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Περίληψη

Η παρούσα διπλωματική εργασία πραγματεύεται την επίλυση προβλημάτων βελτιστοποίησης τετραγ-

ωνικού προγραμματισμού, που αποτελεί το πιο στοιχειώδες παράδειγμα μη γραμμικού προγραμμα-

τισμού. Οι σύγχρονοι αλγόριθμοι βελτιστοποίησης βασίζονται σε μεθόδους αποικοδόμησης και

χαλάρωσης. Εισάγωντας επίπεδα αποκοπής, τα οποία λειτουργούν σαν κατώτερα εφικτά όρια,

προσεγγίσουν εξωτερικά το αρχικό πρόβλημα. Η επιλογή των κατάλληλων επιπέδων αποκοπής

είναι γνωστό ως πρόβλημα διαχωρισμού. Στόχος της παρούσας εργασίας είναι η βελτίωση των

αλγόριθμων αναφοράς, αξιολογώντας, σε πραγματικό χρόνο, την συμπληρωματικότητα των επι-

λεγμένων επιπέδων αποκοπής, επιλύνωντας δηλαδή το πρόβλημα διαχωρισμού. Προκειμένου να

αναδειχθούν κοινές ιδιότητες των επιπέδων αποκοπής, γίνεται χρήση των εργαλείων της μηχανικής

μάθησης και πιο συγκεριμένα, τεχνικές ομαδοποίησης. Κάθε επίπεδο αποκοπής αποτελεί μια

ανισότητα και προκύπτει από έναν συνδιασμό των μεταβλητών του προβλήματος βελτιστοποίησης.

Τα διαφορετικά σημεία από τα οποία προκύπτουν επίπεδα αποκοπής αποτελούν τον πληθυσμό

των μεθόδων ομαδοποίησης. Οι τεχνικές που χρησιμοποιούνται είναι οι αλγόριθμοι k-means και

Agglomerative clustering, χρησιμοποιώντας την Ευκλείδια απόσταση για τον υπολογισμό της

απόστασης. Επιπλέον εισάγεται μια νέα απόσταση η ονομαζόμενη νόρμα της συγγένειας η οποία

χρησιμοποιείται τόσο αυτούσια όσο και σε συνδιασμό με τον αλγόριθμο k-means δημιουργώντας

έναν υβριδικό αλγόριθμο ομαδοποίησης. Τα υπολογιστικά πειράματα πραγματοποιήθηκαν για ένα

εύρος προβλημάτων, διφορετικές διαστάσεις του αρχικού προβλήματος (40-100 μεταβλητές) και
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διαφορετική πυκνότητας της μήτρας του τετραγονικού προγράμματος (25% -75%). Τα αποτελέσ-

ματα αναδεικνύουν πως η χρήση τεχνικών ομαδοποίησης επιφέρει σημαντικές βελτιώσεις σε σχέση

με τους αλγόριθμους αναφοράς.
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Abstract

Quadratic programming (QP) is a base case study of non linear optimization problems. State-

of-the-art(SoA) algorithms have proposed decomposition and relaxations to outer-approximate

the QP by creating extra inequality constraints known as cutting planes. The selection of the

cutting planes is known as the separation problem. The aim of the study has been to accelerate

the performance of the approach against the SoA by evaluating the complementarity of the

selection of cutting planes, subsequently exploring online improvements in the separation prob-

lem. An approach is proposed to commit cut selection with data analytics thus connecting the

method with emerging technologies in data models and machine learning. Each cutting plane

is an inequality and is structured by a combination of the variables of the original optimization

problem. The different points creating the cutting planes are the population of the clustering

algorithms. Clustering methods are deployed using k-means and Agglomerative clustering, as

well as clustering based on the tailor-made affinity norm and Hybrid algorithms combining

k-means and affinity norm. The results reveal significant improvements against SoA for a wide

range of problems that vary in size (40-100 dimensions) and sparsity (25-75% density).
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Chapter 1

Introduction

1.1 Mathematical Optimization

Mathematical optimization is the process of finding the input variables of a function, within an

allowed domain, in order to reach the minimum or maximum value of this function. Optimiza-

tion problems vary in the type of objective function and domains of the variables. The general

formulation for an optimization problem(P) is the following:

P :

min
x
f(x)

s.t. h(x) = 0

g(x) ≤ 0

x ∈ Rn

Finding the optimum can be secured at some occasions where the constraints are creating a

convex domain for the variables, which enables the continuous transition from one incumbent

solution to the next. Nevertheless, in a great number of applications the domain is not convex
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and the optimization becomes much more complex.

The optimization problems are categorized based the formulation of the objective function

and the domain resulted by the constraints. In this section we are presenting the basic cate-

gories of optimization problems and their basic characteristics. In the following section we are

introducing the key concept of convex analysis and providing the founding theorems. In order

address the optimization problem we are outlining the basic numerical and iterative optimiza-

tion methods. However, in cases where the detection of global optimum is desired, numerical

and iterative optimization methods are not always suitable. In section 1.4, we are justifying why

global optimization is a challenge and in the proceeding section a different perspective, data

driven, is proposed to exploit the data generated in global optimization algorithms. Finally we

are introducing the motivation of this research followed by the structure of the diploma thesis.

1.1.1 Convex programming

Concex programming studies optimization problems with convex(minimization) or concave

(maximization) the case objective function and the constraint domain is convex. Least squares,

linear programming, semidefinite programming and some cases of quadratic programming are

general convex optimization problems. Interior-point methods are commonly used to address

convex problems since there is no general analytical algorithm for the solution of convex opti-

mization problems. According to Boyd and Vandenberghe in[5] solving convex optimization is

not a mature technology for all cases of problems, e.g. nonlinear convex problems. The difficulty

lies in the recognition of a convex function or a nonconvex function that can be transformed

into convex.

• Least-squares problems[5] A least squares problem is an optimization problem with
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no constraints and an objective which is a sum of squares of terms of the form αTi x− bi:

min
x

f(x) = ‖Ax− b‖22 =
k∑
i=1

(αTi x− bi)2

where A ∈ Rk×n (with k ≥ n), αTi are the rows of A, and the vector x ∈ Rn is the opti-

mization variable. The solution of least-squares problem can be reduced to analytically

solving a set of linear equations.

(ATA)x = AT b

For least-squares problems there are good algorithms and software implementations for

solving the problem to high accuracy, with very high reliability [5]. Least-squares problems

are the formulation of regression analysis, optimal control and many parameter estimation

and data fitting methods such as clustering techniques. To assess if an optimization

problem is a least-squares problem, we only need to verify that the objective is a quadratic

function and test if the quadratic form is positive semidefinite.

• Linear programming (LP) is a type of convex programming and addresses problems

with linear objective function and linearly formulated constraints. A general linear pro-

gram has the form :

min
x

cTx+ d

s.t. Gx ≤ h

Ax = b

where, G ∈ Rm×n and A ∈ Rp×n

For LP there is not a characteristic analytical formula but there is a variety of meth-

ods such as Simplex method and interior point methods[5]. In many cases the original
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optimization problem needs to be reformulated to attain the final LP structure. LP is

commonly examined in operations research for a variety of problems such as planning,

routing, scheduling, assignment, and design.

• Semidefinite programming (SDP) is a subfield of convex optimization where the un-

derlying variables are semidefinite matrices. It is a generalization of linear and convex

quadratic programming. In contrast with LP where the variables of objective function

are real, SDP is formulated using real-valued vectors. The inequality constraints of LP

are replaced by semidefineteness constraints on matrix variables of SDP. A general SDP

problem can be formulated as :

min
x1,··· ,xn∈Rn

n∑
i=1, j=1

ci,j(x
i · xj)

s.t.
n∑

i=1, j=1

αi,j,k(x
i · xj) ≤ bk, ∀k ∈ 1, · · · ,m

where ci,j, αi,j,k, bk are real numbers.

The above equation can be reformulated as

min
X∈Sn

〈C,X〉Sn

s.t. 〈Ak, X〉Sn ≤ bk ∀k ∈ 1, · · · ,m

X � 0

where Sn is the space of all n× n real symmetric matrices, C is given by
ci,j+cj,i

2
, Ak is a

symmetric n× n matrix where Ai,j,k =
ai,j,k+aj,i,k

2
and X is positive semidefinite.

In general a symmetric n × n real matrix M is positive semidefinite if and only if the

scalar zTMz ≥ 0, ∀z ∈ Rn − {0}
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1.1.2 Nonlinear programming

(NLP) studies the general case in which the objective function or the constraints or both

composed of nonlinear elements. This may or may not be a convex program. Whether the

program is convex, or not, affects the difficulty of solving it. Geometrically, nonlinear programs

can significantly differ from LP. The optimal solution may occur:

• at an interior point of the feasible region

• on the boundary of the feasible region,which is not an extreme point, or

• at an extreme point of the feasible region

Simplex method is based on searching extreme points thus is not suitable for NLP problems.

Pivoting and other algebraic procedures are commonly used by NLP algorithms to replace

the original problem by an approximating linear one, these nonlinear algorithms renew the

approximations of each iteration based on the solution of the last one [6]. Depending on the

nature of NLP objective function and constraint there is an abundance of different optimization

algorithms and solvers.

1.1.3 Mixed integer linear programming

(MILP) studies linear programs in which some variables are constrained to take only integer

values. This is not convex and, in general, much more difficult than regular linear programming.

In many application of MILP the integer variables are binary (0-1 variables). The MILP
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formulation with 0-1 variables is stated as

min
x,y

cTx+ dTy

s.t. Ax+By ≤ b

x ≥ 0, x ∈ X ⊆ Rn

y ∈ {0, 1}q

where: x is a vector of n continuous variables

y is a vector of q 0-1 variables

c, d are correspondingly (n× 1), (q × 1) vectors of parameters

A,B are matrices of the appropriate dimension

b is a vector of p inequalities.

The MILP problem of the above formulation belongs to the class of NP-complete problems

[11]. The difficulty arises due to the combinatorial nature of the domain of y variables. For

every combination of 0-1 y allocation arises a different optimization problem that is to be

solved for optimality. Even if we would attempt to solve all the problems, this approach grows

exponentially in time with respect to its computational effort. The most common algorithms

to address MILP are [11]:

• Branch and bound methods, a binary tree is employed for the representation of the 0 — 1

combinations, the feasible region is partitioned into subdomains systematically, and valid

upper and lower bounds are generated at different levels of the binary tree.

• Cutting plane methods, the feasible region is not divided into subdomains but instead new

constraints, denoted as cuts, are generated and added which reduce the feasible region

until a 0 — 1 optimal solution is obtained.
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• Decomposition methods, the mathematical structure of the models is exploited via vari-

able partitioning, duality, and relaxation methods.

• Logic- based methods, disjunctive constraints or symbolic inference techniques are utilized

which can be expressed in terms of binary variables.

The case of Mixed integer Nonlinear programming (MINLP) is examined in detail in the

following chapter.

1.1.4 Quadratic programming

(QP) examines problems whose objective function has quadratic terms, while the feasible set

is specified with linear equalities and inequalities. Quadratic programming is the simplest case

of NLP. For specific forms of the quadratic term, this is a type of convex programming. As

with NLP there are cases of both convex and nonconvex QP problems. A typical convex QP is

formulated [5] as:

min
x

1

2
xTPx+ qTx+ r

s.t. Gx ≤ h

Ax = b

where P ∈ Sn+, G ∈ Rm×n

If apart from the objective function, the constrains are in quadratic (QCQP) the formulation

is:
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min
x

1

2
xTP0x+ qT0 x+ r0

s.t.
1

2
xTPix+ qTi x+ ri , i = 1, · · · ,m

Ax = b

1.1.5 Stochastic programming

Stochastic programming problems have constraints or parameters depending on random vari-

ables. In contrast to deterministic optimization, real world problems almost invariably include

parameters which are unknown at the time a decision should be made. When the parameters are

uncertain, but assumed to lie in some given set of possible values, one might seek a solution that

is feasible for all possible parameter choices and optimizes a given objective function[23]. The

two-stage stochastic programming approach is based on the restriction that decisions should be

based on data available at the time and should not depend on future observations. The general

formulation for two-staged problems is seen below[23].

min
x∈X

cTx+ E[Q(x, ξ)]

where Q(x, ξ) is the optimal value of the second-stage problem and E[Q(x, ξ)] denotes

the expected value of the second-stage decision problem. The second-stage problem can be

formulated as,

min
y

qTy

s.t. Tx+Wy ≤ h

Here x ∈ Rn is the first-stage decision vector, X is a polyhedral set, defined by a finite
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number of linear constraints, y ∈ Rm is the second-stage decision vector and ξ = (q, T,W, h)

contains the data of the second stage problem.

1.1.6 Robust optimization

Similarly to stochastic programming, robust optimization is an attempt to capture uncertainty

in the data underlying the optimization problem. Robust optimization aims to find solutions

that are valid under all possible realizations of the uncertainties defined by an uncertainty set.

1.2 Convex Analysis

In order to fathom optimization it is necessary to introduce fundamental concepts of convex

set and convex function as they are presented in [11]. Basic definitions will be covered and

properties of geometrical structures, convex set, convex hull and finally convex function.

