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Synopsis 

The determination of the probabilistic structure of the response of nonlinear dynamical systems 

excited by general stochastic noise, is a question of the utmost importance for numerous 

applications in structural dynamics, statistical physics, material sciences, environmental 

systems and elsewhere, thereby constituting the basis of uncertainty quantification. In many 

cases, the random excitations have to be considered smoothly-correlated (colored) noises. 

Hence, the complete probabilistic structure of the responses is defined by an infinite hierarchy 

of probability density functions (pdfs). Abandoning the assumption of white-noise excitation 

has profound effects on the needed theoretical background, since the Markovian character of 

responses is lost, and thus, all standard tools (e.g. Itô Calculus and Fokker-Planck-Kolmogorov 

equation) are not applicable. An alternative, efficient approach is to derive pdf evolution 

equations corresponding to the system. 
 

This thesis aims at extending a methodology used to develop evolution equations for the 

response pdf of nonlinear dynamical systems subjected to colored Gaussian excitation in order 

to account for second-order pdfs corresponding to such systems. Following this approach, we 

commence with representing the sought-for pdf as the average of a random delta function, i.e. 

the delta projection method. Then, by carrying out simple algebraic manipulations a stochastic 

alternative of the Liouville equation is obtained. This equation, called Stochastic Liouville 

Equation (SLE), is non-closed due to terms depending on both the response and the excitation 

of the examined system, and is further evaluated by employing an appropriate correlation 

splitting. The said correlation splitting is performed via the appropriate Novikov-Furutsu 

theorem for which a collection of novel extensions as well as the manner in which they can be 

formulated and proven is presented in Chapter 2.  
 

In Chapter 3 and in particular section 3.1, the main steps of these methodology are outlined for 

the response pdf of a nonlinear random differential equation (RDE) under additive, colored 

Gaussian excitation in order to present in a comprehensive manner the foundation upon which 

the derivation of second-order pdf evolution equations is established. Moreover, a more intricate 

case for the response pdf of a RDE subject to both additive and multiplicative excitation is 

presented in section 3.2. 
 

The first major result of this thesis is produced in Chapter 4, in which evolution equations for 

second-order pdfs are derived, namely for the one-time, joint response-excitation(s) pdfs. More 

specifically, in section 4.1, the case of a nonlinear, additively excited RDE is considered while 

in section 4.2, we examine the case of a both additively and multiplicatively excited RDE. 

Subsequently, in Chapter 5, for the former case, two-time response pdf evolution equations are 

formulated. Last, in Chapter 6, once for the case of a nonlinear, additively excited RDE, 

evolution equations for the two-time pdf of the response and its derivative are derived. In all the 

aforementioned chapters, we examine the potency of this methodology for a linear, additively 

excited RDE and see if the derived results correspond to the correct ones, obtained using other 

approaches. 

 

Keywords: stochastic dynamics, nonlinear random differential equations, colored noise 

excitation, second-order pdfs, uncertainty quantification, generalized Fokker-Planck-

Kolmogorov equations 
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Σύνοψη (Synopsis in Greek) 

Ο προσδιορισμός της πιθανοθεωρητικής δομής της απόκρισης μη γραμμικών δυναμικών 

συστημάτων που διεγείρονται από γενικό στοχαστικό θόρυβο είναι ένα ερώτημα ύψιστης 

σημασίας για πληθώρα εφαρμογών σε προβλήματα δομικής μηχανικής, στατιστικής φυσικής, 

επιστήμης υλικών, περιβαλλοντικά συστήματα και αλλού, καθιστώντας το, έτσι τη βάση της 

ποσοτικοποίησης της αβεβαιότητας. Σε πολλές περιπτώσεις, οι τυχαίες διεγέρσεις πρέπει να 

θεωρούνται ομαλώς συσχετισμένοι (χρωματισμένοι) θόρυβοι. Συνεπώς, η πλήρης 

πιθανοθεωρητική δομή των αποκρίσεων καθορίζεται από μια άπειρη ιεραρχία συναρτήσεων 

πυκνότητας πιθανότητας (σππ). Η εγκατάλειψη της υπόθεσης για διέγερση λευκού θορύβου 

έχει σημαντικές επιπτώσεις στο απαιτούμενο θεωρητικό υπόβαθρο, καθώς ο Μαρκοβιανός 

χαρακτήρας των αποκρίσεων χάνεται και έτσι όλα τα βασικά εργαλεία (π.χ. Itô Άλγεβρα and 

Fokker-Planck-Kolmogorov εξίσωση) δεν είναι εφαρμόσιμα. Μια εναλλακτική, 

αποτελεσματική πρακτική είναι να εξαχθούν εξελικτικές εξισώσεις σππ που αντιστοιχούν στο 

σύστημα.  
 

Η παρούσα διπλωματική εργασία στοχεύει στη διεύρυνση μια μεθοδολογίας που 

χρησιμοποιείται για την παραγωγή εξελικτικών εξισώσεων για τη σππ της απόκρισης μη 

γραμμικών δυναμικών συστημάτων που υπόκεινται σε χρωματισμένη Γκαουσιανή διέγερση, 

ούτως ώστε να συμπεριλαμβάνει δευτέρας τάξης σππ που αντιστοιχούν σε τέτοια συστήματα. 

Ακολουθώντας αυτή τη προσέγγιση, αρχίζουμε με την αναπαράσταση της αναζητούμενης σππ 

ως τη μέση τιμή μια τυχαίας συνάρτησης δέλτα, δηλαδή τη μέθοδο δέλτα-προβολών. Έπειτα, 

εκτελώντας απλούς αλγεβρικούς χειρισμούς ένα στοχαστικό ανάλογο της εξίσωσης Liouville 

εξάγεται. Αυτή η εξίσωση, που ονομάζεται στοχαστική εξίσωση Liouville (ΣΕL) είναι μη-

κλειστή λόγω όρων που εξαρτώνται τόσο από την απόκριση όσο και από τη διέγερση του 

εξεταζόμενου συστήματος, και αναλύονται εφαρμόζοντας το κατάλληλο θεώρημα Novikov 

Furutsu για το οποίο μια συλλογή από νέες επεκτάσεις, καθώς και ο τρόπος με τον οποίο αυτές 

σχηματίζονται και αποδεικνύονται, παρουσιάζεται στο Κεφάλαιο 2. 
 

Στο Κεφάλαιο 3, και πιο συγκεκριμένα στην Ενότητα 3.1, τα βασικά βήματα αυτής της 

μεθοδολογίας περιγράφονται για τη σππ της απόκρισης μιας μη γραμμικής, τυχαίας διαφορικής 

εξίσωσης (ΤΔΕ) υπό αθροιστική, χρωματισμένη Γκαουσιανή διέγερση για να παρουσιάσουμε 

με ένα σαφή τρόπο τη βάση πάνω στην οποία η εξαγωγή δευτέρας τάξεως εξελικτικών 

εξισώσεων σππ θεμελιώνεται. Επιπλέον, μια πιο περίπλοκη περίπτωση για τη σππ της 

απόκρισης μιας ΤΔΕ που υπόκειται και σε αθροιστική και σε πολλαπλασιαστική διέγερση 

παρουσιάζεται στην Ενότητα 3.2. 
 

Το πρώτο σημαντικό αποτέλεσμα αυτής της διπλωματικής εργασίας παράγεται στο Κεφάλαιο 

4, στο οποίο εξάγονται εξελικτικές εξισώσεις για σππ δευτέρας τάξης, συγκεκριμένα για τις 

ενός χρόνου, από κοινού σππ απόκρισης-διέγερσης (διεγέρσεων). Ειδικότερα, στην Ενότητα 

4.1, εξετάζεται η περίπτωση μιας μη-γραμμικής, προσθετικά διεγερμένης ΤΔΕ, ενώ στην 

Ενότητα 4.2 εξετάζουμε την περίπτωση μιας μη-γραμμικής, προσθετικά και πολλαπλασιαστικά 

διεγερμένης ΤΔΕ. Στη συνέχεια, στο Κεφάλαιο 5, για την πρώτη περίπτωση, διατυπώνονται 

εξελικτικές εξισώσεις για τη σππ της απόκρισης σε δύο χρόνους. Τέλος, στο Κεφάλαιο 6, εκ 

νέου για τη περίπτωση της μη-γραμμικής, προσθετικά διεγερμένης ΤΔΕ, εξάγονται εξελικτικές 

εξισώσεις για τη δύο χρόνων σππ της απόκρισης και της παραγώγου της. Σε όλα τα 

προαναφερθέντα κεφάλαια, εξετάζουμε την αποτελεσματικότητα αυτής της μεθοδολογίας για 
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μια γραμμική, προσθετικά διεγερμένη ΤΔΕ και βλέπουμε εάν τα προκύπτοντα αποτελέσματα 

αντιστοιχούν στα σωστά, όπως αυτά λαμβάνονται χρησιμοποιώντας άλλες προσεγγίσεις. 

 

Λέξεις-Κλειδιά: στοχαστική δυναμική, μη γραμμικές διαφορικές εξισώσεις, χρωματισμένος 

θόρυβος, δευτέρας τάξης σππ, ποσοτικοποίηση της αβεβαιότητας, γενικευμένες εξισώσεις 

Fokker-Planck-Kolmogorov 
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Chapter 1 

Introduction 

The determination of the probabilistic structure of the response of nonlinear dynamical systems 

excited by general stochastic noise, is a question of the utmost importance for numerous 

applications in structural dynamics, statistical physics, material sciences, environmental 

systems and elsewhere. In macroscopic stochastic dynamics it constitutes the basis of 

uncertainty quantification. In many cases, e.g. in economy, finance, biology, signal processing 

etc., where the systems are considered subject to white noise excitation, the problem is very 

well examined. More specifically, in these cases, the response is Markovian and thus, its 

probabilistic structure is majorly encapsulated in the transition pdf corresponding to the system; 

the evolution of the said pdf is governed by the Fokker-Planck-Kolmogorov (FPK) equation 

(Cáceres, 2017; Risken, 1996; Stratonovich, 1989; Sun, 2006, Chapter 6). However, in problems 

in which the random excitations are smoothly correlated (colored) noises and thus, the response 

is inherently non-Markovian, this convenient description, via a partial differential equation, is 

not pertinent (van Kampen, 1998). The relevance of colored noise excitation in numerous 

applications as well as the theoretical complicacies it engenders, are thoroughly discussed in a 

considerable number of works, including (P. Hänggi & Jung, 1995; Francesc Sagués, Sancho, 

& García-Ojalvo, 2007; Sapsis & Athanassoulis, 2008; van Kampen, 2007; Venturi, Sapsis, 

Cho, & Karniadakis, 2012a). Regardless of the intrinsic intricacies that are associated with the 

study of systems under colored noise excitation, numerous methods have been developed and 

proposed as an efficient means to address such systems. 
 

A brute force approach that can be applied to these problems is the Monte Carlo simulation 

(MCS). Although, the MSC approach is very versatile, it is a method of high computational 

cost, especially when high-dimensional systems are considered. Another useful methodology, 

which does not present high computational cost, is the stochastic linearization technique 

(Crandall, 2006; Roberts & Spanos, 2003). Despite some particular benefits of this technique – 

e.g. that is does not require precise knowledge of the excitation – it does not result in very 

accurate findings. One more notable approach, which also emphasizes some of the complicacies 

associated with these systems, is the formulation and solution of moment equations 

corresponding to the systems (Athanassoulis, Tsantili, & Kapelonis, 2015).  
 

The most straightforward approach, especially prominent in engineering applications, is the 

filtering approach. In this approach, the colored noise is approximated by being determined as 

an output of a “filter” equation which, in turn, is excited by white noise. This filter results in an 

augmentation of the original system of RDEs but, also, admits an exact FPK description. This 

approach – also referred to as Markovianization by extension (Krée, 1985) or embedding in a 

Markovian process of higher dimensions (P. Hänggi & Jung, 1995, sec. V. C.) – is the starting 

point of the unified colored noise approximation introduced in (P. Hänggi & Jung, 1987). 

Moreover, this approach has been used to further enhance and extend a Wiener path integral 

(WPI) technique, first developed by Kougioumtzoglou & Spanos (I. A. Kougioumtzoglou & 
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Spanos, 2012; Ioannis A. Kougioumtzoglou & Spanos, 2014), to account for non-white, i.e. 

colored, excitations (Psaros, Brudastova, Malara, & Kougioumtzoglou, 2018; Psaros, 

Kougioumtzoglou, & Petromichelakis, 2018). Although, this approach has led to notable and 

useful techniques that produce great results, its inherent drawback is that it leads to an inflation 

of the degrees of freedom in the FPK equation and as such, an analogous increase in the 

computational cost.  
 

Last, an alternative approach is formulating pdf evolution equations analogous to FPK equations 

while both taking into account the given colored excitation as well as maintaining the natural 

degrees of freedom of the examined system. A major complicacy that resides within this 

approach refers to the emergence of terms dependent on the whole time-history of response 

even in the simplest of cases, e.g. for one-time response pdf evolution equations; this 

complicacy will be discussed in detail subsequently. The derivation of these equations, also 

referred to as generalized FPK equations (Cetto, de la Peña, & Velasco, 1984) since their 

counterpart for white noise excitation is the classical FPK equation, is not a recent venture. 

Already from the 70’s by the works of (Fox, 1977; van Kampen, 1975) and later on by (Fox, 

1986; P Hänggi, 1978), this approach has been implemented in numerous cases ranging from 

energy harvesting (Harne & Wang, 2014) to medical applications (Zeng & Wang, 2010) and 

more.  
 

More recently, this methodology has been revisited, generalized and presented in a more 

systematic and comprehensive manner by Mamis, Athanassoulis et al. in (Athanassoulis & 

Mamis, 2019; Mamis & Athanassoulis, 2016; Mamis, Athanassoulis, & Kapelonis, 2019; 

Mamis, Athanassoulis, & Papadopoulos, 2018). Since this thesis aims to further extend these 

works and showcase their versatility, it is, now useful to concisely describe some of its 

fundamental parts.  
 

Recapitulation of Mamis et al., 2019 

Following (Mamis et al., 2019), we consider the prototype case of a scalar, nonlinear additively 

excited RDE: 
 

( ; ) ( ( ; ) ) ( ; )X t h X t t   = +  ,  0 0( ; ) ( )X t X = ,        (1.1a,b)  
 

where   is the stochastic argument, the overdot denotes differentiation with respect to time, 

( )h x  is a deterministic continuous function modelling the nonlinearities (restoring term), and 

  is a constant. Initial value 0 ( )X   and excitation ( ; )t   are considered correlated and 

jointly Gaussian with non-zero mean values 
0Xm , ( )m t , autocovariances 

0 0X XC , ( , )C t s  

and cross-covariance 
0

( )XC t . Then, we represent the response pdf of the random initial value 

problem (RIVP) Eqs. (1.1a,b) as the average of a random delta function: 
 

 ( ) ( ) ( ( ; ) )X tf x x X t  = − ,       (1.2)  
 

where [ ]  is the ensemble average operator. This representation of the pdf is prevalent in 

statistical mechanics (van Kampen, 2007, Chapter XVI sec. 5), where it is called Van Kampen’s 

lemma, and the theory of turbulence (Lundgren, 1967) where it is known as the pdf method. 

Herein, the term delta projection method is used reminiscent of the manner that it is derived (see 

e.g. sec. 3.1). Then by differentiating Eq. (1.2) and performing some simple manipulations, we 

find 
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( )  ( )( )

( )

( )
( ) ( ) ( ; ) ( ( ; ) )

X t

X t

f x
h x f x t x X t

t x x

   
  

+ = −  −
  

.    (1.3)  

 

Eq. (1.3) is called the stochastic Liouville equation and its derivation is shown in detail in sec. 

3.1. For reasons that will become clear in the said section, Eq. (1.3) is non-closed and nonlocal 

due to the averaged term appearing on its right-hand side. This term depends on the whole time-

history of the response and the excitation and thus, an appropriate correlation splitting technique 

must be employed, namely an appropriate extension of the Novikov-Furutsu (NF) theorem. 

After the application of the NF theorem, a novel approximation scheme, similar to the one 

presented in (Mamis et al., 2019), is utilized for the nonlocal terms. Thus, we obtain a closed, 

approximate pdf evolution equation of the form 
 

( )

( )

( )

( )

2
eff

( )2

0

( )
( ) ( ) ( )

1
( ) , ; ( ) ( ) .

!

X t

X t

M

m

m h h h X t

m

f x
h x m t f x

t x

D R t x R t f x
x m







  

=

 
 + + =
  

    
 =         


 (1.4)  

 

Through the coefficients eff

mD , called the generalized effective noise intensities, as well as the 

terms m

h   defined in paragraph 3.1.3, the pdf equation retains a trackable amount of nonlocality 

(in time) and nonlinearity, reflecting the non-Markovian character of the response. In the present 

case, this approximation has been shown to provide good results even for large correlation times 

and noise intensities. 
 

Main contributions of this thesis 

Based on the approach outlined above, in this thesis, we first showcase its versatility by 

implementing it in the case of the following RDE which is excited by both additive and 

multiplicative Gaussian excitations. 
 

1 0( ; ) ( ( ; ) ) ( ( ; ) ) ( ; ) ( ; )t h X t q X t tX t     = +  +  ,   (1.5)  
 

The consideration of an RDE subject to multiplicative colored excitation has been considered 

before by many authors, see e.g. (Cetto et al., 1984; Fox, 1986; San Miguel & Sancho, 1980b; 

Sancho, San Miguel, Katz, & Gunton, 1982). Nevertheless, herein we also consider an 

additional additive excitation and investigate the nuances that arise. To that end, we formulate 

second-order evolution equations not only for the one-time response pdf corresponding to RDE 

(1.5) but, also, the one-time joint response-excitations. The derivation of one-time joint 

response-excitation pdf evolution equation is also carried out for the RIVP (1.1a,b) in chapter 

4. The consideration of such joint pdfs does not only possesses practical value (Venturi et al., 

2012a) but it can also serve as a better approximation for response pdfs, since, as it is shown in 

this work, some terms which introduce complicacies in the response pdf evolution equations 

can easily be addressed when we take into account joint response-excitation(s) pdf evolution 

equations. Of course, in order to obtain the said equations, additional extensions to the NF 

theorem as well as suitable approximation schemes are, for the first time, introduced in the 

subsequent chapters.  
 

Furthermore, we formulate two-time pdf evolution equations corresponding to RIVP (1.1a,b). 

In particular, we focus on the derivation of an evolution equation for the two-time response pdf. 

This problem has been considered before in (Hernandez-Machado, Sancho, San Miguel, & 

Pesquera, 1983; F. Sagués, San Miguel, & Sancho, 1984; Sancho & San Miguel, 1989), albeit 
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for a multiplicatively excited RDE. In these works, the authors follow a similar approach but 

focus on the stationary properties of the evolution equation that they derive as well as the 

stationary covariance of the response obtained via the said equation. Herein, we focus more on 

the derivation of a computable, yet approximate, two-time response pdf evolution equation. 

Finally, we explore the efficiency of this methodology for the case of the two-time joint pdf of 

the response and its derivative, a problem with particular significance in first-passage problems 

(Verechtchaguina, Sokolov, & Schimansky-Geier, 2006) and outline some of the intricacies that 

arise. 
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Chapter 2 

The Novikov-Furutsu theorem 

In the present chapter, we are going to discuss one of the most fundamental tools towards the 

derivation of the pdf evolution equations, i.e. the Novikov-Furutsu (NF) theorem. The NF 

theorem is a well-known mathematical tool used for correlation splitting, that is, for evaluating 

the mean value of the product of a random functional with a Gaussian argument multiplied by 

the argument itself. Its classical form, was independently proven by (Furutsu, 1963; Novikov, 

1965) in their works on electromagnetic waves and turbulence, respectively. Recently, in 

(Athanassoulis & Mamis, 2019), the authors extended this theorem to account for mappings 

(function-functionals) of two Gaussian arguments having non-zero mean value and being 

correlated; a result of particular significance for the study of random differential equations of 

the form presented throughout this work. Therefore, in this chapter, we are going to concisely 

describe the extended NF theorem as established by the aforementioned authors as well as 

formulate and prove some other extensions needed in the subsequent chapters 4-7. 
 

2.1 The mean value of random, nonlinear (function-) functionals 

Following (Athanassoulis & Mamis, 2019), we shall first discuss the deterministic counterparts 

of the random functionals and FFℓs that are considered subsequently as well as their analytical 

properties. A more thorough discussion regarding averages of random FFℓs can also be found 

in (Mamis, 2020).  
 

Consider a real-valued function-functional 
0

[ ; ( ) ]:
t

t
uG   →Î , where =Î  

( )0[ , ]C t t →  is the space of continuous functions. The said FFℓ is assumed to have 

derivatives of any order, with respect to both the scalar argument   and the function argument 

( )u , and it is expandable in Volterra-Taylor series, jointly with respect to   and ( )u , around a 

fixed pair ( )0 0; ( )u . Henceforth, the aforementioned smoothness properties of 

0

[ ; ( ) ]
t

t
uG  will be concisely denoted as C


. Accordingly, consider a real-valued functional 

of two arguments 
0 0

[ ( ) ; ( ) ]:
t t

t t
uJ

0 1 →Î Î  possessing analogous properties to the 

previous one, i.e. ( )
0 0

0 1[ ( ) ; ( ) ]:
t t

t t
u C   →J Î Î . 

 

Τhe appropriate random FFℓ, G , is obtained by replacing the argument ( ); ( )u  by the 

random element ( )0 ( ) ; ( ; )X    which, as discussed in section 1.1, is fully described by the 

infinite-dimensional joint probability measure 
0X P . Accordingly, the functional of two random 
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arguments, J , is acquired by substituting into ( )( ) ; ( )u  the random element 

( )0 1( ; ) ; ( ; )   , which, in turn, is fully described by joint probability measure 
0 1 P . 

Since, ( )0 ( ) ; ( ; ) :X    → Î  and ( )0 1 0 1( ; ) ; ( ; ) :    → Î Î  are Borel 

measurable and the deterministic quantities G , J  are C 
, then their stochastic counterparts 

0
0[ ( ) ; ( ; ) ]

t

t
X  G  and 

0 0
0 1[ ( ) ; ( ) ]

t t

t t
 J  will also be Borel measurable. 

 

As such, by definition, the mean value of 
0

0[ ( ) ; ( ; ) ]
t

t
X  G  is expressed as 

 

       ( )
0 00

0[ ( ) ; ( ; ) ] [ ; ( ) ] ( )
X

t

Xt
X d d      

 



  = 
   

Î

G G
P

P ,  (2.1)  

 

while, the mean value of 
0 0

0 1[ ( ) ; ( ) ]
t t

t t
J    is expressed as 

 

       ( )
0 10 1

0 1

0 0
0 1 0 1 0 1[ ( ) ; ( ) ] [ ( ); ( )] ( ) ( ) .

t t

t t
d d    

   



   = 
   J J

Î Î

P
P (2.2)  

 

The above definitions involve a path integral over an infinite-dimensional space; a fact which 

constitutes their calculations inherently difficult in the majority of cases. Thus, as a more 

workable alternative, we shall express, in the following Theorems 1 and 2, the mean value of a 

random FFℓ and a random functional of two arguments via the probabilistic structure of their 

arguments. This will be accomplished by making use of the following expressions: 
 

0

00 0
0[ ; ( ) ] exp ( ) ( ; ) ( )

X

t

t

X t

t

u i X i s u s ds    


  
  = + 
  

  
P

,   (2.3)  

 

0 1 0 1

0 0

0 0
0 1[ ( ) ; ( ) ] exp ( ; ) ( ) ( ; ) ( )

t t

t t

t t

t t

u i s s ds i s u s ds    
  

  
  =  + 
  

  
 P

. (2.4)  

 

Eq. (2.3) is the joint characteristic function-functional of 0 ( )X  , ( ; )  while Eq. (2.4) is 

the joint characteristic functional of 0 ( ; ) , 1 ( ; ) . Note that in both the above 

expressions, the random elements may be dependent, having any prescribed probability 

distribution. 

 

Theorem 1 [Mean value of a random FF ]: Let 
0

[ ; ( ) ]
t

t
uG  be a sufficiently smooth 

FF , and consider the random FF , generated from 
0

[ ; ( ) ]
t

t
uG  by replacing   by a scalar 

random variable 0 ( )X   and ( )u  by a scalar random function ( ; ) . The mean value of 

the random function-functional 
0

0[ ( ) ; ( ; ) ]
t

t
X  G  is expressed by the formula  
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0

0

0

00 0

0

ˆ ˆ0

( ) ( )

0

( ) ( )

[ ( ) ; ( ; ) ] ; [ ; ( ) ]
( )

ˆ ˆexp ( ) ( ; ) [ ; ( ) ]
( )

X

X

t t

mXt t

u m

t

t

mt

u mt

X u
i u

X ds s u
u s

i









   


  






=

=

=

=

   = =     

  
  = + 

  
  



G G

G

(2.5)  

 

where    
0X

 




P
, 

0Xm  and ( )m s  are the mean values of 0 ( )X   and ( ; ) , 

respectively; /    denotes partial differentiation with respect to  , and / ( )u s  denotes 

Volterra functional differentiation with respect to the function ( )u  at s . Further, the quantities  
 

00 0
ˆ ( ) ( ) XX X m = − ,         ( )

ˆ ( ; ) ( ; ) ( )s s m s   =  −          (2.6a,b)  
 

are the fluctuations of the random elements 0 ( )X   and ( ; )s   around their mean values, 

and 
0

ˆ ˆ ( )
[ ; ( ) ]

X
u 


 is the joint characteristic FFℓ of the said fluctuations. The operator 

appearing in the right-hand side of Eq. (2.5) is called the function-functional shift operator and 

it is established in (Athanassoulis & Mamis, 2019, sec. 3).          ■ 

 

Theorem 2 [Mean value of a random functional of two arguments]: Let 

0 0
[ ( ) ; ( ) ]

t t

t t
uJ  be a sufficiently smooth functional, and consider the random functional, 

generated from 
0 0

[ ( ) ; ( ) ]
t t

t t
uJ  by replacing ( )  by a scalar random function 0 ( ; )  

and ( )u  by a scalar random function 1 ( ; ) . The mean value of the random functional 

0 0
0 1[ ( ) ; ( ) ]

t t

t t
 J  is expressed in the form  

 

  
0 0

0 1[ ( ) ; ( ) ]
t t

t t

    =
  
J  

0 1 0

1

0 0
ˆ ˆ ( ) ( )( ) ( )

( ) ( )

; [ ( ) ; ( ) ]
( ) ( )

t t

mt t

u m

u
i s i u s


 

 



= 

=

 
= = 

 
J    (2.7)  

0

1

0 0

0 0

0 1 ( ) ( )

( ) ( )

ˆ ˆexp ( ; ) ( ; ) [ ( ) ; ( ) ]
( ) ( )

t t

t t

mt t

u mt t

ds s ds s u
s u s




  

 



=

=

  
  =  + 
  

  
  J   

 

where    
0 1

 

 


P
, 

0
( )m  and 

1
( )m  are the mean values and 0

ˆ ( ; ) , 

1
ˆ ( ; )  accordingly; 0/ ( )s  and 1/ ( )u s  denotes Volterra functional differentiation 

with respect to the functions ( )  at 0s and ( )u  at 1s , respectively. Further, the quantities 
 

ˆ ( ; ) ( ; ) ( )
ii i i is s m   =  − ,   for   0 , 1i =   (2.8)  

 

are the fluctuations of the random elements 0 0( ; )s   and 1 1( ; )s   around their mean 

values and 
0 1 0 0

ˆ ˆ [ ( ) ; ( ) ]
t t

t t
u 

 
 is the joint characteristic functional of said fluctuations. 

The exact meaning of the operator appearing in the right-hand side of Eq. (2.7) will be defined 

below.                 ■ 
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Theorem 1 has first been formulated and proven by (Athanassoulis & Mamis, 2019) in a 

comprehensive manner using the Volterra technique of passing form the discrete to continuous 

and as such, its proof is omitted. However, in the ensuing paragraph 2.1.1, we are going to apply 

this approach in order to prove Theorem 2. Before we are able to proceed with the said proof, 

we must introduce the following, alternative shift operator presented in the aforementioned 

paper, namely the shift operator of a functional of two random arguments and its exponential 

form: 
 

0 0 0 0 0 0
0 0

ˆ ˆ[ ( ) ; ( ) ] [ ( ) ( ) ; ( ) ( ) ]
t t t t t t

t t t t t t
J u J u u  = + + =  

0 0 0 0
ˆ ˆ 0 0( ) ; ( )

[ ( ) ; ( ) ]
t t

u t t
T u = =G  

0 0

0 0

0 0
ˆ ˆexp ( ) ( ) [ ( ) ; ( ) ] .

