ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Μοντελοποίηση οργανικού κύκλου Rankine για μικρά συγκεντρωτικά ηλιακά συστήματα

Του Μεταπτυχιακού Φοιτητή

Παπιγιώτη Θεόδωρου

Επιβλέπουσα

Κορωνάκη Ειρήνη, Αναπληρώτρια Καθηγήτρια
Σχολή Μηχανολόγων Μηχανικών, ΕΜΠ

Αθήνα, Ιούνιος 2020
Περίληψη

Σκοπός της παρούσας διπλωματικής εργασίας είναι η αξιολόγηση της απόδοσης τριών διαφορετικών κύκλων ισχύος σε συνδυασμό με ηλιακούς παραβολικούς συλλέκτες οι οποίοι θα τοποθετηθούν στην Αθήνα. Οι κύκλοι που αναλύονται είναι ο υποκρίσιμος οργανικός κύκλος Rankine με εργαζόμενα μέσα τα n-Pentane και R245fa, ο κρίσιμος οργανικός κύκλος Rankine με εργαζόμενο μέσο το R245fa και ο υπερκρίσιμος κύκλος Brayton με εργαζόμενο μέσο το CO₂ και το R245fa.

Στην αρχική γίνεται βιβλιογραφική ανασκόπηση των υπαρχουσών τεχνολογιών τόσο στους παραβολικούς ηλιακούς συλλέκτες όσο και στους κύκλους ισχύος που αναλύονται. Στο στάδιο αυτό γίνεται αναφορά και στις είδη υπάρχουσες εγκαταστάσεις που λειτουργούν.

Στη συνέχεια γίνεται μαθηματική μοντελοποίηση του παραβολικού ηλιακού συλλέκτη μέσω της οποίας προσδιορίζονται οι συνθήκες λειτουργίας του για ένα εύρος θερμοκρασιών εισόδου του ρευστού μεταφοράς θερμότητας και παροχής μάζας αυτού.

Έπειτα γίνεται ανάλυση των κύκλων ισχύος και πραγματοποιείται θερμοδυναμική βελτιστοποίηση τους με παραμέτρους βελτιστοποίησης της θερμοκρασία και την πίεση εισόδου στον στρόβιλο, ανάλογα με τον κύκλο.

Η συνολική απόδοση του συστήματος (ηλεκτρική ενέργεια προς ηλιακή ακτινοβολία) είναι για τον υποκρίσιμο ORC με n-Pentane και R245fa είναι 14.12% και 10.31% αντίστοιχα. Για τον κρίσιμο ORC με εργαζόμενο μέσο το R245fa είναι 15.14% και για τον υπερκρίσιμο κύκλο Brayton με CO₂ και R245fa , 13.23% και 8.87% αντίστοιχα.
Abstract

The main objective of this work is to investigate the efficiency of three different power cycles coupled with parabolic through collectors in Athens/Greece. The power cycles analyzed were: subcritical ORC with n-Pentane and R245fa as working fluids, trans-critical ORC with R245fa as working fluid and super-critical Brayton cycle with \(CO_2 \) and R245fa as working fluid.

The first chapter of this thesis is a literature overview of the technologies used, regarding the concentrating collectors and the power cycles. At this stage, existing power plants with parabolic trough collectors coupled with ORC are presented.

A mathematical model was developed for the parabolic trough collector used at the plant. With this model, by varying the input temperature and the mass flow of the heat transfer fluid, the operating conditions of the collectors were defined.

The power cycles used are analyzed and a thermodynamic optimization is performed. Depending on the power cycle used, the inlet temperature and pressure of the turbine are the optimization parameters.

The overall efficiency of the system (power to solar) for the sub-critical ORC with n-Pentane and R245fa is 14.12% and 10.31% respectively. For the trans-critical ORC with R245fa the efficiency is 15.14% and for the super-critical Brayton cycle for \(CO_2 \) and R245fa, 13.23% and 8.87% respectively.
Περιεχόμενα

