NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF NAVAL ARCHITECTURE AND MARINE ENGINEERING

SECTION OF NAVAL AND MARINE HYDRODYNAMICS

Probabilistic description of responses of nonlinear dynamical
systems under colored Gaussian excitation

by

llias G. Mavromatis

Diploma Thesis

Supervisor professor: G. A. Athanassoulis

ATHENS, MAY 2020






Acknowledgements

I would like to express my most sincere gratitude and appreciation to the following people,
without whom | would not be able to complete this thesis, and without whom my undergraduate

studies at NTUA would be much more burdensome.

First, I would like to thank the supervisor of this work, Professor Gerassimos A. Athanassoulis,
who acquainted me with the field of Nonlinear Stochastic Dynamics and entrusted me with the
advancement of a small part of his work. His constant guidance, support and encouragement

over the last three years have been invaluable to me, both as a student and an aspiring researcher.

I am also very grateful to Mr. Konstantinos I. Mamis, PhD candidate, for his valuable advice
and insight. The productive discussions we had, contributed significantly to major parts of this

thesis.

Finally, I wish to extend my deepest gratitude to my family and friends. First and foremost, |
am deeply indebted to my family, Georgios, Marianna and Vera; none of my endeavors could
have been achieved without their unconditional love and unwavering support. Last but not least,
I would like to thank my friends for their invaluable moral support and motivation throughout
the years.

llias G. Mavromatis
Athens, April 2020






Synopsis

The determination of the probabilistic structure of the response of nonlinear dynamical systems
excited by general stochastic noise, is a question of the utmost importance for numerous
applications in structural dynamics, statistical physics, material sciences, environmental
systems and elsewhere, thereby constituting the basis of uncertainty quantification. In many
cases, the random excitations have to be considered smoothly-correlated (colored) noises.
Hence, the complete probabilistic structure of the responses is defined by an infinite hierarchy
of probability density functions (pdfs). Abandoning the assumption of white-noise excitation
has profound effects on the needed theoretical background, since the Markovian character of
responses is lost, and thus, all standard tools (e.g. Itd Calculus and Fokker-Planck-Kolmogorov
equation) are not applicable. An alternative, efficient approach is to derive pdf evolution
equations corresponding to the system.

This thesis aims at extending a methodology used to develop evolution equations for the
response pdf of nonlinear dynamical systems subjected to colored Gaussian excitation in order
to account for second-order pdfs corresponding to such systems. Following this approach, we
commence with representing the sought-for pdf as the average of a random delta function, i.e.
the delta projection method. Then, by carrying out simple algebraic manipulations a stochastic
alternative of the Liouville equation is obtained. This equation, called Stochastic Liouville
Equation (SLE), is non-closed due to terms depending on both the response and the excitation
of the examined system, and is further evaluated by employing an appropriate correlation
splitting. The said correlation splitting is performed via the appropriate Novikov-Furutsu
theorem for which a collection of novel extensions as well as the manner in which they can be
formulated and proven is presented in Chapter 2.

In Chapter 3 and in particular section 3.1, the main steps of these methodology are outlined for
the response pdf of a nonlinear random differential equation (RDE) under additive, colored
Gaussian excitation in order to present in a comprehensive manner the foundation upon which
the derivation of second-order pdf evolution equations is established. Moreover, a more intricate
case for the response pdf of a RDE subject to both additive and multiplicative excitation is
presented in section 3.2.

The first major result of this thesis is produced in Chapter 4, in which evolution equations for
second-order pdfs are derived, namely for the one-time, joint response-excitation(s) pdfs. More
specifically, in section 4.1, the case of a nonlinear, additively excited RDE is considered while
in section 4.2, we examine the case of a both additively and multiplicatively excited RDE.
Subsequently, in Chapter 5, for the former case, two-time response pdf evolution equations are
formulated. Last, in Chapter 6, once for the case of a nonlinear, additively excited RDE,
evolution equations for the two-time pdf of the response and its derivative are derived. In all the
aforementioned chapters, we examine the potency of this methodology for a linear, additively
excited RDE and see if the derived results correspond to the correct ones, obtained using other
approaches.

Keywords: stochastic dynamics, nonlinear random differential equations, colored noise

excitation, second-order pdfs, uncertainty quantification, generalized Fokker-Planck-
Kolmogorov equations



Xvvoyn (Synopsis in Greek)

O mpocdoplopndg g mBavobe®pnTIKNG OOUNG TNG OMOKPIONG UM YPOUUUIKOV SVVOUIKOV
cvotnudtev mov dteyeipoviol amd yevikd otoxactikd 06pvfo eivar €va epdTUO VYIGTNG
onpociog Yoo IAn0dpo EPopUOYDV 6 TPOPANUOTO OUIKNG UNYOVIKNG, CTATIGTIKNG PLGIKNG,
EMOTAUNG VMKADV, TEPPUALOVTIKG GLUGTHLATO Kot OAAOD, KaIoTOVTOS TO, £ToL TN Pdomn g
TOCOTIKOTOINoNG NG ofefatdTrag. X MOAAEG TEPUTAOCELS, Ol TUYOIEG O1EYEPOELS TTPETEL VAL
fewpovvior opohdg  ovoyetiopévol  (ypopoticpévol)  Bopufot.  Tvvendg, M TANPNG
mBovobewpntikny dopr| tov anokpicewv kabopiletar and o dmepn epapyio. GLVOPTHCEOV
mokvotntog mhavotntog (onm). H eykoatdhienym g vndbeong yia diéyepon Agvkol Bopvfov
€XEL OMNUOVTIKEG EMIMTAOCELS 6TO amoutovpevo Bewpntikd vrdpfadpo, kabmdg o Mapkofiavic
YOPOKTAPAG TOV AIOKPIcE®V YaveTal Kot £Tol OAa T facikd epyareia (w.y. 1t0 Alyeppa and
Fokker-Planck-Kolmogorov  eficwon) dgv  eivor  gpoappooyta. Mo eVOALOKTIKY,
OTOTEAECUATIKY TPOKTIKY eivan va e€ayBodv eEeMiTikég eE1I0MGEL OGN TOL AVTIGTOLYOVV GTO
cLGTN .

H moapovoo OSumhopatiky epyocio. otoyevel ot dedbpuvon o pebodoloyiag mov
YPNOUOTOLEITOL VIO TNV TOPOY®DYT] EEEMKTIKGOV €EIGMOCEMV YO, TN OGN TNG OMOKPIONG U
YPOLUUK®V SUVOUIK®OV GUCTNUAT®OV TOL VIOKEWTOL 0 YpOUATICUEVT ['Kaovoavy diéyepon,
00T MOTE VO, CLUTEPTAAUPAVEL OEVTEPAG TAENG OTT TTOL AVTIGTOLYOVV GE TETOLN GUGTILLOTOL.
AxolovBmvtog aut T Tpocéyyion, apyiovpe pe v avorapdotocn g avalnTtoOUEVNG G
®¢ TN Héon T o toyaiog cvvaptnong déhta, dniadn ) pébodo déAta-npofordv. ‘Encita,
EKTEADVTAG OTAOVG OAYERPLKOVE YEPLGUOVG €V, 6TOYXAOTIKO avarloyo tng e&icmong Liouville
e&ayetor. Avt) n e€icwon, mov ovoudletar otoyaotikn e€icwon Liouville (XEL) givaw pn-
KAEWOT AOY®D OpwV TOV €E0PTMOVINL TOGO OO TNV AmOKPIoT) OGO Kol amd T OEYEPOT TOV
e€etalopevov ouoThuaTog, kot avaidoviar epapudlovtag to KoTdAnio Bempnuo Novikov
Furutsu yio to omoio pior GLALOYN amd VEEG EMEKTACELS, KAOMDS KOl O TPOTTOG LLE TOV OTOT0 AVTEG
oynuatiovrot Kot amodeikvvovtat, Tapovotdletor oto Kepdiaio 2.

Yto Kepdarawo 3, ko mo ocvykekppéva otnv Evomra 3.1, 1o Pacwé Prpate avtc g
pebodoroyiog meptyplpovTot Yio T 6T TNG ATOKPLoNG LG U1 YPOUUKNG, TUXOI0G SLOPOPTKTG
eElowong (TAE) vrd abpototikn, ypopatiopévn I'kaovsiavn di€yepon yio vo TopovctiGovE
pe évo capn tpdémo t Pdon maveo otnv omoia M eaymyn Oevtépag TAEEMG eEEAMKTIKAOV
eCionocewv onm Bepehdveror. EmumAéov, pio mo mepimlokm mepintmon yw T ORT NG
anokpiong pog TAE mov vrdkeitoan Ko 6€ afpoloTikn Kol 6€ TOALATAQGIOGTIKY O1EYEPON
nopovoaletal otnv Evotnra 3.2.

To Tp®TO GNUOVTIKO OTOTELEGLOL AVTNG TNG OWAMUOTIKNG epyaciog mapayeton 6to Kepdiaio
4, oto omoio e&dyovtan eEeMKTIKEG eEIGMGELS Y1oL OGN SEVLTEPOS TAENG, CLYKEKPIUEVA YOl TIG
evOg ¥pdvov, amd Kooy onm andkpiong-oEyepong (deyépoewv). Ewdwotepa, otnv Evomnta
4.1, eEetdleton M mepintmon pog pn-ypoppikng, ntpocbetikd oeyepuévng TAE, eved oty
Evomta 4.2 egtdlovpe v mepintmon Hog Pn-YPOoUHKNG, TPOGHETIKA Kol TOAAOTAAGIOGTIKA
oeyeppévng TAE. Xt ovvéyeln, oto Kepdhato 5, yio v mpdtn TEPITTOGT, SOTLTMOVOVTOL
eEeMkTikég e€10MOELS Yo TN Ot NG omOKplong o€ 0V0 ypovous. Térog, oto Kepdahaio 6, ek
VEOU Y10 TN TTEPIMTOGCT TNG UN-YPOUKNG, TpocsOetucd dieyepuévng TAE, e€dyovton eEehkTikég
e€lomOELg Yoo T OVO YPOVOV ORI TNG OMOKPLONG KOU TNG TOPOY®YOL TNG. & OAd Ta
wpoavapepBEvTa Ke@arata, EEETACOVE TV ATOTEAECUATIKOTNTO OVTHG THG HeBodoroyiag Yo



Zovoyn (Synopsis in Greek) %

pa ypoppk, tpocstetikd dieyepuévn TAE kot BAEmovpe €dv Ta TPOKVTTOVTO OMOTEAEGLOTO
OVTIGTOLYOVV GTO GMOOTA, OTWS AVTA AaUBAvoVTaL XPNCILOTOIOVTAG AALEC TPOGEYYIGELC.

AéEarc-Khed1d: otoyaoTikn SUVOUIKY), U1 YPOUUKESG O10POPIKEG EEIGMOELS, YPOUATIGUEVOG
BopvPoc, devtépag TAENG onm, TOCOTIKOTOINGN TG afePatdnTag, YeVIKELUEVES eELOMGELS
Fokker-Planck-Kolmogorov
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Chapter 1

Introduction

The determination of the probabilistic structure of the response of nonlinear dynamical systems
excited by general stochastic noise, is a question of the utmost importance for numerous
applications in structural dynamics, statistical physics, material sciences, environmental
systems and elsewhere. In macroscopic stochastic dynamics it constitutes the basis of
uncertainty quantification. In many cases, e.g. in economy, finance, biology, signal processing
etc., where the systems are considered subject to white noise excitation, the problem is very
well examined. More specifically, in these cases, the response is Markovian and thus, its
probabilistic structure is majorly encapsulated in the transition pdf corresponding to the system;
the evolution of the said pdf is governed by the Fokker-Planck-Kolmogorov (FPK) equation
(Céceres, 2017; Risken, 1996; Stratonovich, 1989; Sun, 2006, Chapter 6). However, in problems
in which the random excitations are smoothly correlated (colored) noises and thus, the response
is inherently non-Markovian, this convenient description, via a partial differential equation, is
not pertinent (van Kampen, 1998). The relevance of colored noise excitation in numerous
applications as well as the theoretical complicacies it engenders, are thoroughly discussed in a
considerable number of works, including (P. Hanggi & Jung, 1995; Francesc Sagués, Sancho,
& Garcia-Ojalvo, 2007; Sapsis & Athanassoulis, 2008; van Kampen, 2007; Venturi, Sapsis,
Cho, & Karniadakis, 2012a). Regardless of the intrinsic intricacies that are associated with the
study of systems under colored noise excitation, numerous methods have been developed and
proposed as an efficient means to address such systems.

A brute force approach that can be applied to these problems is the Monte Carlo simulation
(MCS). Although, the MSC approach is very versatile, it is a method of high computational
cost, especially when high-dimensional systems are considered. Another useful methodology,
which does not present high computational cost, is the stochastic linearization technique
(Crandall, 2006; Roberts & Spanos, 2003). Despite some particular benefits of this technique —
e.g. that is does not require precise knowledge of the excitation — it does not result in very
accurate findings. One more notable approach, which also emphasizes some of the complicacies
associated with these systems, is the formulation and solution of moment equations
corresponding to the systems (Athanassoulis, Tsantili, & Kapelonis, 2015).

The most straightforward approach, especially prominent in engineering applications, is the
filtering approach. In this approach, the colored noise is approximated by being determined as
an output of a “filter” equation which, in turn, is excited by white noise. This filter results in an
augmentation of the original system of RDEs but, also, admits an exact FPK description. This
approach — also referred to as Markovianization by extension (Krée, 1985) or embedding in a
Markovian process of higher dimensions (P. Hanggi & Jung, 1995, sec. V. C.) — is the starting
point of the unified colored noise approximation introduced in (P. Hanggi & Jung, 1987).
Moreover, this approach has been used to further enhance and extend a Wiener path integral
(WPI) technique, first developed by Kougioumtzoglou & Spanos (I. A. Kougioumtzoglou &
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Spanos, 2012; loannis A. Kougioumtzoglou & Spanos, 2014), to account for non-white, i.e.
colored, excitations (Psaros, Brudastova, Malara, & Kougioumtzoglou, 2018; Psaros,
Kougioumtzoglou, & Petromichelakis, 2018). Although, this approach has led to notable and
useful techniques that produce great results, its inherent drawback is that it leads to an inflation
of the degrees of freedom in the FPK equation and as such, an analogous increase in the
computational cost.

Last, an alternative approach is formulating pdf evolution equations analogous to FPK equations
while both taking into account the given colored excitation as well as maintaining the natural
degrees of freedom of the examined system. A major complicacy that resides within this
approach refers to the emergence of terms dependent on the whole time-history of response
even in the simplest of cases, e.g. for one-time response pdf evolution equations; this
complicacy will be discussed in detail subsequently. The derivation of these equations, also
referred to as generalized FPK equations (Cetto, de la Pefia, & Velasco, 1984) since their
counterpart for white noise excitation is the classical FPK equation, is not a recent venture.
Already from the 70’s by the works of (Fox, 1977; van Kampen, 1975) and later on by (Fox,
1986; P Hanggi, 1978), this approach has been implemented in numerous cases ranging from
energy harvesting (Harne & Wang, 2014) to medical applications (Zeng & Wang, 2010) and
more.

More recently, this methodology has been revisited, generalized and presented in a more
systematic and comprehensive manner by Mamis, Athanassoulis et al. in (Athanassoulis &
Mamis, 2019; Mamis & Athanassoulis, 2016; Mamis, Athanassoulis, & Kapelonis, 2019;
Mamis, Athanassoulis, & Papadopoulos, 2018). Since this thesis aims to further extend these
works and showcase their versatility, it is, now useful to concisely describe some of its
fundamental parts.

Recapitulation of Mamis et al., 2019

Following (Mamis et al., 2019), we consider the prototype case of a scalar, nonlinear additively
excited RDE:

X (t:0) = h(X (t;0)) + xE(t;0), X (t,:0) = X,(0), (Llab)

where @ is the stochastic argument, the overdot denotes differentiation with respect to time,
h(x) is a deterministic continuous function modelling the nonlinearities (restoring term), and

k is a constant. Initial value X, (@) and excitation Z(t; &) are considered correlated and
jointly Gaussian with non-zero mean values m, , m_ (t), autocovariances C,  , C..(t,s)

and cross-covariance C X o= (t) . Then, we represent the response pdf of the random initial value

problem (RIVP) Egs. (1.1a,b) as the average of a random delta function:
frw(X) = E6[§(X—X(t;9))], (1.2)

where E’[+] is the ensemble average operator. This representation of the pdf is prevalent in

statistical mechanics (van Kampen, 2007, Chapter XV1 sec. 5), where it is called Van Kampen’s
lemma, and the theory of turbulence (Lundgren, 1967) where it is known as the pdf method.
Herein, the term delta projection method is used reminiscent of the manner that it is derived (see
e.g. sec. 3.1). Then by differentiating Eq. (1.2) and performing some simple manipulations, we
find
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0fxw(X) @ 0 (rofmiy. _
— o+ (W00 f (0) = =& — (B[E(t:0) §(x=X (t:0))]). (13)

Eq. (1.3) is called the stochastic Liouville equation and its derivation is shown in detail in sec.
3.1. For reasons that will become clear in the said section, Eq. (1.3) is non-closed and nonlocal
due to the averaged term appearing on its right-hand side. This term depends on the whole time-
history of the response and the excitation and thus, an appropriate correlation splitting technique
must be employed, namely an appropriate extension of the Novikov-Furutsu (NF) theorem.
After the application of the NF theorem, a novel approximation scheme, similar to the one
presented in (Mamis et al., 2019), is utilized for the nonlocal terms. Thus, we obtain a closed,
approximate pdf evolution equation of the form

Ofy(X) o
#ﬂ“&[(h(x) +xm_ (1)) fxm(X)J B
14
_ & HiiDeﬂ[R (+).t] ot (x; R (t))}f (X)} -
ox? ~m " ) U] P (X Ry xo .

Through the coefficients D", called the generalized effective noise intensities, as well as the
terms ¢, defined in paragraph 3.1.3, the pdf equation retains a trackable amount of nonlocality

(in time) and nonlinearity, reflecting the non-Markovian character of the response. In the present
case, this approximation has been shown to provide good results even for large correlation times
and noise intensities.

Main contributions of this thesis

Based on the approach outlined above, in this thesis, we first showcase its versatility by
implementing it in the case of the following RDE which is excited by both additive and
multiplicative Gaussian excitations.

X (t;0) = h(X(t;0))+a(X(t;0))E,(t;0) + x Eo(t;0), (1.5)

The consideration of an RDE subject to multiplicative colored excitation has been considered
before by many authors, see e.g. (Cetto et al., 1984; Fox, 1986; San Miguel & Sancho, 1980b;
Sancho, San Miguel, Katz, & Gunton, 1982). Nevertheless, herein we also consider an
additional additive excitation and investigate the nuances that arise. To that end, we formulate
second-order evolution equations not only for the one-time response pdf corresponding to RDE
(1.5) but, also, the one-time joint response-excitations. The derivation of one-time joint
response-excitation pdf evolution equation is also carried out for the RIVP (1.1a,b) in chapter
4. The consideration of such joint pdfs does not only possesses practical value (Venturi et al.,
2012a) but it can also serve as a better approximation for response pdfs, since, as it is shown in
this work, some terms which introduce complicacies in the response pdf evolution equations
can easily be addressed when we take into account joint response-excitation(s) pdf evolution
equations. Of course, in order to obtain the said equations, additional extensions to the NF
theorem as well as suitable approximation schemes are, for the first time, introduced in the
subsequent chapters.

Furthermore, we formulate two-time pdf evolution equations corresponding to RIVP (1.1a,b).
In particular, we focus on the derivation of an evolution equation for the two-time response pdf.
This problem has been considered before in (Hernandez-Machado, Sancho, San Miguel, &
Pesquera, 1983; F. Sagués, San Miguel, & Sancho, 1984; Sancho & San Miguel, 1989), albeit



4 Chapter 1: Introduction

for a multiplicatively excited RDE. In these works, the authors follow a similar approach but
focus on the stationary properties of the evolution equation that they derive as well as the
stationary covariance of the response obtained via the said equation. Herein, we focus more on
the derivation of a computable, yet approximate, two-time response pdf evolution equation.
Finally, we explore the efficiency of this methodology for the case of the two-time joint pdf of
the response and its derivative, a problem with particular significance in first-passage problems
(Verechtchaguina, Sokolov, & Schimansky-Geier, 2006) and outline some of the intricacies that
arise.



Chapter 2

The Novikov-Furutsu theorem

In the present chapter, we are going to discuss one of the most fundamental tools towards the
derivation of the pdf evolution equations, i.e. the Novikov-Furutsu (NF) theorem. The NF
theorem is a well-known mathematical tool used for correlation splitting, that is, for evaluating
the mean value of the product of a random functional with a Gaussian argument multiplied by
the argument itself. Its classical form, was independently proven by (Furutsu, 1963; Novikov,
1965) in their works on electromagnetic waves and turbulence, respectively. Recently, in
(Athanassoulis & Mamis, 2019), the authors extended this theorem to account for mappings
(function-functionals) of two Gaussian arguments having non-zero mean value and being
correlated; a result of particular significance for the study of random differential equations of
the form presented throughout this work. Therefore, in this chapter, we are going to concisely
describe the extended NF theorem as established by the aforementioned authors as well as
formulate and prove some other extensions needed in the subsequent chapters 4-7.

2.1 The mean value of random, nonlinear (function-) functionals

Following (Athanassoulis & Mamis, 2019), we shall first discuss the deterministic counterparts
of the random functionals and FF{s that are considered subsequently as well as their analytical
properties. A more thorough discussion regarding averages of random FF{s can also be found
in (Mamis, 2020).

Consider a real-valued function-functional G[v ;u(e

:0)]: RxZ —» R, where Z=

C([to,t]—>R) is the space of continuous functions. The said FF{ is assumed to have

derivatives of any order, with respect to both the scalar argument o and the function argument
u(e), and it is expandable in VVolterra-Taylor series, jointly with respectto v and u(e), around a

fixed pair (uo;uo(-)). Henceforth, the aforementioned smoothness properties of
Glo;u(e

of two arguments J[v (e

:O )1 will be concisely denoted as C ” . Accordingly, consider a real-valued functional

IO ) u(e |:0 )1: & x & — R possessing analogous properties to the

previous one, i.e. J[v( IO );u(-|:0)]: eC”(Z, x &, > R).

The appropriate random FF{, G, is obtained by replacing the argument (v;u(+)) by the
random element (X0 (8);2(; 9)) which, as discussed in section 1.1, is fully described by the

infinite-dimensional joint probability measure P, .. Accordingly, the functional of two random
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arguments, J, is acquired by substituting into (v(e);u(e)) the random element
(EO (+;0);E,(s; 9)), which, in turn, is fully described by joint probability measure P . .
Since, (X,(0);E(+;0)):0 >R x Z and (Z,(+;0);E,(+;0)):0 > Z, x Z, are Borel
measurable and the deterministic quantities G, J are C”, then their stochastic counterparts

GIX,(0): E(+|, :0)1 and JIE,(+|, )i, (-

t R
0 )1 will also be Borel measurable.

As such, by definition, the mean value of G[ X, (8) ; E(-

:o : 0)] is expressed as

Br, [ G1X(0):2C[ 1001 = [ GLric(IP, o(dz xds(e)), @1)
while, the mean value of J[Z, (e :0 ) E, (e :0)] is expressed as

Eﬁzm[f[ao(- IO)]] = [ TIE() GNP 2, (dE() x &(). @2)

Zox Xy

t —_
to);‘:‘l(.

The above definitions involve a path integral over an infinite-dimensional space; a fact which
constitutes their calculations inherently difficult in the majority of cases. Thus, as a more
workable alternative, we shall express, in the following Theorems 1 and 2, the mean value of a
random FF{ and a random functional of two arguments via the probabilistic structure of their
arguments. This will be accomplished by making use of the following expressions:

Py, =[viu(e :O)] = szos {exp{i X, (@) v +i JE(S;H) u(s) ds”, (2.3)
Pz, =, [0( :0);u(- IO)] = By, _ {exp[ion(s;e)u(s)ds +iIEl(s;9)u(s)dsﬂ.(2.4)

Eqg. (2.3) is the joint characteristic function-functional of X ,(8), Z(- ;&) while Eq. (2.4) is
the joint characteristic functional of =,(+;6), Z,(+;€). Note that in both the above

expressions, the random elements may be dependent, having any prescribed probability
distribution.

Theorem 1 [Mean value of a random FF(]: Let G[v; u(e

:O )] be a sufficiently smooth

FF(, and consider the random FF(, generated from G[ov ; u(e |IO )] by replacing v by ascalar
random variable X, (&) and u(+) by a scalar random function Z(«; ). The mean value of

the random function-functional G[ X, (@) ; Z(+

t .
(, + @)1 1s expressed by the formula
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a t
[Q[X (0);=( |t 19):@ E(i ov iéu(- )jG[U i |t0)]‘5(=.)m—xn3:(.):
(25)

v=my,

u()=mz(+)

= R°? exp{x (9)—+stu(s 9) 6—()1 g[U,U(OHO)]

where E°[«]=E, _[+], m, and m_(s) are the mean values of X,(8) and Z(+;9),

respectively; 0 /0v denotes partial differentiation with respect to v, and 6 /du(s) denotes
Volterra functional differentiation with respect to the function u(+) at s. Further, the quantities

Xo(0) = X (0) —m,_, E(s;0) = E(s;0) —m_,(s) (2.6a,b)
are the fluctuations of the random elements X, (&) and Z(s; &) around their mean values,

and ¢>20é<.)[0 ;u(e)] is the joint characteristic FF{ of the said fluctuations. The operator

appearing in the right-hand side of Eq. (2.5) is called the function-functional shift operator and
it is established in (Athanassoulis & Mamis, 2019, sec. 3). u

Theorem 2 [Mean value of a random functional of two arguments]: Let
. EO );u(e |:0 )] be a sufficiently smooth functional, and consider the random functional,

. IO );u(-|:0)] by replacing v (+) by ascalar random function =, (+; 9)
and u(s) by a scalar random functionZ, («; ). The mean value of the random functional

t —
. to)'*—‘

. :0 )] is expressed in the form

I)]}:

~ )
= ¢éo(-)é1(-) 50(3) |6u( s)

87| JIZ([}):2

DHICHIE

(+)
u(e)

mey(s)
mz, (+)

. exp[_[ds_o(s I sal(s 9)6—() L(e IO);u(-|EO)] 58:2

where E°[+] = E;

e...[*], mo () and m_ () are the mean values and Z,(+;0),

2, (+;0) accordingly; §/8v(s,) and §/8u(s,) denotes Volterra functional differentiation
with respect to the functions v (+) at s,and u(+) at s, respectively. Further, the quantities

Ei(s;0) = E,(s,;0) —mg (), for i=0,1 (2.8)

are the fluctuations of the random elements =,(s,;6) and Z,(s,; @) around their mean

values and P: . IO )] is the joint characteristic functional of said fluctuations.

The exact meaning of the operator appearing in the right-hand side of Eq. (2.7) will be defined
below. [
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Theorem 1 has first been formulated and proven by (Athanassoulis & Mamis, 2019) in a
comprehensive manner using the Volterra technique of passing form the discrete to continuous
and as such, its proof is omitted. However, in the ensuing paragraph 2.1.1, we are going to apply
this approach in order to prove Theorem 2. Before we are able to proceed with the said proof,
we must introduce the following, alternative shift operator presented in the aforementioned
paper, namely the shift operator of a functional of two random arguments and its exponential
form:

I HUCN E PO o(o],) +UC[ )] =
= uO()uO() Glo, (- | )] =
— exp jz}(s)(sj(s)ds+jd(s)6u(s(s)ds Ios (-, )i up (-1 )1 (2.9)

In the above expression, (Uo (-|:0 )HIR (-|I0 )) is the pair around which the Volterra-Taylor

expansion of J is employed. The proof of Eg. (2.9) is omitted herein since it is almost identical
to the one presented in detail in the aforementioned paper.

2.1.1 Proof of Theorem 2

Equation (2.9) is the essential deterministic prerequisite for the proof of Theorem 1.
Substituting, in Eqg. (2.9), the arguments v (), u(e) by the random arguments =,(+;8),

-§0>-= |1
GIZ, (-, )i =, (-] )] = GIm., )i *[:,)]
= Tgo(.)él(.)(j[mio(')(.ho ;mEl(‘)(.|t0)] - (2'10)
= exp[ J‘ 3-—41(5 9)6—()JG[ _0(-)('|:0)! * IO)]

Recall that m_ (+) , m_ () are the mean values and éo(-;e), él(.;e) are the fluctuations

of the random elements =, (+; 6), E, (+; ) around their mean values, see Eq. (2.8).

By averaging, now, both sides of Eq. (2.10), we obtain

BY|GIZ, ([, ):2, ([,)] -
0 l = . o l ’: ‘ '
=E expuds:o(s,e)éu(s) +tJ; E,(s; )6—()J G[mEo(')(.LO)' ¢ tg)]'
(2.11)

In Eq. (2.11) the averaged term is called the averaged shift operator. Recalling the form of the
joint characteristic functional, Eq. (2.4), we see that Eq. (2.11) can also be written as
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8’| GIZ, (-,

()T -

5
ERECE 1<>Léu(s) |6u(s)}6[ 20 Cly)

which, when combined with Eq. (2.9), is the exact form in which Theorem 2 is written. This
concludes the proof of Theorem 2. [

(2.12)

[T

2.2 Extensions of the Novikov-Furutsu theorem

At this point, it is useful to reiterate that all results presented thus far hold true regardless of the
distribution of the random arguments of the FFC or the functional of two arguments.
Nevertheless, by considering different forms of the aforementioned G ,J (function-)

functionals and specifying their corresponding joint characteristic FF¢ and functional as
Gaussian ones, we will be able to derive various formulas that extend the classical Novikov-
Furutsu theorem and are instrumental in the derivation of the pdf evolution equations presented
in this thesis.

More specifically, the Gaussian form of the joint characteristic FFC ¢, - . :0 )] reads
as follows:
Gauss )]
= exp[ [m=(s)u(s) ds - %“C s, 8,)U(s,)u(s,) dsldszJ « 2.13)
to to

t
X exp(imxo V- % Crox, UZ) . exp[ uICXOE(s)u(s) dsj.
to

Accordingly, the Gaussian joint characteristic functional ¢ -

. :0);u(-|zo)] reads

e (I C | );u(e | )] =

to o

_ exp{ijmgo (s)v(s)ds —%”cmo (s,,5,)0(s,)v(s,)ds, dsz] x

2.14
xexp[jm ©us)is - 2{fe. . s sutsu(s,) s, ds} e

to to
tt
x exp _J.J‘CEOEI(SO’Sl)U(SO)u(Sl)dSO ds, |.
to to

Egs. (2.13), (2.14) are essential for the proof of the sought-for extensions. The derivation of
these expressions is detailed in the ensuing paragraph.
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2.2.1 Derivation of the Gaussian joint characteristic FF¢ and functional

In this paragraph, we are going to focus on the derivation of Eq. (2.14) for the joint characteristic
functional of two Gaussian argument; the procurement of Eq. (2.13) is similar and slightly
simpler. For this, we must begin from the discrete analogue. We first consider the joint
characteristic function of a random vector Z(60) . This is straightforwardly obtained by simple
manipulations of a (2N) — dimensional characteristic function (see e.g. (Lukacs & Laha,
1964)) resulting into

2N

¢§au33(u) — eXp(iZ(mE)nun —%ZZ(CEE)nmUnUm} =

n=1

- o135 (ma), 01 3 (ma) 0

n=1 n=N+1

where m_, C_. are the mean value and autocovariance of the random vector =Z(6),

respectively. In order to transform the above equation into a more suitable form for our case we
a) denote the first N elements of the vector by =, and the respective arguments of the

characteristic function by o and, in similar fashion, the remaining terms by =, and u,
accordingly; b) take advantage of the commutation of the sums. Thus, we find

N

P (v;u) = exp(iZ(mE )

n=1 n n=1 m=1

2N 2N 2N
xexp[i Z (ma) u, —% Z (CE E) unume (2.16)

where m_ , C_ _ denote the mean value and the autocovariance of the random vector = ;
5,' =

0=0

m_ , C_ _ are the mean value and the autocovariance of the random vector =, ; and C

=1 =151

0=1

denotes the cross-covariance of the two random vectors. By setting, now, =, (8) =&, (t,;8),

m

v, =v,(t,), u, =u,(t, ) Volterra’s principle of passing from the discrete to the continuous

(see e.g. (Mamis, 2020, Appendix A)), we obtain the required Eq. (2.14). Note that the
derivation of Eq. (2.13) is similarly accomplished by considering its discrete analogue, i.e. the
(14 N)—dimensional joint Gaussian characteristic function of a random variable X, (&) and

a random vector Z( ), and repeating the above process.
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2.2.2 Extensions for a random function-functional
Now, by setting in Eg. (2.5)
GIX,(0):E(-[! :0)] = G[-+] =
t (2.17)
= 2 (t;0) F[X,(0); E(.|t0 ,0)] = E(t;0) F[---1,
taking into account the Gaussian joint characteristic FF¢ Eq. (2.13) and calculating the action
0 o

- on the FF( u(t v;u(e
i ov |6u(-)] O (
extension of the NF theorem for FF{s is obtained.

t .
6 )1, the following

of the operator ¢, &[
o &

Theorem 3 [Extension | of the Novikov-Furutsu theorem]: For a sufficiently smooth FF¢ of
the form F[X,(0); E(e :0 ;8)] = FI[--], whose arguments X ,(8), E(+;8) are jointly

Gaussian, the following formula holds true:

E°[E(t;0) F[--1] =

2.18

= m () B°[FL[--1] + Cy.2 (1) E{Sf[(gﬂ N (2.18)
t T 6 FL]

+JCEE(t,T)E |:—6E(s,(9):|dz- m

Eq. (2.18) was first derived in (Athanassoulis & Mamis, 2019) and can be promptly seen as a
generalization to the classical form. More specifically, by setting m_ (t) = 0 and assuming that

X, (@) and E(t; @) are uncorrelated the classical form is retrieved. Moreover, following the

aforementioned paper’s approach, the following simple, yet very useful, generalization of the
above theorem can be obtained

Theorem 4 [Extension Il of the Novikov-Furutsu theorem]: For a sufficiently smooth FF{
of the form F[X,(8); E(e IO ;0)] = F[---], whose arguments X,(8), E(-;8) are

jointly Gaussian, the following formula holds true:

B’[2(s;0) FL--1] =

09X, (0)

6:]3'[] dr
§2(z;0) |

m.(s) B[ F[---1] + CXOE(S)E{af['"]} (2.19)

+ jCEE(t, 7) EH{

where t, < s < t. The derivation of Eq. (2.19) will be thoroughly discussed in the ensuing
section 2.2.

