
f f ff fy

National Technical University of Athens

School of Rural and Surveying Engineering

Department of Topography

DOCTORAL DISSERTATION

for the title of Doctor of Philosophy in Engineering submitted to the School of Rural &

Surveying Engineering, National Technical University of Athens

OPTIMIZATION OF AUTOMATED RETRIEVAL

OF SEMANTIC 3D CITY DATA

IOANNIS S. PISPIDIKIS

Bachelor in Military Operational Art and Science Η.Α.Α

Diploma of Rural and Surveying Engineering N.T.U.A

M.Sc in Geoinformatics N.T.U.A

Officer in H.M.G.S

SUPERVISOR:

EFI DIMOPOULOU

Professor N.T.U.A.

ATHENS, November 2020

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Σχολή Αγρονόμων Τοπογράφων Μηχανικών

Τομέας Τοπογραφίας

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

για τον Επιστημονικό Τίτλο του Διδάκτορα Μηχανικού υποβληθείσα στη Σχολή Αγρονόμων

και Τοπογράφων Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΤΗΣ ΑΥΤΟΜΑΤΗΣ

ΑΝΑΚΤΗΣΗΣ ΣΗΜΑΣΙΟΛΟΓΙΚΩΝ 3D

ΔΕΔΟΜΕΝΩΝ ΠΟΛΗΣ

ΙΩΑΝΝΗΣ Σ. ΠΙΣΠΙΔΙΚΗΣ

Διπλωματούχος Αξιωματικός στις Στρατιωτικές Επιστήμες Σ.Σ.Ε.

Διπλωματούχος Αγρονόμος και Τοπογράφος Μηχανικός Ε.Μ.Π.

M.Sc στη Γεωπληροφορική Ε.Μ.Π.

Αξιωματικός της Γ.Υ.Σ

ΕΠΙΒΛΕΠΟΥΣΑ:

ΕΦΗ ΔΗΜΟΠΟΥΛΟΥ

Καθηγήτρια Ε.Μ.Π.

ΑΘΗΝΑ, Νοέμβριος 2020

National Technical University of Athens

School of Rural and Surveying Engineering

Department of Topography

DOCTORAL DISSERTATION

for the title of Doctor of Philosophy in Engineering submitted to the School of Rural

and Surveying Engineering, National Technical University of Athens

OPTIMIZATION OF AUTOMATED RETRIEVAL

OF SEMANTIC 3D CITY DATA

IOANNIS S. PISPIDIKIS

Bachelor in Military Operational Art and Science Η.Α.Α

Diploma of Rural and Surveying Engineering N.T.U.A

M.Sc in Geoinformatics N.T.U.A

Officer in H.M.G.S

 ADVISORY COMMITTEE

1. E. DIMOPOULOU, Prof. N.T.U.A (supervisor)

2. I. PSARRAS, Prof. N.T.U.A

3. V. VESCOUKIS, As. Prof. N.T.U.A.

EXAMINIATION COMMITTEE

1. E. DIMOPOULOU, Prof. N.T.U.A (supervisor)

2. I. PSARRAS, Prof. N.T.U.A

3. V. VESCOUKIS, As. Prof. N.T.U.A.

4. D. ASKOUNIS, Prof. N.T.U.A

5. N. DOULAMIS, As. Prof. N.T.U.A.

6. H. DOUKAS, As. Prof. N.T.U.A.

7. M. KOKLA, Lect. N.T.U.A.

 ATHENS, November 2020

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Σχολή Αγρονόμων Τοπογράφων Μηχανικών

Τομέας Τοπογραφίας

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

για τον Επιστημονικό Τίτλο του Διδάκτορα Μηχανικού υποβληθείσα στη Σχολή Αγρονόμων

και Τοπογράφων Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΤΗΣ ΑΥΤΟΜΑΤΗΣ ΑΝΑΚΤΗΣΗΣ

ΣΗΜΑΣΙΟΛΟΓΙΚΩΝ 3D ΔΕΔΟΜΕΝΩΝ ΠΟΛΗΣ

ΙΩΑΝΝΗΣ Σ. ΠΙΣΠΙΔΙΚΗΣ

Διπλωματούχος Αξιωματικός στις Στρατιωτικές Επιστήμες Σ.Σ.Ε.

Διπλωματούχος Αγρονόμος Τοπογράφος Μηχανικός Ε.Μ.Π.

M.Sc στη Γεωπληροφορική Ε.Μ.Π

Αξιωματικός της Γ.Υ.Σ

 ΣΥΜΒΟΥΛΕΥΤΙΚΗ ΕΠΙΤΡΟΠΗ

1. Ε. ΔΗΜΟΠΟΥΛΟΥ, Καθ. Ε.Μ.Π. (επιβλέπουσα)

2. Ι. ΨΑΡΡΑΣ, Καθ. Ε.Μ.Π.

3. Β. ΒΕΣΚΟΥΚΗΣ, Αν. Καθ. Ε.Μ.Π.

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

1. Ε. ΔΗΜΟΠΟΥΛΟΥ, Καθ. Ε.Μ.Π. (επιβλέπουσα)

2. Ι. ΨΑΡΡΑΣ, Καθ. Ε.Μ.Π.

3. Β. ΒΕΣΚΟΥΚΗΣ, Αν. Καθ. Ε.Μ.Π

4. Δ. ΑΣΚΟΥΝΗΣ, Καθ. Ε.Μ.Π.

5. Ν. ΔΟΥΛΑΜΗΣ, Αν. Καθ. Ε.Μ.Π.

6. Χ. ΔΟΥΚΑΣ, Αν. Καθ. Ε.Μ.Π.

7. Μ. ΚΟΚΛΑ, Λεκτ. Ε.Μ.Π

ΑΘΗΝΑ, Νοέμβριος 2020

« Η έγκριση της διδακτορικής διατριβής από την Ανώτατη Σχολή Αγρονόμων και Τοπογράφων

Μηχανικών του Ε.Μ. Πολυτεχνείου δεν υποδηλώνει αποδοχή των γνωμών του συγγραφέα (Ν.

5343/1932, Άρθρο 202) ».

Copyright © Ioannis Pispidikis, 2020

All rights reserved

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή

τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για

σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να

αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν

την χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται στο συγγραφέα.

This research was funded by a scholarship awarded by the Onassis Foundation.

«Το μυαλό δεν είναι ένα δοχείο που πρέπει να γεμίσει,

αλλά μια φωτιά που πρέπει ν’ ανάψει».

Πλούταρχος

i

EYΧΑΡΙΣΤΙΕΣ

Η παρούσα διδακτορική διατριβή διεξήχθη στη γνωστική περιοχή του Κτηματολογίου και της

Γεωπληροφορικής, στον τομέα Τοπογραφίας της Σχολής Αγρονόμων και Τοπογράφων

Μηχανικών του Εθνικού Μετσοβίου Πολυτεχνίου. Η εκπόνηση της εν λόγω μελέτης δε θα ήταν

εφικτή, αν δεν είχα την αμέριστη συμπαράσταση και αρωγή ορισμένων ανθρώπων, τους οποίους

αισθάνομαι την ανάγκη να ευχαριστήσω.

Ιδιαίτερες ευχαριστίες θα ήθελα να απευθύνω στη Καθηγήτριά Έφη Δημοπούλου, της Σχολής

Αγρονόμων και Τοπογράφων Μηχανικών του ΕΜΠ, για την εμπιστοσύνη που μου έδειξε, καθώς

επίσης και για τη συνεχή επιστημονική καθοδήγηση και ηθική στήριξη που μου παρείχε καθ’ όλη

τη διάρκεια της μακροχρόνιας συνεργασίας μας, η οποία ξεκίνησε από τις προπτυχιακές μου

σπουδές. Ακόμη, αξίζει μνεια το γεγονός πως με τις πολύτιμες επισημάνσεις, την αμεσότητα, τα

προσεκτικά σχόλια και τις διευρυμένες ακαδημαϊκές γνώσεις της με βοήθησε να επιτύχω ένα

άρτιο αποτέλεσμα.

Πολλές ευχαριστίες θα ήθελα να εκφράσω και στα υπόλοιπα μέλη της Τριμελούς

Συμβουλευτικής Επιτροπής, και συγκεκριμένα προς τον Καθηγητή Ψαρρά Ιωάννη και τον

Αναπληρωτή Καθηγητή Βεσκούκη Βασίλειο, για την καθοδήγησή τους κατά την εκπόνηση της

παρούσας διατριβής. Αντίστοιχα, θα ήθελα να ευχαριστήσω και τα λοιπά μέλη της Επταμελούς

Εξεταστικής Επιτροπής, τον Καθηγητή Ασκούνη Δημήτριο, τον Αναπληρωτή Καθηγητή Δουλάμη

Νικόλαο, τον Αναπληρωτή Καθηγητή Χάρη Δούκα και τη Λέκτορα Μαργαρίτα Κόκλα, για την

αποδοχή τους να συμμετέχουν στην κρίση της προκείμενης έρευνας.

Επιπρόσθετα, θα ήθελα να ευχαριστήσω τον Τάσο Λαμπρόπουλο, καθώς και την ερευνητική

ομάδα του 3D Campus, Ευτυχία Καλογιάννη, Δημήτριο Κιτσάκη, Κατερίνα Αθανασίου και Εύα

Τσιλιάκου για την αγαστή συνεργασία τους.

Θα ήθελα, επίσης, να ευχαριστήσω τη Γεωγραφική Υπηρεσία Στρατού, στην οποια υπηρετώ,

καθώς μου έδωσε τη δυνατότητα να εργάζομαι και να αναπτύσσομαι σε μια Υπηρεσία υψηλού

επιστημονικού επιπέδου και κύρους.

ii

Θερμές ευχαριστίες εκφράζω και προς το Ίδρυμα Ωνάση για την οικονομική στήριξη που μου

παρείχε με την επιλογή μου ως υπότροφου του Ιδρύματος. Ιδιαίτερη μνεία απευθύνω προς το

προσωπικό του Ιδρύματος για την άψογη συνεργασία που είχαμε σε όλη τη διάρκεια του

Προγράμματος Υποτροφίας.

Αναντίλεκτα, θα ήθελα να ευχαριστήσω τους γονείς μου, Σταύρο και Δήμητρα, και τα αδέλφια

μου, Δημήτρη και Μάριο, για την παντοτινή τους αγάπη, καθώς υπήρξαν ανέκαθεν στήριγμα στις

δυσκολίες μου.

Ακόμη, επιθυμώ να ευχαριστήσω θερμά τον πεθερό μου Κώστα και την πεθερά μου Αναστασία,

καθώς βρίσκονται πάντα στο πλευρό της οικογένειάς μου, στηρίζοντάς την ανά πάσα στιγμή.

Τέλος, ιδιαίτερα, θα ήθελα να ευχαριστήσω από τα βάθη της καρδιάς μου τη σύζυγό μου Αντωνία,

για την αμέριστη συμπαράσταση καθ’ όλη τη διάρκεια των σπουδών μου (και όχι μόνο), τη συνεχή

ενθάρρυνση, τη συναισθηματική στήριξη, την αδιαπραγμάτευτη εμπιστοσύνη, αλλά και τη στήριξη

να φέρω αυτό το έργο εις πέρας.

iii

Αφιερωμένο στη Γυναίκα της ζωής μου…

iv

v

CONTENTS

EYΧΑΡΙΣΤΙΕΣ ... i

CONTENTS .. v

LIST OF TABLES... ix

LIST OF FIGURES .. xi

ABSTRACT ... xvii

ΠΕΡΙΛΗΨΗ ...xxi

LIST OF ABBREVIATIONS .. xxv

1. INTRODUCTION ... 1

1.1. Context ... 3

1.2. Problem Statement ... 4

1.3. Research Questions .. 5

1.4. Outline .. 5

2. RETRIEVING CITYGML INFORMATION ... 7

2.1. Tiled and Hierarchical-based CityGML Retrieval.. 9

2.1.1. 3D graphics and data exchange formats ... 9

2.1.2. OGC 3D Tiles ... 14

2.1.3. OGC Indexed 3D Scene Layer (I3S) and Scene Layer Package 15

2.2. 3D Web Portrayal Services ... 18

2.2.1. Technology of Web Services ... 18

2.2.2. Web 3D Service (W3DS) and Web View Service (WVS). 20

2.2.3. OGC 3D Portrayal Service (3DPS) .. 24

2.3. OGC Web Services for Sharing and Managing Raw Data............................ 26

2.3.1. Extending the OGC WFS 2.0 standard .. 28

2.3.2. Making the OGC WFS RESTful ... 33

3. CITYGML RESTFUL WEB SERVICE ... 37

3.1. The Solution of REST Approach .. 39

3.1.1. SOAP Vs REST .. 40

3.1.2. GraphQL and Falcor ... 42

3.1.3. Principles of RESTful Web services .. 46

3.2. Methodology for the RESTful-based CityGML retrieval 49

vi

3.2.1. Thematic resources ... 49

3.2.2. ADE resources .. 53

3.2.3. Geometry .. 57

3.2.4. General filters .. 59

3.2.5. Information retrieval .. 61

3.2.6. Security .. 62

3.2.7. Cross-Domain issues .. 63

3.3. Citymodels and Gmlid Resources .. 64

3.3.1. Citymodels resource .. 64

3.3.2. Gmlid resource .. 69

4. LOD-BASED THEMATIC RESOURCES .. 71

4.1. Bldg Thematic Resource .. 73

4.1.1. Bldg main resource ... 74

4.1.2. LoD2 bldg sub-resources .. 78

4.1.3. LoD3 bldg sub-resources .. 86

4.1.4. LoD4 bldg sub-resources .. 89

4.1.5. Case studies using semantic requests .. 91

4.2. Tun Thematic Resource ... 96

4.2.1. Tun main resource .. 97

4.2.2. LoD2 tun sub-resources .. 99

4.2.3. LoD3 tun sub-resources .. 102

4.2.4. LoD4 tun sub-resources .. 104

4.2.5. Case studies using semantic requests .. 106

4.3. Brid Thematic Resource ... 109

4.3.1. Brid main resource .. 111

4.3.2. LoD2 brid sub-resources .. 113

4.3.3. LoD3 brid sub-resources .. 117

4.3.4. LoD4 brid sub-resources .. 119

4.3.5. Case studies using semantic requests .. 121

5. LOD-INDEPENDENT THEMATIC RESOURCES ... 127

5.1. Thematic Resources Available in all LoDs .. 129

5.1.1. Veg resources .. 129

5.1.2. Luse resources .. 132

5.1.3. Frn resources .. 134

5.1.4. Grp resources .. 135

5.1.5. Dem resources .. 138

5.2. Thematic Resources Available from LoD2 and Above 140

5.2.1. Tran resources .. 140

vii

5.2.2. Wtr resources ... 152

6. CONCLUSIONS AND FUTURE WORK ... 157

6.1. Conclusions ... 159

6.2. Future Work ... 162

6.2.1. OGC standard implementation ... 162

6.2.2. Compatibility with the Upcoming version 3 of CityGML for Future

Implementation and upgrade ... 163

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES 169

A.8. “water”, “grounds” and “closures” Resources .. 169

A.1. Boundary Surface Resources .. 173

A.2. Installation Resources ... 176

A.3. Opening Resources ... 178

A.4. “rooms” Resources .. 181

A.5. “furniture” Resource .. 182

A.6. “hollowspaces” Resources ... 183

A.7. “trafficareas” and “auxiliaries” Resources.. 184

A.8. “water”, “grounds” and “closures” Resources ... 185

BIBLIOGRAPHY .. 187

LIST OF PUBLICATIONS ... 197

CURRICULUM VITAE .. 205

file:///C:/Users/pispi/Documents/myData/ΔΙΔΑΚΤΟΡΙΚΗ%20ΔΙΑΤΡΙΒΗ/ipispidikis_PhD_NTUA.docx%23_Toc54258854

viii

ix

LIST OF TABLES

Table 2-1: Operations of 3DPS ...25

Table 2-2: Supported WFS 2.0 operations ..28

Table 3-1: HTTP methods ...47

Table 3-2: Name of the main resources according to the namespace prefix of

CityGML v2 ...50

Table 3-3: Matching supported geometries among CityGML and GeoJSON58

Table 3-4: General filters of main thematic resources ..60

Table 3-5: Available information of the main resources ..62

Table 3-6: URN syntax for CRS references ...68

Table 4-1: Semantic availability of a building per LoD ..74

Table 4-2: Available information of LoD2 bldg sub-resources80

Table 4-3: Available information of “windows” and “doors” sub-resources87

Table 4-4: Semantic availability of a tunnel model per LoD ..97

Table 4-5: Semantic and geometric availability of a bridge model per LoD 110

Table 5-1: Available attributes of vegInformation object .. 132

x

xi

LIST OF FIGURES

Figure 2-1: File-based approach for the visualization of CityGML over the web ... 10

Figure 2-2: PHP class for semantic retrieve LoD2 (a), LoD3 (b) and LoD4 (c)

CityGML data .. 11

Figure 2-3: Tile-based retrieval using NetworkLinks.. 12

Figure 2-4: Valid glTF asset .. 14

Figure 2-5: layout of a B3DM .. 15

Figure 2-6: Methodological tools and techniques ... 16

Figure 2-7: 3D NTUA Campus overview using ArcGIS Scene Services 17

Figure 2-8: Different types of geodata are merged in one 3D scene graph using

W3DS .. 21

Figure 2-9: Use of W3DS for CityGML visualization and retrieval22

Figure 2-10: Medium Client Architecture ..22

Figure 2-11: Retrieval and visualization of 3D data using WVS23

Figure 2-12: Experiments of 3DPIE ..24

Figure 2-13: Logical design of 3DcityDB database regarding building module of

CityGML ..29

Figure 2-14: Data request and response using the Snowflake CityGML WFS30

Figure 2-15: 3DCityDB WFS .. 31

Figure 2-16: SQL query for creating the Lod2 building view of CityGML32

Figure 2-17: Image of GO Publisher RESTful service working with GO Publisher

WFS ...34

Figure 3-1: CityGML Architecture ...39

Figure 3-2: Example of underfetching problem using REST-based request43

Figure 3-3: Example of GraphQL request ..44

Figure 3-4: JSON-based data retrieval using Falcor ...45

Figure 3-5: Richardson maturity model for RESTful Web services48

xii

Figure 3-6: Main resources of CityGML RESTful Web service50

Figure 3-7: Extra main resources .. 51

Figure 3-8: five LoD of CityGML .. 51

Figure 3-9: Retrieval resource schema of CityGML RESTful Web service52

Figure 3-10: Methodological steps of the energy-based WebGIS viewer55

Figure 3-11: JSON-based schemas of “ADE_dynamizers” main resource56

Figure 3-12: Conceptual design of “ADE_dynamizers” main resource57

Figure 3-13: Combined geometries ...57

Figure 3-14: JSON-based schema of the implicit object ..59

Figure 3-15: citymodels resource schema in JSON format ..65

Figure 3-16: JSON result by using “citymodel” resource ..66

Figure 3-17: JSON result by using the “thematics” filter parameter in the

“citymodels” resource..67

Figure 3-18: Information retrieval based on the gmlid by using “gmlid” resource 70

Figure 4-1: Building module in different LoD ..73

Figure 4-2: Values of the relationship of an object to the terrain75

Figure 4-3: Examples of building consisting of one and two building parts75

Figure 4-4: Conceptual design of the “bldg” main resource ...76

Figure 4-5: bldg resource schema in JSON format ..76

Figure 4-6: JSON-based resource schema of specific building77

Figure 4-7: Boundary surfaces of the outer building shell ..78

Figure 4-8: Schema of the Bldg exterior boundary surface sub-resources in

JSON format ..80

Figure 4-9: Retrieval schema of features belonging to a specific bldg exterior

boundary surface .. 81

Figure 4-10: Example of a LoD2 building ..82

Figure 4-11: Retrieval data regarding the “link” object of a building in JSON

format ...82

Figure 4-12: Conceptual design of the LoD2 “bldg.” sub-resources84

xiii

Figure 4-13: JSON-based schema of the “doors” and “windows” sub-resources ...86

Figure 4-14: JSON-based resource schema of specific “opening” resource...........87

Figure 4-15: Conceptual design of the LoD3 “bldg.” sub-resources88

Figure 4-16: Conceptual design of the LoD4 “bldg.” sub-resources90

Figure 4-17: A building example in LoD2, LoD3 and LoD4 ..92

Figure 4-18: LoD2 bldg sub-resources implementation example92

Figure 4-19: LoD4 bldg sub-resources implementation example93

Figure 4-20: Example of “rooms” resources implementation94

Figure 4-21: Advanced requests to fetch all the furniture in a specific room95

Figure 4-22: Tunnel module in different LoDs ..96

Figure 4-23: Example of a tunnel modeled with two tunnel parts97

Figure 4-24: JSON-based tun resource schema ..98

Figure 4-25: Exterior and interior tunnel boundary surfaces99

Figure 4-26: JSON-based retrieval resource schema of a specific tunnel

installation .. 100

Figure 4-27: Conceptual design of the LoD2 “tun” sub-resources 101

Figure 4-28: Conceptual design of the additional LoD3 “tun” sub-resources 103

Figure 4-29: Conceptual design of the additional LoD4 “tun” sub-resources 105

Figure 4-30: LoD2 Tunnel model ... 108

Figure 4-31: Bridge module in different LoD .. 110

Figure 4-32: JSON-based schema of α “brid” resource .. 112

Figure 4-33: Bridge construction elements ... 112

Figure 4-34: Construction resources of a bridge ... 113

Figure 4-35: Boundary surfaces of a bridge ... 114

Figure 4-36: Conceptual design of the LoD2 “brid” sub-resource 115

Figure 4-37: Conceptual design of the LoD3 “brid” sub-resources 118

Figure 4-38: Conceptual design of the LoD4 “brid” sub-resources 120

Figure 4-39: Different types of bridges ... 121

xiv

Figure 4-40: JSON-based result for aced bridges ... 122

Figure 4-41: Results of same aced bridge in different LoDs: (a) LoD2, (b) LoD3 123

Figure 4-42: Result of construction and installation semantic elements of the

LoD3 bridge instance ... 124

Figure 4-43: JavaScript-based procedure to request all the construction

elements of a specific LoD3 aced bridge ... 125

Figure 5-1: Example for vegetation objects of the sub-classes

SolitaryVegetationObject and PlantCover ... 130

Figure 5-2: JSON-based schema of “veg” resource ... 130

Figure 5-3: JSON-based schema of “vegetation” and “plantcovers” resources ... 131

Figure 5-4: Conceptual design of “veg”, “vegetation” and “plantcovers”

resources .. 132

Figure 5-5: JSON-based schema of “luse” resource .. 133

Figure 5-6: Conceptual design of “luse” resource .. 134

Figure 5-7: City furniture objects ... 134

Figure 5-8: Conceptual design of “frn” resource .. 135

Figure 5-9: JSON-based schema of “grp” resource ... 136

Figure 5-10: JSON-based result for city object group instance............................. 137

Figure 5-11: Conceptual design of “grp” resource .. 138

Figure 5-12: JSON-based schema of “dem” resource .. 139

Figure 5-13: Conceptual design of “dem” resource .. 140

Figure 5-14: Representation of roundabout .. 141

Figure 5-15: Transportation model representation in different LoDs 141

Figure 5-16: JSON-based schema of “tran” main resource 142

Figure 5-17: JSON result by using “tran” main resource ... 143

Figure 5-18: JSON-based schema of extra main resources (road, track, railway

and square) ... 144

Figure 5-19: Example for the representation of LoD2 transportation module in

CityGML using TrafficAreas and AuxiliaryTrafficAreas ... 145

xv

Figure 5-20: Conceptual model of the main resources regarding the

transportation module of CityGML .. 146

Figure 5-21: CityGML model in the Frankfurt area ... 147

Figure 5-22: “tran” main resource implementation .. 147

Figure 5-23: “road” main resource implementation .. 148

Figure 5-24: Request of specific road .. 149

Figure 5-25: Implementation of “trafficareas” sub-resources 151

Figure 5-26: Implementation of “auxiliaries” sub-resource 152

Figure 5-27: JSON-based “wtr” main resource ... 153

Figure 5-28: Distinct thematic surfaces of the waterbody from LoD2 and

above.. 154

Figure 5-29: Conceptual design of the “wtr” main resource 155

Figure 6-1: CityGML 3.0 modules overview .. 164

xvi

xvii

ABSTRACT

 A 3D city model is considered as the digital representation of a city/ urban area that may

decompose into its objects/ elements such as buildings, roads, railways, terrain, water,

vegetation etc., with clearly defined semantics, spatial and thematic properties. Depending

on the level of detail (LoD), these objects may further decompose into more detailed

features. The OGC standard CityGML, optimally allows integration of the diversified

geoinformation of the aforementioned elements and provides multiple resolution at

different LoDs. Since 2008, it has been an international OGC standard for representing and

exchanging a 3D city model while in 2012, version 2.0 of this standard was published.

CityGML represents the geometrical, semantic, and visual aspects of 3D city models and,

for this reason, it is considered as an optimal standard for the representation of 3D city

models. However, the structure of the CityGML standard is rather complex in order to

support all these capabilities. Initially, CityGML was designed for the representation of 3D

city models and not for presenting or visualizing 3D city models directly on the web.

Therefore, the retrieval of the available semantic features from this standard, by

implementing interoperable approaches without the need for specific knowledge, is a

challenge, thus constituting the main research question of this work. Achieving this CityGML

data retrieval is structured on the basis of interoperability, easy-to-use, semantics and

non-expert user.

The current dissertation is structured in six chapters in order to address the research

question raised above and the resulting sub-questions. First, the available research works

and studies focusing on retrieving CityGML data are examined. Then, the solution of the

REST approach is presented and compared with other state-of-the-art technologies, and

finally, the CityGML RESTful Web service is conceptually designed and presented as a new

approach for retrieving CityGML data based on their semantic characteristics.

Chapter 2 presents the relevant research work that focuses on the CityGML data retrieving

utilizing tile or hierarchical-based or Web service-based approaches. Initially, the file-

based formats such as X3D, JSON, KML and glTF have been further studied. Next, the

OGC I3S and OGC 3D tiles are further examined as they provide a good solution in relation

to the literature research. Next, taking into account the complex structure of the CityGML

xviii

standard and the need to retrieve data from distributed sources, the adoption of the

available OGC Geospatial Web services are examined, such as OGC 3DPS and OGC WFS.

Also, the extension of the OGC WFS, as well as the integration of the RESTful service

architecture on top of OGC WFS are further examined.

The third Chapter of this dissertation studies the interoperable and easy-to-use

information retrieval of CityGML based on its semantic characteristics using non-OGC Web

services, such as SOAP and REST. Additionally, the REST is further compared with new

state-of-the-art technologies that can be adopted as CityGML data retrieval mechanism,

such as GraphQL and Falcor. Next, the solution of REST approach is presented and several

principles and constraints in respect to the RESTful implementation are described.

Thereafter, several principles and guidelines are provided with regard to the CityGML

RESTful Web service and finally, the conceptual design of its core resources is presented

such as “citymodels” and “gmlid”.

Chapters 4 and 5 focus on the presentation and description of the conceptual design of

CityGML RESTful Web service, which is a new approach and proposal of the current

dissertation. So, taking into account the CityGML architecture, the CityGML structure is

more semantic than geometric, and therefore the retrieval of the data has to be achieved

mainly in compliance with the CityGML’s semantic information. From the five components of

the CityGML’s architecture, only the component of the thematic modules defines the

semantic features of CityGML. Therefore, these thematic modules are defined as the main

resources of the CityGML RESTful Web service. However, apart from the above-mentioned

resources, some extra main resources are also defined to make easier accessing their

available semantic features. Since CityGML adopts the multi-scale modelling in five

different LoDs, the same object may be simultaneously represented in different LoDs,

enabling the analysis and visualization of the same object with regard to different

resolution. However, LoD is considered vital not only in the geometric determination of the

level of detail, but also in the semantics. By increasing the LoD, the semantic richness of

CityGML increases respectively. Therefore, this semantic enrichment of each of the

thematic modules is retrieved by implementing a variety of sub-resources. Thus, some of

the main resources have LoD-based sub-resources and hence, their semantic retrieval is

available based on the LoD, while, some resources are LoD-independent with no

differentiation regarding their semantic sub-resources from one LoD to another.

xix

More specifically, the fourth Chapter deals with the conceptual design of the LoD-based

thematic resources of the CityGML RESTful Web service. In this direction, the “bldg”,

“tun” and “brid” main resources and their respective child resources are presented. These

resources refer to the respective building, bridge and tunnel modules of the CityGML 2.0.

Additionally, for each of these resources, various case studies using semantic requests are

exploited and presented.

The conceptual design of the rest of the main resources of the CityGML RESTful Web

service are presented in Chapter 5. These resources are mainly LoD-independent thematic

resources and therefore, they are enriched with semantic characteristics either

independently of LoD or from LoD2 and above without any different from one level to

another.

Finally, Chapter 6 concludes this research work by discussing the findings of the previous

chapters and responding to the sub-research questions formulated to address the aim of

this dissertation. Suggestions for future research works are discussed, aiming at making

this approach an OGC standard, and on upgrading it so that the upcoming version 3 of

CityGML can be fully supported.

xx

xxi

ΠΕΡΙΛΗΨΗ

Το τρισδιάστατο μοντέλο πόλης θεωρείται η ψηφιακή αναπαράσταση μιας πόλης που μπορεί να

αποσυντεθεί σε ένα σύνολο αντικείμενων όπως κτήρια, δρόμοι, σιδηρόδρομοι, εδάφη, νερό,

βλάστηση κλπ. με σαφώς καθορισμένη σημασιολογία, καθώς και χωρικές και θεματικές ιδιότητες.

Αναλόγως το επίπεδο λεπτομέρειας, τα εν λόγω αντικείμενα μπορούν να αποσυντεθούν

περαιτέρω σε πιο λεπτομερή χαρακτηριστικά. To CityGML, που αποτελεί πρότυπο OGC,

επιτρέπει την βέλτιστη ενσωμάτωση της ποικιλόμορφης γεωπληροφορίας των προαναφερθέντων

στοιχείων παρέχοντας διαφορετική ανάλυση της πληροφορίας τους σε διαφορετικά επίπεδα

λεπτομέρειας. Από το 2008 αποτελεί πρότυπο OGC για την αναπαράσταση και την ανταλλαγή

3D δεδομένων πόλης, ενώ από το 2012 βρίσκεται στην έκδοση 2.0. Επιπλέον, το CityGML

αντιπροσωπεύει τις γεωμετρικές, σημασιολογικές και οπτικές πτυχές των 3D μοντέλων πόλης

και, ως εκ τούτου, θεωρείται το καταλληλότερο πρότυπο για την αναπαράσταση τρισδιάστατων

μοντέλων πόλης. Ωστόσο, προκειμένου να υποστηρίξει όλες τις προαναφερθείσες δυνατότητες,

διαθέτει αρκετά πολύπλοκη δομή. Επιπλέον, ο βασικός στόχος σχεδίασης του CityGML είναι η

αναπαράσταση του τρισδιάστατου μοντέλου πόλης και όχι η οπτικοποίησή του απευθείας στο

διαδίκτυο. Επομένως, η δυνατότητα ανάκτησης όλων των διαθέσιμων σημασιολογικών

πληροφορίων από το εν λόγω πρότυπο με την χρήση διαλειτουργικών προσεγγίσεων και χωρίς

την ανάγκη ύπαρξης εξειδικευμένης γνώσης, αποτελεί σημαντική πρόκληση και δημιουργεί το

βασικό ερευνητικό ερώτημα για τη διατριβή. Συγκεκριμένα, η ανάκτηση των δεδομένων του

CityGML πρέπει να επιτευχθεί με γνώμονα τη διαλειτουργικότητα (interoperability), τη

σημασιολογική προσέγγιση (semantically) και την εύκολη προσπέλαση /χρήση (easy-to-use),

ακόμη και από μη ειδικούς (non-expert users).

