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Abstract 

Due to their negligible storage capacity, small hydroelectric plants cannot offer regulation of 
flows, thus making the control of energy production a very difficult task, even for small time 
horizons. Further uncertainties arise due to limited information, both in terms of upstream 
inflow data and technical characteristics. Usually, the sole available measurements refer to 
power production, which is a nonlinear transformation of the river discharge. In this thesis we 
investigate the three configurations of this transformation, named the forward, the inverse 
and the calibration problem. The major outcome is a generic stochastic framework for the so-
called inverse problem of hydroelecticity, i.e. the extraction of streamflow from observed 
energy data, focusing on two key potential sources of uncertainty, i.e. in energy production 
(observational error) and the efficiency curve of turbines (parameter error). Key issue of this 
reverse engineering approach is that the model error is expressed in stochastic terms, which 
allows for embedding uncertainties within calculations. Another interesting issue is the 
extrapolation of high and low flows, outside of the range of operation of SHPs, which is 
employed by combining empirical hydrological rules for representing the rising and falling 
limbs. The methodology is tested in hypothetical problems as we as a real-world case, i.e. the 
oldest (est. 1926) small hydroelectric plant of Greece, located at Glafkos river, in Northern 
Peloponnese. Among other complexities, this comprises a mixing of Pelton and Francis 
turbines, which makes the overall modelling procedure even more challenging and also 
requires to extract the efficiency curves of the two turbines through calibration. Our analyses 
indicate that the proposed framework may be the basis for handling several practical 
problems and open research questions in the broader area of simulation and optimization of 
small hydroelectric works.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  

   

7 

Ελληνική περίληψη 

Λόγω της αμελητέας ικανότητας αποθήκευσης, τα μικρά υδροηλεκτρικά έργα (ΜΥΗΕ) δεν 
μπορούν να προσφέρουν ρύθμιση των ροών, καθιστώντας έτσι τον έλεγχο της παραγωγής 
ενέργειας πολύ δύσκολο έργο, ακόμη και για μικρούς χρονικούς ορίζοντες. Περαιτέρω 
αβεβαιότητες προκύπτουν λόγω περιορισμένης πληροφόρησης, που αφορά είτε δεδομένα 
εισροών είτε τεχνικά χαρακτηριστικά. Συνήθως, οι μοναδικές διαθέσιμες μετρήσεις 
αναφέρονται στην παραγωγή ενέργειας, η οποία είναι ένας μη γραμμικός μετασχηματισμός 
της απορροής του ποταμού. Σε αυτή τη διπλωματική διερευνώνται τρεις εκδοχές του 
μετασχηματισμού αυτού, που διαμορφώνουν αντίστοιχα το ευθύ και το αντίστροφο 
πρόβλημα καθώς και το πρόβλημα της βαθμονόμησης. Το κύριο αποτέλεσμα είναι ένα γενικό 
στοχαστικό πλαίσιο για το λεγόμενο αντίστροφο πρόβλημα της υδροηλεκτρικής ενέργειας, 
δηλαδή η εξαγωγή χρονοσειρών εισροής από δεδομένα παρατηρημένης ενέργειας, 
εστιάζοντας σε δύο βασικές πιθανές πηγές αβεβαιότητας, συγκεκριμένα στην παραγωγή 
ενέργειας (σφάλματα παρατηρήσεων) και στην καμπύλη απόδοσης των στροβίλων 
(σφάλματα παραμέτρων). Βασικό ζήτημα αυτής της αντίστροφης προσέγγισης είναι ότι το 
μοντέλο σφάλματος επιτρέπει την ενσωμάτωση της αβεβαιότητας στους υπολογισμούς, 
δεδομένου ότι εκφράζεται με στοχαστικούς όρους. Ένα άλλο ενδιαφέρον ζήτημα είναι η 
συμπλήρωση του υδρογραφήματος, δηλαδή ο υπολογισμός των υψηλών και χαμηλών ροών, 
εκτός του εύρους λειτουργίας των ΜΥΕ, κάτι που επιτυγχάνεται με τη χρήση εμπειρικών 
κανόνων για την αναπαράσταση των ανοδικών και καθοδικών κλάδων ροής. Η μεθοδολογία 
δοκιμάζεται σε πληθώρα υποθετικών προβλημάτων, καθώς επίσης και σε μια πραγματική 
περίπτωση, αυτή του παλαιότερου (περίπου το 1926) μικρού υδροηλεκτρικού έργου της 
Ελλάδας, που βρίσκεται στον ποταμό Γλαύκο, στη Βόρεια Πελοπόννησο. Μεταξύ άλλων 
περιπλοκοτήτων, το έργο αυτό περιλαμβάνει δύο στροβίλους, έναν τύπου Pelton και έναν 
Francis, γεγονός που καθιστά τη συνολική διαδικασία μοντελοποίησης ακόμη πιο δύσκολη 
μιας και απαιτεί την εξαγωγή των καμπυλών απόδοσης των δύο στροβίλων μέσω 
βαθμονόμησης. Οι αναλύσεις μας υποδεικνύουν ότι το προτεινόμενο πλαίσιο μπορεί να 
αποτελέσει τη βάση για τον χειρισμό πολλών πρακτικών προβλημάτων και ανοιχτών 
ερευνητικών ερωτημάτων στον ευρύτερο τομέα της προσομοίωσης και βελτιστοποίησης 
μικρών υδροηλεκτρικών έργων. 
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Εκτενής περίληψη 

Αντικείμενο της παρούσας εργασίας αποτελεί η μοντελοποίηση της λειτουργίας μικρών 

υδροηλεκτρικών έργων υπό καθεστώς αβεβαιότητας. Συγκεκριμένα, αναπτύσσουμε ένα 

μοντέλο σε προγραμματιστικό περιβάλλον MATLAB το οποίο δέχεται δεδομένα παραγωγής 

ενέργειας και εξάγει την παροχή του υδατορεύματος, ποσοτικοποιώντας την αβεβαιότητα 

που προέρχεται τόσο από τα δεδομέαν εισόδου (παρατηρημενη ενέργεια) όσο και από τις 

εσωτερικές διεργασίες του συστήματος (π.χ. καμπύλες απόδοσης στροβίλων). Η παραπάνω 

προσέγγιση καλείται ως το «αντίστροφο ενεργειακό πρόβλημα», που στην πεούσα εργασία 

αντιμετωπίζεται ως πρόβλημα στοχαστικής προσομοίωσης. 

Είναι γνωστό ότι το Ευρωπαϊκό Συμβούλιο προωθεί μια ολοκληρωμένη προσέγγιση για 

την κλιματική και ενεργειακή πολιτική, με στόχο την αποτροπή της αλλαγής του κλίματος 

καθώς και την αύξηση της ενεργειακή ασφάλειας της Ε.Ε. Ενδεικτικά, με βάση την γνωστή 

συμφωνία «20-20-20», μια σειρά μέτρων υιοθετήθηκαν από τα κράτη-μέλη με στόχο: 

• Μείωση των εκπομπών αερίων θερμοκηπίου∙ 

• Αύξηση της κατανάλωσης ενέργειας που προέρχεται από ανανεώσιμες πηγές 

ενέργειας (ΑΠΕ)∙ 

• Μείωση στη χρήση πρωτογενούς ενέργειας. 

Ακολούθως, η κυβερνητική πολιτική της Ελλάδας αποσύρει την εξάρτηση από τον λιγνίτη, 

προωθώντας επενδύσεις σε ΑΠΕ. Οι σχετικές επενδύσεις υπολογίζεται να φτάσουν 10 

δισεκατομμύρια ευρώ έως το 2030. Πληθώρα ιδιωτικών εταιρειών σπεύδουν να 

βελτιστοποιήσουν την τεχνογνωσία και να καταρτίσουν εξειδικευμένο προσωπικό για να 

ανταποκριθούν στο νέο πλαίσιο της ενέργειας. Γίνεται κατανοητό ότι μεταβολή των μέσων 

παραγωγής ενέργειας σηματοδοτεί την βελτιστοποίηση των υφιστάμενων αιολικών πάρκων, 

υδροηλεκτρικών έργων κ.ά., καθώς επίσης και τη δημιουργία νέων. Η απεξάρτηση από τον 

λιγνίτη και η στροφή στις ΑΠΕ καθιστούν αναγκαία την μεγιστοποίηση της απόδοσης και 

διαχείρισης των υφιστάμενων υδροηλεκτρικών έργων και τον σχεδιασμό βελτιστοποιημένων 

υδροενεργειακών συστημάτων κάθε τύπου και κλίμακας (μεγάλα/μικρά υδροηλεκτρικά 

έργα, έργα αντλησιοταμίευσης). 

 Τα υδροηλεκτρικά έργα με εγκατεστημένη συνολική ισχύ κάτω των 15 ΜW νοούνται ως 

μικρά υδροηλεκτρικά εργοστάσια και η λειτουργία τους διαφέρει σε σημαντικό βαθμό από 

τα μεγάλα. Συγκεκριμένα, τα μικρά υδροηλεκτρικά έργα (ΜΥΗΕ) εκμεταλλεύονται μόνο τη 

ροή του ποταμού και τη διαφορά υψομέτρου που δημιουργεί το φυσικό ανάγλυφο για να 

παράγουν ενέργεια, απαιτώντας μικρής μόνο κλίμακας έργα. Εξαιτίας της μηδαμινής 

αποθήκευσης νερού λόγω της έλλειψης φράγματος, η παρακολούθηση της λειτουργίας των 

ΜΥΗΕ είναι εξαιρετικής σημασίας και καθοριστικός παράγοντας στην περίπτωση που 

μελετάται η αναβάθμισή τους. Ωστόσο, η σωστή και συστηματική παρακολούθηση της 

παραγωγής ενέργειας και απόδοσης των στροβίλων δεν είναι μία εύκολη και τυποποιημένη 

διαδικασία. Οι αβεβαιότητες στα τεχνικά μεγέθη (κυρίως στις καμπύλες απόδοσης των 
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στροβίλων και στις υδραυλικές απώλειες στον αγωγό πτώσης) καθώς και τα λάθη στις 

παρατηρήσεις ροής ή/ και ενέργειας, καθίστανται καθοριστικές για την λειτουργία ενός 

τέτοιου έργου.  

Η ανάπτυξη ενός πλαισίου ποσοτικοποίησης των παραπάνω αβεβαιοτήτων κρίνεται 

εξαιρετικά χρήσιμη για τον σχεδιασμό και διαχείριση των ΜΥΗΕ, που σε κάθε περίπτωση 

προϋποθέτει τη μοντελοποίηση του μετασχηματισμού της παροχής του υδατορεύματος στη 

θέση της υδροληψίας (είσοδος συστήματος) σε ηλεκτρική ενέργεια που παράγεται από τον 

σταθμό παραγωγής (έξοδος συστήματος). Προκύπτουν τρεις διατυπώσεις του προβλήματος: 

• Ευθεία διατύπωση, ήτοι εκτίμηση της παραγόμενης ενέργειας για δεδομένη 

παροχή και γνωστά τεχνικά χαρακτηριστικά του ΜΥΗΕ∙ 

• Αντίστροφη διατύπωση, ήτοι εκτίμηση της παροχής από δεδομένα ενέργειας, και 

για γνωστά τεχνικά χαρακτηριστικά του ΜΥΗΕ∙ 

• Εκτίμηση τεχνικών μεγεθών (παράμετροι) του ΜΥΗΕ μέσω βαθμονόμησης, με 

βάση γνωστά δεδομένα ενέργειας και παροχής. 

 Στην παρούσα διπλωματική εργασία δίνεται έμφαση στο αντίστροφο πρόβλημα, για το 

οποίο αναπτύσσεται ένα γενικό μεθοδολογικό πλαίσιο στοχαστικής προσομοίωσης, που 

περιγράφεται στο διάγραμμα της Εικόνας 1. Ειδικότερα, το μοντέλο που προτείνεται εξάγει 

καταρχήν ντετερμινιστικά, μέσω μιας επαναληπτικής διαδικασίας, τις παροχές για δεδομένη 

χρονοσειρά παραγωγής ενέργειας, με την προϋπόθεση ότι είναι στην εμβέλεια λειτουργίας 

των στροβίλων. Επίσης, για την ακριβή ποσοτικοποίηση των αβεβαιοτήτων που προκύπτουν 

ως αποκλίσεις από τις πραγματικές παροχές, κρίνεται απαραίτητη η στοχαστική περιγραφή 

των ανακτημένων παροχών του μοντέλου, μέσω διαστημάτων εμπιστοσύνης, όπως φαίνεται 

στο παράδειγμα της Εικόνας 2. Η στοχαστική προσέγγιση υλοποιείται με τη γένεση τυχαίων 

πραγματοποιήσεων για κάθε χρονικό βήμα, σύμφωνα με τα στατιστικά χαρακτηριστικά των 

σφαλμάτων του μοντέλου (περιθώρια κατανομή και δομή αυτοσυσχέτισης). 

Όπως γίνεται σαφές το μοντέλο για το αντίστροφο πρόβλημα δύναται να εξάγει παροχές 

μόνο για το εύρος λειτουργίας των στροβίλων. Κάτω από το ελάχιστο και πάνω από το 

μέγιστο όριο παροχής η παραγόμενη ενέργεια είναι μηδέν ή είναι η μέγιστη (με βάση την 

ονομαστική ισχύ των στροβίλων), αντιστοίχως. Αυτός ο περιορισμός οδήγησε την έρευνα σε 

μια μεθοδολογία συμπλήρωσης για συμβάντα συνεχόμενων ελάχιστων ή μέγιστων παροχών, 

στην οποία επιδιώκεται η συμπλήρωση του υδρογραφήματος χρησιμοποιώντας εμπειρικούς 

κανόνες. Το υδρογράφημα διαχωρίζεται σε δύο κλάδους, ανοδικό και καθοδικό, και η 

συμπλήρωση γίνεται για κάθε κλάδο γνωρίζοντας τις δύο τελευταίες τιμές για τις οποίες 

έχουμε γνωστά δεδομένα ενέργειας. Στο υδρογράφημα υποθέτουμε ότι ο καθοδικός κλάδος 

ακολουθεί εκθετική στείρεση (μοντέλο γραμμικού ταμιευτήρα) ενώ ο ανοδικός μεταβάλλεται 

γραμμικά. Η συμπλήρωση του υδρογραφήματος σκοπεύει στην ολοκληρωμένη διατύπωση 

του μοντέλου, προκεμένου να εξάγεται η πλήρης χρονοσειρά παροχής. Είναι ενδιαφέρον να 

επισημάνουμε ότι για τις υψηλές παροχές η διαδικασία συμπλήρωσης μας επιτρέπει την 

πρόβλεψη της παροχής αιχμής καθώς και την ημέρα που συμβαίνει. Αντίστοιχη γνώση 
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εξασφαλίζουμε και για την χαμηλές παροχές. Όπως και στην μεθοδολογία του αντίστροφου 

προβλήματος, εκφράζουμε στοχαστικά την συμπλήρωση του υδρογραφήματος. 

 

 

 

 

Εικόνα 1: Διάγραμμα ροής του προτεινόμενου μοντέλου ανάκτησης χρονοσειρών 
παροχής και του εύρους αβεβαιότητάς τους από δεδομένα παραγωγής ενέργειας. 
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Εικόνα 2: Προσομοιωμένη παροχή με στοχαστική προσέγγιση για συνεχή λειτουργία του 

στροβίλου Pelton στο υδροηλεκτρικό «Γλαύκος». Απεικονίζονται η μετρημένη παροχή, η 
παροχή που προκύπτει από το ντετερμινιστικό μοντέλο, και τρεις χαρακτηριστικές τιμές 

παροχής από τη στοχαστική προσέγγιση (διάμεσος και όρια εμπιστοσύνης 90%). 
 

 
Εικόνα 3: Παράδειγμα συμπλήρωσης υδρογραφήματος για παροχές που υπερβαίνουν 
την ονομαστική παροχή των στροβίλων (στην προκειμένη περίπτωση 5.0 m3/s) και 

αντίστοιχα όρια εμπιστοσύνης. 
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Εικόνα 4: Παράδειγμα συμπλήρωσης υδρογραφήματος για παροχές κάτω από το όριο 

λειτουργίας των στροβίλων (στην προκειμένη περίπτωση 0.5 m3/s) και αντίστοιχα όρια 
εμπιστοσύνης. 

 
Το μοντέλο που προτείνεται εφαρμόστηκε σε ένα εικονικό και σε ένα υφιστάμενο έργο 

(ΜΥΗΕ Γλαύκου). Συγκεκριμένα, στο εικονικό έργο χρησιμοποιήθηκαν δύο διαφορετικοί 

τύποι στροβίλων, ενώ στο έργο του Γλαύκου μελετήθηκε η μίξη των στροβίλων καθώς και η 

λειτουργία κάθε στροβίλου ξεχωριστά. Ως πρωτογενή δεδομένα εισόδου ελήφθησαν ωριαία 

δεδομένα παραγωγής ενέργειας, ημερήσιες παροχές, η ισχύς του συστήματος, το ύψος 

πτώσης, η διάμετρος του αγωγού πτώσης καθώς και οι καμπύλες απόδοσης των στροβίλων. 