Theorem 1.2.1 Let the vectors x1, x2 ∈ Rn. The line through x1 and x2 is defined as the set:

{x| x = (1− λ)x1 + λx2, λ ∈ R}

Theorem 1.2.2 Let the vectors x1, x2 ∈ Rn. The closed line segment through x1 and x2 is

defined as the set:

{x| x = (1− λ)x1 + λx2, 0 ≤ λ ≤ 1}

The open, closed-open and open-closed line segments can be defined similarly by chang-

ing the constraints for λ.
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Theorem 1.2.3 Let the vector c ∈ Rn, c 6= 0 and the scalar z ∈ R. The open half-space in

Rn is defined as the set:

{x|ctx < z, x ∈ Rn}

The closed half-space in Rn is defined as the set:

{x|ctx ≤ z, x ∈ Rn}

Theorem 1.2.4 The hyperplane in Rn is defined as the set :

{x|ctx = z, x ∈ Rn}

Theorem 1.2.5 The intersection of a finite number of closed half-spaces in Rn is defined as a

polytope. A bounded polytope is called a polyhedron.

Theorem 1.2.6 A set S ∈ Rn is said to be convex if the closed line segment joining any two

points x1 and x2 of the set S,that is, (1− λ)x1 + λx2, belongs to the set S for each 0 ≤ λ ≤ 1.

By Definition 1.2.6 convex sets are the following geometrical structures: line, open and

closed half-spaces, polytope and polyhedron, all points inside or on the circle. Figure 1.1 is an

illustration of convex and nonconvex sets.
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Figure 1.1: Convex and nonconvex sets [11]

Let S1 and S2 be convex sets in Rn. Then the properties of the convex sets are :

1. The intersection S1 ∩ S2 is a convex set

2. The sum S1 + S2 of two convex sets is a convex set

3. The product θS1 of the real number θ and the set S1 is a convex set

For every convex and nonconvex set there is a minimum convex set, named the convex

hull

Theorem 1.2.7 Let S be a set (convex or nonconvex) in Rn. The convex hull, H(S), of S

is defined as the intersection of all convex sets in Rn which contain S as a subset.

Having introduced the convex set we can now define convex functions.
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Theorem 1.2.8 Let S be a convex subset of Rn, and f(x) be a real valued function defined on

S. The function f(x) is said to be convex if for any x1, x2 ∈ S, and 0 ≤ λ ≤ 1, we have

f [(1− λ)x1 + λx2] ≤ (1− λ)f(x1) + λf(x2)

1.3 Review numerical and iterative methods

Finding the optimum solution can be achieved by a variety of methods. The formulation and

the complexity of the objective function and the constraints dictates which optimization method

should be examined. Selecting the appropriate optimization method is not always apparent,

the aforementioned categorization facilitates this process. The optimum can be one point, if we

are in search of a global optimum, or it can be more than one points, local optima. According

to how strict we are with the optimum selection different methods can be applied.

Numerical methods

The numerical methods are based on the use of necessary and sufficient conditions to define

the optimum solution. The numerical methods for optimization require the analytical first and

second order derivatives of the objective function, which is demanding in many cases. Based

on the Taylor series of the objective function f in a given point x̂ ∈ Rn,

f(x̂+ ∆x)− f(x̂) ∼= f ′(x̂) + f ′′(x̂)
∆x2

2!

the optimum of P in x̂ is met when x̂ is a critical point (f ′(x̂) = 0) and f ′′(x̂) ≤ 0 (strong

maximum) or f ′′(x̂) ≥ 0 (strong minimum). When x is higher dimensional analogous criteria

apply.
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In the case of constrained optimization problems the Lagrange function is deployed to refor-

mulate P such that the constraints are incorporated in the objective function. The calculated

optimum x̂ of the Lagrange function (L) guarantees optimality in P.

min
x,λ,µ

f(x) + λh(x) + µg(x)

µ ≥ 0 or µg(x) = 0

where λ and µ are the Lagrange multipliers.

In order to for the Lagrange function to guarantee optimality in P the following conditions,

known as the Karush-Kuhn-Tucker (KKT) necessary conditions[3], must apply:

∇f(x̂) + λ∇h(x̂) + µ∇g(x̂) = 0

µg(x̂) = 0

µ ≥ 0

Iterative methods

The iterative methods can be divided into direct and indirect methods. Direct methods can

examine both smooth and non-smooth functions. Powell method is considered a direct. In

Powell method instead of examining all the derivatives to move from one solution point to

the other, the principal components of the domain are driving the optimization algorithm. If

the function is non-smooth or when the derivatives are unreliable or difficult to compute the

appropriate direct methods are the ones who systematically reduce the feasible area by rejecting

domains that don’t contain the optimum, and polytope methods, such as Simplex method for
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LP, which create a polytope and renew the vertex towards the optimum solution. Successive

approximation, Newton’s method, and other methods for solving nonlinear equations, when

applied to an optimization problem, iterate over the equations derived as necessary conditions

for an optimal solution. A major disadvantage of this approach is that these iterative techniques

may converge only if the initial approximation is sufficiently close to the solution. With these

methods only local convergence is guaranteed[18].

The idea behind indirect methods is that, instead of following random or arbitrary directions

in the domain space, the direction allowing the greatest improvement of the objective function

should be chosen. In this way global convergence, convergence from an arbitrary starting point,

often can be insured. We can follow the framework presented in [18], for minimizing a functional

f at an initial point x1, the iterations are guided according to an equation of the form:

xn+1 = xn + αnpn

where αn is a scalar and pn is a (direction) vector. Based on the indirect method, the

selection of pn varies, yet once it is chosen the scalar αn is selected to minimize f(xn + apn),

regarded as a function of the scalar α. Usually, things are arranged so that f(xn+apn) < f(xn)

for small positive α. The scalar αn is often taken as the smallest positive root of the equation

d

dα
f(xn + apn) = 0

Newton’s method can be modified for optimization problems to become a rapidly converging

descent method, as presented in the following equation:
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xn+1 = xn − αn[f ′′(xn)]−1 f ′(xn)

The most widely used descent procedure for minimizing a functional f is the steepest descent

method. Let ‖ ·‖ be any norm on Rn. We define, according to [5], a normalized steepest descent

direction (with respect to the norm ‖ · ‖) as,

∆xnsd = argmin∇f(x)Tu|‖u‖ = 1

where u is the directional derivative of f resulting from the first order Taylor approximation:

f(x+ u) ≈ f̂(x+ u) = f(x) +∇f(x)Tu

1.4 The challenge of Global Optimization

Global optimization is the task of finding the absolutely best set of admissible conditions to

achieve an objective under given constraints, assuming that both are formulated in mathemat-

ical terms. It is much more difficult than convex programming or finding local minimizers of

nonlinear programs, since the gap between the necessary (Karush-KuhnTucker) conditions for

optimality and known sufficient conditions for global optimality is tremendous [20]. Despite

the fact that global optimization is an established research area having many tools/ algorithms

for solving optimization problems, not all problems can be addressed to optimality. The ef-

fectiveness of these algorithms varies with the particular form of the objective and constraint

functions, the number of variables and constraints, and special structure of the problem, such as

sparsity (the objective function depends on a small number of variables). Even if the objective
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function and constraints are smooth functions, e.g. polynomials, the optimization problem can

be still difficult to solve not guarantying an optimum and requiring long computational time.

In some applications of a field of optimization, called embedded optimization, the optimiza-

tion solution is used to automatically make real-time choices, and even carry out the associated

actions, with no (or little) human intervention or oversight [5]. For that reason the optimization

algorithms need to provide reliable solutions and solve the problem in a predictable amount of

time.

Famous optimization problems such as the traveling salesman problem, the knapsack prob-

lem, scheduling problems, protein folding and chemical equilibrium problems are global opti-

mization problems. Many optimization problems such as nonconvex quadratic programming

are NP-hard and solving such problems at large scale to global optimality is challenging [2]

1.5 Advanced analytics: a new perspective on global op-

timization

State-of-the-art solvers of global optimization rely on iterative algorithms. At each iteration new

insight is gained about the objective function and the feasible domain driving the algorithm

to convergence towards the optimum, however this insight has not been fully exploited by

cutting edge techniques. The emerging technologies of machine learning and data analytics are

being deployed in an abundance of applications and research areas to accelerate and improve

common practices. By embedding data analytics techniques in the present global optimization

algorithms underlying information of the problem can be revealed. Incorporating online the

information from data analytics to the optimization algorithm can be a great impetus especially
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for the problems which state-of-the-art solvers have difficulties to address.

1.6 Motivation

In this study we examine the potential of embedding data analytic’s methods in state-of-the-

art optimization solvers. Recent advancements in the field of quadratic programming with

outer-approximation using cutting planes [2], have revealed a new separation problem. By

decomposing the original problem and creating a multitude of available low-dimensional cuts

there is a need to redefine the cut selection approaches. The current cutting plane selection

measures evaluate the cuts based on their contribution with original optimization problem. The

selected low-dimensional cuts are proved to be competitive in comparison to the full density

cuts especially in the cases of low dimensional QP problems. However, there is no consideration

for the complementarity of the selected cuts.

The research procedure is directed by two objectives, define what is the complementarity of

the cutting planes and how it can be measured, and incorporate the results from complemen-

tarity analysis in the cut selection algorithms to avoid using overlapping cutting planes.

The desirata of this research is to examine the correlation of the cutting planes selected

by state-of-the-art algorithms for QP problems and use clustering methods to propose extra

selection criteria in the separation problem. Of-the-self clustering methods are to be deployed

as well as tailor-made methods driven by the insight of the data set. Both approaches aim to

improve the reference algorithm in terms of convergence and final solution. There are many

different categories of QP problems, in this research we will examine nonconvex quadratic

problems which are box and linearly constrained (BoxQP).
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1.7 Structure

• Chapter 2 covers a background on global optimization decomposition algorithms ad-

dressing Mixed Integer Non Linear Problems(MINLP) and state-of-the-art data analytics

methods . The aim of this chapter is to explain in detail necessary concepts that will be

used in the following chapters

• Chapter 3 is presents the family of optimization problems that are going to be exam-

ined, quadratic programming and box constraint, as well as the cutting edge algorithms

proposed to address them. A numerical example is available, to bring forward the key el-

ements of state-of-the-art algorithms. Finally results from the reference study of Baltean-

Lugojan, Misener et. al. [2] are presented and discussed.

• Chapter 4 explores the motivation and the proposed methodology using advanced cluster-

ing approaches as well as the motivation of the computational experiments. The results

and analysis of the computational experiments for k-means and Agglomerative clustering

are presented here as well.

• In chapter 5, the affinity norm is introduced and mathematically formulated along with

the hybrid approach combining affinity norm and k-means. The results of the corre-

sponding computational experiments of affinity and hybrid algorithms are available in

this chapter.

• Chapter 6 summarizes the concluding remarks and future research
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Chapter 2

Background and state-of-the-art

This chapter presents the basic concepts of decomposition algorithms, used to address MINLP

problems, followed by a review of the most common data analytics algorithms. This chapter

provides the background for the present research, the algorithms to be deployed are examined

in detail in the following chapters.

2.1 Global optimization- Decomposition algorithms

Addressing QP is very often achieved by the use of decomposition algorithms suitable for

MINLP problems. Despite the fact that BoxQP have no integer variables, the same approaches

as solving MINLP are being deployed, in this case for only continuous variables, to decompose

and approximate the original problem. The nonconvexity of the studied BoxQP requires the

relaxation of the the feasible domain into the corresponding convex hull. In each iteration of

the algorithm the relaxation is tightened by adding new constraints.
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A classic MINLP problem could be expressed as follows,

min
x,y

f(x, y)

s.t. h(x, y) = 0

g(x, y) ≤ 0

x ∈ X ⊆ Rn

y ∈ Y {0, 1}p

(2.1)

Solving MINLP shares with MILP the feature that fixing all integer variables leads to a

tractabe problem, in this case a convex nonlinear program[20]. The most common techniques

for solving MINLP problems include:

2.1.1 Generalized Benders Decomposition

In the pioneering work of Geoffrion (1972)[15] on the Generalized Benders Decomposition GBD,

Bender’s approach is generalized to not only address linear problems. Two sequences of updated

upper (nonincreasing) and lower (nondecreasing) bounds are created that converge within ε in

a finite number of iterations. The upper bounds correspond to solving sub problems in the

continuous variables by fixing the discrete variables, while the lower bounds are based on duality

theory. The solution of the primal problem provides information about the upper bound and

the Lagrange multipliers associated with the equality and inequality constraints. The master

problem is derived via nonlinear duality theory, makes use of the Lagrange multipliers obtained

in the primal problem, and its solution provides information about the lower bound, as well as

the next set of fixed discrete variables to be used subsequently in the primal problem. As the

iterations proceed, it is shown that the sequence of updated upper bounds is nonincreasing, the

sequence of lower bounds is nondecreasing, and that the sequences converge in a finite number
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of iterations. Originally Geoffrion applied GBD in a maximization problem, Floudas (1995)

[11] represents GBD in a minimization problem.

At each iteration k of GBD the binary variables y are fixed to yk resulting in the NLP

primal problem P (yk).

min
x
f(x, yk)

s.t. h(x, yk) = 0

g(x, yk) ≤ 0

x ∈ X ⊆ Rn

P(yk)

There are two different scenarios for the primal problem, the primal to be feasible (1), and

the primal to be infeasible.