( ) ( )

t t

t t

t t

t t

s ds u s ds J u
s u s

 


 
 = +
 
 
   (2.9)  

 

In the above expression, ( )
0 0

0 0( ) ; ( )
t t

t t
u  is the pair around which the Volterra-Taylor 

expansion of J  is employed. The proof of Eq. (2.9) is omitted herein since it is almost identical 

to the one presented in detail in the aforementioned paper. 
 

2.1.1 Proof of Theorem 2 

Equation (2.9) is the essential deterministic prerequisite for the proof of Theorem 1. 

Substituting, in Eq. (2.9), the arguments ( ) , ( )u  by the random arguments 0 ( ; ) , 

1 ( ; ) , we obtain the following representation of 
0 0

0 1[ ( ) ; ( ) ]
t t

t t
 G : 

 

0 1

0 10 1

0 1

0 0 0 0 0 0

0 0

0 0

0 0

0 1 ( ) 0 ( ) 1

ˆ ˆ ( ) ( )( ) ( )

0 1 ( ) ( )

ˆ ˆ[ ( ) ; ( ) ] [ ( ) ( ) ; ( ) ( ) ]

[ ( ) ; ( ) ]

ˆ ˆexp ( ; ) ( ; ) [ ( ) ; ( ) ] .
( ) ( )

t t t t t t

t t t t t t

t t

t t

t t

t t

t t

t t

G m m

T m m

ds s ds s m m
s u s

 


 

  

 

   +  + 

 =

 
 =  + 
 
 
 

G

G

G

(2.10) 

 

Recall that 
0
( )m  , 

1
( )m  are the mean values and 0

ˆ ( ; ) , 1
ˆ ( ; )  are the fluctuations 

of the random elements 0 ( ; ) , 1 ( ; )  around their mean values, see Eq. (2.8). 

 

By averaging, now, both sides of Eq. (2.10), we obtain 
 

0 1

0 0

0 0

0 0

0 1

0 1 ( ) ( )

[ ( ) ; ( ) ]

ˆ ˆexp ( ; ) ( ; ) [ ( ) ; ( ) ].
( ) ( )

t t

t t

t t

t t

t t

t t

ds s ds s m m
s u s



  


 

   =
  

  
  =  + 
  

  
 

G

G
 

(2.11) 
 

In Eq. (2.11) the averaged term is called the averaged shift operator. Recalling the form of the 

joint characteristic functional, Eq. (2.4), we see that Eq. (2.11) can also be written as 
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0 10 1

0 0

0 0

0 1

ˆ ˆ ( ) ( )( ) ( )

[ ( ) ; ( ) ]

; [ ( ) ; ( ) ] ,
( ) ( )

t t

t t

t t

t t
m m

i s i u s






  

   =
  

 
=  

 

G

G
           (2.12) 

 

which, when combined with Eq. (2.9), is the exact form in which Theorem 2 is written. This 

concludes the proof of Theorem 2.             ■ 

2.2 Extensions of the Novikov-Furutsu theorem 

At this point, it is useful to reiterate that all results presented thus far hold true regardless of the 

distribution of the random arguments of the FFℓ or the functional of two arguments. 

Nevertheless, by considering different forms of the aforementioned G  , J  (function-) 

functionals and specifying their corresponding joint characteristic FFℓ and functional as 

Gaussian ones, we will be able to derive various formulas that extend the classical Novikov-

Furutsu theorem and are instrumental in the derivation of the pdf evolution equations presented 

in this thesis. 
 

More specifically, the Gaussian form of the joint characteristic FFℓ 
0 0

[ ; ( ) ]
t

X t
u   reads 

as follows: 
 

0 0

0 0

0

0

0

0

0 0

1 2 1 2 1

Gau

2

ss

2

[ ; ( ) ]

1
exp ( ) (( , ) ( ) ( )

( ) (

)
2

1
exp exp

2
) .

t

X t

t t t

X X X X

t t t

t

t

u

i m s u s C s s u s u s ds ds

m C C s u s s

d

i d

s

 

  



  



=

 
 = − 
 
 

 
    −  − 

  
 

  



  (2.13)  

 

Accordingly, the Gaussian joint characteristic functional 
0 1 0 0

[ ( ) ; ( ) ]
t t

t t
u    reads 

 

0 1

0 0 0

0 0 0

1 1 1

0 0 0

0 1

0 0
( ) ( )

1 2 1 2 1 2

1 2 1 2 1 2

0 1 0 1

[ ( ) ; ( ) ]

1
exp ( ) ( ) ( , ) ( ) ( )

2

1
exp ( ) ( ) ( , ) ( ) ( )

2

exp ( , ) ( ) ( )

t tGauss

t t

t t t

t t t

t t t

t t t

u

i m s s ds C s s s s ds ds

i m s u s ds C s s u s u s ds ds

C s s s u s d

 

  



 

  

  

 

=

 
 = − 
 
 

 
  − 
 
 

 −

  

  

0 0

0 1 .

t t

t t

s ds
 
 
 
 
 

        (2.14)  

 

Eqs. (2.13), (2.14) are essential for the proof of the sought-for extensions. The derivation of 

these expressions is detailed in the ensuing paragraph. 
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2.2.1 Derivation of the Gaussian joint characteristic FFℓ and functional 

In this paragraph, we are going to focus on the derivation of Eq. (2.14) for the joint characteristic 

functional of two Gaussian argument; the procurement of Eq. (2.13) is similar and slightly 

simpler. For this, we must begin from the discrete analogue. We first consider the joint 

characteristic function of a random vector ( )Ξ . This is straightforwardly obtained by simple 

manipulations of a ( 2 ) −  dimensional characteristic function (see e.g. (Lukacs & Laha, 

1964)) resulting into 
 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2 2

1 1 1

2

1 1

2

1 1 1 1

2

1 1

1
( ) exp

2

exp

1 1
exp

2 2

1 1
exp

2 2

N N N

Gauss

n n mn nm
n n m

NN

n nn n
n n N

NN N N

n m n mnm nm
n m n m N

N N

n m n mnm nm
n N m m

i u u u

i u i u

u u u u

u u u u

 

= = =

= = +

= = = = +

= + =

 
= − = 

 
 

 
= +  

 
 

 
 − −  

 
 

 − −

 

 

   

 

Ξ ΞΞ

Ξ Ξ

ΞΞ ΞΞ

ΞΞ ΞΞ

u m C

m m

C C

C C

2 2

1 1

,

N N

n N N= + = +

 
 
 
 

 

   (2.15)  

 

where Ξ
m , ΞΞ

C  are the mean value and autocovariance of the random vector ( )Ξ , 

respectively. In order to transform the above equation into a more suitable form for our case we 

a) denote the first   elements of the vector by 0Ξ  and the respective arguments of the 

characteristic function by   and, in similar fashion, the remaining terms by 1Ξ  and u , 

accordingly; b) take advantage of the commutation of the sums. Thus, we find 
 

( ) ( )

( ) ( )

( )

1 1 1

2 2 2

1 1 1

2

1 1

1
( ; ) exp

2

1
exp

2

exp ,

N N N

Gauss

n n m
n nm

n n m

N N N

n n m
n nm

n N n N m N

NN

n m
nm

n m N

u i

i u u u

u

    



= = =

= + = + = +

= = +

 
= −  

 
 

 
 −  

 
 

 
 − 

 
 

  

  

 

0 1 0 0 0

1 1 1

0 1

Ξ Ξ Ξ Ξ Ξ

Ξ Ξ Ξ

Ξ Ξ

m C

m C

C

           (2.16)  

 

where 
0Ξ

m , 
0 0Ξ Ξ

C  denote the mean value and the autocovariance of the random vector 0Ξ ; 

1Ξ
m , 

1 1Ξ Ξ
C  are the mean value and the autocovariance of the random vector 1Ξ ; and 

0 1Ξ Ξ
C

denotes the cross-covariance of the two random vectors. By setting, now, ( ) ( ; ) ,n n nt  =   

( )n n nt = , ( )n n nu u t=  Volterra’s principle of passing from the discrete to the continuous 

(see e.g. (Mamis, 2020, Appendix A)), we obtain the required Eq. (2.14). Note that the 

derivation of Eq. (2.13) is similarly accomplished by considering its discrete analogue, i.e. the 

(1 )N+ − dimensional joint Gaussian characteristic function of a random variable 0 ( )X   and 

a random vector ( )Ξ , and repeating the above process. 
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2.2.2 Extensions for a random function-functional 

Now, by setting in Eq. (2.5)  
 

0

0

0

0

[ ( ) ; ( ; ) ] [ ]

( ; ) [ ( ) ; ( ; ) ] ( ; ) [ ] ,

t

t

t

t

X

t X t

 

   

  =

=    

G G

F F
           (2.17)  

 

taking into account the Gaussian joint characteristic FFℓ Eq. (2.13) and calculating the action 

of the operator 
0

ˆ ˆ ;
( )X i ui




 
 

 
 on the FF  

0
( ) [ ; ( ) ]

t

t
u t uF , the following 

extension of the NF theorem for FFℓs is obtained. 

 

Theorem 3 [Extension I of the Novikov-Furutsu theorem]: For a sufficiently smooth FFℓ of 

the form 
0

0[ ( ) ; ( ; ) ] [ ]
t

t
X   F F , whose arguments 0 ( )X  , ( ; )  are jointly 

Gaussian, the following formula holds true:  
 

 

 
0

0

( ; ) [ ]

[
(

]
)( ) [ ]

( )
XCm t t

t

X



 




 

 =

 
= + + 

  

F

F
F

            (2.18) 

0

[ ]
( , ) .

( ; )

t

t

C t d
s

 


 

 
+  

 


F
        ■ 

 

Eq. (2.18) was first derived in (Athanassoulis & Mamis, 2019) and can be promptly seen as a 

generalization to the classical form. More specifically, by setting ( ) 0m t =  and assuming that  

0 ( )X   and ( ; )t   are uncorrelated the classical form is retrieved. Moreover, following the 

aforementioned paper’s approach, the following simple, yet very useful, generalization of the 

above theorem can be obtained 

 

Theorem 4 [Extension II of the Novikov-Furutsu theorem]: For a sufficiently smooth FFℓ 

of the form 
0

0[ ( ) ; ( ; ) ] [ ]
t

t
X   F F , whose arguments 0 ( )X  , ( ; )  are 

jointly Gaussian, the following formula holds true:  
 

 

 
0

0

( ; ) [ ]

[
(

]
)( ) [ ]

( )
XCm s

s

s
X



 




 

 =

 
= + + 

  

F

F
F

            (2.19) 

0

[ ]
( , ) ,

( ; )

s

t

C t d 
 

 

 
+  

 


F
        ■ 

 

where 0t s t  . The derivation of Eq. (2.19) will be thoroughly discussed in the ensuing 

section 2.2. 
 

Further, by setting in Eq. (2.5)  
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0

0

0

0

[ ( ) ; ( ; ) ] [ ]

( ; ) [ ( ) ; ( ; ) ] ( ; ) [ ] ,

t

t

t

t

X

s X s

 

   

  =

=    

G G

F F
           (2.20)  

 

and calculating the action of the operator 
0

ˆ ˆ ;
( )X i ui




 
 

 
, this time, on the FF  

0
( ) [ ; ( ) ]

t

t
u s uF , the following extension of the NF theorem for FFℓs is obtained. Note 

that the overdot denotes the first temporal derivative. 

 

Theorem 5 [Extension III of the Novikov-Furutsu theorem]: For a sufficiently smooth FFℓ 

of the form 
0

0[ ( ) ; ( ; ) ] [ ]
t

t
X   F F , whose arguments 0 ( )X  , ( ; )  are 

jointly Gaussian, the following formula holds true:  
 

 
0

0

( ; ) [ ]

[ ]
( ) [ ] ( )

( )
X

s

m s C s
X



 




 

  = 

 
= + + 

  

F

F
F

            (2.21) 

0

[ ]
( , ) ,

( ; )

t

s

t

C s d 
 



 
+   

 
F

        ■ 

 

where 0t s t   and ( , ) ( , )s C s C s s   =   . The proof of theorems 4 and 5 will be 

outlined in the next section 2.3 
 

2.2.3 Extensions for a functional of two random arguments 

Proceeding in the same fashion as before, by setting in Eq. (2.6) 
 

 

0 0

0 0

0

1

1

0

1 1

[ ( ) ; ( ) ] [ ]

( ; ) [ ; ) ; ) ]( ; ( ( ; ) [ ] ,

t t

t t

t t

t t
s s   

  = =

=  

J J

F F
           (2.22) 

 

taking into account the joint Gaussian characteristic functional Eq. (2.14) and calculating the 

action of operator 
0 1

ˆ ˆ

0 1

;
( ) ( )i i u


   

 
 
  

 on the functional 
0 0

( ) [ ( ) ; ( ) ]
t t

t t
u s uF , 

the following extension of the NF theorem is obtained. 

 

Theorem 6 [Extension IV of the Novikov–Furutsu theorem]: For a sufficiently smooth 

functional of the form 
0 0

0 1[ ( ; ( [ ]; ) ; ) ]
t t

t t
   F F , whose arguments 

0 0
0 1; ) , ; )( (

t t

t t
    are jointly Gaussian, the following formula holds true: 
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1

0

0 1 0

1

0

0

0

( [ ]

[ ]
( ) [ ] ( , )

(

; )]

; )

t

t

s

m s C s d



  





  

  = 

 
= + +




  



F

F
F

           (2.23) 

1

0

1 1 1

1 1

[ ]
( , ) .

( ; )

t

t

C s d 
 

 

 
+  

  
F

        ■ 

 

Accordingly, by setting in Eq. (2.6) 
 

 

0 0

0 0

0

1

1

0

1 1

[ ( ) ; ( )] [ ]

( ; ) [ ; ) ;( ; ( ()] ; ) [ ] ,

t t

t t

t t

t t
s s   

  = =

= 

J J

F F
           (2.24) 

 

and calculating the action of operator 
0 1

ˆ ˆ

0 1

;
( ) ( )i i u


   

 
 
  

 on the functional 

0 0
( ) [ ( ) ; ( ) ]

t t

t t
u s uF , a different extension of the NF theorem is derived. 

 

Theorem 7 [Extension V of the Novikov–Furutsu theorem]: For a sufficiently smooth 

functional of the form 
0 0

0 1[ ( ; ( [ ]; ) ; ) ]
t t

t t
   F F , whose arguments 

0 0
0 1; ) , ; )( (

t t

t t
    are jointly Gaussian, the following formula holds true: 

 

 
1 0 1

0

0 0

0

1

0

( [ ]

[ ]
( ) [ ] ( , )

; )]

; )(

t

s

t

s

m s C s d



 




 


  

  = 

 
= +  + 

  





F

F
F

            (2.25) 

1

0

1

1

1 1

1 ; )

[ ]
( , ) .

(

t

s

t

C s d 
 

 

 
+   

  
F

       ■ 

 

2.3 Proof of the extensions of the Novikov-Furutsu theorem 

In this section, we are going to follow the approach showcased in (Athanassoulis & Mamis, 

2019) in order to prove the aforementioned extensions of the Novikov-Furutsu theorem. 

2.2.1 Proof of the extensions for a random function-functional 

Since in the presented extensions, Theorems 3-5, the arguments of the FFℓ are assumed jointly 

Gaussian, then their fluctuations defined by Eqs. (2.6a,b) will also be jointly Gaussian with zero 

mean values and the same central moments, i.e. 
0 00 0

ˆ ˆ X XX X
C C= , 

00
ˆˆ ( ) ( )XX

C C 
= , 

ˆ ˆ ( , )C
 

=  ( , )C  . As such, through Eq. (2.13), we find 
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0 0

0 0 0

0

0

0 0
1 2 1 2 1 2

Gauss

ˆ ˆ

2

( ,
1

[ ; ( ) ) ( ) ( )

( ) ( )

] exp
2

1
exp exp .

2

t t

t

X t

X X X

t

X

t t

t

C u u d d

C C

u

u di m

    



 

   

 



 
 = − 
 
 

 
    −  − 

  
 

 



    (2.26)  

 

Having obtained the above expression, it is easy to observe that the averaged shift operator

 
0

ˆ ˆ / ; ( )/
X

i ui  


   can be expressed as the product of three operators 

 

( ) ( ) ( )
0 0 0 0

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ;
( )X X X Xi ui


    

 
= 

 
T T T ,             (2.27)  

 

defined by:  
 

0 00 0

2

ˆ ˆ 2

1
exp

2
X XX X

C


 
=  

 
T ,              (2.28a)  

 

0

00
ˆ ˆ ex (p

( )
)

t

XX

t

C d
u






 
 =

 
 
T ,             (2.28b)  

 

0 0

2

ˆ ˆ

1

1 2

2

1 2

1
exp

2 ( ) ( )
( , )

t t

t t
u u

C d d
 

     

 
 =
 
 
 T .          (2.28c)  

 

These −T operators can be considered as second-order versions of the shift operators and, thus, 

termed as quadratic averaged shift operators. Using Eqs. (2.27) and (2.28), Theorem 1 for 

Gaussian arguments takes the form 
 

 
00 0 00 0

ˆ ˆ ˆ ˆ ˆˆ0

( ) ( )

[ ( ) ; ( ; ) ] [ ; ( ) ]
X

t t

X X Xt t m

u m

X u


  



   =

=

 =   
   
G T T T G .        (2.29) 

 

Therefore, it is readily understood that the proof of the presented extensions of the NF theorem 

for a random FFℓ 
0

0[ ( ) ; ( ; ) ]
t

t
X  G  is largely encapsulated on the determination of the 

action of these operators on the appropriate forms of the deterministic counterparts of the said 

FFℓ, that is 
0

[ ; ( ) ]
t

t
uG . For this, it is necessary to first examine the properties of these 

operators. 
 

Properties of the −T operators. On C 
 function-functionals, T operators are well-

defined and they have the following properties, which are needed subsequently for the proof of 

the extended NF theorem. Note that the proof of the lemmata presented in this paragraph can be 

found in (Mamis, 2020). Herein, we will only provide the proof of the properties of the 

analogous lemmata corresponding to the functional of two random arguments 
 

Lemma 2.1: −T operators are linear. That is, for any two C 
 functionals 

0
[ ; ( ) ]

t

t
uF , 

0
[ ; ( ) ]

t

t
uG  it holds true that 
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0 0

0 0

[ ; ( )] [ ; ( )]

[ ; ( )] [ ; ( )] ,

t t

t t

t t

t t

u u

u u

   

   

 + =
  

   = +
      

T G F

T G T F
            (2.30) 

 

where T  stands for any of the operators 
0 0

ˆ ˆX X
T , 

0
ˆ ˆX 

T , ˆ ˆ 
T , and a ,   are scalars or 

scalar functions having argument(s) different than the differentiation argument(s) appearing in 

the corresponding T  operator. 
 

Lemma 2.2: −T operators commute with  −  and ( )u  − differentiation. That is, for a C


 

FFℓ 
0

[ ; ( ) ]
t

t
uG , and for  

0 0 0
ˆ ˆ ˆ ˆ ˆˆ, ,

X X X  
T T T T , 

 

0

0

[ ; ( )]
[ ; ( )]

t

tt

t

u
u




 

     =
     

 

G
T G T ,            (2.31a) 

and 

0

0

[ ; ( )]
[ ; ( )]

( ) ( )

t

tt

t

u
u

u u




 

 
   =
    

 

G
T G T .           (2.31b) 

 

Lemma 2.3: T  – operators commute with each other. That is, for any C 
 FFℓ 

0
[ ; ( ) ]

t

t
uG , it holds true that  

 

0 0 0 0 0 00 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ[ ; ( ) ] [ ; ( ) ]

t t

X X X X X Xt t
u u 

    
= =T T T G T T T G  

0 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆ [ ; ( ) ]

t

X X X t
u

  
= T T T G .            (2.32) 

 

In other words, the product of the three T  – operators under any permutation of their order, 

has the same action on the FFℓ 
0

[ ; ( ) ]
t

t
uG . 

 

Proof of extensions II, III of the NF theorem. For this, we specify the FFℓ 

0
0[ ( ) ; ( ; ) ]

t

t
X  G  as 

0
0( ; ) [ ( ) ; ( ; ) ]

t

t
s X   F . Then, using Lemmata 2.1-2.3 

and Eq. (2.29) we find: 
 

 

 
0 0 0 0

0

0

0

ˆ ˆ ˆ ˆ ˆˆ

( ) ( )

( ; ) [ ( ) ; ( ; ) ]

( ) [ ; ( ) ] .
X

t

t

t

X X X t m

u m

s X

u s u





  





   =

=

   =
  

 =
  

F

T T T F
           (2.33) 

 

Eq. (2.33) is the most convenient form to calculate the result of the successive application of 

the three T  – operators on 
0

( ) [ ; ( ) ]
t

t
u s uF  and thus, prove the required extensions of 

the NF theorem. This is performed using the following lemmata. 
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Lemma 2.4. The action of operator 
0 0

ˆ ˆX X
T  on 

0

( ) [ ; ( ) ]
t

t
u s uF  is given by  

 

0 0 0 00 0
ˆ ˆ ˆ ˆ( ) [ ; ( ) ] ( ) [ ; ( ) ]

t t

X X X Xt t
u s u u s u    =
      

T F T F .            (2.34) 

 

At this point, by setting the term 
0 0 0

ˆ ˆ [ ; ( ) ]
t

X X t
u 

  
T F  as a new functional 

0
1 [ ; ( ) ]

t

t
uF  and applying the operator 

0
ˆ ˆX 

T  on both sides of the above equation, yields: 

 

0 0 0 00 0
ˆ ˆ ˆ ˆˆ ˆ 1( ) [ ; ( ) ] ( ) [ ; ( ) ]

t t

X X X Xt t
u s u u s u 

 

   =
      

T T F T F .            (2.35) 

 

The right-hand side of Eq. (2.36) can be calculated using the following result: 
 

Lemma 2.5. The action of operator 
0

ˆ ˆX 
T  on 

0
1( ) [ ; ( ) ]

t

t
u s uF  is given by 

 

0 0

0

0 0

0

0

ˆ ˆˆ ˆ1 1

1

ˆ ˆ

( ) [ ; ( ) ] ( ) [ ; ( ) ]

(
.( )

[ ; ) ]

t t

X Xt t

t

t

X X

u s u u s u

C
u

s

 





 

 

   = +
      

 
 +
 
 

T F T F

F
T

          (2.36) 

 

Then, by applying the ˆ ˆ 
T  operator on both sides of the above expression, employing Eq. 

(2.35) for the left-hand side of Eq. (2.36) and designating the term 
0 0

ˆ ˆ 1 [ ; ( ) ]
t

X t
u



 
  

T F  as 

0
2 [ ; ( ) ]

t

t
uF , we find 

 

0 0 0

0

0 0

0

0

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ 2

1

ˆ ˆ ˆ ˆ

( ) [ ; ( ) ] ( ) [ ; ( ) ]

(
(

.)
[ ; ) ]

t t

X X X t t

t

t

X X

u s u u s u

u
C s

 





   

  

   = +
      

  
  +  

    

T T T F T F

F
T T

      (2.37) 

 

We shall now elaborate on the two terms appearing in the right-hand side of Eq. (27), separately. 

First, the second term in the right-hand side of Eq. (2.37) can equivalently be expressed in terms 

of the FFℓ [ ; ( ) ]uF  by taking advantage of: a) the linearity of ˆ ˆ 
T  (Lemma 2.1); b) the 

commutation of 
0 0

ˆ ˆX X
T  with the  − derivative (Lemma 2.2); c) the definition of 1 [ ; ( ) ],uF  

as  
 

0

0 0

0

0 0 0 0

1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆˆ

[ ; ( ) ]

[ ; ( ) ]

( )

( ) .

t

t

X X

t

t

X X X X

C s
u

u
C s









  

   

  
   = 

    

 
 =
 
 

F
T T

F
T T T

           (2.38) 
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Concerning the first term in the right-hand side of Eq. (2.37), we need the following Lemma:  
 

Lemma 2.6. The action of operator ˆ ˆ 
T  on 

0
2( ) [ ; ( ) ]

t

t
u s uF  is given by 

 

0

0 0

0

ˆ ˆ ˆ ˆ2 2

2

ˆ ˆ

( ) [ ; ( ) ] ( ) [ ; ( ) ]

[ ; ( ) ]
( , ) .

( )

t t

t t

t
t

t

t

u s u u s u

u
C s d

u s

 


 

   

   

   = +
      

 
 +
 
 



T F T F

F
T

       (2.39) 

 

Combining, now, Eqs. (2.37)-(2.39) and the definition of 
2 [ ; ( ) ]uF , and employing the 

commutation of T  – operators with the ( )u  − derivative (Lemma 2), we obtain 
 

0

0 0 0 0

0 0 0 0

0

0 0 0 0

0

0 0 0

ˆ ˆ ˆ ˆ ˆˆ

ˆ ˆ ˆ ˆ ˆˆ

ˆ ˆ ˆ ˆ ˆˆ

ˆ ˆ ˆ ˆ ˆˆ

( ) [ ; ( ) ]

( ) [ ; ( ) ]

[ ; ( ) ]

[ ; ( ) ]
( , ) .

( )

( )

t

X X X t

t

X X X t

t

t

X X X X

t
t

t

X X X

t

u s u

u s u

u

u
C s d

u

C s










 



  

  

   

    

  =
  

 = +
  

 
 + +
 
 

 
 +
 
 



T T T F

T T T F

F
T T T

F
T T T

             (2.40) 

 

Finally, setting 
0Xm = , and ( ) ( )u m=  in Eq. (2.40), and applying Eq. (2.29) to each term 

of the form  
0 0 0

ˆ ˆ ˆ ˆ ˆˆX X X  
T T T  in both sides of Eq. (2.70), we obtain the extended NF 

theorem, Eq. (2.19). The proof is now completed. Moreover, Theorem 3, Eq. (2.18), can be seen 

as a special case of Eq. (2.19) and thus, its proof is also concluded. 
 

Proof of extension IV of the NF theorem. For this, we specify in Eq. (2.29) the FFℓ 

0
0[ ( ) ; ( ; ) ]

t

t
X  G  as 

0
0( ; ) [ ( ) ; ( ; ) ]

t

t
s X   F , where the overdot denotes the 

first temporal derivative. Then, using Lemmata 2.1-2.3 and Eq. (2.29) we find 
 

 

 
0 0 0 0

0

0

0

ˆ ˆ ˆ ˆ ˆˆ

( ) ( )

( ; ) [ ( ) ; ( ; ) ]

( ) [ ; ( ) ] .
X

t

t

t

X X X t m

u m

s X

u s u





  





   =

=

   =
  

 =
  

F

T T T F
           (2.41) 

 

Therefore, it is seen that, this time, we must evaluate the action of the T  – operators on the 

deterministic counterpart of 
0

0( ; ) [ ( ) ; ( ; ) ]
t

t
s X   F , i.e. 

0
( ) [ ; ( ) ]

t

t
u s uF . This 

is easily obtained by considering the following alternatives of Lemmata 4-6. 
 

 
0 0 0 00 0

ˆ ˆ ˆ ˆ( ) [ ; ( ) ] ( ) [ ; ( ) ]
t t

X X X Xt t
u s u u s u    =
      

T F T F ,            (2.42) 
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0 00 0

0

0 0

ˆ ˆˆ ˆ

ˆ ˆ

( ) [ ; ( ) ] ( ) [ ; ( ) ]

[ ; ( ) ]
,( )

t t

X Xt t

t

t

X X
C

u

s

s u u s u

u

 





 

 

   = +
      

 
 +
 
 

T F T F

F
T

           (2.43) 

 

0 0

0

0

ˆ ˆ ˆ ˆ

ˆ ˆ

( ) [ ; ( ) ] ( ) [ ; ( ) ]

[ ; ( ) ]
( , ) ,

( )

t t

t t

t
t

t

s

t

u s u u s u

u
C s d

u

 


 



   

   

   = +
      

 
 + 
 
 



T F T F

F
T

            (2.44) 

 

where ( , ) ( , ) /s C s C s s     =   . Using Eqs. (2.42), (2.43), (2.44) and following the 

process described above for the proof of extensions I and II of the NF theorem, the proof Eq. 

(2.21) is also completed.  
 

2.2.2 Proof of the extensions for a functional of two random arguments 

As already discussed in paragraph 2.2.1, since in Theorems 4-6 the arguments of the functional 

of two random arguments are then their fluctuations defined by Eq. (2.8) will also be jointly 

Gaussian with zero mean values and the same central moments, i.e. 