Όσον αφορά στο εικονικό έργο, μελετήθηκαν δύο παράγοντες αβεβαιότητας: 

• Αβεβαιότητα στα δεδομένα παραγωγής ενέργειας (σφάλματα εισόδου) 

• Αβεβαιότητα στην καμπύλη απόδοσης των στροβίλων (σφάλματα παραμέτρων) 

Σημειώνεται ότι ο βαθμός απόδοσης των υδροστροβίλων είναι συνάρτηση του λόγου της 

τρέχουσας προς την ονομαστική παροχή τους, και δίνεται σε εμπειρικά νομογραφήματα. 

Στην μελέτη ενός υδροηλεκτρικού έργου, ο βαθμός απόδοσης θεωρείται συχνά σταθερός. 

Αντιθέτως, κατά τη λειτουργία του ο βαθμός απόδοσης έχει διακυμάνσεις και εξαρτάται από 

την εισερχόμενη ροή στον στρόβιλο. Οι αναλύσεις μας έδειξαν ότι η διαφορά στη θεώρηση 

λειτουργίας-σχεδιασμού φάνηκε ότι είναι καθοριστική στα μικρά υδροηλεκτρικά έργα. Στην 

παρούσα εργασία μελετήθηκαν αρκετές καμπύλες στροβίλων, οι οποίες ακολουθούν μια 

παραμετρική αναλυτική φόρμουλα που μας επιτρέπει να προσαρμόζουμε οποιαδήποτε 
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σχέση και να παράγουμε οικογένειες ισοπίθανων καμπυλών, θεωρώντας τις παραμέτρους 

της σχέσης ως τυχαίες μεταβλητές, όπως στο παράδειγμα της Εικόνας 5. 

 
Εικόνα 5: Παράδειγμα παραγωγής τυχαίων καμπυλών απόδοσης για στρόβιλο τύπου 

Pelton. 
 
Στο εικονικό έργο, τα σφάλματα στα «παρατηρημένα» δεδομένα παραγωγής ενέργειας. 

εισήχθησαν συνθετικά, με σκοπό να μελετηθεί η επιρροή τους στην αντίστροφη σχέση 

ενέργειας–παροχής. Εξετάστηκαν διάφοροι προσθετικοί τύποι σφαλμάτων που ακολουθούν 

κανονική ή Γάμμα κατανομή (με ασυμμετρία), καθώς και πολλαπλασιαστικά σφάλματα, και 

έγινε αντιπαραβολή τους με τα σφάλματα της εξαγόμενης παροχής (αποκλίσεις από την 

μετρημένη). Είναι ενδιαφέρον ότι το προσθετικό σφάλμα στην ενέργεια οδηγεί σε έντονα 

συσχετισμένα σφάλματα της προσομοιωμένης παροχής, αντίθετα το πολλαπλασιαστικό 

σφάλμα δημιουργεί σφάλματα μορφής λευκού θορύβου (με αμελητέα αυτοσυσχέτιση και 

ετεροσυσχέτιση με την παροχή). 

Όσον αφορά το έργο του Γλαύκου προέκυψαν αρκετές δυσκολίες κυρίως λόγω έλλειψης 

δεδομένων. Ιδιαίτερα οι καμπύλες απόδοσης των στροβίλων ήταν άγνωστες και η 

προσέγγιση τους έγινε με βελτιστοποίηση μέσω γενετικών αλγορίθμων από τα δεδομένα 

ενέργειας και παροχής. Επίσης το δείγμα των δεδομένων παραγωγής ενέργειας για συνεχή 

και ταυτόχρονη λειτουργία των υδροστροβίλων ήταν αρκετά μικρό. 

Καθίσταται σαφές ότι το προτεινόμενο στοχαστικό πλαίσιο αναλύει μια μη γραμμική 

σχέση, ποσοτικοποιώντας την υπαρκτή αβεβαιότητα σε όλες τις πτυχές της (απόδοση 

στροβίλων, καθαρό ύψος πτώσης, σφάλματα στα δεδομένα ενέργειας). Η ανάγκη ύπαρξης 

ενός τέτοιου μοντέλου διαφαίνεται κυρίως από τα αποτελέσματα στη μελέτη του 
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υδροηλεκτρικού έργου στον Γλαύκο. Πιο συγκεκριμένα, εικάζουμε ότι οι αβεβαιότητες στην 

καμπύλη των στροβίλων καθώς και τα λάθη στην παρατήρηση της ενέργειας και της ροής 

έχουν ως αποτέλεσμα τη μη αποδοτική λειτουργία του συστήματος. 

Το μοντέλο που προτείνουμε δύναται να εφαρμοστεί σε όλα τα μικρά υδροηλεκτρικά 

έργα, αφενός για τον έλεγχο της λειτουργίας τους και αφετέρου για την βελτιστοποίηση του 

σχεδιασμού τους αλλά και την επιχειρησιακή τους διαχείριση (πρόγνωση ενεργειακής 

παραγωγής). Συγκεκριμένα, είναι δυνατό να επιτυγχάνεται ο προγραμματισμός της 

παραγωγής ενέργειας μέσω του συνδυασμού ευθύ και αντίστροφου προβλήματος. Μέσω 

της αντίστροφης σχέσης εξάγονται οι πρόσφατες παροχές, δημιουργείται ένα σχήμα 

πρόβλεψης της παροχής και τέλος γίνεται η πρόβλεψη της ενέργειας στο επόμενο χρονικό 

βήμα μέσω της κλασσικής σχέσης. Επιπρόσθετα, η παρούσα έρευνα ανέδειξε την ανάγκη για 

διερεύνηση της βελτιστοποίησης της διαχειριστικής πολιτικής των στροβίλων στην 

ταυτόχρονη λειτουργία,  προκειμένου να μεγιστοποιηθεί ο βαθμός απόδοσης του 

συστήματος. 
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1 Introduction 

1.1 Motivation 

In 2007, the European Council set a package of three key targets for year 2020, in an effort 

of making renewables the key player in energy production in the long term. These so-called 

“20-20-20” targets are: 

• 20% cut in greenhouse gas emissions (from 1990 levels); 

• 20% of EU energy production from renewables; 

• 20% improvement in energy efficiency. 

At this time, Greece's government policy withdraws its dependence on lignite, thus strongly 

promoting investments in RES. Relevant investments are expected to reach 10 billion euros by 

2030. Numerous private companies are rushing to optimize know-how and train qualified 

personnel to meet the new energy framework. In is scene, it is necessary both to maximize 

the efficiency and optimize the management on the existing hydroelectric plants and to 

develop new hydropower plants of all types and scales, i.e. large, small, and particularly 

pumped-storage projects (Koutsoyiannis et al., 2009). 

Hydropower plants, which have a total installed capacity less than 15 MW are considered 

as “small” and their operation differs significantly from the large ones. In particular, SHPPs use 

the river’s flow to produce energy directly. Due to their negligible storage capacity, small 

hydroelectric plants (SHPPs) cannot offer regulation of flows, thus making the scheduling of 

energy production a quite difficult task, even for small time horizons. Uncertainties in the 

technical characteristics (mainly in the performance curves of the turbines and the hydraulic 

losses in the pipe stock) as well as the observational errors in the flow and / or energy, become 

crucial for the operation of such projects. The creation of a quantitative framework for the 

above uncertainties is considered very useful for the design and the management of a SHPP. 

Subsequently, there are three formulations of the problem: 

• Forward configuration, i.e. assessment of the energy produced for given inflow 

data and known technical characteristics; 

• Inverse configuration by means of reverse engineering, i.e. estimation of the 

discharge by using energy production data, and known technical characteristics;  

• Estimation of unknown or uncertain technical characteristics (handled as 

parameters) through calibration, based on known energy and flow data. 

In this diploma thesis, we emphasize on the inverse problem of hydroelectricity, for which 

we develop a generic stochastic/probabilistic framework, and we also discuss and test the 

calibration problem. Preliminary results of the present study were presented at the General 

Assembly of the European Geosciences Union (Sakki et al., 2020). 
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1.2 Research objectives 

Considering the three possible expressions of the flow-energy transformation problem, in 

our research we set the following objectives:  

• Formulation and computational implementation of each problem type; 

• Recognition of uncertainties on technical characteristics; 

• Quantification of uncertainties on observational errors; 

• Configuration of efficiency curve by using analytical formula; 

• Calibration of efficiency of each type, using the inflow and energy data; 

• Stochastic approach of errors for the inverse engineering problem type. 

The main focus of this research is the retrieval of flows from energy data, so-called the 

inverse problem of hydropower. The inverse engineering problem type involves the three flow 

ranges: 

• Low flows, below the minimum operational discharge of turbines; 

• High flows, exceeding the nominal discharge of turbines; 

• Intermediate flows, which are directly estimated based on observed 
hydropower data. 

The usefulness of such a model becomes apparent if we consider the huge uncertainties 

on river flow and finally on energy production and its cost. 

1.3 Thesis outline 

This thesis is divided into nine chapters and an appendix.  

This first chapter introduces a preamble to the subject, the research objectives and the 

motivation of our work. 

The second chapter provides a brief bibliographic overview on the meaning and usefulness 

of the hydroelectric plants, and especially of the small hydropower plants (SHPPs). Also this 

chapter presents the layout and the characteristics of a SHP. 

Chapter three includes the literature review for the design, operation and maintenance of 

hydropower systems. In addition, this chapter discusses the issue of uncertainty on literature 

basis. 

The fourth chapter discusses the three typical flow-energy transformation problems, i.e., 

the forward and inverse engineering approach, as well as the issue of calibration. After 

introducing the typical input data of SHPPs and their processing, it presents the formalization 

of the three problems and their challenges. Moreover, we explain in detail the hydraulic 

calculations and the estimation of efficiency. 

The fifth chapter explains the core of our research, which is the stochastic modelling 

framework for the inverse problem of hydroelectricity. In particular, it presents the proposed 
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numerical procedure for extracting the streamflow data under uncertainty, during the 

operation of turbines within their flow limits. In the proposed framework, uncertainty is 

expressed by means of observational errors in energy data, as well as internal modelling errors 

with respect to the efficiency curves of turbines. For the latter, we develop an approximative 

parametric formula, which is also used in the context of calibration. Moreover, we provide a 

semi-empirical approach for the extrapolation of the hydrograph when the flow is outside of 

the range of the turbines. 

The sixth chapter illustrates the model implementation in MATLAB environment. 

Specifically, we provide the code snippet for the whole numerical procedure. 

In the seventh chapter we test our methodology in a hypothetical SHPP with two 

alternative turbines. In this example, we calibrate the efficiency curve, implement the reverse 

engineering procedure to reconstruct the streamflow and quantify the derived uncertainties 

for several error expressions and associated scenarios (e.g. normal, gamma-distributed). We 

also implement the extrapolation approach for the high and low flows, while the detailed 

results are given in the Appendix. 

In the eighth chapter we implement our research in a real-world case, i.e. the Glafkos 

power plant, comprising a Pelton and a Francis turbine. Initially, we provide an overview of 

the study area, the system characteristics and its operation since its establishment (1926). In 

this study we extract the inflows for three time periods, i.e. the individual operation of the 

two turbines as well as their mixing. The issue of uncertainty, particularly regarding the 

efficiency curve of Francis turbine, as well as the observational errors in energy production 

data, are thoroughly discussed. 

The ninth chapter summarizes the conclusions and the future perspective of our research. 
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2 Overview of small hydropower plants 

2.1 About hydropower 

Throughout history, human population growth has been supported by a steadily increasing 

production and consumption of energy. In the most recent five decades, the world energy 

consumption increased substantially. For instance, the electric power consumption per capita 

in 1971 was 1200 KWh, whereas in 2014 it has increased up to 3133 KWh (The World Bank, 

2017). Specifically, the per capita energy consumption has risen from a global average of 1.56 

tones of oil equivalent (toe) per person in 1973, to 1.66 toe per person in 2000 and to 1.92 

toe per person in 2014 (The World Bank, 2017). This rapidly increasing energy demand raised 

the need for shifting to renewable energy sources, such as wind, solar, biomass, geothermal 

and hydropower. According to summary statistics for years 2017 and 2018, renewables 

contributed 18.1% to the world's energy consumption and 26% to its electricity generation, 

respectively (REN21's 2019 report). 

Of these so-called green energy sources, hydropower is the most efficient, in both technical 

and economic terms, with a price competitive to fossil fuels. The idea of hydropower is simple. 

Stored water in a high elevation has a dynamic energy that turns into hydraulic energy, as 

water flows to lower areas. Next, the hydraulic energy is converted to mechanical, by using 

hydrodynamic machines (turbines). In particular, a hydro turbine converts the energy of water 

through continuous flow of fluid and constant rotary motion. Transforming the energy of the 

passing fluid under a constant supply to mechanical energy is done in the rotating part of the 

machine, which is called a rotor, by means of thrust. The drive torque is transferred to the 

rotor shaft, which is coupled to the electric generator shaft, which converts the mechanical 

power to electricity. A final conversion is employed through the transformer, in order to 

supply the high-voltage electricity grid. 

The small hydropower plants are based on the exploitation of dynamics surface water 

energy, by converting it initially to kinetic and then to electricity, according to the laws of 

electromagnetic fields. Initially, running water is confined or water is stored in natural or 

artificial lakes. The kinetic energy of water is converted into mechanical energy by the rotation 

of the axle of a turbine impeller. Then, the turbine operates a generator, which converts 

mechanical energy into electricity. 

 

Figure 2.1: Serial conversion of hydrodynamic energy to electric energy at the grid through a 
hydropower system (Ramos & Betamio, 1999). 
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Figure 2.2: USGS 

It is worth mentioning that the earliest evidence of taking advantage of hydraulic energy 

through water wheels and watermills goes back to the ancient Near East in the 4th century BC 

(Wikipedia,2020). It is also known that much earlier, namely in ancient Egyptian times, people 

have used energy in running water to operate machinery, grind grain and corn (Wikipedia, 

2020). Nowadays, modern hydro plants produce electricity using turbines and generators. The 

first hydroelectric station was built in 1882 in Appleton, Wisconsin, and produced 12.5 kW, 

thus providing light to two papermakers and a house. Nowadays, the largest hydroelectric 

station, called the Three Gorges Dam, built in 2012 in China, has a capacity of 22 500 MW. 

In general, the hydropower works are either dam-based or run-of-the-river; the latter 

belong to a broader category of the so-called Small HydroPower Plants (SHPPs), which is the 

focus of this research. Dam-based hydropower plants typically require the construction of 

large-scale infrastructures, in order to offer long-term regulation of flows through the 

reservoir storage. However, they also have significant impacts on the riverine ecosystem and 

the surrounding environment. On the contrary, RoR plants are quite simple structures, since 

they produce hydroelectric energy without requiring large-scale interventions in the river for 

employing water storage (reservoir). With respect to large reservoirs, they have limited 

socioeconomic and environmental impacts, thus making them more attractive. 

Hydroelectric power has played an important role in worldwide spread of electricity and 

has helped to boost industrial development. Hydroelectric works continue to produce 16.6% 

of global electricity. Further growth of this mature technology is possible, though many 

countries have already developed cost-effective sites. The total installed capacity for 

hydroelectricity has now surpassed 1290 GW, and there remains vast untapped potentials 

around the world, especially in developing countries. There was more hydro commissioned 

than solar and wind energy and experts predict that hydropower capacity could double by 

2050 (IHA, 2014). In Greece, the installed capacity is just under 3500 MW, while hydropower 

covers about 10% of our electric energy needs. 
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Figure 2.3: The total hydropower installed capacity IHA (2019) 

2.2 Small hydropower plants 

In order to define a Hydroelectric power plant as “small”, the installed power must be 

under a certain limit, that is defined in the corresponding national legislation. This limit varies 

considerably among different countries, but the most common values are between 10 and 30 

MW. For example, in California, hydroelectric generating stations with a maximum capacity of 

less than 30 MW are classified as small. The "small hydro" description may be stretched up to 

50 MW in the United States, Canada and China (WIKIPEDIA). For the distinction between Small 

HydroPower Plants (SHPPs) and large ones, the Greek state has adopted a capacity limit of 15 

ΜW. Most of SHPPs in Greece have a capacity from 0.5 to 3.0 MW. Such projects do not cause 

significant visual impacts and public opposition, because they involve neither large-scale 

water collection and storage works nor the construction of large dams, thus being quite 

compatible with the environment. 

There are four different types of SHPPs, based on their storage capacity (Mamassis et al., 

2020). The first one is put at the outlet of a large dam, e.g. to exploit the environmental flow. 