Περίληψη ... 2
Abstract .. 3
Περιεχόμενα .. 4
Κατάλογος Εικόνων ... 6
Κατάλογος πινάκων .. 8
Επεξήγηση συμβόλων ... 9
1 Εισαγωγή ... 13
2 Βιβλιογραφική ανασκόπηση ... 15
 2.1 Ηλιακοί συλλέκτες .. 15
 2.2 Συγκεντρωτικοί ηλιακοί συλλέκτες ... 15
 2.2.1 Κατηγοριοποίηση ηλιακών συγκεντρωτικών συλλέκτων ... 16
 2.3 Επιμήκης παραβολικός συλλέκτης ... 17
 2.3.1 Εφαρμογές παραβολικών συλλέκτων ... 19
 2.4 Οργανικοί κύκλοι Rankine .. 21
 2.4.1 Αρχιτεκτονικές οργανικού κύκλου Rankine .. 23
 2.5 Υπερκρίσιμος κύκλος Brayton .. 27
 2.5.1 Πλεονεκτήματα υπερκρίσιμου κύκλου .. 27
 2.5.2 Ιδιότητες του διοξειδίου του άνθρακα ... 28
 2.5.3 Διατάξεις υπερκρίσιμου κύκλου Brayton .. 30
 2.5.4 Εφαρμογές υπερκρίσιμου κύκλου Brayton .. 32
 2.6 Εργαζόμενα μέσα ... 33
 2.7 Οργανικοί κύκλοι Rankine με ηλιακή ενέργεια .. 36
 2.8 Αποθήκευση ενέργειας ... 38
 2.8.1 Θερμική αποθήκευση ενέργειας .. 38
3 Μοντελοποίηση ηλιακού πάρκου ... 40
 3.1 Δομή συγκροτήματος .. 40
 3.2 Ηλιακό πάρκο .. 40
 3.2.1 Σύστημα παρακολούθησης του ηλίου (tracking system) .. 42
 3.2.2 Θερμική ανάλυση συλλέκτων .. 42
 3.2.3 Υπολογισμός πτώσης πίεσης .. 49
 3.2.4 Θερμική αποθήκευση ενέργειας .. 50
 3.3 Μοντελοποίηση κύκλων ... 52
 3.3.1 Οργανικός κύκλος Rankine .. 52
 3.3.2 Υπερκρίσιμος κύκλος Brayton .. 57
 3.3.3 Επιλογή εργαζόμενου μέσου .. 60

4
4 Βελτιστοποίηση ...62
5 Αποτελέσματα ...68
6 Συμπεράσματα ..78
7 Βιβλιογραφία ...79
8 Παράρτημα ..82
Κατάλογος Εικόνων

