National Technical University of Athens
School of Rural and Surveying Engineering

Department of Topography

OPTIMIZATION OF AUTOMATED RETRIEVAL
OF SEMANTIC 3D CITY DATA

DOCTORAL DISSERTATION
for the title of Doctor of Philosophy in Engineering submitted to the School of Rural &

Surveying Engineering, National Technical University of Athens

IOANNIS S. PISPIDIKIS
Bachelor in Military Operational Art and Science H.A.A
Diploma of Rural and Surveying Engineering N.T.U.A
M.Sc in Geoinformatics N.T.U.A
Officer in H.M.G.S

SUPERVISOR;
EFI DIMOPOULOU
Professor N.T.U.A.

ATHENS, November 2020

EONIKO METZOBIO TTOAYTEXNEIO

‘;11
Bl

OEVS

2 xoAn Aypovopwy Tomoypdewv Mnxavikwyv

\J - \,

L\ 2
POMHMH ”
==l

Touéag Tomoypagiag

I ‘_ o
‘b >
N

BEATIZTOTIOIHZH THZ AYTOMATHZ
ANAKTHZHZ ZHMAZIOAOIIKQN 3D
AEAOMENQN TTOAHZ

AIAAKTOPIKH ATATPIBH

via Tov Emiotndovikéd TitAo Tou AiddkTopa MnhxavikoU uttoPAnBeioa oTh Zx0AR Aypovouwy

kal Tomoypdewv Mnxavikwy Tou EBvikou MeTadPiou TToAuTexveiou

IOQANNHX X, TTIZTIIAIKHX
ArmtAwpatoUxog A§IwHaTIKGC oTIC ZTpaTIwTIKEC EmioTAneg .2 .E.
AimAwpatoUxo¢ Aypovédog kai Tomoypdpoc Mnxavikog E.M.TT.
M.Sc oth MewmAnpogopikh E.M.TT.
Aiwpatikég Tng FLY.Z

ETTIBAETTIOYZA:

E&H AHMOTIOYAQY

Kanyntpia E.M.TT.

AOHNA, Noéppprog 2020

&"

National Technical University of Athens

*’i&\ \9

E

School of Rural and Surveying Engineering

e
poh
-‘
MPOMHOEVS
N =
i dh=el3

Department of Topography

b

OPTIMIZATION OF AUTOMATED RETRIEVAL
OF SEMANTIC 3D CITY DATA

DOCTORAL DISSERTATION

for the title of Doctor of Philosophy in Engineering submitted to the School of Rural

and Surveying Engineering, National Technical University of Athens

IOANNIS S. PISPIDIKIS
Bachelor in Military Operational Art and Science H.A.A
Diploma of Rural and Surveying Engineering N.T.U.A
M.Sc in Geoinformatics N.T.U.A
Officer in HM.G.S

ADVISORY COMMITTEE EXAMINIATION COMMITTEE

1.

E. DIMOPOULOQOU, Prof. N.T.U.A (supervisor)
2. I.PSARRAS, Prof. N.T.U.A
3. V.VESCOUKIS, As. Prof. N.-T.U.A.

1. E. DIMOPOULOQOU, Prof. N.T.U.A (supervisor)
2. I. PSARRAS, Prof. N.-T.U.A

3. V. VESCOUKIS, As. Prof. N.T.U.A.

4. D. ASKOUNLIS, Prof. N.T.U.A

5. N. DOULAMIS, As. Prof. N.T.U.A.

6. H. DOUKAS, As. Prof. N.-T.U.A.

7. M. KOKLA, Lect. N.T.U.A.

ATHENS, November 2020

KEXNE/ o

EONIKO METZOBIO TTOAYTEXNEIO

225
&

El
VP $OPpos

2 xoAn Aypovopwy Tomoypdewv Mnxavikwyv

/7,

', O
&.yfﬁ'\”z.
AN

2 O'»,?
oEvs U

F
v/ “
\
P
NPOMH :
SH=

Touéag Tomoypagiag

\l

[

BEATIZTOTIOIHZH THZ AYTOMATHZ ANAKTHZHZ
THMAZIOAOTTIKON 3D AEAOMENQN TTOAHZ

AIAAKTOPIKH ATATPIBH

yia Tov Emiotnyovikd TitAo Tou AiddkTopa MnxavikoU uttoPAnBcioa aTh Zx0AR Aypovopwy

kal Tomoypdewv Mnxavikwy Tou EBvikoU MeTodBiou TToAuTexveiou

IOANNHZ Z. TIIZTIIAIKHX
ArmAwpatouxog A§IwpaTikég oTIc ZTpaTiwTIkEC EmoThneg .2 .E.
AimAwpatoUxog Aypovopoc Tommoypdpoc Mnxavikég E.M.TT.
M.Sc otn MewmAnpogopikn E.M.TT
Aiwpatikég Tng FLY.Z

2YMBOYAEYTIKH ETTITPOTTH ESETAZTIKH ETIITPOTIH

. E. AHMOTIOYAQY, KaB. E.M.TT. (emPAémouca)
. I. VAPPAZ, KaB. EM.TT.
. B. BEZKOYKHZ, Av. KaB. E.M.TT

1. E. AHMOTTOYAOY, Ka6. E.M.TT. (emiBAémouca) 1
2
3
4. A. ASKOYNHE, Ka6. E.M.TT.
5
6
7

2. I. YAPPAZ, KaB. E.M.TT.
3. B. BEXKOYKHZ, Av. Ka6. EM.TT.

. N. AOYAAMHZ, Av. KaB. E.M.TT.
. X. AOYKAZ, Av. KaB. EM.TT.
. M. KOKAA, AekT. EM.TT

AOHNA, Noéuppiog 2020

« H éykpian Tng d18akTopIkAg d1aTpIPAc amd Thv AvwtaTtn ZxoAn Aypovopwy kal Tomoypdewv
Mnxavikwyv Tou E.M. TToAuTexveiou dev utodnAwvel amodoxn TwV YVWHWY Tou ouyypagéa (N.
5343/1932, ApBpo 202) ».

Copyright © Ioannis Pispidikis, 2020
All rights reserved

AmayopeUcTal n avriypagpri, amoBnkeuon kai diavouli TNE mapouaads spyaoiag, £ 0AoKArpou
TURKATOS auThC, yia ENTTOPIKO OKOTO. EmToémeral n avarumwon, amoBrnkeuon Kai diavoun yia
OKOTIO N KEPOOOKOTIIKO, EKTTAIOEUTIKNG 11 EPEUVNTIKNG QUONG, UTO Tnv mpoUmoBeon va
avapepeTal N mNyn MPoEAEUONS Kal va d1aTnpeiTal To mapdv unvuua. Epwrhuara mou agopouv

TNV XpNon TS £pyaoiac yia KEpOOTKOTIIKO OKOTIO TTPETTEI va amevBuvovTal aTo ouyypagéd.

This research was funded by a scholarship awarded by the Onassis Foundation.

«To pualo dev elvat éva doxelo mou mpémet va yepioet,
aAAd La QWTIA TTOU TIPETTEL V' avaye s,

MAoutapxog

EYXAPIZTIEZ

H mapouoa 31dakTopikn diatpiPn d1e€AXOn oTh yVWOTIKA Teploxn Tou KTndaTtoAoyiou kal Thg
MewmAnpoopIikng, aTov Todéa Tomoypagiac ThG 2x0ANC Aypovodwv kal Tomoypdewv
Mnxavikwyv Tou EBvikoU MeTooPiou TToAuTexviou. H ekmdvnan Thg ev Adyw HeAéTng 8¢ Ba ATav
EQIKTA, av O&V €iXa ThV AWEPIOTN GUMTTAPAATACN Kal dpwyn OpIOHEVWY avOpWTTWY, TOUG 0TT0IoUG

algBdvopal Thv avdykn va euxapioTAoOW.

IdiaiTepec cuxaploTiec Ba RBeAa va ameuBivw oth KaBnyAtpid ‘Een AndomoUAou, ThG ZX0ARC
Aypovopwy kai Tomoypdewv Mnxavikwy Tou EMTT, yia Thv edmioToolvn Ttou Hou €31 e, kaBuig
€TIONG KAl YIA T GUVEXRA ETIOTNHOVIKA KaBodnynon kai hB1kA aTApIn TTou pou Tapeixe kad' 6An
Tn dIdpKEIa ThG HAKPOXPAVIAG OuveEPYaAcoiag MAg, h omoia {ekivhoe amod TIC TMPOTITUXIAKEG MOU
omoudég. AKOWN, a&ilel Pveld To YEYOVOC TTWC HE TIC TTOAUTIMEG ETTICNHAVOEIC, TV AMECOTNTA, TA
TPOOEKTIKA ax0AIa Kal TIC O1EUPUNEVEC akadnMAIKES YVWOEIC ThG ME PonBnoe va emTUXW €va

dpTio amoTéAeaua.

TToAAéc euxapioTiec Ba nBeAa va ekppdow Kal oTa umdAoima MEAn ThG TpideAoUg
2 UMPBoUAeUTIKAG EmITpomng, Kal ouykekpidéva mpog Tov KaBnyntn Wappd Iwdvvn kai Tov
AvamAnpwtnh KaBnyntn BeokoUkn BagiAeio, yia Thv kaBodnynon Toug Katd Thv €KTTOVAON TNG
mapouaag S1atpIPnc. AvtioToixa, Ba nBeAa va guxaploTAOW Kal Ta AoImd HéAn Tng EmTapeAolg
E€etaoTikAg ETiTpomAc, Tov KaBnyntr Aakouvn Anuntpio, Tov AvamAnpwTh KaBnynth AouAdun
Nik6Aao, Tov AvamAnpwTth KaBnynth Xdpn AoUka kai Th AékTtopa Mapyapita KékAg, yia Thv

amodoxn TOUC VA GUHHETEXOUV 0TV Kpian TG TIPOKEIMEVNG £épeuvac.

EmimpdéaBeta, Ba nBeAa va euxapioThow Tov Tdago AaumpomouAo, KaBWe Kal ThV €PEUVNTIKA
opdda Tou 3D Campus, Eutuxia KaAoyidvvn, AnuAtpio Kitadkn, Katepiva ABavaaiou kai Eua

TalAidkou yia Thv ayaoTh ouvepyaaia Toug.

Oa nBeAa, emiong, va euxaplotnow Th Mewypagikn YTnpeaia ZTpaTtoU, aThV OTIOId UTThPETW,
kabwg¢ pou €dwoe Th duvaTtoTnTa va epydlopal Kai va avamTtuooodal oe Hia Ymhpeaia uynAou

ETMIOTAHOVIKOU £MITTESOU KAl KUPOUG.

O¢ppéc euxaploTiec ekppdlw Kal pog To ‘Idpupa (dvdon yia Thv 0IKOVOUIKR OTAPIEN TTOU Hou
TApEiXe HE TAV ETMIAOYA HOU WG UTTOTPoYou Tou IdpUuatog. IdiaiTepn Wveia ameubuvw Tpog To
TPOOWTIKO Tou Idpunartog yia Tnv dyoyn ouvepydgia Tou eixade oc O0An Th didpkela Tou

TTpoypdupatog YmoTpowiag.

AvavTiAekTa, Ba RBeAa va sUXapIOTAOW TOUC YOVEIC Hou, ZTaupo kal ARunTpa, kal Ta adéAgia
pou, AnuATen kai Mdplo, yia Thv TTavToTIVA Toug aydmn, kabuwg utthpav avékaBev oTAPIYHA OTIC

OUGKOAieC Hou.

AKOUN, emMBUPW va euxaplaThow Bepud Tov TeBepod Hou Kwata kal Thv meBepd Hou AvaoTaaia,

kaBuwg¢ PpiokovTal TdvTa oTo TAEUPO TG OIKOYEVEIAG Hou, aThpilovTdg Thv avd Tdoa oTIyuA.

TéAog, 181aiTepa, Oa nBeAa va euxapiaThow amo Ta BAaOn Tng kapdidg Hou Th ouluyod Hou AvTwvia,
yid Thv duépIoTh cudTapdoTacn kad' dAn Tn didpKeld Twv arouduwyv pou (Kail éx1 Hovo), Th ouveXR
evBdppuvon, Th ouvalioOnuatikA aTApIEn, Ty adiaTpayddTeuTh edTIoTooUvh, dAAd Kal Th aThpIgn

va @Eépw auTto To £pyo €1¢ TEPAG.

Agigpwuévo orn MNuvaika tne {wihc wou... '

CONTENTS

EYXAPIZTIEZoooieeretrnereeereereeectseeesnesesssesessesessensasssssessessasssssessensassssessessassasaesees [
CONTENTS ...ttt ess et tssessess s essassessessessssessesssssassessesssssassessensassanne v
LIST OF TABLES........oocercteretrcenrsetseeessseesesesess e essessesssssesessessassessessessassess ix
LIST OF FIGUREScooircrereerreeereeeseeesssssesessesesssssessessessasssssessessassessessessassess xi
ABSTRACT ...ttt eessesne s stsse e ssaesesassessssesesassessessnesassessessasssssessessansess XVii
TTEPIAHWH ... eeeeererceetsecrreeeessesseessessessassesessessassessesssssessassessessassessesssssensassases XXi
LIST OF ABBREVIATIONS.........coveereteectrtnertectsessetesessessessssesssssssesessessassesessssssans XXV
1. INTRODUCTION......ccooctirreririrerternietreseesesetssesessesesssessesssssssessessaessesesessasssssenes 1
L1 CoNteXT ...ttt s et s bt n et n b sne 3
1.2. Problem Statement ... 4
1.3. Research QUESTIONS ...ttt sttt ss e sesesssasseses 5
14, OUTIINE ...ttt ettt et sttt ss e e se s se e st sn s 5
2. RETRIEVING CITYGML INFORMATIONccociiirintrenrerierenreneeessesssessesessessenes 7
2.1. Tiled and Hierarchical-based CityGML Retrieval.............ccccccvvveveereeerrerennnnen. 9
2.11. 3D graphics and data exchange formats...........cccooeenienirirniereeeee e, 9
2.1.2. OGC 3D TilES ettt sanees 14
2.13. OGC Indexed 3D Scene Layer (I3S) and Scene Layer Package 15
2.2. 3D Web Portrayal Servicescicneenrneenrnenereenessesessssssesssssesesssases 18
2.2.1. Technology of Web SErviCesccooeeeiriieereiniieeieieieee et esesenas 18
2.2.2. Web 3D Service (W3DS) and Web View Service (WVS).cccoooveevcvveeennnn. 20
2.2.3. OGC 3D Portrayal Service (3DPS)........ccccooiierereirrereteieeeesesesssesessssisaesesenas 24
2.3. OGC Web Services for Sharing and Managing Raw Data............................ 26
2.3.1. Extending the OGC WFS 2.0 standard..............cocovoeeieirinieeerniieeeieiseseeseienns 28
2.3.2. Making the OGC WFS RESTTULooooueveiiieeteieieceieeee ettt 33

3. CITYGML RESTFUL WEB SERVICE..........ccoiiretrieectetreeeesreseeeeve st ssaeene 37
3.1. The Solution of REST Approachccceeevieievenierececreceierecectseeereeeseaens 39
3110 SOAP VS REST ...ttt ettt ettt aesenas 40
3.1.2. GraphQL and FalCOr.......couiueiiiiriecrece et 42
3.1.3. Principles of RESTful Web Services ... 46
3.2. Methodology for the RESTful-based CityGML retrieval............................ 49

v

3.2.1. THemMQATiC FESOUICES ...ttt seseaes 49
3.2.2. ADE FESOUICES ...ttt ettt et ettt eaeeteetasensens 53
3.2.3. BEOMETTY ..ttt 57
3.24. GEeNEral FIlTEISoeeeeeeeeeeeeeeeeeeeeeeeeeee et 59
3.25. Information retrieval ... 61
32,6, SECUNITY .ottt bbb 62
3.2.7. Cross-DOMQAIN iSSUESccccooveeeuierieeeeeeteeteeeeteee ettt ettt ere st senee 63
3.3. Citymodels and Gmlid ReSoUrces.............ccccceueeierevenrereceereeiereeeseeseseeeseaens 64
3.3.1. CitymOdelS FESOUCEc.cuiieeeceeteeee et see 64
3.3.2. GMIIA FESOUICEoveeeeeeeeeeeeeee ettt sesenes 69
4., LOD-BASED THEMATIC RESOURCESccooieieiiiriecrennnrnresnessessnessaessessnns 71
4.1. Bldg Thematic RESOUFCE...........coeeeeerirrerreerinree et esere e e n st s 73
411, BldG MQIN FESOUMCE........ccouiecviieeeeieieiieeie ettt s s s snes 74
4.1.2. LoD2 bldg SUD-FESOUICES..........ocoerereririeiereiieeete et 78
4.1.3. LoD3 bldg SUD-FESOUICES..........ocoueuereiiieiereece et 86
4.14. LoD4 bldg SUD-FeSOUICES.........cooiueieeiieieieiiee et 89
4.15. Case studies using semantic requests..........cccooeenirnirrnecncesce s 91
4.2. Tun ThematiC RESOUFCE............ucoueeeeeeeceeceecreerieriereetresreressessessessessessessessessessens 96
421, TUNMQAIN FESOUMCEoeeveerereeiereieereteteteetete et tsseseasesessesesssesesesessesessesesessesesesessesenns 97
42.2. LoOD2 tUN SUD-FESOUICES ...ttt 99
4.2.3. LoOD3 tUN SUD-FESOUCES ..ottt 102
424, LoD4 tUN SUD-TESOUCES.........c.oveeveeeeeeeteeeeeeeeeeee et anans 104
4.25. Case studies using semantic requests...........cccooeevieriiernseneceseeee e 106
4.3. Brid Thematic RESOUICE.............ceeevreeererererereeeeeeeeressesesesessesessesessessones 109
4.3.1. Brid MAIN FESOUCEooveveveeeeeeeeeteeeeeteteeeete ettt ettt s s s eseassenes 111
4.3.2. LoOD2 brid SUD-FESOUICEScooveveeieeeeeeteeeeeeeeeeee e 113
4.3.3. LoD3 brid SUD-FESOUICEScocuevieieieeeeteeeeeeeeeeeeeeeeeeee et 117
434, LoD4 brid SUD-FESOUICEScoouoeieeeeeeeteeeeeeeeeeeeeeeee et 119
4.35. Case studies using semantic requests...........cccoceeeeeeeeieeeceeee e 121
5. LOD-INDEPENDENT THEMATIC RESOURCES..........ccueeevrirrerrerresrennens 127
5.1. Thematic Resources Available in all LODs............cccoecvvuereerirnneereieerennerennennes 129
5.110 VG FESOUNCES ...ttt ettt 129
B.1.2. LUSE FESOUICES ...ttt ettt ettt et eve s ensesseseese s ensesseseesesenseneenas 132
5.1.3. FINTE@SOUICES ...ttt ettt b e se b ess s s s snanes 134
5.114. GIP FESOUICEScuiiiiieieieeetee ettt sttt 135
B5.1.5. DEM FESOUICES ...ttt ettt et eseebe et s enseaseseeseesenseneenas 138
5.2. Thematic Resources Available from LoD2 and Above..................ccueeueun.n. 140
B5.2.1. TIAN FESOUICES ...ttt ettt eae e st esseteese s ensesseseesensensensenes 140

D.2.2. W FESOUICES ...ttt e e e eae e e et et eeeeseeeeeseeeeeeeeeneeanens 152

6. CONCLUSIONS AND FUTURE WORKccceverereerenrenreresassernssesessnsesassesensnens 157
6.1, CONCIUSIONSoeereeereeecreetceceste et e seas e se e se e sasnesessesssanesessesenensenenes 159
6.2, FUTUFE WOTK.......ocueiirretrceiretrrcesenesesssesesssssessessssesssssssessesssssssssssensssasaens 162

6.2.1. OGC standard implementation ..o 162
6.2.2. Compatibility with the Upcoming version 3 of CityGML for Future
Implementation and UPGrade.couiiuiuiviiiiieceieeee e 163

ANNEX A: JSON-BASED SCHEMA OF SUB-RESOURCES..............cceerereeverennnee 169
A.8. "water", "grounds” and "closures” Resources..............ccocererrrerrrrrrecrerenrennene 169
A.l. Boundary SUrface RESOUICES............c.cccceereeereeeereeerenenneseseneesesssesesensssssenes 173
A.2. Installation RESOUMCEScceeeeeeerrreceerrecteneeeseesensesae e seasssenesessesensssesenes 176
A.3. OpeNiNg RESOUICESccereruireirneriinneneennenresaessesaessessessessessessessessessssssssessessenns 178
A4, "TOOMS" RESOUICESccoeueeereeerereeteneaeteeesensessesesenssssesessessnsssssessesensrsesenes 181
A5, "TUPNITUrE" RESOUICE...........ceoeeeeerreetereete et eae s ae s e sse s e e nenes 182
A.6. "hollOWSPACES" RESOUICEScvevenerrreerrneeeeseeeese e ssaeesessseseessesenssnesenes 183
A.7. "trafficareas” and "auxiliaries” Resources.............cccecvurrerrreverreecrereeseenenss 184
A.8. "water”, "grounds” and "closures"” Resources.............cccoeeerrrrveereerrerernreenenns 185

BIBLIOGRAPHYcoieretrieneeirerrerreesssssesnssessssessssnssassssssssesssssessesssssessasssssssesssassesssn 187

LIST OF PUBLICATIONS.........cooeeeeeeeeeereerteneaeseasenssssenssessssssesassessnsssesesssssnssssnenns 197

CURRICULUM VITAE.......cocoiireenrerrsreesesssesssssssssessssnssesssssssssssssessssssssessesssessssssses 205

vii

file:///C:/Users/pispi/Documents/myData/ΔΙΔΑΚΤΟΡΙΚΗ%20ΔΙΑΤΡΙΒΗ/ipispidikis_PhD_NTUA.docx%23_Toc54258854

viii

LIST OF TABLES

Table 2-1: Operations of 3DPS..........iieeeeee bbb 25
Table 2-2: Supported WFS 2.0 0perations...........ccccceieieiieinesninieinieeieeseeseesennes 28
Table 3-1: HTTP METhOds.......c.oouoiieiieieieieseiee ettt ssee 47
Table 3-2: Name of the main resources according to the namespace prefix of

CHTYGML V2.t 50
Table 3-3: Matching supported geometries among CityGML and GeoJSON........... 58
Table 3-4: General filters of main thematic resources............ccccccouviieeiriciicrcrennnes 60
Table 3-5: Available information of the main resources...........cccocoevvieiveernirinnnne. 62
Table 3-6: URN syntax for CRS references.............coooeeveveeieeveeeieceeeeeeeeenans 68
Table 4-1: Semantic availability of a building per LoDccccooeveiriiieieeeieceennae 74
Table 4-2: Available information of LoD2 bldg sub-resources.............cccccoeuueunnce. 80
Table 4-3: Available information of "windows" and "doors" sub-resources............. 87
Table 4-4: Semantic availability of a tunnel model per LoDccccooeveueevinerennnne. 97
Table 4-5: Semantic and geometric availability of a bridge model per LoD.......... 110
Table 5-1: Available attributes of vegInformation object...........ccccovierviiriinnnnne. 132

LIST OF FIGURES

Figure 2-1: File-based approach for the visualization of CityGML over the web...10
Figure 2-2: PHP class for semantic retrieve LoD2 (a), LoD3 (b) and LoD4 (c)

CITYGML dAt ...ttt 11
Figure 2-3: Tile-based retrieval using NetworkLinks.............ccccooeuenieirinininirninneennns 12
Figure 2-4: Valid gITF GSSeToooieee et 14
Figure 2-5: layout of @ B3DM........c.ccovieiirieieieeeieieeeteeeee et ssseses 15
Figure 2-6: Methodological tools and techniques............cccouoieereieiiiiieecee 16
Figure 2-7: 3D NTUA Campus overview using ArcGILS Scene Services 17
Figure 2-8: Different types of geodata are merged in one 3D scene graph using
WBDS ..ttt 21
Figure 2-9: Use of W3DS for CityGML visualization and retrieval........................... 22
Figure 2-10: Medium Client Architecture ..o 22
Figure 2-11: Retrieval and visualization of 3D data using WVS.........c.cccccoevirerennnee. 23
Figure 2-12: Experiments of 3DPIEcccocooimieinieieinieieeeesesiesseessssssesssssessssesens 24
Figure 2-13: Logical design of 3DcityDB database regarding building module of
CHEYGML ..ttt 29
Figure 2-14: Data request and response using the Snowflake CityGML WFS 30
Figure 2-15: 3DCitYDB WFS....... ettt 31
Figure 2-16: SQL query for creating the Lod2 building view of CityGML 32
Figure 2-17: Image of GO Publisher RESTful service working with GO Publisher
WIS ettt ettt s 34
Figure 3-1: CityGML Architecture. ... 39
Figure 3-2: Example of underfetching problem using REST-based request 43
Figure 3-3: Example of GraphQL request.............c.cooviiueuieieieeeeecee e 44
Figure 3-4: TJSON-based data retrieval using Falcorcccouieieiriinnireiennes 45
Figure 3-5: Richardson maturity model for RESTful Web services.......................... 48

Xi

Figure 3-6: Main resources of CityGML RESTful Web service........ccccccooovniernnnes 50

Figure 3-7: EXTra Main FESOUPCESccoiueirurieeeeirieeireieie ettt ssessssens 51
Figure 3-8: five LoD 0f CityGML........ccooiuririieieiresce et 51
Figure 3-9: Retrieval resource schema of CityGML RESTful Web service............. 52
Figure 3-10: Methodological steps of the energy-based WebGIS viewer............... 55
Figure 3-11: JSON-based schemas of "ADE_dynamizers" main resource................ 56
Figure 3-12: Conceptual design of "ADE_dynamizers" main resource....................... 57
Figure 3-13: Combined geometries..........ccoiuriiiriiieirieresee s 57
Figure 3-14: JSON-based schema of the implicit object..........ccovvieirinniirnes 59
Figure 3-15: citymodels resource schema in JSON formatccccccoeuvviivnicnninnes 65
Figure 3-16: JSON result by using "citymodel” resource...........ccccovieirinirnienninnnnes 66

Figure 3-17: JSON result by using the "thematics” filter parameter in the
"CITYMOAEIS" FESOUCE..........oeeei et 67

Figure 3-18: Information retrieval based on the gmlid by using "gmlid" resource 70

Figure 4-1: Building module in different LoDcccooievieininienieeeeeeee e 73
Figure 4-2: Values of the relationship of an object to the terrain........................... 75
Figure 4-3: Examples of building consisting of one and two building parts............. 75
Figure 4-4: Conceptual design of the "bldg" main resource...........cccccoovvvirnirrenrnnnnes 76
Figure 4-5: bldg resource schema in JSON format..........cccocoooeuviirninirnrnnieeeennes 76
Figure 4-6: JSON-based resource schema of specific building.................cccceuc........ 77
Figure 4-7: Boundary surfaces of the outer building shell............c.cccoovvirniinnnnne. 78
Figure 4-8: Schema of the Bldg exterior boundary surface sub-resources in
TSON TOMMAT ...ttt et 80
Figure 4-9: Retrieval schema of features belonging to a specific bldg exterior
BOUNAArY SUPFACE..........oeeeeeicc ettt 81
Figure 4-10: Example of a LoD2 buildingccceuieiriiirinieieeeree s 82
Figure 4-11: Retrieval data regarding the "link" object of a building in JSON
FOPMQAT ...t 82
Figure 4-12: Conceptual design of the LoD2 "bldg." sub-resources........................... 84

Xii

Figure 4-13:
Figure 4-14:
Figure 4-15:
Figure 4-16:
Figure 4-17:
Figure 4-18:
Figure 4-19:

Figure 4-20

Figure 4-21:
Figure 4-22:
Figure 4-23:
Figure 4-24:
Figure 4-25:

Figure 4-26:
installation...

Figure 4-27:
Figure 4-28:
Figure 4-29:
Figure 4-30:
Figure 4-31:
Figure 4-32:
Figure 4-33:
Figure 4-34.
Figure 4-35:
Figure 4-36:
Figure 4-37:
Figure 4-38:
Figure 4-39:

JSON-based schema of the "doors" and "windows" sub-resources...86

JSON-based resource schema of specific "opening” resource........... 87
Conceptual design of the LoD3 "bldg." sub-resources........................... 88
Conceptual design of the LoD4 "bldg." sub-resources........................... 90
A building example in LoD2, LoD3 and LoD4...........cccocoeuvnierineinricinee 92
LoD2 bldg sub-resources implementation examplecccccceuunec.. 92
LoD4 bldg sub-resources implementation exampleccccccoeuunece. 93
Example of "rooms" resources implementation.........ccccccoooovoeiviirinncece 94
Advanced requests to fetch all the furniture in a specific room.......95
Tunnel module in different LoDs.........cccooeieiniieineeeereeeee e 96
Example of a tunnel modeled with two tunnel parts.............................. 97
JSON-based tun resource schema............ccocoouvirinieinnieninsinireeeeenes 98
Exterior and interior tunnel boundary surfacescccoeueuunrnnnenn. 99
JSON-based retrieval resource schema of a specific tunnel
... 100
Conceptual design of the LoD2 "tun" sub-resources........................... 101
Conceptual design of the additional LoD3 "tun” sub-resources 103
Conceptual design of the additional LoD4 "tun" sub-resources 105
LoD2 Tunnel model..........c.occieiieiirierieceneieeeseeeee e 108
Bridge module in different LoDcccoooieieeiiieiceeeeeeeeee s 110
JSON-based schema of a "brid" resource...........ccccoevenivninieneance. 112
Bridge construction elements ..., 112
Construction resources of abridge..........cccccoovviereeiiiierieeceee 113
Boundary surfaces of abridge ..o, 114
Conceptual design of the LoD2 "brid" sub-resource........................... 115
Conceptual design of the LoD3 "brid" sub-resources......................... 118
Conceptual design of the LoD4 "brid" sub-resources......................... 120
Different types of bridges ..o, 121

Figure 4-40: JSON-based result for aced bridges............cccoooeeerivreeenriieerenes 122
Figure 4-41: Results of same aced bridge in different LoDs: (a) LoD2, (b) LoD3123

Figure 4-42: Result of construction and installation semantic elements of the

LoD3 bridge iNSTANCE........c.ooueeeeee ettt 124
Figure 4-43: JavaScript-based procedure to request all the construction
elements of a specific LoD3 aced bridge..............cccooeeervereerenieceeeeeecee e 125
Figure 5-1: Example for vegetation objects of the sub-classes
SolitaryVegetationObject and PlantCover ..o 130
Figure 5-2: JSON-based schema of "veg" resource.........ccccoouviveiviereerersncreenennns 130
Figure 5-3: JSON-based schema of "vegetation” and "plantcovers” resources... 131
Figure 5-4: Conceptual design of "veg”, "vegetation” and "plantcovers”

FESOUCEScueuiuiuieiatttt ettt sttt st sttt sttt sttt sttt ettt sttt sttt ettt ettt e bbbttt et et ettt etee 132
Figure 5-5: JSON-based schema of "luse” resource.............ccccoeevvivrreerinencerennns 133
Figure 5-6: Conceptual design of "luse” resource...........cccocovveerveivrrcereinineecerennes 134
Figure 5-7: City furniture objects ... 134
Figure 5-8: Conceptual design of "frn" resource.........ccccocouvieeeeirieereeeeceean 135
Figure 5-9: JSON-based schema of "grp" resource............ccccccoeevvvvrrerersirencrerennnns 136
Figure 5-10: JSON-based result for city object group instance............................. 137
Figure 5-11: Conceptual design of "grp" resource...........ccccooveerereieiceeereiniceeceenes 138
Figure 5-12: JSON-based schema of "dem" resource............cccccoovvvrereirivircrerennne. 139
Figure 5-13: Conceptual design of "dem"” resource.cccoooveueeeierereisirieeeee 140
Figure 5-14: Representation of roundaboutcccooveiiiiiieiiicccee 141
Figure 5-15: Transportation model representation in different LoDs.................... 141
Figure 5-16: JSON-based schema of "tran" main resource.............cccceevvvrrerennnee. 142
Figure 5-17: JSON result by using "tran” main resource.............ccccooevererrivrrererennne. 143

Figure 5-18: JSON-based schema of extra main resources (road, track, railway
AN SQUAME) ..ottt ettt b bbb s s s s bbb s s st et esebsss s saesesenssanenee 144

Figure 5-19: Example for the representation of LoD2 transportation module in
CityGML using TrafficAreas and AuxiliaryTrafficAreas...........ccccccoevvivrrerernnnnnnen. 145

Xiv

Figure 5-20: Conceptual model of the main resources regarding the

transportation module of CityGML ..o, 146
Figure 5-21: CityGML model in the Frankfurt area...........cccccooouvivevvrereinerenciennn 147
Figure 5-22: "tran" main resource implementation..........c.cccooovvieninienieencennn 147
Figure 5-23: "road" main resource implementation............ccccccoouviiniereinerencrernnnn 148
Figure 5-24: Request of SpPecific road..........ccccceeuririiceinieirieeeee s 149
Figure 5-25: Implementation of "trafficareas” sub-resources...............ccccouueuue..... 151
Figure 5-26: Implementation of "auxiliaries" sub-resource...........ccccccoovvrinrurnnnneee. 152
Figure 5-27: TSON-based "wtr" main resource..............cooeoveueeereesecreeneeessesnennns 153
Figure 5-28: Distinct thematic surfaces of the waterbody from LoD2 and

ADOVE......coe bbbttt 154
Figure 5-29: Conceptual design of the "wtr" main resource.............cccoevvvrrerennnnne. 155
Figure 6-1: CityGML 3.0 modules OVErviewccccceeueeriieereeeiisseieesesss e 164

XV

XVi

ABSTRACT

A 3D city model is considered as the digital representation of a city/ urban area that may
decompose into its objects/ elements such as buildings, roads, railways, terrain, water,
vegetation etc., with clearly defined semantics, spatial and thematic properties. Depending
on the level of detail (LoD), these objects may further decompose into more detailed
features. The OGC standard CityGML, optimally allows integration of the diversified
geoinformation of the aforementioned elements and provides multiple resolution at
different LoDs. Since 2008, it has been an international OGC standard for representing and
exchanging a 3D city model while in 2012, version 2.0 of this standard was published.
CityGML represents the geometrical, semantic, and visual aspects of 3D city models and,
for this reason, it is considered as an optimal standard for the representation of 3D city
models. However, the structure of the CityGML standard is rather complex in order to
support all these capabilities. Initially, CityGML was designed for the representation of 3D
city models and not for presenting or visualizing 3D city models directly on the web.
Therefore, the retrieval of the available semantic features from this standard, by
implementing interoperable approaches without the need for specific knowledge, is a
challenge, thus constituting the main research question of this work. Achieving this CityGML
data retrieval is structured on the basis of interoperability, easy-to-use, semantics and

non-expert user.

The current dissertation is structured in six chapters in order to address the research
question raised above and the resulting sub-questions. First, the available research works
and studies focusing on retrieving CityGML data are examined. Then, the solution of the
REST approach is presented and compared with other state-of-the-art technologies, and
finally, the CityGML RESTful Web service is conceptually designed and presented as a new

approach for retrieving CityGML data based on their semantic characteristics.

Chapter 2 presents the relevant research work that focuses on the CityGML data retrieving
utilizing tile or hierarchical-based or Web service-based approaches. Initially, the file-
based formats such as X3D, JSON, KML and glTF have been further studied. Next, the
OGC I35 and OGC 3D tiles are further examined as they provide a good solution in relation

to the literature research. Next, taking into account the complex structure of the CityGML

XVii

standard and the need to retrieve data from distributed sources, the adoption of the
available OGC Geospatial Web services are examined, such as OGC 3DPS and OGC WFS.
Also, the extension of the OGC WFS, as well as the integration of the RESTful service

architecture on top of OGC WFS are further examined.

The third Chapter of this dissertation studies the interoperable and easy-to-use
information retrieval of CityGML based on its semantic characteristics using non-OGC Web
services, such as SOAP and REST. Additionally, the REST is further compared with new
state-of-the-art technologies that can be adopted as CityGML data retrieval mechanism,
such as GraphQL and Falcor. Next, the solution of REST approach is presented and several
principles and constraints in respect to the RESTful implementation are described.
Thereafter, several principles and guidelines are provided with regard to the CityGML
RESTful Web service and finally, the conceptual design of its core resources is presented

such as "citymodels” and "gmlid".

Chapters 4 and 5 focus on the presentation and description of the conceptual design of
CityGML RESTful Web service, which is a new approach and proposal of the current
dissertation. So, taking into account the CityGML architecture, the CityGML structure is
more semantic than geometric, and therefore the retrieval of the data has to be achieved
mainly in compliance with the CityGML's semantic information. From the five components of
the CityGML's architecture, only the component of the thematic modules defines the
semantic features of CityGML. Therefore, these thematic modules are defined as the main
resources of the CityGML RESTful Web service. However, apart from the above-mentioned
resources, some extra main resources are also defined to make easier accessing their
available semantic features. Since CityGML adopts the multi-scale modelling in five
different LoDs, the same object may be simultaneously represented in different LoDs,
enabling the analysis and visualization of the same object with regard to different
resolution. However, LoD is considered vital not only in the geometric determination of the
level of detail, but also in the semantics. By increasing the LoD, the semantic richness of
CityGML increases respectively. Therefore, this semantic enrichment of each of the
thematic modules is retrieved by implementing a variety of sub-resources. Thus, some of
the main resources have LoD-based sub-resources and hence, their semantic retrieval is
available based on the LoD, while, some resources are LoD-independent with no

differentiation regarding their semantic sub-resources from one LoD to another.
XViii

More specifically, the fourth Chapter deals with the conceptual design of the LoD-based
thematic resources of the CityGML RESTful Web service. In this direction, the "bldg",
"tun" and "brid" main resources and their respective child resources are presented. These
resources refer to the respective building, bridge and tunnel modules of the CityGML 2.0.
Additionally, for each of these resources, various case studies using semantic requests are

exploited and presented.

The conceptual design of the rest of the main resources of the CityGML RESTful Web
service are presented in Chapter 5. These resources are mainly LoD-independent thematic
resources and therefore, they are enriched with semantic characteristics either
independently of LoD or from LoD2 and above without any different from one level to

another.

Finally, Chapter 6 concludes this research work by discussing the findings of the previous
chapters and responding to the sub-research questions formulated to address the aim of
this dissertation. Suggestions for future research works are discussed, aiming at making
this approach an OGC standard, and on upgrading it so that the upcoming version 3 of
CityGML can be fully supported.

