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Abstract 

This thesis falls into the scientific areas of stochastic hydrology, hydrological modelling and 
hydroinformatics. It contributes with new practical solutions, new methodologies and large-scale 
results to predictive modelling of hydrological processes, specifically to solving two interrelated 
technical problems with emphasis on the latter. These problems are: 

(A) hydrological time series forecasting by exclusively using endogenous predictor variables 
(hereafter, referred to simply as “hydrological time series forecasting”); and 

(B) stochastic process-based modelling of hydrological systems via probabilistic post-processing 
(hereafter, referred to simply as “probabilistic hydrological post-processing”). 

For the investigation of these technical problems, the thesis forms and exploits a novel 
predictive modelling and benchmarking toolbox. This toolbox is consisted of: 

(i) approximately 6 000 hydrological time series (sourced from larger freely available datasets), 

(ii) over 45 ready-made automatic models and algorithms mostly originating from the four major 
families of stochastic, (machine learning) regression, (machine learning) quantile regression, 
and conceptual process-based models, 

(iii) seven flexible methodologies (which together with the ready-made automatic models and 
algorithms consist the basis of our modelling solutions), and 

(iv) approximately 30 predictive performance evaluation metrics. 

Novel model combinations coupled with different algorithmic argument choices result in 
numerous model variants, many of which could be perceived as new methods. All the utilized 
models (i.e., the ones already available in open software, as well as those automated and proposed 
in the context of the thesis) are flexible, computationally convenient and fast; thus, they are 
appropriate for large-sample (even global-scale) hydrological investigations. Such investigations 
are implied by the (mainly) algorithmic nature of the methodologies of the thesis. In spite of this 
nature, the thesis also provides innovative theoretical supplements to its practical and 
methodological contribution. 

Technical problem (A) is examined in four stages. During the first stage, a detailed framework 
for assessing forecasting techniques in hydrology is introduced. Complying with the principles of 
forecasting and contrary to the existing hydrological (and, more generally, geophysical) time 
series forecasting literature (in which forecasting performance is usually assessed within case 
studies), the introduced framework incorporates large-scale benchmarking. The latter relies on 
big hydrological datasets, large-scale time series simulation by using classical stationary 
stochastic models, many automatic forecasting models and algorithms (including benchmarks), 
and many forecast quality metrics. The new framework is exploited (by utilizing part of the 
predictive modelling and benchmarking toolbox of the thesis) to provide large-scale results and 
useful insights on the comparison of stochastic and machine learning forecasting methods for the 
case of hydrological time series forecasting at large temporal scales (e.g., the annual and monthly 
ones), with emphasis on annual river discharge processes. The related investigations focus on 
multi-step ahead forecasting. 

During the second stage of the investigation of technical problem (A), the work conducted 
during the previous stage is expanded by exploring the one-step ahead forecasting properties of 
its methods, when the latter are applied to non-seasonal geophysical time series. Emphasis is put 
on the examination of two real-world datasets, an annual temperature dataset and an annual 
precipitation dataset. These datasets are examined in both their original and standardized forms 
to reveal the most and least accurate methods for long-run one-step ahead forecasting 
applications, and to provide rough benchmarks for the one-year ahead predictability of 
temperature and precipitation. 

The third stage of the investigation of technical problem (A) includes both the examination-
quantification of predictability of monthly temperature and monthly precipitation at global scale, 
and the comparison of a large number of (mostly stochastic) automatic time series forecasting 



 

 xiv

methods for monthly geophysical time series. The related investigations focus on multi-step 
ahead forecasting by using the largest real-world data sample ever used so far in hydrology for 
assessing the performance of time series forecasting methods.  

With the fourth (and last) stage of the investigation of technical problem (A), the multiple-
case study research strategy is introduced −in its large-scale version− as an innovative alternative 
to conducting single- or few-case studies in the field of geophysical time series forecasting. To 
explore three sub-problems associated with hydrological time series forecasting using machine 
learning algorithms, an extensive multiple-case study is conducted. This multiple-case study is 
composed by a sufficient number of single-case studies, which exploit monthly temperature and 
monthly precipitation time series observed in Greece. The explored sub-problems are lagged 
variable selection, hyperparameter handling, and comparison of machine learning and stochastic 
algorithms. 

Technical problem (B) is examined in three stages. During the first stage, a novel two-stage 
probabilistic hydrological post-processing methodology is developed by using a theoretically 
consistent probabilistic hydrological modelling blueprint as a starting point. The usefulness of this 
methodology is demonstrated by conducting toy model investigations. The same investigations 
also demonstrate how our understanding of the system to be modelled can guide us to achieve 
better predictive modelling when using the proposed methodology.  

During the second stage of the investigation of technical problem (B), the probabilistic 
hydrological modelling methodology proposed during the previous stage is validated. The 
validation is made by conducting a large-scale real-world experiment at monthly timescale. In this 
experiment, the increased robustness of the investigated methodology with respect to the 
combined (by this methodology) individual predictors and, by extension, to basic two-stage post-
processing methodologies is demonstrated. The ability to “harness the wisdom of the crowd” is 
also empirically proven. 

Finally, during the third stage of the investigation of technical problem (B), the thesis 
introduces the largest range of probabilistic hydrological post-processing methods ever 
introduced in a single work, and additionally conducts at daily timescale the largest benchmark 
experiment ever conducted in the field. Additionally, it assesses several theoretical and qualitative 
aspects of the examined problem and the application of the proposed algorithms to answer the 
following research question: Why and how to combine process-based models and machine learning 
quantile regression algorithms for probabilistic hydrological modelling? 
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Περίληψη 

Η παρούσα διδακτορική διατριβή εμπίμπτει στους επιστημονικούς κλάδους της στοχαστικής 
υδρολογίας, της υδρολογικής μοντελοποίησης και της υδροπληροφορικής. Συνεισφέρει με νέες 
πρακτικές λύσεις, νέες μεθοδολογίες και αποτελέσματα μεγάλης κλίμακας στην μοντελοποιήση 
υδρολογικών διεργασιών, συγκεκριμένα στην επίλυση δύο στενά συνυφασμένων τεχνικών 
προβλημάτων με έμφαση στο δεύτερο. Τα προβλήματα αυτά είναι: 

(A) η πρόβλεψη της μελλοντικής συμπεριφοράς υδρολογικών διεργασιών χρησιμοποιώντας 
αποκλειστικά ενδογενείς μεταβλητές πρόβλεψης (στο εξής αναφερόμενη ως «πρόβλεψη 
υδρολογικών χρονοσειρών»), και 

(B) η στοχαστική μοντελοποίηση υδρολογικών συστημάτων μέσω πιθανοτικής 
μετεπεξεργασίας αποτελεσμάτων διεργασιακής υδρολογικής μοντελοποιήσης (στο εξής 
αναφερόμενη ως «πιθανοτική μετεπεξεργασία αποτελεσμάτων υδρολογικής 
μοντελοποίησης»). 

Για τη διερεύνηση των εν λόγω τεχνικών προβλημάτων, αναπτύσσεται και αξιοποιείται 
εργαλειοθήκη πρότυπης μοντελοποίησης και συγκριτικής αξιολόγησης αποτελούμενη από: 

(i) περίπου 6 000 υδρολογικές χρονοσειρές προερχόμενες από μεγαλύτερες ελεύθερα 
διατιθέμενες βάσεις δεδομένων, 

(ii) περισσότερα από 45 αυτοματοποιημένα μοντέλα και αλγορίθμους (διαθέσιμα σε ανοιχτό 
λογισμικό), τα οποία κατά κύριο λόγο προέρχονται από τις τέσσερις μεγάλες οικογένειες των 
στοχαστικών μοντέλων, των μοντέλων παλινδρόμησης (συμπεριλαμβανομένων μοντέλων 
μηχανικής μάθησης), των μοντέλων παλινδρόμησης ποσοστημορίου 
(συμπεριλαμβανομένων μοντέλων μηχανικής μάθησης) και των διεργασιακών υδρολογικών 
μοντέλων, 

(iii) επτά ευέλικτες μεθοδολογίες, οι οποίες μαζί με τα διαθέσιμα σε ανοιχτό λογισμικό 
αυτοματοποιημένα μοντέλα και αλγορίθμους (βλ. σημείο (ii) παραπάνω) συνιστούν τη βάση 
των διενεργούμενων μοντελοποιήσεων, και 

(iv) περίπου 30 μέτρα για την αξιολόγηση της ποιότητας των διενεργούμενων μοντελοποιήσεων. 

Νέοι συνδυασμοί μοντέλων και αλγορίθμων, συνοδευόμενοι από διαφορετικές αλγοριθμικές 
επιλογές παραμέτρων, οδηγούν σε πολυάριθμες παραλλαγές μοντέλων, πολλές από τις οποίες 
μπορούν να θεωρηθούν ως νέες μέθοδοι. Όλα τα χρησιμοποιούμενα μοντέλα (τόσο τα ήδη 
διαθέσιμα σε ανοιχτό λογισμικό όσο και τα αυτοματοποιημένα στο πλαίσιο της διατριβής) είναι 
ευέλικτα, υπολογιστικά εύχρηστα και γρήγορα στην εφαρμογή. Κατά συνέπεια, είναι κατάλληλα 
για διερευνήσεις μεγάλης κλίμακας, ακόμη και για διερευνήσεις παγκόσμιας κλίμακας. Τέτοιες 
διερευνήσεις επιβάλλονται από τον (κυρίως) αλγοριθμικό χαρακτήρα των μεθοδολογιών της 
διατριβής. Παρά τον συγκεκριμένο χαρακτήρα, η διατριβή παρέχει επίσης καινοτόμα θεωρητικά 
συμπληρώματα στην πρακτική και μεθοδολογική της συμβολή. 

Η διερεύνηση του τεχνικού προβλήματος (Α) γίνεται σε τέσσερα στάδια. Κατά το πρώτο 
στάδιο εισάγεται ένα νέο μεθοδολογικό πλαίσιο για την αξιολόγηση τεχνικών πρόγνωσης στην 
υδρολογία. Όντας σύμφωνο με τις αρχές που θα πρέπει να διέπουν την πρόβλεψη χρονοσειρών 
και σε αντίθεση με την υπάρχουσα βιβλιογραφία της πρόβλεψης υδρολογικών (και γενικότερα 
γεωφυσικών) χρονοσειρών (στην οποία η αξιολόγηση μεθόδων συνήθως βασίζεται στη 
διενέργεια μελετών περίπτωσης), το προτεινόμενο πλαίσιο ενσωματώνει συγκριτική αξιολόγηση 
μεθοδολογιών μεγάλης κλίμακας. Η τελευταία βασίζεται σε μεγάλα σύνολα υδρολογικών 
δεδομένων, στην πρακτική της στοχαστικής προσομοίωσης χρονοσειρών μεγάλης κλίμακας 
χρησιμοποιώντας στάσιμα κλασσικά στοχαστικά μοντέλα, σε έναν μεγάλο αριθμό πλήρως 
αυτοματοποιημένων μοντέλων και αλγόριθμων πρόβλεψης (συμπεριλαμβανομένων μοντέλων 
αναφοράς) και σε έναν ικανό αριθμό μέτρων για την ποσοτικοποίηση της ποιότητας των 
προβλέψεων. Το νέο μεθοδολογικό πλαίσιο αξιοποιείται (χρησιμοποιώντας τμήμα της 
εργαλειοθήκης της διατριβής) για την παροχή αποτελεσμάτων μεγάλης κλίμακας, καθώς και 
χρήσιμης κατανόησης σχετικά με τη σύγκριση των στοχαστικών μεθόδων και των μεθόδων 
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μηχανικής μάθησης στην πρόβλεψη υδρολογικών διεργασιών σε μεγάλες χρονικές κλίμακες (π.χ., 
την ετήσια και την μηνιαία), με έμφαση στις ετήσιες διεργασίες απορροής ποταμών. Οι σχετικές 
διερευνήσεις γίνονται για προβλέψεις πολλαπλών βημάτων. 

Κατά το δεύτερο στάδιο της διερεύνησης του τεχνικού προβλήματος (Α) επεκτείνεται το 
μεθοδολογικό πλαίσιο του πρώτου σταδίου για διερευνήσεις σχετικές με την πρόβλεψη ενός 
βήματος μπροστά των ετήσιων γεωφυσικών χρονοσειρών. Έμφαση δίνεται στην μελέτη δύο 
συνόλων δεδομένων πραγματικού κόσμου, ενός συνόλου δεδομένων ετήσιας κατακρήμνισης και 
ενός συνόλου δεδομένων ετήσιας θερμοκρασίας. Τα συγκεκριμένα σύνολα δεδομένων 
εξετάζονται τόσο στην αρχική όσο και στην τυποποιημένη μορφή τους με κύριο στόχο την 
ανάδειξη των ακριβέστερων μεθόδων για πρακτικές εφαρμογές πρόβλεψης ενός βήματος 
μπροστά, και δευτερεύοντα στόχο την παροχή αρχικών σημείων αναφοράς για την 
προβλεψιμότητα της ετήσιας κατακρήμνισης και της ετήσιας θερμοκρασίας. 

Το τρίτο στάδιο της διερεύνησης του τεχνικού προβλήματος (Α) περιλαμβάνει τόσο την 
μελέτη-ποσοτικοποίηση της προβλεψιμότητας της μηνιαίας θερμοκρασίας και της μηνιαίας 
κατακρήμνισης σε παγκόσμια κλίμακα, όσο και τη σύγκριση ενός μεγάλου αριθμού πλήρως 
αυτοματοποιημένων (κυρίως στοχαστικών) μεθόδων πρόβλεψης κατάλληλων για εποχιακές 
γεωφυσικές διεργασίες. Οι διερευνήσεις πραγματοποιούνται για προβλέψεις πολλαπλών 
βημάτων χρησιμοποιώντας το μεγαλύτερο συνόλο δεδομένων πραγματικού κόσμου που έχει 
χρησιμοποιηθεί μέχρι σήμερα στον χώρο της πρόβλεψης υδρολογικών χρονοσειρών. 

Με το τέταρτο (και τελευταίο) στάδιο της διερεύνησης του τεχνικού προβλήματος (Α) 
εισάγεται η διεξαγωγή εκτεταμένων μελετών πολλαπλών περιπτώσεων ως μία καινοτόμος 
στρατηγική στον χώρο της πρόβλεψης γεωφυσικών χρονοσειρών. Με κύριο στόχο τη διερεύνηση 
τριών επιμέρους προβλημάτων που αφορούν την πρόβλεψη των συγκεκριμένων χρονοσειρών 
χρήσει αλγορίθμων μηχανικής μάθησης, πραγματοποιείται μια μελέτη πολλαπλών περιπτώσεων, 
αποτελούμενη από έναν ικανό αριθµό µελετών περιπτώσεων. Οι τελευταίες αφορούν μηνιαίες 
χρονοσειρές θερμοκρασίας και κατακρήμνισης παρατηρημένες στην Ελλάδα. Τα υπό μελέτη 
επιμέρους προβλήματα είναι η επιλογή μεταβλητών πρόβλεψης, η επιλογή των 
υπερπαραμέτρων, και η σύγκριση μεθόδων μηχανικής μάθησης και στοχαστικών μεθόδων. 

Η διερεύνηση του τεχνικού προβλήματος (Β) γίνεται σε τρία στάδια. Κατά το πρώτο στάδιο 
αναπτύσσεται μια νέα μεθοδολογία πιθανοτικής μετεπεξεργασίας αποτελεσμάτων υδρολογικής 
μοντελοποίησης, χρησιμοποιώντας ως σημείο εκκίνησης ένα θεωρητικά συνεπές γενικό σχήμα 
πιθανοτικής υδρολογικής μοντελοποίησης δύο σταδίων. Επίσης, διεξάγονται διερευνήσεις 
πρότυπης μοντελοποίησης, οι οποίες καταδεικνύουν τη χρησιμότητα της προτεινόμενης 
μεθοδολογίας και δείχνουν πώς η κατανόηση μας για το μοντελοποιούμενο σύστημα μπορεί να 
μας οδηγήσει στην επίτευξη βελτιωμένης προγνωστικής μοντελοποίησης. 

Κατά το δεύτερο στάδιο της διερεύνησης του τεχνικού προβλήματος (Β), μελετάται σε ένα 
μεγάλο σύνολο πραγματικών προβλημάτων και σε μηνιαία χρονική κλίμακα η μεθοδολογία 
πιθανοτικής μετεπεξεργασίας αποτελεσμάτων υδρολογικής μοντελοποίησης που αναπτύσσεται 
στο προηγούμενο στάδιο. Με τις πραγματοποιούμενες διερευνήσεις αποδεικνύεται εμπειρικά η 
μεγαλύτερη ευρωστία της εν λόγω μεθοδολογίας σε σχέση με τις επιμέρους προβλέψεις που 
συνδυάζονται από αυτήν και, κατ 'επέκταση, σε σχέση με βασικές μεθοδολογίες πιθανοτικής 
μετεπεξεργασίας αποτελεσμάτων υδρολογικής μοντελοποίησης δύο σταδίων. Επίσης, 
αποδεικνύεται η ικανότητα της μεθοδολογίας να αξιοποιεί τη σοφία του πλήθους. 

Τέλος, κατά το τρίτο στάδιο της διερεύνησης του τεχνικού προβλήματος (Β) εισάγεται ο 
μεγαλύτερος αριθμός πιθανοτικών μεθόδων υδρολογικής μοντελοποίησης που έχουν μέχρι 
στιγμής εισαχθεί σε μια εργασία, και επιπρόσθετα διεξάγεται σε ημερήσια χρονική κλίμακα το 
μεγαλύτερο πείραμα συγκριτικής αξιολόγησης που έχει διεξαχθεί μέχρι στιγμής στον χώρο της 
πιθανοτικής μετεπεξεργασίας αποτελεσμάτων υδρολογικής μοντελοποίησης. Επιπρόσθετα, 
αξιολογούνται θεωρητικές και ποιοτικές πτυχές του επιλυόμενου προβλήματος και της χρήσης 
των επιλεγμένων αλγορίθμων υπό το πρίσμα της ακόλουθης ερευνητικής ερώτησης: Γιατί και 
πώς να συνδυάσει κανείς διεργασιακά μοντέλα και αλγορίθμους μηχανικής μάθησης για πιθανοτική 
υδρολογική μοντελοποίηση; 
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Εκτενής περίληψη 

Συνολική σύνοψη και κύριοι στόχοι 

Η παρούσα διδακτορική διατριβή εμπίμπτει στους επιστημονικούς κλάδους της στοχαστικής 
υδρολογίας, της υδρολογικής μοντελοποίησης και της υδροπληροφορικής. Συνεισφέρει με νέες 
πρακτικές λύσεις, νέες μεθοδολογίες και αποτελέσματα μεγάλης κλίμακας στην μοντελοποιήση 
υδρολογικών διεργασιών, συγκεκριμένα στην επίλυση δύο στενά συνυφασμένων τεχνικών 
προβλημάτων. Τα προβλήματα αυτά είναι: 

(A) η πρόβλεψη της μελλοντικής συμπεριφοράς υδρολογικών διεργασιών χρησιμοποιώντας 
αποκλειστικά ενδογενείς μεταβλητές πρόβλεψης (στο εξής αναφερόμενη ως «πρόβλεψη 
υδρολογικών χρονοσειρών»), και 

(B) η στοχαστική μοντελοποίηση υδρολογικών συστημάτων μέσω πιθανοτικής 
μετεπεξεργασίας αποτελεσμάτων διεργασιακής υδρολογικής μοντελοποιήσης (στο εξής 
αναφερόμενη ως «πιθανοτική μετεπεξεργασία αποτελεσμάτων υδρολογικής 
μοντελοποίησης»). 

Τα εν λόγω τεχνικά προβλήματα διερευνώνται εκτενώς στα Κεφάλαια 3−6 και στα Κεφάλαια 
7−9, αντίστοιχα. Επιπρόσθετα, στο Κεφάλαιο 2 γίνεται μια σύντομη επισκόπηση του 
θεωρητικού, μεθοδολογικού και τεχνικού υποβάθρου της διατριβής. Στο ίδιο Κεφάλαιο 
περιγράφεται η εργαλειοθήκη πρότυπης μοντελοποίησης και συγκριτικής αξιολόγησης, όπως 
αυτή έχει αναπτυχθεί και αξιοποιείται στο πλαίσιο της διατριβής. Η συγκεκριμένη εργαλειοθήκη 
αποτελείται από: 

(i) περίπου 6 000 υδρολογικές χρονοσειρές προερχόμενες από μεγαλύτερες ελεύθερα 
διατιθέμενες βάσεις δεδομένων, 

(ii) περισσότερα από 45 αυτοματοποιημένα μοντέλα και αλγορίθμους (διαθέσιμα σε ανοιχτό 
λογισμικό), τα οποία κατά κύριο λόγο προέρχονται από τις τέσσερις μεγάλες οικογένειες των 
στοχαστικών μοντέλων, των μοντέλων παλινδρόμησης (συμπεριλαμβανομένων μοντέλων 
μηχανικής μάθησης), των μοντέλων παλινδρόμησης ποσοστημορίου 
(συμπεριλαμβανομένων μοντέλων μηχανικής μάθησης) και των διεργασιακών υδρολογικών 
μοντέλων, 

(iii) επτά ευέλικτες μεθοδολογίες, οι οποίες μαζί με τα διαθέσιμα σε ανοιχτό λογισμικό 
αυτοματοποιημένα μοντέλα και αλγορίθμους (βλ. σημείο (ii) παραπάνω) συνιστούν τη βάση 
των διενεργούμενων μοντελοποιήσεων, και 

(iv) περίπου 30 μέτρα για την αξιολόγηση της ποιότητας των διενεργούμενων μοντελοποιήσεων. 

Νέοι συνδυασμοί μοντέλων και αλγορίθμων, συνοδευόμενοι από διαφορετικές αλγοριθμικές 
επιλογές παραμέτρων, οδηγούν σε πολυάριθμες παραλλαγές μοντέλων, πολλές από τις οποίες 
μπορούν να θεωρηθούν ως νέες μέθοδοι. Ιδιαιτέρως σημαντικό −από πρακτική άποψη− είναι το 
γεγονός ότι όλα τα χρησιμοποιούμενα μοντέλα είναι ευέλικτα, υπολογιστικά εύχρηστα και 
γρήγορα στην εφαρμογή. Κατά συνέπεια, είναι κατάλληλα για διερευνήσεις μεγάλης κλίμακας, 
ακόμη και για διερευνήσεις παγκόσμιας κλίμακας. Η διεξαγωγή τέτοιων διερευνήσεων υπήρξε 
σημαντική προτεραιότητα για τη συγκεκριμένη διατριβή, όπως και η ανάπτυξη νέων 
μεθοδολογιών και νέων πρακτικών λύσεων. Η προτεραιότητα αυτή επιβάλλεται από τον 
προσανατολισμό της διατριβής και τον (κυρίως) αλγοριθμικό χαρακτήρα των μεθοδολογιών της. 

Επιπρόσθετα, είναι σημαντικό να σημειωθεί ότι τα περισσότερα από τα αυτοματοποιημένα 
μοντέλα του σημείου (ii) βασίζονται σε πολλά εμπιμέρους, καθιστώντας έτσι δύσκολο για την 
παρούσα διατριβή να περιγράψει ξεχωριστά καθένα από τα μοντέλα που χρησιμοποιεί (ή ακόμα 
και να τα μετρήσει). Παραταύτα, η θεωρητική κατανόηση των περισσότερων (αλλά όχι όλων) 
των χρησιμοποιούμενων μοντέλων δεν θα μπορούσε να βοηθήσει στην ερμηνεία και κατανόηση 
των αλγοριθμικά αποκτηθέντων αποτελεσμάτων της διατριβής. Υπό το πρίσμα αυτό, ένα 
πλεονέκτημα (και παράλληλα περιορισμός) που χαρακτηρίζει τη διατριβή και απορρέει από τους 
στόχους της είναι ο αλγοριθμικός της χαρακτήρας. Παρά τη φύση και τον κύριο προσανατολισμό 
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των μεθοδολογικών μας πλαισίων, η παρούσα διατριβή παρέχει καινοτόμα θεωρητικά 
συμπληρώματα στην πρακτική και μεθοδολογική της συμβολή. 

Στη συνέχεια, συνοψίζουμε το περιεχόμενο των Κεφαλαίων 3−9, δίνοντας έμφαση τόσο στις 
κύριες καινοτομίες που τα χαρακτηρίζουν (όπως αυτές προκύπτουν υπό το πρίσμα της 
βιβλιογραφίας) όσο και στην τεχνογνωσία που αυτά παρέχουν. Συζητάμε ακόμη τον τρόπο με 
τον οποίο τα Κεφάλαια αυτά χτίζουν το ένα πάνω στο άλλο για (α) την παροχή νέων τεχνικών 
λύσεων και νέων μεθοδολογιών, (β) την απάντηση πρακτικών και θεωρητικών ερευνητικών 
ερωτημάτων, και (γ) την βελτίωση της κατανόησης των διερευνούμενων τεχνικών προβλημάτων 
μέσα από συγκρίσεις και αξιολογήσεις μοντέλων σε μεγάλη κλίμακα. 

Πρόβλεψη υδρολογικών διεργασιών 

Στοχαστικές μέθοδοι έναντι μεθόδων μηχανικής μάθησης στην πρόβλεψη πολλαπλών βημάτων 

Το Κεφάλαιο 3 έχει ως γενικό του στόχο την προώθηση συγκρίσεων μεγάλης κλίμακας στον χώρο 
της πρόβλεψης των υδρολογικών διεργασιών. Το Κεφάλαιο ξεκινά με μια σύντομη επισκόπηση 
και κριτική θεώρηση της σχετικής βιβλιογραφίας. Η συγκεκριμένη βιβλιογραφία επικεντρώνεται 
συχνά στη σύγκριση στοχαστικών μεθόδων και μεθόδων μηχανικής μάθησης, καθώς και στη 
διερεύνηση νέων «υβριδικών» μεθοδολογιών, αποκλειστικά διεξάγοντας μελέτες περιπτώσεων. 
Οι συγκεκριμένες μελέτες αδυνατούν να υποστηρίξουν οποιαδήποτε γενίκευση περί της 
χρησιμότητας μεθόδων πρόβλεψης, παρότι χρησιμοποιούνται συχνά για τον συγκεκριμένο 
σκοπό. Εντούτοις, επιτρέπουν την ανάδειξη σημαντικών σημείων, παρέχοντας αμεσότητα και 
παραστατικότητα. Είναι, επομένως, εξαιρετικά χρήσιμες όταν συνοδεύουν αναλυτικές 
διερευνήσεις ή εμπειρικές διερευνήσεις μεγάλης κλίμακας. Μόνο τέτοιες διερευνήσεις παρέχουν 
(εν δυνάμει) γενικεύσιμα αποτελέσματα. Στη βιβλιογραφία, έχουν διεξαχθεί αναλυτικές 
διερευνήσεις για διάφορες μεθόδους πρόβλεψης (κυρίως για τις λιγότερο ευέλικτες από αυτές). 
Ωστόσο, τέτοιου είδους διερευνήσεις είναι πολύ απαιτητικές (έως σχεδόν αδύνατες) για πολλές 
άλλες μεθόδους (κυρίως για τις πιο ευέλικτες μεθόδους μηχανικής μάθησης). Ως εκ τούτου, 
θεωρητικά συνεπείς αξιολογήσεις και συγκρίσεις μεθόδων πρόβλεψης υδρολογικών διεργασιών 
απαιτούν αναγκαστικά την εξέταση ενός επαρκώς μεγάλου και αντιπροσωπευτικού δείγματος 
περιπτώσεων. Αναδεικνύουμε το συγκεκριμένο γεγονός για πρώτη φορά στη σχετική 
βιβλιογραφία. 

Διατυπώνουμε και διερευνούμε διεξοδικά το εξής ερευνητικό ερώτημα: Αντιστοιχεί το δίπολο  
στοχαστικές μέθοδοι – μέθοδοι μηχανικής μάθησης σε κάποια σαφή διαφορά στην προγνωστική 
επίδοση των μεθόδων; Για να δοθεί απάντηση στο συγκεκριμένο ερώτημα, αναπτύσσουμε και 
υιοθετούμε ένα νέο μεθοδολογικό πλαίσιο για την αξιολόγηση τεχνικών πρόγνωσης στην 
υδρολογία. Όντας σύμφωνο με τις αρχές που θα πρέπει να διέπουν την πρόβλεψη χρονοσειρών, 
το προτεινόμενο πλαίσιο ενσωματώνει συγκριτική αξιολόγηση μεθοδολογιών μεγάλης κλίμακας. 
Η τελευταία βασίζεται σε μεγάλα σύνολα υδρολογικών δεδομένων, σε στοχαστική προσομοίωση 
χρονοσειρών μεγάλης κλίμακας χρησιμοποιώντας στάσιμα κλασσικά στοχαστικά μοντέλα, σε 
έναν μεγάλο αριθμό πλήρως αυτοματοποιημένων μοντέλων και αλγόριθμων πρόβλεψης 
(συμπεριλαμβανομένων μοντέλων αναφοράς) και σε έναν ικανό αριθμό μέτρων για την 
ποσοτικοποίηση της ποιότητας των προβλέψεων. Συγκεκριμένα, στόχος μας είναι να παρέχουμε 
αποτελέσματα μεγάλης κλίμακας και χρήσιμη κατανόηση σχετικά με τη σύγκριση των 
στοχαστικών μεθόδων και των μεθόδων μηχανικής μάθησης στην πρόβλεψη υδρολογικών 
διεργασιών σε μεγάλες χρονικές κλίμακες (π.χ., ετήσιες και μηνιαίες), με έμφαση στις ετήσιες 
διεργασίες απορροής ποταμών. 

Συγκρίνουμε 11 στοχαστικές μεθόδους και εννέα μεθόδους μηχανικής μάθησης στην 
πρόβλεψη πολλαπλών βημάτων. Οι στοχαστικές μέθοδοι περιλαμβάνουν απλά μοντέλα, μοντέλα 
από τις συχνά χρησιμοποιούμενες οικογένειες autoregressive moving average (ARMA) και 
autoregressive fractionally integrated moving average (ARFIMA), innovations state space 
μοντέλα και μοντέλα εκθετικής εξομάλυνσης, ενώ οι μέθοδοι μηχανικής μάθησης είναι νευρωνικά 
δίκτυα (neural networks), τυχαία δάση (random forests) και support vector machines. Από τα 
παραπάνω μοντέλα μόνο τα AR(FI)MA, νευρωνικά δίκτυα (neural networks) και support vector 
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machines έχουν χρησιμοποιηθεί ευρέως για υδρο-μετεωρολογικές προβλέψεις, συνήθως όμως σε 
μη αυτοποιημένη μορφή. Οι περισσότερες από τις υπόλοιπες μεθόδους έχουν χρησιμοποιηθεί σε 
λιγοστές εργασίες (π.χ., στα Κεφάλαια 4, 5 και 6). Χρησιμοποιούμε έτοιμα αυτοματοποιημένα 
μοντέλα και αλγόριθμους πρόβλεψης, και παράλληλα συνδυάζουμε διαφορετικούς αλγορίθμους 
για την αυτοματοποίηση νέων. Ειδικά για τις μεθόδους μηχανικής μάθησης, προτείνουμε τρεις 
αντικειμενικές μεθόδους για την επιλογή των μεταβλητών πρόβλεψης (μεταξύ των οποίων μία 
εμπνευσμένη από έναν έτοιμο πλήρως αυτοματοποιημένο αλγόριθμο) και τρία σύνολα τιμών 
πλέγματος για τη βελτιστοποίηση υπερπαραμέτρων μέσω αυτοματοποιημένης αναζήτησης. Το 
προτεινόμενο σύνολο μεθόδων θα μπορούσε να χρησιμοποιηθεί για τη συγκριτική αξιολόγηση 
της επίδοσης οποιασδήποτε νέας μεθόδου πρόβλεψης υδρολογικών διεργασιών. Επίσης, δίνεται 
σε μορφή κώδικα. 

Διενεργούμε 12 υπολογιστικά πειράματα μεγάλης κλίμακας βασιζόμενα σε προσομοιώσεις. 
Καθένα από τα διενεργούμενα πειράματα χρησιμοποιεί διαφορετικό μοντέλο στοχαστικής 
προσομοίωσης. Τα επιλεγμένα μοντέλα στοχαστικής προσομοίωσης αντιστοιχούν σε 
διαφορετικούς τύπους αυτοσυσχέτισης. Πραγματοποιούμε κάθε πείραμα προσομοίωσης δύο 
φορές, την πρώτη φορά χρησιμοποιώντας προσομοιωμένες χρονοσειρές 100 τιμών και τη 
δεύτερη φορά χρησιμοποιώντας προσομοιωμένες χρονοσειρές 300 τιμών. Επιπλέον, 
πραγματοποιούμε ένα πείραμα πραγματικού κόσμου χρησιμοποιώντας 405 μέσες ετήσιες 
χρονοσειρές απορροής ποταμών, καθεμία από τις οποίες αποτελείται από 100 τιμές. Ο συνολικός 
αριθμός των προβλέψεων είναι 858 480, εκ των οποίων 6 480 παράγονται εντός του πειράματος 
πραγματικού κόσμου. Ποσοτικοποιούμε την επίδοση των μεθόδων πρόβλεψης χρησιμοποιώντας 
18 μέτρα. Αυτά τα μέτρα δεν έχουν ένα-προς-ένα σχέση μεταξύ τους, δίνοντας έμφαση σε 
−περισσότερο ή λιγότερο− διαφορετικές πτυχές της ίδιας πληροφορίας. Έχουν επιλεγεί για να 
παρέχουν μια πολύπλευρη αξιολόγηση της ποιότητας προβλέψεων πολλαπλών βημάτων των 
υδρολογικών διεργασιών. 

Τα αποτελέσματα μεγάλης κλίμακας (βλ. π.χ., Σχήματα 1 και 2) καταδεικνύουν ότι οι 
στοχαστικές μέθοδοι και οι μέθοδοι μηχανικής μάθησης δεν διαφέρουν δραματικά, όπως 
συνήθως υποστηρίζεται στη βιβλιογραφία. Στην πραγματικότητα, μέθοδοι και από τις δύο αυτές 
κατηγορίες είναι εξίσου χρήσιμες στην πρόβλεψη υδρολογικών διεργασιών σε μεγάλες χρονικές 
κλίμακες. Αυτό το αποτέλεσμα είναι ιδιαίτερα ενδιαφέρον, δεδομένων των ισχυρισμών ότι οι 
μέθοδοι μηχανικής μάθησης είναι πιθανότερο να υπερέχουν σε "μη γραμμικές καταστάσεις". 
Συχνά υποστηρίζεται ότι οι διεργασίες απορροής ποταμών προσιδιάζουν σε τέτοιες καταστάσεις. 
Γενικά, δεν μπορούμε να αποφασίσουμε για κάποια καθολικά καλύτερη ή χειρότερη μέθοδο 
πρόβλεψης, ούτε μπορούμε να κατατάξουμε τις μεθόδους πρόβλεψης με βάση τα αποτελέσματα 
μεγάλης κλίμακας. Οποιαδήποτε κατάταξη των μεθόδων πρόβλεψης θα απαιτούσε την εκ των 
προτέρων επιλογή ενός πειράματος και ενός κριτηρίου ενδιαφέροντος, καθώς και την εφαρμογή 
μιας απλούστευτικής διαδικασίας, και συνεπώς δεν θα ήταν γενική. Ωστόσο, η συσταδοποίηση-
ομαδοποίηση των μεθόδων πρόβλεψης με βάση ομοιότητες ή διαφορές στην επίδοση σε σχέση 
με διάφορα κριτήρια είναι δυνατή, αν και μόνο σε κάποιο βαθμό. 
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Σχήμα 1. Ενδεικτικά θηκογράμματα (boxplots) για την συγκριτική αξιολόγηση των μεθόδων 
πρόβλεψης του Κεφαλαίου 3 όσον αφορά την επίδοση τους στο πείραμα πραγματικού κόσμου. 
Τα μακρυνά εξωκείμενα σημεία (outliers) έχουν αφαιρεθεί. 
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Σχήμα 2. Θερμογράφημα (heatmap) για την συγκριτική αξιολόγηση των μεθόδων πρόβλεψης του 
Κεφαλαίου 3 όσον αφορά την μέση κατάταξη τους από την 1η (καλύτερη) έως στην 16η 
(χειρότερη) για το πείραμα πραγματικού κόσμου. 

Μια άλλη σημαντική συνεισφορά του Κεφαλαίου 3 σχετίζεται με το θεώρημα «no free 
lunch». Σύμφωνα με το συγκεκριμένο θεώρημα, στο χώρο όλων των πιθανών περιπτώσεων ενός 
προβλήματος, δεν υπάρχει κάποιο μοντέλο που να λειτουργεί πάντα καλύτερα από άλλα, ελλείψει 
σημαντικών επιπρόσθετων πληροφοριών για το συγκεκριμένο πρόβλημα. Τα αποτελέσματα 
μεγάλης κλίμακας συμβαδίζουν με αυτό το θεώρημα, αν και το θεώρημα αναφέρεται σε άπειρο 
χώρο προβλημάτων, ενώ εμείς εξετάζουμε τον πεπερασμένο χώρο προβλημάτων που ορίζεται 
από τις υπό διερεύνηση προσομοιωμένες χρονοσειρές και ετήσιες χρονοσειρές απορροής 
ποταμών. Στην πραγματικότητα, η εύρεση του καταλληλότερου αλγορίθμου εξαρτάται κυρίως 
από την κατανόηση του συστήματος, η οποία προφανώς θα πρέπει να είναι βαθύτερη από τη 
γνώση των στατιστικών ιδιοτήτων του (π.χ., από την γνώση της μέσης τιμής, της διακύμανσης 
και της συνάρτησης αυτοσυσχέτισης). Όσον αφορά τον βαθμό στον οποίο τα συμπεράσματά μας 
θα μπορούσαν να είναι γενικεύσιμα για την πρόβλεψη υδρολογικών διεργασιών σε μεγάλες 
χρονικές κλίμακες, τονίζουμε ότι η παραδοχή της στασιμότητας και η λογική περί 
καταλληλότητας αυτής για τη μοντελοποίηση των γεωφυσικών διεργασιών είναι σύμφωνες με 
το θεώρημα «no free lunch». Συγκεκριμένα, σε περιπτώσεις που δεν μπορούμε να εξηγήσουμε τη 
συμπεριφορά μιας γεωφυσικής διεργασίας βασιζόμενοι σε κάποιον προσδιοριστικό μηχανισμό, 
τότε τα καταλληλότερα μοντέλα για να την περιγράψουμε είναι τα στάσιμα. 

Πρόβλεψη ενός βήματος μπροστά της ετήσιας θερμοκρασίας και κατακρήμνισης 

Το Κεφάλαιο 4 έχει ως γενικό του στόχο την προώθηση των παραδοσιακών μεθόδων και αρχών 
πρόβλεψης χρονοσειρών στις γεωεπιστήμες. Το Κεφάλαιο ξεκινά με την παροχή λεπτομερών 
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πληροφοριών σχετικά με τη χρήση στατιστικών μεθόδων (στοχαστικών μεθόδων και μεθόδων 
μηχανικής μάθησης) στον χώρο της πρόβλεψης υδρο-μετεωρολογικών διεργασιών, 
συμπληρώνοντας έτσι το εισαγωγικό υποκεφάλαιο του Κεφαλαίου 3. Συγκεκριμένα, το 
Κεφάλαιο στοχεύει (α) στη διερεύνηση του θεμελιώδους προβλήματος της πρόβλεψης ενός 
βήματος μπροστά εντός ενός αμιγώς στατιστικού πλαισίου (το οποίο τεκμηριώνεται από 
ειδικούς στον κλάδο της πρόβλεψης χρονοσειρών) στις γεωεπιστήμες, και (β) στην θέσπιση των 
αποτελεσμάτων που προκύπτουν από την εξέταση των τυποποιημένων χρονοσειρών 
πραγματικού κόσμου ως αρχικών σημείων αναφοράς για την προβλεψιμότητα ενός βήματος 
μπροστά των γεωφυσικών διεργασιών. Η θέσπιση τέτοιων σημείων αναφοράς έχει ιδιαίτερο 
νόημα για τις εφαρμογές πρόβλεψης ενός βήματος μπροστά, καθώς οι τελευταίες αποτελούν τις 
απλούστερες εφαρμογές πρόβλεψης και η ακρίβεια με την οποία διενεργούνται μπορεί να 
ποσοτικοποιηθεί χρησιμοποιώντας ένα μόνο μέτρο, συγκεκριμένα την απόλυτη τιμή του 
σφάλματος πρόβλεψης. 

Για να επιτύχουμε τους παραπάνω στόχους, επεκτείνουμε το μεθοδολογικό πλαίσιο του 
Κεφαλαίου 3, διερευνώντας τις ιδιότητες των μεθόδων του, όταν αυτές εφαρμόζονται για την 
πρόβλεψη ενός βήματος μπροστά σε ετήσιες γεωφυσικές χρονοσειρές. Έμφαση δίνεται στην 
διερεύνηση δύο συνόλων δεδομένων πραγματικού κόσμου, ενός συνόλου δεδομένων 
κατακρήμνισης και ενός συνόλου δεδομένων θερμοκρασίας, που μαζί περιέχουν 297 ετήσιες 
χρονοσειρές 91 τιμών. Τα συγκεκριμένα δεδομένα εξετάστηκαν τόσο στην αρχική όσο και στην 
τυποποιημένη μορφή τους. Συμπληρωματικά, πραγματοποιούμε πειράματα μεγάλης κλίμακας 
βασιζόμενοι σε 12 προσομοιωμένα σύνολα δεδομένων. Αυτά τα σύνολα δεδομένων αποτελούνται 
από συνολικά 24 000 χρονοσειρές των 91 τιμών. Τα διεξαγόμενα πειράματα προσομοίωσης 
συμπληρώνουν επιτυχώς τα πειράματα πραγματικού κόσμου, επιτρέποντας την εξέταση μιας 
μεγάλης ποικιλίας διεργασιακών συμπεριφορών. Παράλληλα, είναι σε κάποιο βαθμό ελεγχόμενα, 
διευκολύνοντας έτσι πιθανές γενικεύσεις, ενώ επίσης αυξάνουν την κατανόηση του εξεταζόμενου 
προβλήματος. Χρησιμοποιούμε τις πρώτες 50, 60, 70, 80 και 90 τιμές της εκάστοτε χρονοσειράς 
για την προσαρμογή (και επιλογή) των μοντέλων, και διενεργούμε προβλέψεις που αντιστοιχούν 
στην 51η, 61η, 71η, 81η και 91η τιμή της χρονοσειράς, αντίστοιχα. Ο συνολικός αριθμός των 
προβλέψεων που παράγονται είναι 2 177 520, μεταξύ των οποίων 47 520 παράγονται στο 
πλαίσιο των πειραμάτων πραγματικού κόσμου. Η αξιολόγηση βασίζεται σε οκτώ μέτρα και 
στατιστικά σφαλμάτων. 

Τα πειράματα προσομοίωσης καταδεικνύουν τις περισσότερο και λιγότερο ακριβείς 
μεθόδους για πρακτικές εφαρμογές πρόβλεψης ενός βήματος μπροστά, αποδεικνύοντας επίσης 
ότι οι απλές μέθοδοι είναι ιδιαιτέρως ανταγωνιστικές σε συγκεκριμένες περιπτώσεις. Ακόμη 
προκύπτει πως η σχετική επίδοση των μεθόδων πρόβλεψης εξαρτάται ελάχιστα από το μήκος 
της χρονοσειράς (σημειωτέον ότι εστιάζουμε σε χρονοσειρές 51, 61, 71, 81 και 91 τιμών), ενώ 
εξαρτάται έντονα από την υπό διερεύνηση διεργασία. Όσον αφορά τα αποτελέσματα των 
πειραμάτων πραγματικού κόσμου που χρησιμοποιούν τις πρωτότυπες (τυποποιημένες) 
χρονοσειρές (βλ. π.χ., Σχήματα 3 κα 4), στο πλαίσιο αυτών προκύπτουν ελάχιστες και μέγιστες 
διάμεσοι απόλυτων σφαλμάτων ίσες με 68 mm (0.55) και 189 mm (1.42), αντίστοιχα για την 
κατακρήμνιση, και 0.23°C (0.33) και 1.10°C (1.46), αντίστοιχα για τη θερμοκρασία. Τα 
αποτελέσματα που προκύπτουν χρησιμοποιώντας τις τυποποιημένες χρονοσειρές πραγματικού 
κόσμου θα μπορούσαν να χρησιμοποιηθούν ως αρχικά σημεία αναφοράς για την 
προβλεψιμότητα της ετήσιας κατακρήμνισης και της ετήσιας θερμοκρασίας, καθώς δεν υπάρχει 
σχετική πληροφορία στη βιβλιογραφία. 
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Σχήμα 3. Συνοπτική σύγκριση ανάμεσα στα αποτελέσματα των πειραμάτων του Κεφαλαίου 4 
που χρησιμοποιούν χρονοσειρές ετήσιας κατακρήμνισης (αριστερά) και στα αποτελέσματα των 
πειραμάτων του ίδιου Κεφαλαίου που χρησιμοποιούν χρονοσειρές τυποποιημένης ετήσιας 
κατακρήμνισης (δεξιά). 



 

 xxiv 

 
Σχήμα 4. Συνοπτική σύγκριση ανάμεσα στα αποτελέσματα των πειραμάτων του Κεφαλαίου 4 
που χρησιμοποιούν χρονοσειρές ετήσιας θερμοκρασίας (αριστερά) και στα αποτελέσματα των 
πειραμάτων του ίδιου Κεφαλαίου που χρησιμοποιούν χρονοσειρές τυποποιημένης ετήσιας 
θερμοκρασίας (δεξιά). 

Πρόβλεψη πολλαπλών βημάτων της μηνιαίας θερμοκρασίας και κατακρήμνισης 

Το Κεφάλαιο 5 έχει ως γενικό του στόχο την προώθηση της χρήσης πλήρως αυτοματοποιημένων 
μεθόδων πρόβλεψης στις γεωεπιστήμες. Η μη αυτόματοποιημένη ή υποκειμενική προσέγγιση 
του προβλήματος της πρόβλεψης χρονοσειρών υιοθετείται συχνά στη γεωεπιστημονική 
βιβλιογραφία (συμπεριλαμβανομένης της υδρολογικής βιβλιογραφίας), ενώ απαιτεί την εκ των 
προτέρων  διεξαγωγή διερευνητικής ανάλυσης δεδομένων για κάθε συγκεκριμένη περίπτωση 
που πρέπει να προβλεφθεί και, συνεπώς, ανθρώπινη παρέμβαση κατά τη διάρκεια της 
πρόβλεψης. Ως εκ τούτου, η εφαρμογή της μπορεί να περιοριστεί σημαντικά από παράγοντες 
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κλίμακας. Η πλήρως αυτοματοποιημένη πρόβλεψη χρονοσειρών είναι απαραίτητη, για 
παράδειγμα, σε περιπτώσεις που μας έχει ζητηθεί ένας μεγάλος αριθμός προβλέψεων.  

Διεξάγουμε δύο διερευνήσεις σε παγκόσμια κλίμακα. Ποσοτικοποιούμε την προβλεψιμότητα 
της μηνιαίας θερμοκρασίας και της μηνιαίας κατακρήμνισης εφαρμόζοντας 24 πλήρως 
αυτοματικοποιημένες μεθόδους πρόβλεψης σε 985 και 1 552 μηνιαίες χρονοσειρές 
θερμοκρασίας και κατακρήμνισης, αντίστοιχα. Το δείγμα αυτό είναι το μεγαλύτερο που έχει 
χρησιμοποιηθεί στην υδρολογία για την αξιολόγηση της επίδοσης μεθόδων πρόβλεψης 
χρονοσειρών. Χρησιμοποιούμε πλήρως αυτοματοποιημένα μοντέλα (διατιθέμενα σε ανοιχτό 
λογισμικό) με διαφορετικές αλγοριθμικές επιλογές (στο βαθμό του μας το επιτρέπουν τα 
αυτοματοποιημένα μοντέλα) και, παράλληλα, προβαίνουμε σε διάφορους συνδυασμούς για την 
αυτοματοποίηση νέων μοντέλων. Οι πλήρως αυτοματοποιημένες μέθοδοι του Κεφαλαίου 
περιλαμβάνουν: (α) την εποχιακή μέθοδο αναφοράς (η οποία βασίζεται στις μηνιαίες τιμές του 
τελευταίου έτους), (β) τέσσερις μεθόδους βασιζόμενες στο μοντέλο τυχαίος περίπατος (random 
walk), (γ) τέσσερις μεθόδους βασιζόμενες σε ένα αυτόματο μοντέλο ARFIMA, (δ) έξι μεθόδους 
βασιζόμενες στο μοντέλο BATS (μοντέλο εκθετικής εξομάλυνσης που ενσωματώνει 
μετασχηματισμό Box-Cox, διόρθωση σφαλμάτων μέσω μοντέλων ARMA, όρους τάσεων και 
εποχιακούς όρους), (ε) τέσσερις μεθόδους βασιζόμενες στο μοντέλο απλής εκθετικής 
εξομάλυνσης, (στ) δύο μεθόδους βασιζόμενες στο μοντέλο Theta, και (ζ) τρεις μεθόδους 
βασιζόμενες στο μοντέλο Prophet. 

Το μοντέλο Prophet είναι ένα πρόσφατο μοντέλο, εμπνευσμένο από τη φύση των 
χρονοσειρών που μελετώνται για τη λειτουργία του Facebook. Στο Κεφάλαιο 5, το εν λόγω 
μοντέλο εφαρμόζεται για πρώτη φορά σε υδρο-μετεωρολογικές χρονοσειρές. Αντιθέτως, τα 
μοντέλα ARFIMA χρησιμοποιούνται ευρέως −όμως με μη αυτοματοποιημένο τρόπο− στην 
υδρολογική βιβλιογραφία, ενώ τα υπόλοιπα μοντέλα χρησιμοποιούνται πολύ σπάνια (π.χ., στα 
Κεφάλαια 3 και 4), παρότι θεωρούνται θεμελιώδη στο επιστημονικό πεδίο της πρόβλεψης 
χρονοσειρών. Στα  Κεφάλαια 3 και 4, δεν γίνονται διερευνήσεις σχετικά με το πώς οι διαφορετικές 
επιλογές μοντελοποίησης της εποχιακότητας και χειρισμού της μη κανονικότητας επηρεάζουν 
την επίδοση των μοντέλων. Τέτοιες διερευνήσεις αποτελούν έναν από τους κύριους στόχους του 
Κεφαλαίου 5 (επομένως, εξετάζονται κατάλληλες παραλλαγές των μεθόδων), μαζί με την 
αξιολόγηση της επίδοσης των επιλεγμένων μοντέλων σε μηνιαίες υδρο-μετεωρολογικές 
χρονοσειρές και τη σύγκριση του μοντέλου Prophet με τα υπόλοιπα. Οι υπό διερεύνηση 
χρονοσειρές έχουν μήκος 480 μήνες και είναι πλήρεις (χωρίς ελλείπουσες τιμές). Έχουν 
παρατηρηθεί από τον Ιανουάριο του 1950 έως το Δεκέμβριο του 1989 σε σταθμούς που 
καλύπτουν ένα σημαντικό μέρος της επιφάνειας της Γης (βλ. Σχήμα 5) και συνεπώς 
περιλαμβάνουν διάφορες διεργασιακές συμπεριφορές πραγματικού κόσμου. Τα μοντέλα 
προσαρμόζονται στα πρώτα 36 έτη (432 μήνες) και στη συνέχεια δοκιμάζονται στη διεξαγωγή 
προβλέψεων πολλαπλών βημάτων για τα τελευταία τέσσερα χρόνια (48 μήνες). Τα 
αποτελέσματα συνοψίζονται σε παγκόσμια στατιστικά, ενώ ομαδοποίηση των σταθμών έχει 
οδηγήσει σε πέντε επιμέρους κατηγορίες στατιστικών για τη θερμοκρασία και έξι για την 
κατακρήμνιση. Η ομαδοποίηση των σταθμών γίνεται σύμφωνα με τη γεωγραφική γειτνίαση 
τους. 
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Σχήμα 5. Γεωγραφικές θέσεις των σταθμών μέτρησης (a) θερμοκρασίας και (b) κατακρήμνισης. 
Μηνιαία δεδομένα από τους συγκεκριμένους σταθμούς χρησιμοποιούνται για τα πειράματα του 
Κεφαλαίου 5.  

Τα αποτελέσματα (βλ. π.χ., Σχήματα 6−8) καταδεικνύουν ότι όλες οι εξεταζόμενες μέθοδοι, 
εκτός από την εποχιακή μέθοδο αναφοράς και τις μεθόδους τυχαίου περιπάτου (random walk), 
είναι αρκετά ακριβείς ώστε να χρησιμοποιούνται σε πρακτικές εφαρμογές. Ακόμα και οι μέθοδοι 
απλής εκθετικής εξομάλυνσης και τα μοντέλα Theta που παρουσιάζουν μάλλον μέτρια επίδοση 
σε όρους ρίζας μέσου τετραγωνικού σφάλματος (root mean square error – RMSE) και Nash-
Sutcliffe στα πειράματα προσομοίωσης του Κεφαλαίου 3, στο Κεφάλαιο 5 προκύπτουν εξίσου 
ανταγωνιστικές με τις μεθόδους ARFIMA και BATS. Οι τελευταίες δύο μέθοδοι προκύπτουν ως οι 
πιο ακριβείς σε όρους RMSE και Nash-Sutcliffe στο Κεφαλαίου 3. Αυτό θα μπορούσε να εξηγηθεί 
ως εξής:  Τα πειράματα προσομοίωσης του Κεφαλαίου 3 εξετάζουν μη εποχιακές 
προσομοιωμένες διεργασίες με διαφορετική προβλεψιμότητα από τις μηνιαίες διεργασίες 
θερμοκρασίας και κατακρήμνισης. Η εποχιακότητα μπορεί να θεωρηθεί ως το προσδιοριστικό 
κομμάτι μιας διεργασίας, ενώ κατάλληλη μοντελοποίηση της μπορεί να οδηγήσει σε σημαντική 
βελτίωση των προβλέψεων. Το παραπάνω ποιοτικό αποτέλεσμα συμφωνεί με τα αποτελέσματα 
των 50 μελετών περιπτώσεων του Κεφαλαίου 6. Αυτές οι μελέτες περιπτώσεων χρησιμοποιούν 
επίσης μηνιαία δεδομένα θερμοκρασίας και κατακρήμνισης. Στο ίδιο Κεφάλαιο, η εποχιακότητα 
μοντελοποιείται χρησιμοποιώντας το πολλαπλασιαστικό μοντέλο και το προσθετικό μοντέλο για 
τις χρονοσειρές θερμοκρασίας και κατακρήμνισης, αντίστοιχα. Όσον αφορά τα αποτελέσματα 
σχετικά με την καταλληλότητα των διαφορετικών επιλογών μοντελοποίησης της εποχιακότητας 
και χειρισμού της μη κανονικότητας, δεν προκύπτει κάποιος από τους διερευνώμενους 
συνδυασμούς εξωτερικών επιλογών περισσότερο αποτελεσματικός από τους υπόλοιπους. 
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Ωστόσο, προκύπτει ότι η μοντελοποίηση της εποχιακότητας μέσω των μοντέλων BATS και 
Prophet (δηλαδή των μόνων μοντέλων που προσφέρουν αυτή τη δυνατότητα ανάμεσα στα 
χρησιμοποιoύμενα) δίνει λιγότερο ακριβείς προβλέψεις από την εξωτερική μοντελοποίηση, 
ειδικά για το πρώτο μοντέλο. 

 
Σχήμα 6. Διάμεσοι των απόλυτων σφαλμάτων πρόβλεψης σε κάθε βήμα του ορίζοντα πρόβλεψης 
για τις χρονοσειρές κατακρήμνισης που έχουν παρατηρηθεί (a) στην Βόρεια Αμερική, (b) στην 
Βόρεια Ευρώπη και (c) στην Βόρεια Αφρική στα αντίστοιχα πειράματα του Κεφαλάιου 5. 
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Σχήμα 7. Διάμεσοι των απόλυτων σφαλμάτων πρόβλεψης σε κάθε βήμα του ορίζοντα πρόβλεψης 
για τις χρονοσειρές κατακρήμνισης που έχουν παρατηρηθεί (a) στην Νότια Αφρική, (b) 
Ανατολική Ασία και (c) Αυστραλία στα αντίστοιχα πειράματα του Κεφαλάιου 5. 
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Σχήμα 8. Διάμεσοι των απόλυτων σφαλμάτων πρόβλεψης σε κάθε βήμα του ορίζοντα πρόβλεψης 
για τις χρονοσειρές κατακρήμνισης που έχουν παρατηρηθεί στην Βόρεια Αφρική στα αντίστοιχα 
πειράματα του Κεφαλαίου 5: Σύγκριση μεθόδων που βασίζονται στο ίδιο μοντέλο πρόβλεψης. 

Τα ποσοτικά αποτελέσματα του Κεφαλαίου 5 είναι επίσης σημαντικά, καθώς εκφράζουν 
άμεσα την προβλεψιμότητα της μηνιαίας θερμοκρασίας και της μηνιαίας κατακρήμνισης. Η 
ελάχιστη και μέγιστη διάμεσος των απόλυτων σφαλμάτων των προβλέψεων θερμοκρασίας 
προκύπτουν περίπου ίσες με 0.25 Κ και 8.20 Κ, αντίστοιχα. Επιπλέον, υπολογίζεται μηδενικός 
μέσος όρος απόλυτων σφαλμάτων για τις προβλέψεις κατακρήμνισης τους ξηρούς μήνες σε 
γεωγραφικές περιοχές με σχετικά κανονική μεταβλητότητα κατακρημνίσεων, ενώ ο μέγιστος 
μέσος όρος είναι περίπου ίσος με 100 mm. Αυτές οι τιμές θα μπορούσαν να μελετηθούν σε 
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σύγκριση με την ελάχιστη και την μέγιστη διάμεσο των απόλυτων σφαλμάτων πρόβλεψης της 
ετήσιας θερμοκρασίας και κατακρήμνισης, όπως αυτές προκύπτουν χρησιμοποιώντας δύο 
σύνολα δεδομένων πραγματικού κόσμου με συνολικά 297 χρονοσειρές στο Κεφάλαιο 4. Αυτές οι 
διάμεσοι είναι περίπου ίσες με 0.23 K και 1.10 K, και 68 mm και 189 mm, αντίστοιχα. Επιπλέον, 
οι προκύπτουσες τιμές RMSE κυμαίνονται μεταξύ 1.01 K και 3.65 K για τη θερμοκρασία, και 36.16 
mm και 70.17 mm για την κατακρήμνιση. Οι αντίστοιχες τιμές Nash-Sutcliffe είναι 0.79 και 0.98 
για τη θερμοκρασία, και −0.55 και 0.71 για την κατακρήμνιση. 

Εξαιρώντας την απλή μέθοδο αναφοράς και τις παραλλαγές του μοντέλου τυχαίου 
περιπάτου (random walk), οι αντίστοιχες τιμές RMSE κυμαίνονται μεταξύ 1.01 K και 2.84 K για 
τη θερμοκρασία, και 36.16 mm και 51.71 mm για την κατακρήμνιση. Λεπτομερέστερα, για το 
σύνολο των χρονοσειρών θερμοκρασίας, η χρήση ενός μοντέλου ARFIMA, BATS, απλής εκθετικής 
εξομάλυνσης, Theta ή Prophet, αντί της απλής μεθόδου αναφοράς, οδηγεί σε περίπου 19−29% 
πιο ακριβείς προβλέψεις όσον αφορά το RMSE, ή ακόμα και περίπου 30−32% ακριβέστερες 
προβλέψεις ειδικά για τις χρονοσειρές θερμοκρασίας που έχουν παρατηρηθεί στη Βόρεια 
Ευρώπη. Για το σύνολο των χρονοσειρών κατακρήμνισης, η χρήση όλων αυτών των μεθόδων 
οδηγεί σε 21−22% καλύτερες προβλέψεις από τη χρήση της απλής μεθόδου αναφοράς, ενώ για 
τις γεωγραφικές περιοχές της Βόρειας Αμερικής, της Βόρειας Ευρώπης και της Ανατολικής Ασίας 
τα ποσοστά αυτά είναι 26−29%, 22−24% και 32−38%, αντίστοιχα. Αυτός ο υψηλότερος βαθμός 
ακρίβειας είναι αξιοσημείωτος και ιδιαίτερα σημαντικός για εφαρμογές μακροχρόνιου ορίζοντα. 
Επίσης σημαντικό είναι το γεγονός ότι το μοντέλο Prophet προσφέρει από 13% έως και 32%, και 
από 16% έως και 38% καλύτερα αποτελέσματα από την απλή μέθοδο αναφοράς για τις 
χρονοσειρές θερμοκρασίας και κατακρήμνισης, αντίστοιχα. Επιπλέον, οι ελάχιστες και μέγιστες 
διάμεσοι Nash-Sutcliffe για τα μοντέλα ARFIMA, BATS, απλής εκθετικής εξομάλυνσης, Theta και 
Prophet είναι 0.89 και 0.98 για τη θερμοκρασία, και −0.04 και 0.71 για την κατακρήμνιση. Οι 
πρώτες τιμές Nash-Sutcliffe υποδηλώνουν καλές προβλέψεις, και οι τελευταίες είναι αποδεκτές 
έως μέτριες. Η μεγαλύτερη προβλεψιμότητα της μηνιαίας θερμοκρασίας σε σύγκριση με τη 
μηνιαία κατακρήμνιση αναμένεται ήδη από τη σύγκριση των αντίστοιχων τιμών τυπικής 
απόκλισης των εποχιακά αποσυντεθημένων χρονοσειρών. Οι συγκεκριμένες έχουν διάμεσους 
περίπου 1.70 K και 42 mm, αντίστοιχα. Θεωρούμε ότι το επίπεδο της ακρίβειας των προβλέψεων 
θα μπορούσε να βελτιωθεί ελάχιστα χρησιμοποιώντας άλλες μεθόδους, όπως καταδεικνύουν τα 
πειράματα του Κεφαλαίου 3. 

Μια μελέτη πολλαπλών περιπτώσεων με έμφαση στους αλγόριθμους μηχανικής μάθησης 

Το Κεφάλαιο 6 έχει ως γενικό του στόχο την προώθηση της διεξαγωγής μελετών πολλαπλών 
περιπτώσεων −στην εκτεταμένη τους κλίμακα− ως μίας καινοτόμου στρατηγικής και 
εναλλακτικής λύσης σε σχέση με τη διεξαγωγή μελετών μεμονωμένης περίπτωσης στον τομέα 
των προβλέψεων υδρολογικών χρονοσειρών. Η στρατηγική αυτή περιλαμβάνει την εξέταση 
περισσοτέρων της μίας μελετών περίπτωσης, διευκολύνοντας έτσι την παρατήρηση 
συγκεκριμένων φαινομένων από πολλαπλές οπτικές γωνίες ή εντός διαφορετικών πλαισίων. Για 
την ανίχνευση συστηματικών προτύπων σε κάθε μεμονωμένη περίπτωση, μπορεί να 
πραγματοποιηθεί δια-περιπτωσιακή σύνθεση. Δεδομένου του γεγονότος ότι τα όρια μεταξύ των 
φαινομένων και του πλαισίου δεν είναι ξεκάθαρα, είναι σημαντικό κάθε μεμονωμένη περίπτωση 
να διατηρεί την ταυτότητα της σε μια μελέτη πολλαπλών περιπτώσεων, έτσι ώστε ο 
ενδιαφερόμενος να μπορεί να επικεντρωθεί ειδικά σε αυτήν, εφόσον το επιθυμεί. Η διερεύνηση 
του συνόλου των περιπτώσεων (αλλά και μεμονωμένων περιπτώσεων από το σύνολο) μπορεί να 
προσφέρει ενδιαφέρουσες κατανοήσεις σχετικά με τα εξεταζόμενα φαινόμενα, καθώς και μια 
μορφή γενίκευσης που ονομάζεται "πιθανή εμπειρική γενίκευση", διατηρώντας παράλληλα την 
αμεσότητα της μεθόδου της μελέτης περίπτωσης. 

Διεξάγουμε μια εκτεταμένη μελέτη πολλαπλών περιπτώσεων, αποτελούμενη από 50 
επιμέρους μελέτες περιπτώσεων. Οι τελευταίες χρησιμοποιούν μηνιαίες χρονοσειρές 
θερμοκρασίας και κατακρήμνισης παρατηρημένες στην Ελλάδα (βλ. τις γεωγραφικές θέσεις των 
σταθμών μέτρησης στο Σχήμα 9). Εξετάζουμε αυτές τις δύο γεωφυσικές διεργασίες, επειδή 
παρουσιάζουν διαφορετικές ιδιότητες, οι οποίες μπορεί να επηρεάσουν διαφορετικά τα 



 

 xxxi 

αποτελέσματα των διερευνήσεων. Ο κύριος στόχος της διενεργούμενης μελέτης πολλαπλών 
περιπτώσεων είναι η διερεύνηση τριών προβλημάτων που σχετίζονται με την πρόβλεψη των 
υδρολογικών χρονοσειρών χρησιμοποιώντας αλγόριθμους μηχανικής μάθησης. Τα υπό 
διερεύνηση προβλήματα είναι: (α) η επιλογή μεταβλητών πρόβλεψης, (β) η επιλογή των 
υπερπαραμέτρων, και (γ) η σύγκριση των μεθόδων μηχανικής μάθησης και των στοχαστικών 
μεθόδων. Παρουσιάζουμε επίσης ποσοτικές πληροφορίες σχετικά με την ποιότητα των 
προβλέψεων (ιδιαίτερα σημαντικές για την περίπτωση της Ελλάδας) και αναζητάμε στοιχεία 
σχετικά με την ύπαρξη πιθανών σχέσεων μεταξύ της ποιότητας της πρόβλεψης και των 
εκτιμήσεων μέγιστης πιθανοφάνειας της τυπικής απόκλισης, του συντελεστή μεταβλητότητας 
και της παραμέτρου Hurst της ανέλιξης fractional Gaussian noise για τις εποχιακά 
αποσυντεθειμένες χρονοσειρές (που χρησιμοποιούνται για την προσαρμογή των μοντέλων). 

  
Σχήμα 9. Γεωγραφικές θέσεις σταθμών μέτρησης (a) θερμοκρασίας και (b) κατακρήμνισης. 
Μηνιαία δεδομένα από τους συγκεκριμένους σταθμούς χρησιμοποιούνται για τα πειράματα του 
Κεφαλαίου 6. 

Επικεντρωνόμαστε σε δύο αλγορίθμους μηχανικής μάθησης, συγκεκριμένα στα νευρωνικά 
δίκτυα (neural networks) και στα support vector machines, ενώ επίσης συμπεριλαμβάνουμε 
τέσσερις στοχαστικές μεθόδους και την εποχιακή μέθοδο αναφοράς στις συγκρίσεις μας. Οι 
στοχαστικές μέθοδοι είναι (i) ένα πλήρως αυτοματοποιημένο μοντέλο AR(1), (ii) ένα πλήρως 
αυτοματοποιημένο μοντέλο ARFIMA, (iii) το μοντέλο BATS, και (iv) το μοντέλο Theta. 
Εφαρμόζουμε κοινή μεθοδολογία σε κάθε μεμονωμένη περίπτωση και, στη συνέχεια, 
πραγματοποιούμε δια-περιπτωσιακή σύνθεση για να διευκολύνουμε την ανίχνευση 
επαναλλαμβανόμενων μοτίβων. Προσαρμόζουμε τα μοντέλα σε εποχιακά αποσυντεθειμένες 
χρονοσειρές και ανακτούμε την εποχιακότητα στις προβλέψεις. Συγκρίνουμε την επίδοση των 
αλγόριθμων στην πρόβλεψη ενός και δώδεκα βημάτων μπροστά. Η αξιολόγηση της επίδοσης των 
μεθόδων στην πρόβλεψη ενός βήματος μπροστά βασίζεται στο απόλυτο σφάλμα της πρόβλεψης 
της τελευταίας μηνιαίας παρατήρησης. Η αξιολόγηση της επίδοσης των μεθόδων στην πρόβλεψη 
πολλαπλών βημάτων γίνεται για τις μηνιαίες παρατηρήσεις του τελευταίου έτους και βασίζεται 
σε πέντε μέτρα. Τα τελευταία είναι το RMSE, το Nash-Sutcliffe, ο λόγος τυπικών αποκλίσεων, ο 
συντελεστής συσχέτισης και ο δείκτης συμφωνίας. 

Τα αποτελέσματα (βλ. π.χ., Σχήματα 10 και 11) καταδεικνύουν ότι μέθοδοι πρόβλεψης που 
βασίζονται στον ίδιο αλγόριθμο μηχανικής μάθησης μπορεί να παρουσιάζουν πολύ διαφορετικές 
επιδόσεις, σε βαθμό που εξαρτάται κυρίως από τον αλγόριθμο και την υπό διερεύνηση 
περίπτωση. Πράγματι, ο αλγόριθμος νευρωνικών δικτύων (neural networks) μπορεί να δώσει 
προβλέψεις αρκετά διαφορετικής ποιότητας για μια συγκεκριμένη περίπτωση, σε αντίθεση με τα 
support vector machines. Η επίδοση του πρώτου αλγορίθμου φαίνεται να επηρεάζεται 
περισσότερο από την επιλογή των μεταβλητών πρόβλεψης παρά από τη διαδικασία επιλογής 
των υπερπαραμέτρων (χρήση προκαθορισμένων υπερπαραμέτρων ή επιλογή μετά από 
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βελτιστοποίηση). Παρόλο που κανένα από τα συγκρινόμενα σετ μεταβλητών πρόβλεψης δεν 
οδηγεί σε συστηματικά καλύτερες προβλέψεις από τα υπόλοιπα, τόσο για τα νευρωνικά δίκτυα 
(neural networks) όσο και για τα support vector machines, τα αποτελέσματα ευνοούν 
περισσότερο τη χρήση λιγότερων και πρόσφατων μεταβλητών πρόβλεψης. Επιπλέον, η 
βελτιστοποίηση υπερπαραμέτρων φαίνεται να μην οδηγεί απαραιτήτως σε καλύτερες 
προβλέψεις από τη χρήση των προεπιλεγμένων τιμών υπερπαραμέτρων για τους υπό διερεύνηση 
αλγορίθμους. Όσον αφορά τις συγκρίσεις που πραγματοποιούνται μεταξύ των αλγορίθμων 
μηχανικής μάθησης και των κλασσικών αλγορίθμων, τα αποτελέσματα δείχνουν ότι μέθοδοι και 
από τις δύο κατηγορίες μπορούν να φανούν εξίσου χρήσιμες. Η καλύτερη μέθοδος εξαρτάται από 
την περίπτωση που εξετάζεται και το κριτήριο ενδιαφέροντος, ενώ μπορεί να είναι είτε μηχανικής 
μάθησης είτε κλασσική. Ακολουθούν ορισμένες πληροφορίες δευτερεύουσας σημασίας, όπως 
αυτές προκύπτουν από τα πειράματα του Κεφαλαίου: Η μέση επίδοση των αλγορίθμων που 
χρησιμοποιούνται για τις προβλέψεις θερμοκρασίας ενός και δώδεκα βημάτων μπροστά 
κυμαίνεται μεταξύ 0.66°C και 1.00°C (σε όρους απόλυτου σφάλματος πρόβλεψης), και 1.14°C και 
1.70°C (σε όρους RMSE πρόβλεψης), αντίστοιχα. Για τις μηνιαίες προβλέψεις κατακρήμνισης οι 
αντίστοιχες τιμές είναι 39 mm και 72 mm, και 41 mm και 52 mm. Τέλος, από την μελέτη 
πολλαπλών περιπτώσεων δεν προκύπτει κανένα στοιχείο που να καταδεικνύει την ύπαρξη 
σχέσης ανάμεσα στην ποιότητα των προβλέψεων και στις εκτιμήσεις μέγιστης πιθανοφάνειας 
της τυπικής απόκλισης, του συντελεστή μεταβλητότητας και της παραμέτρου Hurst της ανέλιξης 
fractional Gaussian noise για τις εποχιακά αποσυντεθειμένες χρονοσειρές. 



 

 xxxiii

 

 

 

 

 

 

 
 

(a) 

 
 

(b) 

 
Σχήμα 10. Προβλέψεις μηνιαίας θερμοκρασίας δώδεκα βημάτων μπροστά, παρηγμένες στο 
Κεφάλαιο 6 για τη διερεύνηση του Προβλήματος 1 και τους αλγορίθμους (a) NN and (b) SVM, σε 
σύγκριση με τις αντίστοιχες παρατηρημένες τιμές μηνιαίας θερμοκρασίας. 
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Σχήμα 11. Προβλέψεις μηνιαίας κατακρήμνισης  (a) ενός και (b) δώδεκα βημάτων μπροστά, 
παρηγμένες στο Κεφάλαιο 6 για τη διερεύνηση του Προβλήματος 3, σε σύγκριση με τις 
αντίστοιχες παρατηρημένες τιμές μηνιαίας κατακρήμνισης. 

Πιθανοτική μετεπεξεργασία αποτελεσμάτων υδρολογικής μοντελοποίησης 

Μια νέα μεθοδολογία και η διερεύνησή της μέσω πειραμάτων πρότυπης μοντελοποίησης 

Στο Κεφάλαιο 7 αναπτύσσουμε μια νέα μεθοδολογία πιθανοτικής μετεπεξεργασίας 
αποτελεσμάτων υδρολογικής μοντελοποίησης, χρησιμοποιώντας ως σημείο εκκίνησης ένα 
θεωρητικά συνεπές γενικό σχήμα πιθανοτικής υδρολογικής μοντελοποίησης. Η προτεινόμενη 
μεθοδολογία υποδιαιρείται σε τρεις εναλλακτικές παραλλαγές. Εν συντομία, παράγει ένα μεγάλο 
αριθμό σημειακών (συνήθως προσδιοριστικών) προβλέψεων χρησιμοποιώντας ένα μόνο 
διεργασιακό υδρολογικό μοντέλο, αλλά με διαφορετικές τιμές παραμέτρων. Αυτές οι "αδελφές 
προβλέψεις" μετατρέπονται στη συνέχεια σε βοηθητικές πιθανοτικές προβλέψεις (καθεμία από 
τις οποίες αποτελείται από έναν αριθμό προβλέψεων ποσοστημορίων) μέσω της επίλυσης ενός 
προβλήματος παλινδρόμησης ποσοστημορίου. Η επίλυση αυτή βασίζεται σε έναν κατάλληλο 
αλγόριθμο (στο εξής αναφερόμενο ως το "μοντέλο σφάλματος" της μεθοδολογίας). Οι βοηθητικές 
πιθανοτικές προβλέψεις τελικώς συνδυάζονται υπολογίζοντας τον μέσο όρο των προβλέψεων 
των ποσοστημορίων με την ίδια πιθανότητα. Από όσο γνωρίζουμε, η νέα μεθοδολογία είναι η 
πρώτη μεθοδολογία πιθανοτικής μετεπεξεργασίας αποτελεσμάτων υδρολογικής 
μοντελοποίησης που παράγει και αξιοποιεί διαφορετικά σύνολα πληροφορίας χρησιμοποιώντας 
ένα μόνο (διεργασιακό) μοντέλο με διαφορετικές τιμές παραμέτρων και ένα μοντέλο 
παλινδρόμησης ποσοστημορίου. 
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Μέσω της χρήσης μοντέλων παλινδρόμησης ποσοστημορίου επιτυγχάνεται κάποια πρόοδος 
(σε σχέση με την αρχική υλοποίηση του γενικού σχήματος και τις παραλλαγές του τελευταίου 
που είναι προγενέστερες των Κεφαλαίων 7 και 8) όσον αφορά την ευελιξία στη μοντελοποίηση. 
Τα μοντέλα αυτά προβλέπουν ποσοστημόρια με δεδομένη πιθανότητα και όχι ολόκληρη την  
κατανομή της μεταβλητής ενδιαφέροντος, ενώ παράλληλα είναι κατάλληλα για τη 
μοντελοποίηση της ετεροσκεδαστικότητας. Τέτοια μοντέλα (βλ. επίσης το Κεφάλαιο 9) είναι το 
μοντέλο παλινδρόμησης ποσοστημορίου (quantile regression), το μοντέλο γενικευμένα τυχαία 
δάση (generalized random forests) για παλινδρόμηση ποσοστημορίου, το μοντέλο γενικευμένα 
τυχαία δάση (generalized random forests) για παλινδρόμηση ποσοστημορίου μιμούμενο το 
μοντέλο τυχαία δάση για παλινδρόμηση ποσοστιμορίου (quantile regression forests), το μοντέλο 
gradient boosting machine, το μοντέλο model-based boosting με γραμμικά μοντέλα βάσης και το 
μοντέλο νευρωνικά δίκτυα παλινδρόμησης ποσοστιμορίου (quantile regression neural 
networks). Η δυνατότητα για εκμετάλλευση της ευελιξίας που παρέχεται από τα μοντέλα 
παλινδρόμησης ποσοστημορίου θα πρέπει να θεωρηθεί σημαντικό πλεονέκτημα της 
προτεινόμενης μεθοδολογίας από πρακτική άποψη. 

Δείχνουμε τη χρησιμότητα της προτεινόμενης μεθοδολογίας και πώς η κατανόηση μας για 
το μοντελοποιούμενο σύστημα μπορεί να μας οδηγήσει στην επίτευξη βελτιωμένης 
προγνωστικής μοντελοποίησης διεξάγοντας διερευνήσεις πρότυπης μοντελοποίησης 
(βασιζόμενες στα σύνολα δεδομένων του Σχήματος 12). Στο πλαίσιο των συγκεκριμένων 
διερευνήσεων, εστιάζουμε στην ακαταλληλότητα της παραδοχής της ομοσκεδαστικότητας, όταν 
αυτή γίνεται κατά την μοντελοποίηση του σφάλματος πρόβλεψης του υδρολογικού μοντέλου, 
και στο πώς η επιλογή ενός κατάλληλου μοντέλου παλινδρόμησης οδηγεί σε βελτιωμένες 
πιθανοτικές προβλέψεις. Δείχνουμε, επίσης, τη σημασία της χρήσης ενός πιο ακριβούς 
υδρολογικού μοντέλου για την παροχή πιθανοτικών προβλέψεων που να είναι ταυτόχρονα 
αξιόπιστες και όσο το δυνατόν πιο στενές. Τέλος, χρησιμοποιούμε τα αποτελέσματα της 
πρότυπης μοντελοποίησης για να δείξουμε πώς η προτεινόμενη μεθοδολογία χαρακτηρίζεται από 
μεγαλύτερη ευρωστία. Η τελευταία επιτυγχάνεται υπολογίζοντας τον μέσο όρο πολλών 
ποσοστημοριακών προβλέψεων. 
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Σχήμα 12. Προσομοιωμένα σύνολα δεδομένων (a−c) 1−3. Τα συγκεκριμένα σύνολα δεδομένων 
χρησιμοποιούνται για τα πειράματα του Κεφαλαίου 7. 

Παρά το γεγονός ότι επικεντρωνόμαστε στην προτεινόμενη μεθοδολογία, ορισμένα από τα 
αποτελέσματα του Κεφαλαίου μπορούν να χρησιμοποιηθούν για να την απόκτηση γενικής 
εικόνας σχετικά με τον τρόπο λειτουργίας των μεθοδολογιών πιθανοτικής μετεπεξεργασίας 
αποτελεσμάτων υδρολογικής μοντελοποίησης δύο βημάτων και τις συνθήκες κάτω από τις 
οποίες μεγιστοποιείται η προγνωστική επίδοση τους. Τα παρουσιαζόμενα παραδείγματα 
πρότυπης μοντελοποίησης καταδεικνύουν την μεγάλη σημασία τόσο του μοντέλου 
παλινδρόμησης ποσοστημορίου όσο και του υδρολογικού μοντέλου για μια μεθοδολογία 
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πιθανοτικής μετεπεξεργασίας αποτελεσμάτων υδρολογικής μοντελοποίησης δύο βημάτων, ενώ 
προχωρούν ορισμένα βήματα μπροστά σε σχέση με ορισμένες παραδειγματικές (αλλά 
ταυτόχρονα και βασικές) δοκιμές πρότυπης μοντελοποίησης που έχουν πραγματοποιηθεί μέχρι 
στιγμής για την ερμηνεία διάφορων μεθοδολογιών για την ποσοτικοποίηση της προγνωστικής 
υδρολογικής αβεβαιότητας. Τέτοιες δοκιμές πρότυπης μοντελοποίησης υιοθετούν, ως επί το 
πλείστον, την παραδοχή της ομοσκεδαστικότητας και ένα τέλειο “υδρολογικό μοντέλο”, ενώ οι 
διερευνήσεις πρότυπης μοντελοποίησης του Κεφαλαίου 7 είναι εμπνευσμένες και από πρόσφατα 
πειράματα προσομοίωσης που δεν βασίζονται στις συγκεκριμένες παραδοχές. 

Δύο ελκυστικές και ταυτόχρονα χρήσιμες ιδιότητες της προτεινόμενης μεθοδολογίας 
(εκτενώς διερευνώμενες στο Κεφάλαιο 8) είναι: (α) η μεγαλύτερη ευρωστία της σε σύγκριση με 
τις επιμέρους προβλέψεις που συνδυάζονται στο πλαίσιό της και, κατά συνέπεια, σε σύγκριση με 
βασικές μεθοδολογίες πιθανοτικής μετεπεξεργασίας αποτελεσμάτων υδρολογικής 
μοντελοποίησης δύο βημάτων (οι οποίες παράγουν μία μόνο πιθανοτική πρόβλεψη και δεν 
συνδυάζουν προβλέψεις), και (β) η ικανότητα της να "αξιοποιεί τη σοφία του πλήθους". Η 
τελευταία ορίζεται στη βιβλιογραφία της πρόβλεψης χρονοσειρών ως η ιδιότητα ορισμένων 
συνδυασμών προβλέψεων να είναι τουλάχιστον το ίδιο καλές −συνήθως καλύτερες− ως προς ένα 
ορισμένο μέτρο από τον μέσο όρο των τιμών που λαμβάνει το ίδιο μέτρο για καθεμία από τις 
επιμέρους προβλέψεις που συνδυάζονται. Στην πραγματικότητα, όσο μεγαλύτερος είναι ο 
αριθμός των συνδυαζόμενων προβλέψεων (ίσος με τον αριθμό των παραγόμενων αδελφών 
προβλέψεων), τόσο πιο μεγάλη είναι η ευρωστία της προτεινόμενης μεθοδολογίας και τόσο 
περισσότερο αξιοποιείται η σοφία του πλήθους. 