1. Feasible primal

If the case of feasible primal problem, the solution provides information on xk, f(xk, yk),

which is the upper bound, and the optimal Lagrange multiplier vectors λk, µk. Given this

information we can formulate the Lagrange function as

L(x, y, λk, µk) = f(x, y) + λk
T

h(x, y) + µk
T

g(x, y)

2. Infeasible primal

If the primal is detected by the NLP solver as infeasible, we need to minimize an l1 or l

sum of constraint violations. An l1 minimization problem can be

min
x∈X

p∑
i=1

αi

s.t. h(x, yk) = 0

gi(x, y
k) ≤ ai, i = 1, 2, · · · , p

ai ≥ 0, i = 1
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If
∑p

i=1 αi = 0 then a feasible point has been determined.

Using the Lagrange function and nonlinear duality theory, the master problem M is formu-

lated as

min
y∈Y,µβ

µβ

s.t. µβ ≥ inf
x∈X
L(x, y, λ, µ) ∀λ, µ ≥ 0

0 ≥ inf
x∈X
L̄(x, y, λ̄, µ̄) ∀(λ̄, µ̄) ∈ Λ

(M)

where,

µβ is a scalar

L(x, y, λ, µ) = f(x, y) + λTh(x, y) + µTg(x, y)

L̄(x, y, λ̄, µ̄) = λ̄Th(x, y) + µ̄Tg(x, y)

Λ = {λ̄ ∈ Rm, µ̄ ∈ Rp|µ̄ ≥ 0,

p∑
i=1

µ̄ = 1}

2.1.2 Branch and Bound

The branch and bound BB was first proposed by A. H. Land and A. G. Doig in 1960 for

discrete linear programming approaches, but cab be extended for MINLP as well. The general

BB method is based on the key ideas of separation,relaxation, and fathoming which are outlined

in [11].

Let an MINLP problem of the form 2.1 be denoted as (P ) and let its set of feasible solutions

denoted as FS(P ). A set of sub-problems (P1), (P2), · · · , (Pn) is defined as a separation of

(P ) if the following conditions hold:

• A feasible solution of any of the sub-problems (P1), (P2), · · · , (Pn) is a feasible solution of

(P ), and

• Every feasible solution of (P ) is a feasible solution of exactly one of the sub-problems.
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An optimization problem, denoted as (RP ), is defined as a relaxation of the problem (P )

if the set of feasible solutions of (P ) is a subset of the feasible solutions of (RP ),

FS(P ) ⊆ FS(RP )

An important issue in BB is how to generate the relaxation of (P ). One way of relaxation

is by simply omitting one or several constraints of problem (P). Another way is by setting

one or more positive coefficients of binary variables of the objective function, which are still

free, equal to zero. Another alternative of generating a valid relaxation is by replacing the

integrality conditions on the y variables by 0 ≤ y ≤ 1. This type of relaxation results in a

linear programming problem, and it is denoted as linear programming relaxation. It is the most

frequently used relaxation.

Let (CS) be a candidate problem for solving (P ). We would like to determine whether the

feasible region of (CS), (F (CS)) contains the optimal solution of (P ) and find it if it does. A

candidate sub-problem (CS) will be considered that has been fathomed if one of the following

two conditions take place:

1. It can be ascertained that the feasible solution F (CS) cannot contain a better solution

than the best solution found so far (i.e., the incumbent);or

2. An optimal solution of (CS) is found

The algorithm of BB, see Figure 2.1 starts by solving the continuous relaxation of the

MINLP and subsequently perform an implicit enumeration where a subset of the 0-1 variables

is fixed at each node. The lower bound corresponds to the NLP solution at each node and it is

used to expand on the node with the lowest lower bound (i.e., breadth first enumeration), or it
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is used to eliminate nodes if the lower bound exceeds the current upper bound (i.e., depth first

enumeration). If the continuous relaxation NLP of the MINLP has 0-1 solution for the binary

variables, then the BB algorithm will terminate at that node. With a similar argument, if a

tight NLP relaxation results in the first node of the tree, then the number of nodes that would

need to be eliminated can be low. However, loose NLP relaxations may result in having a large

number of NLP sub problems to be solved which do not have the attractive update features

that LP problems exhibit.
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Figure 2.1: The flow chart for Branch and Bound algorithm [14]

2.1.3 Outer Approximation

Outer approximation(OA) was introduced by Duran and Grossmann (1986)[10] for the following

class of MINLP problems:
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min
x,y

cTy + f(x)

s.t. g(x) +By ≤ 0

x ∈ X ⊆ Rn

y ∈⊆ Rm
+

(2.2)

where the nonlinear functions f : Rn → R and those in the vector function g : Rn →

Rp are assumed to be continuously differentiable and convex on the n-dimensional compact

polyhedral convex set X = {x| x ∈ Rn, A1x ≤ α1}; U = {y| y ∈ Y, integer A2y ≤ α2} is

a finite discrete set, e.g. the non-negative integer points of some convex polytope, and for

most application Y corresponds to the unit hypercube Y = {0, 1}m. B,A1, A2,andc, a1, a2 are

respectively matrices and vectors of conformable dimensions; the vectors are column vectors

unless specified otherwise; finally, some of the rows in B may be the zero row vector, which

then defines nonlinear constraints in only the continuous variables.

The aforementioned Generalized Benders Decomposition and Branch and Bound can both

address MINLP problems of the form 2.2. However Duran and Grossman[17] introduced OA

in order to take advantage of the linearity of the discrete variables and the convexity of the

continuous valued functions.

Based on principles of decomposition, outer-approximation and relaxation, OA algorithm

effectively exploits the structure of the original problems. The new problem consists of solv-

ing an alternating finite sequence of nonlinear programming sub-problems and relaxed versions

of a mixed-integer linear master program. The algorithm can also be viewed as a cutting

plane method for solving the general convex programming problem where some of the variables

are discrete and appear as in problem 2.2. OA shares the same tools of projection, outer-

approximation and and relaxation as GBD. Their main difference lies in the the type of outer-

35



approximation to define the corresponding Master problem. In the outer-approximation algo-

rithm the optimal primal information of the sub-problems is used to define a mixed-integer

linear Master problem, in the generalized Benders decomposition method the optimal dual in-

formation is used, such that the Master problem corresponds to an initially poorly constrained

pseudo-pure integer linear problem [17].

Primal problem

The Primal problem is created by fixing the y variables in 2.2 to a 0-1 combination as yk, which

corresponds to :

min
x

cTyk + f(x)

s.t. g(x) +Byk ≤ 0

x ∈ X

(2.3)

Depending on the allocations of yk the Primal can be either (1) feasible or (2) infeasible.

1. Feasible Primal

If the primal is feasible at iteration k then its solution on the optimal xk, f(xk) provides

the upper bound UBD = cTyk + f(xk). Due to convexity of f(x), g(x) we can linearize

them around xk such that:

f(x) ≥ f(xk) +∇f(xk)(x− xk),∀xk ∈ X,

g(x) ≥ g(xk) +∇g(xk)(x− xk),∀xk ∈ X,
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2. Infeasible Primal

If the primal is infeasible we need do reformulate the constraint set in order to get a

feasible point. Similarly to GBD, the l1-minimization will result in:

min
x∈X

p∑
j=1

αj

s.t. gj(x) +Byk ≤ αj, j = 1, 2, · · · , p

αj ≥ 0

Its solution will provide the corresponding xt point based on which the constraints can be

linearized:

g(x) ≥ g(xt) +∇g(xt)(x− xt),∀xt

.

Mater problem The key ideas for the derivation of the Master problem in OA are :

• Projection of 2.2 onto the y-space,

• Outer- approximation of the objective function and the feasible region

The final formulation of the Master problem is :
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min
x,y,µOA

cTy + µOA

s.t. µOA ≥ f(xk) +∇f(xk)(x− xk), ∀k ∈ F,

0 ≥ g(xk) +∇g(xk)(x− xk) +By, ∀k ∈ F,

x ∈ X

y ∈ Y

where F = {k : xkis a feasible solution to the Primal 2.3

The Outer Approximation OA can also address problems with nonlinear equalities by im-

plementing equality relaxations (OA/ER).The basic idea in OA/ER is to relax the nonlinear

equality constraints into inequalities and subsequently apply the OA algorithm. In this case

OA/ER sequences of upper and lower bounds are being created as in GBD, but it has the

distinct feature of using primal information, that is the solution of the upper bound problems,

so as to linearize the objective and constraints around that point. The lower bounds in OA are

based upon the accumulation of the linearized objective function and constraints, around the

generated primal solution points[11].

Figure 2.2 graphically illustrates the outer-approximation of a nonconvex objective function,

OA dictates that f should be a convex function and not the objective function overall, and the

corresponding domain.
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Figure 2.2: Illustration of outer-approximation algorithm[17]

Master problem is a mathematical model repeated over iterations creating a population of

underestimators. The created underestimators, following the appropriate formulation can be

used as cutting planes.

2.1.4 Cutting plane methods

Cutting plane methods are used for solving MINLP problems. They are based on the the

continuous relaxation of the integer variables of the original problem. If the solution of re-

laxed problem doesn’t satisfy an integer solution for the relaxed integer variables, then a lin-

ear inequality/cut is added to the constraints representing the feasibility violation. Cutting

plane methods do not partition the feasible region into subdivisions, as in branch-and-bound

approaches, but they instead works with a single problem, which it refined by adding new con-

straints. The new constraints successively reduce the feasible region until an integer optimal

solution is found. Initially, the branch-and-bound procedures outperformed the cutting-plane

algorithm[6]. However, the development of polyhedral theory and the consequent introduc-
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tion of strong, problem specific cutting planes led to a resurgence of cutting plane methods

in the 1980’s, and cutting plane methods are now the method of choice for a wide variety of

problems[19].

Finding the appropriate inequality constitutes the well known separation problem of the

cutting plane selection methods. The difficulty of the separation problem varies immensely

with the cutting plane being sought [4]. Common cutting planes are Chvatal-Gomory cutting

planes and strong cutting planes from polyhedral theory [19].

2.1.5 Branch and Cut

The branch and cut algorithms are consisting of a combination of cutting plane and branch

and bound algorithms. Branch and Cut(BC) methods work by solving a sequence of linear pro-

gramming relaxations of the integer programming problem. Cutting plane methods improve

the relaxation of the problem to more closely approximate the integer programming problem,

and branch-and-bound algorithms proceed by a sophisticated divide and conquer approach to

solve problems[19]. BC can be used to address MINLP problems as well relaxed in the appro-

priate MILP formulation.

The computational experiments of this study are carried using the solver CPLEX, which is

based on the branch and cut algorithm.
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2.2 Cutting planes as a population- Advance analytics

To address the seperation problem, a data driven approach can be deployed in order to build ef-

ficiency and acceleration in the process of selecting underestimators/cutting planes. Depending

on the formulation of the relaxation and the number of variables the number of underestimators

can vary significantly. Even though we could use all of the available underestimators, many of

them would provide lower bounds in areas of the domain of the objective function away from

the optimum. The population of available underestimators can be examined via a suitable data

analytics method to detect the most informative-with respect to the optimum- cuts.

Data Analytics are mathematical techniques using datasets to reveal underlying informa-

tion.Uncovering patterns provides an insight in the raw dataset. Depending on the nature of

the dataset as well as the type of information expected to be extracted, data analytics can be

separated in the following techniques.

• Classification

Classification belongs to the Supervised and Semi Supervised techniques since it de-

mands labeled training data consisting of a set of training examples. In classification

the training data are labeled to belong in one of the predefined categories. Given a new

data point/object, a trained classifier indentifies in which category the object belongs to.

Common classification techniques are Logistic regression, Naive Bayes, Support Vector

Machines(SVM), Stochastic Gradient Descent and Neural Networks. The applications of

classification include spam detection and image recognition.

• Clustering

Clustering techniques perform a similar task as classification but with a great difference.

Clustering is an Unsupervised or Semi Supervised technique and no training data set is
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used. The aim of clustering is to automatically group similar (in some sense) data points

into sets/clusters. Applications span over pattern recognition, image analysis, grouping

experimental results and many more. The most common clustering techniques are k-

means, Hierarchical clustering(Agglomerative and Divisive). Other clustering algorithms

are Density-based spatial clustering of applications with noise (DBSCAN) and Ordering

points to identify the clustering structure (OPTICS).

In the following chapters we will implement k-means and Agglomerative clustering algo-

rithms. We will present an outline of these two algorithms as presented by Bramer in [7].

k-means is an exclusive clustering algorithm. Each object is assigned to precisely one

of a set of clusters. (There are other methods that allow objects to be in more than

one cluster.) For this method of clustering we start by deciding how many clusters

we would like to form from our data. We can measure the quality of a set of clusters

using the value of an objective function which we will take to be the sum of the squares

of the distances of each point from the centroid of the cluster to which it is assigned.