Το περιεχόμενο της παρούσας διατριβής διαρθρώνεται σε έξι κεφάλαια, με στόχο την παροχή

ολοκληρωμένων απαντήσεων στα ερευνητικά ερωτήματα που προέκυψαν από την

προαναφερθείσα πρόκληση. Αρχικά, εξετάζονται οι διαθέσιμες έρευνες που εστιάζουν στην

ανάκτηση δεδομένων CityGML. Στη συνέχεια, γίνεται παρουσίαση της προσέγγισης REST, η

οποία στη συνέχεια συγκρίνεται με σύγχρονες τεχνολογίες. Τέλος, γίνεται αναλυτική παρουσίαση

της CityGML RESTful Web service, που αποτελεί προτεινομένη λύση της παρούσας διατριβής

ώστε να επιτευχθεί η ανάκτηση δεδομένων CityGML με βάση τα σημασιολογικά τους

χαρακτηριστικά.

xxii

Το δεύτερο κεφάλαιο παρουσιάζει και αξιολογεί διάφορες έρευνες που επικεντρώνονται στην

ανάκτηση δεδομένων CityGML χρησιμοποιώντας πληθώρα προσεγγίσεων όπως με πλακάκια

(tile-based), ιεραρχικές (hierarchical-based) και διαδικτυακές υπηρεσίες. Αρχικά,

μελετήθηκαν file-based μορφότυπα όπως X3D, JSON, KML και glTF. Στη συνέχεια τα πρότυπα

OGC I3S και OGC 3D tiles μελετήθηκαν περαιτέρω καθώς παρέχουν αρκετά καλή λύση με βάση

τις υπάρχουσες έρευνες. Επιπλέον, λαμβάνοντας υπόψη την περίπλοκη δομή του CityGML και

την ανάγκη ανάκτησης δεδομένων από κατανεμημένες πηγές, εξετάστηκε η υιοθέτηση των

διαθέσιμων OGC γεωχωρικών υπηρεσιών διαδικτύου, που στο πλαίσιο του τρισδιάστατου χώρου

είναι τα OGC 3DPS και OGC WFS. Επίσης, αναφορικά με το OGC WFS, εξετάζεται περαιτέρω

τόσο η επέκταση του όσο και η ενσωμάτωση RESTful διαδικτυακής υπηρεσίας ως βασικός

οδηγός χρήσης του.

Το τρίτο κεφάλαιο αυτής της διατριβής μελετά τη διαλειτουργική και εύχρηστη ανάκτηση

CityGML πληροφοριών με βάση τα σημασιολογικά χαρακτηριστικά τους χρησιμοποιώντας

διαδικτυακές υπηρεσίες που δεν αποτελούν πρότυπα OGC, όπως SOAP και REST.

Επιπροσθέτως, η REST αρχιτεκτονική συγκρίνεται περαιτέρω με νέες τεχνολογίες αιχμής που

μπορούν να υιοθετηθούν ως μηχανισμός ανάκτησης δεδομένων CityGML, όπως GraphQL και

Falcor. Έπειτα, παρουσιάζεται η προσέγγιση REST ως προτεινόμενη λύση και, επιπλέον,

περιγράφονται διάφορες αρχές και περιορισμοί που αναφέρονται στη RESTful υλοποίηση. Στη

συνέχεια, παρέχονται αρχές και οδηγίες αναφορικά με την CityGML RESTful διαδικτυακή

υπηρεσία και τέλος, αναλύεται ο εννοιολογικός σχεδιασμός των πόρων του πυρήνα της, όπως

“citymodels” και “gmlid”.

Τα Κεφάλαια 4 και 5 εστιάζουν στην αναλυτική περιγραφή και παρουσίαση του εννοιολογικού

σχεδιασμού της CityGML RESTful διαδικτυακής υπηρεσίας, η οποία αποτελεί μια νέα προσέγγιση

και πρόταση της τρέχουσας διατριβής. Συνεπώς, λαμβάνοντας υπόψη την αρχιτεκτονική του

CityGML, η δομή του είναι περισσότερο σημασιολογική παρά γεωμετρική και επομένως η

ανάκτηση των δεδομένων πρέπει να υλοποιηθεί κυρίως σύμφωνα με τις σημασιολογικές

πληροφορίες του. Από τα πέντε στοιχεία της αρχιτεκτονικής του CityGML, μόνο το στοιχείο

των θεματικών μοντέλων καθορίζει τα σημασιολογικά χαρακτηριστικά του CityGML. Συνεπώς,

τα εν λόγω θεματικά μοντέλα καθορίζονται ως οι βασικοί πόροι της CityGML RESTful

διαδικτυακής υπηρεσίας. Ωστόσο, εκτός από τους προαναφερθέντες πόρους, καθορίζονται

κάποιοι επιπλέον βασικοί πόροι προκειμένου να διευκολυνθεί η πρόσβαση στα διαθέσιμα

σημασιολογικά τους χαρακτηριστικά. Επιπροσθέτως, υιοθετεί τη μοντελοποίηση πολλαπλών

xxiii

κλιμάκων και υποστηρίζει πέντε διαφορετικά επίπεδα λεπτομέρειας. Στο CityGML, το ίδιο

αντικείμενο δύναται να αναπαρασταθεί ταυτόχρονα σε διαφορετικά επίπεδα λεπτομέρειας,

επιτρέποντας την οπτικοποίηση του ίδιου αντικειμένου σε διαφορετικά επίπεδα χωρικής

ανάλυσης. Ωστόσο, το επίπεδο λεπτομέρειας θεωρείται ζωτικής σημασίας, τόσο στο γεωμετρικό

προσδιορισμό των διαθέσιμων χαρακτηριστικών όσο και στο σημασιολογικό, και επομένως, η

αύξηση του επιπέδου λεπτομέρειας εμπλουτίζει αντίστοιχα τα σημασιολογικά χαρακτηριστικά

του CityGML. Ως εκ τούτου, η ανάκτηση του εκάστοτε σημασιολογικού εμπλουτισμού για κάθε

διαθέσιμο θεματικό μοντέλο επιτυγχάνεται με την υιοθέτηση διαφόρων υπο-πόρων της CityGML

RESTful διαδικτυακής υπηρεσίας. Ως αποτέλεσμα, ορισμένοι από τους βασικούς πόρους

διαθέτουν υπο-πόρους που η διαθεσιμότητά τους βασίζεται στο επίπεδο λεπτομέρειας, ενώ

ορισμένοι πόροι είναι ανεξάρτητοι από το επίπεδο λεπτομέρειας και επομένως δεν υπάρχει

διαφοροποίηση στη διαθεσιμότητα των αντίστοιχων υπο-πόρων τους από το ένα επίπεδο

λεπτομέρειας στο άλλο.

Το τέταρτο κεφάλαιο ασχολείται με τον εννοιολογικό σχεδιασμό των LoD-based βασικών

θεματικών πόρων της CityGML RESTful διαδικτυακής υπηρεσίας. Συγκεκριμένα,

παρουσιάζονται οι βασικοί πόροι “bldg”, “tun” και “brid” και οι αντίστοιχοι υπο-πόροι τους. Οι

εν λόγω βασικοί πόροι αναφέρονται στα αντίστοιχα μοντέλα κτηρίων, γεφυρών και τούνελ του

CityGML 2.0. Επιπροσθέτως, για κάθε έναν από αυτούς τους πόρους, παρουσιάζονται διάφορα

παραδείγματα εφαρμογής σημασιολογικών αιτημάτων.

Ο εννοιολογικός σχεδιασμός των υπολοίπων βασικών πόρων της CityGML RESTful

διαδικτυακής υπηρεσίας αναλύεται στο Κεφάλαιο 5. Οι συγκεκριμένοι πόροι είναι ανεξάρτητοι

από το επίπεδο λεπτομέρειάς τους και επομένως, εμπλουτίζονται με τα ίδια σημασιολογικά

χαρακτηριστικά είτε ανεξάρτητα του εκάστοτε επιπέδου λεπτομέρειας είτε από το επίπεδο

λεπτομέρειας δύο και πάνω.

Τέλος, στο Κεφαλαίο 6 ολοκληρώνεται η μελέτη της τρέχουσας διατριβής συζητώντας τα

ευρήματα των προηγούμενων κεφαλαίων και απαντώντας στα αντίστοιχα ερευνητικά ερωτήματα.

Επίσης, υποβάλλονται προτάσεις για μελλοντική έρευνα, εστιάζοντας στην καθιέρωση της

προτεινόμενης προσέγγισης ως πρότυπο OGC, καθώς επίσης και στην αναβάθμισή της

προκειμένου να μπορεί να υποστηρίξει πλήρως την επερχόμενη έκδοση 3 του CityGML.

xxiv

xxv

LIST OF ABBREVIATIONS

2D Two Dimensions

3D Three Dimensions

3DCIM 3D City Information Model

3DCityDB 3D City Database

3DPIE 3D Portrayal Interoperability Experiment

3DPS 3D Portrayal Service

ADE Application Domain Extension

AGI Analytical Graphics Inc

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

B3DM Batched 3D Model

BIM Building Information Model

CAD Computer-Aided Design

CityGML City Geography Markup Language

COBRA Common Object Request Broker Architecture

COLLADA COLLAborative Design Activity

CORS Cross-Origin Resource Sharing

CQL Common Query Language

CRS Coordinate Reference System

CSV Comma-Separated Values

CSW Catalog Service for the Web

DBMS Database Management System

DOM Document Object Model

EPSG European Petroleum Survey Group

FME Feature Manipulation Engine

GDF Geographic Data Files

GIS Geographic Information Systems

glTF GL Transmission Format

GML Geography Markup Language

GMLID GML identifier

GPU Graphics Processing Unit

HATEOAS Hypermedia as the Engine of Application State

HTML HyperText Markup Language

HTTP (S) HyperText Transfer Protocol (Secure)

I3S Indexed 3D Scene Layer

IFC Industry Foundation Classes

xxvi

ISO International Organization for Standardization

IT Information Technology

JAXB Java Architecture for XML Binding

JSON JavaScript Object Notation

JSONP JSON with Padding

KML Keyhole Markup Language

KMZ Zipped KML Format

LADM Land Administrator Domain Model

LoD Level of Detail

Oauth Token Based Authentication

OGC Open Geospatial Consortium

REST Representational State Transfer

ROA Resource-Oriented Architecture

RPC Remote Procedure Call

SIG 3D Special Interest Group 3D

SLPK Scene Layer Package

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

TIN Triangulated Irregular Network

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

VRML Virtual Reality Markup Language

W3DS Web 3D Service

WCS Web Coverage Service

WebGL Web Graphics Library

WFS Web Feature Service

WMS Web Map Service

WOA Web-Oriented Architecture

WSDL Web Services Description Language

WVS Web View Service

X3D Extensible 3D

X3DOM pronounced X-Freedom

XML eXtensible Markup Language

1. INTRODUCTION

1.1 Context

1.2 Problem Statement

1.3 Research Questions

1.4 Outline

P a g e | 2

CHAPTER 1: INTRODUCTION

P a g e | 3

CHAPTER 1: INTRODUCTION

1.1. Context

Many urban or environmental models are defined for supporting practitioners and

stakeholders in their decision-making processes. Models which represent in three

dimensions (3D) the geometric and semantic elements of city are called 3D city models.

These 3D city models are increasingly used in different cities and countries for an intended

wide range of applications beyond mere visualization (Pispidikis & Dimopoulou, 2019),

providing further value and additional utility over two dimensions (2D) geo-datasets.

Additionally, they are becoming ubiquitous for making decisions and for improving the

efficiency of governance. Hence, the generation of complex 3D city models facilitates the

better sophisticated understanding of the objects and their spatial interaction with their

surrounding environment (Floros et al., 2017). The type and amount of data that can be

integrated into a 3D city model rises dramatically, a condition that promotes the necessity

all these data to be properly stored, edited, visualized and retrieved.

3D city models come in various versions. The most commonly used technologies for 3D city

models are Geographic Information Systems (GIS), while on a building-scale Building

Information Modelling (BIM) is mostly used. BIM and GIS refer to different spatial scales

and modelling levels and thus, various data exchange standards, protocols and formats have

been developed to serve the needs for each domain (Pispidikis et al., 2018). Currently,

Industry Foundation Classes (IFC) and City Geography Markup Language (CityGML) are

representative model standards for BIM and GIS, respectively. Even though other formats

exist, they are the most widely studied and used exchange formats. Furthermore, they are

also complete ontologies for building and city models that could contribute to the

construction of the semantic web. As a result, focusing on 3D city models, CityGML is

considered the optimal standard for the semantic, geometric and topological representation

of a city. CityGML is a common semantic information model for the representation of 3D

urban objects that can be shared over different applications. This capability is especially

important regarding a cost-effective sustainable maintenance of 3D city models, enabling

the same data to be provided to customers from different application fields (Gröger et al.,

2012). However, although CityGML is considered as the most appropriate model for the

P a g e | 4

CHAPTER 1: INTRODUCTION

representation of 3D city models, it is quite difficult to retrieve this data based on their

semantic geometric and descriptive features.

The aforementioned issue was identified during the author’s master thesis with the

following topic (Pispidikis & Dimopouloy, 2016):

“Development of a 3D WebGIS system for retrieving and visualizing CityGML data based

on their geometric and semantic characteristics by using free and open source technology”

The objective of the abovementioned thesis was the development of a 3D WebGIS

application in order to successfully retrieve and visualize CityGML data in accordance with

their respective geometric and semantic characteristics in all Levels of Detail (LoD).

Although there have been several research projects on the visualization of 3D city models

utilizing the CityGML standard, there was no solution regarding the semantic retrieval of

this data. To this purpose, a suitable PHP class called cityDBWrapper was developed and

hence, the data retrieval from PostGIS was achieved, based on both semantic

characteristics and LoDs of CityGML.

However, although the implementation of this approach provides a good solution for

semantically retrieving CityGML data, some issues are presented to be resolved relating to

the complex structure of the CityGML and the need to retrieve data from distributed

sources without requiring specific knowledge of the source (CityGML) and of the proposed

Appliation Programming Interface (API).

1.2. Problem Statement

A 3D city model is considered as the digital representation of a city that may decompose

into its objects (such as buildings, roads, railways, terrain, water, vegetation etc.) with

clearly defined semantics, spatial and thematic properties. Depending on the levels of detail,

these objects may further decompose into more detailed features. The OGC standard

CityGML, optimally allows integration of the diversified geoinformation of the

aforementioned elements and provides multiple resolutions at different LoDs. However, the

P a g e | 5

CHAPTER 1: INTRODUCTION

structure of the CityGML is rather complex for supporting all these capabilities. Therefore,

the retrieval of the available semantic features from this standard by implementing

interoperable approaches without the need for advanced knowledge, is a challenge.

1.3. Research Questions

Taking into consideration the abovementioned problem statement and the respective

research studies, the following research questions should be investigated and answered in

the context of the current dissertation:

Thus, the core research question is:

How the interoperable and easy-to-use information retrieval of a city could be semantically

achieved by non-expert user?

Thereafter, the following sub-research questions arise:

(1) Can the existing 3D graphics or data exchange formats be utilized as a means of

semantically retrieving CityGML data?

(2) Can the existing OGC Geospatial Web services be utilized as a means of semantically

retrieving CityGML data?

(3) What is the most appropriate architecture type of a web service for achieving the

easy-to-use information retrieval of a city?

(4) How could CityGML data be semantically retrieved by users without knowledge of

the source?

1.4. Outline

Chapter 2 examines various approaches for retrieving and visualizing CityGML data.

Initially, the tile and hierarchical-based approaches using file-based formats such as X3D,

JSON, KML and glTF have been further studied and research. Next, the OGC I3S and OGC

P a g e | 6

CHAPTER 1: INTRODUCTION

3D Tiles are also examined. Finally, the available OGC Geospatial Web services are studied

which, in the context of 3D, there are the 3DPS and the WFS.

Chapter 3 examines the use of non-OGC Web services for the interoperable and easy-to-

use information retrieval of a CityGML based on its semantic characteristics. For this

purpose, The SOAP and REST Web services are further studied and compared. Also, the

REST are compared with new state-of-the-art technologies that can be adopted as a

CityGML data retrieval mechanism such as GraphQL and Falcor. Thereafter, several

principles and guideline are addressed with regard to the CityGML RESTful Web service

and finally, the conceptual design of the “citymodels” and “gmlid” resources is presented.

Chapter 4 describes the conceptual design of the LoD-based thematic resources of the

CityGML RESTful Web service. More specifically, the “bldg”, “tun” and “brid” resources and

their respective child resources are presented. Also, for each of these resources, various

case studies using semantic requests are presented.

Chapter 5 presents the conceptual design of the rest of the main resources of the CityGML

RESTful Web service which are mainly LoD-independent thematic resources. Namely, these

resources are enriched with semantic characteristics either independently of LoD or from

LoD2 and above without any difference from one level to another. Hence, the thematic

resources with similar availability in all LoD as well as the thematic resources with similar

availability from LoD2 and above are presented.

Finally, Chapter 6 concludes the findings with respect to the core research question of the

current dissertation and sets suggestions for future research.

P a g e | 7

CHAPTER 2: RETRIEVING CITYGML INFORMATION

2. RETRIEVING CITYGML INFORMATION

2.1 Tiled and Hierarchical-based CityGML retrieval

2.2 3D Web Portrayal Services

2.3 OGC Web Services for Sharing and Managing Raw Data

P a g e | 8

CHAPTER 2: RETRIEVING CITYGML INFORMATION

This chapter examines various approaches for retrieving and visualizing CityGML

data. Initially, the tiled and hierarchical-based approaches using file-based formats

such as X3D, JSON, KML and glTF have been further studied and investigated.

Second, the OGC I3S and OGC 3D Tiles were also examined. Finally, the available

OGC Geospatial Web services were studied which are, in the context of 3D, the 3DPS

and the WFS.

In this chapter, the 1st and 2nd sub-research questions of the current dissertation

are addressed:

(1) Can the existing 3D graphics or data exchange formats be utilized as a means

of semantically retrieving CityGML data?

(2) Can the existing OGC Geospatial Web services be utilized as a means of

semantically retrieving CityGML data?

This chapter utilizes the following papers:

(1) Pispidikis and Dimopoulou (2016)

(2) Pispidikis and Dimopoulou (2018)

(3) Pispidikis, Tsiliakou, Kitsakis, Athanasiou, Kalogianni, Labropoulos, and

Dimopoulou (2018)

(4) Athanasiou, Pispidikis and Dimopoulou (2018)

(5) Pispidikis and Dimopoulou (2019)

(6) Chatzinikolaou , Pispidikis and Dimopoulou (2020)

P a g e | 9

CHAPTER 2: RETRIEVING CITYGML INFORMATION

2.1. Tiled and Hierarchical-based CityGML Retrieval

CityGML presents an efficient solution for the representation of 3D city models because it

combines geometry and semantics in a single data model. However, efficiently visualizing or

retrieving 3D geometry and semantic information stored in CityGML is complex. It should

be noted that a number of desktop viewers are available for the local visualization of

CityGML data such as FZK Viewer and Feature Manipulation Engine (FME) Data Inspector.

However, the visualization of CityGML models on the web is still a challenging area since

CityGML is designed for the representation of 3D city models and not for presenting or

visualizing 3D city models directly on the web (Ohori, Biljecki, Kumar, Ledoux, & Stoter,

2018). Hence, several research works have been done on the aforementioned challenge

focusing on retrieving CityGML data implementing either tiled and Hierarchical-based or

Web-service-based approaches.

2.1.1. 3D graphics and data exchange formats

2.1.1.1. Extensible 3D (X3D)

In the context of the implementation of 3D graphics, Mao and Ban (2011) developed a

framework for the visualization of 3D city models (Figure 2-1). As data source the CityGML

was used, which turned into an Extensible 3D1 (X3D) scene and finally it was visualized on

the web utilizing the pronounced X-Freedom (X3DOM)2. Specifically, CityGML data were

analyzed and converted to Java Classes, representing various city objects such as buildings,

streets, etc. The said conversion was implemented by the use of Citygml4j3 Application

1 X3D is an XML-based, open 3D data format that is used to represent 3D scenes in a web

environment and is the successor to Virtual Reality Modelling Language (VRML).

2 X3DOM is a framework for integrating X3D scenes as HTML5 Document Object Model (DOM)

elements, which are rendered via WebGL without additional plugins.

3 Citygml4j is an open source Java class library and API for facilitating work with the CityGML.

Citygml4j makes it easy to read, process and write CityGML datasets, and to develop CityGML-aware

software applications.

P a g e | 10

CHAPTER 2: RETRIEVING CITYGML INFORMATION

Programming Interface (API). Then, the respective scenes were generated in accordance

with geometric or semantic information.

.

Figure 2-1: File-based approach for the visualization of CityGML over the web

(Mao & Ban, 2011)

2.1.1.2. JavaScript Object Notation (JSON)

LSIS (Laboratoire des sciences de l’ information et des systemes) laboratory focused on

the representation of CityGML buildings carried out three tests. In the first test, the

entire CityGML file was fetched from a WFS server on HyperText Markup Language

(HTML) thick client based on C++. In the second test, the CityGML file was first processed

on a server using Java Architecture for XML Binding (JAXB) parser. Consequently, only the

required part can be fetched on the client. In the last test, the CityGML stream was

replaced with a JavaScript Object Notation (JSON) stream. This choice was made taking

into account that the latter can be more easily portrayed on the web using Three.js API,

which utilizes the WebGL4 technology (Schilling, Hagedorn, & Coors, 2012). Extending to

the last test is the approach of Gesquiere and Manin (2012), who adopted the tile-based

approach to work on CityGML files. The CityGML file was broken into several tiles and each

4 WebGL (Web Graphics Library) is a JavaScript API for rendering high-performance interactive 3D

and 2D graphics within any compatible web browser without the use of plug-ins.

P a g e | 11

CHAPTER 2: RETRIEVING CITYGML INFORMATION

tile was transformed into JSON, which was stored on the server. Hence, the client made

requests to the server on the basis of specific tile and consequently, the server responded

with JSON file for that tile. Prandi et al. (2013), following the tile-based approach,

developed a framework in the context of a project called iSCOPE (interoperable Smart City

Services through an Open Platform for urban Ecosystems). Specifically, they separated the

CityGML files into tiles, storing them to the Server and finally, the Client can make requests

based on the said requests. As a result, the progressive visualization was achieved.

However, the implementation of the above-mentioned studies does not provide solution

regarding the semantic retrieval of CityGML data without need for knowledge of the source.

Consequently, Pispidikis and Dimopoulou (2016) developed a PHP class which utilize AJAX

(Asynchronous JavaScript and XML) techniques with a view to dynamically retrieve CityGML

data in JSON format and based on specific semantic characteristics (Figure 2-2).

Figure 2-2: PHP class for semantic retrieve LoD2 (a), LoD3 (b) and LoD4 (c) CityGML data

(Pispidikis & Dimopoulou, 2016)

P a g e | 12

CHAPTER 2: RETRIEVING CITYGML INFORMATION

2.1.1.3. Keyhole Markup Language (KML)

The increased focus on HTML5 and WebGL solutions leads to the development of an entire

framework for 3D geospatial data visualizations such as Cesium and iTowns. These

frameworks feature an open source JavaScript and WebGL-based virtual globe and map

engine that can display terrain, image, and 3D models. The Keyhole Markup Language (KML)

and the GL Transmission Format (glTF) are natively supported by these frameworks.

KML is an XML grammar language used to encode and transport representations of

geographical data for display in a Web browser. KML was originally created as a file format

for Keyhole’s Earth Viewer, which later emerged as the Google Earth application allowing

users to overlay their own content on top of the basemaps. In 2007, Google submitted KML

to the OGC and in 2008 was adopted as OGC standard (Wilson, 2008). KML files are often

distributed in Zipped KML Format (KMZ) files, which are zipped files that include KML along

with its associated images and icons. According to the KML specification, the tile-based

retrieval of the data can be achieved implementing the NetworkLink element (Figure 2-3).

Figure 2-3: Tile-based retrieval using NetworkLinks

The aforementioned tile-based mechanism was implemented by Chaturvedi (2014). More

specific, the 3DCityDB Importer/Exporter5 tool was used and the CityGML files were

5 3DCityDB Importer/Exporter is a java-based front-end for the 3D City Database and allows for

high-performance loading and extracting 3D city model data. Specifically, the supported import and

export operations are the following: import of CityGML models;export data as CityGML models;

export data in KML/COLLADA/glTF format; export data as spreadsheets.

P a g e | 13

CHAPTER 2: RETRIEVING CITYGML INFORMATION

imported into a 3D city database6. Next, these datasets were exported in KMZ files based

on specified number of tiles and their respective length. Further, the reference of the KMZ

files, in accordance with the tiles, is given in master KML file using NetworkLinks.

Additionally, Prandi et al. (2015) involved with the 3D web visualization of huge CityGML

models, which were originally stored in the Database in compliance with 3D city database

schema. Thereafter, in order the visualization of their data to be achieved and, in addition,

their thematic features to be able to be searched, the following procedures were

implemented: firstly, for visualization purpose the data was exported to Keyhole Markup

Language/ COLLAborative Design Activity (KML/COLLADA) format together with the

specific CityGML ID of the feature; secondly, the data was retrieved from the 3D city

database utilizing the OGC WFS server using the CItyGML ID as query attributes.

Chaturvedi et al. (2015) presented a Web based 3D client, which has been developed on top

of WebGL based Cesium virtual globe utilizing the following technologies: ExtJS

JavaScript-based web framework and HTML5. The highlighted features of the said client

are the data exploration, the managing interaction and the queries based on the attributes

of the data. The visualization of the data was achieved using KML/COLLADA files and JSON

encoded data.

2.1.1.4. GL Transmission Format (glTF)

The glTF is an API-neutral runtime asset delivery format that bridges the gap between 3D

content creation tools and modern graphics applications by providing an efficient,

extensible, interoperable format for the transmission and loading of 3D content. This

format combines an easily parsable JSON scene description with one or more binary files

representing geometry, animations, and other rich data. Binary data is stored in such a way

that it can be loaded directly into Graphics Processing Unit (GPU) buffers without additional

6 3D City Database is a free geo database to store, represent and manage virtual 3D city models on

top of a standard spatial relational database. This database schema implements the CityGML

standard with semantically rich and multi-scale urban objects facilitating complex analysis task, far

beyond visualization.

P a g e | 14

CHAPTER 2: RETRIEVING CITYGML INFORMATION

parsing or other manipulation (Figure 2-4). Implementing this approach, glTF is able to

faithfully preserve full hierarchical scenes with nodes, meshes, cameras, materials, and

animations, while enabling efficient delivery and fast loading (Khronos Group, 2019). The

implementation of glTF format for streaming CityGML 3D city models was described by

Schilling et al. (2016). They concluded that using formats such as X3D, KML/COLLADA or

glTF makes the rendering process using existing visualization frameworks particularly

simple. However, these pure graphics formats cannot directly store CityGML’s semantic

information. Similarly, Ohori et al. (2018) noted that the visualization of CityGML over the

web using commonly 3D graphics requires the separation of geometric information from

semantic information. Consequently, the rich semantics of CityGML are often lost.

Figure 2-4: Valid glTF asset

(Khronos Group, 2019)

2.1.2. OGC 3D Tiles

In the context of GIS, properties of objects, e.g. buildings, are inherently part of the

virtual representation and must be accessible either as embedded attributes, as separate

table or via supplementary database queries. The common 3D formats such as X3D,

COLLADA and glTF have no designated place for storing additional object information. The

format that merges glTF assets and attributes was developed and shared under the

umbrella of the OGC 3D tiles7 (Cozzi, 2019) and called B3DM (Batched 3D Model). This

format introduces the concept of batches for identifying objects and assigning properties

7 OGC 3D Tiles is designed for streaming and rendering massive 3D geospatial content such as

Photogrammetry, 3D Buildings, BIM/CAD, Instanced Features, and Point Clouds. It defines a

hierarchical data structure and a set of tile formats which deliver renderable content.

P a g e | 15

CHAPTER 2: RETRIEVING CITYGML INFORMATION

such as unique ID, feature type and custom attributes. Each object property can be used

for highlighting, for showing/hiding specific object, for custom styling based on attributes

and for querying web services for retrieving additional information based on the ID (Figure

2-5). However, for embedding and preserving all the available semantic features of CityGML

in Cesium, all data must be made available as 3D Tiles layer and converted into B3DM. Due

to different concepts regarding spatial data representation and basic structuring, a series

of processing steps must be performed that go away beyond a simple format conversion.

Figure 2-5: layout of a B3DM

(Schilling et al., 2016)

2.1.3. OGC Indexed 3D Scene Layer (I3S) and Scene Layer Package

I3S (Indexed 3D Scene Layer) was released to the community by ESRI as a format for

packaging and streaming large, heterogeneously distributed 3D data sets and was adopted

in 2017 as an OGC standard (Reed & Belayneh, 2017). The I3S is declarative and extendable,

and can be used to represent different types of 3D data such as 3D objects, integrated

mesh, point, point cloud and building scene layer. It is encoded using JSON and binary

ArrayBuffers (see ECMAScript 2015 known as ES6). The main goal of this standard is to

enable streaming large 3D datasets with high performance and scalability and hence, it is

designed from the ground up to be cloud, web and mobile friendly. Also, it is based on JSON,

REST and modern web standards, making it easy to handle, parse, and render by web and

P a g e | 16

CHAPTER 2: RETRIEVING CITYGML INFORMATION

mobile clients. Currently, the scene layers can be consumed from any ArcGIS applications

such as ArcGIS Pro, ArcGIS Earth, ArcGIS online, CityEngine etc. either as service or local

scene layer package files (SLPK).

The I3S standard was implemented by Pispidikis et al. (2018). Specifically, they combined

different 3D modelling methodological tools and techniques (Figure 2-6) to develop a

semantically enriched 3D campus model that can be used for navigation and maintenance.

Figure 2-6: Methodological tools and techniques

(Pispidikis et al., 2018)

P a g e | 17

CHAPTER 2: RETRIEVING CITYGML INFORMATION

For buildings' modeling, two different modeling approaches were implemented (procedural

& BIM-based modelling), using several software such as CityEngine, Trimble SketchUp Pro

and Autodesk Revit. Thereafter, each developed model was semantically enriched, to be

represented in LoD1, LoD2 and LoD3 of CityGML standard and then, imported to a file

Geodatabase, based on the 3D City Information Model (3DCIM)8 schema. The 3DCIM and

the CityGML are considered complementary and hence, several tools have been developed

to achieve interoperability for these models (Reitz et al., 2014). Next, the file

Geodatabases were converted to SLPKs and published as ArcGIS Scene Services (Figure 2-

7). However, for preserving all the available semantic features of CityGML in all LoDs, all

semantic features must be embedded as data attributes in each file Geodatabase according

to the 3DCIM schema. The said procedure is significantly complex to be implemented for

large scale city models.

Figure 2-7: 3D NTUA Campus overview using ArcGIS Scene Services

(Pispidikis et al., 2018)

8 3DCIM is the commercial solution of the semantically enriched database schema, developed by

ESRI, aiming to provide compact and yet simple in structure, information model.

P a g e | 18

CHAPTER 2: RETRIEVING CITYGML INFORMATION

2.2. 3D Web Portrayal Services

Taking into consideration the aforementioned studies and research (see section 2.1)

regarding the tiled and hierarchical-based approaches for retrieving and visualizing

CityGML data using file-based formats, there have been several issues. The visualization of

CityGML over the web using commonly 3D graphics requires the separation of geometric

information from semantic information and hence, the rich semantics of CityGML are often

lost. Additionally, although the OGC I3S and OGC 3D Tiles provide partial solution, the

procedure to generate these files from CityGML source, retrieving all semantic features,

is complex. Last but foremost, the implementation of these solutions is not suitable in terms

of interoperability. Therefore, taking into account the complex structure of CityGML and

the need to retrieve data from distributed sources addressing interoperability issues,

adoption of Web service technology is required.

2.2.1. Technology of Web Services

The Web services technology has dramatically affected the development of WebGIS

products. A variety of organization publish data and functions via Web services (Newcomer

& Lomow, 2005). Web services are key components of web applications and represent an

important evolution of distributed computing. The main idea of a web service is a collection

of smaller programs distributed across the Web, running on different servers, but still

communicating with each other and functioning together as a whole (Fu & Sun, 2010).

Therefore, Web services can be published, found and used on the Web (W3Schools, 1999-

2020).

2.2.1.1. The benefits of Web Services

According to the OGC glossary of terms, interoperability is

P a g e | 19

CHAPTER 2: RETRIEVING CITYGML INFORMATION

 “the Capability to communicate, execute programs, or transfer data among various

functional units in a manner that requires the user to have little or no knowledge of the

unique characteristics of those units”.