Further, by setting in Eq. (2.5)
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GIX,(6) 12|\ 10)] = G[-] =

- : (2.20)
= 2(5:0) FIX,(0): EC-[: ;)]

2 (s;0) Fl--1,

o 6
i o0 i6u(.)

and calculating the action of the operator goxoé( j this time, on the FF/(

u(s) Flo;u(e

that the overdot denotes the first temporal derivative.

:0 )1, the following extension of the NF theorem for FF{s is obtained. Note

Theorem 5 [Extension 11 of the Novikov-Furutsu theorem]: For a sufficiently smooth FF(
of the form F[X,(0); E( IO ;0)] = F[---], whose arguments X,(8), Z(+;0) are

jointly Gaussian, the following formula holds true:

B[ £(s;:0) FL-1] =

. (2.21)
= i, (8) B[ FL+1] + Gy o (5) E{Zf—[(e”*
+J‘6$CEE(S,1)E{%}dr, m

where t, <'s <tand 0,C..(s,7)=0C.. (s, r)/ds. The proof of theorems 4 and 5 will be
outlined in the next section 2.3

2.2.3 Extensions for a functional of two random arguments

Proceeding in the same fashion as before, by setting in Eq. (2.6)
JIEo (-], )i B ([, )] = T[] =
= 2,(5:0) FIZo (], 10):2, (e, 10)] = 2,(5:0) F[-+1,

(2.22)

taking into account the joint Gaussian characteristic functional Eq. (2.14) and calculating the

L)uC] )1,

o= idv(r,) 16u(r,)
the following extension of the NF theorem is obtained.

o o
action of operator ¢ - { ] on the functional u(s) Flv(e

Theorem 6 [Extension IV of the Novikov—Furutsu theorem]: For a sufficiently smooth
functional of the form j-"[EO(-|:0 ;9);51(-|:0 ;0)] = F[---], whose arguments

t

ty '

E, (e 0), 51(‘|I0 ; @) are jointly Gaussian, the following formula holds true:
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E°[2,(s:0)]F[+]] =

. (2.23)
- B[] e (s)El%}d+
[ oFL-]
+{[C5151(S,T1)E |:6EI(Z_1;9):|d71' "

Accordingly, by setting in Eq. (2.6)

JIE Gl )iE ([ ) = T[] =
. t _ t . (2.24)
- i 1003 0] = Eu(5:0) FL1,
and calculating the action of operator 0 X 0 on the functional
| PRI P22 T50(2,) Ti6u(ry)

. IO )], a different extension of the NF theorem is derived.

Theorem 7 [Extension V of the Novikov—Furutsu theorem]: For a sufficiently smooth
functional of . : 1 0); 2

. :0 ;0)] = F[---], whose arguments

t
to

,0)

B, (e . IO ; @) are jointly Gaussian, the following formula holds true:

E’[Z,(s;0)1F[ 1] =

) i 8 F[--] (2.25)
=My (S)E .T[ ] -[ =N (7, 8)E° {650(70;0)}(170 +
+{[65C5131(S,71)E9|:%}d71. .

2.3 Proof of the extensions of the Novikov-Furutsu theorem

In this section, we are going to follow the approach showcased in (Athanassoulis & Mamis,
2019) in order to prove the aforementioned extensions of the Novikov-Furutsu theorem.

2.2.1 Proof of the extensions for a random function-functional

Since in the presented extensions, Theorems 3-5, the arguments of the FF( are assumed jointly
Gaussian, then their fluctuations defined by Egs. (2.6a,b) will also be jointly Gaussian with zero
mean values and the same central moments, i.e. C, . =C, ., C; .(+)=C, o(+),

C.z(e,¢)=C__(+,+).Assuch, through Eg. (2.13), we find
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2

toto

(pfa“is[u u(s | )] = exp[—l‘HC_ﬁ(rl,r yu(z,)u(r, )drldrzj
(2.26)

t
x exp(imxo v — % Crox, UZJ . exp[ UICXOE (r)u(r) df}
ty

Having obtained the above expression, it is easy to observe that the averaged shift operator
Py = [0/iov; 6/idu(z)] can be expressed as the product of three operators

8. . 6. = r [ ] T (] T L]
xoé[m ’ I(SU(T)} - (TXOXO )(Tkoé )(TEE )’ (2.27)
defined by:

fx“oxo' = exp[% X xog—;;j, (2.28a)
_ 5
T, .+ = exp[fcxo (r) 22 = 5u(r) dr], (2.28D)
T v ex ljj'c (z,.7,) 6% dr, d (2.28¢)

S 2t0t0 ==t b 6“(71)6u(72) iz .

These T — operators can be considered as second-order versions of the shift operators and, thus,
termed as quadratic averaged shift operators. Using Egs. (2.27) and (2.28), Theorem 1 for
Gaussian arguments takes the form

B[ GIX,(0): 2|, i1 ] = [ To. T . T, s, GLosuC ) Joem,, -+ (229)

u(e)=mz(s)

Therefore, it is readily understood that the proof of the presented extensions of the NF theorem
for a random FFeL G[ X, (6) ; E(» |I ;@)] is largely encapsulated on the determination of the

action of these operators on the appropriate forms of the deterministic counterparts of the said

operators.

Properties of the T —operators. On C*“ function-functionals, 7 — operators are well-
defined and they have the following properties, which are needed subsequently for the proof of
the extended NF theorem. Note that the proof of the lemmata presented in this paragraph can be
found in (Mamis, 2020). Herein, we will only provide the proof of the properties of the
analogous lemmata corresponding to the functional of two random arguments

Lemma 2.1: T —operators are linear. That is, for any two C* functionals j—"[u;u(-|t0 )],

. IO )] it holds true that
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T|aGloiu(], )]+ AFIviu(:
= a’f[g[u;u(-

1| -

_ (2.30)
1|+ BT Flosu(

il

where 7« stands for any of the operators fﬁoio ., Txoé ., T:: ,and a, g are scalars or
scalar functions having argument(s) different than the differentiation argument(s) appearing in

the corresponding 7 - operator.

Lemma 2.2: f—operators commute with o — and u () — differentiation. That s, fora C”

FFC Glusu(«, )], and for :FE{T_XAOA T, :F}

X XoZE

1

[x

_| 8GIv;u(e] )]

P B
%[Tg[u,u(- to)]} _T — (2.31a)
and
5 = o =|8GlouC )]
e [Tg[u,u(- to)]] - T o | (2.31b)

Lemma 2.3: T - operators commute with each other. That is, for any C* FF¢
Glv;u(e :0 )], it holds true that

Tyov, Tie Tee GLOTUCIOT = Ty o Ty Toe Glosu(ef )] =
=Ty fxoxofxoé Glosu(-| 1. (2.32)

In other words, the product of the three T — operators under any permutation of their order,
has the same action on the FF¢ G[v;u (. :0 )]

Proof of extensions IlI, Il of the NF theorem. For this, we specify the FF{
GLX,(0);2(s :O ;0)] as E(s;0) FIX,(8);E2(s :0 ;9)]. Then, using Lemmata 2.1-2.3
and Eq. (2.29) we find:

8| 2(5:0) FIX, (02, :0)] | =
B {7::_ Te,e Ta, [U(S)f[u;u('ﬁo)]}}vmm

u(e)=mz(+)

(2.33)

Eq. (2.33) is the most convenient form to calculate the result of the successive application of
the three 7 — operators on u(s) F[v;u(s I )] and thus, prove the required extensions of
0

the NF theorem. This is performed using the following lemmata.
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Lemma 2.4. The action of operator 7_’)2 g onu(s) Flo;u(e

IO )] is given by

Tor, U FLosuC 1] = u) Ty o [ Flosul 1. (234

At this point, by setting the term fioio [j-"[u;u(-ﬁo)]} as a new functional

Filo;u(e

t . = . - . .
g )] and applying the operator Tx‘oé on both sides of the above equation, yields:

T2 Tae, [U09) Flosu(-

| =ue T, [AlosueD]] @3
The right-hand side of Eq. (2.36) can be calculated using the following result:

Lemma 2.5. The action of operator ’fxoé onu(s) Flo;u(e

:0 )] is given by

fioé[u(s) Flv;u(e :O)]} = u(s) fxo: [j:l[u cu(e :o)]} *
~ ACE Nk (2.36)
+Cy = (8) Ty - Mo o IO)] '
0 0= ov

Then, by applying the féé operator on both sides of the above expression, employing Eq.

IO )]} as

(2.35) for the left-hand side of Eq. (2.36) and designating the term ﬂ_foé [fl[u U (e
Folo;u(e

t .
to)],we find

T..T, . T, ;. [u(s)j—"[u e

EO)]} = 7::: [u(s) fZ[U;U(.|:O)]: 4

_ _ JeFiue] 1] (2.37)
F e o7 f[uau(lto)] |
22 2 -

We shall now elaborate on the two terms appearing in the right-hand side of Eq. (27), separately.
First, the second term in the right-hand side of Eq. (2.37) can equivalently be expressed in terms

of the FFt F[v ;u(+)] by taking advantage of: a) the linearity of Téé (Lemma 2.1); b) the

commutation of fioio with the v - derivative (Lemma 2.2); c) the definition of F,[v; u(+)],

as

— _ oFilv; -:

7o ©7F FloiuC[ )]

- ° 0= ov

(2.38)
- _ _ 0 u(el
ZCXOE(S)TééTxeTX)Z :F[UaU( lo)].
0= 0o 1)
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Concerning the first term in the right-hand side of Eq. (2.37), we need the following Lemma:

Lemma 2.6. The action of operator féé on u(s) F,

. IO )] is given by

.. [U(S) FloiuC )] = u) Tos | BloiuC 1]+
: _ [6Fwul (2.39)
+IC33(S, )T, 7 [;)u(us() |t0)] dr.

Combining, now, Egs. (2.37)-(2.39) and the definition of F,[v;u(+)], and employing the

commutation of T — operators with the u () — derivative (Lemma 2), we obtain

f:éfxo~ r [ : )]} =
= u(s) f:éfxo T [ )]} +
- - - Jue]:)]
+ CXOE(S) Tee TX eTX X P - + (2.40)
== 0= 0%o v
‘ - - - U] )]
#[Cas(s ) T T, T, e o,

Finally, setting o = m, -, and u(+) = m_ (+) in Eq. (2.40), and applying Eq. (2.29) to each term
of the form T TXO_TXOXU [---] in both sides of Eq. (2.70), we obtain the extended NF
theorem, Eq. (2.19). The proof is now completed. Moreover, Theorem 3, Eg. (2.18), can be seen
as a special case of Eq. (2.19) and thus, its proof is also concluded.

Proof of extension IV of the NF theorem. For this, we specify in Eq. (2.29) the FFC
= (e :O :0)] as = E(e IO ;0)], where the overdot denotes the

first temporal derivative. Then, using Lemmata 2.1-2.3 and Eq. (2.29) we find

B {7::_ fxoé T_X‘oio [

Therefore, it is seen that, this time, we must evaluate the action of the T — operators on the

(2.41)

LRI

u(s)=mz(+)

deterministic counterpart of Z(s;8) F[X,(8);Z(- t . IO)].This
is easily obtained by considering the following alternatives of Lemmata 4-6.
- . — t
T |0 1| = Ty, | 1), 242
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T2 608) FloiuC)1] = () T, .|

_ (2.43)
+Cr=(8) Ty . —
T_[ }:u(s)féé[ }+
t B (e (2.44)
+jascga(s, ) T.. 51;(7) 8 gy,

where 6,C..(s,7)=0C.. (s, r)/0s. Using Egs. (2.42), (2.43), (2.44) and following the

process described above for the proof of extensions | and Il of the NF theorem, the proof Eq.
(2.21) is also completed.

2.2.2 Proof of the extensions for a functional of two random arguments

As already discussed in paragraph 2.2.1, since in Theorems 4-6 the arguments of the functional
of two random arguments are then their fluctuations defined by Eq. (2.8) will also be jointly
Gaussian  with zero mean values and the same central moments, i.e.
C.. (e,°)= Cs :, (e,+) with i, j =0, 1. Assuch, through Eq. (2.14) we find

(p_eaujs[u( | )]:exp[%j =z, (71, 7)) v(7y) (7, )drlder
x exp| — %JICE151(rl,rz)u(rl)u(rz)dsldszjx (2.45)

-
—-

=0 =1

xexp|— | |C: = (7,,58,) v(7y) u(z,)dr, dz‘l]

toto

Thus, in this case, the averaged shift operator (”éoél[é/i dv(z,); ol (Su(rl)} takes the

form

wéoél[iéj(.ro) ; i5f(.rl)} (T ) (Tee ) (Teree) (2.46)

with the three quadratic averaged shift operators defined by

— 1 tt 62
T. .= exp{zjj‘c (70 1) 5 o )6U(Tl)drodrl , (2.47a)

to to
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_ 1t'[ 52.

T. .= exp(zt”calal(fo, 7)) EALITEN drodrlJ, (2.47b)

T. . = exp jt (79, 7,) 6~ dr, dr, |. (2.47¢)
205 A For Sv(ry)bu(z,) ° °

Using Egs. (2.46), (2.47) Theorem 2 for Gaussian arguments takes the form
B J12, ¢[00 20l 01| = | Tos Te Tes) TG UG on,,

u(s)=mgz(+)

(2.48)

Therefore, by considering the appropriate forms of the functional J[Z, (- |I0 1 0) 2 (e |IO 0

and calculating the action of the T - operators on its corresponding deterministic counterparts
Jlv(. |: );u(e |: )] the required generalizations of the NF theorem are obtained. Proceeding in

the same fashion as in paragraph 2.2.1, let us examined the properties of these operators
Properties of the f—operators. On C” functionals, T - operators are well-defined and
they have the following properties; the proof of the following lemmata is provided in Appendix
A.

Lemma 27. T - operators are linear. That is, for any two C® functionals
. EO)] it holds true that

1] -
1|+ T F

) af[g (2.49)

L )sucl)1),

where T « stands for any of the tree operators 7_; ., T..T. - *,and a, g arescalars

or scalar functions having argument(s) different than the differentiation argument(s) appearing
in the corresponding 7« operator.

Lemma 2.8. T — operators commute with v(z,)— and u(z,)— differentiation. That is,

. Io )1, it holds true that

_ t t _ IR HICNSY
N [Tg[u(-ho e to)]} - T e | (2.50a)
and i
_| 6GIv(e], )iu(+], )]
6u( 5 [Tg[u( K )]} _ T e | (2.50h)
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wherefe{ﬂ_i N -,7_2 N -,’Z_Z - }

=0 =0 =15 =0 =1

Lemma 2.9: T - operators commute with each other. That is, for any C* functional
. IO )], it holds true that

);u(-r )] =

o )iuC )] =
N HUCINNI (2.51)

In other words, the product of the three T — operators under any permutation of their order,

)1

Proof of extensions 1V, V of the NF theorem. At this point, by specifying the functional

0): 2. (-], ;0] as Z,(s5;0) FIE, (-, :6);E, ([, ;6)], using Lemmata 2.7-
2.9 and Eq. (2.48) we find the appropriate expression for the proof of Eq. (2.23),
B°[2,(s:0) FIZ, (-, I, ;9)]} -
_ _ _ (2.52)
= {TélélTéoélTéoéo[ ) u(e|; )]}} b=y ()
U@ =m, (+)
Accordingly, setting J[EO(-|:0 :0); El(-| 10)1=2,(5;0) FIZ ([, 10): 2, (|, 1 0)],
we obtain the following, appropriate form for the proof of Eq. (2.24):
Ee[él(s;e)}"[Eo(-ﬁo 10);E, (s IO ;9)]} =
_ _ — (2.53)
= {T:l:lTéo: [ ) u(e | )]}} () =mzy ()"
U =mz, ()

Similar to the profs presented in the previous paragraph, we must again calculate the action of
these T~ -IO);u(-|§O -:0);u(-|:0)].Thisis

accomplished be making use of the following lemmata.

Lemma 2.10. The action of operator fé 2

. :0);u(.|§0)] is given by

T..| UG = uO T [ FIoCL )] @59
Accordingly, the action of operator g:éoéo . IO )] is given by
T, ., |0 U] = 0T L [ FloCl e[ ] @s9)

Lemma 2.11. The action of operator 720 g,

. :0 )] is given by
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T... W) FloC

G| = U T [ Floc

HUC

SHICIIE
) )]] (2.56)
*— |dz,.

t

+[Ce (09T,

Zp =

6 Flo(e
60(70)

to

Accordingly, the action of operator “féoél onu(s) Flv(e :0 );u(e IO )] is given by

T, [UOFLo(

HIC

IO)]} = u(s)féoél[ﬂ,,(.
L)

6 Flo(e
6U(T0)

WG]+
) )]} (2.57)
“— |dz,.

+I85C5051(r0,s)T£ .

205y

to

Lemma 2.12. The action of operator félél onu(s) Flv(e

:0);u(.|§0)] is given by

:o)]i| - u(s)félél[f[u(' :0);U(° IO)]}+

SFIoC], Yiu(e: )]} (2.58)
: “— |dz,.
ou(r,)

T...,|u(s) Flo(-

HIC

t
+jcalgl(s,rl):rélél
to

Accordingly, the action of operator félél onu(s) Flv(e

NHIC

:0 )] is given by

T. . [U(s)}"[u(-

=1

NHIC

:o)]} B u(s)félél[f[v('

§ Flo(e|, )iu(s
du(ry)

LG+
) )]] (2.59)
°— |dz,.

t
+jascglgl(s,rl):rélél
to

Finally, repeating the process presented in paragraph 2.2.1 for u(s)j!—”[u(-|:0 ); u(-|§0 )] as

well as u(s) F[o(s :0);u(-
respectively. This concludes the proofs of the said theorems.

IO)] yields the sought-for extensions Theorem 4 and 5,

2.4 Generalizations of Theorems 6 and 7

In this section, we are going to present the generalizations of Theorems 6, 7. More specifically,
we shall consider the cases in which J is both a function of X (@) and a functional of

IO),i.e. J[--.]=J[xo(e);ao(.ﬁo,9);51(-|§0,9)].

excitations = (s

t o
tO) and =, (»

Specifying, thus, J as
Jl1= JIXe(0);E, (¢, )i B, (], O] =
= E,(8:0) FIXo(0);E,(+], . 0);E, (-

: (2.60)
O] =E,(5:0) F[-1,
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where t, <s <t. Then, taking into account its corresponding joint characteristic FF{ and the
appropriate operator, the following theorem can be proven:

Theorem 8 [ Extension VI of the Novikov-Furutsu theorem]: For a sufficiently smooth
functional of the form F[X,(6);Z,(s Io,e);El(- Io,e)] = F[---], whose arguments

t
t

Xo(0), Eq(e

. ;‘9)151('

: ;@) are jointly Gaussian, the following formula holds true:

B[E,(s;O1F ] =

_ of Fr... ol OF 1]

= m_ ()B[F[]]+Cy, -, (5)E {axo(e)} (2.61)
c,.. ()E[m} jc... ()E{w}d .
o 0X,(0) A 0E,(7,4:0)
t o| _OFI[-]
+{[C3151(S,T1)E {m}dfl [ |
Accordingly, by setting:
Tl+1= JIXo(8):5,(], . 0):5, (-, ) =

(2.62)

= E,(5:0) FIX,(0); 2, (-

t —_
tove);51(°

L O] =E,(5:0) FL--1,
the following theorem can be proven.

Theorem 9 [ Extension VII of the Novikov-Furutsu theorem]: For a sufficiently smooth
functional of the form j-“[Xo(e);Eo(-Ho,9);31(-|t0,9)] = F[---], whose arguments

t
t

E[Z,(s:0)]F[]] =

X, (8), E,(e ;@) are jointly Gaussian, the following formula holds true:

. ;‘9)151('

t
to

= mEl(S)Eg[j:["']]_"CXOEO(S)Eglgxf[éﬂ"' (2.63)
~ o| OFL-1| | o 8F-
+CX051(S)E {axo(e):|+{[aschii(To1S)E {m}d’[o-l-

The proofs of theorems 8, 9 are not presented herein but can easily be proven by following the
approach presented in section 2.2.



Chapter 3

One-time response pdf evolution equations

The present chapter will serve as an outset for demonstrating in a comprehensive manner the
methodology upon which the extensions presented in this thesis are founded. More specifically,
we showcase the fundamental steps towards apprehending one-time pdf evolution equations for
the response of nonlinear systems under colored Gaussian excitation. It must be noted that the
results presented in paragraph 3.1 have been first presented in (Mamis et al., 2019) while the
ones presented in paragraph 3.2 are derived by employing the same methodology in a different
case, namely that in which the RDE is excited by both additive and multiplicative colored
Gaussian noise.

3.1 The case of a scalar, nonlinear, additively excited RDE

We commence from the study of the following scalar, nonlinear, additively excited RDE
presented in Chapter 1:

X (t;0) = h(X(t;0)) + xZ(t;0), X(t,;0) = X,(0).  (3.1ab)

As was also presented in the said chapter, in the above random initial value problem (RIVP) &
is the stochastic argument, the overdot denotes differentiation with respect to time, h(x) is a

deterministic continuous function modelling the nonlinearities (restoring term), and « is a
constant. Initial value X, (@) and excitation Z(t; &) are considered correlated and jointly

Gaussian with non-zero mean values m, , m_(t), autocovariances C, , , C.z(t,s) and

cross-covariance C, . (t).

3.1.1 The corresponding stochastic Liouville equation

The starting point of our analysis in all cases is the delta projection method. As presented in
section 2.1, by virtue of probability measure P the mean value of a .2 (& x L) -

to. ] . .
i, 1 0) i E(| 0)], is defined

X ()2() !
measurable functional of the response and excitation, G[ X (.

as
E§x<->5(~) |:G[X (.|:O ;‘9) ; E‘(’|IO ;0)]:| =
= [ GLE() 1 €N Pyyzy (dx () x dE(4)).

X x Z

(3.2)

Let us, now, consider its discrete analogue

23
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E’[G(X(0);E(0))] =

- EQ[G(X(rl;Q), s X (2,:0):E(s,:0), ...,E(sn;e))] = (3.3)
= I G(Z(T1)1 v X(7,30) 5 8(8y), "'1§(Sn)) PX(.)E(.)(dZ(') de(')),

where G( X (80) ; E(0)) isa . B (.4 x Z)—measurable function, and X (@), E(@) are the
m— and n—dimensional random vectors defined as the response and excitation in multiple
(fixed) time instances s,,..., s, , 7,,..., 7, € [t,, t], respectively. Note that Eq. (3.2) can be

obtained via Eq. (3.3) by applying Volterra’s passing from the discrete to the continuous
(Athanassoulis & Mamis, 2019; Mamis, 2020; Venturi et al., 2012a). Since the integrand on the
right-hand side of Eq. (3.3) depends only on the specific values of the path functions y (+) and

& (+), the infinite-dimensional integral in Eq. (3.2) is reduced to a (n+m)— dimensional one,
with respect to marginal, (n+m)—point measure Py .. x(. yz(s)-2(s.)

n?

E°[G(X(0);E(0))] = I G(W;Z) Py x(enyz(sy -z, (AW x dZ). (3.4)

ROTM

Under the assumption that the point measure Py .\ y(, yz(s,)..2(s.) IS SMoothly distributed, i.e.

the joint pdf fy (. ). x )z, .26, (W, Z) exists, Eq. (3.4) can be written as

BY[G(X(0):2(0))] = [ G(W:2) fyyninysn-ziy (W D) dwdz.  (35)

RMEM

By considering Volterra’s passing, in the opposite direction, Eq. (3.5) for n, m — o gives rise
to
t

By, [GIX ], 10):2C],:0)]] -
= j Glx(+); S fxyzmlr(e); &()1dy(«)dS(s),

X xZ

(3.6)

which is an equivalent expression of Eq. (3.2), under the assumption that the infinite-
dimensional joint response-excitation probability density functional f, -, [x(¢);&(+)]

exists, see e.g. (Fox, 1986).

Using, now, Eq (3.6) to express the average of the random delta function 6 (x— X (t;8)), we
find

E’[5(x-X (t;6))] =j5(x—w) Fr (W) dw, (3.7)
R
which by employing the identity for the delta function is transformed into
frp (X) = B°[S(x=X(t;0))]. (3.8)

Then, by differentiation both sides of the above equation we obtain

(X)) 8 B . _ mo
S - SRS X (1:0)] = B {

00 (x=X(t;0))
o0X(t;0)

X (t; 9)] (3.9)
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The rightmost side of Eq. (3.9) is derived by interchanging differentiation and expectation
operators and using chain rule in differentiation. Now, substituting Eg. (3.1a) into Eq. (3.3)
results in

0 fxw(X) _ E{aa(x—xa;e)) h(x(t;g))}LKE{EM(X—X(t;H)) E(t;&’)]
ot OX (t;0) OX (t;0)

(3.10)

Each term on the right-hand side of the above expression is subsequently evaluated using the
delta projection method’s formalism, as follows:

ol 00 (x=X(t;80)) _ _ [00(x=W) 3
E { X (1:0) h(X(t,@))} - i—aw h(w) fyg (W)dw =

= =L (h(x) fe (0)). (311)
0 X

ol 00 (X=X (t;0)) .. [ 00(x=Ww) 3
: { aX(t;0) “(t’e)} ) Ia—w 2 Tz (W, 2) dwaz =

RZ

0
- |2 fxpze (X, 2)dz =
axi

0
T ox Di5(X—W) z fywzm (W, 2)dwdz =

_ 9
oX

B’ [5(x-X (t;0)) E(t;0)]. (3.12)

For Egs. (3.11), (3.12) to be valid, the function h(x) of RDE (3.1a) as well as pdfs f, ., (x),
fy = (X, y) should possess continuous first derivatives. At this point, substituting Egs.
(3.11) and (3.12) into Eq. (3.10) provides us with

0fypy(X) 0 0 O[=(+t- .
— o o (100 o (0) = =k — (BY[E(t;0) s(x=X (t:0))]).  (313)

Eq. (3.13) is called the stochastic Liouville equation (SLE) pertaining to RIVP (3.1a,b), a term
introduced by Kubo in (Kubo, 1963). This equation has been derived by many authors in the
past, using various approaches, e.g.(Cetto et al., 1984; Fox, 1986; P Hanggi, 1978; San Miguel
& Sancho, 1980a). Moreover, the initial condition of SLE (3.5) is easily determined through the
data of RIVP (3.1a,b) to

fxey (X) = £, (X). (3.14)

At this point, it is readily seen that the SLE (3.13) is exact, yet non-closed due to the term
Ngy = E[E(t;0) §(x—X (t;0))], appearing on its right-hand side. Thus, in order to

proceed and obtain a more workable alternative to SLE (3.13), the explicit dependence of the
N_, over the excitation =(t; 8) must be eliminated.

Transformed SLE. Before we continue with the treatment of SLE (3.13), it must be noted that
the response X (t; @) is regarded, through the solution of RIVP (3.1), as a function-functional



26 3.1 The case of a scalar, nonlinear, additively excited RDE

(FFe) on the initial value X, (8) and the time history of the excitation Z(+; 8), from the initial
time t, to the current time t; a perception which also emphasizes the non-Markovian character

of the response. The notation X (t;8) = X[X,(8); E(e

t
t

. ;8)] is used subsequently,

whenever it is needed to remember the dependence of the response on X, (8) and Z(-;8).

The above discussion makes clear that SLE (3.13) is not only non-closed but also nonlocal by
virtue of the dependence of Nz, on the whole history of the excitation.

Returning to the treatment of SLE (3.13), the averaged term, A_, , can equivalently be written
as

Nay = B°[E(t;0)5(x=X(t;0))] =
t 3.15
- Ee[a(t;e)g(x—X[xo(g);g(.ho;@)])} (3.15)

which is also the appropriate form for the application of Extension I of the NF theorem, Eq.
(2.18) as presented in sec. 2.2 under the comprehension that the random delta function

5(X—X(t;¢9))=5(x—X[XO(H);E(- :0;9)]) is considered a FFC like F =

FIX,(0):E(

:0 ; @)]. Thus, applying the NF theorem to the non-local term A_, vyields

IO;G)])} =
IO;H)])} +

08(x = X[X,(0): 2], 0)])

Ee[a(t;a)a(x ~X[X,(0) E(~

- mg(t)E"[é(x— X[X,(0); E(s

+Cyo (1) B ) . (3.16)
t H 55(x—X[x0(9);5(- :0;9)])
+jCEE(t,r)E TR0 0) dr.

to

The averages in the last two terms of Eq. (3.16) can be further evaluated by making use of the
chain rule for the derivatives of the random delta function as

E°[E(t;0)5(x - X (t;0))] =
IO;H)])}+

= mE(t)Eg[é(X— X[Xo(0):E(

| as(x=x1x,(0):2¢|, ;0]
+Cy = (1) E ) Vi, (150) | + (3.17)
t | 68(x=xIx,0):2¢ [ :00)
+[Catn) B X 0) V.., (t:6) |dr,
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where V, (t;60), Vv

initial value and excitation, respectively:

= (1;0) are defined as the derivatives of the response with respect to

OX[X,(0); E(-], ;0]

V, (t;0) = X (@) , (3.18a)
SX[X,(6) 2|, ;0)]

Vo, (1;0) = . (3.18b)

0E(7;0)

and are collectively called the variational derivatives of the response. Despite the response
being the solution to a nonlinear RDE, its variational derivatives are easily calculated by
formulating and solving the corresponding variational equations as it is performed in the
subsequent paragraph 3.1.2.

Heretofore, we have considered the response as an FF{ with Gaussian arguments,
X[X,(0);Z(+| ;@)],inorder to be able to employ the NF theorem and the chain rule. We

shall now revert to considering the response as a random function per se, X (t; @) ; doing so,

simplifies the notation and allows us to carry out some simple manipulations of the delta
projection method for the averaged terms of Eq. (3.17). Thus, we find

E°[E(t;0)5(x = X (t;0))] = m_(t) fy,(x) -

—cXOE(t)%E"[a(x— X(t;e))vxo(t;e)}— (3.19)

t
to

o | ,
_&{[ng (t,7)E [§(X - X(t;e))vg(,)(t;e)]dr.

