oclude and OCLMan

tools to profile and predict the dynamic behavior of standalone OpenCL kernels based on compiling and machine learning techniques

Sotirios Niarchos

School of Electrical and Computer Engineering National Technical University of Athens Division of Computer Science

Computer Systems Laboratory (CSLab)

July 29, 2020

1 Introduction

- It is a heterogeneous world
- Utilizing diversity
- Related work

2 oclude

- The need for a profiler
- A glimpse of OpenCL
- An overview of oclude

3 OCLBoi

- Towards the instcounts model
- The design of OCLBoi
- OCLBoi and the Rodinia Suite

4 OCLMan

- A boy needs a father
- The design of OCLMan
- Evaluating OCLMan

5 Future work

oclude OCLBoi OCLMan Future work It is a heterogeneous world Utilizing diversity Related work

What is heterogeneous computing?

It is a heterogeneous world Utilizing diversity Related work

What is heterogeneous computing?

Towards a definition (1/2)

"Todays computing environments are becoming more multifaceted, exploiting the capabilities of a range of **multi-core microprocessors**, central processing units (**CPUs**), digital signal processors, reconfigurable hardware (**FPGAs**), and graphic processing units (**GPUs**)."¹

Introduction oclude OCLBoi

OCLMan Future work It is a heterogeneous world Utilizing diversity Related work

What is heterogeneous computing?

GPU

Figure: A simple heterogeneous system¹

¹ Ravi, Vignesh et al. *Proceedings of the International Conference on Supercomputing.* "Compiler and runtime support for enabling generalized reduction computations on heterogeneous parallel configurations". 2010.

It is a heterogeneous world Utilizing diversity Related work

What is heterogeneous computing?

Towards a definition (2/2)

"The definition of this term is quite straightforward: executing programs on a computing platform with computing nodes of different characteristics.

What is tricky is whether this is a good thing or a bad thing."¹

¹ Zahran, Mohamed. *Heterogeneous Computing: Hardware & Software Perspectives*. 2019.

oclude and OCLMan

Sotirios Niarchos

It is a heterogeneous world Utilizing diversity Related work

What is heterogeneous computing?

Towards a definition (2/2)

"The definition of this term is quite straightforward: executing programs on a computing platform with computing nodes of different characteristics.

What is tricky is whether this is a good thing or a bad thing."¹

¹ Zahran, Mohamed. *Heterogeneous Computing: Hardware & Software Perspectives*. 2019.

oclude and OCLMan

Sotirios Niarchos

oclude OCLBoi OCLMan Future work It is a heterogeneous world Utilizing diversity Related work

Valuable potential...

"Heterogeneous computer systems [...] add richness by allowing the programmer to select the best architecture to execute the task at hand or to choose the right task to make optimal use of a given architecture"²

oclude OCLBoi OCLMan Future work It is a heterogeneous world Utilizing diversity Related work

Valuable potential...

"Heterogeneous computer systems [...] add richness by allowing the programmer to select the best architecture to execute the task at hand or to choose the right task to make optimal use of a given architecture"²

oclude OCLBoi OCLMan Future work It is a heterogeneous world Utilizing diversity Related work

Valuable potential...

"Heterogeneous computer systems [...] add richness by allowing the programmer to select the best architecture to execute the task at hand or to choose the right task to make optimal use of a given architecture"²

oclude OCLBoi OCLMan Future work It is a heterogeneous world Utilizing diversity Related work

... if we learn how to use it

• How to select the best architecture for a given task?

oclude OCLBoi OCLMan Future work It is a heterogeneous world Utilizing diversity Related work

- How to select the best architecture for a given task?
- How to select the right task for a given architecture?

oclude OCLBoi OCLMan Future work It is a heterogeneous world Utilizing diversity Related work

... if we learn how to use it

How to select the best architecture for a given task?
How to select the right task for a given architecture?
Non-trivial tasks...

Introduction oclude OCLBoi

OCLMan Future work It is a heterogeneous world Utilizing diversity Related work

... if we learn how to use it

- How to select the best architecture for a given task?
- How to select the right task for a given architecture?

Non-trivial tasks... unless we manage to predict the **execution time** of a *specific* application on a *specific* processing unit

Introduction oclude OCLBoi

Future work

It is a heterogeneous world Utilizing diversity Related work

... if we learn how to use it

Related literature agrees on the necessity of execution time prediction...

It is a heterogeneous world Utilizing diversity Related work

- Related literature agrees on the necessity of execution time prediction...
- ...but has not agreed on **how** to do it.