Η προτεινόμενη μεθοδολογία χαρακτηρίζεται από ορισμένα πρόσθετα πλεονεκτήματα, τα 
οποία είναι ιδιαίτερα σημαντικά υπό το πρίσμα της προγνωστικής μοντελοποίησης. Πρώτον, 
είναι υπολογιστικά βολική υπό την έννοια ότι μπορεί εύκολα να εκφραστεί σε αλγοριθμική 
μορφή και να προγραμματιστεί χρησιμοποιώντας ανοιχτό λογισμικό. Δεύτερον, προσφέρει 
ορισμένες επιλογές μοντελοποίησης που θα μπορούσαν να αξιοποιηθούν για τη μεγιστοποίηση 
της προγνωστικής της επίδοσης. Παραδείγματος χάριν, οι δύο από τις τρεις παραλλαγές 
επιτρέπουν την αξιοποίηση από το μοντέλο σφάλματος ενός μεγάλου αριθμού διαφορετικών 
συνόλων πληροφορίας, αντί του ενός συνόλου πληροφορίας (που αξιοποιεί η τρίτη παραλλαγή), 
διευκολύνοντας έτσι τη διεύρυνση του χώρου δειγματοληψίας των παρατηρούμενων 
σφαλμάτων πρόβλεψης του υδρολογικού μοντέλου. Αυτή η διεύρυνση θα μπορούσε να είναι 
ιδιαίτερα σημαντική στην περίπτωση της μοντελοποίησης αυτών των σφαλμάτων 
χρησιμοποιώντας μεθόδους που δεν κάνουν προέκταση (extrapolation), όπως το μοντέλο δάση 
παλινδρόμησης ποσοστημορίου (quantile regression forests). Τέλος, επιτρέπει την πλήρη 
αξιοποίηση της παραγόμενης πληροφορίας, με την έννοια ότι κάθε αδελφή πρόβλεψη 
μετατρέπεται σε πιθανοτική πρόβλεψη και όχι σε μια πιθανή πραγματοποίηση της διεργασίας 
που μας ενδιαφέρει (την αρχική υλοποίηση του γενικού σχήματος και τις παραλλαγές που είναι 
προγενέστερες των Κεφαλαίων 7 και 8). 

Θα πρέπει επίσης να συζητηθούν ορισμένοι περιορισμοί που συνοδεύουν την προτεινόμενη 
μεθοδολογία. Αυτοί περιλαμβάνουν περιορισμούς που απορρέουν από την φύση της ίδιας της 
μεθοδολογίας (που επιτάσσει την αξιοποίηση της ιστορικής πληροφορίας σε δύο διαδοχικά 
βήματα). Τέτοιοι είναι ο βαθμός στον οποίο τα αποτελέσματα της μοντελοποίησης μπορούν να 
ερμηνευτούν (ειδικά όσον αφορά την παραγωγή και αξιοποίηση ερμηνεύσιμων τιμών 
παραμέτρων) και οι σημαντικές απαιτήσεις για μεγάλο μέγεθος ιστορικών χρονοσειρών. Αν και 
αυτός ο τελευταίος περιορισμός πρέπει να σημειωθεί και ίσως να ληφθεί υπόψιν σε πρακτικές 
εφαρμογές, οι ημερήσιες χρονοσειρές βροχής-απορροής είναι συνήθως ικανοποιητικού μήκους. 
Επιπλέον, στο Κεφάλαιο 8 αποδεικνύεται εμπειρικά ότι, ακόμη και όταν η διαθέσιμη ιστορική 
πληροφορία είναι λίγη, η προτεινόμενη μεθοδολογία έχει καλή επίδοση όταν η υλοποίηση της 
βασίζεται στο μοντέλο παλινδρόμησης ποσοστημορίου (quantile regression) ως μοντέλο 
σφάλματος. 

Επιπλέον, οι υπολογιστικές απαιτήσεις της προτεινόμενης μεθοδολογίας είναι (επί του 
παρόντος) μεγάλες όταν (α) επιλέγονται υπολογιστικά δαπανηροί αλγόριθμοι (π.χ., αλγόριθμοι 
Markov Chain Monte Carlo) για τη βαθμονόμηση του υδρολογικού μοντέλου, και/ή (β) το μοντέλο 
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σφάλματος αξιοποιεί την ιστορική πληροφορία όπως επιτάσσουν δύο από τις τρεις παραλλαγές 
της, εκτός από την περίπτωση που η υλοποίηση της περιορίζεται στην παραγωγή και αξιοποίηση 
ενός μικρού αριθμού αδελφών προβλέψεων. Θα πρέπει να σημειωθεί, στο σημείο αυτό, ότι ένας 
υπολογιστικά βολικός και απλός αλγόριθμος δεν είναι απαραίτητα και υπολογιστικά γρήγορος. 
Είναι επίσης σημαντικό να διευκρινιστεί ότι ο παραπάνω περιορισμός ισχύει μόνο για εφαρμογές 
σε εκατοντάδες λεκάνες απορροής και χρονικές κλίμακες μικρότερες από την μηνιαία, καθώς και 
για εφαρμογές μέσω συνήθων προσωπικών υπολογιστών. Δεν ισχύει για εφαρμογές σε μικρό 
αριθμό λεκανών απορροής ούτε για εφαρμογές σε μηνιαία και ετήσια χρονική κλίμακα. Ακόμα, 
εφαρμογές μεγάλης κλίμακας σε ημερήσια σύνολα δεδομένων υποστηρίζονται επαρκώς από την 
τρίτη παραλλαγή της μεθοδολογίας, όταν αυτή η παραλλαγή υλοποιείται με τη χρήση 
υπολογιστικά γρήγορων αλγορίθμων για την βαθμονόμηση του υδρολογικού μοντέλου. 

Εκτός από τα παραπάνω ζητήματα και σε αντίθεση με αρκετές στατιστικές μεθοδολογίες 
πιθανοτικής πρόβλεψης, ένα ευρέως παραδεκτό μειονέκτημα των ευέλικτων μοντέλων 
μηχανικής μάθησης για πρόβλεψη ποσοστημορίων (που αποτελούν την βάση της προτεινόμενης 
μεθοδολογίας) είναι η ακαταλληλότητα τους για την μοντελοποίηση της μακροπρόθεσμης 
εμμονής. Η συγκεκριμένη μοντελοποίηση κατά την επίλυση προβλημάτων πρόβλεψης είναι 
σημαντική προτεραιότητα στην βιβλιογραφία της εφαρμοσμένης στοχαστικής υδρολογίας (βλ. 
π.χ., τις διερευνήσεις μεγάλης κλίμακας των Κεφαλαίων 3−5 και τη συγκριτική μελέτη 
περίπτωσεων του Κεφαλαίου 6). Παραταύτα, εμπειρικά αποτελέσματα καταδεικνύουν ότι η 
Μαρκοβιανή παραδοχή (που κατά κάποιον τρόπο επιτρέπεται από την προτεινόμενη 
μεθοδολογία χρησιμοποιώντας ως μεταβλητή πρόβλεψης στην παλινδρόμηση την πρόβλεψη του 
υδρολογικού μοντέλου για την χρονική στιγμή t−1) είναι εύλογη για την μοντελοποίηση των 
σφαλμάτων πρόβλεψης των υδρολογικών μοντέλων. Γενικά, συμπεριλαμβάνοντας περισσότερες 
(από μία) μεταβλητές πρόβλεψης (π.χ., τις προβλέψεις του υδρολογικού μοντέλου για τις 
χρονικές στιγμές t, t−1, t−2, κ.λπ.) στο πρόβλημα παλινδρόμησης, μπορούμε να αυξήσουμε την 
ποσότητα πληροφορίας που αξιοποιείται και να βελτιώσουμε την πρόβλεψη, όπως 
αποδεικνύεται εμπειρικά για προβλήματα βροχής-απορροής του Κεφαλαίου 9 της παρούσας 
διατριβής. 

Εν κατακλείδι, το βασικό δίλημμα που καλείται να αντιμετωπίσει κανείς κατά την επιλογή 
μεταξύ της προτεινόμενης μεθοδολογίας και των βασικών μεθοδολογιών πιθανοτικής 
μετεπεξεργασίας αποτελεσμάτων υδρολογικής μοντελοποίησης δύο σταδίων (όταν γίνεται 
χρήση του ίδιου μοντέλου σφάλματος) είναι αυτό ανάμεσα (α) στην μεγαλύτερη ευρωστία που 
χαρακτηρίζει την πρώτη και στην ικανότητα της να αξιοποιεί τη σοφία του πλήθους, και (β) στις 
πολύ λιγότερες υπολογιστικές απαιτήσεις των τελευταίων μεθοδολογιών. Πιστεύουμε ότι από 
την σκοπιά της διαχείρισης κινδύνου η διάθεση των επιπρόσθετων υπολιστικών πόρων είναι 
συμφέρουσα, όπως καταδεικνείει το μεγάλης κλίμακας πείραμα πραγματικού κόσμου του 
Κεφαλαίου 8. 

Διερευνήσεις μεγάλου υδρολογικού δείγματος με έμφαση στην αξιολόγηση της ευρωστίας 

Το Κεφαλαίο 8 έχει ως γενικό του στόχο τη διερεύνηση σε πραγματικά προβλήματα της 
μεθοδολογίας πιθανοτικής μετεπεξεργασίας αποτελεσμάτων υδρολογικής μοντελοποίησης που 
αναπτύσσεται στο Κεφάλαιο 7. Η συγκεκριμένη μεθοδολογία υιοθετεί βασικά στοιχεία από μια 
θεωρητικά συνεπή και ευέλικτη μεθοδολογία πιθανοτικής υδρολογικής μοντελοποίησης, ενώ 
επίσης στηρίζεται σε απλές μεθόδους συνδυασμού προβλέψεων από το πεδίο της πρόβλεψης 
χρονοσειρών. Χρησιμοποιεί ένα οποιοδήποτε διεργασιακό υδρολογικό μοντέλο για να 
δημιουργήσει έναν μεγάλο αριθμό «αδελφών προβλέψεων» υιοθετώντας ισάριθμα σετ  
παραμέτρων. Οι παράμετροι του διεργασιακού υδρολογικού μοντέλου προκύπτουν 
χρησιμοποιώντας Μπεϋζιανά ή άλλα σχήματα βαθμονόμησης. Επομένως, αυτή η μεθοδολογία 
δεν έχει κάποια ιδιαίτερη σχέση εκ κατασκευής με Μπεϋζιανές μεθόδους, όπως ισχύει και για την 
μητρική μεθοδολογία. Ένα μοντέλο παλινδρόμησης ποσοστημορίου (βλ. π.χ., τα μοντέλα που 
διερευνώνται στο Κεφάλαιο 9 της παρούσας διατριβής) χρησιμοποιείται στη συνέχεια για την 
μοντελοποίηση του σφάλματος πρόβλεψης του υδρολογικού μοντέλου. Μέσω αυτής της 
μοντελοποίησης οι αδελφές προβλέψεις μετατρέπονται σε πιθανοτικές προβλέψεις. Οι 
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τελευταίες τελικά συνδυάζονται με απλό τρόπο για να δώσουν τις παραδοτέες προβλέψεις 
ποσοστιμορίων. Η μεθοδολογία υπό αξιολόγηση υποδιαιρείται σε τρεις εναλλακτικές 
παραλλαγές, οι οποίες διαφέρουν μόνο ως προς την εκπαίδευση του μοντέλου παλινδρόμησης 
ποσοστημορίου. 

Πραγματοποιούμε ένα πείραμα πραγματικού κόσμου σε μηνιαία κλίμακα. Στο πλαίσιο του 
συγκεκριμένου πειράματος χρησιμοποιούμε πλήρεις (χωρίς ελλείπουσες τιμές) ημερήσιες 
χρονοσειρές 50 ετών για 270 λεκάνες απορροής στις Ηνωμένες Πολιτείες (βλ. π.χ., τις 
γεωγραφικές θέσεις των σταθμών μέτρησης της απορροής στο Σχήμα 13). Προκειμένου να 
βελτιώσουμε την κατανόηση γύρω από την πιθανοτική υδρολογική μοντελοποίηση, επιμένουμε 
στην χρήση ερμηνεύσιμων μοντέλων και στη συγκριτική αξιολόγηση εντός όλων των 
διεξαχθεισών δοκιμών. Χρησιμοποιούμε το φειδωλό διεργασιακό υδρολογικό μοντέλο GR2M και 
δύο (σε μεγάλο βαθμό) ερμηνεύσιμα μοντέλα παλινδρόμησης, συγκεκριμένα το γραμμικό 
μοντέλο παλινδρόμησης και μοντέλο παλινδρόμησης ποσοστημορίου (quantile regression). 
Εφαρμόζουμε έξι σχήματα πιθανοτικής προγνωστικής μοντελοποίησης, όλα βασιζόμενα στην 
προτεινόμενη μεθοδολογία. Εκείνα τα σχήματα που βασίζονται στο γραμμικό μοντέλο (τρία σε 
αριθμό) χρησιμοποιούνται ως σημεία αναφοράς για τα υπόλοιπα σχήματα (επίσης τρία σε 
αριθμό). Εκείνα τα σχήματα που βασίζονται στο ίδιο μοντέλο παλινδρόμησης χρησιμοποιούν 
διαφορετικές παραλλαγές της υπό αξιολόγηση μεθοδολογίας. Η επίδοση των έξι σχημάτων 
πιθανοτικής προγνωστικής μοντελοποίησης ποσοτικοποιείται υπολογίζοντας τις πιθανότητες 
κάλυψης, τα μέσα πλάτη και τις μέσες τιμές του μέτρου διαστήματος πρόβλεψης των 
διαστημάτων πρόβλεψης, καθώς επίσης και μέσω συγκριτικής αξιολόγησης των αποτελεσμάτων 
που παρέχουν σε σχέση με τα αποτελέσματα αφελών πιθανοτικών μοντέλων. 

 
Σχήμα 13. Γεωγραφικές θέσεις 270 σταθμών απορροής ποταμών. Μηνιαία δεδομένα από τους 
συγκεκριμένους σταθμούς χρησιμοποιούνται για τα πειράματα του Κεφαλαίου 8. 

Τα πειραμαματικά αποτελέσματα (τιμές μέτρων για 4 870 800 διαστήματα πρόβλεψης) 
υποδεικνύουν τη χρησιμότητα της υπό αξιολόγηση μεθοδολογίας για την απόκτηση πιθανοτικών 
προβλέψεων υδρολογικών μεταβλητών (βλ. π.χ., τα Σχήματα 14−16). Η παραλλαγή με την 
καλύτερη επίδοση προσφέρει μια μέση σχετική βελτίωση έως και 5.46% σε σχέση με τις 
εναλλακτικές παραλλαγές, όταν υλοποιείται με τη χρήση του μοντέλου παλινδρόμησης 
ποσοστημορίου. Η συγκεκριμένη παραλλαγή εκπαιδεύει το μοντέλο παλινδρόμησης σε ένα 
μεγάλο σύνολο δεδομένων. Το τελευταίο χρησιμοποιεί πληροφορία από το σύνολο των αδελφών 
προβλέψεων. Οι μέσες σχετικές βελτιώσεις όταν χρησιμοποιείται το μοντέλο παλινδρόμησης 
ποσοστημορίου (quantile regression) έναντι του γραμμικού μοντέλου παλινδρόμησης, φτάνουν 
μέχρι περίπου 37% ως προς τη μέση τιμή του μέτρου διαστήματος πρόβλεψης. Το τελευταίο 
αριθμητικό αποτέλεσμα θα πρέπει να αξιολογηθεί με βάση το γεγονός ότι μόνο το πρώτο από 
αυτά τα μοντέλα μπορεί να μοντελοποιήσει την ετεροσκεδαστικότητα. Η παραδοχή της 
ομοσκεδαστικότητας γίνεται συχνά στη βιβλιογραφία κατά την μοντελοποίηση του σφάλματος 
πρόβλεψης του υδρολογικού μοντέλου. 
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Σχήμα 14. Ενδεικτικά διαστήματα πρόβλεψης, παρηγμένα στο Κεφάλαιο 8 κάνοντας χρήση της 
υπό διερεύνηση μεθοδολογίας, για τέσσερις τυχαίες λεκάνες απορροής και μία κοινή χρονική 
υποπερίοδο της περιόδου δοκιμών (έτη 1996−1999). Τα μαύρα σημεία υποδηλώνουν τις 
πραγματικές τιμές της απορροής, ενώ οι ανοιχτές και σκούρες πορτοκαλί περιοχές υποδηλώνουν 
τις διαστήματα πρόβλεψης 95% και 80%, αντίστοιχα. 
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Σχήμα 15. Μέσες τιμές κατάταξης των σχημάτων πιθανοτικής πρόβλεψης του Κεφαλαίου 8 
σύμφωνα με την μέση τιμή του μέτρου διαστήματος πρόβλεψης για την χρονική περιόδο δοκιμών 
(έτη 1975−1999). Οι μέσες τιμές κατάταξης έχουν υπολογιστεί για τα διαστήματα πρόβλεψης 
99%, 97.5%, 95%, 90% και 80% (από πάνω προς τα κάτω). Τα σχήματα πιθανοτικής πρόβλεψης 
κατατάσσονται από το 1ο (καλύτερο) στο 8ο (χειρότερο). Κάθε ράβδος συνοψίζει 270 τιμές. 
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Σχήμα 16. Ενδεικτικές σχετικές διαφορές υπολογισμένες για την απόδειξη της ιδιότητας της υπό 
διερεύνηση μεθοδολογίας να “αξιοποιεί τη σοφία του πλήθους”. Οι συγκεκριμένες σχετικές 
διαφορές έχουν υπολογιστεί στο Κεφάλαιο 8 για το σύνολο των λεκανών απορροής που 
διερευνώνται στο πλαίσιο του, και για τα διαστήματα πρόβλεψης (a) 99%, (b) 97.5%, (c) 95%, 
(d) 90% and (e) 80%. Τα συγκεκριμένα διαστήματα πρόβλεψης έχουν παραχθεί για την χρονική 
περιόδο δοκιμών (έτη 1975−1999). Ο οριζόντιος άξονας έχει συντμηθεί στην τιμή 5%. Κάθε 
ιστόγραμμα συνοψίζει 270 τιμές. 

Τέλος, αποδεικνύουμε την μεγαλύτερη ευρωστία της υπό διερεύνηση μεθοδολογίας σε 
σχέση με τις επιμέρους προβλέψεις που συνδυάζονται από αυτήν και, κατ 'επέκταση, σε σχέση 
με βασικές μεθοδολογίες πιθανοτικής μετεπεξεργασίας αποτελεσμάτων υδρολογικής 
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μοντελοποίησης δύο σταδίων. Η ικανότητα της μεθοδολογίας να αξιοποιεί τη σοφία του πλήθους 
αποδεκνύεται εμπειρικά (βλ. π.χ., Σχήμα 16). Διαπιστώνεται ότι οι προβλέψεις ποσοστημορίων 
καθενός εκ των έξι σχημάτων πιθανοτικής προγνωστικής μοντελοποίησης είναι τουλάχιστον το 
ίδιο καλές −συνήθως καλύτερες− ως προς την μέση τιμή του μέτρου διαστήματος πρόβλεψης από 
τον μέσο όρο των τιμών που λαμβάνει το ίδιο μέτρο για καθεμία από τις επιμέρους προβλέψεις 
που συνδυάζονται από το εκάστοτε σχήμα. Οι αντίστοιχες μέσες σχετικές διαφορές ευνοούν την 
πρώτη ποσότητα έναντι της δεύτερης έως περίπου 37%, ενώ οι μέσες τιμές τους κυμαίνονται 
μεταξύ 0.19% και 1.83%. Εξαρτώνται τόσο από το διάστημα πρόβλεψης όσο και από την 
παραλλαγή της υπό αξιολόγηση μεθοδολογίας. Για το σχήμα με τις καλύτερες επιδόσεις, οι 
αντίστοιχες μέσες σχετικές διαφορές είναι περίπου 1%. Εν κατακλείδι, η ευρωστία και η 
ικανότητα αξιοποίησης της σοφίας του πλήθους αναγνωρίζονται ως δύο βασικές ιδιότητες της 
υπό διερεύνηση μεθοδολογίας. 

Γιατί και πώς να συνδυάσει κανείς διεργασιακά μοντέλα και αλγορίθμους μηχανικής μάθησης 

Το Κεφάλαιο 9 έχει ως γενικούς του στόχους: (α) την προώθηση της χρήσης αλγορίθμων 
μηχανικής μάθησης στους τομείς της πιθανοτικής υδρολογικής μοντελοποίησης και της υδρο-
μετεωρολογικής πρόβλεψης, (β) τη διάδοση στον χώρο της υδρολογίας της ιδέας ότι οι μέθοδοι 
μηχανικής μάθησης μπορούν να χρησιμοποιηθούν για πιθανοτικές προβλέψεις, (γ) την 
προώθηση μεθοδολογιών που βασίζονται στο συνδυασμό μοντέλων μηχανικής μάθησης, και  (δ) 
την προώθηση της χρήσης μεγάλων συνόλων δεδομένων και πρότυπης συγκριτικής αξιολόγησης 
όταν χρησιμοποιούνται μέθοδοι μηχανικής μάθησης στην υδρολογία. Το Κεφάλαιο εισάγει τον 
μεγαλύτερο αριθμό πιθανοτικών μεθόδων υδρολογικής μοντελοποίησης που έχουν μέχρι στιγμής 
εισαχθεί σε μια εργασία (βασιζόμενων σε ένα ευέλικτο μεθοδολογικό σχήμα) και επιπρόσθετα 
διεξάγει το μεγαλύτερο πείραμα συγκριτικής αξιολόγησης που έχει διεξαχθεί μέχρι στιγμής 
σχετικά με τη χρήση αλγορίθμων παλινδρόμησης ποσοστιμορίου για την πιθανοτική 
μετεπεξεργασία αποτελεσμάτων υδρολογικής μοντελοποίησης δύο σταδίων. Επικεντρωνόμαστε 
στην ακόλουθη ερευνητική ερώτηση: Γιατί και πώς να συνδυάσει κανείς διεργασιακά μοντέλα και 
αλγορίθμους μηχανικής μάθησης για πιθανοτική υδρολογική μοντελοποίηση; Ως εκ τούτου, η 
συμβολή του Κεφαλαίου περιλαμβάνει την επιθεώρηση και την αξιολόγηση τόσο ποσοτικών όσο 
και ποιοτικών πτυχών σχετικών με την χρήση των αλγορίθμων. 

Συζητάμε μερικά βασικά οφέλη που προκύπτουν από τον συνδυασμό διεργασιακών 
μοντέλων και μοντέλων μηχανικής μάθησης, όπως αυτά γίνονται αντιληπτά από την οπτική της 
μείωσης της αβεβαιότητας. Συζητάμε επίσης ορισμένα πρακτικά πλεονεκτήματα που απορρέουν 
από τον συγκεκριμένο συνδυασμό. Εν ολίγοις, με την ενσωμάτωση διεργασιακών υδρολογικών 
μοντέλων σε μεθοδολογίες πιθανοτικής μετεπεξεργασίας αποτελεσμάτων υδρολογικής 
μοντελοποίησης δύο σταδίων, επωφελούμαστε από την εμπειρία που βρίσκεται ενσωματωμένη 
στα διεργασιακά υδρολογικά μοντέλα (και, ως εκ τούτου, η αβεβαιότητα μειώνεται σε κάποιο 
βαθμό), και ταυτόχρονα ποσοτικοποιούμε την προγνωστική υδρολογική αβεβαιότητα. Επιπλέον, 
οι αλγόριθμοι παλινδρόμησης ποσοστημορίου μπορούν να χρησιμεύσουν αποτελεσματικά ως 
στατιστικά μοντέλα μετεπεξεργασίας, δεδομένου ότι μοντελοποιούν από κατασκευής την 
ετεροσκεδαστικότητα, συμβάλλοντας έτσι περαιτέρω στον στόχο μείωσης της αβεβαιότητας. 
Είναι ακόμη απλά στην εφαρμογή, πλήρως αυτοματοποιημένα (δηλαδή η υλοποίηση τους δεν 
απαιτεί καμία ανθρώπινη παρέμβαση), είναι διαθέσιμα σε ανοιχτό λογισμικό, υπολογιστικά 
βολικά και γρήγορα. Έτσι, είναι ιδιαιτέρως κατάλληλα για υδρολογικές μελέτες μεγάλου 
δείγματος. 

Το διενεργούμενο πείραμα μεγάλης κλίμακας χρησιμοποιεί ημερήσιες χρονοσειρές 
βροχόπτωσης, θερμοκρασίας, εξατμοδιαπνοής και απορροής ποταμών με μήκος 34 ετών  από 
511 λεκάνες απορροής στις Ηνωμένες Πολιτείες (βλ. τις γεωγραφικές θέσεις των σταθμών 
μέτρησης απορροής ποταμών στο Σχήμα 17). Οι σημειακές υδρολογικές προβλέψεις παράγονται 
χρησιμοποιώντας το διεργασιακό υδρολογικό μοντέλο GR4J και αξιοποιούνται ως μεταβλητές 
πρόβλεψης κατά την επίλυση των προβλημάτων παλινδρόμησης. Έξι αλγόριθμοι παλινδρόμησης 
ποσοστημορίου και ένας απλός συνδυασμός αυτών των αλγορίθμων χρησιμοποιούνται για την 
πρόβλεψη ποσοστημορίων των σφαλμάτων πρόβλεψης του υδρολογικού μοντέλου. Οι έξι 
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επιλεγμένοι αλγόριθμοι είναι το μοντέλο παλινδρόμησης ποσοστημορίου (quantile regression), 
το μοντέλο γενικευμένα τυχαία δάση (generalized random forests) για παλινδρόμηση 
ποσοστημορίου, το μοντέλο γενικευμένα τυχαία δάση (generalized random forests) για 
παλινδρόμηση ποσοστημορίου μιμούμενο το μοντέλο δάση παλινδρόμησης ποσοστιμορίου 
(quantile regression forests), το μοντέλο gradient boosting machine, το μοντέλο model-based 
boosting με γραμμικά μοντέλα βάσης και το μοντέλο νευρωνικά δίκτυα παλινδρόμησης 
ποσοστημορίου (quantile regression neural networks). Οι προβλέψεις ποσοστημορίων για τα 
σφάλματα πρόβλεψης του υδρολογικού μοντέλου μετατρέπονται σε προβλέψεις 
ποσοστημορίων για την ημερήσια απορροή ποταμού. Οι τελευταίες προβλέψεις αξιολογούνται 
χρησιμοποιώντας κατάλληλα μέτρα επίδοσης και τεχνικές πρότυπης συγκριτικής αξιολόγησης. 
Η αξιολόγηση αφορά προβλέψεις ποσοστημορίων με διάφορες πιθανότητες, ενώ γίνεται 
ανεξάρτητα από το μέγεθος της απορροής και σε συνάρτηση με αυτό. 

 
Σχήμα 17. Γεωγραφικές θέσεις 511 σταθμών απορροής ποταμών. Ημερήσια δεδομένα από τους 
συγκεκριμένους σταθμούς χρησιμοποιούνται για τα πειράματα του Κεφαλαίου 9. 

Τα αποτελέσματα (βλ. π.χ., Σχήμα 18) μπορεί να φανούν χρήσιμα σε τεχνικές εφαρμογές. Εν 
συντομία, οι αλγόριθμοι πρέπει να χρησιμοποιούνται κατά τρόπο που θα μεγιστοποιεί τα οφέλη 
και θα μειώνει τους κινδύνους από τη χρήση τους. Αυτό μπορεί να επιτευχθεί μέσω του 
συνδυασμού αλγορίθμων (π.χ., μέσω της αξιοποίησης της μεθοδολογίας των Κεφαλαίων 7 και 8) 
και μέσω της ενσωμάτωσης αλγορίθμων εντός συστηματικών πλαισίων (π.χ. μέσω της χρήσης 
διαφορετικών αλγορίθμων για προβλέψεις ποσοστημορίων με διάφορες πιθανότητες ή με την 
επιλογή αλγορίθμων σύμφωνα με την ικανότητά τους στην πρόβλεψη χαμηλών, μέσων ή 
μεγάλων ροών, ξεχωριστά για τα διάφορα ποσοστημόρια). Εάν ενδιαφερόμαστε πρωτίστως να 
δώσουμε αποτελέσματα γρήγορα, τότε πιθανότατα θα πρέπει να επιλέξουμε το μοντέλο 
παλινδρόμησης ποσοστημορίου (quantile regression). Αυτή η επιλογή θα πρέπει να γίνει έχοντας 
κατά νου ότι το μοντέλο αυτό είναι έως και 3.5% χειρότερο ως προς την μέση τιμή του μέτρου 
ποιότητας ποσοστημορίου από ότι ο απλός συνδυασμός των έξι αλγορίθμων του Κεφαλαίου. 
Δείχνουμε ότι ο συγκεκριμένος απλός συνδυασμός έχει την καλύτερη επιδόση συνολικά, 
επιβεβαιώνοντας την αξία της μάθησης του συνόλου γενικά και της μάθησης του συνόλου μέσω 
της απλής μέτρησης του μέσου όρου. Η αξία αυτή είναι ευρέως αναγνωρισμένη στο πεδίο της 
πρόβλεψης χρονοσειρών, αλλά δεν έχει λάβει ακόμη την απαραίτητη προσοχή τόσο στην 
βιβλιογραφία της υδρολογικής μοντελοποίησης όσο και στην βιβλιογραφία της υδρο-
μετεωρολογικής πρόβλεψης. Παρά την εξαιρετική του επίδοση, ο απλός συνδυασμός των έξι 
αλγορίθμων αυτού του Κεφαλαίου αναμένεται, με τη σειρά του, να έχει χειρότερη επίδοση από 
ορισμένους από τους μεμονωμένους αλγορίθμους σε πολλές περιπτώσεις μοντελοποίησης. 
Γενικά, κανένας αλγόριθμος δεν αναμένεται να είναι (ούτε πρέπει να παρουσιάζεται ως) ο 
καλύτερος ως προς όλα τα κριτήρια. 



 

 xlv

 
Σχήμα 18. Διάμεσοι των σχετικών βελτιώσεων που προσφέρει καθένα από τα υπό διερεύνηση 
σχήματα πιθανοτικής πρόβλεψης (%) σε σχέση με το σχήμα πιθανοτικής πρόβλεψης qr_2 σε 
όρους μέσης τιμής του μέτρου ποιότητας ποσοστημορίου. 
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1. Introduction 

1.1 Motivation, main objectives and principles 

“With four parameters I can fit an elephant, and with five I can make him wiggle his trunk”, ∼ John 
von Neumann. In fact, model fitting can be made quite satisfactorily when using an adequate 
number of model parameters (see e.g., the cartoon-like implementation by Mayer et al. 2010 of 
the above quote using five complex parameters, adapted in Figure 1.1), and can also be very 
interesting, inspiring and creative. In particular, by computing and analysing descriptive features 
of real-world processes, one may achieve significant advancements in terms of real-world process 
understanding, and may also be able to facilitate comparisons within and across real-world 
processes, thereby strengthening this understanding further. Probably due to this indisputable 
value, a significant part of the hydrological literature is devoted to assessing the descriptive power 
of various methodologies (and to increasing this power by adding parameters, trend or other type, 
to them) in the context of geophysical time series analysis (Papacharalampous et al. 2018b). 
Moreover and since models are usually required to also have practical implications along with 
their mathematical and theoretical value, many of the conducted works extend their conclusions 
by claiming that their models are also appropriate for predictive modelling (distinguished from 
descriptive modelling in Shmueli 2010), without however having tested their predictive ability. 
Although the descriptive and predictive perspectives may indeed be connected (to a larger or 
smaller extent) with each other (see e.g., the investigations for North America and Europe on the 
relationships between selected predictive and descriptive annual river flow features in 
Papacharalampous and Tyralis 2020), this behaviour is rather “cheating” and often appears due 
to the ignorance of one simple rule, which nonetheless constitutes the “most powerful idea in data 
science” (towardsdatascience.com/the-most-powerful-idea-in-data-science-78b9cd451e72): The 
same data point cannot be used both (i) for forming an opinion (e.g., on how useful a model is) 
and (ii) for generalizing this opinion, i.e., generalizations cannot be supported by a single dataset 
(formed by data points). By considering this simple rule, we understand that all possibly expected 
connections between descriptive power and predictive power should first be proven valid, before 
trusted in practice. This is what actually makes prediction “very difficult, especially about the 
future”, while one can casually fit elephants or cats to data. 

 
Figure 1.1. “With four parameters I can fit an elephant, and with five I can make him wiggle his 
trunk”, ∼ John von Neumann. A relevant discussion and a Python code for the implementation of 
the method of Mayer et al. (2010), i.e., for drawing the orange elephant on the left, can be found 
at: johndcook.com/blog/2011/06/21/how-to-fit-an-elephant. 
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Moving a step further from model fitting, this thesis is devoted to the challenging task of 
predictive modelling of hydrological processes. The thesis falls into the scientific areas of 
stochastic hydrology, hydrological modelling and hydroinformatics, and aspires to contribute 
with new practical solutions, new methodologies and large-scale results to the following two 
interrelated technical predictive modelling problems, with emphasis on the latter one: 

(A) point forecasting of hydrological processes by exclusively considering endogenous predictor 
variables within purely statistical frameworks (hereafter referred to simply as “hydrological 
time series forecasting”, unless specified differently); and 

(B) stochastic process-based modelling for hydrological systems via probabilistic post-
processing (hereafter referred to simply as “probabilistic hydrological post-processing”, 
unless specified differently) 

Within the context of the thesis, hydrological time series forecasting is performed by using 
either stochastic forecasting models or machine learning regression algorithms, while 
probabilistic hydrological post-processing is performed by using conceptual process-based 
hydrological models in combination with (machine learning) quantile regression algorithms. 
There exists a widespread misconception in the minds of hydrologists that machine learning 
algorithms are by nature deterministic. Nonetheless, machine learning methods are all statistical, 
while the quantile regression ones are also ideal for predictive uncertainty quantification. It is also 
relevant to highlight that hydrological time series forecasts obtained by exclusively using 
endogenous predictor variables (see e.g., Koutsoyiannis et al. 2008) are, in general, accurate 
enough when delivered at large time scales (i.e., the annual, seasonal and monthly ones); 
therefore, problem (A) is herein solved at such time scales. On the contrary, at fine time scales 
(i.e., the daily and sub-daily ones) exogenous predictor variables (e.g., observed or forecasted 
values of various hydrometeorological variables) can be very informative and, thus, their 
consideration (e.g., by utilizing autoregressive moving average models with exogenous predictor 
variables − ARMAX, autoregressive fractionally integrated moving average models with 
exogenous predictor variables − ARFIMAX or machine learning algorithms) can result in large 
improvements in forecasting performance (see e.g., the investigations by Papacharalampous and 
Tyralis 2018, and Tyralis et al. 2020b). In contrast to problem (A), problem (B) involves the 
consideration of exogenous predictor variables by definition, and is herein solved both at the 
monthly time scale and at the daily time scale. 

Importantly, all the models and algorithms exploited in the thesis are flexible, computationally 
convenient and fast; thus, they are appropriate for large-sample (even global-scale) hydrological 
investigations. Conducting such investigations and large-scale simulation tests has been of major 
priority herein, together with the introduction of new methodologies and new practical solutions. 
This priority is implied by the fact that analytical investigations of many of its methods (especially, 
the most flexible machine learning ones) can be highly demanding (to nearly impossible). 
Therefore, within the context of the thesis generalizations are empirically achieved by using large 
datasets under the data splitting approach, i.e., as implied by the “most powerful idea in data 
science” (see above). Millions of out-of-sample predictions are used for generalizing our opinion 
about the predictive performance of numerous modelling approaches. Finally and in spite of its 
main orientation, this thesis also provides innovative theoretical supplements and justifications 
to many of its algorithmically obtained outcomes. 

1.2 Original research works and roadmap 

The remainder of this thesis is structured as follows: Chapter 2 presents the theoretical, 
methodological and technical background of the thesis. It also presents its predictive modelling 
and benchmarking toolbox, formed and exploited for achieving its aims. The latter are explicitly 
stated in the introductory sections of Chapters 3−9. These seven Chapters present original 
research works in the areas of hydrological time series forecasting (Chapters 3−6) and 
probabilistic hydrological post-processing (Chapters 7−9). Finally, Chapter 10 summarizes the 
content and main contributions of the thesis by emphasizing its innovative points. 
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Seven original research works have been conducted within the context of the thesis, each 
being the basis of a different Chapter from Chapters 3−9, as detailed in the following: 

o Chapter 3 has been based on the work conducted under the title “Comparison of stochastic 
and machine learning methods for multi-step ahead forecasting of hydrological processes” 
(Papacharalampous et al. 2019a). The original work is reproduced with adaptations. The 
Chapter is fully reproducible; all codes and data, as well as their outcome results, are available 
in Papacharalampous and Tyralis (2018b). Closely related preliminary investigations can be 
found in Papacharalampous et al. (2017a). 

o Chapter 4 has been based on the work conducted under the title “One-step ahead forecasting 
of geophysical processes within a purely statistical framework” (Papacharalampous et al. 
2018d). The original work is reproduced with adaptations. The Chapter is fully reproducible; 
all codes and data, as well as their outcome results, are available in Papacharalampous and 
Tyralis (2018b). Closely related preliminary investigations can be found in 
Papacharalampous et al. (2017c). 

o Chapter 5 has been based on the work conducted under the title “Predictability of monthly 
temperature and precipitation using automatic time series forecasting methods” 
(Papacharalampous et al. 2018e). The original work is reproduced with adaptations. Closely 
related preliminary investigations can be found in Papacharalampous et al. (2018b). 

o Chapter 6 has been based on the work conducted under the title “Univariate time series 
forecasting of temperature and precipitation with a focus on machine learning algorithms: A 
multiple-case study from Greece” (Papacharalampous et al. 2018f). The original work is 
reproduced with adaptations. Closely related preliminary investigations can be found in 
Papacharalampous et al. (2017b). 

o Chapter 7 has been based on the work conducted under the title “Quantification of predictive 
uncertainty in hydrological modelling by harnessing the wisdom of the crowd: Methodology 
development and investigation using toy models” (Papacharalampous et al. 2020a). The 
original work is reproduced with adaptations. Closely related preliminary investigations can 
be found in Papacharalampous et al. (2018a). 

o Chapter 8 has been based on the work conducted under the title “Quantification of predictive 
uncertainty in hydrological modelling by harnessing the wisdom of the crowd: A large-sample 
experiment at monthly timescale” (Papacharalampous et al. 2020b). The Chapter is 
supplemented by Papacharalampous et al. (2019d). The original work is reproduced with 
adaptations. 

o Chapter 9 has been based on the work conducted under the title “Probabilistic hydrological 
post-processing at scale: Why and how to apply machine learning quantile regression 
algorithms” (Papacharalampous et al. 2019d). The Chapter is supplemented by 
Papacharalampous et al. (2019e). The original work is reproduced with adaptations. Closely 
related preliminary investigations can be found in Papacharalampous et al. (2019b). 

Segments of the above-listed works have been compiled for writing Chapter 2, and have, 
therefore, been omitted from Chapters 3−9. The latter Chapters have been formulated according 
to the guidelines for improved research in the field of practical hydroinformatics by Abrahart et 
al. (2008). These guidelines emphasize more on reproducibility and less on exhaustive 
descriptions of models and algorithms, unless these models and algorithms are entirely new. The 
adopted writing strategy offers an important benefit: The thesis can be read either by following 
the “bottom-up” approach or by following the “top-down” approach. In the former case, the 
reading of Chapter 2 should precede the reading of Chapters 3−9. Although the “bottom-up” 
approach is often preferred, from a practitioner’s point of view the content of Chapter 2 is only 
auxiliary for solving the technical problems of Chapters 3−9. Under this latter view, Chapters 3−9 
can be read directly (and in any order) by drilling down to their theoretical and methodological 
foundations, when necessary, and by inspecting their framework inputs through Chapter 2. 
Chapter 10 can be read independently of the remaining Chapters.
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2. Theoretical, methodological and technical background and toolbox 

This thesis applies a variety of models and algorithmic procedures to a variety of datasets and 
modelling contexts. In this Chapter, we present its theoretical, methodological and technical 
background by reviewing the literature, when necessary. The interested reader is also referred to 
several specialized and detailed books, textbooks, technical works and journal articles for the 
complete documentation of the existing algorithms, models and methodologies exploited in the 
context of this thesis. To ease the reading of Chapters 3−9, we also provide an overview of the 
basic methodological elements combined in the thesis. In what follows, random variables are 
underscored, following the Dutch convention. 

2.1 Stochastic time series modelling 

For this thesis, we exploit several stochastic models (also referred to as “time series models”) and 
related procedures. The exploitation is made, either directly or indirectly (i.e., through wider 
modelling approaches), and concerns time series simulation, time series processing (e.g., 
standardizations, decompositions, gap-filling), time series characterization and time series 
forecasting, as summarized in Section 2.9. In this Section, we briefly present the mathematical 
background of the exploited stochastic models. 

2.1.1 Basic definitions and concepts 

In this Section, we provide some basic definitions and concepts underlying time series modelling 
(see also Wei 2006, pp. 6−16). A time series in discrete time is defined as a sequence of 
observations x1, x2, … of a certain phenomenon, while the time t is stated as a subscript to each 
value xt. A time series can be modelled by a stochastic process. The latter is a family of random 
variables x1, x2, …. A random variable is a function that maps events from the sample space to the 
real numbers. 

Let us consider a stochastic process of normally distributed random variables. The mean 
function (μt) of the stochastic process is defined with the following Equation: 

 μt := E[xt] (2.1) 

The standard deviation function (σt) of the stochastic process is defined with the following 
Equation: 

 σt := Var[xt] (2.2) 

The covariance function between xt1 and xt2 of the stochastic process, denoted with γ(t1,t2), is 
defined with the following Equation: 

 γ(t1, t2) := E[(xt1 - μt1)(xt2 - μt2)] (2.3) 

The correlation function between xt1 and xt2 of the stochastic process, denoted with ρ(t1,t2), is 
defined with the following Equation: 

 ρ(t1, t2) := γ(t1,t2)/(σt1 σt2) (2.4) 

For a strictly stationary stochastic process, Equations (2.5)−(2.8) must be satisfied: 

 μt = μ ∀ t ∊ {1, 2, …} (2.5) 

 σt = σ ∀ t ∊ {1, 2, …} (2.6) 

 γ(t1, t2) = γ(t1 + k, t2 + k) ∀ t1, t2, k integers (2.7) 

 ρ(t1, t2) = ρ(t1 + k, t2 + k) ∀ t1, t2, k integers (2.8) 

In this case, let us consider that: 

 t1 := t − k, t2 := t (2.9) 

Then we have: 
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 γ(t1, t2) = γ(t – k, t) = γ(t, t + k) = γk (2.10) 

 ρ(t1, t2) = ρ(t – k, t) = ρ(t, t + k) = ρk (2.11) 

Using the Equations (2.5)−(2.11), the autocovariance function (γk) and the autocorrelation 
function (ρk) of a stationary stochastic process are defined with Equations (2.12) and (2.13), 
respectively. 

 γk  := E[(xt − μ)(xt+k − μ)] (2.12) 

 ρk  := γk / σ2 (2.13) 

For a stationary stochastic process, the partial autocorrelation function Pk is defined by 

 Pk := Corr[(xt, xt+k | xt+1, …, xt+k-1)] (2.14) 

The partial autocorrelation function is the correlation between two random variables xt and 
xt+k, with the linear dependency between the intervening variables xt+1, …, xt+k-1 removed. 

A strictly stationary stochastic process {at} is called a white noise process, if it is a sequence of 
uncorrelated random variables. Let us consider, hereinafter, that the white noise is a normal 
variable with zero mean, unless mentioned otherwise, and standard deviation σa. 

2.1.2 Sample autocorrelation and partial autocorrelation functions 

For a given time series in discrete time x1, x2, …, the sample autocovariance function (denoted with 
��k) and the sample autocorrelation function (denoted with ��k) can be computed through 
Equations (2.15) and (2.16), respectively (Wei 2006, pp. 18−23). 

 ��k  := (1/n) i = 1
n−k  (xt − x‾)(xt+k − x‾) (2.15) 

 ��k :=  ��k/��0 := i = 1
n−k  (xt − x‾)(xt+k − x‾)/i = 1

n (xt − x‾)2 (2.16) 

In these Equations, x‾ denotes the sample mean of the time series, defined with the following 
Equation: 

 x‾ := (1/n) i = 1
n xi (2.17) 

A recursive method for calculating the sample partial autocorrelation function (denoted with 
��k+1,k+1) is given by Equations (2.18) and (2.19). 

 ��k+1,k+1 := (��k+1 − j = 1
k  ��kj ��k+1−j)/(1 − j = 1

k ��kj ��j) (2.18) 

 ��k+1,j :=  ��kj − ��k+1,k+1 ��k,k+1−j, j = 1, …, k (2.19) 

2.1.3 Autoregressive moving average processes 

In this Section, we provide some basic definitions and concepts underlying time series modelling 
(see also Wei 2006, pp. 23−87). The stochastic process {yt} is defined with the following Equation: 

 yt := xt − μ (2.20) 

Let us consider the operator Β, which is defined with the following Equation: 

 Bjxt := xt-j (2.21) 

Then the operator φp(B) is defined with the following Equation: 

 φp(B) := (1 − φ1B − … − φpBp) (2.22) 

The stochastic process {xt} is an AR(p), if the following equation holds: 

 φp(B)yt = at (2.23) 

that can be written in the following form: 
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 yt = φ1yt-1 + … + φpyt-p + at (2.24) 

Let us also consider the operator θq(B), which is defined with the following Equation: 

 θq(B) := 1 + θ1B + … + θqBq (2.25) 

The stochastic process {xt} is a MA(q), if the following equation holds: 

 yt = θq(B)at (2.26) 

that can be written in the following form: 

 yt = at + θ1at-1 + … + θqat-q (2.27) 

The stochastic process {xt} is an ARMA(p,q), if the following equation holds: 

 φp(B)yt = θq(B)at (2.28) 

that can be written in the following form: 

 yt = φ1yt-1 + … + φpyt-p + at + θ1at-1 + … + θqat-q (2.29) 

2.1.4 Autoregressive integrated moving average processes 

Let d be a natural number. Then the stochastic process {xt} is an ARΙMA(p,d,q), if the following 
equation holds: 

 φp(B)(1−B)dxt = θ0 + θq(B)at (2.30) 

If d = 0, then we have an ARMA(p,q) and for θ0 we obtain: 

 θ0 = (1 − φ1 − … − φp)μ (2.31) 

If d ≥ 1, then θ0 is called deterministic trend term and is usually omitted from the model, unless 
it is truly required. This specific stochastic process is non-stationary (Wei 2006, p. 69). 

2.1.5 Autoregressive fractionally integrated moving average processes 

Let d ∊ (−0.5, 0.5). The stochastic process {xt} is an ARFΙMA(p,d,q), if the following equation holds: 

 φp(B)(1−B)dxt = θq(B)at (2.32) 

In contrast to ARΙMA(p,d,q), ARFΙMA(p,d,q) is stationary (Wei 2006, p. 489). This specific 
stochastic process is widely applied in hydrology (see e.g., Montanari et al. 1997, 1999, 2000). In 
general, it can be used to model processes that are characterized with long-range dependence, 
with its parameter d being indicative of the magnitude of this dependence and, therefore, fitted to 
serve as its measure. The long-range dependence is an inherent property of some geophysical 
processes (see, for example, Tyralis and Koutsoyiannis 2011 and the references therein).  

2.1.6 Fractional Gaussian noise process 

Let {xt}, t = 1, 2, … be a fractional Gaussian noise process, a stationary stochastic process of 
normally distributed random variables in discrete time. Then, its parameters μ, σ, H are defined 
with Equations (2.1), (2.2) and (2.33), respectively (Tyralis and Koutsoyiannis 2011). 

 ρk := Corr[xt, xt + k] = |k + 1|2H / 2 + |k − 1|2H / 2 − |k|2H, k = 0, 1,…, H ∊ (0, 1) (2.33) 

The parameters μ and σ are the mean and the standard deviation of the stochastic process, 
respectively, while the parameter H ∊ (0, 1), known as its “Hurst parameter”, is assumed to be 
informative about the magnitude of long-range dependence in geophysical time series. The long-
range dependence is strong when H is high, while H = 0.5 corresponds to uncorrelated random 
variables. 

 We fit this stochastic process to non-seasonal or seasonally decomposed time series by using 
the maximum likelihood method (Tyralis and Koutsoyiannis 2011). Furthermore, we estimate the 
coefficient of variation of the fractional Gaussian noise process according to the following 
Equation: 
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 cv := σ/μ (2.34) 

We also perform non-seasonal time series standardization by using the Equation: 

 zt := (yt – μ)/σ (2.35) 

In Equation (2.35), yt and zt denote the original and standardized data, respectively, at time t. 

2.1.7 Time series decomposition 

We perform classical time series decomposition by applying the additive and multiplicative 
models. These models are defined with Equations (2.36) and (2.37), respectively (Hyndman and 
Athanasopoulos 2018, Chapter 6.1). 

 yt = St + Tt + Rt (2.36) 

 yt = St Tt Rt (2.37) 

In these Equations, yt denotes the data at time t, while St, Tt and Rt denote the seasonal, trend-
cycle and remainder components, respectively, at time t. The additive model is suitable when the 
seasonal fluctuations do not depend on the level of the time series, while the multiplicative model 
is suitable for modelling seasonal fluctuations which are proportional to the level of the time 
series (Hyndman and Athanasopoulos 2018, Chapter 6.1). 

Classical time series decomposition has its routes in the 1920s (Hyndman and Athanasopoulos 
2018, Chapter 6.3). It uses moving averages (Hyndman and Athanasopoulos 2018, Chapter 6.2) in 
a relatively simple procedure, and has been used as a starting point for building most of the other 
available time series decomposition methods (Hyndman and Athanasopoulos 2018, Chapter 6.3). 
Such methods are the X11, the SEATS (acronym for “Seasonal Extraction in ARIMA Time Series”) 
and STL (acronym for “Seasonal and Trend decomposition using Loess”) methods (see e.g., 
Hyndman and Athanasopoulos 2018, Chapters 6.4−6.6). 

2.1.8 Mathematical transformations 

Mathematical transformations are often used to improve time series modelling. To this respect, 
logarithmic and power transformations can be applied, among others. A popular transformation 
that is also adopted herein is the Box-Cox transformation, introduced by Box and Cox (1964). This 
transformation considers both logarithms and power transformations (Hyndman and 
Athanasopoulos 2018, Chapter 3.2), and is given by the following equation for x > 0: 

 fλ(x) = 


 (xλ − 1)/λ if λ ≠ 0

ln(x) if λ = 0
 (2.38) 

In Equation (2.38), x denotes the variable to be transformed and λ is a parameter that is 
estimated from data. This estimation is herein made by using the method of Guerrero (1993), as 
implemented in Hyndman et al. (2018). 

2.1.9 State space models and Kalman filtering 

The state space representation of a system (also referred to as its “Markovian representation”; 
Wei 2006, p. 463) is described by the measurement equation (also referred to as “observation 
equation”) and some state equations. The former equation describes the observed data, while the 
latter equations describe how unobserved states change over time (Hyndman and 
Athanasopoulos 2018, Chapter 7.5; see also Wei 2006, Chapter 18.1). The state of a system is 
defined as the minimum set of information from present and past required to “completely” 
describe the future behaviour of the same system given any present state and future input (Wei 
2006, p. 463). The state space representation of a system is closely related to the Kalman filter 
(see Wei 2006, Chapter 18.5). This model was originally proposed by Kalman (1960) and meets a 
wide range of applications. In this thesis, we use it for time series gap-filling. 
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2.1.10 Parameter estimation, model selection and automatic methods 

Several parameter estimation methods are available for time series models. Among the most 
popular ones are the method of moments (see e.g., Wei 2006, Chapter 7.1) and the maximum 
likelihood method (see e.g., Wei 2006, Chapter 7.2). Because of its nice properties, the latter 
method is used as part of many of the automated schemes exploited in this thesis. Ordinary least 
squares estimation (see e.g., Wei 2006, Chapter 7.4), originally developed for linear regression 
algorithmic approaches (see Section 2.3.1), can also be used in time series analysis contexts; 
however, it is less efficient than the afore-mentioned methods (in time series analysis contexts). 
For an explanation, see Wei (2006, pp. 151, 152). Automatic time series (forecasting) methods 
(e.g., those available in software packages) usually allow the user to select among different 
parameter estimation methods, which may vary in terms of computational requirements and/or 
efficiency. 

Since there might exist numerous models that adequately fit the data, another task to be 
completed when building automatic time series (forecasting) models is to objectively select a 
single one. This is possible by applying information (or model discrimination) criteria, such as the 
original Akaike information criterion (AIC) by Akaike (1974), the Akaike information criterion 
with a correction for finite sample sizes (AICc) by Hurvich and Tsai (1993), and two Bayesian 
information criteria, i.e., BIC by Schwarz (1978) and KIC by Kashyap (1982). Within our modelling 
approaches, we minimize either AIC or AICc. These criteria are defined with Equations (2.39) and 
(2.40), respectively (see e.g., Hyndman and Athanasopoulos 2018, Chapter 5.5). In these 
Equations, L is the likelihood of the candidate model, k is the total number of parameters (and 
initial states) and n is the sample size. 

 AIC = – 2 log(L) + 2k (2.39) 

 AICc = AIC + 2 k (k + 1)/(n − k − 1) (2.40) 

We note that AICc reduces asymptotically to AIC as the sample increases (Ye et al. 2008), 
while for small fitting samples the minimization of AIC tends to lead to larger number of model 
parameters compared to the minimization of AICc (Hyndman and Athanasopoulos 2018, Chapter 
5.5). Ye et al. (2008) report on a debate in hydrology on the selection between commonly used 
information criteria, while task-oriented comparisons of information criteria can be found, for 
instance, in Ye et al. (2004), Billah et al. (2005), Ye et al. (2008) and Emiliano et al. (2014). 

2.2 Time series forecasting 

While the available time series forecasting models are numerous, the basic ones are quite few 
(Hong and Fan 2016). In this thesis, we exploit fully automatic methods originating from the 
forecasting literature and, in many cases, combine different models to automate new ones. The 
primary forecasting algorithms are well documented in the literature. Therefore, in Chapters 3−6 
we place emphasis on their software implementation (see also Section 2.9.4). Even the 
information here compiled from books, textbooks and journal articles is limited to their key 
concepts and their basic theoretical background. Further theoretical details, available in the 
provided references, are here omitted for reasons of brevity. We note that the understanding from 
a theoretical point of view of most methods could hardly help in interpreting the algorithmically 
obtained outcomes of this thesis. 

2.2.1 Time series forecasting using simple models 

We implement two simple forecasting methods, i.e., the naïve and random walk ones. For the non-
seasonal (e.g., the annual) time series, the naïve method simply sets all forecasts equal to the last 
value of the training period. For the monthly time series, the forecast of the naïve method for each 
month of the testing period is equal to the observed value for the same month of the last year of 
the training period. The random walk method, a variant of the naïve forecasting method, fits a 
random walk model with drift to the training segment and then uses the fitted model for 
forecasting. This method is equivalent to drawing a line between the first and the last values, and 
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extrapolating it into the future (Hyndman and Athanasopoulos 2018, Chapter 3.1). Both simple 
methods are based on modelling the data using discrete-time martingales (see e.g., Palma 2007, 
Chapter 1.1.9). The difference is that, in the case of random walk, a drift is added to the model. 
Sometimes, simple methods perform surprisingly well; therefore, it is important to use them for 
benchmarking purposes. 

2.2.2 Time series forecasting using ARIMA and ARFIMA models 

ARIMA and ARFIMA methods are also included in the comparisons. We apply both fixed- and 
optimum-order ARIMA methods. For the fixed-order ARIMA methods, the numbers of the AR and 
MA parameters (p and q respectively) are set to be the same to those used in the time series 
simulation process (see Section 3.2.1), while the number of differencing (d) is set to zero. On the 
contrary, the optimum-order ARIMA methods automatically estimate the order of the ARIMA 
models (and, therefore, the utilized lagged predictor variables) as summarized in the following. 
First, the d values are estimated via repeated Kwiatkowski–Phillips–Schmidt–Shin tests 
(Kwiatkowski et al. 1992). Once the d value has been obtained, the p and q values are estimated 
using a stepwise algorithm aiming at the minimization of AICc (see Section 2.1.10). AICc is 
preferred in the herein adopted implementation by Hyndman et al. (2018), while other available 
options are AIC and BIC. The exact procedure adopted by the optimum-order ARIMA methods for 
order estimation is available in Hyndman and Khandakar (2008), and Hyndman and 
Athanasopoulos (2018, Chapter 8.6). As explained in the latter-mentioned textbook’s chapter, the 
d value is not estimated simultaneously with the p and q values using AICc, because in this case 
the estimation would be suboptimal. Once the p, d and q values have been estimated, the all ARIMA 
methods apply the maximum likelihood method to estimate the AR and MA model parameters 
(Hyndman and Athanasopoulos 2018, Chapter 8.6). 

We apply optimum-order ARFIMA methods. Similarly to the optimum-order ARIMA methods, 
these methods estimates d first, and thereupon follows a stepwise procedure to select p and q. 
Subsequently, it implements the algorithm of Haslett and Raftery (1989) to estimate the ARFIMA 
parameters. A final value of d is estimated as well in this last step. The latter information is sourced 
from Hyndman et al. (2018) and Fraley et al. (2012), where related detailed descriptions can be 
found. The definitions of the ARMA, ARIMA and ARFIMA models are given in Sections 2.1.3, 2.1.4 
and 2.1.5, respectively (see also Wei 2006, pp. 6−87, 489−494). 

2.2.3 Time series forecasting using exponential smoothing and state space models 

Another family of time series (or stochastic) methods considered herein (that is also broader than 
the family of ARIMA models; Gardner 2006) includes the exponential smoothing models and their 
underlying methods, i.e., the (Innovations) state space methods (see Section 2.1.9) for exponential 
smoothing. Their forecasts are weighted averages of past values, with the weights decaying 
exponentially as these values get distant in time (Hyndman and Athanasopoulos 2018, Chapter 7). 
Informative reviews by Gardner (1985, 2006) discuss older and latest advances in forecasting 
with exponential smoothing, from the introducing works by Brown and Holt that are available in 
Brown (1959) and Holt (2004) respectively (the latter paper is a reprinted version of Holt’s report 
of 1957) up to more recent studies (e.g., Assimakopoulos and Nikolopoulos 2000; Hyndman et al. 
2002; Hyndman and Billah 2003). The reader is also referred to Hyndman et al. (2008), and 
Hyndman and Athanasopoulos (2018, Chapters 7, 8.3) for further details on the theoretical 
background of the exponential smoothing and state space models. 

We implement the simple exponential smoothing (SES) and Theta methods. The former 
method is introduced by Brown (1959) and described, for example, in Hyndman et al. (2008, p. 
13). It computes the forecast of the next period (ft+1) based on the forecast of the previous period 
(ft), the latter adjusted using its error (xt − ft), according to the following Equation (2.41). In this 
Equation, α is a parameter to be estimated from the data. Similarly to the naïve and average 
methods (the forecasts of the latter are simply the average of all training values), SES produces 
flat forecasts; therefore, it is considered the most simple of its class. An interpretation of the 
concept behind SES is provided by Hyndman and Athanasopoulos (2018, Chapter 7.1). According 
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to this interpretation, SES is a more general version of both the naïve and average methods. The 
parameters of SES are herein estimated by using procedures by Hyndman et al. (2018). 

 ft+1 = ft + a(xt − ft), a ∊ (0, 1) (2.41) 

The Theta method by Assimakopoulos and Nikolopoulos (2000) is equivalent to SES with a 
drift parameter (Hyndman and Billah 2003). As shown in Hyndman and Billah (2003), the drift 
parameter is half the slope of the linear trend fitted to the data. There are several variants of Theta, 
each defined by the so-called “Theta lines”, i.e., the auxiliary time series (modified versions of the 
original time series provided as input to the method) used for model fitting and forecasting. A 
Theta line is characterized by its local curvature, which is determined by the Theta coefficient θ 
(different for each Theta line). Extrapolations of all Theta lines are averaged to produce the 
forecast. We implement the version of Theta that performed well in the M3 competition 
(Makridakis and Hibon 2000), i.e., the one defined by two Theta lines, specifically for θ = 0 and 
θ = 2 (see Assimakopoulos and Nikolopoulos 2000). 

Moreover, we implement two state space methods for exponential smoothing. Models from 
this category produce expected value forecasts and, additionally, provide information about the 
forecast error variances (Hyndman et al. 2005; see also Hyndman and Athanasopoulos 2018, 
Chapter 7.5). This information can be used either for constructing prediction intervals or for 
running an exponential smoothing model in simulation mode. The first implemented state space 
model for exponential smoothing is ETS. This model comprises automatic selection of the Error, 
Trend and Seasonal components (ETS) using the AICc (Hyndman and Athanasopoulos 2018, 
Chapter 7.6). The expected value forecasts of this model on the M competition and M3 competition 
data are found to be comparable with the best obtained in these competitions (Hyndman et al. 
2002). Another state space method implemented herein is BATS. This method uses the point 
forecasts from an exponential smoothing state space model with several key features, i.e., 
capability of performing Box-Cox transformation and/or including ARMA errors correction, Trend 
and Seasonal components (BATS), also allowing an optimal model selection using the Akaike 
Information Criterion (AIC). The original model is introduced and fully documented in De Livera 
et al. (2011). 

2.2.4 Time series forecasting using the Prophet model 

The Prophet method, introduced by Taylor and Letham (2018), considers time series forecasting 
as a curve-fitting exercise, while it does not explicitly consider the temporal dependence of the 
time series. It uses the additive decomposable time series model by Harvey and Peters (1990), 
which is similar to the generalized additive model by Hastie and Tibshirani (1987). The Prophet 
method is inspired by the nature of the time series forecasted at Facebook, which are 
characterized by trend, multiple seasonality and holidays (an example of similar time series in the 
water science is the water demand). Furthermore, this method is designed to “forecast at scale” 
and to fit to the data very fast. Details on Prophet are available in Taylor and Letham (2018, 
Section 3). 

2.2.5 Time series forecasting using (machine learning) regression algorithms 

To forecast time series, we also use the machine learning (ML) regression algorithms outlined in 
Sections 2.3.2−2.3.4. Time series forecasting using regression algorithms is traditionally based on 
different strategies than those discussed so far (e.g., in Section 2.1.10) for the time series models 
(also known as “stochastic models”). The input to a regression model is the data matrix used in 
the regression process (hereafter referred to as “input data matrix”). In time series forecasting 
using regression algorithms, the input data matrix is built using a single time series holding the 
total information provided to the regression algorithm. One column of the input data matrix holds 
information about the predictand variable and the remaining columns information about lagged 
(predictor) variables that are assumed to be informative about the predictand. Variable selection 
(or feature selection) is known as a factor that might affect the performance of regression 
algorithms in both typical regression and forecasting applications (see e.g., Anctil et al. 2009; 
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Chapter 6 herein). Thus, many studies specifically focus on the examination of this problem (e.g., 
Kohavi and John 1997; Tyralis and Papacharalampous 2017). A usual practice in the literature, 
also adopted herein, is to use a priori determined lagged variables and place emphasis on 
hyperparameter optimization during the training process (see e.g., the implementations by Khan 
and Coulibaly 2006; Lin et al. 2006; Wang et al. 2009). 

Hyperparameters are parameters that can be optimized (or tuned) to limit overfitting 
(known to deteriorate the forecasting performance of an algorithm), thereby improving the 
performance of a ML algorithm (Witten et al. 2017, pp. 171−172). This specific utility of 
hyperparameters justifies their artificial distinguishment from the parameters of the stochastic 
models and the basic parameters of the ML models. Several examples of hyperparameters can be 
found in Luo (2016). A common approach to hyperparameter optimization is the herein 
implemented automatic grid search (Hutter et al. 2015). In optimization via grid search, a 
complicated optimization problem is solved as the simplified problem of selecting between 
several candidate model configurations during the training process. The candidate configurations 
are defined by different predetermined hyperparameter values (Witten et al. 2017, pp. 171−172). 
In this thesis, hyperparameter optimization is performed using a single validation set extracted 
from the fitting set. 

2.2.6 Time series forecasting using decompositions 

Time series forecasting using decompositions (see Section 2.1.7) is a usual practice in the 
forecasting literature (Hyndman and Athanasopoulos 2018, Chapter 6.8). This practice offers the 
flexibility of using any forecasting model and algorithm, independently of whether it can 
automatically consider seasonality (and/or trends). It is herein considered as a flexible 
methodology for forecasting seasonal time series. We use it, as detailed in the following: First, we 
estimate the seasonal component of the fitting segment by fitting to it a time series decomposition 
model. Second, we forecast the time series values in the testing period by training the models on 
the seasonally decomposed fitting set. Finally, we recover the seasonality to the produced 
forecasts by assuming that the seasonal component is unchanging. 

2.3 Regression algorithmic modelling 

2.3.1 Linear and quadratic regression 

We apply the linear regression model (see e.g., James et al. 2013; Hastie et al. 2009), whose errors 
are zero-mean Gaussian i.i.d. (James et al. 2013). We also apply the quadratic regression model. 
The multiple linear regression model can accommodate quadratic (and polynomial) relationships, 
as described in James et al. (2013, Chapter 3.3.2). The linear regression model focuses on 
describing how the mean of the response variable changes with the changes of the predictor 
variables. For instance, let us assume the simple linear regression model, expressed by Equations 
(2.42) and (2.43). In these equations, y and x are the predictand and predictor variables 
respectively, θ0 and θ1 are the regression coefficients, and εο is the fixed-variance error term, 
assumed i.i.d. and normal. 

 y = θ0 + θ1 x + εο (2.42) 

 εο ~ N(μο = 0, σο2) (2.43) 

This model is trained on the given sample by: 

o Assuming a linear relationship for the mean μ and fixed variance σ2 for the residuals, as 
expressed by Equations (2.42) and (2.43). In Equation (2.42), θ0 and θ1 are the regression 
coefficients to be estimated during training. 

o Optimizing the objective expressed by Equation (2.44) to estimate θ0 and θ1. 

 min ∑ �	,�
�

���  (2.44) 
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With the estimation of θ0 and θ1 two degrees of freedom are lost; therefore, the mean square 
error MSE that is defined by Equation (2.45) could serve as unbiased estimator of σ2 (Neter et al. 
1983, p. 47). 

 MSE := (∑ ��,�
�

��� )/(� − 2) (2.45) 

When γ is large (in practice larger than 30), any new central prediction interval (1 − α), where 
α ∊ (0, 1), can be approximated conditional on the new xj and the training sample exploited in a 
preceding step by using Equation (2.46), where Φ−1 is the inverse standard normal cumulative 
distribution function (Neter et al. 1983, p. 81). 

 qp = (θ0 + θ1 xj) ± Φ−1(1 − α/2) (MSE)1/2 (2.46) 

In Equation (2.46), qp denotes the quantile of level p ∊ {α/2, 1 – α/2}. 

2.3.2 Regression using neural networks 

Artificial neural networks (or neural networks) are an ensemble approach to regression (Hastie 
et al. 2009, p. 623) and, by extension, to forecasting (see Section 2.2.5), often perceived to mimic 
the human brain’s function. They are perhaps the most widespread machine learning algorithm 
in hydrology (see e.g., the review by Maier et al. 2010). The main concept of neural networks is to 
extract linear combinations of the predictor variables as derived features. The dependent variable 
is then modelled as a nonlinear function of these features (Hastie et al. 2009, p. 389). The main 
reasons for using neural networks are their high predictive performance and their ability to 
extract linear combinations of features (Hastie et al. 2009, p. 351). Some of their drawbacks are 
that: (a) they are prone to overfitting; (b) the inclusion of too many predictor variables can 
decrease the predictive performance (unlike, for example, random forests); (c) they perform sub-
optimally when needed to extrapolate beyond the range of the training set; (d) there are many 
model structures and architectures to choose from (albeit this can be viewed as an advantage due 
to offering higher flexibility); (e) appropriate optimization of the model hyperparameters can be 
important for improving their predictive performance (Maier et al. 2010); and (f) they are 
computationally slow (Hastie et al. 2009, p. 351). 

Detailed information about neural networlds is available, for instance, in Lippmann (1987), 
Murtagh (1991), Lanc (1992, pp. 7−28), Zhang et al. (1998), Hastie et al. (2009, pp. 389−416), 
Marsland (2011, pp. 71−110), and Hyndman and Athanasopoulos (2018, Chapter 11.3), while the 
below synopsis of this information is largely adapted to our computations. We utilize a single-
hidden-layer multilayer perceptron (MLP), which consists of interconnected computational units 
known as nodes or neurons grouped into three layers, namely the input, hidden and output layers. 
The employed MLP is feed-forward, i.e., the information moves in one direction, specifically from 
the input nodes to the output nodes through the hidden nodes. This information transit is 
achieved via (weighted) connections, while all computations are performed in the nodes. The 
input nodes are inactive, i.e., they do not apply any transfer function (e.g., a sigmoid function) to 
their inputs before passing them forward, while each of the hidden and output nodes computes 
the (weighted) sum of its inputs and subsequently applies a transfer function (usually different 
for the two layers) to this sum. In fact, each group of nodes has its own characteristics that are 
related to its utility. The number of input nodes is simply the number of lagged variables or the 
number of time lags. Moreover, the number of output nodes is set to be one, even for multi-step 
ahead forecasts, since the latter are produced iteratively using one-step ahead predictions as 
inputs (Cortez 2016; Hyndman and Athanasopoulos 2018, Chapter 11.3). 

2.3.3 Regression using random forests 

Random forests can also be considered as ensemble methods (Hastie et al. 2009, p. 605; Scornet 
et al. 2015). Herein we use the original random forests algorithm by Breiman (2001a), i.e., an 
evolution of the bagging algorithm by Breiman (1996) applied to regression trees (Liaw and 
Wiener 2002). The term BAGGING is an acronym for Bootstrap AGGregatING (Breiman 1996). 
Bagging or bootstrap aggregation is an iterative scheme for building a large number of individual 
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predictors by sampling from the input dataset to finally aggregate the results obtained by them to 
get the prediction of interest (Biau 2012; Scornet et al. 2015; Biau and Scornet 2016). For 
continuous variables, the aggregation is made by computing the average of all values obtained by 
bagged predictors (Sutton 2005; Moisen 2008). This averaging reduces the variance of an 
estimated prediction function leading to more accurate predictions (Sutton 2005; Hastie et al. 
2009, pp. 282−288). Nonetheless, the reduction in variance is limited by large correlation values 
between pairs of bagged predictors. Random forests are designed to dominate their precursor by 
offering a further improvement in terms of variance reduction. This improvement is achieved by 
reducing the correlation between the tree-structured predictors through random selection of the 
input variables in the tree-growing process (Hastie et al. 2009, pp. 587−588). 

The Breiman’s random forests algorithm is described in detail in Tyralis et al. (2019b). Some 
important properties of random forests and their variants, as summarized in the latter study, are 
that: (a) they have high predictive performance; (b) they are non-linear and non-parametric; (c) 
they are fast compared to other machine learning algorithms; (d) they are straightforward, easy-
to-use and require little tuning of the parameters (default values of the parameters are of high 
predictive performance); and (e) they are stable and robust to the inclusion of noisy predictor 
variables. An important drawback of random forests is that they do not extrapolate beyond the 
range of the training dataset. A systematic review on the use of random forests in water science 
and technology is also provided in Tyralis et al. (2019b). 

2.3.4 Regression using support vector machines 

A to-the-point summary of SVM is available in Solomatine and Ostfeld (2008), while Hastie et al. 
(2009, pp. 417−438) review the theoretical background of these models, and Smola and Schölkopf 
(2004) provide an overview of their underlying idea with an emphasis on regression and 
forecasting problems. In contrast to NN and RF that can be conceptualized as structured models 
with fixed and random architecture respectively (see the above paragraphs), SVM are usually 
perceived as models utilizing a hyperplane for the separation in a two-dimensional space of two 
different classes in classification (see e.g., Solomatine and Ostfeld 2008). They are introduced in 
Cortes and Vapnik (1995) as an extension of the Vapnik’s method of optimal hyperplanes. This 
method is applicable to separable training data, i.e., training data that can be separated without 
errors, while SVM can be implemented on non-separable training data as summarized 
subsequently. The input vectors are non-linearly mapped into a high-dimensional feature space, 
where the hyperplanes are linearly constructed in a way pursuing generalizable (to unobserved 
situations) solutions. The optimal separating hyperplane is defined as the one that maximizes the 
margin between the classes in the separable case, and as the one that simultaneously minimizes 
the number of errors and separates with maximal margin the correctly classified elements in the 
non-separable case (Smola and Schölkopf 2004). The optimization problem to be solved in 
regression is a convex optimization problem defined as follows. The objective is to find a function f 
that simultaneously is as flat as possible and deviates less or equal to ε from all input data values. 
In cases where this problem is not solvable or we want to allow some errors, the formulation 
changes so that there is a predefined trade-off between the flatness of f and deviations larger than 
ε. This trade-off is determined by a constant C > 0 (Smola and Schölkopf 2004). Sigma inverse 
kernel width is a hyperparameter to be specified when using the radial basis and the Laplacian 
kernel functions for the computations in the feature space (Karatzoglou et al. 2004). 

2.4 Process-based hydrological modelling and related procedures 

2.4.1 Process-based hydrological modelling at monthly timescale 

We perform process-based hydrological modelling at monthly timescale by implementing the 
Génie Rural à 2 paramètres Mensuel (GR2M) model by Mouelhi et al. (2006b), a parsimonious 
lumped conceptual model comprising only two parameters, that has been widely applied in the 
literature (see e.g., Paturel et al. 1995; Niel et al. 2003; Huard and Mailhot 2008; Louvet et al. 
2016). This model was developed by adopting a stepwise procedure aiming to identify the most 
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useful components of a five-parameter model. The latter was inspired from the structures of the 
monthly model by Makhlouf and Michel (1994), and the daily GR4J model by Perrin et al. (2003; 
see also Edijatno et al. 1999, Perrin et al. 2001). The first parameter (θ1) is the maximum capacity 
of the soil moisture reservoir expressed in mm, while the second one (θ2) represents water 
exchange between the studied and adjacent catchments. Values of the second parameter larger 
(smaller) than 1 indicate water supply from (to) adjacent catchment(s). 

2.4.2 Process-based hydrological modelling at daily timescale 

We perform process-based hydrological modelling at daily timescale by implementing the Génie 
Rural à 4 paramètres Journalier (GR4J) model by Perrin et al. (2003), a four-parameter conceptual 
hydrological model. This model is widely applied in the literature (see e.g., Anctil et al. 2004; Oudin 
et al. 2005, 2006; Andréassian et al. 2007; Oudin et al. 2010; Wang et al. 2012; Tian et al. 2013; 
Evin et al. 2014; Lebecherel et al. 2016; Hernández-López and Francés 2017; Tyralis et al. 2019a), 
while its reliability is well-supported by large-sample empirical results (see Perrin et al. 2003). It 
was developed by using as starting point the GR3J model by Edijatno et al. (1999), i.e., a three-
parameter conceptual hydrological model. A large-sample investigation of the latter can be found 
in Perrin et al. (2001). GR4J was proposed as an improved (but still parsimonious) version of its 
precursor model, selected through extensive computational tests among 235 (preliminary) 
modifications of the latter. Its four parameters are the maximum capacity of the production store 
(expressed in mm), the groundwater exchange coefficient (expressed in mm), the one-day ahead 
maximum capacity of the routing store (expressed in mm) and the time base of the unit 
hydrograph (expressed in days). Its inputs are daily precipitation and potential 
evapotranspiration, while the output is daily streamflow. For its mathematical formulation, the 
reader is referred to Perrin et al. (2003). 

2.4.3 Procedures supporting process-based hydrological modelling 

Process-based hydrological modelling is supported by few additional modelling procedures and 
choices. These are the following: 

o We estimate daily potential evapotranspiration (input to the GR4J model; see Section 2.4.2) 
by using the formula by Oudin et al. (2005). This formula is the following: 

 PE = 


 (0.408 R (T + 5))/100 if (T + 5) > 0

0 if (T + 5) ≤ 0
 (2.47) 

In Equation (2.47), PE denotes the daily potential evapotranspiration, R denotes the 
extraterrestrial solar radiation (MJ m−2 d−1) given by the Julian day and the latitude, and T 
denotes the mean air temperature (°C). 

o We apply both the GR2M and GR4J models by using one-year warming-up periods. One-year 
warming-up periods are often assumed adequate for achieving an optimal state initialisation, 
while also allowing the full exploitation of the available historical information (see e.g., 
Edijatno et al. 1999; Perrin et al. 2003; Kim et al. 2018; see also the implementations in Xu 
2001; Perrin et al. 2001; Mouelhi et al. 2006b; Vrugt et al. 2008). 

o We use the optimization algorithm by Michel (1991; see also the summary available at 
https://rdrr.io/cran/airGR/man/Calibration_Michel.html) for hydrological model 
calibration. This algorithm combines a global and a local optimization methodology to 
optimize a selected objective function. The algorithm begins by performing a screening based 
on a predefined grid or a list of initial parameter sets for deciding on a single set of 
parameters. The latter is used as a starting point for a local search procedure, after simple 
mathematical transformations are applied to them. At each local search iteration, the 
calibration algorithm determines and tests new parameter set candidates to select a single 
one to be used as a starting point for the next local search iteration. When the search step 
becomes smaller than a predefined value, the calibration algorithm stops. 
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o We simulate the posterior distribution of hydrological model parameters, as detailed in 
Section 2.5.2. 

2.5 Simulation of posterior distributions of model parameters 

2.5.1 Simulation of posterior distributions of linear regression model parameters 

Some technical remarks on the simulation of the posterior distributions of the parameters of the 
linear regression models should be made. These remarks are a summary of the information 
provided by Savel'ev et al. (2015). They are made for the case of the simple linear regression 
model, while the generalization to the multiple linear regression model is straightforward. 

Let us assume the simple linear regression model, expressed by Equations (2.42) and (2.43). 
Let us also assume that we are given a historical sample {(xi, yi), i = 1, …, β}, which could be also 
expressed by Equations (2.48), (2.49) and (2.50). 

 x{1, ..., β} := (x1, …, xβ)T: β × 1 (2.48) 

 xΒ := [(1, …, 1)T, x{1, ..., β}] = [(1, …, 1)T, (x1, …, xβ)T]: β × 2 (2.49) 

 yΒ := y{1, ..., β} := (y1, …, yβ)T: β × 1 (2.50) 

This sample can be exploited for simulating the posterior joint distribution of θ0, θ1 and σ2 by 
using the herein adopted Gibbs sampler. The latter is described by Equations (2.51) and (2.52), 
where N2 denotes the bivariate normal distribution, xΒ΄ the transpose of xM, Inv-Gamma the 
inverse gamma distribution and (θ0, θ1)΄ the transpose of (θ0, θ1). 

 θ0, θ1 | σ2, xΒ, yΒ ~ N2((xΒ΄ xΒ)−1 (xΒ΄ yΒ), σ2 (xΒ΄ xΒ)−1) (2.51) 

 σ2 | θ0, θ1, xΒ, yΒ ~ Inv-Gamma(M/2, (yΒ΄ yΒ – (θ0, θ1)΄ xΒ΄ yΒ – yΒ΄ xΒ (θ0, θ1) + (θ0, θ1)΄ xΒ΄ xΒ (θ0, θ1))−1/2) (2.52) 

2.5.2 Simulation of posterior distributions of hydrological model parameters 

We simulate the posterior distribution of process-based hydrological model parameters within a 
Bayesian Markov chain Monte Carlo (MCMC) framework. We run parallel Markov chains with 
different initial values. The iterative simulation is performed by using the Delayed rejection 
adaptive Metropolis (DRAM) algorithm by Haario et al. (2006). This algorithm combines the 
concept of adaptive Metropolis sampler and the concept of delayed rejection. We assess the 
approximate convergence of the simulated chains by implementing the algorithm of Brooks and 
Gelman (1998), i.e., a multivariate version of the algorithm of Gelman and Rubin (1992). Amongst 
the outputs of this algorithm is a point estimate that is assumed to be informative about the 
approximate convergence, while it is based on a comparison of within-chain and between-chain 
variances. Point estimates substantially larger than 1 indicate lack of convergence. The simulation 
process is repeated until a point estimate smaller than a predefined value is delivered. 

2.6 Quantile regression algorithmic modelling 

2.6.1 Basic definitions and concepts 

From an applied perspective, quantile regression algorithms are explained in the tutorial article 
of Waldmann (2018), while a review with up-to-date progress in the field is available in Koenker 
(2017). Quantile regression algorithms quantify the relationship (within a regression setting) 
between the predictor variables x (input to the algorithm) and a conditional quantile of the 
dependent variable y. The quantile qτ(y) of random variable y at level (or with probability) 
τ ∊ (0, 1) is defined by the following Equation: 

 qτ(y) := F−1
y (τ) (2.53) 

In Equation (2.53), where Fy denotes the CDF of y. Moreover, the respective conditional 
quantile qτ(y|x) is defined with the following Equation: 
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 qτ(y|x) := F−1
y|x(τ|x) = yτ(x) (2.54) 

In Equation (2.54), Fy|x denotes the CDF of y conditional on x. Quantile regression is equivalent 
to standard regression, with the difference that the former focuses on modelling conditional 
quantiles instead of modelling conditional means. Most quantile regression algorithms are based 
on minimization of the average quantile score over all observations. The quantile score (QSτ; see 
e.g., Koenker and Machado 1999; Gneiting and Raftery 2007) is defined by Equations (2.55) and 
(2.56). 

 QSτ(u) := (τ – Ι{u < 0}) u (2.55) 

 u := yτ(x) – y (2.56) 

In Equation (2.55), I{∙} denotes the indicator function. When the average quantile score is 
minimized, observations of the dependent variable are divided approximately to two groups 
including 100 τ % and 100 (1 – τ) % of the data. This observation has been theoretically confirmed 
(see Koenker 2017). 

According to Waldmann (2018), quantile regression is appropriate when: (a) the interest is 
in events at the limit of probability; (b) the conditional distribution of the dependent variable is 
not known or is hard to deduce; (c) there are numerous outliers among the observations of the 
dependent variable; and (d) heteroscedasticity needs to be modelled. Drawbacks of quantile 
regression algorithms are also enumerated by Waldmann (2018). A main drawback, shared by 
most algorithms from this category due to estimating separately different quantiles, is quantile 
crossing. Furthermore, parameter estimation is harder in quantile regression than in standard 
regression. 

