, y) =

[
∂f

∂x
(x, y),

∂f

∂y
(x, y)

]
=

[
ri

y2 − x2

(x2 + y2)2
, ri

2xy

(x2 + y2)2

]
=

ri
(x2 + y2)2

[
y2 − x2, 2xy

] (2.184)

The gradient is zero at any critical points in the interior ofD and since x > 0 =⇒ x2+y2 >
0,∀(x, y) ∈ D and ri > 0, it follows that

∇x,yf(x, y) = 0 ⇐⇒
{

y2 − x2 = 0
2xy = 0

}
⇐⇒ x = y = 0 (2.185)

which cannot be in D, because x > 0, ∀(x, y) ∈ D.

Line y = 0 We are about to examine the boundary. Starting from the x axis, i.e. the line
y = 0, we have the following constrained minimization problem of f(x, y) in the interior of
the linear segments of D on y = 0 (and not the corner points).

y = 0 ⇐⇒ g(x, y) = 0 (2.186)

The Lagrangian is (λ ∈ R is a Lagrange multiplier)

Λ(x, y, λ) = f(x, y) + λg(x, y) = ri
x

x2 + y2
+ λy (2.187)

We require
∂Λ
∂x
(x, y, λ) = 0 ⇐⇒ ri

y2−x2

(x2+y2)2
= 0

ri>0,x2+y2>0,∀(x,y)∈D⇐⇒ {x = y ∨ y = −x}
∂Λ
∂y
(x, y, λ) = 0 ⇐⇒ −ri 2xy

(x2+y2)2
+ λ = 0

∂Λ
∂λ
(x, y, λ) = 0 ⇐⇒ g(x, y) = 0

 ⇐⇒
x = y = 0 ⇐⇒ (x, y) /∈ D

(2.188)
So there are no critical points in the interior of the boundary segments of D on y = 0.

The corner points are still critical points. Function values at them are

f(ri − ρ′i0, 0) = ri
ri − ρ′i0

(ri − ρ′i0)
2
=

ri
ri − ρ′i0

=
1

1− ρ′i0
ri

f(ri − ρi, 0) = ri
ri − ρi

(ri − ρi)2
=

ri
ri − ρi

=
1

1− ρi
ri

f(ri + ρi, 0) = ri
ri + ρi

(ri − ρi)2
=

ri
ri + ρi

=
1

1 + ρi
ri

f(ri + ρ′i0, 0) = ri
ri + ρ′i0

(ri + ρ′i0)
2
=

ri
ri + ρ′i0

=
1

1 +
ρ′i0
ri

(2.189)

of which f(ri + ρ′i0, 0) is the minimum value among the four corner points.

46Note that x > 0 ⇐⇒ (x, y) /∈ D whereas y can be zero.
47This is the constraint ε′i0 < ∥qd − qi∥2 − ρ2i ensuring qd /∈ Bi(ε′i0).
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Semi circles The circles (qi, ρi) and (qi, ρ
′
i0 are both defined by constraints of the form

(x− ri)
2 + y2 − ρ2 = 0 so now the Lagrangian is

Λ(x, y, λ) = f(x, y) + λg(x, y) = ri
x

x2 + y2
+ λ

[
(x− ri)

2 + y2 − ρ2
]

(2.190)

We require
∂Λ

∂x
(x, y, λ) = 0 ⇐⇒ ri

y2 − x2

(x2 + y2)2
+ 2λ(x− ri) = 0

∂Λ

∂y
(x, y, λ) = 0 ⇐⇒ −ri

2xy

(x2 + y2)2
+ 2λy = 0

∂Λ

∂λ
(x, y, λ) = 0 ⇐⇒ g(x, y) = 0

(2.191)

For y ̸= 0 (that is, in all points within the semicircles apart from the corner points of D)
and λ ̸= 0

ri
2xy

(x2 + y2)2
+ 2λy = 0

x2+y2>0,∀(x,y)∈D∧y ̸=0⇐⇒ rix+ λ(x2 + y2)2 = 0

λ ̸=0⇐⇒ (x2 + y2)2 = −rix

λ

(2.192)

Substitution in the first equation yields

−ri
y2 − x2

− rix
λ

+ 2λ(x− ri) = 0
λ ̸=0⇐⇒ y2 − x2

x
+ 2(x− ri) = 0 ⇐⇒

(x− ri)
2 + y2 = r2i

ρi<ρ′i0<ri⇐⇒ (x, y) /∈ D

(2.193)

so there are no critical points in the interior of the circular boundary segments of D.
The particular cases y = 0 and λ = 0 remain. The case λ = 0 ⇐⇒ (x, y) = (0, 0) /∈ D

and y = 0 on the circles corresponds to the corner points of D. So the only critical points
of D are the corner points, which have already been examined previously. The global
minimum over D is attained at (ri + ρ′i0, 0) and is equal to

f(ri + ρ′i0, 0) =
1

1 +
ρ′i0
ri

ρ′i0<ri
>

1

2 (2.194)

The plot of f over D is shown in Fig. 2.13. An important note is due here concerning
the fact that εi03 is later used in place of ε′i0 so that expressions for extrema of involved
quantities can be substituted. Since εi03 = min{ε′i0, εi3} and ε′i0 < ∥qd − qi∥2− ρ2i it follows
that εi03 < ∥qd − qi∥2− ρ2i as well, hence also ρi03 < ri, so the previous analysis still holds.

2.4.5.13 ε′′i0 expression

Considering all preceding discussion we are led to define upper bound ε′′0i on εi as

ε′′i0 ,
1

2 1√
γmin
di

∑
j∈I0\i

Qji +

(
2
∑

j∈I0\i
Qji

)2

+ 4
∑

j∈I0\i

(
Qji

∑
l∈I0\{i,j}

Qli

)
− 2

∑
j∈I0\i

1
βmax
ji

, ∀i ∈ I1

(2.195)
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Figure 2.13: The nominator−2 νi(q)
γd(qc)

of ε′′i0 essentially is a function of two variables f(r, θ) =
ri cos θ

r
. Here it is illustrated in normalized coordinates xn = x

ri
, yn = y

ri
.
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ε′′i0 ≤
−2νi(q)
γd(q)

1
2
β̄i∇β̄i·∇γd+γd t̂

T
i [(1− 1

k)∇β̄i∇β̄T
i −β̄iD2β̄i]t̂i

γdβ̄
2
i

, ∀q ∈ Bi (εi) , i ∈ I1 (2.196)

The respective constraint on εi is

0 < βi < εi < ε′′i0, ∀q ∈ Bi (εi) , i ∈ I1 (2.197)



Chapter 3

Adjustability in Unknown Sphere
Worlds

3.1 Upper bound on γd when O0 is unknown

The analysis so far concerned automatically tuning a NF for a sphere world with internal
obstacles within W . In section 3.2 we show how to efficiently maintain the NF tuned as
new internal obstacles are discovered. But initially no obstacle is known. Any unknown
obstacles must be disjoint spheres. So an internal obstacle Oi, i ̸= 0 may be discovered
before O0. In this case the workspace is unbounded O0 = ∅ =⇒ W = En. This is not
covered by the original NF formulation. We now extend the method of analytic NFs to
unbounded worlds with internal spheres.

Propositions 3.2, 3.3 [23] still hold, so no critical points arise on ∂F and qd is a local
minimum of φ. In the same way as proved in Proposition 2.7 [23] critical points in the
interior of F \ {qd} are unaffected by range diffeomorphism σd ◦ σ so we can examine
critical points of φ̂.

In case of a single internal obstacle Oi, i ̸= 0 Propositions 3.6 and 3.9 [23] hold for

εi < min{ε′i0, ε′i2} (3.1)

since ε′′i0, ε
′′
i2, εi3 are not needed whereas ε0u is undefined.

If more internal obstacles are known

εi < min{ε′′i0, ε′′i2, εi03, εi23} (3.2)

applies and ε0u is still undefined.
When at least one new obstacle is discovered at tm ∈ [0,+∞),m ∈ N \ 0 the NF is

updated. So different NF fields guide the agent before and after tm. For each discovered
obstacle one update is performed, increasing the number Mz ∈ N, z ∈ N \ 0 of currently
known internal obstacles. Note that m ≤ z because several new obstacles may be sensed
at tm. Also note that since the dicovery of a new obstacle triggered the potential update
at least one internal obstacle Oi, i ∈ I1z , {1, 2, . . . ,Mz} is known, soMz ≥ 1. Let imin = 1
if O0 remains unknown and imin = 0 otherwise. The notation zβ refers to β when Mz

obstacles are known
zβ =

∏
i∈I1z

βi =
Mz∏
i=1

βi (3.3)

Similar notation will follow which has been avoided so far to reduce unnecessary clutter.
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Pz

φz(q) = φz(x(tm)) = αz

0 ≤ φz(q) ≤ αz

Figure 3.1: Positive invariant set Pz until next NF update.

The agent at time tm is positioned at x(tm). Let

αz , φz (x(tm)) > 0, z ∈ {1, 2, . . . , Ntransitions} (3.4)

be the updated NF potential at the agent’s position x(tm) after the update (but before the
agent moves). The number of transitions z is finite Ntransitions because each controller is
a NF and the number of obstacles is finite. This is equivalent to convergence, which is
proved in section 3.6. Also αz > 0 because αz = 0 ⇐⇒ q = qd which is not the present
case (the agent here has not converged yet, otherwise we would not bother any more!).

Although φz changes due to each added obstacle, it suffices to first add all new ob-
stacles discovered at time tm, calculating their εiu and recursively updating εiu of already
known obstacles as detailed later. Following this, a single update of kz then suffices for
each tm (an update of kz is redundant for each new obstacle at tm).

If the agent is in the free space interior when the NF is updated x(tm) ∈ F \ ∂F = F̊
then φz(q) < 1, ∀q ∈ F \ ∂F =⇒ αz < 1 (∂F has zero measure anyway). Since x
is a gradient system ẋ = −∇qφz it cannot overcome αz until the NF is updated again at
tm+1. This is true for the NF after tm until it changes again (if it first reaches qd this never
happens). So

φz(x(t)) < αz, ∀t ∈ [tm, tm+1] (3.5)

Note that if tm+1 = +∞ then this interval is [tm,+∞).
Let use define the closed set where the potential function φz is less than or equal to

its value at the agent’s initial in [tm, tm+1] configuration x(tm)

Pz , {q ∈ F : φz (q) ≤ αz} (3.6)

By (3.5) and (3.6) for any initial x(tm) ∈ Pz the agent remains within Pz for the time
interval [tm, tm+1]

x(t) ∈Pz, ∀t ∈ [tm, tm+1] (3.7)

so the set Pz is positive invariant in the time interval [tm, tm+1]. The agent cannot escape
out of it until the next NF update1. SetPz is schematically shown in Fig. 3.1. By definition

φz (x(tm)) = αz =⇒ x(tm) ∈Pz

φz (qd) = 0 < αz =⇒ qd ∈Pz

(3.8)

1Convergence is guaranteed by the finite total number of unknown obstacles by Theorem 2 so that after
a finite number of NF updates tm+1 = +∞, that is, no further update occurs
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When no obstacle O0 is known the potential field must ensure the agent remains in
a finite region. A potential with lim∥q∥→∞ φz(q) < αz cannot ensure this. Since αz < 1 if
lim∥q∥→∞ φz(q) = 1 then Pz will be always bounded. To ensure Pz is bounded select

kz > Mz ⇐⇒ lim
∥q∥→∞

φz (q) = 1 (3.9)

Proof of this Proposition in subsection A.6.3. Essentially it makes φ̂z radially unbounded.
Hence there exists a sphere

Qz(ρb) , {q ∈ En : ∥q − qd∥ ≤ ρb} (3.10)

such that
φz (q) > αz, ∀q /∈ Qz =⇒ Pz ⊆ Qz (3.11)

By Pz ⊆ Qz it follows that Pz is bounded by the sphere Qz(ρb) of finite radius. Since Pz

is closed by definition and bounded as shown, it is compact.
The limit set for any trajectory of a gradient system on a compact manifold as Pz

is an equilibrium point [23, 49]. As a result the limit set of ẋ(t) is the set of equilibrium
points in Pz {

q ∈ En : lim
t→+∞

x(t) = q

}
= Cφ ∩Pz (3.12)

The equilibria may be maxima, minuma, or saddles. Only minima and saddles can con-
stitute the positive limit set of a gradient system. Showing that all saddles are non-
degenerate implies that their stable manifold is of measure zero. The remaining equilibria
inPz which can have an open stable manifold are the minima inPz. Therefore it suffices
that no local minima other than qd arise within Pz.

∄qmin ∈Pz \ {qd} (3.13)

Proposition 3.4 [23] remains to be proved for the case of unknown O0. But here a
serious problem arises, since

√
γd is unbounded.

For the lower bound of kz an upper bound on
√
γd is needed within F2 (εI0). But

F2 (εI0) is unbounded. Nonetheless the agent can only reach Pz ∩ F2 (εI0) which is
bounded (and compact). Since Pz ∩F2 (εI0) is bounded hence an upper bound on

√
γd

within it exists.
It suffices to determine an upper bound

ρa ≥ max
Pz

{√γd} ≥
√
γd, ∀q ∈Pz (3.14)

on
√
γd in Pz. This will also be an upper bound on

√
γd within the subset Pz ∩F2 (εI0)

of F2 (εI0) which is reachable in time interval [tm, tm+1].

Proposition 2. If √
γd > max

i
{∥qi − qd∥} (3.15)

and √
γd > am1

1 am2
2 (3.16)

where

a1 ,
4Mz

zβ(x(tm))
, a2 , γd(x(tm)) (3.17)
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Pz

qd
ρa

Rz

Figure 3.2: SphereRz. Note that ρa is such that bothRz ⊇Pz and all centers qi ∈ Rz, i ∈
I1z.

and

m1 ,
{
0, a1 ≤ 1
1
2
, a1 > 1

, m2 ,
{

1
2
, a2 ≤ 1

Mz+1
2

, a2 > 1
(3.18)

then q /∈Pz.

Proof. See subsection A.6.4.

Lemma 3. Let q ∈Pz and suppose√
γd(q) > ρa , max{max

i
{∥qi − qd∥} , am1

1 am2
2 } (3.19)

By Proposition 2 it follows that q /∈Pz, a contradiction, hence√
γd(q) ≤ ρa, ∀q ∈Pz (3.20)

Let us define a sphere centered at destination qd

Rz(ρa) , {q ∈ En : ∥q − qd∥ ≤ ρa} (3.21)

so2 by Proposition 1 it includes positive invariant set Pz{
q /∈ Rz =⇒ ∥q − qd∥ > ρa ⇐⇒

√
γd(q) > ρa =⇒ q /∈Pz

}
=⇒ Pz ⊆ Rz (3.22)

hence the agent x does not leave Rz until the next NF update3

x(t) ∈Pz ⊆ Rz, ∀t ∈ [tm, tm+1] (3.23)

This sphere4 has ρa ≥ ∥qi − qd∥ , ∀i ∈ I1z so it also includes all obstacle centers qi. Also
Qz ⊆ Rz.

As noted before, a sufficient inequality for the gradient to be nonzero in the set “away”
from obstacles F2 (εI0) is

1

2

√
γd
∥∇β∥
β

< kz, ∀q ∈ F2 (εI0) (3.24)

2If Oi ∩Pz ̸= ∅ the it is not =.
3If no further update occurs tm+1 → +∞.
4It is only known that φz (q) > αz, ∀q /∈ Rz. It is not true that φz (q) ≤ αz,∀q ∈ Rz because at least one

internal obstacle Oi, i ∈ I1z is known, whose center belongs to sphere Rz implying Rz ∩ ∂F ̸= ∅ =⇒ ∃q ∈
Rz : φz (q) = 1 > αz.
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but when no O0 is known F2 (εI0) is unbounded and
√
γd cannot be bounded. What we

have proved so far is that for kz > Mz the positive invariant setPz is bounded. As a result
we are not concerned with critical points outside Pz since the agent using this updated
NF cannot reach them and be trapped by them.

More directly, if Pz closed, then if qc /∈ Pz =⇒ ∃ρc : ∀q : ∥q − qc∥ < ρc =⇒ q /∈
Pz so that since Pz positive invariant, then suppose limt→+∞ x(t) = qc =⇒ ∃tmax :
∥x(t)− qc∥ < ρc,∀t > tmax =⇒ x(t) /∈ Pz, ∀t > tmax which contradicts the hypothesis
that Pz is positive invariant. Hence qc /∈ Pz implies qc stable manifold Sc is completely
outside Pz, that is Sc ∩Pz = ∅.

We have found an upper bound on
√
γd in Rz ⊇ Pz,∀kz > Mz. So we can use it to

find a lower bound on kz within the reachable set Pz.
Substituting the upper bound on

√
γd in Rz in the sufficient inequality

max
Rz

{√γd}
∑
I1z

Qii < kz (3.25)

to find a lower bound for kz within the positive invariant set Pz leads to

ρa
∑
I1z

Qii < kz (3.26)

This prevents critical points from arising “away” from obstacles in F2 (εI0) ∩ Rz. Since
Pz ⊆ Rz it also implies that qc /∈ (F2 (εI0) ∩Pz). Note that the agent is confined in Pz,
not inF2 (εI0)∩Pz. But the complement inPz of the reachable set “away” from obstacles
Pz ∩F2 (εI0) is Pz ∩ ∂F ∪F0 (εI1). These are critical points confined close to internal
obstacles. SincePz ⊆ Rz these critical points are within Rz. Any remaining critical points
in Rz are confined near the obstacles5. By the εi upper bounds these remaining critical
points qc ̸= qd near obstacles are ensured to be non-degenerate saddle points. In Rz a
unique local minimum remains at qd.

SincePz ⊆ Rz, Rz contains a unique non-degenerate local minimum, all other critical
points in Rz are non-degenerate saddles, and qd ∈ Pz, it follows that Pz contains a
unique local minimum, and all other critical points in Pz are non-degenerate saddles.

So for unknown O0

kz > max
{
ρa
∑

I1z
Qii, Mz

}
, N(εI1z) (3.27)

implies that all equilibria other than destination qd (local minimum) inPz are non-degenerate
saddles.

It follows that the only critical point in Pz with a non-empty stable manifold (dense
in Pz) is the local minimum at destination qd. Almost all (all apart from a set of measure
zero) initial in [tm, tm+1] conditions x(tm) ∈Pz have qd as their limit set.

Note that Pz is connected. We can prove this as follows. Suppose Pz is not con-
nected. It is closed by definition, so if not connected it will be a union of at least two
disjoint closed subsets. The potential φz is continuous within each closed subset. As a
result φz will have a global minimum6 within each closed subset (global with respect to the

5Note that a minimum of saddle outside Rz may have a stable manifold with common points with Rz,
but not with Pz.

6Note that since Pz boundary is a non-zero level set, on the boundary of Pz the gradient system has
non-zero gradient normal to the level set, so no critical points arise on ∂Pz. Any critical points qc ∈ Pz

arise in the interior Pz \ ∂Pz of Pz.
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subset). Each minimum in a subset is also a minimum ofPz. Disconnection ofPz implies
at least two disjoint subsets, as already mentioned. Therefore φz will have at least two
local minima in Pz. This is a contradiction, because we have already shown that, for the
selected kz, function φz has in Pz a unique non-degenerate local minimum at destination
qd.

Local minima or saddles may arise outside Rz ⊇Pz but the agent cannot reach them
since their stable manifolds have no common points with Pz. Either it converges to qd or
the NF is again updated at time tm+1.

This replaces Propositions 2.4, 3.4 [23] when no O0 is known.
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3.2 Recursive update of ε′′i2
The present analysis applies both when O0 is known and when it is unknown. For

this reason we define the set of indices I1z , {1, 2, . . . ,Mz} of known internal obstacles.
The set of indices Iiminz of all obstacles depends on whether O0 has been discovered. If it
remains unknown Iiminz = I1z. If O0 is known then Iiminz = {0, 1, . . . ,Mz} = {0} ∪ I1z. For
brevity we will denote Iiminz by Iz.

We have defined

ε′′i2 ,
ρi√

2
∑

j∈Iz\i

(
1

βmin
ji

+ 4Qji

∑
l∈Iz\{i,j}Qli

) , i ∈ I1z
(3.28)

and our aim is to arrange the denominator calculation in such a way so as to update it
with minimal time computational complexity for each new obstacle. An increase in memory
requirements is allowed.

A naive first scheme would be to store the obstacle data {qi, ρi} and recalculate ε′′i2
from these each time a new obstacle is discovered. This update is needed for all the
until then known obstacles. So the new obstacle causes Mz many ε′′i2 to be recalculated.
Each ε′′i2 has a time computational complexity of Θ(Mz). As a result the update complexity
becomes Θ(M2

z ).
Note that the above requires no ε′′i2 to be stored. No other quantity intermediate in

the calculation of ε′′i2 need to be stored either. But it requires all {qi, ρi} to be stored. This
has memory complexity Θ(Mz). Therefore rearranging the calculation to reduce updating
time complexity to Θ(Mz) while keeping the (increased) memory requirements to Θ(Mz)
constitutes an improvement.

Let us examine how to achieve this. The denominator requires computation of

∑
j∈Iz\i

 1

βmin
ji

+ 4Qji

∑
l∈Iz\{i,j}

Qli

 , i ∈ I1z. (3.29)

Assume that additionally to {ρi, qi} we also store ε′′i2 (although it is not needed for the
update) and ∑

j∈Iz\i

(
1

βmin
ji

)
,
∑
j∈Iz\i

Qji

∑
l∈Iz\{i,j}

Qli

 ,
∑
j∈Iz\i

Qji (3.30)

Now assume that a new obstacle On, n ̸= i is discovered and Iz becomes Iz+1. The
new obstacle n is different than the already known i whose ε′′i2 is updated (hence n ̸= i).
If the new obstacle is O0 then n = 0 and Mz = Mz+1. If the new obstacle is internal
n ̸= 0 and Mz+1 = Mz + 1. We want to compute the new ε′′i2 (updated) from the stored
quantities from which ε′′i2 (old) was computed. The update should require minimal time
computational complexity.

The new denominator will be

∑
j∈Iz+1\i

 1

βmin,new
ji

+ 4Qnew
ji

∑
l∈Iz+1\{i,j}

Qnew
li


=

∑
j∈Iz+1\i

(
1

βmin,new
ji

)
+ 4

∑
j∈Iz+1\i

Qnew
ji

∑
l∈Iz+1\{i,j}

Qnew
li

 (3.31)
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Before proceeding further let us observe a convenient fact. The terms βmin,new
ji and Qnew

ji

are the extrema, minimum and maximum respectively, of βj and Qj (βj) over Bi (εnewi23 )
where εnewi23 = min{εnewi3 , ε′newi2 }. Since ε′newi2 = ρ2i = ε′oldi2 a change in εnewi23 occurs only if εnewi3

is different from εoldi3 .
But εnewi3 = minj∈Iz+1\i{εi3j} and {εi3j, j ∈ Iz+1 \ i} = {εi3j, j ∈ Iz \ i} ∪ {εi3n} from

which only εi3n is new (the rest remain the same). That is

εnewi3 = min
j∈Iz+1\i

{εi3j} = min{min
j∈Iz\i

{εi3j}, εi3n} = min{εoldi3 , εi3n} (3.32)

so only if εi3n < εoldi3 then εnewi3 is different (and less) than εoldi3 . Summarizing what has been
shown so far is that only if εi3n < εoldi3 then εnewi23 ̸= εnewi23 (εi23 changes). Also

εnewi3 ≤ εoldi3 =⇒ εnewi23 ≤ εnewi23 =⇒ Bi (εnewi23 ) ⊆ Bi

(
εoldi23

)
=⇒

{
Qnew

ji ≤ Qold
ji

βmin,new
ji ≥ βmin,old

ji

, j ∈ Iz \ i
(3.33)

Therefore the old Qold
ji , j ∈ Iz can serve as upper bounds on Qnew

ji , j ∈ Iz and βmin,old
ji , j ∈ Iz

can serve as lower bounds on βmin,new
ji , j ∈ Iz.

This allows us to develop the following recursive scheme

∑
j∈Iz+1\i

1

βmin,new
ji

=
1

βmin,new
ni

+
∑
j∈Iz\i

1

βmin,new
ji

≤ 1

βmin,new
ni

+
∑
j∈Iz\i

1

βmin,oldd
ji

(3.34)

and also

∑
j∈Iz+1\i

Qnew
ji

∑
l∈Iz+1\{i,j}

Qnew
li


=

Qnew
ni

∑
l∈Iz+1\{i,n}

Qnew
li

+
∑
j∈Iz\i

Qnew
ji

∑
l∈Iz+1\{i,j}

Qnew
li


=

Qnew
ni

∑
l∈Iz\i

Qnew
li

+
∑
j∈Iz\i

Qnew
ji

Qnew
ni +

∑
l∈Iz+1\{i,j,n}

Qnew
li


=

Qnew
ni

∑
l∈Iz\i

Qnew
li

+
∑
j∈Iz\i

(
Qnew

ji Qnew
ni

)
+
∑
j∈Iz\i

Qnew
ji

∑
l∈Iz+1\{i,j,n}

Qnew
li


=

Qnew
ni

∑
l∈Iz\i

Qnew
li

+

Qnew
ni

∑
j∈Iz\i

Qnew
ji

+
∑
j∈Iz\i

Qnew
ji

∑
l∈Iz\{i,j}

Qnew
li


= 2

Qnew
ni

∑
j∈Iz\i

Qnew
ji

+
∑
j∈Iz\i

Qnew
ji

∑
l∈Iz\{i,j}

Qnew
li



(3.35)
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and since 0 < Qnew
ji ≤ Qold

ji , ∀j ∈ Iz \ i it follows that

2

Qnew
ni

∑
j∈Iz\i

Qnew
ji

+
∑
j∈Iz\i

Qnew
ji

∑
l∈Iz\{i,j}

Qnew
li


≤ 2

Qnew
ni

∑
j∈Iz\i

Qold
ji

+
∑
j∈Iz\i

Qold
ji

∑
l∈Iz\{i,j}

Qold
li

 (3.36)

So the update requires computation of new 1

βmin,new
ni

, Qnew
ni and storage of old

ρi, aoldi23 ,
∑
j∈Iz\i

Qold
ji , aoldi22 ,

∑
j∈Iz\i

Qold
ji

∑
l∈Iz\{i,j}

Qold
li

 , aoldi21 ,
∑
j∈Iz\i

1

βmin,old
ji

. (3.37)

The updating algorithm after computation and loading from memory of these quantities
is (ai21 is an upper bound on

∑
j∈Iz\i

1
βmin
ji
)

∑
j∈Iz+1\i

1

βmin,new
ji

≥ 1

βmin,new
ni

+
∑
j∈Iz\i

1

βmin,old
ji

=⇒ anewi21 =
1

βmin,new
ni

+ aoldi21

∑
j∈Iz+1\i

Qnew
ji

∑
l∈Iz+1\{i,j}

Qold
li

 ≤ 2

Qnew
ni

∑
j∈Iz\i

Qold
ji

+
∑
j∈Iz\i

Qold
ji

∑
l∈Iz\{i,j}

Qold
li

 =⇒

anewi22 = 2Qnew
ni aoldi23 + aoldi22∑

j∈Iz+1\i

Qnew
ji ≤ Qnew

ni +
∑
j∈Iz\i

Qold
ji =⇒ anewi23 = Qnew

ni + aoldi23

ε′′newi2 =
ρi√

2 (anewi21 + 4anewi22 )
(3.38)

Note that since anewi21 > aoldi21 and anewi22 > aoldi22 it follows that ε′′newi2 < εoldi2 so εoldi2 need not
be stored for comparison with the new value. But εoldi2 is stored because it is needed to
calculate

∆Qii = Qnew
ii −Qold

ii (3.39)

when updating k.

3.3 Recursive update of ε′′i0
We can work in the same way for

ε′′i0 ,
1

2 1√
γmin
di

∑
j∈Iz\i

Qji + 4

( ∑
j∈Iz\i

Qji

)2

+ 4
∑

j∈Iz\i

(
Qji

∑
l∈Iz\{i,j}

Qli

)
−
∑

j∈Iz\i

1
βmax
ji

(3.40)

It is important to note that Qji are calculated overBi (εi03) where εi03 , min{εi3, ε′i0}. The
quantity ε′i0 remains constant. The quantity εi3 can only change due to the new εi3n, if
εi3n < εoldi03.
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Let the stored quantities to be used in the recursive update be

1√
γmin
di

,
∑
j∈Iz\i

Qji,
∑
j∈Iz\i

Qji

∑
l∈Iz\{i,j}

Qli

 ,
∑
j∈Iz\i

1

βmax
ji

(3.41)

and also ε′′i0 to update k when needed.
The update of ε′′i0 can be arranged as∑
j∈Iz+1\i

Qnew
ji = Qnew

ni +
∑

j∈Iz+1\{i,n}

Qnew
ji = Qnew

ni +
∑
j∈Iz\i

Qnew
ji ≤ Qnew

ni +
∑
j∈Iz\i

Qold
ji (3.42)

and as shown for ε′′i2 it holds that similarly∑
j∈Iz+1\i

1

βmax,new
ji

≥ 1

βmax,new
ni

+
∑
j∈Iz\i

1

βmax,old
ji

(3.43)

and as already shown for ε′′i2 it holds that

∑
j∈Iz+1\i

Qnew
ji

∑
l∈Iz+1\{i,j}

Qnew
li

 ≤ 2Qnew
ni

∑
j∈Iz\i

Qold
ji +

∑
j∈Iz\i

Qold
ji

∑
l∈Iz\{i,j}

Qold
li

 (3.44)

This leads to the following updating scheme. With the computed new 1
βmax,new
ni

, Qnew
ni

and the stored old

1√
γmin
di

, aoldi03 ,
∑
j∈Iz\i

Qold
ji , aoldi02 ,

∑
j∈Iz\i

Qold
ji

∑
l∈Iz\{i,j}

Qold
li

 , aoldi01 ,
∑
j∈Iz\i

1

βmax,old
ji

(3.45)
the following updating steps constitute the updating algorithm∑

j∈Iz+1\i

1

βmax,new
ji

≥ 1

βmax,new
ni

+
∑
j∈Iz\i

1

βmax,old
ji

=⇒ anewi01 =
1

βmax,new
ni

+ aoldi01

∑
j∈Iz+1\i

Qnew
ji

∑
l∈Iz+1\{i,j}

Qnew
li

 ≤ 2Qnew
ni

∑
j∈Iz\i

Qold
ji +

∑
j∈Iz\i

Qold
ji

∑
l∈Iz\{i,j}

Qold
li

 =⇒

anewi02 = 2Qnew
ni aoldi03 + aoldi02∑

j∈Iz+1\i

Qnew
ji ≤ Qnew

ni +
∑
j∈Iz\i

Qold
ji =⇒ anewi03 = Qnew

ni + aoldi03

ε′′newi0 =
1

2 1
γmin
di

anewi03 + 4 (anewi03 )
2 + 4anewi02 − anewi01

(3.46)
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3.3.1 Tuning updating

3.3.1.1 Tuning calculation summary

By definition k ∈ N \ {0, 1}. The condition for selecting k as a function of εI0 is

k ≥ N(εI0) , (ρ0 + ∥qd∥)
∑
i∈I0

Qii (3.47)

List of constraints on εi

εi < εi3j , (∥qi − qj∥ − ρj)
2 − ρ2i , ∀j ∈ I0 \ i, ∀i ∈ I1z (3.48)

εi < εi3 , min
j∈I0\i

{εi3j} (3.49)

εi < ε′i2 , ρ2i , ∀i ∈ I1z (3.50)

εi < ε′′i2 ,
ρi√√√√2

∑
j∈I0\i

(
1

βmin
ji

+ 4Qji

∑
l∈I0\{i,j}

Qli

)

≤ 1

4

minBi(εi23)
{∥∇βi∥}

maxBi(εi23)

{√
|r̂Ti D2β̄ir̂i|

β̄i

} , ∀i ∈ I1z (3.51)

εi < ε′i0 , λ′
i0

(
∥qd − qi∥2 − ρ2i

)
, λ′

i0 ∈ (0, 1), ∀i ∈ I1z (3.52)

εi < ε′′i0 ,
1

2 1√
γmin
di

∑
j∈I0\i

Qji +

(
2
∑

j∈I0\i
Qji

)2

+ 4
∑

j∈I0\i

(
Qji

∑
l∈I0\{i,j}

Qli

)
− 2

∑
j∈I0\i

1
βmax
ji

≤
2minBi(εi03)

{
−νi(q)
γd

}
maxBi(εi03)

{
1
2
∇β̄i

β̄i

∇γd
γd

+ t̂Ti

[(
1− 1

k

) ∇β̄i

β̄i

∇β̄T
i

β̄i
− D2β̄i

β̄i

]
t̂i

} , ∀i ∈ I1z (3.53)

ε0 < ε0u , ρ20 − ∥qd∥
2 (3.54)

3.3.1.2 Algorithm description

LetS (t) the agent’s open sensing set at time t. Sensing occurs in discrete time tm+1 =
tm+Ts. Provided S (tm)∩x(tm+1) ̸= ∅ the agent does not venture into unknown territory,
ensured by a small enough Ts. To ensure constraints remain valid, kz is nondecreasing.
Initially no obstacle is known, so I0z = 0 = ∅, β = 1, kz=0 = 2 and V = φ(x(t)) = σd ◦σ ◦

γk
d

1

does not contain any obstacles.
Next two alternatives exist. Either the system converges to qd without sensing any

obstacles, or an obstacle is discovered, either O0 or O1. If only a single internal obstacle
is known, εi < min{ε′i0, ε′i2} in (3.27). If more internal obstacles are only known εi <
min{εi03, ε′′i0, εi23, ε′′i2} in (3.27).

When O0 is discovered previous εi constraints are updated as described later, and
N(εIz) ≤ kz as defined in subsection 2.4.2 instead of (3.27). If only O0 is known ε0 < ε0u
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Algorithm 1 Updating the Navigation Function for newly discovered obstacles

1: procedure New z + 1th discovered On

2: if n ̸= 0 then
3: if Mz == 0 and imin == 1 then
4: ε1u ← min{ε′10, ε′12}
5: new ε1
6: else if Mz == 1 and imin == 1 then
7: new εiu, ε

′
i0, ε

′′
i0, ε

′
i2, ε

′′
i2, εi3, εi,∀i ∈ {1, 2}

8: update ε1u, ε
′′
10, ε

′′
12, ε13

9: else
10: new εnu, ε

′
n0, ε

′′
n0, ε

′
n2, ε

′′
n2, εn3, εn

11: update εiu, ε
′′
i0, ε

′′
i2, εi3, i ̸= n

12: end if
13: else
14: ε0u ← ρ20 − ∥qd∥

2

15: new ε0
16: if Mz > 1 then
17: update εiu, ε

′′
i0, ε

′′
i2, εi3, i ̸= 0 = n

18: else if Mz == 1 then
19: new ε1u, ε

′
10, ε

′′
10, ε

′
12, ε

′′
12, ε13, ε1

20: end if
21: end if
22: kz+1 ← update kz
23: end procedure

in N(εIz). When any new internal obstacle Oi is discovered calculation of ε′i0, ε′′i0, ε′i2, ε′′i2, εi3
can be performed in time Θ(Mz), section 3.2. A high level overview of the updating
algorithm is provided in Algorithm 1, Algorithm 2, Algorithm 3 and Algorithm 4. For
brevity, functions denoted by f(·) are omitted within the algorithm and can be found by
the definition of the corresponding variables already provided in the previous sections.

3.3.1.3 Locally oriented tuning of analytic Navigation Functions

Not all constraints need to become effective for provably correct navigation. When
an obstacle is discovered, an εi can be arbitrarily selected. If used in N(εIz), then critical
points remain only within Bi (εi). As long as the agent does not enter Bi (εi), although
updated, ε′i0, ε′′i0, ε′i2, ε′′i2, εi3 need not be applied. This is equivalent to adding “and βi < εi”
to line 3 of UPDATE kz.

If for arbitrary εi local minima remain within Bi (εi) and attract the agent, it will even-
tually enter Bi (εi). We check this entrance and then apply the calculated constraint
εi < εui, ensuring those local minima within Bi (εi) become saddles.

This means a local minimum may still remain close to that obstacle. Its attraction can
lead the agent within Bi (εi). By calculating βi we can check when it gets within Bi (εi).
Then the maintained constraints become effective, changing εi to clear that neighbour-
hood of local minima.

If we leave the neighbourhood and then discover another obstacle, the previous con-
straints are updated, as detailed earlier. But the updated values do not become effective
unless the agent is lead back within that neighbourhood a second time. This is not prob-
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Algorithm 2 Update ε of already known obstacles
1: procedure update εiu, ε

′′
i0, ε

′′
i2, εi3

2: for i ∈ Iz do
3: εi3n ← (∥qi − qn∥ − ρn)

2 − ρ2i
4: if εi3n < εi3 then
5: εi3 ← λεi3n, λ ∈ (0, 1)
6: end if
7: if εi3 < εi23 then
8: εi23 ← εi3
9: end if
10: βmin

ni ← f(εi23)
11: Qni ← f

(
βmin
ni

)
12: ai21 ← 1

βmin
ni

+ ai21
13: ai22 ← 2Qniai23 + ai22
14: ai23 ← Qni + ai23
15: ε′′i2 ←

ρi√
2(ai21+4ai22)

16: if εi3 < εi03 then
17: εi03 ← εi3
18: end if
19: ai01 ← 1

βmax,new
ni

+ ai01
20: ai02 ← 2Qnew

ni ai03 + ai02
21: ai03 ← Qnew

ni + ai03
22: ε′′newi0 ← 1

2 1

γmin
di

ai03+4(ai03)
2+4ai02−ai01

23: εiu ← min {εi23, εi03, ε′′i0, ε′′i2}
24: end for
25: end procedure

able, since in a sphere world obstacles are convex and for high values of kz when left
behind usually are not encountered further. This scheme reduces the effect of distant
obstacles, accounting for the fact that local minima near any obstacles not close to the
followed path need never disappear. So smaller kz values can be achieved.
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Algorithm 3 New ε for a newly discovered obstacle
1: procedure new εnu, ε

′
n0, ε

′′
n0, ε

′
n2, ε

′′
n2, εn3, εn

2: εn3 ← mini∈Iz
{
(∥qn − qi∥ − ρi)

2 − ρ2n
}

3: ε′n2 ← 1
2
ρ2n

4: εn23 ← min {εn3, ε′n2}
5:

∑
Q← 0,

∑
1
β
← 0

6: for i ∈ Iz do
7: βmin

in ← f (εn23)
8: Qin ← f

(
βmin
in

)
9:

∑
Q←

∑
Q+Qin

10:
∑

1
β
←
∑

1
β
+ 1

βmin
in

11: end for
12: Σ1 ← 0
13: for i ∈ Iz do
14: βmin

in ← f (εn23)
15: Qin ← f

(
βmin
in

)
16: Σ1 ← Σ1 +Qin (

∑
Q−Qin)

17: end for
18: ε′′n2 ←

ρn√
2(

∑ 1
β
+4Σ1)

19: ai21 ←
∑

1
β
, ai22 ← Σ1, ai23 ←

∑
Q

20: ε′n0 ← λ′
n0

(
∥qd − qn∥2 − ρ2n

)
21: εn03 ← min {εn3, ε′n0}
22: γmin

dn ← f (εn03)
23:

∑
Q← 0,

∑
1
β
← 0

24: for i ∈ Iz do
25: βmin

in ← f (εn03)
26: Qin ← f

(
βmin
in

)
27: βmax

in ← f (εn03)
28:

∑
Q←

∑
Q+Qin

29:
∑

1
β
←
∑

1
β
+ 1

βmax
in

30: end for
31: Σ1 ← 0
32: for i ∈ Iz do
33: βmin

in ← f (εi03)
34: Qin ← f

(
βmin
in

)
35: Σ1 ← Σ1 +Qin (

∑
Q−Qin)

36: end for
37: ε′′n0 ← 1

2 1√
γmin
dn

∑
Q+4(

∑
Q)2+4Σ1−

∑ 1
β

38: ai01 ←
∑

1
β
, ai02 ← Σ1, ai03 ←

∑
Q

39: εnu ← min {εn23, εn03, ε′′n2, ε′′n0}
40: εn ← λ

(
∥q − qn∥2 − ρ2n

)
, λ ∈ (0, 1) ◃ Initialize arbitrarily as half closest distance to

that obstacle
41: end procedure
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Algorithm 4 Update k of Navigation Function
1: procedure update kz
2: for i = 1 : Mz+1 do
3: if εiu < εi then ◃ See subsubsection 3.3.1.3 for “and βi < εi”
4: εoldi ← εi
5: εi ← λεiu, λ ∈ (0, 1)
6: Qold

ii ← f(εoldi )
7: Qnew

ii ← f(εi)
8: ∆Qii ← Qnew

ii −Qold
ii

9:
∑

Qii ←
∑

Qii +∆Qii

10: end if
11: end for
12: if imin == 0 then
13: if ε0u < ε0 then ◃ See subsubsection 3.3.1.3 for “and β0 < ε0”
14: εold0 ← ε0
15: ε0 ← λε0u, λ ∈ (0, 1)
16: Qold

00 ← f(εold0 )
17: Qnew

00 ← f(ε0)
18: ∆Q00 ← Qnew

00 −Qold
00

19:
∑

Qii ←
∑

Qii +∆Q00

20: end if
21:

∑
I0
Qii ←

∑
Qii

22: klb ← (ρ0 + ∥qd∥)
∑

I0
Qii

23: else
24:

∑
I1
Qii ←

∑
Qii

25: klb ← 1 + max
{
ρa
∑

I1
Qii, Mz

}
26: end if
27: kz+1 ← max {2, kz, klb}
28: end procedure
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3.4 Gradient and normalized gradient descent

3.4.1 Continuous Case

The continuous control law for a holonomic system

q̇ = −α∂V
∂q

(3.55)

where α > 0 and V a Lyapunov function candidate is guaranteed to converge to the goal
xd because

V̇ (q) =
∂V

∂q

T dq

dt
=

∂V

∂q

T (
−α∂V

∂q

)
= −α

∥∥∥∥∂V∂q
∥∥∥∥2 < 0 (3.56)

because if V is a navigation function, then
∥∥∥∂V

∂q

∥∥∥ > 0, ∀q ̸= qd, so that V̇ (q) < 0, ∀q ̸= qd

is negatively defined. Aymptotic convergence to the goal qd is guaranteed by the second
Lyapunov method (direct).

The continuous control law for a holonomic system

q = −α
∂V
∂q∥∥∥∂V
∂q

∥∥∥ = −α ∇V
∥∇V ∥

(3.57)

where ∥∇V ∥ ̸= 0,∀q ̸= qd if V is a navigation function, α > 0 and V a Lyapunov function
candidate is also guaranteed to converge to the goal qd because the integral lines remain
the same (no direction change implies no collision with any obstacle) and since

V̇ (q) =
∂V

∂q

T dq

dt
=

∂V

∂q

T

q̇ = ∇V T ẋ = ∇V T

(
−α∇V
∥∇∥

)
= −α∥∇V ∥

2

∥∇V ∥
= −α ∥∇V ∥ < 0,∀q ̸= qd

(3.58)
because ∥∇V ∥ ̸= 0∀q ̸= qd, since V (q) is a navigation function. Asymptotic convergence
to the goal qd is guaranteed by the Lyapunov’s direct theorem.

From the above we note that using either the gradient field scaled by any positive
constant, or the normalized gradient field (unit normal field) scaled by any positive scalar
does not affect collision avoidance, nor convergence to the goal. It can be shown that the

integral lines remain the same, since the Riemann vector integral lim
n→+∞

n∑
i=1

(
∇V ∆si

∥∇V ∥

)
=

lim
n→+∞

n∑
i=1

(∇V∆s′i) because ∃ lim ∥∇V ∥.

This is proved in [22], Lemma 7, p.263. and is given here for completeness. Let f1, f2
be vector fields on J which differ by a scalar function a, i.e.

f1 = af2 (3.59)

Then, on the intersection of their respective domains, the flow, F t
1, generated by f1 has

the relation to the flow, F t
2, generated by f2, as follows

F t
1 = F

s(t)
2 (3.60)

where ṡ = a. This fact obtains from simple application of the chain rule

d

dt
F

s(t)
2 r0 =

d

ds
F

s(t)
2 r0

ds

dt
= f2

(
F

s(t)
2 r0

)
a = f1

(
F

s(t)
2 r0

)
=

d

dt
F t
1r0 (3.61)
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3.4.2 Discrete Case (numerical implementation)

The navigation function’s numerical implementation aims to find the integral lines of
the potential field. The gradient descent is q̇ = −α∇V .

Consider again the previously examined cases of vector velocity fields

q̇ = −α∇V, q̇ = −α ∇V
∥∇V ∥

(3.62)

Now let us discuss their (inherently discrete) numerical implementation. The gradient
descent evolves in finite steps. It has not guaranteed collision avoidance. This is due to
the variable step size of a gradient descent. If the step in the direction determined by
the gradient is taken too large, then a collision can occur.

The position change

∆qi→i+1 = qi+1−qi = (qi+(−α∇V ))−qi = −α∇V =⇒ ∥∆qi→i+1∥2 = ∥−α∇V ∥2
α>0
= α ∥∇V ∥2

(3.63)
depends on ∥∇V ∥2, which can vary in such a way that ∥∆xi→i+1∥ becomes too large and
leads to a collision7.

On the contrary the discrete control law

q̇ = −α ∇V
∥∇V ∥

=⇒ ∥∆qi→i+1∥2 =
∥∥∥∥−α ∇V∥∇V ∥

∥∥∥∥
2

= α
∥∇V ∥
∥∇V ∥

= α (3.64)

which enables control of linear speed. By selecting α we are able to set a constant step
size

But the above step size is fixed. Therefore, although not arbitrarily variable and
determined the variation of ∥∇V ∥, nonetheless it remains inadequate to ensure collision
avoidance8.

A solution to this is an adaptive step size. This is accomplished by the discrete control
law

q̇ = −α(q) ∇V
∥∇V ∥

(3.65)

where α : En → R is the adaptive step size. Let us select

α(q) =

λmin
i∈I0
{|∥q − qi∥ − ρ2i |} , min

i∈I0
{|∥q − qi∥ − ρ2i |} < dthreshold

dthreshold, min
i∈I0
{|∥q − qi∥ − ρ2i |} ≥ dthreshold

(3.66)

with λ ∈ (0, 1). The expressions

ρ0 − ∥q∥ , ∥q − qi∥ − ρi, i ∈ I1 (3.67)

The function

min
i∈I0

{∣∣∥q − qi∥ − ρ2i
∣∣} = min

{
ρ20 − ∥q∥ ,min

i∈I1

{
∥q − qi∥ − ρ2i

}}
(3.68)

7Remember: finite step sizes, no continuous update of ∇V here.
8The step size in this case can be set small enough to avoid collisions for the particular integral path

to be found. But for this to be accomplished a priori, we need to know the details of the path. Since the
path has not been found yet, this is not possible.
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qi

ρi

∇V

∥q − qi0∥ −
ρi

q

λ (∥q
− qi0∥ −

ρi)

Figure 3.3: Worst case of gradient direction, toward the closest obstacle i0, shown for the
case when the closest obstacle is an internal one, i.e. i0 ̸= 0.

is the minimum distance to the closest obstacle. Multiplication by λ yields a step size
smaller than the distance to the closest obstacle. Even in the worst case, when the
gradient direction ∇V

∥∇V ∥ points directly to the nearest obstacle i0 the step size will be

λ |∥q − qi0∥ − ρi| < |∥q − qi0∥ − ρi| (3.69)

the distance to the closest obstacle, Fig. 3.3. This guarantees collision avoidance. It also
prevents the step size to increase too much and affect the numerical approximation to the
navigation function’s potential field integral lines.

But for a discrete implementation convergence cannot be perfect and should be pre-
scribed to a certain error margin. When

It has been shown that the normalized vector field ∇V
∥∇V ∥ yields the same continuous so-

lutions (paths). By implementing it iwth an appropriate adaptive step it can be numerically
calculated for abruptly changing navigation function fields (large k).

This implementation avoids the need to calculate expressions where k arises as in
the exponent. Such calculations are not possible when a large lower bound N(εI0) on k
is caclulated. A further advantage the normalized expression offers is a simple formula
where k arises only in a single place as a divisor and its effect on the potential field is
clearly deduced.

3.5 Gradient normalization

In this section the gradients of both ϕ̂ and ϕ are normalized. The second is the
one needed. Derivation of the first though is somewhat simpler and guides the second
one in concept because the same terms arise. For a detailed derivation of ∇φ̂,∇φ see
subsection A.3.7 and subsection A.3.10.
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The normalized gradient of φ̂ is

∇φ̂
∥∇φ̂∥

=

1
β2

[
kβγk−1

d ∇γd − γk
d∇β

]∥∥∥ 1
β2

[
kβγk−1

d ∇γd − γk
d∇β

]∥∥∥ =
γk
d

[
kβγ−1

d ∇γd −∇β
]

γk
d

∥∥[kβγ−1
d ∇γd −∇β

]∥∥
=

kβ
γd
∇γd −∇β∥∥∥kβ

γd
∇γd −∇β

∥∥∥ =

∇γd
γd
− 1

k
∇β
β∥∥∥∇γd

γd
− 1

k
∇β
β

∥∥∥ =
∇γd − γd

kβ
∇β

∇γd − γd
kβ
∇β

=

∇γd − γd
k

M∑
i=0

∇βi

βi∥∥∥∥∇γd − γd
k

M∑
i=0

∇βi

βi

∥∥∥∥ =

2(q − qd)− ∥q−qd∥2
k

M∑
i=0

2(q−qi)

|∥q−qi∥2−ρ2i |∥∥∥∥2(q − qd)− ∥q−qd∥2
k

M∑
i=0

2(q−qi)

|∥q−qi∥2−ρ2i |

∥∥∥∥
=

(q − qd)− ∥q−qd∥2
k

M∑
i=0

(q−qi)

|∥q−qi∥2−ρ2i |∥∥∥∥(q − qd)− ∥q−qd∥2
k

M∑
i=0

(q−qi)

|∥q−qi∥2−ρ2i |

∥∥∥∥

(3.70)

The normalized gradient of φ is

∇φ
∥∇φ∥

=

1(
k
√

γk
d+β

)2

[(
γk
d + β

) 1
k ∇γd − γd∇

((
γk
d + β

) 1
k

)]
∥∥∥∥∥ 1(

k
√

γk
d+β

)2

[(
γk
d + β

) 1
k ∇γd − γd∇

((
γk
d + β

) 1
k

)]∥∥∥∥∥
=

(
γk
d + β

) 1
k ∇γd − γd∇

((
γk
d + β

) 1
k

)
∥∥∥(γk

d + β
) 1

k ∇γd − γd∇
((

γk
d + β

) 1
k

)∥∥∥
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Note that
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Now note that
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Combining these expressions
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As a result, the normalization of the gradient now yields(
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(3.75)

So for ∇β to become effective kβ ≈ γd and since γd ∈ [0, 4ρ20] it should be that β ≈
4ρ20
k
.

For k ≈ 10n =⇒ β ≈ 4ρ2010
−n.
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3.6 Convergence in Unknown Sphere World

Theorem 4. LetM be a valid sphere world whose sphere obstacles are initially unknown.
Let S (t) the agent’s sensing set at time t and assume Ts small enough for the agent to
remain in sensed

∪
m S (tm). If a NF can be found for each intermediate space as obstacles

are discovered then the agent converges to the destination qd.

Proof. At each new sensing time tm the NF is updated, incorporating newly discovered
obstacles. Let Ia , {i1, i2, . . . , iM} the set of indices of all, known and unknown, obstacles.
Let Ib ⊆ Ia the subset ofMz until then discovered obstacles. The NF is defined on a sphere
worldMz , En\

∪
Ia

Oi comprising of only the until then known obstacles, henceMz ⊆M .
The partially knownMz is a valid sphere world. Following the adjusted NF onMz on it

the agent converges to qd. This is guaranteed by the properties of a NF. Along its trajectory
two alternatives exist. Either no new obstacle is discovered and the agent converges, or
at least one new obstacle is discovered.

A new obstacle is discovered when S (t) ∩ Oi ̸= ∅. Because S (t) is open this is
only possible when more than a single point of Oi can be sensed. Therefore part of the
obstacle’s spherical boundary is sensed. By hypothesis of an unknown sphere world the
radius of curvature ρi and center qi can be found, defining the new sphere obstacle.

Since a NF is updated and followed in the explored sphere world, the only alternative
for the agent to not converge is to indefinitely discover new obstacles which change its
NF. Each discovered obstacle increases Ib by one, reducing the set of unknown obstacles
Ia \ Ib by one. By hypothesis a finite number of unknown obstacles exist, so either the
agent converges before discovering all of them, or after a finite number of changes, its NF
remains constant because all existing obstacles have been sensed and constraints applied.
So in all cases the agent converges to qd.
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qg

x(0)

∃i ∈ I0 : qg ∈ Oi

Case 1 (easy): desired goal within obstacle

qg

x(0)

Case 2 (difficult): disconnected Free space

F1

F2

Figure 3.4: Two cases for an unreachable destination qd.

3.7 Unreachable destination

There are two distinct cases for which the destination qd is not reachable9, as shown
in Fig. 3.4. The first one is when the destination is within an obstacle. Since the NF
methodology is built on the concept of set membership and implicit obstacle functions are
used for this purpose, answering this question is quite straightforward. It suffices to check
whether the destination belongs to any obstacle set. This is true if and only if βi(qd) < 0
(not necessarily β(qd) < 0 is true if intersecting obstacles exist).

On the contrary, it can happen10 that intersecting obstacles isolate some part of the
C-space, by forming a shielding component.

This is not the case for us, because we have assumed that the unknown sphere world
is guaranteed to be valid, which requires that the spherical obstacles be disjoint. Giving
an answer to the second question constitutes a challenging search problem, because it
does not ask for a single feasible answer, but inexistence of any feasible path.

The most direct way of answering this question is actually running a provably correct
algorithm and in case it converges to q′ ̸= qd then the free space is disconnected11, Fig. 3.5.

Since this is not our case we are going to analyze the first case and justify the check
within the algorithm. Suppose qd ∈ Oi, then by definition βi(q) < 0.

Proposition 5. In a world in which unions of nonpositive level sets of implicit functions
represent obstacle sets

{∃i ∈ I0 : qg ∈ Oi ⇐⇒ ∃i : βi(qg) < 0} ⇐⇒
{qg ∈ En \F ⇐⇒ ∃i : βi(qg) < 0}

(3.76)

Proof. There are some interesting remarks to be made with respect to these relations.
Firstly note that generally

∃i : βi(qg) < 0����⇐⇒ β(qg) < 0 (3.77)

(so qg ∈ Oi ⇐⇒ qg ∈ En \F����⇐⇒ β(qg) < 0) because it may be the case that two inter-
secting obstacles Oi,Oj include the desired final point qg (no more called the “destination”,

9Equivalently no continuous path between x(0) and qd exists, or, in other words, the C-space is not path
connected.
10Especially when exploring an unknown world which is not a priori guaranteed to be a valid sphere world.
11This requires a critical point searching algorithm in general worlds.
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qi

qg
ρ i

q′

local minimum ̸= qg
due to qg ∈ Oi

Oi

Figure 3.5: Running a provably correct algorithm which converges to q′ ̸= qd reveals a
disconnected free space.

since it is unattainable), so in such a case

βi(qg) < 0 ∧ βj(qg) < 0
βk(qg) > 0,∀k ∈ Io \ {i, j}

}
=⇒ β(qg) = βi(qg)︸ ︷︷ ︸

<0

βj(qg)︸ ︷︷ ︸
<0

∏
k∈Io\{i,j}

βk(qg)︸ ︷︷ ︸
>0

> 0
(3.78)

which continues to hold if qg belongs to an even number of intersecting obstacles 2r, r ∈
N∗, i.e.

βi(q) < 0, ∀i ∈ Ig, |Ig| = 2r, r ∈ N∗

βk(qg) > 0, ∀k ∈ Io \ Ig

}
=⇒ β(qg) =

∏
i∈Ig

βi(qg)
∏

k∈Io\Ig

βk(qg) > 0 (3.79)

But for pairwise disjoint obstacles, as is the case of an (unknown) valid sphere world,
no obstacle functions can be simultaneously nonpositive. This is equivalent to

{∄q : βi(q) < 0 ∧ βj(q) < 0, i ∈ I0, j ∈ I0 \ {i}} =⇒
{βi(q) < 0, i ∈ I0 =⇒ βj(q) ≥ 0, ∀j ∈ I0 \ {i},∀q ∈ En}

(3.80)

Oi ∩ Oj = ∅,∀i, j ∈ I0, i ̸= j =⇒ βj(qg) > 0, ∀j ∈ I0 \ {i} (3.81)

∃i ∈ I0 : qg ∈ Oi ⇐⇒ βi(qg) < 0 (3.82)

Then
β(qg) = βi(qg)︸ ︷︷ ︸

<0

∏
j∈I0\{i}

βj(qg)︸ ︷︷ ︸
>0

< 0
(3.83)

Also note that in the NF methodology the destination is not allowed to be selected on
the free space boundary ∂F . If that was allowed, then

γd(qg) = 0
k∈N\{0,1}⇐⇒ γk

d (qg) = 0
qg ∈ ∂F ⇐⇒ ∃i : βi(qg) = 0 ⇐⇒ β(qg) = 0

}
=⇒ γk

d (qg) + β(qg) = 0

k∈N\{0,1}
=⇒

(
γk
d (qg) + β(qg)

) 1
k = 0

(3.84)
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so the NF denominator will be zero, leading to an undefined φ at the destination qg (and
an undefined φ̂ as well).

