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Cover:

e On the upper left navigation of a point agent in an unknown 3-dimensional sphere
world using the proposed automatically tuned Navigation Function is shown and
compared to a manually tuned Navigation Function trajectory.

e On the upper middle a point agent navigates a known 3-dimensional everywhere
partially sufficiently curved world, which includes tori, ellipsoids of one bounded
eccentricity and a partially sufficiently curved supertorus.

e On the upper right the obstacle function resulting as the solution of the partial
differential equation of the Navigation Function inverse problem is shown. The
experimental trajectories used are from grasping experiments.

e On the lower left the trajectories using the previous obstacle function are compared
to the experimental ones, within a principal component subspace of the hand con-
figuration space.

e On the lower middle a human hand is driven using the Navigation Function with the
B-Spline obstacle function found.

e On the lower right, local Linear Temporal Logic specifications are provided to indi-
vidual agents of a multi-agent system, each synthesizes a hybrid controller, then
decentralized verification occurs and where needed, the connectivity is triggered
and maintained utilizing follower agents.
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Chapter 1

Preface

1.1 Abstract

This work has four main contributions:

1. Extending Navigation Functions for exploring unknown sphere worlds;

2. Extending Navigation Functions for everywhere partially sufficiently curved worlds;

3. Formulating and solving the inverse problem of finding an unknown obstacle func-
tion corresponding to experimental trajectories to use it in a Navigation Function;

4. Decentralized hybrid control of Multi-Agent systems from local Linear Temporal
Logic specifications under limited communication using Navigation Functions.

The first one is provided in and extends Koditschek-Rimon Navigation Functions
to unknown sphere worlds, for which automatic tuning of the exponent parameter is de-
veloped. This algorithm replaces previous manual tuning with provably correct automatic
tuning. The lower bound used is here improved by orders of magnitude compared to the
original proof. The computational complexity of updating for discovered obstacles is here
examined. An updating algorithm with computational complexity linear in the number of
already discovered obstacles is constructed. Moreover, Navigation Functions are extended
for unbounded worlds. This work has been published in [125].

The second one, Part II, concerns the extension of Koditschek-Rimon Navigation func-
tions to complicated geometries and topologies without the need for diffeomorphisms.
The most general class of worlds to which this type of Navigation Functions is directly
applicable is investigated. This leads to a geometric condition characterizing tractable
worlds. In particular, those worlds which are everywhere partially sufficiently curved,
that is, those worlds for which every obstacle boundary point has at least one sufficient
principal curvature. A principal curvature is termed sufficient if its associated tangent
sphere with diameter the radius of principal curvature is included within the obstacle. The
Navigation Function theory is then reformulated and proved for these worlds. This work
has been submitted as [124].

In the Inverse Problem of Navigation Functions is considered. It consists of
finding an obstacle function from available feasible trajectories measured in experiments.
This obstacle function should be such, that using it in a Koditschek-Rimon Navigation
Function will solve the Motion Planning problem similarly to the experimental trajectories.
The problem is formulated as the solution of a Partial Differential Equation by gradient
minimization of an appropriately selected cost functional. The successful solution depends
on the construction of this functional, which requires careful consideration.
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The application of this new method is demonstrated using results from human grasping
experiments. By training the Navigation Function in the primary principal component
subspace of the hand configuration space, grasping hand movements very similar to those
produced by humans are achieved. This work has been submitted as [126].

The work in considers Multi-Agent systems. Local Linear Temporal Logic (LTL)
specifications are independently provided to each agent. Then each constructs a hybrid
controller comprised of a discrete supervising automaton resulting from the LTL and con-
tinuous Navigation Function controllers. Moreover, connectivity maintenance control is im-
plemented between agents requesting it, when triggered by their specifications. Follower
agents are utilized to maintain this connectivity. Formal verification of the constructed
controllers takes place by Model Checking when agents acquire path-connectedness and
can interchange their languages and automata. This work has been submitted as [123].

1.2 MepiAnyn

H epyacia autr nepIAapBavel TEOOEPEIG KUPIEC OUVEITPOPEC:

1. EnékTaon Tn¢ pebodou Twv Juvaptnoswv MAorynong (Navigation Functions) yia
TNV €€epelivnon AyvVwoTwWV GPAIPIKWV KOTHWV*

2. EnékTaon Tng HEBODOU TWV ZuvapTAoEWV MAoAYNoNG o€ KOGHOUG HEPIKWGE IKAVWG
KAUNUAOUG o€ KABs guvopIako onueio:

3. AilaTunwon kai niluon Tou AvTioTpogou MpoBARUaToc elpeonc piag ayvwoTng
ouvapTnong epnodiou, avTiOTOIXOUOAC OE NEIPAUATIKWOC KATAYEYPAUHEVEC TPOXIEC,
npog Xpron evrog Wiag ZuvapTtnong MAonynong:

4. ANOKEVTPWHEVOG UBPIOIKOC EAEYXOG MOAU-NPAKTOPIKWY OUCTNHATWY ano npodia-
YPAPEC dIATUNWHEVEG OE MpappIkn Xpovikn AOYIKH), UNO NEPIOPICHEVEC DUVATOTNTEC
gNIKOIVWVIAg, PE Xpon Zuvaptnoswv MAoriynonc.

H npTn oUVEIoPOPA anoTeAE! TO AVTIKEIPEVO TOU Kal ENEKTEIVEI TN HOPPH) TRV
>uvaptnoswv MAorfynong kata Koditschek-Rimon o€ ayvwoTouc o@aipikoUc Xwpouc, Yia
TOUC 0roioug avanTUooETal N auTopaTn pUBKIoN TNG NAPAPETPOU ToU ekBETN. O aAyopib-
MOG auTOC avTikabioTa Tnv NpwTePN avBpwmnivn pUBJIon Ye anodedelyyéva opOr autopaTn
pUBuIoN. To €dw XPNOILONOIOUKEVO EAAXIOTO OPIO TNG NAPAMETPOU Eival BEATIWHEVO KATA
TAEEIC MEYEDOUC OUYKPIVOUEVO PE TNV apxikn anodeiEn. EEeTaleTal kar n unoAoyioTiKn
NoAUNAOKOTNTA avavewong yia veo-cupeBEvTa eunodia. Kataokeualeral vac alyopiBuoc
avavewonc ME YPAuKIKA UnoAoyIoTIK NoAunAoKOTNTA w¢ nNpoc To NAnBo¢ Twv nNdn ava-
KaAupBEvTWV eunodiwv. EmnpooBeTwe, o1 ZuvapTtnaoelg MAorynong ENEKTEIVOVTAl Kal O€
MN PpayMevous Xwpoud. H epyaaia autn £xel dnuooieubei oTo [125].

H delTepn ouveiopopd, Mépoc T1, apopd atnv enékTaon Twv SuvapTroewv MAoAyN-
ong Tunou Koditschek-Rimon o€ nepIinAOKeC YEWUETPIEC Kal TOMOAOYIEC dixwe TNV avaykn
xpnone Alagopiolywv Aneikovioewv Xwpou (Diffeomorphisms). Zuykekpiyéva, diepeuva-
Tal Noia €ival N NAEOV YEVIKN KaTnyopia KOOWWY OTOUG 0Moioug ival Epapuooiog auTog
0 TUNoG ZuvapTnoewv MAonynong. ToUuTo odnyei o€ pia YEWWETPIKA ouvenkn n onoia xa-
pakTNPIilel TOUC anodekTOUG KOOHOUC. ZUYKEKPIMEVA, NPOKEITAI YIA TOUG XWPOUC Ol Oroiol
gival navToU PEPIKWC apKoUVTWE KapnuAol, dnAadry EKEivol OTOUG omnoiouc KABe auvopiakod
onpueio pnodiou dIABETEI TOUAAXIOTOV Hid IKavr) KUpIa KaunuAoTnTa. Mia kUpia KaunuAo-
TNTa ovopadeTal Ikavr EpOCOV N 0€ auTn avTioToIXoUoa EPAnTONEVN opaipd, JE JIAUETPO
TNV akTiva TnG KUPIAc KaunuAOTNTac, nepIAaPBaveTal evrog Tou epnodiou. Katoniv, n Be-
wpia Twv Zuvaptnoswv MAorynong enavadiaTunwveTail kal anodelkvUETAl YiIa aUTOUC TOUG
kbopouc. H epyacia autn €xel unoBAnBei oTo [124].
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5TO Bewpeital To AvTioTpopo MpdBANHa Twv SuvapThoewy MAoRynonc.
>uvioTaTal oTnv eUpeon piac ouvapTnong eunodiou ano dIaBECINEC NPAYUATOMNOINOIUES
TPOXIEC KATAYPAPEIOEC O€ NelpapaTa. H ouvaptnon epnodiou oQeilel va ival TEToIa, WOTE
N avTikataoTaon evrog piag Zuvaptnong MAonynong Tunou Koditschek-Rimon va eniAvel
TO MpoBANua Zxediaopou Kivnong napopoiwg PE TIG NEIPANATIKEG TPOXIEG. To npoBAnua
dlIaTUNWVETAI WC N eniAucn piac Mepikng Alagopiknc EEiowonc pe eAaxioTonoinon did ano-
TOHUNG KaBOdoU evOC KAaTAMNAWC EMIAEYPEVOU OUVAPTNOIAKOU KOOTOUG. H eniTuxnc Auon
e€apTaTal and TNV KATAOKEUR TOUTOU TOU GUvAPTNOIAKOU, N onoia anaiTei NPOCEKTIKN
MEAETN.

H véa peBodoc avadelkvUeTal HE EQapPoyn TNG XPNOIMOMNOINVTAC anoTeAEoUATa ano
neipdpaTa apnaync avTikepEvwv ano avlpwnouc. Exknaidevovrag pia uvaptnon MAon-
ynong oTov NpwTeUovTa undXwpo Tou I8I00UCTANATOG 0To Xwpo oTdong (Configuration
Space) Tou avBpwnivou Xepiou, avanapayovTal auTOUATwE KIVAOEIG apnayng JE XEPI MOAU
napopoleg P TIC avBpwnivec. H epyacia auTtn €xel unoPAnBei oto [[126].

H epyaaia oTo apopd o€ NOAU-NPAKTOPIKA CUCTAKATA. S€ KABE npakTopa di-
vovTal Tonikwg npodiaypageg diaTunwieveg o€ Mpappikn Xpovikn Aoyikr (Linear Temporal
Logic - LTL), ave€apTATWC HETAEU TOUG. TN OUVEXEIA, KABE NPAKTOPAC KATAOKEUALEl Evav
UBPIBIKO €AEYKTN anoTeAoupevo anod €va dlakpITo eniBAENOV AUTOUATO NPOKUNTOV aAno
TIG npodiaypagéG LTL kal ZuvapTtnoelg MAonynong wg GUVeXEeiG EAeYKTEG. EnmnpooBeTwC,
eQappoleTal €Aeyxoc diaTrnpnong ouvoeoINOTNTAG METAEU NPAKTOPWV NouU TNV anaitouy,
oTav autod {nTeital anod TIC NpodiaypaPeC Touc. AkOAouBol NpAKoPEC a&ionolouvTal yia Tn
dIaTrPNON AQUTNC TNG OUVOECIPOTNTAG. TUMIKNA €NAARBEUCT TWV KATAOKEUAOUEVWV EAEY-
KTV AauBavel xwpo pe ‘EAyxo MovTélou (Model Checking) 6Tav ol npAakTopeC anokTouv
ouvOEDINOTNTA KAl HNopouv va avTaAAa&ouv TIC YAWOOEG kal Ta auTopaTa Touc. H epyaaia
auTn €xel unoBAnBei oto [123].
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Adjustable Navigation Functions for
Unknown Sphere Worlds






Chapter 2

Navigation Function Tuning

2.1 Introduction

A fundamental problem in robotics is motion planning [2—4, 6]. A great variety of man-
ifestations exists and equally numerous different solution approaches. Among them we
may mention sampling-based [5], combinatorial [[1] and feedback methods for continuous
spaces [14], as well as combinations of methods [66, 67].

The basic motion planning problem over continuous space can be defined as finding
a safe path from an initial to a desired configuration [3]. Safety requires avoidance of
collisions with obstacles, while a successful plan should also converge to the desired des-
tination. By appropriately constructing a feedback control plan over continuous space,
trajectory generation and trajectory tracking can be integrated, leading to closed-loop
feedback motion planning.

Artificial Potential Fields are one class of closed-loop feedback motion planning meth-
ods to solve the motion planning problem. They were introduced by Khatib [14—-17] and
utilize a scalar potential field constructed over the workspace, as shown in Fig. 2.1d. The
negated gradient of this field repels from obstacles and attracts to the destination. An
agent driven by this negated gradient safely reaches the desired configuration. For cer-
tain obstacle worlds local minima arise, which can trap the agent and prevent successful
attainment of the desired configuration.

Numerous other methods to construct potential fields have followed, as for example
harmonic functions constructed through solution of partial differential equations [9-11],
harmonic function combined with the panel method [18, 19] and superquadric artificial
potential fields [34].

In order to overcome the problem of local minima, Navigation Functions (NF) have
been proposed by Rimon and Koditschek [28], Fig. 2.1H. These are also scalar fields
over the free space. After showing that complete disappearance of stationary points is
unobtainable, they defined an almost globally asymptotically stable scalar potential field.
Subject to conditions, only a subset of Lebesgue measure zero traps the agent in the
set of remaining saddle points, which are unstable equilibria. But in real applications,
finite computation arithmetic renders it practically impossible for an agent to remain in a
measure zero set.

The motion planning problem can be abstracted from the geometric to a topological

INote that a different harmonic function is constructed using that method, for each different destination.
This is fundamentally different from the work presented in Part III, where a partial differential equation is
solved to find a single obstacle function, which can then be used for any destination.



24 Navigation Function Tuning

viewpoint. Avoiding obstacles is equivalent to remaining in the same connected com-
ponent of free space in which the agent started. The path can be first generated in
a convenient “model” space which captures the problem’s topological structure. As a
second step, geometric detail is introduced. Geometrically complicated real obstacles are
diffeomorphically mapped to their simpler images in model space. The inverse deiffeo-
morphism is used to transform the constructed path from the model space to real space.
In particular, the NF potential is defined on a sphere world and diffeomorphically mapped
to real space.

As discussed in [20], this method can be applied to any spherical agent moving in a
workspace with obstacles, whose configuration space connected components are sphere
worlds. In the case of a non-point agent, the Minkowski sum of agent with obstacles leads
to the configuration space.

This may lead to loss of configuration space connectivity. Detecting whether initial and
desired configurations belong to the same connected component of free space requires
running the navigation algorithm and each connected component has been mapped to a
sphere world and the algorithm fails, then inital and final configurations belong to different
connected components. It may also lead to multiply connected obstacle topologies, which
are not diffeomorphic to spheres. Overcoming such a limitation constitutes one of the
subjects treated in Part Il. Here we are concerned with sphere worlds.

Global knowledge is needed in the original navigation function formulation. This re-
quirement is relaxed in [25, 26] by defining polynomial NFs and in [32] by implementing
C? switches for multi-agent systems with finite sensing radii.

Tuning hinders implementation. The NF field is shaped by a parameter. As proved
in [23] there exists a lower bound on this tuning parameter which clears the field of
local minima other than the destination. They become saddles and the potential a NF. In
addition to existence, calculation of this lower bound is outlined, but no explicit formula is
provided. In consequence, using NFs until now required manual adjustment of the tuning
parameter. This is also true for extensions of the NF methodology to multi-agent systems
[12, 27, B3].

This work develops an algorithm to calculate the tuning parameter for theoretically
guaranteed navigation. The lower bound used is improved compared to the original for-
mulation. The improvement is achieved by cancellation of terms with equivalent effects.
Direct substitution of sphere centers and radii suffices to find the desired lower bound.

The above algorithm enables safe tuning globally. The lower bound computation
can be rearranged to efficiently update for discovered obstacles. In more detail, initial-
izing constraints for a new obstacle has time computational complexity ©(A1,), where
M, the number of the until then known obstacles. Updating those constraints related
to already known obstacles upon discovering new obstacles can as well be arranged to
require ©(M,). Moreover, there is the option to apply these calculated constraints only
when necessary. If this is also implemented, it allows for provably correct locally oriented
tuning, for a finite total number of obstacles, in an a priori unknown sphere world.
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Khatib Potential Field
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(a) Khatib potential field U = U, + U, (b) Navigation Function

Figure 2.1: An artificial potential field (APF) and a Navigation Function (NF) scalar potential
field. The APF is defined over a world with three obstacles: two ellipses and a disk. The
NF is over the sphere world of for k = 2.

2.2 Definition

2.2.1 Sphere world

A compact connected subset of n-dimensional euclidean space E™, n € N, whose
boundary is formed by the disjoint union of a finite number of (n—1)-dimensional spheresE
is called a sphere world. Let the number of spheres be M + 1 where M € N.

Compactness requires a finite sub-cover to exist for every open cover of the sphere
world. The sphere world’s boundary is formed of spheres. Therefore a finite boundary
should be the set covering the sphere world and its internal boundaries. This boundary
should be formed of spheres, but since these spheres constitute a disjoint set, only a
single sphere can form the outer boundary. The space bounded by this outer sphere is
called the workspace and is defined as

V2 {ge E": |lql® < pg} (2.1)
where 0 < py € R is the radius of the bounding sphere, having its center at the origin 0 €

E™. The workspace includes both the sphere world and the internal spherical boundaries.
There remain M smaller spheres which bound the obstacles

O;2{ge B lg—ql* < p3, jeh 2{1,2... M} (2.2)

where 0 < p; € R each spherical obstacle’s radius, ¢; € E™ its center. Let I, £
{0,1,..., M}.

The outer spherical boundary 97 defines the zero™ obstacle, which is that part of the
Euclidean space E™ external to the workspace #

Oy 2 E"\W (2.3)
The free space .# remains after removing all the obstacles &; from the workspace #
72w\ e, (2.4)
Jjeh

2Hereinafter sphere will refer to an (n — 1)-dimensional sphere.
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Since the workspace # is a superset of the sphere world .% the internal spherical bound-
aries 00; of .# should be subsets of 7. # is a sphere of radius p,. Each sphere ¢; c #
is contained in %. This imposes a constraint on the radii p;, j € I;.

Suppose ¢ intersects ¢, in which case

O;NOy# 3D <
quE":{qEﬁj } —

qgc oW (2.5)
lall = po

For ¢; and # to be disjoint ¢; N % = & the first inequality should never be true, this
requirement is equivalent to the constraint

la —ajll > pj, VjeL (2.6)
It is now shown that ||¢ — ¢;|| > p;, is equivalent to py > ||¢;|| + p;. First let us prove that
po > llg;l| + p; implies [lg — g;[| > p;.

po> gl +p5. Viel <

. ow
po— gl > p;, Vi€l =

. lla—a;lI>llqll—llg; |l 2.7
lgll = llg;ll > p;, VieL =2 (2.7)

lg —qill = llall = llgll > pj, Vielh =
lg—q;ll > p;, Vi€l
Proof of the opposite, that ||¢ — ¢;|| > p; implies py > ||¢;|| + p;, requires careful selection
of the vector ¢ € 9#. Because 0% is a spherical boundary, it is always possible to select

a ¢ parallel to ¢;. Because ¢; € 0; C #; — q; € #; and from definition of 7 it follows
that [lg;|| < po = ll4ll- Let A & (0,1]. Then

g = \q (2.8)
and it follows that
A
lall — llg;ll = llall — IAall = llall — I\ lall ™ llall = Mlall = (2= A) lall =" 11— Al |lgl]
= [I(T =Nl = llg — Aqll = llg — g
(2.9)

Provided that the center ¢; of obstacle & is within the external boundary sphere ¢, as
expressed by ¢; = \g, it is now easy to show that if ||g — ¢;|| > p;

{ lgll = Nlg;ll = llg = gl

}=¢HM—MM>m¢$

q— gl > pj
la = gjll > p; (2.10)
po = gl > pj =
po > llgill + p;
The constraint py > ||¢;|| + p; is illustrated graphically in Fig. 2.24.
Any two C-obstacles ¢, 0; are disjoint.
ﬁi N ﬁj =g <
lg — all < pi } .
e E": , Yjel, =
b { lg — a5l < p; JEn (2.11)

foe B lg—all +lla—gll < pit+pj, Vielh
BaeE" g —ql+lla—gll <pit+p; Viel
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po = |lqll

@) po > llg;ll + p; (b) po > llg;ll + pj

Figure 2.2: Graphical illustration of constraints.

Again from the triangular inequality ¢ — ¢l + ll¢ — ¢;ll > lla — ¢ + ¢ — 4|l = [la: — g;ll, SO
Bee E" g —qil| < pit+pj, Vi€ =
la —gill > pi+pj, Vi€

The opposite can be proved by contradiction. The constraint ||¢; — ¢;|| > p;+p; isillustrated
graphically in

(2.12)

2.2.2 Sphere world subsets

Letd %, (¢;) denote the open n-dimensional spherical annulus? around a workspace
obstacle 0
Bi(ei) E{g € E":0< Bi(q) <&}, i€l (2.13)

where 0 < ¢; € R, Vi € I, parameters specifying the annuli widths. Function 3; is defined
in subsection 2.3.2 where ¢ is discussed in more detail. Note that the obstacle’s boundary
00; = B;1(0) is not included, nor the outer boundary of 3, (¢;). Every %, (&;) is an open
set. The closure of %; (¢;), that is the union of set %; (;) with its inner boundary 3;'(0)
and its outer boundary ;' (¢;) is denoted by %; (s;), and is defined as

Bi(ei) 2 {q€ E":0< Bi(q) <ei}
= B, (1) U B (0) U BT (&)

— e+ 2 (2.15)

3Note that in [23] a global parameter ¢ is defined. This parameter is obtained as min;ee, {er,} < €i,Vi €
Iy. (the subscript 7 is indicative of the dependence on each obstacle separately, the actual subscripts used
are slightly different). Therefore they place more severe constraints on the lower bound than required by
the problem. To avoid this and obtain a smaller lower bound, separate ¢; are explicitly denoted and used
for the spherical annuli %;.

423], §3.1, p.425: An n-ball “without a core”.

(2.14)

Let us define the outer radius

Pz, = “5_1(51') — G
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Figure 2.3: The geometric meaning of 3;(¢;),s; as squares of tangetial linear segments
and of the radius p; .

of the closure %, (¢;). This diameter will prove useful for associating geometric meaning
to the algebraic expressions. Its geometric meaning is illustrated in
Fig. 2.5

The following sets are defined for convenience and illustrated in

1) Destination point Fa = {qa}

7H0) = Uses, 81(0)

d
2) Free space boundary 0F =0
3) Set “near” internal obstacles Fo (en) = Uier, Bi (€0) \ Za
)
)

4) Set “near” workspace boundary % (¢;,) = Bo(co) \ (FuU .Fo (c1,))
5) Set “away” from obstacles Fy (e,) 2 F\ (FaUOF UF(er,) UF(ep,))-
where ¢, £ {e:}icry €1, = {ei}ien-

Additionally the assumption is made that each ¢;,: € I, is small enough to guarantee
Fo(en) CF — {LBi(e)N0O; =0, Vjel,, Viel} (2.16)

which is equivalent to the following constraintsg on each g1 €ly
g < (llai — gl — pj)2 S €izj, Vi€lp\i, Viel (2.17)

This inequality for j # 0 ensures that internal obstacles &;,i € I, enlarged by balls %; (¢;)
do not intersect other internal obstacles ¢, j € I, \ i. For j = 0 it ensures that internal
obstacles ¢;,i < I, enlarged by balls %, (¢;) do not intersect the 0™ obstacle .

The equivalence in now to be proved by application of inequalities (2.10) and (2.12)

>In [23] no symbols are assigned to these upper bounds.
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6%0(80)

00;
Figure 2.4: The geometric meaning of the constraints ¢;3;.
(since %, (¢;) U O} is a ball as well)
6\0 (6[1) C F —
%i (€i>ﬂﬁj:®, \V/Z,j Ell
B, (q)ﬁﬁ():@, Vi e I
lgi — a;ll > pz, +pj, Vi,j €L }
g — ol + pz, < po, Vi€l
la — gill > ei+pi+p;, Vi,jel } Q0=0€E"Ae;,p;>0 Vil

gl + ei+p2 < po, Vi€l

F
e — qill — p; > gi+p;>0, Vi,jel (2.18)
~——
\/ >0
<
0< €i+p?<p0—||qi“, ViEIl

\/ 0

>

gl — p )2 s e 2 -
(H% 2qJH pj) > €z2+ Pm‘ Vi,j €l }
gi+p; < (po—|lall)”, Vielh
{ e < (llai — gl ;mf —p2, Vijel }
i < (po—llaill)”—p?, Viel

The geometric equivalent of the above derivation is given in Fig. 2.4.

2.3 Problem Statement
We consider a holonomic agent whose state z is governed by the control law

#(t) = = (Vqp) (x(1)) (2.19)

where ¢ is a NF on .# as defined later. As proved in [23] this solves the motion planning
problem in .%.

We are interested in an algorithm to tune the analytic potential field » to make it a
NF while exploring unknown sphere worlds. It is also desirable to reduce the effect on ¢
of obstacles distant to the agent, in a provably correct way. This scheme should be also
applicable to a priori known worlds diffeomorphic [23, 25, 29] to sphere worlds.



30 Navigation Function Tuning

Figure 2.5: Sets defined on a sphere world.
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2.3.1 Navigation function definition

A Navigation Function is definedt on a compact connected analytic manifold with
boundary .# C E™ as amap ¢ : .# — [0,1] which is
1. Analytic on ./ locally convergent power series exists (Taylor expansion).
2. Polar on .#: unique minimum exists at ¢; € .# (Harold Calvin Marston Morse
1892-1977).
3. Morse on . all critical points are non-degenerate.
4. Admissible on .#: uniformly maximal on 9.% (Morris W. Hirsch).

2.3.2 The Koditschek-Rimon navigation function

In [23] a navigation function for sphere worlds, ¢ : .% — [0, 1], is proposed which is
the composition of three functions

©(q) £ 0400 0¢(q) (2.20)

The function ¢ is polar, almost everywhere Morse, and analytic; it attains a uniform height
on 0.% by blowing up to +oo there. Its image is “squashed” by the diffeomorphism
o :[0,00) — [0, 1] defined as

A xr
14z

resulting in a polar, admissible, and analytic function which is non-degenerate on .% except
at one point - the destination. This last flaw is repaired by o,.

They distinguish between “good” and “bad” subsets of .. When a point belongs to
the “good” set, we expect the negative gradient lines to lead to it (here it is just the
destination {¢,}). The “bad” subset includes all the boundary points of the free space,
and we expect the cost at such a point to be high. Let v and g denote analytic real valued
maps whose zero-levels, i.e. v~1(0), 371(0), are respectively the “good” and “bad” sets.

The function ¢ is defined to be

o

(2.21)

o(g) 2 10 (2.22)
where v : % — [0, 00) isf

7(q) & 7k (9), keN\{0,1} -
va(q) 2 |lg — qal)® } = (q) = llg — qall (2.23)

and 5:.7 — [0,00) is

]8>0 ves (2.24)
j€lp
where
Bo(q) £ p3 — ||Q|| } 2 9 .
. — 0;(q) = —qll” —p;|, Viel 2.25
Bilg) & lla—ql* —p2 Vi€l fila) = [lla = aill” = o i€ty (225

6[23], Definition 1, p.417.
’It is important to note that it suffices to require that ¢ € C?[.#, [0, 1]].
8The parameter k controls the attractivity of the destination ¢,.
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The “omitted product” is denoted by

B; & H p; >0, Vqe Z. (2.26)

J€lo\i

Due to the parameter k in ¢, the destination point is a degenerate critical point. To
counteract this effect, the “distortion” o, : [0,1] — [0, 1],

oa(z) £ (2)t = ¥z, keN\{0,1} (2.27)

is introduced, to change ¢, to a non-degenerate critical point.
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2.4 Proof of Correctness

2.4.1 Proof overview

Quite informally the whole proof can be summarized as following. Show that & can
be linked to obstacle neighbourhood widths ¢;, so that changing ¢;, no critical points
escape “away” from obstacles. Any critical points are now trapped near obstacles. Then
shrink ¢, until the obstacle neighbourhoods are so tight around them that no minima or
degenerate points arisef.

It has been proved that no critical points exist on the free space boundary®d 9.7 and
that the destination ¢, is a non-degenerate global minimumt?, Any other critical points
can only exist in % (e,) U Z; (e1,) U 2 (gp,)-

Then the set “away” from obstacles .%, (¢,,) is cleared of critical pomts@ Specifically
for any ¢, the tuning parameter k can always be selected such that no critical points
remain in .%; (¢y,).

So, provided we select k > N(g;,) any remaining critical points can only arise in
Fo (en,) UF (e1,). We can then select ¢;,i € I, to

1. Avoid critical points in % (¢;,) “near” workspace boundaryB. This means that any

critical points other than ¢, can only arise in set .%; (¢;,) “near” internal obstacles.

2. Avoid local minima ini %, (¢;,). That is, ensure arising critical points are either

saddles or local maximat3

3. Ensure that all critical points arising in .%; (¢;,) are non-degenerateE. This guar-

antees that they can be categorized and they remain disjoint. They are proved to
be saddles.

Note that in [23] <, c0;, €1, €5;, €5;, 0 € I, are defined. Of these &, applies to % (e1).
These indices are changed to better serve the present treatment

The parameters defined here are

EiyEiuy, 1€ Iy ANA €l €00, Ergy Ergy Eisjy Ei3, Ei03s Ei23, 1 € Iy (2.28)
defined as
o 1=20
0<eg <ep = v ) (229)
mln{gzo, 1/0, 812, 512, 613} 1 6 ]1
and A A / A /
i3 = ‘rnluy{ei;;j}, cios = min{ejy, €3}, €23 = min{ey, €53} (2.30)
j€lo\i

and the definition of e, €y, i, €hs, clp Will follow in the next sections, while ¢;3; have
already been defined in (ﬁ) With this notation &; applies to annulus %, of obstacle
0;.i € I,. The definitions used herein relate to those of [23] as follows

9In this section firstly ¢ = min;c;, {e;} is used in a detailed derivation of the Koditschek-Rimon statements.
Then the limitations of this derivation are noted and an altered expression is derived.

101231, Proposition 3.3, p.427.

111231, Proposition 3.2, pp.426-427.

121231, Proposition 3.4, p.427.

13[23], Proposition 3.7, p.432.

141231, Proposition 3.6, p.429.

5Note that the proof leads also to the result that they are never local maxima, so critical points other
than g, are always saddles.

161231, Proposition 3.9, p.433.

7The index 1 does not correspond to 0" obstacle index 0.
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Table 2.1: Notation used
herein compared to [23].

Here [23]
Eou €1

€0 £0i
€i0 £0i
€l En;
€l €%
Ciw, 1€ none

min;er, {€hy, €6} o
minieh {6227 5;/2 €2
miniefo {52} €

£ none

The upper bounds denoted here by ¢;3, ¢;3; are not assigned any symbols in [23].

In consequence of the above definitions there are two alternatives for definining the
sets %,, %y, .%,,.%, as either functions of a single globa/E “width” ¢, or as functions of
the set of “widths” ;.

In the first case, as developed in [23], the domains are functions of a single parameter

t@i (60,%{](8),%1(5),@2(5) (231)

whereas in the second case the domain functions are functions of M + 1 parameters
{51'}1'6[0

e@i (€i),i610 ﬂo (8[1),91 (8[0),92 (8]0) (232)
The second formulation appears at first to be computationally more demanding. But since
e results as the minimum of the set ¢,,, this is not true. We need to caclulate all ¢; before

determining . So there is no additional burden in the second case. Interestingly, as we
are to show, the second method leads to better resultsts.

2.4.2 Determining a lower bound N(¢;) on k
2.4.2.1 Require norm inequality of gradient components

PropositionZd: For every set ¢;, there exists a positive integer N (¢;,) such that if
k > N (g1,) then there are no critical points of ¢ in %, (¢4,).

8Which is selected as ¢ = min,cz,{¢;} to ensure all required constraints are met for the potential to be
a navigation function.

19Better is to be understood as closer to the real supremum desired.

20[23], Proposition 3.4, p.428.
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At a critical point ¢. € €, N %, (¢1,) the gradient is zero

Vo=0¢ En see Appené;)( forve
k—1 B,va#0,Vq€ Fa (510)
7;52 (kBVYa—7aVB) =0€ BT
kBVYe — VB =0¢€ E" <
kBVys =7V =
Biva:k>0,YqeF2 (e,
k8Tl = avg) "7 ) (2.33)
8 [Vl = 7 [V8]) PET
kB2v7a=1allVBI| =
VgEF2 (e,
o = yalvs) OIS )
L Lyvalval
2 P
A sufficient condition for this equality not to hold is
1 \Y
S Lk e 7 (2.34)
There are two alternatives, either
1 \%
k< §—mg T (1) (2.35)
or ) o
k> 5%, Vg € F (1) (2.36)

and also a mix of the two. Let us examine the first alternative. Since?! infqe%(sfo){%l} =0
and g, || V|| are both bounded in %, (¢,,) it follows that

k< PO g € o (ep,) .
l\/TdHVBII} —0 — K<
B

qEF> (510) { 2

(2.37)

inf

which cannot be, since £ € N\ {0,1}. As a result, the alternative & < ;\/%EVBH is not
possible.

The only possible alternative remaining is k > L2221 g € 7, (e ).

It suffices to find a k always greater than %w, without calculating this expression.

Assume that we find an upper bound N on §¥*I¥2L. Then setting  greater than or

equal to this upper bound N, i.e. N < k, will ensure that % is greater than the expression
V3all V|l

5

We seek an upper bound on the left side of the above inequality. Since

1yvalIVBI 1 |[VILe, (8)]]
25 2V

_ %\/%HZEIO <Hjeg\i (B5) Vﬁi) ‘ _ %\/%HZ?;EIO ;@-V@-)H

21This follows from the fact that in general q; may be a single point excluded from .%, (¢;,) and that
Ya(gqa) = 0.

[\

1
2

(2.38)
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application of the triangular inequality leads to

iV B = _iv i 3i>0,Yge P2 (e1, iclo _i VB3
1 AT BT 1 T (AR i) 1 e o, (LIS

= VY (% Hmu) — VY (%—\5 HV@”)

il i€l J€lo B

— vy (5 1va1) =

i€ly

X i, (BiVB)|| 1 V5|
e G

T\ B

(2.39)
So it suffices to seek an upper bound on 1,/74> ., <”Wj’”) since this will also be

an upper bound on N(gy,). This upper bound is SUD 7, (¢, ) {5\/%21.610 (”Vﬁ—ﬁ” }

Finding the exact supremum is not easily analytically tractable. An alternative would
be to select a computational search method, but this would be computationally intensive
(requiring time not available in a real-time implementation) and would lack the required
guarantees. After all, why search for the global maximum of an auxiliary function, when
the original problem was that anyway!

For these reasons we approach to find an approximation to the supremum. As
expected, there is not a single way for determining such an approximation. In [23] an
unfavorable22 approximation is derived.

This results primarily because the function 5./74 >, (lvglj 1”) includes f;(q) twice.

The one g; is directly visible in the denominator. The other one is in the norm || V3]

Shortly stated, they bound the maximum of max {¢} by 24, But note that §;

arises in both the nominator and denominator. So they end up with (coarsly) ;ﬂ?ﬁ?; As
expected, this estimate is considerably larger than the alternative.

The alternative would be to first cancel the similar terms 3;. Then 3; remains in either
the nominator or the denominator (here the denominator). As a result the approximate
bound will be only max{$;} or only — {ﬁ} Both differ obviously from their product.

In the following two sections both the original and the modified derivations are pre-
sented and in the final section of this part they are compared in the limit.

2.4.2.2 Koditschek-Rimon formula

Since e = min;c;, {e;} defines the boundary2 Uicr, 8 ' (e) of Z; (¢), for all 5;(q)

0<€§B¢(q), ‘v’qeﬁg(s), Viely =
1 (2.40)

I <
Bilq) ~ €
2Their supremum approximation is theoretically perfect, but computationally not applicable, because
it yields too large k exponent values.

Z3Caution: although the free space .# boundary is 5~(0), the boundary of the space “away” from the
obstacles .%; (¢) is not 3~!(). The reason for this is that when on the free space boundary, exactly one
Bi(q) becomes zero, forcing the whole product 3(q) to become zero (like a veto). On the contrary, when on
the boundary of a closed ball #; (¢) the corresponding 3;(q) = ¢, but this cannot force the product 5(q) to
E.

quﬁﬁ(e), ViEIQ
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Substitution of ;- < : yields

1 4 1 . 11
vy () < vy (20 =S vmy avan (241)
i€ly ¢ i€lp i€lp
The inequality constraint for % is imposed in the set “away” from the obstacles ¢ € .7, (¢) C
F C W, so the function values are less than or equal to their maximum values over the
workspace 7. Note that v, < maxy {v;}, Vq € % (¢), because maxy {7,} is attained
on the boundary 0%,(so) and this boundary is excluded from .%, (¢). Therefore instead
of writing

11 11
5oV (IVAI) < 52 max{yAa} Y max {|VA[} (2.42)
i€lp i€lp
we can replace < with < in the previous inequality to obtain
11 11
5oV (VA < 5-max {yAa} Y max {|[VA|} (2.43)
i€lp i€lp
Let us now define
A 11
Nicr(e) £ 5 - max {yAa} Y max {|V|} (2.44)

i€lp

This Nxr(c) is an upper bound on 1¥241¥7l so by setting

k > Ngkr(e) (2.45)

we ensure that all critical points are “pushed” to the set “near” the obstacles?
({@a} UOF UFy(e) UF(¢€)).

The expression 11 maxy {\/74} > ;c;, maxy {|[VSi|} is not calculable in this form and
needs further manipulation. The maxima maxy {,/7a} and max, {||V3;||} are derived in
bection A.5. Substituting these in the Ny x(c) equation results in

Nicnle) 2 52 mass {32} 3 max {61}

— 2L ot llal) 3 2 (0 + i)

2
< i€lp

=~ oo+ lladl) 3 o + Tl

i€lp

_ % (90 + llgall) ((M + Do+ (llaill)

i€lp

= 1 (po+ llaall) ((M +Dpo+ D <H%-H>>

i€lh
po + ||l
= (oo + laal) 3 2

i€lp

Hence the condition to clear .%; (¢) of critical points becomes

po + llg|
k> Nica(e) = (oo + llaall) Y =0 (2.47)
i€l
24Including the workspace boundary, which defines obstacle &,.

) llgo|=0 (2.46)
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2.4.2.3 Alternative (improved) formula

Let us follow another course and substitute the norms ||V 3;||,i € I, as functions of

ﬂi?i € [0
IVBoll = 24/ 08 — Bo,  IVBill =24/ Bi+pi, Viel (2.48)

in the upper bound of (2.39)
&) 2 ; 2
—FZ(” BH) 1@[2 i 6o+2255%

i€lp 1€l

ﬁO_'_Z \/B2+pz

L i€l

1

T e @]
1 L )
| ﬁo(ﬁo 1)*; @-(@-“

where the final three arrangements of the same expression aim to assist further insight.
This bounding function in .%, (¢4,) is bounded above by its maximum

1/——— < max d “———+
W[ +Z ffz(sjo) \\/Z [ ;

>0,VqeF2 (E[O) N _
\ ZO,quﬁz (8[0) )

Vd

(2.49)

1 2 1 max{a+b}<max{a}+max{b},Va,b>0
Pi

2
< max {y/7¢} max < p—g——+z S+ <

Fa(ery) Za(er) | VP Bo

s {7 | max 48— L max L[4 L
< a. {\/%} a. { 58 5o}+z a){ ‘—l— }

F2(exg ‘%(510)

N ;QIE?}:) Vil \/;Rij) {p_g) - %} i ; \/@IQIE?E) {

Now the maxima to be substituted are firstly

s L) =g e (s 2}) - e (1)

() -
min (c10) {60} max g, .

(2.50)

(2.51)
Po 1

) o} - (8_0 i
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because
0 <eo < P, Vg € Fo(er,) = min) {Bo} = =0 (2.52)
Faer, '
and according to
Fo(en,) CW = max {f} < max{ﬁo} = o2 (2.53)
T €1,
Secondly
2 2
Pi 1 {ﬂi } { 1
a =) +=5,=| ma — + ma
ﬁrzrtaf}(f) { (51) 51 } (f/\z(aj}z) ﬁz > fg(&]};) ﬁ
2
_ pi I (2.54)
min {5} min
. 2(810) 2(810
(&) o2
= - + ) VZ - [1
E; E;
since
0<e <Bi,Vq€ Foler,) = ﬂlzl(lii {8i} > e, Vgel (2.55)
Note again that
Jé (8[0) - /4 \ {86’0 U %@ (50)} - maX) {\/%} < max{\/%} (256)
Fo €1q
where the maximum max, {,/7,} is derived in ection A.5. From the previous
VBl { py 1 }
v, < max Y, — — 5 ¢t max
2 g B yg(é‘]()) {\/_d} JQ(&‘[O) ﬁ(] 60 ; yQ(E]O
(2.57)
< (o + laall) [\/@ -+ 05
i€l
Let Q;, : R — R, Vi € I,
2 1 2 1
Qo) 242 -~ Qua /8-
v 0 o (2.58)
pi
Qi (z) = o2 + - Qi = Qi(e:), i€l
Note that
_ 1[[VB|| L|VBi|
Qo (Bo) = 3 fy Qi (Bi) = 2 5, (2.59)

25Generally max Fo(ery) {Bo} and maxy {5y} do not differ substantially and if the wrold center is free

space, they are equal.
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and while Qg is an upper bound on the maximum of max g, (., ) {Qo (Bo)}, the Q;;, Vi € I
is equal to the respective maximum max ;_ (=10) {Q: (Bi)}

_ e 12V =B | _ 1 {nwon}_
Qoo = - 032;2%31};){2 5 }_2;;232) 2 —yfigz){Qo(ﬁo)}

Qi = p_g‘l’lz: max){lw}:% max {HV@'H}: max {Q;(3)}, Viel

€ & ?2(510 2 B@ 952(510) B@ Faler,
(2.60)
therefore
L HV@H} < 10 (B Viel
Quz 5 max AUTHE = ma 0.0}, vie 2.61)

Let us define

N(er) 2 (po + llgal) [\/i 0%

This N(e;,) is an upper bound on $¥*¥l 5o by selecting a # satisfying

ZEIO

Ner) < k (2.63)
we ensure that all critical points are “pushed” to the set “near” the obstacles2

({aay U OF U Z (er,) U F (e,))-

2.4.2.4 Comparison of the original and modified formulas

We can compare the two expressions derived as lower bounds for k. This is accom-
plished by dividing them

2
Nern) (/?0+||Qd\|)[\/—3 D Y L R D DRy [

Nkr(e) L (po+llqal) (M + 1)po+>cr, (qu-H)) B ey, 2l
(2.64)
Usually the following approximations are valid

1 1 1 2 1 2

Py >0 = @>>1 — @—>>—>>— = p_g__zp_g
€o €0 €o 50 1% € Po & 2.65)

2 1 1 2 1 2 ( .
E; Ei ;i E; &5 E;i &

%61ncluding the workspace boundary, which defines obstacle &,.
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Their adoption leads to

A / Pi
8[0 + Zzeh & Zie]o E_z . Z Pi 1
o potllall . po+llg;ll
g Z]GIO

%‘
SN N

tlgi
Men) ™ g, L T, el 2 6
9 1 £ 1
=2 _,—+||-> =2z (2.66)
i€lp (51 Zjelo % il &; Z]EIO (PO + H‘IJ”)

_ Z minielo{Ei} 1
» G T (B )

i€lp
Because min;c;,{g;} < ¢;,Vi € Iy and p; < p, it follows that N({¢;}) < Nkr(e) (provided
p? > g, Vi € I). Usually min;cz,{e;} < &;,Vi € Iy and p; < po and as a result N(e;,) <
Nkr(e). That the proposed lower limit on % is better has been shown.
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2.4.3 <, calculation

The squared “width” ¢, of %)SO) will be determined to clear the 0% obstacle neigh-
bourhood %,(<) of critical points!. Because we have asserted a changed lower bound
N(ej,) on k the following Proposmonl will be shown to still hold.

Proposition 1 (Proposition 3.7 [23]). If £ > N (¢,,), then there exists an ¢, such that ¢
has no critical points on .#; (¢;,), as long as ¢y < gy

Proof. It is first convenient to bound %,(sy) away from the ball of radius given by the
destination point ¢,, as follows. If

g0 < 2 — |laall? (2.67)

then because
Bo < 20, Vge Fu(er) PN 20l <o, Vg F () (2.68)

it follows that
lall > llaall . Vg € F(er,) (2.69)

This is a sufficient condition for V3, to point away from the destination, i.e. V~,;-V3, <0
on %y (sy), because

1
1V Vi = ~(q—aa)-a=q-qa— lall* < lall (lgall — llgl]) <O (2.70)

Now, V¢ is non-vanishing on %, (¢,), since its inner-product with V~,, according to
subsection A.3.7 is given by

k

V- Vg = 52 4 (4kB — VB - V)
(2.71)
%(Mﬁ (%V&'VM+QW%'VWD>B%QMM%—V% V)
If k is large enough B
e 2 Y0 VI g g () (2.72)
4 bo
the term V¢ - V~, will be positive. But k£ > N(gy,) is sufficient for this to be true, since
1V -Vya _ 1[VBo via Bi
- _ < V3,
5 S3 _2¢—§ IV
(Po + llgall) Z = + — = (po + llaall) Y Qs (2.73)
i€l i€l

< (po + llaall) ZQM = N(ep) <k

i€lp
since by definition of .#; (¢y,), &; < ;, Vi € I;. The proof is completed by choosing
cou 2 05— llgall” (2.74)
O

27In [23] ¢, is used for the variable we have chosen to denote with ¢, for the sake of clarity, since we are
here interested in using all the ¢; in the proposed algorithm.
28[23], Proposition 3.7, pp.432-433.
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2.4.4 </, calculation

In [23] the upper bounds &%, on ¢, are derived in the form

| mings { VB IVA }

4 0T D230 }

which, combined with negative definiteness in the tangent space, ensure non-degeneracy
of the critical points in %, (¢;,) (near the internal obstacles), which are the only critical
points of ¢ remaining.

We can observe that 5, and D?3; arise in nominator and denominator, respectively.
This leads to the same problem as when determining Ny (<) in subsection 2.4.2.

From within the terms j3;, D?3; the various f;, j # i come. So we have the same 3, in
both nominator and denominator. After manipulation we end up dividing ming-—— {5;}
by maxz - {B;}, which results in a very ill valued constraint. In the present section an
alternative formulation is presented.

What is different here? Observe that if we avoid 3; showing up in both numerator and
denominator, the result will not be minz-—-{8;} divided by max;——{3;} any more. To
achieve this we can cancel the arising 5;. Th|s can be done by dividing both numerator
and benominator by 3;. But this should be done before applying min{} and max{é

To do this we return to a previous step in the original proof. There it is requireds? that
the following expression®d be positive

(2.75)

max - {

1\ - _ _
(1 - E) Bi\VBil|> — B2 |#F D Biri| — 28,8 > 0 <=
1 1\ - 1 ) 2.76
3 (1= g) aamair —2a)+ 5 (1-F) vair - g panl >0 7
where 7; £ Hggz“. If we requireB? that & > 2, then
1 1 1 1 1 1

< - <= —< = —<1—-= 2.77
2_k<:>0<k_2<:> 5 < k<0<:>2_1 k<1 ( )

and therefore the term (x) is greater than the expression

1

( ) 62 ||vﬁz|| - 2/8251 =~ (1 - _> Bz ||v5z|| - 26251 (278)

29[23], p.435.

30In the original placing the || and substituting ¢ for 3; in p.435 are done simultaneously to then seek a
positive lower bound for the worst case within %; (¢;). Here || is placed to enable further manipulation, but
B; is retained and only at the end is bounded by &%,.

3INote that if we allow & = 1 then the origin remains degenerate even after diffeomorphism o4(z). In
case there is no boundary 9%, then for the navigation function to have the radial unboundedness property
g — oo = ¢ — oo so that it can serve as a Lyapunov candidate function stricter conditions on % are

needed, namely M < k as proved in pection 3.1.
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Then a sufficient condition we can impose to ensure that term (x) be positive, is

Bi >0,YqeB; (51)

1- _ - |1

0< B IVAIF - 26 = B | IVAIE - 25
1
1

0<SIVAI* -8 =

1

2
5 [%/ﬁﬁp%] —

1
ﬁi<§4(@+p?) =
1. 1,
Bi < 5P+ 5pi

1.1,
~Bi < =p? =
P < 5P

(2.79)

lg — aill* — p? < p} <=

g — qu2 < QP? 0<llg=aill,pi.Ya€#i(ei)

lg —aill < Pi\/§

In [23] it is required that §; < £ [|Vfil|,Vq € % (e:), for which a sufficient condition is
imposed

1 . 2 1 o 1 5 1,
g < S%NW P} = 5(20)" = 340! = 5p; (2.80)
and ¢/, is defined as 1p?. This leads to
1 2
ﬁi < g < §pi,Vq € %z (51) —
1 1
Bi< 5t = lla—al* - sl < 5ot = (2.81)
2 3 o 0<llg—q:ll,pi,Yac PBi(e:i) 3 1 \/g \/g
— 0 Z 5 — a; A2 =2 D = [ p:A/2) L2
la—ail* < 5 TS g —all < gy 5 = o2 55 = (v2) 5
whereas, as already shown, requiring that
Bi<pi = llg—all < piV/2 (2.82)
It is now obvious that
/2 2
V22 sy (2.83)
()3 V2
so the selection
g2 pl, Viel (2.84)

is slightly better.
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Let us now examine the term (xx). Since k > 2

1 1\ - )
5 (1-1) BwaE - g

2
1 (2.85)
> 25 V6 6222( I s+ ( 11 @n) |wj|wl>

_ 1- _
P D2Biis| > < Bi |V Bi||* — B2 |7F D*Bir

]610\7' ZGIO\{iuj} ZGIO\{i’j} mGIO\{i,j,l}

The inequality

iy D Bifs| <

Jj€lo\i

lEIO\{imj} lEI()\{'lJ} mEIO\{iLjJ}

(H st Y ( 11 Bm) vwvm) (2.86)

is proved in subsection A.6.1l. A sufficient condition for the term (xx) to be positive is

o<§ﬁiwﬁ—6322( I &+ > ( 11 @n) V5j|vﬁz),w]€<%(5i)

J€Io\i \l€lo\{i,j} lelo\{i,j} \melo\{i,j,l}
(2.87)

This expression can be rearranged as following. It is now that we divide both numerator
and denominator by g;.

iﬁivﬁi25i222( H B+ Z ( H 5m> Vﬁjvﬁl>

jE]o\i IGIQ\{i,j} lEIo\{i,j} mEIo{i,j,l}
1- 2
=02\ Bror -2y | 11 s+ X II 2] ivsilival
jEIO\i ZGIO\{i7j} ZGIO\{i»j} meIO\{ian}

4 _
=18+t =282 (Mﬁ > (555 w]wz))

j€Io\i lelo\{i,j}

) R, -
=G (Bi+p?) —282 Y (gwg_ ﬁfy” 3 (H ﬁﬁ))

jelo\i lelo\{i,j}

_ (8 + %) — 2323 V5] (HVBzH>
=B (B + p}) zmz(ﬁj i) > 5 )

Jj€Io\i lelo\{i,j}
= HVBJH IV
G |(8ir a?) 282 Vo
G- Y (g0 ¥ (5
i jEI\i lelo\{4,5}
[ 2\/ po Bo Z 2\/ /Bl""pl
_ (5 N 2) 252 50 lehi\i \ — 8
= D i TP ) T 4P
1 24/B5+03 [ 24/P3—Bo 2\/51+P
+ 2 jen (ﬁ_j + =5 ( e T 2ien\(ij) ( l)))
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Bo + 4 \/ " Bo Zleh\z <\/ >
(/61 + pzz) - 2ﬁz2 1 ] pO P2 1
+ Zjéh\i E +4 ﬁ_? + E \/ 52 50 + Zleh\{z jt + B,

Bi+pl =28 > (iﬂr‘lQ;‘ B >, @ (5z)>]

j€lo\i \ "7 1elo\{i,j}

I
sy

I
sy

(2.88)
We can now require that this expression be positive

Bi |:Bi +p; — 267 Z (5l +4Q; (5)) Z Q (51)) > 0,Yq € B, (&) Pi>0Jacgilen)

j€lo\i \ "’ 1€Io\{i,j}

Bit+p}>26] ) (%Jr‘l@j B) Y. Q) |.Vae Bi(e)

j€lo\i \"7 1€Io\{i,j}
Bi + /7@2

> 63,Vq c :@l (57,) <
22 et <5_1j +4Q; (55) Xier\ iy @ (51))

ﬁz’—l-/)%

J 22 e <5_1J +4Q; (B)) Yier iy @ (51))

> 3;,Vq € B (¢i)

(2.89)
A sufficient condition for the inequality to hold is

ming {8 + p}}
max e 2s) {2 Zje[o\i (é +4Q; (55) Zle[o\{i,j} Qi (51)) }

> e > ;> 0,Yq € B ()

(2.90)
Let
g2 min {8}, G5 max {;} (2.91)
Bi(ei23) Bi(ei23
i 1
Q i é min - max (292)
" \/( o2 (B5™)

Qi £ Q;(B1™) (2.93)

and because

minm{,@i}z(J 9
min {8 +p;} = min {5} + min {p7} = 07 (2.94)
Bi(i23) Bi(ei23) Bi(€i23

it follows that the above is equivalent to

TN Pi
€0 =

>e;>0,>0, VYgeBi(e;), i€l

J2 2 (W}M@i > Qh-) (2.95)

J€lo\i lelo\{i,j}
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2.4.5 £/, calculation
2.4.5.1 Issues with original ¢/
In [23] the upper bounds &, ¢/, on ¢, are derived as

mlnj {2|V |Bf}

S S S 2.96
ey (I Vo 1 [ = VAvAT = 5]} &%

lga = aill* = 3,

respectively. Note that ¢/, in %,(-) is mandatory to derive the above bound. To proceed
further and substitute specific expressions for minima and maxima from the Appendix the
additional constraint ¢; < ;3 should be placed. This leads to ¢;q; instead of &/, in W()
For £, in subsection 2.4.4 this change has been made from the start.

But here &/, is not yet changed because there is an issue associated with the specific
selection of ¢/, as ||qs — ¢:|| — p? in [23]. Even when ;03 replaces &, if ¢, < &;3 then
gi03 = min {e},, g3} = €}, 50 the issue remains. For this reason in what follows firstly ¢/, is
redefined to avoid the issue and then ¢,y; can be used without problems.

There are several issues with (2.96). The first concerns bounding correctly [v(¢)|. This
is addressed in subsubsection 2.4.5.2. The second is similar to those treated previously for

Nk r(e) in subsection 2.4.2 and for ¢, in subsection 2.4.4. Namely appearance of the same
— {5}
”3 (SLO)

ma. {85}
RCHEN)
problem. If we divide 5? in the denominator before taking the fraction min{}, we can

avoid this problem.

terms 5;, ;7 # ¢ in both nominator and denominator. This again leads to the —

2.4.5.2 Derivation of original =/, and </,

The nominator of £}, according to [23] is

min {2 v;(q)| 57} > 2 ‘min {|v(q )|};g}1) {87} (2.97)

,5} (Ezo) i ‘ELO

while for us here it will initially be

min {2 |v;(¢)|} =2 min {|v(q)|}
EACH) Zi(<ly) (2.98)
and then improved to
: |Vi(Q)’} : {IW(Q)!}
min <2——=— 5% =2 min { —= 2.99
() { va(q) %) L va(q) (2.99)

In cases (2.97) and (2.98) the lower bound ming 5 {lvi(q)|} arises. There are two issues
in [23] concerning ming - {|yl( )|}

1. Inp.431, when gomg from the inequality after (12) to the inequality with min{-}, max{-}
the function v;(q) is written v(¢). Hereinafter it is proved that the missing index i
is a typographic error.
2. The selection of &/, £ |lqs — ¢||* — p? leads to 0 > ¢; and needs to be altered.
These concerns have been treated in what follows. It is important to note that the correc-
tion applies to both the alternative formula developed in this section and to that obtained
by direct continuation of the Koditschek and Rimon derivation.
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It is now necessary to find an expression for the term minz - {|v:(¢)|} appearing in
the nominator. To explore the change from v;(q) to v(¢) and prove that it is a typographic
error, the formula for £/, is derived in greater detail here.

By taking a ¥ > N(e;,) we have “pushed” all the critical points®2 ¢. out of the set
F, (e1,) “away” from the obstacles, to the set %, (¢;,) “near” the internal obstacles®3
0;,j € 1.

Now the critical points within .% (¢, ) should be further “pushed” towards the obstacles
by narrowing %, (¢;,). This will place them so close to their nearby obstacle, that the
steepness of its repulsive effect on the potential will not allow a minimum to form at any
of the critical points@. Only a maximum or saddle may formB3,

For a non-degenerate critical point ¢. not to be a local minimum the Hessian matrix
(D?®) (q.) should posess at least one negative eigenvalue at the critical point g...

If the Hessian (D?¢)(q) (second derivative) is non-degenerate (non-zero determinant),
then the function’s curvature may be deduced from it. If positive definite (all eigenvalues
positive) then the critical point is a local minimum. If negative definite (negative eigenval-
ues) it is a local maximum and if both positive and negative eigenvalues exist then there
are directions with positive curvature and other directions with negative curvature of the
function at the same critical point, so a saddle forms there.

We will require at least one negative eigenvalue of the Hessian (D?¢)(q) to arise at
the direction defined by the unit vector ¢ orthogonal to the repulsive gradient V3; at ¢..
The selected test direction is tangential to level sets of ;. Its unit vector is defined® as

o (VB ) 2.100
i () (2.100)

Requiring that at least one negative eigenvalue exists at ¢. makes it impossible for ¢. to be
a local minimum. The only free parameter constrained by this requirement is an ¢; small
enough for a negative eigenvalue to existZ,

We start by writing the requirement of existence of negative eigenvalues at the tan-
gential direction (the direction defined by ;)

t7 (D*9) (ge)ti < 0 (2.101)

32[23], p.437: %, is the set of critical points. Note that in p.430 these points are denoted with g, but
when defining ¢ a critical point is denoted by ¢. (g critical). This is a typographic mistake, occuring also in
a previous publication by the same authors, [31]. Here a critical point is denoted only by g..

3Also remember that <, ensures that no critical points exist in .%; (e 1,) either (the 0" obstacle’s zone).

34Remember that complete dissapearance of all critical points is impossible, as proved using the Poincare-
Hopf theorem, [23], § 2.2, pp.415-417.

35Recall that critical point non-degeneracy within .%, (1, ) is ensured by 7.