Εικόνα 2.1 Κύριες τεχνολογίες συγκεντρωτικών συλλεκτών [6] .. 16
Εικόνα 2.2 Παραβολικός Επιμήκης συλλέκτης [7] ... 17
Εικόνα 2.3 Εμπορικοί σωλήνες κενού για χρήση με παραβολικούς συλλέκτες [9] 18
Εικόνα 2.4 Σταθμός παραγωγής ηλεκτρισμού με παραβολικούς συλλέκτες [8] 19
Εικόνα 2.5 Συνδυασμένο κύκλος όπου οι συλλέκτες προσφέρουν θερμότητα [8] 20
Εικόνα 2.6 Υβριδικό εργοστάσιο, συνδυασμός παραβολικών συλλεκτών με λέβητα [8] 20
Εικόνα 2.7 Εγκαταστάσεις ORC ανά τύπο και κατασκευαστή [15] 22
Εικόνα 2.8 Εξέλιξη της εγκατάστασης μονάδων ORC ανά τύπο [15] 23
Εικόνα 2.9 Διάταξη ORC με υπερθέρμανες εργαζόμενοι μέσου και το αντίστοιχο διάγραμμα T-s [16] .. 23
Εικόνα 2.10 Διάταξη ORC με αναγεννητή και το αντίστοιχο διάγραμμα T-s [16] 24
Εικόνα 2.11 Διάταξη ORC με πολλαπλές βαθμίδες ατμοποίησης και το αντίστοιχο διάγραμμα T-s [16] .. 24
Εικόνα 2.12 Διάταξη κύκλου διαχωρισμού και το αντίστοιχο διάγραμμα T-s [16] 25
Εικόνα 2.13 Διάταξη τριμερή κύκλου και το αντίστοιχο διάγραμμα T-s [16] 26
Εικόνα 2.14 Διάταξη κρίσιμου ORC και το αντίστοιχο διάγραμμα T-s [16] 26
Εικόνα 2.15 Αποδοσίες κύκλων παραγωγής ηλεκτρικής ενέργειας για εύρος θερμοκρασιών [21] .. 28
Εικόνα 2.16 Διάγραμμα καταβολής πυκνότητας συναρτήσεις θερμοκρασίας και πίεσης [20] 29
Εικόνα 2.17 Μεταβολή ειδικής θερμοχωρητικότητας συναρτήσεις θερμοκρασίας και πίεσης [22] .. 30
Εικόνα 2.18 Διαφοροτεχνικές διατάξεις υπερκρίσιμου κύκλου Brayton που έχουν μελετηθεί με τα αντίστοιχα διάγραμμα T-s [22] .. 31
Εικόνα 2.19 Διάγραμμα υπερκρίσιμου κύκλου με ORC .. 32
Εικόνα 2.20 Εφαρμογές sCO2 ανάλογα με την πηγή θερμότητας και το εύρος των υποκρίσιμων
λειτουργιών [22] .. 33
Εικόνα 2.21 Κατηγοροποίηση οργανικών μέσων ανάλογα με το εύρος θερμοκρασιών [24] 33
Εικόνα 2.22 Διάγραμμα T-s (α) υγρών ρευστών (β) ισεντροπικών ρευστών (γ) ξηρών ρευστών [25] .. 34
Εικόνα 2.23 Κατηγορίας κορεσμού οργανικών μέσου σε σύγκριση με τον νερό [26] 35
Εικόνα 2.24 Διάγραμμα ανακατάστασης [30] .. 37
Εικόνα 2.31 Διάγραμμα της ανακατάστασης [30] .. 40
Εικόνα 3.2 Διάταξη ηλιακού πάρκου 41
Εικόνα 3.3 Σύστημα παρακολούθησης του ήλιου .. 42
Εικόνα 3.4 Διαφορικός όγκος ελέγχου του απορροφητή [36] .. 43
Εικόνα 3.5 Τομή του απορροφητή και οι θερμικές αντιστάσεις του συστήματος[36] 44
Εικόνα 3.6 Διάγραμμα φυσικής και θερμικής αποθήκευσης ενέργειας 51
Εικόνα 3.7 Διάγραμμα T-s υποκρίσιμου οργανικού κύκλου Rankine 53
Εικόνα 3.8 Διάγραμμα μονάδας παραγωγής ηλικτικής ενέργειας βασισμένη στην υποκρίσιμο
ORC .. 53
Εικόνα 3.9 Οπτική σε απόδοσης μονοβάθμιου στροβίλου ORC .. 54
Εικόνα 3.10 Διάγραμμα εγκατάστασης υπερκρίσιμου κύκλου Brayton 58
Εικόνα 3.11 Διάγραμμα T-s υπερκρίσιμου κύκλου Brayton ... 59
Εικόνα 4.1 Διάγραμμα ροής διαδικασιών εύρεσης συνθηκών λειτουργίας ηλιακού πάρκου ... 63
Εικόνα 5.1 Διάγραμμα ανακατάστασης υπερκρίσιμου πάρκου-παροχής μάζας 68
Εικόνα 5.2 Διάγραμμα προσδιορισμούς θερμότητας-παροχής μάζας 68