So the intersection of the obstacle closures Ōi∩Ōj should be used in condition Ōi∩Ōj =
∅ of non-intersecting obstacle closures. The reason is that obstacles are defined as open
sets and their boundary belongs to the free space F . This is for technical reasons, to
make F a manifold with boundary.

For the above reason we check whether in a world with implicit obstacles

∃i ∈ I0 : qg ∈ Oi ⇐⇒ ∃i : βi(qg) ≤ 0 (3.85)

where also ∃i ∈ I0 : qg ∈ Oi ⇐⇒ qg ∈ ¯En \F . The above can be stated for worlds with
non-intersecting obstacle closures (of which sphere worlds are a special case) as

qg ∈ ¯En \F =⇒ ∃i ∈ I0 : qg ∈ Ōi ⇐⇒

∃i : βi(qg) ≤ 0
Ōi∩Ōj=∅,∀i∈I0,j∈I0\{i}⇐⇒ β(qg) ≤ 0

(3.86)

While exploring a sphere world it suffices to check whether βn(qg) > 0, ∀n ∈ I0 where
n is the index of a newly discovered obstacle.

Another interesting remark for the cas eof sphere worlds is that (caution, not qg ∈
Ōi =⇒ γd(qi) ≤ 0)

qg ∈ Oi ⇐⇒ ∥qg − qi∥ < ρi ⇐⇒ ∥qg − qi∥2 < ρ2i ⇐⇒ γd(qi) < ρ2i (3.87)

Also βi(qi) = ∥qg − qi∥2 − ρ2i = −ρ2i therefore combining these equations we get

βi(qi) = −ρ2i
0 ≤ γd(qi) < ρ2i (1)

}
=⇒ −ρ2i ≤ γd(qi) + βi(qi) < ρ2i − ρ2i = 0 ⇐⇒

−ρ2i ≤ γd(qi) + β(qi) < 0(2)

(3.88)

combining equations (1) and (2) we obtain

γd(qi)

γd(qi) + β(qi)
< 0 (3.89)

which is interesting, note though that it is not φ, neither φ without incorporation of other
obstacles, because the tuning parameter k = 1 /∈ N \ {0, 1}.
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3.8 Simulation Results

The proposed method has been simulated. In Fig. 3.6 navigation in an unknown
2d sphere world with automatically tuned parameter kz is compared to using manually
selected constant k = 2 (top) and k = 10 (middle). The sensing set is spherical. As
O0 and internal obstacles are gradually discovered, the analytic NF is updated. While a
constant k leads to abrupt turns and failure to converge to qd, use of an updating kz results
in safe and successful navigation, as theoretically guaranteed, with smoother and shorter
path. The changing gradient field reveals that the high kz calculated shapes a NF field
which repels only close to obstacles.

A simulation on a 3-dimensional unknown sphere world Fig. 3.7 illustrates applicability
to any dimension, a strong advantage of the NF methodology. The adjustive algorithm
finds a direct path as guaranteed. Constraints become effective only close to an obstacle,
which can be seen during encounter with the first two obstacles. Again for comparison
a path with constant k = 2 is shown. In this case, for a constant k the agent converges
to qd, although this is not theoretically guaranteed. The reason of convergence here is
the smaller ratio of space occupied by obstacles than in Fig. 3.6. For constant k the
path followed is changing very abruptly when new obstacles are discovered and is not
guaranteed to converge.
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Part II

Navigation Functions for Everywhere
Partially Sufficiently Curved Worlds





Chapter 4

Sufficiently Curved Spaces

4.1 Introduction

4.1.1 Necessity of acceptable relative curvature

In this section the proof for sphere worlds [23] is extended to the case of general
obstacles βi. Initially general destination functions γd are considered, but due to symmetry
considerations, a paraboloid γd is selected intermediately.

The sufficient condition associated with νi(q), hence the upper bound ε′i0, is analyzed
for general obstacles βi. This leads to a geometric requirement on the obstacle geometry.
It is shown to be a condition on relative level set curvature1 of βi and γd at a critical point
qc.

For paraboloid γd the relative curvature condition obtains a simpler form which suits
analysis. It has a particularly interesting and intuitive interpretation. This presentation
also relates it to the concepts involved in Meusnier’s Theorem [41, 48].

The relative curvature condition depends on the choice of destination qd ∈ F . But
since destination choice cannot be restricted, it is equivalent to requesting that curvature
spheres2 Scij(q) be proper subsets of obstacle sets3 Oi, i.e. Scij(q) ⊆ Oi ∪ {q}.

Moreover, the condition is necessary in the following sense. If all principal directions
at a point are not sufficiently curved, then two alternatives exist. The first alternative
is when all principal curvatures are non-convex. In this case, there exists a kmin, such
that ∀k ≥ kmin if a critical point arises there, it is a local minimum. This precludes use
of the same proof procedure. Additionally, it indicates why k tuning alone cannot, in
general, make a Kodistchek-Rimon function a Navigation Function in worlds with full non-
convexities. For a more detailed discussion, proceed to section 6.3.

On the other hand, the second alternative is when there exists some sufficient principal
curvature. Then the NF Hessian has at least one negative eigenvalue. In this case, the
critical point is not a local minimum, even when degenerate. It can only be either a saddle,
or a local maximum.

Therefore, existence of at least one sufficient principal curvature suffices to ensure

1Relative curvature refers to the relation of level set curvature between the attractive and repulsive fields.
If the attractive effect is more curved than the repulsive one, a stable equilibrium (i.e., local minimum) can
arise. This minimum can entrap the agent.

2A curvature sphere is defined in (4.143) as one tangent to a point q, with center inwardly placed with
respect to q and the level set β−1

i (β(q)) through it, and diameter equal to the radius of normal curvature at
q.

3Note that obstacle sets Oi are defined as open sets, which do not include their boundary ∂Oi.
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that the Navigation Function is Polar (single global minimum at destination). This Polarity
is additional to Analyticity and Admissibility (uniformly maximal on free space boundary),
both of which are ensured by construction. Note that Propositions 2.7, 3.2 and 3.3 [23]
still hold, allowing us to work with the diffeomorphic φ̂ in F \ (∂F ∪ {qd}).

Furthermore, the existence of at least on sufficiently curved tangent direction suffices
to ensure at least one sufficient principal curvature exists. As a result, if the sufficient
curvature condition holds for at least one tangent direction4. Intuitively this corresponds
to at least one direction of escape.

But this is not enough to ensure non-degeneracy. Although the result about positive
definiteness along ∇βi of Proposition 3.9 [23] in the case of spheres is extended in sec-
tion 4.7 to the general case, combining it with negative definiteness along at least one
tangential direction is not strong enough. The Hessian may be degenerate.

In the original proof the condition of sufficient curvature is required to hold for all
the tangent space. This leads to a direct sum decomposition to two subspaces. In the
tangent space negative definiteness is ensured, while in the radial positive definiteness.
These suffice by Lemma 3.8 [23] to ensure Hessian non-degeneracy. This is equivalent
to local quadratic behavior, so the quadratic form defined by the Hessian can be used
to categorize the type of critical point. Considering that the associated quadratic form
is continuous in set {v̂ ∈ En : ∥v̂∥ = 1} and assumes both negative and positive values,
its minima and maxima (which are eigenvalues of the Hessian) are negative and positive
respectively, so the critical point is a saddle point.

It is worth noting that existence of at least one direction of negative definiteness and
one direction of positive definiteness of the Hessian quadratic form suffice to prove that
the critical point is a saddle, even if degenerate [38]. This means that in the general case,
sufficient curvature for at least one tangent direction ensures all critical points other than
the destination are (possibly degenerate) saddles. Degeneracy is the remaining problem.

Degeneracy means that the function’s behavior at a critical point is more complicated
than quadratic. Continuity of critical points is possible5, forming critical sets6. Critical sets
may be smooth and nondegenerate, in which case Morse-Bott theory applies to them, or
non-smooth and possibly degenerate, in which case more general theorems are needed.
Another possibility is existence of isolated degenerate critical points, such as a monkey
saddle7, which is illustrated in Fig. 4.1.

Then Morse-Bott theory [37, 40] in combination with Thom’s Splitting Lemma [35, 36]
can be used to examine the dimensionality of stable sets of degenerate saddle points.
In the next chapter it will be proved that if the function has at most one degenerate
eigenvalue, then these sets are still of Lebesgue measure zero.

Let us return to the generalization that we make in this chapter. The sufficient curva-
ture condition is less strict than working only with spheres. Spheres satisfy this condition.
But other obstacle shapes do so as well.

Requiring that this condition holds along all directions of the tangent space leads to a
Navigation Function8. This way we can allow obstacle shapes which contain the associated

4Tangency is relative to the obstacle level sets implicitly defined by function βi.
5For example due to symmetry, as in the case of a torus. Note that a torus is topologically different

from a sphere. This is an important aspect justifying interest in (degenerate) Navigation Functions. Toroidal
configuration spaces may arise either due to obstacle topology, or revolute degrees of freedom, as analyzed
in chapter 7. More details regarding the thinking behind the original derivation of [23] can be found in [21].

6Critical sets are not always submanifolds.
7[45], pp. 183-204.
8Ensuring non-degeneracy, in addition to polarity, analyticity and admissibility.
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curvature sphere, at every boundary point.
Examples of such shapes are n-dimensional ellipsoids with an upper bound on eccen-

tricity. The example of ellipses is used here as a demonstration of the theoretical results
developed. For eccentricities e <

√
1
2
ellipses satisfy the relative curvature condition. But

for greater eccentricities they do not. This also provides an example of shapes that are
not acceptable.

4.1.2 World definition

Let F ⊂ En be a compact connected analytic manifold with boundary, subset of n-
dimensional Euclidean space En. Each obstacle function βi is defined on the whole of
Euclidean space En as the following set membership

βi : E
n → R, i ∈ I0 , {0, 1, . . . ,M} , M ∈ N (4.1)

It is required to be at least twice continuously differentiable everywhere9 in free space F

βi ∈ C(2) [F , [0,+∞)] (4.2)

Note that C2 continuity suffices for the geometric Propositions. Nonetheless, for directly
applying Morse-Bott Theory and Thom’s Lemma in the next chapter, C∞ continuity is
assumed10

The zero level set of βi defines the obstacle’s boundary and its negative coset preimage
the obstacle set

Oi , {q ∈ En| βi(q) < 0} , ∀i ∈ I0

∂Oi , {q ∈ En| βi(q) = 0} , ∀i ∈ I0
(4.3)

From the range R of βi and the above it follows that

βi(q) > 0, ∀q ∈ F \ ∂Oi (4.4)

All obstacle set closures are required to be disjoint11

Oi ∩ Oj = ∅, ∀j ∈ I0 \ {i}, ∀i ∈ I0 (4.5)

and their boundaries ∂Oi compact12.
Moreover, we require that no critical points of βi arise close13 to obstacle Oi. This is

required in a neighborhood Bi (εi) of obstacle Oi

∃εi ∈ (0,+∞) : ∥∇βi(q)∥ > 0, ∀q ∈ Bi (εi), ∀i ∈ I0 (4.6)

9We require C2 properties everywhere to ensure φ is C2 everywhere, whereas absence of critical points
of its gradient ∇βi and positive definiteness of its Hessian matrix D2βi in a neighborhood of Oi suffices.
10Relaxing this is related to the technical details of these Lemmas.
11This means that obstacles are not touching. If two or more obstacles Oi and Oj touch, then they

constitute a single obstacle Om.
12Compact obstacle closure implies that the level sets close to the obstacle are also compact.
13Due to the C2 property of βi these requirements “close to obstacle Oi” are equivalent to requiring

that they hold on the obstacle’s boundary. If they hold on ∂Oi by C2 property they extend to an open
neighborhood of Oi, so there exists a Bi (εi) in which they hold. However, the converse is also true.
According to an extended definition by Rimon and Koditschek [30], obstacles with nonsmooth boundaries
are also tractable. In such a case, the requirement applies to the neighborhood and does follow from the
boundary properties.
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(a) Monkey saddle f1(x, y) = x3 − 3xy2
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(b) Degenerate with open stable set f2(x, y) = x3 + y3

−2

−1

0

1

2

−2

−1

0

1

2

0

2

4

6

8

10

12

14

16

x
y

f
(x

,y
)
=

x
2
y
2

Level sets

x

y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
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Figure 4.1: All of the above scalar functions f1, f2, f3 have a critical point at the origin and
their Hessian matrix is fully degenerate there (D2z)

(
[0 0]T

)
= 02×2 ∈ R2×2. In the first and

second cases, the origin is a saddle point, whereas in the third one it is a minimum. But we
cannot distinguish between saddle point and minimum based on the Hessian eigenvalues,
due to full degeneracy. Also, note that although both f1 and f2 are saddle points, f1 has
a stable manifold of Lebesgue measure zero, whereas f2 has open stable sets.
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For the case considered in the present chapter, obstacles should also satisfy the suf-
ficient curvature condition, (4.77), everywhere in a neighborhood of Oi. This condition
implies convexity (it is stronger than convexity), i.e., positive definite Hessian matrix

∃εi ∈ (0,+∞) : D2βi(q) > 0, ∀q ∈ Bi (εi), ∀i ∈ I0 (4.7)

This requirement is relaxed in subsequent chapters. Note that initially in this chapter we
start without the sufficient curvature requirement and derive it as we proceed. This is the
reason for which the above condition is here required from the start.

Obstacle O0 is called the zeroth obstacle. The whole world, without internal obstacles
removed, is a compact connected set

W , En \ O0 = {q ∈ En| 0 ≤ β0(q)} (4.8)

which is bounded by the zeroth obstacle O0. The M ∈ N obstacles

Oi , {q ∈ En| βi(q) < 0} , i ∈ I1 , {1, 2, . . . ,M} (4.9)

are called internal obstacles. In the sequel we will refer to both the sets O0 and their
defining functions βi as “obstacles” interchangeably.

Function γd is the destination attractive effect, defined as

γd ∈ C(2) [En, [0,+∞)]

∥∇γd(q)∥ > 0, ∀q ∈ En \ {qd}
D2γd(q) > 0, ∀q ∈ En

(4.10)

Besides, the specific form of a paraboloid γd, which satisfies these conditions, is selected in
the course of derivation due to symmetry considerations and in order to enable complete
geometric interpretation of the condition.

4.1.3 Navigation Function

The Navigation Function φ : F → [0, 1] considered here is of the form

φ , γd(
γk
d + β

) 1
k

(4.11)

where β ,
∏

i∈I0 βi is the aggregate obstacle function and k ∈ N ∩ [2,+∞) a tuning
parameter. The proof establishes the existence of a sufficient lower bound on k for φ to
be a Navigation Function.

Additionally, the following function is defined

φ̂ : F \ ∂F → [0,+∞) φ̂ , γk
d

β
(4.12)

and called the “unsquashed” Navigation Function, defined in the free space interior F \
∂F .
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Fn(εI0 )

∂O0 = β−1
0 (0)

β−1
0 (ε0)

Bi(εi)

q

{qd}
= Fd

Fa(εI0 )

β−1
i (εi)

B0(ε0)

Oi

∂Oi = β−1
i (0)

βi < 0

0 < βi < εi

Figure 4.2: Sets defined on a general world.

4.1.4 Definition of world subsets

The following sets are used and illustrated in Fig. 4.2:
1. Destination point

Fd , {qd}; (4.13)

2. Free space boundary
∂F , β−1(0) =

∪
i∈I0

β−1
i (0); (4.14)

3. ith obstacle neighborhood

Bi (εi) , {q ∈ En| 0 < βi < εi}, i ∈ I0 (4.15)

and we also require that Bi (εi) are pairwise disjoint14

Bi (εi) ∩Bj (εj) = ∅, ∀j ∈ I0 \ {i}, ∀i ∈ I0 ⇐⇒
βj(q) ≥ εj, ∀q ∈ Bi (εi) , ∀j ∈ I0 \ {i}, ∀i ∈ I0

(4.16)

Since obstacle sets Oi have been defined as pairwise disjoint in (4.5), there always
exists a set εI0 of 0 < εi, i ∈ I0, such that the neighborhoods Bi (εi) be pairwise
disjoint. In the proof this is addressed by placing the appropriate requirement on
the selection of εi3j;

4. “Near” all obstacles (i.e., internal and zeroth)

Fn (εI0) ,
(∪

i∈I0

Bi (εi)

)
\ {qd}; (4.17)

5. Set “away” from all obstacles (i.e., internal and zeroth)

Fa (εI0) , F \ (Fd (εI0) ∪ ∂F ∪Fn (εI0)) (4.18)
14Note that Koditschek and Rimon enforce this only between their F0 and the rest Bi (εi) , i ∈ I1, by

appropriately removing them from F0 in its definition. This was used in Proposition 3.7, p.432, [23],
ensuring that βi ≥ ε, ∀q ∈ F1(ε), ∀i ∈ {1, . . . ,M}. Here this Proposition 3.7 is replaced by a general
Proposition which applies to subsets of the neighborhoods of all obstacles. This is the reason for which we
place this requirement on all obstacles and not only between internal obstacles and the zeroth one.
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where εI0 , {εi}i∈I0. We define

εi, εiu, ε
′
i0, ε

′′
i0, ε

′
i2, ε

′′
i2, εi3j, εi3 , min

j∈I0\i
{εi3j}, εi4, εi5, j ∈ I0 \ {i}, i ∈ I0 (4.19)

as
0 < εi < εiu =

1

2
min{ε′i0, ε′′i0, ε′i2, ε′′i2, εi3, εi4, εi5}, i ∈ I0. (4.20)

With this notation εi applies to neighborhood Bi of obstacle Oi.
For properly defined β−1

i level sets “near” obstacles we require

∀i ∈ I0 ∃εi4 > 0 : ∥∇βi∥ > 0, ∀q ∈ B (εi4) (4.21)

which is needed for radial positive definiteness, in order for min {∥∇βi∥} > 0 in ε′′i2.
In consequence of the above definitions, there are two alternatives for defining sets

Bi,Fn,Fa as either functions of a single global “width” ε , mini∈I0{εi}, or as functions
of the set εI0 of “widths” εi. Here the sets are functions ofM+1 parameters εI0 defined as
Bi (εi) , i ∈ I0,Fn (εI0) ,Fa (εI0). Note that the above definitions differ from those in [23].
Hereafter sets Fi are denoted omitting their arguments. Let Cf , {qc ∈ En|∇f = 0} the
critical set of a function f .
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4.2 Relative Curvature Function

4.2.1 Overview

General obstacle functions βi are considered here and a geometric condition they must
satisfy is derived.

Propositions 2.7, 3.2 and 3.3 [23] are independent of βi zero level set shape, i.e.,
obstacle type. Therefore, they are valid here. Proposition 3.2 ensures that the destination
qd is a nondegenerate local minimum and 3.3 that the free space boundary ∂F contains
no critical points qc. Then Proposition 2.7 applies range diffeomorphism to F \ (∂F ∪ qd).
This allows us to work with φ̂ , γk

d

β
instead of φ in the free space interior F̊ \ qd for the

main part of the proof.
Firstly, Proposition 3.4 [23] continues to hold for general obstacles. It clears the set

away from obstacles of critical points. This is achieved by selecting

k ≥ N(εI0) ,
1

2
max

W
{√γd}

∑
i∈I0

maxW {∥∇βi∥}
εi

(4.22)

so that there are no critical points in Fa. Critical points other than the destination qd
remain only in Fn, i.e., “near” the obstacles.

Next, extending Proposition 3.6 [23] from spheres to general βi, we are naturally led
to the geometric condition of Definition 20. Let TqF denote the tangent space of F at
point q. Then, the unit tangent space UTqF of F at point q can be defined as

UTqF , {u ∈ TqF | ∥u∥ = 1} (4.23)

which the set of all unit vectors in the tangent space TqF at q.
Let

Ri(q) , span {(∇βi) (q)} ⊂ TqF (4.24)

be the “radial” subspace at q spanned by (∇βi) (q) at q. Define the orthogonal complement

Ti(q) , {u ∈ TqF | u · (∇βi) (q) = 0} ⊂ TqF (4.25)

of Ri(q) in the tangent space TqF . This is equal to the tangent space of level set β−1
i (c),

i.e., Ti(q) = Tqβ
−1
i (c). Also, note that Ri(q) and Ti(q) provide a direct sum decomposition

TqF = Ri(q)⊕Ti(q) (4.26)

of tangent space TqF .
Moreover, let us define the corresponding unit radial space as

URi(q) , {u ∈ Ri(q)| ∥u∥ = 1} = {v̂ ∈ UTqF | v̂ · (∇βi) (q) = ∥∇βi∥}
= Ri(q) ∩ UTqF ⊂ UTqF

(4.27)

and the unit tangent space of β−1 (βi(q)) as

UTi(q) , {u ∈ Ti(q)| ∥u∥ = 1} = {v̂ ∈ UTqF | v̂ · (∇βi) (q) = 0}
= Ti(q) ∩ UTqF ⊂ UTqF

(4.28)

Then, let us define the unit vectors

r̂i ,
(∇βi) (q)

∥(∇βi) (q)∥
∈ URi(q), t̂i ∈ UTi(q). (4.29)
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These are the “radial” unit vector r̂i along ∇βi and the “tangent” unit vector t̂i, which is
orthogonal to r̂i. Vector t̂i is tangent to the ith obstacle function level set β−1

i (βi(q)) which
goes through point q ∈ En.

Then, starting with the Hessian matrix at a critical point qc(
D2φ̂

)
(qc) =

1

β2

[
βD2

(
γk
d

)
− γk

dD
2β
]

(4.30)

and following similar steps with [23], but without the assumption of spherical βi, we are
led to an extended version of equation (11) [23], applying to any βi(

t̂Ti
(
D2φ̂

)
(qc)t̂i

) β2

γk−1
d

=

= γdβ̄i

(
∇βi · ∇γd
∥∇γd∥2

(
t̂Ti D

2γdt̂i
)
−
(
t̂Ti D

2βit̂i
))

+ γdβ

(
∇β̄i · ∇γd
∥∇γd∥2

+ t̂Ti

((
1− 1

k

)
∇β̄i · ∇β̄T

i

β̄i

−D2β̄i

)
t̂i

)
= γdβ̄iνi(q)

+ γdβ

(
∇β̄i · ∇γd
∥∇γd∥2

+ t̂Ti

((
1− 1

k

)
∇β̄i · ∇β̄T

i

β̄i

−D2β̄i

)
t̂i

)
(4.31)

where the relative curvature function is defined here as

νi ,
∇βi · ∇γd
∥∇γd∥2

(
t̂Ti D

2γdt̂i
)
− t̂Ti D

2βit̂i (4.32)

and for the special case of spheres considered there was 1
4
∇βi · ∇γd − γd. The detailed

derivation above is now provided.
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4.2.2 NF Hessian at critical points

Proposition 6 (NF Hessian matrix at critical points incorporates relative curvature func-
tion). At every critical point qc ∈ Fn ∩ Cφ̂, let t̂i ∈ Tqcβ

−1
i (βi(qc)) be a vector in the

tangent space of level set β−1
i through qc. Then, the following holds for the Hessian

matrix (D2φ̂) (qc) of function φ̂(
t̂Ti
(
D2φ̂

)
(qc) t̂i

) β(qc)
2

γd(qc)k−1
=

= γd(qc)β̄i(qc)

(
(∇βi) (qc) · (∇γd) (qc)
∥(∇γd) (qc)∥2

(
t̂Ti
(
D2γd

)
(qc)t̂i

)
−
(
t̂Ti
(
D2βi

)
(qc)t̂i

))
+ γd(qc)βi(qc)

((
∇β̄i

)
(qc) · (∇γd) (qc)
∥(∇γd) (qc)∥2

+ t̂Ti

((
1− 1

k

) (∇β̄i

)
(qc) ·

(
∇β̄i

)
(qc)

T

β̄i(qc)
−
(
D2β̄i

)
(qc)

)
t̂i

)
(4.33)

where βi, γd are any C2 and with ∥∇βi∥ > 0,∀q ∈ Fn and ∥∇γd∥ > 0,∀q ̸= qd.

Proof. For

ρ , ν

δ
, ν, δ ∈ C(2) [En,R] =⇒ D2ρ|Cρ =

1

δ2
[
δD2ν − νD2δ

]
. (4.34)

Here we have ρ = φ̂, ν = γk
d , δ = β so that it follows (derivation of D2

(
γk
d

)
in subsec-

tion A.3.2)

D2φ̂|Cφ̂
=

1

β2

[
βD2

(
γk
d

)
− γk

dD
2β
] seederivationofD2(γk

d)
=

=
1

β2

[
β

(
kγk−1

d

(
k − 1

γd
∇γd∇γT

d +D2γd

))
− γk

dD
2β

]
=

1

β2

[
kβγk−2

d

(
(k − 1)∇γd∇γT

d + γdD
2γd
)
− γk−2

d γ2
dD

2β
]

=
γk−2
d

β2

[
kβ
(
γdD

2γd + (k − 1)∇γd∇γT
d

)
− γ2

dD
2β
]
.

(4.35)

At a critical point

∇φ̂ = 0 ⇐⇒ ∇
(
γk
d

β

)
= 0 ⇐⇒

β∇
(
γk
d

)
− γk

d∇β
β2

= 0
q /∈∂F =⇒ β ̸=0⇐⇒

β∇
(
γk
d

)
− γk

d∇β = 0 ⇐⇒ βkγk−1
d ∇γd − γk

d∇β = 0
q /∈{qd} =⇒ γd ̸=0⇐⇒ kβ∇γd = γd∇β

(4.36)

Taking the outer product of both sides

(kβ∇γd) (kβ∇γd)T = (γd∇β) (γd∇β)T ⇐⇒ (kβ)2∇γd∇γT
d = γ2

d∇β∇βT q /∈∂F =⇒ β ̸=0⇐⇒

kβ∇γd∇γT
d =

γ2
d

kβ
∇β∇βT

(4.37)
and substitution in (4.35) yields

D2φ̂|Cφ̂
=

γk−2
d

β2

[
kβγdD

2γd + (k − 1)
γ2
d

kβ
∇β∇βT − γ2

dD
2β

]
=

γk−1
d

β2

[
kβD2γd +

k − 1

k

γd
β
∇β∇βT − γdD

2β

]
=

γk−1
d

β2

[
kβD2γd +

(
1− 1

k

)
γd
β
∇β∇βT − γdD

2β

] (4.38)
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Let A ∈ Cn×n be a matrix. Then its symmetric part is given by 1
2

(
A+ AT

)
= Asymmetric

abbreviated as As. Note that

β = βiβ̄i =⇒ ∇β
= βi∇β̄i + β̄i∇βi =⇒

D2β = D
[
βi∇β̄i + β̄i∇βi

]
= βiD

2β̄i +∇β̄i∇βT
i + β̄iD

2βi +∇βi∇β̄T
i

= βiD
2β̄i +

[
∇β̄i∇βT

i +∇βi∇β̄T
i

]
+ β̄iD

2βi

(4.39)

but since

∇β̄i∇βT
i +∇βi∇β̄T

i = ∇β̄i∇βT
i +

(
∇β̄i∇βT

i

)T
= A+ AT = 2As (4.40)

for A = ∇β̄i∇βT
i so (4.39) can be written as

D2β = βiD
2β̄i + 2

(
∇β̄i∇βT

i

)
s
+ β̄iD

2βi (4.41)

Also similarly

∇β∇βT =
(
βi∇β̄i + β̄i∇βi

) (
βi∇β̄i + β̄i∇βi

)T
=
(
βi∇β̄i + β̄i∇βi

) (
βi∇β̄T

i + β̄i∇βT
i

)
= βi∇β̄iβi∇β̄T

i + βi∇β̄iβ̄i∇βT
i + β̄i∇βiβi∇β̄T

i + β̄i∇βiβ̄i∇βT
i

= β2
i∇β̄i∇β̄T

i +
(
βiβ̄i∇β̄i∇βT

i + βiβ̄i∇βi∇β̄T
i

)
+ β̄2

i∇βi∇βT
i

(4.42)

where
βiβ̄i∇β̄i∇βT

i + βiβ̄i∇βi∇β̄T
i = βiβ̄i

(
∇β̄i∇βT

i +∇βi∇β̄T
i

)
(4.43)

and since

∇β̄i∇βT
i +∇βi∇β̄T

i = ∇β̄i∇βT
i +

(
∇β̄i∇βT

i

)T
= A+ AT = 2As (4.44)

again for A = ∇β̄i∇βT
i , it follows that

∇β∇βT = β2
i∇β̄i∇β̄T

i + 2βiβ̄i

(
∇β̄i∇βT

i

)
s
+ β̄2

i∇βi∇βT
i (4.45)

Then substitution of D2β from (4.41) and ∇β∇βT from (4.45) in (4.38) yields

D2φ̂|Cφ̂
=
γk−1
d

β2

(
kβD2γd

+

(
1− 1

k

)
γd
β

(
β2
i∇β̄i∇β̄T

i + 2βiβ̄i

(
∇β̄i∇βT

i

)
s
+ β̄2

i∇βi∇βT
i

)
− γd

(
βiD

2β̄i + 2
(
∇β̄i∇βT

i

)
s
+ β̄iD

2βi

))
(4.46)

Now we are going to evaluate the quadratic form associated with (D2φ̂) (qc) in the direction
of the unit tangent vector

t̂i ,
(
∇βi (qc)

∥∇βi (qc)∥

)⊥

= (∇βi (qc))
⊥ 1

∥∇βi (qc)∥
(4.47)
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which, treating term by term the expression, yields (q ̸= qd =⇒ γd ̸= 0 ∧ q /∈ ∂F =⇒
β ̸= 0)

t̂Ti D
2φ̂|Cφ̂

t̂i
β2

γk−1
d

= t̂Ti
(
kβD2γd

)
t̂i

+ t̂Ti

((
1− 1

k

)
γd
β
β2
i∇β̄i∇β̄T

i

)
t̂i

+ t̂Ti

((
1− 1

k

)
γd
β
2βiβ̄i

(
∇β̄i∇βT

i

)
s

)
t̂i

+ t̂Ti

((
1− 1

k

)
γd
β
β̄2
i∇βi∇βT

i

)
t̂i

− t̂Ti
(
γdβiD

2β̄i

)
t̂i

− t̂Ti
(
γd2
(
∇β̄i∇βT

i

)
s

)
t̂i

− t̂Ti
(
γdβ̄iD

2βi

)
t̂i

(4.48)

and the comprising terms are (term 1)

t̂Ti
(
kβD2γd

)
t̂i = kβ

(
t̂Ti D

2γdt̂i
)

(4.49)

and (term 7)
t̂Ti
(
γdβ̄iD

2βi

)
t̂i = γdβ̄i

(
t̂Ti D

2βit̂i
)

(4.50)

and (term 2)

t̂Ti

((
1− 1

k

)
γd
β
2βiβ̄i

(
∇β̄i∇βT

i

)
s

)
t̂i = 2

(
1− 1

k

)
γdt̂

T
i

(
∇β̄i∇βT

i

)
s
t̂i (4.51)

where
t̂Ti
(
∇β̄i∇βT

i

)
s
t̂i =

1

2
t̂Ti

(
∇β̄i∇βT

i +
(
∇β̄i∇βT

i

)T)
t̂i

=
1

2
t̂Ti
(
∇β̄i∇βT

i +∇βi∇β̄T
i

)
t̂i

=
1

2

(
t̂Ti
(
∇β̄i∇βT

i

)
t̂i + t̂Ti

(
∇βi∇β̄T

i

)
t̂i
)

=
1

2

((
t̂Ti ∇β̄i

)
�����:0(
∇βT

i t̂i
)
+�����:0(

t̂Ti ∇βi

) (
∇β̄it̂i

))
= 0

(4.52)

so that from (4.51)

t̂Ti

((
1− 1

k

)
γd
β
2βiβ̄i

(
∇β̄i∇βT

i

)
s

)
t̂i = 0 (4.53)

and (term 4)

t̂Ti

((
1− 1

k

)
γd
β
β̄2
i∇βi∇βT

i

)
t̂i =

(
1− 1

k

)
γd
β
β̄2
i t̂

T
i

(
∇βi∇βT

i

)
t̂i (4.54)

where
t̂Ti
(
∇βi∇βT

i

)
t̂i =�����:0(

t̂Ti ∇βi

)
�����:0(
∇βT

i t̂i
)
= 0 (4.55)

so that from (4.54)

t̂Ti

((
1− 1

k

)
γd
β
β̄2
i∇βi∇βT

i

)
t̂i = 0 (4.56)
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and (term 6)
t̂Ti
(
γd2
(
∇β̄i∇βT

i

)
s

)
t̂i = 2γdt̂

T
i

(
∇β̄i∇βT

i

)
s
t̂i (4.57)

where
t̂Ti
(
∇β̄i∇βT

i

)
s
t̂i =

1

2
t̂Ti

(
∇β̄i∇βT

i +
(
∇β̄i∇βT

i

)T)
t̂i

=
1

2
t̂Ti
(
∇β̄i∇βT

i +∇βi∇β̄T
i

)
t̂i

=
1

2

(
t̂Ti
(
∇β̄i∇βT

i

)
t̂i + t̂Ti

(
∇βi∇β̄T

i

)
t̂i
)

=
1

2

((
t̂Ti ∇β̄i

)
�����:0(
∇βit̂i

)
+�����:0(

t̂Ti ∇βi

) (
∇β̄T

i t̂i
))

= 0

(4.58)

for the same reason as before. The zero inner products are justified by normality of chosen
direction t̂i to gradient ∇βi since t̂i is tangent to level sets

∇βT
i t̂i = ∇βi · t̂i =

(
∇βi · ∇β⊥

i

) 1

∥∇βi∥
= 0

t̂Ti ∇βi = t̂i · ∇βi = ∇βi · t̂i = 0.

(4.59)

So substitution of these terms in (4.48) leads to

t̂Ti D
2φ̂|Cφ̂

t̂i
β2

γk−1
d

= kβ
(
t̂Ti D

2γdt̂i
)
− γdβ̄i

(
t̂Ti D

2βit̂i
)
+ t̂Ti

((
1− 1

k

)
γd
β
β2
i∇β̄i∇β̄T

i − γdβiD
2β̄i

)
t̂i.

(4.60)

At critical point qc ∈ Cφ̂ the following holds

kβ∇γd = γd∇β =⇒ kβ∇γd · ∇γd = γd∇β · ∇γd ⇐⇒
kβ ∥∇γd∥2 = γd

(
∇
(
β̄iβi

))
· ∇γd = γd

(
β̄i∇βi + βi∇β̄i

)
· ∇γd

= γd
(
β̄i∇βi · ∇γd + βi∇β̄i · ∇γd

) q ̸=qd ⇐⇒ ∥∇γd∥≠0⇐⇒

kβ = γd
β̄i∇βi · ∇γd + βi∇β̄i · ∇γd

∥∇γd∥2

(4.61)

then the condition for general γd, βi results by substitution in (4.60)(
t̂iD

2φ̂|Cφ̂
t̂i
) β2

γk−1
d

=γd
β̄i∇βi · ∇γd + βi∇β̄i · ∇γd

∥∇γd∥2
(
t̂Ti D

2γdt̂i
)
− γdβ̄i

(
t̂Ti D

2βit̂i
)

+ t̂Ti

((
1− 1

k

)
γd
β
β2
i∇β̄i∇β̄T

i − γdβiD
2β̄i

)
t̂i

= γdβ̄i

(
∇βi · ∇γd
∥∇γd∥2

(
t̂Ti D

2γdt̂i
)
−
(
t̂Ti D

2βit̂i
))

+ γdβi

(
∇β̄i · ∇γd
∥∇γd∥2

+ t̂Ti

((
1− 1

k

)
∇β̄i · ∇β̄T

i

β̄i

−D2β̄i

)
t̂i

)
.

(4.62)
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4.2.3 Relative curvature function

Let
Bi(q) , β−1

i (βi(q)) (4.63)

denote the obstacle βi implicit level set to which point q belongs. If the level set β−1
i (βi(q))

is disconnected, then Bi(q) is defined as that connected component of this level set, to
which point q belongs. Let

TBi =
⊔
q∈F

TqBi =
∪

({q} × TqBi) =
∪

({q} ×Ti(q)) (4.64)

be the tangent bundle of Bi(q). Furthermore, let

UTBi ,
⊔
q∈F

{u ∈ TqBi| ∥u∥ = 1} =
⊔
q∈F

{u ∈ Ti(q)| ∥u∥ = 1}

=
⊔
q∈F

{v̂ ∈ UTi(q)}
(4.65)

denote the unit tangent bundle of Bi(q).

Definition 7 (Relative Curvature Function νi(q, t̂i)). Let the relative curvature function
νi : UTBi → R be defined as

νi(q, t̂i) ,
(∇βi) (q) · (∇γd) (q)
∥(∇γd) (q)∥2

(
t̂Ti
(
D2γd

)
(q)t̂i

)
− t̂Ti

(
D2βi

)
(q)t̂i,

t̂i ∈ UTi(q), q ∈ F , i ∈ I0

(4.66)

which compares the curvature of destination attractive effect level sets γ−1
d to that of the

obstacle level sets β−1
i .

Proposition 8 (Relative curvature function νi decomposition for paraboloid γd). If γd(q) =
∥q − qd∥2, then at every point q ∈ F the relative curvature function νi is equal to the sum
of two functions νi1 : F → R and νi2 : UTBi → R, which are defined as

νi1(q) , 2
(∇βi) (q) · (∇γd) (q)
∥(∇γd) (q)∥2

,

νi2(q, t̂i) , −t̂Ti
(
D2βi

)
(q)t̂i

(4.67)

so that
νi(q, t̂i) = νi1(q) + νi2(q, t̂i), ∀t̂i ∈ UTi(q), ∀q ∈ F , ∀i ∈ I0 (4.68)

Proof. If γd(q) = ∥q − qd∥2 then (D2γd) (q) = 2I, ∀q ∈ F . As a result, if γd is paraboloid,
then t̂Ti (D2γd) (qc)t̂i = t̂Ti 2It̂i = 2, ∀t̂i ∈ UTqBi. Substitution in the relative curvature
function as defined in (4.66) yields

νi(q, t̂i) ,
(∇βi) (q) · (∇γd) (q)
∥(∇γd) (q)∥2

2I − t̂Ti
(
D2βi

)
(q)t̂i

= 2
(∇βi) (q) · (∇γd) (q)
∥(∇γd) (q)∥2

− t̂Ti
(
D2βi

)
(q)t̂i, t̂i ∈ UTqBi, q ∈ F , i ∈ I0

(4.69)
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Note that the first term νi1(q) on the right hand side is a function only of q, whereas
the second is the restriction to tangent space UTi(q) of the quadratic form t̂Ti (D2βi) (q)t̂i.
Hence, we can define

νi1(q) , 2
(∇βi) (q) · (∇γd) (q)
∥(∇γd) (q)∥2

(4.70)

and
νi2(q, t̂i) , −t̂Ti

(
D2βi

)
(q)t̂i (4.71)

to complete the decomposition and prove the claim.

Note that for paraboloid γd the νi1(q) is a function only of q (i.e., independent of
tangent direction t̂i), therefore common for all tangent directions at q. On the contrary,
νi2(q, t̂i) is a function of both q and t̂i. But, actually νi2(q, t̂i) is the curvature of level set
β−1
i (c), scaled by the gradient norm ∥(∇βi) (q)∥, which is constant for all directions at q.

Proposition 9 (Proportional decomposition of relative curvature function νi for paraboloid
γd). If γd(q) = ∥q − qd∥, then at every point q ∈ F the relative curvature function νi is
equal to the product of the gradient norm ∥(∇βi) (q)∥ > 0 with the sum of two functions
νi3 : F → R and νi4 : UTBi → R, which are defined as

νi3(q) , 2
(∇βi) (q) · (∇γd) (q)
∥(∇βi) (q)∥ ∥(∇γd) (q)∥2

νi4(q, t̂i) , −
t̂Ti (D2βi) (q)t̂i
∥(∇βi) (q)∥

(4.72)

so that

νi(q, t̂i) = ∥(∇βi) (q)∥
(
νi3(q) + νi4(q, t̂i)

)
, ∀t̂i ∈ UTi(q), ∀q ∈ F , ∀i ∈ I0 (4.73)

Proof. Using Proposition 8 we have that for paraboloid γd it holds that νi(q, t̂i) = νi1(q) +
νi2(q, t̂i). Set

νi3(q) =
νi1(q)

∥(∇βi) (q)∥

νi4(q, t̂i) =
νi2(q, t̂i)

∥(∇βi) (q)∥

(4.74)

and the claim is proved.

Proposition 10 (Specific form of relative curvature function νi in general). If ∥(∇βi) (q)∥ >
0 then the relative curvature function can be written in the form

νi = ∥∇βi∥
(
cos(θi)

t̂Ti D
2γdt̂i

∥∇γd∥
− t̂Ti D

2βit̂i
∥∇βi∥

)
(4.75)

where

θi(q) , ̂((∇γd) (q) , (∇βi) (q)) =
(∇γd) (q) · (∇βi) (q)

∥(∇γd) (q)∥ ∥(∇βi) (q)∥
(4.76)

is the angle between the two gradients (∇γd) (q) and (∇βi) (q).
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Proof.
νi(q, t̂i) =

∇βi · ∇γd
∥∇γd∥2

(
t̂Ti D

2γdt̂i
)
− t̂Ti D

2βit̂i
∥∇βi∦=0,∀q∈F

=

= ∥∇βi∥
(
∇βi

∥∇βi∥
· ∇γd
∥∇γd∥

t̂Ti D
2γdt̂i

∥∇γd∥
− t̂Ti D

2βit̂i
∥∇βi∥

)
= ∥∇βi∥

(
cos(θi)

t̂Ti D
2γdt̂i

∥∇γd∥
− t̂Ti D

2βit̂i
∥∇βi∥

) (4.77)

As already analyzed, the first term on the right-hand side should be strictly negative,
so that an upper bound constraint can be specified, without need to explicitly find actual
extremal values of the two terms on the right-side. Therefore the general15 condition
which results in the modified constraint εi < ε′i0 is

νi(q) =
∇βi · ∇γd
∥∇γd∥2

(
t̂Ti D

2γdt̂i
)
− t̂Ti D

2βit̂i < 0
∥∇βi∦=0,∀q∈F⇐⇒

cos(θi)
t̂Ti D

2γdt̂i
∥∇γd∥

<
t̂Ti D

2βit̂i
∥∇βi∥

(4.78)

and when
(
t̂Ti D

2γdt̂i
) (

t̂Ti D
2βit̂i

)
cos(θi) > 0

∥∇βi∥
t̂Ti D

2βit̂i
<

∥∇γd∥
t̂Ti D

2γd t̂i

cos θi
(4.79)

Note that in more detail this is required to hold at a critical point qc confined within obstacle
free space neighborhood Bi (εi)

∥∇βi(qc)∥
t̂i(qc)TD2βi(qc)t̂i(qc)

<

∥∇γd(qc)∥
t̂i(qc)TD2γd(qc)t̂i(qc)

cos θi(qc)
, qc ∈ Bi (εi) (4.80)

4.2.4 Critical point-free neighborhoods

We can “push” the critical points very close to Bi and then ∇βi dominates ∇β̄i. In
this case the existence of critical points is dominated in Bi (εi) only by ∇βi and −∇γd.
Since ∇γd · ∇βi ≤ 0 =⇒ 0 ≤ (−∇γd) · ∇βi, the two vectors −∇γd,∇βi have an angle
either less or at most equal to π

2
. A direct consequence is that they cannot annihilate each

other. Therefore, they cannot cause a critical point qc. This was an intuitive explanation.
Through the formal proof it turns out that, provided Bi (εi) are pairwise disjoint, this also
holds for the k threshold already imposed in (4.22).

Definition 11 (Good and bad Half-spaces). We need to define two half-spaces16, sepa-
rated by the tangent plane TqBi of Bi at q. The first one Hi1(q) is the “good” one. When
we place the destination qd in Hi1(q) the inner product (∇βi) (q) · (∇γd) (q) ≤ 0. The free
subset of the first half-space (i.e., the intersection of this half-space with the free space
of allowable destinations)

Hi1(q) , {qd ∈ F \ (∂F ∪ {q}) | (∇βi) (q) · (∇γd) (q) ≤ 0} (4.81)

15General here refers to any choice of γd, βi.
16More exactly: for two half-spaces the intersections of them with the free space.
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qd

q ∈ F \ ∂F

(∇
β
i )(q)

β
−
1

i
(β

i(
q)
)

Hi1(q)

Hi2(q)

T i(
q)

(∇γd) (q)

(∇
γ d
) (
q)

alternatives

∇βi · ∇γd ≤ 0

∇βi · ∇γd > 0

Figure 4.3: Positive/nonpositive inner product half-spaces, depending on qd.

For a fixed q, it is the half space of possible qd which render the inner product (∇βi) (q) ·
(∇γd) (q) nonpositive.

The second one is the “bad” half-space

Hi2(q) , {qdF \ (∂F ∪ {q}) | 0 < (∇βi) (q) · (∇γd) (q)} (4.82)

Definition 12 (Subsets of set “near” obstacles). Also, for a given destination qd, for each
q, either

(∇βi) (q) · (∇γd) (q) ≤ 0 (4.83)

or
(∇βi) (q) · (∇γd) (q) > 0 (4.84)

This leads us to define two disjoint and complementary subsets of Fn. First let

Ai1(εi) , {q ∈ Bi (εi) | (∇βi) (q) · (∇γd) (q) ≤ 0} , i ∈ I0

Ai2(εi) , {q ∈ Bi (εi) | 0 < (∇βi) (q) · (∇γd) (q)} , i ∈ I0
(4.85)

where, it follows by the above definitions that

Bi (εi) = Ai1(εi) ∪Ai2(εi) (4.86)

and now we can define their unions

A1(εI0) ,
∪
i∈I0

Ai1(εi) = {q ∈ Fn, i ∈ I0| (∇βi) (q) · (∇γd) (q) ≤ 0}

A2(εI0) ,
∪
i∈I0

Ai2(εi) = {q ∈ Fn, i ∈ I0| 0 < (∇βi) (q) · (∇γd) (q)}
(4.87)

where, it follows by these definitions that

Fn = A1(εI0) ∪A2(εI0) (4.88)

Note how these are related to Hi1(q),Hi2(q). Sets Hij(q) are defined for fixed q and
concern all possible qd selections. On the contrary, sets A1,A2 are defined for a given qd,
as is the case in the whole proof. Therefore, we will use the second pair of sets in our
proof, whereas the first pair is useful for one to understand the geometry of the problem.

We will show that the following holds
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{qd} = Fd

Oi

Fa

Bi (εi)

Ai1(εi)A
i2 (ε

i )

Figure 4.4: Good and bad neighborhoods.

Proposition 13 (No critical points in good subset “near” obstacles). For a given qd there
is a N(εI0) (the same as (4.22)), such that if k > N(εI0) then q ∈ A1(εI0) cannot be a
critical point, i.e.

Cφ̂ ∩A1(εI0) = ∅, ∀k ≥ N(εI0) (4.89)

This means that by setting k ≥ kmin we confine critical points not just in
∪

i Bi, but in∪
(Bi ∩A2(εI0)). The proof is as follows (and is inspired by Proposition 3.7, pp. 432-433,

[23], in fact it generalizes that).

Proof. By definition
(∇βi) (q) · (∇γd) (q) ≤ 0, ∀q ∈ A1(εI0) (4.90)

The inner product of ∇γd with ∇φ̂ is (Lemma 3.1 [23] )

∇φ̂ · ∇γd =
γk
d

β2
(4kβ −∇β · ∇γd)

=
γk
d

β2

(
4kβ −

(
βi∇β̄i · ∇γd + β̄i∇βi · ∇γd

))
=

γk
d

β2

(
4kβ − βi∇β̄i · ∇γd − β̄i∇βi · ∇γd

)
(4.91)

and, since from (4.90)

0 ≤ − (∇βi) (q) · (∇γd) (q) , ∀q ∈ A1(εI0) (4.92)

it follows that

(∇φ̂) (q) · (∇γd) (q) ≥ βi
γk
d

β2

(
4kβ̄i(q)−

(
∇β̄i

)
(q) · (∇γd) (q)

)
(4.93)

If k is large enough, i.e.,

k >
1

4

(
∇β̄i

)
(q) · (∇γd) (q)
β̄i(q)

, ∀q ∈ A1(εI0) (4.94)

then the inner product

(∇φ̂) (q) · (∇γd) (q) > 0, ∀q ∈ A1(εI0) (4.95)
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But this is satisfied by k > N(εI0), because

1

4

∇β̄i · ∇γd
β̄i

≤ 1

2

∥∥∇β̄i

∥∥√γd
β̄i

≤ 1

2

√
γd

∑
j∈I0\{i}

∥∇βj∥
βj

=
1

2

√
γd

(∑
j∈I0

(
∥∇βj∥
βj

)
− ∥∇βi∥

βi

)

<
1

2

√
γd
∑
j∈I0

∥∇βj∥
βj

(4.96)

and also
1

2

√
γd(q)

∑
j∈I0

∥(∇βj) (q)∥
βj(q)

≤ N(εI0) < k, ∀q ∈ Bi (4.97)

because εj ≤ βj(q),∀q ∈ Bi, ∀j ∈ I0 \ {i}. As a result, combination of the previous leads
to

1

4

(
∇β̄i

)
(q) · (∇γd) (q)
β̄i(q)

< N(εI0) ≤ k, ∀q ∈ Bi (4.98)

Therefore, since by definition ∀q ∈ A1(εI0) =⇒ ∃i ∈ I0 : q ∈ Bi it follows that

1

4

(
∇β̄i

)
(q) · (∇γd) (q)
β̄i(q)

< k, ∀q ∈ A1(εI0) =⇒

(∇φ̂) (q) · (∇γd) (q) > 0, ∀q ∈ A1(εI0)

(4.99)

by the previous equations.

Lemma 14 (Critical points remain only in
∪

i∈I0 A2(εI0) and have 0 < νi1(q)). By Propo-
sition 13 and Propositions 2.7, 3.2, 3.3, 3.4 [23], for every 0 < εi, i ∈ I0 there exists a
N(εI0), such that for all k ≥ N(εI0) the only remaining critical points qc ∈ Cφ̂ \ {qd}, other
than the destination, arise in set A2(εI0), i.e.,

∀εi > 0 ∃N(εI0) : qc ∈ A2(εI0), ∀qc ∈ Cφ̂ \ {qd}, ∀k ≥ N(εI0) (4.100)

Moreover, for any point q ∈ A2(εI0), therefore also for all remaining critical points, if
γd(q) = ∥q − qd∥2 then

0 < νi1(q), ∀q ∈ A2(εI0) (4.101)

Proof. By Propositions 3.2, 3.3 [23] we know that the only critical points remaining qc ∈
Cφ̂ \ {qd} other than the destination qd cannot arise in Fd, ∂F . By Proposition 3.4 [23]
for any εi > 0, i ∈ I0 there exists a N(εI0) such that for all k ≥ N(εI0) no critical points
qc ̸= qd exist in Fa.

Then, critical points qc ∈ Cφ̂ \ {qd} can arise only in the set “near” obstacles

qc ∈ Fn = A1(εI0) ∪A2(εI0), ∀qc ∈ Cφ̂ \ {qd}, ∀k ≥ N(εI0) (4.102)

By Proposition 13 we have ensured that

(∇βi) (q) · (∇γd) (q) ≤ 0 =⇒ q /∈ Cφ̂ \ {qd}, ∀k ≥ N(εI0) (4.103)
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By the previous two it follows that

qc ∈ Fn = A1(εI0) ∪A2(εI0), ∀qc ∈ Cφ̂ \ {qd}, ∀k ≥ N(εI0)
qc /∈ A1(εI0), ∀qc ∈ Cφ̂ \ {qd}, ∀k ≥ N(εI0)

}
=⇒

qc ∈ A2(εI0), ∀qc ∈ Cφ̂ \ {qd}, ∀k ≥ N(εI0) =⇒
0 < (∇βi) (qc) · (∇γd) (qc) , ∀qc ∈ Cφ̂ \ {qd}, ∀k ≥ N(εI0)

(4.104)

The above can also be expressed as

Cφ̂ \ {qd} ⊆ A2(εI0), ∀k ≥ N(εI0) (4.105)

For a paraboloid attractive effect γd by Proposition 8

νi1(q) = 2
(∇βi) (q) · (∇γd) (q)
∥(∇γd) (q)∥2

(4.106)

which has the same sign as (∇βi) (q) · (∇γd) (q), hence

0 < (∇βi) (q) · (∇γd) (q) , ∀q ∈ A2(εI0) =⇒
0 < νi1(q), ∀q ∈ A2(εI0)

(4.107)

Therefore, for all k ≥ N(εI0), at critical points it can only be 0 < νi1(qc), i.e.,

0 < νi1(q),∀q ∈ A2(εI0)
Cφ̂ \ {qd} ⊆ A2(εI0),∀k ≥ N(εI0)

}
=⇒

0 < νi1(q), ∀qc ∈ Cφ̂ \ {qd}, ∀k ≥ N(εI0)

(4.108)



4.3 Sufficient Curvature Condition 123

4.3 Sufficient Curvature Condition

4.3.1 Differential Geometry of Implicit Surfaces

We need to interpret term νi2(q, t̂i) in terms of differential geometry. This is provided in
the work of Dombrowski [43], who treats the general n-dimensional case. This applies to
Navigation Functions, which are defined over n-dimensional space. A simplified derivation
for 3-dimensional space is provided by Hughes [46].

Let us denote the normal curvature of a surface along tangent unit vector t̂i by κi,q(t̂i).
This is given by the second fundamental form IIq at q as

κi,q(t̂i) = IIq(t̂i, t̂i) (4.109)

Definition 15 (Weingarten map[47]). Let the Weingarten map17 (or shape operator) at
q be

Lq : TqBi → TqBi (4.110)

Let nBi
(q) ⊥ Bi be the vector normal to Bi at point q. Suppose γ : [−1, 1]→ Bi is a path

on (hyper)surface Bi with γ(0) = q, which has tangent ti ∈ TqBi. The Weingarten map is
defined as

Lq(ti) ,
d (nBi

(γ(t)))

dt
(0) (4.111)

so it is the derivative of the surface normal nBi
(γ(t)) at time t = 0, as γ(t) passes through

q in direction ti.

Proposition 16 (Weingarten map for Implicit Surfaces [43, 46]). For the implicitly de-
fined surface Bi the Weingarten map at q is equal to the linear mapping18

Lq(t̂i) =
1

∥∇βi∥
(
D2βi

)
(q)t̂i, t̂i ∈ UTqBi (4.112)

The Weingarten map is related to the second fundamental form by

IIq(X, Y ) = Lq(X) · Y = X · Lq(Y ), X, Y ∈ TqBi (4.113)

This leads to the following expression for the normal curvature of implicit surface Bi

at q along t̂i
κi,q(t̂i) = IIq(t̂i, t̂i) = t̂i · Lq(t̂i)

= t̂Ti
1

∥(∇βi) (q)∥
(
D2βi

)
(q)t̂i

=
t̂Ti (D2βi) (q)t̂i
∥(∇βi) (q)∥

∈ (−∞,+∞) = R, t̂i ∈ UTqBi

(4.114)

This derivation of normal curvature κi,q of an implicitly defined surface connects it
to the implicit function βi defining the surface. This reveals the role of the restricted
quadratic form t̂Ti (D2βi) (q)t̂i, t̂i ∈ UTqBi. Restriction is with respect to the surface’s unit
tangent space UTqBi and is important to avoid misinterpretations. The principal directions
are the eigenvectors of the Weingarten map. Hence, they are also the eigenvectors of the
restricted quadratic form t̂Ti (D2βi) (q)t̂i|t̂i∈UTqBi

, but they are not (necessarily) eigenvec-
tors of the Hessian matrix (D2βi) (q).
17[47], § 4.7: The Second Fundamental Form and the Weingarten Map, pp.122-127.
18[46], § 1.4: The relation between N and ∇G, p.6.
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Definition 17 (Radius of Normal Curvature). We can also define the radius of normal
curvature Ri,q(t̂i) along tangent direction t̂i, as the inverse of the normal curvature at
the same point (allowing Ri,q = ±∞ and understanding that this means flatness of the
implicit surface along t̂i at point q)

Ri,q(t̂i) ,
∥(∇βi)(q)∥

t̂Ti (D2βi) (q)t̂i
∈ [−∞, 0) ∪ (0,+∞] = R̄ \ {0}, t̂i ∈ UTqBi (4.115)

Definition 18 (Convex, Nonconvex). It follows that at q, in direction t̂i ∈ UTqBi, the
surface Bi can be either

1. Convex if
0 < t̂Ti

(
D2βi

)
(q)t̂i =⇒ 0 < κi,q(t̂i); (4.116)

2. Nonconvex if
t̂Ti
(
D2βi

)
(q)t̂i ≤ 0 =⇒ κi,q(t̂i) ≤ 0. (4.117)

Definition 19 (Principal curvatures, principal directions). Let κi,q(t̂i) be the normal cur-
vature of surface Bi at point q along tangent direction t̂i ∈ UTqBi. The Weingarten map
is represented in the tangent space by a linear symmetric operator, which has orthogonal
eigenvectors

p̂ij(q) ∈ UTqBi, i ∈ I0, j ∈ {1, 2, . . . , n} (4.118)

and real eigenvalues
κij(q) ∈ R, i ∈ I0, j ∈ {1, 2, . . . , n} (4.119)

associated to them. These eigenvectors p̂ij(q) are called principal directions at q and
their associated eigenvalues κij(q) are called principal curvatures at q19.