Xix

XX

TTEPIAHYH

To Tpi0d1doTato HovTéAo TOANG BewpeiTal h yn@iakn avamapdoTacn Hiag TOANG TTouU UTTopEi va
amoouvTeBei ge £éva oUVOAO avTIKEIMEVWY OTTWG KTApld, dpopol, o1dnpodpopol, £dden, vepd,
BAGoTnON KAT. He oapw¢ KaBoplopévn anpacioAoyia, KaBwe Kal XWpPIKES Kal OedaTIKEG 1I010TNTEG.
Avahdywg To emimedo AemTOMEépElAg, TA ev AGYw avTIKEiMeva WmopoUv va amoouvteBolv
TepaITéEPW Ot TIO AeTTopepn XapakTnpioTikd. To CityGML, mou amoteAei mpéTumo OGC,
EMITPETEI TAV PEATIOTN EVOWNATWON TNG TTOIKIAOHOPPNG YEWTTANPOPYOPIAC TWV TTpoavagepOEvTwy
oToIXeiwv Trapéxovtag OIaPopEeTIKA avdAuon TG TTAnpo@opidac Toug oe JIaPopeTIKA emieda
AemtTodépelag. Ao To 2008 amoTteAei mpoTumo OGC yia Thv avamapdoTach Kal Thv avtaAAayn
3D Jedopévwy mOAng, evw amé To 2012 PpiokeTar otnv ékdoon 2.0. EmmAéov, To CityGML
AVTITIPOOWTTEUE! TIC YEWHETPIKEG, ONUACIOAOYIKEG Kal OTITIKEG TTTUXEC TWV 3D povTéAwv TTOANG
Kdl, WG €K TouTou, Bewpeital To KATAAANAOGTEPO TTPATUTIO Yid ThV avamapdatacn TplodidoTaTwy
HovTEAWY TTOANG. ()oTd00, TPOKEIMEVOU va UTTooThpif el OAEC TIC TTpoavagepBOeioeg duvaToTnTEG,
31a0éTel apkeTd ToAUTTAOKN Joun. EmimAéov, o Baagikdg oTdxog axediaong Tou CityGML eivail n
avamapdaoTacn Tou TpladidaTaTou HovTéAou TOANG Kal O0XI h OTTIKOTOINOA Tou ameuBeiag aTto
01adikTuo. Emopévwg, n duvarétnta avdkthnong OAwv Twv O81aBE0INwy ONHAGIOAOYIKWY
TANPOYOPiIWY aTd TO €V AOYW TPOTUTIO HE ThV XPAAON SIAAEITOUPYIKWY TIPOCEYYITEWYV KAl XWPIC
Tnv avdykn Umapéng €€e1dIKeUNEVNG YVWONG, amoTeAEI onUavTikA TTPOKANon Kal dhHIoupyei To
Bacikd €peuvnTIKG €pWThHA Yia Tn d1aTpIPA. ZUYKEKPIMEVA, N avdkTnon Twv JeSOHEVWY Tou
CityGML mpémel va emTeuxBei pe yvwpova Tn diaAsiToupyikotnta (interoperability), n
anpacioAoyikh Tpooéyyian (semantically) kair Tnv eUkoAn mpooméAaan /xphon (easy-to-use),

akopn Kai amé pn €181koug (non-expert users).

To mepiexopevo ThG Tapouaag diatpIPng diapBpuwvetal o £€1 KepdAdid, HE OTOXO ThV TTAPOXN
OAOKANPWHEVWY ATTAVTAGEWV OTd EPEUVNTIKA E€PWTAMATA TIOU TPOEKUYAV daTmd Thv
mpoavagepBeioa mpokAnan. Apxikd, e€etdlovtal o1 di1aBéaineg €peuveg mou eaTidlouv oThv
avdktnon dedopévwy CityGML. XTn ouvéxela, yivetalr mapouaiaon Tng mpooéyyiong REST, n
0TT0id OTN GUVEXEIA OUYKPIVETAI ME OUYXPOVEG TeXVOAaYiec. TEAOG, YiveTal avaAuTIKR Ttapouadiacn
Tng CityGML RESTful Web service, mou amoteAei mpoTeivopévn AUonh Thg Tapouaag diatpiPnRg
wote va emTeuxBei n avdktnon dedopévwv CityGML pe Bdon Ta onuacioAoyikd Toug

XAPAKTNPIOTIKA.

XXi

To deUTepo KepdAalo mapouaidlel Kal afloAoyei SIAPOPEC EPEUVEC TIOU ETTIKEVTPWYOVTAI OThV
avdktnon dedopévwy CityGML xpnaigomoiwvtag mAnBwpa mpodeyyigewv 6MwG He TAAKAKIA
(tile-based), 1epapxikéc (hierarchical-based) kai 81adikTuakéC uThpedieg. ApXIKd,
HeAeTABNKav file-based popypdTuma drwg X3D, TSON, KML kai gl TF. Z1h ouvéxela Ta mpdTuTa
OGC I3S kal OGC 3D tiles ueAeTABNKav mepaiTépw KaBug TapExouv adpKeTd KaAn AUon pe Bdon
TIG uTdpXouaeg épeuveg. EmimAéov, AaupdvovTag uméyn Tnv mepimAokn dopn Tou CityGML kai
TNV avdykn avdktnong O0edodévwy amd Katavednuéveg mnyég, €€eTdoThke n uI0BEThon Twv
01a0éaipwy OGC yewxwpIKWY uTthpeaiwy d1adIkTUOU, TTOU aTO TTAdiCI0 TOU TPIodIAoTATOU XWPOoU
eival Ta OGC 3DPS kai OGC WFS. Emiong, avagopikd pe To OGC WFS, e€etdleTal mepaitTépw
TOOO N €MEKTAON TOU 600 Kal n evowpdtwon RESTful 81adikTuakA¢ umnpediac w¢ Pacikog

0dnyoc xpnRang Tou.

To TpiTo kewdAaio auth¢ ThG d1aTpIPAC MEAETA Tn dIAAEITOUPYIKA Kal €UXphoTh avdkthon
CityGML mAnpogopiwv he PBdon Ta onpacioAoyikd XApaKTNPIOTIKA TOUG XPNGIHOTIOIUVTAG
01adIKTUAKEG uThpeaie¢ mou Oev amoTeAolv mpoTuma OGC, omwg SOAP kai REST.
EmimpoaBéTweg, n REST apXITEKTOVIKA GUYKPIVETAI TTEPAITEPW HE VEEC TEXVOAOYIEC AIXHAG TTOU
HTTopoUv va u108eTnBoUV w¢ Pnxaviodog avdktnong dedopévwy CityGML, 6mwg GraphQL kai
Falcor. Emeita, mapouaidletar n mpootyyion REST wg mpoTteivodevn AUon Kai, €mITTAEoy,
TeplypdgpovTal dIdPopeg adpXEC Kal Teplopladoi Tou avagépovtal oth RESTful uAomoinon. ZTn
ouvéxeld, apéxovtal apxég kal odnyieg avagopikd pe Tnv CityGML RESTful &iadiktuakn
UTThpeoia Kal TEAOG, avaAUETAl 0 £VVOIOAOYIKOC OXEJIAONOC TWV TTOPWYV TOU TTUPAVA TNG, OTTWG

"citymodels"” kai "gmlid".

Ta KepdAaia 4 kai 5 gaTid{ouv aThv avaAuTIKA TTEPIYPAPR Kal TTapouadiacn Tou £vvoloAoyikoU
axediaopou Tng CityGML RESTful 81ad1kTUaKAG uTthpeaiag, n oTroia amoTeAei pid véa TTPodEyyion
Kdl TTpOTaoh Th¢ Tpéxouaac dIaTPIBAG. ZUVETWCE, AddPdvovTac uTdyn Thv dPXITEKTOVIKA Tou
CityGML, n Bopn Tou tival TePIOOOTEPO ONUACIOAOYIKA TIAPd YEWMETPIKA Kal EMOMEVWG N
avdktnon Twv 0cdodévwy TIpETeEl va UAOTIOINOEi KUpiwg OUMQWVA HE TIC OGNHAGIOAOYIKEG
TAnpogopieg Tou. ATO Ta TEVTe aToIXeid ThG apxITeKTOVIKAG Tou CityGML, pyévo To aToixeio
Twv Bepatikwy HovTéAwy kaBopilel Ta anyacioAoyikd xapakTnploTikd Tou CityGML. Zuvemug,
Ta &v AOyw Oepatikd HovTéAa kaBopilovTtal wg ol Pacikoi moépol Tng CityGML RESTful
d1adIKTUaKAG uthpeaiag. ()aTdoo, €KTOC amd Toug TpoavagepBévteg mopoug, kabopilovTal
kdmolol emimtAéov Pacikoi Topol TpokeIdévou va OleukoAuvBei n TpooPacn ota S1aBéaipa

oNHacioAoyikd TOUG XdpdkThploTikd. EmimpoaBéTwe, uioBeTei T HovTeAomoinon ToAAaTAWvV
xXii

KAIHGKwV Kal umoaThpilel mévte diapopeTikd emimeda Aemtopépeiag. 1o CityGML, To i8I0
avTikeidevo dUvartal va avamapaotadei TauTdxpova de S1AQOopeTIKA emimeda AemToMéPEIAC,
ETMITPETOVTAC TNV OTTIKOTIOINON TOU i8I0V AVTIKEINEVOU Ot BIAPOPETIKA ETITEdA XWPIKAG
avdAuonc. QQoTéaoo, To emtitedo AcTtTopépeiac Ocwpeital TWTIKAG oNHAciag, TOOO OTO YEWHETPIKO
TPOoCdI0PIOHO TWV O1aBECINWY XAPAKTNPIOTIKWY 000 KAl 0TO ONHAGIOAOYIKO, Kdl €TOMEVWCG, N
avfnon Tou emIMEdOU AcTtTopEPEIAC eMTTAOUTI(El avTioToIXda Td OhHAGIOAOYIKA XAPAKTNPIOTIKA
Tou CityGML. Q)¢ ek ToUTOU, N avdKTNON TOU €KACTOTE oNHATIoAOYIKOU EUTTAOUTIGNOU Yia KGBe
31a8¢é01do BepaTikd HovTéAO emITUYXAVETaAl HE ThV UI0BETNON Silapdpwy umo-Ttépwy Thg CityGML
RESTful diadiktuakAg umnpegiagc. 0¢ amoTéAeopa, oplodévol amd Toug PacikoUg TOPoUG
01aB£TouV UTTO-TTOPOUC TTOU h 31aBeaIdOTNTA Toug PacileTal oTo emiTedo AETITOMEPEIAS, EVW
oplopévol Ttopol cival avedpTnTol amd To emiTed0 AETITOMEPEIAC KAl ETTOMEVWE JeV UTIAPXEI
dlapopoToinon atn 81aBedIdOTATA TWV AVTIOTOIXWVY UTTO-TTOPWY TOUG aTd To éva emimedo

AemTopépElac aTo dAAo.

To TéTapTo Ke@dAalo doxoOAciTal He Tov evvoloAoyiké oxediaodd Twv LoD-based Pagikwv
Bepatikwy mopwv Tng CityGML RESTful d1adiIkTuakng uUTnpecdiag. ZUYKEKPIPEVQ,
mapouaidlovTal ol Pacikoi mépol "bldg”, "tun" kai "brid" kai o1 avtioToixol umo-mépor Toug. Oi
ev Aoyw PBacikoi mépol avagépovTal 0Ta avTioToIxa HoVTEAd KThpiwyv, YEQUPWY Kdl TOUVEA Tou
CityGML 2.0. EmmpooBéTwg, yia kdBe évav amd auToug Toug TTépoug, TrapouaidlovTal didpopa

Tapadeiypuarta epapHoyng onHacioAoyIKWyY aiThHATwy.

O evvolohoyikog oxedlaopdg Twv umoAloimwy Pacikwv mopwv Tng CityGML RESTHful
01adIKTUAKAG uThpeaiag avaAueTal oto KepdAaio 5. O1 ouykekpidévol Ttopol eival ave§dpTnTol
amd 1o emimedo AEMTOMEPEIAG TOUC Kal emMOMEVWC, edTAouTi{ovTal He Ta idla onuadioAoyikd
XAPAKTNPIOTIKA €iTe avefdpTnTa Tou ekdaToTe €mMITTEOU AETTTOMEPEIAC €iTE Ao To emiTedo

AemTopépelag dUO Kal TTAvw.

Téhog, oto KepaAdaio 6 oAokAnpwveTal n HEAETN TG Tpéxouoag d1atpiPng oulnTwvtag Ta
EUPAHATA TWV TTPONYOUHEVWY KEPAAAiWY Kal amavTuwyvTag aTd avTioToIxa EpEeUvnTIKA EpWTANATA.
Emiong, umoBdAAovTal TpoTdoelg yia MEAAOVTIKR £peuva, eoaTidlovrag oTthv kabiépwan Tng
TPOTEIVOHEVNG Tpootyyiong w¢ mpotumo OGC, kaBwg emiong kair atnv avaPdduion Tng

TIPOKEINEVOU va UTTOpEi va uroaThpif el TARPWG Thv erepxopevn €kdooan 3 Tou CityGML.

xXiii

XXiV

LIST OF ABBREVIATIONS

2D

3D
3DCIM
3DCityDB
3DPIE
3DPS
ADE

AGI
AJAX
API
B3DM
BIM

CAD
CityGML
COBRA
COLLADA
CORS
cQL

CRS

Ccsv
Ccsw
DBMS
DOM
EPSG
FME

GDF

GIS

glTF
GML
GMLID
GPU
HATEOAS
HTML
HTTP (S)
I3S

IFC

Two Dimensions

Three Dimensions

3D City Information Model

3D City Database

3D Portrayal Interoperability Experiment
3D Portrayal Service

Application Domain Extension
Analytical Graphics Inc

Asynchronous JavaScript and XML
Application Programming Interface
Batched 3D Model

Building Information Model
Computer-Aided Design

City Geography Markup Language
Common Object Request Broker Architecture
COLLAborative Design Activity
Cross-Origin Resource Sharing
Common Query Language

Coordinate Reference System
Comma-Separated Values

Catalog Service for the Web
Database Management System
Document Object Model

European Petroleum Survey Group
Feature Manipulation Engine
Geographic Data Files

Geographic Information Systems

GL Transmission Format

Geography Markup Language

GML identifier

Graphics Processing Unit

Hypermedia as the Engine of Application State
HyperText Markup Language
HyperText Transfer Protocol (Secure)
Indexed 3D Scene Layer

Industry Foundation Classes

XXV

ISO
IT
JAXB
JSON
JSONP
KML
KMZ
LADM
LoD
Oauth
OGC
REST
ROA
RPC
SIG 3D
SLPK
SOA
SOAP
SSL
TIN
URI
URL
URN
VRML
W3DS
WCS
WebGL
WFS
WMS
WOA
WSDL
WVS
X3D
X3DOM
XML

International Organization for Standardization
Information Technology

Java Architecture for XML Binding
JavaScript Object Notation
JSON with Padding

Keyhole Markup Language

Zipped KML Format

Land Administrator Domain Model
Level of Detail

Token Based Authentication
Open Geospatial Consortium
Representational State Transfer
Resource-Oriented Architecture
Remote Procedure Call

Special Interest Group 3D

Scene Layer Package
Service-Oriented Architecture
Simple Object Access Protocol
Secure Sockets Layer
Triangulated Irregular Network
Uniform Resource Identifier
Uniform Resource Locator
Uniform Resource Name

Virtual Reality Markup Language
Web 3D Service

Web Coverage Service

Web Graphics Library

Web Feature Service

Web Map Service

Web-Oriented Architecture

Web Services Description Language
Web View Service

Extensible 3D

pronounced X-Freedom
eXtensible Markup Language

XXVi

@ INTRODUCTION

1.1 Context
1.2 Problem Statement
1.3 Research Questions
1.4 Outline

Page |2

CHAPTER 1. INTRODUCTION

Page |3

1.1. Context

Many urban or environmental models are defined for supporting practitioners and
stakeholders in their decision-making processes. Models which represent in three
dimensions (3D) the geometric and semantic elements of city are called 3D city models.
These 3D city models are increasingly used in different cities and countries for an intended
wide range of applications beyond mere visualization (Pispidikis & Dimopoulou, 2019),
providing further value and additional utility over two dimensions (2D) geo-datasets.
Additionally, they are becoming ubiquitous for making decisions and for improving the
efficiency of governance. Hence, the generation of complex 3D city models facilitates the
better sophisticated understanding of the objects and their spatial interaction with their
surrounding environment (Floros et al., 2017). The type and amount of data that can be
integrated into a 3D city model rises dramatically, a condition that promotes the necessity

all these data to be properly stored, edited, visualized and retrieved.

3D city models come in various versions. The most commonly used technologies for 3D city
models are Geographic Information Systems (GIS), while on a building-scale Building
Information Modelling (BIM) is mostly used. BIM and GIS refer to different spatial scales
and modelling levels and thus, various data exchange standards, protocols and formats have
been developed to serve the needs for each domain (Pispidikis et al., 2018). Currently,
Industry Foundation Classes (IFC) and City Geography Markup Language (CityGML) are
representative model standards for BIM and GIS, respectively. Even though other formats
exist, they are the most widely studied and used exchange formats. Furthermore, they are
also complete ontologies for building and city models that could contribute to the
construction of the semantic web. As a result, focusing on 3D city models, CityGML is
considered the optimal standard for the semantic, geometric and topological representation
of a city. CityGML is a common semantic information model for the representation of 3D
urban objects that can be shared over different applications. This capability is especially
important regarding a cost-effective sustainable maintenance of 3D city models, enabling
the same data to be provided to customers from different application fields (Gréger et al.,

2012). However, although CityGML is considered as the most appropriate model for the

CHAPTER 1. INTRODUCTION

Page | 4

representation of 3D city models, it is quite difficult to retrieve this data based on their

semantic geometric and descriptive features.

The aforementioned issue was identified during the author's master thesis with the

following topic (Pispidikis & Dimopouloy, 2016):

"Development of a 3D WebGIS system for retrieving and visualizing CityGML data based

on their geometric and semantic characteristics by using free and open source technology”

The objective of the abovementioned thesis was the development of a 3D WebGIS
application in order to successfully retrieve and visualize CityGML data in accordance with
their respective geometric and semantic characteristics in all Levels of Detail (LoD).
Although there have been several research projects on the visualization of 3D city models
utilizing the CityGML standard, there was no solution regarding the semantic retrieval of
this data. To this purpose, a suitable PHP class called cityDBWrapper was developed and
hence, the data retrieval from PostGIS was achieved, based on both semantic
characteristics and LoDs of CityGML.

However, although the implementation of this approach provides a good solution for
semantically retrieving CityGML data, some issues are presented to be resolved relating to
the complex structure of the CityGML and the need to retrieve data from distributed
sources without requiring specific knowledge of the source (CityGML) and of the proposed
Appliation Programming Interface (API).

1.2. Problem Statement

A 3D city model is considered as the digital representation of a city that may decompose
into its objects (such as buildings, roads, railways, terrain, water, vegetation etc.) with
clearly defined semantics, spatial and thematic properties. Depending on the levels of detail,
these objects may further decompose into more detailed features. The OGC standard
CityGML, optimally allows integration of the diversified geoinformation of the

aforementioned elements and provides multiple resolutions at different LoDs. However, the

CHAPTER 1. INTRODUCTION

Page |5

structure of the CityGML is rather complex for supporting all these capabilities. Therefore,
the retrieval of the available semantic features from this standard by implementing

interoperable approaches without the need for advanced knowledge, is a challenge.

1.3. Research Questions

Taking into consideration the abovementioned problem statement and the respective
research studies, the following research questions should be investigated and answered in
the context of the current dissertation:

Thus, the core research question is:

How the interoperable and easy-to-use information retrieval of a city could be semantically

achieved by non-expert user?

Thereafter, the following sub-research questions arise:

(1) Can the existing 3D graphics or data exchange formats be utilized as a means of
semantically retrieving CityGML data?

(2) Can the existing OGC Geospatial Web services be utilized as a means of semantically
retrieving CityGML data?

(3) What is the most appropriate architecture type of a web service for achieving the
easy-to-use information retrieval of a city?

(4) How could CityGML data be semantically retrieved by users without knowledge of

the source?

1.4. Outline

Chapter 2 examines various approaches for retrieving and visualizing CityGML data.
Initially, the tile and hierarchical-based approaches using file-based formats such as X3D,
JSON, KML and gl TF have been further studied and research. Next, the OGC I3S and OGC

CHAPTER 1. INTRODUCTION

Page |6

3D Tiles are also examined. Finally, the available OGC Geospatial Web services are studied
which, in the context of 3D, there are the 3DPS and the WFS.

Chapter 3 examines the use of non-OGC Web services for the interoperable and easy-to-
use information retrieval of a CityGML based on its semantic characteristics. For this
purpose, The SOAP and REST Web services are further studied and compared. Also, the
REST are compared with new state-of-the-art technologies that can be adopted as a
CityGML data retrieval mechanism such as GraphQL and Falcor. Thereafter, several
principles and guideline are addressed with regard to the CityGML RESTful Web service

and finally, the conceptual design of the "citymodels” and "gmlid" resources is presented.

Chapter 4 describes the conceptual design of the LoD-based thematic resources of the
CityGML RESTful Web service. More specifically, the "bldg", "tun" and "brid" resources and
their respective child resources are presented. Also, for each of these resources, various

case studies using semantic requests are presented.

Chapter 5 presents the conceptual design of the rest of the main resources of the CityGML
RESTful Web service which are mainly LoD-independent thematic resources. Namely, these
resources are enriched with semantic characteristics either independently of LoD or from
LoD2 and above without any difference from one level to another. Hence, the thematic
resources with similar availability in all LoD as well as the thematic resources with similar

availability from LoD2 and above are presented.

Finally, Chapter 6 concludes the findings with respect to the core research question of the

current dissertation and sets suggestions for future research.

CHAPTER 1. INTRODUCTION

Page |7

@ RETRIEVING CITYGML INFORMATION

2.1 Tiled and Hierarchical-based CityGML retrieval
2.2 3D Web Portrayal Services

2.3 OGC Web Services for Sharing and Managing Raw Data

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |8

This chapter examines various approaches for retrieving and visualizing CityGML
data. Initially, the tiled and hierarchical-based approaches using file-based formats
such as X3D, JSON, KML and gITF have been further studied and investigated.
Second, the OGC I3S and OGC 3D Tiles were also examined. Finally, the available
OGC Geospatial Web services were studied which are, in the context of 3D, the 3DPS
and the WFS.

In this chapter, the 1°" and 2™ sub-research questions of the current dissertation
are addressed:
(1) Can the existing 3D graphics or data exchange formats be utilized as a means

of semantically retrieving CityGML data?
semantically retrieving CityGML data?
This chapter utilizes the following papers:

(1) Pispidikis and Dimopoulou (2016)

(2) Pispidikis and Dimopoulou (2018)

(3) Pispidikis, Tsiliakou, Kitsakis, Athanasiou, Kalogianni, Labropoulos, and
Dimopoulou (2018)

(4) Athanasiou, Pispidikis and Dimopoulou (2018)

(5) Pispidikis and Dimopoulou (2019)

E (2) Can the existing OGC Geospatial Web services be utilized as a means of E
' (6) Chatzinikolaou , Pispidikis and Dimopoulou (2020) :

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |9

2.1. Tiled and Hierarchical-based CityGML Retrieval

CityGML presents an efficient solution for the representation of 3D city models because it
combines geometry and semantics in a single data model. However, efficiently visualizing or
retrieving 3D geometry and semantic information stored in CityGML is complex. It should
be noted that a number of desktop viewers are available for the local visualization of
CityGML data such as FZK Viewer and Feature Manipulation Engine (FME) Data Inspector.
However, the visualization of CityGML models on the web is still a challenging area since
CityGML is designed for the representation of 3D city models and not for presenting or
visualizing 3D city models directly on the web (Ohori, Biljecki, Kumar, Ledoux, & Stoter,
2018). Hence, several research works have been done on the aforementioned challenge
focusing on retrieving CityGML data implementing either tiled and Hierarchical-based or

Web-service-based approaches.

2.1.1. 3D graphics and data exchange formats

2.1.1.1. Extensible 3D (X3D)

In the context of the implementation of 3D graphics, Mao and Ban (2011) developed a
framework for the visualization of 3D city models (Figure 2-1). As data source the CityGML
was used, which turned into an Extensible 3D* (X3D) scene and finally it was visualized on
the web utilizing the pronounced X-Freedom (X3DOM)?. Specifically, CityGML data were
analyzed and converted to Java Classes, representing various city objects such as buildings,

streets, etc. The said conversion was implemented by the use of Citygml4j® Application

1 X3D is an XML-based, open 3D data format that is used to represent 3D scenes in a web
environment and is the successor to Virtual Reality Modelling Language (VRML).

2X3DOM is a framework for integrating X3D scenes as HTML5 Document Object Model (DOM)
elements, which are rendered via WebGL without additional plugins.

3 Citygml4j is an open source Java class library and API for facilitating work with the CityGML.
Citygml4j makes it easy to read, process and write CityGML datasets, and to develop CityGML-aware
software applications.

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |10

Programming Interface (API). Then, the respective scenes were generated in accordance

with geometric or semantic information.

O e R

Web browser | AJAX Server
S —|— —
|

3D models X3D node 3

| X3DOM | Java Class
—Feed back User request &

L | =

User ' citygmidj

&

Figure 2-1: File-based approach for the visualization of CityGML over the web
(Mao & Ban, 2011)

2.1.1.2. JavaScript Object Notation (JSON)

LSIS (Laboratoire des sciences de |' information et des systemes) laboratory focused on
the representation of CityGML buildings carried out three tests. In the first test, the
entire CityGML file was fetched from a WFS server on HyperText Markup Language
(HTML) thick client based on C++. In the second test, the CityGML file was first processed
on a server using Java Architecture for XML Binding (JAXB) parser. Consequently, only the
required part can be fetched on the client. In the last test, the CityGML stream was
replaced with a JavaScript Object Notation (JSON) stream. This choice was made taking
into account that the latter can be more easily portrayed on the web using Three.js API,
which utilizes the WebGL* technology (Schilling, Hagedorn, & Coors, 2012). Extending to
the last test is the approach of Gesquiere and Manin (2012), who adopted the tile-based
approach to work on CityGML files. The CityGML file was broken into several tiles and each

* WebGL (Web Graphics Library) is a JavaScript API for rendering high-performance interactive 3D
and 2D graphics within any compatible web browser without the use of plug-ins.

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |11

tile was transformed into JSON, which was stored on the server. Hence, the client made
requests to the server on the basis of specific tile and consequently, the server responded
with JSON file for that tile. Prandi et al. (2013), following the tile-based approach,
developed a framework in the context of a project called iSCOPE (interoperable Smart City
Services through an Open Platform for urban Ecosystems). Specifically, they separated the
CityGML files into tiles, storing them to the Server and finally, the Client can make requests

based on the said requests. As a result, the progressive visualization was achieved.

However, the implementation of the above-mentioned studies does not provide solution
regarding the semantic retrieval of CityGML data without need for knowledge of the source.
Consequently, Pispidikis and Dimopoulou (2016) developed a PHP class which utilize ATAX
(Asynchronous JavaScript and XML) techniques with a view to dynamically retrieve CityGML

data in JSON format and based on specific semantic characteristics (Figure 2-2).

cityDBWrapper

Server: text

Password: text

getAllGeometryDlata: JSON
Checkifexictthematicdatabylod ($lod: number): array <
getobjectclassnamelsobjectclass_id: number]: array - : =
getbuildingbaselod($lod :number]: array e ‘?‘s":\ - “
Getbuildings: array - !\W:"
getbuildingsbaselodilod :number]: array /
getbuildingsbyqueryl$coord: array, Stype: text]: array
getgeometryofsurfacebasebuildingl$lod :numberlarray
getgeometryofsurfacebasebuildingidi$lod :number $buildingid: numberlarray
getaddressbybuildingl$buildingid:number):JS0N

getinformationbybuildinglsbuildingid :number:JSON

getgeometryofopeningbasebulldngid Slodsurface:number, Slodopening:
number.buildingid:number]:array
getcurrentopeningbasebuildingidi®lodsurface:number.$lodopening:number. Sopeningid:nu
mber sbuildingid-number):array

getgeometryofbuildinginstallationi$lod:number $buildingid-number):array
getgeometryofcurrentbuildinginstallationi$installationid:array, $lod:number, $buildingid:num
berl:array

getgeometryofbuildingfurniturelEroom:number. $buildingid:number):array
getgeometryofroomigsolid:boolean $buildingid:numberlarray
getgeometryofcurrentroomigsolid:boolean $roomid:number, $buildingid:numberlarray
dynamicqueriesi$whereclausetextlamay (C)

Figure 2-2: PHP class for semantic retrieve LoD2 (a), LoD3 (b) and LoD4 (c) CityGML data

(Pispidikis & Dimopoulou, 2016)

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |12

2.1.1.3.Keyhole Markup Language (KML)

The increased focus on HTML5 and WebGL solutions leads to the development of an entire
framework for 3D geospatial data visualizations such as Cesium and iTowns. These
frameworks feature an open source JavaScript and WebGL-based virtual globe and map
engine that can display terrain, image, and 3D models. The Keyhole Markup Language (KML)

and the GL Transmission Format (gl TF) are natively supported by these frameworks.

KML is an XML grammar language used to encode and transport representations of
geographical data for display in a Web browser. KML was originally created as a file format
for Keyhole's Earth Viewer, which later emerged as the Google Earth application allowing
users to overlay their own content on top of the basemaps. In 2007, Google submitted KML
to the OGC and in 2008 was adopted as OGC standard (Wilson, 2008). KML files are often
distributed in Zipped KML Format (KMZ) files, which are zipped files that include KML along
with its associated images and icons. According to the KML specification, the tile-based

retrieval of the data can be achieved implementing the NetworkLink element (Figure 2-3).

Figure 2-3: Tile-based retrieval using NetworkLinks

The aforementioned tile-based mechanism was implemented by Chaturvedi (2014). More

specific, the 3DCityDB Importer/Exporter® tool was used and the CityGML files were

> 3DCityDB Importer/Exporter is a java-based front-end for the 3D City Database and allows for
high-performance loading and extracting 3D city model data. Specifically, the supported import and
export operations are the following: import of CityGML models;export data as CityGML models;
export data in KML/COLLADA/gITF format; export data as spreadsheets.

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |13

imported into a 3D city database®. Next, these datasets were exported in KMZ files based
on specified number of tiles and their respective length. Further, the reference of the KMZ

files, in accordance with the tiles, is given in master KML file using NetworkLinks.

Additionally, Prandi et al. (2015) involved with the 3D web visualization of huge CityGML
models, which were originally stored in the Database in compliance with 3D city database
schema. Thereafter, in order the visualization of their data to be achieved and, in addition,
their thematic features to be able to be searched, the following procedures were
implemented: firstly, for visualization purpose the data was exported to Keyhole Markup
Language/ COLLAborative Design Activity (KML/COLLADA) format together with the
specific CityGML ID of the feature; secondly, the data was retrieved from the 3D city
database utilizing the OGC WFS server using the CItyGML ID as query attributes.

Chaturvedi et al. (2015) presented a Web based 3D client, which has been developed on top
of WebGL based Cesium virtual globe utilizing the following technologies: ExtJS
JavaScript-based web framework and HTML5. The highlighted features of the said client
are the data exploration, the managing interaction and the queries based on the attributes
of the data. The visualization of the data was achieved using KML/COLLADA files and JSON

encoded data.

2.1.1.4.GL Transmission Format (gl TF)

The gITF is an API-neutral runtime asset delivery format that bridges the gap between 3D
content creation tools and modern graphics applications by providing an efficient,
extensible, interoperable format for the transmission and loading of 3D content. This
format combines an easily parsable JSON scene description with one or more binary files
representing geometry, animations, and other rich data. Binary data is stored in such a way
that it can be loaded directly into Graphics Processing Unit (GPU) buffers without additional

® 3D City Database is a free geo database to store, represent and manage virtual 3D city models on
top of a standard spatial relational database. This database schema implements the CityGML
standard with semantically rich and multi-scale urban objects facilitating complex analysis task, far
beyond visualization.

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |14

parsing or other manipulation (Figure 2-4). Implementing this approach, glTF is able to
faithfully preserve full hierarchical scenes with nodes, meshes, cameras, materials, and
animations, while enabling efficient delivery and fast loading (Khronos Group, 2019). The
implementation of gITF format for streaming CityGML 3D city models was described by
Schilling et al. (2016). They concluded that using formats such as X3D, KML/COLLADA or
glTF makes the rendering process using existing visualization frameworks particularly
simple. However, these pure graphics formats cannot directly store CityGML's semantic
information. Similarly, Ohori et al. (2018) noted that the visualization of CityGML over the
web using commonly 3D graphics requires the separation of geometric information from

semantic information. Consequently, the rich semantics of CityGML are often lost.

~
.gltf (JSON)
Node hierarchy, materials, cameras
b vy
4 . I
.bin .png
Geometry: vertices and indices .jpg
Animation: key-frames
Skins: inverse-bind matrices
Textures
o

Figure 2-4: Valid gl TF asset

(Khronos Group, 2019)

2.1.2. OGC 3D Tiles

In the context of GIS, properties of objects, e.g. buildings, are inherently part of the
virtual representation and must be accessible either as embedded attributes, as separate
table or via supplementary database queries. The common 3D formats such as X3D,
COLLADA and gl TF have no designhated place for storing additional object information. The
format that merges gITF assets and attributes was developed and shared under the
umbrella of the OGC 3D tiles” (Cozzi, 2019) and called B3DM (Batched 3D Model). This

format introduces the concept of batches for identifying objects and assigning properties

7 OGC 3D Tiles is designed for streaming and rendering massive 3D geospatial content such as
Photogrammetry, 3D Buildings, BIM/CAD, Instanced Features, and Point Clouds. It defines a
hierarchical data structure and a set of tile formats which deliver renderable content.

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |15

such as unique ID, feature type and custom attributes. Each object property can be used
for highlighting, for showing/hiding specific object, for custom styling based on attributes
and for querying web services for retrieving additional information based on the ID (Figure
2-5). However, for embedding and preserving all the available semantic features of CityGML
in Cesium, all data must be made available as 3D Tiles layer and converted into B3DM. Due
to different concepts regarding spatial data representation and basic structuring, a series

of processing steps must be performed that go away beyond a simple format conversion.

format identifier (unsigned char[4])
version (uint32)

byte length (uint32) > 20-byte

batch length (uint32) header

batch table byte length (uint32) J

batch table (optional)

> body
Binary glTF

Figure 2-5: layout of a B3DM

(Schilling et al., 2016)

2.1.3. OGC Indexed 3D Scene Layer (I3S) and Scene Layer Package

I3S (Indexed 3D Scene Layer) was released to the community by ESRI as a format for
packaging and streaming large, heterogeneously distributed 3D data sets and was adopted
in 2017 as an OGC standard (Reed & Belayneh, 2017). The I3S is declarative and extendable,
and can be used to represent different types of 3D data such as 3D objects, integrated
mesh, point, point cloud and building scene layer. It is encoded using JSON and binary
ArrayBuffers (see ECMAScript 2015 known as ES6). The main goal of this standard is to
enable streaming large 3D datasets with high performance and scalability and hence, it is
designed from the ground up to be cloud, web and mobile friendly. Also, it is based on TSON,

REST and modern web standards, making it easy to handle, parse, and render by web and

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |16

mobile clients. Currently, the scene layers can be consumed from any ArcGIS applications
such as ArcGIS Pro, ArcGIS Earth, ArcGIS online, CityEngine etc. either as service or local
scene layer package files (SLPK).

The I3S standard was implemented by Pispidikis et al. (2018). Specifically, they combined
different 3D modelling methodological tools and techniques (Figure 2-6) to develop a

semantically enriched 3D campus model that can be used for navigation and maintenance.

<<Application>>
2D models

|
1
<<CGA modeling>> 1
1

<<BIM modeling>>.
!

|
J

e -

CityEngine Application

\

| |

[
<<Semantic enrichment>> <<Semantic enrichment>> <<Semantic enrichment>>
FileGDB->3DCIM schema BIM model-->CityGML BIM model->IFC
Interoperability i S | [
extension of CityEditor plugin I I
ArCGIS v v/ i

CityGML

o Fil
interoperability’ import to FileGDB

extension of i

ArcGis ;
File GDB (3DCIM schema)

Single MultiPatch Geometries (Viewer)

|
; i Vector Data
= € s Feature Services s
I "y
|
|

Figure 2-6: Methodological tools and techniques
(Pispidikis et al., 2018)

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |17

For buildings' modeling, two different modeling approaches were implemented (procedural
& BIM-based modelling), using several software such as CityEngine, Trimble SketchUp Pro
and Autodesk Revit. Thereafter, each developed model was semantically enriched, to be
represented in LoD1, LoD2 and LoD3 of CityGML standard and then, imported to a file
Geodatabase, based on the 3D City Information Model (3DCIM)® schema. The 3DCIM and
the CityGML are considered complementary and hence, several tools have been developed
to achieve interoperability for these models (Reitz et al., 2014). Next, the file
Geodatabases were converted to SLPKs and published as ArcGIS Scene Services (Figure 2-
7). However, for preserving all the available semantic features of CityGML in all LoDs, all
semantic features must be embedded as data attributes in each file Geodatabase according
to the 3DCIM schema. The said procedure is significantly complex to be implemented for

large scale city models.

Figure 2-7: 3D NTUA Campus overview using ArcGIS Scene Services
(Pispidikis et al., 2018)

8 3DCIM is the commercial solution of the semantically enriched database schema, developed by
ESRI, aiming to provide compact and yet simple in structure, information model.

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |18

2.2. 3D Web Portrayal Services

Taking into consideration the aforementioned studies and research (see section 2.1)
regarding the tiled and hierarchical-based approaches for retrieving and visualizing
CityGML data using file-based formats, there have been several issues. The visualization of
CityGML over the web using commonly 3D graphics requires the separation of geometric
information from semantic information and hence, the rich semantics of CityGML are often
lost. Additionally, although the OGC I3S and OGC 3D Tiles provide partial solution, the
procedure to generate these files from CityGML source, retrieving all semantic features,
is complex. Last but foremost, the implementation of these solutions is not suitable in terms
of interoperability. Therefore, taking into account the complex structure of CityGML and
the need to retrieve data from distributed sources addressing interoperability issues,

adoption of Web service technology is required.

2.2.1. Technology of Web Services

The Web services technology has dramatically affected the development of WebGIS
products. A variety of organization publish data and functions via Web services (Newcomer
& Lomow, 2005). Web services are key components of web applications and represent an
important evolution of distributed computing. The main idea of a web service is a collection
of smaller programs distributed across the Web, running on different servers, but still
communicating with each other and functioning together as a whole (Fu & Sun, 2010).
Therefore, Web services can be published, found and used on the Web (W3Schools, 1999-
2020).

2.2.1.1. The benefits of Web Services

According to the OGC glossary of terms, interoperability is

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |19

“the Capability to communicate, execute programs, or fransfer data among various
functional units in a manner that requires the user fo have little or no knowledge of the

unigue characteristics of those units".

Additionally, interoperability, in the context of the OpenGIS specification, is a software
component operating reciprocally (working with each other) to overcome tedious batch
conversion tasks, import/export obstacles, and distributed resources access barriers

imposed by heterogeneous processing environments and heterogeneous data.