It is a heterogeneous world Utilizing diversity Related work

- Related literature agrees on the necessity of execution time prediction...
- ...but has not agreed on **how** to do it.
- Our work is a novel approach on this subject

It is a heterogeneous world Utilizing diversity Related work

- Related literature agrees on the necessity of execution time prediction...
- ...but has not agreed on how to do it.
- Our work is a novel approach on this subject
- We will be working with the OpenCL framework for heterogeneous computation...

It is a heterogeneous world Utilizing diversity Related work

- Related literature agrees on the necessity of execution time prediction...
- ...but has not agreed on how to do it.
- Our work is a novel approach on this subject
- We will be working with the OpenCL framework for heterogeneous computation...
- ... but we will not be limited by it!

oclude OCLBoi OCLMan Future work It is a heterogeneous world Utilizing diversity Related work

The dominant approach

What to use and how to use it in order to predict execution time?

It is a heterogeneous world Utilizing diversity Related work

The dominant approach

What to use and how to use it in order to predict execution time?

static source code features (e.g. # of instructions, # of basic blocks etc.)^a

^a Wen, Yuan, Wang, Zheng, and O'Boyle, Michael. "Smart multi-task scheduling for OpenCL programs on CPU/GPU heterogeneous platforms". 2014.

^b Heckmann, Reinhold and Ferdinand, Christian. *International Federation for Information Processing Digital Library; Building the Information Society;* "aiT: **CSLab** Worst-Case Execution Time Prediction by Static Program Analysis". 2004.

It is a heterogeneous world Utilizing diversity Related work

The dominant approach

What to use and how to use it in order to predict execution time?

- static source code features (e.g. # of instructions, # of basic blocks etc.)^a
- heavy source code analysis (e.g. loop bound analysis, path analysis etc.)^b

 $^{\rm a}$ Wen, Yuan, Wang, Zheng, and O'Boyle, Michael. "Smart multi-task scheduling for OpenCL programs on CPU/GPU heterogeneous platforms". 2014.

^b Heckmann, Reinhold and Ferdinand, Christian. *International Federation for Information Processing Digital Library; Building the Information Society;* "aiT: **CSLab** Worst-Case Execution Time Prediction by Static Program Analysis". 2004.

It is a heterogeneous world Utilizing diversity Related work

The dominant approach

What to use and how to use it in order to predict execution time?

- However, building analytical models has been deemed obsolete^a, due to:
 - 1 the complexity of the process
 - 2 over-simplistic assumptions that are needed

^a Huang, Ling et al. "Predicting Execution Time of Computer Programs Using Sparse Polynomial Regression". 2010.

oclude OCLBoi OCLMan Future work It is a heterogeneous world Utilizing diversity Related work

An alternative approach

What to use and how to use it in order to predict execution time?

oclude OCLBoi OCLMan Future work It is a heterogeneous world Utilizing diversity Related work

An alternative approach

What to use and how to use it in order to predict execution time?

■ **dynamic/runtime** program features (e.g. # of **executed** instructions)

oclude OCLBoi OCLMan Future work It is a heterogeneous world Utilizing diversity Related work

An alternative approach

What to use and how to use it in order to predict execution time?

- **dynamic/runtime** program features (e.g. # of **executed** instructions)
 - implicitly combine static features and source code analysis

oclude OCLBoi OCLMan Future work It is a heterogeneous world Utilizing diversity Related work

An alternative approach

What to use and how to use it in order to predict execution time?

- **dynamic/runtime** program features (e.g. # of **executed** instructions)
 - **implicitly combine** static features and source code analysis
 - uncover the runtime behavior of the application

oclude OCLBoi OCLMan Future work It is a heterogeneous world Utilizing diversity Related work

An alternative approach

How to extract dynamic features from an application?

³ Yang, L. T., Xiaosong Ma, and Mueller, F. "Cross-Platform Performance Prediction of Parallel Applications Using Partial Execution". 2005.

⁴ Chun, Byung-Gon et al. "Mantis: Predicting System Performance through Program Analysis and Modeling". 2010. Introduction oclude OCLBoi

Future work

OCI Man

It is a heterogeneous world Utilizing diversity Related work

An alternative approach

How to extract dynamic features from an application?

partial execution³: "very short testdrives of applications on multiple candidate platforms to quickly derive the execution time of much longer runs."