From the definition of normal curvature and radius of normal curvature it follows that
for an implicitly defined surface βi, the principal curvatures and principal radii of curvature
are related to their associated principal directions as follows

κij(q) = κi,q(p̂ij) =
p̂Tij (D

2βi) (q)p̂ij

∥(∇βi) (q)∥

Rij(q) = Ri,q(p̂ij) =
∥(∇βi) (q)∥

p̂Tij (D
2βi) (q)p̂ij

(4.120)

19[47], § 4.8: Principal, Gaussian, Mean, and Normal Curvatures, pp.128-141. In particular Definition:
The principal curvatures of a surface M at a point p are the eigenvalues of Lq there. Corresponding unit
eigenvectors are called principal directions at p.
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4.3.2 Geometric interpretation for any γd

Following from the previous definition and the fact that q can be a critical point only
for destinations qd which are in the “bad” set Hi2(q), we provide the following useful
definitions.

Definition 20 (Sufficiently curved direction t̂i). A direction t̂i ∈ UTq∂Oi is called
1. Sufficiently curved if

νi(q, t̂i) < 0, ∀qd ∈Hi2(q); (4.121)

2. Convex but not sufficiently curved if

t̂Ti
(
D2βi

)
(q)t̂i > 0 but ∃qd ∈Hi2(q) : νi(q, t̂i) ≥ 0; (4.122)

3. Nonconvex if

t̂Ti
(
D2βi

)
(q)t̂i ≤ 0 =⇒ 0 < νi(q, t̂i), ∀qd ∈Hi2(q). (4.123)

Note that since we are working with Hi2(q) where 0 < νi1(q) sufficient curvature
implies 0 < t̂Ti (D2βi) (q)t̂i (because if it were t̂Ti (D2βi) (q) ≤ 0 then 0 < νi2(q, t̂i) and
hence νi(q, t̂i) = νi1(q) + νi2(q, t̂i) > 0, which is contrary to the hypothesis of sufficient
curvature).

Also, note that we have covered all possible cases. A direction can be either convex or
nonconvex. If nonconvex, then νi(q, t̂i) can only be nonpositive for qd ∈Hi2(q). If convex,
then either νi(q, t̂i) < 0,∀qd ∈Hi2, or there exists a qd ∈Hi2 for which this does not hold.
There is no other case left.

The first case is convex sufficiently curved, the second is convex insufficiently curved,
the third one is nonconvex hence necessarily insufficiently curved.

Definition 21 (Sufficiently curved point). A point q ∈ ∂Oi is called sufficiently curved,
with respect to βi, if every tangent t̂i at q is sufficiently curved, i.e.,

νi(q, t̂i) < 0, ∀qd ∈Hi2(q), ∀t̂i ∈ UTq∂Oi. (4.124)

Definition 22 (Everywhere sufficiently curved obstacle). An obstacle βi is called ev-
erywhere sufficiently curved if every boundary point of it is sufficiently curved, i.e.,

νi(q, t̂i) < 0, ∀qd ∈Hi2(q), ∀t̂i ∈ UTq∂Oi, ∀q ∈ ∂Oi (4.125)

Definition 23 (Everywhere sufficiently curved world). A world F is called everywhere
sufficiently curved if all its obstacles Oi are everywhere sufficiently curved, i.e.,

νi(q, t̂i) < 0, ∀qd ∈Hi2(q), ∀t̂i ∈ UTq∂Oi, ∀q ∈ ∂Oi, ∀i ∈ I0 (4.126)

Proposition 24 (Principal curvatures bound curvature). For the restricted quadratic form
t̂Ti (D2βi) (q) it holds that

p̂ijmin
(q)T

(
D2βi

)
(q)p̂ijmin

(q) ≤ t̂Ti
(
D2βi

)
(q)t̂i ≤ p̂ijmax(q)

T
(
D2βi

)
(q)p̂ijmax(q),

∀t̂i ∈ UTqBi, ∀q ∈ F ,
(4.127)

where p̂ijmin
(q), p̂ijmax(q) are the principal directions at q which correspond to the minimal

and maximal principal curvatures κijmin
(q), κijmax(q), respectively.
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Proof. Since βi ∈ C(2) [F , [0,+∞)], consider that principal directions are eigenvectors of
the Weingarten map, expressed as

p̂ij(q)
Tlp̂ij(q) =

1

∥(∇βi) (q)∥
p̂ij(q)

T
(
D2βi

)
(q)p̂ij(q) (4.128)

Then, taking into consideration Proposition 32 about eigenvalues and eigenvectors, pro-
vided ∥(∇βi) (q)∥ > 0 and because this is constant for all t̂i at a certain point q, it follows
that

p̂ijmin
(q)Tlp̂ijmin

(q) ≤ t̂Ti lt̂i

≤ p̂ijmax(q)
Tlp̂ijmax(q), ∀t̂i ∈ UTqBi, ∀q ∈ F

∥(∇βi)(q)∥>0
=⇒

p̂ijmin
(q)T

(
D2βi

)
(q)p̂ijmin

(q) ≤ t̂Ti
(
D2βi

)
(q)t̂i

≤ p̂ijmax(q)
T
(
D2βi

)
(q)p̂ijmax(q), ∀t̂i ∈ UTqBi, ∀q ∈ F

(4.129)
where p̂ijmin

(q), p̂ijmax(q) are the principal directions which correspond to the minimal and
maximal principal curvatures κijmin

, κijmax, respectively.

Remark 25. Caution is required above, because the inequality holds because t̂i are eigen-
vectors of the Weingarten map in the tangent space. This linear operator can be expressed
using a matrix l which is an (n − 1) × (n − 1) matrix. It has been proved that the two
quadratic forms

1

∥(∇βi) (q)∥
t̂Ti
(
D2βi

)
(q)t̂i = t̂Ti lt̂i, t̂i ∈ UTqBi (4.130)

are related by the constant at q factor 1
∥(∇βi)(q)∥ .

Hence, it seems to appear that (D2βi) (q) has eigenvectors p̂ij(q). This is not true.
The reason is that (D2βi) (q) is an operator on the whole tangent space UTqF , not only
in UTqBi. As a result, it has a different eigensystem. Viewed in another way, the matrix
representing (D2βi) (q) is an n× n matrix and when acting on t̂i, these are expressed not
as (n− 1)× 1 vectors in UTqBi, but as n× 1 vectors in UTqF . So p̂ij(q) are eigenvectors
of the restricted quadratic form

1

∥(∇βi) (q)∥
t̂Ti
(
D2βi

)
(q)t̂i, t̂i ∈ UTqBi (4.131)

Nonetheless, it is worth noting that if m principal directions p̂ij(q) have e.g. positive
principal curvatures, then according to a Proposition proved later, the subspace of TqBi

spanned by them is positive definite. Hence l is positive definite in it. But also (D2βi) (q)
is positive definite in it. Since it is positive definite in an m dimensional subspace of TqBi,
it is positive definite in the same m dimensional subspace of TqF . This implies that the
Hessian matrix (D2βi) (q) also has m positive eigenvalues and m associated eigenvectors
in TqF at q. But these are not necessarily within TqBi.

The above states that principal curvatures are stationary values of curvature in TqBi.
This allows us to express the inequality in terms of minimal curvature (maximal radius of
curvatureRi,q (p̂ijmin

(qc))) and associated tangential direction p̂ijmin
(qc) of minimal curvature

of level set Bi at critical point qc.
At this point it is important to note that tangential direction t̂i has been selected as

a suitable direction. As already discussed, if the condition holds for at least one such
direction (not necessarily tangential) then a local minimum cannot arise at qc.
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But this does not guarantee that there exists a direct sum decomposition to two sub-
manifolds with Hessian positive definite in one of them and negative definite in the other
one, so that it can be proved to be non-degenerate.

Since the condition is expressed in terms of an arbitrary tangential direction, all radii
of curvature between maximal Ri,q (p̂ijmin

(qc)) and minimal Ri,q (p̂ijmax(qc)) are to be con-
sidered.

In particular cases20 this may be provable. Namely that at least a single direction of
negative definiteness suffices as an escape direction because its orthogonal complement21

is a positive definite submanifold of the Hessian, assuring Hessian D2φ non-degeneracy.
In those cases we are interested with what happens for two certain (principal) directions
t̂i and associated curvatures Ri,q(t̂i).

But to obtain a general result that holds for the whole class of implicit functions satisfy-
ing the derived condition, from now on we will constrain curvature κi,q(t̂i) in all directions
t̂i at a critical point qc.

In (4.78) we require

νi(qc) =
(∇βi) (qc) · (∇γd) (qc)
∥(∇γd) (qc)∥2

t̂Ti
(
D2γd

)
(qc)t̂i − t̂Ti

(
D2βi

)
(qc)t̂i < 0 (4.132)

which for qd in the half-space (∇βi) (qc) · (∇γd) (qc) > 0 cannot hold if t̂Ti (D2βi) (qc)t̂i ≤ 0.
This is why we initially require that βi has positive Gaussian curvature close to the obstacle.
Then we can select a Bi (εi) small enough for positive definiteness to hold at qc confined
within Bi (εi).

Therefore in order for the relative curvature condition to be proved for all tangential
directions, the Hessian (D2βi) (qc) should be positive definite in the tangent space at qc

t̂Ti
(
D2βi

)
(qc)t̂i > 0, ∀t̂i ∈ UTi(qc) (4.133)

For ∥(∇βi) (qc)∥ > 0 this is equivalent to only positive curvature allowable{
t̂Ti (D2βi) (qc)t̂i > 0,∀t̂i ∈ UTi(qc)

∥(∇βi) (qc)∥ > 0

}
⇐⇒{

κi,qc(t̂i) =
t̂i(qc)

T(D2βi)(qc)t̂i(qc)
∥(∇βi)(qc)∥ > 0, ∀t̂i ∈ UTi(qc)

∥(∇βi) (qc)∥ > 0

} (4.134)

Therefore the minimal curvature at a critical point should be positive

min
t̂i

{
κi,qc(t̂i)

}
> 0 (4.135)

This is equivalent to all other directional curvatures along t̂i at qc being positive, fol-
lowing from Proposition 24.

So all directional curvatures κi,qc(t̂i) and as a result radii of curvature Ri,qc(t̂i) are
required to be positive

min
t̂i

{
κi,qc(t̂i)

}
> 0 =⇒ κi,qc(t̂i) > 0, ∀t̂i ∈ UTi(qc)

=⇒ Ri,qc(t̂i) =
1

κi,qc(t̂i)
> 0, ∀t̂i ∈ UTi(qc)

(4.136)

20Such as a hyperboloids: the span of the axis direction and ∇βi constitutes a positive definite submani-
fold, whereas the tangential direction of maximal level set curvature defines a negative definite submanifold,
their combination is a direct sum decomposition.
21Or the negative submanifold may be a superset and its orthogonal complement be a positive definite

submanifold.
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For the remainder of this section we will work with Ri,qc(p̂ijmin
(qc)) which means that a

condition will be derived for D2φ to be negative definite in the tangent space at qc. This
can then be combined with positive definiteness in the “radial” submanifold (span of ∇βi)
to prove Hessian D2φ non-degeneracy. So (4.79) can be restated in terms of directional
radius of curvature as

cos(θi(qc))Ri,qc(t̂i) <
∥(∇γd) (qc)∥

t̂Ti (D2γd) (qc)t̂i
(4.137)

A sufficient condition for this to hold in all tangential directions is

cos(θi(qc))Ri,qc(p̂ijmin
(qc)) < min

t̂i∈UTi(qc)

{
∥(∇γd) (qc)∥

t̂Ti (D2γd) (qc)t̂i

}
(4.138)

or more compactly (remembering evaluation at critical point qc)

cos(θi)Ri,qc < min
t̂i∈UTi(qc)

{
∥∇γd∥
t̂Ti D

2γdt̂i

}
(4.139)

Condition (4.138) requires that the maximal radius of curvature Ri,qc(p̂ijmin
(qc)) of im-

plicit surface Bi(qc) along tangential direction of minimal curvature p̂ijmin
(qc) ∈ UTqBi(qc)

projected on the normal to implicit surface

Γ(q) , γ−1
d (γd(q)) (4.140)

should be smaller than mint̂i∈UTi(qc)

{
∥(∇γd)(qc)∥

t̂Ti (D
2γd)(qc)t̂i

}
. Hence

Ri,qc(qc) ∈ (0, Ri,qc(qc)], ∀t̂i ∈ UTi(qc)

Ri,qc(p̂ijmin
(qc)) < mint̂i∈UTi(qc)

{
∥(∇γd)(qc)∥

t̂Ti (D
2γd)(qc)t̂i

} } =⇒ Ri,qc(t̂i) < min
t̂i∈UTi(qc)

{
∥∇γd(qc)∥

t̂Ti (D2γd) (qc)t̂i

}
(4.141)

Note that since t̂i ∈ UTi(qc) and not necessarily t̂i ∈ UTqΓ(qc) it follows that quantity

∥(∇γd) (qc)∥
t̂Ti (D2γd) (qc)t̂i

cannot be readily interpreted as radius of curvature. In subsection 4.4.1 we will see that
for a paraboloid selection of attraction γd the quantity

∥∇γd∥
t̂Ti D

2γd t̂i
is the radius of curvature of

γd level set Γ(q) passing through point qc.
Note that such a sufficient “relative curvature” condition is stronger than mere con-

vexity. Maybe it could be termed a “relative convexity” condition, but “relative curvature”
has been selected to better express the role of curvature.
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4.4 Sufficient Curvature Condition for paraboloid γd

There is the need to replace Lemma 3.5 [23] because it no longer holds. This is treated
in subsection 4.4.2, namely in which neighborhood of an obstacle the negativity condition
νi(q, t̂i) < 0 holds.

4.4.1 Geometry of Sufficient Curvature for paraboloid γd

For γd(q) = ∥q − qd∥2 sufficient curvature has an interesting interpretation. Let

S (qa, ρ) , {q ∈ En| ∥q − qa∥ ≤ ρ} (4.142)

be a sphere with center qa, radius ρ. For θi(qc) ∈ [−π,+π] the left hand side

cos(θi(qc))Ri,qc(t̂i)

in (4.138) defines22 the boundary of a “curvature sphere”23.

Definition 26 (Curvature Sphere). We will call curvature sphere along t̂i the sphere
tangent to Bi(q) at q, defined as

Sci(q, t̂i) , S

(
q − 1

2
Ri,q(t̂i)r̂i,

1

2
Ri,q(t̂i)

)
. (4.143)

of center qci(q, t̂i) and radius ρci(q, t̂i) defined as

qci(q, t̂i) , qc − ρci(q, t̂i)r̂i, ρci(q, t̂i) ,
1

2
Ri,q(t̂i) (4.144)

Proposition 27 (Sufficiently curved t̂i ⇐⇒ {qd /∈ Sci(q, t̂i) ∧ Ri,q(t̂i) > 0}). If γd(q) =
∥q − qd∥2 and ∥∇βi∥ > 0, sufficiently curved t̂i is equivalent to qd /∈ Sci(q, t̂i), Fig. 4.5.

Proof. By Proposition 10, Proposition 16 sufficient curvature is written

νi = ∥∇βi∥
(
cos(θi)

t̂Ti D
2γdt̂i

∥∇γd∥
− t̂Ti D

2βit̂i
∥∇βi∥

)
< 0, ∀qd ∈Hi2(q) (4.145)

When γd = ∥q − qd∥2 it is t̂Ti D
2γd t̂i

∥∇γd∥
= 1

∥q−qd∥
. Moreover, Ri,q(t̂i) =

∇βi

t̂Ti D
2βi t̂i

, hence the previous
becomes

νi = ∥∇βi∥
(
cos(θi)

I

∥q − qd∥
− 1

Ri,q(t̂i)

)
< 0, ∀qd ∈Hi2(q) (4.146)

By definition of εi4 it is ∥∇βi∥ > 0,∀q ∈ Bi (εi4). Also, cos(θi) 1
∥q−qd∥

> 0 for θi ∈
(
−π

2
,+π

2

)
,

therefore Ri,q(t̂i) should be positive. As a result, and since q ̸= qd =⇒ ∥q − qd∥ > 0, it
follows that{

Ri,q(t̂i) > 0 ∧ cos(θi)Ri,q(t̂i) < ∥q − qd∥ , ∀qd ∈Hi2(q)
}
⇐⇒{

Ri,q(t̂i) > 0 ∧ qd /∈ Sci

(
q, t̂i

)
, ∀qd ∈Hi2(q)

}
,

(4.147)

which is interestingly related to Meusnier’s Theorem [48]. This is schematically illustrated
in Fig. 4.5. Level sets involved are shown in Fig. 4.7.
22This is because two intersecting orthogonal lines through different fixed points -here q and q − 1

2Ri,q r̂i
at q- define a sphere.
23A curvature sphere is usually defined in literature as a sphere with center the center of curvature and

radius the radius of curvature. Hence the spheres called “curvature spheres” here are half-radius curvature
spheres. Nonetheless here we will call them just curvature spheres.
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The above is useful because it specifies a class of acceptable obstacle geometries,
since

qd /∈ Sci

(
q, t̂i

)
, ∀qd ∈Hi2(q) ⇐⇒ Sci

(
q, t̂i

)
∩Hi2(q) = ∅. (4.148)

Suppose we want to ensure that for a given qd, there is a neighborhood Bi (εi) in which

qd /∈ Sci

(
q, t̂i

)
, ∀q ∈ Bi (εi) (4.149)

holds for a certain number of principal directions p̂ij(q) at q. By Proposition 31 this is
equivalent to the request of sufficient curvature on ∂Oi. We can then ensure the previous
if

Scij(q) , Sci (q, p̂ij(q)) ⊆ Oi ∪ {q}, ∀q ∈ ∂Oi (4.150)

This requires that at every obstacle boundary point the desired number of principal cur-
vature spheres Scij(q) be subsets of the obstacle.

Note that since by definition Sci

(
q, t̂i

)
∩ Oi = {q} and q ̸= qd =⇒ {q} ̸= {qd}, as a

result
Sci

(
q, t̂i

)
∩Hi2(q) = ∅ ⇐⇒

(
Sci

(
q, t̂i

)
\ {q}

)
∩Hi2(q) = ∅ (4.151)

For this reason, expressed in terms of the union of curvature spheres, the condition is

Sci (q, p̂ij(q)) ⊆ Oi ∪ {q}, ∀q ∈ ∂Oi ⇐⇒∪
q∈∂Oi

(Sci (q, p̂ij(q)) \ {q}) ⊆ Oi
(4.152)

It is interesting to note that condition
∪

q∈∂Oi
(Sci (q, p̂ij(q))) ⊆ Oi would have been wrong,

because it does not ensure that each sphere has one its q as the unique common point
with ∂Oi.

Note that the concept of sufficient curvature can only24 be applied on ∂Oi, because it
refers to all qd ∈ F . What is meaningful on other level sets is νi(q, p̂ij) sign definiteness.
Given qd, this can always be ensured in a neighborhood Bi (εi), induced by sufficient
curvature on ∂Oi.

24For points q on level sets βi(q) > 0, any curvature sphere there has non-empty intersection with the
free space interior Sci

(
q, t̂i

)
∩F ̸= ∅. As a result, there always exists a qd ∈ F ∩Sci

(
q, t̂i

)
we can select,

leading to νi(q, t̂i) ≥ 0.
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qd

q

(∇
β
i ) (q)

∥q − qd∥

R
i,q (̂t

i )

θi(q)

cos θi(q)Ri,q(t̂i)
(∇γd) (q)

F

q − 1
2
Ri,q(t̂i)r̂i

1
2
Ri,q(t̂i

)

curvature center

∂O
iSci(q, t̂i)

Figure 4.5: Relative curvature constraint at a critical point q ∈ ∂Oi for non-spherical
obstacle βi and paraboloid attractive effect γd.

4.4.2 Obstacle relative curvature induced to its “bad” neighbor-
hood

By definition every obstacle closure Oi is compact. This implies that the obstacle
boundary ∂Oi is compact. The obstacle boundary is the zero level set β−1

i (0) of βi, so the
zero level set is also compact.

As a result, there exists a neighborhood of level sets β−1
i (c1), with c1 ∈ [0, a1), a1 > 0,

such that each set β−1
i (c1) is compact.

We set a2 = min{a1, εi}. Then level set β−1
i (c2), c2 ∈ [0, a2) is in the interior of neigh-

borhood Bi (εi). For k ≥ N (εI0) the only critical points other than the destination have
been proved to arise in Fn∩A2, the intersection of the neighborhoods with the “bad” set.

If qc ̸= qd is a critical point, then qc ∈ Fn∩A2, k ≥ N (εI0). So, there will exist a i ∈ I0,
such that qc belongs to the intersection of the neighborhood of Bi (εi) with the “bad” set
A2, i.e., ∀k ≥ N(εI0 it holds that ∀qc ∈ Cφ̂ \ {qd} ∃i ∈ I0 : qc ∈ Bi (εi) ∩A2.

Then, there will exist a level set β−1
i (βi(qc)) through qc, with c2 = βi(qc) ∈ (0, a1).

Since qc ∈ A2 it follows that νi1(qc) > 0. Note that this implies νi3(qc) > 0, which important
because we will work with νi3(qc) and νi4(q, t̂i).

Proposition 28 (Continuity of νi in the tangent bundle). For any point q ∈ β−1
i (c2), c2 ∈

[0, a2] with νi3(q) > 0 there exists a continuous function r(q) > 0, such that for the closed
ball B(q, r(q)) centered at q with radius r, the following hold

1. νi1(q′) > 0,∀q′ ∈ B(q, r(q));
2. Points q, q′ ∈ B(q, r(q)) have the same number of sufficiently curved principal di-
rections I−(q) = I−(q′) where

I−(q) , |{j ∈ {1, 2, . . . , n}|νi(q, p̂ij(q)) < 0}| (4.153)

and the same number of directions with positive νi, I+(q) = I+(q′) where

I+(q) , |{j ∈ {1, 2, . . . , n}|νi(q, p̂ij(q)) > 0}| (4.154)
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Proof. Let q ∈ β−1
i (c2), c2 ∈ [0, a2] with νi3(q) > 0. Function νi3(q) = 2 (∇βi)(q)·(∇γd)(q)

∥(∇βi)(q)∥∥(∇γd)(q)∥2
is

C2 because both βi and γd are C2.
Then by continuity for every ∆ν3 > 0 there exists an open neighborhood U1(∆ν3) ̸= ∅

with q ∈ U1(∆ν3) such that νi3(q′) is as close to νi3(q), as we want, i.e.,

∀∆ν3 > 0 ∃U1(∆ν3) ̸= ∅ : q ∈ Ů1(∆ν3) ∧
|νi3(q′)− νi3(q)| < ∆ν3, ∀q′ ∈ U1(∆ν3) =⇒

νi3(q)−∆ν3 < νi3(q
′) < νi3(q) + ∆ν3, ∀q′ ∈ U1(∆ν3)

(4.155)
This also implies that there exists a∆ν3max such that for every 0 < ∆ν3 < ∆ν3max functions
νi3(q) and νi1(q

′) have the same sign ∀q′ ∈ U1(∆ν3). Then, νi3(q) > 0 =⇒ νi3(q
′) > 0.

The quadratic form associated with the Weingarten map t̂Ti lt̂i is equal to t̂Ti (D2βi) (q)t̂i,
where t̂i ⊥ ∇βi. Since βi is C2, also the gradient ∇βi and the Hessian matrix (D2βi) (q)
are continuous functions of q. From this it follows that the eigenvalues of the Weingarten
map are continuous functions of q.

This essentially states that continuity of the implicit function βi ensures continuity of
the principal curvatures of its level sets (i.e., that level sets which are “close” have principal
curvatures which are “close”, for pairs of points on each of them). This fact is what we
aim to prove so that we can use it.

From the continuity of the Weingarten map principal curvatures, it follows that ∀∆κ > 0
there exists an open neighborhood U2(∆κ) ̸= ∅, such that q ∈ U2(∆κ) and there exists a
bijective correspondencem(j) of the eigenvalues of the Weingarten map at q, i.e., principal
curvatures κij(q), with the eigenvalues κim(j)(q

′) of the Weingarten map at q′ ∈ U2(∆κ),
such that κim(j)(q

′) is closer to κij(q) than ∆κ, i.e.,

∀∆κ > 0 ∃U2(∆κ) ̸= ∅ : q ∈ Ů2(∆κ) ∧∣∣κim(j)(q
′)− κij(q)

∣∣ < ∆κ, ∀j ∈ {1, 2, . . . , n}, ∀q′ ∈ U2(∆κ) ⇐⇒
−∆κ < κim(j)(q

′)− κij(q) < ∆κ, ∀j ∈ {1, 2, . . . , n}, ∀q′ ∈ U2(∆κ) ⇐⇒
κij(q)−∆κ < κim(j)(q

′) < +κij(q) + ∆κ, ∀j ∈ {1, 2, . . . , n}, ∀q′ ∈ U2(∆κ)
(4.156)

Since κij(q) = −νi4(q, p̂ij(q)), it follows that

−νi4(q, p̂ij(q))−∆κ < −νi4(q, p̂im(j)(q
′)) < −νi4(q, p̂ij(q)) + ∆κ,∀j ∈ {1, 2, . . . , n}, ∀q′ ∈ U2(∆κ) =⇒

νi4(q, p̂ij(q))−∆κ < νi4(q, p̂im(j)(q
′)) < νi4(q, p̂ij(q)) + ∆κ,∀j ∈ {1, 2, . . . , n},∀q′ ∈ U2(∆κ)

(4.157)
Now add (4.155) and (4.157) in the intersection U1(∆ν3) ∩ U2(∆κ)

(νi3(q) + νi4(q, p̂ij(q)))− (∆ν3 +∆κ) < νi3(q
′) + νi4(q, p̂im(j)(q

′))

< (νi3(q) + νi4(q, p̂ij(q))) + (∆ν3 +∆κ) ,

∀j ∈ {1, 2, . . . , n}, ∀q′ ∈ U1(∆ν3) ∩ U2(∆κ) ⇐⇒
νi(q, p̂ij(q))

∥(∇βi) (q)∥
− (∆ν3 +∆κ) <

νi(q
′, p̂im(j)(q

′))

∥(∇βi) (q′)∥

<
νi(q, p̂ij(q))

∥(∇βi) (q)∥
+ (∆ν3 +∆κ) ,

∀j ∈ {1, 2, . . . , n}, ∀q′ ∈ U1(∆ν3) ∩ U2(∆κ)
(4.158)

Then we can select 0 < ∆ν3min < ∆ν3max and ∆κmin such that for every κij(q), j ∈
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{j1, j2, . . . , jr} which is sufficiently curved

νi(q, p̂ij(q)) < 0 =⇒ νi(q, p̂ij(q))

∥(∇βi) (q)∥
< 0, j ∈ {j1, j2, . . . , jr} (4.159)

it holds that

0 < ∆ν3min +∆κmin < −νi(q, p̂ij(q))

∥(∇βi) (q)∥
, ∀j ∈ {j1, j2, . . . , jr} ⇐⇒

0 < ∆ν3min +∆κmin < min
j∈{j1,j2,...,jr}

{∣∣∣∣νi(q, p̂ij(q))∥(∇βi) (q)∥

∣∣∣∣} (4.160)

Note that we consider only principal directions at q which have negative νi(q, p̂ij(q)), hence
a positive

min
j∈{j1,j2,...,jr}

{∣∣∣∣νi(q, p̂ij(q))∥(∇βi) (q)∥

∣∣∣∣} > 0 (4.161)

always exists because
∣∣∣νi(q,p̂ij(q))∥(∇βi)(q)∥

∣∣∣ , j ∈ {j1, j2, . . . , jr} are always a finite number of positive
numbers at q. Then, this ensures that

νi(q
′, p̂im(j)(q

′))

∥(∇βi) (q′)∥
< 0 (4.162)

and since both ∥(∇βi) (q)∥ > 0 and ∥(∇βi) (q
′)∥ > 0 it follows that νi(q′, p̂im(j)(q

′)) < 0 is
sufficiently curved as well.

For every nonconvex t̂Ti lq t̂i ≥ 0 principal direction p̂ij(q), j ∈ {j1, j2, . . . , jw} at q, be-
cause25 νi1(q) > 0 it also follows that νi(q, p̂ij(q)) > 0, so that

νi(q, p̂ij(q)) > 0 =⇒ νi(q, p̂ij(q))

∥(∇βi) (q)∥
> 0, j ∈ {j1, j2, . . . , jw} (4.163)

We also select ∆ν3min and ∆κ such that for every nonconvex κij, j ∈ {j1, j2, . . . , jw}
which we have just deduced has νi(q,p̂ij(q))

∥(∇βi)(q)∥ > 0 it holds that

0 < ∆ν3min +∆κ <
νi(q, p̂ij(q))

∥(∇βi) (q)∥
, ∀j ∈ {j1, j2, . . . , jw} ⇐⇒

0 < ∆ν3min +∆κ < min
j∈{j1,j2,...,jw}

{∣∣∣∣νi(q, p̂ij(q))∥(∇βi) (q)∥

∣∣∣∣} (4.164)

Note that we consider only principal directions at q which have positive νi(q, p̂ij(q)), hence
a positive

min
j∈{j1,j2,...,jw}

{∣∣∣∣νi(q, p̂ij(q))∥(∇βi) (q)∥

∣∣∣∣} > 0 (4.165)

25This is the tricky part later, because we start from a critical point qc with νi1(q) > 0, ensure at least one
q′ ∈ ∂Oi is in a neighborhood of it so that we can induce νi1(q

′) > 0 from q to q′ and then we invert their
roles, with q ∈ ∂Oi and q′ our critical point under consideration qc. Because we have a priori shrunk the
distance between them so that both are in a neighborhood of the other in which we can induce properties,
we continue by inducing the numbers of sufficiently curved and nonconvex directions from q ∈ ∂Oi to qc.
But for ensuring that a nonconvex direction has positive νi1(q), we need the initial induction of its positivity
from qc. Because, although we have shown νi1(qc) > 0 for the remaining critical points, we cannot deduce
this from being or not a critical point for the point q ∈ ∂Oi, from which we are going to take its curvature
properties, since this is on the boundary, so it cannot be a critical point anyway. But we need it to ensure
that all nonconvex directions at q will have negative νi and not merely nonnegative νi.
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always exists because
∣∣∣νi(q,p̂ij(q))∥(∇βi)(q)∥

∣∣∣ , j ∈ {j1, j2, . . . , jw} are always a finite number of positive
numbers at q. Then, this ensures the positivity

νi(q
′, p̂im(j)(q

′))

∥(∇βi) (q′)∥
> 0 =⇒ νi(q

′, p̂im(j)(q
′)) > 0 (4.166)

The intersection of non-empty open neighborhoods U3 = U1(∆ν3min) ∩ U2(∆κmin) is
also a non-empty open neighborhood of q, i.e. U3 ̸= ∅ and q ∈ Ů3. As a result, for every
q there exists an r(q) > 0, such that the closed ball B(q, r(q)) centered at q with radius r
is a subset of neighborhood U3.

This implies that if νi1(q) > 0, then for all q′ ∈ B(q, r(q)), the following hold
1. νi1(q′) > 0, ∀q′ ∈ B(q, r(q));
2. Points q, q′ ∈ B(q, r(q)) have the same number of sufficiently curved principal di-
rections I−(q) = I−(q′) where

I−(q) , |{j ∈ {1, 2, . . . , n}|νi(q, p̂ij(q)) < 0}| (4.167)

and the same number of directions with positive νi, I+(q) = I+(q′) where

I+(q) , |{j ∈ {1, 2, . . . , n}|νi(q, p̂ij(q)) > 0}| (4.168)

Since β−1
i ([0, a2]) is a compact set, the continuous functions νi3(q) and νi4(q, p̂ij) are

also uniformly continuous. Uniform continuity implies that for every ∆ν3min,∆κmin, the
neighborhoods U2(∆ν3min) and U3(∆κmin) are bounded from below. Hence, the ball radius
r(q) can be selected to be continuous function.

Proposition 29 (Continuity of νi on a level set neighborhood). For the compact set
β−1
i ([0, a2]) there exists an rmin > 0, such that every closed ballB(q, r(q)) has the properties
of Proposition 28.

Proof. From Proposition 28, there exists a continuous function r(q) > 0, such that the
closed ball B(q, r(q)) around every point q has the desired properties. We can set rmin =
minβ−1

i ([0,a2])
{r(q)} because set β−1

i ([0, a2]) is compact. Because it is compact, by the
extreme value theorem it follows that the continuous function r(q) takes on its minimum
value at some point in β−1

i ([0, a2]). Hence rmin > 0.

Lemma 30 (Bidirectional induction between level set points). There exists a level set
0 < ε′i0, such that for all level sets c ∈ (0, ε′i0), induction of properties according to Propo-
sition 29 is valid both

1. from a point q1 ∈ β−1
i (c) to a point q2 ∈ β−1

i (0), and
2. from a point q2 ∈ β−1

i (0) to a point q1 ∈ β−1
i (c).

Proof. There exists a level set β−1
i (ε′i0), ε

′
i0 > 0, such that ∥q1 − q2∥ < rmin,∀q1 ∈ β−1

i (0), ∀q2 ∈
β−1
i (ε′i0). Then, by Proposition 29 it follows that for any point in the ball B(q1, rmin), hence
also for q2, Proposition 28 holds, inducing properties from q1 to q2. Also, for any point in
ball B(q2, rmin), hence also for q1, properties are induced according to Proposition 28 from
q2 to q1.

The same holds for level sets β−1
i (z), z ∈ (0, g), since for them ∥q1 − q3∥ < ∥q1 − q2∥ , q1 ∈

β−1
i (0), q2 ∈ β−1

i (ε′i0), q3 ∈ β−1
i (z), ∀z, taking into consideration that function βi has ∥∇βi∥ >

0 outwardly oriented with respect to its level set.
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∇βi

β i
=
c

level sets

∥ ∇φ̂−∇γdγd
=
c

sufficiently curved obstacle

insufficiently curved obstacle

Figure 4.6: KRNF tuning mechanism geometry.

Proposition 31 (Geometry induction from obstacle boundary to any neighborhood crit-
ical point). For all εi < ε′i0, every critical point qc ∈ Cφ̂ ∩ Bi (εi) ∩ A1 has at least one
corresponding point q ∈ ∂Oi such that they have the same number of sufficiently curved
principal directions and the same number of principal directions on which νi(q, p̂ij(q)) > 0.

Proof. By the previous proposition and the proposition about confinement of critical points,
we can induce that for every qc ∈ Cφ̂∩Bi (εi)∩A1 =⇒ νi1(qc) > 0 there exists a boundary
point q ∈ ∂Oi, such that νi1(q) > 0. Then, again using the previous proposition, qc has
the same number of sufficiently curved principal directions as q and because now we
have proved that νi1(q) > 0, it also has the same number of principal directions on which
νi(qc, p̂ij(qc)), as is the number of nonconvex (including flat) principal directions of q.

4.4.3 Alternative derivation

For a paraboloid γd the same condition can be derived in a shorter way by earlier usage
of its specific form. At the critical point qc ∈ Cφ̂ \ {qd}

kβ∇γd = γd∇β =⇒ kβ∇γd · ∇γd = γd∇β · ∇γd ⇐⇒ kβ ∥∇γd∥2 = γd∇β · ∇γd
γd=∥q−qd∥2

=⇒

kβ (2
√
γd)

2 = γd∇β · ∇γd ⇐⇒ kβ4γd = γd∇β · ∇γd
q ̸=qd ⇐⇒ γd ̸=0⇐⇒

kβ =
1

4
∇β · ∇γd =

1

4

(
β̄i∇βi · ∇γd + βi∇β̄i · ∇γd

)
and since also t̂Ti D

2γdt̂i = 2 by substitution in (4.60) we get

t̂Ti D
2φ̂|Cφ̂

t̂i
β2

γk−1
d

=
1

4
∇β · ∇γd2− γdβ̄i

(
t̂Ti D

2βit̂i
)
+ t̂Ti

((
1− 1

k

)
γd
β
β2
i∇β̄i∇β̄T

i − γdβiD
2β̄i

)
t̂i

=
1

2

(
β̄i∇βi · ∇γd + βi∇β̄i · ∇γd

)
− γdβ̄i

(
t̂Ti D

2βit̂i
)
+ t̂Ti

((
1− 1

k

)
γd
β
β2
i∇β̄i∇β̄T

i − γdβiD
2β̄i

)
t̂i

=β̄i
1

2
∇βi · ∇γd − β̄iγd

(
t̂Ti D

2βit̂i
)
+ βi

1

2
∇β̄i · ∇γd + βit̂

T
i

((
1− 1

k

)
γd
β̄i

∇β̄i∇β̄T
i − γdD

2β̄i

)
t̂i

=β̄i

(
1

2
∇βi · ∇γd − γd

(
t̂Ti D

2βit̂i
))

+ βi

(
1

2
∇β̄i · ∇γd + γdt̂

T
i

((
1− 1

k

)
∇β̄i∇β̄T

i

β̄i

−D2β̄i

)
t̂i

)
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Figure 4.7: Sets involved.

Lemma 3.5 [23] is modified to ensure (for γd = ∥q − qd∥2) that

νi(q) =
1

2
∇βi · ∇γd − γd

(
t̂Ti D

2βit̂i
)
< 0, ∀q ∈ Bi (εi03)
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4.5 Curvature of principal direction spans

Proposition 32 (Eigenvalue bounds on Quadratic form in eigen-subspace). Let H =
HT ∈ Rn×n be a real symmetric matrix with real eigenvalues λi, i ∈ {1, 2, . . . , n} and
associated eigenvectors δi, i ∈ {1, 2, . . . , n}. Consider a subset λj, j ∈ {1, 2, . . . , l}, l ∈ N
of its eigenvalues. Then the associated quadratic form ûTHû is bounded by the minimum
and maximum eigenvalues of the selected subset

min
j∈{1,2,...,l}

{λj} ≤ ûTHû ≤ max
j∈{1,2,...,l}

{λj} (4.169)

on the intersection
û ∈ S ∩ U (4.170)

of the unit sphere
S , {u ∈ Rn| ∥u∥ = 1} (4.171)

with the linear subspace spanned by those eigenvectors

U ,
{
u ∈ Rn| u ∈ span

{
{δj}j∈{1,2,...,l}

}}
(4.172)

Proof. Without loss of generality assume the eigenvalues λj are numbered in increasing
order as

λ1 ≤ λ2 ≤ · · · ≤ λl (4.173)

For each unit vector û ∈ Rn, ∥û∥ = 1 in the linear span

û ∈ span {δ1, δ2, . . . , δl} =⇒

∃aj ∈ R, j ∈ {1, 2, . . . , l} : û =
l∑

j=1

ajδj
(4.174)

The quadratic form associated with H for û is

ûTHû =

(
l∑

j=1

ajδj

)T

H

(
l∑

j=1

ajδj

)
=

(
l∑

j=1

ajδ
T
j

)(
l∑

j=1

ajHδj

)

=
l∑

j=1

(
ajδ

T
j

l∑
p=1

(apλpδp)

)
=

l∑
j=1

l∑
p=1

(
ajapλpδ

T
j δp
) δTj δp=0,∀j ̸=p

=

=
l∑

j=1

(
a2jλjδ

T
j δj
)
=

l∑
j=1

(
a2jλj ∥δj∥2

) ∥δj∥=1
=

=
l∑

j=1

(a2jλj)

(4.175)

since matrix H is symmetric so that its eigensystem is orthogonal, hence the zero inner
products δTj δp = 0,∀j ̸= p. Taking into account that

∥û∥ = 1 =⇒ ûTû = 1

û =
∑l

j=1 ajδj

}
=⇒

(
l∑

j=1

ajδj

)T( l∑
j=1

ajδj

)
= 1 =⇒

l∑
j=1

a2j = 1 (4.176)
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it follows that for all aj ̸= 0 =⇒ 0 < a2j it is

λ1 ≤ λj ≤ λl, ∀j ∈ {1, 2, . . . , l} : aj ̸= 0
0<a2j
=⇒

a2jλ1 ≤ a2jλj ≤ a2jλl, ∀j ∈ {1, 2, . . . , l} : aj ̸= 0
(4.177)

and for all aj = 0 it is

0 = a2jλ1 = a2jλ2 = · · · = a2jλl, ∀j ∈ {1, 2, . . . , l} : aj = 0 (4.178)

therefore
l∑

j=1

(a2jλ1) ≤
l∑

j=1

(a2jλj) ≤
l∑

j=1

(a2jλl) =⇒

λ1

l∑
j=1

a2j ≤
l∑

j=1

(a2jλj) ≤ λl

l∑
j=1

a2j

∑l
j=1 a

2
j=1

=⇒

λ1 ≤
l∑

j=1

(a2jλj) ≤ λl

(4.179)

Substitution of (4.175) in the previous leads to

λ1 ≤ ûTHû ≤ λl, ∀û ∈ S ∩ U (4.180)

which is the desired result, since in (4.173) we have ordered the eigenvalues such that
λ1 = minj∈{1,2,...,l}{λj} and λl = λl maxj∈{1,2,...,l}{λj}.

Let Pi , {p̂ij(q)}j∈Ii , Ii , {j1, j2, . . . , jr}, r ∈ N ∩ [0, n − 1], to use it as a dummy set
and Pi , span {Pi}.

Proposition 33 (Curvature of subspace spanned by principal directions). Let p̂ij be some
principal directions at point q. Then every direction t̂i in the subspace linearly spanned
by these principal directions has normal curvature which is bounded by the minimal and
maximal principal curvatures associated with those principal directions.

Proof. The proof follows directly from the previous proposition, taking into account that
principal directions are eigenvectors of the matrix form of the Weingarten map and normal
curvature is the associated quadratic form of the Wingarten map in the tangent space at
q.

Lemma 34 (Span of convex principal directions is convex). Let p̂ij be some principal
directions at point q, which are convex. Then all the directions t̂i in the subspace spanned
by these principal directions are also convex.

Lemma 35 (Span of nonconvex principal directions is nonconvex). Let p̂ij be some prin-
cipal directions at point q, which are nonconvex. Then all the directions t̂i in the subspace
spanned by these principal directions are also nonconvex.

Proposition 36 (Relative curvature of subspace spanned by principal directions (paraboloid
γd)). Let p̂ij(q), j ∈ {j1, j2, . . . , jr}, r ∈ N ∩ [0, n − 1] a set of principal directions at point
q. If γd(q) = ∥q − qd∥2, then every direction t̂i in the subspace linearly spanned by these
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principal directions has relative curvature νi(q, t̂i), t̂i ∈ UTqBi which is bounded by the
minimal and maximal relative curvatures of the principal directions considered, i.e.,

min
j∈{j1,j2,...,jr}

{νi(q, p̂ij(q))} ≤ νi(q, t̂i) ≤ max
j∈{j1,j2,...,jr}

{νi(q, p̂ij(q))} ,

∀t̂i ∈
{
v̂ ∈ span

{
{p̂ij(q)}j∈{j1,j2,...,jr}

}
| ∥v̂∥ = 1

} (4.181)

Note that span
{
{p̂ij(q)}j∈{j1,j2,...,jr}

}
⊂ UTqBi.

Proof. Let p̂ij(q), j ∈ {j1, j2, . . . , jr}, r ∈ N∩[0, n−1] be the set of principal directions. Then
κij(q) are the associated principal curvatures which are the eigenvalues of the Weingarten
map Lq(t̂i) of level set Bi(q) at q. The operator Lq(t̂i) is symmetric (self-adjoint), hence
its eigenvalues are all real. Therefore, we can always index them in increasing order

κi1(q) ≤ κi2(q) ≤ · · · ≤ κir(q) (4.182)

Let W = span
{
{δj}j∈{1,2,...,l}

}
. Since βi is C2, ensuring symmetry of the Hessian matrix

D2βi, then by Proposition 32 we have that

κi1(q) ≤ t̂Ti lt̂i ≤ κir(q), ∀t̂i ∈ W ⊆ UTqBi =⇒
κi1(q) ≤ κn,q(t̂i) ≤ κir(q), ∀t̂i ∈ W ⊆ UTqBi ⇐⇒

−νi4(q, p̂i1(q)) ≤ −νi4(q, t̂i) ≤ −νi4(q, p̂ir(q)), ∀t̂i ∈ W ⊆ UTqBi ⇐⇒
νi4(q, p̂ir(q)) ≤ νi4(q, t̂i) ≤ νi4(q, p̂i1(q)), ∀t̂i ∈ W ⊆ UTqBi

(4.183)

By Proposition 9 we have that for all directions t̂i function νi3(q) has the same value

νi3(q) = c ∈ R, ∀t̂i ∈ UTqBi (4.184)

Adding this to (4.183), it follows that

νi3(q) + νi4(q, p̂ir(q)) ≤ νi3(q) + νi4(q, t̂i) ≤ νi3(q) + νi4(q, p̂i1(q)),

∀t̂i ∈ W ⊆ UTqBi =⇒
νi(q, p̂ir(q)) ≤ νi(q, t̂i) ≤ νi(q, p̂i1(q)), ∀t̂i ∈ W ⊆ UTqBi

(4.185)

and the claim has been proved, because by adding νi3(q) to (4.183) it follows that

νi(q, p̂ir(q)) = min
j∈{j1,j2,...,jr}

{νi(q, p̂ij(q))}

νi(q, p̂i1(q)) = max
j∈{j1,j2,...,jr}

{νi(q, p̂ij(q))}
(4.186)

Lemma 37 (Span of principal directions with negative relative curvature has negative
relative curvature). Let βi be a C2 obstacle function such that ∥(∇βi)(q)∥ < 0. Let
p̂ij(q), j ∈ {j1, j2, . . . , jr}, r ∈ N ∩ [0, n − 1] be a set of principal directions at q with
νi(q, p̂ij(q)) < 0.

If γd(q) = ∥q − qd∥2, then every direction t̂i in the subspace linearly spanned by these
principal directions has νi(q, t̂i) < 0, i.e.,

νi(q, t̂i) < 0, ∀t̂i ∈
{
v̂ ∈ span

{
{p̂ij(q)}j∈{j1,j2,...,jr}

}
| ∥v̂∥ = 1

}
(4.187)
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Proof. By Proposition 36 it follows that

νi(q, t̂i) ≤ max
j∈{j1,j2,...,jr}

{νi(q, p̂ij(q))} < 0,

∀t̂i ∈
{
v̂ ∈ span

{
{p̂ij(q)}j∈{j1,j2,...,jr}

}
| ∥v̂∥ = 1

}
=⇒

νi(q, t̂i) < 0, ∀t̂i ∈
{
v̂ ∈ span

{
{p̂ij(q)}j∈{j1,j2,...,jr}

}
| ∥v̂∥ = 1

} (4.188)

Lemma 38 (Span of principal directions with positive relative curvature has positive
relative curvature). Let βi be a C2 obstacle function such that ∥(∇βi)(q)∥ > 0. Let
p̂ij(q), j ∈ {j1, j2, . . . , jr}, r ∈ N ∩ [0, n − 1] be a set of principal directions at q with
νi(q, p̂ij(q)) > 0.

If γd(q) = ∥q − qd∥2, then every direction t̂i in the subspace linearly spanned by these
principal directions has νi(q, t̂i) > 0, i.e.,

νi(q, t̂i) > 0, ∀t̂i ∈
{
v̂ ∈ span

{
{p̂ij(q)}j∈{j1,j2,...,jr}

}
| ∥v̂∥ = 1

}
(4.189)

Proof. The proof is similar with Proposition 37, with reversed signs.
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4.6 Obstacle Geometry Relation to φ Eigenvalues

Let
I−i (q) , {j ∈ {1, 2, . . . , n}| νi(q, p̂ij(q)) < 0} ,
P−
i (q) , {p̂ij(q)}j∈I−i , P−

i (q) , span
{
P−
i (q)

} (4.190)

and define I+i , P
+
i ,P+

i similarly. Also, let

I±i , I−i ∪ I+i , P±
i , P−

i ∪ P+
i , P±

i , P−
i ∪P+

i . (4.191)

Hereafter we set γd = ∥q − qd∥2 and work in Bi(εi4) to ensure ∥(∇βi)(q)∥ > 0. Using the
notions developed so far, it is now possible to generalize Prop. 3.6 [23]. The following
connects principal relative curvature νi(qc, p̂ij(qc)), j ∈ I−i sign to NF Hessian quadratic
form sign on span Pi.

Proposition 39. (At qc NF Hessian can be made negative (positive) definite on
span of negative (positive) principal relative curvatures): There exists an ε′′i0 > 0
such that, for all εi < ε′′i0 at every critical point qc ∈ Cφ̂ ∩Bi (εi), if νi(qc, p̂ij(qc)) < 0, ∀j ∈
I−i (qc) ̸= ∅, then the NF Hessian quadratic t̂Ti (D2φ̂) (qc)t̂i < 0,∀t̂i ∈P−

i (qc).

Proof. By hypothesis I±i (qc) ̸= ∅, since νi(qc, p̂ij(qc)) < 0,∀j ∈ I−i (qc). Since qc ∈ Bi (εi) ⊂
B
(
1
2
εi4
)
it ensures well definiteness of νimin , min

j∈I±i (q),q∈B( 1
2
εi4)
{|νi(q, p̂ij(q))|} over com-

pact subset
⊔

q∈B( 1
2
εi4)

({q} × Pi) ⊂
⊔

q∈B( 1
2
εi4)

TqBi(q) on which νi is only sign definite,

hence also 0 < νimin. By Proposition 37, Proposition 38 |νi(q, p̂ij(q))| ≤
∣∣νi(q, t̂i)∣∣ , ∀j ∈

I±i (q),∀t̂i ∈P±
i (q), hence νimin ≤

∣∣νi(q, t̂i)∣∣ , ∀j ∈ I±i (q),∀t̂i ∈P±
i (q). Let

Gi , β̄−1
i

(
∇βi · ∇γd
∥∇γd∥2

+ t̂Ti

((
1− 1

k

)
∇β̄i · ∇β̄T

i

β̄i

−D2β̄i

)
t̂i

)
(4.192)

and Gimax , max
t̂i∈UTqBi(q),q∈B( 1

2
εi4)
{
∣∣Gi(q, t̂i)

∣∣}. We can then set the upper bound ε′′i0 ,
νimin

Gimax
. Since, βi(q) < εi < εiu < ε′i0, ε

′′
i0, ∀q ∈ Bi(εi), it follows that on P−

i (q),∀q ∈
B
(
1
2
εi4
)
, in the right hand side of (4.31), its first term νi(q, t̂i) dominates the second

βi(q)Gi(q, t̂i). As a result, the sum νi(q, t̂i)+βi(q)Gi(q, t̂i) has the same sign as νi(q, t̂i). We
have ensured this ∀t̂i ∈ P−

i (q),∀q ∈ B
(
1
2
εi4
)
, so it also holds at qc, where (4.31) yields

t̂Ti (D2φ̂) (qc)t̂i < 0, ∀t̂i ∈ P−
i (qc),∀qc ∈ Bi (εi). Since νimin is defined on I±i , the proof

applies also to I+i . Finally, note that Gimax = 0 implies ε′′i2 = +∞, hence no constraint
from ε′′i2 on k, therefore it is good.

By Proposition 39 what happens with principal directions p̂ij(qc) at a critical point carries
on to the NF sign definiteness on their spanned subspace. By Proposition 31 we can
control what happens with p̂ij(qc), provided we have confined it inBi (εi) and set εi < ε′i0.
This we do in what follows.

Proposition 40. Every critical point qc ∈ (Cφ̂ \ {qd}) ∩ Bi (εi) has at least the number
of negative eigenvalues as some boundary point q ∈ ∂Oi has sufficiently curved principal
directions.

Proof. By Proposition 31, in neighborhood Bi (εi) ⊂ B (ε′i0) it follows that ∀q ∈ Bi (εi)
there is at least one q′ ∈ ∂Oi such that νi(qc, p̂ij(qc)) < 0, j ∈ I−i (qc) for as many sufficiently
curved principal directions p̂ij(q′) as q′ has. By Proposition 39, since also Bi (εi) ⊂ B (ε′′i0),
the Hessian (D2φ̂) (qc) is negative definite on the subspace spanned by p̂ij(qc), j ∈ I−i (qc).
As a result, it has at least as many negative eigenvalues.
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Proposition 41. Every critical point has at least the number of positive eigenvalues as
an obstacle boundary point has nonconvex directions.

Proof. Same as Proposition 40.

Lemma 42. If at every boundary point q ∈ ∂Oi there exists at least one sufficiently curved
principal direction p̂ij(qc), then for every critical qc ∈ (Cφ̂ \ {qd}) ∩Bi (εi), Hessian matrix
(D2φ̂) (qc) has at least one negative eigenvalue.
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4.7 Radial positive definiteness

In this section the positive definite submanifold part of Proposition 3.9 [23] is revisited
for the case of general βi, γd. For an implicit obstacle function βi increasing along ∇βi it
can still be proved that the Hessian matrix is positive definite in this direction.

Proposition 43 (Radially positive definite for εi < min{ε′i2, ε′′i2}). If the obstacle function
is radially increasing, i.e., ∇βi is outwardly oriented on β−1

i , at a critical point qc ∈ Fn∩Cφ̂,
then there exist 0 < ε′i2, ε

′′
i2, such that the Hessian matrix (D2φ̂) (qc) is positive definite in

the radial direction r̂i, for all εi < min{ε′i2, ε′′i2}.