ˆ ˆ ( , ) ( , )
i ji j

C C  
=  with , 0, 1i j = . As such, through Eq. (2.14) we find 

 

0 00 1

0 0

1 1

0 0

0 1

0 0

0 0
ˆ ˆ 1 2 1 2 1 2

1 2 1 2 1 2

0 1 0 1 0 1

1
[ ( ) ; ( ) ] exp ( , ) ( ) ( )

2

1
exp ( , ) ( ) ( )

2

exp ( , ) ( ) ( ) .

t t

t tGauss

t t

t t

t t

t t

t t

t t

u C d d

C u u ds ds

C s u d d

         

   

     

  

 

 

 
 = − 
 
 

 
  − 
 
 

 
  −
 
 

 

 

 

(2.45)  

 

Thus, in this case, the averaged shift operator 
0 1

ˆ ˆ 0 1( ) ; ( )/ / ui i   
 

    takes the 

form 
 

( ) ( ) ( )
0 1 0 0 1 1 0 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

0 1

;
( ) ( )i i u


         

 
= 

  

T T T ,            (2.46)  

 

with the three quadratic averaged shift operators defined by 
 

 
0 00 0

0 0

2

ˆ ˆ 0 1 0 1

0 1

1
exp ( , )

2 ( ) ( )

t t

t t

C d d   
   

  

 
 =
 
 
 T ,          (2.47a)  
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1 11 1

0 0

2

ˆ ˆ 0 1 0 1

0 1

1
exp ( , )

2 ( ) ( )

t t

t t

C d d
u u

   
 

  

 
 =
 
 
 T ,          (2.47b)  

 

 
0 10 1

0 0

2

ˆ ˆ 0 1 0 1

0 1

exp ( , )
( ) ( )

t t

t t

C d d
u

   
  

  

 
 =
 
 
 T .          (2.47c)  

 

Using Eqs. (2.46), (2.47) Theorem 2 for Gaussian arguments takes the form 
 

   
1 1 0 1 0 0 0 0 00 0

ˆ ˆ ˆ ˆ ˆ ˆ0 1

( ) ( )

[ ( ; ) ; ( ; ) ] [ ( ) ; ( ) ]
X

t t t t

t t t t m

u m

u


  



      =

=

  =   
   
J T T T J . 

(2.48) 
 

Therefore, by considering the appropriate forms of the functional 
0 0

0 1[ ( ; ) ; ( ; ) ]
t t

t t
  J  

and calculating the action of the −T  operators on its corresponding deterministic counterparts 

0 0

[ ( ) ; ( ) ]
t t

t t
uJ  the required generalizations of the NF theorem are obtained. Proceeding in 

the same fashion as in paragraph 2.2.1, let us examined the properties of these operators 
 

Properties of the −T operators. On C 
 functionals, T  operators are well-defined and 

they have the following properties; the proof of the following lemmata is provided in Appendix 

A. 
 

Lemma 2.7. T  – operators are linear. That is, for any two C 
 functionals 

0 0
[ ( ) ; ( ) ]

t t

t t
uG , 

0 0
[ ( ) ; ( ) ]

t t

t t
uF  it holds true that 

 

0 0 0 0

0 0 0 0

[ ( ) ; ( ) ] [ ( ) ; ( ) ]

[ ( ) ; ( ) ] [ ( ) ; ( ) ] ,

t t t t

t t t t

t t t t

t t t t

u u

u u

   

   

 + =
  

   = +
      

T G F

T G T F
       (2.49) 

 

where T  stands for any of the tree operators 
0 0 1 1 0 1

ˆ ˆ ˆ ˆ ˆ ˆ, ,
     

T T T  , and a ,   are scalars 

or scalar functions having argument(s) different than the differentiation argument(s) appearing 

in the corresponding T  operator. 
 

Lemma 2.8. T  – operators commute with 0( )  −  and 1( )u  −  differentiation. That is, 

for any C 
 functional 

0 0
[ ( ) ; ( ) ]

t t

t t
uG , it holds true that  

 

 
0 0

0 0
0 1

[ ( ) ; ( )]
[ ( ) ; ( )]

( ) ( )

t t

t tt t

t t

u
u




   

 
   =
    

 

G
T G T ,           (2.50a) 

 

and 

 
0 0

0 0
1 1

[ ( ) ; ( )]
[ ( ) ; ( )]

( ) ( )

t t

t tt t

t t

u
u

u u




 

 
   =
    

 

G
T G T ,          (2.50b) 
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where  
0 0 1 1 0 1

ˆ ˆ ˆ ˆ ˆ ˆ, ,
     

T T T T . 

 

Lemma 2.9: T  – operators commute with each other. That is, for any C 
 functional 

0 0
[ ( ) ; ( ) ]

t t

t t
uG , it holds true that  

 

1 1 0 1 0 0

0 1 1 1 0 0

0 0

0 0

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

[ ( ) ; ( ) ]

[ ( ) ; ( ) ]

t t

t t

t t

t t

u

u





     

     

=

= =

T T T G

T T T G
 

0 0 0 1 1 1 0 0
ˆ ˆ ˆ ˆ ˆ ˆ [ ( ) ; ( ) ].

t t

t t
u

     
= T T T G             (2.51) 

 

In other words, the product of the three T  – operators under any permutation of their order, 

has the same action on the functional 
0 0

[ ( ) ; ( ) ]
t t

t t
uG . 

 

Proof of extensions IV, V of the NF theorem. At this point, by specifying the functional 

0 0
0 1[ ( ; ) ; ( ; ) ]

t t

t t
  J  as 

0 0
1 0 1( ; ) ; ( ; )( ; ) [ ]

t t

t t
s     F , using Lemmata 2.7-

2.9 and Eq. (2.48) we find the appropriate expression for the proof of Eq. (2.23), 
 

 

 
1 1 0 1 0 0 0

1

0 0

0 0

1 0 1

ˆ ˆ ˆ ˆ ˆ ˆ ( ) ( )

( ) ( )

( ; ) [ ( ; ) ; ( ; ) ]

( ) [ ( ) ; ( ) ] .

t t

t t

t t

mt t

u m

s

u s u





  






=     

=

    =
  

 =
  

F

T T T F
       (2.52) 

 

Accordingly, setting 
0 0

0 1[ ( ; ) ; ( ; ) ]
t t

t t
   =J

0 0
1 0 1( ; ) ; ( ; )( ; ) [ ]

t t

t t
s     F , 

we obtain the following, appropriate form for the proof of Eq. (2.24): 
 

 

 
1 1 0 1 0 0 0

1

0 0

0 0

1 0 1

ˆ ˆ ˆ ˆ ˆ ˆ ( ) ( )

( ) ( )

( ; ) [ ( ; ) ; ( ; ) ]

( ) [ ( ) ; ( ) ] .

t t

t t

t t

mt t

u m

s

u s u





  






=     

=

    =
  

 =
  

F

T T T F
       (2.53) 

 

Similar to the profs presented in the previous paragraph, we must again calculate the action of 

these T  – operators on 
0 0

( ) [ ( ) ; ( ) ]
t t

t t
u s uF  and 

0 0
( ) [ ( ) ; ( ) ]

t t

t t
u s uF . This is 

accomplished be making use of the following lemmata. 
 

Lemma 2.10. The action of operator 
0 0

ˆ ˆ 
T  on 

0 0
( ) [ ( ) ; ( ) ]

t t

t t
u s uF  is given by 

 

0 0 0 00 0 0 0
ˆ ˆ ˆ ˆ( ) [ ( ) ; ( ) ] ( ) [ ( ) ; ( ) ]

t t t t

t t t t
u s u u s u 

   

   =
      

T F T F .          (2.54) 

 

Accordingly, the action of operator 
0 0

ˆ ˆ 
T  on 

0 0
( ) [ ( ) ; ( ) ]

t t

t t
u s uF  is given by 

 

0 0 0 00 0 0 0
ˆ ˆ ˆ ˆ( ) [ ( ) ; ( ) ] ( ) [ ( ) ; ( ) ]

t t t t

t t t t
u s u u s u 

   

   =
      

T F T F .          (2.55) 

 

Lemma 2.11. The action of operator 
0 1

ˆ ˆ 
T  on 

0 0
( ) [ ( ) ; ( ) ]

t t

t t
u s uF  is given by 
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0 1 0 1

0 1 0 1

0

0 0 0 0

0 0

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ0 0

0

( ) [ ( ) ; ( ) ] ( ) [ ( ) ; ( ) ]

[ ( ) ; ( ) ]
( , ) .

( )

t t t t

t t t t

t t
t

t t

t

u s u u s u

u
C s d

 


 

 

   

   

   = +
      

 
 +
 
 



T F T F

F
T

       (2.56) 

 

Accordingly, the action of operator 
0 1

ˆ ˆ 
T  on 

0 0
( ) [ ( ) ; ( ) ]

t t

t t
u s uF  is given by 

 

0 1 0 1

0 1 0 1

0

0 0 0 0

0 0

ˆ ˆ ˆ ˆ

ˆ ˆ0 0

0

( ) [ ( ) ; ( ) ] ( ) [ ( ) ; ( ) ]

[ ( ) ; ( ) ]
( , ) .

( )

t t t t

t t t t

t t
t

t t

s

t

u t u u s u

u
C s d

 


 

 

   

   

   = +
      

 
 + 
 
 



T F T F

F
T

      (2.57) 

 

Lemma 2.12. The action of operator 
1 1

ˆ ˆ 
T  on 

0 0
( ) [ ( ) ; ( ) ]

t t

t t
u s uF  is given by 

 

1 1 1 1

1 1 1 1

0

0 0 0 0

0 0

ˆ ˆ ˆ ˆ

ˆ ˆ1 1

1

( ) [ ( ) ; ( ) ] ( ) [ ( ) ; ( ) ]

[ ( ) ; ( ) ]
( , ) .

( )

t t t t

t t t t

t t
t

t t

t

u s u u s u

u
C s d

u

 


 



   

   

   = +
      

 
 +
 
 



T F T F

F
T

        (2.58) 

 

Accordingly, the action of operator 
1 1

ˆ ˆ 
T  on 

0 0
( ) [ ( ) ; ( ) ]

t t

t t
u s uF  is given by 

 

1 1 1 1

1 1 1 1

0

0 0 0 0

0 0

ˆ ˆ ˆ ˆ

ˆ ˆ1 1

1

( ) [ ( ) ; ( ) ] ( ) [ ( ) ; ( ) ]

[ ( ) ; ( ) ]
( , ) .

( )

t t t t

t t t t

t t
t

t t

s

t

u s u u s u

u
C s d

u

 


 



   

   

   = +
      

 
 + 
 
 



T F T F

F
T

        (2.59) 

 

Finally, repeating the process presented in paragraph 2.2.1 for 
0 0

( ) [ ( ) ; ( ) ]
t t

t t
u s uF  as 

well as 
0 0

( ) [ ( ) ; ( ) ]
t t

t t
u s uF  yields the sought-for extensions Theorem 4 and 5, 

respectively. This concludes the proofs of the said theorems. 
 

2.4 Generalizations of Theorems 6 and 7 

In this section, we are going to present the generalizations of Theorems 6, 7. More specifically, 

we shall consider the cases in which J  is both a function of 0 ( )X   and a functional of 

excitations 
0

0 ( )
t

t
  and 

0
1 ( )

t

t
 , i.e. 

0 0
0 0 1[ ] [ ( ) ; ( , ) ; ( , )]

t t

t t
X    J = J .  

 

Specifying, thus, J  as 
 

0 0

0 0

0 0 1

1 0 0 1 1

[ ] [ ( ) ; ( , ) ; ( , ) ]

( ; ) [ ( ) ; ( , ) ; ( , ) ] ( ; ) [ ] ,

t t

t t

t t

t t

X

s X s

  

    

  =

=    = 

J = J

F F
  (2.60) 
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where 
0t s t  . Then, taking into account its corresponding joint characteristic FFℓ and the 

appropriate operator, the following theorem can be proven: 
 

Theorem 8 [ Extension VI of the Novikov-Furutsu theorem]: For a sufficiently smooth 

functional of the form 
0 0

0 0 1[ ( ) ; ( , ) ; ( , )] [ ]
t t

t t
X     F F , whose arguments 

0 ( ) ,X   
0 0

0 1; ) , ; )( (
t t

t t
    are jointly Gaussian, the following formula holds true: 
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0 1 0
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0

0 0

0
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[ ]
( ) [ ] ( )

( )
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( )
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( ) (

X

X

t

t

s

m s C s
X
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      (2.61) 

1
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1 1 1

1 1

[ ]
( , ) .
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t

t

C s d 
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Accordingly, by setting: 
 

0 0

0 0

0 0 1

1 0 0 1 1

[ ] [ ( ) ; ( , ) ; ( , ) ]

( ; ) [ ( ) ; ( , ) ; ( , ) ] ( ; ) [ ] ,

t t

t t

t t

t t

X

s X s

  

    

  =

=    = 

J = J

F F
  (2.62) 

 

the following theorem can be proven. 
 

Theorem 9 [ Extension VII of the Novikov-Furutsu theorem]: For a sufficiently smooth 

functional of the form 
0 0

0 0 1[ ( ) ; ( , ) ; ( , )] [ ]
t t

t t
X     F F , whose arguments 

0 ( ) ,X   
0 0

0 1; ) , ; )( (
t t

t t
    are jointly Gaussian, the following formula holds true: 
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( )

[ ] [ ]
( ) ( , )
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The proofs of theorems 8, 9 are not presented herein but can easily be proven by following the 

approach presented in section 2.2. 
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Chapter 3 

One-time response pdf evolution equations 

The present chapter will serve as an outset for demonstrating in a comprehensive manner the 

methodology upon which the extensions presented in this thesis are founded. More specifically, 

we showcase the fundamental steps towards apprehending one-time pdf evolution equations for 

the response of nonlinear systems under colored Gaussian excitation. It must be noted that the 

results presented in paragraph 3.1 have been first presented in (Mamis et al., 2019) while the 

ones presented in paragraph 3.2 are derived by employing the same methodology in a different 

case, namely that in which the RDE is excited by both additive and multiplicative colored 

Gaussian noise. 
 

3.1 The case of a scalar, nonlinear, additively excited RDE 

We commence from the study of the following scalar, nonlinear, additively excited RDE 

presented in Chapter 1: 
 

( ; ) ( ( ; ) ) ( ; )X t h X t t   = +  ,  0 0( ; ) ( )X t X = .        (3.1a,b)  
 

As was also presented in the said chapter, in the above random initial value problem (RIVP)   

is the stochastic argument, the overdot denotes differentiation with respect to time, ( )h x  is a 

deterministic continuous function modelling the nonlinearities (restoring term), and   is a 

constant. Initial value 0 ( )X   and excitation ( ; )t   are considered correlated and jointly 

Gaussian with non-zero mean values 
0Xm , ( )m t

, autocovariances 
0 0X XC , ( , )C t s  and 

cross-covariance 
0

( )XC t . 

 

3.1.1 The corresponding stochastic Liouville equation  

The starting point of our analysis in all cases is the delta projection method. As presented in 

section 2.1, by virtue of probability measure ( ) ( )X P , the mean value of a ( ) −B X Î

measurable functional of the response and excitation, 
0 0

[ ( ; ) ; ( ; ) ]
t t

t t
X  G , is defined 

as 
 

( )

( ) ( ) 0 0

( ) ( )

[ ( ; ) ; ( ; ) ]

[ ( ) ; ( ) ] ( ) ( ) .

X

t t

t t

X

X

d d

  

   







  =
  

= 

G

G

P

P

X Î

   (3.2)  

 

Let us, now, consider its discrete analogue 
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( )

( ) ( )

1 1

1 1 ( ) ( )

( ( ) ; ( ) )

( ; ) , , ( ; ) ; ( ; ) , , ( ; )

( ) , , ( ; ) ; ( ) , , ( ) ( ) ( ) ,

m n

m n X

G

G X X s s

G s s d d





 

     

        



=

 =   =
 

= 

X Ξ

P

X Î

(3.3)  

 

where ( ( ) ; ( ) )G  X Ξ  is a ( ) −B X Î measurable function, and ( )X , ( )Ξ  are the 

m−  and n− dimensional random vectors defined as the response and excitation in multiple 

(fixed) time instances 1 1 0, , , , , [ , ]n ms s t t   , respectively. Note that Eq. (3.2) can be 

obtained via Eq. (3.3) by applying Volterra’s passing from the discrete to the continuous 

(Athanassoulis & Mamis, 2019; Mamis, 2020; Venturi et al., 2012a). Since the integrand on the 

right-hand side of Eq. (3.3) depends only on the specific values of the path functions ( )  and 

( ) , the infinite-dimensional integral in Eq. (3.2) is reduced to a ( )n m+ − dimensional one, 

with respect to marginal, ( )n m+ − point measure 
1 1( ) ( ) ( ) ( )m nX X s s   P   

 

  ( )
1 1( ) ( ) ( ) ( )( ( ) ; ( ) ) ( ; )

m n

n m

X X s sG G d d

  
+

 = X w z w zΞ P .  (3.4)  

 

Under the assumption that the point measure 
1 1( ) ( ) ( ) ( )m nX X s s   P  is smoothly distributed, i.e. 

the joint pdf 
1 1( ) ( ) ( ) ( ) ( , )

m nX X s sf     w z  exists, Eq. (3.4) can be written as 

 

 
1 1( ) ( ) ( ) ( )( ( ) ; ( ) ) ( ; ) ( , )

m n

n m

X X s sG G f d d

  
+

 = X w z w z w zΞ . (3.5)  

 

By considering Volterra’s passing, in the opposite direction, Eq. (3.5) for ,n m →   gives rise 

to 
 

 
( ) ( ) 0 0

( ) ( )

[ ( ; ) ; ( ; ) ]

[ ( ) ; ( ) ] [ ( ) ; ( ) ] ( ) ( ) ,

X

t t

t t

X

X

f d d

  

     







  =
  

= 

G

G

P

X Î

 (3.6)  

 

which is an equivalent expression of Eq. (3.2), under the assumption that the infinite-

dimensional joint response-excitation probability density functional ( ) ( ) [ ( ) ; ( ) ]Xf    

exists, see e.g. (Fox, 1986).  
 

Using, now, Eq (3.6) to express the average of the random delta function ( ( ; ) )x X t − , we 

find 
 

 

  ( )( ( ; ) ) ( ) ( ) ,X tx X t x w f w d w   − = −      (3.7)  

 

which by employing the identity for the delta function is transformed into 
 

 ( ) ( ) ( ( ; ) )X tf x x X t  = − .       (3.8)  
 

Then, by differentiation both sides of the above equation we obtain 
 

  ( ) ( ) ( ( ; ) )
( ( ; ) ) ( ; )

( ; )

X tf x x X t
x X t X t

t t X t

   
  



    −
= − =  

   
. (3.9)  
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The rightmost side of Eq. (3.9) is derived by interchanging differentiation and expectation 

operators and using chain rule in differentiation. Now, substituting Eq. (3.1a) into Eq. (3.3) 

results in 
 

      
( ) ( ) ( ( ; ) ) ( ( ; ) )

( ( ; ) ) ( ; ) .
( ; ) ( ; )

X tf x x X t x X t
h X t t

t X t X t

    
  

 

     −  −
= +    

     
 

(3.10)  
 

Each term on the right-hand side of the above expression is subsequently evaluated using the 

delta projection method’s formalism, as follows: 
 

( )

( ( ; ) ) ( )
( ( ; ) ) ( ) ( )

( ; )
X t

x X t x w
h X t h w f w d w

X t w

   




  −  −
= = 

  
  

( )( )( ) ( )X th x f x
x


= −


.              (3.11) 

 

2

2

( ) ( )

( ) ( )

( ) ( )

( ( ; ) ) ( )
( ; ) ( , )

( ; )

( , )

( ) ( , )

X t t

X t t

X t t

x X t x w
t z f w z dwdz

X t w

z f x z dz
x

x w z f w z dwdz
x

   












  −  −
 = = 

  


= − =




= − − =









 

 ( ( ; ) ) ( ; )x X t t
x

   


= − − 


.            (3.12) 

 

For Eqs. (3.11), (3.12) to be valid, the function ( )h x  of RDE (3.1a) as well as pdfs 
( ) ( )X tf x , 

( ) ( ) ( , )X t tf x y
 should possess continuous first derivatives. At this point, substituting Eqs. 

(3.11) and (3.12) into Eq. (3.10) provides us with 
 

         ( )  ( )( )

( )

( )
( ) ( ) ( ; ) ( ( ; ) )

X t

X t

f x
h x f x t x X t

t x x

   
  

+ = −  −
  

.     (3.13)  

 

Eq. (3.13) is called the stochastic Liouville equation (SLE) pertaining to RIVP (3.1a,b), a term 

introduced by Kubo in (Kubo, 1963). This equation has been derived by many authors in the 

past, using various approaches, e.g.(Cetto et al., 1984; Fox, 1986; P Hänggi, 1978; San Miguel 

& Sancho, 1980a). Moreover, the initial condition of SLE (3.5) is easily determined through the 

data of RIVP (3.1a,b) to 
 

 
0 0( ) ( ) ( )X t Xf x f x= .                 (3.14) 

 

At this point, it is readily seen that the SLE (3.13) is exact, yet non-closed due to the term 

 ( ; ) ( ( ; ) )X t x X t    =  − , appearing on its right-hand side. Thus, in order to 

proceed and obtain a more workable alternative to SLE (3.13), the explicit dependence of the 

X  over the excitation ( ; )t   must be eliminated.  
 

Transformed SLE. Before we continue with the treatment of SLE (3.13), it must be noted that 

the response ( ; )X t   is regarded, through the solution of RIVP (3.1), as a function-functional 
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(FFℓ) on the initial value 
0 ( )X   and the time history of the excitation ( ; ) , from the initial 

time 
0t  to the current time t ; a perception which also emphasizes the non-Markovian character 

of the response. The notation 
0

0( ; ) [ ( ) ; ( ; ) ]
t

t
X t X X  =   is used subsequently, 

whenever it is needed to remember the dependence of the response on 
0 ( )X   and ( ; ) . 

The above discussion makes clear that SLE (3.13) is not only non-closed but also nonlocal by 

virtue of the dependence of
X

 on the whole history of the excitation.  

 

Returning to the treatment of SLE (3.13), the averaged term, 
X

, can equivalently be written 

as 
 

 

( )
0

0

( ; ) ( ( ; ) )

( ; ) [ ( ) ; ( ; ) ] ,

X

t

t

t x X t

t x X X





  

   

 =  − =

 =  − 
  

            (3.15)  

 

which is also the appropriate form for the application of Extension I of the NF theorem, Eq. 

(2.18) as presented in sec. 2.2 under the comprehension that the random delta function 

( ( ; ) )x X t − = ( )
0

0[ ( ) ; ( ; ) ]
t

t
x X X  −   is considered a FFℓ like =F  

0
0[ ( ) ; ( ; ) ]

t

t
X  F . Thus, applying the NF theorem to the non-local term X  yields 
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           (3.16)  

 

The averages in the last two terms of Eq. (3.16) can be further evaluated by making use of the 

chain rule for the derivatives of the random delta function as 
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( )

( )

( )

0 0

0

0

0

0

0

0

0

( )

( ; ) ( ; )
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(3.17)  
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where 
0

( ; )
X

V t  , 
( )

( ; )V t





 are defined as the derivatives of the response with respect to 

initial value and excitation, respectively: 
 

0

0

0

0

[ ( ) ; ( ; ) ]
( ; )

( )

t

t

X

X X
V t

X

 




 
=


,             (3.18a)  

 

0
0

( )

[ ( ) ; ( ; ) ]
( ; )

( ; )

t

t
X X

V t

 


 



=


.             (3.18b)  

 

and are collectively called the variational derivatives of the response. Despite the response 

being the solution to a nonlinear RDE, its variational derivatives are easily calculated by 

formulating and solving the corresponding variational equations as it is performed in the 

subsequent paragraph 3.1.2.  
 

Heretofore, we have considered the response as an FFℓ with Gaussian arguments, 

0
0[ ( ) ; ( ; ) ]

t

t
X X   , in order to be able to employ the NF theorem and the chain rule. We 

shall now revert to considering the response as a random function per se, ( ; )X t  ; doing so, 

simplifies the notation and allows us to carry out some simple manipulations of the delta 

projection method for the averaged terms of Eq. (3.17). Thus, we find 
 

( )

( )

( )

0 0

0

( )

( )

( ; ) ( ; ) ( ) ( )

( ) ( ; ) ( ; )

( , ) ( ; ) ( ; ) .

X t

X X

t

t

t x X t m t f x

C t x X t V t
x

C t x X t V t d
x









  

  

    





 

 − = −  


 − − −
 


 − −  

           (3.19)  

 

Last, combining Eqs. (3.13) and (3.19) results in the following transformed SLE for the one-

time response pdf ( ) ( )X tf x : 
 

( )

( )

( )

0

0

0

( )

( )

2

2

2

( )2

( )
( ) ( ) ( )

( ; ) ( ; )

( , ) ( ; ) ( ; ) .

( )

X t

X t

X X

t

t

f x
h x m t f x

t x

x X t V t
x

C t x X t V t d

t

x

C 







   

     





 

 
 + + =
  


 = − +
 


 + −  

      (3.20)  

 

By comparing the transformed SLE (3.20) to its previous form, Eq. (3.13), we observe that the 

use of the NF theorem results in: i) an augmented drift term, which can be identified as the right-

hand side of RDE (3.1) with excitation replaced by its mean value, ii) the appearance of second 

order x− derivatives in the right-hand side of the equation, and iii) the appearance of the 

averages of the random delta function multiplied by the variational derivatives of the response 

with respect to initial value and excitation.  
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3.1.2 Formulation and solution of the variational equations 

In the present paragraph, we formulate and solve the initial value problems governing the 

variational derivates 
0

( ; )
X

V t   and 
( )

( ; )V t





. Before we begin, it must be noted that all 

manipulations performed here regarding the solution ( ; )X t   of RIVP (3.1) are of purely 

analytic character. Hence, they can be executed path-wise, i.e. for every value of the stochastic 

argument   separately. On a practical level, this equals to discarding the stochastic argument 

 , and working with the deterministic initial value problem  
 

( ) ( ( ) ) ( )X t h X t t= +  ,  
0 0( )X t X= .        (3.21a,b) 

 

Assuming that all appropriate conditions ensuring the existence and the uniqueness of solution 

of IVP (3.21a,b) hold true, we are interested in the dependence of the solution on the initial 

value 0X  and the excitation function 
0

( )
t

t
 . Thus, the solution is considered as a function-

functional on initial value 0X  and excitation 
0

( )
t

t
 , denoted by 

0
0[ ; ( ) ]

t

t
X X  .  

 

Being parameters of the solution, we may calculate the derivatives of the solution with respect 

to 0X  and 
0

( ; )
t

t
 , by formulating and solving the corresponding variational equations 

along the solution, see e.g. (Amann, 1990; Anosov & Arnold, 1987; Grigorian, 2008). 
 

(a) Variational IVP with respect to initial value and its solution 
 

By applying the differential operator 0/ X   on both sides of Eqs. (3.21a,b) and under the 

assumption that, for a given  , excitation ( )t  is not functionally dependent on 0X , we obtain 
 

0 0
( ) ( ( ; ) ) ( )X XV t h X t V t= ,  

0 0( ) 1XV t = ,        (3.22a,b)  

 

where the prime denotes the first derivative of ( )h  with respect to its argument. In turn, IVP 

(3.22a,b) is recognized as a linear ordinary differential equation for the sought-for variational 

derivative which can easily be solved as 
 

( )
0

0

( ) exp ( )

t

X

t

V t h X u du
 
 =
 
 
 .                (3.23)  

 

Returning to the notation of RIVP (3.1a,b), Eq. (3.23) is written as 
 

( )
0

0

( ; ) exp ( ; )

t

X

t

V t h X u du 
 
 =
 
 
 .                (3.24) 

 

(b) Variational IVP with respect to excitation and its solution 
 

Working in similar fashion as above, we apply the differential operator / ( ) , 0[ , ]t t   

on both sides of Eqs. (3.21a,b). For this, we assume that Volterra derivative has analogous 

properties to the usual partial derivative, i.e. is linear, can be interchanged with the temporal 

derivative and obeys the usual chain rule of differentiation. Taking account of the 

aforementioned assumptions, application of the Volterra differential operator on Eqs. (3.21a,b) 

yields 
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( ) ( )( ) ( ( ) ) ( )
( )

( )
V t h X t V t

t
  


 

= +



,              (3.25)  

 

along with the initial condition 
 

( ) 0( ) 0V t = .                (3.26a)  
 

Moreover, since for a given path function ( ) , the value of ( )t  does not functionally 

depend on the value ( ) , for t  , Eq. (3.25) can be written as 
 

 ( ) ( )( ) ( ( ) ) ( ) ( )V t h X t V t t     
= + − ,            (3.26b)  

 

where ( )t −  denotes the Dirac delta function. Since, by causality, any perturbation ( ) , 

in excitation at time  , cannot result in a perturbation ( )X t  for t  , we have 
( ) ( ) 0V t =  

for t  . By integrating, now, Eq. (3.26b) over [ , ]t − , for small 0  , and taking the limit 

0 → , we obtain 
 

( ) ( )( ) ( ( ) ) ( ) du

t

V t h X u V u 



 
= + .               (3.27)  

 

Eq. (3.27) is a Volterra integral equation of the second kind, equivalent to the linear IVP 

(Polyanin & Manzhirov, 2008) 
 

( ) ( )( ) ( ( ) ) ( )V t h X t V t  
= ,  ( ) ( )V    = .       (3.28a,b)  

 

Thus, IVP (3.28a,b) is linear ODE which can easily be solved as 
 

( )( ) ( ) exp ( )

t

V t h X u du





 
=  

 
 
 ,                (3.29)  

 

which is the required variational derivative with respect to excitation. 
 