Additionally, interoperability, in the context of the OpenGIS specification, is a software

component operating reciprocally (working with each other) to overcome tedious batch

conversion tasks, import/export obstacles, and distributed resources access barriers

imposed by heterogeneous processing environments and heterogeneous data.

The main goal of web services is to exchange information among applications in the standard

way (Mumbaikar & Padiya, 2013). Their exploitation provides a new approach in terms of

system interoperability. Namely, it overcomes the complexity of the need to convert data

and install the appropriate programs, allowing systems to work at a Web service level (Fu &

Sun, 2010). Additionally, the Web services facilitate the ability to build composite

applications based on the heterogeneous services operating across many different

platforms. Namely, whatever programming language is used to implement a Web service,

whatever operating system it runs on, and whatever Web application server it is deployed

on, none of these affects how clients can consume the service. Thus, Web services and their

clients are not tightly bound to one another. A Web service can be consumed by multiple

clients, and a client can consume multiple Web services. Also, a Web service and its clients

do not need to run on the same server, and they do not need to be compiled together.

Additionally, developers have the freedom to choose whatever tools or programming

language they desire. Furthermore, when a Web service is updated or a new version is

released, the change only needs to be made on the server side. Thereafter, all clients

consume the latest version. Also, there is no need to run installation or an update on each

client computer providing a significant advantage of Web service over desktop programming

components.

2.2.1.2. Geospatial Web Service Standards

An explosion of Web-based mapping applications followed the birth of WebGIS in 1993, and

a small amount of WebGIS software products appeared on the market. However, these

P a g e | 20

CHAPTER 2: RETRIEVING CITYGML INFORMATION

early technologies had limitations in both their internal architecture and in their integration

with other information systems. Because of these limitations, Web GIS was underused, and

its potential was not fully realized (Huang, 2002).

Over the years, the concepts, standards, and technology for implementing GIS

interoperability have evolved through six stages: (1) data converters, (2) standard

interchange formats, (3) open file formats, (4) direct-read APIs, (5) common features in a

database management system (DBMS), and (6) integration of standardized Geospatial Web

services (Fu & Sun, 2010). Geospatial Web services have become the heart of GIS,

representing significant progress in distributed GIS. Additionally, they hide the complexity

of GIS data and functionality, leaving it to be handled remotely on other servers, while

exposing a Web programming interface for easy integration. Thus, the Information

Technology (IT) can simply access mapping, data, and geoprocessing web services from a

variety of sources without having to deal locally with the geospatial complexity. This

capability gives GIS industry the ability to move beyond data conversion and convert

installation into Web service-based interoperability. Realizing this opportunity, standards

bodies such as OGC and International Organization for Standardization (ISO) have defined

a series of Web services standards. With these standards, GIS application are not tied to

a specific software vendor. Organizations can manage data using the methods and formats

best suited to their needs while exposing Web service interface that conform to specific

open standards. Thereafter, other users can use these services regardless of which vendors

are behind the services. Therefore, OGC developed and implemented several Geospatial

Web services among which, in the context of 3D, there are the Web Feature Service (WFS)

and the 3D Portrayal Service (3DPS).

2.2.2. Web 3D Service (W3DS) and Web View Service (WVS).

The demand of serving large scale 3D city models and spatial data reflects the need of

hierarchical data structures for 3D data such as OGC I3S and OGC 3D Tiles. Although

these formats can transmit arbitrary sized geospatial data, they are not interoperable with

consuming and visualization on the client (Koukofikis et al., 2018). The OGC 3DPS standard

(Hagedorn et al., 2017) has been designed to enable the interoperable visualizations between

P a g e | 21

CHAPTER 2: RETRIEVING CITYGML INFORMATION

various data providers and different browser-based 3D globes and other viewer

implementations (Gutbell et al., 2016). An initial attempt to provide a solution regarding the

interoperable 3D geovisualization was the following services: Web 3D Service (W3DS) and

Web View Service (WVS).

2.2.2.1. Web 3D Service (W3DS)

Two versions of W3DS were published as OGC discussion papers (Quadt & Kolbe, 2005;

Schilling & Kolbe, 2010). The Web 3D Service is a portrayal service for 3D geodata,

delivering graphical elements from a given geographical area producing 3D scene graphs.

These scene graphs are rendered by the client and can interactively be explored by the

user (Figure 2-8).

Figure 2-8: Different types of geodata are merged in one 3D scene graph using W3DS

(Quadt & Kolbe, 2005)

The aforementioned service was implemented by Prieto et al., (2012) to achieve the

visualization of CityGML file without plugins. The output format was X3D and the

integration into web was achieved through X3DOM (Figure 2-9).

P a g e | 22

CHAPTER 2: RETRIEVING CITYGML INFORMATION

Figure 2-9: Use of W3DS for CityGML visualization and retrieval

(Prieto et al., 2012)

It should be noted that a basic design consideration for any client-server system is how to

partition the workload between the client and the server. Depending on how the workload

is distributed, WebGIS applications can be categorized as either thin client architecture

or thick client architecture (Gong, 1999). However, the development of technologies used

on both the server and client side led to the need to create an intermediate architecture,

the medium client. According to previous architectures, W3DS belong to the medium client

(Figure 2-10).

Figure 2-10: Medium Client Architecture

(Quadt & Kolbe, 2005)

P a g e | 23

CHAPTER 2: RETRIEVING CITYGML INFORMATION

2.2.2.2. Web View Service (WVS)

An alternative solution for retrieving and visualizing 3D data is the WVS. This service mainly

provides 2D image representing a 3D view on a scene constructed from 3D geodata that is

integrated and visualized by the WVS server (Hagedorn, 2010) (Figure 2-11). Additionally,

WVS adopts the thin client architecture for visualizing, analyzing, navigating and retrieving

3D scene information. Consequently, the server should be equipped with the appropriate

software and powerful graphics card and, from client’s point of view, users could access to

potentially complex 3D geodata with high-quality output and without having to provide and

maintain specific 3D graphics hardware and software or streaming complex 3D data, since

only standard images are transferred.

Figure 2-11: Retrieval and visualization of 3D data using WVS

(Hagedorn, 2010)

2.2.2.3. 3D Portrayal Interoperability Experiments (3DPIE)

In 2012, several experiments were presented by 3D Portrayal Interoperability Experiment

(3DPIE) utilizing the 3D portrayal services W3DS and WVS (Schilling et al., 2012). The

summary of these experiments including available data, servers, supported 3D portrayal

services and exported formats are shown in Figure 2-12.

P a g e | 24

CHAPTER 2: RETRIEVING CITYGML INFORMATION

Figure 2-12: Experiments of 3DPIE

(Schilling et al., 2012) & modified by author

Totally, five service implementations of at least one of both standards, together with five

clients were subjected to the 3DPIE. It emerged that several interoperability scenarios

combining both approaches were possible, and that the differences between W3DS and

WVS were significant but mostly reconcilable. However, some weaknesses also emerged.

For instance, the problem of scaling to bigger geodata was tackled with the well-known tiling

technique. Tiling does not easily translate to geometric 3D data, and thus, there is no one-

size-fits-all solution. Despite this, the proposals put forward a limited but complex solution.

2.2.3. OGC 3D Portrayal Service (3DPS)

The 3DPS combines the essential parts of the proposed W3DS and WVS into a common

interface and thus, it could provide either 3D graphics data or rendered images (Hagedorn

et al., 2017). Consequently, it supports two fundamental 3D portrayal schemes and

associated client/server configurations. The first one was implemented by Gaillard et al.

(2015). They proposed a framework to visualize 3D city data stored natively in CityGML

files. These files were cut into tiles with fixed size and thereafter, they were converted

and stored on the server in JSON format, keeping any semantic information that could be

stored in city objects. The retrieval of this data was achieved using the 3DPS GetScene

P a g e | 25

CHAPTER 2: RETRIEVING CITYGML INFORMATION

request. On the other hand, Gutbell et al. (2016) implemented a server-side rendering

framework to visualize 3D city models utilizing the 3DPS GetView operation.

Therefore, 3DPS interface specifies several operations that may be invoked by a 3DPS

client and may be performed by a 3DPS service (Table 2-1).

OPERATIONS DESCRIPTIONS

GetCapabilities This operation allows a client to request information about

a 3DPS server’s capabilities and scene information

offered

AbstractGetPortrayal This is the abstract operation that forms the basis of the

3DPS operations GetScene and GetView and provide

common parameters

GetResourceById This operation allows a client to request arbitrary

resource, as indicated by the service

GetScene This operation allows a client to retrieve a 3D scene

represented as 3D geometries and texture data,

organized as a scene graph and/or spatial index

GetView This operation allows a client to retrieve a 3D view of a

scene represented as image

AbstractGetFeatureInfo This is the abstract operation that forms the basis for

specific getFeatureInfo operations that allow a client to

retrieve more information about portrayed features

GetFeatureInfoByRay This operation allows a client to retrieve information

about features that are selected based on a virtual ray

GetFeatureInfoByPosition This operation allows a client to retrieve information

about features that are selected based on location

GetFeatureInfoByObjectId This operation allows a client to retrieve information

about features that are selected based on object

identifiers

Table 2-1: Operations of 3DPS

P a g e | 26

CHAPTER 2: RETRIEVING CITYGML INFORMATION

In 2018, several experiments were presented by the OGC testbed 13 Engineering Report

documents (Coors, 2018). The main goal of this report was to test and validate the

interoperability of the OGC 3DPS, using 3DPS implementation instances to generate web-

based visualizations with a workflow that used CityGML as data sources and 3D Tiles and

I3S as data delivery formats. For this purpose, several processing algorithms were

developed to convert CityGML into either 3D Tiles or I3S delivery Formats. More specific,

Analytical Graphics Inc (AGI) created the necessary processing algorithms to convert

CityGML into 3D Tiles within its 3D Tiles processing Tools; ESRI provided processing

algorithms to convert CityGML into I3S within ArcGIS and by using FME (Feature

Manipulation Engine); Fraunhofer and the SME virtualcitySYSTEMS created processing

algorithms to convert CityGML with and without Application Domain Extension (ADE) into

3D Tiles as extension on top of GeoRocket9. As a result, this report summarizes a proof-

of-concept of the use of 3D Tiles and I3S as data delivery formats for the OGC 3DPS

interface standard (Koukofikis et al., 2018).

However, although the interoperable portrayal of the 3D city models has been achieved,

this requires complex processing algorithms to convert CityGML into the appropriate OGC

portrayal standards such as I3S and 3D Tiles. Consequently, the utilization of 3D Web

Portrayal Services is not the optimal solution for the current thesis objective. Therefore,

the interoperable and easy-to-use information retrieval of a CityGML based on its semantic

characteristics will be further examined using the OGC Web services for sharing and

managing raw data such as WFS (see section 2.3).

2.3. OGC Web Services for Sharing and Managing Raw Data

The OGC Web service Standard for reading and writing geographic features in vector

format is the WFS. With WFS, clients can perform operations, including insert, update,

delete and query for geospatial data residing on the server (Vretanos, 2010). Therefore,

this international standard provides a standardized and open interface for requesting

9 GeoRocket is a high-performance data store for geospatial files such as 3D city models (CityGML),

GML and GeoJSON files.

P a g e | 27

CHAPTER 2: RETRIEVING CITYGML INFORMATION

geographic features across the web using platform-independent calls and thus, it allows

clients to only retrieve or modify the data they are seeking rather than retrieving a file

that contains possibly much more. More specific, the OGC WFS 2.0 interface define eleven

operations that can be invoked by a client (Table 2-2). However, a WFS server is not

required to offer all these operations to conform to the standard but may support a subset

only. Hence, the WFS standard defines conformance classes such as simple WFS, Basic

WFS, Transactional WFS and Locking WFS that grow in the number of mandatory

operations.

OPERATIONS DESCRIPTIONS

GetCapabilities The GetCapabilities operation generates a service metadata

document describing the WFS services provided by as

server.

DescribeFeatureType The DescribeFeatureType operation requests the structure

of the feature type that WFS support.

ListStoredQueries The ListStoredQueries operation lists the stored queries

available at the server.

DescribeStoredQuery The DescribeStoredQueries operation provides detailed

metadata about each stored query expression that server

offers.

GetFeature The GetFeature operation retrieves a geographic feature

and its attributes to match a filter query.

GetPropertyValue The GetPropertyValue operation allows the value of a feature

property or part of the value of a complex feature property

to be retrieved from the data store for a set of features

identified using a query expression.

LockFeature The LockFeature operation requests the server to lock on

one or more features for the duration of the transaction

such as update or delete.

GetFeatureWithLock The GetFeatureWithLock operation is functionally similar to

the GetFeature operation except that in response to a

P a g e | 28

CHAPTER 2: RETRIEVING CITYGML INFORMATION

GetFeatureWithLock operation, WFS shall not only generate

a response document similar to that of the GetFeature

operation but shall also lock the features in the result set.

CreateStoreQuery The CreateStoreQuery operation is used to create a stored

query

DropStoredQuery The DropStoredQuery operation allows previously created

stored queries to bed dropped from the system.

Transaction The Transaction operation requests the server to create,

update and delete geographic features

Table 2-2: Supported WFS 2.0 operations

(Vretanos, 2010)

2.3.1. Extending the OGC WFS 2.0 standard

Retrieving CityGML data via a OGC WFS 2.0 and previous versions presents a number of

technical problems relating to the characteristics of the CityGML models and the fact that

CityGML schema is much more complex than those usually deployed in WFS. An instance of

this complexity regarding the building module of the CityGML is presented in 3DCityDB (3D

City Database)10 logical design overview in Figure 2-13.

CityGML as an information model and GML application schema makes extensive use of

complex data types for properties and nesting of features within feature collections.

Consequently, CityGML can contain very deeply nested data structures. Additionally, the

range of geometry types used in CityGML are not fully supported by relational databases,

addressing several issues for implementing WFS on top of them. Consequently, a variety of

research was conducted on the extension of the OGC WFS.

10 3D City Database is a free Open Source package consisting of a database schema and a set of

software tools to import, manage, analyze, visualize, and export virtual 3D city model according to

the CityGML standard.

P a g e | 29

CHAPTER 2: RETRIEVING CITYGML INFORMATION

Figure 2-13: Logical design of 3DcityDB database regarding building module of CityGML

(Athanasiou et al., 2018)

P a g e | 30

CHAPTER 2: RETRIEVING CITYGML INFORMATION

2.3.1.1. Snowflake CityGML WFS

In 2006, the OGC Web Service-Phase 4(OWS-4) testbed was taken place under the

initiative of OGC's Interoperability Program to collaboratively extend and demonstrate

OGC's baseline for geospatial interoperability. In the context of this testbed the serving

of CityGML via WFS was addressed (Curtis, 2008). As a result, the Snowflake CityGML

WFS was created allowing basic operations of WFS specification such as

DescribeFeatureType, GetCapabilities and GetFeature.

Additionally, it supports the following features of CityGML: Building, CityObjectGroup,

GenericCityObject, ReliefFeature and CityFurniture in all LoDs. The mechanism regarding

the data request and response using the Snowflake CityGML WFS is presented in Figure 2-

14.

Figure 2-14: Data request and response using the Snowflake CityGML WFS

(Curtis, 2008)

According to this methodology, the CityGML data should be stored into an Oracle database

using a GML bulk loading tool called GO Loader. Thereafter, the data request and response

among client and database is achieved using a data translation engine called GO publisher.

P a g e | 31

CHAPTER 2: RETRIEVING CITYGML INFORMATION

2.3.1.2. 3DCityDB WFS

Within the same research context, Yao et al. (2018) implemented the OGC WFS 2.0 in

conjunction with 3D City Database, which supports multiscale and rich semantic structure

of CityGML and developed the 3DCityDB WFS (Figure 2-15). When sending a request to the

3DCityDB WFS server to retrieve certain CityGML Features, the 3DCityDB WFS servlet

captures and parses this request and translate it to a corresponding database query to

obtain a list of the respective GMLIDs of the CityGML top-level features. Thereafter,

these feature IDs will be handed over to the CityGML Import/Export module which utilizes

its pre-complied citygml4j/JAXB classes as well as the multi-threading API for efficiently

querying and generating the corresponding CityGML XML elements. Finally, these XML

datasets will be returned as a response of the WFS request. The Open Source version of

the 3DCityDB WFS implements the Simple WFS conformance classes and therefore, it only

handles GetFeatureById queries which is enough to retrieve objects by their GMLID.

However, ad-hoc queries or semantic retrieval of available features are not supported.

Figure 2-15: 3DCityDB WFS

(Yao et al., 2018)

P a g e | 32

CHAPTER 2: RETRIEVING CITYGML INFORMATION

2.3.1.3. Extending the WFS of GeoServer

Another approach was that of Zhu, et al. (2016), who focused on the open source solution

to serve CityGML data via a WFS with advanced functionality. Therefore, the GeoServer11

was tested in combination with its Application Schema extension since it supports the OGC

WFS 2.0 standard and provides full-fledged WFS functionality including discovery, query,

locking, transaction and stored query operations. The complex feature types of CityGML

could be mapped by GeoServer Application Schema using its two available concepts such as

Feature Mapping and Feature Chaining. There are some limitations to this approach and the

most important is that all public GML application schemas used for mapping with GeoServer

Application Schema must meet the GML encoding rules. However, not all schemas of

CityGML obey these rules.

 Similarly, a GeoServer approach was implemented by Pispidikis et al. (2016) for the

visualization of CityGML data via the WFS 2.0 standard. Therefore, a PostGIS database

was used in compliance with 3DCityDB schema and connected to GeoServer. Then, a suitable

view was created by the use of SQL query shown in Figure 2-16.

Figure 2-16: SQL query for creating the Lod2 building view of CityGML

(Pispidikis et al., 2016)

11 GeoServer is a java-based software server that allows users to view and edit and share

geospatial data.

P a g e | 33

CHAPTER 2: RETRIEVING CITYGML INFORMATION

2.3.2. Making the OGC WFS RESTful

Extending WFS to support the retrieval of CityGML data is considered very important.

However, the WFS 2.0 and previous versions used a Remote-Procedure-Call-Over-HTTP

architectural style implementing XML for any payload. This architecture was considered

state-of-the-art when the WFS standard was originally designed in the late 1990s and early

2000s (Portele & Vretanos, 2018). However, the evolution of the Web 2.0 phenomenon has

led to the increased adoption of the RESTful Service paradigm which takes full advantage

of the web technology, making correct use of the HTTP protocol and also follows the

Resource-Oriented Architecture (ROA) (Pispidikis & Dimopoulou, 2018). Additionally, REST

as a different approach to provide access to data, it can be used to provide end users with

a guided, prepackaged way of accessing data or resources. On the other hand, WFS, as a

query language, enables end users to submit any type of supported WFS request.

Consequently, due to the limitless nature of WFS, difficulties in query optimization can

arise. Therefore, REST can be utilized to steer the end user towards a predefined pattern

of access such as tiles, collections and IDs.

2.3.2.1. GO publisher RESTful service

The Snowflake Software (2016) presented the GO publisher RESTful service as a simple

web interface which allows HyperText Transfer Protocol (HTTP) request to be converted

and redirected to a GO Publisher WFS which provides access to XML/GML resources. As a

result, this RESTful service works on top of the respective WFS providing specific Uniform

Resource Locator (URL) resources to the end users (Figure 2-17).

P a g e | 34

CHAPTER 2: RETRIEVING CITYGML INFORMATION

Figure 2-17: Image of GO Publisher RESTful service working with GO Publisher WFS

(Snowflake Software, 2016).

2.3.2.2. OGC API-Features

This REST-based architecture was adopted by the version 3 of WFS (Portele & Vretanos,

2018), now called OGC API-Features (Portele, Vretanos & Heazel, 2019). Therefore, this

version of the WFS standard uses a resource architecture and specifies a RESTful service

interface providing resources regarding features and feature collection respectively. So,

the list of a feature collection (e.g. buildings) can be retrieved using the following request:

../collections/buildings/items

Thereafter, each feature in a feature collection can also be requested by implementing the

respective id as sub-resource.

../collections/buildings/items/{id}

However, the core of the OGC API Features does not currently support the implementation

of additional sub-resources so that the semantic retrieval of CityGML Data is fully achieved

P a g e | 35

CHAPTER 2: RETRIEVING CITYGML INFORMATION

but provides a solution to this limitation by extending the Core API including richer queries

from existing OGC standards (Portele, 2019). The said solution is quite sufficient, since

the OGC API-Features is intended to provide a general solution for retrieving data

regarding all available standards of the OGC API family. However, this implies and requires

good knowledge for both the structure of the source (e.g. CityGML) and the respective

syntax of the implemented OGC standard such as OGC Filter Encoding Standard 2.0, OGC

Common Query Language (CQL) or other query languages or data platforms such as Falcor

and GraphQL (Portele, 2019).

P a g e | 36

CHAPTER 2: RETRIEVING CITYGML INFORMATION

P a g e | 37

3. CITYGML RESTFUL WEB SERVICE

3.1 The Solution of REST Approach

3.2 Methodology for the RESTful-based CityGML retrieval

3.3 Citymodels and Gmlid Resources

P a g e | 38

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

This chapter examines the use of non-OGC Web services for the interoperable and

easy-to-use information retrieval of a CityGML based on its semantic characteristics.

For this purpose, The SOAP and REST Web services are further studied and

compared. Also, the REST WS are compared with new state-of-the-art technologies

that can be adopted as a CityGML data retrieval mechanism such as GraphQL and

Falcor. Thereafter, several principles and guideline are addressed with regard to the

CityGML RESTful Web service and finally, the conceptual design of the “CityModels”

and “Gmlid” resources is presented.

In this chapter, the 3rd sub-research question of the current dissertation is

answered:

What is the most appropriate architecture type of a web service for achieving

the easy-to-use information retrieval of a city?

This chapter utilizes the following papers:

(1) Pispidikis and Dimopoulou (2018)

(2) Pispidikis and Dimopoulou (2019)

(3) Chatzinikolaou, Pispidikis and Dimopoulou (2020)

P a g e | 39

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

3.1. The Solution of REST Approach

The CityGML schema was designed in a way that can be structured according to each

application, avoiding the creation of complex files that cannot be checked for their validity

(Gröger et al., 2012). Therefore, the architecture of the CityGML 2.0 is shaped via five key

components (Figure 3-1).

Figure 3-1: CityGML Architecture

(Pispidikis & Dimopoulou, 2018).

The first is the CityGML Core, which defines all the basic classes for CityGML’s operation

which are inherited by all the CityGML’s features (Gröger & Plümer, 2012). The second one,

contains the ten thematic modules that define the semantic features of the basic objects

of a 3D city model. The implementation of the aforementioned thematic modules is not

mandatory but they can be used selectively depending on the application’s needs. The third

component is the geometric-topological model, which is structured in compliance with the

Geography Markup Language 3 (GML 3). The fourth component contains the possible ways

that CityGML’s scalability is achieved and hence the semantic and descriptive features that

are not supported by the current version of CityGML can be added. These ways refer to

Generic and ADE (Application Domain Extension) modules (Gröger et al., 2012).

P a g e | 40

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Taking into account the CityGML architecture (Figure 3-1), it is concluded that its structure

is rather semantic than geometric and therefore, the retrieval of the data has to be

achieved mainly in compliance with the CityGML’s semantic information. On the other hand,

the OGC WFS is a geospatial Web service, which means that it was developed with the aim

of retrieving, visualizing and modifying data based on geometry. Consequently, the

interoperable and easy-to-use information retrieval of CityGML based on its semantic

characteristics will be further examined using non- OGC Web services by focusing on

different interoperable approaches.

3.1.1. SOAP Vs REST

The communication between a Web service and a client involves the client sending requests

to the Web service, and the Web service response request to the client. Depending on the

format of communication used, there are two types of Web services such as the SOAP-

based Web services and the REST-style Web services.

SOAP (Simple Object Access Protocol) is a protocol specification for exchanging

structured information in XML format. Specifically, a SOAP messages packages an XML

body in an XML envelope and the respective request is send via HTTP POST method.

Because of this structured, SOAP is difficult to be constructed and parsed manually.

Fortunately, the solution of the latter is achieved by the implementation of a variate of

tools in conjunction with WSDL (Web services Description Language)(Fu & Sun, 2010).

REST (Representational State Transfer) which is a result of the Roy Fielding’s dissertation

(Fielding & Taylor, 2000) is a style of software architecture which is designed to fully take

advantages of HTTP, while reducing system complexity and improving system scalability

(Richardson & Ruby, 2007). Moreover, this architecture was implemented to avoid the use

of complex data exchange mechanism such as COBRA (Common Object Request Broker

Architecture), RPC (Remote Procedure Call) or SOAP. In the most common implementation

of REST, all requests are made by a URL, and all parameters are in the URL. REST does not

P a g e | 41

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

define standards for the server response format, but JSON and XML are frequently used

without SOAP encapsulation (Fu & Sun, 2010).

REST has gained widespread acceptance across the Web as a more flexible alternative to

SOAP based Web services. Key evidence of this shift in interface design is the adoption of

REST by mainstream Web 2.0 service providers-including Yahoo, Google, and Facebook -who

have deprecated or passed on SOAP-based interfaces in favor of an easier-to-use,

resource-oriented model to expose their services (Rodriguez, 2008). In 2002, Amazon

aware of the “REST versus SOAP” debate provides both SOAP and REST interface to its

Web services. As a result, in 2004, 80 percent of the calls to Amazon’s Web services were

REST-based (Greenfield & Dornan, 2004). Additionally, the REST language is based on the

use of nouns (resources) and verbs (HTTP methods) and hence, they do not require message

format like XML envelope which is required in SOAP messages (Mumbaikar & Padiya, 2013).

In many cases, the simplicity and efficiency of using REST outweighs the rigorous discipline

of SOAP and the complexity in introducing SOAP-based Web services (Fu & Sun, 2010).

Additionally, Mulligan et al. (2009) presented a comparison of SOAP and REST

implementations of a service-based interaction independence middleware framework. The

results of their tests have shown that the REST implementation of the data transmission

component proved to be more efficient in terms of both the network bandwidth and the

round-trip latency incurred during these requests. Accordingly, Mumbaikar & Padiya (2013)

concluded that SOAP based Web services produce considerable network traffic, whereas

the RESTful Web services are lightweight, easy and self-descriptive with higher flexibility

and lower overhead. Fu & Sun (2010) compared SOAP and REST and referred that the use

of REST instead of SOAP brings several advantages to producers, users and managers

respectively. Specifically, for producers the cost of creating, hosting and supporting

services is lowered. For users the learning curve is reduced and hence, the time and money

needed to build GIS applications is also reduced. Finally, for manager the highly desirable

architecture properties such as scalability, performance, reliability, and extensibility are

provided. However, Kumari (2015) comparing the two protocols concluded that SOAP is

preferable for financial, banking, telecommunication services, and REST for Social

interaction, Web chat, and mobile services. Tihomirovs & Grabis (2016) performed a

comparison between SOAP and REST using software evaluation metrics and concluded that

P a g e | 42

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

is not possible to clearly identify the best approach to ensure data exchange because each

integration project should be assessed individually. However, they pointed out that if the

project requires greater scalability, compatibility and performance, it is better to choose

REST. On the other hand, the SOAP is a better choice when a project requires security and

reliability, easier maintainability on the client side, as well as a lower number of possible

errors.

In conclusion, SOAP and REST are two different approaches, with different architectural

styles, providing several advantages and disadvantages when compared. So, the

architectural decision mostly depends on the specific application. It should be noted that

SOAP Web services are robust and comprehensive but complicated. Whilst, REST Web

services are simple and efficient, but may not have all the capabilities of SOAP services.

3.1.2. GraphQL and Falcor

3.1.2.1. GraphQL

In 2016, Facebook released a specification and a reference implementation of the GraphQL

framework. This framework introduces a new type of Web-based data access interfaces

that presents an alternative to the notion of REST-based interfaces (Hartig & Pérez, 2018).

GraphQL is a query language for APIs and a runtime for fulfilling those queries with the

existing data. It provides a complete and understandable description of the data in available

API, gives clients the power to ask for exactly what they need and nothing more, makes it

easier to evolve APIs over time, and enables powerful developer tools. It was developed to

address the need for more flexibility and efficiency solving many of the shortcomings and

inefficiencies that developers experience when interacting with REST APIs (GraphQL is

the better REST, n.d.). REST encourages versatile resource-oriented architecture where

self-contained cohesive resources are identified by URLs and are accessed or manipulated

via multiple HTTP endpoints (Vogel et al., 2017). The most common problem with this

approach is that of overfetching. Overfetching means that the clients download more

information than in actually required in the app, as they are limited to perform predefined

operations that may have been designed by API providers regardless of the clients’ specific

P a g e | 43

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

requirements (Wittern et al., 2018). For instance, when a client needs to display a list of

buildings only with their respective function attribute, then, in a REST API, this resource

would have the following endpoint:

/buildings

The result of this request will be a JSON array with building data which may contain more

information about the buildings e.g. usage, class etc. which is useless for the client.

Another issue is the underfetching and the n+1 request problem. Generally, underfetching

means that a specific endpoint does not provide enough of the required information and

hence, multiple endpoints should be requested. For example, when a client needs information

about a specific room of a building then more than one endpoint should be requested (Figure

3-2).

Figure 3-2: Example of underfetching problem using REST-based request

On the other hand, GraphQL promotes a more data-centric model without architecture

resources. A GraphQL service represents an object graph of data entities which are

collectively accessible through a single endpoint and URL. Therefore, the GraphQL’s

solution to the aforementioned issues is a query language that allows clients to specify exact

data requirements on a data field level, executing the desirable request using only one

endpoint. The solution of the above-mentioned examples using the GraphQL is shown in

Figure 3-3. It should be noted that a client could semantically retrieve CityGML data when

the corresponding query of GraphQL request is suitably structured.

/buildings/{id}/rooms /buildings/{id}/rooms/{id}

1st request 2nd request

P a g e | 44

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Figure 3-3: Example of GraphQL request

However, although GraphQL is considered a promising candidate for being used as a data

retrieval mechanism regarding CityGML, there are several issues to be addressed. The main

issue arises from the fact that the users need to have advanced knowledge for both the

structure of the GraphQL query language and the source. Additionally, according to Portele

(2019), there is no support for geometries or spatial queries in GraphQL.

3.1.2.2. Falcor

Similar to GraphQL, Falcor, as data platform that powers the Netflix user interfaces

(Falcor, n.d.), was designed to solve the same problem that focuses on managing the

increasingly complex data requirements of modern web and mobile apps (Helfer, 2016).

Falcor provides an alternative solution to retrieve data having the starting point that all

data is a single virtual JSON object (Figure 3-4) and the data retrieval is achieved in a

same way whether the data is on the client, or on the server. This allows clients to work

with data using standard paths and operations such as get, set and call. Using Falcor, the

over and under fetching are not an issue since the clients can retrieve the desirable data

according to their needs. However, Falcor has no schema of the data and assumes the data

{

 Buildings (id:” {id}”) {

 function

 rooms

}

{"data”: {

 "Buildings”: {

 "function":"1000",

 "rooms”: [

 All data for each room

]

 }

 }}

P a g e | 45

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

is known (Falcor, n.d.). Additionally, it is mainly designed for use in JavaScript and thus, it

has no support for geometries or spatial predicates (Portele, 2019)

Figure 3-4: JSON-based data retrieval using Falcor

(Falcor, n.d.)

3.1.2.3. Results

The current section presents state-of-the-art technologies that can be adopted as a

CityGML data retrieval mechanism. According to the core research question of the current

thesis (see section 1.3) the CityGML data retrieval should be achieved in compliance with

the following keywords: interoperability, easy-to-use, semantically and non-expert user. The

implementation of the Falcor or GraphQL presupposes that the client should have good

knowledge of either the GraphQL query language or the complex CityGML schema.

Additionally, taking into consideration the complexity of the CityGML and the fact that the

CityGML data needs to be semantically retrieved, the ROA architecture should be adopted.

As a result, the REST-based architecture style is chosen and the CityGML RESTful Web

service is conceptually designed.

P a g e | 46

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

3.1.3. Principles of RESTful Web services

The evolution of the Web 2.012 phenomenon has led to the increase adoption of the RESTful

services paradigm (Lathem et al., 2007). RESTful Web services work on the web, taking full

advantages and making correct use of the HTTP protocol (Webber et al., 2010). As a

protocol, HTTP defines a set of rules and procedures that both Web clients and Web

servers used to communicate with each other (Fun & Su, 2010). Therefore, via HTTP, a Web

server knows what information to put in the message header and body, and the Web client

knows what to expect from the response header and body respectively. RESTful Web

services follow the ROA architecture and hence, everything that a service provides has to

be a resource. Resources are identified by URIs (Uniform Resource Identifier), which

provide a global addressing space for resource and service discovery (Rodriguez, 2008).