Proof. At a critical point of φ̂ it holds26 that

kβ∇γd = γd∇β =⇒ (kβ∇γd) · (kβ∇γd) = (γd∇β) · (γd∇β) ⇐⇒
(kβ)2 (∇γd · ∇γd) = γ2

d (∇β · ∇β) ⇐⇒

(kβ)2 ∥∇γd∥2 = γ2
d ∥∇β∥

2 β ̸=0,∀q∈Bi(εi),k≥2,q ̸=qd =⇒ γd ̸=0,∀q∈Bi(εi)
=⇒

kβ =
γ2
d(

2
√
γd
)2 1

kβ
∥∇β∥2 ⇐⇒

kβ =
γ2
d

kβ

∥∇β∥2

∥∇γd∥2
(4.193)

Taking into consideration that Equation 4.38 holds for any γd, β substitution of kβ from
(4.193) in it yields

D2φ̂|Cφ̂
=

γk−1
d

β2

(
kβD2γd +

(
1− 1

k

)
γd
β
∇β∇βT − γdD

2β
)

kβ =
γ2
d

kβ
∥∇β∥2

∥∇γd∥2

 =⇒

β2

γk−1
d

r̂Ti D
2φ̂|Cφ̂

r̂i = r̂Ti
(
kβD2γd

)
r̂i + r̂Ti

((
1− 1

k

)
γd
β
∇β∇βT

)
r̂i − r̂Ti

(
γdD

2β
)
r̂i

= kβ
(
r̂Ti D

2γdr̂i
)
+

γd
β

(
1− 1

k

)(
r̂Ti
(
∇β∇βT

)
r̂i
)
− γd

(
r̂Ti D

2βr̂i
)

=
γ2
d

∥∇γd∥ kβ
∥∇β∥2

(
r̂Ti D

2γdr̂i
)
+

γd
β

(
1− 1

k

)(
r̂Ti
(
∇β∇βT

)
r̂i
)
− γd

(
r̂Ti D

2βr̂i
)

(4.194)
It is

∥∇β∥2 =
∥∥∇ (β̄iβi

)∥∥2 = ∥∥βi∇β̄i + β̄i∇βi

∥∥2 (4.195)

and
r̂Ti
(
∇β∇βT

)
r̂i =

(
r̂Ti
) (
∇βTr̂i

)
= (r̂i · ∇β) (∇β · r̂i)

= (∇β · r̂i) (∇β · r̂i) = (∇β · r̂i)2 =
(
∇
(
β̄iβi

)
· r̂i
)2 (4.196)

Substitution of these in (4.194) yields

β2

γk−1
d

r̂Ti D
2φ̂|Cφ̂

r̂i =
γ2
d

kβ ∥∇γd∥2
(
βi∇β̄i + β̄i∇βi

)
·
(
βi∇β̄i + β̄i∇βi

) (
r̂Ti D

2γdr̂i
)

+

(
1− 1

k

)
γd
β

((
βi∇β̄i + β̄i∇βi

)
· r̂i
)2

− γd
(
r̂Ti D

2βr̂i
)

(4.197)

26[23], Lemma 3.1, p.426.
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since

γ2
d

∥∇γd∥2 kβ
((
βi∇β̄i

)
·
(
βi∇β̄i

)
+
(
βi∇β̄i

)
·
(
β̄i∇βi

)
+
(
β̄i∇βi

)
·
(
βi∇β̄i

)
+
(
β̄i∇βi

)
·
(
β̄i∇βi

))
=

γ2
d

∥∇γd∥2 kβ

(
β2
i

∥∥∇β̄i

∥∥2 + βiβ̄i

(
∇β̄i · ∇βi

)
+ βiβ̄i

(
∇βi · ∇β̄i

)
+ β̄2

i ∥∇βi∥2
)

=
γ2
d

∥∇γd∥2 kβ

(
β2
i

∥∥∇β̄i

∥∥2 + 2βiβ̄i

(
∇βi · ∇β̄i

)
+ β̄2

i ∥∇βi∥2
)

=
γ2
d

∥∇γd∥2 kβ

(
β2
i

∥∥∇β̄i

∥∥2 + 2β
(
∇βi · ∇β̄i

)
+ β̄2

i ∥∇βi∥2
)

(4.198)
and ((

βi∇β̄i + β̄i∇βi

)
· r̂i
)2

=
(
βi

(
∇β̄i · r̂i

)
+ β̄i (∇βi · r̂i)

)2
= β2

i

(
∇β̄i · r̂i

)2
+ 2βi

(
∇β̄i · r̂i

)
β̄i (∇βi · r̂i) + β̄2

i (∇βi · r̂i)2

= β2
i

(
r̂i · ∇β̄i

)
+ 2β

(
∇β̄i · r̂i

)
(∇βi · r̂i) + β̄2

i (∇βi · r̂i)2
(4.199)

Note that

∇βi · r̂i = ∇βi ·
∇βi

∥∇βi∥
=
∇βi · ∇βi

∥∇βi∥
=
∥∇βi∥2

∥∇βi∥
= ∥∇βi∥ (4.200)

so substituting in (4.199) yields

β2
i

(
r̂i · ∇β̄i

)2
+ 2β

(
∇β̄i · r̂i

)
∥∇βi∥+ β̄2

i ∥∇βi∥2 (4.201)

Substitution of these results in (4.197) leads to

β2

γk−1
d

r̂Ti D
2φ̂|Cφ̂

r̂i

=
γ2
d

∥∇γd∥2 kβ

(
β2
i

∥∥∇β̄i

∥∥2 + 2β
(
∇βi · ∇β̄i

)
+ β̄2

i ∥∇βi∥2
) (

r̂Ti D
2γdr̂i

)
+

(
1− 1

k

)
γd
β

(
β2
i

(
r̂i · ∇β̄i

)2
+ 2β

(
∇β̄i · r̂i

)
∥∇βi∥+ β̄2

i ∥∇βi∥2
)

− γd
(
r̂Ti D

2βr̂i
)

(4.202)

But since
∥∇βi∥

(
∇β̄i · r̂i

)
= ∥∇βi∥

(
r̂i · ∇β̄i

)
= (∥∇βi∥ r̂i) · ∇β̄i

=

(
∥∇βi∥

∇βi

∥∇βi∥

)
· ∇β̄i = ∇βi · ∇β̄i

(4.203)

and also
r̂Ti D

2βr̂i = r̂Ti
(
D2
(
β̄iβi

))
r̂i = r̂Ti

(
D
(
βi∇β̄i + β̄i∇βi

))
r̂i

= r̂Ti
(
∇β̄i∇βT

i + βiD
2β̄i +∇βi∇β̄T

i + β̄iD
2βi

)
r̂i

= r̂Ti
(
βiD

2β̄i +
(
∇β̄i∇βT

i +∇βi∇β̄T
i

)
+ β̄iD

2βi

)
r̂i

= r̂Ti
(
βiD

2β̄i + 2
(
∇β̄i∇βT

i

)
s
+ β̄iD

2βi

)
r̂i

(4.204)

because ∇β̄i∇βT
i + ∇βi∇β̄T

i = ∇β̄i∇βT
i +

(
∇β̄i∇βT

i

)T
= 2

(
∇β̄i∇βT

i

)
s
. Substitution in
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(4.202) yields

β2

γk−1
d

r̂Ti D
2φ̂|Cφ̂

r̂i

=
γ2
d

∥∇γd∥2 kβ

(
β2
i

∥∥∇β̄i

∥∥2 + 2β
(
∇βi · ∇β̄i

)
+ β̄2

i ∥∇βi∥2
) (

r̂Ti D
2γdr̂i

)
+

(
1− 1

k

)
γd
β

(
β2
i

(
r̂i · ∇β̄i

)2
+ β̄2

i ∥∇βi∥2
)

+

(
1− 1

k

)
γd
β
2β
(
∇βi · ∇β̄i

)
− γdr̂

T
i

(
βiD

2β̄i + 2
(
∇β̄i∇βT

i

)
s
+ β̄iD

2βi

)
r̂i

=
γ2
d

∥∇γd∥2 kβ

(
β2
i

∥∥∇β̄i

∥∥2 + 2β
(
∇βi · ∇β̄i

)
+ β̄2

i ∥∇βi∥2
) (

r̂Ti D
2γdr̂i

)
+ γd2

(
∇βi · ∇β̄i

)
− 1

k

γd
β
2β
(
∇βi · ∇β̄i

)
+

(
1− 1

k

)
γd
β

(
β2
i

(
r̂i · ∇β̄i

)2
+ β̄2

i ∥∇βi∥2
)

− γdr̂
T
i

(
βiD

2β̄i + 2
(
∇β̄i∇βT

i

)
s
+ β̄iD

2β
)
r̂i

(4.205)

=

(
γ2
d

∥∇γd∥2 kβ

(
β2
i

∥∥∇β̄i

∥∥2 + β̄2
i ∥∇βi∥2

)
+

γ2
d

∥∇γd∥2 kβ
2β
(
∇βi · ∇β̄i

)) (
r̂Ti D

2γdr̂i
)

+ (−1) γ2
d

∥∇γd∥2 kβ
2β
(
∇βi · ∇β̄i

)( 1

γd
∥∇γd∥2

1

r̂Ti D
2γdr̂i

)(
r̂Ti D

2γdr̂i
)

+ 2γd
(
∇βi · ∇β̄i

)
+

(
1− 1

k

)
γd
β

(
β2
i

(
r̂i · ∇β̄i

)2
+ β̄2

i ∥∇βi∥2
)

− γdr̂
T
i

(
βiD

2β̄i + 2
(
∇β̄i∇βT

i

)
s
+ β̄iD

2βi

)
r̂i

=
γ2
d

∥∇γd∥2 kβ

(
β2
i

∥∥∇β̄i

∥∥2 + β̄2
i ∥∇βi∥2

) (
r̂Ti D

2γdr̂i
)

+
γ2
d

∥∇γd∥2 kβ
2β
(
∇βi · ∇β̄i

)1−
∥∇γd∥
γd

r̂Ti D2γdr̂i
∥∇γd∥

(r̂Ti D2γdr̂i
)

+ 2γd
(
∇βi · ∇β̄i

)
− γdr̂

T
i

(
βiD

2β̄i + 2
(
∇β̄i∇βT

i

)
s
+ β̄iD

2βi

)
r̂i

+

(
1− 1

k

)
γd
β

(
β2
i

(
r̂i · ∇β̄i

)2
+ β̄2

i ∥∇βi∥2
)

(4.206)
Terms 2γd

(
∇βi · ∇β̄i

)
and −γdr̂Ti 2

(
∇β̄i∇βT

i

)
s
r̂i cancel because

2γd
(
∇βi · ∇β̄i

)
= 2γd ∥∇βi∥

(
∇β̄i · r̂i

)
(4.207)
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and

−γdr̂Ti 2
(
∇β̄i∇βT

i

)
s
r̂i = −γdr̂Ti

(
∇β̄i∇βT

i +
(
∇β̄i∇βT

i

)T)
r̂i

= −γdr̂Ti
(
∇β̄i∇βT

i +∇βi∇β̄T
i

)
r̂i

= −γd
(
r̂Ti
(
∇β̄i∇βT

i

)
r̂i + r̂Ti

(
∇βi∇β̄T

i

)
r̂i
)

= −γd
((
r̂Ti ∇β̄i

) (
∇βT

i r̂i
)
+
(
r̂Ti ∇βi

) (
∇β̄T

i r̂i
))

= −γd
((
r̂i · ∇β̄i

)
(∇βi · r̂i) + (r̂i · ∇βi)

(
∇β̄i · r̂i

)) ∇βi·r̂i=∥∇βi∥
=

= −γd
((
r̂i · ∇β̄i

)
∥∇βi∥+ ∥∇βi∥

(
r̂i · ∇β̄i

))
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)
(4.208)

Hence (4.205) becomes

β2
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d

r̂Ti D
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γ2
d

(
r̂Ti D
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kβ ∥∇γd∥2

β2
i

∥∥∇β̄i
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1− 1
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β2
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T
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βiD

2β̄i + β̄iD
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)
r̂i

(4.209)
To proceed further we select a symmetric attractive effect γd = ∥q − qd∥2. It follows

that (
r̂Ti D

2γdr̂i
)
γ2
d

kβ ∥∇γd∥2
=

(
r̂Ti (2I) r̂i

)
γ2
d

kβ
(
2
√
γd
)2 =

2γ2
d

kβ4γd
=

γd
2kβ

(4.210)

and

1−
∥∇γd∥
γd

r̂Ti D2γdr̂i
∥∇γd∥

= 1−
(2√γd)

2

γd

r̂Ti (2I) r̂i
= 1− 4

2
= 1− 2 = −1 (4.211)

therefore (4.209) implies
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(4.212)
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Now note that
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because

∇βi · ∇β̄i ≤ ∥∇βi∥
∥∥∇β̄i

∥∥ ⇐⇒ −∥∇βi∥
∥∥∇β̄i

∥∥ ≤ −∇βi · ∇β̄i (4.214)

and also note that β2
i

(
r̂i · ∇β̄i

)2 ≥ 0 so that (4.212) implies
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The term which has changed compared to the sphere world case is 1
2

(
1− 1

k

)
β̄i ∥∇βi∥2 −

βiβ̄i

(
r̂Ti D

2βir̂i
)
.

Since by definition 2 ≤ k =⇒ 1
2
≤ 1 − 1

k
, and requiring that minBi(εi03)

{∥∇βi∥} >

0 =⇒ ∥∇βi∥ > 0,∀q ∈ Bi (εi) and that r̂Ti D2βir̂i > 0, ∀q ∈ Bi (εi), a sufficient condition
for this term to be positive is
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(4.217)
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Provided the implicit obstacle function βi has no critical points near the obstacle ∥∇βi∥ ≥
minBi(εi03)

{∥∇βi∥} > 0 and the ε′i2 can always be selected appropriately greater than 0 in
order to satisfy the inequality.

Lemma 44 (At least one positive eigenvalue for εi < ε′i2, ε
′′
i2). For εi < min{ε′i2, ε′′i2} the

Hessian matrix (D2φ̂) (qc) at a critical point qc has at least one positive eigenvalue.

4.8 Navigation Functions extended to Everywhere Suf-
ficiently Curved Worlds

Proposition 45 (No local minima other than qd). In an everywhere sufficiently curved
world, if k ≥ N(εI0), then the NF has no local minima other than qd.

Proof. By Definition 23 all p̂ij(q) are sufficiently curved ∀j ∈ {1, 2, . . . , n−1},∀q ∈ ∂Oi,∀i ∈
I0, then by Proposition 40 all remaining qc have negative definite Hessian on TqBi(qc).

Proposition 46 (All qc ̸= qd nondegenerate saddles). In an everywhere sufficiently curved
world, if k ≥ N(εI0), then every critical qc ∈ Cφ̂ \ {qd} is a nondegenerate saddle.

Proof. Combining Propositions 40 and 43 at every qc, TqFn decomposes to positive definite
Ri(qc) and negative definite UTi(qc), then by Lemma 3.8 [23] the claim is proved.



Chapter 5

Ellipsoidal obstacles

5.1 General ellipsoid equations

We are going to illustrate the relative curvature condition using ellipsoidal obstacles.
The implicit obstacle function for an ellipsoidal obstacle is1

βi , (q − qi)
TA(q − qi)− 1 (5.1)

where qi ∈ En is the ellipsoid’s center, q ∈ F and A is a symmetric positive definite matrix
0 < A = AT. The obstacle is defined as

Oi = {q ∈ En : βi(q) < 0} , ∂Oi = {q ∈ En : βi(q) = 0} (5.2)

Note also that

∇βi = ∇
{
(q − qi)

TA (q − qi)− 1
}
= 2A (q − qi)

D2βi = D {2A (q − qi)} = 2A
(5.3)

so that

νi(q) =
∇βi · ∇γd
∥∇γd∥2

(
t̂Ti D

2γdt̂i
)
− t̂Ti D

2βit̂i

=
(2A (q − qi)) · (2 (q − qd))

4 ∥q − qd∥2
2− t̂Ti (2A) t̂i

= 2

(
(A (q − qi))

T (q − qd)

∥q − qd∥2
− t̂Ti At̂i

)

= 2

(
(q − qi)

T AT (q − qd)

∥q − qd∥2
− t̂Ti At̂i

)
A=AT

=

= 2

(
(q − qi)

T A (q − qd)

(q − qd)
T (q − qd)

− t̂Ti At̂i

)
(5.4)

In case A = diag
(

1
a2i1

, 1
a2i2

, . . . , 1
a2in

)
then the ellipsoid’s axes are aligned with the coor-

dinate system and aij is the jth radius of the ith obstacle.

1Its level sets in En are ellipsoids and the function is an elliptic paraboloid in En × [0,+∞).
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5.2 Plots and parametric exploration for ellipses

5.2.1 Ellipse minimal curvature

In this subsection we are going to illustrate the theoretical results using ellipses. El-
lipses are selected to allow plots of parametric investigations to be created.

The radius of curvature of an ellipse an any point is R = (r1r2)
3/2

ab
where r1, r2 are the

distances to the two foci and a, b its radii. The maximum radius of curvature occurs at the
end of its minor semi-axis with radius b and is equal to R = a2

b
. Requiring that the center

of curvature at this point remains within the ellipse is equivalent to the inequality

R < 2b ⇐⇒ a2

b
< 2b ⇐⇒ a < b

√
2 ⇐⇒ a

b
<
√
2 (5.5)

therefore the ellipse should have bounded eccentricity

e < emax =

√
1−

(
b

a

)2

=

√
1−

(
1√
2

)2

=

√
1− 1

2
=

√
1

2
(5.6)

The curvature spheres of an ellipse for varying eccentricity are shown in Fig. 5.1 were it
can be seen that for

√
1
2
≤ e not all curvature spheres are included in Oi∪

q∈∂Oi

(
Sci(q, t̂i) \ {q}

)
* Oi (5.7)

5.2.2 About necessity or not

There is only a single internal obstacle. The radial unboundedness condition 1 = M <
k = 3 is satisfied. Therefore the arising local minimum cannot be attributed to this cause.

The relative curvature function νi(q) depends on relative curvature of level sets at a
critical point. But existence of critical points has been proved by Koditschek and Rimon.
Moreover they can only arise on the obstacle side opposite the destination, because only
there do the attractive and repulsive field gradients have negative inner product. Specif-
ically they can only arise only where the gradients have opposite directions. For a single
(internal - no world boundary) obstacle this is only possible on the minor axis of the ellipses
presented in what follows. So there will be a critical point in the area we discuss, as a
result in this simple case the condition proves necessary.

But in general cases with more obstacles this may not be the case. Nonetheless the
intuition gained by the examples following helps understand the essence of the relative
curvature condition, which, after all, has been formally derived and holds in general set-
tings. Its necessity is not guaranteed in general settings. The related arguments about
degeneracy have been discussed at the start of this chapter.

5.2.3 Case studies

Let us now look at the examples. The obstacle’s determining characteristic is its
minimal curvature. Equivalently center of curvature at the respective boundary point
of minimal curvature.
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Figure 5.1: Ellipse curvature spheres (disks) for varying eccentricities. The satisfaction of
relative curvature condition for e <

√
1
2
≈ 0.7071 is visible. So is the existence of qd that

violate the relative curvature condition in the case of insufficiently curved ellipses with
e ≥

√
1
2
.
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In Fig. 5.2a to Fig. 5.3c the destination qd and Bi (εi) width εi are kept constant and
νi(q), φ are shown for varying eccentricity e.

As the eccentricity increases, the center of curvature starts from within the ellipse in
Fig. 5.2a and Fig. 5.2b, lies on its boundary for critical eccentricity e =

√
1
2
in Fig. 5.2c,

exits it for e >
√

1
2
in Fig. 5.3a and goes on past the destination qd in Fig. 5.3b and Fig. 5.3c.

As long as the center of curvature is within the obstacle, we see that νi(q) is positive near
the obstacle, so we can select a Bi (εi) small enough that minBi(εi03)

{νi(q)} > 0.
When the curvature center is outside Oi but closer than destination qd a εi selection

still exists to make minBi(εi03)
{νi(q)} > 0, Fig. 5.3a. But when the curvature center is

farther away than qd no εi exists to make minBi(εi03)
{νi(q)} > 0. This is due to νi(q) < 0

on the boundary ∂Oi on the opposite side from qd, as can be observed in Fig. 5.3b and
Fig. 5.3c.

What is important when a curvature center lies outside the ellipse it that a qd closer to
the ellipse than the curvature center can always be selected, makingminBi(εi03)

{νi(q)} < 0.
This is reflected in the Navigation Function field2, which is shown for a (relatively small)

value of k, for the purpose of emphasizing the difference. A local minimum clearly arises
on the ellipse’s opposite side from qd for

√
1
2
< e. One may argue that increasing k is the

proved way of turning the local minimum to a saddle. But this is not possible here, as has
been analytically proved. However large a k we select (equivalently, however small a εi)
the local minimum remains.

Let us now analyze what happens in more detail. The examples shown do not reveal
everything because there are several effects involved. Considering εi it does not affect
νi(q). What matters if for all valid qd we can select a εi such that minBi(εi03)

{νi(q)} > 0.
What primarily matters is the center of curvature qc. There are three (two really)

cases: sufficiently curved, critically curved and insufficiently curved. For the latter there
are three relative positions of destination: farther away than qc, at qc and closer than qc
(wrt Oi). In all cases when qd ∈ Bi (εi) =⇒ minBi(εi03)

{νi(q)} < 0, so we should always
select εi < βi(qd).

For a sufficiently curved obstacle in all three cases there exists a Bi (εi) such that
minBi(εi03)

{νi(q)} > 0. This is shown for varying qd in Fig. 5.4a and Fig. 5.4b. In Fig. 5.4a
qd ∈ Bi (εi) =⇒ minBi(εi03)

{νi(q)} < 0 can be observed.
A critically curved obstacle is the limit case of a sufficiently curved one and the same

apply, as shown in Fig. 5.5a and Fig. 5.5b.
It is interesting to examine the case of an insufficiently curved obstacle shown in

Fig. 5.6a to Fig. 5.7c. In Fig. 5.6a destination qd ∈ Bi (εi) =⇒ minBi(εi03)
{νi(q)} < 0.

Also in Fig. 5.6a to Fig. 5.7a qd is closer than the curvature center, so that even for
qd /∈ Bi (εi) as in Fig. 5.6b to Fig. 5.7a still minBi(εi03)

{νi(q)} < 0 for any εi > 0. For qd
at the center of curvature minBi(εi03)

{νi(q)} = 0 as shown in Fig. 5.7b and for qd farther
away than the curvature center minBi(εi03)

{νi(q)} > 0 as shown in Fig. 5.7c.
What is important is that for when the curvature center is outside the obstacle a

qd closer to it can always be selected, so that an analytic Navigation Function of the
Koditschek-Rimon form [23] cannot be constructed (of course, as proved in [23], an an-
alytic Navigation Function exists on any analytic manifold with boundary).

In Fig. 5.8a to Fig. 5.9c the minimum of νi(q) in intersectionBi (εi)∩[0,+∞)2 ofBi (εi)

2For these and following figures naming a field as a Navigation Function field does not imply that it does
not have local minima, i.e. that it has been (or can be) appropriately tuned.
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Figure 5.2: Relative curvature function νi(q) within Bi (εi) for varying ellipse eccentricity
e and fixed εi and destination qd. The Navigation Function field φ(q) is shown as well.
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Figure 5.3: Relative curvature function νi(q) within Bi (εi) for varying ellipse eccentricity
e and fixed εi and destination qd. The Navigation Function field φ(q) is shown as well.
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with first quadrant [0,+∞)2 is shown for varying destinations qd over the plane (half-plane
shown due to symmetry) and different cases of eccentricity e. The associated level sets
are also plotted.

For insufficient eccentricity the zero level set is not confined in Bi (εi) as seen in
Fig. 5.9a to Fig. 5.9c. We can also observe that on the same side with qd (when qd ∈
[0,+∞)2 sominBi(εi)∩[0,+∞)2 {νi(q)} is on the same side) alwaysminBi(εi)∩[0,+∞)2 {νi(q)} > 0

for qd /∈ Bi (εi) because then qd lies in the negative inner product subspace Z1.
In Fig. 5.10 the results of Fig. 5.8a to Fig. 5.9c are shon as level sets ofminBi(εi)∩[0,+∞)2 {νi(q)}

in (qd, e) parameter space.
In Fig. 5.12a to Fig. 5.13c minBi(εi)∩[0,+∞)2 {νi(q)} is plotted for varying destination qd

over the plane, constant eccentricity e and neighborhoods Bi (εi) of various widths εi. It
becomes clear that the closer qd is to Bi (εi) the worst for the relative curvature function
minimum. In Fig. 5.11 these results are concatenated in (qd, e) parameter space.
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Figure 5.8: Relative curvature function νi(q) minimum in Bi (εi) ∩ [0,+∞)2 for qd ∈
[0,+∞)× (−∞,+∞), constant εi and various eccentricities e.
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Figure 5.9: Relative curvature function νi(q) minimum in Bi (εi) ∩ [0,+∞)2 for qd ∈
[0,+∞)× (−∞,+∞), constant εi and various eccentricities e.
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Figure 5.10: Level sets of relative curvature function minimum minBi(εi)∩[0,+∞)2 {νi(q)} in
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Figure 5.11: Level sets of relative curvature function minimum minBi(εi)∩[0,+∞)2 {νi(q)} in
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Figure 5.12: Relative curvature function νi(q) minimum in Bi (εi) ∩ [0,+∞)2 for qd ∈
[0,+∞)× (−∞,+∞), eccentricity e = 0.87 and various εi.
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Figure 5.13: Relative curvature function νi(q) minimum in Bi (εi) ∩ [0,+∞)2 for qd ∈
[0,+∞)× (−∞,+∞), eccentricity e = 0.87 and various εi.
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Chapter 6

Partially Sufficiently Curved Spaces

6.1 Partially Nonconvex

The present section concerns spaces which are partially convex and partially suffi-
ciently curved. But no principal curvatures which are convex but not sufficiently curved
are treated yet. At least one principal curvature is sufficiently curved (hence also convex)
and all principal curvatures are either nonpositive definite, or if positive (i.e., convex) they
are sufficiently curved.

Proposition 47. (NF Hessian at qc ̸= qd can bemade positive definite on span
{
P+
i , r̂i

}
):

Let qc ∈ (Cφ̂ \ {qd}) ∩Bi (εi). There exists an εi5 > 0 such that, for all εi < εi5 at every
qc ∈ Cφ̂ ∩ Bi (εi), if νi(qc, p̂ij(qc)) < 0,∀j ∈ I+i (qc) ̸= ∅, then t̂Ti (D2φ̂) (qc)t̂i > 0,∀t̂i ∈
span {r̂i(qc), p̂ij1(qc), . . . , p̂ijr(qc)} , j1, . . . , jr ∈ I+i (qc).

Proof. Let the vector spanned by the radial r̂i and tangential t̂i vectors be denoted by

ui = µr̂i + λt̂i (6.1)

where1 µ, λ ∈ R \ {0} are weighting coefficients and the radial and tangential unit vectors
are defined with respect to the ith obstacle Oi implicit function βi gradient as

r̂i ,
∇βi

∥∇βi∥
, t̂i ,

∇β⊥
i

∥∇βi∥
(6.2)

Note that if A ∈ Rn×n, a ∈ En a square real matrix and a euclidean vector respectively,
and b = ca ∈ En, c ∈ R \ {0} a vector parallel to a, then for the quadratic form associated
to A

bTAb = (ca)TA (ca) = caTAca = caTcAa = c2aTAa = c2
(
aTAa

) c∈R\{0} =⇒ c2>0
=⇒

bTAb > 0 ⇐⇒ aTAa > 0
bTAb = 0 ⇐⇒ aTAa = 0
bTAb < 0 ⇐⇒ aTAa < 0

 (6.3)

So it suffices to determine the quadratic form sign on a direction, and it is common for all
vectors in that direction.

1For our purpose exclusion of 0 from R is not mandatory.
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Let us now at a critical point qc express the Hessian’s associated quadratic form along
the direction of ui. The Hessian matrix at the critical point is

D2φ̂ (qc) =
γk−1
d

β2

(
kβD2γd +

(
1− 1

k

)
γd
β

(
β2
i∇β̄i∇β̄T

i + 2βiβ̄i

(
∇β̄i∇βT

i

)
s
+ β̄2

i∇βi∇βT
i

)
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i
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s
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d
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β
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i +
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k

)
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β
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i
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s
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s
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1

k
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i

)
s
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(
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)
s
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2βi

)

=
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d
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(
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(
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)
(6.4)

At a critical point the quadratic form along ui is

uT
i D

2φ̂ (qc)ui =
(
µr̂i + λt̂i

)T
D2φ̂ (qc)

(
µr̂i + λt̂i

)
=
(
(µr̂i)

T +
(
λt̂i
)T)

D2φ̂ (qc)
(
µr̂i + λt̂i

)
=
(
µr̂Ti D

2φ̂ (qc) + λt̂Ti D
2φ̂ (qc)

) (
µr̂i + λt̂i

)
=
(
µr̂Ti D

2φ̂ (qc)µr̂i
)
+
(
µr̂Ti D

2φ̂ (qc)λt̂i
)
+
(
λt̂Ti D

2φ̂ (qc)µr̂i
)
+
(
λt̂Ti D

2φ̂ (qc)λt̂i
)

= µ2
(
r̂Ti D

2φ̂ (qc) r̂i
)
+ µλ

(
r̂Ti D

2φ̂ (qc) t̂i
)
+ µλ

(
t̂Ti D

2φ̂ (qc) r̂i
)
+ λ2

(
t̂Ti D

2φ̂ (qc) t̂i
)

(6.5)
Note that by the Clairaut-Schwarz Theorem C2 continuity of function φ̂ implies symmetry
of its Hessian matrix2

φ̂ ∈ C2 ([F \ ∂F , [0,+∞)]) =⇒ D2φ̂ =
(
D2φ̂

)T (6.6)

As a result

r̂Ti D
2φ̂ (qc) t̂i

(r̂Ti D2φ̂(qc)t̂i)∈R
=

(
r̂Ti D

2φ̂ (qc) t̂i
)T

= t̂Ti
(
r̂iD

2φ̂ (qc)
)T

= t̂Ti
(
D2φ̂ (qc)

)T (
r̂Ti
)T D2φ̂=(D2φ̂)

T

= t̂Ti D
2φ̂ (qc) r̂i

(6.7)

2In other words the order of partial derivation in mixed derivatives does not matter.
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By our previous result

uT
i D

2φ̂ (qc)ui = µ2
(
r̂Ti D

2φ̂ (qc) r̂i
)
+ λ2

(
t̂Ti D

2φ̂ (qc) t̂i
)
+ 2µλ

(
r̂Ti D

2φ̂ (qc) t̂i
)

(6.8)

The first two terms r̂Ti D
2φ̂ (qc) r̂i and t̂Ti D

2φ̂ (qc) t̂i have been analyzed according to the
example set by the original proof. Let us proceed for the third term in the same spirit
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(6.9)
Now let us find each term separately

r̂Ti
(
kβD2γd

)
t̂i = kβ

(
r̂Ti D
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(6.10)

and (
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i t̂i
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= 0 (6.11)

As a result
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(6.12)
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Now observe that
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(6.13)

and therefore
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γk−1
d
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From (6.8) we have that the quadratic form associated to the Hessian matrix of function
φ̂ is
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(6.15)

and utilizing the results of previous sections, repeated here

t̂Ti D
2φ̂t̂i =

γk−1
d

β2

(
γdβ̄i

(
∇βi · ∇γd
∥∇γd∥2

(
t̂Ti D

2γdt̂i
)
−
(
t̂Ti D

2βit̂i
))

+ γdβi

(
∇β̄i · ∇γd
∥∇γd∥2

+ t̂Ti

((
1− 1

k

)
∇βi · ∇βT

i

β̄i

−D2β̄i

)
t̂i

)) (6.16)

and
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So substitution of (6.14), (6.16) and (6.17) to (6.8) yields
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(6.18)

The above quadratic polynomial has the following discriminant
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(6.19)

A positive definite normal subspace is sufficient to ensure that the quadratic form associ-
ated with the Hessian matrix is positive on this subspace. Since for εi < ε′′′i0 =⇒ A > 0
this is equivalent to ensuring that the quadratic polynomial induced by the quadratic form
on this subspace does not have any real roots.

Absence of real roots for λ ∈ (−∞, 0) ∪ (0,+∞) is equivalent to proving that there is
no direction ui (note that ui ̸= t̂i and ui ̸= r̂i) in which the quadratic form is zero.

Consequently the quadratic form retains its sign. It can only be positive because the
quadratic term coefficient is positive A > 0.
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A sufficient inequality for absence of real roots is

∆ < 0
µ∈R\{0} =⇒ µ2∈(0,+∞)⇐⇒[(

O (βi)−
γd ∥∇βi∥

k
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r̂Ti D
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))2

− 1
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)(
γd

((
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)
β̄i ∥∇βi∥2 −O (βi)

))]
< 0 ⇐⇒

(O (βi)− A)2 − 1

βi

(B +O (βi)) (Γ−O (βi)) < 0

(6.20)
By selecting a sufficiently small βi we can make all O (βi) negligible with respect to their
accompanying term’s signs A,B,Γ as already proven.

Then the remaining terms determining the discriminant’s sign would be

(−A)2 − 1

βi

BΓ < 0 ⇐⇒ A2 − BΓ

βi

< 0 (6.21)

The above inequality can be satisfied by constraining critical points qc to a neighborhood
Bi (εi) by selecting a sufficiently small βi which is (if A2 > 0, otherwise not needed)

A2 − BΓ

βi

< 0 ⇐⇒ A2 <
BΓ

βi

⇐⇒ βi <
BΓ

A2
, ε′′′i4 (6.22)

Note also that the half-space ∇βi · ∇γd > 0 is of interest, not ∇βi · ∇γd < 0 =⇒ ∄qc
there. This yields a further ε′i4.

Another important note is that the above proof requires that the obstacle has a neg-
ative Gaussian curvature (obviously) and that it has negative curvature and positive cur-
vature in two orthogonal complementary subspaces of its tangent space (tangent to level
sets in the obstacle’s neighborhood). In order to relax the complementary subspaces
requirement, an altered proof of the original KR theorem is needed.

A single one-sheet hyperboloid obstacle forms an almost insufficiently curved space
for navigation. Therefore a space with a single one-sheet hyperboloid is covered by the
proof provided, i.e. that a KRNF exists in it for a high enough k (taking into consideration
my proof on γd upper bound for unbounded spaces as well). Note that a set of cylindrical
pillars as obstacles is also an almost insufficiently curved space, hence navigable with a
KRNF as proved.

For two one-sheet hyperboloids which are infinite in size their inevitable intersection
renders the space insufficiently curved (and of nonsmooth boundary at the intersection,
but that is not out problem). Nevertheless the result of a simulation is successful, Fig. 6.1.
Of course had the initial and final configurations be positioned differently with respect to
the intersection, then no solution would be possible.

Definition 48. By a partially nonconvex world we refer to every obstacle boundary
point having at least one sufficiently curved principal curvature and the rest nonconvex.

Proposition 49. (All qc ̸= qd nondegenerate saddles) In a partially nonconvex world,
there exists a k ≥ N(εI0), such that every critical qc ∈ Cφ̂ \ {qd} is a nondegenerate
saddle.
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Figure 6.1: A space with a single one-sheet hyperboloid is an almost insufficiently curved
space, hence navigable by a KRNF, as proved here. Two one-sheet hyperboloids form an
insufficiently curved space due to their intersection.

Proof. By Definition 48 TqcF = P−
i (qc) ⊕ span

{
P+
i (qc), r̂i

}
, by Propositions 40 and 47

Hessian (D2φ̂)(qc) is negative definite on P−
i (qc), positive definite on span

{
P+
i (qc), r̂i

}
,

so Lemma 3.8 [23] completes proof.
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Figure 6.2: Different directions: convex and sufficiently curved, convex but insufficiently
curved, and nonconvex.

6.2 Partially Sufficiently Curved Worlds

6.2.1 Intro

Definition 50 (Partially Sufficiently CurvedWorld). We call partially sufficiently curved
a world for which ∀q ∈ Oi, ∀i ∈ I0 there is at least one sufficiently curved principal κij(q),
at most one convex but insufficiently curved κij(q) and the rest κij(q) are nonconvex.

In chapter 4 and section 6.1 it has been proved that the KR formulation of NFs can be
extended to

1. Sufficiently curved spaces, and to
2. Partially Nonconvex Partially Sufficiently Curved Spaces

Both of the above two types of spaces are relatively limited. The first type is limited to
obstacles which are in every boundary point curved enough, and, as a result, convex
enough. Hence, the first type is a subset of convex obstacles.

The second type of spaces is restricted to partially nonconvex obstacles. These do not
include any closed surfaces. But we need to generalize to closed surfaces which may not
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Figure 6.3: Suitable pairs of directions and selection of ε′′i2 ensures sign definiteness of
the corresponding spanned subspaces.
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Figure 6.4: Sufficiency of curvatures along principal directions on characteristic points of
torus.
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be everywhere sufficiently curved, as happens in the first case. We want to treat surfaces
which may be partially sufficiently curved and convex.

If a closed surface is convex but partially insufficiently curved, or nonconvex and
partially sufficiently curved, then curvatures which are neither sufficient nor nonpositive
definite3 arise. This happens by definition in the first case.

For the second case, the following can be shown. No closed surface can have both
points which are sufficiently curved (convex points) and points which are partially non-
convex and partially sufficiently curved in convex directions, without any points which are
convex but partially insufficiently curved arising.

This is a consequence Hessian matrix continuity requirements of Hessian matrix con-
tinuity requirements (i.e., C2 continuity of βi). These can be relaxed in some special
cases where obstacle boundary nonsmoothness is allowed, based on an updated defini-
tion by Koditschek and Rimon in [28]. But we are interested in general cases, like tori.
In these cases C2-smoothness requires continuous curvature variation over the surface.
This leads to convex but partially insufficiently curved points showing up when moving
from a sufficiently curved, to a nonconvex partially sufficiently curved point.

Therefore, points of three kinds are differently treated in this study
1. Sufficiently curved points;
2. Partially nonconvex and partially sufficiently curved;
3. Nonconvex partially insufficiently curved and partially sufficiently curved;
4. Partially nonconvex, partially convex but insufficiently curved and partially suffi-
ciently curved.

The last case can be treated similarly to case 3, hence it will not be separately analyzed
in what follows (it is covered by the same theorems). Note that it may be better to refer to
the convex insufficiently curved tangential directions by the number of associated principal
curvatures, since the number of principal curvatures is the one that does matter.

The stronger results that are going to be developed in the sequel concern (hyper)surfaces
with one convex insufficient principal curvature.

The other results, mentioned in the end, and based on (symmetry breaking) the zero
measure of the set of parameter values that lead to degeneracy (nonMorse), allow for any
number of convex insufficient principal curvatures, provided there remains at least one
sufficient principal curvature.

The reader is reminded that existence of at least one sufficient principal curvature is
still required in this case, in order to ensure that all critical points are (possibly degenerate)
saddles.

The other principal curvatures relate to degeneracy statements and conclusions.

6.2.2 Insufficiently curved convex directions

The existence of convex but insufficiently curved tangent directions can lead to a
degenerate potential field function φ, depending on the choice of destination. Degeneracy
of any critical points invalidates the Morse property, which requires that all critical points
be nondegenerate.

But the Morse property is a fundamental one in the original NF definition given by
Koditschek and Rimon in [23]4. It is used in the proof of Proposition 2.4, pp. 417-418,

3In other words they are both not sufficiently curved and positive definite, that is convex and insufficiently
curved.

4[23], Definition 1, p.417.
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which applies to any NF, not only to the KR type. For the KR type the Morse property
required in the proof of Proposition 2.4 needs to be proved.

To do this, Lemma 3.8, p.433 is used. This Lemma is then “fed” with both Proposition
3.6 and the proof of Proposition 3.9 related to existence of a positive eigenvalue. In
our treatment here, proposition 3.6 is proved as long as there exists at least a single
sufficiently curved tangent direction at every obstacle boundary point. It is a condition
ensuring a negative (definite) eigenvalue of D2φ, the NF Hessian matrix, does exist. This
is actually the “escape direction”.

Hence, that all critical points, other than the destination, are not local minima, but are
either saddles or maxima, can be proved solely by requirement of at least one sufficiently
curved tangential direction5.

That all of these are (possibly degenerate) saddles can be proved for radially increasing
obstacle functions6 using the core of Proposition 3.9’s proof, of course adapted to be more
general (i.e., not only for spheres).

But Proposition 3.9, which uses Lemma 3.8, does not need to hold. Although existence
of at least one negative and existence of at least one positive eigenvalue have been
proved, the direct sum decomposition required in Proposition 3.9 cannot be used, because
there may be other linearly independent subspaces (curvature eigenvectors called principal
curvature tangents) in which we have not proved what happens.

In the classic proof by Kodistchek and Rimon, the tangent subspace is shown to be
negative definite, while the radial one positive definite.

In the sufficiently curved proof the same is done.
In the partially nonconvex but partially sufficiently curved case, the “pairs” of directions

change (subspaces). The tangent directions are separated into those which are sufficiently
curved and the rest, which are nonconvex, plus the radial one. These again form a direct
sum decomposition, it is just that the sets of durections have changed, and now both
eigenvectors from the radial and tangential subspaces participate in the positive definite
subspace.

In the convex insufficiently curved case, the method of Lemma 3.8 may be used for
a (dense?) set of destination qd selections, but there will exist another set of destination
selections for which the requirements of Lemma 3.8 break down, due to the arisal of φ̂
Hessian eigenvalues7

For those points, the degeneracy proof is not valid any more. For this reason the
definition of a NF should be re-examined. Re-consideration of why the Morse property in
Definition 1 is needed in the proof of Proposition 2.4 will clarify whether it can be relaxed
or not.

The reasons for imposing nondegeneracy requirements are noted within the proof of
Proposition 2.4:

``Now suppose that there is some open set of initial conditions in J whose
positive limit set ω(J ) is a saddle point. This would imply that the saddle has
a local stable manifold of dimension equal that of J - a contradiction, since
the Hessian is non-degenerate by assumption.'' ([23], p.418)

5Which implies at least one sufficiently curved principal curvature, since continuity of the quadratic form
associated to the Hessian matrix and constrained to the unit sphere, in combination with the Extreme value
Theorem, applied on the sphere, will lead to a minimum eigenvalue which is sufficiently curved. For the
related proofs, see the Propositions proved later.

6In more detail, those obstacles for which the gradient ∇βi is outwardly oriented.
7We need to prove that a whole subspace of linear combinations is sign definite, because we do not

know these are eigenvalues of the NF Hessian, we just know their sign.
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Also, the reasons are detailed in the comments following the proof of Proposition 2.4,
where it is again noted thta with this condition a submanifold of codimension 1 of initial
conditions not attracted to qd can disconnect F and “block” the flow toward qd.

Since, the gradient system is a family ϕt(x) of diffeomorphisms parameterized by time
t mapping the initial conditions x0 to a future point and every x in the compact positively
invariant set has an equilibrium as its ω(x) limit, the above statement is equivalent to the
existence of either a codimension 1 manifold of ω(x) limit points, i.e. equilibria or a set
of critical points of other codimension which nonetheless still sttracts a codimension 1 set
of initial conditions, hence both blocks the flow and also attracts an open set of initial
conditions, of dimension n.

So these are the reasons for imposing nondegeneracy in the first place. We are inter-
ested in relaxing this requirement.

Before proceeding further with our case, let us revisit [20] by Koditschek. This work
provides a rephrased proof of Proposition 2.4/1990 as Proposition 2.1, p.135. It also
provides a more elaborate commentary and, most importantly to our purpose, a comment
on possible removal of this requirement8. Moreover, note that the proof there is for C2

functions, as commented in [23].
First of all, the proof uses the argument of the dense character of the complement

of a countable union of nowhere dense sets in J . By removing the nondegeneracy
requirement, we will be led to an uncountable (continuum) of stable sets, which can result
in a union of higher dimension, hence we will be particularly cautious in the dimension of
the critical set and of the stable sets of each critical point belonging to the critical manifold.

Secondly, the comments elucidate that what should be prevented is any co-dimension
1 set of saddles to disconnect J (not (initial points) not attracted to qd, as phrased in
[23] ).

An important distinction nonetheless is that by allowing degeneracy, we are not allow-
ing full degeneracy. In other words, we are going to place some (minimal) restrictions,
by allowing only a single eigenvalue to become zero, while requesting that from the rest,
at least one is negative and the remaining sign definite (at least one from the remaining
must be positive). This will lead us to strong results.

Even weaker independent and not subsequent results can be obtained, as noted
in the end, which refer to higher order degeneracy and its structural instability. But in
the weaker case as well, we still require at least one negative (and nearly optionally, at
least one positive) eigenvalues, hence even in the (highly) relaxed case, full degeneracy
is avoided.

Taking the previous arguments into consideration, the example provided in [20] which
defies the properties we are to prove, does so because it is fully degenerate. The same
happens with the example referred to therein, i.e., 1.1.3 from Palis-de Melo, Geometric
Theory of Dynamical Systems [].

Finally, from this work of Koditschek, in support of our effort it is commented that
``While this condition incurs an undesirable loss of generality the technical

problems which result in its relaxation require more attention than worthwhile
in this paper.''

This implies that an extension might be possible, although particular technical prob-
lems would need to be addressed. Our present work treats this extension.

The original proof by Koditschek and Rimon uses Lemma 3.8 and Proposition 3.9 to
advance to nondegenerate saddles at once. This has been done for sufficiently curved

8Although from a different viewpoint of why that might be desirable for applications.
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spaces in a similar way in chapter 4.
But for our purposes we need the following which is unmentioned in [23] since no

degeneracy has been considered there, but could have been used (and is actually as if
half of it is implicitly used when deducing that at least one negative eigenvalue implies
the point is not a local minimum, i.e., that even in case of degeneracy, this result about
the quadratic form implies some things about the actual function behavior).

Definition 51 (Non-semi definite function [38]). Non-semi definite is a homogeneous
function g : K → R where K ⊆ Rn is a cone if x ∈ K, t ∈ R =⇒ tx ∈ K, i.e., a function
such that g(tk) = tpg(k),∀t ∈ R and some fixed p, when there exist x, y ∈ K : g(x) >
0 ∧ g(y) < 0.

Proposition 52 (Nonsemi-definiteness =⇒ saddle [38]). If Fp is nonsemi-definite, then
a is a saddle point of f .

Proof. The proof can be found in [38].

where Fp is defined as the first nonzero Taylor form. The kth Taylor form is defined
as (n ∈ N is the dimension number)
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where Di
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i corresponds to the partial derivative operator. Note that the 2nd Taylor

form is obtained for k = 2 and includes all 2nd order Terms
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But the exponent constraints
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Therefore, substitution in the 2nd Taylor form yields for the first case
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and for the second case
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Therefore, the kth Taylor form is the polynomial form induced by the kth derivative

of f at point a. In other words the terms of the kth Taylor form are those terms of the
Taylor series which are of order k.

The first order Taylor form is the linearization, which accurately describes a function in
the neighborhood with nonzero first derivative, according to the implicit function theorem.

The second order Taylor form is the quadratic approximation of the function which
accurately described it in the neighborhood of a nondegenerate critical point, according
to the Morse Lemma [39].

The first nonzero Taylor form refers to the least order of the derivative which is not
identically equal to zero. Degeneracy is allowed, as emphasized by the non-semi definite-
ness condition, but obviously full degeneracy is not allowed, because of the definition of
non-semi definiteness.

The following ensures that all these are only (possibly degenerate) saddle points9.

Proposition 53 (Partial sufficient curvature =⇒ saddles). For any partially sufficiently
curved world, if k ≥ N(εI0), then any critical qc ̸= qd is a (possibly degenerate) saddle.

Proof. By Proposition 43, the radial direction is positive definite r̂Ti (D2φ̂) (qc)r̂i > 0, by Def-
inition 50 and Proposition 40, there exists a tangential direction, such that t̂Ti (D2φ̂) (qc)t̂i <
0. Then, set x = r̂i, y = t̂i in Definition 51. At qc the first Taylor form is zero F1 ≡ 0, the
second F2 is the quadratic form associated with the Hessian matrix (D2φ̂) (qc). Since
F2(r̂i) = r̂Ti (D2φ̂) (qc)r̂i > 0, F2 is not identically equal to zero, so it is the first nonzero

9Note that full degeneracy does not imply that the Hessian matrix is identically zero, as for example in

the case of
[
0 0
1 0

]
, whereas if the Hessian matrix is identically zero, then obviously it is fully degenerate.

Hence, if the Hessian matrix is not fully degenerate, it follows that it cannot be identically zero.
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form Fp of φ̂ at qc. Since both Fp(r̂i) > 0 and Fp(t̂i) < 0, Fp is nonsemi-definite. By
Proposition 52 the result follows.

The Polar property has been proved. So, by now our function φ̂ is by construction
Analytic or C2 (depending on our choice, see [23]) and Admissible, and also Polar.

The Morse property remains to be discussed. Note that the diffeomorphism theorem
still holds. Hence, we can continue working with φ̂ instead of φ. Also, our results will be
applicable to any diffeomorphic world (so we also extend the NF method to more general
topologies as well, namely those which involve multiply connected obstacles).

We haveproved our first results and are now left with saddles which may be degen-
erate and cause problems. The types of problems we want to avoid have been exposed
previously and are open local stable sets of any of these saddles qc ∈ F0 ∩ Cφ̂.

To advance and continue speaking of NFs, we now need to extend their definition. In
the spirit of Appendix I, p.515, [28], we provide the following extended definition. Note
that their new definition will allow for φ̂ to be non-Morse at any critical point other than
the destination. This includes the case of sharp corners in the Appendix mentioned.

Definition 54 (Extended Navigation Function). Let F ⊂ En be a compact connected
(analytic or C2 manifold with boundary. A map φ : F → [0, 1] is a (possibly degenerate)
navigation function if it is

1. C2 onF (analytic is stricter but not needed, this ensures uniqueness and existence
of closed-loop robot system trajectories);

2. Polar on F , with unique minimum at qd ∈ F \ ∂F (this makes it useful because it
ensures convergence);

3. The union of any critical points qc ∈ (F ∩ Cφ) \ {qd} has a stable set of Lebesgue
measure zero (this is the best that can be done with smooth vector fields);

4. Admissible on F (ensures safety -i.e., collision avoidance- and that transients of
the closed loop mechanical system are stable as well, “inheriting” good properties
[23]).

Compare this with Definition 1, p.417 [23].
Note, that according to pp. 515-516 [28], the Morse property is used to prove that the

resulting feedback control law still guides the physical system correctly. This is noted also
in p.418 [23], namely that it permits a straightforward proof that the desirable limiting
behaviour of the gradient flow is “inherited” by the ultimate closed loop mechanical system.

Relaxation of the Morse property requires reconsideration of the underlying control
theory [28]. Nonetheless, it is also conjectured in p.516 [28] that a simple energy-
conservation argument will ensure the physical viability of this extended class.

6.2.3 Exploring degeneracy causes

Before proceeding further with our case, let us explore how degeneracies can arise.
The issue with closed surfaces is that there exist points of insufficiently curved tan-

gential directions, together with sufficiently curved tangential directions, together with
sufficiently curved tangential directions, but without any nonconvex tangential directions.

Stated in other words, the tangent space of some points is partially sufficiently curved,
partially insufficiently curved, but overall convex.

The reason these points are ineluctable in the case of closed surfaces which are almost
insufficiently curved is now going to be elucidated.
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First of all, almost insufficiently curved surfaces come in two flavours. Those which
are partially nonconvex within their tangent space, and those which are fully convex.

The partially nonconvex surfaces cannot be closed because then points of fully convex
tangent space should exists. If we consider surfaces which are both partially nonconvex
somewhere and sufficiently curved (implies convex as well) elsewhere, then for these
to be C2, points of convex but almost insufficient curvature will arise intermediately to
the two areas. Hence, any closed obstacle which is somewhere partially nonconvex will
include points of convex almost insufficient curvature.

Any other closed almost insufficiently curved surface which is fully convex everywhere
will include such points by definition, because otherwise it would have been sufficiently
curved. It has been explained why convex almost insufficiently curved points always arise
on closed surfaces.

At these points there exists a maximum radius of curvature among the tangential
direections, such that there are curvature half-spheres with non-empty intersection with
the free space F .

As a result, the destination qd can be placed within the maximal curvature half-sphere
at that point, on the maximal curvature half-sphere at that point, or outside the maximal
curvature half-sphere. Each case is analysed as follows.

Case 1: If qd is within the maximal curvature half-sphere, then at that point there exist
curvature half-spheres which include qd, inside them and others which are smaller and do
not include it.

In the tangent direction of the first ones the Hessian quadratic form is negative definite
t̂Ti (D2φ) (q)t̂i < 0 whereas in the tangential direction of the second one the Hessian is
positive definite t̂Ti (D2φ) (q)t̂i > 0.

As long as these separate the tangent space into a direct sum decomposition, the
proof of non-degeneracy is the same as for spaces of negative Gaussian curvature which
are almost insufficiently curved10.

Case 2: If qd is out of the maximal curvature half-sphere, then it is outside all curvature
half-spheres at that point. This implies that t̂Ti D2φt̂i > 0,∀t̂i at that point and the classical
proof is valid.

Case 3: In this case qd is on the maximal curvature half-sphere boundary. All other
curvature half-spheres at that point are smaller and do not include qd. Hence, t̂Ti D2φt̂i > 0
for these. But t̂Ti D2φt̂i = 0 at the tangent direction t̂i corresponding to the maximal
curvature half-sphere.

It is noted again that these conclusions follow from the assumption that the critical
point qc arises in such an area. But since we are not sure where qc will arise, the existence
of such areas is problematic.

The set of such points is open, due to the C2 property of φ, which implies that curva-
tures are continuous, therefore there is a neighbourhood of points with maximal curvature
half-spheres protruding from the obstacle.

As a result, also the set of destinations qd which belong to the union of these maximal
curvature half-spheres corresponding to these points is an open set.

At those points (case 3) the t̂Ti D
2φt̂i = 0 can be shown to be the eigenvector of a

zero eigenvalue by proving that the quadratic form v̂TD2φv̂, associated with the Hessian
matrix, when restricted to the unit sphere ∥v̂∥ = 1 has a stationary value in this direction.

This can be proved by showing that the discriminant of the restricted quadratic form

10It interesting to note that radius of curvature can be ordered from +∞→ 0+ → 0− → −∞, where the
direction is from convex to nonconvex.
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in spanning directions of the sphere tangent space is zero.
This can be associated with points of the obstacle where its gradient is an eigenvector

of the Hessian matrix (Gradient Extremal Paths), as well as other points. But for a single
tangnt direction at them. At all these t̂Ti D

2βit̂i = 0 holds.
In any case, as analysed in a following section, the set of such points is open.
We conclude that the set of points where if a critical point arises qc it will be on a

maximal curvature half-sphere and have zero eigenvalue, is the intersection of two open
sets of qd selections. Therefore it could be an open set.

To treat the case of (possibly arising) degeneracies, as the previous analysis suggests
are not always avoidable, we need to consider them by application of more general the-
orems, namely the Morse-Bott Lemma and Thom Splitting Lemma.

6.2.4 NF General Convergence Proof

Proposition 55 (Extended Proposition 2.4 [23] ). Let φ be a C2 function on a compact
Riemann manifold J . If the following hold

1. The union of all initial conditions whose positive limit set includes saddle points or
maxima is a set of Lebesgue measure zero.

2. The gradient ∇φ is transverse and directed away from the interior J \ ∂J of set
J on the boundary its boundary ∂J .

Then the negative gradient flow − (∇φ) (x(t)) = ∂x
∂t
(t) has the following properties

1. J is a positive invariant set;
2. the positive limit set of all initial conditions in J consists of tje critical points of φ;
3. there is a dense open set J̃ ⊂ J , whose positive limit set consists of the local
minima of φ.

Proof. Claim 1: By hypothesis, the vector field is directed toward the interior of J on
its boundary ∂J . Hence, set J is positive invariant under the negative gradient flow of
function φ.

Note that non-regular points qc (i.e., those for which (∇φ) (qc) = 0 for qc ∈ ∂J ) on
the boundary ∂J have a gradient which is trivially transverse to the boundary and which
does not have a defined direction, since zero.

Claim 2: According to Hirsch and Smale 1974, Theorem 4, p.203, the following holds.
Let z be an ω limit point of a trajectory of the negative gradient flow. Then if the trajectory
is included in a compact positive invariant set, then z is an equilibrium of the gradient
system.

As a result, the positive limit set of J consists of the critical points of φ. These are
either maxima, saddles or minima.

Claim 3: It follows from the hypothesis that no open set of initial conditions is attracted
to saddles or maxima. The complement of the set of initial conditions attracted to saddles
or maxima is a dense open set. Since all initial conditions have equilibria in their positive
limit set, this dense open set has as positive limit set the equilibria which are not saddles,
nor maxima, these are the local minima of φ.

We now need to prove that, under certain assumptions, the KRPF is a NF in the sense
of the extended Definition 1 (previously provided). This requires several steps.

Firstly, an understanding of the proofs of Propositions 0,1, and 3, which provide con-
ditions related to sign definiteness of the Hessian matrix (D2φ) (qc) at any critical point
qc ∈ Cφ ∩F0 in the tangent and radial directions.
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Secondly, an understanding of the reason for which degenerate eigenvalues of (D2φ) (qc)
may arise. This depends on the geometry of obstacles and the destination and has already
been analysed.

Thirdly, a combination of the previous three, which relates geometric properties of
the obstacle’s boundary to the NF properties of the Hessian matrix (D2φ) (qc) eigenvalues
which result from them. This is a connection of properties needed to derive our basic
result. It is provided by Proposition 6.

Fourthly, the main result shows that there exist a tuning parameter lower bound such,
that the KRCNF is a NFaccording to the extended definition, provided obstacles satisfy
certain geometrical requirements.

Finally, a comment on the cause of higher order degeneracy is provided.
The following proves that for all critical points in which at most a single Hessian eigen-

value can be degenerate and all others are sign definite with eigenvalues of both signs
present, then the set of initial conditions with these critical points in its positive limit set
is of measure zero.

Proposition 56. (Single Hessian degeneracy and at least one negative eigen-
value, imply measure zero stable set): If for a subset of critical points qc ∈ Cφ̂ \ {qd}
all have at least one negative, at least one positive and at most one zero eigenvalues of the
Hessian matrix (D2φ) (qc), then the set of initial conditions of system ∂x

∂t
(t) = − (∇qφ) (x(t))

which have such a point qc in their positive limit set is of measure zero.

Proof. Since at most a single eigenvalue can be zero, any critical subset is of dimension
at most 1. No branching of it can arise. This follows from Thom’s Splitting Lemma [36]
φ̂(x, y) = φ̂M(x) + φ̂NM(y), where φ̂M(x) the Morse part on x mapped to P±(qc) by a
smooth change of coordinates and φ̂NM(y) the non-Morse part, which is defined on an at
most one-dimensional subspace y smoothly mapped to the single degenerate eigenvector
span {p̂ijd(qc)}. To prove it, note that the restriction (D2φ̂M) (qc)|x is nonsingular, hence φ̂
can remain constant at most along y, limiting the critical set to at most one dimension.