Last, returning to the notation of the RIVP gives rise to 
 

( )( ) ( ; ) exp ( ; )

t

V t h X u du



  

 
=  

 
 
 .                (3.30) 

 

3.1.3 One-time response pdf evolution equations 

Having obtained expressions (3.24) and (3.30) for the variational derivatives 
0

( ; )
X

V t   and 

( )
( ; )V t





 respectively, we can readily identify them as functionals of the response. In 

addition, in order to simplify the notation, we set 
 

( )[ ( ; ) ] ( ; )

t

t

h X h X u du




 
= I .               (3.31)  

 

Subsequently, substituting Eqs. (3.24) and (3.30) into Eq. (3.20) and using the above notation, 

we obtain the following exact, non-closed one-time response pdf evolution equation: 
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( )

( ) ( )

( ) ( )

0

0

0

( )

( )

2

2

2
2

2

( )
( ) ( ) ( )

( ; ) exp [ ( ; ) ]
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(

.
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f x
h x m t f x

t x

x X t XC t
x

C t x X t X d
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 + + =
  

  = − +
  

  + −
  

I

I

(3.32)  

 

Under this notation, the fact that the derived SLE is non-closed and nonlocal becomes apparent 

by the presence of the two nonlocal terms inside the averages, carrying the time history of the 

response ( ; )X t  , that multiply the random delta function. This form, despite being exact, is 

of little practical use since its analytical, numerical solution is virtually impossible, from a 

computational cost point of view. As such, in this paragraph, we are going to employ and 

concisely describe an approximation scheme, similar to the one introduced in (Mamis et al., 

2019), in order to obtain a closed, computable, albeit approximate alternative to SLE (3.32). 
 

First, a decomposition of the effect of nonlinearity, ( )( ; )h X u  , is performed as follows: 
 

( ) ( )exp ( ; ) exp ( ) exp ( ; )

t t t

h hh X u du R u du X u du

  

   

     
 =      

     
     
                 (3.33)  

 

in which ( )( ) ( ; )hR u h X u 
=     is the mean effect and ( )( ; ) ; ( )h h hX u R u     =  

( )( ; ) ( )hh X u R u 
 −  is the fluctuation. Afterwards, a current-time approximation for the 

fluctuation integral is utilized, which is efficient under the assumption that the fluctuation is 

small:  
 

( ) ( )( )exp ( ; ) exp ( ) exp ( ; ) ( )

t t

h hh X u du R u du X t t

 

    

   
   −   

   
   
  .       (3.34)  

 

Last, we take the Taylor expansion of the fluctuation exponential, truncated at M-th term:  
 

( )
( )

0

( ; )
exp ( ; ) exp ( ) ( )

!

t t mM
h m

h

m

X t
h X u du R u du t

m
 

 
 





=

   
   −   

   
   

  .        (3.35)  

 

Substituting, the above approximation scheme into SLE (3.32) results in the following closed, 

approximate, one-time pdf evolution equation corresponding to RIVP (3.1a,b): 
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h x m t f x
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D R t x R t f x
x m
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 + + =
  

    
 =         


          (3.36)  

 

where 
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         (3.37)  

 

Through the coefficients eff

mD , called the generalized effective noise intensities, and the terms 

m

h  , the pdf equation retains a trackable amount of nonlocality (in time) and nonlinearity, 

reflecting the non-Markovian character of the response.  
 

Remark 3.1. Although the assumption for the fluctuation being small seems somewhat 

restrictive, it has been shown (Mamis et al., 2019), that in present case, this approximation 

scheme is more effective compared to other methods (e.g. Fox’ s approximation (Fox, 1986), 

small correlation time approach (Sancho et al., 1982), Hӓnggi’s ansatz (P. Hänggi & Jung, 

1995)) even for large correlation times and noise intensities. A more thorough description of 

the approximation schemes mentioned as well as the potency of the one presented herein is 

given in (Mamis, 2020; Mamis et al., 2019) 
 

3.1.4 Exact response pdf for a linear, additively excited RDE 

By considering ( )h x x= , with 0   for stability purposes, and ( )q x = = constant, RIVP 

(3.1a,b) becomes linear and additively excited 
 

( ; ) ( ; ) ( ; )X t X t t    = +  ,  0 0( ; ) ( )X t X = .       (3.38a,b)  
 

In this case, the variational derivatives of RIVP (3.38) are independent from the response and 

the excitation and as such, formulae (3.24), (3.30) can be explicitly calculated as 
 

 0

0

( )
( ; )

t t

XV t e



−

= ,  ( )

( ) ( ; ) t s

sV t e  −

 =         (3.39a,b)  
 

Substituting the above expressions into SLE (3.20) results in the following pdf evolution 

equation: 
 

( )
2

( ) ( )eff

( ) 2

( ) ( )
( ) ( ) ( )

X t X t

X t

f x f x
x m t f x D t

t x x
  

 
 + + =
   

,           (3.40)  

 

where the effective noise intensity, eff ( )D t , is given by  
 

0

0

0

( )eff 2 ( )( )( ) ( , )

t

t t t

t

XD t e e C t dC t
     

−



−

+=  .            (3.41)  

 

Comparing pdf evolution equation Eq. (3.40) to SLE (3.20), it is easy to observe that the former 

is not only exact but also closed and thus, does not require the implementation of any 

approximation scheme for its solution. In fact, in the present paragraph, this is achieved by 

making use of the Fourier transform for Eq. (3.40) as well as the supplementary Gaussian 

initial condition  
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1 1
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22
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X t X
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m
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x
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 −
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= = ,            (3.42)  

 

in which 
0Xm , 

0

2

X  are the initial mean value and initial variance, respectively.  

 

Before we proceed with the solution of RIVP (3.40) and (3.42), a well-known result must be 

designated; the response process of any linear system, with Gaussian initial distribution, to an 

additive Gaussian excitation (either colored or white) is also a Gaussian process. Furthermore, 

the mean value ( )Xm t  and variance 2 ( )X t  of the response ( ; )X t   can be determined as the 

solutions to the respective moment equations, derived directly from RIVP (3.38a,b) (see e.g. 

(Sun, 2006) or (Athanassoulis et al., 2015)). This task is performed in Appendix B, in which 

Eqs. (B.3) and (B.25) read  
 

 0

0

0

( ) ( )( ) ( )

t

t t t

XX

t

m t m e m e d
    

− −

= +  ,              (3.43)  

and 

 0

0

0

2 ( )2 2 2 ( )( ) 2 ( , ) .

t

t t t

X X X

t

t e C e d
       

− −

= +               (3.44)  

 

Remark 3.2: Connection between effective noise intensity and cross-correlation. Eq. (B.22) 

for response-excitation cross-covariance reads 
 

 0

0

0

( ) ( )( , ) ( ) ( , )

t

t t t

X X

t

C t s C s e C s e d
    

− −

  = +  .            (3.45) 

 

Comparing Eq. (3.45) to Eq. (3.41), effective noise intensity can be expressed in terms of the 

one-time response-excitation cross-covariance as 
 

 eff ( ) ( , )XD t C t t = .                 (3.46) 

 

Under Eq. (3.46), Eq. (3.44) for the variance of the response is expressed equivalently as 
 

 0

0

0

2 ( ) eff 2 ( )2 2 2 (( ))

t

t t t

XX

t

e D e dt
    

− −= +  .              (3.47) 

 

Solution of Eq. (3.45) using Fourier transform. Employing the Fourier transform, 

( ) ( )X t y = ( ) ( )i y x

X te f x dx  for Eq. (3.45) leads to the following equation of first partial 

derivatives for the characteristic function ( ) ( )X t y  
 

 ( )( ) ( ) eff 2

( )

( ) ( )
( ) ( ) ( )

X t X t

X t

y y
y i m t y D t y y

t y

 
  

 
= + −

 
,         (3.48a)  

 

supplemented with the transformed initial condition (3.42) 
 

 
0 0 0

2

( )

21
( ) exp

2
X t X Xy i m y y 

 
= − 

 
.             (3.48b)  
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Initial value problem (3.49a,b) is solved (Polyanin, Zaitsev, & Moussiaux, 2001) sec. 3.1, by 

first determining the characteristic curve ( , ) tw y t y e=  as the solution of the characteristic 

equation / ( )dt dy y= − . Then, we seek a solution of the form 
0

( ) exp ( , )
t

t

g w h w t dt
 
 
 
 , 

where ( )g w  is a function of the characteristic curve, to be defined by the initial condition 

(3.53b), and eff 2 2( , ) ( ) ( )t th w t i m t we D t w e  − −

= − , that is the coefficient multiplying 

( ) ( )X t y  in Eq. (3.48a), rewritten in terms of w , t . Finally, by returning to the original 

variables y , t , we obtain the solution 
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− −



− −

  
  = + 
  
  

  
   − +
  

  





         (3.49)  

 

Note that this methodology for the solution of Eq. (3.49) can also been found in paragraph 4.4.4, 

albeit for a more convoluted case. Employing the inverse Fourier transform for Eq. (3.49), and 

utilizing Eqs. (3.43), (3.44) for ( )Xm t  and 2 ( )X t , results in 
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2

( ) 22

1 1
( ) exp

22

)

( )( )

(X

X t

XX

x
f

t

m
x

t

t  

 −
 = −
 
 

,             (3.50) 

 

which is the expected Gaussian distribution. This result constitutes the verification of the 

response pdf evolution Eq. (3.36). 
 

Remark 3.3. The uniqueness of Gaussian solution (3.49) is ensured by the injectivity of 

Fourier transform for absolutely integrable functions, and the uniqueness of solution for 

transformed problem (3.48a,b), see (Polyanin et al., 2001), sec. 10.1.2. What is more, the 

uniqueness of solution for Eq. (3.50) is also proven directly, without resorting to Fourier 

transform, in (Mamis, 2020, Appendix E). 
 

3.2 The case of an RDE subject to both additive and multiplicative excitation 

In this section, we are going to examine the applicability and versatility of the developed 

methodology by employing it in a different case. More specifically, we consider the following 

additively and multiplicatively excited RDE: 
 

1 0( ; ) ( ( ; ) ) ( ( ; ) ) ( ; ) ( ; )t h t q t t t       = +  +  ,          (3.51a)  
 

along with the initial condition 
 

0( ; )X t a = .                (3.51b)  
 

Note that in the present case, initial condition a  is considered a scalar and not a random 

variable. This is done for reasons of brevity since the ensuing, apprehended expressions are 

quite lengthy. Regardless, all of the presented results can be comprehensively derived even in 

the case of a random initial condition. Let us once more state that the overdot denotes 
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differentiation with respect to time, ( )h x  and ( )q x  are deterministic continuous functions 

modelling the nonlinearities, and   is a constant. Excitations 
0 ( ; )t   and 1 ( ; )t   are 

considered correlated and jointly Gaussian with non-zero mean values 
0

( )m t , 
1
( )m t , 

autocovariances 
0 0

( , )C t s  , 
1 1

( , )C t s   and cross-covariance 
0 1

( , )C t s  .  

3.2.1 The corresponding stochastic Liouville equation  

Commencing, as in section 3.1, from the delta projection method, we write 
 

( )( ) ( ) ( ; )X tf x x X t = −   .                (3.52)  
 

Then, by differentiating both sides of Eq. (3.52) with respect to time t  and using Eq. (3.51a), 

we obtain 
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           (3.53)  

 

Each averaged term on the right-hand side of Eq. (3.53) can be further evaluated by making use 

of the delta projection method’s formalism. The first averaged term appearing has already been 

evaluated by Eq. (3.11). For the other two terms, we work accordingly, as follows: 
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,            (3.54) 
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( )( )0; ) ;( )(x X t t
x

  


 = − −  
.             (3.55) 

 

Substituting, now, the above formulae into Eq. (3.53), transforms the latter into 
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 = − −  − 


 − −  

           (3.56)  

 

Eq. (3.56) is the one-time response SLE corresponding to RDE (3.41a). As was the case for 

SLE (3.13), an additional assumption regarding the smoothness of functions ( )h x  and ( )q x  

of RIVP (3.51a,b) must be introduced; namely that these two functions have at least continuous 

first derivatives. In addition, the initial condition of the response (3.51b) specifies the initial 

condition of SLE (3.56) into 
 

0( ) ( ) ( )X tf x x = − .                  (3.57)  
 

Note that in the special case in which 0 = , the adjusted SLE (3.57) coincides with the one 

derived by many authors, using various approaches; see e.g. (Cetto et al., 1984; Fox, 1986; P 

Hänggi, 1978; Sancho & San Miguel, 1980; Sancho et al., 1982). Moreover, SLE (3.56) is non-

closed due to the terms 
0 X =

0 ( ; ) ( ( ; ) )t x X t     −  , 
1 X =

1 ( ; ) ( ( ; ) )t x X t     −   and thus, a correlation splitting, similar to the one carried out 

for SLE (3.13), must be performed. 
 

Transformed SLE. At this point, a similar discussion to the one carried out in 3.1.1, regarding 

the “nature” of response ( ; )X t   must be conducted. More specifically, the response, 

( ; ) ,X t   is regarded through RIVP (3.51a,b) as a functional over the time-history of both 

excitations 0 ( ; ) , 1 ;( ) , from the initial time 0t  to the current time t ; written 

according to the familiar notation as 
0 0

0 1;( ; ) [ ( ;( ;) ) ]
t t

t t
X t X   =  . Note that this 

time, there is no dependence, as a function, on initial value since the latter is a scalar. Using the 

familiar notation, the averaged terms, 
i X , with 0, 1i = , can equivalently be written as 
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( ; ) [ ( ; ( ,; ) ; ) ]

i X i

t t

i t t

t x X t

t x X
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 =  −
  

           (3.58)  

 

which is the appropriate form for the implementation of Extension IV of the NF theorem, Eq. 

(2.23) under the understanding that the random delta function ( ( ; ) )x X t − =

( [ ])x X − = ( )
0 0

0 1; ) ; ) ][ ( ; (
t t

t t
x X  −   is considered as a random functional 

[ ] =F
0 0

0 1 ][ ( ; )(; ) ;
t t

t t
  F . 

 

Thus, by applying the said extended NF theorem to the nonlocal term 
1 X , we obtain 
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           (3.59)  

which can be further evaluated by employing the chain rule for the Volterra and the properties 

of the delta projection method as 
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            (3.60)  

 

where ( ) ( ; )
i i

V t   are the variational derivatives of the response with respect to excitation at 

time instance i , defined by 
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These variational derivatives can be explicitly calculated by formulating and solving their 

corresponding initial value problems, as presented in paragraph 3.1.2. Thus, solving the said 

IVPs results in 
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 .     (3.63)  

 

Finally, implementing the extended NF theorem for the nonlocal term 
0 X  and substituting 

the evaluated non-local terms in Eq. (3.56) results in the following transformed SLE for the 

one-time response pdf: 
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(3.64)  

 

The variational derivatives inside the averaged terms of the above expression constitute SLE 

(3.64) non-closed and nonlocal and as such, in this form, its solution seems as a rather arduous 

task. Thus, a closure of SLE (3.64) is introduced in the subsequent paragraph 3.2.2 in order to 

obtain an approximate, yet computable alternative of the above expression. 

3.2.2 One-time response pdf evolution equations 

Introducing, now, the following notation for the variational derivatives: 
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and using it to rewrite Eq. (3.64), we obtain the following pdf evolution equation for the one-

time response pdf ( ) ( )X tf x : 
 

( )

( ) ( )

( ) ( ) ( )

0 1

0

0 0 0

0

1

0 1 1

0

0

( )

( )

2
2

0 , 02

2

1 1 , 12

( )
( ) ( ) ( ) ( ) ( )

( , ) ( ; ) exp [ ( ; ]

( , ) ( ; ) e; ) ( [p ( ; ]

(

x

)

X t

X t

t

t

h q

t

t

t

h q

t

f x
h x m t q x m t f x

t x

C t x X t X d
x

C t x X t X d
x

q x C
x

q

x











     

      





 

 

 

 

   + + + =
  

  = − +
  

  + −  +
  

 
+

 





J

J

( ) ( )

( ) ( ) ( )

0

1 0

0

1

1 1 1

0

0 , 0

1 1 , 1

( , ) ( ; ) exp [ ( ; ]

( ) ( , ) ; ) exp( ; ) ( [ ( ; ] .

t

t

h q

t

t

t

h q

t

t x X t X d

q x C t x X t X d
x x

q









    

      

 
  − +
   

 

 
    + − 

    
 





J

J

 

(3.66)  
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Under this notation, it becomes clear that the terms multiplying the random delta function 

( )( ; )x X t −  inside the averaged terms of the above expression are not of the same form as 

the ones defined by Eq. (3.31). First, the term ( )1 )( ;q    appears, whose time-argument 
1  

does not match with the current time t  and thus, it is not manageable by the delta projection 

method; for this term, a current-time approximation must be implemented. Second, the most 

notable complicacy stems from the J  terms inside the averaged on the right-hand side of Eq. 

(3.66). More specifically, the integrand of the said term depends not only on the response, as 

was the case with I  defined by Eq. (3.66), but also the multiplicative excitation 
1 )( ;u  . As 

such, it becomes clear that in order to procure a closed, computable alternative of pdf evolution 

Eq. (3.66), some concessions must be made. For this, we shall write J  in terms of I , as 

follows: 
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as well as the following, current time approximation for ( )1 )( ;q   : 
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Then, by introducing the assumptions that excitation 
1 )( ;u   is of small intensity and that we 

are working for small correlation times, we shall consider only the terms on the rightmost sides 

of Eqs. (3.67) and (3.68), respectively, which do not entail the excitations. This assumption is 

not novel in this thesis; a similar one, for the case of an RDE excited by solely multiplicative 

noise, has been introduced in (Fox, 1986). In this regard, following the approximation scheme 

presented in paragraph 3.1.3 for Eq. (3.66), results in 
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where 
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   (3.70b) 
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Eq. (3.69) is closed and computable and retains, through the mD  terms, a substantial amount of 

the original nonlocality and nonlinearity of the exact Eq. (3.66), despite the concessions made.  
 

In order to obtain a seemingly more accurate, approximate pdf evolution equation corresponding 

to a RIVP subject to both additive and multiplicative excitation, it is necessary to consider the 

joint response-excitation pdf evolution equations, as it is shown in Chapter 4. More specifically, 

regarding the examined RIVP (3.51a,b), we must formulate the evolution equation for the joint 

pdf of the response ( ; )X t   and both excitations 0 ( ; )t  , 1 ( ; )t   in order to be able to 

employ both terms of the current-time approximation introduced in Eq. (3.68). 
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Chapter 4 

One-time response-excitation pdf evolution 

equations 

In the present chapter, the first major extensions of the already presented methodology is 

performed. More specifically, by keeping in mind the steps taken towards formulating one-time 

response pdf evolution equations for systems under colored Gaussian excitation, we showcase 

a straightforward generalization for higher order pdfs, namely one-time joint response excitation 

pdfs. As already discussed in the Chapter 1, the formulation and solution of these pdfs is of the 

utmost importance and practicality since they can be directly applied in some cases or constitute 

even better approximations (through their marginalization) than their counterparts, as derived 

in Chapter 3.  
 

4.1 The case of a scalar, nonlinear, additively excited RDE 

Let us consider once more the scalar, nonlinear, additively RIVP, presented in section 3.1 
 

( ; ) ( ( ; ) ) ( ; )X t h X t t   = +  ,  0 0( ; ) ( )X t X = .        (4.1a,b)  
 

4.1.1 The corresponding stochastic Liouville equation 

Our starting point is representing the one-time, joint response-excitation pdf as the average of 

the product of two random delta functions, i.e. the delta projection method. This is readily 

achieved by employing Eq. (3.6) for the product of random delta functions 
( ( ; ) ) ( ( ; ) ) ,x X t u t   − −  as follows: 

 

        
2

( ) ( )( ( ; ) ) ( ( ; ) ) ( ) ( ) ( , ) ,X t tx X t u t x w u z f w z dwdz       − − = − −  

 

which results in the following representation for the joint response-excitation pdf: 
 

  ( ) ( ) ( , ) ( ( ; ) ) ( ( ; ) )X t tf x u x X t u t     = − − .    (4.2)  
 

Proceeding in the fashion showcased in sections 3.1 and 3.2, we differentiate both sides of Eq. 

(4.2) and use the chain rule 
 

( ) ( ) ( , ) ( ( ; ) )
( ( ; ) ) ( ; )

( ; )

( ( ; ) )
( ( ; ) ) ( ; ) .

( ; )

X t tf x u x X t
u t X t

t X t

u t
x X t t

t





 
  



 
  



   −
= −  + 

  

  −
+ −  

 

    (4.3)  
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At this point, we are going to elaborate separately on the two averaged terms on the rightmost 

side of Eq. (4.3) Thus, making use of Eq. (4.1a) the first averaged term can be rewritten as 
 

( ( ; ) )
( ( ; ) ) ( ; )

( ; )

( ( ; ) )
( ( ; ) ) ( ( ; ) )

( ; )

( ( ; ) )
( ( ; ) ) ( ; ) ,

( ; )

x X t
u t X t

X t

x X t
h X t u t

X t

x X t
u t t

X t







 
  



 
  



 
   



  −
−  = 

 

  −
= −  + 

 

  −
+ −   

 

 (4.4)  

 

which can be further evaluated by making use of the delta projection formalism for the two 

averaged terms appearing on its right-hand side. Under this formalism, the first averaged term 

can be written as 
 

( )

2

( ) ( )

( ) ( )

( ) ( )

( ( ; ) )
( ( ; ) ) ( ( ; ) )

( ; )

( )
( ) ( ) ( , )

( ) ( ) ( , )

( ) ( , ) .

X t t

X t t

X t t

x X t
h X t u t

X t

x w
h w u z f w z dwdz

w

h x u z f x z dz
x

h x f x u
x

  
  














  −
−  = 

 

 −
= − =



 
= − − = 

   


= −







  (4.5) 

 

Accordingly, for the second averaged term on the right-hand side of Eq. (4.4), we work in the 

following manner: 
 

( )

2

( ) ( )

( ) ( )

( ) ( )

( ( ; ) )
( ( ; ) ) ( ; )

( ; )

( )
( ) ( , )

( ) ( , )

( , ) .

X t t

X t t

X t t

x X t
u t t

X t

x w
u z z f w z dwdz

w

u z z f x z dz
x

u f x u
x

  
  














  −
−   = 

 

 −
= − =



 
= − − = 

   


= −







   (4.6) 

 

Note that for the above expressions to hold true, the additional assumptions that ( )h x  and 

( ) ( ) ( , )X t tf x u  are ( )1

0C [ , ]t t →  must also be introduced. Combining, thus, Eqs. (4.5) and 

(4.6), we find that 
 

 

( ) ( ) ( )

( ( ; ) )
( ( ; ) ) ( ; )

( ; )

( ) ( , ) .X t t

x X t
u t X t

X t

h x u f x u
x

  
  



 

  −
−  = 

 


 = − + 

   (4.7)  
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Let us, now, continue with the examination of the second averaged term of Eq. (4.3). This can 

be calculated by again employing the delta projection formalism as well as using the following 

convenient, yet formal expression for ( ; )t  : 
 

 

0

( ; ) ( ) ( ; )

t

t

t t s s ds   = −  ,       (4.8)  

 

where ( ) ( ) /t s t s s  −  − −  . In Eq. (4.8), ( ; )t   is formally treated as a functional of 

integral type with singular kernel. Hence, by utilizing the usual delta projection formalism we 

find 
 

( ( ; ) )
( ( ; ) ) ( ; )

( ; )

( ( ; ) ) ( ( ; ) ) ( ; ) .

u t
x X t t

t

x X t u t t
u





 
  



    

  −
−  = 

 


 = − − −   

 (4.9) 

 

Last, substituting Eqs. (4.7) and (4.9) into Eq. (4.3) results in the following, one-time response 

excitation stochastic Liouville equation: 
 

( )( ) ( )

( ) ( )

( , )
( ) ( , )

( ( ; ) ) ( ( ; ) ) ( ; ) .

X t t

X t t

f x u
h x u f x u

t x

x X t u t t
u





    





 
 + + =  


 = − − −   

   (4.10)  

 

SLE (4.10) has also been derived in (Venturi, Sapsis, Cho, & Karniadakis, 2012b) for a 

multiplicatively excited RDE using a different, more convoluted approach. As in the case of 

SLE (3.13), the initial condition for the one-time response excitation SLE can easily be derived 

by the data of the initial problem 
 

 
0 0 0 0( ) ( ) ( )( , ) ( , )X t t X tf x u f x u = .                 (4.11)  

 

Transformed SLE. Similar to the previous examined cases, SLE (4.10) in non-closed due to 

the averaged term in its right-hand side. By recalling the dependence of the response ( ; )X t   

on initial value 0 ( )X   and excitation ( ; )t  , and using the familiar notation, the averaged 

term can be expressed as 
 

 

0
0

( ( ; ) ) ( ( ; ) )

( [ ( ) ; ( ; ) ]) ( ( ; ) ) .
t

t

x X t u t

x X X u t





   

    

− −  =

 = −  − 
  

       (4.12)  

 

Under this notation, it is readily understood that Eq. (4.11) is in the appropriate form for the 

application of the extended NF theorem, Eq. (2.21), in which the product of random delta 

functions 
0

0( [ ( ) ; ( ; ) ]) ( ( ; ) )
t

t
x X X u t    −  −   is regarded as a FFℓ like =F

0
0[ ( ) ; ( ; ) ]

t

t
X  F . Thus, the averaged term can be evaluated to 
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  −  −  =
  

 = −  −  +
  

  −  − 
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− 
+ 

 
0

( ( ; ) )
.

( ; )

t

t

u t
d

 


 

 − 
 
 
 
 



  (4.13)  

 

Using the product rule for the derivatives, while taking into account that the paths of excitation 

are functionally independent from the initial value, we find 
 

0

0

0

0

0

0

0

0

0

0

( ; ) ( [ ( ) ; ( ; ) ]) ( ( ; ) )

( ) ( [ ( ) ; ( ; ) ]) ( ( ; ) )

( [ ( ) ; ( ; ) ])
( ) ( ( ; ) )

( )

( [ ( ) ; ( ; ) ])
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t

t
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t

t x X X u t

m t x X X u t

x X X
C t u t

X

x X X
C t









     

    

  
 



  








  −  −  =
  

 = −  −  +
  

  − 
 + −  +
 
 

− 
+ 



( )

0

0

0
0

( ( ; ) )
( ; )

( ( ; ) )
( , ) ( [ ( ) ; ( ; ) ]) .

( ; )

t

t

t

t

t t

t

u t d

u t
C t x x X X d

  
 

 
     

 


 
 −  +
 
 

 − 
+  − −  

 





 

(4.14) 
 

Proceeding according to the previous examined cases, we apply the chain rule to the above 

expression and simplify the notation by setting 
0

0[ ] [ ( ) ; ( ; ) ]
t

t
X X X  =  , resulting in 

 

 

0 0

0

( )

( ; ) ( [ ]) ( ( ; ) )

( ) ( [ ]) ( ( ; ) )

( [ ])
( ) ( ( ; ) ) ( ; )

( ; )

( [ ])
( , ) ( ( ; ) ) ( ; )

( ; )

( , ) (

X X

t

t

t

t

t x X u t

m t x X u t

x X
C t u t V t

X t

x X
C t u t V t d

t

C t x













   

  


  




    



  





 



  − −  = 

= − −  −

  −
+ −  + 

 

 −
+  −  + 

 

+  −



( )
0

( ( ; ) ) ( ; )
[ ) ,

( ; ) ( ; )

t

t

u t t
x X d

t

  


  

 − 
− 

 



 

 (4.15)  

 

where 
0
( ; )XV t   and ( ) ( ; )V t   are the variational derivatives with respect to initial value 

and excitation, defined by Eqs. (3.18a) and (3.18b), respectively. In addition, since the value of 
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( ; )t   does not functionally depend on the value ( ; )  , for t  , we can write 

( ; ) ( ; ) ( )t t     = − . Then, returning to the treatment of the response ( ; )X t   

as a function and performing the familiar manipulations of the delta projection method, Eq. 

