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Abstract

The aim of the present work was to asses the performance of the modelling of transition
from laminar to turbulent flow. For this purpose an incompressible solver was utilized, where the
velocity and pressure fields were linked with the aid of the Artificial Compressibility Method. From all

the transition models available in the literature, the Langtry and Menter  Re model was
selected, which is a two-equation model and belongs to the family of Local Correlation Based
Transition Models.

For validation purposes, simulations were performed on two dimensions for two airfoils
typically used in the wind power generation industry, as well as a three-dimensional propeller. The
results were then compared to experiments available in the literature in order to assess how well the
solver captures the complicated phenomenon of transition.

The simulation for the two-dimensional airfoils indicated that the results are in good agreement
with the experimental ones only for small angles of attack, while in higher angles of attack, the effect
of strong three dimensional phenomena lead to discrepancies between the results of the solver and
the experimental ones.

For the case of the three dimensional propeller, the solver managed to capture the correct
slope for the curves on the Open Water Diagram, while a corresponding Fully Turbulent Solver failed
to capture them.
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1. Introduction

Since the 17th century science and engineering have developed on two parallel paths, the first being
pure experiment and the second being pure theory. In the recent years, with the increase of available
computer power a third alternative has emerged as a compromise between the two methods
discussed above, Computational Dynamics. The same applies for the sector of Fluid Dynamics.

Computational Fluid Dynamics or CFD is the analysis of systems involving fluid flow, heat
transfer and associated phenomena, as chemical reactions by means of a computer-based simulation
[1]. CFD combines disciplines from Fluid Dynamics, Mathematics and Computer Science in order to
simulate fluid flows. The emergence of CFD helped reduce the cost of designing aerodynamic bodies,
since for some cases the cost of an experimental test is prohibitive. Moreover, not all flow regimes
can be simulated on an experimental facility. However, it should be noted that CFD should not be
considered as a replacement of theory or experimental testing, it is just an additional, supplementary
tool for verification and validation.

In historical terms, at the first stages of its application, CFD could only be used for simple
two-dimensional inviscid flows, however at present time, with the vast computer power available,
complex three-dimensional flows can be simulated. The need for CFD emerged in the 60s and 70s in
the aerodynamics industry and was used only in high technology engineering areas, but since then it
has been used as an educational, design and research tool in the following sectors:

 Automotive Industry and Internal Combustion Engines
 Turbomachinery
 Civil Engineering
 Naval Architecture
 Chemical Engineering
 Meteorology and Oceanography
 Biomedical Engineering
 Sports Engineering

In general, a Navier Stokes CFD Solver, like the one used in the context of this work, divides
the computational domain into a set of smaller control volumes and solves the Navier Stokes
equations at each control volume using some values from the neighbouring control volumes. This
approach, which is called Direct Numeric Simulation is, even with today’s computers, possible only for
Laminar flows, where the Reynolds Numbers are low. The need to simulate also turbulent flows, some
of which are of great engineering significance, led to the appearance of turbulence models, which
tried to capture the effects of turbulence without raising the computational cost to preventive levels.
However, it is worth mentioning that different turbulence models can give different solution accuracy
for the same problem and also different models are better for different flow regimes. Consequently, it
is important that the CFD results are interpreted, bearing in mind the drawbacks and the strengths of
the turbulence model used.

Another limitation of the above-mentioned turbulence models is that they treat the flow as
either fully laminar or fully turbulent. In the recent years a substantial amount of scientific effort has
been put into firstly understanding the complex phenomena of transition from laminar to turbulent
flow and secondly into finding suitable models for implementing transition in the CFD Simulations.

Transition occurs through different mechanisms for different applications [2]. In aerodynamic
flows transition is caused typically by flow instabilities (Tollmein-Schlicthing waves), whose amplitude
grows exponentially resulting in an non-linear breakdown to turbulence. This mechanism is termed
Natural Transition and is illustrated in Figure 1. On turbomachinery the main transition mechanism is
by-pass transition [3],[4], where the high levels of freestream turbulence, caused by the upstream
blade rows, force the laminar boundary layer into transition far upstream of the natural transition
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location. Lastly, a third type of transition is Separation Induced Transition, where a laminar boundary
layer separates and then gets re-attached as turbulent [5].

Figure 1. Natural Transition from laminar to turbulent flaw. Source: [6]

Except for the decision about which turbulence model must be used for a certain application, a CFD
user must also decide whether the utilized code will account for fluid compressibility. If the flowing
medium is air, at low speeds (speed much lower than the speed of sound) the effects of
compressibility are negligible. On the other hand, at speeds close to the speed of sound or higher the
effects of compressibility become very important. From a mathematical point of view, the
compressible Navier-Stokes Equations can be used with no problem as far as coupling of velocity and
the pressure, whereas in the incompressible equations the density is constant and by definition the
velocity is not linked to the pressure. The above-mentioned problem is solved by the method of
Artificial Compressibility by introducing a pressure derivative in the continuity equation and marching
it through pseudo time until a steady state is reached. In this case, the original incompressible
equations are recovered. The Artificial Compressibility Method was first introduced by Chorin in 1967
[7] and has been since improved by many researchers.

Thesis Scope

The scope of this work is to examine the implementation of transition modelling on an incompressible
solver. The results of the simulations were compared to experimental ones available in the literature.
The Langtry and Menter  Re transition model was selected, which belongs to the family of
Local Correlation Based Transition Models. The work of K. Diakakis [8] who implemented transition
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models on a compressible solver, served as a basis for the present thesis. The utilized CFD solver
which was the so called MaPFLow, which was developed by G. Papadakis in his PhD thesis in the
National Technical University of Athens [9].
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2. CFD Solver MaPFlow

Introduction

The purpose of this chapter is to present, in some detail, the MaPFlow solver, which was used for the
CFD simulations . On section 2.1 the basic governing equations of CFD are presented. Section 2.2 gives
the principles for solving these equations, including the various spatial discretization schemes on
sub-sections 2.2.3 and 2.2.4, as well as the temporal discretization on sub-section 2.2.7. The various
boundary conditions utilized are included in Section 2.3. Section 2.4 discusses the physics of
turbulence and the Turbulence Model used in the context of this work. Transition modelling is
presented in Section 2.5. Lastly, the solution of the system of equations is included in Section 2.6.

2.1 Governing Equations

The governing equations of fluid dynamics are derived from the following conservation laws of
physics:

 Conservation of mass
 Newton’s second law, which states that the rate of change of momentum equals the sum of

forces on a fluid particle
 The first law of thermodynamics, which states that the rate of change of energy is equal to the

sum of the rate of heat addition to and the rate of work done on a fluid particle.

In a compressible solver, the continuity equation is in essence a transport equation for the density,
while the energy equation serves as a transport equation for the temperature; then by utilizing the
state equation, the pressure can be computed. On the other hand, in an incompressible solver, the
density is constant and therefore not linked to the pressure, consequently coupling the velocity and
the pressure is a problem for the solution of the flow field. A remedy for the above mentioned issue is
offered by the Artificial Compressibility Method. In the context of this method, a fictitious time
derivative of pressure is added in the continuity equation and the solution is marched in pseudotime
10]. When a steady state solution is achieved, this time derivative vanishes and the original
incompressible equations are recovered. It is clear from the above that in the case of an
incompressible solver, no energy equation is solved.