Since 1-dimensional without branching, every critical set is diffeomorphic to either a
circle or a line segment. If diffeomorphic to a circle, the critical set is a nondegenerate
critical submanifold disjoint from other critical sets, hence the Morse-Bott Lemma to it [40],
[37]. If diffeomorphic to a line segment, we break it into its interior and endpoints. To
each interior point the Morse-Bott Lemma applies, while to the endpoints Thom’s Splitting
Lemma. Taking into account that the critical sets are at most of dimension 1, the sign
definite subspaces sum to an (n−1)-dimensional subspace. On this at least one eigenvalue
is negative, hence the stable set is at most (n − 2)-dimensional at each qc. The union of
stable sets over the critical sets is then at most (n− 2) + 1 = (n− 1)-dimensional, hence
a Lebesgue measure zero set.

The following is our main contribution.

Proposition 57. (NF in Partially Sufficiently Curved Worlds) In every partially suf-
ficiently curved world F there exists a N(εI0), such that for all k ≥ N(εI0) the KRNF φ is
a NF Definition 54 on F .

Proof. By Definition 50 and Propositions 40 and 47 the Hessian (D2φ̂) (qc) satisfies the
requirements of Proposition 56, hence it is a NF according to the extended Definition 54.
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Figure 6.5: Three different ellipsoids. In the first case the ellipsoid is everywhere partially
sufficiently curved. Note that insufficient curvature here arises due to an insufficient con-
vex principal curvature, not a nonconvex one. The agent successfully navigates around
the ellipsoid. Increasing the eccentricity along the sufficiently curved tangent direction just
below the limit still allows the agent to navigate in the second case. A negligible increase
of the smallest principal eccentricity in the third case renders the obstacle insufficiently
curved, although convex. The agent clearly cannot navigate it any more.

6.3 Inapplicability to Fully Non-convex Worlds

Insufficiently curved spaces are those which contain at least one obstacle boundary
point where the obstacle boundary is not sufficiently curved in any tangential direction t̂i
at that point. The applicability of NFs is depicted in Fig. 6.6.

It is worth emphasizing that insufficiently curved spaces can be both convex and
nonconvex. It has been shown that convex worlds which are almost insufficiently curved
can be navigated with a KRNF. Partially nonconvex which are almost insufficiently curved
(sufficient curvature means at least one direction for which the half-curvature sphere is
included in the obstacle, hence this direction is also convex, so any almost insufficiently
curved obstacle is also partially convex and cannot be totally nonconvex) have been shown
to be navigable as well. But nonconvex are in general not navigable. The reason is to be
shown in what follows.

In the following it is shown that fully insufficiently curved spaces do not accept the
usual proof. In fact the contrary can be proved for high enough k and certain qd. Therefore
the usual proof is invalid in this case.

This does not formally prove the inexistence of a KRNF in such spaces. But it is inspired
by the intuitive reason for which KRNFs work as k increases, and on which the proof is
constructed. It is known from experience that for low values of k a KRNF usually does not
exist. One would have to show that the upper bound on k for which the KRNF posseses
local minima other than qd is < 2. Then in no case would a KRNF exist in insufficiently
curved spaces.

The author’s expectation is that such a proof is impossible. The reason is that specially
designed insufficiently curved space may be navigable for low k values using a KRNF. But
these would be just counterexamples, whereas the general case has been shown to not
to be a NF for high k.
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Figure 6.6: Navigation function applicability to different worlds. Note that the ∀ every-
where partially sufficiently curved (EPSC) world refers to at most a single convex but not
sufficiently curved principal curvature. Nonetheless, extensions of the proof included here
towards higher order degeneracy are expected. Moreover, note that in 3-dimensional
C-Spaces, every EPSC world can only have one such principal curvature.

There is not much more to be searched in this direction, since it has been shown why
further efforts will not be able to proceed as usual, combined with the intuitive impossibility
evident.

It is therefore concluded that analytic NFs exist in any manifold with boundary (as
proved by KR), but the specific form proposed by KR and herein referred to as KRNF are
applicable and tunable to be NFs only in everywhere partially sufficiently curved worlds.



Chapter 7

Application to Superquadric Worlds

7.1 Introduction

Toroidal navigation functions allow us to treat configuration space topologies of any
genus. This is due to the fact that obstacles of nonzero genus in such configuration spaces
can be diffeomorphically mapped to m-fold tori of the desired genus. Any obstacles of
genus 0 can be mapped to spheres, as in the classic NF formulation.

There are various ways in which toroidal obstacles may arise in the model space of a
robot. An obvious one is existence of obstacles of genus g > 0 in the task space. Their
C-space images then may not be of genus 0. If this is the case, the diffeomorphic images
in model space of C-obstacles cannot be spheres of genus 0.

A simple example is a point robot in a 3-dimensional task space populated by disjoint
2-tori obstacles. In this case, the C-space is the same as the task space and the obstacles
are the same, i.e. 2-tori.

Another case is the possibility of simultaneous collision of a non-point robot with mul-
tiple obstacles disjoint in task space. Then their C-space images will be connected. Such
connections can lead to multiply connected obstacles, hence genus g > 0. Similarly to the
previous case, these C-obstacles cannot be diffeomorphically mapped to spheres.

An example is a spherical robot in a 3-dimensional world with disjoint spheres. Suppose
that the centers of some of the spheres are located on a circle. It can be the case that
the spheres are disjoint in task space, but their C-space images, i.e. their Minkowski sums
with the spherical robot, be non-disjoint in C-space. Nevertheless, this can happen so that
a genus 1 C-obstacle results.

A further example is the existence of revolute or rotational degrees of freedom in
the system. These can produce C-obstacle images of higher genus than the associated
task space obstacle. A simple example is an asymmetric oriented holonomic robot amidst
spheres on a 2-dimensional Euclidean world. Suppose that the world is such, that simul-
taneous collision with multiple obstacles is not possible. Still, due to the rotational degree
of freedom, the C-obstacles are 2-tori. Each one of them corresponds to a sphere in task
space.

In general, if the configuration space is embeddable in a Euclidean space En of the
same dimension n, then application of KRNFs is possible, although genus 0 obstacles in
task space will give rise to higher genus obstacles in configuration space, Fig. 7.1. This
increase in genus is caused by the topology of the revolute degrees of freedom.

Nonetheless, note that rotational or revolute degrees of freedom should not necessarily
cause such topology changes. A simple solution mentioned in [66] is to parameterize such
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Oi

x, y, θ

Task Space
θC-space

Minkowski(θ)

Figure 7.1: Holonomic asymmetric robot in planar world.

degrees of freedom by unbounded real coordinates and use a parameterization periodic
in 2π. Even if this is applied, still the previously described cases can still lead to higher
genus C-obstacles and associated model space obstacles.

7.2 Tori

7.2.1 Implicit Obstacle Function

A 2-dimensional torus Π2 = S1 × S1 centered at the origin with axis z as its rotational
axis of symmetry can be defined by the zero level set β−1(0) , {q|βi(q) = 0} of the function

βi(q) =
(
R−

√
x2 + y2

)2
+ z2 − r2 (7.1)

where q ∈ R3, R ∈ (0,+∞) is the major radius and r ∈ (0, R) its minor radius1. An
obstacle Oi having the 2-torus as its boundary can be represented as

∂Oi ,
{
q ∈ E3 : βi(q) = 0

}
Oi ,

{
q ∈ E3 : βi(q) < 0

} (7.2)

To compensate for differences from the global reference frame, a translation of the
origin to the center of the torus, followed by a rotation of its axis suffice. This follows
from symmetry considerations.

Let qi denote the torus center. Firstly, the origin is translated q′ = q − qi. Then
the rotation is applied to identify the torus axis of symmetry with the z axis. Let ni ∈
R3, ∥ni∥ = 1 be the unit vector in the torus axis of symmetry direction, with respect to the
global reference frame. Let nz ∈ R3, ∥nz∥ = 1 be the unit vector in the z axis direction.
If ni ̸= nz then set k = ni × nz and using the angle of rotation θ = arccos (ni · nz) around
axis k, the rotation matrix to be used with respect to the translated frame of reference is

0R1 = Rk(θ) = I3 cos(θ) + kkT (1− cos θ) +

 0 −kz ky
kz 0 −kx
−ky kx 0

 (7.3)

1The torus aspect ratio R
r > 1 here to avoid degeneration a horn or spindle torus, because none of these

satisfies the conditions of partially sufficient curvature at every boundary point.
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Figure 7.2: Homogenous transform of torus aligned reference frame with respect to global
one.

and the transformation is illustrated in Fig. 7.2.
After the appropriate transformation has been applied, the obstacle function partial

derivatives in the new (aligned with the torus) coordinate system is

∂

∂x

{(
R−

√
x2 + y2

)2
+ z2 − r2

}
=

∂

∂x

{(
R−

√
x2 + y2

)2}
+

∂

∂x

{
z2 − r2

}
= 2

(
R−

√
x2 + y2

) ∂

∂x

{
R−

√
x2 + y2

}
= 2

(
R−

√
x2 + y2

)( ∂

∂x
{R} − ∂

∂x

{√
x2 + y2

})
= −2

(
R−

√
x2 + y2

) 1

2

1√
x2 + y2

∂

∂x

{
x2 + y2

}
= − 2x√

x2 + y2

(
R−

√
x2 + y2

)
∂

∂y
{βi(q)} = −

2y√
x2 + y2

(
R−

√
x2 + y2

)
∂

∂z
{βi(q)} =

∂

∂z

{(
R−

√
x2 + y2

)2
+ z2 − r2

}
= 2z

(7.4)
hence obstacle function gradient in the new (aligned with the torus) coordinate system is

∇qβi(q) =


− 2x√

x2+y2

(
R−

√
x2 + y2

)
− 2y√

x2+y2

(
R−

√
x2 + y2

)
2z

 (7.5)
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We can observe that the gradient ∇qβi(q) is not defined at the free space interior point
q = [0, 0, 0]T, the origin, which is the torus center. As a result, this choice of βi(q) to
represent a torus is not suitable for building a NF. It is not C1 at the origin, hence neither
C2 there2.

Nonetheless, it is interesting to note that

lim
∥q∥→0

(∇qβi) (q) = lim
∥q∥→0


− 2x√

x2+y2

(
R−

√
x2 + y2

)
− 2y√

x2+y2

(
R−

√
x2 + y2

)
2z

 =

−2R−2R
0

 (7.6)

so it is not ill-conditioned in the origin’s neighborhood.
Even if we thought about directly defining a NF with such a βi incorporated in its

formula, blowing up of βi at the torus origin would cause a second global minimum at
the torus center qi (blowing up of φ denominator leads to 0 value, the minimum of its
codomain), different than the destination qd.

For the above reason we are going to use another implicit function, namely the same
as above after algebraic elimination of the square root. Let the 2-torus be described by
the quartic function

βi(q) =
(
x2 + y2 + z2 +R2 − r2

)2 − 4R2
(
x2 + y2

)
= x4 + 2x2

(
y2 + z2 +R2 − r2

)
+
(
y2 + z2 +R2 − r2

)
− 4R2

(
x2 + y2

)
= x4 + 2x2y2 + 2x2z2 + 2x2R2 − 2x2r2 + y4

+ 2y2
(
z2 +R2 − r2

)
+
(
z2 +R2 − r2

)2
− 4R2x2 − 4R2y2

= x4 + 2x2y2 + 2x2z2 + 2x2R2 − 2x2r2 + y4 + 2y2z2

+ 2y2
(
R2 − r2

)
+ z4 + 2z2

(
R2 − r2

)
+
(
R2 − r2

)2
− 4R2x2 − 4R2y2

(7.7)

= x4 + y4 + z4︸ ︷︷ ︸
4th order terms

+−2
(
R2 + r2

)
x2 − 2

(
R2 + r2

)
y2 + 2

(
R2 − r2

)
z2 + 2

(
x2y2 + y2z2 + z2x2

)︸ ︷︷ ︸
2nd order terms

+
(
R2 − r2

)2︸ ︷︷ ︸
constant term

This is a polynomial in multiple variables, hence a smooth function everywhere βi ∈
C∞ ([Rn,R]) ⊂ C2 ([Rn,R]) and positive in the free space interior

βi ∈ C∞ ([F \ ∂F , (0,+∞)]) ⊂ C2 ([F , (0,+∞)])

and zero on its boundary on the obstacle ∂Oi = ∂F ∩ Oi. Hence, it can be used as an
obstacle function in a KRNF.

2Note that the proof about local minima requires curvature properties in an obstacle’s neighborhood.
But C2 properties are required also away from that single obstacle, because such points may belong to the
neighborhood used in the proof for local minima near another obstacle.
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The partial derivatives of βi are

∂

∂x
{βi(q)} =

∂

∂x

{(
x2 + y2 + z2 +R2 − r2

)2 − 4R2
(
x2 + y2

)}
=

∂

∂x

{(
x2 + y2 + z2 +R2 − r2

)2}− 4R2 ∂

∂x

{
x2 + y2

}
= 2

(
x2 + y2 + z2 +R2 − r2

) ∂

∂x

{
x2 + y2 + z2 +R2 − r2

}
− 4R22x

= 4x
(
x2 + y2 + z2 +R2 − r2

)
− 8xR2

= 4x
(
x2 + y2 + z2 +R2 − r2 − 2R2

)
= 4x

(
x2 + y2 + z2 −R2 − r2

)
(7.8)

Similarly

∂

∂y
{βi(q)} = 4y

(
x2 + y2 + z2 −R2 − r2

)
(7.9)

and also

∂

∂z
{βi(q)} =

∂

∂z

{(
x2 + y2 + z2 +R2 − r2

)2 − 4R2
(
x2 + y2

)}
=

∂

∂z

{(
x2 + y2 + z2 +R2 − r2

)2}− ∂

∂z

{
4R2

(
x2 + y2

)}
= 2

(
x2 + y2 + z2 +R2 − r2

) ∂

∂z

{
x2 + y2 + z2 +R2 − r2

}
= 2(2z)

(
x2 + y2 + z2 +R2 − r2

)
= 4z

(
x2 + y2 + z2 +R2 − r2

)
(7.10)

Therefore the obstacle function gradient with respect to the aligned reference frame is

∇qβi(q) =

4x (x2 + y2 + z2 −R2 − r2)
4y (x2 + y2 + z2 −R2 − r2)
4z (x2 + y2 + z2 +R2 − r2)

 (7.11)
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Let us now find the Hessian matrix as well. The second partial derivatives are

∂

∂x

{
∂

∂x
{βi(q)}

}
=

∂

∂x

{
4x
(
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)}
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∂

∂x
{4x}
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)
+ 4x

∂

∂x

{
x2 + y2 + z2 −R2 − r2

}
= 4

(
x2 + y2 + z2 −R2 − r2

)
+ 4x2x

= 4
(
x2 + y2 + z2 −R2 − r2

)
+ 8x2

= 4
(
3x2 + y2 + z2 −R2 − r2

)
∂

∂y

{
∂

∂x
{βi(q)}

}
=

∂
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{
4x
(
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)}
= 4x

∂
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}
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{βi(q)}
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4y
(
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= 4y

∂
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{βi(q)}

}
=

∂

∂z

{
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=

∂
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+ 4z

∂

∂z

{
x2 + y2 + z2 +R2 − r2

}
= 4

(
x2 + y2 + z2 +R2 − r2

)
+ 4z(2z)

= 4
(
x2 + y2 + z2 +R2 − r2

)
+ 4(2z2)

= 4
(
x2 + y2 + 3z2 +R2 − r2

)
(7.12)

Therefore, the Hessiam matrix of this obstacle function is

D2βi(q) =

4 (3x2 + y2 + z2 −R2 − r2) 8xy 8xz
8xy 4 (x2 + 3y2 + z2 −R2 − r2) 8yz
8xz 8yz 4 (x2 + y2 + 3z2 +R2 − r2)


(7.13)

There are essentially two distinct positions for the destination qd, yielding qualitatively
different gradient fields. The first one is when qd belongs to the z = 0 plane. The
resulting field is visualized with several trajectories starting from different initial conditions
in Fig. 7.3. Codimension-2 saddle critical manifolds form around it and an isolated saddle
inside it. These critical manifolds can be ensured to be nondegenerate by a suitably high
value of k, as proved in the previous chapters.
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Figure 7.3: Trajectories from different initial conditions, on planes y =
−14,−10,−3, 0, 1, 10, respectively. In cases y = −3, 0, 1, a saddle is visible on the
z = 0 plane, inside the torus ring, near its center. The destination qd is on the right.
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Figure 7.4: Selecting a destination qd on the torus axis of symmetry leads to a circular
nondegenerate critical manifold of saddles (for a single torus on its own of course, when
other obstacles are present the symmetry may break, nonetheless for high k close to the
torus the situation tends to that when it is on its own, this is how the proof works and
hence this is why we consider it alone here).

The other case is when the destination is on the torus axis of symmetry. In this case a
circular nondegenerate critical manifold forms, as illustrated in . In the previous chapters
it has been proved that such a nondegenerate saddle critical manifold of codimension-1
has a measure zero stable set. In order to further illustrate how symmetry is responsible
for this degeneracy, in Fig. 7.4 symmetry breaking is introduced and the corresponding
trajectories shown.

7.2.2 Symmetry Breaking

Degeneracies can arise for a torus when qd is on a maximal sphere of curvature (at a
maximal point on the torus) not on the symmetry axis, or on the symmetry axis.

The case of degeneracy with qd not on the symmetry axis leads to isolated degenerate
points. It is similar to the case of isolated critical points when qd is on the symmetry axis
of an almost insufficiently curved ellipsoid. Both cases can be analyzed with tools from
Catastrophe theory.

Here we are going to work on the degeneracy arising due to symmetry, when the
destination qd belongs to the torus’ axis of symmetry (here the z axis of the aligned
coordinate system).

It is expected that, although there exists a continuum of critical points forming a
critical manifold, rendering such a KRNF degenerate, hence not a NF according to the
classical Koditschek-Rimon definition of a general NF, using the Morse-Bott Lemma and
the quadratic form expression developed, we can show that the critical set comprises of
the union of disjoint smooth connected critical submanifolds and isolated points, hence
there can be no open stable manifold.

The stable manifold in this case is of zero measure, which is the reason for requiring
non-degeneracy in the first place [21].

A viable alternative to avoid a critical manifold is to break the rotational symmetry of
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qc

qc qc

Figure 7.5: Torus symmetry breaking results into four isolated critical points, instead of
a critical manifold. Even if the isolated critical points are degenerate, it can be proved
that their stable set is of Lebesgue measure zero, suing Thim’s Splitting Lemma and the
fact that radially the NF is positive definite and in one principal tangent direction the NF
is negative definite due to sufficient curvature (for suitably high k).

the positive level sets βi(q) = C > 0, but not of the 0 level set, to avoid affecting the
obstacle’s shape.

This symmetry breaking can be achieved by introducing a rotationally asymmetric term
in the implicit function. For level set β−1

i (0) to remain unaffected, a multiplicative term is
selected, to obtain

βi(q) = cos2(θ)︸ ︷︷ ︸
symmetry-breaking term

((
x2 + y2 + z2 +R2 − r2

)2 − 4R2
(
x2 + y2

))
(7.14)

where θ = arctan 2(y, x). This breaks the degenerate 1-dimensional critical submani-
fold into four isolated critical points (possibly degenerate, but this again does not matter
according to the splitting Lemma applied to the 2-torus), as shown in Fig. 7.5 and the
corresponding trajectories in Fig. 7.6.

7.3 Supertoroids

Supertoroids [42] are defined by the implicit function

βi(x, y, z) =

(( x

a1

) 2
ε2

+

(
y

a2

) 2
ε2

) ε2
2

− a4


2
ε1

+

(
z

a3

) 2
ε1

− 1 (7.15)

where ε1, ε2 ∈ (0,+∞) are exponent parameters, a1, a2, a3 > 0 are the three radii of the
supertoroid and a4 = r√

a21+a22
, where r > 0 is the torus radius. Differentiation yields the
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Figure 7.6: Symmetry breaking removes the critical manifold and leads to four isolated
critical points.

following gradient
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
(7.16)

Note that the order of differentiability (C2 etc) depends on the values of ε1, ε2. For ε1 ≤ 2
the supertoroid is twice continuously differentiable away from (x, y) = (0, 0), similarly to
the torus. Loss of differentiability at the origin can be avoided by changing its definition
away from the obstacle (since (x, y) = (0, 0) never belongs to the supertoroid), which is
always possible, provided the NF is tuned with a sufficiently high k.

Any torus is everywhere partially sufficiently curved. On the contrary, to obtain ev-
erywhere partially sufficiently curved supertoroids, the parameters ε1, ε2, a1, a2, a3 should
be appropriately selected. For example, the supertoroid defined by ε1 = 1, ε2 = 0.25, a1 =
0.5, a2 = 0.5, a3 = 0.75 is everywhere partially sufficiently curved. It is illustrated in
the example of Fig. 7.9. For these parameter values βi is not differentiable at the axis
(x, y) = (0, 0), but this can be remedied as already commented, because it is away from
the obstacle.

7.4 Complicated worlds

In 2d ellipses of limited eccentricity are examples of sufficiently curved obstacles
Fig. 5.1. A point agent navigating such an everywhere sufficiently curved world is shown
in Fig. 7.7a. No diffeomorphisms are needed, the Koditschek-Rimon Navigation Func-
tion is directly defined on the world. Nevertheless, they are still applicable to treat full
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Figure 7.7: Sufficiently curved worlds. In more detail, a point agent in a sufficiently curved
elliptic world and a sufficiently curved elliptical agent in a sufficiently curved elliptic world.

non-convexities. An elliptic agent in the elliptic 2d world of Fig. 7.7b requires an implicit
Minkowski sum. We use the derivative of Rvachev conjunction [91, 92] on a set of agent
boundary points. This provides ∇β, the C-space is sufficiently curved, as the Minkowski
sum of sufficiently curved obstacles [44]. In Fig. 7.9 a point agent safely converges to qd in
an everywhere partially sufficiently curved world, illustrating how tori enable treatment of
multiply connected obstacles, previously not representable by sphere worlds. The vector
field driving it has been visualized in Fig. 7.8. A useful note is that as the C-space dimension
increases, the NF method has an advantage, because more directions of “escape” become
available and full non-convexity more rare.
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q0

qd

q0

qd

Figure 7.8: Navigation Function gradient field in the world of Fig. 7.9 and the same world
without the supertoroid.
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Figure 7.9: Trajectories in complicated everywhere partially sufficiently curved world.
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Chapter 8

Navigation Function Simulation
Toolbox

The author has developed a Navigation Function Simulation Toolbox for MATLAB. It
enables the user to draw circular obstacles, move and resize them, place the agent and its
destination as prefered and select a navigation function potential of his choice. Simulation
may be run with a user selected parameter k value or with the automatically calculated
k, which guarantees obstacle avoidance and convergence to the goal configuration, as
analyzed in chapter 2.

A README and a LICENSE are included in the Toolbox. An info.xml and helptoc.xml,
together with an HTML documentation are provided in the htmldoc directory as a reference
accessible with the MATLAB Help Browser, or from the MATLAB Start button menu about
toolboxes.

To install the toolbox run installnfsim, following the instructions contained in the
accompanying README.

Table 8.1: Developed software metricsa.

Tool Files Code Comments Blank Total
# # % # % # % #

nfsim 214 5567 54% 2946 29% 1740 17% 10253
nflearn 41 1478 58% 611 24% 473 18% 2562
ltlmasnf 55 2338 53% 1282 29% 768 18% 4388

Total 310 9383 55% 4839 28% 2981 17% 17203
a CLOC has been used to generate these metrics, [119].

8.1 Toolbox structure

8.1.1 Analysis spaces

The usual analysis is performed in C-space. For simple mobile robot systems the
task space and C-space are either identical or almost so. In case of spherical agents
and obstacles with holonomic constraints, the C-space is just a similar task space where
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Problem Initialization

Motion Planning Solver

PostProcessor

Computational Part Graphical User Interface

select settings

init plots

update plots
Module
Library

Figure 8.1: Navigation function simulation toolbox architecture.

all bodies other than the agent have originally been spheres, hence their C-images are
spheres of increased radii. For KRNF the only constraint is that the augmented spheres do
not intersect each other. But for complicated cases, mapping to a Model Space enables use
of additional planning methods. Therefore, there are three images of the same problem:
Task Space, C-Space, and Model Space, as illustrated in Fig. 8.2.

Configuration Space

Task Space

Model Space

whatever appropriate

diffeomorphism

Figure 8.2: Analysis spaces.

In case of nonholonomic agents the analysis is
performed in C-space and the controller is proved
to be a Lyapunov function there, it is not such for
purely topological reasons.

In case the Jacobian between C-space (where
actuation takes place -?) and Model Space is calcu-
lated (either numerically or analytically) then the an-
alytic gradient in Model Space can be used because
it will be possible to transform it back to C-space.

The above is also applicable when the C-space
is identical with the Model space.

In case the Jacobian is not known for the dif-
feomorphism, then the gradient and Hessian matrix
are calculated numerically in the C-space.

There are examples (like dexterous grasping), for which the C-space (i.e., finger con-
figurations) is mapped to Model space (object C-space) through a differentiable mapping
whose second derivative requires the Jacobian of kinematics and its derivative and inverse.
In such a (rare) case the second derivative of the diffeomorphism is available analytically,
e.g. Θ̈ = J−1ẍ− J−1J̇Θ̇ (Craig p.186, Eq.6.97).

If the obstacle second derivatives are as well twice differentiable, analytically, then
the Hessian can be exactly calculated there.

Also, if the obstacles are defined in C-space and the Hessian should be exactly cal-
culated for searching the Model space, then the diffeomorphism’s 2nd derivative should
be used to calculate the obstacle Hessians in Model space from the obstacle Hessians in
C-space.

These can be combined with Hessians of other obstacles which are directly exactly cal-



8.1 Toolbox structure 203

culated in Model space. Alternatively, they could be calculated in task space and mapped
to C-space.

Anyway, the easiest way is to use a numerical Hessian, although not accurate.
Also, the obstacle function β could be numerically differentiated to find D2β and then

used in an analytical calculation of the field Hessian.
Note: KRNF require a diffeomorphism to exist because they want to ensure that finite

(hence bounded) gradients (=velocities=control inputs) in Model space remain bounded
in C-space. If this is independently ensured, one can integrate the trajectory in model
space and then map the resulting points to C-space (i.e., map the next point using the
inverse diffeomorphism, hence avoid mapping the gradient using the diffeomorphism’s
Jacobian (so we do not need to find the Jacobian, nonetheless we need to theoretically
prove it is nonsingular everywhere).

After integrating model space the new point can be mapped back with the inverse
diffeomorphism (which is certainly easier to calculate than the second derivative of the
inverse diffeomorphism).

Then new−old
∆t

= u is the velocity command in C-space, which due to the theoretical
guarantees on the Jacobian is bounded.

The transformation should be invertible in order for the inverse to exist and take
us back. This is equivalent to non-singular Jacobian for the forward mapping. Inverse
mapping of velocities also requires invertibility of the inverse mapping derivative, which is
guaranteed by invertibility of the forward mapping derivative (Jacobian).

Logically enough, the forward 2nd derivative of the mapping should exist for the in-
variance transform theorem to hold, but no higher derivatives need exist.

8.1.2 Transformations between Analysis Spaces

Configuration Space

Task Space

Model Space

whatever appropriate

diffeomorphism

KRNFS (spheres)

KRNF (general)

PNF (spheres)

Khatib (general)

MAKRNFDS (spheres)

Figure 8.3: Analysis spaces.

Depending on the specific problem treated, a
custom map is needed to map the task space or con-
figuration space representation to the model world.
This step depends on the details of each case. Al-
though it is supported by some functions provided,
such as diffeomorphisms, it still relies to a large ex-
tent on the problem instant considered.

This is appropriate in order to optimize each im-
plementation appropriately and in fact reduces clut-
ter. The reason is that interfacing to the same model
space can vary widely between even similar prob-
lems, so no all-over function is provided for this
level. By dividing the mapping between C-space and
Model space from the planner more transparent data
interfaces are achieved.

For data type transformations appropriate con-
verters can be used. Each transformation can act on
a world structure and produce another world struc-
ture. This can then be parsed to arguments suitable
to be provided as input to the chosen planning al-
gorithm. Hence, the need exists for data translator
functions.
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After the above procedure, the problem has migrated to the model space. In model
space everything is defined using standard primitives, see Fig. 8.3. Therefore, at this
level many facilities can be provided. The planning algorithm is called and supplied with
geometric arguments in the appropriate format of standardized geometric primitives.

Table 8.2: Function Libraries.

Potential Field Library Geometry Library

Khatib Sphere
KRNFSa Ellipse, Ellipsoid
KRNF One-Sheet Hyperboloid
MAKRNFDS 2-Torus
PNF Superquadric

Rvachev operations (CSG)
General (like splines)

a Embedded sphere calculations for efficiency.

8.2 Function Conventions

8.2.1 Potential Field Function

Input q = [q1, q2, . . . , qm] calculation points.
If the field function only accepts β and does not call any other function to combine βi

of multiple obstacles, then the user should evaluate β from βi before calling the potential
field function. This can be done either with custom code, or by using either bi2b or
rvachev.

Apart from the above exception, the majority of potential field functions require the
following standard arguments. In what follows n is the model space dimension, M is the
number of all obstacles (including zeroth if such exists) and N is the number of calculation
points qj ∈ En on which the function values are required.

8.2.2 Gradient of Potential Field Function

The user should use the geometry library functions to calculate individual obstacle
gradients ∇β and obstacle function values βi and if Dbi2Db, bi2b are not incorporated in
the field gradient function, the user should also combine them to obtain ∇β in order to
pass it as an argument to the selected gradient function.

8.2.3 Hessian matrix of Potential Field Function

The user should independently compute obstacle Hessian D2β, gradient ∇β and im-
plicit function β (or for multiple obstacles, if appropriate) and provide them to the Hessian
matrix function of the potential field.
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Table 8.3: Potential Field Function.

What Type Size Equation

Output Row array 1×N [φ(q1), φ(q2), . . . , φ(qN)]
Calculation points Matrix n×N [q1, q2, . . . , qN ]
Destination point Column vector n× 1 qd
Single β at qj Row array 1×N [β(q1), β(q2), . . . , β(qN)]

Multipleaβi at qj Matrix M ×N


β1(q1) β1(q2) . . . β1(qN)
β2(q1) β2(q2) . . . β2(qN)
...

...
...

βM(q1) βM(q2) . . . βM(qN)


a Exceptions are any functions operating in sphere worlds, e.g. krnfs, which incorporate
sphere obstacle calculations to reduce computational cost. For example, calculation of
classic tuning for KRNFS is optimized for spheres.

Table 8.4: Gradient of Potential Field Function.

What Type Size Equation

Output Matrix n×N [(∇φ) (q1), (∇φ) (q2), . . . , (∇φ) (qN)]
Calc. points Matrix n×N [q1, q2, . . . , qN ]
Dest. point Col. vec. n× 1 qd

Single β at qj
Row
array 1×N [β(q1), β(q2), . . . , β(qN)]

Multipleaβi at q Matrix M ×N


β1(q1) β1(q2) . . . β1(qN)
β2(q1) β2(q2) . . . β2(qN)
...

...
...

βM(q1) βM(q2) . . . βM(qN)


Single ∇β at qj Matrix n×N [(∇βi) (q1), (∇β) (q2), . . . , (∇β) (qN)]

Multiple ∇βi at qj
Cell
array

M × 1


[(∇β1) (q1), (∇β1) (q2), . . . , (∇β1) (qN)]
[(∇β2) (q1), (∇β2) (q2), . . . , (∇β2) (qN)]

...
[(∇βM) (q1), (∇βM) (q2), . . . , (∇βM) (qN)]


a Note that grad_krnfs, grad_pfs are exceptions to the above rule, because they are optimized for
sphere worlds. The reason is that they are only defined on sphere worlds. In their case, the user
provides sphere centers and radii, then the gradient field function takes care of calculating any
obstacle data required.
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Table 8.5: Hessian matrix of Potential Field Function.

What Type Size Equation

Output Cell
array

1×N {(D2φ) (q1), (D
2φ) (q2), . . . , (D

2φ) (qN)}

Calc. points Matrix n×N [q1, q2, . . . , qN ]

Dest. point Column
vector

n× 1 qd

Single β at qj
Row
array 1×N [β(q1), β(q2), . . . , β(qN)]

Multipleaβi at q Matrix M ×N


β1(q1) β1(q2) . . . β1(qN)
β2(q1) β2(q2) . . . β2(qN)
...

...
...

βM(q1) βM(q2) . . . βM(qN)


Single ∇β at qj Matrix n×N [(∇βi) (q1), (∇β) (q2), . . . , (∇β) (qN)]

Multiple ∇βi at qj
Cell
array

M × 1


[(∇β1) (q1), (∇β1) (q2), . . . , (∇β1) (qN)]
[(∇β2) (q1), (∇β2) (q2), . . . , (∇β2) (qN)]

...
[(∇βM) (q1), (∇βM) (q2), . . . , (∇βM) (qN)]


Single D2β at q)j Cell

array
1×N {D2β(q1), D

2β(q2), . . . , D
2β(qN)}

Multiple D2βi at qj
Cell
Ma-
trix

M ×N


D2β1(q1) D2β1(q2) . . . D2β1(qN)
D2β2(q1) D2β2(q2) . . . D2β2(qN)

...
D2βM(q1) D2βM(q2) . . . D2βM(qN)


a Note that hes_krnfs is an exception as previously described.
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Chapter 9

Learning Navigation Functions

9.1 Introduction

We are interested in constructing feedback motion planning controllers in unknown
environments. In particular, the selected controllers are of the Navigation Function (NF)
type. These controllers are in general functions of the desired destination, the current
configuration and the configuration space obstacles. The first two, i.e., destination and
current configuration, are always known. What is unknown are the obstacles within the
configuration space.

Let us assume that we have a set of experimentally measured feasible trajectories in
the configuration space. This offers an indication of which paths to prefer and which to
avoid. It incorporates velocity information in the form of both direction and magnitude.

Our aim is to create NF controllers which will navigate from different initial conditions
to different desired configurations, while utilizing the information available in the form
of the available measured trajectories. This can be achieved by approximating obstacles
based on the experimental information.

In more detail, an implicit obstacle function β encodes obstacles in the original NF
methodology. Here we formulate the Inverse Problem of Navigation Functions. This
will lead to a Partial Differential Equation (PDE), which is solved using the experimental
trajectories as collocation conditions. By solving this PDE, an approximation of the obstacle
function β is obtained, which constitutes an estimate of the unknown obstacles which the
measured trajectories tried to avoid.

Then, in chapter 10, the method developed here is applied to anthropomorphic grasp-
ing. In this case, the required experimental trajectories come from human hand move-
ments measured during reach-to-grasp movements for a variety of different objects. To
reduce the solution space dimension, in this particular application Principal Component
Analysis provides a subspace of the hand configuration space, within which to construct
the solution. The selected subspace is the one capturing most of the variance observed
in the trajectories, in other words the subspace spanned by the principal components
corresponding to the n largest eigenvalues of the covariance matrix.
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9.2 Problem Definition

9.2.1 Definitions

Assume that a set of Ne ∈ N∗ , N \ {0} experimentally measured trajectories

Xi, i ∈ Ie , {1, 2, . . . , Ne} (9.1)

is available. Each of them is a set

Xi , {xi(tj)}j∈Ii , Ii , {1, 2, . . . , Ni} , i ∈ Ie (9.2)

of Ni ∈ N∗ configurations xi(tj) ∈ W ⊂ Rn recorded in subsequent time instants tj ∈
[0,+∞), which are indexed in increasing order tj < tj+1, ∀j ∈ Ii \ {Ni} , ∀i ∈ Ie.

Also, assume that the desired destinations qdi ∈ W , i ∈ Ie are provided, together with
the velocities corresponding to each measured trajectory point

ui(tj) ,
∂xi

∂t
(tj), j ∈ Ii, i ∈ Ie. (9.3)

Note that both the destinations qdi and velocities ui(tj) need not be independently pro-
vided. If no destinations are provided, then we can set qdi = xi(tNi

), provided the trajec-
tories Xi are feasible and had converged successfully. If no velocity sensing is available,
the velocities can always be calculated by numerically differentiating the available config-
uration data

ui(tj) ,
xi(tj+1)− xi(tj)

tj+1 − tj
, j ∈ Ii \ {Ni} , i ∈ Ie. (9.4)

In such a case, the last configuration lacks a corresponding velocity, so Ni is in this
case redefined discarding the last configuration. Let Ui , {ui(tj)}j∈Ii , i ∈ Ie denote the
discrete-time samples each velocity function.

9.2.2 Navigation Functions

Let F ⊂ En be a compact connected C2 manifold with boundary1. For the inverse
problem we use the general definition of NFs. The workspace is defined as the compact
connected set

W , {q ∈ En| 0 ≤ β0(q)} ⊂ En (9.5)

, which is bounded by the zeroth obstacle defined as

O0 , En \W = {q ∈ En| β0(q) < 0} , β0 ∈ C2 [En,R] (9.6)

Here we are treating the inverse problem, so it suffices to define the aggregate obstacle
function β ∈ C2 [En,R] directly, not as the product of individual obstacle functions βi,
each of which corresponds to each connected component (obstacle) Oi of the free space
complement En \ F . It follows that the negative coset preimage of β is the non-free
space, occupied by obstacles

En \F =
∪
i∈I0

Oi = β−1(0) (9.7)

1Note that boundary non-smoothnesses are tractable, as described in [28].
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Individual obstacles can still be defined from β. Each obstacle is a different connected
component of the negative coset preimage of βi. As a result, individual obstacles are by
definition disjoint. In any case, we are not going to use individual βi in the study of the
NF inverse problem, only β.

The configuration is denoted by q ∈ F ⊆ En and the desired destination by qd ∈
F \ ∂F . The Koditschek-Rimon NF is a specific form of NF defined as follows

φ(q, qd) ,
γd(q, qd)

(γd(q, qd)k + β(q))
1
k

= φ (γd(q, qd), β(q)) (9.8)

where γd(q, qd) = ∥q − qd∥2 =⇒ γd ∈ C∞[W , [0,+∞)] is the attractive effect of the desired
destination qd and here β ∈ C2[W ,R] is the obstacle repulsive effect. Note that β is here
only C2, hence φ is only C2 and not analytic, but as already noted this suffices [23]. In
the NF methodology, the scalar potential field φ is used to control the single integrator
holonomic system

∂x

∂t
(t) = u(t) (9.9)

with the control law
u(t) = − (∇qφ) (x(t), qd) (9.10)

yielding the system differential equation{
∂x
∂t
(t) = u(t)

u(t) = − (∇qφ) (x(t), qd)

}
=⇒ ∂x

∂t
(t) = − (∇qφ) (x(t), qd) . (9.11)

The construction of φ naturally separates information regarding the known destination
in γd(liveness/asymptotic stability), from information concerning collision avoidance with
(possibly unknown) obstacles in β (safety/stability). This is a key observation leading to
the formulation of the inverse problem.

Moreover, the method developed here constructs a β such that φ be a NF for the
desired trajectories. This is potentially more flexible than only tuning k. The solution
obtained later for (9.22) guarantees correct results. This follows from the fact that the
solution is enforced to reproduce as close as it can the measured speeds over the same
paths. As a result, if the experimentally measured speeds do not become zero, this is
mathematically guaranteed to yield a NF for the subset of the configuration space which
has been experimentally explored.

9.2.3 Working Hypothesis

We make the working hypothesis2 that a NF function of the form of Equation 9.8 can
adequately represent a controller producing the experimental measurements recorded3.
Taking into account to the controller definition of (9.11) according to the NF methodology,
this assumption is equivalent to equating the measured velocity function ui(t) to the NF
gradient

(∇qφ)
(
xi(t), qdi

)
= (∇qφ)

(
γd
(
xi(t), qdi

)
, β

(
xi(t)

))
(9.12)

2The term “working hypothesis” is attributed to Charles S. Peirce, John Dewey.
3Equivalently, that there exists a controller of this form, such that it can produce such trajectories.
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at the corresponding configuration xi(t) measured the same time instant t. In continuous
time this is expressed as

ui(t) = − (∇qφ)
(
xi(t), qdi

)
= − (∇qφ)

(
γd
(
xi(t), qdi

)
, β

(
x(t)

))
(9.13)

In discrete-time, the above becomes

ui(tj) = − (∇qφ)
(
xi(tj), qdi

)
= − (∇qφ)

(
γd
(
xi(tj), qdi

)
, β

(
xi(tj)

))
(9.14)

9.2.4 Problem Statement

The problem can then be stated as follows, Fig. 9.1. Using the above experimental
data E , {Xi, Ui, qdi}Ie find a function β ∈ C2 ([En,R]) to satisfy equation

u(tj) = − (∇qφ)
(
xi(tj), qdi

)
, ∀j ∈ Ii, ∀i ∈ Ie (9.15)

subject to the positivity constraints on the sampled points

β
(
xi(tj)

)
> 0, ∀j ∈ Ii, ∀i ∈ Ie (9.16)

and the workspace boundary ∂W closure requirement

β(q) ≤ 0, ∀q ∈ ∂W (9.17)

The positivity constraints (9.16) follow from the obstacle function definition

β(q) > 0, ∀q ∈ F \ ∂F (9.18)

in the free space interior. The closure at the workspace boundary (9.17) ensures that the
trajectories produced by the resulting controller will always remain within W , the domain
of our problem.

Note that by now we have departed from our working hypothesis. The problem now is
rigorously posed. The experiments specify β on a set of measure zero (union of sampled
points). As a result, the solution function should be interpolated in the rest of the domain
and a collocation solution method used. Defining the solution over the whole free space
is not a priori possible in an unknown world. For this reason, the solution is defined over
the whole workspace.

9.3 Inverse Method Formulation

9.3.1 Partial Differential Equation

Note that by (9.14) is the same as (9.15), hence it is equivalent to

ui(tj) = − (∇qφ)

(
γd
(
xi(tj), qdi

)
, β

(
xi(tj)

))
(9.19)

Since

(∇qφ) (q, qd) =
∂φ

∂γd

(
γd(q, qd), β(q)

)
(∇qγd) (q, qd) +

∂φ

∂β

(
γd(q, qd), β(q)

)
(∇qβ) (q) (9.20)
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Figure 9.1: Problem definition.

When ∂φ
∂β

> 0, the above equation can be solved with respect to the obstacle function
derivative (gradient) (∇qβ) (q), as follows

(∇qβ) (q) =
(∇qφ) (q, qd)− ∂φ

∂γd

(
γd(q, qd), β(q)

)
(∇qγd) (q, qd)

∂φ
∂β

(
γd(q, qd), β(q)

) (9.21)

This is a PDE in the configuration q for the unknown obstacle function β. Substituting the
experimental results using the problem statement (9.15) in (9.21)

(∇qβ)
(
xi(tj)

)
= −

ui(tj) +
∂φ
∂γd

(
γd
(
xi(tj), qdi

)
, β
(
xi(tj)

))
(∇qγd)

(
xi(tj), qdi

)
∂φ
∂β

(
γd
(
xi(tj), qdi

)
, β
(
xi(tj)

))
 ,

∀j ∈ Ii, ∀i ∈ Ie

(9.22)

In this equation ui(tj) is known from experimental measurements, ∂φ
∂γd

, ∂φ
∂β
are also known

functions of γd(q, qd) and β(q), after we have selected a φ, and γd,∇qγd are also known
functions of the experimental trajectory xi(tj) and the known destinations qdi. As a result,
we can substitute

ui

(
xi(tj)

)
,

∂φ

∂γd

(
γd
(
xi(tj), qdi

)
, β
(
xi(tj)

))
,

∂φ

∂β

(
γd
(
xi(tj), qdi

)
, β
(
xi(tj)

))
,

γd
(
xi(tj), qdi

)
, (∇qγd)

(
xi(tj), qdi

) (9.23)

to obtain the PDE coefficients at points xi(tj), which contains as unknowns only terms
(∇qβ)

(
xi(tj)

)
and β

(
xi(tj)

)
.

This then constitutes a PDE to solve in the unknown obstacle function β : Rn → R
under the constraints (9.16) and (9.17). When a paraboloid attractive function γd is used,
then ∇γd(q) = 2(q − qd). We still need to select a NF form, which specifies the form of
∂φ
∂γd

, ∂φ
∂β
.
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9.3.2 Selecting a NF form

In what follows two different Navigation Function types are substituted in the PDE,
the Koditschek-Rimon NF φ and its non-degenerate unsquashed counterpart φ̂1, which are
defined as

φ =
γd(

γk
d + β

) 1
k

, φ̂1 =
γk
d

β

∣∣∣∣
k=1

=
γd
β (9.24)

respectively. The results are compared and φ selected for further use. For more details
concerning these functions, their derivatives, degeneracies and substitution in the PDE,
see Appendix A. Functions φ, φ̂ have parallel gradients, as can be observed in Table A.3.
Nonetheless, ∇φ exhibits more nonlinearity than ∇φ̂, hence also more nonlinearity than
∇φ̂1, which is evident from

∇φ =

(
γk
d + β

) 1
k ∇γd − γd∇

((
γk
d + β

) 1
k

)
(γd + β)

2
k

=
(
γk
d + β

)− 1
k
−1
(
β∇γd −

1

k
γd∇β

)
∇φ̂ =

β∇
(
γk
d

)
− γk

d∇β
β2

=
βkγk−1

d ∇γd − γk
d∇β

β2

(9.25)

Substituting the partial derivatives in (9.13) to obtain the specific form of the PDE
associated with each of the selected functions, as proved in section A.4, we obtain

(∇qβ)
(
xi(tj)

)
=

(
k

ui(tj)

γd
(
xi(tj), qdi

))(γd(xi(tj), qdi
)k

+ β
(
xi(tj)

)) 1
k
+1

+

(
k
(∇qγd)

(
xi(tj), qdi

)
γd
(
xi(tj), qdi

) )
β
(
xi(tj)

) (9.26)

and

(∇qβ)
(
xi(tj)

)
=

(
ui(tj)

γd
(
xi(tj), qdi

)k
)
β
(
xi(tj)

)2
+

(
k
(∇qγd)

(
xi(tj), qdi

)
γd
(
xi(tj), qdi

) )
β
(
xi(tj)

) (9.27)

for φ, φ̂, respectively, where q ∈ F \ {∂F ∪ {qd}} =⇒ γk
d

β
∈ (0,+∞).

Equation (9.22) (and its specific forms (9.26), (9.27)) is a first order semi-linear
variable-coefficient partial differential equation. The vector coefficients are known at the
experimental measurement points. By selecting an approximating candidate function β,
the error from expected values can be calculated at the sampled points xi(tj), i ∈ Ie ⊂
N \ {0}. Therefore, an iterative algorithm can be used for minimization of the PDE satis-
faction error (residual) in the parameter space of the β approximation function.

9.3.3 Variable PDE coefficients and k damping

This subsection concerns only the PDE corresponding to function4 φ̂1. Nonetheless,
the discussion here offers useful insight for the case of φ as well.

4Here, the expressions correspond to φ̂, but k = 1 is used later to avoid degeneracy at the destination.
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Consider (9.27). Before substitution of the experimental data, this equation had the
form

(∇qβ) (q) =

(
− (∇qφ̂1) (q, qd)

γd(q, qd)k

)
β(q)2 +

(
k
(∇qγd) (q, qd)

γd(q, qd)

)
β(q) (9.28)

In this equation it is assumed that the system is controlled by a NF, so that the control
action − (∇qφ̂1) (q, qd) is a function only of q, qd (where q = xi(tj) when considering mea-
surements). Therefore, before substituting experimental measurements, we can define
the variable PDE vector-coefficients as functions of only q, qd, i.e.,

A (q, qd) ,
− (∇qφ̂1) (q, qd)

γd(q, qd)k
, B(q, qd) , k

(∇qγd) (q, qd)

γd(q, qd)
(9.29)

But, when experimental measurements are substituted in the PDE, the definition of A
should be necessarily changed to

A (tj, qdi) ,
ui(tj)

γd
(
xi(tj), qdi

)k (9.30)

The reason for this is that for experimental data, at the same point q (or its neighborhood
in a practical setting), there may be multiple samples at different time samples tj. Due
to the fact that the measured system is not guaranteed to be driven by a NF, but we
have assumed that it can be approximated by one, the measured control action ui(tj) at
different times tj for which the system passes through the same point q′ = xi(tj), may be
different. In other words, if the control action was really created by a NF, it is a function
only of q′, but because this is not true for the real system, if it goes through the same
point at different times during the experiment, the measured control actions ui(tj) at the
same q′ may be different. For them not to be different, it is necessary that

w(q) , {ui(tj)| ∃tj ∈ [0,+∞) : xi(tj) = q ∈ En} (9.31)

be a function, which is not in general true for the experimental data. This is the reason
for which A will not necessarily be a function of q when experimental measurements are
substituted. As a result, it should be redefined as a function of tj, qdi.

However, the second coefficient B remains unchanged, i.e., a function only of q =
xi(tj), qdi. This is also true in (9.26). It comes from the fact that B does not depend on
the measurements, i.e., it is decoupled from the experiment5. These comments on the
coefficients will be used later.

9.3.3.1 Numerical differentiation

Since only sampled points xi(tj) are available in our case the velocity ui(tj) is obtained
by finite differences, taking into account also the sampling period

ui(tj) =
xi(tj+1)− xi(tj)

T
(9.32)

where T = 1ms in our case (after re-sampling the experimental measurements) and the
units of xi(tj) are degrees of angle [x] = °.

5Coefficient B contains only destination information, whereas coefficient A contains both obstacle and
destination information.
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9.3.3.2 Dimensional considerations

Mentioning units summons the associated issue with the NF formula. Assuming a
circular paraboloid γd and that its arguments q, qd are expressed in configuration space
(“length”) dimensions leads to the following NF gradient units (where [k] = 1, i.e. k is
assumed unitless)

[∇φ̂] =

[
γk
d

β2

kβ∇γd
γd
−∇β

β2

]
=

[γd]
k

[β]2

[k][β] [∇γd]
[γd]
− [∇β]

[β2]
=

[q]2k

[β]2

1[β] [q]
[q]2
− [β]

[q]

[q]4

=
[q]2k

[β]2

[β]
[q]
− [β]

[q]

[q]4
= [q]2k−4[β]−2 [β]

[q]
= [q]2k−4−1[β]−2+1 = [q]2k−5[β]−1

(9.33)

Taking into consideration that in the usual KRNF formulation β has the same “square C-
space distance” units as the paraboloid γd leads to [∇φ̂] = [q]2k−5[q]−2 = [q]2k−7, which
does not include any time units.

To achieve unit homogeneity a dimensional constant multiplicative gain KNF with
should be used in the controller, even if it possesses unit magnitude

u(t) = −KNF (∇qφ̂) (x(t)) (9.34)

9.3.3.3 Selection of tuning parameter k

Let us now visualize the vector PDE coefficient values A,B which are calculated from
the experimental measurements. These are plotted in Fig. 9.2a and Fig. 9.2b for k = 1
and k = 2, repsectively. In Fig. 9.3a and Fig. 9.3b the corresponding vector plots are
provided.

It can be observed that the last measurements of trajectory near qd strongly affect the
relative order of magnitude of A and B. Furthermore, the inconsistency is even stronger
for larger k values.

This happens due to the form of A = u
γk
d
and B = k∇γd

γd
which leads to

∥A∥
∥B∥

=
∥u∥ γ−k

d

k ∥∇γd∥ γ−1
d

=
∥u∥

γk−1
d ∥∇γd∥

=
∥u∥

γk−1
d 2
√
γd

=
∥u∥

2γ
k− 3

2
d

(9.35)

There are two cases for which different behaviors arise both near qd and away from it.
Before continuing, note that

q → qd ⇐⇒ γd(q)→ 0+

∥q∥ → +∞ ⇐⇒ γd(q)→ +∞
(9.36)

so the two cases are for k = 1 and k ≥ 2 the following

∥A∥
∥B∥

=

{
1
2
∥u∥ γ

1
2
d , k = 1

1
2
∥u∥ γ

3
2
−k

d , k ≥ 2 =⇒ 3
2
− k ≤ 3

2
− 2 = −1

2
< 0

(9.37)

If k = 1, then away from the destination qd (start of the experimental trajectory) the
ratio A

B
is amplified in favor of the experimental measurements, hence strenghtening the

information introduced in the PDE by the measurements. This is evident in Fig. 9.2a.
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Near the destination qd (end of the experimental trajectory) the reverse effect results,
where A

B
is damped. But as observed, A and B are approximately of the same order, so

that k = 1 is acceptable.
On the contrary, for k = 2 away from the destination qd (start of the experimental

trajectory) is seriously damped, as evident in Fig. 9.2b. The damping is heavy for most of
the trajectory, essentially “erasing” any experimental information u incorporated only in A
and affecting the nonlinear β2 term of the PDE. Therefore, this results in a PDE practically
decoupled from the experiment which assumes the form ∇β

β
≈ ∇γd

γd
, therefore we expect

that it will yield a solution β ≈ γd, irrespective of the experiment.
This happens because u(t) is recorded and independent of the distance to the desti-

nation. This is divided by γk
d , which is larger away from the destination, very small near it,

and is tuned by k. On the contrary, B has to similar functions
√
γd and γd in it nominator

and denominator, respectively. As a result, it is not affected by k and remains the same
decreasing function of the distance to the destination.

On the contrary, near the destination A is amplified compared to B, as is evident
by comparison of Fig. 9.2a and Fig. 9.2b. This is in favor of the experimental measure-
ments near the destination. But the erasing effect of k = 2 in most of the trajectory is
inadmissible. For the above reasons we select k = 1 when using φ̂.

Also note that the previous analysis indicates that most information about the obstacle
function β is provided by the intermediate part of the trajectory, than either by the near
or distant field.

9.3.3.4 Experimental trajectory tail rejection

There is a further issue to be addressed, related to the order of magnitude of the PDE
vector coefficient norms ∥A∥ , ∥B∥ near the destination qd. It persists even for k = 1.

It can be observed in both Fig. 9.2a and Fig. 9.2b, as well as in the vector plots of
Fig. 9.3a and Fig. 9.3b, where ∥A∥ , ∥B∥ become several orders of magnitude higher near
the destination qd than away from it. This happens because in both coefficient norms

∥A∥ = ∥u∥
γk
d

∥B∥ = k
∥∇γd∥
γd

= k
2
√
γd

γd
=

2k

γ
1
2
d

(9.38)

the distance to destination γ
1
2
d arises in the denominator. Hence, in the goal’s neighborhood

the denominator vanishes, so that A,B blow up there.
This is unwanted for the numerical solution of the PDE. As explained later, the PDE

is solved by iteratively minimizing an error functional J (to be defined). Since the mag-
nitudes of the coefficients differ by several orders of magnitude in the neighborhood of
the destination from the major part of the trajectory, the same percentage of error in
satisfying the PDE near the goal will result in so large errors, that they will blanket the
sum of all the rest of the errors over the whole trajectory.

For these reasons, together with considerations pertaining to numerical stability, the
trajectory measurements in the goal’s vicinity are not used in the PDE solution. The
new norm plots along the trajectory are provided in Fig. 9.4a and Fig. 9.4b, and the
corresponding vector plots of the coefficients in Fig. 9.5a and Fig. 9.5b, respectively.

Comparison of Fig. 9.4a to Fig. 9.4b indicates that the issue of diminishing experimen-
tal information away from the destination for k ≥ 2 as compared to k = 1, still remains.
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Figure 9.2: Using the complete experimental trajectory.
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Figure 9.3: Using the complete experimental trajectory. Blue vectors denote the first PDE
coefficient A (x1(tj)) and green the second B (x1(tj)), on the first experimental trajectory.

Therefore the selection k = 1 of subsubsection 9.3.3.3 remains valid for φ̂.
In sum, we can say that coefficient blowing up near the destination led us to reject

that part (where for any k value the problem does not change), whereas diminishing of
experimental measurements from the equation away from the destination for k ≥ 2 led
us to select k = 1. Since these effects relate to different parts of the trajectory, they are
independent, hence both actions are needed.

The comparison away from the destination of the two vector coefficients in the two
cases of k = 1 and k = 2 can be made by reference to the magnified trajectory de-
tails illustrated in Fig. 9.5c and Fig. 9.5d. In Fig. 9.5c the sizes of A (blue, contains
experimental information) and B (green, does not contain experimental information, only
destination information) are comparable, whereas in Fig. 9.5d they are not, with B by far
overwhelming A.

9.4 PDE Solution

9.4.1 Basis Selection: Splines

Basis splines (B-Splines) [50] were selected as the solution basis. Therefore, the
solution is searched in the finite-dimensional space of B-spline coefficients, where

β(q) =

m1∑
i1=1

m2∑
i2=1

· · ·
mn∑
in=1

(
ci1i2...in

n∏
r=1

B (qr|tr)

)
(9.39)

where β ∈ C is the interpolated obstacle function, q ∈ Rn is the system’s state, qr ∈ R
(only) here denotes the rth component of q,

C , {ci1i2...in}ij∈{1,2,...,mj},j∈{1,2,...,n} ∈ ×j∈{1,2,...,n}Rmj (9.40)

is the coefficient tensor,

t = [trir , tr(ir+1), . . . , tr(ir+hr)]

tij ∈ R, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,mi + hi}
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Figure 9.4: Using the truncated experimental trajectory.
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Figure 9.5: Using the truncated experimental trajectory.
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are the knot sequences of each dimension and hi ∈ R, i ∈ {1, 2, . . . , n} are the orders of
the splines of each dimension and B(qr|tr) are the basis functions. Let us also stack the
coefficient tensor in a vector of design variables for the minimization problem

c , [c11···1, c21···1, . . . , cm11...1, c12...1, c22...1, . . . , cm12...1, . . . , cm1m2...mn ]
T ∈ R

∑n
i=1 mi

The spline B-form is used instead of the piecewise polynomial representation because it
implicitly incorporates smoothness constraints.