2.6.2 Linear-in-parameters quantile regression 

Quantile regression and its variants are extensively analysed in Koenker (2005). The linear-in-
parameters quantile regression (or simply “quantile regression”) algorithm was introduced by 
Koenker and Bassett (1978; see also Koenker 2005), following the exploration of quantile 
estimation problems by Koenker and colleagues in the 70s (see Koenker 2017). Being the linear 
variant of all quantile regression algorithms, its role is similar to that of standard linear regression 
in regular regression problems. The method estimates the quantiles of a dependent variable 
conditional upon selected predictor variables by using similar techniques to linear regression. 
Intuitively, quantile regression is performed by fitting a linear model and bisecting the data so 
that 100 τ % lie below the predicted values of the fitted model. In practice, this is performed by 
fitting a linear model to the data and minimizing the average quantile score. Two advantages of 
the quantile regression algorithm, as emphasized by López López et al. (2014) are the robustness 
of the model with respect to outliers and the fact that no assumption is required for the PDF of the 
predictand variable. 

Some technical remarks on the application of the quantile regression algorithm should also 
be made. These remarks focus, among others, on the appropriateness of this algorithm for 
modelling heteroscedasticity (Koenker 2005, p. 25). They are made by compiling information that 
mostly originates from Neter et al. (1983), Koenker and Hallock (2001), Koenker (2017) and 
Waldmann (2018). 

Let us assume that we are interested in modelling the relationship between the random 
variables y and x given a training sample {(xj, yj), j = 1, …, γ}, so that we can probabilistically predict 
y conditional on x in general later on. Let also yτ(x) denote a quantile at level τ ∊ (0, …, 1) of y 
conditional on x. 

In summary, the quantile regression model is trained on the given sample separately for each 
probability p by: 

o Assuming that all quantiles at level τ (or with probability τ) share a common linear 
relationship with x expressed by Equation (2.57), where θ0,p and θ1,p are the regression 
coefficients to be estimated. 
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 yp(x) = θ0,p + θ1,p x (2.57) 

o Optimizing the objective expressed by Equations (2.58) and (2.59) to estimate θ0,p and θ1,p. 
Note that the right side of Equation (2.58) has been obtained by also exploiting Equation 
(2.57) above. 

 uj := yp,j(xj) – yj = θ0,p + θ1,p xj – yj (2.58) 

 min ∑ �� − I(�� < 0)� ��

���  (2.59) 

Therefore, by using the quantile regression model we are able to model quantiles of random 
variables “independently of distributional assumptions yet conditional on the data” (Waldmann 
2018), with the focus being on describing how selected quantiles of the response variable change 
with changes of the predictor variable(s). As a result, quantile regression is appropriate for 
modelling heteroscedasticity. 

An illustrative example of modelling heteroscedasticity by using the quantile regression 
model and a comparison with the solution provided by the linear regression model for the same 
problem are given in Figure 2.1. We train the quantile regression algorithm by implementing the 
training algorithm by Koenker and d'Orey (1987, 1994). 

 
Figure 2.1. Technical illustration of modelling heteroscedasticity using the quantile regression 
model and comparison with the linear regression model. The training data points are depicted 
with coloured bubbles (pink for low density and red for high density). The 90% central prediction 
intervals obtained for this training dataset using the linear regression and quantile regression 
models are depicted with red and black lines respectively. 

2.6.3 Quantile regression forests and generalized random forests 

Quantile regression forests were introduced by Meinshausen (2006). They are based on 
Breiman’s (2001a) random forests, which have been extensively used in hydrology (see the 
review by Tyralis et al. 2009b). Practically, random forests are regression algorithms that average 
an ensemble of decision trees (see a review on ensemble learning by Sagi and Rokach 2018). The 
ensemble is created by bagging (abbreviation for bootstrap aggregation; Breiman 1996) 
regression trees using an additional randomization process. With this additional randomization, 
the splitting in the nodes of the regression tree is conducted by randomly selecting a fixed number 
of predictor variables. An extensive description of the procedure for training decision trees and 
random forests can be found in Hastie et al. (2009, pp. 587–604). 

While regression forests can approximate the conditional mean of the dependent variable, 
quantile regression forests approximate its conditional quantiles. Diverging from other quantile 
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regression algorithms (see Sections 2.6.2, 2.6.4, 2.6.5), quantile regression forests are not based 
on the minimization of the quantile score. While random forests estimate the conditional mean by 
averaging the outcomes of the individual decision trees, quantile regression forests average the 
indicator functions of the event that the outcome of the decision tree in the test set is lower than 
qτ. 

Generalized random forests (Athey et al. 2019) and their related quantile prediction 
algorithms differ from random forests in the implemented partitioning mechanism in the nodes 
of the decision trees. Due to this procedure, they are theoretically more suitable to model 
heterogeneities in the observed data compared to quantile regression forests. 

2.6.4 Gradient boosting machine and model-based boosting 

A general view of boosting methods can be found in Mayr et al. (2014), and Tyralis and 
Papacharalampous (2020). The concept behind boosting is to iteratively improve (boost) weak 
learners (i.e., algorithms of low predictive ability) to form a strong learner. A particular type of 
boosting algorithms, introduced by Friedman (2001), is gradient boosting machine. It is described 
as an “off-the-shelf” method by Hastie et al. (2009, p. 352). Gradient boosting algorithms minimize 
a loss function via steepest gradient descent in function space. The main idea is to fit the weak 
learner to the negative gradient vector of the loss function evaluated at the previous iteration 
(Mayr et al. 2014). In plain language, boosting is an ensemble learning method in which new 
models are added to the ensemble sequentially. In particular, at each iteration the new model is 
trained to minimize the error of the ensemble learnt up until now (Natekin and Knoll 2013). The 
weak learners used in our case are decision trees. The loss function (i.e., error that has to be 
minimized) used is the quantile score. 

While many of the random forests’ properties are shared by gradient boosting machine since 
both use decision trees as base learners, a major difference is that gradient boosting machine is 
theoretically expected to perform better due to being highly parameterized (Efron and Hastie 
2016, p. 324). However, in practice, random forests often perform better, because optimization 
required for boosting algorithms is not trivial, while also depends on how accustomed the user is 
to using the particular algorithm. Instead, random forests are easy to use and perform very well 
with little tuning. 

The most critical parameter in gradient boosting is the number of iterations performed to fit 
the algorithm. Too few iterations may result in sub-optimal fitting and too many may result in 
overfitting. While there are different approaches to optimize the parameters of the algorithm 
(Natekin and Knoll 2013), these approaches are computationally costly in such big datasets. Other 
drawbacks of gradient boosting machine are: (a) that they are memory-consuming due to a large 
number of iterations; (b) their evaluation speed; and (c) they are slower to learn compared to 
random forests. 

In addition to decision trees, we also boost linear base learners using the quantile loss 
function. The relevant theory and implementation are presented by Bühlmann and Hothorn 
(2007), Hothorn et al. (2018), and Hofner et al. (2014). 

2.6.5 Quantile regression using quantile regression neural networks 

Artificial neural networks (see Section 2.3.2) can predict conditional quantiles, if they are fitted 
by minimizing the quantile score. This approach, termed as quantile regression neural networks, 
was proposed by Taylor (2000). An improved version of quantile regression neural networks by 
Cannon (2011) is implemented in the present thesis. This version uses the standard multilayer 
perceptron (MLP) artificial neural networks. 
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2.7 Probabilistic hydrological modelling and post-processing 

2.7.1 Data-driven probabilistic hydrological modelling 

Purely statistical (or data-driven) probabilistic prediction models (e.g., those outlined in Section 
2.6) could be exploited directly for probabilistic hydrological modelling. Such approaches are 
herein adopted as benchmarks to probabilistic hydrological post-processing methodologies. The 
latter consider information provided by process-based models (e.g., those outlined in Section 2.4). 
Considering this type of information is important in the field of (probabilistic) hydrological 
modelling, mainly because of the hydrological experience encompassed. 

2.7.2 Basic two-stage probabilistic hydrological post-processing 

Two-stage post-processing methodologies are implemented by dividing the historical dataset into 
two independent segments. To outline the main steps and concepts adopted within a basic two-
stage hydrological post-processing framework, we first define the time period T = {1, …, 
(n1+n2+n3)}, and its three distinct sub-periods T1 = {1, …, n1}, T2 = {(n1+1), …, (n1+n2)} and T3 = 
{(n1+n2+1), …, (n1+n2+n3)}. Let us now assume a historical rainfall-runoff dataset extending in the 
period {T1, T2}. Let us also assume that a probabilistic hydrological prediction is needed for the 
period T3. Then the first segment of the historical dataset, extending in the period T1, is used for 
calibrating the hydrological model, while information from the period T2 is used to (a) apply the 
calibrated hydrological model, and (b) model the hydrological model’s error conditional on 
selected variables (e.g., the hydrological model predictions at times t–1 and t) by using the 
predicted time series resulted from step (a) alongside with its target values. Under the stationarity 
and ergodicity assumptions (see e.g., Koutsoyiannis and Montanari 2015 for the implications of 
these assumptions in hydrological contexts), the trained “error model” can then be applied in the 
period T3 for converting a point hydrological prediction obtained using the same hydrological 
model with the same parameters into a probabilistic hydrological prediction. The error model 
could fall into the category of conditional distribution models (see e.g., Montanari and Brath 2004; 
Montanari and Grossi 2008) or the category of (machine learning) quantile regression models 
(which can directly provide predictive quantiles instead of predictive PDFs; see e.g., Dogulu et al. 
2015; López López et al. 2014; Tyralis et al. 2019a; see also Section 2.6), amongst other model 
categories. 

2.7.3 Probabilistic hydrological modelling blueprint 

A considerable part of this thesis is devoted to the probabilistic hydrological modelling blueprint 
by Montanari and Koutsoyiannis (2012). This flexible methodology (referred to as “MK blueprint 
methodology” in this thesis) is a theoretically consistent two-stage post-processing methodology 
that exploits information from a large number m of point predictions. Each point prediction is 
obtained by utilizing the same hydrological model yet with different parameter values and input 
data. The hydrological model typically falls into the category of process-based hydrological 
models (see Section 2.4). The hydrological model’s parameters are obtained by using data from 
the period T1 (defined in Section 2.7.2), while modelling and explicitly considering input data 
uncertainty imply the availability of input data error information. Information about the 
hydrological model’s error, obtained from the period T2 (defined in Section 2.7.2), is then used to 
convert the sister predictions for the period T3 (defined in Section 2.7.2) to ensemble simulations 
of the process of interest. The m ensemble simulations are retained as potential realizations of the 
process of interest, thus collectively composing a probabilistic prediction. For instance, if we are 
interested in delivering the 90% prediction interval and m = 1 000, then we simply have to pick 
at each time t ∊ T3 the 50th and 950th highest values (resulted via ranking) from the spaghetti plot 
of the 1 000 retained simulations. In absence of relevant information, the MK blueprint 
methodology can also be applied without explicitly considering input data uncertainty, i.e., by not 
running ensemble simulations for the hydrological model’s input, without any loss of its generality 
(see e.g., the implementations in Quilty et al. 2019). 
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2.8 Predictive model output combination and assessment 

2.8.1 Predictive model output combination 

Prediction combination methodologies are increasingly adopted in various scientific fields for 
improving predictive modelling (see e.g., the review on ensemble learning methods by Sagi and 
Rokach 2018). In this thesis, we have combined the outputs of quantile regression algorithms (see 
Section 2.6) by using the equal-weight combiner (see e.g., Lichtendahl et al. 2013). This combiner 
simply assigns equal weights to the outputs of the individual algorithms considered. Simple 
quantile averaging has been made within new probabilistic hydrological post-processing 
methodologies. For the related background of this thesis, the reader is referred to Section 2.7. For 
other hydrological predictive model output combination methodologies (besides the equal-
weight combiner), the reader is referred to Tyralis et al. (2019a, 2020b), and Papacharalampous 
and Tyralis (2020). 

2.8.2 Point prediction model testing and evaluation 

In this Section, we define the metrics exploited for assessing the quality of point predictions (e.g., 
point forecasts). For the definitions of these metrics, let us consider the point predictions or 
forecasts {fi, i = 1, …, n} and their corresponding target values {xi, i = 1, …, n}. 

The Ei metric is defined with the following Equation: 

 Ei := fi – xi (2.60) 

The AEi metric is defined with the following Equation: 

 AEi := |fi – xi| (2.61) 

The PEi metric is defined with the following Equation: 

 PEi := 100(fi − xi)/xi (2.62) 

The APEi metric is defined with the following Equation: 

 APEi := |100(fi − xi)/xi| (2.63) 

The ME metric is defined with the following Equation: 

 ME := (1/n) i = 1
n (fi - xi) (2.64) 

The MPE metric is defined with the following Equation: 

 MPE := (-1/n) i = 1
n (100(fi - xi)/xi) (2.65) 

The MAE metric is defined with the following Equation: 

 MAE := (1/n) i = 1
n |fi − xi| (2.66) 

The MdAE metric is defined with the following Equation: 

 MdAE := mediann{|fi – xi|} (2.67) 

The MAPE metric is defined with the following Equation: 

 MAPE := (1/n) i = 1
n |100(fi − xi)/xi| (2.68) 

The MdAPE metric is defined with the following Equation: 

 MdAPE := mediann{|100(fi − xi)/xi |} (2.69) 

The RMSE metric is defined with the following Equation: 
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 RMSE :=   (1/n) i = 1
n (fi − xi)2   (2.70) 

The PBIAS metric is defined with the following Equation (Yapo et al. 1996): 

 PBIAS := 100 i = 1
n (fi − xi)/i = 1

n (xi) (2.71) 

Let x‾ be the mean of the observations, which is defined by Equation (2.17). Let also sx be the 
standard deviation of the observations, which is defined by with the following Equation: 

 sx :=   (1/(n-1))i = 1
n (xi - x‾)2   (2.72) 

Let f‾ be the mean of the forecasts and sf be the standard deviation of the point predictions, 
which are defined with Equations (2.73) and (2.74), respectively. 

 f‾ := (1/n) i = 1
n fi (2.73) 

 sf :=   (1/(n-1))i = 1
n (fi - f‾)2   (2.74) 

The ratio of standard deviations (rSD) metric is defined with the following Equation 
(Zambrano-Bigiarini 2017a): 

 rSD := sf/sx (2.75) 

The Nash-Sutcliffe Efficiency (NSE) metric is defined with the following Equation (Nash and 
Sutcliffe 1970): 

 NSE := 1 − (i = 1
n (fi − xi)2/i = 1

n (xi − x‾)2) (2.76) 

The modified Nash-Sutcliffe Efficiency (mNSE) metric is defined with the following Equation 
(Krause et al. 2005): 

 mNSE := 1 − (i = 1
n |fi − xi|/i = 1

n |xi − x‾|) (2.77) 

The relative Nash-Sutcliffe Efficiency (rNSE) metric is defined with the following Equation 
(Krause et al. 2005): 

 rNSE := 1 − (i = 1
n ((fi − xi)/ xi)2/i = 1

n ((xi − x‾)/x‾)2) (2.78) 

The index of agreement (d) metric is defined with the following Equation (Krause et al. 2005): 

 d := 1 − (i = 1
n (fi - xi)2/i = 1

n (|fi - x‾|+|xi - x‾|)2) (2.79) 

The modified index of agreement (md) metric is defined with the following Equation (Krause 
et al. 2005): 

 md := 1 - (i = 1
n |fi - xi|/i = 1

n (|fi - x‾|+|xi - x‾|)) (2.80) 

The relative index of agreement (rd) metric is defined with the following Equation (Krause et 
al. 2005): 

 rd := 1 - (i = 1
n ((fi - xi)/ xi)2/i = 1

n ((|fi - x‾|+|xi - x‾|)/x‾)2) (2.81) 

The persistence index (cp) metric is defined with the following Equation (Kitanidis and Bras 
1980): 

 cp := 1 − (i = 2
n (fi − xi)2/i = 1

n−1 (xi+1 − xi)2) (2.82) 
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The Pearson’s correlation coefficient (Pr) metric is defined with the following Equation 
(Krause et al. 2005): 

 Pr :=  (i = 1
n (xi - x‾)(fi − f‾))/(i = 1

n (xi - x‾)2 i = 1
n (fi - f‾)2)0.5 (2.83) 

The coefficient of determination (r2) metric is defined with the following Equation (Krause et 
al. 2005): 

 r2 := (Pr)2 (2.84) 

The linear regression coefficient (LRC) metric measures the dependence of the point 
predictions fi on their corresponding target values xi, when this dependence is expressed by the 
following linear regression model: 

 fi = LRC xi + b (2.85) 

The Kling-Gupta efficiency (KGE) metric is defined with the following Equation (Gupta et al. 
2009): 

 KGE := 1 -    (Pr - 1)2 + ((sf/sx) - 1)2 + ((f‾/x‾) - 1)2   (2.86) 

The Volumetric Efficiency (VE) metric is defined with the following Equation (Criss and 
Winston 2008): 

 VE := 1 − (i = 1
n |fi − xi|/i = 1

n xi) (2.87) 

2.8.3 Probabilistic prediction model testing and evaluation 

In this Section, we define the metrics exploited for assessing the quality of probabilistic 
predictions. For these definitions, let us assume that probabilistic predictions for a period T3 have 
been obtained, e.g., by using one of the flexible methodologies of Sections 2.7.2 and 2.7.3. For a 
specific prediction interval of level (1 – α), 0 < α < 1, formed by the predictive quantiles {wt, t ∊ T3} 
and {lt, t ∊ T3}, where wt and lt are the upper and lower quantiles, respectively, at time t, the 
coverage probability (CPα), average width (AWα) and average interval score (AISα) are defined 
with Equations (2.88), (2.89) and (2.90), respectively. In these equations, yt is the targeted 
observation at time t ∊ T3 and |T3| is the number of the target data points included in period T3. 

 CPα := ∑t (I{lt < yt < wt})/|T3| (2.88) 

 AWα := ∑t (wt – lt)/|T3| (2.89) 

 AISα(lt, wt; yt) := ∑t ((wt – lt) + (2/α) (lt – yt) I{yt < lt} + (2/α) (yt – wt) I{yt > wt})/|T3| (2.90) 

For a predictive quantile of level τ, 0 < τ < 1, the average quantile score (AQSτ) is defined with 
the following Equation (see also Equations (2.55) and (2.56)): 

 AQSτ(yτ(xt); yt) := ∑t ((τ – Ι{(yt – yτ(xt)) < 0}) (yt – yτ(xt)))/|T3| (2.91) 

Some remarks should be made on the above scores. In probabilistic modelling, the aim is to 
maximize the sharpness of the predictive PDFs, subject to reliability (Gneiting and Katzfuss 2014). 
Reliability (or calibration) is the statistical correspondence between the probabilistic forecasts 
and the observations, while sharpness is the concentration of the predictive PDFs in absolute 
terms (Gneiting and Katzfuss 2014; see also Gneiting and Raftery 2007; Gneiting et al. 2007). 
Reliability and sharpness are both important criteria for assessing the usefulness of probabilistic 
predictions. Reliability can be assessed by measuring the coverage of the delivered prediction 
intervals, i.e., the percentage of data points included in these intervals; see Equation (2.88) above. 
Sharpness can be assessed by computing the average widths of the obtained interval predictions. 
For engineering applications, narrower prediction intervals are preferred for avoiding excessively 
precautionary design or decisions. 

AISα and AQSτ provide an objective co-assessment of reliability and sharpness, and are, 
therefore, suggested as “proper scores” in Gneiting and Raftery (2007). In this view, smaller values 
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of these scores indicate more useful probabilistic predictions. Some remarks on the (average) 
interval score are made in the following: This score is appropriate for assessing probabilistic 
predictions in the form of prediction intervals (Gneiting and Raftery 2007, Section 6.2). It has 
three components (see Equation (8.4) above). The first component is the width of the prediction 
interval. As smaller values of the (average) interval score indicate better predictions than larger 
values (for a specific prediction problem), this component penalizes more the wider prediction 
intervals than the narrower ones (thereby rewarding narrow prediction intervals). The two 
remaining components quantify the distance between each of the two predictive quantiles 
forming the prediction interval and the observed value, in case that the latter falls outside of the 
prediction interval, and penalize larger distances more than smaller distances. In general, the 
(average) interval score should become smaller as we move from the outer to the inner prediction 
intervals. The reader is referred to Gneiting and Raftery (2007, Section 6.2) for detailed 
information on how to interpret this score. The origins of the interval score (see e.g., Gneiting and 
Raftery 2007) trace back to Dunsmore (1968) and Winkler (1972). This score, also known as 
Winkler score, rewards narrow prediction intervals, while penalizing prediction intervals missed 
by observations. The size of the penalty depends on the prediction interval (Gneiting and Raftery 
2007). 

For benchmarking purposes we also compute the relative improvements (RIα,P1,P2), obtained 
when using a prediction interval P1 of level (1 – α) (provided by a predictor of interest) with 
respect to another prediction interval P2 of the same level (provided by a benchmark predictor) 
in terms of average width. This computation is made according to Equation (2.92). In this 
equation, AWα,P1 and AWα,P2 denote the average widths of the former and latter prediction 
intervals, respectively. We also compute the relative improvements (provided by each predictor 
of interest with respect to a benchmark predictor) in terms of average interval score and average 
quantile score. These latter computations are made by using Equations analogous to Equation 
(2.92). 

 RIα,P1,P2 := (AWα,P2 –AWα,P1)/AWα,P2 (2.92) 

2.8.4 Predictive model hierarchical clustering 

We perform hierarchical clustering of time series forecasting methods by conducting 
hierarchically clustered heatmaps. All hierarchical cluster analyses are performed by using a set 
of dissimilarities for the n forecasting methods being clustered at each time. These dissimilarities 
are derived from computed performance metric values (see Section 2.8.2). The hierarchical 
clustering algorithm begins by assigning each forecasting method is to its own cluster and 
progresses by gradually joining the two most similar clusters, until a single cluster is obtained. At 
each stage, it also re-computes the distances between the clusters. Hierarchical clustering is 
explained in detail in Hastie et al. (2009, Chapter 14.3.12). 

2.9 Predictive modelling and benchmarking toolbox 

2.9.1 Original and processed hydrological datasets 

Our frameworks rely on large hydrological datasets, which are part of the technical background 
of this thesis. The exploited original datasets are summarized in Table 2.1. Moreover, a summary 
of the processed hydrological datasets is presented in Table 2.2. 

Table 2.1. Original real-world datasets. These datasets are used for forming the ones of Table 2.2. 

S/n Code name Main references 
Chapter 

3 4 5 6 7 8 9 
1 GRDC GRDC (2017)  × × × × × × 
2 GHCN-temp Lawrimore et al. (2011) ×    × × × 
3 GHCN-prec Peterson and Vose (1997) ×    × × × 
4 MOPEX Schaake et al. (2006) × × × × ×  × 
5 CAMELS Newman et al. (2014); Addor et al. (2017a) × × × × × ×  
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Table 2.2. Processed real-world datasets. The total number of the exploited real-world time series 
is 5 929. 

S/n Chapter 
Dataset 

type 
Original dataset 
(see Table 2.1) 

Hydrometeorological 
process 

Data level 
Number of 
time series 

Time series 
length (years) 

1 3 Typical GRDC River discharge Annual 405 100 
2 4 GHCN-temp Temperature Annual 185 91 
3 Standardized 

temperature 
185 

4 GHCN-prec Precipitation 112 
5 Standardized 

precipitation 
112 

6 5 GHCN-temp Temperature Monthly 985 40 
7 GHCN-prec Precipitation 1 552 
8 6 GHCN-temp Temperature Monthly 17 10−125 
9 GHCN-prec Precipitation  33 10−119 

10 8 Rainfall-
runoff 

MOPEX Precipitation Monthly 270 50 
 Potential 

evaporation 
270 

  River discharge 270 
11 9 CAMELS Precipitation Daily 511 34 

 Temperature 511 
 River discharge 511 

2.9.2 Automatic models and flexible methodologies 

A summary of the ready-made automatic models and algorithms exploited in this thesis is 
presented in Table 2.3, while their utilities are reported independently in Table 2.4. These models 
and algorithms are exploited individually or by combination with various algorithmic argument 
choices. Most of them incorporate several others, which are here omitted for reasons of brevity. 
Flexible methodologies incorporating these models are outlined in Table 2.5. 
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Table 2.3. Ready-made automatic models and algorithms implemented and combined within the 
context of the thesis. Most of these models and algorithms incorporate several others, which are 
here omitted for reasons of brevity. Flexible methodologies incorporating these models are 
outlined in Table 2.5. 

S/n Model or algorithm Description 
Chapter 

3 4 5 6 7 8 9 
1 Sample autocorrelation function (ACF) Section 2.1.2   × × × × × 
2 Sample partial autocorrelation (PACF)   × × × × × × 
3 White noise Section 2.1.1 × × × ×  × × 
4 Autoregressive moving average (ARMA) Section 2.1.3   × × × × × 
5 Autoregressive fractionally integrated moving average (ARFIMA) Section 2.1.5   × × × × × 
6 Fractional Gaussian noise (fGn) Section 2.1.6     × × × 
7 Kalman filter Section 2.1.9 × × ×  × × × 
8 Additive model Section 2.1.7 × ×   × × × 
9 Multiplicative model × ×   × × × 

10 Box-Cox transformation Section 2.1.8 × ×   × × × 
11 Square-root transformation × × × × ×  × 
12 Yeo-Johnson transformation × × × × ×  × 
13 Ordered quantile transformation × × × × ×  × 
14 Non-seasonal naïve Section 2.2.1   × × × × × 
15 Seasonal naïve × ×   × × × 
16 Random walk (RW)    × × × × 
17 Fixed-order autoregressive moving average (ARMA) Section 2.2.2   ×  × × × 
18 Optimum-order autoregressive integrated moving average (ARIMA)     × × × 
19 Optimum-order autoregressive fractionally integrated moving average 

(ARFIMA) 
    × × × 

20 Exponential smoothing state space with Box-Cox transformation, ARMA 
errors correction, trend and seasonal components (BATS) 

Section 2.2.3     × × × 

21 Exponential smoothing with error, trend and seasonal components (ETS)   × × × × × 
22 Simple exponential smoothing (SES)    × × × × 
23 Theta     × × × 
24 Prophet Section 2.2.4 × ×  × × × × 
25 Sample autocorrelation function (ACF) Section 2.1.2   × × × × × 
26 Autoregressive (AR) model Section 2.1.3   × × × × × 
27 Sliding window model Section 2.2.5   ×  × ×  
28 Grid search   ×  × × × 
29 Linear regression Section 2.3.1 × × × ×   × 
30 Quadratic regression × × × ×  × × 
31 Neural networks (NN) Section 2.3.2   ×  × × × 
32 Random forests (RF) Section 2.3.3   × × × × × 
33 Support vector machines (SVM) Section 2.3.4   ×  × × × 
34 Oudin’s formula Section 2.4.3 × × × × × ×  
35 Michel’s algorithm × × × × ×   
36 Génie Rural à 2 paramètres Mensuel (GR2M) Section 2.4.1 × × × × ×  × 
37 Génie Rural à 4 paramètres Journalier (GR4J) Section 2.4.2 × × × × × ×  
38 Gibbs sampler Section 2.5.1 × × × ×  × × 
39 Delayed rejection adaptive Metropolis (DRAM) sampler Section 2.5.2 × × × × ×  × 
40 Brooks and Gelman’s algorithm × × × × ×  × 
41 Quantile regression (qr) Section 2.6.2 × × × ×    
42 Generalized random forests for quantile regression (qrf) Section 2.6.3 × × × × × ×  
43 Generalized random forests for quantile regression emulating quantile 

regression forests (qrf_meins) 
× × × × × ×  

44 Gradient boosting machine with trees as base learners (gbm) Section 2.6.4 × × × × × ×  
45 Model-based boosting with linear models as base learners (mboost_bols) × × × × × ×  
46 Quantile regression neural networks (qrnn) Section 2.6.5 × × × × × ×  
47 Hierarchical clustering Section 2.8.4   × × × × × 
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Table 2.4. Utilities of the individual ready-made automatic models and algorithms implemented 
and combined within the context of the thesis. These models and algorithms are defined in Table 
2.3. Flexible methodologies incorporating these models are outlined in Table 2.5 together with 
their utilities. 

Model or algorithm 

Utility 
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Sample ACF × × ×  × × × × × ×  × × × × × × 
Sample PACF × × × × × × × × × ×  × × × × × × 
White noise × × × × × × × × × × × × × ×  × × 
Fixed-parameter ARMA × × × × × × × × × × × × × ×  × × 
Fixed-parameter ARFIMA × × × × × × × × × × × × × ×  × × 
fGn × × × × × × × × × ×  × × × ×  × 
Kalman filter × × × × × × × × × × × × ×  × × × 
Additive model × × × × × × × × × × ×  × × × × × 
Multiplicative model × × × × × × × × × × ×  × × × × × 
Box-Cox transformation × × × × × × × × × × × × × × × ×  
Square-root transformation × × × × × × × × × × × × × × × ×  
Yeo-Johnson transformation × × × × × × × × × × × × × × × ×  
Ordered quantile transformation × × × × × × × × × × × × × × × ×  
Non-seasonal naïve × × × × × × × × × × × ×  × × × × 
Seasonal naïve × × × × × × × × × × × ×  × × × × 
RW × × × × × × × × × × × ×  × × × × 
Fixed-order ARMA × × × × × × × × × × × ×  ×  × × 
Optimum-order ARIMA × × ×  × × × × × × × ×  ×  × × 
Optimum-order ARFIMA × × × × × × × × × × × ×  × × × × 
BATS × × × × × × × × × × × ×  × × × × 
ETS × × × × × × × × × × × ×  × × × × 
SES × × × × × × × × × × × ×  × × × × 
Theta × × × × × × × × × × × ×  × × × × 
Prophet × × × × × × × × × × × ×  × × × × 
Sliding window model × ×  × × × × × × × × × × × × × × 
Grid search ×  × × × × × × × × × × × × × × × 
Linear regression × × × × × × × ×  × × × × × × × × 
Quadratic regression × × × × × × × ×  × × × × × × × × 
NN × × × × × × × ×  × × × × × × × × 
RF × × × × × × × ×  × × × × × × × × 
SVM × × × × × × × ×  × × × × × × × × 
Oudin’s formula × × × ×  × × × × × × × × × × × × 
Michel’s algorithm  × × × × × × × × × × × × × × × × 
GR2M × × × × × ×  × × × × × × × × × × 
GR4J × × × × × ×  × × × × × × × × × × 
Gibbs sampler × × × × × × × × ×  × × × × × × × 
DRAM sampler × × × × × × × × ×  × × × × × × × 
Brooks and Gelman’s algorithm × × × × × × × × ×  × × × × × × × 
qr × × × × × × ×  × × × × × × × × × 
qrf × × × × × × ×  × × × × × × × × × 
qrf_meins × × × × × × ×  × × × × × × × × × 
gbm × × × × × × ×  × × × × × × × × × 
mboost_bols × × × × × × ×  × × × × × × × × × 
qrnn × × × × × × ×  × × × × × × × × × 
Hierarchical clustering × × × × ×  × × × × × × × × × × × 
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Table 2.5. Flexible methodologies considered for predictive modelling. The serial numbers 
continue from Table 2.3. Their utilities are also reported. The serial numbers of these utilities 
continue from Table 2.4. 

S/n Strategy or methodology 
Utility 

Description 
Chapter 

Outline s/n 3 4 5 6 7 8 9 
48 Transformation-based time 

series modelling 
Improved time series 
modelling 

18 Section 2.1.8 × ×  × ×  × 

49 Regression-based time series 
forecasting 

Time series forecasting 13 Section 2.2.5   ×  × × × 

50 Decomposition-based time 
series forecasting 

Section 2.2.6 × ×   × × × 

51 Approximate convergence of 
parallel Markov chains with 
different initial values 

Simulation of posterior 
distributions of model 
parameters 

10 Section 2.5.2 × × × × ×  × 

52 Simple quantile averaging Prediction combination 19 Section 2.8.1 × × × ×    
53 Basic two-stage probabilistic 

hydrological post-processing 
Probabilistic 
hydrological 
post-processing 

20 Section 2.7.2 × × × ×    

54 Probabilistic hydrological 
modelling blueprint 

Section 2.7.3 × × × ×   × 

2.9.3 Predictive model evaluation metrics  

A summary of the metrics exploited in this thesis for predictive model testing and evaluation is 
presented in Table 2.6. 

Table 2.6. Metrics exploited for predictive model testing and evaluation. The metrics are defined 
in Section 2.8.2, while (1 – α), 0 < α < 1, denotes the level (or probability) of a prediction interval. 

S/n Full name Notation Definition Values 
Optimum 

value 
Chapter 

3 4 5 6 7 8 9 
1 Error Ei Equation (2.60) (-∞,+∞) 0 ×   × × × × 
2 Absolute error AEi Equation (2.61) [0, +∞) 0 ×   × × × × 
3 Percentage error PEi Equation (2.62) (-∞,+∞) 0 ×  × × × × × 
4 Absolute percentage error APEi Equation (2.63) [0, +∞) 0 ×  × × × × × 
5 Mean error ME Equation (2.64) (-∞,+∞) 0  × × × × × × 
6 Mean percentage error MPE Equation (2.65) (-∞,+∞) 0  × × × × × × 
7 Mean absolute error MAE Equation (2.66) [0, +∞) 0  × × × × × × 
8 Median absolute error MdAE Equation (2.67) [0, +∞) 0 ×  × × × × × 
9 Mean absolute percentage error MAPE Equation (2.68) [0, +∞) 0  × × × × × × 

10 Median absolute percentage error MdAPE Equation (2.69) [0, +∞) 0 ×  × × × × × 
11 Root mean square error RMSE Equation (2.70) [0, +∞) 0  ×   × × × 
12 Percent bias PBIAS Equation (2.71) (-∞,+∞) 0  × × × × × × 
13 Ratio of standard deviations rSD Equation (2.75) (-∞, 1] 1  × ×  × × × 
14 Nash-Sutcliffe efficiency NSE Equation (2.76) (-∞, 1] 1  ×   × × × 
15 Modified Nash-Sutcliffe efficiency mNSE Equation (2.77) (-∞, 1] 1  × × × × × × 
16 Relative Nash-Sutcliffe Efficiency rNSE Equation (2.78) (-∞, 1] 1  × × × × × × 
17 Index of agreement d Equation (2.79) [0, 1] 1  × ×  × × × 
18 Modified index of agreement md Equation (2.80) [0, 1] 1  × × × × × × 
19 Relative index of agreement rd Equation (2.81) (-∞, 1] 1  × × × × × × 
20 Persistence index cp Equation (2.82) (-∞, 1] 1  × × × × × × 
21 Pearson’s correlation coefficient Pr Equation (2.83) [-1, 1] 1  × ×  × × × 
22 Coefficient of determination r2 Equation (2.84) [0, 1] 1   × × × × × 
23 Linear regression coefficient LRC Equation (2.85) (-∞,+∞) 1 ×  ×  × × × 
24 Kling-Gupta efficiency KGE Equation (2.86) (-∞, 1] 1  × × × × × × 
25 Volumetric efficiency VE Equation (2.87) (-∞,+∞) 1  × × × × × × 
26 Reliability score RSα Equation (2.88) [0, 1] (1 – α) × × × ×    
27 Average width AWα Equation (2.89) [0, +∞) 0 × × × ×    
28 Average interval score AISα Equation (2.90) [0, +∞) 0 × × × ×    
29 Average quantile score AQSτ Equation (2.91) [0, +∞) 0 × × × × × ×  

2.9.4 Statistical software information 

The analyses and visualizations are performed in R Programming Language (R Core Team 2019). 
We use the contributed R packages summarized in Table 2.7. Many of these R packages rely on 
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others that are here omitted for reasons of brevity. These additional R packages can be found in 
the provided references under the category “latest version exploited”. 

Table 2.7. R packages directly exploited in the thesis. Most of these R packages rely on others that 
are here omitted for reasons of brevity. 

S/n R package Latest version exploited Other references 
Chapter 

3 4 5 6 7 8 9 
1 airGR Coron et al. (2019) Coron et al. (2017) × × × × ×   
2 BayesSummaryStatLM Savel'ev et al. (2015) − × × × ×  × × 
3 bestNormalize Peterson (2019) Peterson (2017) × × × × ×  × 
4 cgwtools Witthoft (2015) −  × × × × × × 
5 coda Plummer et al. (2019) Plummer et al. (2006) × × × × ×  × 
6 data.table Dowle and Srinivasan (2019) − × × × ×    
7 devtools Wickham et al. (2019c) −        
8 dplyr Wickham et al. (2019b) − × × × × ×   
9 EnvStats Millard (2018) Millard (2013)  × × × × × × 

10 FME Soetaert and Petzoldt (2016) Soetaert and Petzoldt (2010) × × × × ×  × 
11 forecast Hyndman et al. (2018) Hyndman and Khandakar 

(2008) 
    × × × 

12 fracdiff Fraley et al. (2012) −     × × × 
13 gbm Greenwell et al. (2019) Friedman (2001) × × × × × ×  
14 gdata Warnes et al. (2017) −        
15 ggExtra Attali (2018) − × × × ×  × × 
16 ggplot2 Wickham et al. (2019a) Wickham (2016a)        
17 ggridges Wilke (2018) − × × × × ×  × 
18 ggpubr Kassambara (2019) − × × × × × ×  
19 grf Tibshirani and Athey (2019) Meinshausen (2006) × × × × × ×  
20 hddtools Vitolo (2017)  Vitolo (2018) × × × × ×  × 
21 HKprocess Tyralis (2016) Tyralis and Koutsoyiannis 

(2011) 
    × × × 

22 hydroTSM Zambrano-Bigiarini (2017b) − × × ×  × × × 
23 kernlab Karatzoglou et al. (2018) Karatzoglou et al. (2004)   ×  × × × 
24 knitr Xie (2019) Xie (2014, 2015)        
25 maps Brownrigg et al. (2018) − ×    ×   
26 MASS Ripley (2019) Venables and Ripley (2002) × × × ×  × × 
27 matrixStats Bengtsson (2018) − × × × ×   × 
28 mboost Hothorn et al. (2018) Hofner et al. (2014) × × × × × ×  
29 nnet Ripley (2016) Venables and Ripley (2002)   ×  × × × 
30 plyr Wickham (2001) Wickham (2016b)  × × ×    
31 prophet Taylor and Letham (2017) Taylor and Letham (2018) × ×  × × × × 
32 qrnn Cannon (2019) Cannon (2011) × × × × × ×  
33 quantreg Koenker (2019) Koenker and Bassett (1978) × × × ×    
34 randomForest Liaw (2018) Liaw and Wiener (2002)   × × × × × 
35 readr Wickham et al. (2018) −     ×   
36 reshape Wickham (2018) Wickham (2007) × × × ×   × 
37 reshape2 Wickham (2017) − × × × × × ×  
38 rmarkdown Allaire et al. (2019) −        
39 rminer Cortez (2016) Cortez (2010)   ×  × × × 
40 stringi Gagolewski (2019) − × × × × × ×  
41 stringr Wickham (2019) − × × × × × ×  
42 tidyr Wickham and Henry (2019) −  × ×    × 
43 zoo Zeileis et al. (2019) Zeileis and Grothendieck (2005) × ×   ×  × 
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3. Comparison of stochastic and machine learning methods for multi-step 
ahead forecasting of hydrological processes 

Research within the field of hydrology often focuses on the comparison between stochastic and 
machine learning (ML) forecasting methods. The performed comparisons are based on case 
studies, while a study providing large-scale results on the subject is missing. In this Chapter, we 
compare 11 stochastic and nine ML methods regarding their multi-step ahead forecasting 
properties by conducting 12 extensive computational experiments based on simulations. Each of 
these experiments uses 2 000 time series generated by linear stationary stochastic processes. We 
conduct each simulation experiment twice; the first time using time series of 100 values and the 
second time using time series of 300 values. Additionally, we conduct a real-world experiment 
using 405 mean annual river discharge time series of 100 values. We quantify the forecasting 
performance of the methods using 18 metrics. The results indicate that stochastic and ML 
methods may produce equally useful forecasts. 

3.1 Introduction 

The fundamental problem of statistically producing point forecasts of univariate time series by 
exploiting information from their past values only (hereafter “forecasting”, unless specified 
differently) is of traditional interest to hydrological scientists (Yevjevich 1987). Right after the 
introduction of the currently classical autoregressive integrated moving average (ARIMA) models 
by Box and Jenkins (1968), Carlson et al. (1970) used several stationary models of this specific 
family, i.e., autoregressive moving average (ARMA) models, to forecast the evolution of four 
annual time series of streamflow processes. Today the available models for time series forecasting 
are numerous and can be classified according to De Gooijer and Hyndman (2006) into eight 
categories, i.e., (a) exponential smoothing, (b) ARIMA, (c) seasonal models, (d) state space and 
structural models and the Kalman filter, (e) nonlinear models, (f) long-range dependence models, 
e.g., the family of autoregressive fractionally integrated moving average (ARFIMA) models, (g) 
autoregressive conditional heteroscedastic/generalized autoregressive conditional 
heteroscedastic (ARCH/GARCH) models, and (h) count data forecasting. The models from the 
categories (a)−(g) are of potential interest in hydrology, while they can be implemented for both 
one- and multi-step ahead forecasting. 

The theoretical properties of the models of categories (a)−(d), (f), (g) (hereafter referred to 
as “stochastic”) have been more or less investigated, in contrast to those of the nonlinear models 
and in particular the machine learning (ML) algorithms, also referred to in the literature as “black-
box models”. These two main categories of models are known to represent two different cultures 
in statistical modelling, i.e., the “data modelling culture” and the “algorithmic modelling culture” 
(Breiman 2001b). The former assumes that an analytically formulated stochastic model is behind 
the generation of the data, while the latter that behind this process is something complex and 
unknown, which does not have to be analytically formulated, as long as a purely algorithmic model 
can offer high forecast accuracy. In other words, profoundly understanding and properly 
modelling the (future) behaviour of a process are strongly connected within the data modelling 
culture, but completely irrelevant within the algorithmic modelling culture. The distinction 
between causal explanation, prediction and description is acknowledged and clarified in terms of 
modelling in Shmueli (2010). Still, one could question whether the (rather artificial) separation of 
models with respect to the “stochastic-ML dipole” actually corresponds to a striking difference in 
their forecasting performance. 

What cannot be questioned, on the other hand, is the popularity that the various ML 
forecasting methods have gained in many scientific fields, including hydrology. Amongst the most 
popular ML algorithms are the neural networks (NN), random forests (RF) and support vector 
machines (SVM). The latter two algorithms are presented in their current forms in Breiman 
(2001a), and Cortes and Vapnik (1995; see also Vapnik 1995, 1999), respectively. For the 
implementation of NN for time series forecasting the reader is referred to Zhang et al. (1998) and 
Zhang (2001), while a review of SVM forecasting applications can be found in Sapankevych and 
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Sankar (2009). The large number of hydrological studies implementing NN and SVM forecasting 
methods is imprinted in Maier and Dandy (2000), and Raghavendra and Deka (2014), 
respectively.  Moreover, Abrahart et al. (2012) collectively review the NN streamflow forecasting 
and rainfall-runoff applications (see e.g., De Vos 2013). A major difference between these two 
families of applications is the use of exogenous variables in the latter. In contrast to NN and SVM, 
RF are barely utilized for hydrological process forecasting. 

To explore the related background and facilitate the following discussion, in Table 3.1 we 
present some literature information on hydrometeorological time series forecasting emphasizing 
a few key aspects and concepts. As it is apparent, hydrological research often focuses on ML or 
hybrid (e.g., combinations of ARMA and ML) forecasting methods and, in particular, on the 
comparison between stochastic (mainly ARMA and ARFIMA) and ML methods. However, the 
culture of assessing the performance of forecasting methods on large datasets is not customary in 
hydrology. Therefore, the assessment is made within case studies. Concerning the testing 
procedure, while the available forecast quality metrics are a lot, most of the studies use only a few 
(Krause et al. 2005), understating the importance of the testing process despite relevant 
suggestions (see e.g., Armstrong 2001; Abrahart et al. 2008; Humphrey et al. 2017). Likewise, the 
number of the compared forecasting methods is usually small and simple benchmarks are rarely 
included in the comparisons, although their use is highly recommended in the (hydrological) 
forecasting literature (see e.g., Harvey 1984; Pappenberger et al. 2015; Hyndman and 
Athanasopoulos 2018, Chapter 3.1). 
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Table 3.1. Methodological information on case studies focusing on hydrometeorological time 
series forecasting within a purely statistical framework (see also Table 4.1). 

S/n Study 
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1 Atiya et al. (1999) NN 
methods 

× ×  × × ×  × ×  × 
2 Lambrakis et al. (2000) × ×  ×  × × ×  × × 
3 Kişi (2007) × ×  × ×  × ×   × 
4 Cheng et al. (2008) × ×   × ×     × 
5 Yaseen et al. (2016) × ×  × ×   ×  × × 
6 Sivapragasam et al. (2001) SVM 

methods 
×   × ×  × ×  × × 

7 Shi and Han (2007) × ×   × ×     × 
8 Lu and Wang (2011) ×  × × ×  × ×  × × 
9 Hu et al. (2001) Hybrid 

methods 
×  × × × × ×   × × 

10 Kim and Valdés (2003) × × ×  × ×  ×   × 
11 Pai and Hong (2007) ×  × ×  × × ×  × × 
12 Hong (2008) ×  × ×  × × ×  × × 
13 Kişi and Cimen (2011) × ×  × × ×  ×  × × 
14 Liong and Sivapragasam (2002) SVM vs NN 

methods 
× × ×  ×  × ×   × 

15 Guo et al. (2011) × ×  × × ×  × × ×  
16 Kişi and Cimen (2012) ×  × × ×  × ×  × × 
17 He et al. (2014) × ×  × ×  × ×  × × 
18 Jain et al. (1999) Stochastic 

vs ML 
methods 

× ×  × × ×  ×  × × 
19 Ballini et al. (2001) × ×  × × ×  ×   × 
20 Kişi (2004) × ×  × × ×  ×   × 
21 Khan and Coulibaly (2006) × × ×  × ×  ×   × 
22 Lin et al. (2006) × ×  × × ×  × × ×  
23 Mishra et al. (2007) × × ×  × ×  ×   × 
24 Yu and Liong (2007) × ×  × ×  × × ×  × 
25 Koutsoyiannis et al. (2008) × ×  × × ×  ×  × × 
26 Wang et al. (2009) × ×  × × ×  × ×  × 
26 Abudu et al. (2010) × ×  × × ×  ×  × × 
28 Kişi et al. (2012) × × ×  ×  × ×   × 
29 Shabri and Suhartono (2012) × ×  × × ×  ×  × × 
30 Valipour et al. (2013) × ×  × × ×  × × ×  
31 Patel and Ramachandran (2015) × ×  × × ×  × ×  × 

Researchers have long been chasing the most accurate forecast for their data, a “universally 
best technique”. On the other hand, there is an argument that it is the data and the application of 
interest that determine the proper methodology for each case, rather than vice versa (Hong and 
Fan 2016). Another argument is that perhaps research should invest more on probabilistic 
forecasting (e.g., using Bayesian statistics, as made in Tyralis and Koutsoyiannis 2014) and less on 
point forecasting (Krzysztofowicz 2001b). In fact, the opinions on forecast evaluation are often 
diverging, as they tend to depend on the perspective from which the forecasts are examined. An 
interesting study on this subject can be found in Murphy (1993). The latter identifies three criteria 
for this specific evaluation, which are adopted as a foundation for further discussion in later 
studies (e.g., Ramos et al. 2010; Weijs et al. 2010). These criteria are (1) the consistency during 
the forecasting process, (2) the quality or the correspondence between the forecasts and the 
target values, and (3) the value or the profit that the forecast provide to the decision makers. Weijs 
et al. (2010) note that criterion (2) concerns more the pure science, while criterion (3) is closer 
related to the decisions made within the engineering applications (of science), rather than science 
itself. Thus, only a few studies are dedicated to criterion (3), such as Ramos et al. (2010) and 
Ramos et al. (2013), while the greatest part of the literature focuses on criterion (2). The latter 
likewise largely applies to the present Chapter and to all of its references aiming to deal with the 
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modelling issue (which model should I use?) within specific hydrological contexts. Another 
criterion of practical importance is the computational (running) time required for obtaining the 
forecasts. This information might be significant depending on the forecasting task, while it could 
also be decisive, especially when one has to select between methods producing equally useful 
forecasts. The computational requirements are known to depend on the primary algorithm and 
its complexity, as well as on its software implementation, while the computational time also 
depends on the computer. 

Regarding the so far conducted comparisons between forecasting methods, their majority in 
all scientific fields is based on case studies. Nevertheless, in some few cases beyond hydrology the 
number of the examined real-world time series is quite large. These time series are realizations of 
several phenomena, which however are fundamentally different from being hydrological, and 
their examination includes concepts that are rather inappropriate in hydrological terms (e.g., 
paying attention to small quantitative differences in the forecasting performance of the methods). 
Examples of such studies can be found in Makridakis et al. (1987), Makridakis and Hibon (2000), 
and Ahmed et al. (2010), which examine 1 001, 3 003 and 1 045 time series respectively. Within 
these studies a statistical analysis is performed and the results are presented accordingly. 
Furthermore, the literature includes two studies, specifically Zhang (2001) and Thissen et al. 
(2003), in which the performance of the methods is assessed on simulated time series from linear 
stochastic processes. The scale of the simulation experiment is small in both cases. Thissen et al. 
(2003) examine one long time series from the ARMA family, and Zhang (2001) examine eight 
stochastic processes from the ARMA family and 30 simulated time series for each stochastic 
process. The forecasting methods are ARMA models, NN and SVM in the former study, and ARMA 
models and NN in the latter study, while Makridakis et al. (1987), Makridakis and Hibon (2000), 
and Ahmed et al. (2010) do not focus their comparisons on the stochastic-ML dipole. 

Admittedly, the studies mentioned in the previous paragraph pursue generalized results to 
greater extent than most of the available studies. However, the gap still remains. What specifically 
needs to be addressed is whether the stochastic-ML dipole actually corresponds to a clear 
difference in the forecasting performance of the methods, especially in the light of published 
studies, which claim that they found a technique better than others. Given the fact that each 
forecasting case is indisputably unique, this task would necessarily require the examination of a 
sufficiently large and representative sample of forecasting cases within the same (properly 
designed) methodological framework. Extensive simulations combined with statistical analysis 
and benchmarking (i.e., evaluation in comparison to standard approaches and/or theoretically 
expected outcomes) can constitute, nevertheless, a highly effective approach to solving the 
problem under discussion. In more detail, for the generalized comparison of stochastic and ML 
forecasting methods, a sufficient number of different and representative of the underlying 
phenomena time series could be used for the estimation of the expected performance of 
forecasting methods regarding several criteria of interest. The need of using simulated time series 
to assess the performance of forecasting methods is emphasized by forecasting experts (Bontempi 
2013). The analytical approach in assessing the performance of ML algorithms is not possible; 
therefore, the only alternative approach is using simulations. Apparently, the larger the scale of 
the simulation experiments, the more general would be the results. Real-world experiments of 
large scale could be used to complement the results of the simulation experiments in alignment 
with specific applications. Some suggestions for the design of large-scale comparisons and the 
incorporation of benchmarking into methodological frameworks are available in Alpaydin (2010) 
and Hothorn et al. (2005), respectively. 

In the context described so far, we perform an extensive comparison between several 
stochastic and ML methods for the forecasting of hydrological processes by conducting large-scale 
computational experiments based on simulations. The comparison refers to the multi-step ahead 
forecasting properties of the methods. The simulated time series are 48 000 in total, while they 
are generated by linear stationary stochastic processes. The latter are commonly used for 
modelling hydrological processes. In fact, the linearity assumption starts to become reasonable 
when modelling hydrological variables at large time scales (e.g., annual or monthly), while at fine 
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time scales (e.g., daily or hourly) non-linear modelling approaches start to prevail (e.g., due to 
intermittency). Moreover, stationary models, in contrast to the non-stationary ones, are 
established as the appropriate modelling choice when dealing with natural processes, unless 
tangible and quantitative information that can fully support a deterministic description (not based 
on data but on physical laws) of change in time is available (Koutsoyiannis 2011; Koutsoyiannis 
and Montanari 2015). Additionally to the simulation experiments, we examine 405 real-world 
time series. Our aim is to fill the gap detected in the literature by providing large-scale results and 
useful insights on the comparison of stochastic and ML forecasting methods for the case of 
hydrological time series forecasting at large time scales, with an emphasis on annual river 
discharge processes. A strength (and limitation) of the present Chapter (implied by its aim) is the 
adopted approach to the problem, i.e., the algorithmic or data-driven approach. 

3.2 Methodology 

In this Section, we present the basic methodological elements of this Chapter and the way that 
these elements are combined into a framework for evaluating forecasting methods in hydrology. 
Basic information on the methods’ implementation is also provided, while the total of the 
exploited R packages is independently listed in Section 2.9.4. Hereafter, to specify an implemented 
R function, we state its name accompanied by the name of the R package. The latter name is given 
between curly brackets ({}). To imply that we implement a built-in-R function, we accompany its 
name with “{stats}”. All R functions are used as specified in this methodology overview. If no 
specification is made, then the default values are adopted. We note that the use of default values 
is acknowledged in the literature as a “reasonable and justified choice” in most cases (see e.g., 
Arcuri and Fraser 2013). To ensure reproducibility, the R codes and data are available in 
Papacharalampous and Tyralis (2018b; hereafter referred to as “Chapter’s supplement”). 

3.2.1 Simulated processes 

We simulate time series according to several stochastic models from the frequently used families 
of ARMA and ARFIMA. This modelling approach is considered appropriate for the achievement of 
our aim and has been widely applied in hydrology (see e.g., Montanari et al. 1997, 1999, 2000; 
Ballini et al. 2001; Wang et al. 2009; Valipour et al. 2013). The simulated stochastic processes are 
presented in Table 3.2, while for the related definitions the reader is referred to Section 2.1. These 
12 stochastic models correspond to different types of autocorrelation. 

Table 3.2. Simulated stochastic processes. Their definitions are given in the Section 2.1. The 
parameters μ and σ of the simulated stochastic processes are set to 0 and 1 respectively. 

S/n Stochastic process 
Autoregressive and/or moving 

average parameters 
R function 

1 AR(1) φ1 = 0.7 arima.sim 

{stats} 2 AR(1) φ1 = –0.7 
3 AR(2) φ1 = 0.7, φ2 = 0.2 
4 MA(1) θ1 = 0.7 
5 MA(1) θ1 = –0.7 
6 ARMA(1,1) φ1= 0.7, θ1 = 0.7 
7 ARMA(1,1) φ1 = –0.7, θ1 = –0.7 
8 ARFIMA(0,0.45,0)  fracdiff.sim 

{fracdiff} 9 ARFIMA(1,0.45,0) φ1 = 0.7 
10 ARFIMA(0,0.45,1) θ1 = –0.7 
11 ARFIMA(1,0.45,1) φ1 = 0.7, θ1 = –0.7 
12 ARFIMA(2,0.45,2) φ1 = 0.7, φ2 = 0.2, θ1 = –0.7, θ2 = –0.2 

3.2.2 Real-world time series 

We examine 405 mean annual river discharge time series of 100 values, sourced from GRDC 
(2017). For the exploration of these time series, we compute the sample autocorrelation function 
(ACF; see e.g., Section 2.1.2) and the sample partial autocorrelation function (PACF; see e.g., 
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Section 2.1.2). Herein, the computation is made by using the R function acf {stats}. The side-
by-side boxplots of the ACF and PACF estimates are presented in Figure 3.1. To describe the long-
range dependence in river discharge processes, we estimate the Hurst parameter (H) of the 
fractional Gaussian noise process (see Section 2.1.6) for each time series. The fitting is made by 
using the R function mleHK {HKprocess}. The latter implements the maximum likelihood 
method. A histogram of the H estimates is presented in Figure 3.1. By its examination, we observe 
that the magnitude of the long-range dependence is mostly significant in the real-world time 
series. 

(a) 

 

(b) 

 

(c) 

 
Figure 3.1. Estimates of the (a) autocorrelation function, (b) partial autocorrelation function, and 
(c) Hurst parameter (H) of the fractional Gaussian noise process for the mean annual river 
discharge time series sourced from GRDC (2017). The red dashed line in (c) denotes the median 
of the H estimates. 
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3.2.3 Forecasting methods 

We compare 11 stochastic and nine ML forecasting methods. The primary forecasting models and 
algorithms are detailed in Section 2.2 (see also the references therein), while here we place 
emphasis on their reproducibility. We note that the understanding from a theoretical point of view 
of most methods could hardly help in interpreting the algorithmically obtained outcome of the 
comparison. 

The stochastic methods are presented in Table 3.3, together with their classification into five 
general categories. In the same Table, we provide the R functions used for their implementation, 
and refer the reader to their detailed methodological descriptions and theoretical explanations in 
Section 2.2. ARIMA_f and ARIMA_s are implemented with their numbers of the autoregressive 
(AR) and moving average (MA) parameters (p and q, respectively) set to be the same to those used 
in the time series simulation process (see Section 3.2.1), while the number of differencing (d) is 
set to zero. On the contrary, auto_ARIMA_f, auto_ARIMA_s and auto_ARFIMA automatically 
estimate the order of the AR(F)IMA models, as summarized in Section 2.2.2 (see the descriptions 
for the optimum-order ARIMA and ARFIMA models therein). It is essential to also note that 
ARIMA_s and auto_ARIMA_s are simulation models, while the innovations are set to zero by the 
ARIMA_f, auto_ARIMA_f and auto_ARFIMA methods, i.e., the forecasts produced by the latter three 
methods are the expected future values from the AR(F)IMA model selected during the training 
process. For the definitions of the ARMA, ARIMA and ARFIMA models, the reader is referred to 
Sections 2.1.3, 2.1.4 and 2.1.5, respectively. 
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Table 3.3. Stochastic methods and their implementation. The forecasting methods are available in 
code form in Chapter’s supplement. All R functions are used with predefined values, unless 
specified differently. 

S/n 
Abbreviated 

name 
Corresponding model 

from Table 2.3 
General 
category 

Description R functions Implementation notes 

1 Naïve Non-seasonal naïve Simple Section 2.2.1 − − 
2 RW Random walk rwf 

{forecast} 
(drift = TRUE) 

3 ARIMA_f Fixed-order autoregressive 
integrated moving average 

(ARIMA) 

ARIMA Section 2.2.2 Arima 
{forecast}, 
forecast 
{forecast} 

Arima {forecast} 
(include.mean = TRUE, 
include.drift = FALSE, 

method = "ML") 

4 ARIMA_s  Arima 
{forecast}, 
simulate 
{stats} 

5 auto_ARIMA_f Optimum-order ARIMA auto.arima 
{forecast}, 
forecast 
{forecast} 

− 

6 auto_ARIMA_s  auto.arima 
{forecast}, 
fracdiff 

{fracdiff}, 
simulate 
{stats} 

7 auto_ARFIMA Optimum-order 
autoregressive fractionally 
integrated moving average 

(ARFIMA) 

ARFIMA arfima 
{forecast}, 
forecast 
{forecast} 

arfima {forecast} 
(estim = "mle") 

8 BATS Exponential smoothing state 
space with Box-Cox 

transformation, ARMA 
errors correction, trend 

and seasonal components 
(BATS) 

Innovations 
State Space 

Section 2.2.3 bats 
{forecast},  
forecast 
{forecast} 

− 

9 ETS_s Exponential smoothing with 
error, trend and seasonal 

components (ETS) 

ets 
{forecast}, 
simulate 
{stats} 

− 

10 SES Simple exponential  
smoothing (SES) 

Exponential 
Smoothing 

ses 
{forecast} 

− 

11 Theta Theta thetaf 
{forecast} 

− 

The ML methods are presented in a compact form in Tables 3.4 and 3.5. In the same Tables, 
we list the R functions used for their implementation and refer the reader to specific Sections of 
Chapter 2, in which their documentation is provided. The training of the ML forecasting methods 
involves lagged variable selection and hyperparameter optimization procedures, discussed in 
detail in Section 2.2.5. The considered hyperparameter values and the adopted procedures for 
selecting the time lag(s) (one at minimum) are reported in Tables 3.4 and 3.5, respectively, while 
some supporting information to the former table are provided subsequently.  
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Table 3.4. Machine learning methods. The serial numbers continue from Table 3.3. The time lag 
selection procedures adopted are defined in Table 3.5. The forecasting methods are available in 
code form in Chapter’s supplement. All R functions are used with predefined values, unless 
specified differently. 

S/n 
Abbreviated 

name 

Corresponding 
model from 

Table 2.3 
Description 

Key model 
information 

R functions 

Implementation notes 
Hyperparameter 

optimized 
(grid values) 

Time lag 
selection 

procedure 
12 NN_1 Neural 

networks 
 

Section 
2.3.2 

Single-hidden-
layer multilayer 

perceptron 

CasesSeries {rminer}, 
fit {rminer},  

lforecast {rminer}, 
nnet {nnet} 

Number of hidden 
nodes (0, 1, …, 15) 

1 
13 NN_2 2 

14 NN_3 nnetar {forecast}, 
nnet {nnet} 

 3 

15 RF_1 Random forests Section 
2.3.3 

Breiman’s random 
forests algorithm 
with 500 grown 

trees 

CasesSeries {rminer}, 
fit {rminer},  

lforecast {rminer}, 
randomForest 
{randomForest} 

Number of variables 
randomly sampled  

as candidates at each 
split (1, …, 5) 

1 
16 RF_2 2 
17 RF_3 3 

18 SVM_1 Support vector 
machines 

Section 
2.3.4 

Radial basis 
kernel “Gaussian” 

function, C = 1, 
ε = 0.1 

CasesSeries {rminer}, 
fit {rminer},  

lforecast {rminer}, 
ksvm {kernlab} 

Sigma inverse 
kernel width 

(2n, n = −8, −7, …, 6) 

1 
19 SVM_2 2 
20 SVM_3 3 

Table 3.5. Lagged variable selection procedures adopted for the machine learning methods of 
Table 3.4. The forecasting methods are available in code form in Chapter’s supplement. All R 
functions are used with predefined values, unless specified differently. 

S/n Selected time lags 
Corresponding 

model from 
Table 2.3 

R function 

1 The corresponding to an estimated value for the autocorrelation function 
(ACF; see Section 2.1.2), i.e., the time lags 1, …, 19 for a time series of 90 

values and the time lags 1, …, 24 for a time series of 290 values 

Sample ACF acf {stats} 

2 The corresponding to a statistically significant estimated value for the ACF. 
If there is no statistically significant estimated value for the ACF, the 

corresponding to the largest estimated value 
3 According to the R function nnetar {forecast}, i.e., the time lags 1, …, 

k, where k is equal to the maximum between 1 and the number of 
parameters of an autoregressive (AR) model fitted to the time series data. 

The optimal number of AR parameters is decided using the Akaike 
information criterion (AIC; see Section 2.1.10) 

AR model ar {stats} 

We here use three objective methods to select the lagged variables to be used in regression 
(see Table 3.5). The first of these methods is inspired by the R function nnetar {forecast}, 
while the remaining two are new. Given the selected lagged variables, we then perform 
hyperparameter optimization via automatic grid search (see Section 2.2.5). In time series 
forecasting using neural networks, the number of hidden nodes is an (integer-valued) 
hyperparameter to be optimized during the training process. The candidate architecture 
configurations are defined by fixed numbers of layers, input and output nodes according to the 
above-outlined information, and different possibilities for the number of hidden nodes according 
to Table 3.4. Zero number of hidden nodes and, consequently, no hidden layer is a feasible option 
within our experiments. In time series forecasting using random forests, the optimized 
hyperparameter is the number of variables randomly sampled as candidates at each split (integer-
valued hyperparameter) during the tree-growing process, while the candidate configurations to 
choose from during the training process are five. Finally, in time series forecasting using support 
vector machines, we adopt the default kernel function and the default C and ε values, and optimize 
sigma inverse kernel width (continuous hyperparameter) during the training process according 
to Table 3.4. 
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3.2.4 Forecast quality metrics 

We utilize the forecast quality metrics briefly presented in Table 3.5. These metrics do not share 
one-to-one relationships with each other, emphasizing -more or less- different aspects of the same 
information. Their classification into six main categories according to the criterion/criteria that 
is/are (co-)assessed through their use is also presented in Table 3.6. These criteria are two types 
of accuracy, the capture of the variance and the correlation. By type 1 accuracy we mean the 
closeness of the forecasted time series to the target time series, while by type 2 accuracy we mean 
the closeness of the mean of the forecasts to the mean of the target values. The definitions of the 
forecast quality metrics are listed in Section 2.8.2, while in the below paragraphs we justify their 
combined use in this Chapter. 

Table 3.6. Forecast quality metrics. Their definitions are given in Section 2.8.2. Their possible and 
optimum values are given in Table 2.6. 

S/n 
Abbreviated 

name 
Full name Criterion/criteria 

Condition 
(preferred values) 

1 MAE Mean absolute error Type 1 accuracy smaller MAE 
2 MAPE Mean absolute percentage error smaller MAPE 
3 RMSE Root mean square error smaller RMSE 
4 NSE Nash-Sutcliffe efficiency larger NSE 
5 mNSE Modified Nash-Sutcliffe efficiency larger mNSE 
6 rNSE Relative Nash-Sutcliffe efficiency larger rNSE 
7 cp Persistence index larger cp 
8 ME Mean error Type 2 accuracy smaller |ME| 
9 MPE Mean percentage error smaller |MPE| 

10 PBIAS Percent bias smaller |PBIAS| 
11 VE Volumetric efficiency smaller |VE - 1| 
12 rSD Ratio of standard deviations Capture of the variance larger min{rSD, 1/rSD} 
13 Pr Pearson’s correlation coefficient Correlation larger Pr 
14 r2 Coefficient of determination larger r2 
15 d Index of agreement Type 1 accuracy, capture of 

the variance 
larger d 

16 md Modified index of agreement larger md 
17 rd Relative index of agreement larger rd 
18 KGE Kling-Gupta efficiency Type 2 accuracy, capture of 

the variance, correlation 
larger KGE 

MAE provides an easily interpretable assessment with respect to the type 1 accuracy 
criterion, while it is also amongst the most frequently used forecast quality metrics (Hyndman 
and Koehler 2006). Similarly, the computation of MAPE and RMSE is implied by their traditional 
use in the forecasting field (Armstrong and Collopy 1992; Hyndman and Koehler 2006). Although 
RMSE is more sensitive to outliers than MAE (Fildes 1992; Hyndman and Koehler 2006), the 
former is usually preferred to the latter by forecasting scientists mainly because of its “theoretical 
relevance in statistical modelling” (Hyndman and Koehler 2006). Furthermore, MAPE is a scale-
independent metric, offering an advantage in comparing forecasting methods across different 
datasets. Nonetheless, this metric is particularly affected by target values close to zero (Fildes 
1992; Hyndman and Koehler 2006). The ME and MPE metrics are also utilized herein as they 
constitute analogues (with similar advantages and disadvantages) to MAE and MAPE respectively 
for the assessment according to the type 2 accuracy criterion. 

Some limitations of the correlation metrics, i.e., the Pr and r2 ones, mainly related to an over-
sensitivity to outliers and to the fact that their optimum value does not indicate by itself a perfect 
forecast, are well understood in hydrology and beyond (see e.g., Legates and McCabe 1999; 
Armstrong 2001). However, their use is of traditional significance (Legates and McCabe 1999; 
Krause et al. 2005) and could not harm the interpretation of the results, when these metrics are 
used attentively and collectively with others (Krause et al. 2005). Perhaps the most widely used 
metric in the field of hydrology is the introduced by Nash and Sutcliffe (1970) NSE, while another 
traditional metric is d (Legates and McCabe 1999; Krause et al. 2005; Schaefli and Gupta 2007). 
Consequently, these two metrics are also considered helpful in communicating the results of the 
present Chapter. The use of their original versions, which are known to be over-sensitive and 
under-sensitive to high and low outliers respectively (Krause et al. 2005), is herein complemented 
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by the use of their modified and relative versions, i.e., the mNSE, rNSE, md and rd metrics. These 
four metrics can provide improved forecast evaluation depending on the data (Krause et al. 2005). 
Moreover, Zambrano-Bigiarini (2017a) places cp, VE, PBIAS, rSD and KGE amongst the metrics of 
potential interest to hydrological scientists and provides references about their use in the 
hydrological field (see e.g., Kitanidis and Bras 1980; Yapo et al. 1996). VE and KGE are introduced 
by Criss and Winston (2008) and Gupta et al. (2009) to overcome some drawbacks of NSE (and 
mNSE).  

The rationale of using this large set of forecast quality metrics is also supported by 
suggestions made by experts in the field of hydrology and beyond; see Abrahart et al. (2008) and 
Armstrong (2001) respectively. According to the latter study, when feasible, multiple metrics 
should be used collectively with an emphasis on the most relevant ones. Herein, we place some 
emphasis on type 1 accuracy, since a good performance with respect to this criterion is a major 
pursuance in most of the forecasting applications. Finally, we note that amongst the utilized 
forecast quality metrics the MAPE, NSE, mNSE, rNSE, cp, MPE, PBIAS, VE, rSD, Pr, r2, d, md, rd and 
KGE ones are dimensionless, while MAE, RMSE and ME are expressed in the same units as the data 
(and the forecasts). 

3.2.5 Methodology outline 

To compare the forecasting methods of Section 3.2.3, we conduct 12 large-scale computational 
experiments based on simulations. Within each of these experiments we simulate 2 000 time 
series according to a stochastic process (see Section 3.2.1). We conduct each simulation 
experiment twice; the first time using time series of 100 values and the second time using time 
series of 300 values. The simulation experiments are hereafter referred to under their code 
names. The latter are composed by two parts separated by an underscore. The first part is “SE” 
(acronym for Simulation Experiment), while the second part is the serial number of the simulated 
process, as reported in Table 3.2, followed by the letter “a” or “b” to denote the length of the 
simulated time series, i.e., 100 or 300 values respectively. Additionally, we conduct a real-world 
experiment using the time series presented in Section 3.2.2. Within the experiments using ARMA 
simulated processes we test all the forecasting methods except for auto_ARFIMA. The latter 
method is tested within the experiments using ARFIMA simulated processes or real-world time 
series instead of the ARIMA_f, ARIMA_s, auto_ARIMA_f and auto_ARIMA_s ones. The total number 
of forecasts is 858 480, among which 6 480 are produced within the real-world experiment. 

For the application of the stochastic methods, we divide each time series into two segments, 
i.e., the training segment and the test segment, which contain n1 and n2 values respectively, as 
indicated in Figure 3.2(a). We fit the stochastic models to the former and produce forecasts for 
the latter using the recursive multi-step ahead forecasting method. For the total of the conducted 
experiments n2 equals 10, while n1 equals 90 or 290 depending on the length of the used time 
series. For the application of the ML forecasting methods, we additionally divide the segment of 
n1 values into two parts, as presented in Figure 3.2(b). The tail of the training segment is hereafter 
referred to as “validation segment” and serves hyperparameter selection, as delineated 
subsequently. We fit the ML model several times to the first [2n1/3] values of the training segment, 
each time using different hyperparameter values according to Table 3.4. The fitted configurations 
of the ML model are then utilized to produce forecasts for the validation segment. We compute 
the RMSE values of these forecasts using the actual values of the validation segment as reference 
information and decide on an optimum hyperparameter value (i.e., the corresponding to the 
smallest RMSE). Finally, we fit the ML model with the selected hyperparameter value to the whole 
training segment and produce forecasts for the test segment. The rationale of adopting this 
procedure is explained in Witten et al. (2017, pp. 171−172; see also Section 2.2.5). In summary, 
both the validation and test segments are used for testing and comparing models that have been 
previously fitted to independent (with respect to these segments) information. The former testing 
facilitates the decision on a ML method variant, so that the ML method is afterwards considered 
fully trained, while the latter enables the comparison between all the (fully trained) forecasting 
methods. 
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(a) 

 

 
(b) 

 
Figure 3.2. Time series segment division for the application of the (a) stochastic and (b) machine 
learning methods. For the latter category the validation segment serves the hyperparameter 
optimization procedure. 

We provide a multi-faced assessment and comparison of the forecasting methods by utilizing 
the forecast quality metrics briefly presented in Section 3.2.4. The values of these metrics are 
computed for each forecasting test (conducted for a specific forecasting method and a specific 
time series) on the test segment. We mainly compare the medians and interquartile ranges (iqr) 
of the metric values, as computed for each forecasting method per experiment. We compare the 
medians, as described in Table 3.6, while the smallest the iqr the better the forecasts. We also 
apply a clustering analysis on the forecasting methods based on the median values of the forecast 
quality metrics. This analysis can ease the extraction of information from the experiments. It can 
also facilitate the identification of possible repeating patterns in the clustering of the forecasting 
methods. The presence or absence of such repeating patterns could be strongly connected to 
algorithmic aspects and elements that we aim to reveal with the conducted experiments. In 
particular for the real-world experiment, we rank the forecasting methods for each individual test 
and further compute an average-case ranking for each metric. We place our emphasis on the 18 
average-case rankings and not directly in the mean or median values of the metrics, because the 
latter might be more affected by the results of specific time series. This practice was first adopted 
by Tyralis and Papacharalampous (2017). 

Finally, we measure the total computational time consumed by each forecasting method 
within the various experiments using the R function system.time {stats}. We present these 
measurements to allow a simplified and easily interpretable comparison of the implemented 
methods in terms of computational requirements. The computations are performed in our regular 
home PC, while the computational times could differ significantly for other PCs. 
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3.2.6 Benchmarking information 

Although our computational experiments are designed to produce new knowledge in the field of 
hydrological time series forecasting, there are several outcomes rather well known at the 
forefront of our methodological framework. In more detail, ARIMA_f is expected to produce 
optimal forecasts with respect to the type 1 accuracy criterion, mainly in terms of RMSE, on the 
time series resulting from the simulation of ARMA processes because of its theoretical 
background, specifically for two reasons. Firstly, it uses by design the p, d, q numbers that are used 
in the simulation procedure; therefore, in its case the forecasting procedure is in essence the 
inverse of the simulation procedure. Furthermore, it produces minimum mean square error 
forecasts by setting the innovations to zero (see Wei 2006, pp. 88−93 for the related theoretical 
proof). Moreover, auto_ARIMA_f should be slightly worse, since it exploits information about the 
type of the simulated processes, although to a lesser extent, since the values of p, d, q are not 
known a priori (but they are estimated during the training process). Similarly to the ARIMA_f and 
the auto_ARIMA_f methods, auto_ARFIMA is expected to exhibit the best performance in terms of 
RMSE when applied to the time series resulting from the simulation of ARFIMA processes. Finally, 
ARIMA_s and auto_ARIMA_s are expected to be best performing in capturing the variance 
exhibited by the simulated time series, while together with ETS_s are expected to not be amongst 
the most accurate. The six forecasting methods mentioned in the above lines play the role of 
benchmarks within our methodological approach, since they serve as a reference for the 
assessment of the remaining methods within the simulation experiments. Other benchmarks used 
herein are the simple methods. These two methods are amongst the most commonly used 
benchmarks in the forecasting field (Hyndman and Athanasopoulos 2018, Chapter 3.1). The 
above-outlined information is used in interpreting and discussing our results. 

3.3 Results 

3.3.1 Simulation experiments 

This Section aims at providing a synopsis of the results of the simulation experiments. To support 
our key findings, here we present a small representative sample of the entire information. For the 
about 13 000 figures, conducted in the context of an exploratory visualization, as well as for the 
numerical summaries of the results in table form, the reader is referred to the fully reproducible 
reports, which are available together with their codes in Chapter’s supplement. In the latter, we 
also enclose the report entitled “Selected figures for the qualitative comparison of the forecasting 
methods”, which includes Figures S.1−S.24. These figures can support the main conclusions of this 
paper in a satisfactory manner. 

In Figures 3.3−3.9, we present the side-by-side boxplots of the values of the forecast quality 
metrics computed within the SE_1a simulation experiment. These figures can provide a rough 
outline of the forecasting methods and the utility of the forecast quality metrics within this 
Chapter. By their examination, we observe that the ARIMA_f and auto_ARIMA_f benchmarks are 
the best performing with respect to type 1 accuracy, as assumed in Section 3.2.6, while BATS 
exhibits a very close to these methods performance, perhaps because it uses information from an 
ARMA model. We also note that the total of the ML methods except for NN_1 are competitive with 
BATS and with each other, while they are also better than the stochastic SES and Theta. The latter 
forecasting methods share a quite similar performance, a fact also applying to Naïve and RW. 
These simple benchmarks are better than NN_1 and the simulation models (ARIMA_s, 
auto_ARIMA_s, ETS_s), amongst which ETS_s produces forecasts with the most varying metric 
values and the worst median. Regarding the type 2 accuracy, all the methods seem to have rather 
equally good average-case performance, since the differences in the latter are small and not 
perceivable from these figures. However, the metric values computed for ETS_s are the most 
scattered with respect to each other, while the opposite applies to the metric values computed for 
ARIMA_f, auto_ARIMA_f, BATS and all the ML methods apart from NN_1. The metric values 
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computed for the remaining forecasting methods are scattered with respect to each other to an 
extent in between. 

 

 

 
Figure 3.3. Side-by-side boxplots for the comparative assessment of the forecasting methods 
regarding their performance according to the type 1 accuracy criterion within the SE_1a 
simulation experiment (part 1). The far outliers have been removed. 
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Figure 3.4. Side-by-side boxplots for the comparative assessment of the forecasting methods 
regarding their performance according to the type 1 accuracy criterion within the SE_1a 
simulation experiment (part 2). The far outliers have been removed. 
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Figure 3.5. Side-by-side boxplots for the comparative assessment of the forecasting methods 
regarding their performance according to the of type 2 accuracy criterion within the SE_1a 
simulation experiment. The far outliers have been removed. 

 
Figure 3.6. Side-by-side boxplots for the comparative assessment of the forecasting methods 
regarding their performance according to the capture of the variance criterion within the SE_1a 
simulation experiment. The far outliers have been removed. 
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Figure 3.7. Side-by-side boxplots for the comparative assessment of the forecasting methods 
regarding their performance according to the correlation criterion within the SE_1a simulation 
experiment. The Pr and r2 metrics are not defined for the forecasts produced by the Naïve and 
SES forecasting methods and, thus, the corresponding boxplots are not presented. 
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Figure 3.8. Side-by-side boxplots for the comparative co-assessment of the forecasting methods 
regarding their performance according to the type 1 accuracy and capture of the variance criteria 
within the SE_1a simulation experiment. The far outliers have been removed from the side-by-
side boxplots of the rd values. 
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Figure 3.9. Side-by-side boxplots for the comparative co-assessment of the forecasting methods 
regarding their performance according to the type 2 accuracy, capture of the variance and 
correlation criteria within the SE_1a simulation experiment. The far outliers have been removed. 
The KGE metric is not defined for the forecasts produced by the Naïve and SES forecasting 
methods and, thus, the corresponding boxplots are not presented. 

In terms of rSD, the image is mostly reversed compared to the one produced by the type 1 
accuracy metrics. Naïve, RW, SES and Theta are clearly the worst, while the ML methods are more 
segregated. The average-case performance of NN_1, ARIMA_s, auto_ARIMA_s and ETS_s is good. 
Nevertheless, the rSD values for these four forecasting methods can vary significantly from the 
one forecasting attempt to the other, more than the rSD values computed for the remaining 
forecasting methods, a fact also applying to the rest of the forecast quality metrics. Regarding the 
average-case performance with respect to correlation, ARIMA_f, auto_ARIMA_f and BATS are the 
best, followed by NN_3. With respect to both type 1 accuracy and capture of the variance, ARIMA_f, 
auto_ARIMA_f, BATS and all the ML methods except for NN_1 are clearly better than the simple 
benchmarks and competitive with each other. SES and Theta, on the other hand, exhibit a very 
close performance to the one of Naïve and RW. Finally, in terms of KGE, the best performing 
methods are the same three stochastic and eight ML ones. NN_1, ARIMA_s and auto_ARIMA_s are 
better than Theta, which is competitive with RW. Overall, we observe that for the SE_1a simulation 
experiment the forecast quality metrics (even the corresponding to the same criterion) provide 
different aspects of the same information to an extent larger or smaller (as it is expected; see 
Section 3.2.4), while these 18 different aspects may also be conflicting to each other. 

Subsequently, we state the main observations obtained from the total of the simulation 
experiments. To base these observations, in Figure 3.10 we present the heatmaps of the average-
case performance of the forecasting methods within the SE_1a, SE_1b, SE_2a and SE_2b simulation 
experiments, while in Figures 3.11−3.13 we present the heatmaps formed using the medians of 
the total of the RMSE, rSD and d values respectively. In these figures the scaling is performed in 
the row direction and the darker the colour the better the forecasts. The conducted clustering 
analysis on the forecasting methods based on their performance is also presented. Some 
observations obtained from SE_1a apply to the rest of the simulation experiments as well. These 
are the following (see e.g., Figures 3.10−3.13): (a) forecasting methods from both the stochastic 
and ML categories are amongst the best and worst performing ones, (b) the metrics can provide 
significantly different, even conflicting, image regarding the performance of the forecasting 
methods, (c) the ARIMA_f, auto_ARIMA_f and auto_ARFIMA benchmarks are the best performing 
in terms of type 1 accuracy, while ETS_s, ARIMA_s and auto_ARIMA_s exhibit a good average-case 
performance in terms of rSD, (d) the image produced by rSD is mostly reversed with respect to 
the one produced by the type 1 accuracy metrics, i.e., methods that are well performing according 
to the latter criterion are bad performing with respect to the capture of the variance of the time 
series, (e) BATS is very close to ARIMA_f, auto_ARIMA_f and auto_ARFIMA, and (f) Naïve and RW, 
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as well as SES and Theta, exhibit similar performance to each other. Nevertheless, the Pr, r2 and 
KGE metrics are not defined for the forecasts produced by Naïve and SES. Finally, by the 
examination of the side-by-side boxplots produced for each and every of the simulation 
experiments we note that (g) ARIMA_s, auto_ARIMA_s, ETS_s and NN_1 seem to share a form of 
instability, i.e., their metric values vary more than the metric values of other forecasting methods. 
The latter concerns the results obtained from all the forecast quality metrics except for Pr and r2. 
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(a) (b) 

  
(c) (d) 

  

Figure 3.10. Heatmaps for the comparative assessment of the forecasting methods within the (a) 
SE_1a, (b) SE_1b, (c) SE_2a, (d) SE_2b simulation experiments according to the median values of 
the forecast quality metrics and the conditions listed on Table 3.6. The Pr, r2 and KGE metrics are 
not defined for the forecasts produced by the Naïve and SES forecasting methods. Their missing 
values are not taken into consideration during the comparative assessment and are imprinted 
with white colour. 
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Figure 3.11. Heatmaps for the comparative assessment of the forecasting methods according to 
the median values of the RMSE metric and the condition stated on Table 3.6. 
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Figure 3.12. Heatmaps for the comparative assessment of the forecasting methods according to 
the median values of the rSD metric and the condition stated on Table 3.6. 
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Figure 3.13. Heatmaps for the comparative assessment of the forecasting methods according to 
the median values of the d metric and the condition stated on Table 3.6. 