36The definition of © in [23], p.430 has typographic mistakes. Furthermore note that ¢ is used in [23] in
three different ways: as any unit tangent vector (normal to 3; gradient V3;), as a radial unit vector (parallel
to 3; gradient V 3;) and as any unit vector (to prove a generally used inequality). To avoid ambiguities here
we separately define a tangential unit vector wrt 3; as ¢;, a radial unit vector wrt 3; as #; and a unit vector
without specified direction as ©. This ¢ is used to prove inequalities applying to both ¢; and #;.

371t turns out that more than one constraints on ¢; arise from this requirement.
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Figure 2.6: Curvatures, saddle and tangential test direction ¢;

Note that

( — k—1 _ 3\
7 00) = (lae = aall’)” = llge — aal** = 0
@€ Fo = eFGa < o=@ F0EE" < lgc—ql #0€R
= 75 (ge) > 0
e € Uiell B (ei) = Pilge) > 0,Vie }

%€ Fo = { g ¢ B, (0) = Bolg.) >0

\ = [lics, Bi(ge) >0 <= B(gc) >0 )
2
— _f_gqc) > 0
Va (%)
(2.102)
By multiplying both sides of inequality (2.101)) by vff(ﬂ(;)) > 0, which does not change the
inequality direction, we get
52((10) T (2 n »
———t; (D°¢) (ge)ti <0 (2.103)
i (ge) (%)
The above expression is equal to
B2 v o i oz 1
—ti (D°0)(qe)ts =26; | ~VBi - Vg — 74
Y 4
vi(ge) (2.104)
1_ - 1\ V3, vpr 1.
+ Bi <—Vﬁi -V + Vat, [(1 - —) BivBi _ DQ@} ti)
2 k B
Because v;(¢q) = 1V - V4 — 4 substitution in (2.104) yields
B% irim2an i o7
—ti (D°9)(qe)ts =2B;vi(qc)
d

1 — (2.105)
+ B (—Vﬁi - Va + vat; {(1 - —) — - Dzﬁz} fi)

2 k o
If we now substitute equation (2.105) in inequality (2.103) the constraint takes the form
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By definition
Bilq) >0, Yjel, VqeF() =
Bilg) =[] Bi(a) >0, Yqe Folen) (2.107)
j€lo\i

Multiplying (2.106) by 3;(¢) > 0 yields

Bi (2@'1/@‘(%) + 5 (%Vﬂi -V + val; [(1 - %) 51 VEVBE - DQ@'] fz)) <0 <=

267vi(qe) + B; (%ﬁivﬁi VY + val; K VBB — BZD%} Z) <0 <=

- E)
i (388 Vet | (1) VAVE - A0 i) < Bt
¥

~—
>0 N

(2.108)

There are four cases of v;(q.), G; signs, summarized in [Table 2.2, leaving case 0 for

later. So if we allow v;(¢q.) > 0 then G; can only be negative. On the contrary, if we

Table 2.2: Cases of v;(q.) and G; signs and
inequality truth value.

Case v;(¢q.) G; LHS RHS Inequality

1 >0 >0 >0 <0 FALSE
2 >0 <0 <0 <0 ?
3 <0 >0 >0 >0 ?
4 <0 <0 <0 >0 TRUE

constrain v;(¢.) < 0 then G; need only be constrained when G; > 0. This is advantageous
in that G; > 0 can divide the inequality without changing its sign and there is only one case
for which the inequality constraint should be applied. Therefore the expression developed
later will ensure the inequality holds in case G; > 0 and it will always be applied as a
constraint, without having to determine the sign of G;.

The constraint v;(¢.) < 0 is due to be analyzed both geometrically and analytically.
But before that, an important note should be made.

To find an upper bound on the denominator G; of ¢/, it is argued hereinafter that

max {G;} < max {|G;

Hi(eq) {64 Hi(eq) ey (2.109)
therefore a positive upper bound is guaranteed to be found. As a result an upper bound
constraint will certainly be placed on ¢ from every obstacle ;.

But this constraint is not needed if actually G;(¢.) < 0 at the critical point ¢. within
2; (¢;). Because only an upper bound on |G;(q.)| is calculated and used and G;(q.) remains
unknown, that is why the constraint is imposed, while it may not be needed (depending
on G;(q.))- It is very “costly” to determine if it is needed or not.
If G,(q.) was computed and resulted negative, then of course it would be impossible
to require that
_Bizyz'<QC) > 0

;< 2
c Gz<0

<0 (2.110)
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because ¢; > 0 by definition. A contradiction?
This apparent contradiction arises due to the fact that in such a case division of the
inequality by G; < 0 would change its sign, so that the correct requirement would be

_QBiQVi<q0) >0

2.111

E; >

which is always true® since ¢; > 0 by definition.

The conclusion is that unnecessary constraints will most probably be placed on ¢ by
some of the obstacles (those for which G;(q¢.) < 0). This is on the safe side.

Note that the case v;(¢.) = 0 has been ruled out and that if G;(¢.) = 0 the inequality
will be satisfied as in the case that G;(¢.) < 0.

Now the constraint v;(¢) < 0 is analyzed. The function v;(q) is first defined® as

v(a) = V6V~ 0= (aa — ) (4 — a0 (2.112)

Its maximum is derived using Lagrange muItipIiers@

g}(ax){w(q)} = (\/6 + 07— llaa — qu) lga — aill (2.113)

Therefore, if we require

Vet <llu-al =
Vet —llaa—al <0 Gt e Vieh = 4y—a#0 = llga—ail>0

S max_—— { i(9)} (\/é‘ﬁ‘m llga— ‘Iz”)”‘ld aill
<M@+m—ﬂ%—%®H%—%H<0

max{v;(¢)} <0 =
Bi(€i)

Bi(e;)CBi(ei) znlax’%i(gi){ul( )}<max e ){u,(q)}
—

vi(q) <0, Vqe€ B(s)

vi(q) <0, Vqe %B(s) !
vi(g.) <0

c€EB; (i)
-

(2.114)
the desired constraint is imposed. This is equivalent to requesting for ¢; that, since ;+p? >

0and ||gs — |l >0
e+ <llga—all <=

ei+p; < ||Qd_Qi||2 —
&i < |lga —aill® — o

(2.115)

This is essentially the requirement that ¢, ¢ %; (¢;). It is important to keep this in mind
for later.

381t is a requirement satisfied without the need to be imposed as a constraint.
39[23], p.428.
40[23], Lemma 3.5, pp.428-429.
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2.4.5.3 Geometry of ¢/,

Here the condition

Vet <lla—all = vilg) <0, Vg€ %) (2.116)

is illustrated geometrically. First note that /¢, + p} = p, as defined in (2.19) so the
condition can be written

pz, <l — all = vilg) <0, Vqe Bi(s) (2.117)
Let us start with
vi(q) = (qa — @) - (¢ — 9a) = llga — aill llg — qal| cos(—0) (2.118)
where 6§ = (¢ — m— qa). By definition

B (ei) = {q €LE"0< B < 52'}
={qe E"0< |lg—ql’-pi<e} =

pi>0,ei4p2>0,(lq—q;]|>0
0< ||C]—€Iz‘||2_Pz2 <é&, Vqe Bi(e) —

pi <llg—all < y/ei+pi, VqeBi(e) —

pi <llg—all <pz, Vg€ PBile)

(2.119)

Comparing this result to (2.117) we see that it is equivalent to ¢, ¢ % (¢;). The annulus
P, (¢;) has outer radius 07, and center ¢;. This outer radius is constrained to be smaller

than distance ||¢; — ¢;|| of destination ¢, from center ¢;. As a result %; (¢;) is small enough
to not include ¢,.

Furthermore the vectors ¢, — ¢; and ¢ — ¢, are shown in Fig. 2.7. Function v;(q) is their
inner product. Vector ¢, — ¢; is constant with respect to ¢. Since ¢ € %; (¢;) the vector
q — qa remains within the cone Ag;B. As long as pz < ||¢; — qa| the cone’s aperture
remains less than = and ||q — ¢4|| > 0 so the inner product v;(¢) remains negative.

2.4.5.4 Zeroing of original ¢/,

Returning to the required inequality (2.108) when G, > 0, divide both sides by G; to
get _
Cl é _ _ _251’2’/1'(61) _ _ _ _
1BV B - Vv + ity [(1— 1) VBVBL — B;D*By]
If we select an ; > 0 such that

> Bi(qc) (2.120)

G =>¢&
p.425

{ @ € Bi(e1) = & > Bilge) >0 } = G >¢& > file) = G >Bile) (2.121)
The constraint replacing ¢, > Bi(q.) is

(1 >e =
(2.122)

—253}vi(q)
— ‘ e —— ———— >, q.€%(s
1BV B - Vg +vatf [(1— 1) VB VB — BiD?B;] 1 (©)
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q—d4 A 3

‘ 0 ] pi
q Ga — i vz ;
“\‘ Bi (&:) ,’/
ming—{([¢>yqq|} :
] g4 — gill

Figure 2.7: Geometry of v;(q).

Note that since (; > 0 there is no problem of over-constraining ¢; to 0 > ;. This note will
prove useful in the sequel.
Because (nom stands for nominator, den for denominator)

G = nom(q.) >0 S lnom(q.)| >0 > mir lnom(g.)| >0 - ming, .,y {|nom(q)|} >0
"7 den(q.) >0 T den(gq.) > 0 Jf‘( den(g.) >0 | = maxg,.,) {den(q)} >0
(2.123)
provided &; < [lqi — a;|* — p? and
ming, ) {{nom(q)[} > ming— {[nom(q)[} = 0
B (e;)) C B (g;) = 2.124
(&) (&) {maxmax Sy den@)2 (=) ) {den(q)} >0 ( )
b 3 (mom()) > 0
Nz, (e 0 ming -5 {|/nom >
> ming, ., {|nom(q)|} > S 7 2, (2.125)

maxg, ;) {den(q)} >0 — maxz—y{den(q)} >0

But before replacing the constraint {; > ¢; with the constraint (; > ¢; we must ensure
that

in {Inom(g)[} >0 (2.126)

By the requirement applied previously that ¢, ¢ %; (¢;) in the form
vi(ge) <0 <= & < |lga— al* — p? (2.127)

vi(q.) has a negative supremum in %; (¢;) with an absolute value min{|v;(¢.)|} < 0. Notice
that had we required just that ¢; < |lqs — @:||> — p2, even in the open annulus %, (¢;) the
upper bound would be 0.
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lga = aill ™,

v
v
!

#i(l9a — all” — p})

rf‘a‘%i(HQd - %H2 -7

.
.

Figure 2.8: Zeroing of ¢/, if </, is set to ||qs — ¢]|* — p? and used to find minm{yi(q)}.

The minimum is zero because in this case ¢; € 0%;(||qa — a||> — p2) and hence 3¢ €

Bi(llga — aill* — p?), namelly ¢, € Bi(|lga — ¢il* — p?), such that |lg — qall = llga — gall =0,
so the inner product v;(¢) minimum is v;(q;) = 0.

In [23]# it is noted that if

€i,KR < 5§,KR = Pi(eikr) € Bile k) = Gleikr) = <2<€;,KR> (2.128)

then the constraint (,(e; xr) > €; can be replaced by the constraint (,(ef ;) > €.
But the correct check is whether

Co(eikr) > C2(€§,KR) >0 (2.129)
Using the argument (y(ci xr) > (2(€] xz) IN [23] the expression
eiwcr = llaa—al* = o} (2.130)

is defined® as £0;- The concequence is that

min {[yi(g)[} = min _ {[y(g)[} =0 (2.131)

Hi(e)) Bi(laa—al|*—p2)

beacuse the closed n-dimensional spherical annulus %;(||q; — ¢]|* — p?) includes the des-
tination configuration ¢, on its boundary 0%;(|lqa — 4||* — p2), as can be observed in

More rigorously, since |vi(q)| = |(aa —a:) - (a — 42|, if ¢ € Billlaa—aill” — p7), it is
possible that ¢ = ¢, and then [vi(q)| = (92 — &) - (¢a — @a)| = 0
If ‘V1<Q)’ =0 then mlnmﬂnom(qﬂ} =0 = CQ = 0. SO |f the constraint

¢; > ¢; were replaced by ¢, > ¢, then

(=0

“IThe parameter ¢; x r is an upper bound on &;.
42[D3], p.431.

{ G2 2 i } 0> (2.132)
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which cannot be, since by definition ¢; > 0 (If ; = 0 the open spherical annuli around the
obstacles become of zero width and the sets “near” the obstacles become empty.).

Of course an &; > |jqq — ¢||> — p? would not be allowable even if it did not result in
e; < 0. The reason is that it has been imposed as a constraint to ensure v;(¢.) < 0.
Therefore we are already confined within «; < |l¢s — ¢:||” — p2.

The conclusion of this analysis is that we cannot replace (;(¢},) by (a(¢},) and set
o 2 |lga — al]> — p2. The parameter ¢/, should be smaller than ||¢; — qZH2 p? to avoid ¢,
from being included in the closure of the open ball %;(<),) specified by &,,.

2.4.5.5 Correct selection of =/,
Unlike Koditschek and Rimon, I select
elo 2 No (laa — @ll” — p7) (2.133)
where ), € (0,1) is a scaling factor of our choice. If X, € (0, 1) is selected close to 1 then
No =17 = |1(¢)] > 07 = & — 07 (2.134)
an undesired behaviour. If X}, € (0,1) is selected close to 0, then
Ng =07 = &y 50" = ¢ > 07" (2.135)
again the same undesired behaviour. Note also that
ey = 0" = ()| = ((laa — aill = p) laa — @il))” (2.136)

Tthis particular limit is proved in what follows.
So an intermediate selection is desired. Now the v;(q.) < 0 constrain follows from the
constraint (slightly different)

e < eiy = N (llaa = @ll” = ) < llaa — @:ll* = o} (2.137)
And it is guaranteed that
vi(g) <0, Vg€ Bi(ehy) C Billlaa— il — p}) (2.138)
so it is also guaranteed that
Geirr) > Cilely) > Glely) >0 (2.139)

withf3 €ikR < €(;r
So the constraint now imposed on ¢; is

ming - {|nom(q)|} >0 - (2.140)

Gale) = S —— e {den(q)} > 0 =

This means that, provided ¢ € %, (¢;) and ¢, ¢ %; (¢;), the desired minimum is

win (1@} == (s = all = /5 42 = 0 (2.141)

“3For example ¢, xr May be an ¢, or ¢, < &}, imposed by other considerations.
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Selecting £}, = X, (|lga — @i||* — p?) the minimum becomes

%rrziy) {lvi(@))} = — <HQd —qll — /€l —l—p?) llga — ||
Fil&0
=" (”% —aill = /X (laa = @il = p2) + p%) loa—aqll  (2.142)

(qu—qzu Vo llaa— @l + (L X ) g — ail

2.4.5.6 Denominator

We have remedied the nominator min{|v(q)|} and are now about to divide both nom-
inator and denominator of (2.120) by 3; to obtain

—2v;(q)
%Bivﬁi‘v'\/d‘F’YdtNir[(1_%>vBiVBIT_BiDQBi]tAi
2
: 2.143
B —2v;(q) ( )
1V oT V5 VBE D25 ¢
S5 Vb l! (1= 1) T - 5

We have justified why we use as a constraint the nominator min{} divided by the denom-
inator max{}. The nominator minimum ming-—-{-2v;(¢)} = —2maxg ~{ri(¢9)} =

2minz——{|v:(¢)|} has been found in (2.143).
Let us focus on the denominator to cancel similar terms contained in it.

1V@ - 1\ V3 VB D?@ .
25, Vet Kl_E) 5 5 B ]t'

3 AT 23
) ([E) -

(2.144)

At this point the term i D?3,{; has appeared. This term had also appeared in

. Actually there, its absolute value had appeared. That was because the term
had been already substituted by its absolute value to bound the worst case.
Retaining the actual term can prove advantageous. It can be expanded and allow us
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to split terms

TDQiiﬁ__Nr _5 ( Vﬁl) :
"B tz( 5 2 i )t’

j€lo\i T en \{i,5}
2] VB var A
{Z <ﬁj B; Z , B
j€lo\i lelo\{%,5}
-3 (Zemer |2y (T
jelo\i Bi Bi 1€To\{i,j}
SN [ Ao s (Wl ) i (2.145)
j€lo\i 2 B 1€Io\{i,5}
= Z tr V5 Vﬂ —L
bi Bi reis \{u}

)

3 () 5 (5.3, (i)

j€lo\i \7 1elo\{i,j}

2 _ (1 g vaTi L
5 [BJ P> (resv %)

To\{i,j}

We are now able to return to (R.144) and substitute our result

v (1) (8 [ 55

S (= 1 . (2.146)
oot 1
2 €lo\i <ﬁj) +j;0\i B; le Z (tl VBB tlﬂl)

J€lo\i Io\{3,5}

— Yd

then group terms (redefining G; as its previous definition divided by 32)

;v;l v v 1
=D E[EE]) |l s (B)]-4cn
T ° iclo\s ~77
—d Zje[o\i (ﬁ_lj Zlelo\{z;j} (ti V@Vﬁ?tﬁ)) N * Ol 4
N~ Bi
A;

(2.147)

where B; = 2, > - > (,Yq € %, (¢;). We want to find

]6[0\1

max {A; — B;} = max {A;} + max {—B;} P20 max {Ai} — _min {B;} (2.148)
Pi(gios) Bi(ei03) Bi(ci03) Bi(ci03) Bi(i03)

Recall that G; = A; — B;.
We need not impose the constraint under consideration (¢}, > ¢;) if G; < 0. In
subsubsection 2.4.5.2 our limitation was that we could not check G;’s sign. So we decided
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to impose the constraint in every case, even if in the cases it is not needed (which we
found difficult to examine for the general situation).
But now we are in a position to check some cases when G; < 0. If#4 |A;| < B; then

{ . |§A’z1|4j B = |_A;3|i SB’Z‘E& } — A, B, <0 &= Gi<0 (2.149)
The =— above stresses the fact that we do not always conclude G; < 0 when it is true,
but some times we are able to tell. Anyway, to be able to avoid placing unnecessary
constraints in some cases is more useful than never. In such a case it suffices for that
particular obstacle i, to require just ¢/, > ¢; and not also £}, > «;.

Continuing with the case |A;| > B;, for which we still do not know the sign of G;, an
upper bound on max——— o {A } would prove useful. Let us first proceed with bounding
|A;| from above. By appllcatlon of the triangular inequality

V 5; VZVT .
;/f WW(“% (ﬁw 5]0
1 ~ 1
- AR Tti—)
" Z (ﬁj 161%{:11}( o b )
1V3; 1 VB VB .
<[y vl b () ( [55)6)

Yd Z (5% Z (ﬂrvﬁjvﬁfﬂ'é>>
‘ . lelnti

j€lo\i To\{i,j}

|Ail =

(2.150)

_|_

- Va

+

Each of the three terms comprising this upper bound on |4;| is bounded individually. By
the triangular and Schwarz inequalities

1V Bi 1 VB,
~—= V% =— Z ( V/BJV’Yd) =3 Z ( Jv%l)
'2 Bi aelo\z Bib. 2 jelo\i N 17
VB; 1 IVl
< Z 5, v ‘ 3 Z‘( 5, IVl (2.151)
jG 0\? j€Io\i
2 ﬁ] =+ p
L =R ) D SR
Jeli\i Jj€lo\i
0Ta all ||b|| is proved for any unit vector ¢ and

vectors a,b € E". Since the tangential unit vector ¢; is a unit vector

~T

ot aH 161l {Vv € E”! o] = 1} T Ty

44we have shown and know that B; > 0 but the sign of A; remains undetermined.
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Using this inequality we derive

(- R ()

2 2

Z clp\z i /8 v . v .

_ (st ) (w— zﬁ—@) <(mz B@)
v jer\i jelo\i J (2.153)

_ IIVBJ I\ 2V =B, 2\/ /% +0;
- Z S Yar 5—

jelo\i J 0 jEIl\i

2 2

= 2va Y @ (ﬁj)) =44 (Z Q; (53‘))

jelo\i j€lo\i

since v4 > 0,Vq € %; (¢;) — {qa} and 1 — § < 1. Also by |tfa

Ly (t”fvwﬁ?t ) cwY (L y (mfijml)

jelo\i B 1elo\{i.j} jelo\i 5 7 1e1o\{ij} &
1

<w Y (B 5 (VﬁjIV&E))

jelo\i T 1eIo\{ij}

V5]l VAl
< Ya Z (—/Bj Z 5 )

j€lo\i lelo\{3,5}
2\/Po ﬁoz ﬁl +Z \/ +5; 50 Z 2 pz2+5l
d Bo 50 B
len\i jen\i leh\{w}
=4y > (Qg B) Y., @ (ﬂl))
je€lo\i lelo\{i,j}
(2.154)

which is the same procedure as followed in subsection A.6.1. Here we wanted to separate
tI D?Bit;, to form A; and B;, that is why we did not use directly that result.
Let

gt & min {6}, BF™ S max {ﬁj} (2.155)
Bi(i03) Bi(ci03)
for Qoi, Q;i, and define
" & min {yg}, E™ 2 max {ya} (2.156)

Bi(ci03) Bi(i03)
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The previous results lead to

—2v4(q)
3BV Bi-Vatyail [(1-§ ) VB VBT —BiD2Bi i
,32
2ming {vi(q)}

~ maxgy {4} — ming 5 {B;}

2 (llaa = @il = v/l + £7) llaa — il

>
- ( 2y Y. Q5 (8)) )
j€lo\i
2
+ 2 . . . 1
MaXz o) ) < \/%jeZIO:\i < (BJ)) ¢ T Mgy {Q%lje%\i E}
+4va Y (Qj Bi) > @ (5l)>
\ J€lo\i lelo\{i,5}

- (qu —aill = Vel +p?> laa — 4l
- 2
Vg 2 Qaz+27max< 2 sz’) +295™ X <jS 2 Qh) @t Y g

j€lo\i j€lo\i j€lo\i lelo\{i,5} j€lo\i ?

(2.157)

2.4.5.7 Diminishing nominator lower bound

Pairing V3; with 3; by dividing the nominator 3? in the denominator has proved ad-
vantageous. It removes 3; from the nominator and cancels it with 3; terms in || V3],
when bounding the denominator from above.

This relieves the nominator of the unwanted lower bound ming {51} and re-
duces the calculated upper bound on the denominator. As a result the |II valued fraction
minm{éi}
maxm{,él}
in both denominator and nominator.

After advancing with this cancellation we are still left with a nominator —2v,(¢q). Its
lower bound is ming—{—2v;(¢)}. This lower bound has a small value and we would
like to replace it. In order to achieve this it is useful to explore this term’s behavior.

As already noted ¢/, < |l¢a — &> — p? = wi(q) < 0,Yq € B, (&;) SO

is avoided. Essentially we avoid ignoring that the same function is embedded

min {-v;(¢)} = — max {r;(q)}

Bi(€i03) Bi(€i03)

=(mrnm—w%+ﬁ)m—%u (2.158)

= _min {\/%1 }\/%(qz‘)

jz (57,03
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This result should be expected, since

1
vi(q) = Zvﬁi - VYa — Yd

= 1 2a—a)]- 200 — a0)] — o~ aul?
=(¢—a) (¢—qa) — (¢ —qa) - (¢ — qa)
= (90— @) (40— qa)

1

=1 2(¢: — qa)] - [2(q — qa)]

= V(@) - Vula)

(2.159)

Following from this, by application of Schwarz inequality

(@)l = |~ V(@) - Vuta)
= 2 V30 - V)

LV ala) | 1934(a) | (2.160)

—

=2 |lgi — qall 2 1lq — a4l

W

Ya(qi) v/ va(q)

The above restatement of |v;(¢)| in terms of \/~4(¢;) and \/~4(q) offers valuable insight.
It demonstrates that |v;(¢)| is bounded from above and below.

For a given obstacle center ¢; the euclidean distance between q; and ¢ is fixed and
equal to \/v4(¢) = |l¢i — q4l|- But the second term \/~4(q¢) = |l¢ — qa4|, the distance

of a point ¢ in %,(c,) from ¢, is still free to vary between ming-—— 03){ yd(q)} and

MaX 03 { Vd(Q)}
The bounds depend on %;(¢/,), which is defined by p; and ¢/, a spherical annulus of

inner diameter p, and outer diameter Poi = Vo + 0?7 < |lai — qall = Vvalq)-
The closer the destination ¢, to the obstacle’s boundary 00; the narrower the above

bounds. As proved in subsubsection A.5.2.1|

min {/5a(0) } = llg: = aall =/l + 2 = llas = aull = o}
Pi(eio3)
max {v/7a(q) } = llg: = qall + /<l + 2 = lla: = aull + ol

Bi(€i03)

These bounds on /~,(¢) within 2;(},) are illustrated in Fig. 2.9.

The closer we choose destmatlon qq to obstacle &; the smaller the ramaining space
available to vary %,(¢l,) (reduce it by choosing a smaller £, hence smaller p/,) to increase
min m{\/% } provided we have to also satisfy the constraint ¢, ¢ %;(c),).

This we would prefer to avoid to prevent ¢/, from becoming impractically small when g,
is close to an 04;.We will accomplish this by recognizing a similar effect in the denominator,
as we have already done with j;, and cancelling these effects.

(2.161)
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qd
[
mln%’i (€i03) { \/

min%i(&%) { 'Yd(Q)}
Figure 2.9: Extrema of /~4(q) within %;(¢),) as g, is placed closer to an obstacle.
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2.4.5.8 Nominator behavior

Let us now look at the denominator to find a \/74(q)

1Vp; o Vﬁz VBT DB,

We see ~, and V~,. Obviously ~,(q) incorporates a /74(¢q), but what about V~,(q)?
As already shown when bounding the denominator from above, a term of the denom-

inator upper bound is
=27 ‘/___+Z —+— (2.163)
JEI\i B

so if divide the denominator by +/v4(¢) it will cancel in the procedure of determining an
upper bound.

The nominator lower bound includes min { vd(q)}. This tends to 0" as ¢; —

‘1Vﬂl

2B

00;. So we expect that dividing the nominator by +/+4(¢) will raise to nonzero the lower
bound limit as ¢; — 00;. The new lower bound is

=2 | 25 Vla) - Valg)
min_{ ———= p = min -
Bi(€i03) 'Yd(C_Z) Bi(eio3) §2 'Yd(Q)

~ min \ o NVala) (2.164)
i {W(“”) (Hw<q>u) }
= _min {Vy4(q) - va(q)}
Bi(gio03)
were
oo(a) & V7a(q) ; ] Vala) _ 2
D) = g = 1@l = HH q)HH L¥a#e  (2165)

This expectation is false. Expecting to cancel minm{ ’yd(q)} in the lower bound

by dividing the nominator by /~4(¢) (not its lower bound) does not solve the problem
because the nominator has one more effect in it, the inner product V,(¢;) - Vv4(q).
The inner product prevents us from remedying the lower bound problem by just using a
v/74(q) from the denominator. The angle in the inner product needs more to be annealed.
Having overviewed what is following, we can now examine ming ——{Vya(a) - %a(q)}.
Our approach will be geometric, Fig. 2.10, saving detailed analytical treatment for the final
expression.
It is true that

V7a(i) - 0a(q) = [V7a(ai)l] [2a(q) | cos 6 (2.166)
where® 9 = (¢ — Jq\z G4) € [Bin, O] C (—Z, %) and in what follows only half of the
interval (-7, %), i.e. [0, %), will be considered, due to symmetry.

*Note that fy < laa — ail” — 0} = aa ¢ Zi(ely) = 0 ¢ [-m ~F]U[5, 7).
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Figure 2.10: Nominator lower bound.
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For a given obstacle ||V~4(¢:)|| = 2 ||l¢; — qal| s fixed, so

_min {V74(q) - 9a(q)} = min {2([¢; — gal| cos 0}
Bi(€i03) Bi(€i03)

= 2|l¢i — qal|_min {cos 6} (2.167)

B (5103

= 2||¢;i — qal| cos max {0}

7 (5103

since 0 € [0, Omax) C [0, 3]

CIearIy fmax IS the angle between the tangent from ¢, to the sphere with center ¢; and
radius p, which constitutes the annulus’ %;(</,) outer boundary and the line through ¢;
and ¢,. This implies

0l o,
Onax = arcsin (+O) — arcsin | ——2— (2.168)
g — qall va(¢)
Now that we have expressed the nhominator minimum as a function of 6,
— 92U,
min 4 222D g0 gl c05 O (2.169)
Bi(eio3) 'Yd((l)

let us place ¢, closer to 9¢; and observe what happens tp 6,.., as shown in Fig. 2.10.
We see that

0,y — g s 080, — 0F (2.170)

So the nominator lower bound again tends to 0.

2.4.5.9 Nominator lower bound improvement observed

Although the nominator lower bound still tends to zero when ¢, goes close to an
obstacle, there has been an improvement. This can be shown by considering the lower

bound before
min_ {~20(q)} = (u% — gl — \JE+ p%) I — aal
Bi(€io3)

= <\/ Ya(qi) — P;o> g — qall (2.171)
<\/’Yd—% sz) \/'Yd—%)

and after dividing by \/74(q)

. _2i /
min 22D ) cosum = 2700 — oF (2172)
Bi(€i03) ’Yd(Q)

where the latter expression can be derived by application of the Pythagorean Theorem

for euclidean space, see Fig. 2.11.
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/
Pio

Va(a) — Pl

Ya(qi)

Figure 2.11: Nominator old and new lower bound comparison.

The fraction of lower bounds before and after the change is

mlnm{—Qyz} (\/ 7d Qz pz(]) V Yd QZ)

—2Vz(q)} 2v/va(@) — (/%0)

min‘z (2i03) {\/’Yd(q
(v/7a(g:) plo vV 7a(4:) (2.173)
2\/\/ /yd QZ sz

_ \/7d Qi \/Vd %’ - pig

2 Va(a) + P

so its limit is
lim ming -5 {2} _ lim va(%) Va(q) — Pio | _ 0+
@)= (i) i ~20i(q) Tal@) =)t \ 2 va(a:) + Pl
Ziei03) | \/rala)

(2.174)

2.4.5.10 Final nominator improvement

To prevent diminishing of the nominator lower bound we can divide the nominator by
~a(q). This results in an unwanted effect, which will be shown to be less problematic than
the initial expression for &,.

The effect is that, unfortunately, the denominator does not uniformly incorporate a
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second +/v4(q). The resulting expression is

_21’7;((1)
va(9) (2.175)
LVB:  Vya 4 §T[(1 _ 1)\ VA VB _ D]} '
273 'ydd—i_ti [(1 k) Bi  Bi B ]tl

The V%d(q) corresponds to —~— in the denominator upper bound, leading to (because as

v/ va(q)
shown later the nominator lower bound will be 1)
1
1
MaXZ: (cios) {Ai} ming———5{7a(q)} T NAX G o) {Bi} (2.176)
B ming s {va(q)} '
Hlaxe@i(iiog) {A'L} + ma'X%i(aiog,) {BZ} min@i(&;og) {Vd(q)}
which is clearly an improvement over the previous expression
ming— {va(q)} v/7a(a) (2.177)
maxz 5 { A} \/maxm {na(q)} + maxg -~ {Bi} maxz -~ {7a(q)} '
The nominator improvement is
il _ _Q—ivw(qz’) - V7a(g)
4(q) Ya(q)
_ o V(@) - Va(q)
2v/Va(@)2+/alq)
_ 5 Vulg)  Vra(g)
V()| [[Vya(g)l]
ona) (2.178)
_ 5 V(@) - alq)
IVa(a)|
_ o IV7a(g)ll [9a(g)]| cos 6
IVa(a)|
21g: — 0 A
_ 5219 —gaf cos® _ i g
2lq = qull r

where 7; 2 ||¢; — qall . 7 2 |lg — qa| and the polar coordinates used are shown in Fig. 2.12.
Note that although the problem is defined in the n-dimensional Euclidean space E™, finding
the nominator lower bound reduces to a 2-dimensional subspace problem, because of
sphere symmetry.

2.4.5.11 Nominator lower bound: geometric intuition

Before finding the nominator minimum on the semi-annulus D of let us first
explore the underlying geometric intuition. Omitting the scaling factor of 2, the function
to be minimized over the semi-annulus is

f(ra 9) = E cosf = T cos ¢ — HprojeCtionq—qdqi - QdH

_ (2.179)
r r g — qall
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AY

44
q3

q2
q1 2

/
0 | Pio ] X \r |
qa = (0,0) qs de ¢; = (14,0) ds

Figure 2.12: Nominator constant lower bound calculation.

Select an angle 6 which determines the direction ¢ — ¢4. Since ¢; — ¢, is given selecting
6 fixes the projection of ¢; — ¢; on ¢ — qg.

There remains to select ¢ € D on the semiline whose direction is determined by 6.
Observe that selecting

1. g = |lot —aqall < |lgi — qal| cos = 1 < f(r,0)

2. ¢ = |lg2 — qall = ll9i — qal| cos§ = 1= f(r,0)

3. 3 = |lgs — qall > |lgi — qal| cos§ = 1> f(r,0)
And that ¢; yields the minimum f(r, 6) on a given direction.

The global minimum over D is attained at ¢s = (r; + pl,, 0). This will be formally proved
in subsubsection 2.4.5.12, where the nomiantor lower bound is found to be

1 Pho<ri = p%?<1 1
cos0 =2 2—- =1 (2.180)

2 - ;
i + Pio 1+ 2o 2

2.4.5.12 Nominator lower bound: analytical calculation

We may treat the (symmetric) problem in either polar (r,0) € R x [0, 7] or cartesian
coordinates (z,y) € R?. Let us choose cartesian coordinates to minimize

T T T ;T
0 :_z 6: 1 _ 1 —
f(r,0) = —cos N RN RSN f(z,y) (2.181)

subject to
0<y

defining domain D, where 0 < p; < pl, < ;.

Domain Interior

(0,0)€D<:>{ ,_ Ym0y 4)2}@{/)@:030 } (2.183)

» T
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a contradiction since® p, < g/, < r;. Therefore® (0,0) ¢ D and hence f(z,y) is differen-
tiable everywhere in D with gradient

ot U e 2y
Vool (@,y) = [%@y)va—y(‘”’y)] - [“ (@22 (x2+y2)2} (2.184)
T
=@ 2]

The gradient is zero at any critical points in the interior of D and since z > 0 — 2%+y* >
0,V(z,y) € D and r; > 0, it follows that

2 _ 2
Veyfla,y) =0 < { y2$yx:00 } = r=y=0 (2.185)

which cannot be in D, because = > 0,V(x,y) € D.

Liney = 0 We are about to examine the boundary. Starting from the z axis, i.e. the line
y = 0, we have the following constrained minimization problem of f(x,y) in the interior of
the linear segments of D on y = 0 (and not the corner points).

y=0 <= g(z,y) =0 (2.186)

The Lagrangian is (A € R is a Lagrange multiplier)

T
We require
T ac2 2 xT
BA(JJ y,\) =0 — n(xz:y s =10 P02V el {r=yVy=—a}

8—y(xy,)\)—0<:>—r(x2+y2+)\—0 —

W (z,y,\) =0 < g(z,y) =0

(2.188)
So there are no critical points in the interior of the boundary segments of D on y = 0.
The corner points are still critical points. Function values at them are

i — Pio T 1
i — i, 0) =1 5 = = /
f(r Pio ) r (Ti_p/iO)Q Ti_Péo 1_%
i — P i 1
fri—pi0) =r P = T -
(ri—p)? mi—p 12 2.189
flri+ pi,0) =y ri+pi i1 (2.189)
e Hri—p)? ritp 142
ritpo _mi 1

r; + ;,O =T - - /

of which f(r; + pl,, 0) is the minimum value among the four corner points.

“Note that = > 0 <= (z,y) ¢ D whereas y can be zero.
#This is the constraint ¢}, < ||lgs — ¢;]|> — p? ensuring ¢4 ¢ Zi(e),).
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Semi circles The circles (¢;, p;) and (g;, p}, are both defined by constraints of the form
(x —1;)? + y* — p? = 0 so now the Lagrangian is

A,y ) = F@w) +2g(0,) = i+ A0 = 4 = 7] (2.190)
We require
g—i(m‘,y,k) =0 < m% +2X\(z—71;) =0
%(az, Y A) =0 = —ri—($22f;2)2 Y2y =0 (2.191)
oA

a(x,y,)\) =0 < g(z,y) =0
For y # 0 (that is, in all points within the semicircles apart from the corner points of D)
and \ # 0

2 $2 2 X

Ti $?J2 5+ 2 \y =0 Y >O’<:§v( Y)EDNYEO rix + )\(ﬂz:2 + y2)2 =0

(2% +?) - (2.192)
L (2 +y?)? = - ;)

Substitution in the first equation yields

2 .2 2 .2
S i) =0 2 LT Lo —r) =0 =
—5 z (2.193)
2 PiPioSTi

(z—r) 4y =r] & (z,y) ¢ D

so there are no critical points in the interior of the circular boundary segments of D.

The particular cases y = 0 and A = 0 remain. Thecase A =0 < (z,y) = (0,0) ¢ D
and y = 0 on the circles corresponds to the corner points of D. So the only critical points
of D are the corner points, which have already been examined previously. The global
minimum over D is attained at (r; + p),,0) and is equal to

f(ri+ 0, 0) = (2.194)

The plot of f over D is shown in Fig. 2.13. An important note is due here concerning
the fact that ¢,y is later used in place of £, so that expressions for extrema of involved
quantities can be substituted. Since e;03 = min{e,, e;3} and &, < ||qa — ¢|* — p? it follows
that c,03 < ||qq — quQ — p? as well, hence also p;o3 < ;, SO the previous analysis still holds.

2.4.5.13 £/, expression

Considering all preceding discussion we are led to define upper bound &f; on ¢; as

1
£ = - C Yiel
2\/% X Qi+ |2 X Qi) 4 X Qi X Qu)-2 Y g
Ydi jelo\i jelo\i jelo\i 1€Io\{i,5} jelp\i 7"

(2.195)



2.4 Proof of Correctness 71

el Nominator

ei, Nominator

25¢
ot
S
w0
g .
N
1.5F
1t
0.5 i i i i
0.5 1 15 2
Yn = . Ty = = (')

el Nominator

0.81

o
(o2}
T

yn =% ()

0.4

T

T

0.2

|

02 04 06 038 1 1.2 14 16 1.8 2
Tn = )

<3

%

Figure 2.13: The nominator —27”;'((33) of £}, essentially is a function of two variables f(r, §) =

@ Here it is illustrated in normalized coordinates z,, = *,y, = £
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—2v;(q)

va(q) e
%Bivﬁz"v’y(ﬁ-’mﬂr[(1—%)VBiVB,-T—Bz‘D25i]fi VA€ (61) ’
Yaf3?

The respective constraint on ¢; is

IN

"
€i0

0<Bi<e <ey, VgeBi(es), 1€l

1€l

(2.196)

(2.197)



Chapter 3

Adjustability in Unknown Sphere
Worlds

3.1 Upper bound on ~, when ¢, is unknown

The analysis so far concerned automatically tuning a NF for a sphere world with internal
obstacles within 7. In we show how to efficiently maintain the NF tuned as
new internal obstacles are discovered. But initially no obstacle is known. Any unknown
obstacles must be disjoint spheres. So an internal obstacle ¢;,: # 0 may be discovered
before ¢,. In this case the workspace is unbounded 0, = ) =— # = E". This is not
covered by the original NF formulation. We now extend the method of analytic NFs to
unbounded worlds with internal spheres.

Propositions 3.2, 3.3 [23] still hold, so no critical points arise on 9.7 and ¢, is a local
minimum of p. In the same way as proved in Proposition 2.7 [23] critical points in the
interior of .7 \ {q,} are unaffected by range diffeomorphism ¢, o 0 SO we can examine
critical points of .

In case of a single internal obstacle ¢;,: # 0 Propositions 3.6 and 3.9 [23] hold for

g; < min{ely, iy} (3.1)

since <), €7, ;3 are not needed whereas ¢, is undefined.
If more internal obstacles are known

g < Hliﬂ{é;’o, 8;/2, €03, 52'23} (32)

applies and ¢, is still undefined.

When at least one new obstacle is discovered at ¢,, € [0,+00),m € N\ 0 the NF is
updated. So different NF fields guide the agent before and after ¢,,. For each discovered
obstacle one update is performed, increasing the number A, € N,z € N\ 0 of currently
known internal obstacles. Note that m < > because several hew obstacles may be sensed
at ¢,,. Also note that since the dicovery of a new obstacle triggered the potential update
at least one internal obstacle &;,i € I, = {1,2,..., M.} is known, so M, > 1. Let iy, = 1
if 0, remains unknown and i,;, = 0 otherwise. The notation */ refers to 5 when M,

obstacles are known
M,

w=11s-=115 (3.3)

i€l

Similar notation will follow which has been avoided so far to reduce unnecessary clutter.
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Figure 3.1: Positive invariant set £, until next NF update.

The agent at time ¢,, is positioned at z(¢,,). Let

Q, é Pz (l‘<tm)) > 07 FARS {L 27 ey Ntransitions} (34)

be the updated NF potential at the agent’s position z(¢,,) after the update (but before the
agent moves). The number of transitions z is finite N,...sitions D€CAUSe each controller is
a NF and the number of obstacles is finite. This is equivalent to convergence, which is
proved in kection 3.6. Also o, > 0 because o, = 0 <= ¢ = ¢, which is not the present
case (the agent here has not converged yet, otherwise we would not bother any more!).
Although ¢, changes due to each added obstacle, it suffices to first add all new ob-
stacles discovered at time t¢,,, calculating their ¢;, and recursively updating ¢;, of already
known obstacles as detailed later. Following this, a single update of k. then suffices for
each t,, (an update of k. is redundant for each new obstacle at ¢,,). )
If the agent is in the free space interior when the NF is updated z(¢,,) € %\ 0.7 = F
then v.(¢) < 1,Vqg € F\ 0% — «, < 1 (0% has zero measure anyway). Since z
is a gradient system & = —V ¢, it cannot overcome «. until the NF is updated again at
tms1- This is true for the NF after ¢,, until it changes again (if it first reaches ¢, this never

happens). So
sz(x(t)) < g, vt € [tm7tm+1] (35)

Note that if ¢,,.; = +oc then this interval is [¢,,, +00).
Let use define the closed set where the potential function . is less than or equal to
its value at the agent’s initial in [¢,,, t,,.1] configuration z(¢,,)

P.2{geF :¢p.(q) <z} (3.6)

By (B.5) and (B.6) for any initial z(t.,,) € 2. the agent remains within 22, for the time
interval [t,,, t,n11]
o(t) € Po, V€ [ty tsi] 3.7)

so the set 2, is positive invariant in the time interval [¢,,, ¢,,+1]. The agent cannot escape
out of it until the next NF updatell. Set 22, is schematically shown in . By definition
0. (x(tn)) = a, = x(ty) € 2,

0. (qa) =0<a, = q € 2, (3.8)

1Convergence is guaranteed by the finite total number of unknown obstacles by Theorem 2 so that after
a finite number of NF updates ¢,,,1 = +oo, that is, no further update occurs
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When no obstacle &, is known the potential field must ensure the agent remains in
a finite region. A potential with lim . .(¢) < a. cannot ensure this. Since o, < 1 if
lim -0 ¢2(q) = 1 then &2, will be always bounded. To ensure &, is bounded select

k,>M, <= lim ¢,(q) =1 (3.9)

llgl|—o0

Proof of this Proposition in subsection A.6.3. Essentially it makes ¢, radially unbounded.
Hence there exists a sphere

2.(pp) Z={qg€ E": |lg — qall < po} (3.10)

such that

By &2, C 2, it follows that &2, is bounded by the sphere 2.(p,) of finite radius. Since 22,
is closed by definition and bounded as shown, it is compact.

The limit set for any trajectory of a gradient system on a compact manifold as 2.
is an equilibrium point [23, 49]. As a result the limit set of i(¢) is the set of equilibrium
points in &2,

{q S tLlEFI(l)O x(t) = q} =%,NZ, (3.12)
The equilibria may be maxima, minuma, or saddles. Only minima and saddles can con-
stitute the positive limit set of a gradient system. Showing that all saddles are non-
degenerate implies that their stable manifold is of measure zero. The remaining equilibria
in 22, which can have an open stable manifold are the minima in &2,. Therefore it suffices
that no local minima other than ¢, arise within £2,.

EQmin € ‘gzz \ {Qd} (313)

Proposition 3.4 [23] remains to be proved for the case of unknown &,. But here a
serious problem arises, since /7, is unbounded.

For the lower bound of k. an upper bound on /v, is needed within .%, (¢;,). But
F5 (e1,) is unbounded. Nonetheless the agent can only reach &2, N .%; (,) which is
bounded (and compact). Since &2, N.%; (¢;,) is bounded hence an upper bound on /74
within it exists.

It suffices to determine an upper bound

pa z max{\/ Y} > \Va, Vg€ P (3.14)

on ,/7q in &.. This will also be an upper bound on ,/7; within the subset &2, N .%; (1)
of %, (e;,) which is reachable in time interval [¢,,, t;,11].

Proposition 2. If

Va > max {[lg; — qall} (3.15)
and
~Ya > aitay”? (3.16)
where
A 4MZ A
a 2 as 2 Ya(a(tm) (3.17)

“Bla(tm))’
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Figure 3.2: Sphere #,. Note that p, is such that both #Z, O &2, and all centers ¢; € %.,i €

Ii,.
and
A )0, a <1 A %7 as <1
A 2 3.18
™ {%7 ay >1’ e {MZQH, as > 1 ( )
then ¢ ¢ Z..
Proof. See subsection A.6.4. O
Lemma 3. Let ¢ € &2, and suppose
Ya(a) > pa £ maxcfmax{[lg; — i}, af"ay?} (3.19)

By Proposition 2 it follows that ¢ ¢ £2., a contradiction, hence
Ya(q) < pay Vg € 2, (3.20)
Let us define a sphere centered at destination ¢,
Z-(pa) ={a € E": |l — aqall < pa} (3.21)

soZ by Proposition 1 it includes positive invariant set &2,
{q ¢ %. = lla—qll > p. = V7)) >ps = q ¢ @} — 2. C%. (3.22)

hence the agent = does not leave Z, until the next NF updateE
x(t) € P, CR,, VteE [tm, tmi1] (3.23)

This sphereE has p, > |l¢: — q4||, Vi € I, so it also includes all obstacle centers ¢;. Also
2, C R,

As noted before, a sufficient inequality for the gradient to be nonzero in the set “away
from obstacles .%; (¢4,) is

n

—\/_M <k, Vq€ %) (3.24)

2If 0, N 2, # ) the it is not =

3If no further update occurs t,, 1 — +oo.

“It is only known that ¢, (¢) > a.,Vq ¢ Z.. Itis not true that ¢. (¢) < a.,Vq € %. because at least one
internal obstacle &;,i € I, is known, whose center belongs to sphere %, implying Z.N0.7 # () — 3Jq €
X, :p.(q) =1> .
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but when no & is known .%, (¢;,) is unbounded and /7, cannot be bounded. What we
have proved so far is that for £, > M, the positive invariant set 42, is bounded. As a result
we are not concerned with critical points outside &2, since the agent using this updated
NF cannot reach them and be trapped by them.

More directly, if &2, closed, then if ¢. ¢ &, — Fp. : Vg : |l¢—q.|| < po. = q ¢
2, so that since &2, positive invariant, then suppose lim; , . 2(t) = ¢¢ = Ftmax :
|z(t) — qell < pe,Vt > tmax = x(t) & P,,Vt > tna Which contradicts the hypothesis
that 22, is positive invariant. Hence ¢. ¢ &2, implies . stable manifold .7, is completely
outside 2., thatis .7, N 22, = 0.

We have found an upper bound on /75 in Z, 2 £2.,Vk, > M.. So we can use it to
find a lower bound on k, within the reachable set #,.

Substituting the upper bound on /7, in Z. in the sufficient inequality

nﬁx{\/%} Z Qi <k (3.25)

Ilz

to find a lower bound for k. within the positive invariant set 22, leads to

pa Y Qi <k (3.26)

I,

This prevents critical points from arising “away” from obstacles in % (¢;,) N %.. Since
P, C Z, it also implies that ¢. ¢ (% (e1,) N Z2,). Note that the agent is confined in 22,
notin % (e;,)N<Z,. But the complement in &2, of the reachable set “away” from obstacles
P, N Fsy(eg,) is P, NOF U.Z%(er,). These are critical points confined close to internal
obstacles. Since &2, C Z. these critical points are within .. Any remaining critical points
in %. are confined near the obstaclesE. By the ¢; upper bounds these remaining critical
points ¢. # g4 near obstacles are ensured to be non-degenerate saddle points. In #. a
unique local minimum remains at ¢,.

Since &, C #., %. contains a unique non-degenerate local minimum, all other critical
points in %, are non-degenerate saddles, and ¢; € £2,, it follows that &2, contains a
unique local minimum, and all other critical points in &2, are non-degenerate saddles.

So for unknown &,

k, > max {pa Z[ Qi MZ} £ N(er.) (3.27)

implies that all equilibria other than destination ¢, (local minimum) in &2, are non-degenerate
saddles.

It follows that the only critical point in 2, with a non-empty stable manifold (dense
in £2.) is the local minimum at destination ¢,. Almost all (all apart from a set of measure
zero) initial in [t,,, t,,,1] conditions x(t,,) € &2, have ¢, as their limit set.

Note that &2, is connected. We can prove this as follows. Suppose £2. is not con-
nected. It is closed by definition, so if not connected it will be a union of at least two
disjoint closed subsets. The potential . is continuous within each closed subset. As a
result ¢, will have a global minimumE within each closed subset (global with respect to the

>Note that a minimum of saddle outside . may have a stable manifold with common points with Z.,
but not with 22,.

6Note that since .22, boundary is a non-zero level set, on the boundary of 2. the gradient system has
non-zero gradient normal to the level set, so no critical points arise on 922,. Any critical points ¢. € 22,
arise in the interior &2, \ 02, of 2,.
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subset). Each minimum in a subset is also a minimum of &2,. Disconnection of &2, implies
at least two disjoint subsets, as already mentioned. Therefore . will have at least two
local minima in £2.. This is a contradiction, because we have already shown that, for the
selected k., function ¢, has in &2, a unique non-degenerate local minimum at destination
dd-

Local minima or saddles may arise outside Z, O &2, but the agent cannot reach them
since their stable manifolds have no common points with #2.. Either it converges to ¢, or
the NF is again updated at time ¢,,,,;.

This replaces Propositions 2.4, 3.4 [23] when no &, is known.
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3.2 Recursive update of </,

The present analysis applies both when &, is known and when it is unknown. For
this reason we define the set of indices I,. £ {1,2,..., M.} of known internal obstacles.
The set of indices I, . . of all obstacles depends on whether &, has been discovered. If it
remains unknown [; . . = I,. If &y isknown then I; . ={0,1,..., M.} = {0} U I,.. For
brevity we will denote I; by I..

We have defined

min#

/"
(2

A Pi
€ =

V2 sen (440 T @)

and our aim is to arrange the denominator calculation in such a way so as to update it
with minimal time computational complexity for each new obstacle. An increase in memory
requirements is allowed.

A naive first scheme would be to store the obstacle data {¢;, p;} and recalculate &/,
from these each time a new obstacle is discovered. This update is needed for all the
until then known obstacles. So the new obstacle causes M, many &/, to be recalculated.
Each ¢/, has a time computational complexity of ©(1.). As a result the update complexity
becomes ©(M?).

Note that the above requires no ¢/, to be stored. No other quantity intermediate in
the calculation of ¢/, need to be stored either. But it requires all {¢;, p;} to be stored. This
has memory complexity ©(1,). Therefore rearranging the calculation to reduce updating
time complexity to ©(1,) while keeping the (increased) memory requirements to ©(M.,)
constitutes an improvement.

Let us examine how to achieve this. The denominator requires computation of

Z (6111111 + Qﬂ Z le) ;i S Ilz- (329)

JEILNI ler:\{i,j}

. el

(3.28)

Assume that additionally to {p;,q;} we also store ¢/, (although it is not needed for the
update) and

> (5) 2 (Qﬁ )3 Qh) Yo (3.30)
jEIL\i Jt JELN\i lel\{i,j} jeLN\i

Now assume that a new obstacle &,,,n # i is discovered and I. becomes I..,. The
new obstacle n is different than the already known i whose ¢/, is updated (hence n # i).
If the new obstacle is &, then n = 0 and M, = M,,,. If the new obstacle is internal
n#0and M., = M, + 1. We want to compute the new &, (updated) from the stored
quantities from which &7, (old) was computed. The update should require minimal time
computational compIeX|ty

The new denominator will be

1
Z min,new + 4 e Z QneW
JEL41\i ﬁji lel11\{i,j}

(3.31)

= Z (Bmm new) +4 Z ( }lfw Z Qnew)

JE€l+1\i JE€L41\i lelp1\{i,j}
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Before proceeding further let us observe a convenient fact. The terms ﬁm‘“ M and QY

are the extrema, minimum and maximum respectlvely, of 5; and Q; (B,) over B; (s%Y)
where 53" = min{e", ¢/5°V}. Since £53°" = p? = €94 a change in 43" occurs only if ™
is different from £9ld.

But E?gw = mlHJGIZJrl\i{Eigj} and {Eigj,j € Iz+1 \ Z} = {Eigj,j € Iz \ Z} U {51'311} from
which only ¢;3,, is new (the rest remain the same). That is

e’ = min {g;;} = min{ mm{elgj} Ei3n} = min{e%d g3, } (3.32)
JE€L41\i

so only if &;3, < %4 then %V is different (and less) than =2¢. Summarizing what has been
shown so far is that only |f Eizn < €931 then el £ ghew (5123 changes). Also

new old new new new old
<&’ = ey <y = Bi(ely) C B (5i23)

= { S el (3:33)

min,new min,old
/Bji > ﬁ

Therefore the old Q9), j € I. can serve as upper bounds on Q4. j € I. and Bm”‘ oM sel,
can serve as lower bounds on 3;; .7 € L.

This allows us to develop the following recursive scheme

min ,new

1 1 1 1 1
Z Bmin,new - Bmin,new + Z Bmin,new S min,new + /Bmin,oldd (334)
jEL+1\i 7t ni jELN\i 7t ni JELN\i 7t
and also
S (o & o
JEL41\i lel.41\{ij}
_ ;ljw Z Qnew + Z ;};ew Z Qnew
lel1\{i,n} JEIL\L lel1\{4,j}
_ new Z Qnew + Z ?Zgzw EEW + Z Qnew
lel\i JELNG Il 41\{i.jn} (3.35)
_ new Z Qnew + Z Qnew new Z ?Ew Z Qnew
lel\i JEI\i JeIN\i lel411\{i,j,n}
_ new Z Qnew + E(EW Z ?dew + Z new Z Qnew
leL\i jeL\i JELN lel:\{i,j}

I
N

new new new new
DI D >, @

JELN\I JeLNi lel\{i.j}
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and since 0 < Q™ < Q99,Vj € I, \ i it follows that

92 ziw Z ;};ew + Z new Z Qnew

JELNI JeLN\i lel\{3,5}

new old old old
<2 ni § i | T E i E li

JELNI JEL\i lel\{i,j}

(3.36)

So the update requires computation of new ——+ ﬁmm —, Q" and storage of old

1
old A old old & old old old &
Pis  Gio3 = E nga Qjo0 = E E Qp |, ap = E —Bminpw (3.37)
ji

jeI\i jeI\i lel\{4,j} JeELN\: I

The updating algorithm after computation and loading from memory of these quantities

is (aiz1 is an upper bound on 3°., B%
Jji

1 1
new __ old
2 : ﬁmm new > ﬁmln ;new + z : ﬁmln " omin,old = Qg1 = 5min,new + ;21
JE€L41\d ? JEL\L ni
new old new old old E old
jEL41\i lel,+1\{4,j} JELNI jeLNI lel\{i,j}

ahew new old old
Uiny = 200" Qg + Ainy
new new old new __ new old
E Q" < Qn + E Q5" = ap; = + Qg3
JEIL+1\i NS AY

Imew __ Pi

2 V2 (e + day)
(3.38)

Note that since a5 > a%¢ and ay > a9%d it follows that /2" < 394 so %3¢ need not
be stored for comparison with the new value. But £ is stored because it is needed to
calculate

AQy = Q™ — Q5 (3.39)

(22 (22

when updating .

3.3 Recursive update of </,

We can work in the same way for

- 1

£0 ~
\/T 2 Q“—Hl(Z Qﬁ) +4 ) (jS > Qli>_ > 5T1ax

JEL\i JEL\i jEILN\i lel\{i,j} JEL\i 7

(3.40)

Itis important to note that @, are calculated over %, (;93) where s,03 & min{e;3, €}y }. The

quantity ¢}, remains constant. The quantity ¢;; can only change due to the new ¢;3,, if

old
Eizn < 8Z()3



82 Adjustability in Unknown Sphere Worlds

Let the stored quantities to be used in the recursive update be

\/W Z Q]Za Z Q]Z Z Qli Z

jeI\i jel\i ler:\{i,j} JEL\G

(3.41)

ﬁ max

and also ¢/, to update k& when needed.
The update of ¢/, can be arranged as

Soarears Y o@rears Y orsars Y@ ga
JEL41\i Jje€L1\{i,n} JjeL\i JEIL\L
and as shown for &7, it holds that similarly

1 1 1
Z ﬂq;ax,new > max,new + Z W (343)

JELz41\i m JELN\I

and as already shown for &£/, it holds that

Z ?;ew Z Qnew < 20 Z old+ Z old Z Qold (344)

Jjely1\i lel 1\ {i,j} JELN\I JELNI ler\{i,j}

This leads to the following updating scheme. With the computed new ﬁm_a%, now
and the stored old

1 old A& old old & old Qold aold A 1
— @03 = gi o Qo2 = v %ior = max;old
vV Vdi B

jEL\i jELN\i lel\{i,j} JEL\i 7t
(3.45)

the following updating steps constitute the updating algorithm

1 1 1
§ : § s new __ old
Bmax MW =  pmax,new + Bmax@ld Aior = ﬂmax,ncw + Qi1

j€L41\i jeL:Ni 77t v
new new new old old old
PO L AED DI Al I DR S > &) =
jel41\¢ lel11\{i,j} jeI\i jeI\i lel\{i,5}
new new old old
102 QQ 103_'_ 102
new new old new __ new old
E Q@ + E Q" = o5 = Qi + ajs
je€l+1\i JEIL\L
/mew __ 1
610

1 qRew new)2 new __ . new
2 nnn 103 + 4( 7,03 ) + 4a7,02 azOl

(3.46)
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3.3.1 Tuning updating
3.3.1.1 Tuning calculation summary

By definition £ € N\ {0,1}. The condition for selecting & as a function of ¢,, is

k> N(er,) = (po + llall) ZQii (3.47)
i€lp
List of constraints on ¢;
€ < &35 £ (qu — q]H — pj)2 — pZQ, \V/] - ]() \ ’i, Vi € ]1z (348)
g; < &3 = min {e;3;} (3.49)
J€lo\i

g < 622 = p?, Viel, (350)

g < e = pi

2 > B"‘Lm +4Q; Y. Qu
je\i \ 7" lelo\{i,5}
minm{HV@-H}

1
<= ., Viel, (3.51)
4 ‘ﬂTDZBzfz
2 () Bi
€ < 5;0 = /\;0 (HQd - ql||2 - p?) ) )‘;0 < (07 1)7 Vi € Ilz (352)
1
g <ep = 5
2\/%2623'1“"22623‘1' +4 3 jSZQu—QZﬁ
Yai jelo\i jelo\i jelo\i lelo\{i )} jelo\i 7
2min_—— {—_”i@}
B (g; )
< — ~(TOS) vld T Vi e I, (3.53)
Rt [(R R S I
g0 < €ou 2 pg — llaall® (3.54)

3.3.1.2 Algorithm description

Let .7 (¢) the agent’s open sensing set at time ¢. Sensing occurs in discrete time ¢, =
tm + Ts. Provided .7 (t,,) Nz(t,n11) # 0 the agent does not venture into unknown territory,
ensured by a small enough 7,. To ensure constraints remain valid, k. is nondecreasing.
Initially no obstacle is known, so Iyz =0=0,8=1,k..o =2and V = ¢(x(t)) = o4000 ?
does not contain any obstacles.