Let  denote an arbitrary control volume and  its boundary. The governing equation for an
incompressible flow for cell i is given by:

  0)()(












dSnFF
t

WW
VISINV

ii 





 (2.1)

Where W


is the vector of the conservative flow variables:
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Where p denotes the pressure,  wvu ,, are the components of the velocity vector and  is the
pseudo-time.

E is a matrix given by:
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Where  zyx nnnn  ,, is the unit normal vector and  is the artificial compressibility or

pseudo compressibility parameter. The value of this parameter, controls the speed at which the
pseudo waves, introduced by this formulation, travel.

2.2 Principles of solution of the governing equations
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2.2.1 The Finite Volume Method

In the Finite Volume Method the computational domain is divided into a finite number of control
volumes. The variables are calculated in the centre of each control volume and the equations solved
represent the conservation of relevant properties in each control volume. In this process, the values
of the variables at the surfaces of the control volume are needed; these values are computed by
interpolation from the values at the control volume centers.This division of the computational domain
is achieved by creating a mesh or grid. Each cell of this grid constitutes a control volume. Hereby, the
terms cell and control volume will be used interchangeably.

Discretization is the process of transforming the governing Partial Differential Equations and
initial and boundary conditions into a system of discrete algebraic equations. In this way, instead of
obtaining an analytical solution in every point of the computational domain, the solution is computed
at discrete points in the geometrical domain. The Finite Volume Method Method results in obtaining
an algebraic equation for each of the control volumes, in which a number of the neighbouring nodal
values appear. MapFlow utilizes the so called-method of lines [11], where the governing equations
are first discretized in space and then advanced in time starting from a known initial solution.

2.2.2 Spatial Discretization

Assuming that the control volume does not change in time, the time derivative of the conservative
variable vector can be cast in the form:

t
WdW

t 









(2.6)

Consequently, equation (2.1) becomes:

  






















dSFF
t
WEW

VISINV


1

 (2.7)

The surface integral on the right-hand side of the above equation is replaced with the sum of fluxes
crossing the faces of the control volume. This approximation is called spatial discretization. An
assumption is made that the flux is constant along each individual face and it is computed at the
center of the face.
Let KJI ,, denote a particular control volume, then the equation (2.7) becomes:

  
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






 



FN

m
mmVISINV

KJI

KJIKJI SFF
dt

dW
d

dW

1,,

,,,, 1 
 (2.8)

Where FN is the number of faces of the control volume and mS is the area of face m.

As a result of the spatial discretization, we obtain a system of partial differential equations that are
hyperbolic in time, which means we have to start from an initial solution and advance the equations
in time.
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2.2.3 Variable reconstruction

From the above it it clear that the values of the conservative variables must be known at all cell faces
in order to solve the equations, but the variables stored refer to the center of each control volume.
This means that the values on the cell faces have to be suitably interpolated from the values on the
cell centers. This process is termed Variable Reconstruction.

Before presenting the various discretization schemes it is appropriate to define the Stencil or
Computational Molecule. The Stencil consists of all the cell centers that a particular scheme uses to
interpolate the fluxes on the cell faces.

In this work, three of the above mentioned discretization schemes where utilized with different
orders of accuracy. The MUSCL scheme the PLR scheme and the QUICK scheme.

2.2.4.1 Van Leer’s MUSCL scheme.

The Monotone Upstream-Centered Schemes for Conservation Laws, was first proposed by Van Leer
[12] and utilizes the following stencil.

Figure 2. Four-cell stencil for the MUSCL and QUICK schemes

According to the MUSCL scheme the left and right states for the cell face  f are
computed as follows:

          IIjIIIIL rWWrWWWW 


  11
4
1

11 (2.9)

          11 11
4
1

  JIjJJJJR rWWrWWWW 


(2.10)

Where
3
1

k and r denotes the ratio of the backwards difference operator to the forward

difference operator:
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IJ

II
I WW

WWr 





 1
(2.11)

If the denominator is lower than 0, then rI=1. Finally φ(r) is called the Limiter Function. Limiters

are further discussed in the following paragraph.

Second and higher order accurate schemes can present non-realistic wiggles (oscillations)

in the solution, under certain flow conditions like, for example, in regions of high gradients. It is

commonly accepted that in order for a scheme to not present these unwanted oscillations it

must be monotonicity preserving. This means that it must not create new extrema during the

time evolution and also the values of an already existing local minimum must be non-decreasing

and for a local maximum they must be non-increasing. On upwind-based schemes, the limiter

must become zero in regions of strong discontinuities, in order for the scheme to switch to pure

upwind discretization, which is guaranteed to be monotonicity preserving. On the other hand, on

smooth flow regions the limiter should turn to 1 and give the original unlimited value. Two

limiters can be used in the MaPFlow solver for the MUSCL scheme, the limiter of van Albada [13]

or the Superbee limiter [14].

The van Albada limiter reads:

 
12

2





I

II
I r

rrr
(2.12)

While the Superbee limiter reads:
 )2,min(),1,2min(,0max)( III rrr  (2.13)
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2.2.4.2 PLR

Figure 3. Two- cell stencil used in the PLR scheme

The Piecewise Linear Reconstruction scheme, which was first introduced by Barth and Jespersen [15],
utilizes the stencil in Figure 2. The solution is considered to be linearly distributed on each cell and the
left and right states are obtained by:

 
 RJJJR

LIIIL

rWWW
rWWW



*
*








(2.14)

Where W


is the primitive variable vector:
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(2.15)

Lr


and Rr


are vectors from the cell centers of cells I, J respectively to the cell face.

W


 is the gradient of W:

T

z
W

y
W

x
WW 




















(2.16)

In the context of the MaPFlow solver the above-mentioned gradients can be computed using either
the Green-Gauss Approach or the Least Squares Approach.
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Finally,  denotes the Venkatakrishnan's limiter [16], [17] given by:
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Where:

i

i

UU
UU





minmin,1

maxmax,1

(2.18)

In the above equations maxU and minU are the maximum and minimum values, respectively,
of all surrounding nodes J including the node I itself.

The purpose of 2 in the above equations is to control limiter strictness. For large values of
2 the limiter function will take values around unity and no limiter would be imposed on the

gradient. This may lead to unrealistic oscillations in the solution. On the other hand, if 2 is
close to zero it results to full limiting and this may stall the convergence. It is now common
practice for 2 to take values proportional to the mesh length scale.

 32 hK (2.19)

Where h is the cube root of the volume (in 3D) or the square root of the surface (in 2D) of
the control volume.

The proportionality factor K is a free parameter; for small values of K the limiter is strict and PLR
becomes first order accurate, while for large values of K the scheme is unlimited. Usually K=5 is
chosen.

2.2.4.3 Leonard’s QUICK scheme

The Quadratic Upstream Interpolation for Convective Kinetics (QUICK) of Leonard [18] uses a
three-point upstream weighted quadratic function to calculate the values on the cell faces. This
means that the computational grid consists of two bracketing nodes (one at each side of the cell) and
an extra node in the upstream direction. It is third order accurate based on the Taylor series
truncation error on a uniform mesh (see Appendix A).
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The QUICK scheme has possibly problems in the implementation of boundary conditions, and
can be proven to be unsteady for computing turbulent quantities.