By the examination of Figures 3.10−3.13 (or Figures S.1−S.24 of Chapter’s supplement), we 
observe that the image provided by the metrics and the resulted grouping of the forecasting 
methods can also vary from the one simulation experiment to the other. Especially Figures 
3.11−3.13 (or Figures S.7−S.24 of Chapter’s supplement) allow us to easily perceive that the 
differences in the results of the various simulation experiments, also depicted in the grouping of 
the forecasting methods, are more related with the information provided by specific metrics and 
mostly concern specific forecasting methods. In fact, the heatmaps formed for the MAE, MAPE, 
RMSE, NSE, mNSE, rNSE, cp, rSD and KGE metrics are smoother than those formed for the 
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remaining forecast quality metrics. In particular, the pictures obtained from ME, MPE, VE, r2, d 
and md are the most dispersed. On the other hand, the Naïve, RW, ARIMA_s, auto_ARIMA_s, ETS_s, 
SES, Theta and NN_1 forecasting methods are more likely to have a varying performance (which 
results in varying grouping of forecasting methods). For example, we observe that Naïve and RW 
exhibit rather the best average-case performance in terms of d (see Figure 3.13) and md (see 
Figure S.22 in Chapter’s supplement), while they have either bad, moderate or good average-case 
performance in terms of MAE, MAPE, PBIAS and VE depending on the simulation experiment (see 
Figures S.7, S.8, S.16 and S.17, respectively, in Chapter’s supplement). The same applies to SES and 
Theta in terms of d, etc. We also note that forecasting methods resulting from the implementation 
of the same algorithm can exhibit a far distant or always close performance depending on the 
algorithm, as it is also perceivable by the examination of the resulted grouping of the forecasting 
methods. For instance, NN_1 and NN_2 (or NN_3) may differ with each other to a great extent, a 
fact also applying to ARIMA_s and ARIMA_f, but not to the RF and SVM forecasting methods. 
Interestingly, we observe that the training length largely affects the performance of NN_1 in a 
systematic way, while the performance of the remaining forecasting methods is less or even 
slightly affected. The latter effect depends on the forecasting method, as well as on the simulated 
process. In detail, the NN_1 forecasting method exhibits a bad performance with respect to type 1 
accuracy (and a good one in terms of rSD; see Figure 3.12) within the simulation experiments 
using time series of 100 values, i.e., for 90-value training segments. On the contrary, its 
performance is good with respect to type 1 accuracy (and bad in terms of rSD) within the 
simulation experiments using time series of 300 values, i.e., for 290-value training segments. The 
latter observations concerning NN_1 might apply to a small extent to some of the remaining ML 
methods. 

Next, we summarize some important information about the best performing forecasting 
methods in terms of type 1 accuracy, which has been identified as the criterion of focus herein. In 
terms of MAE (see Figure S.7 in Chapter’s supplement) BATS is very close to the ARIMA_f, 
auto_ARIMA_f and auto_ARFIMA benchmarks, while SES, Theta and all the ML methods except for 
NN_1 have always a good or moderate performance. With respect to the MAPE metric (see Figure 
S.8 in Chapter’s supplement) SVM_3 and BATS are mostly close to ARIMA_f, auto_ARIMA_f and 
auto_ARFIMA, and NN_2, NN_3, RF_1, RF_2, RF_3, SVM_1, SVM_2, SVM_3, SES and Theta are well 
performing for the greatest part of the simulation experiments. The same observations apply with 
respect to RMSE (see Figure 3.11). Nevertheless, for this metric NN_2 and NN_3 are rather very 
close to the good benchmarks as well. Regarding the NSE, mNSE, rNSE and cp values (see Figures 
S.10, S.11, S.12 and S.13, respectively, in Chapter’s supplement), most of the stochastic and ML 
methods are competitive to each other and to the good benchmarks. The only ones that are not 
competitive are the simulation models, the simple benchmarks and NN_1 (the latter for 90-value 
training segments). 

Finally, in Tables 3.7 and 3.8 we present the total computational time consumed by the 
forecasting methods within the simulation experiments. In summary, the following related 
observations are important. Naïve, SES, Theta, ARIMA_s, ARIMA_f, ETS_s and RW consume 
considerably less time than the remaining methods. Moreover, NN_3 is faster than auto_ARIMA_f, 
auto_ARIMA_s and auto_ARFIMA for the 90-value training segments, and faster than BATS for 
both lengths of training segments. The computational time consumed by RF_2 and RF_3 is mostly 
comparable with the computational time consumed by auto_ARIMA_f, auto_ARIMA_s and 
auto_ARFIMA for the 90-value training segments, while it is much higher for 290-value training 
segments. This computational time is also lower (higher) than the computational time reported 
for BATS for the former (latter) category of experiments. The three SVM methods are mostly faster 
than BATS, which in turn consumes less time than RF_1 for 290-value training segments. NN_1 
and NN_2 are found to be the most computationally intensive. Overall, the ML methods collectively 
consume disproportionately more computational time than the stochastic ones. 
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Table 3.7. Total computational time (s) consumed by the forecasting methods within the 
simulation experiments (part 1). The numbers have been rounded up to the nearest integer. The 
computations have been performed in a regular home PC. 
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SE_1a 0 18 11 7 127 124 331 15 3 4 1301 827 90 343 178 141 312 215 187 
SE_2a 0 19 13 10 173 171 1003 24 5 6 1679 1099 129 447 242 184 449 328 278 
SE_3a 0 22 23 17 196 192 410 23 5 6 1797 1312 140 440 316 184 448 448 287 
SE_4a 0 21 15 12 168 163 926 22 4 5 1597 946 189 466 186 223 445 266 309 
SE_5a 0 24 17 12 186 180 885 24 5 6 1693 965 198 467 178 222 452 268 302 
SE_6a 0 23 19 15 255 251 562 23 5 6 1748 1073 195 405 225 194 393 259 265 
SE_7a 0 21 21 17 223 217 1381 21 5 6 1614 1127 213 433 249 209 397 323 297 
SE_1b 0 18 15 12 148 146 1083 51 7 8 6364 3645 391 3061 1421 808 890 643 539 
SE_2b 0 22 16 13 109 105 1222 56 8 9 6353 3726 421 3038 1466 802 892 650 531 
SE_3b 0 25 37 30 161 155 579 51 8 8 6401 5349 543 2995 2414 808 894 801 529 
SE_4b 0 24 21 16 129 124 1218 49 7 8 6282 2986 823 3148 766 1020 786 482 542 
SE_5b 0 26 20 17 114 109 1159 53 8 9 6032 2829 817 3069 811 1098 895 547 620 
SE_6b 0 26 30 24 184 180 1517 51 7 9 6352 4012 940 2952 1561 1124 882 674 625 
SE_7b 0 25 28 22 126 123 1782 49 7 8 6555 4212 954 3062 1591 1089 834 630 583 

Table 3.8. Total computational time (s) consumed by the forecasting methods within the 
simulation experiments (part 2). The numbers have been rounded up to the nearest integer. The 
computations have been performed in a regular home PC. 
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SE_8a 0 23 207 457 21 4 5 1614 1050 127 436 234 183 417 295 262 
SE_9a 0 23 277 458 25 5 5 1908 1445 172 457 312 201 461 369 284 

SE_10a 0 25 217 689 27 5 6 1681 964 127 479 176 199 432 255 265 
SE_11a 0 18 178 402 19 4 5 1488 966 119 404 216 170 381 271 240 
SE_12a 0 20 184 406 18 4 5 1496 970 117 406 218 169 383 272 227 
SE_8b 0 24 199 743 44 6 7 6426 5111 654 2882 1999 872 752 667 524 
SE_9b 0 26 242 902 56 6 9 6558 5395 525 2480 2083 665 716 625 417 

SE_10b 0 23 196 860 61 9 10 6189 2600 564 2796 696 897 722 462 464 
SE_11b 0 20 168 641 38 5 6 5602 4142 533 2480 1839 773 683 593 453 
SE_12b 0 23 175 653 38 5 6 5614 4107 543 2483 1820 780 683 590 449 

3.3.2 Real-world experiment 

In full correspondence to the results of the simulation experiments, the results of the real-word 
experiment are presented in both quantitative and qualitative forms. In Figures 3.14−3.17, we 
present the side-by-side boxplots of the MAPE, NSE, cp, MPE, d and KGE values. Additionally, in 
Table 3.9 we present the median values of the dimensionless metrics, while in Figure 3.18 the 
average-case rankings of the forecasting methods. Here as well, we observe small differences 
between most of the methods, especially with respect to specific forecast quality metrics (e.g., 
MAPE, cp, MPE, d). For example, the median values of MAPE computed for auto_ARFIMA, BATS, 
SES, Theta, NN_3, RF_1, SVM_1, SVM_2 and SVM_3 are very close to each other. The same applies 
to the median values of NSE computed for the same methods, although the differences in the 
respective side-by-side boxplots seem to be larger in the latter case than in the former. Because 
of the small differences in the performance of the forecasting methods, the median metric values 
of Table 3.9 (e.g., the median MAPE values) may result to a different ranking of the forecasting 
methods than the average-case ranking presented in Figure 3.18. 
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Figure 3.14. Side-by-side boxplots for the comparative assessment of the forecasting methods 
regarding their performance according to the type 1 accuracy criterion within the real-word 
experiment. The far outliers have been removed. 
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Figure 3.15. Side-by-side boxplots for the comparative assessment of the forecasting methods 
regarding their performance according to the type 2 accuracy criterion within the real-word 
experiment. The far outliers have been removed. 

 
Figure 3.16. Side-by-side boxplots for the comparative co-assessment of the forecasting methods 
regarding their performance according to the type 1 accuracy and capture of the variance criteria 
within the real-word experiment. 
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Figure 3.17. Side-by-side boxplots for the comparative co-assessment of the forecasting methods 
regarding their performance according to the type 2 accuracy, capture of the variance and 
correlation criteria within the real-word experiment. The far outliers have been removed. The 
KGE metric is not defined for the forecasts produced by the Naïve and SES forecasting methods 
and, thus, the corresponding boxplots are not presented. 

Table 3.9. Median values of the dimensionless metrics computed within the real-word experiment. 
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MAPE 29.21 29.83 22.04 22.04 33.81 22.02 22.86 32.30 24.05 22.95 23.06 25.19 24.81 22.03 22.24 22.29 
NSE −0.72 −0.84 −0.20 −0.19 −1.57 −0.17 −0.18 −1.26 −0.13 −0.22 −0.25 −0.47 −0.46 −0.24 −0.26 −0.23 

mNSE −0.27 −0.31 −0.07 −0.07 −0.61 −0.06 −0.07 −0.51 −0.14 −0.09 −0.11 −0.20 −0.19 −0.09 -0.10 −0.10 
rNSE −0.81 −0.90 −0.35 −0.39 −2.24 −0.35 −0.45 −1.83 −0.59 −0.45 −0.46 −0.86 −0.78 −0.36 -0.40 −0.42 

cp 0.09 0.03 0.39 0.38 -0.37 0.39 0.38 −0.16 0.30 0.36 0.37 0.27 0.25 0.38 0.35 0.34 
MPE 2.83 1.47 2.99 2.20 3.29 3.32 5.07 2.94 4.61 3.36 4.31 4.62 3.96 3.00 1.17 1.49 

PBIAS −6.34 −6.34 −3.14 −4.25 −2.72 −2.90 −1.56 −3.05 −2.09 −2.41 −1.19 −1.80 −2.59 −4.50 −5.84 −4.60 
VE 0.71 0.71 0.78 0.78 0.67 0.78 0.78 0.69 0.76 0.78 0.78 0.75 0.76 0.78 0.78 0.78 
rSD 0.00 0.03 0.05 0.00 1.02 0.00 0.01 0.94 0.21 0.05 0.24 0.42 0.40 0.00 0.12 0.07 
Pr − −0.05 0.06 0.04 0.00 − −0.04 0.08 0.08 0.02 0.08 0.08 0.04 0.08 0.07 0.05 
r2 − 0.07 0.06 0.05 0.06 − 0.07 0.05 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 
d 0.41 0.41 0.39 0.36 0.38 0.36 0.36 0.40 0.39 0.37 0.39 0.39 0.39 0.39 0.38 0.38 

md 0.31 0.31 0.28 0.28 0.28 0.27 0.18 0.30 0.29 0.28 0.28 0.29 0.30 0.29 0.30 0.29 
rd 0.29 0.30 0.25 0.26 0.30 0.22 0.18 0.33 0.28 0.22 0.30 0.30 0.31 0.29 0.34 0.30 

KGE − −0.47 −0.35 -0.34 -0.17 − −0.46 −0.12 −0.24 −0.35 −0.22 −0.15 −0.19 −0.31 −0.27 −0.32 
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Figure 3.18. Heatmap for the comparative assessment of the forecasting methods within the real-
world experiment according to their average-case rankings. The latter are based on the values of 
the forecast quality metrics and the conditions listed on Table 3.6. The Naïve and SES forecasting 
methods are ranked 15th and 16th according to rSD, Pr, r2 and KGE. Their rSD values are 0, while 
the Pr, r2 and KGE metrics are not defined for their forecasts. 

Furthermore, while the average-case rankings with respect to accuracy mostly favour 
stochastic methods (SES, Theta, auto_ARFIMA and BATS), SVM_1 is also ranked amongst the best 
performing methods. In more detail, SES is ranked first according to MAE, RMSE, NSE, mNSE, cp, 
ME, MPE, PBIAS and VE, but it is worse than SVM_1, and SVM_1 and SVM_2 according to MAPE and 
rNSE respectively. According to the latter metrics, the best performing method is BATS. This 
method has a rather moderate overall performance in terms of accuracy. The less accurate 
methods, on the other hand, are Naïve, RW, ETS_s and NN_1, as it is expected from the simulation 
experiments. With respect to the remaining criteria, SES is clearly the worst performing method, 
while Theta, Naïve, BATS, SVM_1, NN_3 and auto_ARFIMA are also ranked behind the remaining 
ML methods, amongst which NN_1 is mostly ranked first. Finally, in terms of computational 
requirements within this real-world experiment the methods could be ranked from best (1st) to 
worst (16th) as follows: Naïve, SES, Theta, RW, ETS_s, NN_3, auto_ARFIMA, RF_3, RF_2, SVM_3, 
SVM_2, SVM_1, RF_1, NN_2, BATS and NN_1 (see also Table 3.10). 
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Table 3.10. Total computational time (s) consumed by the forecasting methods within the real-
world experiment. The numbers have been rounded up to the nearest integer. The computations 
have been performed in a regular home PC. 
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3.4 Discussion 

3.4.1 Contribution in hydrology and beyond 

The present Chapter contributes by developing a detailed framework for assessing forecasting 
techniques in hydrology. Furthermore, its findings can provide new insights into the nature of 
short hydrological time series forecasting at large time scales, while they concern all natural 
processes that could be modelled by linear stationary processes. A first view of the results 
suggests that the differences in the forecasting performance of the methods are mostly small 
(insignificant for hydrometeorological applications; see also the experiments of Chapter 5 herein), 
while the stochastic and ML methods can share a quite similar forecasting performance when 
implemented to hydrological time series of small length and small temporal resolution (e.g., 
annual or monthly). In fact, methods from both these categories are found to perform better or 
worse mainly depending on the forecast quality metric, but on the experiment as well. Regarding 
the type 1 accuracy, in the simulation experiments BATS is always close to the ARIMA_f, 
auto_ARIMA_f and auto_ARFIMA benchmarks, probably because it uses information from an 
ARMA model, while most of the ML methods (e.g., NN_3 and SVM_3) are amongst the best 
performing and often better than SES and Theta. Nevertheless, in the real-world experiment SES 
is mostly ranked first, followed by auto_ARFIMA, BATS, SVM_1 and Theta, while NN_3, RF_1, 
SVM_2, and SVM_3 are also close to the latter methods. A possible interpretation of this outcome 
is that for a different sample of river discharge time series, the average-case rankings would differ 
as well, and that there might be no particular reason to choose some methods over others for this 
specific process. Given the claims that in linear situations (e.g., the simulation experiments of this 
Chapter) the ML methods are more likely to be inferior to the stochastic ones, while in non-linear 
situations, as it is usually asserted to apply to river discharge processes, the ML methods are more 
likely to outperform, the algorithmically obtained results of the present Chapter are even more 
interesting. Noteworthy is also the fact that our results differ from the results of Makridakis et al. 
(2018), which favour the stochastic methods, probably due to the different experimental setting 
adopted therein (determined by the required degree of forecast accuracy, the lengths of the 
examined time series, the selected algorithms for performing multi-step ahead forecasting, the 
forecast quality metrics used for evaluating the methods and the optimization procedures of the 
ML methods, among others). 

In this view, we would like to emphasize that the ML algorithms are accurate enough. Yet, 
they have the worth-mentioning particularity that their forecasting performance might be largely 
affected by the number of the utilized lagged variables. This number is directly related to the 
length of the segment used for model fitting (Tyralis and Papacharalampous 2017). Specifically, a 
significant decrease of this length may deteriorate the forecasting performance of a ML algorithm, 
as largely perceivable through the examination of the results obtained for the NN methods of the 
present Chapter. In detail, for the simulation experiments using 90-value training segments, NN_1 
exhibits a bad performance in terms of type 1 accuracy, a fact not applying to NN_2 and NN_3 that 
use less and very few lagged variables respectively. On the contrary, for the simulation 
experiments using 290-value training segments, NN_1 is amongst the most accurate methods. The 
same number of lagged variables is used by RF_1 and SVM_1. Nevertheless, the performance of 
the herein implemented RF and SVM algorithms seems to be less affected by the number of lagged 
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variables than the NN algorithm. These large-scale results on time lag (or lagged variable) 
selection could be encountered as contributed information to the subject. 

Another particularity of the ML methods is related to their computational requirements, 
which seem to considerably increase with increasing length of the training segment. In fact, for 
our regular home PC the computational time consumed by the NN and SVM methods is found to 
be approximately four to eight times higher for 290-value training segments than for 90-value 
training segments. The respective difference in computational time is smaller for the SVM 
methods. The number of lagged variables seems to also affect the computational requirements. 
Specifically, the computational time increases when moving from the third to the first time lag 
selection procedures of Table 3.5, i.e., from less to more lagged variables, indicating increasing 
computational requirements (although the length of the lagged time series decreases), with this 
increase to be higher for the NN methods. Overall, the computational time collectively consumed 
by the herein implemented ML methods is considerably higher than the respective time measured 
for the stochastic methods. Nonetheless, it is also shown that there are computational intensive 
stochastic methods (mainly BATS), as well as ML methods with lower or comparable 
computational requirements with stochastic methods (e.g., NN_3, RF_3). 

While there are forecasting methods regularly better or worse than others with respect to 
specific criteria, this does not apply to all the forecasting methods neither to all the criteria. For 
example, we observe that Theta can exhibit good, moderate or bad average-case performance in 
terms of specific forecast quality metrics depending on the simulation experiment. Furthermore, 
sophisticated forecasting methods (such us the above mentioned ones) do not necessarily (but 
mostly) provide better forecasts than the simple Naïve and RW, as also shown in previous studies 
(e.g., Makridakis and Hibon 2000; Cheng et al. 2017). These two methods perform almost 
identically in the experiments of the present Chapter, but not for longer forecast horizons (see 
Papacharalampous et al. 2018a; Chapter 5 herein). Another pair of similarly performing 
forecasting methods is SES and Theta. This latter outcome is consistent with Hyndman and Billah 
(2003). 

In general, we cannot decide on a universally best or worst forecasting method (stochastic or 
ML), neither we can rank the forecasting methods based on the results of the simulation 
experiments. Even the relative metrics, i.e., the corresponding to the same criterion (see Table 
3.6), provide measurements which lead us to different aspects of the same information to an 
extent larger or smaller depending on the pair of forecast quality metrics considered. Some of 
these 18 different aspects are also conflicting to each other. Any ranking of the forecasting 
methods would require the a priori selection of an experiment and a criterion of interest, as well 
as the application of a simplification procedure (e.g., use of the median values of the selected 
metric) and, thus, would not be general. However, the grouping of the forecasting methods is 
possible, though only to some extent. This grouping could be based on the similar or contrasting 
performance of the forecasting methods with respect to the various metrics. For example, the 
simulation models (ARIMA_s, auto_ARIMA_s and ETS_s) exhibit the best average-case 
performance with respect to the capture of the variance, while they are clearly the worst 
performing in terms of type 1 accuracy. This happens, since these two criteria are contradictory. 
For instance, the optimum forecast for an ARFIMA model is obtained when the innovations are 
set to zero. 

Our contribution in the field of hydrology also includes the implementation of several 
forecasting models barely used in hydrometeorological concepts, but commonly used in the 
forecasting field (RW, BATS, ETS, SES and Theta) or for regression purposes (RF). This innovation 
holds, especially if we could exclude from the hydrological literature Chapters 2, 5 and 6 of this 
thesis, as well as their large-scale companion works by Tyralis and Papacharalampous (2017), 
and Papacharalampous et al. (2018c), while its practical value is indisputable. One could claim 
that there may be an undiscovered forecasting method (stochastic or ML), which will be better 
than the existing ones. As regards the “myth of the best method” the reader is referred to Hong and 
Fan (2016), who mention that the original techniques are countable and have been exhausted, 
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while the hybrid techniques, i.e., combinations of original techniques, cannot further improve the 
forecasting performance. 

Another important contribution of the present work is related to the so-called “no free lunch 
theorem” by Wolpert (1996). According to this theorem, in the space of all possible problem 
instances, there is not a model that will always perform better than the other models in the 
absence of significant information for the problem at hand. The empirical work presented in this 
Chapter shows that even in the finite space of simple (simulated) and real-world time series 
examined herein there is not an optimal forecasting solution. Finding the best algorithm mostly 
depends on our knowledge of the system. For example, using ARFIMA models for forecasting the 
ARFIMA simulated time series is obviously the best choice, due to the prior known information 
about the system. The other methods are equivalent in performance since they cannot incorporate 
this knowledge. In the specific class of hydrological process forecasting finding information about 
the examined system could be possible, for example, with the application of principles of physics, 
such as the maximum entropy principle, incorporation of information from deterministic models 
(see e.g., Tyralis and Koutsoyiannis 2017), understanding the processes from a chaotic 
perspective (see e.g., Sivakumar 2004) and other approaches. Obviously, the knowledge of the 
system is not simply equivalent to the knowledge of its statistical properties (e.g., the mean, 
variance, ACF), but should be deeper. Therefore, the frequently met in the hydrological literature 
blind use of forecasting methods is not suggested. 

Additionally, it seems that major advancements in the time series forecasting performance of 
all methods can be achieved by incorporating appropriate exogenous variables in the model, while 
the potential for improving their performance in univariate time series forecasting seems limited. 
The latter in our opinion is also due to the nature of the problem, which is simple. Therefore, 
methods that are more complicated will not necessarily yield better results. A relevant example 
is, for instance, the difference in the games of tic-tac-toe (see Figure 3.19) and Go (see Figure 3.20). 
The former game is simple and can be solved by simple algorithms; therefore, the choice of a 
complex method is not necessary. On the other hand, the best performance on the more complex 
game of Go was achieved by the use of complicated machine learning algorithms (see Silver et al. 
2016). 

  

Figure 3.19. The “tic-tac-toe” game. Source: https://en.wikipedia.org/wiki/Tic-tac-toe. 
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Figure 3.20. The “Go” game. Source: https://www.latimes.com/entertainment/movies/la-et-mn-
capsule-alpha-go-review-20171026-story.html. 

Regarding the extent to which the conclusions could be generalizable for the forecasting of 
short hydrological time series at large time scales, we note that the stationarity assumption and 
the reasoning of its appropriateness for the modelling of geophysical properties, documented in 
Koutsoyiannis and Montanari (2015), is consistent with the no free lunch theorem. In particular, 
if we cannot explain the behaviour of a geophysical process based on a deterministic mechanism, 
then the most appropriate models are stationary. Even in cases of deterministic systems, 
stochastic approaches are appropriate (Koutsoyiannis 2010). This is a frequently met case in the 
modelling of geophysical processes (i.e., there is not an adequate explanation for the behaviour of 
the geophysical process), proving that our conclusions could be generalizable. 

3.4.2 On the methodological approach 

The above section highlights the efficiency of our methodological approach in producing large-
scale and representative for the field of hydrology results. Moreover, the real-world experiment 
particularly accounts for the case of river discharge forecasting. Someone who examines both the 
results of the simulation experiments and the real-world experiment has a more complete picture 
of the underlying phenomena than whom considering only the results of the simulation 
experiments. On the other hand, the use of simulated processes combined with benchmarking has 
proved pivotal in achieving our aim under the linearity and stationarity assumptions. 
Additionally, the use of an adequate number of forecasting methods and forecast quality metrics 
in the present Chapter is also of crucial importance. Using fewer forecasting methods and fewer 
forecast quality metrics would have led to a very different overall picture, particularly if those 
fewer metrics corresponded to fewer criteria. Besides, the comparison is rather the only available 
research method for any evaluation and, consequently, the larger its scale the more generalized 
the derived results. For this specific reason, the novel (mainly for hydrology) methodological 
approach of the present Chapter is considered appropriate for the assessment of forecasting 
methods in hydrology. Furthermore, the qualitative form of the results facilitates their handy 
examination and, thus, eases the delivery of the large-scale findings. In fact, our methodology 
enables the assessment of the failure risk or, alternatively worded, the available opportunities for 
success that accompany the use of a specific forecasting method to a significant extent, while it 
also leads to the recognition of several advantages/disadvantages characterizing the latter. This 
knowledge is fundamental to the forecasters and the users of the forecasts, since a specific 
forecasting method can be both useful and useless, depending on the forecasting task. 

3.5 Conclusions 

We conduct an extensive comparison between several stochastic and machine learning methods 
for the multi-step ahead forecasting of hydrological processes by performing large-scale 
computational experiments based on simulations under the linearity and stationarity 
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assumptions. The implemented stochastic methods include simple models, models from the 
frequently used families of autoregressive moving average and autoregressive fractionally 
integrated moving average, as well as innovations state space and exponential smoothing models, 
while the machine learning ones are neural networks, random forests and support vector 
machines. The aim is to provide large-scale results, while the respective comparisons in the 
literature are usually based on case studies. We also run a real-world experiment on the largest 
river discharge dataset ever used for forecasting purposes within a framework that is purely 
statistical. Despite this specific focus, the results concern all natural processes in large time scales 
(e.g., annual or monthly) that could be modelled by stationary processes. The findings suggest that 
stochastic and machine learning methods do not differ dramatically. In fact, methods from both 
these categories are found to be equally useful in univariate short time series forecasting at large 
time scales. This is particularly important, because it reveals that the forecast quality is subjected 
to limitations. The latter are imposed by the nature of the examined problem and manifest 
themselves in the computed forecast quality metric values. We have empirically proved that these 
values do not favour any specific forecasting method, stochastic or machine learning, in a long run. 
In fact, the results are consistent with the no free lunch theorem, albeit the theorem refers to an 
infinite space of problem instances, while here we examine a finite space of problems. The 
empirical investigation shows that in the given finite space, formed by simulated and annual river 
discharge time series, the no free lunch theorem is still satisfied.
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4. One-step ahead forecasting of geophysical processes within a purely 
statistical framework 

The simplest way to forecast geophysical processes is to implement stochastic or machine 
learning models within a purely statistical framework. These models are in general fast-
implemented, in contrast to the computationally intensive global circulation models, which 
constitute the most frequently used alternative for precipitation and temperature forecasting. For 
their simplicity and easy applicability, the former have been proposed as benchmarks for the 
latter by forecasting scientists. In this Chapter, we assess the one-step ahead forecasting 
performance of 20 univariate time series forecasting methods, when applied to a large number of 
geophysical and simulated time series of 91 values. We use two real-world annual datasets, a 
dataset composed by 112 time series of precipitation and another composed by 185 time series 
of temperature, as well as their respective standardized datasets, to conduct several real-world 
experiments. We further conduct large-scale experiments using 12 simulated datasets. These 
datasets contain 24 000 time series in total, which are simulated using stochastic models from the 
families of AutoRegressive Moving Average and AutoRegressive Fractionally Integrated Moving 
Average. We use the first 50, 60, 70, 80 and 90 data points for model-fitting and model-validation 
and make predictions corresponding to the 51st, 61st, 71st, 81st and 91st respectively. The total 
number of forecasts produced herein is 2 177 520, among which 47 520 are obtained using the 
real-world datasets. The assessment is based on eight error metrics and accuracy statistics. The 
simulation experiments reveal the most and least accurate methods for long-term forecasting 
applications, also suggesting that the simple methods may be competitive in specific cases. 
Regarding the results of the real-world experiments using the original (standardized) time series, 
the minimum and maximum medians of the absolute errors are found to be 68 mm (0.55) and 
189 mm (1.42) respectively for precipitation, and 0.23 °C (0.33) and 1.10 °C (1.46) respectively 
for temperature. Since there is an absence of relevant information in the literature, the numerical 
results obtained using the standardized real-world datasets could be used as rough benchmarks 
for the one-step ahead predictability of annual precipitation and temperature. 

4.1 Introduction 

Forecasting geophysical processes in various time scales and horizons is useful in technological 
applications (e.g., Giunta et al. 2015), but a difficult task as well. Precipitation and temperature 
forecasting is mostly based on deterministic models as the Global Circulation Models (GCMs), 
which simulate the Earth's atmosphere using numerical equations; therefore, deviating from 
traditional time series forecasting. This particular deviation has been questioned by forecasting 
scientists (Green and Armstrong 2007; Green et al. 2009; Fildes and Kourentzes 2011; see also 
the comments in Keenlyside 2011; McSharry 2011). Traditional time series forecasting can be 
performed using several classes of models, as reviewed in De Gooijer and Hyndman (2006), while 
the two major classes are stochastic and machine learning. These models are in general fast-
implemented in contrast to their computationally intensive alternative in precipitation and 
temperature forecasting, i.e., the GCMs. For their simplicity and easy applicability, the former have 
been proposed as benchmarks for the latter by Green et al. (2009). 

Recognizing the necessity of introducing traditional forecasting methods in temperature and 
precipitation forecasting, Armstrong and Fildes (2006) have recommended a relevant issue in one 
of the Journals specialized in forecasting. Since then and despite the fact that considerable parts 
of books in hydrology are devoted to such methods (Sivakumar 2017, pp. 63−145; Remesan and 
Mathew 2015, pp. 71−110), there has not been a systematic approach to the subject. However, 
studies adopting statistical forecasting approaches in geoscience are sporadically published in a 
variety of Journals. Within a statistical framework, Tyralis and Koutsoyiannis (2014, 2017) use 
Bayesian techniques for probabilistic climate forecasts, under the established assumption of long-
range dependence of the observed time-series. In the latter study, information from GCMs is used 
to improve the performance of the time series forecasting methods. Moreover, Table 4.1 presents 
some examples of studies using univariate time series forecasting approaches that do not utilize 
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exogenous predictor variables to forecast precipitation or temperature variables, and streamflow 
or river discharge variables. The former can be considered as climatic or meteorological variables 
depending on the time scale of interest, while the latter can be considered as the results of 
precipitation (and other) variables and are more frequently modelled by describing this 
dependence using either deterministic or statistical methods. Such statistical approaches to 
modelling hydrological variables can be found in Chen et al. (2015), Gholami et al. (2015), and 
Taormina and Chau (2015). 

Table 4.1. Methodological information on case studies focusing on hydrometeorological time 
series forecasting within a purely statistical framework (see also Table 3.1). 

S/n Study 
Geophysical 

process 
Number of 
time series 

Forecast 
time scale 

Forecast horizon 
(steps ahead) 

Univariate time series 
forecasting methods 

1 Hong (2008) Precipitation 9 Hourly 1 o Support vector machines 
o Hybrid model exploiting 

recurrent neural networks  
and support vector machines 

2 Chau and Wu (2010) 2 Daily 1, 2, 3 
 

o Neural networks 
o Hybrid model exploited  

neural networks and support 
vector machines 

3 Htike and Khalifa (2010) 1 Monthly, 
biannually, 
quarterly, 

yearly 

1 o Neural networks 

4 Wu et al. (2010) 4 Monthly, 
daily 

1, 2, 3 o Linear regression 
o k-nearest neighbours 
o Neural networks 
o Hybrid model exploititng 

neural networks 
5 Narayanan et al. (2013) 6 Yearly 21 × 3 

(months) 
o AutoRegressive Integrated 

Moving Average (ARIMA) 
6 Wang et al. (2013) 1 Monthly 12 o Seasonal AutoRegressive 

Integrated Moving Average 
(SARIMA) 

7 Babu and Reddy (2012) Temperature 1 Yearly 10 o ARIMA 
o Wavelet based ARIMA 

8 Chawsheen and Broom 
(2017) 

1 Monthly 121 o SARIMA 

9 Lambrakis et al. (2000) Streamflow 
or river 

discharge 

1 Daily 1 o Farmer's model 
o Neural networks 

10 Ballini et al. (2001) 1 Monthly 1, 3, 6, 12 o AutoRegressive Moving 
Average (ARMA) 

o Neural networks 
o Neurofuzzy networks 

11 Yu et al. (2004) 2 Daily 1 o Support vector machine 
coupled with an evolutionary 
algorithm 

o Standard chaos technique 
o Naïve 
o Inverse approach 
o ARIMA 

12 Komorník et al. (2006) 7 Monthly 1, 3, 6, 12 o Threshold AutoRegression 
(AR) with aggregation 
operators 

o Logistic smooth transition AR 
o Self-exciting threshold AR 
o Naïve 

13 Yu and Liong (2007) 2 Daily 1 o Support vector machine 
coupled with decomposition 

o Standard chaos technique 
o Naïve 
o Inverse approach 
o ARIMA 

14 Koutsoyiannis et al. 
(2008) 

1 × 12 
(months) 

Yearly 1 o Stochastic 
o Analogue method  

(k-nearest neighbours) 
o Neural networks 

15 Wang et al. (2015) 3 Yearly 12 o SARIMA 
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In this Chapter, we examine the fundamental problem of one-step ahead forecasting, also 
complementing the results of the four above-mentioned studies. In more detail, we expand the 
work presented in Chapter 3 of this thesis by exploring the one-step ahead forecasting properties 
of its methods, when applied to geophysical time series. Emphasis is put on the examination of 
two real-world datasets, a precipitation dataset and a temperature dataset, together containing 
297 annual time series of 91 values. These datasets are examined in both their original and 
standardized forms. We further perform experiments using 24 000 simulated time series of 91 
values. These experiments complement the real-world ones by allowing the examination of a large 
variety of process behaviours, while they are also controlled to some extent, facilitating 
generalizations and increasing the understanding on the examined problem. The number of 
forecasts produced using these real-world and simulated datasets are 47 520 and 2 130 000 
respectively, i.e., the largest among its companion studies. Our aim is twofold; to provide 
generalized results regarding one-step ahead forecasting within a purely statistical framework 
(justified, for example, in Hyndman and Athanasopoulos 2018) in geoscience and hopefully to 
establish the results obtained by the examination of the standardized real-world datasets as rough 
benchmarks for the one-step ahead predictability of annual precipitation and temperature. The 
establishment of forecasting benchmarks is meaningful, especially for the one-step ahead 
attempts, as the latter constitute the most simple ones and their accuracy can be quantified using 
a single metric, i.e., the absolute error. 

4.2 Data and methods 

In this Section, we present the data and methods of the Chapter. Basic information on the methods’ 
implementation is also provided, while the total of the exploited R packages is independently 
listed in Section 2.9.4. All R functions are used with their predefined values, unless specified 
differently. To ensure reproducibility, the R codes and data are available in Chapter’s supplement. 
Hereafter, to specify an implemented R function, we state its name accompanied by the name of 
the R package. The latter name is given between curly brackets ({}). To imply that we implement 
a built-in-R function, we accompany its name with “{stats}”. 

We use the datasets briefly described in Tables 4.2 and 4.3. The PrecDat and TempDat 
datasets are annual and originate from two larger monthly datasets, available in Peterson and 
Vose (1997), and Lawrimore et al. (2011), respectively. The sample period is from 1910 to 2000, 
so that the following two conditions are simultaneously met: 1) there are no missing values; and 
2) the number of stations around the globe is the largest possible. We note that for sample periods 
extending after 2000 the number of retained stations would decrease rapidly. Figure 4.1 presents 
the maps of the retained stations. The precipitation ones create a sufficiently dense network in 
the United States of America and in Scandinavia, while the retained temperature stations in the 
United States of America, in Japan and in a part of South Korea. As it is apparent from Table 4.2, 
the StandPrecDat and StandTempDat datasets simply contain the standardized time series of 
PrecDat and TempDat respectively. The standardization is made by using the mean and standard 
deviation maximum likelihood estimates of the fractional Gaussian noise process (see Section 
2.1.6), obtained through the R function mleHK {HKprocess}. This latter function implements 
the maximum likelihood method. The standard deviation estimates would be considerably 
different if we modelled the time series using independent normal variables (Tyralis and 
Koutsoyiannis 2011). 

Table 4.2. Summary of the real-world datasets. The exploited stations are presented in Figure 4.1. 
S/n Abbreviated 

name 
Process Type Primal dataset Number of 

time series 
1 PrecDat Precipitation Original Peterson and Vose (1997) 112 
2 TempDat Temperature Lawrimore et al. (2011) 185 
3 StandPrecDat Precipitation Standardized PrecDat 112 
4 StandTempDat Temperature  TempDat 185 
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Table 4.3. Summary of the simulated datasets. The definitions of the stochastic processes are given 
in the Section 2.1. In the simulation, the parameters μ and σ of the simulated stochastic processes 
are set to 0 and 1 respectively. 

S/n 
Abbreviated 
name 

Stochastic process 
Autoregressive 
parameters 

Moving average 
parameters 

Number of 
time series 

5 SimDat_1 AR(1) φ1 = 0.7  2 000 
6 SimDat_2 AR(1) φ1 = −0.7  
7 SimDat_3 AR(2) φ1 = 0.7, φ2 = 0.2  
8 SimDat_4 MA(1)  θ1 = 0.7 
9 SimDat_5 MA(1)  θ1 = −0.7 

10 SimDat_6 ARMA(1,1) φ1 = 0.7 θ1 = 0.7 
11 SimDat_7 ARMA(1,1) φ1 = −0.7 θ1 = −0.7 

12 SimDat_8 ARFIMA(0,0.30,0)   
13 SimDat_9 ARFIMA(1,0.30,0) φ1 = 0.7  
14 SimDat_10 ARFIMA(0,0.30,1)  θ1 = −0.7 
15 SimDat_11 ARFIMA(1,0.30,1) φ1 = 0.7,  θ1 = −0.7 
16 SimDat_12 ARFIMA(2,0.30,2) φ1 = 0.7, φ2 = 0.2 θ1 = −0.7, θ2 = −0.2 

Figure 4.1 also presents the histograms of the Hurst parameter (H) maximum likelihood 
estimates (Tyralis and Koutsoyiannis 2011) of the formed real-world time series. These estimates 
are of importance within this Chapter for two reasons: 1) we implement a univariate time series 
forecasting method (see later on in this section) that takes advantage of this information under 
the established assumption of long-range dependence, 2) we standardize the original real-world 
time series using the mean and standard deviation maximum likelihood estimates (estimated 
simultaneously with the Hurst parameter) of the fractional Gaussian noise process (see above). 
The magnitude of the long-range dependence is mostly significant in the real-world time series. 

For consistency purposes with respect to the real-world datasets (but also to approximate 
the typical length of annual geophysical time series), we simulate time series of 91 values (see 
Table 4.3). The generating models originate from the families of autoregressive moving average 
(ARMA) and autoregressive fractionally integrated moving average (ARFIMA). The definitions of 
these processes are given in Section 2.1.3 and 2.1.5, respectively (see also Wei 2006, pp. 6−65, 
489−494). We simulate the ARMA processes by using the R function arima.sim {stats} and 
the ARFIMA processes by using the R function fracdiff.sim {fracdiff}. The simulations 
are performed with mean 0 and standard deviation of 1. 
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PrecDat 

 

TempDat 

 

PrecDat TempDat 

  
Figure 4.1. Maps of the exploited stations, and histograms of the estimated Hurst parameter (H) 
of the fractional Gaussian noise process for the original precipitation and temperature data. The 
data are sourced from Peterson and Vose (1997), and Lawrimore et al. (2011), respectively. 
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We implement the forecasting methods of Chapter 3. For consistency in the presentation, 
these methods are summarized in Table 4.4. In the same Table, the reader is referred to specific 
Sections of Chapter 2, in which the forecasting models and algorithms are documented. Since the 
theoretical examination is not possible for all the implemented methods, understanding most of 
them from a theoretical point of view could hardly help in interpreting the algorithmically 
obtained outcome of the Chapter. We should also note that ARIMA_s and auto_ARIMA_s are 
simulation methods. The models underlying these methods are the same that underly the ARIMA_f 
and auto_ARIMA_f ones, respectively; nonetheless, the innovations are set to zero in these latter 
ones for achieving accurate forecasts (for the related theoretical proof, see Wei 2006, pp. 88−93). 
This also applies to the auto_ARFIMA method, which can be used for modelling processes that are 
assumed to exhibit long-range dependence (see Section 2.1.5). 

Table 4.4. Forecasting methods. Benchmarking information is provided in Section 3.2.6. Software 
implementation information is provided in Tables 3.3−3.5. The forecasting methods are available 
in code form in Chapter’s supplement. 

S/n 
Abbreviated 
name 

Corresponding model from Table 2.3 
General 
category 

Description 

1 Naïve Non-seasonal naïve Simple Section 2.2.1 
2 RW Random walk (RW) 
3 ARIMA_f Fixed-order autoregressive integrated  

moving average (ARIMA) 
ARIMA Section 2.2.2 

4 ARIMA_s 
5 auto_ARIMA_f Optimum-order ARIMA 
6 auto_ARIMA_s  
7 auto_ARFIMA Optimum-order autoregressive fractionally 

integrated moving average (ARFIMA) 
ARFIMA 

8 BATS Exponential smoothing state space with Box-
Cox transformation, ARMA errors correction, 
trend and seasonal components (BATS) 

Innovations 
State Space 

Section 2.2.3 

9 ETS_s Exponential smoothing with error, trend and 
seasonal components (ETS) 

10 SES Simple exponential smoothing (SES) Exponential 
Smoothing 11 Theta Theta 

12 NN_1 Neural networks (NN) Machine 
learning 

regression 

Section 2.3.2 
13 NN_2 
14 NN_3 
15 RF_1 Random forests (RF) Section 2.3.3 
16 RF_2 
17 RF_3 
18 SVM_1 Support vector machines (SVM) Section 2.3.4 
19 SVM_2 
20 SVM_3 

The assessment of the one-step ahead forecasting performance is based on the error metrics 
and accuracy statistics of Table 4.5. 

Table 4.5. Error metrics and accuracy statistics. Their definitions are given in Section 2.9.3. 
S/n Abbreviated 

name 
Full name 

Category Values Optimum 
value 

1 E Error Error metrics (-∞,+∞) 0 
2 AE Absolute error [0,+∞) 0 
3 PE Percentage error (-∞,+∞) 0 
4 APE Absolute percentage error [0,+∞) 0 
5 MdoAE Median of the absolute errors Accuracy 

statistics 
[0,+∞) 0 

6 MdoAPE Median of the absolute percentage errors [0,+∞) 0 
7 LRC Linear regression coefficient (-∞,+∞) 1 
8 R2 Coefficient of determination [0,1] 1 
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We conduct the experiments described in Tables 4.6 and 4.7. We use each dataset in five 
experiments; every time examining different part of the time series according to Table 4.7. While 
the application of the stochastic methods does not require a validation set (since all the model 
parameters are estimated using other procedures, such as the maximum likelihood estimation), 
the same does not apply to the application of the machine learning methods (except NN_3). For 
each of the latter, we fit the candidate models defined by all the considered hyperparameter values 
(see Table 3.4) to the fitting set, i.e., the first 33, 40, 47, 53 or 60 values, and subsequently use 
them to make predictions corresponding to the validation set, i.e. the next 17, 20, 23, 27 or 30 
values respectively. Finally, we decide on the “optimal” model, i.e. the one exhibiting the smallest 
root mean square error on the validation set. We fit this model to the first 50, 60, 70, 80 or 90 
values and make predictions corresponding to the 51st, 61st, 71st, 81st or 91st value respectively. 

Table 4.6. Conducted experiments. The symbol i can take the values stated in Table 4.7. 
S/n Abbreviated 

name 
Category Dataset 

(see Tables 4.2, 4.3) 
Forecasting methods 

(see Table 4.4) 
Metrics used 

(see Table 4.5) 
1 RWE_1i Real-world PrecDat 1, 2, 7−20 1−8 
2 RWE_2i TempDat 
3 RWE_3i StandPrecDat 1, 2, 7−20 1, 2, 5, 7, 8 
4 RWE_4i StandTempDat 
5 SE_1i Simulation SimDat_1 1−6, 8−20 1, 2, 5, 7, 8 
6 SE_2i SimDat_2 
7 SE_3i SimDat_3 
8 SE_4i SimDat_4 
9 SE_5i SimDat_5 

10 SE_6i SimDat_6 
11 SE_7i SimDat_7 
12 SE_8i SimDat_8 1, 2, 7−20 
13 SE_9i SimDat_9  
14 SE_10i SimDat_10  
15 SE_11i SimDat_11  
16 SE_12i SimDat_12  

Table 4.7. Part of the time series used within each experiment according to the i value. 
S/n i Data points of each time series used for 

the model-fitting (required for all 
models) and model-validation (required 

for the machine learning models) 

Data points of 
each time series 
used for model 

testing 
1 a 1, 2, 3, …, 50 51 
2 b 1, 2, 3, …, 60 61 
3 c 1, 2, 3, …, 70 71 
4 d 1, 2, 3, …, 80 81 
5 e 1, 2, 3, …, 90 91 

The only assumption of our methodological approach concerns the application of the 
auto_ARFIMA method within the real-world experiments and is that the annual precipitation and 
temperature variables can be sufficiently modelled by the normal distribution. This assumption 
is rather reasonable (implied by the Central Limit Theorem; Koutsoyiannis 2008, Chapter 2.5.6) 
and could hardly harm the results. In general, such fundamental assumptions are preferable to 
the introduction of extra parameters, e.g., to using the Box-Cox transformation (see Section 2.1.8) 
to normalize the data. The rest of the methods are non-parametric and, thus, not affected by the 
possible non-normality. 

To take advantage of some well-known theoretical properties, in the SE_1i−SE_7i simulation 
experiments the ARIMA_f and ARIMA_s methods are given the same AutoRegressive (AR) and 
Moving Average (MA) orders used in the respective simulation process, while the number of 
differencing (d) is set 0. These two methods, as well as the simple, auto_ARIMA_f, auto_ARIMA_s 
and auto_ARFIMA methods serve as reference points within our approach. In particular, ARIMA_f, 
auto_ARIMA_f and auto_ARFIMA are theoretically expected to be the most accurate within our 
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simulation experiments (for an explanation, see Section 3.2.6), while BATS is also expected to 
perform well in these experiments, since it comprises an ARMA model. In summary, the 
experiments are controlled to some extent, while their components (datasets, methods and 
metrics) are selected to provide a multifaceted approach to the problem of one-step ahead 
forecasting in geoscience.  

4.3 Results and discussion 

In this section, we summarize the basic quantitative and qualitative information gained from the 
experiments of the present Chapter, while the total amount is available in Chapter’s supplement. 
We further discuss the findings and explicate their contribution in light of the literature. 

4.3.1 Experiments using the precipitation datasets 

For the experiments using the PrecDat dataset the minimum AE value is 0 (practically) and the 
maximum around 1 750 mm (for forecasts produced by the simple forecasting methods, i.e. Naïve 
and RW), while the respective values for the APE error metric are 0 (practically) and 1.64 (for a 
forecast produced by NN_1). The MdoAE and MdoAPE values are summarized in Tables 4.8 and 
4.9 respectively. The minimum MdoAE is 68 mm, while the maximum is 189 mm. These two 
values are in the same order of magnitude as the smallest and average standard deviation 
estimates of the time series respectively. The minimum MdoAPE value is 0.09 and the maximum 
0.22, while the respective LRC values are 0.73 and 1.18. The best LRC value (1.00) is measured 
within RWE_1c for the simple forecasting methods, while the best R2 value (0.84) is measured 
within RWE_1d for BATS. The worst LRC and R2 values are 0.73 for RF_2 within RWE_1d and 0.54 
for NN_1 within RWE_1a respectively. 

Table 4.8. Minimum, maximum and mean values of the median of absolute errors within the 
experiments using the precipitation dataset. 

Experiment Minimum (mm) Maximum (mm) Mean (mm) 
RWE_1a 111 (RF_1) 172 (NN_1) 135 
RWE_1b 68 (SVM_1) 146 (ETS_s) 91 
RWE_1c 91 (SVM_3) 171 (ETS_s) 119 
RWE_1d 143 (BATS) 189 (RF_2) 162 
RWE_1e 98 (Theta) 150 (NN_1) 122 

Table 4.9. Minimum, maximum and mean values of the median of absolute percentage errors 
within the experiments using the precipitation dataset. 

Experiment Minimum Maximum Mean 
RWE_1a 0.12 (RF_1) 0.21 (RW) 0.16 
RWE_1b 0.09 (SVM_1) 0.18 (ETS_s) 0.12 
RWE_1c 0.12 (SVM_3) 0.21 (NN_1) 0.15 
RWE_1d 0.15 (BATS) 0.22 (NN_1) 0.17 
RWE_1e 0.12 (Theta) 0.18 (NN_1) 0.15 

In Figure 4.2, we present a graphical summary of the experiments using the PrecDat dataset. 
The values in the three upper heatmaps are scaled in the row direction and the darker the colour 
within a specific row the better the forecasts. In fact, heatmaps are used in this Chapter instead of 
conventional tables, since they allow the easy extract of qualitative information. The relative 
performance of the forecasting methods differs to some degree across the various RWE_1i 
experiments, with ETS_s and NN_1 being the worst performing in terms of MdoAE and MdoAPE, 
followed by the simple methods. On the other hand, in terms of LRC Naïve and RW exhibit rather 
the best overall performance. In the downer heatmap of Figure 4.2 we zoom into the RWE_1b 
experiment. By its examination we observe that all the implemented forecasting methods can 
perform well or bad, depending on the individual case. This fact is also apparent in the side-by-
side boxplots of Figure 4.2. Furthermore, we observe that for one specific time series the AE values 
measured are very high for all the forecasts apart from those produced by the simple forecasting 
methods. 
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Figure 4.2. Results in brief of the experiments using the precipitation dataset. 

Regarding the experiments using the StandPrecDat dataset, the minimum AE value is 0 and 
the maximum around 10. The MdoAE values are summarized in Table 4.10. The minimum MdoAE 
is 0.55, while the maximum is 1.42. These two values are 45% smaller and 42% larger than 1 
(standard deviation of the standardized time series) respectively. Since there is an absence of 
relevant information in the literature, these values could be used as rough benchmarks for the 
predictability of annual precipitation. Most preferably, a representative sample set of univariate 
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time series forecasting methods could be implemented at least for benchmarking purposes 
alongside with any other forecasting attempt. Moreover, the minimum and maximum LRC values 
are −0.25 and 0.25 respectively, the former measured for ETS_s and the latter for RW. Finally, the 
minimum R2 value is 0 (practically), while the maximum is 0.09, measured within SE_3a for ETS_s. 
In addition to this numerical information, Figure 4.3 presents a brief comparison between the 
experiments using the PrecDat and StandPrecDat datasets. As illustrated in this figure, the relative 
performance of the forecasting methods with respect to AE and MdoAE in the experiments using 
the latter dataset is mostly similar to the one in the experiments using the former dataset. 
Nevertheless, the LRC (and R2) values are far worse when using the standardized datasets. In fact, 
standardization results to processes with different predictability with respect to the original. 

Table 4.10. Minimum, maximum and mean values of the median of absolute errors within the 
experiments using the standardized precipitation dataset. 

Experiment Minimum Maximum Mean 
RWE_3a 0.70 (RF_1) 1.22 (NN_1) 0.92 
RWE_3b 0.55 (SVM_2) 0.95 (ETS_s) 0.69 
RWE_3c 0.72 (BATS) 1.42 (NN_1) 0.86 
RWE_3d 0.99 (Theta) 1.42 (ETS_s) 1.14 
RWE_3e 0.69 (Theta) 1.07 (ETS_s) 0.89 
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Figure 4.3. Comparison in brief between the experiments using the precipitation and the 
standardized precipitation datasets. 
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4.3.2 Experiments using the temperature datasets 

In Figure 4.4, we present a graphical summary of the experiments using the TempDat dataset. For 
these experiments the minimum AE value is 0 and the maximum around 43 °C (for a forecast 
produced by NN_2), while the respective APE values are 0 and 9.64 (for a forecast produced by 
ETS_s). The MdoAE and MdoAPE values are summarized in Tables 4.11 and 4.12 respectively. The 
minimum MdoAE is 0.23 °C, while the maximum is 1.10 °C. These two values are in the same order 
of magnitude as the smallest and largest standard deviation estimates of the temperature time 
series respectively. The respective values for the MdoAPE are 0.02 and 0.08. The minimum LRC 
value is 0.95 and the maximum is 1.02; all the LRC values are close to the optimum. Finally, the 
minimum R2 value is 0.78, measured for NN_2 within RWE_2b, while all the rest R2 values are 
higher than 0.97 with maximum 1 (practically), measured for the auto_ARFIMA method within 
RWE_2b. In summary, the relative performance of the forecasting methods vary across the 
different experiments conducted using the TempDat dataset. The auto_ARFIMA, BATS, SES, Theta 
and NN_3 seem to be well performing in terms of MdoAE and MdoAPE when applied to these 
temperature time series compared to the overall picture, while the simple methods are far the 
best in terms of MdoAE within the RWE_2d experiment. ETS_s and NN_1 are the worst performing 
within all the experiments apart from RWE_2c, in which the simple methods exhibit the worst 
performance. Finally, by comparing the numerical results of the experiments using the PrecDat 
and TempDat dataset, we observe the fact that temperature is more predictable than 
precipitation. 
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Figure 4.4. Results in brief of the experiments using the temperature dataset. 
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Table 4.11. Minimum, maximum and mean values of the median of absolute errors within the 
experiments using the temperature dataset. 

Experiment Minimum (°C) Maximum (°C) Mean (°C) 
RWE_2a 0.42 (NN_3) 0.72 (NN_1) 0.51 
RWE_2b 0.23 (Theta) 0.54 (NN_1) 0.32 
RWE_2c 0.38 (BATS) 0.66 (RW) 0.47 
RWE_2d 0.78 (RW) 1.10 (NN_3) 1.01 
RWE_2e 0.38 (Theta) 0.62 (ETS_s) 0.46 

Table 4.12. Minimum, maximum and mean values of the median of absolute percentage errors 
within the experiments using the temperature dataset. 

Experiment Minimum Maximum Mean 
RWE_2a 0.04 (Theta) 0.06 (NN_1) 0.04 
RWE_2b 0.02 (auto_ARFIMA) 0.05 (ETS_s) 0.03 
RWE_2c 0.03 (SVM_1) 0.06 (RW) 0.04 
RWE_2d 0.07 (Naïve) 0.08 (NN_1) 0.08 
RWE_2e 0.03 (RF_1) 0.05 (NN_1) 0.04 

Regarding the experiments using the StandTempDat, the minimum AE value is 0 and the 
maximum around 18.91. The MdoAE values are summarized in Table 4.13. The minimum MdoAE 
value is 0.33, while the maximum is 1.46. These two values are 67% smaller and 46% larger than 
1 (standard deviation of the standardized time series) respectively and could be used as rough 
benchmarks for the predictability of annual temperature (for an explanation, see the subsection 
entitled “Experiments using the precipitation datasets”). The minimum LRC value is 0.04 and the 
maximum is 0.76, the former measured for SVM_1 and the latter for RW. Finally, the minimum R2 
value is 0.03, while the maximum is 0.48. The latter value is measured for Naïve in RWE_4a. Figure 
4.5 facilitates a comparison between the experiments using the TempDat and StandTempDat 
datasets. Here as well, we observe that the relative performance of the forecasting methods with 
respect to AE and MdoAE in the experiments using the standardized precipitation time series 
mostly does not vary from the respective relative performance when using the original 
temperature time series. We further note that the LRC (and R2) values are worse when using the 
standardized temperature dataset, while they are better for the latter than for the standardized 
precipitation dataset. 

Table 4.13. Minimum, maximum and mean values of the median of absolute errors within the 
experiments using the standardized temperature dataset. 

Experiment Minimum Maximum Mean 
RWE_4a 0.61 (BATS) 0.93 (ETS_s) 0.71 
RWE_4b 0.33 (Theta) 0.73 (NN_1) 0.47 
RWE_4c 0.56 (SES) 0.96 (ETS_s) 0.69 
RWE_4d 1.20 (NN_1) 1.46 (Theta) 1.36 
RWE_4e 0.48 (Theta) 0.82 (ETS_s) 0.61 



 

 81

 
Figure 4.5. Comparison in brief between the experiments using the temperature and standardized 
temperature datasets. 

4.3.3 Experiments using the simulated datasets 

The subsequently reported information constitutes the provided empirical solution to the 
problem of one-step ahead forecasting in geoscience. Nonetheless, this solution is rather 
qualitative than quantitative (although the results are also stated quantitatively), since the 
respective experiments use unscaled data, that could be assumed as real-world data in a 
standardized form (such as StandPrecDat and StandTempDat) with different predictability than 
the original (for example, see the subsections entitled “Experiments using the precipitation 
datasets” and “Experiments using the temperature datasets”). In fact, the experiments using 
standardized precipitation and temperature can facilitate a connection between the experiments 
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using the same data in their original form and the experiments using the simulated datasets. A 
graphical summary of the latter experiments is available in Table 4.7. 

 
Figure 4.6. Results in brief of the experiments using the simulated datasets. 

The generalized findings of the present Chapter are the following: 

(1) The E values are approximately symmetric around 0 (mean value of the simulations). 
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(2) The results may vary significantly across the simulation experiments using different 
simulated datasets and across the different time series within a specific experiment 
depending on the forecasting method.  

(3) Consequently, the relative performance of the forecasting methods may also vary 
significantly across the simulation experiments using different simulated datasets. 

(4) On the contrary, the relative performance of the forecasting methods is slightly affected by 
the length of the time series for the experiments of the present Chapter. The same has been 
found to mostly apply to the multi-step ahead forecasting performance of the same methods 
in Chapter 3 of this thesis for two different time series lengths. 

(5) Some forecasting methods are more accurate than others. The best-performing methods are 
ARIMA_f, auto_ARIMA_f, auto_ARFIMA, BATS, SES and Theta. This good performance of the 
former four methods when applied to ARMA and ARFIMA processes is expected from theory, 
while the Theta forecasting method has also performed well in the M3 Competition 
(Makridakis and Hibon 2000) and is expected to have a similar performance with SES 
(Hyndman and Billah 2003). The five above-mentioned forecasting methods are all 
stochastic. 

(6) All the machine learning methods except for NN_1 (mostly NN_3 and SVM_3) are comparable 
to the best-performing methods, as it has also been found to apply in the experiments of 
Chapters 3 and 6 of this thesis. Likewise, in Tyralis and Papacharalampous (2017) random 
forests are competitive with the ARFIMA and Theta benchmarks. 

(7) The simple methods are competitive in specific simulation experiments, as also suggested for 
specific cases in Cheng et al. (2017), Makridakis and Hibon (2000) and Chapter 3 herein. 
Nevertheless, they stand out because of their bad performance in other simulation 
experiments. 

(8) Most of the far outliers are produced by neural networks. 

The minimum AE value for the forecasts is 0 (practically) and the maximum around 155 
(produced by NN_2). The MdoAE values are summarized in Tables 4.14 and 4.15. Especially the 
latter is useful in supporting observations (5), (6) and (7). The minimum MdoAE is 0.65, while the 
maximum is 2.91. These two values are 35% smaller and 191% larger than 1 (standard deviation 
of the simulations) respectively. Furthermore, in spite of observation (4), the MdoAE values may 
decrease on the level of the second or even the first decimal, when moving from the simulation 
experiments using time series of 51 values to those of 91 values, with the NN_1 forecasting method 
exhibiting the largest improvement. The minimum LRC value is −0.88 and the maximum is 0.94, 
both measured for RW, while the minimum and maximum values produced by Naïve differ in the 
second and third decimal respectively. This range holds a complete interpretation of the observed 
within the real-world experiments variants in the performance of the simple methods in terms of 
LRC from extremely good to extremely bad (with respect to the overall picture). Finally, the 
minimum R2 value is 0 (practically), measured for ETS_s within several experiments, while the 
maximum is 0.84 within SE_9b for Naïve. 
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Table 4.14. Minimum, maximum and mean values of the median of absolute errors within the 
simulation experiments. 

Experiment Minimum Maximum Mean 
SE_1i 0.68 (ARIMA_f | SE_1a) 1.05 (NN_1 | SE_1a) 0.80 
SE_2i 0.67 (ARIMA_f | SE_2c) 1.82 (RW | SE_2e) 0.95 
SE_3i 0.65 (ARIMA_f | SE_3c) 1.04 (NN_1 | SE_3a) 0.81 
SE_4i 0.67 (ARIMA_f | SE_4c) 1.21 (ETS_s | SE_4a) 0.84 
SE_5i 0.66 (ARIMA_f | SE_5e) 1.48 (RW | SE_5c) 0.90 
SE_6i 0.68 (ARIMA_f | SE_6b) 1.20 (ETS_s | SE_6d) 0.89 
SE_7i 0.66 (auto_ARIMA_f | SE_7d) 2.91 (RW | SE_7e) 1.22 
SE_8i 0.67 (auto_ARFIMA | SE_8c) 1.02 (NN_1 | SE_8a) 0.77 
SE_9i 0.67 (auto_ARFIMA | SE_9d) 1.05 (NN_1 | SE_9b) 0.80 

SE_10i 0.67 (auto_ARFIMA | SE_10e) 1.22 (RW | SE_10e) 0.83 
SE_11i 0.68 (Theta | SE_11e) 1.10 (NN_1 | SE_11a) 0.77 
SE_12i 0.69 (auto_ARFIMA | SE_12b) 1.06 (NN_1 | SE_12a) 0.78 

Table 4.15. Minimum, maximum and mean values of the median of absolute errors for each 
forecasting method. 

Method Minimum Maximum Mean 
Naïve 0.68 (SE_3c) 2.88 (SE_7a) 1.12 

RW 0.69 (SE_9c) 2.91 (SE_7e) 1.13 
ARIMA_f 0.65 (SE_3c) 0.72 (SE_7a) 0.69 
ARIMA_s 0.91 (SE_2a) 1.04 (SE_3a) 0.96 

auto_ARIMA_f 0.66 (SE_7d) 0.75 (SE_6c) 0.70 
auto_ARIMA_s 0.91 (SE_4c) 1.02 (SE_3d) 0.97 
auto_ARFIMA 0.67 (SE_10e) 0.73 (SE_10d) 0.69 

BATS 0.67 (SE_3c) 0.76 (SE_6c) 0.71 
ETS_s 0.93 (SE_3d) 2.11 (SE_7e) 1.14 

SES 0.66 (SE_3c) 1.52 (SE_7e) 0.83 
Theta 0.66 (SE_3c) 1.57 (SE_7a) 0.84 
NN_1 0.90 (SE_7e) 1.16 (SE_7a) 1.01 
NN_2 0.72 (SE_8c) 0.89 (SE_5b) 0.79 
NN_3 0.69 (SE_8c) 0.84 (SE_6c) 0.74 
RF_1 0.71 (SE_8c) 1.08 (SE_6a) 0.82 
RF_2 0.72 (SE_8c) 1.04 (SE_6c) 0.83 
RF_3 0.72 (SE_3c) 0.98 (SE_6c) 0.80 

SVM_1 0.71 (SE_8e) 1.23 (SE_7a) 0.86 
SVM_2 0.68 (SE_8c) 1.01 (SE_7a) 0.81 
SVM_3 0.68 (SE_8c) 0.92 (SE_6c) 0.76 

4.4 Conclusions 

The simulation experiments reveal the most and least accurate methods for long-term one-step 
ahead forecasting applications, also suggesting that the simple methods may be competitive in 
specific cases. Furthermore, the relative performance of the forecasting methods is slightly 
affected by the time series length for the simulation experiments of this Chapter (using time series 
of 51, 61, 71, 81, 91 values), while it strongly depends on the process. Also importantly, the 
experiments using the original real-world time series result to minimum and maximum medians 
of the absolute errors of 68 mm and 189 mm for precipitation, and 0.23 °C and 1.10 °C for 
temperature respectively. Additionally, the experiments using the standardized real-world time 
series suggest that the minimum and maximum medians of the absolute errors are 0.55 and 1.42 
for precipitation, and 0.33 and 1.46 for temperature respectively. These latter numerical results 
could be used as a rough upper boundary for the one-step ahead predictability of annual 
precipitation and temperature. 

We subsequently state the limitations of this Chapter and some future directions. The 
provided empirical solution to the problem of one-step ahead forecasting in geoscience is rather 
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qualitative than quantitative, while the experiments using standardized precipitation and 
temperature data have offered rough benchmarks only. In the future more real-world data could 
be used to develop improved benchmarks for assessing the respective predictabilities. It would 
be of interest to further investigate how these predictabilities depend on the location from which 
the data originate. In this case, more stations spanning around the globe would be required. 
Moreover, a direct and large-scale comparison, set on a common base (if this is feasible), between 
deterministic and statistical approaches to forecasting geophysical processes would be useful and 
interesting. Another limitation of this Chapter is related to the adopted modelling approach, i.e. 
the data-driven one, according to which the selection of the model does not depend on the 
properties of the examined process and, therefore, the latter are mostly not investigated. 
Furthermore, the improvement of the performance of the machine learning models requires 
extensive comparisons between different procedures of hyperparameter optimization and lagged 
variable selection. Finally, future research could focus on the examination of the respective 
predictabilities, when using exogenous predictor variables as well (e.g., ARMAX and ARFIMAX 
models), while a definitely worth-stated future direction is related to the adoption of probabilistic 
forecasting methods, instead of the point forecasting ones.
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5. Predictability of monthly temperature and precipitation using 
automatic time series forecasting methods 

In this Chapter, we investigate the predictability of monthly temperature and precipitation by 
applying automatic univariate time series forecasting methods to a sample of 985 40-year long 
monthly temperature and 1 552 40-year long monthly precipitation time series. The methods 
include a naïve one based on the monthly values of the last year, as well as the random walk (with 
drift), autoregressive fractionally integrated moving average (ARFIMA), exponential smoothing 
state space model with Box-Cox transformation, ARMA errors, trend and seasonal components 
(BATS), simple exponential smoothing, Theta and Prophet methods. Prophet is a recently 
introduced model, inspired by the nature of time series forecasted at Facebook. In this Chapter, it 
is applied for the first time in the literature to hydrometeorological time series. Moreover, the use 
of random walk, BATS, simple exponential smoothing and Theta is rare in hydrology. The methods 
are tested in performing multi-step ahead forecasts for the last 48 months of the data. We further 
investigate how different choices of handling the seasonality and non-normality affect the 
performance of the models. The results indicate that (a) all the examined methods apart from the 
naïve and random walk ones are accurate enough to be used in long-run applications, (b) monthly 
temperature and precipitation can be forecasted to a level of accuracy which can barely be 
improved using other methods, (c) the externally applied classical seasonal decomposition results 
mostly in better forecasts compared to the automatic seasonal decomposition used by the BATS 
and Prophet methods and (d) Prophet is competitive, especially when it is combined with 
externally applied classical seasonal decomposition. 

5.1 Introduction 

The role of univariate time series forecasting methods for hydrometeorological and climate 
forecasting has been emphasized by forecasting experts (Armstrong and Fildes 2006; Green and 
Armstrong 2007; Green et al. 2009). Relevant reviews linking geosciences with the forecasting 
scientific field are available in the literature (e.g., in Bărbulescu 2016; Sivakumar 2017), while 
critical reviews of studies applying time series point forecasting methods in hydrology are 
available in the introductory Sections of Chapters 3 and 4 herein. Moreover, time series analysis 
is an essential tool for better forecasts; consequently, analysis and forecasting are usually 
presented simultaneously in specialized textbooks (e.g., in Hyndman and Athanasopoulos 2018; 
Wei 2006). 

While time series forecasting is of interest in hydrology, the principles of forecasting are not 
always conscientiously applied by hydrological scientists. This fact is revealed by the experiments 
of Chapter 3. Furthermore and despite the growing literature specialized in time series prediction, 
and in the examination of subtleties related to the development, application and assessment of 
methods (see e.g., the review by De Gooijer and Hyndman 2006), the gained technical know-how 
has not been fully exploited by geoscientists. This is also suggested by the low number of 
geoscientific papers citing literature from relevant leading journals (e.g., the International Journal 
of Forecasting). Armstrong and Fildes (2006) have recognized the need for promoting forecasting 
in geosciences and proposed the publication of a special issue on applications of traditional 
forecasting methodologies to climate sciences. 

Admittedly, the recent trend in geosciences is focusing on the development of soft computing 
methods for time series forecasting. These methods can be equally accurate, yet more 
computationally intensive, compared to the classical forecasting approaches, as presented in 
Chapter 3. In addition to the right above distinction, the various forecasting alternatives can be 
classified as automatic and non-automatic. The non-automatic or subjective approach to the 
problem of time series forecasting requires the prior conduct of an exploratory data analysis for 
each specific individual case to be predicted and human intervention during the forecasting 
process (Chatfield 1988). Therefore, its implementation can be significantly limited by scale-
dependent factors. Taylor and Letham (2018) identify three types of scale in forecasting related 
to the number of people making forecasts (and their varying backgrounds), the diversity of the 
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characteristics of each forecasting problem and the number of forecasts needed. Automatic time 
series forecasting is essential, for example, when a large number of time series forecasts is 
required (Hyndman and Khandakar 2008). Consequently, specialized software for automatic time 
series forecasting has been developed (Hyndman and Khandakar 2008; Hyndman et al. 2018; 
Taylor and Letham 2017, 2018). 

The R package forecast mostly includes methods based on exponential smoothing 
(Hyndman et al. 2008) or autoregressive integrated moving average (ARIMA) and related 
stochastic processes. The ARIMA processes and their relevant applications introduced by Box and 
Jenkins (1968) have been consistently used in hydrology from earlier years (e.g., in Carlson et al. 
1970) until more recent times (e.g., in Montanari et al. 1997, 2000), while exponential smoothing 
has been used less frequently (e.g., in Chapters 3 and 4 herein). Recent methods for automatic 
time series forecasting (that have been used rarely in hydrology) include the Theta method 
(Assimakopoulos and Nikolopoulos 2000; see also Hyndman and Billah 2003) and the BATS 
(acronym for Box-Cox transformation, ARMA errors, Trend, and Seasonal components) method 
(De Livera et al. 2011). A more recently introduced forecasting model is Prophet (Taylor and 
Letham 2018). This latter model is inspired by the nature of time series forecasted at Facebook, 
and is available in the R package prophet. 

Time series forecasting methodologies can also be classified into two groups according to the 
forecast horizon, i.e., one- and multi- step ahead forecasting. The latter is more difficult compared 
to the former. Still, it has been frequently used in hydrology (e.g., in Singh et al. 2011; Valipour et 
al. 2013; Tyralis and Koutsoyiannis 2014; Papacharalampous and Tyralis 2018a; 
Papacharalampous et al. 2018c; Tyralis and Papacharalampous 2018; Chapters 3 and 6 herein). 
Relevant reviews on multi-step ahead forecasting methodologies can be found in Chevillon (2007) 
and Taieb et al. (2012). Multi-step ahead forecasting has been examined theoretically (e.g., in 
Pemberton 1987; Stoica and Nehorai 1989; De Gooijer and Klein 1992; De Gooijer and Kumar 
1992; Wei 2006, pp. 88−107; Franses and Legerstee 2010; Taieb and Atiya 2016) and empirically 
(e.g., in Papacharalampous et al. 2018a; Chapters 3 and 6 herein). The theoretical examination is 
not possible for all methods, while the performance of the latter can vary considerably in real-
world case studies. An alternative framework for assessing the performance of forecasting 
methods is through their application to large datasets. Thus, competitions are organized, in which 
methods are improved and compared with each other (e.g., Makridakis et al. 1987; Makridakis 
and Hibon 2000), and later published (e.g., Andrawis et al. 2011). 

The culture of evaluating the forecasting performance of methods by using large datasets is 
not a usual practice in hydrology, as also noted in Chapter 3 herein. The latter Chapter compares 
stochastic and machine learning methods in multi-step ahead forecasting by using a large dataset 
consisted of both simulated and streamflow data. A similar approach has been used in Chapter 4, 
in which annual values of mean temperature and precipitation, as well as simulated processes, are 
used for performing one-step ahead forecasting experiments. These works are among the first, in 
which forecasting methods popular in the time series forecasting field (e.g., BATS, Theta and 
simple exponential smoothing) are used in hydrology. This innovation has been justified by the 
detailed literature review conducted by Tyralis et al. (2020a). 

In this Chapter, we apply automatic univariate time series forecasting methods to a large 
sample of 985 40-year long monthly temperature and 1 552 40-year long monthly precipitation 
time series. This sample is the largest used in hydrology for assessing the performance of 
forecasting methods. We implement a naïve forecasting method based on the monthly values of 
the last year, as well as the random walk (with drift), AutoRegressive Fractionally Integrated 
Moving Average (ARFIMA), BATS, simple exponential smoothing, Theta and Prophet forecasting 
methods. The methods’ multi-step ahead forecasting performance is assessed using the last 48 
months of the data. The aims of the present Chapter are to: 

1) Assess the performance of the BATS, simple exponential smoothing and Theta methods when 
forecasting monthly geophysical time series. 
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2) Compute the minimum forecasting error, which directly expresses the predictability of 
monthly temperature and precipitation. 

3) Assess whether using Box-Cox transformations and/or classical seasonal decomposition 
(additive or multiplicative) results in a better performance of the forecasting methods. For 
the latter see the relevant discussion in Mills (2011, pp. 375–395). 

4) Assess the performance of the Prophet method. 

5.2 Methodological framework 

In this Section, we present the data and methods of the present Chapter. Basic information on the 
methods’ implementation is also provided, while the total of the exploited R packages is 
independently listed in Section 2.9.4. Hereafter, to specify an implemented R function, we state its 
name accompanied by the name of the R package. The latter name is given between curly brackets 
({}). To imply that we implement a built-in-R function, we accompany its name with “{stats}”. 
All R functions are used with their predefined values, unless specified differently. 

5.2.1 Global temperature and precipitation datasets 

We use monthly temperature and precipitation instrumental data from the stations presented in 
Figure 5.1. The primary datasets are documented in Lawrimore et al. (2011), and Peterson and 
Vose (1997), respectively. The data span from 1950 to 1989 (i.e., 480 months). Since we need a 
large dataset without missing values, we do not use more recent data. Indeed, the number of 
stations without missing data decreases rapidly after 1990. Furthermore, 480 months are 
sufficient for a reliable inference regarding the performance of the forecasting methods. The 
stations are located in regions with different climates; therefore, our testing could be affected by 
the dispersion of the stations. To mitigate this effect, we group the stations according to their 
locations, as presented in Table 5.1 for the temperature stations and Table 5.2 for the precipitation 
ones. We note that 130 temperature and 149 precipitation stations are left out of the formed 
groups, due to their remote locations compared to the rest of the stations. 
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Figure 5.1. Maps of the (a) temperature and (b) precipitation stations; their sources are 
Lawrimore et al. (2011), and Peterson and Vose (1997), respectively. 

Table 5.1. Groups of temperature stations with the respective number of stations per group and 
regions’ geographical boundaries. 

Geographical region Number of stations Longitude (°) Latitude (°) 
North America 410 [-140, -50] [20, 65] 
North Europe 80 [-15, 40] [45, 75] 

Siberia 70 [40, 175] [50, 75] 
Asia (except Siberia) 259 [40, 150] [5, 50] 

Oceania 36 [105, 170] [-50, -10] 

Table 5.2. Groups of precipitation stations with the respective number of stations per group and 
regions’ geographical boundaries. 

Geographical region Number of stations Longitude (°) Latitude (°) 
North America 388 [-135, -60] [20, 55] 
North Europe 182 [-15, 35] [50, 75] 
North Africa 100 [-20, 40] [0, 20] 
South Africa 120 [-20, 45] [-35, 0] 

East Asia 50 [95, 135] [15, 50] 
Australia 563 [110, 155] [-45, - 15] 

Moreover, we decompose the time series by using the classical additive model (see Section 
2.1.7). This model is implemented through the R function decompose {stats}. We 
subsequently fit the fractional Gaussian noise process (see Section 2.1.6) to each seasonally 
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decomposed time series. This fitting is made by using the maximum likelihood method, 
implemented through the R function mleHK {HKprocess}. In Figure 5.2, we present the 
histograms of the H parameter estimates of the fractional Gaussian noise process for the total of 
the seasonally decomposed real-world time series, along with the estimated means (denoted with 
μ) and standard deviations (denoted with σ) of the same process. The magnitude of the long-range 
dependence is significant in the seasonally decomposed temperature time series, while long-
range dependence is also observed in the seasonally decomposed precipitation time series. This 
is important in the forecasting procedure, since we implement a method that can model long-
range dependence and take advantage of this prior knowledge (see Section 5.2.3). 

 
Figure 5.2. Estimates of mean (μ), standard deviation (σ) and Hurst parameter (H) of the fractional 
Gaussian noise process for the total of the deseasonalized (a) temperature and (b) precipitation 
time series. The vertical red dashed line denotes the median value of the estimates. 
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5.2.2 Definition of the forecasting problem 

Each time series is forecasted based on its past values. Specifically, we forecast the monthly time 
series values in the period 1986−1989 based on its values in the period 1950−1985. The observed 
values in the period 1986−1989 are used for testing the performance of the forecasting methods 
(and are not used for the fitting of the models). Let also x1, x2, …, xn represent the observations (in 
the period 1986−1989) and f1, f2, …, fn represent their forecasts. 

In Figure 5.3, we present the medians of the observed temperature values to be forecasted 
for all groups of Table 5.1. The seasonal patterns are obvious in each region, while the minima and 
maxima clearly depend on the hemisphere. In Figure 5.4, we present a similar illustration for the 
precipitation time series. The seasonal patterns are again apparent, while zero precipitation 
appears in Africa regions. 
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Figure 5.3. Medians of the observed temperature values to be forecasted per group presented in 
Table 5.1. 

 
Figure 5.4. Medians of the observed precipitation values to be forecasted per group presented in 
Table 5.2. 
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5.2.3 Forecasting methods 

We use the seven forecasting methods presented in Table 5.3. In the same Table, we present 
information on their software implementation, important from a practical point of view, and refer 
the reader to their documentation. The latter is independently provided in Chapter 2. 

Table 5.3. Forecasting methods and the R functions used for their implementation. All R functions 
are used with predefined values, unless specified differently. For implementation notes on the R 
functions rwf {forecast} and arfima {forecast}, see Table 3.3. 
S/n Code 

name 
Corresponding model from 

Table 2.3 
General 
category 

Description R functions 

1 naive Seasonal naïve Simple Section 2.2.1 − 
2 rw Random walk rwf {forecast} 
3 arfima Optimum-order autoregressive 

fractionally integrated moving 
average (ARFIMA) 

ARFIMA Section 2.2.2 arfima {forecast}, 
fracdiff {fracdiff}, 
forecast {forecast} 

4 bats Exponential smoothing state 
space with Box-Cox 

transformation, ARMA errors 
correction, trend and seasonal 

components (BATS) 

Innovations 
state space 

Section 2.2.3 bats {forecast}, 
forecast {forecast} 

5 ses Simple exponential smoothing Exponential 
smoothing 

ses {forecast} 
6 theta Theta thetaf {forecast} 
7 prophet Prophet Curve fitting Section 2.2.4 as.Date {zoo}, 

prophet {prophet}, 
make_future_dataframe 

{prophet}, 
predict.prophet 

{prophet} 

5.2.4 Seasonality and non-normality 

Due to the seasonality and non-normality assumed to characterize the processes underlying 
monthly temperature and precipitation data, some forecasting methods would be less efficient, if 
directly applied to the data of this Chapter. Some other methods can automatically transform the 
data, without external handling. 

When the examined processes are characterized by seasonality, two possible 
transformations of the exploited data before applying the forecasting methods (see Section 5.2.3) 
are the classical additive and multiplicative seasonal decomposition approaches (see Section 
2.1.7). These transformations are adopted herein under the flexible methodology for time series 
forecasting through time series decomposition (see Section 2.2.6), which is hereafter referred to 
as “external handling of seasonality”. In the particular case of the multiplicative seasonal 
decomposition of the precipitation time series, we add 10 mm to each value, since zero observed 
values would result in zeros during the seasonal decomposition. Obviously, the inverse transform 
involves the subtraction of 10 mm for the forecasted values. This approach may affect the 
decomposition pattern; however, it is the most practical in this case. 

Some methods are applied under the normality assumption. Since non-normality is often 
assumed for the processes underlying the monthly geophysical data, an appropriate 
transformation of such data could be used to obtain possible predictive performance 
improvements. The most popular relevant transformation, also adopted in this Chapter, is the 
Box-Cox one, defined in Section 2.1.8. 

In Table 5.4, we present the variants of the forecasting methods (see Section 5.2.3). The 
variants depend on whether a transformation is used and on which this specific transformation 
is. In Table 5.5, we present the transformations accounting for seasonality, while in Table 5.6 we 
present the transformations accounting for non-normality. Each variant of the method is assigned 
to a particular combination of the transformations presented in Table 5.5 and Table 5.6, 



 

 95

respectively. When a transformation is applied, then the forecasts are obtained through the 
inverse transform. The BATS and the Prophet methods can also handle the seasonal patterns 
automatically. Therefore, their variants include cases in which the time series are seasonally 
decomposed manually, as well as cases in which seasonality is considered through an automatic 
scheme. 

