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ABSTRACT 

The understanding and modelling of hydrological extremes is a classic endeavor in 
hydrology and engineering, one which has received renewed interest during the past 
decades under climate change theory. Long before concerns regarding intensification 
of extremes became prominent, their inherent variability and uncertainty sufficed to 
make their understanding and modelling challenging. Stochastics, integrating 
probability, statistics, and the theory of stochastic processes, offer a uniquely 
appropriate and consistent framework to deal with the uncertain nature of extremes. 
While the marginal properties of extremes have been extensively studied in the 
literature, the same does not hold for their temporal properties, since extremes are 
traditionally treated as temporally independent. As a consequence, their temporal 
behaviours have been either largely overlooked, or approached via deterministic 
reasoning. Yet, there are both empirical and theoretical grounds that question the 
independence assumption, namely the fact that hydrological extremes originate from 
natural processes characterized by marked dependence at various scales.  

This Thesis aims to stochastically investigate and model the temporal variability and 
dependence of hydrological extremes from seasonal to climatic scales. The key 
innovation of the analysis is the identification of the temporal behaviours of the 
extremes and their stochastic linkage to the inherent properties of the parent 
hydrological process. Such an approach creates new perspectives on understanding 
the temporal dynamics of hydrological extremes that can significantly improve the 
perception of related risk over time and inform advanced mitigation practices. Two 
complementary objectives are pursued in this respect: (a) the characterization of their 
temporal properties, including the multi-scale dependence dynamics, from long-term 
hydrological records, and (b) the development of hydrologically relevant modelling 
frameworks that reproduce the observed extremal patterns. These objectives unfold at 
the following three scales: (i) the seasonal scale, pertaining to extreme rainfall 
seasonality and dependence dynamics of seasonal streamflow extremes, (ii) the annual 
scale, with respect to the propagation of long-term persistence, i.e. Hurst-Kolmogorov 
(HK) dynamics, from the parent process to the extremes and properties thereof, and 
last, (iii) the climatic-scale, regarding the theoretical and empirical basis of climatic 
projections of future rainfall.  
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ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ  

ΑΝΤΙΚΕΙΜΕΝΟ ΕΡΕΥΝΑΣ  

Ο όρος «ακρότατα» υποδηλώνει σπάνια και σημαντικά γεγονότα που είναι δύσκολο 
ή ακόμη και αδύνατο να προβλεφθούν με βάση την ιστορική εμπειρία. Κατ’ 
αναλογία, τα ακραία υδρολογικά φαινόμενα σχετίζονται με την εμφάνιση 
βροχοπτώσεων και απορροών ασυνήθιστα μεγάλης έντασης ή/και συχνότητας που 
αποτελούν εν δυνάμει κίνδυνο για την ανθρώπινη κοινωνία. Συγκεκριμένα, οι 
ακραίες βροχοπτώσεις και πλημμύρες μπορούν να βλάψουν το δομημένο 
περιβάλλον, συμπεριλαμβανομένων σημαντικών έργων υποδομής, να διαταράξουν 
την οικονομική και αγροκτηνοτροφική δραστηριότητα προκαλώντας οικονομικές 
απώλειες, ενώ αποτελούν άμεση απειλή για τη δημόσια υγεία. Έτσι, η κατανόησή 
τους που έχει ως στόχο το μετριασμό του σχετικού κινδύνου αποτελούσε ανέκαθεν 
πρόκληση, γενικά για την κοινωνία, και ειδικά για την επιστήμη. Τις τελευταίες 
δεκαετίες όμως, αυτή η πρόκληση έχει γίνει ακόμα μεγαλύτερη καθώς 
αμφισβητείται πλέον ριζικά η ίδια η επάρκεια της συμβατικής αντίληψης για τη 
διακινδύνευση (Hall et al., 2014). 

Από τη μία πλευρά, η παγκόσμια κάλυψη των καταστροφών από τα μέσα 
ενημέρωσης αύξησε τη διαθεσιμότητα παραδειγμάτων καταστροφικών 
υδρολογικών γεγονότων (Barredo, 2007), προκαλώντας ολοένα αυξανόμενες 
ανησυχίες σχετικά με την εντατικοποίηση των ακροτάτων. Οι ανησυχίες αυτές 
εντείνονται περαιτέρω  από τις προβλέψεις της θεωρίας της ανθρωπογενούς 
κλιματικής αλλαγής. Σύμφωνα με την τελευταία, οι αυξημένες ανθρωπογενείς 
εκπομπές αερίων θερμοκηπίου τις τελευταίες δεκαετίες έχουν προκαλέσει 
συστηματικές αλλαγές στη δυναμική του κλίματος που οδηγούν στη θέρμανση του 
πλανήτη και εντατικοποίηση του κύκλου του νερού (IPPC, 2014; Πέμπτη έκθεση 
αξιολόγησης AR5). Σε αυτή τη βάση, έχει υποστηριχθεί από μέρος της 
επιστημονικής κοινότητας ότι είναι αναγκαία μια ριζική αναδιατύπωση των 
υποθέσεων και των μεθόδων μοντελοποίησης προκειμένου να συμπεριληφθεί 
αιτιοκρατικά η επίδραση των νέων ανθρωπογενών παραγόντων (Milly et al., 2008). 
Αν και αυτή η θέση έχει επικριθεί σε μεγάλο βαθμό στην υδρολογία (Cohn and Lins, 
2005; Montanari and Koutsoyiannis, 2014; Koutsoyiannis and Montanari, 2015; 
Serinaldi et al., 2018; Koutsoyiannis, 2020a), οι ανησυχίες σχετικά με την 
εντατικοποίηση των ακροτάτων στο μέλλον είναι κυρίαρχες στη σχετική 
βιβλιογραφία. 

Από την άλλη πλευρά, είναι ευρέως παραδεκτό ότι η δυναμική της 
διακινδύνευσης έχει αλλάξει κατά τον περασμένο αιώνα ως αποτέλεσμα 
συστηματικών αλλαγών στην έκθεση του ανθρώπου στον υδρολογικό κίνδυνο. Για 
παράδειγμα, η έκθεση του ανθρώπου στον  υδρολογικών κίνδυνο έχει αυξηθεί 
διαχρονικά ως αποτέλεσμα της ανθρώπινης τάσης για οργάνωση της ζωής στην 
εγγύτητα υδρολογικών δικτύων (Ceola et al., 2014). Ταυτόχρονα, η ευπάθεια έναντι 
ακραίων υδρολογικών γεγονότων έχει επίσης αυξηθεί λόγω της υψηλής 
πυκνότητας πληθυσμού στα αστικά κέντρα και της άναρχης αστικοποίησης. Μόνο 
στην Ελλάδα, πάνω από 200 θάνατοι λόγω ακραίων πλημμυρών έχουν αναφερθεί 
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από το 1960, με την πλειοψηφία τους να συγκεντρώνεται στην έντονα 
αστικοποιημένη περιοχή της Αττικής.  

Η υπεκτίμηση τόσο του μεγέθους όσο και της συχνότητας εμφάνισης των 
ακροτάτων είναι, δυστυχώς, συχνός παράγοντας σε περιπτώσεις υδρολογικών 
καταστροφών άνευ προηγουμένου (Mimikou and Koutsoyiannis, 1995; Coles et al., 
2003; Koutsoyiannis et al., 2012; Ntigkakis et al., 2018). Ανησυχίες εκφράζονται 
επίσης ως προς το ενδεχόμενο υπεκτίμησης της πιθανότητας αστοχίας υποδομών 
και έργων μεγάλης κλίμακας από ακραίες βροχοπτώσεις και πλημμύρες, καθώς 
πλήθος σχετικών αστοχιών έχει αναφερθεί τα τελευταία χρόνια. Συγκεκριμένα, 
ακραία υδρολογικά φαινόμενα έχουν προκαλέσει καταστροφές φραγμάτων, 
καταρρεύσεις γεφυρών και σοβαρές φθορές στις υποδομές μεταφορών, 
συμπεριλαμβανομένων δρόμων και σιδηροδρόμων, προξενώντας τεράστιες 
οικονομικές ζημιές και ανθρώπινες απώλειες (Wardhana και Hadipriono, 2003; 
Serra-Llobet et al., 2013; Koskinas et al. , 2019; Kellermann et al., 2019; Pizarro et al., 
2020). 

Είναι φανερό ότι η αναβάθμιση του υδρολογικού σχεδιασμού έναντι ακραίων 
γεγονότων αποτελεί πλέον επιτακτική ανάγκη υψηλής κοινωνικής 
προτεραιότητας. Από αυτήν την άποψη, υποστηρίζεται ότι, προτού εξετάσουμε την 
επίδραση παγκόσμιων τάσεων ή εξωτερικών παραγόντων, είναι κρίσιμο να 
βελτιωθεί πρωτίστως το υπάρχον επίπεδο κατανόησης των υδρολογικών 
ακροτάτων, ξεκινώντας από τη διεργασία της βροχόπτωσης. Για το σκοπό αυτό, 
είναι σημαντικό να επανεξετάσουμε πρώτα και κύρια, και υπό το φως νέων 
δεδομένων, την εγκυρότητα των κλασικών υποθέσεων που διέπουν τη μελέτη των 
ακροτάτων. 

Η χρονική ανεξαρτησία είναι η κυρίαρχη υπόθεση σε εφαρμογές θεωρίας 
ακραίων τιμών, όπως συναντάται στα περισσότερα επιστημονικά εγχειρίδια. Έτσι, 
ενώ η περιθώρια κατανομή των ακροτάτων έχει μελετηθεί εκτενώς στη σχετική 
βιβλιογραφία, η χρονική μεταβλητότητα τους είτε παραγνωρίζεται εξ ολοκλήρου 
είτε μελετάται μέσω ντετερμινιστικών θεωρήσεων, εφόσον τα ίδια 
αντιμετωπίζονται εκ των προτέρων ως ανεξάρτητες τυχαίες μεταβλητές. Η 
υπόθεση ωστόσο της χρονικής ανεξαρτησίας επιδέχεται σημαντικής αμφισβήτησης 
επί τη βάσει τόσο εμπειρικών όσο και θεωρητικών λόγων. Ο κυριότερος από αυτούς 
είναι το γεγονός ότι τα υδρολογικά ακρότατα είναι προϊόν φυσικών διεργασιών που 
χαρακτηρίζονται οι ίδιες από ισχυρές δομές εξάρτησης σε διάφορες κλίμακες. Η 
θεωρία των στοχαστικών μεθόδων η οποία ενσωματώνει τις έννοιες της 
πιθανότητας, της στατιστικής και των στοχαστικών ανελίξεων, αποτελεί το πλέον 
πρόσφορο θεωρητικό πλαίσιο για τη κατανόηση και διερεύνηση της χρονικής 
μεταβλητότητας ακροτάτων που αποκλίνουν από την ιδεατή συνθήκη της 
ανεξαρτησίας (Koutsoyiannis, 2020b).  

Ο κεντρικός στόχος της παρούσας διατριβής είναι η στοχαστική διερεύνηση 
των υδρολογικών ακροτάτων ως προς την χρονική τους μεταβλητότητα και 
εξάρτηση, και η συνεπαγόμενη επανεξέταση των κλασικών υποθέσεων της μελέτης 
τους. Η βασική καινοτομία εστιάζεται στην αναγνώριση των χρονικών 
συμπεριφορών των ακροτάτων και στη στοχαστική σύνδεσή τους με τις εγγενείς 
ιδιότητες της μητρικής υδρολογικής διεργασίας. Μια τέτοια προσέγγιση δημιουργεί 
ένα νέο πρίσμα κατανόησης της δυναμικής των υδρολογικών ακροτάτων που μπορεί 
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να βελτιώσει σημαντικά την αντίληψη του σχετικού κινδύνου στο χρόνο  και να 
συνεισφέρει στην αναβάθμιση πρακτικών μετριασμού της υδρολογικής 
διακινδύνευσης.  Για το σκοπό αυτό, καταρτίζεται ένα δυσεύρετο σύνολο 
χρονοσειρών μεγάλου μήκους και τίθενται δύο επιμέρους στόχοι: (α) ο 
αποτελεσματικός χαρακτηρισμός των χρονικών ιδιοτήτων και της εξάρτησης των 
ακροτάτων από εποχικές έως κλιματικές κλίμακες, όπως προκύπτουν από τις 
ιστορικές χρονοσειρές, και (β) η διαμόρφωση μεθοδολογικών πλαισίων 
μοντελοποίησης για την αναπαραγωγή των παρατηρημένων χρονικών προτύπων. 
Η ανάλυση αφορά υδρολογικά ακρότατα σε τρεις χρονικές κλίμακες: την εποχική,  
την ετήσια,  και την κλιματική. Το κύριο σώμα της ανάλυσης αφορά στη διερεύνηση 
των ακραίων βροχοπτώσεων, οι χρονικές ιδιότητες των οποίων έχουν μελετηθεί 
ελάχιστα σε σχέση με αυτές των απορροών. Η χρονική εξάρτηση των ακραίων 
απορροών διερευνάται επίσης με δύο σκοπούς: (α) τον εντοπισμό εποχικών δομών 
εξάρτησης που βελτιώνουν την προβλεψιμότητα των ακραίων απορροών, και (β) την 
σύγκριση των ιδιοτήτων τους με αυτές της βροχόπτωσης ώστε να εξαχθούν 
ευρύτερα υδρολογικά συμπεράσματα. Παρακάτω γίνεται συνοπτική αναφορά 
στους στόχους και στα ευρήματα των επιμέρους κεφαλαίων. 

 
ΧΡΟΝΙΚΗ ΕΞΑΡΤΗΣΗ ΑΠΟ ΤΗ ΜΗΤΡΙΚΗ ΣΤΟΧΑΣΤΙΚΗ ΑΝΕΛΙΞΗ ΣΤΑ 

ΑΚΡΟΤΑΤΑ ΤΗΣ: ΕΠΙΣΚΟΠΗΣΗ ΤΗΣ ΒΙΒΛΙΟΓΡΑΦΙΑΣ  

Στο κεφάλαιο 2 αναπτύσσεται το θεωρητικό πλαίσιο της διατριβής. Αρχικά, 
παρουσιάζονται οι θεμελιώδεις έννοιες των στοχαστικών ανελίξεων και 
περιγράφονται τα βασικά εργαλεία ανάλυσης της χρονικής εξάρτησης που 
χρησιμοποιούνται. Πραγματοποιείται εκτενής επισκόπηση της βιβλιογραφίας 
σχετικά με τη θεωρία ακραίων τιμών και αναδεικνύονται μερικά από τα λιγότερο 
γνωστά θεωρητικά αποτελέσματα που σχετίζονται με την εξάρτηση των 
ακροτάτων. Στη συνέχεια, παρουσιάζονται κριτικά οι κυρίαρχες μεθοδολογικές 
προσεγγίσεις στη μοντελοποίηση των ακροτάτων. Τέλος, προσδιορίζονται 
ανοιχτές θεωρητικές ερωτήσεις σχετικά με τις ιδιότητες ακροτάτων από 
στοχαστικές ανελίξεις με υψηλή χρονική συσχέτιση και «βαριές» ουρές 
κατανομής. 

 
ΕΠΑΝΕΞΕΤΑΣΗ  ΤΗΣ ΥΠΑΡΞΗΣ ΕΜΜΟΝΗΣ ΣΤΗ ΔΙΕΡΓΑΣΙΑ ΤΗΣ 

ΕΤΗΣΙΑΣ ΒΡΟΧΟΠΤΩΣΗΣ 

Στο κεφάλαιο 3 διερευνάται η ύπαρξη εμμονής, αλλιώς δυναμικής Hurst-
Kolmogorov, στη διεργασία της ετήσιας βροχόπτωσης από μία παγκόσμια βάση 
δεδομένων. Η αναγνώριση της ύπαρξης εμμονής σε μια φυσική διεργασία αποτελεί 
ισχυρό κίνητρο  για τη διερεύνηση των μακροπρόθεσμων χρονικών ιδιοτήτων των 
ακροτάτων της. Ενώ η εμμονή έχει αναγνωριστεί ως δυναμική σε πλήθος φυσικών 
διεργασιών, η ύπαρξή της στη διεργασία της βροχόπτωσης παραμένει 
αδιευκρίνιστη. Έτσι, επανεξετάζεται εδώ χρησιμοποιώντας ένα παγκόσμιο σύνολο 
βροχομετρικών σταθμών. 

Από την ανάλυση του παγκόσμιου συνόλου δεδομένων προκύπτουν 
αξιοσημείωτες ενδείξεις ύπαρξης εμμονής στην ετήσια βροχόπτωση. Η θεωρητική 
τιμή της παραμέτρου Hurst 𝐻 ≈ 0.58 που εκτιμήθηκε μέσω ανάλυσης Monte Carlo 
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μπορεί να θεωρηθεί αντιπροσωπευτική για την πλειονότητα (97.5%) των 1265 
σταθμών (Εικόνα 1). Η δομή της αυτοσυσχέτισης βρέθηκε επίσης γενικά ισχυρότερη 
από τη δομή ενός μοντέλου Markov και συνεπής με την αυτήν ενός μοντέλου με 
εμμονή. Ορισμένες μελέτες που είχαν χρησιμοποιήσει μικρότερα μήκη δεδομένων 
(Potter, 1979; Fraedrich and Blender, 2003; Kantelhardt et al., 2006) υποστήριξαν την 
καταλληλότητα της δομής Markov, χωρίς όμως να διερευνούν τις διαφορές μεταξύ 
πραγματικής και θεωρητικής αυτοσυσχέτισης για διάφορες χρονικές υστερήσεις. 
Αυτές οι διαφορές μπορεί να είναι μικρές, ωστόσο, έχει αποδειχθεί ότι ενδέχεται 
να έχουν σοβαρές επιπτώσεις όσον αφορά την αβεβαιότητα εκτίμησης 
(Koutsoyiannis and Montanari, 2007). Για παράδειγμα, όσον αφορά τη στατιστική 
σημαντικότητα των τάσεων, οι παρατηρούμενες αλλαγές στις βροχοπτώσεις 
μπορεί να θεωρηθούν πολύ πιο σπάνιες από ό, τι είναι στην πραγματικότητα (Cohn 
and Lins, 2005). Τέλος, καταδείχθηκε ότι η δομή της αυτοσυσχέτισης αποκλίνει 
σημαντικά από την περίπτωση της ανεξαρτησίας. 

 

 

Εικόνα 1 Κατανομή της παραμέτρους Hurst από παρατηρημένες χρονοσειρές (μπλε 
χρώμα) και από συνθετικές χρονοσειρές (μωβ χρώμα) από στοχαστική ανέλιξη με 
παράμετρο 𝑯  = 0.58. 

Αν και τα παραπάνω ευρήματα τάσσονται υπέρ της ύπαρξης μιας 
ισχυρότερης δομής εξάρτησης από αυτήν που συνήθως υποτίθεται στη 
βιβλιογραφία (Potter, 1979; Fraedrich and Blender, 2003; Kantelhardt et al., 2006), 
φαίνεται ότι υπάρχει μια ασυμφωνία μεταξύ των μικρότερων και μεγαλύτερες 
χρονικές κλίμακες (Fraedrich and Larnder, 1993; Pelletier and Turcotte, 1997; Poveda, 
2011; Ault et al., 2013). Για το σκοπό αυτό, δεν πρέπει να παραβλέπεται η πιο 
σημαντική πηγή αβεβαιότητας στον προσδιορισμό της εμμονής, που είναι το μήκος 
της χρονοσειράς (Koutsoyiannis, 2002; Koutsoyiannis and Montanari, 2007). Ένα 
σημαντικό συμπέρασμα που προκύπτει από την ανάλυση είναι ότι οι πραγματικές 
χρονοσειρές μπορεί να αποκλίνουν σημαντικά από απλοποιητικές υποθέσεις που 
χρησιμοποιούνται στην πράξη, όπως η χρονική ανεξαρτησία, και ως εκ τούτου, η 
εμπεριστατωμένη μελέτη των ιδιοτήτων εξάρτησης είναι απαραίτητη, ειδικά όταν 
ενδιαφέρουν μακροπρόθεσμοι χρονικοί ορίζοντες. 
 



22 
 

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΚΑΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΑΚΡΑΙΑΣ ΕΠΟΧΙΚΗΣ 

ΒΡΟΧΟΠΤΩΣΗΣ  

Το κεφάλαιο 4 μελετά τη χρονική μεταβλητότητα των ακραίων βροχοπτώσεων που 
προκαλείται από την εποχικότητα. Για το σκοπό αυτό αναλύεται ένα σύνολο 27 
σταθμών βροχής με δεδομένα ημερήσιων καταγραφών που υπερβαίνουν τα 150 έτη. 
Προτείνεται μια καινοτομική μεθοδολογία που επιτρέπει τον αντικειμενικό 
προσδιορισμό της εποχικότητας στις ακραίες ημερήσιες βροχοπτώσεις και τη 
μοντελοποίηση της περιθώριας κατανομής των ακροτάτων  κάθε εποχής.  
Η μεθοδολογία αναγνώρισης εποχής είναι σε θέση να προσδιορίσει τη βέλτιστη 
επιλογή μοντελοποίησης για την εποχική ακραία βροχόπτωση, προσδιορίζοντας 
τόσο το βέλτιστο αριθμό εποχών όσο  και τη χρονική διάρκεια τους, βάσει του 
κριτηρίου πληροφορίας Akaike (AIC). Αντί για  την αυθαίρετη και μαζική εφαρμογή 
των 4 εποχών του έτους, η μέθοδος προκρίνει φειδωλή και κατά περίπτωση 
μοντελοποίηση της εποχικότητας κάθε σταθμού που αποδεικνύεται συνεπέστερη 
και αποτελεσματικότερη για τη μελέτη των ακροτάτων στην πράξη (Εικόνα 2).  
 

 
Εικόνα 2  Πιθανοτικά διαγράμματα Gumbel της προσαρμογής της Γενικευμένης 
Κατανομής Ακροτάτων (GEV distribution) στα ετήσια και εποχικά μέγιστα βάσει (a) της 
προτεινόμενης μεθοδολογίας και (b) του συμβατικού επιμερισμού σε 4 εποχές για τη 
χρονοσειρά βροχοπτώσεων της Αθήνας. 

Καταδεικνύεται επίσης ότι η ύπαρξη ισχυρής εποχικότητας επηρεάζει την 
περιθώρια κατανομή των ακροτάτων ως προς τις παραμέτρους θέσης και κλίμακας 
της Γενικευμένης Κατανομής Ακροτάτων (GEV) οι οποίες είναι υψηλότερες την 
υγρή περίοδο. Αντίθετα, η παράμετρος σχήματος παρουσιάζει περιορισμένη 
εποχική μεταβλητότητα, και άρα η εποχικότητα δεν επηρεάζει ουσιαστικά το 
σχήμα της ουράς της κατανομής. Προκύπτει επίσης ότι η ανάλυση των ετήσιων 
μεγίστων, χωρίς επαρκή προσδιορισμό της εποχικότητας, είναι υπέρ συντηρητικού 
σχεδιασμού, δεδομένου ότι συμπεριλαμβάνει τις σπάνιες περιπτώσεις ακραίων 
γεγονότων σημαντικού μεγέθους που συμβαίνουν στην ξηρή περίοδο. Ωστόσο, για 
τον ενδοετήσιο υδρολογικό σχεδιασμό, είναι σημαντικό να ληφθεί υπόψη η εποχική 
μεταβλητότητα των ακροτάτων. Η σειρά μέγιστων της υγρής εποχής περιέχει 
πολύτιμες πληροφορίες σχετικά με το χρόνο εμφάνισης των πιο ακραίων 
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γεγονότων, παρότι το μέγεθος τους αναμένεται κοντά στο εκτιμώμενο από τη σειρά 
ετήσιων μεγίστων. Ωστόσο, η εκτίμηση της εποχικότητας στα μέγιστα είναι 
σημαντική για ξηρές υδρολογικές περιόδους ώστε να αποφευχθεί  δαπανηρή 
υπερεκτίμηση των μεγεθών σχεδιασμού εποχικών έργων καθώς και άσκοπη 
διοχέτευση πλημμυρικών ροών σε περίπτωση ταμιευτήρων υδροδότησης.  

Τα ευρήματα αυτά έχουν άμεσες εφαρμογές τόσο στη θεωρητική σύλληψη 
της εποχικότητας σε ακραίες βροχοπτώσεις όσο και στη μοντελοποίηση στην 
πράξη. Σε μεθοδολογικό επίπεδο, συμβάλλουν στην ευρύτερη καθιέρωση κριτηρίων 
επιλογής μοντέλων στην υδρολογία, όπως το AIC, ενώ αποτελούν σημαντικό βήμα 
προς τον «αντικειμενικό» προσδιορισμό της εποχικότητας τόσο σε τοπική όσο και 
σε παγκόσμια κλίμακα. 
 
ΔΥΝΑΜΙΚΕΣ ΕΞΑΡΤΗΣΗΣ ΤΩΝ ΕΠΟΧΙΚΩΝ ΑΚΡΑΙΩΝ ΑΠΟΡΡΟΩΝ 

Το Κεφάλαιο 5 μελετά την ύπαρξη εξάρτησης στις υψηλές και χαμηλές απορροές 
στην εποχική κλίμακα, τους πιθανούς γεωφυσικούς και υδρολογικούς παράγοντες 
που ευνοούν την εκδήλωσή της σε μια υδρολογική λεκάνη καθώς και τη δυνατότητα 
αξιοποίησης της σχετικής πληροφορίας για τη βελτίωση της πιθανοτικής 
πρόβλεψης πλημμυρικών αιχμών και χαμηλών ροών. Για το σκοπό αυτό, 
αναλύονται δεδομένα ημερήσιων παροχών άνω των 50 ετών από 224 ποταμούς στην 
Ευρώπη.  

Τα αποτελέσματα δείχνουν ότι η πλειονότητα των ποταμών εμφανίζει 
χαρακτηριστικά εξάρτησης στην εποχική κλίμακα, που εκδηλώνονται ως γραμμική 
συσχέτιση μεταξύ των προγενέστερων μέσων μηνιαίων απορροών και των 
μεταγενέστερων (α) πλημμυρικών αιχμών στην υγρή εποχή (High Flow Season; 
HFS) και (β) μέσων απορροών στη ξηρή εποχή (Low Flow Season; LFS), αντίστοιχα. 
Η συσχέτιση για τις απορροές της ξηρής εποχής είναι υψηλότερη απ’ ότι για της 
υγρής εποχής, ενώ και στις δύο περιπτώσεις εμφανίζεται αυξημένη χωρική 
μεταβλητότητα καθώς και ομαδοποίηση της συσχέτισης (Εικόνα 4). 
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Εικόνα 3 Χωρική κατανομή της γραμμικής συσχέτισης (α) των πλημμυρικών αιχμών την 
υγρή περίοδο (HFS) με τις μέσες απορροές του προηγούμενου μήνα (αριστερά) και (β) των 
μέσων απορροών την ξηρή περίοδο (LFS) με τις μέσες απορροές του προηγούμενου μήνα 
(δεξιά). Ο πίνακας δείχνει τα χρώματα που αντιστοιχούν στις κλάσεις των συσχετίσεων.  

Από τη μελέτη πλήθους γεωφυσικών και υδρολογικών χαρακτηριστικών των 
λεκανών απορροής προκύπτει ότι βραδύτεροι χρόνοι υδρολογικής απόκρισης της 
λεκάνης, καθώς και η κυρίαρχη ύπαρξη βασικής ροής ευνοούν την εποχική 
συσχέτιση. Αντιθέτως, η συσχέτιση είναι χαμηλότερη στις καρστικές λεκάνες που 
ανταποκρίνονται γρήγορα καθώς σε λεκάνες με υψηλή ειδική απορροή και 
υψηλότερη μέση βροχόπτωση, πιθανώς λόγω της παρουσίας κορεσμένων συνθηκών 
σε υγρότερα κλίματα και της αυξημένης βραχυπρόθεσμης μεταβλητότητάς τους. 

Ως προς την πρακτική αξία, παρουσιάζεται μια εφαρμογή αξιοποίησης της 
εποχικής συσχέτισης για τη μείωση της αβεβαιότητας των εποχικών προβλέψεων 
υψηλών και χαμηλών ροών, μέσω στοχαστικών μοντέλων που ενσωματώνουν νέες 
παρατηρήσεις σε μηνιαία κλίμακα για την ανανέωση των πιθανοτικών εκτιμήσεών 
τους.  

Τα αποτελέσματα συνηγορούν στο ότι η ύπαρξη εποχικής «μνήμης» του 
ποταμού παρέχει σημαντικές πληροφορίες για την κατανόηση και πρόβλεψη των 
ακραίων απορροών, ενώ εξασφαλίζει σημαντικό χρόνο ορίζοντα σε κλίμακα μηνών, 
για τη λήψη αποφάσεων σχετικά με την πρόληψη υδρολογικών κινδύνων στη 
λεκάνη. 
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ΕΜΜΟΝΗ ΣΤΗΝ ΕΜΦΑΝΙΣΗ ΑΚΡΟΤΑΤΩΝ: ΟΜΑΔΟΠΟΙΗΣΗ ΣΕ 

ΠΟΛΛΑΠΛΕΣ ΚΛΙΜΑΚΕΣ 

Tο κεφάλαιο 6 πραγματεύεται τη δυναμική διάδοσης της εμμονής από τη μητρική 
στοχαστική ανέλιξη στα ακρότατά της, εστιάζοντας στο φαινόμενο της 
ομαδοποίησής τους. Η ύπαρξη δομής ομαδοποίησης των ακροτάτων αμφισβητεί την 
υπόθεση της χρονικής ανεξαρτησίας τους και  έτσι, η κατανόησή της είναι κρίσιμη 
για τον υδρολογικό σχεδιασμό και την αντίληψη της χρονικής εξέλιξης του 
κινδύνου. Εδώ, επιδιώκεται (α) η θεωρητική και εμπειρική σύνδεση μεταξύ της 
δυναμικής ομαδοποίησης των ακροτάτων  και της μακροπρόθεσμης εμμονής, δηλ. 
της δυναμικής HK, και (β) η μεθοδολογία ανάκτησης  της δεύτερης, δηλαδή της 
εμμονής της στοχαστικής ανέλιξης, από την πρώτη, δηλαδή χρονική συμπεριφορά 
των ακροτάτων της. Για το σκοπό αυτό συλλέγεται μια δυσεύρετη βάση 
υδρολογικής πληροφορίας από 60 ημερήσιους βροχομετρικούς σταθμούς ανά τον 
κόσμο με πάνω από 150 έτη ημερήσιων καταγραφών. 

Ένα γενικό συμπέρασμα που προκύπτει είναι ότι η δυνατότητα αναγνώρισης 
της εμμονής από χρονοσειρές μεγίστων είναι περιορισμένη και εξασθενεί σταδιακά 
καθώς αυξάνεται το κατώφλι πάνω από το οποίο συλλέγονται τα ακρότατα. Στη 
χρονική συμπεριφορά  των ακροτάτων υπάρχει σημαντική επιρροή τόσο από τις 
ιδιότητες εξάρτησης δεύτερης τάξης (δυναμική HK) όσο και από τις ροπές υψηλής 
τάξης της μητρικής ανέλιξης, και επομένως είναι απαραίτητη η επίγνωση και των 
δυο για την κατανόησή τους.  Έτσι, εκτιμήσεις της συσχέτισης των ακροτάτων μόνο 
με μεθόδους δευτέρας τάξης όπως το κλιμακόγραμμα και δείκτες ομαδοποίησης 
βασισμένοι στη διασπορά, υποεκτιμούν τη συσχέτιση ακροτάτων από ανελίξεις με 
μη-Γκαουσιανή συμπεριφορά, οι οποίες επηρεάζονται από ροπές υψηλότερης 
τάξης. Για το λόγο αυτό προτείνεται ένας νέος πιθανοτικός δείκτης που 
χαρακτηρίζει την ομαδοποίηση βάσει της πιθανότητας μη υπέρβασης ενός 
δεδομένου κατωφλίου σε κλίμακα και ονομάζεται δείκτης NEPvS (Non-Exceedance 
Probability vs Scale). Ο δείκτης μπορεί να χαρακτηρίσει την ομαδοποίηση των 
ακροτάτων από πλήθος ανελίξεων, συμπεριλαμβανομένων αυτών με ισχυρή 
εμμονή, τύπου HK, και βαριές ουρές κατανομής. Προτείνεται μάλιστα και 
προσαρμογή ενός μοντέλου που είχε αρχικά προταθεί για την περιγραφή της 
πιθανότητας μη βροχής (probability dry) από Koutsoyiannis (2006), το οποίο μπορεί 
να χαρακτηρίσει τον προτεινόμενο πιθανοτικό δείκτη ως εξής: 

𝑝(𝑘) = 𝑝
(1+(𝜉

−1
𝜂⁄ −1)(𝑘−1))𝜂

, 𝑝 = 1 − 𝐹(𝑢) (1) 

όπου 𝑢 είναι το κατώφλι για τα ακρότατα, 𝐹 η περιθώρια συνάρτηση κατανομής, και 
𝜂, 𝜉 παράμετροι στο (0, 1). Για τιμές των παραμέτρων 𝜂 = 1 και 𝜉 = 0.5, προκύπτει η 
συμπεριφορά ανέλιξης Λευκού Θορύβου, δηλαδή χρονικής ανεξαρτησίας. Καθώς 
αυξάνεται η εμμονή της μητρικής ανέλιξης, αυξάνεται η πιθανότητα μη εμφάνισης 
ακροτάτων σε μια κλίμακα (αντίστοιχα, ο μείον λογάριθμος της πιθανότητας 
μειώνεται όπως φαίνεται στην Εικόνα 4) και οι παράμετροι του μοντέλου γίνονται  
𝜂 < 1 και 𝜉 > 0.5. Αυτή η συμπεριφορά υποδηλώνει ότι η άλλη όψη της ύπαρξης 
ομαδοποίησης των ακροτάτων είναι η ύπαρξη παρατεταμένων χρονικών περιόδων 
χωρίς ακραίες παρατηρήσεις. 
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Εκτεταμένες προσομοιώσεις συνθετικών χρονοσειρών Monte Carlo για 
βροχομετρικούς σταθμούς έδειξαν αποκλίσεις από τη συμπεριφορά ανεξαρτησίας 
και συμφωνία της ομαδοποίησης των ακροτάτων με τις ιδιότητες εξάρτησης (δομή 
HK) και κατανομής (ακριβής διατήρηση 4 πρώτων ροπών) της μητρικής ανέλιξης, 
όπως φαίνεται στην Εικόνα 4. 

 

 
Εικόνα 4 Μείον φυσικός λογάριθμος της πιθανότητας μη υπέρβασης του κατωφλίου προς 
την κλίμακα για 28 χρονοσειρές βροχής στην Ολλανδία με αφαίρεση εποχικότητας 2 
πρώτων ροπών, καθώς και 95% όρια Monte Carlo για θεωρητικό μοντέλο με συσχέτιση HK 
με 𝑯=0.7 και διατήρηση 4 πρώτων ροπών, για 4 διαφορετικά κατώφλια ακροτάτων: (a) 10%, 
(b) 5%, (c) 1% και (d) 0.5%. 

Καταλήγουμε στο συμπέρασμα ότι τα ακρότατα τείνουν να «κρύβουν» την 
εμμονή της μητρικής στοχαστικής ανέλιξης, οδηγώντας συχνά σημαίνει 
λανθασμένα στο συμπέρασμα της χρονικής ανεξαρτησίας. Οι επιπτώσεις όμως της 
εμμονής στην εκτίμηση των ακροτάτων είναι υπαρκτές, παρόλο που η ισχύς των 
ενδείξεων από συνήθεις χρονοσειρές είναι συχνά αδύναμη.  
 
ΕΠΙΔΡΑΣΗ ΕΜΜΟΝΗΣ ΣΤΗΝ ΠΕΡΙΘΩΡΙΑ ΚΑΤΑΝΟΜΗ ΤΩΝ ΑΚΡΟΤΑΤΩΝ 

ΚΑΙ ΙΔΙΟΤΗΤΩΝ ΤΟΥΣ  

Tο Κεφάλαιο 6 εξετάζει την επίδραση της εξάρτησης στην περιθώρια κατανομή των 
ακροτάτων καθώς και των χαρακτηριστικών ιδιοτήτων τους.  

Στο πλαίσιο αυτό αξιολογείται αρχικά μέσω εκτεταμένων προσομοιώσεων 
Monte Carlo η εφαρμοσιμότητα των θεωρημάτων της θεωρίας ακραίων τιμών και 
ειδικά η ισχύς της Γενικευμένης Κατανομής Ακροτάτων για έμμονες στοχαστικές 
ανελίξεις με εξάρτηση τύπου HK. Φαίνεται ότι η προσαρμογή της κατανομής με τη 
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μέθοδο σταθμισμένων ελαχίστων τετραγώνων είναι πολύ ικανοποιητική ακόμη και 
για μη ασυμπτωτικές συνθήκες ανελίξεων με έντονη εξάρτηση. Από την άλλη 
πλευρά, είναι αμφισβητήσιμο εάν η θεωρία του δείκτη ακραίας συσχέτισης (extremal 
index) για ανελίξεις που παράγουν μόνο βραχυπρόθεσμη ομαδοποίηση ακροτάτων 
επαρκεί για να περιγράψει ακρότατα από έμμονες ανελίξεις. Οι τελευταίες 
εμφανίζουν τις εξής ιδιότητες κατανομής σε σχέση με πλήρως ανεξάρτητες 
ανελίξεις: (α) η παράμετρος κλίμακας, που σχετίζεται με τη μεταβλητότητα των 
ακροτάτων, αυξάνεται ως αποτέλεσμα της αυξημένης μεταβλητότητας της 
έμμονης ανέλιξης στην ίδια κλίμακα, (β) η παράμετρος θέσης της κατανομής 
μειώνεται ως αποτέλεσμα της ομαδοποίησης των ακροτάτων σε λιγότερες 
κλίμακες, αλλά (γ) η παράμετρος σχήματος δεν επηρεάζεται, καθώς θεωρητικά 
ταυτίζεται με την παράμετρο σχήματος της ουράς της περιθώριας κατανομής της 
μητρικής ανέλιξης. 

Αναδεικνύεται επίσης η επιρροή της εξάρτησης στις ιδιότητες των ακραίων 
παρατηρήσεων άνω κατωφλίου (Peaks Over Threshold; POT) σε ετήσια κλίμακα. Η 
απουσία γεγονότων POT σε ένα έτος είναι πιο πιθανή από την περίπτωση της 
πλήρους ανεξαρτησίας, αλλά στην περίπτωση που αυτά εμφανιστούν, αναμένεται 
υψηλότερη διάρκεια της «συστάδας» ακροτάτων και μεγαλύτερη ένταση. 
Οι επιπτώσεις αφορούν τόσο την εκτίμηση των κινδύνων πλημμύρας, ως προς την 
εκτίμηση της χρονικής περιόδου που μια περιοχή είναι υπό κατάκλιση (Dimitriadis 
and Koutsoyiannis, 2020), όσο και την εκτίμηση της συλλογικής διακινδύνευσης από 
αθροιστική έκθεση στον κίνδυνο που αφορά ιδιαίτερα τις ασφαλιστικές πρακτικές 
έναντι φυσικών καταστροφών (Serinaldi and Kilsby, 2016b; Goulianou et al., 2019; 
Manolis et al., 2020; Papoulakos et al., 2020).  

Από τη μελέτη χρονοσειρών βροχοπτώσεων και απορροών στην ίδια 
υδρολογική περιοχή, προέκυψαν αποκλίσεις της χρονικής συμπεριφοράς των 
ακροτάτων τους από την τυπική συμπεριφορά ανεξαρτησίας, οι οποίες ήταν πιο 
έντονες στην ετήσια κλίμακα για τις απορροές, όπως φαίνεται στην Εικόνα 5.  

 
Εικόνα 5 Πιθανότητες υπέρβασης των ετήσιων μεγίστων για τις παρατηρημένες 
χρονοσειρές και χρονοσειρές ίδια περιθώριας κατανομής αλλά απουσίας συσχέτισης μέσω 
τυχαίας αναδιάταξης (shuffled data) για το σταθμό βροχής στη Bologna και ημερήσιων 
απορροών του ποταμού Po. 
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Μοντέλα τύπου HK προσαρμοσμένα στα δεδομένα αναπαρήγαγαν με 
επιτυχία τα παρατηρημένα χρονικά πρότυπα των ακροτάτων, όπως φαίνεται στην 
Εικόνα 6 για τον ποταμό Po, δείχνοντας τις δυνατότητες του στοχαστικού πλαισίου 
HK ως προς την εξήγηση και αναπαραγωγή της χρονικής μεταβλητότητας των 
ακροτάτων. 

 
Εικόνα 6 Ιδιότητες των μεγίστων άνω κατωφλίου (POT) για την χρονοσειρά απορροών του 
ποταμού Po (90 έτη) και 1000 συνθετικές χρονοσειρές  από στοχαστικό μοντέλο δομής HK: 
(a) κατανομή συχνότητας εμφάνισης των μεγίστων ανά χρόνο, (b) πιθανότητα υπέρβασης 
της αθροιστικής έντασης μεγίστων στο έτος, (c) σχέση του αριθμού  μεγίστων ανά έτος με 
τη μέση έντασή τους, και (d) κατανομή της χρονικής διάρκειας ομάδας μεγίστων. 

 
ΚΛΙΜΑΤΙΚΕΣ ΠΡΟΒΛΕΨΕΙΣ ΤΑΣΕΩΝ ΜΕΛΛΟΝΤΙΚΩΝ ΒΡΟΧΟΠΤΩΣΕΩΝ 

Το κεφάλαιο 8 εξετάζει τη θεωρητική και εμπειρική βάση της μεθοδολογίας 
μοντελοποίησης και πρόβλεψης κλιματικών τάσεων στη βροχόπτωση.  Καθώς η 
θεωρία της ανθρωπογενούς κλιματικής αλλαγής προβλέπει την εντατικοποίηση 
του κύκλου του νερού  και των ακροτάτων στο μέλλον, ένα μεγάλο μέρος της 
σύγχρονης έρευνας για τα ακρότατα στην υδρολογία περιστρέφεται γύρω από τη 
ντετερμινιστική μελέτη των χρονικών αλλαγών των ακροτάτων σε κλιματική 
κλίμακα, όπως φαίνεται και στην Εικόνα 7.  
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Εικόνα 7 Χρονική μεταβολή και κινούμενος μέσος όρος του λόγου εμφάνισης της λέξης 
‘trends’ σε δημοσιεύσεις του Google Scholar που περιέχουν ήδη το συνδυασμό λέξεων 
‘precipitation’, ‘hydrology’ και ‘extremes’. 

Ενώ η ανάλυση ιστορικών τάσεων ως προς την ‘στατιστική σημαντικότητα’ 
τους έχει κυριαρχήσει στη βιβλιογραφία, η αξιολόγηση της προγνωστικής 
ικανότητάς τους ως μοντέλων δεν έχει αξιολογηθεί, παρά την προφανή σημασία 
που ενέχει για τον μελλοντικό σχεδιασμό έναντι κινδύνων. Αυτή η έρευνα 
επανατοποθετεί το πρόβλημα της αξιολόγησης τάσεων, ως πρόβλημα επιλογής 
μοντέλου που προσανατολίζεται στην αναγνώριση του μοντέλου με τις καλύτερες 
προγνωστικές ιδιότητες, το οποίο δεν είναι ούτε ισοδύναμο με το «πραγματικό» 
μοντέλο ούτε με το μοντέλο που εξηγεί καλύτερα την περίοδο βαθμονόμησης.  

Για το σκοπό αυτό, εισάγεται ένα συστηματικό πλαίσιο επικύρωσης των 
προγνώσεων των τάσεων μέσω της σύγκρισης του σφάλματος πρόβλεψης (RMSE) 
με αυτό που λαμβάνεται από απλούστερα μοντέλα μέσου όρου. Το μήκος της 
χρονοσειράς επιμερίζεται σειριακά σε περιόδους βαθμονόμησης και 30ετίες 
επικύρωσης και αξιολογούνται οι προγνώσεις με βάση τις τοπικές τάσεις (local 
trends), τις τάσεις από όλο το μήκος της χρονοσειράς (global trends), τον τοπικό 
μέσο όρο (local mean) και τον ολικό μέσο όρο (global mean). Τα μοντέλα 
αξιολογούνται ως προς τα σφάλματά τους στις προβλέψεις της ετήσιας μέγιστης, 
συνολικής και μέσης βροχόπτωσης καθώς και της ετήσιας πιθανότητας μη βροχής 
για 30 έτη μεταγενέστερα της περιόδου βαθμονόμησης των μοντέλων. Τα 
αποτελέσματα όπως προκύπτουν από το σύνολο των 60 σταθμών άνω των 150 ετών 
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δείχνουν ότι τα μοντέλα κατατάσσονται από το καλύτερο στο χειρότερο ως εξής: 
τοπικός μέσος όρος, ολικός μέσος όρος, ολική τάση και τοπική τάση (Εικόνα 8).  
 

 
Εικόνα 8 Κατανομή του μέσου σφάλματος πρόβλεψης (RMSE) και της τυπικής του 
απόκλισης όπως εκτιμήθηκε από την επικύρωση των 4 προγνωστικών μοντέλων σε 
διαδοχικούς επιμερισμούς του συνολικού μήκους των χρονοσειρών και για τους 60 
σταθμούς βροχόπτωσης.  
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Η ξεχωριστή εξέταση της πλέον πρόσφατης περιόδου 30 ετών για κάθε σταθμό 
επιβεβαίωσε επίσης την παραπάνω κατάταξη των μοντέλων, ενώ καμία συγκριτική 
αύξηση της προβλεψιμότητας δεν εντοπίστηκε για το μοντέλο τοπικής τάσης κατά 
την κοινή τελευταία περίοδο (1980-2009). Τα αποτελέσματα δείχνουν ότι η 
μελλοντική μεταβλητότητα της βροχόπτωσης προβλέπεται κατά μέσο όρο 
καλύτερα από τα πιο φειδωλά μοντέλα μέσου όρου, γεγονός το οποίο 
υποστηρίζεται και πειραματικά μέσω προσομοιώσεων έμμονων ανελίξεων. Για ίδιο 
μήκος χρονοσειράς στην περίπτωση ισχυρής εμμονής, ο τοπικός μέσος έχει 
καλύτερες ιδιότητες πρόβλεψης από  τον ολικό. Σε σχέση με χρονικά ανεξάρτητες 
ανελίξεις, οι έμμονες ανελίξεις χαρακτηρίζονται από αυξημένη μεταβλητότητα σε 
μεγάλες κλίμακες. Χωρίς επίγνωση αυτής της ιδιότητάς τους,  η μεταβλητότητα 
αυτή μπορεί εύκολα να παρερμηνευτεί ως «συστηματική τάση» ειδικά σε μικρά 
τμήματα των χρονοσειρών τους.  

Σε κάθε περίπτωση προκύπτει ότι εμπειρικά δεν τεκμηριώνεται η πρακτική 
της προέκτασης κλιματικών τάσεων βροχόπτωσης στο μέλλον. Η εγγενής 
μεταβλητότητα της βροχόπτωσης καθιστά ούτως ή άλλως δυσχερή την πρόβλεψή 
της σε μεγάλες κλίμακες, πολύ περισσότερο δε όταν η πολυπλοκότητα των 
προγνωστικών μοντέλων αυξάνεται. 
 
ΕΠΙΛΟΓΟΣ ΚΑΙ ΚΑΤΕΥΘΥΝΣΕΙΣ ΠΕΡΑΙΤΕΡΩ ΕΡΕΥΝΑΣ 

Ο κεντρικός στόχος αυτής της διατριβής είναι η στοχαστική διερεύνηση και 
μοντελοποίηση της χρονική μεταβλητότητας και εξάρτησης των ακροτάτων από 
εποχικές έως κλιματικές κλίμακες. Βασική καινοτομία αποτελεί η αναγνώριση των 
χρονικών συμπεριφορών των ακροτάτων και η οργανική σύνδεσή τους με τις 
εγγενείς ιδιότητες της μητρικής υδρολογικής διεργασίας. Μια τέτοια προσέγγιση 
δημιουργεί ένα νέο πρίσμα κατανόησης της δυναμικής των υδρολογικών ακροτάτων 
που μπορεί να βελτιώσει σημαντικά την αντίληψη του σχετικού κινδύνου στο χρόνο  
και να χρησιμοποιηθεί για την αναβάθμιση πρακτικών μετριασμού της υδρολογικής 
διακινδύνευσης.  

Περαιτέρω έρευνα είναι απαραίτητη για τον εντοπισμό κοινών δομών εξάρτησης 
ακροτάτων της βροχόπτωσης και απορροής σε πολλαπλές χωροχρονικές 
κλίμακες. Η συμπερίληψη των πρόσφατα αναπτυγμένων εκτιμητριών ροπών 
υψηλής τάξης στη μεθοδολογία εκτίμησης ακροτάτων (k-moments; Koutsoyiannis, 
2019c) είναι εξίσου κρίσιμη και αναμένεται να βελτιώσει τη μοντελοποίησή τους σε 
ρεαλιστικές προ-ασυμπτωτικές συνθήκες, όπως αυτές που συναντώνται στην 
υδρολογία. Τέλος, είναι σημαντικό πλέον της κατανόησης της στοχαστικότητας του 
υδρολογικού κινδύνου, να μελετηθεί και η στοχαστικότητα της ανθρώπινης 
χρονικής έκθεσης και ευπάθειας (vulnerability) έναντι του κινδύνου. Νέοι τύποι 
δεδομένων που ενσωματώνουν πληροφορίες για τη διεπαφή ανθρώπου και υδατικού 
περιβάλλοντος καθίστανται ολοένα και περισσότεροι διαθέσιμοι και θα μπορούσαν 
να συνδράμουν προς την ολιστικότερη κατανόηση της υδρολογικής διακινδύνευσης. 
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1.  INTRODUCTION 

1.1 Motivation 

The term ‘extremes’ signifies rare and consequential events that are difficult or even 
impossible to predict from past experience. By analogy, hydrological extremes pertain 
to the occurrence of rainfall and streamflow of least expected properties that are able 
to place human-water systems under severe stress. In particular, extreme rainfall and 
flooding can damage the built environment, including water-related and civil-
engineering infrastructure, may disrupt financial activities triggering economic losses, 
while pose direct threats to public health. Naturally so, their understanding and 
mitigation of associated risk have always been a challenge to society and science. In 
the past decades though, this challenge has become ever prominent as the adequacy 
of the conventional perception of risk has been radically questioned itself (Hall et al., 
2014).  