(4.15) becomes 
 

( )

( )

( )

( )

0 0

0

( )

( ; ) [ ] ( ( ; ) )

( ) ( ; ) ( ( ; ) )

( ) ( ; ) ( ( ; ) ) ( ; )

( , ) ( ; ) ( ( ; ) ) ( ; )

( , ) ( ) ( ;

X X

t

t

t

t

t x X u t

m t x X t u t

C t x X t u t V t
x

C t x X t u t V t d
x

C t t x X t
u













   

   

    

      

    





 



  − −  = 

= − −  −  


 − − −  −
 


 −  − −  − 


−  − −




( )
0

) ( ( ; ) ) .

t

t

u t d  −   

  (4.16)  

 

The following, final form of the NF theorem for the nonlocal averaged term is derived by 

employing in Eq. (4.16) the identity of the Dirac delta function. 
 

0 0

0

( ) ( )

( )

( ) ( )

( ; ) ( ( ; ) ) ( ( ; ) ) ( ) ( , )

( ( ; ) ) ( ( ; ) ) ( ; )

( , ) ( ( ; ) ( ( ; ) ) ( ; )

( , )
( , ) ,

( )

X t t

X X

t

t s

t
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t s t

t x X t u t m t f x u

x X t u t V t

C t s x X t u t V t ds

f x u
C t s

C t
x

x

u







    

    

    

 



  



  =



=  − − − 

 − − − −
 

 −  − − −











− 


       (4.17)  

 

in which the term ( , )t s t
C t s  =

  can be further calculated as 

 

     
2 21 1

( , ) ( , ) [ ( ; ) ( ; ) ] [ ( ; ) ] ( )
2 2

t s t
C t s C t t t t t t

t

       =


 = =   =  =


. 

(4.18)  
 

Last, combining Eqs. (4.17), (4.18) and substituting them in Eq. (4.10) results in the following 

transformed SLE of the one-time response-excitation pdf: 
 

     

( )

0 0

0

( ) ( ) ( ) ( )

( ) ( )

2

2

( )

( , ) ( , )
( ) ( ) ( , ) ( )

( ( ; ) ) ( ( ; ) ) ( ; )
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(
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X t t X t t

X t t

X X
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f x u f x u
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t x u

x X t u t V t
u

C t s x X t u t V t ds
u

C t
x

x





    

    

 

 



  

 
 + + + =   


 = − − +
 


 +  − − + 



  

 

( ) (

2

2

)2
(

.
, )1

( )
2

X t tf
t

u

x u








+                 (4.19)  



46 4.1 The case of a scalar, nonlinear, additively excited RDE 
 

 

As in all of our previous cases, SLE (4.19) is non-closed due to nonlocal terms, depending on 

the history of the response and excitation, which are identified as the variational derivatives. As 

such, in order to procure a closed and thus, computable equation an approximation scheme must 

be implemented, as it is shown in the ensuing paragraph 4.1.2. 
 

4.1.2 Novel, one-time evolution equations for the joint response-excitation pdf 

Substituting Eqs. (3.24) and (3.30) for the variational derivatives appearing inside the averaged 

term of SLE (4.17) and using the notation of Eq. (3.31), SLE (4.19) can be rewritten as 
 

( )

( )

( )

0 0

0

( ) ( ) ( ) ( )

( ) ( )

2
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( , ) ( , )
( ) ( , ) ( )

( ( ; ) ) ( ( ; ) ) exp [ ( ; ) ]
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X t t X t t

X t t

t

X h t

t

t

t h s

t

f x u f x u
h x u f x u m t
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  = − − +
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I
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( ) (

2

2

)2
(

.
, )1

( )
2

X t tf
t

u

x u








+                  (4.20)  

 

Further, employing the approximation scheme already presented in paragraph 3.1.3 for the 

above expression, we obtain the following, closed, approximate, one-time, joint response-

excitation pdf evolution equation:  
 

    

( )

( )

( ) ( ) ( ) ( )

( ) ( )

2

( ) ( )

0

2

( ) ( )2

2

( , ) ( , )
( ) (
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f x u f x u
h x u f x u m t
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G R t x R
x

t f x u
u m
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u
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=





 
 + + + =   

    
 = +          




+

 (4.21)  

 

where 

0

0

0

0

2

( ) , exp ( ) ( )

exp ( ) ( ,

( )

) ( ) .

t

m

m h h X

t

t t

m

h t

t s

G R t R u du t t

R u du C t s t s ds

C t



  

 

 
   = − +   
 

 
+  − 

 
 



 

      (4.22)  

 

The mG  terms of the above equation are a simple generalization of the generalized effective 

noise intensities, eff

mD , for the case of the joint response-excitation pdf evolution equation. 

Through these terms, the approximate Eq. (4.21) retains a tangible amount of nonlinearity and 

nonlocality in time, thus preserving the non-Markovian character of the initial problem. 
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4.1.3 Check of compatibility for the closed, one-time, joint response-excitation pdf 

evolution equation 

In this paragraph, we are going to examine the compatibility of the approximate Eq. (4.22) in 

terms of the marginal pdf evolution equations that can be derived from it. More specifically, we 

are going to compare these one-time marginal pdfs with the ones obtained in Chapter 3 in order 

to see if the extended methodology established throughout this chapter is consistent with the 

one it is founded upon. 
 

(a) Marginal response pdf evolution equation 
( ) ( )X tf x  coincides with the SLE 

By integrating both sides of Eq. (4.21) with respect to u , and under the plausible assumptions 
 

( ) ( ) ( , ) 0X t tf x  = ,   
( ) ( ) ( , )

0
X t tf x

u

 
=


,       (4.23a,b)  

 

we obtain 
 

( )( )

( ) ( ) ( )

( )
( ) ( ) ( , )

X t

X t X t t

f x
h x f x u f x u du

t x x
 

  
+ = −

    .           (4.24)  

 

Eq. (4.24) is a form of the exact stochastic Liouville equation for the one-time response pdf. 

Under the manipulation 
 

 

 

( ) ( ) ( , ) ( ( ; ) ) ( ( ; ) )

( ( ; ) ) ( ( ; ) ) ( ( ; ) ) ( ; ) ,

X t tu f x u du u x X t u t du

x X t u u t du x X t t



 

   

      

 = − − =

 = − − = − 
  

 


 (4.25)  

 

stochastic Liouville Eq. (4.23) is written in the more familiar form 
 

( )  ( )

( )

( )
( ) ( ) ( ( ; ) ) ( ; )

X t

X t

f x
h x f x x X t t

t x x

   
  

+ = − − 
  

.       (4.26)  

 

Having obtain Eq. (4.26), it is easy to see that it is identical to Eq. (3.13) as derived in paragraph 

3.1.1. This occurrence reaffirms the potency of both the methodology as well as the 

approximation scheme used to derive the approximate Eq. (4.21). 
 

(b) Marginal excitation pdf evolution equation 
( ) ( )tf u

  

Before proceeding with the evolution equation for the marginal excitation pdf ( ) ( )tf u , we 

have to prove the following lemma. 
 

Lemma 1: Evolution equation for a Gaussian pdf. The one-time pdf of the Gaussian random 

function ( ; )t   
 

( )
2

( ) 22

1 1
( ) exp

2(

( )

( )2 )
t

u
f u

tt

m t

  







 −
 = −
 
 

,             (4.27)  

 

with differentiable, with respect to t , mean ( )m t  and variance 2 ( )t  , satisfies the equation 
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2
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2

2
( )

( ) ( ) ( )1
(

2
)

t t t
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f u f u f u

t u u
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+ =

  
.             (4.28)  

 

Proof. By differentiations of Gaussian pdf (4.27) we obtain: 
 

( )
( )( ) ( ) 2

2
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,            (4.29a)  
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,            (4.29b)  
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where 
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         (4.30a)  

 

( )2 2 2; ( ) , ( ) ( ) ( ) ( )u m t t t u m t t       =  = − + ,           (4.30b)  
 

( )2 2 2 2; ( ) , ( ) 2 ( ) ( ) ( )u m t t u m t u m t t      =  = − + − .          (4.30c)  
 

By substituting Eqs. (4.29) into Eq. (4.28) we obtain the algebraic relation 
 

2
( )

1
)

2
(m t t   +  = .                 (4.31)  

 

Via Eqs. (4.30), it is easy to see that Eq. (4.31) is always satisfied: 
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            (4.32)  

 

This concludes the lemma’s proof.             ■ 
 

Returning, now, to the derivation of the required marginal, we integrate both sides of Eq. (4.21) 

with respect to x  resulting in 
 

2

( ) ( ) ( )

2
( )

( ) ( ) ( )
( , )

t t t
m t

f u f u f u
C t t

t u u


  



  
+ =

  
.              (4.33)  
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Eq. (4.33) is retrieved under the following assumptions regarding the behaviour at the 

boundaries: 
 

( ) ( )( ) ( , ) 0X t th f u  = ,              (4.34a)  
 

( ) ( ) ( , ) 0X t tf u  = ,               (4.34b)  
 

( ) ( ) ( ); ( ) ( , ) 0m

h h X t tR t f u      = .             (4.34c)  
 

Thus, it is promptly seen that Eq. (4.33) is identical to Eq. (4.28) a fact that further supports the 

legitimacy of our approach. 
 

4.1.4 Exact response-excitation pdf for a linear, additively excited RDE 

In this paragraph, we are going to examine the validity of our methodology in the case of the 

linear, additively excited RDE, i.e. ( )h x x= , with 0   and see if the correct Gaussian form 

for ( ) ( ) ( , )X t tf x u  is retrieved.  

 

As previously discussed, in the linear case the variational derivatives are independent from the 

time history of the response and thus, can be specified, by Eqs. (3.44a,b), into 
0

0

( )
( ; )

t t

XV t e



−

= , ( )

( ) ( ; ) t s

sV t e  −

 = . By substituting these expressions into SLE (4.19), 

the following exact response-excitation pdf evolution equation is obtained, in closed form: 
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   (4.35)  

where 

 0

0

0

( ) ( )( , )( ) ( )

t

t t t s

X t

t

G t C t e C t s e ds
 

− −

  + =  .             (4.36)  

 

Eq. (4.35) is a first-order, linear partial differential equation, which can be readily solved by 

making use of its Fourier transform as it is subsequently shown. However, before we commence 

with its solution, we are going to provide the following useful result. 
 

Connection between ( )G t  and 
eff ( )D t . By using Eq. (4.34), as well as the definition relation 

(4.35) for the effective noise intensity eff ( )D t  that appears in the exact response pdf evolution 

Eq. (4.34), it is easily derived that 
 

 eff eff 2 2( ) ( ) ( ) ( )D t D t t G t   = + + ,    
0

eff

0 0( )( ) XD Ct t = ,     (4.37a,b) 
 

and by solving the above IVP 
 

 ( )0

0

0

( )eff 2 2 (

0

)( ) ( ) ( )( )

t

t

X

t t

t

D t e G e dC t
        

− −

 += + .           (4.38) 

 

Relation (4.38) will be proven quite useful in validating the moments obtained from the solution 

of Eq. (4.35).  
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Solution of Eq. (4.35) using Fourier transform. As performed, in paragraph 4.1.1, for Eq. 

(3.45), response-excitation evolution Eq. (4.35) is solved by utilizing the two-dimensional 

Fourier transform; 1 2

2

( )

( ) ( ) 1 2 ( ) ( ) ( ) ( )( , ) ( ) ( , )
i y x y u

X t t X t t X t ty y e f x u dx du 
+

   = y , 

resulting in the equation 
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y y y

y

         (4.39a) 

 

supplemented by the transformed Gaussian initial condition 
 

0 0 0 0 0

2 2 2 2 2

( ) ( ) 1 0 2 1 0 2 0 1 2

1 1
( ) exp ( ) ( ) ( ) .

2 2
X t t X X X

i m y i m t y y t y C t y y     

 
= + − − − 

 
y

(4.39b) 
 

IVP (4.39a,b) is a first-order PDE problem which can be readily solved using the method of 

characteristics. Following (Polyanin et al., 2001, sec. 4.1), let us first consider the homogeneous 

variant of Eq. (4.39a) 
 

( ) ( ) ( ) ( ) ( ) ( )

1 1

1 2

( ) ( ) ( )
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X t t X t t X t t
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− − =

  

y y y
,            (4.40) 

 

and its corresponding characteristic system 
 

1 2

1 11

dy dydt

y y 
= − = − .                 (4.41)  

 

The solution of the characteristic system (4.41) determines the characteristic curves 

1 1 2 1 1( , , ) tt y y y e = = , 2 1 2 2 1 2( , , )t y y y y   = = − . In turn, these curves dictate the 

change of variables 1 1

ty e  −= , 2 1 2 1 2

1 1ty y e  
  

   

−= − = − , under which Eq. (4.39a) 

is transformed into 
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    (4.42) 

 

Accordingly, initial condition, Eq. (4.39b), is expressed under this change of variables as 
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   (4.43) 
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Solution to IVP (4.42), (4.43) is, thus, easily determined to 
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  (4.44) 

 

Performing, now, some simple manipulations for the integrals inside the averages, substituting 

initial value 
0 0( ) ( ) ( )X t t    by Eq. (4.43) and then, returning to the initial variables 1 1 ,ty e =  

2 1 2y y  = − , solution (4.44) is written as 
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           (4.45) 

 

From Eq. (4.45), we identify the first and second moments of ( ; )X t  , ( ; )t  . First, since 

the moments of the excitation are data of the problem, Eq. (4.45) returns the trivial relations 

( ) ( )m mt t
 

= , 2 2( ) ( )t t  = . Moving now to the moments of response, as well as the 

response-excitation covariance, we retrieve, from Eq. (4.45), the relations 
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(4.46b) 

 

( )0

0

0

( ) 2 ( )

0( , ) ( ) ( ) ( )

t

t t t

X X

t

C t t C t e G e d
     

− −

 
= + + .          (4.46c) 

 

Eq. (4.46a) is validated as the solution for the mean value of the response, see Eq. (B.3) of 

Appendix B, while, by employing Eq. (4.38) and after some algebraic manipulations, Eqs. 

(4.46b,c) are expressed equivalently as 
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0

0

0

2 ( )2 2 eff 2 ( )( ) 2 ( )

t

t t t

X X

t

t e D e d
     

− −= +  ,            (4.46b′) 

 

eff1
( , ) ( )XC t t D t


 = .               (4.46c′) 

 

Eqs. (4.46b′,c′) are correct, since they coincide with the validated relations (3.51), (3.52) for 

( , )XC t t , 2 ( )X t . Thus, by solving Eq. (4.39a), the expected Gaussian solution was obtained.  

 

4.2 The case of an RDE subject to both additive and multiplicative excitation 

Consider, once more, the case of an RDE both additively and multiplicatively excited 
 

1 0( ; ) ( ( ; ) ) ( ( ; ) ) ( ; ) ( ; )t h t q t t t       = +  +  ,          (4.47a)  
 

along with the initial condition 
 

0( ; )X t a = .                (4.47b)  
 

As already discussed in section 3.2, in the present section we are going to formulate pdf 

evolution equation for the joint, one-time response excitations pdf evolution equation 

0 1( ) ( ) ( ) 0 1( , , )X t t tf x u u   since, through marginalization, it can provide a more accurate 

approximation for the one time pdf 
( ) ( )X tf x . 

 

4.2.1 The corresponding stochastic Liouville equation 

As always, we begin with delta representation method which, in this case, gives rise to the 

following representation for the one-time response excitation pdf: 
 

      
0 1( ) ( ) ( ) 0 1 0 0 1 1( , , ) [ ( ( ; ) ) ( ( ; ) ) ( ( ; ) ) ]X t t tf x u u x X t u t u t        = − −  −  , 

(4.48)  
 

and will be more concisely denoted as  
 

 
0 1( ) ( ) ( ) 0 1 0 1 0 1, ,( , , ) ( , , ; ( ) ( ) ( ) )X t t tf x u u x u u X t t t

 
 =   δ .            (4.49) 

 

Eqs. (4.48), (4.49) are similar to the one used for the nonlinear, additively excited RIVP (4.1a,b). 

Thus, by differentiating both sides of the above expression with respect to time t  and employing 

the product and chain rules for derivatives, we obtain 
 

0 1( ) ( ) ( ) 0 1

1 2 3
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Each term on the right-hand side of Eq. (4.50) is subsequently elaborated separately. For the 

first averaged term, we use RDE (4.47a) resulting in 
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             (4.52) 

 

Eq. (4.52) can be further evaluated using the familiar delta projection formalism. For reasons of 

brevity and clarity, as an example, we are going to present only the manipulation of the second 

averaged term on the right-hand side of Eq. (4.52). 
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Working accordingly for the other two terms, 1E  is transformed into 
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Under similar treatment, the other two averaged terms on the right-hand side of Eq. (4.50) can 

be equivalently written as 
 

2 0 1 0 1 0

0

, ,( , , ; ( ) ( ) ( ) ) ( ; )E x u u X t t t t
u

 


 = −    
δ ,             (4.55) 
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3 0 1 0 1 1
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u

 


 = −    
δ .             (4.56) 

 

where 0 ( ; )t  , 1 ( ; )t   are treated as functionals of integral type with a singular kernel, as 

shown in Eq. (4.8). Last, substituting Eqs. (4.54)-(4.56) into Eq. (4.50) results in the SLE for 

the one-time, joint response excitations pdf 
0 1( ) ( ) ( ) 0 1( , , )X t t tf x u u  : 
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 (4.57) 

 

In consistence with the previous case, SLE (4.57) is non-closed due to the averaged terms on its 

right-hand side and thus, the appropriate correlation splitting must be conducted by employing 

the appropriate extensions of the Novikov-Furutsu theorem. Further, SLE (4.57) is 

supplemented by the initial condition obtained by the data of RIVP (4.47a,b) 
 

0 0 0 1 0 0 0 1 0( ) ( ) ( ) 0 1 ( ) ( ) 0 1( , , ) ( ) ( , )X t t t t tf x u u x a f u u   = − .             (4.58) 

 

Transformed SLE. Recalling, at this point, the discussion regarding the dependence of the 

response ( ; )X t   of RDE (4.47a) on the history of both excitations 
0 ( ; ) , 1 ( ; )  over 

the time interval 0[ , ]t t  and using the familiar notation, the product of random delta functions 

inside the averaged terms of Eq. (4.57) can be written as 
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(4.59) 

 

Under this notation, the above product can be regarded as functional like [ ]F  and thus, Eq. 

(2.25) of the NF theorem can be implemented to the two nonlocal, averaged terms. Since both 

terms are similar, we are going to present in detail only the implementation of Eq. (2.25) for the 

second averaged term on the right-hand side of Eq. (4.57): 
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Chapter 4: One-time response-excitation pdf evolution equations 55 
 

 

By using the product and chain rules for the derivatives while, also, taking into account that 

there is not any functional dependence between the two excitations, the above expression takes 

the form 
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(4.61) 
 

where the variational derivatives 
0 0( ) ( ; )V t   and 

1 1( ) ( ; )V t   are given by Eqs. (3.67) and 

(3.68), respectively. Finally, by recognizing that )( ; ) ( ( );i ii it t    = − , with 

i 0 , 1= , utilizing the identity for the delta function and performing the usual manipulations of 

the delta projection method, Eq. (4.61) is transformed into 
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In Eq. (4.62), the terms 
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Using, the above two expressions Eq. (4.62) takes the following, final form: 
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Accordingly, the other averaged term on the right-hand side of Eq. (4.57) is evaluated into 
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Finally, by substituting Eqs. (4.64) and (4.65) into SLE (4.57), we obtain 
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(4.66) 
 

Eq. (4.66) is the transformed SLE for the one-time, joint response excitation pdf 

1( ) ( ) ( , )X t tf x u . At this point, is becomes clear that even though the derivation of Eq. (4.66) is 

not difficult to follow, the apprehended equation is exact and still not closed. Thus, an 

appropriate approximation scheme must be employed so to obtain an approximate, yet 

computable alternative of Eq. (4.66).  
 

4.2.2 Novel, one-time evolution equations for the joint response-excitations pdf 

As was presented in paragraph 3.2.1, the variational derivatives appearing inside the averaged 

terms of Eq. (4.66) have been specified to 
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in which the following, convenient notation has been utilized: 
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   =  +    J ,    0, 1i = .   (4.69)  

 

At this point, substituting Eqs. (4.67), (4.68) into Eq. (4.66) results in the following, exact, non-

closed one-time evolution equation for the joint response-excitations pdf: 
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where the abbreviation 0 1 0 1, ,( , , ; ( ) ( ) ( ) ) ( )x u u X t t t  =δ δ  has been used. Under this 

notation, it also becomes clear that Eq. (4.70) is non-closed due to the nonlocal terms that have 

been introduced by the variational derivatives and depend on the whole time history of the 

response ( ; )X   and the excitation 1 ( ; )  .Since inside the product of random delta 

function the current time of the response and the excitations appears explicitly, we can apply an 

analogue of the novel, approximation scheme introduced in paragraph 3.1.3 for the exponential 

terms. First, the integrand of J  is decomposed into its mean value 
 

       1( ) ( ) ( ) ( ( ; ) ) ( ( ; ) ) ( ; )h qR u R u R u h X u q X u u     
  = + = +   ,    (4.71) 

 

and the fluctuations 
 

     ( ) 1( ; ) , ( ; ) ; ( ) ( ( ; ) ) ( ( ; ) ) ( ; ) ( )X u u R u h X u q X u u R u       = +  − .   (4.72) 
 

Under this decomposition, the nonlocal, exponential terms are equivalently expressed as 
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Then, a current-time approximation for the fluctuation’s integral is utilized,  
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which is valid under the assumption that the fluctuations are small. Last, a Taylor expansion of 

the exponential containing the fluctuations is employed 
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Eq. (4.74) constitutes the analogue of the novel approximation for the case of an RDE excited 

by both additive and multiplicative noise. Further, as we have already discussed in paragraph 

3.2.2, a current-time approximation should be also performed on the ( )1 )( ;q   . This is 

performed via a Taylor expansion around current time t  
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Finally, substituting approximations Eq. (4.74) and (4.75) into Eq. (4.70) result in the following, 

closed, approximate evolution equation for the one-time joint response excitations pdf: 
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(4.76) 
 

where 
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At this point, it is useful to point out that even though Eq. (4.76) is lengthy and thereby, difficult 

to follow, its terms are very similar to the one-time response pdf evolution equation (3.74). 

Thus, it is readily understood that through Eqs. (4.77), pdf evolution equation (4.76) maintains 

a tractable amount of probabilistic nonlocality due to the terms ( )
i

t

R u du
  which depend on 

the time-history of the unknown response pdf ( ) ( )X tf x . Further, the m  terms through ( )R t  

introduce a kind of probabilistic nonlinearity since ( )R t  depends on the unknown response pdf 

at the current time t . 
 

In order to present a succinct and thereby, more comprehensive form of pdf evolution equation 

(4.76), let us set 0 1 1 0( , , ) ( ) ( )x u u h x q x u u= + +A , 
0 1( ) ( ) ( ) 0 1( , , ) ( )X t t tf x u u f  =  

and rewrite the said equation as follows: 
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where 
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Remark 4.1: The marginal response pdf evolution equation coincides with SLE (3.56). 

Working accordingly to paragraph 4.1.3, we are going to investigate the compatibility of Eq. 

(4.76) in terms of the marginal response pdf evolution equations that can be derive from it. 

Integrating both sides of Eq. (4.76) with respect to 
0u  and 

1u  simultaneously, we obtain 
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Eq. (4.80) is derived under the plausible assumptions 
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Let us, now, evaluate the right-most integral of Eq. (4.80) by using the delta projection 

formalism 
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Operating accordingly for the other integral, Eq. (4.80) is equivalently written as 
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Thus, it is readily seen that Eq. (4.83) is the same as SLE (3.56). This correspondence serves as 

a preliminary validation for the efficiency of pdf evolution equation (4.76). 
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Chapter 5 

Two-time response pdf evolution equations 

In the present chapter we are going to focus on the examination of the scalar, nonlinear 

additively excited RDE and present another significant extension of this thesis. In particular, we 

formulate evolution equations governing the joint, two-time response pdf of the system. As it 

was also explained in the introduction, the consideration of such a problem is not novel to this 

thesis. Nevertheless, most results were concerned with the stationary properties of the said 

equations or the two-time correlation of the response e.g. (Hernandez-Machado et al., 1983). 

Herein, a more holistic approach to the problem is presented that aims to provide computable 

equations for the joint two-time response pdf. 
 

5.1 The corresponding stochastic Liouville equation 

Let us consider once more the scalar, nonlinear, additively RIVP 
 

( ; ) ( ( ; ) ) ( ; )X t h X t t   = +  ,  0 0( ; ) ( )X t X = ,        (5.1a,b)  
 

Commencing in similar fashion, as in sec. 4.1, we represent the sought-for two-time response 

pdf as the average of the product of two random delta functions. However, in this case, both the 

random delta functions have as their random argument the response of RIVP (5.1a,b). As such, 

the two-time response pdf can be expressed as 
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where the two time instances t , s  are considered different; s t . Note that Eq. (5.2) is not 

valid for s t= , since, in this case, the delta representation reads 
 

1 2 1 1 2 1 ( ) 1 1( ( ; ) ) ( ( ; ) ) ( ) ( ) ( )X tx X t x X t x w x w f w d w       − − = − −   , (5.3)  

 

and, in the right-hand side of Eq. (5.3), the single integral containing the two delta functions is 

not defined. On the other hand, the fact that delta projection (5.3) fails for t s=  does not 

diminish the importance of formulating evolution equations for ( ) ( ) 1 2( , )X t X sf x x , since it is 

the t s  case that interests us. For t s= , pdf ( ) ( ) 1 2( , )X t X tf x x  is just a duplication of the one-

time response pdf ( ) ( )X tf x , whose evolution equation has already been specified into Eq. 

(3.36). 
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Let us, now, differentiate both sides of Eq. (5.2) with respect to time t , while time s  is treated 

as parameter 
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Then, by using the chain rule and substituting ( ; )X t   from RDE (5.1a), we obtain 
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In the right-hand side of Eq. (5.5), both averaged terms can be expressed and further evaluated 

by making use of the delta projection formalism as follows: 
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and 
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Substitution of Eqs. (5.6), (5.7) into Eq. (5.5) results into the following stochastic Liouville 

equation for the two-time response pdf ( ) ( ) 1 2( , )X t X sf x x  pertaining to RIVP (5.1a,b): 
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Consistent with the delta representation (5.2), SLE (5.8) is a differential equation with respect 

to time t , while time s  enters a parameter. As a consequence, the initial condition needed to 

solve SLE (5.8)1 should also be parametric with respect to s  
 

 
0 0( ) ( ) 1 2 ( ) 1 2( , ) ( , ).X t X s X X sf x x f x x=       (5.9) 

 

In Eq. (5.9), and contrary to the initial conditions (3.14) and (4.11) of the SLEs for one-time 

response and one-time response-excitation pdfs, respectively, we observe that the joint 

response-initial value pdf 
0 ( ) 1 2( , )X X sf x x , is not part of the data of RIVP (5.1a,b), since it 

models the statistical dependence of the response (at time t ) and its initial value. Thus, for 

determining pdf 
0 ( ) 1 2( , )X X sf x x , we have to solve another pdf evolution equation, starting by 

formulating the stochastic Liouville equation for the response-initial value pdf in the following 

section 5.2. 
 

Eq. (5.8) is the same SLE for two-times also derived in (Hernandez-Machado et al., 1983). 

However, in the aforementioned work, as well as in others of the same research team (F. Sagués 

et al., 1984; Sancho & San Miguel, 1989), parameter time s  is always considered before 

evolution time t , s t . While such an assumption may be conceptually more convenient, the 

delta projection method also works for s t . Note also that, under the assumption s t , the 

aforementioned works consider as initial condition not Eq. (5.9), but 

( ) ( ) 1 2 ( ) 1 1 2( , ) ( ) ( )X s X s X sf x x f x x x= − , i.e. for t s= , under the understanding that 

( ) 1( )X sf x  can be calculated by solving the appropriate one-time evolution equation. Thus, for 

two-time response pdfs, the scheme of calculating the initial condition by solving another 

evolution equation is present both in the existing literature and in our approach. 
 