Last, combining Egs. (3.13) and (3.19) results in the following transformed SLE for the one-
time response pdf f, ., (x):

Ofyn(X) o
#ﬂL&[(h(x) +xm. (1)) fxm(x)} -
e Cn® aaxzz BY[5(x - X (t;0)) Vy, (1;0) |+ (3.20)
¥ K85X22 Je (t ) B [6(x - X (t:0)) Ve, (1:0) ] de,

By comparing the transformed SLE (3.20) to its previous form, Eq. (3.13), we observe that the
use of the NF theorem results in: i) an augmented drift term, which can be identified as the right-
hand side of RDE (3.1) with excitation replaced by its mean value, ii) the appearance of second
order x—derivatives in the right-hand side of the equation, and iii) the appearance of the
averages of the random delta function multiplied by the variational derivatives of the response
with respect to initial value and excitation.
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3.1.2 Formulation and solution of the variational equations
In the present paragraph, we formulate and solve the initial value problems governing the
variational derivates V, (t;¢) and V_, (t;6). Before we begin, it must be noted that all

manipulations performed here regarding the solution X (t;8) of RIVP (3.1) are of purely

analytic character. Hence, they can be executed path-wise, i.e. for every value of the stochastic
argument ¢ separately. On a practical level, this equals to discarding the stochastic argument
6, and working with the deterministic initial value problem

X (1) = h(X (1)) + kE(1), X (t,) = X,. (3.21a,b)

Assuming that all appropriate conditions ensuring the existence and the uniqueness of solution
of IVP (3.21a,b) hold true, we are interested in the dependence of the solution on the initial

value X, and the excitation function = (. IO ). Thus, the solution is considered as a function-
t
DI

Being parameters of the solution, we may calculate the derivatives of the solution with respect
to X, and E(e . ; @), by formulating and solving the corresponding variational equations

functional on initial value X , and excitation = (.

IO),denotedby X[X, ;2 (s

t
t

along the solution, see e.g. (Amann, 1990; Anosov & Arnold, 1987; Grigorian, 2008).

(a) Variational 1VP with respect to initial value and its solution

By applying the differential operator d+/ 0 X, on both sides of Egs. (3.21a,b) and under the
assumption that, for a given @, excitation Z(t) is not functionally dependent on X, we obtain

Vi, (1) = W (X (t;:0)) Vs, (1), Vi, () = 1, (3.22a.0)

where the prime denotes the first derivative of h(s) with respect to its argument. In turn, IVP

(3.22a,b) is recognized as a linear ordinary differential equation for the sought-for variational
derivative which can easily be solved as

V. (1) = exp jh'(X(u))du . (3.23)

to

Returning to the notation of RIVP (3.1a,b), Eq. (3.23) is written as

Vi, (t;0) = exp Jh’(X(u;&))du . (3.24)

to

(b) Variational IVP with respect to excitation and its solution

Working in similar fashion as above, we apply the differential operator 6 «/6Z(7), 7 € [t,, t]

on both sides of Egs. (3.21a,b). For this, we assume that Volterra derivative has analogous
properties to the usual partial derivative, i.e. is linear, can be interchanged with the temporal
derivative and obeys the usual chain rule of differentiation. Taking account of the
aforementioned assumptions, application of the Volterra differential operator on Egs. (3.21a,b)
yields
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VE(;) (t) =h (X(t))vz(r) () +x 65(2’)’ (3.25)
along with the initial condition
Ve (ty) = 0. (3.26a)

Moreover, since for a given path function = (), the value of Z(t) does not functionally
depend on the value Z(7), for = = t, Eq. (3.25) can be written as

Vo, (1) = W (X (1)) Vo, (8) + 6 5(t —7), (3.26b)

where & (t—7) denotes the Dirac delta function. Since, by causality, any perturbation 6= (7)),
in excitation at time 7, cannot result in a perturbation 6 X (t) for t < z, we have V_, (t) =0

for t < 7. By integrating, now, Eq. (3.26b) over [z —¢, t], forsmall ¢ > 0, and taking the limit
& — 0, we obtain

Vo (1) = jh'(x (U)) Vo (U) du + x. (3.27)

Eq. (3.27) is a Volterra integral equation of the second kind, equivalent to the linear 1\VP
(Polyanin & Manzhirov, 2008)

vE(z’) (t) = h'(X (1)) Vs(f) (1), VE(T) () = «. (3.28a,b)

Thus, IVP (3.28a,b) is linear ODE which can easily be solved as
t
Vo (1) = KeXp“h'(X(U))dUJ, (3.29)

which is the required variational derivative with respect to excitation.

Last, returning to the notation of the RIVVP gives rise to

Vo, (t;0) = Keprh'(X(u;H))duJ. (3.30)

3.1.3 One-time response pdf evolution equations

Having obtained expressions (3.24) and (3.30) for the variational derivatives V, (t;&) and

V., (t;0) respectively, we can readily identify them as functionals of the response. In
addition, in order to simplify the notation, we set

I, [X(

t0)] = Ih'(X(u;Q)) du . (3.31)

Subsequently, substituting Egs. (3.24) and (3.30) into Eqg. (3.20) and using the above notation,
we obtain the following exact, non-closed one-time response pdf evolution equation:
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0 fx(t) (x)

0
ot +5[(h(x)+xm5(t)) fX(t)(X):| _

2

o
= K Cype(t) S B

[5(x - X(t;0)) exp( )

fh ;9)])} ; (3.32)

-2;9)])}0'1

Under this notation, the fact that the derived SLE is non-closed and nonlocal becomes apparent
by the presence of the two nonlocal terms inside the averages, carrying the time history of the
response X (t; @), that multiply the random delta function. This form, despite being exact, is

of little practical use since its analytical, numerical solution is virtually impossible, from a
computational cost point of view. As such, in this paragraph, we are going to employ and
concisely describe an approximation scheme, similar to the one introduced in (Mamis et al.,
2019), in order to obtain a closed, computable, albeit approximate alternative to SLE (3.32).

- (t,7) E“’[a(x - X (t;0)) exp( A

First, a decomposition of the effect of nonlinearity, h'(X (u; @)), is performed as follows:

exp[Jh'(X (u;8)) duJ = eprRh,(u) du]-exp[]¢h,(x (u;9)) du] (3.33)

inwhich R, (u) =E’[h'(X (u;6))] is the mean effect and ¢, = (ph,(X (u;0); R, (u)) =
h'(X (u;8))— R, (u) is the fluctuation. Afterwards, a current-time approximation for the
fluctuation integral is utilized, which is efficient under the assumption that the fluctuation is

small:
t
eprh’(X (u;0)) du}
Last, we take the Taylor expansion of the fluctuation exponential, truncated at M-th term:
o, t X (t;0) _
eprh (X (u;0)) duj eprRh,(u) du] Z% (t-7)". (3.35)

m=0
Substituting, the above approximation scheme into SLE (3.32) results in the following closed,
approximate, one-time pdf evolution equation corresponding to RIVP (3.1a,b):

0 fX(t)(X) N i
ot OX

- ;Xz H'"Z_Deﬁ[R (4) t] o (x; Ry (t))} xm(x)},

IR

exp“Rh, (u) du] -exp(py (X (1;0)) (t-17)). (3.34)

I

[(hCO) + KMz (1) gy ()] =
(3.36)

where
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t
D3[Ry (+),t] = & exp| [Ry () du €, (1) (t=tg)" +
o (3.37)
t t
+ K2jeprRh,(u) duJ C..(t,7) (t—7)" dr.
to T
Through the coefficients D", called the generalized effective noise intensities, and the terms
oy , the pdf equation retains a trackable amount of nonlocality (in time) and nonlinearity,

reflecting the non-Markovian character of the response.

Remark 3.1. Although the assumption for the fluctuation being small seems somewhat
restrictive, it has been shown (Mamis et al., 2019), that in present case, this approximation
scheme is more effective compared to other methods (e.g. Fox’ s approximation (Fox, 1986),
small correlation time approach (Sancho et al., 1982), Hinggi’s ansatz (P. Hanggi & Jung,
1995)) even for large correlation times and noise intensities. A more thorough description of
the approximation schemes mentioned as well as the potency of the one presented herein is
given in (Mamis, 2020; Mamis et al., 2019)

3.1.4 Exact response pdf for a linear, additively excited RDE

By considering h(x) = n x, with < 0 for stability purposes, and q(x) = x =constant, RIVP
(3.1a,b) becomes linear and additively excited

X (t;0) = nX(t;0)+xE(t;0), X (t,:0) = X,(0). (3.38a,h)

In this case, the variational derivatives of RIVP (3.38) are independent from the response and
the excitation and as such, formulae (3.24), (3.30) can be explicitly calculated as

V, (t;0) =e""", Vo (t;8) = ke (3.39a,b)

Substituting the above expressions into SLE (3.20) results in the following pdf evolution
equation:

Ofyp(X) o off 0 fy (X)
T+5[(7yx+xm3(t)) frp(¥)] =D () —>5— (3.40)
where the effective noise intensity, D™ (t), is given by
t
D (t) = xe"" C, _(t) + sze'ﬂ“f) C..(t,7r)dr. (3.41)

to

Comparing pdf evolution equation Eq. (3.40) to SLE (3.20), it is easy to observe that the former
is not only exact but also closed and thus, does not require the implementation of any
approximation scheme for its solution. In fact, in the present paragraph, this is achieved by
making use of the Fourier transform for Eq. (3.40) as well as the supplementary Gaussian
initial condition
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(3.42)

1 1 (x- My, )?
Fra (X) = fy, (X) = ——exp| - 2 —— 2 |,
/27[0')(0 2 Ox,
in which m, 0-)2(0 are the initial mean value and initial variance, respectively.

Before we proceed with the solution of RIVP (3.40) and (3.42), a well-known result must be
designated; the response process of any linear system, with Gaussian initial distribution, to an
additive Gaussian excitation (either colored or white) is also a Gaussian process. Furthermore,

the mean value m, (t) and variance o4 (t) of the response X (t; @) can be determined as the

solutions to the respective moment equations, derived directly from RIVP (3.38a,b) (see e.g.
(Sun, 2006) or (Athanassoulis et al., 2015)). This task is performed in Appendix B, in which
Egs. (B.3) and (B.25) read

t
m, (t) = m, e”""" ¢ ijg(r) (-7 dr, (3.43)
to

and

t
ol (t) = o2 e 12k jcxg(r, ) e¥ = dr. (3.44)

to
Remark 3.2: Connection between effective noise intensity and cross-correlation. Eq. (B.22)
for response-excitation cross-covariance reads
t
Cys(t,8) = Cyo(s)e” ™ 4« jc (r,s)e” 9 dr. (3.45)
t0

Comparing Eq. (3.45) to Eq. (3.41), effective noise intensity can be expressed in terms of the
one-time response-excitation cross-covariance as

D (t) = xC, - (t,1). (3.46)

Under Eq. (3.46), Eq. (3.44) for the variance of the response is expressed equivalently as
t
oh (1) = of,e” " £ 2[ D" (r) e dr. (3.47)
tO

Solution of Eq. (3.45) using Fourier transform. Employing the Fourier transform,
Py (Y) :j e fy@ (X) dx for Eq. (3.45) leads to the following equation of first partial
R

derivatives for the characteristic function ¢, , (y)

0Py 1) (y) —ny 0Py 1) (y)

ot oy +(iKmE(t) y =D (1) yz)goxa)(y)’ (3.48a)

supplemented with the transformed initial condition (3.42)

: 1
Pxoy (V) = exp(lmxo y—ECfio yz]- (3.48b)
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Initial value problem (3.49a,b) is solved (Polyanin, Zaitsev, & Moussiaux, 2001) sec. 3.1, by
first determining the characteristic curve w(y, t) = ye” as the solution of the characteristic

equation dt =—dy/(ny). Then, we seek a solution of the form g (w) exp(J‘t h(w,t) dtj,
to

where g(w) is a function of the characteristic curve, to be defined by the initial condition
(3.53b), and h(w,t) =ixm_(t) we™ —D* (t) w’e ", that is the coefficient multiplying
Pxw (Y) in Eq. (3.48a), rewritten in terms of w, t. Finally, by returning to the original
variables y, t, we obtain the solution

t
Px (V) = exp imeoe"(“") +x [m. (o) e'm,)er y |

to

(3.49)

t
X exp| — % [0_)2(0 e27(t0) ZIDeﬁ (7) o 27(t-7) dz} yz '

to

Note that this methodology for the solution of Eq. (3.49) can also been found in paragraph 4.4.4,
albeit for a more convoluted case. Employing the inverse Fourier transform for Eg. (3.49), and

utilizing Egs. (3.43), (3.44) for m, (t) and o (t), results in

C1(em) , (3.50)

1
fom(X) = ———exp
o J2mol (1) 2 oy (t)

which is the expected Gaussian distribution. This result constitutes the verification of the
response pdf evolution Eq. (3.36).

Remark 3.3. The uniqueness of Gaussian solution (3.49) is ensured by the injectivity of
Fourier transform for absolutely integrable functions, and the uniqueness of solution for
transformed problem (3.48a,b), see (Polyanin et al., 2001), sec. 10.1.2. What is more, the
uniqueness of solution for Eg. (3.50) is also proven directly, without resorting to Fourier
transform, in (Mamis, 2020, Appendix E).

3.2 The case of an RDE subject to both additive and multiplicative excitation

In this section, we are going to examine the applicability and versatility of the developed
methodology by employing it in a different case. More specifically, we consider the following
additively and multiplicatively excited RDE:

X(t;0) = h(X(t;0))+q(X(t;0))E,(t;0) + x Z,(t;0), (3.51a)

along with the initial condition
X(t,;0) = a. (3.51Db)

Note that in the present case, initial condition a is considered a scalar and not a random
variable. This is done for reasons of brevity since the ensuing, apprehended expressions are
quite lengthy. Regardless, all of the presented results can be comprehensively derived even in
the case of a random initial condition. Let us once more state that the overdot denotes
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differentiation with respect to time, h(x) and g(x) are deterministic continuous functions
modelling the nonlinearities, and x is a constant. Excitations =,(t;8) and Z,(t;0) are

considered correlated and jointly Gaussian with non-zero mean values m_ (t), m: (t),

autocovariances C; . (t,s), C; : (t,s) and cross-covariance C - (t,s).

3.2.1 The corresponding stochastic Liouville equation

Commencing, as in section 3.1, from the delta projection method, we write
fyw(X) = E6[5(X—X(t;6’))]. (3.52)

Then, by differentiating both sides of Eq. (3.52) with respect to time t and using Eqg. (3.51a),
we obtain

0fw(X) _ po dS(x— X (t;0))
ot X (t;0)

ol 05 (x = X(1:0))
aX (t:6)

h(X(t;e))}+

q(X (t;0)) Z,(t; e>} + (3.53)

06(x — X (t;0))
oX(t;80)

+/<]E‘{ Eo(t;e)}.

Each averaged term on the right-hand side of Eq. (3.53) can be further evaluated by making use
of the delta projection method’s formalism. The first averaged term appearing has already been
evaluated by Eq. (3.11). For the other two terms, we work accordingly, as follows:

E{M(X - X(t;0))

Q(X(t;é’))El(t;e)} -

oX(t;0)
05 (X —w)
= - Ao q(W) Zl fX(t)El(t)(W7 Zl) deZl =
]é[ ow
=2 f dxdz, =
= 53 000 [ Trmox 2) dxdy =

= —%{q(x) ja(x—w)zl Fx =0 (W, ;) dxdzlJ =
_ _%(q(x) BY[6(x - X (t;0)) E,(t;0)]), (3.54)
0| 220 = 0y | = [ 220 2 o2 e, =

0
_5...20 fx(t)EO(t)(X, ZO)dZO —
R

0
Cox H!zé'(X—W) Zo fxmaoa)(W, z,)dwdz, =
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- —%(Eg[ﬁ(x— X (t;0)) Eo(t;e)]). (3.55)

Substituting, now, the above formulae into Eq. (3.53), transforms the latter into

0y (X) 0
o (N0 (X)) =

_ _%(q(x)E9[5(x—X(t;0))El(t;é’)])— (3.56)

—K%(Ee[é(x—X(t;H))Eo(t;H)]).

Eqg. (3.56) is the one-time response SLE corresponding to RDE (3.41a). As was the case for
SLE (3.13), an additional assumption regarding the smoothness of functions h(x) and q(x)

of RIVP (3.51a,b) must be introduced; namely that these two functions have at least continuous
first derivatives. In addition, the initial condition of the response (3.51b) specifies the initial
condition of SLE (3.56) into

fra, (X) = 8(x - a). (3.57)

Note that in the special case in which x = 0, the adjusted SLE (3.57) coincides with the one

derived by many authors, using various approaches; see e.g. (Cetto et al., 1984; Fox, 1986; P
Hénggi, 1978; Sancho & San Miguel, 1980; Sancho et al., 1982). Moreover, SLE (3.56) is non-

closed due to the terms N, =BE’[E,(t;0) S(Xx-X(t;0))], Nz =

E’ [El (t;0) o(x—X(t; 0))} and thus, a correlation splitting, similar to the one carried out
for SLE (3.13), must be performed.

Transformed SLE. At this point, a similar discussion to the one carried out in 3.1.1, regarding
the “nature” of response X (t;€#) must be conducted. More specifically, the response,

X (t; @), is regarded through RIVP (3.51a,b) as a functional over the time-history of both
excitations Z,(;0), Z,(«; 0), from the initial time t, to the current time t; written
IO 10) 2, (- : :6)]. Note that this

time, there is no dependence, as a function, on initial value since the latter is a scalar. Using the
familiar notation, the averaged terms, N ,, with i =0, 1, can equivalently be written as

according to the familiar notation as X (t;80) = X[Z, (+

Noy = B[ E(t;0) 5(x-X(t;0))] =
: t (3.58)
- Ee[Ei(t;Q) 5(X— X[EO(-|to ;6));51(.|to ;3)])]

which is the appropriate form for the implementation of Extension IV of the NF theorem, Eq.
(2.23) under the understanding that the random delta function o(x—X(t;8))=

S(x=X[+]) = 5(x — X [EO('EO ;0);31(-|:0 ;0)]) is considered as a random functional
Fl-1= FIEo (o], :0):2,(+], 10)].

Thus, by applying the said extended NF theorem to the nonlocal term Nz , , we obtain
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Ea[El(t;(g)]f[...]:l = mEl (t)Eg[X []] +

t

+ jcgogl(fo,t) Eglw}dro +

— (3.59)
% 0E,(7y:0)

+ et m) E{%}d

which can be further evaluated by employing the chain rule for the Volterra and the properties
of the delta projection method as
B°[2,(t;0)]F[-+1] = mo, (1) fyy () -
t
_ 9 fc.

7x | Cam (5, 1) E"[a(x ~ X (t;e))vgo(,o)(t;6})}alr0 - (3.60)

o | )
_atfcm(rl,t) B [5(x— X(t;0))Vz (., (t;e)}dfl,

where V. . (t; ) are the variational derivatives of the response with respect to excitation at
time instance z,, defined by

6X[Eo(°

L50)E (] o1
0 0 ., 1=0,1.
68, (7;:0)

Ve (6:0) =

(3.61)

These variational derivatives can be explicitly calculated by formulating and solving their
corresponding initial value problems, as presented in paragraph 3.1.2. Thus, solving the said
IVPs results in

t

Ve (o (1:0) = & epr[h’(X(u;H)) + q'(X(u;G))El(u;H)] du], (3.62)

t

Voo, (65:0) = q(X(rl;H))exp[J.[h’(X(u;0))+ q'(X(u;&))El(u;e)J du}. (3.63)

Finally, implementing the extended NF theorem for the nonlocal term A , and substituting

the evaluated non-local terms in Eq. (3.56) results in the following transformed SLE for the
one-time response pdf:
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0 fX(t)(X) N i

ot 8x[(h(x)+’(m50 (t)+q(x)mal(t))fx(t)(X)} -

- x 2 jc (5, VB’ [5(x = X (;0)) Ve (., (;0) | dz, +

)Ee[d(x ~ X (t;0)) Vs (., (t;e)}drl + (3.64)

ai{ (x)— CEOEl(ro,t)E"[é(x—X(t;@))VEO(TO)(t;G)}dr0J+

to

+ 2 [q(x)— jc: L () B [5(x - X (t:0)) Ve (t;@)}drl}.

The variational derivatives inside the averaged terms of the above expression constitute SLE
(3.64) non-closed and nonlocal and as such, in this form, its solution seems as a rather arduous
task. Thus, a closure of SLE (3.64) is introduced in the subsequent paragraph 3.2.2 in order to
obtain an approximate, yet computable alternative of the above expression.

3.2.2 One-time response pdf evolution equations

Introducing, now, the following notation for the variational derivatives:

-‘Ti;e)] = j[h'(X(u;e))+q'(X(u;e))al(u;e)]du, i=0,1, (3.65)

7i

and using it to rewrite Eq. (3.64), we obtain the following pdf evolution equation for the one-
time response pdf f, ., (x):

0 fX(t)(X) N i

ot 6x[(h(x)+KmEo (t)+q(x)m51(t))fX(t)(X):| -

t)Eg[ﬁ(X - X (t;0)) exp(Jh,q

9])}1% .
| :9])}% n
9])}1%}

+%{q(x)% ez (t,7,)E’ [ (x= X (t;0)) q(X(z,:0)) exp(]h,q -‘Tl;e])}drl].

0

)Ee[g(x - X(t;0)) q(X(rl;e)) exp(Jh,q

o o | .
+ K P {q(x)& Jcaoal (7o, 1)E [5(x - X(t;0)) exp(]h’q

(3.66)
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Under this notation, it becomes clear that the terms multiplying the random delta function
S(x — X (t;0)) inside the averaged terms of the above expression are not of the same form as

the ones defined by Eq. (3.31). First, the term q(X(r1 ; 49)) appears, whose time-argument 7,

does not match with the current time t and thus, it is not manageable by the delta projection
method; for this term, a current-time approximation must be implemented. Second, the most
notable complicacy stems from the J terms inside the averaged on the right-hand side of Eq.
(3.66). More specifically, the integrand of the said term depends not only on the response, as
was the case with I defined by Eq. (3.66), but also the multiplicative excitation =, (u; ). As

such, it becomes clear that in order to procure a closed, computable alternative of pdf evolution
Eq. (3.66), some concessions must be made. For this, we shall write J in terms of I, as
follows:

Tria DXL 501 = [h(X(u;0))du+ [a'(X(u:0))Z,(u;0)du =
: (3.67)
= I,IX G| 101+ [a/(X(u:0))E,(u;0) du,
as well as the following, current time approximation for q(X(r1 ; 0)) :
(X (z,:0)) = (X (1;0)) - ' (X (t;0)) X (t:0) (t-7,) = q(X (t;0)) -
(3.68)

— (X (t;0))(h(X(t;0)) +a(X(t;60)) Eo(t;0) + x E,(t;6)) (t-7,).

Then, by introducing the assumptions that excitation Z, (u; @) is of small intensity and that we

are working for small correlation times, we shall consider only the terms on the rightmost sides
of Egs. (3.67) and (3.68), respectively, which do not entail the excitations. This assumption is
not novel in this thesis; a similar one, for the case of an RDE excited by solely multiplicative
noise, has been introduced in (Fox, 1986). In this regard, following the approximation scheme
presented in paragraph 3.1.3 for Eq. (3.66), results in

9ty (¥) ¥ %[(h(x) +xmg (1) +q(x)mg, (t)) Fxw (X)} -

ot 0
82 S 1 2 1 t 2 t
= axz {anom (K' Dé)[Rh,(-Lo);t]-l-K Dr%)[Rh'(. Tl);t]):lfx(t)(X)}-l-
0 0 |1 3 t 4 t oy,
+5{Q(X)5|ZI;JE(D§1)[RW(' ,1);t] T K Drsw)[Rh’(.|ro)’t]):|fX(t)(X)}-
(3.69)
where

DYIRy ([ )it] = [Capz, (700 1) exp[thl(u) du] (t—17,)"dz,, (3.70a)

0
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D[R, (4 )it] = a(x) [C. 2 (t, rl)exp[thxu) du}(t ~7,)"dr, -
e " (3.70b)
~q'(0h() [Cepz, (8 7)) eprRhf(u) du}(t —7,)" e,
DPR, (4 )it] = a(x) [Coz (7)) exp{J-Rh,(u) du}(t ~7,)"dr, -
e " (3.70¢)
~q'00h(x) [Capc, (7)) exp[th,(u) du] (t=7,)"dr,,
D[R, (+[! ):t] = ICEOEI(ro,t)eXp IRh,(u)du (t-7,)"dz, . (3.70d)

ty Tq

Eq. (3.69) is closed and computable and retains, through the D, terms, a substantial amount of
the original nonlocality and nonlinearity of the exact Eq. (3.66), despite the concessions made.

In order to obtain a seemingly more accurate, approximate pdf evolution equation corresponding
to a RIVP subject to both additive and multiplicative excitation, it is necessary to consider the
joint response-excitation pdf evolution equations, as it is shown in Chapter 4. More specifically,
regarding the examined RIVP (3.51a,b), we must formulate the evolution equation for the joint
pdf of the response X (t; @) and both excitations =, (t;8), =, (t; ) in order to be able to

employ both terms of the current-time approximation introduced in Eq. (3.68).






Chapter 4

One-time response-excitation pdf evolution
equations

In the present chapter, the first major extensions of the already presented methodology is
performed. More specifically, by keeping in mind the steps taken towards formulating one-time
response pdf evolution equations for systems under colored Gaussian excitation, we showcase
a straightforward generalization for higher order pdfs, namely one-time joint response excitation
pdfs. As already discussed in the Chapter 1, the formulation and solution of these pdfs is of the
utmost importance and practicality since they can be directly applied in some cases or constitute
even better approximations (through their marginalization) than their counterparts, as derived
in Chapter 3.

4.1 The case of a scalar, nonlinear, additively excited RDE
Let us consider once more the scalar, nonlinear, additively RIVP, presented in section 3.1

X (t;0) = h(X(t;0)) +xE(t;0), X (t,;0) = X,(8). (4.1ab)

4.1.1 The corresponding stochastic Liouville equation

Our starting point is representing the one-time, joint response-excitation pdf as the average of
the product of two random delta functions, i.e. the delta projection method. This is readily
achieved by employing Eg. (3.6) for the product of random delta functions
o(x—X(t;0)) o(u—-E(t;8)), as follows:

E°[S(x— X (t;0)) (u—-E(t;0))] = Jd(x —w) 5(u-2) fy = (W, 2) dwdz,

which results in the following representation for the joint response-excitation pdf:
frmzp (X, u) = B[S(x— X (t;0)) S(u—-E(t;0))]. 4.2)

Proceeding in the fashion showcased in sections 3.1 and 3.2, we differentiate both sides of Eq.
(4.2) and use the chain rule

an(t)E(t)(X’u)_ ol 00 (X=X (t;80)) i .
ot —E{ OX(t.0) o(u _‘(t,H))X(t,G)}—F

(4.3)

+ Eg[é(x ~ X (t:0)) ‘95(8“5‘(?(;;)9)) =(t: 9)]

41
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At this point, we are going to elaborate separately on the two averaged terms on the rightmost
side of Eq. (4.3) Thus, making use of Eq. (4.1a) the first averaged term can be rewritten as

EG[@(S(X— X(t;0)) S(u—-2(t;0)) X(tié’)} =

o0X(t;0)
_ ol 96(X = X(t;6)) . =
=E [ X (:0) h(X(t;8))o(u _(t,e))}+ (4.4
ol 00 (X=X (t;0)) = = (4 .
+x E { aX (t:0) o(u H(t,e))a(t,e)]

which can be further evaluated by making use of the delta projection formalism for the two
averaged terms appearing on its right-hand side. Under this formalism, the first averaged term
can be written as

o| 00(x = X(1;0)) . (4. _
E[ X (0] h(X(t,H))é(u—u(t,H))}—

B J‘W h(w) 6(u - 2z) fX(t)E(t)

) (4.5)
0

- ox [h(X) i[ S (U =2) Fypyz (X 2) dZJ =

9
OX

(w, z) dwdz =

(h(X) fyqyzw (X, ).

Accordingly, for the second averaged term on the right-hand side of Eq. (4.4), we work in the
following manner:

E{a&(x—xu;e))

o(u —E(t;&))E(t;H)} =

oX (t;0)

00 (X —w)
= | =7 0U~-2) 2z (W, 2) dwdz =

H!z ow X E()
(4.6)

0
T & (ﬁ[ o(u-2)z fX(t)E(t)(Xa z) dZJ =

0
- —a(u frmzm (X U))

Note that for the above expressions to hold true, the additional assumptions that h(x) and
fyzm (X, U) are Cl([tO t] - R) must also be introduced. Combining, thus, Egs. (4.5) and
(4.6), we find that

E6|:§§(X— X(t;0)) S(u—2(t:6)) X(t;&)} =

oX (t;0) )

- _% [(h(x) + K U) Fxwzam (X u)].
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Let us, now, continue with the examination of the second averaged term of Eq. (4.3). This can
be calculated by again employing the delta projection formalism as well as using the following

convenient, yet formal expression for Z(t;8):

=(t:0) = Ié'(t—s)E(s;H) ds, (4.8)

to

where 8'(t—s) =-05(t—s)/ds. In Eq. (4.8), Z(t;0) is formally treated as a functional of

integral type with singular kernel. Hence, by utilizing the usual delta projection formalism we
find

E{ax _X(t:0)) 65%“;(?_(;;9)) E(t;e)} _

0

=~ B[S(x - X (1:0)) 5 (u~E(1;0)) E(t:0) ]

(4.9)

Last, substituting Egs. (4.7) and (4.9) into Eq. (4.3) results in the following, one-time response
excitation stochastic Liouville equation:

otz (X,U) 0

+—[(h(X) + xu) fy = (x,u)] =
ot ox (4.10)
== LR 5(x- X (t;0)) 5(u-E(t;0)) E(t;0) ]
ou

SLE (4.10) has also been derived in (Venturi, Sapsis, Cho, & Karniadakis, 2012b) for a
multiplicatively excited RDE using a different, more convoluted approach. As in the case of
SLE (3.13), the initial condition for the one-time response excitation SLE can easily be derived
by the data of the initial problem

fX(tO)E(tO)(X’u) = fxoa(to)(xfu)- (4-11)

Transformed SLE. Similar to the previous examined cases, SLE (4.10) in non-closed due to
the averaged term in its right-hand side. By recalling the dependence of the response X (t; &)

on initial value X, (@) and excitation Z(t; &), and using the familiar notation, the averaged
term can be expressed as

E°[6(x = X (t:6)) (u-E(t;0))] =

= B[ 5(x - X[X,(0): E(: (412

L0 (u-E(t;0)) |

Under this notation, it is readily understood that Eq. (4.11) is in the appropriate form for the
application of the extended NF theorem, Eq. (2.21), in which the product of random delta

functions 5(x — X[X,(8); E(- :0;0)]) o(u—Z(t;0)) is regarded as a FFe like F =
FIX,(0);E(

;@)]. Thus, the averaged term can be evaluated to

t
to



44 4.1 The case of a scalar, nonlinear, additively excited RDE

EB[E(t;e) 5(x~ X[Xo(0) 1 E(-[! :0)]) 6(u —E(t;@))} -

- mE(t)Eg[é(x— X[Xo(60);E(:

L0 Su-E(t:0)) |+

o8 (x= XX, (0); (|1 ; 0))) 6 (u - Z(t;0))

+Cy = (t) B’ X (0) + (4.13)
t 6{5(x = XIX,(0): 2 ;01 5(u - =(t;0))
+J.8tCEE(t,r)E‘9 SE (0 dr.

to

Using the product rule for the derivatives, while taking into account that the paths of excitation
are functionally independent from the initial value, we find

LD S(u- E(t;e))} _
Io;g)]) 5(u - E(t;e))} +
)

EH[E(t;e) S(x = X[X,(0):E(~

~ (1) E9[5(x - X[X,(0): E(s

05 (x~ X[X,(8); E(+
X, (0)

+Cy = (1) B’

o(u E(t;@))] +

55(x - X[X,(0);E(s
0=(7;0)

)

t
+I§tCEE(t,r)E9

to

o(u —E(t;@))]dr+

# [oCa(t ) B 6(x - 5= XX, (0) 12, :00D) ‘55(5“3‘(5_(;;)‘9))}df.

toy L

(4.14)

Proceeding according to the previous examined cases, we apply the chain rule to the above
expression and simplify the notation by setting X[---]= X[X,(8); E(- IO ;@)], resulting in

E°[Z(t;0) 5(x - X[--]) 6(u-E(t;0))] =
= m_(t) B’[5(x - X[---]) 6 (u - E(t;0))] -

05 (x—X[---] s
o0X(t;80)

+CXOE(t)E{ (u—E(t;@))vxo(t;a)}r (4.15)

+IatCEE (t. ) E’ 55((Sx:—(t).(0[-)--]) S(u —E(t;@))VEm(t;@)}dr+

to

0.0t B a0 00 XD PGS EEM LD o

ty L

where V, (t;0) and V_, (t; ) are the variational derivatives with respect to initial value
and excitation, defined by Eqgs. (3.18a) and (3.18Db), respectively. In addition, since the value of
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E(t;0) does not functionally depend on the value Z(7;8), for =z #t, we can write
0=(t;0)/ 0E(r;0)=06(t —1). Then, returning to the treatment of the response X (t; &)

as a function and performing the familiar manipulations of the delta projection method, Eq.
(4.15) becomes

E’[E(t:0) 6(x = X[+])s(u-E(t:9))] =
= m_ (t) Ee[g(x — X (t;0))8(u —E(t;e))] _

~C,.2 (1) % Eg[d(x ~ X (t;0)) 5(u-E(t;0)V, (t; 9)} - (4.16)

o | , )
_ajatcas(t, 1) B[ S(x = X (t;0)) 8(u—E(t;0)) Vo, (t;0) | dr -

0 | , ~
—a—ujatcaa(t,f)é(t—r)E [5(x =X (t;0)) 5(u—Z(t;0)) |dr.