The left and right states are computed as follows:

Left state

If 8
1 10
  IJ WW


, then:

   12
8
1

2
1

 IIJJIL WWWWWW


(2.20)

Else if 11 3.02   IjIIj WWWWW


, then:

   12
8
1

2
1

 IIJJIL WWWWWW


(2.21)

Else:

1

1
,









IJ

II
nudI WW

WWW 


(2.22)

If 65.035.015.1 ,,,  nvdInvdInvdI WorWorW


 5.075.075.0 ,  nvdIface WW


(2.23)

Else if 01 ,  nvdIW


nvdIface WW ,375.0


 (2.24)

Else if 165.035.00 ,,  nvdInvdI WorW

 
nvdI

nvdInvdI
face W

WWW
W nvdI

,

23
,,

21
1

,






 (2.25)
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Else if 5.11 ,  nvdIW


nvdIface WW ,




  faceIJIL WWWWW


11  
(2.26)

Right state

If 8
1 10
  JJ WW


, then:

   12
8
1

2
1

 JJIIJR WWWWWW


(2.27)

Else if 11 3.02   JIJJI WWWWW


, then:

   12
8
1

2
1

 JJIIJR WWWWWW


(2.28)

Else:

1

1
,









JI

JJ
nudJ WW

WWW 


(2.29)

If 65.035.015.1 ,,,  nvdJnvdJnvdJ WorWorW


 5.075.075.0 ,  nvdJface WW


(2.30)

Else if 01 ,  nvdJW


nvdJface WW ,375.0


 (2.31)
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Else if 165.035.00 ,,  nvdJnvdJ WorW

 
nvdJ

nvdJnvdJ
face W

WWW
W nvdJ

,

23
,,

21
1

,






 (2.32)

Else if 5.11 ,  nvdJW


nvdJface WW ,




  faceJIJR WWWWW


11  
(2.33)

2.2.5 Discretization of the Convective Fluxes

As a result of the variable reconstruction process described above, the generally discontinuous Left
and Right states are computed. Consequently, a method to combine these two values and evaluate
the convective fluxes is required. In the context of this work, this was made possible with the aid of a
Flux-Difference Splitting Scheme.

Flux Difference Splitting Schemes, which were first introduced by Godunov [19], evaluate the
fluxes by solving the Riemann (shock tube) problem [20]. This family of schemes accounts for the
physically correct transfer of information throughout the flow. In particular, MaPFlow utilizes Roe’s
approximate Riemann Solver [21] which offers high accuracy for boundary layers and good treatment
of shocks.

Roe’s solver approximates the convective fluxes as a sum of wave contributions:

       



 

 LRIROELCRCIC WWAWFWFF


2
1

2
1

2
1

(2.34)

In the above equations L and R denote the Left and Right states, respectively, and ROEA is the
Roe Matrix.

The Roe matrix is identical to the Convective Flux Jacobian with the difference that all flow
variables are replaced with their Roe-averaged counterparts:
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(2.35)

2.2.6 Discretization of the Viscous Fluxes

The control volume for the viscous fluxes is chosen to be the same as for the convective fluxes. For
the reconstruction of the variables, the values on the cell face are obtained by simple central
averaging. In particular, for the face between cells I and J:

 jIJI VVV



2
1

, (2.36)

In order to calculate the viscous fluxes, apart from computing the values at the cell face we also have
to compute the gradients of certain quantities. Assuming that the gradient on the centers of the cells,
I and J, are already approximated, either by the Green- Gauss method or by the least squares method,
the gradient at the face between cells I and J is given by:

JI
JI

JIJIJIJI t
l
VtVVV ,

,
,,,,





























(2.37)

Where JIV ,


 is the mean gradient:

 JIJI VVV



2
1

, (2.38)
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JIl
V

,












is a first order approximation of the directional derivative:

JI

IJ

JI l
VV

l
V

,,















(2.39)

Finally, jil , is the distance between the cell centers and jit ,


is the unit normal vector pointing

from cell center I to cell center J.

2.2.7 Temporal Discretization

Spatial discretization results, for each control volume, in the following equation:

 
I

I R
dt
Wd 




(2.40)

The temporal discretization schemes are divided to implicit and explicit schemes. Implicit schemes

rely on already known variables, namely the vector nW


and the corresponding residual nR


to
find the solution on the next time level. As the name suggests, the equations can be solved explicitly
from already known values. As a result, for a given time step explicit schemes are easier to implement
than implicit schemes and require less computational effort. On the other hand, there is a maximum
time step that can be employed, which is dictated by stability criteria.

Implicit solutions use   11   nn RWR


to obtain the solution of the new time level. These schemes
involve solving a large system of equations simultaneously and have, for a given time step, larger
computational cost than implicit ones. However, larger time steps can be used without stability

problems. Since 1nR


is unknown, the following linear approximation is used:

n

I

nn W
W
RRR
















1

(2.41)

Where:
nnn WWW


 1
(2.42)

And  WR


 / is the flux Jacobian.
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MaPFlow utilizes a finite difference scheme for the time derivative [22]:

         12
2

1
1

1
1 .....1 







 


nn
n

n
n

n
n

n
n RWWWW

t


 (2.43)

The accuracy of the above Backwards Differencing Formula (BDF) depends on the choice of n .
BDF2OPT is a class of second order accurate backwards difference schemes, with half the error of a
conventional 2nd order scheme. [23]

In Table 1, below, the values of n are given , which guarantee a certain order of accuracy.

Order of
Accuracy

φn+1 φn φn-1 φn-2

1st 1 -1 0 0
2nd 3/2 -2 1/2 0
3rd 11/6 -3 3/2 -1/3
BDF2OPT 3/2-φn-2 -2+3φn-2 1/2-3φn-2 -0.58/3
Table 1. Values of φ for a certain order of accuracy

2.2.7.1 Steady State Problems

Even in the case of steady state problems, the form of the equations to be solved requires marching
of the solution in pseudo-time until an acceptable level of convergence is reached. For this purpose,

MaPFlow utilizes a first order accurate scheme by linearizing 1nR on equation (2.43) around the
current time level:

  n
I

I

n
I

I

n
I W

W
RR

t
W 



















(2.44)

Rearranging the terms on the above equation gives:

n
I

n
I

II

RW
W
R

t
































(2.45)

The term inside the square brackets is denoted the Implicit Operator.

2.2.7.2 Local time stepping

Local Time Stepping [24] is a method where, in each cell, the maximum allowable timestep is used in
order to accelerate convergence. The maximum allowable timestep is imposed by the
Courant-Friedrichs-Lewy (CFL) condition [25]. It states that the Domain of Dependence of the
numerical method has to include the Domain of Dependence of the partial differential equation. This
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practically means that the time step must be equal or smaller than the time required to transport
information across the stencil of the spatial discretization scheme. In this work the timestep was
computed by:

 Ivc
I C

CFLt



  

(2.46)

Where c


and v


are a representation of the sum of convective and viscous spectral radii
(Eigenvalues) respectively over all faces of the control volume, given by:

   

   












































F

F

N

J
IJ

IJT
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L
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JI

JI

JI
Iv

IJ

N

J
IJIJIJIc
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Scnu
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,
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1

PrPr
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3
3max1 









(2.47)

2.2.7.3 Time True Problems, Dual Time Stepping

Regarding unsteady problems, the Dual Step approach is used [26]. In the context of this method, on
each physical time step the equations are marched on a different “pseudo-time level” and the

corresponding time variable is denoted  . The variables on the pseudo-time level are denoted *W
and they do not satisfy the original unsteady problem unless convergence is reached. It should be

noted that the vector *W , does not contain the pressure term.Essentially, for every physical time
level, a steady problem is solved in the pseudo-time:

    1*
*1







 l
n

RW 

 (2.48)

Where  1l is the new pseudo-time level. By setting:

   *
*

* WR
t
WR





 (2.49)

equation (2.48) becomes:

     *
**1

WR
t
WWn 








 

 (2.50)

When the process converges, WWR  ** ,0 and the unsteady problem is satisfied.