In this case, the outflow target through the turbines is well-ensured, since there is a 

satisfactory storage of water (this target is small, if compared with other water uses, and is 

also put in priority). The second one is so-called run-of-river (RoR), which utilizes the 

streamflow as it comes, without the ability to store the water (water is captured and diverted 

to a forebay tank). This is the most common SHPP type. Another type involves the construction 

of a low-head dam across a large river or channel, which creates a small reservoir upstream 

of negligible regulation capacity. The last one is so-called in-stream, which utilizes the 

streamflow velocity to produce electric energy. Because of the fluctuations of river’s 

streamflow very few projects of this type exist. 
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Figure 2.4: Components of a small hydropower plant (Source: www.energypedia.info). 

2.3 Run-of-river plants: layout and operation 

As mentioned before, the small hydroelectric plant utilizes the natural fall of the surface 

water, through a pressurized hydraulic system that sends water to a turbine. A general layout 

of a small hydroelectric station is demonstrated below. 

Figure 2.4 illustrates a sketch of the most characteristic type of a small hydroelectric work, 

referred to as run-of-river plant (RoR). In this layout, the power station is located far away 

from the intake, to ensure an economically effective elevation difference between the forebay 

tank and the power station, but the case that it is embodied in the intake is also common. The 

main elements of this configuration, as moving from upstream to downstream, are: 

(a) A weir, comprising a water intake that controls the amount of river flow to be 

used for hydroelectricity, from which the exploitable water is abstracted from the 

stream or, more generally, from the water source. The water abstraction system is 

designed so that part of the flow (ecological supply) will be by priority conveyed to the 

downstream natural system, while surplus water is also spilling through the weir. 

(b) A channel, which is referred to as headrace, that conveys the water to a forebay 

tank. At the entrance of the channel there is sand trap and a desilter, which allows for 

managing sediment transport (a detailed layout is shown in Figure 2.5). 

(c) The forebay, which is designed to ensure the appropriate hydraulic conditions 

of the input into the penstock. The basic criterion for designing the forebay is the 

prevention of air into the supply pipeline, which can cause cavitation problems. Due to 

its small storage capacity, the forebay offers very limited regulation (e.g. for few hours) 

and also ensures a practically constant head. 

(d) The penstock system, basic component of which is the pipeline, through which 

the flow is conveyed to the turbine under pressure. The installation of the pipeline may 

be either underground or superficial. The pipeline is usually placed in a pit and then is 

buried, for environmental reasons as well as for the protection of the pipe from wear. 

http://www.energypedia.info/
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(e) The power house, hosting the turbines and the generator. The power house is 

the place where the penstock ends and the electromechanical equipment (turbines), 

the transformers, the generator and the monitoring and control equipment are 

installed. The type and number of turbines is selected according to the flow rate and 

head of plant and the best-case scenario for the operation of the plant. The layout of 

the power house depends on the existing topography, the flow conditions of the natural 

water stream and the type of electromechanical equipment.  

(f) A tailrace that conveys the water back to the river, after exiting the turbine. 

 
Figure 2.5: Overview of concept and main components of a RoR plant (GGF, 2012). 

 

In order to define the exact design of a small hydropower plant it is essential to define of 
project layout and formulation and finally the layout optimization. Specifically, the following 
studies and optimization procedures are critical: 

 
o Hydrological study (streamflow data, preferably at daily basis or finer, flow-

duration curve, environmental flows, flood regime, dry/wet year conditions); 

o Basic topographical overview (available head, siting of main system components, 

access conditions, existing roads); 

o Pre-design of hydraulic structures with cost estimations; 

o Optimisation of sizing; 

o Detailed field investigations; 

o Detailed engineering design and bill of quantities; 

o Choice of suitable equipment (turbines, penstock diameter etc.); 

o  Budgetary quotations for equipment. 
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o  
o Figure 2.6: Typical layout of intake works in a RoR plant (Mamassis et al., 2019). 

The above steps are necessary to design a small hydropower plant that uses with the most 

effective way the inflows of a river. If planned properly, hydropower offers the lowest 

generation cost at a very low risk and over a quite long life time. The hydrological study 

determines how much water will be available for electricity generation over the year, hence 

it provides the basis for the optimal siting and sizing of the system, in technical and economic 

terms. 

2.4 Turbines 

2.4.1 Classification and operation 

The turbine system converts the hydraulic energy of the diverted river water, expressed in 

terms of net head, into electricity. Which turbine(s) to select depends in large part on site 

characteristics (e.g. available net head), and the river's discharge regime. In hydroelectric 

systems, turbines are generally classified into two categories: 

i. impulse turbines (e.g. Pelton), taking advantage of the kinetic energy of water 

falling from a large elevation (outflow to the atmosphere); the flow velocity is 

substantially amplified by passing water through a nozzle; 

ii. reaction turbines (e.g. Francis), operating under pressure, as the chamber of the 

runner remains completely filled by water. 
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Each turbine operates in a specific range of flows. The maximum flow, also referred to as 

nominal, is determined by power capacity of the turbine, while the minimum one ranges from 

10-30% of maximum. Below this value the ability of the turbine to generate electrical power 

is negligible. 

Next we will briefly mention the two major turbine types that are used in hydroelectricity, 

and particularly in run-of-river plants, i.e. Pelton and Francis. 

 

Figure 2.6: Typical recommendation ranges for turbine selection. 

2.4.2 Pelton turbines 

Pelton is one of the most effective hydro-turbine. Pelton is an impulse turbine. In 1889, the 

American engineer, Lester Allan Pelton, patented this machine by streamlining the traditional 

windmill technology. A jet of water passing from a contracting nozzle enters the double 

buckets of the turbine wheel, to produce energy as the runner rotates. After it is impinging 

the buckets, the water outflows freely (i.e., under atmospheric pressure). Since the jet flow is 

not axisymmetric, thus only part of the runner is activated (typically only two or three out of 

about 20 buckets), they are also referred to as partial admission. The idea of energy 

production the substantial increase of the flow velocity from V1 to V2 where 𝑉1 is the velocity 

through the penstock, with diameter 𝐷1, and 𝑉2 is the velocity through the nozzle, with 

diameter 𝐷2 << 𝐷1. Generally, 𝑉1 ranges from 4 to 6 m/s, while 𝑉2 may exceed 100 m/s. 

Impulse turbines are applicable for large heads (H > 250 m) and relatively small Q. 
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Figure 2.4: Sketch of the Pelton wheel (source: Wikipedia). 

 

2.4.3 Francis turbines 

In 1849, the American engineer, James B. Francis, built a new turbine, which has since bore 

this name and is the most common type of turbine in medium-sized hydroelectric projects. 

Francis The Francis turbine is a type of reaction turbine a category of turbine in which the 

working fluid comes to the turbine under immense pressure and the energy is extracted by 

the turbine blades from the working fluid. Part of the energy is given up by the fluid because 

of pressure changes occurring in the blades of the turbine, quantified by the expression of 

degree of reaction, while the remaining part of the energy is extracted by the volute casing of 

the turbine. At the exit, water acts on the spinning cup-shaped runner features, leaving at low 

velocity and low swirl with very little kinetic or potential energy left. The turbine’s exit tube 

(also known as draft tube) is shaped to help decelerate the water flow and recover the 

pressure.  

Francis turbines are suitable for a wide range of discharge and head conditions, thus they 

are applied most of hydroelectric works worldwide (all but two large hydropower systems in 

Greece employ Francis turbines). The Francis turbine is commonly used for heads from 40 to 

600 m and for discharge values from 0.2 to 20 m3/s, thus resulting to power capacity values 

from 10 kW to 770 MW. The speed range of the turbine is from 75 to 1000 rpm. In contrast to 

the Pelton turbine, the Francis turbine operates at its best completely filled with water at all 

times. However, its efficiency ranges from very low to very high values, thus making it very 

difficult as for the optimal operation. 
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Figure 8.5: Stay vanes and guide vanes of a typical Francis turbine (www.theconstructor.org). 

2.5 Advantages and disadvantages 

Small hydroelectric power plants have a number of significant advantages, which 

establishes them as an effective source of energy. SHPPs are based on the idea to exploit the 

waterfalls, which are a renewable energy source and therefore do not face visible risk of 

depletion, as the contingency fuels. Contrary to what happens with fossil fuels, water is not 

disposed of in the production of electricity and can be used for other purposes. Specifically, 

small hydropower plants may be combined with parallel uses such as water supply and 

irrigation, helping to maximize the utilization of water resources. Furthermore, they have brief 

investment amortization time due to very low operational and maintenance costs and the cost 

of generating electricity has not huge fluctuations and essentially corresponds to the 

depreciation of the project. In environmental approach, the SHPPs do not have waste or 

residues, eventually do not pollute the environment. Due to the fact that small hydropower 

plants are constructed in isolated mountainous areas, the nuisance caused by them is minimal. 

The transport pipeline is usually underground, the building of the plant can be adapted to the 

local architecture, modern turbine technology ensures reduced sound nuisance and there is 

no need to store water. The result is not only not to be disturbed, but often for the visual 

environment area to be upgraded. 

Despite their significant advantages, small hydropower plants present some disadvantages 

which they must be taken into account in order to maximize the benefits from the application 

of this technology. Besides the low operational cost, they have a high construction cost (of the 

order of 1000-2000 €/KW) and for this requires the allocation of relatively large funds. 

Although, the most crucial disadvantage of SHPPs is the uncertainty around energy 

production, due to lack of water storage. This feature, which is an advantage in terms of size 

of the environmental burden, implies zero flexibility in the management of energy in the 

Transmission System, since the energy produced should be consumed immediately. 

Overall, small hydropower stations are a viable, clean and cost-effective alternative to dam-

based plants, and provide the option of decentralized power production. The difficulties that 



 

 

  

   

27 

occur by the small hydropower plants, should not, in any case, be considered as an inhibiting 

factor in their promotion. The insurance of energy sustainability and the protection of the 

environment require the exploitation of every economically and environmentally sustainable 

energy source. 

2.6 Development of small hydropower plants over Greece: current status 
and perspectives 

An important qualitative feature in the field of small hydropower plants is their spatial 

distribution in Greek territory. The natural resource that they use for electricity production is 

water, i.e. rainfall or, in general precipitation and it is natural their development to be geared 

towards areas with rich water potential. In Greece the richest hydrological basins are 

concentrated mainly in the northern and western regions of the mainland, which are 

dominated by the mountain range of Pindos. The map below presents the distribution of small 

hydropower plants, depending on the stage of their implementation. The map also shows the 

spatial distribution of the mean annual rainfall over Greece. 

As the investment interest in small hydropower plants has become particularly intense the 

last five years, the search for new sites has turned to the less developed areas. Generally, in 

Greece 107 small hydropower plants operate. Today, in Thessaly there are 28 projects under 

development, 29 in Western Macedonia and 9 in Peloponnese. 

  

Figure 2.7: Elevation map of Greece, showing the locations of licensed small hydroelectric 
plants (Hellenic Ministry of Development). 
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3 Research advances in the design and operation of 
small hydropower plants 

3.1 Literature review 

During the past three decades many experts have employed comprehensive research on 

the optimal design, operation and performance of small hydropower plants. Yildiz and Vrugt 

(2019) mention that this research has primarily focused on five issues: (1) the determination 

of the optimal power capacity, (2) the development of specialized metrics (indices) that 

convey properly the economic performance (profitability) and energy production of power 

plants, (3) the development of fast and efficient optimization approaches for the design of the 

hydropower system, (4) the design, operation, analysis, and performance assessment of 

turbines, and (5) the importance of streamflow processes and surface hydrology on the overall 

performance of small plants. 

Many researches focused on the optimum capacity of small hydroelectric plants as for their 

economic profitability. For instance, Santolin et al. (2011) proposed a model for the capacity 

sizing of a small hydropower plant on the basis of techno-economic analyses of the flow 

duration curve by using seven parameters. Montanari (2003) presented a method for finding 

the most economically advantageous choice for the installation of micro hydroelectric plants 

with small net head and modest flow rates. Anagnostopoulos and Papantonis (2007) found 

that the use of two turbines of different size can enhance sufficiently both the energy 

production of the plant, by optimizing the mix of turbines, and the economic results of the 

investment. In addition, they demonstrated that the optimum size of turbines depends 

strongly on the characteristics of the installation site and the actual turbines used. Mishra et 

al. (2011) concluded that the properties of the river discharge and number of poles of the 

generator determine the optimum size and investment costs of small hydropower plants, 

nevertheless, these variables are often ignored during design and optimization analyses. 

The choice of one or more turbines in small hydropower plants is a multidimensional 

problem because their operation is based on many unknown characteristics. Research into 

turbine selection, design, analysis, operation and performance has led to approaches for 

direct measurement, monitoring, numerical simulation and optimization of the turbine 

efficiency. Cobb and Sharp (2013) studied a laboratory-scale test fixture in order to test the 

operating performance characteristics of impulse turbines (Pelton and Turgo). Elbatran et al. 

(2015) reviewed the selection of low head micro-hydropower turbines with emphasis to 

poorly developed areas, and looked forward to using simple turbines for achieving good 

performance with minimum initial and running cost. Finally, Skjelbred and Kong (2019) 

compared the performance of linear interpolation and spline interpolation for turbine 

efficiency curves, in the short-term hydropower scheduling (STHS) problem and the bidding 

strategy in intraday market. 
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3.2 Issues of uncertainty 

Small hydropower plants have operational flexibility such as quick starting, stopping and 

load variations thus helping in improving the overall reliability of the power system. In this 

context, it is not surprising that this form of hydropower exhibited such an expansion during 

the past decades. On the other hand, these works are subject to multiple uncertainties that 

span over all aspects of flow-energy transformations, and affect many crucial tasks, including 

the optimization of turbines efficiency, the maximization of economic performance, the 

operational maintenance and the optimization of turbines mix. 

The most apparent and well-studies issue of uncertainty involves the hydrological inputs. 

Evidently, due to their negligible storage capacity, small hydroelectric plants strongly depend 

on the sequence of hydrological periods, and particularly the low and medium flows. Casadei 

et al. (2014) proposed empirical methods to improve the performance of a SHPP according to 

the hydrological regime of the river, the frequency of dry and wet years, and the target energy 

production. Moreover, the fluctuations of demand and supply adjust more uncertainties in 

the operation and design of small hydropower plants. Bjerkholt and Olsen (1984) discuss the 

sizing and capacity utilization of a hydroelectric power system, when uncertainty in supply and 

demand are explicitly taken into consideration. 

In a more general context, the quantification of hydrological uncertainty across water 

resource systems is a topic of extended research. This uncertainty either refers to the process 

of interest (in the particular case, streamflow) or the modelling procedure for extracting this 

process (e.g. through rainfall-runoff models). Regarding the first issue, hydrologists have long 

appreciated the usefulness of stochastic approaches and have applied them in a wide range 

of water resources applications, including the design and operation of hydropower systems 

(mainly large ones, comprising hydroelectric reservoirs). The most common use of stochastics 

is the generation of synthetic inflow data for the representation of all aspects of variability of 

streamflow and its statistical dependencies in space and time. The literature offers a plethora 

of models that reproduce the most important statistical characteristics of hydrological 

processes. Among many others, Koutsoyiannis (2000) proposed a framework for single- and 

multivariate simulation and forecasting problems in stochastic hydrology that allows for 

representing multiple persistence structures, while Tsoukalas et al. (2019) provided a flexible 

methodology for combining different stochastic models to represent any distribution and any 

dependence structure across any sequence of scales. The aforementioned methodologies 

have been implemented within time series generators, such as Castalia (Efstratiadis et al., 

2014) and the recently released AnySim package (Tsoukalas et al., 2020). 

Furthermore, the literature has also discussed the uncertainties induced by the use of 

hydrological models for representing the transformation of rainfall to runoff, when direct flow 

observations are limited or even missing. For instance, Vrugt et al. (2009) provided important 

advances in testing hydrologic theories, diagnosing structural errors in models, and 

appropriately benchmarking rainfall measurement devices by introducing a novel Markov 

Chain Monte Carlo (MCMC) sampler, entitled differential evolution adaptive Metropolis 
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(DREAM). Sadegh et al. (2015) have used Bayesian inference with DREAM in the evaluation of 

run-of-river hydroelectric plants, by proposing mathematical expressions of flow duration 

curves (FDC), coupled with uncertainty quantification. 

A last issue of uncertainty involves the characteristics of hydraulic turbines, which are key 

component of hydropower systems. The experience so far reports many problems which 

degrade their condition and efficiency and require proper operation and maintenance. After 

only few years of operation, turbines can show significantly reduced performance due to 

various reasons such as cavitation, erosion, fatigue and material defects (cf. Kumar and Singal, 

2015, also proposing methods for the effective maintenance of turbines). For this reason, the 

standard efficiency curves provided by the manufacturers may deviate significantly from the 

actual efficiency in the field, which is a major source of uncertainty affecting a wide range of 

applications, including performance assessment, real-time operation and power predictions. 