We would like the value of this function to be as small as possible. We initialize the

centroids from points of the data set or random points in the variable space. The centroid

initialization point is of crucial importance, since it yield to a local minimum of the

objective function. Advanced k-means algorithm software include initialization algorithms

to avoid local minima. Having selected the k centroids, each point of the data set is

assigned to a centroid. When all the objects have been assigned we will have k clusters

based on the original k centroids but the ‘centroids’ will no longer be the true centroids

of the clusters. Next we recalculate the centroids of the clusters, and then repeat the

previous steps, assigning each object to the cluster with the nearest centroid etc.
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For a 2-D data set in Figure 2.3 and 2.4 we can observe the assignment of the points in

each cluster and the reallocation of the centroids.

Figure 2.3: Initial cluster of k-means algorithm[7]

Figure 2.4: Revised clusters of k-means algorithm[7]
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Agglomerative clustering

Agglomerative clustering is based on the idea of a reverse dendrogram, each data point is a

cluster, clusters are being merged based on the predifined distance metric ,e.g. Euclidean

distance. Figure 2.6 represents an example of the dendrogram with eleven objects A, B,

C, . . . , K located as shown in Figure 2.5 and we merge clusters on the basis of Euclidean

distance.

Figure 2.5: Original data[7]
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Figure 2.6: A possible dednrogram based on Agglomerative clustering[7]

• Regression

Regression is a Supervised technique aiming to predict a continuous-valued attribute

associated with an object. Regression models are predictive models and can be used in

an abundance of applications such as drug response and stock prices. Regression models

include Logistic regression, Stochastic gradient descent, Naive Bayes, Support vector

machines(SVM) and Neural Networks.

• Dimensionality reduction

Dimensionality reduction techniques are used to detect the principal variables of a variable

set. Dimensionality reduction techniques are useful in problems such as visualization. The
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most common techniques are Principal components analysis (PCA), Non-negative matrix

factorization (NMF) and Linear discriminant analysis (LDA).
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Chapter 3

Pilot application: Box quadratic

problems

The research of this study attempts to improve SoA algorithms for solving BoxQP. In the

following chapter SoA algorithms are being presented as well as an numerical example of how

they are being implemented. The test set of BoxQP studied in [2], will be the test set of this

research as well, is composed of 99 BoxQP instances.

The 99 instances come from the following sources: (i) 54 instances with sizes 20 ≤ N ≤ 60

generated by Vandenbussche and Nemhauser (2005)[25]; (ii) 36 instances with sizes 70 ≤ N ≤

100 generated by Burer and Vandenbussche (2009)[9]; and (iii) 9 instances with N = 125

generated by Burer (2010)[8].
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3.1 Solving BoxQP via RLT and SDP relaxations

The optimization problem is considered a nonconvex quadratic problem that is box and linearly

constrained, i.e.

zqp = min
x
{xTQx+ cTx | Ax ≤ b, x ∈ [0, 1]N}

with an N-variable vector x, A ∈ Rp×N and Q ∈ RN×N assumed to be an indefinite matrix. For

the problem to be solved a series of reformulations and relaxations are taking place as proposed

in [24]. Each quadratic term xixj is replaced by a new variable Xij. The lifted variables Xij∀i, j

form the matrixX = xxT and let Q • X = Tr(QTX) =
∑
i,j

QijXij, representing the Frobenius

inner product (applied to pairs of either matrices or vectors with the same dimensions). Then

the zqp is lower-bounded by,

zqp(B) := min
x,X
{Q •X + cTx | Ax ≤ b, x ∈ [0, 1]Nand (x,X) ∈ B},

parametric on any convex set B that adds valid constraints to the basic lifted formulation of

the quadratic problem.

Let G(V,E) denote the sparsity pattern graph introduced by matrix Q (linking lifted X

variables) where set V and edge E are defined as

V = {1, 2, ..., N}, E = {{i, j} ∈ V × V | i > j,Qij 6= 0}

The relaxation of nonconvex X = xxT to X ≥ xxT , or equivalently

1 xT

x X

 ≥ 0 results

in the S semidefinate relaxation (SDP) of the quadratic problem with a positive semidefinite

(PSD) restriction [24, 22].

S :=

(x,X)

∣∣∣∣∣∣∣∣
1 xT

x X

 ≥ 0, Xii ≤ xi ∀i ∈ V

 .
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The semidefinate relaxation S is augmented by the reformulation-linearization technique

(RLT) or the McCormick boundsM [1]. By taking into account only the four original bounds

xi − li ≥ 0, xi − ui ≤ 0, xj − lj ≥ 0, xj − uj ≤ 0, we get the MacCormick M inequalities

M :=


(x,X)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∀i, j ∈ V and {i, j} ∈ E :

Xij ≥ lixj + ljxi − llj = 0,

Xij ≥ uixj + ujxi − uiuj = xi + xj − 1,

Xij ≤ lixj + ujxi − liuj = xi,

Xij ≤ uixj + ljxi − uilj = xj.



In the initial round of optimization ,the positive semidefinite constraint is omitted. Let

the solution of the initial round be X∗, x∗; to evaluate if the positive semidefinite constraint

is guaranteed, eigendecomposition is performed on

 1 x∗T

x∗ X∗

,with t the negative eigenvalues

of the matrix. If t = O then PSD is met, if t ≥ 1 then PSD is violated. For every t the

corresponding eigenvector vk is used to generate the violated cutting planes vTk

1 xT

x X

 vk ≥
0, ∀k ∈ 1, .., t which are used as PSD constraints in the following round. We introduce the

EigenCut(ρ),

vTk

1 xT

x X

 vk ≥ 0, ∀k ∈ 1, .., t EigCut(ρ)

Qualizza et. al. (2012)[22], observed that the generated cuts are few in number, one cut

per negative eigenvalue, and also very dense, i.e. almost all entries in vk are nonzero, causing

the reoptimization of the linear relaxation to slow down. For that reason they introduced a

heuristic for the sparcification of the PSD cuts.
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3.2 Sparsification prior to cut generation

To overcome the problem of few dense cuts, Baltean-Lugojan, Misener et. al. [2], introduced

low-dimensional approach leading to lighter linear relaxations.

With P denoting the power set of the vertex set V and ρ ∈ P(ρ ⊆ V ) any arbitrary index

subset, let xρ ∈ R|ρ| the vector slice of x and Xρ ∈ R|ρ|×|ρ| the submatrix slice of X. For any

subset of P the following corresponding semidefinite relaxation is introduced,

(∀F ⊆ P) S(F) :=
{

(x,X)
∣∣∣∀ρ ∈ F :

 1 xTρ

xρ Xρ

 ≥ 0, Xii ≤ xi ∀i ∈ ρ
}

A fixed cardinality n(1 ≤ n ≤ N) is imposed upon P such that :

Pn := {ρ ∈ P| |ρ| = n}, with |Pn| =
(
N

n

)

A separation problem arises, since there are
(
N
n

)
available inequalities to create cutting

planes.In [2], the separation problem is addressed with one of the following strategies: feasibility,

optimality and combined selection.

If feasibility strategy is selected, the eigenvalues of

 1 x̃ρ

x̃ρ
T X̃ρ

 are calculated and for each

ρ sub-problem the minimum eigenvalue is selected. The sub-problems are then being ranked

with ascending eigenvalues, λmin(ρ) (the sub-problems with the more negative eigenvlaues first).

Optimality strategy represents the improvement of the objective function resulted by

the selection of a specific cut. The objective improvement is defined as ObjImprX(ρ) =

f ∗(X∗ρ |x̃ρ)− f(X̃ρ) = IX(ρ)
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∀S ∈ Pn



f ∗S(X∗S|x̃S) = min
XS

QS •XS

s.t.

 1 x̃S

x̃S
T XS

 ≥ 0, Xii ≤ x̃i ∀i ∈ S

For high dimensional problems and small dimensional cuts (n ≥ 3) the optimization prob-

lems need to be solved are by SoA solvers results in significant time delays. It takes 5s on

average to solve such a simple optimization problem but given 100 variables and 3-D cuts the

time needed is
(
100
3

)
× 5s ' 45h just for one cut round. In order to overcome this obstacle

Baltean-Lugojan, Misener et. al. [2], introduced the fast estimator f ∗(X∗S|x̃S) ≈ f̂ ∗n(Qs, x̃s).

The fast estimator is computed by a trained neural network and takes the complexity of cut

selection offline. IX(ρ) is approximated by ÎX(ρ).

ÎX(ρ) ≈ ÎX(ρ) = f̂ ∗n(Qs, x̃s)−Qs • X̃s

If combined strategy is selected, the combined measure is

C(ρ) =


ÎX(ρ) + T, if ÎX(ρ) > 0 and λmin(ρ) < 0

−λmin(ρ) otherwise

,

where T is an arbitrary large positive number.

Algorithm 8 [2]sets the framework to outer-approximate B + S given any B linear base

relaxation and B ⊆ Pn for small n ≤ 5.
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Algorithm 1: Iterative SDP outer-approx. with cut selection/generation based on
an ordering
input :
-current base LP relaxation of B of QP, either fully added from the start,i.e. M or separates
iteratively at each cut round;
-decomposed SDP relax. S(F) to outer-approx., where B ⊆ Pn with small n;
-incumbent LP solution (x̃, X̃);
- selection strategy/ordering metric M(ρ)∀ρ ∈ F at (x̃, X̃) e.g. ÎX(ρ),−λmin(ρ), C(ρ) etc.;
-selection size, i.e. a fixed % of |F|or a fixed number of cuts;
-number of cut rounds R (set to 20);
-termination criteria, if active terminate on an improvement between to consecutive cut
rounds of≤ 0.01% of the gap closed overall so far from the M bound;

output : Polyhedral outer-approximation that lower bounds z(B + S(F)) and SDP
relax.z(B + S);

1 for R cut round if termination criteria not met do

2 Sort F by descending M(ρ)∀ρ ∈ F at current(x̃, X̃);
3 for top ρ sub-problems in sorted F within selection size do

4 if −λmin(ρ) < 0 (viol. PSD condition for

[
1 x̃ρ
x̃ρ
T X̃ρ

]
) then

5 B = B∪ {new EigCut (ρ) based on −λmin(ρ)}
6 Resolve (warm-start) new LP relaxation B that includes added cuts;

7 Update current incumbent solution (x̃, X̃);

8 Last obtained z(B) lower bounds z(B + S(F)) and z(B + S);

3.3 Numerical example

In this section a numerical example is presented in order to fathom outer-approximation with

cut selection of BoxQP instances. The algorithm will be examined in to variations: (i) first

without cut sparsification as in Sherali and Fraticelli (2002) [24]; (ii) sparsification prior to cut

generation as proposed by Baltean-Lugojan, Misener et. al. [2].

Let N=5 the number of variables , xT = [x1, x2, x3, x4, x5] and Q =



1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25


,

cT = [1, 2, 3, 4, 5]
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The initial problem can be formulated as:

min
x

xTQx+ cTx s.t. Ax ≤ b, x ∈ [0, 1]N (3.1)

With the relaxations described in previous section eq.3.1 takes the final formulation of

min
x,X

Q •X + cTx (3.2)

Ax ≤ b, (3.3)

Xij − xi − xj ≥ −1 (3.4)

Xij − xi ≤ 0 (3.5)

Xij − xj ≤ 0 (3.6)

X ≥ xxT (3.7)

x ∈ [0, 1]5 (3.8)

X ∈ [0, 1]5×5 (3.9)

(i) Cut without sparsification

Round=0

1. In the initial round only RLT constraints are active ineq.3.3 -3.6 and 3.8,3.9. The SDP

relaxation of ineq.3.7 is not used yet. We solve 3.2 under the active constraints and get the

incumbent solution x̃, X̃, e.g. x̃T = [0.1, 0.2, 0.3, 0.4, 0.5] and X̃ =



0.2 0.3 0.5 0.7 0.8

0.3 0.6 0.9 0.1 0.6

0.5 0.9 0.2 0.5 0.4

0.7 0.1 0.5 0.9 0.3

0.8 0.6 0.4 0.3 1
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2. We then examine if the PSD constraint for ineq.3.7 is satisfied by calculating the eigenval-

ues of

1 x̃T

x̃ X̃

 The computed eigenvalues are λT = [−0.66,−0.45, 0.47, 0.76, 0.88, 2.29],

there are two negative eigenvalues(λ1 ≤ 0, λ2 ≤ 0) and thus two PSD violations. Let

v1, v2 ∈ R6×6 be the eigenvectors of λ1, λ2, then the created cutting planes are,

v1

1 xT

x X

 vT1 ≥ 0 (3.10)

v2

1 xT

x X

 vT2 ≥ 0 (3.11)

Round=1

3. Add the EigenCuts constraints ineq.3.10 and 3.11 in the optimization problem and solve

again. If there is no negative eigenvalue terminate,otherwise create EigenCuts for the

violated constraints.

(i) Sparsification prior to cut generation

1. Step 1 is the same in both approaches for solving 3.2 with RLT constraints and calculating

x̃, X̃.

2. Consider all smaller subsets S ⊂ 1, N and check for PSD violation. Let n = 3, and thus

creating 3-D cuts. For feasibility measure : Compute eigenvalues of

 1 x̃S
T

x̃S X̃s

 ,∀S ∈ P3.
For every sub-problem only the most negative eigenvalue is considered. Let S = 1, 2, 3

then x̃S
T = [0.1, 0.2, 0.3]. The eigenvalues are λT = [−0.59, 0.03, 0.82, 1.7]

Order the sub-problems based on the most negative eigenvalues (feasibility measure).