Discretizing the above equation gives:
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      
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(2.51)

With:

      11
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1
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 (2.52)

The implementation of an implicit scheme in the Dual Time-Step approach involves linearizing the

unsteady residual 1* lR :
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(2.53)

Where the  coefficients are taken according to Table 1. By inserting equation (2.53) to equation
(2.51) the following form is obtained:

l
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
 (2.54)

where l
dualQ is a source-like term for the dual time stepping technique given by:

      11
1*

1
1 





 



n

n
n

n
n

n
l
dual WWW

t
Q


 (2.55)

The local time-stepping technique mentioned before is also used for defining the “pseudo-time” step.
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2.3 Boundary Conditions

The implementation of correct boundary conditions has great significance as it can completely change
the acquired solution. On external aerodynamics the following boundary conditions are used:

 Solid Wall Boundaries
 Far Field Boundaries
 Symmetry Boundaries
 Periodic Boundaries

Before introducing the specific boundary conditions, it is appropriate to discuss the concept of
dummy cells. Dummy cells are virtual cells outside the computational domain and their purpose is to
simplify the computation of the fluxes across the boundaries; this is achieved by extending the
computational stencil for the spatial discretization outside the boundaries. As a result, the same
discretization schemes can be used for the cells in the boundary with the cells inside the domain.

2.3.1 Solid Wall Boundary Conditions

For inviscid walls, since there is no friction, the boundary condition is that the velocity must be
tangential to the surface and hence the velocity normal to the wall is zero.

  0 nuu g


(2.56)

Where gu


denotes the mesh velocity. Pressure is taken equal to that of the cell next to the wall.

Iw pp 
(2.57)

On viscous walls the no-slip condition is applied, which states that there is no relative velocity
between the surface and the fluid:

guu  
(2.58)

Density and pressure are taken equal to those of the cell next to the wall, as in the case of an inviscid
flow.

For both viscous and inviscid walls the convective flux is taken equal to:
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Where:
nuV gg


(2.60)

2.3.2 Farfield Boundaries

A necessary requirement for the farfield boundary conditions is that they must not reflect back any
outgoing disturbances [26]. This is extremely important for sub-sonic flows where due to the elliptic
nature of the equations, incorrect implementation could result to reduced accuracy and slow
convergence.

The sign of each eigenvalue of the flux Jacobian determines whether the information is going in or out
of the computational domain. Kreiss [27] proved that the number of conditions that should be posed
from outside the boundary is equal to the number of incoming characteristics. The remaining values
must be determined from the solution inside the domain.

2.3.3 Symmetry Boundary Conditions

When the flow is symmetric with respect to a line or plane, the solution is computed only in a half of
the domain. The necessary boundary conditions are: a) there is no flux across the symmetry line
/plane, and b) gradients normal to the symmetry line /plane must be zero. These conditions are
translated to the following mathematical form:

0
0




nU
nu




(2.61)
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2.3.4 Periodic Boundary Conditions

Figure 4. Translational periodicity (Left) and rotational periodicity (Right)

If flow field is periodic, the equations can be solved only in one period. There are two types of
periodicity, the first one is translational periodicity, which means that the one periodic boundary can
be transformed to the other periodic boundary by pure coordinate translation, while in the second
type, rotational periodicity, the periodic boundary was generated with coordinate rotation.

The periodic boundary conditions are implemented by utilizing the dummy cell concept. Let BA,
denote two periodic surfaces as illustrated in Figure 4. For every ghost cell in contact with A , there
is a corresponding ghost cell in contact with B . Scalar quantities are taken to be equal on both
dummy cells, while vector quantities follow the motion required to collapse A on B . This motion is
expressed by a transformation matrix AR , so:

BAA

BA

URU
UU





(2.62)

In translational periodicity IRA  , while for rotational periodicity AR is the corresponding
rotation matrix.

2.4 Turbulence Modelling

Turbulence is a state of motion where all the flow properties vary in a random and chaotic way. A
necessary condition for the turbulent flow regime is that the Reynolds number, which gives a
measurement of the relative importance of inertial forces and viscous forces, is above a certain value
termed Critical Reynolds Number ( crRe ).

Turbulence is manifested by the appearance of rotational flow structures called turbulent
eddies. These eddies have a wide range of characteristic length scales and velocity scales. For that
reason, a direct simulation of the time-dependent Navier-Stokes equations called Direct Numeric
Simulation (DNS) is impossible for complex flow structures, as the grid would have to be sufficiently
fine to account for even the turbulent eddies with the smallest length scales and the time step would
have to be sufficiently small in order to account for the fastest eddies.
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A remedy for the above problem is presented by the Reynolds decomposition [28]. The flow
quantities are split into their mean and fluctuating parts '

iu , given respectively by the equations
(2.63) and (2.64):

dtuu
Tt

t
iTT

i 



 1lim

(2.63)

iii uuu 
(2.64)

Where:
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uu

u

The above is known as Reynold’s time averaging and is suitable for statistically stationary turbulence.
In practice, T means that T must be larger than the typical time scale of the turbulent
fluctuations.

By applying Reynolds averaging to the incompressible Navier-Stokes equations, the following
equations for mass and momentum transfer are obtained:
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(2.65)

These are known as the Reynolds Averaged Navier Stokes equations (RANS). It can be easily observed
that the RANS equations are in fact identical to the Navier Stokes equations for an incompressible
fluid with the addition of one term:

ji
R
ij uu   (2.66)

This term is denoted Reynolds stress tensor and expresses the transfer of momentum due to
turbulent fluctuations. The laminar viscous stresses are computed according to Newton’s Law of
Viscocity, which states that the viscous stress tensor is proportional to the Strain Rate Tensor:
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x
uS  2

(2.67)

The Reynolds stress tensor consists in three dimensions, of nine components:
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But since:

ijji uuuu  (2.69)

there are six additional unknowns, so six additional equations are needed in order to close the
system.

The Boussinesq Approximation

The turbulence models implemented in MaPFlow are based on the Boussinesq Approximation or Eddy
Viscosity Hypothesis [29], [30]. The Boussinesq Approximation states that the Reynolds stresses are
proportional to mean rates of deformation, as in a laminar flow. The proportionality factor is called
the Eddy Viscosity (  ):

ijijtji
R
ij KSuu 

3
22  (2.70)

where jiS , is the Reynolds Average strain rate tensor, K is the turbulent kinetic energy

and ij is Kronecker Delta ( 1ij if ji  and 0ij if ji  ).