Next two alternatives exist. Either the system converges to ¢, without sensing any
obstacles, or an obstacle is discovered, either &, or ;. If only a single internal obstacle
is known, ¢; < min{gjy, ey} in (B.27). If more internal obstacles are only known &; <
min{é‘iog, 6;’07 £i23, 8;’2} in ( )

When 0, is discovered previous ¢; constraints are updated as described later, and
N(e;.) < k. as defined in bubsection 2.4.2 instead of (B.27). If only &, is known ¢, < &g,
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Algorithm 1 Updating the Navigation Function for newly discovered obstacles

1: procedure New z + 1™ discovered &,

2 if n £ 0 then

3 if M, ==0and i,;, == 1 then

4: €1y < min{e),, 15}

5: New ¢,

6: else if M/, == 1 and i,,;, == 1 then

7 NEW &4, €l €y Ebay Ergy Eisy €1, Vi € {1,2}
8 update ey, %y, €15, €13

9

else
10: NEeW &, €n0, €n0, €l 9y Engy En3, En
11: update e;,, i, €y, €i3,1 # n
12: end if
13: else
14: gou = P§ — llall”
15: New ¢q
16: if M, > 1 then
17: update e;,, i, €l, €i3,1 A0 =n
18: else if M/, == 1 then
19: NEeW €14, €105 €10, €12, 125 €135 €1
20: end if
21: end if

22: k.1 < update k.
23: end procedure

in N(e7.). When any new internal obstacle &; is discovered calculation of ), &), €y, €/, €:3
can be performed in time ©(11,), kection 35] A high level overview of the updating
algorithm is provided in IAIgorithm 1, Algorithm 2, Algorithm 3 and Algorithm 4. For
brevity, functions denoted by f(-) are omitted within the algorithm and can be found by
the definition of the corresponding variables already provided in the previous sections.

3.3.1.3 Locally oriented tuning of analytic Navigation Functions

Not all constraints need to become effective for provably correct navigation. When
an obstacle is discovered, an ¢; can be arbitrarily selected. If used in N(e;.), then critical
points remain onIy within %, (¢;). As long as the agent does not enter %, (¢;), although
updated, ¢},, €%, €ly, €5, €:3 N€ed not be applied. This is equivalent to adding “and 5; < ;"
to line 3 of UPDATE k..

If for arbitrary ¢; local minima remain within %; (¢;) and attract the agent, it will even-
tually enter %; (¢;). We check this entrance and then apply the calculated constraint
i < 4, €nsuring those local minima within %; (¢;) become saddles.

This means a local minimum may still remain close to that obstacle. Its attraction can
lead the agent within %, (¢;). By calculating 5; we can check when it gets within %, (¢;).
Then the maintained constraints become effective, changing ¢, to clear that neighbour-
hood of local minima.

If we leave the neighbourhood and then discover another obstacle, the previous con-
straints are updated, as detailed earlier. But the updated values do not become effective
unless the agent is lead back within that neighbourhood a second time. This is not prob-
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Algorithm 2 Update ¢ of already known obstacles

1: procedure update ¢;,, ¢/, €%, i3
2 foric I, do
3 eisn < (lg: — qull = pu)* — P2
4 if Eizn < E€i3 then
5: Eig >\€i3n7 AE (07 1)
6: end if
7 if €iz < €23 then
8 €i23 < £;3
9: end if
10: i (i)
T
12: A1 < @ + ;91
13: Qo2 < 2Qniio3 + Qino
14: Qo3 < Qni + 03
15: €l — ——L—x
2(ai21+4a;22)
16: if €3 < €03 then
17: €03 < €i3
18: end if
19: ;01 < /BZ?% + a;o
20: ain2 <= 207" @io3 + io2
21: a;03 < f,lﬁw + a;o3
22: g;glew < QW‘C}“I-“Iai03+4(a;3)2+4ai02_ai01
23: Eiu min {&237 £i03, 8;’0, 6;’2

24: end for
25: end procedure

able, since in a sphere world obstacles are convex and for high values of k., when left
behind usually are not encountered further. This scheme reduces the effect of distant
obstacles, accounting for the fact that local minima near any obstacles not close to the
followed path need never disappear. So smaller k. values can be achieved.
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Algorithm 3 New ¢ for a newly discovered obstacle
1: procedure new c,,, e, ny, o, an2, €n3s En
2 Eng ¢ Miley, {(an —qll — Pz) - pn}

3 Eno < 3P

4: En2g < Mmin{e,s, 5}

5 2Q<«0, Y540

6:

7

8

9

foric I, do
it f (€n2s)
Qun 1 (52)
10: Z% — > % + ﬁ;
11: end for "
12: X1+ 0
13: foric I, do

14: rmn <— f (57123)
15: Qin f(Bmm)
16: 21 — ZJ1 + an (Z Q - an)
17: end for
18: 9 —_—fn
(Z +45)

19: Uig1 < D % 30 Q22 < Y1, ap3 . Q
200 el Ao (Il — anll* = p3)

21: Eno3 < Min{e,s, 0}

22: Vi 4= f (€nos)

23 YR« 0, Y540

24: fori.c I, do

25: min < f (5n03)

26: Qm — f(Bmm)

27: Bmax < f (Enog)

28: Z Q < Z Q + Qm

29: YEe Lt =

30: end for

31: Y1+ 0

32: foric I, do

33: B < f (ei03)

34: Qin + [ (B2™)

35: Y1814+ Qiun(XQ—Qin)
36: end for

37: Eno € 2— ZQ+4(1Z QP +4%1-% &

Tdn
38: il < ) %, @io2 < Y1, @z < ) Q
39: Enu < MiN {€,93, £n03, Engs Enp
40: en < A(llg — @l — p2), A € (0,1) > Initialize arbitrarily as half closest distance to
that obstacle

41: end procedure
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Algorithm 4 Update % of Navigation Function

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

1
2
3
4.
5:
6:
7
8
9

: procedure update £,

fori=1:M,,, do

if ¢;, < ¢&; then
old

— &;
€Z — X, A€ (0,1)
old Y f( old)
new . f(gz)
AQ“ — Qnew - old
Z Qu — Z Qu + AQM,
end if
end for

if i, == 0 then

if Eou < €0 then
old

<— €o
EQ <— )\Eou, A E (0, 1)
old — f( 01d>
new — f(g(])
AQOO — Qnew _ old
Z Qu — Z Qn + AC200
end if
Zlo Qii < > Qi
ki <= (po + [laall) 3=, Qi
else
Zh Qii < > Qi
ki <= 1+ max {pa Y, Qui,
end if

k.1 < max {2k, ky}

28: end procedure

> See subsubsection 3.3.1.3 for “and 3; < ¢;

> See subsubsection 3.3.1.3 for “and 3, < =,

M.}

n

14
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3.4 Gradient and normalized gradient descent

3.4.1 Continuous Case
The continuous control law for a holonomic system

j=—aZl (3.55)

where o > 0 and V' a Lyapunov function candidate is guaranteed to converge to the goal
x4 because

: ovTdg ov" oV v ||?
Vig) = 0 dt 0 ( 3q> —« 0 <0 (3.56)
because if V is a navigation function, then H H > 0,Yq # qq, SO that V(¢) < 0,Yq # qq

is negatively defined. Aymptotic convergence to the goal ¢, is guaranteed by the second
Lyapunov method (direct).
The continuous control law for a holonomic system

ov
q= —aH;—‘Z/H = —a% (3.57)

where |[VV|| # 0,Vq # qq if V' is a navigation function, « > 0 and V' a Lyapunov function
candidate is also guaranteed to converge to the goal ¢, because the integral lines remain
the same (no direction change implies no collision with any obstacle) and since

oVTdg aVT
8q dt (9(]

vV vV
o) = vy = e lTVI < 0v # o
(3.58)
because | VV| # 0¥q # qq, Since V(q) is a navigation function. Asymptotic convergence
to the goal ¢, is guaranteed by the Lyapunov’s direct theorem.
From the above we note that using either the gradient field scaled by any positive
constant, or the normalized gradient field (unit normal field) scaled by any positive scalar

does not affect collision avoidance, nor convergence to the goal. It can be shown that the

Vig) = =vvTi=vvT (

n
integral lines remain the same, since the Riemann vector integral lirf > (VVH@;”) _

lim Z (VV As)) because Flim ||[VV].

n—+00 ;7
Th|s is proved in [22], Lemma 7, p.263. and is given here for completeness. Let f1, f>
be vector fields on J which differ by a scalar function q, i.e.

Ji=afs (3-59)

Then, on the intersection of their respective domains, the flow, F}, generated by f; has
the relation to the flow, F¥, generated by f,, as follows

F! = F5 (3.60)
where s = a. This fact obtains from simple application of the chain rule
d _s d d

EFQ(?&)TO = EF2(t) f2 ( 2 T’0> a = f1 ( 2( )7"0) = EFltTO (361)
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3.4.2 Discrete Case (numerical implementation)

The navigation function’s numerical implementation aims to find the integral lines of
the potential field. The gradient descentis § = —aVV.
Consider again the previously examined cases of vector velocity fields

Y
IVVi

j=—aVV, = (3.62)

Now let us discuss their (inherently discrete) numerical implementation. The gradient
descent evolves in finite steps. It has not guaranteed collision avoidance. This is due to
the variable step size of a gradient descent. If the step in the direction determined by
the gradient is taken too large, then a collision can occur.

The position change
Agisiit = Gin—a = (G+(—aVV)) =g = —aVV = [Agisinll, = [-aVV], = o |[VV],

(3.63)

depends on ||VV||,, which can vary in such a way that || Az; ;.|| becomes too large and
leads to a collision?.

On the contrary the discrete control law

\VA%

i IV A%
gl

EPMIAG D A
vV

=« =« (3.64)
»  IVV]

= ||Agisivll, = H

which enables control of linear speed. By selecting o we are able to set a constant step
size

But the above step size is fixed. Therefore, although not arbitrarily variable and
determined the variation of ||[VV/||, nonetheless it remains inadequate to ensure collision
avoidancet,

A solution to this is an adaptive step size. This is accomplished by the discrete control

law
vV

vV
where o : E" — R is the adaptive step size. Let us select

q=—a(q) (3.65)

Amin{[llg —g;[| = P71}, min{[llg — gl = pi]} < dinreshora
a(g) =4 <" ieto (3.66)

dinreshold,  min {|||¢ — @l — p7|} > dinreshola
i€lp

with A € (0,1). The expressions
po—llall, la—all—pi, i€ (3.67)

The function

win (Il = ol = 21} =min i ~ ol omin (= ol = 2} | (368

’Remember: finite step sizes, no continuous update of VV here.

8The step size in this case can be set small enough to avoid collisions for the particular integral path
to be found. But for this to be accomplished a priori, we need to know the details of the path. Since the
path has not been found yet, this is not possible.
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Figure 3.3: Worst case of gradient direction, toward the closest obstacle i,, shown for the
case when the closest obstacle is an internal one, i.e. iy # 0.

is the minimum distance to the closest obstacle. Multiplication by ) yields a step size
smaller than the distance to the closest obstacle. Even in the worst case, when the
gradient direction \vvn points directly to the nearest obstacle i, the step size will be

Mg = Gioll = pil < lla = gill — pil (3.69)

the distance to the closest obstacle, Fig. 3.3. This guarantees collision avoidance. It also
prevents the step size to increase too much and affect the numerical approximation to the
navigation function’s potential field integral lines.

But for a discrete implementation convergence cannot be perfect and should be pre-
scribed to a certain error margin. When

It has been shown that the normalized vector field Hggll yields the same continuous so-

lutions (paths). By implementing it iwth an appropriate adaptive step it can be numerically
calculated for abruptly changing navigation function fields (large k).

This implementation avoids the need to calculate expressions where k£ arises as in
the exponent. Such calculations are not possible when a large lower bound N(s;,) on k&
is caclulated. A further advantage the normalized expression offers is a simple formula
where £ arises only in a single place as a divisor and its effect on the potential field is
clearly deduced.

3.5 Gradient normalization

In this section the gradients of both ¢ and ¢ are normalized. The second is the
one needed. Derivation of the first though is somewhat simpler and guides the second
one in concept because the same terms arise. For a detailed derivation of V¢, Vo see
subsection A.3.7 and subsection A.3.10.
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The normalized gradient of ¢ is

Ve o kB Va1V Vi (kY7 ' Ve — V]

VOl |15 kvt~ Vv — 14V 8] H kB Ve — V]|
By -vp  De Y _V%—%Vﬂ
e ] T
Vg — lﬁivg_ﬁ 2(q — qq) — 1= qu Z Tl ;1||g_)p 2] (3.70)

il —p? |

= -
HV’Vd—%ZV—@i’ H2<q_qd) llg— qu Z |”q 2(q—q:)

_ llg— Qd” (9—g4:)
(9 - 40) - Z Mq al* 2|

_ _ = qdll (g—a:)

—al|*—p?|

The normalized gradient of ¢ is

Vel

(3.71)

Note that

(7§+ﬁ)%V'yd—wV ((vé“rﬁ)é) = (vé“rﬁ)’l“vw—%z,lf (i +ﬁ)% V (v; + B)

[V () + V8]

?r-\»—‘

1
= (i +5)* Vi =z (i + B)

(
k % 1
v + B VVd—de(W + )
= (

=

B)E T [knh Ve + VB
B —1

) ]

) o+ B)F T Vs — . (0

1 1_ 1 1_

)E VA — (v + B)F T AE Vg — S (1 + B)F VA
k

1 _ 1

VeV — (75 + B8) T AV - 270 (v +5)

(3.72)
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Now note that

_ 1 _ k 1
Vau— (1 +6) 1V = (i + 8) 7 VB = ( T ﬁ) Ve W”j 5V6
'}/d + 6 7d> v
( ’Yd + 3 g
1 4
T ww
1
= 5B [5 Yd — vaﬁ]
(3.73)

Combining these expressions

Sl

(5 +8)F Vo =29 (35 +5)1) = (34 + ) {w — (o +8) bV - a0k +5) 7 98

— (W +B)F (h+8) [BV'V - E’Wﬁ]
= (5 + 5)% [5V7d — E’deﬁ}
(3.74)
As a result, the normalization of the gradient now vyields
(V5 + B)* Vg — 1V ((75 + 5)E> _ (v + 5)%‘1 [8V74 — 74V 5]
|65+ 8 Va2 (GE+8)7)| || (b +8) " (87— 2V |
_ BVY4 — %’deﬁ (3.75)
18V — £7aV ||
V- 35V6
[ v3]

So for V3 to become effective k3 ~ v, and since v, € [0, 4p3] it should be that 3 ~ 44221

For k =~ 10" = [ = 4p2107".
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3.6 Convergence in Unknown Sphere World

Theorem 4. Let ./ be a valid sphere world whose sphere obstacles are initially unknown.
Let .7 (¢) the agent’s sensing set at time ¢ and assume T, small enough for the agent to
remain in sensed | J,, .- (t,,). If a NF can be found for each intermediate space as obstacles
are discovered then the agent converges to the destination ¢,.

Proof. At each new sensing time ¢,, the NF is updated, incorporating newly discovered
obstacles. Let I, £ {iy, s, ..., iy} the set of indices of all, known and unknown, obstacles.
Let 1, C I, the subset of M., until then discovered obstacles. The NF is defined on a sphere
world .z, & E™\|J 1, O comprising of only the until then known obstacles, hence .7, C .# .

The partially known .7, is a valid sphere world. Following the adjusted NF on .7, on it
the agent converges to ¢,. This is guaranteed by the properties of a NF. Along its trajectory
two alternatives exist. Either no new obstacle is discovered and the agent converges, or
at least one new obstacle is discovered.

A new obstacle is discovered when . (t) N ¢; # (. Because .(t) is open this is
only possible when more than a single point of &; can be sensed. Therefore part of the
obstacle’s spherical boundary is sensed. By hypothesis of an unknown sphere world the
radius of curvature p; and center ¢; can be found, defining the new sphere obstacle.

Since a NF is updated and followed in the explored sphere world, the only alternative
for the agent to not converge is to indefinitely discover new obstacles which change its
NF. Each discovered obstacle increases I, by one, reducing the set of unknown obstacles
I, \ I, by one. By hypothesis a finite number of unknown obstacles exist, so either the
agent converges before discovering all of them, or after a finite number of changes, its NF
remains constant because all existing obstacles have been sensed and constraints applied.
So in all cases the agent converges to ¢,. O
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Case 1 (easy): desired goal within obstacle Case 2 (difficult): disconnected Free space

Eliejol qgeﬁi

Figure 3.4: Two cases for an unreachable destination ¢,.

3.7 Unreachable destination

There are two distinct cases for which the destination ¢, is not reachableg, as shown
in Fig. 3.4. The first one is when the destination is within an obstacle. Since the NF
methodology is built on the concept of set membership and implicit obstacle functions are
used for this purpose, answering this question is quite straightforward. It suffices to check
whether the destination belongs to any obstacle set. This is true if and only if 8;(¢4) < 0
(not necessarily 5(q4) < 0 is true if intersecting obstacles exist).

On the contrary, it can happen that intersecting obstacles isolate some part of the
C-space, by forming a shielding component.

This is not the case for us, because we have assumed that the unknown sphere world
is guaranteed to be valid, which requires that the spherical obstacles be disjoint. Giving
an answer to the second question constitutes a challenging search problem, because it
does not ask for a single feasible answer, but inexistence of any feasible path.

The most direct way of answering this question is actually running a provably correct
algorithm and in case it converges to ¢’ # ¢, then the free space is disconnectedi?, Fig. 3.5.

Since this is not our case we are going to analyze the first case and justify the check
within the algorithm. Suppose ¢, € ¢;, then by definition g;(¢) < 0.

Proposition 5. In a world in which unions of nonpositive level sets of implicit functions
represent obstacle sets

{Fiely:q,€ 0y <= Fi:Pi(qy) <0} <=

{¢ € E"\.F <= 3i:Bi(q,) < 0} (3.76)

Proof. There are some interesting remarks to be made with respect to these relations.
Firstly note that generally
Ji 1 Bigy) < 0.4=B(q,) < 0 (3.77)

(so g, € 0, <= ¢, € E"\ . <=6(q,) < 0) because it may be the case that two inter-
secting obstacles &, ¢; include the desired final point ¢, (no more called the “destination”,

Equivalently no continuous path between x(0) and ¢4 exists, or, in other words, the C-space is not path
connected.

10Especially when exploring an unknown world which is not a priori guaranteed to be a valid sphere world.

1This requires a critical point searching algorithm in general worlds.
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local minimum # ¢,

due to ¢, € G,

Figure 3.5: Running a provably correct algorithm which converges to ¢ # ¢, reveals a
disconnected free space.

since it is unattainable), so in such a case

Bi(gg) <O A Bi(gy) <0
ﬂk(qg)g> 0,Vk ejlog\ {5} } = las) =l @"qi’k 11} }ﬁk !
<0 €1o\11,J

>0

(3.78)

which continues to hold if ¢, belongs to an even number of intersecting obstacles 2r, r
N*, i.e.
/BZ(Q) < O,VZ € ]ga |]g| - 27",7” e N*
Br(qy) > 0,Vk € I, \ I, = B(gy) Hﬁz ay) H Brgy) >0 (3.79)

i€ly kel \Ig

But for pairwise disjoint obstacles, as is the case of an (unknown) valid sphere world,
no obstacle functions can be simultaneously nonpositive. This is equivalent to

{Pq:Bi(q) <ONBi(q) <0,i€lo,je€ )\ {i}} =

3.80
[8ia) < 0.0 € Iy = By(q) = 0.¥5 € I\ {i}.¥q € E"} (3-580)
diely:q€ 0; <= PBilg) <0 (3.82)
Then H

61 QQ 6] Qg
0 jelo\{i} (3.83)

—————

>0

O]

Also note that in the NF methodology the destination is not allowed to be selected on
the free space boundary 0.%#. If that was allowed, then

v4(qq) =0 RN YR (qy) =0 k _
qy € 0F <:g> Ji: fi(gy) =0 <~ i — Blgy) = = 7ald) + 5ld) (3.84)

Bl

Y (5 (gg) + Blgy))F =0
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so the NF denominator will be zero, leading to an undefined ¢ at the destination ¢, (and
an undefined ¢ as well).

So the intersection of the obstacle closures ¢;n&; should be used in condition ,N&; =
() of non-intersecting obstacle closures. The reason is that obstacles are defined as open
sets and their boundary belongs to the free space .#. This is for technical reasons, to
make .# a manifold with boundary.

For the above reason we check whether in a world with implicit obstacles

where also Ji € Iy : q, € 0; < ¢, € En\ .Z. The above can be stated for worlds with
non-intersecting obstacle closures (of which sphere worlds are a special case) as

g €EE"\F = 3Jicly:q €0, —
3i : Bi(gy) <0 Blgy) <0

While exploring a sphere world it suffices to check whether 5,,(¢,) > 0,Vn € I, where
n is the index of a newly discovered obstacle.

Another interesting remark for the cas eof sphere worlds is that (caution, not ¢, €
O; = va(q:) <0)

(3.86)

0iNG;=0,Vicly,jelo\{i}
—

4 € O = llag—all < pi <= llag—al* <} <= rala:) <} (3.87)
Also Bi(q;) = |lgg — @il|* — p? = —p? therefore combining these equations we get

Bi(q:) = —p}

= 2 2 2
= =P = i)+ 0i(q) <pi —p; =0 <~
0 < ~algi) < p2(1) } pi < vald) + Bilas) < pi —p

(3.88)
—p7 < vala:) + B(g:) < 0(2)
combining equations (1) and (2) we obtain

va(q:) + B(aq)

which is interesting, note though that it is not ¢, neither ¢ without incorporation of other
obstacles, because the tuning parameter £ =1 ¢ N\ {0, 1}.
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3.8 Simulation Results

The proposed method has been simulated. In navigation in an unknown
2d sphere world with automatically tuned parameter k. is compared to using manually
selected constant & = 2 (top) and £ = 10 (middle). The sensing set is spherical. As
O, and internal obstacles are gradually discovered, the analytic NF is updated. While a
constant k leads to abrupt turns and failure to converge to ¢,, use of an updating . results
in safe and successful navigation, as theoretically guaranteed, with smoother and shorter
path. The changing gradient field reveals that the high %, calculated shapes a NF field
which repels only close to obstacles.

A simulation on a 3-dimensional unknown sphere world illustrates applicability
to any dimension, a strong advantage of the NF methodology. The adjustive algorithm
finds a direct path as guaranteed. Constraints become effective only close to an obstacle,
which can be seen during encounter with the first two obstacles. Again for comparison
a path with constant £ = 2 is shown. In this case, for a constant & the agent converges
to ¢4, although this is not theoretically guaranteed. The reason of convergence here is
the smaller ratio of space occupied by obstacles than in Fig. 3.6. For constant & the
path followed is changing very abruptly when new obstacles are discovered and is not
guaranteed to converge.
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Part 11

Navigation Functions for Everywhere
Partially Sufficiently Curved Worlds






Chapter 4

Sufficiently Curved Spaces

4.1 Introduction

4.1.1 Necessity of acceptable relative curvature

In this section the proof for sphere worlds [23] is extended to the case of general
obstacles ;. Initially general destination functions ~, are considered, but due to symmetry
considerations, a paraboloid ~, is selected intermediately.

The sufficient condition associated with v;(¢), hence the upper bound ¢, is analyzed
for general obstacles ;. This leads to a geometric requirement on the obstacle geometry.
It is shown to be a condition on relative level set curvaturel of 3; and ~, at a critical point
qc-

For paraboloid ~, the relative curvature condition obtains a simpler form which suits
analysis. It has a particularly interesting and intuitive interpretation. This presentation
also relates it to the concepts involved in Meusnier’s Theorem [41, 48].

The relative curvature condition depends on the choice of destination ¢, € .. But
since destination choice cannot be restricted, it is equivalent to requesting that curvature
spheres? .,.;(q) be proper subsets of obstacle sets? ¢, i.e. .7.;;(¢) C 6; U {q}.

Moreover, the condition is necessary in the following sense. If all principal directions
at a point are not sufficiently curved, then two alternatives exist. The first alternative
is when all principal curvatures are non-convex. In this case, there exists a k.., such
that Vk > k., if a critical point arises there, it is a local minimum. This precludes use
of the same proof procedure. Additionally, it indicates why k tuning alone cannot, in
general, make a Kodistchek-Rimon function a Navigation Function in worlds with full non-
convexities. For a more detailed discussion, proceed to kection 6.3.

On the other hand, the second alternative is when there exists some sufficient principal
curvature. Then the NF Hessian has at least one negative eigenvalue. In this case, the
critical point is not a local minimum, even when degenerate. It can only be either a saddle,
or a local maximum.

Therefore, existence of at least one sufficient principal curvature suffices to ensure

1Relative curvature refers to the relation of level set curvature between the attractive and repulsive fields.
If the attractive effect is more curved than the repulsive one, a stable equilibrium (i.e., local minimum) can
arise. This minimum can entrap the agent.

2A curvature sphere is defined in (#.143) as one tangent to a point ¢, with center inwardly placed with
respect to ¢ and the level set 3;*(3(q)) through it, and diameter equal to the radius of normal curvature at
q.

3Note that obstacle sets &; are defined as open sets, which do not include their boundary 6;.
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that the Navigation Function is Polar (single global minimum at destination). This Polarity
is additional to Analyticity and Admissibility (uniformly maximal on free space boundary),
both of which are ensured by construction. Note that Propositions 2.7, 3.2 and 3.3 [23]
still hold, allowing us to work with the diffeomorphic ¢ in % \ (0.7 U {q.}).

Furthermore, the existence of at least on sufficiently curved tangent direction suffices
to ensure at least one sufficient principal curvature exists. As a result, if the sufficient
curvature condition holds for at /east one tangent direction. Intuitively this corresponds
to at least one direction of escape.

But this is not enough to ensure non-degeneracy. Although the result about positive
definiteness along V3; of Proposition 3.9 [23] in the case of spheres is extended in
to the general case, combining it with negative definiteness along at least one
tangential direction is not strong enough. The Hessian may be degenerate.

In the original proof the condition of sufficient curvature is required to hold for all
the tangent space. This leads to a direct sum decomposition to two subspaces. In the
tangent space negative definiteness is ensured, while in the radial positive definiteness.
These suffice by Lemma 3.8 [23] to ensure Hessian non-degeneracy. This is equivalent
to local quadratic behavior, so the quadratic form defined by the Hessian can be used
to categorize the type of critical point. Considering that the associated quadratic form
is continuous in set {v € £ : ||0]| = 1} and assumes both negative and positive values,
its minima and maxima (which are eigenvalues of the Hessian) are negative and positive
respectively, so the critical point is a saddle point.

It is worth noting that existence of at least one direction of negative definiteness and
one direction of positive definiteness of the Hessian quadratic form suffice to prove that
the critical point is a saddle, even if degenerate [38]. This means that in the general case,
sufficient curvature for at least one tangent direction ensures all critical points other than
the destination are (possibly degenerate) saddles. Degeneracy is the remaining problem.

Degeneracy means that the function’s behavior at a critical point is more complicated
than quadratic. Continuity of critical points is possibleg, forming critical setsf. Critical sets
may be smooth and nondegenerate, in which case Morse-Bott theory applies to them, or
non-smooth and possibly degenerate, in which case more general theorems are needed.
Another possibility is existence of isolated degenerate critical points, such as a monkey
saddlef, which is illustrated in Fig. 4.1.

Then Morse-Bott theory [37, 40] in combination with Thom'’s Splitting Lemma [35, 36]
can be used to examine the dimensionality of stable sets of degenerate saddle points.
In the next chapter it will be proved that if the function has at most one degenerate
eigenvalue, then these sets are still of Lebesgue measure zero.

Let us return to the generalization that we make in this chapter. The sufficient curva-
ture condition is less strict than working only with spheres. Spheres satisfy this condition.
But other obstacle shapes do so as well.

Requiring that this condition holds along all directions of the tangent space leads to a
Navigation Functiong. This way we can allow obstacle shapes which contain the associated

4Tangency is relative to the obstacle level sets implicitly defined by function ;.

>For example due to symmetry, as in the case of a torus. Note that a torus is topologically different
from a sphere. This is an important aspect justifying interest in (degenerate) Navigation Functions. Toroidal
configuration spaces may arise either due to obstacle topology, or revolute degrees of freedom, as analyzed
in . More details regarding the thinking behind the original derivation of [23] can be found in [21].

6Critical sets are not always submanifolds.

7[45], pp. 183-204.

8Ensuring non-degeneracy, in addition to polarity, analyticity and admissibility.



4.1 Introduction 105

curvature sphere, at every boundary point.
Examples of such shapes are n-dimensional ellipsoids with an upper bound on eccen-
tricity. The example of ellipses is used here as a demonstration of the theoretical results

developed. For eccentricities e < \/g ellipses satisfy the relative curvature condition. But

for greater eccentricities they do not. This also provides an example of shapes that are
not acceptable.

4.1.2 World definition

Let # C E™ be a compact connected analytic manifold with boundary, subset of n-
dimensional Euclidean space E". Each obstacle function j; is defined on the whole of
Euclidean space E™ as the following set membership

Bi:E" =R, icly={0,1,...,M}, MeN (4.1)
It is required to be at least twice continuously differentiable everywhereE in free space .#
Bi € CY[ZF, [0, 400)] (4.2)

Note that C? continuity suffices for the geometric Propositions. Nonetheless, for directly
applying Morse-Bott Theory and Thom’s Lemma in the next chapter, > continuity is
assumed

The zero level set of 3; defines the obstacle’s boundary and its negative coset preimage

the obstacle set

A (4.3)
00; = {q € E"| Bi(q) =0}, Viel
From the range R of 3; and the above it follows that
Bi(q) >0, Vqe.7\00; (4.4)
All obstacle set closures are required to be disjoint@
o,N0; =0, Vjiel\{i}, Viel (4.5)

and their boundaries 00; compact@.
Moreover, we require that no critical points of g; arise closel2 to obstacle &;. This is

required in a neighborhood %; (¢;) of obstacle &;

Je; € (0,+00) 1 [|[VBi(g)| >0, Vqe Zi(ei), Viel (4.6)

We require C? properties everywhere to ensure ¢ is C2 everywhere, whereas absence of critical points
of its gradient V3; and positive definiteness of its Hessian matrix D?3; in a neighborhood of &; suffices.

10Relaxing this is related to the technical details of these Lemmas.

1This means that obstacles are not touching. If two or more obstacles ¢; and ¢; touch, then they
constitute a single obstacle 7,,,.

12Compact obstacle closure implies that the level sets close to the obstacle are also compact.

13pye to the C? property of f5; these requirements “close to obstacle &;” are equivalent to requiring
that they hold on the obstacle’s boundary. If they hold on d¢; by C? property they extend to an open
neighborhood of &;, so there exists a %, (¢;) in which they hold. However, the converse is also true.
According to an extended definition by Rimon and Koditschek [30], obstacles with nonsmooth boundaries
are also tractable. In such a case, the requirement applies to the neighborhood and does follow from the
boundary properties.




106 Sufficiently Curved Spaces

Level sets

% — 3y

fla,y)

Level sets

sl
((S0586
skt
RS
SRS
et
At
eSS
ST IS

P

X

S5
LS
RIS SSISX
RIS S
RIS,
RIS

S
X

X
R
o

s
"%
¢ ""0‘0
/) %
WK
0,0 000707 S
8!
RIS ““:::\\‘\‘\‘\

Fay)
=
RS

SIS
SIS
SIS
Roesissy
oS

y 2, v

(b) Degenerate with open stable set f»(z,y) = 23 + 3°

Level sets

gl
iy
WY
SN
RN

|
{

(c) Crossed trough f3(z,y) = x%y>

Figure 4.1: All of the above scalar functions f, f>, f3 have a critical point at the origin and
their Hessian matrix is fully degenerate there (D?z) ([00]T) = Oaxo € R?*2, In the first and
second cases, the origin is a saddle point, whereas in the third one it is @ minimum. But we
cannot distinguish between saddle point and minimum based on the Hessian eigenvalues,
due to full degeneracy. Also, note that although both f; and f, are saddle points, f; has
a stable manifold of Lebesgue measure zero, whereas f, has open stable sets.
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For the case considered in the present chapter, obstacles should also satisfy the suf-
ficient curvature condition, (#.77), everywhere in a neighborhood of ;. This condition
implies convexity (it is stronger than convexity), i.e., positive definite Hessian matrix

381' € (0, +OO) . D25Z(Q) > O, Vq € %z (81'), Vi € Io (47)

This requirement is relaxed in subsequent chapters. Note that initially in this chapter we
start without the sufficient curvature requirement and derive it as we proceed. This is the
reason for which the above condition is here required from the start.

Obstacle ¢, is called the zero® obstacle. The whole world, without internal obstacles
removed, is a compact connected set

W 2 E"\ Oy ={qe E"0<plq)} (4.8)
which is bounded by the zerot" obstacle ¢,,. The M € N obstacles
O;2{qe E"| Bi(q) <0}, iel £{1,2,...,M} (4.9)

are called internal obstacles. In the sequel we will refer to both the sets &, and their
defining functions 3; as “obstacles” interchangeably.
Function ~, is the destination attractive effect, defined as

Yd € 0(2) [Env [07 +OO)]
IVa(g)l] >0, VYge E"\{q} (4.10)
D?*74(q) >0, VqeE"

Besides, the specific form of a paraboloid ~,, which satisfies these conditions, is selected in
the course of derivation due to symmetry considerations and in order to enable complete
geometric interpretation of the condition.

4.1.3 Navigation Function
The Navigation Function ¢ : # — [0, 1] considered here is of the form

s T4

'd 1
(vi +8)*

(4.11)

where 3 & [I:c;, Bi is the aggregate obstacle function and & € NN [2,+oc0) @ tuning
parameter. The proof establishes the existence of a sufficient lower bound on & for ¢ to
be a Navigation Function.

Additionally, the following function is defined

k
o F\OF — [0, 4+00) @é%d (4.12)

and called the “unsquashed” Navigation Function, defined in the free space interior .7 \
0F.
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Bi(e:)
0< B; <eg;

Figure 4.2: Sets defined on a general world.

4.1.4 Definition of world subsets

The following sets are used and illustrated in Fig. 4.2:
1. Destination point

Fa = {qa}; (4.13)
2. Free space boundary
0.7 £ 571(0) = | 87(0); (4.14)
i€lp
3. i'" obstacle neighborhood
%i (El) = {q S En‘ 0< ﬁl < 87;}, 1€ [0 (415)

and we also require that %, (¢;) are pairwise disjointE

%i (61) N %j (8j) = @, V] el \ {’L}, Viel —

4.16
Bi(q) >¢j, Vg€ Bi(e), Viel\{i}, Vi€l (4.16)

Since obstacle sets ¢, have been defined as pairwise disjoint in (4.5), there always
exists a set ¢;, of 0 < ¢;,i € I, such that the neighborhoods %; (¢;) be pairwise
disjoint. In the proof this is addressed by placing the appropriate requirement on
the selection of ¢;3;;

4. “Near” all obstacles (i.e., internal and zerot)

T (en) & (U Z <sz->> \ {aa}; (4.17)

i€lp
5. Set “away” from all obstacles (i.e., internal and zero™)

35@ (5]0) S y \ ((gZd (8[0> U 8,93 U fn (8[0)) (418)

14Note that Koditschek and Rimon enforce this only between their ., and the rest %; (¢;),i € I, by
appropriately removing them from .%; in its definition. This was used in Proposition 3.7, p.432, [23],
ensuring that 8; > ¢,Vq € % (¢e),Vi € {1,...,M}. Here this Proposition 3.7 is replaced by a general
Proposition which applies to subsets of the neighborhoods of all obstacles. This is the reason for which we
place this requirement on all obstacles and not only between internal obstacles and the zero™ one.
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where ¢;, = {&;}ic1,. We define

/ " / 1 A . . . .
€is Eius €10 €40» 2> Eir €35 €3 = Ielglf\l{ffwj}, i, €5, J € Lo \{i}, i€y (4.19)
Jeio\t

as

0<e <éejp= 3 min{el, €, €, €y €i3, Eiay Eis }y 1 € Ip. (4.20)
With this notation ¢, applies to neighborhood %; of obstacle &;.
For properly defined 3;* level sets “near” obstacles we require

Viely deiy>0: ||VBZ|| >0, Vqe %(514) (421)

which is needed for radial positive definiteness, in order for min {||V;]|} > 0 in &%,

In consequence of the above definitions, there are two alternatives for defining sets
B;, F,, F, as either functions of a single global “width” ¢ £ min;c;,{e;}, or as functions
of the set ¢, of “widths” ¢;. Here the sets are functions of M +1 parameters ¢,, defined as
B (ei),1 € Iy, Fn (e1,) , Fa (€1,). Note that the above definitions differ from those in [23].
Hereafter sets .#; are denoted omitting their arguments. Let ¢} £ {q. € E"|Vf = 0} the
critical set of a function f.
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4.2 Relative Curvature Function

4.2.1 Overview

General obstacle functions 3; are considered here and a geometric condition they must
satisfy is derived.

Propositions 2.7, 3.2 and 3.3 [23] are independent of 3; zero level set shape, i.e.,
obstacle type. Therefore, they are valid here. Proposition 3.2 ensures that the destination
qq is @ nondegenerate local minimum and 3.3 that the free space boundary 0.# contains

no critical points ¢.. Then Proposition 2.7 applies range diffeomorphism to .% \ (0.7 U q,).

This allows us to work with ¢ = ”g instead of ¢ in the free space interior .% \ qq for the

main part of the proof.
Firstly, Proposition 3.4 [23] continues to hold for general obstacles. It clears the set
away from obstacles of critical points. This is achieved by selecting

k>N@m—~quhr}§:m“”wv@m (4.22)

i€lp

so that there are no critical points in .%,. Critical points other than the destination ¢,
remain only in .%,, i.e., “near” the obstacles.

Next, extending Proposition 3.6 [23] from spheres to general 3;, we are naturally led
to the geometric condition of Definition 0. Let T,# denote the tangent space of .7 at
point ¢. Then, the unit tangent space UT,.# of .# at point ¢ can be defined as

UT,F £ {ueT,Z| ||lu| =1} (4.23)
which the set of all unit vectors in the tangent space 7,.# at q.
Let
Zi(q) = span{(V ) (¢)} € T,7 (4.24)
be the “radial” subspace at ¢ spanned by (V ;) (¢) at ¢. Define the orthogonal complement
Ti(q) 2 {ueT,Z| u-(VB)(q) =0} CT,F (4.25)

of %;(q) in the tangent space T,.%. This is equal to the tangent space of level set 3;'(c),
i.e., Z(q) = T,8;"(c). Also, note that %,(q) and Z;(q) provide a direct sum decomposition

T, 7 = %i(q) © Zi(q) (4.26)

of tangent space 7,.%.
Moreover, let us define the corresponding unit radial space as

UZi(q) = {u € Zi()| |lull =1} = {0 € U, Z| 5 - (V) (q) = [ VBill}

(4.27)
=Z(q)NUT,F CUT,F
and the unit tangent space of 5~ (3;(q)) as
UZ() & {u€ Za) lull =1} = {0 € UT,F| 0+ (VB) (@) =0} 40
= J(q)NUT,F Cc UT,F '
Then, let us define the unit vectors
o (VB)(@) e UZ:(q), t; € UZ(q). (4.29)

"TVE) (@)
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These are the “radial” unit vector #; along V3, and the “tangent” unit vector ¢;, which is
orthogonal to #;. Vector ¢, is tangent to the i** obstacle function level set 5, (5;(¢)) which
goes through point ¢ € E".
Then, starting with the Hessian matrix at a critical point ¢,
. 1
(DQQD) (QC) - ﬁ

and following similar steps with [23], but without the assumption of spherical 3;, we are
led to an extended version of equation (11) [23], applying to any §;

[BD? (v§) — 75 D*B] (4.30)

A 62
(& (D?¢) (a)ti) = =
Vd

= ’YdBi (M (tNiTDZ’Ydfi) - (fiTDQBifi)>

V7l )
+%zﬁ<—+ti l—— ) ——=—— =D | l;
VP k) B
= vaBivi(q)
VB,"V'Yd NT(( 1) VBZVBZT 22\
+’Ydﬁ(—+ti -7 ——Dﬂi t;
IVall? k B;
where the relative curvature function is defined here as
o2 YV (1 Do) — 12D, (4.32)
||V7d|’

and for the special case of spheres considered there was 1V, - Vy; — 74. The detailed
derivation above is how provided.
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4.2.2 NF Hessian at critical points

Proposition 6 (NF Hessian matrix at critical points incorporates relative curvature func-
tion). At every critical point ¢. € %, N %, let t; € T,.87" (Bi(q.)) be a vector in the
tangent space of level set ;! through ¢.. Then, the following holds for the Hessian
matrix (D?) (q.) of function ¢

T 2 A r B(q0)2 _
(DR )] 5 g =

()G (VBi) (ge) - (Vya) (4e) (o D) () — (E5 (D26 (a)f,
) <qc>@<qc>( Sl T ) 7 () 00 - GF (%) (qcm))
| (VB) (ae) - (V) (@) | oo (4 1\ (VB) (@) (VB) (a0)" [ 2z :
e Z(%)( V@ ((1 D D7) fae) J 1
(4.33)
where 3;,~, are any C? and with |V3;|| > 0,Vq € %, and ||Vl > 0,Vq # qq-
Proof. For
o2 % v,6 € C®[E"R] = Dlg, = = L [sD% — wD%] . (4.34)

Here we have p = ¢,v = 74,0 = 3 so that it follows (derivation of D2 (v}) in

tion A.3.2)

1 seederivationof D? ('yg)
= B0 () —ahp%e) TS
1
=5 B (k . (—V%Nw + DQ%)) - wDQﬁ]
1 (4.35)
@ [k ( — 1) VyVrg +%1D2’Yd) ’Yg ’ 2D25]
k—2
= B (k6 (D + (k= 1) V3a¥]) —30%].
At a critical point
k V(5 kv g
Vo0 < V<7—d> _ 0 e p (%1)2 Y4 VP :Oqéaﬂ‘égﬁséo
3 3 (4.36)

BY (1) = /EVB =0 = Bhyi 'V — 45V3 = 0 FUA=070 k3, = 4,V
Taking the outer product of both sides
OF
(kBY) (k8Ya)" = (1aVB) (aVB)" <= (kB)? VyaVAT = y2vpvaT #7= 70

KBV AT = ZE v

(4.37)
and substitution in (4.35) yields
D*plg, = ”;22 kD% + (k1 >Zgww — 3 Dﬂ
_ 7%2 kﬁD2 i+ - 1?VBV6T fydpﬂ (4.38)
_ % _kﬂDQW + <1 - %) %VﬁVﬁT - wD%}
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Let A € C**" be a matrix. Then its symmetric part is given by 1 (A + AT) = Ammetric
abbreviated as A,. Note that

B=pB = VB
=BV +BVE =

D*8=D BV B+ BV Ei]| = BiD*B; + VBV B! + BiD?*B; + VBV B! (439)
= B:D*B; + [VBVB! + VBVET| + 3:D*5;
but since
VAV + VBV = VEVE! + (VAVA) = A+ AT = 24, (4.40)
for A = V3;vaL so (B.39) can be written as
D?B = B3:D*B; + 2 (V@Vﬁ?)s + B;D*B;i (4.41)
Also similarly
VBB = (BiV B+ BiVB) (BiVB; + Bivﬁi)T
= (BiVB; + B;VB) (VB + B, V) (4.42)
= B VBB VB! + BNVBBVE + BVBiBNE + BNV BBV
= BIVBVB + (BB VBB + BB VEVE) + VAV S
where
BiBN BV B + BBV BNVBE = B (V@V@T + VﬁiVB;r) (4.43)
and since
VBVE +VBNEE =VEVE + (V@V@T)T = A+ AT =24, (4.44)
again for A = V3, V4T, it follows that
VAV = BIVEVEL + 266 (VBiV@T)S + BV V! (4.45)

Then substitution of D23 from (B.41)) and V3V 3T from (4.45) in (4.38) yields

k—1
A g
D2S0|<g¢ = 22

- (1 - %) % (BIVBVET +26,8, (VBVET), + BVEVET)  (4.46)

(k5D27d

(B0 +2 (VAVAE), + 575, )

Now we are going to evaluate the quadratic form associated with (D?$) (¢.) in the direction
of the unit tangent vector

1

- - 4.47
ZACA] (447)

P A Vﬁz (QC) * _ ) 1
= (nw? <q'c>||) (VBi(a)
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which, treating term by term the expression, yields (¢ # ¢4 = V4 #0ANq ¢ 0.F —

B #0)

AL )
Bzﬁz (VBZVBT) ) A'

BIVBV G ) t;

?>m|§ =l mlﬁ

and the comprising terms are (term 1)

~

t; (kﬁDz’Yd) ti =k (tNiTD27d£i)

and (term 7) i )
t (7aB:D*B;) ti = vaBi (£ D*Bit;)
and (term 2)

t; ((1 — %) %2@@ (Vﬁ_ivﬁz‘T)s) ti=2 (1 - %) Yaty (VBiVB;F)SfZ

where
(VAN b= 5T (VAVET + (VAVAD))
= iT (VAVH! + VAV
= 2 (T (VAVEE) i+ i (VAAT) )
- 5 ((erva) sy resyta) ) -o
so that from (4.51)

iT 1\ Yd, . 2 5« AT ~
& ((1 - E) EQ@@ (VB:V5 )8) t;i=0

and (term 4)

T L\ va 5 T\ _ _1 Jd z2:T i) 7
3 ((“E) Eﬁfwiwi)ti (1 k) Bﬁ?ti (VB:VE)

where

T (VAVAT) i = (R85 0

t; (( - 1) %B?V@Vﬁ?) ti =0

so that from (4.54)

=N

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)
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and (term 6) ) .
tF (va2 (VBVEY),) i = 2vatl (VBVET) 4 (4.57)
where

i (VAN b= 5T (VAVET + (VAVAD)

=t} (VBB + VBB i
(4.58)
(T (VBVBY) L + i (VBVE) &)

(i793) (ot @y (Vi) ) =0

for the same reason as before. The zero inner products are justified by normality of chosen
direction ¢; to gradient V§; since i, is tangent to level sets

[\:>|}—t[\:>|}—tl\;>|r—A

R R 1
VBt = VBt = (VB - VB') o =0
( ) V8] (4.59)
f;‘rvﬁi =1;-VB=Vp-t;=0.
So substitution of these terms in (4.48) leads to
2
tNTD290|cp tl f 1
T X (4.60)

At critical point ¢. € %, the following holds

kBVya =7V = kBVYa-Vya=7VB - Vy
EBIVYall? = va (V (B:B:)) - Vg = va (BiVBi + BiVB;) - Va

= g (Bzvﬂz Vg + Bszz ) V’Yd) 9744 <:</>:|>|V’YdH7£O (461)
- BiVBi - Vya+ BiVBi - Vg
kB =a 5)
IV4ll

then the condition for general ~,, 3 results by substitution in (4.60)

2 _' L. . _' .
(£2D2¢|%'¢£2) f—l :’yd B’Lvﬁz Vde + B;vﬁz V’Yd
Ta [Vl

+ tNZT ((1 - %) %BEV@V@T - ’Vdﬁz‘D2Bz‘> tAz'

V5 -V - .
= Yaf; (H (NZ'TDQthi) - (ﬂTDzﬂztz)>
Vd

Vi - Vv Nr(( 1) Vi - VBE 2—)A)
a7 ( 1Vl 8) B &

(’Z‘FDQ’Ydfi) - VdBi (§D25ifi)

(4.62)
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4.2.3 Relative curvature function

Let
Bi(q) = 51‘_1 (Bi(q)) (4.63)
denote the obstacle 3; implicit level set to which point ¢ belongs. If the level set 3, (3:(q))

is disconnected, then B;(q) is defined as that connected component of this level set, to
which point ¢ belongs. Let

B = | | T,B = {q} x T,B:) = | ({a} x Zi(q)) (4.64)

qEF

be the tangent bundle of B;(¢). Furthermore, let

UTB; 2 | | {ue TyBi| |lu| =1} = | | {u€ Z(q)| |lu] =1}

qEF qEF

= | J{o e Ugi(9)}

qEF

(4.65)

denote the unit tangent bundle of B;(q).

Definition 7 (Relative Curvature Function v;(¢, ;). Let the relative curvature function
v; : UTB; — R be defined as

vl ) 2 (VB) (@) - (Va) (@) T (2 2\ 3T (D24, r
i(q,1:) 12 @ (tF (D*a) (@)f:) — & (D?By) (q)is,
t;ceUT(q), qc.F, i€l

(4.66)

which compares the curvature of destination attractive effect level sets ;' to that of the
obstacle level sets 3; .

Proposition 8 (Relative curvature function v; decomposition for paraboloid ~,). If v4(¢) =
g — q4||%, then at every point ¢ € .7 the relative curvature function v; is equal to the sum
of two functions v;; : # — R and v;, : UT'B; — R, which are defined as

vi(q) 2 Q(VBi) (@) - (V7a) (9)

1(Va) (@7 (4.67)
via(q, 1) & —t] (D?8;) (@)t
so that
Vi(q>£i) = Vil(Q) + Vi2(‘]a£i)7 sz‘ € U%(Q)» Vge F, Viel (4-68)

Proof. If v4(q) = [lg — qu then (Dnyd)( ) =2I,Vq € #. As a result, if v, is paraboloid,
then 1 (D%y,) (q)t; = tF21t; = 2,Vi; € UT,B;. Substitution in the relative curvature
functlon as defined in (-) 4.66) yields

(g by & FP @) (V10) (9
1(V7a) @)

_L9B) @ (Y1) (@) i pepy i | 7
=2 1V @I & (D*B) (9)ti, & €UT,B;, q€ F,i€l

21 — sz (DQ@') (Q)fi
(4.69)
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Note that the first term ;;(¢) on the right hand side is a function only of ¢, whereas
the second is the restriction to tangent space U.7;(q) of the quadratic form ¢} (D?8;) (¢)t..
Hence, we can define

A Q(Vﬁi) (q) - (Va) (q)

N TCARAIE 470

and
Vi2(q7f¢) £ —tNiT (D2ﬁi) (Q)fz‘ (4-71)
to complete the decomposition and prove the claim. O

Note that for paraboloid ~, the v;;(¢) is a function only of ¢ (i.e., independent of
tangent direction ¢,), therefore common for all tangent directions at ¢. On the contrary,
yﬂ(q,t ) is a function of both ¢ and ;. But, actually v,,(¢, ;) is the curvature of level set
B:(c), scaled by the gradient norm ||(V3;) (¢)||, which is constant for all directions at q.

Proposition 9 (Proportional decomposition of relative curvature function v; for paraboloid
~va)- If v4(q) = ||l¢ — qq4||, then at every point ¢ € .# the relative curvature function v; is
equal to the product of the gradient norm [|(V ;) (¢)|| > 0 with the sum of two functions
vis 1 # — Rand vy : UTB; — R, which are defined as

valq) & 2 VB (@) (V) (0)
’ 1(V5) <q>u ||<w> (9| )
”1“ 2 ]
’ TR <q>||

so that
vi(q, 1) = (V53 (q)]] (u,g(q) + z/i4(q,t})) , VL, eU(q), YqeF, Viel, (4.73)

Proof. Using Proposition B we have that for paraboloid ~, it holds that v;(q, ;) = vii(q) +
V22<Q7 ) Set

Vzl(

)
viz(q) =
H (V5i) EQ) | (4.74)
(q

) > VQ(Q? )
vuld: 1) = By

and the claim is proved. O

Proposition 10 (Specific form of relative curvature function v; in general). If || (V) (¢)|| >
0 then the relative curvature function can be written in the form

tN'TDz%ﬂgi fiTDZBifi
= V&l (< Nl VA ) (4:75)
where
6,(0) 2 (Vo) (@), (V8 (q)) = — 0 @) - (V) (0) (4.76)

1(V7a) (@ (V5:) ()]
is the angle between the two gradients (V~,) (¢) and (V3;) (q)-
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Proof. o
vi(q,1;) = HBV ME (fTDQ’ydt)—fiTD%igi IVBilI£0.vae#
:”WH( R ) (4.77)
VAT TVl TVl VA
tf D*yati £ DB,
= V& (cos( ) = dti ol )
IVl V34|
]

As already analyzed, the first term on the right-hand side should be strictly negative,
so that an upper bound constraint can be specified, without need to explicitly find actual
extremal values of the two terms on the right-side. Therefore the generaI@ condition
which results in the modified constraint ¢; < ¢, is

vi(q) = w (D) — IP DB, < 0 IVPIZe7
vl (4.78)
Cos(Q-)tNirD27thi < fiTD2ﬁi£i
YVl V5]
and when (iT D*y,i;) (i D2Bit;) cos(6;) > 0
NVl
alL < T (4.79)

tr D2yt cos 0;

Note that in more detail this is required to hold at a critical point ¢. confined within obstacle
free space neighborhood %; (¢;)

[Vya(ge)ll

IV 5ige) R D240 e 4.80
tAi(qC)TDzﬂi(QC)fi(qc) cos 91( c) Q€ Fi (52> ( )

4.2.4 Critical point-free neighborhoods

We can “push” the critical points very close to B; and then V3; dominates Vj3;. In
this case the existence of critical points is dominated in %; (¢;) only by V; and —V+,.
Since Vv, - V3, <0 = 0 < (—=Vr,) - Vg, the two vectors —V+,, V3; have an angle
either less or at most equal to 7. A direct consequence is that they cannot annihilate each
other. Therefore, they cannot cause a critical point ¢.. This was an intuitive explanation.
Through the formal proof it turns out that, provided %; (¢;) are pairwise disjoint, this also
holds for the k threshold already imposed in (#.22).

Definition 11 (Good and bad Half-spaces). We need to define two half—spaces, sepa-
rated by the tangent plane 7, B; of B; at ¢q. The first one %, (¢) is the “good” one. When
we place the destination ¢, in % (q) the inner product (V3;) (¢) - (V74) (¢) < 0. The free
subset of the first half-space (i.e., the intersection of this half-space with the free space
of allowable destinations)

Ha(q) = {qa e F\(0F U{g})| (VB)(9) - (V) (q) <0} (4.81)

15General here refers to any choice of g4, ;.
16More exactly: for two half-spaces the intersections of them with the free space.
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Figure 4.3: Positive/nonpositive inner product half-spaces, depending on ¢,.

For a fixed ¢, it is the half space of possible ¢, which render the inner product (V5;) (¢) -
(V~a) (¢) nonpositive.
The second one is the “bad” half-space

Hir(q) = {qaZ \ (07 U{q})| 0 < (Vi) (q) - (Va) (9)} (4.82)
Definition 12 (Subsets of set “near” obstacles). Also, for a given destination ¢,, for each
q, either
(VBi) (@) - (Va) (q) <0 (4.83)
or
(VBi) () - (V7a) (q) >0 (4.84)

This leads us to define two disjoint and complementary subsets of .%,,. First let

(1) £ {q € Bi(e:)] (VB) (@) (Vya) (@) <0}, i€y

A , (4.85)
Hip(ei) ={q € Bi(e:)| 0 <(VBi)(q) (V) (@)}, i€y
where, it follows by the above definitions that

and now we can define their unions

(er) 2 | Fle) ={g € Zu, i € L] (VB)(a) - (V) (g) <0}

o (4.87)
h(er) £ | Fole) = {a € Fu, i € L] 0 < (VB) () - (V) (9)}

i€lp
where, it follows by these definitions that
Fn = (e1,) U et(eg,) (4.88)

Note how these are related to .77 (q), #2(q). Sets #;(q) are defined for fixed ¢ and
concern all possible ¢, selections. On the contrary, sets .7}, .«#, are defined for a given ¢,
as is the case in the whole proof. Therefore, we will use the second pair of sets in our
proof, whereas the first pair is useful for one to understand the geometry of the problem.

We will show that the following holds
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Figure 4.4: Good and bad neighborhoods.

Proposition 13 (No critical points in good subset “near” obstacles). For a given ¢, there
isa N(g,) (the same as (4.22)), such that if £ > N(g;,) then ¢ € =7 (e;,) cannot be a
critical point, i.e.

%@ N 4271(610) = @, Vk Z N(&[O) (489)

This means that by setting k¥ > k,.;, we confine critical points not just in | J, %4;, but in
U (%; N et (ep,)). The proof is as follows (and is inspired by Proposition 3.7, pp. 432-433,
[23], in fact it generalizes that).

Proof. By definition
(VBi) (@) - (V) (q) <0, Vg€ Hlep) (4.90)

The inner product of V~,; with V¢ is (Lemma 3.1 [23] )

k
Vé - Vg = L2 (4kB — VB - V)

iz
gfi (448 — (B:VFi - Va+ A5 V) (4.91)
gf; (4kB — BV B - Vya— BB, - V)
and, since from (4.90)
= (VBi) (@) - (Vva) (), Vg€ HAler) (4.92)

it follows that

(V@) (q) - (Va) (q) = Bi—= (4kBi(a) — (Vi) (@) - (V7a) (q)) (4.93)

L

If & is large enough, i.e.,,

1(V3) (9) - (V) (9)
@‘(C])

k> R ACH (4.94)

then the inner product

(V@) (q) - (V7a) (@) > 0, Vg € les,) (4.95)
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But this is satisfied by £ > N(g;,), because

lvBi -V 1||VBZ|| VY
1 \Y%
Vi 3 I Bﬁ;l!
jelo\fiy 7 (4.96)
_ 1 HVﬁjH> Vsl '
2\/% <]EZIO ( B Bi )
IIVBJII
Vi)
j€lo
and also v
\/ Z i BJ < N(ep,) <k, Vqe€ % (4.97)
j€lo

because ¢; < 5;(q),Vq € %,;,¥j € Iy \ {i}. As a result, combination of the previous leads

to _
V5; (V
1( B) (q) (Va) (9) < N(en) <k, Vge % (4.98)
4 Bi(Q)
Therefore, since by definition Vq € <7 (¢;,) = i € Iy : q € %, it follows that
1(V5) (q) - (Va) (q)
Z Bz(Q) < k,vQ € @{1(5[0> = (499)
(V@) (@) - (Va) (@) >0, Vg€ #ley)
by the previous equations. O

Lemma 14 (Critical points remain only in (J,_,, #(er,) and have 0 < v;:(q))- By Propo-
sition [L3 and Propositions 2.7, 3.2, 3.3, 3.4 [23], for every 0 < ¢;,i € I, there exists a
N(ey,), such that for all £ > N(e,,) the only remaining critical points ¢. € € \ {qa}, other
than the destination, arise in set <%(<y,), i.e.,

V&i >0 E|N(6[0) : ge € 4272(610), ‘v’qc € %@ \ {qd}, vk > N(é]o) (4100)

Moreover, for any point ¢ € @4(¢;,), therefore also for all remaining critical points, if

va(q) = |l — qa||” then
0< Vﬂ(q), Vq € %(F’:[O) (4101)

Proof. By Propositions 3.2, 3.3 [23] we know that the only critical points remaining ¢.
%5 \ {qa} other than the destination ¢, cannot arise in .%,,0.%#. By Proposition 3.4 [23]
for any ¢; > 0,7 € I, there exists a N(gy,) such that for all & > N(e;,) no critical points
ge # qq €Xist in Z,.