Round=1
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3. Add the EigenCut constraints for the top violated sub-problems based on eigenvalue or-

dering and resolve the optimization problem. Enforce termination criteria e.g. maximum

number of rounds, threshold in convergence, no negative eigenvalues.

3.4 Benchmark performance

Figure 3.1 corresponds to Figure 9 of the reference study [2]. There are two perspectives to

examine Fig. 3.1:

1. Comparison of %M to M + S3 gap closed with M + S for different dimensionality and

sparsity

2. Comparison of the different selection measures for different dimensionality and sparsity

The M + S boundary corresponds to the final solution of the optimization problem if full

dense cuts are used while M + S3 corresponds to the solution for 3-D cuts. The M + S

boundary resulted from fully dense cuts is replaced with M + S3 to examine low-dimensional

cuts in order to accelerate the reoptimization of algorithm. Overall we observe that the gap

betweenM+ S andM+ S3 is greater in the cases of high density problems Fig.3.1b and 3.1d

and in small densities the gap widens with the increase of variables 3.1a and 3.1c. The results

indicate that low-dimensional cuts can replace adequately low-dimensional(40 variables) and

low density (30%) problems and is the dimensionality and density increase their performance

deteriorates.

In the following chapters we will compare the results attained with M + S3 which will be

the convergence limit.
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In all of the cases the results reveal that the proposed measure of ÎX(ρ) used in Algorithm

1 is resulting in significant improvements with respect to convergence compared to −λmin(ρ).

However feasibility selection reaches better final bounds. Random selection for Fig.3.1.b and

Fig.3.1.d suggests that in high density problems every added cutting plane is driving the opti-

mization algorithm. In this case random selection could be an indication that there is comple-

mentarity in the selected cutting planes for high density problems by feasibility and optimality

measure. In low density problems the population of available cutting planes is significantly

smaller and thus random selection can not be as disperse as in the case of high density.

Even though there are indications of complementarity, the relationship between the selected

cutting planes and how they map the solution space have not been addressed. Observing the

data another question arises, could a more efficient cut selection strategy overcome the bound

of M + S3 and result in a greater gap closure with M + S? The M + S3 boundary is the result

of feasibility selection for 40 rounds and 5% ρ selected, overcoming M +S3 in 20 rounds would

result in a significant acceleration of the optimization algorithm.
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Figure 3.1: Bound convergence (root node) for outer-approximating the M+S3 relaxation

starting from M for BoxQP instances with different sizes and/or densities. Algorithm 1 im-

plements the cutting plane selection/ordering strategies across 20 cut rounds, with selection

size 5%×|P3| (exact number shown for each instance). Each x-axis cut round shows the per-

centage of gap closed between the relaxations M and M+S, and the M+S3 bound targeted

by the outer-approximation is shown in green [2]
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Chapter 4

The separation problem through

advanced data analytics

The intention of this chapter is to used advanced data analytics to address the separation

problem. We are using the population of the available sub-problems in order to detect areas

with congested cutting planes. By using clustering methods we attempt to group the cutting

planes based on similarity patterns and use this clustering to achieve a more eclectic selection

for the separation problem. The clustering is performed online as the optimization algorithm

progresses.

In detail, in order to make the Master problem efficient we need to find the best underesti-

mators/cutting planes which will allow faster convergence of the optimization algorithm. We

are imposing an extra sorting criterion for the inequality constraints added in the Master prob-

lem, not only should they be highly ranked based on eigenvalues(feasibility) or the improvement

of the objective function (combined) but they should also be independent to each other. The

separation problem is redirected from inequality independence, to sub-problem independence
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and finally to x̃ρ independence, since each cutting plane is created form a sub-problem.

They rationale here is that if one cutting plane is selected, there has to be a guarantee that

any additional selected cutting plane added to the list of constraints provides new information

for the problem. Both may be informative enough however the information they provide may

be overlapping. In order to evaluate the cutting planes we will examine the complementarity

of the slices of x̃ρ they are composed of. Having dominating variables, variables that are active

in the majority of the selected cutting planes, could result in slowing down the optimization

algorithm and poorly mapping the variable space.

To achieve a high variance in the active variables of the selected cuts of-the-self clustering

algorithms of k-means and Agglomerative clustering are being deployed using the Euclidean

norm. The algorithms proposed for clustering are explained in detail with the perspective of

improving the aforementioned Algorithm 8[2]. For the purpose of the research the cardinality

of the examined sub-sets is set to |ρ| = 3 and the selection size is 100 cuts/round.

For feasibility selection the population is comprised of all the sub-problems with negative

eigenvalues (λmin(ρ) < 0) and in optimality selection of all sub-problems with positive objective

improvement (ÎX(ρ) > 0), respectively for combined selection. In addition different criteria

have been implemented as to evaluate the representative element of each cluster based on the

selected number of clusters. Round of Experiments 1 examines k-means algorithm while Round

of Experiments 2 Agglomerative clustering.The methodology of this approach can be found in

Algorithm 2.

In the first section of this chapter we are examining k-means method and how is embed-

ded with the optimization algorithm, followed by the results of Round of Experiments 1. In

section 4.3 we are using Agglomerative clustering followed by a comparison of the results of
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Agglomerative clustering, Round of Experiments 2, and k-means.

4.1 k-means

The k-means algorithm clusters data by trying to separate samples in n groups of equal variance,

minimizing a criterion known as the inertia or within-cluster sum-of-squares (see below). In a

mathematical formulation k-means divides a set of N samples X into K disjoint clusters C,

each described by the mean µj of the samples of the cluster. The means are commonly called

centroids and they are not necessarily points from X, although they live in the same space.

The k-means algorithm aims to choose centroids that minimise the inertia, or within-cluster

sum-of-squares criterion:

n∑
i=0

min
µj∈C

(‖xi − µj‖2)

k-means algorithm is derived from the scikit-learn python package [21] defining the number

of clusters for default settings.
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Algorithm 2: Iterative SDP outer-approx. with cut selection/generation based on
of-the-self clustering methods
input :
-current base LP relaxation of B of QP, either fully added from the start,i.e. M or separates
iteratively at each cut round;
-decomposed SDP relax. S(F) to outer-approx., where B ⊆ Pn with small n;
-incumbent LP solution (x̃, X̃);
- selection strategy/ordering metric M(ρ)∀ρ ∈ F at (x̃, X̃) e.g. −λmin(ρ), C(ρ) etc.;
-selection size, i.e. a fixed % of |F|or a fixed number of cuts (set to 100);
-number of cut rounds R (set to 20);
-termination criteria, if active terminate on an improvement between to consecutive cut
rounds of≤ 0.01% of the gap closed overall so far from the M bound;
-of-the-self clustering technique (k-means or Agglomerative clustering);
- number of clusters k

output : Polyhedral outer-approximation that lower bounds z(B + S(F)) and SDP
relax.z(B + S);

1 for R cut round if termination criteria not met do
2 Cluster all elements in F ;
3 for Every cluster do

4 Sort all elements in cluster by descending M(ρ)∀ρ ∈ F at current(x̃, X̃);
5 if k ≥ selection size then
6 Create EigCut (ρ) based on −λmin(ρ) for the top (1st) sorted element in cluster;
7 Let the set Eg containing all the selected eigencuts then Eg = Eg ∪ {EigCut(ρ)};
8 if k ≤ selection size then
9 for top selection size/k sub-problems in cluster do

10 Create EigCut (ρ) based on −λmin(ρ) and Eg = Eg ∪ {EigCut(ρ)}
11 Sort EigCut (ρ) in Eg based on M(ρ);
12 for top EigCut (ρ) in Eg within selection size do
13 B = B∪{ EigCut (ρ)}
14 Resolve (warm-start) new LP relaxation B that includes added cuts;

15 Update current incumbent solution (x̃, X̃)

16 Last obtained z(B) lower bounds z(B + S(F)) and z(B + S);

4.2 Round of Experiments 1: k-means - Results

The aim of the computational experiments are to evaluate the:

• Existence of complementarity in selected cutting planes with previous algorithm (Rf)

• Correlation between the number of clusters and complementarity, for of-the self clustering

approaches the number of clusters k is set to k=10,100,500. The number of clusters are

selected as to be comparable to the number of cuts added per round(=100 cuts/round)
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• Dimensionality and sparsity dependence with complementarity. Medium and high di-

mensional problems are examined since the decomposition of the SDP relaxation has a

greater impact on high dimensional problems. Different densities are examined in order

to see how the complexity of the problem affects cutting plane selection

• Cutting plane selection measure (feasibility:Rf1, combined: Rf2) dependence with com-

plementarity and synergy of the proposed clustering algorithms with SoA approaches

For all the computational experiments n = 3, which is the dimensionality of the created

cutting planes. The computational experiments where conducted for varying the dimensionality

and sparsity of the original optimization problems (N =, 70, 100, density= 25%, 50%, 75%).

Number of iterations/rounds of the optimization algorithm is set to 20 and added cuts per round

(selection size) are 100 cuts/round.The cut selection measure is either feasibility or combined.

Setting both the number of rounds and the number of cuts per round allows us to compare

the proposed clustering approaches with Rf within the same framework. The potential of the

clustering algorithms is only compared to Rf. The results of all experiment rounds are in

Appendix B.

The convergence limit is the final solution achieved for feasibility measure,when cut rounds

are set to 40 and the cut/round are set to 5% of the available sub-problems, defined in [2].

The results are evaluated based on the convergence of the proposed algorithms and the final

solution.

The computational experiments where carried in python 3.5 using cplex 12.8 python API

solver and scikit-learn v0.2 package for k-means and Agglomerative clustering.

In the first round of computational experiments Algorithm 2 is implemented for k-means

clustering algorithm. The parameter is the number of clusters selected (k=10,100,500). Figure
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4.1 illustrates the results for different dimensionality : Fig.4.1a with 70 variables and Fig.4.1b

with 100 variables, and for different density: Fig.4.1b for 100 variables and 50% density, Fig.4.1c

for 25% density and Fig.4.1d for 75% density.

((a)) ((b))

((c)) ((d))

Figure 4.1: Comparison of dimensionality and sparsity for k-means
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In the comparison of dimensionality the results reveal:

• Notable improvement (15%, difference with Rf1,of gap closure of k-means(k=100) with

convergence limit) in the case of high dimensional problem, Fig.4.1b. k-means algorithm

results in lower final bounds and faster convergence over Rf1. To compare the overall gap

closure with the computational experiments of 3.1 we would need to change the selection

measure from 100 cuts/round to 5% of ρ sub-problems.

• Marginal improvement in the case of medium dimensional problem, Fig.4.1a. Rf1 is

providing a significant gap closure with convergence limit, thus there is a small room for

improvement for k-means algorithm. Even though

For the comparison of sparsity we observe:

• Notable and almost consistent improvement (18%, difference with Rf1,of gap closure with

convergence limit for k=100) of k-means in comparison to Rf1 in the case of high density

problem, Fig.4.1d

• Improved performance of k-means for all different cluster numbers, Fig.4.1d. The gap

between Rf1 and convergence limit is the greatest among the set of experiments. The

proposed k-means algorithm is bridging this gap, however the gap closure of k-means with

convergence limit still remains significant.

• When the number of clusters is equal to the number of added cuts/round the best per-

formance is observed. In order to verify the dependence of number of clusters with the

number of cuts/round additional computational experiments are to be considered for

varying # of clusters=# of added cuts/round.
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• Marginal improvement in the case of low density problem, with k=100 having the best

performance, Fig.4.1c. k-means for k=10 results in inferior convergence and lower bounds

over Rf1.

Overall k-means is proven to be a useful tool for cut selection, especially in the cases where

the reference algorithm is struggling the most, high dimensional and high density problems.

k-means for k=100 results in a final solution that is 12% reduced over Rf1, for spar100-075, in

real world applications this could result in a significant total cost reduction for example.

Figure 4.2 presents the results for combined selection measure (100 variables and 50% den-

sity) as opposed to Fig.4.1b which presents the results for feasibility selection. In Fig.4.1b

k-means algorithm indicates an improved convergence over Rf1. In contrast, k-means for com-

bined selection has inferior performance to the reference algorithm Rf2 for any # of clusters. In

addition, while in all studied cases with feasibility measure (Fig.4.1) the optimization solution

for k-means follows the same trajectory as Rf1. Here Rf2 is having a curved trajectory and

converges faster and in a lower bound than Rf1, yet k-means can not take advantage of this

potential. Comparing k-means for feasibility in Fig.4.1b with Rf2 Fig.4.2 , Rf2 provides a lower

bound and faster convergence indicating that the proposed k-means approach can not replace

the combined selection with the trained neural network [2].
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Figure 4.2: Combined selection measure for k-means

4.3 Agglomerative clustering

Hierarchical clustering is a general family of clustering algorithms that build nested clusters by

merging or splitting them successively. This hierarchy of clusters is represented as a tree (or

dendrogram). The root of the tree is the unique cluster that gathers all the samples, the leaves

being the clusters with only one sample.

Agglomerative clustering is a bottom-up approach of hierarchical clustering. Each obser-

vation starts as a cluster and clusters are successively merged together. The linkage criteria

determines the metric used for the merge strategy:

• Ward minimizes the sum of squared differences within all clusters. It is a variance-

minimizing approach and in this sense is similar to the k-means objective function but

tackled with an agglomerative hierarchical approach.