3.1.3.1. Constraints of the REST architecture style

The main design constraints of the REST architecture style can be summarized as follows:

- Addressability: all resources that are published by a Web service should be given a

unique and stable identifier, a URI (Nielsen, 1999). The relationship between URIs and

resources is many-to-one and thus, a URI identifies only one resource, but a resource

can have more than one URIs.

- Uniform Interface: all resources are managed via a uniform interface. In HTTP, the

uniform interface comprises a variety of methods of request such as GET, POST, HEAD,

PUT and DELETE that can be applied to all identifiers of Web resources. Each of these

methods should be used for specific operations such as create, read, update and delete

(CRUD). More specific, PUT updates a resource, which can be deleted using DELETE

method. GET is used to retrieve the current state of resource in some representation

12 Web 2.0 does not refer to any technical upgrades to the internet, rather, it simply refers to a

shift in how it is used. It describes the new age of internet – a higher level of information sharing

and interconnectedness among participants. Web 2.0 allows users to actively participate in the

experience and not just act as passive viewer who intake information.

P a g e | 47

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

and POST is used to insert a new resource. It should be noted that GET, PUT and

DELETE are characterized as idempotent13 methods since they can be safely repeated,

while POST is non-idempotent method (Table 3-1).

METHODS OPERATIONS RIGHTS

POST Create Read Non-idempotent

GET Read (Retrieve) Write Idempotent

PUT Update (Modify) Write Idempotent

DELETE Delete Write Idempotent

Table 3-1: HTTP methods

- Statelessness: every HTTP request happens in complete isolation. Therefore, REST

makes the system really scalable since servers do not keep any information from clients.

- Self-Describing Messages: services interact by exchanging request and response

messages that contain both the representation of resource, which can be accessed in a

variety of formats such as XML and JSON and the corresponding meta-data.

- HATEOAS (Hypermedia as the Engine of Application State): the ability of a service to

change the set of links that are given to a client, based on the current state of a

resource. Therefore, it is reasonable to model state transitions between resources as

metadata. Having a metadata model that describes the state transitions enables to

exploit the model in order to apply access control. Thereafter, state transitions that

must not performed by a client can be skipped and not included in the response. As a

result, the unnecessary network traffic is reduced and security is increased (Somoza

Alonso, 2017).

13 Idempotence is the property of certain operations in mathematics and computer science that can

be applied multiple times without changing the result beyond the initial application.

P a g e | 48

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

3.1.3.2. Richardson maturity model

However, the main design constraints of the REST architectural style can be adopted

incrementally, leading to the definition of the Richardson maturity model for RESTful Web

services (Fowler, 2010). Namely, this model breaks down the principal elements of a REST

approach into four levels (Figure 3-5).

Figure 3-5: Richardson maturity model for RESTful Web services

(Fowler, 2010)

- Level 0: The system is distributed and invokes remote procedure calls without using any

of the mechanisms of the Web. These might be some sort of reusable methods that

offer specific services.

- Level 1 - Resources: Resource orientation is the most fundamental design guideline for

REST. Instead of making all request to a singular endpoint, resources are targeted

individually and therefore, each resources has a unique address.

- Level 2 – HTTP Verbs: HTTP verbs such as GET, POST, PUT and DELETE determine the

action that is performed on resources instead of encapsulating the method into the

resources address. Hence, the resource address only consist of nouns and the HTTP

protocol carries the action.

P a g e | 49

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

- Level 3 – Hypermedia Controls: the system applies the HATEOAS constrain, which means

that a server sends any possible state transitions with the resource to the client.

3.2. Methodology for the RESTful-based CityGML retrieval

Several Principles and guidelines should be adopted so that retrieving CityGML data is

achieved by utilizing the RESTful-based architecture style. Therefore, the retrieval

mechanism of CityGML RESTful Web service is structured in compliance with the ROA

architecture and hence, everything that a service provides is a resource. The name of every

resource is noun and not verb according to the RESTful Web service guidelines. For

instance, a good resource name is the “citymodels” and not the “getcitymodels”. The action

type of the request is defined by HTTP methods and since the RESTful Web service is

designed in compliance with the HTTP specification, the data is retrieved implementing the

HTTP GET method. Additionally, the CityGML RESTful Web service is information-based

and not Geometric-based Web service as the complex structure of CityGML is more

semantic rather than geometric. The methodological steps for the conceptual design of the

CityGML RESTful Web service initially include the configuration of the main resource

schema based on the Resource Oriented Architecture as well as the definition of the main

resources, the information retrieval and the filters that may need to be applied.

Thereafter, the sub-resources should be defined so that the retrieval of all objects of a

3D city model could be achieved semantically. Finally, all of the aforementioned steps should

be designed based on the constraints of the RESTful approach and thus, the CityGML

RESTful Web service should guide the user in easy-to-use data retrieval.

3.2.1. Thematic resources

3.2.1.1. Main resources

Taking into consideration the five components of the CityGML’s architecture (see Figure

18), only the second one (ten thematic modules) defines the semantic features of CityGML.

P a g e | 50

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Therefore, these thematic modules should be the main resources of the CityGML RESTful

Web service (Figure 3-6). The names of these main resources are based on the namespace

prefix of CityGML v2 specification (Gröger et al., 2012) and they are shown in table 3-2.

Figure 3-6: Main resources of CityGML RESTful Web service

(Pispidikis & Dimopoulou, 2019)

Resource Name URI CityGML Modules

bldg ../bldg Building

wtr ../wtr Waterbody

dems ../dems Relief

veg ../veg Vegetation

luse ../luse LandUse

frn ../frn CityFurniture

tran ../tran Transportation

brid ../brid Bridge

tun ../tun Tunnel

grp ../grp CityObjectGroup

Table 3-2: Name of the main resources according to the namespace prefix of CityGML v2

P a g e | 51

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

However, some extra main semantic resources are also defined to make it easier to access

their available semantic features. These extra main resources are part of the main

resources such as “tran” and “veg” (Figure 3-7).

Figure 3-7: Extra main resources

(Pispidikis & Dimopoulou, 2019)

3.2.1.2. Sub-resources

Additionally, CityGML adopts the multi-scale modelling supporting five different LoDs

(Figure 3-8). In a CityGML, the same object may be represented in different LoDs

simultaneously, enabling the analysis and visualization of the same object with regard to

different degrees of resolution.

Figure 3-8: five LoD of CityGML

(Gröger et al., 2012)

P a g e | 52

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

However, LoD is considered vital not only in the geometric determination of the level of

detail but also in the semantic. By increasing the LoD, the semantic richness of CityGML

increases respectively. Therefore, this semantic enrichment of each of the thematic

modules is retrieved by implementing a variety of sub-resources. As a result, some of the

main resources have LoD-based sub-resources and hence, their semantic retrieval is

available based on the LoD (see chapter 4), while, some resources are LoD-independent and

so there is no differentiation regarding their semantic sub-resources from one LoD to

another (see chapter 5).

3.2.1.3. Resourse schema

 The generic information retrieval schema regarding the main resources and the respective

sub-resources of the CityGML RESTful Web service is schematically shown in Figure 3-9.

Figure 3-9: Retrieval resource schema of CityGML RESTful Web service

(Pispidikis & Dimopoulou, 2019)

P a g e | 53

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

This schema consists of two sub-schemas. The first one describes the retrieval mechanism

of the main resources and so, the list of the main resources regarding the specific module

can be retrieved using the following request:

../{main resources}

The second sub-schema describes the retrieval mechanism of the respective sub-resources.

Each main schema could contain zero- to- many sub-schemas and each sub-schema could also

contain zero- to- many sub-schemas.

3.2.2. ADE resources

CityGML has been designed as an application independent information model and exchange

format for 3D city and landscape models. However, many applications of 3D city models

require the extension by application specific feature types, attributes, and relations. For

that reason, there are two available ways to extend the CityGML such as the use of generic

city objects and attributes and the use of ADE.

The first concept allows for the storage and exchange of 3D objects which are not covered

by any explicitly modelled thematic class within CityGML or which require attributes not

represented in CityGML. These generic extensions to the CityGML are integrated into any

resource of the CityGML RESTful Web service as an object attribute in the retrieved

information (see section 3.2.5).

The ADE concept defines a special way of extending existing CityGML feature types which

allows to use different ADEs within the same instance document simultaneously.

Furthermore, each ADE is specified by its own XML schema file and is also provided with a

new namespace. The integration of each ADE into CityGML RESTful Web service is not part

of its core and hence, each ADE should be embedded separately as new main resource and

according to its XML schema. Thereafter, the connection of the ADE resource to the

desirable feature is achieved by including the ADE resource URI in the retrieved “links”

object of this feature (for example see Figure 4-11; for information about the “links” object

see section 3.2.5).

P a g e | 54

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

3.2.2.1. “Dynamizers” ADE resource implementation

Dynamizer (Chaturvedi and Kolbe, 2016) is a new concept, which extends static 3D city

models by supporting variations of individual feature properties over time. Additionally,

Dynamizers provide a way to model such dynamic variations with explicit time-series

representations. Dynamizers also utilize standardized encodings, such as the OGC

TimeseriesML standard. Utilizing this standard, the time-series can be represented as

interleaved time/value pairs or by a domain range encoding with the metadata of time-series

and timepoints. The time-series values may either be stored directly in-line within the

CityGML document or separately in individual tables.

Chatzinikolaou, Pispidikis and Dimopoulou (2020) developed an interoperable web-based

application in order to accomplish an integrated knowledge on how time-series data can be

distributed in a virtual 3D environment. The methodological steps to develop the said 3D

WebGIS viewer so that the available energy models can be portrayed and also the

respective time series data can dynamically be retrieved based on the corresponding GML

identifier (gmlid) of these models, are schematically presented in Figure 3-10.

P a g e | 55

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

KML
(geometry and gmlid value)

FileGDB
(3DCIM schema)

PostGIS DB
(3DCityDB schema)

SLPK

-Single Mutlipatch
geometry

gmlid value

Terrain

-geotiff

gmlid value

ArcGIS Scene ServicesElevation Service

3D WebGIS Viewer

../ADE_dynamizers/{gmlid}

results (JSON)

CityGML RESTful Web Service
(ADE_dynamizers resource)

3DCityDB
importer/exporter

Figure 3-10: Methodological steps of the energy-based WebGIS viewer

(Chatzinikolaou et al., 2020)

P a g e | 56

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

The interoperable and easy-to-use time-series data retrieval is achieved by extending the

CityGML RESTful Web service. Namely, the “ADE_dynamizers” main resource was

embedded and thus, the available CityGML features that contain time series data can be

retrieved in JSON format (Figure 3-11-(a)). Thereafter, by using the respective gmlid as

sub-resource the available time-series data can be retrieved as well (Figure 3-11-(b)). The

conceptual design of the “ADE_dynamizers” resource with the available properties is shown

in Figure 3-12.

a) ../ADE_dynamizers b) …/ ADE_dynamizers /{gmlid}

Figure 3-11: JSON-based schemas of “ADE_dynamizers” main resource

P a g e | 57

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

CityGML

RESTful Web

Service

<<Resource>>

list of citygml objects

that contains

timeseries data

<<ResourcePath>>

/ADE_dynamizers

<<Resource>>

{gmlid}{specific citygml

object}

properties: timeseries data

(cur_timestamp,

value,dynamicdatavp),

gmlid, links

<<ResourcePath>>

/{gmlid}

properties: Array of

citygml objects, links

Figure 3-12: Conceptual design of “ADE_dynamizers” main resource

3.2.3. Geometry

The Spatial properties of CityGML features are represented by GML3’s geometry model,

which is based on the standard ISO 19107 (ISO, 2003) and also representing 3D geometry

according to the well-known Boundary Representation (B-Rep). The geometry model of

GML3 consist of primitives and for each dimension, there is a geometrical primitive such as

“Point” for a zero-dimensional, “Curve” for one-dimensional, “Surface” for two-dimensional

and “Solid” for three-dimensional. Thereafter, a solid is bounded by surfaces and a surface

by curves. Furthermore, the primitives may be combined to form complexes, composite

geometries or aggregates (Figure 3-13). GML3 provides a special aggregate for each

dimension such as MultiPoint, MultiCurve, MultiSurface and MultiSolid. A composite is a

special complex, which can only contain elements of the same dimension such as

CompositeSolid, CompositeSurface or CompositeCurve.

Figure 3-13: Combined geometries

(Gröger et al., 2012)

P a g e | 58

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

3.2.3.1. GeoJSON Implementation

CityGML uses only a subset of the GML3 geometry package, defining a profile of GML3.

Namely, in CityGML, a curve is restricted to be a straight line, thus only GML3 class

“LineString” is used. Moreover, Surfaces in CityGML are represented by “Polygons”, which

define a planar geometry (Gröger et al., 2012). However, although the CityGML geometry

is structured according to GML, the GeoJSON specification (Butler et al., 2016) will be

used as a geometry retrieval format when the CityGML RESTful Web service is

implemented. GeoJSON is a geospatial data interchange format based on JSON that

supports a variety of geometry types. More specific, it comprises the seven concrete

geometry types defined in the OpenGIS Simple Features Implementation Specification for

SQL (OpenGIS, 1999) such as “Point” and “MultiPoint” for zero-dimensional, “LineString and

MultiLineString for one-dimensional, Polygon and MultiPolygon for two-dimensional and

GeometryCollection for heterogeneous geometries. As a result, all the available geometries

of CityGML can be represented by the GeoJSON format instead of GML. Table 3-3 shows

the matching supported geometries among CityGML and GeoJSON.

CityGML (GML3) GeoJSON

Point Point

LineString LineString

Polygon Polygon

MultiPoint MultiPoint

MultiLineString MultiLineString

MultiPolygon MultiPolygon

Composite Polygon MultiPolygon

Solid MultiPolygon

MultiSolid GeometryCollection or MultiPolygon

CompositeSolid GeometryCollection or MultiPolygon

CompositeSurface GeometryCollection

Table 3-3: Matching supported geometries among CityGML and GeoJSON

P a g e | 59

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

3.2.3.2. Implicit Object Implementation

However, in many cases, various features of a 3D city model could have same representation

but different position such as tree or other vegetation objects, a traffic light or a traffic

sign. The shape of these features is stored only once as a prototypical geometry which can

be re-used or referenced many times, wherever the corresponding feature occurs in the

3D city model. Each occurrence is represented by an implicit object that contains a link to

a prototype shape geometry (local CRS), a transformation matrix that is multiplied with

each 3D coordinate of the prototype, and an anchor point denoting the base point of the

object in the word Coordinate Reference System (CRS) (Figure 3-14). This principle is

adopted from the concept of scene graphs used in computer graphics standards like VRLM

and X3D.

Figure 3-14: JSON-based schema of the implicit object

In conclusion, all the available geometries of CityGML can be represented either by

GeoJSON format or by implicit object.

3.2.4. General filters

The response of each request by implementing the main resources of the CityGML RESTful

Web service is mainly a list of the available thematic modules respectively. Each thematic

modules of this list contains general information according to CityGML specification.

P a g e | 60

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Moreover, most of the main resources can be filtered using the general filters such as

function, usage, class, bbox and lod (Table 3-4).

Filter URI (Example by using brid resource)

function ../ brid?function=3020

usage ../ brid?usage=1010

class ../ brid?class =1000

bbox ../ brid?bbox=

334433, 4455667, 445677, 5566556

lod ../ brid?lod=3

Table 3-4: General filters of main thematic resources

The attributes class, function and usage are available for almost all CityGML feature types

and their values are specified in code lists, which are implemented as simple dictionaries

following the GML3.1.1 simple Dictionary Profile (Whiteside, 2005). Additionally, their

content may substantially vary for different countries (e.g. due to national law or

regulations) and for different information communities and therefore, the international

standard GML does not specify normative code lists for any of the attributes of type

“gml:CodeType”14. However, a non-normative code lists for selected attributes were

proposed and maintained by the Special Interest Group 3D (SIG 3D) of the GDI-DE. These

code lists can be directly referenced in CityGML instance documents and serve as an

example for the definition of code lists (Gröger et al., 2012). For instance, according to this

code list, the code value 2000 for the building attribute function is referred as a post

office. Moreover, the bbox filter parameters is vital to be defined so that the retrieval

data to be filtered based on spatial queries. Furthermore, since the semantic richness of

CityGML is based on the available LoD, the LoD should be defined as general filter.

14 gml:CodeType: In case a fixed enumeration of possible attributes values is not suitable, the

attribute type is specified as gml:CodeType and the allowed attribute values can be provided in a

code list which is specified outside the CityGML schema.

P a g e | 61

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

3.2.5. Information retrieval

The information retrieval about a specific main resource can be achieved implementing the

respective gmlid as sub-resource.

../{main resources}/{gmlid}

CityGML is explicitly designed as topographic-based model (Gröger & Plümer, 2012).

However, many applications of 3D city models require the extension by application specific

feature types, attributes, and relations. The generic city objects and attributes are an

alternative mechanism to extend CityGML providing ad hoc solutions for the storage and

exchange of 3D objects which are not covered by any explicitly modeled thematic class

within CityGML or required attributes not represented in CityGML. Since this approach is

ad hoc, no application schema is required. Consequently, the generic object as a retrieval

property provides an ad hoc list of key value pairs based on the generic model of CityGML.

Moreover, the “links” object is vital to be provided as retrieval property so that the

HATEOAS implementation is achieved and then the CityGML Web service to be RESTful.

As a result, each resource should contain information regarding links to other available

resources. Consequently, the “links” object of a resource of CityGML RESTful Web service

contains a list of key value pairs links to itself, to all parents’ resources and to a child

resource. In addition, the “geometry” object can be retrieved based on GeoJSON

specification (see section 3.2.2), external format such as X3D, COLLADA etc, or implicit

object. Moreover, the said object is only available when no additional sub-resources of a

particular feature exists. For Example, in LoD0-1, the bldg main resource contains the

geometry object, while, in LoD2-4 the geometry object is only available in the last existing

sub-resource. Another retrieval property is the “address” object, which contains

information that is specified using the Extensible Address Language (xAL) address

standard by the OASIS consortium (OASIS, 2003) providing a generic schema for all kinds

of international addresses. Also, the “XXXInformation” object can be retrieved including a

variety of information based on the respective CityGML module. The characters “XXX”

describe the respective name of the main resources (e.g. bridInformation,

bldgInformation). Additionally, the “lod” attribute can be retrieved providing information

about the level of detail of the retrieval data. Last but foremost, two Boolean attributes

P a g e | 62

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

are retrieved such as “isMovable” and “XXXPart”, which inform the client about whether

the retrieval object is movable or not and whether it is XXXPart or not e.g. tunnel part,

building part or bridge part.

In conclusion, the general but not mandatory value types of the retrieval properties with

respect to main resources of the CityGML RESTful Web service are described in Table 3-

5

Information Type Description

lod Number LoD value

XXXPart* Boolean True or False

isMovable Boolean True or False

XXXInfomation* Object List of key value pairs based on respective module

geometry Object Geometry object based on GeoJSON specification,

external format or implicit object

generic Object Ad hoc list of key value pairs based on generic

module

address Object List of key value pairs based on xAL specification

links Object List of key value pairs regarding links to the parent

and child resources

gmlid String gmlid value

*The characters “XXX” are defined based on the name of the main resource (e.g bridsPart,

bridInformation)

Table 3-5: Available information of the main resources

3.2.6. Security

Unlike WS-* that specifies a well-defined security model that is protocol independent and

is built specifically for SOAP Web services, REST does not currently have its own security

model. Instead, today’s REST security best practices leverage existing HTTP security

implementation approaches (Sudhakar, 2011). Fortunately, there are various HTTP

P a g e | 63

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

approaches for securing web applications such as HTTP Basic Authentication, HTTP Digest

Authentication and Token Based Authentication (OAuth). The HTTP Basic Authentication

mainly uses the ID and password of a client to authenticate the client’s request in HTTP

header. Since, the Client’s ID and password get encoded with Base64, which is stored in the

HTTP Authenticated header without being encrypted or hashed, they are usually sent over

HTTPS or Secure Sockets Layer (SSL). However, this approach has security vulnerabilities

of replay attack, injection attack and middleware hijacking (Jo, Kim, & Lee, 2014). The

advanced version of the first approach is that of HTTP Digest Authentication, which

encrypts the clients’ ID and password via hash such as MD5 (Peng, Li, & Huo, 2009). It

should be noted that this approach can be exposed to a Man-in-the-Middle attack, also

known as a hijack attack. Finally, the Token Based Authentication (OAuth) uses a token

instead of user’s ID and password (Jo, Kim, & Lee, 2014). Consequently, the use of a token

in communication between a user and Resource Server does not expose the user’s ID and

password and thus, this approach is frequently implemented by various Web service

companies such as Twitter, Yahoo, Google, Facebook, Microsoft etc.

However, it should be noted that since the REST is based on the principle of statelessness,

the aforementioned security approaches have to authenticate every single request of a

client each time.

3.2.7. Cross-Domain issues

The execution of each request of CityGML RESTful Web Service is implemented in

accordance with HTTP specification. Hence, for the retrieval of the data the HTTP GET

method is implemented (Pispidikis and Dimopoulou, 2018). The utilization of this mechanism

from distributed resources with different domains may have Cross-Domain issues. These

issues mean that certain Cross-Domain requests will be forbidden by default by the same-

origin security policy (W3C, 2010). Fortunately, the modern browsers support several

techniques for overcoming these issues such as CORS (Cross-Origin Resource Sharing) and

JSONP (JSON with Padding). The CORS is considered a standard and a mechanism that

allows JavaScript on a web page to consume REST API served from a different origin. The

CORS can be implemented through the HTTP Header “Access-Control-Allow-Origin”, which

P a g e | 64

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

can be enabled in a RESTful Web Service. An alternative way to share the data bypassing

the same-origin policy without need of modern browser is the JSONP format which does

not use the XMLHttpRequest object. Instead, it dynamically inserts <script> tag into a

webpage that is not considered as Cross-Domain issue. However, apart from the

aforementioned solutions, a proxy server can be utilized when executing the desirable

request, avoiding all issues regarding the Same-Origin Policy. More specific, a proxy server

can receive any request from distributed resource and then acting as a client on behalf of

the user, requests the data from the server. Thereafter, when the data is returned, the

proxy server relates it to the origin request and forwards it to the user.

3.3. Citymodels and Gmlid Resources

3.3.1. Citymodels resource

A SOAP-based Web service provides an XML-based interface description language called

WSDL that is used to describe the functionalities offered by this Web service. Hence,

users are able to have an overview of all these functionalities. On the other hand, REST

does not provide any standards like WSDL to inform users of its available endpoints.

Consequently, CityGML RESTful Web service should enable users to have an overview of

the available thematic models by defining a core resource. This resource is called

“citymodels” and is mainly used to retrieve the total number of the available thematic

models grouped by thematic category model. In each group category, the corresponding

resource link of the main thematic resource (see Table 3-2) is also be retrieved and thus,

users can send additional requests and receive more specific data.

The JSON-based schema of the retrieval data by implementing the “citymodels” resource

is shown in Figure 3-15.

P a g e | 65

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Figure 3-15: citymodels resource schema in JSON format

(Pispidikis & Dimopoulou, 2018)

3.3.1.1. Case study using the “citymodels” resource

A CityGML dataset contains a variety of thematic modules in different LoDs such as three

buildings, one waterbody, one bridge (LoD2 & LoD3) and two land uses. So, the

implementation of the “citymodels” resource retrieves the following response (Figure 3-16)

P a g e | 66

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

../citymodels

Figure 3-16: JSON result by using “citymodel” resource

It should be noted that in the above mentioned example, although bridge module has one

bridge, there are two instances of this bridge based on the corresponding LoD.

P a g e | 67

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

3.3.1.2. Filters

The “citymodels” resource retrieves information regarding the available CityGML thematic

modules and therefore, the definition of some parameters is considered necessary so that

the filtering of the retrieval result can be achieved. As a result, a new filter parameter

called “thematics” is defined. The value of this filter is based on the respective namespace

prefix of the thematic modules of CityGML v2 specification (see Table 3-2). Also, multi

thematic values can be used simultaneously by separating them using comma punctuation.

By using the same dataset of the previous case study (see section 3.3.1.1), then if a user

only needs information about the available buildings and bridges the following request can

be implemented (Figure 3-17).

../citymodels?thematics=bldg,brid

Figure 3-17: JSON result by using the “thematics” filter parameter in the “citymodels”

resource

In Addition, the filter “bbox” is defined. The value of this filter is a geometry rectangle in

a specific reference system which limits the results according to a boundary box. Another

P a g e | 68

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

important filter parameter is the CRS of the data called “epsg”. The definition of the spatial

reference system is of utmost importance and a key requirement for the integration of

different spatial datasets in a single 3D city model. CityGML inherits GML3’s spatial

capabilities of handling CRS. More specific, in CityGML, the coordinate system of the

geometries is defined through the attribute “srsName” which is inherited from the

abstract GML superclass “gml:_Geometry”. The value of this attribute may be a reference

to a Well-known CRS definition provided by an authority organization such as the European

Petroleum Survey Group (EPSG) (Pispidikis & Dimopoulou, 2015), but may also be a pointer

to a CRS that is locally defined within the same CityGML instance document. The value of

this pointer is based on the Uniform Resource Name (URN) encoding standard (Whiteside,

2009) having the following generic syntax:

urn:ogc:def:objectType,objectType:authority:version:code,objectType:authority:versio

n:code

In case that there is a CityGML dataset in which two reference system should be defined

e.g. EPSG:25832 for projected CRS and EPSG:5783 for vertical CRS then the following

URN is formed:

urn:ogc:def:crs,crs:EPSG::25832,crs:EPSG::5783

The replacements between the general URN syntax and the CRS is presented in Table 3-6.

Consequently, when the “epsg” filter is not used, then the default CRS is set based on

CityGML dataset. On the other hand, when “bbox” filter uses different CRS then this CRS

should be set as a value to the “epsg” filter.

URN general syntax CRS

objectType crs

Authority EPSG

Version -

Code 25832 & 5783

Table 3-6: URN syntax for CRS references

P a g e | 69

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

The available filters of “citymodels” resource can be implemented simultaneously and thus,

the spatial and descriptive filtering of the desired request can be achieved. The following

request only provides information on the amount of buildings and bridges that are located

within the specified boundary box in EPSG:3857 CRS.

../citymodels?thematics=bldg,brid&bbox=334433, 4455667, 445677,

5566556&epsg=3857

3.3.2. Gmlid resource

In some cases, the retrieval of the available information about a semantic feature is most

useful to be achieved directly based on the respective gmlid. This capability could be

possibly utilized at the scenario of 3D Web visualization of huge CityGML models, where

the user needs to retrieve the available descriptive information based on the respective

gmlid value of the selected model. More specific, after the CityGML models are converted

to the appropriate format for 3D web visualization (see section 2.1), they should have only

the respective gmlid value as attribute. Thereafter, the gmlid sub-resource can be

implemented and the rest of the available information to be retrieved (Figure 3-18).

(a) Information retrieval of LoD1 building

../798a7424-f3f2-4928-b82e-6ce77f50f27d

../{gmlid}

P a g e | 70

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

(b) Information retrieval of a building room in LoD4

Figure 3-18: Information retrieval based on the gmlid by using “gmlid” resource

../room34_3rd_H-9-8

P a g e | 71

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

4. LOD-BASED THEMATIC RESOURCES

4.1 Bldg Thematic Resource

4.2 Tun Thematic Resource

4.3 Brid Thematic Resource

P a g e | 72

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

This Chapter describes the conceptual design of the LoD-based thematic resources

of the CityGML RESTful Web service. More specific, the “bldg”, “tun” and “brid”

resources and their respective child resources are presented. Also, for each of these

resources, various case studies using semantic requests are presented.

In this chapter, the 4th sub-research question of the current dissertation is partially

answered:

How could CityGML data be semantically retrieved by users without knowledge of

the source?

This chapter is based on the following papers:

(1) Pispidikis and Dimopoulou (2018)

(2) Athanasiou, Pispidikis and Dimopoulou (2018)

(3) Pispidikis and Dimopoulou (2019)

P a g e | 73

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

4.1. Bldg Thematic Resource

The building module is considered as one of the most detailed thematic concepts of

CityGML, allowing the representation of thematic and spatial parameters of buildings and

building sections at different levels of detail (Gröger & Plümer, 2012). Spanning the

different levels of detail, the building model differs in the complexity and granularity of

the geometric representation and the thematic structuring of the model into components

with a special semantic meaning (Figure 4-1).

Figure 4-1: Building module in different LoD

(Gröger et al., 2012)

More specifically, in LoD0 the building is represented by horizontal surfaces describing the

footprint and the roof edge. In LoD1, the different structural entities of a building are

aggregated to a simple block and not differential in detail. In LoD2 and higher LoD, the

exterior shell of a building can also be composed of semantic objects. Table 4-1 provides an

overview of the semantic availability of a building per LoD.

P a g e | 74

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

S
em

an
ti

c
th

e
m

e
s

Geometric/ semantic theme LoD0 LoD1 LoD2 LoD3 LoD4

Footprint and roof edge

Volume part of the building shell

Building parts

Boundary surfaces

Outer building installations

Openings

Rooms

Interior building installation

Table 4-1: Semantic availability of a building per LoD

Taking into consideration the aforementioned semantic availability, the building module is

enriched by semantic characteristics from LoD2 and above and thus, the child resources of

the bldg main resource are defined based on the semantic enrichment of building features

from LoD2 to LoD4.

4.1.1. Bldg main resource

The main thematic resource regarding building module of CityGML is the bldg resource. This

resource retrieves the available building and building parts respectively, including their

available information (see Table 3-5) as well as a link object that contains the URIs of these

child resources and the URI of the bldg main resource. According to CityGML v2

specification, the pivotal class of the building model is “_AbstractBuilding” which is

specialized either to a “Building” or to a “BuildingPart”. Both these classes inherit the

attributes of “_AbstractBuilding” such as the class of the building, the function (e.g.

residential, public, or industry), the usage, the year of construction, the year of demolition,

the roof type, the measure height and the number and individual heights of the storeys

above and below the ground (Gröger et al., 2012). The available values of the latter are

described in Figure 4-2.

P a g e | 75

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Figure 4-2: Values of the relationship of an object to the terrain

(Gröger & Plümer, 2012)

All these attributes belong to the bldgInformation object. Additionally, if a building

consists of one homogeneous part, the value of the bldgPart attribute is false. On the other

hand, when a building composes of different structural segments, for example a number of

storeys or roof type, then the respective bldgPart value is true since the building has to be

separated into a building that has one or more additional building parts (Figure 4-3).

Figure 4-3: Examples of building consisting of one and two building parts

(Gröger et al., 2012)

Building consisting

of one part

(represented as one

“Building” feature)

Building with two

building parts

(represented as one

“Building” feature and

one included)

“BuildingPart” feature)

P a g e | 76

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Another capability of the bldg resource is the implementation of several filters that limit

the retrieval result avoiding the over and under fetching issues. Except for the general

filters (see Table 3-4), which are used in all main thematic resources, the bldgPart filter

should be defined. The value of this filter is Boolean and limits the retrieval result on

whether the building is building part or not.

The conceptual UML model of the bldg main resource with available properties and filters

is shown in Figure 4-4

<<Application>>

CityGML RestFul

<<Resource>>

bldg (list of available buildings)

properties: Array of bldg sub-

resources, links

Filter: bldgPart, lod, class,

function, usage, bbox

<<ResourcePath>>

/bldg

<<Resource>>

{gmlid} (specific building)

properties: bldgInformation,

Generic, Address, gmlid, lod,

bldgPart, links,geometry

<<ResourcePath>>

/{gmlid}

Figure 4-4: Conceptual design of the “bldg” main resource

The schema of the bldg main resource in JSON format is shown in Figure 4-5

 Figure 4-5: bldg resource schema in JSON format

Link to itself and to parent resources

Array of all bldg child resources

Link to itself, to parent and all child resources

P a g e | 77

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Also, the retrieval of a specific building can be achieved by implementing the gmlid as sub-

resource.