³ Yang, L. T., Xiaosong Ma, and Mueller, F. "Cross-Platform Performance Prediction of Parallel Applications Using Partial Execution". 2005.

⁴ Chun, Byung-Gon et al. "Mantis: Predicting System Performance through Program Analysis and Modeling". 2010.

It is a heterogeneous world Utilizing diversity Related work

An alternative approach

How to extract dynamic features from an application?

- partial execution³: "very short testdrives of applications on multiple candidate platforms to quickly derive the execution time of much longer runs."
- instrumentation and feature evaluators⁴: "automatically extract small code snippets (feature evaluators) that compute feature values from the instrumented program."

³ Yang, L. T., Xiaosong Ma, and Mueller, F. "Cross-Platform Performance Prediction of Parallel Applications Using Partial Execution". 2005.

⁴ Chun, Byung-Gon et al. "Mantis: Predicting System Performance through Program Analysis and Modeling". 2010.

The need for a profiler A glimpse of OpenCL An overview of oclude

From input size to execution time

dynamic features $\longmapsto t_{exec}$

The need for a profiler A glimpse of OpenCL An overview of oclude

From input size to execution time

input size \mapsto dynamic features \mapsto t_{exec}

The need for a profiler A glimpse of OpenCL An overview of oclude

From input size to execution time

input size \mapsto instcounts \mapsto t_{exec}

The need for a profiler A glimpse of OpenCL An overview of oclude

From input size to execution time

$gsize \mapsto instcounts \mapsto t_{exec}$

The need for a profiler A glimpse of OpenCL An overview of oclude

Decoupling input size and execution time

- gsize → instcounts : application-specific, hardware-agnostic
- *instcounts* \mapsto *t_{exec}* : application-agnostic, hardware-specific

The need for a profiler A glimpse of OpenCL An overview of oclude

Decoupling input size and execution time

Main goal

Predict instcounts from gsize for a given OpenCL kernel

The need for a profiler A glimpse of OpenCL An overview of oclude

Decoupling input size and execution time

Main goal

Predict instcounts from gsize for a given OpenCL kernel

The need for a profiler A glimpse of OpenCL An overview of oclude

Decoupling input size and execution time

Main goal

Predict instcounts from gsize for a given OpenCL kernel

 Something is needed to extract dynamic information from the OpenCL kernel in order to train OCLBoi, the instcounts model...

The need for a profiler A glimpse of OpenCL An overview of oclude

Decoupling input size and execution time

Main goal

Predict instcounts from gsize for a given OpenCL kernel

 Something is needed to extract dynamic information from the OpenCL kernel in order to train OCLBoi, the instcounts model...

The need for a profiler A glimpse of OpenCL An overview of oclude

Decoupling input size and execution time

Main goal

Predict instcounts from gsize for a given OpenCL kernel

- Something is needed to extract dynamic information from the OpenCL kernel in order to train OCLBoi, the instcounts model...
- ...and that something is **oclude**.

The need for a profiler A glimpse of OpenCL An overview of oclude

Decoupling input size and execution time

Main goal

Predict instcounts from gsize for a given OpenCL kernel

- Something is needed to extract dynamic information from the OpenCL kernel in order to train OCLBoi, the instcounts model...
- ...and that something is oclude.

The need for a profiler A glimpse of OpenCL An overview of oclude

Decoupling input size and execution time

Main goal

Predict instcounts from gsize for a given OpenCL kernel

 Something is needed to extract dynamic information from the OpenCL kernel in order to train OCLBoi, the instcounts model...

The need for a profiler A glimpse of OpenCL An overview of oclude

 OpenCL is a specification for heterogeneous computation by Khronos Group Inc.

The need for a profiler A glimpse of OpenCL An overview of oclude

- OpenCL is a specification for heterogeneous computation by Khronos Group Inc.
- OpenCL proposes:
 - (to the users) a way to design, create and run applications on parallel/heterogeneous systems
 - (to hardware vendors) protocols that processing units (CPUs, GPUs, etc) must follow in order to facilitate the above

The need for a profiler A glimpse of OpenCL An overview of oclude

- OpenCL is a specification for heterogeneous computation by Khronos Group Inc.
- OpenCL proposes:
 - (to the users) a way to design, create and run applications on parallel/heterogeneous systems
 - (to hardware vendors) protocols that processing units (CPUs, GPUs, etc) must follow in order to facilitate the above
- it is **not** a specific implementation