Transformed SLE. Consistent with all the prior examined cases, SLE (5.8) in non-closed due 

to the averaged term on its rightmost side. Thus, anew revoking the dependence of the response  
( ; )X t   on initial value and excitation, the averaged term can be equivalently expressed using 

the familiar notation as 
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(5.10) 

 

Expressing the averaged term as in Eq. (5.10) is of pivotal importance for the application of the 

required, extended NF theorem. Nevertheless, before we are able to proceed with the 

implementation of the theorem, the product of the two random delta functions must be expressed 

as an appropriate FFℓ. This is easily achieved by considering the product of random delta 

functions as a FFℓ of initial value 0 ( )X   and excitation ( ; )  over the time interval 0 1[ , ]t t

, with 1 max ( , )t t s= . Under this convenient notation, and regardless of the time ordering of t

, s , the product of random delta functions can always be regarded as a FFℓ like 
1

0
0[ ( ) ; ( ; ) ]

t

t
X  = F F . Thus, by employing Eq. (2.19) the averaged term can be 

calculated as follows: 
 

 
1  More specifically, its closed solvable approximation which will be derived in Section 5.3. 
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Using, now, the product and chain rules for the random delta functions, the above expression 

can be further evaluated into  
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where the usual variational derivatives 
0

( ; )
X

V t   and 
( )

( ; )V t





, also, appear. Furthermore, 

due to causality, variational derivatives ( ) ( ; ) ( ; ) / ( ; )V t X t     =   and ( ) ( ; )V s  =

( ; ) / ( ; )X s    , are zero for t   and s  , respectively since a variation of 

excitation, ( ; ) , at a certain time instance   cannot result in variation of the response in 

previous time instances. Thus, the upper limits of the integrals in Eq. (5.12) are adjusted 

accordingly to 
 

   

0 0

0 0

1 2 ( ) ( ) 1 2

1

2

2

1

1

( ( ; ) ) ( ( ; ) ) ( ; ) ( ) ( , )

( ( ; ) )
( ) ( ( ; ) ) ( ; )

( ; )

( ( ; ) )
( ) ( ( ; ) ) ( ; )

( ; )

( ( ; ) )
( , )

(

X t X s

X X

X X

x X t x X s t m t f x x

x X t
C t x X s V t

X t

x X s
C t x X t V s

X s

x X t
C t

X









    

 
  



 
  



 










 − −  = + 

 − 
+ − + 

 

 − 
+ − + 

 

 −
+


0

0

2 ( )

2

1 ( )

( ( ; ) ) ( ; )
; )

( ( ; ) )
( , ) ( ( ; ) ) ( ; ) .

( ; )

t

t

s

t

x X s V t d
t

x X s
C t x X t V s d

X s







   


 
    





 

 
− + 

 

 − 
+ − 

 





  (5.13) 

 



Chapter 5: Two-time response pdf evolution equations  67 
 

 

Finally, substituting Eq. (5.13) into SLE (5.8) and using the delta projection method’s 

formalism, we obtain the following, transformed SLE for the two-time response pdf 

( ) ( ) 1 2( , ):X t X sf x x  
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(5.14)  

 

As expected, the nonlocal variational derivatives appearing inside the averages terms of the 

above expression constitute SLE (5.14) non-closed. Thus, an approximation that results in a 

computable alternative must be implemented; this is performed in section 5.3. 
 

5.2 The auxiliary stochastic Liouville equation for the initial value-response pdf 

In this section, we are going to formulate the stochastic Liouville equation for the joint response-

initial value pdf that supplements SLE (5.14). Our starting point, is once more the delta 

representation which in this case reads 
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Then, differentiation of Eq. (5.15) with respect to t , yields 
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which can be further evaluated using the chain rule for the derivative of the delta function as 

well as employing RDE (5.1a) into 
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Each of the averaged terms on the right-hand side of Eq. (5.17) are subsequently calculated by 

making use of the usual delta projection method manipulations: 
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and 
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Combining now Eqs. (5.17) – (5.20) results in 
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   (5.20)  

 

Eq. (5.20) is the required initial value-response stochastic Liouville equation, which is also 

supplemented with the following initial condition: 
 

0 0 0 0( ) 0 1 0 1( , ) ( , )X X t X Xf x x f x x= .                (5.21)  

 

From Eq. (5.21), it becomes apparent that the initial condition, pdf 
0 0 0 1( , )X Xf x x , is just the 

duplication of initial value pdf 
0 0( )Xf x . By identifying the conditional probability distribution 

as 
0 0| 1 0 0 1( | ) ( )X Xf x x x x= − , Eq. (5.21) is elaborated as 

 

 
0 0 0 0 0 0 0( ) 0 1 0 1 | 1 0 0( , ) ( , ) ( | ) ( )X X t X X X X Xf x x f x x f x x f x= = =  

 
0 0 0 1( ) ( ).Xf x x x= −                (5.22) 

 

Thus, it is readily seen that the initial distribution for SLE (5.20) is the one-dimensional 

0 0( )Xf x , placed on the diagonal 0 1x x=  of the two-dimensional plane 0 1( , )x x .  
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Moreover, for SLE (5.20), the long-time behavior of the joint initial value-response pdf can also 

be recognized as 
0 0( ) 0 1 0 ( ) 1( , ) ( ) ( )X X t X X tf x x f x f x= . This “final” condition states the fact 

that after an adequately long time-interval the effects of the initial value 
0 ( )X   will have no 

impact to the response ( ; )X t  , thereby constituting their pdfs 
0 0 ( ) 1( ) , ( )X X tf x f x  

uncorrelated. 
 

Transformed auxiliary SLE. At this point, we are going to proceed, as per usual, with the 

evaluation of the non-closed averaging on the right-hand side of Eq. (5.20). This is easily 

performed by reverting to the familiar notation for representing the response as a random FFℓ. 

Hence, the product of the two random delta functions can be rewritten as 

( ) ( )
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0 0 1 0( ) [ ( ) ; ( ; ) ]
t

t
x X x X X    − −   and thus, collectively regarded as a 

functional like 1

0
0[ ( ) ; ( ; ) ]

t

t
X  = F F . This allows us to implement Eq. (2.19) of the 

extended NF theorem which yields 
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Finally, by carrying out the regular manipulations of the delta projection and substituting the 

apprehended into SLE (5.20), we obtain 
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     (5.24)  

 

Eq. (5.24) is the transformed SLE for the initial value-response pdf 
0 ( ) 0 1( , )X X tf x x . As in all 

of our previous cases, the appearance of the variational derivatives inside the two averaged 

terms on the rightmost side of SLE (5.24) constitute the latter nonlocal and non-closed. 

Therefore, in order to obtain a computable alternative to both SLEs (5.14), (5.24) an effective 

approximation scheme must be utilized, as is performed in the following section. 
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5.3 Novel, two-time response pdf evolution equations 

Observing SLEs (5.14) and (5.24), it is easy to see that the variational derivatives are the same 

with the ones calculated in paragraph 4.1.2. Thus, using Eqs. (3.24) and (3.30) as well as the 

notation  
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the aforementioned SLEs can be further transformed into 
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and 
 

   

( )

( ) ( ) ( )

( ) ( ) ( )

0

0

0

0

0 0

( ) 0 1

1 ( ) 0 1

1

2

( ) 0 1

0 1

2

0 0 12

1

2
2

0 0 12

1

( , )
( ) ( ) ( , )

( , )
( )

( ) ( ) ( ; ) exp [ ( ; ) ]

( , ) ( ) ( ; ) exp [ ( ; ) ]

X X t

X X t

X X t

X

t

X h t

t

h

f x x
h x m t f x x

t x

f x x
C t

x x

C t x X x X t I X
x

C t x X x X t I X
x











     

      









 
 + + =
  


= +

 

  + − − +
  

 + − −


0

.

t

t

d
 

 

(5.27) 
 

In this notation, it becomes obvious that the nonlocal terms inside the averages of the above 

expressions are of the same form to the ones appeared in the one-time response pdf evolution 

equation ( ) ( )X tf x , Eq. (3.32). Thus, the identical approximation scheme presented in paragraph 

3.1.3 can be employed. For the transformed SLE (5.26), this results in the following closed, 

approximate two-time pdf evolution equation, which is valid for t  s:  
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Note that in Eq. (5.28) the term 
eff ( ) , ,m hD R t t
    coincides with the generalized effective 

noise intensity Eq. (3.37). Accordingly, application of the approximation scheme for the 

transformed SLE (5.27) yields the following closed, approximate initial value-response pdf 

evolution equation: 
 

( )

( )

0

0

0

0

0

( ) 0 1

1 ( ) 0 1

1

2

( ) 0 1

0 1

2
eff

1 ( ) 0 12

1 0

( , )
( ) ( ) ( , )

( , )
( )

1
( ) , , ; ( ) ( , ) .

!

X X t

X X t

X X t

X

M

m

m h h h X X t

m

f x x
h x m t f x x

t x

f x x
C t

x x

D R t t x R t f x x
x m











  

=

 
 + + =
  


= +

 

    
 +         



      (5.30)  

 

As was explained in many previous cases, through the coefficients mD  and the terms m

h  , the 

novel pdf equations (5.28), (5.30) retain a trackable amount of nonlocality (in time) and 

nonlinearity, reflecting the non-Markovian character of the response. 
 

Example of compatibility. Let us now scrutinize the compatibility of the methodology used to 

derive two-time pdf evolution equations with its counterpart for one-time pdf evolution 

equations. This is performed by integrating both sides of Eq. (5.28) with respect to 2x  and under 

the plausible assumption ( ) ( ) 1( , ) 0X t X sf x  = . Thus, we find 
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           (5.31)  

 

which is identical to pdf evolution equation (3.36). Furthermore, Eq. (5.31) is also retrieved by 

integrating both sides of Eq. (5.30) with respect to 0x . The correspondence of the pdf evolution 

equation, obtained as a marginal of the two-time response pdf evolution Eq. (5.28) as well as of 

the initial value-response pdf evolution equation (5.30) with Eq. (3.36) derived in paragraph 
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3.1.3 demonstrates the compatibility of the novel, extended methodology presented in this 

chapter with the one it is founded upon. 
 

5.4 Exact pdfs for a linear, additively excited RDE 

In this section, we are going to examine the results of this methodology in the linear case. By 

setting ( )h x x= , 0  , in RDE (5.1a), we obtain the RIVP 
 

( ; ) ( ; ) ( ; )X t X t t    = +  ,  0 0( ; ) ( )X t X = .       (5.32a,b)  
 

As was already discussed, in this case the variational derivatives are explicitly calculated as 
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It is a well-known result that the response process of any linear system, with Gaussian initial 

distribution, to an additive Gaussian excitation (either colored or white) is also a Gaussian 

process. Hence, the joint pdf of two Gaussian processes can likewise be identified as a Gaussian 

process whose moments can be specified by formulating and solving their corresponding 

moment problems, as it is performed in sec. B.2. 
 

5.4.1 Exact, auxiliary initial value-response pdf  

Using the aforementioned calculated variational derivatives, the joint initial value-response SLE 

(5.24) is specified into 
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where eff ( )D t  is the effective noise intensity given by Eq. (3.46). In contrast with SLE (5.24) 

and in accordance with all the linear cases examined so far, Eq. (5.33) is closed and exact. 

Further, it is supplemented with the initial condition Eq. (5.22) in which the initial value pdf 

0 0( )Xf x  is the following Gaussian distribution: 
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Proceeding in the usual manner, we employ the two-dimensional Fourier transform 
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Under the above Fourier transform, initial condition (5.22) is respectively expressed as 
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By employing, now, the identity of delta function and at the same time, keeping in mind that 

the characteristic function of initial value is defined as 
0 0
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X Xy e f x dx =  , we obtain 
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Moreover, since the Fourier transform of Gaussian pdf (5.34) has already been calculated into 

Eq. (3.53b) as 
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transformed initial condition (5.37) is expressed in its final form: 
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As usual, IVP (5.35), (5.36) is solved using the method of characteristics. First, considering the 

homogenous variant of Eq. (5.35), the characteristic curve 1 1( , ) ty t y e =  is obtained as the 

solution of the characteristic equation 1/ ( )dt dy y= − . Then, the acquired characteristic curve 

dictates the change of variable from 0 1( , )y y  to 0( , )y   under which the transformed Eq. 

(5.35) becomes a linear ODE with respect to time t . Last, by solving the ODE and returning to 

the initial variables, we obtain the unique solution 
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            (5.39) 

 

At this point, as performed for the derivation of the one-time response excitation pdf, from Eq. 

(5.39) the first and second moments of initial value 0 ( )X   and response ( ; )X t   as well as 

their cross-covariance are readily identified into 
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( ) ( )( ) ( )

t

t t t
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t
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Furthermore, by recalling the connection between effective noise intensity and cross-correlation 

Eq. (5.40b) is equivalently written as  
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Having obtained Eqs. (5.40), it becomes obvious that they are identical to formulae (B.3), (B.23) 

and (B.27) as derived from their corresponding moment problems. Thus, we straightforwardly 

conclude that Eq. (5.40) gives the expected Gaussian form for 
0 ( ) 0 1( , )X X t y y , thereby 

verifying the validity of response-initial value pdf evolution Eq. (5.33). Finally, using the above 

expression Eq. (5.39) can equivalently be written in the more concise form 
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(5.41) 
 

5.4.2 Exact, two-time response pdf  

Let us now attend to the two-time response SLE in the linear case. Thus, substituting in Eq. 

(5.14) ( )h x x= , and calculating the variational derivatives to 0

0

( )
( ; )

t t

XV t e



−

= , 

( )

( ) ( ; ) t s

sV t e  −

 = , we obtain the following exact, two-time response pdf evolution 

equation: 
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where  
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( ) 2 ( )( , ) ( ) ( , )

s

s t s

X

t

D t s C t e C t e d
     

− −

 = +  .            (5.43)  

 

As discussed in section 5.1, the initial condition that supplements Eq. (5.42) is 

0 0( ) ( ) 1 2 ( ) 1 2( , ) ( , )X t X s X X sf x x f x x= . In the present case, this pdf has already been determined 

as the solution of the response-initial value pdf evolution Eq. (5.33). Before we proceed with 

the solution of Eq. (5.42), it is easily recognized through Eq. (5.43) that the term ( , )D t t  is 

identical to eff ( )D t  defined by Eq. (3.46); thus, the latter, more familiar writing is used 

subsequently in our calculations. 
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Solution of Eq. (5.42) using Fourier transform. As for the previous exact pdf equations, we 

employ the Fourier transform 1 1 2 2

2
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results in the transformed equation 
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           (5.44) 

 

Initial condition for Eq. (5.44) has already been specified in the previous paragraph 5.4.1, as the 

solution of initial value-response pdf, Eq. (5.41), written for t s= :  
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Following the same procedure to the one presented in paragraph 5.1.4, we begin be considering 

the homogenous variant of Eq. (5.44), which in turn prescribes the characteristic system 
 

1

11

dydt

y
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The solution of this system determines the characteristic curve 1 2 1( , , ) tt y y y e = = . Thus, 

by applying the change of variable ty e  −=  to Eqs. (5.44) and (5.45), we obtain 
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           (5.48) 

 

Finally, by solving the IVP (5.47)-(5.48) and returning to the initial variables 1

ty e = , the 

solution of the two-time pdf evolution equation (5.44) is procured: 
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By utilizing Eq. (B.3) for ( )Xm t , the verified Eq. (3.52) for 2 ( )X t , as well as Eq. (B.24) for 

( , )X XC t s  in conjunction with the definition relation (5.43) for ( , )D t s , solution (5.49) is 

written equivalently as 
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y

(5.50) 
 

Eq. (5.50) is the expected Gaussian form of the two-time response pdf, yielding both the one-

time; ( )Xm t , ( )Xm s , 2 ( )X t , 2 ( )X s , and the two-time, ( , )X XC t s , moments correctly. 

This positive result for the linear case, as well as the other similar results obtained in previous 

sections, constitute an indication in support of the conjecture that the SLEs, under an appropriate 

closure scheme, could also be well-posed and yield satisfactory results for the case of non-linear 

random dynamical systems.  
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Chapter 6 

Two-time pdf evolution equations for the 

response and its derivative 

In the present chapter, we are going to formulate pdf evolution equation s that entail both the 

response and its first derivative; a pursuit of special interest in first passage problems 

(Verechtchaguina et al., 2006). For this, we consider the familiar scalar, nonlinear, additively 

excited RIVP 
 

( ; ) ( ( ; ) ) ( ; )X t h X t t   = +  , 0 0( ; ) ( )X t X = .         (6.1a,b) 
 

In order to formulate our sought-for pdf evolution equation, it is necessary to also take into 

account the auxiliary RDE, 
 

( ; ) ( ( ; ) ) ( ; ) ( ; )X t h X t X t t    = +  ,              (6.2a) 
 

whose initial value is determined by setting in Eq. (6.1a) 0t t= , thus resulting in: 
 

0 0 0( ; ) ( ( ) ) ( ; )X t h X t   = +  .                (6.2b) 
 

All the results presented in this chapter will be derived by making use of our usual approach for 

both the RIVP (6.1a,b) as well as the auxiliary Eqs. (6.2a,b). 

6.1 First variant of the evolution equations for the two-time pdf of the response and its 

derivative 

Commencing in the same fashion presented in all the previous cases, we represent the sought-

for two-time pdf as the average of the product of two random delta functions, i.e. the delta 

projection method: 
 

( ) ( )
( , ) ( ( ; ) ) ( ( ; ) )

X s X t
f x y x X s y X t     = − −  .    (6.3) 

 

In Eq. (6.3), the two time instances t , s  are considered different; s t , while ( ; )X t   is 

regarded as an abbreviation of the right-hand side of RDE (6.1a). In this section, we are going 

to examine the problem in which the time argument of the derivative of the response, t , is 

treated as the evolution time and the time argument of the response, s , enters as a parameter. 

The problem in which the time argument of the response is regarded as the evolution time is 

presented in the ensuing section 6.2. 

6.1.1 The corresponding stochastic Liouville equation  

Differentiating both sides of Eq. (6.3) with respect to time t  and substituting Eq. (6.2a) into the 

apprehended expression results in 
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   (6.4) 

 

The two averaged terms appearing on the right-hand side of the above expressions are readily 

calculated by making use of the delta projection formalism. Substitution of the reevaluated 

averaged terms in Eq. (6.4) results in the following two-time stochastic Liouville equation of 

( ; )X s   and ( ; )X t  : 
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f x y
y x X s y X t h X t

t y

     
 

 + − − =  
 

( ( ; ) ) ( ( ; ) ) ( ; )x X s y X t t
y

     


 = − − −  
,            s t  

(6.5) 
 

As expected, Eq. (6.5) is a differential equation with respect to time t , while time s  enters as a 

parameter. As such, similar to the two-time response pdf, the initial condition to Eq. (6.5) will 

also be parametric with respect to s . More specifically, the said initial condition is written as 

0( ) ( )
( , )

X s X t
f x y  and its corresponding SLE will be formulated in the subsequent paragraph 

6.1.2. 
 

Transformed SLE. SLE (6.5) is non-closed due to both averaged terms appearing on each of 

its sides. Nevertheless, the one appearing on the right-hand side of Eq. (6.5) can be further 

evaluated using the appropriate extension of the Novikov-Furutsu theorem. Thus, recalling the 

dependence of the response over the initial value 0 ( )X   and the time history of the excitation 

( ; ) , and under the understanding that ( ; )X t   can, in turn, be regarded through equation 

(6.1a) as a function of the response, we can write 
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 − −  = 

 = −  −  
  

 (6.6) 

 

Therefore, in accordance with the approach followed for the two-time response SLE, the product 

of random delta functions in the above averaged term can be considered as a FFℓ of initial value 

0 ( )X   and excitation ( ; )  over the time interval 0 1[ , ]t t , with 1 max ( , )t t s= . Under 

this convenient notation, and regardless of the time ordering of t  and ,s  the aforementioned 

product can always be regarded as a FFℓ like =F 1

0
0[ ( ) ; ( ; ) ]

t

t
X  F . Hence, by 

employing Eq. (2.21) the averaged term can be calculated as follows: 
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    (6.7) 

 

Further, by utilizing the product and rules for the derivatives that appear on the right-hand side 

of the above equation as well as recalling the properties of the delta projection formalism, results 

in 
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 (6.8) 

 

Due to causality, the variational derivatives ( ; ) / ( ; )X s    , ( ; ) / ( ; )X t     

appearing on the right-hand side of the above expression, are zero for t   and s   

respectively, since a variation of excitation at a certain time instance cannot result in variation 

of response in previous time instances. Thus, the upper limits of the integrals in Eq. (6.8) must 

be adjusted accordingly. Moreover, in Eq. (6.8) the usual variational derivatives appear which, 

as described in Chapter 3, are given by 
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 =
 
 
 .              (6.9b) 

 

Further, the “new” variational derivatives 0( ; ) ( )X t X   , ( ; ) ( ; )X t u   can be 

easily calculated by directly applying to Eq. (6.1a) the operators 0 ( )X    and 

( ; )u  , respectively. As such, we find 
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Combining, now, Eqs. (6.8)-(6.10) yields 
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Last, by employing the identity of the delta function, the averaged term is written 
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0

( ) ( ; )( , ) ( ( ; ) ) ( ( ; ) ) ( ( ; ) ) .u

t

t

V tC t u x X s y X t h X t du
y


     


 − − −    

 

Finally, substituting the above expression into SLE (6.5) results in the following transformed 

SLE for the two-time joint pdf of ( ; )X s   and ( ; )X t  : 
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(6.13) 
 

It is not surprising that Eq. (6.13) is non-closed due to a) the averaged term on its left-hand side, 

b) the terms multiplying the product of random delta function inside the averages on its right-

hand side. Moreover, these terms are not in the appropriate form to implement the usual 

approximation scheme, first presented in paragraph 3.1.3, because of the occurrence of 
( ( ; ) )h X t  . As in the case of the evolution equations corresponding to an RDE excited by 

both additive and multiplicative noise Eqs. (3.71), (4.73), the time argument of ( ( ; ) )h X   

does not match the one of the delta function of this response ( ( ; ) )x X s −  and thus, the said 

term cannot be treated via the delta projection method. An appropriate closure technique to 

derive the required pdf evolution equation is proposed in paragraph 6.1.3 
 

6.1.2 Auxiliary, initial stochastic Liouville equation corresponding to the RDE 

Having obtained SLE (6.13), it is essential to also determine its initial value 
0( ) ( )

( , )
X s X t

f x y

. As per usual, our starting point is the delta projection method which provides us with the 

following representation: 
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,            (6.14) 

 

in which 0( ; )X t   is given by Eq. (6.2b). By differentiating Eq. (6.14) over time t , we obtain 
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Eq. (6.15) can be further evaluated by employing RDE (6.1a) as: 
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    (6.16) 

 

Finally, carrying out the familiar delta projection method manipulations, we acquire the 

following stochastic Liouville equation for ( ; )X t   and 0( ; )X t  : 
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    (6.17) 

 

SLE (6.17) is also supplemented with the following initial condition 
 

 
0 0 0 0( ) ( ) ( )
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X t X t X X t

f x y f x y= ,                (6.18) 

 

which is a bivariate Gaussian distribution, in accordance with its components.  
 

Transformed SLE. At this point, let us proceed by evaluating the non-closed averaged term 

appearing on the right-hand side of Eq. (6.17). Thus, recalling the dependence of the response 

on 0 ( )X   and 
0
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t

t
  as well as Eq. (6.2b) for 0( ; )X t  , the product of random delta 

functions can be seen as a FFℓ like =F  
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t
X  F . Hence, we are able to apply 

the extended NF theorem, Eq. (2.18): 
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(6.19) 

 

By employing, now, the chain and product rule for the derivatives, Eq. (6.21) is transformed 

into 
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In Eq. (6.20), the familiar variational derivatives 
0
( ; )XV t  , ( ) ( ; )V t   appear, as well as the 

unknowns 0 0( ; ) ( )X t X    and 0( ; ) ( ; )X t    . These are straightforwardly 

apprehended by applying the operators 0 ( )X    and ( ; )   on both sides of Eq. 

(6.2b), resulting in 
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.             (6.21b) 

 

Using Eqs. (6.21a,b), the delta function identity for 0( )t −  and the delta projection 

method’s properties, Eq. (6.20) is written as 
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Last, substituting Eq. (6.22) into SLE (6.13) results in the following, transformed SLE for the 

joint pdf of ( ; )X t   and 0( ; )X t  : 
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                (6.23) 

 

As expected, Eq. (6.23) is non-closed due to the variational derivatives as well as the term 

( )0 ( )h X   multiplying the product of random delta functions inside the averaged appearing 

on its right-hand side. The treatment of these term in a way that allows us to derive a closed pdf 

evolution equation from SLE (6.23) is presented in the following paragraph. 
 

6.1.3 Novel, two-time evolution equations for the pdf of the response and its derivative 

Let us, first, rewrite Eq. (6.13) by substituting the variational derivatives by Eqs. (3.24) and 

(3.30) and using the notation 
 

( )[ ( ; ) ] ( ; )

t
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  = I .               (6.24)  

 

Using the aforementioned equations, we obtain the following exact, non-closed evolution 

equation for the two-time joint pdf of the response and its derivative 
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where the shorthand ( , ; , ) ( ( ; ) ) ( ( ; ) )s tx y X X x X s y X t    = − −  has also been used. 

Accordingly, by using the same notation for Eq. (6.23) written for  t s= , we obtain the 

following, exact, non-closed evolution equation for the joint pdf of ( ; )X s   and 0( ; )X t  : 
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                (6.26) 

 

In this notation, it becomes clear that Eqs. (6.25) and (6.26) are non-closed due to the nonlocal 

terms multiplying the product of random delta functions. What is more, the nonlocal terms 
( )h  resemble the ones appeared in the response and response-excitation pdf evolution 

equations of the RDE excited by both additive and multiplicative colored noise and thus, a 

similar current-time approximation can be employed for them. Further, the exponential terms 

are of similar form as those presented in paragraph 3.1.3 and as such, an appropriately adjusted 

approximation scheme, analogous to the one introduced in the aforementioned paragraph, can 

be implemented.  
 

First, let us specify the approximate form of Eq. (6.26). As already discussed, this is performed 

by implementing the usual approximation scheme for the nonlocal terms as well as considering 

the Taylor expansion of ( )0 ( )h X   around evolution time s  up to first order; the latter is 

carried out under the assumption that we work for small correlation times. As such, the closed, 

approximate evolution equation for the joint pdf of ( ; )X s   and 0( ; )X t   reads 
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where 
eff
mD  is the generalized effective noise intensities given by Eq. (5.29). In order to derive 

Eq. (6.27), in the Taylor expansion of ( )0 ( )h X   we have disregarded the terms which 

explicitly contain the excitation as was also performed in the case of a both multiplicatively and 
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additively excited RDE. Further, for the above equation to be valid the additional assumption 

that function ( )h x  has continuous second derivative must be introduced.  
 

Let us, now, continue with the treatment of Eq. (6.25). First, for the nonlocal terms 

( ( ; ) )h X t  , under the assumption that we work for small correlation times, we perform a 

Taylor expansion around parameter time s  and once more disregard the term containing the 

excitation. Then, we apply the familiar approximation scheme for the exponential terms and, 

anew, carry out current-time approximations when it is required. Thus, we obtain the following 

approximate, closed evolution equation for the two-time joint pdf of the response and its 

derivative 
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where 
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            (6.29) 

 

( )(2) (1)( ) , , ( ) ( ) ( ) ( ) ( ) , ,m h m hG R t t h x h x h x s t G R t t     = − −    ,             (6.30) 

 

( ) ( ) ( )1 ; ( ) ; ( ) ; ( ) ( ) ( )
m m m

h h hh hx R s x R s x R s h x s t     
= − − .            (6.31) 

 

Through the 
eff
mD , G ,   and   terms Eqs. (6.27), (6.28) retain a considerable amount of the 

nonlinearity and nonlocality (in time), thus, maintaining the non-Markovian character of the 

original problem. All in all, the treatment of Eqs. (6.25), (6.26) clearly showcases the intricacies 

associated with the derivation of closed, computable pdf evolution equations involving both the 

response and its derivative. In the present paragraph, a closure technique was proposed which 

could provide a starting point for their numerical solution. 
 

A different, and evidently simpler, set of pdf evolution equations which involve both the 

response and its derivative can be derived by employing Hӓnggi’s ansatz (P. Hänggi & Jung, 

1995; Peter Hänggi, Mroczkowski, Moss, & McClintock, 1985) for the exponential terms of 

Eqs. (6.25), (6.26). This set of “new” equations constitute only a special case of the ones 

presented above.  
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According to Hӓnggi’s ansatz, the random quantity inside the nonlocal, exponential terms is 

approximated by its mean value, e.g. 
 