On the one hand, worldwide media coverage of disasters has increased the 
availability of examples of catastrophic hydrological events (Barredo, 2007), causing 
growing concerns on intensification of extremes. These concerns have been 
scientifically corroborated by the anthropogenic climate change hypothesis. The latter 
suggests that the increased anthropogenic emissions of greenhouse gases over the past 
decades have induced systematic changes in the climate dynamics that lead to the 
intensification of the water cycle (IPPC, 2014; Fifth Assessment Report AR5). On this 
basis, it has been argued that a radical reformulation of assumptions and modelling 
practices would be required in order to explicit model the presence of new 
deterministic drivers (Milly et al., 2008). Although this position has been largely 
debated in hydrology (Cohn and Lins, 2005; Montanari and Koutsoyiannis, 2014; 
Koutsoyiannis and Montanari, 2015; Serinaldi et al., 2018; Koutsoyiannis, 2020a), the 
associated expectations of intensification of extremes in the future are omnipresent in 
the literature.   

On the other hand, it is widely accepted that the risk dynamics may have altered 
during the past century as a result of systematic changes in human exposure and 
vulnerability to extreme events. In this respect, it has been found that human exposure 
to flooding, stemming from living in proximity to the river network, has consistently 
increased over the years (Ceola et al., 2014). At the same time, vulnerability to extreme 
events is further exacerbated by high population density and uncontrolled 
urbanization. In Greece alone, over than 200 fatalities due to extreme flooding have 
been reported since 1960, with the majority of them concentrated in the highly 
urbanized area of Attica. At the global scale, the series of the 1999 rainfall-induced 
flood events in the densely populated Vargas state of Venezuela, is considered one of 
the worst water-related disasters worldwide resulting in more than 15 000 fatalities. In 
a later study, it was found that the occurrence of such rainfall was extreme but not 
implausible based on the historical record and could have been anticipated if a 
probabilistic framework accounting for uncertainty was applied (Coles et al., 2003).  

The latter case study highlights the essential role exerted by hydrology in terms 
of frequency estimation of extremes and hence, risk preparedness. The 
underestimation of both the design quantiles and the frequency of occurrence of the 
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extremes is unfortunately, a common factor in cases of unprecedented hydrologic 
disasters (Mimikou and Koutsoyiannis, 1995; Coles et al., 2003; Koutsoyiannis et al., 
2012; Ntigkakis et al., 2018). Furthermore, increasing concerns are expressed regarding 
the possible underestimation of the probability of failure of aging infrastructure and 
large-scale engineering projects as numerous engineering disasters triggered by 
extreme rainfall and flooding have been reported in recent years. These include dam 
accidents and disasters, bridge collapses  and severe damages to transport 
infrastructure, including roads and railways, that have caused massive economic 
losses and human fatalities (Wardhana and Hadipriono, 2003; Serra-Llobet et al., 2013; 
Koskinas et al., 2019; Kellermann et al., 2019; Pizarro et al., 2020).  

Therefore, the improvement of hydrological design and risk mitigation 
emerges as a high societal priority. In this respect, it is argued that before considering 
the case for global trends or external drivers, the need to advance the understanding 
and modelling of extreme hydrological events, starting with rainfall, is imperative. To 
this aim, it is important to first and foremost revisit the classic assumptions governing 
the study of extremes in light of new empirical evidence. 

1.2 Framing the research question 

The realm of civil and environmental engineering is perhaps the scientific field most 
organically connected to the need for probabilistic estimation of extremal properties.  
Although the first statistical approach of hydrological extremes is found in Fuller 
(1914), it is widely acknowledged that it was the work of Gumbel (1941), who placed 
the probabilistic study of extremes at the core of hydrological science. Among a series 
of preceding theoretical works, Gumbel’s work, popularized by his renowned book 
(1958), was the most influential to the engineering cycles, triggering a domino of 
studies in hydrology that provided probabilistic grounds to analysis of extremes in the 
decades to follow. Some landmark examples of probabilistic extreme value modelling 
include the estimation of the extreme sea level surge for the sea dike projects in the 
Netherlands (de Haan, 1994), the construction of consistent rainfall intensity-duration-
frequency curves for engineering design (Koutsoyiannis et al., 1998) as well as the 
estimation of regional flood frequency in the US (Stedinger and Griffis, 2008). A major 
advance has been the shift from deterministic approaches towards fully probabilistic 
modelling of rainfall and streamflow extremes (Koutsoyiannis, 1999, 2004). The field 
of applications has since become so wide that the probabilistic methodologies of 
extremes are now integral to the National Flood Insurance Program in the US (FEMA, 
2016).  

Contrary to inference for regular quantities which involves estimation within 
the range of available data, inference for extremes is synonymous to extrapolation to 
the range of unobserved behaviours. The latter is heavily dependent on assumptions 
regarding their properties. Independence is the most central assumption in extreme 
value theory applications, encountered in most engineering textbooks. In Gumbel’s 
words (1958):  

The observations from which the extreme values are drawn ought to be 
independent. This condition may be met in an experimental setup. However, it 
is seldom met in natural observations. Still, the asymptotic theory gives a very 
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good fit for such observations, because it is only the asymptotic behaviour of 
the initial distribution which counts. 

In other words, Gumbel himself acknowledges the non-fulfilment of the independence 
assumption in observations, but suggests that the latter should be irrelevant to the 
estimation of the magnitude of extremes.  

Often the nuance of such statements is missed by standard practice and the 
asymptotic arguments for the distribution of extremes are misinterpreted in favour of 
the perception that observed extremes are in fact independent. The adherence to the 
independence assumption is further supported by the widespread use of statistics in 
hydrology (Koutsoyiannis, 2019a), where the independence assumption is central. Yet 
while in the field of statistics dealing with controlled experiments and idealized 
theoretical conditions, independence is a tenable assumption, it is rather a misplaced 
one in the case of real-world unique observations. In hydrology, ever since the works 
of Hurst (1951), the presence of long-range temporal dependence in observations, else 
known as persistence of Hurst-Kolmogorov dynamics, has been widely acknowledged 
(e.g. Koutsoyiannis, 2003; Montanari, 2003; O’Connell et al., 2016; Dimitriadis, 2017). 
By now, it has been theoretically and empirically established that presence of 
dependence in the data renders the application of classic statistics erroneous, 
introducing bias in the estimation of moments and quantiles, and inflates confidence 
and prediction intervals. Thus, unawareness of dependence is bound to lead to severe 
underestimation of uncertainty, which in the case of long-range dependence could be 
of the order of magnitude (Cohn and Lins, 2005; Koutsoyiannis, 2005; Hamed, 2008; 
Koutsoyiannis and Montanari, 2007; Lombardo et al., 2014; Serinaldi et al., 2018).  

Notably, the independence assumption in hydrology is contradicted by 
empirical evidence of extremes at small scales, as in the case of long-duration rainfall 
and flood events and seasonal clustering of events, and more rarely, even at greater 
scales, as in the case of multi-year droughts and flood-rich/flood-poor climatological 
periods (Hall et al., 2014; Merz et al., 2016).  Yet for a combination of the above reasons, 
reinforced by the limited availability of long records and the peculiarities of extremes 
from dependent processes hiding their properties, the independence assumption 
continues to dominate the modelling of hydrological extremes.  

Stochastics, integrating statistics, probability calculus and the theory of 
stochastic processes, offer a self-contained and powerful framework for the study and 
modelling of uncertain processes, including extremes deviating from idealized 
randomness (Koutsoyiannis, 2020b). This thesis aims to employ both stochastics and 
real-world empirical evidence to investigate the temporal properties and dependence 
dynamics of extremes, revisiting the relevance that the common assumptions thereof, 
i.e. of being independent and identically distributed (IID), bear for hydrological 
practice. In this respect, primary focus is placed upon integrating the understanding 
and modelling of extremes to that of the parent process by exposing the hidden links 
between the two, from seasonal to climatic scales. To this end, a rare dataset of long-
term observational records is compiled and two specific objectives are developed: (a) 
to efficiently characterize the temporal properties and dependence dynamics of 
observed extremes from seasonal to climatic scales, and (b) to formulate 
hydrologically relevant and parsimonious modelling frameworks to reproduce them. 
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The main body of the analysis prioritizes the investigation of rainfall extremes, 
the temporal properties of which are generally understudied compared to the 
streamflow ones. Dependence dynamics of streamflow extremes are explored as well 
with two purposes: (a) to identify dependence dynamics of high operational relevance, 
as in the case of seasonal predictability of streamflow extremes, and (b) to gain 
additional hydrological insights by comparing their dependence properties to those of 
the rainfall process. 

1.3 Structure of thesis  

The remainder of this thesis is structured in eight chapters. More specifically, the thesis 
outline is presented below. 

 Chapter 2 presents the basic stochastic framework that is employed throughout 
the thesis and provides a thorough literature review on modelling extremes. It also 
identifies open questions in the literature and highlights present challenges.  

Chapter 3 revisits the subject of long-term persistence in the annual rainfall 
process via a global database. Although persistence in the streamflow process is well 
studied, persistence in the rainfall process is much less acknowledged. The findings of 
this chapter form the empirical basis for tracing dependence dynamics in rainfall 
extremes through a consistent stochastic framework.  

Chapter 4 deals with dropping the independently distributed (ID) assumption 
in modelling of rainfall extremes, by accounting for their seasonality. It resolves the 
open question of optimal identification of extreme rainfall seasonality by introducing 
a new model selection method for the characterization and modelling of seasonal 
rainfall extremes.  

Chapter 5 switches the focus to the seasonal dynamics of streamflow extremes, 
exploiting short-term dependence for predictability of high and low flows. A large 
database of rivers is explored to identify potential for seasonal predictability and 
investigate the presence of physical drivers enhancing it. 

Chapter 6 deals with the propagation of persistence dynamics from the parent 
process to its extremes. It exposes the shortcomings of existing indexes in revealing 
persistence in extremes and addresses this gap by introducing a multi-scale 
probabilistic dependence characterization for extremes. An empirical investigation of 
dependence properties of rainfall extremes is carried out using a long-term dataset.  

Chapter 7 revisits theoretical results of Extreme Value Theory and approaches 
open questions pertaining to persistent processes through extensive simulations. The 
manifestations of dependence dynamics in the annual patterns of rainfall and 
streamflow extremes are investigated while the performance of the second-order 
stochastic framework is evaluated in terms of reproducing them. 

Chapter 8 completes the body of analysis on the facets of extremal dependence. 
A novel methodological approach is introduced to evaluate the relevance of trend 
projections to the future, by examining the statistics of their predictive performance in 
the past. Classic modelling principles and current approaches are discussed and tested 
against both data and simulations. 

Chapter 9 revisits the thesis motivation and objectives and outlines the most 
important contributions. A discussion on future research directions is provided. 
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Appendix A contains background information, sources and acknowledgments 
for the compilation of the long-term rainfall dataset, while Appendix B contains 
supplementary material for Chapters 5, 6 and 8. A list of related publications is 
provided at the end. 

1.4 Innovation points 

The thesis formulates innovative modelling frameworks, the specific contributions of 
which are summarized in Chapter 9. Methodologically, the most fundamental 
innovation points are the following: 

(a) The research subject per se is an innovation point, as the mainstream practice is 
to focus solely on the marginal distribution of extremes, ignoring their temporal 
properties. It is shown that their temporal behaviours critically affect our 
perception of risk and may affect various design properties. 

(b) The introduction of the notion of scale in the characterization of extremal 
dependence is novel on its own, as it is usually the lagged correlation that is 
explored. 

(c) The attempt to link extremal properties to the second-order properties of a 
process, both in terms of characterization and modelling is also a novelty of this 
work. Usually, the extremal properties are studied under asymptotic 
arguments, which allow disregarding the properties of the parent process. 

(d) The systematic evaluation of the predictive skill of trends is performed for the 
first time to the author’s knowledge. Although the evaluation of models by their 
predictive performance is established in hydrological literature, it has not been 
employed in such context so far. 

A few other points are considered innovative with respect to current practice, although 
they are in fact revisiting classic approaches. These include: 

(e) The compilation of a long-term observational dataset (>150 years) for studying 
rainfall extremal properties. There is a well-justified increasing interest in 
studying global databases, as these are essential for identifying common 
properties and investigating their spatial distribution as well. Yet, such 
databases are mostly comprised of short and medium-length records (<100 
years) that are insufficient for the study of long-term variability of extremes. 

(f) The use of parsimony as the modelling principle of choice. The parsimony 
principle is embedded in various sophisticated statistical procedures, however 
its meaning is often obscured by the standardized and complicated character of 
the former. Herein, the virtue of parsimony is highlighted, in an original 
fashion, directly linked to prediction. 
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2.  STOCHASTIC DEPENDENCE DYNAMICS FROM THE 

PARENT PROCESS TO THE EXTREMES: A REVIEW 

This chapter lays the theoretical foundations of the thesis. It starts by presenting the 
fundamental theoretical concepts of the stochastic framework and the analytical tools 
for second-order dependence which are used throughout the thesis. It also presents a 
thorough review on the history of extreme value theory and highlights some of its less 
known results, related to extremal dependence. It provides a critical overview of 
common approaches in modelling extremes in hydrology and beyond, and identifies 
open theoretical questions and challenges. 

2.1 Definitions in a stochastic framework 

In this section, we define the pivotal probabilistic and stochastic concepts that are 
ubiquitous throughout the analysis. For a comprehensive presentation of stochastic 
theory reader is referred to Papoulis (1991) and Koutsoyiannis (2020b). 

 Random variables, stochastic processes and timeseries   

A random variable is a function that maps outcomes of experiments from the non-
empty set 𝛺, else called set of elementary events or states, to numbers. A formal 
definition of the concept, along with the axiomatic definition of probability, is owed to 
Kolmogorov (1933). To distinguish random variables from regular variables, we 
underline them following the Dutch convention. A stochastic process is then an 
arbitrarily large family of random variables x(𝑡)  (Papoulis, A., 1991). These variables 

are indexed by 𝑡, which in our case, represents time, either from the discrete set of 
integers ℤ (resulting to a discrete-time stochastic process), or from the continuous set 
of real numbers ℝ, (resulting to a continuous-time stochastic process). Following 
Koutsoyiannis (2020b) we denote a continuous time stochastic variable by 𝑥(𝑡), and a 
discrete one by 𝑥𝜏. The stochastic variables per se can be either discrete (discrete-state 

stochastic process), as in the wet or dry day, or continuous, e.g. rainfall amount 
(continuous-state stochastic process). The index can also be multidimensional by e.g. 
referring to space. A realization 𝑥(𝑡) of stochastic process 𝑥(𝑡) is called a timeseries. Both 

its observation and simulation take place in discrete time, but for theoretical and 
physical consistency, it is desirable to deduce the theoretical properties thereof in 
continuous time. Then the discrete-time representation is derived from the integration 
of the continuous-time process as (Koutsoyiannis, 2020b): 

where 𝜏 ϵ ℤ represents the continuous time interval [(𝜏– 1)𝐷, 𝜏𝐷] and 𝐷 is the time 
step. It is important to distinguish between the notion of a timeseries and the one of a 
stochastic process, as the former is a finite sequence of numbers (observations), 
whereas the latter is a family of infinite stochastic variables.  

𝑥𝜏 ∶=
1

𝐷
∫ 𝑥(𝑢) d𝑢

𝜏𝐷

(𝜏−1)𝐷

 (1) 
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 Distribution function and moments 

The distribution function of a random variable 𝑥(𝑡) is: 

This is called the first order distribution function of the process, and generalizes for 
the n-th order as:   

A stochastic process is fully determined if we know the nth order distribution, or else 
joint distribution, for any n. The most important moments of a process that we utilize 
herein are the following: 

i. The process mean: 

ii. The process variance: 

iii. The process autocovariance: 

iv. The process autocorrelation coefficient: 

 
v. The process coefficient of skewness: 

where 𝜇3(𝑡) ∶= ∫ (𝑥 − 𝜇(𝑡))3𝑓(𝑥; 𝑡)
+∞

−∞
d𝑡, the third central moment of the process. 

vi. The process coefficient of kurtosis: 

where 𝜇4(𝑡) ∶= ∫ (𝑥 − 𝜇(𝑡))4𝑓(𝑥; 𝑡)
+∞

−∞
d𝑡, the fourth central moment of the process. 

𝐹(𝑥; 𝑡) ∶= 𝑃{𝑥(𝑡) ≤ 𝑥} (2) 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑡1, 𝑡2, … , 𝑡𝑛) ∶= 𝑃{𝑥(𝑡1) ≤ 𝑥1, 𝑥(𝑡2) ≤ 𝑥2, … , 𝑥(𝑡𝑛) ≤ 𝑥𝑛} (3) 

𝜇(𝑡) ∶= E[𝑥(𝑡)] = ∫ 𝑥𝑓(𝑥; 𝑡)
+∞

−∞

d𝑡 (4) 

𝛾0(𝑡) ∶= var[𝑥(𝑡] = ∫ (𝑥 − 𝜇(𝑡))2𝑓(𝑥; 𝑡)
+∞

−∞

d𝑡 (5) 

𝑐(𝑡; ℎ) ∶= cov[𝑥(𝑡), 𝑥(𝑡 + ℎ)] = E[(𝑥(𝑡) − 𝜇(𝑡)) (𝑥(𝑡 + ℎ) − 𝜇(𝑡 + ℎ))] (6) 

𝑟(𝑡; ℎ) ∶= corr[𝑥(𝑡), 𝑥(𝑡 + ℎ)] =
𝑐(𝑡; ℎ)

(𝛾0(𝑡)𝛾0(𝑡 + ℎ))1/2
 (7) 

𝐶𝑠(𝑡) ∶=
𝜇3(𝑡)

(𝛾0(𝑡))
3/2

 (8) 

𝐶𝑘(𝑡) ∶=
𝜇4(𝑡)

(𝛾0(𝑡))
2
 (9) 
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 Stationarity, cyclostationarity  and ergodicity 

A process is defined as stationary if its statistical properties are invariant with respect 
to a shift of time origin, i.e. 𝑥(𝑡) and 𝑥(𝑡′) have the same nth order distribution for any 

𝑡 and 𝑡′ (Kolmogorov, 1931; Khintchine, 1933). Kolmogorov (1947) further defined the 
special case of wide-sense stationarity in which the mean is constant and the 
autocovariance depends only on the time lag. In these case, the time index 𝑡 in 
equations (4)‒(7) could be dropped. On the contrary, a nonstationary process is one 
whose statistical properties are deterministic functions of time. Recalling the 
distinction between a process and a timeseries, it is clear that (non)stationarity is a 
property of a process and it cannot be inferred from a timeseries alone.  

A nonstationary process could have some of its properties depend on time in a 
periodic manner, in which case it is called cyclostationary, and by adequate 
modifications can be modelled by stationary models. Such is the case of a process 
exhibiting pronounced seasonality, examples of which are discussed in Chapter 4. 

A central problem in the study of stochastic processes is the estimation of their 
parameters from data. The fundamental property of processes that allows estimation 
from data and is tacitly implied in all timeseries analyses, is ergodicity (Papoulis, A., 
1991). Ergodicity is a wider property of dynamical systems which can also be defined 
in the context of stochastic processes based on the ergodic theorem (Birkhoff, 1931; 
Khintchine, 1933) as follows (Koutsoyiannis, 2010). A stochastic process 𝑥(𝑡) is ergodic 
if the time-average of any integrable function 𝑔(𝑥(𝑡)) equals the true expectation 

(ensemble average) as time tends to infinity, i.e. for a continuous process: 

and for a discrete-time process: 

The equation of the true expectation (right-side), i.e. a number, to the ensemble 
average (left-side), i.e. a stochastic variable, implies zero variance of the latter as the 
sample grows infinite, which is precisely the condition for ergodicity (Koutsoyiannis, 
2020b).  If 𝑔(𝑥(𝑡)) = 𝑥(𝑡), then the fulfillment of equations (10)-(11) makes a process 

mean-ergodic, while other specifications exist depending on the type of the function 
𝑔, e.g. covariance-ergodic (Papoulis, A., 1991). The relationship of stationarity and 
ergodicity is a delicate one which also depends on the systems dynamics being 
stochastic or deterministic. For a stochastic system, the two do not necessarily coincide, 
but it is possible and practical to formulate a stationary model that is ergodic too, 
considering that a nonstationary model is generally nonergodic (Koutsoyiannis, 2010; 
Koutsoyiannis and Montanari, 2015; Montanari and Koutsoyiannis, 2014). For a 
deterministic process, the two are theoretically connected (see Mackey, 2011; and 
discussion in Koutsoyiannis, 2020b). 

lim
𝑇→∞

1

𝑇
∫ 𝑔(𝑥(𝑡)) d𝑡

𝑇

0

= E[𝑔 (𝑥(𝑡))] (10) 

lim
𝑇→∞

1

𝑇
∑𝑔(𝑥𝜏)

𝑇

𝑡=0

= E[𝑔(𝑥𝜏)] (11) 
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 Dependence in time 

Unlike classical statistics dealing with samples of measurements and experimental 
outcomes which can be appropriately designed in order to be modelled as 
independent random variables, the study of timeseries introduces the notion of 
dependence in time, hence change in time. This is precisely  the focus of stochastics, as 
the mere definition of a stochastic process involves its time evolution (Kolmogorov, 
1931).  

In hydrology, the study of dependence in time has a long history dating back 
to the works of Hurst (1951), who observed that the annual behaviour of the level of 
the Nile river deviated from that of a purely random process. It has since become a 
very active topic in hydrology even under deterministic interpretations, discussed in 
Chapter 8. The stochastic patterns of manifestation of dependence in the rainfall and 
the runoff process form the central subject of the thesis, and parts of the relevant theory 
are outlined throughout all Chapters. In the following section, we present and 
summarize the stochastic methodology for quantification of dependence in time for 
hydrological problems that forms the reference framework for the main body of 
analysis.  

2.2 Second-order properties, scaling laws and HK dynamics  

The complete determination of a stochastic process requires knowledge of its nth order 
properties.  In terms of estimation from data, this is almost impossible considering the 
bias of higher-order classical moments (Lombardo et al., 2014). In this respect, the 
second-order moments of a stochastic process, i.e. the autocorrelation, autocovariance 
and functions thereof, provide robust information on their dependence, have lower 
estimation bias, and are useful in the simulation process. Not surprisingly, they are 
the most extensively used tool in stochastics (Papoulis, A., 1991). 
 A common characteristic of second-order properties is their association with 
asymptotic power laws as 𝑡 → 0 or 𝑡 → ∞, or else scaling behaviour (Koutsoyiannis, 

2014). Power laws are functions of the form 𝑓(𝑡) ∝ 𝑡𝑏 and can be visualized in the form 
of a straight line with slope 𝑏 from a doubly logarithmic plot of 𝑓(𝑡) on 𝑡. A power-law 
valid over the entire domain is called simple scaling, while power-laws valid in the 
domain of 𝑡 → 0  define local  behaviour and the case 𝑡 → ∞, define global  behaviour 
(Koutsoyiannis, 2020b). Power laws have been studied in many domains, being 
popularized by Mandelbrot (1983), although first mathematically described by 
Kolmogorov (1940).  
 In hydrology, scaling of the second-order properties in long-time horizons is a 
ubiquitous behaviour, which was first observed in the Nilometer data by Hurst (1951), 
and hence is also known by the term Hurst behaviour/phenomenon (O’Connell et al., 
2016). In order to give credit to the mathematical representation by Kolmogorov, in 
hydrology it is also known as the Hurst-Kolmogorov dynamics (HK dynamics; 
Koutsoyiannis, 2010). In the wider literature, it is known as well as long-range 
dependence, long-term persistence, and long-memory (Beran, 1994). The latter term 
though has been disputed on the basis that the induced long-range dependence is a 
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product of long-term change instead of the result of a long-memory physical 
mechanism (Klemeš , 1974; Koutsoyiannis, 2011b). 
 

 Climacogram and climacogram-based modelling 

A comprehensive characterization of a process’s second-order scaling properties can 
be achieved by inspecting its variance behaviour when the process is averaged, or 
aggregated, over different scales. The function of the variance of the averaged process 
versus the scale is called the climacogram, while the function of the cumulative process 
versus the scale is called the cumulative climacogram (Koutsoyiannis, 2010). The 
climacogram of a process 𝑥(𝑡) is defined as: 

where 𝛤(𝑘) is the cumulative climacogram, and 𝛸(𝑘) is the process 𝑥(𝑡) aggregated at 

timescale 𝑘: 

or for a discrete-time process, with climacogram 𝛾𝜅: 

The climacogram is theoretically equivalent to other second-order properties, namely 
the autocovariance, autocorrelation and the power-spectrum, but it is advantageous 
estimation-wise for having superior properties in terms of bias, discretization errors, 
and sampling uncertainty (Dimitriadis and Koutsoyiannis, 2015). For these reasons, it 
is the basic tool employed herein for second-order characterization. 

The theoretical climacogram differs among processes with different second-
order dependence structure. For three key types of stochastic processes the following 
hold (Koutsoyiannis, 2020b). In case of an independent White-noise process in discrete 

time, the climacogram is a function of the variance of the process 𝜎2 and the scale κ: 

which generalizes for the continuous-time by changing the scale to a real number 𝑘 ≔
𝜅𝐷 

For a continuous-time process 𝑥(𝑡) with variance 𝜆 = 𝛾0 = 𝛾(0) = 𝑐(0) and short-range 

dependence, i.e. an AR(1), or Markov process: 

𝛾(𝑘) ∶= var [
𝛸(𝑘)

𝑘
] =

𝛤(𝑘)

𝑘2
 (12) 

𝛸(𝑘) ∶=∫ 𝑥(𝑡)
𝑘

0

d𝑡 (13) 

𝑋𝜅 ∶= 𝑥1 + 𝑥2 +⋯+ 𝑥𝜅 (14) 

𝛾𝜅 ∶=
𝜎2

𝜅
 (15) 

𝛾(𝑘) ∶=
𝜎2𝐷

𝑘
 (16) 
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where 𝛼 is parameter with units of time.  In the case of a continuous process with 
asymptotic scaling at ∞, the climacogram is: 

where 𝛼 and 𝜆 are scale parameters, with dimensions [𝑡] and[𝑥2] while 𝐻 is the so-
called Hurst parameter ranging in the interval (0,1). The latter equation is the 
definition for a Hurst-Kolmogorov process. The case 𝐻 = 0.5 corresponds to an 
independent process, while for 0.5 < 𝐻 < 1 the process is persistent and for 0 < 𝐻 <
0.5 anti-persistent. 
  From equations (16) and (18) it is evident that when the scale tends to zero the 
process’s variance reaches infinity, which is not plausible for natural process, as an 
infinite variance process would require infinite energy to materialize. In order to 
remedy this shortcoming, and improve flexibility of the model for dependence in 
shorter time scales, the filtered Hurst-Kolmogorov process is developed with several 
climacogram types (Koutsoyiannis, 2017). The generalized Cauchy-type climacogram 
is: 

where 𝑀 is an added dimensionless parameter which controls the local scaling of the 
process (fractal behaviour), named 𝑀 in honor of Mandelbrot (Koutsoyiannis et al., 

2018). Values of 𝑀 <
1

2
 indicate a rough process, while 𝑀 >

1

2
 indicate a smooth process. 

For more, on the bounds of scaling the reader is referred to Koutsoyiannis (2017). The 
usefulness of this parameterization in simulation is discussed next in Section 2.4.  
 

 Scaling in time by the entropic view: from predictability to uncertainty  

A counter-intuitive characteristic of dependence in time is its non-equivalence to 
predictability, even more its association with increased unpredictability at greater time 
scales. The biased perception of dependence in favour of predictability, reflected by 
the term ‘memory’, is fortified by the dominance of autocorrelation-based models in 
the literature. Autocorrelation is intuitive for prediction purposes but does not expose 
uncertainty, on the contrary to the variance-based characterization of the climacogram.  

A rigorous way to investigate the case for (un)predictability is through the 
unifying notion of entropy, which represents degree of uncertainty or ignorance 
(Papoulis, A., 1991). The conditional entropy, i.e. the uncertainty about the future 
when the past is observed, is directly linked to predictive uncertainty, while the 
difference between entropy and conditional entropy equals the information gain.  
Koutsoyiannis (2005, 2011) showed that the HK dynamics is a product of conditional 

𝛾(𝑘) ∶=
2𝜆

𝑘/𝑎 ( 
  
  
  
 

1 −
1 − 𝑒

−
𝑘
𝑎

𝑘/𝑎 ) 
  
  
  
 

 (17) 

𝛾(𝑘) ∶= 𝜆 (
𝑎

𝑘
)
2−2𝐻

 (18) 

𝛾(𝑘) ∶= 𝜆 (1 + (
𝑘

𝑎
)2𝑀)

𝐻−1
𝑀

 (19) 
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entropy maximization at large time scales, whereas the AR(1) model maximizes 
conditional entropy at small time-scales (𝑘=1,2). An increase in model autocorrelation, 
signifies a decrease of conditional entropy at lower scales (1,2), thus improves 
predictability, whereas at higher scales the exact opposite is true. As the timescale 
increase, the conditional entropy of all models also decreases, yet at a different rate 
compared to the unconditional. For a scaling process (HK dynamics) the information 
gain remains constant with the scale, as does the autocorrelation function, due to the 
same rate of decrease of the conditional and unconditional entropies. However, this 
does not imply greater predictability, as in fact, the conditional entropy still remains 
greater than the case of an AR(1) model (Koutsoyiannis, 2005). This view of 
predictability is particularly relevant when dealing with climate, which represents the 
average weather at scale 𝑘=30 years (Koutsoyiannis, 2010). For a given scale, it is the 
role of time window that becomes critical in determining the predictability horizon, as 
highlighted in Dimitriadis et al. (2016). The relation of dependence with predictability 
is examined both at short time-scales, in Chapter 5, and at climatic-scales in Chapter 8.  

2.3 Dependence in extremes: theory and diagnostics  

 The development of classic extreme value theory  

Before considering the case of dependence, it is worth recapitulating the fundamental 
results of extreme value theory which is now well established. If 𝑦1, 𝑦2, … , 𝑦𝑛 is a 

sequence of identically and independently distributed (IID) random variables, then 
the maximum of them, i.e. the largest order statistic, 𝑥𝑛 ≔ max (𝑦1, 𝑦2, … , 𝑦𝑛) has the 

following probability distribution function:  

𝐹𝑥𝑛(𝑥) ∶= (𝐹𝑦(𝑥))
𝑛 (20) 

Results concerning the asymptotic behaviour of this distribution as 𝑛 → ∞ were 
obtained in the early 20th century. Fréchet (1927) was the first to identify the 
homonymous limiting law, Fisher and Tippett (1928) showed that there are only three 
possible types of the limiting laws, von Mises (1936) identified sufficient conditions 
for convergence to the limiting laws and provided a common parameterization, while 
Gnedeko (1943) set the solid foundations for convergence to the limiting laws under 
weak conditions. Their results were lately popularized to the engineering community 
by the prominent book of Gumbel (1958). A detailed presentation of the early history 
of the contributions is provided in Kotz and Nadarajah (2000). Specifically, the 
asymptotic theory for extremes states that for extremes from IID random variables, if 
there exist rescaling constants 𝑎𝑛 > 0 and 𝑏𝑛, so that for the linearly rescaled maximum 

𝑥𝑛
′ ≔ 

𝑥𝑛−𝑏𝑛

𝑎𝑛
 exists a non-degenerate limiting distribution, then this should be of the 

form: 

𝐺(𝑥) ∶= 𝐹𝑥∞′ (𝑥) = exp
( 
  
  
  
 
 

− ( 
  
 
 

1 + 𝜉 (
𝑥 − 𝑏

𝑎
)) 
  
 
 −1

𝜉

) 
  
  
  
 
 

,with 1 + 𝜉 (
𝑥 − 𝑏

𝑎
) ≥ 0 (21) 
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The latter is known as the generalized extreme value (GEV) distribution. In this 
parameterization, 𝜉 is a shape parameter ϵ ℝ, 𝛼 > 0 a scale parameter and 𝑏 a location 
parameter ϵ ℝ. The shape parameter is unique and is identical to the tail index of the 
parent process, but the scale and location parameters depend on 𝑛. The first limiting 
law known as extreme value type I (EV1) is retrieved for ξ = 0 and is the well-known 
Gumbel distribution. The second law, known as extreme value type II (EV2), emerges 
for ξ > 0 and is the Fréchet distribution. The third law (EV3) appears for ξ < 0 and is 
the reverse Weibull distribution, but it is less of interest in applications of extremes, as 
it yields an upper bound. A parent distribution 𝐹 is said to belong to a domain of 
attraction if a linear transformation of its maxima follows one of the three limiting laws 
(Von Mises, 1936). For instance, light-tailed distribution and heavy-tailed distribution 
with tail index 𝜉=0 belong to the domain of EV1, heavy-tailed with tail index 𝜉>0 to 
the domain of attraction of EV2, and distributions bounded from above to EV3 
(Koutsoyiannis, 2020b).  For typical applications of finite 𝑛, as in the annual maxima 
case, equation (21) is only an approximation of the distribution of extremes, and its 
asymptotic validity could be questioned. Details on the strength of convergence in 
cases of interest to hydrology can be found in Koutsoyiannis (2004a, 2004b) and 
Papalexiou and Koutsoyiannis (2013), and are further discussed in Chapters 4 and 7.  
 The three limiting laws form exactly the class of max-stable distributions, 
meaning that if 𝐺 is max-stable then it can be shown that it is of extreme value type, 
while the EV class has the property to be max-stable (Leadbetter et al., 2012). A max-
stable distribution as originally defined by Fréchet (1927) is one which retains the same 
form under a linear transformation of its maxima, specifically, for any 𝑛 ∈ ℕ and 𝑥 ∈
ℝ, there exists 𝑎𝑛 > 0 and 𝑏𝑛 such that: 
  

(𝐺(𝑎𝑛𝑥 + 𝑏𝑛))
𝑛 = 𝐺(𝑥) (22) 

 

 Extreme value theory under dependence 

It is straightforward to see that some sort of restriction of the dependence structure is 
required in order to obtain an asymptotical result for the type of extremal behaviour. 
Otherwise it could be assumed that all 𝑦𝑖 are equal arising from an arbitrary 

distribution function, in which case the distribution of its extremes 𝑥𝑛  would be this 

arbitrary distribution (Leadbetter and Rootzen, 1988). As discussed in the previous 
section, the IID assumption was fundamental in the early development of the classic 
extreme value theory. Juncosa (1949) was the first to generalize results in case of non-
ideally distributed variables. Some years after a number of publications emerged in 
the direction of relaxing the independence assumption. Early considerations of the 
case for dependence originated in the literature in the works of Watson (1954) and 
Newell (1964) who studied asymptotic results for extreme value series from stationary 
sequences of 𝑚-dependent random variables, i.e. considering events that occur more 
than time 𝑚 apart as independent. Berman (1964) identified conditions for asymptotic 
independence of Gaussian processes and Loynes (1965) showed that 𝑚-dependence 
could be replace by the uniform mixing (else referred to as strong mixing) assumption 
for the parent process, which was further generalized by O’Brien (1974). The uniform 
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or strong mixing assumption is first introduced in Rosenblatt (1956) and is defined in 
probabilistic terms  requiring that any two events separated in time tend to being 
independent as the separating time grows larger.  

A pivotal result concerning influence of dependence on extreme value theory 
was obtained by Leadbetter (1974) who studied weaker conditions under which the 
non-degenerate limits of dependent sequences are still extreme value distributions. In 
particular, Leadbetter introduced the distributional mixing condition known as 
𝐷(𝑢𝑛) condition which states that under weak conditions that exclude long-range 
dependence only for high level exceedances 𝐺 is still an extreme value distribution, or 
equivalently, it is max-stable. This is a condition much weaker than the strong mixing 
condition which applied to all exceedances (uniform mixing) as presented in Loynes 
(1965). Examples of moving-maxima processes for which this holds are provided in 
Berliant et al. (2006a), comprising cases of validity in even weaker conditions of the 
original 𝐷(𝑢𝑛), i.e. including periodic Markov Chains. These results further establish 
the use of the EV theory and justify its acceptable empirical performance through the 
years.  
 Although dependence under the 𝐷(𝑢𝑛) condition does not challenge the 
asymptotic validity of the extreme limit theorems, it may affect the choice of the limit 
distribution. Leadbetter (1974) also introduced a second stricter condition known as 
𝐷′(𝑢𝑛) which limits the amount of short-range dependence in high-level exceedances, 
or else local clustering, by requiring the probability of more than one exceedance in a 
cluster to be negligible. This implies asymptotic independence and is satisfied in the 
early results obtained in the literature (e.g. Watson, 1954; Loynes, 1965). Together these 
conditions ensure that asymptotically the occurrence of exceedances form a Poisson 
process, while the possibility of clustering of events is limited. If the 𝐷′(𝑢𝑛)  does not 
hold then the exceedances of the threshold can occur in clusters as a compound 
Poisson process. In particular, Leadbetter (1983) by extending a result of Chernick 
(1981), showed that the weak mixing 𝐷(𝑢𝑛)  condition alone suffices for the asymptotic 
distribution of extremes from stationary processes to be precisely of the same type of 
that of an IID  sequence with the same marginal distribution. In this case though, 
dependence affects the parameterization of the limit distribution in terms of the 
linearly rescaling constants. The quantification of extremal dependence is defined in 
terms of a constant 𝜃 ∈ [0, 1], which is called the extremal index, and for which the 
following statement holds. If a process 𝑦  has an extremal index, then for each 𝜏 > 0:  

(i) there exists 𝑢𝑛(𝜏) such that 𝑛(1 − 𝐹( 𝑢𝑛(𝜏)) →  𝜏 , which suggests that the 
mean number of exceedances is constant as 𝑛 → ∞ , and  

(ii)  𝑃{𝑥𝑛 ≤ 𝑢𝑛(𝜏)} → 𝑒−𝜃𝜏 (23) 

which suggests that the extremal distribution converges to a generalization 
of the limiting form for the IID case, �̃�𝜃, where �̃� the limiting distribution 
for the associated IID process �̃�𝑛.  

If (i) holds and 𝐷(𝑢𝑛(𝜏))  holds for each 𝜏 and 𝑃{𝑥𝑛 ≤ 𝑢𝑛(𝜏)} converges for some τ>0 

then (ii) holds for some 𝜃 ∈ [0, 1] and all τ>0, and therefore the process has an extremal 
index (Leadbetter et al., 2012). The case of 𝜃 =0 is considered pathological as it leads 
to 𝑃{𝑥𝑛 ≤ 𝑢𝑛(𝜏)} → 1 for all τ although it may have marginal meaning in specific cases. 

If 𝜃 =1 this corresponds to the form 𝐺 takes for IID data, but in case 𝜃 > 0, then the (𝜉, 
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𝑎, 𝑏) parameters of 𝐺 are related to the ones of the limiting distribution of the 

associated  independence sequence, �̃� (equation 21) by: 

𝜉 = 𝜉,̃ 𝛼 = �̃�𝜃𝜉, 𝑏 = �̃� + (𝜃𝜉 − 1)
𝑎

𝜉
,  (24) 

Therefore, only the shape parameter remains the same. These results can relate to ones 
derived from the generalized Pareto distribution for over-threshold exceedances, 
whose connection to extreme value theory was established by Pickands (1975) while 
also previously found in an independent study by Balkema and de Haan (1974). For 
independent processes, 𝜃 = 1, although the latter also holds for some cases of 
dependent processes under the stricter condition 𝐷′(𝑢𝑛)   which limits the amount of 
local clustering, i.e. short-range dependence in high-level exceedances (Leadbetter, 
1983a). This condition is equivalent to assuming asymptotic independence. On the 
contrary, values of 𝜃 <1 represent the tendency of exceedances to occur in clusters. 
 Therefore, the extremal index can be thought as way to link extremal clustering 
behaviour of the process to its parent dependence structure. It can be shown that the 

extremal index is related to various properties of clustering of events, e.g. θ−1  is the 
mean size of extremal clusters. Likewise, the extremal index is the reciprocal of the 
limiting mean number of exceedances in blocks with at least one exceedance, thus it 
can be estimated as the ratio of the total exceedances of the threshold vs the number 
of cluster with at least one exceedance, which is known as the blocks estimator 
(Beirlant et al., 2006). It can be also related to the conditional time between 
exceedances, as well as the distribution of the maxima of the process, as shown before. 
Based on these properties, various estimators have been proposed in the literature, as 
the runs and maxima methods. A comparison of various methods is provided in 
Ancona-Navarrete and Tawn (2000) who point out the strong dependence of the 
estimate on the selected threshold for extremes.  

It is worth reiterating however that fulfilment of the 𝐷(𝑢𝑛)   condition alone 
does not guarantee that a process has an extremal index. For the latter both 𝑃{𝑥𝑛 ≤
𝑢𝑛(𝜏)} and the associated with the IID process 𝑃{�̃�𝑛 ≤ 𝑢𝑛(𝜏)}, need converge to a 

nondegenerate distribution (and thus of extreme value type). O’Brien (1974) and 
Leadbetter et al. (2012) construct a few counter-examples for which 𝐷(𝑢𝑛)   holds and 
𝑃{𝑥𝑛 ≤ 𝑢𝑛(𝜏)} converges, but the process does not have an extremal index because the 

associated IID sequence does not converge; yet the latter are too artificial and unlikely 
to be of practical interest. 
 In practical terms the above results show that weak forms of extremal 
dependence alter the parameters of the limiting distribution but do not invalidate its 
appropriateness. A slight decay has been reported in the rate of convergence to the 
asymptotic laws (e.g. Eichner et al., 2011), yet for normal sequences Leadbetter et al. 
(2012) prove that it is the same as in the independence case. In practice since the 
parameters are typically estimated from the data, regardless of the user’s awareness 
of it, the effect of such dependence is incorporated in the model for extremes. Yet 
awareness of dependence is still important in terms of the bias induced in the 
estimation of extreme value quantiles (Koutsoyiannis, 2020b).   
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 Other measures of extremal dependence 

An alternative way of expressing extremal dependence other than testing based on the 
𝐷′(𝑢𝑛)  condition, is in terms of the limiting behaviour of the joint distribution of 
extremes. This measure has found large applications in multivariate extreme value 
analysis of  independent random variables, where it is known as tail dependence 
coefficient (Ledford and Tawn, 1996). Sibuya (1960) was among the first to examine 
tail dependence by providing the proof for the asymptotic independence of the 
bivariate normal distribution. Under the assumption that the multivariate variables 
have only weak long-range dependence, the concept can also be suited for the 
examining dependence in extremes, treated as lagged variables of a single process. If 
[𝑋1, 𝑋2] denotes a bivariate random vector with common marginal distribution 

function 𝐹 representing distinct exceedances of a threshold, then the coefficient of tail 
dependence between 𝑋1 and 𝑋2 is defined as: 

𝜒 = lim
𝑥→𝑥∗

𝑃[𝑋2 > 𝑥|𝛸1 > 𝑥]   (25) 

where 𝑥∗ denotes the upper end point of the common marginal distribution, given that 
the limit exists. The case of 𝜒 =  0 signifies asymptotic independence, whereas cases 
of 0 <  𝜒 ≤  1 denote asymptotic dependence. Threshold-dependent variants of the 
original coefficient have also been formulated, able to characterize dependence at sub-
asymptotic levels as well  (Coles et al., 1999). A number of other summaries of 
multivariate dependence exist (see eg. Beirlant et al., 2006; p. 273) but a more relevant 
discussion for applications in univariate processes and particularly rainfall series is 
provided in Ledford and Tawn (2003). An obvious however limitation of this approach 
is the increase in dimensionality when one is interested in characterizing dependence 
beyond the bivariate case. 
 

 Cases of stronger dependence 

It is recalled that the results and methods of the previous section are based on the 
assumption of some form of restriction of long-range dependence in high-level 
exceedances (𝐷(𝑢𝑛)  assumption). This is considered a weak assumption and it may be 
asymptotically valid for extremes even from classes of processes exhibiting long-range 
dependence, namely Gaussian linear processes (Embrechts et al., 1999). However, 
given the marked non-Gaussianity of natural processes and the fact that extremes from 
lower thresholds may also be of interest, inference based on related metrics is not as 
straightforward for persistent processes. We stress that results concerning the validity 
and uncertainty of these metrics in non-Gaussian long-term persistent processes are 
very scarce in the literature, in fact the topic is not covered at all in most textbooks (e.g. 
Galambos, 1994; Embrechts et al., 1999; Beirlant et al., 2006; Finkenstadt and Rootzén, 
2003; Kottegoda and Rosso, 2008; Kotz and Nadarajah, 2000; Leadbetter et al., 2012; 
Resnick, 2007; Beran, 2004). A notable exception are the mathematical contributions on 
extremal properties of self-similar processes by O’Brien et al. (1990) showing that 
different limits may emerge for the extremes of self-similar processes, other than the 
ones suggested by EVT, and the former may not have a planar point process 
representation, i.e. as the Poisson point process for IID extremes.  
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A few other contributions on the subject mainly refer to Gaussian processes. 
Normality is a convenient condition for the study of extremes, as the joint moments of 
normal processes —which control the extremes’ behaviour, are fully determined by 
their mean and covariance structure. For such processes, Mittal and Ylvisaker (1975) 
have shown that in cases of strong persistence defined in terms of the rate of decay of 
the covariance function, i.e. cases where the 𝐷(𝑢𝑛)  condition is not satisfied, the 
limiting distribution of extremes from normal processes is a normal distribution too.  

Therefore, the theoretical properties of extremes from heavy-tailed and 
persistent processes are understudied, despite their relevance to natural process. In 
practice though, simulation provides the means for circumventing this issue, as 
performed in Chapters 6-7. The modelling options to simulate extremal behaviour are 
discussed next. 

2.4 Treatment of dependence and extremes in common modelling 
approaches 

Having discussed the development of theory and inference tools for extremal 
dependence, in this section we examine how the latter is dealt by common modelling 
approaches of the wider statistical literature. Studies dealing directly with extremal 
dependence abound in the econometrics literature, relating to modelling insurance 
and finance data (Embrechts et al., 2013), but are much scarcer in environmental 
literature. Below we review the most relevant hydrological modelling approaches of 
two types; ones related to the joint modelling of extreme and nonextreme properties 
of the parent process, and ones focused on the tail of the distribution of the parent 
process. In the final section, we discuss potential for bridging the two.  
 

 Joint modelling of nonextreme and extreme properties of the parent process  

A complementary approach to the use of asymptotic theory for studying extremes is 
the explicit modelling of the parent process generating the extremes. This approach is 
particularly useful in cases where modelling of the parent process is required but 
preservation of the extremal properties is also essential, as in the case of streamflow 
simulation for reservoir management. In such cases, achieving an efficient modelling 
of the whole process including the tails, is not only practical, but improves theoretical 
consistency of the model estimates’ as well. In general however, in parent process 
modelling extremal dependence is rarely explicitly dealt by, rather the behaviour of 
extremes is assessed in terms of model validation. As preservation of the multi-scale 
properties of a process is rather challenging, often this approach differentiates between 
placing the modelling focus either on finer or larger time-scales. Attempts to achieve 
consistency among these scales typically make use of disaggregation techniques (e.g. 
Koutsoyiannis and Manetas; 1996). Below we revisit the most classic and some 
relevant emerging approaches with regard to their accounting for extremes and 
dependence. Covering asymptotic results on general classes of stochastic models is not 
within the scope of this review; namely the interested reader is referred to Rootzén 
(1986; 1988) for extremal dependence in Markov chains and moving-average processes 
with non-Gaussian tails. Rather the aim here is to outline the basic characteristics of 
hydrological models with respect to flexibilities in modelling long-term persistence 
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and extremes. In this respect, non-parametric models are not discussed as they do not 
allow extrapolation to events beyond the range of the observed.  
 