The PP-form (Piecewise Polynomial) is utilized for fast calculations, but only for that
purpose. We construct a spline using the B-form and use the constructed spline repre-
sented in PP-form (MATLAB Curve Fitting Toolbox).

9.4.1.1 Domain of definition

The domain of definitionD is selected based on the variable limits of the problem under
consideration. Selection of an appropriate domain is important because if its boundary
∂D is more than a knot away from the closest trajectory point, then the boundary closure
(9.17) is implicitly satisfied during solution, provided the initial iteration solution is zero on
the boundary.

In this case, perturbations of B-spline coefficients corresponding to boundary knots do
not affect the collocation error on the experimental trajectories. As a result, the associated
cost functional perturbation ∆J is zero, hence the respective design variable gradient
component remains zero and the coefficient remains constant. Since zero initially, the
boundary coefficients remain constantly zero and the boundary closure condition is met.

9.4.1.2 Knot allocation over dimensions and selection

The problem is multidimensional, which requires addressing the issue of allocating
the number of knots over dimensions efficiently. Since knots and the associated coeffi-
cients are needed mostly where more variance needs to be represented, the dimensions
are firstly analysed in terms of experimental trajectory variance. Then the numbers of
knots are allocated accordingly. More knots are assigned to the dimensions with maximal
variance.

In chapter 10 a principal subspace is selected, before the method is applied. This
also serves for the purpose described here. The allocation of knots in the case study
is proportional to the associated principal variances. In particular, 10, 6, 3 knots (exclud-
ing boundary knot multiplicity) have been used for each of the primary three Principal
Component dimensions, respectively, taking into consideration their principal variances
subsection 10.2.2.

9.4.2 Iterative semi-linear PDE system solution

To solve the semi-linear PDE (9.26) (similarly (9.27)) under the positivity constraints
(9.16) an iterative gradient descent algorithm [51]

cN+1 = cN − λJ∇cJ (9.41)

has been used, minimizing the error functional J described in subsubsection 9.4.2.2.
Here, cN denotes the B-spline coefficient values at the N th iteration of the minimization
algorithm. The positivity constraints are also incorporated in this functional, while the
boundary closure constraints (9.17) are implicitly satisfied, as already described.
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9.4.2.1 Initial point

A flat obstacle β ≡ 0 is used as the initial solution. Therefore, during the initial
iteration, the main effect is due to the terms Jsp, Jdp of the cost functional, which are
defined in what follows.

9.4.2.2 Optimization Cost Functional J

The appropriate choice of functional J : C2 ([D,R]) ×De → [0,+∞) is crucial for the
successful solution for β. The cost functional used here in the case of discrete samples6

J , 1∑
i∈Ie Ni

(w1JPDE + w2Jsp + w3Jdp + w4Jbn)

JPDE ,
∑

i∈Ie,j∈Ii

∆Eij, Jsp ,
∑

i∈Ie,j∈Ii

s (β (xi(tj))− βt)

Jdp ,
∑

qdi,i∈Ie

s (β(qdi)− βt) , Jbn ,
∑

qn∈∂W

s (β(qn))

(9.42)

where wi ∈ (0,+∞), i ∈ {1, 2, 3, 4} are weighting factors to select the relative importance
of the various terms. The offset βt serves numerical robustness (practical sign definite-
ness) by introducing a finite margin, above which β is considered positive. Function
s : R→ R is a C2-smooth switch

s(x) ,
{
x3, x ≤ 0

0, 0 < x
(9.43)

and the component functionals are described hereafter. The component functionals are
now explained.

1. The satisfaction error of PDE system (9.26) is accounted for in JPDE as

∆Eij ,
1

γd
(
xi(tj), qdi

)k
∥∥∥∥∥∥∥∥∥∥

(∇qβ)
(
xi(tj)

)
−

−
(
k

ui(tj)

γd

(
xi(tj), qdi

))(γd(xi(tj), qdi
)k

+ β
(
xi(tj)

)) 1
k
+1

−

−
(
k
(∇qγd)

(
xi(tj), qdi

)
γd

(
xi(tj), qdi

) )
β
(
xi(tj)

)
∥∥∥∥∥∥∥∥∥∥

2

2

=
1

γd (xij, qdi)
k

∥∥∥∥∥∥ (∇qβ) (xij)−
(
k

uij

γd(xij , qdi)

)(
γd (xij, qdi)

k + β (xij)
) 1

k
−1

−

−
(
k
(∇qγd)(xij , qdi)

γd(xij , qdi)

)
β (xij)

∥∥∥∥∥∥
2

2

(9.44)
where term γk

d ensures a fair weighting along the trajectory, for reasons discussed
in subsection 9.3.3. In an analogous manner we can define JPDE for the solution
of (9.27).

2. Functional Jsp enforces positivity β
(
xi(tj)

)
> 0 at the sampled points xi(tj), i.e.,

condition (9.16), because these belong to the free space F . The subscript of Jsp
is derived from the initials of the words “sampled” and “positivity”.

3. Positivity at the destinations is ensured by Jdp. This term has been introduced
because the trajectory truncation described in subsubsection 9.3.3.4 has removed

6Which is always the case for discrete-time measurements.
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the destinations qdi from the sampled configurations. As a result they are not
included in term Jsp and hence should be incorporated separately. The subscript
of Jdp is derived from the initials of the words “destination” and “positivity”.

4. Domain closure (9.17) is imposed by the boundary non-positivity functional Jbn.
Here w4 = 0, because this constraint is implicitly satisfied7. The subscript of Jbn is
derived from the initials of the words “boundary” and “non-positivity”.

Discretization of term Jbn is essential to render it calculable, but while the trajectory
samples are unique and given, the configuration space workspace boundary discretization
is subjective. For example the boundary knots and two intermediate points between each
pair of such boundary knots could be sampled.

The relative weight of the positivity functional is selected an order of magnitude higher
to ensure the search is forced to move in the feasible domain. This is important, because
otherwise the search is (possibly) not bounded within the design space. Moreover, it
does not correct itself, because negative β leads to reversal of experimental data PDE
vector coefficient signs, which in turn leads to negative surface curvature, so non-feasible
solutions satisfying the PDE are found (”mirror” β surfaces with respect to β = 0).

9.4.2.3 PDE Solution Algorithm

The PDE is solved by Algorithm 5. At first all the B-spline coefficients are initialized to
be zero. Then in each iteration the following occur.

Firstly, the cost functional J is calculated for the current solution cN . Then each
coefficient cNi1i2...in is perturbed by ∆c and the new cost functional value Jp for the corre-
sponding perturbed B-spline is calculated. Then the difference of the two cost functional
values ∆J = Jp − J provides the cost functional perturbation resulting from the single
coefficient cNi1i2...in perturbation ∆c.

Such a perturbation is performed for each of the design variables cNi1i2...in to calculate
the cost functional J gradient ∇cJ in design space. This gradient is used to perform a
gradient descent on J in design space cN+1 = cN − λJ∇cJ .

The appropriate selection of the spline B-form coefficient perturbation size ∆c and the
design space cost functional gradient step λJ (could be adaptive, in general it depends on
the optimization scheme implemented) are crucial to obtain correct results.

The optimization for the case study in chapter 10 is shown in Fig. 9.6. It includes
the final form of function β, the history of B-spline coefficients c during optimization, the
history of the norm of differences between subsequent vectors of coefficients ∥ci+1 − ci∥,
the history of the cost functional design space gradient norm ∥∇cJ∥ and the history of
the cost functional J , as they varied in each iteration.

7This requirement has so far been implicitly satisfied because the zero solution is used as the initial
point of optimization in design space. If the spline domain is adequately larger than the experimental
trajectories’ domain, then the spline B-form coefficients affecting its form near the workspace boundary do
not affect it away from this boundary, therefore they do not affect the PDE or positivity constraints on the
trajectory, hence their perturbation leads to zero J perturbation, which in turn leads them to remain zero,
which actually meets the non-positivity constraint on the configuration workspace boundary. Moreover note
that if a C2 switch s is used in this case, it should not be translated by an offset. This aims to allow zero
boundary coefficients to remain zero, because this suffices (remember that in the case of free space sign
definiteness is of importance, hence departure from zero is essential, whereas here this is not the case).
Not allowing this and forcing them to become negative could also result in unwanted non-zero derivatives
at the boundary, without real cause.
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Algorithm 5 Inverse Navigation Function Problem PDE Solver
1: procedure Inverse NF Problem PDE Solver
2: Start
3: Initialize tensor product solution
4: Cost functional J computation
5: f ← 0, N ← 1
6: while f == 0 do
7: for i ∈ {1, 2, . . . ,

∑n
j=1mj do

8: Perturb coefficient cNi,p ← cNi +∆c
9: Compute perturbed cost functional Jp
10: Cost functional gradient component ∂J

∂cNi
← Jp−J

cNi,p−cNi

11: end for
12: Cost functional gradient g ← ∇cJ
13: Design space step cN+1 ← cN + λg
14: f ← Convergence criterion
15: N ← N + 1
16: end while
17: end procedure

18: procedure Cost functional J computation
19: Differentiate B-spline
20: PDE collocation errors
21: Cost functional value
22: end procedure



226 Learning Navigation Functions

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

iteration No.

B
-s

p
li
n
e

C
o
effi

ci
en

ts
c

0 20 40 60 80 100
0

500

1000

1500

iteration No.

‖∇
c
J
‖

0 20 40 60 80 100
50

100

150

200

250

iteration No.
C

o
st

F
u
n
ct

io
n
a
l
J

−80

−60

−40

−20

0

20

40

60

80

100

120

−50

0

50

0

0.05

0.1

0.15

0.2

y

qd16

qd20
qd12

qd22

qd19

qd15qd23

qd17

qd10

qd14

qd6qd7

qd2

qd5

qd9
qd24

qd18qd11qd1
qd21qd3

qd13
qd4

qd8

Obstacle function

x

qs13

qs11

qs10

qs9

qs18

qs17
qs8qs14qs1

qs4

qs21

qs7

qs5

qs2

qs3

qs24qs6

qs15
qs12

qs20

qs19

qs16qs22qs23

β

Figure 9.6: Obstacle function β from PDE solution using ne = 24 experiments. This
solution has been obtained in the subspace spanned by the two Principal Components with
the highest variance. The obstacle function resulting from the solution in the subspace
spanned by the three Principal Components with highest variance cannot be plotted in
only three dimensions, because its domain is three dimensional. In that case, the induced
Navigation Function vector field is shown in Fig. 9.8.

9.4.3 Constructed controller

Select any feasible desired destination qd ∈ β−1((0,+∞)). Then, the spline obstacle
function β resulting from the previously described optimization can be substituted in φ of
(9.8) to yield the NF control law (9.10) as

uc(t) = − (∇qφ) (x(t))

= −
β (x) (∇qγd) (x, qd)− γd(x,qd)

k
(∇qβ) (x)(

γd (x, qd)
k + β (x)

) 1
k
+1

(9.45)

where x is the system’s state. The potential field and level sets of a 2-dimensional con-
troller for a selected qd are illustrated in Fig. 9.7. The level set of a 3-dimensional controller
are provided in Fig. 9.8.
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Chapter 10

Application to Hand Grasping

10.1 Introduction

There has been a sustained and increasing interest in creating autonomous robotic
hands similar to the human hand. The motivation behind this is manifold. Contrary to
industrial settings, in everyday human environments the majority of tasks involves objects
adapted to human manipulation capabilities. Therefore, a robot operating in such settings
would need to actuate on them. Since they have been created to suit the human hand,
this type of actuator is uniquely suited to handling them.

As a result, developing autonomous, robust and viable robotic hand systems will facil-
itate robotic applications to human environments. These include prosthetics [79], reha-
bilitation and teleoperation. Another field of application are dangerous tasks in hazardous
or uninhabitable environments, as for example repairs of operating space equipment
[74, 78]. There are two main challenges in order to achieve this.

On the one hand, the required hardware needs to be developed. Several efforts
witnessed in the past fifteen years started with four fingers, e.g. the Utah/MIT [80], DLR
I [71], DIST [72], LMS [76] robotic hands and continued with five fingers, which include
the Belgrade/USC [69], Anthrobot [83, 89], Robonaut [86], DLR II [70], Gifu I [81] and
II [82, 87], Shadow [88], DLR/HIT I [75, 84] and II [85] hands and the DLR Hand Arm
System [77]. Some of the most difficult issues have been the reduction in size, increase of
impact strength and elasticity [90], and speed [68]. A comparative overview is provided
in [60], a survey in [53].

Operation of these hands requires appropriate controllers. This is a motion planning
problem in a configuration space (C-space) of high dimension. Additionally, in many cases,
anthropomorphism may be desired for the generated motions. Moreover, studying human
motion can provide vital insight, leading to efficient design and control of artificial hands.

There have been several attempts to construct anthropomorphic controllers for robotic
hands. The authors in [52, 57] treated a similar problem of anthropomorphic robot arm
control by identifying joint dependencies using Dynamic Bayesian Networks. In [64]
Bayesian Networks were applied to robot grasping learning. Identifying hand synergies
through Principal Component Analysis (PCA) for grasping has been firstly proposed in [63]
and eigengrasps have been defined in [56].

Controlling a robotic hand in principal subspace has also been considered in [61, 62],
where eigengrasps are called Principal Motion Directions. The approach there is different
from the one presented here, because free motion of the human hand instead of grasping
is recorded, which does not provide information about everyday eigengrasps. Moreover,
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Table 10.1: Grasping Experiments

No. Object Task

1,2,3,4 Tall glass Grasp: to drink, from side & move

from top & move, from side & rotate

5, 6, 7 Mouse Grasp to: slide, left click, right click

8,9,10,11 Cup same as tasks as 1,2,3,4

12 Hammer Grasp to use

13 Ashtray Grasp from above to move

14 Cube Grasp from above to raise

15, 16 Pen Write, Move

17, 18 Jar Move, Lid unscrewing

19 Screwdriver Grasp to operate

20 Book Grasp from right side to read

21 Mobile phone Pick up to view

22, 23 Scissor Grasp to: Move, Use

24 Stapler Grasp and use

half of the measured configuration dimensions are not used, because PCA is performed
after mapping human degrees of freedom (DOF) to robot hand DOF. Here PCA is applied
to the full 22 DOF, independently of the robot hand.

For motion planning, Sampling-Based Roadmaps have been used in [61, 62], which
provide probabilistic completeness, are computationally intensive and still require the ini-
tial and final points to be linked to the roadmap. The NF method is safe by construction,
achieves provably correct convergence and offers a closed-loop continuous controller,
integrating planning and trajectory tracking. Moreover, Roadmaps cannot capture an-
thropomorphism within the principal subspace. On the contrary, NF can produce similar
motions also within this subspace.

10.2 Experiments and Modeling

10.2.1 Experimental procedure

For collecting the trajectories ne = 24 experiments have been conducted with one
subject grasping 13 different objects listed in Table 10.1 using its right hand. For 6 of
them more than multiple tasks have been performed and for 7 of them one task, as
detailed in the table. Snapshots of the experimental setup are provided in Fig. 10.3.

The hand angles have been measured using a CyberGlove data glove [73], which
features electric angle sensors with 1° resolution and records 22 degrees of freedom at
a 100Hz sampling rate, 3 flexions/extensions for each finger apart from the thumb, for
which they are 2, 1 ab/adduction, palm arch and 2 wrist degrees of freedom. The Elec-
troMyoGraphic signals of the arm have been measured as well, together with the wrist
reference frame and accelerations, although they are not used here.
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Figure 10.1: Principal component cumulative normalized variances.

10.2.2 Principal Component Analysis

To reduce the high dimension (22 measured angles) Principal Component Analysis
[120] has been conducted, as is customary in the analysis of hand and arm systems
[52, 56, 63]. This method affinely transforms the coordinate system in the hand C-space
(angle space) to one centered at the average of the experiments, and rotated in the
eigenvector directions of the covariance matrix.

A subspace of the principal system is used here, comprised of the 3 principal compo-
nents with the highest variances (covariance matrix eigenvalues). The trajectories for the
ne experiments in this principal subspace are shown in Fig. 10.2.

The selected subspace captures 88.5% of the original movement data variability, Fig. 10.1,
hence, the grasping movements of the relatively diverse experiments of Table 10.1 can
be reproduced satisfactorily from a C-space of highly reduced dimensionality (3 from the
22).

In particular, as will be shown in what follows, the principal system captures anthro-
pomorphism in a natural way, as has also been observed in [61]. In our case, anthropo-
morphism is additionally enhanced by the inverse construction of NF we have proposed.

10.2.3 PDE Solution

The B-spline domain used is the (enlarged) (hyper-)parallelepiped

×r∈{1,2,...,n} [λr,minqr,min, λr,maxqr,max] (10.1)

where
qr,min , min {xi(tj)} , qr,max , max {xi(tj)} (10.2)

are the extremal values per variable over the measured samples of the experimental
trajectories. In this case, functions min,max are applied element-wise, as they would



232 Application to Hand Grasping

−80

−60

−40

−20

0

20

40

60

80

100

120

−50

0

50

−20

0

20

 

y

qd20

qd12

qd16

qd15

qd22
qd19

qd23

qd17

qd14

qd10

qd6qd7
qd5

qd2

qd9

qd11

qd18qd1

qd24

qd3
qd21

qd13

qd4

qd8

x

qs13

qs11

qs10

qs14

qs8qs9

qs18

qs17

qs1

qs4

qs21

qs7

qs2

qs5

qs3

qs24

qs6

qs12

qs15

qs20
qs19

qs16
qs22

qs23

 

qϕ(t)

qs(0)

qd

qs(t)

−80

−60

−40

−20

0

20

40

60

80

100

120

−50

0

50

−20

0

20

 

qs4

x

qs2qs11qs20

qs9

qs13

qs8

qs16
qs17
qs10

qs14

qs22

qs15

qs1qs19
qs3

qs23
qs21
qs12

qs18

qs5

qs24qs7

qs6

qd6
qd7qd5qd16

qd15qd18
qd23qd21

qd22

qd3qd1

qd11qd2qd14

qd19

qd17

qd8

qd24

qd9

qd10

y

qd4

qd13

qd12

qd20

 

qϕ(t)

qs(0)

qd

qs(t)

Figure 10.2: Multiple automatically generated trajectories xi(t) (red dashed) using a Nav-
igation Function φ with k = 2 and the same obstacle function β constructed over the 3
primary Principal Components. The obstacle function is the solution of the PDE using the
experimentally measured trajectories xs(t) (blue continuous), Table 10.1. Initial conditions
are qsi(0) (green squares) and the destinations are qdi (red circles).
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in a vectorized MATLAB implementation issuing the command min(x, [], 2). Also,

λr,min

{
> 1, qr,min < 0

< 1, qr,min > 0
, λr,max

{
< 1, qr,max < 0

> 1, qr,max > 0
(10.3)

are enlarging multiplicative factors.
Enlargement is important, in order to allow the spline to smoothly change from a

positive value at the sampled points (numerically non-negligible, as enforced by offset
βt), to zero value on the configuration workspace boundary ∂W . Note that the domain
selection just described is completely automatic, forming part of a seamless algorithm if
needed.

10.2.4 Hand Model Definition

The human hand kinematic model described in [59] has been used, with parametrically
defined lengths, as functions of the human hand length HL and hand breadth HB, in
combination with anthropometric data from [55]. The phalanges are modeled as ellipsoids
[54]. The human hand kinematic model degrees of freedom and their correspondence
to the data glove sensors is provided in Table 10.2. Moreover, in [59] the finger base
reference frame distance is provided only for the thumb (I). For this reason these have
been calculated here, using data from [55, 59]. The notation is the same as that defined
in [55, 59]. In what follows HL is the hand length and HB is the hand breadth. For the
thumb

loo1 = lI−0 − lI−1 = 0.118HL (10.4)

For the index (II) and middle (III) fingers

looi = li−0 = (SL)i1 + ((BL)i1 − (JC)i1) = BijHL + li−1 (1− Aij) , i ∈ {II, III} (10.5)

hence
loo2 = 0.463HL +

√
(0.0374HL)2(0.0126HB)2

loo3 = 0.4833HL

(10.6)

For the ring (IV) and little (V) fingers

looi = li−0 − li−1 = BijHL + li−1 (1− Aij)− li1 = BijHL − li−1Aij, i ∈ {IV, V } (10.7)

hence
loo4 = 0.421HL −

√
(0.3051HL)2 + (0.0693HB)2

loo5 = 0.414HL −
√

(0.2655HL)2 + (0.1611HB)2
(10.8)

10.3 Comparison of φ to experimental trajectories

A sequence of hand postures automatically generated using the NF on the 3-dimensional
Principal subspace of Fig. 10.2 is illustrated in Fig. 10.4. The hand destination configuration
has been selected to grasp a tall glass, similarly to the first three experiments. The resul-
tant reach-to-grasp trajectory of the system is smooth and reproduces anthropomorphism
in a natural way. As far as arm movement is concerned, it correlates with hand movement
[65] and this allows us to combine the methodology proposed here with previous work on
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Table 10.2: Degrees of freedom of kinematic hand model from [59] and CyberGlove. The order
of DoF possessed by the data glove is the same as the columns within its measurements’ log
file. Note that the first column in the log file is time.

Part Degree of Freedom Name Vb [59] ±F/Ac [59] ±F/Ac glove

Palm Palm arch Palm arch (PA) N/A N/A
Thumb MCPa Joint Flexion/Extension Flexion 1 (F1) q3 -

IPa Joint Flexion/Extension Flexion 2 (F2) q5 -
MCP Joint Ab/Adduction Abduction (A) q4 +
CMCa Joint Flexion/Extension q2 - N/A
CMC Joint Ab/Adduction q1 - N/A

Index MCP Joint Flexion/Extension Flexion 1 (F1) q7 + -
PIP Join Flexion/Extension Flexion 2 (F2) q8 + -
DIP Joint Flexion/Extension Flexion 3 (F3) q9 + -
MCP Joint Ab/Adduction Abduction (A) q6 + +

Middle MCP Joint Flexion/Extension Flexion 1 (F1) q11 + -
PIP Join Flexion/Extension Flexion 2 (F2) q12 + -
DIP Joint Flexion/Extension Flexion 3 (F3) q13 + -
MCP Joint Ab/Adduction Abduction (A) q10 + +

Ring MCP Joint Flexion/Extension Flexion 1 (F1) q17 + -
PIP Join Flexion/Extension Flexion 2 (F2) q18 + -
DIP Joint Flexion/Extension Flexion 3 (F3) q19 + -
MCP Joint Ab/Adduction Abduction (A) q16 + -
CMC Joint Flexion/Extension q15 + N/A
CMC Joint Ab/Adduction q14 + N/A

Little MCP Joint Flexion/Extension Flexion 1 (F1) q23 + -
PIP Join Flexion/Extension Flexion 2 (F2) q24 + -
DIP Joint Flexion/Extension Flexion 3 (F3) q25 + -
MCP Joint Ab/Adduction Abduction (A) q22 + -
CMC Joint Flexion/Extension q21 + N/A
CMC Joint Ab/Adduction q20 + N/A

Wrist Flexion/Extension N/A N/A
Radial/Ulnar N/A N/A

a CMC = CarpoMetaCarpal, MCP = MetaCarpoPhalangeal, IP = InterPhalangeal, PIP =
ProximalInterPhalangeal, DIP = DistalInterPhalangeal.

b Variable name.
c Flexion or Adduction sign.
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Figure 10.3: Experimental setup during reach to grasp. Hand angles, wrist and object
position and orientation in space and EMG signals are recorded.

anthropomorphic arm control [52], for fully automatic control of the complete hand-arm
system. Alternative applications include hand prosthesis [56], [58], where the subject
provides wrist movement and the controller can select the appropriate configuration on
the generated NF trajectory, based on correlations with EMG signals and wrist proximity
to object.

10.4 Comparison of φ̂1 to experimental trajectories

In this section function φ̂1 has been used to find an obstacle function for individual
experiments. This is contrary to the previous section, where φ has been used for all
experiments simultaneously. The present section also aims to illustrate the increased
“plasticity” of φ̂1, with the associated limitations discussed hereinafter.

In some cases in which the algorithm had converged there followed subtle oscilla-
tions, of which abrupt changes of the gradient are characteristic, as visible in Fig. 10.6,
Fig. 10.10, Fig. 10.12, Fig. 10.16 and Fig. 10.23. These can be of negligible consequences
(local oscillations), but in some cases, as for example Fig. 10.6, if the optimization is al-
lowed to continue after convergence, these subtle oscillations gradually (within the next
100 iterations) alter the obstacle function’s shape. They can even cause local minima to
arise1. This is a general observation, that φ̂1 exhibits greater “plasticity” than φ, hence
it can take shapes better representing the experimental trajectories. But, this increased
“plasticity” is at the same time the disadvantage of φ̂1, because local minima can arise,
which does not happen when using φ.

In Fig. 10.6 to Fig. 10.29 the resulting obstacle functions β for each experiment have
been computed independently, i.e. with a separate optimization for each experiment.
This is contrary to the previous section concerning φ.

In the first couple of figures the domains vary, because the respective trajectories did
not require more space. From Fig. 10.14 on the domain is the same for all experiments

1This can be attributed to the fact that the trajectory provides only local information to a local interpolant
(the spline), hence spline coefficients away from the experimental trajectory can fluctuate without being
much constrained by the (single here) trajectory. If this is allowed to continue for a long time (say 65-150
iterations) then the result is gradually deformed. But the cost functional remains practically constant, which
is useful to define a convergence check and which also illustrates that there is a quite flat valley of minima in
the design space, which extends towards the ”insensitive” design variables which are away from the spline.
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Figure 10.4: Automatically generated grasping movement using Navigation Function in
3-dimensional principal subspace of Fig. 10.2, compare to Fig. 10.3.
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Figure 10.5: Learning NFs with n = 2 principal components produce equally good results,
compare with Fig. 10.2, with which the legend is the same.

and has been selected by padding the minimum and maximum coordinate dimensions
from all experiments.

The β found have been used in a NF φ̂ and the resulting scalar navigation field is
provided in Fig. 10.30 to Fig. 10.32.

Assuming a first order (holonomic) system u = −∇φ̂, the NF of the previous subsection
have been used as controllers to guide the system from the same initial states xi(0) as the
corresponding experiments, to the same desired destinations qdi. The results are quite
encouraging and presented in Fig. 10.33a to Fig. 10.35d.

In the majority of the experiments, individual fitting yields a potential field which suc-
cessfully navigates from the same initial condition to the same desired destination as the
corresponding experiment. Moreover, in many cases the “pattern” is exceptionally close
to the experimental one, as can be seen in Fig. 10.33a, Fig. 10.33c, Fig. 10.33d, Fig. 10.33e
(the initial linear segments of J are due to the offset βt), Fig. 10.33f, Fig. 10.33g, Fig. 10.33i,
Fig. 10.33j, Fig. 10.34a, Fig. 10.34b, Fig. 10.34d, Fig. 10.34e, Fig. 10.34h, Fig. 10.34i,
Fig. 10.34j, Fig. 10.35a (quite good), Fig. 10.35b, Fig. 10.35d (again quite acceptable).

It can be observed that in cases where tight turns arise, the resulting field either follows
a shortcut, as in Fig. 10.33h, Fig. 10.34c, Fig. 10.35a, Fig. 10.35d, or, in other cases, local
minima arise, as in Fig. 10.33b, Fig. 10.33i, Fig. 10.34f, Fig. 10.34g, Fig. 10.35c. On the
contrary, using φ instead of φ, avoids local minima.
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Figure 10.7: Spline fitting optimization: Experiment No.2.
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Figure 10.8: Spline fitting optimization: Experiment No.3.
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Figure 10.9: Spline fitting optimization: Experiment No.4.
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Figure 10.10: Spline fitting optimization: Experiment No.5.
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Figure 10.11: Spline fitting optimization: Experiment No.6.
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Figure 10.12: Spline fitting optimization: Experiment No.7.
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Figure 10.13: Spline fitting optimization: Experiment No.8.
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Figure 10.14: Spline fitting optimization: Experiment No.9.
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Figure 10.15: Spline fitting optimization: Experiment No.10.
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Figure 10.16: Spline fitting optimization: Experiment No.11.

0 20 40 60 80 100
0

1

2

3

iteration No.

B
-s

p
li
n
e

C
o
effi

ci
en

ts
c

0 20 40 60 80 100
0

100

200

300

iteration No.

 

 

‖ci+1 − ci‖

‖∇cJ‖

0 20 40 60 80 100
0

20

40

60

80

iteration No.

C
o
st

F
u
n
ct

io
n
a
l
J

−50 0 50 100
−50

0

50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Obstacle function

xy

β

Figure 10.17: Spline fitting optimization: Experiment No.12.
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Figure 10.18: Spline fitting optimization: Experiment No.13.

0 20 40 60 80 100
−1

0

1

2

3

iteration No.

B
-s

p
li
n
e

C
o
effi

ci
en

ts
c

0 20 40 60 80 100
0

50

100

150

iteration No.

 

 

‖ci+1 − ci‖

‖∇cJ‖

0 20 40 60 80 100
0

100

200

300

iteration No.

C
o
st

F
u
n
ct

io
n
a
l
J

−50

0

50

100

−50

0

50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y

Obstacle function

x

β

Figure 10.19: Spline fitting optimization: Experiment No.14.
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Figure 10.20: Spline fitting optimization: Experiment No.15.
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Figure 10.21: Spline fitting optimization: Experiment No.16.
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Figure 10.22: Spline fitting optimization: Experiment No.17.
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Figure 10.23: Spline fitting optimization: Experiment No.18.
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Figure 10.24: Spline fitting optimization: Experiment No.19.
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Figure 10.25: Spline fitting optimization: Experiment No.20.
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Figure 10.26: Spline fitting optimization: Experiment No.21.
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Figure 10.27: Spline fitting optimization: Experiment No.22.
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Figure 10.28: Spline fitting optimization: Experiment No.23.
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Figure 10.29: Spline fitting optimization: Experiment No.24.
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Figure 10.30: Resultant NF in 2-dimensional subspace of first two principal components
using φ̂1.
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Figure 10.31: Resultant NF in 2-dimensional subspace of first two principal components
using φ̂1.
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Figure 10.32: Resultant NF in 2-dimensional subspace of first two principal components
using φ̂1.
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Figure 10.33: Comparison of experimental vs NF trajectories.
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Figure 10.34: Comparison of experimental vs NF trajectories.
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Figure 10.35: Comparison of experimental vs NF trajectories.
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Chapter 11

Experiments

11.1 Experimental Data in σ-Space

The trajectories in the
(
5
3

)
= 10 combinations of 3D subspaces of the 5 principal com-

ponents have been plotted in Fig. 11.1a to Fig. 11.1b. It is evident that in the first principal
components all initial configurations and destinations are in separate neighborhoods and
relatively close together. Most travel between the two of them has low path curvature (in
the first 3 principal components).

The trajectories in the first 3 principal components are shown in Fig. 11.3a to Fig. 11.5h
where the Frenet-Serret frame TNDB has been attached.

The velocity magnitude and path curvature in σ-space are given in Fig. 11.6a to
Fig. 11.8h. To put them in the same axes, they have been normalized to their average
values (time averages per experiment) and to avoid numerically arising extremities in cur-
vature close to the destination to affect the visible range, the axes are scaled accordingly
(so you cannot see curvatures > 4 times the average).
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Figure 11.1: Experimental trajectories in various different principal subspaces.
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Figure 11.2: Experimental trajectories in various different principal subspaces.



260 Experiments

−20

−10

0

10

20

30

40

50

60

70

−10

0

10

20

−15

−10

−5

0

5

10

15

20

25

 

σ1(t)

Trajectory - Experiment 1

σ2(t)

 

σ
3
(t

)

Curve σ(t)

Tangent T = σ
′(s)

‖σ′(s)‖

Normal N = T
′(s)

‖T ′(s)‖

Binormal B = T ×N

(a) Experiment 1

−20

0

20

40

60

80

100

−20

−10

0

10

20

−20

−10

0

10

20

 

σ1(t)

Trajectory - Experiment 2

σ2(t)

 

σ
3
(t

)

Curve σ(t)

Tangent T = σ
′(s)

‖σ′(s)‖

Normal N = T
′(s)

‖T ′(s)‖

Binormal B = T ×N

(b) Experiment 2

−20

−10

0

10

20

30

40

50

60

70

80

−20

−10

0

10

20

30

−15

−10

−5

0

5

10

15

20

 

σ1(t)

Trajectory - Experiment 3

σ2(t)

 

σ
3
(t

)

Curve σ(t)

Tangent T = σ
′(s)

‖σ′(s)‖

Normal N = T
′(s)

‖T ′(s)‖

Binormal B = T ×N

(c) Experiment 3

−40

−20

0

20

40

60

80

100

−40

−30

−20

−10

0

10

20

30

40

−10

0

10

 

σ1(t)

Trajectory - Experiment 4

σ2(t)

 

σ
3
(t

)

Curve σ(t)

Tangent T = σ
′(s)

‖σ′(s)‖

Normal N = T
′(s)

‖T ′(s)‖

Binormal B = T ×N

(d) Experiment 4

−20

−10

0

10

20

30

40

50

60

70

−10

0

10

20

30

−10

−5

0

5

10

 

σ1(t)

Trajectory - Experiment 5

σ2(t)

 

σ
3
(t

)

Curve σ(t)

Tangent T = σ
′(s)

‖σ′(s)‖

Normal N = T
′(s)

‖T ′(s)‖

Binormal B = T ×N

(e) Experiment 5

−20

−10

0

10

20

30

40

50

60

70

−10

0

10

20

30

40

−10

−5

0

5

10

 

σ1(t)

Trajectory - Experiment 6

σ2(t)

 

σ
3
(t

)

Curve σ(t)

Tangent T = σ
′(s)

‖σ′(s)‖

Normal N = T
′(s)

‖T ′(s)‖

Binormal B = T ×N

(f) Experiment 6

−20

−10

0

10

20

30

40

50

60

−10

0

10

20

30

−5

0

5

10

 

σ1(t)

Trajectory - Experiment 7

σ2(t)

 

σ
3
(t

)

Curve σ(t)

Tangent T = σ
′(s)

‖σ′(s)‖

Normal N = T
′(s)

‖T ′(s)‖

Binormal B = T ×N

(g) Experiment 7

−20

0

20

40

60

80

−30

−20

−10

0

10

20

−20

−10

0

10

20

 

σ1(t)

Trajectory - Experiment 8

σ2(t)

 

σ
3
(t

)

Curve σ(t)

Tangent T = σ
′(s)

‖σ′(s)‖

Normal N = T
′(s)

‖T ′(s)‖

Binormal B = T ×N

(h) Experiment 8

Figure 11.3: Trajectories in principal subspace with Frenet-Serret frame attached.
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Figure 11.4: Trajectories in principal subspace with Frenet-Serret frame attached.
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Figure 11.5: Trajectories in principal subspace with Frenet-Serret frame attached.
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Figure 11.6: Experimental trajectory velocity norms (normalized to average).
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Figure 11.7: Experimental trajectory velocity norms (normalized to average).
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Figure 11.8: Experimental trajectory velocity norms (normalized to average).
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Part IV

Decentralized Multi-Agent Control
from Local LTL Specifications under

Limited Communication





Chapter 12

Formal Methods for Distributed
Multi-Agent Systems

12.1 Introduction

There have been multiple approaches to the problem of multi-agent system control.
Both classic motion planning [4, 12, 27] and task related methods [95, 96, 109, 118]
have been developed. The current effort is oriented towards unification of these two
complementary solutions [100–103, 105, 108, 111]. Since the present trend leads to
increasingly complex and heterogeneous systems, decentralization is a key ingredient for
future scalability.

In addition, safe and guaranteed results are required. Formal methods for specification
and automatic synthesis of provably correct controllers can ensure this. The system’s
specification can be provided in a logic sufficiently expressive for the desired tasks.

In [111] centralized multi-agent systems with perfect information are considered. Syn-
thesis of a single multi-agent motion planning controller is performed from a global LTL
specification. This requires a globally connected multi-agent system to ensure information
availability.

12.1.1 Decentralization Approaches

12.1.1.1 Computer Science approach

Necessary and sufficient conditions for a global specification to be decomposable to
bisimilar local ones are derived in [103]. Decentralization is from top to bottom. A global
specification is available and it is then decomposed to local ones. Moreover perfect infor-
mation availability is assumed for the multiple agents. Therefore no need for addressing
communication constraints between them is considered.

In more detail, it is a computer science oriented approach and aims to derive necessary
and sufficient conditions for a global specification to be decomposable to bisimilar local
specifications. Nonetheless, it concerns specifications in form of deterministic automata,
therefore for their approach to be implementable on LTL, it needs to be translated to a de-
terministic Rabin automaton, instead of the Büchi automaton used in model checking. But
acceptance conditions are not treated, as a result it is implied that deterministic accepting
traces should be already available for decomposition.
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12.1.1.2 Robotics approach

In [107] the issue of communication and synchronization is analyzed a solution diag-
nozing whether an LTL specification needs communication or not. Similarly to [106], where
only communicating agents are allowed to move, this check characterizes the subset of
realizable specifications. This does not allow the following type of specifications to be car-
ried out. In particular, those specifications which require that agents be at a distance they
can no longer communicate alone, and at the same time need to communicate to decide
accordingly in order to meet their specifications. This reduces the realizable scenarios.

Note that the system state space is discrete in [106, 107], whereas continuous in
[111]. Discretization (partitioning) of the state space is a difficult task and can considerably
increase the state space, leading to stat explosion. On the contrary, utilizing appropriate
continuous controllers suited to the problem needs can lead to a reduction in the number
of states. This is here pursued by the use of Navigation Function controllers.

12.1.1.3 Issues addressed here

We extend application of formal methods to decentralized multi-agent systems. The
method proposed enables each agent to independently synthesize safe controllers, trigger
mobile network connectivity when in need of information, verify its plans versus those of
others upon meeting them and execute them in a continuous state space using Navigation
Functions.

It differs from previous works in decentralization, on-demand mobile network connec-
tivity, decentralized verification and the motion planning controllers. In attempting this,
two problems of primary importance need to be solved.

Firstly, LTL specifications provided to the agents are not produced in a centralized
way, hence they may be contradicting each other. Secondly, even if mutually satisfiable,
we are interested in cases in which long-range communication is not available. If path-
connectivity is absent when required by agents, the controllers will fail to act according to
their specifications, due to lack of information.

Since we are interested in decentralized systems with limited information, we need
to consider the opposite approach of [103], that is a bottom-up approach. The solu-
tion proposed for the first problem aims to gradually verify that agent specifications are
mutually satisfiable. Events of path-connectedness enable exchange of their languages
and automata, to allow model checking [94]. Moreover, note that implementing multiple
LTL specifications resulting from a top-down decomposition would still require the second
aspect described next.

The second problem is critical to the execution of the synthesized controllers. Multi-
agent systems in real applications are in many cases scattered over an area. This is in
many cases an unavoidable necessity. This leads us to limited communication constraints.
Additionally to checking whether local specifications can be carried out without inconsis-
tencies, we need to facilitate their realization. This means that if specific agents have
received specifications which require them to be simultaneously out of communication
distance and decide on LTL which involve atomic propositions (AP) referencing the other
agent, then some means of communication between them are needed. These will allow
sharing of the needed AP values at the selected times.

We embed in LTL communication requests when information is needed and implement
them using additional follower agents under connectivity maintenance control. The fol-
lowers function as intermediate communication nodes, providing the requested multi-hop
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path-connectedness between the agents whose LTL specifications require this communi-
cation during execution. Just providing communication to everyone would not defer from
the assumption of perfect information. What we aim to provide is communication only
between those agents that need it to carry out their LTL specifications.

For interfacing the discrete controllers to the continuous system state we choose Nav-
igation Functions (NFs) [12, 23]. Navigation Functions are continuous feedback motion
planning control laws [4] which ensure collision avoidance by construction and provably
correct convergence to the destination. As a result, the specification is formally satisfied in
the discrete control level, which in turn is interfaced to the continuous domain via provably
correct NF controllers.

12.2 Preliminaries

12.2.1 Linear Temporal Logic

An extension of propositional logic suitable for reasoning about infinite sequences of
states is LTL [114]. A set of Atomic Propositions (APs) P is defined [94]. More complex
formulae result using propositional and temporal operators.

Here the subset LTLX− is used, omitting operator “next” X. This ensures that all spec-
ifications are stutter-invariant by construction, as recommended in [110] for concurrent
systems. Any stutter-invariant LTL formula ϕ using X can always be transformed to a
LTLX−formula ϕ′ [112]. Define the set ΦP of LTLX−well formed formulas (wff) recursively
as

• For all p ∈ P the expressions true, false, p,¬p ∈ ΦP ;
• If ϕ1, ϕ2 ∈ ΦP then ϕ1 ∧ ϕ2 ∈ ΦP and ϕ1 ∨ ϕ2 ∈ ΦP ;
• If ϕ1, ϕ2 ∈ ΦP then ϕ1Uϕ2 ∈ ΦP ,

where the operator U is read “until” and requires that ϕ1 be true until ϕ2 becomes true,
which is required to happen. Operators ¬,∧,∨ are the usual propositional operators for
negation, conjunction and disjunction, respectively. Let

• ♢ϕ , true Uϕ, ϕ ∈ ΦP , which is read “eventually” and requires that ϕ eventually
happens at some future point;

• �ϕ , ¬♢ (¬ϕ) , ϕ ∈ ΦP , which is read “always” and requires that ϕ be true in all
future points;

• ϕ1 → ϕ2 , (¬ϕ1) ∨ ϕ2, ϕ1, ϕ2 ∈ ΦP , denoting implication;
• ϕ1 ↔ ϕ2 , (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2) , ϕ1, ϕ2 ∈ ΦP , which denotes equivalence.

The semantics of LTLX−are defined with respect to (wrt) sequences σ : N → 2P . Let
σi(j) , σ(i+ j), i, j ∈ N. To obtain the truth value of a formula over σ, its interpretation
starts from σ(0) and is derived according to the following rules, where p ∈ P, ϕ1, ϕ2 ∈ ΦP

and σ � ϕ means that sequence σ satisfies wff ϕ

• For all σ we have σ � true and σ 2 false;
• σ � p if and only if (iff) p ∈ σ(0);
• σ � ¬p if and only if p /∈ σ(0);
• σ � ϕ1 ∧ ϕ2 if and only if σ � ϕ1 and σ � ϕ2;
• σ � ϕ1 ∨ ϕ2 if and only if σ � ϕ1 or σ � ϕ2;
• σ � ϕ1Uϕ2 if and only if ∃i ∈ N : σi � ϕ2 and σj � ϕ1,∀j ∈ [0, i) ∩ N.
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Figure 12.1: General idea.
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12.2.2 ω-Automata

Let Σ , 2P be an alphabet of letters σ(i) ∈ Σ. An ω-word is an infinite sequence
σ , σ(0)σ(1) · · · ∈ Σω over Σ. The set of all possible σ over Σ is denoted by Σω. A Σω

subset comprised of those σ satisfying certain rules constitutes a single ω-language Lω.
Exactly those Lω whose defining rules are expressible in LTL are called ω-regular [94].
Finite transition systems defined on Lω are called ω-automata.

Definition 58 (NBA [94]). A Nondeterministic Büchi Automaton (NBA) is a tuple B ,
{Σ, S, δ, S0, F} where

• Σ is a finite alphabet;
• S is a finite set of states;
• δ : S × Σ→ 2S is a nondeterministic transition function;
• S0 ⊆ S is a set of initial states;
• F ⊆ S is a set of accepting states.

Let ρ : N → S denote a labeling function of an ω-word by states and inf(ρ) ,
{s ∈ S| |{i : ρ(i) = s}| = +∞} the set of states occurring infinitely many times.

Definition 59 (NBA Semantics [94, 117]). A w ∈ Σω is accepted by a NBA B iff there
exists a ρ, such that ρ(0) ∈ S0, ρ(i + 1) ∈ δ(ρ(i), w(i)), ∀i ≥ 0 and inf(ρ) contains at
least one accepting state, i.e., inf(ρ) ∩ F ̸= ∅. Let Lω (B) denote the ω-regular language
accepted by B.

According to the complementation result by Büchi [93]:

Theorem 60 (Convert LTL to NBA [97, 117]). For every LTL wff ϕ ∈ ΦP there exists a
NBA B such that Lω (B) is exactly the same ω-regular language which ϕ defines.

Another type of ω-automaton we will use is

Definition 61 (DRA [115, 116]). A Deterministic Rabin Automaton (DRA) is a tuple R ,
{Σ, S, γ, S0, F} where

• Σ is a finite alphabet;
• S is a finite set of states;
• γ : S × Σ→ S is a deterministic transition function;
• S0 , {s0}, s0 ∈ S is the initial state singleton;
• F , {Li, Ui}i∈ILU

a set of pairs of subsets Li, Ui ⊆ S, Li ∩ Ui = ∅,∀i ∈ ILU ,
{1, 2, . . . , nLU} , nLU ∈ N \ {0}.

Definition 62 (DRA Semantics [115, 116]). A w ∈ Σω is accepted by a DRA R iff there
exists a ρ, such that ρ(0) = S0, ρ(i + 1) = γ(ρ(i), w(i)), ∀i ≥ 0 and for at least one pair i
of “good” Li and “bad” Ui sets, infinitely many from Li are visited and only finitely many
from Ui are visited, i.e., ∃i ∈ ILU : inf (ρ) ∩ Li ̸= ∅ ∧ inf (ρ) ∩ Ui = ∅.

Note that when working with multiple agents later, Lij, Uij, j ∈ ILU,i will refer to agent
ai. The following holds

Theorem 63 (NBA to DRA [116]). For every NBA B there exists a DRA R such that they
accept exactly the same ω-regular language, i.e., Lω (B) = Lω (R).
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12.3 Problem Definition

12.3.1 Agents, States, State Constraints

Let A , {ai}i∈Ia , Ia , {1, 2, . . . , N} be a set of N ∈ N∗ , N \ {0} leader agents
receiving each a (local) specification ϕi, defined on Atomic Propositions described in sub-
section 12.3.2. Each ai is described by a hybrid state Hi = xi×qi, xi ∈ Xi ⊆ Rni , qi ∈ Qi ⊆
Nmi , i ∈ Ia, ni,mi ∈ N. Here we assume common continuous states ni = n ∈ N∗, ∀i ∈ Ia.

States subject to constraints, as for example continuous dynamics, cannot instantly
respond to control actions. As a result, ϕi which require immediate changes of observables
on constrained states are not in general satisfiable.

Additionally, let F , {fi}i∈If , If , N ∩ [N + 1, N + nf ], nf ∈ N be a set of followers,
used to provide on-demand communication as described in section 12.5.

12.3.2 Atomic Propositions

Let P ,
∪

i∈Ia (Pci ∪ Poi) a set of APs. Each agent ai can control the values of APs
in Pci ,

{
pcij
}
j∈Ici

, Ici , {1, 2, . . . , nci} , i ∈ Ia. Each pcij is either true or false when the
corresponding continuous or discrete state controller of agent ai is Active or Not Active,
respectively, as described in subsection 12.3.3. Let fc : A → 2P be a function mapping ai
to its Pci. Only ai controls Pci, i.e., pcij ∈ fc (ai) ∧ pcij /∈ fc (ak) , ∀k ∈ Ia \ {i} ,∀j ∈ Ici ,∀i ∈
Ia.

Let Poi ,
{
poij
}
j∈Ioi

, Ioi , {1, 2 . . . , noi} , i ∈ Ia be agent’s ai set of observable APs.
Here we use the metric function ∥·∥2 to define observations of the form ∥y1 − y2∥2 >
| < d12. Each point y1, y2 may be an agent state, e.g., y1 = x3, or a fixed point wrt a
selected reference frame. If poij is either defined wrt xi and xi is subject to constraints,
or wrt xj, j ̸= i, then poij /∈ Pci. If xi is not subject to constraints, then again poij is
by definition only observable, but a respective pckr can indirectly control its value. Let
Po ,

∪
i∈Ia Poi , Pi , Pci ∪ Poi , Pc ,

∪
i∈Ia Pci.

The proposed use of metrics facilitate the exchange of languages between meeting
agents later to identify common APs and proceed with model checking. The particular
choice ∥·∥ can be readily replaced by more general selections, e.g., set membership func-
tions, depending on the problem treated.

We consider spherical agents of radii ρi, i ∈ Ia, with sensing radiiRs,i. When ∥xi − xj∥ <
Rs,i then ai (or fi) has knowledge of xj and can receive information from aj (or fj). Each
agent is assigned a unique i ∈ Ia ∪ If .

12.3.3 State Controllers

A set of controllers Cij govern the hybrid state Hi. We select as motion planning
controllers CNF,i decentralized Navigation Functions (NF) [12, 23]. Different pcij can set a
different NF destinations xdij ∈ Rni in CNF,i. Let INF,i ⊆ Ici denote the subset of such pcij .
We embed in ϕi the requirement �¬

(
pcij ∧ pcik

)
,∀j, k ∈ INF,i, ∀t ≥ t0. Which pcij becomes

true is determined by the discrete controller constructed in section 12.4. This selects the
values to assign to pcij , j ∈ Ici in order to enable at least one transition in the automaton
Di, given the current values poij , j ∈ Ioi. Note that by defining xdij = xk + cdij for some
j ∈ Ici wrt another agent, formation control can also be achieved. Other controllers are
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Figure 12.2: From LTL to discrete controller for each agent.

applicable as well, if appropriate1.

12.3.4 Problem Statement

Each agent ai receives an LTLX−specification ϕi ∈ ΦPi
, where Pi is defined in sub-

section 12.3.2. We are interested in an algorithm implemented independently by each
agent, to synthesize its hybrid controller Hi , Di × Cij to always satisfy safety specified
by ϕi and verify liveness triggered by meeting events between agents. It should also
provide on-demand long-range path-connectedness as required by ϕi, for which it can
utilize redundant “follower” agents to maintain connectivity between leaders assigned ϕi.

12.4 Discrete Controller Construction

12.4.1 From LTLX− to Büchi Automata

According to Definition 58, each LTLX−formula ϕi can always be represented by a NBA
Bi, which reduces graph searching during model checking. But we want to construct a
finite state controller Di for each agent which satisfies ϕi, so nondeterminism in undesired.
ABi cannot function as a controller by reacting to poij by activating those pcij which would
enable transitions δi, for the following reason.

Consider all observable ω-words woi ∈ Σω
oi
,Σoi , 2Poi , such that ∀woi there exist

corresponding control actions wci ∈ Σω
ci
,Σci , 2Pci , which, if commanded by the agent,

result in an accepted composite wi(k) = (wci(k)woi(k)) , k ∈ N, wi ∈ Lω (Bi). Agent ai
cannot derive its selections of wci(k) only from δi and woi(k). This can always fail to
satisfy ϕi for any given woi.

Multiple transitions are possible for the same discrete control action wci(k). Neverthe-
less, during execution of a physical system, only a single control action can be selected, not
multiple at the same time. On the contrary, a NBA is considered as “copying” itself at such
branching points. In other words, it follows all possible paths simultaneously. Regardless
of whether some lead to deadlocks later on, by Definition 59 it suffices that at least one
possible execution exists. In real world executions, following the wrong transition could
lead to future violation of ϕi, whereas following another one would not. A NBA does not
provide a way to select between different transitions, hence a priori knowledge at tk of
future observable suffix woi(k+j), j ∈ N∩[1,+∞) is needed to ensure safety, not available
during real world execution.

1Note that this different from the solution in [111] where control signals from different controllers simul-
taneously active are mixed. A control signal mixing approach can lead to uncertainty regarding stability,
due to relative gains and relative time constants of the continuous controllers.
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(a) DRA Ri

s1 ∈ L1 ¬p11 ∧ ¬p12 ∧ ¬p13 ∧ ¬p14¬p11 ∧ p12 ∧ ¬p13 ∧ ¬p14¬p11 ∧ ¬p12 ∧ p13 ∧ p14¬p11 ∧ p12 ∧ p13 ∧ p14

s2 ∈ L1

p11 ∧ ¬p12 ∧ ¬p13 ∧ ¬p14p11 ∧ ¬p12 ∧ p13 ∧ p14

s3 ∈ L1

¬p11 ∧ p12 ∧ p13 ∧ ¬p14

s4 ∈ L1

p11 ∧ ¬p12 ∧ ¬p13 ∧ p14

¬p11 ∧ ¬p12 ∧ p13 ∧ p14¬p11 ∧ ¬p12 ∧ ¬p13 ∧ ¬p14¬p11 ∧ p12 ∧ ¬p13 ∧ ¬p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ ¬p14p11 ∧ ¬p12 ∧ p13 ∧ p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ p14

s5

¬p11 ∧ p12 ∧ p13 ∧ p14

s7

¬p11 ∧ p12 ∧ p13 ∧ ¬p14

¬p11 ∧ ¬p12 ∧ p13 ∧ p14¬p11 ∧ p12 ∧ p13 ∧ p14

s6

p11 ∧ ¬p12 ∧ p13 ∧ p14

s8

¬p11 ∧ p12 ∧ ¬p13 ∧ ¬p14¬p11 ∧ p12 ∧ p13 ∧ ¬p14

s9

p11 ∧ ¬p12 ∧ ¬p13 ∧ p14

¬p11 ∧ ¬p12 ∧ p13 ∧ p14¬p11 ∧ p12 ∧ p13 ∧ p14

p11 ∧ ¬p12 ∧ p13 ∧ p14

¬p11 ∧ p12 ∧ p13 ∧ ¬p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ ¬p14p11 ∧ ¬p12 ∧ ¬p13 ∧ p14

¬p11 ∧ ¬p12 ∧ ¬p13 ∧ ¬p14¬p11 ∧ p12 ∧ ¬p13 ∧ ¬p14¬p11 ∧ ¬p12 ∧ p13 ∧ p14 ¬p11 ∧ p12 ∧ p13 ∧ p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ ¬p14p11 ∧ ¬p12 ∧ p13 ∧ p14

¬p11 ∧ p12 ∧ p13 ∧ ¬p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ p14

¬p11 ∧ ¬p12 ∧ ¬p13 ∧ ¬p14¬p11 ∧ p12 ∧ ¬p13 ∧ ¬p14¬p11 ∧ ¬p12 ∧ p13 ∧ p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ ¬p14p11 ∧ ¬p12 ∧ p13 ∧ p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ p14

¬p11 ∧ p12 ∧ p13 ∧ p14

¬p11 ∧ p12 ∧ p13 ∧ ¬p14

¬p11 ∧ ¬p12 ∧ p13 ∧ p14¬p11 ∧ p12 ∧ p13 ∧ p14

p11 ∧ ¬p12 ∧ p13 ∧ p14

¬p11 ∧ p12 ∧ ¬p13 ∧ ¬p14¬p11 ∧ p12 ∧ p13 ∧ ¬p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ p14

¬p11 ∧ ¬p12 ∧ p13 ∧ p14¬p11 ∧ p12 ∧ p13 ∧ p14

p11 ∧ ¬p12 ∧ p13 ∧ p14

¬p11 ∧ p12 ∧ ¬p13 ∧ ¬p14¬p11 ∧ p12 ∧ p13 ∧ ¬p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ p14

¬p11 ∧ ¬p12 ∧ p13 ∧ p14¬p11 ∧ p12 ∧ p13 ∧ p14

p11 ∧ ¬p12 ∧ p13 ∧ p14

¬p11 ∧ p12 ∧ p13 ∧ ¬p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ ¬p14p11 ∧ ¬p12 ∧ ¬p13 ∧ p14

1

(b) Trimmed DRA Ti

s1 ∈ L1 p11 ∧ ¬p12 ∧ ¬p13 ∧ ¬p14

s3 ∈ L1

p11 ∧ ¬p12 ∧ ¬p13 ∧ p14

s4

¬p11 ∧ p12 ∧ p13 ∧ p14

s6

¬p11 ∧ p12 ∧ p13 ∧ ¬p14

s2 ∈ L1

s5

p11 ∧ ¬p12 ∧ p13 ∧ p14

s7

¬p11 ∧ p12 ∧ ¬p13 ∧ ¬p14¬p11 ∧ p12 ∧ p13 ∧ ¬p14

s8

p11 ∧ ¬p12 ∧ ¬p13 ∧ p14

p11 ∧ ¬p12 ∧ p13 ∧ p14

¬p11 ∧ p12 ∧ p13 ∧ ¬p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ ¬p14p11 ∧ ¬p12 ∧ ¬p13 ∧ p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ ¬p14p11 ∧ ¬p12 ∧ p13 ∧ p14

¬p11 ∧ p12 ∧ p13 ∧ ¬p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ ¬p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ p14

¬p11 ∧ p12 ∧ p13 ∧ p14¬p11 ∧ p12 ∧ p13 ∧ ¬p14

p11 ∧ ¬p12 ∧ p13 ∧ p14

¬p11 ∧ p12 ∧ ¬p13 ∧ ¬p14¬p11 ∧ p12 ∧ p13 ∧ ¬p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ p14

p11 ∧ ¬p12 ∧ p13 ∧ p14

¬p11 ∧ p12 ∧ ¬p13 ∧ ¬p14¬p11 ∧ p12 ∧ p13 ∧ ¬p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ p14

p11 ∧ ¬p12 ∧ p13 ∧ p14

¬p11 ∧ p12 ∧ p13 ∧ ¬p14

p11 ∧ ¬p12 ∧ ¬p13 ∧ ¬p14p11 ∧ ¬p12 ∧ ¬p13 ∧ p14

1

(c) Controller automaton Di

Figure 12.3: Conversion from LTL formula� (¬ (p11 ∧ p12) ∧ (p13 → (p12Up14)) ∧ (p14 → (p11Up13)))
to automata. Orange denotes S0.
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12.4.2 From Büchi Automata to Deterministic Rabin Automata

As described in subsection 12.4.1, a NBA Bi is not a suitable controller for a physical
system. To overcome this limitation, Bi is determinized into a Ri , {Σi, Si, γi, S0i, Fi} , i ∈
Ia by Safra’s construction, Theorem 63, using [104]. Although its computational complex-
ity is 2n logn, decentralization leads to small size for ϕi.