The need for a profiler A glimpse of OpenCL An overview of oclude

The OpenCL execution model

[©]Copyright Khronos Group, 2012

The need for a profiler A glimpse of OpenCL An overview of oclude

The OpenCL task grid

[©]Copyright Khronos Group, 2012

The need for a profiler A glimpse of OpenCL An overview of oclude

The OpenCL memory model

Private Memory

per work-item

Local Memory

- shared within a workgroup
- Global/Constant Memory
 - visible to all workgroups

Host Memory

on the CPU

 $^{\odot}$ Copyright Khronos Group, 2012

The need for a profiler A glimpse of OpenCL An overview of oclude

A complete overview of the OpenCL workflow

[©]Copyright Khronos Group, 2012

The need for a profiler A glimpse of OpenCL An overview of oclude

An overview of oclude

What it is

- An open-source standalone OpenCL kernel runner and profiler⁵
- The most technically challenging component of our work
- Python 3, C++
- Ways to use it:
 - 1 As a command line utility on Unix-like OSs
 - 2 As a Python package

⁵https://github.com/zehanort/oclude

The need for a profiler A glimpse of OpenCL An overview of oclude

An overview of oclude

What it does

In our work, dynamic features = executed LLVM instructions (instcounts)

⁵https://github.com/zehanort/rvg

⁶ Klöckner, Andreas et al. *Parallel Computing*. "PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation". 2012.

The need for a profiler A glimpse of OpenCL An overview of oclude

An overview of oclude

What it does

- In our work, dynamic features = executed LLVM instructions (instcounts)
- oclude workflow

⁵https://github.com/zehanort/rvg

⁶ Klöckner, Andreas et al. *Parallel Computing*. "PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation". 2012.

The need for a profiler A glimpse of OpenCL An overview of oclude

An overview of oclude

What it does

- In our work, dynamic features = executed LLVM instructions (instcounts)
- oclude workflow
 - **I** compilation to **LLVM bitcode** and extraction of (static) instruction counts

⁵https://github.com/zehanort/rvg

⁶ Klöckner, Andreas et al. *Parallel Computing*. "PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation". 2012.

The need for a profiler A glimpse of OpenCL An overview of oclude

An overview of oclude

What it does

- In our work, dynamic features = executed LLVM instructions (instcounts)
- oclude workflow
 - compilation to LLVM bitcode and extraction of (static) instruction counts
 - **2** source code instrumentation (make the kernel count the instructions it executes)

⁵https://github.com/zehanort/rvg

⁶ Klöckner, Andreas et al. *Parallel Computing*. "PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation". 2012.

The need for a profiler A glimpse of OpenCL An overview of oclude

An overview of oclude

What it does

- In our work, dynamic features = executed LLVM instructions (instcounts)
- oclude workflow
 - compilation to LLVM bitcode and extraction of (static) instruction counts
 - **2 source code instrumentation** (*make the kernel count the instructions it executes*)
 - **3** random argument initialization⁵ based on **gsize**

⁵https://github.com/zehanort/rvg

⁶ Klöckner, Andreas et al. *Parallel Computing*. "PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation". 2012.

The need for a profiler A glimpse of OpenCL An overview of oclude

An overview of oclude

What it does

- In our work, dynamic features = executed LLVM instructions (instcounts)
- oclude workflow
 - compilation to LLVM bitcode and extraction of (static) instruction counts
 - **2** source code instrumentation (make the kernel count the instructions it executes)
 - **3** random argument initialization⁵ based on **gsize**
 - 4 kernel execution through the **PyOpenCL API**⁶

⁵https://github.com/zehanort/rvg

⁶ Klöckner, Andreas et al. *Parallel Computing*. "PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation". 2012.

The need for a profiler A glimpse of OpenCL An overview of oclude

An overview of oclude

An example of usage

```
$ oclude -f com_dwt.cl -k c_CopySrcToComponents -g 1024 -it
... (info on standard error) ...
Instructions executed for kernel 'c_CopySrcToComponents':
           20480 - load private
           14336 - alloca
           14336 - store private
           12288 - add
           11264 - mul
            9216 - getelementptr
            9216 - sext
            4096 - call
            3072 - load global
            3072 - load local
            3072 - store local
            3072 - zext
            2048 - trunc
            1024 - ret
            1024 - hr
            1024 - icmp
Time measurement info regarding the execution for kernel 'c_CopySrcToComponents' (in milliseconds):
hostcode - 7,42030143737793
                                                                                                 CSLab
  device - 5.3919999999999995
transfer - 2.0283014373779302
```