By introducing the Eddy Viscosity Hypothesis, the problem caused by the appearance of turbulent
fluctuations on the governing equations is reduced to finding a suitable model for computing

 throughout the computational domain.

Menter k-ω SST Turbulence Model

Menter’s K-ω SST (Shear Stress Transport) turbulence model [31], [32] is a first order closure of the
Reynolds Averaged Navier Stokes Equations. It is a combination of Wilcox K-ω model [33], [34] and a
high Reynolds number k-ε model (transformed in the k-ω formulation). More precisely, Wilcox Κ-ω
model is used in the viscous sublayer of the boundary layer and in the logarithmic region. This is so
because in the former case, the fact that the Κ-ω model doesn’t need a damping function makes it
more stable and in the latter case it gives better results for adverse pressure gradient flows and
compressible flows. On the other hand, it switches to a K-ε model in the wake region of the boundary
layer because the Κ-ω is sensitive to the freestream value of ω.

Two transport equations are solved, one for the turbulent kinetic energy Κ and one for the
specific dissipatiοn rate ω:
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Where F
ij is the Favre averaged turbulent stress tensor and ijS is the stress tensor.

The second term on the right-hand side of the first equation is the Production term. In [35] it is
recommended to limit the production term so it is replaced by:

  kPP *,min (2.72)

1F is a blending function between the k-ω and the k-ε models that takes the form of a hyperbolic

tangent in order to ensure smooth transition between the two models. In particular, if 11 F , the

model is Κ-ε and if 01 F the model is K-ω.

1F is given by:
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(2.73)

Where

v , d is the distance to the nearest wall and kCD is the positive part of the

cross-diffusion term in (2.78) given by:


















 20
2 10,12max

jj
k xx
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

  (2.74)

F1 is also used as a blending function for the empirical constants of the models with 1 presenting

the values of the constants for the k-ω model (hereby stated as inner constants) and 2 the values
of the constants for Menter’s modified k-ε model (hereby stated as outer constants).

  2111 1  FF  (2.75)

The inner constants are:
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The outer constants are:
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The eddy viscosity is limited because it was observed that it overpredicts the wall shear stress and the
implementation of a limiter gives better agreement with experimental measurements of separated
flows [36]:
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Where  is the vorticity magnitude and 2F is another blending function:
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Boundary Conditions

The boundary conditions as defined by [31], are for the freestream values:
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(2.80)

Where L is the approximate length of the computational domain and 1≤C1≤10 and 1≤C2≤5.

The values on the wall are:

0
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2
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



wall

wall

k
d
v




(2.81)

With d1being the distance to the closest wall.

2.5 Transition Modelling. The  Re model.

Transition models are a family of turbulence models that account for the effect of the transitional
region between the laminar and the turbulent flow. They are very effective on aerodynamic
applications, where a significant proportion of the boundary layer is laminar.

For the scope of this work, the  Re model was used. It was proposed by Langtry and Menter
[37], and further corrected in [38], [39], [40]. This model can be derived from the K-ω SST model
discussed in Section 2.4 by modifying the Source ( KP ) and Destruction ( KD ) term in equation 2.78,

as well as the blending function 1F . The modifications are as follows:

KK PP ~
(2.82)

   KK DD 0.1,1.0,maxmin~  (2.83)

The variable  in the above equations is called Turbulence Intermittency and expresses the
percentage of time that turbulent fluctuations are present in the boundary layer. This variable
determines whether the flow is laminar ( 0 ), fully turbulent ( 1 ) or transitional from laminar
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to turbulent ( 10   ). It should be noted that the freestream value of  is taken equal to 1
instead of 0 as someone would except. In other words, the flow is considered turbulent everywhere
except of a small laminar region.

On equation 2.81 when 1 the destruction term takes its original value from the K-ω model and

when 0 (laminar region), KK DD 1.0~  . This limiter ensures that the destruction term never
falls under 10% of its original value, so the wall still damps turbulence even if the flow is laminar.

The blending function 1F was modified because it was observed that in the boundary layer it
would sometimes switch to 0 (which means that the turbulence model becomes Κ-ε); this must be
avoided because the Κ-ε model does not have good near-wall behaviour. The modified blending
function is given by:
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The turbulence Intermittency is calculated at every point of the computational domain using a
transport equation:
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The production of intermittency P is given by:

    11
5.0 1 eaonsetlength cScFFP  (2.86)

Where S is the magnitude of the strain rate, lengthF is an empirical correlation that controls

the strength of production and hence the length of the transition region and onsetF is a function
that switches on the production of intermittency. Both functions are dimensionless.

The destruction term of equation 2.92 is given by:

 122   eturba cFcE
(2.87)

Where  is the vorticity magnitude.

onsetF is given by:
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The constants appearing in the above equations are given by:
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In the variation of the  Re model, which is utilized in MaPFlow,  in equation (2.82) is

replaced with eff given by:

 sepeff  ,max
(2.94)

Where sep is a modified turbulence intermittency in order to predict separation induced

transition:
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At this point, it is appropriate to define the Momentum tThickness Reynolds Number:
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Where  is the momentum thickness defined as:
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On equations 2.92 cRe is the Momentum Thickness Reynolds Number where the

intermittency starts to increase, while tRe is the Momentum Thickness Reynolds Number
where transition occurs. Both of these values are calculated from empirical correlations.

Furthermore, the  Re model introduces a new variable teR
~

, which has a value at every
point in the computational domain and is called Transition Momentum Thickness Reynolds

Number. A transport equation is solved for teR
~

given by:
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It should be noted that this transport equation diffuses this value towards the wall in contrary to
conventional transport equations, where the effect of the wall diffuses out away from the wall.

More specifically, the freestream value of teR
~

, which is computed with the aid of an empirical
correlation diffuses towards the wall. This is made possible by the form of the production term

tP :

  ttttt F
t

cP 
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 0.1eR~Re (2.99)

2

500
U

t





(2.100)

Where t is a time scale, which is used for dimensional reasons.

The production term is used to set the value of teR
~

equal to the freestream value,

everywhere except from the boundary layer. This is made possible by the blending function tF .
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In the boundary layer this blending function takes the value of one and consequently the

production term is set to zero, while at the freestream it takes the value of zero, forcing teR
~

to become equal to the freestream value. The limiter is obtained by the following equation:

2

51
Re

2

2

2

2

4

Re

50
2
15

eR~

0.1,10.1

1

0.1,maxmin


















 

































































































eF

d
U
d

U

c

ceFF

wake

BL
w

BLBL

t
BL

e

e
y

waket

(2.101)

wakeF is a blending function that ensures that tF is not activated in the wake regions
downstream of solid bodies. Lastly, the constants in the above equations are taken as follows:
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Empirical Correlations for cRe and lengthF

For the calculation of cRe and lengthF the Langtry correlations [38] were used:
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Langtry also proposed a correction on Flength [40]:
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Empirical Correlations for tRe

On the available correlations the Reθt is a function of the Turbulence Intensity (Tu) and of a scalar
measure of the Steamwise Pressure Gradient (λθ).