6
Εικόνα 5.3 Διάγραμμα θερμοκρασίας εξόδου-παροχής μάζας ..69
Εικόνα 5.4 Διάγραμμα πτώσης πίεσης-παροχής μάζας ...69
Εικόνα 5.5 Διάγραμμα T-s βέλτιστου υποκρίσιμου κύκλου με εργαζόμενο μέσο το n-Pentane70
Εικόνα 5.6 Διάγραμμα βαθμού απόδοσης υποκρίσιμου κύκλου-θερμοκρασίας εισόδου στον στρόβιλο με εργαζόμενο μέσο το n-Pentane ..71
Εικόνα 5.7 Διάγραμμα T-s βέλτιστου υποκρίσιμου κύκλου με R245fa72
Εικόνα 5.8 Διάγραμμα βαθμού απόδοσης υποκρίσιμου κύκλου-θερμοκρασίας εισόδου στον στρόβιλο με εργαζόμενο μέσο το R245fa ..72
Εικόνα 5.9 Διάγραμμα T-s βέλτιστου κρίσιμου κύκλου με εργαζόμενο μέσο το R245fa73
Εικόνα 5.10 Διάγραμμα βαθμού απόδοσης κρίσιμου κύκλου-θερμοκρασίας και πίεσης εισόδου στον στρόβιλο με εργαζόμενο μέσο το R245fa ...74
Εικόνα 5.11 Διάγραμμα T-s βέλτιστου υπερκρίσιμου κύκλου με εργαζόμενο μέσο το CO275
Εικόνα 5.12 Διάγραμμα βαθμού απόδοσης υπερκρίσιμου κύκλου-θερμοκρασίας και πίεσης εισόδου με εργαζόμενο μέσο το CO2 ..75
Εικόνα 5.13 Διάγραμμα T-s βέλτιστου υπερκρίσιμου κύκλου με εργαζόμενο μέσο το R245fa ..76
Εικόνα 5.14 Βαθμός απόδοσης υπερκρίσιμου κύκλου- θερμοκρασίας και πίεσης εισόδου στον στρόβιλο με εργαζόμενο μέσο το R245fa ...77
Εικόνα 8.1 Εξισώσεις υπολογισμού ιδιοτήτων Therminol 66 ..85
Κατάλογος πινάκων

Πίνακας 2.1 Κατηγοριοποίηση συνήθων συγκεντρωτικών συλλεκτών ...16
Πίνακας 2.2 Συγκεντρωτικός πίνακας εγκαταστάσεων ...38
Πίνακας 4.1 Δεδομένα module παραβολικού συλλέκτη [42] ..64
Πίνακας 4.2 Δεδομένα παραβολικού συλλέκτη ...64
Πίνακας 4.3 Συντελεστές υπολογισμού οπτικής απόδοσης ..65
Πίνακας 4.4 Δεδομένα βελτιστοποίησης υποκρίσιμου κύκλου Rankine ..65
Πίνακας 4.5 Δεδομένα βελτιστοποίησης κρίσιμου κύκλου Rankine ..66
Πίνακας 4.6 Δεδομένα βελτιστοποίησης υπερκρίσιμου κύκλου Brayton ..66
Πίνακας 4.7 Δεδομένα περιοχής εγκατάστασης της μονάδας ..67
Πίνακας 8.1 Ιδιότητες n-Pentane ..82
Πίνακας 8.2 Ιδιότητες R245fa ..83
Πίνακας 8.3 Ιδιότητες CO2 ...84
Πίνακας 8.4 Ιδιότητες Therminol 66 ..85
Επεξήγηση συμβόλων

<table>
<thead>
<tr>
<th>Μεγέθη</th>
<th>Σημασία</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Εμβαδόν</td>
</tr>
<tr>
<td>C_p</td>
<td>Ειδική θερμοχωρητικότητα</td>
</tr>
<tr>
<td>D</td>
<td>Διάμετρος</td>
</tr>
<tr>
<td>e</td>
<td>Σφάλμα</td>
</tr>
<tr>
<td>h</td>
<td>Συντελεστής συναγωγής</td>
</tr>
<tr>
<td>I</td>
<td>Ηλιακή ακτινοβολία</td>
</tr>
<tr>
<td>k</td>
<td>Θερμική αγωμιμότητα</td>
</tr>
<tr>
<td>k_l</td>
<td>Συντελεστής απωλειών</td>
</tr>
<tr>
<td>L ή l</td>
<td>Μήκος</td>
</tr>
<tr>
<td>m</td>
<td>Παροχή μάζας</td>
</tr>
<tr>
<td>n</td>
<td>Βαθμός απόδοσης</td>
</tr>
<tr>
<td>Nu</td>
<td>Αδιάστατος αριθμός Nusselt</td>
</tr>
<tr>
<td>P</td>
<td>Πίεση</td>
</tr>
<tr>
<td>Pr</td>
<td>Αδιάστατος αριθμός Prandtl</td>
</tr>
<tr>
<td>q</td>
<td>Ρυθμός μεταφοράς θερμότητα</td>
</tr>
<tr>
<td>R</td>
<td>Θερμική αντίσταση</td>
</tr>
<tr>
<td>Ra</td>
<td>Αδιάστατος αριθμός Rayleigh</td>
</tr>
<tr>
<td>Re</td>
<td>Αδιάστατος αριθμός Reynolds</td>
</tr>
<tr>
<td>T</td>
<td>Θερμοκρασία</td>
</tr>
<tr>
<td>V</td>
<td>Ταχύτητα</td>
</tr>
<tr>
<td>\dot{V}</td>
<td>Ογκομετρική παροχή</td>
</tr>
<tr>
<td>ε</td>
<td>Συντελεστής εκπομπής</td>
</tr>
<tr>
<td>ε</td>
<td>Τραχύτητα</td>
</tr>
<tr>
<td>Symbol</td>
<td>Greek Name</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>µ</td>
<td>Δυναμική συνεκτικότητα</td>
</tr>
<tr>
<td>ρ</td>
<td>Πυκνότητα</td>
</tr>
<tr>
<td>τ</td>
<td>Διαπερατότητα (transmissivity)</td>
</tr>
<tr>
<td>φ</td>
<td>Γεωγραφικό πλάτος</td>
</tr>
</tbody>
</table>