Table 5.4. Variants of the methods of Table 5.3. 
S/n Abbreviated 

name 
Primal method 
(see Table 5.3) 

Handling of seasonality 
(see Table 5.5) 

Handling of non-normality 
(see Table 5.6) 

1 naïve 1 1 1 
2 rw_1 2 2 1 
3 rw_2 2 2 2 
4 rw_3 2 3 1 
5 rw_4 2 3 2 
6 arfima_1 3 2 1 
7 arfima_2 3 2 2 
8 arfima_3 3 3 1 
9 arfima_4 3 3 2 

10 bats_1 4 2 1 
11 bats_2 4 2 2 
12 bats_3 4 3 1 
13 bats_4 4 3 2 
14 bats_5 4 4 1 
15 bats_6 4 4 2 
16 ses_1 5 2 1 
17 ses_2 5 2 2 
18 ses_3 5 3 1 
19 ses_4 5 3 2 
20 theta_1 6 2 3 
21 theta_2 6 3 3 
22 prophet_1 7 2 3 
23 prophet_2 7 3 3 
24 prophet_3 7 4 3 

Table 5.5. Choices for the handling of seasonality. 
S/n Handling Corresponding additional 

model from Table 2.3 
Additional  
R functions 

1 Time series offset − − 
2 Classical seasonal decomposition using the additive model and 

subsequent addition of the seasonal component to the forecasts 
Additive model ts {stats}, 

decompose 
{stats} 3 Classical seasonal decomposition using the multiplicative model and 

subsequent multiplication of the forecasts by the seasonal component 
Multiplicative model 

4 Through the forecasting algorithm − − 

Table 5.6. Choices for the handling of non-normality. 
S/n Handling Corresponding additional 

model from Table 2.3 
Additional R function 

1 − − − 
2 Box-Cox transformation through 

the forecasting algorithm 
Box-Cox transformation BoxCox.lambda 

{forecast} 

3 Default − − 

5.2.5 Forecast quality assessment 

At each time step i of the forecast horizon, we compute the error and absolute error for each 
forecasting attempt, denoted with Ei and AEi, respectively. The computation is made, as prescribed 
by the definitions provided in Section 2.8.2. We also compute, separately for each time step i of 
the forecast horizon, the median of the AEi values. Finally, we compute the root mean square error 
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(RMSE) and the Nash-Sutcliffe efficiency (NSE) of each multi-step ahead forecast. The RMSE and 
NSE metrics are defined in Section 2.8.2. 

5.3 Results 

5.3.1 Experiments using the temperature time series 

Section 5.3.1 is devoted to the results of the analysis using the temperature time series. In Figure 
5.5, we present the side-by-side boxplots of the errors at each time step of the forecast horizon, as 
formed for all the temperature forecasts produced by the naïve, rw_1 and prophet_1 methods. The 
random walk variants create a similar image to each other (see the one of rw_1), while the same 
applies to the set of ARFIMA, BATS, simple exponential smoothing, Theta and Prophet variants 
(see the one of prophet_1). To illustrate this closeness in the forecasting performance of the 
methods, in Figure 5.6 we present the median values of the absolute errors computed for the total 
of the temperature time series. The random walk variants are the least accurate at almost every 
step of the examined horizon with a minimum median of absolute errors approximately equal to 
1.3 K and a maximum approximately equal to 4 K, while naïve is also worse than the rest of the 
automatic methods with minimum and maximum medians approximately equal to 0.8 K and 4.2 K, 
respectively. The best median performance is approximately equal to 0.5 K, which is about 70% 
smaller than the median of the estimated standard deviations of the deseasonalized time series 
(see Figure 5.2). We further observe that the presented time series tend rather to run in parallel 
than to intersect each other and, therefore, the good/bad forecasts of the various methods are 
rather grouped in the horizontal direction. This behaviour may be explained by the fact that the 
magnitude of the error of the forecast produced by a specific method largely depends on the value 
to be forecasted, i.e., some forecasting attempts are by nature more difficult than others. As a 
result, the worst median performance of each and every of the methods is observed for January 
1989, a month exhibiting higher temperature than the one expected from seasonality (see Figure 
5.3), while the second worst for February 1989 for the opposite reason. 



 

 97

 
Figure 5.5. Errors at each time step of the forecast horizon for the total of the temperature time 
series, and the (a) naïve, (b) rw_1 and (c) prophet_1 methods. The outliers with absolute value 
larger than 15 K are omitted. 
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Figure 5.6. Medians of the absolute errors at each time step of the forecast horizon for the total of 
the temperature time series. 

In Figures 5.7 and 5.8, we present the median values of the absolute errors computed for each 
of the groups of stations of Table 5.1. Since most of the temperature time series are observed in 
North America, the results corresponding to this geographical region affect the total (presented 
in Figure 5.6) to a significant extend. In fact, Figure 5.6 is more similar to Figure 5.7(a) than to 
Figure 5.7(b,c) or Figure 5.8. However, the medians of the absolute errors are larger in North 
America than worldwide. In the remaining geographical regions, the performance of the random 
walk methods are closer to the performance of the rest automatic methods, while for the specific 
cases of North Europe and Siberia the random walk variants are better than naïve as well. The 
best average performances are measured for Oceania with a minimum median of absolute errors 
approximately equal to 0.25 K and a maximum around 2.1 K, while the respective values for Asia 
(except Siberia) (approximately equal to 0.30 K and 4 K) are also better than the overall. 
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Figure 5.7. Medians of the absolute errors at each time step of the forecast horizon for the 
temperature time series observed in: (a) North America, (b) North Europe and (c) Siberia. 
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Figure 5.8. Medians of the absolute errors at each time step of the forecast horizon for the 
temperature time series observed in: (a) Asia (except Siberia) and (b) Oceania. 

In Tables 5.7 and 5.8, we present the medians of the measured RMSE and NSE values of the 
global dataset and for each of the groups of stations of Table 5.1, while the side-by-side boxplots 
of the RMSE values are presented in Figure 5.9. These numerical results can facilitate a 
comparison on a common basis of the methods regarding their performance in the experiments 
using the temperature time series. In terms of RMSE, for the total of the temperature time series 
the use of a random walk variant (offering a median of 2.60 K or 2.66 K) instead of naïve (offering 
a median of 2.29 K) leads to about 14−16% less accurate forecasts, while the use of the remaining 
automatic methods (offering median values between 1.62 K and 1.86 K) to about 19−29% more 
accurate forecasts. For the time series observed in North America, North Europe, Siberia, Asia 
(except Siberia) and Oceania these latter percentages are 18−30%, 30−32%, 19−25%, 17−31% 
and 10−15% respectively. The median values of the latter methods are close to the median of the 
estimated standard deviations of the deseasonalized time series (see Figure 5.2). On the other 
hand, all the variants of the ARFIMA, BATS, simple exponential smoothing, Theta and Prophet 
methods except for the bats_5, bats_6 and prophet_3 are rather competitive to each other, while 
each of these categories of methods exhibits better or worse performance in comparison to the 
rest depending on the examined sample of time series. For example, prophet_1 exhibits the 
smallest median RMSE for the temperature forecasts for North Europe and Siberia, while offering 
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13−32% (depending on the examined set of time series) more accurate results than naïve. The 
variants belonging to each of the {arfima_1, arfima_2, arfima_3, arfima_4}, {bats_1, bats_2, bats_3, 
bats_4}, {ses_1, ses_2, ses_3, ses_4}, {theta_1, theta_2}, {prophet_1, prophet_2} sets differ in their 
performance at maximum about 1%, while the results do not suggest any specific combination of 
choices for the external handling of seasonality and non-normality as best for each algorithm. 
Nevertheless, the handling of the seasonality through the BATS and Prophet forecasting 
algorithms leads to less accurate forecasts than the external one, especially for the former 
algorithm. These facts are illustrated in Figure 5.9 as well. Finally, all NSE values of Table 5.8 
indicate a good forecasting performance for the total of the methods. 

Table 5.7. Medians of the RMSE values (K) of the forecasts for each group of temperature stations. 
The best performance (when rounding to more than four digits) for each model is in bold. 

Method Globe North America North Europe Siberia Asia (except Siberia) Oceania 
naïve 2.29 2.70 3.14 3.49 1.61 1.19 
rw_1 2.60 3.59 2.84 3.22 1.99 1.43 
rw_2 2.60 3.57 2.84 3.22 1.99 1.43 
rw_3 2.66 3.65 2.84 3.26 2.02 1.42 
rw_4 2.66 3.64 2.84 3.25 2.02 1.42 

arfima_1 1.63 1.90 2.13 2.66 1.11 1.03 
arfima_2 1.63 1.90 2.13 2.66 1.11 1.04 
arfima_3 1.63 1.90 2.13 2.66 1.11 1.03 
arfima_4 1.63 1.90 2.13 2.66 1.11 1.06 

bats_1 1.62 1.92 2.13 2.66 1.11 1.01 
bats_2 1.62 1.93 2.13 2.67 1.12 1.01 
bats_3 1.62 1.92 2.13 2.68 1.12 1.01 
bats_4 1.64 1.94 2.13 2.67 1.12 1.01 
bats_5 1.84 2.21 2.16 2.84 1.26 1.07 
bats_6 1.86 2.20 2.18 2.84 1.33 1.04 
ses_1 1.68 1.99 2.15 2.66 1.12 1.02 
ses_2 1.68 1.99 2.15 2.67 1.12 1.02 
ses_3 1.68 2.00 2.15 2.67 1.12 1.02 
ses_4 1.68 2.00 2.15 2.68 1.12 1.02 

theta_1 1.68 1.99 2.17 2.64 1.12 1.01 
theta_2 1.68 2.00 2.15 2.67 1.12 1.02 

prophet_1 1.70 1.99 2.12 2.62 1.25 1.03 
prophet_2 1.71 1.99 2.13 2.63 1.25 1.03 
prophet_3 1.75 2.04 2.19 2.70 1.26 1.03 
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Table 5.8. Medians of the NSE values of the forecasts for each group of temperature stations. The 
best performance (when rounding to more than four digits) for each model is in bold. 

Method Globe North America North Europe Siberia Asia (except Siberia) Oceania 
naïve 0.91 0.90 0.79 0.93 0.95 0.90 
rw_1 0.89 0.81 0.83 0.94 0.93 0.89 
rw_2 0.89 0.81 0.83 0.94 0.93 0.89 
rw_3 0.89 0.80 0.82 0.94 0.93 0.89 
rw_4 0.89 0.80 0.82 0.94 0.93 0.89 

arfima_1 0.95 0.95 0.91 0.96 0.98 0.93 
arfima_2 0.95 0.95 0.91 0.96 0.98 0.93 
arfima_3 0.95 0.95 0.91 0.96 0.98 0.93 
arfima_4 0.95 0.95 0.91 0.96 0.98 0.92 

bats_1 0.95 0.95 0.91 0.96 0.98 0.93 
bats_2 0.95 0.95 0.91 0.96 0.98 0.93 
bats_3 0.95 0.95 0.91 0.96 0.98 0.93 
bats_4 0.95 0.95 0.91 0.96 0.98 0.93 
bats_5 0.94 0.93 0.89 0.95 0.97 0.93 
bats_6 0.94 0.93 0.89 0.95 0.97 0.93 
ses_1 0.95 0.95 0.90 0.96 0.98 0.93 
ses_2 0.95 0.95 0.90 0.96 0.98 0.93 
ses_3 0.95 0.95 0.90 0.96 0.98 0.93 
ses_4 0.95 0.95 0.90 0.96 0.98 0.93 

theta_1 0.95 0.95 0.90 0.96 0.98 0.93 
theta_2 0.95 0.95 0.90 0.96 0.98 0.93 

prophet_1 0.95 0.95 0.91 0.96 0.97 0.93 
prophet_2 0.95 0.95 0.91 0.96 0.97 0.93 
prophet_3 0.95 0.95 0.90 0.96 0.97 0.93 
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Figure 5.9. RMSE for the temperature time series. 

5.3.2 Experiments using the precipitation time series 

This Section is devoted to the results of the analysis using the precipitation time series. In Figure 
5.10, we present the median values of the absolute errors computed for the total of the 
precipitation time series. Here as well, the random walk variants are the least accurate at almost 
every step of the examined horizon with a minimum median around 25 mm and a maximum 
around 48 mm. The naïve method is also worse than the rest with minimum and maximum 
medians around 20 mm and 39 mm respectively. The best average performance is around 15 mm, 
which is about 70% smaller than the median of the estimated standard deviations of the 
deseasonalized time series (see Figure 5.2), the same as applying to the temperature forecasts. 
Moreover, in Figures 5.11 and 5.7 we present the median values of the absolute errors computed 
for each of the groups of stations of Table 5.2. First, we observe that Figure 5.10 approximates 
more to Figure 5.12(c) than to Figure 5.11 or Figure 5.12(a,b). This is a rather expected outcome, 
since most of the totally examined precipitation time series originate from Australia. 
Nevertheless, the medians of the absolute errors are larger in this geographical region than 
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worldwide. Furthermore, in Australia and North Europe there is not a clear pattern of seasonality 
in the presented medians, while for the case of North America there is one, but only for the years 
1988 and 1989. In North Africa and East Asia, on the contrary, the medians between April and 
October are clearly higher than for the rest of the months with a peak in August (or July), 
indicating a larger difficulty in their corresponding forecasting attempts. This is due to a more 
regular precipitation variability in these geographical regions. The same applies, to a smaller 
extend, to the case of South Africa, for which the precipitation variables between October and 
April are found to be the least predictable. Finally, in North Africa, South Africa and East Asia some 
medians of the absolute errors are equal or very close to zero. All the above-stated facts may be 
largely explained in Figure 5.4. 

 
Figure 5.10. Medians of the absolute errors at each time step of the forecast horizon for the total 
of the precipitation time series. 
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Figure 5.11. Medians of the absolute errors at each time step of the forecast horizon for the 
precipitation time series observed in: (a) North America, (b) North Europe and (c) North Africa. 
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Figure 5.12. Medians of the absolute errors at each time step of the forecast horizon for the 
precipitation time series observed in: (a) South Africa, (b) East Asia and (c) Australia. 

In Figures 5.13 and 5.14, we present in more detail the medians of the absolute errors for two 
special cases, i.e. those of North and South Africa respectively. In these figures we individually 
compare the {rw_1, rw_2, rw_3, rw_4}, {arfima_1, arfima_2, arfima_3, arfima_4}, {bats_1, bats_2 
bats_3, bats_4, bats_5, bats_6}, {ses_1, ses_2, ses_3, ses_4}, {theta_1, theta_2}, {prophet_1, 
prophet_2, prophet_3} sets of variants. As illustrated in Figure 5.13, in North Africa the tested 
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choices for handling the seasonality seem to result in different seasonality patterns in the median 
values of the absolute errors, a fact not applying to the choices for handling the non-normality. 
Particularly for this specific geographical region the use of the additive model results in larger 
absolute errors than the multiplicative model from October to April and to smaller absolute errors 
for the rest of the year. These differences are more visible for the BATS, simple exponential 
smoothing, Theta and Prophet variants, but also exist for the random walk and ARFIMA ones. In 
South Africa two discrete seasonality patterns are observed only for the random walk variants. 

 
Figure 5.13. Medians of the absolute errors at each time step of the forecast horizon for the 
precipitation time series observed in North Africa: comparison among the methods using the 
same model. 
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Figure 5.14. Medians of the absolute errors at each time step of the forecast horizon for the 
precipitation time series observed in South Africa: comparison among the methods using the same 
model. 

Additionally, in Tables 5.9 and 5.10 we present the medians of the measured RMSE and NSE 
values of the global dataset and for each of the groups of stations of Table 5.2, while the side-by-
side boxplots of the RMSE values are presented in Figure 5.15. In the latter we notice the similarity 
in the performance of the ARFIMA, BATS, simple exponential smoothing, Theta and Prophet 
variants, which is also reported for the analysis of Section 5.3.1. Some (absolute and relative) 
differences in the forecasting performance of the methods are also evident. For example, for the 
case of North Africa rw_1 and rw_2 are more accurate than rw_3 and rw_4, while the opposite 
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applies to the case of North Europe albeit to a smaller extend. By the examination of Table 5.9 we 
observe that for the total of the precipitation time series the use of all the automatic methods apart 
from the random walk variants (offering median values between 41.67 mm and 42.39 mm) 
instead of naïve (offering a median value of 53.74 mm) leads to about 21−22% more accurate 
forecasts in terms of RMSE. For the time series observed in North America, North Europe and East 
Asia these percentages are 26−29%, 22−24% and 32−38% respectively, while for those observed 
in North Africa, South Africa and Australia 18−25%, 15−18% and 19−22% respectively. 

Table 5.9. Medians of the RMSE values (mm) of the forecasts for each group of precipitation 
stations. The best performance for each model is in bold. 

Method Globe North America North Europe North Africa South Africa East Asia Australia 
naïve 53.74 63.20 47.89 59.91 58.84 75.61 46.38 
rw_1 53.65 55.35 48.46 47.82 69.97 48.69 51.70 
rw_2 54.04 55.39 48.50 47.82 70.17 48.70 53.18 
rw_3 56.00 56.68 46.89 61.11 66.18 54.13 55.36 
rw_4 56.53 56.53 47.47 58.88 67.33 55.22 57.46 

arfima_1 41.75 45.16 36.65 46.18 48.34 48.57 36.51 
arfima_2 42.07 45.29 37.26 45.27 48.81 47.98 37.49 
arfima_3 41.67 45.61 36.65 45.36 48.20 47.79 36.25 
arfima_4 42.01 45.34 37.09 46.19 49.60 49.07 37.26 

bats_1 41.88 45.78 36.59 46.02 48.85 47.56 36.21 
bats_2 41.90 45.62 36.59 45.75 48.85 47.56 36.21 
bats_3 41.98 46.15 36.54 45.15 48.56 48.01 36.51 
bats_4 42.06 45.28 36.69 47.69 50.04 48.85 36.75 
bats_5 42.39 45.80 36.78 47.50 49.99 51.71 37.28 
bats_6 42.34 45.56 37.52 47.50 49.99 50.77 37.13 
ses_1 41.88 45.54 36.60 45.77 48.83 48.07 36.35 
ses_2 42.23 45.49 36.78 46.16 49.17 48.03 37.45 
ses_3 41.79 45.90 36.30 45.17 48.40 47.87 36.16 
ses_4 42.13 45.39 36.95 48.93 50.29 49.12 37.26 

theta_1 42.08 46.24 36.87 46.09 48.95 47.22 36.50 
theta_2 41.79 45.90 36.30 45.17 48.40 47.87 36.16 

prophet_1 42.16 46.22 37.06 46.03 48.70 47.18 36.56 
prophet_2 41.85 46.72 36.84 46.26 48.89 47.08 36.31 
prophet_3 42.34 46.54 36.90 46.19 49.26 51.21 36.56 
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Table 5.10. Medians of the NSE values of the forecasts for each group of precipitation stations. The 
best performance for each model is in bold. 

Method Globe North America North Europe North Africa South Africa East Asia Australia 
naïve –0.38 –0.55 –0.45 0.54 –0.04 0.05 –0.44 
rw_1 –0.17 –0.28 –0.14 0.68 –0.20 0.49 –0.33 
rw_2 –0.17 –0.24 –0.15 0.68 –0.20 0.49 –0.34 
rw_3 –0.20 –0.34 –0.09 0.49 0.01 0.42 –0.36 
rw_4 –0.20 –0.30 –0.11 0.51 –0.02 0.44 –0.37 

arfima_1 0.15 0.10 0.12 0.69 0.29 0.49 0.04 
arfima_2 0.11 0.09 0.08 0.69 0.25 0.50 –0.04 
arfima_3 0.14 0.09 0.12 0.70 0.30 0.49 0.05 
arfima_4 0.08 0.08 0.05 0.71 0.18 0.51 –0.04 

bats_1 0.14 0.08 0.13 0.70 0.29 0.49 0.04 
bats_2 0.14 0.08 0.13 0.70 0.29 0.49 0.04 
bats_3 0.14 0.08 0.13 0.71 0.29 0.50 0.04 
bats_4 0.11 0.10 0.11 0.69 0.18 0.52 –0.01 
bats_5 0.11 0.08 0.10 0.70 0.25 0.45 0.01 
bats_6 0.10 0.07 0.05 0.70 0.25 0.44 0.01 
ses_1 0.14 0.09 0.12 0.70 0.25 0.49 0.04 
ses_2 0.10 0.09 0.08 0.69 0.22 0.50 –0.04 
ses_3 0.14 0.08 0.12 0.71 0.29 0.49 0.05 
ses_4 0.09 0.09 0.05 0.68 0.16 0.51 –0.04 

theta_1 0.14 0.08 0.13 0.69 0.29 0.49 0.04 
theta_2 0.14 0.08 0.12 0.71 0.29 0.49 0.05 

prophet_1 0.14 0.07 0.13 0.69 0.28 0.50 0.04 
prophet_2 0.14 0.07 0.13 0.70 0.29 0.50 0.04 
prophet_3 0.13 0.07 0.11 0.68 0.28 0.49 0.03 
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Figure 5.15. RMSE for the precipitation time series. 

Here as well, the Prophet model is competitive to ARFIMA, BATS, simple exponential 
smoothing and Theta models, offering from 16% up to 38% (depending on the examined set of 
time series) better results than the naïve method, while exhibiting the smallest RMSE amongst all 
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the methods for the precipitation forecasts for East Asia. The median values of the best-
performing automatic methods are close to the median of the estimated standard deviations of 
the deseasonalized time series (see Figure 5.2), as also applying to the temperature forecasts. 
Furthermore, the variants belonging to each of the {arfima_1, arfima_2, arfima_3, arfima_4}, 
{bats_1, bats_2, bats_3, bats_4}, {ses_1, ses_2, ses_3, ses_4}, {theta_1, theta_2}, {prophet_1, 
prophet_2} sets cannot be ranked either using the results of the experiments on precipitation time 
series, while the use of bats_5, bats_6 and prophet_3 has mostly (but not in all cases) led to less 
accurate forecasts. Regarding the different seasonality patterns illustrated in Figure 5.13, these 
do not result in some dramatic difference in the numerical results in contrast to those illustrated 
in Figure 5.14 for the case of the random walk variants. Finally, the NSE values of Table 5.10 are 
far worse than those corresponding to the temperature forecasts. Still, most of them are greater 
than zero and, thus, indicate acceptable performances, while for the geographical regions of East 
Asia and North Africa the performances could be characterized as moderate. 

5.4 Summary and discussion 

We investigate the predictability of monthly temperature and precipitation by applying seven 
automatic univariate time series forecasting methods to 985 and 1 552 monthly time series of 
temperature and precipitation, respectively. The methods include a naïve one based on the 
monthly values of the last year, while the rest are based on the random walk (with drift), ARFIMA, 
BATS, simple exponential smoothing, Theta and Prophet models. Prophet is a recently introduced 
model inspired by the nature of time series forecasted at Facebook and it has not been applied to 
hydrometeorological time series before. The ARFIMA model, on the other hand, is widely used in 
a non-automatic way in the hydrological literature, while the rest of the models have been rarely 
implemented in hydrology, e.g., in Chapters 3 and 4 herein, although they are very common in the 
forecasting literature. In the latter studies, no investigation is provided on how different choices 
of handling the seasonality and non-normality affect the performance of the models. This 
investigation constitutes one of the main aims of the present Chapter (therefore, proper variants 
of the methods are examined), together with the quantification of the performance of the selected 
models on monthly hydrometeorological time series and the comparison of the Prophet model to 
the rest. The used time series are 480 months long with no missing values, observed between 
January 1950 and December 1989 in stations covering a significant part of the Earth’s surface and, 
therefore, including various real-world process behaviours. The models are fitted in the first 36 
years of data (432 months) and subsequently tested in performing multi-step ahead forecasts for 
the last four years of data (48 months). The results are summarized in global scores, while their 
examination by group of stations leads to five individual scores for temperature and six for 
precipitation. The groups are formed according to the geographical vicinity of the stations. 

The results indicate that all the examined methods apart from the naïve and random walk 
ones are accurate enough to be used in long-term forecasting applications. Even the simple 
exponential smoothing and Theta models, which exhibit a rather moderate performance in terms 
of RMSE and NSE in the simulation experiments of Chapters 3, in this Chapter are found to be 
equally competitive with the ARFIMA and BATS models, which are the most accurate in terms of 
RMSE and NSE in the above-mentioned experiments. This may be explained by the fact that these 
specific experiments use non-seasonal simulated and real-world processes, with different 
predictability than the monthly temperature and precipitation processes. Seasonality can be 
assumed to be the deterministic term of a process and its proper handling leads to a significant 
improvement of the forecasts. Seasonality is also the reason why patterns of error evolution, 
investigated in Papacharalampous et al. (2018c), are not revealed within the experiments of the 
present Chapter, although the forecasting horizon is long enough here as well. The above-stated 
qualitative outcome is consistent with the 50 single-case studies of Chapter 6, which also use 
monthly temperature and precipitation data. In this latter Chapter, the seasonality term is 
estimated using the multiplicative model for the temperature time series and the additive model 
for the precipitation time series. Regarding the investigation of the present Chapter on how 
different choices of handling seasonality and non-normality affect the performance of the models, 
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the results do not suggest any specific combination of choices for the external handling of 
seasonality and non-normality as best. Nevertheless, the handling of seasonality through the BATS 
and Prophet models (the only models that offer this possibility amongst the used ones) mostly 
leads to less accurate forecasts than the external handling, especially for the former model. 

Admittedly, the quantitative information provided by the present Chapter is also important, 
since it directly expresses the predictability of monthly temperature and precipitation. The 
minimum and maximum medians of the absolute errors of the temperature forecasts are found to 
be around 0.25 K and 8.2 K respectively. Furthermore, a zero median of the absolute errors is 
computed for the precipitation forecasts produced for the dry months in geographical regions 
with relatively regular variability in precipitation, while the maximum median computed is 
around 100 mm. These values could be viewed in comparison with the minimum and maximum 
medians of absolute errors for annual temperature and precipitation, as derived in Chapter 4 of 
this thesis using two real-world datasets of 297 time series in total, which are approximately equal 
to 0.23 K and 1.10 K, and 68 mm and 189 mm, respectively. Moreover, the computed RMSE values 
range between 1.01 K and 3.65 K for temperature, and 36.16 mm and 70.17 mm for precipitation, 
while the respective NSE values are 0.79 and 0.98 for temperature, and −0.55 and 0.71 for 
precipitation. 

Excluding the naïve method and the variants using the random walk model, the respective 
RMSE values range between 1.01 K and 2.84 K for temperature, and 36.16 mm and 51.71 mm for 
precipitation. In more detail, for the total of the temperature time series the use of an ARFIMA, 
BATS, simple exponential smoothing, Theta or Prophet model, instead of the naïve method, leads 
to about 19−29% more accurate forecasts in terms of RMSE, or even in about 30−32% more 
accurate forecasts specifically for the temperature time series observed in North Europe. For the 
total of the precipitation time series the use of all these automatic methods leads to about 21−22% 
better forecasts than the use of the naïve method, while for the geographical regions of North 
America, North Europe and East Asia these percentages are 26−29%, 22−24% and 32−38% 
respectively. This higher degree of accuracy is non-ignorable and particularly important in a long 
run perspective. Importantly, the Prophet model is found to offer from 13% up to 32% and from 
16% up to 38% better results than the naïve method for the temperature and precipitation time 
series respectively. Moreover, the minimum and maximum NSE medians for the ARFIMA, BATS, 
simple exponential smoothing, Theta and Prophet models are 0.89 and 0.98 for temperature, and 
−0.04 and 0.71 for precipitation. The former NSE values indicate good forecasting performances 
and the latter acceptable to moderate. The higher predictability of the monthly temperature 
compared to the monthly precipitation is expected already from the comparison of their 
corresponding standard deviation values of the seasonally decomposed time series, which have a 
median around 1.7 K and 42 mm respectively. We think that the level of the forecasting accuracy 
can barely be improved using other methods, as the experiments of Chapter 3 suggest. 

5.5 Conclusions 

We have investigated the predictability of monthly temperature and precipitation, and 
simultaneously assessed the multi-step ahead performance of seven automatic univariate time 
series forecasting methods by applying the latter to the largest sample of hydrometeorological 
time series ever used for such purposes. The implemented methods are a naïve one based on the 
monthly values of the last year, as well as random walk (with drift), ARFIMA (acronym for 
AutoRegressive Fractionally Integrated Moving Average), BATS (acronym for Box–Cox transform, 
ARMA errors, Trend, and Seasonal components), simple exponential smoothing, Theta and 
Prophet. The latter is a recently introduced model, inspired by the nature of time series forecasted 
at Facebook and never applied to geophysical processes in the past, while most of the remaining 
methods are rarely used in hydrology. Proper variants of the methods have been examined to 
further investigate how different choices of handling the seasonality and non-normality affect the 
performance of the models. The results indicate that (a) the last five models perform well, better 
than the naïve and random walk methods, (b) monthly temperature and precipitation can be 
forecasted to a level of accuracy which can barely be improved using other methods, (c) the 



 

 114 

externally applied classical seasonal decomposition results mostly in better forecasts compared 
to the automatic seasonal decomposition and (d) the Prophet forecasting method is competitive, 
especially when it is combined with externally applied classical seasonal decomposition. 



 

 115 

6. Univariate time series forecasting of temperature and precipitation 
with a focus on machine learning algorithms: A multiple-case study from 
Greece 

In this Chapter, we provide contingent empirical evidence on the solutions to three problems 
associated with univariate time series forecasting using machine learning (ML) algorithms by 
conducting an extensive multiple-case study. These problems are: (a) lagged variable selection, 
(b) hyperparameter handling, and (c) comparison between ML and classical algorithms. The 
multiple-case study is composed by 50 single-case studies, which use time series of mean monthly 
temperature and total monthly precipitation observed in Greece. We focus on two ML algorithms, 
i.e. neural networks and support vector machines, while we also include four classical algorithms 
and a naïve benchmark in the comparisons. We apply a fixed methodology to each individual case 
and, subsequently, we perform a cross-case synthesis to facilitate the detection of systematic 
patterns. We fit the models to the deseasonalized time series. We compare the one- and multi-step 
ahead forecasting performance of the algorithms. Regarding the one-step ahead forecasting 
performance, the assessment is based on the absolute error of the forecast of the last monthly 
observation. For the quantification of the multi-step ahead forecasting performance we compute 
five metrics on the test set (last year’s monthly observations), i.e., the root mean square error, the 
Nash-Sutcliffe efficiency, the ratio of standard deviations, the coefficient of correlation and the 
index of agreement. The evidence derived by the experiments can be summarized as follows: (a) 
the results mostly favour using less recent lagged variables, (b) hyperparameter optimization 
does not necessarily lead to better forecasts, (c) the ML and classical algorithms seem to be equally 
competitive. 

6.1 Introduction 

6.1.1 Background information 

Machine learning (ML) algorithms are widely used for the forecasting of univariate geophysical 
time series as an alternative to classical algorithms. Popular ML algorithms are the rather well-
established Neural Networks (NN) and the new-entrant in most scientific fields Support Vector 
Machines (SVM). The latter algorithm has been presented in its current form by Cortes and Vapnik 
(1995; see also Vapnik 1995, 1999). The large number and wide range of the relevant applications 
is apparent in the review papers of Maier and Dandy (2000), and Raghavendra and Deka (2014), 
respectively. The competence of ML algorithms in univariate time series forecasting has been 
empirically proven in Chapters 3 and 4, and in Tyralis and Papacharalampous (2017) through 
extensive simulation experiments and large-scale real-world investigations. 

Nevertheless, univariate time series forecasting using ML algorithms also implies the 
handling of specific factors that may improve or deteriorate the performance of the algorithms, 
i.e., the lagged variables and the hyperparameters. In contrast to the typical regression problem, 
in a forecasting problem the set of predictor variables is a set of lagged variables, formed using 
observed past values of the process to be forecasted and, consequently, holding information about 
the temporal dependence. Although the amount of the available historical information taken into 
account increases when using a large number of lagged variables, the length of the fitting set 
concomitantly decreases; for more details, see Tyralis and Papacharalampous (2017). While there 
is a wide literature on applications of ML algorithms in hydrological univariate time series 
forecasting, mainly comprising single- or few-case studies that particularly focus on details about 
the model structure (e.g., Atiya et al. 1999; Guo et al. 2011; Hong 2008; Kumar et al. 2004; Moustris 
et al. 2011; Ouyang and Lu 2017; Sivapragasam et al. 2001; Wang et al. 2006), studies explicitly 
stating information concerning the variable selection issue, such as Belayneh et al. (2014), Nayak 
et al. (2004), Hung et al. (2009) and Yaseen et al. (2016), are less. Tyralis and Papacharalampous 
(2017) have investigated the effect of a sufficient number of lagged variable selection choices on 
the performance of the Breiman’s random forests algorithm (Breiman 2001a) in one-step ahead 
univariate time series forecasting. 
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On the other hand, information on the hyperparameter selection is usually emphasized in the 
hydrological literature (see e.g., Belayneh et al. 2014; Hung et al. 2009; Koutsoyiannis et al. 2008; 
El-Shafie et al. 2007; Tongal and Berndtsson 2017; Valipour et al. 2013; Yu et al. 2004). An 
example of a hyperparameter is the number of hidden nodes within a neural networks structure. 
Hyperparameters are distinguished from the basic parameters, because they are usually 
optimized or tuned with the aim to improve the performance of a ML algorithm. Hyperparameter 
optimization can be performed using a single validation set extracted from the fitting set or k-fold 
cross-validation, which involves multiple set divisions and tests. The optimal hyperparameter 
values are most frequently searched heuristically, either using grid search or random search, 
while ML or Bayesian methods can be adopted for this task as well (Witten et al. 2017). However, 
non-tuned ML models are also used in hydrology (see e.g., Yaseen et al. 2016). Finally, a popular 
problem arising when using ML forecasting algorithms is the comparison between ML and 
classical algorithms. This problem is mostly examined within single-case studies (see e.g., Ballini 
et al. 2001; Koutsoyiannis et al. 2008; Tongal and Berndtsson 2017; Valipour et al. 2013; Yu et al. 
2004; see also Tables 3.1 and 4.1 herein), as also applying to the problems of lagged variable and 
hyperparameter selection. 

6.1.2 Main contribution and research questions 

The main contribution of this Chapter is the exploration in geoscientific concepts of the problems 
problems presented in detail in Section 6.1.1 and summarized here below, together with their 
related research questions of focus: 

o Problem 1: Lagged variable selection in time series forecasting using ML algorithms 

Research question 1: Should we select less recent lagged variables or a large number of lagged 
variables in time series forecasting using ML algorithms? 

o Problem 2: Hyperparameter selection in time series forecasting using ML algorithms 

Research question 2: Does hyperparameter optimization necessarily lead to a better 
performance in time series forecasting using ML algorithms? 

o Problem 3: Comparison between ML and classical algorithms 

Research question 3: Do the ML algorithms exhibit better (or worse) performance than the 
classical ones? 

In fact, exploration is indispensable for understanding the phenomena involved in a specific 
problem and, therefore, it constitutes an essential part within every theory-development process. 

6.1.3 Research method and implementation 

We adopt the multiple-case study research method (presented in detail in Yin 2003). This method 
embraces the examination of more than one individual cases, facilitating the observation of 
specific phenomena from multiple perspectives or within different contexts (Dooley 2002). For 
the detection of systematic patterns across the individual cases a cross-case synthesis can be 
performed (Larsson 1993). Given the fact that the boundaries between the phenomena and the 
context are not clear (thus, it is meaningful to consider a case study design, as explained in Baxter 
and Jack 2008), it is important that each individual case keeps its identity within the multiple-case 
study, so that one can specifically focus on it. This exploration within and across the individual 
cases can provide interesting insights into the phenomena under investigation, as well as a form 
of generalization named “contingent empirical generalization”, while retaining the immediacy of 
the single-case study method (Achen and Snidal 1989). 

We conduct an extensive multiple-case study composed by 50 single-case studies. The latter 
use temperature and precipitation time series observed in Greece. We examine these two 
geophysical processes, because they exhibit different properties, which may affect differently the 
results within the explorations. We focus on two ML algorithms, i.e. NN and SVM, for an analogous 
reason. Moreover, the explorations are conducted for the one- and a multi-step ahead horizons, 
as their corresponding forecasting attempts are not of the same difficulty. We apply a fixed 
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methodology to each individual case. This fixed methodology provides the common basis to 
further perform a cross-case synthesis for the detection of systematic patterns across the 
individual cases. The latter is the novelty of this Chapter. 

6.2 Data and methods 

In this Section, we present the data and methods of the Chapter. Basic information on the methods’ 
implementation is also provided, while the total of the exploited R packages is independently 
listed in Section 2.9.4. All R functions are used with their predefined values, unless specified 
differently. Hereafter, to specify an implemented R function, we state its name accompanied by 
the name of the R package. The latter name is given between curly brackets ({}). To imply that 
we implement a built-in-R function, we accompany its name with “{stats}”. 

6.2.1 Methodology outline 

We conduct 50 single-case studies by applying a fixed methodology to each of the 50 time series 
presented in Section 6.2.2, as explained subsequently. First, we split the time series into a fitting 
set and a test set. The latter is the last monthly observation for the one-step ahead forecasting 
experiments and the last year’s monthly observations for the multi-step ahead forecasting 
experiments. Second, we fit the models to the seasonally decomposed fitting set, within the 
context described in Section 6.2.3, and make predictions corresponding to the test set. Third, we 
recover the seasonality in the predicted values and compare them to their corresponding 
observed using the metrics of Section 6.2.4. Finally, we perform a cross-case synthesis to 
demonstrate similarities and differences between the single-case studies conducted. We present 
the results per category of tests, which is determined by the set {set of methods, process, forecast 
horizon}, and further summarize them, as discussed in Section 6.2.4. The sets of methods are 
defined in Section 6.2.3, while the total number of categories is 20. We place emphasis on the 
exploration of the three problems summarized in Section 6.1, but we also present quantitative 
information about the produced forecasts and search for evidence regarding the existence of a 
possible relationship between the forecast quality, and the standard deviation (σ), coefficient of 
variation (cv) and Hurst parameter (H) estimates of the fractional Gaussian noise process (see 
Section 2.1.6) for the deseasonalized time series. These estimates are presented in Section 6.2.2. 

6.2.2 Temperature and precipitation time series 

We use 50 time series of mean monthly temperature and total monthly precipitation observed in 
Greece. These time series are sourced from Lawrimore et al. (2011), and Peterson and Vose 
(1997), respectively. We select only those with few missing values (blocks with length equal or 
less than one). Subsequently, we use a seasonal Kalman filter (see Section 2.1.9), implemented 
through the R function na.StructTS {zoo}, for filling in the missing values. The basic 
information about the time series is provided in Table 6.1, while Figure 6.1 presents the locations 
of the stations at which the data has been recorded. We use the deseasonalized fitting sets for 
fitting the forecasting models, as suggested in Taieb et al. (2012) for the improvement of the 
forecast quality (see also Section 2.2.6). The time series decomposition is performed exclusively 
on the fitting sets by using the multiplicative model (see Section 2.1.7) for the temperature time 
series and the additive model (see Section 2.1.7) for the precipitation ones. The reason for this 
differentiation is that the use of the multiplicative model on the precipitation time series results 
in zero forecasts for some methods, as a result of zero precipitation observations in the summer 
months. Both seasonal decomposition models are implemented throught the R function 
decompose {stats}. 
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Table 6.1. Time series investigated in the Chapter. 
S/n Process Code name Location Station details Reference Start End Length 

(months) 

ID
 

La
ti

tu
de

 

Lo
n

gi
tu

d
e 

1 Temperature temp_1 Araxos 16687001 38.20 21.40 Lawrimore 
et al. 

(2011) 

Jan 1951 Dec 1980 360 
2 temp_2 Athens 16714000 37.97 23.72 Jan 1858 Dec 1975 1416 
3 temp_3 Athens 16714000 37.97 23.72 Jan 1989 Dec 2001 156 
4 temp_4 Athens 16716000 37.90 23.73 Jan 1951 Dec 2012 744 
5 temp_5 Heraklion 16754000 35.33 25.18 Jan 1950 Dec 2015 792 
6 temp_6 Kalamata 16726000 37.07 22.02 Jan 1956 Dec 2015 720 
7 temp_7 Kerkyra 16641000 39.62 19.92 Jan 1951 Dec 2016 792 
8 temp_8 Larissa 16648000 39.63 22.42 Jan 1899 Dec 2016 1416 
9 temp_9 Lemnos 16650000 39.92 25.23 Jan 1951 Dec 1998 576 

10 temp_10 Methoni 16734000 36.83 21.70 Jan 1951 Dec 1972 264 
11 temp_11 Methoni 16734000 36.83 21.70 Jan 1975 Dec 2000 312 
12 temp_12 Patra 16689000 38.25 21.73 Jan 1951 Dec 1989 468 
13 temp_13 Samos 16723000 37.70 26.92 Jan 1955 Dec 1969 180 
14 temp_14 Samos 16723000 37.70 26.92 Jan 1974 Dec 2003 360 
15 temp_15 Souda 16746000 35.48 24.12 Jan 1961 Dec 2015 660 
16 temp_16 Thessaloniki 16622000 40.52 22.97 Jan 1892 Dec 2016 1500 
17 temp_17 Thessaloniki 16622001 40.52 23.02 Jan 1961 Dec 1970 120 
18 Precipitation prec_1 Agrinion 16672000 38.60 21.70 Peterson 

and Vose 
(1997) 

Jan 1956 Dec 1987 384 
19 prec_2 Alexandroupoli 16627000 40.80 25.90 Jan 1951 Dec 1990 480 
20 prec_3 Aliartos 16674000 38.40 23.10 Jan 1907 Dec 1990 1008 
21 prec_4 Anogeia 16754001 35.30 24.90 Jan 1919 Dec 1939 252 
22 prec_5 Anogeia 16754001 35.30 24.90 Jan 1950 Dec 1979 360 
23 prec_6 Araxos 16687000 38.20 21.40 Jan 1949 Dec 2000 624 
24 prec_7 Athens 16714000 38.00 23.70 Jan 1860 Dec 1881 264 
25 prec_8 Athens 16714000 38.00 23.70 Jan 1887 Dec 2005 1428 
26 prec_9 Athens 16716000 37.90 23.70 Jan 1929 Dec 1945 204 
27 prec_10 Fragma 16715001 38.20 23.90 Jan 1926 Dec 1990 780 
28 prec_11 Heraklion 16754000 35.30 25.10 Jan 1946 Dec 1990 540 
29 prec_12 Igoumenitsa 16641001 39.50 20.30 Jan 1951 Dec 1990 480 
30 prec_13 Ioannina 16642000 39.70 20.80 Jan 1951 Dec 1990 480 
31 prec_14 Kalamata 16726000 37.00 22.10 Jan 1956 Dec 1970 180 
32 prec_15 Kalo Chorio 16756001 35.10 25.70 Jan 1950 Dec 1984 420 
33 prec_16 Kastelli 16760001 35.20 25.30 Jan 1949 Dec 1976 336 
34 prec_17 Kerkyra 16641000 39.60 19.90 Jan 1952 Dec 1996 540 
35 prec_18 Kythira 16743000 36.30 23.00 Jan 1951 Dec 1973 276 
36 prec_19 Kos 16742000 36.80 27.10 Jan 1958 Dec 1990 396 
37 prec_20 Kozani 16632000 40.30 21.80 Jan 1955 Dec 1987 396 
38 prec_21 Larissa 16648000 39.60 22.40 Jan 1951 Dec 1997 564 
39 prec_22 Lemnos 16650001 39.90 25.30 Jan 1951 Dec 2000 600 
40 prec_23 Methoni 16734000 36.80 21.70 Jan 1951 Dec 1991 492 
41 prec_24 Milos 16738000 36.70 24.50 Jan 1951 Dec 1990 480 
42 prec_25 Mytilene 16667000 39.10 26.60 Jan 1952 Dec 1990 468 
43 prec_26 Naxos 16732000 37.10 25.50 Jan 1955 Dec 1971 204 
44 prec_27 Patra 16689000 38.20 21.70 Jan 1901 Dec 1984 1008 
45 prec_28 Sitia 16757000 35.20 26.10 Jan 1960 Dec 1983 288 
46 prec_29 Skyros 16684000 38.90 24.60 Jan 1955 Dec 1987 396 
47 prec_30 Thessaloniki 16622000 40.60 23.00 Jan 1931 Dec 1997 804 
48 prec_31 Thessaloniki 16622002 40.50 22.90 Jan 1961 Dec 1970 120 
49 prec_32 Trikala 16645001 39.60 21.80 Jan 1951 Dec 1990 480 
50 prec_33 Tripoli 16710000 37.50 22.40 Jan 1951 Dec 1985 420 
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Figure 6.1. Maps of the locations of the (a) temperature and (b) precipitation stations; their 
sources are Lawrimore et al. (2011), and Peterson and Vose (1997), respectively. 

We also apply the time series decomposition models to the entire time series to deseasonalize 
them. We then estimate the mean (μ), σ and H parameters of the fractional Gaussian noise process 
(see Section 2.1.6) for each of the seasonally decomposed entire time series by using the R function 
mleHK {HKprocess}. We further estimate the coefficient of variation (cv) of the fractional 
Gaussian noise process, as detailed in Section 2.1.6. The μ, σ, cv and H estimates are presented in 
Tables 6.2 and 6.3. 

Table 6.2. Mean (μ), standard deviation (σ), coefficient of variation (cv) and Hurst parameter (H) 
estimates for the deseasonalized temperature time series. 

Time series μ estimate (°C) σ estimate (°C) cv estimate H estimate 
temp_1 17.95 1.25 0.07 0.66 
temp_2 17.86 1.93 0.11 0.67 
temp_3 18.51 1.81 0.10 0.68 
temp_4 18.70 1.62 0.09 0.65 
temp_5 18.97 1.18 0.06 0.69 
temp_6 17.90 1.42 0.08 0.74 
temp_7 17.75 1.47 0.08 0.67 
temp_8 15.91 2.75 0.17 0.64 
temp_9 16.36 2.11 0.13 0.74 

temp_10 18.24 1.07 0.06 0.59 
temp_11 17.83 1.20 0.07 0.61 
temp_12 17.71 1.41 0.08 0.69 
temp_13 18.21 1.46 0.08 0.64 
temp_14 18.38 1.64 0.09 0.64 
temp_15 18.63 1.47 0.08 0.71 
temp_16 16.21 2.59 0.16 0.67 
temp_17 16.13 2.16 0.13 0.48 
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Table 6.3. Mean (μ), standard deviation (σ), coefficient of variation (cv) and Hurst parameter (H) 
estimates for the deseasonalized precipitation time series. 

Time series μ estimate (mm) σ estimate (mm) cv estimate H estimate 
prec_1 81.09 56.61 0.70 0.47 
prec_2 46.50 37.30 0.80 0.56 
prec_3 55.52 42.14 0.76 0.53 
prec_4 93.61 78.01 0.83 0.57 
prec_5 95.62 74.42 0.78 0.48 
prec_6 57.59 43.65 0.76 0.54 
prec_7 33.44 30.45 0.91 0.56 
prec_8 32.79 29.44 0.90 0.53 
prec_9 29.65 27.87 0.94 0.53 

prec_10 47.30 37.03 0.78 0.53 
prec_11 40.02 35.27 0.88 0.50 
prec_12 88.81 66.22 0.75 0.56 
prec_13 94.36 60.85 0.64 0.57 
prec_14 66.19 45.58 0.69 0.46 
prec_15 42.12 35.65 0.85 0.50 
prec_16 60.14 47.45 0.79 0.52 
prec_17 92.53 65.00 0.70 0.56 
prec_18 47.10 39.39 0.84 0.52 
prec_19 58.63 53.36 0.91 0.57 
prec_20 43.94 32.23 0.73 0.54 
prec_21 36.46 30.90 0.85 0.54 
prec_22 40.84 36.72 0.90 0.55 
prec_23 60.59 44.00 0.73 0.50 
prec_24 35.08 32.84 0.94 0.47 
prec_25 56.00 49.39 0.88 0.51 
prec_26 27.61 22.43 0.81 0.53 
prec_27 60.23 44.64 0.74 0.52 
prec_28 40.39 35.38 0.88 0.46 
prec_29 38.55 32.86 0.85 0.56 
prec_30 37.15 27.98 0.75 0.54 
prec_31 35.24 24.94 0.71 0.55 
prec_32 62.91 47.51 0.76 0.61 
prec_33 68.45 44.77 0.65 0.47 

6.2.3 Forecasting algorithms and methods 

All the algorithms used herein (see Table 6.4) are well-grounded in the literature; thus, in their 
subsequent presentation we place emphasis on implementation information. Their theoretical 
documentation can be found in Section 2.2 (see also the references therein). We focus on two ML 
forecasting algorithms, i.e., NN and SVM. The NN algorithm is implemented through the R function 
mlp {nnet}, while the SVM algorithm is implemented through the R function ksvm {kernlab}. 
These algorithms implement a single-hidden layer Multilayer Perceptron (MLP), and the Radial 
Basis kernel “Gaussian” function with C = 1 and epsilon = 0.1, respectively. Their application is 
made by using the R functions CasesSeries {rminer}, fit {rminer} and lforecast 
{rminer}. We also include four classical algorithms, i.e., AR(1), auto_ARFIMA, BATS and Theta, 
and the seasonal naïve benchmark in the comparisons. We apply the classical algorithms by using 
the R functions Arima {forecast}, arfima {forecast}, bats {forecast}, forecast 
{forecast} and thetaf {forecast}. The auto_ARFIMA algorithm considers the long-range 
dependence observed in the time series through the d parameter. The AR(1), auto_ARFIMA and 
BATS algorithms apply Box-Cox transformation to the input data before fitting a model to them. 
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Table 6.4. Forecasting algorithms and their corresponding models from Table 2.3. 
S/n Role in this 

work 
Code name Corresponding model from 

Table 2.3 
General 
category 

Description 

1 Main NN Neural networks (NN) NN Section 2.3.2 
2 SVM Support vector machines (SVM) SVM Section 2.3.4 
3 Additional Naive Seasonal naïve Simple Section 2.2.1 
4 AR(1) Fixed-order autoregressive 

moving average (ARMA) 
ARIMA  

5 auto_ARFIMA Optimum-order autoregressive 
fractionally integrated moving 

average (ARFIMA) 

ARFIMA Section 2.2.2 

6 BATS Exponential smoothing state 
space with Box-Cox 

transformation, ARMA errors 
correction, trend and seasonal 

components (BATS) 

Innovations 
state space 

Section 2.2.3 

7 Theta Theta Exponential 
smoothing 

While the classical methods are simply defined by the classical algorithm, the ML methods 
are defined by the set {ML algorithm, hyperparameter selection procedure, lags}. We compare 21 
regression matrices, each using the first n time lags, n = 1, 2, …, 21, and two procedures for 
hyperparameter selection, i.e., predefined hyperparameters (default values of the algorithms) or 
defined after optimization. The symbol * in the name of a ML method is used in this Chapter to 
denote that the model’s hyperparameters have been optimized. The hyperparameter optimization 
is performed with the grid search method using a single validation set (last 1/3 of the 
deseasonalized fitting set). The hyperparameters optimized are the number of hidden nodes and 
the number of variables randomly sampled as candidates at each split of the NN and SVM models 
respectively. For the NN* method the hyperparameter optimization procedure is described 
subsequently. First, we fit 16 different NN models (defined by the grid values 0, …, 15) to the fist 
2/3 of the deseasonalized fitting set. Second, we use these models to produce forecasts 
corresponding to the validation set. Third, we select the one exhibiting the smallest root mean 
square error (RMSE) on the validation set. To produce the forecast corresponding to the test set 
we further fit the selected model to the whole deseasonalized fitting set. For the SVM* method the 
procedure is the same, except that the candidate models are five (defined by the grid values 1, … 
5). Hereafter, we consider that the ML models are used with predefined hyperparameters and that 
the regression matrix is built using only the first lag, unless mentioned differently. We use the sets 
of methods defined in Table 6.5. Each of them has a specific utility within our experiments, which 
is also reported in Table 6.5. A secondary utility of set of methods no 5 is the investigation of the 
existence of a possible relationship between the forecast quality and the parameter estimates for 
the deseasonalized time series. 

Table 6.5. Sets of forecasting methods and their main utility within the Chapter. The forecasting 
algorithms are defined in Table 6.4. The symbol * in the name of a machine learning method is 
used to denote that the model’s hyperparameters have been optimized. 

S/n Set of methods Number of 
included methods 

Main utility 

1 {NN given a regression matrix formed 
using the first n lags, n = 1, 2, …, 21} 

21 Exploration of Problem 1 for 
the NN algorithm 

2 {SVM given a regression matrix formed 
using the first n lags, n = 1, 2, …, 21} 

21 Exploration of Problem 1 for 
the SVM algorithm 

3 {NN, NN*} 2 Exploration of Problem 2 for 
the NN algorithm 

4 {SVM, SVM*} 2 Exploration of Problem 2 for 
the SVM algorithm 

5 {Naïve, AR(1), auto_ARFIMA, BATS, 
Theta, NN, SVM} 

7 Exploration of Problem 3 for 
the NN and SVM algorithms 
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6.2.4 Metrics and summary statistics 

The one-step ahead forecasting performance is assessed by computing the absolute error (AE) of 
the forecast, while the multi-step ahead forecasting performance by computing the RMSE, the 
Nash-Sutcliffe efficiency (NSE), the ratio of standard deviations (rSD), the index of agreement (d) 
and the coefficient of correlation (Pr). The definitions of these metrics are given in Section 2.8.2 
(see also Table 2.6). To summarize the results of the multiple-case study, we compute some 
summary statistics for the values of each metric, i.e., the minimum, median and maximum, 
separately for each algorithm. For the ML ones, these summary statistics are computed by 
aggregating the total of the values of each metric computed for methods that are based on each 
specific ML algorithm (tested for the exploration of Problems 1, 2 or 3). We also compute the linear 
regression coefficient (LRC) for each method per category of tests. The definition of the LRC 
statistic is provided in Section 2.8.2 (see also Table 2.6). 

6.3 Results and discussion 

In Section 6.3, we present and discuss the results of our multiple-case study. We place emphasis 
on the qualitative presentation of the results, because of its importance in the exploration of the 
research questions of Section 6.1. Especially the heatmap visualization adopted herein allows the 
examination of each single-case study alone and in comparison to the rest simultaneously. 
Quantitative information, derived by our multiple-case study and particularly significant for the 
case of Greece, is also presented. Regarding this type of information, the present Chapter could be 
viewed as an expansion of Moustris et al. (2011). The latter study has focused on four long 
precipitation time series observed in Alexandroupoli, Athens, Patra and Thessaloniki (a subset of 
the time series examined within our multiple-case study), with the aim to present forecasts for 
the monthly maximum, minimum, mean and cumulative precipitation totals using NN methods. 

6.3.1 Explorations on lagged variable selection 

This Section is devoted to the exploration of Problem 1. In Figures 6.2 and 6.3, we visualize the 
one and twelve-step ahead temperature forecasts respectively, produced for this exploration for 
the NN and SVM algorithms, in comparison to their corresponding target values. We observe that, 
for a specific target value, the forecasts are more scattered (in the vertical direction) for the NN 
algorithm than they are for the SVM algorithm. This fact indicates that the performance of the SVM 
algorithm is affected less than the performance of the NN algorithm by changes in the lagged 
regression matrix used in the fitting process. The effect under discussion may result in more or 
less accurate NN forecasts (laying closer or farther from the 1:1 line included in the scatterplots 
of Figures 6.2 and 6.3) than the ones produced by the SVM algorithm. Evidence that the NN 
algorithm is more prone to changes in the regression matrix than the SVM one is provided by the 
tests conducted using the precipitation time series as well. In Figure 6.4, we present the twelve-
step ahead precipitation forecasts in comparison to their corresponding target values. 
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Figure 6.2. One-step ahead temperature forecasts, produced for the exploration of Problem 1 for 
the (a) NN and (b) SVM algorithms, in comparison to their corresponding target values. 
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Figure 6.3. Twelve-step ahead temperature forecasts, produced for the exploration of Problem 1 
for the (a) NN and (b) SVM algorithms, in comparison to their corresponding target values. 
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Figure 6.4. Twelve-step ahead precipitation forecasts, produced for the exploration of Problem 1 
for the (a) NN and (b) SVM algorithms, in comparison to their corresponding target values. 

More importantly, in Figures 6.5 and 6.6 we comparatively present the AE, RMSE, NSE and d 
values computed for the temperature forecasts, produced for the exploration of Problem 1 for the 
NN and SVM algorithms, for each individual case examined. By the examination of these two 
figures we observe the following: 

(a) There are variations in the results across the individual cases, to an extent that it is impossible 
to decide on a best or worst method. Therefore, no evidence is provided by the respective 
categories of tests that any of the compared lagged regression matrices systematically leads 
to better forecasts than the rest, either for the NN or the SVM algorithms. 

(b) The heatmaps formed for the SVM algorithm are smoother in the row direction than those 
formed for the NN algorithm, a fact rather expected from Figures 6.2 and 6.3. In other words, 
the variations within each single-case study are of small magnitude for the case of the SVM 
algorithm, while they are significant for the NN algorithm. 
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(c) For the SVM algorithm there are no systematic patterns and the small variations seem to be 
rather random. 

(d) For the NN algorithm and especially for the twelve-step ahead forecasts the left parts of the 
heatmaps are smoother with no white cells. Alternatively worded, it seems that is more likely 
that the forecasts are better when using less recent lagged variables in conjunction with this 
algorithm. 
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neural networks support vector machines 

  

  

Figure 6.5. Cross-case synthesis for the exploration of Problem 1 for the NN and SVM algorithms 
using the temperature time series (part 1). 
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neural networks support vector machines 

  

  

Figure 6.6. Cross-case synthesis for the exploration of Problem 1 for the NN and SVM algorithms 
using the temperature time series (part 2). 
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Observation (a) is particularly important, because it reveals that the forecast quality is 
subject to limitations. Each forecasting method has some specific theoretical properties and, due 
to the latter, it performs better or worse than other forecasting methods, depending on the case 
examined. Even forecasting methods based on the same algorithm can produce forecasts with 
very different quality, as indicated by the results obtained for the NN algorithm. Observation (d), 
on the other hand, provides some interesting evidence, which however is contingent and, 
therefore, should be further investigated within larger forecast-comparing studies, such as Tyralis 
and Papacharalampous (2017). Furthermore, in Figure 6.7 we present the AE and RMSE values 
computed for the precipitation forecasts, produced for the exploration of Problem 1 for the NN 
and SVM algorithms, within each single-case study. Observations (a) and (b) apply here as well. 
Moreover, both the ML algorithms, seem to perform rather better, to a small extent though, when 
given a lagged regression matrix using less recent lags. 



 

 130 

neural networks support vector machines 

  

  
Figure 6.7. Cross-case synthesis for the exploration of Problem 1 for the NN and SVM algorithms 
using the precipitation time series. 
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6.3.2 Explorations on hyperparameter selection 

This Section is devoted to the exploration of Problem 2. In Figure 6.8, we present the twelve-step 
ahead precipitation forecasts, produced for this exploration for the NN and SVM algorithms, in 
comparison to their corresponding target values. Figure 6.8 could be studied alongside with 
Figure 6.4, providing contingent evidence that hyperparameter optimization affects less the 
performance of these two ML algorithms than lagged variable selection does. The latter 
observation applies more to the NN algorithm. Furthermore, in Figure 6.9 we comparatively 
present the AE, RMSE, rSD and d values computed for the one- and twelve-step ahead temperature 
forecasts, produced for the exploration of Problem 2, within each single-case study. By the 
examination of Figure 6.9 we observe the following: 

(a) Here as well, none of the compared methods seems to be systematically better across the 
individual cases examined. In other words, the results do not systematically favour any of the 
two tested hyperparameter selection procedures and, therefore, we can state that 
hyperparameter optimization does not necessarily lead to better forecasts than the use of the 
default values of the algorithms. 

(b) For both the ML algorithms the observed variations within each of the single-case studies are 
of smaller magnitude for the one-step ahead forecasts than they are for the twelve-step ahead 
ones. 

(c) For the case of the NN algorithm the twelve-step ahead forecasts seem to be rather better 
when hyperparameter optimization precedes the fitting process, while the opposite applies 
to the case of the SVM algorithm. 
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Figure 6.8. Twelve-step ahead precipitation forecasts, produced for the exploration of Problem 2 
for the NN and SVM algorithms, in comparison to their corresponding target values. 
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Figure 6.9. Cross-case synthesis for the exploration of Problem 2 for the NN and SVM algorithms 
using the temperature time series. 
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Figure 6.10. Cross-case synthesis for the exploration of Problem 2 for the NN and SVM algorithms 
using the precipitation time series. 
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Finally, in Figure 6.10 we present the AE, NSE, rSD and d values computed for the one- and 
twelve-step ahead precipitation forecasts, produced for the exploration of Problem 2, within each 
single-case study. Observation (a) also applies to the precipitation forecasts, while the variations 
can be significant for both the one- and twelve-step ahead forecasts. For the latter it seems that 
hyperparameter optimization mostly leads to less accurate forecasts. This may be explained by 
the fact that the default values of the algorithms are usually set based on tests performed by their 
developers or in the scientific literature, so that the performance of the algorithms is mostly 
maximized for a variety of problems. 

6.3.3 Explorations on the comparison of different algorithms 

This Section is devoted to the exploration of Problem 3. In Figure 6.11, we present the one- and 
twelve-step ahead temperature forecasts, produced for this exploration, in comparison to their 
corresponding target values, while in Figure 6.12 we present an analogous visualization for the 
precipitation forecasts serving the same purpose. Moreover, in Figures 6.13 and 6.14 we 
comparatively present all the metric values computed for the temperature forecasts and the AE, 
RMSE and d values computed for the precipitation forecasts respectively within each single-case 
study. By the examination of these four figures we observe the following: 

(a) Here as well, the results of the single-case studies vary significantly. 

(b) The best method within a specific single-case study depends on the criterion of interest. In 
fact, even within a specific single-case study, we cannot decide on one best (or worst) method 
regarding all the criteria set simultaneously. 

(c) Observations (a) and (b) apply equally to the ML and the classical methods. In fact, it seems 
that both categories can rather perform equally well, under the same limitations. 

(d) We observe that the Naïve benchmark, competent as well, frequently produces far different 
forecasts than those produced by the ML or classical algorithms. 
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Figure 6.11. (a) One- and (b) twelve-step ahead temperature forecasts, produced for the 
exploration of Problem 3, in comparison to their corresponding target values. 
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Figure 6.12. (a) One- and (b) twelve-step ahead precipitation forecasts, produced for the 
exploration of Problem 3, in comparison to their corresponding target values. 
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Figure 6.13. Cross-case synthesis for the exploration of Problem 3 using the temperature time 
series. 



 

 139 

   

Figure 6.14. Cross-case synthesis for the exploration of Problem 3 using the precipitation time 
series. 

If we further compare Figures 6.11(a), 6.11(b) and 6.12 with Figures 6.2, 6.3 and 6.4 
respectively, we observe that the performance of the NN algorithm (when given the 21 regression 
matrices examined in the present Chapter) can vary more than the performance of the here 
compared ML and classical methods. This observation does not apply to the case of the SVM 
algorithm. Finally, we note that the exploration presented in Section 6.3.3 and Chapter 3 
effectively complement each other. In fact, the former illustrates and provides evidence on 
important points by presenting real-world results, while the latter confirms the evidence derived 
by the former by conducting simulation experiments of large scale. Both illustration and 
confirmation are integral parts of every theory-building process. 

6.3.4 Additional information extracted from the experiments 

This Section is devoted to some additional worth-discussed information derived by our multiple-
case study. In fact, the results produced mainly for the exploration of Problems 1, 2 and 3 can also 
be examined from different points of view, which are considered of secondary importance in this 
Chapter. In Tables 6.6 and 6.7, we present the summary statistics of the metric values, separately 
for each algorithm, and in Table 6.8 the LRC values for each category of tests. This information 
stands as a summary of the quantitative information provided by our multiple-case study and, 
together with Figures 6.2−6.14, can facilitate the below discussion in a satisfactory manner. 
Regarding an overall assessment of the algorithms, they are all found to mostly have a better 
average-case forecasting performance than the Naïve benchmark, with the NN algorithm being 
the worst. This is due to the reported high effect of the lagged regression matrix on the 
performance of this algorithm. On the contrary, the SVM algorithm has a better average-case 
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performance, (almost) as good as the one of the best-performing classical algorithms, i.e. BATS, 
Theta and auto_ARFIMA. 

Table 6.6. Summary statistics of the metric values computed for the temperature forecasts. The 
values reported for the NN and SVM algorithms are computed for the total of the NN and SVM 
methods implemented in the Chapter respectively. 

Metric Algorithm Summary statistic 
Minimum Median Maximum 

AE (°C) Naïve 0.10 1.00 2.20 
AR(1) 0.08 0.66 4.41 

auto_ARFIMA 0.02 0.88 4.22 
BATS 0.00 0.86 4.07 
Theta 0.11 1.00 3.92 

NN 0.00 0.98 5.79 
SVM 0.01 0.90 4.52 

RMSE 
(°C) 

Naïve 0.92 1.60 2.62 
AR(1) 0.96 1.32 2.12 

auto_ARFIMA 0.74 1.28 1.95 
BATS 0.74 1.14 1.75 
Theta 0.74 1.14 1.73 

NN 0.63 1.70 6.05 
SVM 0.73 1.31 2.30 

NSE Naïve 0.87 0.94 0.97 
AR(1) 0.89 0.96 0.97 

auto_ARFIMA 0.91 0.95 0.98 
BATS 0.93 0.96 0.99 
Theta 0.93 0.96 0.99 

NN 0.44 0.93 0.99 
SVM 0.85 0.95 0.99 

rSD Naïve 0.87 1.01 1.18 
AR(1) 0.90 1.01 1.22 

auto_ARFIMA 0.90 1.01 1.21 
BATS 0.92 1.00 1.19 
Theta 0.92 0.99 1.19 

NN 0.89 1.01 1.24 
SVM 0.89 1.02 1.24 

Pr Naïve 0.96 0.97 0.99 
AR(1) 0.98 0.99 0.99 

auto_ARFIMA 0.98 0.99 0.99 
BATS 0.98 0.99 0.99 
Theta 0.98 0.99 0.99 

NN 0.79 0.98 1.00 
SVM 0.97 0.99 0.99 

d Naïve 0.97 0.98 0.99 
AR(1) 0.98 0.99 0.99 

auto_ARFIMA 0.98 0.99 1.00 
BATS 0.99 0.99 1.00 
Theta 0.98 0.99 1.00 

NN 0.86 0.98 1.00 
SVM 0.97 0.99 1.00 
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Table 6.7. Summary statistics of the metric values computed for the precipitation forecasts. The 
values reported for the NN and SVM algorithms are computed for the total of the NN and SVM 
methods implemented in the Chapter respectively. 

Metric Algorithm Summary statistic 
Minimum Median Maximum 

AE (mm) Naïve 0 72 239 
AR(1) 2 52 199 

auto_ARFIMA 1 45 178 
BATS 0 41 175 
Theta 2 40 178 

NN 0 51 340 
SVM 0 39 206 

RMSE 
(mm) 

Naïve 17 52 147 
AR(1) 15 46 94 

auto_ARFIMA 16 45 105 
BATS 17 41 76 
Theta 18 41 75 

NN 17 47 588 
SVM 11 41 101 

NSE Naïve –13.20 –0.21 0.48 
AR(1) –46.17 –0.90 0.64 

auto_ARFIMA –46.17 –1.01 0.61 
BATS –4.46 –0.35 0.69 
Theta –5.07 –0.30 0.70 

NN –7.55 –0.42 0.86 
SVM –5.44 –0.44 0.76 

rSD Naïve 0.35 1.05 3.59 
AR(1) 0.55 1.60 4.10 

auto_ARFIMA 0.56 1.55 4.10 
BATS 0.53 1.47 2.53 
Theta 0.53 1.46 2.71 

NN 0.19 1.10 2.60 
SVM 0.48 1.38 2.71 

Pr Naïve –0.09 0.46 0.93 
AR(1) 0.09 0.62 0.92 

auto_ARFIMA 0.09 0.62 0.93 
BATS 0.21 0.60 0.91 
Theta 0.24 0.60 0.91 

NN –0.74 0.54 0.96 
SVM –0.37 0.62 0.92 

d Naïve 0.20 0.59 0.89 
AR(1) 0.17 0.70 0.89 

auto_ARFIMA 0.17 0.73 0.89 
BATS 0.46 0.73 0.90 
Theta 0.47 0.73 0.90 

NN 0.01 0.67 0.97 
SVM 0.25 0.71 0.93 
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Table 6.8. LRC values computed for each category of tests. 
Set of methods 
(see Table 6.5) 

Process One-step ahead forecasts Twelve-step ahead forecasts 
Minimum Maximum Minimum Maximum 

1 Temperature 0.62 0.79 0.88 0.97 
2 0.70 0.75 0.93 0.96 
3 0.69 0.70 0.94 0.94 
4 0.70 0.70 0.94 0.95 
5 0.69 0.88 0.94 0.96 
1 Precipitation 0.00 0.43 0.41 0.56 
2 0.21 0.29 0.49 0.52 
3 0.25 0.27 0.48 0.52 
4 0.25 0.29 0.49 0.51 
5 0.21 0.29 0.40 0.52 

The reported values of the summary statistics, as well as Figures 6.2−6.4, 6.8, 6.11 and 6.12, 
reveal that the temperature forecasts are remarkably better than the precipitation ones. This may 
be explained by the cv estimates presented in Tables 6.2 and 6.3. Finally, in Figure 6.15 we 
visualize the AE values computed for the one-step ahead temperature forecasts, produced using 
the set of methods no 5 of Table 6.5, in comparison to their corresponding σ, cv and H estimates 
for the deseasonalized time series (presented in Table 6.2), while in Figures 6.16 and 6.17 we 
present an analogous visualization for the AE values computed for the one-step ahead 
precipitation forecasts and the RMSE values computed for the twelve-step ahead precipitation 
forecasts respectively, produced for the exploration of Problem 3. The estimated parameters for 
the deseasonalized precipitation time series are presented in Table 6.3. These figures are 
representative of the conducted investigation of the existence of a possible relationship between 
the forecast quality and the estimated parameters for the deseasonalized time series, and provide 
no evidence of such existence either for temperature or precipitation. This fact may be related to 
our methodological framework and, in particular, to the way that we handle seasonality to 
produce better forecasts. These negative results could be viewed in comparison with the results 
delivered through analogous investigations by Papacharalampous and Tyralis (2020). In this 
latter work, it is shown that, as the magnitudes of autocorrelation and long-term persistence 
increase, its gets more likely for a naïve forecast (therein the last year’s observation) to be better 
than forecasts produced by sophisticated forecasting methods. This outcome has been obtained 
by exploiting approximately 600 annual river flow time series. 
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Figure 6.15. AE values of the one-step ahead temperature forecasts, produced by set of methods 
no 5 (see Table 6.5), in comparison to the σ, cv and H estimates. 
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Figure 6.16. AE values of the one-step ahead precipitation forecasts, produced by set of methods 
no 5 (see Table 6.5), in comparison to the σ, cv and H estimates. 
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Figure 6.17. RMSE values of the twelve-step ahead precipitation forecasts, produced by set of 
methods no 5 (see Table 6.5), in comparison to the σ, cv and H estimates. 
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6.4 Summary and conclusions 

We have examined 50 mean monthly temperature and total monthly precipitation time series 
observed in Greece by applying a fixed methodology to each of them and, subsequently, by 
performing a cross-case synthesis. The main aim of this multiple-case study is the exploration of 
three problems associated with univariate time series forecasting using machine learning 
algorithms, i.e., the (a) lagged variable selection, (b) hyperparameter selection, and (c) 
comparison between machine learning and classical algorithms. We also present quantitative 
information about the quality of the forecasts (particularly important for the case of Greece) and 
search for evidence regarding the existence of a possible relationship between the forecast 
quality, and the standard deviation, coefficient of variation and Hurst parameter estimates for the 
deseasonalized time series (used for model-fitting). We have focused on two machine learning 
algorithms, i.e. neural networks and support vector machines, while we have also included four 
classical algorithms and a naïve benchmark in the comparisons. We have assessed the one- and 
twelve-step ahead forecasting performance of the algorithms. 

The findings suggest that forecasting methods based on the same machine learning algorithm 
may exhibit very different performance, to an extent mainly depending on the algorithm and the 
individual case. In fact, the neural networks algorithm can produce forecasts of many different 
qualities for a specific individual case, in contrast to the support vector machines one. The 
performance of the former algorithm seems to be more affected by the selected lagged variables 
than by the adopted hyperparameter selection procedure (use of predefined hyperparameters or 
defined after optimization). While no evidence is provided that any of the compared lagged 
regression matrices systematically leads to better forecasts than the rest, either for the neural 
networks or the support vector machines algorithms, the results mostly favour using less recent 
lagged variables. Furthermore, for the algorithms used in the present Chapter hyperparameter 
optimization does not necessarily lead to better forecasts than the use of the default 
hyperparameter values of the algorithms. Regarding the comparisons performed between 
machine learning and classical algorithms, the results indicate that methods from both categories 
can perform equally well, under the same limitations. The best method depends on the case 
examined and the criterion of interest, while it can be either machine learning or classical. Some 
information of secondary importance derived by our experiments is subsequently reported. The 
average-case performance of the algorithms used to produce one- and twelve-step ahead monthly 
temperature forecasts ranges between 0.66 °C and 1.00 °C, and 1.14 °C and 1.70 °C, in terms of 
absolute error and root mean square error respectively. For the monthly precipitation forecasts 
the respective values are 39 mm and 72 mm, and 41 mm and 52 mm. Finally, no evidence is 
provided by our multiple-case study that there is any relationship between the forecast quality 
and the estimated parameters for the deseasonalized time series.
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7. Quantification of predictive uncertainty in hydrological modelling by 
harnessing the wisdom of the crowd: Methodology development and 
investigation using toy models 

In this Chapter, we introduce an ensemble learning post-processing methodology for probabilistic 
hydrological modelling. This methodology generates numerous point predictions by applying a 
single hydrological model, yet with different parameter values drawn from the respective 
simulated posterior distribution. We call these predictions “sister predictions”. Each sister 
prediction extending in the period of interest is converted into a probabilistic prediction using 
information about the hydrological model’s errors. This information is obtained from a preceding 
period for which observations are available, and is exploited using a flexible quantile regression 
model. All probabilistic predictions are finally combined via simple quantile averaging to produce 
the output probabilistic prediction. The idea is inspired by the ensemble learning methods 
originating from the machine learning literature. The proposed methodology offers larger 
robustness in performance than basic post-processing methodologies using a single hydrological 
point prediction. It is also empirically proven to “harness the wisdom of the crowd” in terms of 
average interval score, i.e., the obtained quantile predictions score no worse –usually better− than 
the average score of the combined individual predictions. This proof is provided within toy 
examples, which can be used for gaining insight on how the methodology works and under which 
conditions it can optimally convert point hydrological predictions to probabilistic ones. A large-
scale hydrological application is made in Chapter 8. 

7.1 Introduction 

Hydrological models are routinely applied for flood forecasting, water resources management and 
other environmental engineering applications (Montanari 2011). Their history, tracing back to 
1850, can be found in Todini (2007), while their optimal design and exploitation (towards 
uncertainty reduction in hydrological modelling) remain since their early beginnings at the 
forefront of the hydrological research activity, currently consisting one of the only two modelling 
challenges included in the 23 major open problems in hydrology, as these problems were 
identified by Blöschl et al. (2019). 

Based on their structure, hydrological models can be primarily classified as follows (see e.g., 
Solomatine and Wagener 2011; Pechlivanidis et al. 2011): (a) data-driven models, (b) conceptual 
models and (c) physically-based models. Models of categories (b) and (c) are also jointly called 
“process-based” (Montanari and Koutsoyiannis 2012). This specific term is largely associated 
with deterministic models by several authors (see e.g., Beven and Kirkby 1979; Makhlouf and 
Michel 1994; Perrin et al. 2003; Mouelhi et al. 2006a,b; Efstratiadis et al. 2008; Makropoulos et al. 
2008; see also the applications by Madsen 2000; Nayak et al. 2013; Kaleris and Langousis 2017; 
Széles et al. 2018; Khatami et al. 2019, and the review by Efstratiadis and Koutsoyiannis 2010). 
On the contrary, models of category (a) are purely statistical. They are mostly borrowed from the 
statistical learning or machine learning literature (see e.g., Alpaydin 2010; Hastie et al. 2009; 
James et al. 2013; Witten et al. 2017) to be implemented in the hydrological literature with 
selected configurations and inputs (see e.g., Minns and Hall 1996; Dibike and Solomatine 2001; 
Solomatine and Dulal 2003; Nayak et al. 2013; Taormina and Chau 2015; Papacharalampous and 
Tyralis 2018a; Tyralis and Papacharalampous 2018). In what follows, we use the terms “statistical 
learning” and “machine learning” interchangeably. 

Data-driven and process-based models are, in fact, known to represent two different cultures 
or schools of thought in hydrological modelling, which need to be compromised in a way that will 
allow an optimal exploitation of predictability and uncertainty quantification (Todini 2007). In 
search of such a compromise, optimum (i.e., minimum error) point hydrological predictions 
(including forecasts) may result by post-processing the outcome of process-based models using 
statistical point prediction models (see e.g., Brath et al. 2002; Toth et al. 1999; Toth and Brath 
2002; Abebe and Price 2003; Toth and Brath 2007). Hydrological post-processing methodologies 
aiming to convert point hydrological predictions, mostly predictions provided by process-based 
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models, into probabilistic predictions are also available. These probabilistic methodologies utilize 
proper statistical models (i.e., probabilistic prediction or simulation models) complementary to 
the process-based ones. The statistical models used in post-processing are hereafter referred to 
under the term “error models”, as they usually focus on the modelling of the hydrological model’s 
error conditional on selected variables. 

Here the interest is in probabilistic hydrological post-processing methodologies, in which the 
error model is estimated conditional upon the point prediction(s) of the hydrological model by 
using an independent segment (with respect to the one used for estimating the parameters of the 
hydrological model) extracted from the historical dataset. Various methodologies of this category 
are currently available (see e.g., Bock et al. 2018; Bourgin et al. 2015; Dogulu et al. 2015; Farmer 
and Vogel 2016; López López et al. 2014; Montanari and Brath 2004; Montanari and Grossi 2008; 
Montanari and Koutsoyiannis 2012; Solomatine and Shrestha 2009; Tyralis et al. 2019a; Wani et 
al. 2017; see also the methodologies of Chapter 9 herein), amongst other probabilistic 
hydrological modelling and hydrological forecasting methodologies based on the idea of 
integrating process-based models and statistical approaches (see e.g., Beven and Binley 1992; 
Hernández-López and Francés 2017; Kavetski et al. 2002, 2006a; Krzysztofowicz 1999, 2001b, 
2002; Krzysztofowicz and Kelly 2000, Krzysztofowicz and Herr 2001; Kuczera et al. 2006; Todini 
2008; see also the review by Montanari 2011). Hereafter, we use the comprehensive term “two-
stage” by Evin et al. (2014) to imply that the parameters of a probabilistic hydrological post-
processing methodology are estimated within two subsequent stages. 

Relying on the concept of ensemble simulations and opposed to “basic two-stage post-
processing methodologies” utilizing a single point hydrological prediction (see e.g., Dogulu et al. 
2015; Farmer and Vogel 2016; López López et al. 2014; Montanari and Brath 2004; Montanari and 
Grossi 2008; see also the methodologies of Chapter 9 herein), the two-stage post-processing 
methodology by Montanari and Koutsoyiannis (2012) (hereafter referred to as “MK blueprint 
methodology”) generates a large number of point hydrological predictions by using a single 
hydrological model (in its basic form; with different parameter values and ensemble inputs). 
These point predictions are hereafter referred to as “sister predictions” using the terminology of 
Nowotarski et al. (2016), Wang et al. (2016) and Liu et al. (2017). Different variants of the MK 
blueprint methodology can be found in Sikorska et al. (2015) and Quilty et al. (2019). The 
flexibility of the MK blueprint methodology is proved by the latter study, which focuses on 
probabilistic water demand forecasting using exogenous variables. Its main objective is 
converting point water demand forecasts produced by machine learning algorithms into 
probabilistic forecasts. The MK blueprint is outlined in Section 2.7.3. 

Here we introduce three novel variants of the MK blueprint methodology. These variants 
(hereafter collectively referred to as “proposed methodology”) are inspired by the ensemble 
learning methods originating from the machine learning literature, while they are based on the 
concept of combining probabilistic predictions via simple quantile averaging from the forecasting 
field. Simple averaging (or equally weighted averaging or averaging) is a special form of linear 
combination (or linear pooling or weighted averaging) of predictions, in which all weights are 
equal (see e.g., Granger 1989; Wallis 2011; Lichtendahl et al. 2013; Winkler 2015). According to 
Granger (1989), (point) prediction combination can be traced back in the study of Barnard (1963), 
in which two point forecasts were averaged to form an outperforming forecast. Although having 
its roots in 1963 and more sophisticated combination approaches have been developed since 
then, this combination in simple fashion is even today suggested by Winkler (2015; see also 
Lichtendahl et al. 2013), because of its: 

o Interpretability. 

o Simplicity in modelling. 

o Better performance than weighted linear (or other) combinations in many cases. 

In fact, as it is quoted from O’Hagan et al. (2006, p. 190) in Lichtendahl et al. (2013), “simple, 
equally weighted opinion pool is hard to beat in practice”. Moreover, it is the most common way 
of combining point or probability distribution function (PDF) forecasts (Lichtendahl et al. 2013; 
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Wallis 2011). Especially when we are interested in combining a large number of predictions, as it 
is the case herein, simple averaging is rather the only reasonable option, also reminding us of 
several ensemble learning methods (see Hastie et al. 2009), e.g., the bagging by Breiman (1996) 
and random forests by Breiman (2001a), originating from the machine learning literature. These 
two examples of ensemble learning methods produce a large number of individual predictions 
and compute their average to finally produce the output prediction. This averaging leads to more 
accurate predictions, as it reduces their variance (Hastie et al. 2009, pp. 282−288). Similarly, the 
average of quantile predictions may offer stability in performance, among other advantages. 
Quantile averaging has the following distinguishing features (Lichtendahl et al. 2013, Section 5; 
see also the interpretations provided by Winkler 2015): 

o Under specific conditions (see e.g., the stylized versions examined in Lichtendahl et al. 2013) 
a predictor based on quantile averaging is robust. The same applies to a predictor based on 
PDF averaging. 

o Under specific conditions (see e.g., the stylized versions examined in Lichtendahl et al. 2013) 
the average of quantile predictions scores no worse −usually better− than the average of 
scores of the combined individual predictions. This property (also applying to PDF averaging) 
is referred to as “ability to harness the wisdom of the crowd”. Still, it has to be empirically 
proven for the problem and scores of interest. 

o Quantile averaging can be convenient in practice, in contrast to PDF averaging. 

o Quantile averaging is as useful as (or even more useful than) PDF averaging. 