The Turbulence Intensity is given by:

U

k

Tu 3
2

100 (2.106)

While λθ is given by:
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dU




2

 (2.107)

On the above equation ds
dU

is the velocity gradient along the steamwise direction and it is
computed by:

222 wvuU  (2.108)
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In this work the Langtry Empirical Correlation [38] was used as follows:
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2.6 Solution of the Discretised Equations

The result of the discretization process is that the partial differential governing equations are
transformed into a system of algebraic equations in the following form:

BAX  (2.112)

In order to solve this system of equations a numerical process has to be employed. There are two
families of numerical solution methods, direct and indirect or iterative methods. Direct methods are
accurate but for a large system of equations the computational cost is high, as well as the memory
requirements, because for a system of N unknowns and N equations, all NxN coefficients need to be
stored. On the other hand, iterative solvers begin with an initial guessed solution and by the repeated
application of a simple algorithm, the solution in constantly improved until a certain criterion of
convergence is met. Iterative methods have limited memory requirements, since only the non-zero
coefficients need to be stored; also, they are suitable for parallel computing while direct methods are
not.

As shown before, the discretized form of the equations for cell I is:
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In these equations only one term refers to the cell in consideration, so the following splitting is
employed:

n
I

n
JI

n
II RUOUD


  (2.114)

The first term in equation 2.121 is block diagonal and includes the variables at cell I, while the second
term contains the off-diagonal contributions, that involve the cells surrounding cell I.

Jacobi Iterative solver

The Jacobi iterative solver begins with an initial solution and it improves it in every iteration using the
following formula:

  kn
JI

n
I

kn
II UORUD ,1,


(2.115)

Where k is the number of the current iteration.

Gauss - Seidel Solver

Another iterative solver is the Gauss Seidel solver, it is very similar to Jacobi’s method, with the

exception that the off-diagonal terms are calculated with the current update for U

:

   kn
JI

kn
LI

n
I

kn
II UOUORUD ,1,1,
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(2.116)

Where LU


contains the cell values that have already been updated in the 1k iteration.

The Gauss Seidel method can prove to be twice as fast as the Jacobi Method, however its
performance is strongly dependent on the form of matrix A in equation 2.112.
If the matrix is banded, which means that its non-zero entries are confined in a diagonal band, the
matrix can be split in an Upper and Lower part and Gauss - Seidel becomes:

   kn
RI

kn
LI

n
I

kn
II UOUORUD ,1,1,
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(2.117)

However, if A is considerably sparse the Gauss Seidel solver has the same convergence properties as
the Jacobi Solver [41].

In the case of structured meshes, the matrix is inherently banded and the Gauss - Seidel
method behaves well. In unstructured grids, the bandwidth of the matrix depends on the cell
numbering, by using the Reverse Cuthill-McKee (RCM) reordering scheme [ibid], the bandwidth of the
matrix is effectively reduced, and the performance of the Gauss- Seidel method is enhanced.
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Chapter Three: Model Validation

3.0 Introduction

In this chapter three different test cases were simulated using the MaPFlow solver and the obtained
results were compared to experimental values available in the literature. The three test cases consist
of two airfoils typically used in the wind energy sector, namely the DU-00-W212 and the S827, in
addition to the VP1304 controllable pitch propeller. Section 3.1 pertains to the DU-00-W212 airfoil,
with Subsection 3.1.1 briefly discussing the experimental layout and Subsection 3.1.2 the results of
the simulation. Similarly, for the S827 airfoil the experimental procedure is described on Subsection
3.2.1 and the simulation results are presented on Subsection 3.2.2. Finally, the VP1304 propeller is
discussed on Section 3.3.

3.1 DU-00-W212 airfoil at 6106Re 

3.1.1 Experiment Layout

The DU-00-W212 airfoil was measured by O. Ceyhan and O. Pires [42] at the DNW-HDG low
speed wind tunnel at Goettingen, Germany.

The layout of the wind tunnel can be seen on Figure 5.

Figure 5. The DNW-HDG wind tunnel. Source: [42]

The model was tested on different Reynolds numbers ranging from 3 x 106 to 15 x 106, while
maintaining the Mach Number below 0.1, in order to determine the effect of different Reynolds
numbers on the aerodynamic characteristics. The Lift Coefficients were computed by integrating the
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pressure distribution over the airfoil, which was measured by 90 pressure taps mounted on the model.
The drag coefficients were computed with the aid of a wake rake. A wake rake is a device that
measures the static pressure and the total pressure on the wake region of the flow. By comparing
these values to the free stream total pressure, the pressure deficit is computed, which is directly
related to the profile drag. The rake on this experiment had 118 total and 8 static pressure probes and
it moved with a traversing mechanism across the width of the wake. Experimental results were
obtained for both free transition and transition tripping. However, in this work only the ‘clean
condition’ results were utilized.

3.1.2 Results

Using the MaPFlow software two simulations were carried out, one with the compressible solver and
one with the incompressible, with the Reynolds number set to 6 x 106 and employing the  Re
transition model. The Mach number was set to 0.15 and therefore it is expected that the
compressible and incompressible solvers will have similar results, since for this Mach number there
must be minimal compressibility effects.

For both simulations two structured, body-fitted O-grids were utilized. Τhe coarser grid, hereby
referred to as “Grid L2”consists of 4 blocks with around 4600 cells each, the finer grid, hereby
referred to as “Grid L1”, also consists of 4 blocks but with around 18500 cells in each block. The outer
boundary on both meshes was put 40 chords away from the airfoil in order to avoid far-field
influence on the calculations.

Figures 5 and 6 illustrate the L2 grid, while figures 7 and 8 illustrate the L1 grid.

Figure 6. Grid L2: View of the entire mesh
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Figure 7. Grid L2: View of near airfoil region

Figure 8. Grid L1: View of the entire mesh
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Figure 9. Grid L1: View of near airfoil region

Grid Independence Study

Prior to obtaining any results, a grid independence study was performed between the L2 and L1
meshes for the incompressible solver. Figure 9 illustrates the computed Lift Coefficients in respect to
the angle of attack, while figure 10 shows the drag coefficient in respect to the lift coefficient.

The results for the Lift Coefficient were satisfactory, however there was a deviation between the
results of the two meshes in the CL-CD diagram, which indicates that Grid Independence has not been
achieved. Due to limited time and computer resources for creating a mesh finer than L1, it was
decided that the results for the L1 grid will be used for the validation of the model.
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Figure 9. Grid Independence Study CL-α

Figure 10. Grid Independence Study CL-CD
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Simulation Results

Figure 11 shows the Lift Coefficient against the Angle of Attack for the incompressible and
compressible solvers, in addition to the result from the experimental measurements. Generally, it can
be seen that the agreement with the experimental results is satisfactory for both solvers.
More precisely, both solvers slightly overpredict the Lift Coefficient for angles from 0 degrees to 5
degrees, then for angles from 5 degrees to 8 degrees the results are quite similar with the
experimental ones. For angles from 9 degrees and above there is a discrepancy with the experimental
results, which becomes larger as the Angle of Attack increases, and eventually the solvers do not
capture the reduction of the Lift Coefficient in the post-stall region. This discrepancy between the
experimental results and the ones from the simulations for higher Angles of Attack, can be attributed
to strong three-dimensional effects that can’t be captured by a two-dimensional solver. For the same
reason, simulations for angles greater than 15 degrees were not performed although experimental
results are available.