../bldg/{gmlid}

The gmlid in the brackets is the unique id for each building according to CityGML. This sub-

resource of a particular building contains additional information as opposed to the bldg main

resource (see Figure 4-5) so that the overfetching of the data is avoided. As a result, the

JSON-based retrieval information is presented in Figure 4-6

Figure 4-6: JSON-based resource schema of specific building

Available only if no additional

sub-resources exist

P a g e | 78

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

4.1.2. LoD2 bldg sub-resources

The supported semantic characteristics of the LoD2 building are the exterior boundary

surfaces such as Wallsurface, RoofSurface, GroundSurface, OuterCeilingSurface and

OuterFloorSurface as well as the exterior building installation (see Table 4-1). The exterior

boundary surfaces are implemented to semantically structure the exterior shell of building

(Figure 4-7). Specifically, the ground plate of a building is modeled by the GroundSurface.

In addition, the mostly horizontal surface that belongs to the outer shell and also has the

orientation pointing downward such as the visible part of the ceiling of a loggia or the ceiling

of a passage, modeled by the OuterCeilingSurface. Furthermore, the OuterFloorSurface is

utilized to model the mostly horizontal surface that belongs to the outer building shell and

with the orientation point upwards such as the floor of a loggia. Moreover, all parts of a

building façade belonging to the outer building shell can be modeled by the WallSurface.

Also, the RoofSurface is used to express the major roof parts of a building whilst secondary

parts of a roof with specific semantic meaning like dormers or chimneys are modeled as

exterior building installation. The exterior building installation is an outer component of a

building which has not the significance of a BuildingPart, but it strongly affects the outer

characteristic of the building.

Figure 4-7: Boundary surfaces of the outer building shell

(Gröger et al., 2012)

P a g e | 79

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Consequently, the aforementioned semantic features are the LoD2 child resources of the

bldg main resource. The URI resources regarding the exterior boundary surfaces are walls,

roofs, grounds, ceilings and floors respectively. Additionally, the exterior building

installation resource is called “installation”. This resource can be filtered using a variety of

filters such as usage, function, class and type. It should be noted that the “installation”

resource refers to both interior and exterior building installation. The separation of the

latter is achieved via the “type” property. Thereby, the defined values of this property are

interior or exterior respectively. However, the interior building installation are semantic

features available in LoD4. So, the “installation” resource is defined as a child sub-resource

regarding LoD4 as well. Furthermore, the “closure” resource is embedded so that the open

sides of the building can be virtually closed by using the ClosureSurface. Additionally, the

retrieval of a specific resource can be achieved using the corresponding gmlid. An instance

of a specific wall request is the following

../bldg/{gmlid}/walls/{gmlid}

The available information of each semantic surface of LoD2 bldg sub-resources is shown in

Table 4-2

Information Type Resource Description

lod Number Installations,

Exterior

boundaries*

LoD value

appearance Object Installations,

Exterior

boundaries*

List of key value pairs based on appearance

module

geometry Object Installations,

Exterior

boundaries*

Geometry object based on GeoJSON

specification or implicit object

generic Object Installations,

Exterior

boundaries*

Ad hoc list of key value pairs based on

generic module

P a g e | 80

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

links Object Installation,

Exterior

boundaries*

List of key value pairs regarding links to

itself, to parent and to child resources

gmlid String Installation,

Exterior

boundaries*

gmlid value

usage Number installation Codelist

function Number installation Codelist

class Number installation Codelist

type Number installation exterior or interior

Exterior boundaries*: walls, roofs, grounds, ceilings and floors

Table 4-2: Available information of LoD2 bldg sub-resources

The exterior boundary surface sub-resources with regard to a specific feature (or gmlid)

have a similar schema, which is presented in Figure 4-8 in JSON format.

Figure 4-8: Schema of the Bldg exterior boundary surface sub-resources in JSON format

P a g e | 81

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Also, the retrieval schema of features belonging to a specific bldg exterior boundary

surface category e.g. walls, is presented in Figure 4-9 (for the JSON-based schema for

each boundary surface see Annex A.1)

Figure 4-9: Retrieval schema of features belonging to a specific bldg exterior boundary

surface

The retrieval information of the “appearance” object is based on the appearance module of

CityGML. This module is not limited to visual data but represents arbitrary categories called

“themes” such as infrared radiation, noise pollution, or earthquake-induced structural

stress (Gröger et al., 2012). Consequently, a single surface geometry may have surface data

for multiple themes. As a result, the “appearance” object could contain an array of themes

whose value depends on the appearance module of CityGML e.g. color or URL to an image.

Additionally, the “links” object of a sub-resource is used to provide information about the

URIs of itself, to parent and to all child resources. For example, there is a building (gmlid:1)

in LoD2 which has four WallSurfaces, one GroundSurface and two RoofSurfaces (Figure 4-

10).

The character “XXX” is defined based on the exterior

boudary surfaces such as walls, roofs, grounds, ceilings

and floors. Also, the retrieval data is array of features

that belongs to the corresponding surface.

P a g e | 82

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Figure 4-10: Example of a LoD2 building

So, if a client makes a request using the sub-resource below:

 ../bldg/1

then, with regard to the “link” object the following information is retrieved in JSON format

(Figure 4-11):

Figure 4-11: Retrieval data regarding the “link” object of a building in JSON format

Child resources

Resource of itself

Parent resource

resources

ADE resource

resources

P a g e | 83

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

As a result, the user could be informed not only about the existence of the exterior

boundary surfaces of a building but also about the respective URIs.

The “installation” resource schema has a similar structure to exterior boundary surfaces

apart from the fact that four additional attributes are included such as type, usage,

function and class (see Annex A.2).

In conclusion, the conceptual design of the bldg resource with available properties and

filters according to LoD2 is shown in Figure 4-12.

P a g e | 84

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

<<Application>>

CityGML RestFul Web

Services

<<Resource>>

buildings

properties: Array of bldg sub-

resources, links

Filter: bldgPart, lod, class,

function, usage, bbox

<<ResourcePath>>

/bldg

<<Resource>>

{gmldid} (specific building)

properties: bldgInformation,

generic, address, gmlid, lod,

bldgPart, links,geometry

<<ResourcePath>>

/{gmlid}
<<ResourcePath>>

/roofs

<<Resource>>

roofs

properties: Array of roofs,

links

<<Resource>>

walls

properties: Array of walls,

links

<<ResourcePath>>

/walls

<<Resource>>

grounds

properties:Array of grounds,

links

<<ResourcePath>>

/grounds

<<Resource>>

{gmlid} (specific ground)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific wall)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific roof)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

ceilings

properties: Array of ceilings,

links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid}(specific ceiling)

properties: gmlid,lod, generic,

appearance, geometry, links

<<Resource>>

floors

properties: Array of floors,

links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific outer floor)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/ceilings

<<ResourcePath>>

/floors

<<Resource>>

exterior installations

properties: Array of

installation sub-resources,

links

Filter: usage, function, class,

type (LoD4)

<<Resource>>

{gmlid} (specific exterior

installation)

properties: usage, function,

class, gmlid, generic, type,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/installation

<<Resource>>

closures
<<ResourcePath>>

/closures

<<Resource>>

{gmlid} (specific closure)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

properties: Array of closures,

links

Figure 4-12: Conceptual design of the LoD2 “bldg.” sub-resources

P a g e | 85

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

P a g e | 86

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

4.1.3. LoD3 bldg sub-resources

The additional semantic feature of the LoD3 building module is the “_Opening” abstract

class, which semantically describes openings like doors and windows in outer or inner

boundary surfaces like walls and roofs. This class only exists in models of LoD3 and LoD4

and contains two sub-classes such as “Window” and “Door”. More specific, the class

“Window” is used for modelling windows in the exterior shell of a building, or hatches

between adjacent rooms, whist the “Door” class is used for modelling doors in the exterior

shell of a building, or between adjacent rooms. The main difference between these classes

is that the “Window” class is not specifically intended for the transit of people or vehicles

and the “Door” can also be used by people to enter or leave a building or room (Gröger et

al., 2012). Consequently, the respective resources of the aforementioned sub-classes are

considered vital to be defined. Hence, the URIs of these resources are “windows” and

“doors”. The implementation of these sub-resources retrieves two objects such as “rooms”

or “windows” (depend on the resource) and “links”, which are presented in the following

JSON-based schema (Figure 4-13) (for more details see Annex A.3).

Figure 4-13: JSON-based schema of the “doors” and “windows” sub-resources

The implementation of a specific opening sub-resource contains a variety of information

which is described in Table 4-3 and presented in Figure 4-14.

The character “XXX” has either “doors” or “windows”

value

Link to itself and to parent resources

Link to itself and to parent and child resources

P a g e | 87

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Information Type Description

gmlid String Gmlid value

appearance Object List of key value pairs based on appearance module

geometry Object Geometry object based on GeoJSON specification or URL

to external format.

generic Object Ad hoc list of key value pairs based on generic module

links Object List of key value pairs regarding links to itself and to

parent resources

address* Object List of key value pairs based on xAL specification

address*: available only for “doors” sub-resources

Table 4-3: Available information of “windows” and “doors” sub-resources

Figure 4-14: JSON-based resource schema of specific “opening” resource

Additionally, the schema of the URI regarding a specific opening resource is the following:

../bldg/{gmlid}/{roofs or walls}/{gmlid}/{openings}/{gmlid}

Only available for “doors” resource

P a g e | 88

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

The conceptual design of the bldg child resources regarding LoD3 is shown in Figure 4-15

<<Application>>

CityGML RestFul Web

Services

<<Resource>>

buildings

properties: Array of bldg sub-

resources, links

Filter: bldgPart, lod, class,

function, usage, bbox

<<ResourcePath>>

/bldg

<<Resource>>

{gmlid} (specific building)

properties: bldgInformation,

generic, address, gmlid, lod,

bldgPart, links,geometry

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/roofs

<<Resource>>

roofs

properties: Array of walls,

links

<<Resource>>

walls

properties: Array of walls,

links

<<ResourcePath>>

/walls

<<Resource>>

{gmlid} (specific wall)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific roof)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

exterior installations

properties: Array of

installation sub-resources,

links

Filter: usage, function, class,

type (LoD4)

<<Resource>>

{gmlid} (specific exterior

installation)

properties: usage, function,

class, gmlid, generic, type,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}
<<ResourcePath>>

/installations

<<Resource>>

windows (list of windows)

properties: Array of windows,

links

<<Resource>>

doors (list of doors)

properties: Array of doors,

links

<<ResourcePath>>

/windows

<<ResourcePath>>

/doors

<<Resource>>

windows (list of windows)

properties: Array of windows,

links

<<Resource>>

doors (list of doors)

properties: Array of doors,

links

<<ResourcePath>>

/windows

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific window)

properties: gmlid, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific door)

properties: gmlid, generic,

address, appearance,

geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{GMLID} (specific door)

properties: gmlid, generic,

address, appearance,

geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific window)

properties: gmlid, generic,

appearance, geometry, links

<<ResourcePath>>

/doors

Figure 4-15: Conceptual design of the LoD3 “bldg.” sub-resources

P a g e | 89

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

4.1.4. LoD4 bldg sub-resources

In LoD4, the interior building installations could be retrieved by using the “installation”

resource (see Annex A.2). These features are objects inside a building with a specialized

function or semantic meaning and they are permanently attached to the building structure

and cannot be moved. Except for this resource, there is the “rooms” child resource

regarding LoD4 as well (see Annex A.4). According to the CityGML v2 specification (Gröger

et al., 2012), a “Room” is a semantic object for modelling the free space inside a building

and should be uniquely related to exactly one building or building part object. Therefore,

the “rooms” resource could be used to retrieve the list of the available rooms of a building.

../bldg/{gmlid}/rooms list of rooms

../bldg/{gmlid}/rooms/{gmlid} specific room

Moreover, the available information of each room is gmlid, class, usage, function, links and

generic and the filtering of this resource could be achieved by implementing the general

filters (see Table 3-4). Thereafter, each room provides several links for child resources

such as “furniture” (see Annex A.5), “installation” (see Annex A.2), “walls”, “floors” and

“ceilings” (see Annex A.1). The first one retrieves a list of “BuildingFurniture” that are

located in a specific room. A “BuildingFurniture” is a movable part of a room, such as a chair

or furniture. Also, it should be uniquely related to exactly one room. So, the accessible

information of the “furniture” resource is class, usage, function, gmlid, generic, appearance,

geometry and links. Additionally, the available filter parameters of this resource are class,

usage, function and bbox. In the same context, the rest of the child resources such as

“installation”, “walls”, “floors” and “ceilings” retrieve a list of the corresponding available

semantic features. The accessible retrieval information and the respective filters are

shown in Figure 4-16. Generally, the retrieval of a specific semantic feature is achieved

using the gmlid.

P a g e | 90

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

<<Application>>

CityGML RestFul Web

Service

<<Resource>>

buildings

properties: Array of bldg sub-

resources, links

Filter: bldgPart, lod, class,

function, usage, bbox

<<ResourcePath>>

/bldg

<<Resource>>

{gmlid} (specific building)

properties: bldgInformation,

Generic, Address, gmlid, lod,

bldgPart, links,geometry

<<ResourcePath>>

/{gmlid}

<<Resource>>

rooms (list of rooms)

properties: Array of rooms,

links

Filter: class, function, usage,

bbox

<<ResourcePath>>

/rooms
<<Resource>>

{gmlid} (specific room)

properties: class, usage,

function, gmlid, links, generic

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/doors

<<Resource>>

floors (list of floors)

properties: Array of floors,

links

<<Resource>>

walls (list of walls)

properties: Array of walls,

links

<<Resource>>

ceilings (list of ceilings)

properties: Array of ceilings,

links

<<ResourcePath>>

/floors

<<ResourcePath>>

/walls

<<ResourcePath>>

/ceilings

<<Resource>>

furnitures (list of furnitures)

properties: Array of

furnitures, links

Filter: class,usage, function

<<ResourcePath>>

/furnitures

<<Resource>>

installations (list of

installations)

properties: Array of

installations, links

Filter: class,usage, function

<<ResourcePath>>

/installation

<<Resource>>

{gmlid} (specific floor)

properties: gmlid, generic,

appearance, geometry, links

<<Resource>>

{gmlid} (specific wall)

properties: gmlid, generic,

appearance, geometry, links

<<Resource>>

{gmlid} (specific ceiling)

properties: gmlid, generic,

appearance, geometry, links

<<Resource>>

{gmlid} (specific furniture)

properties: class, usage,

function, gmlid, generic,

appearance, geometry, links

<<Resource>>

{gmlid} (specific installation)

properties: class, usage,

function, gmlid, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<Resource>>

windows (list of windows)

properties: Array of windows,

links

<<Resource>>

doors (list of doors)

properties: Array of doors,

links

<<ResourcePath>>

/windows

<<Resource>>

{gmlid} (specific window)

properties: gmlid, generic,

appearance, geometry, links

<<Resource>>

{gmlid} (specific door)

properties: gmlid, generic,

address, appearance,

geometry, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<Resource>>

Exterior & Interior Installations

Array of installation sub-

resources

Filter: usage, function, class,

type (LoD4)

<<Resource>>

{gmlid} (specific installation)

properties: usage, function,

class, gmlid, generic, type,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}<<ResourcePath>>

/installations

<<Resource>>

windows (list of windows)

properties: Array of windows,

links

<<Resource>>

doors (list of walls)

properties: Array of walls,

links

<<Resource>>

{gmlid} (specific window)

properties: gmlid, generic,

appearance, geometry, links

<<Resource>>

{gmlid} (specific door)

properties: gmlid, generic,

address, appearance,

geometry, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/doors

<<ResourcePath>>

/windows

<<Resource>>

closures (list of closures)

properties: Array of closures,

links

<<Resource>>

{gmlid} (specific closure)

properties: gmlid, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/closures

Figure 4-16: Conceptual design of the LoD4 “bldg.” sub-resources

P a g e | 91

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

It should be noted that in LoD4 there are two sub-resources with the same name but

different URIs, and called “installation”. The first one is child resource of bldg resource

and retrieve a list of interior installations in a particular building (1), while the second one

is the child resource of the “rooms” resource and retrieve the respective installation that

are located in a specific room (2) (see Annex A.2).

../bldg/{gmlid}/installation (1)

../bldg/{gmlid}/rooms/{gmlid}/installation (2)

Similar to the LoD3, the interior boundary resources (“walls and “floors”) provide the

“windows” and “doors” child resources.

../bldg/{gmlid}/rooms/{gmlid}/{walls or floors}/{gmlid}/{windows or doors}

The aforesaid resources have similar properties, filters (see Table 4-3) and schema (see

Annex A.3) like LoD3 opening resources.

4.1.5. Case studies using semantic requests

In this section, several requests are presented using the conceptual design of the CityGML

RESTful Web service. For this purpose, the “Topo3DcityDBPS” 2D/3D WebGIS is utilized

which was developed and presented by Pispidikis & Dimopoulou (2016) in order to

successfully retrieve and visualize CityGML data in accordance with their respective

geometric and semantic characteristics. Thereafter, Athanasiou, Pispidikis, & Dimopoulou

(2018), for interoperability purposes, upgraded this application by replacing its main

retrieval mechanism with the bldg resources of CityGML RESTful Web service.

Initially, a building example was chosen, which includes a variety of semantic characteristics

in all LoDs (Figure 4-17)

P a g e | 92

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

 LoD2 LoD3 LoD4

Figure 4-17: A building example in LoD2, LoD3 and LoD4

Next, a PostgreSQL/PostGIS Database was utilized which was structured according to

3DcityDB schema. Thereafter, the storage of this building model into this spatial database

was implemented by the use of the 3DcityDB importer/exporter.

When the connection to the database was achieved, the available buildings in LoD2 were

retrieved. Next, the building (id:1) was retrieved and visualized (Figure 4-18)

Figure 4-18: LoD2 bldg sub-resources implementation example

../bldg? lod=2
../bldg/1

../bldg/1/walls
../bldg/1/roofs ../bldg/1/grounds

Get specific boundary surfaces

Get the geometry value per

thematic surface (GeoJSON)

P a g e | 93

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Similarly, Figure 4-19 presents the retrieval of LoD4 instance of this building

Figure 4-19: LoD4 bldg sub-resources implementation example

Next, the following request is used to fetch all the available rooms of this building:

 ../bldg/1/rooms → seven rooms

Thereafter, having all the available rooms (seven rooms in total) the retrieval of a particular

room (e.g. id: 72) is implemented and visualized as follows (Figure 4-20):

../bldg? lod=4

P a g e | 94

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Figure 4-20: Example of “rooms” resources implementation

../bldg/1/rooms

../bldg/1/rooms/72/floors

../bldg/1/rooms/72

../bldg/1/rooms/72/walls ../bldg/1/rooms/72/ceilings

../../walls/1 ../../walls/2

../../walls/3

../../ceilings/1

../../walls/4

../../floors/1

P a g e | 95

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Finally, the retrieval and visualization of all the available furniture of the room 72 is

achieved by implementing the following procedure. Firstly, these furniture are retrieved

using the following endpoint:

../bldg/1/rooms/72/furniture 1 st request

Next, the said result is implemented as JSON input in JavaScript code (Figure 4-21):

async function getFurniture(data)

{

 data.furniture.forEach(thisfurniture => {

 var restEndpoint=“../bldg/1/rooms/72/furniture/”+ thisfurniture.gmlid;

 var currentFurnitureGeometry= await getRequest(restEndpoint);

 map.add(currentFurnitureGeometry);

 })

}

function getRequest(uri) {

 return new Promise((resolve, reject) => {

 $.ajax({

 url:uri,

 success: function(data) {

 resolve(data.geometry);

 },

 error: function (error) {

 reject(error);

 },

 })

 })

}

 getFurniture(furniture);

Figure 4-21: Advanced requests to fetch all the furniture in a specific room

Nine furniture➔nine endpoints

GeoJSON-based

geometry

file:///A:/PERSONAL_DATA/ΔΙΔΑΚΤΟΡΙΚΗ%20ΔΙΑΤΡΙΒΗ/url

P a g e | 96

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

4.2. Tun Thematic Resource

The tunnel model is closely related to the building model. The scope of this model

encompasses manmade structures that are located mostly below the terrain surface and

are intended to convey transportation flows such as pedestrians, cars, trains etc.

Therefore, the geological structures, natural caves, mining facilities and subsurface utility

network are excluded (Gröger et al., 2012). Additionally, this model supports the

representation of semantic aspects of tunnel and tunnel parts only in four levels of detail,

LoD1 to LoD4 (Figure 4-22).

Figure 4-22: Tunnel module in different LoDs

(Gröger et al., 2012)

Specifically, in LoD1, there are no semantic characteristics as the tunnel model consists

only of a geometric representation of the tunnel volume. In LoD2 and higher LoDs the outer

structure of a tunnel can be semantically differentiated while in LoD4, the interior of a

tunnel can also be structured with additional semantic features (Table 4-4).

P a g e | 97

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Geometric/ semantic theme LoD1 LoD2 LoD3 LoD4

Volume part of the tunnel shell

Tunnel parts

Boundary surfaces

Outer tunnel installations

Openings

Hollow spaces

Interior tunnel installation

Table 4-4: Semantic availability of a tunnel model per LoD

4.2.1. Tun main resource

The “tun” main resource refers to the tunnel module of the CityGML and is used to retrieve

all the available tunnels and tunnel parts respectively. When a tunnel composed of structural

segments, for example tunnel entrance and subway, has to be separated into one tunnel

having one or more additional “TunnelPart” (Figure 4-23).

Figure 4-23: Example of a tunnel modeled with two tunnel parts

(Gröger et al., 2012)

S
e
m

an
ti

c
th

e
m

e
s

P a g e | 98

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

 The available filters for this resource are the general filters (see Table 3-4) and also the

tunPart. The value of the latter is Boolean and describe whether the tunnel is tunnel part

or not.

The retrieval resource schema contains two objects like “links” and “tun”. The first one

contains an array of links to itself and to parent resource (“citymodels” resource), while the

second one contains the available tunnels and tunnel parts (Figure 4-24(a)).

a) …/tun b) …/tun/{gmlid}

Figure 4-24: JSON-based tun resource schema

Additionally, a particular "tun” resource can be retrieved by using as sub-resource the

corresponding gmlid. The available information of this sub-resource contains a variety of

properties such as lod, tunPart, tunInformation, geometry, generic, gmlid and links (see

Table 3-5; for JSON-based schema see Figure 4-24(b)). More specific, the

“tunInformation” object includes a list of properties such as class, function, usage, year of

construction and year of demolition.

Array of all tun child resources

P a g e | 99

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

4.2.2. LoD2 tun sub-resources

The LoD2 child resources of the “tun” resource are based on the respective classes’

“_BoundarySurface” and TunnelInstallation of tunnel module of CityGML. Namely, the

“_BoundarySurface” is the abstract class for several thematic classes, structuring the

exterior shell of a tunnel as well as the visible surface of hollow spaces and both outer and

interior tunnel installations. The thematic classification of tunnel surfaces with regard to

the “_BoundarySurface” class is illustrated in Figure 4-25.

Figure 4-25: Exterior and interior tunnel boundary surfaces

(Gröger et al., 2012)

Therefore, in terms of the outer boundary surfaces, the following URIs are specified:

“walls”, “grounds”, “roofs” and “ceilings”. Additionally, the “closure” resource is also defined

so that the open side of the model that was sealed by virtual surface can also be retrieved.

The schema of the exterior boundary resources of tunnel is similar to that of the building

P a g e | 100

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

resources either for the exterior boundary surface category (see Annex A.1) or for the

features belonging to a specific exterior boundary surface (see Figure 4-8).

The semantic objects which refer to the outer components of a tunnel and strongly affect

its outer characteristics belong to tunnel installations. So, the “installation” resource (see

Annex A.2) is used for the retrieval of the aforementioned objects. This resource can be

filtered by implementing a variety of filters such as class, function, usage and type. The

property “type” is embedded to the “installation” resource so that the separation of the

interior and exterior installation is achieved. The “installation” resource schema has a

similar structure to exterior boundary surfaces apart from the fact that four attributes

are included with respect to the retrieval resource schema of a particular installation such

as class, function, usage and type (Figure 4-26).

Figure 4-26: JSON-based retrieval resource schema of a specific tunnel installation

P a g e | 101

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

The conceptual design of the LoD2 “tun” resources is presented in Figure 4-27.

<<Application>>

CityGML RestFul Web

Services

<<Resource>>

tun

properties:Array of tunnels,

links

Filter: general filters, tunPart

<<ResourcePath>>

/tun

<<Resource>>

{GMLID} (specific tunnel)

properties:tunInformation,

geometry, generic, gmlid,

lod,tunPart, links

<<ResourcePath>>

/{gmlid}
<<ResourcePath>>

/roofs

<<Resource>>

roofs

properties: Array of roofs,

links

<<Resource>>

walls

properties: Array of walls,

links

<<ResourcePath>>

/walls

<<Resource>>

grounds

properties: Array of grounds,

links

<<ResourcePath>>

/grounds

<<Resource>>

{gmlid} (specific ground)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific wall)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific roof)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

ceilings

properties: Array of ceilings,

links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid}(specific ceiling)

properties: gmlid,lod, generic,

appearance, geometry, links

<<Resource>>

floors

properties: Array of floors,

links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific outer floor)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/ceilings

<<ResourcePath>>

/floors

<<Resource>>

exterior installations

properties: Array of

installations, links

Filter: usage, function, class,

type (LoD4)

<<Resource>>

{gmlid} (specific exterior

installation)

properties: usage, function,

class, gmlid, generic, type,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/installations

<<Resource>>

closures
<<ResourcePath>>

/closures

<<Resource>>

{gmlid} (specific closure)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

properties: Array of closures,

links

Figure 4-27: Conceptual design of the LoD2 “tun” sub-resources

P a g e | 102

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

4.2.3. LoD3 tun sub-resources

From LoD3 and above the exterior boundary surfaces such as roofs and walls may contain

opening features like doors and windows. These features can be retrieved by using the

“doors” and “windows” child resources respectively, which have similar information, filters

and schema to the respective opening resources of building module (see Annex A.3).

Additionally, the schema of the URI regarding a specific opening resource is the following:

../tun/{gmlid}/{roofs or walls}/{gmlid}/{openings}/{gmlid}

The conceptual design of the additional LoD3 tun sub-resources are presented in Figure 4-

28

P a g e | 103

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

<<Application>>

CityGML RestFul Web

Services

<<Resource>>

tunnels

properties:Array of tunnels,

links

Filter: general filters,tunPart

<<ResourcePath>>

/tun

<<Resource>>

{GMLID} (specific tun)

properties:tunInformation,

geometry, generic, gmlid, lod,

tunPart, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/roofs

<<Resource>>

roofs

properties: Array of roofs,

links

<<Resource>>

walls

properties:Array of walls,

links <<ResourcePath>>

/walls

<<Resource>>

{gmlid} (specific wall)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific roof)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

exterior installations

properties: Array of

installations, links

Filter: usage, function, class,

type (LoD4)

<<Resource>>

{gmlid} (specific exterior

installation)

properties: usage, function,

class, gmlid, generic, type,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}<<ResourcePath>>

/installation

<<Resource>>

windows (list of windows)

properties: Array of windows,

links

<<Resource>>

doors (list of doors)

properties: Array of doors,

links

<<ResourcePath>>

/windows

<<ResourcePath>>

/doors

<<Resource>>

windows (list of windows)

properties: Array of windows,

links

<<Resource>>

doors (list of doors)

properties: Array of doors,

links

<<ResourcePath>>

/windows

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific window)

properties: gmlid, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific door)

properties: gmlid, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{GMLID} (specific door)

properties: gmlid, generic,

address, appearance,

geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific window)

properties: gmlid, generic,

appearance, geometry, links

<<ResourcePath>>

/doors

Figure 4-28: Conceptual design of the additional LoD3 “tun” sub-resources

P a g e | 104

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

4.2.4. LoD4 tun sub-resources

In LoD4, the highest level of resolution, the interior of tunnel composed of several hollow

spaces which mainly semantically describe the free space inside a tunnel or tunnel part.

Therefore, the “hollowspaces” child resource regarding a specific “tun” resource can be

requested and thus both the list of hollow spaces and the links objects can be retrieved.

Thereafter, when a particular hollow space is requested by using the corresponding gmlid a

variety of information is retrieved such as class, usage, function, gmlid, generic and links

(see Annex A.6). Additionally, each hollow space can be semantically described and modeled

by specialized boundary surfaces such as FloorSurface, CeilingSurface,

InteriorWallsurface and ClosureSurface. Therefore, each “hollowspace” resource provides

several links to the respective boundary child resources such as “walls”, “floors”, “ceilings”

and “closures” (see Annex A.1). Then, a specific “walls” resource may provide as child

resources the opening features such as windows and doors (see Annex A.3). Moreover, the

objects inside a tunnel which are permanently attached to the tunnel structure and cannot

be moved can be requested by using the “installation” resource (see Annex A.2). It should

be noted that there are two available “installation” sub-resources with different URIs so

that the interior installation can be retrieved based on either a specific tunnel or a specific

hollowspace. An instance of the above-mentioned cases is as follows

../tun/{gmlid}/hollowspaces/{gmlid}/installation

../tun/{gmlid}/installation?type=interior

Additionally, the retrieval of the movable objects of a hollow space can be requested by

implementing the “furniture” sub-resource (see Annex A.5)

The conceptual design of the additional sub-resources for the LoD4 “tun” resource,

including the respective available filters and properties per sub-resource, is shown in Figure

4-29

P a g e | 105

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

<<Application>>

CityGML RestFul Web

Service

<<Resource>>

tunnels

properties: Array of tunnels,

links

Filter: general filters, tunPart

<<ResourcePath>>

/tun

<<Resource>>

{gmlid} (specific tunnel)

<<ResourcePath>>

/{gmlid}

<<Resource>>

hollowspaces

properties: Array of hollow

spaces, links

Filter: class, function, usage,

BBox

<<ResourcePath>>

/hollowspaces

<<Resource>>

{gmlid} (specific hollowspace)

properties: class, usage,

function, gmlid, links, generic

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/doors

<<Resource>>

floors (list of floors)

properties: Array of floors,

links

<<Resource>>

walls (list of walls)

properties: Array of walls,

links

<<Resource>>

ceilings (list of ceilings)

properties: Array of ceilings,

links

<<ResourcePath>>

/floors

<<ResourcePath>>

/walls

<<ResourcePath>>

/ceilings

<<Resource>>

furnitures (list of furnitures)

properties: Array of

furnitures, links

Filter: class,usage, function

<<ResourcePath>>

/furniture

<<Resource>>

installations (list of

installations)

properties: Array of

installations, links

Filter: class,usage, function

<<ResourcePath>>

/installation

<<Resource>>

{gmlid} (specific floor)

properties: gmlid, generic,

appearance, geometry, links

<<Resource>>

{gmlid} (specific wall)

properties: gmlid, generic,

appearance, geometry, links

<<Resource>>

{gmlid} (specific ceiling)

properties: gmlid, generic,

appearance, geometry, links

<<Resource>>

{gmlid} (specific furniture)

properties: class, usage,

function, gmlid, generic,

appearance, geometry, links

<<Resource>>

{gmlid} (specific installation)

properties: class, usage,

function, gmlid, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<Resource>>

windows (list of windows)

properties: Array of windows,

links

<<Resource>>

doors (list of doors)

properties: Array of doors,

links

<<ResourcePath>>

/windows

<<Resource>>

{gmlid} (specific window)

properties: gmlid, generic,

appearance, geometry, links

<<Resource>>

{gmlid} (specific door)

properties: gmlid, generic,

address, appearance,

geometry, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<Resource>>

Exterior & Interior Installations

properties: Array of

installations, links

Filter: usage, function, class,

type (LoD4)

<<Resource>>

{gmlid} (specific installation)

properties: usage, function,

class, gmlid, generic, type,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/installation

<<Resource>>

closures (list of closures)

properties: Array of closures,

links

<<Resource>>

{gmlid} (specific closure)

properties: gmlid, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/closures

properties: tunInformation,

geometry, generic, gmlid,

lod, tunPart, links

Figure 4-29: Conceptual design of the additional LoD4 “tun” sub-resources

P a g e | 106

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

4.2.5. Case studies using semantic requests

In this section, a variety of requests are presented using the conceptual design of the

CityGML RESTful Web service regarding the “tun” resources. Initially, it should be noted

that the code list values of function, usage and class with regard to semantic features such

as tunnel, interior/exterior installations, hollow spaces and furniture are specified in the

XML file CityGML_ExternalCodeList.xml, according to the dictionary concept of GML 3.