The need for a profiler A glimpse of OpenCL An overview of oclude

An overview of oclude

Figure: oclude UML component diagram

Sotirios Niarchos

The need for a profiler A glimpse of OpenCL An overview of oclude

Before and after instrumentation

```
__kernel void
vad(__global int *a,
    __global int *b,
    __global int *c) {
    int i = get_global_id(0);
    c[i] = a[i] + b[i];
}
```

```
__kernel void
vadd( global int *a.
     __global int *b,
     __global int *c,
     local ulong *ocludeHiddenCounterLocal.
     __global ulong *ocludeHiddenCounterGlobal) {
  if (get local id(0) == 0)
    for (int i = 0: i < 73; i++)
    ocludeHiddenCounterLocal[i] = 0;
  barrier(CLK_GLOBAL_MEM_FENCE);
  /* alloca */
  atom_add(& ocludeHiddenCounterLocal[24]. 6):
  /* store private */
  atom add(& ocludeHiddenCounterLocal[30], 6):
  int i = get global id(0):
  c[i] = a[i] + b[i];
  barrier(CLK_GLOBAL_MEM_FENCE);
  if (get local id(0) == 0)
    for (int i = 0; i < 73; i++)
    atom_add(& ocludeHiddenCounterGlobal[i].
             ocludeHiddenCounterLocal[i]):
}
oclude and OCI Man
```

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

A quick reminder

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

A quick reminder

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

Profiling kernels with oclude

The experimental process

We worked with the OpenCL kernels of the Rodinia Benchmark Suite⁷

⁷ Che, S. et al. "Rodinia: A benchmark suite for heterogeneous computing". 2009.

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

Profiling kernels with oclude

The experimental process

- We worked with the OpenCL kernels of the Rodinia Benchmark Suite⁷
- We profiled each kernel for a range of gsizes

⁷ Che, S. et al. "Rodinia: A benchmark suite for heterogeneous computing". 2009.

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

Profiling kernels with oclude

The experimental process

- We worked with the OpenCL kernels of the Rodinia Benchmark Suite⁷
- We profiled each kernel for a range of gsizes
- We took 100 samples for each gsize value

⁷ Che, S. et al. "Rodinia: A benchmark suite for heterogeneous computing". 2009.

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

Profiling kernels with oclude

■ Why 100 samples?

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

Exploratory data analysis on Rodinia measurements

"Profilability" of rodinia OpenCL kernels

relatively fast "unprofilable" relatively slow

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

Exploratory data analysis on Rodinia measurements

Some "relatively fast" kernels

Sotirios Niarchos

oclude and OCLMan

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

Exploratory data analysis on Rodinia measurements

Some "relatively slow" kernels

Sotirios Niarchos

oclude and OCLMan

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

Exploratory data analysis on Rodinia measurements

Grouping of "profilable" rodinia OpenCL kernels

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

Exploratory data analysis on Rodinia measurements

Therefore, can we estimate the nature of the relationship between **gsize** and **instcounts**?

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

Exploratory data analysis on Rodinia measurements

Therefore, can we estimate the nature of the relationship between **gsize** and **instcounts**?

- "relatively fast" \rightarrow linear relationship
- \blacksquare "relatively slow" \rightarrow polynomial relationship up to degree 2

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

The design of OCLBoi

 OCLBoi ("OpenCL, But One In-particular") is our instcounts model

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

- OCLBoi ("OpenCL, But One In-particular") is our instcounts model
- kernel-specific (one in particular!), hardware-agnostic

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

- OCLBoi ("OpenCL, But One In-particular") is our instcounts model
- kernel-specific (one in particular!), hardware-agnostic
- predicts instcounts based on a gsize value

Towards the instcounts model **The design of OCLBoi** OCLBoi and the Rodinia Suite

- OCLBoi ("OpenCL, But One In-particular") is our instcounts model
- kernel-specific (one in particular!), hardware-agnostic
- predicts instcounts based on a gsize value
- training and testing on the measurements extracted from Rodinia via oclude

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

- OCLBoi ("OpenCL, But One In-particular") is our instcounts model
- **kernel-specific** (one in particular!), **hardware-agnostic**
- predicts instcounts based on a gsize value
- training and testing on the measurements extracted from Rodinia via oclude
- the training/testing phase results in the selection (based on the R² score) of one of the following regression strategies:
 - 1 Linear regression
 - **2** Elastic Net regression (i.e. linear regression with L1 and L2 normalization penalties)
 - **3** Polynomial regression of degree 2 based on linear regression
 - 4 Polynomial regression of degree 2 based on Elastic Net regression