The main goal of web services is to exchange information among applications in the standard
way (Mumbaikar & Padiya, 2013). Their exploitation provides a new approach in terms of
system interoperability. Namely, it overcomes the complexity of the need to convert data
and install the appropriate programs, allowing systems to work at a Web service level (Fu &
Sun, 2010). Additionally, the Web services facilitate the ability to build composite
applications based on the heterogeneous services operating across many different
platforms. Namely, whatever programming language is used to implement a Web service,
whatever operating system it runs on, and whatever Web application server it is deployed
oh, hone of these affects how clients can consume the service. Thus, Web services and their
clients are not tightly bound to one another. A Web service can be consumed by multiple
clients, and a client can consume multiple Web services. Also, a Web service and its clients
do not need to run on the same server, and they do not need to be compiled together.
Additionally, developers have the freedom to choose whatever tools or programming
language they desire. Furthermore, when a Web service is updated or a new version is
released, the change only needs to be made on the server side. Thereafter, all clients
consume the latest version. Also, there is no need to run installation or an update on each
client computer providing a significant advantage of Web service over desktop programming

components.

2.2.1.2. Geospatial Web Service Standards

An explosion of Web-based mapping applications followed the birth of WebGLS in 1993, and

a small amount of WebGIS software products appeared on the market. However, these

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |20

early technologies had limitations in both their internal architecture and in their integration
with other information systems. Because of these limitations, Web GIS was underused, and

its potential was not fully realized (Huang, 2002).

Over the years, the concepts, standards, and technology for implementing GIS
interoperability have evolved through six stages: (1) data converters, (2) standard
interchange formats, (3) open file formats, (4) direct-read APIs, (5) common features in a
database management system (DBMS), and (6) integration of standardized Geospatial Web
services (Fu & Sun, 2010). Geospatial Web services have become the heart of GIS,
representing significant progress in distributed GIS. Additionally, they hide the complexity
of GIS data and functionality, leaving it to be handled remotely on other servers, while
exposing a Web programming interface for easy integration. Thus, the Information
Technology (IT) can simply access mapping, data, and geoprocessing web services from a
variety of sources without having to deal locally with the geospatial complexity. This
capability gives GIS industry the ability to move beyond data conversion and convert
installation into Web service-based interoperability. Realizing this opportunity, standards
bodies such as OGC and International Organization for Standardization (ISO) have defined
a series of Web services standards. With these standards, GIS application are not tied to
a specific software vendor. Organizations can manage data using the methods and formats
best suited to their needs while exposing Web service interface that conform to specific
open standards. Thereafter, other users can use these services regardless of which vendors
are behind the services. Therefore, OGC developed and implemented several Geospatial
Web services among which, in the context of 3D, there are the Web Feature Service (WFS)
and the 3D Portrayal Service (3DPS).

2.2.2. Web 3D Service (W3DS) and Web View Service (WVS).

The demand of serving large scale 3D city models and spatial data reflects the need of
hierarchical data structures for 3D data such as OGC I3S and OGC 3D Tiles. Although
these formats can transmit arbitrary sized geospatial data, they are not interoperable with
consuming and visualization on the client (Koukofikis et al., 2018). The OGC 3DPS standard

(Hagedorn et al., 2017) has been designed to enable the interoperable visualizations between

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |21

various data providers and different browser-based 3D globes and other viewer
implementations (Gutbell et al., 2016). Aninitial attempt to provide a solution regarding the
interoperable 3D geovisualization was the following services: Web 3D Service (W3DS) and
Web View Service (WVS).

2.2.2.1. Web 3D Service (W3DS)

Two versions of W3DS were published as OGC discussion papers (Quadt & Kolbe, 2005;
Schilling & Kolbe, 2010). The Web 3D Service is a portrayal service for 3D geodata,
delivering graphical elements from a given geographical area producing 3D scene graphs.
These scene graphs are rendered by the client and can interactively be explored by the

user (Figure 2-8).

Figure 2-8: Different types of geodata are merged in one 3D scene graph using W3DS
(Quadt & Kolbe, 2005)

The aforementioned service was implemented by Prieto et al., (2012) to achieve the

visualization of CityGML file without plugins. The output format was X3D and the
integration into web was achieved through X3DOM (Figure 2-9).

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |22

Data Model Web Services 3D representation Visualization

CityGML W3DS X3D X3DOM

Figure 2-9: Use of W3DS for CityGML visualization and retrieval

(Prieto et al., 2012)

It should be noted that a basic design consideration for any client-server system is how to
partition the workload between the client and the server. Depending on how the workload
is distributed, WebGIS applications can be categorized as either thin client architecture
or thick client architecture (Gong, 1999). However, the development of technologies used
oh both the server and client side led to the need to create an intermediate architecture,
the medium client. According to previous architectures, W3DS belong to the medium client
(Figure 2-10).

Thick Thin
Display || Clfent Display ep Display || Client
4 ‘ I intemet
FRendes FSROieF Render
’
Display ‘ L .
Element Display Display
Generator Element Element
- Generator Generator
el . .
Select || Thin Select 2 Select || Thick
Server = Server
¢ 5
. WES WMS, WTS

Figure 2-10: Medium Client Architecture
(Quadt & Kolbe, 2005)

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |23

2.2.2.2. Web View Service (WVS)

An alternative solution for retrieving and visualizing 3D data is the WVS. This service mainly
provides 2D image representing a 3D view on a scene constructed from 3D geodata that is
integrated and visualized by the WVS server (Hagedorn, 2010) (Figure 2-11). Additionally,
WVS adopts the thin client architecture for visualizing, analyzing, navigating and retrieving
3D scene information. Consequently, the server should be equipped with the appropriate
software and powerful graphics card and, from client's point of view, users could access to
potentially complex 3D geodata with high-quality output and without having to provide and
maintain specific 3D graphics hardware and software or streaming complex 3D data, since

only standard images are transferred.

wefedes ...l. nal

Projection,
Rendering
Rasterization

Selection
Mapping

[11 u I

B image layer DEPTH

image layer OBJECTID

3D Geodata 3D Scene [image layer COLOR

—
D View

Figure 2-11: Retrieval and visualization of 3D data using WVS
(Hagedorn, 2010)

2.2.2.3. 3D Portrayal Interoperability Experiments (3DPIE)

In 2012, several experiments were presented by 3D Portrayal Interoperability Experiment
(3DPIE) utilizing the 3D portrayal services W3DS and WVS (Schilling et al., 2012). The
summary of these experiments including available data, servers, supported 3D portrayal

services and exported formats are shown in Figure 2-12.

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |24

A OSM.3D VRML, X3D, KML,
OSM Datd | e— N /|W3DS‘ KMZ/Collada ® N XNavigator
L ap "
P KML, Collada, Q HTML35 Browser
Mainz Data > ke iSEDgirySewel‘BD X3D, HTMLS -
(CityGML) % ® N Instant Reality Playe
___/.r =
Berlin Data « |1G spciypB KML, Collada Q Google Earth
(CityGML) o Jwsps >
~
- ® ™ BS Contact Geo,
i lmages BS Contact Mobile
. . HPI 3D Server I
Paris 3D | ey 'S —— (Color/Depth/Objectlds)
(CityGML) & : > |®) HPI Mobile Client

Figure 2-12: Experiments of 3DPIE
(Schilling et al., 2012) & modified by author

Totally, five service implementations of at least one of both standards, together with five
clients were subjected to the 3DPIE. It emerged that several interoperability scenarios
combining both approaches were possible, and that the differences between W3DS and
WVS were significant but mostly reconcilable. However, some weaknesses also emerged.
For instance, the problem of scaling to bigger geodata was tackled with the well-known tiling
technique. Tiling does not easily translate to geometric 3D data, and thus, there is no one-

size-fits-all solution. Despite this, the proposals put forward a limited but complex solution.

2.2.3. OGC 3D Portrayal Service (3DPS)

The 3DPS combines the essential parts of the proposed W3DS and WVS into a common
interface and thus, it could provide either 3D graphics data or rendered images (Hagedorn
et al., 2017). Consequently, it supports two fundamental 3D portrayal schemes and
associated client/server configurations. The first one was implemented by Gaillard et al.
(2015). They proposed a framework to visualize 3D city data stored natively in CityGML
files. These files were cut into tiles with fixed size and thereafter, they were converted
and stored on the server in JSON format, keeping any semantic information that could be

stored in city objects. The retrieval of this data was achieved using the 3DPS GetScene

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |25

request. On the other hand, Gutbell et al. (2016) implemented a server-side rendering

framework to visualize 3D city models utilizing the 3DPS GetView operation.

Therefore, 3DPS interface specifies several operations that may be invoked by a 3DPS

client and may be performed by a 3DPS service (Table 2-1).

OPERATIONS DESCRIPTIONS

GetCapabilities This operation allows a client to request information about

a 3DPS server's capabilities and scene information
offered

AbstractGetPortrayal This is the abstract operation that forms the basis of the
3DPS operations GetScene and GetView and provide

common parameters

GetResourceById This operation allows a client to request arbitrary

resource, as indicated by the service

GetScene This operation allows a client to retrieve a 3D scene
represented as 3D geometries and texture datq,

organized as a scene graph and/or spatial index

GetView This operation allows a client to retrieve a 3D view of a
scene represented as image
AbstractGetFeatureInfo | This is the abstract operation that forms the basis for

specific getFeatureInfo operations that allow a client to

retrieve more information about portrayed features

GetFeatureInfoByRay This operation allows a client to retrieve information

about features that are selected based on a virtual ray

GetFeatureInfoByPosition | This operation allows a client to retrieve information

about features that are selected based on location

GetFeatureInfoByObjectId | This operation allows a client to retrieve information
about features that are selected based on object

identifiers

Table 2-1: Operations of 3DPS

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |26

In 2018, several experiments were presented by the OGC testbed 13 Engineering Report
documents (Coors, 2018). The main goal of this report was to test and validate the
interoperability of the OGC 3DPS, using 3DPS implementation instances to generate web-
based visualizations with a workflow that used CityGML as data sources and 3D Tiles and
I3S as data delivery formats. For this purpose, several processing algorithms were
developed to convert CityGML into either 3D Tiles or I3S delivery Formats. More specific,
Analytical Graphics Inc (AGI) created the necessary processing algorithms to convert
CityGML into 3D Tiles within its 3D Tiles processing Tools; ESRI provided processing
algorithms to convert CityGML into I3S within ArcGIS and by using FME (Feature
Manipulation Engine); Fraunhofer and the SME virtualcitySYSTEMS created processing
algorithms to convert CityGML with and without Application Domain Extension (ADE) into
3D Tiles as extension on top of GeoRocket®. As a result, this report summarizes a proof-
of-concept of the use of 3D Tiles and I3S as data delivery formats for the OGC 3DPS
interface standard (Koukofikis et al., 2018).

However, although the interoperable portrayal of the 3D city models has been achieved,
this requires complex processing algorithms to convert CityGML into the appropriate OGC
portrayal standards such as I3S and 3D Tiles. Consequently, the utilization of 3D Web
Portrayal Services is not the optimal solution for the current thesis objective. Therefore,
the interoperable and easy-to-use information retrieval of a CityGML based on its semantic
characteristics will be further examined using the OGC Web services for sharing and

managing raw data such as WFS (see section 2.3).

2.3. OGC Web Services for Sharing and Managing Raw Data

The OGC Web service Standard for reading and writing geographic features in vector
format is the WFS. With WFS, clients can perform operations, including insert, update,
delete and query for geospatial data residing on the server (Vretanos, 2010). Therefore,

this international standard provides a standardized and open interface for requesting

° GeoRocket is a high-performance data store for geospatial files such as 3D city models (CityGML),
GML and GeoJSON files.

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |27

geographic features across the web using platform-independent calls and thus, it allows
clients to only retrieve or modify the data they are seeking rather than retrieving a file
that contains possibly much more. More specific, the OGC WFS 2.0 interface define eleven
operations that can be invoked by a client (Table 2-2). However, a WFS server is not
required to offer all these operations to conform to the standard but may support a subset
only. Hence, the WFS standard defines conformance classes such as simple WFS, Basic
WFS, Transactional WFS and Locking WFS that grow in the number of mandatory

operations.

OPERATIONS DESCRIPTIONS

GetCapabilities The GetCapabilities operation generates a service metadata

document describing the WFS services provided by as

server.

DescribeFeatureType | The DescribeFeatureType operation requests the structure
of the feature type that WFS support.

ListStoredQueries The ListStoredQueries operation lists the stored queries

available at the server.

DescribeStoredQuery | The DescribeStoredQueries operation provides detailed
metadata about each stored query expression that server

offers.

GetFeature The GetFeature operation retrieves a geographic feature

and its attributes to match a filter query.

GetPropertyValue The GetPropertyValue operation allows the value of a feature
property or part of the value of a complex feature property
to be retrieved from the data store for a set of features

identified using a query expression.

LockFeature The LockFeature operation requests the server to lock on
one or more features for the duration of the transaction
such as update or delete.

GetFeatureWithLock | The GetFeatureWithLock operation is functionally similar to

the GetFeature operation except that in response to a

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |28

GetFeatureWithLock operation, WFS shall not only generate
a response document similar to that of the GetFeature

operation but shall also lock the features in the result set.

CreateStoreQuery The CreateStoreQuery operation is used to create a stored
query
DropStoredQuery The DropStoredQuery operation allows previously created

stored queries to bed dropped from the system.

Transaction The Transaction operation requests the server to create,

update and delete geographic features

Table 2-2: Supported WFS 2.0 operations

(Vretanos, 2010)

2.3.1. Extending the OGC WFS 2.0 standard

Retrieving CityGML data via a OGC WFS 2.0 and previous versions presents a number of
technical problems relating to the characteristics of the CityGML models and the fact that
CityGML schema is much more complex than those usually deployed in WFS. An instance of
this complexity regarding the building module of the CityGML is presented in 3DCityDB (3D

City Database)™ logical design overview in Figure 2-13.

CityGML as an information model and GML application schema makes extensive use of
complex data types for properties and nesting of features within feature collections.
Consequently, CityGML can contain very deeply nested data structures. Additionally, the
range of geometry types used in CityGML are not fully supported by relational databases,
addressing several issues for implementing WFS on top of them. Consequently, a variety of

research was conducted on the extension of the OGC WFS.

10 3D City Database is a free Open Source package consisting of a database schema and a set of
software tools to import, manage, analyze, visualize, and export virtual 3D city model according to
the CityGML standard.

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |29

SPATIAL DATABASE DM TYDE SOHEMA
: i - address
[atpectoher atertoier | Sityotject 1 imtger - -
2 = id imtegrar =gk St characher vanying(1000)
" m) # odjeciebes & dmtegrer = K> Pouse_nunber chsracter varyingl 256)
H” gl xax "'7'3"“’;’% m character varying 256)
nanme Il varyiny g e characer MM‘ 255,
d=tatyotert otjecraar] || oo vesqere chameter sarying(4006) 4 o p— nwzﬁj
L desariplion clfaracher varying 4000} State character vanying 256)
oy characker varying 255}
vl g ” ¥
oLsawe e buihg tukihg
1
v
irfeger -
fr— i
i e
¢ character varying(256) fro
ol spenhg odfeicies | character varying(4000)
eharacter varying(1000
character varyirg (4000}
character varying (1000
i character varying(4000)
i = / date
d date
| i character varying[256)
| eharacter varyirg (4000}
af i ineger <ol I e e A
/./n olyecicks & infeger == L i integer = ok ke mg urnerie(£,0)
+ authess of i ol / . character varyirg(255) sioeys, bebrw ground nurnericl 8,0}
integer == bl siorey_heights_above_ground character varying (4000}
+ b e irfeger = ‘\ stewey heifis_aq unl character varyirg(9000)
e sioney_heghis_beiw ground ofaracter vanping (4000}
e s b unik character varyirg (4000}
i } o] Resamn_ierectionn gesirelny
rurneric T e —— L
f3_Lewain_iiersectin genmetry
Sl geonmedry gesvrendry T Resain_ideresc i ey
geoiety ol ukiig surtace geometny || bd2_muli cuve ety
gl _gednnelsy gesrtny o3l curve geniEty
irteger =ke o i curve ety
& S geoe ok el Foogend £ irteger =ikw
asunfAE geont panend_Ror ik * bl ool £f infeger =
o hsurface geon ool K dmdis |y il nmodlf surface & irdeger =ik
& Serfas geon_clyolll B indsi s betZ iriolf sorface & it =i
14 " ¥ amolf surface i infeger =
o Sl Qe S fimekx O8] surface & integer =i
@ bet]_ sl & irdeger e
el sl if integer wfw
| beF sol! i irfeger =l
e irdeger =i
& bl parend e
 Bubirg) ool it
- apudiy bol¥ooeid By inole
thematic bubing bobroofend My indlex
fod & Db belfser (R it
aljecickes i Py boFms (R i
buikling & iy bt Ry i
— =] & Peabg beMmisel (o it
: inplicit_geanetry B buitling instalstion d am&maﬂ_m gt
] irdeger) = i b gl | LSS T2l sufae d & fuaby bePSok! fo irmlex
ie_Bype character varying(256) lel3_piedl_susface il irfeger & bebing bel3sok! foc irmlex
efewence I Bray character varying(#000) . i ekl sufae i infeg o b beiisok! fo iy
Beary ot bytea b S0kl . bubiny_ belfter s il
edilive b il integer oo Dediig M dmolye d & bubkyg boZer s irmlex
edtive_ofer_geom gemTetny & roon Bt W ol H @ bubiey) beler s irdlex
“roont BosSol! o imokx i @ty boslter s e
H : & bubing balrone sox e
] i & P beRorve v it
i i o iy Bocerve sox it

Figure 2-13: Logical design of 3DcityDB database regarding building module of CityGML
(Athanasiou et al., 2018)

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |30

2.3.1.1. Snowflake CityGML WFS

In 2006, the OGC Web Service-Phase 4(OWS-4) testbed was taken place under the
initiative of OGC's Interoperability Program to collaboratively extend and demonstrate
OGC's baseline for geospatial interoperability. In the context of this testbed the serving
of CityGML via WFS was addressed (Curtis, 2008). As a result, the Snowflake CityGML
WFS was created allowing basic operations of WFS specification such as

DescribeFeatureType, GetCapabilities and GetFeature.

Additionally, it supports the following features of CityGML: Building, CityObjectGroup,
GenericCityObject, ReliefFeature and CityFurniture in all LoDs. The mechanism regarding
the data request and response using the Snowflake CityGML WFS is presented in Figure 2-
14.

WMS gt getMap
\ Jr— A @12 photograph
/ Translating WFS 1
—_ .
/7 WFS O\
. SQL Query —< Request |4 getFeature
—— _Translation / HPI Client

N >

Oracle ==l
databas a
Data \ S
SQL ReCOrd s bt C i ty GMIL. F € ature

\ translation)

R 7

o

Figure 2-14: Data request and response using the Snowflake CityGML WFS
(Curtis, 2008)

According to this methodology, the CityGML data should be stored into an Oracle database

using a GML bulk loading tool called GO Loader. Thereafter, the data request and response

among client and database is achieved using a data translation engine called GO publisher.

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |31

2.3.1.2. 3DCityDB WFS

Within the same research context, Yao et al. (2018) implemented the OGC WFS 2.0 in
conjunction with 3D City Database, which supports multiscale and rich semantic structure
of CityGML and developed the 3DCityDB WFS (Figure 2-15). When sending a request to the
3DCityDB WFS server to retrieve certain CityGML Features, the 3DCityDB WFS servlet
captures and parses this request and translate it to a corresponding database query to
obtain a list of the respective GMLIDs of the CityGML top-level features. Thereafter,
these feature IDs will be handed over to the CityGML Import/Export module which utilizes
its pre-complied citygml4j/JAXB classes as well as the multi-threading API for efficiently
querying and generating the corresponding CityGML XML elements. Finally, these XML
datasets will be returned as a response of the WFS request. The Open Source version of
the 3DCityDB WFS implements the Simple WFS conformance classes and therefore, it only
handles GetFeatureById queries which is enough to retrieve objects by their GMLID.

However, ad-hoc queries or semantic retrieval of available features are not supported.

Java Serviet Container

| Web Feature Service Serviet WFS Client

WFS Request
! CityGML
Iimport/ - WFS Controller
3DCityDB Export API : +H L
’ WFS Response GML | |

Figure 2-15: 3DCityDB WFS

(Yao et al., 2018)

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page | 32

2.3.1.3. Extending the WFS of GeoServer

Another approach was that of Zhu, et al. (2016), who focused on the open source solution
to serve CityGML data via a WFS with advanced functionality. Therefore, the GeoServer!
was tested in combination with its Application Schema extension since it supports the OGC
WFS 2.0 standard and provides full-fledged WFS functionality including discovery, query,
locking, transaction and stored query operations. The complex feature types of CityGML
could be mapped by GeoServer Application Schema using its two available concepts such as
Feature Mapping and Feature Chaining. There are some limitations to this approach and the
most important is that all public GML application schemas used for mapping with GeoServer
Application Schema must meet the GML encoding rules. However, not all schemas of
CityGML obey these rules.

Similarly, a GeoServer approach was implemented by Pispidikis et al. (2016) for the
visualization of CityGML data via the WFS 2.0 standard. Therefore, a PostGIS database
was used in compliance with 3DCityDB schema and connected to GeoServer. Then, a suitable

view was created by the use of SQL query shown in Figure 2-16.

SELECT
ts.building 1d,
ST Collect(ST_Transform(sg.geometry,4326)) as geometry,

bd.usage,bd.usage codespace,bd.roof type,bd.measured hei
ght,bd.storeys above ground

FROM

surface geometry sg,

thematic_surface ts,

building bd

WHERE ts.lod2_multi_surface id=sg.root_id

AND ts.building 1d=bd.id

AND ts.building id 1s not NULL group by ts.building 1d,
bd.usage,bd.usage codespace,bd.roof type,bd.measured hei
ght,bd.storeys above ground order by ts.building id

Figure 2-16: SQL query for creating the Lod2 building view of CityGML
(Pispidikis et al., 2016)

1 GeoServer is a java-based software server that allows users to view and edit and share
geospatial data.

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |33

2.3.2. Making the OGC WFS RESTful

Extending WFS to support the retrieval of CityGML data is considered very important.
However, the WFS 2.0 and previous versions used a Remote-Procedure-Call-Over-HTTP
architectural style implementing XML for any payload. This architecture was considered
state-of-the-art when the WFS standard was originally designed in the late 1990s and early
2000s (Portele & Vretanos, 2018). However, the evolution of the Web 2.0 phenomenon has
led to the increased adoption of the RESTful Service paradigm which takes full advantage
of the web technology, making correct use of the HTTP protocol and also follows the
Resource-Oriented Architecture (ROA) (Pispidikis & Dimopoulou, 2018). Additionally, REST
as a different approach to provide access to data, it can be used to provide end users with
a guided, prepackaged way of accessing data or resources. On the other hand, WFS, as a
query language, enables end users to submit any type of supported WFS request.
Consequently, due to the limitless nature of WFS, difficulties in query optimization can
arise. Therefore, REST can be utilized to steer the end user towards a predefined pattern

of access such as tiles, collections and IDs.

2.3.2.1. GO publisher RESTful service

The Snowflake Software (2016) presented the GO publisher RESTful service as a simple
web interface which allows HyperText Transfer Protocol (HTTP) request to be converted
and redirected to a GO Publisher WFS which provides access to XML/GML resources. As a
result, this RESTful service works on top of the respective WFS providing specific Uniform

Resource Locator (URL) resources to the end users (Figure 2-17).

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page | 34

t

f RESTful request)
& WFS Request
RESTful response TEE R&
(xml or JSON) esponse

GO Publisher RESTful

uriMap file:
<pm:PathMapEntry= <4+—» | GO Publisher WFS
<pminputPath> </pm:inputPath> RESTful

<pm:redirectToPath> </pm:redirectToPath>

</pm:PathMapEntry= request

passed to

List of input ur redirects to WFS

AN /

JBOSS/Tomcat Application Server

Figure 2-17: Image of GO Publisher RESTful service working with GO Publisher WFS

(Snowflake Software, 2016).

2.3.2.2. OGC API-Features

This REST-based architecture was adopted by the version 3 of WFS (Portele & Vretanos,
2018), now called OGC API-Features (Portele, Vretanos & Heazel, 2019). Therefore, this
version of the WFS standard uses a resource architecture and specifies a RESTful service
interface providing resources regarding features and feature collection respectively. So,

the list of a feature collection (e.g. buildings) can be retrieved using the following request:

../collections/buildings/items

Thereafter, each feature in a feature collection can also be requested by implementing the

respective id as sub-resource.

../collections/buildings/items/{id}

However, the core of the OGC API Features does not currently support the implementation

of additional sub-resources so that the semantic retrieval of CityGML Data is fully achieved

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |35

but provides a solution to this limitation by extending the Core API including richer queries
from existing OGC standards (Portele, 2019). The said solution is quite sufficient, since
the OGC API-Features is intended to provide a general solution for retrieving data
regarding all available standards of the OGC API family. However, this implies and requires
good knowledge for both the structure of the source (e.g. CityGML) and the respective
syntax of the implemented OGC standard such as OGC Filter Encoding Standard 2.0, OGC
Common Query Language (CQL) or other query languages or data platforms such as Falcor
and GraphQL (Portele, 2019).

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page | 36

CHAPTER 2: RETRIEVING CITYGML INFORMA TION

Page |37

@ CITYGML RESTFUL WEB SERVICE

3.1 The Solution of REST Approach
3.2 Methodology for the RESTful-based CityGML retrieval

3.3 Citymodels and Gmlid Resources

Page | 38

This chapter examines the use of non-OGC Web services for the interoperable and
easy-to-use information retrieval of a CityGML based on its semantic characteristics.
For this purpose, The SOAP and REST Web services are further studied and
compared. Also, the REST WS are compared with new state-of-the-art technologies
that can be adopted as a CityGML data retrieval mechanism such as GraphQL and
Falcor. Thereafter, several principles and guideline are addressed with regard to the
CityGML RESTful Web service and finally, the conceptual design of the "CityModels"

and "Gmlid" resources is presented.
In this chapter, the 3™ sub-research question of the current dissertation is

What is the most appropriate architecture type of a web service for achieving

the easy-fo-use information refrieval of a city?
This chapter utilizes the following papers:
(1) Pispidikis and Dimopoulou (2018)

(2) Pispidikis and Dimopoulou (2019)
(3) Chatzinikolaou, Pispidikis and Dimopoulou (2020)

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
! answered:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |39

3.1. The Solution of REST Approach

The CityGML schema was designed in a way that can be structured according to each
application, avoiding the creation of complex files that cannot be checked for their validity
(Groger et al., 2012). Therefore, the architecture of the CityGML 2.0 is shaped via five key
components (Figure 3-1).

Generics 5
!ai iD;ELDiii ;ﬂ;gl; ; i

4] 0 2] [|(s
sEH e
Thematic Modules ADEs

L CityGML Core | 1 I

GML 3

Figure 3-1: CityGML Architecture

(Pispidikis & Dimopoulou, 2018).

The first is the CityGML Core, which defines all the basic classes for CityGML's operation
which are inherited by all the CityGML's features (Groger & Plimer, 2012). The second one,
contains the ten thematic modules that define the semantic features of the basic objects
of a 3D city model. The implementation of the aforementioned thematic modules is not
mandatory but they can be used selectively depending on the application’s needs. The third
component is the geometric-topological model, which is structured in compliance with the
Geography Markup Language 3 (GML 3). The fourth component contains the possible ways
that CityGML's scalability is achieved and hence the semantic and descriptive features that
are not supported by the current version of CityGML can be added. These ways refer to
Generic and ADE (Application Domain Extension) modules (Groger et al., 2012).

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |40

Taking into account the CityGML architecture (Figure 3-1), it is concluded that its structure
is rather semantic than geometric and therefore, the retrieval of the data has to be
achieved mainly in compliance with the CityGML's semantic information. On the other hand,
the OGC WFS is a geospatial Web service, which means that it was developed with the aim
of retrieving, visualizing and modifying data based on geometry. Consequently, the
interoperable and easy-to-use information retrieval of CityGML based on its semantic
characteristics will be further examined using non- OGC Web services by focusing on

different interoperable approaches.

3.1.1. SOAP Vs REST

The communication between a Web service and a client involves the client sending requests
to the Web service, and the Web service response request to the client. Depending on the
format of communication used, there are two types of Web services such as the SOAP-

based Web services and the REST-style Web services.

SOAP (Simple Object Access Protocol) is a protocol specification for exchanging
structured information in XML format. Specifically, a SOAP messages packages an XML
body in an XML envelope and the respective request is send via HTTP POST method.
Because of this structured, SOAP is difficult to be constructed and parsed manually.
Fortunately, the solution of the latter is achieved by the implementation of a variate of

tools in conjunction with WSDL (Web services Description Language)(Fu & Sun, 2010).

REST (Representational State Transfer) which is a result of the Roy Fielding's dissertation
(Fielding & Taylor, 2000) is a style of software architecture which is designed to fully take
advantages of HTTP, while reducing system complexity and improving system scalability
(Richardson & Ruby, 2007). Moreover, this architecture was implemented to avoid the use
of complex data exchange mechanism such as COBRA (Common Object Request Broker
Architecture), RPC (Remote Procedure Call) or SOAP. In the most common implementation

of REST, all requests are made by a URL, and all parameters are in the URL. REST does not

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |41

define standards for the server response format, but JSON and XML are frequently used
without SOAP encapsulation (Fu & Sun, 2010).

REST has gained widespread acceptance across the Web as a more flexible alternative to
SOAP based Web services. Key evidence of this shift in interface design is the adoption of
REST by mainstream Web 2.0 service providers-including Yahoo, Google, and Facebook -who
have deprecated or passed on SOAP-based interfaces in favor of an easier-to-use,
resource-oriented model to expose their services (Rodriguez, 2008). In 2002, Amazon
aware of the "REST versus SOAP" debate provides both SOAP and REST interface to its
Web services. As a result, in 2004, 80 percent of the calls to Amazon's Web services were
REST-based (Greenfield & Dornan, 2004). Additionally, the REST language is based on the
use of nouns (resources) and verbs (HTTP methods) and hence, they do not require message
format like XML envelope which is required in SOAP messages (Mumbaikar & Padiya, 2013).
In many cases, the simplicity and efficiency of using REST outweighs the rigorous discipline
of SOAP and the complexity in introducing SOAP-based Web services (Fu & Sun, 2010).
Additionally, Mulligan et al. (2009) presented a comparison of SOAP and REST
implementations of a service-based interaction independence middleware framework. The
results of their tests have shown that the REST implementation of the data transmission
component proved to be more efficient in terms of both the network bandwidth and the
round-trip latency incurred during these requests. Accordingly, Mumbaikar & Padiya (2013)
concluded that SOAP based Web services produce considerable network traffic, whereas
the RESTful Web services are lightweight, easy and self-descriptive with higher flexibility
and lower overhead. Fu & Sun (2010) compared SOAP and REST and referred that the use
of REST instead of SOAP brings several advantages to producers, users and managers
respectively. Specifically, for producers the cost of creating, hosting and supporting
services is lowered. For users the learning curve is reduced and hence, the time and money
needed to build GIS applications is also reduced. Finally, for manager the highly desirable
architecture properties such as scalability, performance, reliability, and extensibility are
provided. However, Kumari (2015) comparing the two protocols concluded that SOAP is
preferable for financial, banking, telecommunication services, and REST for Social
interaction, Web chat, and mobile services. Tihomirovs & Grabis (2016) performed a

comparison between SOAP and REST using software evaluation metrics and concluded that

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |42

is not possible to clearly identify the best approach to ensure data exchange because each
integration project should be assessed individually. However, they pointed out that if the
project requires greater scalability, compatibility and performance, it is better to choose
REST. On the other hand, the SOAP is a better choice when a project requires security and
reliability, easier maintainability on the client side, as well as a lower number of possible

errors.

In conclusion, SOAP and REST are two different approaches, with different architectural
styles, providing several advantages and disadvantages when compared. So, the
architectural decision mostly depends on the specific application. It should be noted that
SOAP Web services are robust and comprehensive but complicated. Whilst, REST Web

services are simple and efficient, but may not have all the capabilities of SOAP services.

3.1.2. GraphQL and Falcor

3.1.2.1.GraphQL

In 2016, Facebook released a specification and a reference implementation of the GraphQL
framework. This framework introduces a new type of Web-based data access interfaces
that presents an alternative to the notion of REST-based interfaces (Hartig & Pérez, 2018).
GraphQL is a query language for APIs and a runtime for fulfilling those queries with the
existing data. It provides a complete and understandable description of the data in available
API, gives clients the power to ask for exactly what they need and nothing more, makes it
easier to evolve APIs over time, and enables powerful developer tools. It was developed to
address the need for more flexibility and efficiency solving many of the shortcomings and
inefficiencies that developers experience when interacting with REST APIs (GraphQL is
the better REST, n.d.). REST encourages versatile resource-oriented architecture where
self-contained cohesive resources are identified by URLs and are accessed or manipulated
via multiple HTTP endpoints (Vogel et al., 2017). The most common problem with this
approach is that of overfetching. Overfetching means that the clients download more
information than in actually required in the app, as they are limited to perform predefined

operations that may have been designed by API providers regardless of the clients’ specific

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |43

requirements (Wittern et al., 2018). For instance, when a client needs to display a list of
buildings only with their respective function attribute, then, in a REST API, this resource

would have the following endpoint:

/buildings

The result of this request will be a JSON array with building data which may contain more

information about the buildings e.g. usage, class etc. which is useless for the client.

Another issue is the underfetching and the n+1 request problem. Generally, underfetching
means that a specific endpoint does not provide enough of the required information and
hence, multiple endpoints should be requested. For example, when a client needs information
about a specific room of a building then more than one endpoint should be requested (Figure
3-2).

—————————— al —-—————————— =
I

| /buildings/(id}/rooms | WEEP | /ouildings/{ic/rooms/(id) |

1st request 2nd request

Figure 3-2: Example of underfetching problem using REST-based request

On the other hand, GraphQL promotes a more data-centric model without architecture
resources. A GraphQL service represents an object graph of data entities which are
collectively accessible through a single endpoint and URL. Therefore, the GraphQL's
solution to the aforementioned issues is a query language that allows clients to specify exact
data requirements on a data field level, executing the desirable request using only one
endpoint. The solution of the above-mentioned examples using the GraphQL is shown in
Figure 3-3. It should be noted that a client could semantically retrieve CityGML data when
the corresponding query of GraphQL request is suitably structured.

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page | 44

(id:" {id)") {

function

I
HTTP POST O

D {"data": {
n ": {

! ":"1000",
n ”: [
All data for each room
]
}
I3

!
1l

Figure 3-3: Example of GraphQL request

However, although GraphQL is considered a promising candidate for being used as a data
retrieval mechanism regarding CityGML, there are several issues to be addressed. The main
issue arises from the fact that the users need to have advanced knowledge for both the
structure of the GraphQL query language and the source. Additionally, according to Portele

(2019), there is no support for geometries or spatial queries in GraphQL.

3.1.2.2. Falcor

Similar to GraphQL, Falcor, as data platform that powers the Netflix user interfaces
(Falcor, n.d.), was designed to solve the same problem that focuses on managing the
increasingly complex data requirements of modern web and mobile apps (Helfer, 2016).
Falcor provides an alternative solution to retrieve data having the starting point that all
data is a single virtual JSON object (Figure 3-4) and the data retrieval is achieved in a
same way whether the data is on the client, or on the server. This allows clients to work
with data using standard paths and operations such as get, set and call. Using Falcor, the
over and under fetching are not an issue since the clients can retrieve the desirable data

according to their needs. However, Falcor has no schema of the data and assumes the data

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |45

is known (Falcor, n.d.). Additionally, it is mainly designed for use in JavaScript and thus, it

has no support for geometries or spatial predicates (Portele, 2019)

- s -

/model.json

1
s

>

7 FT

= _/

Figure 3-4: JSON-based data retrieval using Falcor

(Falcor, nd.)
3.1.2.3. Results

The current section presents state-of-the-art technologies that can be adopted as a
CityGML data retrieval mechanism. According to the core research question of the current
thesis (see section 1.3) the CityGML data retrieval should be achieved in compliance with
the following keywords: interoperability, easy-to-use, semantically and non-expert user. The
implementation of the Falcor or GraphQL presupposes that the client should have good
knowledge of either the GraphQL query language or the complex CityGML schema.
Additionally, taking into consideration the complexity of the CityGML and the fact that the
CityGML data needs to be semantically retrieved, the ROA architecture should be adopted.
As a result, the REST-based architecture style is chosen and the CityGML RESTful Web

service is conceptually designed.

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |46

3.1.3. Principles of RESTful Web services

The evolution of the Web 2.0 phenomenon has led to the increase adoption of the RESTHul
services paradigm (Lathem et al., 2007). RESTful Web services work on the web, taking full
advantages and making correct use of the HTTP protocol (Webber et al., 2010). As a
protocol, HTTP defines a set of rules and procedures that both Web clients and Web
servers used to communicate with each other (Fun & Su, 2010). Therefore, via HTTP, a Web
server knows what information to put in the message header and body, and the Web client
knows what to expect from the response header and body respectively. RESTful Web
services follow the ROA architecture and hence, everything that a service provides has to
be a resource. Resources are identified by URIs (Uniform Resource Identifier), which

provide a global addressing space for resource and service discovery (Rodriguez, 2008).

3.1.3.1.Constraints of the REST architecture style

The main design constraints of the REST architecture style can be summarized as follows:

- Addressability: all resources that are published by a Web service should be given a
unique and stable identifier, a URI (Nielsen, 1999). The relationship between URIs and
resources is many-to-one and thus, a URT identifies only one resource, but a resource

can have more than one URIs.

- Uniform Interface: all resources are managed via a uniform interface. In HTTP, the
uniform interface comprises a variety of methods of request such as GET,POST, HEAD,
PUT and DELETE that can be applied to all identifiers of Web resources. Each of these
methods should be used for specific operations such as create, read, update and delete
(CRUD). More specific, PUT updates a resource, which can be deleted using DELETE

method. GET is used to retrieve the current state of resource in some representation

12 Web 2.0 does not refer to any technical upgrades to the internet, rather, it simply refers to a
shift in how it is used. It describes the new age of internet - a higher level of information sharing
and interconnectedness among participants. Web 2.0 allows users to actively participate in the
experience and not just act as passive viewer who intake information.

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |47

and POST is used to insert a new resource. It should be noted that GET, PUT and
DELETE are characterized as idempotent™® methods since they can be safely repeated,
while POST is non-idempotent method (Table 3-1).

METHODS | OPERATIONS | RIGHTS
POST Create Read Non-idempotent
GET Read (Retrieve) Write Idempotent
PUT Update (Modify) | Write Idempotent
DELETE Delete Write Idempotent

Table 3-1: HTTP methods

- Statelessness: every HTTP request happens in complete isolation. Therefore, REST

makes the system really scalable since servers do not keep any information from clients.

- Self-Describing Messages: services interact by exchanging request and response
messages that contain both the representation of resource, which can be accessed ina

variety of formats such as XML and JSON and the corresponding meta-data.