Then, critical points ¢. € % \ {¢4} can arise only in the set “near” obstacles

qc € <%Tn = ”Qfl(510> U %(510), VQC S Céﬁ \ {Qd}u Vk > N(glo) (4102)
By Proposition [L3 we have ensured that

(VBi) (@) (Vva) (@) <0 = q & 65\ {a}, Vk> N(ep) (4.103)
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By the previous two it follows that

qceyn:%(gl())U%(glo)a VQC 6%95\{(]61}7 sz N(€IO> }
g ¢ A(en), Ve € € \{qa}, Vk > N(ep,)

4.104
0 € hler). Vo €6\ ), k> Nie) = (4104)
0<(VB)(g) (V) (a), Vg€ € \{qa}, Vk=N(eg)
The above can also be expressed as
€\ {a} C hler), k> N(ep,) (4.105)
For a paraboloid attractive effect ~, by Proposition 8
(VB:) () - (Va) (q)
vir(q) =2 (4.106)
1(V7a) (9)]I”
which has the same sign as (V3;) (¢) - (V4a) (¢), hence
0<(VB) (@) (Vya)(a), Vg€ h(e,) =
4.107
0 <vulq), Vqé€ dher) ( )
Therefore, for all £ > N(ey,), at critical points it can only be 0 < v;1(q.), i.e.,
0 <wil(q),Vq € er,) } .
¢ \{¢a} € H(es,), Vk =2 N(ey,) (4.108)

0 <vilg), Vg € 6;\{aa}, VEk>N(ep)
[]
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4.3 Sufficient Curvature Condition

4.3.1 Differential Geometry of Implicit Surfaces

We need to interpret term v5(q, t;) in terms of differential geometry. This is provided in
the work of Dombrowski [43], who treats the general n-dimensional case. This applies to
Navigation Functions, which are defined over n-dimensional space. A simplified derivation
for 3-dimensional space is provided by Hughes [46].

Let us denote the normal curvature of a surface along tangent unit vector ¢; by x; ,(%;).
This is given by the second fundamental form II, at ¢ as

Definition 15 (Weingarten map[47]). Let the Weingarten map® (or shape operator) at
q be
Lq : Tqu — Tqu (4.110)

Let np,(¢) L B; be the vector normal to B; at point ¢. Suppose ~ : [-1,1] — B; is a path
on (hyper)surface B; with +(0) = ¢, which has tangent ¢; € T, B;. The Weingarten map is

defined as p

Ly(t;) 2 W(O) (4.111)
so it is the derivative of the surface normal np, (v(¢)) at time ¢t = 0, as (t) passes through
g in direction ¢;.

Proposition 16 (Weingarten map for Implicit Surfaces [43, 46]). For the implicitly de-
fined surface B; the Weingarten map at ¢ is equal to the linear mapping

iy L ey g |
Ly(t:) = VAl (D*8:) (@)ts, & € UT,B; (4.112)

The Weingarten map is related to the second fundamental form by
IL(X,)Y)=L,(X)-Y =X -L,(Y),X,Y € T,B; (4.113)

This leads to the following expression for the normal curvature of implicit surface B;
at ¢ along

~

Hi,q(gi) = Hq(gia fz) =1;- L,(t:)

v L ey
= LBy @ D) @

i (D*B) (@)t

1(V8) (@)l

This derivation of normal curvature «;, of an implicitly defined surface connects it

to the implicit function ; defining the surface. This reveals the role of the restricted

quadratic form ¢} (D28;) (¢)t;,t; € UT,B;. Restriction is with respect to the surface’s unit

tangent space UT, B; and is important to avoid misinterpretations. The principal directions

are the eigenvectors of the Weingarten map. Hence, they are also the eigenvectors of the

restricted quadratic form £ (D?3;) (q)£i|£i€UTq 5,» but they are not (necessarily) eigenvec-
tors of the Hessian matrix (D?3;) (q).

(4.114)

€ (—o0,+o0) =R, t; € UT,B;

171471, § 4.7: The Second Fundamental Form and the Weingarten Map, pp.122-127.
18[46], § 1.4: The relation between N and VG, p.6.
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Definition 17 (Radius of Normal Curvature). We can also define the radius of normal
curvature R;,(;) along tangent direction #;, as the inverse of the normal curvature at
the same point (allowing R;, = +oo and understanding that this means flatness of the
implicit surface along ¢; at point ¢)

(V) ()]
i (D%6;) (q)t;

Definition 18 (Convex, Nonconvex). It follows that at ¢, in direction ¢, UT,B;, the
surface B; can be either

1. Convex if

R (t) £ € [—00,0) U (0,400] = R\ {0}, # € UT,B; (4.115)

0 <& (D*B) ()i = 0 < kig(hs); (4.116)

2. Nonconvex if

Definition 19 (Principal curvatures, principal directions). Let «;,(;) be the normal cur-
vature of surface B; at point ¢ along tangent direction #; € UT,B;. The Weingarten map
is represented in the tangent space by a linear symmetric operator, which has orthogonal
eigenvectors
pij(q) eUT,B;, iely, je{l,2,...,n} (4.118)
and real eigenvalues
kij(q) R, 1e€ly, je{l,2,...,n} (4.119)

associated to them. These eigenvectors p;;(¢) are called principal directions at ¢ and
their associated eigenvalues «;;(¢) are called principal curvatures at .

From the definition of normal curvature and radius of normal curvature it follows that
for an implicitly defined surface 3;, the principal curvatures and principal radii of curvature
are related to their associated principal directions as follows

)

V8 @l

10v5) ()l (4.120)
)

19147], § 4.8: Principal, Gaussian, Mean, and Normal Curvatures, pp.128-141. In particular Definition:
The principal curvatures of a surface M at a point p are the eigenvalues of L, there. Corresponding unit
eigenvectors are called principal directions at p.
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4.3.2 Geometric interpretation for any ,

Following from the previous definition and the fact that ¢ can be a critical point only
for destinations ¢, which are in the “bad” set .#,(q), we provide the following useful
definitions.

Definition 20 (Sufficiently curved direction ¢;). A direction #; € UT,00; is called
1. Sufficiently curved if

vi(q,t;) <0, Yqq € s (q); (4.121)
2. Convex but not sufficiently curved if
t; (D*B) (@)t >0 but 3qq € Ha(q) : vilg,t:) > 0; (4.122)
3. Nonconvex if
tr (D?*6;) (@)t <0 = 0 <wi(q,t), Vaa € Ha(q). (4.123)

Note that since we are working with ,(q) where 0 < v;;(¢) sufficient curvature
implies 0 < 1 (D?8;) (¢)t; (because if it were ¢} (D?8;) (¢) < 0 then 0 < vi(q,t;) and
hence v;(q,%;) = via(q) + via(q, t;) > 0, which is contrary to the hypothesis of sufficient
curvature).

Also, note that we have covered all possible cases. A direction can be either convex or
nonconvex. If nonconvex, then v;(q, ;) can only be nonpositive for ¢; € %,(q). If convex,
then either v;(q, ;) < 0,Vqq € F#,, Or there exists a q, € %, for which this does not hold.
There is no other case left.

The first case is convex sufficiently curved, the second is convex insufficiently curved,
the third one is nonconvex hence necessarily insufficiently curved.

Definition 21 (Sufficiently curved point). A point ¢ € 90, is called sufficiently curved,
with respect to 3;, if every tangent ¢; at ¢ is sufficiently curved, i.e.,

Vi(Qa tAz) < 0, qu & %2((]), \V/l?l - UTqO@ (4124)

Definition 22 (Everywhere sufficiently curved obstacle). An obstacle g; is called ev-
erywhere sufficiently curved if every boundary point of it is sufficiently curved, i.e.,

I/i(q, tAZ) < O, VQd c %2((]), Vfl € UTqQﬁ“ Vq € 8@ (4125)

Definition 23 (Everywhere sufficiently curved world). A world . is called everywhere
sufficiently curved if all its obstacles &; are everywhere sufficiently curved, i.e.,

vi(q,ti) <0, Yqq € H#nlq), Vi € UT,00;, Nq€ d0;, VYicl, (4.126)

Proposition 24 (Principal curvatures bound curvature). For the restricted quadratic form
tT (D*B;) (¢) it holds that

Dijuin (@) (D*B) (@)Dijoin (@) < £ (D*B:) (@)li < Pijunne (@) (D*B:) (@)Pijunar ()

i (4.127)
Vi, e UT,B;, Vqe.ZF,

where p;;. . (q), Dij... (q) @re the principal directions at ¢ which correspond to the minimal
and maximal principal curvatures x;;_. (q), Kij...(q), respectively.
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Proof. Since 5; € C® [.#, [0, +-00)], consider that principal directions are eigenvectors of
the Weingarten map, expressed as

ﬁij(Q)Tlﬁij(Q) = ! Hﬁij(CI)T (D25i) (Q)ﬁij(Q) (4.128)

1(VB:) (a)

Then, taking into consideration Proposition 32 about eigenvalues and eigenvectors, pro-
vided ||(V ;) (¢)|| > 0 and because this is constant for all #; at a certain point ¢, it follows
that

Dijensn (@) Wijosn (@) < £ 15
< Dijinax (4 )Tlﬁijmdx(Q)’ Vi; € UT,B;, YqeZF ||(VM|I>O

ﬁijmin (q)T (DQBZ) <Q)ﬁijmin (q) S tAT (D2/87,> ( ) 7
< Dima (O (D?B5) ()i (@), VE: € UT,Bi, Vg€ F

(4.129)
where p;;. . (q), Dij... (q) @re the principal directions which correspond to the minimal and
maximal principal curvatures «;;_. , Kij...., respectively. ]

Remark 25. Caution is required above, because the inequality holds because ¢; are eigen-
vectors of the Weingarten map in the tangent space. This linear operator can be expressed
using a matrix [ which is an (n — 1) x (n — 1) matrix. It has been proved that the two

quadratic forms X
it (p? £
eyl )

are related by the constant at ¢ factor o750y

Hence, it seems to appear that (D?8;) (¢) has eigenvectors p;;(¢). This is not true.
The reason is that (D?;) (¢) is an operator on the whole tangent space UT,.%, not only
in UT,B;. As a result, it has a different eigensystem. Viewed in another way, the matrix
representing (D?8;) (¢) is an n x n matrix and when acting on ¢;, these are expressed not
as (n — 1) x 1 vectors in UT,B;, but as n x 1 vectors in UT,.%. So p;;(¢q) are eigenvectors
of the restricted quadratic form

=t1lt;, t; € UT,B; (4.130)

1
(VB (D]

Nonetheless, it is worth noting that if . principal directions p;;(¢) have e.g. positive
principal curvatures, then according to a Proposition proved later, the subspace of 7, B;
spanned by them is positive definite. Hence [ is positive definite in it. But also (D?3;) (q)
is positive definite in it. Since it is positive definite in an m dimensional subspace of T, 5;,
it is positive definite in the same m dimensional subspace of 7,.%#. This implies that the
Hessian matrix (D?p;) (¢) also has m positive eigenvalues and m associated eigenvectors
in T,.# at ¢. But these are not necessarily within T} B;.

—————t1 (D*B) (¢)ti, t; € UT,B; (4.131)

The above states that principal curvatures are stationary values of curvature in T, B;.
This allows us to express the inequality in terms of minimal curvature (maximal radius of
curvature R; , (pi.... (¢))) and associated tangential direction p;;_.. (¢.) of minimal curvature
of level set B; at critical point g..

At this point it is important to note that tangential direction ¢; has been selected as
a suitable direction. As already discussed, if the condition holds for at least one such
direction (not necessarily tangential) then a local minimum cannot arise at g..
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But this does not guarantee that there exists a direct sum decomposition to two sub-
manifolds with Hessian positive definite in one of them and negative definite in the other
one, so that it can be proved to be non-degenerate.

Since the condition is expressed in terms of an arbitrary tangential direction, all radii
of curvature between maximal R; , (p;;....(¢.)) and minimal R;, (pij...(¢.)) are to be con-
sidered.

In particular casesZ this may be provable. Namely that at least a single direction of
negative definiteness suffices as an escape direction because its orthogonal complement@
is a positive definite submanifold of the Hessian, assuring Hessian D2y non-degeneracy.
In those cases we are interested with what happens for two certain (principal) directions
t; and associated curvatures Ri,q(f,-).

But to obtain a general result that holds for the whole class of implicit functions satisfy-
ing the derived condition, from now on we will constrain curvature /@i,q(t}) in all directions
t; at a critical point g..

In (B.78) we require
Vz'(Qc) _ (Vﬁz) (QC> . (V'Vd) <QC>{:‘;I‘ (DZ’Yd) (qc)ﬂ- _ tNlT (D2ﬁz) (qc)ﬁ- <0 (4.132)

1077a) (o)

which for ¢, in the half-space (V3;) (¢.) - (V14) (gc) > 0 cannot hold if £} (D?8;) (g.)t; < 0.
This is why we initially require that 3; has positive Gaussian curvature close to the obstacle.
Then we can select a %, (¢;) small enough for positive definiteness to hold at ¢. confined
Therefore in order for the relative curvature condition to be proved for all tangential
directions, the Hessian (D?3;) (¢.) should be positive definite in the tangent space at ¢.

t; (D*8) (g)ti > 0, Vi € UZ(q.) (4.133)
For ||[(V5;) (¢.)|| > 0 this is equivalent to only positive curvature allowable
T (D2A. y £ .
{ £ (D*8:) (ge)ts > 0,V € UZ(qe) } —

1(V5:) (ge)[| > 0

P (VT (D2 : 4.134)
h ti( c) D Bz ( c)ti( c) n (
{ roall) = = IIE%)()(;SH e Ut }
(Vi) (ge) || >0
Therefore the minimal curvature at a critical point should be positive
min {iq.(t)} >0 (4.135)

7

This is equivalent to all other directional curvatures along ¢, at ¢. being positive, fol-
lowing from Proposition 4.

So all directional curvatures «;, (f;) and as a result radii of curvature R;, (¢;) are
required to be positive

min {I<&,'7qc(£i)} >0 = /ﬁi,qc(ﬂ-) >0, Vi€ UZ(q.)
t.

Z ) 1 ) (4.136)
== Riq.(ti) = o (0 >0, Vt; e UZ(q.)
'L,qc 1

20Such as a hyperboloids: the span of the axis direction and V3; constitutes a positive definite submani-
fold, whereas the tangential direction of maximal level set curvature defines a negative definite submanifold,
their combination is a direct sum decomposition.

210r the negative submanifold may be a superset and its orthogonal complement be a positive definite
submanifold.




128 Sufficiently Curved Spaces

For the remainder of this section we will work with R, ;. (p;;....(q.)) which means that a
condition will be derived for D2y to be negative definite in the tangent space at ¢.. This
can then be combined with positive definiteness in the “radial” submanifold (span of V3;)
to prove Hessian D2y non-degeneracy. So (B.79) can be restated in terms of directional
radius of curvature as

(V) (ge)

COS(QZ'(QC))PLZ‘7 c(fl) < = (4137)
! £t (D*74) (qe)t:
A sufficient condition for this to hold in all tangential directions is
) . 1(Va) (g2l }
0i(qc)) Ri g (Dijmin (2c)) < ~ 4,138
c08(0:(¢e)) Rige (Pijunin (4c)) j in { 7T (D) (o), ( )
or more compactly (remembering evaluation at critical point ¢.)
. [Vl }
COS( ) e fiegl}?(qc) {ﬂrDzwti ( )

Condition (4.138) requires that the maximal radius of curvature R; , (py;,.. (¢.)) of im-
plicit surface B;(q.) along tangential direction of minimal curvature p;; . (¢.) € UT,B;(q.)
projected on the normal to implicit surface

T(q) 277" (va(q)) (4.140)

in; NVya)(ae)ll
should be smaller than min;,c;; . {5?(D2$d)(qc)£i } Hence

Riq.(d:) € (0, Rig.(q0)], Vi € UZi(qe) ) _ 1V 7a(ge)|
R (. 0 (V1)) —> Rig(t:) < min =t -
isge (Dijimin (dc)) < MNG,cpr72(g,) T (D2yq)(ge)i tieUZiae) Lt (D*7a) (ge)ts

(4.141)
Note that since #; € U .%(q.) and not necessarily ; € UT,T'(q.) it follows that quantity

1(Vya) (gc)l]
tF (D7) (g0t

cannot be readily interpreted as radius of curvature. In subsection 4.4.1 we will see that
for a paraboloid selection of attraction 4, the quantity % is the radius of curvature of
~q level set T'(¢) passing through point ¢.. l

Note that such a sufficient “relative curvature” condition is stronger than mere con-
vexity. Maybe it could be termed a “relative convexity” condition, but “relative curvature”
has been selected to better express the role of curvature.
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4.4 Sufficient Curvature Condition for paraboloid -,

There is the need to replace Lemma 3.5 [23] because it no longer holds. This is treated
in subsection 4.4.2, namely in which neighborhood of an obstacle the negativity condition
I/z(q,gl) < 0 holds.

4.4.1 Geometry of Sufficient Curvature for paraboloid +,

For v4(q) = |lq — qd||2 sufficient curvature has an interesting interpretation. Let

S (darp) {a € E"| lg — qull < p} (4.142)
be a sphere with center ¢,, radius p. For 0;(q.) € [, +x] the left hand side
cos(0;(¢e)) Rig. (1)

in (#.138) definesZ the boundary of a “curvature sphere”,

Definition 26 (Curvature Sphere). We will call curvature sphere along #; the sphere
tangent to B;(q) at ¢, defined as

. 1 o1 .
yci(‘]a ti) £ 5 (q — §Ri,q(ti)ri; 5Ri7q(ti)) . (4143)
of center ¢.(¢,1;) and radius p.;(q, ;) defined as
- - 1 R
6ei(0:1) = 6o = pei(@:1)75 - pei(a fi) = 5 Rig(hi) (4.144)

Prop05|t|on 27 (Sufficiently curved #; <= {qa ¢ Sui(q,Ti) A Riy(f:) > 0}): If 74(q) =
lg — qal|* @and ||V ;|| > 0, sufficiently curved i, is equivalent to ¢, ¢ .%.:(¢, #;), Fig. 4.5.

Proof. By Proposition ., Proposition [L§ sufficient curvature is written

fID?w?- tT D2,
; ‘ L2 ta 0, Vg€ H 4.145
When v, = [lq — g4l * itis & Hggﬁt i Moreover, R, ,(f;) = %, hence the previous
becomes
I 1
V 5; — - <0, Vqq€ I 4.146
— IV (( D Ri,q@i)) 10 € Hoola) (4.146)

By definition of ¢4 itis ||V ;|| > 0,Vq € %; (cia). Also, cos(b; )H o > 0for6; e (-Z,+2),

therefore R, ,(t;) should be positive. As a result, and since ¢ 7é G = |l¢—aq4 >0, it
follows that

{Rig(t:) >0 A cos(0i)Rig(t:) < lg—aqall .  Vaa € Ha(q)}
{qu >0 A qd ¢ <Sﬂci (CI7 El) 5 VQd S %Q(Q)} )

which is interestingly related to Meusnier’s Theorem [48]. This is schematically illustrated
in Fig. 4.5. Level sets involved are shown in Fig. 4.7. 0

22This is because two intersecting orthogonal lines through different fixed points -here g and ¢ — 1 R; ,7;
at ¢- define a sphere.

Z3A curvature sphere is usually defined in literature as a sphere with center the center of curvature and
radius the radius of curvature. Hence the spheres called “curvature spheres” here are half-radius curvature
spheres. Nonetheless here we will call them just curvature spheres.

(4.147)
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The above is useful because it specifies a class of acceptable obstacle geometries,
since
Q¢ i (0. t), Vi € Hn(q) = S (q, ;) N Hn(q) = 0. (4.148)

Suppose we want to ensure that for a given q,, there is a neighborhood %; (¢;) in which
qd ¢ Fei (CL fz') , Vg€ % (51) (4.149)

holds for a certain number of principal directions p;;(¢) at ¢q. By Proposition B1 this is
equivalent to the request of sufficient curvature on 0¢;. We can then ensure the previous
if

(@) & S (¢ Dis(q) € O U{q}, Vg€ db; (4.150)

This requires that at every obstacle boundary point the desired number of principal cur-
vature spheres .#,;;(q) be subsets of the obstgle.
Note that since by definition .; (¢, &) N 0; = {q¢} and ¢ # ¢qa = {q} # {aa}, as a
result
i (CL fz) N %2((]) =) — (yci (Q7 fz) \ {Q}) N %2@) =0 (4-151)

For this reason, expressed in terms of the union of curvature spheres, the condition is

Zei (¢, Dij(q@) € 0; U{q}, Vqe 00, <
U (F (@, pu(@) \ {a}) € 6 (4.152)

qeDU;

It is interesting to note that condition (. (% (¢, pi(¢))) € €; would have been wrong,
because it does not ensure that each sphere has one its ¢ as the unique common point

Note that the concept of sufficient curvature can onIy@ be applied on 00;, because it
refers to all ¢; € .#. What is meaningful on other level sets is v;(q, p;;) sign definiteness.
Given ¢, this can always be ensured in a neighborhood %; (¢;), induced by sufficient
curvature on 00;.

24For points ¢ on level sets 3;(q) > 0, any curvature sphere there has non-empty intersection with the
free space interior .7,; (¢, £;) N.# # 0. As a result, there always exists a ¢, € . N.%,; (¢, t;) we can select,
leading to v;(q, ;) > 0.
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Figure 4.5: Relative curvature constraint at a critical point ¢ € 90, for non-spherical
obstacle 3; and paraboloid attractive effect ~,.

4.4.2 Obstacle relative curvature induced to its “bad” neighbor-
hood

By definition every obstacle closure ¢, is compact. This implies that the obstacle
boundary 06; is compact. The obstacle boundary is the zero level set 3;*(0) of 3;, so the
zero level set is also compact.

As a result, there exists a neighborhood of level sets ;' (c;), with ¢; € [0,a1),a; > 0,
such that each set 3;'(c;) is compact.

We set a, = min{ay,¢;}. Then level set 3, (cy), ez € [0,a9) is in the interior of neigh-
borhood %; (¢;). For k > N (g4,) the only critical points other than the destination have
been proved to arise in .%, N <%, the intersection of the neighborhoods with the “bad” set.

If g. # qq is a critical point, then ¢. € %, N, k > N (¢,). So, there will exist a i € I,
such that ¢. belongs to the intersection of the neighborhood of %; (¢;) with the “bad” set
a5, 1.8, Vk > N(gyq, it holds that Vg. € €\ {qu} 30 € I : q. € B, (e;) N .

Then, there will exist a level set ;! (Bi(q.)) through q., with ¢; = Bi(q.) € (0,a1).
Since q. € <% it follows that v;;(¢.) > 0. Note that this implies v;3(¢q.) > 0, which important
because we will work with v;5(q.) and v4(q, t;).

Proposition 28 (Continuity of »; in the tangent bundle). For any point ¢ € 8, (c2), ¢, €
[0, as] with v;5(¢) > 0 there exists a continuous function r(¢) > 0, such that for the closed
ball B(q,r(q)) centered at ¢ with radius r, the following hold

1- Vil(q/) > O,Vq/ € B(qu(Q))l
2. Points ¢,¢' € B(q,r(q)) have the same number of sufficiently curved principal di-
rections I~ (q) = I~ (¢') where

and the same number of directions with positive v;, I*(q) = I*(¢') where

I(¢) £ |{j € {1,2,...,n}wilq, pij(q)) > 0} (4.154)
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Proof. Let ¢ € 87 (cy), ca € [0, as) With v5(g) > 0. Function 3(q) = 2@l g

1V B:) (@I (Va) (@)
C? because both 3; and ~, are C2.
Then by continuity for every Avs > 0 there exists an open neighborhood U; (Avs) # ()
with ¢ € U;(Avs) such that v;3(¢') is as close to v;3(¢), as we want, i.e.,

VAvs > 03U (Avs) £ 0 g€ Uy(Avs) A
|Vz‘3(q/) — Vz3(Q)| < AVg, \V/q, € Ul(AV;),) —
vis(q) — Avs < v33(¢") < vis(q) + Avs, V¢’ € Ui(Aws)
(4.155)
This also implies that there exists a Avs ., Such that for every 0 < Avs < Avs ., functions
vis(q) and v;1(¢') have the same sign V¢’ € Uy (Avs). Then, v3(q) > 0 = vi3(¢’) > 0.

The quadratic form associated with the Weingarten map #!1¢; is equal to t1 (D?3;) (q)t;,
where t; 1 V ;. Since 3; is C?, also the gradient V3; and the Hessian matrix (D?3;) (q)
are continuous functions of ¢q. From this it follows that the eigenvalues of the Weingarten
map are continuous functions of 4.

This essentially states that continuity of the implicit function ; ensures continuity of
the principal curvatures of its level sets (i.e., that level sets which are “close” have principal
curvatures which are “close”, for pairs of points on each of them). This fact is what we
aim to prove so that we can use it.

From the continuity of the Weingarten map principal curvatures, it follows that VA« > 0
there exists an open neighborhood U,(Ak) # 0, such that ¢ € U,(Ax) and there exists a
bijective correspondence m () of the eigenvalues of the Weingarten map at ¢, i.e., principal
curvatures x;;(¢), with the eigenvalues «x;,,;)(¢") of the Weingarten map at ¢ € U(Ak),
such that x;,,(;)(¢') is closer to x;;(¢) than Ak, i.e.,

VAR > 03U5(AK) £ 0:  qe Us(Ak) A
‘mim(j)(q’) — K}Z'j(q)‘ <Ak, Vje{l1,2,...,n}, V¢ €Uy(Ar) <
—AK < Kim()(¢') — kij(q) < Ak, Vje{l,2,....n}, V¢ €Uy(Ak) <=

kij (@) — Ak < Kim(j) (@) < +rij(0) + Ak, Vjie{l,2,...,n}, V¢ € Ux(Ar)
(4.156)
Since k;;(q) = —via(q, pi;(q)), it follows that

—v34(q, i (@) — Ak < =vu(q, Dim(5)(€')) < —via(q, i (@) + Ak, V5 € {1,2,...,n},Vq¢ € Uxy(Ar) =

Vz4<Q7ﬁzy(Q)) - A/{ < V’L4(q7ﬁlm(])<q,)) < Vz4(£]7ﬁ’t](q>> + AH,\V/j € {17 27 s ’n}7vq, S U2<A"i>
(4.157)
Now add (4.155) and (B.157) in the intersection U (Avs) N Us(Ak)

(vis(q) + via(q, Dij(0))) — (Avs + Ar) < viz(q') + via(q; Pim(j) (4))
< (vis(q) + via(q, 0i;(q))) + (Avs + Ar) ,
Vie{l,2,...,n}, Vq €U (Avs) NUz(AR) <~

Vi(chﬁij(Q)) _ (AI/3 LA ) - l/i(Q/’ﬁsz (q’))

10v8) (@] 105 @)l
vi(q, Pij(q)) , .
<vE (g T AT AR
Vie{l,2,...,n}, V¢ €U (Avs) NUs(Ak)

(4.158)
Then we can select 0 < Avspin < AVsmax and Ak, Such that for every «;;(q),j €
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{j1,72,-- -, jr} Which is sufficiently curved

Vi@ pis(q)) <0 = % <0, j€ o i} (4.159)

it holds that

0< Al/3min + AHmin < _M v] € {jl:j?a s 7jr} —

. vi(q, pij(q)) '} '
O < AV min + A/irnin < min { e

5 J€{d1,9250dr} ||(v62)( )H

Note that we consider only principal directions at ¢ which have negative v;(q, p;;(¢)), hence

a positive
. Vi(%ﬁij(Q)) ‘}
min —— 5 > () 4.161
o AT (1161

always exists because | #4240\ j € {j1, ja, ..., j,} are always a finite number of positive

numbers at ¢. Then, this ensures that

vi(d', Pim(i) (')
18 @] = (4.162)

and since both ||(V5;) (¢)|| > 0 and ||(V5;) (¢)|| > 0 it follows that v;(¢', pim;)(¢)) < 0'is
sufficiently curved as well.

For every nonconvex t{1,¢; > 0 principal direction p;;(q),j € {j1,j2,---,juw} at q, be-
cause?s vi1(g) > 0 it also follows that v;(q, pi;(q)) > 0, so that

vi(q,pij(q)) >0 = % >0, 7€ {indo. - ju} (4.163)

We also select Avs i, and Ax such that for every nonconvex x;;,j € {j1,ja, .-, Juw}

which we have just deduced has W > ( it holds that

vi(q, pw( )

0 < Av min+A5<
’ 1(V8:) (@)’

vj € {j17.j27"'7j’LU} —

vi(g: Dij(q)) (#4169
0 < Avsmin + Ak < min {i‘}
3 jelingzmivy LI 1(VB:) (@)
Note that we consider only principal directions at ¢ which have positive v;(q, p;;(¢)), hence
a positive
. Vz‘(%ﬁz’j(@)) ‘}
min — L > () 4.165
€2} { 1(V85;) ()]l ( )

25This is the tricky part later, because we start from a critical point ¢. with v;;(q) > 0, ensure at least one
¢’ € 00 is in a neighborhood of it so that we can induce v;; (¢’) > 0 from ¢ to ¢’ and then we invert their
roles, with ¢ € 90; and ¢’ our critical point under consideration ¢.. Because we have a priori shrunk the
distance between them so that both are in a neighborhood of the other in which we can induce properties,
we continue by inducing the numbers of sufficiently curved and nonconvex directions from ¢ € 90; to q..
But for ensuring that a nonconvex direction has positive v;; (q), we need the initial induction of its positivity
from ¢.. Because, although we have shown v;;(q.) > 0 for the remaining critical points, we cannot deduce
this from being or not a critical point for the point ¢ € 9¢;, from which we are going to take its curvature
properties, since this is on the boundary, so it cannot be a critical point anyway. But we need it to ensure
that all nonconvex directions at ¢ will have negative v; and not merely nonnegative v;.
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always exists because ﬁ’((vqg’)f(( ))” .7 € {41, 72, - - -, juw are always a finite number of positive

numbers at ¢. Then, this ensures the positivity

Vi(q/aﬁim(j)(qln
1(VB:) (2)]

The intersection of non-empty open neighborhoods U; = U (Avsmin) N Us(Akmi) IS
also a non-empty open neighborhood of ¢, i.e. Us; # 0 and ¢ € Us. As a result, for every
q there exists an r(q) > 0, such that the closed ball B(q,7(q)) centered at ¢ with radius r
is a subset of neighborhood Us.

This implies that if v, (¢) > 0, then for all ¢ € B(q,r(q)), the following hold

1. via(q') > 0,Y¢ € B(g,r(q));

2. Points ¢,¢' € B(q,r(q)) have the same number of sufficiently curved principal di-

rections I~ (q) = I~ (¢') where

>0 = v(¢, Pim(j)(¢)) >0 (4.166)

I"(q) & {7 € {1,2,-...n}vig, pis(q)) < O} (4.167)
and the same number of directions with positive v;, I*(q) = I (¢') where
I*(q) = {7 € {1,2,....n}wi(q, pis(q)) > O}] (4.168)

Since 3; ([0, a)) is @ compact set, the continuous functions v;3(q) and v (q, pi;) are
also uniformly continuous. Uniform continuity implies that for every Avs in, Akmin, the
neighborhoods Uy (Avs min) @and Us(Ak.i, ) are bounded from below. Hence, the ball radius
r(q) can be selected to be continuous function. O

Proposition 29 (Continuity of »; on a level set neighborhood). For the compact set
B71([0, as)) there exists an r,;, > 0, such that every closed ball B(q,7(¢)) has the properties
of Proposition 8.

Proof. From Proposition , there exists a continuous function r(¢) > 0, such that the
closed ball B(q,r(q)) around every point ¢ has the desired properties. We can set r,;, =
mil’lﬁi—l([o’QQ]){T(Q)} because set 5;!([0,as]) is compact. Because it is compact, by the
extreme value theorem it follows that the continuous function r(¢) takes on its minimum
value at some point in 3;,*([0, as]). Hence ry,;, > 0. O

Lemma 30 (Bidirectional induction between level set points). There exists a level set
0 < &}y, such that for all level sets ¢ € (0, €},), induction of properties according to Propo-
sition 29 is valid both

1. from a point ¢; € 8;*(c) to a point ¢, € 3;*(0), and

2. from a point ¢, € 5;1(0) to a point ¢, € 3, (c).

Proof. There exists a level set 5, ' (¢), €} > 0, such that ||¢; — g2 < 7w, Yq1 € ;7 1(0), Vo €
B:1(gl,). Then, by Proposition @ it follows that for any point in the ball B(q, 7min), hence
also for ¢,, Proposition R8 holds, inducing properties from ¢, to ¢,. Also, for any point in
ball B(g2, muin), hence also for ¢;, properties are induced according to Proposition 28 from
q2 10 qi.

The same holds for level sets 3; ' (z), z € (0, g), since for them ||, — ¢s|| < |1 — @2l| ;a1 €
B7H0), g2 € B7L(EY), a5 € B (2), V=, taking into consideration that function 3; has || V3| >
0 outwardly oriented with respect to its level set. ]
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insufficiently curved obstacle
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Figure 4.6: KRNF tuning mechanism geometry.

Proposition 31 (Geometry induction from obstacle boundary to any neighborhood crit-
ical point). For all ¢, < &, every critical point ¢. € €, N %, (¢;) N < has at least one
corresponding point ¢ € 90; such that they have the same number of sufficiently curved
principal directions and the same number of principal directions on which v;(q, p;;(q)) > 0.

Proof. By the previous proposition and the proposition about confinement of critical points,
we can induce that for every q. € €;N %, (¢;)N/y = vi1(q.) > 0 there exists a boundary
point ¢ € 00;, such that v;;(¢) > 0. Then, again using the previous proposition, ¢. has
the same number of sufficiently curved principal directions as ¢ and because now we
have proved that v;;(¢) > 0, it also has the same number of principal directions on which
vi(qe, pij(qc)), as is the number of nonconvex (including flat) principal directions of ¢. O

4.4.3 Alternative derivation

For a paraboloid ~, the same condition can be derived in a shorter way by earlier usage
of its specific form. At the critical point ¢. € % \ {qa}

2
I

KBV = 1V = kBVYa- Vya = 1aVB -V <= kB | Vrall* = 1aV8 - Vo, L
kB (2y72)° = 1aVB - Vg <= kBdyy =14V - Vg 7 4070
1 1, _
kB = ZVﬁ Vg = 1 (BiVB: - Vg + BiVE; - V)

and since also £ D2+,t; = 2 by substitution in (4.60) we get

.
i Pl i
d

:ivﬁ V42 — ’Yde’ (giTD2ﬁitAi) + tN'LT ((1 - %) %@2V5¢V@T - ’Ydﬁz’D2Bi) ti
:% (B:iVB;i - Vva + BV B - Vva) — vabi (8 D*Bit) + & ((1 - %) %ﬁfV@V@T — '7d5iD2Bi> ti
iy 96, V1~ BoaliT0°8) + gV Yo+ 67 ( (1 1) BVAYE D) i

B <
=P <%Vﬁi VY4 — Va (tNiTDQ&fi)) + Bi (%Vﬁ_z - Va + Vat; ((1 - %) VBZB—V@ - DQ@‘) tz’)
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1 (q) H2(q)
dd \
F
%i (52
SN
PN ?
o N7 /@/9
S
" curvature center = % > 2))
<
Z
F

Figure 4.7: Sets involved.

Lemma 3.5 [23] is modified to ensure (for v, = ||¢ — ¢4||*) that

1 . _
vi(q) = §vﬁi Ve — 4 (8 D*Bit;) < 0,Vq € Bi (gi03)
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4.5 Curvature of principal direction spans

Proposition 32 (Eigenvalue bounds on Quadratic form in eigen-subspace). Let H =
H' € R™" be a real symmetric matrix with real eigenvalues );,i € {1,2,...,n} and
associated eigenvectors 0;,7 € {1,2,...,n}. Consider a subset \;,j € {1,2,...,l},l € N
of its eigenvalues. Then the associated quadratic form ' H 4 is bounded by the minimum
and maximum eigenvalues of the selected subset

<qat <
Je{lFé,I}., N} <a Ha jenax A} (4.169)
on the intersection
aesSnU (4.170)
of the unit sphere
SE2{uecR" |ul|=1} (4.171)

with the linear subspace spanned by those eigenvectors
U2 {ueR" wuespan{{0;}jcnz..iy}} (4.172)

Proof. Without loss of generality assume the eigenvalues \; are numbered in increasing
order as
M <A< SN (4.173)

For each unit vector & € R", ||| = 1 in the linear span

/IjL - Span{617627"'75l} =

4.174
Ja; e R, je{1,2,...,1}: ﬂ:Zaﬁj ( )
=1
The quadratic form associated with H for 4 is
l T l ! l
QALTH{L: <Z Clj5j) H (Z CLj(Sj) = (Z aﬁ?) <Z ajH6j>
j=1 j=1 j=1 j=1
l l L T\ SFo=0¥i#p
:Z Z (apAp0p) Z ajap 0; 5
fj p=l l =t p=l (4.175)
=3 (@A0T5) = 3 (a2 [5,]7)
j=1 Jj=1
l
= (a3))
j=1

since matrix H is symmetric so that its eigensystem is orthogonal, hence the zero inner
products 4, ¢, = 0,V; # p. Taking into account that

. . T/ !
i) =1 = Ta=1 :
4= Zl aj5» — E ajéj E aj5j =1 = E CL? =1 (4176)
Jj=1 Jj=1

i=1
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it follows that for all a; # 0 = 0 < itis
. 0<(z?
Alg)\jg)\l, VJG{LQ,...,Z}ZCL]'#O - (4177)
a?)\l < a?)\j < a?)\l, Vie{l,2,...,l}:a; #0
and for all a; =0 itis
OzaiAl :a§A2 =... :ai/\l, Vie{l,2,...,l}:a; =0 (4.178)

therefore
l ! l

Jj=1 Jj=1 Jj=1
l l ! S a2
MY ad <Y (aN) <N al = (4.179)
Jj=1 Jj=1 Jj=1
l
M <) (alh) < N
j=1

Substitution of (4.175) in the previous leads to
M <WTHa< N, YoeSNnU (4.180)

which is the desired result, since in (#.173) we have ordered the eigenvalues such that
A= minje{m 77777 l}{)\j} and N =N maX;e{1,2,.., l}{)\j}- O

Let P, £ {pi;(¢)}jer, Ii = {41, 72, -, 3-},7 € NN [0,n — 1], to use it as a dummy set
and &; = span {P,}.

Proposition 33 (Curvature of subspace spanned by principal directions). Let p;; be some
principal directions at point ¢. Then every direction 7, in the subspace linearly spanned
by these principal directions has normal curvature which is bounded by the minimal and
maximal principal curvatures associated with those principal directions.

Proof. The proof follows directly from the previous proposition, taking into account that
principal directions are eigenvectors of the matrix form of the Weingarten map and normal
curvature is the associated quadratic form of the Wingarten map in the tangent space at
q. [

Lemma 34 (Span of convex principal directions is convex). Let p;; be some principal
directions at point ¢, which are convex. Then all the directions ¢, in the subspace spanned
by these principal directions are also convex.

Lemma 35 (Span of nonconvex principal directions is nonconvex). Let p;; be some prin-
cipal directions at point ¢, which are nonconvex. Then all the directions ¢; in the subspace
spanned by these principal directions are also nonconvex.

Proposition 36 (Relative curvature of subspace spanned by principal directions (paraboloid
va))s Let pii(q),7 € {j1.72,..-,4-},7 € NN [0,n — 1] a set of principal directions at point
q- If 7a(q) = |l¢ — q4l|?, then every direction #; in the subspace linearly spanned by these



4.5 Curvature of principal direction spans 139

principal directions has relative curvature v;(q,t;),t; € UT,B; which is bounded by the
minimal and maximal relative curvatures of the principal directions considered, i.e.,

Comin {vi(q,0i5(0)} < vilgl) < max  {wi(q,pi;(9)},
JE{d1,d25edr } JE{d1,d25edr } (4.181)

v € {0 € span { {5 ()} 5,50, 1100 =1

Note that span {{ﬁij(q)} } c UT,B;.

GE{T1 G20-0r }
Proof. Letp;;(q),7 € {j1,J2,---,7-},7 € NN[0,n—1] be the set of principal directions. Then
r;(q) are the associated principal curvatures which are the eigenvalues of the Weingarten
map L,(t;) of level set B;(¢) at q. The operator L,(#;) is symmetric (self-adjoint), hence
its eigenvalues are all real. Therefore, we can always index them in increasing order

ki (q) < Kiolg) < -+ < kir(q) (4.182)
Let W = span {{6 }iepio,..n . Since §; is C?, ensuring symmetry of the Hessian matrix
D?p;, then by Proposition B2 we have that
kin(q) <t < winlq), VL €W CUT,B; =
Kki1(q) < kng(ti) < Kkinlq), Vi € W CUT,B; <= (4.183)
~via(q,01(0)) < —viala. t;) < —vialq,pir(q)), Vi € W CUT,B;, <= '
Vi4(qal3ir(Q)) <v (q;t ) < l/z4<q pzl(Q))> sz’ ceW C UTqu'

By Proposition E we have that for all directions #; function v;3(q) has the same value
vis(q) =c€R, Vi € UT,B; (4.184)
Adding this to (4.183), it follows that

Vis(q) + via(q, pir(q)) < vis(q) + vis(q,t;) < vis(q) + via(q, P (q)),
Vi, e W CUT,B; = (4.185)

Vi(Qvﬁir(Q)) < Vz(qa ) < Vz(q pzl(Q))a vtAz S W g UTqu

and the claim has been proved, because by adding v;3(¢) to (4.183) it follows that

vi(q, pir(q)) = {.min .}{Vi(q,ﬁij(q»}
ISV T2 4.186
vi(g,pin(q)) = max  {vi(q,pi;(q))} ( )

je{jlij ----- ]7'}
[

Lemma 37 (Span of principal directions with negative relative curvature has negative
relative curvature). Let 3; be a C? obstacle function such that ||(V3;)(q)]] < 0. Let
pij(q),7 € {j1,72,---.34-},7 € NN [0,n — 1] be a set of principal directions at ¢ with
vi(g, pij(q)) < 0.

If v4(q) = |lq¢ — qa|%, then every direction ¢; in the subspace linearly spanned by these
principal directions has v;(q,%;) < 0, i.e.,

nla,) <0, i € {o € span{{5(@)} e b 1101 =1} (4.187)
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Proof. By Proposition 36 it follows that

vi(g,t;) < max  {vi(q,pi;(¢))} <0,
Jje{jr.ge,.jr}

Vi, € {@ € span {{pij(q)}je{jl’jz _____ jr}} | [16]] = 1} — (4.188)
vla. ) <0, Vi€ {0 € span {{y(@)} e, 100 =1}
O

Lemma 38 (Span of principal directions with positive relative curvature has positive
relative curvature). Let 3, be a C? obstacle function such that ||(V3;)(q)| > 0. Let
pij(q),5 € {j1.d2,---,Jr},r € NN [0,n — 1] be a set of principal directions at ¢ with
vi(q; pij(q)) > 0.

If v4(¢) = |l — q4||*, then every direction #; in the subspace linearly spanned by these
principal directions has v;(q, ;) > 0, i.e.,

m(qafz‘) >0, Vi€ {@ € span {{gﬁij(q)}je{jm,2 77777 jT}} ||2]| = 1} (4.189)

Proof. The proof is similar with Proposition @, with reversed signs. ]
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4.6 Obstacle Geometry Relation to ¢ Eigenvalues

Let
I £1je 1,2,..., (q, Dis < 0},
l_(q) - {{ { n}l_v (q fy(q)) _} (4.190)
P (q) = {pij(q)}jellﬂ P (q) = span{PZ. (Q)}
and define I;*, P*, 22 similarly. Also, let
IZ21-Ult, P*2P UP", P22 upt (4.191)

Hereafter we set v, = ||¢ — qq||> and work in %;(<,4) to ensure ||(V53;)(¢)|| > 0. Using the
notions developed so far, it is now possible to generalize Prop. 3.6 [23]. The following
connects principal relative curvature v;(q.,pi;(q.)),j € I; sign to NF Hessian quadratic
form sign on span ;.

Proposition 39. (At ¢. NF Hessian can be made negative (positive) definite on

span of negative (positive) principal relative curvatures): There exists an ¢, > 0

such that, for all ¢; < £, at every critical point ¢. € €, N %, (;), if vi(ge, pij(q.)) < 0,Yj €

I-(q.) # 0, then the NF Hessian quadratic t1 (D?¢) (¢.)t; < 0,Vt; € 2, (q.).

Proof. By hypothesis I:(q.) # 0, since vi(q., pi;(¢.)) < 0,Vj € I, (¢.). Since q. € %, (g;) C
1 . .« . é . _

2 (e.) it ensures well definiteness of v; i, = min Jer* (@ae (e ){| vi(q,Pi;(q))|} over com

pact subset q} x PB) C T,Bi(¢q) on WhICh v; is onIy sign definite,
€#(3e) ae (i) " 4

hence also 0 < ;. By Proposition @ Prop05|t|on vi(a,95(0))| < |vi(a, L
I(q),Vi; € 27 (q), hence v;min < |vilq, 1)) | ().Vt € 27 (q). Let
=_ Vﬁz . V’}/d VB’L . VBT _ ~
Gié@l(—JrfiT((l——)—’—DQﬁi i, (4.192)
IVall® k Bi

A 1A
and G, pax £ max e {}G q.t;)|}. We can then set the upper bound ¢}, =
o, Since, Bi(q) < & < e < ely, e, Vg € Bi(e;), it follows that on 22 (q),Vq €

B (5514) in the right hand side of (-), its first term v;(q, ;) dominates the second
Bi(q)Gi(q,t;). As aresult, the sum vi(q, ti) +Bi( t:) +Bi(q)Gi(gq, ;) has the same sign as v;(q¢, ;). We
have ensured this Vi, € 2, (q),Vq € %’( ei), SO it also holds at ¢., where (4.31)) yields
th(D29) (go)t; < 0,Vt; € P (q.),Yq. € B (e;). Since Vimin is defined on I, the proof
applles also to I;". Finally, note that G, ... = 0 implies ¢/, = +oo, hence no constraint
from £/, on k, therefore it is good. O

By Proposition B9 what happens with principal directions » pij(q.) ata critical point carries
on to the NF sign definiteness on their spanned subspace. By Proposition 31 we can
control what happens with p;;(¢.), provided we have confined it in %, (¢;) and set ¢; < &,
This we do in what follows.

Proposition 40. Every critical point ¢. € (¢, \ {q.}) N %, (¢;) has at least the number
of negative eigenvalues as some boundary point ¢ € 9¢; has sufficiently curved principal
directions.

Proof. By Proposition B1, in neighborhood %, (c;) c % (<)) it follows that Vg € % (c;)
there is at least one ¢’ € 00, such that v;(q., pi;(¢.)) < 0,7 € I; (¢.) for as many sufficiently
curved principal directions p;;(¢’) as ¢’ has. By Proposition @ since also %, (¢;) C % (¢}y),
the Hessian (D?¢) (q.) is negative definite on the subspace spanned by p;;(q.),j € I (q.).
As a result, it has at least as many negative eigenvalues. ]
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Proposition 41. Every critical point has at least the number of positive eigenvalues as
an obstacle boundary point has nonconvex directions.

Proof. Same as Proposition 0. O

Lemma 42. If at every boundary point ¢ € 90, there exists at least one sufficiently curved
principal direction p;;(q.), then for every critical ¢. € (¢ \ {qa}) N %, (¢;), Hessian matrix
(D?*p) (g.) has at least one negative eigenvalue.
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4.7 Radial positive definiteness

In this section the positive definite submanifold part of Proposition 3.9 [23] is revisited
for the case of general 3;,~,4. For an implicit obstacle function 3; increasing along V3; it
can still be proved that the Hessian matrix is positive definite in this direction.

Proposition 43 (Radially positive definite for ¢; < mm{eﬂ, e 1)« If the obstacle function
is radially increasing, i.e., Vﬁz is outwardly oriented on 3; ', at a critical point ¢. € .%#,N%;,

2

then there exist 0 < ¢/,, £/, such that the Hessian matrix (D?¢) (¢.) is positive definite in
the radial direction ;, for all £; < min{e,, £/,

Proof. At a critical point of ¢ it holds2 that
kBVya =1aVB = (kBV7a) - (kBVYa) = (7aVB) - (vaVB)

(kB)* (V4 - Va) = 73 (VB V) <=
(k6>2 vadeQ _ f}/g HVBHQ B#OvaE%i(ai)ka2aCH£:qg:> Ya#0,VqEB; (&)

=L ygg)e
(2y7a)" kP
2 V8

kB =
kB |V 7all”

(4.193)
Taking into consideration that Equation 4.38 holds for any 4, 5 substitution of k3 from
(#.193) in it yields

D*¢ly,

= 2 (kKBD 1+ (1= }) %VBVAT - 1.D%8)
2 2 —
3= 2 1val
kB [|Val*
2

f ATDng\y) T =T, (kﬁD fyd) T+ 7 ((1 — 1) EVBV5T> — T ( dDzﬁ)

Ya k) B
— kB (f?D%da) n % (1 - %) (7T (VBVBT) ) — 74 (7T D7)
(4.194)
It is . o
IVBIZ = |V (B:8)||° = |18V + BVB|° (4.195)
and

i (VEVET) F= (7)) (VBTR) = (7. - VB) (VB - 7)

_ 4.196
:(Vﬁ-ﬁ-)(Vﬁ-f’i)Z(Vﬁ-ﬂ)Z:(V(ﬁzﬂi)-ﬂ»)Z ( )
Substitution of these in (4.194) yields
i AT 2 ’72 2 2 2 2 T 2.,
ry =———= (BiVBi + B:iVE:) - (BiVBi + BiVBi) (i D™var
= D*p|g, 7 WHV%W(B Bi+ BiVB;) - (B:VBi + BiVB;) (7 D*at;)
(4.197)

T (1 N %) % ((BZV@ + Bzvﬁz) 'f’i)Q
— Vd (f?D2/Bfi)
2%6[23], Lemma 3.1, p.426.
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since

”V’YZT’2 kﬁ ((@VB@) . (@VBJ + (@V@) . (BZV@) + (BZVBZ) . (@VBZ) + (BZV@) . (Blvﬁl))

_ 2 2

Nz H o5 (P IVAI" +285 (V3 V) + B IVAI°)

; 2
= o IV +28 (95, 93) + B I9AIF)

(4.198)
and

((Bz‘vﬂ_i + Bivﬁz‘) : 721‘)2 = (@‘ (sz : 721) + B: (Vs - fz))Q
= @2 (V@ : fz‘)Q +26; (V@ : fz) Bi (VB - 7i) + BE (VB - fi)Q
= 87 (7 - Vi) + 2B (VB - #4) (VB - 74) + B (Vi - 74)°

(4.199)
Note that )
R V ; VB -VE VB
VB =V = = = |IV3; 4.200
S te= VB 19T = Ve~ van VA (3200
so substituting in (4.199) yields
B2 (7 - VB + 28 (VB - 7) V8|l + B2 V5 (4.201)
Substitution of these results in (4.197) leads to
f:ff D2¢|%ﬂ-
d
2 72 T 2. A
= o (B IV +26 (V8- V8) + BIVAIE) (FDar) o0
b (1) 2 (9 G VR) 4 28 (V6 ) 198+ 3 1951F)
— 7d (@TD%@)
But since - - -
IVBl (Vi - 7:) = IVBill (7 - VB:) = (IVBil| ) - Vi
VB ) - . (4.203)
Vi VB =V -V
— (I3l g ) - VA= Vi V5
and also -
FrD*Br; =7} (D* (B:8:)) 7 = 7 (D (B:VB; + BiVB;)) 74
=7 (VBVB + BiD*B; + VBV + B.D*B;) 7 (4,200
= nT (5 D% (ww&T + VBV + 5D ) '

because V3, VBE + VB, VAL = VB VEE + (VﬁiVBiT)T = 2(VB;Val),. Substitution in
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(#.202) yields

BZ
k—1
d

AT 12 A ~
7y D@, T

_
IVall? kB

#(1-7) % (2 6o vR) + B2 10aR)

(821981 +28 (V5: - 98:) + B2 IV BI) (7F D*af)

B
1\ 74 -
+ (1 - E) EQB (VBi - V)
- ’Ydr (61D251 +2 (Vﬁzvﬁ ) + B’LDQ/BZ) fz

:ijﬁ%ﬁ (82 195" +28 (V8- V3) + B2 VA7) (1 Dvar)
d
1 va

+ 742 (VB - V) — —E25 (VB - V)

1 _
v (1-) % (% 6o V) + B 195F)

- ’Ydr (62D261 +2 (V/Bzvﬁ ) + B@DQB) 721

(4.205)

= (B 37 7—3 v AT 2,
(gt (FIVAIF + 3 1981) + 1o 25 (95, 93)) (75

1) AN 2 1 T2y b
(D28 (95 VA) (- 19l s ) (D)
+ 274 (Vi - V)

1 _ _
+ <1 - E) % (82 (i VB + B2 IVBI7)
- fyd'r (/82D2/6’L +2 (vﬁzvﬁT) + BﬁDQBz) fz

(BB + B2 IV AP ) (7T D)

Bz || kp
3 ] 17l
oz 20 (V8- VB) | 1= iy | (7D
IV all” k8 ( ) Db ( )

+ 2’7d (vﬂz VB’L)

- Vdr (51D2ﬂz +2 (vﬁzvﬂT) + BZDQ/B’L) 721
1 _

#(1-7) 2 (2 6o v8) + B2 178IE)

(4.206)
Terms 2+, (V3; - V3;) and —,712 (V3 V3!)  #; cancel because

274 (VBi - VBi) = 27a | VBl (V5; - 7) (4.207)
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and

a2 (VEVAYD) i = —arf (VAVBT + (VAVE)")
= —ygit (V@VBT + VﬁzVﬁT) 7
= —yq (77 (VBNVBE) 7+ 71 (VB VB )
= ((ﬁTVﬁz) (VﬂTﬁ) (AZTV@') (V@Tﬁ))
= 7 (72 VB) (VBi - 74) + (s - VBi) (VG- 7)) T =P
= —a (7 - VB) IVB + IV B (7 - VB))
= —v42 ||Vﬁz|| (722 : Vﬁ_z)

= —2v4 ||Vﬁz|| (722 : sz)
(4.208)
Hence (B.205) becomes

||V7d||

32 AT 2 V4 (fiTDLWQi) 2 a2, 22 2
T = —————= | B (|VBi||” + B |VE|~+ [ 1— o 1d 2B8(VBi -V
et = BT (AP + 19+ 1- gy ) oo (9 93)

1 _ —
w(1-1) % (o2 e vBY 4 BITAIR)

- ’Ydr (BZDQB’L + 6ZD ﬂz) T
(4.209)
To proceed further we select a symmetric attractive effect ~, = ||¢ — ¢J||>. It follows
that

(P DPyari) v (FE QD7) va 293 Vd

kB || Vall? N kB (2y72)° T kBdya 2kB (4.210)
and
1¥yall (2va)’ A
V= oy, =1 iT D)7 =lmgy=l-2=-1 (4:211)
IVall
therefore (4.209) implies
B T
S D%l = g1t (B VAN + B2 IV — 28 (V5 93)
1 _ _
- (1 - E) 5 (52 G VB) + B IVBI)
—w ¢ (BD*Bi+ BiD*B;) 4 (4.212)
= o5 (B IVAIT+ 21987 ~ 26 (V5:- V)
1 _ _
#(1- ) % (3 6o 98) + B IVAI)

- ’YdT (5@D26z + 6@D262> T
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Now note that
0< (B HV/BZH — Bi HV@'H)Q = (6; Hvﬁ_zH — BiVB;) (Bi HVBzH — BiV5;)

=37 HV@W — BiIVBill Bi (|VBi|| = B: IV Bl B: || V3| + 57 V52 (4.213)
= 82| VB — 28 IV 8| | VB + B2 IV 51 '
< B(|VB|" — 28 (VBi- VB) + B2 VB
because
VB - VB < IVBI VB = —IIVB||VBi| < —VBi- VB (4.214)

and also note that 5?2 (7, - V/3;)* > 0 so that (#.212) implies

B .12
k_lfi D g5|cg¢fi :(
Ya

(BQIIV@H + B IVB® — 26 (V- Vi) + (1_%)

S AGE V@-)z)

2k 3 p

+ ((1 — l) 1432 |V i1 = yaf' » (B:D?B; + BiD?B;) 7 ) )
_ 1 . 3
> (0 GuIVal - 3190 + (1 1) %62 (- 95
# (1= 3) 2R IvaI T (0% + 50%0) )

(4.215)
> (1—%) WR A~ vai (0B + D60
(1 1\ a _Jdarpapep s Jdgop aT 2
—(1 k) VA - ST D%6 — 88T D
((1 )@uvm T D2 — B (f?wm)) (4.216)

( (% (1 _ ) BiIVBiII? ~ 6.5 (f?DWO)

( ( )ﬁz 195 —62(ATD25m)))

The term which has changed compared to the sphere world case is § (1 — 1) 3; IVBiI® -
BiBi (P D?Bit;) .

Since by definition 2 < & = § < 1 — ¢, and requiring that min —{[[VA|} >

0 = [|VBi| > 0,Vq € %, (s;) and that f;fD%m > 0,Yq € %; (), a sufficient condition
for this term to be positive is

L [Ivai”

0<f; < < FTD?B;7>0,Yqe B, (<)
<< —
T LT =

Vq € %Z (51)

1_,

B; (7 D*Bif;) < Z_l IV, Vq € B (e) 2£>
1

Bi>0,v €B;(e;
5 q€Hi(e:)

B; (7 D*Bif;) < (1 — —) IV . Vg € B (<) (4.217)

85, (L D6i7) < (1— )@nwzn e B(e) =

0<

N — N~

k
( - %) Bi ||Vﬂz|| — BiBi (fZTDQBZﬁ) Vg € B (g))
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Provided the implicit obstacle function ; has no critical points near the obstacle ||V 3;|| >

minm{HVﬁiH} > 0 and the ¢/, can always be selected appropriately greater than 0 in

order to satisfy the inequality. N

Lemma 44 (At least one positive eigenvalue for ¢; < &l,,¢l,). For e; < min{e},, e, } the
Hessian matrix (D?¢) (¢.) at a critical point ¢. has at least one positive eigenvalue.