12.4.3 Trimming DRA traps in “bad” states

The Ri may include entrapping “bad” states γi(sv, l) = sv /∈ Lij, ∀j ∈ ILU,i,∀l ∈ Σω
i ,

such that no outgoing transition leading to another state exists, e.g. Fig. 12.3a. In case
ai enters sv, it remains in sv infinitely long, violating its ϕi.

To prevent a controller based on Ri from entering such states sv ∈ Sv,i ⊂ Si, these
are found and removed, yielding a trimmed automaton Ti , {Σi, S

′
i, γ

′
i, S

′
0i, F

′
i}, where

S ′
i , Si \ Sv,i, γ

′
i , γi|S′

i×Σ→S′
i
, S ′

0i , S0i ∩ S ′
i, F

′
i , {Lij ∩ S ′

i, Uij ∩ S ′
i}j∈IUL,i

. Accepting runs
remain the same, because only w remaining infinitely long in

∪
j∈ILU,i

Uij are removed and
these w /∈ Lω (Ri). The trimming algorithm for dead-ends is provided in Algorithm 6. The
case of livelock in a closed inescapable cycle through “bad” states is similarly treated. An
example is Fig. 12.3b.

Algorithm 6 Trimming entrapping “bad” states
1: procedure S ′

i = Remove Bad TRAPS(Ri)
2: Y ← {s ∈ Si| ∄j ∈ ILU,i : s ∈ Lij}
3: for k = 1 : |Y | do
4: sk ← s ∈ Y
5: if ∄l ∈ Σi : γi(sk, l) ̸= sk then
6: Si ← Si \ {sk}
7: end if
8: Y ← Y \ {sk}
9: end for
10: end procedure

12.4.4 Discrete Controller from trimmed DRA

Automata have two operating modes. When presented in “reading” mode with a
fully specified word w they either accept it if w ∈ Lω (Ri), or reject it otherwise. This
corresponds to no controllable APs pcij , i.e., Pci = ∅. On the other hand, if all APs are
controllable, Poi = ∅, then the automaton is in “generating” mode. If run according to its
rules, it produces exactly Lω (Ri) [94, 99].

Our case is between accepting and generating modes. It is reacting to observed poij
values by selecting the controllable values pcij , in such a way so as to avoid deadlock and
satisfy Definition 62. Note that Ri is not deterministic when controllable pcij exist. We
are going to exploit this nondeterminism to design a deterministic controller automaton
Di from Ti.

The Ci alone cannot guarantee that an accepting run will be generated if it is used as
a controller. For this reason the DRA is now transformed into a discrete event controller
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Table 12.1: Next state same as current
sn = sc.

Cost cjk sn ∈
k = j k ̸= j

sc ∈ Lj Uj Wj
a Lk Uk Wk

Lj +3 - - 1 -1 0
Uj - -3 - 1 -1 0
Wj - - 0 1 -1 0

aWj , (Lj ∪ Uj)
c.

which “tries its best” to generate an accepting run. The controller selects the best pos-
sible transition, judging from the current observable values poij . To enable the selected
transition, it sets the appropriate values of pcij . A criterion for ordering possible transitions
and selecting the best is needed. Note that this selection is made only once, when initially
designing Ci.

Let us now consider the algorithm applied to a state s ∈ S. Every transition guard
contains noi observable and nci controllable APs. SinceRi is deterministic in reading mode,
so is Ti. So at tk, the observable vector {poij} ∈ {0, 1}

noi , hence at most 2noi different
observations are possible. Since Ti is deterministic, for each {poij}, the controller has
at most 2nci choices of transitions and can make only one of them true, by selecting the
corresponding control {pcij}. A single edge is selected according to the transition ordering
later introduced and the remaining are removed. Therefore, if at least one transition was
possible for a certain combination of observables, one transition remains possible for that
combination, so that no deadlocks are introduced.

Because the Ri may possess multiple pairs {Lir, Uir}r∈ILU,i
, evaluating each transition

is nontrivial. Each transition consists of an ordered pair of states {sc, sn}, sc, sn ∈ Si, the
current sc and (candidate) next sn. In turn, sc, sn may each belong to both “good” and
“bad” sets for different pairs, e.g., sc ∈ Lij ∩ Uik, j ∈ ILU,i \ {k}, k ∈ ILU,i. For this reason
tables 12.1 and 12.2 are used to build a matrix cjk ∈ {−3,−2, . . . ,+3}nLU,i×nLU,i for each
possible interpretation sc ∈ Lij ∪ Uij, sn ∈ Lik ∪ Uik of the transition sc → sn (in the tables
subscript i is omitted to reduce clutter). Then, each sc → sn is assigned a score based on
[cjz], according to DRA acceptance of Definition 62.

This can be summarized as
∨

r∈ILU,i
(Lr,i ∧ ¬Ur,i) [116]. If the next state sn is the same

as sc and “good” in some pair ∃r ∈ ILU,i : sc ∈ Lir, then it is obviously not “bad” in that
pair, sc ∈ Lir =⇒ sc /∈ Uir. This case is assigned +3 and dominates all others, because if
sc ∈ Uij, j ∈ ILU,i for j ̸= r, then remaining infinitely long in sc implies both inf(ρ)∩Lir ̸= ∅
and inf(ρ) ∩ Uij ̸= ∅, in which case the first one suffices for LTL ϕi satisfaction and thus
dominates the second. Similar considerations apply to the other cases as well, leading to
0 < max{cij} =⇒ c = max{cij}, whereas, if only “bad” and neutral next states sn are
available, the transition is dominated by the worst-case max{cij} ≤ 0 =⇒ c = min{cij}.

The evaluation resulting from the previous procedure for each transition is used to
assign a score according to the following ordering

7. Remains in the same “good” state sc ∈ Lir, r ∈ ILU,i;

6. Moves to another “good” state sn of the same pair {Lir, Uir} , r ∈ ILU,i, i.e., sn ̸=
sc, sn, sc ∈ Lir;

5. Moves to a “good” state sn of another pair {Lij, Uij} , j ∈ ILU,i, i.e., sn ̸= sc, sn ∈
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Table 12.2: Next state different than
current sn ̸= sc.

Cost cjk sn ∈
k = j k ̸= j

sc ∈ Lj Uj Wj
a Lk Uk Wk

Lj +2 -2 0 1 -1 0
Uj +2 -2 0 1 -1 0
Wj +2 -2 0 1 -1 0

aWj , (Lj ∪ Uj)
c.

Lir, sc ∈ Lij, j ̸= r;

4. Moves to a neutral state sn ∈ S ′
i : ∃r ∈ ILU,i sn /∈ Lir ∪ Uir of the same r = j or

another r ̸= j pair;

3. Moves to a “bad” state sn of another pair {Lij, Uij}, i.e., sn ̸= sc, sn ∈ Uij, sc ∈ Uij;

2. Moves to another “bad” state sn of the same pair {Lir, Uir} , r ∈ ILU,i, i.e., sn ̸=
sc, sn, sc ∈ Uir;

1. Remains in the same “bad” state sc ∈ Uir, r ∈ ILU,i;

During removal of states, it is checked that there remains a path from the initial state to
a “good” state and an accepting cycle through it, in order to ensure the controller can
still satisfy eventualities in ϕi. This leads to Ci and its sub-automaton accessible from s0
constitutes Di, e.g. Fig. 12.3c.

We examine when the above procedure does not remove ω-words from the safe lan-
guage of observables L o

ω (Ri).

Proposition 64. If every state s ∈ STi
has outgoing transitions with every combination

of observables poij , then L o
ω (Ri) = L o

ω (Di).

Proof. Since only rejected words w /∈ Lω (Ri) =⇒ wo /∈ L o
ω (Ri) are affected by trimming

the Ri to Ti, it follows that L o
ω (Ri) = L o

ω (Ti). If every state s ∈ STi
has outgoing

transitions for each of the 2noi combinations of poij , then the edge removal algorithm
maintains exactly one transition per combination. Since every state has transitions for
all Poi ∈ {0, 1}noi , for both L o

ω (Ri) and L o
ω (Di), any observable sequence is safe σ ∈

L o
ω (Ri) ∧ σ ∈ L o

ω (Di) ,∀σ ∈ Σω
o , hence L o

ω (Ri) = L o
ω (Di).

The above implies that reactivity in ϕi remains unaffected by the proposed algorithm.
An important note is needed at this point. The proposed controller is only locally

optimal, with respect to the current state the system is in. It chooses the best move from
that state, without considering previous or future moves. This means that in case there
exists a strategy to satisfy liveness, which is not locally optimal, the proposed controller
may not find it. Therefore, safety properties in ϕi are guaranteed to be satisfied, but not
necessarily liveness (eventuality) in ϕi. Removing this short-coming requires solution of a
Rabin game [113], which in our case is both computationally expensive for isolated agents
and inappropriate. It is inappropriate because we consider cooperative scenarios.

In a decentralized cooperative setting, agents may not initially know anything about
specifications of other agents, which affect their observables. Moreover, there may ex-
ist no solution to the adversarial game, in case ϕi cannot cope with any environment.
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Suppose we initially checked eventuality, obtained a negative result, and then prevented
the agent from further evolution, declaring a failure. In this case, we disregard both
that a decentralized system has initially limited information and that other agents do not
constitute any environment, but have specific ϕj, which ai can learn and decide about ϕi

when meeting them during execution.
Thus, verification of the independently executing controllers described in section 12.6

provides an essential check for our system. As is going to be illustrated by the simulation
results of section 12.8, the proposed method is successful in practical settings.

We plan to extend the above implementation towards solving the Rabin game when
no simpler solution exists. However, we are also interested in determining the class of
LTLX−ϕi which provide a trade-off between multi-agent task expressiveness and Rabin
game solution.

12.5 Limited Communication

12.5.1 Specification Structure

It may be the case that an observable subset {poij}j∈Ik , Ik ⊆ Ioi requires information
about another Hk, k ̸= i. Even if ϕi, ϕk are mutually satisfiable, in the event that ai loses
connectivity to ak, it will not have information about Hk. This is an undefined state of
information, resulting in ill-defined observables {poij}j∈Ik . To avoid such situations caused
by limited communication range, we propose the following scheme.

Let poijs , js ∈ Ioi \ Ik be an additional AP in ϕi which functions as a switch, being true
when ai, ak are path-connected in {ai, ak}∪F ′, and false otherwise. Set F ′ ⊆ F denotes
followers not assigned to any leader pair, because only these are free to be immediately
committed to {ai, ak}.

If every Di transition guard does not depend on the values of {poij}j∈Ik , when poijs =
false, then ϕi is independent of information regarding agents disconnected from ai. Such
a ϕi accounts for limited communication and leaves no possible state of the decentralized
multi-agent system undefined.

On the contrary, if ϕi does not possess the previous structure, then Di is vulnerable to
deadlocks caused by lack of information. If all transitions from the current state require
knowledge of Hk and ak is currently disconnected from ai, then ai cannot decide what
action to apply next.

Nevertheless, certain tasks may need such information in an essential way. In sub-
section 12.5.2 a method is proposed to trigger connectivity in a formal and controllable
way.

12.5.2 On Demand Connectivity Maintenance

Whenever agents ak and az become path-connected, then pokjs becomes true. After
this event, information about Hz may be required for a certain (finite or infinite) period of
time for pokj , j ∈ Is ⊂ Iok . This is required when, for example, ak should respond to Hz

and they are disconnected.
To maintain this path-connectedness, we introduce mobile network connectivity main-

tenance controllers [7] within the NF as described in section 12.7, for both leaders ak, k ∈
Ia and followers fm,m ∈ If . Each such controller can be supplied a neighbor list Nk ⊆
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Ia ∪ If from the network, as described in what follows. A controllable AP pckjc , jc ∈ Ick is
also defined, which can be triggered by pokjs , js ∈ Iok , according to ϕk. The connectivity
controller associated to pckjc issues periodically a request over the mobile network, as
{k, z}, k, z ∈ Ia indexing the agents ak, az to connect.

As defined in subsection 12.3.1, a leader is any agent which has received LTL instruc-
tions and a follower any other agent which has not. Note that this request can only reach
the network’s connected component to which ai, ak both belong, as ensured by poijs which
triggered the request.

In each such connected component, all connectedness requests are firstly aggregated.
We assume that communication delays are negligible. Then, any available followers in this
connected component, which have not yet been assigned to a leader pair, are allocated
to the different requests. To resolve which leader pair gets a follower, a utility function is
used. Since poij defined in subsection 12.3.2 are inequalities using ∥·∥2 over Xi, they may
reference fixed points y ∈ Xi. The maximal distance dkzmax , max{∥y1 − y2∥} between
any two fixed points y1 referenced by pokj ∈ Iok and y2 referenced by pozj , j ∈ Ioz of
the two leaders involved in a pair, constitutes the maximal possible distance which ϕk, ϕz

may require ak, az to reach, while maintaining connectivity. This distance needs to become
equal to the sum of communication ranges

∑
i∈Ikz Ri of the followersFkz , {fi}i∈Ikz , Ikz ⊆

If already assigned to the leader pair ak, az. The utility function is defined as ukz ,
1−

∑
i∈Ikz

Ri

dkz max
.

Those pairs {ak, az} with higher ukz have relatively fewer followers already assigned.
Followers in the connected component are distributed proportionally to ukz. Partitioning
according to nearest neighbor distance is used to ensure that each follower subset forms
a connected component after assignment. No fi can belong to more than one {ak, az}. In
this way, when communication between a pair is no more needed, the followers assigned
to it can be released again.

After a leader pair is assigned a subset of followers, a chain is formed between ak and
az, as follows. An adjacency matrix A with shortest neighbor distances aij , ∥xi − xj∥
is formed. The chain between ak and az is initialized as the shortest path in it. Then,
recursively each remaining follower fi, i ∈ Ikz such that

∥∥∥xf
i − xj1

∥∥∥ < Ri∧
∥∥∥xf

i − xj2

∥∥∥ < Ri,
is inserted between aj1 , aj2, replacing their link. If multiple candidate insertions exist, then

that with max

{
− (xl−xf

i )·(xm−xf
i )

∥xl−xf
i ∥

2∥xm−xf
i ∥

2

}
, which is higher when the two candidate neighbors

are closer and opposite positioned to xf
i . Any agents with only a single neighbor remain

connected to it, until they come within range of two neighbors and are then inserted in
the chain. Other solutions allowing more flexible manipulation of mobile network links
within each subset assigned to each leader pair can be used [8].

12.6 Decentralized Verification

For each agent individual discrete event controllers have been constructed by applica-
tion of the algorithm described in section 12.4. It is possible that ϕi contradicts another
ϕj.

Therefore, there arises the need to verify that individual controllers constructed can
function uncoordinated and still satisfy their respective ϕi. For this purpose model checking
(MC) is employed. Using the SPIN model checking software [98] and a custom MATLAB



282 Formal Methods for Distributed Multi-Agent Systems

interface, each agent is modeled as a separate process. Different processes execute
independently. Stutter-invariance is guaranteed because plans are provided in LTLX−[105,
110, 112], allowing partial-order-reduction methods to be applied [98].

When leader agents become path-connected, they interchange their alphabets (APs).
Destinations xdij in the NF controllers pcij of one agent ai are tested as observed states
xi = xdij in those APs pokj of the other agent, which depend on xi. If false, then these
observables are initialized for aj as false and remain unchanged. If true, then a separate
environment process is created corresponding to each NF controller pcij , which, when
pcij becomes true, sets to true those observables pokj which become true for that xdij .
By enforcing fairness during MC, this modeling connects controllers of one agent and
observables of another with eventual implication. Similar implication is modeled between
NF destinations and corresponding observables of a single agent as well. It is provably
correct convergence of NF that allows this. Provided that the mechanism of section 12.5
is implemented, xi is needed by aK only when path-connected.

After this, each agent performs MC against its own negated specification ¬ϕi converted
to a Büchi automaton expressed as a never claim using [97]. Only liveness is checked,
since safety is ensured by construction. If verification succeeds, then the controllers can
continue executing independently, whereas if it fails, then refinement is needed. Recon-
figurability of the system is in our future goals, as depicted in Fig. 12.4.

12.7 Continuous Controllers

The discrete controllers Di are interfaced to the continuous states xi using Naviga-
tion Functions (NF) φi(xi) introduced in [23] and extended to decentralized multi-agent
systems in [12]. Moreover, due to the need of integrating connectivity maintenance con-
straints, we also implement [7]. The decentralized NF controllers CNF,i , {ui} used by
each agent are

ẋi = ui (12.1)

, and
ui , − (∇xi

φi) (xi(t)) (12.2)

, where

φi(x) ,
γi(x)(

γk
i (x) +Gi(x)

) 1
k

(12.3)

is a potential function of the stack vector x of xi, i ∈ Ia, which is 1 in collision sets, has
a unique minimum φ(γ−1

d (0)) = 0 at the destination qd and no other local minima, only
saddle points. Function

γi(q) ,
1

2

∑
j∈Ni

(
∥xi − xj∥2

)
(12.4)

for a follower to minimize its distance to connected neighbors [7], while

γi(q) ,
1

2

∥∥xi − xdij

∥∥2 (12.5)

for a leader to converge to the destination qdij set by the active controller AP pcij , j ∈ Ici.
Function

Gi(q) ,
ni
L∏

l=1

ni
Rl∏

j=1

gikl(βij) (12.6)
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encodes collision sets using relation verification functions gikl(β). Functions gikl determine
exactly which combination of βij → 0, i.e. to collision. They are defined as

gikl , bikl + λ
bikl

bikl +B
1
h
ikcl

(12.7)

where bikl ,
∑

j∈ikl βij and ikl is the kth set of binary relations {ai, aj}, and Bikcl ,∏
m∈ikcl bml, where ikcl indexes complementary sets of l-level binary relations to set k.

In turn, βij(xi, xj) is defined differently, depending on whether it relates to another agent
with which no connectivity constraints have been imposed, or if it relates to another
agent with which connectivity constraints should be maintained. In both cases collision
avoidance is incorporated for the spherical agents. Let

S =


1, x ≤ 0

−6x5 + 15x4 − 10x3 + 1, 0 < x < 1
0, 1 ≤ x

(12.8)

be a C2 switch over R [25]. Then let

dij(xi, xj) , ∥xi − xj∥2 , A =
d2ij − (ρi + ρj)

2

d2c − (ρi + ρj)
2 , B =

d2ij − (ρi + ρj)
2

d2m − (ρi + ρj)
2 ,

Γ =
d2c − d2ij
d2c − d2m

, S1 = S

(
dij − (ρi + ρj)

dc − (ρi + ρj)

)
, S2 = S

(
dij − (ρi + ρj)

dm − (ρi + ρj)

) (12.9)

so

βij(xi, xj) ,
{
S1A+ 1− S1, j /∈ Ni

S2B + (1− S2) Γ, j ∈ Ni

(12.10)

where

0 < ρi + ρj < dc, dm ,

√
d2c + (ρi + ρj)

2

2
. (12.11)

Note that limited sensing capabilities are incorporated.
Convergence to the destination can be proved similarly to [7, 13, 24], when tuning

parameters k > 2, λ, h > 0 are selected above a lower bound, provided the agents can
reach them without forcing the connected followers to break their connectivity. Therefore,
an obvious requirement is that enough followers be available to enable leader convergence
while maintaining path-connectedness. Similarly to [8], the leaders try to “do their best”
to achieve their objectives.

12.8 Simulation Results

A case study using the proposed algorithm involving na = 6 leader agents and nf = 3
followers, illustrated in Fig. 12.5, in which agents a1, a2 (blue,green) should eventually
patrol the lower-right area, visiting infinitely often two points one after the other. Agents
a5, a6 (magenta,yellow) wait for a4 (cyan) before requesting connectivity and moving to
xd51 , xd61. Agent a4 goes first to xd41, then to xd42. Finally, a3 (red) goes to xd31, waits to see
a2 and then moves to xd32. Followers f7, f8, f9 are available to provide path connectivity
where needed.
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The specifications are defined as

ϕ1 = �
(
¬ (pc11 ∧ pc12) ∧ (po11 → (pc12Upo12)) ∧ (po12 → (pc11Upo11))

)
ϕ2 = �

(
¬ (pc21 ∧ pc22) ∧ (po21 → (pc22Upo22)) ∧ (po22 → (pc21Upo21))

)
ϕ3 = � (¬ (pc31 ∧ pc32) ∧ (pc31U (po31 ∧ pc32)))

ϕ4 = pc41U (po41 ∧ pc42)

ϕ5 = (((¬pc51) ∧ (¬pc52))U(po51 ∧ po54))∧
�((¬po53)→ (¬pc52))∧
((¬(po51 ∧ po54))U(�(po53 → (pc52 ∧ (pc51Upo52)))))

ϕ6 = (((¬pc61) ∧ (¬pc62))U(po61 ∧ po64))∧
�((¬po63)→ (¬pc62))∧
((¬(po61 ∧ po64))U(�(po63 → (pc62 ∧ (pc61Upo62)))))

(12.12)

The followers constantly execute a NF with neighbor list as described in subsec-
tion 12.5.2. The NF controllers are defined with destinations

xd11 = [0, 0]T, xd12 = [2,−2]T, xd21 = [0,−1]T, xd22 = [1, 1]T, xd31 = [−1,+1]T,

xd32 = [4, 4]T, xd41 = [0, 3]T, xd42 = [−2, 1]T, xd51 = [−3, 5]T, xd61 = [2, 4]T
(12.13)

and when pc52 , pc62 are active, they issue connectivity requests to link a5, a6.
Let the observable APs be defined as follows

po11 , (∥x1 − xd11∥ < 0.1) , po12 , (∥x1 − xd12∥ < 0.1) , po21 , (∥x2 − xd21∥ < 0.1) ,

po22 , (∥x2 − xd22∥ < 0.1) , po31 , (∥x2 − x3∥ < 1) , po41 , (∥x4 − xd41∥ < 0.1) ,

po51 , (∥x4 − xd41∥ < 0.4) , po52 , (∥x5 − xd51∥ < 0.1) , po61 , (∥x4 − xd41∥ < 0.4) ,

po62 , (∥x6 − xd61∥ < 0.1)
(12.14)

and po53 , po63 detect path-connectivity between a5, a6 through followers. APs po54 , po64 de-
tect path-connectivity between a4 and a5, a6, respectively, through any agent and function
as information availability switches. Note that po31 requires information about x2, but it
also functions as an information availability switch, because ∥x2 − x3∥ < 1 < Rs3, so no
additional observable is needed in this case.

In the simulation a1, · · · , a4 proceed to their objectives avoiding collisions, so that at
t7 agents a1, a2 have started patrolling the lower left area and a3 is heading towards xd32.
At t8 agent a4 comes within distance 0.4 of xd41, so that connectivity is triggered (thick
continuous lines) and a5, a6 begin moving to xd51 , xd61 respectively, while followers f7, f8, f9
maintain path-connectivity between a5, a6. This connectivity is implemented as requested
by pc52 , pc62, which in turn were triggered by po53 , po63 according to ϕ5, ϕ6.
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Figure 12.5: Decentralized multi-agent scenario with independent LTLX−specifications and
decentralized Navigation Functions with limited sensing Rs,i (blue dashed), collision avoid-
ance distances dc,i (red dashed), thin dashed lines indicate sensing, thick continuous lines
denote active connectivity links.
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Appendix A

Auxiliary Mathematical Proofs and
Derivations

A.1 Notes on Degeneracy

The navigation function tuning parameter k has been set to k = 1 for reasons detailed
in a previous point. It is worth noting the following about degeneracy at the destination of
the various intermediate forms of the Koditschek-Rimon Navigation Function formula, as
shown in Table A.2. Therefore there are five candidate non-degenerate at the destination
function forms and two degenerate ones.

As shown previously, degeneracy of φ̂ at the destination qd causes problems to the PDE
coefficient of the inverse obstacle fitting equation. For this reason, initially φ̂1 has been
used. Unfortunately φ̂1 is unsquashed and not tunable. For this reason the alternative
forms presented here have been developed.

Any of the nondegenerate forms can be used for inverse obstacle fitting. Tunable
forms are preferred and unsquashed as well. The classic φ and the herein proposed φβ

both meet these requirements. Nonetheless, φβ is not differentiable at the free space
boundary. But this is not a problem, because the boundary is by definition uniformly
maximal. Since this is a gradient system, it can be shown that for all initial conditions
x(0) ∈ F \ ∂F , there exists a compact positive invariant set with boundary arbitrarily
“close” to ∂F .

Hence, working in F \ ∂F , all nondegenerate forms are diffeomorphic to φ̂, so that
the same curvature sufficiency condition applies.

A.2 Derivative Common Structure

Any KRNF has the structure (where V is a wildcard for the selected NF)

V (γd, β, k) = (f2 ◦ f1 ◦ φ̂)(γd, β, k) (A.1)

where functions f2, f1 may be σd(x) = (x)
1
k , σ(x) = x

x+1
, or the identity function. In the

original NF formulation f1 = σ, f2 = σd, but other alternatives exist and are explored
here. In all cases the fundamental building block is φ̂ =

γk
d

β
, which is a multiplicative form,

operating differently than the additive form proposed by Khatib.
In the Khatib potential field formulation addition of repulsive effects yields a composite
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Table A.1: Combinations of NF characteristics.

tunable/un nondegenerate/deg (at qd) squashed/un function

t n s φ, φβ

t n u φ̄β

t d s φ̄
t d u φ̂
u n s φp

u n u φ̂1

u d s impossiblea

u d u impossiblea
a Degeneracy is caused by the exponent k of γd, hence simultaneous degeneracy
and untunability are not a possible combination.

φ̂ =
γk
d

β

σ ◦ φ̂ =
γk
d

γk
d+β σd ◦ φ̂ = γd

β
1
k

σd ◦ σ ◦ φ̂ = γd

(γk
d+β)

1
k

σ ◦ σd ◦ φ̂ = γd

γd+β
1
k

σ◦

σ◦

σd◦

σd◦

tdu

tds tnu

tns tns

degenerate
non-degenerate

sq
ua
sh
ed

un
sq
ua
sh
ed

φ̂1 =
γd
β

unu

k
≥

2
k
=

1

φp =
γd

γd+β

uns

Figure A.1: Navigation Function formulas alternative compositions.
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repulsive effect

∑
i

((∇Ui) (q)) =


∑

i

(
∇
(

1
2
ηi

(
1

βi(q)
− 1

βi0

)2))
= −

∑
i

(
ηi

(
1

βi(q)
− 1

βi0

)
1

β2
i (q)
∇βi(q)

)
, βi(q) ≤ βi0

0 ∈ Rn, βi(q) > βi0

(A.2)

The effect of q → ∂Oi =⇒ βi(q) → 0+ is similar to the behavior of a KRNF. But the
intermediate field (not too near to a specific obstacle, neither too far outside βi0) is only
controllable using individual ηi, βi0. The most straightforward solution is to decouple the
obstacles by selecting appropriate βi0, but this needs nontrivial geometric calculations.
This is similar to the local diffeomorphisms applied for polynomial NFs.

Nevertheless, in a KRNF a similar procedure is applied, but using the single tuning
parameter k, which effectively “decouples” disjoint obstacle effects. The calculations have
an analogous flavor of finding disjoint obstacle neighborhoods. The calculations are just
easier because we have confined the study to spheres. Of course, there is the benefit of
bounded potential and bounded contol input, as well as a single parameter yielding tidier
results. Arguably a strong point is that selecting a moderate k for reasonable scenarios
uniformly yields satisfactorily results, whereas in the Khatib method different βi0 should
be selected.

Differentiation of the KRNF form yields
∂V

∂γd
(γd, β, k) =

∂f2
∂f1

(f1 ◦ φ̂)
∂f1
∂φ̂

(φ̂)
∂φ̂

∂γd
(γd, β, k)

∂V

∂β
(γd, β, k) =

∂f2
∂f1

(f1 ◦ φ̂)
∂f1
∂φ̂

(φ̂)
∂φ̂

∂β
(γd, β, k)

∂V

∂k
(γd, β, k) =

∂f2
∂f1

(f1 ◦ φ̂)
∂f1
∂φ̂

(φ̂)
∂φ̂

∂k
(γd, β, k)

(A.3)

so terms ∂f2
∂f1

, ∂f1
∂φ̂
are common and need not be multiply calculated. The alternatives are

∂σd

∂x
(x) =

∂

∂x

{
x

1
k

}
=

1

k
x

1
k
−1

∂σ

∂x
(x) =

∂

∂x

{
x

x+ 1

}
=

∂
∂x
{x}(x+ 1)− x ∂

∂x
{x+ 1}

(x+ 1)2
=

x+ 1− x

(x+ 1)2
= (x+ 1)−2

(A.4)

For φ̂ , γk
d

β
the partial derivatives are

∂φ̂

∂γd
=

∂

∂γd

{
γk
d

β

}
=

1

β

∂

∂γd

{
γk
d

}
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1

β
kγk−1

d =
k

γd

γk
d

β

=
k

γd
φ̂

∂φ̂

∂β
=

∂
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{
γk
d

β

}
= γk

d

∂

∂β

{
β−1
}
= −γk

dβ
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k
d

β

= − 1

β
φ̂

∂φ̂

∂k
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∂

∂k

{
γk
d

β

}
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1

β

∂

∂k

{
γk
d
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1

β

∂

∂k

{
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β
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∂

∂k
{k ln γd}

=
1

β
γk
d ln(γd) = ln(γd)

γk
d

β

= ln(γd)φ̂

(A.5)
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Combining the previous results, the derivatives of the various function forms are

∇qφ̂ =

(
k

γd
φ̂

)
∇qγd +

(
− 1

β
φ̂

)
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(A.6)
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Table A.3: Summary of derivatives.

Function Gradient

∇qφ̂
(
k∇γd

γd
− ∇β

β
+ ln(γd)∇k

)
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(
k∇γd
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− ∇β

β
+ ln (γd)∇k
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)− 1
k
−1
(
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k
∇β + γdβ ln(γd)

k
∇k
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) 1
k 1
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(
k
∇γd
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+ ln(γd)∇k
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=

=
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(
k
∇γd
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k
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(
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γdβ ln (γd)

k
∇k
)

(A.7)

a summary of the above is provided in the Table A.3.

A.3 Gradients and Hessian matrices

In this section derivations are provided for gradients and Hessian matrices of the
functions

γd = ∥q − qd∥2 , γk
d , βi = ∥q − qi∥2 − ρ2i , i ∈ I1

β0 = ρ20 − ∥q − q0∥2 = ρ20 − ∥q∥
2 , β =

M∏
i=0

βi, φ̂1 =
γd
β
, φ̂ =

γk
d

β

(A.8)

and the alternative potential functions (not all navigation functions)

φp =
γd

γd + β
, φ̄ =

γk
d

γk
d + β

, φ = k

√
γk
d

γk
d + β

=
γd

k
√

γk
d + β

(A.9)
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at any point q in the free space F and at any critical point qc ∈ F ∩ Cf (where f is each
function considered). Note that Lemma 3.11 is applied at critical points.

A.3.1 γd = ∥q − qd∥2

γd(q) = ∥q − qd∥2 =⇒
(∇γd) (q) = 2(q − qd) =⇒(
D2γd

)
(q) = 2I

(A.10)

A.3.2 γk
d = ∥q − qd∥2k

γk
d (q) = ∥q − qd∥2k =⇒

∇
(
γk
d

)
= kγk−1

d ∇γd =⇒(
∇
(
γk
d

))
(q) = kγk−1

d 2(q − qd) = 2k ∥q − qd∥2k−1 q − qd
∥q − qd∥

=⇒

D2
(
γk
d

)
= ∇γd∇

(
kγk−1

d

)T
+ kγk−1

d ∇2γd = kγk−1
d

(
k − 1

γd
∇γd∇γT

d + 2I

)
= kγk−2

d

(
(k − 1)∇γd∇γT

d + 2Iγd
)

(A.11)

A.3.3 βi = ∥q − qi∥2 − ρ2i

βi(q) = ∥q − qi∥2 − ρ2i , i ∈ I1 =⇒
(∇βi) (q) = 2(q − qi) =⇒(
D2βi

)
(q) = (D (∇βi)) (q) = D(2(q − qi)) = 2D(q − qi) = 2I

(A.12)

Hence

∥(∇βi) (q)∥ = ∥2(q − qi)∥ = 2 ∥q − qi∥ = 2

√
∥q − qi∥2

= 2
√(
∥q − qi∥2 − ρ2i

)︸ ︷︷ ︸
βi

+ρ2i = 2
√
βi + ρ2i

(A.13)

A.3.4 β0 = ρ20 − ∥q∥
2

β0(q) = ρ20 − ∥q∥
2 =⇒

(∇β0) (q) = ∇
(
ρ20 − ∥q∥

2) = ∇ (ρ20)−∇ (∥q∥2) = −2q =⇒(
D2β0

)
(q) = (D (∇β0)) (q) = D(−2q) = −2D(q) = −2I

(A.14)

1[23], Lemma 3.1, p.426.
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Hence

∥(∇β0) (q)∥ = ∥−2q∥ = 2 ∥q∥ = 2

√
∥q∥2 = 2

√
ρ20 − ρ20 + ∥q∥

2
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(A.15)

A.3.5 β =
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(A.16)

and

D2(β) = D

(
β
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∇βi

βi

∇βi
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∇βi
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(A.17)

A.3.6 φ̂1 =
γd
β

A.3.6.1 Any point

∇ (φ̂1) = ∇
(
γd
β

)
=

β∇γd − γd∇β
β2

=
∇γd
β
− γd

β

∇β
β

=
∇γd
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∇β
β

=
∇γd
β
− φ1
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i=0

∇βi

βi

(A.18)

D2 (φ̂1) = D2

(
γd
β

)
=

1

β2

[
βD2γd +∇γd∇βT −∇β∇γT

d − γdD
2β
]
+ β2∇φ1

(
∇ 1

β2

)T (A.19)
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A.3.6.2 Critical point

Gradient

∇
(
γd
β

)
(qc) = 0 ⇐⇒ β∇γd = γd∇β, ∀q ∈ F =⇒

∇γd =
γd
β
∇β = φ1∇β,∀q ∈ F − ∂F =⇒

∇γd
γd

=
∇β
β

=
M∑
i=0

∇βi

βi

,∀q ∈ F − ∂F − {qd}

(A.20)

Hessian matrix
D2

(
γd
β

)
(qc) =

1

β2

[
βD2γd − γdD

2β
]

=
1

β2

[
2βI − γdD

2β
] (A.21)

A.3.7 φ̂ =
γk
d

β

A.3.7.1 Any point

∇
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(
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d

)
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d∇β
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β
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β
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− ∇β

β

)
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(
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∇γd
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− ∇β

β

)
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(
k
2(q − qd)

∥q − qd∥2
−

M∑
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∇βi

βi

) (A.22)

D2 (φ̂) = D2

(
γk
d

β

)
(q)

=
1

β2

[
βD2

(
γk
d

)
+∇

(
γk
d

)
∇βT −∇β∇

(
γk
d

)T − γk
dD

2β
]
+ β2∇φ̂

(
∇ 1

β2

)T (A.23)

A.3.7.2 Critical point

D2

(
γk
d

β

)
(qc) =

1

β2

[
βD2

(
γk
d

)
− γk

dD
2β
]
=

1

β
D2
(
γk
d

)
− γk

d

β

D2β

β

=
1

β
D2
(
γk
d

)
− φ̂

D2β

β

(A.24)

At the destination a global minimum exists, where

D2
(
γk
d

)
(qd) = kγk−2

d (qd)
(
(k − 1)(∇γd)(qd)(∇γd)(qd)T + 2Iγd(qd)

)
(A.25)

and since (∇γd)(qd) = 0 ∈ En, γd(qd) = 0, k ≥ 2 it follows that D2
(
γk
d

)
(qd) = 0 ∈ Rn×n.

Taking into consideration that also φ̂(qd) = 0, it follows that (D2φ̂) (qd) = 0 ∈ Rn×n and
hence φ̂ is degenerate at the destination qd.
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A.3.8 φp =
γd

γd+β

A.3.8.1 Any point

∇φ(q) = ∇
(

γd
γd + β

)
=

(γd + β)∇γd − γd∇ (γd + β)

(γd + β)2
=

β∇γd − γd∇β
(γd + β)2

(A.26)

and

D2φ(q) =
1

(γd + β)2

[
(γd + β)D2γd +∇γd∇ (γd + β)T −∇ (γd + β)∇γT

d − γdD
2 (γd + β)

]
+

+ (γd + β)2∇φ
(
∇ 1

(γd + β)2

)T

(A.27)

A.3.8.2 Critical point

D2φ(qc) =
1

(γd + β)2
[
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2 (γd + β)
]

=
1

(γd + β)2
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)]
=
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(γd + β)2

(A.28)

A.3.9 φ̄ =
γk
d
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d+β

A.3.9.1 Any point
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d + β

)
∇
(
γk
d

)
− γk

d∇
(
γk
d + β

)(
γk
d + β

)2
=

1(
γk
d + β

)2 [γk
d∇
(
γk
d

)
+ β∇

(
γk
d

)
− γk

d

(
∇
(
γk
d

)
+∇β

)]
=

1(
γk
d + β

)2 [γk
d∇
(
γk
d

)
+ β∇

(
γk
d

)
− γk

d∇
(
γk
d

)
− γk

d∇β
]

=
1(

γk
d + β

)2 [β∇ (γk
d

)
− γk

d∇β
]

(A.29)

and

D2φ̄ =
1(

γk
d + β

)2 ·
·
[(
γk
d + β

)
D2
(
γk
d

)
+∇

(
γk
d

)
∇
(
γk
d + β

)T −∇ (γk
d + β

)
∇
(
γk
d

)T − γk
dD

2
(
γk
d + β

)]
+

+
(
γk
d + β

)2∇φ(∇ 1(
γk
d + β

)2
)2

(A.30)
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A.3.9.2 Critical point

(
D2φ̄

)
(qc) =

1(
γk
d + β

)2 [(γk
d + β

)
D2
(
γk
d

)
− γk

dD
2
(
γk
d + β

)]
=

1(
γk
d + β

)2 [γk
dD

2
(
γk
d

)
+ βD2

(
γk
d

)
− γk

dD
2
(
γk
d

)
+ γk

dD
2(β)

]
=

1(
γk
d + β

)2 [βD2
(
γk
d

)
+ γk

dD
2(β)

]
(A.31)

In subsection A.3.7 it has been shown that at the destination qd the Hessian matrix(
D2
(
γk
d

))
(qd) = 0 ∈ Rn×n is fully degenerate. Also γd(qd) = 0, k ≥ 2, qd /∈ ∂F =⇒ β(qd),

hence (D2φ̄) (qd) = 0 ∈ Rn×n, i.e. function φ̄ is degenerate at the destination qd.

A.3.10 φ = γd
k
√

γk
d+β

A.3.10.1 Any point

∇φ(q) =
k
√
γk
d + β∇(γd)− γd∇

(
k
√
γk
d + β

)
(

k
√
γk
d + β

)2 (A.32)

D2φ(q) =
1(

k
√

γk
d + β

)2 ·
·

[
k

√
γk
d + βD2γd +∇γd∇

(
k

√
γk
d + β

)T

−∇
(

k

√
γk
d + β

)
∇γT

d − γdD
2

(
k

√
γk
d + β

)]
+

+

(
k

√
γk
d + β

)2

∇φ

∇ 1(
k
√
γk
d + β

)2


T

(A.33)

A.3.10.2 Critical point

D2φ(qc) =
1(

γk
d + β

) 2
k

[(
γk
d + β

) 1
k D2γd − γdD

2
((

γk
d + β

) 1
k

)]
=

1(
γk
d + β

) 2
k

[(
γk
d + β

) 1
k 2I − γdD

2
((

γk
d + β

) 1
k

)] (A.34)
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A.4 PDE substitution

For the classic KRNF form φ = γd

(γk
d+β)

1
k
, the partial derivatives are

∂φ

∂γd
=

∂

∂γd

 γd(
γk
d + β

) 1
k

 =
(
γk
d + β

) 1
k + γd

∂

∂γd

{(
γk
d + β

)− 1
k

}
=
(
γk
d + β

)− 1
k + γd

(
−1

k

)
(γn

d + β)−
1
k
−1 ∂

∂γd

{
γk
d + β

}
=
(
γk
d + β

)− 1
k

(
1− γk

d

γk
d + β

)
=
(
γk
d + β

)− 1
k
γk
d + β − γk

d

γk
d + β

= β (γd + β)−
1
k
−1

∂φ

∂β
=

∂

∂β

 γd(
γk
d + β

) 1
k

 = γd
∂

∂β

{
(γd + β)−

1
k

}
= γd

(
−1

k

)(
γk
d + β

)− 1
k
−1 ∂

∂β

{
γk
d + β

}
= −1

k
γd
(
γk
d + β

)− 1
k
−1

= −1

k

γd

(γd + β)
1
k

(
γk
d + β

)−1
= −1

k

(
γk
d + β

)−1
φ

= −1

k
γd
(
γk
d + β

)− 1
k
−1

(A.35)
Then by substitution in (9.22) we obtain

∇β = −

(
u+ ∂φ

∂γd
∇γd

∂φ
∂β

)
= −

u+ β
(
γk
d + β

)− 1
k
−1∇γd

− 1
k
γd
(
γk
d + β

)− 1
k
−1


=

(
k
u

γd

)(
γk
d + β

) 1
k
+1

+

(
k
∇γd
γd

)
β =

k

γd

(
u
(
γk
d + β

) 1
k
+1

+∇γdβ
) (A.36)

For the form φ̂ = γd
β
the partial derivatives are

∂φ̂

∂γd
(γd, β) =

∂

∂γd

{
γk
d

β

}
=

kγk−1
d

β

∂φ̂

∂β
(γd, β) =

∂

∂β

{
γk
d

β

}
= −γk

d

β2

(A.37)

so substitution in (9.22) leads to

∇β = −

(
u+

∂φ̂β

∂γd
∇γd

∂φ̂β

∂β

)
=

(
u

γk
d

)
β2 +

(
k
∇γd
γd

)
β = Aβ2 +Bβ (A.38)

For the form φ̄β = γd

β
1
k
, the partial derivatives are

∂φ̄β

∂γd
=

∂

∂γd

{
γd

β
1
k

}
= β− 1

k

∂φ̄β

∂β
=

∂

∂β

{
γd

β
1
k

}
= γd

∂

∂β

{
β− 1

k

}
= γd

(
−1

k

)
β− 1

k
−1

= −1

k
γdβ

− 1
k
−1

(A.39)
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hence substitution in (9.22) yields

∇β = −

(
u+

∂φ̄β

∂γd
∇γd

∂φ̄β

∂β

)
= −

(
u+ β− 1

k∇γd
− 1

k
γdβ

− 1
k
−1

)
= k

(
u

γd
β

1
k +
∇γd
γd

β

)
(A.40)

For the form φβ = γd

γd+β
1
k
, the partial derivatives are

∂φβ

∂γd
=

∂

∂γd

{
γd

γd + β
1
k

}
=
(
γd + β

1
k

)−1

+ γd
∂

∂γd

{
1

γd + β
1
k

}
=
(
γd + β

1
k

)−1

γd(−1)
(
γd + β

1
k

)−2 ∂

∂γd

{
γd + β

1
k

}
=
(
γd + β

1
k

)−1

− γd

(
γd + β

1
k

)−2

=
(
γd + β

1
k

)−1
(
1− γd

γd + β
1
k

)
=
(
γd + β

1
k

)−1 γd − β
1
k − γd

γd + β
1
k

= β
1
k

(
γd + β

1
k

)−2

∂φβ

∂β
=

∂

∂β

{
γd

γd + β
1
k

}
= γd

∂

∂β

{(
γd + β

1
k

)−1
}

= γd(−1)
(
γd + β

1
k

)−2 ∂

∂β

{
γd + β

1
k

}
= −γd

(
γd + β

1
k

)−2 1

k
β

1
k
−1 = −1

k
γdβ

1
k
−1
(
γd + β

1
k

)−2

(A.41)

Substitution in the PDE (9.22) yields

∇β = −

u+ β
1
k

(
γd + β

1
k

)−2

∇γd

− 1
k
γdβ

1
k
−1
(
γd + β

1
k

)−2

 =⇒

∇β =

(
k
u

γd

)(
γd + β

1
k

)2
β1− 1

k +

(
k
∇γd
γd

)
β

(A.42)

and simplifying this we obtain

∇β =

(
k
u

γd

)(
γ2
d + 2γdβ

1
k + β

2
k

)
β1− 1

k +

(
k
∇γd
γd

)
β

=

(
k
u

γd
γ2
d

)
β1− 1

k +

(
k
u

γd
2γd

)
β

1
k
+1− 1

k +

(
k
u

γd

)
β

2
k
+1− 1

k +

(
k
∇γd
γd

)
β

= (kuγd) β
1− 1

k + (2ku) β +

(
k
u

γd

)
β1+ 1

k +

(
k
∇γd
γd

)
β

=

(
k
u

γd

)
β1+ 1

k +

(
k
∇γd
γd

+ 2ku

)
β + (kuγd)β

1− 1
k

= β

((
k
u

γd

)
β

1
k +

(
k
∇γd
γd

+ 2ku

)
+ (kuγd) β

− 1
k

)
(A.43)
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i ̸= j

i = j

i = 0 ( =⇒ j ̸= 0)

i ̸= 0

i = 0 ( =⇒ j = 0)

i ̸= 0 ( =⇒ j ̸= 0)

j ̸= 0

j = 0

Figure A.2: Combinations of i and j cases treated separately.

A.5 Extrema

The following minima and maxima are needed to calculate an estimate of upper bounds
on εI0

min
Bi(εi)

{γd} , max
Bi(εi)

{γd} , min
Bi(εi)

{βj} , max
Bi(εi)

{βj} ,

min
Bi(εi)

{∥∇γd∥} , max
Bi(εi)

{∥∇γd∥} , min
Bi(εi)

{∥∇βj∥} , max
Bi(εi)

{∥∇βj∥} ,

max
W
{γd} , max

W
{βi} ,

max
W
{∥∇γd∥} , max

W
{∥∇βi∥} , i, j ∈ I0

(A.44)

Note that

min
W
{γd} = 0, min

W
{βi} = 0, min

W
{∥∇γd∥} = 0, min

W
{∥∇βi∥} = min

Bi(εi)
{∥∇βi∥} = 2ρi

(A.45)
and need not be considered further. Also2

γd = βi|qi=qd,ρi=0 (A.46)

so that
min
Bi(εi)

{γd}, max
Bi(εi)

{γd} , min
Bi(εi)

{∥∇γd∥} , max
Bi(εi)

{∥∇γd∥} , i ∈ I0

max
W
{γd}, max

W
{∥∇γd∥}

(A.47)

are not special cases. The derivations are done for βj, j ∈ I0 and the results applied to γd
as well.

A.5.1 βi, ∥∇βi∥ extrema

There are combinations of Bi (εi), i ∈ I0 and βj, j ∈ I0 which need to be considered
separately, as shown in Fig. A.2.

A.5.1.1 Case i ̸= j, i = 0 in B0 (ε0)

This is case 1 in Fig. A.2.

2[23], Appendix B, p.438. This follows from comparing γd = ∥q − qd∥2 to βi = ∥q − qi∥2 − ρ2i .
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A.5.1.2 Case i ̸= j, i ̸= 0, j = 0 in Bi (εi)

This is case 2 in Fig. A.2. Using Lagrange multipliers it can be proved that the minimum
is

min
Bi(εi)

{β0} = ρ20 −
(√

εi + ρ2i + ∥qi∥
)2

, i ∈ I1 (A.48)

and the maximum

max
Bi(εi)

{β0} = ρ20 −
(√

εi + ρ2i − ∥qi∥
)2

, i ∈ I1 (A.49)

The gradient norm minimum is

min
Bi(εi)

{∥∇β0∥} = min
Bi(εi)

{
2
√
−β0 + ρ20

}
= 2
√

ρ20 − max
Bi(εi)

{β0}

= 2

√
ρ20 − ρ20 +

(√
εi + ρ2i − ∥qi∥

)2

= 2

∣∣∣∣√εi + ρ2i − ∥qi∥
∣∣∣∣ , i ∈ I1

(A.50)

and the gradient norm maximum

max
Bi(εi)

{∥∇β0∥} = max
Bi(εi)

{
2
√
−β0 + ρ20

}
= 2
√

ρ20 − min
Bi(εi)

{β0}

= 2

√
ρ20 − ρ20 +

(√
εi + ρ2i + ∥qi∥

)2

= 2

∣∣∣∣√εi + ρ2i + ∥qi∥
∣∣∣∣ , i ∈ I1

(A.51)

A.5.1.3 Case i ̸= j, i ̸= 0, j ̸= 0 in Bi (εi)

This is case 3 in Fig. A.2. Using Lagrange multipliers it can be proved that the minimum
is

min
Bi(εi)

{βj} =
(√

εi + ρ2i − ∥qi − qj∥
)2

− ρ2j , i, j ∈ I1, i ̸= j (A.52)

and the maximum

max
Bi(εi)

{βj} =
(√

εi + ρ2i + ∥qi − qj∥
)2

− ρ2j , i, j ∈ I1, i ̸= j (A.53)

The gradient norm minimum is

min
Bi(εi)

{∥∇βj∥} = min
Bi(εi)

{
2
√

βj + ρ2j

}
= 2
√

min
Bi(εi)

{βj}+ ρ2j

= 2

√(√
εi + ρ2i − ∥qi − qj∥

)2

− ρ2j + ρ2j

= 2

∣∣∣∣√εi + ρ2i − ∥qi − qj∥
∣∣∣∣ , i, j ∈ I1, i ̸= j

(A.54)
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and the gradient norm maximum

max
Bi(εi)

{∥∇βj∥} = max
Bi(εi)

{
2
√

βj + ρ2j

}
= 2
√

max
Bi(εi)

{βj}+ ρ2j

= 2

√(√
εi + ρ2i + ∥qi − qj∥

)2

− ρ2j + ρ2j = 2

∣∣∣∣√εi + ρ2i + ∥qi − qj∥
∣∣∣∣

= 2

(√
εi + ρ2i + ∥qi − qj∥

)
, i, j ∈ I1, i ̸= j

(A.55)

A.5.1.4 Case i = j = 0 in B0 (ε0)

This is case 4 in Fig. A.2. It is

min
B0(ε0)

{β0} = 0, max
B0(ε0)

{β0} = ε0, i = 0 (A.56)

The gradient norm minimum is

min
B0(ε0)

{∥∇β0∥} = min
B0(ε0)

{
2
√

ρ20 − β0

}
= 2
√

ρ20 − max
B0(ε0)

{β0} = 2
√

ρ20 − ε0 (A.57)

and the gradient norm maximum

max
B0(ε0)

{∥∇β0∥} = max
B0(ε0)

{
2
√

ρ20 − β0

}
= 2
√

ρ20 − min
B0(ε0)

{β0}

= 2
√

ρ20 − 0
ρi>0,∀i∈I1

= 2ρ0

(A.58)

A.5.1.5 Case i = j ̸= 0 in Bi (εi)

This is case 5 in Fig. A.2. As in (A.56), also in this case

min
Bi(εi)

{βi} = 0, max
Bi(εi)

{βi} = εi, i ∈ I1 (A.59)

The gradient norm minimum is

min
Bi(εi)

{∥∇βi∥} = min
Bi(εi)

{
2
√

βi + ρ2i

}
= 2
√

min
Bi(εi)

{βi}+ ρ2i

= 2
√
0 + ρ2i

ρi>0,∀i∈I1
= 2ρi, i ∈ I1

(A.60)

and the gradient norm maximum

max
Bi(εi)

{∥∇βi∥} = max
Bi(εi)

{
2
√

βi + ρ2i

}
= 2
√

max
Bi(εi)

{βi}+ ρ2i = 2
√
εi + ρ2i (A.61)
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A.5.1.6 Extrema in W

The upper bounds of βj in W are3

max
W
{βj(q)} = (ρ0 + ∥qj∥)2 − ρ2j , j ∈ I1 (A.62)

and
max

W
{β0(q)} = ρ20, j = 0 (A.63)

Substitution yields the following maxima of the respective gradient norms

max
W
{∥∇βj∥} = max

W

{
2
√
βj + ρ2j

}
= 2
√

max
W
{βj}+ ρ2j

= 2
√
(ρ0 + ∥qj∥)2 − ρ2j + ρ2j = 2

√
(ρ0 + ∥qj∥)2

ρ0>0∧∥qj∥>0
=

= 2 (ρ0 + ∥qj∥) , j ∈ I1

(A.64)

and
max

W
{∥∇β0∥} = max

W

{
2
√
−β0 + ρ20

}
= 2
√
max

W
{−β0}+ ρ20

= 2
√
−min

W
{β0}+ ρ20

minW {β0}=0
= 2

√
−0 + ρ20

= 2
√

ρ20
ρ0>0
= 2ρ0, j = 0

(A.65)

Note that 2ρ0 = 2 (ρ0 + 0)
∥q0∥=0
= 2 (ρ0 + ∥q0∥) so that in the general case we can write

max
W
{∥∇βi∥} = 2 (ρ0 + ∥qi∥) , i ∈ {0, 1, . . . ,M} (A.66)

A.5.2 γd extrema

A.5.2.1 Extrema in Bi (εi), i ̸= 0

The case of γd corresponds to i ̸= j (since the destination is always in free space) and
j ̸= 0 (since γd = ∥q − qd∥2 is βj = ∥q − qj∥2 − ρ2j , j ∈ I1 with qj = qd and ρj = 0, not
β0 = ρ20 − ∥q∥

2).
Also, since minB0(ε0)

{γd} ,maxB0(ε0)
{γd} are not needed, i ̸= 0. This is case 3 in

Fig. A.2. The results substituting qj = qd and ρj = 0 in the equations of subsubsec-
tion A.5.1.3 are

min
Bi(εi)

{γd} =
(√

εi + ρ2i − ∥qi − qj∥
)2

− ρ2j

=

(√
εi + ρ2i − ∥qi − qd∥

)2

, i ∈ I1

(A.67)

and the maximum

max
Bi(εi)

{γd} =
(√

εi + ρ2i + ∥qi − qj∥
)2

− ρ2j

=

(√
εi + ρ2i + ∥qi − qd∥

)2

, i ∈ I1

(A.68)

3[23], Lemma B.1, p.438.
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The gradient norm minimum is

min
Bi(εi)

{∥∇γd∥} = 2

∣∣∣∣√εi + ρ2i − ∥qi − qj∥
∣∣∣∣

= 2

∣∣∣∣√εi + ρ2i − ∥qi − qd∥
∣∣∣∣ , i ∈ I1

(A.69)

and the gradient norm maximum

max
Bi(εi)

{∥∇γd∥} = 2

(√
εi + ρ2i + ∥qi − qi∥

)
= 2

(√
εi + ρ2i + ∥qi − qd∥

)
, i ∈ I1

(A.70)

A.5.2.2 Maximum in W

From Lemma B.1 (p.438)

max
W
{βi(q)} = (ρ0 + ∥qi∥)2 − ρ2i , i ∈ I1 (A.71)

Substituting for γd the parameters qd, ρd = 0 its maximum over W is

max
W
{γd} = (ρ0 + ∥qd∥)2 − ρ2d = (ρ0 + ∥qd∥)2 − 02

= (ρ0 + ∥qd∥)2
(A.72)

Since
γd(q) ≤ max

W
{√γd} , ∀q ∈ W (A.73)

and
F2 ⊂ W (A.74)

it follows that
γd(q) ≤ max

W
{√γd} , ∀q ∈ F2 (A.75)

It is worth noting that for small εI0 the maxima of γd in W and F2 do not differ much

lim
{εi→0}Mi=0

(
max

W
{γd} −max

F2

{γd}
)

= 0 (A.76)

The gradient norm maximum in W is

max
W
{∥∇γd∥} = max

W
{2√γd} = 2

√
max

W
{γd} = 2

√
(ρ0 + ∥qd∥)2

ρ0≥0∧∥qd∥≥0
= 2 (ρ0 + ∥qd∥)

(A.77)
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A.6 Other derivations

A.6.1 Bound on
∣∣∣∇̂βiT∇2β̄i∇̂βi

∣∣∣
We are now to prove the inequality

∣∣υ̂T∇2β̄iυ̂
∣∣ ≤ 2

M∑
j=0,j ̸=i

((
M∏

l=0,l ̸=i,j

βl

)
+

M∑
l=0,l ̸=i,j

((
M∏

m=0,m̸=i,j,l

βm

)
∥∇βj∥ ∥∇βl∥

))
(A.78)

for a unit vector υ̂. In the proof two unit vectors are defined and used, which are different
from each other. One defines the gradient’s ∇βi direction, while the other the direction
tangential to the gradient ∇β⊥

i as

υ̂ , ∇̂βi ,
∇βi

∥∇βi∥
̸= υ̂ , ∇β⊥

i

∥∇βi∥
(A.79)

Then we have

∇β̄i = ∇

(
M∏

j=0,j ̸=i

βj

)
=

M∑
j=0,j ̸=i

((
M∏

l=0,l ̸=i,j

βl

)
∇βj

)
=⇒

D2β̄i =
M∑

j=0,j ̸=i

((
M∏

l=0,l ̸=i,j

βl

)
D2βj +

M∑
l=0,l ̸=i,j

((
M∏

m=0,m̸=i,j,l

βm

)
∇βj∇βT

l

))
D2βj=2I,∀j∈I0

=

=
M∑

j=0,j ̸=i

((
M∏

l=0,l ̸=i,j

βl

)
2I +

M∑
l=0,l ̸=i,j

((
M∏

m=0,m̸=i,j,l

βm

)
∇βj∇βT

l

))
(A.80)

multiply this by υ̂T from left and υ̂ from right to get

υ̂TD2β̄iυ̂ = υ̂T

M∑
j=0,j ̸=i

((
M∏

l=0,l ̸=i,j

βl

)
2I +

M∑
l=0,l ̸=i,j

((
M∏

m=0,m ̸=i,j,l

βm

)
∇βj∇βT

l

))
υ̂

=
M∑

j=0,j ̸=i

((
M∏

l=0,l ̸=i,j

βl

)
υ̂T2Iυ̂ +

M∑
l=0,l ̸=i,j

((
M∏

m=0,m̸=i,j,l

βm

)
υ̂T∇βj∇βT

l υ̂

))

=
M∑

j=0,j ̸=i

((
M∏

l=0,l ̸=i,j

βl

)
2 ∥υ̂∥2 +

M∑
l=0,l ̸=i,j

((
M∏

m=0,m ̸=i,j,l

βm

)
υ̂T∇βj∇βT

l υ̂

))

=
M∑

j=0,j ̸=i

(
2

(
M∏

l=0,l ̸=i,j

βl

)
+

M∑
l=0,l ̸=i,j

((
M∏

m=0,m̸=i,j,l

βm

)
υ̂T∇βj∇βT

l υ̂

))
(A.81)
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so now∣∣υ̂TD2β̄iυ̂
∣∣ ≤ ∣∣∣∣∣

M∑
j=0,j ̸=i

(
2

(
M∏

l=0,l ̸=i,j

βl

)
+

M∑
l=0,l ̸=i,j

((
M∏

m=0,m̸=i,j,l

βm

)
υ̂T∇βj∇βT

l υ̂

))∣∣∣∣∣
≤

M∑
j=0,j ̸=i

∣∣∣∣∣2
(

M∏
l=0,l ̸=i,j

βl

)
+

M∑
l=0,l ̸=i,j

((
M∏

m=0,m̸=i,j,l

βm

)
υ̂T∇βj∇βT

l υ̂

)∣∣∣∣∣
≤

M∑
j=0,j ̸=i

(
2

∣∣∣∣∣
M∏

l=0,l ̸=i,j

βl

∣∣∣∣∣+
∣∣∣∣∣

M∑
l=0,l ̸=i,j

((
M∏

m=0,m̸=i,j,l

βm

)
υ̂T∇βj∇βT

l υ̂

)∣∣∣∣∣
)

≤
M∑

j=0,j ̸=i

(
2

∣∣∣∣∣
M∏

l=0,l ̸=i,j

βl

∣∣∣∣∣+
M∑

l=0,l ̸=i,j

∣∣∣∣∣
(

M∏
m=0,m ̸=i,j,l

βm

)
υ̂T∇βj∇βT

l υ̂

∣∣∣∣∣
)

=
M∑

j=0,j ̸=i

(
2

(
M∏

l=0,l ̸=i,j

βl

)
+

M∑
l=0,l ̸=i,j

((
M∏

m=0,m̸=i,j,l

βm

)∣∣υ̂T∇βj∇βT
l υ̂
∣∣))
(A.82)

by successive application of the triangular inequality and since βj(q) ≥ 0,∀q ∈ F̊ , ∀j ∈ I0.
It remains to show that

∣∣υ̂T∇βj∇βT
l υ̂
∣∣ ≤ ∥∇βj∥ ∥∇βl∥. This is provided in subsec-

tion A.6.2, where we set a = ∇βj and b = ∇βl. As a result

∣∣υ̂TD2β̄iυ̂
∣∣ ≤ M∑

j=0,j ̸=i

(
2

(
M∏

l=0,l ̸=i,j

βl

)
+

M∑
l=0,l ̸=i,j

((
M∏

m=0,m̸=i,j,l

βm

)
∥∇βj∥ ∥∇βl∥

))
(A.83)

It should be noted that in [23], Appendix B.2, pp. 440-441 an overall result is provided,

where they have factored 2 out by adding
M∑

l=0,l ̸=i,j

(
M∏

m=0,m̸=i,j,l

βm

)
∥∇βj∥ ∥∇βl∥, which is

positive, but this leads to even worse numerical results.