The proposed methodology has been developed in light of the above by also conducting a set 
of toy experiments (see e.g., Hartmann 1995; Frigg and Hartmann 2006; Klein and Romero 2007; 
Goldfarb and Ratner 2008; Luczak 2017; Reutlinger et al. 2017). Examples of toy experiments 
from the probabilistic hydrological modelling literature are available in Krzysztofowicz (1999), 
Beven and Freer (2001), Stedinger et al. (2008), Farmer and Vogel (2016), and Volpi et al. (2017). 
Toy models have also been exploited for other modelling situations in geoscience (see e.g., 
Koutsoyiannis 2006, 2010; see also the references in Koutsoyiannis 2006), while falling into the 
broader category of simulation or synthetic experiments, which are increasingly conducted within 
various hydrological contexts, including some more relevant to the present Chapter (see e.g., 
Kavetski et al. 2002; Vrugt et al. 2003, 2005; Montanari 2005; Vrugt and Robinson 2007; Vrugt et 
al. 2008; Renard et al. 2010; Schoups and Vrugt 2010; Montanari and Koutsoyiannis 2012; 
Montanari and Di Baldassarre 2013; Tyralis et al. 2013; Vrugt et al. 2013; Sadegh and Vrugt 2014; 
Sadegh et al. 2015; Sikorska et al. 2015; Vrugt 2016; Tyralis and Papacharalampous 2017; see also 
Chapters 3 and 4 herein). Discussions on the significance of this type of experiments can be found 
in Montanari (2007). In fact, simplified modelling situations can be useful as starting points for 
achieving effective real-world modelling, especially in cases where analytical solutions exist (see 
e.g., Volpi 2012). 

The aims of the Chapter are to: 

1) Introduce a two-stage probabilistic hydrological modelling methodology that exploits in an 
optimal way (from a predictive modelling perspective) key concepts of the MK blueprint 
methodology. 

2) Inspect the performance of the proposed methodology under known conditions and 
demonstrate how it works. In particular, we aim at testing whether and under which 
conditions this methodology can optimally convert point hydrological predictions to 
probabilistic ones. 

3) Illustrate in simple fashion why and when it is meaningful for someone to select the proposed 
methodology over basic two-stage post-processing methodologies. 

4) Increase the understanding on two-stage hydrological post-processing. 

As implied by aims 2−4 above and made e.g., by Krzysztofowicz (1999) and Stedinger et al. 
(2008), we herein present toy examples only. Chapter 8 of this thesis is devoted to the validation 
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of the herein introduced methodology by using real-world data. In particular, in this latter work a 
different set of research questions is addressed by conducting a large-scale experiment at monthly 
time scale. This experiment comprises 270 rainfall-runoff problems, which are found to be well-
solved by the proposed methodology, while the larger robustness in performance of this 
methodology compared to basic two-stage post-processing methodologies is illustrated for all the 
examined problems. In the same experiment, we also clearly demonstrate the ability of the 
proposed methodology to harness the wisdom of the crowd. 

7.2 An ensemble methodology for probabilistic hydrological modelling 

In this Section, we introduce a new methodology for probabilistic hydrological modelling, inspired 
by the MK blueprint methodology on the one hand and ensemble learning methodologies (see e.g., 
the review by Sagi and Rokach 2018) on the other hand.  

7.2.1 Proposed methodology (with three variants) 

In this Section, we present the proposed methodology. The presentation is made in a more formal 
and systematic manner with respect to Section 2.7, in which a considerable part of the 
methodological background of the Chapter is summarized. Therefore, we here also set the largest 
part of the notations used throughout the Chapter. The formal presentation is accompanied by 
Figure 7.1, which summarizes in a compact way the methodological contribution of the Chapter. 
In what follows, random variables are underscored, following the Dutch convention. 
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Figure 7.1. Schematic summarizing the proposed methodology. The sister model realizations are 
defined as variants of a single hydrological model, each using different parameter values. The 
latter are herein drawn from the respective simulated posterior distribution of model parameters, 
while they could be also obtained by using informal calibration schemes. Each sister model 
realization is used for obtaining a single point prediction, referred to as “sister prediction”. The 
number of sister model realizations m should be adequately large. The realization of the 
hydrological process of interest, considered unknown at the time of the prediction, is denoted 
with a light grey dashed line. 

Let y be a stochastic process (typically a hydrological process, e.g., a streamflow or river 
discharge process), which is expressed in discrete time by Equation (7.1). In the following 
notations, the subscript of the variables y indicates the time t or the time period. We wish to 
probabilistically predict the stochastic process yT3 (hereafter referred to as “hydrological process 
of interest”), the realization of which is considered unknown at the time of the prediction. At this 
end, we assume the stochastic processes xi, where i ∊ {1, …, n0} (denoting the sequential number 
assigned to each), and x, which are informative about y, and are expressed in discrete time by 
Equations (7.2) and (7.3), respectively. In the following notations, the subscript of the variables x 
and second subscript of the variables xi (separated by a comma from the first subscript) indicate 
the time t or the time period. Let us also assume that the observations xT3 are known at the time 
of the prediction. 

 y := yT := (y1, …, yn1, y(n1+1), …, y(n1+n2), y(n1+n2+1), …, y(n1+n2+n3))T: (n1+n2+n3) × 1 (7.1) 

 xi := xi,T := (xi,1, …, xi,n1, xi,(n1+1), …, xi,(n1+n2), xi,(n1+n2+1), …, xi,(n1+n2+n3))T: (n1+n2+n3) × 1 (7.2) 

 x := (x1, …, xi, …, xn0): (n1+n2+n3) × n0 (7.3) 

Let S be an arbitrary hydrological model, typically a (deterministic) point prediction model 
(e.g., a process-based hydrological model) that is suitable for predicting a variable yt given the 
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observations xt. The equations of such models may involve a variety of parameters, inputs (e.g., 
precipitation and temperature data at given time steps) and state variables (e.g., soil moisture 
levels, water table levels, snow cover). State variables are internal variables that describe the state 
of the catchment during simulation and change as a result of the modelling process (Beven 2012, 
pp. 5, 67, 176). Note also that S could be used for forecasting yt given forecasts instead of 
observations (see Klemeš 1986). Under this modelling approach, yt is the dependent or response 
variable and xt are the predictor variables at time t (as assumed here), both expressed in stochastic 
terms. Let also θ represent in stochastic terms the parameters of S, defined by Equation (7.4).  

 θ := (θ1, …, θj, …, θn): 1 × n (7.4) 

Moreover, let us define m variants of S, each using different parameters {θk, k = 1, …, m}, where 
m is adequately large (as large as our computational resources permit). These variants are 
hereafter referred to as “sister model realizations”. The parameters {θk, k = 1, …, m} are obtained 
by exploiting information from the period T1. This exploitation can take various forms, such as 
simulation of the posterior distribution of θ (by using Bayesian methods) or artificial simulation 
of θ by using some type of randomization applied to a “best parameter estimate”. The latter could 
be obtained by optimizing an objective function of our preference. Random selection of the 
parameters {θk, k = 1, …, m} could also be an option. Herein, we follow the Bayesian approach (see 
Section 2.5), as described in detail in Section 7.3.4. 

Once the sister model realizations are defined, they are all applied in the period {T2, T3}. The 
resulted m sister predictions also extend in the period {T2, T3}. Let ζk,t be the point prediction at 
time t ∊ {T2, T3} provided by the sister model realization that is defined by θk (hereafter referred 
to as “kth sister model realization”). This point prediction is hereafter referred to as “kth sister 
prediction” at time t to be distinguished from the remaining m−1 sister predictions at time t. In 
this case, ζk,t is obtained under the single-value transformation expressed by Equation (7.5), where 
xt are the inputs to the model and st the values of the state variables at time t. We should note here 
again that the assumptions expressed through Equation (7.5) may vary from model to model. The 
input to S could also include information from preceding time steps (e.g., xt−1, xt−2, xt−3, …), while 
the toy hydrological models used herein do not involve state variables st in their equations. 

 ζk,t = S(θk, xt, st) (7.5) 

At time t ∊ {T2, T3}, the kth sister prediction ζk,t deviates from its target observation yt, as 
expressed by Equation (7.6). The deviation εk,t, ignored by convention in the output of any point 
prediction model, is hereafter referred to as “kth sister model realization’s error” at time t and can 
be assumed as a realization of a random variable εk. Such realizations are assumed to be 
informative about the uncertainty of the predictand yt conditional upon the kth sister prediction. 
Under this view, the sister model realizations’ errors in the period T2, i.e., εk,T2 ∀ k ∊ {1, …, m}, 
computed using the sister predictions ζk,T2 ∀ k ∊ {1, …, m} alongside with their targeted 
observations yT2 (available), consist historical information that can be exploited for quantifying 
the predictive uncertainty in the period T3. 

 εk,t := ζk,t − yt (7.6) 

The proposed methodology is subdivided into three alternative variants, which differ to each 
other only in the exploitation of this historical information. For variants 1 and 2, we subsequently 
compute εk,T2 ∀ k ∊ {1, …, m}, while for variant 3 we compute εko,T2 for a randomly selected sister 
prediction ζko,T2 with ko ∊ {1, …, m}. The exploitation of the related information is made by using 
an error model M, which falls into the category of statistical learning regression models that are 
suitable for predicting quantiles (see e.g., the quantile regression model detailed in Section 2.6.2). 
Let ep,k,t be the prediction of the conditional quantile with probability p of the kth sister model 
realization’s error at time t, obtained by using a trained version of M. Under this modelling 
approach, εk,t is assumed to depend on selected informative variable(s). For reasons of simplicity, 
ζk,t is the only predictor variable considered herein for all three variants. The latter differ in the 
training of M. Specifically: 
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o Variant 1 trains M separately for each sister model realization. The training is, therefore, 
made m times, each time on a different dataset formed by using a different sister prediction 
ζk,T2 and its corresponding errors εk,T2, where k ∊ {1, …, m}; 

o Variant 2 trains M collectively for all sister model realizations. The training is, therefore, made 
once on a single dataset formed by using all sister predictions {ζk,T2, k  = 1, …, m} and their 
corresponding errors {εk,T2, k = 1, …, m}; 

o Variant 3 also trains M once; however, the training here is made for an arbitrary sister model 
realization, i.e., on a dataset formed by using a randomly selected sister prediction ζko,T2 and 
its corresponding errors εko,T2, where ko ∊ {1, …, m}, under the assumption that εko,T2 are 
informative about εk in general. 

In what follows, the presentation is made for a single central prediction interval (1 − α), where 
α ∊ (0, 1), while the generalization to obtaining multiple central prediction intervals is 
straightforward. Let also zp,k,t be the obtained quantile with probability p ∊ {α/2, 1 − α/2} of a 
variable of interest yt conditional upon ζk,t, hereafter referred to as “kth predictive quantile with 
probability p” of a variable of interest. Moreover, let vp,t be the finally delivered quantile with 
probability p of a variable of interest yt, hereafter referred to simply as “predictive quantile with 
probability p” of this variable. 

For each sister prediction ζk,T3, where k ∊ {1, …, m}, we (a) predict the quantiles of the sister 
model realization's errors {ep,k,T3, p = α/2, 1 − α/2} by using the information obtained in the 
preceding step, and (b) transform these predictive quantiles to “auxiliary predictive quantiles” of 
the hydrological process of interest {zp,k,T3, p = α/2, 1 − α/2} by subtracting them from their 
corresponding sister prediction ζk,T3. At step (a), each trained version of Μ is applied to predict the 
error quantiles of its corresponding sister prediction for variant 1, while for variants 2 and 3 the 
same trained version of Μ is applied to predict the error quantiles of all sister predictions. Finally, 
at each time t ∊ T3 we group the auxiliary predictive quantiles of the hydrological process of 
interest based on their corresponding probability p (e.g., probability 0.95) to average them over 
each group. The resulted time series are the delivered quantile predictions {vp,T3, p = α/2, 1 − α/2}.  

For the sake of completeness, variants 1−3 are algorithmically formulated in Tables 7.1−7.3. 
We note that these variants reduce to the same method in the case that a single point prediction 
is generated, i.e., for m = 1. In this case, the proposed methodology would fall into the category of 
basic two-stage post-processing methodologies using statistical learning regression models for 
quantile prediction (see e.g., López López et al. 2014; Dogulu et al. 2015; see also Chapter 9 
herein). The presentation is made for a single central prediction interval (1 − α), where α ∊ (0, 1), 
formed by the predictive quantiles with probability p, where p ∊ {α/2, 1 – α/2}. The generalization 
to obtaining multiple central prediction intervals is straightforward. 
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Table 7.1. Algorithmic formulation of the proposed methodology (variant 1). The presentation is 
made for a single central prediction interval (1 − α), where α ∊ (0, 1), while the generalization to 
obtaining multiple central prediction intervals is straightforward. The repeated procedures are 
reported with different text alignment. Note that (i) the parameters {θk, k = 1, …, m} could be 
alternatively obtained through informal calibration schemes, and (ii) more predictors could be 
exploited in regression. 

Step Procedure 
1 Simulate the posterior distribution of θ using information for the time period T1, i.e., obtain {θk, k = 1, 

…, m}, for m sufficiently large 
 Repeat steps 2−6 ∀∀∀∀ k ∊∊∊∊ {1, …, m} 

2 Obtain the kth sister prediction for the time period {T2, T3}, i.e., obtain ζk,{T2, T3} according to: 

ζk,{T2, T3} = S(θk, x{T2, T3}) 

3 Compute the kth sister model realization’s error for the time period T2, i.e., obtain εk,T2 according 

to: εk,T2 = ζk,T2 – yT2 

4 Regress the kth sister model realization’s error εk,t on the kth sister prediction ζk,t for the time 
period T2, i.e., train M between εk,T2 and ζk,T2 

5 Obtain the predictive quantiles of the kth sister model realization’s error for the time period T3 
using the trained M, i.e., obtain ep,k,T3, ∀ p ∊ {α/2, 1 – α/2}, according to: ep,k,T3 = M(ζk,T3) 

6 Obtain the kth predictive quantiles of the process of interest, i.e., obtain zp,k,T3, ∀ p ∊ {α/2, 1 – α/2}, 

according to: 
o z(α/2),k,T3 = ζk,T3 −  (1−α/2),k,T3 

o z(1−α/2),k,T3 = ζk,T3 − e(α/2),k,T3 

7 Obtain the predictive quantiles of the process of interest, i.e., obtain vp,T3, ∀ p ∊ {α/2, 1 – α/2}, 

by averaging separately ∀ t ∊ T3 the predictive quantiles {zp,k,t, k = 1, …, m} according to: vp,t = ∑
m
k = 1zp,k,t 

Table 7.2. Algorithmic formulation of the proposed methodology (variant 2). The presentation is 
made for a single central prediction interval (1 − α), where α ∊ (0, 1), while the generalization to 
obtaining multiple central prediction intervals is straightforward. The repeated procedures are 
reported with different text alignment. Note that (i) the parameters {θk, k = 1, …, m} could be 
alternatively obtained through informal calibration schemes, and (ii) more predictors could be 
exploited in regression. 

Step Procedure 
1 Simulate the posterior distribution of θ using information for the time period T1, i.e., obtain {θk, k = 1, 

…, m}, for m sufficiently large 
 Repeat steps 2, 3 ∀∀∀∀ k ∊∊∊∊ {1, …, m} 

2 Obtain the kth sister prediction for the time period {T2, T3}, i.e., obtain ζk,{T2, T3} according to: 

ζk,{T2, T3} = S(θk, x{T2, T3}) 

3 Compute the kth prediction error for the time period T2, i.e., obtain εk,T2 according to: 

εk,T2 = ζk,T2 – yT2 

4 Regress the kth sister model realization’s error εk,t on the kth sister prediction ζk,t for the time period T2, 
i.e., training of M between εk,T2 and ζk,T2. The training is performed collectively for all k ∊ {1, …, m}. 

 Repeat steps 5, 6 ∀∀∀∀ k ∊∊∊∊ {1, …, m} 
5 Obtain the predictive quantiles of the kth sister model realization’s error for the time period T3 

using the trained M, i.e., obtain ep,k,T3, ∀ p ∊ {α/2, 1 – α/2}, according to: 

ep,k,T3 = M(ζk,T3) 

6 Obtain the kth predictive quantiles of the process of interest, i.e., obtain zp,k,T3, 

∀ p ∊ {α/2, 1 – α/2}, according to: 
o z(α/2),k,T3 = ζk,T3 −  (1−α/2),k,T3 

o z(1−α/2),k,T3 = ζk,T3 − e(α/2),k,T3 

7 Obtain the predictive quantiles of the process of interest, i.e., obtain vp,T3, ∀ p ∊ {α/2, 1 – α/2}, 

by averaging separately ∀ t ∊ T3 the predictive quantiles {zp,k,t, k = 1, …, m} according to: vp,t = ∑
m
k = 1zp,k,t 
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Table 7.3. Algorithmic formulation of the proposed methodology (variant 3). The presentation is 
made for a single central prediction interval (1 − α), where α ∊ (0, 1), while the generalization to 
obtaining multiple central prediction intervals is straightforward. The repeated procedures are 
reported with different text alignment. Note that (i) the parameters {θk, k = 1, …, m} could be 
alternatively obtained through informal calibration schemes, and (ii) more predictors could be 
exploited in regression. 

Step Procedure 
1 Simulate the posterior distribution of θ using information for the time period T1, i.e., obtain 

{θk, k = 1, …, m}, for m sufficiently large 
 Repeat step 2 ∀∀∀∀ k ∊∊∊∊ {1, …, m} 

2 Obtain the kth sister prediction for the time period {T2, T3}, i.e., obtain ζk,{T2, T3} according to:  

ζk,{T2, T3} = S(θk, x{T2, T3}) 

3 Select a random ko ∊ {1, …, m} 
4 Compute the koth sister model realization’s error for the time period T2, i.e., obtain εko,T2 according to: 

εko,T2 = ζko,T2 – yT2 

5 Regress the koth sister model realization’s error εko,t on the koth sister prediction ζko,t for the time period 

T2, i.e., train M between εko,T2 and ζko,T2 

 Repeat steps 6, 7 ∀∀∀∀ k ∊∊∊∊ {1, …, m} 
6 Obtain the predictive quantiles of the kth sister model realization’s error for the time period T3 

using the trained M, i.e., obtain of ep,k,T3, ∀ p ∊ {α/2, 1 – α/2}, according to: ep,k,T3 = M(ζk,T3) 

7 Obtain the kth predictive quantiles of the process of interest, i.e., obtain zp,k,T3, ∀ p ∊ {α/2, 1 – 

α/2}, according to: 
o z(α/2),k,T3 = ζk,T3 −  (1−α/2),k,T3 

o z(1−α/2),k,T3 = ζk,T3 − e(α/2),k,T3 

8 Obtain the predictive quantiles of the process of interest, i.e., obtain vp,T3, ∀ p ∊ {α/2, 1 – α/2}, 

by averaging separately ∀ t ∊ T3 the predictive quantiles {zp,k,t, k = 1, …, m} according to: vp,t = ∑
m
k = 1zp,k, 

7.2.2 Remarks on the proposed methodology 

The following remarks on the proposed methodology are important: 

o The proposed methodology relies on the use of error models that by construction quantify 
predictive uncertainty, i.e., the total uncertainty of the predictand (parameter uncertainty 
included). This is why these error models have been exploited within basic hydrological post-
processing methodologies. For instance, see the large-sample investigations conducted in 
Chapter 9 herein. 

o The use of numerous parameter sets for the hydrological model is, thus, not a condition for 
properly considering parameter uncertainty. This is why the hydrological model’s 
parameters can be obtained through informal calibration schemes.  

o Simple quantile averaging is a novel methodological step compared to the original blueprint 
by Montanari and Koutsoyiannis (2012), and its variants by Sikorska et al. (2015) and Quilty 
et al. (2019). It is introduced herein to allow the accommodation of statistical learning 
regression models that are suitable for predicting quantiles into the methodology. 

o Simple quantile averaging does not harm predictive uncertainty quantification. In fact, it 
works in the same way as simple PDF averaging. The latter has been exploited in hydrological 
post-processing concepts, e.g., by Vrugt (2018; see also 2019). We should note here again 
that, according to Lichtendahl et al. (2013), simple quantile averaging is as useful as (or even 
more useful than) simple PDF averaging. In Vrugt (2018, 2019), various point hydrological 
predictions are obtained by using different hydrological models (under a multi-model 
approach) and not by using a single hydrological model, as it is the case in the proposed 
methodology. These point hydrological predictions are first converted to PDF hydrological 
predictions (via post-processing) and then combined via (simple) PDF averaging. 
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7.2.3 Differences from other two-stage post-processing methodologies 

Since the proposed methodology can be regarded as a set of variants of the MK blueprint 
methodology, some key changes with respect to the precursor methods should be underlined. 
These are the following: 

o The proposed methodology is formulated to work with given data, i.e., it does not explicitly 
consider input data uncertainty (stemming e.g., from measurement errors; under the 
assumption of error-free data). Note that input data uncertainty could be considered (in a 
similar way to the one adopted in the precursor methods) if enough information is available 
to characterize it. 

o The error models adopted in the precursor variants, i.e., the meta-Gaussian bivariate 
distribution model used in simulation mode by Montanari and Koutsoyiannis (2012), and the 
kNN model used by Sikorska et al. (2015) and Quilty et al. (2019), are here replaced by a 
statistical learning regression model that is suitable for predicting quantiles. 

o Alternative options for the modelling of the sister model realizations’ errors are provided. 
Additionally to variant 3, which extracts this type of information from a single sister 
prediction (as made in the MK blueprint methodology), we also include variants 1 and 2. 
These variants extract information about the hydrological model’s error from all sister 
predictions. 

o Ensemble predictions (i.e., individual predictions to be combined within an ensemble 
learning methodology; instead of ensemble simulations, i.e., individual simulations 
collectively composing an ensemble) are obtained and ensemble prediction averaging is 
involved. In fact, the proposed methodology falls into the category of ensemble learning 
methods (see e.g., Hastie et al. 2009, Chapter 16), while the original variant, and the variants 
by Sikorska et al. (2015) and Quilty et al. (2019) are ensemble simulation methods. 

Some key differences from other two-stage post-processing methodologies are also 
summarized subsequently: 

o In contrast to basic two-stage post-processing methodologies using flexible quantile 
regression models (see e.g., Solomatine and Shrestha 2009; López López et al. 2014; Dogulu 
et al. 2015; Wani et al. 2017; see also Chapter 9 herein), the proposed methodology is an 
ensemble learning methodology, as it combines multiple predictions to offer improved 
predictive performance. 

o In contrast to multi-model ensemble learning post-processing methodologies, the proposed 
methodology utilizes a single hydrological model. 

o In contrast to ensemble learning post-processing methodologies using multiple error models 
(see e.g., Tyralis et al. 2019a for the first stacked generalization approach to hydrological 
post-processing, and Chapter 9 herein for an equal-weight combiner of six error models), the 
proposed methodology utilizes a single error model. 

7.3 Experimental methodology 

Here we present the experimental methodology adopted for the conducted toy model 
investigation. Statistical software information is independently summarized in Section 2.9.4. 

7.3.1 Toy data simulation 

We simulate the three large toy datasets presented in Figure 7.2. Each of these datasets includes 
12 000 pairs of (xt, yt) values, drawn i.i.d. from the populations described in Table 7.4. Benchmark 
remarks on the selection of the simulating models are also provided in Table 7.4. 
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Figure 7.2. Toy datasets (a−c) 1−3. Details about their simulation are presented in Table 7.4. The 
pairs (xt, yt) are depicted with coloured bubbles (pink for low density and red for high density), 
while the red lines are the plots of the functions yt = f(xt), i.e., the deterministic parts of the 
simulating models. The deviation in the vertical direction of a red line from any bubble is a 
realization of ut. 
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Table 7.4. Information about toy data simulation. The simulating models’ types and parameters 
are selected to ensure a clear demonstration of the proposed methodology. The toy datasets are 
depicted in Figure 7.2. The function f and the random variables xt, ut and yt, where t denotes the 
time, are defined as follows for each simulating model. 

Toy dataset Simulating model Remarks (see also Sections 2.3.1 and 2.6.2) 
1 xt ~ N(μ = 0, σ2 = 12) 

f(x) := 5 + 2x 
ut ~ N(μ = 0, σ2 = 32) 

yt := f(xt) + ut 

i) There exists an analytical solution to delivering 
prediction intervals for this dataset, and ii) the 

assumptions of the simple linear regression model are 
proper for this dataset. 

2 xt ~ N(μ = 0, σ2 = 12) 
f(x) := 5 + 2x 

ut ~ N(μ = 0, σ2 = (0.2f(xt))2) 
yt := f(xt) + ut 

The assumption of homoscedasticity of the error term 
(made by the simple linear regression model) is not 

proper for this dataset. 

3 xt ~ N(μ = 0, σ2 = 12) 
f(x) := 5 + 2x + x2 

ut ~ N(μ = 0, σ2 = 12) 
yt := f(xt) + ut 

The assumption of linearity in the relationship between 
the predictor and the response (made by the simple 

linear regression model) is not proper for this dataset. 

7.3.2 Statistical learning models 

We implement three statistical learning regression models. Following the suggestions by Abrahart 
et al. (2008), we subsequently emphasize on reproducibility and not on exhaustive descriptions 
of these models. Some related theoretical information is independently given in Chapter 2. The 
first regression model exploited in this Chapter is the linear regression model (see Section 2.3.1). 
The assumptions of this model might not be efficient for real-world hydrological modelling 
applications; however, it offers the advantage of being interpretable (Hastie et al. 2009, p. 43). We 
use it as described in Sections 7.3.2−7.3.5, particularly focusing on the violation of the 
homoscedasticity assumption and on how its replacement with more flexible models under a 
predictive modelling view could result in improved probabilistic predictions. The second 
regression model is the quadratic regression one (see Section 2.3.1). Lastly, the quantile 
regression model (see Section 2.6.2) is the third regression model implemented in this Chapter. 
This model offers a good compromise between interpretability (offered by the linear regression 
model) and flexibility (offered by more sophisticated statistical learning methods). In this Chapter, 
it represents all regression models that can directly provide the predictive quantiles of the 
response variable, while they are also appropriate for modelling heteroscedasticity. 

7.3.3 Toy experiments, prediction schemes and expected outcomes 

We conduct four toy experiments. Within each of these experiments we assess six ensemble 
schemes in obtaining interval predictions. The ensemble schemes are based on the proposed 
methodology, while they are defined by their underlying variants of this methodology and their 
adopted error models, as prescribed by Table 7.5. They can be applied by using any point 
prediction model as (toy) hydrological model. Depending on the toy experiment, we adopt either 
the linear regression model or the quadratic regression model as toy hydrological models (see 
Table 7.6). These regression models are described in Section 2.3.1. They are utilized by the 
ensemble schemes to generate point predictions of yt given xt; therefore, yt is the response variable 
and xt is the predictor variable, both expressed in stochastic terms. A factor defining a toy 
experiment, together with the adopted toy hydrological model by all ensemble schemes, is the 
examined toy dataset (see Table 7.6). The toy datasets are presented in Section 7.3.1. 
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Table 7.5. Ensemble schemes assessed within the toy experiments. 
Ensemble 

scheme 
Variant of the proposed 

methodology 
Outlined 

algorithm 
Error model 

(from Table 2.3) 
Description 

1 1 Table 7.1 Linear regression model 
 

Section 2.3.1 
2 2 Table 7.2  
3 3 Table 7.3  
4 1 Table 7.1 Quantile regression model Section 2.6.2 
5 2 Table 7.2  
6 3 Table 7.3  

Table 7.6. Toy experiments. The toy datasets are presented in Section 7.3.1. The toy hydrological 
models are described in Section 2.3.1. 

Toy 
experiment 

Toy 
dataset 

Toy hydrological model (from Table 2.3) 
for all ensemble schemes 

1 1 Linear regression model 
 2 2 

3 3 
4 3 Quadratic regression model 

For the application of the ensemble schemes, detailed in Section 7.3.4, and following the 
definitions and notations provided in Section 7.2, for each toy dataset we define the periods T1 = 
{1, …, 1 000}, T2 = {1 001, …, 2 000} and T3 = {2 001, …, 12 000}. We include a large amount of 
information in the period T3 to facilitate proper testing. To benchmark the toy results obtained 
using the proposed methodology, we also apply two basic probabilistic prediction schemes, 
namely the linear regression and quantile regression schemes. Their application is made 
according to Section 7.3.5. In particular for the case of toy experiment 1, we also consider the 
analytical solution provided by a Bayesian regression scheme, when the latter is applied under 
specific assumptions (see Section 7.3.5). 

The only a priori theoretically expected outcomes in the conducted toy experiments are the 
following (see also Table 7.4; outcomes that need to be empirically proven are presented in 
Section 7.4): 

o All three benchmark schemes are expected to perform well within toy experiment 1, in which 
the simple linear regression problem is solved for a large dataset. This problem is, in fact, the 
inverse problem with respect to the simulation of the therein utilized dataset for the linear 
regression model. 

o The problem examined within toy experiment 2 is expected to be well-solved by the quantile 
regression model, while the solution provided by the linear regression model for the same 
problem is expected to be suboptimal. This problem could be viewed as an extension of the 
simple linear regression problem (James et al. 2013). 

o The linear regression and quantile regression schemes are not the ideal models (when used 
with a single predictor) to be used for modelling a quadratic relationship. However, their 
predictions when both applied to toy dataset 3 are expected to not be equivalent. 

o Ensemble schemes 1 and 4 are expected to provide the exact same solution with the basic 
post-processing methodologies using the linear regression and quantile regression models 
as error models respectively, when applied to toy datasets 1−3 with the simple linear 
regression model as toy hydrological model. The reason is theoretical; the problem solved by 
the error model for any point prediction provided by the simple linear regression model is 
practically the exact same one. 

o This equivalence does not hold for any other toy hydrological model, e.g., the quadratic 
regression one. Therefore, within toy experiment 4 ensemble schemes 1 and 4 are expected 
to not be equivalent to basic two-stage post-processing methodologies. 
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7.3.4 Application of ensemble schemes 

We describe the application of the ensemble schemes for one toy experiment, as all toy 
experiments are made in the same manner. The following steps are carried out once for all 
ensemble schemes: 

1) We define 1 000 sister model realizations by obtaining the parameters {θk, k = 1, …, 1 000} of 
the toy hydrological model. Specifically, we obtain 1 000 random samples of the joint 
posterior distribution of the toy hydrological model’s parameters θ and the variance of its 
error term σ2 conditional on the observations of the period T1. The joint posterior distribution 
is obtained by using a uniform prior distribution and an inverse prior distribution for θ and 
σ2 respectively, as detailed in Section 2.5.1. Figure 7.3 summarizes information about the 
obtained {θk, k = 1, …, 1 000} for toy experiment 1. 

   

  

  
Figure 7.3. Simulated parameter values obtained using information from the period T1 within toy 
experiment 1. The median θ1 and θ2 values are denoted with red thick dashed line on the 
presented histograms. 

2) We obtain 1 000 sister predictions for the period {T2, T3}. Each sister prediction contains 
11 000 values, while it is obtained by implementing a different sister model realization given 
the same information, i.e., input information for the period {T2, T3}. 
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3) By using the resulted sister predictions extending in the period T2 alongside with their 
corresponding target values, we compute the sister model realizations’ errors in the same 
period. The total number of the computed error values is 1 000 × 1 000 = 1 000 000. These 
values are considered informative about the sister model realization’s errors in the period T3 
under the stationarity and ergodicity assumptions; therefore, they are used at the next step. 

The following steps are carried out independently by each ensemble scheme: 

4) We train the error model in the period T2. Specifically, we regress the sister model 
realizations’ error at time t (response variable) on the sister prediction at time t (predictor 
variable). The error model (linear regression or quantile regression), the number of the error 
model trainings (1 or 1 000) and the size of the training dataset(s) (1 000 000 or 1 000 pairs 
of values) depend on the ensemble scheme (see Section 7.2.1). We train the quantile 
regression model by using the algorithmic routine fully documented in Koenker and d'Orey 
(1987, 1994). Examples of training datasets are presented in Figure 7.4; 

  

   

Figure 7.4. Error model training datasets for the ensemble schemes 3 and 6 within the toy 
experiments (a−d) 1−4. 

5) We use each sister prediction extending in the period T3 to predict a set of selected quantiles, 
specifically the quantiles with probability p ∊ {0.005, 0.0125, 0.025, 0.05, 0.10, 0.90, 0.95, 
0.975, 0.9875, 0.995}, of its corresponding sister model realization’s error. The predictions 
are made by exploiting information obtained in the preceding step (for details see Section 
7.2.1). The result of this step is 1 000 probabilistic predictions for 10 000 data points, each 
consisting of 10 quantile predictions. 

6) By subtracting each of these 1 000 × 10 = 10 000 quantile predictions from its corresponding 
sister prediction, we obtain 1 000 auxiliary probabilistic predictions of the process of 
interest, each consisting of 10 quantile predictions. 

7) Finally, we separately average, for each p (as defined at point 5 above) and at each time t ∊ 
T3, all the auxiliary predictive quantiles with probability p, i.e., 1 000 in number predictive 
quantiles, to obtain the finally delivered predictive quantile with probability p at time t. The 
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finally delivered predictive quantiles of the process of interest form the 99%, 97.5%, 95%, 
90% and 80% central prediction intervals. 

7.3.5 Application of benchmark schemes 

The linear regression and quantile regression schemes are implemented by (a) training the linear 
regression and the quantile regression models respectively directly on the data from the period 
{T1, T2} and, subsequently, by (b) applying the trained regression model in the period T3 to predict 
the quantiles with probability p (as defined at point 5 of Section 7.3.4) of the process of interest. 
The obtained predictive quantiles are then used to form the 99%, 97.5%, 95%, 90% and 80% 
central intervals. The predictor variable in regression is xt, expressed in stochastic terms. 

The Bayesian regression scheme (benchmark within toy experiment 1) is trained by 
obtaining 1 000 random samples of the joint posterior distribution of the toy hydrological model’s 
parameters θ and the variance of its error term σ2 conditional on the observations of the period 
{T1, T2}. A uniform prior distribution and an inverse prior distribution are used for θ and σ2 
respectively, as detailed in Section 2.5.1. Based on this joint posterior distribution of θ and σ2, the 
posterior predictive distribution for the period T3 is obtained, according to the definition of 
prediction intervals. 

7.3.6 Performance assessment 

We assess the reliability and sharpness of the obtained interval predictions by computing their 
coverage probabilities and average widths, respectively. To simultaneously assess both these 
desired properties of the predictions, we also compute their average interval scores. For 
benchmarking purposes we also compute the relative improvements, obtained when using a 
prediction interval of level (1 – α) (provided by a predictor of interest) with respect to another 
prediction interval of the same level (provided by a benchmark predictor) in terms of average 
interval score. All computations are made for the period T3, as detailed in Section 2.8.3. 

7.4 Experimental results, interpretations and illustrations 

This section is devoted to the toy model investigation of the proposed methodology. This 
investigation is conducted within a purely statistical framework, while complementing Section 7.2 
by largely facilitating the methodology’s interpretation. The larger robustness in performance of 
this methodology compared to basic two-stage post-processing methodologies and its ability to 
harness the wisdom of the crowd are also illustrated using the obtained results. 

7.4.1 Overall interpretation of the proposed methodology 

In this section, we answer the following research questions (related to aims 2 and 4 of the Chapter; 
see Section 7.1): (i) How does the proposed methodology and other two-stage hydrological post-
processing methodologies work, and (ii) under which conditions these methodologies work well? 
In fact, although we focus on the proposed methodology, the presented toy examples can also be 
used to gain insight into two-stage hydrological post-processing in general. In Table 7.7, we 
present the coverage probabilities, average widths and average interval scores computed for the 
99%, 97.5%, 95%, 90% and 80% prediction intervals obtained for all prediction schemes within 
toy experiment 1, while the respective results obtained for the toy experiments 2−4 are presented 
in Tables 7.8−7.10 respectively. 
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Table 7.7. Metric values computed for the prediction intervals delivered by the compared schemes 
for the period T3 within the toy experiment 1. 

Metric Prediction scheme 99% 
prediction 
intervals 

97.5% 
prediction 
intervals 

95% 
prediction 
intervals 

90% 
prediction 
intervals 

80% 
prediction 
intervals 

Coverage 
probability 

Bayesian regression 0.988 0.973 0.949 0.895 0.798 
Linear regression 0.989 0.973 0.948 0.897 0.798 

Quantile regression 0.986 0.971 0.945 0.891 0.802 
Ensemble scheme 1 0.989 0.973 0.948 0.895 0.797 
Ensemble scheme 2 0.989 0.972 0.947 0.895 0.797 
Ensemble scheme 3 0.989 0.973 0.948 0.895 0.797 
Ensemble scheme 4 0.987 0.967 0.951 0.890 0.805 
Ensemble scheme 5 0.986 0.968 0.949 0.891 0.804 
Ensemble scheme 6 0.987 0.967 0.951 0.890 0.805 

Average 
width 

Bayesian regression 15.29 13.35 11.69 9.82 7.65 
Linear regression 15.40 13.40 11.71 9.83 7.66 

Quantile regression 15.09 13.31 11.62 9.73 7.71 
Ensemble scheme 1 15.36 13.36 11.68 9.80 7.63 
Ensemble scheme 2 15.31 13.32 11.65 9.78 7.62 
Ensemble scheme 3 15.36 13.36 11.68 9.80 7.63 
Ensemble scheme 4 14.98 12.88 11.87 9.70 7.81 
Ensemble scheme 5 14.94 13.03 11.81 9.73 7.76 
Ensemble scheme 6 14.98 12.88 11.87 9.70 7.81 

Average 
interval 

score 

Bayesian regression 17.63 15.69 14.13 12.47 10.62 
Linear regression 17.47 15.67 14.11 12.46 10.61 

Quantile regression 17.77 15.81 14.23 12.52 10.61 
Ensemble scheme 1 17.49 15.68 14.14 12.47 10.61 
Ensemble scheme 2 17.49 15.69 14.14 12.47 10.61 
Ensemble scheme 3 17.49 15.69 14.14 12.47 10.61 
Ensemble scheme 4 17.56 15.82 14.18 12.52 10.65 
Ensemble scheme 5 17.59 15.81 14.18 12.52 10.64 
Ensemble scheme 6 17.57 15.82 14.18 12.52 10.65 

Table 7.8. Metric values computed for the prediction intervals delivered by the compared schemes 
for the period T3 within the toy experiment 2. 

Metric Prediction scheme 99% 
prediction 
intervals 

97.5% 
prediction 
intervals 

95% 
prediction 
intervals 

90% 
prediction 
intervals 

80% 
prediction 
intervals 

Coverage 
probability 

Linear regression 0.975 0.962 0.946 0.919 0.864 
Quantile regression 0.994 0.986 0.967 0.918 0.824 
Ensemble scheme 1 0.972 0.958 0.939 0.911 0.856 
Ensemble scheme 2 0.972 0.958 0.939 0.911 0.856 
Ensemble scheme 3 0.972 0.958 0.940 0.911 0.856 
Ensemble scheme 4 0.994 0.982 0.960 0.905 0.819 
Ensemble scheme 5 0.994 0.982 0.962 0.905 0.821 
Ensemble scheme 6 0.994 0.982 0.961 0.906 0.819 

Average 
width 

Linear regression 7.74 6.73 5.89 4.94 3.84 
Quantile regression 7.75 6.45 5.21 3.99 2.92 
Ensemble scheme 1 7.44 6.47 5.65 4.74 3.70 
Ensemble scheme 2 7.41 6.45 5.64 4.73 3.69 
Ensemble scheme 3 7.44 6.47 5.65 4.74 3.70 
Ensemble scheme 4 7.61 6.06 4.93 3.75 2.86 
Ensemble scheme 5 7.65 6.06 4.97 3.75 2.87 
Ensemble scheme 6 7.63 6.08 4.94 3.77 2.87 

Average 
interval 

score 

Linear regression 14.08 10.50 8.54 6.90 5.40 
Quantile regression 8.86 7.56 6.37 5.31 4.31 
Ensemble scheme 1 14.54 10.64 8.57 6.86 5.36 
Ensemble scheme 2 14.60 10.66 8.57 6.87 5.36 
Ensemble scheme 3 14.54 10.64 8.57 6.86 5.36 
Ensemble scheme 4 8.86 7.48 6.33 5.33 4.31 
Ensemble scheme 5 8.88 7.46 6.34 5.33 4.31 
Ensemble scheme 6 8.88 7.49 6.33 5.33 4.31 
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Table 7.9. Metric values computed for the prediction intervals delivered by the compared schemes 
for the period T3 within the toy experiment 3. 

Metric Prediction scheme 99% 
prediction 
intervals 

97.5% 
prediction 
intervals 

95% 
prediction 
intervals 

90% 
prediction 
intervals 

80% 
prediction 
intervals 

Coverage 
probability 

Linear regression 0.979 0.970 0.959 0.933 0.865 
Quantile regression 0.989 0.975 0.950 0.909 0.813 
Ensemble scheme 1 0.977 0.968 0.956 0.928 0.858 
Ensemble scheme 2 0.977 0.968 0.956 0.927 0.857 
Ensemble scheme 3 0.977 0.968 0.956 0.928 0.858 
Ensemble scheme 4 0.990 0.977 0.945 0.903 0.802 
Ensemble scheme 5 0.990 0.976 0.946 0.902 0.805 
Ensemble scheme 6 0.990 0.976 0.945 0.902 0.801 

Average 
width 

Linear regression 9.04 7.87 6.88 5.77 4.50 
Quantile regression 10.88 8.73 6.93 5.53 3.99 
Ensemble scheme 1 8.86 7.71 6.74 5.65 4.40 
Ensemble scheme 2 8.84 7.69 6.72 5.64 4.40 
Ensemble scheme 3 8.86 7.71 6.74 5.65 4.40 
Ensemble scheme 4 10.83 8.57 6.48 5.37 3.87 
Ensemble scheme 5 10.84 8.56 6.51 5.38 3.89 
Ensemble scheme 6 10.83 8.57 6.49 5.37 3.87 

Average 
interval 

score 

Linear regression 16.13 11.90 9.60 7.72 6.10 
Quantile regression 12.73 10.47 8.90 7.45 5.98 
Ensemble scheme 1 16.58 12.06 9.65 7.72 6.09 
Ensemble scheme 2 16.68 12.09 9.66 7.73 6.09 
Ensemble scheme 3 16.51 12.02 9.62 7.71 6.08 
Ensemble scheme 4 12.46 10.56 8.98 7.44 5.98 
Ensemble scheme 5 12.49 10.54 8.98 7.45 5.98 
Ensemble scheme 6 12.48 10.57 8.99 7.45 5.99 

Table 7.10. Metric values computed for the prediction intervals delivered by the compared 
schemes for the period T3 within the toy experiment 4. The results of the linear regression and 
quantile regression schemes are repeated with respect to Table 7.9 for consistency in the 
presentation. 

Metric Prediction scheme 99% 
prediction 
intervals 

97.5% 
prediction 
intervals 

95% 
prediction 
intervals 

90% 
prediction 
intervals 

80% 
prediction 
intervals 

Coverage 
probability 

Linear regression 0.979 0.970 0.959 0.933 0.865 
Quantile regression 0.989 0.975 0.950 0.909 0.813 
Ensemble scheme 1 0.989 0.973 0.947 0.895 0.798 
Ensemble scheme 2 0.989 0.972 0.946 0.894 0.798 
Ensemble scheme 3 0.990 0.972 0.947 0.893 0.798 
Ensemble scheme 4 0.986 0.968 0.949 0.893 0.802 
Ensemble scheme 5 0.987 0.969 0.949 0.894 0.801 
Ensemble scheme 6 0.987 0.968 0.950 0.892 0.803 

Average 
width 

Linear regression 9.04 7.87 6.88 5.77 4.50 
Quantile regression 10.88 8.73 6.93 5.53 3.99 
Ensemble scheme 1 5.12 4.46 3.90 3.27 2.55 
Ensemble scheme 2 5.11 4.44 3.89 3.26 2.54 
Ensemble scheme 3 5.12 4.46 3.90 3.27 2.55 
Ensemble scheme 4 5.00 4.34 3.93 3.25 2.57 
Ensemble scheme 5 4.99 4.35 3.93 3.26 2.57 
Ensemble scheme 6 5.01 4.32 3.95 3.24 2.59 

Average 
interval 

score 

Linear regression 16.13 11.90 9.60 7.72 6.10 
Quantile regression 12.73 10.47 8.90 7.45 5.98 
Ensemble scheme 1 5.83 5.23 4.72 4.16 3.54 
Ensemble scheme 2 5.83 5.23 4.72 4.16 3.54 
Ensemble scheme 3 5.84 5.23 4.72 4.16 3.54 
Ensemble scheme 4 5.86 5.27 4.72 4.16 3.54 
Ensemble scheme 5 5.87 5.27 4.72 4.16 3.54 
Ensemble scheme 6 5.86 5.27 4.72 4.16 3.54 

Two considerations applying to each of toy experiments 1−3 (see Tables 7.7−7.9) are the 
following: (a) ensemble schemes 1−3, as well as ensemble schemes 4−6, are equivalent to each 
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other on the examined normal data, and (b) each of the tested ensemble schemes is equivalent to 
its corresponding benchmark, i.e., ensemble schemes 1−3 and 4−6 perform as well as the linear 
regression and quantile regression schemes respectively. These two types of equivalence hold in 
terms of all three criteria examined. Consideration (a) also applies to the case of toy experiment 
4 (see Table 7.10), while indicating that the three variants of the proposed methodology are 
equivalent in solving the examined problems. Moreover, consideration (b) can be viewed as an 
empirical proof that these problems are well-solved by the proposed methodology. The reason 
behind consideration (b) may become perceivable to some extent by comparing the original 
datasets (see Figure 7.2) with the datasets formed and used for training the incorporated quantile 
prediction models by the ensemble schemes (see Figure 7.4). Segments of the former datasets are 
used for training the benchmark schemes. In fact, the problems solved by each of the ensemble 
schemes and its corresponding benchmark seem to be of the same difficulty for toy experiments 
1−3. 

We have also tested the prediction schemes using shorter series (see e.g., the investigations of 
Section 7.5 and the large-sample real-world experiment conducted in Chapter 8 herein). In that 
particular case for which the provided historical information is much less, the prediction schemes 
differentiate with each other in terms of performance. Nevertheless, by repeating the procedure 
an essentially large number of times with varying seed in the simulation of the datasets, we may 
observe long-run equivalence between specific prediction schemes, depending on the attributes 
of the datasets. For related discussions, the interested reader is referred to Section 7.5. 

One of the most important outcomes of the conducted toy model investigation is related to the 
satisfying coverage probabilities computed for all the ensemble schemes within toy experiment 
1. Moreover, their good performance (equivalent to the performance of the Bayesian regression 
scheme and the two remaining benchmark schemes) in terms of average width of the prediction 
intervals and average interval score, observed within the same toy experiment, is important from 
an engineering point of view, as it points out that the proposed methodology does not lead to 
excessively precautionary design; see also the three criteria identified in Murphy (1993) for 
assessing the quality of predictions and the related discussions in Weijs et al. (2010), Ramos et al. 
(2010) and Chapter 3 herein. 

The performances of all prediction schemes differ for the toy implementations made on toy 
datasets 2 and 3, both in terms of coverage probability and average width; therefore, this 
differentiation is also manifested in the average interval scores. In fact, while both benchmark 
schemes are theoretically expected to be equally well-performing within toy experiment 1, 
quantile regression is theoretically expected to be better than linear regression within toy 
experiment 2, because of its advantage in modelling heteroscedasticity. We herein show that we 
can obtain equally good probabilistic predictions on normal data, by integrating the same model 
within the proposed methodology as error model. The interpretation of this outcome is 
straightforward; the incorporation of flexible models, such as the herein adopted quantile 
regression model may be the key to obtain efficient probabilistic predictions in specific modelling 
situations, including the hydrological modelling ones (see the comments on the violation of the 
homoscedasticity assumption in hydrological modelling, e.g., in Schoups and Vrugt 2010; 
Montanari and Koutsoyiannis 2012; Evin et al. 2013, 2014). 

In greater detail, the numerical results of Table 7.8 can be summarized as follows. When using 
quantile regression instead of linear regression (within the proposed methodology) the average 
interval score is largely improved by around 40%, 30%, 35%, 30% and 25% for the 99%, 97.5%, 
95%, 90% and 80% prediction intervals respectively. The respective relative improvements in 
terms of average width are around −3%, 6%, 13%, 22% and 22%, while the coverage probabilities 
computed for the predictions of the ensemble schemes 4−6 are essentially better than the 
coverage probabilities computed for the predictions of the ensemble schemes 1−3 for the 99%, 
97.5%, 90% and 80% prediction intervals. The coverage probabilities of all ensemble schemes are 
comparable for the 95% prediction intervals. Typical performance differences observed within 
the Chapter between probabilistic prediction schemes that use perfect and imperfect error 
models (with respect to modelling heteroscedasticity) are presented in Figure 7.5. 
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Figure 7.5. Toy solutions provided by ensemble schemes (a) 2 and (b) 5 within toy experiment 2 
for a common 50-point sub-period of the period T3. Black dots denote the targeted points, while 
light pink and dark pink ribbons denote the 95% and 80% prediction intervals respectively. 

Moreover, within toy experiment 3 (see Table 7.9) we show that we can get probabilistic 
predictions with satisfactory coverage probabilities by using the proposed methodology, even 
when the incorporated toy hydrological model is imperfect (linear toy hydrological model for a 
quadratic relationship). This outcome is particularly important if we consider that process-based 
hydrological models are also imperfect. Specifically, we obtain perfect coverage probabilities by 
incorporating the quantile regression model within the proposed methodology, while the relative 
improvements in terms of average interval scores are around 25%, 13%, 8%, 4% and 2% for the 
99%, 97.5%, 95%, 90% and 80% prediction intervals. The average widths, on the other hand, are 
better for ensemble schemes 4−6 only for the 95%, 90% and 80% prediction intervals, while they 
are much larger than those produced by ensemble schemes 1−3 for the 99% and 97.5% prediction 
intervals. 

However, the average widths and average interval scores computed within toy experiment 3 
for all ensemble schemes are found to be far from optimal, when contrasted to the results obtained 
within toy experiment 4 (see Table 7.10). The replacement of the imperfect (for toy dataset 3) toy 
hydrological model with a perfect one, has led to around 54%, 49%, 39%, 39% and 34% better 
average widths, and around 53%, 50%, 47%, 44% and 41% better average interval scores for the 
99%, 97.5%, 95%, 90% and 80% prediction intervals respectively, as the latter are provided by 
ensemble schemes 4−6. In fact, the quality of the obtained probabilistic solution largely depends 
on the adopted toy hydrological model. A toy illustration of typical performance differences 
between probabilistic prediction schemes that use perfect and imperfect toy hydrological models 
is made in Figure 7.6. 
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Figure 7.6. Toy solutions provided by ensemble scheme 5 within toy experiments (a) 3 and (b) 4 
for a common 50-point sub-period of the period T3. Black dots denote the targeted points, while 
light pink and dark pink ribbons denote the 95% and 80% prediction intervals respectively. 

7.4.2 Improved robustness in hydrological post-processing 

Here we present illustrative examples that can be used to gain further insight on how the 
proposed methodology works (aim 2 of the Chapter; see Section 7.1) and to answer the following 
research question (related to aim 3 of the Chapter): Why and when is it meaningful for someone 
to choose the proposed methodology over a basic two-stage post-processing methodology 
utilizing the same error model? In Figure 7.7, we present the relative improvements resulted 
within toy experiment 4 in terms of average interval score, when using the output of ensemble 
scheme 4, instead of each of the combined individual predictions, while in Figure 7.8 we present 
the respective relevant improvements provided by ensemble scheme 5. We observe that these 
relative improvements can be either positive or negative, while their mean is slightly higher than 
zero. Specifically, the average relative improvements computed for the histograms displayed in 
Figure 7.7 (Figure 7.8) are equal to 0.10%, 0.06%, 0.05%, 0.06% and 0.06% (0.20%, 0.10%, 
0.13%, 0.14% and 0.12%) for the 99%, 97.5%, 95%, 90% and 80% prediction intervals 
respectively, with the results being analogous for the remaining ensemble schemes. 
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Figure 7.7. Relative improvements in terms of average interval score when using the output of 
ensemble scheme 4, i.e., the average of 1 000 probabilistic predictions, instead of each of the 
combined individual predictions. The relative improvements are computed for the (a) 99%, (b) 
97.5%, (c) 95%, (d) 90% and (e) 80% prediction intervals obtained for the period T3 within toy 
experiment 4. The horizontal axis has been truncated at −0.8% and 2%. Each histogram 
summarizes 1 000 values. 
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Figure 7.8. Relative improvements in terms of average interval score when using the output of 
ensemble scheme 5, i.e., the average of 1 000 probabilistic predictions, instead of each of the 
combined individual predictions. The relative improvements are computed for the (a) 99%, (b) 
97.5%, (c) 95%, (d) 90% and (e) 80% prediction intervals obtained for the period T3 within toy 
experiment 4. The horizontal axis has been truncated at −0.6% and 2%. Each histogram 
summarizes 1 000 values. 

These average relative improvements computed for ensemble schemes 1 and 4 could be 
viewed as a direct comparison in terms of robustness in performance between the proposed 
methodology and a basic two-stage post-processing methodology (generating a single point 



 

 170 

hydrological prediction and, therefore, using a single set of hydrological model’s parameters), the 
latter using the linear regression and quantile regression models respectively as error models. In 
fact, although many of the individual probabilistic predictions (obtained using different sister 
model realizations and, therefore, multiple sets of hydrological model’s parameters) score better 
than the finally delivered one in the period T3, we cannot know in advance which sister model 
realizations can be used for obtaining these better results and, therefore, should be preferred over 
the remaining ones within a basic post-processing methodology. By averaging numerous 
probabilistic predictions (obtained using the same number of different sister model realizations) 
we simply reduce the risk of delivering a probabilistic prediction of bad quality for the period T3. 

An important remark to be highlighted is that this risk can be high or low depending on the 
problem. In the toy problems examined herein the risk of delivering a probabilistic prediction of 
bad quality for the period T3 (manifested in the magnitude of the relative improvements 
presented e.g., in Figures 7.7 and 7.8) is much lower than the respective risk that was found to be 
present in the rainfall-runoff problems examined in Chapter 8 herein. In this latter Chapter the 
computed relative improvements in terms of average interval score when using the output of the 
proposed methodology, instead of using each of the individual predictions combined for obtaining 
this output, range from about −330% to about 90%. (Negative relative improvements are 
computed for predictions that perform better that the prediction combination). Therefore, while 
it would not be that cost-efficient to use the proposed methodology for problems, such as the 
simple ones solved (for illustrative purposes) herein, it is cost-efficient from a risk management 
perspective to use this methodology (instead of a basic post-processing methodology) for 
probabilistic hydrological modelling applications. 

Finally, for all ensemble schemes and all prediction intervals, the output of the proposed 
methodology is herein found to score slightly better than the average of the scores computed for 
each of the combined individual predictions in terms of average interval score. This latter 
information stands as an empirical proof that this methodology harnesses the wisdom of the 
crowd for the examined problem and in terms of average interval score. This useful property of 
the proposed methodology is further investigated by using rainfall-runoff datasets in Chapter 8 of 
this thesis. 

7.5 Additional investigations and derived interpretations 

7.5.1 Large-scale variant of the basic toy experiment using shorter toy datasets 

Toy experiment 1 is particularly important because there exists an analytical solution to it, 
thereby allowing us to extensively explore under which conditions the data-driven solutions 
provided by the remaining schemes are adequate. This analytical solution is provided by the 
herein implemented Bayesian regression scheme. To further facilitate the interpretation of the 
proposed methodology (by answering questions related to aims 2 and 4 of the Chapter; see 
Section 7.1), we here conduct the “type 1 additional investigations” by repeating toy experiment 
1 using shorter toy datasets. We run 500 repetitions, each time using a different toy dataset 
comprising 300 pairs of (xt, yt) values. These toy datasets result by following the same simulation 
procedure that was previously adopted for obtaining toy dataset 1 (see Table 7.4). Multiple runs 
are important in this case, because randomness can largely affect the results when relying on few 
data. 

For each of the resulted toy datasets, we i) define the periods T1 = {1, …, 100}, T2 = {101, …, 
200} and T3 = {201, …, 300}, ii) run the three benchmark schemes according to Section 3.2.3, iii) 
run the six ensemble schemes according to Section 7.3.4 by adopting the linear regression model 
as toy hydrological model, and iv) compute the metric values for each delivered prediction 
according to Section 7.3.6. Finally, we compute the average metric values for each combination of 
prediction scheme and prediction interval. The coverage probability, average width and average 
interval score values are presented in Figures 7.9−7.11 respectively, while the average metric 
values are presented in Table 7.11. Note that the here examined 500 toy datasets are all in the 
same scale; therefore, the average metric values are highly informative. 
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Figure 7.9. Coverage probabilities computed for the 99%, 97.5%, 95%, 90% and 80% prediction 
intervals (from top to bottom) delivered by the compared schemes for the period T3 within the 
type 1 additional investigations. Each boxplot summarizes 500 values. The optimal values are 
denoted with red thick vertical lines. 
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Figure 7.10. Average widths computed for the 99%, 97.5%, 95%, 90% and 80% prediction 
intervals (from top to bottom) delivered by the compared schemes for the period T3 within the 
type 1 additional investigations. Each boxplot summarizes 500 values. 
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Figure 7.11. Average interval scores computed for the 99%, 97.5%, 95%, 90% and 80% prediction 
intervals (from top to bottom) delivered by the compared schemes for the period T3 within the 
type 1 additional investigations. Each boxplot summarizes 500 values. 
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Table 7.11. Average metric values computed for the prediction intervals delivered by the 
compared schemes for the period T3 within the type 1 additional investigations. Each presented 
value summarizes 500 metric values. 

Metric Prediction scheme 99% 
prediction 
intervals 

97.5% 
prediction 
intervals 

95% 
prediction 
intervals 

90% 
prediction 
intervals 

80% 
prediction 
intervals 

Coverage 
probability 

Bayesian regression 0.989 0.975 0.949 0.899 0.801 
Linear regression 0.990 0.976 0.950 0.900 0.800 

Quantile regression 0.981 0.966 0.941 0.892 0.793 
Ensemble scheme 1 0.991 0.976 0.952 0.902 0.803 
Ensemble scheme 2 0.989 0.973 0.947 0.896 0.796 
Ensemble scheme 3 0.991 0.976 0.952 0.902 0.803 
Ensemble scheme 4 0.964 0.957 0.933 0.886 0.785 
Ensemble scheme 5 0.973 0.962 0.939 0.891 0.792 
Ensemble scheme 6 0.964 0.957 0.933 0.885 0.786 

Average 
width 

Bayesian regression 15.57 13.60 11.93 9.98 7.78 
Linear regression 15.72 13.65 11.92 9.99 7.77 

Quantile regression 15.43 13.36 11.75 9.86 7.70 
Ensemble scheme 1 16.00 13.87 12.09 10.12 7.86 
Ensemble scheme 2 15.54 13.53 11.83 9.93 7.73 
Ensemble scheme 3 16.00 13.87 12.09 10.12 7.86 
Ensemble scheme 4 13.98 13.32 11.71 9.90 7.67 
Ensemble scheme 5 14.53 13.46 11.86 9.97 7.75 
Ensemble scheme 6 13.99 13.32 11.71 9.90 7.67 

Average 
interval score 

Bayesian regression 17.72 15.72 14.18 12.51 10.62 
Linear regression 17.61 15.69 14.16 12.50 10.62 

Quantile regression 19.66 16.46 14.51 12.66 10.70 
Ensemble scheme 1 17.88 15.91 14.31 12.60 10.69 
Ensemble scheme 2 17.89 15.91 14.31 12.60 10.69 
Ensemble scheme 3 17.88 15.91 14.31 12.60 10.69 
Ensemble scheme 4 22.85 17.49 15.07 12.93 10.86 
Ensemble scheme 5 20.97 16.97 14.83 12.83 10.80 
Ensemble scheme 6 22.76 17.47 15.06 12.92 10.86 

The main observations extracted from these investigations can be summarized as follows: (a) 
The linear regression scheme is equivalent to the Bayesian regression scheme in the long run, (b) 
ensemble schemes 1−3 perform almost as well as the two best-performing benchmarks (since 
their error modelling procedures are benefited from proper assumptions, i.e., prior knowledge on 
the system to be modelled), (c) ensemble schemes 4−6 are the worst-performing, (d) the quantile 
regression scheme exhibits a moderate performance, (e) ensemble schemes 1−3 are almost 
equivalent to each other, and (f) ensemble scheme 5 performs better than ensemble schemes 4 
and 6. By comparing these observations with those extracted from toy experiment 1 (see Section 
7.4.1), we understand that the quantile regression model needs to be “fed” with more data to reach 
its best performance, which in the case of the here examined data type is as good as the 
performance of the linear regression model. Note that this “data consuming” consideration stems 
from the statistical learning nature of the modelling process and, therefore, it applies to the linear 
regression model as well, yet to a smaller extent. It could also be viewed as a limitation of two-
stage hydrological post-processing in general (see Section 8.1). 

7.5.2 Large-scale toy regression experiment with non-informative predictors 

We repeat the type 1 additional investigations by using different toy datasets of the same number 
and length. The new datasets result from a simulating model that implies no dependence of y on 
x, specifically the following: xt ~ N(μ = 0, σ2 = 12) and yt ~ N(μ = 0, σ2 = 12). These investigations 
are hereafter referred to as “type 2 additional investigations”. The analytical solution to the 
examined toy problem is provided by the “Bayesian non-regression” benchmark. This scheme 
assumes that yt ~ N(μ, σ2), prior independence of μ and σ, and a uniform prior distribution on (μ, 

logσ). Then, the posterior distribution is a Student-t distribution with location !" = (1/n) ∑n
t = 1yt, 

scale (1 + 1/n)0.5 ((1/(n – 1)) ∑n
t = 1(yt – !")2)0.5, and n – 1 degrees of freedom, where n is the number 
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of data points included in the fitting sample (Gelman et al. 2004). In our case, the fitting sample is 
consisted of the first 200 data points of each simulated series, i.e., n = 200. 

The main observations extracted from the type 2 additional investigations can be 
summarized as follows (see Table 7.12): (a) The Bayesian non-regression, Bayesian regression 
and linear regression benchmarks are equivalent in the long run, (b) ensemble schemes 1 and 2 
perform almost as well as the three best-performing benchmarks, (c) ensemble schemes 3 and 6 
are the worst-performing (mostly because of outliers), (d) ensemble scheme 5 and the quantile 
regression benchmark exhibit a moderate performance, and (e) ensemble scheme 4 exhibits 
better performance than ensemble scheme 6 and worse than ensemble scheme 5. 

Table 7.12. Average metric values computed for the prediction intervals delivered by the 
compared schemes for the period T3 within the type 2 additional investigations. Each presented 
value summarizes 500 metric values. 

Metric Prediction scheme 99% 
prediction 
intervals 

97.5% 
prediction 
intervals 

95% 
prediction 
intervals 

90% 
prediction 
intervals 

80% 
prediction 
intervals 

Coverage 
probability 

Bayesian non-regression 0.990 0.976 0.950 0.901 0.801 
Bayesian regression 0.989 0.975 0.949 0.899 0.801 

Linear regression 0.990 0.976 0.950 0.900 0.800 
Quantile regression 0.981 0.966 0.941 0.892 0.793 
Ensemble scheme 1 0.991 0.976 0.952 0.902 0.803 
Ensemble scheme 2 0.988 0.972 0.947 0.895 0.795 
Ensemble scheme 3 0.994 0.982 0.962 0.920 0.832 
Ensemble scheme 4 0.964 0.957 0.933 0.886 0.785 
Ensemble scheme 5 0.980 0.964 0.943 0.894 0.794 
Ensemble scheme 6 0.893 0.895 0.877 0.835 0.736 

Average 
width 

Bayesian non-regression 5.23 4.54 3.96 3.32 2.58 
Bayesian regression 5.19 4.53 3.98 3.33 2.59 

Linear regression 5.24 4.55 3.97 3.33 2.59 
Quantile regression 5.14 4.45 3.92 3.29 2.57 
Ensemble scheme 1 5.33 4.62 4.03 3.37 2.62 
Ensemble scheme 2 5.14 4.48 3.91 3.28 2.56 
Ensemble scheme 3 8.72 7.56 6.59 5.51 4.28 
Ensemble scheme 4 4.66 4.44 3.90 3.30 2.56 
Ensemble scheme 5 5.02 4.37 3.92 3.30 2.57 
Ensemble scheme 6 4.95 5.01 3.98 3.51 2.61 

Average 
interval 

score 

Bayesian non-regression 5.85 5.22 4.71 4.16 3.53 
Bayesian regression 5.91 5.24 4.73 4.17 3.54 

Linear regression 5.87 5.23 4.72 4.17 3.54 
Quantile regression 6.55 5.49 4.84 4.22 3.57 
Ensemble scheme 1 5.96 5.30 4.77 4.20 3.56 
Ensemble scheme 2 5.93 5.28 4.75 4.18 3.55 
Ensemble scheme 3 9.15 8.06 7.16 6.19 5.10 
Ensemble scheme 4 7.62 5.83 5.02 4.31 3.62 
Ensemble scheme 5 6.43 5.48 4.84 4.21 3.56 
Ensemble scheme 6 188.33 48.85 25.36 12.38 6.66 

7.6 Summary, discussion and conclusions 

We have focused on the problem of probabilistically predicting hydrological variables, such as 
river discharge variables, by incorporating hydrological point prediction models, mainly falling 
into the category of deterministic process-based models, within stochastic modelling approaches. 
We have presented three novel variants of the blueprint methodology by Montanari and 
Koutsoyiannis (2012), also relying on the seminal work by Lichtendahl et al. (2013). In summary, 
the proposed methodology generates a large number of point predictions by utilizing a single 
hydrological model, yet with different parameter values. By solving a typical regression problem, 
these “sister predictions” are converted into auxiliary probabilistic predictions (consisted of 
quantile predictions), which are finally combined via simple quantile averaging. To the best of our 
knowledge, this is the first quantile averaging hydrological post-processing methodology that 
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creates and exploits different information sets using a single model with different parameter 
values. 

It is relevant to highlight that both the original blueprint and the herein introduced 
methodology fall into the family of two-stage probabilistic hydrological post-processing 
methodologies. Being mostly characterized by algorithmic-modelling-culture features (defined 
and analysed e.g., in Breiman 2001b and Shmueli 2010), and concomitant advantages and 
disadvantages, these methodologies aspire to achieve optimality in predictive performance in a 
fundamentally different way with respect to Bayesian joint inference methodologies for 
hydrological post-processing. Related information is provided in Section 8.1 (see also Evin et al. 
2014). In light of this information, the present Chapter has been mostly devoted to finding 
modelling ‘tricks’ and concepts for maximizing predictive performance in two-stage hydrological 
post-processing by building on the original blueprint by Montanari and Koutsoyiannis (2012). An 
additional advantage offered by the latter with respect to other two-stage hydrological post-
processing methodologies is its larger flexibility by perception, in the sense that it allows the 
formation and testing of various alternative configurations. This advantage is particularly 
important from a predictive modelling perspective. 

A key improvement achieved herein compared to the original work by Montanari and 
Koutsoyiannis (2012), and the variants by Sikorska et al. (2015) and Quilty et al. (2019) in terms 
of flexibility in modelling is the use of statistical learning regression models that can directly 
provide predictive quantiles of the response variable, while they are also appropriate for 
modelling heteroscedasticity, such as the six machine learning algorithms examined in Chapter 9 
of this thesis. These are quantile regression, generalized random forests for quantile regression, 
generalized random forests for quantile regression emulating quantile regression forests, 
gradient boosting machine, model-based boosting with linear models as base learners and 
quantile regression neural networks. Allowing the exploitation of the possibilities provided by 
this model category should, in fact, be regarded as a primary strength of the proposed 
methodology from a predictive modelling perspective. 

Herein, we have demonstrated the usefulness of the proposed methodology and how our 
understanding of the system to be modelled can guide us to achieve better predictive modelling 
when using this methodology by conducting a toy model investigation. Within this investigation 
we have focused on the unsuitability of the homoscedasticity assumption, when the latter is made 
in the modelling of the hydrological model’s error, and on how the selection of an appropriate 
regression model for this task results in improved probabilistic predictions. We have also 
demonstrated the significance of using a better hydrological model for delivering probabilistic 
predictions that are simultaneously reliable and as sharp as possible. Finally, we have used the 
obtained toy results to show how the proposed methodology increases its robustness in 
performance by averaging many quantile predictions. 

In spite of focusing on the introduced methodology, some of the obtained results can be used 
for gaining insight in general on how two-stage hydrological post-processing methodologies work 
and under which conditions their performance is maximized. The presented toy examples, 
demonstrating the key roles of both the statistical learning regression model and the hydrological 
model within a hydrological post-processing methodology, go beyond of some few exemplary (yet 
basic) toy tests that have already been made for the interpretation of methodologies for the 
quantification of the predictive hydrological uncertainty. Such tests mostly assume 
homoscedasticity and a perfect toy hydrological model, while here we are also inspired by recent 
simulation experiments that do not rely on these assumptions (see e.g., Vrugt et al. 2005; Renard 
et al. 2010; Evin et al. 2014). 

The present work is accompanied by the work presented in Chapter 8. The latter work is 
devoted to validating the herein introduced methodology and its key properties using a large 
amount of real-world data. Two simultaneously attractive and useful properties of this 
methodology that are extensively tested therein are its larger robustness in performance 
compared to the combined individual predictors and, by extension, compared to basic two-stage 
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post-processing methodologies (which produce a single probabilistic prediction and, therefore, 
no prediction combination is made in their case), and its ability to “harness the wisdom of the 
crowd”. The latter is defined in Lichtendahl et al. (2013, Section 5) as the property of some 
prediction combinations to score no worse –usually better− than the average score of the 
combined individual predictions. In fact, the larger the number of the combined quantile 
predictions (equal to the number of the generated sister predictions), the more robust the 
ensemble predictor and the more harnessed the wisdom of the crowd. 

The proposed methodology is characterized by some additional strengths that are also 
particularly important from a predictive modelling point of view. First, it is computationally 
convenient in the sense that it can be easily expressed in algorithmic form (see Section 7.2.1) and 
programmed using open source routines (see Section 2.9.4). Second, it offers certain modelling 
options that could be exploited to maximize predictive performance, as detailed in Section 8.6. For 
instance, variants 1 and 2 allow the exploitation by the error model of a large number of different 
information sets, instead of a single one (exploited by variant 3), thereby facilitating the 
enlargement of the sample space of the hydrological model’s observed errors. This enlargement 
could be particularly important for modelling these errors using methods which do not 
extrapolate beyond the values of the training dataset, such as the quantile regression forests 
model (see the related theoretical information summarized by Tyralis et al. 2019b). Lastly, it 
allows the exploitation of the total amount of available information, in the sense that each sister 
prediction is herein converted into a probabilistic prediction (consisted of several quantile 
predictions) instead of a single simulation (randomly extracted from its predictive PDF; see the 
utilization of the meta-Gaussian bivariate distribution model in Montanari and Koutsoyiannis 
2012; see also Kelly and Krzysztofowicz 1997). 

Some limitations of the proposed methodology should also be considered. These include 
limitations implied by its two-stage nature (see Section 8.1), such as its shortcoming in terms of 
interpretability in modelling (especially in terms of producing interpretable parameter estimates) 
and its significant data length requirements (revealed e.g., in Section 7.5). Although this latter 
limitation should be acknowledged herein and perhaps taken into consideration in real-world 
applications, (daily) datasets are usually essentially large. Moreover, in Chapter 8 herein it is 
empirically proven that, in practice, even when the available historical information is little, the 
proposed methodology is well-performing when implemented using the quantile regression 
model as error model. 

Furthermore, the computational requirements of the proposed methodology are (at the 
moment) high when (i) computationally intensive procedures (e.g., Markov Chain Monte Carlo 
simulation sampling) are preferred for calibrating the hydrological model, and/or (ii) the error 
model is trained as implied by variant 1 or variant 2, unless the application is restricted to 
considering a small number of sister predictions. Note that a computationally convenient and 
simple algorithm is not necessarily computationally fast. It is also important to clarify that the 
above-outlined limitation holds only for applications to hundreds of catchments and timescales 
finer than the monthly one, and for implementations through regular personal computers. It does 
not hold for applications to a small number of catchments, and applications at the monthly and 
annual timescales. Still, large-scale applications at the daily timescale can be supported by variant 
3, when this variant is implemented by using computationally fast algorithms for calibrating the 
hydrological model (see e.g., the calibration scheme tested in Section 8.4). 

In addition to the above-discussed considerations and in contrast to several statistical 
methodologies for probabilistic prediction, such as the Bayesian methodology by Tyralis and 
Koutsoyiannis (2014), a well-known drawback of flexible statistical learning models for quantile 
prediction is their inappropriateness for modelling long-range dependence (see also Cox et al. 
2018). Modelling this dependence when solving prediction problems is a frequently met concern 
in applied hydrology (see e.g., the large-scale investigations in Chapters 3−5 herein; see also the 
comparative case study in Chapter 6). Nonetheless, empirical evidence (see e.g., Evin et al. 2014) 
suggests that the AR(1) assumption (in some sense allowed by the proposed methodology by 
using as a predictor variable in regression the hydrological model’s prediction at time t−1) is 
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adequate when modelling hydrological models’ errors. In general, by including more than one 
predictor variables (e.g., the hydrological model’s predictions at times t, t−1, t−2, etc.) in the 
regression settings we can increase the amount of the available information exploited and 
improve predictive performance, as it is empirically proven for rainfall-runoff modelling 
problems in Chapter 9 of this thesis. 

Overall, the main trade-off to be considered when selecting between the proposed 
methodology and basic two-stage post-processing methodologies (utilizing the same error model) 
is the one between (a) the increased robustness in performance and the ability to harness the 
wisdom of the crowd, both offered by the former methodology, and (b) the significantly less 
computational requirements of a basic post-processing methodology. We believe that from a risk 
management standpoint this trade-off is worthy, as the large-sample experiment of Chapter 8 
suggests. 
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8. Quantification of predictive uncertainty in hydrological modelling by 
harnessing the wisdom of the crowd: A large-sample experiment at 
monthly timescale 

Predictive hydrological uncertainty can be quantified by using ensemble methods. If properly 
formulated, these methods can offer improved predictive performance by combining multiple 
predictions. In this Chapter, we use 50-year-long monthly time series observed in 270 catchments 
in the United States to explore the performances provided by the ensemble learning post-
processing methodology introduced in Chapter 7. This methodology allows the utilization of 
flexible quantile regression models for exploiting information about the hydrological model’s 
error. Its key differences with respect to basic two-stage hydrological post-processing 
methodologies using the same type of regression models are that (a) instead of a single point 
hydrological prediction it generates a large number of “sister predictions” (yet using a single 
hydrological model), and that (b) it relies on the concept of combining probabilistic predictions 
via simple quantile averaging. A major hydrological modelling challenge is obtaining probabilistic 
predictions that are simultaneously reliable and associated to prediction bands that are as narrow 
as possible; therefore, we assess both these desired properties of the predictions by computing 
their coverage probabilities, average widths and average interval scores. The results confirm the 
usefulness of the proposed methodology and its larger robustness with respect to basic two-stage 
post-processing methodologies. Finally, this methodology is empirically proven to harness the 
“wisdom of the crowd” in terms of average interval score, i.e., the average of the individual 
predictions combined by this methodology scores no worse –usually better− than the average of 
the scores of the individual predictions. 

8.1 Introduction 

Uncertainty is a subject of ongoing discussions in hydrology (see e.g., Beven 1993; Vogel 1999; 
Beven 2000, 2001; Beven and Feer 2001; Krzysztofowicz 2001b; Pappenberger and Beven 2006; 
Koutsoyiannis and Montanari 2007; Montanari 2007; Koutsoyiannis et al. 2009; Koutsoyiannis 
2010; Kuczera et al. 2010; Ramos et al. 2010; Weijs et al. 2010; Koutsoyiannis 2011; Juston et al. 
2012; Ramos et al. 2013; Nearing at al. 2016). Hydrological modelling uncertainty is traditionally 
recognised within the model calibration and validation phases (Montanari 2011) in the context of 
the widely accepted evaluation framework proposed by Klemeš (1986). Within this framework 
“uncertainty treatment” serves the verification of hydrological model’s reliability (Montanari 
2011). The large number of relevant studies and their high significance are summarised, for 
instance, in the review papers by Efstratiadis and Koutsoyiannis (2010), and Pechlivanidis et al. 
(2011). 

As discussed in Koutsoyiannis (2010), an appropriate modelling approach for any uncertain 
hydrological system should necessarily include quantification of its uncertainty within a 
stochastic framework. Uncertainty is naturally quantified using the probability theory, i.e., in 
terms of probability distribution function (PDF; Todini 2007; see also Todini 2004, 2008). Todini 
(2007; quoting Krzysztofowicz 1999) emphasizes the fact that in engineering applications the 
targeted uncertainty quantification should be no other than the quantification of the predictive 
uncertainty, i.e., the total uncertainty of the predictand. Along with this strong engineering-
oriented interest of hydrologists (which might be underestimated in some cases but is of vital 
significance for hydrology, as for any applied science; Shmueli 2010), understanding of predictive 
performance and uncertainty in hydrological modelling is undoubtedly a major science-oriented 
target (see e.g., Clark et al. 2008; Renard et al. 2010; Montanari 2011; Pechlivanidis et al. 2011; 
Renard et al. 2011; Beven 2012; Montanari and Koutsoyiannis 2012; Clark et al. 2015; Farmer and 
Vogel 2016; Széles et al. 2018; Khatami et al. 2019).  

The preference for process-based (including conceptual) hydrological models (over the data-
driven ones; Toth et al. 1999), along with both the practical relevance of predictive uncertainty 
quantification in hydrology and the attentiveness of hydrologists towards increasing 
understanding in (probabilistic) hydrological modelling, has led to the development of a wide 
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range of methodologies for the integration of process-based and statistical models. This range 
includes (but is not limited to) various types of methodologies that statistically post-process the 
output of process-based models (hereafter referred to as “post-processing” methodologies). 
Considering information from deterministic models within uncertainty assessment frameworks 
(instead of exclusively using statistical methods) is a state-of-the-art methodological approach 
that is also adopted in contiguous fields (see e.g., Tyralis and Koutsoyiannis 2017). This approach 
holds a prominent position in the field of probabilistic hydrological modelling, in contrast to 
purely statistical probabilistic methodologies, which are rarely preferred; therefore, the below-
provided outline exclusively focuses on it. 

Perhaps the most frequently exploited methodology for predictive uncertainty quantification 
in hydrological modelling is the Generalized Likelihood Uncertainty Estimation (GLUE; Beven and 
Binley 2014). This approach has been proposed by Beven and Binley (1992), and is based on the 
concept of equifinality (see e.g., Beven 2006; Khatami 2019). It has been discussed, for example, 
in Montanari (2005), Mantovan and Todini (2006), Stedinger et al. (2008), Vrugt et al. (2009b), 
and Sadegh and Vrugt (2013); see also the related comments in Todini (2007). 

Another predictive uncertainty quantification methodology that has received attention both 
by researchers and practitioners is the Bayesian Forecasting System (BFS). The BFS has been 
introduced by Krzysztofowicz (1999, 2001b, 2002), Krzysztofowicz and Kelly (2000), and 
Krzysztofowicz and Herr (2001) for producing probabilistic river stage forecasts. It consists of 
three discrete components, namely the Precipitation Uncertainty Processor (PUB), the Hydrologic 
Uncertainty Processor (HUP) and the INTegrator (INT). Information about these components can 
be found in Kelly and Krzysztofowicz (2000), Krzysztofowicz and Kelly (2000), and 
Krzysztofowicz (2001a) respectively. This Bayesian methodology is conceived for real-time 
forecasting and relies on the assumption that uncertainty is mainly introduced by rainfall forecast 
errors. 

There are also Bayesian post-processing methodologies that explicitly consider the 
contribution of input and output data uncertainty (which also affects the quantification of 
parameter uncertainty; see Di Baldassarre and Montanari (2009), McMillan et al. (2010), Di 
Baldassarre et al. (2012), McMillan et al. (2012), Kauffeldt et al. (2013), Montanari and Di 
Baldassarre (2013), Tomkins (2014) and Coxon et al. (2015) for information on rainfall-runoff 
data errors). Perhaps the most characteristic example of such a methodology is the Bayesian Total 
Error Analysis (BATEA) framework by Kavetski et al. (2002; see also Kavetski et al. 2006a, 
Kuczera et al. 2006), implemented, for instance, in Thyer et al. (2009) and Renard et al. (2010, 
2011). This Bayesian framework facilitates the joint modelling of parameter uncertainty, data 
uncertainties, and model error, i.e., of all sources of uncertainty that are often assumed to 
collectively compose the predictive uncertainty. Other Bayesian post-processing methodologies 
introduced for parameter and predictive uncertainty quantification are described by Kuczera 
(1983), Schoups and Vrugt (2010), Evin et al. (2013; see also Evin et al. 2014), Hernández-López 
and Francés (2017) and Romero-Cuellar et al. (2019); see also the literature review in Hernández-
López and Francés (2017). 

Non-Bayesian post-processing methodologies that in their majority focus on the modelling of 
a single error term conditional on hydrological point predictions and historical information are 
also available in the hydrological modelling literature (see e.g., Montanari and Brath 2004; 
Montanari and Grossi 2008; Solomatine and Shrestha 2009; López López et al. 2014; Dogulu et al. 
2015; Bourgin et al. 2015; Farmer and Vogel 2016; Wani et al. 2017; Bock et al. 2018). Adopting 
the terminology by Evin et al. (2014), such methodologies are hereafter referred to as “two-stage” 
post-processing methodologies, as their hydrological and error models are estimated in two 
subsequent stages. It is relevant to note at this point that Bayesian and two-stage post-processing 
methodologies are rather not directly comparable, since they are characterized by different 
statistical-modelling-culture traits and distinguishing features, which in their turn lead to 
different advantages and disadvantages (see Tables 8.1−8.3). For extensive discussions on the 
statistical modelling cultures, the reader is referred to Breiman (2001b) and Shmueli (2010). 
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Table 8.1. Advantages and disadvantages of Bayesian hydrological post-processing methodologies 
(see also Evin et al. 2014). These post-processing methodologies jointly infer (within a Bayesian 
framework) the parameters of the hydrological and error models by using the entire historical 
dataset. 
Advantages o If their assumptions are proper, they produce optimal probabilistic predictions by 

theory. This could be possible in principle, since the hydrological literature presents 
generalized findings on the distributions of hydrological variables with increasing 
frequency and reliability. 

o They can largely facilitate interpretability in modelling, since they allow the inspection 
of the impact of their assumptions on both parameter and predictive uncertainty. 

o Their performance depends less on the length of the historical dataset than the 
performance of two-stage post-processing methodologies (see Table 8.2), since their 
fitting does not require sample splitting. 