4.8 Navigation Functions extended to Everywhere Suf-
ficiently Curved Worlds

Proposition 45 (No local minima other than ¢;). In an everywhere sufficiently curved
world, if & > N(ey,), then the NF has no local minima other than g,.

Proof. By Definition 23 all p;;(¢) are sufficiently curved Vj € {1,2,...,n—1},Yq € 00,,Vi €
I,, then by Proposition |0 all remaining ¢. have negative definite Hessian on T,Bi(q.). O

Proposition 46 (All 4. # ¢, nondegenerate saddles). In an everywhere sufficiently curved
world, if £ > N(ey,), then every critical ¢. € € \ {¢4} is a nondegenerate saddle.

Proof. Combining Propositions #0 and #3 at every ¢., T,-#, decomposes to positive definite
%;(q.) and negative definite U .7;(q.), then by Lemma 3.8 [23] the claim is proved. ]



Chapter 5

Ellipsoidal obstacles

5.1 General ellipsoid equations

We are going to illustrate the relative curvature condition using ellipsoidal obstacles.
The implicit obstacle function for an ellipsoidal obstacle il

Bi £ (q — %)TA(Q —q)—1 (5.1)

where ¢; € E" is the ellipsoid’s center, ¢ € . and A is a symmetric positive definite matrix

0 < A= AT. The obstacle is defined as

Oy ={q€ E": Bi(q) <0}, 00;={qe€ E":Bi(q) =0}

Note also that
Vi =V{a-a) Alg—a) —1} =24(¢— @)
DQ@' =D {QA (q - C]z)} =24

so that
vi(q) = vad (th‘ng’Vsti) - ﬂrDzﬂitAi
IVl
_ (24(q —a@)) - (2 (QQ - %))2 . t”lr (24) i
4lq — qdll
(A=) (a—a)
=9 t; At
lg — qall® l
_ )T T _ . _ AT
—9 (¢—a) A (% qa) ey A=A
lg — qall
T
—9 (¢ —a) f(q—Qd) — T Aj,
(¢ —4qa)" (¢ — qa)
In case A = diag (a%, R a%) then the ellipsoid’s axes are aligned with the coor-

dinate system and a;; is the j* radius of the i*" obstacle.

I1ts level sets in E™ are ellipsoids and the function is an elliptic paraboloid in E™ x [0, +00).
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5.2 Plots and parametric exploration for ellipses

5.2.1 Ellipse minimal curvature

In this subsection we are going to illustrate the theoretical results using ellipses. El-
lipses are selected to allow plots of parametric investigations to be created.

The radius of curvature of an ellipse an any point is R = (”L where r, r, are the
distances to the two foci and «, b its radii. The maximum radlus of curvature occurs at the
end of its minor semi-axis W|th radius b and is equal to R = <. Requiring that the center
of curvature at this point remains within the ellipse is equivalent to the inequality

2

R<2b<:>%<2b<:>a<b\/§<:>%<\/§ (5.5)

therefore the ellipse should have bounded eccentricity

e<emaX:,/1—(2)2:,/1—(%;:\/E:\/g (5.6)

The curvature spheres of an ellipse for varying eccentricity are shown in were it
can be seen that for \/g < e not all curvature spheres are included in 0;

U (Za.t)\{a}) € & (5.7)

qeEDU;

5.2.2 About necessity or not

There is only a single internal obstacle. The radial unboundedness condition 1 = M <
k = 3 is satisfied. Therefore the arising local minimum cannot be attributed to this cause.

The relative curvature function v;(¢) depends on relative curvature of level sets at a
critical point. But existence of critical points has been proved by Koditschek and Rimon.
Moreover they can only arise on the obstacle side opposite the destination, because only
there do the attractive and repulsive field gradients have negative inner product. Specif-
ically they can only arise only where the gradients have opposite directions. For a single
(internal - no world boundary) obstacle this is only possible on the minor axis of the ellipses
presented in what follows. So there will be a critical point in the area we discuss, as a
result in this simple case the condition proves necessary.

But in general cases with more obstacles this may not be the case. Nonetheless the
intuition gained by the examples following helps understand the essence of the relative
curvature condition, which, after all, has been formally derived and holds in general set-
tings. Its necessity is not guaranteed in general settings. The related arguments about
degeneracy have been discussed at the start of this chapter.

5.2.3 Case studies

Let us now look at the examples. The obstacle’s determining characteristic is its
minimal curvature. Equivalently center of curvature at the respective boundary point
of minimal curvature.
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Figure 5.1: Ellipse curvature spheres (disks) for varying eccentricities. The satisfaction of
relative curvature condition for e < \/g ~ 0.7071 is visible. So is the existence of ¢, that
violate the relative curvature condition in the case of insufficiently curved ellipses with

62\/;
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In Fig. 5.24 to Fig. 5.3 the destination ¢, and %; (¢;) width «; are kept constant and
vi(q), ¢ are shown for varying eccentricity e.
As the eccentricity increases, the center of curvature starts from within the ellipse in

and Fig. 5.28, lies on its boundary for critical eccentricity ¢ = \/g in Fig. 5.2d,

exits it for e > \/g in and goes on past the destination ¢, in Fig. 5.35 and Fig. 5.3d.

As long as the center of curvature is within the obstacle, we see that v;(q) is positive near
the obstacle, so we can select a %; (¢;) small enough that minz—{vi(¢)} > 0.

When the curvature center is outside ¢; but closer than destlnatlon qq @ €; Selection
still exists to make ming-— {vi(q)} > 0, Fig. 5.3d. But when the curvature center is
farther away than ¢, no &; exists to make ming—{vi(¢)} > 0. This is due to v;(q) <0
on the boundary 94; on the opposite side from ¢, as can be observed in and
Fig. 5.3d.

What is important when a curvature center lies outside the ellipse it that a ¢, closer to
the ellipse than the curvature center can always be selected, making minz —— {vi(¢)} < 0.

This is reflected in the Navigation Function field?, which is shown for a (relatively small)
value of k, for the purpose of emphasizing the difference. A local minimum clearly arises

on the ellipse’s opposite side from ¢, for \/g < e. One may argue that increasing & is the

proved way of turning the local minimum to a saddle. But this is not possible here, as has
been analytically proved. However large a k& we select (equivalently, however small a ¢;)
the local minimum remains.

Let us now analyze what happens in more detail. The examples shown do not reveal
everything because there are several effects involved. Considering ¢; it does not affect
vi(g). What matters if for all valid g, we can select a ¢; such that ming-—{vi(¢)} > 0.

What primarily matters is the center of curvature ¢.. There are three (two really)
cases: sufficiently curved, critically curved and insufficiently curved. For the latter there
are three relative positions of destination: farther away than ¢., at ¢. and closer than ¢,
(wrt £;). In all cases when g, € %, (e;) = ming_{vi(¢)} <0, so we should always
select ¢; < 5;(qa)-

For a sufficiently curved obstacle in all three cases there exists a %; (¢;) such that
ming - {vi(¢)} > 0. This is shown for varying ¢, in Fig. 5.4d and Fig. 5.48. In Fig. 5.4d
a € P (ei)) = ming~{vi(¢)} <0 can be observed.

A critically curved obstacle is the limit case of a sufficiently curved one and the same
apply, as shown in Fig. 5.5d and Fig. 5.5b.

It is interesting to examine the case of an insufficiently curved obstacle shown in
Fig. 5.6d to Fig. 5.7d. In Fig. 5.6a destination ¢; € %, (¢;) — ming - —{wi(q)} < 0.
Also in Eg 5.6d to Fig. 5.7d ¢, is closer than the curvature center, so that even for
qa ¢ %, () as in Fig. 5.6b to Fig. 5.7d still ming—{vi(¢q)} < 0 for any ¢; > 0. For g
at the center of curvature min— {vi(q)} = 0 25 ‘shown in and for ¢, farther

away than the curvature center nnng ==7{vi(9)} > 0 as shown in Fig. 5.7d.

What is important is that for when the curvature center is outside the obstacle a
qq closer to it can always be selected, so that an analytic Navigation Function of the
Koditschek-Rimon form [23] cannot be constructed (of course, as proved in [23], an an-
alytic Navigation Function exists on any analytic manifold with boundary).

In Fig. 5.8a to Fig. 5.9d the minimum of v;(¢) in intersection Z; (¢;)N[0, +00)? of Z; (&)

2For these and following figures naming a field as a Navigation Function field does not imply that it does
not have local minima, i.e. that it has been (or can be) appropriately tuned.
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e=0,22800 — 5 NF Field, k = 3

Figure 5.2: Relative curvature function v;(q) within 2 (¢;) for varying ellipse eccentricity
e and fixed ¢; and destination ¢,. The Navigation Function field ©(q) is shown as well.
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NF Field, k =3

CuB() _ g

= 0.78, 222
F

NF Field, k =3

e =087, ~15E) — 15

vi(q)

2 -3

Figure 5.3: Relative curvature function v;(¢) within % (¢;) for varying ellipse eccentricity
e and fixed ¢; and destination ¢,. The Navigation Function field ©(q) is shown as well.
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NF Field, k = 3

=064, 2800 1 5

=15

(b)
Figure 5.4: Relative curvature function v;(q) within %; (¢;) for varying destination ¢, fixed
¢; and sufficient ellipse eccentricity e = 0.64 < \/g The Navigation Function field ¢(q) is

shown as well.
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e=071, 280 _ 5

NF Field, k =3

_ Qi) _ 1
e=0.71, '07” =15

NF Field, k = 3
o

(b)

Figure 5.5: Relative curvature function v;(q) within %; (¢;) for varying destination ¢, fixed
e; and critical ellipse eccentricity e =
well.

1. The Navigation Function field ¢(¢) is shown as
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Figure 5.6: Relative curvature function v;(q) within %; (¢;) for varying destination ¢, fixed
e; and insufficient ellipse eccentricity e = 0.94 > \/g The Navigation Function field ¢(q)
is shown as well.
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Figure 5.7: Relative curvature function v;(¢) within %, (¢;) for varying destination ¢, fixed
¢; and insufficient ellipse eccentricity e = 0.94 > \@ The Navigation Function field (q)
is shown as well.
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with first quadrant [0, +00)? is shown for varying destinations ¢, over the plane (half-plane
shown due to symmetry) and different cases of eccentricity e. The associated level sets
are also plotted.
For insufficient eccentricity the zero level set is not confined in %; (¢;) as seen in
Fig. 5.9a to Fig. 5.9d. We can also observe that on the same side with ¢, (when ¢, €
[0, +00)% S0 ming; - , oo)2 {vi(¢)} is On the same side) always ming -1 ;o0 {¥:(4)} > 0
for q; ¢ %, (¢;) because then ¢, lies in the negative inner product subspace Z.
In Fig. 5.10 the results of Fig. 5.84 to Fig. 5.9d are shon as level sets of ming -, , > {v:(¢)}
in (g4, ¢) parameter space.
In Fig. 5.12a to Fig. 5.13d ming 5.2 {#i(q)} is plotted for varying destination ¢

over the plane, constant eccentricity e and neighborhoods %; (¢;) of various widths ¢;. It

becomes clear that the closer ¢, is to %; (¢;) the worst for the relative curvature function
minimum. In these results are concatenated in (¢,, ¢) parameter space.
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minmm[oﬁrm)2 {vi(q)}evel sets, e = 0
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Figure 5.8: Relative curvature function v;(¢) minimum in %; (¢;) N [0, +o00)? for ¢4 €
[0, +00) x (—00,+00), constant ¢; and various eccentricities e.
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Chapter 6
Partially Sufficiently Curved Spaces

6.1 Partially Nonconvex

The present section concerns spaces which are partially convex and partially suffi-
ciently curved. But no principal curvatures which are convex but not sufficiently curved
are treated yet. At least one principal curvature is sufficiently curved (hence also convex)
and all principal curvatures are either nonpositive definite, or if positive (i.e., convex) they
are sufficiently curved.

Proposition 47. (NF Hessian at ¢. # ¢, can be made positive definite on span { P;",#;}):
Let ¢. € (€, \ {qa}) N B (s;). There exists an ;5 > 0 such that, for all ¢; < ¢;; at every

4e € CK@ A f%z (52')1 if Vi((lc:ﬁﬁ(Qc)) < O,Vj S Ij(Qc) 7é ®I then fzr(DZSb) (QC>tAi > O,Vﬂ €
span {fi(QC)7ﬁij1 <QC)7 s ’f)’ijy-(QC)} ajla cee 7jr S ]{F(QC)

Proof. Let the vector spanned by the radial #; and tangential ¢; vectors be denoted by

wherell ;A € R\ {0} are weighting coefficients and the radial and tangential unit vectors
are defined with respect to the :** obstacle ¢, implicit function ; gradient as

s VB . s VB
T, = s tz = L (62)
VG| IV

Note that if A € R"*" o € E™ a square real matrix and a euclidean vector respectively,
and b =ca € E",c € R\ {0} a vector parallel to «, then for the quadratic form associated
to A

C 02
bTAb = (ca)" A(ca) = ca® Aca = ca"cAa = Fa Aa = ¢ (a’Aa) SR = >0

bTAb >0 < a"Aa >0 (6.3)
bTAb=0 <— aTAa =0
bTAb < 0 <— aTAa <0

So it suffices to determine the quadratic form sign on a direction, and it is common for all
vectors in that direction.

1For our purpose exclusion of 0 from R is not mandatory.
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Let us now at a critical point ¢, express the Hessian’s associated quadratic form along
the direction of «;. The Hessian matrix at the critical point is

k-1
D*¢ (qe) = ng (k;ﬁDQde + <1 - %) % (53V51V51T + 26:5; (Vﬁivﬁg)s + BEV@-VB;T)

— Y4 (@‘DQ@' +2 (Vﬁivﬁg)s + BiDzﬁi) )

k—1 1 _ 1 3 3
= 7%2 (k}ﬁDQ’yd + <1 - E) %ﬁ?vﬁzvﬁ? + <1 - E) %26@B2 (Vﬁ@vﬁ?)s

+ (1 - %) %B?VBN@T —1aBiD*Bi — 274 (VBVE]), - sz-DQBi)

B2 k) B

+ (1 — %) %BZ?V@V@T +27a (VBVS), — 2%%1 (VB:iVE),

—aBiD*Bi — 274 (VBiVE'), — 7d8iD26i>

k—1
= (kﬁD% n (1 . 1) 1 g2y 3, 3T

_00 (aptt (1= 1) 2apvavar 4 (1- 1) M avsvsr
= " Yd k) B i BiV B + L 562 BiV B3

- %'Yd (VB:VBY) 1aBiD?Bi — %1@1725@')

(6.4)
At a critical point the quadratic form along u; is
ui D*¢ (M + M ) so (c) (w% + M)
(;uﬂzTD2 & (qe) +>\€TD2 ( o)) (s + ;)

( FID?*$ (q. ;m) + (W’TD2 (qe) M; ) (/\t?ng& (ge) wﬂ-) + ()\tNTD2 b (qe) A l)
= 1% (FT D (qe) 74) + pd (7T D@ (q0) i) + ph (81 D%¢ (q0) ) + N (i D*¢ (q.) )
(6.5)
Note that by the Clairaut-Schwarz Theorem C? continuity of function ¢ implies symmetry
of its Hessian matrix2

p e C*([F\0F,[0,+x)]) = D*p = (D*¢)" (6.6)
As a result
. ~ (FID*@(qe)ti)eR “ ~\T o o
Aol T ) 1 e @)
. . T D2¢=(D2¢)T R A .
=il (D% (q))" (7)) = " D¢ (qe)

2In other words the order of partial derivation in mixed derivatives does not matter.
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By our previous result
U D% (o) wi = pi? (7T D*@ (q0) ) + A2 (£ D¢ (q0) &) + 20 (FTD*¢ (0.0 1) (6.8)

The first two terms # D¢ (¢.) #; and £ D4 (q.) t; have been analyzed according to the
example set by the original proof. Let us proceed for the third term in the same spirit

AT 42 ° AT ’7571 2 1\ Y po0 3 o AT
7 D*@(qc) ti = 7; 32 kBD v + (1 - E) Eﬁi VBV

+ ( - %) %5 ﬂivﬁiT - %’Yd (VBiV@T)S - ’Ydﬂz’DQBi - ”YdﬁiDQBi))fi
V%;:lfo (7T D¢ (q.) ) B kBD*, + (1 ~ 1) 14 5273,V 3T + (1 - 1) O ACAYA
i ¥ \4e) Ui 7571 i Yd L ﬁ i i i L ﬁ i 1 i

— 234 (VABE), — D" — mmﬁ) ;

=i ootaa)i+i7 (1= 1) Servavar ot ((1- 1) 2aoavar )
AT (20 (VBT ) b= T (uB D) b~ T (B8
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Now let us find each term separately

A 2 R
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Now observe that
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and therefore

0@y = (1 1) 1T (VAT i (TD%))

Y
4 VA
k

(6.14)
fiTVBi - ’YdBi (@TD%HQ)

From (@) we have that the quadratic form associated to the Hessian matrix of function
p is

and utilizing the results of previous sections, repeated here

p IV 7all*

St (- ) T e a)
i tz 1—-— = - D i tl
Fal ( Vl? t) A B

k-1 . . .
t:-FDZg?in — Td (”Ydﬁi (M (tNiTDQ’Ydti) . (fz‘TDQBiti))
(6.16)

and

1\ = _ _
— (7 D*¢ (q0) 7)) = ﬁ ((1 - %> Bi |V Bil|* — BT D? By — B,5; (f’;:D2/3ifi))

=20 (- ) AIVAN - 8 (TD%Rr) - 55 (T
(6.17)
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So substitution of (6.14), (6.16) and (6.17) to (b.8) vields

ui D*@ (qc) u; = pi* (P D*@ () 71) + A (6] D*@ (qe) &) + 2 (7 D@ () 1)
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The above quadratic polynomial has the following discriminant
A = B? —4AC
2
= <2u (O (Bi) — MEV@ — Yabs (f;‘rDZ&tAi)))
_ 1\ -
~ it +0 @) (w3 ((1- 1) BIvaIE -0 @)

i (6.19)

2
-y ( (060 - 28105, s (120

- 5 Gaata) +0(50) (s ((1-7 ) AIvaI -0 ) )

A positive definite normal subspace is sufficient to ensure that the quadratic form associ-
ated with the Hessian matrix is positive on this subspace. Since for ¢; < &ff — A >0
this is equivalent to ensuring that the quadratic polynomial induced by the quadratic form
on this subspace does not have any real roots.

Absence of real roots for A € (—o0,0) U (0, +00) is equivalent to proving that there is
no direction u; (note that «; # ¢; and u; # ;) in which the quadratic form is zero.

Consequently the quadratic form retains its sign. It can only be positive because the
quadratic term coefficient is positive A > 0.
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A sufficient inequality for absence of real roots is

HER\{0} = 12€(0,+00)

A <0

2
(00 - 22N rws, — s (720

5 (unta) +0 ) (a (1= 1) BIVBI - 030 ) ] e

1
(0(8) = 4)° = 5 (B+0(8)) (L - 0 (8) <0
(6.20)
By selecting a sufficiently small 5; we can make all O (5;) negligible with respect to their

accompanying term'’s signs A, B, T" as already proven.
Then the remaining terms determining the discriminant’s sign would be

1 BT
—A?— —BI'<0 < A?—
A =3, B

The above inequality can be satisfied by constraining critical points ¢. to a neighborhood
%; (g;) by selecting a sufficiently small 3; which is (if A> > 0, otherwise not needed)

<0 (6.21)

BT BT BT
A? — A? < = A 22
5 <0 = < 5 — ;< 7 ci (6.22)
Note also that the half-space V3, - V4, > 0 is of interest, not V3; - Vv, < 0 = Fq.
there. This yields a further &/,. O

Another important note is that the above proof requires that the obstacle has a neg-
ative Gaussian curvature (obviously) and that it has negative curvature and positive cur-
vature in two orthogonal complementary subspaces of its tangent space (tangent to level
sets in the obstacle’s neighborhood). In order to relax the complementary subspaces
requirement, an altered proof of the original KR theorem is needed.

A single one-sheet hyperboloid obstacle forms an almost insufficiently curved space
for navigation. Therefore a space with a single one-sheet hyperboloid is covered by the
proof provided, i.e. that a KRNF exists in it for a high enough £ (taking into consideration
my proof on ~, upper bound for unbounded spaces as well). Note that a set of cylindrical
pillars as obstacles is also an almost insufficiently curved space, hence navigable with a
KRNF as proved.

For two one-sheet hyperboloids which are infinite in size their inevitable intersection
renders the space insufficiently curved (and of nonsmooth boundary at the intersection,
but that is not out problem). Nevertheless the result of a simulation is successful, Fig. 6.1,
Of course had the initial and final configurations be positioned differently with respect to
the intersection, then no solution would be possible.

Definition 48. By a partially honconvex world we refer to every obstacle boundary
point having at least one sufficiently curved principal curvature and the rest nonconvex.

Proposition 49. (All ¢. # ¢4 nondegenerate saddles) In a partially nonconvex world,
there exists a £ > N(ey,), such that every critical ¢. € % \ {¢s} is a nondegenerate
saddle.



6.1 Partially Nonconvex 173

-4

xT

Figure 6.1: A space with a single one-sheet hyperboloid is an almost insufficiently curved
space, hence navigable by a KRNF, as proved here. Two one-sheet hyperboloids form an
insufficiently curved space due to their intersection.

Proof. By Definition #8 7,.% = 2, (q.) @ span { P (q.),7;}, by Propositions #d and 47
Hessian (D?¢)(q.) is negative definite on 2, (q.), positive definite on span { /" (¢.), 7; },
so Lemma 3.8 [23] completes proof. N
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Convex g € F(q) = 4 ¢ %,

Sufficiently Curved
Tangent Direction

.qdejfé( ) (E”\yc(q))
— Vz(Q7 21) <0

«
=
= Convex g4 € H(q) = q & €
S NQIF Suﬁicg%ntly tC_urvedycqq) i
angen
\g/—;ec IK /\ -
T (q) 'q ~
0, «
-
o 1€ M(q)N(E"\ S(g) &
— Vi(q,tig) >0 g
que%”l(q) = 4¢% ¢
L4 fu-
Nonconvex i 2
Tangent Direction 4
(includes flat) S0 e g1 € H5(q) N (E™\ .Z.(q))
— V’L(Q? 13) <0
41 € H(q) N S(q) — N
- Vz(Q7 Z3) >0 ¢

qa € H5(q) N 07 e(q) = vilg, 23)=0)

which can cause degeneracy (D?¢)(q)tss ~ Ot

Figure 6.2: Different directions: convex and sufficiently curved, convex but insufficiently
curved, and nonconvex.

6.2 Partially Sufficiently Curved Worlds

6.2.1 Intro

Definition 50 (Partially Sufficiently Curved World). We call partially sufficiently curved
a world for which Vq € 0,,Vi € I, there is at least one sufficiently curved principal x;;(q),
at most one convex but insufficiently curved ;;(¢) and the rest «;;(¢) are nonconvex.

In chapter 4 and section 6.1 it has been proved that the KR formulation of NFs can be
extended to

1. Sufficiently curved spaces, and to

2. Partially Nonconvex Partially Sufficiently Curved Spaces

Both of the above two types of spaces are relatively limited. The first type is limited to
obstacles which are in every boundary point curved enough, and, as a result, convex
enough. Hence, the first type is a subset of convex obstacles.

The second type of spaces is restricted to partially nonconvex obstacles. These do not
include any closed surfaces. But we need to generalize to closed surfaces which may not
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Figure 6.3: Suitable pairs of directions and selection of £, ensures sign definiteness of
the corresponding spanned subspaces.
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(hence insufficiently curved)
\ convex insufficiently curved

Figure 6.4: Sufficiency of curvatures along principal directions on characteristic points of
torus.
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be everywhere sufficiently curved, as happens in the first case. We want to treat surfaces
which may be partially sufficiently curved and convex.

If a closed surface is convex but partially insufficiently curved, or nonconvex and
partially sufficiently curved, then curvatures which are neither sufficient nor nonpositive
definitel arise. This happens by definition in the first case.

For the second case, the following can be shown. No closed surface can have both
points which are sufficiently curved (convex points) and points which are partially non-
convex and partially sufficiently curved in convex directions, without any points which are
convex but partially insufficiently curved arising.

This is a consequence Hessian matrix continuity requirements of Hessian matrix con-
tinuity requirements (i.e., C? continuity of 3;). These can be relaxed in some special
cases where obstacle boundary nonsmoothness is allowed, based on an updated defini-
tion by Koditschek and Rimon in [28]. But we are interested in general cases, like tori.
In these cases C?-smoothness requires continuous curvature variation over the surface.
This leads to convex but partially insufficiently curved points showing up when moving
from a sufficiently curved, to a nonconvex partially sufficiently curved point.

Therefore, points of three kinds are differently treated in this study

1. Sufficiently curved points;

2. Partially nonconvex and partially sufficiently curved;

3. Nonconvex partially insufficiently curved and partially sufficiently curved;

4. Partially nonconvex, partially convex but insufficiently curved and partially suffi-
ciently curved.

The last case can be treated similarly to case 3, hence it will not be separately analyzed
in what follows (it is covered by the same theorems). Note that it may be better to refer to
the convex insufficiently curved tangential directions by the number of associated principal
curvatures, since the number of principal curvatures is the one that does matter.

The stronger results that are going to be developed in the sequel concern (hyper)surfaces
with one convex insufficient principal curvature.

The other results, mentioned in the end, and based on (symmetry breaking) the zero
measure of the set of parameter values that lead to degeneracy (nonMorse), allow for any
number of convex insufficient principal curvatures, provided there remains at least one
sufficient principal curvature.

The reader is reminded that existence of at least one sufficient principal curvature is
still required in this case, in order to ensure that all critical points are (possibly degenerate)
saddles.

The other principal curvatures relate to degeneracy statements and conclusions.

6.2.2 Insufficiently curved convex directions

The existence of convex but insufficiently curved tangent directions can lead to a
degenerate potential field function , depending on the choice of destination. Degeneracy
of any critical points invalidates the Morse property, which requires that all critical points
be nondegenerate.

But the Morse property is a fundamental one in the original NF definition given by
Koditschek and Rimon in [23]8. It is used in the proof of Proposition 2.4, pp. 417-418,

3In other words they are both not sufficiently curved and positive definite, that is convex and insufficiently
curved.
4[23], Definition 1, p.417.
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which applies to any NF, not only to the KR type. For the KR type the Morse property
required in the proof of Proposition 2.4 needs to be proved.

To do this, Lemma 3.8, p.433 is used. This Lemma is then “fed” with both Proposition
3.6 and the proof of Proposition 3.9 related to existence of a positive eigenvalue. In
our treatment here, proposition 3.6 is proved as long as there exists at least a single
sufficiently curved tangent direction at every obstacle boundary point. It is a condition
ensuring a negative (definite) eigenvalue of D%y, the NF Hessian matrix, does exist. This
is actually the “escape direction”.

Hence, that all critical points, other than the destination, are not local minima, but are
either saddles or maxima, can be proved solely by requirement of at least one sufficiently
curved tangential directiong.

That all of these are (possibly degenerate) saddles can be proved for radially increasing
obstacle functionst using the core of Proposition 3.9’s proof, of course adapted to be more
general (i.e., not only for spheres).

But Proposition 3.9, which uses Lemma 3.8, does not need to hold. Although existence
of at least one negative and existence of at least one positive eigenvalue have been
proved, the direct sum decomposition required in Proposition 3.9 cannot be used, because
there may be other linearly independent subspaces (curvature eigenvectors called principal
curvature tangents) in which we have not proved what happens.

In the classic proof by Kodistchek and Rimon, the tangent subspace is shown to be
negative definite, while the radial one positive definite.

In the sufficiently curved proof the same is done.

In the partially nonconvex but partially sufficiently curved case, the “pairs” of directions
change (subspaces). The tangent directions are separated into those which are sufficiently
curved and the rest, which are nonconvex, plus the radial one. These again form a direct
sum decomposition, it is just that the sets of durections have changed, and now both
eigenvectors from the radial and tangential subspaces participate in the positive definite
subspace.

In the convex insufficiently curved case, the method of Lemma 3.8 may be used for
a (dense?) set of destination ¢, selections, but there will exist another set of destination
selections for which the requirements of Lemma 3.8 break down, due to the arisal of ¢
Hessian eigenvalues!

For those points, the degeneracy proof is not valid any more. For this reason the
definition of a NF should be re-examined. Re-consideration of why the Morse property in
Definition 1 is needed in the proof of Proposition 2.4 will clarify whether it can be relaxed
or not.

The reasons for imposing nondegeneracy requirements are noted within the proof of
Proposition 2.4:

" "Now suppose that there is some open set of initial conditions in ¢ whose
positive limit set w(_¢) is a saddle point. This would imply that the saddle has
a local stable manifold of dimension equal that of 7 - a contradiction, since
the Hessian is non-degenerate by assumption." ([23], p.418)

>Which implies at least one sufficiently curved principal curvature, since continuity of the quadratic form
associated to the Hessian matrix and constrained to the unit sphere, in combination with the Extreme value
Theorem, applied on the sphere, will lead to a minimum eigenvalue which is sufficiently curved. For the
related proofs, see the Propositions proved later.

6In more detail, those obstacles for which the gradient V3, is outwardly oriented.

’We need to prove that a whole subspace of linear combinations is sign definite, because we do not
know these are eigenvalues of the NF Hessian, we just know their sign.
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Also, the reasons are detailed in the comments following the proof of Proposition 2.4,
where it is again noted thta with this condition a submanifold of codimension 1 of initial
conditions not attracted to ¢, can disconnect .# and “block” the flow toward ¢,.

Since, the gradient system is a family ¢,(z) of diffeomorphisms parameterized by time
t mapping the initial conditions x, to a future point and every z in the compact positively
invariant set has an equilibrium as its w(z) limit, the above statement is equivalent to the
existence of either a codimension 1 manifold of w(x) limit points, i.e. equilibria or a set
of critical points of other codimension which nonetheless still sttracts a codimension 1 set
of initial conditions, hence both blocks the flow and also attracts an open set of initial
conditions, of dimension n.

So these are the reasons for imposing nondegeneracy in the first place. We are inter-
ested in relaxing this requirement.

Before proceeding further with our case, let us revisit [20] by Koditschek. This work
provides a rephrased proof of Proposition 2.4/1990 as Proposition 2.1, p.135. It also
provides a more elaborate commentary and, most importantly to our purpose, a comment
on possible removal of this requirementE. Moreover, note that the proof there is for C?
functions, as commented in [23].

First of all, the proof uses the argument of the dense character of the complement
of a countable union of nowhere dense sets in _#. By removing the nondegeneracy
requirement, we will be led to an uncountable (continuum) of stable sets, which can result
in a union of higher dimension, hence we will be particularly cautious in the dimension of
the critical set and of the stable sets of each critical point belonging to the critical manifold.

Secondly, the comments elucidate that what should be prevented is any co-dimension
1 set of saddles to disconnect # (not (initial points) not attracted to ¢,4, as phrased in
[23]).

An important distinction nonetheless is that by allowing degeneracy, we are not allow-
ing full degeneracy. In other words, we are going to place some (minimal) restrictions,
by allowing only a single eigenvalue to become zero, while requesting that from the rest,
at least one is negative and the remaining sign definite (at least one from the remaining
must be positive). This will lead us to strong results.

Even weaker independent and not subsequent results can be obtained, as noted
in the end, which refer to higher order degeneracy and its structural instability. But in
the weaker case as well, we still require at least one negative (and nearly optionally, at
least one positive) eigenvalues, hence even in the (highly) relaxed case, full degeneracy
is avoided.

Taking the previous arguments into consideration, the example provided in [20] which
defies the properties we are to prove, does so because it is fully degenerate. The same
happens with the example referred to therein, i.e., 1.1.3 from Palis-de Melo, Geometric
Theory of Dynamical Systems [].

Finally, from this work of Koditschek, in support of our effort it is commented that

' “While this condition incurs an undesirable loss of generality the technical
problems which result in its relaxation require more attention than worthwhile
in this paper."

This implies that an extension might be possible, although particular technical prob-
lems would need to be addressed. Our present work treats this extension.

The original proof by Koditschek and Rimon uses Lemma 3.8 and Proposition 3.9 to
advance to nondegenerate saddles at once. This has been done for sufficiently curved

8Although from a different viewpoint of why that might be desirable for applications.
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spaces in a similar way in thapter 4.

But for our purposes we need the following which is unmentioned in [23] since no
degeneracy has been considered there, but could have been used (and is actually as if
half of it is implicitly used when deducing that at least one negative eigenvalue implies
the point is not a local minimum, i.e., that even in case of degeneracy, this result about
the quadratic form implies some things about the actual function behavior).

Definition 51 (Non-semi definite function [38]). Non-semi definite is a homogeneous
function g : K ¥ Rwhere K CR"isaconeifr € K,t c R = tr € K, i.e., a function
such that g(tk) = t?g(k),Vt € R and some fixed p, when there exist z,y € K : g(z) >
0Ag(y) <O.

Proposition 52 (Nonsemi-definiteness —- saddle [38]). If F,, is nonsemi-definite, then
a is a saddle point of f.

Proof. The proof can be found in [38]. O

where F,, is defined as the first nonzero Taylor form. The kth Taylor form is defined
as (n € N is the dimension number)

1 k 1 k' 7 2 in i1 0 in
=g X (g (Ph0E D) s )
11,%2,...,1lpn
le Z 0 Yi] - N* [ ,TL]
Zj 1=k
. (6.23)
where D} £ (aif)i
form is obtained for &£ = 2 and includes all 2nd order Terms
1 2 1 2' i1 Ty in i1 0 in
POy X (g (PP ) @etat )
11,12, ...,1p
i; >0,Vj € NN [1,n]
Z? 1 =2
(6.24)
But the exponent constraints
{ i; >0,V € NN [1,n] }
Z?:l Z] = 2
{ij, =2\ ij, = 0,¥jm # 51} V .
{ijl =1 N ijQ =1 A 'L.j - 0 \V/.]m 7é jl ]2} (625)

{ {21'22|"ln' :H;L: _Zﬂl Hm 1 .Jm _Q'Hn ' 0' _2} }

{H?:l il = ZjllljZ!HZ’L 21 ij,,! = 11! Hn 20l = 1}
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Therefore, substitution in the 2nd Taylor form yields for the first case
1

2
51 (P2f) (@)
1 W51 ~iimy im Gjm,, iy idmy iim ijim,,
= > (ﬁ (D i Djt Dy - Dy f ) (@)zy gy
1=, =0Nim#Af \ 1 [T
1 2 0 0 2.0 0 0
— —2|0' o O‘ (DleJml e Djnzn,l f) (a)lex]ml xjm2 oo ZL’jmn71
1 2 2
D) (Djlf) (a)z3,
(6.26)
and for the second case
1 2
ij; =115 =115, =0,Vim#j1,j2
1 i1 yiio ijml iij i]'mn,Q i Ly ijml ijm2 ijmn,Q
(Zj '7/] 'H’n—Ql 7/] | (Djl D]2 D]ml Djm2 T Djmn,Q ) (a)le ij ijI xjm2 e xjmn,Q
1°7J2° m= m"*
1 1 1 0 0 0 1,..1,.0 0 0
T2 o 12 0! <Dj1Dj2Djm1Djm2 o Djmn_2f> A S S
- ot
= (D, Dj, f) (a)zjnajo
(6.27)

Therefore, the kth Taylor form is the polynomial form induced by the kth derivative
of f at point a. In other words the terms of the kth Taylor form are those terms of the
Taylor series which are of order .

The first order Taylor form is the linearization, which accurately describes a function in
the neighborhood with nonzero first derivative, according to the implicit function theorem.

The second order Taylor form is the quadratic approximation of the function which
accurately described it in the neighborhood of a nondegenerate critical point, according
to the Morse Lemma [39].

The first nonzero Taylor form refers to the least order of the derivative which is not
identically equal to zero. Degeneracy is allowed, as emphasized by the non-semi definite-
ness condition, but obviously full degeneracy is not allowed, because of the definition of
non-semi definiteness.

The following ensures that all these are only (possibly degenerate) saddle pointsg.

Proposition 53 (Partial sufficient curvature = saddles). For any partially sufficiently
curved world, if £ > N(ey,), then any critical ¢. # ¢4 is a (possibly degenerate) saddle.

Proof. By Proposition {3, the radial direction is positive definite 7+ (D?9) (q.)7; > 0, by Def-
inition ﬁand Proposition A0, there exists a tangential direction, such that i (D2¢) (q.)é; <
0. Then, set z = 7,y = £, in Definition 51|. At ¢. the first Taylor form is zero F, = 0, the
second £ is the quadratic form associated with the Hessian matrix (D?¢) (¢.). Since
Fy(7;) = #X (D?@) (¢g.)7; > 0, Fy is not identically equal to zero, so it is the first nonzero

Note that full degeneracy does not imply that the Hessian matrix is identically zero, as for example in

the case of {(1) 8] , Whereas if the Hessian matrix is identically zero, then obviously it is fully degenerate.

Hence, if the Hessian matrix is not fully degenerate, it follows that it cannot be identically zero.
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form F, of ¢ at ¢.. Since both F,(#;) > 0 and F,(#;,) < 0, F, is nonsemi-definite. By
Proposition 52 the result follows. ]

The Polar property has been proved. So, by now our function ¢ is by construction
Analytic or C? (depending on our choice, see [23]) and Admissible, and also Polar.

The Morse property remains to be discussed. Note that the diffeomorphism theorem
still holds. Hence, we can continue working with ¢ instead of ¢. Also, our results will be
applicable to any diffeomorphic world (so we also extend the NF method to more general
topologies as well, namely those which involve multiply connected obstacles).

We haveproved our first results and are now left with saddles which may be degen-
erate and cause problems. The types of problems we want to avoid have been exposed
previously and are open local stable sets of any of these saddles ¢. € .7, N €.

To advance and continue speaking of NFs, we now need to extend their definition. In
the spirit of Appendix I, p.515, [28], we provide the following extended definition. Note
that their new definition will allow for ¢ to be non-Morse at any critical point other than
the destination. This includes the case of sharp corners in the Appendix mentioned.

Definition 54 (Extended Navigation Function). Let .# c E™ be a compact connected
(analytic or C? manifold with boundary. A map ¢ : .% — [0,1] is a (possibly degenerate)
navigation function if it is

1. C? on .# (analytic is stricter but not needed, this ensures uniqueness and existence
of closed-loop robot system trajectories);

2. Polar on .#, with unique minimum at ¢, € .% \ 0.% (this makes it useful because it
ensures convergence);

3. The union of any critical points ¢. € (% N %,) \ {¢4} has a stable set of Lebesgue
measure zero (this is the best that can be done with smooth vector fields);

4. Admissible on .% (ensures safety -i.e., collision avoidance- and that transients of
the closed loop mechanical system are stable as well, “inheriting” good properties

[23]).

Compare this with Definition 1, p.417 [23].

Note, that according to pp. 515-516 [28], the Morse property is used to prove that the
resulting feedback control law still guides the physical system correctly. This is noted also
in p.418 [23], namely that it permits a straightforward proof that the desirable limiting
behaviour of the gradient flow is “inherited” by the ultimate closed loop mechanical system.

Relaxation of the Morse property requires reconsideration of the underlying control
theory [28]. Nonetheless, it is also conjectured in p.516 [28] that a simple energy-
conservation argument will ensure the physical viability of this extended class.

6.2.3 Exploring degeneracy causes

Before proceeding further with our case, let us explore how degeneracies can arise.

The issue with closed surfaces is that there exist points of insufficiently curved tan-
gential directions, together with sufficiently curved tangential directions, together with
sufficiently curved tangential directions, but without any nonconvex tangential directions.

Stated in other words, the tangent space of some points is partially sufficiently curved,
partially insufficiently curved, but overall convex.

The reason these points are ineluctable in the case of closed surfaces which are almost
insufficiently curved is now going to be elucidated.
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First of all, almost insufficiently curved surfaces come in two flavours. Those which
are partially nonconvex within their tangent space, and those which are fully convex.

The partially nonconvex surfaces cannot be closed because then points of fully convex
tangent space should exists. If we consider surfaces which are both partially nhonconvex
somewhere and sufficiently curved (implies convex as well) elsewhere, then for these
to be C?, points of convex but almost insufficient curvature will arise intermediately to
the two areas. Hence, any closed obstacle which is somewhere partially nonconvex will
include points of convex almost insufficient curvature.

Any other closed almost insufficiently curved surface which is fully convex everywhere
will include such points by definition, because otherwise it would have been sufficiently
curved. It has been explained why convex almost insufficiently curved points always arise
on closed surfaces.

At these points there exists a maximum radius of curvature among the tangential
direections, such that there are curvature half-spheres with non-empty intersection with
the free space .%.

As a result, the destination ¢, can be placed within the maximal curvature half-sphere
at that point, on the maximal curvature half-sphere at that point, or outside the maximal
curvature half-sphere. Each case is analysed as follows.

Case 1: If ¢, is within the maximal curvature half-sphere, then at that point there exist
curvature half-spheres which include ¢, inside them and others which are smaller and do
not include it.

In the tangent direction of the first ones the Hessian quadratic form is negative definite
tT (D?p) (q)t; < 0 whereas in the tangential direction of the second one the Hessian is
positive definite ¢} (D?y) (¢)t; > 0.

As long as these separate the tangent space into a direct sum decomposition, the
proof of non-degeneracy is the same as for spaces of negative Gaussian curvature which
are almost insufficiently curvedtd,

Case 2: If ¢, is out of the maximal curvature half-sphere, then it is outside all curvature
half-spheres at that point. This implies that ¢} D?t; > 0, V#; at that point and the classical
proof is valid.

Case 3: In this case ¢, is on the maximal curvature half-sphere boundary. All other
curvature half-spheres at that point are smaller and do not include ¢;. Hence, £F D*pt; > 0
for these. But ¢f D?pt; = 0 at the tangent direction #; corresponding to the maximal
curvature half-sphere.

It is noted again that these conclusions follow from the assumption that the critical
point ¢. arises in such an area. But since we are not sure where ¢, will arise, the existence
of such areas is problematic.

The set of such points is open, due to the C? property of ¢, which implies that curva-
tures are continuous, therefore there is a neighbourhood of points with maximal curvature
half-spheres protruding from the obstacle.

As a result, also the set of destinations ¢, which belong to the union of these maximal
curvature half-spheres corresponding to these points is an open set.

At those points (case 3) the ¢ D?pf; = 0 can be shown to be the eigenvector of a
zero eigenvalue by proving that the quadratic form % D20, associated with the Hessian
matrix, when restricted to the unit sphere ||o|| = 1 has a stationary value in this direction.

This can be proved by showing that the discriminant of the restricted quadratic form

101t interesting to note that radius of curvature can be ordered from +00 — 0t — 0~ — —o0, where the
direction is from convex to nonconvex.



6.2 Partially Sufficiently Curved Worlds 183

in spanning directions of the sphere tangent space is zero.

This can be associated with points of the obstacle where its gradient is an eigenvector
of the Hessian matrix (Gradient Extremal Paths), as well as other points. But for a single
tangnt direction at them. At all these #f D?3;t; = 0 holds.

In any case, as analysed in a following section, the set of such points is open.

We conclude that the set of points where if a critical point arises ¢. it will be on a
maximal curvature half-sphere and have zero eigenvalue, is the intersection of two open
sets of ¢, selections. Therefore it could be an open set.

To treat the case of (possibly arising) degeneracies, as the previous analysis suggests
are not always avoidable, we need to consider them by application of more general the-
orems, namely the Morse-Bott Lemma and Thom Splitting Lemma.

6.2.4 NF General Convergence Proof

Proposition 55 (Extended Proposition 2.4 [23] ). Let ¢ be a C? function on a compact
Riemann manifold _#. If the following hold
1. The union of all initial conditions whose positive limit set includes saddle points or
maxima is a set of Lebesgue measure zero.
2. The gradient Vg is transverse and directed away from the interior # \ 0_¢ of set
_Z on the boundary its boundary 0 _¢.
Then the negative gradient flow — (V) (z(t)) = 2(¢) has the following properties
1. 7 is a positive invariant set;
2. the positive limit set of all initial conditions in _# consists of tje critical points of ¢;
3. there is a dense open set _# C .J, whose positive limit set consists of the local
minima of .

Proof. Claim 1: By hypothesis, the vector field is directed toward the interior of _# on
its boundary 0_¢. Hence, set ¢ is positive invariant under the negative gradient flow of
function .

Note that non-regular points ¢. (i.e., those for which (V) (¢.) = 0 for ¢. € 9_#) on
the boundary 0_# have a gradient which is trivially transverse to the boundary and which
does not have a defined direction, since zero.

Claim 2: According to Hirsch and Smale 1974, Theorem 4, p.203, the following holds.
Let ~ be an w limit point of a trajectory of the negative gradient flow. Then if the trajectory
is included in a compact positive invariant set, then = is an equilibrium of the gradient
system.

As a result, the positive limit set of _# consists of the critical points of ». These are
either maxima, saddles or minima.

Claim 3: It follows from the hypothesis that no open set of initial conditions is attracted
to saddles or maxima. The complement of the set of initial conditions attracted to saddles
or maxima is a dense open set. Since all initial conditions have equilibria in their positive
limit set, this dense open set has as positive limit set the equilibria which are not saddles,
nor maxima, these are the local minima of ¢. O

We now need to prove that, under certain assumptions, the KRPF is a NF in the sense
of the extended Definition 1 (previously provided). This requires several steps.

Firstly, an understanding of the proofs of Propositions 0,1, and 3, which provide con-
ditions related to sign definiteness of the Hessian matrix (D?p) (¢.) at any critical point
¢ € 6, N %, in the tangent and radial directions.
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Secondly, an understanding of the reason for which degenerate eigenvalues of (D?y) (q.)
may arise. This depends on the geometry of obstacles and the destination and has already
been analysed.

Thirdly, a combination of the previous three, which relates geometric properties of
the obstacle’s boundary to the NF properties of the Hessian matrix (D?¢) (q.) eigenvalues
which result from them. This is a connection of properties needed to derive our basic
result. It is provided by Proposition 6.

Fourthly, the main result shows that there exist a tuning parameter lower bound such,
that the KRCNF is a NFaccording to the extended definition, provided obstacles satisfy
certain geometrical requirements.

Finally, a comment on the cause of higher order degeneracy is provided.

The following proves that for all critical points in which at most a single Hessian eigen-
value can be degenerate and all others are sign definite with eigenvalues of both signs
present, then the set of initial conditions with these critical points in its positive limit set
is of measure zero.

Proposition 56. (Single Hessian degeneracy and at least one negative eigen-
value, imply measure zero stable set): If for a subset of critical points ¢. € €\ {q4}
all have at least one negative, at least one positive and at most one zero eigenvalues of the
Hessian matrix (D%p) (¢.), then the set of initial conditions of system 22 (¢) = — (V,¢) (z(t))
which have such a point ¢. in their positive limit set is of measure zero.

Proof. Since at most a single eigenvalue can be zero, any critical subset is of dimension
at most 1. No branching of it can arise. This follows from Thom’s Splitting Lemma [36]
oz, y) = om(x) + @nur(y), where ¢y, (z) the Morse part on = mapped to #2*(q.) by a
smooth change of coordinates and ¢y, (y) the non-Morse part, which is defined on an at
most one-dimensional subspace y smoothly mapped to the single degenerate eigenvector
span {pi;,(¢.) }. To prove it, note that the restriction (D?¢y) (¢.)|. is nonsingular, hence ¢
can remain constant at most along y, limiting the critical set to at most one dimension.
Since 1-dimensional without branching, every critical set is diffeomorphic to either a
circle or a line segment. If diffeomorphic to a circle, the critical set is a nondegenerate
critical submanifold disjoint from other critical sets, hence the Morse-Bott Lemma to it [40],
[37]. If diffeomorphic to a line segment, we break it into its interior and endpoints. To
each interior point the Morse-Bott Lemma applies, while to the endpoints Thom’s Splitting
Lemma. Taking into account that the critical sets are at most of dimension 1, the sign
definite subspaces sum to an (n—1)-dimensional subspace. On this at least one eigenvalue
is negative, hence the stable set is at most (n — 2)-dimensional at each ¢.. The union of
stable sets over the critical sets is then at most (n — 2) + 1 = (n — 1)-dimensional, hence
a Lebesgue measure zero set. O

The following is our main contribution.

Proposition 57. (NF in Partially Sufficiently Curved Worlds) In every partially suf-
ficiently curved world .# there exists a N(¢,,), such that for all £ > N(g;,) the KRNF ¢ is
a NF Definition 54 on .%.

Proof. By Definition 50 and Propositions 40 and #7 the Hessian (D) (¢.) satisfies the
requirements of Proposition 56, hence it is a NF according to the extended Definition [54.
[
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(a) Partially sufficiently curved. (b) Partially sufficiently curved. (c) Not sufficiently curved.

Figure 6.5: Three different ellipsoids. In the first case the ellipsoid is everywhere partially
sufficiently curved. Note that insufficient curvature here arises due to an insufficient con-
vex principal curvature, not a nonconvex one. The agent successfully navigates around
the ellipsoid. Increasing the eccentricity along the sufficiently curved tangent direction just
below the limit still allows the agent to navigate in the second case. A negligible increase
of the smallest principal eccentricity in the third case renders the obstacle insufficiently
curved, although convex. The agent clearly cannot navigate it any more.

6.3 Inapplicability to Fully Non-convex Worlds

Insufficiently curved spaces are those which contain at least one obstacle boundary
point where the obstacle boundary is not sufficiently curved in any tangential direction ¢,
at that point. The applicability of NFs is depicted in Fig. 6.6.

It is worth emphasizing that insufficiently curved spaces can be both convex and
nonconvex. It has been shown that convex worlds which are almost insufficiently curved
can be navigated with a KRNF. Partially nonconvex which are almost insufficiently curved
(sufficient curvature means at least one direction for which the half-curvature sphere is
included in the obstacle, hence this direction is also convex, so any almost insufficiently
curved obstacle is also partially convex and cannot be totally nonconvex) have been shown
to be navigable as well. But nonconvex are in general not navigable. The reason is to be
shown in what follows.

In the following it is shown that fully insufficiently curved spaces do not accept the
usual proof. In fact the contrary can be proved for high enough & and certain ¢,. Therefore
the usual proof is invalid in this case.

This does not formally prove the inexistence of a KRNF in such spaces. But it is inspired
by the intuitive reason for which KRNFs work as % increases, and on which the proof is
constructed. It is known from experience that for low values of & a KRNF usually does not
exist. One would have to show that the upper bound on £ for which the KRNF posseses
local minima other than ¢, is < 2. Then in no case would a KRNF exist in insufficiently
curved spaces.

The author’s expectation is that such a proof is impossible. The reason is that specially
designed insufficiently curved space may be navigable for low & values using a KRNF. But
these would be just counterexamples, whereas the general case has been shown to not
to be a NF for high .
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Navigation Function

3V everywhere partiall
sufficiently curved world

boundary

Figure 6.6: Navigation function applicability to different worlds. Note that the V every-
where partially sufficiently curved (EPSC) world refers to at most a single convex but not
sufficiently curved principal curvature. Nonetheless, extensions of the proof included here
towards higher order degeneracy are expected. Moreover, note that in 3-dimensional
C-Spaces, every EPSC world can only have one such principal curvature.

There is not much more to be searched in this direction, since it has been shown why
further efforts will not be able to proceed as usual, combined with the intuitive impossibility
evident.

It is therefore concluded that analytic NFs exist in any manifold with boundary (as
proved by KR), but the specific form proposed by KR and herein referred to as KRNF are
applicable and tunable to be NFs only in everywhere partially sufficiently curved worlds.



Chapter 7
Application to Superquadric Worlds

7.1 Introduction

Toroidal navigation functions allow us to treat configuration space topologies of any
genus. This is due to the fact that obstacles of nonzero genus in such configuration spaces
can be diffeomorphically mapped to m-fold tori of the desired genus. Any obstacles of
genus 0 can be mapped to spheres, as in the classic NF formulation.

There are various ways in which toroidal obstacles may arise in the model space of a
robot. An obvious one is existence of obstacles of genus ¢ > 0 in the task space. Their
C-space images then may not be of genus 0. If this is the case, the diffeomorphic images
in model space of C-obstacles cannot be spheres of genus 0.

A simple example is a point robot in a 3-dimensional task space populated by disjoint
2-tori obstacles. In this case, the C-space is the same as the task space and the obstacles
are the same, i.e. 2-tori.

Another case is the possibility of simultaneous collision of a non-point robot with mul-
tiple obstacles disjoint in task space. Then their C-space images will be connected. Such
connections can lead to multiply connected obstacles, hence genus ¢ > 0. Similarly to the
previous case, these C-obstacles cannot be diffeomorphically mapped to spheres.

An example is a spherical robot in a 3-dimensional world with disjoint spheres. Suppose
that the centers of some of the spheres are located on a circle. It can be the case that
the spheres are disjoint in task space, but their C-space images, i.e. their Minkowski sums
with the spherical robot, be non-disjoint in C-space. Nevertheless, this can happen so that
a genus 1 C-obstacle results.

A further example is the existence of revolute or rotational degrees of freedom in
the system. These can produce C-obstacle images of higher genus than the associated
task space obstacle. A simple example is an asymmetric oriented holonomic robot amidst
spheres on a 2-dimensional Euclidean world. Suppose that the world is such, that simul-
taneous collision with multiple obstacles is not possible. Still, due to the rotational degree
of freedom, the C-obstacles are 2-tori. Each one of them corresponds to a sphere in task
space.

In general, if the configuration space is embeddable in a Euclidean space E™ of the
same dimension n, then application of KRNFs is possible, although genus 0 obstacles in
task space will give rise to higher genus obstacles in configuration space, Fig. 7.1. This
increase in genus is caused by the topology of the revolute degrees of freedom.

Nonetheless, note that rotational or revolute degrees of freedom should not necessarily
cause such topology changes. A simple solution mentioned in [66] is to parameterize such
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Minkowski(6)
~ —>

Task Space C-space p

Figure 7.1: Holonomic asymmetric robot in planar world.

degrees of freedom by unbounded real coordinates and use a parameterization periodic
in 2w. Even if this is applied, still the previously described cases can still lead to higher
genus C-obstacles and associated model space obstacles.

7.2 Tori

7.2.1 Implicit Obstacle Function

A 2-dimensional torus I1? = S x S! centered at the origin with axis z as its rotational
axis of symmetry can be defined by the zero level set 371(0) = {¢|3:(q) = 0} of the function

5ia) = (R~ /2 p) 422 =2 (7.1)

where ¢ € R?, R € (0,+o0) is the major radius and r € (0, R) its minor radius?. An
obstacle &; having the 2-torus as its boundary can be represented as

00; £ {q e E*: B;(q) = 0}
0; £ {qe E®: Bi(q) < 0}

To compensate for differences from the global reference frame, a translation of the
origin to the center of the torus, followed by a rotation of its axis suffice. This follows
from symmetry considerations.

Let ¢; denote the torus center. Firstly, the origin is translated ¢ = ¢ — ¢;. Then
the rotation is applied to identify the torus axis of symmetry with the > axis. Let n; €
R3, ||n;|| = 1 be the unit vector in the torus axis of symmetry direction, with respect to the
global reference frame. Let n, € R?, ||n.|| = 1 be the unit vector in the ~ axis direction.
If n; # n, then set & = n; x n, and using the angle of rotation # = arccos (n; - n,) around
axis k, the rotation matrix to be used with respect to the translated frame of reference is

(7.2)

0 —k k
"R, = R(0) = Iscos(0) + kk™ (1 — cosf) + [ k., 0 kx] (7.3)
A

1The torus aspect ratio § > 1 here to avoid degeneration a horn or spindle torus, because none of these
satisfies the conditions of partially sufficient curvature at every boundary point.
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Figure 7.2: Homogenous transform of torus aligned reference frame with respect to global
one.

and the transformation is illustrated in Fig. 7.2.
After the appropriate transformation has been applied, the obstacle function partial
derivatives in the new (aligned with the torus) coordinate system is

%{(R—m>2+z2—r2}:%{<fi— x2+y2>2}+€%{z2—r2}
:2<R— x? +y?

:2<R— x2 + 92

5o 00} = s (R= Va7 TP

%{&(Q)}Z2 <R— x2+y2)2+z2—r2}:2z

(7.4)
hence obstacle function gradient in the new (aligned with the torus) coordinate system is

~ = (R V)

a:2+y2
VaBilg) = | - 2 ( R— m) (7.5)
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We can observe that the gradient V,5;(q) is not defined at the free space interior point
q = [0,0, O]T, the origin, which is the torus center. As a result, this choice of 3;(¢) to
represent a torus is not suitable for building a NF. It is not C! at the origin, hence neither
C? therel,

Nonetheless, it is interesting to note that

_\/ijTyQ (R—\/xQerQ) _oR

lim (V,53)(q) = lim |__ 2 _ — |—2R 7.6
lim (V8 (q) = lim 2 <R «/x2+y2> ’ (7.6)

2z

so it is not ill-conditioned in the origin’s neighborhood.

Even if we thought about directly defining a NF with such a j; incorporated in its
formula, blowing up of j3; at the torus origin would cause a second global minimum at
the torus center ¢; (blowing up of ¢ denominator leads to 0 value, the minimum of its
codomain), different than the destination ¢,.

For the above reason we are going to use another implicit function, namely the same
as above after algebraic elimination of the square root. Let the 2-torus be described by
the quartic function

Bilg) = (2% + 42 + 22+ R? — r%)° —4R? (2% +47)
=2+ 207 (PP + 22+ R —1%) + (¥ + 22+ R — %) —4R* (2 + )
= 1* 4 22%y* + 22%2% + 22°R? — 227 + ¢
+ 2y (z2 + R? — 7"2) + (22 + R? — 7"2)2
— 4AR%2* — AR%y?
=zt 4 222y + 22227 + 222 R? — 22%r% + yt 4 29222
2P (B2 — 1) 4 24 4222 (B2 —2) + (B2 — 12)?
— 4R%*r?* — 4R%?

(7.7)

4 4 4
=T +y +z
N—_————
4th order terms

+ -2 (R2 + r2) 22 —2 (R2 + 7"2) y:+2 (R2 — 7“2) 2242 ((172y2 + 22+ z2x2)

2nd order terms
2
+ (Rz - 7"2)

D
constant term

This is a polynomial in multiple variables, hence a smooth function everywhere ; €
C> ([R™,R]) c C*(|R™,R]) and positive in the free space interior

Bi € C=([F\0F,(0,+00)]) C C* (|7, (0,+00)])

and zero on its boundary on the obstacle 00; = 0.7 N ;. Hence, it can be used as an
obstacle function in a KRNF.