 
 
Point process models 
Fine scale (sub-hourly, hourly or daily) rainfall requires a different modelling 
approach to that of large scale rainfall (monthly, annual or inter-annual) due to of the 
distinctive characteristics of rainfall at fine scales, i.e. prevalence of clustering 
mechanisms, including intermittence (Koutsoyiannis, 2006). Waymire and Gupta 
(1981) demonstrate mathematically that fine-scale rainfall properties are consistent 
with point process theory. According to Cox and Isham (1980), a point process defined 
in the set of positive real numbers, ℝ+ is “a stochastic process for which each 
realization consists of a collection of points, each point having a well-defined position, 
usually in one-dimensional space, but possibly in some higher dimensional space”. 
The main categories of point processes are Poisson-cluster processes, Cox processes 
and renewal processes. The first category is the simplest and most widely used in 
literature as established by Rodriguez-Iturbe et al. (1987a; 1987b).  In the general case 
of this approach, storms arrive according to a Poisson process of rate 𝜆 triggering the 
generation of clusters of cells associated with each storm according to another process. 
Cells are characterized by duration usually following an exponential distribution, and 
a random depth described in terms of its first three moments. Depending on the type 
of process that is employed for the cell clustering mechanism, two main models are 
identified in literature, the Neyman-Scott and the Bartlett-Lewis processes (Onof et al., 
2000). In the Neyman-Scott processes, the number of cells in a storm follows a random 
distribution, usually Poisson or geometrical, and the cell arrival times are 
exponentially distributed. In the Bartlett-Lewis processes, the cell arrival process is 
another Poisson process of rate 𝛽, associated with the origin of each storm and 

terminated at an exponential rate 𝛾. Thus, in the first case the arrival times of cells are 
modelled with respect to the storm origins, while in the second case the inter-arrival 
times between successive cells are of interest. The model is fitted upon minimizing the 
difference between theoretical properties of the model and observed rainfall statistics. 
Typically, the latter include first and second-order statistics (mean, variance, 
autocovariance) as well as the probability dry, from timescales ranging from 1 h to 24 
h, while inclusion of the third moment has been proposed as well in order to improve 
the fit to the extremes (Cowpertwait, 1998).  
 Reproduction of the extremes is the most challenging task for this type of 
models, as they tend to underestimate hourly and sub-hourly extremes (Verhoest et 
al., 2010), often followed by an overestimation the daily (Onof and Wang, 2019). 
Inclusion of the skewness in the calibration set along with various re-
parameterizations of the original model and coupling with disaggregation schemes 
have been found to contribute to better fitting to the extremes (Cowpertwait, 1998; 
Kaczmarska et al., 2014; Kossieris et al., 2018; Onof and Wang, 2019). Onof and Wang 
(2019) argue that it is of high importance to capture the fat-tailedness of the storm 
intensity distribution as well, by employing a heavier tail distribution in the model. 
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The other critical issue with respect to the extremes relates to capturing their 
long-term variability. By construction Poisson-cluster processes are characterized by 
short-term dependence induced by the clustering of cells within a storm, but lack long-
term dependence due to the use of a Poisson process for the generation of the storm 
arrivals and the independence of the cells among different storms (e.g.  Rodriguez-
Iturbe et al., 1987b). Marani (2003) highlighted the fact that accordingly Poisson-cluster 
models are expected to underestimate the variance for scales larger than those of 
calibration, which typically extends from one to few days; which is also confirmed by 
Onof and Wang (2019) in spite of various amendments to the original model. A 
remedy proposed by Park et al. (2019) is the coupling of the Bartlett-Lewis model with 
a seasonal autoregressive integrated moving average (SARIMA) model in order to 
capture the observed long-term rainfall variability. The model showed an improved 
fit to multi-scale extremes, which however came at the cost of a substantial increase in 
the model parameters compared to the original version. Recently, Kim and Onof (2020) 
also attributed the underestimation of the variability and extremes at large-scales to 
the fundamental structure of Poisson cluster models and proposed the use of adequate 
reshuffling procedures to induce long-term dependence in the model output. These 
works along with other prior studies (Kim et al., 2013; Paschalis et al., 2014) converge 
to the fact that accounting for rainfall variability across scales in this type of models is 
crucial for a better reproduction of the extremes.  
 
Two-part models 
Two-part models are based on the decomposition of the modelling of the rainfall 
process to the explicit modelling of the occurrence process, i.e. dry or wet state, and 
that of the rainfall intensity process, i.e. the nonzero rainfall of wet days (Srikanthan 
and McMahon, 2001).  This class of models is one of the oldest in rainfall modelling 
(Gringorten, 1966; Todorovic and Woolhiser, 1975) and also became popular under the 
term ‘stochastic rainfall generators’ (Wilks, 1999). The occurrence process is typically 
modelled by a ‘chain-dependent’ process, comprising two states, a wet and a dry, the 
alternation between which is determined by a matrix of transition probabilities. The 
latter is usually assumed to be a Markov chain of order 𝑝, where 𝑝 in case of daily 
rainfall indicates the number of days which are taken into account for the estimation 
of the transition probabilities. The common choice is that of a first-order Markov chain, 
although the resulting dependence pattern of dry spells is often underestimated (e.g. 
Wilks, 1999). This may be in part amended by considering higher-order Markov 
chains, or different parameterizations for the transition probability scheme, 
incorporating stronger dependence (Koutsoyiannis, 2006). An important drawback 
however is that the modelling of the rainfall intensity process typically entails the 
assumption of independence (Wilks, 1999). In fact, it is well-known that this class of 
models underrepresents the inter-annual rainfall variability (e.g. Buishand, 1978; Katz 
and Parlange, 1998). Possible improvements may come from the incorporation of 
hidden state Markov models which have shown potential in capturing inter-annual 
variability (Sansom, 1998; Thyer and Kuczera, 2000).  
 
Multifractal models 
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Multi-fractal models also known as multiplicative random cascade models, arise from 
the concept of self-similarity, else scale-invariance, who shaped in the mid 20th century 
and became popular by the works of Mandelbrot (1974, 1983). A detailed review on 
the history of the concept, its definitions and its applications in hydrology is given by 
Veneziano et al. (2006b)  and Veneziano and Langousis (2010). These models are 
mainly phenomenological based upon the empirical observation of scaling in nature 
(e.g. Newman, 2005). They are built upon the concept of perfect scaling of moments, 
and have been popular simulation algorithms of rainfall during the past decades 
(Schertzer and Lovejoy, 1987; Gupta and Waymire, 1993; Marshak et al., 1994; Over 
and Gupta, 1994; Menabde et al., 1997; Langousis and Veneziano, 2007). A desirable 
feature of these models is that they reproduce variability in a parsimonious fashion 
that also captures other statistical properties including the extremes (Veneziano and 
Langousis, 2010). At the same time though they encompass some fundamental 
limitations. First, typical models assume a single scaling exponent for all the moments 
of the process, which has been questioned in the literature for the rainfall process (e.g. 
Veneziano et al., 2006a; Molini et al., 2009; Serinaldi, 2010). In particular regarding the 
autocovariance structure more complicated behaviours have been observed (Marani, 
2003; Markonis and Koutsoyiannis, 2016; Iliopoulou and Koutsoyiannis, 2019). 
Furthermore, the basis in multi-fractal analysis is the determination of the moment 
scaling function from the data, which is impacted by enormous estimation uncertainty 
considering classical moment estimators. In particular,  estimation beyond the order 
of three is shown to be highly unreliable (Lombardo et al., 2014). Apart from the latter, 
Koutsoyiannis et al. (2018) highlighted a number of theoretical inconsistencies in the 
fractal approach and its applications, most notably the fact that scale invariance is a 
mathematical abstraction that violates certain natural laws as finiteness of energy and 
space. Rather the existence of scales beyond which a certain power law exists or ceases 
to hold appears to be a more applicable assumption for natural processes (Gneiting 
and Schlather, 2004; Gneiting et al., 2012; Koutsoyiannis, 2016). Considering the latter 
points, Koutsoyiannis et al. (2018) suggest that the useful concepts of fractal theory can 
be incorporated into existing stochastic models, while related estimation issues may 
too be more rigorously treated within the framework of stochastics.  
 
Linear stochastic models 
The class of stochastic models has a long history dating back to early 20th century; a 
classification of dominant approaches is provided by Koutsoyiannis (2019a). The most 
widely known modelling approach is autoregressive models which originated in the 
works of Yule (1927) and Walker (1931) and gained stochastic foundations by the 
works of Wold (1938, 1948) and Whittle (1952, 1953). They became however popular 
by the acronyms —AR(𝑝) (autoregressions of order 𝑝), MA(𝑞) (moving-averages of 
order 𝑞), ARMA(𝑝, 𝑞) (linear combination of the latter models) and ARIMA (𝑝, 𝑑, 𝑞) 
(autoregressive integrated moving average), given in the famous book of Box and 
Jenkins (1970). By construction they are short-range dependence models, with the 
exception of the ARFIMA(𝑝, 𝑑, 𝑞) model able of modelling long-range dependence 
through the use of a real valued 𝑑 parameter, instead of the integer one (Granger and 
Joyeux, 1980; Hosking, 1981) 
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Despite their large popularity, this class of models suffers from a number of 
issues, namely definition in discrete time in contrast to the continuous-time evolution 
of natural systems, definition in terms of the autocorrelation structure whose 
estimation is negatively biased, and overparameterization, with the exception of 
simple AR(1), ARMA(1,1), and ARFIMA(0, 𝑑, 0) versions (Koutsoyiannis, 2016). 
Koutsoyiannis (2000, 2002, 2016) developed an alternative parsimonious approach for 
model identification and fitting based on a generalized form of the autocovariance 
structure, and proposed a simulation algorithm, the symmetric moving-average 
scheme (SMA), suitable both for short- and long-range dependent processes. Another 
approach for long-range dependence is the approximation of the second-order 
structure by an infinite sum of Markov processes (Mandelbrot, 1971), an approach 
parameterized for HK processes by Koutsoyiannis (2002). In contrast though to the 
flexibility of the SMA scheme, the former is a simple scaling approach and cannot 
preserve the dependence structure at timescales tending to zero (fractal behaviour; cf 
Dimitriadis and Koutsoyiannis, 2018). A further advance to the moving-average 
scheme has been the development of its asymmetric variant (AMA) which enables 
preservation of temporal irreversibility of the process (Koutsoyiannis, 2019a). The 
latter may be profound in atmospheric process at fine time-scales while it is 
particularly relevant for the simulation of the streamflow processor time scales up to 
several days  (Ribatet et al., 2009; Mathai and Mujumdar, 2019; Serinaldi and Kilsby, 
2016a; Koutsoyiannis, 2019b). 

A marked challenge for the above models is the preservation of the marginal 
distribution of the process in cases of non-Gaussianity (see Tsoukalas, 2018; for a 
review of different approaches in hydrology). The latter is particularly relevant for the 
reproduction of the extremes. The original version of the SMA model (Koutsoyiannis; 
2000, 2002, 2016) explicitly models the second-order properties of the process and 
approximates the marginal distribution by preserving the first three moments (thus, 
up to skewness). An extension of the model enabling preservation of four moments 
(up to kurtosis) has been provided by Dimitriadis and Koutsoyiannis (2018a). An 
alternative approach was followed by Papalexiou (2018) performing the simulation of 
the dependence structure in the Gaussian domain using autoregressions and back-
transforming to the non-Gaussian domain through the inverse transformation. The 
known effect of the non-linear marginal transformation on the autocorrelation of the 
process (Embrechts et al., 2002) is dealt by prior to the model application, by inflating 
the correlation structure of the parent Gaussian process in order to preserve the target 
correlation of the arbitrary process. A similar modelling approach based on the 
Gaussian auxiliary process but using the SMA model for the generation scheme 
instead, is developed by Tsoukalas et al. (2018). A general form of this approach is 
reviewed in Lavergnat (2016). Finally, an alternative approach of performing the 
simulation of the dependence structure in the frequency domain, instead of the time-
domain, using phase randomization and coupling with a parametric distribution is 
suggested by Brunner et al.(2019). 

It is worth recapitulating that short-range dependent Gaussian processes 
asymptotically do not exhibit extremal dependence (𝜃 = 1), while the same might be 
true even for Gaussian processes with weak long-range dependence (Leadbetter et al., 
1983; Embrechts et al., 1999; Ancona-Navarrete and Tawn, 2000). Therefore, in 
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presence of clustering of extremes and long-term rainfall variability, from the above 
class of linear models only the ones able to simulate long-range dependence and heavy 
tails should be of interest. 
 
Autoregressive conditional heteroscedasticity models 
These models are mainly developed in the econometrics literature around the concept 
of stochastic volatility. Stochastic volatility refers to random changes of the variance 
as a function of time, defined in the context of stochastic recurrence (difference) 
equations (de Haan et al., 1989). These models were introduced in econometrics 
because usual linear models of the ARMA-type exhibited light tails and conditional 
constant variance and could not capture the peculiarities of financial timeseries. The 
latter refer to presence of heavy tails, changes in volatility, high correlations in the 
squares and absolute values of the data, clustering of high-threshold exceedances, 
while showing almost no correlation in the actual values of the data (Embrechts et al., 
2013). Hydrological processes share some similarities with the above properties, 
therefore although applications of this class of models are very limited in hydrology, 
they represent a potentially interesting class for consideration. A relevant application 
of such a model for daily rainfall was performed by Laux et al. (2011). 

In discrete-time, models reproducing stochastic volatility are referred to as 
‘conditionally heteroscedastic’ models and are of two general types. Engle (1982) 
introduced the AutoRegressive Conditionally Heteroscedastic process of order 𝑝 
(ARCH), extended by Bollerslev (1986) who developed the generalized version 
(GARCH(𝑝, 𝑞)). In contrast to the linear case where the noise is additive, the noise in 
these models appears multiplicatively. The variance however is changing linearly, 
conditionally on the values of past observations for the ARCH type, as well as on their 
conditional variance for the GARCH type, in a way that high volatility may arise either 
as a result of large absolute values of past data or from previous periods of large 
volatility (e.g. Embrechts et al., 2013). Therefore, a squared ARCH process can be 
represented as an ARMA process. Different definitions of the way in which the 
variance changes conditionally abound giving rise to many variants of the type, while 
extensions to continuous time have also been proposed (Klüppelberg et al., 2004). An 
attractive property of these models have been the possibility to generate heavy tails 
using light-tailed noise terms, i.e. Gaussian innovations (Kesten, 1973). Conditions for 
the existence of stationary versions and for the existence of moments are discussed in 
Embrecths et al. (1996). A review on different types of ARCH models  and fitting 
methods is provided by Shephard (1996).  

The distinctive feature of ARCH processes is that they exhibit extremal 
clustering, which is the reason for their wide popularity in finance and econometrics. 
The degree of clustering may be difficult to obtain analytically, but can be 
approximated through Monte Carlo simulations as in de Haan (1989). Therefore, 
GARCH models implicitly capture some properties of persistent timeseries but in 
principle they do not preserve the correlation structure of the original process and they 
are not designed to reproduce long-range dependence, either. The reason is that in 
standard ARCH and GARCH modelling the behaviour of the conditional variance is 
modelled and this may appear persistent, irrespectively of the behaviour of the 
unconditional one, which is the modelling focus in case of long-range dependence 
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(Mikosch and Starica, 2002). Modifications however have been proposed in order to 
capture LRD-type behaviour defined in the absolute values and their squares of log-
returns (Breidt et al., 1998; Giraitis et al., 2000; Ibragimov and Lentzas, 2008). Overall, 
the merits of the ARCH framework pertain to modelling heavy tails and clustering of 
extremes. Yet ARCH theoretical properties are not as developed as in the case of linear 
stochastic processes, and the modelling of the unconditional second-order dependence 
structure, which is important in hydrology, is not straight-forward. 

 
Copula models  
The copula representation is a way of modelling continuous multivariate distributions 
by separating the modelling of the univariate marginal distributions and that of their 
dependence structure (Joe, 2014). The latter is modelled through the copula which is a 
multivariate distribution comprising univariate dependent random variables 
uniformly distributed U(0, 1). The theoretical foundations are based upon Sklar’s 
theorem (Sklar, 1959), showing that every multivariate cumulative distribution 
function of a random vector can be expressed in terms of its marginals and the copula, 
and the works of Fréchet (1951) and Hoeffding (1940) who derived the bounds of the 
copula. Applications of copulas abound in the statistical literature particularly due to 
their flexibility in modelling dependence structures other than the linear case; for 
instance dependence measures of monotonic association such as the Kendalls’ tau 
(1938) and Spearmans’ rank correlation (1904) as well as more general dependence 
structures (cf. Joe, 2014). The linear dependence is argued to be counter-intuitive and 
too restrictive for non-elliptical multivariate distributions (Embrechts et al., 2002).  A 
desirable property of copulas is that under strictly increasing transformations of the 
random variables, the copula properties, including dependence between extremes, 
remain invariant.  The bivariate Gaussian copula is the most commonly applied due 
to the desirable properties of the multivariate joint normal distribution. Yet with 
regard to capturing the behaviours of extremes, the Gaussian copula is not suited; e.g. 
see Sibuya (1960) for the proof of lack of tail dependence in the bivariate Gaussian case. 
In such cases, the Gaussian copula will underestimate the joint tail probability, and 
therefore non-Gaussian copulas, such as the Archimedean (Genest and MacKay, 1986) 
are often employed.  

The great flexibility of the copula framework renders it a possible modelling 
option for a wide range of hydrological issues. Although in practice it has not been 
particularly popular for full process modelling, it is discussed in this section due to its 
potential of coupling with a wide range of modelling approaches. Notable examples 
are studies using the copula approach coupled with the Markov-chains in order to 
simulate intermittent rainfall (Laux et al., 2009; Serinaldi, 2009a, 2009a), coupled with 
linear stochastic models for simulation of hydrological processes (Lee and Salas, 2011; 
Papalexiou, 2018; Tsoukalas et al., 2018), use of multidimensional copulas to 
characterize various dependence structures in hourly rainfall (Salvadori and De 
Michele, 2006), as well as copula applications in the spatio-temporal modelling of 
rainfall (Villarini et al., 2008; Serinaldi, 2009; Bárdossy and Pegram, 2009; Laux et al., 
2011). A greater deal of copula applications are found in the field of multivariate 
hydrological frequency analysis, as in intensity-duration rainfall models (De Michele 
and Salvadori, 2003; Zhang and Singh, 2007; Vandenberghe et al., 2010), and 
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multivariate flood modelling (Favre et al., 2004; Grimaldi and Serinaldi, 2006; Serinaldi 
and Grimaldi, 2007). Currently, the field of applications is still rapidly growing 
(Salvadori and De Michele, 2010), following the similar trend in finance and insurance 
(Embrechts, 2009).  

Overall, the copula literature consists of a number of ad hoc approaches for 
modelling dependence structures and extremes. In terms of long-range dependence, 
Ibragimov and Lentzas (2008) employ a copula-based definition and show that there 
exists a range of copula-based Markov-processes that exhibit such dependence on the 
copula-level. However, these approaches do not form a well-understood and stand-
alone framework for modelling long-range dependence, and tracking its effect on 
extremes. This shortcoming is prominent when compared to the self-contained theory 
of stochastic processes, where both theoretical properties and sample estimation 
procedures for dependent data are established. In this respect, a critical point of view 
on the applications of copulas is provided by Mikosch (2006).  
 

 Extreme-oriented modelling 

Bortot and Tawn (1998) identify four critical components of the behaviours of extremes 
for stationary sequences: (i) the probability of exceeding the threshold, (ii) the 
distribution of the exceedances of the threshold, (iii) the long-range dependence 
between exceedances and (iv) the local clustering of exceedances within any set of 
dependent exceedances of the threshold. The basic theory behind impact of 
dependence in modelling of extreme, presented in Section 2.3., provides an asymptotic 
characterization of (ii), i.e. the distributional behaviour of extremes, by setting 
conditions on the rest of these properties. For high thresholds of extremes, it assumes 
presences of local clustering, quantified through the extremal index, but only weak 
long-range dependence between clusters. In general, the approaches to characterize 
between-cluster dependence fall under the following categories: (a) some formulation 
of probability mixing conditions, as Leadbetter’s (1983) 𝐷(𝑢𝑛), which require that for 
extremes over an adequately high threshold a separation time exists above which they 
can be viewed as forming independent clusters, and (b) second-order dependence 
properties, suitable to characterize extremal dependence for Gaussian processes, as 
Berman’s (1964) condition on the rate of autocorrelation decay.  For within-cluster 
dependence the natural characterization is the extremal index approach as detailed 
above, but other conditional probability approaches, as the ones discussed in Section 
2.3.3, have been formulated as well.  

The asymptotic properties of extremes provide the theoretical basis for 
extrapolation irrespective of knowledge of their parent distribution. In practice 
though, issues in terms of statistical estimation from data arise. The main issues relate 
to determining the rate of convergence to the asymptotic behaviour, quantifying 
estimation bias and uncertainty, and identifying the impact of the threshold for which 
dependence or independence is manifested. These are particularly relevant for the 
frequency analysis of hydrological data. For instance, it has been argued that the use 
of GEV distribution via the blocks method, entails wasteful usage of data, as only the 
maximum per block is retained for modelling (Volpi et al., 2019), which is a central  
arguments in favour of  the peaks over threshold method instead (Pickands III, 1975). 
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The peaks over threshold method may increase the sample of observations but in 
theory, it too attempts to restrict the presence of persistence by selecting only the 
maximum of a certain cluster, in order for the generalized pareto distribution to hold 
as an approximation of the distribution of exceedances (Coles et al., 2001; Ferro and 
Segers, 2003). In doing so, information on local clustering of data is discarded, without 
even considering the ambiguity in defining independent clusters. On the other hand, 
even for cases of asymptotic independence where the extremal index equals 𝜃=1, it is 
possible that at finite levels of exceedances clustering is observed, with cluster size 
decreasing to 1 as the threshold increases; in essence, at sub-asymptotic levels the 
threshold is important in determining the behaviour of the process. Also the bias and 
the variability of the estimates are highly dependent on the model assumption, thus 
without formal modelling it is possible to misinterpret empirical results. Apart from 
the functionals of extremes identified at the beginning, aggregate exceedances are also 
very important and heavily rely on the assumed model (Smith et al., 1997). In terms of 
convergence to the asymptotic distributions, it has been shown to be very slow for 
hydrological data (Koutsoyiannis, 2004a).  

The latter are important arguments in favour of non-asymptotic methods for 
modelling extremes, even though in this case as well, asymptotic results are useful to 
infer the properties that should be retained in close-form modelling (Koutsoyiannis, 
2020b). Below, we review literature contributions regarding sub-asymptotic methods 
for extremes, which share three broad aims: i) modelling of exact (instead of 
asymptotic) extremal properties based on the properties of the parent process, ii) 
modelling dependent exceedances of a given threshold by multivariate analysis of 
their upper joint tail, iii) modelling both dependence and marginal distribution of 
extremes through autoregressive maxima models.   

In terms of exact results, a number of studies on extremes have been published 
in the hydrological literature. De Michele (2019) provides a review of approaches to 
derive the exact distribution of maxima without assuming ‘identically distributed’ 
extremes. With a similar rationale but focused on relaxing the independence 
assumption, Lombardo et al. (2019) derive the exact distribution of maxima taken from 
low threshold POT with magnitudes characterized by an arbitrary marginal 
distribution and first-order Markovian dependence, and negative binomial 
occurrences. Volpi et al. (2015) derive the distribution function of the waiting time for 
processes with Markovian dependence, while Serinaldi and Lombardo (2020) derive 
the probability distribution of the waiting time till the 𝑘th extreme also under long-
range dependence. A sub-asymptotic treatment of dependence in rainfall extremes in 
the framework of multifractal models is also described in Veneziano et al. (2006b). An 
explicit derivation of ombrian models, i.e. generalized intensity-duration-frequency 
curves, incorporating persistence has been provided by Koutsoyiannis (2020b), using 
the extreme-oriented modelling framework based on 𝑘-moments (Koutsoyiannis, 
2019c). 

The second type of studies aim at explicitly modelling local clustering of 
extremes. To this aim, a lot of studies model the joint distribution of threshold 
exceedances using bivariate distributions and typically assuming a Markov-chain 
dependence structure (Ledford and Tawn, 1997; Smith et al., 1997; Bortot and Tawn, 
1998; Ribatet et al., 2009). Common choices for the joint distribution are the bivariate 
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𝑡-tail model, as well as bivariate extreme value models (Ledford and Tawn, 1997; 
Salvadori and De Michele, 2010). A marked issue however is the fact that Markovian 
dependence may underestimate properties of extremes, e.g. Ribatet et. al (2009) find 
that flood durations are under-estimated in the case of first-order Markov chain. On 
the other hand, use of higher-order Markov chains increases complexity. A second 
approach is based on hierarchical modelling by using a latent stochastic process to 
infer parameters of the distribution of threshold exceedances in order to simulate 
extremal clustering. Such models for rainfall extremes are proposed by Bortot and 
Gaetan (2014, 2016), who also provide a detailed discussion on the degree of extremal 
clustering that the models can produce.  

As far as autoregressive maxima approaches are concerned, to our knowledge 
applications in the hydrological literature are very scarce. The moving-maxima 
process is a representation of the max-stable processes introduced by de Haan (1984). 
This approach refers to replacing sums by maxima in the linear time series approach 
and using a Fréchet distribution for the innovation terms, which lead to a max-stable 
process, since all its finite dimensional distributions are max-stable. Moving-maxima 
processes bare connections to multivariate extreme value distributions as well as to 
stable and moving-average processes; e.g. these are discussed in Hall et al. (2002). A 
special class of moving maxima process are max-ARMA processes, whose theoretical 
properties are studied by Davis and Resnick (1989). For a first-order moving maxima 
process (ARMAX), the extremal index equals 𝜃 = 1− 𝛼, while Berliant et al. (2006) show 
that for a general type of moving maxima processes, asymptotically it holds that 𝜃 =
𝛼(1) = max𝑗≥0𝑎𝑗. Although the theoretical properties are well developed (de Haan, 

1984; Davis and Resnick, 1989), the statistical applications are not as established in the 
hydrological domain. An exception is the work of Tyralis and Langousis (2019) 
modelling intensity-duration-frequency curves through max-stable processes. 
Notably more applications of max-stable process can be found for the spatial 
modelling of rainfall extremes (e.g. Davison et al., 2012). 
 

 Overview of approaches  

The development of extreme value theory has enabled the decoupling of the modelling 
of the extremes from that of the parent process. The limiting laws of maxima provide 
the basis for theoretically consistent extrapolation to the range of unobserved events 
requiring estimation only of the three first moments of the sample maxima. The latter 
is convenient because most available records are of short length and cannot support 
the any-order estimation of the process’s distribution, while even for longer records, 
estimation based on higher-order ordinary moments is very uncertain. This issue has 
been resolved only recently, by the development of approximately unbiased higher-
order moment estimators that employ all data and are known as knowable (𝑘-) 
moments (Koutsoyiannis, 2019c). The inclusion of higher-order moments in the model 
calibration may bridge the modelling of nonextreme properties of the parent process 
with a faithful representation of its extremes.  

Although the decoupling of the distributional modelling of extremes from the 
parent process under EVT has been very practical, it has also led to a general disregard 
for the links of extremes to the parent process. Consequently, in the modelling of the 
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parent process, behaviours of extremes other than their marginal distribution are 
usually overlooked, by implicitly assuming independence. On the other hand, in 
extreme-oriented modelling approaches, absence of long-range dependence is 
commonly taken for granted, whereas short-term clustering, i.e. local dependence, is 
treated as a separate behaviour, rather than a byproduct of temporal dependence in 
the parent process. In a more subtle way, the attachment to the assumption of 
independence is also manifested by the increasing number of trend studies invoking 
deterministic causality in case of non-IID extremes (Koutsoyiannis and Montanari, 
2015). The deviations of hydrological extremes from the IID assumption, their 
implications and modelling are the focus of Chapters 4-8, while Chapter 3 revisits the 
second-order structure of the rainfall process.  
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3.  REVISITING LONG-TERM PERSISTENCE IN THE 

RAINFALL PROCESS 

In this chapter, the second-order dependence theory is applied to the rainfall process 
with the aim to investigate its persistence dynamics. The identification of persistence 
in a natural process provides empirical grounds for investigating the long-term 
temporal properties of its extremes. While persistence is identified in various natural 
processes, it is usually less acknowledged in the rainfall process. Thus, it is revisited 
here using a global rainfall dataset. 

3.1 Introduction 

Since Hurst (1951) brought long-term persistence, also known as long-range 
dependence (LRD), into scientific discourse, the interest in this behaviour has been 
rising. This is mainly due to its serious implications into the modelling and design 
processes in various scientific fields and  particularly in water resources (O’Connell et 
al.). Another fact contributing to its growing popularity is that LRD has been identified 
in many climatic variables, such as temperature (Pelletier, 1998; Koutsoyiannis, 2003), 
rainfall (Fraedrich and Larnder, 1993; Pelletier and Turcotte, 1997), wind power 
(Haslett and Raftery, 1989) and the North-Atlantic oscillation index (Stephenson et al., 
2000). The Hurst behaviour has also a strong physical basis, as it is derived from the 
principle of entropy maximization (Koutsoyiannis, 2011a), a principle which can be 
used to determine the theoretical probability distribution model for rainfall 
(Papalexiou and Koutsoyiannis, 2012). More detailed discussion on the history and 
relevance of the Hurst behaviour can be found in the review paper by O’Connell et al. 
(2016). 
      In this analysis, we aim to investigate the dependence properties of annual rainfall. 
Studies regarding LRD in annual rainfall are usually limited in a specific area and/or 
utilize datasets of relatively short lengths (Kantelhardt et al., 2006; Bunde et al., 2013; 
Zhai et al., 2014). Short record lengths can introduce bias into the estimation of long-
term persistence properties, which in general, need more than 100 years in order to 
avoid underestimation (and, in cases of very strong dependence, even more than 1000) 
(Koutsoyiannis and Montanari, 2007). A majority of other studies  investigate the 
dependence structure of rainfall at sub-annual or even smaller scales (Papalexiou et 
al., 2011), but in that case, the phenomenon gets complicated due to the combined 
effects of seasonal variation and intermittency. On the other hand, paleoclimatic 
reconstructions suggest strong LRD behaviour in multi-decadal to centennial time 
scales (Pelletier and Turcotte, 1997; Markonis and Koutsoyiannis, 2015). Evidently, 
there are still ample grounds for research on the existence of LRD in annual 
precipitation.  
        Herein, we analyze more than one thousand annual precipitation records of 
length of a hundred years or more from different areas of the world. To quantify LRD, 
we estimate the Hurst coefficient, through the variance-based method (climacogram) 
and employ Monte Carlo method to identify a common Hurst coefficient for all the 
records. Additionally, we perform a simple test on the autocorrelation structure of the 
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first few lags to examine whether the hypothesis of a Markovian autocorrelation 
structure is justified or not. Finally, we discuss the effect of time-scale and record 
length on LRD estimation. 

3.2 Dataset 

The instrumental data are obtained from the Global Historical Climatology Network 
(GHCN-Daily, https://www.ncdc.noaa.gov/ghcnd-data-access), which contains daily 
data from more than 50 000 land surface stations around the globe. A significant 
percentage of these records exhibit the typical issues of most datasets available, i.e. 
missing values, short record length and rainfall values of questionable quality, such 
as unrealistic outliers. In order to restrict data quality to a significantly high level, we 
filter the dataset using certain criteria. 
        We study only the stations satisfying the following conditions: a) record length 
over 100 years, b) missing values less than 20% and, c) suspect values with quality 
flags less than 0.1%. Initially, in order to construct the annual series we delete all daily 
values assigned quality flags, indicating unrealistically large values, and then estimate 
the average daily value per year. Notably, because of the existence of missing values 
within most records, summing up all daily values of a year would result to smaller 
annual estimates than the real ones; to a degree dependent on the number of missing 
values. It would be clearly more robust to estimate the daily mean values per year. 
This is only performed for the years having less than 20 missing daily values while the 
rest are considered missing. Then, all stations having more than 20% missing yearly 
values are removed. This screening results in 3477 stations with lengths varying from 
100 years to 173 years. Among the 3447 stations there are different combinations of 
record lengths and missing values, e.g., 558 stations having 100 years in a sequence 
with no missing values, 1474 stations with more than 100 values and only eight 
stations without any missing values. We choose to analyze 1265 stations having more 
than 100 values and a missing values percentage less than 15%. Obviously, this choice 
ensures a higher quality dataset for our analysis. 
    

3.3 Methodology and results 

 Variance scaling method 

The method employed herein is based on the study of the variability of the data 
averaged at different timescales. The method is sometimes referred to as aggregated 
variance method, but what is actually aggregate is the timescale and not the variance. 

Specifically, let 𝑋𝑗   be a stationary process on discrete time 𝑗 (referring to years in our 

case) with standard deviation 𝜎 and let: 

𝑋𝑗
(𝑘)
=
1

𝑘
∑ 𝑋𝑙

𝑗𝑘

𝑙=(𝑗−1)𝑘+1

, 𝑘 = 1,2,3… 
  

(26) 

denote the averaged process at timescale 𝑘, with standard deviation 𝜎(𝑘). In the case of 

an uncorrelated process, the standard deviation of 𝑋𝑗
(𝑘)

 is obtained by 𝜎(𝑘) =
𝜎

𝑘1/2
. In the 
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opposite case, i.e. if the process is a Hurst-Kolmogorov process, as introduced in 
Section 2.2, the abovementioned law is invalid. Instead one obtains the elementary 
scaling property: 

𝜎(𝑘) = 𝑘𝐻−1𝜎   (27) 

where 𝛨  is the Hurst coefficient, which for stationary and positively correlated 
processes varies in the range (0.5, 1). The value of 𝐻 = 0.5 denotes time independence, 
while smaller values are indicative of anti-persistence. The autocorrelation of the 
aggregated process is independent of the scale of aggregation 𝑘 and is given as follows: 

𝜌𝑗
(𝑘)
= 𝜌𝑗 =

1

2
[(𝑗 + 1)2𝐻 + (𝑗 − 1)2𝐻] − 𝑗2𝐻, 𝑗 > 0   (28) 

To apply the method to the data we use the climacogram tool (Koutsoyiannis, 2011b), 

which is the double-logarithmic plot of the standard deviation 𝜎(𝑘)  of the aggregated 
time series at scale 𝑘 versus the time scale 𝑘. The 𝛨 value is estimated as the slope of 
the fitted line (least squares regression). In a variant of that method, the estimation 
bias of the standard deviation, which depends on the time-scale of aggregation, is also 
considered. 
        Each averaged time series is constructed as follows. For every scale 𝑘, the data are 
divided into 𝑛 groups, the number of which is obtained as the fraction of the data 
length 𝐿 versus the scale value 𝑘. For example in time scale 𝑘 = 4, 120 years would be 
divided in 30 non-overlapping groups of 4 years. Subsequently, the values within each 
group are averaged according to equation (26). However, when missing values are 
encountered, the process of averaging may become problematic depending on the 
number of missing values; if more than a half of the values is missing, then the estimate 
would be quite uncertain (Markonis, 2015). To overcome the issue, we use a simple 
criterion on the number of missing values before estimating the averaged series within 
each group: a) for scale 𝑘 = 2 the average value is estimated only when both values 
exist b) for scales 𝑘 ≥ 3  the average value is estimated only when there are at least 
three values within the group. According to the latter rule, we estimated the averaged 
series for all the scales between 𝑘min and 𝑘max, where 𝑘min = 1 and 𝑘max ≤ 𝐿 /10 so that 
the variance in the maximum  scale is estimated from at least 10 values (Koutsoyiannis, 
2003). For a 100-year record length this would be the variance of the decadal means. 
        The results of the algorithm implementation for the instrumental data are shown 
in Table 3.1 and Figure 3.1, suggesting evidence of weak long range dependence. More 
specifically, it was found that 85% of the data exhibit 𝐻 ≥  0.5, yet with notable 
variation. For example, only half of the data show 𝐻 ≥  0.59, i.e. a more pronounced 
dependence structure. A very strong dependence structure, 𝐻 ≥  0.80 is reported for 
the 2.5% of the records, while for 15% of them we observe lack of dependence. For the 
95% interval, 𝐻 values fluctuate between 0.4–0.8.  
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Table 3.1 Summary statistics of the Hurst parameter as estimated from the climacogram 
method applied to the 1265 records. Q indicates the empirical quantile 

Min 𝑄
2.5

 𝑄
25

 Median 𝑄
75

 𝑄
97.5

 Max Mean SD 

0.23 0.40 0.53 0.59 0.65 0.80 0.99 0.59 0.1 

 

 

 

Figure 3.1 Empirical distribution of the Hurst coefficient 𝑯  as resulted by applying the 
aggregated variance method to the 1265 annual rainfall records. 

        In order to test the effects of our parametric choices for the value of the minimum 
and maximum scale, we examined how the median and the variance of 𝐻 estimates 
vary for different 𝑘min and 𝑘max. As can be seen in Figure 3.2, the variance of the Hurst 
parameter estimate becomes larger as the value of the minimum scale kmin increases; 
yet the value of the median in the estimate remains the same. Therefore, our choice of 
𝑘min = 1 is well-justified, since greater values of 𝑘min only amplify the uncertainty in 𝐻 
estimation. In addition, the observation of the same median strengthens our 
hypothesis of the LRD structure, because in the alternative hypothesis of short term 
dependence, we would notice some change in the climacogram curvature and 
correspondingly to the logarithmic slope. The results for the 𝑘max were similar. It can 
be seen in Figure 3.3 that the decrease in the number of values in the last scale increases 
the variance of the Hurst parameter estimate in this case too. Therefore, the choice of 
𝑛 ≥  10 leads to more reliable results compared to using smaller values of 𝑛.  
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Figure 3.2 Box-plots depicting the sample differences resulting from variations in the value of 
minimum scale 𝒌min when applying the climacogram method. 

 

 

Figure 3.3 Box-plots depicting the sample differences resulting from variations in the number 
of minimum values 𝒏 in 𝒌max when applying the climacogram method. 

 Least Square Based on Standard Deviation Method (LSSD) 

Koutsoyiannis (2003) demonstrated how the use of the classical estimator for the 
standard deviation can introduce significant negative bias in the estimation of the 
Hurst parameter by the variance scaling method. This is because the hypothesis of 
independence, which is a necessary condition for the use of the estimator, is violated 
in the case of processes with strong LRD behaviour. This shortcoming may be 
overcome by the use of the Least Square Based on Standard Deviation Method (LSSD) 
(Koutsoyiannis, 2003; Tyralis and Koutsoyiannis, 2011b), which performs a  
simultaneous estimation of the Hurst parameter 𝐻 and the standard deviation σ using 
an approximately unbiased estimator for the latter.  
        Here, for simplicity reasons we applied the LSSD method (Tyralis and 
Koutsoyiannis, 2011) only to the sample of the 558 (44% of the total) stations with no 
missing values and then, compared our estimate with the one obtained by the simple 
climacogram method for the same sample. As shown in Table 3.2 and Figure 3.4 the 
two methods show small deviations from each other. Overall, the value of the bias 
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fluctuates between 1-2% with the bias in the estimate of the average being 
approximately 1%. The bias is negligible in this case because the estimated Hurst 
parameter is not very high.  
 
Table 3.2 Summary statistics of the Hurst parameter as estimated from the climacogram 
method and the LSSD method both applied to the 558 records without missing values. Q 
indicates the empirical quantile. 

 Climacogram 

method 

LSSD 

method 

Mean 0.56 0.58 

SD 0.10 0.09 

Min 0.28 0.33 

𝑄2.5 0.37 0.40 

𝑄25 0.50 0.52 

Median 0.56 0.57 

𝑄75 0.63 0.64 

𝑄97.5 0.78 0.79 

Max 0.90 0.92 

 

 

Figure 3.4 Double histogram depicting the empirical distribution of the Hurst coefficient 𝑯  
resulting from the climacogram method (left) and from the LSSD method (right), both applied 
to the 558 annual rainfall records without missing values. 
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 Monte Carlo testing 

We also investigate the existence of a theoretical distribution of the Hurst coefficient 
that can satisfactorily match the empirical one; i.e. whether there is a unique Hurst 
coefficient which could be considered representative for all the records. In order to 
produce a theoretical sample of time series exhibiting HK dynamics, we use a simple 
algorithm that generates Fractional Gaussian Noise based on a multiple timescale 
fluctuation approach (Koutsoyiannis, 2002). We generated 1265 time series that 
reproduce the record length, the mean and the standard deviation of the empirical 
sample, repeat the same procedure for several theoretical 𝐻 values and then estimated 
the empirical ones. The distribution of the empirical estimates for the synthetic time 
series was compared to the distribution of the empirical estimates for the historic time 

series used in the analysis. It appears that the value of 𝐻 =  0.58 (Figure 6) yields the 
most satisfactory match. However, it is worth noticing that that 2.5% of the stations, 
exhibiting 𝐻 >  0.8, are outside the range of the theoretical distribution. 
 

 

Figure 3.5 Paired histogram depicting the match of the empirical (blue) and theoretical 
(purple) distribution of the Hurst coefficient 𝑯  resulting from applying the aggregated 
variance method to the 1265 historical records and 1265 synthetic records respectively. The 
synthetic records are realizations of a stochastic process characterized by a theoretical Hurst 
coefficient 𝑯  = 0.58. 

 Autocorrelation analysis 

The estimated Hurst coefficient is not high enough to allow for any certain conclusion 
on the type of the dependence structure, since relatively low Hurst coefficients (0.5-
0.6) can be estimated when there is short range dependence or no dependence at all 
due to algorithmic inadequacies, sample bias and estimation uncertainty. To this end, 
we also employ the autocorrelation function, to further examine the dependence 
properties of rainfall. Still one should keep in mind that the classical autocorrelation 
estimator, as in the case of standard deviation, is biased downwards (Koutsoyiannis, 
2003; Dimitriadis and Koutsoyiannis, 2015). However, since the estimator is biased 
downwards, any result in favour of LTP, would mean that in reality, the LTP is even 
stronger. 
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        The autocorrelation coefficients of the first three lags for the instrumental data are 
low (Table 3.3).  
 
Table 3.3 Summary statistics of the estimated autocorrelation coefficients for lags 1, 2, 3. 
Q indicates the empirical quantile. 

 ρ1 ρ2 ρ3 

Mean 0.12 0.03 0.05 

SD 0.11 0.12 0.11 

Min −0.19 −0.35 -0.32 

𝑄2.5 −0.10 −0.16 -0.15 

𝑄25 0.05 −0.05 -0.02 

Median 0.11 0.02 0.05 

𝑄75 0.18 0.10 0.12 

𝑄97.5 0.37 0.29 0.27 

Max 0.62 0.59 0.47 

 
On further investigation, we test whether independence is a plausible scenario for the 
dependence structure of our data. We produced 1265 independent, i.e. uncorrelated, 
time series of the same sample size and estimated the sample autocorrelation 
coefficients (Figure 3.6). It can be seen that for all three lags the value of the median of 
the historic data is greater than the one estimated from uncorrelated synthetic data. 
This is more obvious in the case of autocorrelation of lag-1 where for the 95% interval 
the values of the independent data fluctuate in the range –0.175 to 0.173, while the 
historic ones are in the range –0.09 to 0.37. In addition, in all three cases, the historic 
samples exhibit significantly fewer negative values than the uncorrelated ones. 
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Figure 3.6 Box-plots depicting the resulting sample differences of the autocorrelation 
coefficient 𝝆 between the empirical series and uncorrelated series for lags 1, 2, 3. 

        The above results could be typical for a Markov process too, also known as AR(1) 
process. To address this issue, a simple ad hoc test, which exploits the distinctive 
properties of Markov processes, was designed. Under the Markov hypothesis, the 

theoretical autocorrelation coefficient for lag 2 would be estimated as 𝜌2 = 𝜌1
2, where  

𝜌1 is the known empirical autocorrelation. Likewise, the Markovian autocorrelation 

coefficient for lag 3 would be given as 𝜌3 = 𝜌1
3. The resulting theoretical estimate is 

compared to the empirical one for the same lag; if the empirical value is higher than 
the theoretical AR(1) one, then the Markov hypothesis weakens. 
         We applied this comparison to the 52% of the stations for which all the 
autocorrelation coefficients for lags 1-3 are positive (Figure 3.7). It is evident that the 
empirical estimates are considerably higher than the theoretical ones resulting from 
an AR(1) structure and therefore, the Markov assumption becomes less likely. In 
addition, the empirical estimates do not follow the exponential convergence to zero of 
the Markovian ones, but instead, remain approximately stable for lags 2 and 3; this is 
in  agreement with the theoretical behaviour of LRD whose distinctive feature is the 
existence of slowly decaying autocorrelation function (Beran, 1994). 
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Figure 3.7 Box-plots showing the sample differences of the autocorrelation coefficient ρ 
between the empirical series and synthetic series generated from an AR(1) model for lags 1, 2, 
3. 

        Having tested the cases of independence and short-range dependence, we finally 
examine whether the autocorrelation structure is consistent with that of a FGN model. 
In Figure 3.8 the empirical autocorrelation coefficient 𝜌1 is plotted against the 

corresponding estimated Hurst coefficient 𝐻 as obtained from equation (27). The 
diagram shows that the autocorrelation structure is consistent with that of a FGN 
model. The deviation between the theoretical and the empirical estimates becomes 
greater in the region of high values of 𝐻; still this is justified due to the increased 
negative bias in the autocorrelation estimation in that case.  
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Figure 3.8 Observed Hurst coefficient 𝑯  vs. autocorrelation coefficient 𝝆1 points of the 1265 
annual rainfall records and the theoretical line typical of a HK model. 

3.4 Discussion and conclusions 

The analysis of the global instrumental dataset shows that there are notable indications 
of weak LRD in the annual rainfall. As the Hurst parameter is not very high, the simple 
application of the climacogram method induces only 1-2% negative bias in the Hurst 
coefficient estimation and therefore, the estimated via Monte Carlo, theoretical 
common value of 𝐻 =  0.58, may be considered accurately representative for 
instrumental data.  

The study of the autocorrelation function shows that it is consistent with the 
autocorrelation of a FGN model, even though for a certain percentage of the stations 
the Markov hypothesis could not be falsified. Specifically, the existence of negative 
correlations in all three lags examined did not permit the performance of the 
abovementioned method in the case of the 48% of the stations. Some studies using 
smaller data sets (Potter, 1979; Fraedrich and Blender, 2003; Kantelhardt et al., 2006) 
supported the appropriateness of the Markov structure, but they did not investigate 
the differences between actual and theoretical auto-correlation in larger lags (Figure 
3.7). These differences might be quite small, it has been shown though, that they might 
have serious implications when it comes to the estimation uncertainty (Koutsoyiannis 
and Montanari, 2007). For instance, in terms of trend significance, the observed 
changes in rainfall might be considered quite rarer than they actually are (Cohn and 
Lins, 2005). Lastly, it was shown as well, that the autocorrelation function significantly 
departs from the case of independence. 
 Although the above findings are in favour of the existence of a stronger 
dependence structure than the one typically assumed in literature (Potter, 1979; 
Fraedrich and Blender, 2003; Kantelhardt et al., 2006), it seems that there is a 
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discrepancy between smaller and larger time scales (Fraedrich and Larnder, 1993; 
Pelletier and Turcotte, 1997; Poveda, 2011; Ault et al., 2013). To this end, the most 
important source of uncertainty in the determination of LRD, which is the record 
length, should not be overlooked (Koutsoyiannis, 2002; Koutsoyiannis and Montanari, 
2007). Although using stations with relatively high —compared to the majority of the 
existing rainfall data records— record length, the accurate detection of long range 
dependence cannot be guaranteed because this behaviour may require even longer 
record length to be revealed. Subsequently, the low estimates of Hurst parameter in 
instrumental time series could be attributed to the limited record length available in 
some cases and therefore, should be considered characteristic only for this time 
horizon of approximately 100 years. This is also suggested by the work of Markonis 
and Koutsoyiannis (2015), which emphasizes the influence of time-scale when it comes 
to the analysis and reveal of the dependence of a time-series. An additional analysis of 
longer-term records is presented in Chapter 6. 
 It is also important to consider the uncertainty induced due to measurement 
errors or false homogenization techniques which may introduce bias to the estimation 
of LRD (Steirou, 2011).  GHCN-Daily highlights the potential bias provoked by 
changes in instrumentation over the years and it is possible that this kind of bias could 
also affect the estimation of 𝐻.  
 Ultimately, the high variability of the results is in accordance with the inherent 
uncertainty of the phenomenon, apart from algorithmic or data choices. An important 
conclusion drawn from the analysis is that simplifying assumptions commonly used 
in practice, such as inter-annual independence, may, in cases, significantly, depart 
from reality and hence, a thorough and careful study of the dependence properties of 
the dataset, as performed here, is recommended, especially when longer time horizons 
are of interest.  
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4.  CHARACTERIZATION AND MODELLING OF 

EXTREME RAINFALL SEASONALITY 

This Chapter is the first of the two dealing with the temporal dynamics of hydrological 
extremes induced by seasonality. A novel framework is formulated to address the 
question of objectively characterizing and modelling seasonality of rainfall extremes. 
The effects of seasonality in the distributional modelling of rainfall extremes are 
discerned using extreme value theory. A robust parameterization approach is 
proposed to resolve consistency issues reported in the literature. The effectiveness of 
the proposed scheme for seasonal characterization and modelling is highlighted when 
contrasted to results obtained from the conventional approach of using fixed 
climatological seasons. To these aims, a dataset comprising long-term daily rainfall 
records (>150 years) is employed. 

4.1 Introduction 

Seasonality is a dominant feature of most hydrological processes including extreme 
rainfall (Hirschboeck, 1988). It implies intra-annual periodic variability which pertains 
to both timing and magnitude of extreme rainfall. An accurate and effective 
characterization of seasonality is critical to a wide variety of hydrological applications. 
For instance, it is useful in the scheduling of various flood preparedness measures, 
including management of stormwater infrastructures (Dhakal et al., 2015) and 
reservoir operation (Chiew et al., 2003; Fang et al., 2007; Chen et al., 2010a). Similarly, 
seasonality characterization is exploited in advanced schemes of flood-frequency 
analysis incorporating causative mechanisms (e.g. Sivapalan et al., 2005; Li et al., 2016) 
and may be useful for medium-range flood prediction (e.g. Koutsoyiannis et al., 2008; 
Wang et al., 2009; Aguilar et al., 2017), for which inclusion of seasonal extreme rainfall 
may increase prediction skill. Modelling of seasonal rainfall extremes – which typically 
implies some sort of frequency analysis – may also inform the selection of design 
values for related infrastructure. Additionally, the latter provides support to within-
year operation of water resources systems, design rainfall estimation (Golian et al., 
2010; Efstratiadis et al., 2014) and probabilistic assessment of extreme events occurring 
in a given season. Nowadays, extreme rainfall seasonality also prompts renewed 
scientific interest as a field of trend analyses (Ntegeka and Willems, 2008; Dhakal et 
al., 2015; Tye et al., 2016; Wu and Qian, 2017). 