• Maximum or complete linkageminimizes the maximum distance between observations
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of pairs of clusters.

• Average linkage minimizes the average of the distances between all observations of pairs

of clusters.

• Single linkageminimizes the distance between the closest observations of pairs of clus-

ters.

Agglomerative clustering algorithm is derived from the scikit-learn python package [21]

defining the number of clusters setting linkage to ward and thus affinity to Euclidean, the rest

parameters are set to default.

4.4 Round of Experiments 2: Agglomerative clustering

- Results

In the second round of experiments Algorithm 2 with Agglomerative clustering is deployed. The

parameters are the final number of clusters (k=10,100). The results of Round of Experiment

2 are juxtaposed with the results of Round of Experiments 1 in Figure 4.3 . Agglomerative

clustering indicates similar behavior with k-means for k=100 and a slightly better performance

in the case of k=10. Both of-the self clustering approaches result in the improvement of the

reference algorithm Rf1.

By using the ward linkage we where expecting to see similar results to k-means since the

clusters are evaluated in order to achieve the minimum variance. The rationale behind the Ag-

glomerative clustering is that all data points are of equal importance in the initialization of the

algorithm while k-means initialization is based on the distribution of the data set. The results
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indicate that the clustering approach, hierarchical or k-means, is not affecting the optimization

algorithm. Varying the linkage for Agglomerative clustering can be examined in the future, to

see the full potential of this approach.

Agglomerative clustering can be implemented using different norms,e.g. taxicab distance,

manhattan distance and cosine similarity. The alternative norms for computing the distance

between the clustering approach could result in an improved performance, however there are no

indications by the original data set to follow these geometries. However a norm that is exploiting

the geometry of the data set, could provide significant improvements over the Euclidean norm.

This new norm will be introduced in the following chapter.

Observing that there are no deviations between Agglomerative clustering and k-means for

Euclidean norm the combined selection computational experiments were omitted, because the

results are expected be analogous to Fig.4.2.

Figure 4.3: Comparison of k-means and Agglomerative clustering in Algorithm 2

68



Chapter 5

A new space distance for the

separation problem : the affinity norm

The results for clustering using the Euclidean norm where encouraging, indicating that there

can be improvements in the Master problem given an extra sorting of the selected cutting

planes. By introducing the tailor-made norm/affinity norm we examine the potential of the

customization of the clustering approach based on better understanding the separation problem.

While in k-means and Agglomerative clustering the proximity of the x̃ρ was evaluated by the

Euclidean norm ‖N‖af and not taking into consideration the ranking proposed by Algorithm 8,

the affinity norm evaluates x̃ρ based on their ranking by Algorithm 8, feasibility or combined.

Initially the first element of the ranking(x̃ρ), corresponding to the sub-problem with the

most negative eigenvalue (if feasibility measure is selected), is considered to be the centroid of

the cluster, the rest of the elements are clustered with the centroid iff they share at least two

same variables with the centroid. ‖N‖af compounds differences in the type of active variables

at each sub-set. Different criteria have been implemented in order to further evaluate the cor-
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relation of the clustered elements. Based on discrete criterion C1, the elements within a cluster

are all considered overlapping. Criterion C2 examines the sub-clusters within a cluster and

dictates which sub-clusters contain overlapping elements either with a discrete approachC2a or

a continuous approach C2b.The rationale in the affinity norm has been to assist in spreading out

the sub-sets over the full space rather than stow and congest candidates in adjacent locations.

In addition a hybrid algorithm combining of-the-self and tailor-made clustering approaches

has also been examined to examine the synergy of the ‖N‖af with SoA clustering algorithms.

5.1 Affinity norm

Let S := {1, 2, · · ·N} be a totally ordered set. We introduce the symmetric group Sn containing

all ordered permutations of S with n ≤ N elements.

Let y′ be the reference permutation in Sm,m ≥ n and y any permutation in Sn.

We introduce the affinity norm such that,

‖N‖af :=
n∑
i=1

g(yi),

where

g(yi) =


1, if ∃ j | yi = y′j

0, otherwise

If ‖N‖af = 2 then y shares the same 2 active variables as y′. We create a cluster initiated

by y′ containing all vectors for which ‖N‖af = 2 is satisfied.

For the purpose of this study we set n = m = 3.
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To further extend this procedure we group the vectors satisfying ‖N‖af = 2 into 3 sub-

clusters based on which active variables they share with y′.

To merge the ‖N‖af with the original optimization problem we consider each permutation

as an n slice of the original variable x corresponding to a ρ sub-problem, y ∼ xρ ans y′ ∼ x′ρ

Depending on how we interpret the results of the tailor-made clustering we have examined

the following criteria as to decide upon the representative elements of each cluster.

1. Discrete C1

Based on this criterion all elements clustered with x′ρ are considered overlapping and

only x′ρ holds valuable information about the original space, and thus is considered the

representative element of the cluster.

2. Discrete C2a

Based on C2a not all elements clustered with x′ρ are considered overlapping. It is a more

conservative approach as to C1, given that we consider overlapping only the elements in

the sub-cluster which contains the most elements.

3. Continuous C2b

After the tailor-made clustering is completed the standard deviation STD of x̃ρ in each

sub-cluster can be computed. We consider informative all the vectors contained in the

sub-cluster with the maximum STD.

The methodology of the use of affinity norm is explained in detail in Algorithm 3.
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Algorithm 3: Iterative SDP outer-approx. with cut selection/generation based on
Affinity norm
input :
-current base LP relaxation of B of QP, either fully added from the start,i.e. M or separates
iteratively at each cut round;
-decomposed SDP relax. S(F) to outer-approx., where B ⊆ Pn with small n;
-incumbent LP solution (x̃, X̃);
- selection strategy/ordering metric M(ρ)∀ρ ∈ F at (x̃, X̃) e.g. −λmin(ρ), C(ρ) etc.;
-selection size, i.e. a fixed % of |F|or a fixed number of cuts (set to 100);
-number of cut rounds R (set to 20);
-termination criteria, if active terminate on an improvement between to consecutive cut
rounds of≤ 0.01% of the gap closed overall so far from the M bound;
- criterion for sorting clustered elements e.g. C1, C2a and C2b;
-maximum number of points MN to be examined with Affinity norm for a reference point x’
(set to 1000)

output : Polyhedral outer-approximation that lower bounds z(B + S(F)) and SDP
relax.z(B + S);

1 for R cut round if termination criteria not met do

2 Sort F by descending M(ρ)∀ρ ∈ F at current(x̃, X̃);
3 for top ρ sub-problems in F within maximum numberMN do
4 Fix x̃ρ as x̃′ being the initial element of a cluster K = K ∩ x̃′;
5 for following top ρ sub-problems in sorted F within maximum number ofMN − 1 do
6 Apply ‖N‖af ;
7 if ‖N‖af = 2 then
8 Cluster x̃ρ with x̃′ in K = K ∪ x̃ρ
9 Apply selection criterion to discard elements in K

10 Renew F based on the discarded elements of K

11 for top ρ sub-problems in sorted F within selection size do

12 if −λmin(ρ) < 0 (viol. PSD condition for

[
1 x̃ρ
x̃ρ
T X̃ρ

]
) then

13 B = B∪ {new EigCut (ρ) based on −λmin(ρ)}
14 Resolve (warm-start) new LP relaxation B that includes added cuts;

15 Update current incumbent solution (x̃, X̃);

16 Last obtained z(B) lower bounds z(B + S(F)) and z(B + S);

5.2 Round of Experiments : affinity norm - Results

The potential of Algorithm 3 is examined in Round of Experiments 3, the parameters are the

criterion to evaluate the created clusters (C1,C2a, C2b), dimensinality, sparsity and selection

measure (feasibility, combined). Figure 5.1 illustrates the results for different dimensionality :

Fig.5.1a with 70 variables and Fig.5.1b with 100 variables, and for different density: Fig.5.1b

for 100 variables and 50% density, Fig.5.1c for 25% density and Fig.5.1d for 75% density.
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((a)) ((b))

((c)) ((d))

Figure 5.1: Comparison of dimensionality and sparsity for Affinity norm & selection criteria

In the comparison of dimensionality, Fig.5.1a and Fig.5.1b, we observe :

• Significant convergence improvement with ‖N‖af + C1 (21%, difference with Rf1, of gap
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closure with convergence limit) and lower bound in the case of high dimensional problem.

‖N‖af and C2 result in improved performance as well.

• Marginal improvement of ‖N‖af for medium dimensional problem. ‖N‖af with criteria

C1 and C2b are resulting in improved convergence. Seemingly ‖N‖af +C2a and Rf1 are

overlapping, yet there is a slight improvement by ‖N‖af + C2a

• ‖N‖af +C1 has the best performance in both instances indicating that a brute approach

discarding the majority of the cutting planes selected by the ‖N‖af is the most favorable.

In the comparison of sparsity there is:

• Significant and consistent improvement by ‖N‖af (30%,difference with Rf1, of gap closure

with convergence limit) for ‖N‖af + C1 even in high density problems

• Marginal and consistent improvement for small density problem

• For the high dimensional problem and different sparsities Fig.5.1b, Fig.5.1c and Fig.5.1d,

criteria C2a and C2b are having a similar and consistent impact on the optimization

algorithm. The idea of creating sub-clusters within the created clusters by ‖N‖af has not

proved to be significantly useful under the proposed selection criteria.

In all cases ‖N‖af is resulting in consistent improvement over Rf1. In the case of, spar100-

075 the final solution provided by ‖N‖af +C1 is 19% reduced over the solution provided from

Rf1, and 8% reduced over k-means for k=100.

In Figure 5.2 the results of Algorithm 3 for affinity norm and combined selection measure are

illustrated. There is a marginal improvement by ‖N‖af for all selection measures. The ‖N‖af is

taking advantage of the improvement of Rf2 over Rf1 and provides an even better convergence.
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Comparing the convergence of ‖N‖af + C1 in Fig.5.1b with Rf2 in Fig.5.2 indicates that the

proposed affinity norm can compete the introduced neural network [2] in terms of convergence

and final bounds. In the case of spar100-050 the solution of Rf2 is reduced by 22% compared

to Rf1, while the solution of ‖N‖af + C1 for feasibility selection is reduced by 16% compared

to Rf1.

Figure 5.2: Combined selection measure for Affinity norm & selection criteria

5.3 Hybrid clustering

We further deploy a hybrid clustering approach combining the of-the-self clustering algorithms

with the tailor-made affinity norm. The two algorithms are used sequentially and thus there
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are two variations of the hybrid approach.

• Hybrid 1

In this variation, k-means algorithm is used first followed by the implementation of affinity

norm ‖Naf‖. K-means creates the initial clusters and affinity norm is used to sort the

elements within the cluster. Hybrid 1 introduces a ranking of the clusters created by

k-means and the number of cuts created from each cluster depends on that ranking.

The ranking of clusters is performed based on maximum selection measure M(ρ) of their

containing sub-problems. The aim of this addition is to examine if by selecting cuts in

specific areas instead of the entire space could give better results.
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Algorithm 4: Iterative SDP outer-approx. with cut selection/generation based on
Hybrid 1 clustering
input :
-current base LP relaxation of B of QP, either fully added from the start,i.e. M or separates
iteratively at each cut round;
-decomposed SDP relax. S(F) to outer-approx., where B ⊆ Pn with small n;
-incumbent LP solution (x̃, X̃);
- selection strategy/ordering metric M(ρ)∀ρ ∈ F at (x̃, X̃) e.g. −λmin(ρ), C(ρ) etc.;
-selection size, i.e. a fixed % of |F|or a fixed number of cuts (set to 100);
-number of cut rounds R (set to 20);
-termination criteria, if active terminate on an improvement between to consecutive cut rounds
of≤ 0.01% of the gap closed overall so far from the M bound;
-of-the-self clustering technique (k-means or Agglomerative clustering);
- number of clusters k ;
- criterion for sorting clustered elements e.g. C1, C2a and C2b;
-maximum number of points MN to be examined with Affinity norm for a reference point x’ (set to
1000);
-number of cuts created from the top ranked cluster NC

output : Polyhedral outer-approximation that lower bounds z(B + S(F)) and SDP relax.z(B + S);
1 for R cut round if termination criteria not met do
2 Cluster all elements in F (off-the self clustering);
3 for Every cluster do

4 Sort all elements in cluster by descending M(ρ)∀ρ ∈ F at current(x̃, X̃);
5 for top ρ sub-problems in cluster within maximum numberMN do
6 Fix x̃ρ as x̃′ being the initial element of a cluster K = K ∩ x̃′;
7 for following top ρ sub-problems in sorted F within maximum number ofMN − 1 do
8 Apply ‖N‖af ;
9 if ‖N‖af = 2 then

10 Cluster x̃ρ with x̃′ in K = K ∪ x̃ρ
11 Apply selection criterion to discard elements in K
12 Renew clusters elements based on the discarded elements of K

13 if k ≤ selection size then
14 for top selection size/k sub-problems in cluster do
15 B = B∪{new EigCut (ρ) based on −λmin(ρ) }
16 if k ≥ selection size then
17 Sort clusters based on the sub-problem with maximum M(ρ) they contain;
18 for cluster in sorted clusters do
19 for top ρ sub-problems within cluster and within NC do
20 B = B∪{ new EigCut (ρ)based on −λmin(ρ)}
21 Redefine NC = g(NC) to compute the created cuts at the following cluster

22 Resolve (warm-start) new LP relaxation B that includes added cuts;

23 Update current incumbent solution (x̃, X̃);

24 Last obtained z(B) lower bounds z(B + S(F)) and z(B + S);

Hybrid 2

In Hybrid 2 algorithm the affinity norm is applied first followed by k-means clustering. The

affinity norm is used to sort the initial population so that k-means will reveal underlying

correlations. Algorithm 5 represent the Hybrid 2 algorithm.