ZNote that the proof about local minima requires curvature properties in an obstacle’s neighborhood.
But C? properties are required also away from that single obstacle, because such points may belong to the
neighborhood used in the proof for local minima near another obstacle.
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The partial derivatives of 3; are

%{ﬁz(Q)} = {% {(x2+y2+z2+32 —7’2)2 — 4AR? (I2+y2)}

0 2 0
z%{(x2+y2+z2+fi2—r2) }—4R20—I{x2+y2}
:2(x2—|—y2+z2—|—R2—7’2)%{x2+y2+z2+R2—r2}—4R22x (7.8)
:4x(x2+y2+z2+R2—r2)—8$R2

:4x(x2+y2+z2+R2—r2—2R2)
=4$($2+y2+z2—R2—r2)

Similarly

—{Bi(0)} =4y (+" +¢y* + 2 — R* —1?) (7.9)

and also

0 %)
&{ﬁi((ﬁ}:&{(x2+y2+22+R2_r2)2_4R2 (:L’2+y2)}
:%{($2+y2+22+f£2—r2)2}—%{4R2<x2+y2)}
7.10
:2(5E2+y2+22+R2—T2)%{x2+y2+z2+R2_T2} ( )
=2(22) (& +y*+ 2°+ R* —17)
=4z (2?+ "+ 22+ R —1?)

Therefore the obstacle function gradient with respect to the aligned reference frame is

4o (22 + y* + 22 — R — r?)
ViBilg) = |4y (2® +y* +2° — R* —r?) (7.11)
4z (22 + y* + 22 + R* —r?)
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Let us now find the Hessian matrix as well. The second partial derivatives are

o [0 0
9 {% {ﬁi(Q)}} =5 {4z (2 +o* + 2 = R* = %)}

0 0

= £{4x} (x2—|—y2+z2—R2—r2) +4x£ {x2+y2+z2—R2—r2}

(m2 +y 22— R — 7"2) + 422z

(2? + 9+ 2 — R* —r?) + 827

(
0

=4

=4

=4 3x2+y2+22—R2—7‘2)

0 0

a—y{%{@@}} = a—y{‘lx (#* +y*+2° = R*—r?)}
:4x§y{x2+y2—|—22—R2—r2}
= 422y = 8xy

o [0 0

E{%{ﬁi((ﬁ}} = @{41? (#* +y* +2° = R —r?)}

:4x2{x2+y2+22—R2—7‘2}

0z
=4x2z = 8xz
2{8{B()}}_4(x2+32_'_z2_R2_r2)
oy oy T Y
%{aa {Bz(Q>}}:%{4y(l’2+y2+z2_R2_r2)}

0
:4y§ {x2+y2+22—R2—T2}
= 4y(2z) = 8yz

9 {&{@(CD}} = % {42 ($2 +y? 4+ 22 + R? —7"2)}

:%{42}(:p2+y2+z2+R2—7‘2)+4z%{x2+y2+22+}%2—r2}

=4 (2*+ v+ 22+ R* —r?) +42(22)
=4 (2*+y*+ 22+ R* —r?) +4(277%)
=4 (2 +y* + 32> + R* —1?)
(7.12)
Therefore, the Hessiam matrix of this obstacle function is
43z +y*+ 22— R* —r?) 8y 812
D?Bi(q) = 8xy 4 (2?2 +3y% + 22 — R? — r?) 8yz
8xz 8yz 4(x® +y* + 32 + R — r?)
(7.13)

There are essentially two distinct positions for the destination ¢,, yielding qualitatively
different gradient fields. The first one is when ¢, belongs to the - = 0 plane. The
resulting field is visualized with several trajectories starting from different initial conditions
in . Codimension-2 saddle critical manifolds form around it and an isolated saddle
inside it. These critical manifolds can be ensured to be nondegenerate by a suitably high
value of k, as proved in the previous chapters.
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Figure 7.3:  Trajectories from different initial conditions, on planes y =
—14,-10,-3,0,1,10, respectively. In cases y = —3,0,1, a saddle is visible on the
z = 0 plane, inside the torus ring, near its center. The destination ¢, is on the right.
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Figure 7.4: Selecting a destination ¢, on the torus axis of symmetry leads to a circular
nondegenerate critical manifold of saddles (for a single torus on its own of course, when
other obstacles are present the symmetry may break, nonetheless for high % close to the
torus the situation tends to that when it is on its own, this is how the proof works and
hence this is why we consider it alone here).

The other case is when the destination is on the torus axis of symmetry. In this case a
circular nondegenerate critical manifold forms, as illustrated in . In the previous chapters
it has been proved that such a nondegenerate saddle critical manifold of codimension-1
has a measure zero stable set. In order to further illustrate how symmetry is responsible
for this degeneracy, in symmetry breaking is introduced and the corresponding
trajectories shown.

7.2.2 Symmetry Breaking

Degeneracies can arise for a torus when ¢, is on a maximal sphere of curvature (at a
maximal point on the torus) not on the symmetry axis, or on the symmetry axis.

The case of degeneracy with ¢; hot on the symmetry axis leads to isolated degenerate
points. It is similar to the case of isolated critical points when ¢, is on the symmetry axis
of an almost insufficiently curved ellipsoid. Both cases can be analyzed with tools from
Catastrophe theory.

Here we are going to work on the degeneracy arising due to symmetry, when the
destination ¢; belongs to the torus’ axis of symmetry (here the > axis of the aligned
coordinate system).

It is expected that, although there exists a continuum of critical points forming a
critical manifold, rendering such a KRNF degenerate, hence not a NF according to the
classical Koditschek-Rimon definition of a general NF, using the Morse-Bott Lemma and
the quadratic form expression developed, we can show that the critical set comprises of
the union of disjoint smooth connected critical submanifolds and isolated points, hence
there can be no open stable manifold.

The stable manifold in this case is of zero measure, which is the reason for requiring
non-degeneracy in the first place [21].

A viable alternative to avoid a critical manifold is to break the rotational symmetry of
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Figure 7.5: Torus symmetry breaking results into four isolated critical points, instead of
a critical manifold. Even if the isolated critical points are degenerate, it can be proved
that their stable set is of Lebesgue measure zero, suing Thim’s Splitting Lemma and the
fact that radially the NF is positive definite and in one principal tangent direction the NF
is negative definite due to sufficient curvature (for suitably high &).

the positive level sets 5;,(q) = C' > 0, but not of the 0 level set, to avoid affecting the
obstacle’s shape.

This symmetry breaking can be achieved by introducing a rotationally asymmetric term
in the implicit function. For level set 3;!(0) to remain unaffected, a multiplicative term is
selected, to obtain

2
Bilq) = cos?(6) ((mQ +y*+ 22+ R =) —4R? (2” + y2)> (7.14)
symmetry-breaking term

where 6 = arctan2(y,x). This breaks the degenerate 1-dimensional critical submani-
fold into four isolated critical points (possibly degenerate, but this again does not matter
according to the splitting Lemma applied to the 2-torus), as shown in and the
corresponding trajectories in Fig. 7.6.

7.3 Supertoroids
Supertoroids [42] are defined by the implicit function

Bi(z,y, 2) = ((%)Q + ((%)52> — ay + (aig)gl —1 (7.15)

where ¢1,¢5 € (0,+00) are exponent parameters, a;, as, a3 > 0 are the three radii of the
supertoroid and a, = —= where r > 0 is the torus radius. Differentiation yields the

2, 2!
ayta;
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Figure 7.6: Symmetry breaking removes the critical manifold and leads to four isolated
critical points.
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(7.16)
Note that the order of differentiability (C? etc) depends on the values of ¢;,e,. Fore; <2
the supertoroid is twice continuously differentiable away from (x,y) = (0,0), similarly to
the torus. Loss of differentiability at the origin can be avoided by changing its definition
away from the obstacle (since (z,y) = (0,0) never belongs to the supertoroid), which is
always possible, provided the NF is tuned with a sufficiently high .

Any torus is everywhere partially sufficiently curved. On the contrary, to obtain ev-
erywhere partially sufficiently curved supertoroids, the parameters ¢, e,, a4, as, az should
be appropriately selected. For example, the supertoroid defined by ¢, = 1,65 = 0.25,a; =
0.5,a0 = 0.5,a3 = 0.75 is everywhere partially sufficiently curved. It is illustrated in
the example of Fig. 7.9. For these parameter values 3; is not differentiable at the axis
(x,y) = (0,0), but this can be remedied as already commented, because it is away from
the obstacle.

7.4 Complicated worlds

In 2d ellipses of limited eccentricity are examples of sufficiently curved obstacles
Fig. 5.1. A point agent navigating such an everywhere sufficiently curved world is shown
in E@ 7.7a. No diffeomorphisms are needed, the Koditschek-Rimon Navigation Func-
tion is directly defined on the world. Nevertheless, they are still applicable to treat full
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(a) Point agent. (b) Elliptic agent.

Figure 7.7: Sufficiently curved worlds. In more detail, a point agent in a sufficiently curved
elliptic world and a sufficiently curved elliptical agent in a sufficiently curved elliptic world.

non-convexities. An elliptic agent in the elliptic 2d world of requires an implicit
Minkowski sum. We use the derivative of Rvachev conjunction [91, 92] on a set of agent
boundary points. This provides V3, the C-space is sufficiently curved, as the Minkowski
sum of sufficiently curved obstacles [44]. In a point agent safely converges to ¢, in
an everywhere partially sufficiently curved world, illustrating how tori enable treatment of
multiply connected obstacles, previously not representable by sphere worlds. The vector
field driving it has been visualized in . A useful note is that as the C-space dimension
increases, the NF method has an advantage, because more directions of “escape” become
available and full non-convexity more rare.
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Figure 7.8: Navigation Function gradient field in the world of Fig. 7.9 and the same world

without the supertoroid.
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Figure 7.9: Trajectories in complicated everywhere partially sufficiently curved world.
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Chapter 8

Navigation Function Simulation
Toolbox

The author has developed a Navigation Function Simulation Toolbox for MATLAB. It
enables the user to draw circular obstacles, move and resize them, place the agent and its
destination as prefered and select a navigation function potential of his choice. Simulation
may be run with a user selected parameter k value or with the automatically calculated
k, which guarantees obstacle avoidance and convergence to the goal configuration, as
analyzed in chapter 2.

A README and a LICENSE are included in the Toolbox. An info.xml and helptoc.xml,
together with an HTML documentation are provided in the htmldoc directory as a reference
accessible with the MATLAB Help Browser, or from the MATLAB Start button menu about
toolboxes.

To install the toolbox run installnfsim, following the instructions contained in the
accompanying README.

Table 8.1: Developed software metrics?.

Tool Files Code Comments Blank Total
# # % # % # % #
nfsim 214 5567 54% 2946 29% 1740 17% 10253
nflearn 41 1478 58% 611 24% 473 18% 2562
[timasnf 55 2338 53% 1282 29% 768 18% 4388
Total 310 9383 55% 4839 28% 2981 17% 17203

@ CLOC has been used to generate these metrics, [119].

8.1 Toolbox structure

8.1.1 Analysis spaces

The usual analysis is performed in C-space. For simple mobile robot systems the
task space and C-space are either identical or almost so. In case of spherical agents
and obstacles with holonomic constraints, the C-space is just a similar task space where
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Figure 8.1: Navigation function simulation toolbox architecture.

all bodies other than the agent have originally been spheres, hence their C-images are
spheres of increased radii. For KRNF the only constraint is that the augmented spheres do
not intersect each other. But for complicated cases, mapping to a Model Space enables use
of additional planning methods. Therefore, there are three images of the same problem:
Task Space, C-Space, and Model Space, as illustrated in

In case of nonholonomic agents the analysis is
performed in C-space and the controller is proved
to be a Lyapunov function there, it is not such for
purely topological reasons.

In case the Jacobian between C-space (where
actuation takes place -?) and Model Space is calcu- | Configuration Space
lated (either numerically or analytically) then the an-
alytic gradient in Model Space can be used because
it will be possible to transform it back to C-space.

Task Space

‘: whatever appropriate

1 diffeomorphism
Y

The above is also applicable when the C-space Model Space
is identical with the Model space.
In case the Jacobian is not known for the dif- Figure 8.2: Analysis spaces.

feomorphism, then the gradient and Hessian matrix
are calculated numerically in the C-space.

There are examples (like dexterous grasping), for which the C-space (i.e., finger con-
figurations) is mapped to Model space (object C-space) through a differentiable mapping
whose second derivative requires the Jacobian of kinematics and its derivative and inverse.
In such a (rare) case the second derivative of the diffeomorphism is available analytically,
e.g. © = J i — J 1JO (Craig p.186, Eq.6.97).

If the obstacle second derivatives are as well twice differentiable, analytically, then
the Hessian can be exactly calculated there.

Also, if the obstacles are defined in C-space and the Hessian should be exactly cal-
culated for searching the Model space, then the diffeomorphism’s 2nd derivative should
be used to calculate the obstacle Hessians in Model space from the obstacle Hessians in
C-space.

These can be combined with Hessians of other obstacles which are directly exactly cal-
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culated in Model space. Alternatively, they could be calculated in task space and mapped
to C-space.

Anyway, the easiest way is to use a numerical Hessian, although not accurate.

Also, the obstacle function 3 could be numerically differentiated to find D?/3 and then
used in an analytical calculation of the field Hessian.

Note: KRNF require a diffeomorphism to exist because they want to ensure that finite
(hence bounded) gradients (=velocities=control inputs) in Model space remain bounded
in C-space. If this is independently ensured, one can integrate the trajectory in model
space and then map the resulting points to C-space (i.e., map the next point using the
inverse diffeomorphism, hence avoid mapping the gradient using the diffeomorphism’s
Jacobian (so we do not need to find the Jacobian, nonetheless we need to theoretically
prove it is nonsingular everywhere).

After integrating model space the new point can be mapped back with the inverse
diffeomorphism (which is certainly easier to calculate than the second derivative of the
inverse diffeomorphism).

Then zew—od — 4 js the velocity command in C-space, which due to the theoretical
guarantees on the Jacobian is bounded.

The transformation should be invertible in order for the inverse to exist and take
us back. This is equivalent to non-singular Jacobian for the forward mapping. Inverse
mapping of velocities also requires invertibility of the inverse mapping derivative, which is
guaranteed by invertibility of the forward mapping derivative (Jacobian).

Logically enough, the forward 2nd derivative of the mapping should exist for the in-
variance transform theorem to hold, but no higher derivatives need exist.

8.1.2 Transformations between Analysis Spaces

Depending on the specific problem treated, a
custom map is needed to map the task space or con-
figuration space representation to the model world.
This step depends on the details of each case. Al-
though it is supported by some functions provided,
such as diffeomorphisms, it still relies to a large ex- Configuration Space
tent on the problem instant considered.

This is appropriate in order to optimize each im-
plementation appropriately and in fact reduces clut-

Task Space

‘: whatever appropriate

1 diffeomorphism
Y

ter. The reason is that interfacing to the same model Model Space

space can vary widely between even similar prob-

lems, so no all-over function is provided for this

level. By dividing the mapping between C-space and —> KRNFS (spheres)
Model space from the planner more transparent data — KRNF (general)

interfaces are achieved.

For data type transformations appropriate con-
verters can be used. Each transformation can act on
a world structure and produce another world struc-

— PNF (spheres)
—> Khatib (general)

ture. This can then be parsed to arguments suitable —> MAKRNFDS (spheres)
to be provided as input to the chosen planning al- ) _
gorithm. Hence, the need exists for data translator Figure 8.3: Analysis spaces.

functions.
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After the above procedure, the problem has migrated to the model space. In model
space everything is defined using standard primitives, see Fig. 8.3. Therefore, at this
level many facilities can be provided. The planning algorithm is called and supplied with
geometric arguments in the appropriate format of standardized geometric primitives.

Table 8.2: Function Libraries.

Potential Field Library Geometry Library
Khatib Sphere
KRNFS? Ellipse, Ellipsoid
KRNF One-Sheet Hyperboloid
MAKRNFDS 2-Torus

PNF Superquadric

Rvachev operations (CSG)
General (like splines)

@ Embedded sphere calculations for efficiency.

8.2 Function Conventions

8.2.1 Potential Field Function

Input g = [¢1, ¢2, - - -, ] Calculation points.

If the field function only accepts 3 and does not call any other function to combine j;
of multiple obstacles, then the user should evaluate 5 from 3; before calling the potential
field function. This can be done either with custom code, or by using either bi2b or
rvachev.

Apart from the above exception, the majority of potential field functions require the
following standard arguments. In what follows n is the model space dimension, M is the
number of all obstacles (including zero™ if such exists) and N is the number of calculation
points ¢; € £™ on which the function values are required.

8.2.2 Gradient of Potential Field Function

The user should use the geometry library functions to calculate individual obstacle
gradients V3 and obstacle function values 3; and if Dbi2Db, bi2b are not incorporated in
the field gradient function, the user should also combine them to obtain V3 in order to
pass it as an argument to the selected gradient function.

8.2.3 Hessian matrix of Potential Field Function

The user should independently compute obstacle Hessian D?3, gradient V3 and im-
plicit function  (or for multiple obstacles, if appropriate) and provide them to the Hessian
matrix function of the potential field.



8.2 Function Conventions

205

Table 8.3: Potential Field Function.

What Type Size Equation
Output Row array IxN  [e(q),o(q2), -, plan)]
Calculation points Matrix nxN q,q,-..,qN]
Destination point  Column vector n x 1 qa
Single 3 at g, Row array IxN  [Blqr),B(q),---,B(qn)]

61(%) 51((]2) 51(QN)
Multiple?s; at ¢; ~ Matrix M x N 62(_%) Bolee) B2<,QN)

Bu(qr) Bar(gz) Bu(an)

@ Exceptions are any functions operating in sphere worlds, e.g. krnfs, which incorporate
sphere obstacle calculations to reduce computational cost. For example, calculation of
classic tuning for KRNFS is optimized for spheres.

Table 8.4: Gradient of Potential Field Function.

What Type Size Equation
Output Matrix — nxN  [(Vo)(q1), (Vo) (g).---, (Vo) (gn)]
Calc. points Matrix nxXN (¢, 92, qn]
Dest. point Col. vec. nx1 Ja
Single fatq; 7 IxN (3@ Aa).... Alax)
-51(611) Bi(q2) 51((]1\7)
Multiple?s; at ¢ Matrix M x N ﬂQ(_(h) 62(:%) 62(:%)
| Bu(q) Bulg) - Bulan)
Single Vi atg, Matrix  nx N  [(VB)(0), (VB) (g),- .., (V) (qn)]
( [(VB1) (@), (VB1) (g2); - - -5 (V1) (aw))]
e v, sty S apr | (TR0 (TR (95 )
L [(VBu) (@), (VBu) (a2), - - -, (VBu) (an)]

@ Note that grad_krnfs, grad_pfs are exceptions to the above rule, because they are optimized for
sphere worlds. The reason is that they are only defined on sphere worlds. In their case, the user
provides sphere centers and radii, then the gradient field function takes care of calculating any

obstacle data required.
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Table 8.5: Hessian matrix of Potential Field Function.
What Type Size Equation
Output Sy XN D) @) (%) @) (0%) (av)
Calc. points Matrix nx N  [q1,¢2,---,qN]
Dest. point Sgéltjg:n nxl g
Single 5 at ¢; ;{:’r\g’y Ix N [B(qr), B(g2), -
_ﬁl(Ch) 51
Multiple?s; at ¢ Matrix M x N g Q(fm 5 2(
_/BM Q) 5M (]2 ﬁ q
Single V3 at ¢, Matrix nxN  [(VB)(q), (VB , (qN)]
[ (VB (¢1) wl (VB (
Multiple V5, at g, Cell Mox 1 [(VB2) (g ) (Vﬁz)( ) (Vﬁz)( )]
array
' L [(VBu) (g 1>,(V5M)( 2), -, (VBu) (aw)]
Single D*3 at q)j  gr0 1X N {D8(0). D*A(a).... D*(av))
cell Dzﬁl(ﬂh) Diﬁl(%) Diﬁl(@N)
D D D
Multiple D26 at ¢, Ma- M x N 5:2(%) B2(q2) Ba(an)
tri ’
e D?*By(q1) D?*Bu(g2) --. D*Bulqn)

@ Note that hes_krnfs is an exception as previously described.
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Chapter 9

Learning Navigation Functions

9.1 Introduction

We are interested in constructing feedback motion planning controllers in unknown
environments. In particular, the selected controllers are of the Navigation Function (NF)
type. These controllers are in general functions of the desired destination, the current
configuration and the configuration space obstacles. The first two, i.e., destination and
current configuration, are always known. What is unknown are the obstacles within the
configuration space.

Let us assume that we have a set of experimentally measured feasible trajectories in
the configuration space. This offers an indication of which paths to prefer and which to
avoid. It incorporates velocity information in the form of both direction and magnitude.

Our aim is to create NF controllers which will navigate from different initial conditions
to different desired configurations, while utilizing the information available in the form
of the available measured trajectories. This can be achieved by approximating obstacles
based on the experimental information.

In more detail, an implicit obstacle function 5 encodes obstacles in the original NF
methodology. Here we formulate the Inverse Problem of Navigation Functions. This
will lead to a Partial Differential Equation (PDE), which is solved using the experimental
trajectories as collocation conditions. By solving this PDE, an approximation of the obstacle
function 3 is obtained, which constitutes an estimate of the unknown obstacles which the

measured trajectories tried to avoid.

Then, in , the method developed here is applied to anthropomorphic grasp-
ing. In this case, the required experimental trajectories come from human hand move-
ments measured during reach-to-grasp movements for a variety of different objects. To
reduce the solution space dimension, in this particular application Principal Component
Analysis provides a subspace of the hand configuration space, within which to construct
the solution. The selected subspace is the one capturing most of the variance observed
in the trajectories, in other words the subspace spanned by the principal components
corresponding to the n largest eigenvalues of the covariance matrix.
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9.2 Problem Definition

9.2.1 Definitions
Assume that a set of N, € N* =2 N\ {0} experimentally measured trajectories
X;, iel,2{1,2,...,N.} (9.1)
is available. Each of them is a set
X 2 {wit)} e, LEA{L2,...,N}, i€l (9.2)

of N; € N* configurations z;(t;) € # C R" recorded in subsequent time instants ¢; <
[0, +00), which are indexed in increasing order ¢; < t;1, Vj€ L \{N;}, Vi€ L.

Also, assume that the desired destinations ¢, € # i € I. are provided, together with
the velocities corresponding to each measured trajectory point

Ox; : .
Ul(t]) £ alt' (tj), ] € I; 1€ 1. (93)

Note that both the destinations ¢,; and velocities w;(¢;) need not be independently pro-

vided. If no destinations are provided, then we can set ¢, = z;(tx,), provided the trajec-

tories X; are feasible and had converged successfully. If no velocity sensing is available,

the velocities can always be calculated by numerically differentiating the available config-

uration data

zi(tj1) — xi(t))
L1 —

ul(tj) < ) j € Iz \ {Nz}7 (S Ie- (94)

In such a case, the last configuration lacks a corresponding velocity, so N; is in this
case redefined discarding the last configuration. Let U; & {u;(;)} i € I, denote the
discrete-time samples each velocity function.

NS

9.2.2 Navigation Functions

Let .# c E™ be a compact connected C2 manifold with boundaryl. For the inverse
problem we use the general definition of NFs. The workspace is defined as the compact
connected set

W 2{qe E"0< Bolq)} C B (9.5)

, which is bounded by the zero™ obstacle defined as
Oy = E"\W ={q€ E"| Bo(q) <0}, pye C*[E"R] (9.6)

Here we are treating the inverse problem, so it suffices to define the aggregate obstacle
function 5 € C?[E™, R| directly, not as the product of individual obstacle functions 3;,
each of which corresponds to each connected component (obstacle) &; of the free space
complement E" \ .%. It follows that the negative coset preimage of g is the non-free
space, occupied by obstacles

E'\Z =] o =80 (9.7)

i€lp

INote that boundary non-smoothnesses are tractable, as described in [28].



9.2 Problem Definition 211

Individual obstacles can still be defined from 3. Each obstacle is a different connected
component of the negative coset preimage of 3;. As a result, individual obstacles are by
definition disjoint. In any case, we are not going to use individual 3; in the study of the
NF inverse problem, only 3.

The configuration is denoted by ¢ € .# C E™ and the desired destination by ¢, €
Z \ 0. . The Koditschek-Rimon NF is a specific form of NF defined as follows

Y4(q; qa)
(va(q, qa)* + B(q))

lI>

©(q, qa) = ¢ (74(q, qa), B(q)) (9.8)

==

where vq(q, q1) = |l¢ — qal|” = " € C>[#,|0,+00)] is the attractive effect of the desired
destination ¢, and here 3 € C?[#,R] is the obstacle repulsive effect. Note that 3 is here
only C?, hence ¢ is only C? and not analytic, but as already noted this suffices [23]. In
the NF methodology, the scalar potential field ¢ is used to control the single integrator
holonomic system

ox
%2 1) = u(t (9.9)

with the control law
u(t) = — (Vo) (2(1), qa) (9.10)
yielding the system differential equation

9z () — 4 .
{ u(t) =a—t((t>vqgo) E?(t), q4) } — %@) == (Vgp) (x(t), qa) - (9.11)

The construction of ¢ naturally separates information regarding the known destination
in v4(liveness/asymptotic stability), from information concerning collision avoidance with
(possibly unknown) obstacles in /3 (safety/stability). This is a key observation leading to
the formulation of the inverse problem.

Moreover, the method developed here constructs a 5 such that o be a NF for the
desired trajectories. This is potentially more flexible than only tuning k. The solution
obtained later for (9.22) guarantees correct results. This follows from the fact that the
solution is enforced to reproduce as close as it can the measured speeds over the same
paths. As a result, if the experimentally measured speeds do not become zero, this is
mathematically guaranteed to yield a NF for the subset of the configuration space which
has been experimentally explored.

9.2.3 Working Hypothesis

We make the working hypothesis? that a NF function of the form of can
adequately represent a controller producing the experimental measurements recorded®.
Taking into account to the controller definition of ( ) according to the NF methodology,
this assumption is equivalent to equating the measured velocity function w;(¢) to the NF
gradient

(V) (2:00), 4as) = (V) (w(w, @), ﬁ(xi<t>>) (9.12)

2The term “working hypothesis” is attributed to Charles S. Peirce, John Dewey.
3Equivalently, that there exists a controller of this form, such that it can produce such trajectories.
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at the corresponding configuration z;(¢) measured the same time instant ¢. In continuous
time this is expressed as

ui(t) = — (V) (931'(75)76.7(1@‘) = —(Vyp) (7d($i(t)v Qdi)a B(ﬂ@)) (9.13)

In discrete-time, the above becomes

ui(ty) = — (Vgp) (2ilty), qai) = — (Vqp) <7d(56z‘(tj), dai), 5(1’2‘(%’))) (9.14)

9.2.4 Problem Statement

The problem can then be stated as follows, Fig. 9.1. Using the above experimental
data £ £ {X;,U,, qai} ;. find a function 5 € C* ([E™, R]) to satisfy equation

u(t;) = = (Vo) (z:(ty), qui), Vi€, Vi€l (9.15)
subject to the positivity constraints on the sampled points
B(zi(t;) >0, Vjel, Viel (9.16)
and the workspace boundary 07 closure requirement
B(q) <0, Yqeow (9.17)
The positivity constraints (8.16) follow from the obstacle function definition
B(q) >0, Vqe F\OF (9.18)

in the free space interior. The closure at the workspace boundary (9.17) ensures that the
trajectories produced by the resulting controller will always remain within %, the domain
of our problem.

Note that by nhow we have departed from our working hypothesis. The problem now is
rigorously posed. The experiments specify 5 on a set of measure zero (union of sampled
points). As a result, the solution function should be interpolated in the rest of the domain
and a collocation solution method used. Defining the solution over the whole free space
is not a priori possible in an unknown world. For this reason, the solution is defined over
the whole workspace.

9.3 Inverse Method Formulation

9.3.1 Partial Differential Equation
Note that by (9.14) is the same as (P.15), hence it is equivalent to
ui(t;) = — (Vyp) (%l(%’(tj)’ qai) ﬁ(%(%‘))) (9.19)
Since

(Vo) (¢.qa) = g—i(w(q, qa), B(q)) (Vqra) (¢, qa) + g—g(%(q, qa), B(q)) (VoB) (q)  (9.20)
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Figure 9.1: Problem definition.

When g—g > 0, the above equation can be solved with respect to the obstacle function
derivative (gradient) (V,0) (¢), as follows

(Vo) (0, 90) — 52 (valg: 90), B(0)) (Vora) (4, a)

(Vof) (a) = % (valg, 94), B(q))

(9.21)

This is a PDE in the configuration ¢ for the unknown obstacle function 5. Substituting the
experimental results using the problem statement (9.15) in (B.21)

uilty) + 22 (vd (n4(ty) qdi),ﬁ(wj))) (V) (@:(t,), aa)
§—§ <’Yd (iUi(tj)a Qdi) ; 5(%(%)))

(Vo) (ilty)) = - *(9.22)

Viel, VYiel,

In this equation v;(¢;) is known from experimental measurements, 8%%, %}g are also known
functions of ~,(q, ¢2) and [(q), after we have selected a ¢, and ~,, V7, are also known
functions of the experimental trajectory z;(¢;) and the known destinations ¢,;. As a result,

we can substitute

w52 (o) o)) G (unerm)sw6)). g0

a
Ya(zi(t;), qai),  (Vova) (i(t)), qas)

to obtain the PDE coefficients at points x;(¢;), which contains as unknowns only terms
(Vo) (i(t;)) and 5 (z4(t;)).

This then constitutes a PDE to solve in the unknown obstacle function 8 : R* — R
under the constraints (B.16) and (9.17). When a paraboloid attractive function ~, is used,
t?enavw(q) = 2(q — qq). We still need to select a NF form, which specifies the form of

v O

v’ 0B
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9.3.2 Selecting a NF form

In what follows two different Navigation Function types are substituted in the PDE,
the Koditschek-Rimon NF ¢ and its hon-degenerate unsquashed counterpart ¢,, which are
defined as

Yd 75 _Jd

p = m, Y1 = 3 B (9.24)

respectively. The results are compared and ¢ selected for further use. For more details
concerning these functions, their derivatives, degeneracies and substitution in the PDE,
see Appendix A. Functions ¢, ¢ have parallel gradients, as can be observed in [Table A.3.
Nonetheless, V exhibits more nonlinearity than V¢, hence also more nonlinearity than
V1, which is evident from

(74 + B)* Vya —1a¥ (7 + B)* L
Vo = ’ S 2< ‘ ) =(vi+8) " ' (5V%z - %%V5>
(Va+ B)E (9.25)
v OV (i) = 2VE _ By Va1V
Y = 62 _ /82

Substituting the partial derivatives in (9.13) to obtain the specific form of the PDE
associated with each of the selected functions, as proved in kection A.4, we obtain

(Vab) (w:(2,)) (kvd(m),qdi)) (valitt), )" + B (ailt)) (9.26)
(Vora) (zi(t)), qai) e |
+<k Ya(zi(t;), qai) )B( {#)
and
e ui(t;) ()2
(Vo) (w:(t;)) = e ) Blaity)
va(i(t5)s das) (9.27)

n (k(vrﬂd) ($i(tj)a Qdi)) 5(%(%))

va(zi(ty), das)

for ¢, ¢, respectively, where ¢ € # \ {0.7 U{q}} = e (0, +00).

Equation (9.22) (and its specific forms (9.26), (@)) is a first order semi-linear
variable-coefficient partial differential equation. The vector coefficients are known at the
experimental measurement points. By selecting an approximating candidate function s,
the error from expected values can be calculated at the sampled points z;(¢;),i € I. C
N\ {0}. Therefore, an iterative algorithm can be used for minimization of the PDE satis-
faction error (residual) in the parameter space of the 5 approximation function.

9.3.3 Variable PDE coefficients and £ damping

This subsection concerns only the PDE corresponding to functionf ,. Nonetheless,
the discussion here offers useful insight for the case of ¢ as well.

“Here, the expressions correspond to ¢, but & = 1 is used later to avoid degeneracy at the destination.



9.3 Inverse Method Formulation 215

Consider (9.27). Before substitution of the experimental data, this equation had the

form
a8 (o) = (Z L)) ey (000D 5y (o

In this equation it is assumed that the system is controlled by a NF, so that the control
action — (V,$1) (¢, qq) is a function only of ¢, ¢, (where ¢ = z;(¢;) when considering mea-
surements). Therefore, before substituting experimental measurements, we can define
the variable PDE vector-coefficients as functions of only ¢, ¢4, i.e.,

— (V1) (4, )
%l(q, Qd)k

. Blgqa) & kY000 (@:490) (9.29)

Alg ) 2
(q qd) %z(q, Qd)

But, when experimental measurements are substituted in the PDE, the definition of A
should be necessarily changed to
ui(t))

Ati qu) =
(-0 Ya(wi(ts), qar)”

(9.30)

The reason for this is that for experimental data, at the same point ¢ (or its neighborhood
in a practical setting), there may be multiple samples at different time samples ¢;. Due
to the fact that the measured system is not guaranteed to be driven by a NF, but we
have assumed that it can be approximated by one, the measured control action w;(t;) at
different times ¢; for which the system passes through the same point ¢’ = z;(¢;), may be
different. In other words, if the control action was really created by a NF, it is a function
only of ¢/, but because this is not true for the real system, if it goes through the same
point at different times during the experiment, the measured control actions «;(¢;) at the
same ¢’ may be different. For them not to be different, it is necessary that

w() 2 {ui(t;)] 3, € [0,+00) : wi(t;) = g € E") (9.31)

be a function, which is not in general true for the experimental data. This is the reason
for which A will not necessarily be a function of ¢ when experimental measurements are
substituted. As a result, it should be redefined as a function of ¢;, g4;.
However, the second coefficient B remains unchanged, i.e., a function only of ¢ =
z;(t;), gsi- This is also true in (0.26)). It comes from the fact that B does not depend on
the measurements, i.e., it is decoupled from the experlmentE These comments on the
coefficients will be used later.

9.3.3.1 Numerical differentiation

Since only sampled points z;(¢;) are available in our case the velocity v, (¢;) is obtained
by finite differences, taking into account also the sampling period

ulty) = D) =) (9.32)

where T' = 1ms in our case (after re-sampling the experimental measurements) and the
units of z;(¢;) are degrees of angle [z] = °.

>Coefficient B contains only destination information, whereas coefficient A contains both obstacle and
destination information.
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9.3.3.2 Dimensional considerations

Mentioning units summons the associated issue with the NF formula. Assuming a
circular paraboloid ~, and that its arguments ¢, ¢; are expressed in configuration space
(“length”) dimensions leads to the following NF gradient units (where [k] = 1, i.e. k is
assumed unitless)

Vo] = [7_5 kﬁ% — VP [va]" (k] [ﬁ]M — [Vj] g2+ 1[5]# _ [%]

[val

32 32 G [52] IEE q]* (9.33)
g - 5 |
_ W q] [Q]4[q} _ [q]Qk—zl[ﬁ]—Qm _ [q]2k—4—1[ﬁ]—2+1 _ [q]Qk—5[6]—1

Taking into consideration that in the usual KRNF formulation 5 has the same “square C-
space distance” units as the paraboloid v, leads to [V3] = [¢]**7®[q] =2 = [¢]**~7, which
does not include any time units.

To achieve unit homogeneity a dimensional constant multiplicative gain Ky with
should be used in the controller, even if it possesses unit magnitude

u(t) = —Knr (V@) (2(1)) (9.34)

9.3.3.3 Selection of tuning parameter £

Let us now visualize the vector PDE coefficient values A, B which are calculated from
the experimental measurements. These are plotted in Fig. 9.2d and Fig. 9.2b for & = 1
and k = 2, repsectively. In Fig. 9.3d and Fig. 9.3 the corresponding vector plots are
provided.

It can be observed that the last measurements of trajectory near ¢, strongly affect the
relative order of magnitude of A and B. Furthermore, the inconsistency is even stronger
for larger k values.

This happens due to the form of A = % and B = k% which leads to

A Hullvg® el el )

IBI ™ ®IVaallng® ~ 25 IVl % 205 2t

(9.35)

There are two cases for which different behaviors arise both near ¢, and away from it.
Before continuing, note that

q— qqa = 74(q) = 0"

9.36
lg|| = +o0 <= v4(q) = +0 ( )
so the two cases are for £ = 1 and k& > 2 the following
1Al _ J5llulvg, k=1 (9.37)
1Bl Lz, k>2 = $—k<3-2-—-1<0

If £ = 1, then away from the destination ¢, (start of the experimental trajectory) the
ratio g is amplified in favor of the experimental measurements, hence strenghtening the
information introduced in the PDE by the measurements. This is evident in
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Near the destination ¢, (end of the experimental trajectory) the reverse effect results,
where g is damped. But as observed, A and B are approximately of the same order, so
that £ = 1 is acceptable.

On the contrary, for £k = 2 away from the destination ¢, (start of the experimental
trajectory) is seriously damped, as evident in Fig. 9.28. The damping is heavy for most of
the trajectory, essentially “erasing” any experimental information v incorporated only in A
and affecting the nonlinear 32 term of the PDE. Therefore, this results in a PDE practically
decoupled from the experiment which assumes the form %ﬁ ~ %, therefore we expect
that it will yield a solution 3 =~ ~,, irrespective of the experiment.

This happens because u(t) is recorded and independent of the distance to the desti-
nation. This is divided by ~*, which is larger away from the destination, very small near it,
and is tuned by k. On the contrary, B has to similar functions /75 and +; in it nominator
and denominator, respectively. As a result, it is not affected by £ and remains the same
decreasing function of the distance to the destination.

On the contrary, near the destination A is amplified compared to B, as is evident
by comparison of and Fig. 9.28. This is in favor of the experimental measure-
ments near the destination. But the erasing effect of £ = 2 in most of the trajectory is
inadmissible. For the above reasons we select & = 1 when using ¢.

Also note that the previous analysis indicates that most information about the obstacle
function g is provided by the intermediate part of the trajectory, than either by the near
or distant field.

9.3.3.4 Experimental trajectory tail rejection

There is a further issue to be addressed, related to the order of magnitude of the PDE
vector coefficient norms || A||, || B|| near the destination ¢,. It persists even for & = 1.

It can be observed in both and Fig. 9.2H, as well as in the vector plots of
Fig. 9.3d and Fig. 9.3b, where ||4]|, || B|| become several orders of magnitude higher near
the destination ¢, than away from it. This happens because in both coefficient norms

|ul|
Al = —~
vk

) (9.38)
d

1

Vd 7;

the distance to destination yd% arises in the denominator. Hence, in the goal’s neighborhood
the denominator vanishes, so that A, B blow up there.

This is unwanted for the numerical solution of the PDE. As explained later, the PDE
is solved by iteratively minimizing an error functional .J (to be defined). Since the mag-
nitudes of the coefficients differ by several orders of magnitude in the neighborhood of
the destination from the major part of the trajectory, the same percentage of error in
satisfying the PDE near the goal will result in so large errors, that they will blanket the
sum of all the rest of the errors over the whole trajectory.

For these reasons, together with considerations pertaining to numerical stability, the
trajectory measurements in the goal’s vicinity are not used in the PDE solution. The
new norm plots along the trajectory are provided in and Fig. 9.4H, and the
corresponding vector plots of the coefficients in Fig. 9.5a and Fig. 9.5b, respectively.

Comparison of Fig. 9.4d to Fig. 9.4h indicates that the issue of diminishing experimen-
tal information away from the destination for £ > 2 as compared to & = 1, still remains.
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Figure 9.2: Using the complete experimental trajectory.
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Figure 9.3: Using the complete experimental trajectory. Blue vectors denote the first PDE
coefficient A (x4(¢;)) and green the second B (z4(t;)), on the first experimental trajectory.

Therefore the selection & = 1 of subsubsection 9.3.3.3 remains valid for .

In sum, we can say that coefficient blowing up near the destination led us to reject
that part (where for any k value the problem does not change), whereas diminishing of
experimental measurements from the equation away from the destination for £ > 2 led
us to select £ = 1. Since these effects relate to different parts of the trajectory, they are
independent, hence both actions are needed.

The comparison away from the destination of the two vector coefficients in the two
cases of k = 1 and &k = 2 can be made by reference to the magnified trajectory de-
tails illustrated in and Fig. 9.5d. In the sizes of A (blue, contains
experimental information) and B (green, does not contain experimental information, only
destination information) are comparable, whereas in they are not, with B by far
overwhelming A.

9.4 PDE Solution

9.4.1 Basis Selection: Splines

Basis splines (B-Splines) [50] were selected as the solution basis. Therefore, the
solution is searched in the finite-dimensional space of B-spline coefficients, where

mi  meo Moy,

Bla)=Y > > (c [JE2 <qr|tr)) (9.39)

i1=1149=1 in=1

where 3 € C' is the interpolated obstacle function, ¢ € R” is the system’s state, ¢. € R
(only) here denotes the r** component of ¢,

C= {Chiz...in}ije{m ..... m;},j€{1,2,....,n} € Xje{12,.., H}ij (9'40)
is the coefficient tensor,

t = [trips trgiit1)s - - s trip+hn)]
tz‘jER, i€{1,2,...,n}, j€{1,2,,m1+hz}
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Figure 9.4: Using the truncated experimental trajectory.
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are the knot sequences of each dimension and h; € R,i € {1,2,...,n} are the orders of
the splines of each dimension and B(q.|t,) are the basis functions. Let us also stack the
coefficient tensor in a vector of design variables for the minimization problem

T ¢ RZi=imi

A
Cc= [Cllmla €211y -+ +3,Cmy1..1,C12..1,€C22..15 - - - y Cmy2..15 - - - 7cm1m2...mn]

The spline B-form is used instead of the piecewise polynomial representation because it
implicitly incorporates smoothness constraints.

The PP-form (Piecewise Polynomial) is utilized for fast calculations, but only for that
purpose. We construct a spline using the B-form and use the constructed spline repre-
sented in PP-form (MATLAB Curve Fitting Toolbox).

9.4.1.1 Domain of definition

The domain of definition D is selected based on the variable limits of the problem under
consideration. Selection of an appropriate domain is important because if its boundary
0D is more than a knot away from the closest trajectory point, then the boundary closure
(0.17) is implicitly satisfied during solution, provided the initial iteration solution is zero on
the boundary.

In this case, perturbations of B-spline coefficients corresponding to boundary knots do
not affect the collocation error on the experimental trajectories. As a result, the associated
cost functional perturbation AJ is zero, hence the respective design variable gradient
component remains zero and the coefficient remains constant. Since zero initially, the
boundary coefficients remain constantly zero and the boundary closure condition is met.

9.4.1.2 Knot allocation over dimensions and selection

The problem is multidimensional, which requires addressing the issue of allocating
the number of knots over dimensions efficiently. Since knots and the associated coeffi-
cients are needed mostly where more variance needs to be represented, the dimensions
are firstly analysed in terms of experimental trajectory variance. Then the numbers of
knots are allocated accordingly. More knots are assigned to the dimensions with maximal
variance.

In a principal subspace is selected, before the method is applied. This
also serves for the purpose described here. The allocation of knots in the case study
is proportional to the associated principal variances. In particular, 10,6, 3 knots (exclud-
ing boundary knot multiplicity) have been used for each of the primary three Principal
Component dimensions, respectively, taking into consideration their principal variances
subsection 10.2.2.

9.4.2 Iterative semi-linear PDE system solution

To solve the semi-linear PDE (B.26) (similarly (8.27)) under the positivity constraints
(B.16) an iterative gradient descent algorithm [51]

N =N\, VT (9.41)

has been used, minimizing the error functional J described in subsubsection 9.4.2.2.
Here, ¢ denotes the B-spline coefficient values at the N iteration of the minimization
algorithm. The positivity constraints are also incorporated in this functional, while the
boundary closure constraints (9.17) are implicitly satisfied, as already described.
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9.4.2.1 Initial point

A flat obstacle 5 = 0 is used as the initial solution. Therefore, during the initial
iteration, the main effect is due to the terms J,,, J;, of the cost functional, which are
defined in what follows.

9.4.2.2 Optimization Cost Functional J

The appropriate choice of functional J : C? ([D,R]) x D, — [0, +o00) is crucial for the
successful solution for 3. The cost functional used here in the case of discrete samplesE

1
J £ m ('lUlJPDE + lUQJSp + w3Jdp + w4<]bn)
Jepp 2 Y AEj, Tp 2 Y s(B(nilty) - B) (9.42)
i€le,j€I; icle,j€l;
Jdp £ Z S (B(de> - ﬁt> ) an £ Z S (B(QH)>
qai,i€le qn €OV

where w; € (0,4+00),7 € {1,2,3,4} are weighting factors to select the relative importance
of the various terms. The offset 5, serves numerical robustness (practical sign definite-
ness) by introducing a finite margin, above which 3 is considered positive. Function
s: R — R is a C?-smooth switch

3. <0
£ = 9.43
() {0,0 <z (9:43)

and the component functionals are described hereafter. The component functionals are
now explained.

1. The satisfaction error of PDE system (0.26) is accounted for in Jpp as

(VoB) (wi(ty))— 1
) 2t au)” (L B
Ak = ( (tl) )k: (ka(Ii(tj)7Qdi>) (Vd(( Z(t])’ )q Z) +B( Z(tj))>
A\t J > di (Vava)\zi(t5), qas
N (k W("Di(tj)ﬂdi) ) B(xl(tj)) )

1
i

(VB (215) = (k’m> (%z (i, ai)" + B (%’)) -
_ <k(vq"/d)(-77ijaqcli)) B (x4;)

Ya(Tiz,qai)

Yd (iUz‘j; de‘)k

=

(9.44)
where term ~* ensures a fair weighting along the trajectory, for reasons discussed
in subsection 9.3.3. In an analogous manner we can define Jppg for the solution
of (9.27).

2. Functional J, enforces positivity 3(z;(t;)) > 0 at the sampled points z;(¢;), i.e.,
condition (@), because these belong to the free space .#. The subscript of J,,
is derived from the initials of the words “sampled” and “positivity”.

3. Positivity at the destinations is ensured by J,,. This term has been introduced
because the trajectory truncation described in subsubsection 9.3.3.4 has removed

6Which is always the case for discrete-time measurements.
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the destinations ¢, from the sampled configurations. As a result they are not
included in term J,, and hence should be incorporated separately. The subscript
of Ju, is derived from the initials of the words “destination” and “positivity”.

4. Domain closure (9.17) is imposed by the boundary non-positivity functional J;,.
Here w, = 0, because this constraint is implicitly satisfied”. The subscript of J;,, is
derived from the initials of the words “boundary” and “non-positivity”.

Discretization of term .J,, is essential to render it calculable, but while the trajectory
samples are unique and given, the configuration space workspace boundary discretization
is subjective. For example the boundary knots and two intermediate points between each
pair of such boundary knots could be sampled.

The relative weight of the positivity functional is selected an order of magnitude higher
to ensure the search is forced to move in the feasible domain. This is important, because
otherwise the search is (possibly) not bounded within the design space. Moreover, it
does not correct itself, because negative 5 leads to reversal of experimental data PDE
vector coefficient signs, which in turn leads to negative surface curvature, so non-feasible
solutions satisfying the PDE are found ("mirror” /3 surfaces with respect to 5 = 0).

9.4.2.3 PDE Solution Algorithm

The PDE is solved by Algorithm 5. At first all the B-spline coefficients are initialized to
be zero. Then in each iteration the following occur.

Firstly, the cost functional .J is calculated for the current solution ¢V. Then each
coefficient ¢, , is perturbed by Ac and the new cost functional value J, for the corre-
sponding perturbed B-spline is calculated. Then the difference of the two cost functional
values AJ = J, — J provides the cost functional perturbation resulting from the single
coefficient ¢ perturbation Ac.

1172...0n

Such a perturbation is performed for each of the design variables ¢, , to calculate
the cost functional J gradient V.J in design space. This gradient is used to perform a
gradient descent on J in design space ¢V t! = ¢V — ),V J.

The appropriate selection of the spline B-form coefficient perturbation size Ac and the
design space cost functional gradient step \; (could be adaptive, in general it depends on
the optimization scheme implemented) are crucial to obtain correct results.

The optimization for the case study in is shown in Fig. 9.6. It includes
the final form of function 3, the history of B-spline coefficients ¢ during optimization, the
history of the norm of differences between subsequent vectors of coefficients ||c; 1 — ¢,
the history of the cost functional design space gradient norm ||V./J|| and the history of
the cost functional J, as they varied in each iteration.

’This requirement has so far been implicitly satisfied because the zero solution is used as the initial
point of optimization in design space. If the spline domain is adequately larger than the experimental
trajectories’ domain, then the spline B-form coefficients affecting its form near the workspace boundary do
not affect it away from this boundary, therefore they do not affect the PDE or positivity constraints on the
trajectory, hence their perturbation leads to zero .J perturbation, which in turn leads them to remain zero,
which actually meets the non-positivity constraint on the configuration workspace boundary. Moreover note
that if a C2 switch s is used in this case, it should not be translated by an offset. This aims to allow zero
boundary coefficients to remain zero, because this suffices (remember that in the case of free space sign
definiteness is of importance, hence departure from zero is essential, whereas here this is not the case).
Not allowing this and forcing them to become negative could also result in unwanted non-zero derivatives
at the boundary, without real cause.
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Algorithm 5 Inverse Navigation Function Problem PDE Solver

procedure Inverse NF Problem PDE Solver
: Start

1:

2

3 Initialize tensor product solution

4: Cost functional J computation

5: f+<0, N<«1

6: while f == 0do

7 foric{1,2,....,>°"  m;do

8 Perturb coefficient ¢V « ¢ + Ac
9

P
Compute perturbed cost functional J,

10: Cost functional gradient component 2% « =%
11: end for !

12: Cost functional gradient g < V.J

13: Design space step ¢Vt « ¢V + \g

14: f < Convergence criterion

15: N« N+1

16: end while
17: end procedure

18: procedure Cost functional J computation
19: Differentiate B-spline

20: PDE collocation errors

21: Cost functional value

22: end procedure




226 Learning Navigation Functions

Obstacle function

N
~

o
w

o

0.2

B-spline Coefficients ¢
o

0.15

0.05

120 iteration No.

20 40 60 80 100
iteration No.

Figure 9.6: Obstacle function 5 from PDE solution using n, = 24 experiments. This
solution has been obtained in the subspace spanned by the two Principal Components with
the highest variance. The obstacle function resulting from the solution in the subspace
spanned by the three Principal Components with highest variance cannot be plotted in
only three dimensions, because its domain is three dimensional. In that case, the induced
Navigation Function vector field is shown in Fig. 9.8.

9.4.3 Constructed controller

Select any feasible desired destination ¢, € 57'((0,+00)). Then, the spline obstacle
function s resulting from the previously described optimization can be substituted in ¢ of

(B.8) to yield the NF control law (0.10) as

ue(t) = = (Vo) ((1))
B (z) (Vyya) (x, 9a) — 2524 (V,6) (x) (9.45)

(10 a0 + @) "

where z is the system’s state. The potential field and level sets of a 2-dimensional con-

troller for a selected ¢, are illustrated in Fig. 9.7. The level set of a 3-dimensional controller
‘

are provided in
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Chapter 10
Application to Hand Grasping

10.1 Introduction

There has been a sustained and increasing interest in creating autonomous robotic
hands similar to the human hand. The motivation behind this is manifold. Contrary to
industrial settings, in everyday human environments the majority of tasks involves objects
adapted to human manipulation capabilities. Therefore, a robot operating in such settings
would need to actuate on them. Since they have been created to suit the human hand,
this type of actuator is uniquely suited to handling them.

As a result, developing autonomous, robust and viable robotic hand systems will facil-
itate robotic applications to human environments. These include prosthetics [79], reha-
bilitation and teleoperation. Another field of application are dangerous tasks in hazardous
or uninhabitable environments, as for example repairs of operating space equipment
[74, 78]. There are two main challenges in order to achieve this.

On the one hand, the required hardware needs to be developed. Several efforts
witnessed in the past fifteen years started with four fingers, e.g. the Utah/MIT [80], DLR
I [71], DIST [72], LMS [76] robotic hands and continued with five fingers, which include
the Belgrade/USC [69], Anthrobot [83, 89], Robonaut [86], DLR II [7Q], Gifu I [81] and
IT [82, 87], Shadow [88], DLR/HIT I [[75, 84] and II [85] hands and the DLR Hand Arm
System [77]]. Some of the most difficult issues have been the reduction in size, increase of
impact strength and elasticity [90], and speed [68]. A comparative overview is provided
in [60], a survey in [53].

Operation of these hands requires appropriate controllers. This is a motion planning
problem in a configuration space (C-space) of high dimension. Additionally, in many cases,
anthropomorphism may be desired for the generated motions. Moreover, studying human
motion can provide vital insight, leading to efficient design and control of artificial hands.

There have been several attempts to construct anthropomorphic controllers for robotic
hands. The authors in [52, 57] treated a similar problem of anthropomorphic robot arm
control by identifying joint dependencies using Dynamic Bayesian Networks. In [64]
Bayesian Networks were applied to robot grasping learning. Identifying hand synergies
through Principal Component Analysis (PCA) for grasping has been firstly proposed in [63]
and eigengrasps have been defined in [56].

Controlling a robotic hand in principal subspace has also been considered in [61, 62],
where eigengrasps are called Principal Motion Directions. The approach there is different
from the one presented here, because free motion of the human hand instead of grasping
is recorded, which does not provide information about everyday eigengrasps. Moreover,



230 Application to Hand Grasping

Table 10.1: Grasping Experiments

No. Object Task

1,2,3,4 Tall glass Grasp: to drink, from side & move
from top & move, from side & rotate

56,7 Mouse Grasp to: slide, left click, right click

8,9,10,11 Cup same as tasks as 1,2,3,4

12 Hammer Grasp to use

13 Ashtray Grasp from above to move

14 Cube Grasp from above to raise

15, 16 Pen Write, Move

17, 18 Jar Move, Lid unscrewing

19 Screwdriver  Grasp to operate

20 Book Grasp from right side to read

21 Mobile phone Pick up to view

22, 23 Scissor Grasp to: Move, Use

24 Stapler Grasp and use

half of the measured configuration dimensions are not used, because PCA is performed
after mapping human degrees of freedom (DOF) to robot hand DOF. Here PCA is applied
to the full 22 DOF, independently of the robot hand.

For motion planning, Sampling-Based Roadmaps have been used in [61, 62], which
provide probabilistic completeness, are computationally intensive and still require the ini-
tial and final points to be linked to the roadmap. The NF method is safe by construction,
achieves provably correct convergence and offers a closed-loop continuous controller,
integrating planning and trajectory tracking. Moreover, Roadmaps cannot capture an-
thropomorphism within the principal subspace. On the contrary, NF can produce similar
motions also within this subspace.

10.2 Experiments and Modeling

10.2.1 Experimental procedure

For collecting the trajectories n, = 24 experiments have been conducted with one
subject grasping 13 different objects listed in using its right hand. For 6 of
them more than multiple tasks have been performed and for 7 of them one task, as
detailed in the table. Snapshots of the experimental setup are provided in Fig. 10.3.

The hand angles have been measured using a CyberGlove data glove [73], which
features electric angle sensors with 1° resolution and records 22 degrees of freedom at
a 100 Hz sampling rate, 3 flexions/extensions for each finger apart from the thumb, for
which they are 2, 1 ab/adduction, palm arch and 2 wrist degrees of freedom. The Elec-
troMyoGraphic signals of the arm have been measured as well, together with the wrist
reference frame and accelerations, although they are not used here.
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Figure 10.1: Principal component cumulative normalized variances.

10.2.2 Principal Component Analysis

To reduce the high dimension (22 measured angles) Principal Component Analysis
[120] has been conducted, as is customary in the analysis of hand and arm systems
[52, 56, 63]. This method affinely transforms the coordinate system in the hand C-space
(angle space) to one centered at the average of the experiments, and rotated in the
eigenvector directions of the covariance matrix.

A subspace of the principal system is used here, comprised of the 3 principal compo-
nents with the highest variances (covariance matrix eigenvalues). The trajectories for the
n. experiments in this principal subspace are shown in .

The selected subspace captures 83.5% of the original movement data variability, Fig. 10.1],
hence, the grasping movements of the relatively diverse experiments of can
be reproduced satisfactorily from a C-space of highly reduced dimensionality (3 from the
22).

In particular, as will be shown in what follows, the principal system captures anthro-
pomorphism in a natural way, as has also been observed in [61]. In our case, anthropo-
morphism is additionally enhanced by the inverse construction of NF we have proposed.

10.2.3 PDE Solution
The B-spline domain used is the (enlarged) (hyper-)parallelepiped

X r6{1,2 ..... n} P‘r,min%’,miny Ar,nlathmax] (10 1)

where
@r.min £ min {zi(t;))},  @max £ max {z;(t;)} (10.2)

are the extremal values per variable over the measured samples of the experimental
trajectories. In this case, functions min, max are applied element-wise, as they would
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120

y _50 —80

Figure 10.2: Multiple automatically generated trajectories x;(¢) (red dashed) using a Nav-
igation Function ¢ with £ = 2 and the same obstacle function § constructed over the 3
primary Principal Components. The obstacle function is the solution of the PDE using the
experimentally measured trajectories =, (t) (blue continuous), [Table 10.1. Initial conditions
are ¢4(0) (green squares) and the destinations are ¢,; (red circles).
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in a vectorized MATLAB implementation issuing the command min(x, [1, 2). Also,

> 1, rmin < 0 < 1, rmax < 0
)\T,min o, ) )\r,max o (103)
< 17 QT,Inin > 0 > 17 QT‘,max > 0

are enlarging multiplicative factors.

Enlargement is important, in order to allow the spline to smoothly change from a
positive value at the sampled points (numerically non-negligible, as enforced by offset
B:), to zero value on the configuration workspace boundary 97#. Note that the domain
selection just described is completely automatic, forming part of a seamless algorithm if
needed.

10.2.4 Hand Model Definition

The human hand kinematic model described in [59] has been used, with parametrically
defined lengths, as functions of the human hand length H; and hand breadth Hp, in
combination with anthropometric data from [55]. The phalanges are modeled as ellipsoids
[54]. The human hand kinematic model degrees of freedom and their correspondence
to the data glove sensors is provided in . Moreover, in [59] the finger base
reference frame distance is provided only for the thumb (I). For this reason these have
been calculated here, using data from [55, 59]. The notation is the same as that defined
in [55, 59]. In what follows H;, is the hand length and Hjp is the hand breadth. For the
thumb

loo, = li—o — l;—1 = 0.118H], (10.4)

For the index (II) and middle (III) fingers
loo; = lico = (SL)a + (BL)ir — (JC)a) = ByjHp + ;i1 (1 = Ay;), i€ {11,111} (10.5)

hence

loo, = 0.463Hy, + 1/ (0.0374H)2(0.0126 H)?
loo, = 0.4833H

For the ring (IV) and little (V) fingers

(10.6)

looi = li—O — li—l = BinL + lz’—l (1 — AU) — lﬂ = BinL — li—lAija 1 E {]V, V} (107)

hence

loo, = 0.421H, — /(0.3051H,)2 + (0.0693 H )2

(10.8)
loos = 0.414H — 1/ (0.2655H )% + (0.1611Hp)?