Δείκτες και εκθέτες

<table>
<thead>
<tr>
<th>Δείκτης</th>
<th>Εκθέτης</th>
<th>Ετυμολογία</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Απορροφητής (absorber)</td>
<td></td>
</tr>
<tr>
<td>air</td>
<td>Αέρας</td>
<td></td>
</tr>
<tr>
<td>an</td>
<td>Δακτύλιος (annulus)</td>
<td></td>
</tr>
<tr>
<td>ap</td>
<td>Διάφραγμα (aperture)</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Κάλυμμα (cover)</td>
<td></td>
</tr>
<tr>
<td>cl</td>
<td>Καθαρότητα καθρεπτών (clean mirror)</td>
<td></td>
</tr>
<tr>
<td>comp</td>
<td>Εξαρτήματα (components)</td>
<td></td>
</tr>
<tr>
<td>con</td>
<td>Συμπυκνωτής (condenser)</td>
<td></td>
</tr>
<tr>
<td>cond</td>
<td>Αγωγή (conduction)</td>
<td></td>
</tr>
<tr>
<td>conv</td>
<td>Συναγωγή (convention)</td>
<td></td>
</tr>
<tr>
<td>da</td>
<td>Σκόνη στους συλλέκτες (dirt on receiver)</td>
<td></td>
</tr>
<tr>
<td>dm</td>
<td>Σκόνη στους καθρέπτες (dirt on mirrors)</td>
<td></td>
</tr>
<tr>
<td>evap</td>
<td>Ατμοποιητής (evaporator)</td>
<td></td>
</tr>
<tr>
<td>fan</td>
<td>Ανεμιστήρας</td>
<td></td>
</tr>
<tr>
<td>fl</td>
<td>Ρευστό (fluid)</td>
<td></td>
</tr>
<tr>
<td>ge</td>
<td>Γεωμετρία (geometrical)</td>
<td></td>
</tr>
<tr>
<td>gen</td>
<td>Γεννήτρια</td>
<td></td>
</tr>
<tr>
<td>gross</td>
<td>Ακαθάριστη</td>
<td></td>
</tr>
<tr>
<td>HTF</td>
<td>Ρευστό μεταφοράς θερμότητας (Heat transfer fluid)</td>
<td></td>
</tr>
</tbody>
</table>

10
Si Συντομογραφίες

<table>
<thead>
<tr>
<th>Δωρεά</th>
<th>Σύνθετος παραβολικός συλλέκτης (Compound Parabolic Concentrator)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP</td>
<td>Δυναμικό αύξησης της θερμοκρασία του πλανήτη (Global Warming Potential)</td>
</tr>
<tr>
<td>HTF</td>
<td>Ρευστό μεταφοράς θερμότητας (Heat transfer fluid)</td>
</tr>
<tr>
<td>ODP</td>
<td>Δυναμικό καταστροφής της στιβάδας του όζοντος (Ozone Depletion Potential)</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>ORC</td>
<td>Οργανικός κύκλος Rankine</td>
</tr>
<tr>
<td>PCM</td>
<td>Υλικά αλλαγής φάσης (Phase Change Materials)</td>
</tr>
<tr>
<td>PTC</td>
<td>Παραβολικός συλλέκτης με κάτοπτρο (Parabolic Trough Concentrator)</td>
</tr>
<tr>
<td>SCBC</td>
<td>Υπερκρίσιμος κύκλος Brayton</td>
</tr>
<tr>
<td>SF</td>
<td>Ηλιακό πάρκο (Solar farm)</td>
</tr>
<tr>
<td>sCO₂</td>
<td>υπερκρίσιμο CO₂</td>
</tr>
</tbody>
</table>
1 Εισαγωγή