- HATEOAS (Hypermedia as the Engine of Application State): the ability of a service to
change the set of links that are given to a client, based on the current state of a
resource. Therefore, it is reasonable to model state transitions between resources as
metadata. Having a metadata model that describes the state transitions enables to
exploit the model in order to apply access control. Thereafter, state transitions that
must not performed by a client can be skipped and not included in the response. As a
result, the unnecessary network traffic is reduced and security is increased (Somoza
Alonso, 2017).

13 Idempotence is the property of certain operations in mathematics and computer science that can
be applied multiple times without changing the result beyond the initial application.

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page | 48

3.1.3.2. Richardson maturity model

However, the main design constraints of the REST architectural style can be adopted
incrementally, leading to the definition of the Richardson maturity model for RESTful Web
services (Fowler, 2010). Namely, this model breaks down the principal elements of a REST

approach into four levels (Figure 3-5).

Glory of REST

Level 3: Hypermedia Controls

Level 1: Resources
Level 0: The Swamp of POX

Figure 3-5: Richardson maturity model for RESTful Web services
(Fowler, 2010)

- Level O: The system is distributed and invokes remote procedure calls without using any
of the mechanisms of the Web. These might be some sort of reusable methods that

offer specific services.

- Level 1 - Resources: Resource orientation is the most fundamental design guideline for
REST. Instead of making all request to a singular endpoint, resources are targeted

individually and therefore, each resources has a unique address.

- Level 2-HTTP Verbs: HTTP verbs such as GET, POST, PUT and DELETE determine the
action that is performed on resources instead of encapsulating the method into the
resources address. Hence, the resource address only consist of nouns and the HTTP

protocol carries the action.

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page | 49

- Level 3 - Hypermedia Controls: the system applies the HATEOAS constrain, which means

that a server sends any possible state transitions with the resource to the client.

3.2. Methodology for the RESTful-based CityGML retrieval

Several Principles and guidelines should be adopted so that retrieving CityGML data is
achieved by utilizing the RESTful-based architecture style. Therefore, the retrieval
mechanism of CityGML RESTful Web service is structured in compliance with the ROA
architecture and hence, everything that a service provides is a resource. The name of every
resource is noun and not verb according to the RESTful Web service guidelines. For
instance, a good resource name is the "citymodels” and not the "getcitymodels”. The action
type of the request is defined by HTTP methods and since the RESTful Web service is
designed in compliance with the HTTP specification, the data is retrieved implementing the
HTTP GET method. Additionally, the CityGML RESTful Web service is information-based
and not Geometric-based Web service as the complex structure of CityGML is more
semantic rather than geometric. The methodological steps for the conceptual design of the
CityGML RESTful Web service initially include the configuration of the main resource
schema based on the Resource Oriented Architecture as well as the definition of the main
resources, the information retrieval and the filters that may need to be applied.
Thereafter, the sub-resources should be defined so that the retrieval of all objects of a
3D city model could be achieved semantically. Finally, all of the aforementioned steps should
be designed based on the constraints of the RESTful approach and thus, the CityGML

RESTful Web service should guide the user in easy-to-use data retrieval.

3.2.1. Thematic resources

3.2.1.1. Main resources

Taking into consideration the five components of the CityGML's architecture (see Figure

18), only the second one (ten thematic modules) defines the semantic features of CityGML.

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |50

Therefore, these thematic modules should be the main resources of the CityGML RESTful
Web service (Figure 3-6). The names of these main resources are based on the namespace

prefix of CityGML v2 specification (Grdger et al., 2012) and they are shown in table 3-2.

CityGML RESTful
Web Service

dems
wir
veg
luse
bldg
frn
tran

brids
tun
erp

SAINPOW Jlleway]

Main Semantic Resources

Figure 3-6: Main resources of CityGML RESTful Web service

(Pispidikis & Dimopoulou, 2019)

Resource Name URI CityGML Modules

bldg ../bldg Building

wtr Jwir Waterbody
dems ../dems Relief

veg ./veg Vegetation
luse ../luse LandUse

frn ./frn CityFurniture
tran ./tran Transportation
brid ../brid Bridge

tun ../tun Tunnel

grp ./grp CityObjectGroup

Table 3-2: Name of the main resources according to the namespace prefix of CityGML v2

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |51

However, some extra main semantic resources are also defined to make it easier to access
their available semantic features. These extra main resources are part of the main

resources such as "tran” and "veg" (Figure 3-7).

Main Resources ‘ Extra Main Resources

tran H road, track, railway, square
veg H Vegetation, plancovers

Figure 3-7: Extra main resources

(Pispidikis & Dimopoulou, 2019)

3.2.1.2. Sub-resources

Additionally, CityGML adopts the multi-scale modelling supporting five different LoDs
(Figure 3-8). In a CityGML, the same object may be represented in different LoDs
simultaneously, enabling the analysis and visualization of the same object with regard to

different degrees of resolution.

Figure 3-8: five LoD of CityGML

(Groger et al., 2012)

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |52

However, LoD is considered vital not only in the geometric determination of the level of
detail but also in the semantic. By increasing the LoD, the semantic richness of CityGML
increases respectively. Therefore, this semantic enrichment of each of the thematic
modules is retrieved by implementing a variety of sub-resources. As a result, some of the
main resources have LoD-based sub-resources and hence, their semantic retrieval is
available based on the LoD (see chapter 4), while, some resources are LoD-independent and
so there is no differentiation regarding their semantic sub-resources from one LoD to

another (see chapter 5).

3.2.1.3. Resourse schema

The generic information retrieval schema regarding the main resources and the respective

sub-resources of the CityGML RESTful Web service is schematically shown in Figure 3-9.

Main Resource schema

<<Resource>>

g e <<Sub-resource>>
=<<ResourcePath>>_ L {list of available features) | _ <<ResourcePath>>_ {gmiid}{specific feature}
/{Main Resource} SEmlicd}

properties (able2) (|} properties (table 2)

*filters (table 1) TR R

0...* (Sub Resources schema)

> <<Resource>> <<Sub-resource>>

| {Sub-resource) i (gmiid}{specific feature} — — — —

| {list of available sub- o IR |
features)

| |

| |

Figure 3-9: Retrieval resource schema of CityGML RESTful Web service
(Pispidikis & Dimopoulou, 2019)

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |53

This schema consists of two sub-schemas. The first one describes the retrieval mechanism
of the main resources and so, the list of the main resources regarding the specific module

can be retrieved using the following request:

../{main resources}

The second sub-schema describes the retrieval mechanism of the respective sub-resources.
Each main schema could contain zero- to- many sub-schemas and each sub-schema could also

contain zero- to- many sub-schemas.

3.2.2. ADE resources

CityGML has been designed as an application independent information model and exchange
format for 3D city and landscape models. However, many applications of 3D city models
require the extension by application specific feature types, attributes, and relations. For
that reason, there are two available ways to extend the CityGML such as the use of generic
city objects and attributes and the use of ADE.

The first concept allows for the storage and exchange of 3D objects which are not covered
by any explicitly modelled thematic class within CityGML or which require attributes not
represented in CityGML. These generic extensions to the CityGML are integrated into any
resource of the CityGML RESTful Web service as an object attribute in the retrieved

information (see section 3.2.5).

The ADE concept defines a special way of extending existing CityGML feature types which
allows to use different ADEs within the same instance document simultaneously.
Furthermore, each ADE is specified by its own XML schema file and is also provided with a
new hamespace. The integration of each ADE into CityGML RESTful Web service is not part
of its core and hence, each ADE should be embedded separately as new main resource and
according to its XML schema. Thereafter, the connection of the ADE resource to the
desirable feature is achieved by including the ADE resource URI in the retrieved "links"
object of this feature (for example see Figure 4-11; for information about the "links" object

see section 3.2.5).

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |54

3.2.2.1. "Dynamizers" ADE resource implementation

Dynamizer (Chaturvedi and Kolbe, 2016) is a new concept, which extends static 3D city
models by supporting variations of individual feature properties over time. Additionally,
Dynamizers provide a way to model such dynamic variations with explicit time-series
representations. Dynamizers also utilize standardized encodings, such as the OGC
TimeseriesML standard. Utilizing this standard, the time-series can be represented as
interleaved time/value pairs or by a domain range encoding with the metadata of time-series
and timepoints. The time-series values may either be stored directly in-line within the

CityGML document or separately in individual tables.

Chatzinikolaou, Pispidikis and Dimopoulou (2020) developed an interoperable web-based
application in order to accomplish an integrated knowledge on how time-series data can be
distributed in a virtual 3D environment. The methodological steps to develop the said 3D
WebGIS viewer so that the available energy models can be portrayed and also the
respective time series data can dynamically be retrieved based on the corresponding GML

identifier (gmlid) of these models, are schematically presented in Figure 3-10.

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |55

PostGIS DB

(3DCityDB schema) T~
N ~
N\ N
3DCityDB \ \
importer/exporter \ \
Y \ \

KML
(geometry and gmlid value)

CityGML RESTful Web Service

(ADE_dynamizers resource)

I
I
I
../ADE_dynamizers/{gmlid} |
I
I

FileGDB
(3DCIM schema)

results (JSON)
Terrain

-Single Mutlipatch
geometry

-geotiff

gmlid value
gmlid value

v V
Elevation Service ArcGIS Scene Services _7/

/
/_/
[
\/

3D WebGIS Viewer

tsml measurenttm. MRT

Figure 3-10: Methodological steps of the energy-based WebG1S viewer

(Chatzinikolaou et al., 2020)

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |56

The interoperable and easy-to-use time-series data retrieval is achieved by extending the

CityGML RESTful Web service. Namely, the "ADE_dynamizers" main resource was

embedded and thus, the available CityGML features that contain time series data can be

retrieved in JSON format (Figure 3-11-(a)). Thereafter, by using the respective gmlid as

sub-resource the available time-series data can be retrieved as well (Figure 3-11-(b)). The

conceptual design of the "ADE_dynamizers" resource with the available properties is shown

in Figure 3-12.

a) ../ADE_dynamizers

\ 4

"timeseries":{
"type":"Object”,
"properties”:{

"gmlid":{"type":"String"},

"links"™:{"type":"0Object”,
"properties™:{

"link":{"type":"String"},
"pel”:{"type":"String"}

"links":{"type":"0Object",
"properties”:{
"link":{"type":"String"},
"rel": {"type":"String"}

b) .../ ADE_dynamizers /{gmlid}

\ 4

"cur_timestamp”:{"type":"Date"},
"value":{"type":"String"},
"dynamicdatatvp”:{"type”:"String"},
"links":{"type™:"0Object™,
"properties”:{

"link™: ._ "t}rpe" : ”Str‘ing”:' 3
“rel”:{"type":"String"}

Figure 3-11: JSON-based schemas of "ADE_dynamizers" main resource

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |57

<<Resource>>
<<Resource>> {emlid){ ific citygml
. . . mlid}{specific citygm
<<ResourcePath>> | list of citygml| objects object} x
CityGML /ADE_dynamizers that contains <<ResourcePath>>
RESTful Web | ™ timeseriesdata |~ /{gmlid} "™ properties: timeseries data
Service rties: A ¢ (cur_timestamp,
e prope |es: rray o value,dynamicdatavp),
citygml objects, links gmlid, links

Figure 3-12: Conceptual design of "ADE_dynamizers" main resource

3.2.3. Geometry

The Spatial properties of CityGML features are represented by GML3's geometry model,
which is based on the standard ISO 19107 (ISO, 2003) and also representing 3D geometry
according to the well-known Boundary Representation (B-Rep). The geometry model of
GML3 consist of primitives and for each dimension, there is a geometrical primitive such as
"Point" for a zero-dimensional, "Curve" for one-dimensional, "Surface" for two-dimensional
and "Solid" for three-dimensional. Thereafter, a solid is bounded by surfaces and a surface
by curves. Furthermore, the primitives may be combined to form complexes, composite
geometries or aggregates (Figure 3-13). GML3 provides a special aggregate for each
dimension such as MultiPoint, MultiCurve, MultiSurface and MultiSolid. A composite is a
special complex, which can only contain elements of the same dimension such as

CompositeSolid, CompositeSurface or CompositeCurve.

MultiSurface GeometricComplex CompositeSurface

Figure 3-13: Combined geometries

(Groger et al., 2012)

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |58

3.2.3.1. GeoJSON Implementation

CityGML uses only a subset of the GML3 geometry package, defining a profile of GML3.
Namely, in CityGML, a curve is restricted to be a straight line, thus only GML3 class
"LineString” is used. Moreover, Surfaces in CityGML are represented by "Polygons”, which
define a planar geometry (Groger et al., 2012). However, although the CityGML geometry
is structured according to GML, the GeoJSON specification (Butler et al., 2016) will be
used as a geometry retrieval format when the CityGML RESTful Web service is
implemented. GeoJSON is a geospatial data interchange format based on JSON that
supports a variety of geometry types. More specific, it comprises the seven concrete
geometry types defined in the OpenGIS Simple Features Implementation Specification for
SQL (OpenGIS, 1999) such as "Point" and "MultiPoint" for zero-dimensional, "LineString and
MultiLineString for one-dimensional, Polygon and MultiPolygon for two-dimensional and
GeometryCollection for heterogeneous geometries. As a result, all the available geometries
of CityGML can be represented by the GeoJSON format instead of GML. Table 3-3 shows
the matching supported geometries among CityGML and GeoJSON.

CityGML (GML3) GeoJSON
Point Point
LineString LineString
Polygon Polygon
MultiPoint MultiPoint
MultiLineString MultiLineString
MultiPolygon MultiPolygon
Composite Polygon MultiPolygon
Solid MultiPolygon
MultiSolid GeometryCollection or MultiPolygon
CompositeSolid GeometryCollection or MultiPolygon
CompositeSurface GeometryCollection

Table 3-3: Matching supported geometries among CityGML and GeoJSON

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |59

3.2.3.2. Implicit Object Implementation

However, in many cases, various features of a 3D city model could have same representation
but different position such as tree or other vegetation objects, a traffic light or a traffic
sign. The shape of these features is stored only once as a prototypical geometry which can
be re-used or referenced many times, wherever the corresponding feature occurs in the
3D city model. Each occurrence is represented by an implicit object that contains a link to
a prototype shape geometry (local CRS), a transformation matrix that is multiplied with
each 3D coordinate of the prototype, and an anchor point denoting the base point of the
object in the word Coordinate Reference System (CRS) (Figure 3-14). This principle is
adopted from the concept of scene graphs used in computer graphics standards like VRLM
and X3D.

"type":"0Object",
"properties":{

"geometry":{ "type":"String or URL"},
"anchorPoint™:{"type”: "GeolSON point"},
"transformationmatrix™:{"type":"String"}

Figure 3-14: JSON-based schema of the implicit object

In conclusion, all the available geometries of CityGML can be represented either by
GeoJSON format or by implicit object.

3.2.4. General filters

The response of each request by implementing the main resources of the CityGML RESTful
Web service is mainly a list of the available thematic modules respectively. Each thematic

modules of this list contains general information according to CityGML specification.

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page | 60

Moreover, most of the main resources can be filtered using the general filters such as

function, usage, class, bbox and lod (Table 3-4).

Filter URI (Example by using brid resource)
function ../ brid?function=3020
usage ../ brid?usage=1010
class ../ brid?class =1000
bbox ../ brid?bbox=
334433, 4455667, 445677,5566556
lod ../ brid?lod=3

Table 3-4: General filters of main thematic resources

The attributes class, function and usage are available for almost all CityGML feature types
and their values are specified in code lists, which are implemented as simple dictionaries
following the GML3.1.1 simple Dictionary Profile (Whiteside, 2005). Additionally, their
content may substantially vary for different countries (e.g. due to national law or
regulations) and for different information communities and therefore, the international
standard GML does not specify normative code lists for any of the attributes of type
"gml:CodeType"!*. However, a non-normative code lists for selected attributes were
proposed and maintained by the Special Interest Group 3D (SIG 3D) of the GDI-DE. These
code lists can be directly referenced in CityGML instance documents and serve as an
example for the definition of code lists (Groger et al., 2012). For instance, according to this
code list, the code value 2000 for the building attribute function is referred as a post
office. Moreover, the bbox filter parameters is vital to be defined so that the retrieval
data to be filtered based on spatial queries. Furthermore, since the semantic richness of
CityGML is based on the available LoD, the LoD should be defined as general filter.

14 gml:CodeType: In case a fixed enumeration of possible attributes values is not suitable, the
attribute type is specified as gml:CodeType and the allowed attribute values can be provided in a
code list which is specified outside the CityGML schema.

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |61

3.2.5. Information retrieval

The information retrieval about a specific main resource can be achieved implementing the

respective gmlid as sub-resource.

../{main resources}/{gmlid}

CityGML is explicitly designed as topographic-based model (Groger & Plumer, 2012).
However, many applications of 3D city models require the extension by application specific
feature types, attributes, and relations. The generic city objects and attributes are an
alternative mechanism to extend CityGML providing ad hoc solutions for the storage and
exchange of 3D objects which are not covered by any explicitly modeled thematic class
within CityGML or required attributes not represented in CityGML. Since this approach is
ad hoc, no application schema is required. Consequently, the generic object as a retrieval
property provides an ad hoc list of key value pairs based on the generic model of CityGML.
Moreover, the "links" object is vital to be provided as retrieval property so that the
HATEOAS implementation is achieved and then the CityGML Web service to be RESTful.
As a result, each resource should contain information regarding links to other available
resources. Consequently, the "links" object of a resource of CityGML RESTful Web service
contains a list of key value pairs links to itself, to all parents' resources and to a child
resource. In addition, the “geometry"” object can be retrieved based on GeoJSON
specification (see section 3.2.2), external format such as X3D, COLLADA etc, or implicit
object. Moreover, the said object is only available when no additional sub-resources of a
particular feature exists. For Example, in LoDO-1, the bldg main resource contains the
geometry object, while, in LoD2-4 the geometry object is only available in the last existing
sub-resource. Another retrieval property is the "address" object, which contains
information that is specified using the Extensible Address Language (xAL) address
standard by the OASIS consortium (OASIS, 2003) providing a generic schema for all kinds
of international addresses. Also, the " XXXInformation” object can be retrieved including a
variety of information based on the respective CityGML module. The characters "XXX"
describe the respective name of the main resources (e.g. bridInformation,
bldgInformation). Additionally, the "lod" attribute can be retrieved providing information

about the level of detail of the retrieval data. Last but foremost, two Boolean attributes

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |62

are retrieved such as "isMovable" and "XXXPart", which inform the client about whether
the retrieval object is movable or not and whether it is XXXPart or not e.g. tunnel part,

building part or bridge part.

In conclusion, the general but not mandatory value types of the retrieval properties with
respect to main resources of the CityGML RESTful Web service are described in Table 3-
5

Information Type Description
lod Number LoD value
XXXPart* Boolean True or False
isMovable Boolean True or False

XXXInfomation* | Object | List of key value pairs based on respective module

geometry Object | Geometry object based on GeoJSON specification,

external format or implicit object

generic Object Ad hoc list of key value pairs based on generic
module
address Object | List of key value pairs based on xAL specification
links Object | List of key value pairs regarding links to the parent

and child resources

gmlid String gmlid value

*The characters "XXX" are defined based on the name of the main resource (e.g bridsPart,
bridInformation)

Table 3-5: Available information of the main resources

3.2.6. Security

Unlike WS-* that specifies a well-defined security model that is protocol independent and
is built specifically for SOAP Web services, REST does not currently have its own security
model. Instead, today's REST security best practices leverage existing HTTP security
implementation approaches (Sudhakar, 2011). Fortunately, there are various HTTP

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page | 63

approaches for securing web applications such as HTTP Basic Authentication, HTTP Digest
Authentication and Token Based Authentication (OAuth). The HTTP Basic Authentication
mainly uses the ID and password of a client to authenticate the client's request in HTTP
header. Since, the Client's ID and password get encoded with Base64, which is stored in the
HTTP Authenticated header without being encrypted or hashed, they are usually sent over
HTTPS or Secure Sockets Layer (SSL). However, this approach has security vulnerabilities
of replay attack, injection attack and middleware hijacking (Jo, Kim, & Lee, 2014). The
advanced version of the first approach is that of HTTP Digest Authentication, which
encrypts the clients' ID and password via hash such as MD5 (Peng, Li, & Huo, 2009). It
should be noted that this approach can be exposed to a Man-in-the-Middle attack, also
known as a hijack attack. Finally, the Token Based Authentication (OAuth) uses a token
instead of user's ID and password (Jo, Kim, & Lee, 2014). Consequently, the use of a token
in communication between a user and Resource Server does not expose the user's ID and
password and thus, this approach is frequently implemented by various Web service

companies such as Twitter, Yahoo, Google, Facebook, Microsoft etc.

However, it should be noted that since the REST is based on the principle of statelessness,
the aforementioned security approaches have to authenticate every single request of a

client each time.

3.2.7. Cross-Domain issues

The execution of each request of CityGML RESTful Web Service is implemented in
accordance with HTTP specification. Hence, for the retrieval of the data the HTTP GET
method is implemented (Pispidikis and Dimopoulou, 2018). The utilization of this mechanism
from distributed resources with different domains may have Cross-Domain issues. These
issues mean that certain Cross-Domain requests will be forbidden by default by the same-
origin security policy (W3C, 2010). Fortunately, the modern browsers support several
techniques for overcoming these issues such as CORS (Cross-Origin Resource Sharing) and
JSONP (JSON with Padding). The CORS is considered a standard and a mechanism that
allows JavaScript on a web page to consume REST API served from a different origin. The
CORS can be implemented through the HTTP Header "Access-Control-Allow-Origin"“, which

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page | 64

can be enabled in a RESTful Web Service. An alternative way to share the data bypassing
the same-origin policy without need of modern browser is the JSONP format which does
not use the XMLHttpRequest object. Instead, it dynamically inserts <script> tag into a
webpage that is not considered as Cross-Domain issue. However, apart from the
aforementioned solutions, a proxy server can be utilized when executing the desirable
request, avoiding all issues regarding the Same-Origin Policy. More specific, a proxy server
can receive any request from distributed resource and then acting as a client on behalf of
the user, requests the data from the server. Thereafter, when the data is returned, the

proxy server relates it to the origin request and forwards it to the user.

3.3. Citymodels and Gmlid Resources

3.3.1. Citymodels resource

A SOAP-based Web service provides an XML-based interface description language called
WSDL that is used to describe the functionalities offered by this Web service. Hence,
users are able to have an overview of all these functionalities. On the other hand, REST
does not provide any standards like WSDL to inform users of its available endpoints.
Consequently, CityGML RESTful Web service should enable users to have an overview of
the available thematic models by defining a core resource. This resource is called
"citymodels" and is mainly used to retrieve the total number of the available thematic
models grouped by thematic category model. In each group category, the corresponding
resource link of the main thematic resource (see Table 3-2) is also be retrieved and thus,

users can send additional requests and receive more specific data.

The JSON-based schema of the retrieval data by implementing the "citymodels” resource

is shown in Figure 3-15.

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page | 65

object”,
+ watic” "+ ",-’_ircvvw
- 9 X = 'c J»
. = = ahar™
: 1 b number” ,
type”: "object”,
rog W
11 L typ tring i,
f ctrin
e 1 e string”}

e
[—

Figure 3-15: citymodels resource schema in JSON format

(Pispidikis & Dimopoulou, 2018)

3.3.1.1. Case study using the "citymodels" resource

A CityGML dataset contains a variety of thematic modules in different LoDs such as three
buildings, one waterbody, one bridge (LoD2 & LoD3) and two land uses. So, the

implementation of the "citymodels" resource retrieves the following response (Figure 3-16)

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |66

../citymodels

$

"thematic™: "bldg",
“counts™: 3,
"links™: {
"link™: "../bldg",
"rel": "buildings"

g
"thematic™: "wtr",
"counts™: 1,

"links™: {
“link™: "../wtr",
"rel™: "water bodies’

K
"thematic": "brid",
“counts™: 2,

"links™: {
"link™: "../brid",
"rel": "bridges"
K

"thematic": "luss",

“counts™: 2,

"links": {
"link™: "../1u
"rel™: "land u

Figure 3-16: JSON result by using "citymodel” resource

It should be noted that in the above mentioned example, although bridge module has one

bridge, there are two instances of this bridge based on the corresponding LoD.

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page | 67

3.3.1.2. Filters

The "citymodels” resource retrieves information regarding the available CityGML thematic
modules and therefore, the definition of some parameters is considered necessary so that
the filtering of the retrieval result can be achieved. As a result, a new filter parameter
called "thematics" is defined. The value of this filter is based on the respective namespace
prefix of the thematic modules of CityGML v2 specification (see Table 3-2). Also, multi

thematic values can be used simultaneously by separating them using comma punctuation.

By using the same dataset of the previous case study (see section 3.3.1.1), then if a user
only needs information about the available buildings and bridges the following request can

be implemented (Figure 3-17).

../citymodels?thematics=bldg,brid

\ 4

"thematic": "bldg",
"counts": 3,

"links": {

"link™: "../bldg",

"rel™: "buildings"
"thematic": "brid",
"counts": 2,
"links": {

"link": "../brid",

"rel™: "bridges"

Figure 3-17: JSON result by using the "thematics” filter parameter in the "citymodels”
resource

In Addition, the filter "bbox" is defined. The value of this filter is a geometry rectangle in

a specific reference system which limits the results according to a boundary box. Another

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page | 68

important filter parameter is the CRS of the data called "epsg”. The definition of the spatial
reference system is of utmost importance and a key requirement for the integration of
different spatial datasets in a single 3D city model. CityGML inherits GML3's spatial
capabilities of handling CRS. More specific, in CityGML, the coordinate system of the
geometries is defined through the attribute "srsName" which is inherited from the
abstract GML superclass "gml:_Geometry". The value of this attribute may be a reference
to a Well-known CRS definition provided by an authority organization such as the European
Petroleum Survey Group (EPSG) (Pispidikis & Dimopoulou, 2015), but may also be a pointer
to a CRS that is locally defined within the same CityGML instance document. The value of
this pointer is based on the Uniform Resource Name (URN) encoding standard (Whiteside,
2009) having the following generic syntax:

urn:ogc:def:object Type,object Type:authority:version:code,objectType:authority:versio
n.code

In case that there is a CityGML dataset in which two reference system should be defined
e.g. EPSG:25832 for projected CRS and EPSG:5783 for vertical CRS then the following
URN is formed:

urn:ogc:def:crs,crs:EPSG::25832,crs:EPSG::5783

The replacements between the general URN syntax and the CRS is presented in Table 3-6.
Consequently, when the "epsg” filter is not used, then the default CRS is set based on
CityGML dataset. On the other hand, when "bbox" filter uses different CRS then this CRS

should be set as a value to the "epsg” filter.

URN general syntax CRS
objectType crs
Authority EPSG
Version -
Code 25832 & 5783

Table 3-6: URN syntax for CRS references

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page | 69

The available filters of "citymodels" resource can be implemented simultaneously and thus,
the spatial and descriptive filtering of the desired request can be achieved. The following
request only provides information on the amount of buildings and bridges that are located
within the specified boundary box in EPSG:3857 CRS.

../citymodels?thematics=bldg,brid&bbox=334433, 4455667, 445677,
5566556 &epsg=3857

3.3.2. Gmlid resource

In some cases, the retrieval of the available information about a semantic feature is most
useful to be achieved directly based on the respective gmlid. This capability could be
possibly utilized at the scenario of 3D Web visualization of huge CityGML models, where
the user needs to retrieve the available descriptive information based on the respective
gmlid value of the selected model. More specific, after the CityGML models are converted
to the appropriate format for 3D web visualization (see section 2.1), they should have only
the respective gmlid value as attribute. Thereafter, the gmlid sub-resource can be

implemented and the rest of the available information to be retrieved (Figure 3-18).

798a7424-1302-4928-b820 6o 7715027

(a) Information retrieval of LoD1 building

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

OBJECTID
type
objiD.

gmiid

1T T L

|
. v

. -

(b) Information retrieval of a building room in LoD4

Figure 3-18: Information retrieval based on the gmlid by using "gmlid" resource

CHAPTER 3: CITYGML RESTFUL WEB SERVICE

Page |71

LOD-BASED THEMATIC RESOURCES

4.1 Bldg Thematic Resource
4.2 Tun Thematic Resource

4.3 Brid Thematic Resource

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |72

This Chapter describes the conceptual design of the LoD-based thematic resources
of the CityGML RESTful Web service. More specific, the "bldg", "tun" and "brid"
resources and their respective child resources are presented. Also, for each of these

resources, various case studies using semantic requests are presented.

In this chapter, the 4™ sub-research question of the current dissertation is partially
answered:
How could CityGML data be semantically refrieved by users without knowledge of

the source?
This chapter is based on the following papers:
(1) Pispidikis and Dimopoulou (2018)

(2) Athanasiou, Pispidikis and Dimopoulou (2018)
(3) Pispidikis and Dimopoulou (2019)

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |73

4.1. Bldg Thematic Resource

The building module is considered as one of the most detailed thematic concepts of
CityGML, allowing the representation of thematic and spatial parameters of buildings and
building sections at different levels of detail (Groger & Plimer, 2012). Spanning the
different levels of detail, the building model differs in the complexity and granularity of
the geometric representation and the thematic structuring of the model into components

with a special semantic meaning (Figure 4-1).

LODO FootPrint LODO RoofEdge

Building

Building Interior

Figure 4-1: Building module in different LoD

(Groger et al., 2012)

More specifically, in LoDO the building is represented by horizontal surfaces describing the
footprint and the roof edge. In LoD1, the different structural entities of a building are
aggregated to a simple block and not differential in detail. In LoD2 and higher LoD, the
exterior shell of a building can also be composed of semantic objects. Table 4-1 provides an

overview of the semantic availability of a building per LoD.

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |74

Geometric/ semantic theme LoDO | LoD1

Footprint and roof edge

Volume part of the building shell

Building parts

Boundary surfaces

Outer building installations

Openings

Rooms

Semantic themes

Interior building installation

Table 4-1: Semantic availability of a building per LoD

Taking into consideration the aforementioned semantic availability, the building module is
enriched by semantic characteristics from LoD2 and above and thus, the child resources of
the bldg main resource are defined based on the semantic enrichment of building features
from LoD2 to LoD4.

4.1.1. Bldg main resource

The main thematic resource regarding building module of CityGML is the bldg resource. This
resource retrieves the available building and building parts respectively, including their
available information (see Table 3-5) as well as a link object that contains the URIs of these
child resources and the URI of the bldg main resource. According to CityGML v2
specification, the pivotal class of the building model is "_AbstractBuilding" which is
specialized either to a "Building” or to a "BuildingPart". Both these classes inherit the
attributes of "_AbstractBuilding" such as the class of the building, the function (e.g.
residential, public, or industry), the usage, the year of construction, the year of demolition,
the roof type, the measure height and the number and individual heights of the storeys
above and below the ground (Grdger et al., 2012). The available values of the latter are

described in Figure 4-2.

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

relativeToTerrain value

Hlustration

entirelyAboveTerrain

substantiallyAboveTerrain

substantiallyAboveAndBelowTerrain

substantiallyBelowTerrain

entirelyBelowTerrain

I) e

Page |75

Figure 4-2: Values of the relationship of an object to the terrain

(Groger & Plimer, 2012)

All these attributes belong to the bldgInformation object. Additionally, if a building

consists of one homogeneous part, the value of the bldgPart attribute is false. On the other

hand, when a building composes of different structural segments, for example a number of

storeys or roof type, then the respective bldgPart value is true since the building has to be

separated into a building that has one or more additional building parts (Figure 4-3).

Building with two
building parts
(represented as one
"Building" feature and
one included)
"BuildingPart" feature)

Building consisting
of one part
(represented as one
"Building" feature)

Figure 4-3: Examples of building consisting of one and two building parts

(Groger et al., 2012)

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |76

Another capability of the bldg resource is the implementation of several filters that limit
the retrieval result avoiding the over and under fetching issues. Except for the general
filters (see Table 3-4), which are used in all main thematic resources, the bldgPart filter
should be defined. The value of this filter is Boolean and limits the retrieval result on

whether the building is building part or not.

The conceptual UML model of the bldg main resource with available properties and filters

is shown in Figure 4-4

<<Resource>>
<<Resource>>

bldg (list of available buildings)

<<Application>> {gmlid} (specific building)

Ci ML RestFul <<ResourcePath>>_
Lo /bldg >

properties: Array of bldg sub- - <<Res/?guﬁz;am»_ :)
resources, links pmpertles: bldglnformatlon,
Generic, Address, gmlid, lod,

bldgPart, links,geometry

Filter: bldgPart, lod, class,
function, usage, bbox

Figure 4-4: Conceptual design of the "bldg" main resource

The schema of the bldg main resource in JSON format is shown in Figure 4-5

1 1
{ “bldg": { — i Array of all bldg child resources |

"type":"Object”,
"properties":{
"gmlid":{"type":"String"},
"lod":{"type"”: "Number"},
"bldgPart™: {"type™:"Boolean"}, | o .

"links":{"type":"0Object"”, I Link to itself, to parent and all child resources |
"properties*:{ S TTmTTooooo oo oo :

“link": {"type":"String"},

“rel":{"type":"String"}

¥

'}'-:JLinks" :{"type":"Object”, ‘ i Link to itself and to parent resources i
"properties”:] b -
"link™:{"type":"S5tring"},
"rel”:{"type":"String"}

Figure 4-5: bldg resource schema in JSON format

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |77

Also, the retrieval of a specific building can be achieved by implementing the gmlid as sub-

resource.

./bldg/{gmlid}

The gmlid in the brackets is the unique id for each building according to CityGML. This sub-
resource of a particular building contains additional information as opposed to the bldg main
resource (see Figure 4-5) so that the overfetching of the data is avoided. As aresult, the

JSON-based retrieval information is presented in Figure 4-6

IltypEII : "':'bjf,_t" s

"properties":{
"gmlid":{"type":"String"},
"lod":{"type": "Number™},
"bldgPart":{"type":"Boolean™},

"bldgInformation":

{"type":"0bject",

"properties™:{
“function”:{"type":"Number"},
"class™:{"type": "Number"},
"usage":{"type": "Number"},

"wear of construction™:{"type":"Mumber"},
"wear of demolition”:{"type":"“Number™},

"roof type":{"type":"Number”},

rm

"relative to terrain™:{"type":"String"}

¥
:".1
"geometry":{ "type":"GeolS0N, URL or implicit object "}
"generic”:{"type":"0Object"}, ‘
"address":{"type":"xAL Object"},
"links™:{"type":"0Object"”, [Tttt Tttt T
"properties”: | Available only if no adm+wnali
"link":{"type":"String"}, i sub-resources exist :
"rel™:{"type":"String"} @@= tom——————oooo—————————————— !

-

Figure 4-6: JSON-based resource schema of specific building

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |78

4.1.2. LoD2 bldg sub-resources

The supported semantic characteristics of the LoD2 building are the exterior boundary
surfaces such as Wallsurface, RoofSurface, GroundSurface, OuterCeilingSurface and
OuterFloorSurface as well as the exterior building installation (see Table 4-1). The exterior
boundary surfaces are implemented to semantically structure the exterior shell of building
(Figure 4-7). Specifically, the ground plate of a building is modeled by the GroundSurface.
In addition, the mostly horizontal surface that belongs to the outer shell and also has the
orientation pointing downward such as the visible part of the ceiling of a loggia or the ceiling
of a passage, modeled by the OuterCeilingSurface. Furthermore, the OuterFloorSurface is
utilized to model the mostly horizontal surface that belongs to the outer building shell and
with the orientation point upwards such as the floor of a loggia. Moreover, all parts of a
building fagade belonging to the outer building shell can be modeled by the WallSurface.
Also, the RoofSurface is used to express the major roof parts of a building whilst secondary
parts of a roof with specific semantic meaning like dormers or chimneys are modeled as
exterior building installation. The exterior building installation is an outer component of a

building which has not the significance of a BuildingPart, but it strongly affects the outer

characteristic of the building.

8

=

k
& o a

=

=
OuterFloorSurface

@

H 8
5 €
=

[@
5 3
z ES

GroundSurface ‘ GroundSurface

OuéerCeilingSudace

OuterFloorSurface

OuterCeilingSurface

@
3 8
£ £
[@
. 2
= £

WallSurface
WallSurface

WallSurface

GroundSurface

WallSurface

Figure 4-7: Boundary surfaces of the outer building shell
(Groger et al., 2012)

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |79

Consequently, the aforementioned semantic features are the LoD2 child resources of the
bldg main resource. The URT resources regarding the exterior boundary surfaces are walls,
roofs, grounds, ceilings and floors respectively. Additionally, the exterior building
installation resource is called “installation". This resource can be filtered using a variety of
filters such as usage, function, class and type. It should be noted that the "installation"
resource refers to both interior and exterior building installation. The separation of the
latter is achieved via the "type" property. Thereby, the defined values of this property are
interior or exterior respectively. However, the interior building installation are semantic
features available in LoD4. So, the "installation" resource is defined as a child sub-resource
regarding LoD4 as well. Furthermore, the "closure” resource is embedded so that the open
sides of the building can be virtually closed by using the ClosureSurface. Additionally, the
retrieval of a specific resource can be achieved using the corresponding gmlid. An instance

of a specific wall request is the following

../bldg/{gmlid}/walls/{gmlid}

The available information of each semantic surface of LoD2 bldg sub-resources is shown in
Table 4-2

Information Type Resource Description
lod Number Installations, LoD value
Exterior

boundaries*

appearance Object Installations, List of key value pairs based on appearance
Exterior module
boundaries*

geometry Object Installations, Geometry object based on GeoJSON
Exterior specification or implicit object
boundaries*

generic Object Installations, Ad hoc list of key value pairs based on

Exterior generic module

boundaries*

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |80

links Object Installation, List of key value pairs regarding links to
Exterior itself, o parent and to child resources
boundaries*

gmlid String Installation, gmlid value
Exterior
boundaries*

usage Number installation Codelist

function Number installation Codelist
class Number installation Codelist
type Number installation exterior or interior

Exterior boundaries*: walls, roofs, grounds, ceilings and floors

Table 4-2: Available information of LoD?2 bldg sub-resources

The exterior boundary surface sub-resources with regard to a specific feature (or gmlid)

have a similar schema, which is presented in Figure 4-8 in JSON format.