Disadvantages o Their predictive performance largely depends on the appropriateness of their 
assumptions. 

o They might get over-parameterized in an effort to ensure the adoption of proper 
assumptions. 

o Their use is accompanied by computational limitations. 

Table 8.2. Advantages and disadvantages of two-stage hydrological post-processing 
methodologies (see also Evin et al. 2014; Chapter 9 herein). These post-processing methodologies 
estimate their error models conditional on the predictions provided by their hydrological models. 
The latter have been calibrated by using an independent segment of the historical dataset. 
Advantages o They can be nearly assumption-free (i.e., their performance does not necessarily 

depend on the appropriateness of assumptions) when implemented with flexible 
machine learning quantile regression algorithms as error models. The advantages of 
these algorithms are listed independently in Table 8.3. 

o Computational requirements and limitations are mostly few in their case. Therefore, 
their automation and application to big datasets is feasible. This is one of the main 
reasons why two-stage hydrological post-processing is popular in forecasting 
applications. This popularity is emphasized e.g., by Evin et al. (2014). 

o In light of the two points above, their performance can be maximized by adopting 
algorithmic strategies and well-established guidelines from the machine learning 
literature (see e.g., the experiment presented herein). The role of big datasets for 
achieving optimal modelling solutions under this new-era approach is emphasized 
e.g., in Tyralis et al. (2019b). 

Disadvantages o They largely lack interpretability by perception. Interactions between the hydrological 
model parameters and the trained version of the error model are ignored; therefore, 
their hydrological model parameter estimates are only auxiliary to predictive 
uncertainty quantification and cannot be used in any case for understanding 
parameter uncertainty. 

o Their performance depends more on the length of the historical dataset than the 
performance of Bayesian post-processing methodologies (see Table 8.1), since their 
fitting requires sample splitting. 

o The adoption of flexible machine learning quantile regression algorithms as error 
models has an additional cost in terms of interpretability and further increases the 
large-sample requirements (see the disadvantages of Table 8.3). These requirements 
are revealed and discussed e.g., in Section 7.5 herein. 
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Table 8.3. Advantages and disadvantages of statistical learning (or machine learning) quantile 
regression algorithms (see also Waldmann 2018; Sections 2.6 and 9.5.3 herein). Quantile 
regression algorithms issue quantile predictions instead of PDF predictions. 
Advantages o They are ideal when the conditional distribution of the dependent variable is not 

known or is hard to deduce. 
o They model heteroscedasticity by perception and construction. 
o In light of the above point, they are also straightforward to apply, as they do not need 

to be fitted separately for each season (or month), in contrast to distribution-based 
modelling approaches (e.g., conditional-distribution models). 

o They are robust with respect to outliers in the observations of the dependent variable. 
o They are available in open source and mostly optimally programmed. 

Disadvantages o They are trained separately for each quantile probability; therefore, the more the 
quantiles (or prediction intervals) we are interested in issuing, the more 
computationally costly the training process. 

o Quantile crossing is possible. 
o Parameter estimation is harder than in standard regression. 
o Their performance depends to some extent on the sample size. 
o They lack interpretability. Only their linear variant, i.e., the quantile regression model 

implemented herein, offers interpretability to some extent. 

In the context described so far, Montanari and Koutsoyiannis (2012) introduced a flexible 
two-stage post-processing methodology (hereafter referred to as “MK blueprint methodology”) 
that facilitates both probabilistic modelling and understanding from a stochastic perspective of 
rainfall-runoff (and other stochastic) relationships. In its basic configuration (for its outline, see 
Section 2.7.3), this methodology utilizes a single hydrological model to generate a large number 
of point predictions (hereafter referred to as “sister predictions”; adopting a similar terminology 
to the one by Nowotarski et al. 2016, Wang et al. 2016 and Liu et al. 2017). As implied by its post-
processing nature, it also utilizes a second −necessarily statistical− model for modelling the error 
of the hydrological model (hereafter referred to as “error model”). 

Different variants of the MK blueprint methodology can be found in Sikorska et al. (2015), 
Quilty et al. (2019) and Chapter 7 of this thesis. The original blueprint and the variant by Sikorska 
et al. (2015) are formulated to explicitly consider input data uncertainty, while in both related 
papers a large number of hydrological model parameters are obtained by using the DREAM 
algorithm by Vrugt et al. (2009a; see also Vrugt 2016). This algorithm (see e.g., Schoups and Vrugt 
2010; Laloy and Vrugt 2012; Vrugt et al. 2013; Sadegh and Vrugt 2014) is a popular Markov chain 
Monte Carlo (MCMC) algorithm for sampling from the posterior parameter distribution of 
hydrological models (see also the related implementations in Sadegh et al. 2015; Hernández-
López and Francés 2017; Vrugt et al. 2008; Volpi et al. 2017). Other (non-Bayesian) methodologies 
could also be used for obtaining a large number of hydrological model parameters (Montanari and 
Koutsoyiannis 2012), while in absence of relevant information the MK blueprint methodology can 
also be applied without explicitly considering input data uncertainty (see e.g., the 
implementations in Quilty et al. 2019 and the formulations of the variants of Chapter 7 herein). 
Quilty et al. (2019) perform probabilistic water demand forecasting using exogenous variables; 
therefore, their variants constitute integrations within the MK blueprint framework of concepts 
particularly useful and/or popular for this task, such as bootstrapping, variable selection and 
wavelet decomposition. 

In spite of their (larger or smaller) differences in terms of conceptualization, underlying 
modelling cultures and inherent modelling assumptions, all the above-outlined state-of-the-art 
techniques aim at filling a common knowledge gap that currently exists in the probabilistic 
hydrological modelling and forecasting literatures, specifically at answering the following 
research question: How to reduce modelling uncertainty as much as possible? Risk reduction in 
(probabilistic) hydrological modelling is the 20th of the 23 major “unsolved” hydrological 
problems, as posed by Blöschl et al. (2019, Section 3) through a community-based process. The 
present Chapter aspires to contribute to the large efforts made towards solving this problem. 
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We extensively test the hydrological modelling capabilities provided by the variants of the 
MK blueprint methodology introduced in Chapter 7 herein (hereafter collectively referred to as 
“working methodology”), when these variants are applied using the quantile regression model by 
Koenker and Bassett (1978; see also Koenker 2005) as error model. The quantile regression 
model is a balanced choice between interpretable and more flexible algorithms from the statistical 
learning literature. It has already been applied for post-processing hydrological predictions 
within hydrological modelling case studies (see e.g., Solomatine and Shrestha 2009; López López 
et al. 2014; Dogulu et al. 2015; Wani et al. 2017), while its use is more common in the field of 
hydrological forecasting (see e.g., Tyralis et al. 2019a and the references therein); see also the 
references in Dogulu et al. (2015), and Abbas and Xuan (2019) for applications of this model in 
other geoscience concepts. 

For benchmarking purposes, we also apply the working methodology using the linear 
regression model (see e.g., James et al. 2013; Hastie et al. 2009) as error model, and two naïve 
probabilistic data-driven schemes. For the merits of using benchmarks in hydrological modelling, 
the reader is referred to Pappenberger et al. (2015); see also benchmarking examples in 
Montanari and Brath (2004), Evin et al. (2014), Sikorska et al. (2015), Tyralis and 
Papacharalampous (2017),  Papacharalampous and Tyralis (2018), Quilty et al. (2019), Tyralis 
and Papacharalampous (2018),  Tyralis et al. (2018, 2019a,c), Xu et al. (2018), as well as Chapters 
3−7 and 9 of this thesis. 

The working methodology is implemented within a large-sample real-world experiment. In 
the latter, we probabilistically solve monthly rainfall-runoff modelling problems for 270 
catchments in the United States (US). Large-sample hydrological studies are increasingly carried 
out in the literature (see e.g., Perrin et al. 2001; Mouelhi et al. 2006a,b; Sawicz et al. 2011; 
Papalexiou and Koutsoyiannis 2013; Weijs et al. 2013; Bourgin et al. 2015; Coxon et al. 2015; 
Farmer and Vogel 2016; Langousis et al. 2016; Ren et al. 2016; Tyralis and Koutsoyiannis 2017; 
Tyralis and Papacharalampous 2017, 2018; Tyralis et al. 2018; Bock et al. 2018; Xu et al. 2018; 
Tyralis et al. 2019a,d; Xu et al. 2019; see also Chapters 3−5, 9 herein), while this is the first work 
performing a large-scale assessment of the MK blueprint methodology. 

The aims of the Chapter (that can be addressed only within a large-sample hydrological 
study) are to: 

1) Validate the working methodology. 

2) Compare its variants both in terms of predictive performance and computational 
requirements. 

3) Quantify the improvement in performance when using the quantile regression model instead 
of the linear regression model as error model. In contrast to the latter model, the former 
model is known to be appropriate for modelling heteroscedasticity (Koenker and Hallock 
2001; Koenker 2005). 

4) Demonstrate in real-world applications the larger robustness in performance of the working 
methodology compared to two-stage post-processing methodologies producing a single point 
hydrological prediction (hereafter referred to as “basic” two-stage post-processing 
methodologies). 

5) Provide an empirical proof of the ability of the working methodology to harness the wisdom 
of the crowd. This ability stems from the concept of combining probabilistic predictions via 
simple quantile averaging, on which this methodology relies, while in Lichtendahl et al. (2013, 
Section 5) it is defined as follows: The average of predictions scores no worse −usually 
better− than the average of the scores of the combined predictions. According to the same 
study, this ability has to be empirically proven for the problem and scores of interest, since 
the proofs in Lichtendahl et al. (2013) are made for stylized versions. 
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8.2 Experimental data and methods 

In this section, we present the experimental methodology of the Chapter by emphasizing 
implementation details, as it is suggested by the guidelines by Abrahart et al. (2008). Statistical 
software information is independently summarized in Section 2.9.4. The working methodology is 
outlined in Section 8.2.1, while the reader is referred to Section 7.2.1 for its detailed and formal 
presentation. 

8.2.1 Working methodology 

This Section aims at summarizing the working methodology. For this summary, we first define the 
time period T = {1, …, (n1+n2+n3)}, and its three distinct sub-periods T1 = {1, …, n1}, T2 = {(n1+1), …, 
(n1+n2)} and T3 = {(n1+n2+1), …, (n1+n2+n3)}. We also define the sister model realizations as 
variants of a single hydrological model, each using different parameter values. The latter are 
obtained by calibrating the hydrological model in the period T1. The calibration could be made by 
using either Bayesian schemes (e.g., Markov Chain Monte Carlo simulation sampling; see e.g., the 
procedures described in Section 8.2.6) or informal calibration schemes (see e.g., the procedures 
described in Section 8.4). Let us assume that we obtain m sister model realizations, where m is 
adequately large. Each sister model realization is then applied in the period {T2, T3}. The m 
resulted sister predictions also extend in the period {T2, T3}. We subsequently compute the sister 
model realizations’ errors in the period T2 by using the sister predictions alongside with their 
corresponding target values. 

Information about the sister model realizations’ error is then obtained by training a statistical 
learning regression model that is suitable for predicting quantiles (hereafter referred to as “error 
model”; see e.g., the error models exploited in Chapter 9 herein) in the period T2. In particular, we 
regress the sister model realizations’ error at time t (response variable) on selected predictor 
variables (e.g., the sister prediction at time t). For each sister prediction extending in the period 
T3, we (a) predict a set of quantiles (with selected probabilities) of the sister model realization's 
errors using the information obtained at the preceding step, and (b) transform these predictive 
quantiles to auxiliary predictive quantiles of the hydrological process of interest (by subtracting 
them from their corresponding sister prediction). Finally, at each time t ∊ T3 we group the 
auxiliary predictive quantiles of the hydrological process of interest based on their corresponding 
probability (e.g., probability 0.95) to average them over each group. The resulted time series are 
the output quantile predictions. 

The basic steps adopted within the working methodology are also summarized in Figure 7.1. 

The working methodology is subdivided into three alternative variants. These variants differ 
in the error model’s training only. Specifically: 

o Variant 1 trains the error model m times, each time on a different dataset formed by using a 
different sister prediction; 

o Variant 2 trains the error model on a single dataset formed by using all sister predictions; 

o Variant 3 also trains the regression model once; however, the training here is made on a 
dataset formed by using one randomly selected sister prediction. 

We note that the three variants reduce to the same method in the case that a single point 
hydrological prediction is generated. In this case, the working methodology would fall into the 
category of basic two-stage post-processing methodologies using regression models. 

8.2.2 Rainfall-runoff dataset 

We use the US Model Parameter Estimation Experiment (MOPEX) dataset, which is documented 
in Schaake et al. (2006; see also Schaake et al. 2000, Duan et al. 2006, Wagener et al. 2006). This 
dataset comprises hydrometeorological and land-surface-characteristic data originating from US 
catchments of intermediate size, and has been extensively used in hydrological studies (see e.g., 
Kavetski et al. 2006b; Sawicz et al. 2011; Huang et al. 2013; Evin et al. 2014; Weijs et al. 2013; Ye 
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et al. 2014; Ren et al. 2016; Hernández-López and Francés 2017). All included catchments are 
unregulated; therefore, the modelling assumption of stationarity is reasonable on these real-
world data (see e.g., Koutsoyiannis 2011; Montanari and Koutsoyiannis 2014; Koutsoyiannis and 
Montanari 2015). 

From the original dataset we retrieve daily information about mean areal precipitation, 
climatic potential evaporation and streamflow discharge for 431 US catchments. The retrieved 
data span from January 1st, 1948 to December 31st, 2003, thus covering a 56-year period, yet 
containing a large amount of missing and negative (unrealistic) values. We process the retrieved 
data aiming to simultaneously achieve two objectives, i.e., (a) extracting time series blocks 
covering a long common period of complete historical information (with no missing or unreliable 
values), and (b) retaining historical information for a large number of catchments. A satisfactory 
compromise between these two objectives is reached when using as sampling period each of the 
periods 1950−1999 and 1949−1998. Both these samplings result in 50 (calendar) years of 
complete daily time series data for 270 catchments. We adopt the former option, as it offers 
(slightly) more recent data compared to the alternative one. The retained time series data are 
aggregated to produce total monthly precipitation, potential evaporation and streamflow 
discharge time series, each comprising 600 values. The resulted total monthly time series 
constitute the herein examined dataset. The locations of the examined MOPEX catchments are 
depicted in Figure 8.1. A wide range of climate regimes is well-represented by this sample set of 
catchments (see Kottek et al. 2006). 

 
Figure 8.1. Locations of the 270 MOPEX catchments examined within the large-sample experiment 
of the Chapter. The data are sourced from Schaake et al. (2006). 

8.2.3 Overview of modelling methodology 

The monthly data (see Section 8.2.2) are handled as described in Section 8.2.4. We use these data 
to assess two basic and six ensemble schemes in obtaining interval predictions. Two statistical 
learning regression models (see Section 8.2.5) and one hydrological model (see Section 8.2.6) are 
utilized for this assessment. We define the prediction problem to be solved as the problem of 
predicting the quantiles with probability p ∊ {0.005, 0.0125, 0.025, 0.05, 0.10, 0.90, 0.95, 0.975, 
0.9875, 0.995} of monthly streamflow discharge in the period T3 (hereafter referred to as 
“quantiles of interest”) given monthly precipitation and monthly potential evaporation 
observations for the period {T0, T1, T2, T3} and monthly streamflow discharge observations for the 
period {T0, T1, T2}. These periods are defined in Section 8.2.4. 

The basic schemes are “linear regression” and “quantile regression”. Both of them are 
implemented by training the regression model directly on monthly data for the period {T0, T1, T2} 
and, subsequently, by using the trained regression model to predict the quantiles of interest (for 
the period T3). The predictor variables in regression are monthly precipitation at time t and 
monthly potential evaporation at time t, while the response variable is monthly streamflow 
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discharge at time t. We note that these benchmark implementations of the regression models can 
only be viewed as naïve data-driven approaches to probabilistic hydrological modelling (because 
of the small number of predictor variables utilized). For more sophisticated implementations 
(which are outside of the scope of the Chapter), more predictor variables could be used. 

On the other hand, the ensemble schemes can be perceived as different configurations of the 
working methodology (allowing us to address the aims of the Chapter). Ensemble schemes 1−3 
(4−6) are based on variants 1−3 respectively of this methodology. Moreover, ensemble schemes 
1−3 utilize a different statistical learning regression model as error model with respect to 
ensemble schemes 4−6. Speci´ically, ensemble schemes 1−3 utilize the linear regression model, 
while ensemble schemes 4−6 utilize the quantile regression model. The same ensemble schemes 
are also implemented in Chapter 7 of this thesis; however, their implementation therein is made 
by using toy hydrological models. 

We describe here below the application of the ensemble schemes for a single catchment; the 
extension to all catchments is straightforward. The following steps are made once for all ensemble 
schemes: 

1) We use monthly precipitation, potential evaporation and streamflow discharge observations 
for the period T1 to obtain 600 sets of the hydrological model’s parameters, as detailed in 
Section 8.2.6. This number of parameter sets offers a good compromise between 
computational requirements and predictive performance. We use these parameters to define 
600 sister model realizations. 

2) We obtain 600 sister predictions for the period {T2, T3}. Each sister prediction is obtained by 
implementing a different sister model realization given the monthly precipitation and 
potential evaporation observations for the same period. Each sister prediction contains 444 
values. 

3) We compute the sister model realizations’ errors in the period T2 by using the parts of the 
sister predictions extending in the same period alongside with their corresponding target 
values. The total number of the computed error values is 600 × 144 = 86 400. 

The following steps are made independently by each ensemble scheme: 

4) We train the error model in the period T2. Specifically, we regress the sister model 
realizations’ error at time t (response variable) on the sister prediction at time t (predictor 
variable). Ensemble schemes 1 and 4 train the error model 600 times, each time using a 
different sister prediction and its corresponding sister model realization’s errors (use of 600 
training datasets of size 144). Ensemble schemes 2 and 5 train the error model once by using 
all sister predictions and their corresponding sister model realizations’ errors (use of one 
training dataset of size 86 400). Ensemble schemes 3 and 6 train the error model once by 
using a randomly selected sister prediction and its corresponding sister model realization’s 
errors (use of one training dataset of size 144). The result of this step is 600 trained versions 
of the error model (each corresponding to a specific sister prediction) for each of the 
ensemble schemes 1 and 4, and one trained version of the error model for each of the 
ensemble schemes 2, 3, 5 and 6. 

5) We apply the trained versions of the error models, obtained in the preceding step, to predict 
the quantiles with probability p ∊ {0.005, 0.0125, 0.025, 0.05, 0.10, 0.90, 0.95, 0.975, 0.9875, 
0.995} of each sister model realization’s errors in the period T3 given their corresponding 
sister prediction. For each ensemble scheme, the result of this step is 600 probabilistic 
predictions, each consisting of 10 quantile predictions. 

6) We obtain 600 auxiliary probabilistic predictions of the process of interest, each consisting 
of 10 quantile predictions, by subtracting each of the 600 × 10 = 6 000 quantile predictions 
from its corresponding sister prediction. 

7) The finally delivered predictive quantile with probability p ∊ {0.005, 0.0125, 0.025, 0.05, 0.10, 
0.90, 0.95, 0.975, 0.9875, 0.995} at time t ∊ T3 is the average over all auxiliary predictive 
quantiles with the same probability p at time t, i.e., the average of 600 in number auxiliary 
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predictive quantiles. The finally delivered predictive quantiles of the process of interest form 
the 99%, 97.5%, 95%, 90% and 80% central prediction intervals. 

The total number of sister predictions produced herein is 270 × 600 = 162 000, each 
containing 444 values, while the total number of auxiliary quantile predictions is 270 × 600 × 10 
× 6 = 9 720 000, each containing 300 values, and the finally delivered quantile predictions are 270 
× 10 × 8 = 21 600, each containing 300 values. For addressing aim 2 of the Chapter, we measure 
the computational time consumed by each ensemble scheme. 

8.2.4 Data handling and related remarks 

Following the notations provided in Section 8.2.1, we define the periods T1 = {13, …, 156}, T2 = 
{157, …, 300} and T3 = {301, …, 600} (corresponding to years 1951−1962, 1963−1974 and 
1975−1999 respectively). We include a large amount of the available information in the period T3 
to facilitate proper testing. We also define period T0 = {1, …, 12} (corresponding to year 1950). 
This period is used for warming-up the hydrological model (see Section 8.2.6). For a justification 
on this choice the reader is referred to Section 2.4.3. 

We note that the data are used without any transformation applied to it (see Section 2.1.8). 
We attempted to apply the linear regression and quantile regression schemes to river discharge 
data that were pre-processed by using the square-root transformation. Nevertheless, this pre-
processing (not presented here for reasons of brevity) had a negative effect on the quality of the 
naïve probabilistic predictions, mainly to those delivered by the linear regression scheme; 
therefore, it was abandoned. Moreover, a logarithmic transformation was not feasible, due to 
some zero monthly values of river discharge. We also attempted to apply the Yeo-Johnson and 
ordered quantile normalization transformations on the response, when solving the error 
modelling problems outlined in Section 8.2.3 (steps 4−5 of the application of the ensemble 
schemes). These transformations were also abandoned due to infinite predicted values. The 
square-root and logarithmic transformations on the response variable, i.e., the error of the 
hydrological model at time t, are not feasible due to the existence of negative error values. 

8.2.5 Regression models and related procedures 

We implement the linear regression and quantile regression models. We use these two models to 
solve the regression problems described in Section 8.2.3. Koenker and Hallock (2001) 
comprehensively discuss the difference in rationale behind these two models, as summarized 
subsequently. The training outcome in linear regression (i.e., least-squares regression with i.i.d. 
Gaussian errors with zero mean and constant variance; James et al. 2013) is a conditional mean 
function. The latter is a function describing how the mean of the response variable changes with 
the changes of the predictor variables. This function is obtained by minimizing a sum of squared 
residuals. On the contrary, the training outcome in quantile regression is a set of conditional 
quantile functions, obtained by minimizing the average quantile score. While in linear regression 
the PDF of the response variable is assumed to have the exact same variance and distributional 
shape independently of the values of the predictors, quantile regression does not make any 
particular assumption about this PDF; therefore, allowing a more representative description of 
the relationship between predictors and predictand. Related technical remarks can be found in 
Section 2.6.2. 

8.2.6 Hydrological model and related procedures 

We implement the monthly GR2M (see Section 2.4.1). This model has two parameters that are 
hereafter denoted with θ1 and θ2. We simulate the posterior distribution of these parameters 
conditional on the observations of the period T1 within a Bayesian MCMC framework (see Section 
2.5.2). We use flat priors for both the parameters θ1 and θ2. The likelihood error function is defined 
with Equation (8.1). In this Equation, yt is the monthly streamflow discharge observations at time 
t, ut(θ1, θ2) is the prediction of the GR2M model at time t and |T1| is the number of target data 
points included in the period T1. 
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 L(θ1, θ2)  (∑t (yt − ut(θ1, θ2))2)−|T1|/2 (8.1) 

We run 3 parallel Markov chains with different initial values, each comprising 2 000 
iterations. We assess the approximate convergence of these chains by adopting the algorithm 
detailed in Section 2.5.2. The simulation process is repeated until a point estimate smaller than 
1.10 is delivered. Once the simulation is over, we retain the last 200 values of each chain, i.e., 600 
values in total for each catchment. An example of simulated and retained parameters is presented 
in Figure 8.2. 
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Figure 8.2. Simulated chains in (a−b), and retained parameter values in (a−c) obtained using 
precipitation, potential evaporation and streamflow discharge information for the period T1 
(years 1951−1962) for a randomly selected catchment. 

8.2.7 Prediction interval assessment 

We assess the quality of the interval predictions by computing their coverage probabilities, 
average widths and average interval scores. All computations are made for the period T3, as 
detailed in Section 2.8.3. The computed metrics are used according to Table 8.4 to assess two 
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desired properties in probabilistic modelling, i.e., the reliability and sharpness of interval 
predictions. For illustrative purposes, we also present examples of prediction intervals. We do not 
present QQ-plots for the following two reasons: i) we deliver predictive quantiles with 
probabilities that are either equal or smaller than 0.10, or equal or larger than 0.90 (since we are 
interested in specific prediction intervals; see Section 8.2.3), while QQ-plots are ideal when PDF 
predictions (or at least sets of predictive quantiles with probabilities running on a grid from 0 to 
1) are delivered, and ii) we are interested in objectively assessing on a massive scale the predictive 
performance of several prediction schemes (separately for each of them) in 270 catchments, while 
QQ-plots are particularly useful for assessments made on a smaller scale. 

Table 8.4. Metrics used for assessing the prediction interval (1 – α), 0 < α < 1. Their definitions are 
given in Section 2.8.2 (see also Table 2.6). 

Metric Preferred values Criterion/criteria 
Coverage probability (CPα) Smaller |CPα – (1 – α)| Reliability 

Average width (AWα) Smaller AWα Sharpness 
Average interval score (AISα) Smaller AISα Reliability, sharpness 

Since the magnitude of the average interval score largely depends on the examined dataset, 
we mostly base our conclusions on relative improvements in terms of average interval score (see 
Section 2.8.2). Specifically, for addressing aims 1−3 of the Chapter we compute the relative 
improvements provided all prediction schemes with respect to the linear regression and quantile 
regression schemes, and the relative improvements provided by ensemble schemes 4−6 with 
respect to ensemble schemes 1−3. For addressing aim 4 of the Chapter, we use all auxiliary 
quantile predictions (9 720 000 in number) and the finally delivered quantile predictions (21 600 
in number) to compute the relative improvements in terms of average interval score, when using 
the output of each ensemble scheme instead of each of the auxiliary interval predictions combined 
to obtain this output, according to Equation (8.2). In this equation, AISOUT denotes the average 
interval score of the output interval prediction (obtained by using the method), AISINi the average 
interval score of one from the auxiliary interval predictions {INi, i = 1, …, 600} that are averaged 
by the method to obtain the output interval prediction (with average interval score equal to 
AISOUT), and RIOUT,INi the relative improvement of interest. 

 RIOUT,INi := (AISINi – AISOUT)/AISINi (8.2) 

Finally, for addressing aim 5 of the Chapter we use the same quantile predictions used for 
addressing aim 4 to compute the relative differences between the average interval score 
computed for the outputs of the ensemble schemes, i.e., the average of 600 probabilistic 
predictions (denoted with AISOUT; see above), and the average of the average interval scores 
computed for each of the combined auxiliary interval predictions {AISINi, i = 1, …, 600} (denoted 
with AAISIN; see also Equation (8.3) for its definition), the latter used as reference for the former. 
The computation of these relative differences is made using an equation analogous to Equations 
(2.92) and (8.2), specifically Equation (8.4), where RDOUT,AAISIN denotes the relative difference of 
interest. 

 AAISIN := ∑ (#$$
%�� AISINi)/600 (8.3) 

 RDOUT,AAISIN := (AAISIN – AISOUT)/AAISIN (8.4) 

8.3  Results and discussions 

In this Section, we present and discuss the results of our large-sample experiment. For reasons of 
brevity, we present only a representative sample of the conducted Figures and Tables, while in 
Papacharalampous et al. (2019c; hereafter referred to as “Chapter’s supplement”) the interested 
reader can find some additional ones. 
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8.3.1 Overall assessment of the working methodology 

This section is devoted to addressing aims 1−3 of the Chapter (see Section 8.1). The presentation 
is mostly made in an aggregated form across all the examined catchments, while emphasis is 
placed on the average interval scores computed for the obtained prediction intervals and on the 
relative improvements provided by the ensemble schemes with respect to the basic schemes in 
terms of the same metric. This choice is implied by the fact that an objective co-assessment 
regarding reliability and sharpness provided, for instance, by the interval score is of the most 
practical relevance in technical applications. In spite of this placed emphasis and keeping pace 
with several works available in the literature (e.g., in Renard et al. 2010, 2011; Evin et al. 2013, 
2014; Tyralis et al. 2019a; Chapter 9 herein), we separately summarize information that is purely 
related to the assessment of reliability and information that is purely related to the assessment of 
sharpness. In this way, we facilitate an adequate degree of interpretability and understanding of 
what follows. 

In Figure 8.3, we present several examples of prediction intervals, all delivered by ensemble 
scheme 5, in comparison to the targeted data points. As extracted from Figure 8.3, this scheme 
offers a (rather) high degree of reliability, i.e., it delivers prediction intervals that mostly contain 
the desired percentage of data points. The same applies to the remaining prediction schemes. 
Herein the related information is objectively summarized with Figure 8.4 and Table 8.5. In Figure 
8.4, we comparatively present the boxplots of the coverage probabilities computed for all 
delivered and assessed solutions to the 270 examined rainfall-runoff problems. These coverage 
probabilities are rather good (than bad). The latter characterization holds, especially if we 
consider that the examined monthly time series are of only 600 values. In particular, the coverage 
probabilities for the 95% prediction intervals are comparable to those computed for the 
probabilistic predictions of Bock et al. (2018). 
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Figure 8.3. Prediction intervals provided by ensemble scheme 5 for four arbitrary catchments and 
a common 4-year sub-period of the period T3 (years 1996−1999). Black dots denote the targeted 
points, while light orange and dark orange ribbons denote the 95% and 80% prediction intervals 
respectively. 
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Figure 8.4. Coverage probabilities computed for the 99%, 97.5%, 95%, 90% and 80% prediction 
intervals (from top to bottom) delivered by the compared schemes for the period T3 (years 
1975−1999). Each boxplot summarizes 270 values. The optimal values are denoted with red thick 
vertical lines. 
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Table 8.5. Average coverage probabilities computed for the prediction intervals delivered by the 
compared schemes for the period T3 (years 1975−1999). Each presented value summarizes 270 
metric values. 

Prediction scheme 99% 
prediction 
intervals 

97.5% 
prediction 
intervals 

95% 
prediction 
intervals 

90% 
prediction 
intervals 

80% 
prediction 
intervals 

Linear regression 0.969 0.955 0.937 0.904 0.835 
Quantile regression 0.973 0.961 0.936 0.889 0.793 
Ensemble scheme 1 0.962 0.946 0.926 0.895 0.834 
Ensemble scheme 2 0.959 0.943 0.923 0.892 0.834 
Ensemble scheme 3 0.962 0.946 0.926 0.895 0.837 
Ensemble scheme 4 0.965 0.953 0.928 0.881 0.781 
Ensemble scheme 5 0.969 0.956 0.932 0.886 0.789 
Ensemble scheme 6 0.961 0.948 0.923 0.874 0.773 

While the average-case reliability of all prediction schemes is remarkably high (see Table 
8.5), the performance of the prediction schemes in terms of coverage probabilities varies from 
catchment to catchment (see Figure 8.4). The observed differences in performance become larger, 
e.g., in terms of interquartile range of the formed datasets, as we move from the 99% to the 80% 
prediction intervals. Moreover, although differentiations are observed between prediction 
schemes, the overall performance of most schemes is rather of the same quality (in particular for 
the outer prediction intervals), with the quantile regression scheme and ensemble scheme 5 to be 
the best-performing, especially the former one. 

The average widths, on the other hand, clearly favour the ensemble schemes over the basic 
schemes (see Figure 8.5), with ensemble schemes 4−6 providing sharper predictions than 
ensemble schemes 1−3. In terms of the same criterion, ensemble schemes from the former (latter) 
category exhibit remarkably close performance to each other. The same applies in terms of 
coverage probabilities. As already expected because of the large differences observed in the river 
discharge regimes of the examined catchments, the average widths of the prediction intervals may 
differ significantly from catchment to catchment. These differences become smaller, as we move 
from the outer to the inner prediction intervals, i.e., from the 99% to the 80% prediction intervals. 
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Figure 8.5. Average widths computed for the 99%, 97.5%, 95%, 90% and 80% prediction intervals 
(from top to bottom) delivered by the compared schemes for the period T3 (years 1975−1999). 
Each boxplot summarizes 270 values. 

The above-outlined information is objectively summarized in the average interval scores. The 
latter are collectively presented in Figure 8.6. The main information extracted from this figure is 
that (a) ensemble schemes 1−3, as well as ensemble schemes 4−6, exhibit very close performance 
to each other, (b) each ensemble scheme exhibits a better overall performance than its 
corresponding basic scheme, and (c) ensemble schemes 1−3 perform better than the quantile 
regression scheme for the 90% and 80% prediction intervals. Observation (b) indicates that the 
herein adopted implementations of the working methodology have an advantage over the naïve 
implementations of the data-driven (or purely statistical) models. This advantage should be 
further investigated before any generalization is made; nevertheless, this additional investigation 
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involving, for instance, utilization of more predictor variables, goes beyond the aim of the present 
Chapter. 

 
Figure 8.6. Average interval scores computed for the 99%, 97.5%, 95%, 90% and 80% prediction 
intervals (from top to bottom) delivered by the compared schemes for the period T3 (years 
1975−1999). Each boxplot summarizes 270 values. 

We also note that both observations (a) and (b) are roughly expected already from the 
examination of Figures 8.4 and 8.5. By examining the aggregated average interval scores we 
additionally observe that the differences with respect to this metric are in average smaller for the 
inner prediction intervals than for the outer ones (as expected; see Section 8.2.7). Some small 
differences in the performance of ensembles schemes 1−3, favouring to a small extent ensemble 
schemes 1 and 3 over ensemble scheme 2, are mostly noticeable for the 99% and 97.5% prediction 
intervals. Similarly, ensemble scheme 5 seems to perform slightly better than ensemble scheme 4 
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for the same prediction intervals. It is also more effective than ensemble scheme 6 for all five 
prediction intervals. 

To further inspect all differences, both the smaller and larger ones, in terms of rankings, the 
latter resulted for each catchment and for each examined prediction interval according to the 
computed average interval scores, we present Figures 8.7 and 8.8. The maps displayed in the 
former figure correspond to the upper side-by-side boxplots displayed on Figure 8.6, while 
allowing the examination of the rankings resulted both per catchment and per prediction scheme. 
From these maps we perceive that ensemble scheme 5 is ranked in a better average position than 
the remaining prediction schemes for the 99% prediction intervals, closely followed by ensemble 
schemes 4 and 6. Moreover, the quantile regression scheme is mostly ranked above the linear 
regression scheme and ensemble schemes 1−3. These schemes are mostly ranked in the last four 
positions. Importantly, there is not a fixed ranking position for any of the prediction schemes 
across the various catchments, while there are also some few catchments in which the four less 
competitive ones perform better than some the remaining. The quantile regression scheme is also 
ranked in the first three positions for a sufficient number of catchments. These latter observations 
provide us with a good reason to always perform large-scale benchmark experiments instead of 
(or alongside with) case studies. 
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Figure 8.7. Rankings of (a) linear regression, (b) quantile regression and ensemble schemes (c−h) 
1−6 according to the average interval scores computed for the 99% prediction intervals delivered 
for the period T3 (years 1975−1999). The prediction schemes are ranked from best (1st) to worst 
(8th). 
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Figure 8.8. Average rankings of the prediction schemes according to the average interval scores 
computed for the 99%, 97.5%, 95%, 90% and 80% prediction intervals (from top to bottom) 
delivered by the compared schemes for the period T3 (years 1975−1999). The prediction schemes 
are ranked from best (1st) to worst (8th). Each bar summarizes 270 values. 

Overall, the image depicted in Figure 8.7 is rather neat when contrasted with its 
corresponding image in a similar visualization by Tyralis and Papacharalampous (2018); see 
Figure 4 therein. The latter study presents a large-scale comparison of point prediction methods 
that are equivalent to each other in a long run; therefore, no pattern is observed in their 
performance when the latter is depicted in maps. The pattern clearly observed in Figure 8.7, 
favouring the quantile regression model over the linear regression one, is due to the suitability of 
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the former algorithm for modelling heteroscedasticity. Thus, it is our knowledge on the examined 
problem and the difference in the appropriateness of the adopted methodologies that created this 
pattern rather than anything else. 

As also emphasized in Chapter 3, only our knowledge on the system could make a tangible 
difference in (predictive) modelling in a long run. In fact, the homoscedasticity assumption is 
known to be inefficient when made during the probabilistic modelling of hydrological variables, 
such as the monthly river discharge variables that are of interest herein (see the comments, e.g., 
in Schoups and Vrugt 2010; Montanari and Koutsoyiannis 2012; Evin et al. 2013, 2014). 
Therefore, more flexible algorithms not assuming homoscedasticity are a reasonable choice to be 
made in such cases, while the same algorithms do not offer anything in comparison with less 
flexible algorithms in modelling cases where the homoscedasticity assumption is reasonable; see 
also Chapter 7 herein, in particular the results displayed in Tables 7.7 and 7.8 for an illustration-
justification of this fact. 

The greatest part of the ranking-related information extracted from Figure 8.7 applies as well 
to the remaining prediction intervals, while a summary of this information for the 99%, 97.5%, 
95%, 90% and 80% prediction intervals, presented in Figure 8.8, provides additional 
observations. The latter effectively complement those obtained from Figure 8.6. In fact, for all 
prediction intervals ensemble scheme 5 exhibits the best average-case ranking, closely followed 
by ensemble schemes 4 and 6. Moreover, the quantile regression scheme exhibits a significantly 
better (comparable) average-case ranking than (with) ensemble schemes 1−3 for the 99% and 
97.5% (95%, 90% and 80%) prediction intervals, while the linear regression scheme is the worst 
performing in terms of average rankings, as it could be expected already from Figure 8.6. 

To obtain a more faithful image of the gain or loss in performance when using each prediction 
scheme over the remaining ones, in Figure 8.9 we present the side-by-side boxplots of the relative 
improvements in terms of average interval score with respect to the linear regression scheme, 
while in Figure 8.10 we present the respective information using the quantile regression scheme 
as a reference. The closeness in the performance of ensembles schemes 1−3 is also perceivable by 
the examination of these figures. The same applies to the closeness in the performance of 
ensemble schemes 4−6. Nevertheless, the small differences favouring ensemble schemes 1 and 3 
over ensemble scheme 2, and ensemble scheme 5 over ensemble schemes 4 and 6 are also 
highlighted. Additionally, we observe that the differences in the relative performance of a specific 
prediction scheme can be large, while there are cases in which the ensemble schemes are (far) 
worse than their respective basic schemes. However, the long-run image clearly favours the 
former over the latter, as already expected from the preceding visualizations. 
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Figure 8.9. Relative improvements in terms of average interval score with respect to the linear 
regression scheme for the 99%, 97.5%, 95%, 90% and 80% prediction intervals (from top to 
bottom) delivered by the compared schemes for the period T3 (years 1975−1999). Each boxplot 
summarizes 270 values. The reference values (zero values) are denoted with red thick vertical 
lines. 
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Figure 8.10. Relative improvements in terms of average interval score with respect to the quantile 
regression scheme for the 99%, 97.5%, 95%, 90% and 80% prediction intervals (from top to 
bottom) delivered by the compared schemes for the period T3 (years 1975−1999). Each boxplot 
summarizes 270 values. The reference values (zero values) are denoted with red thick vertical 
lines. 

We subsequently provide a numerical summary of the gain in performance when using 
specific schemes over others, as extracted from the real-world experiment of the Chapter. In 
Figures 8.11 and 8.12 we present the average-case relative improvements in terms of average 
interval score with respect to the linear regression and the quantile regression schemes 
respectively. These two figures objectively summarize the information presented in Figures 8.9 
and 8.10, while they are particularly useful in assessing how small the differences between 
ensemble schemes 1−3, as well as between ensembles schemes 4−6, are; see also Figures S.1 and 
S.2 of Chapter’s supplement for inspecting these differences in terms of median relative 
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improvements. For the former category of ensemble schemes, we observe that the difference in 
the average-case improvements is at maximum 3.65%. The latter difference is computed for 
ensemble schemes 1 and 2 for the 99% prediction intervals, while it is smoothened to 1.94%, 
1.07%, 0.48% and 0.13% for the 97.5%, 95%, 90% and 80% prediction intervals respectively. The 
average relative improvements when using ensemble scheme 1 instead of ensemble scheme 2 are 
4.24%, 2.39%, 1.36%, 0.63% and 0.18% for the obtained 99%, 97.5%, 95%, 90% and 80% 
prediction intervals. The respective median improvements are 3.75%, 2.18%, 1.20%, 0.53% and 
0.15%, while the cost in terms of computational time is about 12 min for all 270 catchments. 
Ensemble scheme 3 offers comparable profit in performance alongside with a 28-minute profit in 
terms of computational time compared to ensemble scheme 1. 
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Figure 8.11. Average relative improvements in terms of average interval score with respect to the 
linear regression scheme for the 99%, 97.5%, 95%, 90% and 80% prediction intervals (from top 
to bottom) delivered by the compared schemes for the period T3 (years 1975−1999). Each bar 
summarizes 270 values. 
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Figure 8.12. Average relative improvements in terms of average interval score with respect to the 
quantile regression scheme for the 99%, 97.5%, 95%, 90% and 80% prediction intervals (from 
top to bottom) delivered by the compared schemes for the period T3 (years 1975−1999). Each bar 
summarizes 270 values. 

Moreover, the mean (median) profit when using ensemble scheme 5 instead of ensemble 
scheme 4 is found to be 3.09%, 0.99%, 0.48%, 0.34% and 0.25% (2.07%, 0.54%, 0.32%, 0.27% 
and 0.18%) for the 99%, 97.5%, 95%, 90% and 80% prediction intervals respectively, while the 
concomitant cost in terms of computational time is about 36 min. The respective profit when using 
ensemble scheme 6 over ensemble scheme 4 is about 12 min. Nonetheless, the use of the latter 
scheme instead of the former scheme offers an average (median) relative improvement equal to 
2.23%, 1.77%, 1.11%, 1.00% and 0.85% (0.31%, 0.47%, 0.24%, 0.28% and 0.31%) for the 99%, 
97.5%, 95%, 90% and 80% prediction intervals respectively. Moreover, the respective average 
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(median) relative improvements provided by ensemble scheme 5 with respect to ensemble 
scheme 6 are 5.46%, 2.74%, 1.60%, 1.36%, 1.10% (3.39%, 1.44%, 0.73%, 0.57%, 0.45%). The gain 
in performance from the incorporation into the working methodology of the quantile regression 
model instead of the linear regression model can be summarized by the average-case (median) 
relative improvements in terms of average interval score provided when using ensemble scheme 
5 instead of ensemble scheme 1. These are 37.00%, 31.62%, 26.82%, 22.10% and 17.22% 
(37.97%, 31.32%, 25.85%, 20.95% and 15.84%) for the 99%, 97.5%, 95%, 90% and 80% 
prediction intervals respectively. 

8.3.2 Harnessing the wisdom of the crowd in probabilistic hydrological modelling 

Two key properties of the working methodology, as identified in Chapter 7 of this thesis based on 
the seminal work by Lichtendahl et al. (2013, Section 5), are its larger robustness in performance 
compared to basic two-stage post-processing methodologies and its ability to harness the wisdom 
of the crowd, both stemming from the concept of prediction averaging. These properties can also 
be considered as the result of an optimal exploitation of the possibilities offered by the MK 
blueprint methodology. The demonstration of these properties has only been made so far within 
toy examples, while it is still pending for rainfall-runoff problems. This section is devoted to 
empirically proving these two properties of the working methodology using the results of the 
herein conducted real-world experiment, i.e., to addressing aims 4−5 of the Chapter. These aims 
are of particular importance in justifying the conceptualization and rationale behind the working 
methodology. 

In Figure 8.13, we present the relative improvements when using the output of ensemble 
scheme 5, i.e., the average of 600 quantile predictions, instead of separately using each of them 
(i.e., the relative improvements {RIOUT,INi, i = 1, …, 600}, defined with Equation (8.2), for ensemble 
scheme 5), computed for all catchments and for all prediction intervals. We observe that these 
relative improvements are approximately symmetric around zero, in average slightly higher than 
zero. Specifically, the average relative improvements corresponding to Figure 8.13 are found to 
be equal to 0.82%, 0.83%, 0.74%, 0.70% and 0.71% for the 99%, 97.5%, 95%, 90% and 80% 
prediction intervals respectively (see Table S.1 in Chapter’s supplement). The interpretation of 
this outcome is straightforward, while indicating an advantage in terms of robustness of the 
working methodology over basic two-stage post-processing methodologies using a single 
probabilistic prediction. 
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Figure 8.13. Relative improvements in terms of average interval score when using the output of 
ensemble scheme 5, i.e., the average of 600 probabilistic predictions, instead of each of the 
combined individual predictions. The relative improvements are computed for all catchments, 
and for the (a) 99%, (b) 97.5%, (c) 95%, (d) 90% and (e) 80% prediction intervals obtained for 
the period T3 (years 1975−1999). The horizontal axis has been truncated at −30% and 30%. Each 
histogram summarizes 270 × 600 = 162 000 values. 

In fact, while approximately half of the probabilistic predictions score better (or worse) than 
the finally delivered by the working methodology probabilistic prediction, there is no way to know 
in advance which hydrological model’s parameters will lead in better average interval score in the 
period T3. While this lack of knowledge could significantly affect (in terms of performance) the 
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delivered probabilistic prediction for a basic two-stage post-processing methodology, this effect 
is largely reduced by the working methodology. 

Moreover, by comparing the degree of spread in the five histograms displayed in Figure 13, 
we also perceive that the degree of the offered stabilization in performance seems to become 
larger as we move from the inner prediction intervals to the more outer ones. Nevertheless, even 
for the 80% prediction intervals the provided stabilization is significant.  

Furthermore, in Figure 8.14 we present the relative differences between the average interval 
score of the output of ensemble scheme 5 and the average of the average interval scores of each 
of the combined (for obtaining this output) individual predictions, the latter used as reference for 
the former (i.e., the relative differences RDOUT,AAISIN, defined with Equation (8.4), for ensemble 
scheme 5), computed for all catchments and for all prediction intervals. Importantly, all computed 
relative differences are positive (or approximately zero) with no exception; therefore, the average 
of quantile predictions scores no worse than the average score of the combined individual 
predictions, i.e., the working methodology harnesses the wisdom of the crowd in terms of average 
interval score when applied for solving monthly rainfall-runoff problems (see also Lichtendahl et 
al. 2013, Section 5). The average relative differences corresponding to Figure 8.14 are 1.30%, 
1.12%, 0.94%, 0.85% and 0.84% for the 99%, 97.5%, 95%, 90% and 80% prediction intervals 
respectively (see Table S.2 in Chapter’s supplement). 
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Figure 8.14. Relative differences favouring the average interval score computed for the output of 
ensemble scheme 5, i.e., the average of 600 probabilistic predictions, over the average of the 
average interval scores computed for each of the combined individual predictions. The relative 
differences are computed for all catchments, and for the (a) 99%, (b) 97.5%, (c) 95%, (d) 90% and 
(e) 80% prediction intervals obtained for the period T3 (years 1975−1999). The horizontal axis 
has been truncated at 5%. Each histogram summarizes 270 values. 

Analogous observations are extracted from analogous investigations for all remaining 
ensemble schemes (see Figures S.3−S.12 and Tables S.1−S.2 in Chapter’s supplement). In 
summary, the relative improvements when using the output of an ensemble scheme, i.e., the 
average of 600 quantile predictions, instead of separately using each of these predictions range 
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from −327.10% to 91.42%. The average of these relative improvements ranges between 0.13% 
and 1.13%. Similarly, the average relative differences favouring the average interval score 
computed for the output of an ensemble scheme over the average of the average interval scores 
computed for each of the combined (for obtaining this output) individual predictions range 
between 0.19% and 1.83%. The average relative improvement (difference) is in general larger for 
the outer prediction intervals than for the inner ones, while its magnitude also depends on the 
ensemble scheme.  

As also emphasized in Chapter 7, the overall trade-off to be considered when someone has to 
choose between the working methodology and a basic two-stage post-processing methodology 
allowing the utilization of the same type of flexible error models (see e.g., López López et al. 2014; 
Dogulu et al. 2015; see also Chapter 9 herein) is the one between (a) the larger robustness in 
performance offered by the former methodology (demonstrated in Figures 13, S.3, S.5, S.7, S.9 and 
S.11, and Table S.1 of Chapter’s supplement) and the ability of this methodology to harness the 
wisdom of the crowd (empirically proven based on Figures 8.14, S.4, S.6, S.8, S.10 and S.12, and 
Table S.2 of Chapter’s supplement), and (b) the significantly less computational requirements of 
the latter methodologies. 

8.4 Additional investigations and outcomes 

So far, we have validated the working methodology (aim 1 of the Chapter; see Section 8.1) only 
for the case in which Bayesian schemes are adopted for obtaining a large number of hydrological 
model’s parameters. To investigate the possibility of replacing the Bayesian schemes with 
informal calibration schemes, in this Section we repeat the large-sample experiment of the 
Chapter (only for the ensemble schemes) by using different parameter values for the hydrological 
model within the working methodology. Specifically, for each catchment we retain the first 200 
parameter values from each simulated chain (see Section 8.2.6) that have not converged to the 
posterior distribution of the parameters, instead of the last 200 values that were previously 
retained (for the application presented in Section 8.3). Hereafter, let us refer to the calibration 
scheme adopted for obtaining the parameters of the hydrological model in the original large-
sample experiment of the Chapter (presented in Section 8.3) and the calibration scheme that is 
adopted in this appendix as “Bayesian calibration scheme” and “informal calibration scheme” 
respectively. The remaining components of the ensemble schemes are retained as detailed in 
Sections 8.2.3−8.2.6. 

Once we have obtained the interval predictions, we compute their interval scores and the 
relative improvements provided in terms of average interval score by the informal calibration 
scheme with respect to the Bayesian calibration scheme, when both these schemes are exploited 
as components of ensemble schemes 1–6. The computations are made as detailed in Section 8.2.7, 
while the related information is presented in Figure 8.15. We mainly observe that (a) the relative 
improvements can be either positive or negative, and (b) the results favour the Bayesian 
calibration scheme to some extent, mostly due to outliers. These outliers may become fewer with 
increasing the length of the period T2. To objectively summarize the derived information, we also 
compute the mean and median relative improvements in terms of the same score. These are 
presented in Figures 8.16 and 8.17, respectively. 
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Figure 8.15. Densities of the relative improvements in terms of average interval score provided 
by the Bayesian calibration scheme with respect to the informal calibration scheme, when both 
these schemes are used as components of (a–f) ensemble schemes 1–6. The latter are 
implemented with their remaining components and parameters set common. The horizontal axis 
has been truncated at −100% and 100%. Each density summarizes 270 values. 
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Figure 8.16. Average relative improvements in terms of average interval score provided by the 
Bayesian calibration scheme with respect to the informal calibration scheme, when both these 
schemes are used as components of ensemble schemes 1–6. The latter are implemented with their 
remaining components and parameters set common. The legend limits are common for Figures 
8.16 and 8.17. Each presented value summarizes 270 values. 

 
Figure 8.17. Median relative improvements in terms of average interval score provided by the 
Bayesian calibration scheme with respect to the informal calibration scheme, when both these 
schemes are used as components of ensemble schemes 1–6. The latter are implemented with their 
remaining components and parameters set common. The legend limits are common for Figures 
8.16 and 8.17. Each presented value summarizes 270 values. 
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8.5 Concluding remarks 

We have validated the probabilistic hydrological modelling methodology proposed in Chapter 7. 
This methodology adopts key concepts from the ensemble post-processing methodology by 
Montanari and Koutsoyiannis (2012), while also relying on the concept of probabilistic prediction 
combination from the forecasting field. It applies a single hydrological model using a large number 
of different parameter values to generate the same number of “sister predictions”. The parameters 
of the hydrological model can be obtained by using either Bayesian calibration schemes or 
informal calibration schemes (see the related investigations in Section 8.4). Therefore, this 
methodology does not have any particular relationship with Bayesian methods by construction, 
as it also applies to its precursor. A statistical learning (or machine learning) regression model 
that is suitable for predicting quantiles (see e.g., the models exploited in Chapter 9 of this thesis) 
is then used to obtain information about the hydrological model’s error. This information is used 
to convert the sister predictions into probabilistic predictions, which are finally combined in 
simple fashion to obtain the output probabilistic predictions. The assessed methodology is 
subdivided into three alternative variants, which differ only in the training of the regression 
model. 

We have conducted a large-sample real-world experiment at monthly timescale, set up using 
complete 50-year daily information for 270 catchments in the United States. Aiming to increase 
the understanding in probabilistic hydrological modelling, we have insisted on interpretability 
and benchmarking within all conducted tests. We have used the parsimonious GR2M hydrological 
model and two (largely) interpretable regression models, specifically the linear regression and 
the quantile regression ones, to implement six ensemble schemes, all of them based on the 
assessed methodology. Those ensemble schemes implemented using the linear model (three in 
number) have been used as benchmarks for the remaining schemes (also three in number). Those 
ensemble schemes using the same regression model rely on different variants of the assessed 
methodology. The performance of the ensemble schemes has been assessed by computing the 
coverage probabilities, average widths and average interval scores of the obtained interval 
predictions, and by also benchmarking their results using naïve probabilistic data-driven models.  

The obtained numerical results (metric values computed for 4 870 800 interval predictions) 
suggest the usefulness of the assessed methodology in obtaining probabilistic predictions of 
hydrological quantities. The best-performing variant, offering a mean relative improvement up to 
5.46% with respect to its alternative variants, when implemented using the quantile regression 
model, is variant 2. This variant trains the regression model on a single large dataset formed by 
using information from all sister predictions. The average-case relevant improvements when 
using the quantile regression model instead of the linear regression one range up to about 37% in 
terms of average interval score. This latter numerical result should be appraised on the basis that 
only the former of these models can model heteroscedasticity. The homoscedasticity assumption 
is often made in the literature when modelling the hydrological model’s error. 

Finally, we have demonstrated the increased robustness of the assessed methodology with 
respect to the combined (by this methodology) individual predictors and, by extension, to basic 
two-stage post-processing methodologies. The ability to “harness the wisdom of the crowd” has 
also been empirically proven. The quantile predictions obtained by all ensemble predictors are 
found to score no worse –usually better− than the average of the individual scores of the combined 
individual predictions in terms of average interval score. This outcome is in line with 
demonstrations for stylized cases by Lichtendahl et al. (2013). The computed relative differences 
favour the former quantity over the latter up to about 37%, while their mean values range 
between 0.19% and 1.83%, depending both on the prediction interval and the variant of the 
assessed methodology. For the best-performing ensemble scheme the respective average relative 
differences are around 1%. Overall, the robustness and the ability to harness the wisdom of the 
crowd are identified as two key properties of the working methodology. 
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8.6 Suggestions for future research 

We have extensively explored through benchmark tests the modelling possibilities provided by 
the working methodology, when this methodology is applied for solving monthly rainfall-runoff 
problems using the quantile regression model as error model. Our benchmark experiment is of 
large-scale; nevertheless, it could not highlight all aspects of the working methodology. For 
exploiting this methodology in an optimal way, the following key adjustments to its components 
and parameters could be made: 

o The historical dataset can be divided in various ways, i.e., different proportions of the 
available information could be devoted to hydrological model calibration and error model 
training. This adjustment could be made to maximize predictive performance by exploiting 
evidence extracted from properly designed large-sample investigations. It could also be made 
for reducing the computational requirements, also depending on our choices on the 
remaining components and parameters. Applications to hundreds of catchments at 
timescales finer than the monthly one may require achieving a balance between predictive 
performance and computational requirements (when our computational resources are 
limited). 

o Any hydrological model (e.g., a process-based hydrological model of our preference) can be 
selected. Predictive performance improvements may be achieved by selecting one 
hydrological model over another or by adopting multi-model approaches (as proposed in 
Vrugt 2018, 2019, yet with the interest being in producing and combining quantile 
predictions instead of PDF predictions), thereby extending the working methodology, as 
suggested by Montanari and Koutsoyiannis (2012) for the original blueprint. Properly 
designed large-sample investigations could effectively guide our related choices. 

o The parameters of the hydrological model can be obtained by using a large variety of 
calibration schemes, including informal calibration schemes. (Note that random selection of 
the parameters, i.e., no period T1, could also be an option). This point may be particular 
important for reducing the computational requirements. In Section 8.4, we present large-
sample investigations (on the monthly rainfall-runoff data exploited in the Chapter) focusing 
on the comparison between Bayesian and informal calibration schemes for obtaining a large 
number of hydrological model parameters within the working methodology. 

o The number of sister predictions can be selected based on the available computational 
resources. Nonetheless, the larger this number the larger the advantage of the methodology 
in terms of robustness (compared to basic two-stage post-processing methodologies). 
Properly designed benchmark experiments could also focus on optimizing this parameter of 
the working methodology (separately for the various timescales). 

o Any statistical learning regression model that is suitable for predicting quantiles (e.g., the 
error models exploited in Chapter 9 herein) can be selected as error model. This point may 
be particularly important for maximizing predictive performance (see also the key remarks 
in Section 8.5). 

o Any set of predictor variables (e.g., the hydrological model predictions at times t, t−1, t−2, 
etc.) can be used in the application of the error model. This point may be important for 
maximizing predictive performance for timescales finer than the monthly one (see e.g., the 
findings of Chapter 9 herein). 

o All the above adjustments and modelling choices can be made separately for each of the three 
variants and for each level of prediction interval (or level of predictive quantile). 
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9. Probabilistic hydrological post-processing at scale: Why and how to 
apply machine learning quantile regression algorithms 

In this Chapter, we conduct a large-scale benchmark experiment aiming to advance the use of 
machine learning quantile regression algorithms for probabilistic hydrological post-processing 
“at scale” within operational contexts. The experiment is set up using 34-year-long daily time 
series of precipitation, temperature, evapotranspiration and streamflow for 511 catchments over 
the contiguous United States. Point hydrological predictions are obtained using the GR4J 
hydrological model and exploited as predictor variables within quantile regression settings. Six 
machine learning quantile regression algorithms and their equal-weight combiner are applied to 
predict conditional quantiles of the hydrological model errors. The individual algorithms are 
quantile regression, generalized random forests for quantile regression, generalized random 
forests for quantile regression emulating quantile regression forests, gradient boosting machine, 
model-based boosting with linear models as base learners and quantile regression neural 
networks. The conditional quantiles of the hydrological model errors are transformed to 
conditional quantiles of daily streamflow, which are finally assessed using proper performance 
scores and benchmarking. The assessment concerns various levels of predictive quantiles and 
central prediction intervals, while it is made both independently of the flow magnitude and 
conditional upon this magnitude. Key aspects of the developed methodological framework are 
highlighted and practical recommendations are formulated. In technical hydro-meteorological 
applications, the algorithms should be applied preferably in a way that maximizes the benefits 
and reduces the risks from their use. This can be achieved by (i) combining algorithms (e.g., by 
averaging their predictions) and (ii) integrating algorithms within systematic frameworks (i.e., by 
using the algorithms according to their identified skills), as our large-scale results point out. 

9.1 Introduction 

Issuing useful hydrological predictions (e.g., river flow predictions) is one of the most important 
challenges in hydrology. Dealing with this challenge involves answering numerous research 
questions, but also putting research into practice by exploiting research advancements in 
operational contexts. This additional consideration introduces some extra requirements for the 
prediction methodologies, mostly related to their appropriateness for what we call prediction “at 
scale”. Issuing hydrological predictions “at scale” is a major theme in the present Chapter. The 
term “at scale” is here used according to Taylor and Letham (2018), i.e., to imply several notions 
of scale, mostly (i) a large number of required predictions, and (ii) a large variety of prediction 
problems to be solved. The latter are created, e.g., under different climate and catchment 
conditions. 

The present Chapter is primarily founded upon the premise that (operational) hydrological 
predictions can be most useful when expressed in probabilistic terms (see e.g., Krzysztofowicz 
1999, 2001b; Todini 2007; Koutsoyiannis 2010; Montanari and Koutsoyiannis 2012), i.e., in terms 
of probability distribution function (PDF) (Todini 2007; see also Todini 2004, 2008) or in terms 
of prediction intervals (or predictive quantiles). Delivering probabilistic hydrological predictions 
is a relatively new practice (Todini 2004, 2008; Montanari 2011; Montanari and Koutsoyiannis 
2012) considering the much longer history of hydrological modelling, comprehensively 
summarized by Todini (2007). This practice is also referred to in the related literature as “global 
uncertainty” quantification (see e.g., Montanari 2011) or “predictive uncertainty” quantification 
(see e.g., Todini 2007), while its technical implications are under consideration and ongoing 
discussions (see e.g., Krzysztofowicz 2001b; Sivakumar 2008b; Ramos et al. 2010; Montanari 
2011; Ramos et al. 2013). 

The background of the present Chapter lies in the tremendous and growing progress made in 
two distinct research fields whose advancements can be exploited in hydrological contexts for 
predictive modelling (contrasted to explanatory and descriptive modelling in Shmueli 2010). 
These are the field of “process-based” hydrological modelling (term used here as defined in 
Montanari and Koutsoyiannis 2012; see e.g., Beven and Kirkby 1979; Todini 1996; Jayawardena 
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and Zhou 2000; Perrin et al. 2001, 2003; Mouelhi et al. 2006b; Fiseha e al. 2013; Kaleris and 
Langousis 2017) and the field of machine learning (see e.g., Hastie et al. 2009; Alpaydin 2010; 
James et al. 2013; Witten et al. 2017). The former includes various modelling approaches spanning 
from distributed to lumped conceptual approaches, which also aim (besides prediction) at 
supporting some sort of “physical interpretation” of the catchment-scale hydrological phenomena 
(Todini 2007), and describing the catchment’s behaviour as a whole (Perrin et al. 2003), 
respectively. Moreover, the machine learning field includes a large variety of multi-purpose 
algorithmic techniques, potentially useful in various applied fields, such as hydrology. Amongst 
its latest advancements are ensemble learning methods (e.g., the bagging by Breiman 1996 and 
random forests by Breiman 2001a), i.e., methods that combine the results of individual learning 
algorithms to improve predictive performance Sagi and Rokach (2018). Machine learning 
algorithms are often referred to in the hydrological literature under the more general term “data-
driven models”. 

Process-based hydrological models and data-driven algorithmic approaches are regarded as 
two different “streams of thought” in predictive hydrological modelling that need to be 
harmonized “for the sake of hydrology” (Todini 2007). In fact, machine learning techniques can 
be perceived as manifestations of the algorithmic modelling culture, a statistical modelling culture 
that is grounded on the premise that the mechanism behind the data generation is completely 
unknown and, therefore, obtaining predictions by exploiting the data does not require its prior 
description through an analytical model (Breiman 2001b). This culture fundamentally deviates 
from what is called “process-based modelling”. 

Often perceived to represent tradition, experience and lessons-learnt knowledge (from a 
“physical process-oriented” modeller’s point of view; Todini 2007), process-based models are 
mostly preferred by the hydrological modellers and hydro-meteorological forecasters (Toth et al. 
1999). Among the plethora of the currently available process-based hydrological models, few 
exemplary ones are more trustable than others (e.g., the GR hydrological models by Perrin et al. 
2003, Mouelhi et al. 2006b, and others, which are also available in open source by Coron et al. 
2017, 2019), as it is evident from the literature that they are the result of decades of continuous 
and labour-intensive hydrological research focusing on better overall prediction, better 
prediction of low and high flows, and model parsimony, among others (see e.g., the related 
comments in Perrin et al. 2003). 

On the other hand, “engineering-oriented” modellers report on (unexploited) opportunities 
for high predictive performance stemming from the use of data-driven hydrological models 
(Todini 2007). Machine learning regression algorithms are regularly implemented in the data-
driven hydrological literature for solving a vast amount of technical problems, and for building 
confidence in predictive and explanatory modelling (see e.g., Jayawardena and Fernando 1998; 
Sivakumar et al. 2002; Koutsoyiannis et al. 2008; Sivakumar and Berndtsson 2010; Quilty et al. 
2019; Tyralis et al. 2019c; see also Chapters 3, 4 and 6 herein). Yet, their potential has been 
realized and exploited only to a limited extent, and mostly for obtaining “point” predictions (term 
used here as opposed to “probabilistic”). Nonetheless, this potential includes the possibility of 
delivering probabilistic hydrological predictions (including forecasts; see e.g., the relevant 
practical suggestions for using random forests in water-related applications by Tyralis et al. 
2019b), in spite of the widespread misconception existing in the minds of hydrologists that 
machine learning algorithms are by nature deterministic (i.e., not statistical). Actually, machine 
learning methods are all statistical (therefore, “machine learning” and “statistical learning” are 
terms interchangeably used beyond hydrology), while some of them (e.g., the quantile regression 
ones, on which this Chapter focuses) are ideal for predictive uncertainty quantification. 

Advancing the implementation of machine learning regression algorithms by conducting 
large-sample (and in-depth) hydrological investigations has been gaining prominence recently 
(see e.g., Tyralis and Papacharalampous 2017; Xu et al. 2018; Tyralis et al 2019a; see also Chapters 
3 and 4), perhaps following a more general tendency for embracing large-scale hydrological 
analyses and model evaluations (see e.g., Mamassis and Koutsoyiannis 1996; Langousis et al. 
2016; Papalexiou and Koutsoyiannis 2016; Sivakumar et al. 2019; see also Chapters 5 and 8). The 
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key significance of such studies in improving the modelling of hydrological phenomena, especially 
when the modelling is data-driven, has been emphasized by several experts in the field (see e.g. 
Perrin et al. 2003; Andréassian et al. 2006, 2007, 2009; Gupta et al. 2014). 

In the present Chapter, we exploit a large dataset for advancing the use of machine learning 
algorithms within broader methodological approaches for quantifying the predictive uncertainty 
in hydrology. The hydrological modelling and hydro-meteorological forecasting literatures 
include a large variety of such methodologies (see e.g., Beven and Binley 1992; Krzysztofowicz 
and Kelly 2000; Kavetski et al. 2002; Krzysztofowicz 2002; Montanari and Brath 2004; Kuczera et 
al. 2006; Montanari and Grossi 2008; Schoups and Vrugt 2010; Montanari and Koutsoyiannis 
2012; López López et al. 2014; Dogulu et al. 2015; Bogner et al. 2016, 2017; Hernández-López and 
Francés 2017; Tyralis et al. 2019a; see also Chapters 7 and 8), reviewed in detail by Montanari 
(2011) and Li et al. (2017). Deterministic “process-based” hydrological models are usually and 
preferably a core ingredient of probabilistic approaches of this family. In this context, statistical 
models are applied to convert the point predictions provided by hydrological models to 
probabilistic predictions. Such methodologies are hereafter referred to under the term 
“probabilistic hydrological post-processing” methodologies. 

We are explicitly interested in probabilistic hydrological post-processing methodologies 
whose model parameters are estimated sequentially in more than one stage (hereafter referred 
to as “multi-stage probabilistic hydrological post-processing methodologies”; see also the relevant 
background information in Section 2.7) and machine learning quantile regression algorithms, 
since the former can accommodate the latter naturally and effectively. The effectiveness of this 
accommodation has already been proven, for example, with the large-scale results of Chapter 8 
and those by Tyralis et al. (2019a) for the monthly and daily timescales, respectively. Aiming at 
combining the advantages from both the above-outlined “streams of thought” in predictive 
hydrological modelling, these works and a few earlier ones (to the best of our knowledge, those 
mentioned in Table 9.1) have integrated process-based hydrological models and data-driven 
algorithmic approaches (spanning from conditional distribution modelling approaches to 
regression algorithms) within multi-stage probabilistic hydrological post-processing 
methodologies for predictive uncertainty quantification purposes. 

Table 9.1. List of statistical models implemented within multi-stage hydrological post-processing 
methodologies. 

Statistical model Classification Works 
Meta-Gaussian bivariate 

distribution model 
Parametric; conditional 

distribution 
Montanari and Brath (2004); Montanari and Grossi (2008); 

Montanari and Koutsoyiannis (2012) 
Generalized additive models 

(GAMLSS) 
Parametric; machine learning Rigby and Stasinopoulos (2005); Yan et al. (2014) 

Quantile regression Non-parametric; machine 
learning; quantile regression 

López López et al. (2014); Dogulu et al. (2015); Tyralis et al. 
(2019a); Weerts et al. (2011); Chapters 7, 8 herein 

Quantile regression forests Taillardat et al. (2016); Tyralis et al. (2019a) 
Quantile regression neural 

networks 
Taylor (2000); Bogner et al. (2016, 2017) 

As summarized in Table 9.1, multi-stage (mostly two-stage) probabilistic hydrological post-
processing has been implemented both using parametric and non-parametric statistical models. 
Machine learning quantile regression algorithms do not make assumptions about the probability 
distribution function (PDF) of the predictand; therefore, they fall into the broader class of non-
parametric techniques. Their output is a set of predictive quantiles of selected levels (e.g., the 
predictive quantiles of levels α/2 and 1 − α/2, which form the (1 − α) 100% central prediction 
interval), instead of predictive PDFs of the hydrological processes of interest. While (three) 
algorithms from this category have already been incorporated into multi-stage probabilistic 
hydrological post-processing methodologies (mostly for solving technical problems within case 
studies; see Table 9.1), there is no extensive study focusing on formalizing and framing this 
incorporation. We aspire to fill this gap by conducting the largest and most systematic assessment 
of machine learning algorithms for probabilistic post-processing in hydrology. 
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We aim at answering the following research question: Why and how to apply machine 
learning quantile regression algorithms for probabilistic hydrological post-processing? As implied 
by our aim, our contribution in the literature includes the inspection and appraisal of both 
quantitative and qualitative aspects of the application of the algorithms. Although our benchmark 
experiment holds a prominent position in this Chapter, the theoretical and practical information 
on the proposed methodologies and framework, also provided herein, is rather equally important 
for answering the above-stated research question. Specifically, we: 

1) Explore through benchmark tests the modelling possibilities provided by the integration of 
process-based models and machine learning quantile regression algorithms for probabilistic 
hydrological modelling. This exploration encompasses the: 

 comparative assessment of a representative sample set of machine learning quantile 
regression algorithms in a two-stage probabilistic hydrological post-processing with 
emphasis on delivering probabilistic predictions “at scale” (an important aspect within 
operational settings); 

 identification of the properties of these algorithms, as well as the properties of the 
broader algorithmic approaches, by investigating their performance in delivering 
predictive quantiles and central prediction intervals of various levels; and 

 exploration of the performance of these algorithms for different flow magnitudes, i.e., in 
conditions characterized by different levels (i.e., magnitudes) of predictability. 

2) Explore through benchmark tests the modelling possibilities provided by simple quantile 
averaging. Simple quantile averaging is the simplest way to combine multiple quantile 
predictions (by averaging them), but also “hard to beat in practice” (Lichtendahl et al. 2013; 
Winkler 2015). 

3) Formulate practical recommendations and technical advice on the implementation of the 
algorithms for solving the problem of interest (and other problems of technical nature). An 
important remark to be made is that these recommendations are not meant in any case to be 
limited to selecting a single algorithm for all tasks and under all conditions. Each algorithm 
has its strengths and limitations, which have to be identified so that it finds its place within a 
broader framework (provided that the algorithm is a good fit for solving the problem of 
interest). This point of view is in accordance with the ‘‘no free lunch theorem’’ by Wolpert 
(1996). 

4) Justify and interpret key aspects of the developed methodological framework and its high 
appropriateness for progressing our understanding on how machine learning quantile 
regression algorithms should be used to maximize benefits and minimize risks from their 
implementation. 

The algorithms assessed herein can be accommodated by ensemble learning probabilistic 
hydrological post-processing methodologies, e.g., the methodology of Chapters 7 and 8 (built on 
the work by Montanari and Koutsoyiannis 2012), and the one by Tyralis et al. (2019a). Ensemble 
learning methods, i.e., methods combining the predictions obtained by multiple learning 
algorithms (e.g., the equal-weight combiner tested herein), are increasingly adopted in many 
engineering and applied science fields, since they frequently provide improved predictive 
performance with respect to each of the individual learning algorithms (see e.g., the review by 
Sagi and Rokach 2018). The results of the present Chapter also advocate the value of ensemble 
learning for probabilistic hydrological post-processing. 

9.2 Two-stage hydrological post-processing methodology 

We adopt a typical two-stage probabilistic hydrological post-processing methodology (see Section 
2.7.2) using a single machine learning quantile regression algorithm for modelling the 
hydrological model errors, as summarized with Figure 9.1. This methodology is flexible and can 
be used with various machine learning quantile regression algorithms and predictior variables. 
The predictions provided by multiple machine learning quantile regression algorithms can be 
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further combined, for example, via simple quantile averaging through an equal-weight combiner 
(see Section 2.8.1). Simple quantile averaging is exclusively performed on quantiles of the same 
level. 

 
Figure 9.1. Schematic summarizing a typical two-stage probabilistic hydrological post-processing 
methodology using a single machine learning quantile regression algorithm for modelling the 
hydrological model errors. The latter are defined as the deviations of the target values from the 
point predictions provided by the hydrological model. 

9.3 Experimental data and methodology 

In this Section, we present the experimental data and methodology adopted in the Chapter. 
Statistical software information is independently provided in Section 2.9.4. 

9.3.1 Rainfall-runoff data and time periods 

We use data originating from 511 catchments in the contiguous United States. The locations of the 
stations are presented in Figure 9.2. These catchments are minimally affected by human activities. 
The data are sourced from the Catchment Attributes and MEteorology for Large sample Studies 
(CAMELS) dataset (Newman et al. 2014; Addor et al. 2017a), which is fully documented in 
Newman et al. (2015) and Addor et al. (2017b). The dataset includes complete daily precipitation, 
temperature and streamflow information over a 34-year period of 1980−2013. Daily precipitation 
and temperature data were originally made available by Thornton et al. (2014). We estimate daily 
potential evapotranspiration using the Oudin’s formula (see Section 2.4.3). 
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Figure 9.2. Locations of the 511 CAMELS catchments examined in the Chapter. The data are 
sourced from Newman et al. (2014) and Addor et al. (2017a). 

We divide the entire 34-year time period Τ = {1980-01-01, ..., 2013-12-31} into sub-periods 
T0 = {1980-01-01, ..., 1980-12-31} (1-year period), T1 = {1981-01-01, ..., 1991-12-31} (11-year 
period), T2 = {1992-01-01, ..., 2002-12-31} (11-year period) and T3 = {2003-01-01, ..., 2013-12-31} 
(11-year period). We use data from these sub-periods as detailed in Sections 3.2−3.4 (see also 
Section 2.1). 

9.3.2 Implemented hydrological model 

We implement the GR4J model (see its brief description in Section 2.4.2). We note that 
implementation of this hydrological model is auxiliary herein. Specifically, this model is used to 
form the regression problem solved by the machine learning algorithms, as explained in Section 
9.2. Therefore, while possible, implementation of other hydrological models is out of the scope of 
the Chapter. 

9.3.3 Assessed and combined machine learning algorithms 

The assessed machine learning quantile regression algorithms are listed in Table 9.2 together 
with their abbreviations. To ensure the reproducibility of these algorithms, in Tables 9.3 and 9.4, 
we present detailed information on their implementation herein. The predictand and predictor 
variables in the regression are defined in Section 9.3.5. 

Table 9.2. Machine learning quantile regression algorithms assessed in the Chapter. Their 
software implementation is detailed in Tables 9.3 and 9.4. 

S/n Corresponding machine learning algorithm from Table 2.3 Abbreviation Description 
1 Quantile regression qr Section 2.6.2 
2 Generalized random forests for quantile regression qrf Section 2.6.3 
3 Generalized random forests for quantile regression 

emulating quantile regression forests 
qrf_meins 

4 Gradient boosting machine with trees as base learners gbm Section 2.6.4 
5 Model-based boosting with linear models as base learners mboost_bols 
6 Quantile regression neural networks qrnn Section 2.6.5 
7 Equal-weight combiner of the above six algorithms 

implemented with the same predictor variables 
ensemble Section 2.8 
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Table 9.3. Details on the implementation of the machine learning quantile regression algorithms 
(part 1). All R functions are implemented with their arguments set to the default values unless 
specified differently. The variables of the regression and the levels of the predictive quantiles are 
defined in Section 9.3.5. 

Machine learning algorithm Training R function Implementation notes R package 
Quantile regression rq - quantreg 

Generalized random forests for 
quantile regression 

quantile_forest - grf 

Generalized random forests for 
quantile regression emulating 

quantile regression forests 

quantile_forest (regression.splitting = TRUE) grf 

Gradient boosting machine with 
trees as base learners 

gbm (distribution = list(name = 

"quantile", alpha = 0.005), 

weights = NULL, n.trees = 

2000, keep.data = FALSE) 

gbm 

Model-based boosting with linear 
models as base learners 

mboost (family = QuantReg(tau = τ, 

qoffset = τ), baselearner = 

"bols", control = 

boost_control(mstop = 2000, 

risk = "inbag")) 

mboost 

Quantile regression neural 
networks 

qrnn.fit (n.hidden = 1, n.trials = 1) qrnn 

Table 9.4. Details on the implementation of the machine learning quantile regression algorithms 
(part 2). All R functions are implemented with their arguments set to the default values. 

Machine learning algorithm Predicting R function R package 
Quantile regression predict quantreg 

Generalized random forests for quantile regression predict quantreg 

Generalized random forests for quantile regression 
emulating quantile regression forests 

predict grf 

Gradient boosting machine with trees as base learners predict.gbm gbm 

Model-based boosting with linear models as base learners predict mboost 

Quantile regression neural networks qrnn.predict qrnn 

9.3.4 Hydrological model application 

We apply the selected hydrological model (see Section 9.3.2) to obtain a point prediction of daily 
streamflow for each catchment through the following steps: 

o Data from period T0 are used to warm up the hydrological model. 

o Data from period T1 are used to calibrate the hydrological model. For the calibration, we 
implement the Michel’s algorithm (see Section 2.4.3) for maximizing the Nash–Sutcliffe 
efficiency criterion (see Section 2.8.2). The latter is a well-established criterion for 
hydrological model calibration. While both are possible, implementation of other 
optimization algorithms and objective functions are out of the scope of the Chapter. 

o The calibrated hydrological model is used with daily precipitation and potential 
evapotranspiration data from period {T2, T3} to predict daily streamflow for the same period. 

9.3.5 Solved regression problem and assessed configurations 

The hydrological model predictions for period T2 are used together with their respective target 
values to obtain the hydrological model errors for the same period. For each catchment, the 
hydrological model errors and the hydrological model predictions for period T2 are used to train 
each of the assessed machine learning algorithms in predicting the quantiles of level τ ∊ {0.005, 
0.0125, 0.025, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.975, 0.9875, 0.995} of 
the hydrological model errors. The response variable of the regression is the hydrological model 
error at time t, while the predictor variables are presented in Table 9.5, together with the assessed 
configurations of the machine learning algorithms that they define. We do not try configurations 
using a single predictor variable (specifically the hydrological model prediction at time t only), 
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because some of the machine learning algorithms (e.g., the generalized random forests for 
quantile regression) do not work without a second predictor. While possible, we also do not try 
configurations using precipitation and/or evapotranspiration (or temperature) variables, 
because (i) such variables are already considered by the hydrological model, and (ii) their 
consideration is less common in the literature than the consideration of hydrological model 
predictions. 

Table 9.5. Configurations of the machine learning quantile regression algorithms assessed in the 
Chapter. The primal algorithms are presented in Section 2.3. 

Abbreviations of assessed configurations Predictor variables of the regression 
qr_2, qrf_2, qrf_meins_2, gbm_2, 

mboost_bols_2, qrnn_2, ensemble_2 
Hydrological model predictions at times t−1 and t 

qr_3, qrf_3, qrf_meins_3, gbm_3, 
mboost_bols_3, qrnn_3, ensemble_3 

Hydrological model predictions at times t−2, t−1 and t 

qr_4, qrf_4, qrf_meins_4, gbm_4, 
mboost_bols_4, qrnn_4, ensemble_4 

Hydrological model predictions at times t−3, t−2, t−1 and t 

9.3.6 Performance assessment 

The predictive quantiles of the hydrological model errors are transformed to predictive quantiles 
of daily streamflow for period T3 (hereafter referred to as “predictive quantiles of interest”) by 
being subtracted from their corresponding hydrological model predictions. The predictive 
quantiles of interest are processed using the following subsequent steps: (i) Negative values of 
predictive quantiles of level 0.005 are censored to zero; and (ii) quantile crossing is handled in an 
ad hoc manner (if present), i.e., by replacing predictive quantiles of level τk+1 (where k is the 
sequential number of the quantile levels of interest starting from 1 for quantile level 0.005) with 
the predictive quantiles of level τk delivered by the same algorithm for the same target random 
variable, if the former predictive quantiles are predicted to be smaller than the latter predictive 
quantiles. 

We assess the quality of the processed predictive quantiles of interest using daily streamflow 
data for period T3. The performance assessment is made by computing the scores presented in 
Table 9.6, as detailed in Section 2.8.2. Note that computing point prediction performance metrics 
(e.g., the root mean square error; RMSE) is irrelevant to the targeted assessment and, therefore, 
out of the scope of this Chapter. Nevertheless, the information provided by the average quantile 
score, when this score is computed for the predictive quantiles of level 0.5, is equivalent to the 
information provided by the mean absolute error (MAE). For the overall assessment of the 
algorithms, we compute (a) the four scores (CPα, AWα, AISα and AQSτ) conditional upon the 
algorithm and the catchment; and (b) the relative decreases provided by all algorithms in terms 
of AWα, AISα and AQSτ with respect to qr_2 (benchmark). We compute the relative decreases 
instead of the relative increases, since the former can be interpreted as relative improvements 
(see Table 9.6). Moreover, for each 34-year-long time series of daily streamflow (i.e., from 511 
catchments), we define 100 quantile ranges corresponding to 100 quantile level ranges of equal 
size, i.e., levels (0, 0.01), [0.01, 0.02), …, [0.99, 1), to also compute the employed scores conditional 
upon the algorithm, the catchment and the range of observed flow quantiles, and the 
corresponding relative decreases in terms of AWα, AISα and AQSτ with respect to qr_2. These latter 
computations allow us to inspect the performance of the algorithms for different flow magnitudes. 

Table 9.6. Scores computed for assessing a prediction interval of level (1 – α), 0 < α < 1, or a 
predictive quantile of level τ, 0 < τ < 1. The scores are defined in Section 2.8.2 (see also Table 2.6). 