Η ανθρωπότητα βρίσκεται αντιμέτωπη με μία από τις πιο κρίσιμες υπαρξιακές προκλήσεις, την κλιματική αλλαγή. Η όλο και αυξανόμενη ζήτηση για ενέργεια και η κατανάλωση ορυκτών καυσίμων έχει οδηγήσει στην ραγδαία αύξηση του διοξειδίου του άνθρακα (CO_2) και άλλων αερίων του θερμοκηπίου. Μεγάλες συγκέντρωσεις των παραπάνω αερίων στην ατμόσφαιρα έχουν σαν συνέπεια την αύξηση της μέσης παγκόσμιας θερμοκρασίας. Τα αποτελέσματα της αύξησης της θερμοκρασίας περιλαμβάνουν την αύξηση της στάθμης της θάλασσας εξαιτίας του λιωσίματος των πάγων στους πόλους που απειλεί αστικές περιοχές σε ολόκληρο τον κόσμο παράλληλα με περιόδους παρατεταμένης ξηρασίας που αποτελούν κίνδυνο για τις αγροτικές καλλιέργειες, την πανίδα και τα αποθέματα πόσιμου νερού. Εκτός από τους περιβαλλοντικούς κινδύνους που αναφέρθηκαν προηγουμένως, υπάρχουν ανησυχίες που αφορούν την αναπόφευκτη εξάντληση των ορυκτών καυσίμων και τις επιπτώσεις στην εξέλιξη του ανθρώπινου πολιτισμού.

Για την αντιμετώπιση των επιπτώσεων της κλιματικής αλλαγής, πολιτικές για την απαλλαγή των ανθρακούχων εκπομπών εφαρμόζονται σε εθνικό και παγκόσμιο επίπεδο. Οι πολιτικές αυτές βασίζονται στην έρευνα και ανάπτυξη βιώσιμων, καθαρών και μηδενικών εκπομπών διοξειδίων του άνθρακα τεχνολογιών για την παραγωγή ενέργειας από ανανεώσιμες πηγές ενέργειας (Α.Π.Ε.) όπως για παράδειγμα η ηλιακή και η αιολική ενέργεια καθώς και για την δημιουργία υψηλών αποδοτικών συστημάτων για την μετατροπή ενέργειας από τη μια μορφή στην άλλη.

Σημαντικό μερίδιο λαμβάνει και η ανάπτυξη στρατηγικών που αφορούν την μείωση της ενεργειακής σπατάλης σε οικιακό και βιομηχανικό επίπεδο. Ενδεικτικοί αυτού του εγχειρήματος είναι οι στόχοι που έχει θέσει η Ευρωπαϊκή Ένωση που αφορούν τις εκπομπές αερίων του θερμοκηπίου, την παραγωγή ηλεκτρικής ενέργειας από Α.Π.Ε. και την αύξηση της απόδοσης της παραγωγής ενέργειας. Οι στόχοι αυτοί για το έτος 2030 αφορούν την μείωση των εκπομπών αερίων του θερμοκηπίου κατά 40% σε σύγκριση με τα επίπεδα που καταγράφηκαν το 1990, την παραγωγή κατά τουλάχιστον 32% της ηλεκτρικής ενέργειας από Α.Π.Ε. και την αύξηση της απόδοσης της παραγωγής ενέργειας κατά 32.5%.[2]