Next, three main categories of requests are presented such as basic requests (a simple

request), advanced requests (two or more requests) and requests using simple JavaScript

code.

4.2.5.1. Basic requests

- Overview of the available tunnels and tunnel parts in LoD2.

../citymodels?thematics=tun&lod=2

- A CityGML dataset contains semantic information of tunnels in WGS84 CRS. However,

a user needs to retrieve all the available pedestrian and roadway tunnels (functions:

1030 & 1010) in specific boundary area (334433.0, 4455667.0, 445677.0, 5566556.0)

at Web Mercator Projection (EPSG: 3857).

../tun?function=1030,1010&bbox=334433.0, 4455667.0, 445677.0,

5566556.0&epsg=3857

- The exterior walls of a tunnel with gmlid 2.

../tun/2/walls

- The available windows of the wall with gmlid 2 for tunnel 1.

../tun/1/walls/2/windows

P a g e | 107

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

- The light switches (function: 3020, according to the interior tunnel installation

dictionary) in tunnel 2.

../tun/2/installation?function=3020

- The lamps (function: 3010, according to the interior tunnel installation dictionary) of

hollow space 3 for tunnel 2.

../tun/2/hollowspaces/3/installation?function=3010

- The furniture of hollow space 3 for tunnel 4.

../tun/4/hollowspaces/3/furniture

4.2.5.2. Advanced requests

Each HTTP request should happen in complete isolation (stateless interaction). Therefore,

when the retrieval information is complex and needs more than one requests to be used

then these requests have to be implemented sequentially. Hence, the result of each request

can be used as input value for the next request. However, taking into consideration that the

CityGML RESTful Web service is designed in compliance with HATEOAS constraints then

the endpoint of every subsequent request can be retrieved from the “links” object of the

current request.

- A CityGML dataset containing a tunnel with two tunnel parts in LoD2 (Figure 4-30). A

user needs to retrieve all the lamps (function: 3010, according to the interior building

installation dictionary) of hollowspaces for this tunnel.

P a g e | 108

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

-

Figure 4-30: LoD2 Tunnel model

(Soon & Khoo, 2017)

-

So, in the first request, the user retrieves the available tunnel parts

../tun?tunPart=true 1st request➔ two tunnel parts (gmlid: tprt1 & tprt2)

For each tunnel parts the respective links are retrieved and thereafter, the available hollow

spaces are retrieved as well.

../tun/trpt1/hollowspaces ../tun/trpt2/hollowspaces

Then, for each hollowspace the respective lamps are retrieved.

../tun/trpt1/hollowspaces/hs1/installation?function=3010

../tun/trpt2/hollowspaces/hs2/installation?function=3010

One hollow space available (gmlid: hs2) One hollow space available (gmlid: hs1)

P a g e | 109

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

4.2.5.3. Requests using simple JavaScript code

- The number of burned out lamps in the hollow space (gmlid: hs1) for a particular tunnel

(gmlid: tn2). Noted that the information about whether the lamps are burned out or not

is specified as a generic attribute with the following key value pair:

burned: {type: “Boolean}

The first request is used to retrieve all the available lamps of the given hollow space

implementing as sub-resource the “installation” resource in conjunctions with the respective

filter regarding the installation function type.

../tun/tn2/hollowspaces/hs1/installation?function=3010

Then, the retrieval result is implemented as JSON input in JavaScript code

var count=0

 response.forEach(results => {

 if(results.installation.generic.burned==true) {

 count++;

 }

 })

console.log(count);

4.3. Brid Thematic Resource

The bridge model represents the thematic, spatial and visual aspect of bridges, bridge parts

and construction elements in four levels of detail (Figure 4-31) Additionally, it was also

developed in strict analogy to the building model with respect to its aggregation structure,

its relations, its attributes and the definition of the particular LoD (Gröger & Plümer, 2012).

Result

P a g e | 110

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Figure 4-31: Bridge module in different LoD

(Gröger et al., 2012)

Therefore, the semantical and geometrical richness of the bridge module increases from

LoD1 to LoD3 regarding the blocks and architectural model respectively, while the interior

structures like rooms are embedded in LoD4 (Table 4-5)

Geometric/ semantic theme LoD1 LoD2 LoD3 LoD4

Volume part of the bridge shell

Bridge parts

Bridge Construction elements

Boundary surfaces

Outer bridge installations

Openings

Rooms

Interior bridge installation

Table 4-5: Semantic and geometric availability of a bridge model per LoD

S
e
m

an
ti

c
th

e
m

e
s

P a g e | 111

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

4.3.1. Brid main resource

The “brid” resource is the main thematic resource regarding the bridge module of the

CityGML and it is used to retrieve a list of the available bridges. However, if some parts of

a bridge differ from the remaining bridge regarding attribute values or if parts like ramps

can be identified as objects, those parts can be represented as bridge parts and they can

be retrieved as well. Additionally, the “links” object is also retrieved including information

for links to itself and to “citymodels” resource URI (Figure 4-32(a)). Moreover, the

retrieval list can be limited using not only the general filters (see Table 3-4) but also the

“bridPart” and the “isMovable” filter parameters. The value of these filters is Boolean and

provide information about whether the bridge is bridge part or not and whether is movable

or immovable respectively.

The implementation of the gmlid attribute as sub-resource, it fetches information about a

specific bridge or bridge part that contains a variety of properties (see Table 3-5; for

JSON-based schema see Figure 4-32(b)).

The semantical richness of bridge module increases from LoD1 and above and thus, in LoD1,

the semantic elements named “BridgeConstructionElement” are included. These features

are considered essential from a structural point of view like pylons, anchorages etc. (Figure

4-33). Hence, the “construction” endpoint is defined as sub-resource. The information

retrieval of said resource is an array of the available bridge construction elements and a

list of links as well. Moreover, the array of the bridge construction elements can be filtered

by using the general filters (see Table 3-4). Additionally, each of these elements can be

retrieved using the corresponding gmlid as sub-resource (see Figure 4-34).

P a g e | 112

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

a) …/brid b)…/brid/{gmlid}

Figure 4-32: JSON-based schema of α “brid” resource

Figure 4-33: Bridge construction elements

(Gröger et al., 2012)

P a g e | 113

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

a) …/brid/{gmlid}/construction b) …/brid/{gmlid}/construction/{gmlid}

Figure 4-34: Construction resources of a bridge

4.3.2. LoD2 brid sub-resources

Except for the bridge construction elements, the additional semantic characteristics of

the LoD2 bridge are the exterior boundary surfaces (WallSurface, RoofSurface,

GroundSurface, OuterFloorSurface and OuterCeilingSurface) (Figure 4-35), the

ClosureSurface, and the BridgeInstallation. Consequently, these semantic features are the

LoD2 child resources of the “brid” resource. The URIs with regard to boundary surfaces

are “walls”, “roofs”, “grounds”, “floors” and “ceilings” respectively and retrieve a list of the

corresponding thematic surfaces (see Annex A.1). Moreover, with regard to the

BridgeInstallation, the “installation” child resource is defined. This resource can be filtered

using several filters such as usage, function, class and type (see Annex A.2). Finally, the

“closures” resource is embedded so that the open sides of bridge can be virtually closed by

using the ClosureSurface. It should be noted that all of the above-mentioned sub-resources

have as child resource the respective gmlid value and hence any specific semantic feature

can be requested.

P a g e | 114

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

../brid/{gmlid}/{boundary surfaces}/{gmlid}

../brid/{gmlid}/{installation}/{gmlid}

Figure 4-35: Boundary surfaces of a bridge

P a g e | 115

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

The conceptual design of “brid” resource with regard to LoD2 is schematically shown in Figure 4-36

<<Application>>

CityGML RestFul Web

Services

<<Resource>>

bridges

properties:Array of bridges,

links

Filter: general filters,

bridsPart, isMovable

<<ResourcePath>>

/brids

<<Resource>>

{gmlid} (specific bridge)

properties:bridsInformation,

geometry, generic, address,

gmlid, lod, bridsgPart,

isMovable, links

<<ResourcePath>>

/{gmlid}
<<ResourcePath>>

/roofs

<<Resource>>

roofs

properties: Array of roofs,

links

<<Resource>>

walls

properties: Array of walls,

links

<<ResourcePath>>

/walls

<<Resource>>

grounds

properties: Array of grounds,

links

<<ResourcePath>>

/grounds

<<Resource>>

{gmlid} (specific ground)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific wall)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific roof)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

ceilings

properties: Array of ceilings,

links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid}(specific ceiling)

properties: gmlid,lod, generic,

appearance, geometry, links

<<Resource>>

floors

properties: Array of floors,

links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific outer floor)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/ceilings

<<ResourcePath>>

/floors

<<Resource>>

exterior installations

properties: Array of

installations, links

Filter: usage, function, class,

type (LoD4)

<<Resource>>

{gmlid} (specific exterior

installation)

properties: usage, function,

class, gmlid, generic, type,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/installation

<<Resource>>

Construction elements

properties: Array of

constructions, links

Filter: general filters

<<Resource>>

{gmlid} (specific construction)

properties: usage, function,

class, gmlid, generic,

appearance, geometry, links

<<ResourcePath>>

/construction

<<ResourcePath>>

/{gmlid}

<<Resource>>

closures
<<ResourcePath>>

/closures

<<Resource>>

{gmlid} (specific closure)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

properties: Array of closures,

links

Figure 4-36: Conceptual design of the LoD2 “brid” sub-resource

P a g e | 116

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

P a g e | 117

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

4.3.3. LoD3 brid sub-resources

The additional semantic features of the LoD3 bridge module are the opening features such

as windows and doors and hence, the respective resources of the aforesaid features are

“windows” and “doors”. These resources are child resources of each LoD3 “walls” and “roofs”

sub-resources with regard to “brid” main resource (see Annex A.3). The retrieval of specific

data regarding the aforementioned resources is achieved implementing the corresponding

gmlid as an endpoint. Additionally, each specific “door” resource should contain information

regarding the address and, therefore, this object is defined with allowable values in

compliance with xAL specification. The conceptual design of the above-mentioned “brid”

sub-resources regarding the LoD3 is presented in Figure 4-37.

P a g e | 118

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

<<Application>>

CityGML RestFul Web

Services

<<Resource>>

bridges

properties:Array of bridges,

links

Filter: general filters,

bridsPart

<<ResourcePath>>

/brids

<<Resource>>

{gmlid} (specific bridge)

properties:bridsInformation,

geometry, generic, address,

gmlid, lod, bridsgPart,

isMovable, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/roofs

<<Resource>>

roofs

properties: Array of roofs,

links

<<Resource>>

walls

properties: Array of walls,

links

<<ResourcePath>>

/walls

<<Resource>>

{gmlid} (specific wall)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific roof)

properties: gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

exterior installations

properties: Array of

installations, links

Filter: usage, function, class,

type (LoD4)

<<Resource>>

{gmlid} (specific exterior

installation)

properties: usage, function,

class, gmlid, generic, type,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/installation

<<Resource>>

Construction elements

properties: Array of

constructions, links

Filter: general filters

<<Resource>>

{gmlid} (specific construction)

properties: usage, function,

class, gmlid, generic,

appearance, geometry, links

<<ResourcePath>>

/construction

<<ResourcePath>>

/{gmlid}

<<Resource>>

windows (list of windows)

properties:Array of windows,

links

<<Resource>>

doors (list of doors)

properties: Array of doors,

links

<<ResourcePath>>

/windows

<<ResourcePath>>

/doors

<<Resource>>

windows (list of windows)

properties: Arraw of windows,

links

<<Resource>>

doors (list of doors)

properties: Array of doors,

links

<<ResourcePath>>

/windows

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific window)

properties: gmlid, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific door)

properties: gmlid, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{GMLID} (specific door)

properties: gmlid, generic,

address, appearance,

geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid} (specific window)

properties: gmlid, generic,

appearance, geometry, links

<<ResourcePath>>

/doors

Figure 4-37: Conceptual design of the LoD3 “brid” sub-resources

P a g e | 119

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

4.3.4. LoD4 brid sub-resources

In LoD4, the property “type” of the sub-resource “installation” is enabled so that the

separation of the interior and exterior installations is achieved. Moreover, the “rooms” child

resource is defined and the respective list of the available rooms of a bridge can be

retrieved (see Annex A.4). Thereafter, each room provides several links for child resources

such as “furniture”, “installation”, “closures” and boundary surfaces (“walls”, “floors” and

“ceilings”). The first one retrieves a list of furniture that are located in specific room. The

accessible information of this resource is class, usage, function, gmlid, generic, appearance,

geometry and links (see Annex A.5). Additionally, the available filter parameters of this

resource are class, usage and function. In this context, the rest child resources such as

“installation”, “walls”, “floors” and “ceilings” retrieve a list of the respective available

semantic features (see Annex A.2 for “installation” resource; see Annex A.1 for boundary

surface resources). Moreover, the “closures” child resource is also embedded so that the

opening space that is not filled by a door or window can be sealed by a virtual surface called

ClosureSurface. Generally, the retrieval of a particular feature is achieved using the

respective gmlid sub-resource. Furthermore, in LoD4, there are two sub-resources with

same name but different endpoints. The name of these resources is called “installation”.

The first one is child resource of “brid” main resource and retrieve a list of interior

installation in a specific bridge, while the second one is the child resource of the “rooms”

resource and retrieve the respective installations that are located in a specific room (see

Annex A.2 for both “installation” sub-resources).

Similar to the LoD3, the interior boundary resources such as “walls” and “floors” provide

the “windows” and “doors” child resources which have similar properties and filters like

LoD3 opening resources (see Annex A.3).

The conceptual design of the additional sub-resources of the LoD4 “brid” resource is shown

in Figure 4-38

P a g e | 120

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

<<Application>>

CityGML RestFul Web

Service

<<Resource>>

bridges

properties: Array of bridges,

links

Filter: general filters,

bridsPart, isMovable

<<ResourcePath>>

/brid

<<Resource>>

{gmlid} (specific bridge)

properties: bridsInformation,

geometry, generic, address,

gmlid, lod, bridsgPart,

isMovable, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

rooms (list of rooms)

properties: Array of rooms,

links

Filter: class, function, usage,

bbox

<<ResourcePath>>

/rooms

<<Resource>>

{gmlid} (specific room)

properties: class, usage,

function, gmlid, links, generic

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/doors

<<Resource>>

floors (list of floors)

properties: Array of floors,

links

<<Resource>>

walls (list of walls)

properties: Array of walls,

links

<<Resource>>

ceilings (list of ceilings)

properties: Array of ceilings,

links

<<ResourcePath>>

/floors

<<ResourcePath>>

/walls

<<ResourcePath>>

/ceilings

<<Resource>>

furnitures (list of furnitures)

properties: Array of

furnitures, links

Filter: class,usage, function

<<ResourcePath>>

/furnitures

<<Resource>>

installations (list of

installations)

properties: Array of

installations, links

Filter: class,usage, function

<<ResourcePath>>

/installation

<<Resource>>

{gmlid} (specific floor)

properties: GMLID, generic,

appearance, geometry, links

<<Resource>>

{gmlid} (specific wall)

properties: gmlid, generic,

appearance, geometry, links

<<Resource>>

{gmlid} (specific ceiling)

properties: gmlid, generic,

appearance, geometry, links

<<Resource>>

{gmlid} (specific furniture)

properties: class, usage,

function, gmlid, generic,

appearance, geometry, links

<<Resource>>

{gmlid} (specific installation)

properties: class, usage,

function, gmlid, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<Resource>>

windows (list of windows)

properties: Array of windows,

links

<<Resource>>

doors (list of doors)

properties: Array of doors,

links

<<ResourcePath>>

/windows

<<Resource>>

{gmlid} (specific window)

properties: gmlid, generic,

appearance, geometry, links

<<Resource>>

{gmlid} (specific door)

properties: gmlid, generic,

address, appearance,

geometry, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<Resource>>

Exterior & Interior Installations

properties: Array of

installations, links

Filter: usage, function, class,

type (LoD4)

<<Resource>>

{gmlid} (specific installation)

properties: usage, function,

class, gmlid, generic, type,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}
<<ResourcePath>>

/installation

<<Resource>>

windows (list of windows)

properties: Array of windows,

links

<<Resource>>

doors (list of walls)

properties: Array of doors,

links

<<Resource>>

{gmlid} (specific window)

properties: gmlid, generic,

appearance, geometry, links

<<Resource>>

{gmlid} (specific door)

properties: gmlid, generic,

address, appearance,

geometry, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/doors

<<ResourcePath>>

/windows

<<Resource>>

closures (list of closures)

properties: Array of closures,

links

<<Resource>>

{gmlid} (specific closure)

properties: gmlid, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/closures

Figure 4-38: Conceptual design of the LoD4 “brid” sub-resources

P a g e | 121

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

4.3.5. Case studies using semantic requests

This section presents the use of the resources with respect to the bridge model of CityGML

v2. Therefore, a CityGML dataset is utilized which contains a variety of different types of

bridges in different LoDs (Figure 4-39)

Figure 4-39: Different types of bridges

(Gröger et al., 2012)

The above categories are based on the available code list of the class attribute of the

CityGML bridge module (Gröger et al., 2012). So, implementing the first request, the

available arced bridges (class: 1000) are retrieved (Figure 4-40).

P a g e | 122

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

../brid?class=1000

Figure 4-40: JSON-based result for aced bridges

P a g e | 123

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

According to the said result (see Figure 4-40), there are two aced bridges available in LoD2

and LoD3 respectively which are not bridge parts and are also immovable (Figure 4-41).

(a) LoD2 aced bridge (b) LoD3 aced bridge

Figure 4-41: Results of same aced bridge in different LoDs: (a) LoD2, (b) LoD3

Moreover, for more information on each bridge the corresponding endpoints can be

requested:

 ../brid/acedBridgeLod2 ../brid/ acedBridgeLod3

Furthermore, for both bridges, there are only two sub-resources such as “installation” and

“construction”. Thereafter, focusing on retrieving information about the installations and

constructions of LoD3 aced bridges the following URIs are requested:

../brid/acedBridgeLod3/installation

../brid/ acedBridgeLod3/construction

Totally, there are two installations available (two railings) (Figure 4-42-(a)) and eleven

construction elements (four columns and seven additional constructions) (Figure 4-42-(b) &

(c)).

P a g e | 124

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

 (a) two railings

 (b) four columns

 (c) seven additional construction elements

Figure 4-42: Result of construction and installation semantic elements of the LoD3 bridge

instance

Finally, seven additional endpoints should be requested to fetch and visualize all the

available construction elements (see Figure 4-42-(c)) using the respective gmlid of each

element as sub-resource. For this purpose, the following JavaScript code is implemented

(Figure 4-43)

Semantic

themes

gmlid

Railing instRail1

Railing instRail2

collumn instCol1

collumn instCol2

collumn instCol3

collumn instCol4

Construction instConst1

Construction instConst2

Construction instConst3

Construction instConst4

Construction instConst5

Construction instConst6

Construction instConst7

P a g e | 125

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

async function getConstruction(data)

{

 data.construction.forEach(thisConstr => {

 var restEndpoint=“../brid/acedBridgeLod3/construction/”+ thisConstr.gmlid;

 var currentConstrGeometry= await getRequest(restEndpoint);

 map.add(currentConstrGeometry);

 })

}

function getRequest(uri) {

 return new Promise((resolve, reject) => {

 $.ajax({

 url:uri,

 success: function(data) {

 resolve(data.geometry);

 },

 error: function (error) {

 reject(error);

 },

 })

 })

}

 getConstruction(Constructions);

Figure 4-43: JavaScript-based procedure to request all the construction elements of a

specific LoD3 aced bridge

Seven constructions➔seven endpoints

GeoJSON-based

geometry

file:///A:/PERSONAL_DATA/ΔΙΔΑΚΤΟΡΙΚΗ%20ΔΙΑΤΡΙΒΗ/url

P a g e | 126

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

P a g e | 127

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

5. LOD-INDEPENDENT THEMATIC

RESOURCES

5.1 Thematic Resources Available in all LoDs

5.2 Thematic Resources Available from LoD2 and

above

P a g e | 128

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

This chapter presents the conceptual design of the rest of the main resources of the

CityGML RESTful Web service which are mainly LoD-independent thematic resources.

Namely, these resources are enriched with semantic characteristics either

independently of LoD or from LoD2 and above without any different from one level

to another. Hence, the thematic resources with same availability in all LoD as well as

the thematic resources with same availability from LoD2 and above are presented.

In this chapter, the 4th sub-research question of the current dissertation is partially

answered:

How could CityGML data be semantically retrieved by users without knowledge of

the source?

This chapter is based on the following paper:

 Pispidikis and Dimopoulou (2019)

P a g e | 129

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

5.1. Thematic Resources Available in all LoDs

The thematic modules of CityGML v2 allow the representation of the thematic and spatial

parameters of the 3D models’ objects at different levels of detail. The transition from one

level to another imposes and allows different semantic details both on the outside and

inside. Consequently, the sub-resources for the main resources are designed based on LoD.

However, the majority of the thematic modules of CityGML v2 are enriched with semantic

characteristics either independently of LoD or from LoD2 and above without any different

from one level to another. Hence, the sub-resources of these main resources will be

available for all LoDs or from LoD2 and above.

The main resources that their semantic features are independent of LoD are the “grp”,

“dem”, “frn”, “luse”, “veg”, “vegetation” and “plantcovers”. These resources are conceptual

designed according to the corresponding thematic modules of CityGML v2 such as

“CityObjectGroup”, “Relief”, “CityFurniture”, “LandUse”, ”Vegetation” and the additional

sub-classes of the “Vegetation” module like “SolitaryVegetationObject” and “PlantCover”.

5.1.1. Veg resources

The Vegetation features are important components of a 3D city model, since they support

the recognition of the surrounding environment. These objects of CityGML v2 distinguish

between solitary vegetation object like trees and vegetation areas, which represent

biotopes like forest or other plant communities (Figure 5-1). These features can be

requested using the “veg” main resource which provides information about the available

vegetation objects grouped on the basis of the aforementioned categories such as

“vegetation” (solitary vegetation objects) and “plantcovers” (vegetation areas). Also, this

resource can be filtered using a new filter parameter called “vegetationtype with values

according to the aforementioned categories (Figure 5-2).

P a g e | 130

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Figure 5-1: Example for vegetation objects of the sub-classes SolitaryVegetationObject

and PlantCover

(Gröger et al., 2012)

Figure 5-2: JSON-based schema of “veg” resource

Additionally, in each group, the corresponding resource links of the available vegetation

models are provided. As a result, the “veg” main resource is mainly used in order to inform

the users about the two available group resources regarding the solitary vegetation objects

and the vegetation areas. So, the URI resources of these categories are “vegetation” and

plantcovers” respectively. These resources are not sub-resources, since they are

independent resources of the “veg” resource. Therefore, the JSON-based schema of these

resources is presented in Figure 5-3

P a g e | 131

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

../{vegetation or plantcovers}

Figure 5-3: JSON-based schema of “vegetation” and “plantcovers” resources

Thereafter, when a particular vegetation model is requested by implementing the respective

gmlid, various information is retrieved such as vegInformation, generic, gmlid, lod, links,

appearance and geometry. The vegInformation object contains a variety of attributes

depending on the category to which the particular vegetation model belongs (Table 5-1).

vegInformation Type category

class Number vegetation & plantcovers

usage Number vegetation & plantcovers

function Number vegetation & plantcovers

species Number vegetation

height Number vegetation

trunkDiameter Number vegetation

crownDiameter Number vegetation

The character “XXX” has the value of either vegetation

or plantcover. Also, the retrieval data is array of

features that belongs to the corresponding category.

P a g e | 132

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

averageHeight Number plantcovers

Table 5-1: Available attributes of vegInformation object

Furthermore, the general filters (see Table 3-4) can be used in both categories, while the

vegetation category can also be filtered using the “species” parameter. The value of this

parameter is defined according to the codelist of CityGML specification regarding the

solitaryVegetationObject attribute “species”.

The conceptual design of the “veg”, “vegetation” and “plantcovers” resources with available

properties and filters is shown in Figure 5-4.

<<Application>>

CityGML RestFul Web

Services

<<Resource>>

vegetation

(list of available vegetation)
<<ResourcePath>>

/vegetation

<<Resource>>

{gmlid}{specific plancover}

properties:

vegInformation,gmlid,lod, generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid}{specific vegetation}

properties: vegInformation,

gmlid, lod,generic,

appearance, geometry, links

<<ResourcePath>>

/{gmlid}

<<Resource>>

veg

<<ResourcePath>>

/veg

<<ResourcePath>>

/plantcovers

<<Resource>>

plantcovers

(list of available plantcovers)

properties: vegetationtype,

links

Filter: vegetationtype

properties: Array of solitary

vegetation objects, links

properties: Array of

vegetation areas, links

Filter: general filter, species

Filter: general filter

Figure 5-4: Conceptual design of “veg”, “vegetation” and “plantcovers” resources

5.1.2. Luse resources

The “luse” resource retrieves information with regard to the LandUse model of the CityGML

v2. This model can be used to describe areas of the earth’s surface dedicated to a specific

land use, but also to describe areas of the earth’s surface having a specific land cover with

P a g e | 133

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

or without vegetation, such as sand, rock, mud flat, forest, etc. Furthermore, it represents

both the land use and the land cover concepts. The first describes the human activities on

the earth’s surface whereas the second one describes its physical and biological cover.

Hence, the retrieval information of the “luse” resource is a list of the aforementioned

concepts and also a “links” object which contains links to itself and to parent resources

(Figure 5-5)

Figure 5-5: JSON-based schema of “luse” resource

The implementation of a specific “luse” resource provides various information such as

luseInformation, lod, gmlid, links, generic, appearance and geometry. Moreover, the general

filters (see Table 3-4) are also available.

It should be noted that the LandUse module of CityGML v2 is defined for all LoDs (LoD 0-

4) and may have different geometries in any LoD. However, it has no extra semantic

characteristics on transition from one LoD to another and thus, except for the gmlid, the

“tun” resource is simple URI with no extra sub-resources.

P a g e | 134

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

The conceptual design of the “luse” resource is shown in Figure 5-6.

Figure 5-6: Conceptual design of “luse” resource

5.1.3. Frn resources

The “frn” main resource refers to the city furniture module of the CityGML v2. The objects

of this module are immovable objects like lanterns, traffic lights, traffic signs, or bus stops

and can be found in traffic areas, residential areas, on squares, or in built-up areas (Figure

5-7).

Figure 5-7: City furniture objects

The city furniture objects can be represented in city models with their specific geometry

(GeoJSON format), but in most cases the same kind of object has an identical geometry.

This means that the geometry of the prototype city furniture is stored only once in a local

CRS in all LoDs and referenced by other city furniture features. Hence, in these cases, the

implicit object is implemented.

P a g e | 135

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

The “frn” resource has similar schema as the “luse” resource and also when a particular city

furniture model is requested, various information is retrieved such as frnInformation, lod,

gmlid, links, generic, appearance and geometry. The frnInformation contains the attributes

class, function and usage. More specific, the class attribute allows object classification like

traffic light, traffic sign, delimitation stake or garbage can. Additionally, the function

attribute describes, to which thematic area the city furniture feature belongs to e.g.

transportation, traffic regulation etc. and the attribute usage denoted the real purpose of

the object. Also, the general filters (see Table 3-4) can be utilized.

The conceptual design of the “frn” resource is presented in Figure 5-8

<<Application>>

CityGML RestFul Web

Services

<<Resource>>

luse

(list of available landuses)
<<ResourcePath>>

/frn

<<Resource>>

{gmlid}{specific city furniture}

properties: frnInformation, lod,

gmlid, links, generic, geometry,

appearance

<<ResourcePath>>

/{gmlid}

properties: Array of LandUse

objects, links

Filter: general filter

Figure 5-8: Conceptual design of “frn” resource

5.1.4. Grp resources

The CityObjectGroup module delivers the grouping concept of CityGML that allows for the

aggregation of arbitrary city objects according to user-defined criteria, and to represent

and transfer these aggregations as part of a 3D city model. The endpoint for this resource

is the “grp” main resource and is used to retrieve all the available city object groups of a

datasets (Figure 5-9(a)). Next, when a particular city object group is requested, a wide

range of information is retrieved such as gmlid, generic, function, usage, class and group.

The group object contains a list of the grouped main resources of CityGML RESTful Web

service simultaneously with their respective links (Figure 5-9(b)).

P a g e | 136

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

(a) ../grp (b)../grp/{gmlid}

 Figure 5-9: JSON-based schema of “grp” resource

5.1.4.1. Case study using semantic requests

A CityGML dataset contains a city object group (gmlid: grp1), which groups a variety of

objects such as two buildings (gmlid:bldg1, lod:2 & gmlid:bldg2, lod: 1), one city furniture

(gmlid: frn1, lod: 2) and one LandUse (gmlid: luse1, lod: 1). The information about the

available objects of this city object group can be retrieved by implementing the specific

“grp” main resource as follows (Figure 5-10). Additionally, the corresponding endpoints of

these objects are also provided to be utilized for further requests.

P a g e | 137

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

../grp/grp1

 (1/2) (2/2)

Figure 5-10: JSON-based result for city object group instance

P a g e | 138

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

The conceptual design of the “grp” resource is presented in Figure 5-11

Figure 5-11: Conceptual design of “grp” resource

5.1.5. Dem resources

An essential part of a city model is the terrain. Therefore, the Digital Terrain Model (DTM)

of CityGML v2 is provided by the thematic module “Relief”. Additionally, in CityGML, the

terrain is associated with different concepts of terrain representations which can coexist.

Specifically, the terrain may be specified as a regular raster or grid, as a Triangulated

Irregular Network (TIN), by break lines, or by a mass points. These four terrain types may

be combined in different ways, yielding a high flexibility. Firstly, each type may be

represented in different LoDs, reflecting different accuracies or resolutions. Moreover, a

terrain can be described by the combination of multiple types, for example by a raster and

break lines, or by a TIN and break lines etc.

The information about “Relief” module of CityGML can be requested by implementing the

“dem” main resource. In section 5.1, the main resources that their semantic features are

independent of LoD are presented. However, apart from the “dem” resource, the rest of

the said main resources have no extra sub-resources except for gmlid. Consequently, the

“dem” resource is used to retrieve a list of available reliefs and, thereafter, when a specific

relief is requested, then four sub-resources are available such as “tins”, “masspoints”,

“breaklines” and “raster”. Hence, the implementation of a specific relief retrieves the

“links”, the “generic” objects and also a list of objects according to the available sub-

resources. (Figure 5-12).

P a g e | 139

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

../dem/{gmlid}

Figure 5-12: JSON-based schema of “dem” resource

Also, the above- mentioned retrieval result can be filtered using various filters such as lod,

bbox and type. These filters are mainly used to limit the elements of the “terrain” object.

Furthermore, the geometry object of a “tins” sub-resource could be a set of either

triangles or control points, break and stop lines. Moreover, the geometry object of

“breaklines” sub-resource can be composed of break lines and ridge/valley lines. The break

lines indicate abrupt changes of terrain slope, while the ridge/value lines in addition mark a

change of the sign of the terrain slope gradient.

The conceptual design of the “dem” resource and its sub-resources is schematically shown

in Figure 5-13

The value of the “type” element depends on the terrain

representation such as “tin”, “masspoint”, “breakline” and

“raster”

P a g e | 140

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Figure 5-13: Conceptual design of “dem” resource

5.2. Thematic Resources Available from LoD2 and Above

The “Transportation” and “WaterBody” modules of CityGML v2 belong to the category of

models that their semantic enrichment is available and same from LoD2 and above.

Consequently, the sub-resources of the respective “tun” and “wtr” main resources of

CityGML RESTful Web service are only available from LoD2 and above, without any

differentiation.

5.2.1. Tran resources

The transportation module of CityGML is a multi-functional and multi-scale model focusing

on thematic, functional, geometric and topological aspects of a road. According to CityGML

v2, the road is represented as a “TransportationComplex” which has different geometrical

representation through the different LoDs.