77



Algorithm 5: Iterative SDP outer-approx. with cut selection/generation based on
Hybrid 2 clustering
input :
-current base LP relaxation of B of QP, either fully added from the start,i.e. M or separates
iteratively at each cut round;
-decomposed SDP relax. S(F) to outer-approx., where B ⊆ Pn with small n;
-incumbent LP solution (x̃, X̃);
- selection strategy/ordering metric M(ρ)∀ρ ∈ F at (x̃, X̃) e.g. −λmin(ρ), C(ρ) etc.;
-selection size, i.e. a fixed % of |F|or a fixed number of cuts (set to 100);
-number of cut rounds R (set to 20);
-termination criteria, if active terminate on an improvement between to consecutive cut rounds
of≤ 0.01% of the gap closed overall so far from the M bound;
-of-the-self clustering technique (k-means or Agglomerative clustering);
- number of clusters k ;
- criterion for sorting clustered elements e.g. C1, C2a and C2b;
-maximum number of points MN to be examined with Affinity norm for a reference point x’ (set to
1000)

output : Polyhedral outer-approximation that lower bounds z(B + S(F)) and SDP relax.z(B + S);
1 for R cut round if termination criteria not met do

2 Sort F by descending M(ρ)∀ρ ∈ F at current(x̃, X̃);
3 for top ρ sub-problems in F within maximum numberMN do
4 Fix x̃ρ as x̃′ being the initial element of a cluster K = K ∩ x̃′;
5 for following top ρ sub-problems in sortedF within maximum number ofMN − 1 do
6 Apply ‖N‖af ;
7 if ‖N‖af = 2 then
8 Cluster x̃ρ with x̃′ in K = K ∪ x̃ρ
9 Apply selection criterion to discard elements in K

10 Renew F based on the discarded elements of K

11 Cluster all elements in F (off-the self clustering);
12 for Every cluster do

13 Sort all elements in cluster by descending M(ρ)∀ρ ∈ F at current(x̃, X̃);
14 if k ≥ selection size then
15 Create EigCut (ρ) based on −λmin(ρ) for the top (1st)sorted element in cluster;
16 Let the set Eg containing all the selected eigencuts then Eg = Eg ∪ {EigCut(ρ)};
17 if k ≤ selection size then
18 for top selection size/k sub-problems in cluster do
19 Create EigCut (ρ) based on −λmin(ρ) and Eg = Eg ∪ {EigCut(ρ)}
20 Sort EigCut (ρ) in Eg based on M(ρ);
21 for top EigCut (ρ) in Eg within selection size do
22 B = B∪{ EigCut (ρ)}
23 Resolve (warm-start) new LP relaxation B that includes added cuts;

24 Update current incumbent solution (x̃, X̃)

25 Last obtained z(B) lower bounds z(B + S(F)) and z(B + S);

5.4 Round of Experiments 4: Hybrid - Results

In the fourth and final round of experiments the Algorithm 4, Hybrid 1 clustering, and Al-

gorithm 5, Hybrid 2, are examined for different dimensionality and sparsity of the original

problems.
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Figure 5.3 illustrated the gap closed between convergence limit and all of the examined

algorithms for varying dimensionality and sparsity.

((a)) ((b))

((c)) ((d))

Figure 5.3: Comparison of dimensionality sparsity for the proposed clustering approaches
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In the comparison of dimensionality we observe:

• Improvement of Hybrid algorithms compared to Rf1

• Marginal improvement of Hybrid 2 compared to ‖N‖af

• Hybrid 2 is resulting in a greater gap(91% gap closed) with convergence limit than

Rf1(98% gap closed) in the medium dimensionality problem Fig.6a

In the comparison of sparsity, the results reveal:

• Consistent similar convergence of Hybrid 2 and ‖N‖af such as Hybrid 1 and k-means in

the cases of high and medium density problems, Fig.6b and Fig.6d, suggest the dominance

of the initial step of the hybrid algorithms over the convergence of optimization

• Hybrid 2 is resulting in a greater gap(96% gap closed) with convergence limit than

Rf1(99% gap closed) in the low density problem

• When the gap between Rf1 and convergence limit is significant, the proposed algorithms

yield more favorable results. In the cases of small to medium dimensionality (20-90

variables) regardless of density, and in high dimensional problems with small density, the

proposed clustering approaches provide marginal improvements

Figure 5.4 and Figure 5.5 present the results concerning the final solution, reached in

20 rounds, and the required computational time, using Intel R© CoreTM i7-4510U CPU @

2.00GHz×4.
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Figure 5.4: Final solution reached in 20 rounds: feasibility measure and clustering approaches

Figure 5.5: Computational time for 20 rounds: feasibility measure and clustering approaches

Overall the clustering approaches improve the final solution in the case of high dimensional

and high density problems. The tailor-made ‖N‖af provides the best results (minimum final

solution). In terms of computational time Hybrid 2 has significant delays over the rest clus-

tering approaches and Rf1. The ‖N‖af + C1 small and medium dimensionality (50% density)

and high dimensionality (25%) density is delaying over Hybrid1 and kmeans. However in high
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dimensional problem high density ‖N‖af + C1 is converging faster(in CPU time), this is due

to the introduced maximum number of elements MN in Algorithm 3 dictating that not all

of the available cutting planes should be examined since only 100 cuts are added in the opti-

mization problem in each round. In addition to time acceleration, the use ofMN provides an

other insight to the problem, suggesting that the ranking of the sub-problems by the original

Algorithm 8 is of high importance and should not be overlooked.

The computational time for the optimization algorithm using k-means clustering is increas-

ing with the complexity of the problem , increased dimensionality and density, this is due to

the fact that the population of the data set is increasing as well.
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Chapter 6

Conclusions and further research

Based on the desiderata of the computational experiments we can conclude that :

• There is indeed a correlation in the selected cutting planes with previous algorithm (Rf)

• New norm has contributed to significant and consistent improvement of all previous

variations of the algorithm

• Of-the-self norms provide improvements of lesser significance, erratic and occasionally

inferior to the nominal algorithm

• Hybridized, the norm retained a potential but without significant signs of improvement

• Clustering approach has a greater impact in the case of high dimensional & medium- high

density problems

Future research should address the issues of computational delays of the affinity norm in

order to accelerate the proposed methodology. Implementing the affinity norm iteratively over

the ranked sub-problems by feasibility measure could be replaced by a more efficient algorithm.
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In addition,the extension of the algorithms in order to exploit the temporal data and discover

similarity patters across iterations should be considered. The aim of the present research was to

examine the correlation of the selected cutting planes within the same cut round. A temporal

research should examine the repetition of the selected cutting planes over iterations. The

repetition can be examined by two perspectives, in one case the repeating variables of the

selected cutting planes could be slowing down the optimization algorithm if incumbent solution

is away from the global optimum, in the other case repeating variables could indicate the

convergence around the global optimum. A more flexible approach can be examined promoting

that in the initial cut rounds cutting planes with high variance are desirable in order to span

the variable space, and as the optimization algorithm converges overlapping cutting planes are

favored in order to tighten the relaxation around the global minimum.

A wider range of BoxQP can be examined ,e.g.QPlib [13] or different type of QP such as

quadratically constrained quadratic programs (QCQP), in order to examine the potential of

the introduced affinity norm in problems that SoA solvers are having difficulties to address.

Apart from varying the QP problems, different SoA MINLP solvers, e.g. Mosek, BARON,

ANTIGONE, should be examined as well to explore the potential of the proposed clustering

methods.

The affinity norm was introduced for cutting plane selection in outer-approximating QP.

Without requiring any reformulations, affinity norm can be implemented in evaluating the

population of low-dimensional cutting planes available for any type of optimization problems

e.g MILP, MINLP.

Finally we have examined the case of 3-D cutting planes, all of the clustering approaches

can be adjusted for different dimensionality of cutting planes.
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Appendix A

Final bound and computational time

A.1 % final bound closure between different cut selec-

tion approaches and convergence limit in 20 rounds

instance Rf1 kmeans100 ‖N‖af + C1 Hybrid1 Hybrid2

spar040-050 100.00 100.00 99.99 95.74 99.99

Spar070-050 97.95 98.37 99.22 91.80 98.22

Spar100-025 97.95 99.82 100.05 96.22 99.61

Spar100-050 63.93 71.40 85.11 79.11 85.63

Spar100-075 35.28 54.15 66.41 50.53 66.76
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A.2 % difference of final bound between Rf1 and clus-

tering approaches in 20 rounds

instance kmeans100 ‖N‖af + C1 Hybrid1 Hybrid2

Spar040-050 0.00 0.00 4.26 0.01

Spar070-050 -0.41 -1.25 6.02 -0.27

Spar100-025 -0.20 -0.39 3.42 0.04

Spar100-050 -12.10 -15.95 -5.49 -15.43

Spar100-075 -11.79 -18.89 -9.26 -19.11

A.3 CPU time(sec) for clustering approaches and Rf1 in

20 rounds

instance Rf1 kmeans100 ‖N‖af + C1 Hybrid1 Hybrid2

Spar040-050 1.22 20.00 27.71 14.48 26.49

Spar070-050 7.01 84.70 1025.66 55.69 179.60

Spar100-025 3.71 36.12 339.91 27.67 226.90

Spar100-050 12.40 436.89 21447.94 275.15 245.35

Spar100-075 34.17 1208.31 294805.48 860.25 184.87
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Appendix B

Results of computational experiments

B.1 Round of Experiments 1

Cut round Rf1 k=500 k=100 k=10 convergence limit

0 7210.75 7210.75 7210.75 7210.75 4097.77
1 6977.97 6976.41 6929.84 6946.58 4097.77
2 6856.28 6816.78 6592.37 6678.06 4097.77
3 6599.63 6463.82 6300.36 6400.40 4097.77
4 6362.26 6139.55 5997.24 6135.67 4097.77
5 6078.78 5819.06 5698.55 5912.16 4097.77
6 5823.97 5632.11 5475.76 5733.10 4097.77
7 5556.07 5455.22 5259.21 5535.85 4097.77
8 5355.08 5258.98 5019.86 5309.57 4097.77
9 5110.96 5026.36 4837.76 5164.71 4097.77
10 4940.53 4852.39 4670.23 4966.37 4097.77
11 4791.03 4627.54 4548.93 4786.27 4097.77
12 4606.23 4482.87 4434.31 4658.86 4097.77
13 4481.90 4402.23 4366.45 4528.37 4097.77
14 4398.99 4331.84 4314.96 4423.25 4097.77
15 4340.29 4283.26 4277.89 4360.99 4097.77
16 4294.84 4250.21 4242.01 4316.61 4097.77
17 4256.60 4222.34 4219.03 4269.76 4097.77
18 4227.00 4200.67 4199.16 4241.60 4097.77
19 4202.48 4181.98 4181.20 4220.37 4097.77
20 4181.87 4163.40 4164.56 4202.58 4097.77

Table B.1: Spar070-050: results of final bounds for k-means and feasibility selection
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Cut round Rf1 k=500 k=100 k=10

0 7660.75 7660.75 7660.75 7660.75

1 7442.03 7333.23 7266.49 7384.63

2 7308.77 6989.85 6878.94 7212.64

3 6954.34 6587.99 6577.92 6855.50

4 6624.54 6297.75 6249.08 6579.88

5 6309.91 6023.37 5963.00 6359.02

6 6040.64 5796.58 5759.27 6182.25

7 5758.71 5614.09 5577.27 5996.09

8 5635.51 5386.38 5410.22 5815.08

9 5387.84 5291.28 5312.43 5640.17

10 5288.95 5224.01 5239.81 5465.35

11 5216.21 5167.67 5181.35 5354.29

12 5169.06 5126.57 5137.84 5273.67

13 5130.16 5090.57 5104.16 5208.14

14 5098.00 5063.30 5081.24 5174.08

15 5072.50 5045.90 5059.62 5136.06

16 5052.06 5029.14 5039.30 5104.11

17 5036.77 5017.49 5024.77 5081.32

18 5022.15 5007.04 5011.12 5064.81

19 5012.01 4999.59 5003.18 5050.62

20 5002.60 4993.23 4994.35 5038.70

Table B.2: Spar100-025: results of final bounds for k-means and feasibility selection
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Cut round Rf1 k=500 k=100 k=10