Αναφορικά με την κατάσταση της ηλεκτροπαραγωγής από ανανεώσιμες πηγές ενέργειας, σύμφωνα με το Παγκόσμιο Οικονομικό Φόρουμ, αυτή ανέρχεται στο ένα πέμπτο της συνολικής. Την περίοδο 2015 έως 2016, το 50% της τελευταίας παραγωγής ενέργειας από ανανεώσιμες πηγές ενεργείας στηρίζεται στην ηλιακή ενέργεια, καθώς και παραγωγή από αιολικές πηγές. Ακόλουθη από την παραγωγή ενέργειας από ανανεώσιμες πηγές ενεργείας απέχει η ηλιακή ακτινοβολία κατά 33%, καθώς και η υδροηλεκτρική με 15%. [3]

Από τα παραπάνω στοιχεία προκύπτει ότι η ηλιακή ενέργεια κατέχει ηγετικό ρόλο στις παραγωγές της από τους φωτοβολταϊκούς και ηλιακούς φυσικούς φορείς. Αυτή να είναι το 1000GW κατά το 2050. Ωστόσο, αυτή η πρόοδος στην παραγωγή ενέργειας από ανανεώσιμες πηγές ενεργείας απέχει η ηλιακή ακτινοβολία κατά 33%, καθώς και η υδροηλεκτρική με 15%. [4]
Τα συγκεντρωτικά ηλιακά συστήματα μπορούν να αποτελέσουν λύση για την παραγωγή ηλεκτρικής ενέργειας σε μικρή κλίμακα ενώ ο συνδυασμός τους με συστήματα θερμικής αποθήκευσης μπορεί να προσφέρει συνεχήμενη παραγωγή της. Το γεγονός αυτό έχει οδηγήσει σε αναθέρμανση του ενδιαφέροντος για τον σχεδιασμό και την βελτιστοποίηση των συστημάτων συγκεντρωτικής ηλιακής ενέργειας.

Για την ευρύτερη χρήση της τεχνολογίας αυτής χρησιμοποιείται, ιδιαίτερα σε ερευνητικό επίπεδο, ο οργανικός κύκλος Rankine (ORC). Βασικό πλεονέκτημα αυτής της τεχνολογίας είναι ότι μπορεί να χρησιμοποιηθεί και για την εκμετάλλευση πηγών θερμότητας χαμηλής θερμοκρασίας, κάτι που έχει σαν φυσική συνέπεια να χρησιμοποιείται και σε εγκαταστάσεις μικρής κλίμακας. Ο ORC είναι παρόμοιος με τον απλό κύκλο Clausius-Rankine με βασική διαφορά ότι το εργαζόμενο μέσο είναι κάποιο οργανικό μέσο αντί του νερού-ατμού. Αναφορικά με την πολυπλοκότητα του το σύστημα ORC είναι απλούστερο από αυτό ενός κύκλου ατμού καθώς όλες οι φάσεις της θέρμανσης του εργαζόμενου μέσου μπορούν να πραγματοποιηθούν με την χρήση μόνο ενός εναλλάκτη θερμότητας.

Βασικό στοιχείο κατά τον σχεδιασμό μιας εγκατάστασης ORC είναι η εκλογή του οργανικού μέσου και ο θερμοδυναμικός σχεδιασμός του κύκλου για μεγιστοποίηση του θερμικού βαθμού απόδοσης, κάτι που θα αποτελέσει και αντικείμενο της παρούσας διπλωματικής εργασίας. Η επιλογή αυτή βασίζεται κυρίως από την θερμοκρασία πρόσδοσης θερμότητας στον κύκλο και τις περιβαλλοντικές παραμέτρους του μέσου.

Εκτός από τον υποκρίσιμο ORC, έντονο επιστημονικό ενδιαφέρον παρουσιάζει και ο κρίσιμος κύκλος ORC ο οποίος υπερτερεί εναντίον του υποκρίσιμου λόγω των μειωμένων εξεργειακών απωλειών που συνεπάγεται πιο αποδοτική αξιοποίηση της θερμοκρασίας του μέσου. Η βασική διαφοροποίηση των δύο αυτών κύκλων, είναι ότι μετά την αντλία, στον κρίσιμο κύκλο, το οργανικό μέσο έχει αποκτήσει αρκετά υψηλότερη πίεση ώστε η θέρμανση από τον εναλλάκτη να επιτυγχάνεται σε υψηλότερη πίεση και αυξημένη απόδοση. Επιπλέον, το κρίσιμο σημείο του διοξειδίου του άνθρακα εμφανίζεται σε σχεδόν θερμοκρασία περιβάλλοντος επιτρέποντας την χρήση του κύκλου με διάφορες πηγές θερμότητας όπως και η ηλιακή. Στα πλαίσια της εξαίρετης και πλήρους διπλωματικής εξετάσεως στην ηλεκτροπαραγωγή με την χρήση συγκεντρωτικών ηλιακών συστημάτων, η διπλωματική εξετάζει αν ο συνδυασμός ενός οργανικού κύκλου Rankine ή ενός υπερκρίσιμου κύκλου Brayton με μικρό συγκεντρωτικό ηλιακό σύστημα μπορεί να αποτελέσει μια αποτελεσματική λύση για την παραγωγή ενέργειας.
2 Βιβλιογραφική ανασκόπηση