10.3 Comparison of © to experimental trajectories

A sequence of hand postures automatically generated using the NF on the 3-dimensional
Principal subspace of is illustrated in . The hand destination configuration
has been selected to grasp a tall glass, similarly to the first three experiments. The resul-
tant reach-to-grasp trajectory of the system is smooth and reproduces anthropomorphism

in a natural way. As far as arm movement is concerned, it correlates with hand movement
[65] and this allows us to combine the methodology proposed here with previous work on
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Table 10.2: Degrees of freedom of kinematic hand model from [59] and CyberGlove. The order
of DoF possessed by the data glove is the same as the columns within its measurements’ log

file. Note that the first column in the log file is time.

Part Degree of Freedom Name VP [59] +F/A°[59] =+F/AC glove
Palm Palm arch Palm arch (PA)  N/A N/A
Thumb MCP? Joint Flexion/Extension Flexion 1 (F1) q3 -
IP? Joint Flexion/Extension Flexion 2 (F2) qs -
MCP Joint Ab/Adduction Abduction (A) qa +
CMC? Joint Flexion/Extension G2 - N/A
CMC Joint Ab/Adduction 0 - N/A
Index  MCP Joint Flexion/Extension  Flexion 1 (F1) qq + -
PIP Join Flexion/Extension Flexion 2 (F2) s + -
DIP Joint Flexion/Extension  Flexion 3 (F3) o + -
MCP Joint Ab/Adduction Abduction (A) s + +
Middle MCP Joint Flexion/Extension  Flexion 1 (F1) q11 + -
PIP Join Flexion/Extension Flexion 2 (F2) q12 + -
DIP Joint Flexion/Extension  Flexion 3 (F3) 13 + -
MCP Joint Ab/Adduction Abduction (A) q10 + +
Ring MCP Joint Flexion/Extension  Flexion 1 (F1) q17 + -
PIP Join Flexion/Extension Flexion 2 (F2) 718 + -
DIP Joint Flexion/Extension  Flexion 3 (F3) q19 + -
MCP Joint Ab/Adduction Abduction (A) q16 + -
CMC Joint Flexion/Extension q15 + N/A
CMC Joint Ab/Adduction q14 + N/A
Little MCP Joint Flexion/Extension  Flexion 1 (F1) o3 + -
PIP Join Flexion/Extension Flexion 2 (F2) Qo4 + -
DIP Joint Flexion/Extension  Flexion 3 (F3) Qo5 + -
MCP Joint Ab/Adduction Abduction (A) G2 + -
CMC Joint Flexion/Extension o1 + N/A
CMC Joint Ab/Adduction 420 + N/A
Wrist Flexion/Extension N/A N/A
Radial/Ulnar N/A N/A

8 CMC = CarpoMetaCarpal, MCP = MetaCarpoPhalangeal, IP = InterPhalangeal, PIP =
ProximalInterPhalangeal, DIP = DistallnterPhalangeal.

b Variable name.

¢ Flexion or Adduction sign.
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Figure 10.3: Experimental setup during reach to grasp. Hand angles, wrist and object
position and orientation in space and EMG signals are recorded.

anthropomorphic arm control [52], for fully automatic control of the complete hand-arm
system. Alternative applications include hand prosthesis [56], [58], where the subject
provides wrist movement and the controller can select the appropriate configuration on
the generated NF trajectory, based on correlations with EMG signals and wrist proximity
to object.

10.4 Comparison of /; to experimental trajectories

In this section function ¢, has been used to find an obstacle function for individual
experiments. This is contrary to the previous section, where ¢ has been used for all
experiments simultaneously. The present section also aims to illustrate the increased
“plasticity” of ¢, with the associated limitations discussed hereinafter.

In some cases in which the algorithm had converged there followed subtle oscilla-
tions, of which abrupt changes of the gradient are characteristic, as visible in Fig. 10.6,
Fig. 10.10, Fig. 10.12, Fig. 10.16 and . These can be of negligible consequences
(local oscillations), but in some cases, as for example Fig. 10.6, if the optimization is al-
lowed to continue after convergence, these subtle oscillations gradually (within the next
100 iterations) alter the obstacle function’s shape. They can even cause local minima to
arisell. This is a general observation, that ; exhibits greater “plasticity” than ¢, hence
it can take shapes better representing the experimental trajectories. But, this increased
“plasticity” is at the same time the disadvantage of ¢, because local minima can arise,
which does not happen when using .

In Fig. 10.6 to Fig. 10.29 the resulting obstacle functions  for each experiment have
been computed independently, i.e. with a separate optimization for each experiment.
This is contrary to the previous section concerning ¢.

In the first couple of figures the domains vary, because the respective trajectories did
not require more space. From on the domain is the same for all experiments

1This can be attributed to the fact that the trajectory provides only local information to a local interpolant
(the spline), hence spline coefficients away from the experimental trajectory can fluctuate without being
much constrained by the (single here) trajectory. If this is allowed to continue for a long time (say 65-150
iterations) then the result is gradually deformed. But the cost functional remains practically constant, which
is useful to define a convergence check and which also illustrates that there is a quite flat valley of minima in
the design space, which extends towards the “insensitive” design variables which are away from the spline.
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Figure 10.4: Automatically generated grasping movement using Navigation Function in
3-dimensional principal subspace of Fig. 10.2, compare to Fig. 10.3.
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NF Trajectories vs Experiments
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Figure 10.5: Learning NFs with n = 2 principal components produce equally good results,
compare with , with which the legend is the same.

and has been selected by padding the minimum and maximum coordinate dimensions
from all experiments.

The g found have been used in a NF ¢ and the resulting scalar navigation field is
provided in Fig. 10.30 to Fig. 10.32.

Assuming a first order (holonomic) system v = —V ¢, the NF of the previous subsection
have been used as controllers to guide the system from the same initial states «x;(0) as the
corresponding experiments, to the same desired destinations ¢,;;. The results are quite
encouraging and presented in Fig. 10.334 to Fig. 10.35d.

In the majority of the experiments, individual fitting yields a potential field which suc-
cessfully navigates from the same initial condition to the same desired destination as the
corresponding experiment. Moreover, in many cases the “pattern” is exceptionally close

to the experimental one, as can be seen in Fig. 10.33a, Fig. ig. 10.33
(the initial linear segments of J are due to the offset ,), , Fig. 10.33i,

Fig. 10.33j, ]:jig. 10.34?, Fig. 10.34b, !jig. 10.34?, ig. 10. ig. 10. ig. 10.
Fig. 10.34, Fig. 10.353 (quite good), Fig. 10.35b, Fig. 10. (again quite acceptable).

minima arise, as in
contrary, using  instead of , avoids local minima.
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using ¢;.



252 Application to Hand Grasping

el

\ \s \\‘ \\‘

j \ \ M)
A
; 50;, .

z Y Y
(a) Experiment 19 (b) Experiment 20 (c) Experiment 21

“\\\\\\\‘\Hnn |
W mﬂ
2 “ ‘N‘:‘\{\?“t&t‘m““

\
w

Yy
(d) Experiment 22 (e) Experiment 23

Figure 10.32: Resultant NF in 2-dimensional subspace of first two principal components
using ¢;.



10.4 Comparison of ¢, to experimental trajectories

253

120
Trajectories and NF lovel sets
T T
3o 4 s 4
201 4 2 4
10 4 o 4
o 4 o 4
1o 4 o g
20 4 o g
30 4 s Bl
a0 4 o 4
| | | I 0 |
100 120 120
3o Bl
\
i/
20 4 wb B
a0 g
1o B
20l i
ok 4
- 101 B
1o g oL J
20 4 -°r 7
201 i
30 g
sk i
0| 4
a0~ B
| I | i 0 i i i
100 20 "o 60 100 120
‘Trajectories and NF level sets
T T T T
a0l =y H4  wb g
a0} i H4  wb g
20 4 H4  ab g
4 Vi
1o H4 b / g
= of 4= oF i
i
|
10~ E if B
i
20 H4 b (881 i
a.(t) \
ol - -gst) H4  -sob W b
o a0
o o w 7 7
| i |
50 w 100 20 780 100 120
Trajectories and NF level sets
T T
a0l H4  wb g
a0l H4  wb g
20 20 g
1o0p- 4 b B
= o 4= ok i
-1of H4 b B
a0 4 b i
a0~ 4 b B
a0~ +  -aob g
i i
80 100 20 T80 100 120

(i) Experiment 9

(j) Experiment 10

Figure 10.33: Comparison of experimental vs NF trajectories.
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Figure 10.34: Comparison of experimental vs NF trajectories.
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Figure 10.35: Comparison of experimental vs NF trajectories.
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Chapter 11

Experiments

11.1 Experimental Data in s-Space

The trajectories in the (g) = 10 combinations of 3D subspaces of the 5 principal com-
ponents have been plotted in Fig. 11.1ato Fig. 11.1H. It is evident that in the first principal
components all initial configurations and destinations are in separate neighborhoods and
relatively close together. Most travel between the two of them has low path curvature (in
the first 3 principal components).

The trajectories in the first 3 principal components are shown in Fig. 11.3a to Fig. 11.5h
where the Frenet-Serret frame TNDB has been attached.

The velocity magnitude and path curvature in o-space are given in to
Fig. 11.8H. To put them in the same axes, they have been normalized to their average
values (time averages per experiment) and to avoid numerically arising extremities in cur-
vature close to the destination to affect the visible range, the axes are scaled accordingly
(so you cannot see curvatures > 4 times the average).
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All experiment trajectories in {oy, 09,03 }-subspace
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Figure 11.1: Experimental trajectories in various different principal subspaces.
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Figure 11.2: Experimental trajectories in various different principal subspaces.
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Figure 11.3: Trajectories in principal subspace with Frenet-Serret frame attached.
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Figure 11.4: Trajectories in principal subspace with Frenet-Serret frame attached.
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11.6: Experimental trajectory velocity norms (normalized to average).
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Part IV

Decentralized Multi-Agent Control
from Local LTL Specifications under
Limited Communication






Chapter 12

Formal Methods for Distributed
Multi-Agent Systems

12.1 Introduction

There have been multiple approaches to the problem of multi-agent system control.
Both classic motion planning [4, 12, 27] and task related methods [95, 96, 109, 118]
have been developed. The current effort is oriented towards unification of these two
complementary solutions [100—103, 105, 108, 111]. Since the present trend leads to
increasingly complex and heterogeneous systems, decentralization is a key ingredient for
future scalability.

In addition, safe and guaranteed results are required. Formal methods for specification
and automatic synthesis of provably correct controllers can ensure this. The system’s
specification can be provided in a logic sufficiently expressive for the desired tasks.

In [111]] centralized multi-agent systems with perfect information are considered. Syn-
thesis of a single multi-agent motion planning controller is performed from a global LTL
specification. This requires a globally connected multi-agent system to ensure information
availability.

12.1.1 Decentralization Approaches
12.1.1.1 Computer Science approach

Necessary and sufficient conditions for a global specification to be decomposable to
bisimilar local ones are derived in [[103]. Decentralization is from top to bottom. A global
specification is available and it is then decomposed to local ones. Moreover perfect infor-
mation availability is assumed for the multiple agents. Therefore no need for addressing
communication constraints between them is considered.

In more detail, it is a computer science oriented approach and aims to derive necessary
and sufficient conditions for a global specification to be decomposable to bisimilar local
specifications. Nonetheless, it concerns specifications in form of deterministic automata,
therefore for their approach to be implementable on LTL, it needs to be translated to a de-
terministic Rabin automaton, instead of the Blichi automaton used in model checking. But
acceptance conditions are not treated, as a result it is implied that deterministic accepting
traces should be already available for decomposition.
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12.1.1.2 Robotics approach

In [107] the issue of communication and synchronization is analyzed a solution diag-
nozing whether an LTL specification needs communication or not. Similarly to [106], where
only communicating agents are allowed to move, this check characterizes the subset of
realizable specifications. This does not allow the following type of specifications to be car-
ried out. In particular, those specifications which require that agents be at a distance they
can no longer communicate alone, and at the same time need to communicate to decide
accordingly in order to meet their specifications. This reduces the realizable scenarios.

Note that the system state space is discrete in [106, 107], whereas continuous in
[111]. Discretization (partitioning) of the state space is a difficult task and can considerably
increase the state space, leading to stat explosion. On the contrary, utilizing appropriate
continuous controllers suited to the problem needs can lead to a reduction in the number
of states. This is here pursued by the use of Navigation Function controllers.

12.1.1.3 1Issues addressed here

We extend application of formal methods to decentralized multi-agent systems. The
method proposed enables each agent to independently synthesize safe controllers, trigger
mobile network connectivity when in need of information, verify its plans versus those of
others upon meeting them and execute them in a continuous state space using Navigation
Functions.

It differs from previous works in decentralization, on-demand mobile network connec-
tivity, decentralized verification and the motion planning controllers. In attempting this,
two problems of primary importance need to be solved.

Firstly, LTL specifications provided to the agents are not produced in a centralized
way, hence they may be contradicting each other. Secondly, even if mutually satisfiable,
we are interested in cases in which long-range communication is not available. If path-
connectivity is absent when required by agents, the controllers will fail to act according to
their specifications, due to lack of information.

Since we are interested in decentralized systems with limited information, we need
to consider the opposite approach of [103], that is a bottom-up approach. The solu-
tion proposed for the first problem aims to gradually verify that agent specifications are
mutually satisfiable. Events of path-connectedness enable exchange of their languages
and automata, to allow model checking [94]. Moreover, note that implementing multiple
LTL specifications resulting from a top-down decomposition would still require the second
aspect described next.

The second problem is critical to the execution of the synthesized controllers. Multi-
agent systems in real applications are in many cases scattered over an area. This is in
many cases an unavoidable necessity. This leads us to limited communication constraints.
Additionally to checking whether local specifications can be carried out without inconsis-
tencies, we need to facilitate their realization. This means that if specific agents have
received specifications which require them to be simultaneously out of communication
distance and decide on LTL which involve atomic propositions (AP) referencing the other
agent, then some means of communication between them are needed. These will allow
sharing of the needed AP values at the selected times.

We embed in LTL communication requests when information is needed and implement
them using additional follower agents under connectivity maintenance control. The fol-
lowers function as intermediate communication nodes, providing the requested multi-hop
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path-connectedness between the agents whose LTL specifications require this communi-
cation during execution. Just providing communication to everyone would not defer from
the assumption of perfect information. What we aim to provide is communication only
between those agents that need it to carry out their LTL specifications.

For interfacing the discrete controllers to the continuous system state we choose Nav-
igation Functions (NFs) [12, 23]. Navigation Functions are continuous feedback motion
planning control laws [4] which ensure collision avoidance by construction and provably
correct convergence to the destination. As a result, the specification is formally satisfied in
the discrete control level, which in turn is interfaced to the continuous domain via provably
correct NF controllers.

12.2 Preliminaries

12.2.1 Linear Temporal Logic

An extension of propositional logic suitable for reasoning about infinite sequences of
states is LTL [114]. A set of Atomic Propositions (APs) P is defined [94]. More complex
formulae result using propositional and temporal operators.

Here the subset LTL - is used, omitting operator “next” X. This ensures that all spec-
ifications are stutter-invariant by construction, as recommended in [[110] for concurrent
systems. Any stutter-invariant LTL formula ¢ using X can always be transformed to a
LTLy-formula ¢’ [112]. Define the set ®, of LTLy-well formed formulas (wff) recursively
as

e For all p € P the expressions true, false, p, —p € ®p;
o If 91, ¢ € p then ¢, A gy € ®pand ¢, V ¢y € Pp;
o If ¢y, 00 € Dp then ¢, Ugy € Op,

where the operator U is read “until” and requires that ¢, be true until ¢, becomes true,
which is required to happen. Operators —, A,V are the usual propositional operators for
negation, conjunction and disjunction, respectively. Let

e O¢ £ true U, ¢ € ®p, which is read “eventually” and requires that ¢ eventually
happens at some future point;

e O¢p = =0 (—),p € ®p, which is read “always” and requires that ¢ be true in all
future points;

° ¢y — o 2 (—01) V o, ¢1, 42 € ®p, denoting implication;

o ¢ da 2 (b1 Ado) V (m A=), b1, bs € Dp, Which denotes equivalence.

The semantics of LTLy - are defined with respect to (wrt) sequences o : N — 27, Let
a'(j) = o(i +4),i,5 € N. To obtain the truth value of a formula over o, its interpretation
starts from ¢ (0) and is derived according to the following rules, where p € P, ¢y, 5 € ®p
and o F ¢ means that sequence o satisfies wff ¢

e For all o we have o & true and o ¥ false;

o E pif and only if (iff) p € 0(0);

o E—pifandonly if p ¢ o(0);

cE o1 Ny ifandonly if o E ¢, and o F ¢y;

ocE ¢V ifandonlyif o E ¢ or o E ¢y

okF ¢ Ugyifand only if 3i e N: o' F ¢, and o7 F ¢,Vj € [0,4) N N.



272 Formal Methods for Distributed Multi-Agent Systems

Several Specifications
Linear Temporal Logic
Formula o 09

LTL

Some specs involving > 1 agent? .
may be first decomposed l Deliver specs to agents

(@)
Hybrid Controller synthes' @ Agents@

Libray of e
continuous controllers LTL% Buchi Automaton

~"how to coordinate

for discrete primitives (Reductlon of individual BA) (_ com protocol synthesis?
(e.g. NFs) o
: ; a minimal common language with
tuning NFs would be an issue i ¢ l lenough expressibility is also required

Agents now have individual Buchi Automata
but no global guarantee exists yet

due to distributed specifications and synthesis

Execute

Online (gradual) verification

Meeting an agent «; included in agent’s «; state machine
enables communlcatlon exchange of Buchi Automata and verification

BA;

J

Figure 12.1: General idea.
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12.2.2 o -Automata

Let > = 2F be an alphabet of letters o(i) € ¥. An w-word is an infinite sequence
o 2 o(0)o(1)--- € X¥ over X. The set of all possible & over X is denoted by ¥~. A ¥«
subset comprised of those o satisfying certain rules constitutes a single w-language ...
Exactly those ., whose defining rules are expressible in LTL are called w-regular [94].
Finite transition systems defined on ., are called w-automata.

Definition 58 (NBA [94]). A Nondeterministic Biichi Automaton (NBA) is a tuple % =
{%, 5,4, Sy, F'} where
e Y is a finite alphabet;
e S is a finite set of states;
d: S x ¥ — 27 is a nondeterministic transition function;
Sp C S is a set of initial states;
F C S'is a set of accepting states.

Let p : N — S denote a labeling function of an w-word by states and inf(p) =
{se S| [{i: p(i) = s} = +oo} the set of states occurring infinitely many times.

Definition 59 (NBA Semantics [94, 117]). A w € X¥ is accepted by a NBA Z iff there
exists a p, such that p(0) € Sy, p(i +1) € §(p(i),w(i)),¥i > 0 and inf(p) contains at
least one accepting state, i.e., inf(p) N F # 0. Let £, (%) denote the w-regular language
accepted by 4.

According to the complementation result by Biichi [93]:

Theorem 60 (Convert LTL to NBA [97, 117]). For every LTL wff ¢ € ®p there exists a
NBA % such that .Z, (%) is exactly the same w-regular language which ¢ defines.

Another type of w-automaton we will use is

Definition 61 (DRA [115, 116]). A Deterministic Rabin Automaton (DRA) is a tuple Z =
{%, 8,7, S, F'} where
e Y is a finite alphabet;
S is a finite set of states;
~v:S x ¥ — Sis a deterministic transition function;
Sy £ {s0}, s0 € S is the initial state singleton;
F & {Li,Ui},;,, @ set of pairs of subsets L;,U; € S,L; N U; = 0,Vi € Iy £
{1,2,. .. ,nLU},nLU S N\{O}

Definition 62 (DRA Semantics [115, 116]). A w € X is accepted by a DRA Z iff there
exists a p, such that p(0) = So, p(i + 1) = v(p(i), w(i)),Vi > 0 and for at least one pair :
of “good” L; and “bad” U; sets, infinitely many from L; are visited and only finitely many
from U; are visited, i.e., 3i € Iy :inf (p) N L; # 0 Ainf (p) N U; = 0.

Note that when working with multiple agents later, L;;, U;;, j € I, Will refer to agent
a;. The following holds

Theorem 63 (NBA to DRA [116]). For every NBA £ there exists a DRA # such that they
accept exactly the same w-regular language, i.e., £, (%) = £, (Z).
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12.3 Problem Definition

12.3.1 Agents, States, State Constraints

Let o £ {a;},o; 1o = {1,2,...,N} be aset of N € N* £ N\ {0} leader agents
receiving each a (local) specification ¢;, defined on Atomic Propositions described in
section 12.3.2. Each a; is described by a hybrid state H; = z; x ¢;,2; € X; CR™, ¢ € Q; C
N™i 4 € I,,n;,m; € N. Here we assume common continuous states n; = n € N* Vi € I,.

States subject to constraints, as for example continuous dynamics, cannot instantly
respond to control actions. As a result, ¢; which require immediate changes of observables
on constrained states are not in general satisfiable.

A

Additionally, let .7 = {fi}ielf ,I; =NN[N+1,N+ng],n; € N be a set of followers,
used to provide on-demand communication as described in section 12.5.

12.3.2 Atomic Propositions

Let P = |J,., (P, UP,) aset of APs. Each agent a; can control the values of APs
in P, £ {pcij}jelc_ I, = {1,2,...,n.},i € I,. Each p.,, is either true or false when the
corresponding continuous or discrete state controller of agent q; is Active or Not Active,
respectively, as described in subsection 12.3.3. Let 7. : & — 2 be a function mapping a;
toits F.,. Only a; controls P.;, i.e., p.,; € fe(a:) A pe,; & fe(ar),Vk € I,\{i},Vj € I, Vi €
I,

Let P, & {po,‘j}j%, 1, ={1,2...,n,},i € I, be agent’s a; set of observable APs.
Here we use the metric function |-|, to define observations of the form ||y, — val, >
| < di2. Each point y;,y, may be an agent state, e.g., y; = x5, or a fixed point wrt a
selected reference frame. If p,  is either defined wrt z; and z; is subject to constraints,
or wrt z;,j # 4, then p, ¢ P.. If z; is not subject to constraints, then again p,,; is
by definition only observable, but a respective p., can indirectly control its value. Let
POéUieIaPOi’Pi éPCiUPOwPCéUieIGPCz"

The proposed use of metrics facilitate the exchange of languages between meeting
agents later to identify common APs and proceed with model checking. The particular
choice ||-|| can be readily replaced by more general selections, e.g., set membership func-
tions, depending on the problem treated.

We consider spherical agents of radii p;, i € I,, with sensing radii R, ;. When ||z; — z;|| <
R, then q; (or f;) has knowledge of z; and can receive information from «; (or f;). Each
agent is assigned a unique i € I, U .

12.3.3 State Controllers

A set of controllers %;; govern the hybrid state H,. We select as motion planning
controllers ¢, decentralized Navigation Functions (NF) [12, 23]. Different p.,; can set a
different NF destinations x4, € R™ in Gyr,. Let Iyg; C 1., denote the subset of such p.. .
We embed in ¢; the requirement O— (p.,, A pe,,) Vi, k € Inpy, Yt > to. Which p,.,, becomes
true is determined by the discrete controller constructed in section 12.4. This selects the
values to assign to p,,, j € 1., in order to enable at least one transition in the automaton
9, given the current values p,,;,j € I,,. Note that by defining z,4,;, = 2 + ¢4, for some
j € I., wrt another agent, formation control can also be achieved. Other controllers are
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Figure 12.2: From LTL to discrete controller for each agent.

applicable as well, if appropriatel.

12.3.4 Problem Statement

Each agent a; receives an LTLx-specification ¢; € ®p, where P, is defined in
section 12.3.2. We are interested in an algorithm implemented independently by each
agent, to synthesize its hybrid controller 7 £ 9, x €, to always satisfy safety specified
by ¢; and verify liveness triggered by meeting events between agents. It should also
provide on-demand long-range path-connectedness as required by ¢;, for which it can
utilize redundant “follower” agents to maintain connectivity between leaders assigned ¢,.

12.4 Discrete Controller Construction

12.4.1 From LTL to Biichi Automata

According to Definition 58, each LTLy-formula ¢; can always be represented by a NBA
%;, which reduces graph searching during model checking. But we want to construct a
finite state controller 2; for each agent which satisfies ¢;, so nhondeterminism in undesired.
A 2; cannot function as a controller by reacting to p,,; by activating those p.,, which would
enable transitions ¢;, for the following reason.

Consider all observable w-words w,, € X% ,%, £ 2%, such that Vu,, there exist
corresponding control actions w,, € 2, %, £ 2F«, which, if commanded by the agent,
result in an accepted composite w;(k) = (w,, (k)w,,(k)),k € Nyw; € £, (%4;). Agent a,
cannot derive its selections of w,, (k) only from ¢; and w,, (k). This can always fail to
satisfy ¢, for any given w,, .

Multiple transitions are possible for the same discrete control action w,, (k). Neverthe-
less, during execution of a physical system, only a single control action can be selected, not
multiple at the same time. On the contrary, a NBA is considered as “copying” itself at such
branching points. In other words, it follows all possible paths simultaneously. Regardless
of whether some lead to deadlocks later on, by Definition 59 it suffices that at least one
possible execution exists. In real world executions, following the wrong transition could
lead to future violation of ¢;, whereas following another one would not. A NBA does not
provide a way to select between different transitions, hence a priori knowledge at ¢, of
future observable suffix w,, (k+j),j € NN[1, +00) is needed to ensure safety, not available
during real world execution.

INote that this different from the solution in [111] where control signals from different controllers simul-
taneously active are mixed. A control signal mixing approach can lead to uncertainty regarding stability,
due to relative gains and relative time constants of the continuous controllers.
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=0

I e
\((\ waf(a)ﬁ‘)w"" > }

(c) Controller automaton 2;

Figure 12.3: Conversion from LTL formula O (_| (pn /\plg) A (p13 — (plgUp14)) A\ (p14 — (anplg)))
to automata. Orange denotes So.
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12.4.2 From Biichi Automata to Deterministic Rabin Automata

As described in subsection 12.4.1, a NBA %, is not a suitable controller for a physical
system. To overcome this limitation, %; is determinized into a %; = {%;, S;, vi, Soi, Fi} ,i €
I, by Safra’s construction, Theorem [63, using [104]. Although its computational complex-
ity is 2nleen  decentralization leads to small size for ¢;.

12.4.3 Trimming DRA traps in “"bad” states

The #; may include entrapping “bad” states v;(s,,l) = s, ¢ L;;,Vj € Iy, V1 € 3¢,
such that no outgoing transition leading to another state exists, e.g. Fig. 12.3a. In case
a; enters s, it remains in s, infinitely long, violating its ¢;.

To prevent a controller based on #; from entering such states s, € S,; C S;, these
are found and removed, yielding a trimmed automaton .7, & {%;, S, ~!, Si;, F!}, where
S 2 Si\ Suisvi £ vilsixsosy Sy = S0 N S], F{ £ {Lyy N S}, Uiy N Sj} ., . Accepting runs
remain the same, because only w remaining infinitely longin U,.,, | U, are removed and
these w ¢ £, (%;). The trimming algorithm for dead-ends is provided in Algorithm 6. The
case of livelock in a closed inescapable cycle through “bad” states is similarly treated. An

example is Fig. 12.3H.

Algorithm 6 Trimming entrapping “bad” states

1: procedure S/ = Remove Bad TRAPS(%;)
2 Y < {s€ S| Pje€ly:se Ly}

3 fork=1:|Y|do

4: S+ seY

5: if 2l € 3 vi(sk, 1) # s, then

6:

7

8

end if
: Y <Y\ {sx}
9: end for
10: end procedure

12.4.4 Discrete Controller from trimmed DRA

Automata have two operating modes. When presented in “reading” mode with a
fully specified word w they either accept it if w € £, (%;), or reject it otherwise. This
corresponds to no controllable APs p.,, i.e.,, P., = (. On the other hand, if all APs are
controllable, P,, = (), then the automaton is in “generating” mode. If run according to its
rules, it produces exactly .2, (#;) [94, 99].

Our case is between accepting and generating modes. It is reacting to observed p,,,
values by selecting the controllable values p.,;, in such a way so as to avoid deadlock and
satisfy Definition 62. Note that %; is not deterministic when controllable p.,, exist. We
are going to exploit this nondeterminism to design a deterministic controller automaton
9; from 7.

The %; alone cannot guarantee that an accepting run will be generated if it is used as
a controller. For this reason the DRA is now transformed into a discrete event controller
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Table 12.1: Next state same as current

Sy = Sc»
Cost ¢y, Sp €
k=j k#j
Sc € Lj Uj VVja L, U, W,
L; +3 - - 1 -1 0
U; - -3 - 1 -1 0
W - - 0 1 -1 0

j
AW, £ (L, UU,)"

which “tries its best” to generate an accepting run. The controller selects the best pos-
sible transition, judging from the current observable values p,,.. To enable the selected
transition, it sets the appropriate values of p.,,. A criterion for ordering possible transitions
and selecting the best is needed. Note that this selection is made only once, when initially
designing ;.

Let us now consider the algorithm applied to a state s € S. Every transition guard
contains n,, observable and n., controllable APs. Since %; is deterministic in reading mode,
so is .7. So at t;, the observable vector {p, } € {0,1}"*, hence at most 2" different
observations are possible. Since .7; is deterministic, for each {p,,;}, the controller has
at most 2"« choices of transitions and can make only one of them true, by selecting the
corresponding control {p.,; }. A single edge is selected according to the transition ordering
later introduced and the remaining are removed. Therefore, if at least one transition was
possible for a certain combination of observables, one transition remains possible for that
combination, so that no deadlocks are introduced.

Because the #; may possess multiple pairs {L;,, Ui, }re1,,,,, €valuating each transition
is nontrivial. Each transition consists of an ordered pair of states {s., s,}, s¢, s, € S;, the
current s. and (candidate) next s,,. In turn, s., s, may each belong to both “good” and
“bad” sets for different pairs, e.g., s. € L;; N Uik, j € Irvi \ {k}, k € ILy,. For this reason
tables [12.1) and [12.2 are used to build a matrix ¢, € {—3,—2,...,+3}" V"V for each
possible interpretation s. € L;; UU,;, s, € Ly, U Uy, of the transition s. — s, (in the tables
subscript 7 is omitted to reduce clutter). Then, each s. — s, is assigned a score based on
[¢;»], according to DRA acceptance of Definition b2.

This can be summarized as VTEILU,i (L; N —U,;) [116]. If the next state s,, is the same
as s. and “good” in some pair Ir € Iy, : s. € L., then it is obviously not “bad” in that
pair, s. € L;, = s. ¢ U,,.. This case is assigned +3 and dominates all others, because if
sc € Uij,j € Iy, for j # r, then remaining infinitely long in s. implies both inf(p) N L;. # 0
and inf(p) N U;; # 0, in which case the first one suffices for LTL ¢, satisfaction and thus
dominates the second. Similar considerations apply to the other cases as well, leading to
0 < max{c¢;;} = ¢ = max{c;}, whereas, if only “bad” and neutral next states s, are
available, the transition is dominated by the worst-case max{c¢;;} <0 = ¢ = min{¢;;}.

The evaluation resulting from the previous procedure for each transition is used to
assign a score according to the following ordering

7. Remains in the same “good” state s. € L;,,r € Iy ;;

6. Moves to another “good” state s, of the same pair {L;.,U;.},r € ILu,, i€, s, #
Scy Sny Se S LZ’I‘I

5. Moves to a “good” state s, of another pair {L;;,Ui;},j € ILui, i.€., Sn # Scy Sn €
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Table 12.2: Next state different than
current s, # s..

Cost ¢y, Sy €
k=7 k#£j
Sc € Lj Uj VVja L, U, W,
L, +2 2 0 1 -1 0
U, +2 -2 0 1 -1 0
W, +2 -2 0 1 -1 0

AW, £ (L; UU;)e

Lz’r; Se € Lij7.j 7£ ry

4. Moves to a neutral state s, € S/ : Ir € Iy, s, ¢ Lir U Uy, Of the same r = j or
another r # j pair;

3. Moves to a “"bad” state s,, of another pair {L;;,U;;}, i.e., s, # Sc, $n € Uyj, sc € Uyj;

2. Moves to another “bad” state s, of the same pair {L;.,U;.},r € Iy, i.€, s, #
Sey Sny Se € U’LT‘I

1. Remains in the same “bad” state s. € U;,, 7 € I u;;

During removal of states, it is checked that there remains a path from the initial state to
a “good” state and an accepting cycle through it, in order to ensure the controller can
still satisfy eventualities in ¢;. This leads to %; and its sub-automaton accessible from s,
constitutes 7;, e.g. Fig. 12.3d.

We examine when the above procedure does not remove w-words from the safe lan-
guage of observables Z° (%;).

Proposition 64. If every state s € S has outgoing transitions with every combination
of observables p,,,, then .22 (%;) = £ (Z;)-

Proof. Since only rejected words w ¢ £, (%)) — w, ¢ -£° (%) are affected by trimming
the %, to 7, it follows that Z° (%;) = £°(7;). If every state s € S5 has outgoing
transitions for each of the 2" combinations of p, , then the edge removal algorithm
maintains exactly one transition per combination. Since every state has transitions for
all p,, € {0,1}":, for both .£° (%;) and £°(%;), any observable sequence is safe o ¢
Lo(RH) No € L° (D) No € 3¢, hence £° (%) = £°(Z;). O

The above implies that reactivity in ¢; remains unaffected by the proposed algorithm.

An important note is needed at this point. The proposed controller is only locally
optimal, with respect to the current state the system is in. It chooses the best move from
that state, without considering previous or future moves. This means that in case there
exists a strategy to satisfy liveness, which is not locally optimal, the proposed controller
may not find it. Therefore, safety properties in ¢; are guaranteed to be satisfied, but not
necessarily liveness (eventuality) in ¢,. Removing this short-coming requires solution of a
Rabin game [113], which in our case is both computationally expensive for isolated agents
and inappropriate. It is inappropriate because we consider cooperative scenarios.

In a decentralized cooperative setting, agents may not initially know anything about
specifications of other agents, which affect their observables. Moreover, there may ex-
ist no solution to the adversarial game, in case ¢; cannot cope with any environment.
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Suppose we initially checked eventuality, obtained a negative result, and then prevented
the agent from further evolution, declaring a failure. In this case, we disregard both
that a decentralized system has initially limited information and that other agents do not
constitute any environment, but have specific ¢;, which «; can learn and decide about ¢,
when meeting them during execution.

Thus, verification of the independently executing controllers described in
provides an essential check for our system. As is going to be illustrated by the simulation
results of section 12.8, the proposed method is successful in practical settings.

We plan to extend the above implementation towards solving the Rabin game when
no simpler solution exists. However, we are also interested in determining the class of
LTLx-¢; which provide a trade-off between multi-agent task expressiveness and Rabin
game solution.

12.5 Limited Communication

12.5.1 Specification Structure

It may be the case that an observable subset {p,,, }jc1,, Ix € I, requires information
about another H;, k # i. Even if ¢,, ¢, are mutually satisfiable, in the event that «; loses
connectivity to a;, it will not have information about H,. This is an undefined state of
information, resulting in ill-defined observables {p,,, } jc1,. To avoid such situations caused
by limited communication range, we propose the following scheme.

Let p,.,., Js € Lo, \ I be an additional AP in ¢; which functions as a switch, being true
when «;, a;, are path-connected in {a;, a;} U.%#’, and false otherwise. Set .7’ C .# denotes
followers not assigned to any leader pair, because only these are free to be immediately
committed to {a;, a}.

If every 2, transition guard does not depend on the values of {p,,, }cr,, when p,,, =
false, then ¢, is independent of information regarding agents disconnected from a,. Such
a ¢; accounts for limited communication and leaves no possible state of the decentralized
multi-agent system undefined.

On the contrary, if ¢; does not possess the previous structure, then Z; is vulnerable to
deadlocks caused by lack of information. If all transitions from the current state require
knowledge of H; and a; is currently disconnected from a;, then a; cannot decide what
action to apply next.

Nevertheless, certain tasks may need such information in an essential way. In
section 12.5.2 a method is proposed to trigger connectivity in a formal and controllable
way.

12.5.2 On Demand Connectivity Maintenance

Whenever agents a; and a. become path-connected, then p,, . becomes true. After
this event, information about H, may be required for a certain (finite or infinite) period of
time for p,,,,j € I, C I,,. This is required when, for example, a; should respond to 4.
and they are disconnected.

To maintain this path-connectedness, we introduce mobile network connectivity main-
tenance controllers [7] within the NF as described in section 12.7, for both leaders ay, k €
I, and followers f,,,m € I;. Each such controller can be supplied a neighbor list N, C
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I, U I from the network, as described in what follows. A controllable AP p,, . , j. € 1., is
also defined, which can be triggered by p,,, ,js € 1,,, according to ¢,. The connectivity
controller associated to p.,, issues periodically a request over the mobile network, as
{k,z}, k, z € I, indexing the agents a;, a, to connect.

As defined in subsection 12.3.1], a leader is any agent which has received LTL instruc-
tions and a follower any other agent which has not. Note that this request can only reach
the network’s connected component to which a;, a;, both belong, as ensured by p,,, which
triggered the request.

In each such connected component, all connectedness requests are firstly aggregated.
We assume that communication delays are negligible. Then, any available followers in this
connected component, which have not yet been assigned to a leader pair, are allocated
to the different requests. To resolve which leader pair gets a follower, a utility function is
used. Since p,,, defined in subsection 12.3.2 are inequalities using |-||, over X, they may
reference fixed points y € X;. The maximal distance dj.. .x = max{||y1 — 12|} between
any two fixed points y, referenced by p,,, € I, and y, referenced by p,_,j € I, of
the two leaders involved in a pair, constitutes the maximal possible distance which ¢, ¢.
may require ay, a. to reach, while maintaining connectivity. This distance needs to become
equal to the sum of communication ranges > ier,. Ri of the followers .%;,, & {fitier, » In= C
I; already assigned to the leader pair ay,a.. The utility function is defined as w. S
1 — Zielkz 1 )

dkz max

Those pairs {a, a.} with higher u,, have relatively fewer followers already assigned.
Followers in the connected component are distributed proportionally to u,.. Partitioning
according to nearest neighbor distance is used to ensure that each follower subset forms
a connected component after assignment. No f; can belong to more than one {ay,a.}. In
this way, when communication between a pair is no more needed, the followers assigned
to it can be released again.

After a leader pair is assigned a subset of followers, a chain is formed between «; and
a., as follows. An adjacency matrix A with shortest neighbor distances a;; = ||z; — ;]|
is formed. The chain between «; and «, is initialized as the shortest path in it. Then,

recursively each remaining follower f;, i € I such that ‘ x{ —xj H < Ri/\‘ < R;,

is inserted between «;,, a;,, replacing their link. If multiple candidate insertions exist, then

that with max {— ("”’x{l‘(mm‘”[ ) }, which is higher when the two candidate neighbors

Ha:l—a:f ’wm—mf

f
T; — Ty,

are closer and opposite positioned to a:{ . Any agents with only a single neighbor remain
connected to it, until they come within range of two neighbors and are then inserted in
the chain. Other solutions allowing more flexible manipulation of mobile network links
within each subset assigned to each leader pair can be used [8].

12.6 Decentralized Verification

For each agent individual discrete event controllers have been constructed by applica-
tion of the algorithm described in section 12.4. It is possible that ¢; contradicts another
;-

Therefore, there arises the need to verify that individual controllers constructed can
function uncoordinated and still satisfy their respective ¢;. For this purpose model checking
(MC) is employed. Using the SPIN model checking software [98] and a custom MATLAB
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interface, each agent is modeled as a separate process. Different processes execute
independently. Stutter-invariance is guaranteed because plans are provided in LTLx-[105,
110, 112], allowing partial-order-reduction methods to be applied [98].

When leader agents become path-connected, they interchange their alphabets (APs).
Destinations xz,,, in the NF controllers p.,; of one agent a; are tested as observed states
r; = x4, in those APs p,, = of the other agent, which depend on z;. If false, then these
observables are initialized for a; as false and remain unchanged. If true, then a separate
environment process is created corresponding to each NF controller p., which, when
pe;; becomes true, sets to true those observables p,,, which become true for that x4, .
By enforcing fairness during MC, this modeling connects controllers of one agent and
observables of another with eventual implication. Similar implication is modeled between
NF destinations and corresponding observables of a single agent as well. It is provabl
correct convergence of NF that allows this. Provided that the mechanism of
is implemented, z; is needed by ax only when path-connected.

After this, each agent performs MC against its own negated specification —¢,; converted
to a Blichi automaton expressed as a never claim using [97]. Only liveness is checked,
since safety is ensured by construction. If verification succeeds, then the controllers can
continue executing independently, whereas if it fails, then refinement is needed. Recon-
figurability of the system is in our future goals, as depicted in Fig. 12.4.

12.7 Continuous Controllers

The discrete controllers 2; are interfaced to the continuous states z; using Naviga-
tion Functions (NF) ¢;(z;) introduced in [23] and extended to decentralized multi-agent
systems in [12]. Moreover, due to the need of integrating connectivity maintenance con-
straints, we also implement [7]. The decentralized NF controllers €yr; = {u;} used by
each agent are

, and
u; & = (Vi) (i) (12.2)
, Where
pi(x) & (o) (12.3)

(v (2) + Gi(2))
is a potential function of the stack vector = of z;,7 € I,, which is 1 in collision sets, has
a unique minimum ¢(v;'(0)) = 0 at the destination ¢; and no other local minima, only
saddle points. Function

1@ £ 5 3 (s = w,l) (124

JEN;
for a follower to minimize its distance to connected neighbors [7], while

2 (12.5)

1
%‘(Q) = 5 ||$Z — Ld,;

for a leader to converge to the destination ¢,,, set by the active controller AP ., j € 1.,.
Function _
ny, anz

Gi(q) £ [T 11 9w (8:5) (12.6)

=1 j=1



283

12.7 Continuous Controllers
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encodes collision sets using relation verification functions g;,;(3). Functions g;,; determine
exactly which combination of 3;; — 0, i.e. to collision. They are defined as

b;
Gikl £ by + A— T (12.7)
bikt + Bije;

where by, = Y., Bi; and iy is the k™ set of binary relations {a;,a;}, and Bje £
Hmem b, Where i, indexes complementary sets of [-level binary relations to set k.
In turn, 8;;(x;, x;) is defined differently, depending on whether it relates to another agent
with which no connectivity constraints have been imposed, or if it relates to another
agent with which connectivity constraints should be maintained. In both cases collision
avoidance is incorporated for the spherical agents. Let

1,2 <0
S =< —62°+ 1521 - 1023+ 1,0 <2 < 1 (12.8)
0,1<zz
be a C? switch over R [25]. Then let
@ — (pi + p;)* & — (pi + p;)°
dij('riv‘rj) £ Hxl - xj”ga - 2J ’ 2 = 2] ’ 29
A2 — d2. (0 . (0 .
r=fd Slzs(dw (/01"‘/)]))’ SFS(% (pz+pg)>
SO
A+1-— | & N;
ﬁij<l‘i,.ilfj) é Sl + Sl’] g . ’ (1210)
where
2 . )2
0<pi+p; <de, dmé\/dc+(p;+pj) ) (12.11)

Note that limited sensing capabilities are incorporated.

Convergence to the destination can be proved similarly to [7, 13, 24], when tuning
parameters &k > 2, \,h > 0 are selected above a lower bound, provided the agents can
reach them without forcing the connected followers to break their connectivity. Therefore,
an obvious requirement is that enough followers be available to enable leader convergence
while maintaining path-connectedness. Similarly to [8], the leaders try to “do their best”
to achieve their objectives.

12.8 Simulation Results

A case study using the proposed algorithm involving n, = 6 leader agents and n; = 3
followers, illustrated in Fig. 12.5, in which agents a;, a» (blue, ) should eventually
patrol the lower-right area, visiting infinitely often two points one after the other. Agents
as, ag (Magenta, ) wait for a, (cyan) before requesting connectivity and moving to
Tas,, Ta - AQENt a4 goes first to x,4,,, then to z,,,. Finally, a; (red) goes to z,,,, waits to see
ap and then moves to z,,,. Followers f;, fs, fo are available to provide path connectivity
where needed.
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The specifications are defined as

¢1r = 0(= (Pery A Perz) N Pory = PeraUPosz)) A (Pors = (Pers Upory)) )
¢2 = 0(= (Pegy A Pesz) N (Pozy = (PessUoss)) A (Pogy = (Pezs UPosy)) )
¢3 =T (= (Pesy A Pess) N (Pesi U (Posy A Pess )
G4 = Deay U (Dosy N Dess)
¢5 = (((mPes1) A (FPesz))U (Posy A Poss) )N (12.12)
BO((mPoss) = (—Pesz))A
(= (Posi A Posa ) )U(O(Poss = (Pesy A (Pesi UPosy)))))
b6 = (((mPeor) N (TPee2))U (Dogy A Poga) )N
BO((mPogs) = (Pegz))A
((=(Posi A Posa))U(O(Pogs = (Pegs A (PeyUboss)))))

The followers constantly execute a NF with neighbor list as described in
tion 12.5.2. The NF controllers are defined with destinations
Tdy, = [070]T7‘rd12 = [27 _2]T7xd21 = [07 _1]T7xd22 = [17 1]Tvmd31 = [_17 +1]T7

Tdzy = [4’ 4]T7xd41 - [073]T7xd42 - [_27 1]Tvxd51 - [_375]Tvxd61 - [274]T

(12.13)

and when p..,, p.,, are active, they issue connectivity requests to link as, ag.
Let the observable APs be defined as follows

Pou 2 (lo1 = 24y, | <0.1) Pory 2 (l21 = 4| <0.1), Pogy 2 (|22 — 24y || < 0.1),
Poss = (|22 = Tall <0.1), pogy = (22 — 23] < 1), poyy = (l2a — zay [l < 0.1),
Posy = (|74 — 24y, | <0.4),  Dos, = (|25 — T4, || < 0.1),  pog, = (|74 — 24,,]] < 0.4),
Posz = (|76 — w46, || < 0.1)

(12.14)
and p,.,, pos; detect path-connectivity between as, ag through followers. APs p,.,, p,, de-
tect path-connectivity between a, and as, a6, respectively, through any agent and function
as information availability switches. Note that p,,, requires information about z,, but it
also functions as an information availability switch, because |z; — z3]| < 1 < Rg3, SO nO
additional observable is needed in this case.

In the simulation a4, - -- ,a, proceed to their objectives avoiding collisions, so that at
t agents ay, a; have started patrolling the lower left area and «; is heading towards z,;, .
At tg agent a, comes within distance 0.4 of z,,,, so that connectivity is triggered (thick
continuous lines) and as, ag begin moving to z,, , x4, respectively, while followers f-, fs, fo
maintain path-connectivity between a5, ag. This connectivity is implemented as requested
bY pe.,, Deso» Which in turn were triggered by p..., po., according to ¢s, ¢.
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Time ¢y

Figure 12.5: Decentralized multi-agent scenario with independent LTL y - specifications and
decentralized Navigation Functions with limited sensing R, ; (blue dashed), collision avoid-
ance distances d..; (red dashed), thin dashed lines indicate sensing, thick continuous lines
denote active connectivity links.
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Appendix A

Auxiliary Mathematical Proofs and
Derivations

A.1 Notes on Degeneracy

The navigation function tuning parameter % has been set to £ = 1 for reasons detailed
in a previous point. It is worth noting the following about degeneracy at the destination of
the various intermediate forms of the Koditschek-Rimon Navigation Function formula, as
shown in [Table A.2. Therefore there are five candidate non-degenerate at the destination
function forms and two degenerate ones.

As shown previously, degeneracy of ¢ at the destination ¢, causes problems to the PDE
coefficient of the inverse obstacle fitting equation. For this reason, initially ¢, has been
used. Unfortunately ¢, is unsquashed and not tunable. For this reason the alternative
forms presented here have been developed.

Any of the nondegenerate forms can be used for inverse obstacle fitting. Tunable
forms are preferred and unsquashed as well. The classic ¢ and the herein proposed ¢z
both meet these requirements. Nonetheless, oz is not differentiable at the free space
boundary. But this is not a problem, because the boundary is by definition uniformly
maximal. Since this is a gradient system, it can be shown that for all initial conditions
z(0) € Z \ 0.7, there exists a compact positive invariant set with boundary arbitrarily
“close” to 0.7.

Hence, working in .# \ 0.%, all nondegenerate forms are diffeomorphic to ¢, so that
the same curvature sufficiency condition applies.

A.2 Derivative Common Structure
Any KRNF has the structure (where V' is a wildcard for the selected NF)
V<7d7ﬁ7k):(f20f10¢)(7d757k) (A'l)

where functions f,, fi may be o4(z) = (x)%,a(x) = -1, or the identity function. In the
original NF formulation f, = o, f, = o4, but other alternatives exist and are explored
here. In all cases the fundamental building block is ¢ = %, which is a multiplicative form,
operating differently than the additive form proposed by Khatib.

In the Khatib potential field formulation addition of repulsive effects yields a composite
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Table A.1: Combinations of NF characteristics.

tunable/un nondegenerate/deg (at ¢;) squashed/un function

t n S ©, P8

t n u (,55

t d S P

t d u &

u n S Pp

u n u D1

u d S impossible?
u d u impossible?

@ Degeneracy is caused by the exponent k of ~4, hence simultaneous degeneracy
and untunability are not a possible combination.

Figure A.1: Navigation Function formulas alternative compositions.
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S (V0 (@) = Z<vz(z <E_ii_)>))
) >

; G

0eR",  Bilg) > Bio
The effect of ¢ — 00, = pi(¢) — 07 is similar to the behavior of a KRNF. But the
intermediate field (not too near to a specific obstacle, neither too far outside j;,) is only
controllable using individual 7;, 8;p. The most straightforward solution is to decouple the
obstacles by selecting appropriate 5;,, but this needs nontrivial geometric calculations.
This is similar to the local diffeomorphisms applied for polynomial NFs.

Nevertheless, in a KRNF a similar procedure is applied, but using the single tuning
parameter k, which effectively “decouples” disjoint obstacle effects. The calculations have
an analogous flavor of finding disjoint obstacle neighborhoods. The calculations are just
easier because we have confined the study to spheres. Of course, there is the benefit of
bounded potential and bounded contol input, as well as a single parameter yielding tidier
results. Arguably a strong point is that selecting a moderate % for reasonable scenarios
uniformly yields satisfactorily results, whereas in the Khatib method different 3;, should
be selected.

Differentiation of the KRNF form yields

repulsive effect

i(q )) , Bilg) < Bio (A.2)

oV df2 df1
8’7 (7(1767 ) a_fl<floso>6A< )a (daﬁa )
v 0, afl 09
ov of2 8f1
ak(ﬁ)/daﬂa ) 8f1<f )aA( ) ( d?ﬁ) )
so terms g?, 951 are common and need not be multiply calculated. The alternatives are
0oa v 9 oL
o @ =g {e }— B )
@()_g x B 2laHz+1) —z2{z+1} :c—i—l—x_( L) .
o T 9z \z+1 (x+1)? @+12
For ¢ £ Vd the partial derivatives are
op 9 {’Yd} 10 k Loy K 4
e _ 2 ) dl_ - 7 — _k -1
P W Gl v A A A Iy
k-,
=¥
Yd
00 _ 0 [vi\ _ k0 gy _ kg _g1ld
35_85{5 —’Ydaﬁ{ﬁ }— %15 —p~ 3
_ 1. (A.5)
ﬁ(p
% — E 7_5 19 eknva kln'Yd
ak:_é)k{ﬁ @ak{”}_ﬁak{ }_ p kIl
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Combining the previous results, the derivatives of the various function forms are

V= (ﬁgﬁ) Ve + (—195) VB + (In(va)p) Vok
Y B

k 1
\Y \Y
_ (k%d - 75 + m@d)w) o
5, — (1Yo _ VdP 5
Vp1 = (1 " 3 +ln(7d)0) o1
_ (m _ V_ﬁ) ;
Vd EAS
9]
Vigs = 52 (H)Ve
1, .1 \V4 \Y
= E(@ -1 (k‘% — 75 + ln(’yd)Vk) )
1, .:(.V \Y
= E(@)E ( % - 76 + ln(fyd)Vk)
- OJo . .
Vo= a_@(w)vqw
=(p+1)7? (k% — %ﬁ + ln(vd)Vk) ¢
% \V4 \Y
— G f e (k ’de — 76 + ln(fyd)Vk)
, (A.6)
Vypp = (¢ fl)Q (1v;ﬂd - vﬂqﬁ + 1n(7d)®>
d
@ (V%l B V_ﬁ)
@+1*\ %W B

2
1/ ¢ ¢ _2( VY VB )
— (- +1 Y YE L n(yy) Vk
k (er) (p+1) o (7a) @
1/ ¢ \*' ¢ 1 Vya VB
(- P — X2 (v Vk
k(w“) s0+1<p+1< v B (0a)
1 o \*F 1 Vv VB )
— (- _ ML iy RV v/ 2
k’(s0+1) 90+1( . p 0
o . Oo R
Ves @(Udoso)agbde
. ol 1.
= (040 @ +1) QEW Vo
. 1 . \Y v
= (ot 2ot (2 - T v ) ¢
k Vd B

— %ﬁ + ln('yd)Vk)
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Table A.3: Summary of derivatives.

Function Gradient

v, GﬁW—%&Hﬂwﬂw>¢=G%%—%iHMWﬂ%)%
A v v\, _ (V VB i
v (2-%)e-(-9)3
Vags b (kD= mw V) = 124 (kD - 4 () V)
- ) Vv _ VB _ B Vv VB
V5 (¢Hy(k7; / +hmm0Vk>__hﬁﬁf<k7; , +hu%DVk>
> Vs VhB Yy _ VB
Vaer (EEE (ﬁ B 7) - (A,gig) ( T )
_1_
(v +8) 7 12 (k3 — T2 4 In (3) V)
Vg -
_ (,y(lic _|_5)*E* <ﬁv’7d _ %dvﬁ_‘_ %zﬁl;l(%z)Vk>
and since

A\ F
= % ( o % ! <kv7d _Ys + ln(w)Vk)

k Yd
By ALV P (A7)
1 1
— - Vil (kV'Vd VB + ln(vd)Vk:)

|
—~
)
QU
+
sy
SN—
e
L
VR

5V — %Vﬂ L 2481 (3a) Vk)

k
a summary of the above is provided in the [Table A.3.

A.3 Gradients and Hessian matrices

In this section derivations are provided for gradients and Hessian matrices of the
functions

va=llg—al*, . Bi=la—al’—plieh
2 K (A.8)
. Yd ~ 7 :
Bo=py—llg—al®=ri —llal*, B=T1]5: =g sDZEd
=0

and the alternative potential functions (not all navigation functions)

k k
Yd _ Va k Va Yd
Op = , p= , p= = (A.9)
P+ B v+ Vvi+68 4k +8
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at any point ¢ in the free space .# and at any critical point ¢. € . N %; (where f is each
function considered). Note that Lemma 3.1¥ is applied at critical points.

A.3.1 Yd = Hq - QdH2

v4(q) = llqg — qd||2 =
(Va) (¢) = 2(q — qa) = (A.10)
(D*ya) (q) =21

A3.2 5 =|g—q*

(@) = llg — ™ =

V(i) = kv 'V =
_ -1 949
(V (34)) (@) = o200 = a0) = 2k g — ™ = 0 = (A.11)

“\T _ (k-1
D* (1) = V¥ (ko) 4 kol Vo = ot (A2 0w 4 o)

= kv 72 ((k — 1)VaVay + 21v)
A3.3 §i=|q— C]z’HQ — P

Bilg)=llg—all* - pf. il =
(VBi)(q) =2(¢ — @) = (A.12)
(D?8;) (q) = (D(VB) (9) = D(2(q — ¢:)) = 2D(q — ¢;) = 21
Hence
1(V8) (@)l = 112(g = @)l = 2lg — aill = 2y/llg — aI®

=2 \/gr\q—qir\Q — ) 2 = 2B+ 2 (A.13)

Bi

A3.4 5=t — ||q

Bolq) = pg — llall* =
(VBo) (@) =V (o5 — llall*) =V (p5) = V (llal*) = —2¢ = (A.14)
(D*Bo) (9) = (D (VH)) (q) = D(=2q) = —2D(q) = —2I

1[23], Lemma 3.1, p.426.
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Hence

1(V80) ()ll = | =24l = 21lall = 2/ lall”* = 2\/p3 — o5+ llall®

= 2\/p2 — (1 = llall®) = 2v/p? = Bo = 24/ B0 + i (A-15)
Bo

M
A3.5 3=]]5
i=0

v N VB = (A.16)
:;<EW):5; 5
and
D*8) =D (BZ Vﬁ@wi) - (Z ?v&) VBT+BZD (Vﬁ@v&)
(] i=0 (]
T
= (Z?v&)&Zv@v&ﬁﬁZD<V@ (ﬁ) +D2@->
i=0 7t i
(A.17)
M M ) T T
—s Y (YAVE +6ﬁZD VA ( ) + D%,
i=0 j=0 /Blﬁ] ﬁz
- 1 , \eAvH
_5; VBZ-V(E) D,@+Z( 37,
A3.6 ¢ =2
A.3.6.1 Any point
. BVya— 14V
= () - s
Vo V8 _Vu_ V6 Vu_ Vi (19
B BB B TR B =B
Do) = 0* (%)
(A.19)

1 T
8D, + VAV B — VAVA! — D] + 3V (v—)

-1 ¥
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A.3.6.2 Ciritical point

Gradient
\Y (;d) (¢c) =0 <= Vv =7%Vp Ve ¥ =
\Y \Y V 5;
Wjd: ’ Z P ge # - 07 —{a

Hessian matrix

D? (E) (¢c) = 5 [BD 4 — 7aD? ]

b 1 (A.21)
-3 (281 — v4D?B]
A.3.7 o= %d
A.3.7.1 Any point
- (v_g“) () = BV (i) = 7aVB _ Bkvi V= VB _ iV V8
B g2 B B v BB
S (T ) _p (15 T2
e\ ) o s (A.22)
A, 20—a) <~ V5
— o P2 _
7 < a5 )
D)= 0" (%) (0
INT (A.23)
52 [5D2 (Vd) +V (Vd) vph —vpv (75) - 7dD25] 52V@ (V@>
A.3.7.2 Critical point
D" (%) (00 = 5 [0 (o) —40%8] = 10 (o) - 227
E 2 E 8 B (A24)
1 D2 '
= BDQ (vi) — ¢ 5
At the destination a global minimum exists, where
D? (v4) (ga) = kg (ga) ((k = 1)(Vya)(92) (V7a) (9a) + 217a(4a)) (A.25)

and since (V74)(qa) = 0 € E",74(qa) = 0,k > 2 it follows that D? (%) (¢4) = 0 € R™",
Taking into consideration that also ¢(qs) = 0, it follows that (D?¢) (¢4) = 0 € R™" and
hence ¢ is degenerate at the destination ¢;.
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A3.8 o, ="

 vatp
A.3.8.1 Any point

d (Yo + B)Vva =7V (va+B)  BVya—1Vp
\Y =V = = A.26
#(4) (’Yd‘f‘ﬁ) (’Yd+ﬁ)2 (’Yd+ﬁ)2 ( )
and
D?*p(q) = ™ i 37 [(%z +B) D*vi+ ViV (va+ B)" =V (va+ B) Vg —vaD? (va+ B) | +

(-t B Vg (me

(A.27)
A.3.8.2 Critical point
D*¢(q.) = - Jlr % [(va + B) D*va — vaD? (va + B)]
_ 1 _ 2
B [(va+ B) 21 — 74 (21 + D?B)] (A.28)
_ 281 - vaD?*p
(74 + B)
~_
A.3.9 o= v
A.3.9.1 Any point
v 0d+8)V () —V (i + )
(7% + B)°
— % iV (i) + BV (vi) =i (V (i) + V5]
(v T 8) (A.29)
= e iV (i) + BY (0h) =V () =iV B8]
d
1
= R BV (vi) =74V B]
d
and
D*¢ = L
(7% + B)?