In this context, Abbas and Kumar (2019) mention that the total uncertainty in flow and 

efficiency measurements at the best efficiency point has been found to be the minimum one, 

when compared with other operating points. 
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4 Simulation problems in small hydropower plants: 
forward and inverse formulations 

4.1 Input data and assumptions 

The simulation problems in small hydropower plants are expressed either in forward or 

inverse mode. The forward simulation aims at estimating the energy produced by a system 

with given characteristics and given inflows. On the contrary, in the inverse simulation, the 

objective is to retrieve the overall input, i.e. the streamflow, for given system characteristics 

and given (observed) energy data. 

Input data for the forward problem are: 

• Streamflow upstream of the intake, 𝑄; 

• Gross head, 𝐻, expressed as the elevation difference between the forebay tank and 
the outlet level, which is practically constant; 

• Geometrical and hydraulic characteristics of the penstock, which allow for estimating 
the hydraulic losses, ℎ𝐿 (section 4.3); 

• Maximum discharge that can pass from the turbines, 𝑄𝑚𝑎𝑥, which is also referred to 
as nominal flow; 

• Minimum discharge for energy production, 𝑄𝑚𝑖𝑛, which depends on the turbine type 
and is typically expressed as fraction of nominal flow, i.e. 𝑄𝑚𝑖𝑛  𝑎 𝑄𝑚𝑎𝑥; 

• Power plant efficiency, 𝜂, which is typically expressed as function of rated flow, 
𝑄/𝑄𝑚𝑎𝑥 (section 4.4). 

The nominal flow is associated with the power capacity of the plant, 𝑃𝑚𝑎𝑥, given that for 

𝑄/𝑄𝑚𝑎𝑥  1 the efficiency is maximized. Under this premise we get: 

𝑄𝑚𝑎𝑥  
𝑃𝑚𝑎𝑥

γ 𝜂𝑚𝑎𝑥 𝐻𝑛
 (4.1) 

We remark that the above relationship includes the net head term, 𝐻𝑛, which is function 

of 𝑄𝑚𝑎𝑥. In this respect the formula cannot be solved explicitly, thus in the context of 

preliminary calculations, we can omit hydraulic losses and thus substitute 𝐻𝑛 by the gross 

head, 𝐻. This approximation is valid only in case of large heads and penstocks with minimal 

losses. A more elegant approach, which is specific case of the inverse problem, is discussed in 

section 4.6. 

It is important to remark that both problem configurations (forward, inverse) are subject 

to measurement errors and uncertainties that span over all elements of the governing 

formulas, and they are transferred to the simulated outputs. Herein we present the model 

formulation in deterministic terms, i.e. without accounting for uncertainties. In next chapter 

we will provide a more integrated approach, emphasized to the inverse problem, to allow 

embedding different sources of uncertainty within calculations. 
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4.2 The forward problem: converting discharge to hydroelectric energy 

Let 𝑄 be the streamflow arriving at the intake of a RoR plant. The flow passing through the 

turbines is restricted by the discharge capacity 𝑄𝑚𝑎𝑥, i.e.: 

𝑄𝑇  min 𝑄, 𝑄𝑚𝑎𝑥  (4.2) 

If the flow is less than its minimum operational limit, the turbine efficiency is practically 

zero thus any anergy is produced. On the other hand, provided that 𝑄𝑇  𝑄𝑚𝑖𝑛, the energy 

production rate, i.e. the power, is calculated by the relationship: 

𝑃  𝜂 𝑄𝑇 𝛾 𝑄𝑇 𝐻𝑛 𝑄𝑇  (4.3) 

where: 

𝜂 is the power plant efficiency, expressed as function of discharge; 

𝛾 is the specific weight of water (9.81 KN/m3); 

𝑄𝑇 is the flow passing through the turbines (m3/s); 

𝐻𝑛 is the net head, i.e. the constant gross head, H, after subtracting the flow-dependent 

hydraulic losses, ℎ𝐿 (m). 

The estimated power production from the above relationship is approximative because of 

the input uncertainties (flow data) and the internal uncertainties of the system, i.e. in the 

power plant efficiency as well as in 𝐻𝑛. Hydraulic losses include friction and local ones, which 

are function of discharge and the penstock properties (roughness, length, diameter, 

geometrical transitions). Large hydroelectric reservoirs allow for controlling outflows; thus 

their turbines are normally working with the nominal flow, which maximizes efficiency. In 

contrast, SHPPs are operating with any flow conditions, where 𝜂 is strongly varying across the 

feasible flow range (𝑄𝑚𝑖𝑛, 𝑄𝑚𝑎𝑥). 

The energy production during a time interval [t1,t2] is the integral of power, i.e.  

𝐸  ∫ 𝑃 𝑡 𝑑𝑡
𝑡2

𝑡1

 (4.4) 

Also, assuming constant efficiency and net head, we get the following formula, expressing 

the energy produced over a specific time interval: 

𝐸  𝜂 𝛾 𝑉 𝐻𝑛 (4.5) 

where V is the water volume passing the turbines during this time interval (m3), and 𝐸 is the 

energy, expressed in Joules. 

4.3 Estimation of hydraulic losses 

Gross head reduction is due to frictional losses across the penstock, as well as local energy 

losses that occur at all changes of the flow geometry. For given discharge, Q, and pipe 

diameter D, the flow velocity is given by: 
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𝑉  
4𝑄

π𝐷2
 (4.6) 

For the above flow characteristics, the energy gradient J across the pipe is typically 

estimated by the so-called Darcy-Weisbach formula: 

𝐽  𝑓
1

𝐷

𝑉2

2𝑔
 (4.7) 

where f is a (dimensionless) friction factor. The latter is given by the Colebrook–White 

equation: 

1

√𝑓
  2 log (

𝜀

3.7𝐷
+ 

2.51

𝑅e √𝑓
) (4.8) 

where Re := V D/ν is the Reynolds number and ε/D is the relative roughness, which are both 

dimensionless quantities, whereas ε is the absolute (surface) roughness of the specific pipe 

and ν is the kinematic viscosity of water, which is function of temperature; e.g., for T = 15 °C, 

ν = 1.1×10– 6 m2/s. 

For a pipe of length, L, and by considering steady uniform flow with discharge Q and 

diameter D, the friction losses, which are generally the main component of the total hydraulic 

losses, are given by: 

ℎf  𝑓𝐿
8𝑄2

π𝑔𝐷5
 (4.9) 

Due to the complexity of friction loss calculations through eq. (4.9), a number of simplified 

formulas have been developed in the literature (e.g., the Hazen-Williams expression), which 

are yet noticeably less accurate than the Darcy-Weisbach equation. A more consistent and 

accurate approximation is offered by the so-called generalized Manning equation, introduced 

by Koutsoyiannis (2008): 

𝐽  (
43+𝛽 𝛮2 𝑄2

π2𝐷5+𝛽
)

1/ 1+𝛾 

 (4.10) 

where β, γ and N are coefficients depending on roughness, for which Koutsoyiannis (2008) 

provides analytical expressions that are valid for specific velocity and diameter ranges. In 

particular, for large diameters (i.e., D > 1 m) and velocities (i.e., V > 1 m/s) that are typically 

applied in hydropower systems, we get: 
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𝛽  0.25 + 0.0006𝜀∗ +
0.024

1 + 7.2𝜀∗
, 𝛾  

0.083

1 + 0.42𝜀∗
 , 

𝛮   0.00757 1 + 2.47𝜀∗ 
0.14 

(4.11) 

where 𝜀∗:=𝜀/𝜀0 is the so-called normalized roughness and 𝜀0 ≔  𝜈2/𝑔 1/3 = 0.05 mm, for 

temperature 15 °C. 

The roughness coefficient, 𝜀, is a characteristic hydraulic property of the pipe, mainly 

depending on the pipe material and age, where aging depends on the water quality. For design 

purposes, it is recommended to apply quite large roughness values, e.g. 𝜀  1 mm, in order 

to account for all above factors at the end of time life of the penstock. For the above value, 

we get 𝜀∗= 1/0.05 = 20, and thus β = 0.262, γ = 0.009, and N = 0.0131. 

On the other hand, local, also referred to as minor hydraulic losses, are occurring at every 

change of geometry (transition) and thus change of flow conditions (e.g. flow entrance 

through the intake, change of diameter, flow split, elbow, etc.). Each individual loss is generally 

estimated by: 

ℎL  𝑘
𝑉2

2𝑔
 (4.12) 

where k is a dimensionless coefficient, depending on transition geometry. Classical hydraulic 

engineering handbooks (e.g., Roberson et al., 1998) provide analytical relationships, empirical 

formulas and nomographs for estimating k as function of local geometrical characteristics, 

(e.g., ratio of upstream to downstream diameter).  

Typical values that are applied in hydroelectric systems are: 

• Intakes: k = 0.04 

• Grids: k = 0.10-0.15 

• Contractions: k = 0.08 

• Elbows: k = 0.10 

• Valves, fully open: k = 0.10-0.20 

• Outflow to tailrace: k = 1 

In preliminary design studies, local loss calculations can be generally omitted, since the 

geometrical details are not yet specified, or they are roughly estimated, by considering an 

aggregate value of k for all types of local losses. We remark that in case of reaction turbines 

(e.g. Francis, Kaplan), the outflow is by definition made under pressure through the draft tube 

to an open channel, thus the value k = 1 should always be applied. This case does not stand 

for Pelton turbines. 
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4.4 Estimation of efficiency 

The total efficiency of a hydropower plant can be dissolved in four several factors as below: 

𝜂  𝜂𝛵 𝜂𝛦 𝜂𝑇𝑅 𝜂𝐺  (4.13) 

where: 

𝜂𝛵 is the efficiency of the turbines; 

𝜂𝐺  is the efficiency of the generator; 

𝜂𝑇𝑅 is the efficiency of the transformer; 

𝜂𝛦 is the efficiency of the transmission lines; 

Typical values for the three latter are 0.96, 0.98 and 0.98, respectively. 

The power plant efficiency depends on the turbine types and the overall configuration of 

the hydroelectric power plant. This factor not only is crucial at the design stage but also in the 

operation of the power plant. Although in preliminary design and management studies 

efficiency is considered constant, it is actually function of head and flow. Both are varying, 

mainly due to fluctuations of the upstream level (case of hydroelectric reservoirs, where 

turbine flows are well-controllable) or due to the inherent variability of the flows captured by 

small hydropower plants.  

The turbine efficiency, 𝜂𝛵, for specific dimensions (e.g., diameter runner) is usually 

expressed by means of nomographs as percentage of rated flow, 𝑄𝑇/𝑄𝑚𝑎𝑥 (Anagnostopoulos 

& Papantonis, 2003). Figure 4.1 illustrates typical performance curves for turbines that are 

applied in small hydroelectric plants. We observe that the curves change significantly with 

turbine type and sizes. Other important issue is that there is a particular flow rate for which 

the turbine efficiency is maximized; this peak is practically achieved at the nominal discharge. 

It is worthy commendable that after years of operation the efficiency curves change. 

We remark that the flow-efficiency nomographs are provided by the turbine manufacturer 

and they are obtained by data extrapolation from a reduced scale model. Since it is not 

possible to exactly preserve dynamical, geometrical, and kinematical similarity between the 

model and the prototype, it is also not possible to precisely estimate the efficiency. Although 

empirical corrections are employed to better reflect the prototype performance, actual 

efficiency is unknown, since it also depends on constructive and operational characteristics of 

the power plant, as well as changes due to deterioration, damage and aging of the equipment 

over time (Paish, 2002). In general, efficiency increases with scale, i.e. discharge and turbine 

Pelton, Crossflow and Kaplan machines retain high efficiency even when running below their 

design flow. In contrast, the efficiency of Francis turbines falls away sharply if run at below 

half its normal flow. 
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Figure 4.1: Typical efficiency curves for turbines applied in SHPPs. 

In the present study, we investigate the performance of two commonly used turbines, 

namely Francis and Pelton. The Francis turbine belongs to the group of reaction turbines, and 

use the force exerted by the water to rotate the runner inside the turbine, in a way similar to 

how the engines of an airplane create trust. Reaction turbines exhibit a rather poor efficiency 

at low flows despite their relatively high specific speeds. As for the Pelton turbine, it is the 

typical case of impulse machines and its strong advantage over the Francis turbine is the 

approximately stable efficiency for quite a large range of flows. 

As shown in the graph, between Pelton and Francis efficiency curves, the latter not only 

depends on the specific speed but also its efficiency varies from 0.08 to 0.96, thus making 

energy calculations very sensitive against errors induced by uncertain efficiency curves. Due 

to Francis efficiency variance, it is appropriate to approach the efficiency curve in stochastic 

terms. On the contrary, the Pelton’s efficiency varies from 0.65 to 0.89. 

4.5 The mixing of turbines 

It is quite common that a small hydropower plant is equipped with more than one parallel 

turbines and the total flow is separated, as illustrated in the flowchart of Figure 4.2. Therefore, 

it is necessary to extend this procedure for the case of turbine mixing. The main difficulty in 

this problem is the consideration of the way these turbines operate. As mentioned in Chapter 

3, many experts consider the problem of optimal mixing, generally involving the 

implementation of two turbines of the same or different type, which operate at different flow 

ranges in order to capture as much as more wide range of the flow variability. In general, there 

are two ways to define the operation of turbines: 

• hierarchical operation, by assigning a master turbine and an auxiliary one, symbolized 
A and B, respectively; 

• combined operation, where the sharing of flows is derived through optimization. 
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If the turbines are set in a specific priority order, the simulation problem is quite simple, 

because turbine A is systematically utilized up to its nominal discharge. The remaining flow 

passes through the turbine B, until reaching the nominal discharge of B, thus the surplus flow 

is spilling through the weir. The above policy is the simplest one, but not the overall optimal, 

because of the nonlinearities induced by the efficiency curves of turbines. In a more rigorous 

optimization context, the operation of two turbines accounts for the maximization of the 

combined efficiency of the system across all feasible flows, which ensures the maximum 

energy production. There are a lot of ways to separate the total inflow, on the basis of 

operation rules that account for different percentages for each turbine across different 

periods of operation. 

 

 

Figure 4.2: Operation of turbines in case of mixing. 
 

4.6 The inverse problem: retrieving discharge from energy 

In the inverse problem, we consider a given power production 𝑃, and solve for the flow 

that passes through the turbines, 𝑄𝑇, which is calculated by: 

𝑄𝑇  
𝑃

𝛾 𝜂 𝑄𝑇  𝐻𝑛 𝑄𝑇 
  (4.14) 

The flow that passes through the turbines, inside of the range of operation of SHPPs, can 

be estimated through an iterative numerical scheme, accounting for nonlinearities induced by 

efficiency and net head formulas, 𝜂 𝑄  and 𝐻𝑛 𝑄 . Details on the numerical procedure and 

its convergence properties are discussed in section 5.3.1. 
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Since, the turbines operate only in a certain range of flow, the power production fluctuates 

between zero and its maximum value, i.e. the installed power capacity, 𝑃𝑚𝑎𝑥. If the power 

production is zero, then we know that the streamflow is below the minimum discharge of 

turbines, 𝑄𝑚𝑖𝑛, but we cannot retrieve its exact value. On the contrary, when the system 

produces its power capacity, we known that the streamflow certainly exceeds the nominal 

discharge, 𝑄𝑚𝑎𝑥, yet its exact value is again unknown. Therefore, in contrast to the forward 

problem, for which we can extract the full time series of power production from a given 

streamflow sample, the inverse problem is not well-posed, since for a given power time series 

only part of the corresponding streamflow set can be retrieved. 

 

Figure 4.3: Example of hourly energy production time series (data derived from Glafkos 
plant, for a period of 10 days). 

 

Figure 4.4: Example of extracting hourly streamflow time series from energy (data derived 
from Glafkos plant, for a period of 10 days). 
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4.7 The inverse problem in calibration setting: retrieving system properties 
from discharge and energy 

Except from retrieving discharge from hydropower, another expression of the inverse 

problem involves the extraction of internal properties of the system through calibration, i.e. 

for given input (streamflow) and output (energy) data. This involves system components that 

are associated with energy conversions, both across the conveyance system (e.g., penstock 

roughness) as well as the mechanical equipment (efficiency of turbines and transformers). We 

remark that all these characteristics are not measured in the field, thus they are subject to 

uncertainties. The most crucial and at the same time interesting calibration problem is the 

extraction of efficiency curves. In Chapter 5 we also discuss a framework to optimize the 

efficiency curves by using an analytical parametric formula, which inspired by the 

Kumaraswamy distribution model. 
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5 Stochastic modelling framework for extracting 
streamflow time series from SHPP’s energy data  

5.1 Rationale and objectives 

This chapter discusses the modeling framework that has been developed in this thesis. As 
mentioned before, the goal of our research is to extract the streamflow arriving at the inlet of 
a SHPP from energy production data, and evaluate its uncertainty. The data processing and 
the computational implementation of models, which will be described in this chapter, are 
done by using the MATLAB software. The code snippets as well as related comments are 
provided in Chapter 6. 