The following, final form of the NF theorem for the nonlocal averaged term is derived by
employing in Eq. (4.16) the identity of the Dirac delta function.

B[ E(t;0) 5(x=X (t;0)) S(U-2(t;0)) | = m_(t) Fypzq (X, U) -

~C,.2(1) % E"[&(X—X (t:0)) S(U-E(t;0))V,, (t; 9)} -

o | 0 _ (4.17)
_atj’atcas(t,S)E [5(x=X (t;0) S(uU-E(t;0)) Vo, (t;60) ] ds -

fxwz@ (X U)

0
-8,Coo(t,8)] .

)

in which the term 0,C__ (t, s) th can be further calculated as

0,C=c(t,9)]_ = Can(t.) = BIE(H0) E(1:0)] =5 SB/[22(t:0)] = 2 62 (1).

(4.18)

Last, combining Egs. (4.17), (4.18) and substituting them in Eg. (4.10) results in the following
transformed SLE of the one-time response-excitation pdf:

an(t)E(t)(X'U) 0

T ox [(h(x) * Q(X)u) Fxwzw (% U)] +m_ (t) 0 Txzw (X, U) _

ot oX Y
. 62 ) ' L . |
= Cez() 5> B [S(x=X(t;0)) (u=E(t;0)) Vy, (t;0) | +
a2 ) | - |
" oxou Jatciz(t’s)E [5(x=X(t;0) S(U=-E(t;0)) Vg, (t:0) ] ds +

2
fX(t)E(t) (x, u)

ou?

+ % G2 (t) 0 (4.19)
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As in all of our previous cases, SLE (4.19) is non-closed due to nonlocal terms, depending on
the history of the response and excitation, which are identified as the variational derivatives. As
such, in order to procure a closed and thus, computable equation an approximation scheme must
be implemented, as it is shown in the ensuing paragraph 4.1.2.

4.1.2 Novel, one-time evolution equations for the joint response-excitation pdf

Substituting Egs. (3.24) and (3.30) for the variational derivatives appearing inside the averaged
term of SLE (4.17) and using the notation of Eq. (3.31), SLE (4.19) can be rewritten as

0 xwz (X, 1) 2 [(h(X) +xU) =g (X u)] +m (1) d

fxwzm (X, U) _

ot o ou

= G0 2o B[ (X (100 S (u-2(t0)) e 1, (001 |+
f K af;u jatcﬂ(t, 5) EH[&(x-x (t;0) 5 (u=-(t;0)) exp(Z, [X (. ;0))} ds +
" % szt fx“;jt;(x’ ") (4.20)

Further, employing the approximation scheme already presented in paragraph 3.1.3 for the
above expression, we obtain the following, closed, approximate, one-time, joint response-
excitation pdf evolution equation:

af = (X,U) 8 ) 6f : (X’u)
(t)E() (t) =(1)
X (t att +&[(h(x)+KU) fX(t)E(t)(X, u)}_,_ m_ (t) X (t 6tu _
62 M l . .
= axau{{;me[Rh'(-), t] (/)h/(x ; Rh,(t))} fymzm (X u)} + (4.21)
1 ., G fX(t)E(t)(X’u)
—oZ(t

where

G, [Ry(+), t] = exp[th,(u) du} Cy,= () (t—t)" +

o (4.22)

t t

+ szexp{ R, (u) duJ 0,C.c(t,s) (t—s)" ds.

to s

The G, terms of the above equation are a simple generalization of the generalized effective

noise intensities, D", for the case of the joint response-excitation pdf evolution equation.

Through these terms, the approximate Eq. (4.21) retains a tangible amount of nonlinearity and
nonlocality in time, thus preserving the non-Markovian character of the initial problem.
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4.1.3 Check of compatibility for the closed, one-time, joint response-excitation pdf
evolution equation

In this paragraph, we are going to examine the compatibility of the approximate Eq. (4.22) in
terms of the marginal pdf evolution equations that can be derived from it. More specifically, we
are going to compare these one-time marginal pdfs with the ones obtained in Chapter 3 in order
to see if the extended methodology established throughout this chapter is consistent with the
one it is founded upon.

(a) Marginal response pdf evolution equation f, . (x) coincides with the SLE

By integrating both sides of Eq. (4.21) with respect to u, and under the plausible assumptions

o f (X, £0)

fywzm (X, £0) =0, x(t)s(ta)u 0, (4.23a,b)
we obtain

Ofyw(x) 0 0

ot ox (h(x) fX(t)(X)) - Ko _[RU fxmzw (X, u) du. (4.24)

Eq. (4.24) is a form of the exact stochastic Liouville equation for the one-time response pdf.
Under the manipulation

[ ufipeoOou)du = [ uB/[§(x=X (t;0)) 5 (u-E(t;0))] du =
: ; (4.25)
= Eg[a(x—X(t;H))IRu S(U-Z(t;89)) du} = E°[5(x=X(t;0)) E(t;0)],

stochastic Liouville Eq. (4.23) is written in the more familiar form

0 fX(t)(X) +i

0 o DOV = (s
o ax(h(x) frw (X)) = —K'EE [5(x=X(t;0))E(t;0)]. (4.26)

Having obtain Eq. (4.26), it is easy to see that it is identical to Eq. (3.13) as derived in paragraph
3.1.1. This occurrence reaffirms the potency of both the methodology as well as the
approximation scheme used to derive the approximate Eq. (4.21).

(b) Marginal excitation pdf evolution equation f_, (u)

Before proceeding with the evolution equation for the marginal excitation pdf f_, (u), we
have to prove the following lemma.

Lemma 1: Evolution equation for a Gaussian pdf. The one-time pdf of the Gaussian random
function Z(t; 0)

1 1 (u-m. (1)
fE(t)(u) = m exp 3 W : (4.27)

with differentiable, with respect to t, mean m_ (t) and variance o2 (t), satisfies the equation
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ey Lo l) 1 e,

ot = ou 2 -

62 fE(t) (U)
ou?
Proof. By differentiations of Gaussian pdf (4.27) we obtain:
0t (U) _ fo(u)
ot (c2(1))
0 fzyy (U) _ fo (U) B
- 2
ou (o)
0 fo (U) fow (U)
2 = 7 L
ou (o2(D)

Ausmo (1), o2 (1)),

(usmo (1), o2 (1)),

(uimz (1), o2 (1))

where
A=Au;m. (1), o2(1) = %dé(t) 0+

+ (oé (t) m_(t) —m_ (1) 62 (t)) U+

+§mgwaaw—mawaawmaw—gaawdgn,
B=B(u;m.(t), o2(t)) = —oZ(t) u+m_(t) o(t),

C=C(u;mo(t), c2(t)) = u® —2m_(t) u+ mi(t) - o(t).

By substituting Egs. (4.29) into Eq. (4.28) we obtain the algebraic relation

A+m_(t)B = %a';(t)r.

Via Egs. (4.30), it is easy to see that Eq. (4.31) is always satisfied:

%a’é(t) u> +oZ(t)ymo(t)u-m_(t) c2(t)u+

+%mywdaw—mawaﬁomdo—%aﬁndaw—
S (D0 (1) U+ mo(8) (1) o2 (1) - 2 62 (1) u +

FGEO M (D) - G2 mE() + 2 G2(1) oE() = 0.

This concludes the lemma’s proof.

(4.28)

(4.29a)

(4.29D)

(4.29¢)

(4.30a)

(4.30D)

(4.30¢)

(4.31)

(4.32)

Returning, now, to the derivation of the required marginal, we integrate both sides of Eq. (4.21)

with respect to X resulting in

of_. (u 0 foy(u 0
L()_Fm:(t)L() = C::(tat)
ot : ou N o

? fE(t) (u)
—_—.

(4.33)
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Eq. (4.33) is retrieved under the following assumptions regarding the behaviour at the
boundaries:

h(£o) fy )z (£, u) =0, (4.34a)
fywzq (£, u) =0, (4.34Db)
(PrT(ioo;Rh'(t)) fywzm (£, u) =0, (4.34¢)

Thus, it is promptly seen that Eq. (4.33) is identical to Eq. (4.28) a fact that further supports the
legitimacy of our approach.

4.1.4 Exact response-excitation pdf for a linear, additively excited RDE

In this paragraph, we are going to examine the validity of our methodology in the case of the
linear, additively excited RDE, i.e. h(x) =7 x, with < 0 and see if the correct Gaussian form
for fy =@ (X, u) isretrieved.

As previously discussed, in the linear case the variational derivatives are independent from the
time history of the response and thus, can be specified, by Egs. (3.44a,b), into

V, (t;0) =e""" V_ (t;0) = ke By substituting these expressions into SLE (4.19),
the following exact response-excitation pdf evolution equation is obtained, in closed form:

0 fypzw (X, 1) N 0

——[(x + xu) £y (6 W) ]+ (1) O Txwzw (1) _

i ” o (4.35)
- G(t) 0 Ty = (X, U) L1 ) 0% frmam (X, U)
oXxou 2 = PE
where
t
G(t) = CXOE (t) e’l(t—to) + K,J.atc:aa(t7 S) er](t—s) dS (436)

to

Eq. (4.35) is a first-order, linear partial differential equation, which can be readily solved by
making use of its Fourier transform as it is subsequently shown. However, before we commence
with its solution, we are going to provide the following useful result.

Connection between G (t) and D" (t). By using Eq. (4.34), as well as the definition relation

(4.35) for the effective noise intensity D" (t) that appears in the exact response pdf evolution
EqQ. (4.34), it is easily derived that

D (t) = nD* (1) + k%02 (1) + £G(t), D™ (t,) = xC,o(t,),  (4.37ab)

and by solving the above VP

t
D" (t) = xC, . (t,) e"" "+ I(Kza; (7) + G (7)) """ dr. (4.38)
to
Relation (4.38) will be proven quite useful in validating the moments obtained from the solution
of Eq. (4.35).
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Solution of Eq. (4.35) using Fourier transform. As performed, in paragraph 4.1.1, for Eq.
(3.45), response-excitation evolution Eq. (4.35) is solved by utilizing the two-dimensional

Fourier transform; @y = (V1 +Y2) = @9z (V) = J‘Rzei(ylxmu) f

resulting in the equation

xmz (X, u) dxdu,

0Py = (V) - OPx vz (V) Ky, OPx = (V) N
ot oY, 2y,
(4.39)
. 1.
+ (' m. (1) y, —G(t) y,y, - 5552 (1) yzzj Pxwzm (V)
supplemented by the transformed Gaussian initial condition
. . 1 1
DX (t5)=(ty) (y) = eXp(' mxo y, +im_(t,)y, - Eo'io Y12 - Eo'é (to)2 sz - Cxos (te) Yy yz)-
(4.39b)

IVP (4.39a,b) is a first-order PDE problem which can be readily solved using the method of
characteristics. Following (Polyanin et al., 2001, sec. 4.1), let us first consider the homogeneous
variant of Eq. (4.39a)

0 = 0 - 0 _
Px =) (y) _ny Q’X(t):(t)(y) — Ky Px =) (y)

=0, 4.40
ot boay, booy, (A0

and its corresponding characteristic system
dt _ dy, dy, (4.41)

1 ny, KY,

The solution of the characteristic system (4.41) determines the characteristic curves
v, (t,y,,y,)=v,=y,e", v,(t,y,,Y,) =v, =KkY,—71Y,.Inturn, these curves dictate the

change of variables y, =v,e™ , y, = £ Y, — 1uz = Eule"7t - 1uz, under which Eq. (4.39a)

n n n
is transformed into

0Py wz (V)
ot

%(img (t) — G(t) vle"’“) (Kule_’7t — UZ) - % (Kt)le_’7t —~ 02)2} :

= Pxmz@ (v) x
(4.42)

Accordingly, initial condition, Eq. (4.39b), is expressed under this change of variables as

1 |
Px ()=t y(0) = exp{l m = m = (t, )j —|;m5(t0)u2 X
x exp| — %La + G2 (t,) + 2 “c, (to)jufe_zm" x (4.43)
X exp| — 21 (t )Uz [";Gé (to) +£Cx E(to)]ulvzento]
n n 7
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Solution to IVP (4.42), (4.43) is, thus, easily determined to

1 h -, -nt -nt
CDX(t)E(t)(U) = (PX(tO)E(tO)(U) eXp[; I('ms(f)_G(T) v,e”’ )(Kule " Uz)dT] X
° (4.44)

t
X exp{ 2372 Ia’é (1) (K‘Ule”” _02)2 dr],
to

Performing, now, some simple manipulations for the integrals inside the averages, substituting
initial value @, )=« (0) by Eq. (4.43) and then, returning to the initial variables v, = y,e"",

v, =KY,—1nY,,solution (4.44) is written as

t
H nt="1y n(t-r H 1
Pxwzwm (Y) = exp Iyl[mxoe’(t t)+KImE(r)e7(t )d7J+|y2mE(t)§y22 o2 (t) | x

to

X eXp{—% y12 |:O.)2(0 ezﬂ(tftg) + 271( (CXOE (to)(ezﬂ(tfto) _e77(t7t0)) n

+J(KG§(T)+G(¢)) (e _gnt-9) ¢z y (4.45)

t
xexp| = ¥, ¥,| Cy (t)e" ™ + I(Kcé(r) +G(r))e"" " dr

to

From Eq. (4.45), we identify the first and second moments of X (t;8), E(t; ). First, since
the moments of the excitation are data of the problem, Eq. (4.45) returns the trivial relations
m_ (t) =m_(t), o2(t) =cZ(t). Moving now to the moments of response, as well as the
response-excitation covariance, we retrieve, from Eq. (4.45), the relations

t
m,(t) = m, e”“*‘°)+,<jm5(r) e”t-) dr, (4.464)

to
oi(t) = 0')2( AR

2K 27 (t-to) 7 (t-tp) t 2 2 (t-1) (t-7) (4'46b)
+2E e _(ty)(e —e )+j(ma(r)+e(r))(e P00 _gnt-0yqr |
to
t

Cha(t,t) = C, _(ty)e” ™™ + j(mg(r) +G(r))e"" " de. (4.460)

to

Eqg. (4.46a) is validated as the solution for the mean value of the response, see Eq. (B.3) of
Appendix B, while, by employing Eqg. (4.38) and after some algebraic manipulations, Egs.
(4.46b,c) are expressed equivalently as
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t
ol(t) = a2 e 4 ZJ.DEﬁ(r) @210 gz, (4.46b")
to
1 eff
C,.(t,t) = = D (1). (4.46¢")
K

Eqgs. (4.46b',c") are correct, since they coincide with the validated relations (3.51), (3.52) for
C,=(t,t), o (t). Thus, by solving Eq. (4.39a), the expected Gaussian solution was obtained.

4.2 The case of an RDE subject to both additive and multiplicative excitation
Consider, once more, the case of an RDE both additively and multiplicatively excited

X(t;0) = h(X(t;0))+q(X(t;0))E,(t;0) + x E,(t;0), (4.473)
along with the initial condition

X (t,;0) = a. (4.47D)

As already discussed in section 3.2, in the present section we are going to formulate pdf
evolution equation for the joint, one-time response excitations pdf evolution equation

fx =, mz @ (X, Ug,Uy) since, through marginalization, it can provide a more accurate

approximation for the one time pdf f, ., (x).

4.2.1 The corresponding stochastic Liouville equation

As always, we begin with delta representation method which, in this case, gives rise to the
following representation for the one-time response excitation pdf:

fr o=,z (X Ug Up) = B[S(x = X (1;0))5 (U, — E,(t;6))5(u, - E,(t;0))],
(4.48)
and will be more concisely denoted as

fX(t)Eo(t)El(t) (X,Ug,Uy) = Eg[é(x JUg, Uy X (1), Eq (1), El(t))] (4.49)

Eqgs. (4.48), (4.49) are similar to the one used for the nonlinear, additively excited RIVP (4.1a,b).
Thus, by differentiating both sides of the above expression with respect to time t and employing
the product and chain rules for derivatives, we obtain

0fyine m=m (X, Uy, U,)
X‘”‘"“’“lg)t S E, +E,+E,, (4.50)
where
(05 (x— X (t;0)) _ _ .
E =E’ o(u, —Z (t:0)) 5(u, —Z,(t:6)) X(t:0)], 4.51a
1 IX(t:6) (u, o(t;0)) o(u, —E,(t;0)) X(t;0) ( )

E, = B’| §(x - X (t;0)) o

o(u, —E,(t;9))
0E,(t;0)

5(ul_El(t;0)) Eo(t;ﬁ):|, (4-51b)
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{ _ 05 (u, ~E,(t;6)) . }
E,=E"|o(x—-X(t;8))0(u, —E,(t;8)) =,(t;0)]. (4.51c)

0E,(t;0)

Each term on the right-hand side of Eq. (4.50) is subsequently elaborated separately. For the
first averaged term, we use RDE (4.47a) resulting in

[0S =X(0)) e o]
El—E{ X O - St o, ul(tﬁ))X(t,a)}

el 00(x = X(t;0)) o o .
_E{ X (t: 0) o(u, —E,(t;9)) o(u, ul(t,ﬁ))h(X(t,Q))}L

0| 05 (x = X(t;6)) o o .
E{ oX(t;0) o Uy — o (1:0)) 5(u, ~1(t,9))q(X(t,H))ul(t,e)}

0| 05 (x = X(t;6)) o IR
+K‘E|: X (€. 0) §(Uy —E4(t;0)) o(u, _l(t,H))_o(t,Q)] (4.52)

Eq. (4.52) can be further evaluated using the familiar delta projection formalism. For reasons of
brevity and clarity, as an example, we are going to present only the manipulation of the second
averaged term on the right-hand side of Eq. (4.52).

Eg[aa(x “X(9) 54, — =, (t;0)) 5(u, - Z,(t;6)) q(X(t;H))El(t:H)} =

oX(t;0)
0o(Xx—w
= J‘% 5(“0 - Zo) 5(“1 - Zl) q(W) Z1 fX(t)EO(t)El(t) (W, Zo ! 21) deZo dzl =
R3
0
= - & [q(x) I5(uo - Zo) 5(”1 - Zl)zl fX(t)Eo(t)El(t) (szo ) Zl) dzodzl] =
RZ
0
= - % (Q(X)Ul fx(t)Eo(t)El(t) (X, U ’Ul))- (4.53)

Working accordingly for the other two terms, E, is transformed into

0
E, = - a (h(X) fX(t)Eo(t)El(t) (X, uq, ul)) -

5
-= (G0N, Fx gz, 0z (6 Ug 1) = (4.54)

0
- K 5 (uo fX(t)EO(t)E1(t) (X, ug ’ul))'
Under similar treatment, the other two averaged terms on the right-hand side of Eq. (4.50) can
be equivalently written as

E, = — = B[8(x,Uq,uys X (1), 5, (1),5, (1)) £, (t:0) ], (4.55)
ou,
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0 - - =
By = — = B[00, Uy X (1), Z(1) B, (1)) 24 (t56) ] (4.56)
1
where =, (t;0), Z,(t;0) are treated as functionals of integral type with a singular kernel, as

shown in Eq. (4.8). Last, substituting Egs. (4.54)-(4.56) into Eq. (4.50) results in the SLE for
the one-time, joint response excitations pdf f, ;)= = (X, Uy, Up):

0 fX(t)Eo(t)El(t) (x,uy,u,)

0
+ a[(h(X) +g(x)u, + K‘UO) fX(t)Eo(t)El(t) (x,u, ,ul)] =

ot
0 o _ o
-5 F [8(x . Up Uy s X (1), Eo (1), 5, (1))E, (t;0) ] - (4.57)
_aque[é(X,uo,ul;X(t),Eo(t),El(t))El(t;g)}

In consistence with the previous case, SLE (4.57) is non-closed due to the averaged terms on its
right-hand side and thus, the appropriate correlation splitting must be conducted by employing
the appropriate extensions of the Novikov-Furutsu theorem. Further, SLE (4.57) is
supplemented by the initial condition obtained by the data of RIVP (4.47a,b)

fx(to)Eo(to)Ei(to) (X »Ug s ul) = 5(X - a) on(t0)51(to) (UO ! ul) ) (458)

Transformed SLE. Recalling, at this point, the discussion regarding the dependence of the
response X (t; @) of RDE (4.47a) on the history of both excitations =, («; 8), E,(+; 8) over

the time interval [t,, t] and using the familiar notation, the product of random delta functions
inside the averaged terms of Eq. (4.57) can be written as

O(X,uy,u,; X(t),E,(t),2,(1)) =
o(x—=X(t;0))o(u, —E,(t;9))o(u, —=,(t;0)) =
o(x=X[---])o(u—-E,(t;0)) 6(u, - E,(t;0)) =
S(x—X[Z,(+ :0;9);51(- :0;9)]) S(Uuy —Z,(t;0) 8(u, —Z,(t;0)).

(4.59)

Under this notation, the above product can be regarded as functional like F[---] and thus, Eq.

(2.25) of the NF theorem can be implemented to the two nonlocal, averaged terms. Since both
terms are similar, we are going to present in detail only the implementation of Eq. (2.25) for the
second averaged term on the right-hand side of Eq. (4.57):

E’[8(X, Uy, u;; X (1), 2,(1), 2, (1) E,(t;0) ] =
= m_ ()E[8(X, Uy, U X (1), Eo (), Z, (1) ] +

5(x, 0,1 X (0, 5,(0) 2.0
08, (74:0) 0

(4.60)

+
—

9[5{
0,Cz 5, (75, )E

—

0

+

B0x,Ug Ui X (1). 20 (1). B, ()] |
6E,(7,:6) v

—

5
0,Cc 2, (t,7,)E’

to
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By using the product and chain rules for the derivatives while, also, taking into account that
there is not any functional dependence between the two excitations, the above expression takes

the form
BOLS(x ug,uys X (1), Z, (1) E, (1) B, (t56)] =
= . (B [3(x, Uy, uy; X (1), Eq (1), 5, (1) | +

t L

: OX(t;0)

+[0,Cac (8, 7)) B 5(x = X (;0)) 5(uy - Z,(t;6))

t L

0=,(t;0) 0=2,(7,;0)

(4.61)
where the variational derivatives V. , ,(t;0) and V., (t;8) are given by Egs. (3.67) and
(3.68), respectively. Finally, by recognizing that 6=, (t;0)/0E,(z;;0) =6 (t —z;), with
i =0, 1, utilizing the identity for the delta function and performing the usual manipulations of
the delta projection method, Eq. (4.61) is transformed into

E’[8(xX, Uy, Uy 5 X (1), 5, (1), E,(1)) E,(t;0)] =
= o (D E[S(x,ug,uy s X (1), E, (1), E4 (1) | +

o | | o |
_ 5 tJ‘atCEOEl (TO! t)E‘9|:6(X,U0 yUp s X (t)’EO(t)’:‘l(t))VEo(ro) (t : 0)j|dz-0 _

0
Tg =t 8u0

- 0,C. - (75, 1) E’[8(X, Uy, Uy X (1), E,(1),E,(1)) ] -

o | | o |
_518@5@&, £ B [B(X, Uy, Uy s X (1), g (1), 5, (1)) Va o, (150) | dr, =

-0,Csz (L, 7))

0 o . — -
- 0_ulE [8(x, g,y X (1), 2, (1), E, (1)) ]. (4.62)

can equivalently be

7o =t

In Eq. (4.62), the terms 0,C_ - (t, 7,) and 0,C. - (7,,1)
1=1 t =0=1

T =

written as follows:

1=

atC5151 (t,7,) ] ot

(4.63a)

( o[ 65 (x = X (t;0)) - . = .
+t_08t03031(ro,t)E X (L0) o(uy —Eq(t;0)) o(u, ul(t,H))VEO(,O)(t,G)_

(oc tEg_éx X (t:0y) 20U = Za(ti0) ¢ =, (t: 0 0%, (1:0) |
+ ] =z, (7o, 1) (x = X(t;0)) 52, (t;6) (u, — B, (t; ))m_

dr, +

dr, +

+[o.Cez (8, 7,)B 06(x=X(1:0)) s _= (t:6)) 5(u, —al(t;.9))v51(,1)(t;9)}1|r1 +

t §8(u, — E,(t;0)) 6El(t;0)}d

—C. (L) = B[E,(L0)E,(6:0)] =2 S B[S (6:0)] = 62, (1),
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0,C.. (15, )] =C

-, (6 1), (4.63D)

Using, the above two expressions Eq. (4.62) takes the following, final form:
EY[8(X,Ug Uy X (1), 54 (1), 2, (1) E,(t;0)] =

= msl(t) fX(t)EO(t)El(t) (X, ug,uy)+

o | = =
T ax Iatcaoal (ro,t)Ef’[B(x,uo U X(1) B (1), B (1)) Va (o, (T Q)deo -
to

O fyine (= X,U,,U
~c,. (1 Twmen 00t ) (4.64
0

o | oy o
T ax IatCElEl (t, Tl)Ee[é(Xauo U X(1), B (1), B (1)) Ve (., (L 9)}d71 -
to

3 1 &2 (t) 0 fX(t)EO(t)El(t) (X,Uq,Uy) -

2 ou,
Accordingly, the other averaged term on the right-hand side of Eq. (4.57) is evaluated into
EY[8(X,Ug Uy X (1), 4 (1), 8, (1) Eo(t;0)] =

= mso(t) fx(t)Eo(t)El(t) (X, ug,uy) +

o | = =
T ax Iatcaoal (t, Tl)EQ[ﬁ(X,UO Uy X (), g (1), B, (1)) Ve (o, (L Q)Jdro -
to

O fyine (= X,U,,U
- Ceo (1, 1) “”““”“gz( o) (4.65)
1

o | = ) =
T ax jatCEOEO (7o, t)Ee[é(X’uo U X (1), Eg (1), B, (1)) Ve (o, (L 9)}d71 -
to

1., 0
- 262 (t
5 z, (1)

fX(I)EO(t)El(t) (X »Ug ul)
ou,

Finally, by substituting Egs. (4.64) and (4.65) into SLE (4.57), we obtain

0 Fxwzomz0 (X Uga ) 5
at i &[(h(X) * q(X)ul + KUO) fx(t)Eo(t)E1(t) (X’UO ’ul)j| +

0 fX(t)Eo(t)El(t) (X, Uy, Ul) 0 fX(t)Eo(t)El(t) (X, Ug s ul)

+m_ (t =
ou, = (1) ou,

+ mEO(t)
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o2 | o |
axau, Jatcﬁo%“’ r) B0, Uy U X (1), 2y (1), 5, (1) Vi, (1560 ] dr, +

t

Gk | o |

* axauofatcaoao(TO’ OB [8(x, Uy, U, X (1), 2, (1), 5, (1) Vo, (1:0) | dey +
0 Ty zowzm (X1 U 1) 0% Ty mzomz (X Ug Uy)

+la_2 (t) X(t)'—‘o(t)'—‘l(t)z 0 1 +16_2 (t) X(t)uu('[)ul(t)2 0 1 N

2 = ou, 2 =o ou,

0% |
*axaultjafcio%“o’”E(’[f’(xluo,ul;><(t),Eo(t),El(t))vao(,o)(t;e)]dfo+

0% |
+axault-[atcaﬁl(t’Tl)Eg[é(X’uo’ul;X(t),Eo(t):51(t))V51(r1)(t;6’)}drl+

Zf = - X,U,,U aZf i 3 X, U U

+C5051(t,t) X(t)—'o(t)—'l(t)( 0 1)+C5051(t,t) X(t)_o(t)_l(t)( 0 1).

ou,0u, ou,0u,

(4.66)
Eq. (4.66) is the transformed SLE for the one-time, joint response excitation pdf
fxwzm (x, u) . At this point, is becomes clear that even though the derivation of Eq. (4.66) is

not difficult to follow, the apprehended equation is exact and still not closed. Thus, an
appropriate approximation scheme must be employed so to obtain an approximate, yet
computable alternative of Eq. (4.66).

4.2.2 Novel, one-time evolution equations for the joint response-excitations pdf

As was presented in paragraph 3.2.1, the variational derivatives appearing inside the averaged
terms of Eq. (4.66) have been specified to

Vo (1:0) = K eXp(JhT,Oq[X (¢ tro ;9)]), (4.67)

Vo, oy (6:0) = a(X(5,50)) exp( T X ., :0)1), (4.69)

in which the following, convenient notation has been utilized:

Li0)] = j[h'(X(u;e))+q'(X(u;e))al(u;e)]du, i=0,1. (4.69)

7i

ol [X (e

At this point, substituting Egs. (4.67), (4.68) into Eq. (4.66) results in the following, exact, non-
closed one-time evolution equation for the joint response-excitations pdf:
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0 fX(l)Eo(t)El(t) (x, Ug » ul)
ot

0
+ 5[(h(x) +q(x)u, + K’Uo) fymz,mzm (X Ug ,ul)] n

0 fX(t)Eo(t)El(t) (Xvuo 'ul) 4 mE (t)a fX(t)Eo(t)El(t) (X’Uo ) ul) _
ou, !

+m. (t
=, (1) ou.

t

8.2, (t 2B [ B(+) a(X(7,:0)) exp( T IX (-

to

82
B oxou,

§ ;9)])}171 +
- (4.70)
oxou

+ K

j.ﬁt CEOEO(TO ) t)Egl:é(---) eXp(Jhr,oq[X ('

0t

) ;9)])}110 "

0

8% ez (X, Ug s Up) 0°
+ld§ (1) L X 020020 o0t +lo"32 (t)

fX(t)EO(t)El(t) (X, Uy, u,) N
2 ou; 2

ou;

82
oxou,

+ K

jﬁtcgogl(ro, t)Ef’[ﬁ(---) exp(Jh’,“q[X C ZO :9)])}0'70 +

t

[8.0 s (6 m)B [ 5(-) a(X(r,:0)) exp T2 [X -

to

82
0Xou,

—+

; ;9)])}171 +

? 82 fX(t)Eo(t)El(t)(X’UO’ul)
(Y ,
o=t ou,ou,

fX(t)Eo(t)El(t) (X, Ug s ul) L C

0
+Ce, (L) ou, ou =
0 1

where the abbreviation &(x,u, ,u,; X (t),Z,(t),E,(t)) = 8(---) has been used. Under this

notation, it also becomes clear that Eq. (4.70) is non-closed due to the nonlocal terms that have
been introduced by the variational derivatives and depend on the whole time history of the
response X (+; @) and the excitation Z,(+;8) .Since inside the product of random delta

function the current time of the response and the excitations appears explicitly, we can apply an
analogue of the novel, approximation scheme introduced in paragraph 3.1.3 for the exponential
terms. First, the integrand of J is decomposed into its mean value

R(U) = Ry (u) + Ry=(u) = B[N (X (u;0))]+B'[q'(X (u;0)) E,(u;0)], (471)
and the fluctuations
(/)(X (u;0),2(u;0);R(u)) = h"(X(u;0))+a(X(u;0)) E,(u;0)-R(u). (4.72)

Under this decomposition, the nonlocal, exponential terms are equivalently expressed as

exp( i [X (-

tTi ;9)]) _ exp[jR(u) du] exp[fq;(X(U;@), E,(u;80); R(U)) du |.

(4.73)

Then, a current-time approximation for the fluctuation’s integral is utilized,

N

exp( 1, [X (1, :0)]) exp[jR(u) du] exp(o(X (1;0), 2,(t;0);R(1)) (t-7,)),

7j
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which is valid under the assumption that the fluctuations are small. Last, a Taylor expansion of
the exponential containing the fluctuations is employed

exp( T, [X ([} :0)]) = exp[jR(u) du} 2 (t‘mT;) o" (X (t;0), B, (t;0);R(1)).

m=0
i

(4.74)

Eq. (4.74) constitutes the analogue of the novel approximation for the case of an RDE excited
by both additive and multiplicative noise. Further, as we have already discussed in paragraph

3.2.2, a current-time approximation should be also performed on the q(X(rl;e)). This is
performed via a Taylor expansion around current time t

A(X (7,:0)) = q(X (t;0)) = q'(X (t;0)) X (t;0) (t-7,) = q(X (t;0)) - @75)
—q' (X (t;0))(h(X (t;0)) + (X (t;0)) Eo(t;0) + x E,(t;0)) (t—7,).