"type":"0Object™,
"properties":{
"gmlid™:{"type"”:"String"},
"lod" :{"type": "Number"},
"geometry": { "type": "GecdS0ON or URL™}G,
"appearance" :{"type":"0bject or URL"}
"generic”:{"type" :"0Object"},
"links™:{"type":"0Object”,
"properties”:{
"link":{"type":"String"},
"rel™:{"type":"String"}

Figure 4-8: Schema of the Bldg exterior boundary surface sub-resources in JSON format

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |81

Also, the retrieval schema of features belonging to a specific bldg exterior boundary
surface category e.g. walls, is presented in Figure 4-9 (for the JSON-based schema for

each boundary surface see Annex A.1)

The character "XXX" is defined based on the exterior

boudary surfaces such as walls, roofs, grounds, ceilings

|
_ |
"type":"Object”, i
“properties®:{ . | and floors. Also, the retrieval data is array of features
"gmlid":{"type":"String"}, :
"links":{"type":"Object”, !
"properties™:
"link":{"type":"String"},
"rel":{"type":"String"}

that belongs to the corresponding surface.

i
"links":{"type":"0bject”,
"properties”:{
"link":{"type":"String"},
"rel":{"type":"String"}

Figure 4-9: Retrieval schema of features belonging to a specific bldg exterior boundary
surface

The retrieval information of the "appearance” object is based on the appearance module of
CityGML. This module is not limited to visual data but represents arbitrary categories called
"themes" such as infrared radiation, noise pollution, or earthquake-induced structural
stress (Groger et al., 2012). Consequently, a single surface geometry may have surface data
for multiple themes. As a result, the "appearance” object could contain an array of themes
whose value depends on the appearance module of CityGML e.g. color or URL to an image.
Additionally, the "links" object of a sub-resource is used to provide information about the
URIs of itself, to parent and to all child resources. For example, there is a building (gmlid:1)
in LoD2 which has four WallSurfaces, one GroundSurface and two RoofSurfaces (Figure 4-
10).

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |82

| izl CityGML Building [1] |
. B/ [Example Building LOD2 i
CityGML Address [1] !
CityGML GroundSurface [1] :
CityGML WallSurface [4] !
CityGML RoofSurface [2] i
|

Figure 4-10: Example of a LoD2 building

So, if a client makes a request using the sub-resource below:

./bldg/1

then, with regard to the "link" object the following information is retrieved in JSON format
(Figure 4-11):

4

:1inﬁ“i""3?ld5;1"’ T T | -"link”:"..IADE_Dynamizersfl"J
rel”:"self L Resource of itself J "rel"”:"ADE_Dynamizer"
b T }
E “Link™:". . fhlde™ [T .
R ! Parent resource !
rel”:"parent e
s T
¥ :ADE resource |

-"lin k":"../bldg/1/walls",
"rel":"Wallsuface”

Ts

r

1
"link":"../bldg/1/grounds", jmmmmm— e ———
"rel": "Groundsurface" - i Child resources |

} __________________ |
-"lin k":"../bldg/1/roofs",
"rel": "Roofsurface"”

}.)

Figure 4-11: Retrieval data regarding the "link" object of a building in TSON format

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |83

As a result, the user could be informed not only about the existence of the exterior

boundary surfaces of a building but also about the respective URIs.
The "installation" resource schema has a similar structure to exterior boundary surfaces
apart from the fact that four additional attributes are included such as type, usage,

function and class (see Annex A.2).

In conclusion, the conceptual design of the bldg resource with available properties and

filters according to LoD2 is shown in Figure 4-12.

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 84

<<Resource>>
<<Resource>>

exterior installations . - .
{gmlid} (specific exterior

— — —[>| properties: Array of <<ResourcePath>> installation)
| installation sub-resources, /tgmlid) - -
| links properties: usage, function,

class, gmlid, generic, type,
appearance, geometry, links

<<ResourcePath>>

Filter: usage, function, class,

/ms({i llation '.ym (LOD4)
|
<<Resource>>
| <<Resource>> § i
| grounds <<ResourcePath>> __ {20l Seeciic geund)
I -—— <<ResourcePath>>__ __ /{gmlid}

/grounds = properties: gmlid,lod, generic,
| : Frr]nkzerhes.Array of grounds, appearance, geometry, links
|
| |
| |
| | <<Resource>>

| <<Resource>> f@miid) i)
| id} (specific wa
| L _ _ <<hesourcopatior _ e S
| /wals o properties: gmlid,lod, generic,
: I F:’K‘:mes' Array of walls, appearance, geometry, links
<<Resource>> I
buildings <Rt G- : <<Resource>> <<Resource>>
<<Application>> {EmidIdji(spectiiclotilding) | — _mOfs .<<ResourcePath>>_ {EidiCaecificipol)
<<ResourcePath>>] L — — <R Path>>— " Jtemlic)
CityGML RestFul Web properties: Array of bldg sub- > - . es?,ﬁ; e properties: Array of roofs, properties: gmlid,lod, generic,

Services

|
Eee———————————| bidgPart, links,geometry I
Filter: bidgPart, lod, class, | <<Resource>>
function, usage, bbox | cellings <<Resource>>
F—— = .<<R5js:‘.ﬁ:p:m>» — {gmlid)(specific ceiling)
| € properties: Array of ceilings, /igmiid)
| links properties: gmlid,lod, generic,
| appearance, geometry, links
|
| <<Resource>> <<Resource>>
| floors. {gmlid} (specific outer floor)
- -<<ResourcePath>>= _<<ReS/C(';rrnchedP)ath>>_
Al : " .
ffoors properties: Array of floors, properties: gmlid,lod, generic,
|
| links appearance, geometry, links
|
| <<Resource>>
| SR {gmlid} (specific closure)
closures <<ResourcePath>> —
L — —<<ResourcePath>> — — /lgmilid) 5 N 3
/closures properties: gmlid,lod, generic,
properties: Array of closures, appearance, geometry, links
links

resources, links

properties: bldgInformation,
generic, address, gmlid, lod,

links

Figure 4-12: Conceptual design of the LoD2 "bldg." sub-resources

appearance, geometry, links

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |85

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 86

4.1.3. LoD3 bldg sub-resources

The additional semantic feature of the LoD3 building module is the "_Opening" abstract
class, which semantically describes openings like doors and windows in outer or inner
boundary surfaces like walls and roofs. This class only exists in models of LoD3 and LoD4
and contains two sub-classes such as "Window" and "Door". More specific, the class
"Window" is used for modelling windows in the exterior shell of a building, or hatches
between adjacent rooms, whist the "Door" class is used for modelling doors in the exterior
shell of a building, or between adjacent rooms. The main difference between these classes
is that the "Window" class is not specifically intended for the transit of people or vehicles
and the "Door" can also be used by people to enter or leave a building or room (Groger et
al., 2012). Consequently, the respective resources of the aforementioned sub-classes are
considered vital to be defined. Hence, the URIs of these resources are "windows" and
"doors". The implementation of these sub-resources retrieves two objects such as "rooms"”
or "windows" (depend on the resource) and "links", which are presented in the following
JSON-based schema (Figure 4-13) (for more details see Annex A.3).

omyyyen { The character "XXX" has either "doors" or "windows

' |
| |
"type":"0Object”, | value
"properties":{ ey !
"gmlid":{"type":"String"}, |
::lir.ks": t)r:E "Object"”, -i Link to itself and to parent and child resources |
properties™:y] I
"link": {"type":"String"},
"rel":{"type":"String"}

"1inks" . ["type":"Object”, ‘ i Link to itself and to parent resources |
"properties":{
"link™:{"type":"String"},
"rel”: {"type":"String"}

Figure 4-13: JSON-based schema of the "doors" and "windows" sub-resources

The implementation of a specific opening sub-resource contains a variety of information
which is described in Table 4-3 and presented in Figure 4-14.
CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 87

Information Type Description
gmlid String Gmlid value
appearance Object List of key value pairs based on appearance module
geometry Object Geometry object based on GeoTSON specification or URL
to external format.
generic Object Ad hoc list of key value pairs based on generic module
links Object List of key value pairs regarding links to itself and to
parent resources
address* Object List of key value pairs based on xAL specification

address*: available only for "doors” sub-resources

Table 4-3: Available information of "windows" and "doors" sub-resources

"type":"Object”,

"properties":{
"gmlid™:{"type”:"String"},
“geometry":{"type":"GeclS0N or URL"},
"generic”:{"type":"Object"},
"appearance”:{"type":"Object"},

" wns—":.-“ iy momn . +1 | . " n !
“address™:{ t)‘EE“ XAL lI:IlbjE-c- s " Only available for "doors” resource |
links™:{"type™:"0Object", !

“properties":{
"link™:{"type":"String"},
"rel™: {"type™: "String"}

Figure 4-14: JSON-based resource schema of specific "opening" resource

Additionally, the schema of the URI regarding a specific opening resource is the following:

../bldg/{gmlid}/{roofs or walls}/{gmlid}/{openings}/{gmlid}

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 88

The conceptual design of the bldg child resources regarding LoD3 is shown in Figure 4-15

<<Resource>>
. <<Resource>>
exterior installations
{gmlid} (specific exterior

installation)

propertles: Array of | __ <<ResourcePath>>__ __
installation sub-resources, /temiic

links
Filter: usage, function, class,
type (LoD4)

_ /instatations

propertles: usage, function,

class, gmlid, generic, type,
ks

<< >>
<<Resource>> Resource:

{gmlid) (specific window)

windows (list of windows) esoucePathn [

Jignic)
properties: Array of windows,

propertles: gmlid, generic,
inks appe: try, links

<<Resource>>
{gmlid} (specific wall)

<<ResourcePath>
/igmiid)

Jwats properties: Array of walls,
links.

<<Resource>>

{GMLID} (specific door)

<<ResourcePath>>_
/lgmid)

<<Resource>>
propertles: gmlid, generic,
address, appearance,
geometry, links

<<Resource>>
{gmlid} (specific building)

buildings propertles: Array of doors,

<<Application>>

CityGML RestFul Web <<Resourcepatn>>—[>]
s /vic

<<ResourcePath>>,

properties: Array of bldg sub-
resources, links.

properties: bidg/nformation,
generic, address, gmlid, lod,
bldgPart, links,geometry

<<Resource>>

{gmlid} (specific window)

<<Resource>>

Filter: bldgPart, lod, class,
function, usage, bbox

windows (list of windows)

<<ResourcePath>>,
/igmiid}

propertles: gmlid, generi

|
| propertles: Array of windows,
|

<<ResourcePath>>

<<Resource>> /windows.
I

{gmlid} (specific roof)

<<Resource>>

properties: gmlid,lod, generic,
appearance, geometry, IinVs_.

properties: Array of walls,
lin

<<ResourcePath>>
/doors

<<Resource>>
| <<Resource>>

{gmlid} (specific door)

| doors (st of doors)
<<ResourcePath>>.

>
/lgmiidy properties: gmlid, generic,
address, appearance,
geometry, links

Figure 4-15: Conceptual design of the LoD3 "bldg.” sub-resources

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |89

4.1.4. LoD4 bldg sub-resources

In LoD4, the interior building installations could be retrieved by using the “installation”
resource (see Annex A.2). These features are objects inside a building with a specialized
function or semantic meaning and they are permanently attached to the building structure
and cannot be moved. Except for this resource, there is the "rooms" child resource
regarding LoD4 as well (see Annex A.4). According to the CityGML v2 specification (Groger
et al., 2012), a "Room" is a semantic object for modelling the free space inside a building
and should be uniquely related to exactly one building or building part object. Therefore,

the "rooms" resource could be used to retrieve the list of the available rooms of a building.

../bldg/{gmlid}/rooms list of rooms
../bldg/{gmlid}/rooms/{gmlid} specific room

Moreover, the available information of each room is gmlid, class, usage, function, links and
generic and the filtering of this resource could be achieved by implementing the general
filters (see Table 3-4). Thereafter, each room provides several links for child resources
such as "furniture" (see Annex A.5), "installation" (see Annex A.2), "walls", "floors" and
"ceilings" (see Annex A.1). The first one retrieves a list of "BuildingFurniture" that are
located in a specific room. A "BuildingFurniture" is a movable part of a room, such as a chair
or furniture. Also, it should be uniquely related to exactly one room. So, the accessible
information of the "furniture" resource is class, usage, function, gmlid, generic, appearance,
geometry and links. Additionally, the available filter parameters of this resource are class,
usage, function and bbox. In the same context, the rest of the child resources such as
"installation”, "walls", "floors" and "ceilings" retrieve a list of the corresponding available
semantic features. The accessible retrieval information and the respective filters are
shown in Figure 4-16. Generally, the retrieval of a specific semantic feature is achieved

using the gmlid.

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |90

<<Resource>>

s (list of windo

RIS US (gmic) (specific window)

co pr
=Resouroo>> properties: Aray of windows,
<Resource>> : links
Exterir & Interor Installations <<Resource in
{gmid) (specific nstalation) e
P <<Resouce>> |

Aray of nstallatonsub- [~ <<Resource>>
reszyuvees . Properties: usage, function, |

class, gmid, generic, type, — e, o s i) (specific flo
Fiter: Usage, funcion, ciass, appearance, geometry, in oA e} - pream—
type (LoD4) links CiiOiECaEs | i HEoEE= (gmid) (specific door)

appearance, geometry, links doors (list of walls)

T properties: gmiid, generic,
address, appearance,
geomety, inks

progerties: Aray of walls,
links

<<Resource>>

<<Resource>>

<Resarceratn . — <Resmrcetati> gmiid) (specifc ciosure)
<<Resource>>
. | | properties: giid, generic, e
{gmiic) (specific building) ! e <<Resource>> —
lication>> £
° O <esaurceratio <<esoucetath) (specific window)
2060 —D> propertes: Amayof bidg s~ [~ /i~ | propertes: bidginformtion, ! i
resources, links Generic, Address, gmiid, lod, I <<Resource>> P properties: gmiid, generic,
bidgPart, links geometry 1 uindone. appearance, geometry, links.
Fite:bidgPar,ld, s, | I IR
function, usage, bbox T o= g -
| | 1 ! propertes: Array of valls, properties: gmiid, generic, |
| [finks ‘appearance, geometry, links !
| EE— : 1 — <<Resource>>
: ! s (s 5) mid) (specific door)
-~ ToeE N To e <<Resource>> o <<Resource>> = s (st of doors) R {gmiic) (specific door
i {gmid) (specific room) | <<Resource>> i
L | <<ResourcePat>> L <resourcepatno> — b properties: Array of doors, propertes: gmlid, generic,
> propertes: Array of rooms, gty eeings esoucetan address, appearance,
links properties: Aay of cellings, | "
Fiter: class, function, usage, links
bbox I — appearance, geometry, links
Resource>> e
T (i) (specific fumiture)
- e — [
- propartes: Array of Ak propertis: class, usage,

function, gmiid, generic,

fumitures, links appearance, geometry, links.

Filter: class usage, function

<<Resouscepatn>
insiatation

<<Resour
o <<Resou
Installatons (WSt of {gmiid) (specific installation)

******* I e

perties: ciass, usage,
function, gmiid, generic,
" appearance, geometry, links

" Fiker: class usage, function

Figure 4-16: Conceptual design of the LoD4 "bldg." sub-resources

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |91

It should be noted that in LoD4 there are two sub-resources with the same name but
different URIs, and called “installation". The first one is child resource of bldg resource
and retrieve a list of interior installations in a particular building (1), while the second one
is the child resource of the "rooms" resource and retrieve the respective installation that

are located in a specific room (2) (see Annex A.2).

../bldg/{gmlid}/installation 1)

../bldg/{gmlid}/rooms/{gmlid}/installation (2)

Similar to the LoD3, the interior boundary resources ("walls and "floors") provide the

"windows" and "doors" child resources.

../bldg/{gmlid}/rooms/{gmlid}/{walls or floors}/{gmlid}/{windows or doors}

The aforesaid resources have similar properties, filters (see Table 4-3) and schema (see

Annex A.3) like LoD3 opening resources.

4.15. Case studies using semantic requests

In this section, several requests are presented using the conceptual design of the CityGML
RESTful Web service. For this purpose, the "Topo3DcityDBPS" 2D/3D WebGIS is utilized
which was developed and presented by Pispidikis & Dimopoulou (2016) in order to
successfully retrieve and visualize CityGML data in accordance with their respective
geometric and semantic characteristics. Thereafter, Athanasiou, Pispidikis, & Dimopoulou
(2018), for interoperability purposes, upgraded this application by replacing its main
retrieval mechanism with the bldg resources of CityGML RESTful Web service.

Initially, a building example was chosen, which includes a variety of semantic characteristics
in all LoDs (Figure 4-17)

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |92
LoD2 LoD3 LoD4

Figure 4-17: A building example in LoD2, LoD3 and LoD4

Next, a PostgreSQL/PostGIS Database was utilized which was structured according to
3DcityDB schema. Thereafter, the storage of this building model into this spatial database
was implemented by the use of the 3DcityDB importer/exporter.

When the connection to the database was achieved, the available buildings in LoD2 were

retrieved. Next, the building (id:1) was retrieved and visualized (Figure 4-18)

Your are connected to: phd2020

Preview all data; (@ || ©

Data for every building: | lod2 v | i 2]

L= L1

There is 1 building

1building: 1@ & & %

——————

_______________ | Get the geometry value per

L’rhema’ric surface (6eoJSON) |

Figure 4-18: LoD2 bldg sub-resources implementation example

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |93

Similarly, Figure 4-19 presents the retrieval of LoD4 instance of this building

Your are connected to: phd2020

Preview all data: El
bata for every bulcing: @]

There is 1 building

Building id tools 5
1building: 1 G @ & & % -

../bldg? lod=4

Figure 4-19: LoD4 bldg sub-resources implementation example

Next, the following request is used to fetch all the available rooms of this building:

../bldg/1/rooms - seven rooms

Thereafter, having all the available rooms (seven rooms in total) the retrieval of a particular

room (e.g. id: 72) is implemented and visualized as follows (Figure 4-20):

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Geometry of room: | multisurface ¥

1 room:
2 room:
3 room:
4 room:

22
34
49
60

toal
W

| 5 room:

72

7 room:

I 6 room:

90
106

CoIC|eCC

I
r————= 1 [T E
| |

Figure 4-20: Example of "rooms" resources implementation

F——
______ i | ../../ceilinas/1

————— — —

I
a

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |95

Finally, the retrieval and visualization of all the available furniture of the room 72 is
achieved by implementing the following procedure. Firstly, these furniture are retrieved

using the following endpoint:

../bldg/1/rooms/72/furniture 1%* request

Next, the said result is implemented as IJSON input in JavaScript code (Figure 4-21):

async function getFurniture(data)
{
data.furniture.forEach(thisfurniture => {
rvar restEndpoint="../bldg/1/rooms/72/furniture/"+ thisfurniture.gmlid;
var currentFurnitureGeometry= await getRequest(restEndpoint);
map.add(currentFurnitureGeometry);

)

}

function getRequest(uri) {
return new Promise((resolve, reject) => {

$ajox(¢

url:uri, | GeoTsON-based
success: function(data) { |

resolve(data.geometry); -

1,
error: function (error) {

reject(error);

3
)

)

}

getFurniture(furniture);

Figure 4-21: Advanced requests to fetch all the furniture in a specific room

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

file:///A:/PERSONAL_DATA/ΔΙΔΑΚΤΟΡΙΚΗ%20ΔΙΑΤΡΙΒΗ/url

Page |96

4.2. Tun Thematic Resource

The tunnel model is closely related to the building model. The scope of this model
encompasses manmade structures that are located mostly below the terrain surface and
are intended to convey transportation flows such as pedestrians, cars, trains etc.
Therefore, the geological structures, natural caves, mining facilities and subsurface utility
network are excluded (Groger et al., 2012). Additionally, this model supports the
representation of semantic aspects of tunnel and tunnel parts only in four levels of detail,
LoD1 to LoD4 (Figure 4-22).

Tunnel

Tunnel interior

Figure 4-22: Tunnel module in different LoDs

(Groger et al., 2012)

Specifically, in LoD1, there are no semantic characteristics as the tunnel model consists
only of a geometric representation of the tunnel volume. In LoD2 and higher LoDs the outer
structure of a tunnel can be semantically differentiated while in LoD4, the interior of a

tunnel can also be structured with additional semantic features (Table 4-4).

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |97

Geometric/ semantic theme LoD1 | LoD2 | LoD3 | LoD4

Volume part of the tunnel shell

Tunnel parts

Boundary surfaces

Outer tunnel installations

Openings

Hollow spaces

Semantic themes

Interior tunnel installation

Table 4-4: Semantic availability of a tunnel model per LoD

4.2.1. Tun main resource

The "tun” main resource refers to the tunnel module of the CityGML and is used to retrieve
all the available tunnels and tunnel parts respectively. When a tunnel composed of structural
segments, for example tunnel entrance and subway, has to be separated into one tunnel

having one or more additional "TunnelPart" (Figure 4-23).

Figure 4-23: Example of a tunnel modeled with two tunnel parts

(Groger et al., 2012)

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |98

The available filters for this resource are the general filters (see Table 3-4) and also the
tunPart. The value of the latter is Boolean and describe whether the tunnel is tunnel part

or not.

The retrieval resource schema contains two objects like "links" and "tun". The first one
contains an array of links to itself and to parent resource ("citymodels” resource), while the

second one contains the available tunnels and tunnel parts (Figure 4-24(a)).

"type":"Object”,
Wy o TTTTTTTTTTTTTTTTTTTTTTT "properties":{

. "gmlid":{"type":"String"},
"lod":{"type": "Number"},
"tunPart™:{"type":"Boolean
"tunInformation™:

"type":"Object”,
"properties":{
"gmlid":{"type":"String"},

"y
I

T

lod"™:{"type": "Number"},) ["type": "Object”,
"tunPart":{"type":"Boolean"}, "propertiss":|
"links":{"type":"0Object"”, "function™:{"type”:"Number"},
"properties”:{ "class":{"type" : "Number"},
"link":{"type":"String"}, "usage": {"type”:"Number”},
"rel":{"type": "String"} "year of construction”:{"type":"MNumber"},
.) = "year of demolition”:{"type":"Number”},

“gécmetry":{”type“:”Gec:SDN or URL"},

I "generic":{"type":"0Object"},
"links":{"type":"0Object", "links":{"type":"Object",
“"properties":{ "properties”:{
"link™:{"type":"String"}, “link™:{"type":"String"},
"rel”:{"type”:"String"} relt:{"type”:"string”}
a) ../tun b) .../tun/{gmlid}

Figure 4-24: JSON-based tun resource schema

Additionally, a particular "tun" resource can be retrieved by using as sub-resource the
corresponding gmlid. The available information of this sub-resource contains a variety of
properties such as lod, tunPart, funInformation, geometry, generic, gmlid and links (see
Table 3-5; for JSON-based schema see Figure 4-24(b)). More specific, the
"tunInformation” object includes a list of properties such as class, function, usage, year of

construction and year of demolition.

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |99

4.2.2. LoD2 tun sub-resources

The LoD2 child resources of the "tun" resource are based on the respective classes'
"_BoundarySurface" and TunnelInstallation of tunnel module of CityGML. Namely, the
"_BoundarySurface" is the abstract class for several thematic classes, structuring the
exterior shell of a tunnel as well as the visible surface of hollow spaces and both outer and
interior tunnel installations. The thematic classification of tunnel surfaces with regard to

the "_BoundarySurface" class is illustrated in Figure 4-25.

RoofSurface / OuterCellingSurface

o CellingSurface s Eé? ’\\su"'“ b*?’ "\\sur'lCO
8 & ® g & 5 &
g K 5 8 £ ¥ £ ¥
3 2] 3 5 s 8 s 8
S 3 3 a s |& s £
g |3 T 3
® X k-] 2
= 5 7} FloorSurface
E E
= FloorSurface ~
GroundSurface
Rectangular Cross Section Circular Cross Section Circular Cross Section
gurtace / Oute,
>
é;» ’\\5uﬂace x .\\“\gs “"OC. \ 6}3 "c?
kS f { /¥ \% § CellingSurface
L & / \? @
5 g ‘ £ | s 5 5
= £ o ! 8 | ® 2 a A
8 8 =2 2 B B
- S 38 5 £ £
3 | & : 3 E -
FloorSurface = = FloorSurface = = FloorSurface
= = =
GroundSurface GroundSurface
Circular Cross Section Arbitrary Cross Section Arbitrary Cross Section

Figure 4-25: Exterior and interior tunnel boundary surfaces

(Groger et al., 2012)

Therefore, in terms of the outer boundary surfaces, the following URIs are specified:
"walls", "grounds”, "roofs" and "ceilings". Additionally, the "closure” resource is also defined

so that the open side of the model that was sealed by virtual surface can also be retrieved.

The schema of the exterior boundary resources of tunnel is similar to that of the building

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 100

resources either for the exterior boundary surface category (see Annex A.1) or for the

features belonging to a specific exterior boundary surface (see Figure 4-8).

The semantic objects which refer to the outer components of a tunnel and strongly affect
its outer characteristics belong to tunnel installations. So, the "installation" resource (see
Annex A.2) is used for the retrieval of the aforementioned objects. This resource can be
filtered by implementing a variety of filters such as class, function, usage and type. The
property "type" is embedded to the "installation" resource so that the separation of the
interior and exterior installation is achieved. The "installation" resource schema has a
similar structure to exterior boundary surfaces apart from the fact that four attributes
are included with respect to the retrieval resource schema of a particular installation such

as class, function, usage and type (Figure 4-26).

"type":"Object”,

"properties”:{
"gmlid”:{"type":"String"},
"geometry": {"type":"GeclS0M, URL or implicit object"},
"appearance™:{"type":"0Object or URL"},

"generic"”: {"type":"0Object"},
"class":{"type" :"Number"},
"function":{"type": "Number™},
"usage":{"type" :"Number"},

"type":{"type":"Boolean"},

"links":{"type":"Object”,

"properties™:{
"link":{"type":"String"},
"rel":{"type":"String"}

Figure 4-26: JSON-based retrieval resource schema of a specific tunnel installation

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 101

The conceptual design of the LoD2 "tun" resources is presented in Figure 4-27.

<<Resource>> <<Resource>>

{gmlid} (specific exterior
installation)

exterior installations

<<ResourcePath>> >
| — — | properties: Amay of /igmiid) - -
| installations, links properties: usage, function,

class, gmlid, generic, type

Alter: usage, function, class,
type (LoD4)

<<ResourcePath>>
/instalations

1
|
I <<Resource>> <<Resource>>
| . .
grounds <<ResourcePath>> {EplidiGpeaiiciound)
| __ __ __ <<ResourcePath>>__ Jgmid)y T
| | /grounds - properties: gmlid,lod, generic,
| | pmpemes. Array of grounds, appearance, geometry, links
| |
| | <<Resource>>
| <<Resource>>
lid} (specific wall
| walls <<ResourcePath>>, e !
| L — — _<<Re63:/r:“e:a\h>>_ —_ /lgmlid) N lid,lod ;
| | — properties: gmlid,lod, generic,
| | properties: Array of walls, appearance, geometry, links
T e
<<Resource>> <<Resource>> | <<Resource>> <<Resource>>
<<Application>> tun {GMLID} (specific tunnel) | roofs {gmlid} (specific roof)
CityGML RestFul Web - <ResourcePaths o <<Re«s/?urcle:)am>> —_— ,_ — —<<ResourcePath>> — — <<Res/l();1::‘het;ath>>_
ies: gmii N "
Services /un pmperhes.Avray of tunnels, pmpemes:tunlnf_ormat!on, | froos propertles: Array of roofs, properties: gmlid,lod, generic,
|gedometPry, gtinelgc, gmlid, | appearance, geometry, links
| odtunPart inks | 1 |t | et R,
|
| <<Resource>>
| <<Resource>> " ific ceili
" id}(specific ceilin
| ceilings <<ResourcePath>>, {gmidyisp 2
|_ — — =<<ResourcePath>> /lgmlid} lid lod N
/ceilings — . propertles: gmlid,lod, generic,
| properties: Array of ceilings, appearance, geometry, links
o e
I <<R >>
esource:
| <<Resource>>
lid) (specific outer floor)
| floors <<ResourcePath>>, {gmid) (sp: !
| — — —<<ResourcePath>> — /lgmiid) 5 Taed N
/floors — properties: gmlid,lod, generic,
: properties: Array of floors, appearance, geometry, links
|
I <<Resource>>
| <<Resource>>
I closures P {gmlid} (specific closure)
= = <<ResourcePath>>=— =— —| /{gmlid}
Jclosures properties: gmlid,lod, generic,

properties: Array of closures,

appearance, geometry, links
links &2 e

Figure 4-27: Conceptual design of the LoD2 "tun" sub-resources

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 102

4.2.3. LoD3 tun sub-resources

From LoD3 and above the exterior boundary surfaces such as roofs and walls may contain
opening features like doors and windows. These features can be retrieved by using the
"doors" and "windows" child resources respectively, which have similar information, filters
and schema to the respective opening resources of building module (see Annex A.3).

Additionally, the schema of the URI regarding a specific opening resource is the following:

../tun/{gmlid}/{roofs or walls}/{gmlid}/{openings}/{gmlid}

The conceptual design of the additional LoD3 tun sub-resources are presented in Figure 4-
28

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

ul Web

Services

<<ResourcePath>>
sun

<<Resource>>

tunnels

propertles:Array of tunnels,
links

Fliter: general filters tunPart

<<ResourcePath>>
/Mg

<<Resource>>

<<Resource>>

{gmiid} (specific exterior
installation)

exterior installations

<<ResourcePath>>,

<<Resour > properties: Arayof |7 T T T 2 "
Jistatation ons, links propertles: usage, function,
7 - class, gmlid, generic, type,
| Riter: usage, function, class, "
| type (LoDA) appearance, geometry, links
|
|
|
|
| <<Resource>> <<Resource>>
| gmlid pet
pals <<ResourcePath>> gmiid) (specific wall
| r——5 =TT gmig T T T
| properties:Armay of walls, propertles: gmlid,lod, generic,
<<Resourcepath>> 1
: Jwals
|
|
|
<<Resource>>
{GMLID) (specific tun)
propertiestuninformation, |
‘geometry, generic, gmlid, lod,
tunPart, links !
|
|
|
|
<<ResourcePath>>
|
|
| <<Resource>>
I_ o <<ResourcePath>>_ _ _ __

properties: Array of roofs,
links ear:

properties: gmiid.lod, generic,
appearance, geometry, inks

<<Resource>>

windows (list of windows)

<<ResourcePath>>

properties: Array of windows,

<<ResourcePath>>

——— e
|

propertles: Array of doors,
links

<<Resource>>
windows (st of windows)
| propertles: Array of windows,
| links

1
<<ResourcePath>>
vindows

<<Resource>>

doors (list of doors)
R ™

propertles: Aray of doors,
links

Figure 4-28: Conceptual design of the additional LoD3 "tun" sub-resources

Page | 103

<<Resourcepath>>
Jignid)

<<ResourcePath>>,
Jlgmic)

<<ResourcePath>>
Jigmic

<<ResourcePath>
i)

<<Resource>>

{gmiid) (specific window)

propertles: gmiid, generic,
appearance, geometry, links

<<Resource>>
{GMLID) (specific door)

propertles: gmlid, generic,
address, appearance,
geometry, links

<<Resource>>

{gmlid) (specific window)

properties: gmiid, generic,
appearance, geometry, links

<<Resource>>

{gmiid) (specific door)

properties: gmlid, generic,
appearance, geometry, links

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 104

4.2.4. LoD4 tun sub-resources

In LoD4, the highest level of resolution, the interior of tunnel composed of several hollow
spaces which mainly semantically describe the free space inside a tunnel or tunnel part.
Therefore, the "hollowspaces” child resource regarding a specific "tun" resource can be
requested and thus both the list of hollow spaces and the links objects can be retrieved.
Thereafter, when a particular hollow space is requested by using the corresponding gmlid a
variety of information is retrieved such as class, usage, function, gmlid, generic and links
(see Annex A.6). Additionally, each hollow space can be semantically described and modeled
by specialized boundary surfaces such as FloorSurface, CeilingSurface,
InteriorWallsurface and ClosureSurface. Therefore, each "hollowspace” resource provides
several links to the respective boundary child resources such as "walls", "floors", "ceilings"
and "closures” (see Annex A.1). Then, a specific "walls" resource may provide as child
resources the opening features such as windows and doors (see Annex A.3). Moreover, the
objects inside a tunnel which are permanently attached to the tunnel structure and cannot
be moved can be requested by using the "installation" resource (see Annex A.2). It should
be noted that there are two available "installation" sub-resources with different URIs so
that the interior installation can be retrieved based on either a specific tunnel or a specific

hollowspace. An instance of the above-mentioned cases is as follows

../tun/{gmlid}/hollowspaces/{gmlid}/installation

../tun/{gmlid}/installation?type=interior

Additionally, the retrieval of the movable objects of a hollow space can be requested by

implementing the "furniture" sub-resource (see Annex A.5)
The conceptual design of the additional sub-resources for the LoD4 "tun" resource,

including the respective available filters and properties per sub-resource, is shown in Figure
4-29

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 105

<<Resource>>

<<Resouce>>
Exterior & Interlor Installations
{gmic) (specific installation) <<Resource>> <<Resource>>
properties: Array of - === floors (ist of floors) lic) (specific floor

installations, inks pertiea: usage, function,
Ater: usage, function, ciass,
type (LoD4)

< Resaurcapathss_
kot

oy
class, gmlid, generic, type,

propertes: gmiid, generic,
__appearance, geomety, links

<<Resource>>

<o, gid) (specific closure)

o~
propertes: gniid, generic,

appearance, geometry, inks

<<Resource>>

P —— <<Resource>> <<Resource>>

{gmic) (specific hollowspace)

{gmic) (spesific tunnel)

<Application tunnels.

e perlem AToyof holow [<<Resource
. rolovsces res: Jiamie) r——

prpeTicalATa/ ol G i) properties: tunlnformation, spaces, links propertes: ciass, usage, S

finks geometry, generic, gic, Fiker: class, function, Usage, function, gmiid, inks, f————1>

Fiter gonera fiters, Pt LGt BBox

- [— <<Resource>>

[gmiid) (specific window)
windows (ist of {gmid) (spe ing

——
i

proerties: gid, generc,
appearance, geometry, inks

<<R

ource>

fgmic)

s (ist of doors)

progertiee: griid, generic,
acdress, appearance,
geometry, inks

propertles: Array of doors,
ks,

<<Resource>> Sl

lic) (specifio ceiling)

properties: Aty of ceilings,
links

sourc <<Resource>>

fumitures (ist of furnitures) {igmiid) (specific fumitur
i) propertes: class, usage,

roperties: Aray of
ez & function, gmlid, generic,

" Aiter class,usage, function _

<<Resource>>
<<Resource>

installations (ist of
installations)

{gmid) (specific installation)

propertes: ciass, usage,
function, gmiid, generic,
‘appearance, geometry, links,

: A

Figure 4-29: Conceptual design of the additional LoD4 "tun" sub-resources

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 106

4.25. Case studies using semantic requests

In this section, a variety of requests are presented using the conceptual design of the
CityGML RESTful Web service regarding the "tun" resources. Initially, it should be noted
that the code list values of function, usage and class with regard to semantic features such
as tunnel, interior/exterior installations, hollow spaces and furniture are specified in the
XML file CityGML_ExternalCodeList.xml, according to the dictionary concept of GML 3.
Next, three main categories of requests are presented such as basic requests (a simple
request), advanced requests (two or more requests) and requests using simple JavaScript

code.

4.2.5.1. Basic requests

- Overview of the available tunnels and tunnel parts in LoD2.

../citymodels?thematics=tun&lod=2

- A CityGML dataset contains semantic information of tunnels in WGS84 CRS. However,
a user needs to retrieve all the available pedestrian and roadway tunnels (functions:
1030 & 1010) in specific boundary area (334433.0, 4455667.0, 445677.0, 5566556.0)
at Web Mercator Projection (EPSG: 3857).

./tun?function=1030,1010&bbox=334433.0, 4455667.0, 445677.0,
5566556.0&epsg=3857

- The exterior walls of a tunnel with gmlid 2.

../tun/2/walls

- The available windows of the wall with gmlid 2 for tunnel 1.

../tun/1/walls/2/windows

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |107

- The light switches (function: 3020, according to the interior tunnel installation

dictionary) in tunnel 2.

../tun/2/installation?function=3020

- The lamps (function: 3010, according to the interior tunnel installation dictionary) of

hollow space 3 for tunnel 2.

../tun/2/hollowspaces/3/installation? function=3010

- The furniture of hollow space 3 for tunnel 4.

../tun/4/hollowspaces/3/furniture

4.2.5.2. Advanced requests

Each HTTP request should happen in complete isolation (stateless interaction). Therefore,
when the retrieval information is complex and needs more than one requests to be used
then these requests have to be implemented sequentially. Hence, the result of each request
can be used as input value for the next request. However, taking into consideration that the
CityGML RESTful Web service is designed in compliance with HATEOAS constraints then
the endpoint of every subsequent request can be retrieved from the "links" object of the

current request.

- A CityGML dataset containing a tunnel with two tunnel parts in LoD2 (Figure 4-30). A
user needs to retrieve all the lamps (function: 3010, according to the interior building

installation dictionary) of hollowspaces for this tunnel.

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 108

Figure 4-30: LoD2 Tunnel model

(Soon & Khoo, 2017)

So, in the first request, the user retrieves the available tunnel parts

../tun?tunPart=true 15" request=> two tunnel parts (gmlid: tprt1 & tprt2)

For each tunnel parts the respective links are retrieved and thereafter, the available hollow

spaces are retrieved as well.

../tun/trpt1/hollowspaces ../tun/trpt2/hollowspaces
One hollow space available (gmlid: hs1) One hollow space available (gmlid: hs2)

Then, for each hollowspace the respective lamps are retrieved.

../tun/trpt1/hollowspaces/hs1/installation?function=3010

../tun/trpt2/hollowspaces/hs2/installation? function=3010

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 109

4.2.5.3. Requests using simple JavaScript code

- The number of burned out lamps in the hollow space (gmlid: hsl) for a particular tunnel
(gmlid: tn2). Noted that the information about whether the lamps are burned out or not

is specified as a generic attribute with the following key value pair:

burned: {type: "Boolean}

The first request is used to retrieve all the available lamps of the given hollow space
implementing as sub-resource the "installation" resource in conjunctions with the respective

filter regarding the installation function type.

../tun/tn2/hollowspaces/hs1/installation?function=3010

Then, the retrieval result is implemented as JSON input in JavaScript code

var count=0

response.forEach(results => {
if(results.installation.generic.burned==true) {
count++;
}
)

P S S

console.log(count); i Result i

4.3. Brid Thematic Resource

The bridge model represents the thematic, spatial and visual aspect of bridges, bridge parts
and construction elements in four levels of detail (Figure 4-31) Additionadlly, it was also
developed in strict analogy to the building model with respect to its aggregation structure,
its relations, its attributes and the definition of the particular LoD (Groger & Plimer, 2012).

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |110

LOD1 LOD2 LOD3 LOD4

Bridge

Bridge interior

Figure 4-31: Bridge module in different LoD
(Groger et al., 2012)

Therefore, the semantical and geometrical richness of the bridge module increases from

LoD1 to LoD3 regarding the blocks and architectural model respectively, while the interior

structures like rooms are embedded in LoD4 (Table 4-5)

Geometric/ semantic theme LoD1 | LoD2 | LoD3 | LoD4

Volume part of the bridge shell

Bridge parts

Semantic themes

Bridge Construction elements

Boundary surfaces

Outer bridge installations

Openings

Rooms

Interior bridge installation

Table 4-5: Semantic and geometric availability of a bridge model per LoD

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |111

4.3.1. Brid main resource

The "brid" resource is the main thematic resource regarding the bridge module of the
CityGML and it is used to retrieve a list of the available bridges. However, if some parts of
a bridge differ from the remaining bridge regarding attribute values or if parts like ramps
can be identified as objects, those parts can be represented as bridge parts and they can
be retrieved as well. Additionally, the "links" object is also retrieved including information
for links to itself and to "citymodels" resource URI (Figure 4-32(a)). Moreover, the
retrieval list can be limited using not only the general filters (see Table 3-4) but also the
"bridPart" and the "isMovable" filter parameters. The value of these filters is Boolean and
provide information about whether the bridge is bridge part or not and whether is movable

or immovable respectively.