GE+B8) D () + V() V(35 +8) = V (35 + B) V (5) " — 5D (4 + B)] +

2
2 1
k \V4 V——rouv-o+
+0a+s) g0< (v§+5)2>

(A.30)
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A.3.9.2 Ciritical point

1
D*@) (qe) = —= (V) D* (75) =D (4}
(D*%) (ge) i) [(va +8) D* (7q) — 74 D* (va + B)]
1
— ——— [ED? (4F) + BD* (1f) — AED? (7h) + 45D .
(7§+5)2h (V) + BD? (v5) —vsD* (7)) + s D*(8)] (A.31)
1
= —— [BD* (v}) + i D?
T [BD? (v}) + 5 D*(B)]

In subsection A.3.7 it has been shown that at the destination ¢, the Hessian matrix
(D% (7%)) (ga) = 0 € R™*" is fully degenerate. Also v4(qa) =0,k > 2,q4 ¢ 0.F = B(qu),
hence (D?p) (¢g4) = 0 € R™*", i.e. function ¢ is degenerate at the destination g¢,.

A-3-10 @Y = i/%

A.3.10.1 Any point

Ve + BV (va) — vV ( Y 7§+[3>

Vp(q) = 5 (A.32)
(’“ vE+ ﬂ)
Dplg) =y
(VA5+5)
T
\/h 4+ BD*va+ VaV ( v/ i + 5) -V (\’775 +6> Vg — vaD? ( v/ i + B) +
T
2 1
+ (k %’Hﬁ) Vo | Vor——s
SER (A.33)
A.3.10.2 Critical point
D*p(q.) = % [(75 + 5)% D?yy — 74 D? ((VZE + 5)%”
(i +5)* (A.34)
1 1 1 .
= ——— [+ 8) 2 =D (i +8)") |

(75 +8)
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A.4 PDE substitution

For the classic KRNF form ¢ = ( ka )% , the partial derivatives are
7d+,8
i 0 Yd k % d k -
= Tl = + +Yam— +
87d 8% { ("75 + 5)@ } <7d ﬁ) Vda’}/d {(75[ 5) }

:(75"‘@_;4’%!( li)(%z‘i‘ﬁ _{'Yd—i_ﬁ}

k

= Gl ) (1 )=<v§+ﬁ>k—%” L

i+ 8
=B (v + ﬁ)"_l

Sl

dp 0 Ya . 1 1 1
%%{W}’maﬂ{(’m—Fﬁ) } ’Yd( k)(7§+5)

1 _1 4 1 Yd

_ 1 _
= () = () = (i)

1 _1_
=3 (vi+8) " '

Then by substitution in (9.22) we obtain

V5 — <“+ a‘%WI) ~ (utB0E+A) T Y
- ] - —1_
a5 — 274 (7§+5) et

1 Vv 1
= (b2) G+ 0y (K20) 5= 2 (w4 ) 4 )
Yd Y
For the form ¢ = 2 the partial derivatives are

¢ _i{v_ﬁ}_k%ﬁl

8%1 (’Yda ﬁ) a,)/d ﬁ 6

0 _9 {1} _

aﬁ (7(17 5) aﬁ B 52

so substitution in (9.22) leads to

U+ 52V u \Y
oo (BB - (5) - ()
8 Ya Yd
For the form ¢ = ;—1, the partial derivatives are

95 _ 0 {wd}
87d ﬁk

d‘i‘ﬁ}

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)
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hence substitution in (9.22) yields

0pp 1

u+ 52V, u+ BV u 1V

Vi = - (3—> - (M> =k (—ﬁk * %ﬁ) (A40)
98 %

For the form 5 = —<, the partial derivatives are
e

Yd

Jpg 0 { Yd } 1\ L 0 { 1 }
= 1 — + p* + I 1
MNa OV Ly + B* <7d P ) v Ma Ly + B

= (%z + ﬁi>_1’m(—1) (%1 + 6'16)_2 8%1 {vd + 5%}

_ <7d+ﬁi>l — Ya (7d+5’1“>2 - <7d+6i>1 (1 7 ;yrdﬁi)

— (% T 511)_1 %iﬂ;%‘ _ gt (%z X 5;1)_2 (A.41)

8@5_2 Yd . ﬁ %_1
W‘aﬁ{wﬁi}_”aﬁ{@d”) }

= 7va(—1) (Wd + 511)_2 % {'Vd + /3%}

—ra(os) T i ()

Substitution in the PDE (B.22) yields

u+t Bt (a+ Bi)_Q V4
Vi =— - ~3 —
~uBtt (v + ) (A.42)

- 1) ) 4+ (2):
Yd Yd

and simplifying this we obtain
1 2 1 V
V8= <k3> (43 + 208 + B2) 5 + (k:ﬂ) 8
Vd Yd

= <k£7§> BE + (kﬂhd) Brtl=k 4 (kﬂ) BEtl=k 4 (k@> 3

d "V Vd Vd
= (kuya) B + (2ku) B+ <k$) B 4 (k:m> 3 (A.43)
d

Vd
- (kﬂ) B1HE + (km + 2ku) B+ (kuna) '
Vd T

_3 ((kﬂ) gt + (km + Qku) + (kuva) B‘i)

Yd Yd
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_ i=0(=3j#0)

i # ] <Z¢o < 2,
j
o 1=0(= j=0)
Z:]<:i¢0(:>j7é0)

Figure A.2: Combinations of i and ;j cases treated separately.

A.5 Extrema

The following minima and maxima are needed to calculate an estimate of upper bounds
on €l

min {7}, max{ys}, min {5}, max{f;},

Q (57,) i\Eq ng Ez 331 SZ)
min {[[Vgll},  max {[Val}, min {[VE|},  max {[VE]},
Bi(e:) Bi(ei) Bi(e:) Bi(ei) (A.44)

InWaX{vd}, H;;X{ﬁi},
max {[[Vyall},  max{[[VA},ij € o

Note that
min (90} = 0. wuin {3} = 0, wain (V) = 0. wgin (| VA1} = min {|V3]} =20
_ (A.45)
and need not be considered further. Also?
/yd - /82 qi:qd,pi:O (A.46)

so that
min {fyd} max {v4}, min {||Vy4ll}, max {[|Vyal},i€ Lo
n};}x {4}, H}//E}X{HV’YdH}

are not special cases. The derivations are done for ;, j € I, and the results applied to ,
as well.

A.5.1 3, ||Vg;| extrema

There are combinations of %, (¢;),7 € I, and 5;,j € I, which need to be considered
separately, as shown in Fig. A.2.

A.5.1.1 Casei # j,i=01In %, (s)
This is case 1 in Fig. A.2.

2[23], Appendix B, p.438. This follows from comparing v4 = ||q — qal|” to 8i = |l¢ — @|* — P2
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A5.1.2 Casei+#j,i#0,j=0In % ()
This is case 2 in Fig. A.2. Using Lagrange multipliers it can be proved that the minimum

2

win {0} =3~ (et s+ lall) . ie (A48)
2

s o} = 3~ (Ve = lal) . et (49)

The gradient norm minimum is
win (V5 = min {2/~50 + 43} = 2\ s ()

= 2\/p3 — i+ (\/a + 2~ ||qi||)2 (A.50)

:2'\/€i+P12_ lasll|

and the gradient norm maximum

e (141} = o 20/} =2, [~ win ()

is

and the maximum

1€

Jz Ez 1( ) 7‘(57‘

2
\/pa —ph+ (\/ei 0+ \|qu) (A-31)
—o|yat i+ .

A.5.1.3 Casei+# j,i#0,7#0in % ()

(\]

1€ L

This is case 3 in Fig. A.2. Using Lagrange multipliers it can be proved that the minimum

2
min (5} = (Ve —la—al) ~ igen. iti  AS2)

and the maximum

2
gl(aax {8} = (\/5z‘+P?+ g —QjH) —p3, Gjel, i#j (A.53)

The gradient norm minimum is

min (VA1) = min {24/6 + 63} =2, [min (5} +0}

€ i(€1)

2
22\/(\/&‘#/)? - Hqi—qu) — 2+ 3 (A.54)
zzlx/mp%—nqi—qju ,

is

i7j€[17 l?éj
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and the gradient norm maximum

max {[|Vg;]|} :M{Q\/ﬁj +p§} =2 [max {8;} + p}
Bi(er) Zi(e1) Z:()

(€1 €

2
= 2\/(\/& + 0} + lla — QJH> —pjtp;=2 ’\/ e+ 07+ llas — g5l (A-55)
2 (Vardtla-al). ideh it
A.5.1.4 Case:=;=0in % (s)
This is case 4 in Fig. A.2. It is
min {f} =0, max {f}=¢cy, i=0 (A.56)

PBo(eo) PBo(e0)

The gradient norm minimum is

;n(in) {IIVBoll} = ;1(111) {2\/ Py — 50} = 2\/P3 - ;}J?X) {Bo} =24/ — <0 (A.57)
%o (€0 %o (€0

%o (€0

and the gradient norm maximum

max {||Vf]|} = max {2\/P(2) - 50} =2 [p; — min {5}
Bo(e0) Po(eo) %o(e0) (A58)
—9 /p(Q) —0 Pi>0,:VZ'€h 2p0

A.5.1.5 Casei=;#0in %, ()
This is case 5 in Fig. A.2. As in (A.56), also in this case

min {4;} =0, max{f;} =¢, i€l (A.59)

The gradient norm minimum is

min {||V5[|} = min {2\/&- +p?} = 2¢;(in) {8:} +pi

Bi(ei) Bi(ei)

=204+ p2 "9y e

and the gradient norm maximum

max {||V5i|l} = m{%/ﬁi +,0?} =2 [max {B;} + p} = 2\/ei + p} A.61
Bi( Bi(ei) Bi(es) ( )

Bi(eq) (€4

(A.60)
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A.5.1.6 Extremain 7
The upper bounds of 3, in % ared
max {5;(¢)} = (po + llgsl)* = o}, €L (A.62)

and
max {(q)} = Py, J=0 (A.63)

Substitution yields the following maxima of the respective gradient norms

mae {1V 3} = ma {20/8, + 3} = 2, fmac (8} + 3

=23/ (o + g 1)* = 22 + 2 = 24/ (po + [l )
=2(po+llg;l), J€h

g (1901} = s {2/~ + 72 | = 2, fx (=} + 4
=2,/ uin {Bo} + 4 g [0+ 2 (A.65)

-9 2PO>02

2 p0>0Allg;l|>0 (A.64)

and

Lo, ]:0

Note that 2py = 2 (py + 0) ' °9 (po + |l90]]) so that in the general case we can write

Inygx{HvﬁiH}:2(p0+HQiH)7 IS {0717"‘7M} (A66)

A.5.2 -, extrema
A.5.2.1 Extremain %, (c,),i #0

The case of ~,; corresponds to i # j (since the destination is always in free space) and
j # 0 (since vg = |l¢ — qall” is B; = llg—q;|* — p%,j € I with ¢; = ¢4 and p; = 0, not
2
Bo = pg — llall").
Also, since ming 5 {vq}, maxz; -y {7} are not needed, i # 0. This |s case 3 in

Fi% % The results substituting ¢; = ¢, and p; = 0 in the equations of subsubsec-

tion A.5.1.3 are

min {va} = ( it pi —llai — ng) pj
4:(c1) (A.67)
= ( ei+p} = llai = qu) ieh
and the maximum
max {va} = ( ei+p; + g — g !)
:( el+pz+qu—qu> el

3[23], Lemma B.1, p.438.
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The gradient norm minimum is

min {HVwH}—Q‘\/&ﬁ—pz g — g;ll
gz(az
:2‘,/&+pz—uqi—qdu ,

1e

and the gradient norm maximum

s (95} =2 (y/5 72+ o~
:2<\/5i+p§+||q¢—qd|!), 1€y

A.5.2.2 Maximum in #
From Lemma B.1 (p.438)

max {f;(q)} = (po + |all)” = 7, i€l
Substituting for 4, the parameters ¢,, p; = 0 its maximum over 7 is

max {74} = (po + lgall)” = p& = (po + aall)” — 07
= (po + llaall)*

Since
va(q) < mWax{x/%} NgeW

and
ﬁz cW

it follows that
Ya(q) < H};X{\/%} Vg € F,

(A.69)

(A.70)

(A.71)

(A.72)

(A.73)

(A.74)

(A.75)

It is worth noting that for small ¢;, the maxima of ~, in # and .%, do not differ much

lim (my;xx {va} — max {'yd}) =0

{57;%0}?;0

The gradient norm maximum in % is

m;X{HV’de} = II};/%X{Q\/%} =2, /max {vat =24/ (po + lgall)?

>0Algall20
PRS2 (0o + [lgall)

(A.76)

(A.77)
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A.6 Other derivations

—T —
A.6.1 Bound on ‘vgi V23,V 5,

We are now to prove the inequality

0TV2B,0] < 2

i (( ﬁ 51>+ i (( ﬁ Bm) IV 5] IIVBzH)) (A.78)

J=0,j#i \ \I=0,l#i,j 1=0,1#i,j \ \m=0,m#i,j

for a unit vector ©. In the proof two unit vectors are defined and used, which are different
from each other. One defines the gradient’s V3, direction, while the other the direction
tangential to the gradient V3;- as

o7 o Vb

Vi
DEVS £ T
IVa|

V5

£ 0 (A.79)

Then we have

M M M
—v< I1 6]-): > (( 1T @)Wj) —
Jj=0,j#1i j=0,j#i 1=0,1#i,j

_ M M M M D2p;=2IYjel,
D’Bi= > (( 11 61>D26j+ > (( 11 ﬁm>v5jw3“>> =

§=04#i \ \I=0,l#i,j 1=0,l#i,j \ \m=0,m#i,j,

M M M M
§=0,ji 1=0,144,j 1=0,1£4,j m=0,m=i,j,1
multiply this by o7 from left and © from right to get

M M
o' D*Bio = (( 11 ﬁl) 21 + Z (( 11 5m> vm&?)) o
=0,j#1 1=0,l#1,7 1=0,l#1,j m=0,m7#1,7,l

M M M
( 11 ﬁl) oT20o+ > (( 1T ﬁm> VA VG U>>
j=0,j#i 1=0,l#1i,j 1=0,l#14,j m=0,m1,5,l
M M M M
=¥ ( 11 5l)2\|@\|2+ > << 1T Bm> TV BV B; u>>

(A.80)

O

Jj=0,j#i 1=0,l#1i,j 1=0,l#1i,j m=0,m#1,j,l

M M M M
= > 2( 11 m)+ 3 (( 1T %)W%Wﬂ))
j=0,j#i 1=0,l#,j 1=0,l#6,j \ \m=0,m#i,j,l

(A.81)
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SO now

0T D?B;0

M M M M
> (L) 22 (L)oo )
§=0,j#i 1=0,l£i,j 1=0,1£i,j m= Om;éijl

M M M
< Z 2( H Bz) + Z (( H ﬁm> AVIeAVGT A)
§=0,ji 1=0,l#i,j I= Ol;éij m= Om;ézjl
M M
j=0,57#1i 1=0,l#1,5 Ol;ézj m=0,m#1,j,l
M M M
< > (2 1T 8|+ < I1 5m> 0TV BV v)
7=0,7#1 1=0,l#1,5 1=0,l#1,5 m=0,m##1,j3,l

Ve AV

)

M M
-2 O ) 22 (L)
§=0,j#i 1=0,1£i,j 1=0,l£i,j m=0,m#i,j,l
(A.82)

by successive application of the triangular inequality and since 3;(¢) > 0,Vq € F Vi € IL.
It remains to show that |67V, V50| < I IV3]l. This is provided in

kion A.6.2, where we set « = V3, and b = V3. As a result

Dol < 3 (z( I ﬁl)+ 3 (( I @n) 195 HWH))

j=0,ji 1=0,l#1,j 1=0,l#4,j m=0,m#1,5,l
(A.83)
It should be noted that in [23], Appendix B.2, pp. 440-441 an overall result is provided,
M M
where they have factored 2 out by adding > I ﬁm> V3511 IV 3], which is
1=0,l#i,j \ m=0,m#i,j,l

positive, but this leads to even worse numerical results.

Matrix multiplication is associative, therefore
(67) (ab") (0) = (67a) (") (2)

= (0"a) (b"0) = (A.84)
(67) (ab") ()] = |(0"a) (670)]

Now note that (¢”a) € R and (b"0) € R. The absolute value multiplicativeness property
allows seperation of the terms

(A.85)

(57a) (79) | = [o"

Next apply the Cauchy-Bunyakovsky-Schwarz inequality |(z,y)| < ||z|| ||ly| to obtain

[o%a| < |07 lla]l =1+ lla]l = |la]

of < [t {Hen = [ - 1 = fol

(A.86)

substitution then gives

oTab" o] = |(0"a) (b"0)| = [6"a| [b"0| < ||| |0 (A.87)
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A.6.3 Bounded £, when no 0, is known

Proposition: If and only if k. > M. then lim_ ¢-(¢) = 1.
Proof: We examine the alternative cases

2
ol #7D) = i ET s o 1
ql|—o0 ql|—o0 k- 2R\ k2 q||—o0 . . %z
(O +28)" (e — aal™ + 15 lla - al*)
2 2 2
= | lHlm lal — = lim < — = lim < .
q||—o0 k. M, %2 T—r00 M, s T—r00 2k 2M .\ %,
(Ilall™ + IT% llal”) (w2 + 1% 2) (e - 255)
lim —2 = lim 22(75%) = o+ <1, k, < M,
T—00 (p2Mz) k2 T—00
— lim%:hm%:hm j =1 <1, k=M,
T—>00 ($2Mz+x2Mz)Mz r—00 (2$2M2)Mz T—00 2 My 42 2 M;
lim —2 N :hmx—z:L M, <k,
T—00 (x2kz>E z—o0 T
(A.88)
since
M,
2§/<:Z<Mz:>1—k <0 (A.89)
and .
M,>1 = — < 1. (A.90)
pre
A.6.4 Bound on +,; when no 7, is known
Proposition 1: If \/~4(q) > max; {||¢; — qal|} and \/va(q) > ai"*ay* where
- 2 et (A91)
a = o, a2 = Yi(x(tm .
Bz (tm))
and
A ) ay S 1 A %a as S 1
mq = s Mo — A.92
! {%, ap > 1 2 {%, as >1 ( )
then ¢ ¢ Z..

Proof: We have required k., > M, <= k. > M. + 1 to assure limg o - (¢) = 1.
This leads tofl

Mz+1§kz<:>1§k:2—MZ:>m§% (A93)
and :
LN v S (A.94)
so that
m € <0, %] ,Vk, € [M, + 1, 400). (A.95)

4Tt is M, > 0 because at least a single internal obstacle has been discovered, leading to a change from
the trivial unbounded free space NF.
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Whena; <1 = m; =05s0a]" =af=1and since 0 <
a; <1 = af | Yz € R it follows that

m,sz € [Mz + 1,“‘00) for

1
<1 = a"=a)=1>a;"" Vk, € [M, +1,+00). (A.96)
Whena; >1 = my =1 s0af" = al and since ,M—M) < 3,Vk, € [M, +1,+00) for
ag>1 = af Ve eRit foIIows that
ap >1 = a" —al > aQ(kZ_MZ> WV, € [M, +1,+00) (A.97)

Also the requirement M, + 1 < k, leads to

M, +1<k, — 0<k,—1—M 2 0<kM — M — M, —

ky < koM, + k. — M2 — M, 250 0o k., i < Mz; 1 (A.98)
and
e ﬁ -3 (A.99)
so that®

11 M, 1 M, +1
RN — (= Yk, € [M, + 1, +00). A.100
Z(kZ—Mz)G(Z’Q 2} (2’ 2 } € [M: +1,+c0) (A.100)
When a; <1 = my = S0 ay®? :az% and since 1 < G

—M)’Vk c [Mz + 1,+OO) for
as <1 = a} | Vz € R it follows that

<1 = af? =af > a2(’°“ T Wk € [M, + 1, +00). (A.101)

Mo+1

When 1 < ay = my = ¥zt 50 a? = q, *
1,400) foray; > 1 = a} T Vz € R it follows that

and since 08 ZM) < Mt g e [M, +

Mz+1 kz
as > 1 = CLSI2 = a, 2 > a;(kz—Mz)’sz c [Mz + 1,—|—OO) (A102)

Summarizing these inequalities

1 1
- - > 2(k7z Mz) k M A.l
2k = ) € (O, 2} — a" > Vi, > (A.103)
and
k 1 M, +1 e
z - z mo > 2(kz—Mz) M . A.]. 4
2(kz _ Mz) € (27 9 :| Ay~ Z Gy 7sz > z ( O )

>Obviously < =tl even for 0 < M, although here itis 1 < M.
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1 kz
As a result a"a? > a;* " a;*~*) and the condition

ks
M y 2(kz

Yalq) > aal? = \/valq) > ai™ "0 =

4M:

va(q) > (m) (Ya(x(ty,))) 2= 05) <=

4MZ 2= k- t 2(kZ£Mz)
va(q) > (m) (%z (z( m))) —
(A.105)
4M- ks . 2(kz— M)
Ya(q) > (m% (z( m))) —
2(k,—M) Y M: b
( Vd(Q)> m%j (2(tnm)) =
(2t .
) > T — ol (q) > platn) (ula))
The triangular inequality yields
Bi(q) = lla — @l = llg — qa + 92 — @l < lg — qall + [|ga — &l
(A.106)
= V() + llgi — a4l
and for
va(g) > max{llg; —qall} = 7> lla: —aqall Vi € L, (A.107)
as required by hypothesis, it follows that
VBi(0) < Vvaa) + llg — qall < Valg +\/7d =2valq) =
(A.108)

Bi(q) < 4valq), Vi € {1,2,..., M.} = *B(q H@Z (474(q

Substitution in (A.105) yields %+ (¢) > ¢(z(t))?5(¢) and since .7 N 2. = () we can
examine only the interior % \ 0.7 where #5(¢q) > 0 and there the previous is equivalent to

qeﬁ\aﬁ::; *B(g9)>0 ’YC’?Z (9)

“B(q)

and since o, o o is strictly increasing in [0, +oc0) and ¢ € . \ 0.

> @(x(tn) <= ¢(q) > p(x(tn))
(A.109)

1 (@) > @(a(tn))*Bla)

P(q) > P(a(tm)) 20 = caca0@(q) > a0 op((ln)) =

0. () > ¢: (z(tn)) = q ¢ 2. (A.110)

by definition of &2,.
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Appendix B

Note on Polynomial Navigation
Functions

A convex obstacle world is a subset of n-dimensional Euclidean space from which A
disjoint obstacles have been removed. Each of the obstacles is a simply connected convex
subset of E™ with piecewise C? boundary. The convex obstacle world is the agent’s actual
configuration space (C-space).

Note that in case the configuration space is globally non-Euclidean it is not embeddable
in a Euclidean space of same dimension as the C-space manifold dimension. It can be
embedded only in higher dimensional Euclidean space. This renders ordinary navigation
functions inapplicable for such a case.

For example, an ordinary manipulator possesses multiple revolute joints. Its C-space
is multidimensional. As long as none of the joints can perform a full turn, the space
is diffeomorphic to a subset of a Euclidean space of same dimension. But if any joint
performs many revolutions, the space becomes non-Euclidean. It cannot be embedded in
a space of same dimension. It needs an ambient space of dimension n + 1, where n is the
number of joints. In that space it is a hypersurface of dimension n, therefore a non-flat
subset of Lebesgue measure zero. There is not use in inheritance of the ambient metric
for defining a naviagtion function on such a manifold.

Appropriate modifications are made in other chapters of this study to address non-
Euclidean spaces and navigation functions for them.

Another matter not addressable by classical KRNFs are obstacles within Euclidean
space which are of genus higher than 0. Such worlds are not diffeomorphic to any sphere
world (they do not belong to its diffeomorphism class). These obstacles are diffeomorphic
to tori. The basic application is a 2-dimensional solid torus. But m-fold tori are also of in-
terest and are treated in another chapter in the 3-dimensional case. This is why Koditschek
and Rimon avoid graphs of stars containing loops in [] and request that forest of stars
considered form trees (acyclic graphs). Taking into consideration the other conditions on
disjointness of stars in the forrest reveals that this constarint aims -between other things-
to prevent multiply connected obstacles turning up and avoid the need to introduce further
constraints/tests to ensure/check this.

B.1 Sphere world

The navigation function on the sphere world is ¢, : E* — R. The potential’s value
is vs(q). The argument ¢ € E" is the agent’s configuration in the sphere world. The



314 Note on Polynomial Navigation Functions

subscript s emphasizes that the navigation function ¢, is defined on the sphere world.
On the contrary, the navigation function ¢ : ¥ — R is defined on the actual config-
uration space. The function ¢ is the image of ¢,. The image is obtained by applying a
mapping. The mapping should be a union of a finite number of diffeomorphisms, which
form a homeomorphism. Their union is such, that other conditions are met as well. This
results in a continuous, piecewise C? navigation function .
The sphere world navigation function ¢, is defined by Lionis, Papageorgiou and Kyri-
akopoulos as @
N Ya\q
4@ + A0 B

where ~, : % — [0,400) is the squared distance to the goal, defined as

va(@) = lla — gall” (B.2)

where the destination configuration is ¢, € £8 and ||-|| is the Euclidean norm in E".
The function 5 : . — [0, 1] becomes zero if and only if the argument ¢ belongs to an
obstacle’s boundary 00;. It is defined as the product of M obstacle functions j;

Blq) = H&-(q) (B.3)

where each obstacle function ; corresponds to one of the M obstacles 0¢;. Each of
these obstacles is a sphere of radius p;. Each one is the image of an obstacle in the actual
configuration space %.

To simplify the expressions involved and aid understanding, a different coordinate
system is used to define each g,.

For each obstacle two new coordinate systems are defined.

The first is a cartesian coordinate system. Its origin is the goal configuration ¢;. The
y; axis is defined by the unit vector i, = ¢.; — ¢4 Which is the direction from the goal ¢, to
the ith sphere center ¢.;.

The second is a polar coordinate system. Its origin is the ithe sphere center ¢.;
and the radius r,; = |¢ — ¢.;|| measures the distance from that center. The angle 6 =
<QC,Z' — 44,9 — QC,i)-

The definition of 5, : % — [0, 1] is

P(z) ,z €][0,1]
(q) = B.4
ila) {1 o (8.4)
where -
7= 7“57261 pi (B.5)

is the dimensionless position in the current effect zoneZ. When pi <Tsi < pite =
z; € [0,1] the configuration belongs to the annulus. When p; +¢; < ry; <= z > 1 the
configuration is outside the effect annulus.

Each function g; is continuous, because P(1) = 1 and twice continuously differentiable,
because P'(1) =0 and P"(1) = 0.

1The subscript d denotes destination.
2The effect zone is always an annulus of width ¢; = Ts.imax — T's,i,min the configuration space.
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The gradient of function ¢, is

o Yd
Vs =V (%z + 5)
(va + B)Vva —vaV(va + B)

(va + B)?
_ YaVya+ BVya—74(Vya+ V) (B.6)
(74 + B)?
_ %aVYa+ BVYs — 7aVya — VP
a (7a + B)?
_ BV —1aVB
(74 + B)?
and since % (Y2, + 12, + 2rg e cos b;) 2r; + 2y, cos b;
Vo= [a?oi (?ng + ng + 275y, COS 91>:| - [ _érs,iyc,i sin 0; } (B7)
and

ve=v][s=>_ (m 11 ﬁj) (B.8)

=1 Jj=1,j#1¢
and because only at most one V3; # 0 (that of the obstacle within whose effect zone the
point is) it follows that

0 Ts,i—Pi / Ts,i—Pi 0 Ts,i—Pi

87’5,,' P ( E; > _ P ( [ ) 87”3’1‘ ( =01 ) _
0 Ts,i—Pi o /[ Tsi=Pi ) O [ Ts,i—Pi

89¢P < [ > P < [ > 897; < [ >

Substitution of the above yields

1 . . . 1pr(s,
Sorm L (s ] LRGN g

Vg3 =

(’Yd + ﬁ)2 _2Ts,iyc,i sin 91
and because in the effect annulus of obstacle i only 5;(q) = P(z;) # 1
B 1 \ | 27si + 2yeicos 0] §P’(zi)
Vo= errir ) Chama )~ [
B 1 P(z;) (2rs; + 2y, cosb;) —1 P ()
oz d (ARl Y (1D
B 1 {P(zz) (275 + 2y, ; cosb;) — %P’(zl)}
(’Yd + P(Zl)>2 _P<Zi)2rs,iyc,i sin 91
Therefore
Dps P(zi) (215 + 2yc,i cos 0;) — %Pl(zi) 0ps  —P(2)2r,Ye,isin b; (B.12)
Ors.i (Ya+ P(z)) 06 (o + P(z)) .

Because P(z;) > 0,Vz; > 0 and r; > 0,y; > 0 it follows that in the interior of the free
space
>0, 6,€(—m0
Ops  —P(2)2rs,ycisinb; (=, 0)

— =0, 6,€{0,7} (B.13)
00; )2 ’
(a + P(z)) <0, 6;€(0,m)
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Figure B.1: Polynomial navigation function potential on 2D sphere world, effect zone detail
annotated.

8 S —_—
and P(ZZ = 0) - agi = O,VZi =0.

This portrait of the tangential partial derivative %—“g: is symmetric about the y; axis,
outside the effect zones of all other obstacles j # i. The y; axis is the line through the
goal ¢, and the ith obstacle center . ;.

There are two regions, the one in which V+,0V < and the one in which V~,0V 3 <.
The second one has only radially outward flow. The first is further subdivided into two
regions. The inner, where the repulsive effect is stronger than the attractive, resulting
in an overall outward flow. The outer, where the repulsive effect is less strong than the
attractive effect, resulting in an inward flow. Since in the first region the inner region
moves outward and the outer inward, they meet, forming a valley. This valley partially
orbits the obstacle, until it leads out of the effect zone.

The navigation function potential is shown in Fig. B.2.

B.2 Diffeomorphism

B.2.1 Conditions to make it a diffeomorphism

The diffeomorphism is defined as

Ty(rs, 6:) = [YT:;] _ [S(xi(Qi))bi<%>pi —g (1 —S(xi(q:)))r: (B.14)
It is desired to select z;, b; such that the transformation can be proved to be a diffeomor-
phism between the closed patch boundaries wchich are C? curves.

Note that if an obstacle with covers were to be transformed to a 2-sphere, then
1,77, T; would exist and be the desirable, but 7, would not exist on the ray through
the corner (C* discontinuity).
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Figure B.2: Polynomial navigation function potential on 2D sphere world.

Therefore it is obvious that just showing some terms have the desired value when the
rest are not needed (here the value of 7 ) is not enough. One need to ensure that all the
terms exist.

This limitation of a piecewise C? obstacle boundary leads us to a different approach.
Divide the zone around the obstacle in pieces, of which each one has C? boundaries, so
that a diffeomorphism can be defined on it to an arc of a circle.

This leads to the requirement of piecewise C? curves defining the obstacle boundaries.
Then a cover of diffeomorphisms can be constructed.

Let us now show that we can construct such diffeomorphisms as functions of the patch
boundaries and the current position.

Define
I, x€(—00,0]
S(z) = ¢ —6x° +152* — 1023 +1,, x € (0,1) (B.15)
0, z¢€]|0,00]
then 5
8—5(95) = —30z* 4 602* — 3022 (B.16)
i
we will write 5'(z) = 25(z) so note that
S(0) =1,5'(0) = 0,8(1) = 0,5(1) = 0 (B.17)

To prove that the transformation is a diffeomorphism it suffices to show that the Ja-
cobian matrix is everywhere on the closed patch differentiable.

The boundaries of interest concerning differentiability are the inner and outer, not the
extremal rays corresponding to corners (although if an extension of the obstacle’s segment
in a C? way is constructed, it can be shown that a diffeomorphism can be defined on the
open superset).
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We will show that differentiability on the inner and outer boundaries of the transfor-
mation (and its inverse) holds also on the boundaries, which correspond to the branching
points of S).

Let us start by showing existence and invertibility of the Jacobian matrix. Its terms
are

211 271 T T
ITi0) = gy e = 1] (B.18)
where 3 5
3 TZ(ri,0;) = 8—91‘ =0
a” gi (B.19)
o6, i (i, 03) 0.0 =1
and
O 110,0) = 2 (S(aia)bila)os + (1 — S(aila))r)
ael 'L T’L? 1 - 891 xl q’L 1 ql p’L xl qZ TZ

= S,(xz((h))%{xz(%)}bz(%)pz - TZS,(%(QZ)))%(%(%))
_ S’(w(qi))a%xi(q»bxqm + s<xi<qi>>§9ibi<q¢>p@- _ S'<xi<qi>>%{:ci<qi>}n

= (03 () )i = 1]+ S )yl
(B.20)
which exists (and the chain rule can be applied) when a%ixi(qi) and %bi(qi) exist. This
depends on the choice of x; and b; so it is to be checked when we select them.
The Jacobian matrix is therefore of the form

1
7-;,7”1' E:Gi

im 7 (B.21)

As a result, invertibility of JT;(r;, 6;) is equivalent to T}, # 0. If we further require
that T}, (s, 6;) > 0 then it is guaranteed that orientation is preserved and not reverted.

It is (provided that derivatives exist)
0

Ty, (ri,0;) = or. T (rs, 0;)
= L (S(aabila)o + (1 - S(ai(a))r)
_ S’<xi(qz->>%mi(qa)b@-(%)m + s<xi<qi>>a%<bi<qi>>pi + (1= S(aia) - S'<xi<qi>>a%xi<qi>n
= S (s0) (200 ua)os — d + SCrila)) mbilai)ps + [1 — S(ai(a)]
Z Z (B.22)
We have to deal with 3 terms
S'(m(qi))%(xi(q») ) — il +
5 (wi(g0) 2 (bulas)) i (8.23)

or;
+1 = S(zi(q:))
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and all of them are usefull if we are to prove what is desired. This usefullness is to become
clear in what follows.
Suppose we select a z;(¢;) such that

ilg;) = 0, A ;€ 8@ —

(B.24)
ri(g) = 1 — S(zi(q:)) = 0,Yq; € 0P — 00;
and O
0<wzi(q) <1, Vg€l = O,< Slailw) <1,V € B (B.25)
S'(zi(q:)) < 0,Yq; € O;
Then 1 — S(ml(ql)) > O,VC]z S ﬁi.

But because det JT;(r;,6;) > 0 for ¢; € A C P, and det JT;(r;,6;) < 0 for ¢; € B C P; would
mean that the trasnition is discontinuous, hence that det JT;(r;, 6;) and so JT;(r;,0;) are
discontinuous, then this means that JT;(r;, 6;) would not exist at the discontinuity.

Therefore it must be that det JT;(r;, 0;) > 0 or det JT;(r;,0;) < 0. We choose to require
det JT;(r;,6;) > 0.

Then at least on eterm should be positive at every point of the closed patch, while the
others are allowed to be nonpositive at that same point.

We nontheless require that all terms be positive at every point of the open patch. So
this leads us to

0 . 0 .
S(wi(qi)) 8_mbi(qi)\pﬁ./ >0,Vq € P, = 8_nbi(qi) >0,V € P (B.27)
>0 >0
and 5
S"(xi(q:)) a—mxz(%) [bi(qi)pi — ri] > 0,Yq; € P, (B.28)
>0
If we select a z; such that
o .
—;(q; . € P, B.29
arixl(qz) > 0,Yq; € P; (B.29)
then we should also select a b;(g;) such that
5 £i>0 T 3
bi(gi)pi — i <0,Yq; € P, <= bi(q;) < —, Vg € P; (B.30)

7

the required condition is metg. )
So the conditions required in the interior P, of P, have been determined. Let us
examine the boundaries.

3We could have chosen 2-;(q;) < 0,Vg; € Py, bi(q:)pi — r; > 0,Yq; € P; but this would not allow

xi(qi) = O,ti S 8@ < .1‘1(’/“”,71(91)) =0and xi(Qi) = 1,ti c (8]3z — 6@) < l‘i(’l“out,i(ei)) = 1 where
Tin,i(0:) < Tout,i(0;). Therefore this selection is the only possible.
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On rmﬂ(@) itis $1(T1n7l(91)) =0 and

T, (0;) = S/(xi(%))i%‘(%) bi(qi)pi — 73] + S(Ii(%»i(bi(%’))pi +1 = S(zi(q))

87“7, (3ri (B 31)
0 .
oML
>0

and if we require a%bz-(qi) > (0 on the inner boundary, then T} (r;,.(6;), 6;) > 0 there.
ON 7our,i(6;) it S 2 (rous(6;)) = 1 and

, 0 0
T}, (Touti(0:),6:) = S (xz‘(%))y(%(%)) [bi(qi)pi — ri] + 5(%(%))5(@(%‘))% +1—S(zi(q:))
=1>0
(B.32)
From the above it becomes clear that not having b;(¢;) in the product would not allow

us to have the term S(xi(qi))%(bi(qi))pi and if r, was replaced by r,,.(0;) then neither
q — S(x;(¢;)) would arise. Then
TZIT (Tin,i(ei)y 9@')
Tlln (Tout,i<9i>7 ei)
, 0
Til,ri(ria 0;) = S'(%i(q:)) ?(931'(%)) [pi —7i
~—— O1; ——
<0 T <0
and the transformation would not be a diffeomorphism on the closed set P, (or equivalently
on the open-closed oo, inner boundary). Therefore the choice of a linear transformation

T} (ri, 0:) = S(xi(qi))ps + (1 = S(@:(¢:)))outi(0:) (B.34)

0
0
(B.33)

would not work.
Note that points on 9¢; are transformed to points on the ‘" circle boundary

Tini(0i) 1y bi(gi)pi, ai € O (B.35)
We want
bi(qi)pi = pi,Vq; € O; 2= bi(q;) = 1,Yq; € 0, (B.36)

B.2.1.1 Conditions summary

We want the following to hold for the function z;(¢;) to be selected
zi(q;) = 0,VYq; € 00;
zi(q:) = 1,Yq; € (OF; — 00;)
0<xzi(q;) < 1,Vg; € P, (B.37)
g—z(%) > 0,Vq; € -Pz
and for function b;(g;) we require

0 o

bi(q;) < Q,VQi S Pz

7
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Note_that the third requirement on b;(g;) is on the interior P of P. If imposed on the
closure P, then it is compatible with the first constraint, because
Pi

B.2.2 Selection 1 for functions b;(q), z;(q)

Let 0
blg) = 2 p( ) 1= £, 6) (B.40)
then ; ;
bi(1ini(6;)) = Tini(6:) = Tini(0:) +1=1
Pi

0 0 (rsi— Tsini(0:) 1 o

—bi(q;) == | >—>2——+1] =—>0,Y¢g € PnotonlyP,
o) a( n *) 5 Ovae Y (B.41)

bi(gi) = = Toand®) g _ Ty (1 —~ —””’i(gi)) <

Pi pi Pi Pi

<0

where it is important to select a circle within the obstacle to ensure

Tini(0;) > pi <= 7”4L(9i)>1 = 1—M<0 (B.42)
7 pi>0 Pi pPi

Then we can select
bi(q;) — b:(00;) o bi(q;) — 1

5% = 5P — 06, — (00 bilrows(6)) — 1
B Ti*Tz;,z‘(@i) + 1 _ 1 B ’]”Z’ N rmﬂ(ﬁz) (B.43)
—TD“t’i(ei)ﬁ)zri”’i(oi) +1-1 Tout;i(0i) — Tini(6:)
B.2.3 Selection 2 for functions b;(q), z;(q)
Select
Tsi — Tsiny

TS?] - TS,ll’l,j

where w; € (0,1) is the weight of the ith Voronoi cell and ; is the second closet obstacle
(weighted convex distance Voronoi-wise). The radial partial derivative of z; is

8 a (wz rs,i - Ts,in,i) — wz 1 (B_45)
Ts,

ars,z’ ’L(ql) ars,i Ts,in,j

T's,j

j = Ts)in,j
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Figure B.3: Navigating a convex obstacle world with Bezier obstacles using an updating
polynomial Navigation Function with an updating diffeomorphism.
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B.3 Notation and Definitions

Table B.1: Notation and definitions.

Symbol Meaning First definition
|-l vector norm

|| absolute value of real number

N set of natural numbers

R set of real numbers

C set of complex numbers

\Y, gradient of scalar function (1% derivative D;{-})

D? Hessian matrix of scalar function (2" derivative D;D;{-})

n dimension of Euclidean space subsection 2.2. 1!
Em n-dimensional Euclidean space subsection 2.2. 1]
M number of internal obstacles (a priori known world) subsection 2.2.1]
V4 workspace (2.1)

q vector in £ (R.1)

00 radius of obstacle 0 (2.1)

ij dummy indices subsection 2.2.1
0, internal obstacle j € I (2.2)

pj 0; radius 2.2)

4 0; center 2.2)

I set of internal obstacle indices (a priori known world) 2.2)

I set of all obstacle indices (a priori known world) subsection 2.2.1
0 partial derivative, closed set boundary

oW workspace % boundary subsection 2.2.1
O obstacle 0 2.3)

F free space (.4)

d0; 0, boundary subsection 2.2.1
A auxiliary parameter used in proof (2.8)

P; (e;)  open n-dimensional spherical annulus (R.13)

€ parameters determining the widths of annuli %; (¢;) (R.13)

v closure of set .2 equal to 2" U 0.2

P; (e;)  closure of % (&;) (2.14)

07, annulus %, (¢;) outer radius (R.15)

qad agent destination in E” subsection 2.2.2
Fy singleton set of destination {¢,} subsection 2.2.2
0F free space boundary subsection 2.2.2
F set “near” internal obstacles subsection 2.2.2
T set “near” workspace boundary subsection 2.2.2
Fy set “away” from obstacles subsection 2.2.2
€1, set of ¢;,7 € I subsection 2.2.2
er setof g;,i € I subsection 2.2.2
Ei3 constraint on ¢; ensuring %, (e,) N 0; = 0,j € Iy \i,i € I, (2.17)

0%; (¢;) boundary of %, (¢;),i € I, Fig. 2.4

M analytic manifold with boundary subsection 2.3.1!
©(q) general navigation function (a priori known world) subsection 2.3.1]

Koditschek-Rimon navigation function (a priori known world)

(2.20)
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Table B.2: Notation and definitions.

Symbol Meaning First definition

o(z)  squashing diffeomorphism (.21)

z auxiliary real number subsection 2.3.2
o4(x) distortion diffeomorphism R.27)

©(q) diffeomorphic to navigation function in .# \ {0.7 U {q.}} (R.22)

~(q) tuned destination attractive effect (R.23)

va(q) destination ¢, paraboloid attractive effect (R.23)

k navigation function tuning parameter (R.23)

B(q) product of obstacle functions (2.24)

Bi(q) implicit obstacle function (2.25)

Bi(q) product of all 3; omitting j; (2.26)

N(er,) lower bound on & (2.62)

Ep; defined in [23] as ¢/, here Table 2.1i

€0; defined in [23] as &/, here Table 2.1

€h; defined in [23] as ¢/, here Table 2.1i

el defined in [23] as ¢/, here Table 2.1i

€1 defined in [23] as ¢(, here Table 2.1

€0 defined in [23] as min,cy, {¢},, iy} here Table 2.1

) defined in [23] as min;c;, {¢}y, e/} here Table 2.1i

€ defined in [23] as min;¢;, {¢;} here Table 2.1

Ein upper bound on ¢, (2.29)

el constraint on ¢; ensuring qq ¢ %; (¢;) (qa ¢ % (e;) in [23]) (R.29), Table 2.1|, (2.133)
el constraint on ¢; ensuring D?p(q.) < 0 in V§;- (R.29), Table 2.1, (2.195)
Ely together with &%, ensures D?*¢(q.) > 0 in span{V3;} (R.29), Table 2.1, (2.84)
el together with ¢/, ensures D?p(q.) > 0 in span{V3;} (R.29), Table 2.1|, (2.95)
€3 constraint on ¢; ensuring %; (¢;) N U]%\Z =0,iel (R.30)

€403 combined constraints £}, and ¢;3 (R.30)

€93 combined constraints ¢/, and ¢;3 (R.30)

e critical point in E™ subsubsection 2.4.2. 1]
s set of critical points of function subsubsection 2.4.2.1]
Nkr(e) lower bound on £ as defined in [23] Equation 2.44

Qo (z)  auxiliary function such that Qo (8y) = 3522 (2.58)

Qoo upper bound on l max.z, {Hvﬁ%”} max .z, {Qo (Bo) } ()

Q;(z)  auxiliary functlon such that Q; (5;) = QHVﬁ—fi‘ (2.58)

Qi dmaxs, { I} = maxs, {Qi ()} Vi € (2:58)

E0u upper bound on £ (2.74)

0 unit vector {o € E"|||0|| = 1} subsection 2.4.4

i unit vector parallel to V3; subsection 2.4.4

[in two definitions, as ming—{#;} and ming— {6} (2.91)), (2.155)

gmx two definitions, as max;— {5;} and max;— {3;} (.91)), (.155)

Qoi % (s depends on definition of jg and gy (2.92)

Qji Q;(B3™) depends on definition of g5 (.93)

v(q) typographic error in [23] intended to be v;(q) (.96)

vi(q) relative curvature function (2.104)

t; unit vector normal to V3, (2.100)
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Table B.3: Notation and definitions.

Symbol Meaning First definition
G multiply defined expression (.108)

G (2.120)

nom(-) nominator (.123)

den(-) denominator (2.123)

Co (R.125)

€i,KR

€LKR

X scaling factor (.133)

A;

B;

a auxiliary vector

b auxiliary vector

yin (2.156)

yax (2.156)

p;

ba(q) (2.165)

0 angle of polar coordinate system (R.166)

emin

gmax

Ti subsubsection 2.4.5.10
r radius of polar coordinate system subsubsection 2.4.5.10
D semi-annulus subsubsection 2.4.5.11
f(r,0) new nominator function in polar coordinates (2.179)

qi...qz auxiliary points Fig. 2.12

x abscissa of cartesian coordinate system Fig. 2.12

Y ordinate of cartesian coordinate system Fig. 2.12

f(z,y) function f(r,8) as a function of cartesian coordinates (2.181)

g(z,y) constraint function (multiply defined) (2.186), (R.190)
A(z,y,\) Lagrangian for constrained min (multiply defined) (.187), (.190)
A Lagrange multiplier (2.187), (2.190)
Ty, normalized abscissa of cartesian coordinate system .- Fig. 2.13

Yn normalized ordinate of cartesian coordinate system £

M, number of known internal obstacles (exploration)

I, set of internal obstacle indices (exploration)

Iy, set of all obstacle indices (exploration)

F free space interior .7 \ 0.7

P, positive invariant set for agent controlled by ¢,

©.(q) navigation function potential (exploration)

Fn set “near” obstacles (both internal and zero® (B.17)

F, set “away” obstacles (both internal and zerot (A.18)

Eia constraint on ¢; ensuring ||V 5;]| > 0 in % (e.4) (B.21)

€i5 constraint on ¢;

1,7 Tangent space of . at ¢ (B.23)

UT,7 Unit tangent space of .% at ¢ (B.23)

:(q) Radial space spanned by (V) (q) at ¢ (B.24)

U%;(¢)  Unit radial singleton {7;} at ¢ B.27)

Z:(q) Orthogonal complement of %;(¢) in T,.# (B.25)

UZ(q)  Unit tangent space of 3, (Bi(q)) (4.28)
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Table B.4: Notation and definitions.

Symbol Meaning First definition
Bi(q) connected component of 3, (8;(¢)) to which ¢ belongs (A.63)

TB; obstacle level set tangent bundle | | we7 LyBi (B.64)

UTB; obstacle level set unit tangent bundle | | ., {0 € UZ(q)} (8.65)

vi(q, ;) relative curvature function (8.66)

vi1(q) v;(¢,t;) component function for paraboloid 7, (B.67)

via(q, ;) v;(q,t;) component function for paraboloid ~, (B.67)

vi3(q) vi(q,t;) component function for paraboloid ~, #B.72)

viu(q,t;)  vi(q,t;) component function for paraboloid +, (8.72)

6:(q) Gradient angle ((V74) (1), (V) (4)) (@.76)

H1(q) “Good” half-space (4.81)

Ha(q) “Bad” half-space (B.82)

i1 () Single obstacle neighborhood subset (4.85)

o (4) Single obstacle neighborhood subset (A.85)

2 (ep,) Subset of .%,, (8.87)

ot (eq,) Subset of .%,, (8.87)

Kig(t) Normal curvature at ¢ along ¢; of (hyper)surface B;(q) (8.109)

L, () Weingarten map (#.111)

ng,(q) vector normal to (hyper)surface B;(q) at ¢ (B.111)

~(t) path on (hyper)surface B;(q) (B.111)

XY tangent vectors in tangent space 7, B, (B.113)

R, (L) radius of normal curvature at ¢ along ¢; of (hyper)surface B; (#.115)

pij(q) principal direction at ¢ of (hyper)surface B;(q) (4.118)

Kkij(q) principal curvature at ¢ of (hyper)surface B;(q) (B.119)

Ri;(q) radius of principal curvature at ¢ (A.120)

T'(q) level set of v,(q) (#.140)

[ Weingarten map matrix representation in tangent space (B.128)

< (qa,p)  Sphere with center ¢, and radius p (#.142)
Z.(q,t;)  Curvature sphere at point ¢ (B.143)

Qei Curvature sphere center (A.144)

Pei Curvature sphere radius (B.144)

c1 B; level set value subsection 4.4.2
a; B; level set value subsection 4.4.2
as B; level set value subsection 4.4.2
Co B; level set value subsection 4.4.2
B(q,7(q)) closed ball around ¢ of radius r(q) Proposition
r(q) radius for properties to hold in B(q,r(q)) Proposition
q point in ball subsection 4.4.2
I~ (q) index set of principal curvatures with v; < 0 at ¢ subsection 4.4.2
I*(q) index set of principal curvatures with v; > 0 at ¢ subsection 4.4.2
Avs Difference of 1 subsection 4.4.2
Ui(Avs)  open neighborhood function of Avg subsection 4.4.2
AK Difference of « subsection 4.4.2
Uy (Ak) open neighborhood function of « subsection 4.4.2
T rnin minimal ball radius in compact neighborhood Proposition @

Z,9

auxiliary parameters

subsection 4.4.2
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Table B.5: Notation and definitions.

Symbol  Meaning First definition
H real symmetric matrix Proposition
Ai eigenvalues of matrix H Proposition
S unit sphere in R” (B.171)

U linear span of eigenvectors (B.172)

J; matrix H eigenvectors Proposition 32
a; matrix H eigenvector weights Proposition
P; dummy subset of principal directions section 4.5

I; index set of dummy subset of principal directions section 4.5

r index section 4.5

P span of dummy principal directions’ subset P; section 4.5

W linear span of selected eigenvector subset Proposition 36
I7(q) index set of principal directions with v; < 0 section 4.6

P~ (q) subset of principal directions with v; < 0 section 4.6
2. (q) span of P (q) section 4.6

I} (q) index set of principal directions with v; > 0 section 4.6
P (q) subset of principal directions with v; > 0 section 4.6
PF(q)  spanof P (q) section 4.6
IF(q) index set of principal directions with v; # 0 section 4.6
P*(q) subset of principal directions with v; # 0 section 4.6
P*(q)  span of P*(q) section 4.6

G, auxiliary function Proposition
A ellipsoid definition matrix (5.1)

a;j ellipsoid radii (5.1)

a ellipse major radius (5.5)

b ellipse minor radius (5.5)

e ellipse eccentricity (5.6)

u; vector in span of a selected radial and tangent unit vector pair (6.1)

L u,; coordinate wrt 7, (6.1)

A u; coordinate wrt ; (6.1)

a,b,c auxiliary variables section 6.1

g homogeneous function Definition 51
K cone (51)

x vector in cone K (51)

t scaling factor for = (51))

p exponent factor for ¢ (51)

F, First nonzero Taylor form Proposition
=D%f(a) kth Taylor form (6.23)

D;'. Partial derivative operator (6.23)

4 compact Riemann manifold Proposition 55
Oum Morse part of ¢ Proposition 56

Non-Morse part of ¢

Proposition 56
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Table B.6: Notation and definitions.

Symbol Meaning First definition
N, number of experimental trajectories (0.1)

1. set of indices of experimental trajectories (9.1)

X, single experimental trajectory {xi(tj)}je I (ﬂ)

N; number of i** trajectory samples (8.2)

I; set of indices of samples in ‘" trajectory (9.2)

t; 5t time sample (.2)

z;(t;)  configuration of " trajectory at ;' time sample (8.2)

u;i(t5) trajectory velocity sample at time ¢; (8.3)

U; set of velocity samples for i*" trajectory subsection 9.2.1i
Gdi destination of i*" trajectory subsection 9.2. 1]
E experimental data subsection 9.2.4
A, B PDE vector coefficients subsection 9.3.3
T sampling period (6.32)

qr r* component of system state ¢ (9.39)

C B-spline coefficient tensor (9.40)

c vector of B-spline coefficients (9.4.1)

t,ti B-spline knot sequences (9.4.1)

h; order of B-spline in each dimension (9.4.1)

D domain of definition (9.42)

J optimization cost functional (9.42)

JppE PDE error functional (9.42)

Jsp sample point obstacle function positivity functional (8.42)

Jp destination point obstacle function positivity functional (9.42)

Jon domain boundary obstacle function non-positivity functional (9.42)

s(x) C?-smooth switch (9.42)

Ay satisfaction error of PDE system at j** sample of " trajectory (9.42)

w; relative weight coefficients of component cost functionals (9.42)
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Table B.7: Notation and definitions.

Symbol Meaning First definition

o, ¢ LTL formulas subsection 12.2. 1]
P atmomic proposition subsection 12.2.1]
P set of atomic propositions subsection 12.2.1]
Op set of well formed formulas over set P subsection 12.2.1i
X LTL operator “next” subsection 12.2.1i
U LTL operator “until” subsection 12.2.1i
O LTL operator “always” subsection 12.2. 1]
O LTL operator “eventually” subsection 12.2.1!
= logical negation operator subsection 12.2.1!
A logical conjunction operator subsection 12.2.1i
V logical disjunction operator subsection 12.2.1]
o sequence of atomic proposition subsets subsection 12.2. 1]
ai(j) sequence suffix subsection 12.2.1
z alphabet of letters o (i) subsection 12.2.2
3w set of all infinite words over & subsection 12.2.2
Z, language of infinite words subsection 12.2.2
S finite set of states subsection 12.2.2
) nondeterministic transition function subsection 12.2.2
So set of initial states subsection 12.2.2
F set of accepting states subsection 12.2.2
P labeling function subsection 12.2.2
w infinite word in X« subsection 12.2.2
~y deterministic transition function subsection 12.2.2
L, “good” set of states in Rabin automaton subsection 12.2.2
U; “bad” set of states in Rabin automaton subsection 12.2.2
Iy index set of “good”/"bad” pairs in Rabin automaton subsection 12.2.2
nrLy number of “good”/"bad” pairs in Rabin automaton  subsection 12.2.2
a; leader agent i subsection 12.3.1
o, set of leader agents (i.e., with specifications) subsection 12.3. 1!
N number of leader agents subsection 12.3.1i
1, index set of leader agents a; subsection 12.3.1]
o local LTLy - specification given to agent q; subsection 12.3.1
H; agent q; hybrid state subsection 12.3.1
T agent a; continuous state subsection 12.3.1
X, agent a; continuous state space subsection 12.3.1]
n; dimensionality of continuous state space X; subsection 12.3.1]
qi agent q; discrete state subsection 12.3.1i
Q; agent q; discrete state space subsection 12.3. 1]
m; dimensionality of discrete state space Q; subsection 12.3.1
fi follower agent subsection 12.3.1i
F set of follower agents f; (i.e., w/o specs) subsection 12.3.1i
ng number of follower agents f; subsection 12.3.1]
Iy index set of follower agents f; subsection 12.3.1]
Pes; 4" controllable AP of a; subsection 12.3.2
P, set of controllable APs of a; subsection 12.3.2
Ne number of controllable APs of «; subsection 12.3.2

index set of APs in P,

subsection 12.3.2
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Table B.8: Notation and definitions.

Symbol Meaning First definition
Doy, 5" observable AP of a; subsection 12.3.2
P,, set of observable APs of a; subsection 12.3.2
Mo, number of observable APs of «; subsection 12.3.2
I, index set of APs in P, subsection 12.3.2
fe function mapping agent «; to its controllable APs P., subsection 12.3.2
P, all agents’ controllable APs subsection 12.3.2
P, all agents’ observable APs subsection 12.3.2
P, all APs of agent q; subsection 12.3.2
Pi radius of spherical agent «; subsection 12.3.2
R, sensing/communication radius of a; subsection 12.3.2
T, NF destination corresponding to AP p.,, subsection 12.3.3
INF; index set of NF controllable APs, C I, subsection 12.3.3
to initial time of system evolution subsection 12.3.3
Cd;; relative position vector (between agents) subsection 12.3.3
I agent a; hybrid controller subsection 12.3.4
9; agent a; discrete controller subsection 12.3.4
Cij agent a; j** NF controller subsection 12.3.3
PB; agent a,; Blchi automaton section 12.4

K; agent a; Deterministic Rabin automaton section 12.4

T agent a; trimmed Rabin automaton section 12.4

9; agent a; deterministic controller automaton section 12.4

W; complement of union L; U U; section 12.4

i NF of an agent (12.3)

U; velocity of an agent (12.2)

Vi agent destination function (12.4)

G;, g functions to build multi-agent proximity relations (12.6)

biri, Bi;  agent collision functions (12.7)

A\, b,k NF tuning parameters section 12.7

S(x) C?-smooth switch (12.8)

d;j distance between agents (12.9)

A, B,T" normalized squared distance differences (12.9)

S1,S2  switches on normalized distance differences (12.9)

d, communication distance (12.9)

d,, piecewise collision function branching point (12.9)
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