Characterization of extreme rainfall seasonality is scarcely dealt with by the 
relevant literature. Most of the established methods are devised to identify the 
temporal span of a wet season and assess its significance, typically by a priori 
identifying a single wet season. For example, directional statistics are typically applied 
to identify the high flow season (Cunderlik et al., 2004a; Baratti et al., 2012; Chen et al., 
2013) and have also been applied to characterize the timing of seasonal rainfall 
(Parajka et al., 2009, 2010a; Lee et al., 2012). However, directional statistics are 
inefficient when extremes occur over multiple seasons, which is very likely in the case 
of rainfall (Cunderlik and Burn, 2002). Recently, Dhakal et al. (2015) provided an 
improvement to the traditional method of directional statistics by adopting a non-
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parametric approach to capture multiple modes in the timing of annual rainfall 
maxima. Yet they noted that the proposed method is sensitive to the subjective 
selection of threshold values to assess significance of circular density estimates. 
Multimodality of the seasonal regime is also dealt with by analyzing the monthly 
relative frequencies of extreme occurrences (Cunderlik and Burn, 2002; Cunderlik et 
al., 2004a). This approach, however, relies on the subjective identification of the 
monthly time step to characterize seasonality. The latter along with the four 
climatological seasons are often used when large-scale or global analyses are 
performed (e.g. Rust et al., 2009; Villarini, 2012; Serinaldi and Kilsby, 2014; Papalexiou 
and Koutsoyiannis, 2016) but lead to disregarding the large spatial variability of 
atmospheric patterns and may not align well with local behaviours (Pryor and Schoof, 
2008; Dhakal et al., 2015). Moreover, the fixed partitions do not resolve the crucial 
question of the identification of the optimal number of seasons, therefore resulting in 
over-parameterization of the seasonal model of extremes due to the large number of 
seasons that is adopted, particularly in the 12 month model. 

A sub-optimal characterization of seasonality could be a reasonable 
compromise when one is interested in characterizing the timing of the most extreme 
events only. However, technical applications often require the modelling of the 
frequency of extremes during the whole course of the year. In this regard, several 
previous studies have either considered climatological information or employed 
statistical methods along with some degree of subjective judgement to estimate the 
optimal number of seasons and their displacement in time (e.g. Durrans et al., 2003; 
Chen et al., 2010a; Baratti et al., 2012; Bowers et al., 2012). Coles et al. (2003) adopted a 
different approach by treating seasonal temporal limits as unknown parameters to be 
identified within a Bayesian framework. Yet, they also identified the number of 
seasons a priori through subjective inference. 

The above literature review highlights a methodological gap in the objective 
identification of the optimal number of extreme rainfall seasons and their duration. To 
the best of the authors’ knowledge, existing methods are not suitable for directly 
inferring multimodality from the seasonal regime and concurrently identifying 
segmentation points between seasons in an objective manner. 

The research herein presented proposes a two-purpose framework for (a) 
objective seasonality identification and (b) modelling of rainfall extremes in order to 
effectively estimate the seasonal probability of extreme events. To this end, we 
introduce two alternative methods for season identification, which are characterized 
by different levels of parsimony in terms of data requirements, therefore providing 
two options for practical applications. Our approach employs an information-theoretic 
framework (Akaike Information Criterion, AIC) to estimate the optimal number of 
seasons. In order to describe the frequency of extremes in each identified season we 
use the GEV probability distribution. We discuss the consistency of the model at 
different time scales. Finally, in order to demonstrate the efficiency of our framework 
we present a comparison with the traditional 4-season approach. 

An extended dataset of long daily rainfall records is herein investigated, as 
detailed in the next section. The length of the records, the shortest one covering an 
observation period of 150 years, allows us to inspect the impact of uncertainty, which 
may be relevant for seasonal extreme value analyses (Cunderlik et al., 2004b). To 
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reduce uncertainty we propose a robust parameterization approach of seasonal-
annual distributions which is supported by empirical evidence. 
 

4.2 Dataset 

Our dataset includes 27 daily rainfall records each one spanning over 150 years. 
Eighteen of them are collected from global databases, namely, the Global Historical 
Climatology Network Daily database (Menne et al., 2012) and the European Climate 
Assessment & Dataset (Klein Tank et al., 2002). Figure 4.1 shows the geographical 
location of the stations, while Table A.1 (Appendix A) reports the coordinates of each 
station, the observation period, as well as the number of years that are fully covered 
by observations after quality control and screening of missing values. For the 
extraction of the annual maxima we employ a methodology proposed by Papalexiou 
and Koutsoyiannis (2013); accordingly, an annual maximum is not accepted if (a) it 
belongs to the lowest 40% of the annual maxima values and (b) 30% or more of the 
observations for that year are missing. For seasonal and monthly maxima we compute 
statistics only if number of missing values is less than 10% of the total sample (season 
or month). The longest series is that of Padua, spanning a period of 275 years, that is 
the longest rainfall record existing worldwide (Marani and Zanetti, 2015). 

 

Figure 4.1 Map of the 27 analyzed stations with daily rainfall records spanning over 150 years. 

 

4.3 A new method for identifying seasonality of extreme rainfall 

The methodology that we propose to identify seasons is inspired by cluster analysis 
and model selection techniques. Seasons are regarded as groups (clusters) of 
consecutive months with similar behaviour of extremes. The question of selecting the 
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number of seasons that best describe the dataset is addressed here via a model 
selection process under the assumption that different numbers of clusters (seasons) 
represent alternative plausible models for the dataset. Two alternative methods for 
season identification characterized by different level of parsimony are considered here 
and described below. 

In what follows, we denote random variables by underlined symbols and their 
realizations by plain form, respectively. We also use bold characters for vectors. We 
denote season, month and year with the indexes 𝑖 = 1,..𝑛, 𝑗 = 1,...,12, and 𝑘 = 1,..𝑘max, 
respectively, where 𝑛 is the number of seasons and 𝑘max is the record length in years. 
We assume that 𝑛 is fixed a priori and denote with 𝑪𝑖 the vector containing the 𝑗 values 
of contiguous months belonging to the same season 𝑖, and with 𝑠𝑖 its size. Accordingly, 
we define the following random variables: 

 𝑅𝑖,𝑗,𝑘 is the maximum daily rainfall amount of season 𝑖, month 𝑗 and year 𝑘; 

 𝑅𝑖,𝑗 is the temporal average of maximum daily rainfall of month 𝑗 of season 𝑖 

along the record, namely, 𝑅𝑖,𝑗 ≔
1

𝑘max

∑ 𝑅𝑖,𝑗,𝑘
𝑘max
𝑘=1   ; 

  𝑅𝑖  is the temporal average of the 𝑅𝑖,𝑗 values along the season 𝑖, 𝑅𝑖 ≔
1

𝑠𝑖
∑ 𝑅𝑖,𝑗𝑗∈𝒄𝑖

. 

For instance, 𝑅2,5,12 for season 𝑖=2 defined by 𝒄2 =(5,6,7) denotes the maximum daily 
rainfall observed in May of the 12th year of a given record and belonging to the 2nd 
identified season of the year, which also includes months June and July; likewise, 𝑅2,5 

is the sample average of maximum rainfall observed in all May days of the record, 
while, 𝑅2 is the sample average of all monthly averages belonging to season 2, in this 
case of May, June and July. 

We call the first method for season identification the SSD algorithm. It is based 
on the computation of Sum of Squared Deviations (SSD) of the 𝑅𝑖,𝑗values from their 

seasonal average, 𝑅𝑖 for all seasons according to the equation:  

SSD =∑∑(𝑅𝑖,𝑗 − 𝑅𝑖)
2

𝑗∈𝒄𝑖

  

𝑛

𝑖=1

 
  

(29) 

This metric is evaluated for each possible clustering combination 𝑪𝑖 of consecutive 
months for the given number of seasons, thus enabling the identification of the lower 
value of SSD, which identifies the optimal partition of the year into 𝑛 seasons. We 
require a season to span at least two months and allow the algorithm to group months 
across different calendar years. The requirement for a season to span at least two 
months implies that the maximum number of seasons is 6, but preliminary 
investigations showed that more than three seasons are rarely present in extreme 
rainfall. Therefore, we limit our attention to 𝑛 values ranging in the interval (1-4). 

Essentially, the SSD algorithm minimizes the within-cluster variance of the 
average value over the years of the monthly rainfall maxima and can be considered as 
a simplification of the well-known 𝑘-means algorithm (MacQueen, 1967). Since 
seasons may include contiguous months only, and the algorithm deals with only 12 
data points to cluster —the average over the years of daily maximum rainfall values 
for each month— the number of possible combinations is relatively low and the 
method is parsimonious. 
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 In order to identify the optimal number of seasons we define alternative 
probabilistic models, with different level of parsimony, to describe the frequency of 
occurrence of extreme events in each season and assess their ability to optimally fit the 
observed record. Accordingly, we first select a trial value for the number 𝑛 of seasons 
in the range (1-4) and partition them by applying the above SSD algorithm. To describe 
the probability distribution of rainfall in each season and the whole year we form a 
mixture model with 𝑛 seasonal components, each described by its own probability 
distribution. Hence, according to the law of total probability, the probability 
distribution of the seasonal model for a generic seasonal random variable 𝑈 takes the 

form: 

 𝑓𝑈(𝑢; 𝒂1, … , 𝒂𝑛) =∑𝑤𝑖𝑓𝑈𝑖
(𝑢𝑖; 𝒂𝑖)

𝑛

𝑖=1

              
  

(30) 

where 𝑤𝑖 are weights adding up to 1. They are obtained as the ratio of the season’s 
length in months, 𝑠𝑖, versus the whole twelve-month period, i.e. 𝑤𝑖 = 𝑠𝑖 12⁄ ; and 𝒂𝒊 is a 
seasonal parameter vector. Here 𝑓𝑈𝑖  is a seasonal probability distribution for 

𝑈 describing realizations 𝑢𝑖 in season 𝑖. Note that by applying the law of total 

probability instead of deriving the annual probability distribution as the product of 
the seasonal ones, we avoid relying on the assumption of independence of the random 
variables 𝑈𝑖, which was adopted in other studies (Durrans et al., 2003). Therefore, this 

is a more general approach also appropriate for the cases of rainfall maxima being 
correlated among seasons. 

The above step requires identifying and fitting a candidate model for the 
𝑓𝑈𝑖

 probability distribution. We propose two alternative models for the seasonal 

probability distribution 𝑓𝑈𝑖
(𝑢𝑖, 𝒂𝑖) which are characterized by different level of 

complexity.  
The first option, which we call Average Based (AB) method, identifies the 

random variable 𝑈𝑖,  as the monthly temporal average 𝑅𝑖,𝑗. Then, we assume that 

𝑓𝑅𝑖,𝑗(𝑅𝑖,𝑗, 𝒂𝑖) is a uniform distribution given by: 

       𝑓𝑅𝑖,𝑗(𝑅𝑖,𝑗, 𝒂𝑖) =
1

𝑏𝑖
    (31) 

where in this case 𝒂𝑖contains only one parameter, namely, 𝑏𝑖 = max
𝑗𝜖𝒄𝑖

𝑅𝑖,𝑗 . Preliminary 

analyses showed that the uniform distribution provides an efficient representation of 
the frequency of the 𝑅𝑖,𝑗 realizations, by minimizing the number of involved 

parameters. The above approach imposes an upper limit to the average value of the 
monthly maximum rainfall depth and sets the lower limit to zero. 

The second option, which we call Complete Data (CD) method, identifies the 
random variable 𝑈𝑖,  as the maximum daily rainfall in each month 𝑗 of the season 𝑖 for 
the year 𝑘, which has been previously introduced as 𝑅𝑖,𝑗,𝑘. Then, we assume that 

𝑓𝑅𝑖,𝑗,𝑘(𝑅𝑖,𝑗,𝑘, 𝒂𝑖) is described by two alternative probability distributions with a different 

tail behaviour, i.e. one characterized by a lighter and one by a heavier right tail, in 
order to allow flexibility in fitting the observed rainfall maxima. The first is the two-
parameter Gamma distribution, given by: 
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                            𝑓𝑅𝑖,𝑗,𝑘(𝑅𝑖,𝑗,𝑘, 𝒂𝑖) =
𝑅𝑖,𝑗,𝑘
𝜉𝑖−1𝑒

−
𝑅𝑖,𝑗,𝑘
𝜃𝑖

𝜃
𝑖

𝜉𝑖 𝛤(𝜉𝑖)
 

  

(32) 

where 𝒂𝑖 = (𝜉𝑖, 𝜃𝑖) is the parameter vector with 𝜉 and 𝜃 being shape and scale 
parameters, respectively. The second is the two-parameter Weibull distribution: 

                            𝑓𝑅𝑖,𝑗,𝑘(𝑅𝑖,𝑗,𝑘, 𝒂𝑖) =
𝜇

𝑖

𝜆𝑖

(
𝑅𝑖,𝑗,𝑘

𝜆𝑖

)
𝜇

𝑖
−1

𝑒−(𝑅𝑖,𝑗,𝑘/𝜆𝑖)
𝜇𝑖

 
  

(33) 

where 𝒂𝑖 = (𝜇𝑖, 𝜆𝑖) i is the parameter vector with 𝜇 and 𝜆 being shape and scale 

parameters, respectively. By working on the monthly maximum rainfall instead of 
their averages along the season, the CD method allows one to base the estimation of 
the probability model on a more extended dataset. 

The above methodology allows several modelling options, which differ for the 
number of seasons, the application of either AB or CD method and the selection of 
either the Gamma or the Weibull distribution in the CD method. The best modelling 
option and the related optimal number of seasons is identified by applying the Akaike 
Information Criterion (AIC, Akaike, 1973, 1974). The criterion statistic for the 𝑝th 
candidate model, AIC𝑝, is given by: 

                             AIC𝑝 = 2𝑚𝑝 − 2ln𝐿𝑝   (34) 

 
where 𝑚𝑝 is the number of parameters and 𝐿𝑝 is the likelihood of the 𝑝th candidate 

model. The application of the criterion is straightforward as it only requires estimation 
of the likelihood function for the candidate probability models defined by equation 
(30). The minimum AIC value identifies the best candidate model by evaluating the 
bias versus variance trade off; i.e., the condition in which as the model parameters 
increase the bias of the model estimates decreases, yet their variance increases 
(Burnham and Anderson, 2002). Hence, AIC provides an implicit interpretation of the 
principle of parsimony which is pivotal in model selection (Box and Jenkins, 1970). 
Although AIC has a solid foundation in information theory both in mathematical 
terms and also from a philosophical point of view, its use is not still widely established 
in hydrological applications (Laio et al., 2009). For an insightful review of AIC’s 
properties, the reader is referred to Burnham and Anderson (2002). 
 Therefore, the workflow for season identification is as follows: 

1. A trial value is adopted for the number 𝑛 of seasons in the range (1-4); 
2. The 𝑛 seasons are partitioned by applying the SSD algorithm therefore 

identifying the vectors 𝒄𝑖, 𝑖 = 1,…, 𝑛, of the indices of the months that are 
included in each season; 

3. AB and CD methods are applied to estimate the probability distribution of 𝑅𝑖,𝑗 

and 𝑅𝑖,𝑗,𝑘, respectively, in each season; 

4. AIC is computed for candidate models; 
5. The procedure is repeated for the other values of 𝑛 in the range (1-4); 
6. The resulting AIC values are compared therefore identifying the optimal 

number of seasons, and their partition, for AB and CD methods. 
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7. If 𝑛 values resulting from AB and CD methods are the same, then the procedure 
is terminated and the optimal partition of seasons is uniquely identified; 

8. If the estimated 𝑛 values differ, then the user is allowed to select the preferred 
partition of seasons based on the suitability of 𝑅𝑖,𝑗 instead of 𝑅𝑖,𝑗,𝑘, for the 

considered design problem. 

4.4 Extreme value analysis 

 Fitting the GEV distribution 

Once the optimal number of seasons and their partition have been identified, to 
estimate seasonal extremes one needs to fit a suitable probabilistic model for the 
seasonal block maxima series. The latter is formed by extracting from each identified 
season the maximum daily rainfall observed in each year. It is worth noting that 
distributions that were previously considered for seasonal partitioning (the Gamma 
and the Weibull) are not suited for fitting extreme values and therefore are not an 
option for the current target.  

Extreme Value Theory (EVT) suggests that the distribution of the maximum of 
independent and identically distributed (IID) random variables asymptotically 
converges to three limiting laws (Fisher and Tippett, 1928), which are the Gumbel 
distribution (Type I), the Fréchet distribution (Type II) and the reversed Weibull (Type 
III), that can be unified under the single analytical form provided independently by 
von Mises (1936) and Jenkinson (1955) and known as Generalized Extreme Value 
(GEV) distribution, given by equation (21). As discussed in Section 2.3, in the case a 
limiting distribution exists for extremes from any parent distribution of the underlying 
stochastic process, then this is the GEV. Therefore, it could be the limiting distribution 
also in the case of monthly rainfall maxima described by the Gamma and Weibull 
distributions as in the CD method above. Leadbetter (1974) showed that convergence 
to GEV is guaranteed even in the presence of short-range correlation in the underlying 
stochastic process. In our case, the implication is that GEV emerges as limiting 
distribution even if rainfall maxima are weakly correlated. Koutsoyiannis (2004a) has 
shown mathematically that GEV still emerges as asymptotical distribution in the 
presence of different parent distributions from season to season. In practical 
applications, though, in which a maximum value is extracted from a small number of 
events, the asymptotic condition is unlikely to hold. In this respect, Koutsoyiannis 
(2004a) demonstrated that the convergence of the distribution of maxima to the GEV 
with a positive shape parameter (Type II) is good even for a small number of events 
and also for parent distributions belonging to the domain of attraction of the Gumbel 
(Type I), due to the increased flexibility of the three-parameter distribution. On the 
contrary, convergence rates to the Gumbel distribution are very slow even for 
distributions belonging to the domain of attraction of the Gumbel family (see also 
Papalexiou and Koutsoyiannis, 2013). 

Here, we assume that the underlying stochastic process is given by the series of 
the monthly maxima of daily rainfall in each season. We aim to fit with the GEV 
distribution the seasonal samples that are obtained by extracting from each season 
𝑖 and each year 𝑘 the maximum daily value 𝑅𝑖,𝑘

∗  therefore obtaining a block maxima 

series, which is assumed to be a realization of the random variable 𝑅𝑖,𝑘
∗ . We also fit the 
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series of the annual maxima 𝑅𝑘
∗which is assumed to be a realization of the random 

variable 𝑅𝑘
∗. This approach shall allow one to estimate the extremes for the seasonal 

periods and the total annual period and ensures that both the seasonal and annual 
approaches refer to the same sample size when fitting the GEV, as the block maxima 
sampling method is used, i.e., one extreme event is sampled on a yearly basis for both 
the seasonal and annual periods. 

 

 Investigating consistency of seasonal and annual distributions 

A considerable part of related literature (e.g. Buishand and Demaré, 1990; Durrans et 
al., 2003; Chen et al., 2010b; Baratti et al., 2012) has focused on the estimation of 
seasonal and annual flood frequency distributions and their inter-relationship. 
Usually, it is suggested that an independent fitting of seasonal and annual 
distributions may lead to inconsistency among them, manifested as a “crossing over” 
effect. The latter means that for extremely rare events seasonal quantiles may be higher 
than their annual counterparts. To resolve this inconsistency, a variety of methods for 
the joint estimation of the seasonal and annual distributions has been proposed. 

Durrans et al. (2003) attributed distributional inconsistencies in seasonal-
annual frequency analysis to three possible reasons: (a) the arbitrary parameterization 
of seasonal and annual distributions, (b) stochastic dependence among them and (c) 
estimation uncertainty. In this respect, we believe that the arbitrary specification of 
seasonal samples is also a major reason causing distributional inconsistencies (such a 
case is discussed and illustrated later in section 4.5). In our case though, we argue that 
the above inconsistency should rather be viewed as an empirical evidence of 
estimation uncertainty, which is particularly relevant in extreme value studies (Coles 
et al., 2003; Koutsoyiannis, 2004c). This is further supported by observing that the 
crossing over effect is manifested in the domain of extremely rare events, where 
uncertainty is prominent. 

To inspect the impact of estimation uncertainty, we fit the GEV probability 
distribution by applying three different methods, namely, maximum likelihood (ML), 
method of moments (MM) and a least squares estimation method (LS) for an improved 
fitting of the extremes (Koutsoyiannis, 2004d). We further investigate estimation 
uncertainty in each of the three methods by computing 95% Monte Carlo Prediction 
Limits (MCPL) for the resulting GEV quantiles. MCPL are estimated by applying a 
Monte Carlo simulation which is structured according to the following steps: (1) we 
estimate the GEV parameters by each method, (2) produce 1000 synthetic GEV series 
for each derived parameter set, (3) re-estimate the parameters by the same method, (4) 
compute the resulting GEV quantiles for each of them and then (5) identify the 95% 
confidence region for each quantile value. The scope is to assess whether the crossing 
over falls within the limits of the estimation uncertainty as evaluated from applying a 
set of different parameter estimation methods. To further reduce fitting uncertainty, 
we propose a simpler alternative to joint parameterization, i.e. the joint estimation of 
a common shape parameter among seasonal-annual distributions – since the shape 
parameter is the most difficult to estimate accurately − and we discuss how this choice 
is supported by empirical evidence. 
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4.5 Results  

 Season identification for the observed records 

Table 4.1 shows the AIC values resulting from season identification for the available 
stations. Following Burnham and Anderson (2004), we denote with ΔAIC the 
difference in the AIC value of each model with respect to the best one. Therefore, the 
zero ΔAIC model is the best model, while models with ΔAIC<2 and ΔAIC>10 are 
assumed to have good and little support, respectively. An example of seasonal 
partition for the case of Florence is shown in Figure 4.2a and Figure 4.2b for 2 and 3 
seasons. We refer to this type of figures as climatograms, though the term is typically 
used for plots depicting both rainfall and temperature climatological regimes. 

The results point out that both methods identified the one-season (annual) 
model as the best solution for 11 stations (with 6 stations being the same for both 
methods). In four stations, the one-season model was preferred by the CD method, 
while the two-season solution was indicated by the AB method. On further 
investigation, it was found that neither the Gamma, nor the Weibull provided 
satisfactory likelihood values for these stations. As a result, the more parsimonious 
one-season model was preferred by the AIC. The three-season model is identified as 
the best solution for five stations with the CD method, while the AB method did not 

select 𝑛 = 3 for any station. This result was expected as the AB method exploits 
information from a limited dataset and therefore parsimonious models are likely to 
provide better AIC values. The Gamma distribution is selected as the best model in 21 
cases and the Weibull for the remaining 6.  

 

 

Figure 4.2 Climatograms showing the partition in two seasons (a) and three seasons (b) after 
application of the SSD clustering algorithm for the station of Florence. 
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Table 4.1 ΔAIC differences among the seasonal models (one, two or three seasons) under 
Average Based (AB) and Complete Data (CD) methods. A zero ΔAIC value indicates the 
model with the smallest AIC value which stands for the best model. 

Stations 

AB method  CD method  

Uniform distribution Weibull distribution Gamma distribution 

Number of seasons Number of seasons 

1 2 3 1 2 3 1 2 3 

Bologna 0 0.047 2.9 27.55 27.51 35.12 0 4.91 9.04 

Palermo 5.29 0 1.72 0 50.32 41.37 0.372 9.6 5.15 

Mantova  0 0.414 3.92 28.22 25.76 13.43 0 8.58 7.12 

Milan  0 0.639 3.86 8.633 10.75 0 30.72 33.5 34.7 

Genoa  3.38 0 0.67 9.215 0 6.641 5.797 10.5 18 

Florence 1.85 0 3.62 15.52 8.421 0 48.55 54.8 9.9 

Padua 0 1.058 4.914 0 9.72 11.12 100.19 56.43 65.84 

Newcastle  0.75 0 3.88 60.23 34.25 40.68 8.414 0 15.7 

Deniliquin  0 2.894 6.41 18.11 16.3 20.18 0 3.68 9.11 

Melbourne  0 0.903 4.58 139.1 76.04 78.35 37.31 0 5.27 

Robe  1.45 0 5.09 3.475 36.71 40.45 0 1.7 7.29 

Sydney  0 0.556 2.88 37.92 40.93 41.35 0 0.02 2.24 

Jena Sternwarte 4.6 0 3.69 208.1 123.2 131.6 46.77 0 1.45 

Hohenpeissenberg 5.5 0 3.25 85.83 63.77 67.7 0 8.93 6.95 

Armagh  0 0.78 3.71 161.3 103.2 106.9 3.412 0 3.04 

Radcliffe 0 0.682 3.68 129.6 70.5 77.79 0 0.74 0.75 

Zagreb  0.5 0 3.68 42.95 17.99 23.94 0 19.9 25.87 

Vlissingen  0.66 0 3.34 78.03 36.79 36.18 0 4.02 9.84 

Eelde 1.79 0 3.55 135.8 61.08 67.77 3.338 0 6.24 

Den Helder 0.36 0 3.7 201.4 137.5 118.7 27.93 3.58 0 

Helsinki 1.9 0 3.69 108.9 48.3 35.58 1.161 0 6.95 

Lisbon 8.18 0 7.07 58.26 0 3.646 72.71 7.33 3.04 

Prague 2.7 0 1.44 133.3 64.84 58.67 36.75 0.06 0 

Uppsala 4.73 0 3.17 187 72.35 58.84 27.02 0.38 0 

Stykkisholmur  0 0.657 4.39 103.1 75.99 82.57 2.13 0 6.42 

Athens 8.11 0 2.81 104 19.73 23.16 65.54 0 1.45 

Toronto  0 1.704 5.14 183.5 121.3 113.1 18.24 0 2.2 

 
To inspect the spatial coherence of the results, we present maps of the two regions of 
the dataset having neighboring stations, i.e. Europe and Australia (Figure 4.3). We 
group the stations in six clusters of similarity in their seasonal patterns and we also 
mark single stations for which similarity falls below the accepted threshold. As 
similarity index we define the ratio of the number of the wet season months that the 
stations in the cluster have in common versus the span of each wet season and we 
require it to be at least 60% for each station in the cluster. More specifically, Clusters 1 
and 2 have 67% and 80% similarity, respectively, for both methods, while, Clusters 3, 
4 and 5 exhibit 100%-75%, 60%-75% and 80%-67% for the AB and CD methods, 
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respectively. On top of the maps, we also plot Köppen maps of climate classification 
by Chen and Chen (2013) covering the period 1901-2010, in order to allow a direct 
comparison of the observed spatial patterns to the climatological ones. Some 
interesting insights can be derived. First, spatial coherence does not fully coincide with 
climatological coherence and vice versa, and this is especially true in regions with 
complex topography/climatology. For example, in the wider Alpine region, where 
climate shows great diversity, the stations are less spatially consistent than in Central 
Europe. On the contrary, stations belonging to a Mediterranean climate (Cluster 1) 
show consistent patterns. In general, we notice that patterns are coherent on both 
levels: neighboring stations show very high similarity (e.g. Cluster 3) and far apart 
stations belonging to a climatically homogenous region show medium to high 
similarity (see, e.g., Cluster 2). 
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Figure 4.3 Spatial and climatological coherence of the identified seasons for the regions of 
Europe (a,c,e) and Australia (b,d,f). Figures a,b show the location of the stations on a Köppen 
climatological map, while the rest show the stations clustered by similarity. White dots 
represent stations having one season; the remaining dots denote stations having at least 60% 
overlap of months belonging to the wet season. Red dots denote stations with a lower 
percentage of similarity to their neighboring stations. 

 Assessing temporal change in observed seasonality 

To demonstrate the applicability of the proposed season identification method in the 
inspection of temporal changes in seasonality, we analyze the four longest records of 
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the dataset, i.e. the stations of Padua (275 years), Prague (211 years), Bologna (195 
years) and Radcliffe (188 years). We split the observation period into equally sized 
sub-periods and apply the methodology independently to each period. We employ 
four sub-periods for the significantly longer station of Padua and three for the other 
records. 

Results are shown in Table 4.2. It can be seen that changes, both in the number 
and duration of seasons, are likely to emerge within each sub-period. For example, 
seasonality in Prague during the 2nd period changed in terms of the span of the wet 
season, but a two-season regime was selected for all sub-periods. Results for 3rd and 
1st window coincide. These characteristics of the methodology make it useful for 
analysis of climatic changes. 

 
Table 4.2 Temporal changes in seasonality identified by application of Average Based (AB) 
and Complete Data (CD) methods for non-overlapping sub-periods for the four longest 
stations of the dataset. For the longer station of Padua, an additional sub-period is investigated 
(4th window). 

 

Station 

 

Record length 

Number of Seasons 

1st window 2nd window 3rd window 4th window 

Method Method Method Method 

AB CD AB CD AB CD AB CD 

Padua 1725-2013 1 1 1 1 1 1 1 1 

Bologna 1813-2007 1 1 2 1 1 1 − − 

Radcliffe 1827-2014 1 1 1 1 1 1 − − 

Prague 1804-2014 2 1 2* 2* 2 2 − − 

 

 

Span of wet season in months for Prague  

5-8 − 5-9 5-9 5-8 5-8 − − 

 
 

 Fitting the GEV distribution 

Subsequently to the identification of seasons, we fitted the GEV distribution via 
maximum likelihood (ML) estimation to each of the seasonal sets (or the annual set if 
one season was identified). Table 4.3 contains summary statistics of the GEV fitting for 
wet and dry seasons, as well as for the whole year, for the cases where the two- and 
three-season model were found prevalent under AB and/or CD methods. Summary 
statistics for the transition season (placed between the wet and dry season) in the three 
season model are omitted since the sample is small (5 stations). The main differences 
in the seasonal distributions lie in the values of the scale and location parameters, 
which are in their vast majority (93.8% and 100%, respectively, under AB method and 
100% and 100%, respectively, under CD method) higher for the wet season compared 
to the dry. What might be less anticipated is that there is limited seasonal variation in 
the value of the shape parameter 𝜅, which is related to the shape of the tail of the 
seasonal maxima distribution. Hence, it is justifiable to represent the two seasons and 
the whole year by a common value for the shape parameter, therefore increasing 
robustness of the method, which is a desirable feature. Additionally, for the majority 
of the stations, the shape parameter takes positive values indicating the 
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appropriateness of heavier-tailed distributions for modelling of extremes. It is also 
clear that the wet extreme properties are quite close to the annual maxima ones, which 
indicates that the annual maxima distribution is dominated by the wet season. 
 
Table 4.3 Comparative statistics of the GEV annual and seasonal parameters, i.e., shape 
parameter 𝜿, scale parameter 𝝈  and location parameter 𝝍, as estimated via Maximum 
Likelihood method for the stations in which two or three seasons are identified by Average 
Based (AB) and Complete Data (CD) methods. The last column of each table shows the 
percentage (%) of stations in which the parameter value for the wet season is higher than the 
corresponding value for the dry season. 

AB method (16 stations) CD method (16 stations) 

 
Parameter 

 

Annual 
 

Wet  
Season 

 
Dry 
Season 
 

(wet>dry)
% 

Annual 
 

Wet 
Season 

 
Dry 
Season 
 

 
(wet>dry)
% 

 
 
𝜅 

Mean 0.112 0.091 0.097 62.5 0.115 0.106 0.104 45 

Percent 
Positive 

93.8 93.8 87.5 - 93.8 93.8 75 - 

𝜎 Mean 12.207 12.706 8.747 93.8 12.187 13.238 9.287 100 

𝜓 Mean 39.265 35.602 23.772 100 39.652 40.998 34.33 100 

 
The singular cases of the stations of Prague from Czech Republic and Florence from 
Italy are plotted in Figures 4.4a and 4.4b. In the second case, there is small deviation 
between the wet season and the annual period, while in the first case the two lines are 
almost identical. In both cases, the dry-season probability line lies considerably lower. 
In the second case, in which the three-season model is preferred by the CD method 
(while two seasons were preferred by the AB method), the probability line of the 
transition season lies in the space between the wet and dry seasons’ probability lines, 
as expected. 
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.

 
Figure 4.4 Gumbel probability plots of the fitting of the GEV distribution to the annual maxima 
(red solid line), to the wet season maxima (blue dashed line) and to the dry season maxima 
(cyan dash-dotted line) for the stations of Prague (a) and Florence (b). For the station of 
Florence (b), the fitting of the GEV distribution to the transition season maxima (green dotted 
line) is also shown. 

 Assessing estimation uncertainty in seasonal-annual GEV parameterization  

The crossing over effect mentioned in Section 4.4 is observed in five cases (Eelde, 
Genoa, Hohenpeissenberg, Milan and Zagreb), where we found that the wet-season 
probability distribution lies higher than the annual one in the area of extremely rare 
events. We focus on the station in Genoa where the effect is more pronounced. We 
perform additional parameter estimation by applying the method of moments (MM) 
and the least squares algorithm (LS). Figure 4.5a shows results from the application of 
the three estimation methods for the annual maximum series along with uncertainty 
bounds computed within each method by means of Monte Carlo analysis. Uncertainty 
bounds in the area of extremely rare events, where the crossing over effect is also 
observed, are large. The larger annual maxima fall within the 95% limits of the annual 
maxima GEV distribution only for the LS method. This is due to the better fitting 
capability of the LS algorithm for extremely rare events (Koutsoyiannis, 2004d). To 
further improve the fitting we also estimate via LS a common shape parameter for the 
three distributions (two seasonal GEV and the annual one). In these cases as well, the 
choice of a common shape parameter is supported by empirical evidence from the 
previous independent fitting. The crossing over effect is significantly mitigated (Figure 
4.5b), with a remaining positive difference between the quantiles of the wet season 
and annual distribution of 10 mm for the 0.5% annual exceedance probability, which 
is considered not significant in view of the large uncertainty in the high-quantile 
domain. The results for the other cases also showed that the crossing over effect was 
resolved. 
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Figure 4.5 Gumbel probability plot of the fitting of the GEV distribution to the annual maxima 
by the maximum likelihood method (blue color), least-squares method (magenta color) and 
method of moments (yellow color) along with 95% Monte Carlo Prediction Limits (MCPL) for 
each method for the station of Genoa (a). The crossing over distance observed in the area of 
high return periods, where the wet-season probability line (blue solid line)  crosses the annual 
probability line (red solid line), is greatly eliminated when a common shape parameter is 
employed via the least-squares method (b). 

 
The importance of taking estimation uncertainty into consideration is additionally 
showcased by applying ML, MM and LS estimation methods to the entire set of 
stations, as shown in Table 4.4. One notices that uncertainty is higher in the estimation 
of the shape parameter, as already discussed in literature (Koutsoyiannis, 2004d; 
Papalexiou and Koutsoyiannis, 2013). The fact that this result is empirically confirmed 
for the long rainfall records considered here is a further confirmation that for practical 
applications uncertainty in the estimation of extremes is unavoidable even when 
dealing with long records. 
 
Table 4.4 Statistics of the GEV parameters, i.e., shape parameter κ, scale parameter σ and 
location parameter ψ, as estimated for the Annual Maxima series for all stations (27) via 
Maximum Likelihood (ML), method of moments (MM) and Least Squares method (LS). 

Parameter of the annual 
model 

ML MM LS 

𝜅 
Mean 0.099 0.062 0.120 

Percent 
Positive  

92.6 88.9 96.3 

𝜎 Mean 12.638 10.500 12.732 

𝜓 Mean 40.510 42.246 40.295 
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 A comparison to traditional methods of seasonal clustering 

We compare our method to the climatological 4-season approach, which divides the 
annual period in Winter, Spring, Summer and Fall seasons. First, to highlight that site-
specific season identification is important, we compare the monthly maxima plots for 
two stations in Europe for our method and the fixed seasonal partition (Figure 4.6). It 
is clear that climatological seasons are an inefficient partition for analyzing the extreme 
rainfall properties, and may also be a rather crude method for delineating the 
extreme’s properties in multi-site analyses where seasonal differences in climate may 
be very pronounced among stations. As an example, seasonality of maximum rainfall 
in Jena (Germany) is completely out of phase with respect to Athens (Greece). The 
same could be argued for trend studies employing fixed characterizations of 
seasonality. For instance, the question of whether winter rainfall has increased is 
potentially ill-conceived, as it mostly pertains to a subjective interpretation of 
seasonality. A more relevant question is whether rainfall in the major rainy season has 
significantly changed, but such a change is unlikely to be identified by considering an 
arbitrary partition in seasons. 

 

Figure 4.6 Partition in seasons resulting from application of the proposed season identification 
method versus the fixed 4-season partition for the stations of Athens (a, b respectively) and 
Jena (c, d respectively). 
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To demonstrate the effect that a fixed 4-season partition could have on the estimation 
of extreme value properties, we focus on the rainfall record of Athens (Figure 4.7). By 
applying the 4-season partition one obtains an apparent overfitting, as the seasonal 
lines are not clearly separated and even cross each other at several points (Figure 4.7b). 
It is evident that an inappropriate characterization of seasonality provides no valuable 
and practical information for seasonal planning and decision-making while, in fact, it 
obscures the presence of the existing seasonal regime (Figure 4.7a). Additionally, in 
the presence of parameter uncertainty and given the short record lengths that are 
usually available, adopting subjective characterizations of seasonality for the study of 
extreme values entails the risk of disproportionately increasing estimation 
uncertainty. The consequences of overfitting are even more obvious in stations with 
very low or no seasonality. 

 
Figure 4.7 Gumbel probability plots of the fitting of the GEV distribution to the annual and 
seasonal maxima for the station of Athens resulting from (a) the proposed season 
identification method and (b) from the fixed 4-season partition. 

4.6 Discussion and Conclusions 

An objective methodology is proposed to allow season identification in extreme daily 
rainfall and the study of the resulting extreme properties in each season. The 
methodology is evaluated on an extended dataset comprising 27 rainfall stations 
covering a period of more than 150 years of daily observations. In the following, we 
discuss methodological and modelling issues, the results of the extreme value analysis 
and their comparison to the no-seasonality approach, as well as relative strengths and 
potential limitations of our method. 

The season identification methodology herein proposed is based on the SSD 
algorithm, a simplified version of the 𝑘-means clustering algorithm, whose results are 
evaluated by exploiting the model selection properties of the Akaike Information 
Criterion (AIC). The method is able to identify the optimal modelling option for the 
seasonal extreme rainfall for a given dataset, discerning among the existence of 1 (no 
dominant season) to 4 seasons in the extreme rainfall properties and identifying their 
temporal span. Since AIC is a measure of relative performance of models, this task 
should be performed after thorough consideration of the appropriateness of the 
candidate seasonal distributions to be assessed. In that respect, our methodology 
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provides additional flexibility as multiple probabilistic models may be simultaneously 
assessed. Overall, the methodology shows good spatial coherence, which makes it 
potentially appropriate for regionalization studies, and its flexibility allows one to 
inspect temporal changes in a range of ways, which is also a desirable feature 
concerning climatic variability and trend studies. 

In terms of generated results, the adopted scheme proved to be successful for 
the long rainfall records considered here, by both visual evaluation of the plots of the 
monthly maximum rainfall values (climatograms) and assessment of the resulting 
extreme seasonal distributional properties. For the cases where two or three seasons 
are identified, the differences in the distributional properties are reflected mainly in 
the value of the scale and location parameters of the GEV which are significantly 
higher for the wet season. The shape parameter shows limited seasonal variability, 
which implies that the seasonal distributional properties do not differ substantially in 
the shape of the distribution tail. Our results also confirm other studies regarding the 
prevalence of heavy-tailed distributions for daily rainfall extremes (Koutsoyiannis, 
2004d; Villarini, 2012; Papalexiou and Koutsoyiannis, 2013; Serinaldi and Kilsby, 2014; 
Mascaro, 2018). Some of these studies have also argued that a positive shape parameter 
emerges for extremes caused by multiple types of synoptic patterns, whereas a zero 
exponent (i.e. an exponential tail) may occur for a single-type of events. Apart from 
pronounced intra-annual variability, a positive shape parameter may be also 
portraying increased inter-annual variability in the extremes which has been linked to 
the presence of large-scale circulation patterns, i.e. the NAO, for certain stations of our 
dataset (Kutiel and Trigo, 2014; Marani and Zanetti, 2015a). In principle, we believe 
that our findings are in agreement with previous research and strengthen the 
assumption that a heavier-tail behaviour better captures conditions of enhanced 
natural variability and complex atmospheric forcing, as revealed by the inspection of 
our long and spatially sparse dataset. 

In comparison to the no-seasonality approach, in some cases the annual 
maxima series are found to be dominated by extreme events occurring in the wet 
season. This result is pointed out by the closeness in the estimated GEV parameter 
values between the annual and the wet season’s probability distribution of extreme 
events. It also indicates that annual frequency analyses may suffice for studying the 
annual maxima (AM). Actually, studying the AM series is more in favour of a 
conservative design approach, since the former takes into account the rare cases of 
extreme events of significant magnitude happening in the dry season. Furthermore, 
since the majority of AM in records with pronounced seasonality still stems from the 
wet season, strong seasonality is not significantly violating the IID assumption in the 
GEV approach. A similar remark was also made by Allamano et al. (2011). However, 
for intra-annual hydrological design and management, it is crucial to take seasonal 
variability into account. The wet season maxima series contain valuable information 
on the timing of occurrence of the most extreme events, although it is likely that in 
some cases, their magnitude will be close to the AM estimated one. Yet when dry 
periods are of interest, using the AM series instead, i.e. adopting a no-seasonality 
approach, is likely to lead to costly overestimation of design values and floodwater 
waste.  
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A few key strengths of our methodology should be underlined. In general, 
estimation uncertainty in extreme studies is a known issue especially for the 
estimation of the shape parameter of the GEV distribution. Here, we show how an 
alternative choice of estimation methods, improving the model performance in the 
domain of extreme events, may resolve inconsistencies deriving from an independent 
seasonal and annual fitting. Given the latter, we consider the need for the laborious 
joint estimation of seasonal-annual distributions to be questionable and we propose a 
simpler procedure based on the estimation of a common shape parameter for the 
seasonal-annual parameterization, which is shown to increase robustness of the 
statistical model. On the whole, the entire methodology is compared to a conventional 
partition in fixed seasons and its advantageous features are highlighted both in that it 
enables consistent identification of seasonal regimes at single-site and multi-site levels, 
as opposed to arbitrary partitions, and that it consequently allows a more informed 
and parsimonious fitting of the GEV distribution to seasonal extremes. 

A few limitations should be taken into account. We note that in case where the 
Average Based (AB) and the Complete Data (CD) methods diverge, there is some 
remaining degree of subjectivity in the choice for the most appropriate scheme. This 
constitutes a potential limitation of our method as results may not be fully conclusive. 
Yet this may be resolved if an equifinality framework is adopted and both options are 
considered. Additionally, it should be noted that the performance of AIC largely 
depends on the quality of the considered candidate models. Although the chosen 
distributions are representative of a variety of statistical behaviours, it is possible that 
there may be exceptions for which they do not perform well. Increasing the set of 
candidate distributions is another option to achieve a greater degree of confidence 
within a multi-model approach. 

Despite these limitations, we believe that our findings have direct applications 
both in the theoretical conceptualization of seasonality in extreme rainfall and in 
engineering applications. On a methodological level, they contribute to a wider 
establishment of model selection techniques, in this case AIC, in hydrological studies 
and pave the way for the objective identification of seasonality via automated schemes 
which are required for global-scale hydrology. 
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5.  SEASONAL DEPENDENCE DYNAMICS OF 

STREAMFLOW EXTREMES  

It has been shown that the geophysical and hydrological processes governing river 
flow formation exhibit persistence at several timescales, which may manifest itself 
with the presence of positive seasonal correlation of streamflow at several different 
time lags (Aguilar et al. 2017). This Chapter builds upon this idea dealing with the 
presence of dependence dynamics in river flow at the seasonal scale, the associated 
physical drivers, and the related potential for employing this information to improve 
probabilistic prediction of high and low flows. A dataset of 224 rivers from six 
European countries spanning more than 50 years of daily flow data is exploited. The 
practical benefit of the methodology is demonstrated by updating the frequency 
distribution of high and low flows one season in advance in a real-world case. Results 
suggest that there is a traceable physical basis for river memory which, in turn, can be 
statistically assimilated into high- and low-flow frequency estimation to reduce 
uncertainty and improve predictions for technical purposes.  

5.1 Introduction 

Recent analyses for the Po River and the Danube River highlighted that catchments 
may exhibit significant correlation between peak river flows and average flows in the 
previous months (Aguilar et al., 2017). Such correlation is the result of the behaviours 
of the physical processes involved in the rainfall–runoff transformation that may 
induce memory in river flows at several different timescales. The presence of long-
term persistence in streamflow has been known for a long time since the pioneering 
works of Hurst (1951a) and has been actively studied ever since (e.g. Koutsoyiannis, 
2011b; Montanari, 2012; O’Connell et al., 2016 and references therein). While a number 
of seasonal flow forecasting methods have been explored in the literature (e.g. 
Bierkens and van Beek, 2009; Dijk et al., 2013), attempts to explicitly exploit streamflow 
persistence in seasonal forecasting through information from past flows have been, in 
general, limited. Koutsoyiannis et al. (2008) proposed a stochastic approach to 
incorporate persistence of past flows into a prediction methodology for monthly 
average streamflow and found the method to outperform the historical analogue 
method (see also Dimitriadis et al., 2016, for theory and applications of the latter) and 
artificial neural network methods in the case of the Nile River. Similarly, Svensson 
(2016) assumed that the standardized anomaly of the most recent month will not 
change during future months to derive monthly flow forecasts for 1–3 months lead 
time and found the predictive skill to be superior to the analogue approach for 93 UK 
catchments. The above-mentioned persistence approach has also been used 
operationally in the production of seasonal streamflow forecasts in the UK since 2013, 
within the framework of the Hydrological Outlook UK (Prudhomme et al. 2017). A 
few other studies have included past flow information in prediction schemes along 
with teleconnections or other climatic indices (Piechota et al., 2001; Chiew et al., 2003; 
Wang et al., 2009). Recently, it was shown that streamflow persistence, revealed as 
seasonal correlation, may also be relevant for prediction of extreme events by allowing 
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one to update the flood frequency distribution based on river flow observations in the 
pre-flood season and reduce its bias and variability (Aguilar et al., 2017). The above 
previous studies postulated that seasonal streamflow correlation may be due to the 
persistence of the catchments storage and/or the weather, but no attempt was made to 
identify the physical drivers. 

The present study aims to further inspect seasonal persistence in river flows 
and its determinants, by referring to a large sample of catchments in six European 
countries (Austria, Sweden, Slovenia, France, Spain, and Italy). We focus on 
persistence properties of both high and low flows by investigating the following 
research questions: (i) what are the physical conditions, in terms of catchment 
properties, i.e. geology and climate, which may induce seasonal persistence in river 
flow, and, (ii) can floods and droughts be predicted, in probabilistic terms, by 
exploiting the information provided by average flows in the previous months? These 
questions are relevant for gaining a better comprehension of catchment dynamics and 
planning mitigation strategies for natural hazards. To reach the above goals, we 
identify a set of descriptors for catchment behaviours and climate, and inspect their 
impact on correlation magnitude and predictability of river flows. 

A few studies have analysed physical drivers of streamflow persistence on 
annual and deseasonalized monthly and daily time series (Mudelsee, 2007; Hirpa et 
al., 2010; Gudmundsson et al., 2011; Zhang et al., 2012; Szolgayova et al., 2014; 
Markonis et al., 2018) but the topic has been less studied on intra-annual scales relevant 
to seasonal forecasting of floods and droughts.  

To demonstrate the high practical relevance of the identified seasonal 
correlations we present a technical experiment for one of the studied rivers (Section 
5.7) in which the frequency distribution of both high and low flows is updated one 
season in advance by exploiting real-time information on the state of the catchment. 

5.2 Data and catchment description 

The dataset includes 224 records spanning more than 50 years of daily river flow 
observations from gauging stations, mostly from non-regulated streams. A few 
catchments are impacted by regulation. Among the 224 rivers, 108 are located in 
Austria, 69 in Sweden, 31 in Slovenia, 13 in France, two in Spain and one in Italy. 
Catchment areas vary significantly, the largest being the Po River basin in Italy (70 091 
km2) and the smallest being the Hålabäcken River basin in Sweden (4.7 km2). The 
geographical location of the river gauge stations as well as their climatic classification 
are shown in Fig. 5.1. Most of the examined rivers belong to either a warm temperate 
(C) or a boreal/snow climate (D) with a subset impacted by polar climatic conditions 
(E), according to the updated World Map of the Köppen–Geiger climate classification 
(Fig. 5.1) based on gridded temperature and precipitation data for the period 1951-
2000 (Kottek et al., 2006). More specifically, the majority of French and Slovenian and 
approximately one third of the Swedish basins belong to the warm temperate Cfb 
category characterized by precipitation distributed throughout the year (fully humid) 
and warm summers. The rest of the Swedish catchments are impacted by a Dfc climatic 
type, i.e. a snow climate, fully humid with cool summers. The Austrian catchments 
belonging to the region impacted by the European Alps have the most complicated 
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regime due to their topographic variability. At the lowest altitudes, Cfb is the 
prevailing regime, but as proximity to the Alps increases, a Dfc regime dominates and 
progressively, in the highest altitude basins, the climate becomes a polar tundra type 
(Et), characterized primarily by the very low temperatures present. The characteristics 
of all the climatic regimes of the studied rivers are given in the legend of Fig. 5.1. A 
summary of the river basins under study in terms of the selected descriptors is also 
provided in Table 5.1, showing that the investigated rivers cover a wide range of 
catchment area sizes, flow regimes and climatic conditions. 