( )exp ( ; ) exp ( )

t t

hh X u du R u du

 

 

   
    
   
   
  ,               (6.32) 

 

where ( )( ) ( ; )hR u h X u
  =    . Therefore, it can be readily seen that this scheme is a 

simplification of the one presented above since it can be directly obtained by disregarding the 

fluctuation exponentials and their subsequent treatment. However, it must be noted that the 

current-time approximation for the ( )h  terms is unavoidable. Thus, application of Hӓnggi’s 

ansatz results in the following approximate, closed evolution equation for the two-time joint pdf 

of the response and its derivative 
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 (2) (1)
( ) , , ( ) ( ) ( ) ( ) ( ) , ,h hG R t t h x h x h x s t G R t t     = − −    .             (6.35) 

 

Accordingly, the auxiliary, initial pdf evolution equation for the joint pdf of ( ; )X s   and 

0( ; )X t   is specified into 
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where the term 
eff

D  is given via the following expression: 
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Having derived Eqs. (6.33) and (6.36), it becomes apparent that they are simpler versions of 

their counterparts Eqs. (6.28) and (6.27), respectively. However, they are also much simpler to 

comprehend as well as attempt to solve numerically. 
 

6.2 Second variant of the evolution equations for the two-time pdf of the response and its 

derivative 

In this section, we are going to formulate another SLE for the response and its derivative at a 

different time instance. Thus, using the delta representation, the sought-for pdf is written as: 
 

( ) ( )
( , ) ( ( ; ) ) ( ( ; ) )

X t X s
f x y x X t y X s     = − −  .             (6.38) 

 

Note that Eq. (6.38) is not the same as Eq. (6.3); this time the time argument of the derivative 

of the response will be treated as a parameter in the following calculations.  
 

6.2.1 The corresponding stochastic Liouville equation  

As performed in section 6.1, we differentiate both sides of Eq. (6.38) with respect to time t  and 

also employ RDE (6.1a), resulting in 
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Each term on the right-hand side of Eq. (6.39) is readily evaluated using the delta projection 

formalism. Thus, by performing the usual manipulations the above equation is written 
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The above expression is another variant for the stochastic Liouville equation for the joint pdf 

of ( ; )X t   and ( ; )X s   which is a also a differential equation with respect to time t  and 

time s  enters as a parameter. Further, SLE (6.40) is supplemented with the following initial 

condition: 
 

0 0( ) ( ) ( )
( , ) ( , )

X t X s X X s
f x y f x y= ,               (6.41) 

 

whose SLE will be formulated via the delta projection method in the ensuing paragraph 6.2.2.  
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Transformed SLE. As in all the previous cases, SLE (6.40) in non-closed due to the averaged 

term on its right-hand side. This term is of similar form to the one appearing in Eq. (6.9) with 

the exception that the product of the random delta functions is multiplied by ( ; )t   rather 

than ( ; )t  . As such, again the said product can be regarded as a FFℓ like =F  

1

0
0[ ( ) ; ( ; ) ]

t

t
X  F  with 1 max ( , )t t s= . Thus, by employing Eq. (2.19), the averaged 

term can be written as 
 

         
 

 

0

1

0

0

( ( ; ) ) ( ( ; ) ) ( ; )

( ) ( ( ; ) ) ( ( ; ) ) ( ; )

( ( ; ) ) ( ( ; ) ) ( ; )
( )

( )

( ( ; ) ) ( ( ; ) ) ( ; )
( , ) .

( ; )

X

t

t

x X t y X s t

m t x X t y X s t

x X t y X s t
C t

X

x X t y X s t
C t d









    

    

    



    
 

 







 − −  = 

 = − −  + 

  − − 
 + +

  

 − − 
 +

  


  (6.42) 

 

Eq. (6.42) is further evaluated by following the usual approach into 
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Finally, combining Eqs. (6.40) and (6.43), results in the following transformed Liouville 

equation for ( ; )X t   and ( ; )X s  : 
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In consistence with all the prior examined cases, SLE (6.44) is non-closed due to the terms 

multiplying the product of random delta functions inside the averages. These will be accordingly 

addressed in the ensuing paragraph 6.2.3 in order to obtain a closed alternative of SLE (6.44).  
 

6.2.2 Auxiliary, initial stochastic Liouville equation corresponding to the RDE 

In this subsection, we are going to formulate the SLE for 0 ( )X   and ( ; )X t   which will 

serve an initial condition to Eq. (6.44). As always, our starting point is the delta projection 

method: 
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By differentiating, now, both sides of the above equation and employing RDE (6.1a), we find 
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The averaged terms on the right-hand side of the above expression can be further evaluated 

using the familiar formalism, thus, resulting in the following SLE for 0 ( )X   and ( ; )X t   in 

its non-closed form: 
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SLE (6.47) in non-closed due to the averaged terms appearing on both of its sides. The first one 

will be treated in paragraph 6.2.3 where an approximation scheme is proposed that results in a 

closed pdf evolution equation. The one appearing on its right-hand side can easily be treated by 

the appropriate NF theorem, as it is subsequently presented.  
 

Transformed SLE. Recalling Eq. (6.1a) as well as the dependence of the response on the initial 

value 0 ( )X   and the time history of the excitation ( ; )  over 0[ , ]t t , the averaged term 

appearing on the right-hand side of Eq. (6.47) can be written as 
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which is the appropriate form for the application of the Extension III of the NF theorem, Eq. 

(2.21), under the understanding that the product of the random delta functions is regarded as a 

FFℓ like 
0

0[ ( ) ; ( ; ) ]
t

t
X  F . Implementation of the said extended NF theorem yields 
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(6.49) 

 

where ( , ) ( , )tC t C t 
=  . Further, by using the product and chain rules for derivatives 

and substituting the variational derivatives that arise, we obtain the following final form for the 

averaged term: 
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             (6.50) 

 

Finally, by substituting Eq. (6.50) into Eq. (6.47) gives rise to 
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Eq. (6.51) is the transformed SLE for the joint pdf of 0 ( )X   and ( ; )X t  . Once more, it is 

useful to reiterate that not only the averaged term on the left-hand side of Eq. (6.51) constitute 

the apprehended expression non-closed, but also the additional terms multiplying the product 

of random delta functions.  
 

6.2.3 Novel, two-time evolution equations for the pdf of the response and its derivative  

Having formulated SLEs (6.44) and (6.51), we are able to proceed with the derivation of the 

second variant of the evolution equations corresponding to the pdf of the response and its 

derivative. However, let us first rewrite them in a notation that makes the terms requiring 

approximation more evident. More specifically, using the notation presented in paragraph 6.1.3, 

the exact, non-closed pdf evolution equation for the joint pdf of ( ; )X t   and ( ; )X s   reads 
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+

 
                 (6.52) 

 

Eq. (6.52) must also be supplemented by an initial condition, which is obtained through Eq. 

(6.45) for t s=  as follows: 
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( )

( )

0 0 0

0

0

2

2

2
3

2

( ) ( , ; , ) ( ( ; ) ) exp [ ( ; )

( , ) ( , ; , ) ( ( ; ) ) exp [ ( ; ) ] .

s

X t s h t

s
s

t s h

t

C s x y X X h X s X
y

C s x y X X h X s X d
y







   

     





  + +
  

  +
   

I

I

  

 

Eq. (6.53) is the exact, non-closed pdf evolution equation for the joint pdf of 0 ( )X   and 

( ; )X s  . Under this notation, it is readily recognized that the nonlocal terms which constitute 

the above equations non-closed are similar to the ones appearing in Eqs. (6.25), (6.26) and thus, 

the same approximation can be implemented. As such, from Eq. (6.53) the following closed, 

approximate pdf evolution equation for the joint pdf of 0 ( )X   and ( ; )X s  : 
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           (6.54) 

 

where 
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           (6.55) 

 

( ) ( ) ( )2 0; ( ) ; ( ) ; ( ) ( ) ( )h h h h hx R s x R s x R s h x s t      = + − .            (6.56) 

 

Subsequently, by working accordingly in the case of Eq. (6.52) we obtain the following 

approximate, closed evolution equation for the two-time joint pdf of the response and its 

derivative 
( ) ( )

( , )
X t X s

f x y : 
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             (6.57) 

 

where 
eff [ , ]mA t s  is a shorthand for 
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This approximate equation seems somewhat simpler than its counterpart Eq. (6.28) because the 

manipulations required for Eq. (6.52) are more familiar and are confined to the terms only on 

its right-hand side. Nevertheless, this time, more complicacies arise in the treatment of the initial 

condition, Eq. (6.53). 
 

Let us, also, consider the simpler alternatives of Eqs. (6.54) and (6.57) by taking into account 

only the terms which would appear if we had implemented Hӓnggi’s ansatz. Thus, for the 

approximate pdf evolution equation for the joint pdf of 0 ( )X   and ( ; )X s   we find 
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where 
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            (6.60) 

 

Working in similar fashion for the case of the approximate, closed evolution equation for the 

two-time joint pdf of the response and its derivative 
( ) ( )

( , )
X t X s

f x y , we obtain 
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(6.61) 

 

in which 
eff

( ) , ,hD R t s 
   is given by Eq. (6.37). At this point, it is easily understood that 

Eqs. (6.59), (6.61) are similar to their alternatives (6.54), (6.57) respectively, while also being 

easier to comprehend and manage.  
 

6.3 Exact pdfs for a linear, additively excited RDE 

In this section, let us, for the last time, examine the results of this methodology in the linear 

case. By setting ( )h x x= , with 0   for stability reasons, in RDE (6.1a), we obtain the 

RIVP 
 

( ; ) ( ; ) ( ; )X t X t t    = +  ,  0 0( ; ) ( )X t X = .      (6.62a,b)  
 

As was previously discussed, in this case, the variational derivatives are explicitly calculated 

into 0

0

( )
( ; )

t t

XV t e



−

=  and ( ) ( ; )V t  = ( )te  − . It is also useful to reiterate that in 

the linear case, the joint pdf of the response and its derivative as well as the auxiliaries, initial 

pdfs are expected to be Gaussian distributions whose moments have been specified in sec. B.2 

by formulating and solving their corresponding moment problems. 
 

Subsequently, we are going to determine the pdfs for the linear, additively excited RIVP 

(6.62a,b) by considering the two variants for the two-time joint pdf of the response and its 

derivative separately. This will allow us to examine the potency of both derived variants and 

comment on any discrepancies that may or may not arise between them. 
 

6.3.1 First variant of the exact pdfs 

In this subsection, we shall rewrite the derived SLEs for the first variant of the problem in the 

linear case and then, by employing an appropriate Fourier transform, the exact pdfs 

corresponding to the RIVP will be specified. For this, it is necessary to first consider the 

auxiliary, initial pdf 
0( ) ( )

( , )
X t X t

f x y . 

 

(a) Exact initial pdf 
0( ) ( )X t X t

f  

Using the aforementioned calculated variational derivatives, the SLE (6.23) for the joint pdf 

0( ) ( )X t X t
f  is specified into 
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           (6.63) 

 

where eff ( )D t  is the generalized effective noise intensity given by Eq. (3.41). In contrast with 

SLE (6.23) and consistent with all the linear cases examined so far, Eq. (6.63) is closed and 

exact. Further. it is supplemented by the following initial condition: 
 

 
0 0 0 0( ) ( ) ( )

( , ) ( , )
X t X t X t X

f x y f x y= ,               (6.64) 

 

which is a bivariate Gaussian distribution, in accordance with its components.  
 

Solution of Eq. (6.63) in the Fourier domain. We employ the two-dimensional Fourier 

transform 0 1
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            (6.65) 

 

supplemented by the transformed initial condition 
 

0 0 0 00 0 0 0

2 2 2 2
0 1 0 10 1( ) ( )

1 1
( ) exp .

2 2
X X X XX t X t X X

i m u i m u u u u u C  
 

= + − − − 
 

u   (6.66) 

 

The IVP (6.65) and (6.66) is solved in the familiar manner. First, the solution to the 

homogeneous variant of Eq. (6.41) determines the change of variables 0 1 0( , ) ( , )u u u → , 

1
tu e = . Under these variables, Eq. (6.65) is transformed into a linear ODE with respect to 

time t . By solving the said equation and then returning to the original variables u , we determine 

the solution of IVP (6.65)-(6.66) as 
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By utilizing Eq. (A.3) for ( )Xm t , the verified Eq. (3.47) for 
2

( )X t , as well as Eq. (B.55) for 

0 0( ) ( )X t X t
C , solution (6.67) is written equivalently 
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Last, utilizing Eq. (B.56) for 0( )
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X X t
C t t  we obtain 
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            (6.69) 

 

At this point, Eq. (6.69) is easily recognized as the characteristic function of the correct, 

bivariate Gaussian pdf.  
 

(b) Exact two-time, joint pdf of ( ; )X s   and ( ; )X t   

Let us, now, examine the two-time pdf 
( ) ( )

( , )
X s X t

f x y  in the linear case. Thus, substituting 

in SLE (6.13) ( )h x x= , and employing the aforementioned calculated variational 

derivative, we obtain the following, exact pdf evolution equation: 
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where ( )G t  is given by Eq. (4.36), while  
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Note that comparison of Eq. (6.71) and Eq. (4.36) yields ( ) ( , )G t G t t= . Further, through 

(6.70) it becomes apparent that the required initial condition for its solution is 
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f x y  Under the obvious identity 
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readily seen that the required initial condition has already been specified as the solution of Eq. 

(6.63). 
 

Solution of Eq. (6.70) using Fourier transform. As performed, plenty of times so far, the two-

time pdf evolution equation (6.70) is solved by employing the two-dimensional Fourier 

transform; 1 2
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Eq. (6.72) is also supplemented, through Eq. (6.63), by the initial condition 
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            (6.73) 

 

The solution of IVP (6.72), (6.73) is carried out in the familiar fashion, that is the method of 

characteristics, resulting in 
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             (6.74) 

 

At this point, using Eqs. (B.29b) and (B.30), the second exponential term in the above equation 

is identified as ( )Xm t . Then, using Eq. (B.57) for 0t t= , Eq. (4.37a) for the connection 

between ( )G t  and eff ( )D t , and performing some simple calculations, the second exponential 

term is recognized as 
2

( )
X

t . Last, employing Eq. (B.56) for 
0( ) ( )

( )
X s X t

C s  as well as 

definition (6.71) for ( , )G s  and performing simple algebraic manipulations, the rightmost 

exponential term of Eq. (6.74) is identified through Eq. (B.54) as ( , )
X X

C s t . Combining all 

of the above with Eq. (6.50) results into 
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           (6.75) 

 

Finally, Eq. (6.75) is identified as the characteristic function of the expected bivariate Gaussian 

distribution, a finding which reaffirms the approach presented herein. 
 

6.3.2 Second variant of the exact pdfs 

Let us, now, repeat the process presented in the previous paragraph 6.3.1 for the equations 

derived in section 6.2. 
 

(a) Exact initial pdf 
0
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In this subsection, we are going to determine the pdf 
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f x y  in the linear case. Thus, 

setting ( )h x x=  in SLE (6.51), and substituting the calculated variational derivatives 
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evolution equation: 
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 (6.76) 

 

where ( )G t  is again given by Eq. (4.36). The initial condition for Eq. (6.76) is the same as the 

one for Eq. (6.70), i.e. the inverse Fourier transform of Eq. (6.69). 
 

Solution of Eq. (6.76) using Fourier transform. Following the usual approach, the two-time 

pdf evolution equation (6.76) is solved by employing the two-dimensional Fourier transform; 
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            (6.77) 

 

Eq. (6.77) is also supplemented by the transformed initial condition which, in this case, 

coincides with Eq. (6.69). 
 

The solution of IVP (6.69), (6.77) commences by considering the homogenous variant of Eq. 

(6.77). This provides us with the change of variables 0 1 0( , ) ( , )u u u → , 1
tu e = . Under 

these variables, Eq. (6.77) is transformed into a linear ODE with respect to time t . By solving 

the said equation and then returning to the original variables u , we determine the solution of 

the aforementioned IVP as: 
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All of the terms appearing in the parentheses inside the exponentials are of the same form as the 

ones in Eq. (6.74). Thus, performing the manipulations describes in section 6.3.1, Eq. (6.78) is 

equivalently rewritten as: 
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(6.79) 
 

Last, Eq. (6.79) is easily recognized as the expected Gaussian characteristic function. 
 

(b) Exact two-time joint pdf of ( ; )X t   and ( ; )X s   

We will now examine the linear counterpart of SLE (6.44). Again, substituting ( )h x x=  

and calculating the variational derivatives results in 
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where eff ( )D t  is defined by Eq. (3.41) and ( , )D t s  by Eq. (5.43). Eq. (6.80) is also 

supplemented by the initial condition 
0( ) ( )

( , )
X t X t

f x y , which has already been specified in 

the previous paragraph. 
 

Solution of Eq. (6.80) using Fourier transform. Eq. (6.80) is solved by employing the two-

dimensional Fourier transform; 1 2

2
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resulting in the equation 
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which, in turn, is supplemented by the initial condition Eq. (6.79) written for s t= . 
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Following the usual approach, the solution of IVP (6.79), (6.81) is attained: 
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At this point, using Eq. (B.3) for ( )Xm t , verified Eq. (3.47) for 
2

( )X t , defining Eq. (5.43) 

for ( , )D t s  as well as Eq. (B.53) for 
0

( )
X X

C s ; Eq. (6.82) can be written as 
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           (6.83) 

 

Eq. (6.83) is readily identified as the expected, bivariate Gaussian characteristic function. Thus, 

even though the use of SLE (6.44) seems rather inconvenient in the nonlinear case, its validation 

in the linear case reaffirms its consistency with the entire methodology presented in this work. 
 

All in all, the correspondence, in the linear case, of the results derived by solving our new 

equations with the ones obtained via formulating and solving the corresponding moment 

problems serves as a preliminary indication of the validity of our overall approach. 
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Chapter 7 

Conclusions and Future works 

In this thesis, we extended a methodology used to derive response pdf evolution equations for 

RDEs excited by colored Gaussian noise in order to account for more systems. More 

specifically, we first showcased the applicability of this methodology in another case, namely 

the one in which the RDE is excited by both multiplicative and additive noise. Furthermore, we 

outlined the manner in which this methodology can be implemented in order to derive equations 

governing the joint, second-order pdfs of the system depending on all responses (and/or 

excitations) on the same or different time instances.  
 

To sum up, the derivation of these new equations commences with the delta projection method 

which was concisely described in sec. 3.12. By virtue of this method, we are able to easily 

represent the sought-for pdf as the average of a random delta function or a product of them and 

thus, by executing some straightforward algebraic manipulations we readily derive a SLE 

corresponding to the examined RIVP. The acquired SLE is each time non-closed due to some 

averaged terms dependent on a time instance of the excitation, the initial value of the RDE as 

well as the entire time-history of the response; the occurrence of the terms was previously 

considered somewhat burdensome (Venturi et al., 2012a). Nevertheless, by considering the 

response as a functional or a FFℓ, we are able to employ novel extensions to the NF theorem – 

formulated and proven in Chapter 2 by following the approach presented in (Athanassoulis & 

Mamis, 2019) – that the SLE In the case of the scalar, nonlinear additively excited RDE this 

results in the appearance of the variational derivatives of the RIVP that depend on the time-

history of the response, while, in the case of an RDE also excited by multiplicative noise there 

is also a dependence on the history of the excitation. Last, probably the most convoluted step of 

this approach is that in order to obtain closed, approximate pdf evolution equations, we must 

effectively elaborate on this nonlocal, nonlinear terms which arise from the variational 

derivatives. The potency of these results was also tested in the case of a linear, additively excited 

RDE in which they attained the correct Gaussian pdfs. 
 

Since, the vast majority of the theoretical modelling for the presented cases has been established 

in this work, in the future, a significant step forward would be to conduct numerical simulations 

based on these equations and evaluate their efficiency. In particular, it would be very useful to 

first test this methodology in benchmark cases, e.g. for Ornstein-Uhlenbeck excitation, or more 

practical cases where the probabilistic characteristics of the noise have been specified through 

existent data. Another useful step forward is to rederive these equations for a multidimensional 

system of RDEs in order to clarify any intricacies that may arise and implement them in useful 

applications. Last, it would also be very useful to test the equations for the joint pdf of the 

response with its derivative in first-passage problems.

 
2 A more thorough description of this methodology can be found in (Mamis, 2020; Mamis et al., 2019) 





 

105 

Appendix A 

Proofs of Lemmata 2.7-2.12 

The proof of Lemmata 2.7-2.12 are proven herein by expressing the appropriate −T  operators 

in series form. This is accomplished via the expansion of the exponentials appearing on the 

right-hand sides of Eqs. (2.47a,b,c), as follows: 
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The proofs of the aforementioned lemmata is based on the above series expansion, in 

conjunction with the linearity of integrals and derivatives. 
 

Proof of Lemma 2.7: T  – operators are linear. The action of operator 
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ˆ ˆ 
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By taking advantage of the linearity of derivatives and integrals and assuming that a  and   are 

independent from the differentiation arguments ( )  and ( )u , each term on the right-hand 

side of the above equations in linearly decomposed, thus, resulting in the linearity of the 
0 1

ˆ ˆ 
T  

operator; the proof of Lemma 2.7 for 
0 1

ˆ ˆ 
T  has been completed. The proof for the other two 

T  – operators is similar.              ■ 
 

Proof of Lemma 2.8: T  – operators commute with ( )  −  and ( )u  −  differentiation. 

We shall prove this lemma for operator
0 1

ˆ ˆ 
T , which is also the most complicated case. By 

using Eq. (A.1c), we have 
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Employing, now, the continuity and linearity of the derivative, the above expression is rewritten 

as: 
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Proof of the Lemma for 
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T G  and for the other two operators 

is similar.                 ■ 
 

Proof of Lemma 2.9: T  – operators commute with each other. For the sake of simplicity, 

we shall prove the commutativity of operators 
0 1

ˆ ˆ 
T  and 

0 0
ˆ ˆ 

T ; the proof for the rest of the 

cases is similar. Using Eqs. (A.1a,c), we obtain 
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Now, by employing the linearity of derivatives and integrals and rearranging the order of 

summations, we obtain 
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Lemmata 2.7-2.7 are essential for the proof of both extensions to the NF theorem. Subsequently, 

we are going to evaluate the action of −T operators on the products 
0 0

( ) [ ( ) ; ( ) ]
t t

t t
u s uF  

and 
0 0

( ) [ ( ) ; ( ) ]
t t

t t
u s uF . However, before we are able proceed, we must introduce, in 

each case, the following product rule for Volterra functional derivatives: 
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The first case. Eq. (A.2a) can easily be proven via mathematical induction on index k , 

commencing from the product rule for the first order Volterra derivative 
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with ( ) / ( ) ( )u s u s  = − .  
 

For the second case, under the assumption that ( )u  is ( )1

0[ , ]C t t → , like the paths of 

( ; ) , ( )u s  can expressed as a linear functional of integral type with a singular kernel 
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where ( ) ( ) /s s     −  − −  . Expression (A.3) is formal, yet it makes the Volterra 

derivative of ( )u s  easily computable to 
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Using, now, Eq. (A.3) the product rule for first-order Volterra derivatives of 

0 0
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u s uF  can be seen through Eq. (A.3) as 
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Thus, commencing from Eq. (A.6), Eq. (A.2b) can easily be proven via mathematical induction 

on index k . 
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Eq. (A.7) holds true due to the linearity of operator 
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Let us, first, elaborate on A : 
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where the sum appearing on the rightmost side of the above expression can be identified via Eq. 

(A.1c) as 
0 1 0 0

ˆ ˆ [ ( ) ; ( ) ]
t t

t t
u

 

 
  

T F . As such, 
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We shall now evaluate the second term, B : 
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By performing, in each term of sum 
1p



=

 , the change of integration variables ( )

0 0

n =  and 

( ) ( )

1 1

m =  for n  , ( ) ( 1)m

i is s −=  for n , we obtain 
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( ) ( ) ( ) ( )
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m m

m
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−
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1
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m
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−

=
=



=  .            (Α.9c) 

 

Under this change of variables, we find 
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By performing the change of index 1k p= − , and interchanging 0  integration with 

summation the above expression is equivalently written 
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The sum on the right-hand side of the above equation, is identified via Eq. (A.1c) as 
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Finally, combining Eqs. (A.8) and (A.10), the proof of Lemma 2.11 is completed.       ■ 
 

Proof of Lemma 2.12. Once more, for reasons of brevity, we are only going to present the proof 

of Lemma 2.12 for 
0 0

( ) [ ( ) ; ( ) ]
t t

t t
u s uF . Using the series expansion Eq. (A.1b) as well 

as Eq. (A.2b), the action of operator 
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T  on 
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u s uF  is given by 
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while  , after taking into account the symmetry of autocorrelation function 
1 1 1 2( , )C     and 

the properties of the delta function, can be written as follows: 
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Through Eq. (A.1b),   is identified as 
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Let us, now, return to the treatment of   and perform, for the terms inside the sum, the change 

of variables presented in the proof of Lemma 2.11, Eqs. (A.9a,b,c). it is easy to see that all 2 p  

terms in the n −  sum are equal, resulting in  
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Performing the index change 1k p= −  and interchanging 2 −  integration with summation, 

results in 
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The sum in the right-hand side of the above equation is identified, via Eq. (19b), as 
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Last, combining Eq. (A.11) and (A.12) Lemma 2.12 for the case of 
0 0

( ) [ ( ) ; ( ) ] .
t t

t t
u s uF

The proof in the case of 
0 0

( ) [ ( ) ; ( ) ]
t t

t t
u s uF  is similar. 
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Appendix B 

Moment problem for a linear, additively excited 

RDE 

In this appendix, we will derive and solve the deterministic initial value problems for the 

moments of the familiar linear, additively excited RIVP: 
 

( ; ) ( ; ) ( ; )X t X t t    = +  ,  0 0( ; ) ( )X t X = .        (B.1a,b) 
 

The derivation of these moment equations will be performed by multiplying both sides of Eqs. 

(B.1a,b) with the appropriate, for each problem, random function, and then by taking the average 

[ ]  of both sides of the equation. Since the original RIVP is a linear SDE, the corresponding 

moment problems will be linear ODEs of the general form 
 

( )
( ) ( )

d x t
a x t b y t

dt
= + ,  0 0( )x t x=  ,    (B.i) 

 

whose solution is  
 

0

0

( ) ( )

0( ) ( )

t

a t t a t

t

x t x e b y e d 
− −= +  .               (B.ii) 

 

At this point, it is useful to discuss on which moment functions should be considered as data for 

the moment IVPs, and which moments should be considered as unknowns, and thus, for their 

determination, additional moment IVPs should be constructed. In the original IVP, Eqs. 

(B.1a,b), initial value and excitation are considered known, as in every IVP. Since initial value 

is the random variable 0 ( )X   and excitation is the random function ( ; )t  , the 

aforementioned knowledge of initial value and excitation means, from a probability theory point 

of view, the knowledge of the pdf 
0

( )Xf x  and the family of pdfs 
1( ) ( ) 1( , , )

Nt t Nf    , for 

all N   respectively. What is more, the simultaneous knowledge of 0 ( )X  , ( ; )t   

implies also the knowledge of the cross-pdf initial value-excitation family 

0 1( ) ( ) 1( , , , )
NX t t Nf x    , for all N  . 

 
 

B.1 Moment problem for the response 

In this section, we will derive, from Eqs. (B1a,b), the corresponding IVPs for the first (mean 

value) and second (autocorrelation) moments of the response ( ; )X t  , as well as the cross-

correlation functions of the response with excitation ( ; )t   and initial value 0 ( )X  . 

 



114 B.1 Moment problem for the response 
 

B.1.1 IVP for mean value of the response ( )Xm t  

 

We construct an equation for the mean value of ( ; )X t   by averaging both sides of Eqs. 

(B1a,b) 
 

   

0 0

( ; ) ( ; ) ( ; ) ,

( ; ) ( ) .

X t X t t

X t X

  

 

    

 

  = +  

   =   

  

 

Interchanging, now, average and differentiation operators results in 
 

     

0 0

( ; ) ( ; ) ( ; ) ,

( ; ) ( ) ,

d
X t X t t

d t

X t X

  

 

    

 

= + 

   =   

  

 

which can equivalently be written as 
 

( )
( ) ( )

X

X

d m t
m t m t

d t
  = + ,  

00( )X Xm t m= .         (B2a,b) 

 

Thus, initial value problem (B2a,b) can be solved using Eqs. (B.i), (B.ii) as 
 

0

0

0

( ) ( )( ) ( )

t

t t t

X X

t

m t m e m e d
    

− −

= +                 (B.3) 

 

B.1.2 IVP for the two times response-excitation cross-correlation ( ),XR t s  

 

We will construct an equation for the cross-correlation function of the response ( ; )X t   and 

the excitation ( ; )s  . For this, we first multiply both sides of Eq. (B.1a) with ( ; )s   
 

( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )X t s X t s t s        =  +   , 
 

and then, take the average as follows: 
 

   ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )X t s X t s t s           =  +    . 
 