Figure 11. Lift coefficient against Angle of Attack

The Lift Coefficients against the Drag Coefficients are presented on figure 12. Although the results of
the incompressible and the compressible solvers are in good agreement with each other, there is a
serious deviation from the experimental results, especially outside the laminar drag bucket, where for
high lift coefficients the drag coefficient is extremely overpredicted. Again, this can be a result of
strong three-dimensional phenomena on higher Angles of Attack. It can also be seen that the models
predict transition at lower values of CL.
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Figure 12. Lift Coefficient Against Drag Coefficient (in Drag Counts)

Figure 13 Illustrates the surface pressure distribution on the pressure and suction sides of the
airfoil for an Angle of Attack of 2 degrees. Both solvers correctly predict the pressure distribution
with the exception of a region on the pressure side ranging from 0.2 to 0.4 of the chord, where
there is a slight deviation between the results from the solvers and the experimental ones. This
region is connected with the transition from laminar flow to turbulence and it can be seen that
the transition is earlier on the CFD simulation results.
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Figure 13. Pressure Distribution for 2 degrees AoA

Lastly, since there were no experimental results available for the transition locations on all Angles of
Attack, a comparison was made between the results of the Compressible and Incompressible Solvers.
The following figures (14-21) illustrate the transition locations for the upper and lower sides of the
airfoil, as well as the effective turbulence intermittency contours in these locations for 0, 4 and 8
degrees Angle of Attack.
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Figure 14. Transition Location Upper Side

Figure 15. Transition Location Lower Side
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Figure 16. Effective Turbulence Intermittency (γeff) 0 degrees Upper Side

Figure 17. Effective Turbulence Intermittency (γeff) 0 degrees Lower Side
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Figure 18. Effective Turbulence Intermittency (γeff) 4 degrees Upper Side

Figure 19. Effective Turbulence Intermittency (γeff) 4 degrees Lower Side
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Figure 20. Effective Turbulence Intermittency (γeff) 8 degrees Upper Side

Figure 21. Effective Turbulence Intermittency (γeff) 8 degrees Lower Side
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3.2 S827 airfoil at 66 104,103Re 

3.2.1 Experiment Layout

The S827 airfoil is a NREL S-series airfoil, which is frequently used for transition model validation,
since its physics are strongly characterized by transition phenomena. It was designed and measured
by Sommers [43] at the Nasa-Langley Low Turbulence Pressure Tunnel (LTPT). The airfoil was
designed so it will deliberately stall above a certain Angle of Attack, but the separation is restricted to
a ‘separation ramp’. As a result, the airfoil can continue operating with reduced lift giving the

aCL  diagram a distinctive two-slope form.

The airfoil was designed to meet a certain desired pressure distribution profile using the Eppler Airfoil
Design and Analysis Code. The LTPT is illustrated in figure 21. Experimental tests were made for

Reynolds Numbers ranging from 6101 to 6106  with both free transition and transition fixed by
roughness, however for in this work only the free transition results were utilized. Like for the
DU-00-W212 airfoil a wake survey probe was used to calculate the Drag Coefficient, while the Lift
Coefficients and the pressure distribution at various angles were measured with the aid of pressure
transducers mounted on the model.

Figure 22. The Nasa-Langley Low Turbulence Pressure Tunnel

3.2.2 Results

Simulations were carried out using only the Incompressible solver for 6103Re  and
6104Re  . For both Reynolds Numbers the Mach Number was set to 0.1 and the freestream

turbulence intensity to 0.05%.
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For both Reynolds Numbers a structured, body-fitted O-grid was utilized. The grid consists of 4 blocks
with approximately 32800 cells each and the far-field boundary was put 1000 chords away from the
airfoil. The grid can be seen on figures 23 and 24.

Figure 23. View of the Entire Mesh

Figure 24. View of near airfoil region

The Lift Coefficients for Angles of Attack ranging from -5 to 20 degrees are plotted on figure 25 for
6103Re  . The results are quite close to the experiment for angles from -4 to 4 with the model

slightly overpredicting the slope of the curve. The results of the model indicate that the Angle of
Attack for stall onset and the maximum Lift Coefficient predicted are significantly higher than the
corresponding experimental results. For Angles of Attack greater than 10 the deviation from the
experimental results increases as the Angle of Attack increases and eventually the model fails to
capture the two-slope form of the experimental results, although it correctly captured the increase of
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the Lift Coefficient after the stall. Like for the DU-00-W212 airfoil, the failure to capture the
characteristics of the flow at higher Angles of Attack can be attributed to strong three-dimensional
phenomena.

Figure 25. Lift Coefficient against Angle of Attack

The drag polars for 6103Re  are presented on Figure 26. The agreement with the experimental
results is good inside the laminar drag bucket. However, the model significantly overpredicts the Lift
Coefficient at which boundary layer transition to mostly turbulent flow starts. This was expected, due
to the results for the lift coefficient presented above, as the model predicts the onset of stall at higher
values of CL. Experimental results for high Angles of Attack were not taken into account for reasons
explained above.
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Figure 26. Lift Coefficient against Drag Coefficient

For 6104Re  the results of the simulation presented similar behavior with the ones for
6103Re  . More precisely, for lower Angles of Attack the results were in good agreement with the

experiment. The solver overpredicts the angle at which stall occurs, as well as the maximum Lift
Coefficient. From 19 degrees to 20 degrees the Lift Coefficient is reduced, which might indicate that if
simulations were made for angles of attack greater than 20, the solver might have been able to
capture the characteristic two-slope form. The results are presented on Figure 27.
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Figure 27. Lift Coefficient against Angle of Attack

The drag polars for 6104Re  are presented on Figure 28. The model, also in this case,
overpredicts the Lift Coefficient at the Drag Bucket Corner.

Figure 28. Lift Coefficient against Drag Coefficient
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The surface pressure distributions for Angles of Attack 0, 4 and 8 are plotted on figures 29-31.

Figure 29. Surface Pressure Distribution, 0 degrees

Figure 30. Surface Pressure Distribution, 4 degrees
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Figure 31. Surface Pressure Distribution, 8 degrees

It is clear from the above plots that the results of the simulation are in good agreement with the
experiment for the lower side of the airfoil for all Angles of Attack. For the upper part of the airfoil
there is a discrepancy between the results, which becomes larger as the Angle of Attack increases.

3.3 VP1304 Controllable Pitch Propeller

As a third, and final, test case a three-dimensional propeller was selected in order to assess how
well the model will behave in this case and whether it will capture the three-dimensional effects
correctly.

For this reason, simulations were performed on the VP1304 Controllable Pitch Propeller. The
Potsdam Model Basin has published experimental results for this propeller under the name
Potsdam Propeller Test Case (PPTC) in order to assist in model validation. The results of the
simulation were compared with simulations made by Kalantzis [44] without transition modelling,
as well as with experimental data, obtained by towing tank tests on the SVA Potsdam.

The basic geometric characteristics of the propeller are given on Table 2

Propeller diameter D mm 250.000

Pitch at 7.0
R
r 7.0P mm 408.705
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Table 2. Propeller geometric characteristics

For the simulations the one-blade approach was followed. The computational domain is cylindrical
with the inlet located at a 3D distance away from the propeller plane, while the outlet is at a distance
of 5D. Since the pattern of the flow is expected to have a rotational periodicity the computational
domain was selected as a blade passage with 72o periodicity in the circumferential direction. The
unstructured mesh utilized has 3.4x106 cells, is locally refined around the propeller and was
generated by Kalantzis [44]. It should be noted that prior to the simulations a grid independence
study was performed for the case of modelling without transition with satisfactory results [ibid].