Finally, substituting approximations Eq. (4.74) and (4.75) into Eq. (4.70) result in the following,
closed, approximate evolution equation for the one-time joint response excitations pdf:

0 fxwzomzm (X UgaUy) 5
# = [(000 + Q00U + KU, Fy 202,00 (6, Us 0) | +

ot
0fyinz m=m (X Uy, U Of, = o (X,u.,u
+ . (t) x(t)—o(t)—l(t)( 0 1) + (t) X(t)_o(t)_l(t)( 0 1) _
B du, - ou,
—62 f N 1 () toy. (2) toy .
= @X@UO X(t)EO(t)El(t)(X,uo ,Ul) ;W (K Dm [R(e TO),t]+ Dm [R(- Tl)’t]q(x) _

_ Dr(nS)[R(.rrl);t] q’(x)(h(x) +q(x)u, + Kul))gz)m(x, Ul;R(t))}}+

2
0 fX(t)Eo(t)El(t) (X Ug ul)

2
ou;

2
fX(t)EO(t)El(t) (x, Ug s ul) +

2
ou,

1., 1., 0
+ -0’ (t +—-0. (t
2 51() 2 Eo()

M

o° 1
- {fx(t)go(t)gl(t)(x,u0 ,uyp) {Zﬁ (/( Dr&4>[R(-|ZO);t] + D;S)[R(.

+
oXou, fopar

L)itla(x) -

= DEIRE.)st1 () (h(x) + a(x)u, + Kul))wm(x, UliR(t))]}+

2 2
fX(t)ED(t)El(t) (X, Uy, uy)

t,t 0
(60 du,0u, ’

fonz mem (X Ug,U;)
XMEL()EL(t LA VI B §
(D)=, ()E4 (1) +C

it 0
=t du,ou, =

+C

(4.76)

where

D [R(

Zo=0
To

t,o)it] = IatC: =, (70, 1) eXp{j.R(U) du} (t—7,)"dz,, (4.77a)
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DP[R(+[. );t] = ja C.. (t,7,)exp jR(u)du (t-z,)"dz,, (4.77b)

SRS

0

DOIRC[)it] = [0,Ccc, (t, ) exp| [R(u) du | (t—) " dr,,  (4770)

to

To

DP[R(:[! ):t] = ja C:Oﬁl(ro,t)exp{jR(u) du} (t—7z,)"dz, (4.77d)
DS)[R(-|;);t] = Iﬁtcalal (t,z,) eXpLJ‘R(U) dU} (t—z,)"dz,, (4.77¢)

DOR(:" );t] = ja C.- (t, rl)eprR(u)du] (t—z)"de,. (477

0 51

At this point, it is useful to point out that even though Eq. (4.76) is lengthy and thereby, difficult
to follow, its terms are very similar to the one-time response pdf evolution equation (3.74).
Thus, it is readily understood that through Eqgs. (4.77), pdf evolution equation (4.76) maintains

t
a tractable amount of probabilistic nonlocality due to the terms J R(u) du which depend on

the time-history of the unknown response pdf f, ,, (x). Further, the ¢™ terms through R(t)
introduce a kind of probabilistic nonlinearity since R (t) depends on the unknown response pdf
at the current time t.
In order to present a succinct and thereby, more comprehensive form of pdf evolution equation
(4.76), let us set .&(x, Uy, uy) =h(x) +q(xX)u; + xug, Fyiz wz@ (X Ug,U) = ()
and rewrite the said equation as follows:

of(- ) of(-) of(-)

— (X, Uy, up) f +m_ (t +m. (t)——= =

= a[ (X, Ug,uy) f () ] T Ol

0’ o
— (...),%O(x,uo,ul,t,R[-])Jraxa

f() . B (x,uy,u,t,R[.]) +
6 1
1., azf(-~-) 0% f () 0% f ()

"2 I, (1) ou’ o= Oy oul (C:"“(t D+ Cepe,t t)) du,ou,

(4.78)
where

By (XU Uy LRED) = Y (¥ DYIRC[,)it1+ DPIRCY, )itla(x) -
m-o M- (4.79)

- DOIRCL )11 () 4(x, Uy, 1) 0" (x, 0,5 R(D)),
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73, (X, Ug, uy, LRI -D) = Zi,(zc DY [R(:[, )it]+ DY IRC[, )stla(x) -
m=o M- (4.79b)

- DOIRCL )10/ (0) (¢, U5, ,) | 0" (X, Uy iR (D).

Remark 4.1: The marginal response pdf evolution equation coincides with SLE (3.56).
Working accordingly to paragraph 4.1.3, we are going to investigate the compatibility of Eq.
(4.76) in terms of the marginal response pdf evolution equations that can be derive from it.
Integrating both sides of Eq. (4.76) with respect to u, and u, simultaneously, we obtain

0 fX(t)(X) N i
ot O X

= —q(x) JRzul frwz,mz.m (X Ug, Uy ) dugdu, — (4.80)

[h(X) fy (0] =

- K IRZUO fX(t)EO(t)El(t) (X’uo ’ul) duodu1-

Eq. (4.80) is derived under the plausible assumptions

fx vz, mz,@ (X, £oo, o) =0, (4.81a)
0fyinz iz (X, Too,U;) 0fyinz e (X, Uy, £00)
X (D, ()24 () Y _ o, X (D2, ()4 (1) 0 ~ 0. (481bc)
ou, ou,

Let us, now, evaluate the right-most integral of Eq. (4.80) by using the delta projection
formalism

J.Rzuo Fxwzomzm (X Ug, Uy) dugdu, = IRUO P zomz,m (X, Ug) dug =

_ Luo EP[S(x - X (t;0)) 8(u, — Z,(t;0))] du, =

(4.82)
- Ee[d(x— X (£;0)) [ up (u, -~ Z,(t;0)) duo} _
= B’[5(x - X (t;0)) E,(t;0))].
Operating accordingly for the other integral, Eq. (4.80) is equivalently written as
0fxw(X) o
— (M0 Fr (X)) =
0 0 _ = (t-
= —a(q(x)E [S(x=X(t;0)) B, (t;0) ] ) - (4.83)
0 (o SOy = (4 -
—KE(E [5(x—X(t,e))ao(t,9)]).

Thus, it is readily seen that Eq. (4.83) is the same as SLE (3.56). This correspondence serves as
a preliminary validation for the efficiency of pdf evolution equation (4.76).






Chapter 5

Two-time response pdf evolution equations

In the present chapter we are going to focus on the examination of the scalar, nonlinear
additively excited RDE and present another significant extension of this thesis. In particular, we
formulate evolution equations governing the joint, two-time response pdf of the system. As it
was also explained in the introduction, the consideration of such a problem is not novel to this
thesis. Nevertheless, most results were concerned with the stationary properties of the said
equations or the two-time correlation of the response e.g. (Hernandez-Machado et al., 1983).
Herein, a more holistic approach to the problem is presented that aims to provide computable
equations for the joint two-time response pdf.

5.1 The corresponding stochastic Liouville equation
Let us consider once more the scalar, nonlinear, additively RIVP
X (t;0) = h(X(t;0))+xE(t;6), X(ty;0) = X,(0),  (5.lab)

Commencing in similar fashion, as in sec. 4.1, we represent the sought-for two-time response
pdf as the average of the product of two random delta functions. However, in this case, both the
random delta functions have as their random argument the response of RIVP (5.1a,b). As such,
the two-time response pdf can be expressed as

E9[5(x1—x(t;9)) 5 (X, =X (3;9))] -

5.2
= _[5(X1_W1) 5(X2_W2) fX(t)X(s)(Wl’ Wz) dWldW2 = fX(t)X(s)(Xl’ Xz)' ( )
RZ

where the two time instances t, s are considered different; s = t. Note that Eq. (5.2) is not
valid for s =t since, in this case, the delta representation reads

E’[5(x,-X(t;0)) 8(x,—X (t;0))] = jé(xl—vvl)a(xz—wl) frw (W) dw,,  (5.3)

and, in the right-hand side of Eq. (5.3), the single integral containing the two delta functions is
not defined. On the other hand, the fact that delta projection (5.3) fails for t = s does not

diminish the importance of formulating evolution equations for f, ,,, ., (x,, X,), since it is
the t = s case that interests us. For t = s, pdf f, . (X;, X,) isjustaduplication of the one-
time response pdf f, , (x), whose evolution equation has already been specified into Eq.
(3.36).

63
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Let us, now, differentiate both sides of Eq. (5.2) with respect to time t, while time s is treated
as parameter

0 fxwxe (X X2) _ B’ 96 (%, —X(t;0)) 5
ot ot

(xz—X(s;e))}. (5.4)

Then, by using the chain rule and substituting X (t; @) from RDE (5.1a), we obtain
0 fxwxe (Xar %) _ B 96 (x,— X (t;0))
ot 0X(t;0)

5o 00 (x,— X (t;0))
{ o0X(t;80)

h(X(t;0))o(x,—X (3;9))} +
(5.5)

q(X(t;0)) 5(X2—X(S;9))E(t:6’)}-

In the right-hand side of Eq. (5.5), both averaged terms can be expressed and further evaluated
by making use of the delta projection formalism as follows:

B 00(x,—X(t;0))
[ oX(t;0)

h(X (t;6)) 5(X2—X(s;0))} _

00 (X, —W
= J'Mh(wl)ﬂxz—wz) Frxe (We, W,) dw,dw, =
R 2 an
0
= ——— (h(%,) Fegyxis (X X2)) (5.6)
0X,
and
00 (x,—X(t;0))
B’ L X(t:0))(x,—X(s:0))E(t:0)] =
[ X (1:0) q(X(t;0)) 6(x,—X(s;0)) E(t;0)
00 (X, —W,)
= J‘#q(wl) S(X,=W,) Z frpy iz (Wos Wy, 2) dw, dw, dz =
R3 1
0
= _6_ q(Xl)I5(X2—W2) z fX(t)X(s)E(t)(X17 Wy, Z) szdz] =
Xl R2
0
= _a_x q(xl)jE(xl—Wl) o(X,—w,) z fxmx(s)gm(wl, W,, Z) dwldwzdzj =
1 R3
0 _
=~ (A B[, - X (;0)) 6(x, - X (s:0) E(t: 0) ] ). (5.7)
1

Substitution of Egs. (5.6), (5.7) into Eq. (5.5) results into the following stochastic Liouville
equation for the two-time response pdf f, ., (X;, X,) pertaining to RIVP (5.1a,b):

0 fX(t)X(s)(Xl’ Xz) 4 0
ot o0X,

= —K%E‘g[&(xl—X(t;H))&(xz—X(S;Q))E(t;@)], t #s.

(h(Xl) fX(t)X(s)(Xl’ XZ)) -
(5.8)
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Consistent with the delta representation (5.2), SLE (5.8) is a differential equation with respect
to time t, while time s enters a parameter. As a consequence, the initial condition needed to
solve SLE (5.8)* should also be parametric with respect to s

fX(to)X(S)(Xl' X;) = fXOX(s)(Xl’ X, ). (5.9

In Eq. (5.9), and contrary to the initial conditions (3.14) and (4.11) of the SLEs for one-time
response and one-time response-excitation pdfs, respectively, we observe that the joint

response-initial value pdf f, . (X;, X,), is not part of the data of RIVP (5.1a,b), since it

models the statistical dependence of the response (at time t) and its initial value. Thus, for
determining pdf fx0 x(s) (X15 X, ), we have to solve another pdf evolution equation, starting by

formulating the stochastic Liouville equation for the response-initial value pdf in the following
section 5.2.

Eq. (5.8) is the same SLE for two-times also derived in (Hernandez-Machado et al., 1983).
However, in the aforementioned work, as well as in others of the same research team (F. Sagués
et al.,, 1984; Sancho & San Miguel, 1989), parameter time s is always considered before
evolution time t, s <t. While such an assumption may be conceptually more convenient, the
delta projection method also works for s > t. Note also that, under the assumption s < t, the
aforementioned works consider as initial condition not Eg. (5.9), but
fr e (X Xp) = o (X)) d(%,—X,), ie for t=s, under the understanding that
fy (X,) can be calculated by solving the appropriate one-time evolution equation. Thus, for

two-time response pdfs, the scheme of calculating the initial condition by solving another
evolution equation is present both in the existing literature and in our approach.

Transformed SLE. Consistent with all the prior examined cases, SLE (5.8) in non-closed due
to the averaged term on its rightmost side. Thus, anew revoking the dependence of the response
X (t; @) oninitial value and excitation, the averaged term can be equivalently expressed using

the familiar notation as

Ee[d(xl ~ X (t;0))8(x, - X (5:0)) E(t;e)] =
(5.10)

= B[ 5(% - X[X,(0): 2C-[,,:0)1) 8, - X[X,(0): 2(- |, :]] 2(t:0) |

Expressing the averaged term as in Eq. (5.10) is of pivotal importance for the application of the
required, extended NF theorem. Nevertheless, before we are able to proceed with the
implementation of the theorem, the product of the two random delta functions must be expressed
as an appropriate FFC. This is easily achieved by considering the product of random delta
functions as a FFC of initial value X, (@) and excitation =(+; @) over the time interval [t,, t,]
, With t, = max (t, s) . Under this convenient notation, and regardless of the time ordering of t
, S, the product of random delta functions can always be regarded as a FF{ like
F=FI[X,(0);E(|';0)]. Thus, by employing Eq. (2.19) the averaged term can be

t
t0
calculated as follows:

1 More specifically, its closed solvable approximation which will be derived in Section 5.3.
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B°[2(t:0) 5(x, - X (t;0) )5(x, - X (s;0))] =
5ol 0ol - R 0500

+Cy = (1) Ealé{g(){l X ;:)i)(&é(;;(z 20 )}} + (5.11)
P 516(x, — 10))5(x, - ;6
+ICEE(t!7) Ea{ { (Xl X(téE)(z'(HX) = ))}}df

Using, now, the product and chain rules for the random delta functions, the above expression
can be further evaluated into

Eg[a(xl—xu;e)) 5(x2—X(s;¢9))E(t;9)] = M, (1) fune (Xas Xp) +

00 (x,—X(t;0))
o0X(t;80)

+CXOE(t)E0[ 5(x2—X(s;9))VXO(t;0)}+

(5.12)

+CXOE(t) E9|:5(X1_X(t;9)) 65(X _X(S 9)) :|

oX(s;
(05 (x,— X (t;0))

+jc53(t,T)Ee X () 5(X, =X (5;0)) Vo, (1;0) | dr +

# [Can (6 ) B 810 =X (150)) == = Vg (5:0) | dr

F I 05 (x,— X (s5:0)) }

where the usual variational derivatives V, (t;8) and V_, (t; @), also, appear. Furthermore,
due to causality, variational derivatives V., (t;0) =6 X (t;0)/6=(z;0) and V., (s;0) =
06X (s;0)I6E(7;80), are zero for t <z and s <z, respectively since a variation of

excitation, 6Z(+; @), at a certain time instance 7 cannot result in variation of the response in

previous time instances. Thus, the upper limits of the integrals in Eq. (5.12) are adjusted
accordingly to

E[5 (%=X (t;0)) 8(x,— X (5:0)) E(t;0) | = m_(t) Fyxe) (X1, X,) +

00 (x,—X(t;80))
oX(t;80)

+CXOE(t)E"[ 5(x2—X(s;6’))Vx0(t;0)}+

p . 00 (X, —X(s 9))
+Cy () B[ 5(x,~X (t;0)) X (s (5.13)
; o[ 05 (X, =X (t;0))
+ICEE(t,r)E —ox(t:6) 5(X, =X (5;0)) Vo, (1;0) | dr +

to

+ICEE(t,f)E9 S(x, - X (t:0)) Vo, (s:6) | dr.

00(x,—X(s:;0))
0X(s;0)
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Finally, substituting Eq. (5.13) into SLE (5.8) and using the delta projection method’s
formalism, we obtain the following, transformed SLE for the two-time response pdf

fX(t)X(s)(Xl' X,):

0 fX(t)X(s)(Xl’ Xz) + 0
ot 0X,

[(h0x) + M (1) fy o (4 %) | =

0% _,
=xkC, _(t E
Xoa( )8X12
82
0X,0X,

[5(X1—X(t;H))5(x2—X(s;9))VXO(t;6’)J+

+xC, 2 (1) E9[5(xl—X(t;6’))E(XZ—X(S;Q))VXO(S;H)]+ (5.14)

jcﬂ_(t 0) B[5(x, - X (t50)) 5(x,~ X (5:0)) Vo, (t;0) | dr +

ltO

ax o jc__(t r) B[ 5(%, - X (t:0)) 5(x, =X (5:0)) V() (5:0) | de

As expected, the nonlocal variational derivatives appearing inside the averages terms of the
above expression constitute SLE (5.14) non-closed. Thus, an approximation that results in a
computable alternative must be implemented; this is performed in section 5.3.

5.2 The auxiliary stochastic Liouville equation for the initial value-response pdf

In this section, we are going to formulate the stochastic Liouville equation for the joint response-
initial value pdf that supplements SLE (5.14). Our starting point, is once more the delta
representation which in this case reads

BY[5(X,—X,(0)) 5(x,—X(t;0))] =

5.15
= ja(xo_wo)5(xl_wl) fXOX(t)(WO’Wl)dWOdWI = fXOX(t)(XO’Xl)' ( )
Then, differentiation of Eq. (5.15) with respect to t, yields
of Xq, X 00(x,—X(t;6
XoX(t{;: 0 l) _ E9|:5(XO_XO(0)) ( 1 at( )):|’ (5,16)

which can be further evaluated using the chain rule for the derivative of the delta function as
well as employing RDE (5.1a) into

0 fXOX(t) (Xo' Xl) _

A _Eg[5(xo_xo(9))55(X1—X(t;9))

o0X(t;80)
05 (x,— X (t;0))
X (t;0)

h(X (t;ﬁ))} +
(5.17)

+KE{5(XO—XO(9)) E(t;&)]

Each of the averaged terms on the right-hand side of Eq. (5.17) are subsequently calculated by
making use of the usual delta projection method manipulations:
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0 00 (x,—X(t;80))
E7 6 (%o —=X4(0)) X (1:0) h(X(t;0))| =
65(X1_W1)
= Ia(xo_wo)ﬁ—wh(w1) fXOX(t)(WO’Wl) dWodW1 =
\ 0
_ _a—Xl(h(xl) Foxo (o0 %)) (5.18)
and
0o0(X,—X(t;6
Eg{é‘(xo_xo(e)) ((;(X (t'(ﬁ) ) E(t;@)} =
= J‘é‘(XO_WO)W Z fXOX(t)E(t)(WO7 W, Z) dWOdwle =

0
= _a_x IS(XO—WO) Z fxox(t)i(t)(wo, X,z)dw,dz =
RZ

0
i j&(xo—wo) (X, =W, ) Z 3 ywyz (Wo, Wy, 2) dwydw, dz =
1 ps
0 -
= E’[ (%, X (0)) 8(x,— X (t;0)) Z(t;0)]. (5.19)
1

Combining now Egs. (5.17) — (5.20) results in

O fy i (Xor X)) 0
ot T ax, (00X f o (X0 %) | =

(5.20)

0 0 . = i
= _Kﬁ_xlE [5(X0_X0(9))§(X1_X(t’9)):(t’9)]

Eq. (5.20) is the required initial value-response stochastic Liouville equation, which is also
supplemented with the following initial condition:

fuxay (Xos X1) = Ty x, (Xg, %) (5.21)

From Eq. (5.21), it becomes apparent that the initial condition, pdf f, , (X,, X;), is just the
duplication of initial value pdf fX0 (X,) . By identifying the conditional probability distribution
as fy x, (X;] Xo) =8(X,—X,), Eq. (5.21) is elaborated as

fxoxuo)(xo’ Xl) = fxoxo(xo’ X1) = fx0|><O(X1| Xo) fxo(xo):
= fXO(XO)5(XO—X1). (5.22)

Thus, it is readily seen that the initial distribution for SLE (5.20) is the one-dimensional
fXO (X,), placed on the diagonal x, = x, of the two-dimensional plane (x,, X,) .
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Moreover, for SLE (5.20), the long-time behavior of the joint initial value-response pdf can also
be recognized as fy y«) (Xo, X;) = fy (Xo) fy (X)) . This “final” condition states the fact

that after an adequately long time-interval the effects of the initial value X, (@) will have no
impact to the response X (t;@), thereby constituting their pdfs f, (X,), fyq (%)

uncorrelated.

Transformed auxiliary SLE. At this point, we are going to proceed, as per usual, with the
evaluation of the non-closed averaging on the right-hand side of Eq. (5.20). This is easily
performed by reverting to the familiar notation for representing the response as a random FFL.
Hence, the product of the two random delta functions can be rewritten as

5(%y= X, (8)) 8(x, =X [X,(0); 2(-

:0;0)]) and thus, collectively regarded as a

functional like F = F[X,(0);E(e

extended NF theorem which yields
E"[&(xo—xo(e))5(x1—X(t;9))a(t;9)} =

05 (X, —X,(8))
0X,(0)

05 (x,— X (1;0))
X (t:6)

*;8)]. This allows us to implement Eq. (2.19) of the

t
to

= m_ (1) fy x@ (Xo %) + Cy (L) E{ S(x,—X (t;&)):l +

(5.23)

+Cy =(1) Eg{é‘(xo_xo(g)) on(t;e)}"‘

05 (x,— X (1;0))
X (t:6)

+jc53(t, r)E{é(xo—Xo(e)) VE(,)(t;H)}dr.

Finally, by carrying out the regular manipulations of the delta projection and substituting the
apprehended into SLE (5.20), we obtain

anOX(t)(XO’Xl) 0
+

[(h(xl) + KMy (t)) fy. x @ (X0, xl)} =

ot OX,
0% f X, X
=k Cy (1) xoxo (Koo %)
" OXy 0%,
2 (5.24)
o2 _, _ |
+ & Cypz (1) oxz [8(% =X (0)) 8 (x,= X (t;0)) Vy, (t;0) | +

+ K

0% | )
— ICEE(t,r)E [6(%, =X (0)) 8(x, =X (;0)) V=, (t:0) | dz.

1t0

Eq. (5.24) is the transformed SLE for the initial value-response pdf f, ., (X,, X;) . Asinall

of our previous cases, the appearance of the variational derivatives inside the two averaged
terms on the rightmost side of SLE (5.24) constitute the latter nonlocal and non-closed.
Therefore, in order to obtain a computable alternative to both SLEs (5.14), (5.24) an effective
approximation scheme must be utilized, as is performed in the following section.
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5.3 Novel, two-time response pdf evolution equations

Observing SLEs (5.14) and (5.24), it is easy to see that the variational derivatives are the same
with the ones calculated in paragraph 4.1.2. Thus, using Eqgs. (3.24) and (3.30) as well as the
notation

T [X (e

') = jh'(X(u;e)) du, (5.25)

the aforementioned SLEs can be further transformed into

0 fX(t)X(s) (X, X3) N 0

[(h(Xl) + KMy (t)) fxwxe (X, XZ)] -

ot 0X,
= kC, - (1) aaxf E9[§(xl—x (t;0))5(x,~ X (s:0)) exp(lh,[X(-|:0 ;9)])} +
kCy 20 =B 5(x X (1:0)) 5(x, X (510)) e 1, X5 001) |+

+ K

aaxzz chE (t, ) E@[@(xl—x (t;0)) 5(x, =X (5:0)) exp(| XL ;9)])} dr +

lto

S

, 07 P _ . .
+ K Ty tJ.ng(t, ) E [5(xl—X (t,H)) 5(x2—x (5,9)) exp(lh,[x (o T,e)])} dr
(5.26)
and
8fXOXt (XO’Xl) 0
()at +8x1 [(h(x1)+/cm5(t)) fxoxm(xo,xl)] _
=k Cy = (1) ° fx(;xx(t)a(io' Xy )
+ 5 Cy = (1) aaxz E9[§(XO—XO(9))5(Xl—X (t;0)) exp(lh,[x N ;g)])} N
+ K2 aaxf JC“ (t, 7) Ee[a(xo—xo(e))5(x1—X(t;9)) exp(lh,[X(.z;H)])} dz.

(5.27)

In this notation, it becomes obvious that the nonlocal terms inside the averages of the above
expressions are of the same form to the ones appeared in the one-time response pdf evolution
equation f, ,, (x), Eq. (3.32). Thus, the identical approximation scheme presented in paragraph
3.1.3 can be employed. For the transformed SLE (5.26), this results in the following closed,
approximate two-time pdf evolution equation, which is valid for t =s:

0 fX(t)X(s)(Xll X;) N 0

ot OX [(h(xl) + Mg (t)) Fxwxe (%o Xz)] -
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_ aaxz {{Z%D;H[Rh,(-),t,t] on (X, ; Rh,(t))} fox s (X xz)}+ (5.28)

m=0

2 M
axﬁax {{ Z%D;ﬁ[th(-), t, S] (DIT(XZ ; Rh,(s)):l frx ) (Xos xz)},
1 2 m=0 -

—+

where

D[R, (+),t, 5] = Kexp[thf(m du}cm(t) (s—t)" +
o (5.29)
+ KZJ.eXp{J‘Rh,(u) du] C..(t,z)(s—-7)"dr.
to T
Note that in Eq. (5.28) the term D®" [Rh, (+), t, t] coincides with the generalized effective
noise intensity Eq. (3.37). Accordingly, application of the approximation scheme for the
transformed SLE (5.27) yields the following closed, approximate initial value-response pdf
evolution equation:
0 fxoxu) (Xoy %) N 0
ot 0 X,
fXOX(t) (Xo ) Xl)
_l_
0X,0X,

82 N 1 eff m .
" o HZEDm [Ru ().t t] o (%, th(t))} fx (Xo. xl)}.

m=0

[(h(xl) +xMg (t)) onX(t)(Xov Xl):| -

2

0
= Kk Cy = (1)

(5.30)

As was explained in many previous cases, through the coefficients D, and the terms ¢, , the
novel pdf equations (5.28), (5.30) retain a trackable amount of nonlocality (in time) and
nonlinearity, reflecting the non-Markovian character of the response.

Example of compatibility. Let us now scrutinize the compatibility of the methodology used to
derive two-time pdf evolution equations with its counterpart for one-time pdf evolution
equations. This is performed by integrating both sides of Eq. (5.28) with respect to x, and under

the plausible assumption f, ), (X;, +00) = 0. Thus, we find

Ofw(*) 0
ot 0X,

B ;Xl2 {{Z%Dm[Rh'(.)’ t t] ¢*T(Xl ; R“'(t))} fX(t)(Xl)},

m=0

[(h(xl) + K‘mE(t)) fX(t)(Xl):| _
(5.31)

which is identical to pdf evolution equation (3.36). Furthermore, Eq. (5.31) is also retrieved by
integrating both sides of Eq. (5.30) with respect to x,. The correspondence of the pdf evolution

equation, obtained as a marginal of the two-time response pdf evolution Eq. (5.28) as well as of
the initial value-response pdf evolution equation (5.30) with Eq. (3.36) derived in paragraph
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3.1.3 demonstrates the compatibility of the novel, extended methodology presented in this
chapter with the one it is founded upon.

5.4 Exact pdfs for a linear, additively excited RDE

In this section, we are going to examine the results of this methodology in the linear case. By
setting h(x) = nx, n <0, in RDE (5.1a), we obtain the RIVP

X(t;0) =nX(t;0)+x=(t;0), X (t,:0) = X,(0). (5.32a,h)

As was already discussed, in this case the variational derivatives are explicitly calculated as
VXO (t : 0) _ eﬂ(t—to) and VE(T) (t,@) = ett-1

It is a well-known result that the response process of any linear system, with Gaussian initial
distribution, to an additive Gaussian excitation (either colored or white) is also a Gaussian
process. Hence, the joint pdf of two Gaussian processes can likewise be identified as a Gaussian
process whose moments can be specified by formulating and solving their corresponding
moment problems, as it is performed in sec. B.2.

5.4.1 Exact, auxiliary initial value-response pdf
Using the aforementioned calculated variational derivatives, the joint initial value-response SLE
(5.24) is specified into

Ofy xw(Xer X)) 5
ot +6x1 [(h(xl)JerE(t))fXOX(t)(Xo’X1)] =

(5.33)

2 2

fXOX(t)(XO’ Xl)

+ D () 0 fxoxm(xo’ X;)

0
=xC, _(t
% Ciz(t) DX, 0X, ox?

where D (t) is the effective noise intensity given by Eq. (3.46). In contrast with SLE (5.24)

and in accordance with all the linear cases examined so far, Eqg. (5.33) is closed and exact.
Further, it is supplemented with the initial condition Eq. (5.22) in which the initial value pdf

fy, (Xo) is the following Gaussian distribution:

1 1 (Xg —my )2
f (X ) = ———=EeXpP| — < — . (534)

Proceeding in the usual manner, we employ the two-dimensional Fourier transform
Q)XOX(I)(yO’ yl):J.Rzel(yoonrlel) .I:
Eqg. (5.33)
8¢Xox(t)(y0’ Y:) a(”xOX(t)(YO’ Y1)
=ny, +
ot dy, (5.35)
+(iemo (8) v = 5 Cy 2 (1) Yo Vi = D™ (1) ¥7) 0, oy (Voo 1)

x, x (0 (Xo» X1) dX,dX, , which results in the transformed

Under the above Fourier transform, initial condition (5.22) is respectively expressed as
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Pryin Yo ¥2) = [ &0 506 = 3) i, (x5) Ut 0, =

| | (5.36)
K °y°(jRe D5 (%, —xl)dxl) . (%) dX,

By employing, now, the identity of delta function and at the same time, keeping in mind that
the characteristic function of initial value is defined as ¢, (y) = I eV fy, (x) dx, we obtain
R

Pryey Yoo Y1) = [0 6, (X)) ey = 0y, (Vo +V,). (537)

R

Moreover, since the Fourier transform of Gaussian pdf (5.34) has already been calculated into
Eq. (3.53b) as

. 1
oy, (¥) = exp(lmxo y —Eaio yzj,
transformed initial condition (5.37) is expressed in its final form:

. 1
(pxox(to)(yo' yl) = exp(lmxo(yo+y1) _Eaio(yo+y1)2j =
(5.38)

_ : : 1 . 2 1 5 5 2
= exp ImX0y0+|mX0y1_EO-X0yO _Eo'xoyl 0y, Yo Y1 |

As usual, IVP (5.35), (5.36) is solved using the method of characteristics. First, considering the
homogenous variant of Eqg. (5.35), the characteristic curve v (y,, t) = y,e” is obtained as the

solution of the characteristic equation dt = —dy/ (7 y,) . Then, the acquired characteristic curve
dictates the change of variable from (y,, y,) to (y,, v) under which the transformed Eq.

(5.35) becomes a linear ODE with respect to time t. Last, by solving the ODE and returning to
the initial variables, we obtain the unique solution

to

t
(DXOX(t)(yo’ Y1) = exp imx0 Yo +iY1{mxoen(tt0) + KImE(T) e” " dfj X

t
x exp| — %aio y2 - %yf [aio g2t | 2'[Deff (r) e21t-0) dr} x

to

t
x exp| — Y, yl[aio gl t) 4 ch‘CXOE (r)e"t" dr} . (5.39)

to

At this point, as performed for the derivation of the one-time response excitation pdf, from Eq.
(5.39) the first and second moments of initial value X , (&) and response X (t; @) as well as

their cross-covariance are readily identified into

t
m, (t) = m, e”"" ¢ ijg(r) "7 dr, (5.40a)

to
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t
oi(t) = o2 ey 2[Deﬁ (r) e~ dr, (5.40b)

to

t
Cyxox(t) = 5>2<0 " 4 KJ.CXOE (r)e” dr. (5.40c)

to

Furthermore, by recalling the connection between effective noise intensity and cross-correlation
Eq. (5.40b) is equivalently written as

t
ol(t) = o2 e 42k jcxg(r, ) e dr, (5.40b")

to

Having obtained Egs. (5.40), it becomes obvious that they are identical to formulae (B.3), (B.23)
and (B.27) as derived from their corresponding moment problems. Thus, we straightforwardly

conclude that Eq. (5.40) gives the expected Gaussian form for ¢, . (Y, Y1), thereby

verifying the validity of response-initial value pdf evolution Eq. (5.33). Finally, using the above
expression Eq. (5.39) can equivalently be written in the more concise form

2

. . 1 1
(onx(t) (yof yl) = exp(lmxO yo + Imx (t)yl - E Gxo yg - E G>2( (t)ylz - Cxox (t)yo ylj
(5.41)

5.4.2 Exact, two-time response pdf

Let us now attend to the two-time response SLE in the linear case. Thus, substituting in Eq.