Interchanging, now, average and differential operators 
 

     ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )X t s X t s t s
t

         


 =  +  


. 

 

and introducing moments, we obtain 
 

( )
( ) ( )

,
, ,

X

X

R t s
R t s R t s

t
 



 


= +


.              (B.4a) 

 

The same procedure is also applied to procure the initial condition 
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( )
00 , ( )X XR t s R s = .                (B.4b) 

Solution to initial value problem (B.4a,b) with respect to t  using Eqs. (i), (ii) is written 
 

( ) ( )0

0

0

( ) ( ), ( ) ,

t

t t t

X X

t

R t s R s e R s e d
    

− −

  = +  .              (B.5) 

 

B.1.3 IVP for the initial value-response cross-correlation 
0
( )X XR t  

 

We shall, now, construct an equation for the initial value-response cross-correlation 
0
( )X XR t . 

By multiplying Eq. (B.1a) with initial value 
0 ( )X   

 

0 0 0( ) ( ; ) ( ) ( ; ) ( ) ( ; )X X t X X t X t       = +  , 
 

and performing the following manipulations 
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( ) ( ; ) ( ) ( ; ) ( ) ( ; ) ,

X X t X X t X t
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X X t X X t X t

d t

  

  

       

       

     = +       

     = +      

 

 

we find 
 

0

0 0

( )
( ) ( )

X X

X X X

d R t
R t R t

d t
  = + .              (B.6a) 

 

Accordingly, the initial condition is specified as 
 

0 0 0 0

0 0 0 0

( ; ) ( ) ( ) ( )

( ; ) ( ) ( ) ( )

X t X X X

X t X X X 

   

   

= 

   =    

 

0 0 00( )X X X XR t R= .                 (B.6b) 

 

Thus, the solution to initial value problem (B.6a,b) using Eqs. (B.i), (B.ii) is 
 

0

0 0 0 0

0

( ) ( )( ) ( )

t

t t t

X X X X X

t

R t R e R e d
    

− −

= +  .              (B.7) 

 

B.1.4 IVP for the two-time autocorrelation of the response ( , )X XR s t  

 

Following the same procedure, we will construct an equation for the autocorrelation of the 

response. First, Eq. (B.1a,b) is multiplied by ( ; )X s   
 

( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )X s X t X s X t X s t       = +  . 
 

Then, by applying the average operator and carrying out the usual manipulations 
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X s X t X s X t X s t

X s X t X s X t X s t
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results in 
 

( , )
( , ) ( , )

X X

X X X

R s t
R s t R s t

t
  


= +


.             (B.8a) 

 

The initial condition to Eq. (B.8a) is analogously obtained as 
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( ; ) ( ; ) ( ; ) ( )

( ; ) ( ; ) ( ; ) ( )

X s X t X s X

X s X t X s X 

   

   

= 
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00( , ) ( )X X X XR s t R s= .                (B.8b) 

 

Therefore, by solving initial value problem (B.8a,b) through Eqs. (B.i), (B.ii), we obtain the 

two-time autocorrelation of the response 
 

0

0

0

( ) ( )( , ) ( ) ( , )

t

t t t

X X X X X

t

R s t R s e R s e d
    

− −

= +  .             (B.9) 

 

In Eq. (B.9), quantities ( ),XR s  , 
0
( )X XR s  can be determined by Eqs. (B.5) and (B.7) 

respectively. First, in Eq. (B.7) we substitute t s= ; this substitution is legitimate since the right-

hand side of Eq. (B.7) is continuous with respect to the two arguments s , t . Thus, we find 
 

0

0 0 0 0

0

( ) ( )( ) ( )

s

s t s

X X X X X

t

R s R e R e d
    

− −

= +  .          (B.10a) 

 

Then, in Eq. (B.5) we interchange the two arguments 
 

0

0

0

( ) ( )( , ) ( ) ( , )

s

s t s u

X X

t

R s t R t e R u t e du
 

− −

  = +  , 

 

and set t = : 
 

0

0

0

( ) ( )( , ) ( ) ( , )

s

s t s u

X X

t

R s R e R u e du
    

− −

  = +  .         (B.10b) 

 

Finally, substituting Eqs. (B.10a,b) into Eq. (B.9) yields 
 

0 0

0 0 0

0

0

0

0 0

( ) ( )( )

( ) ( ) ( )

( , ) ( )

( ) ( , )

s

s t t ts

X X X X X

t

t s

s t s u t

X

t t

R s t R e R e d e

R e R u e du e d

  

   

  

    

− −−



− − −

 

 
 = + +
 
 

 
 + + 
 
 



 

 

 

0 0

0 0 0

0

0

0

0 0 0

( 2 ) ( )

( ) 2 ( )

( , ) ( )

( ) ( , ) .

s

t s t t s t

X X X X X

t

t t s

t s t t s u

X

t t t

R s t R e R e d

R e d R u e du d

  

   

  

     

+ − + − −



+ − − + − −

 

= +

+ +



  

   (B.11) 
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B.1.5 IVP for the one-time autocorrelation of the response ( , )X XR t t  

 

The one-time autocorrelation of the response can readily be obtained by substituting s t=  in 

Eq. (B.11). This is rigorously performed since the right-hand side of Eq. (B.11) is continuous 

with respect to both time arguments. As such, we obtain 
 

0 0

0 0 0

0

0 0

2 ( ) ( )2

2 2 ( )

( , ) 2 ( )

( , ) .

t

t t tt

X X X X X

t

t t

t u

t t

R t t R e e R e d

e R u e du d

  

  

  

  

− − +



− +



= + +

+



 

          (B.12) 

 

Let us now differentiate both sides of Eq. (12) with respect to t , resulting in 
 

0 0

0 0 0

0

0

0 0

0 0

2 ( ) ( )

( )2 2 ( )

2 2 ( )

( , )
2 2 ( )
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t t t tX X
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X
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R e R t e

dt

e R e d R u t e du

e R u e du d

 

  

  

 

   

  

− −



− + −

 

− +



= + +

+ + +

+

 

 

 

 

Further, identifying via Eq. (B.12) ( , )X XR t t  on the right-hand side of the above equation, we 

find 
 

         0

0

0

( ) 2 ( )
( , )1

( , ) ( ) ( , )
2

t

t tX X t u

X X X

t

d R t t
R t t R t e R u t e du

dt

   
− −

 = + +  . (B.13) 

 

Eq. (B.13), along with the initial condition determined by the data of the problem as 
 

0 00 0( , )X X X XR t t R= ,                 (B.14) 

 

constitutes the IVP for the one-time autocorrelation function ( , )X XR t t . Note that this IVP for 

( , )X XR t t , Eqs. (B.13), (B.14), cannot be obtained by simply substituting s t=  in the IVP for 

( , )X XR s t , Eqs. (B.6) under the substitution of Eq. (B.5) for ( , )XR s t  
 

     0

0

0

( ) 2 ( )
( , )

( , ) ( ) ( , )

s

s tX X s u

X X X

t

R s t
R s t R t e R u t e du

t

   
− −

 


= + +

  ,    (B.15a) 

 

and the initial condition 
 

00( , ) ( )X X X XR s t R s= .              (B.15b) 

 

We observe that the multiplying factor 1/ 2  in the left-hand side of Eq. (B.13) cannot be 

obtained by Eq. (B.15a) for s t= . 
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Formulae for the central moments of the response 
 

Let us, now, define the second-order central moments of the data of the problem, i.e. the initial 

value and excitation 
 

initial value variance: 
0 0 0 0 0 0

2 2

X X X X X XC R m = = − ,             (B.16) 

 

two-time excitation autocovariance: ( , ) ( , ) ( ) ( )C t s R t s m t m s   = − ,          (B.17) 
 

initial value-excitation cross-covariance: 
0 0 0

( ) ( ) ( )X X XC t R t m m t  = − .          (B.18) 

 

Also, we define the second-order central moments that include the response, i.e. 
 

initial value-response cross-covariance: 
0 0 0

( ) ( ) ( )X X X X X XC t R t m m t= − ,          (B.19) 

 

two-time response excitation cross-covariance: ( , ) ( , ) ( ) ( )X X XC t s R t s m t m s  = − , (B.20) 
 

two-time response autocovariance: ( , ) ( , ) ( ) ( )X X X X X XC t s R t s m t m s= − ,           (B.21) 

 

By substituting now, the relations: (B.3) for ( )Xm t , (B.5) for ( , )XR t s , (B.7) for 
0

( )X XR t  

and (B.11) for ( , )X XR t s , into definition relations (B.19)-(B.21), and employing the relations 

(B.16)-(B.18), we obtain 
 

( ) ( )0

0

0

( ) ( ), ( ) ,

t

t t t

X X

t

C t s C s e C s e d
    

− −

  = +  ,            (B.22) 

 

0

0 0 0 0

0

( ) ( )( ) ( )

t

t t t

X X X X X

t

C t C e C e d
    

− −

= +  ,             (B.23) 

 

( )

( )

0 0

0 0 0

0

0

0

0 0 0

( 2 ) ( )

( ) 2 ( )

, ( )

( ) , .

t

t s t t s t

X X X X X

t

s s t

t s t t s u

X

t t t

C t s C e C e d

C e d C u e du d

  

   

  

     

+ − + − −



+ − − + − −

 

= + +

+ +



  

  (B.24) 

 

Last, for the variance of the response, we set s t= , in Eq. (B.24) 
 

( )

( )

0

0

0

0

0 0 0

2 ( )2 2

( ) ( ) 2 (2 )

( ) ,

2 ( ) , .

t t

X X X X

t t t

t t t t u

X

t t t

t C t t e

e C e d C u e du d



    

 

     

−

− − − −

 

= = +

+ +  
          (B.25) 

 

Since the integrand of the double integral is symmetric with respect to the two integration 

variables, u ,  , 
 

( ) ( )
0 0 0 0

(2 ) (2 ), 2 ,

t t t

t u t u

t t t t

C u e du d C u e du d



      − − − −

 =    . 

 

Thus, Eq. (B.25) is expressed equivalently as 
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( )0 0

0 0

0 0

2 ( ) ( )2 2 ( ) (2 )( ) 2 ( ) , ,

t

t t t t t t u

X X X

t t

t e e C e C u e du d



           
− − − − −

 

 
 = + +
 
 
   

and after some algebraic manipulations 
 

( )0 0

0 0

0 0

2 ( ) ( )2 2 ( ) 2 ( )( ) 2 ( ) , .

t

t t t u t

X X X

t t

t e C e C u e du e d



            
− − − −

 

 
 = + +
 
 
   

(B.26) 

By employing now Eq. (B.22), Eq. (B.26) reads as 
 

( )0

0

0

2 ( )2 2 2 ( )( ) 2 , .

t

t t t

X X X

t

t e C e d
       

− −

= +               (B.27) 

 
 

B.2 Moment problem for the first derivative of the response 

Let us, now, move towards determining the first (mean value) and second (autocorrelation) 

moments of the first derivative of the response ( ; )X t  , the cross-correlation functions of the 

response with excitation ( ; )t  , ( ; )t   as well as initial values 
0 ( )X   and 0( ; )X t  . The 

derivation of these moment equations requires to consider the following RDE which is derived, 

as discussed in Ch. 7, by differentiating both sides of Eq. (B.1a) with respect to t : 
 

( ; ) ( ; ) ( ; )X t X t t    = +  .            (B.28a) 
 

Eq. (B.28a) is also supplemented by the initial value obtained by setting in the initial problem 

0t t=  as follows: 
 

0 0 0( ; ) ( ) ( )X t X    = +  ,             (B.28b) 
 

where 0 0( ) ( ; )t  =   is used in order to simplify the notation. The sought-for moments 

are derived in this section by utilizing the already presented methodology. More specifically, 

we shall take the average [ ]  of both sides of RIVP (B.28a,b) which each time is multiplied 

by the appropriate random function, and then solve the acquired, linear ODE. Nevertheless, the 

expressions presented in this section can also be straightforwardly obtained by differentiating 

(in the mean-square calculus sense) of the already derived moments. 
 

Before we begin with the derivation of the aforementioned moments, we have to make some 

additional comments regarding what is considered data for the moment IVPs and what 

unknowns; the latter shall be subsequently obtained by formulating and solving their 

corresponding IVPs. Thus, in this section, in addition to the knowledge of the pdfs mentioned 

in the previous section, the knowledge of the family of pdfs 
1

1( ) ( )
( , , )

N
Nt t

f  
 

 and the 

cross pdf family of the initial value with the derivative of the excitation 

0 1
1( ) ( )

( , , , )
N

NX t t
f x  

 
 is required and apprehended though the knowledge of the initial 

value and excitation. 
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B.2.1 IVP for mean value of the first derivative of the response ( )Xm t  

 

We construct an equation for the mean value of ( ; )X t   by first averaging both sides of Eqs. 

(B.28a) 
 

( ; ) ( ; ) ( ; )X t X t t           = +      . 
 

Then, we interchange mean value and differentiation operators 
 

( ; ) ( ; ) ( ; )
d

X t X t t
d t

           = +      , 

 

and introducing moments, we obtain 
 

( )
( ) ( )

X

X

d m t
m t m t

d t
  = + .             (B.29a) 

 

Following, now, the same procedure for Eq. (B.28b) 
 

0 0 0

0 0 0

( ; ) ( ) ( )

( ; ) ( ) ( ) ,

X t X

X t X

  

  

    

    

     = +       

     = +      

 

 

results in the following initial condition: 
 

0 0
0( )X X

m t m m 


= + .              (B.29b) 

 

Finally, by solving IVP (B.29a,b) using Eqs. (B.i), (B.ii), the mean value of the first derivative 

of the response is written as 
 

( ) 0

0 0

0

( ) ( )( ) ( )

t

t t t

X X

t

m t m m e m e d
      

− −


= + +  ,           (B.30) 

 

which can be further calculated as 
 

( ) 0 0

0 0

0

( ) ( )

0

( )

( ) ( ) ( )

( )

t t t t

X X

t

t

t

m t m m e m t m t e

m e d

 

 

  

  

− −

 

−



 = + + − +
 

+ 
 

 

0

0

0

( ) ( )( ) ( ) ( )

t

t t t

X X

t

m t m e m t m e d
      

− −

 = + +  .           (B.31) 

 

Moreover, recalling Eq. (B.3) for the mean value of the response Eq. (B.31) can be equivalently 

be expressed as 
 

( ) ( ) ( )X Xm t m t m t  = + .                (B.32) 
 

Eq. (B.32) can also be derived by directly applying the average operator [ ]  to both sides of 

Eq. (B.1a). 
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B.2.2 IVP for the two times response – excitation dot cross-correlation ( , )
X

R t s


 

 

We will construct an equation for the cross-correlation function of the derivative of the response 

and the excitation. Thus, by multiplying both sides of Eq. (B.1a) with ( ; )s  , taking the 

average and performing the usual treatment, we obtain 
 

( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )

( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )

( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ,

s X t s X t s t

s X t s X t s t

s X t s X t s t
t

  

  

       

       

       

 =  +   

      =  +       


      =  +       

 

 

which can be rewritten by introducing moments as 
 

( , ) ( , ) ( , )s s XX X
R t s R t s R t s

t
   


=  + 


.          (B.33a) 

 

The same procedure is also applied to the initial condition (B.1b) 
 

0 0

0 0

( ; ) ( ; ) ( ) ( ; )

( ; ) ( ; ) ( ) ( ;

X t s X s

X t s X s 

   

   

 =  

    =     

 

0
0( , ) ( , )

X X
R t s R t s

 
= .              (B.33b) 

 

Solution to initial value problem (B.33a,b) with respect to t  is written 
 

0

0

0

( ) ( )( , ) ( ) ( , )

t

t t t

X X

t

R t s R s e R s e d
    

− −

  
= +  .           (B.34) 

 

B.2.3 IVP for the two-time cross-correlation of the response with its first derivative

( , )
X X

R s t  

 

We will construct an equation for the two-time cross-correlation function ( , )
X X

R s t , by 

multiplying both sides of Eq. (B.28a) with ( ; )X s   and taking the average 
 

( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )

( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )

( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ,

X s X t X s X t X s t

X s X t X s X t X s t

X s X t X s X t X s t
t

  

  

       

       

       

= +  

     = +      


     = +     

 

 

we find 
 

( , ) ( , ) ( , )
XX X X X

R s t R s t R s t
t

 



= +


.             (B.35) 

 

Note that the rightmost term of Eq. (B.35) can be identified by Eq. (B.34), rewritten by 

interchanging the time arguments as 
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0

0

0

( ) ( )( , ) ( ) ( , )

s

s t s

X X

t

R s t R t e R t e d
    

− −

   
= +  . 

 

Now, substituting the above expression into Eq. (B.35), we find 
 

0

0

0

( )

2 ( )

( , ) ( , ) ( )

( , ) .

s t

XX X X X

s

s

t

R s t R s t R t e
t

R t e d



 

 

  

−



−

 


= + +



+ 
        (B.36a) 

 

Likewise, we obtain the initial condition 
 

0 0 0

0 0 0

( ; ) ( ; ) ( ; ) ( ) ( ; ) ( )

( ; ) ( ; ) ( ; ) ( ) ( ; ) ( )

X s X t X s X X s

X s X t X s X X s  

       

       

= +  

     = +       

 

0 0
0( , ) ( ) ( )

X X X X X
R s t R s R s 


= + .            (B.36b) 

 

Solution to initial value problem (B.36a,b) with respect to t  is written 
 

( ) ( )

( )

0

0 0

0

0

0 0

0

0

( ) ( )

( )

( ) ( )

0

, ( ) ( ) ( , )

( ) ( )

( , ) ( , ) ( , )

t

t t t

XX X X X X

t

t t

X X X

t

t t t

X X X

t

R s t R s R s e R s e d

R s R s e

R s t R s t e R s e d

  



  

    

 

   

− −



−



− −

  

= + + =

= + +

 + − + 
 





 

 

      0

0

0

( ) ( )( , ) ( ) ( , ) ( , )

t

t t t

X XX X X X

t

R s t R s e R s t R s e d
      

− −

 = + +          (B.37) 

 

Further, the terms 
0

( )
X X

R s  and ( , )XR s t  can be expressed through Eqs. (B.7) and (B.5) 

respectively as: 
 

0

0 0 0 0

0

( ) ( )( ) ( )

s

s t s

X X X X X

t

R s R e R e d
    

− −

= +  ,            (B.38) 

 

0

0

0

( ) ( )( , ) ( ) ( , )

s

s t s u

X X

t

R s t R t e R u t e du
 

− −

  = +  .           (B.39) 

 

As such, using Eqs. (B.38) and (B.39) the two-time cross-correlation of the response and its first 

derivative, Eq. (B.37), takes the following final form: 
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0 0

00 0

0

0

0

0

0

0

0 0 0

( 2 ) ( )

( ) 2 ( )

( ) 2 ( )

( , ) ( )

( ) ( , )

( ) ( , )

s

s t t s t t

XX X X X

t

s

s t s u

X

t

t t s

s t t s t u

X

t t t

R s t R e R e d

R t e R u t e du

R e d R u e du d

  

 

   

   

 

      

+ − + − −



− −

 

+ − − + − −

 

= + +

+ + +

+ +





  

   (B.40) 

 

B.2.4 IVP for the cross-correlation of the initial value with the first derivative of the 

response 
0

( )
X X

R t  

 

We will construct an equation for the cross-correlation function, by multiplying both sides of 

Eq. (B.28a) with 0 ( )X  , and taking the average 
 

0 0 0

0 0 0

0 0 0

( ) ( ; ) ( ) ( ; ) ( ) ( ; )

( ) ( ; ) ( ) ( ; ) ( ) ( ; )

( ) ( ; ) ( ) ( ; ) ( ) ( ; )

X X t X X t X t

X X t X X t X t

d
X X t X X t X t

d t

  

  

       

       

       

= +  

     = +       

     = +       

 

00 0

( ) ( ) ( )
XX X X X

d
R t R t R t

d t
 


= + .            (B.41a) 

 

The same procedure is also applied to the initial condition 
 

2

0 0 0 0 0

2

0 0 0 0 0

( ) ( ; ) ( ) ( ) ( )

( ) ( ; ) ( ) ( ) ( )

X X t X X

X X t X X  

      

      

= +  

     = +       

 

0 0 0 00
0( ) X X XX X

R t R R  = + .             (B.41b) 

 

Solution to initial value problem (B.41a,b) with respect to t  using Eqs. (B.i), (B.ii) is written 
 

( ) 0 0

0 0 0 0 0 00

0

0

( ) ( )

0

( )

( ) ( ) ( )

( )

t t t t

X X X X XX X

t

t

X

t

R t R R e R t R t e

R e d

 

 

  

  

− −

  

−



 = + + − +
 

+ 
  

 

0

0 0 0 00

0

( ) ( )( ) ( ) ( )

t

t t t

X X X XX X

t

R t R e R t R e d
      

− −

 = + +            (B.42) 

 

B.2.5 IVP for the cross-correlation of the first derivative of the response with the excitation 

( , )
X

R t s


  

 

We will construct an equation for the cross-correlation function, by multiplying both sides of 

Eq. (B.28a) with ( ; )s  , and taking the average 
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( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )

( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )

( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )

s X t s X t s t

s X t s X t s t

s X t s X t s t
t

  

  

       

       

       

 =  +   

      =  +       


      =  +       

 

( , ) ( , ) ( , )
X X

R t s R t s R t s
t

 
 


= +


.           (B.43a) 

 

The same procedure is also applied to the initial condition 
 

0 0 0

0 0 0

( ; ) ( ; ) ( ; ) ( ) ( ; ) ( )

( ; ) ( ; ) ( ; ) ( ) ( ; ) ( )

s X t s X s

s X t s X s  

       

       

 =  +   

      =  +        

 

0 0
0( , ) ( ) ( )

X X
R t s R s R s 

   
= + .            (B.43b) 

 

Solution to initial value problem (B.47a,b) with respect to t  using Eqs. (B.i), (B.ii) is written 
 

( ) 0

0 0

0

( ) ( )( , ) ( ) ( ) ( , )

t

t t t

X X

t

R t s R s R s e R s e d
      

− −

   
= + +   

 

0

0

0

( ) ( )( , ) ( ) ( , ) ( , )

t

t t t

X X

t

R t s R s e R t s R s e d
      

− −

  
= + +   

(B.44) 
 

B.2.6 The autocorrelation of the first derivative of the response  
 

We will obtain the autocorrelation function, by multiplying both sides of Eq. (B.1a) with 

( ; )X t  , and taking the average 
 

( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )

( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )

X t X s X t X s X t s

X t X s X t X s X t s  

       

       

= +  

     = +       

 

 

( , ) ( , ) ( , )
X X X X X

R t s R s t R t s 


= + .              (B.45) 

 

By substituting Eqs. (B.40) and (B.44) into (B.45) we obtain the two-time autocorrelation 

function 
 

0 0

00 0

0

0

0

0

0

0

0 0 0

( 2 ) ( )2 2

( ) 2 ( )

( )2 2 2 ( )

( , ) ( )

( ) ( , )

( ) ( , )

s

s t t s t t

XX X X X

t

s

s t s

X

t

t t s

s t t s t

X

t t t

R t s R e R e d

R t e R t e d

R e d R e d d

  

  

    

   

    

        

+ − + − −



− −

 

+ − − + − −

 

= + +

+ + +

+ + +





  

 

0

0

0

( ) 2 2 ( )( ) ( , ) ( , ) .

t

t t t

X

t

R s e R t s R s e d
       

− −

 
+ + +       (B.46) 
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In addition, recognizing that the right-hand side of the above equation is continuous for both 

time arguments, we can make the legitimate substitution s t= . Finally, by taking advantage of 

the symmetry property of ( , )R t t , the one-time autocorrelation function of the first temporal 

derivative of the response is derived. 
 

0 0

00 0

0

0

0 0

0 0

2 ( ) ( )2 2

(2 )2 2 ( )

2 2 (2 )

( , ) ( , ) 2 ( )

2 ( ) 2 ( , )

( , )

t t t t

XX X X X

t t

t t t

X

t t

t t

t

t t

R t t R e R t t R t e

R e d R t e d

R e d d

 

   

  

  

      

     

− −

 

− − −

 

− −



= + + +

+ + +

+

 

 

        (B.47) 

 

Formulae for central moments of the derivative of the response 
 

First, we define the second-order central moments of the data of the problem (B.28a,b),  
 

variance of the derivative of the response at 
0t t= : 

 

2 2

0 0 0 0 0 0( ) ( , ) ( , ) ( )
X X X X X X

t C t t R t t m t = = − ,             (B.48) 

 

two-time cross-covariance of the excitation and its derivative: 
 

( , ) ( , ) ( ) ( )C t s R t s m t m s    
= − ,              (B.49) 

 

cross-covariance of the initial value and the derivative of the excitation: 
 

00 0
( ) ( ) ( )XX X

C t R t m m t
  

= − .               (B.50) 

 

Also, we define the following, useful second-order central moments that include the response 

and its derivative, i.e. 
 

cross-covariance of the derivative of the response and the initial value 0 ( )X  :  
 

00 0

( ) ( ) ( ) XX X X X X
C t R t m t m= − ,               (B.51) 

 

two-time cross-covariance of the response and its derivative:  
 

( , ) ( , ) ( ) ( )XX X X X X
C t s R t s m t m s= − ,               (B.52) 

 

At this point, using the above expressions as well as Eqs (B.40) for ( , )
X X

R t s  and (B.42) for 

0

( )
X X

R t , we find 

 

0

0 0 0 00

0

( ) ( )( ) ( ) ( )

t

t t t

X X X XX X

t

C t C e C t C e d
      

− −

 = + +  ,          (B.53) 
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0 0

00 0

0

0

0

0

0

0

0 0 0

( 2 ) ( )

( ) 2 ( )

( ) 2 ( )

( , ) ( )

( ) ( , )

( ) ( , ) .

s

s t t s t t

XX X X X

t

s

s t s u

X

t

t t s

s t t s t u

X

t t t

C s t C e C e d

C t e C u t e du

C e d C u e du d

  

 

   

   

 

      

+ − + − −



− −

 

+ − − + − −

 

= + +

+ + +

+ +





  

   (B.54) 

 

Moreover, by setting 
0t t=  in Eqs. (B.53), (B.54), we obtain 

 

0 0 00 0 0
0 0( ) ( )X X XX X X X

C t C C C t  = = + ,             (B.55) 

 

0

00 0

0

0

0

0

( ) ( )

0

( ) 2 ( )

0 0

( , ) ( )

( ) ( , ) .

s

s t s

XX X X X

t

s

s t s u

X

t

C s t C e C e d

C t e C u t e du

  

 

   

 

− −



− −

 

= + +

+ +





           (B.56) 

 

The derivation of Eqs. (B.55)-(B.56) is rigorous since the right-hand side of Eqs. (B.53)-(B.54) 

is continuous with respect to both time arguments. 
 

Last, the variance of the first derivative of the response, 2 ( )
X

t , can similarly be derived by 

considering 2 ( ) C ( , ) R ( , ) ( ) ( )
X X X X X X X

t t t t t m t m t = = − . However, it is much easier to 

acquire it via its definition, as 
 

( )
2

2 2

2 2

2 2

2 ( ; ) ( )

( ; ) 2 ( ) ( ; ) ( )

( ; ) 2 ( ) ( ; ) ( )

( ; ) ( ) .

( ) X

X X

X X

X

X
X t m t

X t m t X t m t

X t m t X t m t

X t m t

t 



 



 

 

 



 = − =
  

 = − + = 

   = − + =   

 = − 

 

 

Further, using Eq. (B.1a), we find 
 

( )

 

( )

2 2

2 2 2 2

2

2

2

2
2

Eq. (B.32)

( ; ) ( ; ) ( )

( ; ) 2 ( ; ) ( ; ) ( ; ) ( )

( , ) 2 ( , ) ( , ) )

(

( )

)

(

X

X

X X X

X

X

X t t m t

X t X t t t m t

R t t R t t R t t m t m

t

t



  

    

      

      

 = +  − =
 

   = +  +  − =   

= + + − + 

 

 

Finally, by introducing central moments we reach the expression 
 

2 2 2 2 2( ) ( ) 2 ( , ) ( )X XX
t t C t t t      = + + .             (B.57) 
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