The implementation of the gmlid attribute as sub-resource, it fetches information about a
specific bridge or bridge part that contains a variety of properties (see Table 3-5; for
JSON-based schema see Figure 4-32(b)).

The semantical richness of bridge module increases from LoD1 and above and thus, in LoD1,
the semantic elements named "BridgeConstructionElement” are included. These features
are considered essential from a structural point of view like pylons, anchorages etc. (Figure
4-33). Hence, the "construction” endpoint is defined as sub-resource. The information
retrieval of said resource is an array of the available bridge construction elements and a
list of links as well. Moreover, the array of the bridge construction elements can be filtered
by using the general filters (see Table 3-4). Additionally, each of these elements can be

retrieved using the corresponding gmlid as sub-resource (see Figure 4-34).

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

"brid":{
"type”
"properties”:{

“"gmlid":{"type":"String"},
“lod":{"type™: "Number"},
"bridPart":{"type": "Boolean"},
"isMovable":{"type" :"Boolean"},

“"links":{"type":"0Object”,

"properties”: |

"link™:{"type":"String"},
"rel":{"type":"String"}

: "Object™,

-

Llinks“:f"type“:"ﬁbject",
"properties”:{

"link":{"type":"String"},
"rel": {"type":"String"}

a) ../brid

) ”t:!"I:'E“ . "':":::'ECt"J

"properties":{

"amlid":{ “type":

Page | 112

"string"},

"lod™:{"type™: "Number"},
"bridPart":{"type":"Boolean"},
"isMovable": {"type":"Boolean"}
"bridInformation”:
{"type":"0Object”,

"properties™:{

"function

"clasz":

"usage™: |

"year of

"year of
1

I

" {"type": "Number™},

{"type": "Number"},

"type": "Number"},
construction™:{"type": "Number"},
demolition”:{"type™:"Number"},

"geometry":{"type":"GeoISON or URL"},

"generic":{"type":"Object"},

"addrezs

"r{"type":"xAL Object"},

"links™:{"type":"0Object",

"properties™:{

"link":{"type":"String"},

"rel":{"type":"String"}

b).../brid/{gmlid}

Figure 4-32: JSON-based schema of a "brid" resource

ropes [cablel

N

pylon

dropper

t

lane of traffic

,_//—l

LT\\ i

abutment

|

.-*“'*—’—'

fundaments

abutment

Figure 4-33: Bridge construction elements

(Groger et al., 2012)

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 113

"construction”:{

"type":"0Object”, "type":"Object”,

"properties”:{ "properties”:{
"gmlid™:{"type”:"String"}, “gmlid”:{"type":"String"},
"links™:{"type":"Object"”, "geometry”:

"properties™:] {"type":"Geol50N, URL or implicit object™},
"link™:{"type":"String"l, "appearance”:{"type”:"0Object or URL"},
"rel":{"type":"String"} "generic":{"type" :"0Object"},

} "class":{"type": "Number"},
"function":{"type": "MNumber™},
"usage"”:{"type":"Number"},

"links":{"type":"Object",

Llinks”:f"type” "Object”, "propertiss":

"oroperties" S "link“_f"tyie“:"Strinﬁf},
Fi"lEnk” {"ty;e“:"String"}, _HPEl“ {Mtype":"5tring”)
_"rel“ {"type":"String"}
a) .../brid/{gmlid}/construction b) .../brid/{gmlid}/construction/{gmlid}

Figure 4-34: Construction resources of a bridge

4.3.2. LoD2 brid sub-resources

Except for the bridge construction elements, the additional semantic characteristics of
the LoD2 bridge are the exterior boundary surfaces (WallSurface, RoofSurface,
GroundSurface, OuterFloorSurface and OuterCeilingSurface) (Figure 4-35), the
ClosureSurface, and the BridgeInstallation. Consequently, these semantic features are the
LoD2 child resources of the "brid" resource. The URIs with regard to boundary surfaces
are "walls", "roofs", "grounds”, "floors" and "ceilings" respectively and retrieve a list of the
corresponding thematic surfaces (see Annex A.1). Moreover, with regard to the
BridgeInstallation, the "installation” child resource is defined. This resource can be filtered
using several filters such as usage, function, class and type (see Annex A.2). Finally, the
“closures” resource is embedded so that the open sides of bridge can be virtually closed by
using the ClosureSurface. It should be noted that all of the above-mentioned sub-resources
have as child resource the respective gmlid value and hence any specific semantic feature

can be requested.

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 114

../brid/{gmlid}/{boundary surfaces}/{gmlid}

../brid/{gmlid}/{installation}/{gmlid}

RoofSurface

WallSurface

OuterFloorSurface

OuterCeilingSurface

Figure 4-35: Boundary surfaces of a bridge

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

The conceptual design of "brid" resource with regard to LoD2

<<Resource>>

exterior installations

properties: Array of
installations, links

Filter: usage, function, class,
type (LoD4)

|—— >

<<ResourcePath>>
instalation

__<<ResourcePath>> _
‘grounds

<<Resource>>

<<Resource>>

bridges

|
|
|
|
|
L — — <<ResourcePath>>_ _
I /wals
|
|
|
{gmlid} (specific bridge) :

<<Application>> =
: <<Resoucorath> ot — — <<ResourcsPath
CityGML RestFul Web <<resoucepotn=>T>] properties:Array of bridges, [~ figmic) properties:bridsinformation, - fesgueran

Services /brids links geometry, generic, address, |
Fllter: general filters, EniC]odibncee By !
- bridsPart, isMovable 2z IS |
|

b — — — <<ResourcePath>>

ceings

|
| 1
| 1
| 1
| 1
| 1
: :_ —_—— .(<Ras/n"u")zrn(h>>.
| |
| |
| |
| |
| |
|

|

|

urcePath>>
construction

<<Resource>>
Construction elements
properties: Array of
constructions, links

Fitter: general filters

<<ResourcePath>>,
{gmiia)

L — —<cResourcepath>> — — 5>

Page | 115

is schematically shown in Figure 4-36

<<Resource>>

{gmlid) (specific exterior
installation)

properties: usage, function,
class, gmlid, generic, type,
appearance, geometry, links

<<Resource>>
{gmlid} (specific ground)

<<ResourcePath>—

_ i)

properties: gmlid,lod, generic,

propertles: Array of grounds, _..appearance, geometry, links

links

<<Resource>>
S {gmiid} (specific wall)
<<ResourcePath>>,
/igmlid}

<<Resource>>
{gmlid) (specific roof)

properties: gmiid, od, generic,

<<Resource>>
<<ResourcePath>> {gmiid)(specific ceiling)
/tgmic)

propertles: Array of ceilings, - .
i properties: gmlid,lod, generic,

<<Resource>>
floors
<<ResourcePath>>
Jigmic)
properties: Array of floors,
links

properties: gmlid,lod, generic,
appearance, geometry, links

<<Resource>>

closures.
properties: gmiid,lod, generic,
properties: Array of closures,
links

<<Resource>>

{gmlid) (specific construction)
<<ResourcePath>>

e properties: usage, function,
class, gmiid, generic,

links.

Figure 4-36: Conceptual design of the LoD2 "brid" sub-resource

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 116

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 117

4.3.3. LoD3 brid sub-resources

The additional semantic features of the LoD3 bridge module are the opening features such
as windows and doors and hence, the respective resources of the aforesaid features are
"windows" and "doors". These resources are child resources of each LoD3 "walls" and "roofs"
sub-resources with regard to "brid" main resource (see Annex A.3). The retrieval of specific
data regarding the aforementioned resources is achieved implementing the corresponding
gmlid as an endpoint. Additionally, each specific "door" resource should contain information
regarding the address and, therefore, this object is defined with allowable values in
compliance with xAL specification. The conceptual design of the above-mentioned "brid"

sub-resources regarding the LoD3 is presented in Figure 4-37.

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

<<Resource>>

exterior installations.

<<ResourcePath>>,

I~ > properties: Array of - Jlgmiid)
installations, links

Filter: usage, function, class,

type (LoD4)

<<Resourcel
/instatation

<<ResourcePath>>_

Jvats
H properties: Aray of walls,
| links
| E
|
|
I
I

<<Resource>> <<Resource>> :

bridges {gmlid) (specific bricge) |

s <<ResourcePath>> —4
<<ResoucaPetsS properties:Array of bridges, [~ /o) propertles:bridsinformation,

Jorids links geometry, generic, address, |
Filter: general filters, gmid, lod, bridsgPart, |
bridsPart isMovable, links |

|
|
|
|
|
|

|
|
|
|
|
| .
<<ResourcePath>>
|
|
|
|
I
|

<<ResourcePath>>
onstruction <<Resource>>

Construction elements.

< n
properties: Aray of e

<<Resourcepath>>
Jigiic)

<<Resource>>

properties: Array of roofs,

Page | 118

<<Resource>>

{gmlid) (specific exterior
installation)

<<Resource>> <<Resource>>

{gmiid) (spex

windows (list of windows)

<<ResourcePath;
gl

properties: usage, function,
class, gmiid, generic, type.
appearance, geometry, links

-
|
|
|
|
|

|

gmlid) (specific wall |
-
|
|
|
|

soucepatn>> properties:Array of windows,
windows inks

properties: gmlid, generic,
try, links.

properties: gmiid, lod, generic,

appearance, geometry, links

<Resource>>
{GMLID} (specific door)
<<Resourcepath>.
/tgmiie) properties: gmlid, generic,
address, appearance,
geomety, links

properties: Aray of doors,
links

<<Resource>>
{gmii) (

<<Resource>>

windows (list of windows) R
<<ResourcePath»>— = Jigmid)

properties: Araw of windows, Gzt ge"":c'm

appearance, geometry, lin

lin}

<<Resource>>

gmiid) (specific roo

<<ResourcePath>»
Tigmic) - "
properties: gmiid, od, generic,
__appearance, geometry, links

<<Resource

{gmlid) (specific construction)

properties: usage, function,
class, gmiid, generic,
__.appearance, geometry, links

<<Resource>>
<<Resource>>
nlid) (specific door)
doors (list of doors) <<ResourcePath>>_ {gm P
Jigmic)

Pproperties: gmiid, generic,
a etry, linl

ometry, links

properties: Array of doors,
links

Figure 4-37: Conceptual design of the LoD3 "brid" sub-resources

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 119

4 3.4, LoD4 brid sub-resources

In LoD4, the property "type" of the sub-resource "installation" is enabled so that the
separation of the interior and exterior installations is achieved. Moreover, the "rooms” child
resource is defined and the respective list of the available rooms of a bridge can be
retrieved (see Annex A.4). Thereafter, each room provides several links for child resources
such as "furniture”, "installation”, "closures” and boundary surfaces ("walls", "floors" and
"ceilings"). The first one retrieves a list of furniture that are located in specific room. The
accessible information of this resource is class, usage, function, gmlid, generic, appearance,
geometry and links (see Annex A.5). Additionally, the available filter parameters of this
resource are class, usage and function. In this context, the rest child resources such as
“installation”, "walls", "floors" and "ceilings" retrieve a list of the respective available
semantic features (see Annex A.2 for "installation” resource; see Annex A.1 for boundary
surface resources). Moreover, the "closures" child resource is also embedded so that the
opening space that is not filled by a door or window can be sealed by a virtual surface called
ClosureSurface. Generally, the retrieval of a particular feature is achieved using the
respective gmlid sub-resource. Furthermore, in LoD4, there are two sub-resources with
same name but different endpoints. The name of these resources is called "installation”.
The first one is child resource of "brid" main resource and retrieve a list of interior
installation in a specific bridge, while the second one is the child resource of the "rooms”
resource and retrieve the respective installations that are located in a specific room (see

Annex A.2 for both "installation" sub-resources).
Similar to the LoD3, the interior boundary resources such as "walls" and "floors" provide
the "windows" and "doors” child resources which have similar properties and filters like

LoD3 opening resources (see Annex A.3).

The conceptual design of the additional sub-resources of the LoD4 "brid" resource is shown
in Figure 4-38

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Resouce>>
bridges.

S == properties: Aray of bicges,
ks

Filer: goneral flters,
bridsPart, isMowable

<<Resource>>
floors (st of
toors. joors) it oo
propertes: Ay of floors,
links

g

<<Resource

<<Resouce>>

{gniid] (specifc installation) doors (ist of

- — | properties: Aray of -
installatons,inks propertes: usag, functon, propertes: Ay of doors,
clss, gid, generic, type, s
lnks.

el

Page | 120

{gmiid) (specific window)

<<Resourcs

{gmid) (specific door)

properties: gid, generic,
‘acdress, appearance,
geomety, in

type (LoD4)

|
| Rter. usage, function, class,
|
|
|

o)

<<R

indov:

<<Resource>> <<Resouce>> A

<<Resource>>

s (st of winck

{gmid) (specific bricge)

rooms (ist of rooms)

{gmiid) (specific room)

<<Resourc

- {gmiid) (specific window)
i)

progerties: gid, generic,
etry, inks

= <cnmarns _ _ [———- - Aoy of win
Tl properties: bridsinformation, Jroams Properties: Aray of rooms, T eoperasiiss Usage! <<Resource>> m:m Aray of windows,
geomety, generic, agress, ks fanction, grid, s, generic S AL
gmiid, lod, bridsgPart, inction, 2 P N -
(s ::: class, function, usage, i

properdss: gmid, generic,
| __appearance, geomety,

links.

<<Resourcs

doors (listof doors)

Properties: Aray of doors,
links

cetngs

propertes: gid, generic,
appearance, geometry, links

<<Resouce>>

gmi) (s

fumiture)

. - . S

ropere: Araof [rp——
et i, ne

e

Riker: ciass,usage, function

|
|
|
|
|
|
| <<Resourc
| installations (it of <<Resource>>
installations)

{gmiic) (specific installation)

properties: ciass, usage,
functon, gmid, generic,
Aty links

Properties: Array of
i

Figure 4-38: Conceptual design of the LoD4 "brid" sub-resources

<<Resource>>

{gmii) (spefi

properties: gmid, generic,
acdress, appearance,
geomety, links.

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 121
4.35. Case studies using semantic requests
This section presents the use of the resources with respect to the bridge model of CityGML

v2. Therefore, a CityGML dataset is utilized which contains a variety of different types of
bridges in different LoDs (Figure 4-39)

arced bridge cable-stayed bridge
deck bridge

cable-stayed overpass

e

truss bridge pontoon bridge

R e

suspension bridge

g7\ PR ————— e T

N | I | I -

Figure 4-39: Different types of bridges
(Groger et al., 2012)

The above categories are based on the available code list of the class attribute of the
CityGML bridge module (Groger et al., 2012). So, implementing the first request, the
available arced bridges (class: 1000) are retrieved (Figure 4-40).

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page |122

../brid?class=1000

"brid":[{

"gmlid": "acedBridgelod2”,

"lod":2,

"bridPart":fal

"isMovable":

"links":[{
"link": "../brid/acedBridgeslod2”,
"rel" :"self"

E)

Iz

{
"link™: *../brid",
"rel™ :"parent”

Iz

{
"link": "../brid/acedBridgelod2/construction”,
"rel” :"BridgeConstructionElement”

T

{
"link": "../brid/acedBridgelod2/installation”,
"rel” :"BridgeInstallation”

by

iE

"gmlid": "acedBridgelod3",
"lod":3,
"bridPart”:f
"isMovable":
"links":[

{

"link": "../bridfacedBridgelod3”,
"rel” :"self”

"link": "../brid",
"rel™ :"parent”

"link": "../bridfacedBridgelod3/construction™,
"rel™ :"BridgeConstructionElement”

"link": "../bridfacedBridgelod3/installation™,
"rel™ :"BridgeInstallation”

T

1.

"links": [
{
"link™: "../brid",
"rel” :"zelf”
s
{
"link"™: "../citymodels”,
"rel™ :"parent”

¥

Figure 4-40: JSON-based result for aced bridges

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 123

According to the said result (see Figure 4-40), there are two aced bridges available in LoD?2

and LoD3 respectively which are not bridge parts and are also immovable (Figure 4-41).

(a) LoD2 aced bridge (b) LoD3 aced bridge

Figure 4-41: Results of same aced bridge in different LoDs: (a) LoD2, (b) LoD3

Moreover, for more information on each bridge the corresponding endpoints can be

requested:

../brid/acedBridgelLod?2 ../brid/ acedBridgelod3

Furthermore, for both bridges, there are only two sub-resources such as "installation" and
"construction”. Thereafter, focusing on retrieving information about the installations and

constructions of LoD3 aced bridges the following URIs are requested:

../brid/acedBridgelLod3/installation

../brid/ acedBridgelLod3/construction

Totally, there are two installations available (two railings) (Figure 4-42-(a)) and eleven

construction elements (four columns and seven additional constructions) (Figure 4-42-(b) &

(c)).

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 124

Semantic gmlid
themes
Railing instRaill
(a) two railings Railing instRail2
collumn instColl
collumn instCol2
. ' collumn instCol3

Construction instConst1

Construction instConst2

Construction instConst3

(b) four columns Construction | instConst4

Construction instConst5

Construction instConst6

Construction instConst7

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
' i collumn instCol4 i
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

(c) seven additional construction elements

Figure 4-42: Result of construction and installation semantic elements of the LoD3 bridge
instance

Finally, seven additional endpoints should be requested to fetch and visualize all the
available construction elements (see Figure 4-42-(c)) using the respective gmlid of each
element as sub-resource. For this purpose, the following JavaScript code is implemented
(Figure 4-43)

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

Page | 125

async function getConstruction(data)

{
data.construction.forEach(thisConstr => {

var restEndpoint="../brid/acedBridgeLod3/construction/"+ thisConstr.gmlid;
var currentConstrGeometry= await getRequest(restEndpoint);
map.add(currentConstrGeometry);

)

}

F———————
| Seven constructions=>»seven endpoints I
function getRequest(uriy{ =~ =—————m———>———— -

return new Promise((resolve, reject) => {
$.ajax({
url:uri,
success: function(data) {
resolve(data.geometry); [—————— -i

}

error: function (error) { L geometry |

reject(error);
}
)
b
}

getConstruction(Constructions);

Figure 4-43: JavaScript-based procedure to request all the construction elements of a

specific LoD3 aced bridge

CHAPTER 4: LOD-BASED THEMATIC RESOURCES

file:///A:/PERSONAL_DATA/ΔΙΔΑΚΤΟΡΙΚΗ%20ΔΙΑΤΡΙΒΗ/url

Page | 126

CHAPTER 5: LOD-INDEPENDENT THEMA TIC RESOURCES

Page |127

LOD-INDEPENDENT THEMATIC
RESOURCES

5.1 Thematic Resources Available in all LoDs

5.2 Thematic Resources Available from LoD?2 and
above

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 128

This chapter presents the conceptual design of the rest of the main resources of the
CityGML RESTful Web service which are mainly LoD-independent thematic resources.
Namely, these resources are enriched with semantic characteristics either
independently of LoD or from LoD2 and above without any different from one level
to another. Hence, the thematic resources with same availability in all LoD as well as

the thematic resources with same availability from LoD2 and above are presented.

answered:
How could CityGML data be semantically refrieved by users without knowledge of

the source?

i In this chapter, the 4t sub-research question of the current dissertation is partially E
i This chapter is based on the following paper: E

Pispidikis and Dimopoulou (2019)

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page |129

5.1. Thematic Resources Available in all LoDs

The thematic modules of CityGML v2 allow the representation of the thematic and spatial
parameters of the 3D models' objects at different levels of detail. The transition from one
level to another imposes and allows different semantic details both on the outside and
inside. Consequently, the sub-resources for the main resources are designed based on LoD.
However, the majority of the thematic modules of CityGML v2 are enriched with semantic
characteristics either independently of LoD or from LoD2 and above without any different
from one level to another. Hence, the sub-resources of these main resources will be

available for all LoDs or from LoD?2 and above.

The main resources that their semantic features are independent of LoD are the "grp”,
"dem", "frn", "luse", "veg", "vegetation" and "plantcovers". These resources are conceptual
designed according to the corresponding thematic modules of CityGML v2 such as
"CityObjectGroup”, "Relief", "CityFurniture”, "LandUse", "Vegetation" and the additional

sub-classes of the "Vegetation" module like "SolitaryVegetationObject” and "PlantCover".

5.1.1. Vegresources

The Vegetation features are important components of a 3D city model, since they support
the recognition of the surrounding environment. These objects of CityGML v2 distinguish
between solitary vegetation object like trees and vegetation areas, which represent
biotopes like forest or other plant communities (Figure 5-1). These features can be
requested using the "veg" main resource which provides information about the available
vegetation objects grouped on the basis of the aforementioned categories such as
"vegetation” (solitary vegetation objects) and "plantcovers” (vegetation areas). Also, this
resource can be filtered using a new filter parameter called "vegetationtype with values

according to the aforementioned categories (Figure 5-2).

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page [130

PlantCover
(MultiSolid)

Figure 5-1: Example for vegetation objects of the sub-classes SolitaryVegetationObject
and PlantCover

(Groger et al., 2012)

1

"type":"Object”,

"properties™:{
"vegetationtype™:{"type":"String"},
"counts™: {"type":"Number"},
"links":{"type":"0Object”,
"properties”:{

"link™:{"type":"String"},
"rel": {"type":"String"}
h

Figure 5-2: JSON-based schema of "veg" resource

Additionally, in each group, the corresponding resource links of the available vegetation
models are provided. As a result, the "veg" main resource is mainly used in order to inform
the users about the two available group resources regarding the solitary vegetation objects
and the vegetation areas. So, the URI resources of these categories are "vegetation" and
plantcovers" respectively. These resources are not sub-resources, since they are
independent resources of the "veg" resource. Therefore, the JSON-based schema of these

resources is presented in Figure 5-3

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page |131

../{vegetation or plantcovers}

"type":"0bject”,
"properties”:{
"gmlid":{"type":"String"},
"lod": {"type":"Number”},
“links":{"type™:"0Object”,
“properties™:{
"link":{"type":"String"},
"rel":{"type":"String"}

features that belongs to the corresponding category.

] I i The character "XXX" has the value of either vegetation i
XXXT:q i or plantcover. Also, the retrieval data is array of i

| |

| |

| |

I-'linl‘cs“:-:"t"-,'|::-.§” "Object™,
"properties”:{
"link":{"type":"String"},

"rel”: {"type":"String"}

Figure 5-3: JSON-based schema of "vegetation" and "plantcovers” resources

Thereafter, when a particular vegetation model is requested by implementing the respective
gmlid, various information is retrieved such as vegInformation, generic, gmlid, lod, links,
appearance and geometry. The vegInformation object contains a variety of attributes

depending on the category to which the particular vegetation model belongs (Table 5-1).

vegInformation | Type category
class Number | vegetation & plantcovers
usage Number | vegetation & plantcovers
function Number | vegetation & plantcovers
species Number vegetation
height Number vegetation
trunkDiameter | Number vegetation
crownDiameter | Number vegetation

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 132

averageHeight | Number plantcovers

Table 5-1: Available attributes of vegInformation object

Furthermore, the general filters (see Table 3-4) can be used in both categories, while the
vegetation category can also be filtered using the "species” parameter. The value of this
parameter is defined according to the codelist of CityGML specification regarding the
solitaryVegetationObject attribute "species”.

The conceptual design of the "veg", "vegetation” and "plantcovers" resources with available

properties and filters is shown in Figure 5-4.

<<ResourcePath>>
/veg

properties: vegetationtype,
links

Filter: vegetationtype

<<Application>>

<<ResourcePath>>

/vegetation _D

CityGML RestFul Web

<<Resource>>

vegetation
(list of available vegetation)

Services

properties: Array of solitary
vegetation objects, links

Filter: general filter, species

I
I
I
I
_|__.
|
|
I
I

<<ResourcePath>>
/plantcovers

<<Resource>>

plantcovers
(list of available plantcovers)

properties: Array of
vegetation areas, links

Filter: general filter

<<Resource>>

{gmlid}{specific vegetation}

<ResourcePath>>,
/{gmlid)

properties: veginformation,
gmlid, lod,generic,
appearance, geometry, links

<<Resource>>

{gmlid}{specific plancover}

<<ResourcePath>>_

/{gmlid} properties:
veginformation,gmlid,lod, generic,

appearance, geometry, links

Figure 5-4: Conceptual design of "veg", "vegetation” and "plantcovers” resources

5.1.2. Luse resources
The "luse” resource retrieves information with regard to the LandUse model of the CityGML
v2. This model can be used to describe areas of the earth's surface dedicated to a specific

land use, but also to describe areas of the earth's surface having a specific land cover with

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page |133

or without vegetation, such as sand, rock, mud flat, forest, etc. Furthermore, it represents
both the land use and the land cover concepts. The first describes the human activities on
the earth's surface whereas the second one describes its physical and biological cover.
Hence, the retrieval information of the "“luse" resource is a list of the aforementioned
concepts and also a "links" object which contains links to itself and to parent resources
(Figure 5-5)

"luse":{
"type":"0Object",
"properties":{
"gmlid"”:{"type":"String"},
"lod™: {"type": "Number"},
"links":{"type":"0bject",
"properties™:{
“"link":{"type":"String"},
"rel":{"type":"String"}

I
"links":{"type":"0Object™,
"properties":{

"link":{"type":"String"},

"rel":{"type":"String"}

Figure 5-5: JSON-based schema of "luse” resource

The implementation of a specific "luse" resource provides various information such as
luseInformation, lod, gmlid, links, generic, appearance and geometry. Moreover, the general

filters (see Table 3-4) are also available.

It should be noted that the LandUse module of CityGML v2 is defined for all LoDs (LoD O-
4) and may have different geometries in any LoD. However, it has no extra semantic
characteristics on transition from one LoD to another and thus, except for the gmlid, the

"tun" resource is simple URI with no extra sub-resources.

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 134

The conceptual design of the "luse” resource is shown in Figure 5-6.

<< ==
Resource: <=Resource>>

<<Application>> luse
CityGML RestFul Web

lid ific land
(list of available landuses) \eptdtispeciiclanduse)

<<ResourcePath>> <<ResourcePath>>
Services = /luse - 1= — {gmiid} — 1
properties:Array of LandUse
objects, geometry
Filter. general filter

properties: luseInformation, lod,
gmlid, links,appearance,
............ generic, geometry

Figure 5-6: Conceptual design of "luse" resource

5.1.3. Frnresources

The "frn" main resource refers to the city furniture module of the CityGML v2. The objects
of this module are immovable objects like lanterns, traffic lights, traffic signs, or bus stops
and can be found in traffic areas, residential areas, on squares, or in built-up areas (Figure
5-7).

Figure 5-7: City furniture objects

The city furniture objects can be represented in city models with their specific geometry
(GeoJSON format), but in most cases the same kind of object has an identical geometry.
This means that the geometry of the prototype city furniture is stored only once in a local
CRS in all LoDs and referenced by other city furniture features. Hence, in these cases, the

implicit object is implemented.

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page |135

The "frn" resource has similar schema as the "luse" resource and also when a particular city
furniture model is requested, various information is retrieved such as frnInformation, lod,
gmlid, links, generic, appearance and geometry. The frnInformation contains the attributes
class, function and usage. More specific, the class attribute allows object classification like
traffic light, traffic sign, delimitation stake or garbage can. Additionally, the function
attribute describes, to which thematic area the city furniture feature belongs to e.g.
transportation, traffic regulation etc. and the attribute usage denoted the real purpose of

the object. Also, the general filters (see Table 3-4) can be utilized.

The conceptual design of the "frn" resource is presented in Figure 5-8

<<Resource>> <<Resource>>
<<Application>> luse lid}{specific city fumiture;
. (list of available landuses) fgmiidy(sp y !
CityGML RestFul Web — <<ResourcePath>>_ 1 | <<ResourcePatn>>_
Services /A

properties: frninformation, lod,
gmlid, links, generic, geometry,
appearance

properties: Array of LandUse
objects, links

Filter: general filter

Figure 5-8: Conceptual design of "frn" resource

5.1.4. Grp resources

The CityObjectGroup module delivers the grouping concept of CityGML that allows for the
aggregation of arbitrary city objects according to user-defined criteria, and to represent
and transfer these aggregations as part of a 3D city model. The endpoint for this resource
is the "grp" main resource and is used to retrieve all the available city object groups of a
datasets (Figure 5-9(a)). Next, when a particular city object group is requested, a wide
range of information is retrieved such as gmlid, generic, function, usage, class and group.
The group object contains a list of the grouped main resources of CityGML RESTful Web

service simultaneously with their respective links (Figure 5-9(b)).

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 136

-”t'j'pE” : “':'l':l:lEC't“ ,
"properties”:{
"gmlid":{"type":"String"},

"function™:{"type": "Number"},
"class™:{"type":"Number"},
"gret:{ "usage™:{"type": "Number"},
"type" :"0Object”, "gensric”:{"type":"0Object"},
"properties":{ "group":{"type":"Object",

“gmlid”:{"type”:"String”}, cproperties il
"links":{"type":"0Object", .gmlld,“'typE: SErang .
N S . "lod™:{"type": "Number"},
properties”:{ "links":{"type":"0Object”,

"link™:{"type":"String"}, "properties”:{
"rel”:{"type":"String"} "link™:{"type":"String"},
"rel™:{"type":"String"}

I
"links":{"type":"0Object",

"EP?PEPt%EEH:{P . i #ii"ks":{“type":“ﬂbject”J
link":{"type":"String"}, "properties”:{
" |‘El“ . : Irt}"PE" : II5t|"'ing”:' "li"k“ :_: " }‘PE‘“ . IFStI"ing":-J

"rel™:{"type": "String"}

(a) ../grp (b)../grp/{gmlid}

Figure 5-9: JSON-based schema of "grp" resource

5.1.4.1. Case study using semantic requests

A CityGML dataset contains a city object group (gmlid: grpl), which groups a variety of
objects such as two buildings (gmlid:bldgl, lod:2 & gmlid:bldg2, lod: 1), one city furniture
(gmlid: frnl, lod: 2) and one LandUse (gmlid: lusel, lod: 1). The information about the
available objects of this city object group can be retrieved by implementing the specific
"grp" main resource as follows (Figure 5-10). Additionally, the corresponding endpoints of

these objects are also provided to be utilized for further requests.

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page [137

./grp/grpl
(1/2) (2/2)
{ 1
"gmlid":"grpl”, "gmlid":"fral"”,
"function”:null, "lod™:2,
"class":null, "links":][
"usage":null, r
"group™:["link":"../frn/frnl",
{ "rel":"zelf"
"gmlid":"bldgl”, T,
"lod™:2, f
”I%nks“:["link":™../frn",

1 "rel":"parent”

"link":"../bldg/bldgl”, }

"rel”:"self"]

))

‘L ar = " nr m {

link":"../bldg", "gmlid":"lusel”,
"rel":"parent” "lod™:1,

}J "links":]
"link":"../bldg/bldgl/walls", Jlink”;",,flugeflusel"J
"rel":"Wallsuface” "rel":"self"”

T T

{ i
"link":"../bldg/bldgl/grounds", "link":™../luse",
“rel”:"GroundSurface” "rel”: "parent”

))

{]
"link":"../bldg/bldgl/roofs", 1
"rel":"Roofsurface” ,

T "links":[

] {
ts "link":"../grpl",
{ "rel":"self"
"omlid":"bldg2", b
"lod™:1, 1
"links":["link™:"../citymodels",
f "rel™:"parent”

;link”:"..fhldgfhldgz",
"rel":"=elf”

3 b

L "link":™../bldg",
"rel”:"parent”

¥
]

Figure 5-10: JSON-based result for city object group instance

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 138

The conceptual design of the "grp" resource is presented in Figure 5-11

<<Resource>>
<<Resource>>

<<Application>> ap - L .
: (list of available CityObjectGroup) B epeaii Ci-Objeciarcup)
CityGML RestFul Web _<<Resc.4roaPath>>{:> <<ResourcePath>>
Services /e i gmiid - - H
fies: Array of city object ME. emlid, usage,
s, (B ﬁt;r;ctmn class, generic, group,
__ 5

Filter: usage, function,class | 0000 |eseeececcceccccscescecccecccsceescaceeees

Figure 5-11: Conceptual design of "grp" resource

5.1.5. Dem resources

An essential part of a city model is the terrain. Therefore, the Digital Terrain Model (DTM)
of CityGML v2 is provided by the thematic module "Relief". Additionally, in CityGML, the
terrain is associated with different concepts of terrain representations which can coexist.
Specifically, the terrain may be specified as a regular raster or grid, as a Triangulated
Irregular Network (TIN), by break lines, or by a mass points. These four terrain types may
be combined in different ways, yielding a high flexibility. Firstly, each type may be
represented in different LoDs, reflecting different accuracies or resolutions. Moreover, a
terrain can be described by the combination of multiple types, for example by a raster and

break lines, or by a TIN and break lines etc.

The information about "Relief" module of CityGML can be requested by implementing the
"dem" main resource. In section 5.1, the main resources that their semantic features are
independent of LoD are presented. However, apart from the "dem" resource, the rest of
the said main resources have no extra sub-resources except for gmlid. Consequently, the
"dem" resource is used to retrieve a list of available reliefs and, thereafter, when a specific
relief is requested, then four sub-resources are available such as "tins", "masspoints”,
"breaklines" and "raster". Hence, the implementation of a specific relief retrieves the
"links", the "generic" objects and also a list of objects according to the available sub-

resources. (Figure 5-12).

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 139

../dem/{gmlid}

"generic”: {"type™:
"terrain”:{
“t:lI'PE“ "':'b::f[:t"‘l

"P’Cﬂil‘;i'ﬁn : The value of the "fype" element depends onh the terrain
"gmlid™:{"type":"String"}

| |
| |
| |
- ; ’- i representation such as "tin", "masspoint”, "breakline” and |
| |
| |
| |

object™},

"type™:{"type":"string"},
"links":{"type":"Object",
"properties™:{
"link":{"type":"String"},
IIFE1II l: IIt}r:HEII:II'S_tI_\.inEIr:.

raster”

__

I
"links":{"type":"0Object",
"properties":{
"li"k“ . __ "t'_""PE" . ""__"h-t Ping" : s
"rel": {"type":"String"

Figure 5-12: JSON-based schema of "dem" resource

Also, the above- mentioned retrieval result can be filtered using various filters such as lod,

bbox and type. These filters are mainly used to limit the elements of the "terrain” object.

Furthermore, the geometry object of a "tins" sub-resource could be a set of either
triangles or control points, break and stop lines. Moreover, the geometry object of
"breaklines" sub-resource can be composed of break lines and ridge/valley lines. The break
lines indicate abrupt changes of terrain slope, while the ridge/value lines in addition mark a

change of the sign of the terrain slope gradient.

The conceptual design of the "dem” resource and its sub-resources is schematically shown

in Figure 5-13

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 140

<<Resource>>
tins
- _E>

properties: generic,
geometry and links

I
I
I
I
<<Resource>> <<Resource>> |
<<Application>> ‘ o <<Resource>>
dem {gmlid}{specific relief} |)
CityGML RestFul Web ResourcePath=> (list of available reliefs) . B masspoints
Services dem > - 3 N ; - —— — ResourcePathi=>, P~}
properties: terrain object, CE RS e ——
T —— properties:Array of reliefs, gmlid. generic, links, type \ properties: generic,
e ool e ot Gy \ geometry and links
‘ <<Resource>>
‘ breaklines
feResourcePath>>_ o
| properties: generic,
| geometry and links
R e
I
I <<Resource>>
[Raster
<R

resourcePath>>
ser | —

properties: generic,
geometry and links

Figure 5-13: Conceptual design of "dem" resource

5.2. Thematic Resources Available from LoD2 and Above

The "Transportation" and "WaterBody" modules of CityGML v2 belong to the category of
models that their semantic enrichment is available and same from LoD2 and above.
Consequently, the sub-resources of the respective "tun" and "wtr" main resources of
CityGML RESTful Web service are only available from LoD2 and above, without any

differentiation.

5.2.1. Tran resources

The transportation module of CityGML is a multi-functional and multi-scale model focusing
on thematic, functional, geometric and topological aspects of a road. According to CityGML
v2, the road is represented as a "TransportationComplex" which has different geometrical

representation through the different LoDs.

In LoDO, the transportation complexes are modelled by line objects establishing a linear

network. In case of areal transportation objects like squares, they should be modelled in

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 141

the same way as in Geographic Data Files (GDF) (ISO, 2011), which is used in most car
navigation systems. Specifically, in GDF, a square is represented as a ring surrounding the

place and to which the incident roads connect (Figure 5-14)

Figure 5-14: Representation of roundabout

In LoD1, all transportation features are geometrically described by 3D surfaces, while in
LoD2-LoD4, the transportation complexes are further subdivided thematically into
"TrafficAreas" and "AuxiliraryTrafficAreas" (Figure 5-15)

\
[%
Situation LODO LOD 1 LOD2-4

I_Tr;ns_po_rta_tio_ncznTpI;x_ - ! ﬁa;s;osati_orko_msle; - |_Su?faze_ge_om_et?y is devided

1
I provides linear network 1 provides surface geometry Ithematically into TrafficAreas,
I with line objects 1 describing the actual llike:
1
1

1

1

1

: —+ line objects | shape of the object I | []Traffic — cars

1

1

1

1

| 1 ! [[] TransportationComplex
(Surface geometry)

i [] Terrain surface

! [[] Traffic — emergency lane
1 [Traffic - restricted area
I [Auxiliary - grass

—— = ==

Figure 5-15: Transportation model representation in different LoDs

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 142

The transportation module can be requested by implementing the "tran" main resource of
CityGML RESTful Web service. This resource is mainly used to provide information about
the four available group resources in accordance with the sub-classes of CityGML
transportation module such as road, track, railway and square. Therefore, the information
retrieval of this resource is the available transportation models grouped by the said

predefined sub-classes (Figure 5-16).

"type" . "object")

"properties": {
"category": {"type": "string"},
"counts": {"type": "number"},
"links": {
"type": "object",
"properties": {
"link": { "type": "string"},

"rel": {"type": "string"}

Figure 5-16: JSON-based schema of "tran" main resource

Also, the "tran" main resource can be filtered using a filter parameter called "category”
with value the respective above-mentioned sub-classes of transportation module. It should
be noted that multi-category values can be implemented simultaneously separating them
with comma punctuation. Thereafter, in each group category, the corresponding resource

link of the specific transportation model can also be retrieved.