0 15415.75 15415.75 15415.75 15415.75

1 15081.65 15035.83 15006.29 15041.87

2 14979.68 14844.67 14631.39 14787.48

3 14884.03 14480.62 14280.35 14542.02

4 14704.07 14144.99 13944.18 14280.80

5 14575.16 13781.41 13623.58 14077.41

6 14348.66 13496.21 13326.05 13896.32

7 14088.83 13184.66 12997.00 13701.28

8 13776.95 12857.97 12785.68 13391.03

9 13597.03 12682.52 12577.88 13171.80

10 13443.18 12386.25 12325.49 13042.10

11 13151.17 12233.28 12067.47 12873.93

12 12918.35 12021.74 11841.14 12621.75

13 12681.91 11819.59 11621.81 12384.42

14 12419.33 11590.62 11376.44 12245.36

15 12212.77 11406.82 11159.27 12088.16

16 12067.98 11248.50 10960.93 11890.67

17 11964.32 10994.36 10714.84 11639.10

18 11756.22 10750.87 10444.70 11386.96

19 11538.03 10510.91 10253.66 11129.09

20 11316.75 10304.21 10052.83 10883.26

Table B.3: Spar100-050: results of final bounds for k-means and feasibility selection
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Cut round Rf1 k=500 k=100 k=10

0 23387.50 23387.50 23387.50 23387.50

1 23107.85 22847.41 22880.77 23020.57

2 22847.55 22724.86 22688.83 22845.05

3 22750.46 22510.99 22338.17 22662.14

4 22585.55 22181.46 22031.79 22463.19

5 22504.74 21898.44 21692.25 22273.51

6 22347.31 21713.49 21450.72 22114.94

7 22283.33 21366.96 21190.89 22011.46

8 22241.88 21112.13 20950.80 21901.11

9 22140.68 20941.92 20701.91 21794.14

10 22067.83 20741.63 20439.04 21655.68

11 21841.09 20437.48 20146.47 21400.22

12 21682.13 20303.21 19923.28 21191.04

13 21491.96 20093.68 19718.37 21046.79

14 21426.72 19948.83 19514.87 20875.74

15 21356.63 19855.58 19309.20 20737.05

16 21039.17 19637.99 18973.64 20599.22

17 20889.98 19394.80 18741.57 20304.00

18 20809.98 19242.16 18547.34 20180.86

19 20592.02 19107.97 18416.98 19887.56

20 20546.51 18750.62 18192.70 19587.31

Table B.4: Spar100-075: results of final bounds for k-means and feasibility selection
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Cut round Rf2 k=500 k=100 k=10 convergence limit

0 15415.75 15415.75 15415.75 15415.75 8316.57

1 15022.34 14922.47 14862.54 14961.85 8316.57

2 14504.57 14761.21 14521.33 14801.72 8316.57

3 13755.78 14434.97 14224.51 14596.88 8316.57

4 13120.75 14019.14 13910.70 14325.90 8316.57

5 12552.75 13761.89 13602.85 14078.61 8316.57

6 12103.77 13456.12 13329.95 13913.24 8316.57

7 11707.61 13160.72 13068.14 13645.87 8316.57

8 11255.63 12958.55 12797.36 13429.38 8316.57

9 10891.06 12748.34 12503.27 13243.87 8316.57

10 10565.05 12496.94 12232.29 12986.36 8316.57

11 10252.41 12264.32 12000.39 12824.19 8316.57

12 9961.52 12058.26 11699.78 12596.86 8316.57

13 9766.39 11871.23 11438.49 12474.33 8316.57

14 9562.02 11695.94 11235.00 12265.41 8316.57

15 9418.09 11462.66 11015.80 12059.13 8316.57

16 9281.67 11223.81 10767.57 11783.19 8316.57

17 9164.75 10933.93 10558.48 11538.63 8316.57

18 9072.30 10759.29 10332.64 11263.05 8316.57

19 8985.87 10549.63 10142.60 11044.02 8316.57

20 8920.53 10291.23 9946.34 10812.80 8316.57

Table B.5: Spar100-050: results of final bounds for k-means and combined selection
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B.2 Round of experiments 2

Cut round k=500 k=100 k=10

0 15415.75 15415.75 15415.75

1 15054.92 15028.93 15038.42

2 14896.46 14765.39 14876.91

3 14657.64 14335.63 14607.16

4 14294.18 13967.27 14367.28

5 13920.20 13691.86 14051.64

6 13657.61 13386.34 13845.62

7 13344.07 13166.58 13617.15

8 13073.73 12883.03 13312.10

9 12803.36 12626.70 13018.71

10 12537.86 12395.72 12784.72

11 12292.65 12160.46 12502.11

12 12018.59 11868.93 12241.08

13 11782.68 11629.31 11985.81

14 11606.50 11415.92 11778.63

15 11404.31 11192.77 11528.64

16 11196.77 10923.92 11267.00

17 10992.78 10672.72 11077.53

18 10763.58 10416.78 10850.69

19 10541.85 10184.94 10697.08

20 10326.42 9961.00 10523.46

Table B.6: Spar100-050: results of final bounds for Agglomerative clustering and feasibility

selection
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B.3 Round of experiments 3

Cut round ‖N‖af + C1 ‖N‖af + C2a ‖N‖af + C2b

0 7210.75 7210.75 7210.75

1 6695.94 6977.97 6808.25

2 6261.77 6856.28 6481.93

3 5863.20 6599.63 6214.25

4 5579.96 6362.26 5906.26

5 5285.95 6078.78 5635.32

6 5039.58 5823.97 5341.10

7 4870.04 5556.07 5119.10

8 4648.86 5355.08 4924.40

9 4500.15 5110.96 4734.91

10 4408.54 4940.53 4564.17

11 4344.91 4791.03 4439.02

12 4287.02 4606.23 4349.65

13 4246.29 4481.90 4298.03

14 4220.49 4398.99 4251.79

15 4194.52 4340.29 4217.19

16 4175.06 4294.84 4195.15

17 4157.16 4256.60 4176.00

18 4144.78 4227.00 4159.30

19 4135.79 4202.48 4147.03

20 4129.59 4181.87 4137.39

Table B.7: Spar070-050: results of final bounds for affinity norm and feasibility selection
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Cut round ‖N‖af + C1 ‖N‖af + C2a ‖N‖af + C2b

0 7660.75 7660.75 7660.75

1 7196.37 7355.64 7355.64

2 6760.89 6938.55 6938.55

3 6344.32 6627.57 6627.57

4 5998.35 6311.99 6301.71

5 5834.66 6072.48 5998.69

6 5522.50 5791.40 5831.95

7 5371.36 5639.83 5521.47

8 5271.59 5384.04 5368.28

9 5207.89 5291.02 5274.90

10 5160.17 5220.57 5203.25

11 5116.80 5176.07 5149.44

12 5084.73 5129.11 5112.30

13 5060.16 5097.53 5081.73

14 5040.59 5066.84 5057.20

15 5020.43 5045.22 5041.97

16 5009.57 5027.70 5027.62

17 5000.57 5014.50 5014.95

18 4994.51 5003.98 5005.08

19 4987.85 4997.13 4997.00

20 4982.87 4990.46 4990.58

Table B.8: Spar100-025: results of final bounds for affinity norm and feasibility selection
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Cut round ‖N‖af + C1 ‖N‖af + C2a ‖N‖af + C2b

0 15415.75 15415.75 15415.75

1 14893.18 14884.56 14884.56

2 14402.48 14524.68 14524.68

3 14040.02 14147.93 14147.93

4 13682.69 13834.61 13834.61

5 13347.80 13614.44 13614.44

6 13051.66 13379.48 13379.48

7 12752.42 13088.45 13078.87

8 12366.20 12837.69 12838.07

9 12173.37 12576.56 12609.73

10 11991.53 12360.27 12352.06

11 11699.70 12126.65 12039.84

12 11437.08 11890.20 11748.82

13 11108.38 11572.48 11497.85

14 10820.26 11329.00 11266.51

15 10596.90 11076.72 11047.46

16 10376.41 10820.23 10830.08

17 10183.11 10591.77 10594.83

18 9997.80 10327.94 10327.09

19 9715.59 10161.03 10131.11

20 9511.89 10027.75 10016.45

Table B.9: Spar100-050: results of final bounds for affinity norm and feasibility selection

98



Cut round ‖N‖af + C1 ‖N‖af + C2a ‖N‖af + C2b

0 23387.50 23387.50 23387.50

1 22703.73 22889.22 22889.22

2 22475.00 22808.95 22808.95

3 22049.76 22641.74 22641.74

4 21651.25 22321.64 22321.64

5 21330.68 22020.21 22020.21

6 20842.34 21779.13 21750.84

7 20526.00 21356.72 21746.91

8 20291.61 21089.46 21453.34

9 19984.87 20785.58 21158.94

10 19750.75 20444.69 20881.43

11 19493.06 20157.31 20677.81

12 19095.75 19920.35 20434.71

13 18722.82 19722.86 20101.45

14 18432.75 19454.13 19799.89

15 18117.38 19220.95 19590.85

16 17844.59 18994.51 19357.91

17 17543.99 18762.72 19073.72

18 17241.72 18410.38 18861.15

19 16970.70 18034.30 18607.29

20 16664.29 17723.81 18361.03

Table B.10: Spar100-075: results of final bounds for affinity norm and feasibility selection
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Cut round ‖N‖af + C1 ‖N‖af + C2a ‖N‖af + C2b

0 15415.75 15415.75 15415.75

1 14510.16 14756.99 14756.99

2 13326.24 13813.67 13823.91

3 12785.78 13166.13 13132.55

4 12277.67 12609.10 12614.25

5 11819.00 12130.36 12078.98

6 11427.83 11673.78 11670.19

7 11025.14 11277.67 11292.21

8 10717.50 10920.43 10886.69

9 10352.62 10593.18 10534.08

10 10060.63 10247.50 10217.52

11 9800.66 9985.00 9974.99

12 9582.20 9725.66 9735.57

13 9419.37 9540.88 9534.76

14 9269.66 9394.34 9392.41

15 9151.91 9259.00 9248.87

16 9048.42 9154.35 9133.05

17 8974.81 9034.92 9042.30

18 8916.46 8943.72 8959.71

19 8855.71 8880.50 8893.06

20 8800.60 8826.51 8826.48

Table B.11: Spar100-050: results of final bounds for affinity norm and combined selection
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B.4 Round of Experiments 4

Cut round Hybrid 1 Hybrid 2

0 7210.75 7210.75

1 6877.70 6709.07

2 6596.42 6302.42

3 6190.92 5964.34

4 5818.81 5639.02

5 5567.87 5344.14

6 5324.96 5079.39

7 5172.22 4896.65

8 5036.73 4735.06

9 4931.20 4614.70

10 4857.53 4506.53

11 4785.24 4434.31

12 4736.16 4383.18

13 4676.29 4338.71

14 4619.45 4296.46

15 4571.46 4266.04

16 4536.29 4237.25

17 4514.68 4217.26

18 4482.34 4199.06

19 4453.90 4184.03

20 4433.75 4170.51

Table B.12: Spar070-050: results of final bounds for Hybrid clustering and feasibility selec-

tion
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Cut round Hybrid 1 Hybrid 2

0 7660.75 7660.75

1 7410.52 7173.96

2 7053.32 6779.60

3 6701.78 6412.40

4 6424.81 6105.49

5 6224.42 5921.00

6 6051.49 5675.74

7 5858.07 5518.06

8 5702.67 5400.03

9 5590.29 5298.08

10 5508.17 5232.18

11 5450.43 5187.37

12 5414.40 5150.57

13 5362.48 5115.23

14 5319.74 5087.85

15 5279.84 5064.83

16 5253.57 5048.26

17 5227.77 5037.56

18 5204.71 5025.56

19 5189.26 5013.01

20 5173.88 5004.72

Table B.13: Spar100-025: results of final bounds for Hybrid clustering and feasibility selec-

tion
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Cut round Hybrid 1 Hybrid 2

0 15415.75 15415.75

1 15050.20 14873.15

2 14632.05 14387.20

3 14268.99 13899.32

4 13947.40 13533.41

5 13538.28 13230.05

6 13201.86 12893.73

7 12922.95 12585.55

8 12695.63 12245.34

9 12495.05 11977.29

10 12240.34 11696.29

11 12041.73 11443.90

12 11833.29 11227.19

13 11671.74 10946.09

14 11484.99 10676.54

15 11373.80 10454.45

16 11172.98 10249.72

17 11014.12 10053.68

18 10888.25 9863.37

19 10790.36 9704.32

20 10695.20 9554.82

Table B.14: Spar100-050: results of final bounds for Hybrid clustering and feasibility selec-

tion
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Cut round Hybrid 1 Hybrid 2

0 23387.50 23387.50

1 23008.22 22817.23

2 22792.58 22413.37

3 22377.57 21975.22

4 22013.24 21550.29

5 21659.04 21149.44

6 21307.55 20769.79

7 20982.14 20396.18

8 20764.82 19998.60

9 20515.28 19711.80

10 20272.81 19431.95

11 20115.67 19079.80

12 19996.49 18784.57

13 19803.69 18532.08

14 19605.58 18181.35

15 19440.03 17888.89

16 19271.74 17597.55

17 19097.76 17346.54

18 18956.81 17124.63

19 18799.89 16901.52

20 18644.58 16619.67

Table B.15: Spar100-075: results of final bounds for Hybrid clustering and feasibility selec-

tion
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