It is relevant to note that 16 of the Austrian rivers are subject to regulation, 
which may alter the persistence properties of river flows. This relates to generally 
‘mild’ forms of regulation, i.e. upstream regulation with a very low degree of flow 
attenuation, hydropower operations and flow diversions to and from the basin. A 
preliminary examination of these rivers did not reveal any significant change during 
time of the flow regime. The presence of regulation does not preclude the exploitation 
of correlation for predicting river flows in probabilistic terms, but it may affect the 
analysis of physical drivers, as it may enhance or reduce persistence in the natural 
river flow regime. Given that detailed information is generally lacking on the impact 
of regulation (Kuentz et al. 2017), we assume stationarity of the river flows for all the 
catchments herein considered and additionally, assume that river management does 
not significantly affect the identification of the physical drivers. 

 
Figure 5.1 Updated Köppen–Geiger climatic map for period 1951–2000 (Kottek et al., 2006) 
showing the location of the 224 river gauge stations. 
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Table 5.1 Summary statistics of the river descriptors. Summary statistics for PL, PG and PF 
variables are computed only for the subset of catchments with positive values (the total 
number of catchments is also reported in brackets). PK is used as a categorical variable (PK is 
either higher or lower than 50% of catchment area), therefore sample statistics are not 
computed in this case, but the number of stations with PK ≥ 50% is reported as ‘positive’ 
presence of karst. 

Descriptor 
(Units)      

A  
(km2) 

BI   
(–) 

SR                 
(m3 s–1  

km–2) 

PL    
(%) 

PG      
(%) 

PF       
(%) 

PK      
(–) 

P                        
(mm 
year–1) 

T 
(°C) 

IDM         
(–) 

Min value 4.7 0.29 0.004 0.5 0.1 0.3 – 444 –1.8 29.41 

Max value 70091 0.99 0.088 19.5 56.5 100 – 1500 13.7 153.40 

Standard 

deviation 
5904.3 0.14 0.018 4.04 15.54 32.56 – 288.22 3.59 24.53 

Sample 

size 
224 224 224 

69 

(69) 

39 

(108) 

18 

(108) 

21 

(31) 
224 224 224 

5.3 Methodology 

The investigation of the persistence properties of river flows focuses separately on 
both high and low discharges and is articulated in the following steps: (a) 
identification of the high- and low-flow seasons, (b) correlation assessment between 
the peak flow in the high-flow season (average flow in the low-flow season) and 
average flows in the previous months; (c) analysis of the physical drivers for 
streamflow persistence and its predictability through principal component analysis 
(PCA), (d) real-time updating of the frequency distribution of high and low flows for 
a selected case study with significant seasonal correlation by employing a meta-
Gaussian approach. The above steps are described in detail in the following sections. 

 Season identification 

Season identification is performed algorithmically to identify the high-flow season 
(HFS) and low-flow season (LFS) for each river time series. For the estimation of HFS, 
we employ an automated method recently proposed by Lee et al. (2015), which 
identifies the high-flow season as the 3-month period centred around the month with 
the maximum number of occurrences of peaks over threshold (POT), with the 
threshold set to the highest 5% of the daily flows. To evaluate the selection of HFS, a 
metric constructed as the percentage of annual maximum flows (PAMF) captured in 
the HFS is used. The PAMFs are classified in the subjective categories of “poor” 
(<40%), “low” (40–60%), “medium” (60–80%) and “high” (>80%) values, denoting the 
probability that the identified HFS is the dominant high-flow season in the record. If 
the identified peak month alone contains more than or equal to 80% of annual maxima 
flows, a unimodal regime is assumed and the identification procedure is terminated. 
In all other cases, the method allows for the search of a second peak month and the 
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identification of a minor HFS, but we do not further elaborate on this analysis here, 
because we are only interested in the most extreme seasons for the purpose of 
predicting high and low flows.  

The method proposed by Lee et al. (2015) has several advantages that make it 
suitable for the purpose of this research. Most importantly, it is capable of handling 
conditions of bimodality, which is usually a major issue for traditional methods like, 
e.g. directional statistics (Cunderlik et al., 2004a). A potential limitation is the 
assumption of symmetrical extension of HFS around the peak month, along with the 
uniform selection of its length (3-month period). The degree of subjectivity in the 
evaluation of the second HFS is another limitation, which is not relevant here as we 
focus on the main HFS. 

The LFS is herein identified as the 1-month period with the lowest amount of 
mean monthly flow. An alternative approach of estimating the relative frequencies of 
annual minima of monthly flow and selecting the month with the highest frequency 
as the LFS is also considered.  

 Analysis of streamflow correlation and its physical drivers  

 Correlation analysis 
In the case of HFS, a correlation is sought between the maximum daily flow occurring 
in the HFS period and the mean flow in the previous months, before the onset of HFS. 
For LFS, correlation is computed between the mean flow in the LFS itself and the mean 
flow in the previous months. We use the mean flow in the previous month as a robust 
proxy of ‘storage’ in the catchment that is expected to reflect the state of the catchment, 
i.e., wetter or drier than usual. Since we are interested in seasonal persistence, we 
compute the Pearson’s correlation coefficient for HFS lag up to 9 months and for LFS 
lag up to 11 months. 
 
Analysis of physical drivers 
a. Catchment, geological, and climatic descriptors. 
An extensive investigation is carried out to identify physical drivers of seasonal 
streamflow correlation, in terms of catchment, geological, and climatic descriptors.  
As catchment descriptors, we consider the basin area (A), the baseflow index (BI), the 
mean specific runoff (SR), the percentage of basin area covered by lakes (percentage 
of lakes PL) and glaciers (percentage of glaciers PG) and altitude as candidates for 
explanatory variables for streamflow correlation.  

The area A (km2) is primarily investigated, as it is representative of the scale of 
the catchment, under the assumption that in larger basins the impact of the 
climatological and geophysical processes affecting river flow becomes more 
significant and may lead to a magnified seasonal correlation. 

The BI is considered based on the assumption that high groundwater storage 
may be a potential driver of correlation. BI is calculated from the daily flow series of 
the rivers following the hydrograph separation procedure detailed in Gustard et al. 
(2009). Flow minima are sampled from non-overlapping 5-day blocks of the daily flow 
series and turning points in the sequence of minima are sought and identified when 
the 90% value of a certain minimum is smaller or equal to its adjacent values. 
Subsequently, linear interpolation is used in between the turning points to obtain the 
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baseflow hydrograph. The BI is obtained as the ratio of the volume of water beneath 
the baseflow separation curve versus the total volume of water from the observed 
hydrograph, and an average value is computed over all the observed hydrographs for 
a given catchment. A low index is indicative of an impermeable catchment with rapid 
response, whereas a high value suggests high storage capacity and a stable flow 
regime.  

SR (m3 s–1 km–2) is computed as the mean daily flow of the river standardized 
by the size of its basin area. It may be an important physical driver as it is an indicator 
of the catchment’s wetness. PL (%) and PG (%) are investigated for the Swedish and 
Austrian catchments, respectively, as lakes and glaciers are expected to increase 
catchment storage thus affecting persistence. Lake coverage data are based on 
cartography and are available from the Swedish Water Archive 
(https://www.smhi.se/), while glacier coverage data are estimated from the CORINE 
land cover database (https://www.eea.europa.eu/publications/COR0-landcover). 

The effect of catchment altitude is also inspected using relief maps from the 
Shuttle Radar Topography Mission (SRTM) data (http://srtm.csi.cgiar.org/). The data 
are available for the whole globe and are sampled at 3 arch-seconds resolution 
(approximately 90 meters). Topographic information is available for all catchments 
located at latitudes lower than 60 degrees north, while a 1 km resolution digital 
elevation model is available for Austria. 

As geological descriptors we consider the percentage of catchment area with 
the presence of flysch (percentage of flysch PF) and karstic formations (percentage of 
karst PK) for Austrian and Slovenian catchments, respectively, where this type of 
information is available. A subset of Austrian catchments is characterized by the 
dominant presence of flysch, a sequence of sedimentary rocks characterized by low 
permeability, which is known to generate a very fast flow response. Karstic 
catchments, characterized by the irregular presence of sinkholes and caves, are also 
known for having rapid response times and complex behaviour; e.g. initiating fast 
preferential groundwater flow and intermittent discharge via karstic springs (Ravbar, 
2013; Cervi et al., 2017). Geological features are also presumed to be linked to 
persistence properties because geology is the main control for the baseflow index 
across the European continent (Kuentz et al. 2017). PK (%) and PF (%) are estimated 
from geological maps of Slovenia and Austria, respectively. 

As climatic descriptors, the mean annual precipitation P (mm year–1) and the 
mean annual temperature T (°C) are selected. Corresponding gridded data are 
retrieved from the WorldClim database (http://www.worldclim.org/) at a spatial 
resolution of 10 arcminutes (approximately 18.55 km at the equator). We note that low 
mean temperature regimes are also associated with snow, the presence of which is also 
considered in the interpretation of the results. We also adopt the De Martonne index 
(IDM; De Martonne, 1926), as a climatic descriptor, which is given by IDM =
𝑃 (𝑇 + 10)⁄ , and enables classification of a region into one of the following  6 climate 
classes, i.e., arid (IDM ≤ 5), semi-arid (5 < IDM ≤ 10), dry subhumid (10 < IDM ≤ 20), 
wet subhumid (20 < IDM ≤ 30), humid (30 < IDM ≤ 60) and very humid (IDM ≥ 60). 
Additionally, the Köppen–Geiger climatic classification (Kottek et al., 2006) of the 
rivers is assessed. 
 

http://srtm.csi.cgiar.org/
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Principal component analysis 
To identify which catchment, physiographic and climatic characteristics may explain 
river memory we attempt to regress the seasonal streamflow correlation on the 
physical descriptors introduced above. We expect the presence of multicollinearity 
among the predictor variables and therefore PCA (Pearson, 1901; Hotelling, 1933) was 
applied to construct uncorrelated explanatory variables. In essence, PCA is an 
orthonormal linear transformation of 𝑝 data variables into a new coordinate system of 
𝑞 ≤  𝑝 uncorrelated variables (principal components, PCs) ordered by decreasing 
degree of variance retained when the original 𝑝 variables are projected into them 
(Jolliffe, 2002). Therefore, the first principal axis contains the greatest degree of 
variance in the data, while the second principal axis is the direction which maximizes 
the variance among all directions orthogonal to the first principal axis and each 
succeeding component in turn has the highest variance possible while satisfying the 
condition of orthogonality to the preceding components. Specifically, let 𝒙  be a 
random vector with mean 𝜇 and correlation matrix 𝜮, and the principal component 

transformation of 𝒙 is then obtained as follows:   

𝒚 = 𝑪𝑇𝒙′   (35) 

 
where 𝒚 is the transformed vector whose 𝑘th column is the 𝑘th principal component (𝑘 
=1, 2..p), 𝑪  is the 𝑝 × 𝑝 matrix of the coefficients or loadings for each principal 
component and 𝒙 ′is the standardized 𝒙 vector. Standardization is applied in order to 
avoid the impact of the different variable units on selecting the direction of maximum 
variance, when forming the PCs. The 𝒚 values are the scores of each observation, i.e. 
the transformed values of each observation of the original 𝑝 variables in the 𝑘th 
principal component direction. 

PCA has useful descriptive properties of the underlying structure of the data. 
These properties can be efficiently visualized in the biplot (Gabriel, 1971), which is the 
combined plot of the scores of the data for the first two principal components along 
with the relative position of the 𝑝 variables as vectors in the two-dimensional space. 
Herein, the distance biplot type (Gower and Hand, 1995), which approximates the 
Euclidean distances between the observations, is used. Variable vector coordinates are 
obtained by the coefficients of each variable for the first two principal components. 
After construction of the PCs, a linear regression model is explored for the case of HFS 
and LFS lag-1 correlation. 

 Technical experiment: real-time updating of the frequency distribution of high 
and low flows 

In order to evaluate the usefulness of the information provided by the 1-month-lag 
seasonal correlation for flow signatures in HFS and LFS, we perform a real-time 
updating of the frequency distribution of high and low flows based on the average 
river flow in the previous month. A similar analysis for the high flows was carried out 
by Aguilar et al. (2017) for the Po and Danube Rivers. In principle, this is a data 
assimilation approach, since real-time information, i.e. observations of the average 
river flow, is used in order to update a probabilistic model and inform the forecast of 
the flow signature for the upcoming season.  
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In detail, a bi-variate meta-Gaussian probability distribution (Kelly and 
Krzysztofowicz, 1997; Montanari and Brath, 2004) is fitted between the observed flow 
signatures, i.e., peak flow in the HFS, 𝑄P and average flow in the LFS, 𝑄L, and the 
average flow in the pre-HFS and LFS months, 𝑄m, respectively. The peak HFS flow 
and the average LFS flow are the dependent variables and are extracted as the peak 
river discharge observed in the previously identified HFS and the average river 
discharge observed in the previously identified LFS, respectively. The average flow in 
the month preceding the HFS and the LFS is the explanatory variable in both cases. In 
the following, random variables are denoted by underscore and their outcomes are 
written in plain form.  

The normal quantile transform (NQT; Kelly and Krzysztofowicz, 1997) is used 
in order to make the marginal probability distribution of dependent and explanatory 
variables Gaussian. This is achieved as follows: a) the sample quantiles 𝑄 are sorted in 
increasing order e.g. 𝑄m1

, 𝑄m2
…𝑄m𝑛

 , b) the cumulative frequency, e.g. FQm𝑖
 is 

computed via a Weibull plotting position, and c) the standard normal quantile, e.g., 
NQm𝑖

 is obtained as the inverse of the standard normal distribution for each 

cumulative frequency, e.g., 𝐺−1(FQm𝑖
). Therefore, all sample quantiles are discretely 

mapped into the Gaussian domain. To get the inverse transformation for any normal 
quantile, we connect the points in the above mapping with linear segments. The 
extreme segments are extended to allow extrapolation outside the range covered by 
the observed sample. 

In the Gaussian domain, a bi-variate Gaussian distribution is fitted between the 
random explanatory variable NQm and the dependent variables NQP and NQL by 

assuming the stationarity and ergodicity of the variables. We define the generic 
random variable NQ fs to represent any dependent flow signature, i.e.; NQP and NQL 

in our case. Then, the predicted signature at time 𝑡 can be written as: 

NQ fs(𝑡) = 𝜌(NQm,NQ fs)NQm(𝑡 − ℎ) + N𝜀(𝑡)   (36) 

where 𝜌(NQm,NQ fs) is the Pearson’s cross-correlation coefficient between NQm and 

NQ fs, ℎ is the selected correlation lag with ℎ = 1 in the present application, and Nε(t) 

is an outcome of the stochastic process N𝜀, which is independent, homoscedastic, 
stochastically independent of NQm and normally distributed with zero mean and 

variance 1 − 𝜌2(NQm, NQ fs). Then, the joint bi-variate Gaussian probability 

distribution function is defined by the mean (𝜇(NQm)  =  0 and 𝜇(NQ fs)  =  0), the 

standard deviation (𝜎(NQm)  =  1 and 𝜎(NQ fs)  =  1) of the standardized normalized 

series, and the Pearson’s cross correlation coefficient between the normalized series, 

𝜌(NQm,NQ fs). From the Gaussian bi-variate probability properties, it follows that for 

any observed NQm(𝑡 − ℎ), the probability distribution function of NQ fs(t) conditioned 

on NQm is Gaussian, with parameters given by: 

𝜇(NQ fs(𝑡)) = 𝜌(NQm,NQ fs)NQm(𝑡 − ℎ)   (37) 
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𝜎(NQ fs(𝑡)) = (1 − 𝜌2(NQm, NQ fs))
0.5

   (38) 

 
To derive the probability distribution of Q fs(𝑡) conditioned to the observed 

Qm(𝑡 − ℎ), we first apply the inverse NQT, i.e., we use linear segments to connect the 
points of the previous discrete quantile mapping of the original quantiles into the 
Gaussian domain, and accordingly, obtain Q fs(𝑡)  for any NQ fs(𝑡). Subsequently, we 
estimate the parameters of an assigned probability distribution for the obtained 
quantiles in the untransformed domain. This is referred to as the updated probability 
distribution of the considered flow signature (NQP  and NQL  in our case). We use the 

Extreme Value Type I distribution for the peak flows and calculate the differences in 
the magnitude of estimated maxima for a given return period between the 
unconditioned and the updated distribution. The latter is conditioned by the 95% 
sample quantile of the observed mean flow in the previous month. To model the low 
flows we use the lognormal distribution, which was found to exhibit the best fit for the 
river in question among other typical candidates for average flows, i.e. the Weibull 
and Gamma distribution. The low flows are conditioned by the lower 5% sample 
quantile of the observed mean flow in the previous month. 

5.4 Seasonal correlation of high and low flows  

 Season identification 

Approximately half of the 224 rivers are characterized by at least one high-flow season 
with medium or higher significance (PAMF of HFS ≥ 60%). Among them, very strong 
unimodal regimes (PAMF of HFS ≥ 80%) are observed in 63 rivers, the majority of 
which are located in Sweden. For 25% of the rivers, a high-flow season of low 
significance is found (PAMF of HFS between 40–60%), while for the remaining 25% 
the high-flow distribution looks uniform throughout the year. Bimodality regimes are 
found with low and moderate significance in rivers located mostly in Austria and 
Sweden, but we focus here on the major high-flow season, as we are interested in the 
most extreme events. A minor HFS analysis would be perhaps relevant in other 
regions of the world where bimodal flood regimes are more prominent, as suggested 
by the analysis of Lee et al. (2015). 

Regarding the LFS identification, the two considered approaches (see Section 
5.3.1) agree for 139 out of 224 stations but the first method, i.e. the 1-month period with 
the lowest amount of mean monthly flow is selected for being more relevant to the 
purpose of computing mean flow correlations. 

 Seasonal correlation 

LFS correlation is markedly higher than the corresponding HFS correlation for lags 1–
5 and its median remains higher than 0 for more lags (Fig. 5.2). For the case of HFS 
correlation, we focus only on the most significant first lag, for which 73 rivers are 
found to have correlation significantly higher than 0 at 5% significance level. In Fig. 
5.3, the autocorrelation of the whole monthly series is compared to the LFS correlation 
for lag of 1 and 2 months, in order to prove that the seasonal correlation for LFS is 
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significantly higher than its counterpart computed by considering the whole year. The 
latter is also confirmed by the Kolmogorov–Smirnov test for both LFS lags 
(corresponding 𝑝 values, 𝑝lag1 < 2.2 ×10–6 and 𝑝lag2 < 2.2 ×10–6  for the null hypothesis 
that the LFS correlation coefficients are not higher than the corresponding values for 
the monthly series autocorrelation; Conover, 1971). 

 

Figure 5.2 Boxplots of seasonal correlation coefficient against lag time for HFS (left panel) and 
LFS (right panel) analysis for the 224 rivers. The lower and upper ends of the box represent 
the 1st and 3rd quartiles, respectively, and the whiskers extend to the most extreme value 
within 1.5 IQR (interquartile range) from the box ends; outliers are plotted as filled circles.  

 

 

Figure 5.3 Boxplots of lag-1 and lag-2 correlation coefficients for LFS analysis (orange) and the 
whole monthly series (white) for the 224 rivers. The lower and upper ends of the box represent 
the 1st and 3rd quartiles, respectively, and the whiskers extend to the most extreme value 
within 1.5 IQR (interquartile range) from the box ends. 

Figure 5.4 shows the spatial pattern of HFS and LFS streamflow correlations. It 
is interesting to notice the emergence of spatial clustering in the correlation magnitude, 
which implies its dependence on different spatially varying physical mechanisms. For 
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example, for HFS, a geographical pattern emerges within France, since the highest 
correlation coefficients are located in the northern part of the country, which is 
characterized by an oceanic climate and higher baseflow indices. 

 

Figure 5.4 Spatial distribution of the lag-1 correlation coefficients for HFS (left) and LFS (right) 
analysis. Legend shows the colour assigned to each class of correlation for the data. 

5.5 Physical interpretation of correlation 

To attribute the detected correlations to physical drivers, we define six groups of 
potential drivers of seasonal correlation magnitude, which are: basin size, flow indices, 
the presence of lakes and glaciers, catchment elevation, catchment geology, and hydro-
climatic forcing. For some of the descriptors the information is only available for a few 
countries.  

In what follows, we will use the term “positive (negative) impact on 
correlation” to imply that an increasing value of the considered descriptor is associated 
with increasing (decreasing) correlation. For each descriptor, we also report, between 
parentheses, the Spearman’s rank correlation coefficient 𝑟𝑠 (Spearman, 1904) between 
its value and the considered (LFS or HFS) correlation, and the 𝑝 value of the null 
hypothesis 𝑟𝑠=0. Spearman’s coefficient is adopted in view of its robustness to the 
presence of outliers and its capability of capturing monotonic relationships of non-
linear type. 
 
Catchment area – descriptor A 
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Figure 5.5 shows that there is only a weak positive impact of the catchment area (log-
transformed) on correlation for HFS (𝑟𝑠= 0.17, 𝑝 = 0.01) but a more significant positive 
one for LFS (𝑟𝑠 = 0.27, 𝑝 = 5.5 × 10–5). The presence of relevant scatter in the plots also 
indicates that it is not a key determinant of correlation. 
 

 

Figure 5.5 Scatterplots of lag-1 HFS (bottom panel) and LFS (top) streamflow correlation 
versus the natural logarithm of basin area 𝐥𝐧 𝑨. 

 
Flow indices – descriptors BI and SR 
The effect of the BI and SR is shown in Fig. 5.6. The BI (Fig. 5.6a) appears to be a marked 
positive driver for LFS (𝑟𝑠 = 0.6, 𝑝 = 1.8 × 10–23) while its effect for HFS is less clear, 
being weakly positive (𝑟𝑠 = 0.21, 𝑝 = 0.001). For SR (Fig. 5.6b), it appears that both LFS 
and HFS streamflow correlations drop for increasing wetness (𝑟𝑠 = –0.4, 𝑝 = 4 × 10–10 
and 𝑟𝑠 = –0.28, 𝑝 = 2.8 × 10–5 respectively). 
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Figure 5.6 Scatterplots of lag-1 HFS (bottom panels) and LFS streamflow correlation (top 
panels) versus baseflow index BI (a) and specific runoff SR (b). 

Presence of lakes and glaciers – descriptors PL and PG 
Detailed information on the presence of lakes is available for the 69 Swedish 
catchments while areal extension of glaciers is known for the 108 Austrian catchments. 
Figure B.1 in Appendix B.1 shows that the impact of lake area (Fig. B.1a) on correlation 
for LFS and HFS is not significant but positive (𝑟𝑠  = 0.10, 𝑝 = 0.399 and 𝑟𝑠  = 0.12, 𝑝 = 
0.347). The results for glaciers show a positive impact for LFS (𝑟𝑠  = 0.28, 𝑝 = 0.081) but 
a negative impact for HFS (𝑟𝑠  = –0.34, 𝑝 = 0.032). For a meaningful interpretation, these 
results should be considered in conjunction with the seasonality of flows for the 
Austrian catchments. Low flows for the glacier-dominated catchments typically occur 
in winter months, when glaciers are not contributing to the flow (Parajka et al., 2009). 
Thus the observed result for LFS more likely portrays the impact of low temperature 
(low evapotranspiration) and snow accumulation, the latter generally being a slowly 
varying process. For HFS, which typically occurs in the summer months for the 
considered catchments, flows are mainly determined by snowmelt, which is associated 
to reduced persistence (Appendix B.1; Fig. B.1b).  
 
Catchment elevation 
The areal coverage of the SRTM data is limited to 60° N and 54° S and therefore, data 
for the northern part of the Swedish catchments are not available. The rest of the rivers 
are divided in three regions based on proximity: Region I including the central and 
eastern part of the Alps and encompassing Austrian, Slovenian and Italian catchments; 
Region II including the western part of the Alps and encompassing French and 
Spanish territory; and Region III including the southern part of Sweden. Figure 5.7 
shows elevation maps along with the location of gauge stations and magnitude of 
correlations. Elevation seems to enhance LFS correlation, which is more evident in the 
mountainous Region I (Fig. 5.7). For HFS correlation there is not a prevailing pattern. 
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In the case of Austrian catchments, a 1 km resolution digital model is also used to 
extract information on elevation. Figure 5.8 confirms that there is a positive correlation 
pattern emerging with elevation for LFS. Based on local climatological information, it 
can be concluded that the spatial pattern for LFS correlation is reflective of the timing 
and strength of seasonality of the low flows in Austria, where dry months occur in 
lowlands during the summer due to increased evapotranspiration and in the 
mountains during winter (mostly February) due to snow accumulation which is 
characterized by stronger seasonality compared to the lowlands flow regime (Parajka 
et al., 2016; see Fig. 1). Concerning HFS in the same region, high flows are significantly 
impacted by the seasonality of extreme precipitation (Parajka et al., 2010b), which is 
highly variable, with the exception of the rivers where high flows are generated by 
snowmelt. Therefore, a spatially consistent pattern does not clearly emerge. 
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Figure 5.7 Relief maps from SRTM elevation data for the HFS and LFS lag-1 correlations of the 
rivers. Note that elevation scale is different for each region. Legend shows the colour assigned 
to each class of correlation for the data.  

 
 

 

Figure 5.8 Digital elevation model of the Austrian river network depicting the spatial 
distribution of lag-1 positive correlation for HFS (left) and lag-1 positive correlation for LFS 
(right). Legend shows the colour assigned to each class of correlation for the data. 

 
Catchment geology – descriptors PK and PF 
Two different geological behaviours are identified which may impact river correlation. 
We first focus on 21 Slovenian catchments (out of 31) where more than 50% of the basin 
area is characterised by the presence of karstic aquifers (percentage of karstic areas 
PK ≥ 50%). Figure 5.9 shows boxplots of the estimated lag-1 correlation coefficient for 
both HFS and LFS against rivers where PK < 50%. It is clear that there is a significant 
decrease in correlation where karstic areas dominate for both for HFS and LFS.  

In a second analysis, we focus on Austrian catchments and investigate the 
relationship between correlation and percentage of flysch coverage, PF. Figure B.2 in 
the Appendix B.1 shows that there is not a prevailing pattern in either case (𝑟𝑠 = 0.13, 
𝑝 = 0.6 for LFS and 𝑟𝑠 = –0.19, 𝑝 = 0.446 for HFS).  
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Figure 5.9 Boxplots of lag-1 correlation for Slovenian rivers with more than 50% presence of 
karstic formations PK and rivers with no or less presence for HFS analysis (left) and LFS 
analysis (right). The lower and upper ends of the box represent the 1st and 3rd quartiles, 
respectively, and the whiskers extend to the most extreme value within 1.5 IQR (interquartile 
range) from the box ends.             

 
Atmospheric forcing – descriptors 𝑷 and 𝑻  
Figure 5.10 shows the lag-1 HFS and LFS correlations against estimates of the annual 
precipitation 𝑃 and annual mean temperature 𝑇 as well as the IDM. LFS correlation 
appears to be more sensitive than HFS to the above climatic indices, showing a 
decrease with increasing temperature and also a decrease with increasing precipitation 
(𝑟𝑠 = –0.44, 𝑝 = 3.1 × 10–12 for 𝑃 and 𝑟𝑠 = –0.57, 𝑝 = 1.8 × 10–20 for 𝑇).  HFS correlation is 
scarcely sensitive to these variables (𝑟𝑠 =  
–0.17, 𝑝 = 0.011 for P and 𝑟𝑠 = 0.08, 𝑝 = 0.208 for 𝑇). The IDM (Fig. 5.10 c) shows a mild 
decrease of both LFS (𝑟𝑠 = –0.06, 𝑝 = 0.368) and HFS correlation with increasing IDM 
(𝑟𝑠 = –0.17, 𝑝 = 0.01), while for the latter there seems to be a clearer trend (lower 
correlation with higher IDM) in very humid areas (dark blue points in Fig. 5.10c). 
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Figure 5.10 Scatterplots of lag-1 HFS and LFS correlation versus annual precipitation P (a), 
mean annual temperature T (b), and Index De Martonne IDM (c).                                                                                            
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Physical drivers of high correlation 
To gain further insight into the results we select the 20 catchments with the highest 
streamflow seasonal correlation coefficients for both HFS and LFS periods in order to 
investigate their physical characteristics in relation to the remaining set of rivers. Table 
5.2 summarizes statistics for selected descriptors in order to identify dominant 
behaviours. We also compare the number of rivers with distinctive features, i.e. lakes 
𝑁L (number of rivers with lakes), glaciers 𝑁G (number of river with glaciers), flysch 𝑁F 

(number of rivers with flysch formations) and karst 𝑁K (number of rivers with karstic 
areas) for the highest correlation group with those obtained from 1000 randomly 
sampled 20-catchment groups from the whole set of considered catchments to assess 
whether higher correlation implies distinctive features. 

By focusing on HFS, one can notice that the catchments with higher seasonal 
correlation are characterized by larger catchment area, higher baseflow index and 
temperature with respect to the remaining catchments, and lower specific runoff, 
precipitation and wetness. The presence of lake, glacier, karstic and flysch areas do not 
appear significantly effective at a 5% significance level. More robust considerations 
can be drawn for the LFS: higher seasonal correlation is found for larger catchments 
with a higher baseflow index and lower specific runoff, precipitation and wetness. 
Decreasing temperature is strongly associated with higher correlation for the LFS. The 
presence of lakes plays a significant role both for lag-1 and lag-2 correlations with the 
latter also being significantly influenced by the presence of glaciers. 
 
Table 5.2 Differences in the mean values between the descriptors of the 20-highest-correlation-
river group for HFS and LFS versus the remaining rivers (204). 𝑵𝐋, 𝑵𝐆, 𝑵𝐅 and 𝑵𝐊 columns 
contain the absolute number of rivers in the higher correlation group with the specific 
descriptor (presence of lake, glacier, flysch and karst ) with * denoting significance at 5% 
significance level (two-sided test) and brackets containing the mean value from the 1000 
resampled 20-catchment subsets. 

Descriptor 

(Units) 

A        
(km2) 

BI          
(–) 

SR                  
(m3 s–1  

km–2) 

NL     
(–) 

NG   
(–) 

NF       
(–) 

NK    

(–) 

P           
(mm 
year–1) 

T       
(°C) 

IDM    
(–) 

HFS lag1 +38.7% +9.6% –36.5% 5 (6) 5 (3) 1 (2) 1 (2) –6.7% +11.7% –11.3% 

LFS lag1 +358% +20.2% –47.3% 17* (6) 3 (3) 0 (2) 0 (2) –37.9% –80% –17.3% 

LFS lag2 +139.7% +18.9% –40.8% 12* (6) 7* (3) 0 (2) 0 (2) –26.5% –64.2% –8.8% 

 

5.6 Principal component analysis of the predictors and linear regression 

We attempt to fit a linear regression model to relate correlation to physical drivers, in 
order to support correlation estimation for ungauged catchments. To avoid the impact 
of multicollinearity in the regression while additionally summarizing river 
information, we apply PCA (Section 5.3.2). Although correlation effects are efficiently 
dealt with via the PCA, we avoid including highly correlated variables in the analysis. 
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For example, the De Martonne index, precipitation and SR are mutually highly 
correlated (all Pearson’s cross-correlations are higher than 0.6) and therefore we only 
consider the SR in the PCA because it shows a more robust linear relationship with 
correlation magnitude. We select A, BI, SR and T as the variables to be considered in 
the PCA. A log transformation is applied to the basin area to reduce the impact of 
outliers. Table 5.3 shows the coefficients estimated for each component (the loadings) 
and the explained variance. The first principal component is primarily a measure of 
BI; the second principal component mostly accounts for T and the third principal 
component accounts for A. There is an evident geographical pattern emerging by the 
visualization of countries in the biplot (Fig. 5.11). Slovenian rivers cluster towards the 
direction of increasing SR and T, whereas Swedish rivers cluster towards the opposite 
direction of increasing BI and decreasing T. Austrian rivers, which are the majority, 
are the most diverse. The first two components together explain the 70% of the total 
variability in the data. 

Naturally, the statistical behaviour of the indices reflects the known local 
controls for certain rivers. For example, the observed lowest BI in Slovenia is consistent 
with the presence of karstic formations for the majority of the Slovenian rivers, as is 
the higher BI in Sweden and Austria, which is related to the presence of lakes and 
glaciers in both countries. 

In the case of HFS, all the examined linear models (combinations of ln 𝐴, SR, BI, 
𝑃, 𝑇, IDM predictors) failed in explaining the streamflow correlation magnitude. On 
the contrary, the linear regression model performs fairly well in explaining the 
correlation for LFS, with an adjusted R2 value of 0.58 and an F-test returning a 𝑝 value 
< 2.2 ×10–16. The coefficients for the first three PCs are found significantly different 
from zero at a 0.1% significance level and are included in the regression (Table 5.4). 
The highest coefficient is obtained for the first PC, which mostly accounts for BI 
importance. Diagnostic plots from linear regression for LFS are shown in Fig. 5.12. 
There is no clear violation of homoscedasticity in linear regression, apart from the 
presence of a limited number of outliers. There is a certain departure from normality 
in the lower tail of the residuals, which relates to the fact that the model performs 
better in the area of higher seasonal streamflow correlations and overestimates the 
lower correlations. 
 
Table 5.3 Loadings of the three Principal Components for ln A, SR, BI and T. The explained 
variance of each PC is denoted in parenthesis. 

Predictor 
variables 

PC1 (42.5%) PC2 (28.2%) PC3 (17%) PC4 (12.2%) 

ln 𝐴  –0.486 –0.427 0.748 0.145 

SR 0.48 0.483 0.652 –0.332 

BI –0.619 0.262 –0.11 –0.731 

𝑇 0.385 –0.718 –0.04 –0.577 
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Table 5.4 Summary of Linear Regression results for the LFS model.  

Predictor 

variables 

Estimate Standard 

Error 

𝑡 value Pr(>|𝑡|) Adjusted 

R2 

F-statistic 

intercept 0.659 0.009 77.065 < 2 ×10–16 0.583 104.2 

𝑝-value:  

< 2.2 ×10–16 

 

PC1 –0.111 0.007 –16.820 < 2 ×10–16 

PC2 0.0318 0.008 3.936 1.1 ×10–4  

PC3 –0.039 0.010 –3.754 2.2 ×10–4 

 

 

Figure 5.11 Principal component distance biplot showing the principal component scores on 
the first two principal axes along with the vectors (brown arrows) representing the coefficients 
of the baseflow index BI, specific runoff SR, natural logarithm of basin area ln A and mean 
annual temperature T variables when projected on the principal axes. Scores for the rivers are 
plotted in different colors corresponding to each country of origin and 68% normal probability 
contour plots are plotted for the countries. 



111 
 

 

Figure 5.12 Diagnostic plots of linear regression for the LFS model. Residuals versus the first 
(a), the second (b) and the third principal component (c) and the predicted values (d). Normal 
Q-Q plot of the residuals (e). Plot of the predicted values from linear regression versus the 
observed ones; red line is the diagonal line 1:1 (f). 

 

5.7 Real-time updating of the frequency distribution of high and low 
flows for the Oise River 

We apply the technical experiment (Section 5.3.3) for high and low flows to the Oise 
River in France and assess the difference in the estimated flood and low-flow 
magnitudes. We update the probability distribution of high and low flows after the 
occurrence of the upper 95% and lower 5% sample quantile of the observed mean flow 
in the previous month, respectively. 

The Oise River (55 years of daily flow values) at Sempigny in France has a basin 
area of 4320 km2 and its gauging station at Sempigny is part of the French national 
real-time monitoring system (https://www.vigicrues.gouv.fr/), which is in place to 
monitor and forecast floods in the main French rivers. The selected river has a high 
technical relevance since it experiences both types of extremes with large impacts. For 
instance, a severe drought event in 2005 led to water restrictions impacting agriculture 
and water uses in the region (Willsher, 2005), while the river originated an inundation 
during the 1993 flood events in northern and central France, which was one of the most 
catastrophic flood-related disasters in Europe in the period 1950-2005 (Barredo, 2007). 
It is characterized by HFS correlation 𝜌 = 0.54, which is the 3rd largest lag-1 correlation 
for the HFS in our dataset and LFS correlation 𝜌 = 0.80, which stands for the 70% 

quantile of the sample lag-1 correlation for LFS.  
A visual inspection of the residual plots is also performed (Fig. 5.13a, b) in order 

to evaluate the assumption of homoscedasticity of the residuals of the regression 
models given by equation (36). The residuals do not show any apparent trend and the 
Gaussian linear model is therefore accepted. Figure 5.13 (c, d) shows the conditioned 
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and unconditioned probability distributions of peak and low flows in the Gaussian 
domain. As follows from equation (38), the variance of the updated (conditioned) 
distributions decreases. 

After application of the inverse NQT the conditioned peak flows are modelled 
through the EV1 distribution and compared to the unconditioned (observed) peak 
flows. The corresponding Gumbel probability plot for conditioned and unconditioned 
distributions is shown in Fig. 5.13e. For the return period of 200 years, the updated 
distribution shows a 6% increase in the flood magnitude for the Oise River (307.7 m3 
s–1 to 326.44 m3 s–1). Likewise, the conditioned low flows are modelled through the 
lognormal distribution. The two cumulative distribution functions are compared in 
Fig. 5.13f showing a major departure in the estimated quantiles for the updated 
distribution; the occurrence of the predefined 5% quantile flow in the pre-LFS month 
induces a decrease of the exceedance probability of an average LFS flow of 15 m3 s–1 
from a prior 43% (according to the unconditioned model) to 1%. 
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Figure 5.13 Conditioning the frequency distributions for high and low flows for the Oise 
River. Plots of the residuals of the linear regression given by Eq. (2) for the HFS (a) and LFS 
(b) models. Probability distribution of the unconditioned normalized peak flows NQP (solid 
line) and the normalized peak flows NQP conditioned to the occurrence of the 95% quantile 
(dotted line) for the HFS (c) and probability distribution of the unconditioned normalized 
low flows NQL (solid line) and the normalized low flows NQL conditioned to the occurrence 
of the 5% quantile (dotted line) for the LFS (d). Gumbel probability plots of the return period 
versus the unconditioned peak flows QP (black line) and the peak flows QP modelled by the 
EV1 distribution and conditioned to the occurrence of the 95% quantile (red line) for the HFS 
(e). Cumulative distribution function of the unconditioned low flows QL (black line) and the 
low flows QL modelled by the lognormal distribution and conditioned to the occurrence of 
the 5% quantile (red line) for the LFS (f). 
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5.8 Discussion  

The methodology presented herein aims to progress our physical understanding of 
seasonal river flow persistence for the sake of exploiting the related information to 
improve probabilistic prediction of high and low flows. The correlation of average 
flow in the previous months with the LFS flow and HFS peak flow was found to be 
relevant, with the former prevailing over the latter. This result was foreseen since the 
LFS correlation refers to average flow while the HFS correlation is related to rapidly 
occurring events. We also aim to investigate physical drivers for correlation and 
quantify their relative impact on correlation magnitude. Therefore, a thorough 
investigation of the geophysical and climatological features of the considered 
catchments was carried out.  

We found that the increasing basin area and baseflow index are associated with 
increasing seasonal streamflow correlation, yet the latter has a stronger impact. Το this 
respect, Mudelsee (2007), Hirpa et al. (2010) and Szolgayova et al. (2014a) also found 
positive dependencies of long-term persistence on basin area, and Markonis et al. 
(2018) found a positive impact too but for larger spatial scales (> 2 × 104 km2), while 
Gudmunsson et al. (2011) found basin area to have negligible to no impact on the low-
frequency components of runoff. Our results additionally point out that catchment 
storage induces mild positive correlation, not only for low discharges which are 
directly governed by base flow, but also for high flows, which is less anticipated. 

Previous studies also pointed out that correlation increases for groundwater-
dominated regimes (Yossef et al., 2013; Dijk et al., 2013; Svensson, 2016) and slower 
catchment response times (Bierkens and van Beek, 2009), which concurs with the 
impact of the baseflow index found herein as well as with the observed impact of fast 
responding karst areas. The latter findings are also in agreement with our conclusion 
that correlation decreases with increasing rapidity of river flow formation, which for 
instance occurs in the presence of karstic areas and wet soils, explaining why 
persistence decreases with high specific runoff, as also confirmed by other studies 
(Gudmundsson et al., 2011; Szolgayova et al., 2014).  

Other contributions also reported higher streamflow persistence in drier 
conditions, either relating to lower specific runoff or mean areal precipitation 
estimates (Szolgayova et al., 2014; Markonis et al., 2018). It was postulated that this is 
due to wet catchments showing increased short-term variability compared to drier 
catchments (Szolgayova et al., 2014) and having a faster response to rainfall due to 
saturated soil. A similar conclusion has been reached by other previous studies 
reporting that low humidity catchments are more sensitive to inter-annual rainfall 
variability (Harman et al., 2011), therefore leading to enhanced persistence. Yet, these 
studies refer to generally humid regions and cannot be extrapolated to more arid 
climates. A related conclusion is proposed by Seneviratne et al. (2006) who found the 
highest soil moisture memory for intermediate soil wetness. These results do not 
contrast with our findings, which refer to a wide range of climatic conditions. In fact, 
our finding that increased wetness has a negative impact on seasonal memory of both 
high and low flows, extends the above results to the seasonal scale and interestingly, 
to both types of extremes. 
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We also confirm the role of lakes in determining higher catchment storage and 
therefore positive correlations for the LFS, which has only been reported for annual 
persistence in a few sites (Zhang et al., 2012). 

The effect of snow cover for lag-1 LFS correlation is also revealed by the 
Austrian catchments. The mountainous rivers, directly affected by the process of snow 
accumulation, exhibit winter LFS and higher correlation than the rivers in the 
lowlands, which are more prone to drying out due to evapotranspiration in the hotter 
summer months. The inspection of elevation data confirmed the role of high altitudes 
in increasing LFS correlation, which is likely related to storage effects due to snow 
accumulation and gradual melting. In this respect, Kuentz et al. (2017) found that 
topography exerts dominant controls over the flow regime in the larger European 
region, controlling the flashiness of flow, and being a particularly important driver for 
other low flow signatures too. In fact, topography may affect the flow regime directly, 
through flow routing, but also indirectly, because of orographic effects in precipitation 
and hydroclimatic processes affected by elevation (e.g. snowmelt and 
evapotranspiration). 

Regarding atmospheric forcing, we find LFS correlation to be negatively 
correlated to mean areal temperature and annual precipitation. The former result may 
be explained considering that increased evapotranspiration (higher temperature) is 
likely to dry out LFS flows while snow coverage (lower temperature) was found to be 
associated with higher LFS correlation. An apparently different conclusion was drawn 
by Szolgayova et al. (2014a) and Gudmundsson et al. (2011), who reported increasing 
persistence with increasing mean temperature postulating that snow-dominated flow 
regimes smooth out interannual fluctuations. Yet, it should be noted that they refer to 
interannual variability while we refer here to seasonal correlation and therefore to 
shorter time scales, which imply a different dynamic of snow accumulation and 
snowmelt; latitude may also play a relevant role in this, since in southern Europe the 
complete ablation of snow can occur more than once during the cold season, and 
sublimation may account for 20–30% of the annual snowfall (Herrero and Polo, 2016), 
decreasing the amount of snowmelt and impacting LFS flows in the summer season. 

Snowmelt mechanisms are found to increase predictive skill during low-flow 
periods in some other studies (Bierkens and van Beek, 2009; Mahanama et al., 2011; 
Dijk et al., 2013). However, in the glacier-dominated regime of western Alpine and 
central Austrian catchments, it is unlikely that this is a relevant driver of higher 
correlation, since low flow occurs in the winter months. Yet the mountainous, glacier-
dominated rivers still show increased LFS correlation compared to rivers in the 
lowlands, which agrees well with other studies that have found less uncertainty in the 
rainfall–runoff modelling in this regime owing to the greater seasonality of the runoff 
process and the decreased impact of rainfall compared to the rainfall-dominated 
regime of the lowlands (e.g Parajka et al., 2016). 

Although the considerable uncertainty of areal precipitation estimates should 
be acknowledged, the contribution of annual precipitation interestingly complements 
the negative effect of increasing specific runoff –which is highly correlated to P 
estimates– on the correlation magnitude for both LFS and HFS. This outcome confirms 
that catchments receiving significant amount of rainfall do show less correlation than 
drier regimes as discussed before. 
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5.9 Conclusions and outlook 

This research investigates the presence of persistence in river flow at the seasonal scale, 
the associated physical drivers and the prospect for employing the related information 
to improve probabilistic prediction of high and low flows by exploring a large sample 
of European rivers. The main findings are summarized below: 
 

 Rivers in Europe show persistent features at the seasonal timescale, manifested 
as correlation between high- and low-flow signatures, i.e. peak flows in HFS 
and average flows in LFS, and average flows in the previous month. Correlation 
for LFS signatures is found to be consistently higher than HFS. 

 Seasonal correlation shows increased spatial variability together with spatial 
clustering. 

 Storage mechanisms, groundwater-dominated basins and slower catchment 
response time, as reflected by large basin areas, a high baseflow index and the 
presence of lakes, amplify seasonal correlation. On the contrary, correlation is 
lower in quickly responding karstic basins, and increased wetness conditions, 
as revealed by high specific runoff. 

 Low mean areal temperature is associated with higher LFS correlation owing 
to the weaker drying-out evapotranspiration force and the mechanism of snow 
accumulation in higher altitudes. Higher mean areal precipitation is associated 
with lower LFS predictability, possibly due to the presence of saturated 
conditions and increased short-term variability in wetter climates. 

 The drivers of LFS predictability are easier to identify and allow for the 
opportunity to construct regression models for possible application to 
ungauged basins (Section 5.6). 

 HFS and LFS correlation may directly apply to the probabilistic prediction of 
‘extremes’, i.e. high and low flows, as increased correlation can be exploited in 
various stochastic models. Such an application was performed in Section 5.7 in 
a data assimilation setting for a river of marked technical relevance. 
 
Regarding the last point, once a significant correlation is identified, it may be 

exploited in other model variants as well, e.g. adding more dependent variables of 
lagged flow and/or coupling with other relevant explanatory variables, such as 
teleconnections or antecedent rainfall, in multivariate prediction schemes. Indeed, the 
presence of river memory at the seasonal scale represents a possible opportunity to 
improve the prediction of water-related natural hazards by reducing uncertainty of 
associated estimates and allowing significant lag time for decision-making and hazard 
prevention. Besides the high relevance for extremes, this type of seasonal 
predictability could also be of interest to water resources management by, for instance, 
exploring the memory properties of a minor HFS.  

The inspection of the physical basis, apart from advancing our understanding 
of the catchment dynamics and enabling predictions in ungauged basins, is highly 
important as it may guide the search for other dependent variables and build 
confidence in the formation of process-based stochastic models (Montanari and 
Koutsoyiannis, 2012). A large sample of indices was herein inspected, yet more data 
are necessary in order to allow for more certain and generalized conclusions 
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worldwide. An important note is the effect of regulation, which, due to lack of 
objective data, is not completely understood. However, the opportunity of exploiting 
correlation is not affected by the presence of regulation, provided that the 
management of river flow does not change in time. 

We conclude that our results point out that river memory provides interesting 
information that holds both theoretical and operational potential to improve the 
understanding and prediction of extremes, support decision-making and increase the 
level of preparedness for water-related natural hazards. 
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6.  PERSISTENCE IN THE OCCURRENCE OF EXTREMES: 
MULTI-SCALE CLUSTERING OF RAINFALL EXTREMES 

This Chapter deals with the propagation of persistence from the parent process to the 
occurrence process of its extremes. Clustering of extremes is critical for hydrological 
design and risk management and challenges the popular assumption of independence 
of extremes. Herein, we seek (a) the links between multi-scale clustering of extremes 
and long-term persistence, i.e. HK dynamics, and (b) the possibility to infer the former 
from the latter. To this aim, we highlight shortcomings of existing clustering indices 
and devise a new probabilistic index, which can reveal clustering, linking it to the 
persistence of the parent process. Its application to long-term rainfall records shows 
that the occurrence process of rainfall extremes may exhibit noteworthy departures 
from independence, which are consistent with the HK dependence structure of the 
parent process. 

6.1 Introduction 

The identification of clusters in series of extreme events is an ongoing research topic 
in geosciences, including hydrology, one that is particularly challenging due to the 
large estimation uncertainties involved when studying series of rare events. 
Regardless of the complications, this question has multiple important implications for 
earth sciences which range from understanding natural variability and process 
dynamics to correctly applying stochastic models for the purposes of inference and 
prediction. This is evident as most relevant hydrological and engineering applications 
require settling this issue at the early stage of the analysis, by either assuming 
independence (e.g. Coles et al., 2001; Kottegoda and Rosso, 2008) or ‘ensuring’ it 
through ‘adequate’ sampling techniques (Ferro and Segers, 2003). Thereby, the 
research focus can be uniquely placed on the more straightforward task of 
characterizing the probability distribution of extremes. For example, typical flood 
guidelines  suggest that successive flood events have at least a certain separation lag 
time in order to be considered independent for the application of models (Lang et al., 
1999).  

In light of concerns for intensification of hydrological extremes due to 
anthropogenic forcing, the investigation of clustering receives additional interest 
(Ntegeka and Willems, 2008; Tye et al., 2018; Merz et al., 2016; Serinaldi and Kilsby, 
2018a), as attribution of trends to an external deterministic forcing presupposes that at 
least the presence of natural inherent variability has been beforehand properly 
accounted for. In this respect, increasing evidence reporting the presence of 
persistence in various hydroclimatic variables (Hurst, 1951b; Koutsoyiannis, 2003; 
Montanari, 2003; Markonis and Koutsoyiannis, 2016; O’Connell et al., 2016; Iliopoulou 
et al., 2018b; Tegos et al., 2017; Dimitriadis, 2017) gives rise to the question of whether 
or not, and to what extent a regular behaviour of the extremes originating from 
persistent processes could be misinterpreted as a result of an anthropogenic cause.  