Our rationale originates from the fact that in the case of small hydropower plant design 
and simulation, several components of water-energy transformations are handled as constant 
and certain quantities, while they are actually varying and uncertain. More precisely: 

In the context of preliminary design of small hydropower plants, the main objective is the 
estimation of energy production from discharge. In this respect, crucial elements of the 
forward formula for the estimation of energy, such as net head and efficiency, are usually 
considered as constants. Similar approaches are also employed is common optimization 
studies (i.e. sizing of penstocks and turbines), where efficiency and net head are handled as 
constants. On the contrary, the formulas and procedures that are proposed in this study 
consider that efficiency and net head are not constant but they depend on the flow that passes 
through the turbines. 

Furthermore, the usual practice to face both the forward and the inverse energy problems 
in a SHPP are handled as fully deterministic. Apparently, for a given discharge we can easily 
extract the power production, and vice versa, if the system properties are known. However, 
in real world studies the available data from a SHPP’s operation may be quite limited or/and 
unreliable. It is a fact that the design of a hydroelectric power plant differs from its actual 
operation. This difference arises due to multiple uncertainties and errors both in design and 
operation. In the real-world there are several potential sources of uncertainty, such as the 
power data, hydraulic calculation, and flow-efficiency relationship.  

In this research, we focus to two key uncertain issues, in particular the observed output 
(energy production), and the efficiency curve of turbines. As for the hydraulic calculations, 
uncertainties refer to parameters that are associated with friction and minor losses, e.g. the 
roughness coefficient, which also changes with time. Nevertheless, these errors affect the net 
head estimations, thus they become less important as the gross head increases, which is the 
typical case in run-of-river plants. 

5.2 Model overview 

As shown in Figure 5.1, the inverse problem in stochastic setting is posed as follows: First, 
we estimate the flow time series that passes from the turbines, through an iterative numerical 
scheme, using the energy production data. We highlight that this only involves part of the full 
hydrograph between the minimum and maximum (nominal) operational discharge of the 
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system; the full streamflow data also comprises higher and lower values, which are estimated 
in a different, semi-empirical manner (see sections 5.5.2 and 5.5.3, respectively). The next step 
is the comparison with the observed streamflow data. Following this, it is essential of express 
the model residuals through an error function, extract their statistical characteristics and 
fitting a suitable distribution, e.g. Gamma. After this, we generate m synthetic error 
realizations and the associated discharge ensembles. The latter are used to extract typical 
uncertainty metrics of the modelled flows, such as expected vales and confidence intervals. 

 

 

 

Figure 5.1: Flowchart of proposed model. 
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5.3 The inverse problem under uncertainty 

The proposed model estimates the flow that passes through the turbines for a given value 

of energy production, while its deviation from the observed flow is handled as an error term 

that follows a specific distribution and has a specific autocorrelation structure. Herein we will 

use the Gamma distribution and express errors through a first-order autocorrelation model, 

but this can be generalized for any stochastic model. In this respect, the retrieved streamflow 

is expressed in stochastic terms, as the unique means for consistent quantification of 

uncertainty, thus allowing to express the overall uncertainties of the inverse transformation 

in typical statistical terms (e.g. marginal statistics and confidence intervals). 

5.3.1 Numerical procedure 

Firstly, it is necessary to check whether the flow passing through the turbines, 𝑄𝑇, equals 

the input streamflow, 𝑄, which is true only when the power production, 𝑃, is positive and less 

than 𝑃𝑚𝑎𝑥. The following cases arise: 

• If 𝑃  0 then 𝑄 ≤  𝑄𝑚𝑖𝑛 (any energy is produced, since the streamflow arriving at 

the turbines is less than the minimum operational value); 

• If 𝑃  𝑃𝑚𝑎𝑥  then 𝑄 ≥  𝑄𝑚𝑎𝑥 (the streamflow exceeds the nominal discharge of 

turbines, and the surplus quantity spills over the weir); 

• If 0 < 𝑃 < 𝑃𝑚𝑎𝑥  then 𝑄   𝑄𝑇 

In the last case, we compute the turbine flow for time step t = 1, …, n by using the 

deterministic inverse formula 𝑄𝑇  𝑓 𝑃 , which is expressed in the following recursive form: 

where 𝑠 is an iteration counter. For every time step, the above relationship is repeated until 

the flow converges. To run the formula, an initial flow value is assigned, typically the last 

known value of the simulated data. This iterative scheme usually converges after three 

repetitions. The upper limit in order to terminate this procedure is expressed in terms of 

absolute difference between subsequent flow values, 𝛥𝑄: 

If the above statement is true, then the relationship (5.1) is re-employed for 𝑠 + 1, until 

(5.2) becomes false. 

5.3.2 Stochastic modelling of errors 

Apparently, in a real-world study, the flows extracted from energy data will deviate from 

actual ones, due to errors and uncertainties that appear in all components of the flow-energy 

transformation procedure. These involve energy data, internal properties and assumptions 

regarding the hydraulic and electromechanical equipment (penstock, turbines, generator, 

transformer), and even minor errors due to imperfect convergence of eq. (5.2). All these are 

𝑄𝑇
[𝑠+1]

 
𝑃

𝛾 𝜂 (𝑄𝑇
[𝑠])  𝐻𝑛 (𝑄𝑇

[𝑠])
  (5.1) 

𝑄𝑇
[𝑠 1]  𝑄𝑇

[𝑠]  𝛥𝑄 (5.2) 
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transferred as model errors i.e. deviations of simulated from actual flow data (also referred to 

as residuals). 

Following this, it’s crucial to investigate the way to express the model residuals, i.e. the 

discharge errors for each time step. In this research, three formulas are examined (Efstratiadis 

et al., 2015): 

𝑤𝑡   𝑄𝑇,𝑡  𝑄𝑜𝑏𝑠,𝑡 (5.3) 

𝑤𝑡  
𝑄𝑇,𝑡  𝑄𝑜𝑏𝑠,𝑡

𝑄𝑜𝑏𝑠,𝑡
 (5.4) 

𝑤𝑡   ln  𝑄𝑇,𝑡  ln  𝑄𝑜𝑏𝑠,𝑡   (5.5) 

Although an ideal model error should follow the white noise properties, thus being 

homoscedastic and uncorrelated both in “space” (correlation with the parent process, e.g., 

flow) and time, in the real world we cannot avoid the existence of dependencies. In this 

respect, for the generic case we should represent the error through a stochastic model, not 

simply a statistical one. 

The formulation of the stochastic model for residuals requires the computation of their 

marginal statistical characteristics and dependence properties, such as the mean, variance, 

skewness, autocorrelation, and the cross-correlation between the observed flows 𝑄𝑜𝑏𝑠,𝑡 and 

the error data 𝑤𝑡. If the autocorrelations are large, it is suggested to use a stochastic model 

that allows to describe the dependence structure of the error process. In our analyses, the 

representation and synthesis of model residuals 𝑤𝑡 is employed through a first order 

autoregressive (Markov) model, AR(1) as: 

where 𝑤𝑡 is the error process, with mean 𝜇, standard deviation 𝜎, skewness 𝛾, and lag-1 

autocorrelation coefficient 𝜌; 𝜑  𝜌 is the first order autoregression coefficient; and 𝑧𝑡 is an 

i.i.d. process (white noise) with mean 𝜇𝑧 , standard deviation 𝜎𝑧  and skewness coefficient 𝛾𝑧 . 

The statistical characteristics of the white noise 𝑧𝑡 are related with those of 𝑤𝑡 by: 

The next step is the generation of m synthetic error realizations (“ensembles”), by using 

the Gamma distribution. The Gamma distribution can be parameterized in terms of a shape 

parameter 𝑎  𝑘 and an inverse scale parameter 𝑏  1/𝜃, called a rate parameter. A random 

variable 𝑋 that is gamma-distributed with shape 𝑎 and rate 𝑏 is denoted. The corresponding 

probability density function (PDF) in the shape-rate parametrization is: 

𝑤𝑡  𝜑 𝑤𝑡 1 + 𝑧𝑡 (5.6) 

𝜇𝑧  𝜇𝑤  1  𝜑  (5.7) 

𝜎𝑧  𝜎𝑤 √1  𝜑2 (5.8) 

𝛾𝑧  𝛾𝑤  
1  𝜑3

 1  𝜑2 
3

2⁄
 (5.9) 
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𝑓 𝑥   
𝜆𝜅

𝛤 𝑎 
 𝑥  𝑐 𝑘 1 𝑒 𝜆 𝑥 𝑐 , 𝑥 ≥ 0 𝑎  0  (5.10) 

where 𝛤 𝛼  is the gamma function  

𝛤 𝛼   ∫ 𝑦𝑎 1 

∞

0

𝑒 𝑖𝑦𝑑𝑦 (5.11) 

 The distribution’s parameters are given by: 

𝜅  
4

𝜉𝑥2
  (5.12) 

𝜆  
√𝜅

𝑠𝑥
  (5.13) 

𝑐  𝜇𝑥  
𝜅

𝜆
  (5.14) 

where 𝜇𝑥 is the mean, 𝑠𝑥 is the standard deviation and 𝜉𝑥 the skewness of the sample. In this 

case 𝜇𝑥, 𝑠𝑥 , 𝜉𝑥 are the statistical characteristics of the residuals. The location parameter 𝑐 

allows for the better fitting of data, particularly when the latter is bounded (e.g., in the case 

of non-negative processes). 

The Gamma distribution defined by the above relationships represents random processes 

that are always positively asymmetric. If the coefficient of asymmetry 𝜉𝑥 is negative, the 

parameters are calculated as below: 

𝜅  
 4

𝜉𝑥2
  (5.15) 

𝜆  
√𝜅

𝑠𝑥
  (5.16) 

𝑐   𝜇𝑥 +
𝜅

𝜆
  (5.17) 

For the generation of random numbers that follow a negatively-asymmetric gamma 

distribution, we can use the same generators as before, by setting 𝜅  |𝜅| and change the 

sign of the final result. 

5.3.3 Generation of flow ensembles and uncertainty assessment 

The stochastic model runs to generate 𝑚 sets of synthetic error realizations 𝑤𝑗,𝑡 (also 

referred to as ensembles) for the same time horizon 𝑛 with the observed flow data. The 

number of ensembles should be large enough to allow for describing the model uncertainty 

as much as more accurately (in our analyses we generate 100 ensembles). These are next used 

to get the associated discharge scenarios (turbine flows) for each ensemble 𝑗  1, … ,𝑚 by 

employing the appropriate inverse transformation for each error expression, i.e. 
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𝑄𝑇,𝑗,𝑡  𝑓 𝑃𝑡 + 𝑤𝑗,𝑡  (5.18) 

𝑄𝑇,𝑗,𝑡  exp[𝑓 𝑃𝑡 ] + 𝑤𝑗,𝑡  (5.19) 

𝑄𝑇,𝑗,𝑡  𝑓 𝑃𝑡  𝑤𝑗,𝑡  (5.20) 

The quantification of uncertainty for each time step 𝑡 is employed by estimating the 

statistical characteristics of the corresponding sample of synthetic flow values 𝑄𝑇,𝑗,𝑡. The latter 

are empirically expressed in terms of quantiles, e.g. median. In this respect, we also provide 

confidence intervals based on empirical estimation of two characteristic quantiles (low, high) 

for each time step 𝑡, for a given confidence level (the latter describes the uncertainty of a 

sampling method). It is necessary to select a confidence level 𝛾, such as 90, 95, or 99%; but 

any percentage can be used, depending on the size of sample, i.e. the number of ensembles, 

𝑚. In this respect, for each time step we create the upper and lower limits of the confidence 

interval using the following functions: 

where the subscript denotes the quantile of simulated flow values for each specific time step. 

For instance, for 𝑚  100 and 𝛾  90%, the confidence limits are captured by the 5th larger 

and 5th smaller flow value, and they are generally not symmetric with respect to the median. 

5.4 Parametric model for deriving efficiency curves 

The efficiency-discharge relationship can be well approximated by the following analytical 

formula, inspired by the generalized probability density function proposed by Kumaraswamy 

(1980). In probability theory and statistics, the Kumaraswamy's double bounded distribution 

is a family of continuous probability distribution functions defined in the interval (0, 1). The 

probability density function of the distribution, without considering any inflation, is: 

𝑓 𝑥; 𝑎; 𝑏  𝑎𝑏𝑥𝑎 1 1  𝑥𝑎  1  𝑥𝑎 𝑏 1 (5.23) 

Easily, we can extract the cumulative distribution function: 

𝐹 𝑥; 𝑎; 𝑏  1   1  𝑥𝑎 𝑏 (5.24) 

where 𝑎 and 𝑏 are non-negative shape parameters. 

In its simplest form, the distribution takes values in the interval (0, 1). In a more general 

form, the normalized variable 𝑥 is replaced by the unshifted and unscaled variable 𝑧, where: 

𝑥  
𝑧 𝑧𝑚𝑖𝑛

𝑧𝑚𝑎𝑥 𝑧𝑚𝑖𝑛
 , 𝑧𝑚𝑖𝑛 ≤ 𝑧 ≤ 𝑧𝑚𝑎𝑥  (5.25) 

For different values of a and b the Kumaraswamy distribution formula creates a wide range of 

curve shapes that may fit to multiple function types, such as power, exponential, logarithmic, 

sigmoid, logistic, etc. (Figure 5.2). In this respect, an analytical formula for turbine efficiency 

nomographs can also be well-approximated by the Kumaraswamy function. By turning its two 

𝑄𝑢𝑝𝑝𝑒𝑟   𝑄 1+𝛾 /2 (5.21) 

𝑄𝑙𝑜𝑤𝑒𝑟  𝑄 1 𝛾 /2 (5.22) 
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shape parameters, we can fit the model to any empirically derived curve, thus significantly 

facilitating calculations. 

 

Figure 5.2: Plots of Kumaraswamy function for different values of shape parameters a and b 
(Wikipedia, 2020). 

Under this premise, the generic efficiency-discharge relationship can be approximated by the 

following analytical formula: 

𝑛  𝑛𝑚𝑖𝑛 + (1  (1  (
𝑄  𝑄𝑚𝑖𝑛

𝑄𝑚𝑎𝑥  𝑄𝑚𝑖𝑛
)
𝑎

)

𝑏

)  𝑛𝑚𝑎𝑥  𝑛𝑚𝑖𝑛  (5.26) 

This formula uses a dimensionless expression of discharge, based on 𝑄𝑚𝑖𝑛 and 𝑄𝑚𝑎𝑥, two 

efficiency limits, 𝑛𝑚𝑖𝑛 and 𝑛𝑚𝑎𝑥  , and the two shape parameters, a and b. We remark that the 

above formula has in fact four free parameters, since for a given power capacity 𝑃, and after 

empoying an iterative procedure as described in section 5.3.1, we get: 

𝑄𝑚𝑎𝑥 = 
𝑃

𝛾 𝜂𝑚𝑎𝑥 𝐻𝑛 𝑄𝑚𝑎𝑥 
 (5.27) 

𝑄𝑚𝑖𝑛  
𝑃

𝛾 𝜂𝑚𝑖𝑛 𝐻𝑛 𝑄𝑚𝑖𝑛 
  (5.28) 

Figure 5.3 illustrates different efficiency curves which are extracted from the analytical 

formulas, as described before. This formula allows to shape the efficiency curve by changing 

the parameters a, b, 𝑛𝑚𝑖𝑛, 𝑛𝑚𝑎𝑥. This change is not just about the limits to which the curve 

fluctuates (𝑛𝑚𝑖𝑛, 𝑛𝑚𝑎𝑥), but also is concerned about the camber and generally the way this 

curve reaches 𝑛𝑚𝑎𝑥. The procedure for efficiency curve construction presented here is rather 

simple and generic. Its main advantage is that it is transparent and allows for reaching almost 

perfect accuracy, depending on the data quality and knowledge about the turbine 

characteristics. It is essential to remark that since the nomographs typically refer to the 

turbine efficiency, for the extraction of total efficiency we should also account for additional 
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energy losses in the generator and the transformer. Typically, an overall correction is 

employed, by multiplying the data by a constant value that may range from 0.88 to 0.97 

(Anagnostopoulos, I., personal communication, 2020). 