../tran?category= road,square

For instance, if a CityGML dataset contains a variety of transportation complexes in
different LoDs such as one track, one railway, one square and one road (LoDO & LoD1) then

the following response is retrieved (Figure 5-17)

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 143

../tran?category= road,square

category road
counts":2,
links
"link":"™../road
rel road
"category™: “"square”,
"counts":1,
"links":{
"li"{"{"..fsquare”.
“rel”: "square™

Figure 5-17: JSON result by using "tran" main resource

It should be noted that in the above-mentioned example, although there is one road, there

are two instances of this road based on the corresponding LoD.

The four predefined sub-classes are conceptual designed as extra main resources and not
as sub-resources, since they are independent of the "tran" main resource (Figure 5-18(a)).
Additionally, in LoDO and LoD1, there are no extra semantic characteristics for these
resources and thus, the gmlid is only their child resource. Thereafter, when this child
resource is implemented, various properties are retrieved such as tranInformation, generic,

gmlid, lod, links and geometry (Figure 5-18(b)).

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 144

"type":"0Object",
I e jes™. T
1 ‘I road, track, railway and square i Plapir;m"t wmetring™)
K" | | gmlid":{"type™: ring™},
"lod":{"type": "Number"},
"tranInformation™:
{"type":"Object"”,
"properties”:{

II_t:rlpE-II "l:}hjEl:t“‘l
"properties™:{
"gmlid":{"type":"String"},

"lod":{"type":"Number™},

"links":{"type":"Object", “fUHCT%Gh":: thE : NumEgr I

- S s class":{"type" : "Number"},

propertiss iy "usaze™: I "type” s "Number™
"1ink": {"type":"String"}, usage":{"type" : "Number

"rel":{"type":"String"}
' “géﬁmetry":f“type”:“GEDZSDN“},
"generic":{"type":"0Object"},
“links”:f"typef:"Dbject",

" links":{ "type™: "Obect™ . properties”:H
%n 3 i I;F“ : Ject "link™:{"type”:"String”},
properties™:q{ " w, rum T . my
- rel™: {"type”:"5tring"}

3

"link":{"type™:"String"},

"rel™: {"type":"String"}

a) ../{extra main resources} b) .../{extra main resources}/{gmlid}

Figure 5-18: JSON-based schema of extra main resources (road, track, railway and
square)

From LoD2 and above the four available resources (road, track, railway and square) are
further subdivided semantically into TrafficAreas, which are used by transportation, such
as cars, trains, public transport, airplanes, bicycles or pedestrian and in
Auxiliary TrafficAreas, which are of minor importance for transportation purposes (Figure
5-19). The URIs of these child resources are "trafficareas” and "auxiliaries” respectively
and are used to retrieve all their available thematic surfaces (see Annex A.7). Next, when
a particular thematic surface is requested, the following information is retrieved: class,
usage, function, surfaceMaterial, lod, generic, gmlid and geometry (see Annex A.7).
Moreover, the aforementioned list can be filtered by implementing the general filters (see
Table 3-4).

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 145

.
e A\
e

.

Auxiliary
traffic
areas

Ly x .
{ I""‘:Ivvcfvil’vcvvu’lnnciﬂtc’tcl'uc"l'tll1 VeN s unsnnnrnnsnas Sesenvan .

Figure 5-19: Example for the representation of LoD2 transportation module in CityGML
using TrafficAreas and AuxiliaryTrafficAreas

(Groger et al., 2012)

As a result, the conceptual design of the tran, road, square, railway and track main

resources with regard to transportation module is presented in Figure 5-20

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

<<Application>>
CityGML RestFul Web

Services

<<Resource>>

tran

Page | 146

<<ResourcePath>>
/tran
1
I —_———— <<ResourcePath>> __
l <<R >> <<ResourcePath>> /lgmiid)
| <<ResourcePath>> esource: <<Resource>> /auxiliaries
—_—— ﬂ)ad_ —_—— road <<ResourcePath> ; o _ _|
/{gmlid} |
_ e — — <<Resourcha(h>>—
<<ResourcePath>> /(gmlid)
/trafficareas
“Resourcereihz> <<ResourcePath>>
/auxiliaries = -
I /{gmlid}
<<ResourcePath>> |
L /track <<ResourcePath>>
- - - - - /{gmlid} . -
|
I <<ResourcePath>>_ <<ResourcePath>>
I /trafficareas /{gmlid} _
I —_—_—— > <<ResourcePath>>
| /{gmlid}
| <<ResourcePath>>
e S <<Resource>> | /auderes [cesseesscemssessssesssesss]
| /railway B
F————— <<ResourcePath>> =
/{gmlid}
I l_ —_—— <<ResourcePath>>
mlid! —
I <<ResourcePath>> /e)
| /trafficareas
I —_————{> <<ResourcePath>> __|
<<Res/ourcePath>> | <<ResourcePath>> /{gmlid}
square e e
S GRS - <<ResourcePath>>. /auxiliaries (oo
/{gmlid} |
_—— e — > <<ResourcePath>> __|
<<ResourcePath>> /{gmlid}
fueicarces | eo——

Figure 5-20: Conceptual model of the main resources regarding the transportation module of CityGML

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 147

5.2.1.1. Case study using semantic requests

The following CityGML dataset contains a high-detailed street setting in Frankfurt and also
five textured buildings in LOD 3 (Figure 5-21).

Figure 5-21: CityGML model in the Frankfurt area

By focusing on the transportation module of CityGML, the "tran" main resource is requested

as follows (Figure 5-22):

./tran

\ 4

“"category":"road",

“counts":1,

"links":{
"link":"../road",

"rel":"road"

e

Figure 5-22: "tran" main resource implementation
CHAPTER 5: LOD-INDEPENDENT THEMA TIC RESOURCES

Page | 148

The above-mentioned request provides information about the availability of the main
resources regarding the transportation module such as road, track, railway and square and
their respective endpoints. Hence, according to this result, one road is available.
Thereafter, since the retrieval of this road requires the corresponding gmlid, the "road"

main resource is initially requested.

../road

\ 4

"gmlid":"UUID_ Secac8db-8b6b-4dbf-b44f-59dad38ebob5",
"lod":3,
"links":[

{

"link":"../road",

"rel":"parent™

"road":[

e e — - = = -
I "link":"../road/UUID SecacB8db-8bbb-4dbf-b44f-59dad38eb9b5", I
I llpelll : IFSEl_F'"

1, Next request

"links":[{
"link":"../tran",
"rel":"self"

T
"link":"../citymodels",
"rel":"parent™

I

[

Figure 5-23: "road" main resource implementation

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 149

Next, by using the retrieval gmlid as sub-resource, the specific road is retrieved as well

(Figure 5-24).

../road/UUID_5ecac8db-8b6b-4dbf-b44f-59da438eb9b5

\ 4

~ "gmlid”:"UUID_ Secac8db-8b6b-4dbf-ba4f-50dad38ebobs”,

"lod™:3,

"tranInformation™:{

"fun
"cla
"usa

"geometry™
"generic":
"links":][
I
L

"link™:
"rel":"

= !

"link™
"rel":

[

"link™
"rel":"

= !

"link™
"rel":"

ction":null,
ss":null,
ge":null

:null,

null,

", Sroad”,
parent”

2", ./road/UVID Secac8db-8beb-4dbf-b44f-59dad438ebobs”,
"self”

", . froad/UUID Secac8db-8bob-4dbf-bddf-59dad38ebabs/trafficareas”,

TraffichAreas"”

", ./road/UVID SecacBdb-8beb-4dbf-b44f-50dad4382bobS/auxiliaries”,

AuxiliaryTrafficAreas”

Figure 5-24: Request of specific road

Taking into consideration the above-mentioned result, the said road is further subdivided

thematically i

nto "TrafficAreas" and "AuxiliraryTrafficAreas". For that reason, two child

sub-resources are provided by the "links" object and also the geometry value of this road

is null.

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 150

With respect to the "trafficareas" resource, there are two available sub-resources with
the following gmlid values:

1) UUID_cb240546-eeac-434a-a478-c84b59e54fdc

2) UUID_c89a449a-62d7-4fc4-9e26-65b24f0c3afl

Therefore, by using each of these gmlid values as sub-resource, further information is
retrieved (Figure 5-25). More Specific, the first traffic area is a pedestrian area (usage:1),
which can be crossed on foot (function:2), while the second one is a driving lane (usage:2),
which can be crossed by cars (function:1). It should be noted that for both of these

"trafficareas" resources the respective GeoJSON-based geometry is also retrieved.

../road/UUID_b5ecac8db-8b6b-4dbf-b44f-59da438eb9b5/trafficareas/
UUID_cb240546-eeac-434a-a478-c84b59e54fdc

A

"gmlid":"UUID cb248546-eeac-434a-a478-c84b5%9a54fdc”,
"lod":3,

"function":Z,

"class":null,

"usage":1,
"surfaceMaterial”:null,
"geomatry" ...
"generic":null,
"links":
1
"link":"../road/UUID 5ecac8db-8b6b-4dbf-bddf-58dad3Bebdbs/trafficareas
fUUID_ch24B8546-eeac-4345-3478-c84b5%e54fdc”,
"rel":"self”
1
"link":"../road/UUID SecacBdb-8b&b-4dbf-bd44f-59dad3Bebobs/trafficareas”™,

"rel”:"parent”

[—_—

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 151

(a)

../road/UUID_b5ecac8db-8b6b-4dbf-b44f-59da438eb9b5/trafficareas/
UUID_c89a449a-62d7-4fc4-9e26-65b24f0c3afl

¥

"gmlid":"UUID c8%a449a-62d7-4fcd-9e26-65b24fBc3afl”.
"lod":3,

"function™:1,

"class":null,

"usage":2,
"surfaceMaterial”:null,
"geometry":{...},
"generic":null,
"links":
L .
"link":™../road/UUID Secac3db-8beb-4dbf-b44f-59dad38ebobs/trafficareas/
UUID c89a44%9a3-62d7-4fcd-%e26-65b24f@c3aftl”,
"rel”:"self”
"link"™:"../road/UUID Secac8db-8bbb-4dbf-b44f-59dad38ebobs/trafficareas™,

“rel"”:"parent”

(b)

Figure 5-25: Implementation of "trafficareas” sub-resources

Similarly, Figure 5-26 presents the JSON-based retrieval information derived from the
implementation of the respective "auxiliaries” sub-resource. Thus, this area is a kerbstone
and is used as a ditch (function: 1200)

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 152

../road/UUID_b5ecac8db-8b6b-4dbf-b44f-59da438eb9b5/auxiliaries/
UUID_ae4d3f7f-8d09-4f60-a37f-6f36dc87dd5

¥

. "gmlid":"UUVID_aedd3f7f-8de9-4+68-a37f-61362dc87dd5",

"lod™: 3,
"function™:1288, P
"class":null, //ilf
"usage":null, F“ﬁﬁ/,:,f
"surfaceMaterial”:null, “"““~\\\\\
"geometry”:{...} T
"generic”:null, "wxx\wfxﬁ
"links™: Pt
) »
L
"link":"../road/UUID_Secac8db-8b6b-4dbf-b44f-59dad438eb9b5/auxiliaries/
UUID aedd3f7f-8deo-4feg-a37f-6f362dc87dds5",
"rel”:"self”
I
L
"link™:"../road/UUID Secac2db-8b6b-4dbf-bd4f-59dad438ebobS/auxiliaries”,

"rel”:"parent”

Figure 5-26: Implementation of "auxiliaries" sub-resource

5.2.2. WH1r resources

Waters have always played a significant role in urbanization process and also, they are
considered quite essential for human alimentation and sanitation. With respect to the
CityGML v2, a water body model represents the thematic aspects and three-dimensional
geometry of rivers, canals, lakes and basins. The retrieval of this model can be achieved
using the "wtr" main resource of CityGML RESTful Web service. The retrieval information

of this URI is a list of waterbody models and each of these models contains various

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 153

properties such as lod, wtrInformation, geometry, generic, gmlid and links (Figure 5-27).

Also, the general filters (see Table 3-4) can be implemented when the "wtr" resource is

requested.

. "witr” - "type":"0Object”,
“type”:"Object”, "properties”:{
"properties”:{ ‘gmlid™:{"type”:"String"},

"gmlid”:{"type":"String"}, lod”:{"type”: "Number™},

"lod": {"type" : "Number"} "wtrInformation™
. ' {"type":"0Object”,
r

“links":{"type”:"0Object”, - .o
properties”:

"properties”:{ - R -
"link":{"type":"String"}, “Funct%u@“:l tﬁpﬁ : Num?gr I
. .o - Lo class":{"typa" :"Number"},
rel™:{"type":"String"} "usage”:{"type” : "Number"}

-

”géometry“:{”type“:"Geo]SGN or URL"Z},
"generic":{"type":"Object"},

"links™:{"type":"0Object”, "links":{"type":"0Object",
"properties™:{ "properties”:{
Hlink“:{"type“:I‘Str‘il‘lg“:'_. "link":_["t},lpE.":"Str!ir‘lg":.J

"rel”:{"type":"String"} “rel®:{"type":"String"}

a) ../wtr b).../wtr/{gmlid}

Figure 5-27: JSON-based "wtr" main resource

Similar to the "tran" main resource for both LoDO and LoD1, there are no extra semantic
features and so the only sub-resource is the respective gmlid value. From LoD2 and above
the water body is bounded by distinct semantic surfaces such as WaterSurface, which is
defined as the boundary between water and air, WaterGroundSurface, which is defined as
the boundary between water bodies or between water and underground and

WaterClosureSurface, which is the virtual boundary between waterbodies or between

water and the end of a modelled region (Figure 5-28).

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 154

WaterSurface

l

——<> WaterBody

WaterClosure

f::'T
g
8

WaterGroundSurface

Figure 5-28: Distinct thematic surfaces of the waterbody from LoD2 and above

As a result, the above-mentioned distinct surfaces are the child resources of "wtr" main
resource using the following URIs respectively: "water”, "grounds” and "closures”. It should
be noted that the "water" sub-resource does not have the gmlid as child resource, as,
according to the WaterBody module of the CityGML v2, a waterbody must have one or zero
WaterSurface. Thus, for retrieving the WaterSurface of specific WaterBody the following

request should be implemented:

../wtr/{gmlid}/water

Moreover, only the "water" resource contains extra attribute such as waterLevel, which can
be used to describe the water level, for which the given 3D surface geometry was acquired.
The said information is especially important when the water body is influenced by the tide.

The allowed values of this attribute can be defined in a corresponding code list.
The conceptual design of "wtr" main resource with the respective available information and

filters per sub-resource is shown in Figure 5-29. Furthermore, the JSON-based retrieval

schemas of the distinct thematic sub-resources are presented in Annex A.8.

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

<<Application>>

CityGML RestFul Web
Services

[<<ResourcePath>>__
/wtr

<<Resource>>

waterbodies

properties: lod, gmlid, links

Filter: general filters

<<ResourcePath>> [=>
/{gmlid}

<<Resource>>

{gmlid}{specific waterbody}

properties: lod, wtrinformation,

geometry, generic, gmlid, links

<<Resource>>

closure surfaces (list)

Page | 155

|_<<ResourcePath>>

/i)

<<ResourcePath>>

properties: links, gmlid

/closures

<<Resource>>

{gmlid}{specific closure surface}

properties:link, gmlid, lod,
geometry, generic

-l

<<Resource>>
ground surfaces(list)

<<ResourcePath>>J
— /{gmlid}

<<ResourcePath>>
/grounds

properties:links, gmlid

<<ResourcePath>>
/water

<<Resource>>

water

properties:generic, lod,
links, geometry,
waterLevel

Figure 5-29: Conceptual design of the "wtr" main resource

<<Resource>>

{gmlid}{specific ground surface}

properties:link, gmlid, lod,
geometry, generic

CHAPTER 5: LOD-INDEPENDENT THEMATIC RESOURCES

Page | 156

Page | 157

CONCLUSIONS AND FUTURE WORK

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Page | 158

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Page | 159

6.1. Conclusions

CityGML is considered the optimal standard for the semantic, geometric and topological
representation of a city. However, the structure of the CityGML is rather complicated for
supporting all these urban complexities. Therefore, retrieving all the available semantic
features from this standard is a challenge and the goal of the current dissertation. More
specifically, according to the core research question, the CityGML data retrieval should be
achieved in relation to key-concepts such as, interoperability, semantic retrieval, easy-to-

use and by non-expert.

Initially, the tiled and hierarchically-based approaches for retrieving and visualizing
CityGML data using file-based formats, such as X3D, JSON, KML and glITF have been
thoroughly investigated, in order to answer the first sub-research question. The
visualization of CityGML over the web using the aforementioned 3D graphics, requires the
separation of geometric information from semantic information, as they do not have
designated place for storing additional object information, which often results in losing rich
semantics of CityGML. For that reason, since the OGC I3S and OGC 3D Tiles provide
solution to the aforementioned issue by using formats that support the integration of
attribute tables, such as SLPK and B3DM, they were further explored. Although the OGC
I3S and OGC 3D Tiles provide partial solution, the procedure to generate these files from
CityGML source, retrieving all semantic features, is complex, as all of these features must
be embedded as data attributes. Last but foremost, the implementation of these solutions

is not suitable in terms of interoperability.

Next, taking into account the complex structure of CityGML and the need to retrieve data
from distributed sources thus addressing interoperability issues, Web service technologies
were investigated. Therefore, the available OGC Geospatial Web services were examined,
which, in the context of 3D, are the 3DPS and the WFS. The said research provides answer

to the second sub-research question of the current dissertation.

Initially, the 3DPS was examined, as it has been designed to enable the interoperable

visualization between various data providers and different browser-based 3D globes and

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Page | 160

other viewer implementation. The OGC testbed 13 Engineering Report summarizes a proof-
of-concept of the use of 3D Tiles and I3S as data delivery formats for the OGC 3DPS
interface standard. Hence, the OGC 3DPS standard provides solution to the interoperable
portrayal of the 3D city models. However, this portrayal requires complex processing
algorithms to convert CityGML into appropriate OGC portrayal standard such as I3S and
3D Tiles. Consequently, the utilization of 3DPS is not the optimal solution for the thesis
aim. Therefore, the interoperable and easy-to-use information retrieval of a CityGML based
on its semantic characteristics was further examined using the WFS. However, serving
CityGML via a WFS presents a number of technical problems relating to the characteristics
of the CityGML models and the fact that the CityGML schema is much more complex than
those usually deployed in WFS. Consequently, the extension of the OGC WFS was further
studied and presented. In conclusion, extending WFS to support the retrieval of CityGML
data is considered very important. However, the WFS 2.0 and previous version used a
Remote-Procedure-Call-Over-HTTP architecture style which was considered state-of-the-
art when the WFS standard was originally designed in the late 1990s and early 2000s.
Additionally, the WFS, as a query language, enables end-users to submit any type of
supported WFS requests and thus difficulties in query optimization can arise. Hence, the
integration of the RESTful service architecture on top of WFS was studied in order to
steer the end user towards a predefined pattern. In this context, the REST-based
architecture was adopted by the upcoming OGC API-Features leaving the Remote-
Procedure-Call-Over-HTTP architecture style. The OGC API Features provides basic
resources for retrieving features and feature collections. However, the core of OGC API-
Features does not currently support the implementation of extra sub-resources, but
provides solution for this limitation by extending the Core API by including richer queries
from existing OGC standards. Therefore, this implies and requires good knowledge for both
the structure of the source (e.g. CityGML) and the respective syntax of the implemented
OGC standard. Consequently, the said limitation opposes the fourth sub-research question
of this dissertation. Additionally, according to the CityGML architecture, the CityGML
structure is more semantic rather than geometric. On the other hand, the OGC WFS is
geospatial Web service which means that it was developed with aim of retrieving, visualizing

and modifying data based on geometry.

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Page | 161

In the next step, the interoperable and easy-to-use information retrieval of a CityGML
based on its semantic characteristics was further examined using non- OGC Web Services
by focusing on different interoperable approaches. The said research provides answer to
the third sub-research question of the current dissertation. Thus, the two types of Web
services based on SOAP and REST principle were thoroughly studied and compared. It is
concluded that SOAP and REST are two different approaches, with different architectural
styles, providing several advantages and disadvantages when compared and so, the
architectural decision mostly depends on the specific application. Taking into consideration
the complexity of the CityGML structure, the resource-based architecture, which is
adopted by the REST, provides an easy-to-use data retrieval mechanism. Hence, the REST-
style Web service was chosen. Additionally, the REST was further compared with new
state-of-the-art technologies that can be adopted as a CityGML data retrieval mechanism
such as GraphQL and Falcor. The implementation of the Falcor or GraphQL presupposes
that the client should have good knowledge of either the GraphQL query language or the
complex CityGML schema. Additionally, both of these technologies do not currently support
geometries and spatial queries. As a result, the REST-based architecture style was finally

chosen.

In the final step, a suitable REST-based Web service was designed and the fourth sub-
research question of the current dissertation was answered. More specifically, the CityGML
RESTful Web service is proposed as the suitable mechanism that meets the requirements
of the current dissertation. The utilization of this service for CityGML 2.0 facilitates users
to retrieve and manage 3D city models data without presupposing knowledge of the complex
structure of CityGML. Also, the resources and sub-resources of this service are based on
the ten thematic modules of CityGML 2.0, and their availability depends on the LoDs. So,
the sequential retrieval of the semantic features of CityGML is achieved. Additionally,
through RESTful implementation, the CityGML RESTful Web Service follows several
constraints such as addressability, uniform interface, statelessness, self-describing
message and HATEOAS. Therefore, the service interacts by exchanging request and
response messages, which contain both the representations of resources and the

corresponding metadata. Moreover, the URI of every next request can be retrieved from

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Page |162

the "links" object of the current request and so, easy-to-use data retrieval can be

completed by non-expert users.

Additionally, CityGML RESTful Web service was conceptually designed to be an information-
based retrieval model regarding CityGML 2.0. Therefore, it is not geometrically-based like
other OGC standards such as WFS 2.0 and OGC API-Features and thus, the retrieval
format is a JSON schema with a list of information. One of this information could be the
geometry object, which can be mainly retrieved in GeoJSON format and not GML. The
JSON format facilitates the easy-to-use parsing and filtering of the retrieval data by
Client-side programming languages such as JavaScript. Thereafter, this data can be further
used as input parameters (descriptive or geometric) in spatial analysis tools. It should be
noted that the usability of the JSON has led to the creation of the CityJSON format,
which provides a simplified alternative to GML encoding of CityGML that is also lightweight

and suitable for use on the web and mobile.

In conclusion, the proposed CityGML RESTful Web service is conceptually designed to
achieve CityGML data retrieval based on their semantic characteristics by users without
any experience and knowledge of the source. So, the core research question of the current

dissertation is fully covered by the proposed approach.

As a result, the optimization of automated retrieval of semantic 3D City Datais achieved.

6.2. Future Work

6.2.1. OGC standard implementation

Similar to the CityGML RESTful Web service, the REST-based architecture was adopted
by the upcoming OGC API-Features leaving the Remote-Procedure-Call-Over HTTP
architectural style which is used by previous versions of WFS. The adoption of this
architecture style utilizes the WOA and hence, the development of reliable, flexible
application is facilitated in an easiest and most economical way (Athanasiou et al., 2018).

The OGC API Features provides basic resources for retrieving features and feature
CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Page | 163

collections. These resources are similar to the main resource schema of CityGML RESTful
Web Service. However, the core of OGC API-Features does not currently support the
implementation of extra sub-resources but provides solution for this limitation by
extending the Core API by including richer queries from existing OGC standards. The
integration of the sub-resources schema of CityGML RESTful Web Service as an extension
to the OGC API-Features will provide a sufficient way to semantically retrieve complex
CityGML data. Unfortunately, the aforementioned approach is out of the scope of the OGC
API-Features, since the latter is not intended to implement just a standalone API but the
same Web API should also implement other standards of the OGC API family (Portele,
2019).

However, during the presentation of the conceptual model of CityGML RESTful Web service
at the 3DGeoInfo conference in Singapore, significant positive reviews were received. More
specific, the reviewers pointed out the effective solution provided by this approach and
also suggested that the CityGML RESTful Web service should be further examined in order
to become an OGC standard. Consequently, the aforementioned proposal will be the main
future research work. Thereafter, when CityGML RESTful Web service become OGC
standard and belong to OGC API family, then it will be able to be implemented by the OGC
API Features

6.2.2. Compatibility with the Upcoming version 3 of CityGML for Future Implementation
and upgrade

Since January 2018, CityGML v3.0 conceptual model has been made available in development
mode on the original GitHub repository for OGC CityGML 3.0. This upcoming version has
been fully revised bringing a number of improvements, extensions and new functionalities
(Kutzner, Chaturvedi, & Kolbe, 2020) to reflect the increasing need for better
interoperability with other relevant standards in the field like IFC, IndoorGML, Land
Administrator Domain Model (LADM) and INSPIRE. The architecture of the CityGML 3

including the new additions is presented in Figure 6-1.

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Page | 164

GityGML Core]
Appearance
Generics
@ Dynamizer
Versioning

ik

@ PointCloud

Construction

S c
2 o 9o c >
= ‘5 [} = o
= |0 |a |« ® 8 &
= _ E B 2 2 t & |m
1= [D 5 @ £ T [e] - =
= o c B & aQ (0] Q
o | © s L o gl x @ o |
S| 2 5|22 2 § 2 =z
m m — O > st
o =

Figure 6-1: CityGML 3.0 modules overview
(Kutzner, Chaturvedi, & Kolbe, 2020)

More specific, all modules from CityGML 2.0 will be part of CityGML 3.0. In addition, the
new modules Dynamizer, Versioning, PointCloud and Construction will be introduced, and the
modules Core, Generic, Building, and Transportation will be revised. These changes are
briefly presented in following paragraphs focusing on their impact on the conceptual model
of CityGML RESTful Web service.

6.2.2.1. Revised Core Module

In CityGML 3.0, a clear semantic distinction of spatial features is introduced by mapping all
city objects onto the semantic concepts of spaces and space boundaries. A space is an entity
of volumetric extent in the real word. So, since the Buildings, water bodies, trees, rooms
and traffic spaces have a volumetric extent, they are modelled as spaces. However, the
space is further subdivided into "physical spaces” and "logical spaces”. The first one refers
to the spaces that are fully or partially bounded by physical objects. The "physical spaces”
is an abstract class, which is mainly used to separate the physical from the logical space.
Hence, it does not affect the conceptual design of the main resources of CityGML RESTful

Web service.

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Page | 165

On the other hand, logical spaces are spaces that are not necessarily bounded by physical
objects, but are defined according to thematic considerations and so, they can also be
bounded by non-physical or represent aggregation of physical spaces. For instance, a
building unit is a logical space as it aggregates specific rooms to flats. As a result, this sub-

category of space should be considered by the CityGML RESTful Web service.

With regard to the space boundary, it does not affect the conceptual design of the CityGML
RESTful Web service sub-resources as it is mainly used as an abstract class for the

boundary surfaces such as "WallSurface", "RoofSurface" etc.

CityGML 3.0 will include a revised LoD concept which comprises a central definition of all
geometries in the Core module and the representation of the interior of city objects at any
level of detail. More specific, the LoD concept is modified, based on the proposed LoDs as
described by Lowner, et al. (2016). According to the authors, the main barrier in the current
concept of LoD is that the interior structure of an element can only be represented if the
exterior shell is represented in LoD4, which implies the highest semantic complexity and
geometric detail. Therefore, in CityGML 3.0, LoD4 is replaced by LoDO to LoD3 for exterior
and indoor objects and all feature types can be represented in each LoD. So, it is possible
to model the outside shell of a model in LoD1 while representing the interior structure in
LoD2 or LoD3. It should be noted that the main structure of the CityGML RESTful Web
service is not affected by this important change as its conceptual model of the resources
is designed by taking into account the semantic aspect of CityGML. However, the availability
of the sub-resources should be modified so that these resources can be provided based on

the new concept of LoD.

6.2.2.2. New Construction module

The Construction module groups all classes which are similar over different types of
constructions like buildings, tunnels, bridges and introduces a new class
"OtherConstruction” to represent other man-made structures not belonging to any of the
aforementioned three modules (e.g. large chimneys or city walls). More specific, the

construction elements refer to the boundary and opening surfaces regarding the modules

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Page | 166

building, bridge and tunnel which remain the same even if they belong to the construction
module. So, the respective boundary and opening child resources of the CityGML RESTful

Web service will not be changed.

6.2.2.3. New Versioning module

The Versioning module introduces bitemporal timestamps for all objects. Therefore, except
of the attributes "creationDate and "terminalDate" from CityGML 2.0, all objects now can
have a second lifespan expressed by the attributes "validFrom" and "validTo". Additionally,
each geographic feature will have two identifiers such as "identifies" and "gml:id". The value
of the "identifier" property will be stable along the lifetime of the real-word object, while
the "gml:id" attribute will be constructed from the “identifier" with concatenated
timestamp (Chaturvedi, et al., 2017). The versioning module could be supported by the
CityGML RESTful Web service by defining a new object "versioning” as an information
retrieval for each resource. Additionally, this object should be included in the general
filters. The object "versioning" will be a List of key value pairs based on the Versioning
module of the CityGML 3.0.

6.2.2.4. New Dynamizer module

The Dynamizer module improves the usability of CityGML for different kinds of simulations
and also facilitates the integration of sensors with 3D city models. Through the Dynamizers,
the link of timeseries data (OGC TimeseriesML, OGC observation and Measurement,
tabulated data in external files like CSV) to a specific attribute or property of a specific
object within the 3D city model will be achieved (Chaturvedi and Kolbe, 2017). This
capability facilitates the dynamic or real time updating of the source data and it can be
implemented by the CityGML RESTful Web service similar to the "Dynamizer" ADE resource
(see 3.2.2.1)

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Page | 167

6.2.2.5. New PointCloud module

The thematic surfaces can also be provided by 3D point clouds using MultiPoint geometry.
This capability does not affect the retrieval result schema of the CityGML RESTful Web

service as the retrieval result will be retrieved in GeoJSON-based format.

6.2.2.6. The revised transportation module

In the new Transportation module of CityGML 3.0, the transportation objects such as road,
track, railway and square, can be subdivided into sections. These sections can be regular
road, track or railway legs, intersection areas or roundabouts, each belonging to multiple
Road or Track objects. Thereafter, in order to avoid a redundant representation of this
shared object, Xlinks will be used in the CityGML 3.0 instance document to reference the
shared section (Beil & Kolbe, 2017). Additionally, "TrafficSpace" and
"Auxilliary TrafficSpace” will be introduced in addition to "TrafficArea" and
"AuxilliaryTrafficArea" of CityGML 2.0. Also, the traffic space can have and optional
"ClearanceSpace". Moreover, new semantic surface will be integrated such as "Hole" and
"HoleSurface". As a result, in CityGML 3.0, the Transportation Objects will have an areal
as well as center line representation for each LoD and, in addition, extra semantic surfaces
will be introduced. Consequently, taking into account all the above-mentioned changes, the

sub-resources of the "tun" main resource should be modified in future research work.

6.2.2.7. The components of Building module

The new Building module mainly remains the same. However, two new subdivision will be
included as logical spaces such as "BuildingUnit" and "Storey". These subdivisions will have
Xlinks to the respective rooms. So, two new child resources of "bldg" resource should be
embedded such as "buildingunits” and "storeys". These resources will retrieve a list of the
respective building units and storeys. Thereafter, the retrieval of specific object is

achieved by implementing the respective gmlid as sub-resource. This sub-resource will

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Page | 168

contain a list of links to the corresponding "rooms” sub-resources that includes. The

implementation of the new sub-resources could be the following:

/bldg/{gmlid}/{buildingunits or storeys}/{gmlid}

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Page | 169

ANNEX A: JSON-BASED SCHEMA OF SUB-

RESOURCES

A.l. Boundary Surface Resources

A.2. Installation Resources

A.3. Opening Resources

A.4. "rooms" Resources

A.5. "furniture" Resources

A.6. "hollowspaces" Resources
A.7."trafficareas"” and "auxiliaries" Resources

A.8. "water", "grounds” and "closures" Resources

ANNEX A: TSON-BASED SCHEMA OF SUB-RESOURCES

Page |[170

ANNEX A: TSON-BASED SCHEMA OF SUB-RESOURCES

Page |171

ANNEX A: TSON-BASED SCHEMA OF SUB-RESOURCES

Page | 172

ANNEX A: TSON-BASED SCHEMA OF SUB-RESOURCES

A.l. Boundary Surface Resources

Exterior: ../{main resource}/{gmlid}/walls
Interior: .. /{main resource}/{gmlid}/{interior spaces}/{gmlid}/walls
*rooms or hollowspaces

Page | 173

Exterior: ../{main resource }/{gmlid}/roofs

"walls":{
"type":"Object™,
"properties”:{

"gmlid":{"type":"String"},

"links":{"type":"0Object”,

“properties":{
"link":{"type":"String"},
"rel™:{"type":"String"}

}
h
"links":{"type":"0bject"™,
"properties”:{
"link™:{" type“'"
“rel": {"type":"

String"},
String"}

"roofs":{
"type":"0Object™,
"properties":{
"gmlid"™:{"type":"S5tring"},
"links""”type"'“ﬂbject
"propertiesz":
“11nk":<”typ'“'”Strlng“],

"rel":{"type":"String"}

}
i
"links":{"type":"0bject™,

"properties”:{

*link":{" type

“rel”: {"type":"

1|.|r

String"},
String"}

ANNEX A: TSON-BASED SCHEMA OF SUB-RESOURCES

Page | 174

Exterior:

.. /{main resource} /{gmlid}/grounds

"grounds":
"type":"Object™,
"properties”:{
"gmlid™:{ "type"”:"String"},
"links™:{"type"”:"0Object"”,

"properties":{
"link™:{"type":"String"},
"rel":{"type":"String"}
¥
}
¥
}J

"links":{"type":"0bject™,
"properties”:{
"link":{"type
"rel™: {"type

1r||l

String"},
String™)

l||1r

Exterior:
Interior: ..

.. /{main resource} /{gmlid}/ceilings

/{main resource} /{gmlid}/{interior space*}/{/{gmlid}/ceilings

*rooms or hollowspaces

"ceilings":{
"type" :"0Object”,
"properties”:{
“gmlid":{ "type"”:"String"},
"links":{"type":"0Object”,

"properties”:{
"link":{"type":"String"},
“rel™: {"type":"String"}
¥

'l.
1

¥

¥

"links":{" type"'"ﬂhject"
"properties”:
"link"""type"'"Strlng"},
"rel": {"type":"String"]

"."

ANNEX A: JTSON-BASED SCHEMA OF SUB-RESOURCES

Page | 175

Exterior: .. /{main resource} /{gmlid}/floors

Interior: .. /{main resource} /{gmlid}/{interior space*}/{gmlid}/floors

*rooms or hollowspaces

T
L

"floors":{
"type":"0Object”,
"properties":{
“gmlid™:{"type":"String"},
"links":{"type":"0Object”,
“properties”:{
"link":{"type":"String"},
"rel™:{"type":"String"}

".
4
¥
:" 3
"links":{"type":"0Object",
"properties":{
"link": {"type":"String"},

"rel": {"type":"String"}

¥

ANNEX A

S JSON-BASED SCHEMA OF SUB-RESOURCES

Page | 176

A.2. Installation Resources

Exterior: .. /{main resource} /{gmlid}/installation
Interior: (a)..{main resource} /{gmlid}/installation
(b) .. {main resource} /{gmlid}/{interior space *} /{gmlid}/installation

* rooms or hollowspaces

Py g gy S Uy S,
] 1

OO] — The character "XXX" is defined based on the exterior

|
i
"type":"Object™, i boudary surfaces such as walls, roofs, grounds, ceilings
I p'ﬂoperjtlres_“ 1]] | and floors. Also, the retrieval data is array of features

"gmlid":{"type":"String"}, :
"links":{"type":"0Object", !
"properties™:{

"link":{"type":"String"},

"rel":{"type":"String"}

that belongs to the corresponding surface.