This study deals with the investigation of clustering behaviour in records of 
maxima with a special focus on long-term daily rainfall observational records. As 
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recent studies reported evidence on the presence of persistence in annual rainfall 
(Iliopoulou et al., 2018b; Tyralis et al., 2018), the question of possible propagation of 
persistence to rainfall extremes naturally arises. Therefore, the research objectives can 
be articulated as follows: a) what are the links between persistence in the parent 
process and clustering of extreme events and can we infer the one from the other? and, 
b) what constitutes an informative characterization for clustering? 

Typically, the assessment of clustering properties of extremes from a timeseries 
implies the selection of a threshold based on which the sampling of ‘extreme’ events 
is performed. Then, clustering is quantified based on the departure of the properties 
of extremes from the ones of a purely random process. This evaluation is performed 
either by considering the series of the inter-arrival times of extremes or equivalently, 
the series of counts of extreme events over counting windows. There is a direct 
correspondence between the two; it is well-known for example, that when the data 
come from a Poisson process, their inter-arrival times are exponentially distributed 
(Papoulis, A., 1991).  

In the hydrological literature, various ad-hoc, sometimes visual and subjective 
approaches are used in order to quantify departures of extremes —typically floods— 
from independence and characterize clustering. The most systematic usually consist 
of some type of ‘window’ analysis, where the timeseries is split into subperiods which 
are examined for presence of perturbations in the statistics of extreme events, often 
corroborated by statistical testing (Marani and Zanetti, 2015b; Ntegeka and Willems, 
2008; Willems, 2013). Avoiding the need for selection of time windows to study, Merz 
et al. (2016) applied a dispersion index, although mostly focused on a combination of 
kernel-based methods coupled with statistical significance tests to identify flood-rich 
and flood-poor periods in Germany. Yet, with a few exceptions only (Eichner et al., 
2011; Serinaldi and Kilsby, 2016b, 2018a), the majority of clustering characterizations 
for hydrological extremes are not studied in relation to the dependence properties of 
the parent process, which is the focal point here.  

To evaluate the clustering properties in a more comprehensive framework, two 
established indices are used in geophysical timeseries analysis, especially for the 
clustering analysis of earthquakes (Telesca et al., 2002) and storms (Vitolo et al., 2009) 
and are based on the ‘counts’ approach: the index of dispersion and the Allan factor. 
Both can be used to formally test the data against the Poissonian assumption 
(Serinaldi, 2013; Serinaldi and Kilsby, 2013) and it is reported that their scaling 
behaviour can also reveal the fractal properties of the underlying process for ideal rate 
fractal processes (Thurner et al., 1997). The latter is related to the asymptotic 
dependence property for large time horizons, long-term dependence, quantified by 
the Hurst parameter. For revealing the HK dynamics, a number of methods examining 
the original series also exist with the climacogram (Koutsoyiannis, 2010), i.e. the 
variance of the aggregated process over scales, shown to be the most robust 
(Dimitriadis and Koutsoyiannis, 2015).  

We briefly review the above methods based on their performance on revealing 
the clustering of extremes sampled from synthetic timeseries generated in order to 
exhibit various degrees of persistence and different marginal distributions. We assess 
their degree of generality and showcase their shortcomings when extremes arrive from 
complex processes. We show how the interplay of persistence and moments of order 
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higher than 2 (skewness, kurtosis) can obscure the identification of the latter from 
extremes. Accordingly, we propose an alternative characterization of clustering based 
on a probabilistic index with distinctive features and test the proposed method on 
synthetic and real-world rainfall data. We find that the index exhibits some 
advantageous characteristics, namely it is capable of quantifying clustering by 
probabilistic means, linking it to the scaling behaviour of the parent process for a range 
of distributional and dependence properties. It also enables modelling the 
probabilities of threshold exceedances across multiple timescales, which can be used 
as a simulation tool, that being an important advance over existing methods that have 
mainly an inferential character. 

6.2 Dataset 

An extended dataset comprising the 60 longest available daily rainfall records is 
investigated in terms of its extreme properties. The data used in this study are collected 
from global datasets, i.e. Global  Historical  Climatology  Network Daily  database  
(Menne et al., 2012) and European  Climate  Assessment and Dataset (Klein Tank et 
al., 2002) and third parties acknowledged in the acknowledgments sections. They 
present an update of the previous dataset explored in Iliopoulou et al. (2018a) of long 
rainfall records surpassing 150 years of daily values. A detailed description of the 
dataset is provided in Appendix A.1. The geographic location of the rain gauges is 
shown in Figure 6.1. The length of the timeseries enables the investigation of clustering 
on extended time horizons from daily to yearly timescales. 
 

 
 
Figure 6.1 Map of the 60 stations with longest records used in the analysis. 
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6.3 Methodological framework 

 Definition of notation and mathematical formulation 

Let 𝑥𝑖 be a stationary stochastic process in discrete time 𝑖, i.e. a collection of random 
variables 𝑥𝑖, and 𝑥: = {𝑥1, … 𝑥𝑛} a single realization (observation) of the latter, i.e. a 

timeseries. Now for 𝑢 being a threshold, 𝑢 ϵ ℝ, we define the process of peaks over the 
threshold (POT) consisting of events surpassing the threshold 𝑢, i.e, 

𝑦𝑖 ≔ {
𝑥𝑖, 𝑥𝑖 > 𝑢
0, 𝑥𝑖 ≤ 𝑢 (39) 

Let also 𝑁(𝑡) be a counting process of POT occurrences in time which is an increasing 

function of time 𝑡. We then define the process 𝑧𝑞
(𝑘)
: =  𝑁(𝑞𝑘)–𝑁((𝑞 –  1)𝑘 as the number 

of occurrences of POT at timescale 𝑘 and at discrete time 𝑞 = 1, . . , 𝑛/𝑘. 

We also define by 𝑚𝑞
(𝑘)
≔ max(𝑞−1)𝑘≤𝑗≤𝑞𝑘{𝑥𝑗} the block maxima series, which is 

formed by extracting the maximum order statistic of the observations divided in non-
overlapping equally sized periods of length (timescale) 𝑘. In the following, we call the 
timescale 𝑘 as timescale of filtering of the maxima. Figure 6.2 visualizes all the above 
at two temporal scales for a realization of a random process with Hurst parameter 
𝐻=0.8 and the first four moments following a generalized Pareto distribution. 
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Figure 6.2 Explanatory graph of mathematical formulation. (a) Parent timeseries, (b) POT 
series, (c) temporal distribution of counts of POT at basic scale 𝒌=1, (d) temporal distribution 
of counts of POT occurrences at scale 𝒌=10 and (e) block maxima series at scale 𝒌=10. 

 Generation of benchmark synthetic timeseries  

To evaluate the ability of clustering indices to discern the dependence characteristics 
of the parent (extreme generating) process, we first produce a set of synthetic 
timeseries with different dependence properties and marginal distributions. For the 
generation scheme, we employ a simulation procedure proposed by Dimitriadis and 
Koutsoyiannis (2018) which is capable of generating timeseries explicitly reproducing 
chosen theoretical moments up to any order together with any (long-term) persistence 
structure, i.e. the HK dynamics. We focus here only on processes exhibiting persistence 
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as these are the ones assumed consistent with the natural phenomena studied and also 
known to produce long-term clustering. For the marginal distribution, we generate 
timeseries preserving up to the 4th order moments following the normal, generalized 
Pareto and gamma distributions. The higher-order moments of the generated 
timeseries follow the entropic distribution. Because the generation scheme preserves 
up to a specific number of moments from a distribution, the final shape may be slightly 
distorted with respect to the theoretical one, and therefore, we denote the generated 
series as type-gamma and type-Pareto, instead of gamma and generalized Pareto, 
respectively. For a detailed explanation of the generation scheme, the reader is referred 
to the Dimitriadis and Koutsoyiannis (2018). We focus only on the first four moments 
as higher-order classical moments cannot be reliably estimated from ordinary sample 
sizes (Lombardo et al., 2014).  

The properties of these timeseries are chosen in order to cover a range of 
statistical and stochastic characteristics in terms of skewness, kurtosis and 𝐻 
parameter, and therefore, provide a good benchmark sample for testing the indices in 
typical but also more ‘extreme’ cases. Their properties are summarized in Table 6.1.We 
note that these timeseries are meant as theoretical case studies to test the 
appropriateness of the indices and are not to be considered as synthetic series of daily 
rainfall, which are the real-world data in question. However, since only the sequence 
of counts of extremes is of interest, and not their actual values, it is not necessary to 
strictly preserve other properties of daily rainfall, i.e. intermittency, and therefore in 
this sense comparison to the synthetic series is allowed. A sample of the timeseries is 
plotted in Figure 6.3. 

Additionally to the above benchmark timeseries, we generate ensembles of 
shorter timeseries having lengths of 150 × 365 values, i.e. equal to the minimum record 
length of the rainfall data, and preserving the same moments as the benchmark 
timeseries. These series are produced using fewer weights for the SMA scheme, up to 
2000, but applying proper weight adjustment scheme (Koutsoyiannis, 2016). They 
reproduce two dependence structures, white noise, and HK with 𝐻 parameter 0.7, 
considered a representative value for hydrological processes. The purpose of the 
second benchmark sample is to test the methods in ‘realistic’ record lengths and to 
evaluate estimation uncertainty by Monte Carlo simulations that require significantly 
less computational effort compared to the first benchmark sample, which is generated 
using 106 weights, i.e. equal to the series length.  
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Table 6.1 Distributional properties of the benchmark samples used in the experiments with 
length 106 and 𝑯  values in the range 0.5‒0.99. 

Distribution  

type 

Parameters 
Mean Variance Skewness Kurtosis 

Shape Scale Location 

Normal - 2.6 1.25 1.25 2.6 0 3 

Gamma  0.1 5.1 - 0.51 2.6 6.325 63 

Gamma  0.01  16.125 - 0.16 2.6 20 603 

Pareto 0.1 1 0 1.11 1.54 2.81 17.83 

Pareto 0.2 1 0 1.25 2.6 4.65 73.8 

 

 
Figure 6.3 Visualization of three timeseries with 𝑯=0.8 and different marginal distributions 
generated from the 4-moment SMA scheme (Dimitriadis and Koutsoyiannis, 2018). The 
legends report the mean, standard deviation, coefficient of skewness and coefficient of 
kurtosis of each distribution. 

 

 Second-order characterization of extremes  

The Hurst parameter is a well-established measure of persistence. It can be estimated 
from the slope of the double logarithmic plot of the standard deviation of the averaged 
process versus the averaging timescale, i.e. the climacogram (Koutsoyiannis, 2010; see 
Section 2.2.1). To test how the estimator is impacted when extremes are used instead 
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of the original values, we compute the 𝐻 parameter for extremes extracted from 
windows (scales) of length 1 to 𝑁/10 where 𝑁 is the timeseries length. An example is 
provided in Figure 6.4. The first 𝐻 value (scale = 1) is the value for the original data 
(the parent timeseries) and as the scale increases progressively the time series is 
filtered to show only the most ‘extreme’ data. For instance, if the basic timescale is 
daily, the estimated 𝐻 parameter at timescale 𝑘=365 corresponds to the 𝐻 parameter 
of the annual maxima. To reduce computational time, we perform estimation every 50 
scales. The results are shown in Figure 6.4 are for the normal and the other benchmark 
timeseries. The impact of skewness and kurtosis on the estimator is striking as in the 
case of non-Gaussian timeseries, the 𝐻 parameter quickly decays to 0.5, as if there was 
independence. On the contrary, for the normal timeseries it yields almost a stable 
value. To verify that this is not due to the impact of standard deviation bias induced 
by dependence, we performed estimation for selected timescales with the unbiased 
with respect to standard deviation, LSSV estimator (Koutsoyiannis, 2003; Tyralis and 
Koutsoyiannis, 2011b) as well. We also repeat the estimation for the shorter timeseries 
and plot the average values at each scale obtained from the Monte Carlo experiments. 
The same conclusion can be drawn. The climacogram estimator is severely biased 
downward for extremes originating from non-Gaussian processes and falsely 
indicates independence after a few scales of filtering. Therefore, we do not consider 
the climacogram estimator for the rest of the analysis on empirical data. Since it has 
been shown that the climacogram is closely related to other second-order 
characterizations, i.e. spectrum and autocovariance (Dimitriadis and Koutsoyiannis, 
2015), we also expect similar results from the latter. Furthermore, Barunik and 
Kristoufek (2010) have shown that even for the underlying process (the parent), the 
sampling properties of the Hurst parameter estimation by some other approaches, i.e. 
the multifractal detrended fluctuation analysis and the detrending moving average, 
are also greatly impacted by heavy tails. 
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Figure 6.4 𝑯  parameters estimated from block maxima series at increasing scale of filtering for 
(a) benchmark series of length 106 from HK models with 𝑯 =0.8 following normal and type-
Pareto distributions and (b) average 𝑯  values from 103 Monte Carlo simulations for HK 
models with 𝑯=0.7 and three different marginal distributions, type-gamma, type-Pareto and 
normal. 

 

 Clustering indices: the dispersion index 

A well-known measure of clustering of events is the index of dispersion of counts, also 
known as the Fano factor (e.g. Thurner et al., 1997), which is defined as the ratio of the 
variance of the counts of events versus their mean number at a specific timescale 𝑘, i.e.: 

𝑑(𝑘) =
𝐸[𝑧𝑘

2] − 𝐸[𝑧𝑘]
2

𝐸[𝑧𝑘]
 (40) 

For a Poisson point process, the dispersion index is unity for all timescales. According 
to the literature (Thurner et al., 1997) the dispersion index exhibits power-law scaling 
behaviour which is linked to the underlying persistence structure. Although the exact 
form of the equation provided could not be theoretically validated per se at small 
scales, we have confirmed the power-law scaling at large scales, which by revising the 
original equation (Thurner et al., 1997), can be expressed as: 

𝑑(𝑘) ≈ 𝑐𝑘2𝐻−1, 𝑘 ≥ 𝑘0 (41) 

where 𝑐 a real parameter and 𝑘0 denotes the scaling onset timescale (a minimum time 
scale, for which the above scaling law applies). It follows that the exponent 2𝐻 – 1 can 
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be obtained as the slope of the double logarithmic plot of the dispersion index versus 
the timescale for 𝑘 ≥ 𝑘0 and therefore the Hurst parameter 𝐻, ranging in the (0,1) 
interval can be estimated accordingly. An example is provided in Figure 6.5. 

We test the dispersion index against samples of Gaussian and non-Gaussian 
timeseries exhibiting HK dynamics. Namely, we use (a) the two long benchmark series 
(𝑁=106), the normal and the type-Pareto, both exhibiting 𝐻 = 0.8, and (b) the ensemble 
of simulations of shorter length (equal to daily values for 150 years) for three different 
distributions, normal, type-gamma with shape parameter 𝛼=0.01 and type-Pareto with 
𝛼=0.2, all exhibiting 𝐻 = 0.7. For the second sample, we provide the average value 
estimated from the 103 Monte Carlo simulations of the dispersion index at each scale. 
Results are shown in Figure 6.5.  

At first, it is worth noting that the onset scale, from which scaling arises, 
appears to be smaller for the long compared to the shorter timeseries. The related 𝐻 
parameters are estimated from equation (41) for onset scale 𝑘0=500, for both cases, in 
order to ensure a more robust estimate (yet fitted lines are extrapolated backwards to 
scale 365). It can be seen that the index yields satisfactory approximations of 𝐻 only 
for the normal distribution and the long benchmark series (estimated 𝐻 = 0.77, 
theoretical 𝐻 = 0.8), whereas results are biased downward for the non-Gaussian one 
(estimated 𝐻 = 0.67, theoretical 𝐻 = 0.8). In the case of the shorter record length, the 
bias severely increases as the index yields 𝐻 parameters falsely denoting 
independence (average 𝐻 = 0.54). There is also a considerable degree of ambiguity 
regarding the selection of the onset time, a task that requires visual examination and 
subjective judgement. Due to the above reasons, and namely, to the observed 
underestimation of persistence for common record lengths, we do not consider the 
index for the rest of the analysis. A more sophisticated use of the dispersion index as 
well as bias correction methods may be possible but remain out of the scope of the 
paper. For more information on a related index, the Allan factor, and its properties for 
testing independence the reader is referred to Serinaldi and Kilsby (2013). 
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Figure 6.5 Index of dispersion of POT occurrences versus scale (double logarithmic axes) and 
estimated 𝑯  parameters for scales>500 for (a) benchmark series of length 106 from HK models 
with theoretical 𝑯=0.8 following normal and type-Pareto distributions and (b) average values 
from 103 Monte Carlo simulations for HK models with theoretical 𝑯=0.7 and three different 
marginal distributions, type-gamma, type-Pareto and normal 

 A new probabilistic index to characterize multi-scale clustering behaviour 

The above review highlights the complexity involved in identifying clustering of 
extremes and the need to devise an informative and objective characterization able to 
reveal persistence even for non-Gaussian series, which are usually the ones of interest 
in geophysical studies. To address this, we formulate a straightforward and 
assumption-free representation of clustering by estimating the probability of 
occurrence of extreme events across multiple scales. The proposed probabilistic index 
is defined as follows.  

We set a threshold to the original timeseries and select the data surpassing the 
threshold as extreme events, hence, forming the Peaks Over Threshold series, 𝑦𝑖. 

Accordingly, we form the series of counts of the POT events for each scale, 𝑧(𝑘), as 
explained in Section 6.1 (see also Fig.6.2). We additionally, define the binary process 

𝑟𝑞
(𝑘) to denote the event of exceedance of the threshold at each time interval 𝑞 of size 𝑘, 

𝑞 = 1, …,⌊𝑛/𝑘 ⌋: 

𝑟𝑞
(𝑘)
≔

{ 
 
  
 
 
1, 𝑧𝑞

(𝑘)
> 0

0, 𝑧𝑞
(𝑘)
= 0

 (42) 
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Then, the probability of exceedance of the threshold for timescale 𝑘 is obtained as the 
frequency of exceedances estimated from all ⌊𝑛/𝑘⌋ intervals: 

�̅�(𝑘) = 
∑ 𝑟𝑞

(𝑘)⌊𝑛/𝑘⌋
1

⌊𝑛/𝑘⌋
 (43) 

The latter is the exceedance probability (of the threshold) versus the scale (EPvS) and 

its complement,  𝑝(𝑘) = 1 − �̅�(𝑘) is the non-exceedance probability versus scale (NEPvS). 
Evidently, at scale 𝑘 = 1 the EPvS is an estimate of the probability of the threshold 

value, �̅�(1) = 𝐹(𝑢), and the NEPvs is 𝑝(1) = 1 − 𝐹(𝑢). For example, in the previous 

applications, the threshold value was selected so that 𝐹(𝑢) = 0.05. For a purely random 
process, the NEPvS is obtained as: 

𝑝(𝑘) = 𝑝𝑘 (44) 

where 𝑝 is the probability of non-exceedance at the basic scale 𝑘 = 1 and equals 1 – 𝐹(𝑢). 
Therefore, for white noise processes, the probability of occurrence of extremes across 
scales is fully determined by the choice of the threshold (controlling its probability at 
the basic scale) and the scale. For HK processes though, a different behaviour is 
revealed, with the probabilities of non-exceedance of the threshold being larger than 
those obtained under independence. This property of HK is discussed and 
investigated extensively in the following Section 6.5.  

To model the NEPvS, we revisit a probabilistic model proposed by 
Koutsoyiannis (2006) to describe the clustering behaviour of dry spells in rainfall 
timeseries. The model derives from an entropy-maximization framework and was 
originally proposed to describe the probability dry across different timescales. The 
latter, according to our definition, corresponds to a threshold taking the value of 0. 
Therefore, in a similar manner to the probability dry, we obtain the probability of non-
exceedance of the threshold at scale 𝑘 as: 

𝑝(𝑘) = 𝑝
(1+(𝜉

−1
𝜂⁄ −1)(𝑘−1))𝜂

, 𝑝 = 1 − 𝐹(𝑢) (45) 

where 𝑢 is the threshold parameter and 𝜂, 𝜉 ϵ (0, 1). For 𝜂 = 1 and 𝜉 = 0.5, equation (45) 
describes the white noise process. To allow backward extendibility to scale 𝑘 = 0, the 
positivity of the base should be ensured and therefore the following inequality should 
hold: 𝜉 ≥ 1 2𝜂⁄ . We apply both the index and the proposed model to the synthetic series 
as well as to the rainfall data and assess their performance in characterizing clustering. 
We evaluate the index’s ability to reveal dependence by examining its performance for 
all the benchmark timeseries and we test its robustness by varying all the involved 
factors, i.e. sample size, marginal distribution’s properties and threshold value.  
 

6.4 Linking multi-scale clustering to persistence  

We estimate the NEPvS index for the synthetic benchmark timeseries setting the 
threshold of extremes to 5%. The benchmark series have length 106 and therefore for a 
5% threshold we obtain 50 000 extreme values (POT events). We investigate the 
temporal scales 1 to 1000, since the index’s applicability to larger scales is to some 
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extent also conditioned by the available sample size (this feature is discussed in Section 
6.5.1).  

Results from the NEPvS application are demonstrated on a double logarithmic 
plot of minus natural logarithm of the non-exceedance probability of the threshold 
versus the scale, which for most cases yields a straight line (Fig. 6.6). Some interesting 
insights can be derived. As persistence increases, the probability of no occurrences of 
extremes in a scale progressively increases (equivalently, its minus logarithm —shown 
in the plots— decreases), which is true for all the examined distribution types. As 
already mentioned, there is a maximum temporal scale until which the index is 
informative. The latter, which we will call the ‘max-discernible’ scale, is the scale for 
which the estimated (from the simulated series) non-exceedance probability equals 
zero as at least one extreme event is encountered in every one of the ⌊𝑛/𝑘max⌋ intervals. 
In this case, the minus logarithm of the NEPvS tends to infinity and is not shown on 
the plots. For a given number of extremes and thus, sample size, the max-discernible 
scale depends on the 𝐻 parameter; the larger the persistence, the more timescales are 
required in order to ‘encounter’ the extremes. This can be explained by considering 
that another manifestation of clustering of extremes is the existence of prolonged 
periods of time with no extreme occurrences.  

It is worth noticing that the marginal properties are irrelevant for the NEPvS of 
the white noise process. The latter is also proved in Fig. 6.6 as the lines of all the white 
noise timeseries with different marginals are completely identical, for which there is a 
theoretical justification. Likewise, for 𝐻 parameters no far from 0.5 the different non-
Gaussian distributions (Fig. 6.6a) yield negligible differences on the NEPvS plots. 
However, notable differences appear for 𝐻 > 0.7. Specifically, the non-Gaussian 
NEPvS plots evidently differ from the NEPvS of the normal distribution, especially for 
large 𝐻 values, with the latter showing more apparent clustering behaviour.  

The NEPvS model, i.e. equation (45), fits perfectly all the range of non-Gaussian 
distributions, with a slight exception for the normal timeseries at small scales (𝑘 < 50) 
and very large 𝐻 parameter (𝐻 = 0.9).  



131 
 

 
Figure 6.6 Minus natural logarithm of non-exceedance probability versus scale (NEPvS) index 
on double logarithmic axes along with the fit of the proposed model (Eq. 2) for (a) benchmark 
non-Gaussian timeseries (type-gamma and type-Pareto) and (b) benchmark normal 
timeseries, for a range of 𝑯  parameters. 

Having established that a representation in terms of the minus logarithm of 
probability vs. timescale, like that of Fig. 6.6, reflects the presence of persistence for a 
range of distribution types, we aim to frame its statistical behaviour for different 
configurations of extreme value analysis. For this purpose, the statistical behaviour of 
this graph is investigated by means of Monte Carlo simulation starting from the white 
noise case, which will serve as a benchmark model for identifying dependence from 
the rainfall data. 
 

 Sample size impact  

We generate two ensembles of 103 white noise timeseries with sample sizes 150 years 
(150×365 daily values) and 300 years respectively, thus covering all the range of 
observed record lengths of our data set, and we produce the NEPvS plots for both 
lengths, shown in Figure 6.7. As expected, the larger sample size produces narrower 
Monte Carlo Prediction Limits (MCPL), yet the difference is almost negligible. The fact 
that sample sizes of this order of magnitude yield only minimal differences in the 
MCPL gives confidence in attributing the differences between the models that are 
examined next to other factors instead. The essential change however, between the two 
sample sizes is the propagation of the max-discernible scale to a larger timescale for 
the longer timeseries (Fig. 6.7). The latter is due to the fact that ‘extremes’ are 
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distributed in longer time periods for the longer series, and therefore, the longer the 
series the more timescales may be inspected for clustering.  

 
Figure 6.7 Minus natural logarithm of non-exceedance probability versus scale (NEPvS) index 
on double logarithmic axes for white noise timeseries and two sample lengths, 150×365 and 
300×365. 

 

 Threshold impact 

The selection of the threshold is the most important choice when analysing records of 
maxima. It is generally acknowledged that choosing ‘high’ thresholds for the extremes 
results to observations that are located far in the right tail of the distribution, and 
therefore they are of interest, but simultaneously, increases uncertainty as the sampled 
observations are fewer. The exact opposite is true for lower thresholds. Therefore, one 
has to seek an optimal threshold compromising this trade-off. 
  We first evaluate the choice of the threshold by examining four different 
thresholds associated with exceedance probabilities 0.5%, 1%, 5% and 10% 
respectively, applied for the benchmark case of independence, as seen in Figure 6.8. It 
is interesting to note that the main effect of the threshold for the IID case is the 
opportunity to apply the index to larger scales if the threshold is increased (smaller 
probability of exceedance). This is due to the fact that for the same record length, fewer 
extreme events are likely to be more separated in time and therefore, require longer 
timescales to be grouped. 
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Figure 6.8 Minus natural logarithm of non-exceedance probability versus scale (NEPvS) index 
on double logarithmic axes for white noise timeseries (length 150×365) and variations of the 
sampling threshold of extremes 

We also inspect the impact of the threshold in relation to the 𝐻 parameter of the 
parent process for three distribution types from the benchmark series, type-Pareto 
with 𝑎 = 0.2, type-gamma with 𝑎 = 0.01 and the normal. In this case, we evaluate three 
different thresholds, 5%, 10% and 20%. Although the latter threshold would be 
considered ‘low’ for most extreme value analyses, here it is of interest, as by varying 
the threshold we aim to investigate the limits of identifiability of the HK behaviour, 
and not to focus on the exact shape of the distribution tail. To this aim, we fit the 
probabilistic model introduced in equation (45) to each timeseries and evaluate the 
ability to reveal persistence through the identifiability of the fitted parameters, 𝜂 and 
𝜉. In Fig. 6.9, the impact of the threshold is striking within the same distribution with 
lower threshold values (e.g. 20%) increasing identifiability of the parameters more 
than 10%. Additionally, it can be seen that the η parameter is more sensitive to the 
normal distribution, while on the contrary the ξ parameter is sensitive to increasing 
skewness and kurtosis.  

By performing the above experiments, we have demonstrated the twofold effect 
of the threshold: ‘lower’ thresholds (higher probability of exceedance) enable better 
identifiability of persistence, yet they limit application of the index to less scales, and 
vice versa. 
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Figure 6.9 (a) Parameter 𝜼 variation for increasing 𝑯  parameter and different combinations of 
the sampling threshold and distribution type. (b) Parameter 𝝃  variation for increasing 𝑯  
parameter and different combinations of the sampling threshold and distribution type. 

 Tail impact 

At this stage, for the same threshold (5%), sample size (150 years) and 𝐻 (0.7) 
parameter, we estimate the NEPvS index for the shorter benchmark series 
characterized by different marginal properties, and thus distribution tails, so as to 
focus solely on the impact of skewness and kurtosis on the index. Results are plotted 
in Figure 6.10. Two important conclusions can be drawn: (a) clustering of extremes 
and its identifiability is, in this case too, greater for the normal distribution (Fig.6.10a) 
and (b) for a specified non-Gaussian distribution, clustering is greater and also more 
visible for increasing skewness and kurtosis (Fig. 6.10b). The latter is a significant 
advance as the reviewed tools in section 6.3 showed very high downward bias for 
increasing higher order moments of the non-Gaussian distributions and practically no 
difference among them for the record lengths available (150 years). We also provide 
the plots of the fitting of 𝜂 and 𝜉 parameters computed for the long benchmark series 
with 𝐻 parameters ranging in (0.5, 0.99) as well as their comparison in Fig.6.11 and 
Appendix B.2. All three plots confirm the above observations. 
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Figure 6.10 Minus natural logarithm of non-exceedance probability versus scale (NEPvS) 
index on double logarithmic axes along with 95% MCPL for (a) 𝑯=0.7 with type-gamma 
(𝜶=0.1) and type-Pareto (𝜶=0.2), and white noise and (b) 𝑯  = 0.7 for two type-gamma 
distributions with 𝜶=0.1 and 𝜶=0.01. 

 

 
Figure 6.11 Plots of 𝜼 and 𝝃  parameters versus the 𝑯  parameter for the type-Pareto with 𝜶=0.1 
and 𝜶=0.2, type-gamma with 𝜶=0.1 and 𝜶=0.01 and the normal. 
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6.5 Clustering in real world rainfall extremes I: identifying clustering 
mechanisms in the parent process 

Rainfall is a complex geophysical process for the stochastic modelling of which it is 
necessary to take into account its mixed-type marginal distribution (due to 
intermittency), the presence of cyclo-stationarity (seasonality and also diurnal cycle 
for sub-daily scales) as well as its scale dependence structure (Markonis and 
Koutsoyiannis, 2016). It is expected that all these mechanisms affect the clustering 
process of extremes.  

In the following, we investigate their impact separately, although we note that 
the interplay among them may not necessarily allow the robust disentanglement of 
their effects at the different scales.  

 

 Influence of probability dry 

The most distinctive feature of the rainfall process is its highly intermittent nature at 
fine temporal scales (Koutsoyiannis, 2006). To statistically account for intermittency, 
the marginal distribution is formed as a mixed (discrete-continuous) type one, having 
a probability mass function concentrated at 0 and a probability distribution function 
to describe the nonzero values. Therefore, if 𝑝d is the probability of no-rain, termed 
probability dry, then the cumulative distribution function for the whole rainfall record 
𝐹𝑥(𝑥) can be defined in terms of the conditional distribution of wet days 𝐹𝑥|𝑥>0(𝑥) as: 

𝐹𝑥(𝑥) = (1 − 𝑝𝑑)𝐹𝑥|𝑥>0(𝑥) + 𝑝𝑑 ,   𝑥 ≥ 0 (46) 

Since the threshold of extremes 𝑢 is obtained as the quantile with a chosen probability 
of exceedance, it is evident that in the case of mixed-type processes, as in daily rainfall, 
the same threshold value will have a different probability of exceedance for the whole 
process and for the wet process (the nonzero rainfall). By simple probabilistic 
statements, it follows that the two exceedance probabilities of the threshold 𝑢 for the 
compound and the wet process, 𝑝c(𝑢) and 𝑝w(𝑢), respectively, are related as: 

𝑝
𝑤
(𝑢) =

𝑝
𝑐
(𝑢)

1 − 𝑝
𝑑

 (47) 

where 𝑝d  =  1 – 𝑝c(0) is the probability dry. Therefore, the exceedance probability for 
the same threshold is higher for the wet series, which means that depending on the 
probability dry, the values surpassing the same threshold may not necessarily belong 
to the right tail of the wet series as ‘extremes’. For instance, a threshold 𝑢 with 
associated exceedance probability 5% for the whole rainfall record with probability 
dry equal to 80% yields exceedance probability 25% for the wet series, and therefore 
the resulting series of POT events would also include lower rainfall values. While this 
is not a limitation of the methodology, it should be properly accounted for in order to 
(a) ensure that the resulting extremes are indeed towards the right end of the wet series 
tail and (b) to make meaningful comparisons among stations with different values of 
the probability dry. For this reason, we compute 𝑝d  for all stations in order to make 
sure that the resulting extremes are surpassing relevant thresholds. As previously 
shown, the latter is important since the threshold is the key control on the results.  
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 Influence of seasonality 

Seasonality may be in cases an important attribute of extreme rainfall impacting the 
central tendency of rainfall maxima belonging to different seasons and inducing 
temporal clustering in the series of extremes (Iliopoulou et al. 2018a). Since our aim is 
to focus on the impact of HK dynamics on clustering of extremes, we apply 
deseasonalization schemes to the original series in order to smooth out the seasonal 
components and reduce associated clustering. By doing so, we may perform Monte 
Carlo simulations with one marginal distribution per station for the validation of the 
chosen models. We note that a perfect separation of the impact of seasonality from HK 
dynamics may not always be possible, as in stations exhibiting strong seasonality we 
anticipate interplay between the two.  

We consider two different methods for removing seasonality. The first one, 
termed M1, is a simple standardization scheme performed on a monthly basis. The 
daily values 𝑥𝑖 belonging to each month 𝑚 = 1,..,12 are transformed by subtracting the 
mean and dividing by the standard deviation of all daily values belonging to the same 
month, as follows: 𝑦𝑖 = (𝑥𝑖 − 𝜇𝑚) 𝜎𝑚⁄ ,   𝑖 ∈ 𝑚. This method effectively removes 

seasonality from the first two moments of the data. In order to deal with higher order 
moments, we apply a second deseasonalization scheme denoted M2, which is based 
on the Normal Quantile Transformation (NQT) also applied on a monthly basis. The 
daily series for each month 𝑚 are transformed to standard Gaussian quantiles through 

the inverse function of the standard Gaussian cumulative distribution, 𝑦𝑖 = 𝐺𝑚
—1(𝐹(𝑥)) 

with their cumulative probability 𝐹(𝑥) estimated via their Weibull plotting position. 
Consequently, after the transformation, all daily values of each month follow the 
standard normal distribution. We found that the two schemes show minimal 
differences in the index’s behaviour, with the most apparent ones belonging to the 
stations of Athens, Palermo and Lisbon.  

In Figure 6.12, we plot three characteristic cases of the NEPvS behaviours found 
in the data: a) in a typical station with minimal to no seasonality (Oxford), extremes 
are not affected by deseasonalization schemes (Fig.6.12a), b) in a station with 
prominent seasonality (Athens, Fig.6.12b), a stronger deseasonalization scheme (M2) 
maybe required, and c) in an intermediate case (Helsinki, Fig.6.12c), the seasonal 
component in extremes is effectively dealt by with the simpler scheme (M1). The 
majority of the stations (40) belong to the third category, while for 17 stations 
accounting for seasonality yields minimal to no difference. These findings are 
consistent in general with the analysis of Iliopoulou et al. (2018a) on the presence of 
seasonality in extreme rainfall. 
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Figure 6.12 Minus natural logarithm of non-exceedance probability versus scale (NEPvS) 
index on double logarithmic axes for white noise timeseries and seasonal and deseasonalized 
series by methods 1 (M1) and 2 (M2) for the stations of Oxford (a), Athens (b) and Helsinki (c). 

 

 Rainfall scaling regimes 

In order to highlight the motivation behind selecting the daily rainfall as a case study 
for the method and establish the ‘target’ persistence structure that we aim to reveal, 
we estimate the persistent properties of the previously deseasonalized daily rainfall 
series. To this aim, we compute the 𝐻 parameter through the climacogram as 
introduced in Section 2.2.1. All the empirical climacograms are plotted in Figure 6.13. 
The estimated average persistence (Table 6.2) is close but even larger than the global 
estimate (𝐻≈0.6) of Iliopoulou et al. (2018b) concerning annual rainfall. Remarkably, 
in many stations we observe a change of the scaling regime, namely an intensification 
of persistence, at scales above yearly. A similar result was observed in the work of 
Markonis and Koutsoyiannis (2016) for rainfall records at the over-decadal scale. This 
behaviour is also evident in the Table 6.2 reporting the estimated 𝐻 parameters for the 
daily and above-yearly scales.  
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Figure 6.13 Empirical climacograms of the 60 daily rainfall series used in the analysis along 
with theoretical lines for 𝑯=0.5, 0.6, 0.7, 0.8. 

Table 6.2 Summary statistics (first and third quantiles, Q1 and Q3, mean and standard 
deviation, St.Dev.) of the properties of the rainfall dataset. Mean, Variance, Skewness and 
Kurtosis are estimated for the wet record. 

Statistic Mean Variance Skewness Kurtosis Prob. 

Dry 

Hdaily Hannual Years Missing % 

Q1 3.68 
 

24.85 
 

2.9 
 

17.28 
 

0.47 
 

0.56 

 

0.55 

 

153 

 

0.75 

 

Mean 4.98 
 

64.85 
 

3.39 
 

24.03 
 

0.55 
 

0.63 

 

0.67 

 

169.25 

 

2.62 

 

Q3 5.91 
 

64.64 
 

3.54 
 

25.85 
 

0.61 
 

0.7 

 

0.77 

 

173 

 

1.31 

 

St.Dev. 2.27 
 

94.15 
 

0.72 
 

10.94 
 

0.11 
 

0.09 

 

0.13 

 

24.66 

 

5.11 

 

 

6.6 Clustering in real world rainfall extremes II: HK dynamics? 

 Analysis of daily rainfall extremes in the Netherlands 

It should be evident by now that the clustering dynamics of extremes depend not only 
on the persistence properties of the parent process but on its higher-order moments as 
well. The identifiability of clustering also varies depending on the choice of the 
threshold, which may need to be modified for mixed type processes, as discussed 
before. In our case, this means that depending on the probability dry of each station 
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the chosen threshold will correspond to a different one for the ‘wet’ record of each 
station. Therefore, a blind comparison of different stations with the obtained MCPL 
for a given threshold could be uninformative depending on the variability of 
probability dry in the sample of the stations. In order to apply the methodology 
effectively in as many stations as possible we assume a climatically homogenous 
regions in which the rainfall timeseries can be regarded as realizations of a single 
process. For this purpose, we select the region of the Netherlands in which 28 out of 
the 60 stations are located and preliminary analysis showed small variability of the 
summary statistics. We estimate the average values of the first four moments of the 
deseasonalized records for all 28 stations and we also estimate the 𝐻 parameter 
resulting from the analysis of the daily values. We form an ensemble of 103 Monte 
Carlo simulations for the average number of years of the sample (160 years) with an 
HK-model preserving the first four moments and subsequently, compare its clustering 
behaviour with the one observed from the sample of the stations. We also repeat the 
Monte Carlo simulation for a white-noise process. We present both analyses in Fig. 
6.14. It is evident that the assumed model is consistent with the majority of the 
observed records, with only a few stations located at the south-west of the Netherlands 
exhibiting even stronger clustering outside of the 95% region of the assumed HK 
model. As expected, as the threshold increases evidence of persistence is progressively 
‘lost’ and the probabilistic behaviour of POT occurrences resembles a purely random 
one.  

 
Figure 6.14 Minus natural logarithm of non-exceedance probability versus scale (NEPvS) 
index on double logarithmic axes for deseasonalized series for the 28 rainfall records in the 
Netherlands along with 95% MCPL of the fitted model with 𝑯=0.7, for four different 
thresholds: (a) 10%, (b) 5%, (c) 1% and (d) 0.5%. 
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 Case study of daily rainfall in Stykkisholmur  

As a second case study we select a single station, located in Stykkisholmur (Iceland), 
which is the station with the most peculiar behaviour among all those we analysed. 
We repeat the Monte Carlo analysis for both a white noise process and a HK process 
preserving the first four moments and the 𝐻 (= 0.65) parameter of the record. Results 
are shown in Figure 6.15. It is interesting to note that clustering in this case appears 
stronger than predicted by the HK model. The Monte Carlo experiment is repeated for 
𝐻 = 0.7 to explore the possible impact of estimation uncertainty due to the standard 
deviation bias in finite sample sizes (Koutsoyiannis and Montanari, 2007). In this case, 
the MCPL approach the observed data for the lower threshold, yet the impact is lower 
for the higher threshold. A similar behaviour was found in the station of Uppsala. We 
hypothesize that this ‘discrepancy’ between the persistence found in the parent 
process and the stronger one implied by the extremes might be explained by the 
impact of large-scale atmospheric circulation patterns (as the NAO) on rainfall 
extremes, which might need even longer record lengths in order to be effectively 
summarized by the second-order characterization provided by the 𝐻 parameter.  
 

 

Figure 6.15 Minus natural logarithm of non-exceedance probability versus scale (NEPvS) 
index on double logarithmic axes for the deseasonalized series of Stykkisholmur in Iceland 
along with 95% MCPL of the fitted models with 𝑯=0.65 and 𝑯=0.7, for four different 
thresholds: (a) 10%, (b) 5%, (c) 1% and (d) 0.5%. 
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 Modelling the clustering behaviour of all records 

We apply the NEPvS model to both seasonal and deseasonalized timeseries of the 
rainfall data of all 60 stations in order to assess its applicability in all cases. We employ 
the deseasonalized scheme M1. In Figure 6.16 we plot the boxplots of the estimated 
parameters 𝜂 and 𝜉 as well as the RMSE for the seasonal and the deseasonalized series 
for three different threshold, 1%, 5% and 10%. From the fitted parameters, it is 
reaffirmed by this analysis as well that as the threshold decreases the estimates of the 
parameters deviate from the ones obtained for the IID case (𝜉 = 0.5 and 𝜂 = 1). From 
the RMSE (Fig. 6.16c), it can be seen that the proposed model describes very well the 
deseasonalized data and fairly well the original observations, and in both cases the 
modelling efficiency improves for lower thresholds. Seasonality is associated with 
increased temporal clustering in the intermediate scales (approx. 20-150 days), which 
manifests with a curvature in the NEPvS plots that the model captures less efficiently 
compared to the deseasonalized case, typically producing a straight line plot. Also, it 
is evident that results concerning the threshold are not as robust for this case, since the 
impact of the threshold on seasonal clustering may vary depending on the specific 
seasonal regime. For instance, it is expected that for stations with prominent 
seasonality, high thresholds will show increased clustering only in the wettest season, 
whereas lower threshold will enable inspection of clustering in more seasons. 
However, depending on the characteristics of the seasonal regime and the intensity of 
the specific seasons, the temporal mixture of extremes from the different seasons 
differs from case to case, and thus, it is not straightforward to discern the impact of 
seasonality from a bulk fitting to all cases. On the other hand, for the deseasonalized 
cases it is clear that ‘dependence’ emerges as the threshold lowers. 
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Figure 6.16 Boxplots of (a) parameter 𝜼, (b) parameter 𝝃  and (c) RMSE from the fitting of the 
model to the seasonal and deseasonalized series by M1 for three different thresholds (1%, 5% 
and 10%). 

6.7 Discussion 

Clustering of extreme events is related to the presence of persistence, or HK dynamics, 
in natural processes. Here we approached this relationship with a twofold intention; 
first to ‘retrieve’ persistence from records of maxima, and second, to characterize it by 
probabilistic means. To this aim, we have introduced the NEPvS index, for which we 
also propose a model. The index examines the probabilistic behaviour of POT 
occurrences across multiple scales and proved successful in revealing persistence from 
extremes from various non-Gaussian timeseries, for which well-known tools 
performed poorly.  

It seems, though, to be difficult to establish general analytical relationships 
linking the NEPvS behaviour to the 𝐻 parameter of the parent process, which is true 
without even considering the uncertainty involved in estimating 𝐻 from small record 
lengths in the first place. As the 𝐻 parameter is a second-order characterization of a 
process, generation schemes reproducing 𝐻 behaviour but coupled with different 
marginal distributions (having different high-order moments), will yield different 
behaviours of extremes. For instance, clustering of extremes and its identifiability 
appears to be much more prominent in Gaussian processes. The task therefore, of 
linking clustering of extremes to the 𝐻 parameter, without also accounting for the 
specific high-order moments of the timeseries seems infeasible. We showed though, 
that the threshold is a key determinant in this respect, as lowering the threshold, i.e. 
moving towards the central tendency of the data, enables better identification of 
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persistence. On the contrary, as the threshold increases, evidence of persistence is 
progressively lost and the behaviour of extremes may falsely suggest independence of 
the parent process.  

Application of the NEPvS index to daily rainfall data showed that there may 
exist significant departures from the case of independence, particularly for lower 
thresholds, which are dependent on the location and specific climatic region. In 
general, the behaviour of rainfall extremes in multiple case studies (28 stations in the 
Netherlands and 1 in Iceland) was found by means of extensive Monte Carlo 
simulations, to be consistent with HK dynamics characterized by moderate 𝐻 
parameters (in the range 0.6-0.7). The NEPvS model showed a very good fit to the 
probabilistic behaviour of exceedances for the seasonal and deseasonalized 
observations across multiple scales for all 60 stations. As a similar version of the model 
has been previously proposed to describe the probability dry across multiple scales 
(Koutsoyiannis, 2006), this result suggests that there exists a probabilistic law which 
effectively describes the multi-level exceedances of rainfall thresholds across scales, 
from zero-crossings (wet days) to high-level crossings, as the ones examined here. 

From a theoretical point of view, these findings suggest that it is important to 
study change and clustering in a consistent stochastic framework examining the whole 
process behaviour, in order to better understand the process dynamics and avoid 
retaining ‘preconceived’ assumptions, such as IID, which may be inconsistent with the 
physical reality. For instance, various trend tests assume IID for the examined process, 
while modified tests accounting for persistence (Hamed, 2008), also do not consider 
its interplay with the higher order moments. Therefore, it is likely that they fail to 
account for extremes from complex processes, leaving aside issues regarding 
problematic applications due to misinterpretation of stationarity (Koutsoyiannis and 
Montanari, 2015; Montanari and Koutsoyiannis, 2014). Overdispersion in POT rainfall 
events has been also studied lately and attributed to a mixture of Poisson models, 
representing different climate regimes (Tye et al., 2018) as well as seasonality 
mechanisms (Serinaldi and Kilsby, 2013). Although, we have found as well that in 
some cases seasonality accounts for most of the observed clustering in the rainfall 
extremes, by performing multiple MC experiments focusing on the deseanonalized 
extremes, we have revealed consistency with HK dynamics. We note though that as 
the 𝐻 parameter for rainfall revolves around the value of 0.6 and rainfall is a heavily 
skewed process, it is expected that identifiability of persistence from extremes will be 
limited, except if ones lowers the threshold. Nevertheless, this highlights an alternative 
scientific hypothesis to be considered in ‘attribution’ studies, which is the emergence 
of clustering and overdispersion of extremes from persistence in the parent process. 

 From a practical point of view, the presence of persistence in the parent process 
affects estimation of extreme values, and therefore various design outcomes, in 
multiple ways. Although the theoretical definition of return period is still valid under 
presence of persistence (Koutsoyiannis 2008; Volpi et al., 2015), the statistical estimates 
of distribution quantiles for a specified return period are severely impacted. Other 
important implications concern flood risk underestimation under persistence 
(Serinaldi and Kilsby, 2016b), as well as underestimation of IDF curves when the 
temporal dependence is disregarded (Roy et al. 2018). Therefore, although persistence 
of the parent process is less evident in the series of its extremes, and it is highly unlikely 
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that it can be fully retrieved except for very low thresholds, its impact cannot be 
disregarded when studying extremes, even if the latter appear independent. It is worth 
recalling the existence of theoretical arguments concerning the validity of the 
fundamental EVT results (limiting distributions etc.) under weak presence of 
persistence (Leadbetter, 1983b; see also Section 2.3). However, for scientific 
applications, which involve estimation from data of finite, and typically small record 
lengths, the presence of persistence in the process induces uncertainty in the 
estimation, as the actual information content  of the data is lower than that for IID 
conditions (Koutsoyiannis and Montanari, 2007). This uncertainty inevitably 
propagates into the extreme value estimates. 

The existence of clustering also increases the arguments towards the use of the 
POT method for sampling of extremes, instead of block maxima approaches which 
tend to hide dependence, as also evident in Fig.6.2. As the threshold plays a vital role, 
using POT approaches with more than one event per year on average, which is the 
common practice, is also equally important. Empirical declustering approaches (Lang 
et al., 1999) may as well be non-effective if they do not take into account each process 
characteristics. In this regard, we argue that instead of seeking to resort to 
independence, often at the cost of reducing the available information (e.g. by 
discounting ‘dependent’ data), accounting for dependence is a more viable and 
consistent way forward. In fact, the use of all the set of observations has been recently 
advocated (Volpi et al., 2019), while the emergence of new types of high-order 
moments (Koutsoyiannis, 2019c) that exploit the whole set of observations, provide an 
improved stochastic framework for applying this principle. 

6.8 Conclusions 

This research deals with the question of identifying the links between persistence in 
the parent process and clustering of extremes, with the specific aim to ‘rediscover’ the 
usually ‘lost’ persistence when one examines records of maxima. This is achieved by 
devising a probabilistic characterization of clustering of extremes. The main findings 
are summarized below: 
 

 There is significant influence from both the second-order properties and the 
high-order moments of the parent process on the generated extremes, and 
therefore characterizations of clustering of extremes need to account for both. 

 Identifiability of persistence from records of maxima is in general limited and 
weakens as the threshold for extremes increases. 

 The estimates of the Hurst parameter by the climacogram and dispersion index 
analyses are found to be severely biased downward when derived from 
extremes originating from non-Gaussian processes.  

 A new probabilistic index is proposed to represent clustering based on the 
probability of non-exceedance of a given threshold across scales, called the 
NEPvS (non-exceedance probability vs scale) index. 

 The NEPvS exhibits scaling behaviour which is described by a proposed model 
accurately simulating the probability of exceedance of a threshold at multiple 
temporal scales. 
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 The index is transparent and can be directly used for statistical testing of 
departures from independence. Case-specific Monte Carlo simulations are 
needed to validate more complicated models coupling persistence with 
different marginal properties.  