We should also highlight that using the empirical nomographs is a usual practice, and most 

of times effective, at least for preliminary design purposes. However, the uncertainties, which 

arise in the real-world operation of hydropower plants make these nomographs obsolete. In 

the case study of Chapter 8 (Glafkos power plant), this consideration will be verified. In this 

context, another major advantage of the proposed approach is the opportunity for expressing 

efficiency under uncertainty, by considering the four model parameters as random variables 

that follow a known distribution function. Furthermore, by considering these parameters as 

unknown, we can establish a calibration framework, to extract efficiency curves from given 

power and turbine flow data (cf. Hidalgo et al.). 

 

Figure 5.3: Example of randomly generated efficiency curves. 

5.5 Extrapolation outside the operational flow limits 

5.5.1 Problem setting 

As mentioned in the Chapter 4, the proposed methodology for the inverse problem extracts 

only discharges, which range between 𝑄𝑚𝑖𝑛 and 𝑄𝑚𝑎𝑥. Actually, the methodology, that will be 

described, completes the missing data by extrapolating the simulated turbine flows outside 

this range, thus obtaining the upper and lower part of the hydrograph that cannot be 

extracted from the inverse problem. We remind that the maximum discharge that can pass 

from the turbines, also named the nominal flow, is the upper limit that we can extract from 

the energy production data. Following this, the minimum discharge that can pass from the 
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turbines, which is typically the 10-30% of the nominal flow (depends on turbine type), is the 

lower limit we can extract from energy. When the power production is zero, then the flow is 

under the lower limit, 𝑄𝑚𝑖𝑛. On the contrary, when the system produces its power capacity, 

then the flow is over or equal with its nominal discharge, 𝑄𝑚𝑎𝑥.  

In order to determine the extrapolation procedure, it is necessary to mention our two basic 

principles: 

• the rising limb follows a linearly increasing function; 

• the falling limb follows a negative exponential recession function. 

Moreover, the extrapolation is made by linking the two last known discharge values both 

for the rising and falling limbs. As before, the approach is not deterministic, since the 

extrapolation procedure is employed for all synthetically-generated flow ensembles, thus also 

obtaining ensembles of the full streamflow process. In this vein, confidence intervals are 

created for low and high periods, which are outside of the range of operation of a SHPP. 

Subsequently, the extrapolation of the hydrograph for high and low flows is crucial for the 

real-time operation of a small hydropower plant. Particularly for high flows, this extrapolation 

allows not also the estimation of the peak flows, but also the recession rate that is 

representative of the flood propagation over the basin. Furthermore, the knowledge of last 

flow values is essential for short-term planning purposes, involving the prediction of expected 

energy on the basis of discharge forecasting scenarios. Preliminary ideas on this topic of major 

importance have been recently demonstrated in a research work presented in the General 

Assembly of the European Geosciences Union (Sakki et al., 2020). 

5.5.2 High flows 

The flood flows upper the discharge capacity, 𝑄𝑚𝑎𝑥, that arrive at the inlet of a small 

hydropower plant as well as the flood duration are essential elements of its operation, during 

which the surplus inflow spills over the weir. Their estimation is based on the extrapolation of 

the rising and falling limb of the flood hydrograph, for a given sequence of known turbine flow 

values little before and little after the operation of turbines in their maximum capacity, 

respectively. We remind that the computation of turbine flows is made by using the 

deterministic inverse formula, which allows us to extract the “intermediate” discharge values 

within the range (𝑄𝑚𝑖𝑛, 𝑄𝑚𝑎𝑥). 

For the rising limb we employ a linear extrapolation, while for the falling limb we consider 

an exponential extrapolation. Both are reasonable assumptions, justified by empirical 

evidence worldwide, and also validated by recent research aiming at the development of 

dynamic unit hydrographs (Michailidi, 2018). 

Let 𝑄𝑡 2 and 𝑄𝑡 1 be the last known turbine flow values that are extracted from the inverse 

formula during the operation of the power station below its capacity, and 𝛥𝑡 is a unit time 

interval (since 𝑡 is a time index, not a time variable). In order to approximate and eventually 
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extrapolate the hydrograph forward, it is required to compute the slope of the linear rising 

limb, which is: 

𝜑  
𝑄𝑡 1  𝑄𝑡 2

𝛥𝑡
 (5.29) 

Any forward discharge value is calculated by using the relationship: 

𝑄𝑡  𝑚𝑎𝑥 𝑄𝑚𝑎𝑥 , 𝑄𝑡 1 + 𝜑 𝑡  (5.30) 

The above formula ensures that all estimated flow values in the rising limb will exceed the 

nominal flow, 𝑄𝑚𝑎𝑥, otherwise they are manually set equal to 𝑄𝑚𝑎𝑥. 

As for the falling limb, the extrapolation is employed backwards, following a negative 

exponential law, based on the well-known linear reservoir approach, which is a simple yet 

effective model for describing recession phenomena, e.g. low flows through the groundwater 

zone (Risva et al., 2018). Under this assumption, any discharge value after a given peak flow, 

𝑄0, can be calculated by using the relationship below: 

𝑄𝑡  𝑄0 exp   𝑘𝑡  (5.31) 

where 𝑘 is a recession parameter. For a known pair of subsequent turbine flow values 𝑡 steps 

after the peak, i.e. 𝑄𝑡+1 and 𝑄𝑡+2, the characteristic properties of the falling limb 𝑘 and 𝑄0
 are 

extracted by solving the system: 

𝑄𝑡+1  𝑄0 exp   𝑘 𝑡 + 1   (5.32) 

𝑄𝑡+2  𝑄0 exp   𝑘 𝑡 + 2   (5.33) 

from which we get: 

𝑘  𝑙𝑛 (
𝑄𝑡+1

𝑄𝑡+2
) (5.34) 

Apparently, the intercept point of the two extrapolations (forward linear and backward 

exponential) is the estimator of the peak discharge. In general, this occurs in an intermediate 

time between two subsequent time indices. 



 

 

  

   

50 

 

Figure 5.4: Example of extrapolating high flow values for missing days 6 and 7, when the 
streamflow exceeds the upper discharge limit (turbine capacity) of 5.0 m3/s. 

 

Figure 5.4: Example of extrapolating high flow values for missing days 5, 6 and 7, when the 
streamflow exceeds the upper discharge limit (turbine capacity) of 5.0 m3/s. The first value 
of the rising limb is manually set equal to the nominal discharge, since the last two known 

values do not allow for estimating the slope of the hydrograph. 

Figures 5.4 and 5.5 demonstrate two examples of extrapolating high flows. In both cases the 

maximum discharge that can pass through the turbines is 5.0 m³/s. In the first example, the 

last known discharges in the rising and the falling limbs are 4.0 and 3.0 m³/s, respectively. The 
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fitting to the known hydrograph and particularly the estimation of the peak value and time 

are almost perfect. On the other hand, in the second example the rising limb cannot be well-

approximated, since the last two known values at days 3 and 4 do not capture the flood 

phenomenon, thus resulting to a very small slope. However, by manually setting the unknown 

flow value of day 5 equal to the nominal discharge, i.e. 5.9 m³/s, we obtain a peak flow up to 

9.0 m³/s, which is quite close to the real value of 10.3 m³/s. Regarding the falling limb, in both 

cases the fitting is very satisfactory, since the recession parameter of both flood events is quite 

well approximated by the two first known discharge values after the nominal one. 

As for the stochastic approach, we implement almost the same procedure with the inverse 

model for retrieving turbine flows. Firstly, it is necessary to estimate the model residuals, by 

comparing with real discharge data, next formulate an appropriate stochastic model for the 

residuals, accounting for their marginal and dependence properties, and eventually generate 

a number of synthetic error realizations (“ensembles”) and associated discharge scenarios. 

For each scenario, we run the extrapolation method thus obtaining ensembles for the full 

hydrograph, i.e. low, intermediate and high flows, and also estimate their uncertainty bounds. 

Figure 5.6 provides an example, which refers to the part of the flow time series that has been 

discussed before (Figure 5.4). 

 

Figure 5.5: Example of extracting uncertainty bounds for extrapolated values. 

5.5.3 Low flows 

Similarly to the estimation of high flows, it is necessary to represent the period of low flows. 

As already mentioned, the turbines operate only for flows over 𝑄𝑚𝑖𝑛, while for lower flows 

any energy is produced. This extrapolation is very important for a small hydropower plant, 

because the duration and the frequency of these periods may be crucial for the scheduling of 

the operation of power plant and the prediction of its performance. For instance, if these 

period are extended or they happen too often, then the plant is not efficient. Due to all 
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uncertainties, which are also mentioned before, it is possible that a plant will not be as 

efficient as hypothesized in its design. 

The hydrograph extrapolation for low flows follows the same idea with the extrapolation 

of high ones. The recognition of periods of low flows is straightforward, since during this 

period the power production is zero. The estimation is based on the forward extrapolation of 

the falling limb and the backward of the rising one, using the same assumptions with high 

flows, i.e. the rising limb is linear the falling exponential. It is worthy commendable that if the 

any estimated discharge value exceeds the minimum flow, it is manually set equal to 𝑄𝑚𝑖𝑛. 

Figures 5.7 and 5.8 illustrate the extrapolation of the hydrographs when the discharges are 

below 𝑄𝑚𝑖𝑛. The difference between these figures is concerned about the last known 

discharge in falling limb. Specifically, in Figure 5.8 the falling limb declines sharply and the last 

known discharge is under the minimum discharge. In order to extrapolate the falling limb, we 

manually set the last known streamflow to 𝑄𝑚𝑖𝑛. 

Again, the approach is stochastic with very interesting results. Due to the importance of 

this estimation, it is essential to provide confidence intervals for each examined period of low 

flows. As shown in the example of Figure 5.9, the most noticeable feature is that in day 6 the 

confidence interval cannot capture the observed flow. The lower limit is over the real flow in 

fifth day. 

 

Figure 5.6: Example of extrapolating low flow values for missing days 5, 6 and 7, when the 
streamflow is below the lower operational discharge limit of 0.5 m3/s. 
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Figure 5.7: Example of extrapolating low flow values for missing days 4, 5 and 6, when the 
streamflow is below the lower operational discharge limit of 0.5 m3/s. 

 

Figure 5.8: Example of extracting uncertainty bounds for extrapolated values. 
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6 Model implementation in MATLAB environment 

6.1 Data insert-matrix pre-allocation 

The code snippet below demonstrates the following actions: 

o Insert in the MATLAB workspace the data from a MS Excel spreadsheet in the form of 

one dimensional index; 

▪ Edailydata1: the observed daily energy production 

▪ Qobseved: the observed daily flow 

o Determining the size of the registers used below in order to increase computational 

speed. These registers are: 

▪ D: the diameter of penstock 

▪ A: the cross-section area of penstock 

▪ Hol: the gross head 

▪ n1: the starting efficiency 

▪ L: the length of penstock 

▪ e: the normalized roughness 

▪ Qmodelhour: the extracted hourly streamflow 

▪ Qmodeldaily: the extracted daily streamflow 

▪ error1: 𝑤𝑡   𝑄𝑇,𝑡  𝑄𝑜𝑏𝑠,𝑡 

▪ error2: 𝑤𝑡  
𝑄𝑇,𝑡 𝑄𝑜𝑏𝑠,𝑡

𝑄𝑜𝑏𝑠,𝑡
 

▪ error3: 𝑤𝑡   ln  𝑄𝑇,𝑡  ln  𝑄𝑜𝑏𝑠,𝑡   

▪ rndm: the random numbers in order to generate synthetic errors realizations  
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6.2 Useful functions 

6.2.1 Friction losses 

The function above is called to calculate the energy losses for given flow, diameter, 

normalized roughness and length of penstock. 

 

6.2.2 Efficiency 

These functions compute the efficiency for each time step. The first one calculates the 

efficiency for given changing the parameters a, b, 𝑛𝑚𝑖𝑛, 𝑛𝑚𝑎𝑥  and the streamflow from 

turbine. The second one calculates the efficiency by using the empirical nomograph. 
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6.3 Inverse problem 

This code snippet calculates the deterministic formula for the so-called inverse energy 

problem. It is worth noting that, this code calculates only the streamflow, which extracted 

from the energy production. If the energy production is over the installed power the model 

,for this time step, the extracted streamflow is the nominal discharge. On the contrary, if the 

power production is zero, then the flow is outside of the range of operation of SHPP’s. In this 

case, the code characterize this flow as ”low”. 
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6.4 Model residuals (errors) 

The following code snippet illustrates the calculations for the model residuals, as described 

at the previous chapter. The two first moments, mean and standard deviation, are calculated 

as well. These error index is essential to approach the flow stochastically.  

  

6.5 Synthetic error realizations 

As for the generation of m synthetic error realizations, it’s essential to calculate the 

statistical characteristics of each error (mean, standard deviation, skewness, correlation, cross 
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correlation). In this study, the correlation between error and retrieved discharge as well as the 

correlation of error are too large As a result, the AR1 model is required. This extract 

demonstrates the calculation of the statistical characteristics of the white noise. 

The code snippet below shows the generation of 100 synthetic error realizations and the 

association with the first kind of error. Moreover, as can be seen clearly the intervals at this 

example are slightly strict (90% confidence level).  

Firstly, the script creates in the first row random numbers, which follow the Gamma 

distribution with the error’s statistical characteristics. The rest of the synthetic errors for each 

time step and for every realization concern the correlation of error as well. Moreover, the 

synthetic errors are sorted, in order to extract the confidence intervals. Finally, the intervals 

are extracted from the association of the error and the simulated streamflow. In the provided 

example this error is simply added to the retrieved discharge. 
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7 Theoretical investigations 

7.1 Problem configuration and input data 

In order to put in practice, the “inverse energy problem” and the extrapolation of high and 

low flows, we first formulate a theoretical example of a hypothetical small hydropower plant. 

The plant contains a single turbine of 10.8 MW power capacity and its operation is tested by 

using daily inflows over a ten-year period. In order to present a holistic study of this problem 

two alternative turbines are considered, i.e., Pelton or Francis, operating at low flow limits of 

10 and 20%, respectively. This approach is ideal due to the differences of efficiency curves of 

these turbines. Specifically, the efficiency of Pelton’s turbines do not exhibit significant 

fluctuations against discharge, and usually range between 0.65 and 0.89. On the contrary, the 

efficiency of Francis turbines range between 0.08 and 0.96, also depending on the specific 

speed of the turbine. 

To evaluate the methodology, as described in previous chapters, it is required to extract 

the actual power production depending on inflows (initial data, obtained by solving the 

forward problem), the net head, the average efficiency and the installed power. The 

hypothetic plant has net head 𝐻𝑛  260 𝑚, which is considered constant for the forward 

problem, and an average efficiency 𝜂  0.85. Following this, the installed power is 10.8 MW 

and the maximum discharge of turbines is 5.0 m³/s. On the contrary, the minimum discharge 

is 0.5 m³/s and 1.0 m³/s for Pelton and Francis turbines, respectively. The Table 7.1 

demonstrates the characteristics statistical and not of the hypothetical SHPP, which is used 

for the test of our methodology. Furthermore, Figure 7.1 illustrates the inflows at the entrance 

of the SHPP, whereas Figure 7.2 and Figure 7.3 represent the energy production the two 

alternatives turbines Francis and Pelton, respectively. 

Table 7.1: Characteristics of the hypothetical SHPP. 

 Pelton Francis 

Minimum operational discharge      (m3/s) 5.0 5.0 

Maximum operational discharge   𝒂𝒙 (m3/s) 0.5 1.0 

Power capacity 𝑰 𝒂𝒙 (MW) 10.8 10.8 

Operating time ratio 0.30 0.30 

Ratio of volume passed from turbines to total runoff 0.75 0.75 

Mean annual production (GWh) 11.8 10.9 

Average daily energy (MWh) 37.9 32.2 

Standard deviation (MWh) 55.0 56.5 
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Figure 7.1: Inflow time series at the entrance of the hypothetical small hydropower plant. 

 

Figure 7.2: Simulated energy data through the Pelton turbine using actual inflows. 
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Figure 7.3: Simulated energy data through the Francis turbine using actual inflows. 

7.2 Assignment of artificial uncertainties 

7.2.1 Overview 

The implementation of the inverse problem under uncertainty, and eventually the 

investigation of the arising uncertainties, requires the assignment of artificial errors to crucial 

factors of the hydroelectric plant. In this study, the error expressions are either observational 

or parametric. Observation errors are expressed as random perturbations of energy 

generation data, by assigning an additive or multiplicative error term to simulated energy that 

follows either a normal or a skewed (Gamma) distribution. On the other hand, the extraction 

of discharge data under parameter uncertainty is made by using a set of 100 randomly 

generated efficiency curves around the “actual” ones (Pelton or Francis), to represent the 

inherent uncertainties of the modelling procedure. In the first setting, the uncertain discharge 

data are represented in stochastic terms, i.e. by employing the AR(1) model to residuals, while 

in the second setting the ensembles are directly obtained by solving the inverse problem for 

each equifinal efficiency curve (term “equifinal” is applied to denote that all curves are 

equivalently possible to be the true ones). 