(5.14) h(x)=nx, and calculating the variational derivatives to V, (t;6)=e""",

Voo (1;0) =xe”™  we obtain the following exact, two-time response pdf evolution
equation:

0 fX(t)X(s) (Xl' X2)

0
3 [(h(xl) +amz (1) Fxxe (4, XZ)] B

ot X,
2 ¢ : (5.42)
= D(t,t) 0 X(t)X(s)(Xl' Xz) + D(t, 5) 0 X(t)X(s)(X11 X2)
’ X} ’ 0%, 0, ,
where
D(t,s) =k Cy o (t)e" "™ + K‘ZJ‘CEE(t’ ) e”C ) dr. (5.43)
to

As discussed in section 5.1, the initial condition that supplements Eq. (5.42) is
o xis (Xio X2) = Fx xs) (%14 X,) . Inthe present case, this pdf has already been determined

as the solution of the response-initial value pdf evolution Eq. (5.33). Before we proceed with
the solution of Eq. (5.42), it is easily recognized through Eq. (5.43) that the term D(t, t) is

identical to D™ (t) defined by Eq. (3.46); thus, the latter, more familiar writing is used
subsequently in our calculations.



Chapter 5: Two-time response pdf evolution equations 75

Solution of Eq. (5.42) using Fourier transform. As for the previous exact pdf equations, we

employ the Fourier transform @, . x ) () =J. gyl

R2 X (t) X (s) (X11 Xz) XmdXZ , Which

results in the transformed equation
a(DX(t)X(s) (y) —_— a§l’x(t)X(s) (y) N
ot Y, (5.44)
+(iem_ ()Y, = D(t, 8) Y, Y, = D™ (1) V7)) @y xis (V):

Initial condition for Eq. (5.44) has already been specified in the previous paragraph 5.4.1, as the
solution of initial value-response pdf, Eq. (5.41), written for t = s :

. . 1 1
(onx(s)(y) = eXp(ImX0 y1 + Imx (S)yz _E (7)2(0 ylz_z O-)Z< (S)Y§—Cx0x (S)yl yzj (545)

Following the same procedure to the one presented in paragraph 5.1.4, we begin be considering
the homogenous variant of Eq. (5.44), which in turn prescribes the characteristic system

o o,
1 ny,

(5.46)

The solution of this system determines the characteristic curve v (t, y,, y,) = v =y, e" . Thus,
by applying the change of variable y = ve™" to Egs. (5.44) and (5.45), we obtain

Py x(s) (V1 Y2)
= D, X
ot Dx () x(s) (v,Y,) 5.47)
x(ixm-(t)pe™ - D(t, s)vy, e - kD (t)v?e ™).

Pxyxis) (02 Y2) = exp(imxove_"% +imy (s)yz—% Giouze_z"%jx
(5.48)

1 _
x exp(—g g (s)yzz—CxoX (s)vy,e Utoj.

Finally, by solving the IVP (5.47)-(5.48) and returning to the initial variables v = y, e, the
solution of the two-time pdf evolution equation (5.44) is procured:

to

t
Pxwyxs (Y) = exp iyl[mxo ") ijE(T) =9 dr}riyzmx (s) |

t
x exp| — %yf [ai g?tmt) 4 9 JD"‘” (t) e?7t-") dr} - %yfai (s)|x (5.49)

to

t
x expl =y, y{cx (s)et T +jD(r, s) e"t-? de .

to
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By utilizing Eq. (B.3) for m, (t), the verified Eq. (3.52) for o (t), as well as Eq. (B.24) for
C, 4 (t, s) in conjunction with the definition relation (5.43) for D(t, s), solution (5.49) is
written equivalently as

. . 1 1
Pxwyx (Y) = exp[lmx (t)y, +im, (s)y, -5 OV —Eai (s)y; — Cyx (t, s)ylyz)-
(5.50)

Eq. (5.50) is the expected Gaussian form of the two-time response pdf, yielding both the one-
time; m, (t), m, (s), o4 (t), o (s), and the two-time, C,, (t, s), moments correctly.
This positive result for the linear case, as well as the other similar results obtained in previous
sections, constitute an indication in support of the conjecture that the SLES, under an appropriate

closure scheme, could also be well-posed and yield satisfactory results for the case of non-linear
random dynamical systems.



Chapter 6

Two-time pdf evolution equations for the
response and its derivative

In the present chapter, we are going to formulate pdf evolution equation s that entail both the
response and its first derivative; a pursuit of special interest in first passage problems
(Verechtchaguina et al., 2006). For this, we consider the familiar scalar, nonlinear, additively
excited RIVP

X (t;0) = h(X(t;0)) +x E(t;0), X (tg:0) = X,(0). (6.1a,b)
In order to formulate our sought-for pdf evolution equation, it is necessary to also take into
account the auxiliary RDE,

X (t;0) = h'(X(t;0)) X(t:0) +k E(t;0), (6.2a)

whose initial value is determined by setting in Eq. (6.1a) t = t, thus resulting in:
X (tg;0) = h(Xy(8)) +xZE(ty;0). (6.2b)

All the results presented in this chapter will be derived by making use of our usual approach for
both the RIVP (6.1a,b) as well as the auxiliary Egs. (6.2a,b).

6.1 First variant of the evolution equations for the two-time pdf of the response and its
derivative

Commencing in the same fashion presented in all the previous cases, we represent the sought-
for two-time pdf as the average of the product of two random delta functions, i.e. the delta
projection method:

fyoxw (6 Y) = BY[S(x=X(5:0)) §(y-X(t;6)) |. (6.3)

In Eq. (6.3), the two time instances t, s are considered different; s = t, while X (t;8) is
regarded as an abbreviation of the right-hand side of RDE (6.1a). In this section, we are going
to examine the problem in which the time argument of the derivative of the response, t, is
treated as the evolution time and the time argument of the response, s, enters as a parameter.
The problem in which the time argument of the response is regarded as the evolution time is
presented in the ensuing section 6.2.

6.1.1 The corresponding stochastic Liouville equation

Differentiating both sides of Eq. (6.3) with respect to time t and substituting Eg. (6.2a) into the
apprehended expression results in

77
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0 fX(s)X(t)(X’ Y) _
ot

_ Eg{é(x—x (s:0)) 55(83’){_():_(;;)9)) (X (t:6)) X (t;e)} + (6.4)

+ K Ee{d(x—x (s:0)) 85(6y)(_(>:'(;;)0)) =2(t; 9)]

The two averaged terms appearing on the right-hand side of the above expressions are readily
calculated by making use of the delta projection formalism. Substitution of the reevaluated
averaged terms in Eq. (6.4) results in the following two-time stochastic Liouville equation of

X (s;0) and X (t;0):

8f)((s))((t)()(1 y) +i
ot oy

(y B[ 5(x=X(5;0)) 5(y—X (t;0))h'(X (t;9))]) =

e L B[5(x-X(s:0) (y-X (t;0)) E(t;0)], s »t
oy

(6.5)

As expected, Eq. (6.5) is a differential equation with respect to time t, while time s enters as a
parameter. As such, similar to the two-time response pdf, the initial condition to Eq. (6.5) will
also be parametric with respect to s. More specifically, the said initial condition is written as

fX(s)X(tO) (x, y) and its corresponding SLE will be formulated in the subsequent paragraph
6.1.2.

Transformed SLE. SLE (6.5) is non-closed due to both averaged terms appearing on each of
its sides. Nevertheless, the one appearing on the right-hand side of Eq. (6.5) can be further
evaluated using the appropriate extension of the Novikov-Furutsu theorem. Thus, recalling the
dependence of the response over the initial value X, (&) and the time history of the excitation

Z(+;0), and under the understanding that X (t: &) can, in turn, be regarded through equation
(6.1a) as a function of the response, we can write

B?[5(x-X(5;0)) 5(y-X(t;0)) E(t;0)] =
(6.6)

—_ t —_ =
= B°|o{x - XIXo(0) i 2C |, :001) 8y - X[Xe(0) 1 =C-[; 0] (t:0) |
Therefore, in accordance with the approach followed for the two-time response SLE, the product
of random delta functions in the above averaged term can be considered as a FF{ of initial value

X (6) and excitation =(«; ) over the time interval [t,, t;], with t; = max(t,s). Under
this convenient notation, and regardless of the time ordering of t and s, the aforementioned

product can always be regarded as a FFC like F = F[X,(8);E( :1 ;9)]. Hence, by

0

employing Eqg. (2.21) the averaged term can be calculated as follows:
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B[ 5(x=X(5;0)) 5(y-X(t;0)) E(t;0)] =
= = (OB [5(x=X(5:0)) 5(y-X(t;6)) ]+
S(x=X (s:0)) 5(y—X (t;e))}] X

(6.7)

- o|
+Cyx =(D)E [ X4 (0)

t _ . Y, .
+J‘C¢:(t,u)E9 §{5(x X(s,f))a(y X (t;0))} "
; == 0Z(u;0)

Further, by utilizing the product and rules for the derivatives that appear on the right-hand side
of the above equation as well as recalling the properties of the delta projection formalism, results
in
E7[5(x-X(s:0)) 5(y-X(1:0)) E(t;0)] =
= mz ()E?[5(x=X(s;0)) (y-X(t;0))] -

-Cxosm%E& 5(x—><(s:9))5(y—><(t;e))%:_
_Cxog(t)%E‘):a(x—X(s;a))5(y_x(t;9))%:_ .
_%Icga(t, u) E9:5(X—X(S;0)) 5(y_X(t;9))%: du —
_a% t1C;5(t, ) E?| 5(x-X (5:0)) 5(y- X (t;g))%: i

t, =

Due to causality, the variational derivatives § X (s;8)/6Z(7;0), 6 X (t;0)/6=2(7;0)
appearing on the right-hand side of the above expression, are zero for t <z and s<r
respectively, since a variation of excitation at a certain time instance cannot result in variation
of response in previous time instances. Thus, the upper limits of the integrals in Eq. (6.8) must
be adjusted accordingly. Moreover, in Eq. (6.8) the usual variational derivatives appear which,
as described in Chapter 3, are given by

o O0X(s;0) ‘ , _
Vx, (8:0) = X (0) exp tjoh (X (u;@0))du|, (6.92)
Vo (5:0) = % - Keprh'(x (z:0)) dr}. (6.9b)

Further, the “new” variational derivatives 0 X (t; 49)/5 Xo(0), §X(t;0)/62(u;0) can be
easily calculated by directly applying to Eg. (6.1a) the operators 8-/6 X, (€) and
6¢/6=(u; @), respectively. As such, we find
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OX (t;0)

= (X (t : 1
3%, (0) h' (X (t;0))Vy (t;0), (6.10a)
SX(t;0) _ . B
SR (U 0) W (X (t;0)) Vo, (t;0) + x 5(t-u). (6.10b)

Combining, now, Egs. (6.8)-(6.10) yields

E?[5(x=X(5;0)) 6(y-X(t;0)) E(t;0)] =
= Mz (1) Ty gx @ (X Y) -

- CXOE(t)%E9[§(X—X (5:0)) 5(y—X(t;0))Vy (s;e)] -

s (0B (500X (510)) 8y~ X (LN (X (0¥, (5:0)] -

S

0 .
—at Cec (8, U) BY[8(Xx=X(5:0)) (y-X (t;0))Vz, (s;0) ] du -
t
—% CEE(t,u)Ee[ﬁ(x—X(s;e))5(y—X(t;¢9))h'(X(t;H))VE(u)(t;e)]du—
t,
t
—K%J‘CEE(L u) BY[5(x=X(s;0)) 5(y-X(t;0))]|5(t-u) du. (6.11)
t

Last, by employing the identity of the delta function, the averaged term is written

E7[5(x-X(s:0)) 6(y-X(t:0)) E(t;0)] =
= Mz (1) Fy )0y (X, ¥) — & C (L, t)(%E‘g[é(x—x (5:0)) 5(y-X(t;0))]-
- 0 . . |
~Cr,z (5B | 5(x=X (510)) S(y=X (1;0))Vy (5:0) | -

—Cxoa(t)%Ee[a(x—X(s;e>)5(y—x(t;e))h'(x(t;e))vxo<t;e)}— (6.12)

S

0 .
- at Cez (8, U) B[ S(Xx=X(5:0)) 5(y—X (;0))Va, (s;:0) ] du -
t
_ a% C.(t,u) Ee[ﬁ(x—x (s:0)) 5(y-=X(t;0))h (X (t;H))VE(u)(t;H)] du.
tO

Finally, substituting the above expression into SLE (6.5) results in the following transformed
SLE for the two-time joint pdf of X (s;8) and X (t;8):
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of ~ X,
x (s)% (1) Y)+£(y

- B7[5(x=X(5:0)) 8(y=X (t; )N (X (t;0))]) +

O fy(syxw (X Y) _

2fs‘ (X, y)
ety
2
+choa(t) E9[5(X—X(S;6’))cS(y—X(t;a))vxo(s;e)}ju

oxoy
+xCy :(t)ilE [5(X—X(s;9))5(y—X(t;6’))h'(X(t;0))Vx (t;e)}+
oy :

2 S

T 6x8y.[ 2= (L U) BY[S(x=X (5:0)) 5(y=X (t;0))Vz(,) (s;0) ] du +

t
a_j 2= (L U) B[S (X=X (5:0)) 6(y=X (t;0))N (X (t;0))V=(, (t;0)] du
oy

(6.13)

It is not surprising that Eqg. (6.13) is non-closed due to a) the averaged term on its left-hand side,
b) the terms multiplying the product of random delta function inside the averages on its right-
hand side. Moreover, these terms are not in the appropriate form to implement the usual
approximation scheme, first presented in paragraph 3.1.3, because of the occurrence of
h'(X (t;8)). As in the case of the evolution equations corresponding to an RDE excited by

both additive and multiplicative noise Egs. (3.71), (4.73), the time argument of h'(X (+;8))
does not match the one of the delta function of this response 6 (x— X (s; 8)) and thus, the said

term cannot be treated via the delta projection method. An appropriate closure technique to
derive the required pdf evolution equation is proposed in paragraph 6.1.3

6.1.2 Auxiliary, initial stochastic Liouville equation corresponding to the RDE

Having obtained SLE (6.13), it is essential to also determine its initial value f, (5)X (t,) (x,y)

. As per usual, our starting point is the delta projection method which provides us with the
following representation:

fxox,) (5 Y) = E0[5(X—X(ti9))5(y—x(to;9))], (6.14)

in which X (ty; @) isgiven by Eq. (6.2b). By differentiating Eq. (6.14) over time t, we obtain

an(t)X(to)(X’ y) g 06 (x=X(t;6)) .
P =B { pr 5(y—x(t0,9))}
_ Eg[aa(x—xa;e))
OX (t;0)

(6.15)

X(t;e)a(y—X(to;e))]
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Eg. (6.15) can be further evaluated by employing RDE (6.1a) as:

g ) o[ 30X W0) cte:0))]

Y 05 (x—X(t;0))
X (1:0)

- (6.16)
E(t;0) 5(y - X (t:0))].

Finally, carrying out the familiar delta projection method manipulations, we acquire the
following stochastic Liouville equation for X (t;8) and X(t;0):

0ty iy (X Y)
()X (t,) 0
+ ax (h(X) fX(t)X(tO)(X’ Y)) =

ot 6.17)
_ —K%Ee[é(x—X(t;G))5(y—X(t0;9))E(t;9)]
SLE (6.17) is also supplemented with the following initial condition
Py 6 Y) = T g, (6 ), (6.18)

which is a bivariate Gaussian distribution, in accordance with its components.

Transformed SLE. At this point, let us proceed by evaluating the non-closed averaged term
appearing on the right-hand side of Eq. (6.17). Thus, recalling the dependence of the response

on X, (@) and = (- E ;0) as well as Eq. (6.2b) for X(t;8), the product of random delta

functions can be seen as a FFe like F = F[X,(0); E(|: ; @)]. Hence, we are able to apply
the extended NF theorem, Eq. (2.18):

E9[§(X—X (t:0)) 5(y—X (t;:6)) E(t;g)] _
= mz (1) B[ 5(x= X (1:0)) 5(y=X (to;6)) | +

{5 (x=X (t;0)) 5(y-X (t5;0))}

+Cx05(t)E9 X (0) + (6.19)
0
¢ S15(x=X(t;0))3(y-X(t,:0
+J.C55(t,T)E0 { Sl ...)) _(y o ))} dr.
: 0Z(7;0)

By employing, now, the chain and product rule for the derivatives, Eq. (6.21) is transformed
into

E9[5(X—X (t;0)) §(y—X (to;e)) E(t;g)] _
= m= (1) E’|5(x=X(t:0)) 5(y-X (to:0)) | +

65(X—X(t;0))5
X (t:0)

+Cyx =(1) Eé[ (y—X(toig))on(tie)}*‘
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+Cx,= (1) Ee[é(x—x (t;0)) 05(y—X(t5:0)) X (t ;0)] N

X (ty:0) X, ()

65(x—=X(t;0))
OX(t;0)

t
+ JCEE (t, 7) EQ[ 5(y-X(tg:0))Vz, (t;H)} dr + (6.20)
tO

55(y-X(t;0)) 5X<to;9)}dr

t
Ceo(t, 7)) EY| S(x=X(t;0 :
+t{ ==(t.7) {(X ) — X0y o2(c )

In Eq. (6.20), the familiar variational derivatives VX0 (t;0), V=, (t;0) appear, as well as the
unknowns 8 X (ty;60)/0Xo(0) and & X(ty;0)/6Z(z;0). These are straightforwardly

apprehended by applying the operators 9+/0 X (@) and 6+/6E(z ;) on both sides of Eq.
(6.2b), resulting in

0X(tg:0)
% (8) (X, (0)), (6.212)

§X(tg;0)  6E(ty;0)

m =K 5202 :0) =xk0(ty—17). (6.21b)

Using Egs. (6.21a,b), the delta function identity for o (t, —z) and the delta projection
method’s properties, Eq. (6.20) is written as

Eﬁ[d(X—X (t;0)) §(y—X (to ;.9)) E(t;g)} _
e Bt - 0]

~Cy= (1) % BO[8(x-X (t:0)) 5(y-X (to;0))Vy, (t;0)] -

~Cx,z(0) % BY[5(x-X(1;0)) 5(y-X (tg;:0)) W (Xo(0))] - (622)
o | _
-—= tjcgg(t, 7) Ee[g(x—x (t;0)) 5(y-X (t5:0)) V=, (t;g)} dr —

—k Coz(t, ty) a—ay Eé’[a(x—x (t:0)) 5(y-X (t, ;9))]

Last, substituting Eq. (6.22) into SLE (6.13) results in the following, transformed SLE for the
joint pdf of X (t;8) and X(ty;6):
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O Fx iyt (X Y

ot

y)
@aX [(h(x)+1cm (t)) X(t)X(to)(X’y)J =
2
=k Cy, :(t)a—E [ (x—X(t;6’))5(y—X(t0;9))on(t;0)J+

2

FrCxz(t) 5o BY[8(x=X (t;0)) 8(y-X (to;0))0'(Xo ()] +
2t '
+K887t Cas(t,r)Eg[é(X—X(t;e)) 5(Y—X(t0;9))va(r)(t;g)} dr +

0

2
0% fxwyxty) (1Y)

2
+x°C==(t,t
== (1 10) — 0

(6.23)

As expected, Eq. (6.23) is non-closed due to the variational derivatives as well as the term
h'(X 0 (0)) multiplying the product of random delta functions inside the averaged appearing

on its right-hand side. The treatment of these term in a way that allows us to derive a closed pdf
evolution equation from SLE (6.23) is presented in the following paragraph.

6.1.3 Novel, two-time evolution equations for the pdf of the response and its derivative

Let us, first, rewrite Eqg. (6.13) by substituting the variational derivatives by Egs. (3.24) and
(3.30) and using the notation

Ih/

t
|t 0] = Jh'(x(u;é?)) du. (6.24)

Using the aforementioned equations, we obtain the following exact, non-closed evolution
equation for the two-time joint pdf of the response and its derivative f, ()X (1) (x,y):

of ~ X,
x (s)% () y)+i(y
ot oy

52
an(S)X(t)(X'y) (t 1) fX(s)X(t)(X y)
6y EE ay

9))} ;

2
+ KCxoz(t)G—zEe[ﬁ(x, yi Xg, X¢) (X (t;9))exp([h'
oy

B7[5(x=X(5;0)) §(y=X (t; )N (X (t;0))] ) +

+Km3(t)

. 0% _,
+x Cy = (1) E
° oxXoy

[é(x, y; X, Xt)exp(Ih,

9))} +

9)])} du +

j. Cez(t,U)E [5(X y; X, X, )exp([h

axay

N Kzaa—zz j-CEE(t, u) Eﬁ[a(x, ViXe X0 exp(fh,[X(-|L ;9)])} du, (6.25)

t,
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where the shorthand 6 (x, y; X, Xt) =5(x=X(s;0)) 5(y—X(t;0)) has also been used.
Accordingly, by using the same notation for Eq. (6.23) written for t =s, we obtain the
following, exact, non-closed evolution equation for the joint pdf of X (s:;8) and X (tg:0):

Oy orxiey (X Y)
X)X (1) +ﬁ[(h(x) + Mz (9) Fgxy (% y)} B

0s oX
0% o . ' s .
= KCXOE(S)a?E 5(x,y,XS,Xto)exp(Ih,[X(-to,e)) +
o2 4 -
# K Cyz(8) 5o [5(x,y;xs,xto)h(x0(9))}+

02 S .
+ K2 —ICEE(s,r)EQ[é(x, y; Xy, Xto)exp(Ih'[X(-

2
0X 0

i;@)]):|d2'+

+ k2 Coz (s, ty) 0 . (6.26)

In this notation, it becomes clear that Egs. (6.25) and (6.26) are non-closed due to the nonlocal
terms multiplying the product of random delta functions. What is more, the nonlocal terms
h'(---) resemble the ones appeared in the response and response-excitation pdf evolution
equations of the RDE excited by both additive and multiplicative colored noise and thus, a
similar current-time approximation can be employed for them. Further, the exponential terms
are of similar form as those presented in paragraph 3.1.3 and as such, an appropriately adjusted
approximation scheme, analogous to the one introduced in the aforementioned paragraph, can
be implemented.

First, let us specify the approximate form of Eq. (6.26). As already discussed, this is performed
by implementing the usual approximation scheme for the nonlocal terms as well as considering

the Taylor expansion of h’(XO (49)) around evolution time s up to first order; the latter is

carried out under the assumption that we work for small correlation times. As such, the closed,
approximate evolution equation for the joint pdf of X (s;8) and X(t, ;&) reads

Ofy sy (X Y)
(s) X (t,) 0
- # 2 [ (000 + 5 m=(9) Fy iy (30| =

2 M
- 867 {[ Z %Dﬁqﬁ [Rh'(-), s, S] (MT(X ; th(s))} Fxs)x () (X y)} + (6.27)

m=0

2
0" fx(syx(ty) (% Y)
oxXoy

+{K Cy,= (S)[N'(¥) + N (X)N(x)(s ~to) ] + k2 Czz (s, to)}

where Dﬁff is the generalized effective noise intensities given by Eq. (5.29). In order to derive

Eq. (6.27), in the Taylor expansion of h’(XO(H)) we have disregarded the terms which
explicitly contain the excitation as was also performed in the case of a both multiplicatively and
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additively excited RDE. Further, for the above equation to be valid the additional assumption
that function h(x) has continuous second derivative must be introduced.

Let us, now, continue with the treatment of Eq. (6.25). First, for the nonlocal terms
h'(X (t;8)), under the assumption that we work for small correlation times, we perform a
Taylor expansion around parameter time s and once more disregard the term containing the
excitation. Then, we apply the familiar approximation scheme for the exponential terms and,
anew, carry out current-time approximations when it is required. Thus, we obtain the following
approximate, closed evolution equation for the two-time joint pdf of the response and its
derivative fx(s)x(t)(x, y):

0 fxsyx (X Y)

+ (W(x) = W (x)h(x)(s —t))a%(y Frox 6 )+

ot
crema ) x|
= ay 2= ! ayZ
52 Y (6.28)
* 337 2GR [Ru ().t s ot (X5 R (8)) | Figoyx o (60 YD +
m=0
82 41
zm I:Rh()lt’t:l Vi (X Rh (S)) x(s)){(t)(xyy) )
m=0
where
GO[Ry (+),t,s] = xexp J.Rh,(u)du Cy.=(t) (s—tg)™ +
o (6.29)
2 jatcga(t, u)eprRh,(r) dr}(su)m du,
t, u
G Ry (), tit] = (W) =" (x)h(x)(s = 1)) G Ry (), t. t], (6.30)
w1 (X5 Ry (8)) = o (%5 Ry (8)) = o™ (X5 Ry (8)) h(X) (s — 1) (6.31)

Through the D,‘;']ﬁ , G, ¢ and y terms Eqs. (6.27), (6.28) retain a considerable amount of the

nonlinearity and nonlocality (in time), thus, maintaining the non-Markovian character of the
original problem. All in all, the treatment of Egs. (6.25), (6.26) clearly showcases the intricacies
associated with the derivation of closed, computable pdf evolution equations involving both the
response and its derivative. In the present paragraph, a closure technique was proposed which
could provide a starting point for their numerical solution.

A different, and evidently simpler, set of pdf evolution equations which involve both the
response and its derivative can be derived by employing Hianggi’s ansatz (P. Hanggi & Jung,
1995; Peter Hanggi, Mroczkowski, Moss, & McClintock, 1985) for the exponential terms of
Egs. (6.25), (6.26). This set of “new” equations constitute only a special case of the ones
presented above.
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According to Hanggi’s ansatz, the random quantity inside the nonlocal, exponential terms is
approximated by its mean value, e.g.

t t
exp[Jh’(X (u;0)) du] = eprRh,(u) du], (6.32)

where R, (u) = E'g[h'(x (u; 49))]. Therefore, it can be readily seen that this scheme is a

simplification of the one presented above since it can be directly obtained by disregarding the
fluctuation exponentials and their subsequent treatment. However, it must be noted that the
current-time approximation for the h'(---) terms is unavoidable. Thus, application of Hinggi’s
ansatz results in the following approximate, closed evolution equation for the two-time joint pdf
of the response and its derivative f, ()X (1) (x,y):

Oty syxm (X Y) N

(W (x) = " ()h(x)(s —t))a%(y fox (% V) +

ot
Oy xm(*Y) g 0 fy(yxan (% Y)
+xmz(t) oy =G [Rh,(-),t, s] Sxoy +  (6.33)
82 f s) X (X, y)
+{K2035(t,t)+G(2)[Rh,(-),t,t]} X‘é’f;‘;) ,
where
GO[Ry(+).t,5] = xexp J.Rh'(u)du Cy=(t)+
o (6.34)
+x? I@tCEE(t,u)exp[J‘Rh'(r)dr} du,
t, u
GP[Ry (o), t,t] = [N(x) = h" ()N (x)(s ~)] GD[Ry (), t, t]. (6.35)

Accordingly, the auxiliary, initial pdf evolution equation for the joint pdf of X (s;8) and
X (tq; @) is specified into

O fyoyx(ey (X Y)
()X (1,) 0
- +&[(h(x)+icm5(s)) fx(s)x(to)(x,y)] -

ok f sy (X Y)
(s) X (ty) N7
D eff [Rh' (), s, s] 55X2 (6.36)

2
0" Ty (4 Y)
oxXoy

+{K Cy,= (S)[N'(¥) + N (X)N(x)(s —to) ] + K2 Czz (s, to)}

where the term DT is given via the following expression:
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S
D [th(-),t, s] = K exp J.Rh'(u) du | Cy =(t)+
t,

(6.37)
4 szexp[ Ry (U) duj Co=(t, 7)dr.

t, T

Having derived Egs. (6.33) and (6.36), it becomes apparent that they are simpler versions of
their counterparts Egs. (6.28) and (6.27), respectively. However, they are also much simpler to
comprehend as well as attempt to solve numerically.

6.2 Second variant of the evolution equations for the two-time pdf of the response and its
derivative

In this section, we are going to formulate another SLE for the response and its derivative at a
different time instance. Thus, using the delta representation, the sought-for pdf is written as:

s (6 Y) = BY[S(x=X(t;0)) 5(y-X(s:0)) |. (6.38)

Note that Eq. (6.38) is not the same as Eq. (6.3); this time the time argument of the derivative
of the response will be treated as a parameter in the following calculations.

6.2.1 The corresponding stochastic Liouville equation

As performed in section 6.1, we differentiate both sides of Eq. (6.38) with respect to time t and
also employ RDE (6.1a), resulting in
Ofxwxi 0 Y) _ pol 05 (x=X (t;6))
ot oX(t;0)

Y 00 (x=X(t;0))
o0X(t;80)

S(y-X(s;0)) h(><(t;0))}+
(6.39)

S(y-X(s;0)) E(t;é)}-
Each term on the right-hand side of Eq. (6.39) is readily evaluated using the delta projection
formalism. Thus, by performing the usual manipulations the above equation is written

Txwxe™*¥) o
ot 0 X

() Ty sy (X0 V) =
(6.40)

— ke LRO[S(x=X(1;0)) 5(y-X (5:0)) 2(1;0) ].
0 X

The above expression is another variant for the stochastic Liouville equation for the joint pdf
of X (t;0) and X (s;0) which is a also a differential equation with respect to time t and

time s enters as a parameter. Further, SLE (6.40) is supplemented with the following initial
condition:

Fxyxs) (% Y) = T xs (% ¥), (6.41)

whose SLE will be formulated via the delta projection method in the ensuing paragraph 6.2.2.
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Transformed SLE. As in all the previous cases, SLE (6.40) in non-closed due to the averaged
term on its right-hand side. This term is of similar form to the one appearing in Eg. (6.9) with
the exception that the product of the random delta functions is multiplied by Z(t; &) rather

than Z=(t;6). As such, again the said product can be regarded as a FFC like F =
FIXo(8);E(e :l ;0)] with t; = max(t,s). Thus, by employing Eqg. (2.19), the averaged
term can be Writterz as
E7[5(x=X(t:0)) 5(y-X(s:0)) E(t;0) ] =
= mz (DE’[ 5(x=X(t;0)) 6(y—X(s;0)) E(t;0) | +

F(x=X(1:0)) 5(y=X(s:0) E(t:0)} | |
0X(6)

8
+Cx05(t)E9[ { (6.42)

t, B ) oy . e
+JC_:(“)E9 8{s(x X(tﬁ))f(y X (s;0)) E(t;0)} .
t, 0Z(r;0)

Eq. (6.42) is further evaluated by following the usual approach into
E7[5(x=X(t:0)) 5(y-X(s;0)) E(t;0) ] =
= mz (B[ 5(x=X (t;0)) 5(y-X(s:0)) |-

—CXOE(t)%EQ[é(X—X(t;G)) 5(y—X(s;«9))VXO(t;¢9)}—

~Ci= () 2 B[S0 X (110) S(y=X (510)) WX (510) Vy (50| -

o | .
_ajcag(t, ) B[ 8(X=X (t;0)) 5(y—X (3;0))Vz(,) (t:0)]dr -
_(%ICEE(t,r)Ee[é(X—X(t;H)) S(y—X(s:0)) h’(X(s;e))vE(T)(s;g)]dT_

t,

ke Cos(t,s) a% BY[5(x-X (1;0)) 5(y-X (s:0)) ] (6.43)

Finally, combining Egs. (6.40) and (6.43), results in the following transformed Liouville
equation for X (t;0) and X (s;0):
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of - X,
x5 Y) +%[(h(x) + M2 (D) T i) (X y)} -

ot
2

:KCXOE(t)%Eg[é‘(X—X(t;Q))5(y—X(S;0))VXO(t;9)i|+
+ Kk Cy =(t) ai;y Eb"[a(x—X(t;H))5(y—X(s;9)) h’()((s;g))\/xo(s;g)}r

02 | _
+’<87tCza(t'f)E9[5(X—X(t;9))5(y—><(s;6'))VE(,)(t;e)]dH

0% | _ ' |
+KaxayJCEE(t’T)E9[5(X_X(t?9))5(V—X(S;9))h(X(s,H))VE(T)(s;e)}err

2 .