 The POT approach applied with ‘low’ thresholds is a robust and informative 
way to reveal the clustering dynamics of extremes, in contrast to the block 
maxima method which hinders identifiability of persistence.  

 Deseasonalized daily rainfall POT events may show prominent departures 
from independence especially at lower thresholds, which may become 
important depending on the climatic region. Extensive station-specific Monte 
Carlo experiments showed consistency of clustering of extremes for various 
examined thresholds with assumed HK models fitted based on the properties 
of the parent process. 
 
Further research is required in order to obtain analytical mathematic results for 

extremes arising from persistent processes, with the aim of constructing estimators for 
any distribution type and dependence structure without the need for Monte Carlo 
validations. However, the latter is doubtful as a task, since extremes over scales are 
controlled by higher order moments, which are also difficult to estimate correctly from 
data (Lombardo et al., 2014). Recently proposed moment types with unbiased 
estimators across all orders that can also model joint properties of processes could 
provide a way to circumvent this (Koutsoyiannis, 2019c).  

We conclude that extremes tend to ‘hide’ the persistence of the parent process, 
often falsely signalling independence. Regardless however of the strength of the 
evidence, the impact of persistence in the parent process on the estimation of extreme 
values is nonetheless present. In this respect, more research should focus on the 
stochastic properties of extremes from natural processes, where dependence 
mechanisms manifest themselves across various temporal scales and challenge 
common assumptions and practices.  
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7.  MANIFESTATION OF PERSISTENCE IN THE 

DISTRIBUTION OF EXTREMES AND THEIR PROPERTIES  

This Chapter examines the applicability of the EVT results, presented in Chapter 2, for 
the case of extremes arising from persistent processes. To this aim, the appropriateness 
of the GEV distribution for modelling maxima from persistent processes is assessed 
through extensive Monte Carlo simulations and the effect of persistence in the 
parameterization of the GEV distribution is identified. Manifestations of dependence 
in the distributional properties of POT events at the annual scale are also highlighted. 
The theoretical results are corroborated by real-world evidence from records of rainfall 
and streamflow extremes. The second-order HK stochastic framework is applied for 
the modelling of the parent process and its ability to reproduce the empirical extremal 
patterns is evaluated.  

7.1 Introduction 

In Chapter 6, persistence (HK dynamics) is shown to manifest itself in the occurrence 
process of extremes across scales. Compared to extremes from a purely random 
process, persistent extremes have a lower probability of being encountered at a scale 
as a result of clustering. The change in the multi-scale occurrence behaviour of 
extremes under persistence implies that the properties of the extremes at a given scale 
might also be affected. This is the focus of this chapter.  

In a first examination, we investigate the distribution of block maxima under 
various degrees of dependence. The relevant theory was outlined in the review section 
2.3 of Chapter 2. Here, we specifically aim to assess the validity of the GEV distribution 
as an approximation in cases of long-range dependence, and to identify the impact of 
the latter in the GEV distribution parameterization, as well. In order to complement 
the analysis of temporal properties of extremes in a given scale, we also study the 
behaviours of POT events as these are indicative of the short-term clustering 
properties of extremes. These local dependence patterns cannot be revealed by the 
block maxima approach due to the disruption of short-term clustering by the 
indiscriminate sampling of one event per time-window.  

Empirical investigation of rainfall and streamflow series is performed to 
showcase the hydrological relevance of extremal dependence. Finally, we carry out a 
preliminary investigation of the performance of the HK stochastic framework in 
modelling stochastic patterns of extremal dependence. 

7.2 Assessing impacts of dependence on block maxima and their 
modelling by the GEV distribution  

The asymptotic results of the EVT and the set of underlying assumptions were 
reviewed in Chapter 2. It was shown that by virtue of equation (23) for a process with 
limited long-range dependence in extremes (fulfilment of 𝐷(𝑢𝑛) condition), but with 
presence of local dependence in exceedances (non-fulfilment of 𝐷′(𝑢𝑛) condition) 
quantified by a positive extremal index, the non-exceedance probability of maxima of 
a given scale increases compared to maxima derived from an IID process with the 
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same marginal distribution. We test this theoretical result by comparing the 
probabilistic behaviour of block maxima derived from processes with HK dependence 
structure and AR(1) dependence. The HK and AR(1) series have exactly the same 
marginal distribution for the normally-distributed processes, while share the first four 
moments for the case of the Gamma-distributed processes.  

It can be seen (Fig. 7.1) that indeed dependence lowers the exceedance 
probabilities of extremes of lower magnitude yet the impact becomes negligible as the 
magnitude increases. This behaviour however breaks down for extremely dependent 
process (𝐻=0.95) and heavy-tailed processes (Fig. 7.1j, k, l), in which case the 
exceedance probability of larger extremes appears greater. Yet these cases are severely 
impacted by estimation uncertainty and therefore this effect is likely the result of 
insufficient record length. Gaussian autoregressions (Fig. 7.1a, b, c) appear to only 
marginally impact the behaviour of extremes, which verifies the relevant theory 
suggesting extremal index 𝜃=1, whereas in the case of autoregressions with non-
Gaussian innovations a considerably higher impact of dependence is observed. This 
implies that heavy-tails and dependence have synergistic effects on the behaviour of 
extremes.  
 



149 
 

 
Figure 7.1 Exceedance probabilities of maxima from blocks of length 𝒏=100, 1000, 10 000 for 
timeseries generated from an AR(1) model with standard normal distribution (a, b, c) and 
gamma distribution (g, h, i) and an HK model standard normal distribution (d, e, f) and 
gamma distribution (j, k, l) for various degrees of dependence. 

To gain insights into possible impact of estimation uncertainty on the above 
results, we also examine shorter series of length 150 years and we specifically focus on 
the annual timescale. Results from 103 Monte Carlo simulations from an HK-process 
model with Type-G and Type-P distribution, shown in Fig. 7.2 and 7.3, reaffirm the 
previous remarks. In terms of the expected values, the IID process acts as the upper 
boundary of the distribution of the exceedance probabilities, yet dependence inflates 
the prediction limits (7.2 b and 7.3 b). 
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Figure 7.2 Expected values of the exceedance probabilities of maxima from blocks of length 
𝒏=365 for timeseries generated from an HK-type model with Type-gamma distribution from 
103 simulations (a) and MCPL for the cases of 𝑯=0.95, 0.8 and IID(b). 

 

Figure 7.3 Expected values of the exceedance probabilities of maxima from blocks of length 
𝒏=365 for timeseries generated from an HK-type model with Type-pareto distribution from 
103 simulations (a) and MCPL for the cases of 𝑯=0.95, 0.8 and IID(b). 

 Before examining the effect of dependence on the parameterization of the GEV 
distribution, we first assess the quality of the latter as an approximation for extremes 
of persistent processes. Since it is difficult to analytically derive the exact distribution 
of maxima in such cases, we employ the empirical ones derived from the long 
benchmark series (106 length). For the fitting process, we assess both the fits of the 
maximum likelihood method and the weighted least-squares (WLS) method, with 
weights equal to the empirical quantiles, as the one used in Chapter 3 for fitting the 
GEV to seasonal extremes. Results from application to a series with 𝐻=0.7 and 
different marginal distributions are shown in Fig. 7.4, for block sizes 𝑛=10, 100, 1000. 
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It is apparent that the fit of the WLS outperforms the maximum likelihood fit for the 
smaller block sizes, due to the violation of the independence assumption of the 
method. On the contrary, the WLS algorithm yields a very good fit even for cases 
where the asymptotic arguments for the GEV certainly do not hold (𝑛=10). A slightly 
less good performance is obtained for the case of the lower quantiles from 𝑛=10 of the 
series with Type-Gamma distribution and shape parameter 𝛼=0.01. Yet the latter is 
reasonable as the WLS algorithm favours a better fit to the larger quantiles over the fit 
to lower quantiles. Therefore, given an adequate fitting method, the GEV distribution 
appears flexible enough to model extremes from a wide range of persistent process. 
The latter was verified also for the extreme case of series with 𝐻=0.95, in which case 
the fit of both methods was even better. 
 

 
Figure 7.4 GEV fits to maxima from blocks of length 𝒏=100, 1000, 10 000 for timeseries 
generated from an HK model with 𝑯=0.7 and Type-Pareto distribution (𝜶=0.2), Type-Gamma 
(𝜶=0.01) and standard normal distribution, by the weighed-least squares method (a, c, e) and 
the maximum likelihood method (b, d, f). 
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To evaluate the effect of dependence on the parameterization of the GEV 
distribution, the timeseries of length 150 years (150×365) are employed and the GEV 
is fitted to the block maxima of block size 𝑛=365. Results from application to three 
different distributions with varying degree of HK dependence are shown in Fig. 7.5. 
As a first remark, it is interesting to observe that convergence of extremes from the 
normal distribution to their domain of attraction, i.e. the Gumbel distribution (shape 
parameter 0) is so slow, that it is not satisfied even for the IID series, at this block 
length. For the other two distributions, convergence is satisfactory, as in the case of the 
Gamma with shape parameter 0.1, the domain of attraction is the Gumbel and indeed 
the values of the shape parameter are correctly identified, whereas for the Pareto with 
shape parameter 0.2, again the shape parameter of the GEV is close, albeit slightly 
underestimated.  

Regarding the parameterization of the GEV as dependence increases, the 
change is manifested in the values of the location and the scale parameter, as generally 
expected, yet not in complete agreement with the extremal index theory. In fact, while 
the location parameter indeed decreases with increasing dependence, the scale 
parameter, on the contrary increases. The shape parameter remains reasonably stable, 
as suggested by Chapter 2 theory, except for the cases of very strong persistence, 
where the increase of the shape parameter is balanced by the decrease of the scale 
parameter. The insensitivity of the shape parameter to dependence is theoretically 
justified as the former relates to the shape of the tail of the process, which is a property 
of the marginal distribution. On the contrary the rescaling parameters of the GEV 
depend on 𝑛, and thus on the scale. In this regard, the increase in the scale parameter 
arises from the increased variance of block maxima from persistent processes, which 
is intuitive if one considers the increased variability of the persistent process at 
different scales. The decrease in the location parameter is expected as well, as also 
shown in the Fig. 7.2-7.3, and directly stems from the clustering dynamics. Extremes 
are clustered in years, and only the larger of them is selected as the maximum, 
discarding the rest. On the contrary, in an IID process, extremes have a higher change 
to be encountered as separate maxima in any given year and hence, to be modelled.  
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Figure 7.5 Shape, scale and location parameters from the fitting of the GEV distribution to the 
1000 timeseries with normal distribution (a, d, g), Type Gamma distribution (b, e, h) and Type 
Pareto distribution (c, f, i) for varying 𝑯  parameters. 

 

7.3 Conditional properties of peaks over threshold under persistence  

Switching the focus to the study of the behaviour of peaks over threshold in a given 
scale allows further insights into the effects of persistence. Namely, it enables direct 
inspection of clustering properties that are not revealed by the block maxima method, 
such as the cluster duration and the number of separate clusters in a year. For this 
analysis, we analyze a 500-year segment of the 106 Type-Pareto timeseries generated 
by the HK model with 𝐻=0.8, and subsequently, obtain prediction limits of the 
corresponding IID series produced by random shuffling of the original series. The 
shuffling technique has the advantage of ensuring that the generated random series 
has exactly the same distribution with the original. Therefore any changes in the 
extremal properties can be uniquely ascribed to the presence of dependence in the 
original series.  
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The following properties of POT events are examined: (a) the frequency 
distribution of the number of cluster maxima per year, (b) the exceedance probability 
distribution of the aggregate annual POT event intensity, (c) the number of annual 
POT events versus the mean POT event intensity, and (d) the frequency distribution 
of cluster duration. A cluster is defined here by one or more successive POT events 
separated from the next POT event by the occurrence of at least one event below the 
threshold. The threshold is chosen so at the number of cluster maxima (maxima of 
clusters of POT events, including single events) equals the number of years of the 
record, as in the annual maxima approach. Analysis of the aggregate intensity is 
inspired by the concept of collective risk in financial and insurance literature, which 
deals with the properties of sums of random variables (Iglehart, 1969). In hydrological 
literature, Serinaldi and Kilsby (2016b) suggested studying the behaviour of 
streamflow events under the collective risk viewpoint, treating streamflow POT as 
proxies for insurance claims. 

Fig. 7.6 shows the stochastic patterns of POT events arising in the case of a long-
term persistent process. In Fig.7.6a, is seen that both the frequencies of zero number of 
events and very large number of events tend to be greater under persistence. Fig 7.6b 
shows how exceedance probabilities of the aggregate annual intensity are generally 
higher compared to the IID case, as a result of clustering of events. Figure 7.6c shows 
that persistence also increases the positive association between the number of yearly 
events and their average intensity, compared to the IID case, where a lack of 
correlation is observed. In Fig. 7.6d, it is shown that the probability of observing 
clusters of large duration increases in the case of persistence. Recalling the findings of 
Chapter 6, it can be concluded that persistence increases the probability of 
experiencing large temporal periods with no extremes. On the other hand, it is shown 
that should such a period occur, it will probably last longer compared to the IID case, 
i.e. persistence induces a ‘when it rains, it pours’ dynamic.  
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Figure 7.6 Plots of the following functionals of POT events from the original and 1000 shuffled 
timeseries (IID): (a) frequency distribution of the cluster maxima per year, (b) exceedance 
probability distribution of the aggregate annual POT event intensity, (c) number of POT events 
per year versus their mean annual intensity, and (d) frequency distribution of cluster duration. 

 

7.4 Stochastic modelling of rainfall and streamflow extremal properties 

In this section, we employ the previous shuffling methodology in order to trace the 
effect of dependence on real-world rainfall and streamflow extremes, derived from the 
Bologna daily rainfall series (206 years) and the Po river daily streamflow series (90 
years). Further, we set up a preliminary modelling framework and test its effectiveness 
in capturing the observed patterns. We do not employ any deseasonalisation scheme 
for the rainfall and streamflow processes, since the ‘distinct’ effects of seasonality and 
persistence have been already investigated in Sections 7.1-7.3 as well as throughout 
Chapters 4-6. Rather the aim here is to assess the combined effect of dependence 
mechanisms on the extremal properties. 

In Fig. 7.7, the annual maxima distributions of the daily rainfall in Bologna and 
the daily streamflow of the Po river record are shown. The behaviour rainfall maxima 
is within the MCPL range of the shuffled series although there is a tendency to deviate 
from the expected IID behaviour. The departure from the latter is however prominent 
in the case of the streamflow maxima, where the shift in the distribution is fully in line 
with the behaviour of a persistent process. In both cases the WLS fit of the GEV is very 
good and superior to the ML fit, which is not shown in the second case, due to being 
very poor. 
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Figure 7.7 Exceedance probabilities of annual maxima for the original timeseries and the 
shuffled series for the Bologna rainfall series and the Po river daily streamflow series. 

Proceeding to the second type of analysis, similar conclusions can be drawn. In this 
case, the number of POT declustered events (cluster maxima) equals the number of 
annual maxima for each record. In the rainfall series, dependence is manifested by an 
increase in the cluster duration distribution and thus, in the annual aggregate event 
intensity as well, as both deviate from the expected IID behaviour (Fig. 7.8). 
Dependence is overall much more prevalent in the streamflow series (Fig.7.9) where 
most studied functionals (Fig.7.9b,c,d) of extremes strongly deviate from their shuffled 
counterparts. 
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Figure 7.8 Plots of the following functionals of POT events from the original Bologna rainfall 
series (206 years) and 1000 shuffled timeseries (IID(a) frequency distribution of the number of 
cluster maxima per year, (b) exceedance probability of the aggregate annual POT event 
intensity, (c) number of POT events per year versus their mean annual intensity, and (d) 
frequency distribution of cluster duration. 
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Figure 7.9 Plots of the following functionals of POT events from the original Po streamflow 
series (90 years) and 1000 shuffled timeseries (IID): (a) frequency distribution of the number 
of cluster maxima per year, (b) exceedance probability of the aggregate annual POT event 
intensity, (c) number of POT events per year versus their mean annual intensity, and (d) 
frequency distribution of cluster duration. 

Next, we test the extent to which the observed extremal patterns can be 
reproduced by variants of HK-type models accounting for the process second-order 
(climacogram-based) multi-scaling properties (including joint moments) and the 
distributional properties up to the 4th moment (Dimitriadis and Koutsoyiannis, 2018; 
Koutsoyiannis, 2016). First, it is interesting to note the different scaling regimes 
between the two series (Fig.7.10). The Bologna rainfall series exhibits two distinct 
scaling regimes (two slopes in the climacogram); a weaker dependence structure in 
short-time scales and an intensified one in time-scales greater than 3 years. On the 
contrary, the climacogram of the Po streamflow series exhibits a strong curvature in 
short timescales (less than three months), indicative of short-term dependence, while 
approaches a HK behaviour at greater scales. The latter is similar to the first scaling 
regime of the rainfall process. Since these series belong to the same hydrological 
region, it could be postulated that the observed scaling patterns reflect the propagation 
of dependence from the rainfall to the streamflow process. At shorter time scales, the 
rainfall dependence dynamics are intensified through the catchment storage 
mechanism appearing as ‘river memory’ (see also Chapter 5), whereas in greater time-
scales, the streamflow scaling behaviour approaches the first scaling regime of the 
rainfall process. Yet the Po record is not long enough to assess whether this 
assumption is supported at greater scales as well. 
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The fitted climacogram models are also shown in Fig. 7.10. The streamflow 
second-order scaling is captured by a GHK model, with three parameters, 𝐻 = 0.61, 
𝑞 = 35.149, 𝜆 = 1.027,   while the rainfall process is captured with a FHK model  having 
an additional parameter to account for the change of the scaling regime, 𝐻 = 0.92, 𝑞 =
1.12, 𝜆 = 0.013, 𝜆’ = 646.2. A complete presentation of other modelling options is 
provided in Koutsoyiannis (2020b). 

 
 
Figure 7.10 Standardized climacograms of the Bologna rainfall and Po streamflow along with 
the fitted climacogram models and the theoretical climacogram of a White Noise process. 

Results on the reproduction of the observed extremal properties by the 
synthetic series are shown in Fig. 7.11-7.12. Overall, results suggest that both models, 
albeit formally calibrated only on the first four moments and the second-order scaling 
behaviour, prove successful in capturing observed patterns of the extremal behaviour 
as well. In Fig. 7.12 it is seen that the GHK model satisfactorily reproduces the positive 
association between the number of POT events per year and their intensity. A few 
discrepancies are yet observed. In the Bologna series, the cluster duration is 
underestimated, while for both the rainfall and the streamflow series, the exceedance 
probabilities of the aggregate annual intensities are also slightly underestimated in the 
tail region of the synthetic series. The former suggests that a stronger short-term 
dependence structure could be more appropriate for the Bologna series, while the 
latter could be remedied by the inclusion of higher-order moments in the model’s 
calibration scheme. In any case, the above results suggest that it is possible to capture 
extremal patterns by preserving only essential properties of the parent process, i.e. it 
may suffice to model the second-order scaling behaviour along with a certain number 
of moments. 
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Figure 7.11 Plots of the following functionals of POT events from the original Bologna rainfall 
series (206 years) and 1000 synthetic timeseries from FHK model: (a) frequency distribution of 
the number of cluster maxima per year, (b) exceedance probability distribution of the 
aggregate annual POT event intensity, (c) number of POT events per year versus their mean 
annual intensity, and (d) frequency distribution of cluster duration. 
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Figure 7.12 Plots of the following functionals of POT events from the original Po streamflow 
series (90 years) and 1000 synthetic series from a GHK model: (a) frequency distribution of the 
number of cluster maxima per year, (b) exceedance probability distribution of the aggregate 
annual POT event intensity, (c) number of POT events per year versus their mean annual 
intensity, and (d) frequency distribution of cluster duration. 

7.5 Conclusions and outlook  

In this Chapter, the distributional properties of extremes from persistent processes are 
studied with a twofold goal: (a) to test the sub-asymptotic appropriateness of extreme 
value theory and conceptualize the effects of persistence on extremal properties, and 
(b) assess the reproduction of the latter by HK-type modelling of the parent process.  

Regarding the first goal, it is shown that the sub-asymptotic performance of the 
Fréchet distribution for the extremes of persistent process is mainly a matter of the 
fitting algorithm. In this respect, the maximum likelihood method yields poor fitting 
results, due to its reliance on the independence assumption, but on the contrary, 
results from the weighted-least-squares method are very good even for strong 
persistence and small block lengths. On the other hand, it is questionable whether the 
extremal index theory (Section 2.3.2) is well-suited for persistent processes. In fact, the 
extremal index theory is developed for processes producing only short-term 
clustering, with limited long-range dependence, and therefore, it is reasonable for 
results to not hold for cases of persistence. As a matter of fact, contrary to what the 
theory suggests for dependent processes, the scale parameter, related to the variability 
of extremes, increases as a result of the increased variability of the persistent process 
compared to an IID process. Still in agreement to the theory, dependence decreases 
the location parameter of the block maxima distribution, yet it does not affect the shape 
parameter, as theoretically expected.  
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In terms of block maxima analysis, dependence manifests itself by ‘hiding’ the 
extreme-generating potential of the process. Compared to an IID process, in an HK 
process, it is much more likely to observe maxima of lower magnitude at a given scale. 
On the contrary, the POT analysis exposes both the short-term clustering of extremes 
as well as the long-term clustering studied in Chapter 6. In this Chapter, the focus is 
placed on the extremal properties on the annual scale. It is found that POT for 
persistent processes have a bilateral character compared to IID processes; absence of 
POT events in a year is more likely, yet in the case occurrence of extremes is triggered, 
a higher cluster duration and greater intensity thereof should be expected.  

Regarding flood risk estimation, a direct consequence of the increase in 
duration is the increase in the period of time an area is inundated (Dimitriadis and 
Koutsoyiannis, 2020). The increase in the aggregate intensity of extreme events in a 
given scale also increases the collective risk, which is relevant for insurance practices 
against natural catastrophes (Serinaldi and Kilsby, 2016b; Goulianou et al., 2019; 
Manolis et al., 2020; Papoulakos et al., 2020). On a higher level, it is argued that the 
understanding of temporal risk dynamics is important to any field concerned with risk 
planning and preparedness for natural disasters. Furthermore, as estimation 
uncertainty is dominant for persistent and heavy-tailed processes, a priori awareness 
of their dynamics is essential in order to cautiously interpret empirical evidence and 
avoid a false perception of the true extremal properties. This makes the record length 
issue for characterizing extremes even more important for dependent processes 
(Koutsoyiannis and Montanari, 2007). 

The extremal properties of long-term real-world series showed clear deviations 
from the IID case and consistency with HK-type of models reproducing the first four 
moments and the second-order scaling behaviour. Interestingly, the dependence 
patterns of the two series, rainfall at Bologna and streamflow in the Po River, differed 
substantially despite belonging to the same hydrological region. The rainfall series 
characterized by long-term persistence, but weak short-term dependence, showed less 
short-term clustering at the annual scale compared to the streamflow process, for 
which the intra-annual clustering patterns were very pronounced. The fitted HK 
models successfully captured the variability of the observed extremal patterns, even 
though seasonality was not explicitly modelled, but only partially retained through 
the second-order scaling.  

Overall, the HK framework constitutes both an advantageous framework in 
terms of explaining the temporal variability of extremes and a promising direction in 
terms of joint modelling of lower and higher-order properties. More research is 
required with respect to the latter as improvements are expected from inclusion of 
higher moments in the modelling scheme, using 𝑘-moments estimation 
(Koutsoyiannis, 2019c).  
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8.  PROJECTIONS OF FUTURE RAINFALL EXTREMES 

Non-stationarity approaches have been increasingly popular in hydrology, reflecting 
scientific concerns regarding intensification of the water cycle due to global warming. 
A considerable share of relevant studies is dominated by the practice of identifying 
linear trends in data through in-sample analysis. In this Chapter, the problem of trend 
identification is reframed using the out-of-sample predictive performance of trends as 
the reference point for model selection. A systematic methodological framework is 
devised in which linear trends are compared to simpler mean models, based on their 
performance in predicting climatic-scale (30-year) annual rainfall indices, i.e. maxima, 
totals, wet-day average and probability dry, from long-term daily records. Analysis of 
empirical records spanning over 150 years of daily data suggests that future long-term 
variability is better captured using local mean models rather than trends. In line with 
theoretical findings for persistent processes, it is shown that prediction-wise, simple is 
preferable to trendy.  

8.1 Introduction 

 “A trend is a trend is a trend / But the question is, will it bend?  

Will it alter its course / Through some unforeseen force  

And come to a premature end?”  

(Sir Alec Cairncross, 1969, signing as “Stein Age Forecaster”) 

 
In the past decades there has been a plethora of trend analyses in rainfall studies 
(Bunting et al., 1976; Haylock and Nicholls, 2000, 2000; Rotstayn and Lohmann, 2002; 
Modarres and da Silva, 2007; Ntegeka and Willems, 2008; Kumar et al., 2010), and it 
could be argued that relevant studies are still on the rise (e.g. Biasutti, 2019; Degefu et 
al., 2019; Folton et al., 2019; Khan et al., 2019; Papalexiou and Montanari, 2019; Quadros 
et al., 2019; Rahimi and Fatemi, 2019). A quantitative analysis of the relevant literature 
is provided in Section 8.3.1. This boom of trend studies has had various scopes, most 
of which are related to global warming assessment (IPCC, 2013). These include historic 
climate variability quantification, attribution to deterministic drivers, projections to 
the future and impact assessments (e.g. Kumar et al., 2010; Parmesan and Yohe, 2003; 
Biasutti, 2013; Rotstayn and Lohmann, 2002). Arguably what is common in the 
majority of trend studies, even when not explicitly stated, is the expectation for a 
monotonically changing future, which as a result, has initiated a growing discourse on 
the appropriate modelling approach.  

In climatology and hydrology, there has been an ongoing debate between 
stationary vs nonstationary methods, with the former representing a well-established 
hydrological practice (Montanari and Koutsoyiannis, 2014; Koutsoyiannis and 
Montanari, 2015) and the latter reflecting recent attempts of the scientific community 
to find a new way to respond to change and uncertainty under the anthropogenic 
climate change scenario (Milly et al., 2008; Craig, 2010; Milly et al., 2015). Yet 
deterministic trend modelling has been examined —and mostly criticized, on different 
grounds, namely with respect to empirical evidence (McKitrick and Christy, 2019; 
Cohn and Lins, 2005), theoretical consistency (Koutsoyiannis and Montanari, 2015), 
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modelling efficiency (Montanari and Koutsoyiannis, 2014), and meaningfulness of the 
results (Serinaldi et al., 2018, 2020). It has also been argued that the concepts of change 
and uncertainty are already well-represented within the stationarity framework 
(Koutsoyiannis and Montanari, 2007; Serinaldi and Kilsby, 2018b). In this research, we 
examine the trend modelling framework from a new perspective, through the 
evaluation of its out-of-sample modelling qualities, namely, its predictive powers for 
a given record.  

For this purpose, we introduce a validation framework for the evaluation of the 
results, adding simpler, mean models in the pool of candidates, and basing the 
reasoning of model selection on the statistical out-of-sample performance of the 
models. While split-sample techniques (Klemeš, 1986) and multi-model approaches 
(Georgakakos et al., 2004; Duan et al., 2007) are certainly not new in hydrology, they 
are usually disregarded as concepts in the field of trend modelling, where the research 
question typically revolves around explanatory performance, mostly by means of in-
sample measures, as hypothesis testing (Shmueli, 2010). In this work, we extend the 
simple split-sample validation by introducing a moving window calibration and 
validation approach that progressively scans each record by sliding windows of 
climatic-length, i.e. 30 years according to the common climate definition (IPCC, 2013). 
In this manner, we obtain a sample of estimates of the models’ predictive performance, 
instead of a single value.  

By shifting the focus to the predictive modelling of linear trend, this analysis 
seeks to answer the following key questions: (a) how well are the rainfall statistics of 
the most recent climatic period predicted by the linear trend calibrated to the prior 30-
year period? and (b) how do the statistics of the predictive performance of linear trends 
compare to the ones derived from application of simple mean models?  

The first question is driven by the omnipresent scientific concerns regarding 
intensification of extremes due to global warming during the last decades (e.g. 
Houghton et al., 1991; Parmesan and Yohe, 2003; Oreskes, 2004; Solomon et al., 2007; 
McCarl et al., 2008; Moss et al., 2010; Craig, 2010; Pachauri et al., 2014; Kellogg, 2019). 
According to the fifth (latest) IPCC assessment (IPCC, 2013), the expected 
intensification mechanism suggests a 6%–7% increase of the global water vapour per 
°C of warming, followed by a 1% to 3% increase in global mean precipitation. Recently, 
the physical assumptions behind these estimates have been questioned and revisited 
in light of global datasets (Koutsoyiannis, 2020a), while the evaluation of hydrological 
impacts from increased greenhouse emissions remains an open research subject with 
often conflicting evidence (e.g. Hirsch and Ryberg, 2012; Mallakpour and Villarini, 
2015; Blöschl et al., 2019). Therefore, the first examination of predictability is 
consciously biased in favour of a model capturing the variability of the most recent 
period of data.  

The second question introduces the abovementioned methodological 
framework for validating model predictions, which is applied to the empirical long-
term rainfall records as well as to synthetic series produced in order to mimic the 
natural long-term variability of the rainfall process. A discussion on the relevance of 
the framework in light of potential deterministic changes is also provided. 
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8.2 Dataset 

Our dataset is an update of the previous long-term dataset explored in Iliopoulou et 
al. (2018a) of long rainfall records surpassing 150 years of daily values. It includes the 
60 longest available daily rainfall records collected from global datasets, i.e. the Global 
Historical Climatology Network Daily database (Menne et al., 2012), the European 
Climate Assessment and Dataset (Klein Tank et al., 2002), as well as third parties listed 
in the Appendix A (Table A1). The geographic location of the rain gauges is shown in 
Figure 6.1. The length of the timeseries provides rare insights into long-term rainfall 
variability and enables the statistical evaluation of the predictive performance of linear 
trends from multiple time windows.  

8.3 Overview of literature approaches 

 A quantitative review on rainfall trends 

The aim of this literature review is to evaluate the academic interest in trends of rainfall 
variables by means of a quantitative analysis of research papers appearing in Google 
Scholar. We base this analysis on the quantification of the occurrence of associated 
words in Google Scholar using Python code developed by Strobel (2018), omitting 
results related to citations and patents. This analysis was performed on 21/10/2019 and 
in order to refer to full calendar years it contains results published till the end of 2018. 

 

Figure 8.1 Temporal evolution along with three-year moving average of the ratio of the 
occurrence of the word ‘trends’ in Scholar items containing the words ‘precipitation’, 
‘hydrology’ and ‘extremes’. 

In Fig. 8.1, we show the temporal evolution of the ratio of appearance of the word 
‘trends’ in items also containing the complete list of words [‘precipitation’, 
‘hydrology’, ‘extremes’]. Results have been randomly varying from the beginning till 
the mid 20th century, when there were less than 100 results per year fulfilling the 
criteria of containing the list in the denominator of the ratio. It can be seen though that 
approximately from the 1960 and later on there has been an increasing trend in 
relevant publications containing the word ‘trends,’ reaching 89% in 2018. Obviously, 
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results belonging to a different context than the one assumed might have been 
calculated as well but we assume their effect to be analogous both in the nominator 
and the denominator of the ratio, thus not significantly affecting the conclusion. 

To further refine our search to more technical papers explicitly referring to 
rainfall trends we define the following search terms. Word combination A is the full 
list [‘precipitation|rainfall trends’, ‘precipitation|rainfall data|records’], where the 
symbol | refers to ‘or’, and word combinations inside ‘’ should be found together, i.e. 
one possible combination is the list [‘precipitation trends’, ‘rainfall data’]. Word 
combination B is an extension of word combination A that also includes the word 
‘projections’, while word combination C is an extension of word combination A also 
including the word sequence ‘linear trend|trends|model|regression’. The absolute 
numbers of the results are shown in Fig. 8.2a, while in Fig.8.2b we show their relative 
ratio. Expectedly, the total number of studies containing rainfall trends are rising, 
however this is not surprising in terms of absolute numbers, considering the 
increasing availability of papers in Scholar over the years. However, the use of the 
word ‘projections’ appears to be increasing in relative terms as well. The relative use 
of word combination C, related to the linear trend, has slightly increased too over the 
years, stabilizing over the past 5-year period to approximately half of the related 
publications (Fig.8.2b). 

 
Figure 8.2 (a) Temporal evolution of the occurrence of the word combinations A, B and C and 
their relative ratio (b). 

As a final refinement, we consider words appearing only in the title of papers, 
which should limit the results to strictly related papers. Results are shown in Fig. 8.3. 
The standard term that is contained in every result is ‘rainfall|precipitation’ followed 
by the appearance, anywhere in the title, of the single terms, trends|trend, variability, 
change|changes, and non-stationary|non-stationarity|nonstationary|nonstationarity. 
Note that we consider also plural terms where applicable, as well as possible 
differences in spelling, while this time, we do not require words to be found in a 
specific order as in the previous in-text search (for instance, it could be “trends in 
rainfall...” or “rainfall trends in the..”). We do not compute ratios over the items 
containing in their title the words ‘rainfall|precipitation’ because these terms alone are 
too generic, and can be found in a variety of studies, a significant part of which are 
only loosely related to hydrology (e.g. physics, chemistry, radar technologies etc.). 
Instead, to provide a more relevant reference point for comparison, we use two words 
semantically ‘uncharged’ with the trend concept, which are however widely used in 
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combination with the standard terms, namely the words ‘model’ and ‘distribution’ 
(e.g. “a rainfall model…” or “the distribution of the … precipitation”).  

Apparently, the conceptually more inclusive terms ‘changes’ and ‘variability’ 
are ranking first in the related search terms, with the explicit use of the word ‘trend(s)’ 
ranking third, yielding consistently over the last ten years above 200 results per year 
(288 in 2018, as per results appearing on Google Scholar on 21/10/2019). Terms related 
to non-stationarity are slowly rising over the past ten years (39 in-title results in 2018), 
while being close to zero before 2000. It is interesting to note the evolution of the use 
of terms explicitly associated with the temporal properties of rainfall compared to the 
terms more related to marginal properties (‘distribution’), or being more of a general 
use, perhaps implying both properties (‘model’). The mere use of the word ‘trend(s)’ 
has exceeded the use of an all-times classic word for rainfall, i.e. distribution, which 
clearly shows a certain shift in academic interest. Likewise, the ever higher-scoring 
word ‘model’ has been outnumbered in the past three years by the word ‘change(s)’.  

 
Figure 8.3 Temporal evolution of the occurrence of the word combinations in titles of Scholar 
items. 

In conjunction, these results suggest that over the last two decades, there has 
been a rising scientific interest in the temporal properties of rainfall and their future 
evolution, with ‘trends’ taking up a considerable share of this emerging focus. 

 

 From explanatory trends to out-of-sample performance  

It is well-known that studying the explanatory power of trends in hydroclimatic data 
is a very active research field, as confirmed by the above literature analysis. Before 
discussing literature modelling strategies for trends, it is imperative to define the 
meaning of a trend per se. Although ‘trends’ are frequently used as a synonym of 
temporal ‘changes’ (Fig. 8.3 provides a quantitative analysis on the use of both words) 
and their notion has sometimes been extended to encompass stochastic stationary 
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models (Fatichi et al., 2009; Chandler and Scott, 2011), the general idea behind the 
trend concept, is that the expected value of a response variable 𝑦 is specified as a 

deterministic function of time 𝑡, E [𝑦] = 𝑓(𝑡). The function 𝑓 may take different forms 

—the linear model being only the first one adopted, and the most widely used. Indeed, 
this definition of a trend can be traced back to the development of the field of 
econometrics in the early 20th century, when ‘secular’ trends, meaning long-term 
trends, were deemed to be a component of financial timeseries, along with seasonal 
variation, cycles and residual elements (Persons, 1922; Mitchell, 1930). Decomposition 
of a timeseries into components, one of them being a trend, continued to dominate the 
econometrics literature, although even at early times certain critiques were raised 
(Slutsky, 1927). 

The most established technique to evaluate fitted trends is statistical hypothesis 
testing, i.e. a statistical inference technique that estimates the probability of an 
outcome as far from what is expected as the observed under the assumption that the 
null hypothesis is true (Gauch, 2003). The latter is known as the 𝑝-value and is 
compared to predefined significance levels, in order to reject or not the null 
hypothesis. This is a scientific method for model evaluation, which has been in part 
misused. For instance, its misuse in hydrology has been showcased by seminal studies 
(e.g. Cohn and Lins, 2005; Koutsoyiannis and Montanari, 2007; Serinaldi et al., 2018) 
which have established the fact that for hydrological, non IID data the null hypothesis, 
which tacitly contains independence, is a priori wrong, and its rejection, if correctly 
interpreted, should point out to the wrong independence assumption. Still, the 
common practice has been to misinterpret outcomes in favour of trends. Part of the 
statistician community argues against the concept of significance testing (Nuzzo, 2014; 
Wasserstein and Lazar, 2016; Amrhein and Greenland, 2018; Trafimow et al., 2018; 
Wasserstein et al., 2019), with the main critique summarized in the statement of the 
American Statistical Association that “the widespread use of 'statistical significance' 
(generally interpreted as '𝑝 ≤ 0.05') as a license for making a claim of a scientific finding 
(or implied truth) leads to considerable distortion of the scientific process” 
(Wasserstein and Lazar, 2016). Other inference techniques for assessing the 
plausibility of changes under an a priori assumed model are also used, most notably 
change point analysis (Hinkley, 1970), which attempts to identify points of abrupt 
changes in the data. This approach too, is very sensitive on a priori hypotheses about 
the expected degree of variability in the data (a brief discussion on the issue in 
provided in Chandler and Scott, 2011). 

With a stronger focus on modelling power rather than confirmatory analysis, 
model selection criteria have been developed arising from Akaike’s work (Akaike, 
1969). Akaike has contributed to the introduction of information theory into model 
selection criteria (Akaike, 1974) which are now established worldwide in model 
inference (Anderson and Burnham, 2004) and are increasingly adopted in hydrology 
as well (e.g. Ye et al., 2008; Laio et al., 2009; Iliopoulou et al., 2018a). Information criteria 
are useful in that they try to achieve a better out-of-sample performance by prompting 
for parsimony when fitting the model to the calibration set. There is a vast literature 
on the asymptotic equivalence of information criteria and out-of-sample prediction 
measures under specific conditions (Stone, 1977; Shibata, 1980; Wei, 1992; Inoue and 
Kilian, 2006), which typically though imply large record lengths.  
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A discourse regarding the relative powers of the abovementioned ‘in-sample’ 
measures compared to the assessment of predictive or out-of-sample performance is 
active in numerous scientific fields (Breiman, 2001; Stein, 2002; Inoue and Kilian, 2006; 
Yarkoni and Westfall, 2017; Shmueli, 2010), while in fact, it has been argued that the 
distinction between the two approaches might only arise due to the different objectives 
of each study (Gauch, 2003; Inoue and Kilian, 2005). Obviously, predictive modelling 
dominates in operational fields concerned with short-term prediction, as numerical 
weather prediction (Lorenc, 1986), and in such domains, it is widely acknowledged 
that the model yielding the best predictions, in non-stochastic terms, is not necessarily 
the ‘true’ one (Shmueli, 2010).  

The premise of this work is that while explanatory performance of trends has 
been thoroughly explored in hydrological studies (e.g. Chandler and Scott (2011) 
provide a comprehensive review on the matter), much less attention has been given to 
the predictive performance of trend modelling. A simple explanation might lie in the 
fact that in many environmental studies trends have been employed as descriptors of 
changes or causal effects, and less as models for predictions, in spite of the fact that 
they strongly communicate expectations for the future by suggesting causal 
mechanisms (e.g. Fig. A2 on the combined use of the word ‘trends’ and ‘projections’). 
The second reason could be related to the scarcity of long-term environmental data for 
out-of-sample validation. Therefore, our aim is to assess the relevance of long-term 
trend modelling in terms of point prediction, not examining elements of stochastic 
prediction and categorically, not engaging in the identification of a ‘true’ model for the 
data. We deem that this shift in point-of-view may provide contrasting insights to 
current literature with respect to the relevance of trends for operational applications.  

8.4 Methodology 

 Out-of-sample validation schemes  

Cross-validation techniques are a systematic way to assess predictive power (Stone, 
1974; Simonoff, 2012). The procedure typically entails multiple runs of validation 
schemes on random partitions of the original dataset and summarizes the model skill 
from the sample of all validation scores. Standard cross-validation is not 
straightforward to apply for timeseries data where the order of the data must be 
respected. Instead the use of a ‘holdout’ set for validation is frequently applied, e.g. in 
hydrology this is done by reserving some data for validation, while the rest are used 
for calibration (Klemeš , 1986). We consider an alternative approach respecting the data 
order, by performing calibration and validation in moving-window partitions of the 
original dataset, that constantly shift forward in time till the end of the record is 
reached. This approach is known as ‘walk-forward’ analysis in the field of 
econometrics (Kirkpatrick II and Dahlquist, 2010), and it is advantageous in that 
instead of a single measure of out-of-sample performance obtained by the ‘split-
sample’ approach, a sample of values is obtained, which can be statistically analysed. 
Further, it compensates for hindsight bias providing realistic estimates of historical 
predictability of changes by a given model. The statistics of a model’s past 
performance can be considered a proxy of its future performance.  
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 Static calibration and validation 

We apply this type of analysis to the rainfall records by formulating two distinct 
calibration-validation schemes, which are illustrated in Fig. 8.4. In the first scheme 
(Fig.8.4a), we evaluate the models’ performance in capturing the variability of the 
recent 30-year period of each station based on calibration on the prior 30-year period. 
By this ‘static validation’ scheme we intend to evaluate whether extremes have 
changed in a consistent manner in the second half of the 20th century, as they are 
commonly assumed. We also examine the performance of the models in backward 
validation, i.e. in predicting observations occurring before the calibration period (Fig. 
8.4a). In order to maximize the exploitation of the length of each record, we apply this 
evaluation to the most recent period of each station, even if the final dates of all records 
do not coincide. We favour separate treatment of each station, since in this case our 
focus is placed on the operational exploitation of records for predictive purposes and 
less on a summary of the results for a specific time period. However, the majority of 
the records span the whole 20th century, and extend beyond, with a few exceptions 
that are mentioned in Table A1. In a second examination, we directly evaluate changes 
in the predictive performance of each model throughout the past 110 years up to 2009. 
Specifically, we compare the prediction errors of each model for the following climatic 
periods: 1900‒1929 (calibration period 1870‒1899), 1930‒1959 (calibration period 1900‒
1929), 1960‒1989 (calibration period 1930‒1959), and 1980‒2009 (calibration period 
1950‒1979). The end year (2009) of the last period (overlapping with the previous one 
by 10 years) is selected in order to maximize the number of stations having predictions 
for all four periods. This results to 52 stations for the AM and 51 for the AT, WDAV 
and PD indices.  

 
Figure 8.4 Explanatory sketch showing the two calibration and validation schemes (a. Static 
and b. Dynamic) for an example station. 
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 Dynamic calibration and validation  

The second scheme (Fig.8.4b) focuses on the historical performance of the models by 
the ‘dynamic’ (else, ‘walk-forward’) validation scheme introduced before. It assumes 
a hypothetical observer moving in time and making predictions for the future 30-year 
period updating the models as access to new information progressively becomes 
available. We formulate two different schemes for making these predictions. In the 
first, which we call block-moving calibration and validation, the models are calibrated 
on 30-year periods and validated by the next ‘unobserved’ 30 years, and this procedure 
is repeated by rolling the calibration and validation origin in time (Fig.8.4bi). New 
information is gradually taking the place of the past information, which is discarded 
by the 30-year sliding windows. The start of the first moving-window coincides with 
the start of each station, while the start of the last calibration moving-window is 59 
years prior to the end of the station, so that 30 years of validation data remain available. 
This last validation window is the recent 30-year window that is exploited for 
validation in the static scheme (Fig. 8.4a). The second scheme of the dynamic 
calibration-validation, which we call global-moving, validates the models using 
sliding 30-year periods, exactly as in the prior scheme, but calibrates the models on the 
whole available record, that is known at each time step to the observer. Therefore, the 
origin of the calibration window remains stable, but the window gradually extends in 
length as more data are assimilated into the model, while no data are discarded 
(Fig.8.4bii). This scheme explores the potential of employing all available information 
to make a prediction for the future. Since the validation periods are the same in both 
schemes, results between the two can be directly compared.  

For the evaluation of the candidate models we estimate the Root Mean Square 
Error, a standard and established metric of goodness of fit (Sharma et al., 2019). The 
RMSE is defined as the square root of the mean square error of the predicted values �̂�𝑖 
with respect to the observed 𝑥𝑖:  

RMSE = (
∑ (�̂�𝑖 − 𝑥𝑖)2𝑛

𝑖=1

𝑛
)

1/2

 (48) 

where 𝑛 is the length of the data. We present the sample RMSE distribution of the 
models for each station and we summarize the results by computing the average 
RMSE for each station and its standard deviation. For the longest uninterrupted record 
of the station, we present a comprehensive analysis including the temporal evolution 
of the errors. 
 

 Predictive models  

Let 𝑥 𝑖 be a stochastic process in discrete time 𝑖, i.e. a collection of random variables 𝑥 𝑖, 

and 𝑥: =  (𝑥1, … , 𝑥𝑛) a single realization (observation) of the latter, i.e. a timeseries. We 

assume that in time 𝑖 ≤  𝑛 the hypothetical observer makes a forecast based on a subset 
of the historical information. Namely from the entire available information that we 
have (the observed series (𝑥1, … , 𝑥𝑛)) we assume that the hypothetical observer knows 
only the subseries 𝑥 = (𝑥1, … , 𝑥𝑖).  

To predict the unobserved periods, past or future, we employ two model 
structures. The first is the typical linear trend model, encompassing two parameters, a 
slope 𝑏 and an intercept 𝑎, whose mean 𝜇 is a deterministic linear function of time 𝑡: 
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𝜇(𝑡) = 𝑎 + 𝑏𝑡 (49) 

The trend model is fitted via least-squares regression. Robust regression 
techniques are also explored, namely median quantile regression (Koenker and 
Hallock, 2001) and the Theil-Sen slope estimation (Sen, 1968; Theil, 1992), but they did 
not yield better predictions, and hence, the least-squares approach, which is also more 
rigorous in theoretical terms (e.g. Papoulis, 1990), was retained. For details on the 
application and discussion of the results, the reader is referred to the analysis 
presented in Appendix B.3.  

The second model considered is the mean model, including only one 
parameter, the mean of the calibration period, extrapolated to the unobserved periods: 

𝜇(𝑡) = 𝑎 (50) 

According to the followed calibration scheme, fitted to block-moving (local) 30 years 
or to all the known (global) period, the trend model is termed local trend (L-Trend) 
and global trend (G-Trend), respectively, and likewise, the mean model, is termed 
local mean (L-Mean) and global mean (G-Mean). In the local models, the period [𝑖 −
 59, 𝑖 −  30] is used for calibration and the [𝑖 −  29, 𝑖] for validation, while in the global 
models, the period [1, 𝑖 − 30] is used for calibration and the [𝑖 −  29, 𝑖] period for 

validation as in the former scheme. We note that these two seemingly simplistic 
predictive models, i.e. the linear model fitted with least-squares and the local average, 
can be found in a variety of theoretical results in statistical sciences, for instance use of 
(temporally) local data constitutes a central concept in the 𝑘-nearest neighbours 
technique, as discussed in Hastie et al. (2005), as well as in local regression as discussed 
in Chandler and Scott (2011). 
 

 Selected indices of rainfall extremes and quality control 

We examine four statistical indices of rainfall: annual maxima (AM), annual totals 
(AT), annual wet-day average rainfall (WDAV) and probability dry (PD) also 
computed at the annual scale. As wet, we consider any day with rainfall surpassing 
the threshold of 1 mm, while values below this threshold are counted as dry days taken 
into account for the PD estimation. We employ the following criteria for missing 
values. For the annual maxima we use a methodology proposed by Papalexiou and 
Koutsoyiannis (2013), according to which an annual maximum in a year with missing 
values is not accepted if (a) it belongs to the lowest 40% of the annual maxima values 
and (b) 30% or more of the observations for that year are missing. For the rest of the 
indices, we do not compute the yearly index in years with more than 15% of missing 
values. In general, most records have low percentages of missing values (Table A1), 
which in most cases are clustered in the beginning of the records. A few records have 
consecutive missing periods which might imply a change of instrumentation or 
relocation of the gauge. To avoid possible artefacts in trend estimation in static 
validation (in backward validation) that may arise from such cases, we analyse periods 
containing less than 5% of consecutive missing values of the yearly indices. For the 
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dynamic calibration and validation scheme, we fit the models only if there exist at least 
27 valid indices in each of the 30-year periods of calibration and validation. 
 

 Predictability of climatic changes under natural variability 

In order to understand the predictive performance of the considered models under 
typical conditions of natural variability, we run similar experiments with synthetic 
timeseries reproducing increasing degrees of persistence. We recall that persistence, 
also known as Hurst-Kolmogorov dynamics, is associated with enhanced natural 
variability at all scales (Koutsoyiannis, 2003), which in turn implies increased 
unpredictability at large time horizons, with some potential for predictability at short 
time steps due to the presence of temporal clustering (Dimitriadis et al., 2016). This 
provides a scientifically relevant comparison to the empirical data as rainfall series are 
known to exhibit mild to moderate degree of persistence (e.g. Iliopoulou et al., 2018b; 
Iliopoulou and Koutsoyiannis, 2019). Moreover, segments of persistent series resemble 
trends and can easily be misinterpreted as such (Cohn and Lins, 2005).  