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

OCLBoi and the Rodinia Suite

Mean R2 score by regression model

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

OCLBoi and the Rodinia Suite

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

OCLBoi and the Rodinia Suite

• "relatively fast" \rightarrow **linear models** (60%)

• "relatively slow" \rightarrow polynomial models (71.4%)

OCLBoi OCLMan Future work

OCLBoi and the Rodinia Suite

OCLBoi in action

experimental counts 8000 predicted counts instruction count 6000 4000 2000 A load private Load global store private alloca store global getelementptr 6call trunc sext icmp LLVM instructions

gsize = 1024

Towards the instcounts model The design of OCLBoi OCLBoi and the Rodinia Suite

CSLab

OCLBoi in action

gsize = 8192

Sotirios Niarchos oclude and OCLMan

A boy needs a father The design of OCLMan Evaluating OCLMan

Now what?

• We have a predictor for the $gsize \mapsto instcounts$ relationship

A boy needs a father The design of OCLMan Evaluating OCLMan

- \blacksquare We have a predictor for the $\mathit{gsize}\longmapsto \mathit{instcounts}$ relationship
- What to do with it?

A boy needs a father The design of OCLMan Evaluating OCLMan

- We have a predictor for the $gsize \mapsto instcounts$ relationship
- What to do with it?
- How to prove that it was not all for nothing?

A boy needs a father The design of OCLMan Evaluating OCLMan

- \blacksquare We have a predictor for the gsize \longmapsto instcounts relationship
- What to do with it?
- How to prove that it was not all for nothing?

By predicting execution time!

A boy needs a father The design of OCLMan Evaluating OCLMan

A boy needs a father The design of OCLMan Evaluating OCLMan

A boy needs a father The design of OCLMan Evaluating OCLMan

A boy needs a father The design of OCLMan Evaluating OCLMan

A boy needs a father The design of OCLMan Evaluating OCLMan

OCLMan workflow

 OCLMan ("OpenCL Maybe? Approximately? Nope!") is our end-to-end execution time prediction methodology

A boy needs a father The design of OCLMan Evaluating OCLMan

OCLMan workflow

- OCLMan ("OpenCL Maybe? Approximately? Nope!") is our end-to-end execution time prediction methodology
- It consists of:
 - A kernel-specific, hardware-agnostic instcounts model (OCLBoi)
 - 2 A kernel-agnostic, hardware-specific time model

A boy needs a father The design of OCLMan Evaluating OCLMan

OCLMan workflow

- OCLMan ("OpenCL Maybe? Approximately? Nope!") is our end-to-end execution time prediction methodology
- It consists of:
 - A kernel-specific, hardware-agnostic instcounts model (OCLBoi)
 - 2 A kernel-agnostic, hardware-specific time model
- Training OCLMan

A boy needs a father The design of OCLMan Evaluating OCLMan

OCLMan workflow

- OCLMan ("OpenCL Maybe? Approximately? Nope!") is our end-to-end execution time prediction methodology
- It consists of:
 - A kernel-specific, hardware-agnostic instcounts model (OCLBoi)
 - 2 A kernel-agnostic, hardware-specific time model
- Training OCLMan
 - A regressor for the *instcounts* $\mapsto t_{exec}$ relationship is trained

A boy needs a father The design of OCLMan Evaluating OCLMan

OCLMan workflow

- OCLMan ("OpenCL Maybe? Approximately? Nope!") is our end-to-end execution time prediction methodology
- It consists of:
 - A kernel-specific, hardware-agnostic instcounts model (OCLBoi)
 - 2 A kernel-agnostic, hardware-specific time model

- A regressor for the *instcounts* $\mapsto t_{exec}$ relationship is trained
- This is the time model

A boy needs a father The design of OCLMan Evaluating OCLMan

OCLMan workflow

- OCLMan ("OpenCL Maybe? Approximately? Nope!") is our end-to-end execution time prediction methodology
- It consists of:
 - A kernel-specific, hardware-agnostic instcounts model (OCLBoi)
 - 2 A kernel-agnostic, hardware-specific time model

- A regressor for the *instcounts* $\mapsto t_{exec}$ relationship is trained
- This is the time model
- That's it; OCLMan is ready to predict