+K2C53(ty5)6 fX(t)X(S)(X’y)- (6.44)

oXoy

In consistence with all the prior examined cases, SLE (6.44) is non-closed due to the terms
multiplying the product of random delta functions inside the averages. These will be accordingly
addressed in the ensuing paragraph 6.2.3 in order to obtain a closed alternative of SLE (6.44).

6.2.2 Auxiliary, initial stochastic Liouville equation corresponding to the RDE

In this subsection, we are going to formulate the SLE for X, (@) and X (t; @) which will

serve an initial condition to Eq. (6.44). As always, our starting point is the delta projection
method:

fx,x (X y) = E0[5(X_ Xo(0) ) 5(Y—X (t; 9))} : (6.45)
By differentiating, now, both sides of the above equation and employing RDE (6.1a), we find

05(y-X(t:9))
OX (t;0)

0 fXOX(t)(X’ y)
ot

_ Ea{(g(x_xo(@)) h'(X(t;H))X(t;@)}+

. (6.46)
a5(y-X(t;0))

OX (t;0)

+KE9[5(x—x0(9)) E(t;e)].

The averaged terms on the right-hand side of the above expression can be further evaluated
using the familiar formalism, thus, resulting in the following SLE for X, (&) and X (t; @) in

its non-closed form:

of 0' (X!y) 0 ) ,
X th) 3 (yE9[5(x—Xo(¢9))§(y—X(t;e))h(x(t;e))}) -

(6.47)

. K%E9[5(X—XO(9))5()/—X (t:0))2(t;0) .
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SLE (6.47) in non-closed due to the averaged terms appearing on both of its sides. The first one
will be treated in paragraph 6.2.3 where an approximation scheme is proposed that results in a
closed pdf evolution equation. The one appearing on its right-hand side can easily be treated by
the appropriate NF theorem, as it is subsequently presented.

Transformed SLE. Recalling Eqg. (6.1a) as well as the dependence of the response on the initial
value X, (@) and the time history of the excitation =(+; &) over [t,, t], the averaged term

appearing on the right-hand side of Eq. (6.47) can be written as
E9[5(x—x0(9) ) 5(y-X (t;@))é(t;@)] -

= E9[5(X‘X0(9))5( - = ( :0;9)])E(t;9)}, (6:49)

which is the appropriate form for the application of the Extension 11l of the NF theorem, Eq.
(2.21), under the understanding that the product of the random delta functions is regarded as a

FFL like f[xo(e);a(-ﬂ ; @)]. Implementation of the said extended NF theorem yields
B?[8(x-Xo(8)) 5(y-X (t;0))2(t;0) | =
- mE(t)E‘?[a(x—xo(e))5(y—x(t;9))}+

016(x=X,(8)) 5(y-X (t:0))}

%o (8] + (6.49)

+Cy = (1) B’

.. 5{5(x—x0(9))5(y—x(t;0))}
-[ 2 ( 0Z(7;0)

7,

where C .- (t, 7) = 0, Cz (t, 7). Further, by using the product and chain rules for derivatives

and substituting the variational derivatives that arise, we obtain the following final form for the
averaged term:

E7|8(x=Xo(0)) 5(y-X (t:0))2(t;6) | =
= mz(t) E9[5(X—X0(9))5(y—x (t;g))} N
6020 & o na0) oy )]

0 & : i (e .
~ 5y Cro= (VB[ 0(x=X0(0) ) 8(y=X (1:0)) W (X (t:0) vy, (t:0) | -
t
_aij 2= (4, D) B[5(x=X(0)) 8(y—X (t;0)) W' (X (t;0))Va () (1;60) ] dr -
— Kk Co (t, t)—Eg[ X=X(0)) (y—X(t;e))] (6.50)

Finally, by substituting Eqg. (6.50) into Eq. (6.47) gives rise to
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Ofy xiy (X Y) 5
+

(yE9[5(X—Xo(«9))5(y—X (t;@)) h'(X (t;@))}) +

ot oy
ofy vy (X Y)
ok me(t) — XY -
. 0% f (X, y) 0%ty win (X, Y)
=k Cy o () — X + K2Ca (1, t)— X ; (6.51)
° X0y == oy?

2
’ "CXOE(‘);?E9[5(X—Xo(6’))5(y—x(t:0)) (X (t:0)) Vi (t;0) ] +

t
+ Kz% Ciz(t, 2) B[ 8(x=X0(8)) 5(y=X (t;0)) W (X (t;0))Vz(, (t:0) | dr.
t,

Eq. (6.51) is the transformed SLE for the joint pdf of X, (@) and X (t; &) . Once more, it is

useful to reiterate that not only the averaged term on the left-hand side of Eq. (6.51) constitute
the apprehended expression non-closed, but also the additional terms multiplying the product
of random delta functions.

6.2.3 Novel, two-time evolution equations for the pdf of the response and its derivative

Having formulated SLEs (6.44) and (6.51), we are able to proceed with the derivation of the
second variant of the evolution equations corresponding to the pdf of the response and its
derivative. However, let us first rewrite them in a notation that makes the terms requiring
approximation more evident. More specifically, using the notation presented in paragraph 6.1.3,

the exact, non-closed pdf evolution equation for the joint pdf of X (t;8) and X (s; @) reads

Oty (X Y) o
()X (s) _
= +5[(h(x)+xmE(t))fX(t)X(s)(x,y)} =

o

E‘g[é(x, ViXe, X4) h'(X(s;H))exp(Ih![X(-

0° .
= KCXOE(t)a?EQ[ﬁ(x, yi X, Xg) exp(Ih,[X(-

82
oXoy

o))

;;9)])](17 ;

+x Cy =(1)

2 1
+K2;7jc55(t, r)E9[5(X, Vi Xy Xo) exp(Iy[X (-
t,

2 62 0 0 . y ' . N
fx axaytjcﬂ(t,r)E [5(x,y,xt,Xs)h(X(s,H))exp(Ih'[X( T,H)])ildr—k
2
foo (X
+k2Coz (1, 5) xwxe (4 ¥) (6.52)

oXoy

Eq. (6.52) must also be supplemented by an initial condition, which is obtained through Eq.
(6.45) for t = s as follows:
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Ofy x (X Y) 5
_I_

0s oy
Ofy x(s (% Y)

(YE?[6(x yi Xy, X W(X (5:0))]) +

+ m-(S
K mz(s) oy
. 0% fy xio (X Y) 8%y xio (X Y)
=k Cy o (5)—2XO) +1k2C e (s, 5)—28) n (6.53)
’ oXoy == oy
2
+KCx05(5);7E9[5(X,y;XtO,Xs)h’(X(s;H))exp(Ih,[X(-tso;H))}Jr

2 S
+K3;—2jc35(s, ) E9[5(x, Vi X, XOW (X (5:0)) exp(T,[X (| ;9)])} dr.
y ; 0 T
Eqg. (6.53) is the exact, non-closed pdf evolution equation for the joint pdf of X, (8) and

X (s; ). Under this notation, it is readily recognized that the nonlocal terms which constitute

the above equations non-closed are similar to the ones appearing in Egs. (6.25), (6.26) and thus,
the same approximation can be implemented. As such, from Eq. (6.53) the following closed,

approximate pdf evolution equation for the joint pdf of X, (@) and X (s;6):

anOX(s)(X’ y)
0s

# [0 + 1 0ONOOCs ~t0)] 2 (¥ F x g O] +

0y %) (X Y) 0% fy (5% Y)

+ K mg(s) dy = KCXOE(S) oxay

(6.54)

+[N(x) + " () () (s ~ o) | x

82 M 1 3 i
X ZmGr(n [Rh'(-),s]wz (X;Rh,(s)) fXOX(s)(XvY) _

where

G Y[Ry (+)s] = xexp| [Ry(u) du [Cx = (s) (s —t)" +
o (6.55)
i3 Iascaa(s, r)exp[th,(u) du] (s-7)"dr,
t, T
wo (X5 Ry (5)) = @ (X3 Ry (8)) + @ (X5 Ry (8)) h(X) (s - to). (6.56)

Subsequently, by working accordingly in the case of Eq. (6.52) we obtain the following
approximate, closed evolution equation for the two-time joint pdf of the response and its

derivative fxa)x(s)(x’ y):
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Ofx s (X Y) o
X (DX (s) +5[(h(x)+Km5(t))fX(t)X(s)(X’y)} N

ot
2
= ajay {([h'(><)+h”(x)h(x)(s—t)]A,%ff [t, 8]+ K2 Caz (1,9)) i o) (% y)}+
07 (M1 o f
Tox? ZOHDm [Ri ().t 8] o (x5 Ry (8)) fy i) (% YD (6.57)
where A% [t, s] is a shorthand for

M

ATt s] = { Z %D%ﬁ [Rh,(.), t, S] l//lm(X ; Rh,(s))]. (6.58)
m=0 """

This approximate equation seems somewhat simpler than its counterpart Eq. (6.28) because the
manipulations required for Eq. (6.52) are more familiar and are confined to the terms only on
its right-hand side. Nevertheless, this time, more complicacies arise in the treatment of the initial
condition, Eqg. (6.53).

Let us, also, consider the simpler alternatives of Egs. (6.54) and (6.57) by taking into account
only the terms which would appear if we had implemented Hénggi’s ansatz. Thus, for the

approximate pdf evolution equation for the joint pdf of X, (@) and X (s; &) we find

Oty % (X Y) 0
S (M0 (x)h(x)(s—to)]a(yfxox(t)(x, V)| +
Of, 4o (X, V) 0% fy vio (X, Y)
b ma(s) o KX () Gy (s) XX
oy 0 oxXoy (6.59)
0%y vio (X, Y) '
! " 0 ()
# [0 )+ ") () (s o) | GP[ Ry (+), 5] 8y52 +
0%y (X, Y)
+x2C:-(s,9) X°X(S;
2z 2y
where
S
G(3)[Rh'(-),sJ = K exp JRh,(u)du Cx,z(s)+
o (6.60)

S S
+ K3 IaSCEE (s, r)exp(JRh, (u) du] dr.

t,

Working in similar fashion for the case of the approximate, closed evolution equation for the
two-time joint pdf of the response and its derivative f, ()X (s) (X, y), we obtain
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Of s (X Y) o
X(MX(s) +&[(h(x)+’fms(t))fx(t)X(s)(X’y)} -

ot
0% fy (s (X0 )
_ ' " eff . X(t)X(S) '
= [N (x) + h"()h(x)(s = )] D[Ry (+), t, 5] Sxoy + (6.61)
2 2
n KZCEE (t,s) 0 fX(t)X(s)(X’ y) L peff [th(o),t, S} 0 fX(t)X(s)(Xl y)

oXoy ox?

in which D[Ry, (+), t, s] is given by Eq. (6.37). At this point, it is easily understood that

Eqgs. (6.59), (6.61) are similar to their alternatives (6.54), (6.57) respectively, while also being
easier to comprehend and manage.

6.3 Exact pdfs for a linear, additively excited RDE

In this section, let us, for the last time, examine the results of this methodology in the linear
case. By setting h(x) = nx, with nn <0 for stability reasons, in RDE (6.1a), we obtain the

RIVP
X (t:0) = nX(t:0) + x Z(t: 0), X (tg;0) = X,(0). (6.62a,b)

As was previously discussed, in this case, the variational derivatives are explicitly calculated
into Vy (t;0) = e %) and Voo (t;0) =xe?( 77 Itis also useful to reiterate that in

the linear case, the joint pdf of the response and its derivative as well as the auxiliaries, initial
pdfs are expected to be Gaussian distributions whose moments have been specified in sec. B.2
by formulating and solving their corresponding moment problems.

Subsequently, we are going to determine the pdfs for the linear, additively excited RIVP
(6.62a,b) by considering the two variants for the two-time joint pdf of the response and its
derivative separately. This will allow us to examine the potency of both derived variants and
comment on any discrepancies that may or may not arise between them.

6.3.1 First variant of the exact pdfs

In this subsection, we shall rewrite the derived SLEs for the first variant of the problem in the
linear case and then, by employing an appropriate Fourier transform, the exact pdfs
corresponding to the RIVP will be specified. For this, it is necessary to first consider the
auxiliary, initial pdf fX(tO)X(t)(X’ y).

(a) Exact initial pdf fX(tO)X(t)

Using the aforementioned calculated variational derivatives, the SLE (6.23) for the joint pdf

f t,)x (1) 1 specified into



96 6.3 Exact pdfs for a linear, additively excited RDE

0ty (X, y)
(t) X (1) 0 B
ot +E[(77Y+’<mz(t)) fX(tO)X(t)(X'y):| =

2
0" Txagxw 0 Y) .\
oXoy
2
O Txagxw % Y)
oy?

= (’fﬂcxoa(t) +K° Czz(t, to))

(6.63)

+ x DT (1)

where D® (t) is the generalized effective noise intensity given by Eq. (3.41). In contrast with

SLE (6.23) and consistent with all the linear cases examined so far, Eq. (6.63) is closed and
exact. Further. it is supplemented by the following initial condition:

x5 ¥) = Fiyx, (5 Y), (6.64)
which is a bivariate Gaussian distribution, in accordance with its components.

Solution of Eg. (6.63) in the Fourier domain. We employ the two-dimensional Fourier
_ _ i(Uugx+uy)

transform PR ()X (t) (u) = P (t,)% (1) (Ug,up) = ije fX(tO)X(tO) (x, y) dxdy,

which results in the transformed Eq. (6.63):

0P (tyx (1) (W) 0Px (tyx n (U 1)
ot =nu

ou, %t x v (U)X 6.6

y [ix ma(0)Uy — (x7C = (1) + £2 Caz (1, t5) Juguy — x D (t)uf]

supplemented by the transformed initial condition

. . 1. 1
Px ) x (1) (W) = EXP('”‘XO Uo + 1M, Uy = §0>2<0 ug - 2 %, Ut - Uoulcxoxoj- (6.66)
The IVP (6.65) and (6.66) is solved in the familiar manner. First, the solution to the
homogeneous variant of Eq. (6.41) determines the change of variables (u,, u;) — (ug, v),

L= ule’7t . Under these variables, Eq. (6.65) is transformed into a linear ODE with respect to

time t. By solving the said equation and then returning to the original variables u, we determine
the solution of IVP (6.65)-(6.66) as

., 1 .2 2
(pX(tO)X(t)(u) = exptlmxou0 —Eaxouojx

t

R t-t _
x expliug| my e ")+1<J.m5(r)e’7(t D dr || x
t0

t
1 - _
x exp —Euf ol et t")+21<J‘D8ff(r)e2’7(t Ddr || x

0

t,

(t*to)
X exp —UoUlCX(tO)X(to)e77 }X
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t t
x exp| — UgUy | k77 jcxoa(r)e’?“—” dr + «2 ICEE(r,tO)e”(t_T) dr ||, (6.67)
t, t,

By utilizing Eq. (A.3) for my (t), the verified Eq. (3.47) for af( (t), as well as Eq. (B.55) for

Cy (t) X (t,) * solution (6.67) is written equivalently

. 1. . 1
Px (tyx ) (W) = exp(lmxou0 —Ea)z(oug +imy (t)u, —Eai (t)ufjx

x exp| - uoul(n Cx,x, """+ K Cy = (1) e”“‘“))} x (6.68)

t t
X €Xp| —UgUy| k77 ICXOE(T) e "7 dr 4 k2 ICEE(T, ty) e? "7 dr
tO

t,

Last, utilizing Eq. (B.56) for CXX(t) (ty, t) we obtain
_ . 1., 2 .
Pty x (1) (U) = EXP| 1My Ug = S 67 Ug + 1My (DU |x
1 (6.69)
Xexp(—gdi (t)u? —CXX(t)(tO,t)uoul)

At this point, Eq. (6.69) is easily recognized as the characteristic function of the correct,
bivariate Gaussian pdf.

(b) Exact two-time, joint pdf of X (s;68) and X (t;8)

Let us, now, examine the two-time pdf fX(s)X(t) (X, y) in the linear case. Thus, substituting
in SLE (6.13) h(x) = nx, and employing the aforementioned calculated variational
derivative, we obtain the following, exact pdf evolution equation:

af 7 X!

ot oy
0%, vy (X,
=(KryG(t)+K2Cé:(t,t)) X(Séx‘;)( y)+ (6.70)
o y
% f oy (X,
G (L, s) X V)

oXoy
where G (t) is given by Eq. (4.36), while

S
G(t,s) = Cy =(t) ") + KjatcEE (t,r)e”C- dr. (6.71)

t,



98 6.3 Exact pdfs for a linear, additively excited RDE

Note that comparison of Eq. (6.71) and Eq. (4.36) yields G(t) = G(t, t). Further, through
(6.70) it becomes apparent that the required initial condition for its solution is
fX(s)X(to)(X’ y). Under the obvious identity fx(s)x(to)(x, y) = fX(to)X(S)(y, X), it is
readily seen that the required initial condition has already been specified as the solution of Eq.
(6.63).

Solution of Eq. (6.70) using Fourier transform. As performed, plenty of times so far, the two-
time pdf evolution equation (6.70) is solved by employing the two-dimensional Fourier

transform; ¢ ()% ¢, (U) = IRzei (Uyx+u,Y) Fy )% 1y (X, ¥) dxdy, resulting in the equation

0Pxsyxm (W) 0Px () (Y)
ot R

ou, T Pxwie M) 672)

y [irc Mz (1) Uy — (k7 G (1) + k2 Coz (t, ) ud —x G (1, 9) uluz]
Eqg. (6.72) is also supplemented, through Eq. (6.63), by the initial condition

: 1 o
Py (s)x(t,) (U) = exp(lmx (s)u; — Eai (s)uf + imy uzj x
(6.73)

1., o
X exp(— EGXO us — CX(s)X(tO)(S) uluzj.

The solution of IVP (6.72), (6.73) is carried out in the familiar fashion, that is the method of
characteristics, resulting in

. 1
Py (syx 1y (U) = exp{mx (s)u; - Eai (S)uf} X

t
. . , _ 1, . )
x exp|iu, ch‘rhE(r)e”(t 7 dr+mxoe’7(t to) —§u§a>2< 27 (1= %)

0
t0

t
IC' (r,7)e?7t=7 dr || x

=

t
x eXp —%ug 2Kkn IG(r)ezn(t_T) dr + 2x?
t

0 tO

t
x exp| = UsUy [ Cy (g% (1. () A +KJG(T, s)e7t=7) gz ||, (6.74)
tO

At this point, using Egs. (B.29b) and (B.30), the second exponential term in the above equation
is identified as my (t). Then, using Eq. (B.57) for t =t,, Eq. (4.37a) for the connection

between G (t) and D" (t), and performing some simple calculations, the second exponential
term is recognized as ‘7>2i (t). Last, employing Eq. (B.56) for Cy(s)xt )(s) as well as

definition (6.71) for G(z, s) and performing simple algebraic manipulations, the rightmost
exponential term of Eq. (6.74) is identified through Eq. (B.54) as C, y (s, t). Combining all

of the above with Eq. (6.50) results into
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. 1 -
Py (5% (W) = exp[lmx (s)u; — Eo—i (s)u? +imy (t)uzj X
(6.75)

x exp(—%ai (t)us —C, 4 (s, 1) uluzj.

Finally, Eq. (6.75) is identified as the characteristic function of the expected bivariate Gaussian
distribution, a finding which reaffirms the approach presented herein.

6.3.2 Second variant of the exact pdfs
Let us, now, repeat the process presented in the previous paragraph 6.3.1 for the equations
derived in section 6.2.

(a) Exact initial pdf fXOX(t) (x,y)

In this subsection, we are going to determine the pdf fy (X, y) in the linear case. Thus,
setting h(x) = nx in SLE (6.51), and substituting the calculated variational derivatives
Vy, (1:0) = e”7t"%) ang Ve (t;60) =xe”(=7  results in the following, exact pdf

evolution equation:

Ofy x> Y) 4

ot +ay[(ﬂy+Kma(t)>fx0X(t)(X’Y)} =
0% f (X, ) 02 f (X, Y) (6.76)
_ : X, X () V7 2~ X, X (1) v
= kCy = (1) 50y +(,< CEE(t,t)+KnG(t)) 3y

where G (t) is again given by Eq. (4.36). The initial condition for Eq. (6.76) is the same as the
one for Eq. (6.70), i.e. the inverse Fourier transform of Eq. (6.69).

Solution of Eq. (6.76) using Fourier transform. Following the usual approach, the two-time
pdf evolution equation (6.76) is solved by employing the two-dimensional Fourier transform;

Py xn (W) = J‘]Rzei (Uo X +u,¥) fx % (X, ¥) dxdy, resulting in the equation

il | 0ol o,
ot ! ouy Pxaka (6.77)
x[iKmE(t)ul—KCXOE(t)uoul_(KZCEE(t,t)+KnG(t))u12]

Eq. (6.77) is also supplemented by the transformed initial condition which, in this case,
coincides with Eq. (6.69).

The solution of IVP (6.69), (6.77) commences by considering the homogenous variant of Eq.
(6.77). This provides us with the change of variables (uy, u;) - (uy, v), v = ule’7t . Under
these variables, Eq. (6.77) is transformed into a linear ODE with respect to time t. By solving

the said equation and then returning to the original variables u, we determine the solution of
the aforementioned 1VVP as:
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. 1
Px % (W) = exp[|mxou0 —Eaiougjx

t
- . — . _ 1 3
X eXp|iug| My e"(t t°)+K‘J.mE(T)e77(t ) dr _§u12‘7>2< e277(t ty)

t,

==

t t
x exp —%ulz 2k 2 jC~ (r,7)e27C" dr + 2xn jG(r)ezn(t_f) dr || x
t, to

t
x exp| — UgUy | C e”“‘t“+KJ'CXOE(f)e’7“—f> dr || (6.78)

t,

XoXo

All of the terms appearing in the parentheses inside the exponentials are of the same form as the
ones in Eq. (6.74). Thus, performing the manipulations describes in section 6.3.1, Eq. (6.78) is
equivalently rewritten as:

. 1 | 1
Px,x o (W) = EXp('mxouo =50k, Uo +imy (Dup = oy (Huf = Cy y (1) uoulj.

(6.79)
Last, Eq. (6.79) is easily recognized as the expected Gaussian characteristic function.

(b) Exact two-time joint pdf of X (t;8) and X (s;8)

We will now examine the linear counterpart of SLE (6.44). Again, substituting h(x) = 7nx
and calculating the variational derivatives results in

Ofy (X, Y) 8
()X (s) _
Py +5[(77X+KmE(t))fX(t)X(S)(x, y)] =

(6.80)
2
% fyx wyx(s) (X Y)

oxoy

2
0" Txwxs (X Y)

= D™ (1
) ox?

+(nD(t,s) + K2 Cozt, s))

where D (t) is defined by Eq. (3.41) and D(t,s) by Eqg. (5.43). Eq. (6.80) is also
supplemented by the initial condition fX(t)X(tO) (X, y), which has already been specified in
the previous paragraph.

Solution of Eq. (6.80) using Fourier transform. Eg. (6.80) is solved by employing the two-
dimensional Fourier transform; ¢X(t)x(s)(u) :J‘Mei(ulxwzy) fX(t)X(s)(X’ y) dxdy,

resulting in the equation

OOy (1yx (s) (W) OOy yx (s) (W)
= u + ; u) x
ot (AT Pxic (V) (6.81)
x [ixma(t) Uy - D (t)u? — (7D(t, 5) + £ Cz= (1, 9)) uluz]

which, in turn, is supplemented by the initial condition Eq. (6.79) written for s =t.
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Following the usual approach, the solution of IVP (6.79), (6.81) is attained:

t
Prityis (W) = exp|iuy| my e ke [mo (r) €777 dr ||
tO

t

1 - - p—
X exp _Eulz 0>2<0 027 (t=1t;) +2jDeﬁ(T)e2n(t ) dr —Uluzcxox(s)en(t ty)

t,

t t
X exp|—UiU, n_[D(r,s)e”“‘f) dr + x2 ICEE(T,S)eﬂ(t—r) dr |l x
to Y

X eXp imx(s)uz—%ai(s)ug] (6.82)
At this point, using Eq. (B.3) for my (t), verified Eq. (3.47) for af( (t) , defining Eq. (5.43)
for D(t, s) as well as Eqg. (B.53) for C,  (s); Eq. (6.82) can be written as

. 1 -
Py 1% (s) (U) = exp(lmX (t)u, —Eai (ui +imy (S)Uzjx

1 (6.83)
X exp(— Eai (s)ul - Cyx(t,s) uluzJ.

Eq. (6.83) is readily identified as the expected, bivariate Gaussian characteristic function. Thus,
even though the use of SLE (6.44) seems rather inconvenient in the nonlinear case, its validation
in the linear case reaffirms its consistency with the entire methodology presented in this work.

All in all, the correspondence, in the linear case, of the results derived by solving our new
equations with the ones obtained via formulating and solving the corresponding moment
problems serves as a preliminary indication of the validity of our overall approach.






Chapter 7

Conclusions and Future works

In this thesis, we extended a methodology used to derive response pdf evolution equations for
RDEs excited by colored Gaussian noise in order to account for more systems. More
specifically, we first showcased the applicability of this methodology in another case, namely
the one in which the RDE is excited by both multiplicative and additive noise. Furthermore, we
outlined the manner in which this methodology can be implemented in order to derive equations
governing the joint, second-order pdfs of the system depending on all responses (and/or
excitations) on the same or different time instances.

To sum up, the derivation of these new equations commences with the delta projection method
which was concisely described in sec. 3.12. By virtue of this method, we are able to easily
represent the sought-for pdf as the average of a random delta function or a product of them and
thus, by executing some straightforward algebraic manipulations we readily derive a SLE
corresponding to the examined RIVP. The acquired SLE is each time non-closed due to some
averaged terms dependent on a time instance of the excitation, the initial value of the RDE as
well as the entire time-history of the response; the occurrence of the terms was previously
considered somewhat burdensome (Venturi et al., 2012a). Nevertheless, by considering the
response as a functional or a FFL, we are able to employ novel extensions to the NF theorem —
formulated and proven in Chapter 2 by following the approach presented in (Athanassoulis &
Mamis, 2019) — that the SLE In the case of the scalar, nonlinear additively excited RDE this
results in the appearance of the variational derivatives of the RIVP that depend on the time-
history of the response, while, in the case of an RDE also excited by multiplicative noise there
is also a dependence on the history of the excitation. Last, probably the most convoluted step of
this approach is that in order to obtain closed, approximate pdf evolution equations, we must
effectively elaborate on this nonlocal, nonlinear terms which arise from the variational
derivatives. The potency of these results was also tested in the case of a linear, additively excited
RDE in which they attained the correct Gaussian pdfs.

Since, the vast majority of the theoretical modelling for the presented cases has been established
in this work, in the future, a significant step forward would be to conduct numerical simulations
based on these equations and evaluate their efficiency. In particular, it would be very useful to
first test this methodology in benchmark cases, e.g. for Ornstein-Uhlenbeck excitation, or more
practical cases where the probabilistic characteristics of the noise have been specified through
existent data. Another useful step forward is to rederive these equations for a multidimensional
system of RDEs in order to clarify any intricacies that may arise and implement them in useful
applications. Last, it would also be very useful to test the equations for the joint pdf of the
response with its derivative in first-passage problems.

2 A more thorough description of this methodology can be found in (Mamis, 2020; Mamis et al., 2019)
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Appendix A

Proofs of Lemmata 2.7-2.12

The proof of Lemmata 2.7-2.12 are proven herein by expressing the appropriate T - operators
in series form. This is accomplished via the expansion of the exponentials appearing on the
right-hand sides of Egs. (2.47a,b,c), as follows:

t

101 ¢ @n
0o Z;)EZ_’JJ IC“ o (Tl(l)’TZI)) E,E (T(p) 2(p)) X
t
O ) (A.ld)
X 2P dr® o de P drl® - de P,
50(z®™) - 50(zP)60(zP) - bu(zP) ) {
=1 1 ¢ @0
- Zaz_pj. - I o (7@ 2Pyl (2,2 x
p=0 ty to (Alb)
5P
Ar® oo dz® dr® oo de
X5“(71(1))"'5U(rfp))5u(7§1>)...5U(T§p)) 7 T, dr, 7,
=1 ¢ @p
ZEI J.CHO: (& r®) . C, . (T(p) M) x
o (A.lc)
6”’.

dr® ...dzP dr® ... 4z
X5U(Té1))"'5U(Tép))5u(rl(l>)...5u(rl(p)) o Ty a7y 7

The proofs of the aforementioned lemmata is based on the above series expansion, in
conjunction with the linearity of integrals and derivatives.

Proof of Lemma 2.7: 7 - operators are linear. The action of operator 7. . on

=0 =1
t

[ )]+
0

. Io )] is expressed via Eq. (A.1c) as

7. [t e,

1] -

t

SER LR W @ (P) ()
- Zﬁ jcaoal(ro @) Cp L (7, 77) x
p=0 "¢
| 2l
x 0 rél) drép)drm -drl(p).

60(z) -~ 80(eP)ou(e) - Su (")
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By taking advantage of the linearity of derivatives and integrals and assuming that a and g are
independent from the differentiation arguments v () and u(e), each term on the right-hand

side of the above equations in linearly decomposed, thus, resulting in the linearity of the ’1_; 2

operator; the proof of Lemma 2.7 for T 2, has been completed. The proof for the other two

T — operators is similar. n

Proof of Lemma 2.8: 7 — operators commute with v(7)— and u(z)- differentiation.
We shall prove this lemma for operatorﬂ_“é - » Which is also the most complicated case. By

using Eq. (A.1c), we have

T2 GIoCL )il =

=0 —‘1

(51)( 0)

5 = t @p)
C. ® L (¢
50(2’ ) ;)pl.[ j (To T,) (T 7,") X

NS HUCNSY
T o0(e) - Su(e)ou () - bu(e?)

drél) drép) dr(l) drl(p) .

Employing, now, the continuity and linearity of the derivative, the above expression is rewritten
as:

= 1 L @p
- ZFI jc (70, e®) o (2P, 7P
p=0 to

0

o iU )]
C50(75)00(c @) - b0(07)ou(zP) - du ()
[ )] )]

! 60(70)

(€)) (p) () (N _—
dry” ---dzy” dz;” - do” =

08
=
[

Proof of the Lemma for

)]} and for the other two operators

o

is similar. m

Proof of Lemma 2.9: T — operators commute with each other. For the sake of simplicity,
we shall prove the commutativity of operators T. . and T 2, ; the proof for the rest of the

=0 —1

cases is similar. Using Egs. (A.1a,c), we obtain
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T [T GloC]) uCl ] -

=0=1
t t
= 1 L oep
— o O (p) ~(p)
= E EJ‘ J‘Caoal(ro 7)o Cg g (757,77 x
p=0F* ¢ to
5P

CS0(z®) - bu(zP)ou(z®) - ou(e”)

t

11 em | (€] (1) (m) (m)
.. |C. - (c.7,0)--C. _ (", 0™)x
I2m Z0Z2g 1 2 Z0Eg 1 2

m=0 tO tO

82" Glo(+[ )iu(e] )]

" 50(e) - bu(aM)s0(eP) - su(al")

() (m) ) (m)
do,” ---do;" do,’ ---do,™ | x

x drél) drép) dz® ... dz (P,

Now, by employing the linearity of derivatives and integrals and rearranging the order of
summations, we obtain

Téo(.)él(.) [féo(.)éo(.) Glo(-

UGl =

S 1 em o (m) _(m)
- Zmz_m ICEOEO(O-l ,03°) - Cg g (00" ,0,7) %
[ )

m=0 ty

§2m
X 50(01(1))"‘6U(O'l(m))5l)(0'§1)) "'5U(o'§m)) X
© l t (2P)t o o . .
X ;E;[ .[Cgogl(z'o ) C g (2P, 2P x
52 Glo (s IO);u(.EO)]

@) (p) (1) (p)
dry” ---dzy” dzy” - dr® | x

“S0(z®) - b0(zP)ou(z®) - bu(s”)
‘Ao . do™ do® ... doi® =

- T.. | T... GloC[ i), .

Lemmata 2.7-2.7 are essential for the proof of both extensions to the NF theorem. Subsequently,
we are going to evaluate the action of 7 — operators on the products u(s) F[ov (e :0 );u(e |IO )]

and u(s) Flo(e IO ); u(-|:0 )]. However, before we are able proceed, we must introduce, in

each case, the following product rule for Volterra functional derivatives:
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6 [u($) FIo ([} )iu e[| 5| FLuC[, su ] )]
R T R e Y T
t : A2
) 5k—1|:j:'[u(. t0);u(.|t0)]} ( a)
+Z5(S—T(n)) - ,
n=1 H/;:]_(SU(T(/))
slaFwelueln] e[ Fuel)ue)]
I T R TS R O
(A.2b)

64 FLoC[ el

Ht:l 6“(7([))

£#n

k
-5 (s -7 ™)
n=1

with thl Su(z)=06u(e®) - bu(z")ou (") - bu(e¥) ands' (s -7 ™) =

C#n

a5(s —-t™)/as.