Therefore, we examine both the comparative predictive performance of the four 
models for persistent processes, where long-term changes are the rule (Serinaldi and 
Kilsby, 2018a), and the effect of available record length on the quality of the model 
predictions. The latter becomes relevant in the global-moving scheme, in which the 
calibration period varies in length.  

8.5 Models’ performance in static validation 

Results from the performance of the local mean and local trend models on the last 30 
years of each station, as well as on the years preceding the 30-year calibration, are 
shown in Figure 8.5 for all studied indices.  
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Figure 8.5 Boxplots of the RMSE distribution from the static validation application to all 
stations, for the local mean (L-Mean) and local trend (L-Trend) models, for all rainfall indices. 
The band inside the box reports the median of the distribution, the lower and upper ends of 
the box represent the 1st and 3rd quartiles, respectively, and the whiskers extend to the most 
extreme value within 1.5 IQR (interquartile range) from the box ends; outliers are plotted as 
points. 

The local mean model performs on average better than the local trend model for 
all indices in capturing their most recent changes of extremes, while the performance 
of the local trend deteriorates considerably with respect to hindcasting the past. 
Interestingly, the larger discrepancies of the trends —both in future and past 
validation periods, are encountered in the annual maxima, followed by probability 
dry. In most of the opposite cases, of trends showing a better performance, the fitted 
slope is very mild, thus hardly differing from the local mean. A visual examination of 
the plots of the 60 long-term stations, provided in the Appendix B.3 (Fig. B.5-B.8), 
suggests a positive answer to the opening question, providing empirical evidence that 
climatic trends fluctuate and in fact, abruptly reverse. 
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Figure 8.6 Boxplots of the RMSE distribution from the static validation application to the 
stations with data in all four prediction periods, 1900-1929, 1930-1959, 1960-1989, 1980-2009, 
for the local mean (L-Mean) and local trend (L-Trend) models, for all rainfall indices. For the 
boxplots’ properties description, see Figure 8.4. 

In order to gain further insights into temporal changes of predictability, we compare 
the predictive performance of each model (L-Mean, L-Trend) for four distinct climatic 
periods, covering the past 110 years up to year 2009. It is observed (Fig. 8.6) that the 
error distribution of the L-Trend model does not present pronounced temporal 
differences for the indices among these periods, with the exception of PD which shows 
a larger, yet not consistent, variability over these periods. Among the four periods, the 
L-Trend model performed best in the prediction of the 1960–1989 period, based on 
calibration on 1930–1959, a period which however does not include the decades of 
pronounced increase in greenhouse emissions (from the 60s and thereafter). The 
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predictive performance of trends on the latest period is not markedly different from 
the previous periods, if not it is slightly worse for some indices, e.g. the AT. A 
particular pattern is neither observed for the L-Mean. As it will be discussed next, these 
results seem to be well-within the range of the statistical variability of the predictive 
skill of each model, evaluated from the whole record. Finally, in this examination as 
well, the L-Mean model proves superior to the L-Trend (only one or two exceptions 
are seen). 

8.6 Moving-window validation of predictive performance  

In this section, we explore the predictive qualities of the models by delving into the 
statistical analysis of the whole record, considering the models from the global-
moving calibration as well, namely, the global trend and the global mean.  

  An examination of one of the longest records 

As an illustration of the application of the methodology, we first explore the longest 
uninterrupted station of our dataset, i.e. the Prague station in Czech Republic (211 
years), shown in Figure 8.7. The models’ error evolution pattern is reflective of their 
performance. For the majority of time, the mean models are at the lower front of the 
errors, with the local mean model showing slightly superior performance. The local 
trend model results in higher errors and its predictions may quickly deteriorate, taking 
longer to converge to the mean models’ predictions in areas of lower errors (Fig. 8.7). 
This is attributed to the fact that the trend model projects to the future sensitive 
features of the calibration period, i.e. extreme observations or ‘trendy’ behaviour, 
which do not have a high chance to survive the end of the calibration period. The more 
parsimonious structure of the mean model encapsulates minimal but robust 
knowledge of the process behaviour, which is more likely to characterize its future 
evolution as well. In the absence of an underlying global trend and as the sample 
grows larger, the global trend model converges to the predictions of the mean models, 
but its performance remains slightly inferior even towards the end of the record. 
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Figure 8.7 Case study of the rainfall station in Prague. Timeseries of annual maxima, annual 
totals, annual wet-day average and annual probability dry, error evolution and distribution of 
the prediction RMSE for the four prediction models, global and local trend, and global and 
local mean. 

 

 Application to all records 

Figures 8.8-8.11 show the empirical distributions of the models’ predictive RMSE for 
each rainfall index and for all 60 stations. For most stations the local mean and global 
mean models have the lower probabilities of exceeding high errors, contrary to the 
local trend model whose error distribution is clearly shifted to the right, in the higher 
error area. The distribution of the predictive RMSE of global trend model is located in 
between the two, showing in general a better behaviour than the local trend.  



178 
 

 

 
Figure 8.8 Empirical cumulative distribution function (ECDF) for the prediction RMSE of 
annual maxima for the local trend, the global trend, the global mean and the local mean model 
for the 60 stations. 
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Figure 8.9 Empirical cumulative distribution function (ECDF) for the prediction RMSE of 
annual totals for the local trend, the global trend, the global mean and the local mean model 
for the 60 stations. 
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Figure 8.10 Empirical cumulative distribution function (ECDF) for the prediction RMSE of 
wet-day average rainfall for the local trend, the global trend, the global mean and the local 
mean model for the 60 stations 
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Figure 8.11 Empirical cumulative distribution function (ECDF) for the prediction RMSE of 
probability dry for the local trend, the global trend, the global mean and the local mean model 
for the 60 stations. 

A summary of the distributional properties of the prediction RMSE of all stations 
shown in Fig. 8.8-8.11, is provided in Fig. 8.12, in terms of the average and the standard 
deviation of the RMSE distribution of each station. The average values of the latter also 
summarized in Table 8.1. Accordingly, the models’ performance can be ranked from 
best to worst as follows: (1) local mean, (2) global mean, (3) global trend and (4) local 
trend. The local mean model marginally outperforms the global mean with respect to 
the average RMSE, yet in terms of the standard deviation of the RMSE distribution 
(Fig. 8.12b, d, f, h), it is evident that the local mean model prevails showing smaller 
standard deviation of prediction errors, and thus more reliable performance. In this 
case, the linear trend model shows markedly inferior performance.  
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Figure 8.12 Boxplots of the average prediction RMSE and standard deviation of RMSE as 
estimated for each station from moving window application of the local (L-) mean, global (G-
) mean and local (L-) and global (G-) trend for all the indices. For the boxplots’ properties 
description see Figure 8.4. 
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Table 8.1 Averages of the average RMSE and the standard deviation of RMSE of the four 
models (local (L-) mean, global (G-) mean, local (L-) trend and global (G-) trend) from all 
stations and for all four indices, as shown in Figure 8.12.  

  Annual Maxima (mm)   Annual Totals (mm)  

 L-mean G-mean G-trend L-trend L-mean G-mean G-trend L-trend 

Average 
RMSE 

16.00 16.05 16.73 18.76 149.07 154.18 154.77 174.7 

St. Dev. 
RMSE 

3.04 3.13 3.37 4.74 21.52 23.02 27.4 45.45 

Wet-Day Average (mm/d)  Probability Dry (-)   

 L-
mean 

G-mean G-
trend 

L-trend L-mean G-mean G-trend L-trend 

Average 
RMSE 

0.98 1.01 1.11 1.2 0.04 0.05 0.05 0.05 

St. Dev. 
RMSE 

0.18 0.18 0.27 0.39 0.01 0.01 0.01 0.02 

 
 

8.7 Models’ performance under natural variability: an experiment with 
synthetic series 

Following the rationale outlined in Section 8.4.6, the goal of this experiment is to test 
the performance of the predictive models in conditions of enhanced structured 
uncertainty, characterized by changes at all scales and ‘trend-like’ behaviour for small 
periods. As the latter are distinctive features of persistent processes (Koutsoyiannis, 
2002), we produce five long-term timeseries from a standard normal distribution with 
length 𝑁 = 10 000 that reproduce HK dynamics, using the SMA algorithm 
(Koutsoyiannis, 2000; Dimitriadis and Koutsoyiannis, 2018). The series are generated 
with increasing degree of persistence, quantified through the Hurst parameter 𝐻, from 
mild persistence 𝐻 = 0.6 to very strong 𝐻 = 0.99. In order to explore the impact of 
record length we also examine smaller segments of the same timeseries of lengths 𝑁 = 
100 and 𝑁 = 1000. Because smaller segments are impacted by larger estimation 
uncertainty, we plot the average ECDF of the prediction RMSE estimated from non-
overlapping segments extracted from the original timeseries of length 𝑁 = 10 000. 
Therefore, the 𝑁 = 100 plots correspond to the average of 100 timeseries of length 100, 
derived from the 10 000 series. Likewise, the 𝑁 = 1000 series are the average of 10 
timeseries of length 1000. The plots of the ECDF distribution (Fig.8.13) of the 
prediction RMSE for the four predictive models are produced employing the same 
dynamic validation schemes applied for the real-world stations.  

The contrasting performance of the two local models is observed here as well; 
local features are better exploited by the mean rather than the trend model, irrespective 
of the record size. The latter becomes important when the global models are 
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considered. In the absence of a global underlying trend, the increased variability 
encountered in small calibration periods (𝑁 = 100) leads the global trend model to bad 
predictions. When the trend model is calibrated from larger series, the trend 
component is smoothed out, and therefore, the prediction performance approaches 
the one from the mean models. Regarding the competition between global and local 
mean, it appears that it is a function of both the record length and degree of 
persistence. For large record lengths and 𝐻 > 0.7, the local mean model prevails, while 
for small record lengths and medium persistence, the two are comparable. In 
persistent process, where clustering arises, local information is likely to be more 
relevant for prediction, yet for long-term prediction as is the case here, ‘local’ may need 
to extend a few steps back in the past, which for small record lengths could be within 
the reach of the calibration period employed for the global mean model. Obviously 
though, results from the global model become less relevant when the sample is large 
and therefore global information extends too far in the past. A thorough treatment of 
the theoretical basis and practical formulation of local mean models in relation to the 
persistence properties of the parent process is given by Koutsoyiannis (2020b).  

We note that the behaviour observed in the 𝑁 = 100 plots is qualitatively 
consistent with the one observed from the rainfall records. Moreover, indices known 
for their persistence properties, such as annual totals (Iliopoulou et al., 2018b; Tyralis 
et al., 2018) and probability dry (Koutsoyiannis, 2006) show a slight preference for the 
local mean model. In other cases where persistence is less manifested, as in annual 
maxima (Iliopoulou and Koutsoyiannis, 2019), the performance of the global and the 
local mean model in terms of the average RMSE are indistinguishable (Fig. 8.12); the 
variance of the errors still being smaller for the latter. 
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Figure 8.13 Empirical cumulative distribution function (ECDF) for the prediction RMSE of the 
HK timeseries resulting from application of the local trend, the global trend, the global mean 
and the local mean model, for segments of the original timeseries with increasing sample size, 
N =100, 1000, 10 000 (original).  The ECDF for the first two lengths are the averages as 
computed from 100 and 10 non-overlapping segments of the 10 000 values. 

8.8 Discussion 

 On parsimony and predictive accuracy 

In the above controlled experiment, where the generating mechanism of the data is 
known, it is evident that among the four ‘false’ models, the local mean yields the most 
accurate predictions in terms of RMSE, using in-sample data more efficiently by means 
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of its single parameter. The increase in predictive accuracy and statistical efficiency is 
tightly associated with the notion of parsimony, which is a dual criterion measuring 
the model’s fit to the data as well its simplicity (Gauch, 2003). In these terms, the local 
mean model is deemed to be a parsimonious model, since it fits the out-of-sample data 
either better or at least equally well to the more complicated trend model.  

The reason behind the sometimes interchangeable use of the words parsimony 
and simplicity is a certain tendency of simple models to make reliable predictions, 
which among other approaches as information criteria discussed in Section 8.3.1, is 
also incorporated as a concept in Bayesian analysis assigning higher prior probabilities 
to simpler models, and a posteriori favouring the simpler model (Berger and Bernardo, 
1992; Berger and Pericchi, 1996; Gauch, 2003 and references therein). More recent 
developments from the Bayesian standpoint include constructing penalized 
complexity priors (Simpson et al., 2017), while the concept informs variable selection 
in linear regression though various techniques as the Lasso and ridge regression 
(Tibshirani, 1996). Another demonstration of the relation between predictive accuracy 
and simplicity is the possibly better predictive performance in terms of mean square 
error of simpler, yet misspecified models, compared to the ones derived from the 
correctly structured model (Hocking, 1976); for instance, Wu et al. (2007) provided a 
set of conditions for which this holds true in the case of linear models. Therefore, 
theoretical arguments are in favour of simpler predictive models, all the more so in the 
case of natural processes characterized by a great degree of variability, for which our 
understanding is limited. A comprehensive discussion on the connection of simplicity 
to wider epistemological and philosophical principles is provided in Gauch (2003). 

 

  On alternative climatic predictors of rainfall 

It is beyond the scope of the paper to formulate and suggest a good climatic prediction 
method for rainfall. Having shown however that past climatic trends of rainfall are not 
useful predictors of its future evolution, it is tempting to reflect on a common 
alternative option for long-term prediction, namely the use of large-scale climatic 
oscillations. The latter are considered a potential source of decadal climatic 
predictability (Latif et al., 2006). The predictive skill arising from the use of a climatic 
oscillation as a covariate for prediction relies upon two factors; existence of significant 
correlation of rainfall with large-scale climatic oscillations, and reliable predictability 
of the latter. On the over-decadal climatic scale examined here fulfilment of both 
conditions is challenging. There is an increasing number of studies relating climatic 
oscillations to decadal rainfall, but both the type of the correlated oscillation and the 
specification of the correlation (type, lagged response), are region-specific (e.g. 
Krichak et al., 2002; Scaife et al., 2008; Lee and Ouarda, 2010; Sun et al., 2015; 
Krishnamurthy and Krishnamurthy, 2016; Nalley et al., 2019). Therefore, with respect 
to multi-sites analyses, the identification of robust response patterns of decadal rainfall 
to climatic oscillations constitutes a nontrivial research subject. Even more challenging 
is the predictability of the climatic oscillations themselves on the 30-year scale. For 
instance, it is only during the last 5 years, that prediction of the North Atlantic 
Oscillation (NAO) has become skillful on the seasonal scale, and at the moment 
research efforts are directed towards predictability on beyond annual scales (Scaife et 
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al., 2014; Smith et al., 2016). While some progress has been reported in terms of the 
decadal predictability of climatic oscillations related to the NAO, as the Atlantic Multi-
decadal Oscillation (AMO), predictability of the actual values of the NAO beyond the 
seasonal scale remains very limited (Smith et al., 2016; Yeager and Robson, 2017). A 
relevant case study by Lee and Quarda (2010) concluded that predictions of decadal 
streamflow extremes using the NAO as a covariate were impacted by large uncertainty 
to the point of almost being non-informative. Although a promising research subject, 
it appears that in the best case, there is still way to go before attaining hydrologically 
relevant climatic predictions based on climatic oscillations, at least to the degree that 
this is becoming possible at the seasonal scale for some regions (e.g.  Scaife et al., 2014). 
Yet the case that this proves to be infeasible cannot be excluded (Koutsoyiannis, 2010). 
 

 Can a stationary framework be compatible with a deterministic forcing? 

A question that often arises is the relevance of past predictability under the hypothesis 
of a climate impacted by monotonic anthropogenic forcing, not existing in the past. In 
this case, it could be argued that the examination of the predictive performance in the 
past in which stationarity is implicitly assumed, is an irrelevant approach as the past 
might no longer representative be of the future. As a first remark, it is worth recalling 
that change is not synonymous to non-stationarity, while in the presence of 
uncertainty in every real-world system, the choice of a stationary versus a non-
stationary model is done in terms of modelling convenience rather than based on the 
existence (or co-existence) of deterministic drivers (Montanari and Koutsoyiannis, 
2014; Koutsoyiannis and Montanari, 2015b). De Luca et al. (2019) yet shed further light 
on this misconception by the following experiment. They show that artificially 
imposed trends —of the projected magnitude of climate scenarios, on the parameters 
of a sub-hourly rainfall generator regarding bursts intensity, duration, and number of 
occurrences, were masked on coarser temporal scales and as a result, they could be 
adequately modelled by a stationary extreme value model. This suggests that the 
presence of deterministic drivers in a system does not disfavour stationary modelling. 
For there is the possibility that even systematic changes may not be manifested at the 
scales of interest to the degree that they warrant a more complicated representation 
for the future. Hence, the examination of a stationary framework is justified also in the 
presence of monotonic and accelerating forcing, as it aligns with the abovementioned 
principle of parsimonious modelling. Therefore, the question shifts from the existence 
or not of deterministic drivers, to evaluation of the degree to which observed changes 
require a more complicated modelling. In our case, it is assumed that the past is still 
representative enough for the future in order to achieve a similar degree of 
predictability by the given models, which is not falsified by the examination of the 
recent period. The entire question however relies on a simplistic view of complex 
systems, i.e. that just one factor (or the change thereof) suffices to determine the 
system’s future evolution. In our view, this is not a logically consistent framework for 
dealing with complex systems. 
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8.9 Summary and conclusions 

Under the popular assumption of intensification of the water cycle due to global 
warming, a considerable deal of contemporary research in hydrology revolves around 
the study of temporal changes of extremes, with the application of trend analyses 
being on the rise during the past two decades. While the explanatory analysis of trends 
has dominated the relevant studies, assessment of the predictive skill of trend models 
has not been equally assessed, despite the apparent significance of such a task for risk 
planning. This research reframes the problem of trend evaluation, as a model selection 
problem oriented towards identifying the model with the best predictive qualities in 
deterministic terms, which is neither equivalent to the ‘true’ model nor to the model 
better at explaining the in-sample data.  

For this purpose, we introduce a systematic framework for evaluating 
projections of trends by means of comparing the prediction RMSE to the one obtained 
from simpler mean models. We perform a variation of cross-validation, also known as 
walk-forward analysis, devising two distinct calibration and validation schemes (Fig. 
8.4). In block-moving calibration we fit the linear trend and mean models to 30 years 
of data (local trend and local mean) and we validate the results based on the outcome 
of their predictions for the next 30 years. This procedure is repeated using sliding 
windows till the end of the record is met. In global-moving calibration, we fit the 
models to all the known period (global trend and global mean), assuming that in the 
beginning, one knows only the first 30 years, and progressively the calibration period 
grows larger. In this case too, we evaluate the outcome of the predictions of the models 
for the next 30 years, therefore the projections of the four models can be compared in 
terms of the statistics of their empirical distribution of errors. 

The models compete in predicting the out-of-sample behaviour of four rainfall 
indices: annual maxima, annual totals, annual wet-day average rainfall and 
probability dry at the annual scale, as estimated from a unique dataset comprising the 
60 longest rainfall records surpassing 150 years of daily data. Results show that models 
rank from best to worst as follows: local mean, global mean, global trend and local 
trend. A separate examination of the latest 30-year period for each station confirmed 
the above rank of the models as well. The temporal changes in the prediction error 
distribution among four fixed climatic periods, common for all stations covering 110 
years up to 2009, are also investigated. Fluctuations of predictability do occur among 
the climatic periods, yet no increase in predictability is achieved by the local trend 
model for the latest period (1980–2009), compared to earlier periods. Results from both 
analyses show that future rainfall variability is on average better predicted by mean 
models, since local trend models identify features of the process that are unlikely to 
survive the end of the calibration period, either being extreme observations, or ‘trend-
like’ behaviour. These features are smoothed out in longer segments, which is the 
reason behind the better performance of global trends. Robust regression techniques 
were also employed for the calibration of local trends but perhaps not surprisingly, 
did not improve the out-of-sample predictions (see discussion in Appendix B.3).  

In an attempt to reproduce the observed behaviour, we generate long-term 
timeseries exhibiting long-term persistence or HK dynamics (Koutsoyiannis, 2011b; 
O’Connell et al., 2016; Dimitriadis, 2017), and carry out the same analysis. Persistent 
processes show enhanced variability and a user unfamiliar with their properties may 
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misinterpret segments of their timeseries as trends, which perhaps explains why trend 
claims have been that common lately. Results from the synthetic records show 
qualitative similarities with the ones from empirical rainfall records, known to exhibit 
persistence, depending on the scale and studied index (Koutsoyiannis, 2006; Markonis 
and Koutsoyiannis, 2016; Iliopoulou et al., 2018b; Iliopoulou and Koutsoyiannis, 2019). 
The local and global mean outperform the local trend model for all degrees of 
persistence and sample sizes, while for small record lengths (𝑁 = 100) the performance 
of the global trend model is notably inferior too. Local and global mean models hardly 
show differences for medium degrees of persistence, but the local mean prevails for 
strong persistence. 

From a systematic investigation of long-term rainfall records, corroborated by 
simulation results, we have verified that local trends have poor out-of-sample 
performance, being outperformed in their predictions by simpler models, as the local 
mean. This empirical finding suggests that the large inherent variability present in the 
rainfall process makes the practice of extrapolating local features in the long-term 
future dubious, especially when the complexity of the latter increases. This in turn 
questions the theoretical and practical relevance of projections of rainfall trends and 
the grounds of the related abundant publications. 
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9.  SYNOPSIS AND OUTLOOK 

9.1 Summary of scientific background and motivation 

Scientific interest in hydrological extremes has historically been at the center of 
hydrology and engineering studies. At present, amid growing climate change 
concerns, this interest has reached all-time high levels (see Section 8.3.1). What is more, 
during the past decades, the increasing availability of examples of catastrophic events 
and related engineering disasters has called into question traditional risk perception 
and modelling approaches. As a result, there is no shortage of scientific efforts to 
explain the variability observed in rainfall and streamflow extremes.  

In most studies, the assumption of independence of extremes is omnipresent, 
although its validity has been challenged for the parent hydrological processes since 
the mid 20th century (Hurst, 1951). Yet the process’s extremes are still widely treated 
as independent random variables, while it has become common practice to view any 
deviations from independence as signals of deterministic drivers. As a result of a priori 
resorting to the independence assumption, the modelling focus is dominated by the 
study of the marginal distribution of extremes overlooking their temporal variability 
and dependence properties. At the same time, the scarce studies that deal with 
dependent extremes mostly employ methods of statistics that treat extremal 
dependence as a singular behaviour, decoupled from the variability of the parent 
process.  

The central objective of this thesis is to investigate and model the temporal 
dynamics of extremes under the framework of stochastics, without employing the IID 
assumptions of statistics that are unlikely to be tenable in real-word conditions. To this 
aim, a rare dataset of long-term observational records is compiled. The goal is to 
integrate the understanding and modelling of the temporal dynamics of extremes 
from seasonal to climatic scales, to that of the parent hydrological process, as an 
inherent part of its variability. Such an approach provides novel insights into the 
dynamics of hydrological extremes that may enhance risk perception and inform 
related mitigation practices. The relevant contributions are discussed below. 

9.2 The main contributions 

The magnitude of extremes is determined by the marginal distribution of their parent 
process, yet their temporal distribution that critically affects our perception of them, is 
also controlled by the joint properties of the process. As the assumption of 
independence dominates the study of extremes, the latter are seldom studied. This 
thesis contributes to the stochastic characterization and modelling of the temporal 
dynamics of daily rainfall and streamflow extremes at three scales: (a) the seasonal, (b) 
the annual, and (c) the climatic. The respective contributions are presented below. 
 

 On seasonal dynamics 

Chapters 4 and 5 focus on seasonal dynamics in the rainfall and streamflow extremes. 
In particular, Chapter 4 deals with the change in the distributional properties of 
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seasonal rainfall extremes, and Chapter 5 investigates seasonal dependence of 
streamflow extremes. The main contributions are: 

(a) An objective methodology is proposed to perform season identification in 
extreme daily rainfall and model the resulting extreme properties in each 
season. The framework employs the Akaike information criterion to resolve the 
problem of subjectively selecting an optimal number of extreme rainfall seasons 
and their monthly partition. 

(b) The effect of seasonality on extreme rainfall properties is discerned. Seasonality 
affects the central tendency of rainfall maxima, being manifested by a change 
in the scale and location parameters of the seasonal extreme value distributions. 
On the other hand, the shape of their probability distribution and its tail do not 
substantially vary from season to season. Therefore, a pooled estimation of the 
shape parameter of seasonal and annual extremes is suggested to reduce 
uncertainty.  

(c) Estimation uncertainty in fitting seasonal-annual maxima distributions is 
shown to be relevant even for long-term rainfall records. In this respect, 
extreme-oriented fitting methods, namely weighted-least squares, are 
proposed to resolve inconsistencies that may arise from an independent fitting 
of the extreme value distributions to seasonal and annual extremes.  

(d) Rivers in Europe are shown to exhibit persistent features at the seasonal 
timescale, manifested as correlation between preceding average flows and 
anteceding seasonal ‘extreme’ flows, i.e. peak flows in high flow season, and 
average flows in low flow season, respectively. This correlation can be explored 
to increase seasonal predictability which is generally higher for low flows, but 
may be significant for high flows as well depending on the climatic region and 
catchment properties.  

(e) Seasonal streamflow predictability is found to be enhanced in less humid 
climatic regimes and catchments dominated by baseflow and characterized by 
slower response times. 
 

 On long-term persistence dynamics 

Chapters 2-3 and 6-7 deal with long-term extremal dynamics stemming from presence 
of persistence, i.e. HK dynamics in the parent process. In particular, Chapter 2 reviews 
the existing theory and modelling practices for dependent extremes, Chapters 3 
revisits the case for persistence in the annual rainfall process, while Chapters 6-7 deal 
with propagation of persistence to the properties of the extremes. Specifically, 
Chapters 6 examines the effects of persistence on the multi-scale occurrences of 
extremes, whereas Chapter 7 investigates its manifestations in extreme value 
modelling. The respective contributions are: 

(a) The presence of HK dynamics in the annual rainfall process is validated using 
a global rainfall dataset (1265 stations). Persistence is quantified through a 
common Hurst parameter equal to 𝐻 ≈ 0.6. Approximately 2.5% of the stations 
show even stronger dependence that cannot be explained by the common 𝐻 
parameter. Annual rainfall correlations are low but deviate from independence, 
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while the decay of the correlation structure is slower than predicted by a 
Markovian process.  

(b) A rare dataset of long-term daily rainfall records surpassing 150 years is 
compiled to gain insights into rainfall historical variability. The 
abovementioned second-order scaling behaviour is supported by evidence 
from this dataset as well, and further the presence of a second weaker scaling 
regime at shorter time-scales (of the order of months to few years), is revealed.  

(c) It is shown that extremes tend to ‘hide’ the persistence of the parent process, 
often falsely signalling independence. Furthermore, persistence and heavy tails 
have synergistic effects on the temporal properties of extremes. As a matter of 
fact, persistence of non-Gaussian extremes cannot be retrieved solely by 
second-order characterizations, such as the Hurst parameter and the dispersion 
index. The latter are only relevant for Gaussian processes, thus of limited 
interest to the studied processes. 

(d) A new probabilistic index is formulated to reveal extremal long-term clustering 
via the multi-scale probability of not exceeding a threshold, termed the NEPvS 
index (Non-Exceedance Probability vs Scale). A related two-parameter model 
is introduced which captures the scaling behaviour of extreme event 
occurrences for processes exhibiting a range of second-order and marginal 
properties, including strong persistence and heavy tails. 

(e) Evidence of persistence diminishes as the threshold increases and thus, the 
examination of lower thresholds is essential for retrieving it. As the threshold 
increases, the behaviour of extremes may falsely suggest independence of the 
parent process.  

(f) The index brings forward the central manifestation of persistence in extremes, 
i.e. the increase of the probability of non-occurrence. This means that prolonged 
periods of absence of extreme events are more probable for persistent processes 
than for IID ones.  

(g) On the other hand, persistence also alters the conditional properties of extremes 
at a given scale (as in annual POT events) by producing short-term clustering. 
Compared to an IID process, dependent extremes show an increase in duration, 
and hence, in aggregate intensity, and are characterized by positive association 
between their number and intensity. Thus, their temporal dynamics are more 
challenging to hydrological design and risk management than those of an IID 
process.  

(h) Extreme value theory under dependence is reviewed and open questions 
pertaining to persistent processes are approached through Monte Carlo 
simulations. It is found that the GEV distribution remains a good sub-
asymptotic model for block maxima even for strongly persistent processes. In 
such cases, similar to the IID case, convergence to the Fréchet distribution is still 
much faster than to the Gumbel, while fitting to the higher-quantile region 
improves by the weighted least-squares method.  

(i) The extremal index theory formulated for extremes exhibiting local dependence 
is found to be only partially relevant for persistent processes, characterized by 
both short- and long-range dependence. In agreement to the theory, in a 
persistent process the probability of exceedance of extremes is lower compared 
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to the IID process which acts as the upper bound of the exceedance probability 
distribution. Persistence is reflected in the parameterization of the GEV 
distribution in the following way: (i) the shape parameter remains unaltered, as 
it is a property of the marginal distribution, (ii) the location parameter is lower, 
as a result of clustering, yet (iii) the scale parameter increases —contrariwise to 
extremal index theory, as extremes inherit part of the increased variability of 
the parent persistent process. 

(j) The investigation of temporal properties of rainfall extremes from long-term 
records exposes departures from the IID behaviour which are shown to be 
consistent to their persistence structure. Evidence of stronger dependence is 
found for streamflow extremes.  

(k) HK-type models calibrated only the first four moments and the second-order 
scaling behaviour of the process, show promising results in capturing both 
short-term and long-term clustering patterns of rainfall and streamflow 
extremes.  

 

 On future projections of climatic rainfall dynamics 

Chapter 8 examines the empirical and theoretical grounds for the increasing body of 
literature dealing with rainfall trends and their projections to the future. The respective 
contributions are: 

(a) A prediction-oriented framework is introduced for the evaluation of trends, 
formulated as a variant of cross-validation suited for analysis of timeseries. The 
framework allows bypassing the caveats of ‘statistical-significance’ methods, 
by directly considering predictive skill of trends instead of their explanatory 
power. It also enables a statistical assessment of hindsight bias in terms of the 
ability to foresee climatic trends. 

(b) The predictive performance of trend models is compared to the one of simpler 
mean models which shows that the process’s mean is on average a better 
predictor of the climatic behaviour of rainfall indices (annual totals, maxima, 
average and probability dry). The superior performance of the mean model is 
also the case for the most recent climatic period. 

(c) It is further shown that persistence favours prediction based on the recent past, 
i.e. based on the local mean, rather than the entire past, i.e. based on the global 
mean, in spite of the latter being closer to the true mean. The same holds true 
for the empirical rainfall records.  

 

9.3 Directions for further research  

At present the interest in the temporal variability of rainfall extremes and flood events 
is rising as the management of hydroclimatic risk is considered one of the most 
prominent challenges for the scientific community. This research investigated the 
temporal variability of hydrological extremes harnessing rare evidence from long-
term empirical records. Such evidence was in favour of temporal behaviours differing 
from the ones of IID processes, and whose modelling invokes a stochastic approach. 
A set of probabilistic frameworks and stochastic tools was developed based on the 
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idea of characterizing and modelling the observed extremal variability using inherent 
features of the parent process, highlighting, in particular, the role of the second-order 
properties. Further research is needed to improve the understanding of variability and 
dependence dynamics in hydrological extremes and identify links to engineering 
design and risk management practices. There are several ways in which this research 
can be extended on both fronts. 

In the first place, the globally increasing availability of hydrological data invites 
more studies on identifying dependence structures of extremes occurring at multiple 
spatio-temporal scales. In this respect, the probabilistic NEPvS index for temporal 
clustering could be applied to identify long-term clustering in other types of 
hydroclimatic extremes as well, such as floods and droughts (e.g. Zoukos et al., 2018). 
Moreover, the index can be easily extended to the study of multi-variate extremes in 
order to characterize multi-scale tail-dependence among different processes. This is 
essential to the study of spatial hydrological extremes, e.g. pertaining to modelling of 
joint flooding, and could also be of use to the emerging research field of compound 
events, i.e. of extreme impacts caused by joint dependent occurrences of less extreme 
events (Zscheischler et al., 2018). 

More research is required to improve the sub-asymptotic modelling of real-
world extremes by parsimonious modelling of their parent process. It is essential to 
extend the investigation of HK-type stochastic models performed herein (Dimitriadis 
and Koutsoyiannis, 2018) and identify the properties that are the most essential to an 
efficient reproduction of extremal variability, besides the identified second-order 
behaviour. In this respect, the recently proposed unbiased estimators of high order 
moments, known as 𝑘-moments (Koutsoyiannis, 2019c), offer an alternative way to 
deal with the uncertainty involved in characterizing the distribution’s tail. More 
insights into the temporal variability of hydroclimatic extremes are expected from 
their application (Glynis et al., 2020). 
 Furthermore, there is vast research potential in exploiting the existing physical 
understanding of the rainfall-generating process to improve seasonal prediction of 
rainfall and streamflow extremes. There is evidence that weather types and rainfall-
producing mechanisms affect the spatial distribution and probability of occurrence of 
extreme rainfall (Mamassis and Koutsoyiannis, 1996; Mamassis, 1997). On this basis, 
the formulated frameworks on extreme rainfall and flood seasonality (Iliopoulou et al. 
2018; 2019) could be applied to regions dominated by specific weather types and 
rainfall-producing mechanisms to investigate causal links. The methodology could 
then be refined to probabilistically update seasonal predictions of extreme events 
driven by specific weather-types. 

In addition, there are still ample grounds for bridging the gap between research 
in hydrological dependence and practical applications in the wider fields of 
engineering and finance. For instance, it is less acknowledged that temporal 
dependence in hydrological extremes may be manifested in the temporal distribution 
of insurance claims, affecting the risk management practices of the insurance and re-
insurance sectors (Serinaldi and Kilsby, 2016b; Papoulakos et al, 2020). In this respect, 
the observed patterns of extremal clustering could be linked to the temporal variability 
of actual insurance claims, revisiting the hydrological basis of current insurance 
practices against hydrological hazards. 
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 More straightforward effects of dependence and temporal patterns of extremes 
may be sought on various aspects of hydrological design, including the estimation of 
ombrian (IDF) curves, probabilistic flood mapping, and the estimation of return period 
and probability of failure of engineering works subjected to water-related uncertainty, 
among others (Koutsoyiannis, 2020b; Dimitriadis and Koutsoyiannis, 2020; Roy et al. 
2018; Serinaldi, 2015; Volpi et al. 2015).  The present work calling into question the 
practice of using projections of rainfall trends for long-term planning (Iliopoulou and 
Koutsoyiannis, 2020) could also be extended to other hydroclimatic processes, such as 
floods, seeking for robust alternatives in view of high climatic unpredictability. 

Last but not least, a promising avenue to achieve an improvement in holistic risk 
perception and mitigation is to investigate stochasticity in the evolution of societal 
vulnerability to hydrological extremes. Diverse types of spatial information on the 
human-water interface are becoming increasingly available and drive research dealing 
with human vulnerability indices and the spatio-temporal evolution thereof (Ceola et 
al., 2014; Sargentis et al., 2020). In this respect, combining historical evidence on the 
temporal variability of hydrological extremes to that of human vulnerability may 
provide original insights into the evolution of hydrological risk.  
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THE LONG-TERM RAINFALL RECORDS 

A.1 History and acknowledgments for dataset compilation 

The long-term rainfall dataset was manually compiled with the aim to assemble the 
longest-term rainfall records available at the time. The first version was compiled in 
2015 and included 27 rainfall records of over 150 years of daily data, which were 
explored in the analysis of Chapter 4. The dataset was updated in 2018 to its latest 
version including 60 rainfall records, which were used in the analyses of Chapters 6-
8. 

We greatly thank the Radcliffe Meteorological Station, the Icelandic 
Meteorological Office (Trausti Jónsson), the Czech Hydrometeorological Institute, the 
Finnish Meteorological Institute, the National Observatory of Athens, the Department 
of Earth Sciences of the Uppsala University and the Regional Hydrologic Service of 
the Tuscany Region (servizio.idrologico@regione.toscana.it) for providing the 
required data for each region respectively. We are also grateful to Professor Ricardo 
Machado Trigo (University of Lisbon) for providing the Lisbon timeseries, to Professor 
Marco Marani (University of Padua) for providing the Padua timeseries and to 
Professor Joo-Heon Lee (Joongbu University) for providing the Seoul timeseries. All 
the above data were freely provided after contacting the acknowledged sources. The 
remaining timeseries are publicly available by the data providers in the ECA&D 
project (http://www.ecad.eu), and in the GHCN-Daily database 
(https://data.noaa.gov/dataset/global-historical-climatology-network-daily-ghcn-
daily-version-3).  

Table A1 contains the essential information on the long-term rainfall stations, 
including name, geographic coordinates, record length and the respective data 
sources. A map depicting the location of the gauges is included in Chapter 6 (Fig. 6.5), 
while summary statistics for the rainfall records are provided in Table 6.2. The longest 
record in the dataset is the Padova rainfall data (289 years) followed by the Chuk-woo-
kee rainfall data from Seoul (241) years. 
 
Table A.1 Properties (name, source, latitude, longitude, start year, end year, record length and 
missing values percentage) of the 60 longest stations used in the analysis sorted by decreasing 
length. For the global datasets, the European Climate Assessment dataset (ECA; 
http://www.ecad.eu ) and the Global Historical Climatology Network Daily database 
(GHCND; https://data.noaa.gov/dataset/global-historical-climatology-network-daily-ghcn-
daily-version-3), the station identifier is also reported. Asterisks (*) in the “end year” column 
denote data that have been continued from a second source. The country of each station is 
abbreviated in parentheses aside its name. 

Name Source Lat Lon Start 
year 

End 
year 

Record 
length 

Missing 
% 

PADOVA (IT) Marani and Zanetti (2015) 45.87 11.53 1725 2013 289 5.04 
CHUK-WOO-KEE, 
SEOUL (KR) 

Jhun and Moon (1997) 
and Korea 
Meteorological Agency 

37.53 127.0
2 

1777 2017
* 

241 0.00 

mailto:servizio.idrologico@regione.toscana.it
https://data.noaa.gov/dataset/global-historical-climatology-network-daily-ghcn-daily-version-3
https://data.noaa.gov/dataset/global-historical-climatology-network-daily-ghcn-daily-version-3
http://www.ecad.eu/
https://data.noaa.gov/dataset/global-historical-climatology-network-daily-ghcn-daily-version-3
https://data.noaa.gov/dataset/global-historical-climatology-network-daily-ghcn-daily-version-3
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Name Source Lat Lon Start 
year 

End 
year 

Record 
length 

Missing 
% 

HOHENPEISSENBE
RG (DE) 

ECA: 48 
HOHENPEISSENBERG 
DE 

47.80 11.01 1781 2017 237 25.56 

PALERMO (IT) GHCND:ITE00105250 38.11 13.35 1797 2008 212 17.16 
PRAGUE (CZ) Czech 

Hydrometeorological 
Institute 

50.05 14.25 1804 2014 211 0.20 

BOLOGNA (IT) GHCND:ITE00100550 
and Dext3r of ARPA 
Emilia Romagna, Rete di 
monitoraggio RIRER 
(http://www.smr.arpa.em
r.it/dext3r/) 

44.50 11.35 1813 2018
* 

206 0.00 

JENA STERNWARTE 
GM (DE) 

GHCND:GM000004204 50.93 11.58 1826 2015 190 5.47 

RADCLIFFE (UK) Radcliffe Meteorological 
Station (Burt and 
Howden, 2011) 

51.76 -1.26 1827 2014 188 0.05 

UPPSALA (SE) Department of Earth 
Sciences of the Uppsala 
University 

59.86 17.63 1836 2014 179 0.02 

TORONTO (CA) GHCND:CA006158350 43.67 -
79.40 

1840 2015 176 5.97 

GENOA (IT) GHCND:ITE00100552 44.41 8.93 1833 2008 176 0.00 
ONNEN (NL) ECA :2491 ONNEN NL 53.15 6.67 1846 2018 173 1.10 
SAPPEMEER (NL) ECA:2507 SAPPEMEER 

NL 
53.17 6.73 1846 2018 173 1.10 

WOLTERSUM (NL) ECA:2553 WOLTERSUM 
NL 

53.27 6.72 1846 2018 173 1.14 

GRONINGEN (NL) ECA:147 GRONINGEN 
NL 

53.18 6.60 1846 2018 173 1.10 

RODEN (NL) ECA:516 RODEN NL 53.15 6.43 1846 2018 173 1.10 
 EELDE (NL) ECA:164 EELDE NL 53.12 6.58 1846 2018 173 1.10 
HELSINKI (FI) Finnish Meteorological 

Institute 
60.17 24.93 1845 2015 171 0.33 

MANTOVA (IT) GHCND:ITE00100553 45.16 10.80 1840 2008 169 5.75 
DEN_HELDER (NL) ECA:146 DEN_HELDER 

NL 
52.93 4.75 1850 2018 169 1.13 

 DE_KOOY (NL) ECA:145 DE_KOOY NL 52.92 4.78 1850 2018 169 1.13 
ANNA_PAULOWN
A (NL) 

ECA:521 
ANNA_PAULOWNA 
NL 

52.87 4.83 1850 2018 169 1.13 

CALLANTSOOG 
(NL) 

ECA:2382 
CALLANTSOOG NL 

52.85 4.70 1850 2018 169 1.13 

RITTHEM (NL) ECA:2503 RITTHEM NL 51.47 3.62 1854 2018 165 1.16 
VLISSINGEN (NL) ECA:166 VLISSINGEN 

NL 
51.44 3.60 1854 2018 165 1.16 

SCHOONDIJKE (NL) ECA:572 SCHOONDIJKE 
NL 

51.35 3.55 1854 2018 165 1.16 

'S_HEERENHOEK 
(NL) 

ECA:2350 
'S_HEERENHOEK NL 

51.47 3.77 1854 2018 165 1.16 

BRESKENS (NL) ECA:2377 BRESKENS NL 51.40 3.55 1854 2018 165 1.16 
MIDDELBURG (NL) ECA:2474 

MIDDELBURG NL 
51.48 3.60 1854 2018 165 1.16 

ARMAGH (UK) GHCND:UK000047811 54.35 -6.65 1838 2001 164 0.26 
OXFORD (UK) GHCND:UK000056225 51.77 -1.27 1853 2015 163 0.42 
HVAR (HR) ECA:1686 HVAR HR 43.17 16.45 1857 2018 162 7.74 
MELBOURNE 
REGIONAL OFFICE 
(AS) 

GHCND:ASN00086071 -
37.81 

144.9
7 

1855 2015 161 1.29 

STYKKISHOLMUR 
(IS) 

Icelandic Meteorological 
Office 

65.08 -
22.73 

1856 2015 160 1.00 
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Name Source Lat Lon Start 
year 

End 
year 

Record 
length 

Missing 
% 

GRYCKSBO_D (SE) ECA:6456 GRYCKSBO_D 
SE 

60.69 15.49 1860 2018 159 0.62 

FALUN (SE) GHCND:SW000010537  60.62 15.62 1860 2018 159 0.89 
VAEXJOE (SE) GHCND:SWE00100003 56.87 14.80 1860 2018 159 4.13 
FLORENCE (IT) Regional Hydrologic 

Service of the Tuscany 
Region 

43.80 11.20 1822 1979 158 2.00 

SYDNEY 
OBSERVATORY 
HILL (AS) 

GHCND:ASN00066062 -
33.86 

151.2
1 

1858 2015 158 0.48 

DENILIQUIN 
WILKINSON ST (AS) 

GHCND:ASN00074128 
 

-
35.53 

144.9
5 

1858 2014 157 1.37 

ZAGREB GRIC (HR) GHCND:HR000142360 
 

45.82 15.98 1860 2015 156 1.54 

ROBE 
COMPARISON (AS) 

GHCND:ASN00026026 
 

-
37.16 

139.7
6 

1860 2015 156 3.66 

GABO ISLAND 
LIGHTHOUSE (AS) 

GHCND:ASN00084016 
 

-
37.57 

149.9
2 

1864 2018 155 3.36 

NEWCASTLE 
NOBBYS SIGNAL 
STATIO (AS) 

GHCND:ASN00061055 -
32.92 

151.8
0 

1862 2015 154 2.55 

OVERVEEN (NL) ECA:2497 OVERVEEN 
NL 

52.40 4.60 1866 2018 153 1.25 

HOOFDDORP (NL) ECA:151 HOOFDDORP 
NL 

52.32 4.70 1866 2018 153 1.25 

ROELOFARENDSVE
EN (NL) 

ECA:540 
ROELOFARENDSVEEN 
NL 

52.22 4.62 1866 2018 153 1.29 

SCHIPHOL (NL) ECA:593 SCHIPHOL NL 52.32 4.79 1866 2018 153 1.25 
AALSMEER (NL) ECA:2351 AALSMEER 

NL 
52.27 4.77 1866 2018 153 1.25 

HEEMSTEDE (NL) ECA:2430 HEEMSTEDE 
NL 

52.35 4.63 1866 2018 153 1.25 

LIJNDEN_(NH) (NL) ECA:2466 
LIJNDEN_(NH) NL 

52.35 4.75 1866 2018 153 1.25 

LISSE (NL) ECA:2467 LISSE NL 52.27 4.55 1866 2018 153 1.29 
NIJKERK (NL) ECA:2484 NIJKERK NL 52.23 5.47 1867 2018 152 0.75 
 VOORTHUIZEN 
(NL) 

ECA:2542 
VOORTHUIZEN N 

52.18 5.62 1867 2018 152 0.75 

PUTTEN_(GLD) (NL) ECA: 551 
PUTTEN_(GLD) NL 

5.62 14.00 1867 2018 152 0.75 

ATHENS (GR) National Observatory of 
Athens 

37.97 23.72 1863 2014 152 0.66 

ELSPEET (NL) ECA:2404 ELSPEET NL 52.28 5.78 1867 2018 152 0.75 
LISBON (PT) Kutiel and Trigo (2014) 39.20 -9.25 1863 2013 151 1.06 
MILAN (IT) GHCND:ITE00100554 45.47 9.19 1858 2008 151 0.12 
NEW_YORK_CNTR
L_PK_TWR (US) 

GHCND: USW00094728  40.78 -
73.97 

1869 2018 150 0.51 
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SUPPLEMENTARY MATERIAL TO CHAPTERS 5, 6 & 8 

B.1       Supplement to Chapter 5 

 

Figure B.1 Scatterplots of lag-1 HFS (bottom) and LFS (top) streamflow correlations versus 
percentage of lakes PL of the Swedish catchments (a) and percentage of glaciers PG of the 
Austrian catchments (b). 

 

 

Figure B.2 Scatterplots of lag-1 correlation vs percentage of flysch area coverage PF for HFS 
(bottom) and LFS (top) analysis for the Austrian catchments. 
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B.2       Supplement to Chapter 6 

 
Figure B.3 Plots of 𝜼 and 𝝃  parameters versus the 𝑯  parameter and polynomial fitting for the 
(a) type-Pareto with 𝜶=0.1, (b) type-Pareto with 𝜶=0.2, (c) type-gamma with 𝜶=0.1 and (d) 
type-gamma with 𝜶=0.01. 

 

 
Figure B.4 Plots of 𝜼 and 𝝃  parameters versus the 𝑯  parameter and polynomial fitting for the 
normal distribution. 
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B.3       Supplement to Chapter 8 

RAINFALL TRENDS PERFORMANCE IN RECENT CLIMATIC PERIOD 

In Fig B.5-B.8, we illustrate the static validation scheme showing results from the 
projections of the local trend and the local mean model for all rainfall indices. 
 

 
Figure B.5 Local trend vs the local mean in projecting annual maxima for the 60 longest rainfall 
stations. 
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Figure B.6 Local trend vs the local mean in projecting annual totals for the 60 longest rainfall 
stations. 
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Figure B.7 Local trend vs the local mean in projecting wet-day average rainfall for the 60 
longest rainfall stations. 
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Figure B.8 Local trend vs the local mean in projecting probability dry for the 60 longest rainfall 
stations. 

 

FITTING ALGORITHMS: LEAST-SQUARES VS ROBUST REGRESSION 

We explore the effect of the linear trend definition and fitting algorithm on the results 
of the local trends, as trends in small segments are expected to be more sensitive to the 
choice of the fitting algorithm (Santer et al., 2000). The first algorithm is the widely 
used ordinary least-square estimation (OLS), which fits equation (48) to the data, by 
minimizing the sum of the squares of the differences between the observed data and 
the predictions of the linear model. Secondly, two alternative trend calibration 
approaches are explored that place less weight on influential observations (“outliers”) 
and thus belong to the range of ‘robust regression’ techniques. The first is the least 
absolute deviations (LAD) method, which estimates the regression coefficients by 
minimising the sum of absolute deviations of the predicted from the observed values, 
and is a special case of quantile regression, fitting the trend line to the median of the 
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observations, rather than the mean (Chandler and Scott, 2011). The second is the non-
parametric method of Theil-Sen slope estimation (Sen, 1968; Theil, 1992), which 
estimates the slope b of the linear model as the median of the pairwise slopes of all 
sample points. Among the different approaches that exist for the intercept coefficient, 
we follow Conover (1980) and estimated the intercept as 𝑎 = 𝑦0.5 − 𝑏𝑥0.5, where 𝑦0.5 and 
𝑥0.5 are the sample medians. 
 

 

Figure B.9 Boxplots of the average prediction RMSE as estimated for each station from moving 
window validation of the local trend using Least Squares regression (LS), least absolute 
deviation regression (LAD) and the Theil-Sen regression. For the boxplots’ properties 
description see Figure 8.5. 
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