A.6.2 Inequality
∣∣υ̂TabT υ̂

∣∣ ≤ ∥a∥ ∥b∥
Matrix multiplication is associative, therefore(

υ̂T
) (

abT
)
(υ̂) =

(
υ̂Ta

) (
bT
)
(υ̂)

=
(
υ̂Ta

) (
bT υ̂
)

=⇒∣∣(υ̂T
) (

abT
)
(υ̂)
∣∣ = ∣∣(υ̂Ta

) (
bT υ̂
)∣∣ (A.84)

Now note that
(
υ̂Ta

)
∈ R and

(
bT υ̂
)
∈ R. The absolute value multiplicativeness property

allows seperation of the terms ∣∣(υ̂Ta
) (

bT υ̂
)∣∣ = ∣∣υ̂Ta

∣∣ ∣∣bT υ̂∣∣ (A.85)

Next apply the Cauchy-Bunyakovsky-Schwarz inequality |⟨x, y⟩| ≤ ∥x∥ ∥y∥ to obtain∣∣υ̂Ta
∣∣ ≤ ∥∥υ̂T

∥∥ ∥a∥ = 1 · ∥a∥ = ∥a∥∣∣bT υ̂∣∣ ≤ ∥∥bT∥∥ ∥υ̂∥ = ∥∥bT∥∥ · 1 = ∥b∥
(A.86)

substitution then gives∣∣υ̂TabT υ̂
∣∣ = ∣∣(υ̂Ta

) (
bT υ̂
)∣∣ = ∣∣υ̂Ta

∣∣ ∣∣bT υ̂∣∣ ≤ ∥a∥ ∥b∥ (A.87)
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A.6.3 Bounded Pz when no O0 is known

Proposition: If and only if kz > Mz then lim∥q∥→∞ φz(q) = 1.
Proof: We examine the alternative cases

lim
∥q∥→∞

φz(q) = lim
∥q∥→∞

γd(
γkz
d + zβ

) 1
kz

= lim
∥q∥→∞

∥q − qd∥2(
∥q − qd∥2kz +

∏Mz

i=1 ∥q − qi∥2
) 1

kz

= lim
∥q∥→∞

∥q∥2(
∥q∥2kz +

∏Mz

i=1 ∥q∥
2
) 1

kz

= lim
x→∞

x2(
x2kz +

∏Mz

i=1 x
2
) 1

kz

= lim
x→∞

x2

(x2kz + x2Mz)
1
kz

=


lim
x→∞

x2

(x2Mz )
1
kz

= lim
x→∞

x2(1−Mz
kz
) = 0+ < 1, kz < Mz

lim
x→∞

x2

(x2Mz+x2Mz )
1

Mz

= lim
x→∞

x2

(2x2Mz )
1

Mz

= lim
x→∞

x2

2
1

Mz x2
= 1

2
1

Mz

< 1, kz = Mz

lim
x→∞

x2

(x2kz)
1
kz

= lim
x→∞

x2

x2 = 1, Mz < kz

(A.88)
since

2 ≤ kz < Mz =⇒ 1− Mz

kz
< 0 (A.89)

and
Mz ≥ 1 =⇒ 1

2
1

Mz

< 1. (A.90)

A.6.4 Bound on γd when no O0 is known

Proposition 1: If
√

γd(q) > maxi {∥qi − qd∥} and
√

γd(q) > am1
1 am2

2 where

a1 ,
4Mz

zβ(x(tm))
, a2 , γd(x(tm)) (A.91)

and

m1 ,
{
0, a1 ≤ 1
1
2
, a1 > 1

, m2 ,
{

1
2
, a2 ≤ 1

Mz+1
2

, a2 > 1
(A.92)

then q /∈Pz.
Proof: We have required kz > Mz ⇐⇒ kz ≥ Mz + 1 to assure lim∥q∥→∞ φz (q) = 1.

This leads to4

Mz + 1 ≤ kz ⇐⇒ 1 ≤ kz −Mz =⇒ 1

2(kz −Mz)
≤ 1

2
(A.93)

and
lim

kz→+∞

1

2(kz −Mz)
= 0+ (A.94)

so that
1

2(kz −Mz)
∈
(
0,

1

2

]
, ∀kz ∈ [Mz + 1,+∞). (A.95)

4It is Mz > 0 because at least a single internal obstacle has been discovered, leading to a change from
the trivial unbounded free space NF.
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When a1 ≤ 1 =⇒ m1 = 0 so am1
1 = a01 = 1 and since 0 < 1

2(kz−Mz)
, ∀kz ∈ [Mz + 1,+∞) for

a1 ≤ 1 =⇒ ax1 ↓ ∀x ∈ R it follows that

a1 ≤ 1 =⇒ am1
1 = a01 = 1 > a

1
2(kz−Mz)

1 , ∀kz ∈ [Mz + 1,+∞). (A.96)

When a1 > 1 =⇒ m1 = 1
2
so am1

1 = a
1
2
1 and since

1
2(kz−Mz)

≤ 1
2
, ∀kz ∈ [Mz + 1,+∞) for

a1 > 1 =⇒ ax1 ↑ ∀x ∈ R it follows that

a1 > 1 =⇒ am1
1 = a

1
2
1 ≥ a

1
2(kz−Mz)

1 , ∀kz ∈ [Mz + 1,+∞) (A.97)

Also the requirement Mz + 1 ≤ kz leads to

Mz + 1 ≤ kz ⇐⇒ 0 ≤ kz − 1−Mz
Mz>0⇐⇒ 0 ≤ kzMz −Mz −Mz ⇐⇒

kz ≤ kzMz + kz −M2
z −Mz

kz−Mz≥1>0⇐⇒ kz
2(kz −Mz)

≤ Mz + 1

2

(A.98)

and

lim
kz→+∞

kz
2(kz −Mz)

=
1

2
(A.99)

so that5

kz
2(kz −Mz)

∈
(
1

2
,
1

2
+

Mz

2

]
=

(
1

2
,
Mz + 1

2

]
, ∀kz ∈ [Mz + 1,+∞). (A.100)

When a2 ≤ 1 =⇒ m2 = 1
2
so am2

2 = a
1
2
2 and since

1
2
< kz

2(kz−Mz)
, ∀kz ∈ [Mz + 1,+∞) for

a2 ≤ 1 =⇒ ax2 ↓ ∀x ∈ R it follows that

a2 ≤ 1 =⇒ am2
2 = a

1
2
2 ≥ a

kz
2(kz−Mz)

2 , ∀k ∈ [Mz + 1,+∞). (A.101)

When 1 < a2 =⇒ m2 = Mz+1
2

so am2
2 = a

Mz+1
2

2 and since kz
2(kz−Mz)

≤ Mz+1
2

,∀kz ∈ [Mz +

1,+∞) for a2 > 1 =⇒ ax2 ↑ ∀x ∈ R it follows that

a2 > 1 =⇒ am2
2 = a

Mz+1
2

2 > a
kz

2(kz−Mz)

2 ,∀kz ∈ [Mz + 1,+∞). (A.102)

Summarizing these inequalities

1

2(kz −Mz)
∈
(
0,

1

2

]
=⇒ am1

1 ≥ a
1

2(kz−Mz)

1 , ∀kz > Mz (A.103)

and
kz

2(kz −Mz)
∈
(
1

2
,
Mz + 1

2

]
=⇒ am2

2 ≥ a
kz

2(kz−Mz)

2 , ∀kz > Mz. (A.104)

5Obviously 1
2 ≤

Mz+1
2 even for 0 ≤Mz although here it is 1 ≤Mz.
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As a result am1
1 am2

2 ≥ a
1

2(kz−Mz)

1 a
kz

2(kz−Mz)

2 and the condition√
γd(q) > am1

1 am2
2 =⇒

√
γd(q) > a

1
2(kz−Mz)

1 a
kz

2(kz−Mz)

2 ⇐⇒√
γd(q) >

(
4Mz

zβ(x(tm))

) 1
2(kz−Mz)

(γd(x(tm)))
kz

2(kz−Mz) ⇐⇒

√
γd(q) >

(
4Mz

zβ(x(tm))

) 1
2(kz−Mz) (

γkz
d (x(tm))

) 1
2(kz−Mz) ⇐⇒

√
γd(q) >

(
4Mz

zβ(x(tm))
γkz
d (x(tm))

) 1
2(kz−Mz)

⇐⇒(√
γd(q)

)2(kz−Mz)

>
4Mz

zβ(x(tm))
γkz
d (x(tm)) ⇐⇒

γkz−Mz
d (q) >

γkz
d (x(tm))

zβ(x(tm))
4Mz =⇒ γkz

d (q) > φ̂(x(tm)) (4γd(q))
Mz

(A.105)

The triangular inequality yields√
βi(q) = ∥q − qi∥ = ∥q − qd + qd − qi∥ ≤ ∥q − qd∥+ ∥qd − qi∥

=
√

γd(q) + ∥qi − qd∥
(A.106)

and for √
γd(q) > max

i
{∥qi − qd∥} =⇒ √

γd > ∥qi − qd∥ ,∀i ∈ I1, (A.107)

as required by hypothesis, it follows that√
βi(q) ≤

√
γd(q) + ∥qi − qd∥ <

√
γd(q) +

√
γd(q) = 2

√
γd(q) =⇒

βi(q) < 4γd(q), ∀i ∈ {1, 2, . . . ,Mz} =⇒ zβ(q) =
∏
I1

βi < (4γd(q))
Mz . (A.108)

Substitution in (A.105) yields γkz
d (q) > φ̂(x(tm))

zβ(q) and since ∂F ∩ Pz = ∅ we can
examine only the interior F \ ∂F where zβ(q) > 0 and there the previous is equivalent to

γkz
d (q) > φ̂(x(tm))

zβ(q)
q∈F\∂F =⇒ zβ(q)>0

=⇒ γkz
d (q)

zβ(q)
> φ̂(x(tm)) ⇐⇒ φ̂(q) > φ̂(x(tm))

(A.109)
and since σd ◦ σ is strictly increasing in [0,+∞) and q ∈ F \ ∂F

φ̂(q) > φ̂(x(tm)) ≥ 0 ⇐⇒ σd ◦ σ ◦ φ̂(q) > σd ◦ σ ◦ φ̂(x(tm)) =⇒
φz (q) > φz (x(tm)) =⇒ q /∈Pz

(A.110)

by definition of Pz.
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Appendix B

Note on Polynomial Navigation
Functions

A convex obstacle world is a subset of n-dimensional Euclidean space from which M
disjoint obstacles have been removed. Each of the obstacles is a simply connected convex
subset of En with piecewise C2 boundary. The convex obstacle world is the agent’s actual
configuration space (C-space).

Note that in case the configuration space is globally non-Euclidean it is not embeddable
in a Euclidean space of same dimension as the C-space manifold dimension. It can be
embedded only in higher dimensional Euclidean space. This renders ordinary navigation
functions inapplicable for such a case.

For example, an ordinary manipulator possesses multiple revolute joints. Its C-space
is multidimensional. As long as none of the joints can perform a full turn, the space
is diffeomorphic to a subset of a Euclidean space of same dimension. But if any joint
performs many revolutions, the space becomes non-Euclidean. It cannot be embedded in
a space of same dimension. It needs an ambient space of dimension n+1, where n is the
number of joints. In that space it is a hypersurface of dimension n, therefore a non-flat
subset of Lebesgue measure zero. There is not use in inheritance of the ambient metric
for defining a naviagtion function on such a manifold.

Appropriate modifications are made in other chapters of this study to address non-
Euclidean spaces and navigation functions for them.

Another matter not addressable by classical KRNFs are obstacles within Euclidean
space which are of genus higher than 0. Such worlds are not diffeomorphic to any sphere
world (they do not belong to its diffeomorphism class). These obstacles are diffeomorphic
to tori. The basic application is a 2-dimensional solid torus. But m-fold tori are also of in-
terest and are treated in another chapter in the 3-dimensional case. This is why Koditschek
and Rimon avoid graphs of stars containing loops in [] and request that forest of stars
considered form trees (acyclic graphs). Taking into consideration the other conditions on
disjointness of stars in the forrest reveals that this constarint aims -between other things-
to prevent multiply connected obstacles turning up and avoid the need to introduce further
constraints/tests to ensure/check this.

B.1 Sphere world

The navigation function on the sphere world is φs : En → R. The potential’s value
is φs(q). The argument q ∈ En is the agent’s configuration in the sphere world. The
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subscript s emphasizes that the navigation function φs is defined on the sphere world.
On the contrary, the navigation function φ : C → R is defined on the actual config-

uration space. The function φ is the image of φs. The image is obtained by applying a
mapping. The mapping should be a union of a finite number of diffeomorphisms, which
form a homeomorphism. Their union is such, that other conditions are met as well. This
results in a continuous, piecewise C2 navigation function φ.

The sphere world navigation function φs is defined by Lionis, Papageorgiou and Kyri-
akopoulos as

φ(q) , γd(q)

γd(q) + β(q)
(B.1)

where γd : F → [0,+∞) is the squared distance to the goal, defined as

γd(q) = ∥q − qd∥2 (B.2)

where the destination configuration is qd ∈ En1 and ∥·∥ is the Euclidean norm in En.
The function β : F → [0, 1] becomes zero if and only if the argument q belongs to an

obstacle’s boundary ∂Oi. It is defined as the product of M obstacle functions βi

β(q) =
M∏
i=1

βi(q) (B.3)

where each obstacle function βi corresponds to one of the M obstacles ∂Oi. Each of
these obstacles is a sphere of radius ρi. Each one is the image of an obstacle in the actual
configuration space C .

To simplify the expressions involved and aid understanding, a different coordinate
system is used to define each βi.

For each obstacle two new coordinate systems are defined.
The first is a cartesian coordinate system. Its origin is the goal configuration qd. The

yi axis is defined by the unit vector iy = qc,i − qd which is the direction from the goal qd to
the ith sphere center qc,i.

The second is a polar coordinate system. Its origin is the ithe sphere center qc,i
and the radius rs,i = ∥q − qc,i∥ measures the distance from that center. The angle θ =

ˆ(qc,i − qd, q − qc,i).
The definition of βi : F → [0, 1] is

βi(q) =

{
P (zi) , zi ∈ [0, 1]

1 , zi > 1
(B.4)

where
zi =

rs,i − ρi
εi

(B.5)

is the dimensionless position in the current effect zone2. When ρi ≤ rs,i ≤ ρi + εi ⇐⇒
zi ∈ [0, 1] the configuration belongs to the annulus. When ρi + εi < rs,i ⇐⇒ zi > 1 the
configuration is outside the effect annulus.

Each function βi is continuous, because P (1) = 1 and twice continuously differentiable,
because P ′(1) = 0 and P ′′(1) = 0.

1The subscript d denotes destination.
2The effect zone is always an annulus of width εi = rs,i,max − rs,i,min the configuration space.
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The gradient of function φs is

∇φs =∇
(

γd
γd + β

)
=

(γd + β)∇γd − γd∇(γd + β)

(γd + β)2

=
γd∇γd + β∇γd − γd(∇γd +∇β)

(γd + β)2

=
γd∇γd + β∇γd − γd∇γd − γd∇β

(γd + β)2

=
β∇γd − γd∇β

(γd + β)2

(B.6)

and since

∇γd =
[

∂
∂r

(
y2c,i + r2s,i + 2rs,iyc,i cos θi

)
∂
∂θi

(
y2c,i + r2s,i + 2rs,iyc,i cos θi

)] = [2rs,i + 2yc,i cos θi
−2rs,iyc,i sin θi

]
(B.7)

and

∇β = ∇
M∏
i=1

βi =
M∑
i=1

(
∇βi

M∏
j=1,j ̸=i

βj

)
(B.8)

and because only at most one ∇βi ̸= 0 (that of the obstacle within whose effect zone the
point is) it follows that

∇β =

 ∂
∂rs,i

P
(

rs,i−ρi
εi

)
∂
∂θi

P
(

rs,i−ρi
εi

)  =

P ′
(

rs,i−ρi
εi

)
∂

∂rs,i

(
rs,i−ρi

εi

)
P ′
(

rs,i−ρi
εi

)
∂
∂θi

(
rs,i−ρi

εi

)  =

[
P ′(zi)

1
εi

P ′
(

rs,i−ρi
εi

)
· 0

]
=

[
1
εi
P ′(zi)

0

]
(B.9)

Substitution of the above yields

∇φs =
1

(γd + β)2

(
β

[
2rs,i + 2yc,i cos θi
−2rs,iyc,i sin θi

]
− γd

[
1
εi
P ′(zi)

0

])
(B.10)

and because in the effect annulus of obstacle i only βi(q) = P (zi) ̸= 1

∇φs =
1

(γd + P (zi))
2

(
P (zi)

[
2rs,i + 2yc,i cos θi
−2rs,iyc,i sin θi

]
− γd

[
1
εi
P ′(zi)

0

])
=

1

(γd + P (zi))
2

([
P (zi) (2rs,i + 2yc,i cos θi)
−P (zi)2rs,iyc,i sin θi

]
+

[
−γd

εi
P ′(zi)

0

])
=

1

(γd + P (zi))
2

[
P (zi) (2rs,i + 2yc,i cos θi)− γd

εi
P ′(zi)

−P (zi)2rs,iyc,i sin θi

] (B.11)

Therefore

∂φs

∂rs,i
=

P (zi) (2rs,i + 2yc,i cos θi)− γd
εi
P ′(zi)

(γd + P (zi))
2 ,

∂φs

∂θi
=
−P (zi)2rs,iyc,i sin θi

(γd + P (zi))
2

(B.12)

Because P (zi) > 0, ∀zi > 0 and ri > 0, yi > 0 it follows that in the interior of the free
space

∂φs

∂θi
=
−P (zi)2rs,iyc,i sin θi

(γd + P (zi))
2


> 0, θi ∈ (−π, 0)
= 0, θi ∈ {0, π}
< 0, θi ∈ (0, π)

(B.13)
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Figure B.1: Polynomial navigation function potential on 2D sphere world, effect zone detail
annotated.

and P (zi = 0) =⇒ ∂φs

∂θi
= 0,∀zi = 0.

This portrait of the tangential partial derivative ∂φs

∂θi
is symmetric about the yi axis,

outside the effect zones of all other obstacles j ̸= i. The yi axis is the line through the
goal qd and the ith obstacle center qc,i.

There are two regions, the one in which ∇γd ◦∇β < and the one in which ∇γd ◦∇β <.
The second one has only radially outward flow. The first is further subdivided into two
regions. The inner, where the repulsive effect is stronger than the attractive, resulting
in an overall outward flow. The outer, where the repulsive effect is less strong than the
attractive effect, resulting in an inward flow. Since in the first region the inner region
moves outward and the outer inward, they meet, forming a valley. This valley partially
orbits the obstacle, until it leads out of the effect zone.

The navigation function potential is shown in Fig. B.2.

B.2 Diffeomorphism

B.2.1 Conditions to make it a diffeomorphism

The diffeomorphism is defined as

Ti(ri, θi) =

[
T 1
i

T 2
i

]
=

[
S(xi(qi))bi(qi)ρi + (1− S(xi(qi)))ri

θi

]
(B.14)

It is desired to select xi, bi such that the transformation can be proved to be a diffeomor-
phism between the closed patch boundaries wchich are C2 curves.

Note that if an obstacle with covers were to be transformed to a 2-sphere, then
T 1
ri
, T 2

ri
, T 2

θi
would exist and be the desirable, but T 1

θi
would not exist on the ray through

the corner (C1 discontinuity).
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Figure B.2: Polynomial navigation function potential on 2D sphere world.

Therefore it is obvious that just showing some terms have the desired value when the
rest are not needed (here the value of T 1

θi
) is not enough. One need to ensure that all the

terms exist.
This limitation of a piecewise C2 obstacle boundary leads us to a different approach.

Divide the zone around the obstacle in pieces, of which each one has C2 boundaries, so
that a diffeomorphism can be defined on it to an arc of a circle.

This leads to the requirement of piecewise C2 curves defining the obstacle boundaries.
Then a cover of diffeomorphisms can be constructed.

Let us now show that we can construct such diffeomorphisms as functions of the patch
boundaries and the current position.

Define

S(x) =


1, x ∈ (−∞, 0]

−6x5 + 15x4 − 10x3 + 1, , x ∈ (0, 1)

0, x ∈ [0,∞]

(B.15)

then
∂

∂x
S(x) = −30x4 + 60x3 − 30x2 (B.16)

we will write S ′(x) = ∂
∂x
S(x) so note that

S(0) = 1, S ′(0) = 0, S(1) = 0, S ′(1) = 0 (B.17)

To prove that the transformation is a diffeomorphism it suffices to show that the Ja-
cobian matrix is everywhere on the closed patch differentiable.

The boundaries of interest concerning differentiability are the inner and outer, not the
extremal rays corresponding to corners (although if an extension of the obstacle’s segment
in a C2 way is constructed, it can be shown that a diffeomorphism can be defined on the
open superset).
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We will show that differentiability on the inner and outer boundaries of the transfor-
mation (and its inverse) holds also on the boundaries, which correspond to the branching
points of S).

Let us start by showing existence and invertibility of the Jacobian matrix. Its terms
are

JTi(ri, θi) =

[ ∂
∂ri

T 1
i

∂
∂θi

T 1
i

∂
∂ri

T 2
i

∂
∂θi

T 2
i

]
=

[
T 1
i,ri

T 1
i,θi

T 2
i,ri

T 2
i,θi

]
(B.18)

where
∂

∂ri
T 2
i (ri, θi) =

∂

∂ri
θi = 0

∂

∂θi
T 2
i (ri, θi) =

∂

∂θi
θi = 1

(B.19)

and

∂

∂θi
T 1
i (ri, θi) =

∂

∂θi
(S(xi(qi))bi(qi)ρi + (1− S(xi(qi)))ri)

= S ′(xi(qi))
∂

∂θi
{xi(qi)}bi(qi)ρi − riS

′(xi(qi)))
∂

∂θi
(xi(qi))

= S ′(xi(qi))
∂

∂θi
xi(qi)bi(qi)ρi + S(xi(qi))

∂

∂θi
bi(qi)ρi − S ′(xi(qi))

∂

∂θi
{xi(qi)}ri

= S ′(xi(qi))
∂

∂θi
xi(qi) [bi(qi)ρi − ri] + S(xi(qi))ρi

∂

∂θi
bi(qi)

(B.20)
which exists (and the chain rule can be applied) when ∂

∂θi
xi(qi) and ∂

∂θi
bi(qi) exist. This

depends on the choice of xi and bi so it is to be checked when we select them.
The Jacobian matrix is therefore of the form

JTi(ri, θi) =

[
T 1
i,ri

Ti,θi

0 1

]
=⇒ det JTi(ri, θi) = T 1

i,ri
(B.21)

As a result, invertibility of JTi(ri, θi) is equivalent to T 1
i,ri
̸= 0. If we further require

that T 1
i,ri

(ri, θi) > 0 then it is guaranteed that orientation is preserved and not reverted.
It is (provided that derivatives exist)

T 1
i,ri

(ri, θi) =
∂

∂ri
T 1
i (ri, θi)

=
∂

∂ri
(S(xi(qi)bi(qi)ρi + (1− S(xi(qi)))ri)

= S ′(xi(qi))
∂

∂ri
(xi(qi))bi(qi)ρi + S(xi(qi))

∂

∂ri
(bi(qi))ρi + (1− S(xi(qi)))− S ′(xi(qi))

∂

∂ri
xi(qi)ri

= S ′(xi(qi))
∂

∂ri
(xi(qi)) [bi(qi)ρi − ri] + S(xi(qi))

∂

∂ri
bi(qi)ρi + [1− S(xi(qi))]

(B.22)
We have to deal with 3 terms

S ′(xi(qi))
∂

∂ri
(xi(qi)) [bi(qi)ρi − ri] +

+S(xi(qi))
∂

∂ri
(bi(qi))ρi+

+1− S(xi(qi))

(B.23)
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and all of them are usefull if we are to prove what is desired. This usefullness is to become
clear in what follows.

Suppose we select a xi(qi) such that

xi(qi) = 0, ∀qi ∈ ∂Oi =⇒

{
S(xi(qi)) = 1, ∀qi ∈ ∂Oi

S ′(xi(qi)) = 0,∀qi ∈ ∂Oi

xi(qi) = 1 =⇒

{
S(xi(qi)) = 0,∀qi ∈ ∂Pi − ∂Oi

S ′(xi(qi)) = 0, ∀qi ∈ ∂Pi − ∂Oi

(B.24)

and

0 < xi(qi) < 1, ∀qi ∈ P̊i =⇒

{
0 < S(xi(qi)) < 1, ∀qi ∈ P̊i

S ′(xi(qi)) < 0,∀qi ∈ O̊i

(B.25)

Then 1− S(xi(qi)) > 0, ∀qi ∈ P̊i.

∃(JTi(ri, θi))
−1, ∀qi ∈ P̊i ⇐⇒ det JTi(ri, θi) ̸= 0,∀qi ∈ P̊i (B.26)

But because det JTi(ri, θi) > 0 for qi ∈ A ⊂ Pi and det JTi(ri, θi) < 0 for qi ∈ B ⊂ Pi would
mean that the trasnition is discontinuous, hence that det JTi(ri, θi) and so JTi(ri, θi) are
discontinuous, then this means that JTi(ri, θi) would not exist at the discontinuity.

Therefore it must be that det JTi(ri, θi) > 0 or det JTi(ri, θi) < 0. We choose to require
det JTi(ri, θi) > 0.

Then at least on eterm should be positive at every point of the closed patch, while the
others are allowed to be nonpositive at that same point.

We nontheless require that all terms be positive at every point of the open patch. So
this leads us to

S(xi(qi))︸ ︷︷ ︸
>0

∂

∂ri
bi(qi) ρi︸︷︷︸

>0

> 0, ∀qi ∈ P̊i ⇐⇒
∂

∂ri
bi(qi) > 0,∀qi ∈ P̊i (B.27)

and

S ′(xi(qi))︸ ︷︷ ︸
>0

∂

∂ri
xi(qi) [bi(qi)ρi − ri] > 0, ∀qi ∈ P̊i (B.28)

If we select a xi such that
∂

∂ri
xi(qi) > 0,∀qi ∈ P̊i (B.29)

then we should also select a bi(qi) such that

bi(qi)ρi − ri < 0,∀qi ∈ P̊i
ρi>0⇐⇒ bi(qi) <

ri
ρi
,∀qi ∈ P̊i (B.30)

the required condition is met3.
So the conditions required in the interior P̊i of Pi have been determined. Let us

examine the boundaries.

3We could have chosen ∂
∂ri

xi(qi) < 0, ∀qi ∈ P̊i, bi(qi)ρi − ri > 0, ∀qi ∈ P̊i but this would not allow
xi(qi) = 0, ∀qi ∈ ∂Oi ⇐⇒ xi(rin,i(θi)) = 0 and xi(qi) = 1, ∀qi ∈ (∂Pi − ∂Oi) ⇐⇒ xi(rout,i(θi)) = 1 where
rin,i(θi) < rout,i(θi). Therefore this selection is the only possible.
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On rin,i(θi) it is xi(rin,i(θi)) = 0 and

T 1
i,ri

(θi) = S ′(xi(qi))
∂

∂ri
xi(qi) [bi(qi)ρi − ri] + S(xi(qi))

∂

∂ri
(bi(qi))ρi + 1− S(xi(qi))

=
∂

∂ri
bi(qi) ρi︸︷︷︸

>0

(B.31)

and if we require ∂
∂ri

bi(qi) > 0 on the inner boundary, then T 1
i (rin,i(θi), θi) > 0 there.

On rout,i(θi) it is xi(rout,i(θi)) = 1 and

T 1
i,ri

(rout,i(θi), θi) = S ′(xi(qi))
∂

∂ri
(xi(qi)) [bi(qi)ρi − ri] + S(xi(qi))

∂

∂ri
(bi(qi))ρi + 1− S(xi(qi))

= 1 > 0
(B.32)

From the above it becomes clear that not having bi(qi) in the product would not allow
us to have the term S(xi(qi))

∂
∂ri

(bi(qi))ρi and if ri was replaced by rout,i(θi) then neither
q − S(xi(qi)) would arise. Then

T 1
i,ri

(rin,i(θi), θi) = 0

T 1
i,ri

(rout,i(θi), θi) = 0

T 1
i,ri

(ri, θi) = S ′(xi(qi))︸ ︷︷ ︸
<0

∂

∂ri
(xi(qi))︸ ︷︷ ︸
>0

[ρi − ri]︸ ︷︷ ︸
<0

(B.33)

and the transformation would not be a diffeomorphism on the closed set Pi (or equivalently
on the open-closed ∞, inner boundary). Therefore the choice of a linear transformation

T 1
i (ri, θi) = S(xi(qi))ρi + (1− S(xi(qi)))rout,i(θi) (B.34)

would not work.
Note that points on ∂Oi are transformed to points on the ith circle boundary

rin,i(θi)
Ti(ri,θi)→ bi(qi)ρi, qi ∈ Oi (B.35)

We want
bi(qi)ρi = ρi,∀qi ∈ Oi

ρi>0⇐⇒ bi(qi) = 1, ∀qi ∈ Oi (B.36)

B.2.1.1 Conditions summary

We want the following to hold for the function xi(qi) to be selected

xi(qi) = 0,∀qi ∈ ∂Oi

xi(qi) = 1, ∀qi ∈ (∂Pi − ∂Oi)

0 < xi(qi) < 1, ∀qi ∈ P̊i

∂xi

∂ri
(qi) > 0, ∀qi ∈ P̊i

(B.37)

and for function bi(qi) we require

bi(qi) = 1,∀qi ∈ ∂Oi

∂

∂ri
bi(qi) > 0,∀qi ∈ P̊i

bi(qi) <
ri
ρi
,∀qi ∈ P̊i

(B.38)
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Note that the third requirement on bi(qi) is on the interior P̊i of Pi. If imposed on the
closure P̄i then it is compatible with the first constraint, because

biqi =
rin,i(θi)

ρi
> 1,∀qi ∈ ∂Oi (B.39)

B.2.2 Selection 1 for functions bi(q), xi(q)

Let
bi(q) =

rs,i − rs,in,i(θi)

ρi
+ 1 = f(ri, θi) (B.40)

then
bi(rin,i(θi)) =

rin,i(θi)− rin,i(θi)

ρi
+ 1 = 1

∂

∂
bi(qi) =

∂

∂

(
rs,i − rs,in,i(θi)

ρi
+ 1

)
=

1

ρi
> 0, ∀qi ∈ Pinot onlyP̊i

bi(qi) =
rs,i − rs,in,i(θi)

ρi
+ 1 =

ri
ρi

+

(
1− rin,i(θi)

ρi

)
︸ ︷︷ ︸

<0

<
ri
ρi

(B.41)

where it is important to select a circle within the obstacle to ensure

rin,i(θi) > ρi ⇐⇒
ρi>0

rin,i(θi)

ρi
> 1 ⇐⇒ 1− rin,i(θi)

ρi
< 0 (B.42)

Then we can select

xi(qi) =
bi(qi)− bi(∂Oi)

bi(∂P − ∂Oi)− bi(∂Oi)
=

bi(qi)− 1

bi(rout,i(θi))− 1

=

ri−rin,i(θi)

ρi
+ 1− 1

rout,i(θi)−rin,i(θi)

ρi
+ 1− 1

=
ri − rin,i(θi)

rout,i(θi)− rin,i(θi)

(B.43)

B.2.3 Selection 2 for functions bi(q), xi(q)

Select
xi(qi) = wi

rs,i − rs,in,i
rs,j − rs,in,j

(B.44)

where wi ∈ (0, 1) is the weight of the ith Voronoi cell and j is the second closet obstacle
(weighted convex distance Voronoi-wise). The radial partial derivative of xi is

∂

∂rs,i
xi(qi) =

∂

∂rs,i

(
wi

rs,i − rs,in,i
rs,j − rs,in,j

)
= wi

1

rs,j − rs,in,j
(B.45)
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Figure B.3: Navigating a convex obstacle world with Bezier obstacles using an updating
polynomial Navigation Function with an updating diffeomorphism.
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B.3 Notation and Definitions

Table B.1: Notation and definitions.

Symbol Meaning First definition

∥·∥ vector norm
|·| absolute value of real number
N set of natural numbers
R set of real numbers
C set of complex numbers
∇ gradient of scalar function (1st derivative Di{·})
D2 Hessian matrix of scalar function (2nd derivative DiDj{·})
n dimension of Euclidean space subsection 2.2.1
En n-dimensional Euclidean space subsection 2.2.1
M number of internal obstacles (a priori known world) subsection 2.2.1
W workspace (2.1)
q vector in En (2.1)
ρ0 radius of obstacle 0 (2.1)
i, j dummy indices subsection 2.2.1
Oj internal obstacle j ∈ I1 (2.2)
ρj Oj radius (2.2)
qj Oj center (2.2)
I1 set of internal obstacle indices (a priori known world) (2.2)
I0 set of all obstacle indices (a priori known world) subsection 2.2.1
∂ partial derivative, closed set boundary
∂W workspace W boundary subsection 2.2.1
O0 obstacle 0 (2.3)
F free space (2.4)
∂Oj Oj boundary subsection 2.2.1
λ auxiliary parameter used in proof (2.8)
Bi (εi) open n-dimensional spherical annulus (2.13)
εi parameters determining the widths of annuli Bi (εi) (2.13)
X closure of set X equal to X ∪ ∂X

Bi (εi) closure of Bi (εi) (2.14)
ρBi

annulus Bi (εi) outer radius (2.15)
qd agent destination in En subsection 2.2.2
Fd singleton set of destination {qd} subsection 2.2.2
∂F free space boundary subsection 2.2.2
F0 set “near” internal obstacles subsection 2.2.2
F1 set “near” workspace boundary subsection 2.2.2
F2 set “away” from obstacles subsection 2.2.2
εI0 set of εi, i ∈ I0 subsection 2.2.2
εI1 set of εi, i ∈ I1 subsection 2.2.2
εi3j constraint on εi ensuring Bi (εi) ∩ Oj = ∅, j ∈ I0 \ i, i ∈ I1 (2.17)
∂Bi (εi) boundary of Bi (εi), i ∈ I0 Fig. 2.4
M analytic manifold with boundary subsection 2.3.1
φ(q) general navigation function (a priori known world) subsection 2.3.1
φ(q) Koditschek-Rimon navigation function (a priori known world) (2.20)
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Table B.2: Notation and definitions.

Symbol Meaning First definition

σ(x) squashing diffeomorphism (2.21)
x auxiliary real number subsection 2.3.2
σd(x) distortion diffeomorphism (2.27)
φ̂(q) diffeomorphic to navigation function in F \ {∂F ∪ {qd}} (2.22)
γ(q) tuned destination attractive effect (2.23)
γd(q) destination qd paraboloid attractive effect (2.23)
k navigation function tuning parameter (2.23)
β(q) product of obstacle functions (2.24)
βi(q) implicit obstacle function (2.25)
β̄i(q) product of all βj omitting βi (2.26)
N(εI0) lower bound on k (2.62)
ε′0i defined in [23] as ε′i0 here Table 2.1
ε′′0i defined in [23] as ε′′i0 here Table 2.1
ε′2i defined in [23] as ε′i2 here Table 2.1
ε′′2i defined in [23] as ε′′i2 here Table 2.1
ε1 defined in [23] as ε0u here Table 2.1
ε0 defined in [23] as mini∈I1{ε′i0, ε′′i0} here Table 2.1
ε2 defined in [23] as mini∈I1{ε′i2, ε′′i2} here Table 2.1
ε defined in [23] as mini∈I0{εi} here Table 2.1
εiu upper bound on εi (2.29)
ε′i0 constraint on εi ensuring qd /∈ Bi (εi) (qd /∈ Bi (εi) in [23]) (2.29), Table 2.1, (2.133)
ε′′i0 constraint on εi ensuring D2φ(qc) < 0 in ∇β⊥

i (2.29), Table 2.1, (2.195)
ε′i2 together with ε′′i2 ensures D2φ(qc) > 0 in span{∇βi} (2.29), Table 2.1, (2.84)
ε′′i2 together with ε′i2 ensures D2φ(qc) > 0 in span{∇βi} (2.29), Table 2.1, (2.95)
εi3 constraint on εi ensuring Bi (εi) ∩

∪
j∈I0\i Oj = ∅, i ∈ I1 (2.30)

εi03 combined constraints ε′i0 and εi3 (2.30)
εi23 combined constraints ε′i2 and εi3 (2.30)
qc critical point in En subsubsection 2.4.2.1
Cφ̂ set of critical points of function φ̂ subsubsection 2.4.2.1
NKR(ε) lower bound on k as defined in [23] Equation 2.44
Q0 (x) auxiliary function such that Q0 (β0) =

1
2
∥∇β0∥
β0

(2.58)

Q00 upper bound on 1
2
maxF2

{
∥∇β0∥
β0

}
= maxF2 {Q0 (β0)} (2.58)

Qi (x) auxiliary function such that Qi (βi) =
1
2
∥∇βi∥
βi

(2.58)

Qii
1
2
maxF2

{
∥∇βi∥
βi

}
= maxF2 {Qi (βi)} ,∀i ∈ I1 (2.58)

ε0u upper bound on ε0 (2.74)
v̂ unit vector {v̂ ∈ En| ∥v̂∥ = 1} subsection 2.4.4
r̂i unit vector parallel to ∇βi subsection 2.4.4
βmin
ji two definitions, as minBi(εi23)

{βj} and minBi(εi03)
{βj} (2.91), (2.155)

βmax
ji two definitions, as maxBi(εi23)

{βj} and maxBi(εi03)
{βj} (2.91), (2.155)

Q0i

√
ρ20

(βmin
0i )2

− 1
(βmax

0i )
depends on definition of βmin

0i and βmax
0i (2.92)

Qji Qj(β
min
ji ) depends on definition of βmin

0i (2.93)
ν(q) typographic error in [23] intended to be νi(q) (2.96)
νi(q) relative curvature function (2.104)
t̂i unit vector normal to ∇βi (2.100)
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Table B.3: Notation and definitions.

Symbol Meaning First definition

Gi multiply defined expression (2.108)
ζ1 (2.120)
nom(·) nominator (2.123)
den(·) denominator (2.123)
ζ2 (2.125)
εi,KR

ε′i,KR

λ′
i0 scaling factor (2.133)

Ai

Bi

a auxiliary vector
b auxiliary vector
γmin
di (2.156)

γmax
di (2.156)

ρ′i
v̂d(q) (2.165)
θ angle of polar coordinate system (2.166)
θmin

θmax

ri subsubsection 2.4.5.10
r radius of polar coordinate system subsubsection 2.4.5.10
D semi-annulus subsubsection 2.4.5.11
f(r, θ) new nominator function in polar coordinates (2.179)
q1 . . . q8 auxiliary points Fig. 2.12
x abscissa of cartesian coordinate system Fig. 2.12
y ordinate of cartesian coordinate system Fig. 2.12
f(x, y) function f(r, θ) as a function of cartesian coordinates (2.181)
g(x, y) constraint function (multiply defined) (2.186), (2.190)
Λ(x, y, λ) Lagrangian for constrained min (multiply defined) (2.187), (2.190)
λ Lagrange multiplier (2.187), (2.190)
xn normalized abscissa of cartesian coordinate system x

ri
Fig. 2.13

yn normalized ordinate of cartesian coordinate system y
ri

Fig. 2.13
Mz number of known internal obstacles (exploration)
I1z set of internal obstacle indices (exploration)
I0z set of all obstacle indices (exploration)
F̊ free space interior F \ ∂F
Pz positive invariant set for agent controlled by φz

φz(q) navigation function potential (exploration)
Fn set “near” obstacles (both internal and zeroth (4.17)
Fa set “away” obstacles (both internal and zeroth (4.18)
εi4 constraint on εi ensuring ∥∇βi∥ > 0 in B (εi4) (4.21)
εi5 constraint on εi
TqF Tangent space of F at q (4.23)
UTqF Unit tangent space of F at q (4.23)
Ri(q) Radial space spanned by (∇βi) (q) at q (4.24)
URi(q) Unit radial singleton {r̂i} at q (4.27)
Ti(q) Orthogonal complement of Ri(q) in TqF (4.25)
UTi(q) Unit tangent space of β−1

i (βi(q)) (4.28)
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Table B.4: Notation and definitions.

Symbol Meaning First definition

Bi(q) connected component of β−1
i (βi(q)) to which q belongs (4.63)

TBi obstacle level set tangent bundle
⊔

q∈F TqBi (4.64)
UTBi obstacle level set unit tangent bundle

⊔
q∈F {v̂ ∈ UTi(q)} (4.65)

νi(q, t̂i) relative curvature function (4.66)
νi1(q) νi(q, t̂i) component function for paraboloid γd (4.67)
νi2(q, t̂i) νi(q, t̂i) component function for paraboloid γd (4.67)
νi3(q) νi(q, t̂i) component function for paraboloid γd (4.72)
νi4(q, t̂i) νi(q, t̂i) component function for paraboloid γd (4.72)
θi(q) Gradient angle ̂((∇γd) (q) , (∇βi) (q)) (4.76)
Hi1(q) “Good” half-space (4.81)
Hi2(q) “Bad” half-space (4.82)
Ai1(εi) Single obstacle neighborhood subset (4.85)
Ai2(εi) Single obstacle neighborhood subset (4.85)
A1(εI0) Subset of Fn (4.87)
A2(εI0) Subset of Fn (4.87)
κi,q(t̂i) Normal curvature at q along t̂i of (hyper)surface Bi(q) (4.109)
Lq(ti) Weingarten map (4.111)
nBi

(q) vector normal to (hyper)surface Bi(q) at q (4.111)
γ(t) path on (hyper)surface Bi(q) (4.111)
X, Y tangent vectors in tangent space TqBi (4.113)
Ri,q(t̂i) radius of normal curvature at q along t̂i of (hyper)surface Bi (4.115)
p̂ij(q) principal direction at q of (hyper)surface Bi(q) (4.118)
κij(q) principal curvature at q of (hyper)surface Bi(q) (4.119)
Rij(q) radius of principal curvature at q (4.120)
Γ(q) level set of γd(q) (4.140)
l Weingarten map matrix representation in tangent space (4.128)
S (qa, ρ) Sphere with center qa and radius ρ (4.142)
Sci(q, t̂i) Curvature sphere at point q (4.143)
qci Curvature sphere center (4.144)
ρci Curvature sphere radius (4.144)
c1 βi level set value subsection 4.4.2
a1 βi level set value subsection 4.4.2
a2 βi level set value subsection 4.4.2
c2 βi level set value subsection 4.4.2
B(q, r(q)) closed ball around q of radius r(q) Proposition 28
r(q) radius for properties to hold in B(q, r(q)) Proposition 28
q′ point in ball subsection 4.4.2
I−(q) index set of principal curvatures with νi < 0 at q subsection 4.4.2
I+(q) index set of principal curvatures with νi > 0 at q subsection 4.4.2
∆ν3 Difference of ν3 subsection 4.4.2
U1(∆ν3) open neighborhood function of ∆ν3 subsection 4.4.2
∆κ Difference of κ subsection 4.4.2
U2(∆κ) open neighborhood function of κ subsection 4.4.2
rmin minimal ball radius in compact neighborhood Proposition 29
z, g auxiliary parameters subsection 4.4.2
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Table B.5: Notation and definitions.

Symbol Meaning First definition

H real symmetric matrix Proposition 32
λi eigenvalues of matrix H Proposition 32
S unit sphere in Rn (4.171)
U linear span of eigenvectors (4.172)
δj matrix H eigenvectors Proposition 32
aj matrix H eigenvector weights Proposition 32
Pi dummy subset of principal directions section 4.5
Ii index set of dummy subset of principal directions section 4.5
r index section 4.5
Pi span of dummy principal directions’ subset Pi section 4.5
W linear span of selected eigenvector subset Proposition 36
I−i (q) index set of principal directions with νi < 0 section 4.6
P−
i (q) subset of principal directions with νi < 0 section 4.6

P−
i (q) span of P−

i (q) section 4.6
I+i (q) index set of principal directions with νi > 0 section 4.6
P+
i (q) subset of principal directions with νi > 0 section 4.6

P+
i (q) span of P+

i (q) section 4.6
I±i (q) index set of principal directions with νi ̸= 0 section 4.6
P±
i (q) subset of principal directions with νi ̸= 0 section 4.6

P±
i (q) span of P±

i (q) section 4.6
Gi auxiliary function Proposition 39
A ellipsoid definition matrix (5.1)
aij ellipsoid radii (5.1)
a ellipse major radius (5.5)
b ellipse minor radius (5.5)
e ellipse eccentricity (5.6)
ui vector in span of a selected radial and tangent unit vector pair (6.1)
µ ui coordinate wrt r̂i (6.1)
λ ui coordinate wrt t̂i (6.1)
a, b, c auxiliary variables section 6.1
g homogeneous function Definition 51
K cone (51)
x vector in cone K (51)
t scaling factor for x (51)
p exponent factor for t (51)
Fp First nonzero Taylor form Proposition 52
1
k!
Dk

xf(a) kth Taylor form (6.23)
Di

j Partial derivative operator (6.23)
J compact Riemann manifold Proposition 55
φ̂M Morse part of φ̂ Proposition 56
φ̂NM Non-Morse part of φ̂ Proposition 56
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Table B.6: Notation and definitions.

Symbol Meaning First definition

Ne number of experimental trajectories (9.1)
Ie set of indices of experimental trajectories (9.1)
Xi single experimental trajectory {xi(tj)}j∈Ii (9.1)
Ni number of ith trajectory samples (9.2)
Ii set of indices of samples in ith trajectory (9.2)
tj jth time sample (9.2)
xi(tj) configuration of ith trajectory at jth time sample (9.2)
ui(tj) trajectory velocity sample at time tj (9.3)
Ui set of velocity samples for ith trajectory subsection 9.2.1
qdi destination of ith trajectory subsection 9.2.1
E experimental data subsection 9.2.4
A,B PDE vector coefficients subsection 9.3.3
T sampling period (9.32)
qr rth component of system state q (9.39)
C B-spline coefficient tensor (9.40)
c vector of B-spline coefficients (9.4.1)
t, tij B-spline knot sequences (9.4.1)
hi order of B-spline in each dimension (9.4.1)
D domain of definition (9.42)
J optimization cost functional (9.42)
JPDE PDE error functional (9.42)
Jsp sample point obstacle function positivity functional (9.42)
Jdp destination point obstacle function positivity functional (9.42)
Jbn domain boundary obstacle function non-positivity functional (9.42)
s(x) C2-smooth switch (9.42)
∆ij satisfaction error of PDE system at jth sample of ith trajectory (9.42)
wi relative weight coefficients of component cost functionals (9.42)
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Table B.7: Notation and definitions.

Symbol Meaning First definition

ϕ, ϕ′ LTL formulas subsection 12.2.1
p atmomic proposition subsection 12.2.1
P set of atomic propositions subsection 12.2.1
ΦP set of well formed formulas over set P subsection 12.2.1
X LTL operator “next” subsection 12.2.1
U LTL operator “until” subsection 12.2.1
� LTL operator “always” subsection 12.2.1
♢ LTL operator “eventually” subsection 12.2.1
¬ logical negation operator subsection 12.2.1
∧ logical conjunction operator subsection 12.2.1
∨ logical disjunction operator subsection 12.2.1
σ sequence of atomic proposition subsets subsection 12.2.1
σi(j) sequence suffix subsection 12.2.1
Σ alphabet of letters σ(i) subsection 12.2.2
Σω set of all infinite words over Σ subsection 12.2.2
Lω language of infinite words subsection 12.2.2
S finite set of states subsection 12.2.2
δ nondeterministic transition function subsection 12.2.2
S0 set of initial states subsection 12.2.2
F set of accepting states subsection 12.2.2
ρ labeling function subsection 12.2.2
w infinite word in Σω subsection 12.2.2
γ deterministic transition function subsection 12.2.2
Li “good” set of states in Rabin automaton subsection 12.2.2
Ui “bad” set of states in Rabin automaton subsection 12.2.2
ILU index set of “good”/“bad” pairs in Rabin automaton subsection 12.2.2
nLU number of “good”/“bad” pairs in Rabin automaton subsection 12.2.2
ai leader agent i subsection 12.3.1
Ai set of leader agents (i.e., with specifications) subsection 12.3.1
N number of leader agents subsection 12.3.1
Ia index set of leader agents ai subsection 12.3.1
ϕi local LTLX−specification given to agent ai subsection 12.3.1
Hi agent ai hybrid state subsection 12.3.1
xi agent ai continuous state subsection 12.3.1
Xi agent ai continuous state space subsection 12.3.1
ni dimensionality of continuous state space Xi subsection 12.3.1
qi agent ai discrete state subsection 12.3.1
Qi agent ai discrete state space subsection 12.3.1
mi dimensionality of discrete state space Qi subsection 12.3.1
fi follower agent subsection 12.3.1
F set of follower agents fi (i.e., w/o specs) subsection 12.3.1
nf number of follower agents fi subsection 12.3.1
If index set of follower agents fi subsection 12.3.1
pcij jth controllable AP of ai subsection 12.3.2
Pci set of controllable APs of ai subsection 12.3.2
nci number of controllable APs of ai subsection 12.3.2
Ici index set of APs in Pci subsection 12.3.2
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Table B.8: Notation and definitions.

Symbol Meaning First definition

poij jth observable AP of ai subsection 12.3.2
Poij set of observable APs of ai subsection 12.3.2
noi number of observable APs of ai subsection 12.3.2
Ioi index set of APs in Poi subsection 12.3.2
fc function mapping agent ai to its controllable APs Pci subsection 12.3.2
Pc all agents’ controllable APs subsection 12.3.2
Po all agents’ observable APs subsection 12.3.2
Pi all APs of agent ai subsection 12.3.2
ρi radius of spherical agent ai subsection 12.3.2
Rs,i sensing/communication radius of ai subsection 12.3.2
xdij NF destination corresponding to AP pcij subsection 12.3.3
INF,i index set of NF controllable APs, ⊆ Ici subsection 12.3.3
t0 initial time of system evolution subsection 12.3.3
cdij relative position vector (between agents) subsection 12.3.3
Hi agent ai hybrid controller subsection 12.3.4
Di agent ai discrete controller subsection 12.3.4
Cij agent ai jth NF controller subsection 12.3.3
Bi agent ai Büchi automaton section 12.4
Ri agent ai Deterministic Rabin automaton section 12.4
Ti agent ai trimmed Rabin automaton section 12.4
Di agent ai deterministic controller automaton section 12.4
Wj complement of union Lj ∪ Uj section 12.4
φi NF of an agent (12.3)
ui velocity of an agent (12.2)
γi agent destination function (12.4)
Gi, gikl functions to build multi-agent proximity relations (12.6)
bikl, βij agent collision functions (12.7)
λ, h, k NF tuning parameters section 12.7
S(x) C2-smooth switch (12.8)
dij distance between agents (12.9)
A,B,Γ normalized squared distance differences (12.9)
S1, S2 switches on normalized distance differences (12.9)
dc communication distance (12.9)
dm piecewise collision function branching point (12.9)
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