Figure 32. Mesh General view, refinement regions appearing as blue boxes. Source: [44]

Pitch at 75.0
R
r 75.0P mm 407.3804

Mean Pitch
meanP mm 391.8812

Chord Length at 7.0
R
r 7.0C mm 104.1670

Chord Length at 75.0
R
r 75.0C mm 106.3476

Thickness at 75.0
R
r 75.0t mm 3.7916

Pitch Ratio

D
P 7.0

- 1.6350

Mean Pitch Ratio

D
Pmean - 1.5675

Area Ratio

0A
AE - 0.7790

Skew
eff o 18.8

Hub Diameter Ratio

D
dh - 0.1500

Number of Blades z - 5
Direction of Rotation - - Right Handed (SCS)
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Figure 33. Sectional View of the Mesh. Source: [44]

Figure 34. Mesh around the Propeller and the Hub. Source: [44]

For the simulation the revolutions were kept constant, while the inlet velocity was changed to achieve
a certain Advance Coefficient each time. The flow conditions were selected to be the same with the
experiment and are given on Table 3.

Water Density 
3m

kg 968.67

Kinematic Viscosity v

s
m2 1.07×10-6

Number of
revolutions

n
s
1 15
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Advance Velocity
AV

s
m2 0.75-5.25

Table 3. Flow Conditions Tested

Regarding the boundary conditions, a Dirichlet condition for the velocity is applied on the inlet. For
the propeller and the hub the no-slip condition is applied. Lastly, the outlet boundary is considered a
pressure outlet.

Simulations were carried out for values of the Advance Coefficient 0.6, 0.8, 1, 1.2 and 1.4 using the

 Re and were compared to the corresponding results when the k-ω SST model is used, as well
with the available experimental results.

The results for both cases are presented on Table 4, along with their deviation from the experiments
and are further illustrated on figures 35 to 37 as bar charts. The open water diagram obtained from
the above results is plotted on figure 38.

J kt 10kq η ΔΚΤ Δ10ΚQ Δη ΔΚΤ% Δ10ΚQ% Δη%

0,6
0,626809 1,43814 0,416203224 0,002224406 0,041766862 -0,010927846 0,354877866 2,90422785 -2,625603492 Without

Transition
0,63313 1,440136 0,419817722 0,008545406 0,043762862 -0,007313348 1,349708022 3,038800669 -1,742029449 With Transition

0,8
0,5031709 1,198859 0,534389021 -0,000254198 0,020852046 -0,009734033 -0,050519138 1,739324341 -1,821525719 Without

Transition
0,5264102 1,24095 0,540107404 0,022985102 0,062943046 -0,00401565 4,366386214 5,072166195 -0,743491085 With Transition

1
0,379235 0,967312 0,623967498 -0,010864 -0,007567 -0,012892914 -2,864714491 -0,78227087 -2,066279716 Without

Transition
0,4089 1,0151 0,641103894 0,018801 0,040221 0,004243482 4,597945708 3,962269727 0,661902337 With Transition

1,2
0,2638446 0,7374526 0,683306381 -0,018634226 -0,038595874 -0,011875473 -7,062576077 -5,233675168 -1,737942637 Without

Transition
0,294736 0,787401 0,714888977 0,012257174 0,011352526 0,019707123 4,158696053 1,441771905 2,756669028 With Transition

1,4
0,1470344 0,497297 0,658796498 -0,024676018 -0,061525098 -0,025857645 -16,7824792 -12,37190202 -3,924982225 Without

Transition
0,1752519 0,537469 0,726536575 0,003541482 -0,021353098 0,041882432 2,020795438 -3,972898456 5,764669431 With Transition

Table 4. Results of the simulations

Figure 35. Thrust Coefficient against Advance Coefficient
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Figure 36. Torque Coefficient against Advance Coefficient

Figure 37. Propeller Efficiency against Advance Coefficient
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Figure 38. Open Water Diagram

First of all, the results have a maximum percentage difference of 4.59% for Tk , a 5.07 % for

Qk10 and a maximum of 5.76% for  for the  Re model. Τhe transition model gives higher

values of both propeller Thrust Coefficient ( Tk ) and Torque Coefficient ( Qk ) compared to the

k-ω-SST model at almost all propeller loadings. This can be attributed to an increment in the pressure
component and a minute decrease of the friction component of the blade forces, when the transition
model is used compared to fully turbulent flow assumptions, similar results were obtained in [45],[46].
In addition, for Tk and Qk the results with  Re are closer to the experiment at j=1.2 and

1.4. This is because of the fact that, as the advance coefficient takes higher values the Angle of Attack
decreases and there are more laminar regions at the propeller blade and the transition modelling has
greater influence. Also, the resulting open water efficiency ( 0 ), which is calculated with  Re ,
is closer to the experiment until j=1.

Regarding the slope of the curves, the model captured the slope correctly for all three
curves,while the fully turbulent model failed.
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4. Concluding Remarks

As far as the two-dimensional test cases are concerned, the MapFlow solver presented reliable results
only for low Angles of Attack. On the contrary in higher Angles of Attack in all cases tested the solver
severely overpredicts the Lift Coefficient. For the drag bucket corners no pattern can be traced, since
for the DU-00-W212 airfoil the solver predicts the corners at lower values of CL than the experiment,
while for the S827 for both Reynolds Numbers the Lift Coefficient at the Drag Bucket corners is
overpredicted. It should be also mentioned that the solver gave results that were in very good
agreement with the compressible one in all Angles of Attack, which was the basic purpose of this
thesis, that is to examine whether the implementation of the Artificial Compressibility method will
significantly alter the results of the solver.

For the three-dimensional case the simulation with transition modelling gave better results than the
fully turbulent simulation only for two Advance Coefficients. This is contrary to what was expected,
that is the impression that the simulation with transition modelling will give better results for all cases.
This issue deserves further investigation. On the other hand the solver gave better results for the
slope of the curves in comparison with the fully turbulent case.

Future Work Recommendations

The main recommendations that can be drawn from this work refer to the advisability of employing:

 Combination of Transition Modelling with higher order Spatial Discretization schemes like
MUSCL or QUICK.

 Further assessment of the performance of the model on three-dimensional cases.

 Assessment of the influence that the choice of freestream Turbulence Intensity has on the
results obtained.

 Application of other transition models like the Ne , the  and the AFT in combination with an
incompressible solver.
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Appendix A: Order of accuracy based on the

Taylor series truncation error.

Let f(x) a function of x. The Taylor series expansion of f(x) at the point (x+Δx) is given by:
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If we consider Δx to be the grid spacing, with some mathematical manipulation it can be shown that
all the discretization schemes mentioned above can be written in the form of a Taylor series
expansion, by neglecting all the factors containing Δxn from a certain n and above.
The number n determines the order of accuracy of a certain scheme and expresses the rate of error
decrease, as Δx is reduced. For example, if n=2 the scheme is second order accurate and it neglects
terms containing Δx in the power of 2 and above.
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