A boy needs a father The design of OCLMan Evaluating OCLMan

OCLMan workflow

- OCLMan ("OpenCL Maybe? Approximately? Nope!") is our end-to-end execution time prediction methodology
- It consists of:
 - A kernel-specific, hardware-agnostic instcounts model (OCLBoi)
 - 2 A kernel-agnostic, hardware-specific time model

- A regressor for the *instcounts* $\mapsto t_{exec}$ relationship is trained
- This is the time model
- That's it; OCLMan is ready to predict
- Using OCLMan to predict execution times

A boy needs a father The design of OCLMan Evaluating OCLMan

OCLMan workflow

- OCLMan ("OpenCL Maybe? Approximately? Nope!") is our end-to-end execution time prediction methodology
- It consists of:
 - A kernel-specific, hardware-agnostic instcounts model (OCLBoi)
 - 2 A kernel-agnostic, hardware-specific time model

- A regressor for the *instcounts* $\mapsto t_{exec}$ relationship is trained
- This is the time model
- That's it; OCLMan is ready to predict
- Using OCLMan to predict execution times
 - 1 A kernel and a gsize value are provided

A boy needs a father The design of OCLMan Evaluating OCLMan

OCLMan workflow

- OCLMan ("OpenCL Maybe? Approximately? Nope!") is our end-to-end execution time prediction methodology
- It consists of:
 - A kernel-specific, hardware-agnostic instcounts model (OCLBoi)
 - 2 A kernel-agnostic, hardware-specific time model

- A regressor for the *instcounts* $\mapsto t_{exec}$ relationship is trained
- This is the time model
- That's it; OCLMan is ready to predict
- Using OCLMan to predict execution times
 - 1 A kernel and a gsize value are provided
 - 2 A (kernel-specific) OCLBoi is trained on the fly

A boy needs a father The design of OCLMan Evaluating OCLMan

OCLMan workflow

- OCLMan ("OpenCL Maybe? Approximately? Nope!") is our end-to-end execution time prediction methodology
- It consists of:
 - A kernel-specific, hardware-agnostic instcounts model (OCLBoi)
 - 2 A kernel-agnostic, hardware-specific time model

- A regressor for the *instcounts* $\mapsto t_{exec}$ relationship is trained
- This is the time model
- That's it; OCLMan is ready to predict
- Using OCLMan to predict execution times
 - 1 A kernel and a gsize value are provided
 - 2 A (kernel-specific) OCLBoi is trained on the fly
 - 3 The input gsize value is fed into the pipeline...

A boy needs a father The design of OCLMan Evaluating OCLMan

OCLMan workflow

- OCLMan ("OpenCL Maybe? Approximately? Nope!") is our end-to-end execution time prediction methodology
- It consists of:
 - A kernel-specific, hardware-agnostic instcounts model (OCLBoi)
 - 2 A kernel-agnostic, hardware-specific time model

- A regressor for the *instcounts* $\mapsto t_{exec}$ relationship is trained
- This is the time model
- That's it; OCLMan is ready to predict
- Using OCLMan to predict execution times
 - 1 A kernel and a gsize value are provided
 - 2 A (kernel-specific) OCLBoi is trained on the fly
 - 3 The input gsize value is fed into the pipeline...
 - 4 ...and we have a prediction!

A boy needs a father The design of OCLMan Evaluating OCLMan

OCLMan training

Sotirios Niarchos oclude and OCLMan

A boy needs a father The design of OCLMan Evaluating OCLMan

OCLMan in action

An OCLMan example regarding kernel srad/kernel_gpu_opencl.cl/compress_kernel

A boy needs a father The design of OCLMan Evaluating OCLMan

The measure of a man

A boy needs a father The design of OCLMan Evaluating OCLMan

The measure of a man

How to evaluate OCLMan?

A boy needs a father The design of OCLMan Evaluating OCLMan

The measure of a man

- How to evaluate OCLMan?
- How to know if the dynamic information we extracted was worth it?

A boy needs a father The design of OCLMan Evaluating OCLMan

The measure of a man

- How to evaluate OCLMan?
- How to know if the dynamic information we extracted was worth it?
- How to know if we perform better than a static model?

A boy needs a father The design of OCLMan Evaluating OCLMan

The measure of a man

- How to evaluate OCLMan?
- How to know if the dynamic information we extracted was worth it?
- How to know if we perform better than a static model?

Let's build one!

A boy needs a father The design of OCLMan Evaluating OCLMan

The measure of a man

- How to evaluate OCLMan?
- How to know if the dynamic information we extracted was worth it?
- How to know if we perform better than a static model?