The first case. Eg. (A.2a) can easily be proven via mathematical induction on index k,
commencing from the product rule for the first order Volterra derivative

(e FC G| S FCl) el
= u(s) +
5u(z) su(z) (A3)
5U(S) NP
S LG,

with du(s)/du(z)=5(s - 7).

For the second case, under the assumption that u(s) is Cl([t0 ] - R), like the paths of
E(+;80), u(s) canexpressed as a linear functional of integral type with a singular kernel

u(s) = ié'(s—r) u(z) dr, (A.4)

where 6'(s—7)=-00(s—7)/0r. Expression (A.3) is formal, yet it makes the Volterra
derivative of u(s) easily computable to

ou(s)

5uie) - 5'(s—1). (A5)

Using, now, Eg. (A.3) the product rule for first-order Volterra derivatives of
u(s) Flo(- IO )iu(e :O )] can be seen through Eq. (A.3) as
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O|a($) FIoC)uCI| 8| FLoC[ el
5u(r) = u(s) 5u(r) " (A6)
+8(s=0) Flo[ )su(e[)].

Thus, commencing from Eg. (A.6), Eq. (A.2b) can easily be proven via mathematical induction
on index k.

Proof of Lemma 2.10: The action of operator féoéo on u(t) Flv(.
by

HUC

:0 )] is given

NHIC

T, [u©) Floc D = u© T | FloCl el ] @D

Eg. (A.7) holds true due to the linearity of operator féoéo , since the scalar function u(s) is
independent from the differentiation argument of féoéo ,1.e. v(s).

Proof of Lemma 2.11. For this lemma, we are going to present the proof for
u(s) Flo(e IO);u(- :0)] since it constitutes the most complicated case; the proof for

u(s) FloC|, );u(e
expansion, Eq. (A.lE) and employing the product rule for Volterra derivatives, Eq. (A.2b), the
action of operator Téoé1 onu(s) Flo(e IO );u(e :0 )] can be expressed as

: )] is similar and omitted for reasons of brevity. Using the series
0
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Let us, first, elaborate on A:
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% Hle(Su(ré[))(Su(z’f”)

where the sum appearing on the rightmost side of the above expression can be identified via Eq.
(A.1c) as Téoél[ . :0 ); u(-|:O )]} . As such,

A=U()T, . | FLoCL)uC)I ). (A8)

We shall now evaluate the second term, B :
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By performing, in each term of sum Z the change of integration variables 7z, = z{" and

p=1
™=z for t<n,s™ = s for { >n, we obtain
p l m m
I1. .Cee(d™ ™) = [15.co (e, (A.9a)
(#n
p-1 m m
Hmil&)(ré Nou(r™) = 1‘[(=l So(z{")ou ("), (A.9b)
- (#n
p-1
drimMdz™ = dz{?dz. A.9c
[T ariort® = [ ax (x50

Under this change of variables, we find
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[, )uCel,
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t p-1
X _ ° dr dz{mdz™ |,
su(e) [} su(=f™)su(z™) L amen

By performing the change of index k = p —1, and interchanging 7, integration with
summation the above expression is equivalently written

B = jaSCEOEl(TO,S)i[ﬁj @ )J. . (TO,S)H HD 1 (m)1,£.l(m))><

o | 1] Y]]
[T, v bu™) v (z,)
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k
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| Im=1dT° dz,;™ |dz,.

The sum on the right-hand side of the above equation, is identified via Eq. (A.1c) as

SN HICINSY

20 ov(z,)
Thus,
t _ |8 F o] )iuCe] )]
B = jascgoal(ro,s)fré L 7 lde, . (A.10)
: 051 ov(r,)
Finally, combining Egs. (A.8) and (A.10), the proof of Lemma 2.11 is completed. [

Proof of Lemma 2.12. Once more, for reasons of brevity, we are only going to present the proof
. IO )]. Using the series expansion Eq. (A.1b) as well

as Eq. (A.2b), the action of operator félél . :0 )] is given by

ffélél[. . :0)]] =u(s)I +A,
where I is given by
l 1 t t
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while A, after taking into account the symmetry of autocorrelation function C. . (7,,7z,) and

the properties of the delta function, can be written as follows:

N i 1 iJ‘ (2p)J-8 C~ _ (S T(n))H; Elil(rf/)’fél))x

i p12? o
62p1|: .t );U(°|t )]:|
X 0 (“)H, ,dzd 7",
su(e™) T - suz{”)du(z{")

£#n

to to

Through Eg. (A.1b), I' is identified as
L= T, . | FloCl) el (A1)

Let us, now, return to the treatment of A and perform, for the terms inside the sum, the change
of variables presented in the proof of Lemma 2.11, Egs. (A.9a,b,c). it is easy to see that all 2 p

terms in the n — sum are equal, resulting in

zzl( iz

t

J- (2p- 1)J¢a C_ _ (S . )H . _1_1(2_(m) ém))x

62p1|: )'U(°| )]:|
(‘5u(r )H 6u(rl(m))(5u(r(m))

p-1
dr, I | drl(m)dfém).
m=

Performing the index change k = p —1 and interchanging z, — integration with summation,

results in
[0 k m m
A = ja C..(sr )Z(k)lzk j “H Co (5™ M) x
x62k[j: .to);U(.LO)ﬂ 5[‘T .to);u(‘|t°)]} Hk dz™dz{™ |dr,
[T sutzi™)ou(m) su(s)

The sum in the right-hand side of the above equation is identified, via Eqg. (19b), as

A= j.asczlal(syrz) rfélél [ (;uto(z_;l;(.LO)]}

dr, . (A.12)

to

I HIC L

t . t Lo
. t()),u(-|t0)] is similar.



Appendix B

Moment problem for a linear, additively excited
RDE

In this appendix, we will derive and solve the deterministic initial value problems for the
moments of the familiar linear, additively excited RIVP:

X(t;0) = nX(t;0)+x E(t;0), X (t,;0) = X,(0). (B.1a,b)

The derivation of these moment equations will be performed by multiplying both sides of Egs.
(B.1a,b) with the appropriate, for each problem, random function, and then by taking the average
E[+] of both sides of the equation. Since the original RIVP is a linear SDE, the corresponding

moment problems will be linear ODEs of the general form
dx(t)

it =ax(t)+by(t), X(t,) = X, € R, (B.1)

whose solution is

t
x(t) = x e +bjy(f) e dr . (B.ii)

to
At this point, it is useful to discuss on which moment functions should be considered as data for
the moment I\VVPs, and which moments should be considered as unknowns, and thus, for their
determination, additional moment IVPs should be constructed. In the original VP, Egs.
(B.1a,b), initial value and excitation are considered known, as in every IVP. Since initial value
is the random variable X,(@) and excitation is the random function Z=(t;8), the

aforementioned knowledge of initial value and excitation means, from a probability theory point
of view, the knowledge of the pdf f, (x) and the family of pdfs f., = (&, ..., &y), for
all N e N respectively. What is more, the simultaneous knowledge of X,(8), ZE(t;8)

implies also the knowledge of the cross-pdf initial value-excitation family
22y (X0 &veeey &), forall N e N.

B.1 Moment problem for the response

In this section, we will derive, from Eqgs. (Bla,b), the corresponding I\VVPs for the first (mean
value) and second (autocorrelation) moments of the response X (t; &), as well as the cross-

correlation functions of the response with excitation Z(t; &) and initial value X, (8).

113
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B.1.1 IVP for mean value of the response m, (t)

We construct an equation for the mean value of X (t; &) by averaging both sides of Egs.
(Bla,b)

Eﬂ[x(t;e)] = nE’[X(t;0)]+x E°[E(t;0)],
E’[ X(t,;0)] = B[ X,(0) .
Interchanging, now, average and differentiation operators results in

%EH[X(t;O)] = pE°[X (t;0)] + x B'[Z(t;0)],

B[ X (t,:0) ] = B[ X,(0) ],

which can equivalently be written as

dm, (t)
T nm, (t) +xm_(t), my (ty) = my . (B2a,b)
Thus, initial value problem (B2a,b) can be solved using Egs. (B.i), (B.ii) as
t
my (t) = m, e"“ ijs(r) (-7 dr (B.3)

to
B.1.2 IVP for the two times response-excitation cross-correlation R, (t, s)

We will construct an equation for the cross-correlation function of the response X (t; &) and
the excitation Z(s; @) . For this, we first multiply both sides of Eq. (B.1a) with Z(s; )

X(t;0) E(s;0) = nX (1;0) E(s;0) + k E(t;0) E(s;0),
and then, take the average as follows:

E‘g[X(t;Q)E(s;O)] = nE°[X (t;0) E(s;0)]+ x B[E(t;0) E(s;0)].
Interchanging, now, average and differential operators
%EB[X(t;H)E(s;Q)] = nE°[X(t;0) E(s;0)]+ x E°[E(t;0) E(s;0)].
and introducing moments, we obtain

Ry (t,9)

p» = nRXE(t, s) + Kk R (t, S). (B.4a)

The same procedure is also applied to procure the initial condition
X(t,;0)E(s;0) = X,(0)E(s;0) =
B[ X (t,;0) E(s;0) | = B’| X (0) E(s;0) | =
B[ X(t,;0) E(s;0) | = B’ X, (0) E(s;0) | =
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Ry=(to, s) = Ry,=(5). (B.4b)
Solution to initial value problem (B.4a,b) with respect to t using Egs. (i), (ii) is written

t
Rez(t,s) = Ry o(s)e"" ™™ + & IREE(r, s)e”" " dr. (B.5)

to
B.1.3 IVP for the initial value-response cross-correlation R, (t)

We shall, now, construct an equation for the initial value-response cross-correlation Ry, (t).
By multiplying Eqg. (B.1a) with initial value X, (&)

Xo(0) X (t;0) = nXy(0) X (t;0) + x X,(0) E(t;0),
and performing the following manipulations

B[ X, (0) X (t;0) | = nB’[ X,(0) X (t;0) |+ x B[ X,(0) E(t;0) | =

%E”[Xo(é’) X(t;0) ] = B[ X, (0) X (t;0) |+ x B[ X,(0) E(t;0) ],

we find

d R,y (1)
i = TR, () F K Ry (1), (B.6a)

Accordingly, the initial condition is specified as
X(t,;0) X,(0) = X,(0) X,(0) =
B[ X (t,:0) X,(0) ] = B[ X,(0) X,(0) ] =
Ryx, (to) = Ry x, - (B.6b)

Thus, the solution to initial value problem (B.6a,b) using Egs. (B.i), (B.ii) is

t
Ryx, () = Ry, "% 4 KIRXOE(T) e dr. (B.7)

to
B.1.4 VP for the two-time autocorrelation of the response R, , (s, t)

Following the same procedure, we will construct an equation for the autocorrelation of the
response. First, Eq. (B.1a,b) is multiplied by X (s; &)

X (s:0) X(t;0) = nX(s;0) X(t;0)+x X(s;0)E(t;0).
Then, by applying the average operator and carrying out the usual manipulations
E"[X(s;é’) x(t;e)] = nE’[X(s;0) X (t;0)] + x E°[X (s;0) E(t;0)] =

%EQ[X(S;H) X (t:0)] = nE[X (s:0) X (t;0)] + x B[ X (s;0) Z(t; 0)],
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results in

m%t(s,t) =R, (s, t) +x R,z (s,1). (B.8a)
The initial condition to Eq. (B.8a) is analogously obtained as

X(s;0) X(t,:0) = X(s;0) X,(0) =

B[ X (5:0) X (t,:0) | = B[ X(5;0) X,(0)]| =

Ryx (5, t5) = Ry, (8). (B.8b)

Therefore, by solving initial value problem (B.8a,b) through Egs. (B.i), (B.ii), we obtain the
two-time autocorrelation of the response

t
Rux (5,1) = Ry, (5) €707 + KIRXE(S, r) et dr, (B.9)
to

In Eq. (B.9), quantities Ry-(s,7), Rxy, (s) can be determined by Egs. (B.5) and (B.7)

respectively. First, in Eq. (B.7) we substitute t = s ; this substitution is legitimate since the right-
hand side of Eq. (B.7) is continuous with respect to the two arguments s, t. Thus, we find

Ry, (8) = Ry, 707 4 KJRXOE(T) "¢ dr. (B.10a)

to

Then, in Eqg. (B.5) we interchange the two arguments
Re=(s,t) = Ry - (1) "™ 4+« jREE(u, t) e’ du,
to
andsett=r7:
Rez(s,7) = Ry o () e 4k jREE(u, 7) e’ du. (B.10b)
t

Finally, substituting Egs. (B.10a,b) into Eq. (B.9) yields

S
Ryx (8,1) = [RXOXO e”C ) 4k JRXOE(T) e7(s77) dr} g”(t7t) 4

to

t s
to

to

S
n(t+s-2ty) nt+s—7-ty)
Rux (5,1) = Ry o e : +KIRXOE(T)6 ) dr

to

t . (B.11)
+K'J‘RXOE(T) e?](t+s—1'*t0) dT+K2 J‘J‘REE(U,T) eiy(t+s—1—u) dudT
to

toty
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B.1.5 IVP for the one-time autocorrelation of the response R, , (t,t)

The one-time autocorrelation of the response can readily be obtained by substituting s =t in

Eq. (B.11). This is rigorously performed since the right-hand side of Eq. (B.11) is continuous
with respect to both time arguments. As such, we obtain

t
Ryx (t,1) = Ry «, p21-t) o . o2nt IRXOE (7) e M) g

to

(B.12)

tt
+x?em HREE(u, 7) e dudr.

totg
Let us now differentiate both sides of Eq. (12) with respect to t, resulting in

dR,, (t,t)

m 2nRy x. et | g RXOE(t)e”“*“ ¥

t t
+anxe Ry (7)e" " dr+ 267 [Rez(u,t) €7 du +

to to

tt
+2nK? e JIR:: (u,7) e’ dudr.
toto
Further, identifying via Eq. (B.12) R, (t, t) on the right-hand side of the above equation, we
find
1 dR,, (t,1)

t
5 - =Ry (1, 1) + kR o (1) "7 4+ KZIREE (u,t)e”*¥ du. (B.13)

to
Eqg. (B.13), along with the initial condition determined by the data of the problem as
Rxx(tovto) = Rxoxov (B.14)

constitutes the I\VP for the one-time autocorrelation function R, , (t, t). Note that this I\VP for
Ry« (t, 1), Egs. (B.13), (B.14), cannot be obtained by simply substituting s =t in the I\VP for
Ry« (s, 1), Egs. (B.6) under the substitution of Eq. (B.5) for R, _ (s, t)

ORyx (s, 1)

- = IR (5, 1) + xRy (1) "7 4 KZIREE(U, t)e”C" du, (B.15a)
to

and the initial condition
Ryx (s, t,) = RXXO(S). (B.15b)

We observe that the multiplying factor 1/2 in the left-hand side of Eq. (B.13) cannot be
obtained by Eq. (B.15a) for s =t.
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Formulae for the central moments of the response

Let us, now, define the second-order central moments of the data of the problem, i.e. the initial
value and excitation

initial value variance: o3 =C, , =R, , —mg , (B.16)
two-time excitation autocovariance: C__ (t, s) = R__(t, s)—-m_(t)m_(s), (B.17)
initial value-excitation cross-covariance: C . (t) = Ry o (t)—m, m_(t). (B.18)

Also, we define the second-order central moments that include the response, i.e.

initial value-response cross-covariance: C, , (t) =R, y (t)-m, m, (t), (B.19)
two-time response excitation cross-covariance: C, _ (t, s)=R, . (t, s)—-m, (t)m_(s), (B.20)

two-time response autocovariance: C,, (t,s) =R, (t,s)—-m, (t)m, (s), (B.21)

By substituting now, the relations: (B.3) for m, (t), (B.5) for R, . (t, s), (B.7) for R, , (t)

and (B.11) for R, (t, s), into definition relations (B.19)-(B.21), and employing the relations
(B.16)-(B.18), we obtain

t
Cuz(tys) = Cya(s)€” ™ 4k [Coz (v, 5) €77 dr, (B.22)

to

t
Cux (1) = Cyy "0 4 KICXOE(T) "9 dr, (B.23)

to

t
CXX (t S) — CXOXO e”(t+5—2t0) + K JCXOE (T) el]('[+S—T—t0) dz’ n
’ (B.24)
+ KJ.CX _( )eﬂ(t+s T —tg) dr + x J.J-CE_ LI Z') en(t+s—r_u) dudrz.

toto

Last, for the variance of the response, we set s =t in Eq. (B.24)

op(t) = Cyy (t,t) = o ™7+

(B.25)
+ 25 ") ICX (7)) e"™ D dr + &2 IIC__ T,u) e’ 7Y dudr.

toty
Since the integrand of the double integral is symmetric with respect to the two integration
variables, u, 7,
I CEE T, u e’ "W dudr = ZIIC__ T, u) e’ "W dudr.

toto toto

Thus, Eqg. (B.25) is expressed equivalently as
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t T
2 _ — _ -
o (t) = of "7 12k e ‘“j Cy,=(r)e”? +z<jc (z,u)e”@ " du | dr,

to to
and after some algebraic manipulations
t T
O'>2( (t) _ O_)2<0 eZII(T—tO) + 2KJ. CXOE(T) eﬂ(r—to) + K J.CEE (T, U) eﬂ(z._u) du ezﬂ(t—f) dr.

to to

(B.26)
By employing now Eq. (B.22), Eq. (B.26) reads as

t
ol (t) = o2 e’ 4 2KICXE(T, 7)e? ) dr, (B.27)

to

B.2 Moment problem for the first derivative of the response

Let us, now, move towards determining the first (mean value) and second (autocorrelation)
moments of the first derivative of the response X (t; @), the cross-correlation functions of the

response with excitation Z(t; ), Z(t; @) aswell as initial values X , () and X (t, ;@) . The
derivation of these moment equations requires to consider the following RDE which is derived,
as discussed in Ch. 7, by differentiating both sides of Eq. (B.1a) with respect to t:

X(t:0) = pX(t:0)+x Z(t;0). (B.28a)

Eq. (B.28a) is also supplemented by the initial value obtained by setting in the initial problem
t = t, as follows:

X(t,:0) = n1X,(0) +x Z,(6), (B.28b)

where E,(8) = Z(t,; @) is used in order to simplify the notation. The sought-for moments

are derived in this section by utilizing the already presented methodology. More specifically,
we shall take the average E’[+] of both sides of RIVP (B.28a,b) which each time is multiplied
by the appropriate random function, and then solve the acquired, linear ODE. Nevertheless, the

expressions presented in this section can also be straightforwardly obtained by differentiating
(in the mean-square calculus sense) of the already derived moments.

Before we begin with the derivation of the aforementioned moments, we have to make some
additional comments regarding what is considered data for the moment IVPs and what
unknowns; the latter shall be subsequently obtained by formulating and solving their
corresponding IVPs. Thus, in this section, in addition to the knowledge of the pdfs mentioned

in the previous section, the knowledge of the family of pdfs fs(tl)... a(ty) (&, ..., &) and the

cross pdf family of the initial wvalue with the derivative of the excitation
fxos(tl)__. E(ty) (x, &, ..., &) isrequired and apprehended though the knowledge of the initial

value and excitation.
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B.2.1 IVP for mean value of the first derivative of the response m, (t)
We construct an equation for the mean value of X (t; @) by first averaging both sides of Egs.
(B.28a)
B[ X(t;0)] = nB°[ X (t;0) ]|+ x B’[E(t;0)].
Then, we interchange mean value and differentiation operators
d : . .
—EX(t;0)] = gE°| X (t;0) |+ xE?|Z(t;0)],
LB[X (0] = 0B [X(t:0)] [2(t;0)]
and introducing moments, we obtain
dm, (1)
dt

= nmy (1) +xmg(t). (B.29a)

Following, now, the same procedure for Eq. (B.28b)
B[ X (t,;0)] = nE’[X,(0) |+ x B'[E,(0)]| =
E"[X (to;e)] = nE"[XO(Q)] + K E*’[ao(e)],
results in the following initial condition:

m, (t,) = nm, KM (B.29b)

0

Finally, by solving IVP (B.29a,b) using Egs. (B.i), (B.ii), the mean value of the first derivative
of the response is written as

t
M, (t) = (nmx Fem, )e”“‘“” +ij5(r) e dr | (B.30)

ty

which can be further calculated as

My () = (7, +em ) i mo () - mo (1) " |+

t
+ Kryj‘mg(r) e’ dr =

to

t
hy (t) = 7m, e”“" 4 em_(t) +m;jm5(r) et dr. (B.31)

to

Moreover, recalling Eq. (B.3) for the mean value of the response Eqg. (B.31) can be equivalently
be expressed as

m, (t) = pm, (t) +xm_(t). (B.32)

Eq. (B.32) can also be derived by directly applying the average operator E?[+] to both sides of
Eg. (B.1a).
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B.2.2 IVP for the two times response — excitation dot cross-correlation R, - (t, s)

We will construct an equation for the cross-correlation function of the derivative of the response
and the excitation. Thus, by multiplying both sides of Eq. (B.1a) with Z(s; @), taking the
average and performing the usual treatment, we obtain

2(s;0)X(t;0) = nE(s:0)X(t:0) + k E(s;0)E(t;0) =
E’[Z(s;0)X (t;0)] = nE’[E(s;0)X (t;0) |+ x B[ E(s;0)E(t;0) | =
0

aEﬁ[z(s;e)xa;ea)] = nE’[E(s;0)X (t;0) |+ x B"[E(s;0)E(t;0)],

which can be rewritten by introducing moments as

%Rxé(t,s) =no,R,.(t,s) +x 0, R, (t,8). (B.33a)

The same procedure is also applied to the initial condition (B.1b)
X (t,;0)2(s;0) = X,(0)Z(s;0) =
B[ X (t,;0)E(s;0)] = B[ X, (0)E(s;0 | =
Ryz(ty,8) = Ry 2 (t, ). (B.33h)

Solution to initial value problem (B.33a,b) with respect to t is written

t
R,z (t,s) = R, :(s)e’" ™+« jR (r,s)e"" " dr. (B.34)

to

B.2.3 IVP for the two-time cross-correlation of the response with its first derivative
R« (51 t)
X X

We will construct an equation for the two-time cross-correlation function R, . (s, t), by

multiplying both sides of Eq. (B.28a) with X (s; ) and taking the average

X(s:0)X(t;0) = nX(s;0)X(t:0)+xk X(s;0)=E(t;0) =
E’[ X (s;0)X(t;0)] = nB°[ X (s;0)X (t;0) |+ x B’[ X (s;0)E(t;0)] =
%EH[X(S;Q)X(t;H)] = nB’[ X (s;0)X(t;0) |+ x B[ X (s;0)E(t;0)],
we find

%Rxx-(s,t) =R, (s, 1)+ K Rz(s, 1), (B.35)

Note that the rightmost term of Eq. (B.35) can be identified by Eq. (B.34), rewritten by
interchanging the time arguments as
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Ryz(s,1) = Ry 2 (D) "™ 4k [Rez(r, 1) €7 dr,
to

Now, substituting the above expression into Eq. (B.35), we find

%Rx){ (S,t) =7 RXX (S, t) + K RXOE(t) e”(s’to) N

s (B.36a)
+x? szé(T’ t) e’ dr,
to

Likewise, we obtain the initial condition
X (s;0)X(ty;0) = nX(s;0)X,(0) +x X(s;0)E,(0) =
B[ X(s:0)X (t,:0)] = B[ X (5:0)X,(0)]+ x B[ X (5:0)5,(0)] =
Ryx (sit)) = 7R, (8) +x R _ (8). (B.36b)

Solution to initial value problem (B.36a,b) with respect to t is written

t
R, (s, t) = (’7Rxx (s)+x R, _ (s))e"(t‘t“ + K IRXé(s, r)e" ™ dr =

to

(t-to)
= (nRXXO(s)JrchXEO(s))e” +

t
K [RXE (s, 1) = Ry= (s, to)e”(tito)] + K7 ijs(S; r)e’"dr =

to

t
Reg(s,t) =nR_ (s)e"" ™™ +x RXE(s,t)an'RXE(s, )e"™dr  (B.37)

to

Further, the terms RXXO (s) and R,.(s,t) can be expressed through Egs. (B.7) and (B.5)

respectively as:

Ry, (8) = Ry, 707 4 KIRXOE(T) "7 dr, (B.38)

tO
Ryz(S,1) = Ry o (1) e"" 7 4 KIREE(u,t) e”C-v qy., (B.39)
to

As such, using Egs. (B.38) and (B.39) the two-time cross-correlation of the response and its first
derivative, Eq. (B.37), takes the following final form:
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S
R, « (s, t) = 77RX ) ol (s+1-2t) + K7 J-RXDE (T)en(s+t—r—t0) dr +

to

+ xRy (1) e 4 KZJREE(U, )e”CVdu+  (B.40)

to

t ts
+ K7 IRXOE (T)en(sﬂ—rfto) dr + K'277 J.IREE(U1 2_) en(s+t—r—u) dudr

to toto

B.2.4 IVP for the cross-correlation of the initial value with the first derivative of the
response RX-XO (1)

We will construct an equation for the cross-correlation function, by multiplying both sides of
Eqg. (B.28a) with X (&), and taking the average

X, (0)X(t;0) = n X, (O)X(t;0)+Kx X, (0)E(t;0) =
B[ X, (0)X(t;0)] = nEB[ X, (0)X (t; 0) ]|+ x B[ X, (0)E(t;0)]| =

d [ / . 4 / . o — .
EE [ X, (0)X(t;0)] = nB[X,(0)X (t;0) ]+ x B[ X, (0)E(t;0)] =
%Rx-xo(t) = 7Ry, (1) + x Ry, (1), (B.41a)

The same procedure is also applied to the initial condition

Xo ()X (t5;0) = nX§(0) + k X (0)E(0) =

B[ X, (0)X (t,50)] = nB[ X3 (0) |+ x B[ X,(0)E,(0) | =

Rix, (To) = mRy x, + K Ry =, (B.41b)
Solution to initial value problem (B.41a,b) with respect to t using Egs. (B.i), (B.ii) is written

R, (0 = (MR, 5 R, J "7 ¢ [Rey (0) = Ry, (106”7 +

t
+ K7 IREXO (r)e""" dr =

to

t
Ryx, (1) = Ry, e"“ ™ + xRy (1) + k7 jRXOE(r)e"“-f) dr (B.42)

to

B.2.5 VP for the cross-correlation of the first derivative of the response with the excitation
R (t,s)

We will construct an equation for the cross-correlation function, by multiplying both sides of
Eq. (B.28a) with Z(s; @), and taking the average
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2(s:0)X(t;0) = n=(s;0)X(1;:0) +x E(s;0)=(t;0) =
E"[E(s;e)x(t;e)} = nE"[E(s;e)X(t;9)]+KE9[3(s;9)E(t;9)] =N

%EQ[E(S;G)X(HH)] = nE’[2(s;0)X (1;0) |+ x B’[E(s;0)E(t;0)] =
%ng(t,s) =nR;_(t,s) +x R (,8). (B.43a)

The same procedure is also applied to the initial condition
E(s;0)X (t,;0) = nE(s:0)X,(0) + K E(5;0)E,(0) =
EH[E(S;H)X (t,; 9)] = nEH[E(s :0) XO(H)] + K EH[E(S;H)EO(H):I =
Ry (t;,8) = nR, _(s)+x R__(s). (B.43b)

Solution to initial value problem (B.47a,b) with respect to t using Egs. (B.i), (B.ii) is written

t
R;.(t,s) = (URX _(s)+ xR, E(s))e"‘“” + KjRéE(r, s)e” I dr =

to

t
Ry-(t,s) = 7R, _(s)e"" "™ + x R, (t,8) + KUIREE(T, s)e”t-Idr
ty

(B.44)

B.2.6 The autocorrelation of the first derivative of the response

We will obtain the autocorrelation function, by multiplying both sides of Eg. (B.1a) with
X (t; @), and taking the average

X(t;0)X(s;0) = nX(t;0)X(s:0)+x X(t:0)E(s:0) =
B[ X (t;0)X(s;0)] = nB [ X (t;0)X (5;0) |+ x B[ X (t;0)E(s;0) | =
Ryz(t,s) = 7R, (s, t) + & R,_(t,s). (B.45)

By substituting Egs. (B.40) and (B.44) into (B.45) we obtain the two-time autocorrelation
function

S
2 n(s+t-2ty) 2 n(s+t-7-ty)
Ry (t,s) =17 RXoXoe “ +Kxn IRXOE(T)G “dr +

to

+ KRy (1) €707 KZUIREE (o, 1) e’ 2 do +
to

t t s
+xn° IRXOE (r)e"" T dr 4 k2 JJREE(G, r) e’ T dodr +

to thto

t
+xnR__(s)e"" ™" 4 k? R_(t,s) + KZUIREE(T, s)e” " dzr. (B.46)

to
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In addition, recognizing that the right-hand side of the above equation is continuous for both
time arguments, we can make the legitimate substitution s = t. Finally, by taking advantage of

the symmetry property of R_. (t, t), the one-time autocorrelation function of the first temporal
derivative of the response is derived.

Rix (1) = n®Ry ™ 4k R (8, 1) + 26 R, o (1) "7 +

t t
+2xn? JRXOE(T) e g 4 ZKZUJREE(T, t) e’ dr + (B.47)

to to

+x°n? j-jREE (o,7)e"® " dodr
toto
Formulae for central moments of the derivative of the response
First, we define the second-order central moments of the data of the problem (B.28a,b),
variance of the derivative of the response at t =t

Gi(to)zcxx(to'to):Rxx(to’to)_mf{(to)’ (B.48)

two-time cross-covariance of the excitation and its derivative:
C..(t,s)=R._(t,s)-m_(t)m_(s), (B.49)

cross-covariance of the initial value and the derivative of the excitation:
Cxoé(t)zRxoé(t)—mxomé(t). (B.50)

Also, we define the following, useful second-order central moments that include the response
and its derivative, i.e.

cross-covariance of the derivative of the response and the initial value X, (8):
CXXO (t)zR)iXO (t)—mx (t)mxo, (BSl)
two-time cross-covariance of the response and its derivative:

Cyx (t,8) =R, (t,s)—m, (t)m, (s), (B.52)

At this point, using the above expressions as well as Egs (B.40) for R, ; (t, s) and (B.42) for

Rxxo(t),wefind

t
Cyy, (1) = 1C, @ + &5 Cy (1) + k7 ICXOE(T)e”“*T) dr, (B.53)

to
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S
CX)& (S1t) — UCX « e'](5+t—2t0) + KT] J.CXOE(T)eU(S+t—T—t0) dTJ,.

to

S
+xCya(t)e’ ) 4 szcag(u, t) e”C " du +

to

t ts
+ K7 J‘CXOE(T)en(sH—rftg) dr + K277 JICEE(U1 Z') en(s+t—r—u) dudr.
to

toto

Moreover, by setting t = t, in Egs. (B.53), (B.54), we obtain

C)Zxo(to) = CX.OX0 = 77CX0X0 -|-K'CXOE (ty),
CX)Z (S,to) = UCX < eﬂ(S—to) +K77 J.CXOE(T)EU(S_T)dT‘i‘
to

S
FxCy(ty) e’ 4 szcss(u, t,) e”¢"* du.
to

(B.54)

(B.55)

(B.56)

The derivation of Egs. (B.55)-(B.56) is rigorous since the right-hand side of Egs. (B.53)-(B.54)

is continuous with respect to both time arguments.

Last, the variance of the first derivative of the response, o (t), can similarly be derived by

considering ai (1)=C;; (t,t)=R ; (t,t)—m; (t)m, (t). However, it is much easier to

acquire it via its definition, as

oI (t) = EG[(X(t;e) —m, (t))z} _
= B[ X (t;0) —2m, ()X (t;0) + my ()] =
= B[ X°(t;0)]-2m, (1) B[ X (t;0) ]+ m (1) =
= B[ X?(t;0)] - m} (t).

Further, using Eq. (B.1a), we find

o3 (t) = Eg[(nX(t;0)+KE(t;9))2}—mf((t) -

= n* B[ X*(t;0) |+ 2nxBY[X (t;0)E(t;0)] + x> B[22 (t;0) | - m (1)

= 72 Ry, (1) + 27K R (t, 1) + K2Rz (8, 1) — (pm, (1) + xm_ (1)) =
Finally, by introducing central moments we reach the expression

oi(t) =nloy(t)+2nkCyo(t,t) + k?cZ(t).

Eq. (B.32)

(B.57)
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