7.2.2 Uncertain energy 

The uncertain energy production is expressed in two ways. The first is by adding or multiply 

to the actual energy data 𝑒𝑡 𝑄𝑡 , which is obtained from the known inflows 𝑄𝑡, an error term 

∆𝑒𝑡, as follows: 

𝑒𝑡
∗  𝑒𝑡 𝑄𝑡 + ∆𝑒𝑡  (7.1) 

𝑒𝑡
∗  𝑒𝑡 𝑄𝑡  ∆𝑒𝑡 (7.2) 
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where ∆𝑒𝑡 is expressed by means of unbiased noise. The distributions which describe the 

artificial error are the Normal 𝑁 𝜇, 𝜎  and the three-parameter Gamma with skewness 𝛾𝜀. As 

for the Normal distribution and 7.1, the mean is zero and the standard deviation is expressed 

as percentage of the standard deviation of simulated energy production, i.e. 1%, 5% and 10% 

of 𝜎𝑒. Also, as for the 7.2 and the Normal distribution the mean is 1 and the standard deviation 

is 0.1 and 0.2. This range of errors demonstrates how much is the uncertainty and how can 

the possible measurement errors in energy production affect the streamflow estimations. The 

uncertainty of inflows that are retrieved by the inverse procedure is quantified in terms of key 

statistical characteristics of residuals, namely: 

• mean, variance, skewness 

• lag-one autocorrelations 

• cross-correlations with actual flow data  

In this study the error is expressed as the difference: 

𝑤𝑡  𝑄𝑡,𝑇   𝑄𝑜𝑏𝑠,𝑡 (7.3) 

Table 7.2 demonstrates the statistical characteristics of the three types of errors for the 

two alternatives turbines, by assigning a small variance to energy data, i.e. 1%. A common 

conclusion for all error configurations is that there exist obvious differences between the two 

turbine types. In particular, the estimated flows for the Pelton case exhibit errors that are 

highly correlated, both in time and space (cross-correlation with discharge), while in the case 

of Francis the errors exhibit significantly smaller dependencies, yet they are highly skewed. 

Regarding the differences among the three error types per se, we remark that the formula 

(7.3) has “better” statistical behavior, due to the relatively smaller lag-one autocorrelations 

and cross-correlations. In this respect, this formula will be next generally used as the overall 

expression for error modelling. 

Table 7.2: Statistical characteristics of different types of errors. 

 PELTON FRANCIS 

 Error 1 Error 2 Error 3 Error 1 Error 2 Error 3 

Mean 0.04 0.01 0.01 -0.11 -0.08 -0.09 

St. deviation 0.06 0.07 0.04 0.20 0.19 0.11 

Skewness 1.41 0.88 -1.06 1.21 -2.50 -1.42 

Autocorrelation 0.62 0.75 0.80 0.77 0.82 0.78 

Cross-correl. 0.78 0.82 0.88 0.31 0.96 0.88 

 

7.2.3 Uncertain efficiency curve 

As it commonly known, the data sets of hydropower plants may be subject to measurement 

errors regarding energy production data as well as inflows. The examples above are the so-

called observational errors and may due to imperfect measurement systems and human 

faults, as well. On the contrary, one of the most important factor, the efficiency of turbines, 
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at hydropower plants many times seems to have errors. As mentioned in previous chapters, 

the efficiency is not constant and depend on the turbine type and the flow. In addition, the 

initial efficiency curve, which be used to primary study of plant is, at majority, empirical and 

the actual efficiency is still indefinite. Also, this efficiency curve changes due to deterioration, 

damage and aging of the equipment over time. For instance, it is possible that not only the 

maximum efficiency will decrease with time but also the minimum operational flow will also 

increase, thus reducing the effective flow range of the turbine. As can be understood, the 

study of a hydropower plant may be totally different from its operation. 

In order to focus on the impacts of efficiency on the relationship energy production and 

stream flow it is necessary to create different efficiency curves for one turbine. The calibrated 

initial efficiency curve is given in analytical form, which described before. Firstly, it is necessary 

to consider a turbine with known efficiency curve and known inflows and extract the energy 

production through the forward formula. This energy production is essential information to 

move on the inverse problem and the investigation of the efficiency’s uncertainties. The 

generation of 100 synthetic efficiency curves around the known one allows to represent these 

uncertainties in stochastic terms. This generation is a result of changes in four parameters 𝑎, 

𝑏, 𝑛𝑚𝑖𝑛, 𝑛𝑚𝑎𝑥. The changes in parameters 𝑎 and 𝑏 are around 10% of the known value. Also, 

a realistic change of 𝑛𝑚𝑖𝑛 and 𝑛𝑚𝑎𝑥  is considered 0.1 around the known value. The extraction 

of stochastic flow series in this case becomes directly for the inverse formula. 

Table 7.3: Efficiency curve parameters for the two problem settings. 

 a b   𝒂𝒙      
PELTON 0.51 10.56 0.83 0.30 

FRANCIS 0.59 3.95 0.91 0.70 

 

7.3 Results of inverse problem under uncertainty 

7.3.1 Observational uncertainties (errors in energy) 

The statistical characteristics of simulated discharge errors provided below, after adding a 

normal error term to actual energy data (zero bias, standard deviation 1, 5 and 10% of energy 

standard deviation). 

Following this, the statistical characteristics of simulated discharge errors, after adding a 

gamma-distributed error to actual energy data (zero bias, standard deviation 1% of energy, 

skewness coefficients 0.3, 1, 5). 

Even if this formula seems to have better correlations than the others formula, it is 

necessary to use the AR(1) model to residuals because the autocorrelation is still big. The most 

important feature is that when the standard deviation is increasing the autocorrelation is 

decreasing. On the contrary, when the skewness is rising the autocorrelation fall. 
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The statistical characteristics above demonstrated at the timeseries of streamflow, which 

retrieved by the inverse problem. For instance, two line graphs are represented below and as 

can be seen the increase of standard deviation from 1% to 10% of observed energy standard 

deviation not only affect the retrieval discharge a lot, but also the confidence interval are 

extended. Specifically, when the maximum gap between upper and lower limit in first scenario 

is 0.2 m³/s, in second scenario with one size class up this gap is 0.46 m³/s. 

On the other hand, when skewness changes the flow from the inverse formula don’t be 

affected dramatically. This feature can be released from the timeseries below. 

Table 7.4: Statistical characteristics of error type 1 for alternative turbines by adding artificial 
error with standard deviation 

 σ = 1% σ = 5% σ = 10% 

 PELTON FRANCIS PELTON FRANCIS PELTON FRANCIS 

Mean 0.037 -0.109 0.044 -0.115 0.049 -0.109 

St. deviation 0.065 0.201 0.100 0.196 0.139 0.205 

Skewness 1.411 1.212 1.968 1.225 1.154 0.921 

Autocorrelation 0.619 0.768 0.243 0.736 0.125 0.672 

Cross-correl. 0.777 0.312 0.398 0.947 0.310 0.900 

 
Table 7.5: Statistical characteristics of error type 1 for alternative turbines by adding artificial 
error with skewness 

 γ = 0.3 γ = 1.0 γ = 5.0 

 PELTON FRANCIS PELTON FRANCIS PELTON FRANCIS 

Mean 0.037 -0.117 0.037 -0.116 0.036 -0.116 

St. deviation 0.064 0.179 0.064 0.180 0.060 0.179 

Skewness 1.442 0.674 1.174 0.683 0.573 0.680 

Autocorrelation 0.600 0.794 0.633 0.795 0.723 0.796 

Cross-correl. 0.773 0.968 0.780 0.968 0.862 0.968 

 

Table 7.6: Statistical characteristics of error type 1 for alternative turbines by multiplying 
artificial error with standard deviation 

 σ = 0.1 σ = 0.2 

 PELTON FRANCIS PELTON FRANCIS 

Mean 0.05 -0.06 0.06 -0.08 

St. deviation 0.19 0.13 0.36 0.15 

Skewness 0.84 0.93 0.21 0.75 

Autocorrelation 0.03 0.07 0.06 0.08 

Cross-correl. 0.23 0.51 0.11 0.22 
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Figure 7.4: Simulated flows and its uncertainty for additive error following Normal 
distribution with 𝜎  1%𝜎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 

 

Figure 7.5: Simulated flows and its uncertainty for additive error following Normal 
distribution with 𝜎  10%𝜎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 
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Figure 7.6: Simulated flows and its uncertainty for additive error following Gamma 
distribution with 𝛾  0.30. 

 

Figure 7.7: Simulated flows and its uncertainty for additive error following Gamma 
distribution with 𝛾  5.0. 
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Figure 7.8: Simulated flows and its uncertainty for multiplicative error following Normal 
distribution with 𝜎  0.1 & 𝜇  1.0. 

 

Figure 7.9: Simulated flows and its uncertainty for multiplicative error following Normal 
distribution with 𝜎  0.2 & 𝜇  1.0. 
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7.3.2 Parameter uncertainties (errors in efficiency) 

This subchapter discuss the impact of the possible changes in efficiency by using the 

analytical formula, which we proposed in Chapter 4. These changes are due to deterioration, 

damage and aging of the equipment over time. Furthermore the choice of a turbine in design 

maybe is not be the same in operation. Thus allows us to investigate not only the minimum 

and maximum efficiency 𝑛𝑚𝑖𝑛, 𝑛𝑚𝑎𝑥  but also the whole efficiency curve by changing the shape 

parameters 𝑎 and 𝑏. The synthetic curves are around the “true” one, which is extracted from 

the optimization of the Francis turbine. The optimization in turbine was a necessary step in 

order to pass from the empirical efficiency curve to analytical one. 

Table 7.3 Parameters of synthetic curves and the optimal one 

 Optimal 

efficiency 

curve 

Synthetic 

efficiency 

curve 1 

Synthetic 

efficiency 

curve 2 

Synthetic 

efficiency 

curve 3 

Synthetic 

efficiency 

curve 4 

Synthetic 

efficiency 

curve 5 

Synthetic 

efficiency 

curve 6 

a 0.593 0.738 0.750 0.714 0.677 0.787 0.700 

b 3.946 4.444 4.221 4.589 4.764 4.633 4.240 

  𝒂𝒙 0.568 0.623 0.598 0.583 0.573 0.578 0.568 

     0.907 0.957 0.932 0.857 0.907 0.912 0.793 

 

 

Figure 7.10: Synthetic efficiency curves (six out of 100) around the “true” one (red line). 
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Figure 7.11: Simulated flows and its uncertainty for errors in efficiency curves. 

 
From Figure 7.11 (simulated flow data for one year period) we see that the uncertainties 

in efficiency have an important impact in the energy-flow transformation. The most noticeable 
feature is that the extraction of low flows (0.5-1.0 m³/s) is not affected importantly from the 
parameter changes. On the contrary, the uncertainties around the efficiency curve have a 
significant impact on the retrieved streamflow over the value of 1.0 m³/s. 

7.3.3 Extrapolation of high and low flows 

For one of the problem settings, namely the extraction of flows from the Pelton case, 
considering an additive error 𝑁 0, 0.1𝜎𝑒 , we detected all events for which the estimated flow 
should exceed the nominal one, i.e. 5.0 m3/s (11 events), or be less than the minimum one, 
i.e. 0.5 m3/s (8 events). Characteristic examples have been already discussed in section 5.5, 
while the full cases are given in the Appendix. 



 

 

  

   

71 

8 Real-world case study: Glafkos power plant 

8.1 Study area and data 

8.1.1 Glafkos river basin 

In this case study we examine the real-world small hydropower plant of Glafkos, located in 

South-Western Greece. Glafkos is a small river in the city of Patras, flowing into the Gulf of 

Patras (Ionian Sea), south of the city centre. The study basin extends over the Northern 

Peloponnese Water Department (EL02), and drains an area of 7.4 km². Its relief is generally 

characterized as mountainous, in the upstream part, semi-mountainous in its outer perimeter 

and lowland in its coastal zone. Specifically, the catchment includes several tributaries, i.e.: 

o Malamamoutis 

o Romanos 

o Diakoniaris 

o Elexistra  

o Glafkos (main watercourse) 

o Filiouras and Xiropotamos 

o Neromanas 

 

 

Figure 8.1: Glafkos basin upstream of the diversion dam (Langousis and Kaleris, 2013). 
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8.1.2 Project details 

The hydroelectric plant of Glafkos was built in the period of 1922-1926 and it was the first 

project of this type in Greece. As shown in Figure 8.2, the system comprises a run-of-river 

plant, with a small diversion dam upstream (i.e., at the inlet). Initially, it was intended to fulfill 

both the water and power supply of the city of Patras, from the waters of the homonymous 

river. The first dam had a water gate and it was completely different than the current one. In 

1968, PPC bought the plant from the municipality of Patras and included it in the network of 

its hydroelectric power plants under the administration of Ladonas HPP (Wikipedia). Although 

Glafkos now produces very little energy in relation to the needs of Patras, it covers almost the 

entire water supply needs of the city for a large portion of time within each hydrological year, 

i.e. from mid-November to the end of April. As made for all projects of this type, it mainly 

exploits the baseflow of the river. In case of flood events, if the inflows exceed the conveyance 

capacity of the system, the surplus water is drained downstream by opening of the water 

gates, since the flood control capacity of the project is negligible. 

 

Figure 8.2: Layout of Glafkos hydropower system (Efstratiadis et al., 2020). 

Initially, the total installed power capacity was 2.25 MW (3 Francis turbines of 750 kW 

each). However, due to the small capacity of the Francis units, their old technology and the 

damages occurred so far, their performance gradually fell by 60% and they were eventually 

put out of operation. In 1997, two new turbines have been installed, i.e. a Francis-type (2.3 

MW) and a Pelton-type (1.4 MW), thus the station’s total power capacity rose to 3.7 MW. In 

mean annual basis, the hydropower plant produces 10.4 GWh, covering about 1/30 of the 
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electricity needs of the city of Patras. In term of capacity, the installed power of Glafkos is 3.7 

MW, while the city of Patras needs up to 80 MW. After passing the turbines, the flow is used 

for irrigation and water supply. 

The hydropower system is a typical run-of-river scheme. The small diversion dam, shown 

in Figure 8.3, receives a mean annual inflow of 39 hm³. The water intake is located at an 

altitude of 339 m and serves to create a small tank to drive water to a diversion tunnel. 

Upstream of the entrance of the tunnel there are two sand collectors, equipped with valves 

at their bed to drain the solids. To protect this dam, a cofferdam has been laid at 400 meters. 

For the conveyance of flood flows, there are two gateways, one automatic (electric) and one 

manual. 

 The length of the diversion tunnel is 1 695 m and its cross section is not constant, but 

ranges from 1.64 m² up to 1.95 m². At the end of the tunnel there is a tank from reinforced 

concrete, with an inner diameter of 9 m and a height of 9 m, serving as surge chamber. At its 

bottom there is a conical opening with a diameter of 1.50 m towards the penstock. This is used 

to protect the penstock and the turbines from excess pressure in case of water hammers, as 

well as to provide the additional amount of water required when starting the units. At its bed 

there is also a small drain pipe which is used to clean the water tower from rubble. 

As shown in Figure 8.4, the penstock is made of concrete and steel and it is placed in the 

surface, both for economic reasons and also for ensuring easy supervision and maintenance. 

The pipe conveys the water from the forebay to the power station and after passing it through 

the power generation units to the downstream river. Its length is 308 m, its diameter 0.90 m, 

the average slope is about 48% and its thickness ranges from 7 to 14 mm. 

 

Figure 8.3: View of the diversion dam (Εvaggelatos, 2016). 
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Figure 8.4: View of the penstock (Εvaggelatos, 2016). 

8.2 Problem setting 

Apart from the aforementioned technical characteristics, in order to solve the inverse 

problem, the following data are also necessary: 

• Observed energy production; 

• Observed flows at the inlet of the diversion tunnel; 

• Efficiency curves for each turbine. 
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Figure 8.5: Inflow time series diverted to the turbines (full data). 

 
Figure 8.6: Hourly energy production through the individual operation of the Pelton turbine 

for one-month period. 
 

In Glafkos we used inflow and energy production for a common period of three years, i.e. 

2015-2018 (J. Stefanakos, 2019, personal communication). One of the key challenges of this 

problem was the different temporal resolution of the two data types. In particular, the energy 

production data from each turbine was provided in hourly resolution (Figure 8.6), while the 
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inflow data in daily (Figure 8.5). The efficiency curves for both turbines, Pelton and Francis, 

were unknown, thus making this problem even more challenging. In the figures below are 

demonstrated the timeseries of Pelton’s energy production for one-month period. 