Let's build one!

To build it, we will simply **replace dynamic instcounts with the static ones** of the kernel

A boy needs a father The design of OCLMan Evaluating OCLMan

Assumptions for OCLBase

A boy needs a father The design of OCLMan Evaluating OCLMan

Assumptions for OCLBase

Assumption 1

t_{exec} is a linear function of instcounts

 $t_{exec} = t_{add} count_{add} + t_{sub} count_{sub} + t_{mul} count_{mul} + \dots$

A boy needs a father The design of OCLMan Evaluating OCLMan

Assumptions for OCLBase

Assumption 1

 t_{exec} is a linear function of instcounts

 $t_{exec} = t_{add} count_{add} + t_{sub} count_{sub} + t_{mul} count_{mul} + \dots$

Assumption 2

 $\begin{array}{c} \textit{gsize} \longmapsto \textit{instcounts} : (\textit{at most}) \textit{ polynomial}, \textit{ proven} \\ \textit{instcounts} \longmapsto t_{\textit{exec}} : \textit{linear}, \textit{ assumed} \\ & \Downarrow \\ \textit{gsize} \longmapsto t_{\textit{exec}} : (\textit{at most}) \textit{ polynomial}, \textit{ assumed} \end{array}$

CSLab

A boy needs a father The design of OCLMan Evaluating OCLMan

A boy needs a father The design of OCLMan Evaluating OCLMan

A boy needs a father The design of OCLMan Evaluating OCLMan

A boy needs a father The design of OCLMan Evaluating OCLMan

A boy needs a father The design of OCLMan Evaluating OCLMan

Final remarks

A boy needs a father The design of OCLMan Evaluating OCLMan

A boy needs a father The design of OCLMan Evaluating OCLMan

It was worth it.

 OCLMan was performing steadily better no matter the number of times we compared it to OCLBase or the train-test split of the kernels

■ 0.79 vs. -200.56 (!)

■ 0.47 vs. -1970.36 (!!)

A boy needs a father The design of OCLMan Evaluating OCLMan

- OCLMan was performing steadily better no matter the number of times we compared it to OCLBase or the train-test split of the kernels
 - 0.79 vs. -200.56 (!)
 - 0.47 vs. -1970.36 (!!)
- These results mean that:

A boy needs a father The design of OCLMan Evaluating OCLMan

- OCLMan was performing steadily better no matter the number of times we compared it to OCLBase or the train-test split of the kernels
 - 0.79 vs. -200.56 (!)
 - 0.47 vs. -1970.36 (!!)
- These results mean that:
 - oclude extracts valuable dynamic information that surpasses the static approach

A boy needs a father The design of OCLMan Evaluating OCLMan

- OCLMan was performing steadily better no matter the number of times we compared it to OCLBase or the train-test split of the kernels
 - 0.79 vs. -200.56 (!)
 - 0.47 vs. -1970.36 (!!)
- These results mean that:
 - oclude extracts valuable dynamic information that surpasses the static approach
 - OCLMan and its OCLBois manage to capture that additional information and make something useful out of it.

Future work

 oclude could be re-written to instrument some form of intermediate representation (IR) code (e.g. LLVM bitcode) instead of the source code

- oclude could be re-written to instrument some form of intermediate representation (IR) code (e.g. LLVM bitcode) instead of the source code
- turn OCLMan from a methodology into a toolkit.

- oclude could be re-written to instrument some form of intermediate representation (IR) code (e.g. LLVM bitcode) instead of the source code
- turn OCLMan from a **methodology** into a **toolkit**. E.g.:
 - test more regression models for the time model component

- oclude could be re-written to instrument some form of intermediate representation (IR) code (e.g. LLVM bitcode) instead of the source code
- turn OCLMan from a **methodology** into a **toolkit**. E.g.:
 - test more regression models for the time model component
 - take every new kernel into account (?)

- oclude could be re-written to instrument some form of intermediate representation (IR) code (e.g. LLVM bitcode) instead of the source code
- turn OCLMan from a **methodology** into a **toolkit**. E.g.:
 - test more regression models for the time model component
 - take every new kernel into account (?)
 - ...

- oclude could be re-written to instrument some form of intermediate representation (IR) code (e.g. LLVM bitcode) instead of the source code
- turn OCLMan from a methodology into a toolkit. E.g.:
 - test more regression models for the time model component
 - take every new kernel into account (?)
 - ...
- more kernels, more devices

Thank You!