Score Units Preferred values Criterion/criteria 
Coverage probability (CPα) – Smaller | CPα – (1 – α)| Reliability 

Average width (AWα) mm/day Smaller AWα Sharpness 
Average interval score (AISα) mm/day Smaller AISα Reliability, sharpness 

Average quantile score (AQSτ) mm/day Smaller AQSτ Reliability, sharpness 
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As stemming from the above-outlined methodological information, the quantile regression 
algorithm has been selected as the reference algorithm in the experiment. Since this algorithm is 
linear in parameters (see Section 2.6.2), fast to implement and already exploited in the literature 
to a significant extent for solving the problem of interest (see Table 9.1), it is a befitting benchmark 
for non-linear, more computationally demanding and rarely or never-used before (for the 
problem of interest) algorithms. A last remark to be highlighted concerning the performance 
assessment is that, while benchmarking is undoubtedly the only available means for 
characterizing an algorithm as “good enough” in terms of any score, the AWα, AISα and AQSτ values 
can only be properly interpreted when presented comparatively (using benchmarking). In fact, 
the widths of the prediction intervals (and the related components in the interval and quantile 
scores) largely depend on the flow magnitude, in contrast to the RSα values that are bounded 
within the range [0, 1]. 

9.4 Experimental results and interpretations 

9.4.1 Overall assessment of the machine learning algorithms 

In this Section, we present and discuss summary results of the overall assessment of the machine 
learning algorithms, when these algorithms are accommodated within two-stage probabilistic 
hydrological post-processing methodologies. The assessment refers to how well the algorithms 
deliver various central prediction intervals and predictive quantiles of several levels, while it is 
here collectively made for all observed flow magnitudes. Some additional visualizations (Figures 
S.1−S.41), resulted for the same investigations, are presented in Papacharalampous et al. (2019e). 
In these visualizations, the interested reader can find information about differences in predictive 
performance from catchment to catchment and related patterns revealed for the machine learning 
algorithms through the investigations of the Chapter. This information is herein omitted for 
reasons of brevity. 

A comparison of the machine learning algorithms with respect to their average-case 
reliability (i.e., the average coverage across all catchments) when delivering the 20%, 40%, 60%, 
80%, 90%, 95%, 97.5% and 99% central prediction intervals is well supported by Figure 9.3. In 
Figure 9.3, we present the mean absolute deviations of the coverage probabilities from their 
nominal values, as computed conditionally on the algorithm and the prediction interval. This 
figure can be interpreted according to the following example: A mean absolute deviation equal to 
0.05 for the 90% prediction intervals means that the absolute deviation of the 511 coverage 
probabilities (computed for the 511 catchments) from 0.90 (nominal value for the 90% prediction 
intervals) is on average equal to 0.05. This mean absolute deviation could, for instance, be 
computed for the case in which the absolute deviations (always positive or zero) are equal to 0.02 
for 255 catchments, equal to 0.05 for one catchment and equal to 0.08 for 255 catchments, since 
(0.02×255 + 0.05×1 + 0.08×255)/511 = (5.1 + 0.05 + 20.4)/511 = 0.05. In summary, qr and qrnn 
are found to mostly perform on average better than the remaining algorithms, while mboost_bols 
also stands out because of its good average-case performance for the 95%, 97.5% and 99% 
prediction intervals. With respect to the same criterion, the worst performing algorithm is mostly 
gbm. For the 60%, 80%, 90%, 95% and 97.5% prediction intervals, all gbm configurations exhibit 
the smallest average-case reliability. The ensemble learner, i.e., the equal-weight combiner of all 
the algorithms (when these algorithms are implemented with the same predictor variables), 
exhibits performance that could be characterized similar or even better (for the 20% prediction 
intervals) than the performance of the individual algorithms combined. Another remark to be 
highlighted here is that the mean absolute deviations can be less informative about the quality of 
the outer prediction intervals (e.g., for the 95%, 97.5%, and 99% prediction intervals). In fact, 
even an algorithm that always produces prediction intervals from –∞ to +∞, would offer mean 
absolute deviations equal to 0.05, 0.025 and 0.01 for these intervals, respectively. 



 

 224 

 
Figure 9.3. Mean absolute deviations of the computed coverage probabilities from their nominal 
values. The smaller the displayed values, the larger the average-case reliability of the algorithms. 

Furthermore, as opposed to the whole picture, only relatively small average-case differences 
in reliability (differences up to 0.01) are observed across the various configurations of the same 
algorithms. Larger differences are observed from one algorithm to the other (differences up to 
0.05) and for the various prediction intervals of the same algorithm (differences up to 0.06). The 
interpretation of this observation is straightforward: the two additional predictors do not add as 
much information as switching from one algorithm to another does, while the predictive 
performance also largely depends on the prediction task. It is relevant and important to note that, 
even when we focus on a single criterion (here the average-case reliability), we cannot identify a 
best performing algorithm for all tasks, i.e., we cannot identify a best performing algorithm in 
delivering all prediction intervals. For example, if we were only interested in delivering the four 
outer prediction intervals (i.e., 90%, 95%, 97.5% and 99%), mboost_bols would be the safest 
choice. 

The degree of sharpness characterizing the delivered prediction intervals is also relevant 
when we are interested in applying the machine learning algorithms for technical purposes. In 
Figure 9.4, we present the median relative decreases (i.e., the median values of relative decreases 
computed across all catchments) in terms of average width of the prediction intervals provided 
by each of the assessed algorithms with respect to qr_2. In more precise terms, these median 
relative decreases can be interpreted according to the following example: A median relative 
decrease in terms of average width equal to 9.25%, provided by the gbm_3 algorithm for the 90% 
prediction intervals, means that the gbm_3 algorithm produces 90% prediction intervals that are, 
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in the median case across the 511 catchments, narrower than the 90% prediction intervals 
provided by qr_2 by 9.25%. The median relative decreases are mostly positive, i.e., the algorithms 
provide narrower prediction intervals compared to the benchmark. Only mboost_bols delivers 
wider prediction intervals at the 97.5% and 99% prediction levels. Overall, the sharpest 
prediction intervals are the ones delivered by gbm, followed by those delivered by qrf and 
qrf_meins. Regarding the behaviour of the various algorithms from a comparative perspective, 
different patterns characterize the displayed relative decreases for the various algorithms. 

 
Figure 9.4. Median relative decreases (%) in terms of average width of the prediction intervals 
with respect to qr_2. The larger the displayed values, the larger the median-case relative 
sharpness of the delivered prediction intervals. 

We should note here again that relatively sharp prediction intervals are only desired when 
accompanied by a good performance in terms of reliability, and vice versa. Therefore, some 
interesting observations could be drawn from Figures 9.3 and 9.4. For instance, qrf and qrf_meins 
seem to exhibit comparable average-case reliability with qr for the 20% prediction intervals, and 
at the same time to be offering a larger degree of sharpness. Moreover, qrnn and ensemble offer 
significant median-case decreases in terms of average widths with respect to the benchmark, 
while they are also quite reliable compared to it. Such observations are important for gaining 
insight on how the algorithms behave in comparison to one another while solving the problem of 
interest. Nevertheless, from a practical point of view, we are most interested in collectively 
assessing reliability and sharpness in an objective manner. 
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This objective co-assessment with respect to reliability and sharpness is herein allowed by 
Figures 9.5 and 9.6, which display the median relative decreases (which can be interpreted as 
median relative improvements) with respect to qr_2 in terms of average interval score and 
average quantile score, respectively. In more precise terms, these median relative decreases can 
be interpreted according to the following example: A median relative decrease in terms of average 
interval score (average quantile score) equal to 1.58% (2.54%) is provided by the ensemble_2 
algorithm for the 99% prediction intervals (quantiles of level 0.995). This result means that the 
ensemble_2 algorithm delivers prediction intervals (predictive quantiles) that are, in the median 
case across the 511 catchments, better than those delivered by qr_2 by 1.58% (2.54%) in terms 
of average interval score (average quantile score). The following observations are important: 

o More predictor variables result in mostly improved performance for the tree-based methods 
(qrf, qrf_meins, gbm) and the equal-weight combiner of all algorithms, and slightly less 
pronounced improvements for qrnn.  

o The performance of qr and mboost_bols is found to not be significantly affected by the 
number of predictor variables. 

o The overall best performing algorithm is the equal-weight combiner of all algorithms, offering 
up to about 3.5% decrease in terms of both average interval and quantile scores with respect 
to qr_2. 

o For all prediction intervals, qr performs mostly better than mboost_bols, while it is also better 
than gbm for the 60%, 80%, 90%, 95%, 97.5% and 99% prediction intervals. Only for the 
predictive quantiles of levels 0.4, 0.5, 0.6, 0.7 and 0.8, gbm performs better than qr. Still, gbm 
is not the best-performing algorithm either for these quantiles. 

o For the 90%, 95%, 97.5% and 99% prediction intervals, qr performs better than most of the 
remaining algorithms, while the equal-weight combiner is the best. The latter offers 
decreases from about 1.5% to about 2.5% with respect to the former in terms of average 
interval score, and up to about 3.5% decrease in terms of average quantile score. The equal-
weight combiner is worse than qr only for the two lower levels of predictive quantiles tested 
herein. 

o For the 90%, 95%, 97.5% and 99% prediction intervals, the tree-based methods are 
performing poorly, probably because they cannot extrapolate beyond the observed values of 
the training set. 

o For the predictive quantiles of levels 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8, and the 20%, 40% and 60% 
prediction intervals, qrf and qrf_meins are comparable with (or even better performing than) 
the equal-weight combiner of all algorithms. 

o For all tested levels of predictive quantiles except for 0.005 and 0.0125, and the 20%, 40%, 
60%, 80% and 90% prediction intervals, qrnn perform better than qr. 

o Different patterns are observed regarding the performance of the algorithms in predicting 
the targeted quantiles. 

o The performance of qrf and qrf_meins could be characterized as symmetric with respect to 
the predictive quantile of level 0.5, i.e., these machine learning algorithms show comparably 
low skill in predicting the upper and lower quantiles that form a specific central prediction 
interval. 

o The same observation does not apply to the remaining machine learning algorithms. 
Specifically, gbm is less skilful in predicting the lowest quantiles than the highest ones, 
probably because of the technical settings of the Chapter, i.e., because we predict the 
quantiles of the error of the hydrological model and later transform these quantiles to 
quantiles of daily streamflow. 

o The same holds for qrnn and the equal-weight combiner, yet these latter algorithms are more 
skilful, while mboost_bols is less effective in predicting quantiles of the highest levels. 
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Figure 9.5. Median relative decreases (%) in terms of average interval score with respect to qr_2. 
The larger the displayed values, the larger the median-case relative skill of the algorithms in 
delivering the specific prediction intervals. 
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Figure 9.6. Median relative decreases (%) in terms of average quantile score with respect to qr_2. 
The larger the displayed values, the larger the median-case relative skill of the algorithms in 
delivering the specific predictive quantiles. 

An important remark to be made, at this point, is that the figures presented both herein and 
in the supplementary material could not highlight all the important details extracted from the 
conducted tests. Notably, the qrnn algorithms were found to produce significant outliers in terms 
of predictive performance for 10 of the 511 investigated catchments. These outliers largely affect 
the respective widths of the prediction intervals provided by these algorithms and, thus, can be 
easily identified using benchmarking by comparing the widths of the prediction intervals 
provided by qrnn with the widths of the prediction intervals provided by the benchmark 
(although the realization of the process of interest will be unknown at the time of the prediction). 
In fact, they result in relative increases of average widths with respect to the qr algorithms in the 
order of thousands. Their effect is also manifested in the widths of the prediction intervals 
provided by the ensemble algorithms (yet in a less-pronounced degree), and in the interval and 
quantile scores computed for both types of algorithms. The median relative decreases in terms of 
average widths, average interval score and average quantile score (that are presented herein) are 
not affected by this limitation of qrnn, while the average relative decreases in terms of average 
widths, average interval score and average quantile score would be. 

Lastly, since we are foremost interested in providing information that could be useful within 
operational contexts, some tangible information on the computational requirements of the 
algorithms is also essential. In Figure 9.7, we present the total computational time consumed by 
each of the assessed machine learning algorithms within the experiments of the Chapter. The least 
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time-consuming algorithm is by far qr. The remaining algorithms can be ordered from the least to 
the most time consuming as follows: qrf_meins, qrf, gbm, mboost_bols, qrnn and ensemble. The 
ensemble algorithm requires more than 10 times the computational time required for qrf to run. 
Nevertheless, this computational cost may be tolerable in many cases; e.g., when using 
workstations and/or computer clusters. 

 
Figure 9.7. Total computational time (in seconds) consumed by the machine learning algorithms 
within the experiments of the Chapter. The numbers were rounded up to the nearest integer. The 
computations were performed on a regular personal computer. 

9.4.2 Investigations for different flow magnitudes 

This section is devoted to summarizing the results of the investigations conducted for different 
flow magnitudes. These investigations complement the overall assessment of the machine 
learning algorithms, which is made independently of the flow magnitude, as presented in the 
preceding section. Due to resolution differences, the results presented in the previous section are 
not comparable to these in this section. 

Figure 9.8 presents the mean absolute deviations of the coverage probabilities from their 
nominal values, computed per level of observed flow quantile and prediction interval. This 
information can be exploited to comparatively assess the machine learning algorithms with 
respect to their average-case reliability for various levels of predictability. In more precise terms, 
this figure can be interpreted according to the following example: A mean absolute deviation equal 
to 0.08 for the 20% prediction intervals and the quantile range [0.49, 0.50) means that the 
absolute deviation of the 511 coverage probabilities computed for the flow magnitude defined by 
this quantile range from 0.20 (nominal value for the 20% prediction intervals) is on average equal 
to 0.08. For all prediction intervals, the algorithms are more reliable for the middle half of the 
sample quantiles of observed flow, while the delivered probabilistic predictions are quite 
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unreliable for the highest and lowest flows. Regarding this latter point, we also observe that the 
algorithms are, on average, less reliable for the lowest flows (level of observed flow quantile lower 
than 0.25) than they are for the highest flows (level of observed flow quantile higher than 0.75), 
although there is a rough symmetry in the performance of the machine learning algorithms with 
respect to the observed flow quantiles of levels close to 0.5. This symmetry is perhaps the most 
characteristic observed pattern, stemming from limitations implied by the nature of the solved 
problem (in the sense that low and high flows are less predictable than moderate flows). 
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Figure 9.8. Mean absolute deviation of the computed coverage probabilities from their nominal 
values presented conditional upon the level of observed flow quantile for the (a) 20%, (b) 40%, 
(c) 60%, (d) 80%, (e) 90%, (f), 95%, (g) 97.5% and (h) 99% prediction intervals delivered by the 
assessed algorithms. 
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For the 20%, 40% and 60% prediction intervals and for the middle half of the sample 
quantiles of observed flow, the qrf, qrf_meins, gbm and ensemble algorithms mostly produce 
probabilistic predictions that are in better statistical agreement with the observations than qr, 
while qrnn is mostly comparable to the same algorithm and mboost_bols is the least reliable. For 
the same prediction intervals and the outer quantiles (level of observed flow quantile lower than 
0.25 or larger than 0.75), the differences between the algorithms are slight. For the 80%, 90% and 
95% prediction intervals, the performance of all algorithms is mostly similar, with some 
significant differences being present for the outer quantiles. The algorithms differentiate more for 
all quantile levels for the 97.5% and 99% prediction intervals. 

Moreover, Figure 9.9 presents the median relative decreases in terms of average widths 
provided by the assessed algorithms with respect to qr_2. This information is presented per level 
of observed flow quantile and prediction interval and, therefore, it can be exploited to 
comparatively assess the machine learning algorithms with respect to the median-case sharpness 
of the delivered prediction intervals for different flow magnitudes. In more precise terms, the 
presented median relative decreases can be interpreted according to the following example: A 
median relative decrease in terms of average width equal to ~10%, provided by the gbm_2 
algorithm for the 95% prediction intervals and the quantile range [0.49, 0.50), means that, for the 
flow magnitude defined by this quantile range, the gbm_2 algorithm produces 95% prediction 
intervals that are, in the median case across the 511 catchments, narrower than the 95% 
prediction intervals provided by qr_2 by ~10%. In summary, qr produces the wider prediction 
intervals for all quantiles with some exceptions mostly observed for the lowest and highest flows. 
Some interesting related patterns should be discussed. The first is related to mboost_bols that 
produces, on average, much narrower 95% prediction intervals than the benchmark for the 
lowest half of the observed flows, and 97.5% and 99% prediction intervals for all levels of 
observed flow quantiles except for the highest (about) 10%. The second pattern is related to the 
ensemble learner, which is largely affected by mboost_bols for 99% prediction intervals. For the 
latter and for the lowest 75% of observed flow quantiles, the prediction intervals provided by 
ensemble are, on average, narrower than those provided by the benchmark, but still much wider 
than those provided by mboost_bols. 
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Figure 9.9. Median relative decrease (%) of average widths per level conditional upon the 
observed flow quantile for the (a) 20%, (b) 40%, (c) 60%, (d) 80%, (e) 90%, (f) 95%, (g) 97.5% 
and (h) 99% prediction intervals delivered by the assessed algorithms. 
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To comparatively assess the machine learning algorithms with respect to both reliability and 
sharpness for different flow magnitudes, we present, in Figure 9.10, their relative improvements 
in terms of average interval score with respect to qr_2, computed per observed flow quantile and 
prediction interval. These median relative decreases can be interpreted according to the following 
example: A median relative decrease in terms of average interval score equal to ~5%, provided 
by the qrnn_2 algorithm for the 95% prediction intervals and the quantile range [0.49, 0.50), 
means that for the flow magnitude defined by this quantile range the qrnn_2 algorithm produces 
95% prediction intervals that are, in the median case across the 511 catchments, better than the 
95% prediction intervals delivered by qr_2 by ~5% in terms of average interval score. For the 
sample quantiles of observed flow of level (mostly) higher than 0.75, qr is mostly the best 
performing algorithm, while for the lower half of the sample quantiles of observed flow, qrf and 
qrf_meins are mostly the best performing algorithms. For the middle half of the sample quantiles 
of observed flow, qrnn is amongst the best performing algorithms. Moreover, some similar 
patterns can be observed between Figure 9.9 and Figure 9.10. For instance, mboost_bols delivers 
95%, 97.5% and 99% prediction intervals that offer negative median-case decreases (median-
case deteriorations) in terms of average interval scores. These decreases follow the respective 
negative decreases presented in Figure 9.9. Furthermore, qrnn reach their best performance, both 
in terms of average width and average interval score, for the middle levels of observed flow 
quantiles, while their performance seems quite symmetric around this highest value for most 
levels of prediction intervals. 
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Figure 9.10. Median relative decrease (%) of average interval score conditional upon the level of 
observed flow quantile for the (a) 20%, (b) 40%, (c) 60%, (d) 80%, (e) 90%, (f) 95%, (g) 97.5% 
and (h) 99% prediction intervals delivered by the assessed algorithms. 
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Lastly, in Figures 9.11 and 9.12, we present the relative decreases provided by the machine 
learning algorithms in terms of average quantile score with respect to qr_2, computed conditional 
upon the algorithm, the observed flow quantile and the level of predictive quantile. These median 
relative decreases can be interpreted according to the following example: A median relative 
decrease in terms of average quantile score equal to ~5%, provided by the qrnn_4 algorithm for 
the predictive quantiles of level 0.7 and the quantile range [0.49, 0.50), means that for the flow 
magnitude defined by this quantile range the qrnn_4 algorithm deliver predictive quantiles of 
level 0.7 that are, in the median case across the 511 catchments, better than the predictive 
quantiles of level 0.7 delivered by qr_2 by ~5% in terms of average quantile score. As stems from 
the above, Figures 9.11 and 9.12 can provide tangible information about the skill of the algorithms 
in delivering a predictive quantile of interest for different flow magnitudes. They can also be used 
to inspect the contribution of the quality of each predictive quantile in the quality of the central 
prediction intervals, as well as to assess the machine learning methods in predicting the median 
of the targeted PDFs per observed flow quantile (see Figure 9.11i). Regarding this latter task, the 
relative skills of the machine learning methods seem to follow a pattern that is similar to the 
patterns observed, for instance, for the 40% and 60% prediction intervals (see Figure 9.10b,c). 
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Figure 9.11. Median relative decrease (%) of average quantile score conditional upon the level of 
observed flow quantile for the predictive quantiles of level (a) 0.005, (b) 0.0125, (c) 0.025, (d) 
0.05, (e) 0.1, (f) 0.2, (g) 0.3, (h) 0.4 and (i) 0.5 delivered by the assessed algorithms. 
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Figure 9.12. Median relative decrease (%) of average quantile score conditional upon the level of 
observed flow quantile for the predictive quantiles of level (a) 0.6, (b) 0.7, (c) 0.8, (d) 0.9, (e) 0.95, 
(f) 0.975, (g) 0.9875 and (h) 0.995 delivered by the assessed algorithms. 



 

 239 

9.5 Literature-driven and evidence-based discussions 

9.5.1 Innovations and highlights in light of the literature 

Some key innovations characterizing the present Chapter are the following: 

1) It is amongst the very few large-sample works presently available in both the fields of 
probabilistic hydrological modelling and the field of hydro-meteorological forecasting (see 
e.g., Tyralis et al. 2019a; Farmer and Vogel 2016; Bock et al. 2018; see also Chapter 8 herein). 

2) It includes the largest range of methods ever compared in such concepts and a detailed 
quantitative assessment, using proper scores, and performing investigations for various 
prediction intervals and flow magnitudes. 

3) Three of the assessed machine learning quantile regression algorithms, specifically 
generalized regression forests, gradient boosting machine and gradient boosting with linear 
models as base learners, are implemented for the first time to solve the practical problem of 
interest. 

4) It deviates from the mainstream culture of “model overselling” (Andréassian et al. 2007) or 
proving that “my model is better than yours” to “justify model development” (Sivakumar 
2008a), since it does not aim at promoting the use of any single algorithm. Instead, it 
formulates practical recommendations, which highlight the need of making the most of all the 
assessed algorithms (see the related comments in Sivakumar 2008a). 

5) It is one of the very few studies that aim at attracting attention to ensemble learning post-
processing methodologies in probabilistic hydrological modelling and hydro-meteorological 
forecasting. 

It is important to highlight that most of the above-outlined innovations apply beyond 
hydrology as well. A large-sample regional study by Bakker et al. (2019), conducted in a different 
field and under a different approach, has focused on post-processing solar radiation forecasts at 
hourly timescale for 30 stations in the Netherlands. The study is, in general, of large scale, since it 
examines two parametric and five non-parametric machine learning algorithms, together with a 
large number of predictor variables; therefore, it provides generalized results for the case of the 
Netherlands. 

9.5.2 Contributions and challenges from an uncertainty reduction perspective 

The challenging character of probabilistic hydrological modelling has been widely acknowledged 
in the literature (see e.g., Montanari 2007; Sivakumar 2008b; Montanari and Koutsoyiannis 2012). 
Assumptions are certainly unavoidable when it comes to modelling (Montanari and Koutsoyiannis 
2012), and probabilistic predictions are not (and should not be expected to be) perfect 
(Sivakumar 2008b). What matters the most, from an engineering point of view, is to deliver 
predictions that are useful. To increase this usefulness (which implies an adequate degree of 
reliability), one can (i) increase the amount of available information and its quality; and/or (ii) 
improve its exploitation, i.e., the usefulness of the contributing models, methodologies and 
frameworks. 

These two ways to increase the usefulness of predictions are often collectively referred to 
under the umbrella term “uncertainty reduction” (or “risk reduction”), while, perhaps, they should 
be pursued to an extent that is simultaneously feasible, beneficial (e.g., in terms of interval and/or 
quantile scores that are appropriate for quantifying usefulness) and cost-effective. Point (ii) above 
can be, in principle, achieved, for example, by (a) reaching a better (physical) understanding of 
the system to be modelled; (b) (developing or) identifying better models and better predictor 
variables for each predictive task; (c) developing methodologies that combine different models 
(and/or algorithms) in an effective manner; and (d) developing unifying frameworks that 
maximize the benefits from using various methodologies. 
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By embracing and studying uncertainty, as suggested, for example, in Koutsoyiannis (2010), 
one can also reduce uncertainty. Uncertainty reduction in (probabilistic) hydrological modelling 
is one of the 23 major unsolved problems in hydrology identified by Blöschl et al. (2019; see also 
the related discussions in Montanari 2011, and Montanari and Koutsoyiannis 2012). In this 
Chapter, we are explicitly interested in contributing towards point (ii), mostly towards points 
(b−d), conditional on the available data quantity and quality offered by the CAMELS dataset, and 
the information provided by the GR4J hydrological model. Hydrological understanding is assumed 
to be encompassed in the latter, under the justification provided in the following subsection. We 
believe that the investigations conducted herein and the proposed methodological framework 
should be accounted as a tangible step towards a new era in (operational) probabilistic 
hydrological modelling and forecasting. 

9.5.3 A culture-integrating approach to probabilistic hydrological modelling 

By seeing opportunities (rather than threats) in the integration of process-based and data-driven 
models within multi-stage probabilistic hydrological post-processing methodologies, new fruitful 
avenues could open up in the field of hydrological modelling. In the following, we discuss some 
key benefits stemming from this integration, as understood from an uncertainty reduction point 
of view. We also discuss the practical advantages exploited by this integrating approach, well-
supported by their large-scale application made herein. 

Hydrological research has been focusing for decades on uncertainty reduction in point 
hydrological modelling (Montanari 2011). All the related knowledge and experience gained 
through the years until today has been encompassed in what is called process-based hydrological 
modelling (Todini 2007; quoting Krzysztofowicz 1999; see e.g., the review by Efstratiadis and 
Koutsoyiannis 2010). By incorporating process-based hydrological models into probabilistic 
hydrological post-processing methodologies, we benefit from this experience (therefore, 
uncertainty is reduced to some extent) and simultaneously quantify predictive hydrological 
uncertainty. Moreover, we facilitate the straightforward incorporation and exploitation of any 
future advancement in the field of process-based hydrological modelling, embedded either within 
new distributed/lumped hydrological models or within frameworks dedicated to boosting the 
application of such models, as soon as this advancement is achieved (see the related comments in 
Montanari and Koutsoyiannis 2012). 

To further reduce uncertainty, one has to optimize the statistical modelling part of the 
probabilistic methodology, which is commonly related to the modelling of the hydrological model 
errors (see e.g., Montanari and Brath 2004; Montanari and Grossi 2008; Montanari and 
Koutsoyiannis 2012; López López et al. 2014; Dogulu et al. 2015; see also Chapters 7 and 8 of this 
thesis). These errors are known to be heteroscedastic and correlated (see e.g., Montanari and 
Koutsoyiannis 2012; Montanari 2011; Evin et al. 2014). Based on the below-discussed properties 
of machine learning quantile regression algorithms, we believe that their use for solving the 
problem of interest could further reduce uncertainty (to some extent) by increasing the amount 
of information gained from the available historical records. In fact, these algorithms are not only 
a suitable (of course, not the only suitable), but also a direct and straightforward-to-apply, option 
for modelling hydrological model errors. 

From a theoretical point of view, machine learning quantile regression algorithms are 
expected to be optimal in offering a satisfactory compromise between reliability and sharpness 
(targeted in technical applications), since they (most of them) are trained by minimizing the 
quantile score (see Section 2.6.1). They are also appropriate for modelling heteroscedasticity by 
perception and construction without requiring multiple fittings (i.e., a different fitting for each 
season or month), as it would be required for modelling heteroscedasticity using conditional 
distribution models. Some related technical illustrations on the appropriateness of (machine 
learning) quantile regression algorithms for probabilistic hydrological post-processing can be 
found in Chapter 7. Furthermore, additionally to using the hydrological model predictions at time 
t as predictor variable in the regression setting, one can also use the hydrological model 
predictions at times t−1, t−2, etc. (see e.g., the implementations herein), and/or precipitation and 
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potential evapotranspiration (or temperature) variables, to increase the amount of exploited 
information.  

To further support our reasoning and rationale behind the selection of machine learning 
quantile regression algorithms as statistical post-processing models within methodologies for 
predictive uncertainty quantification in hydrology, we subsequently discuss some additional 
practical advantages stemming from their use. First, algorithms from this family are available in 
open source; therefore, their reproducibility is fully assured. Reproducibility is needed in 
hydrology, for example, according to Abrahart et al. (2008), Ceola et al. (2015), and Tyralis et al. 
(2019b), while only very few statistical post-processing models by hydrologists are made 
available in open source (see e.g., Vrugt 2016, 2018). Moreover, machine learning algorithms are 
well-tested (e.g., in forecasting competitions) in solving many practical problems and mostly 
optimally programmed (by computer scientists). This latter point is particularly important when 
one is interested in the operational use of the post-processing methodology, since it assures its 
fast implementation. 

Some last, but certainly not least, practical advantages, as identified based on preliminary 
investigations, are also worth-discussing. In contrast to a few parametric (machine learning) 
models tried for this Chapter, these algorithms were found (a) to be highly reliable, in the sense 
that their (satisfactory) fitting was (almost) always possible; and (b) to (mostly) produce 
reasonable results with respect to the whole picture. Only quantile regression neural networks 
were found to produce significant outliers in terms of predictive performance, probably due to 
fitting quality problems. Specifically, this algorithm produced significant outliers for 10 of the 511 
investigated catchments in the contiguous United States. 

Another sound practical advantage, stemming from point (a) above, is related to what is 
called “automatic modelling”, i.e., modelling that does not require human intervention during the 
whole process (see e.g., Chatfield 1988; Hyndman and Khandakar 2008; Taylor and Letham 2018). 
In light of this latter point, one could understand that automatic methodologies are the heart of 
operational hydrology, since they can effectively support large-sample hydrological applications, 
even at a global level (see e.g., Chapter 5 herein). The preference of these algorithms can indeed 
facilitate the complete automation of the probabilistic hydrological modelling process and, 
therefore, can effectively support probabilistic hydrological post-processing “at scale”. An 
important clarification to be made here, is that complete automation is possible even in the case 
where quantile regression neural networks are exploited, as their rare failures significantly affect 
the widths of the prediction intervals and, therefore, can be foreseen using benchmarking. 
However, in such a case additional attention should be paid, by introducing an extra algorithmic 
step to detect extreme relative differences (usually relative increases) in terms of average width 
with respect to a performance stability benchmark (e.g., the quantile regression algorithm used 
herein). Such detection should be followed by the discard of the respective prediction, and its non-
consideration by the equal-weight combiner. This automation has not been applied herein. 

In summary, the integration of process-based models and machine learning quantile 
regression algorithms is considered highly meaningful, mainly due to the diverse backgrounds 
and specializations of the experts involved in the model development process for the two mother 
research fields, and not because these two model categories “simply exist” (see Sivakumar 2008a). 
It is also in line with the compromise between process-based and data-driven models proposed 
by Todini (2007). Inspired by this latter study, one would characterize the related approach to the 
problem of quantifying predictive hydrological uncertainty as “culture-integrating”. 

9.5.4 Value of ensemble learning hydrological post-processing methodologies 

A certainly worth-of-attention way to reduce uncertainty in probabilistic hydrological modelling 
is to (optimally) exploit information provided by different hydrological models and/or different 
statistical post-processing models. The former type of model combination is more frequently 
applied and suggested in the literature (see e.g., the relevant suggestions by Montanari and 
Koutsoyiannis 2012). A concise and to-the-point presentation of several hydrological model 
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combination approaches, varying in terms of conceptualization and theory-driven reasoning, can 
be found in Vrugt (2019). Among the methods discussed therein that are appropriate for 
probabilistic hydrological modelling are PDF combination methods. Simple PDF averaging has 
been exploited to some degree in hydrological contexts (see e.g., Okoli et al. 2018). 

In the present Chapter, we have exploited information from different machine learning 
quantile regression algorithms through quantile combination approaches. The latter are known 
to be more convenient in practice than PDF combination approaches (for reasons already 
reported in the above sub-section) and equally (or even more) useful in terms of predictive 
performance (Lichtendahl et al. 2013). To the best of our knowledge, such approaches have only 
been exploited so far for solving hydrological modelling and forecasting problems in Chapters 7 
and 8 herein, and Tyralis et al. (2019a), while different machine learning quantile regression 
algorithms have been only combined for such purposes in Tyralis et al. (2019a). These three 
works emphasize the value of ensemble learning in general and equal-weight ensemble learning 
in particular (see also Lichtendahl et al. 2013; Winkler 2015), which is also well-supported by the 
large-scale empirical results delivered herein. In fact, the equal-weight combiner of the six 
machine learning algorithms of the present Chapter has been found to be an outstanding 
modelling choice with respect to several criteria. 

Further improvements may result by adopting optimally unequal-weight stacked 
generalization approaches, such as the methodology introduced and validated by Tyralis et al. 
(2019a); see also Wang et al. (2019) for a similar approach applied within a different context). In 
Tyralis et al. (2019a), these improvements (with respect to the equal-weight combiner) have been 
quantified to be up to 2% in terms of average interval score, when adopting quantile regression 
and quantile regression forests for probabilistic hydrological post-processing in one-step ahead 
prediction problems. Such improvements are larger than one would think they are based on 
comparisons within single-case studies, since a case-specific improvement can be extremely 
better (or worse) than the average-case and median-case improvements (see the related 
comments, for instance, in Andréassian et al. (2007), Sivakumar (2008a) and Chapter 3 of this 
thesis), and should be pursued, especially for specific categories of applications, for which cost-
effectiveness of the performance-improving methods also applies. 

9.5.5 Grounds and implications of the proposed methodological framework 

Understanding how the algorithms behave to improve predictive performance and reduce 
uncertainty in predictive modelling needs much more than inspecting their regular application 
and comparison to alternative approaches in some cases (Sivakumar 2008a). It needs properly 
conceptualized benchmark experiments (that, in turn, rely on data of adequate quantity and 
quality; see e.g., related comments by Andréassian et al. 2007 and Todini 2007), while toy 
experiments can also provide valuable insight into methodologies (see e.g., Krzysztofowicz 1999; 
Volpi et al. 2017). Andréassian et al. (2007) reported on a “lack of standardized procedures in 
model testing” in hydrology, emphasizing the fact that gaining end users’ trust necessarily 
requires filling this methodological gap. We contribute towards this direction by developing a 
detailed framework for assessing statistical post-processing models in hydrological contexts. This 
framework is grounded on key suggestions made, for instance, by Sivakumar (2005), Andréassian 
et al. (2007), Todini (2007) and Sivakumar (2008a), and on empirical evidence derived from 
large-scale assessments, as summarized in the following. 

The proposed framework produces trustable (or generalized) results. The fundamental role 
of large datasets in building trust in predictive hydrological modelling (which cannot be 
completely theory-driven) has been extensively pointed out and exploited by experts in the field 
(see e.g., the comments by Andréassian et al. 2006 and the model assessment by Perrin et al. 
2003). This usefulness of large datasets holds, provided that they also represent a “wide range of 
climate and catchment conditions” (Perrin et al. 2003). As emphasized in Andréassian et al. 
(2006), operational hydrologists only trust models that perform well in a wide range of cases. 
Related comments can be found in Sivakumar (2008a), who underlines the fact that any model 
could be proven better than a competitive one in specific cases. This latter fact is consistent with 
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the “no free lunch” theorem by Wolpert (1996), which has been first put in a hydrological context 
in Chapter 3 of this thesis. This large-sample work and its companions (e.g., Tyralis and 
Papacharalampous 2017; Chapters 4−6 herein) have empirically proven the validity of the above 
comment by Sivakumar (2008) in hydrological forecasting, when endogenous variables are 
exclusively used. 

Moreover, the proposed framework allows us to find optimized solutions to the following 
well-posed practical problem: How should we integrate different algorithms (or statistical post-
processing models in general) within unifying frameworks or combine different algorithms, 
aiming at maximizing the benefits and reducing the risks from their use? This research question 
arises in light of key comments by Sivakumar (2008a); see also the related comments by Todini 
(2007). As pointed out in this latter study, the most useful comparative evaluations are those 
aimed at revealing the strengths and limitations of the various approaches to facilitate their 
optimal exploitation by answering research questions such as the above-stated one. It is relevant 
to highlight that posing research questions of this type requires us to first and foremost embrace 
the fact that a specific algorithm (or model) can be either useful or useless depending on its 
intended use, as it is also discussed in Chapter 3. 

Furthermore, finding reliable answers to such practical questions also requires keeping the 
scale of our experiments as large as possible in general, i.e., by means besides the exploitation of 
large datasets as well. In fact, implementing an adequate number of algorithms (and/or models) 
and contrasting their predictive performance in various modelling situations can help in 
identifying well-performing algorithms for several prediction tasks that might be of interest. 
These tasks could be determined, for example, by specific prediction intervals and/or specific 
ranges of flow magnitudes, which therefore are separately examined within the introduced 
framework. By only reporting the performance of the algorithms in predicting the entire PDF (e.g., 
by computing the continuous ranked probability score − CRPS, as made, for example, in Bakker et 
al. 2019, and by relying our practical recommendations on it) and independently of the flow 
magnitude, a large amount of information (that would be useful in hydrological modelling and 
forecasting contexts) would remain unrevealed and unstudied. 

A single score is mostly enough for properly quantifying the usefulness in performance. In 
our case, this single score could be the interval or quantile score, depending on the exact 
application of interest. Nonetheless, a multi-faced presentation of the results is also essential, 
since it (a) strengthens our understanding on how the various algorithms work by allowing 
related interpretations; and (b) provides some clues as to how to integrate these algorithms. Such 
multi-faced presentation is allowed, for instance, by those scores computed in Bourgin et al. 
(2015), Bock et al. (2018), Tyralis et al. (2019a), and Chapters 7 and 8 of this thesis, and the set of 
scores proposed in this Chapter. For instance, even when we are interested in delivering central 
prediction intervals, historical quantile scores can guide us towards delivering better probabilistic 
predictions by facilitating an optimal integration of two algorithms for forming the targeted 
prediction interval. Within this integration, each algorithm is used to predict quantiles of different 
level. Finally, we would like to highlight the appropriateness of the proposed framework in 
facilitating the selection of flow magnitude thresholds for the application of the various 
algorithms, based on the comparative performance of these algorithms for various flow 
magnitudes. Sivakumar (2005) underlines the role of such thresholds in hydrological modelling 
and forecasting. As pointed out by Sivakumar (2005), a single model should not be expected to 
model equally well high, medium and low values. 

In summary, by applying the framework introduced herein, one can reliably gain insight on 
(i) which algorithm to select for each prediction task; and/or (ii) how to combine algorithms (also 
by testing various combinations), to maximize the benefits and minimize the risks from their use, 
thus facilitating a tangible contribution to the problem of uncertainty reduction. In light of this 
fact, the introduced framework could be further exploited in the future for: 

o identifying the advantages and limitations of more statistical post-processing approaches, 
utilizing other machine learning quantile regression algorithms and ensemble learning 
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approaches (implemented with various sets of predictor variables) and/or other 
hydrological models, provided that these approaches are computationally fast and can be 
applied in a fully automatic way; 

o solving related technical problems at different timescales (e.g., the monthly or seasonal 
timescales); and 

o assessing statistical post-processing approaches in forecasting mode, i.e., by running the 
hydrological model using forecasts as inputs (instead of using observations). 

Some final remarks should be made on our above-expressed suggestion for implementing 
different hydrological models within the broader methodologies exploited herein. As illustrated 
in Tyralis et al. (2019a, Figure 3), the GR4J hydrological model (implemented herein) successfully 
“pre-processes” the regression datasets (exploited by the machine learning quantile regression 
algorithms in probabilistic hydrological post-processing) by linearizing them. The smaller 
differences found between the machine learning algorithms of the present Chapter in predicting 
the median of daily streamflow compared to those found in Tyralis et al. (2020b) for point 
forecasting of daily streamflow by exclusively using machine learning algorithms could perhaps 
be attributed to this linearization (which seems to ease the regression problem to be solved). 
Under this view, the relative differences in the predictive performance of the machine learning 
algorithms would perhaps become larger or smaller (to some extent) for potential exploitations 
of the methodologies of the Chapter with different hydrological models, depending on how well 
these models perform. 

9.6 Summary and take-home messages 

We contribute with large-scale results and best practices to the problem of quantifying predictive 
uncertainty in hydrology, when the problem is examined from a predictive modelling perspective. 
We have made a detailed assessment of six machine learning quantile regression algorithms (i.e., 
quantile regression, generalized random forests for quantile regression, generalized random 
forests for quantile regression emulating quantile regression forests, gradient boosting machine, 
model-based boosting with linear models as base learners and quantile regression neural 
networks) and their equal-weight combiner in solving probabilistic hydrological modelling 
problems for 511 catchments in the contiguous United States. The examined catchments 
represent divergent climatic and catchment characteristics and, therefore, are appropriate for 
benchmarking purposes. By taking a quick glance at our large-scale results, one can immediately 
identify which algorithm should be selected (among the assessed ones) for maximizing the 
benefits and minimizing the risks from their use. The findings can be used in technical 
applications. The algorithms could be applied as detailed herein or within ensemble learning 
probabilistic hydrological post-processing methodologies. 

In the following, we summarize the practical and methodological contributions of the Chapter 
in the form of take-home messages and recommendations: 

o Preliminary large-sample investigations should focus on identifying a useful set of statistical 
post-processing models, such as the one composed by the six machine learning quantile 
regression algorithms of the Chapter. 

o Machine learning quantile regression algorithms can effectively serve as statistical post-
processing models, since they model heteroscedasticity by perception and construction 
without requiring multiple fittings, i.e., a different fitting for each season, as applying for the 
case of conditional distribution models. 

o These algorithms are also straightforward-to-apply, fully automatic (i.e., their 
implementation does not require human intervention), available in open source, and 
computationally convenient and fast, and thus are highly appropriate for large-sample 
hydrological studies, while machine learning methods, in general, are known to be ideal for 
exploiting computers’ brute force. 
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o Once a useful set of statistical post-processing models is identified, making the most of it, 
through model integrations and combinations, should be our target. 

o Quantifying both the algorithms’ overall performance (independently of the flow magnitude) 
and the algorithms’ performance conditional upon the flow magnitude is of practical interest. 

o Useful results are mostly those presented per level of prediction interval or predictive 
quantile, while those summarizing the quality of the entire predictive density (e.g., the 
continuous ranked probability score – CRPS) might also be of interest. 

o Although the separate quantification of reliability and sharpness could be useful (mainly for 
increasing our understanding on how the algorithms work), what is most useful is computing 
scores that facilitate an objective co-assessment of these two criteria, such as the (rarely used 
in the literature) interval and quantile scores. 

o The computational requirements might also be an important criterion for selecting an 
algorithm over others. 

o In most cases, finding a balance between computational time and predictive performance is 
required. In any case, the criteria for selecting a statistical post-processing model should be 
clear. 

o If we are foremost interested in obtaining results fast, then we probably should select 
quantile regression. This selection should be made keeping in mind that this algorithm is up 
to about 3.5% worse in terms of average quantile score than using the equal-weight combiner 
of all six algorithms of the Chapter. 

o The equal-weight combiner of all six algorithms in this Chapter is identified as the best-
performing algorithm overall, confirming the value of ensemble learning in general and 
ensemble learning via simple quantile averaging in particular. This value is well-recognized 
in the forecasting literature, but has not received much attention yet in the hydrological 
modelling and hydro-meteorological forecasting literature, in contrast to the popular 
concepts of ensemble simulation and ensemble prediction (e.g., via Bayesian model 
averaging) by exploiting information from multiple hydrological models. 

o In spite of its outstanding performance, the equal-weight combiner of the six algorithms of 
the Chapter is, in turn, expected to perform worse than some of the individual algorithms in 
many modelling situations. 

o In general, no algorithm should be expected to be (or presented as) the best performing with 
respect to every single criterion. 

o By using different algorithms for delivering each predictive quantile (or prediction interval), 
the risk of producing a probabilistic prediction of bad quality is reduced. Related information 
on the predictive performance of the algorithms was extensively given in Section 9.4.1, while 
a summary is given below: 

 The equal-weight combiner is the best choice or amongst the best choices in terms of 
predictive performance for delivering predictive quantiles of level that is higher than 
0.0125; however, it is also the most computationally demanding choice. 

 Quantile regression is the best choice in terms of predictive performance for predicting 
low-level quantiles (practically predictive quantiles of level lower than 0.0125) and the 
third-best choice for predicting high-level quantiles (practically predictive quantiles of 
level higher than 0.9). 

 Generalized random forests for quantile regression and generalized random forests for 
quantile regression emulating quantile regression forests are identified as the best 
choices or amongst the best choices in terms of predictive performance, when one is 
interested in delivering predictive quantiles of levels between 0.2 and 0.8. Since they are 
less computationally intensive than the equal-weight combiner, they would probably be 
preferred over the latter for relevant modelling applications. 
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 Improvements up to about 1.5% may be achieved for the generalized random forests for 
quantile regression and the generalized random forests for quantile regression 
emulating quantile regression forests by using as predictor variables of the regression 
the hydrological model predictions at times t−3, t−2, t−1 and t instead of using the 
hydrological model predictions only at times t−1 and t. By switching from the former set 
of predictors to the latter one, the improvements for the equal-weight combiner may 
reach an improvement of about 1%. 

 Quantile regression neural networks is also a well-performing algorithm with respect to 
the whole picture and less computationally demanding than the equal-weight combiner; 
nevertheless, it is also the only individual algorithm among the assessed ones that was 
found to produce significant outliers (for ~2% of the investigated catchments). These 
performance issues were also manifested in the equal-weight combiner, yet in a less-
pronounced degree. 

o The overall performance improvements expressed in terms of average interval or quantile 
score are mostly up to 3%, while only for some extreme cases these improvements may reach 
up to about 20%. These cases concern some predictive quantiles of the lowest and highest 
levels, for which the tree-based methods, i.e., generalized random forests for quantile 
regression and generalized random forests for quantile regression emulating quantile 
regression forests and gradient boosting machine, do not work at their best. 

o Unrealistic improvements in the order of 50% and 60%, even up to more than 100%, in terms 
of overall performance (often appearing in the literature) may result either by chance or by 
design when using small datasets, while they are highly unlikely to result on a regular basis 
when using large datasets. Only large-sample studies can produce trustable quantitative 
results in predictive modelling. 

o Conducting large-sample studies is feasible nowadays, due to both the tremendous evolution 
of personal computers over the past few years and the fact that large datasets (e.g., the 
CAMELS dataset) are increasingly made available. 

o Performance improvements may also be obtained by selecting algorithms according to their 
skill in predicting low, medium or high flows for the various quantiles (or central prediction 
intervals). Related information was extensively given in Section 9.4.2. 

o Since we are mostly interested in obtaining results that are useful within operational settings, 
we have not performed hyperparameter optimization (which would require significantly 
higher computational time). The results could differ, if such optimization was performed. 

o An alternative to hyperparameter optimization is ensemble learning, in the sense that both 
these procedures aim at improving probabilistic predictions. Here, we have extensively 
studied this alternative and showed that the improvements achieved are worth-of-attention. 

This work is one of the very few large-scale ones in probabilistic hydrological post-processing 
and the even fewer ones conducted at daily timescale. We hope it will trigger interest and future 
research on the use of machine learning quantile regression algorithms in probabilistic 
hydrological post-processing “at scale” and on ways to maximize the benefits from their use. 
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10. Extended summary, innovations and contributions 

10.1 Overall summary and considerations 

This thesis falls into the scientific areas of stochastic hydrology, hydrological modelling and 
hydroinformatics. It contributes with new practical solutions, new methodologies and large-scale 
results to predictive modelling of hydrological processes, specifically to solving two technical 
predictive modelling problems. The latter are: 

1) hydrological time series forecasting by exclusively using endogenous predictor variables 
(hereafter, referred to simply as “hydrological time series forecasting”); and 

2) stochastic process-based modelling of hydrological systems via probabilistic post-processing 
(hereafter, referred to simply as “probabilistic hydrological post-processing”). 

These two technical problems are interrelated, and have been extensively investigated in 
Chapters 3−6 and Chapters 7−9, respectively. Moreover, in Chapter 2 the interested reader can 
find a brief overview of the theoretical, methodological and technical background of the conducted 
original works. In the same Chapter, we have outlined the predictive modelling and benchmarking 
toolbox, formed and exploited within the context of the thesis. This toolbox is consisted of (i) 
approximately 6 000 hydrological time series (sourced from larger freely available datasets), (ii) 
over 45 ready-made automatic models and algorithms mostly originating from the four major 
families of stochastic, (machine learning) regression, (machine learning) quantile regression, and 
conceptual process-based models, (iii) seven flexible methodologies (which together with the 
ready-made automatic models and algorithms consist the basis of our modelling solutions), and 
(iv) approximately 30 predictive performance evaluation metrics. Novel model combinations 
coupled with different algorithmic argument choices have resulted in numerous model variants, 
many of which could be perceived as new methods. 

All of the exploited models and algorithms (see point (ii) above) are flexible, computationally 
convenient and fast; thus, they are appropriate for large-sample (even global-scale) hydrological 
investigations. Conducting such investigations has been of major priority herein, together with 
the introduction of new methodologies and new practical solutions. This priority is implied by the 
practical and algorithmic orientation of the thesis, and the (mainly) algorithmic nature of its 
methodologies. It is also relevant to note that most of the models or algorithms of point (ii) 
incorporate several others, thereby making it difficult for this thesis to explicitly describe (or even 
count) all the individual models exploited within its context. A key note to be made, in this regard, 
is that the understanding from a theoretical point of view of most (but not all) of the exploited 
models could hardly help in interpreting the algorithmically obtained outcomes of the present 
thesis. In light of the above, a strength (and limitation) characterizing the thesis (implied by its 
aims) is its algorithmic nature. In spite of this nature and the main orientation of our 
methodological frameworks, this thesis has also provided innovative theoretical supplements to 
its practical and methodological contribution. 

In what follows, we summarize the content of Chapters 3−9 by emphasizing their main 
innovations in light of the literature and the technical know-how that they provide. We also 
discuss the way that these Chapters build on each other to (a) provide new technical solutions and 
novel methodologies, (b) answer practical and theoretical research questions, and (c) deliver new 
insights into the investigated technical problems by conducting large-scale comparisons and 
model evaluations. 

10.2 Hydrological time series forecasting 

10.2.1 Stochastic versus machine learning methods in multi-step ahead forecasting 

Chapter 3 has overall aspired to promote large-scale comparisons in the area of hydrological time 
series forecasting. The Chapter begins with a brief overview (along with a critical view) of the 
hydrological time series forecasting literature. This literature often focuses on the comparison 
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between stochastic and machine learning forecasting methods, and on the validation of new 
“hybrid” data-driven methodologies, by conducting case studies. Case studies can ideally serve 
illustrative purposes; thus, they can be considerably useful when accompanying analytical 
investigations or large-scale empirical works. Analytical investigations have been conducted in 
the literature for several forecasting methods (mostly for the less flexible ones); nonetheless, they 
can be highly demanding (to nearly impossible) for many others (mostly for the most flexible 
machine learning ones). We have, therefore, argued that meaningful assessments and 
comparisons of hydrological time series forecasting methods would necessarily require the 
examination of a sufficiently large and representative sample of forecasting cases. 

We have focused on the following research question: Does the stochastic-machine learning 
dipole actually correspond to a clear difference in the forecasting performance of the methods? To 
address this question, we have developed and exploited a detailed framework for assessing 
forecasting techniques in hydrology. Complying with the principles of forecasting, the introduced 
framework incorporates large-scale benchmarking. The latter relies on big hydrological datasets, 
large-scale time series simulation by using classical stationary stochastic models, many automatic 
forecasting models and algorithms (including benchmarks), and many forecast quality metrics. 
Our specific aim is to provide large-scale results and useful insights on the comparison of 
stochastic and machine learning forecasting methods for the case of hydrological time series 
forecasting at large temporal scales (e.g., the annual and monthly ones), with an emphasis on 
annual river discharge processes. 

We have compared 11 stochastic and nine machine learning methods regarding their multi-
step ahead forecasting properties. The stochastic methods include simple models, models from 
the frequently used families of autoregressive moving average and autoregressive fractionally 
integrated moving average, and innovations state space and exponential smoothing models, while 
the machine learning ones are neural networks, random forests and support vector machines. 
Among these categories of models, only the autoregressive (fractionally integrated) moving 
average, the neural network and the support vector machine ones are widely used in hydro-
meteorological forecasting contexts; yet, methods from these categories are usually applied in a 
non-automatic form. Most of the remaining methods have been only exploited in (some of) the 
large-scale companions of this work (see e.g., Chapters 4, 5 and 6). We have used ready-made 
automatic time series forecasting algorithms with selected algorithmic argument choices and 
have also combined different algorithms to automate new ones. For the machine learning 
methods, we have proposed three objective lagged variable selection methods (among which one 
is inspired by a ready-made automatic algorithm) and three sets of grid hyperparameter values 
for optimization via grid search. The proposed set of methods could be used to benchmark the 
performance of any new time series forecasting method in hydrology. It has also been made 
available in code form. 

We have conducted 12 large-scale computational experiments based on simulations, each 
using a different stationary stochastic model. The selected simulating models correspond to 
different types of autocorrelation. We have conducted each simulation experiment twice; the first 
time by using time series of 100 values and the second time by using time series of 300 values. 
Additionally, we have conducted a real-world experiment by using 405 mean annual river 
discharge time series of 100 values. The total number of forecasts is 858 480, among which 6 480 
are produced within the real-world experiment. We have quantified the forecasting performance 
of the methods by using 18 metrics. These metrics do not share one-to-one relationships with 
each other, emphasizing −more or less− different aspects of the same information. They have been 
selected to provide a multi-faced assessment in multi-step ahead hydrological time series 
forecasting. 

Our large-scale results suggest that stochastic and machine learning methods do not differ 
dramatically, as it is usually asserted in the literature. In fact, methods from both these categories 
have been found to be equally useful in short hydrological time series forecasting at large 
temporal scales. This outcome is especially interesting, given the claims that machine learning 
methods are more likely to be superior in “non-linear situations”. The latter are often asserted to 
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characterize river discharge processes. In general, we cannot decide on a universally best or worst 
forecasting method, neither we can rank the forecasting methods based on our large-scale results. 
Any ranking of the forecasting methods would require the a priori selection of an experiment and 
a criterion of interest, as well as the application of a simplification procedure and, therefore, would 
not be general. However, the grouping of the forecasting methods based on their similar or 
contrasting performance with respect to the various metrics is possible, though only to some 
extent.  

Another important contribution of the Chapter is related to the “no free lunch theorem”. 
According to this theorem, in the space of all possible problem instances, there is not a model that 
will always perform better than other models in the absence of significant information for the 
problem at hand. Our large-scale results are consistent with this theorem, albeit the theorem 
refers to an infinite space of problem instances, while here we have examined a finite space of 
problems, formed by simulated and annual river discharge time series. In fact, finding the best 
algorithm mostly depends on our knowledge of the system, which apparently is deeper than the 
knowledge of its statistical properties (e.g., the mean, variance and autocorrelation function). 
Regarding the extent to which the conclusions could be generalizable for the forecasting of short 
hydrological time series at large time scales, we note that the stationarity assumption and the 
reasoning of its appropriateness for the modelling of geophysical properties is consistent with the 
no free lunch theorem. In particular, if we cannot explain the behaviour of a geophysical process 
based on a deterministic mechanism, then the most appropriate models are stationary. This is a 
frequently met case in the modelling of geophysical processes (i.e., there is not an adequate 
explanation for the behaviour of the geophysical process), proving that our conclusions could be 
generalizable. 

10.2.2 One-step ahead predictability of annual temperature and precipitation 

Chapter 4 has overall aspired to promote traditional forecasting methods in geoscience. The 
Chapter begins by providing detailed methodological information on several works using 
statistical methods for issuing hydro-meteorological time series forecasts, thereby 
complementing the introductory section of Chapter 3. It has specifically aimed to examine the 
fundamental problem of one-step ahead forecasting within a purely statistical framework 
(justified by forecasting experts) in geoscience, and hopefully to establish the results obtained by 
the examination of standardized real-world datasets as rough benchmarks for the one-step ahead 
predictability of geophysical processes. The establishment of forecasting benchmarks is 
meaningful, especially for the one-step ahead attempts, as the latter constitute the most simple 
ones and their accuracy can be quantified using a single metric, i.e., the absolute error. 

To reach the above-outlined aims, we have expanded the work presented in Chapter 3 by 
exploring the one-step ahead forecasting properties of its methods, when the latter are applied to 
geophysical time series. Emphasis has been put on the examination of two real-world datasets, a 
precipitation dataset and a temperature dataset, together containing 297 annual time series of 91 
values. These datasets have been examined in both their original and standardized forms. We have 
further performed large-scale experiments on 12 simulated datasets. In total, these datasets 
contain 24 000 time series of 91 values. The conducted simulation experiments complement the 
real-world ones by allowing the examination of a large variety of process behaviours, while they 
are also controlled to some extent, facilitating generalizations and increasing the understanding 
on the examined problem. We have used the first 50, 60, 70, 80 and 90 data points for model fitting 
and model validation, and have made predictions corresponding to the 51st, 61st, 71st, 81st and 91st 
data points, respectively. The number of forecasts produced in the same Chapter is 2 177 520, 
among which 47 520 are obtained using the real-world datasets. The assessment has been based 
on eight error metrics and accuracy statistics. 

The simulation experiments have revealed the most and least accurate methods for long-run 
one-step ahead forecasting applications, also suggesting that the simple methods may be 
competitive in specific cases. They have also shown that the relative performance of the 
forecasting methods is slightly affected by the time series length (when considering time series of 
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51, 61, 71, 81, 91 values), while it strongly depends on the process. Regarding the results of the 
real-world experiments using the original (standardized) time series, the minimum and maximum 
medians of the absolute errors have been found equal to 68 mm (0.55) and 189 mm (1.42), 
respectively, for precipitation, and 0.23°C (0.33) and 1.10°C (1.46), respectively, for temperature. 
Since there is an absence of relevant information in the literature, the numerical results obtained 
using the standardized real-world datasets could be used as rough benchmarks for the one-step 
ahead predictability of annual precipitation and temperature. 

10.2.3 Multi-step ahead predictability of monthly temperature and precipitation 

Chapter 5 has overall aspired to promote the use of automatic time series forecasting methods in 
geoscience. The non-automatic or subjective approach to the problem of time series forecasting, 
often adopted in the geoscientific (including the hydrological) literature, requires the prior 
conduct of an exploratory data analysis for each specific individual case to be predicted and 
human intervention during the forecasting process. Therefore, its implementation can be 
significantly limited by scale-dependent factors. Automatic time series forecasting is essential, for 
example, when a large number of time series forecasts is required. 

We have conducted two global-scale investigations. We have quantified the predictability of 
monthly temperature and precipitation by applying 24 automatic time series forecasting methods 
to 985 and 1 552 monthly time series of temperature and precipitation, respectively. This sample 
is the largest used in hydrology for assessing the performance of time series forecasting methods. 
We have exploited ready-made automatic models with different algorithmic argument choices 
and have also combined different models to automate new ones.  The exploited automatic 
methods are (a) the seasonal naïve (based on the monthly values of the last year), (b) four 
methods based on random walk with drift, (c) four methods based on an automatic autoregressive 
fractionally integrated moving average model, (d) six methods based on the exponential 
smoothing state space model with Box-Cox transformation, autoregressive moving average error 
correction, trend and seasonal components, (e) four methods based on simple exponential 
smoothing, (f) two methods based on Theta, and (g) three methods based on Prophet. 

Prophet is a recently introduced model inspired by the nature of time series forecasted at 
Facebook, which in this work has been applied for the first time to hydrometeorological time 
series. The automatic autoregressive fractionally integrated moving average model, on the other 
hand, is widely used in a non-automatic way in the hydrological literature, while the rest of the 
models have been rarely implemented in hydrology, e.g., in Chapters 3 and 4, although they are 
very common in the forecasting literature. In the latter studies, no investigation is provided on 
how different choices of handling the seasonality and non-normality affect the performance of the 
models. This investigation constitutes one of the main aims of the present Chapter (therefore, 
proper variants of the methods are examined), together with the quantification of the 
performance of the selected models on monthly hydrometeorological time series and the 
comparison of the Prophet model to the rest. The exploited time series are 480 months long with 
no missing values, observed between January 1950 and December 1989 in stations covering a 
significant part of the Earth’s surface and, therefore, including various real-world process 
behaviours. The models are fitted in the first 36 years of data (432 months) and subsequently 
tested in performing multi-step ahead forecasts for the last four years of data (48 months). The 
results has been summarized in global scores, while their examination by group of stations has 
led to five individual scores for temperature and six for precipitation. The groups have been 
formed according to the geographical vicinity of the stations. 

The results indicate that all the examined methods apart from the naïve and random walk 
ones are accurate enough to be used in long-term forecasting applications. Even the simple 
exponential smoothing and Theta models, which exhibit a rather moderate performance in terms 
of root mean square error and Nash-Sutcliffe efficiency in the simulation experiments of Chapter 
3, here have been found to be equally competitive with the autoregressive fractionally integrated 
moving average model and the exponential smoothing state space model with Box-Cox 
transformation, autoregressive moving average error correction, trend and seasonal components. 
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These latter models are the most accurate in terms of root mean square error and Nash-Sutcliffe 
efficiency in the above-mentioned Chapter. This may be explained by the fact that the simulation 
experiments of Chapter 3 examine non-seasonal simulated processes, with different predictability 
than the monthly temperature and precipitation processes. Seasonality can be assumed to 
constitute a deterministic component of a process and its proper handling leads to a significant 
improvement of the forecasts. The above-stated qualitative outcome is consistent with the 50 
single-case studies of Chapter 6. These case studies use monthly temperature and precipitation 
data as well. In the same work, the seasonality term is estimated using the multiplicative and 
additive model, for the temperature and precipitation time series, respectively. Regarding the 
investigations on how different choices of handling seasonality and non-normality affect the 
performance of the models, the results do not suggest any specific combination of choices for the 
external handling of seasonality and non-normality as best. Nevertheless, the handling of 
seasonality through the exponential smoothing state space model with Box-Cox transformation, 
autoregressive moving average error correction, trend and seasonal components and the Prophet 
model (the only models that offer this possibility amongst the used ones) mostly leads to less 
accurate forecasts than the external handling, especially for the former model. 

Admittedly, the quantitative information provided by Chapter 5 is also important, since it 
directly expresses the predictability of monthly temperature and precipitation. The minimum and 
maximum medians of the absolute errors of the temperature forecasts have been found to be 
approximately equal to 0.25 K and 8.2 K, respectively. Furthermore, a zero median of the absolute 
errors has been computed for the precipitation forecasts produced for the dry months in 
geographical regions with relatively regular variability in precipitation, while the maximum 
median computed has been approximately equal to 100 mm. These values could be viewed in 
comparison with the minimum and maximum medians of absolute errors for annual temperature 
and precipitation, as derived in Chapter 4 using two real-world datasets of 297 time series in total. 
These are approximately equal to 0.23 K and 1.10 K, and 68 mm and 189 mm, respectively. 
Moreover, the computed RMSE values range between 1.01 K and 3.65 K for temperature, and 
36.16 mm and 70.17 mm for precipitation, while the respective NSE values are 0.79 and 0.98 for 
temperature, and −0.55 and 0.71 for precipitation. 

Excluding the naïve method and the variants using the random walk model, the respective 
RMSE values range between 1.01 K and 2.84 K for temperature, and 36.16 mm and 51.71 mm for 
precipitation. In more detail, for the total of the temperature time series the use of an ARFIMA, 
BATS, simple exponential smoothing, Theta or Prophet model, instead of the naïve method, leads 
to about 19−29% more accurate forecasts in terms of RMSE, or even in about 30−32% more 
accurate forecasts specifically for the temperature time series observed in North Europe. For the 
total of the precipitation time series the use of all these automatic methods leads to about 21−22% 
better forecasts than the use of the naïve method, while for the geographical regions of North 
America, North Europe and East Asia these percentages are 26−29%, 22−24% and 32−38% 
respectively. This higher degree of accuracy is non-ignorable and particularly important in a long 
run perspective. Importantly, the Prophet model has been found to offer from 13% up to 32% and 
from 16% up to 38% better results than the naïve method for the temperature and precipitation 
time series, respectively. Moreover, the minimum and maximum NSE medians for the ARFIMA, 
BATS, simple exponential smoothing, Theta and Prophet models are 0.89 and 0.98 for 
temperature, and −0.04 and 0.71 for precipitation. The former NSE values indicate good 
forecasting performances and the latter acceptable to moderate. The higher predictability of the 
monthly temperature compared to the monthly precipitation is expected already from the 
comparison of their corresponding standard deviation values of the seasonally decomposed time 
series, which have a median around 1.7 K and 42 mm respectively. We think that the level of the 
forecasting accuracy can barely be improved using other methods, as the experiments of Chapter 
3 suggest. 
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10.2.4 A multiple-case study focusing on machine learning algorithms 

Chapter 6 has overall aspired to promote the multiple-case study research strategy −in its large-
scale version− as an innovative and more comprehensive alternative to conducting single-case 
studies in the field of hydrological time series forecasting. This strategy embraces the examination 
of more than one individual cases, thereby facilitating the observation of specific phenomena from 
multiple perspectives or within different contexts. For the detection of systematic patterns across 
the individual cases, a cross-case synthesis can be performed. Given the fact that the boundaries 
between the phenomena and the context are not clear, it is important that each individual case 
keeps its identity within a multiple-case study, so that one can specifically focus on it. This 
exploration within and across the individual cases can provide interesting insights into the 
phenomena under investigation, as well as a form of generalization named “contingent empirical 
generalization”, while retaining the immediacy of the single-case study method. 

We have conducted an extensive multiple-case study composed by 50 single-case studies. The 
latter have used monthly temperature and precipitation time series observed in Greece. We have 
examined these two geophysical processes, because they exhibit different properties, which may 
affect differently the results within the explorations. The main aim of this multiple-case study has 
been the exploration of three problems associated with hydrological time series forecasting using 
machine learning algorithms. The investigated problems are: (a) lagged variable selection, 
(b) hyperparameter handling, and (c) comparison of machine learning and stochastic algorithms. 
We have also presented quantitative information about the quality of the forecasts (particularly 
important for the case of Greece), and searched for evidence regarding the existence of possible 
relationships between the forecast quality, and the maximum likelihood estimates of the standard 
deviation, coefficient of variation and Hurst parameter of the fractional Gaussian noise process for 
the deseasonalized time series (used for model fitting). 

We have focused on two machine learning algorithms, i.e., neural networks and support 
vector machines, and have also included four stochastic methods and a seasonal naïve benchmark 
in the comparisons. The stochastic methods are (i) the autoregressive order one model, (ii) an 
automatic algorithm from the family of autoregressive fractionally integrated moving average 
models, (iii) the exponential smoothing state space algorithm with Box-Cox transformation, 
autoregressive moving average errors, trend and seasonal components, and (iv) the Theta 
algorithm. We have applied a fixed methodology to each individual case and, subsequently, we 
have performed a cross-case synthesis to facilitate the detection of systematic patterns. We have 
fitted the models to the deseasonalized time series. We have compared the one- and twelve-step 
ahead forecasting performance of the algorithms. The assessment of the one-step ahead 
forecasting performance is based on the absolute error of the forecast of the last monthly 
observation. For the quantification of the multi-step ahead forecasting performance, we have 
computed five metrics on the test set (last year’s monthly observations), i.e., the root mean square 
error, the Nash-Sutcliffe efficiency, the ratio of standard deviations, the coefficient of correlation 
and the index of agreement. 

The findings suggest that forecasting methods based on the same machine learning algorithm 
may exhibit very different performance, to an extent mainly depending on the algorithm and the 
individual case. In fact, the neural networks algorithm can produce forecasts of many different 
qualities for a specific individual case, in contrast to the support vector machines one. The 
performance of the former algorithm seems to be more affected by the selected lagged variables 
than by the adopted hyperparameter selection procedure (use of predefined hyperparameters or 
defined after optimization). While no evidence has been provided that any of the compared lagged 
regression matrices systematically leads to better forecasts than the rest, either for the neural 
networks or the support vector machines algorithms, the results mostly favour using less recent 
lagged variables. Furthermore, hyperparameter optimization does not necessarily lead to better 
forecasts than the use of the default hyperparameter values of the examined algorithms. 
Regarding the comparisons performed between machine learning and classical algorithms, the 
results indicate that methods from both categories can perform equally well, under the same 
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limitations. The best method depends on the case examined and the criterion of interest, while it 
can be either machine learning or classical. Some information of secondary importance derived 
by our experiments is subsequently reported. The average-case performance of the algorithms 
used to produce one- and twelve-step ahead monthly temperature forecasts ranges between 
0.66°C and 1.00°C, and 1.14°C and 1.70°C, in terms of absolute error and root mean square error 
respectively. For the monthly precipitation forecasts the respective values are 39 mm and 72 mm, 
and 41 mm and 52 mm. Finally, no evidence has been provided by our multiple-case study that 
there is any relationship between the forecast quality and the estimated parameters of the 
fractional Gaussian noise process for the deseasonalized time series. 

10.3 Probabilistic hydrological post-processing 

10.3.1 An ensemble learning methodology and its toy model investigation 

Chapter 7 has introduced a novel probabilistic hydrological post-processing methodology by 
using a theoretically consistent probabilistic hydrological modelling blueprint as a starting point. 
The proposed methodology is subdivided into three alternative variants. In summary, it generates 
a large number of point predictions by utilizing a single hydrological model, yet with different 
parameter values. By solving a typical regression problem using a quantile regression algorithm 
(hereafter referred to as the “error model” of the methodology), these “sister predictions” are 
converted into auxiliary probabilistic predictions (consisted of quantile predictions), which are 
finally combined via simple quantile averaging. To the best of our knowledge, this is the first 
quantile averaging hydrological post-processing methodology that creates and exploits different 
information sets using a single model with different parameter values. 

A key improvement achieved in terms of flexibility in modelling (compared to the original work 
and the precursor variants) is the use of statistical learning regression models that can directly 
provide predictive quantiles of the response variable, while they are also appropriate for 
modelling heteroscedasticity. Such models are the quantile regression, generalized random 
forests for quantile regression, generalized random forests for quantile regression emulating 
quantile regression forests, gradient boosting machine, model-based boosting with linear models 
as base learners and quantile regression neural networks (see Chapter 9). Allowing the 
exploitation of the possibilities provided by this model category should, in fact, be regarded as a 
primary strength of the proposed methodology from a predictive modelling perspective. 

We have demonstrated the usefulness of the proposed methodology and how our 
understanding of the system to be modelled can guide us to achieve better predictive modelling 
when using this methodology by conducting a toy model investigation. Within this investigation, 
we have focused on the unsuitability of the homoscedasticity assumption, when the latter is made 
in the modelling of the hydrological model’s error, and on how the selection of an appropriate 
regression model for this task results in improved probabilistic predictions. We have also 
demonstrated the significance of using a better hydrological model for delivering probabilistic 
predictions that are simultaneously reliable and as sharp as possible. Finally, we have used the 
obtained toy results to show how the proposed methodology increases its robustness in 
performance by averaging many quantile predictions. 

In spite of focusing on the introduced methodology, some of the obtained results can be used 
for gaining insight in general on how two-stage hydrological post-processing methodologies work 
and under which conditions their performance is maximized. The presented toy examples, 
demonstrating the key roles of both the statistical learning regression model and the hydrological 
model within a hydrological post-processing methodology, go beyond of some few exemplary (yet 
basic) toy tests that have already been made for the interpretation of methodologies for the 
quantification of the predictive hydrological uncertainty. Such tests mostly assume 
homoscedasticity and a perfect toy hydrological model, while here we are also inspired by recent 
simulation experiments that do not rely on these assumptions. 
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Two simultaneously attractive and useful properties of this methodology (extensively tested 
in Chapter 8) are its larger robustness in performance compared to the combined individual 
predictors and, by extension, compared to basic two-stage post-processing methodologies (which 
produce a single probabilistic prediction and, therefore, no prediction combination is made in 
their case), and its ability to “harness the wisdom of the crowd”. The latter is defined in the 
forecasting literature as the property of some prediction combinations to score no worse –usually 
better− than the average score of the combined individual predictions. In fact, the larger the 
number of the combined quantile predictions (equal to the number of the generated sister 
predictions), the more robust the ensemble predictor and the more harnessed the wisdom of the 
crowd. 

The proposed methodology is characterized by some additional strengths that are also 
particularly important from a predictive modelling point of view. First, it is computationally 
convenient in the sense that it can be easily expressed in algorithmic form and programmed using 
open source routines. Second, it offers certain modelling options that could be exploited to 
maximize predictive performance. For instance, variants 1 and 2 allow the exploitation by the 
error model of a large number of different information sets, instead of a single one (exploited by 
variant 3), thereby facilitating the enlargement of the sample space of the hydrological model’s 
observed errors. This enlargement could be particularly important for modelling these errors 
using methods which do not extrapolate beyond the values of the training dataset, such as the 
quantile regression forests model. Lastly, it allows the exploitation of the total amount of available 
information, in the sense that each sister prediction is herein converted into a probabilistic 
prediction (consisted of several quantile predictions) instead of a single simulation (as implied by 
the original work and the precursor variants). 

Some limitations of the proposed methodology should also be considered. These include 
limitations implied by its two-stage nature, such as its shortcoming in terms of interpretability in 
modelling (especially in terms of producing interpretable parameter estimates) and its significant 
data length requirements. Although this latter limitation should be acknowledged herein and 
perhaps taken into consideration in real-world applications, (daily) datasets are usually 
essentially large. Moreover, in Chapter 8 it is empirically proven that, in practice, even when the 
available historical information is little, the proposed methodology is well-performing when 
implemented using the quantile regression model as error model. 

Furthermore, the computational requirements of the proposed methodology are (at the 
moment) high when (i) computationally intensive procedures (e.g., Markov Chain Monte Carlo 
simulation sampling) are preferred for calibrating the hydrological model, and/or (ii) the error 
model is trained as implied by variant 1 or variant 2, unless the application is restricted to 
considering a small number of sister predictions. Note that a computationally convenient and 
simple algorithm is not necessarily computationally fast. It is also important to clarify that the 
above-outlined limitation holds only for applications to hundreds of catchments and timescales 
finer than the monthly one, and for implementations through regular personal computers. It does 
not hold for applications to a small number of catchments, and applications at the monthly and 
annual timescales. Still, large-scale applications at the daily timescale can be supported by variant 
3, when this variant is implemented by using computationally fast algorithms for calibrating the 
hydrological model. 

In addition to the above-discussed considerations and in contrast to several statistical 
methodologies for probabilistic prediction, a well-known drawback of flexible statistical learning 
models for quantile prediction is their inappropriateness for modelling long-range dependence. 
Modelling this dependence when solving prediction problems is a frequently met concern in 
applied stochastic hydrology (see e.g., the large-scale investigations in Chapters 3−5 and the 
comparative case study in Chapter 6). Nonetheless, empirical evidence suggests that the AR(1) 
assumption (in some sense allowed by the proposed methodology by using as a predictor variable 
in regression the hydrological model’s prediction at time t−1) is adequate when modelling 
hydrological models’ errors. In general, by including more than one predictor variables (e.g., the 
hydrological model’s predictions at times t, t−1, t−2, etc.) in the regression settings we can 



 

 255 

increase the amount of the available information exploited and improve predictive performance, 
as it is empirically proven for rainfall-runoff modelling problems in Chapter 9 of this thesis. 

Overall, the main trade-off to be considered when selecting between the proposed 
methodology and basic two-stage post-processing methodologies (utilizing the same error model) 
is the one between (a) the increased robustness in performance and the ability to harness the 
wisdom of the crowd, both offered by the former methodology, and (b) the significantly less 
computational requirements of a basic post-processing methodology. We believe that from a risk 
management standpoint this trade-off is worthy, as the large-sample experiment of Chapter 8 
suggests. 

10.3.2 Large-sample investigations emphasizing on robustness assessment 

Chapter 8 has been devoted to validating the probabilistic hydrological modelling methodology 
proposed in Chapter 7. This methodology adopts key concepts from a flexible probabilistic 
hydrological modelling methodology, while also relying on the concept of probabilistic prediction 
combination from the forecasting field. It applies a single hydrological model using a large number 
of different parameter values to generate the same number of “sister predictions”. The parameters 
of the hydrological model can be obtained by using either Bayesian calibration schemes or 
informal calibration schemes. Therefore, this methodology does not have any particular 
relationship with Bayesian methods by construction, as it also applies to its precursor. A statistical 
learning (or machine learning) regression model that is suitable for predicting quantiles (see e.g., 
the models exploited in Chapter 9 of this thesis) is then used to obtain information about the 
hydrological model’s error. This information is used to convert the sister predictions into 
probabilistic predictions, which are finally combined in simple fashion to obtain the output 
probabilistic predictions. The assessed methodology is subdivided into three alternative variants, 
which differ only in the training of the regression model. 

We have conducted a large-sample real-world experiment at monthly timescale, set up using 
complete 50-year monthly information for 270 catchments in the United States. Aiming to 
increase the understanding in probabilistic hydrological modelling, we have insisted on 
interpretability and benchmarking within all conducted tests. We have used the parsimonious 
GR2M hydrological model and two (largely) interpretable regression models, specifically the 
linear regression and the quantile regression ones, to implement six ensemble schemes, all of 
them based on the assessed methodology. Those ensemble schemes implemented using the linear 
model (three in number) have been used as benchmarks for the remaining schemes (also three in 
number). Those ensemble schemes using the same regression model rely on different variants of 
the assessed methodology. The performance of the ensemble schemes has been assessed by 
computing the coverage probabilities, average widths and average interval scores of the obtained 
interval predictions, and by also benchmarking their results using naïve probabilistic data-driven 
models.  

The obtained numerical results (metric values computed for 4 870 800 interval predictions) 
suggest the usefulness of the assessed methodology in obtaining probabilistic predictions of 
hydrological quantities. The best-performing variant, offering a mean relative improvement up to 
5.46% with respect to its alternative variants, when implemented using the quantile regression 
model, is variant 2. This variant trains the regression model on a single large dataset formed by 
using information from all sister predictions. The average-case relevant improvements when 
using the quantile regression model instead of the linear regression one range up to about 37% in 
terms of average interval score. This latter numerical result should be appraised on the basis that 
only the former of these models can model heteroscedasticity. The homoscedasticity assumption 
is often made in the literature when modelling the hydrological model’s error. 

Finally, we have demonstrated the increased robustness of the assessed methodology with 
respect to the combined (by this methodology) individual predictors and, by extension, to basic 
two-stage post-processing methodologies. The ability to “harness the wisdom of the crowd” has 
also been empirically proven. The quantile predictions obtained by all ensemble predictors are 
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found to score no worse –usually better− than the average of the individual scores of the combined 
individual predictions in terms of average interval score. The computed relative differences 
favour the former quantity over the latter up to about 37%, while their mean values range 
between 0.19% and 1.83%, depending both on the prediction interval and the variant of the 
assessed methodology. For the best-performing ensemble scheme the respective average relative 
differences are around 1%. Overall, the robustness and the ability to harness the wisdom of the 
crowd are identified as two key properties of the working methodology. 

10.3.3 Why and how to combine process-based and machine learning models 

Chapter 9 has overall aspired to (i) promote the use of machine learning algorithms in the fields 
of probabilistic hydrological modelling and hydro-meteorological forecasting, (ii) pass on the 
message in hydrology that machine learning methods can deliver probabilistic predictions, (iii) 
attract attention to ensemble learning post-processing methodologies, and (iv) promote the use 
of large datasets and benchmarking when using machine learning methods in hydrology. The 
Chapter has introduced the largest range of probabilistic hydrological modelling methods ever 
introduced in a single work and has additionally conducted the largest benchmark experiment 
ever conducted on the use of machine learning quantile regression algorithms for probabilistic 
hydrological post-processing. We have focused on the following research question: Why and how 
to combine process-based models and machine learning quantile regression algorithms for 
probabilistic hydrological post-processing? Therefore, our contribution includes the inspection and 
appraisal of both quantitative and qualitative aspects of the application of the algorithms.  

We have discussed some key benefits stemming from the integration of process-based and 
machine learning models, as understood from an uncertainty reduction point of view. We have 
also discussed some sound practical advantages stemming from the same integration. In 
summary, by incorporating process-based hydrological models into probabilistic hydrological 
post-processing methodologies, we benefit from the hydrological modellers’ experience 
(therefore, uncertainty is reduced to some extent) and simultaneously quantify predictive 
hydrological uncertainty. Moreover, machine learning quantile regression algorithms can 
effectively serve as statistical post-processing models, since they model heteroscedasticity by 
perception and construction, thereby contributing further to our uncertainty reduction aim. They 
are also straightforward-to-apply, fully automatic (i.e., their implementation does not require 
human intervention), available in open source, and computationally convenient and fast. Thus, 
they are highly appropriate for large-sample hydrological studies. 

Our benchmark experiment has been set up using 34-year-long daily time series of 
precipitation, temperature, evapotranspiration and streamflow for 511 catchments over the 
contiguous United States. Point hydrological predictions have been obtained using the GR4J 
hydrological model and exploited as predictor variables within quantile regression settings. Six 
machine learning quantile regression algorithms and their equal-weight combiner are applied to 
predict conditional quantiles of the hydrological model errors. The selected individual algorithms 
are quantile regression, generalized random forests for quantile regression, generalized random 
forests for quantile regression emulating quantile regression forests, gradient boosting machine, 
model-based boosting with linear models as base learners and quantile regression neural 
networks. The conditional quantiles of the hydrological model errors have been transformed to 
conditional quantiles of daily streamflow, which have been finally assessed using proper 
performance scores and benchmarking. The assessment has concerned various levels of 
predictive quantiles and central prediction intervals, while it has been made both independently 
of the flow magnitude and conditional upon this magnitude.  

The findings can be used in technical applications. The algorithms should be applied in a way 
that maximizes the benefits and reduces the risks from their use. This can be achieved by 
combining algorithms (e.g., by exploiting the methodology of Chapters 7 and 8), and by integrating 
algorithms within systematic frameworks (e.g., by using different algorithms for delivering each 
predictive quantile of interest or by selecting algorithms according to their skill in predicting low, 
medium or high flows for the various quantiles). If we are foremost interested in obtaining results 
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fast, then we probably should select quantile regression. This selection should be made keeping 
in mind that this algorithm is up to about 3.5% worse in terms of average quantile score than 
using the equal-weight combiner of all six algorithms. This combiner has been identified as the 
best-performing algorithm overall, confirming the value of ensemble learning in general and 
ensemble learning via simple quantile averaging in particular. This value is well-recognized in the 
forecasting literature, but has not received much attention yet in the hydrological modelling and 
hydro-meteorological forecasting literature. In spite of its outstanding performance, the equal-
weight combiner of the six algorithms is, in turn, expected to perform worse than some of the 
individual algorithms in many modelling situations. In general, no algorithm should be expected 
to be (or presented as) the best performing with respect to every single criterion. 
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