In LoD0, the transportation complexes are modelled by line objects establishing a linear

network. In case of areal transportation objects like squares, they should be modelled in

P a g e | 141

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

the same way as in Geographic Data Files (GDF) (ISO, 2011), which is used in most car

navigation systems. Specifically, in GDF, a square is represented as a ring surrounding the

place and to which the incident roads connect (Figure 5-14)

Figure 5-14: Representation of roundabout

In LoD1, all transportation features are geometrically described by 3D surfaces, while in

LoD2-LoD4, the transportation complexes are further subdivided thematically into

“TrafficAreas” and “AuxiliraryTrafficAreas” (Figure 5-15)

Figure 5-15: Transportation model representation in different LoDs

P a g e | 142

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

The transportation module can be requested by implementing the “tran” main resource of

CityGML RESTful Web service. This resource is mainly used to provide information about

the four available group resources in accordance with the sub-classes of CityGML

transportation module such as road, track, railway and square. Therefore, the information

retrieval of this resource is the available transportation models grouped by the said

predefined sub-classes (Figure 5-16).

Figure 5-16: JSON-based schema of “tran” main resource

Also, the “tran” main resource can be filtered using a filter parameter called “category”

with value the respective above-mentioned sub-classes of transportation module. It should

be noted that multi-category values can be implemented simultaneously separating them

with comma punctuation. Thereafter, in each group category, the corresponding resource

link of the specific transportation model can also be retrieved.

../tran?category= road,square

For instance, if a CityGML dataset contains a variety of transportation complexes in

different LoDs such as one track, one railway, one square and one road (LoD0 & LoD1) then

the following response is retrieved (Figure 5-17)

P a g e | 143

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

../tran?category= road,square

Figure 5-17: JSON result by using “tran” main resource

It should be noted that in the above-mentioned example, although there is one road, there

are two instances of this road based on the corresponding LoD.

The four predefined sub-classes are conceptual designed as extra main resources and not

as sub-resources, since they are independent of the “tran” main resource (Figure 5-18(a)).

Additionally, in LoD0 and LoD1, there are no extra semantic characteristics for these

resources and thus, the gmlid is only their child resource. Thereafter, when this child

resource is implemented, various properties are retrieved such as tranInformation, generic,

gmlid, lod, links and geometry (Figure 5-18(b)).

P a g e | 144

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

a) …/{extra main resources} b) …/{extra main resources}/{gmlid}

Figure 5-18: JSON-based schema of extra main resources (road, track, railway and

square)

From LoD2 and above the four available resources (road, track, railway and square) are

further subdivided semantically into TrafficAreas, which are used by transportation, such

as cars, trains, public transport, airplanes, bicycles or pedestrian and in

AuxiliaryTrafficAreas, which are of minor importance for transportation purposes (Figure

5-19). The URIs of these child resources are “trafficareas” and “auxiliaries” respectively

and are used to retrieve all their available thematic surfaces (see Annex A.7). Next, when

a particular thematic surface is requested, the following information is retrieved: class,

usage, function, surfaceMaterial, lod, generic, gmlid and geometry (see Annex A.7).

Moreover, the aforementioned list can be filtered by implementing the general filters (see

Table 3-4).

road, track, railway and square

P a g e | 145

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Figure 5-19: Example for the representation of LoD2 transportation module in CityGML

using TrafficAreas and AuxiliaryTrafficAreas

(Gröger et al., 2012)

As a result, the conceptual design of the tran, road, square, railway and track main

resources with regard to transportation module is presented in Figure 5-20

P a g e | 146

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

<<Application>>

CityGML RestFul Web

Services

<<Resource>>

road

(list of available roads)

<<ResourcePath>>

/road

<<Resource>>

{gmlid}{specific track}
<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid}{specific road}<<ResourcePath>>

/{gmlid}

<<Resource>>

tran
<<ResourcePath>>

/tran

<<ResourcePath>>

/track

<<Resource>>

track

(list of available tracks)

<<Resource>>

railway

(list of available railways)

<<Resource>>

{gmlid}{specific square}<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid}{specific railway}<<ResourcePath>>

/{gmlid}

<<Resource>>

square

(list of available squares)

<<ResourcePath>>

/railway

<<ResourcePath>>

/square

<<Resource>>

auxiliaries

<<Resource>>

trafficareas

<<ResourcePath>>

/auxiliaries

<<ResourcePath>>

/trafficareas

<<Resource>>

{gmlid}{specific auxiliary}

<<Resource>>

{gmlid}{specific trafficarea}

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<Resource>>

auxiliaries

<<Resource>>

trafficareas

<<ResourcePath>>

/auxiliaries

<<ResourcePath>>

/trafficareas

<<Resource>>

{gmlid}{specific auxiliary}

<<Resource>>

{gmlid}{specific trafficarea}

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<Resource>>

auxiliaries

<<Resource>>

traficareas

<<ResourcePath>>

/auxiliaries

<<ResourcePath>>

/trafficareas

<<Resource>>

{gmlid}{specific auxiliary}

<<Resource>>

{gmlid}{specific trafficarea}

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

<<Resource>>

auxiliaries

<<Resource>>

trafficareas

<<ResourcePath>>

/auxiliaries

<<ResourcePath>>

/trafficareas

<<Resource>>

{gmlid}{specific auxiliary}

<<Resource>>

{gmlid}{specific trafficarea}

<<ResourcePath>>

/{gmlid}

<<ResourcePath>>

/{gmlid}

Figure 5-20: Conceptual model of the main resources regarding the transportation module of CityGML

P a g e | 147

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

5.2.1.1. Case study using semantic requests

The following CityGML dataset contains a high-detailed street setting in Frankfurt and also

five textured buildings in LOD 3 (Figure 5-21).

Figure 5-21: CityGML model in the Frankfurt area

By focusing on the transportation module of CityGML, the “tran” main resource is requested

as follows (Figure 5-22):

../tran

Figure 5-22: “tran” main resource implementation

P a g e | 148

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

The above-mentioned request provides information about the availability of the main

resources regarding the transportation module such as road, track, railway and square and

their respective endpoints. Hence, according to this result, one road is available.

Thereafter, since the retrieval of this road requires the corresponding gmlid, the “road”

main resource is initially requested.

../road

Figure 5-23: “road” main resource implementation

Next request

P a g e | 149

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Next, by using the retrieval gmlid as sub-resource, the specific road is retrieved as well

(Figure 5-24).

../road/UUID_5ecac8db-8b6b-4dbf-b44f-59da438eb9b5

Figure 5-24: Request of specific road

Taking into consideration the above-mentioned result, the said road is further subdivided

thematically into “TrafficAreas” and “AuxiliraryTrafficAreas”. For that reason, two child

sub-resources are provided by the “links” object and also the geometry value of this road

is null.

P a g e | 150

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

With respect to the “trafficareas” resource, there are two available sub-resources with

the following gmlid values:

1) UUID_cb240546-eeac-434a-a478-c84b59e54fdc

2) UUID_c89a449a-62d7-4fc4-9e26-65b24f0c3af1

Therefore, by using each of these gmlid values as sub-resource, further information is

retrieved (Figure 5-25). More Specific, the first traffic area is α pedestrian area (usage:1),

which can be crossed on foot (function:2), while the second one is a driving lane (usage:2),

which can be crossed by cars (function:1). It should be noted that for both of these

“trafficareas” resources the respective GeoJSON-based geometry is also retrieved.

../road/UUID_5ecac8db-8b6b-4dbf-b44f-59da438eb9b5/trafficareas/

UUID_cb240546-eeac-434a-a478-c84b59e54fdc

P a g e | 151

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

(a)

../road/UUID_5ecac8db-8b6b-4dbf-b44f-59da438eb9b5/trafficareas/

UUID_c89a449a-62d7-4fc4-9e26-65b24f0c3af1

(b)

Figure 5-25: Implementation of “trafficareas” sub-resources

Similarly, Figure 5-26 presents the JSON-based retrieval information derived from the

implementation of the respective “auxiliaries” sub-resource. Thus, this area is a kerbstone

and is used as a ditch (function: 1200)

P a g e | 152

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

../road/UUID_5ecac8db-8b6b-4dbf-b44f-59da438eb9b5/auxiliaries/

UUID_ae4d3f7f-8d09-4f60-a37f-6f36dc87dd5

Figure 5-26: Implementation of “auxiliaries” sub-resource

5.2.2. Wtr resources

Waters have always played a significant role in urbanization process and also, they are

considered quite essential for human alimentation and sanitation. With respect to the

CityGML v2, a water body model represents the thematic aspects and three-dimensional

geometry of rivers, canals, lakes and basins. The retrieval of this model can be achieved

using the “wtr” main resource of CityGML RESTful Web service. The retrieval information

of this URI is a list of waterbody models and each of these models contains various

P a g e | 153

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

properties such as lod, wtrInformation, geometry, generic, gmlid and links (Figure 5-27).

Also, the general filters (see Table 3-4) can be implemented when the “wtr” resource is

requested.

a) …/wtr b)…/wtr/{gmlid}

Figure 5-27: JSON-based “wtr” main resource

Similar to the “tran” main resource for both LoD0 and LoD1, there are no extra semantic

features and so the only sub-resource is the respective gmlid value. From LoD2 and above

the water body is bounded by distinct semantic surfaces such as WaterSurface, which is

defined as the boundary between water and air, WaterGroundSurface, which is defined as

the boundary between water bodies or between water and underground and

WaterClosureSurface, which is the virtual boundary between waterbodies or between

water and the end of a modelled region (Figure 5-28).

P a g e | 154

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Figure 5-28: Distinct thematic surfaces of the waterbody from LoD2 and above

As a result, the above-mentioned distinct surfaces are the child resources of “wtr” main

resource using the following URIs respectively: “water”, “grounds” and “closures”. It should

be noted that the “water” sub-resource does not have the gmlid as child resource, as,

according to the WaterBody module of the CityGML v2, a waterbody must have one or zero

WaterSurface. Thus, for retrieving the WaterSurface of specific WaterBody the following

request should be implemented:

../wtr/{gmlid}/water

Moreover, only the “water” resource contains extra attribute such as waterLevel, which can

be used to describe the water level, for which the given 3D surface geometry was acquired.

The said information is especially important when the water body is influenced by the tide.

The allowed values of this attribute can be defined in a corresponding code list.

The conceptual design of “wtr” main resource with the respective available information and

filters per sub-resource is shown in Figure 5-29. Furthermore, the JSON-based retrieval

schemas of the distinct thematic sub-resources are presented in Annex A.8.

P a g e | 155

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

<<Application>>

CityGML RestFul Web

Services

<<Resource>>

closure surfaces (list)

<<ResourcePath>>

/closures

<<Resource>>

{gmlid}{specific ground surface}

properties:link, gmlid, lod,

geometry, generic

<<ResourcePath>>

/{gmlid}

<<Resource>>

{gmlid}{specific closure surface}

properties:link, gmlid, lod,

geometry, generic

<<ResourcePath>>

/{gmlid}

<<Resource>>

waterbodies
<<ResourcePath>>

/wtr

<<ResourcePath>>

/grounds

<<Resource>>

ground surfaces(list)

properties: lod, gmlid, links

Filter: general filters

properties: links, gmlid

properties:links, gmlid

<<Resource>>

water

properties:generic, lod,

links, geometry,

waterLevel

<<ResourcePath>>

/water

<<Resource>>

{gmlid}{specific waterbody}

properties: lod, wtrInformation,

geometry, generic, gmlid, links

<<ResourcePath>>

/{gmlid}

Figure 5-29: Conceptual design of the “wtr” main resource

P a g e | 156

P a g e | 157

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6. CONCLUSIONS AND FUTURE WORK

P a g e | 158

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

P a g e | 159

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6.1. Conclusions

CityGML is considered the optimal standard for the semantic, geometric and topological

representation of a city. However, the structure of the CityGML is rather complicated for

supporting all these urban complexities. Therefore, retrieving all the available semantic

features from this standard is a challenge and the goal of the current dissertation. More

specifically, according to the core research question, the CityGML data retrieval should be

achieved in relation to key-concepts such as, interoperability, semantic retrieval, easy-to-

use and by non-expert.

Initially, the tiled and hierarchically-based approaches for retrieving and visualizing

CityGML data using file-based formats, such as X3D, JSON, KML and glTF have been

thoroughly investigated, in order to answer the first sub-research question. The

visualization of CityGML over the web using the aforementioned 3D graphics, requires the

separation of geometric information from semantic information, as they do not have

designated place for storing additional object information, which often results in losing rich

semantics of CityGML. For that reason, since the OGC I3S and OGC 3D Tiles provide

solution to the aforementioned issue by using formats that support the integration of

attribute tables, such as SLPK and B3DM, they were further explored. Although the OGC

I3S and OGC 3D Tiles provide partial solution, the procedure to generate these files from

CityGML source, retrieving all semantic features, is complex, as all of these features must

be embedded as data attributes. Last but foremost, the implementation of these solutions

is not suitable in terms of interoperability.

Next, taking into account the complex structure of CityGML and the need to retrieve data

from distributed sources thus addressing interoperability issues, Web service technologies

were investigated. Therefore, the available OGC Geospatial Web services were examined,

which, in the context of 3D, are the 3DPS and the WFS. The said research provides answer

to the second sub-research question of the current dissertation.

Initially, the 3DPS was examined, as it has been designed to enable the interoperable

visualization between various data providers and different browser-based 3D globes and

P a g e | 160

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

other viewer implementation. The OGC testbed 13 Engineering Report summarizes a proof-

of-concept of the use of 3D Tiles and I3S as data delivery formats for the OGC 3DPS

interface standard. Hence, the OGC 3DPS standard provides solution to the interoperable

portrayal of the 3D city models. However, this portrayal requires complex processing

algorithms to convert CityGML into appropriate OGC portrayal standard such as I3S and

3D Tiles. Consequently, the utilization of 3DPS is not the optimal solution for the thesis

aim. Therefore, the interoperable and easy-to-use information retrieval of a CityGML based

on its semantic characteristics was further examined using the WFS. However, serving

CityGML via a WFS presents a number of technical problems relating to the characteristics

of the CityGML models and the fact that the CityGML schema is much more complex than

those usually deployed in WFS. Consequently, the extension of the OGC WFS was further

studied and presented. In conclusion, extending WFS to support the retrieval of CityGML

data is considered very important. However, the WFS 2.0 and previous version used a

Remote-Procedure-Call-Over-HTTP architecture style which was considered state-of-the-

art when the WFS standard was originally designed in the late 1990s and early 2000s.

Additionally, the WFS, as a query language, enables end-users to submit any type of

supported WFS requests and thus difficulties in query optimization can arise. Hence, the

integration of the RESTful service architecture on top of WFS was studied in order to

steer the end user towards a predefined pattern. In this context, the REST-based

architecture was adopted by the upcoming OGC API-Features leaving the Remote-

Procedure-Call-Over-HTTP architecture style. The OGC API Features provides basic

resources for retrieving features and feature collections. However, the core of OGC API-

Features does not currently support the implementation of extra sub-resources, but

provides solution for this limitation by extending the Core API by including richer queries

from existing OGC standards. Therefore, this implies and requires good knowledge for both

the structure of the source (e.g. CityGML) and the respective syntax of the implemented

OGC standard. Consequently, the said limitation opposes the fourth sub-research question

of this dissertation. Additionally, according to the CityGML architecture, the CityGML

structure is more semantic rather than geometric. On the other hand, the OGC WFS is

geospatial Web service which means that it was developed with aim of retrieving, visualizing

and modifying data based on geometry.

P a g e | 161

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

In the next step, the interoperable and easy-to-use information retrieval of a CityGML

based on its semantic characteristics was further examined using non- OGC Web Services

by focusing on different interoperable approaches. The said research provides answer to

the third sub-research question of the current dissertation. Thus, the two types of Web

services based on SOAP and REST principle were thoroughly studied and compared. It is

concluded that SOAP and REST are two different approaches, with different architectural

styles, providing several advantages and disadvantages when compared and so, the

architectural decision mostly depends on the specific application. Taking into consideration

the complexity of the CityGML structure, the resource-based architecture, which is

adopted by the REST, provides an easy-to-use data retrieval mechanism. Hence, the REST-

style Web service was chosen. Additionally, the REST was further compared with new

state-of-the-art technologies that can be adopted as a CityGML data retrieval mechanism

such as GraphQL and Falcor. The implementation of the Falcor or GraphQL presupposes

that the client should have good knowledge of either the GraphQL query language or the

complex CityGML schema. Additionally, both of these technologies do not currently support

geometries and spatial queries. As a result, the REST-based architecture style was finally

chosen.

In the final step, a suitable REST-based Web service was designed and the fourth sub-

research question of the current dissertation was answered. More specifically, the CityGML

RESTful Web service is proposed as the suitable mechanism that meets the requirements

of the current dissertation. The utilization of this service for CityGML 2.0 facilitates users

to retrieve and manage 3D city models data without presupposing knowledge of the complex

structure of CityGML. Also, the resources and sub-resources of this service are based on

the ten thematic modules of CityGML 2.0, and their availability depends on the LoDs. So,

the sequential retrieval of the semantic features of CityGML is achieved. Additionally,

through RESTful implementation, the CityGML RESTful Web Service follows several

constraints such as addressability, uniform interface, statelessness, self-describing

message and HATEOAS. Therefore, the service interacts by exchanging request and

response messages, which contain both the representations of resources and the

corresponding metadata. Moreover, the URI of every next request can be retrieved from

P a g e | 162

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

the “links” object of the current request and so, easy-to-use data retrieval can be

completed by non-expert users.

Additionally, CityGML RESTful Web service was conceptually designed to be an information-

based retrieval model regarding CityGML 2.0. Therefore, it is not geometrically-based like

other OGC standards such as WFS 2.0 and OGC API-Features and thus, the retrieval

format is a JSON schema with a list of information. One of this information could be the

geometry object, which can be mainly retrieved in GeoJSON format and not GML. The

JSON format facilitates the easy-to-use parsing and filtering of the retrieval data by

Client-side programming languages such as JavaScript. Thereafter, this data can be further

used as input parameters (descriptive or geometric) in spatial analysis tools. It should be

noted that the usability of the JSON has led to the creation of the CityJSON format,

which provides a simplified alternative to GML encoding of CityGML that is also lightweight

and suitable for use on the web and mobile.

In conclusion, the proposed CityGML RESTful Web service is conceptually designed to

achieve CityGML data retrieval based on their semantic characteristics by users without

any experience and knowledge of the source. So, the core research question of the current

dissertation is fully covered by the proposed approach.

As a result, the optimization of automated retrieval of semantic 3D City Data is achieved.

6.2. Future Work

6.2.1. OGC standard implementation

Similar to the CityGML RESTful Web service, the REST-based architecture was adopted

by the upcoming OGC API-Features leaving the Remote-Procedure-Call-Over HTTP

architectural style which is used by previous versions of WFS. The adoption of this

architecture style utilizes the WOA and hence, the development of reliable, flexible

application is facilitated in an easiest and most economical way (Athanasiou et al., 2018).

The OGC API Features provides basic resources for retrieving features and feature

P a g e | 163

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

collections. These resources are similar to the main resource schema of CityGML RESTful

Web Service. However, the core of OGC API-Features does not currently support the

implementation of extra sub-resources but provides solution for this limitation by

extending the Core API by including richer queries from existing OGC standards. The

integration of the sub-resources schema of CityGML RESTful Web Service as an extension

to the OGC API-Features will provide a sufficient way to semantically retrieve complex

CityGML data. Unfortunately, the aforementioned approach is out of the scope of the OGC

API-Features, since the latter is not intended to implement just a standalone API but the

same Web API should also implement other standards of the OGC API family (Portele,

2019).

However, during the presentation of the conceptual model of CityGML RESTful Web service

at the 3DGeoInfo conference in Singapore, significant positive reviews were received. More

specific, the reviewers pointed out the effective solution provided by this approach and

also suggested that the CityGML RESTful Web service should be further examined in order

to become an OGC standard. Consequently, the aforementioned proposal will be the main

future research work. Thereafter, when CityGML RESTful Web service become OGC

standard and belong to OGC API family, then it will be able to be implemented by the OGC

API Features

6.2.2. Compatibility with the Upcoming version 3 of CityGML for Future Implementation

and upgrade

Since January 2018, CityGML v3.0 conceptual model has been made available in development

mode on the original GitHub repository for OGC CityGML 3.0. This upcoming version has

been fully revised bringing a number of improvements, extensions and new functionalities

(Kutzner, Chaturvedi, & Kolbe, 2020) to reflect the increasing need for better

interoperability with other relevant standards in the field like IFC, IndoorGML, Land

Administrator Domain Model (LADM) and INSPIRE. The architecture of the CityGML 3

including the new additions is presented in Figure 6-1.

P a g e | 164

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Figure 6-1: CityGML 3.0 modules overview

(Kutzner, Chaturvedi, & Kolbe, 2020)

More specific, all modules from CityGML 2.0 will be part of CityGML 3.0. In addition, the

new modules Dynamizer, Versioning, PointCloud and Construction will be introduced, and the

modules Core, Generic, Building, and Transportation will be revised. These changes are

briefly presented in following paragraphs focusing on their impact on the conceptual model

of CityGML RESTful Web service.

6.2.2.1. Revised Core Module

In CityGML 3.0, a clear semantic distinction of spatial features is introduced by mapping all

city objects onto the semantic concepts of spaces and space boundaries. A space is an entity

of volumetric extent in the real word. So, since the Buildings, water bodies, trees, rooms

and traffic spaces have a volumetric extent, they are modelled as spaces. However, the

space is further subdivided into “physical spaces” and “logical spaces”. The first one refers

to the spaces that are fully or partially bounded by physical objects. The “physical spaces”

is an abstract class, which is mainly used to separate the physical from the logical space.

Hence, it does not affect the conceptual design of the main resources of CityGML RESTful

Web service.

P a g e | 165

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

On the other hand, logical spaces are spaces that are not necessarily bounded by physical

objects, but are defined according to thematic considerations and so, they can also be

bounded by non-physical or represent aggregation of physical spaces. For instance, a

building unit is a logical space as it aggregates specific rooms to flats. As a result, this sub-

category of space should be considered by the CityGML RESTful Web service.

With regard to the space boundary, it does not affect the conceptual design of the CityGML

RESTful Web service sub-resources as it is mainly used as an abstract class for the

boundary surfaces such as “WallSurface”, “RoofSurface” etc.

CityGML 3.0 will include a revised LoD concept which comprises a central definition of all

geometries in the Core module and the representation of the interior of city objects at any

level of detail. More specific, the LoD concept is modified, based on the proposed LoDs as

described by Lowner, et al. (2016). According to the authors, the main barrier in the current

concept of LoD is that the interior structure of an element can only be represented if the

exterior shell is represented in LoD4, which implies the highest semantic complexity and

geometric detail. Therefore, in CityGML 3.0, LoD4 is replaced by LoD0 to LoD3 for exterior

and indoor objects and all feature types can be represented in each LoD. So, it is possible

to model the outside shell of a model in LoD1 while representing the interior structure in

LoD2 or LoD3. It should be noted that the main structure of the CityGML RESTful Web

service is not affected by this important change as its conceptual model of the resources

is designed by taking into account the semantic aspect of CityGML. However, the availability

of the sub-resources should be modified so that these resources can be provided based on

the new concept of LoD.

6.2.2.2. New Construction module

The Construction module groups all classes which are similar over different types of

constructions like buildings, tunnels, bridges and introduces a new class

“OtherConstruction” to represent other man-made structures not belonging to any of the

aforementioned three modules (e.g. large chimneys or city walls). More specific, the

construction elements refer to the boundary and opening surfaces regarding the modules

P a g e | 166

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

building, bridge and tunnel which remain the same even if they belong to the construction

module. So, the respective boundary and opening child resources of the CityGML RESTful

Web service will not be changed.

6.2.2.3. New Versioning module

The Versioning module introduces bitemporal timestamps for all objects. Therefore, except

of the attributes “creationDate and “terminalDate” from CityGML 2.0, all objects now can

have a second lifespan expressed by the attributes “validFrom” and “validTo”. Additionally,

each geographic feature will have two identifiers such as “identifies” and “gml:id”. The value

of the “identifier” property will be stable along the lifetime of the real-word object, while

the “gml:id” attribute will be constructed from the “identifier” with concatenated

timestamp (Chaturvedi, et al., 2017). The versioning module could be supported by the

CityGML RESTful Web service by defining a new object “versioning” as an information

retrieval for each resource. Additionally, this object should be included in the general

filters. The object “versioning” will be a List of key value pairs based on the Versioning

module of the CityGML 3.0.

6.2.2.4. New Dynamizer module

The Dynamizer module improves the usability of CityGML for different kinds of simulations

and also facilitates the integration of sensors with 3D city models. Through the Dynamizers,

the link of timeseries data (OGC TimeseriesML, OGC observation and Measurement,

tabulated data in external files like CSV) to a specific attribute or property of a specific

object within the 3D city model will be achieved (Chaturvedi and Kolbe, 2017). This

capability facilitates the dynamic or real time updating of the source data and it can be

implemented by the CityGML RESTful Web service similar to the “Dynamizer” ADE resource

(see 3.2.2.1)

P a g e | 167

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6.2.2.5. New PointCloud module

The thematic surfaces can also be provided by 3D point clouds using MultiPoint geometry.

This capability does not affect the retrieval result schema of the CityGML RESTful Web

service as the retrieval result will be retrieved in GeoJSON-based format.

6.2.2.6. The revised transportation module

In the new Transportation module of CityGML 3.0, the transportation objects such as road,

track, railway and square, can be subdivided into sections. These sections can be regular

road, track or railway legs, intersection areas or roundabouts, each belonging to multiple

Road or Track objects. Thereafter, in order to avoid a redundant representation of this

shared object, Xlinks will be used in the CityGML 3.0 instance document to reference the

shared section (Beil & Kolbe, 2017). Additionally, “TrafficSpace” and

“AuxilliaryTrafficSpace” will be introduced in addition to “TrafficArea” and

“AuxilliaryTrafficArea” of CityGML 2.0. Also, the traffic space can have and optional

“ClearanceSpace”. Moreover, new semantic surface will be integrated such as “Hole” and

“HoleSurface”. As a result, in CityGML 3.0, the Transportation Objects will have an areal

as well as center line representation for each LoD and, in addition, extra semantic surfaces

will be introduced. Consequently, taking into account all the above-mentioned changes, the

sub-resources of the “tun” main resource should be modified in future research work.

6.2.2.7. The components of Building module

The new Building module mainly remains the same. However, two new subdivision will be

included as logical spaces such as “BuildingUnit” and “Storey”. These subdivisions will have

Xlinks to the respective rooms. So, two new child resources of “bldg” resource should be

embedded such as “buildingunits” and “storeys”. These resources will retrieve a list of the

respective building units and storeys. Thereafter, the retrieval of specific object is

achieved by implementing the respective gmlid as sub-resource. This sub-resource will

P a g e | 168

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

contain a list of links to the corresponding “rooms” sub-resources that includes. The

implementation of the new sub-resources could be the following:

/bldg/{gmlid}/{buildingunits or storeys}/{gmlid}

P a g e | 169

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

ANNEX A: JSON-BASED SCHEMA OF SUB-

RESOURCES

A.1. Boundary Surface Resources

A.2. Installation Resources

A.3. Opening Resources

A.4. “rooms” Resources

A.5. “furniture” Resources

A.6. “hollowspaces” Resources

A.7. “trafficareas” and “auxiliaries” Resources

A.8. “water”, “grounds” and “closures” Resources

P a g e | 170

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

P a g e | 171

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

P a g e | 172

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

P a g e | 173

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

A.1. Boundary Surface Resources

Exterior: ../{main resource}/{gmlid}/walls

Interior: .. /{main resource}/{gmlid}/{interior spaces}/{gmlid}/walls

 *rooms or hollowspaces

Exterior: ../{main resource }/{gmlid}/roofs

P a g e | 174

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

Exterior: .. /{main resource} /{gmlid}/grounds

 Exterior: .. /{main resource} /{gmlid}/ceilings

 Interior: .. /{main resource} /{gmlid}/{interior space*}/{/{gmlid}/ceilings

 *rooms or hollowspaces

P a g e | 175

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

Exterior: .. /{main resource} /{gmlid}/floors

Interior: .. /{main resource} /{gmlid}/{interior space*}/{gmlid}/floors

*rooms or hollowspaces

P a g e | 176

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

A.2. Installation Resources

The character “XXX” is defined based on the exterior

boudary surfaces such as walls, roofs, grounds, ceilings

and floors. Also, the retrieval data is array of features

that belongs to the corresponding surface.

Exterior: .. /{main resource} /{gmlid}/installation

Interior: (a) .. {main resource} /{gmlid}/installation

 (b) .. {main resource} /{gmlid}/{interior space *} /{gmlid}/installation

* rooms or hollowspaces

P a g e | 177

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

Exterior: .. /{main resource} /{gmlid}/installation/{gmlid}

Interior: (a) .. {main resource} /{gmlid}/installation/{gmlid}

 (b) .. {main resource} /{gmlid}/{interior space *} /{gmlid}/installation/{gmlid}

* rooms or hollowspaces

P a g e | 178

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

A.3. Opening Resources

Exterior: ../ {main resource} /{gmlid}/{ boundary surfaces 2 }/{gmlid}/windows

Interior: ../ {main resource} /{gmlid}/{interior spaces 1 } /{gmlid}/{boundary surfaces 2 }/{gmlid}/windows
1 rooms or hollowspaces
2 walls or roofs

P a g e | 179

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

Exterior: ../ {main resource} /{gmlid}/{ boundary surfaces 2 }/{gmlid}/doors

Interior: ../ {main resource} /{gmlid}/{interior spaces 1 } /{gmlid}/{boundary surfaces 2 }/{gmlid}/doors
1 rooms or hollowspaces
2 walls or roofs

P a g e | 180

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

Exterior: ../ {main resource} /{gmlid}/{ boundary surfaces2 }/{gmlid}/{opening 3}/{gmlid}

Interior: ../ {main resource} /{gmlid}/{interior spaces1 } /{gmlid}/{boundary surfaces2 }/{gmlid}/ {opening 3}/{gmlid}

1 rooms or hollowspaces
2 walls or roofs

3 windows or doors

Only available for door opening resource

P a g e | 181

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

A.4. “rooms” Resources

Interior: .. /{main resource} /{gmlid}/rooms

Interior: .. {main resource} /{gmlid}/rooms/{gmlid}

P a g e | 182

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

A.5. “furniture” Resource

Interior: .. /{main resource} /{gmlid}/{ interior space *}/{gmlid}/furniture

* rooms or hollowspaces

 Interior: ../{main resource} /{gmlid}/{ interior space *}/{gmlid}/furniture/{gmlid}

* rooms or hollowspaces

P a g e | 183

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

A.6. “hollowspaces” Resources

Interior: .. /tun /{gmlid}/hollowspaces

Interior: ../tun /{gmlid}/hollowspaces/{gmlid}

P a g e | 184

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

A.7. “trafficareas” and “auxiliaries” Resources

Exterior: ../{extra main resource* }/{gmlid}/{trafficareas or auxiliaries}/{gmlid}

*road, track, railway, square

..bldg/{gmld}/walls

Exterior: ../{extra main resource* }/{gmlid}/{trafficareas or auxiliaries}

*road, track, railway, square

..bldg/{gmld}/walls trafficareas or auxiliaries

P a g e | 185

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

A.8. “water”, “grounds” and “closures” Resources

Exterior: a) ../wtr/{gmlid}/{grounds or closures}/{gmlid}

 b) ../wtr/{gmlid}/water

Exterior: ../wtr/{gmlid}/{grounds or closures}

grounds or closures

 Available for “grounds” or

“closures” resources

Available for “water”

resource

P a g e | 186

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES

P a g e | 187

 BIBLIOGRAPHY

P a g e | 188

BIBLIOGRAPHY

P a g e | 189

BIBLIOGRAPHY

Athanasiou, K., Pispidikis, I., & Dimopoulou, E. (2018). Semantic-based Technologies for

Interoperable BIM and GIS 3D Modelling, Storage and Retrieval. In FIG Commission

3 Annual Meeting and Workshop 2018: Conference, 3-6 December 2018. Italy:

Naples.

Beil, C. & Kolbe, T. H. (2017). CityGML and the streets of New York - a proposal for detailed

street space modelling, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-

4/W5, 9-16. Retrieved from: https://doi.org/10.5194/isprs-annals-IV-4-W5-9-

2017

Butler, H., Daly, M., Doyle, A., Gillies, S., Hagen, S., & Schaub, T. (2016). The geojson

format. Internet Engineering Task Force (IETF).