-

T
"links":{"type":"0bject”,
"properties”:{
"link":{"type":"String"},
"rel”:{"type":"String"}

ANNEX A: TSON-BASED SCHEMA OF SUB-RESOURCES

Page 177

Exterior: .. /{main resource} /{gmlid}/installation/{gmlid}
Interior: (a)..{main resource} /{gmlid}/installation/{gmlid}

(b) .. {main resource} /{gmlid}/{interior space *} /{gmlid}/installation/{gmlid}
* rooms or hollowspaces

"installation":{

"type":"0Object”,

"properties”:{
“gmlid™:{ "type” :"String"},
"usage™:{"type” : "Number"},
"function":{"type": "Number™},
"class":{ "type” : "Number"},
"type":{"type":"S5tring --rexterior or interior™},
"links":{"type”:"0Object"”,
"properties":{

"link™:{"type":"String"},
"rel”:{"type":"String" }

'l.
1

¥
42
"links":{"type":"0Object”,
"properties”:{
"link™:{"type":"String"},

"rel”: {"type":"String"}

¥

ANNEX A: TSON-BASED SCHEMA OF SUB-RESOURCES

A.3. Opening Resources

Page | 178

Exterior: ../ {main resource} /{gmlid}/{ boundary surfaces 2 }/{gmlid}/windows

Interior: ../ {main resource} /{gmlid}/{interior spaces '} /{gmlid}/{boundary surfaces ? }/{gmlid}/windows

! rooms or hollowspaces
2walls or roofs

"windows":{
"type":"0Object”,
"properties”:{
"gmlid":{ "type" :"String"},
"links"™:{"type":"0Object”,

"properties":{

"link" :{"type":"String"},

“I-\'Ellr: {:“t::lllpE“:IIStFi"g“:-

I

¥

::'.l

"links":{"type":"0Object”,
"properties":{
"link": {"type":"String"},

"rel": {"type":"String"}

¥

ANNEX A

S JSON-BASED SCHEMA OF SUB-RESOURCES

Page | 179

Exterior: ../ {main resource} /{gmlid}/{ boundary surfaces 2 }/{gmlid}/doors

Interior: ../ {main resource} /{gmlid}/{interior spaces '} /{gmlid}/{boundary surfaces ?}/{gmlid}/doors

! rooms or hollowspaces
2walls or roofs

“"doors":{
"type":"0Object”,
"properties”:{
“gmlid™:{"type"”:"String"},
“links™:{"type"”:"0Object"”,

"properties™:{

"link":{"type":"String"},

“I"El":-::“'t:,-'pE“: IIStFi"g“:'

r

¥
::' 2
"links":{"type":"0Object",
"properties":{
"link": {"type":"String"},

“rel": {"type":"String"}

}

ANNEX A

S JSON-BASED SCHEMA OF SUB-RESOURCES

Page | 180

Exterior: ../ {main resource} /{gmlid}/{ boundary surfaces? }/{gmlid}/{opening 3}/{gmlid}
Interior: ../ {main resource} /{gmlid}/{interior spaces'} /{gmlid}/{boundary surfaces? }/{gmlid}/ {opening 3}/{gmlid}

! rooms or hollowspaces
2walls or roofs
3 windows or doors

"type":"Object”,
"properties":{
"gmlid":{"type":"String"},
"geometry”:{"type": "GeoJSON or URL"},
|rEEI'1E'I'“iC" : ‘=:”'t::,-'F|E" . “':'I'J::'EC't“ : ,
"appear'ance“ "t*_-,.‘p-e" : "D;ject"‘ :"_1 e
"address™:{"type":"xAL Object"}, m| Only available for door opening resource |
"links":{"type":"Object", 1 Only available Tor door opening resource |
"properties":]
"link™: -:”‘t:,-'pe" . "St’i“g" ;
"rel": {"'I::,-'pe” : IIStFiﬂg“

T

ANNEX A: TSON-BASED SCHEMA OF SUB-RESOURCES

A.4."rooms" Resources

Interior: .. /{main resource} /{gmlid}/rooms

Page | 181

1
"rooms":{
"type":"Object™,
"properties":{
"gmlid":{"type":"String"},
"links":{"type":"Object”,

mor

"properties":{
"link":{"type":"String"},

n,m "

"rel":{"type":"String"]
¥

}
¥
¥
"links":{"type":"0Object"™,
"properties":{
"link":{"type™:"String"},
"rel":{"type":"String"}
¥
¥

Interior: .. {main resource} /{gmlid}/rooms/{gmlid}

1
"type":"0Object”,
"properties™:{
"gmlid":{"type":"5tring"},
"function":{"type":"Number"},
"elass": {"type": "Number"},
"usage":{"type":"Number"},
"generic”:{"type":"0Object"},
"links":{"type":"0Object”,
“properties”: |
"link":{"type™:"String"},
"rel": {"type":"S5tring"}
¥
3

ANNEX A: JTSON-BASED SCHEMA OF SUB-RESOURCES

Page |182

A.5. "furniture" Resource

Interior: .. /{main resource} /{gmlid}/{ interior space *}/{gmlid}/furniture
* rooms or hollowspaces

! Interior: ../{main resource} /{gmlid}/{ interior space *}/{gmlid}/furniture/{gmlid}
"furniture":{ * rooms or hollowspaces

"type":"0Object”,
"properties”:{

"gmlid":{ "type":"String"}, {
"links":{"type™:"0bject”, "type":"Object”,
"properties”:{ "properties":{
"link":{"type":"String"}, "gmlid™:{"type":"String"},
"rel”:{"type":"String"} "function™:{"type": "Number"”},
T "elass":{"type": "Number"},
} "usage":{"type":"Number"},
1 "generic”:{"type":"0Object"},
ts "appearance”:{"type":"0Object or URL"},
"links":{"type":"0Object™, “geometry":{"type":"GeolS0N, URL or implicit ohject"},
"properties":{ "links™:{"type":"0Object”,
"link":{"type":"5tring"}., "properties™:{
"rel": {"type":"String"} "link" :{"type":"String"},
h "rel™:{"type":"String"}

L -

ANNEX A: TSON-BASED SCHEMA OF SUB-RESOURCES

A.6. "hollowspaces" Resources

Page | 183

Interior: .. /tun /{gmlid}/hollowspaces

1

"hollowspaces":{
"type":"Object™,
"properties”:{

"gmlid™:{"type":"String"},
"links™:{"type":"0Object",
"properties":{
"link":{"type":"String"},
"rel":{"type":"String" }
¥

".
1

¥
i
"links":{"type":"0bject”,
"properties”:{
"link":{"type™:"String"},
“rel”: {"type":"String"}
¥
¥

Interior: ../tun /{gmlid}/hollowspaces/{gmlid}

1
"type":"0Object”,
"properties™:{
"gmlid":{"type":"5tring"},

m_m "y

"function™:{"type":"Number"},

o o

"elass":{"type": "Number"},
"usage":{"type":"Number"},
"generic":{"type":"0Object"},
"links":{"type":"0Object",
“properties":{
"link":{"type":"String"},
"rel”: {"type":"String"}

ANNEX A: JTSON-BASED SCHEMA OF SUB-RESOURCES

A.7. “trafficareas" and "auxiliaries" Resources

Page | 184

Exterior: ../{extra main resource* }/{gmlid}/{traffi
*road, track, railway, square

careas or auxiliaries}

{

Exterior: ../{extra main resource* }/{gmlid}/{trafficareas or auxiliaries}/{gmlid}
*road, track, railway, square

"properties™:{
"gmlid":{"type":"String"},
"links":{"type":"Object",
"properties":{

"link": {"type":"String"},
"rel":{"type":"String"}

h

T

"links":{"type":"0bject",
"properties™:{
"link":{"type"” :"String"},
"rel": et

e

L

type":"String"}

{
"type":"0Object™,
"properties”:q{
"gmlid™:{"type":"String"},
"lod": {"type”: "Number™},
"function":{"type": "Number™},
"class":{"type": "Number"},
"usage”:{"type":"Number"},
"surfaceMaterial”:{"type":"Mumber"}
"geometry”: {"type": "GeolSON"},
"generic”:{"type":"0Object"},
"links":{"type":"0Object”,
"properties™:{
"link":{"type":"String"},
"rel":{"type":"String

"y
J

ANNEX A: TSON-BASED SCHEMA OF SUB-RESOURCES

Page | 185

A.8. "water”, "grounds” and "closures” Resources

Exterior: ../wtr/{gmlid}/{grounds or closures}

|
et - I grounds or closures |
WK L 9 !

"properties™:{
"gmlid":{"type":"String"},
"links":{"type":"Object",
"properties":{

"link":{"type":"String"},
"rel":{"type":"String"}

e
4

-
Tr
I

"links":{"type":"0bject",
"properties™:{
"link":{"type"” :"String"},
"rel":{"type":"String"}

Exterior: a) ../wtr/{gmlid}/{grounds or closures}/{gmlid}
b) ../wtr/{gmlid}/water

"type":"0Object”, !) . !
"properties”:] | Available for "grounds” or
"gmlid":{"type":"String" ‘i "closures” resources

nwo,om 1 [1

"lod"”:{"type" :"Number"}, LTI
|
|

"geometry™:{"type":"GeolSON"}, i

"generic”:{"type”:"0Object"}, '

"links":{"type":"0Object™,

"properties”:{
"link™:{"type”:"String"},
"rel”:{"type":"S5tring"}

ANNEX A: TSON-BASED SCHEMA OF SUB-RESOURCES

Page | 186

ANNEX A: TSON-BASED SCHEMA OF SUB-RESOURCES

Page | 187

BIBLIOGRAPHY

Page | 188

BIBLIOGRAPHY

Page | 189

Athanasiou, K., Pispidikis, I., & Dimopoulou, E. (2018). Semantic-based Technologies for
Interoperable BIM and GIS 3D Modelling, Storage and Retrieval. In FIG Commission
3 Annual Meeting and Workshop 2018: Conference, 3-6 December 2018. Italy:
Naples.

Beil, C. & Kolbe, T. H. (2017). CityGML and the streets of New York - a proposal for detailed
street space modelling, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-
4/W5, 9-16. Retrieved from: https://doi.org/10.5194/isprs-annals-IV-4-W5-9-
2017

Butler, H., Daly, M., Doyle, A., Gillies, S., Hagen, S., & Schaub, T. (2016). 7he geqgjson
format. Internet Engineering Task Force (ZETF).

Cozzi, P, Lilley, S., & Getz, G. (2019). OGC 3D Tiles Specification. Version 1.0. (OGC
Document Number 18-053r2).

Coors, V. (2018). OGC Testbed-13: 3D Tiles and I3S Interoperability and Performance ER
(OGC Document Number 17-046).

Chaturvedi, K. & Kolbe, T H. (2017). Future City Pilot 1 Engineering Report. Retrieved from:
http://docs.opengeospatial.org/per/16-098.html

Chaturvedi, K., Smyth, C. S., Gesquiere, G., Kutzner, T., & Kolbe, T. H. (2017). Managing
versions and history within semantic 3D city models for the next generation of
CityGML. In Advances in 3D Geoinformation, 191-206. Springer, Cham.

Chaturvedi, K. & Kolbe, T. H. (2016). Integrating Dynamic Data and Sensors with Semantic
3D city models in the context of Smart Cities. ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information Sciences, IN-2/W1, 31-38. Retrieved from:
https://doi.org/10.5194/isprs-annals-IV-2-W1-31-2016

Chaturvedi, K., Yao, Z., & Kolbe, T. H. (2015). Web based Exploration of and Interaction
with Large and Deeply Structured Semantic 3D City Models using HTML5 and
WebGL. In Wissenschaftlich-Technische Jahrestagung der DGPF und Workshop on
Laser Scanning Applications (Vol. 3). Conference, 16-18 Marc 2015. Germany:

Cologne.

BIBLIOGRAPHY

Page | 190

Chaturvedi, K. (2014). Web Based 3D Analysis and Visualization Using HTML5 and WebGL.
University of Twente Faculty of Geo-Information and Earth Observation (ITC).

Chatzinikolaou, E., Pispidikis, I., & Dimopoulou, E. (2020). A Semantically enriched and Web-
based 3D energy model visualization and retrieval from smart building
implementation using CityGML and Dynamizer ADE, I5PRS Ann. Photogramm. Remote
Sens. Spatial Inf. Sci VI-4/W1-2020, 53-60. Retrieved from:
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-53-2020

Chimezie, E. (2017). REST versus Graph@QL. Retrieved from: https://blog.pusher.com/rest-

versus-graphgl/

Curtis, E. (2008). Serving CityGML via web feature services in the OGC web services-phase
4 testbeds. Journal of Advances in 3D geoinformation systems, 331-340.

Falcor (nd.). A JavaScript library for efficient data fetching. Retrieved from:
https://netflix.github.io/falcor/

Fielding, R. T. & Taylor, R. N. (2000). Architectural styles and the design of network-based

software architectures. Irvine: University of California.

Floros, G., Pispidikis, I., & Dimopoulou, E. (2017). Investigating integration capabilities
between IFC and citygml| LOD3 for 3D city modelling. 7he International Archives of

Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 1.

Fowler, M. (2010). Richardson Maturity Model: steps toward the glory of REST. Retrieved

from: http://martinfowler.com/articles/richardsonMaturityModel.html
Fu, P. & Sun, J. (2010). Web GIS. principles and applications. USA: Esri Press.

Greenfield, D. & Dornan, A. (2004). Amazon: Web Site to Web Services. Network Magazine,
19(10), 58-60.

Jo, J., Kim, Y., & Lee, S. (2014). Mindmetrics: Identifying users without their login IDs.
In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC).
International Conference 5-8 October 2020 (pp. 2121-2126). San Diego: IEEE.

BIBLIOGRAPHY

https://blog.pusher.com/author/mezie/
https://netflix.github.io/falcor/

Page |191

Hartig, O. & Pérez, J. (2018). Semantics and complexity of GraphQL. In Proceedings of the
2018 World Wide Web Conference. (pp. 1155-1164). Conference, 23-27 April 2018:
Lyon: University of Lyon.

Hagedorn, B., Thum, S., Reitz, T., Coors, C., & Gutbell R. (2017). OGC® 3D Portrayal Service.
Version 1.0 (OGC Document Number 15-001r4)

Hagedorn, B. (2010). Web View Service Discussion Paper. Version 0.3.0. OpenGIS Discussion
Paper (OGC Document Number 09-166r2).

Helfer, J. (2016). Graph@L VS. Falcor. Retrieved from:
https://blog.apollographql.com/graphql-vs-falcor-4f1e9cbf7504

Huang, X. (2002). GeoA jent-based geospatial information service and application integration

(Phd dissertation). Beijing University.

Gaillard, J., Vienne, A., Baume, R., Pedrinis, F., Peytavie, A., & Gesquiere, G. (2015). Urban
data visuadlisation in a web browser. In Proceedings of the 20th International
Conference on 3D Web Technology (pp. 81-88). ACM.

Gesquiere, G. & Manin, A. (2012). 3D Visualization of Urban Data Based on CityGML with
WebGL. International Journal of 3-D Information Modeling (IJ3DIM), 1(3), 1-15.

Gong, J. (1999). Contemporary GIS theory and technology. China: Wuhan University of

Surveying and Mapping Science and Technology Press.

GraphQL is the better REST (n.d.). Retrieved from:
https://www.howtographql.com/basics/1-graphql-is-the-better-rest/

Gradger, G., Kolbe, T.,Nagel, C., & Hafele, K.-H. (2012). OGC City Geography Markup Language
(CItyGML) Encoding Standard. Retrieved from: www.opengis.net/spec/citygml/2.0.
(OGC Document Number 12-019)

Groger, G. & Plimer, L. (2012). CityGML - Interoperable semantic 3D city models. ISPRS
Journal of Photogrammetry and Remote Sensing, (71), 12-33.

Gutbell, R., Pandikow, L., Coors, V., & Kammeyer, Y. (2016). A framework for server side
rendering using OGC's 3D portrayal service. In Proceedings of the 21st International
Conference on Web3D Technology (pp. 137-146). ACM.

BIBLIOGRAPHY

Page |192

ISO, I. (2003). 19107: 2003 Geographic information-Spatial schema. Infernational

Organization for Standardization, 90.

ISO 14825, 2011. Infelligent fransport systems - Geographic Data Files (GDF) - GDF5.0.
International Standard, ISO.

Khronos Group (2019). g/TF Specification = Webpage. Retrieved from:
https://www.khronos.org/gltf

Koukofikis, A., Coors, V., & Gutbell, R. (2018). Interoperable visualization of 3D City Models
using OGC's Standard 3D Portrayal Service. ISPRS Annals of Photogrammetry,
Remote Sensing & Spatial Information Sciences, 4(4).

Kumari, V. (2015). Web Services Protocol: SOAP vs REST. International Journal of
Advanced Research in Computer Engineering & Technology (ITARCET), 4(5), 2467-
2469.

Kutzner, T., Chaturvedi, K., & Kolbe, T. H. (2020). CityGML 3.0: New Functions Open Up New
Applications. PFG-Journal of Photogrammetry, Remote Sensing and Geoinformation

Scilence, 1-19.

Lathem, J., Gomadam, K., & Sheth, A. P. (2007). Sa-rest and (s) mashups: Adding semantics
to restful services. In International Conference on semantic computing (ICSC 2007).
IFEE. 469-476.

Lowner, M.-O., Groger, G., Benner, J., Biljecki, F., & Nagel, C. (2016). Proposal for a new lod
and multi-representation concept for CityGML, ISPRS Ann. Photogramm. Remote
Sens. Spatial Inf. Sci, IN-2/W1, 3-12. Retrieved from: https://www.isprs-ann-
photogramm-remote-sens-spatial-inf-sci.net/IV-2-W1/3/2016/isprs-annals-IV-2-
W1-3-2016.pdf

Mao, B. & Ban, Y. (2011). Online Visualisation of a 3D City Model Using CityGML and X3DOM.
Cartographica, 46(2), 109-114.

Mulligan, G. & Gracanin, D. (2009). A comparison of SOAP and REST implementations of a
service-based interaction independence middleware framework. In Winter
Simulation Conference (pp. 1423-1432).

BIBLIOGRAPHY

Page | 193

Mumbaikar, S. & Padiya, P. (2013). Web services based on soap and rest

principles. International Journal of Scientific and Research Publications, 3(5), 1-4.
Newcomer, E. & Lomow, G. (2005). Understanding SOA with Web services. Addison-Wesley.

Nielsen, J. (1999). User interface directions for the web. Communications of the ACM,
42(1), 65-72.

OASIS. (2003). xNAL Name and Address Standard. Organization for the Advancement of
Structured Information Standards. Retrieved from:

http://xml.coverpages.org/xnal.html

OGC. (2007). Summary of the OGC Web Services, Phase 4 (OWS-4) Interoperability
Testbed (OGC Document Number 07-037r4). Retrieved from:
http://portal.opengeospatial.org/files/?artifact_id=21371

Ohori, K. A., Biljecki, F., Kumar, K., Ledoux, H., & Stoter, J. (2018). Modeling cities and
landscapes in 3D with CityGML. In Building Information Modeling (pp. 199-215).
Springer, Cham.

OpenGIS. (1999). Consortium: OpenGIS Simple Features Specification for SQL, Revision
1.1. OpenGIS Project Document, 99-049.

Peng, D., Li, C., & Huo, H. (2009). An extended usernametoken-based approach for rest-
style web service security authentication. In 2009 2nd IEEE International
Conference on Computer Science and Information Technology (pp. 582-586). IEEE.

Pispidikis, I. & Dimopoulou, E. (2019). Conceptual model of CityGML RESTful Web Service,
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W15, 67-74.
Retrieved from: https://doi.org/10.5194/isprs-archives-XLII-4-W15-67-2019

Pispidikis, I., Tsiliakou, E., Kitsakis, D., Athanasiou, K., Kalogianni, E., Labropoulos, T., &
Dimopoulou, E. (2018). Combining methodological tools for the optimum 3D modelling
of NTUA campus, I5PRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IN-4/W6,
57-63. Retrieved from: https://doi.org/10.5194/isprs-annals-IV-4-W6-57-2018

Pispidikis, I. & Dimopoulou, E. (2018). CityGML RESTful Web Service: automatic retrieval
of CityGML data based on their semantics. Principles, guidelines and bldg conceptual

BIBLIOGRAPHY

http://portal.opengeospatial.org/files/?artifact_id=21371
https://doi.org/10.5194/isprs-archives-XLII-4-W15-67-2019
https://doi.org/10.5194/isprs-annals-IV-4-W6-57-2018

Page | 194

design, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IN4/W6, 49-56.
Retrieved from: https://doi.org/10.5194/isprs-annals-IV-4-W6-49- 2018

Pispidikis, I. & Dimopoulou, E. (2016). Development of a 3D WebGIS system for retrieving
and visualizing CityGML data based on their geometric and semantic characteristics
by using free and open source technology, ZSPRS Ann. Photogramm. Remote Sens.
Spatial Inf. Sci., IN-2/W1, 47-53. Retrieved from: https://doi.org/10.5194/isprs-
annals-IV-2-W1-47-2016

Pispidikis, I. & Dimopoulou, E. (2015). Web development of spatial content management
system through the use of free and open-source technologies. Case study in rural

areas. Journal of Geographic Information System, 7(05), 527.

Portele, C. & Vretanos, P. (2018). OGC Web Feature Service 3.0-Part 1: Core (OGC Document
Number 17-069r1). Retrieved from: http://docs.opengeospatial.org/DRAFTS/17-
069r1.html

Portele, C., Vretanos, P., & Heazel Ch. (2019). OGC API-Features-Part 1. Core (OGC
Document Number 17-069r3). Retrieved from:
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html

Portele, C. (2019). OGC Testbed-14 Next Generation APILs. Complex Feature Handling
Engineering Report (OGC Document Number 18-021). Retrieved from:
http://docs.opengeospatial.org/per/18-021.html

Prandi, F., De Amicis, R., Piffer, S., Soave, M., Cadzow, S., Gonzalez Boix, E., & D' Hont, E.
(2013). Using CityGML to deploy Smart-City services for Urban Ecosystems.
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, Volume XL-4/W1, 87-92.

Prandi, F., Devigili, F., Soave, M., Di Staso, U., & De Amicis, R. (2015). 3D web visualization
of huge CityGML models. ISPRS International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, 1, 601-60.

Prieto, I., Izkara, L. J., & Del Hoyo, F. (2012). Efficient visualization of the geometric
information of CityGML: application for the documentation of built heritage.
Computational Science and Its Applications-ICCSA 2012, 529-544.

BIBLIOGRAPHY

https://doi.org/10.5194/isprs-annals-IV-4-W6-49-%202018
https://doi.org/10.5194/isprs-annals-IV-2-W1-47-2016
https://doi.org/10.5194/isprs-annals-IV-2-W1-47-2016
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html

Page | 195

Quadt, U. & Kolbe, T. (2005). Web 3D Service. Version 0.3.0 (OGC Document Number 05-
019)

Reed, C. & Belayneh, T. (2017). OGC Indexed 3d Scene Layer (I35) and Scene Layer Package
Format Specification. Version 1.0 (OGC Document Number 17-014r5)

Reitz, T. & Schubiger-Banz, S., (2014). The Esri 3D city information model. In IOP

Conference Series. Earth and Environmental Science, 18(1). IOP Publishing.
Richardson, L. & Ruby, S. (2007). Web-services mit REST. O Reilly Germany.

Rodriguez, A. (2008). Restful web services: The basics. IBM developer Works. Retrieved
from: http://www.gregbulla.com/TechStuff/Docs/ws-restful-pdf.pdf

Schilling, A. & Kolbe, T. H. (2010). Draft for Candidate OpenGIS Web 3D Service Interface
Standard. Version 0.4.0. OpenGIS Discussion Paper (OGC Document Number 09-
104r1)

Schilling, A., Hagedorn, B., & Coors, V. (2012). OGC 3D Portrayal Interoperability
Experiment Final Report. OGC Engineering Report (OGC Document Number 12-075)

Schilling, A., Bolling, J., & Nagel, C. (2016). Using gITF for streaming CityGML 3D city
models. In Proceedings of the Z21st International Conference on Web3D
Technology (pp. 109-116). ACM.

Snowflake Software. (2016). GO Publisher WFS Documentation. Introducing REST

Services. Retrieved from:
https://wiki.snowflakesoftware.com/display/GPWFSDOC/Introducing REST
Services

Somoza Alonso, F. (2015). Development of a restful APIL: hateoas & driven APL.

Soon, K. H., & Khoo, V. H. S. (2017). CityGML modelling for Singapore 3D national
mapping. 7he International Archives of Photogrammetry, Remote Sensing and

Spatial Information Sciences, 42, 37.

Sudhakar, A. (2011). Techniques for securing REST. CA Technology Exchange, 1, 32-40.

BIBLIOGRAPHY

https://wiki.snowflakesoftware.com/display/GPWFSDOC/Introducing+REST+Services
https://wiki.snowflakesoftware.com/display/GPWFSDOC/Introducing+REST+Services

Page | 196

Thies, G. & Vossen, G. (2008). Web-oriented architectures: On the impact of Web 2.0 on
service-oriented architectures. IEEE Asian-Pacific Services Computing Conference,
1075-1082.

Tihomirovs, J. & Grabis, J. (2016). Comparison of soap and rest based web services using

software evaluation metrics. Information Technology and Management
Science, 19(1), 92-97.

Vogel, M., Weber, S., & Zirpins, C. (2017). Experiences on migrating RESTful web services
to GraphQL. In Infernational Conference on Service-Oriented Computing (pp. 283-
295). Springer, Cham.

Webber, J., Parastatidis, S., & Robinson, I. (2010). REST in practice: Hypermedia and

systems architecture. O'Reilly Media, Inc.

Wittern, E., Cha, A., & Laredo, J. A. (2018). Generating GraphQL-wrappers for REST (-like)
APIs. In International Conference on Web Engineering (pp. 65-83). Springer, Cham.

Wilson, T. (2008). OGC® KML. Version 2.2. 0 (OGC Document Number 07-147r2)

Whiteside, A. (2009). Definition identifier URNs in OGC namespace. Version 1.3. OpenGIS
Best Practice document (OGC Document Number 07-092r3)

Whiteside, A. (2005). GML 3.1.1 simple dictionary profile. Version 1.0.0 (OGC Document
Number 05-099r2)

W3C. (2010). Same Origin Policy. Retrieved from:
https://www.w3.0rg/Security/wiki/Same_Origin_Policy

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P., Donaubauer, A., & Kolbe, T. H. (2018).
3DCityDB-a 3D geodatabase solution for the management, analysis, and visualization
of semantic 3D city models based on CityGML. Open Geospatial Data, Software and
Standards, 3(1), 1-26.

Zhu, W., Simons, A., Wursthorn, S., & Nichersu, A. (2016). Integration of CityGML and Air
Quality Spatio-Temporal Data Series via OGC SOS. In Proceedings of the Geospatial
Sensor Webs Conference (GSW). Conference, 29-31 August 2016. (pp. 29-31).
Muenster: 52north

BIBLIOGRAPHY

Page [197

LIST OF PUBLICATIONS

Page | 198

LIST OF PUBLICATIONS

Page |199

PUBLICATIONS IN PEER-REVIEWED SCIENTIFIC JOURNALS

Floros, G., Tsiliakou E., Kitsakis, D., Pispidikis I., & Dimopoulou E. (2015).
Investigating Semantic Functionality of 3D Geometry for Land Administration. In

Advances in 3D Geoinformation, 247-264. Springer International Publishing.

Athanasiou, A., Pispidikis, I., & Dimopoulou, E. (2015). 3D Marine Administration
System Based on LADM. In Advances in 3D Geoinformation, 385-407. Springer,
Cham.

Pispidikis, I. & Dimopoulou, E. (2015). Web development of spatial content
management system through the use of free and open-source technologies. Case

study in rural areas. Journal of Geographic Information System, 7(05), 527.

Floros, G., Solou, D., Pispidikis, I., & Dimopoulou, E. (2016). A roadmap for generating
semantically enriched building models according to CityGML model via two different
methodologies.k, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci, XLII-
2/W2,23-32. Retrieved from: https://doi.org/10.5194/isprs-archives-XLII-2-W2-
23-2016

Pispidikis, I. & Dimopoulou, E. (2016). Development of a 3D WebGIS system for
retrieving and visualizing CityGML data based on their geometric and semantic
characteristics by using free and open source technology, ZSPRS Ann. Photogramm.
Remote Sens. Spatial Inf. Sci, IV-2/WI1, 47-53. Retrieved from:
https://doi.org/10.5194/isprs-annals-IV-2-W1-47-2016

Floros, G., Pispidikis, I., & Dimopoulou, E. (2017). Investigating integration
capabilities between IFC and CityGML LoD4 for 3D City Modeling, Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W7, 1-6. Retrieved from:
https://doi.org/10.5194/isprs-archives-XLII-4-W7-1-2017

Pispidikis, I. & Dimopoulou, E. (2018). CityGML RESTful Web Service: automatic

retrieval of CityGML data based on their semantics. Principles, guidelines and bldg

LIST OF PUBLICATIONS

10.

Page | 200

conceptual design, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-
4/W6, 49-56. Retrieved from: https://doi.org/10.5194/isprs-annals-IV-4-W6-49-
2018

Pispidikis, I., Tsiliakou, E., Kitsakis, D., Athanasiou, K., Kalogianni, E., Labropoulos, T.,
& Dimopoulou, E. (2018). Combining methodological tool for the optimum 3D modeling
of NTUA Campus, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-
4/W6, 57-63. Retrieved from: https://doi.org/10.5194/isprs-annals-IV-4-W6-57-
2018

Pispidikis, I. & Dimopoulou, E. (2019). Conceptual model of CityGML RESTful Web
Service, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci, XLII-4/W15, 67-
74. Retrieved from: https://doi.org/10.5194/isprs-archives-XLII-4-W15-67-2019

Chatzinikolaou, E., Pispidikis, I., & Dimopoulou, E. (2020). A Semantically enriched
and Web-based 3D energy model visualization and retrieval from smart building
implementation using CityGML and Dynamizer ADE, I5PRS Ann. Photogramm.
Remote Sens. Spatial Inf. Sci, VI-4/W1-2020, 53-60. Retrieved from:
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-53-2020

PRESENTATIONS IN PEER-REVIEWED INTERNATIONAL CONFERENCES

Pispidikis, I. & Dimopoulou, E. (2016). Development of a 3D WebGIS system for
retrieving and visualizing CityGML data based on their geometric and semantic
characteristics by using free and open source technology. In 3D Geoinfo 2016:
Conference, 20-21 October 2016. Greece: Athens.

Floros, G., Solou, D., Pispidikis, I., & Dimopoulou, E. (2016). A roadmap for

generating semantically enriched CityGML model via two different methodologies.
In 3D Geoinfo 2016: Conference, 20-21 October 2016. Greece: Athens.

LIST OF PUBLICATIONS

Page | 201

Floros, G., Pispidikis, I., & Dimopoulou, E. (2017) Investigating integration
capabilities between IFC and CityGML LoD4 for 3D City Modeling. In 3D Geoinfo
2017: Conference, 26-27 October 2017. Australia: Melbourne.

Pispidikis, I. & Dimopoulou, E. (2018). CityGML RESTFul Web Service: Automatic
retrieval of CityGML data based on their semantics. Principles, guidelines and
BLDG conceptual design. In 3D Geoinfo 2018. Conference, 1-2 October 2018.
Netherlands: Delft.

Pispidikis, I., Tsiliakou, E., Kitsakis, D., Athanasiou, K., Kalogianni, E., Labropoulos,
T., & Dimopoulou, E. (2018). Combining methodological tool for the optimum 3D
modeling of NTUA Campus. In 3D Geoinfo 2018 Conference, 1-2 October 2018.
Netherlands: Delft.

Athanasiou, K., Pispidikis, I., & Dimopoulou, E. (2018). Semantic-based
Technologies for Interoperable BIM and GIS 3D Modelling, Storage and
Retrieval. In FIG Commission 3 Annual Meeting and Workshop 2018: Conference,
3-6 Decemger 2018. Italy: Naples.

Kitsakis, D., Pispidikis, I., Athanasiou, K., Kalogianni, E. & Dimopoulou, E. (2019).
Investigating the use of 3D Modelling and Geovisualisation for social housing. In
FIG Commission 3 Annual Meeting and Workshop 2019. Conference, 23-28
Semtember 2019. Romania: Cluj-Napoca.

Pispidikis, I. & Dimopoulou, E. (2019). Conceptual model of CityGML RESTful Web
Service. In 3D Geoinfo 2019. Conference, 26-27 September 2019. Singapore.

Pispidikis, I., Kitsakis, D., Kalogianni, E., Athanasiou, K., Lampropoulos, A., &
Dimopoulou, E. (2020). 3D Modelling and Virtual Reality for the management of
public buildings. In FIG Working Week 2020. Smart surveyors for land and water
management-. Conference, 10-14 May 2020. Netherlands: Amsterdam (submitted

for publication).

LIST OF PUBLICATIONS

Page | 202

OTHER PRESENTATIONS IN CONFERENCES

Pispidikis, I., & Dimopoulou, E. (2014). Web development of spatial content
management system through the use of free and open-source technologies. Case
study in rural areas. In 8" International Conference Hellas GIs. Conference, 11-
12 December 2014. Greece: Athens.

Koukoletsos T., Pispidikis, I., & Loisios, D., (2016). Design, development and
integration of spatial analysis tools in WebGIS enviroment. In 24" National
ArcGIS User Conference. Conference, 19-20 May 2016. . Greece: Athens.

Koukoletsos T. & Pispidikis, I. (2017). Evaluation and Proposals for
Parameterization of Geospatial Web Services. In 25" National ArcGIS User
Conference: Conference, 11-12 May 2017. Greece: Athens.

Koukoletsos T. & Pispidikis, I. (2017). Latest technology WEBGIS Applications of
Hellenic Military Geographical Service. In 25" National ArcGIS User
Conference:. Conference, 11-12 May 2017. Greece: Athens.

Pispidikis, I., Tsiliakou, E., Kitsakis, D., Athanasiou, K., Kalogianni, E., Labropoulos,
T. & Dimopoulou, E. (2017). Development of WebGIS platform for NTUA campus.
In 25" National ArcGIS User Conference. Conference, 11-12 May 2017. Greece:
Athens.

Pispidikis, I., Tsiliakou, E., Kitsakis, D., Athanasiou, K., Kalogianni, E., Labropoulos,
T., & Dimopoulou, E. (2017). Navigation in 3D virtual web environment -
Implementation in SRSE NTUA. In 5 National Panhellenic Conference of Rural
and Surveying Engineers. Conference, 14-15 October 2017. Greece: Athens.

Pispidikis, I., Tsiliakou, E., Kitsakis, D., Athanasiou, K., Kalogianni, E., Labropoulos,
T., & Dimopoulou, E. (2018). Development of a 3D web GIS application for NTUA

LIST OF PUBLICATIONS

Page | 203

Campus. In 26" National ArcGIS User Conference. Conference, 10-11 May 2018.

Greece: Athens.

Pispidikis, I. (2018). New GeoIndex of Hellenic Military Geographical Service. In
26™ National ArcGIS User Conference. Conference, 10-11 May 2018. Greece:
Athens.

Koukoletsos T., Pispidikis, I., & Leader, D. (2018). Digital Interactive Map of
Hellenic Military Geographical Service. In 26™ National ArcGIS User
Conference: Conference, 10-11 May 2018. Greece: Athens.

LIST OF PUBLICATIONS

Page | 204

Page | 205

CURRICULUM VITAE

Page | 206

Page | 207

PERSONAL INFORMATION

Surname:; Pispidikis

Name: Toannis

Father's name: Stauros

Mother's name: Dimitra

Date of birth 18 February 1984

Birth place: Athens

Family status: Married (Gkagklou Antonia)

Address Mithridatou 36-38, 11632, Athens

Phone +302111845624 (Home)
+302108206686 (Work)
+306951762683 (mobile)

e-mail pispidikisj@yahoo.gr

Jjpispidikis@gmail.com

EDUCATION AND STUDIES

2016-2020 Ph.D Candidate, National Technical University of Athens.
Geomatics.
2016 : Master's Degree (M.Sc), National Technical University of

Athens. Geomatics, Grade: 9.33/10 (Excellent)

2014

2010

2005

2001

Page | 208

Diploma, National Technical University of Athens, School of
Rural and Surveying Engineering. Grade: 9.17/10 (Excellent)

Batchelor's Degree, Topography School in Hellenic Military
Geographical Service (HMGS), Surveying Engineering.
Batchelor's Degree, Hellenic Military Academy, Military
Operational Art and Science/Studies

General High School. Grade: 18/20

SCIENTIFIC TRAINING

07/09 - 11/09/20

25/09 - 27/09/19

01/10 - 02/10/18

20/10 - 21/10/16

18/10 - 20/10/16

25/05 - 27/05/15

02/03 - 12/06/15

11-12/12/14

9 -10/10/14

25-26/9/14

15™ 3D Geoinfo Conference, United Kingdom: London

14" 3D Geoinfo Conference, Singapore

13" 3D Geoinfo Conference, Netherland: Delft

11* 3D Geoinfo Conference, Greece: Athens

5t International Workshop on 3D Cadastres, Greece: Athens

Training Program «The Common Assessment Framework as a Tool
for Total Quality Management. Training Institute

Education for aerial photography. Army Aviation School

8" National Conference Hellas GIs. National Technical
University of Athens.

Seminar: «Introduction to Geoprocessing Scripts Using Python».
Marathon Data Systems

Seminar: «ArcGIS for Server-Sharing GIS Content on the
Web» version 10.x. Marathon Data Systems

Page | 209

22,23 &24/9/14 . Seminar: «Introduction to Geographic Information System
(GIS) » ArcGIS Extensions (3D Analyst-Spatial Analyst) version
10.x.
Marathon Data Systems

15,16 &£ 17/9/14 : Seminar: «Introduction to Geographic Information System
(GIS)» ArcGIS IT version 10.x. Marathon Data Systems

8,94&10/9/14 : Seminar: «Introduction to Geographic Information System
(GIS)»ArcGIS I version 10.x. Marathon Data Systems

PROFESSIONAL EXPERIENCE

2014-Today Director of Geodatabases Subdivision. Hellenic Military
Geographical Service (HMGS). Athens, Greece.

e Supervision of day to day operations

e Military geospatial application development (Intranet
WebGIS application, Android app)

e Data collection, manipulation and validation

e Installation and maintenance of all geodatabases for
development purposes

2008-Today Officer of the Greek Army in the Hellenic Military
Geographical Service and Hellenic Military Topographic
Service.

2005-Today Officer in Greek Army

Academic : Member of the teaching team of the course: "Cadastral and

Years: Land Policy Systems", 8™ semester, School of Rural and

2016/2017 & Surveying Engineering, National Technical University of

2017/2018 Athens

Page | 210

20- . Member of the Organizing Committee: "11" 3D Geoinfo
21/10/2016 Conference", Greece: Athens

18- : Member of the Organizing Committee: "5™ International
20/10/2016 Workshop on 3D Cadastres”, Greece: Athens

2009-2015 : Head of department in the execution of several topographic

surveys in Greece:

o topographic surveys
e cadastral surveys

e expropriations

o delimitation

e property surveying

2005-2008 : Officer of the Greek Army, Infantry Specialty, as Trainer
and Staff Commander

HONORS & AWARDS

2/2019 . Ethic award from chief of Hellenic Army. Development and
upgrading of several software of HMGS. As a result, the
geospatial support of the Hellenic Army is improved and the work
of the Hellenic Military Geographical Service is also promoted

572018 : Thomaidis award for publishing the paper with ftitle:
“Investigating integration capabilities between IFC and CityGML
LoD3 for 3D City Modeling"

10/2017- : Scholarship from ONASSIS FOUNDATION for Ph.D research

10/2020

9/2017 : Award from Technical Chamber of Greece. Second highest grade
for the School of Rural and Surveying Engineering among 2014
graduate

2017 . Ethic award from chief of Hellenic Army. Academic Excellence in

master studies

5/2017 Thomaidis award for publishing the paper with title:
"Development of a 3D WebGIS system for retrieving and

Page | 211

visualizing CityGML data based on their geometric and semantic
characteristics by using free and open source technology"

2015/2016 : Scholarship from Zwh Soutsou legacy for Ph.D research.

9/2015 : Thomaidis award. Best Undergraduate student in 2013-2014
among all students of the school of Rural and Surveying
Engineering

2015 : Ethic award from chief of Hellenic Army. Academic Excellence in

bachelor studies

7/2015 : Award of Academic Excellence. Second highest grade for the
School of Rural and Surveying Engineering among 2014 graduate

5/2015 . Thomaidis award for publishing the paper with title: "Web
Development of Spatial Content Management System through
the Use of Free and Open-Source Technologies. Case Study in
Rural Areas"

2/2015 : Award of Academic Excellent. LIMMAT STIFTUNG-
Memorandum of Agreement 29502/14

2000 : 5™ Position in Nationwide Contest «LYSIAS»

THESES-DISSERTATIONS

I. Pispidikis, «Optimization of automated retrieval of semantic 3D city data», PhD
Thesis, Geomatics, National Technical University of Athens, 2020

I. Pispidikis, «Development of a 3D WebGIS system for retrieving and visualizing
CityGML data based on their geometric and semantic characteristics by using free
and open source technology», Master Thesis, Geomatics, National Technical
University of Athens, 2016

I Pispidikis, «Web Development of Spatial Content Management System through
the Use of Free and Open-Source Technologies. Case Study in Rural Areas»,
Bachelor Thesis, School of Rural and Surveying Engineering, National Technical
University of Athens, 2014

Page | 212

PROGRAMMING SKILLS

e Very Good Programming Knowledge: (Visual Basic, C++, C#, C)
e High level Front-end Web Development Skills (JavaScript, HTML, CSS etc.)

o High Level Back-end Web Development Skills (Web Services, Node, REST API, PHP,
Java, python, MySQL, SQLite, PostgreSQL/PostGIS, ArcSDE, ArcGIS Server,
GeoServer, MapServer etc.)

e High Level knowledge of GIS and CAD application such as AutoCAD, ArcGIS and QGIS

e High Level Knowledge and experience of developing WebGILS and Cross-Platform GIS
applications