8.3 Turbine characteristics and efficiency curves 

As mentioned before, the hydropower plant includes a Pelton turbine, with installed power 

capacity 1.4 MW, and a Francis-type, with installed power 2.3 MW. The efficiency curves of 

both turbines were unknown. Hence, we initially tested several empirical curves that are given 

in the literature (Papantonis, 2008), before selecting the ones illustrated in Figure 8.7. All 

values are multiplied by 0.95, since the original curves only refer to turbine efficiency. 

In order to improve the model fitting, we next employed a calibration approach to 

determine the two curves in analytical terms, i.e. by means of the parameter efficiency 

formula. The results of this approach are presented in section 8.5.  

Table 8.1: Efficiency curve parameters for Francis and Pelton turbines. 

 a b   𝒂𝒙      
PELTON 0.51 10.56 0.83 0.30 

FRANCIS 0.59 3.95 0.91 0.70 

 

 
Figure 8.7: Empirical efficiency curves for the two turbines of the system, i.e. Pelton and 

Francis (for specific speed 𝑛𝑠  21 and 𝑛𝑠  100, respectively). 
 



 

 

  

   

77 

8.4 Computational procedure 

Although the available inflow data are from 2008 to 2018, we only took advantage of 

specific sub-periods, in order to investigate the flow-energy transformations under different 

modes. In particular: 

• A continuous period of 7 months, from April to November 2017, when only the 

Pelton turbine was in operation; 

• Non-continuous periods of individual operation of the Francis turbine; 

• 21 days of continuous operation of both turbines. 

The computational procedure is as follows: 

i. Retrieval of hourly flows from hourly energy data, through the inverse 

procedure; 

ii. Aggregation of hourly flows to the daily scale; 

iii. Extraction of error time series for different error types, by contrasting the 

aggregated daily flows to the actual ones; 

iv. Statistical analysis of errors, and selection of suitable error type on the basis of 

error characteristics; 

v. Determination of stochastic model (in our case, AR(1)) and of its parameters; 

vi. Generation of synthetic error realizations through the stochastic model; 

vii. Synthesis of 100 ensembles of stochastic daily flow data, by adding synthetic 

errors to simulated data; 

viii. Empirical estimation of target flow values for three characteristic quantiles (5, 

50 and 95%), representing the low and upper limits of confidence intervals and 

the median estimation of the retrieved flows; 

Apparently, since we compare real flow and energy data, after employing the inverse 

procedure we expect to detect errors that reflect all uncertainties that are embedded in the 

data and the rest of computational assumptions. Actually, in this system we detected multiple 

issues of uncertainty, as discussed below. 

The first origins from the different time scale of data (hourly for energy, daily for inflow). 

From a first point-of-view, this should only be a straightforward problem of data aggregation. 

In our study, as the beginning point to measure the flow is midnight but it’s possible due to 

change of work shift this time not to be constant. 

According to the general experience, we consider that the Pelton turbine is starting to 

operate at 10% of its nominal discharge. For a maximum power capacity 1.4 MW and a 

maximum efficiency 0.89, we get a maximum discharge at approximately 1.057 m³/s. As for 

the Francis, we assume that the turbine is starting to operate at 20% of its nominal discharge, 

which is approximately 1.995 m³/s (for power capacity 2.3 MW and maximum efficiency).  
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8.5 Results 

Initially, we tested the three types of errors, as explained in Chapter 5, and estimated their 

statistical characteristics. As made for the hypothetical problem, we finally kept the type I 

error; its summary statistics for the two turbines are given in Table 8.2. We remark that in the 

case of Pelton, the skewness is negative, while it known that the Gamma distribution describes 

processes with positive skewness. So, the random variable is expressed as 𝑍   𝑋 and thus 

the mean and the skewness become -0.001 and 1.782, respectively. Regarding Francis, we 

demonstrate two sub-cases, one with the empirical curve and one the analytical ones, which 

is derived via calibration. Details are provided in next section. 

Table 8.2: Statistical characteristics of error type 1 for Francis and Pelton turbines. 

 Mean Standard 
deviation 

Skewness Autocorrelation Cross-
correlation 

Pelton -0.001 0.041 -1.782 -0.184 0.165 

Francis, 
empirical 

-0.026 0.142 6.795 0.850 -0.015 

Francis, 
analytical 

-0.002 0.085 5.947 0.045 0.083 

 

  
Figure 8.8: Simulated flow from May to November 2017, for the continuous operation of 

Pelton turbine (deterministic approach). 
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Figure 8.9: Simulated flows and its uncertainty from May to November 2017, for the 

continuous operation of Pelton turbine. 
 

From Table 8.2 we remark that the derived errors for both turbines are unbiased and 

exhibit limited auto- and cross-correlations, which is desirable. On the other hand, in both 

cases the skewness is very high, particularly for the Francis turbine. This may due to few yet 

important errors in flow and/or energy observations. In general, the inverse modelling for the 

case of Francis results to larger errors that the Pelton, as indicated by the more than double 

value of the standard deviation. This systematically poorer performance is probably explained 

by the larger uncertainty of the efficiency curve of Francis over the Pelton. 

In Figures 8.8 and 8.9 we contrast the two approaches for extracting the turbine flows from 

observed energy, i.e. deterministic and stochastic, respectively, for the continuous operation 

of Pelton from May to November 2017. From the first approach, it seems that the flows 

extracted by the (deterministic) reverse engineering procedure fit very well to the observed 

ones, thus the model performance is excellent. However, by adding the stochastic error term, 

the actual model uncertainty, as quantified in terms of confidence limits, is much larger than 

expected. In particular, the upper limit of the confidence interval is much wider, resulted from 

the large positive skewness of the error. Nevertheless, the stochastic approach allows to 

quantify the uncertainty induced even from small errors of the observed data. Apparently, the 

same conclusion stands for the forward problem, i.e. if the streamflow has been measured 

with errors, the prediction of energy production will be uncertain as well. 

Regarding the Francis case, its period of continuous operation is quite small, namely 

approximately one month. By repeating the same procedures with Pelton, i.e. deterministic 

and stochastic, we extract the reproduced, the median and the upper and lower confidence 

limits, which are shown in Figure 8.10. The contrasting of the aforementioned time series with 

the observed data indicates a remarkable uncertainty. Specifically, the median estimation is 



 

 

  

   

80 

very close to the low (5%) confidence limit, while the actual data are very close and even 

exceed the upper (95%) limit.  

 
Figure 8.10: Simulated flows and its uncertainty by using the empirical efficiency 

curve for specific speed 𝑛𝑠  100. 
 

 
Figure 8.11: Simulated flows and its uncertainty by using the analytical efficiency formula. 

This abnormal behaviour reveals that the most essential problem at the study of this 

turbine is the uncertainty of its efficiency curve. As mentioned in section 4.4  the efficiency of 

this type of turbine varies significantly with discharge, thus the modelling procedure is 

expected to be sensitive against this input element. In order to better fit the simulated to the 

actual inflow data, and consequently reduce the uncertainty of the inverse modelling 



 

 

  

   

81 

procedure, we first extracted an optimized efficiency curve, by applying the analytical formula 

(5.26) on the basis of simultaneous flow and energy data, and next run the inverse problem 

to extract the inflows, for the given efficiency. The calibration was carried out by employing 

the evolutionary algorithm which is embedded in MATLAB. The optimized parameters are 

𝑛𝑚𝑖𝑛 = 0.70, 𝑛𝑚𝑎𝑥 = 0.95, a = 0.59 and b = 3.95. As expected, the new curve ensures better 

fitting, with the deterministic approach, and little more narrow confidence limits, with the 

stochastic one, as shown in Figure 8.11.  

8.6 Combined operation of Pelton and Francis turbines 

As discussed before, the period of mixed operation of the two turbines introduced further 

uncertainties and makes the modelling of this small hydropower plant even more challenging. 

In fact, the management policy for the combined operation of the two turbines was unknown. 

In addition, the common period of operation was very limited, namely only 20 days, thus 

making difficult to extract safe conclusions for the entire range of feasible flow values. In this 

respect, the beginning and end of mixing was beyond reach. However, the inverse problem 

was easy to set, since energy production data from each individual turbine were available. 

Under this premise, the deterministic inverse modelling procedure, described in section 5.3.1, 

fits also in the mixing of turbines, since the total inflow is just the addition of the two individual 

flow values that are extracted from the associated energy data, i.e.: 

𝑄𝑡𝑜𝑡𝑎𝑙  𝑄𝑓𝑟𝑎𝑛𝑐𝑖𝑠 + 𝑄𝑝𝑒𝑙𝑡𝑜𝑛  (8.1) 

 

 

Figure 8.12: Hourly energy production for 20 days of continuous operation of both turbines. 
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Figure 8.13: Simulated flows over 20 days of continuous operation for both turbines. 
 

 

Figure 8.14: Simulated flows and its uncertainty for the mixture of turbines. 
 

In Table 3 we demonstrate the results of our analysis, which are yet not representative 

since the available sample is too small, i.e. only 20 days, thus the estimation of the statistical 

characteristics of error may not be reliable enough. Nevertheless, for the completeness of the 

study we provided a stochastic model for the errors and used it to estimate the confidence 
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intervals of the retrieved streamflow. As shown in the table, both the auto- and the cross-

correlations are too large, which is evidently due to sample uncertainty. 

Table 8.3: Statistical characteristics of error type 1 for the mixing of turbines. 

Mean Standard 

deviation 

Skewness Autocorrelation Cross-

correlation 

0.078 0.179 0.279 0.920 -0.852 
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9 Conclusions and perspectives 

9.1 Synopsis and conclusions 

The aim of this research was to investigate the non-linear flow-energy transformations 

across small hydropower plants as well as their complexities and uncertainties.  This problem 

has three possible configurations, the forward (from flow to energy), the inverse (from energy 

to flow), and the calibration when both flow and energy data are available. 

We mainly emphasised on the reverse engineering aspect, i.e. the retrieval of streamflow 

from energy production data, here called the inverse problem of hydroelectricity. Initially, we 

developed a deterministic model, which is based on an iterative numerical scheme, that was 

next formulated in stochastic terms. This approach allows to express the overall uncertainties 

that are embedded in the aforementioned reverse transformation in typical statistical terms 

(e.g. marginal statistics and confidence intervals). Here we focused on two key uncertain 

issues, i.e. the observed output (energy production) and the efficiency curve of turbines. 

A well-known peculiarity of SHPPs is the fact that these systems only operate within a specific 

range of inflows. This challenging task was the opportunity to implement a semi-empirical 

methodology for extrapolating the part of hydrograph, which is above the nominal flow of 

turbines or below the minimum flow to produce energy. Our key principle is that the rising 

limb follows a linear increasing law while the falling one is described as a linear reservoir 

recession, thus following an exponentially decreasing formula.   

 Moreover, we discussed another interesting configuration, the extraction of unknown or 

uncertain technical characteristics of the system, through calibration. In particular, we 

analysed the efficiency curves, for which we provided a generic parametric expression that 

can fit to any empirical curve, to facilitate calibration. Our literature research, as well as, our 

tests on both hypothetical and real-world cases indicated that the efficiency is the most 

uncertain component of flow-energy transformations for the small hydropower plants. 

We first studied an hypothetical small hydroelectric plant for two types of turbines, i.e. 

Pelton and Francis. In order to investigate the effects of observational errors we added 

synthetic errors in energy production data. Furthermore, the uncertainty on efficiency curves 

of turbines was described through multiple curves around the “true” one. The confidence 

intervals of the extracted flows, considering the artificial errors and the alternative efficiency 

curves, point the importance of this research. 

 The spearhead of this research was the study of the real-world small hydroelectric station 

at Glafkos. This SHPP includes two turbines, i.e. Pelton and Francis. The mixing of turbines, the 

unknown efficiency curves, the different temporal resolution of flow and energy data, and the 

possible observational errors in both types of data render this case more challenging. Our 

analyses indicated that efficiency is the major source of uncertainty, particularly for the case 

of Francis machines, in which efficiency drops rapidly as discharge decreases. This observation 
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was the motivation to calibrate the efficiency curve and to  further investigate the impact of 

efficiency on flow-energy transformations. 

           

9.2 Future research perspectives 

From the experience gained so far, we have detected several issues for future research, 

regarding the modelling of small hydropower plants. Specifically: 

• Application of the proposed framework to a large number of small hydropower 

plants (particularly real-world ones), to test the methodology under different 

system configurations, flow regimes and error sources; 

• Modelling of additional uncertain factors, which affect the relationship 

between inflows-energy production, namely the parameters used in the 

estimation of hydraulic  losses such as pipe roughness; 

• Investigation of alternative error expressions and statistical/stochastic 

approaches for the generation of synthetic error data; 

• Adjusting  of the new analytical expression of efficiency curves to a wide 

range of commercial turbines of all types; 

• Generalisation of the calibration approach to include several unknown 

characteristics of the flow-energy transformation, such as the parameters of 

the analytical efficiency curves and other technical quantities. 

The proposed framework may be used in a multidimensional context that span over the 
three configurations of the flow-energy transformation problem. In particular:  

• The design of small hydropower plants under uncertainty, by expressing the 

forward problem in stochastic terms; 

• The management policy of turbines, by using the inverse engineering approach 

as a driver for optimizing their operation, specifically in the more complex case 

of turbine mixing;  

• The scheduling of energy production, where the prediction of energy can be 

better formalised as a flow prediction problem. In this formulation we can first 

implement the inverse approach in order to extract the recent flow sequence, 

next employ a short-term forecasting scheme to obtain future flow ensembles 

and finally run the forward model to transform them in energy terms. 

This last point triggers a wider perspective of the reverse engineering problem in 

hydroelectricity, which is the extrapolation of the current status of hydrometric information 

across Greece by obtaining past flow data in the existing SHPP sites (about 130). This may 

solve the major shortcomings caused by the lack or low quality of flow data, mainly in small 

and medium-scale catchments that generally lack of hydrometric infrastructure.  
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Appendix: Extrapolated inflow hydrographs for the 
hypothetical SHPP 

 
Figure A.1: Example of extrapolating high flow values, when the streamflow exceeds the 

upper discharge limit (turbine capacity) of 5.0 m3/s. 
 

.  
Figure A.2: Example of extrapolating high flow values, when the streamflow exceeds the 

upper discharge limit (turbine capacity) of 5.0 m3/s. 
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Figure A.3: Example of extrapolating high flow values, when the streamflow exceeds the 

upper discharge limit (turbine capacity) of 5.0 m3/s. 
 

 
Figure A.4: Example of extrapolating high flow values, when the streamflow exceeds the 

upper discharge limit (turbine capacity) of 5.0 m3/s. 
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Figure A.5: Example of extrapolating high flow values, when the streamflow exceeds the 

upper discharge limit (turbine capacity) of 5.0 m3/s. 
 

 
Figure A.6: Example of extrapolating high flow values, when the streamflow exceeds the 

upper discharge limit (turbine capacity) of 5.0 m3/s. 
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Figure A.7: Example of extrapolating high flow values, when the streamflow exceeds the 

upper discharge limit (turbine capacity) of 5.0 m3/s. 
 

 
Figure A.8: Example of extrapolating high flow values, when the streamflow exceeds the 

upper discharge limit (turbine capacity) of 5.0 m3/s. 
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Figure A.9: Example of extrapolating high flow values, when the streamflow exceeds the 

upper discharge limit (turbine capacity) of 5.0 m3/s. 
 

 
 Figure A.10: Example of extrapolating high flow values, when the streamflow exceeds the 

upper discharge limit (turbine capacity) of 5.0 m3/s. 
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 Figure A.11: Example of extrapolating high flow values, when the streamflow exceeds the 

upper discharge limit (turbine capacity) of 5.0 m3/s. 

 
Figure A.12: Example of extrapolating low flow values for missing days 5, 6 and 7, when the 

streamflow is below the lower operational discharge limit of 0.5 m3/s. 
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Figure A.13: Example of extrapolating low flow values for missing days 5, 6 and 7, when the 

streamflow is below the lower operational discharge limit of 0.5 m3/s. 

 
Figure A.14: Example of extrapolating low flow values for missing days 5, 6 and 7, when the 

streamflow is below the lower operational discharge limit of 0.5 m3/s. 
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Figure A.15: Example of extrapolating low flow values for missing days 5, 6 and 7, when the 

streamflow is below the lower operational discharge limit of 0.5 m3/s. 
 

 
Figure A.16: Example of extrapolating low flow values for missing days 5, 6 and 7, when the 

streamflow is below the lower operational discharge limit of 0.5 m3/s. 



 

 

  

   

97 

 
Figure A.17: Example of extrapolating low flow values for missing days 5, 6 and 7, when the 

streamflow is below the lower operational discharge limit of 0.5 m3/s. 
 

 
Figure A.18: Example of extrapolating low flow values for missing days 5, 6 and 7, when the 

streamflow is below the lower operational discharge limit of 0.5 m3/s. 
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Figure A.19: Example of extrapolating low flow values for missing days 5, 6 and 7, when the 

streamflow is below the lower operational discharge limit of 0.5 m3/s. 