Cozzi, P, Lilley, S., & Getz, G. (2019). OGC 3D Tiles Specification. Version 1.0. (OGC

Document Number 18-053r2).

Coors, V. (2018). OGC Testbed-13: 3D Tiles and I3S Interoperability and Performance ER

(OGC Document Number 17-046).

Chaturvedi, K. & Kolbe, T H. (2017). Future City Pilot 1 Engineering Report. Retrieved from:

http://docs.opengeospatial.org/per/16-098.html

Chaturvedi, K., Smyth, C. S., Gesquière, G., Kutzner, T., & Kolbe, T. H. (2017). Managing

versions and history within semantic 3D city models for the next generation of

CityGML. In Advances in 3D Geoinformation, 191-206. Springer, Cham.

Chaturvedi, K. & Kolbe, T. H. (2016). Integrating Dynamic Data and Sensors with Semantic

3D city models in the context of Smart Cities. ISPRS Annals of Photogrammetry,

Remote Sensing and Spatial Information Sciences, IV-2/W1, 31–38. Retrieved from:

https://doi.org/10.5194/isprs-annals-IV-2-W1-31-2016

Chaturvedi, K., Yao, Z., & Kolbe, T. H. (2015). Web based Exploration of and Interaction

with Large and Deeply Structured Semantic 3D City Models using HTML5 and

WebGL. In Wissenschaftlich-Technische Jahrestagung der DGPF und Workshop on

Laser Scanning Applications (Vol. 3). Conference, 16-18 Marc 2015. Germany:

Cologne.

P a g e | 190

BIBLIOGRAPHY

Chaturvedi, K. (2014). Web Based 3D Analysis and Visualization Using HTML5 and WebGL.

University of Twente Faculty of Geo-Information and Earth Observation (ITC).

Chatzinikolaou, E., Pispidikis, I., & Dimopoulou, E. (2020). A Semantically enriched and Web-

based 3D energy model visualization and retrieval from smart building

implementation using CityGML and Dynamizer ADE, ISPRS Ann. Photogramm. Remote

Sens. Spatial Inf. Sci VI-4/W1-2020, 53–60. Retrieved from:

https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-53-2020

Chimezie, E. (2017). REST versus GraphQL. Retrieved from: https://blog.pusher.com/rest-

versus-graphql/

Curtis, E. (2008). Serving CityGML via web feature services in the OGC web services-phase

4 testbeds. Journal of Advances in 3D geoinformation systems, 331-340.

Falcor (n.d.). A JavaScript library for efficient data fetching. Retrieved from:

https://netflix.github.io/falcor/

Fielding, R. T. & Taylor, R. N. (2000). Architectural styles and the design of network-based

software architectures. Irvine: University of California.

Floros, G., Pispidikis, I., & Dimopoulou, E. (2017). Investigating integration capabilities

between IFC and citygml LOD3 for 3D city modelling. The International Archives of

Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 1.

Fowler, M. (2010). Richardson Maturity Model: steps toward the glory of REST. Retrieved

from: http://martinfowler.com/articles/richardsonMaturityModel.html

Fu, P. & Sun, J. (2010). Web GIS: principles and applications. USA: Esri Press.

Greenfield, D. & Dornan, A. (2004). Amazon: Web Site to Web Services. Network Magazine,

19(10), 58-60.

Jo, J., Kim, Y., & Lee, S. (2014). Mindmetrics: Identifying users without their login IDs.

In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

International Conference 5-8 October 2020 (pp. 2121-2126). San Diego: IEEE.

https://blog.pusher.com/author/mezie/
https://netflix.github.io/falcor/

P a g e | 191

BIBLIOGRAPHY

Hartig, O. & Pérez, J. (2018). Semantics and complexity of GraphQL. In Proceedings of the

2018 World Wide Web Conference. (pp. 1155-1164). Conference, 23-27 April 2018:

Lyon: University of Lyon.

Hagedorn, B., Thum, S., Reitz, T., Coors, C., & Gutbell R. (2017). OGC® 3D Portrayal Service.

Version 1.0 (OGC Document Number 15-001r4)

Hagedorn, B. (2010). Web View Service Discussion Paper. Version 0.3.0. OpenGIS Discussion

Paper (OGC Document Number 09-166r2).

Helfer, J. (2016). GraphQL vs. Falcor. Retrieved from:

https://blog.apollographql.com/graphql-vs-falcor-4f1e9cbf7504

Huang, X. (2002). GeoAjent-based geospatial information service and application integration

(Phd dissertation). Beijing University.

Gaillard, J., Vienne, A., Baume, R., Pedrinis, F., Peytavie, A., & Gesquière, G. (2015). Urban

data visualisation in a web browser. In Proceedings of the 20th International

Conference on 3D Web Technology (pp. 81-88). ACM.

Gesquiere, G. & Manin, A. (2012). 3D Visualization of Urban Data Based on CityGML with

WebGL. International Journal of 3-D Information Modeling (IJ3DIM), 1(3), 1-15.

Gong, J. (1999). Contemporary GIS theory and technology. China: Wuhan University of

Surveying and Mapping Science and Technology Press.

GraphQL is the better REST (n.d.). Retrieved from:

https://www.howtographql.com/basics/1-graphql-is-the-better-rest/

Gröger, G., Kolbe, T., Nagel, C., & Hafele, K.-H. (2012). OGC City Geography Markup Language

(CItyGML) Encoding Standard. Retrieved from: www.opengis.net/spec/citygml/2.0.

(OGC Document Number 12-019)

Gröger, G. & Plümer, L. (2012). CityGML – Interoperable semantic 3D city models. ISPRS

Journal of Photogrammetry and Remote Sensing, (71), 12–33.

Gutbell, R., Pandikow, L., Coors, V., & Kammeyer, Y. (2016). A framework for server side

rendering using OGC's 3D portrayal service. In Proceedings of the 21st International

Conference on Web3D Technology (pp. 137-146). ACM.

P a g e | 192

BIBLIOGRAPHY

ISO, I. (2003). 19107: 2003 Geographic information-Spatial schema. International

Organization for Standardization, 90.

ISO 14825, 2011. Intelligent transport systems - Geographic Data Files (GDF) - GDF5.0.

International Standard, ISO.

Khronos Group (2019). glTF Specification Webpage. Retrieved from:

https://www.khronos.org/gltf

Koukofikis, A., Coors, V., & Gutbell, R. (2018). Interoperable visualization of 3D City Models

using OGC’s Standard 3D Portrayal Service. ISPRS Annals of Photogrammetry,

Remote Sensing & Spatial Information Sciences, 4(4).

Kumari, V. (2015). Web Services Protocol: SOAP vs REST. International Journal of

Advanced Research in Computer Engineering & Technology (IJARCET), 4(5), 2467-

2469.

Kutzner, T., Chaturvedi, K., & Kolbe, T. H. (2020). CityGML 3.0: New Functions Open Up New

Applications. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation

Science, 1-19.

Lathem, J., Gomadam, K., & Sheth, A. P. (2007). Sa-rest and (s) mashups: Adding semantics

to restful services. In International Conference on semantic computing (ICSC 2007).

IEEE. 469-476.

Löwner, M.-O., Gröger, G., Benner, J., Biljecki, F., & Nagel, C. (2016). Proposal for a new lod

and multi-representation concept for CityGML, ISPRS Ann. Photogramm. Remote

Sens. Spatial Inf. Sci., IV-2/W1, 3-12. Retrieved from: https://www.isprs-ann-

photogramm-remote-sens-spatial-inf-sci.net/IV-2-W1/3/2016/isprs-annals-IV-2-

W1-3-2016.pdf

Mao, B. & Ban, Y. (2011). Online Visualisation of a 3D City Model Using CityGML and X3DOM.

Cartographica, 46(2), 109-114.

Mulligan, G. & Gračanin, D. (2009). A comparison of SOAP and REST implementations of a

service-based interaction independence middleware framework. In Winter

Simulation Conference (pp. 1423-1432).

P a g e | 193

BIBLIOGRAPHY

Mumbaikar, S. & Padiya, P. (2013). Web services based on soap and rest

principles. International Journal of Scientific and Research Publications, 3(5), 1-4.

Newcomer, E. & Lomow, G. (2005). Understanding SOA with Web services. Addison-Wesley.

Nielsen, J. (1999). User interface directions for the web. Communications of the ACM,

42(1), 65-72.

OASIS. (2003). xNAL Name and Address Standard. Organization for the Advancement of

Structured Information Standards. Retrieved from:

http://xml.coverpages.org/xnal.html

OGC. (2007). Summary of the OGC Web Services, Phase 4 (OWS-4) Interoperability

Testbed (OGC Document Number 07-037r4). Retrieved from:

http://portal.opengeospatial.org/files/?artifact_id=21371

Ohori, K. A., Biljecki, F., Kumar, K., Ledoux, H., & Stoter, J. (2018). Modeling cities and

landscapes in 3D with CityGML. In Building Information Modeling (pp. 199-215).

Springer, Cham.

OpenGIS. (1999). Consortium: OpenGIS Simple Features Specification for SQL, Revision

1.1. OpenGIS Project Document, 99-049.

Peng, D., Li, C., & Huo, H. (2009). An extended usernametoken-based approach for rest-

style web service security authentication. In 2009 2nd IEEE International

Conference on Computer Science and Information Technology (pp. 582-586). IEEE.

Pispidikis, I. & Dimopoulou, E. (2019). Conceptual model of CityGML RESTful Web Service,

Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W15, 67–74.

Retrieved from: https://doi.org/10.5194/isprs-archives-XLII-4-W15-67-2019

Pispidikis, I., Tsiliakou, E., Kitsakis, D., Athanasiou, K., Kalogianni, E., Labropoulos, T., &

Dimopoulou, E. (2018). Combining methodological tools for the optimum 3D modelling

of NTUA campus, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-4/W6,

57-63. Retrieved from: https://doi.org/10.5194/isprs-annals-IV-4-W6-57-2018

Pispidikis, I. & Dimopoulou, E. (2018). CityGML RESTful Web Service: automatic retrieval

of CityGML data based on their semantics. Principles, guidelines and bldg conceptual

http://portal.opengeospatial.org/files/?artifact_id=21371
https://doi.org/10.5194/isprs-archives-XLII-4-W15-67-2019
https://doi.org/10.5194/isprs-annals-IV-4-W6-57-2018

P a g e | 194

BIBLIOGRAPHY

design, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV4/W6, 49-56.

Retrieved from: https://doi.org/10.5194/isprs-annals-IV-4-W6-49- 2018

Pispidikis, I. & Dimopoulou, E. (2016). Development of a 3D WebGIS system for retrieving

and visualizing CityGML data based on their geometric and semantic characteristics

by using free and open source technology, ISPRS Ann. Photogramm. Remote Sens.

Spatial Inf. Sci., IV-2/W1, 47-53. Retrieved from: https://doi.org/10.5194/isprs-

annals-IV-2-W1-47-2016

Pispidikis, I. & Dimopoulou, E. (2015). Web development of spatial content management

system through the use of free and open-source technologies. Case study in rural

areas. Journal of Geographic Information System, 7(05), 527.

Portele, C. & Vretanos, P. (2018). OGC Web Feature Service 3.0-Part 1: Core (OGC Document

Number 17-069r1). Retrieved from: http://docs.opengeospatial.org/DRAFTS/17-

069r1.html

Portele, C., Vretanos, P., & Heazel Ch. (2019). OGC API-Features-Part 1: Core (OGC

Document Number 17-069r3). Retrieved from:

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html

Portele, C. (2019). OGC Testbed-14 Next Generation APIs: Complex Feature Handling

Engineering Report (OGC Document Number 18-021). Retrieved from:

http://docs.opengeospatial.org/per/18-021.html

Prandi, F., De Amicis, R., Piffer, S., Soave, M., Cadzow, S., Gonzalez Boix, E., & D' Hont, E.

(2013). Using CityGML to deploy Smart-City services for Urban Ecosystems.

International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences, Volume XL-4/W1, 87-92.

Prandi, F., Devigili, F., Soave, M., Di Staso, U., & De Amicis, R. (2015). 3D web visualization

of huge CityGML models. ISPRS International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, 1, 601-60.

Prieto, I., Izkara, L. J., & Del Hoyo, F. (2012). Efficient visualization of the geometric

information of CityGML: application for the documentation of built heritage.

Computational Science and Its Applications–ICCSA 2012, 529-544.

https://doi.org/10.5194/isprs-annals-IV-4-W6-49-%202018
https://doi.org/10.5194/isprs-annals-IV-2-W1-47-2016
https://doi.org/10.5194/isprs-annals-IV-2-W1-47-2016
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html

P a g e | 195

BIBLIOGRAPHY

Quadt, U. & Kolbe, T. (2005). Web 3D Service. Version 0.3.0 (OGC Document Number 05-

019)

Reed, C. & Belayneh, T. (2017). OGC Indexed 3d Scene Layer (I3S) and Scene Layer Package

Format Specification. Version 1.0 (OGC Document Number 17-014r5)

Reitz, T. & Schubiger-Banz, S., (2014). The Esri 3D city information model. In IOP

Conference Series: Earth and Environmental Science, 18(1). IOP Publishing.

Richardson, L. & Ruby, S. (2007). Web-services mit REST. O'Reilly Germany.

Rodriguez, A. (2008). Restful web services: The basics. IBM developer Works. Retrieved

from: http://www.gregbulla.com/TechStuff/Docs/ws-restful-pdf.pdf

Schilling, A. & Kolbe, T. H. (2010). Draft for Candidate OpenGIS Web 3D Service Interface

Standard. Version 0.4.0. OpenGIS Discussion Paper (OGC Document Number 09-

104r1)

Schilling, A., Hagedorn, B., & Coors, V. (2012). OGC 3D Portrayal Interoperability

Experiment Final Report. OGC Engineering Report (OGC Document Number 12-075)

Schilling, A., Bolling, J., & Nagel, C. (2016). Using glTF for streaming CityGML 3D city

models. In Proceedings of the 21st International Conference on Web3D

Technology (pp. 109-116). ACM.

Snowflake Software. (2016). GO Publisher WFS Documentation. Introducing REST

Services. Retrieved from:

https://wiki.snowflakesoftware.com/display/GPWFSDOC/Introducing REST

Services

Somoza Alonso, F. (2015). Development of a restful API: hateoas & driven API.

Soon, K. H., & Khoo, V. H. S. (2017). CityGML modelling for Singapore 3D national

mapping. The International Archives of Photogrammetry, Remote Sensing and

Spatial Information Sciences, 42, 37.

Sudhakar, A. (2011). Techniques for securing REST. CA Technology Exchange, 1, 32-40.

https://wiki.snowflakesoftware.com/display/GPWFSDOC/Introducing+REST+Services
https://wiki.snowflakesoftware.com/display/GPWFSDOC/Introducing+REST+Services

P a g e | 196

BIBLIOGRAPHY

Thies, G. & Vossen, G. (2008). Web-oriented architectures: On the impact of Web 2.0 on

service-oriented architectures. IEEE Asian-Pacific Services Computing Conference,

1075-1082.

Tihomirovs, J. & Grabis, J. (2016). Comparison of soap and rest based web services using

software evaluation metrics. Information Technology and Management

Science, 19(1), 92-97.

Vogel, M., Weber, S., & Zirpins, C. (2017). Experiences on migrating RESTful web services

to GraphQL. In International Conference on Service-Oriented Computing (pp. 283-

295). Springer, Cham.

Webber, J., Parastatidis, S., & Robinson, I. (2010). REST in practice: Hypermedia and

systems architecture. O'Reilly Media, Inc.

Wittern, E., Cha, A., & Laredo, J. A. (2018). Generating GraphQL-wrappers for REST (-like)

APIs. In International Conference on Web Engineering (pp. 65-83). Springer, Cham.

Wilson, T. (2008). OGC® KML. Version 2.2. 0 (OGC Document Number 07-147r2)

Whiteside, A. (2009). Definition identifier URNs in OGC namespace. Version 1.3. OpenGIS

Best Practice document (OGC Document Number 07-092r3)

Whiteside, A. (2005). GML 3.1.1 simple dictionary profile. Version 1.0.0 (OGC Document

Number 05-099r2)

W3C. (2010). Same Origin Policy. Retrieved from:

https://www.w3.org/Security/wiki/Same_Origin_Policy

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P., Donaubauer, A., & Kolbe, T. H. (2018).

3DCityDB-a 3D geodatabase solution for the management, analysis, and visualization

of semantic 3D city models based on CityGML. Open Geospatial Data, Software and

Standards, 3(1), 1-26.

Zhu, W., Simons, A., Wursthorn, S., & Nichersu, A. (2016). Integration of CityGML and Air

Quality Spatio-Temporal Data Series via OGC SOS. In Proceedings of the Geospatial

Sensor Webs Conference (GSW). Conference, 29-31 August 2016. (pp. 29-31).

Muenster: 52north

P a g e | 197

LIST OF PUBLICATIONS

P a g e | 198

LIST OF PUBLICATIONS

P a g e | 199

LIST OF PUBLICATIONS

PUBLICATIONS IN PEER-REVIEWED SCIENTIFIC JOURNALS

1. Floros, G., Tsiliakou E., Kitsakis, D., Pispidikis I., & Dimopoulou E. (2015).

Investigating Semantic Functionality of 3D Geometry for Land Administration. In

Advances in 3D Geoinformation, 247-264. Springer International Publishing.

2. Athanasiou, A., Pispidikis, I., & Dimopoulou, E. (2015). 3D Marine Administration

System Based on LADM. In Advances in 3D Geoinformation, 385-407. Springer,

Cham.

3. Pispidikis, I. & Dimopoulou, E. (2015). Web development of spatial content

management system through the use of free and open-source technologies. Case

study in rural areas. Journal of Geographic Information System, 7(05), 527.

4. Floros, G., Solou, D., Pispidikis, I., & Dimopoulou, E. (2016). A roadmap for generating

semantically enriched building models according to CityGML model via two different

methodologies.k, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-

2/W2, 23-32. Retrieved from: https://doi.org/10.5194/isprs-archives-XLII-2-W2-

23-2016

5. Pispidikis, I. & Dimopoulou, E. (2016). Development of a 3D WebGIS system for

retrieving and visualizing CityGML data based on their geometric and semantic

characteristics by using free and open source technology, ISPRS Ann. Photogramm.

Remote Sens. Spatial Inf. Sci., IV-2/W1, 47-53. Retrieved from:

https://doi.org/10.5194/isprs-annals-IV-2-W1-47-2016

6. Floros, G., Pispidikis, I., & Dimopoulou, E. (2017). Investigating integration

capabilities between IFC and CityGML LoD4 for 3D City Modeling, Int. Arch.

Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W7, 1-6. Retrieved from:

https://doi.org/10.5194/isprs-archives-XLII-4-W7-1-2017

7. Pispidikis, I. & Dimopoulou, E. (2018). CityGML RESTful Web Service: automatic

retrieval of CityGML data based on their semantics. Principles, guidelines and bldg

P a g e | 200

LIST OF PUBLICATIONS

conceptual design, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-

4/W6, 49-56. Retrieved from: https://doi.org/10.5194/isprs-annals-IV-4-W6-49-

2018

8. Pispidikis, I., Tsiliakou, E., Kitsakis, D., Athanasiou, K., Kalogianni, E., Labropoulos, T.,

& Dimopoulou, E. (2018). Combining methodological tool for the optimum 3D modeling

of NTUA Campus, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-

4/W6, 57-63. Retrieved from: https://doi.org/10.5194/isprs-annals-IV-4-W6-57-

2018

9. Pispidikis, I. & Dimopoulou, E. (2019). Conceptual model of CityGML RESTful Web

Service, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W15, 67–

74. Retrieved from: https://doi.org/10.5194/isprs-archives-XLII-4-W15-67-2019

10. Chatzinikolaou, E., Pispidikis, I., & Dimopoulou, E. (2020). A Semantically enriched

and Web-based 3D energy model visualization and retrieval from smart building

implementation using CityGML and Dynamizer ADE, ISPRS Ann. Photogramm.

Remote Sens. Spatial Inf. Sci., VI-4/W1-2020, 53–60. Retrieved from:

https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-53-2020

PRESENTATIONS IN PEER-REVIEWED INTERNATIONAL CONFERENCES

1. Pispidikis, I. & Dimopoulou, E. (2016). Development of a 3D WebGIS system for

retrieving and visualizing CityGML data based on their geometric and semantic

characteristics by using free and open source technology. In 3D Geoinfo 2016:

Conference, 20-21 October 2016. Greece: Athens.

2. Floros, G., Solou, D., Pispidikis, I., & Dimopoulou, E. (2016). A roadmap for

generating semantically enriched CityGML model via two different methodologies.

In 3D Geoinfo 2016: Conference, 20-21 October 2016. Greece: Athens.

P a g e | 201

LIST OF PUBLICATIONS

3. Floros, G., Pispidikis, I., & Dimopoulou, E. (2017) Investigating integration

capabilities between IFC and CityGML LoD4 for 3D City Modeling. In 3D Geoinfo

2017: Conference, 26-27 October 2017. Australia: Melbourne.

4. Pispidikis, I. & Dimopoulou, E. (2018). CityGML RESTFul Web Service: Automatic

retrieval of CityGML data based on their semantics. Principles, guidelines and

BLDG conceptual design. In 3D Geoinfo 2018: Conference, 1-2 October 2018.

Netherlands: Delft.

5. Pispidikis, I., Tsiliakou, E., Kitsakis, D., Athanasiou, K., Kalogianni, E., Labropoulos,

T., & Dimopoulou, E. (2018). Combining methodological tool for the optimum 3D

modeling of NTUA Campus. In 3D Geoinfo 2018: Conference, 1-2 October 2018.

Netherlands: Delft.

6. Athanasiou, K., Pispidikis, I., & Dimopoulou, E. (2018). Semantic-based

Technologies for Interoperable BIM and GIS 3D Modelling, Storage and

Retrieval. In FIG Commission 3 Annual Meeting and Workshop 2018: Conference,

3-6 Decemger 2018. Italy: Naples.

7. Kitsakis, D., Pispidikis, I., Athanasiou, K., Kalogianni, E. & Dimopoulou, E. (2019).

Investigating the use of 3D Modelling and Geovisualisation for social housing. In

FIG Commission 3 Annual Meeting and Workshop 2019: Conference, 23-28

Semtember 2019. Romania: Cluj-Napoca.

8. Pispidikis, I. & Dimopoulou, E. (2019). Conceptual model of CityGML RESTful Web

Service. In 3D Geoinfo 2019: Conference, 26-27 September 2019. Singapore.

9. Pispidikis, I., Kitsakis, D., Kalogianni, E., Athanasiou, K., Lampropoulos, A., &

Dimopoulou, E. (2020). 3D Modelling and Virtual Reality for the management of

public buildings. In FIG Working Week 2020. Smart surveyors for land and water

management: Conference, 10-14 May 2020. Netherlands: Amsterdam (submitted

for publication).

P a g e | 202

LIST OF PUBLICATIONS

OTHER PRESENTATIONS IN CONFERENCES

1. Pispidikis, I., & Dimopoulou, E. (2014). Web development of spatial content

management system through the use of free and open-source technologies. Case

study in rural areas. In 8th International Conference Hellas GIs: Conference, 11-

12 December 2014. Greece: Athens.

2. Koukoletsos T., Pispidikis, I., & Loisios, D., (2016). Design, development and

integration of spatial analysis tools in WebGIS enviroment. In 24th National

ArcGIS User Conference: Conference, 19-20 May 2016. . Greece: Athens.

3. Koukoletsos T. & Pispidikis, I. (2017). Evaluation and Proposals for

Parameterization of Geospatial Web Services. In 25th National ArcGIS User

Conference: Conference, 11-12 May 2017. Greece: Athens.

4. Koukoletsos T. & Pispidikis, I. (2017). Latest technology WEBGIS Applications of

Hellenic Military Geographical Service. In 25th National ArcGIS User

Conference: Conference, 11-12 May 2017. Greece: Athens.

5. Pispidikis, I., Tsiliakou, E., Kitsakis, D., Athanasiou, K., Kalogianni, E., Labropoulos,

T. & Dimopoulou, E. (2017). Development of WebGIS platform for NTUA campus.

In 25th National ArcGIS User Conference: Conference, 11-12 May 2017. Greece:

Athens.

6. Pispidikis, I., Tsiliakou, E., Kitsakis, D., Athanasiou, K., Kalogianni, E., Labropoulos,

T., & Dimopoulou, E. (2017). Navigation in 3D virtual web environment –

Implementation in SRSE NTUA. In 5th National Panhellenic Conference of Rural

and Surveying Engineers: Conference, 14-15 October 2017. Greece: Athens.

7. Pispidikis, I., Tsiliakou, E., Kitsakis, D., Athanasiou, K., Kalogianni, E., Labropoulos,

T., & Dimopoulou, E. (2018). Development of a 3D web GIS application for NTUA

P a g e | 203

LIST OF PUBLICATIONS

Campus. In 26th National ArcGIS User Conference: Conference, 10-11 May 2018.

Greece: Athens.

8. Pispidikis, I. (2018). New GeoIndex of Hellenic Military Geographical Service. In

26th National ArcGIS User Conference: Conference, 10-11 May 2018. Greece:

Athens.

9. Koukoletsos T., Pispidikis, I., & Leader, D. (2018). Digital Interactive Map of

Hellenic Military Geographical Service. In 26th National ArcGIS User

Conference: Conference, 10-11 May 2018. Greece: Athens.

P a g e | 204

P a g e | 205

CURRICULUM VITAE

P a g e | 206

P a g e | 207

PERSONAL INFORMATION

Surname: Pispidikis

Name: Ioannis

Father’s name: Stauros

Mother’s name: Dimitra

Date of birth 18 February 1984

Birth place: Athens

Family status: Married (Gkagklou Antonia)

Address Mithridatou 36-38, 11632, Athens

Phone +302111845624 (Home)

 +302108206686 (Work)

 +306951762683 (mobile)

e-mail pispidikisj@yahoo.gr

jpispidikis@gmail.com

EDUCATION AND STUDIES

2016-2020 :

Ph.D Candidate, National Technical University of Athens.

Geomatics.

2016 :

Master’s Degree (M.Sc), National Technical University of

Athens. Geomatics, Grade: 9.33/10 (Excellent)

P a g e | 208

2014

:

Diploma, National Technical University of Athens, School of

Rural and Surveying Engineering. Grade: 9.17/10 (Excellent)

2010

:

Batchelor’s Degree, Topography School in Hellenic Military

Geographical Service (HMGS), Surveying Engineering.

2005

:

Batchelor’s Degree, Hellenic Military Academy, Military

Operational Art and Science/Studies

2001 :

General High School. Grade: 18/20

SCIENTIFIC TRAINING

07/09 – 11/09/20 : 15th 3D Geoinfo Conference, United Kingdom: London

25/09 – 27/09/19 : 14th 3D Geoinfo Conference, Singapore

01/10 – 02/10/18 : 13th 3D Geoinfo Conference, Netherland: Delft

20/10 – 21/10/16 : 11th 3D Geoinfo Conference, Greece: Athens

18/10 – 20/10/16 : 5th International Workshop on 3D Cadastres, Greece: Athens

25/05 – 27/05/15 : Training Program «The Common Assessment Framework as a Tool

for Total Quality Management. Training Institute

02/03 – 12/06/15 : Education for aerial photography. Army Aviation School

11 – 12/12/14 : 8th National Conference Hellas GIs. National Technical

University of Athens.

9 – 10/10/14 : Seminar: «Introduction to Geoprocessing Scripts Using Python».

Marathon Data Systems

25 – 26/9/14 : Seminar: «ArcGIS for Server-Sharing GIS Content on the

Web» version 10.x. Marathon Data Systems

P a g e | 209

22, 23 & 24/9/14 : Seminar: «Introduction to Geographic Information System

(GIS) » ArcGIS Extensions (3D Analyst-Spatial Analyst) version

10.x.

Marathon Data Systems

15, 16 & 17/9/14 : Seminar: «Introduction to Geographic Information System

(GIS)» ArcGIS II version 10.x. Marathon Data Systems

8, 9 & 10/9/14 : Seminar: «Introduction to Geographic Information System

(GIS)»ArcGIS I version 10.x. Marathon Data Systems

PROFESSIONAL EXPERIENCE

2014-Today : Director of Geodatabases Subdivision. Hellenic Military

Geographical Service (HMGS). Athens, Greece.

• Supervision of day to day operations

• Military geospatial application development (Intranet

WebGIS application, Android app)

• Data collection, manipulation and validation

• Installation and maintenance of all geodatabases for

development purposes

2008-Today : Officer of the Greek Army in the Hellenic Military

Geographical Service and Hellenic Military Topographic

Service.

2005-Today : Officer in Greek Army

Academic
Years:
2016/2017 &
2017/2018

: Member of the teaching team of the course: ‘’Cadastral and

Land Policy Systems’’, 8th semester, School of Rural and

Surveying Engineering, National Technical University of

Athens

P a g e | 210

20-
21/10/2016

: Member of the Organizing Committee: ‘’11th 3D Geoinfo

Conference’’, Greece: Athens

18-
20/10/2016

: Member of the Organizing Committee: ‘’5th International

Workshop on 3D Cadastres’’, Greece: Athens

2009-2015 : Head of department in the execution of several topographic

surveys in Greece:

• topographic surveys

• cadastral surveys

• expropriations

• delimitation

• property surveying

2005-2008 : Officer of the Greek Army, Infantry Specialty, as Trainer

and Staff Commander

HONORS & AWARDS

2/2019 : Ethic award from chief of Hellenic Army. Development and

upgrading of several software of HMGS. As a result, the

geospatial support of the Hellenic Army is improved and the work

of the Hellenic Military Geographical Service is also promoted

5/2018 : Thomaidis award for publishing the paper with title:

"Investigating integration capabilities between IFC and CityGML

LoD3 for 3D City Modeling"

10/2017-
10/2020

: Scholarship from ONASSIS FOUNDATION for Ph.D research

9/2017 : Award from Technical Chamber of Greece. Second highest grade

for the School of Rural and Surveying Engineering among 2014

graduate

2017 : Ethic award from chief of Hellenic Army. Academic Excellence in

master studies

5/2017 Thomaidis award for publishing the paper with title:

"Development of a 3D WebGIS system for retrieving and

P a g e | 211

visualizing CityGML data based on their geometric and semantic

characteristics by using free and open source technology"

2015/2016 : Scholarship from Zwh Soutsou legacy for Ph.D research.

9/2015 : Thomaidis award. Best Undergraduate student in 2013-2014

among all students of the school of Rural and Surveying

Engineering

2015 : Ethic award from chief of Hellenic Army. Academic Excellence in

bachelor studies

7/2015 : Award of Academic Excellence. Second highest grade for the

School of Rural and Surveying Engineering among 2014 graduate

5/2015 : Thomaidis award for publishing the paper with title: "Web

Development of Spatial Content Management System through

the Use of Free and Open-Source Technologies. Case Study in

Rural Areas"

2/2015 : Award of Academic Excellent. LIMMAT STIFTUNG-

Memorandum of Agreement 29502/14

2000 : 5th Position in Nationwide Contest «LYSIAS»

THESES-DISSERTATIONS

I. Pispidikis, «Optimization of automated retrieval of semantic 3D city data», PhD

Thesis, Geomatics, National Technical University of Athens, 2020

I. Pispidikis, «Development of a 3D WebGIS system for retrieving and visualizing

CityGML data based on their geometric and semantic characteristics by using free

and open source technology», Master Thesis, Geomatics, National Technical

University of Athens, 2016

I. Pispidikis, «Web Development of Spatial Content Management System through

the Use of Free and Open-Source Technologies. Case Study in Rural Areas»,

Bachelor Thesis, School of Rural and Surveying Engineering, National Technical

University of Athens, 2014

P a g e | 212

PROGRAMMING SKILLS

• Very Good Programming Knowledge: (Visual Basic, C++, C#, C)

• High level Front-end Web Development Skills (JavaScript, HTML, CSS etc.)

• High Level Back-end Web Development Skills (Web Services, Node, REST API, PHP,

Java, python, MySQL, SQLite, PostgreSQL/PostGIS, ArcSDE, ArcGIS Server,

GeoServer, MapServer etc.)

• High Level knowledge of GIS and CAD application such as AutoCAD, ArcGIS and QGIS

• High Level Knowledge and experience of developing WebGIS and Cross-Platform GIS

applications