Στην βιβλιογραφική ανασκόπηση γίνεται μια παρουσίαση των ηλιακών συγκεντρωτικών συστημάτων και των κύκλων ισχύος που μελετήθηκαν, δηλαδή του υποκρίσιμου και κρίσιμου ORC και του υπερκρίσιμου κύκλου Brayton, για την εμβάθυνση της κατανόησης της τεχνολογικής και τεχνικής ωριμότητάς τους. Επιπλέον παρουσιάζεται ο τρόπος που οι ηλιακοί συλλέκτες και η μονάδα παραγωγής ηλεκτρικής ενέργειας συνδυάζονται.

2.1 Ηλιακοί συλλέκτες

Για να είναι δυνατή η εκμετάλλευση της ηλιακής ενέργειας χρησιμοποιούνται συσκευές οι οποίες ονομάζονται ηλιακοί συλλέκτες. Οι συσκευές αυτές δεσμεύουν μέρος της προσπίπτουσας ηλιακής ακτινοβολίας και το μεταφέρουν στο εργαζόμενο μέσο, το οποίο μπορεί να είναι νερό, αέρας ή κάποιο θερμικό έλαιο, αυξάνοντας την θερμοκρασία του. Η απόδοσή τους εξαρτάται από την θερμοκρασία του εργαζόμενου μέσου καθώς αυτή καθορίζει την μέση θερμοκρασία του όλου συστήματος το οποίο συναλλάσσει θερμότητα με το περιβάλλον. Η διάρκεια ζωής τους είναι αρκετά μεγάλη, τάξη μεγέθους 25 ετών, καθιστώντας τους ανταγωνιστικές και βιώσιμες τεχνολογικές επιλογές.

Οι συλλέκτες χωρίζονται σε δύο βασικές κατηγορίες, οι επίπεδοι και οι συγκεντρωτικοί συλλέκτες. Οι επίπεδοι συλλέκτες είναι οι ευρέως διαδεδομένοι συλλέκτες οι οποίοι χρησιμοποιούνται κυρίως στην παραγωγή ζεστού νερού χρήσης. Οι συγκεντρωτικοί συλλέκτες χρησιμοποιούνται σε εφαρμογές στις οποίες απαιτείται υψηλή θερμοκρασία.

Πιο συγκεκριμένα, οι επίπεδοι συλλέκτες εκμεταλλεύονται τόσο την άμεση όσο και τη διάχυτη ηλιακή ακτινοβολία. Είναι διατάξεις μηχανικά πιο απλές σε σύγκριση με τους συγκεντρωτικούς και κατά συνέπεια παρουσιάζουν μικρότερες θερμικές απώλειες. Οι συγκεντρωτικοί συλλέκτες εκμεταλλεύονται την άμεση ηλιακή ακτινοβολία και επομένως τοποθετούνται σε συστήματα κίνησης για να ακολουθούν την πορεία του ήλιου κατά την περίοδο της ηλιοφάνειας.

Στην συνέχεια θα αναλυθούν με περισσότερη λεπτομέρεια οι συγκεντρωτικοί ηλιακοί συλλέκτες και πιο συγκεκριμένα οι παραβολικοί συγκεντρωτικοί συλλέκτες καθώς είναι ο τύπος που χρησιμοποιήθηκε στην παρούσα διπλωματική εργασία.

2.2 Συγκεντρωτικοί ηλιακοί συλλέκτες

Οι συγκεντρωτικοί συλλέκτες, όπως αναφέρθηκε και στην προηγούμενη παράγραφο, είναι συλλέκτες οι οποίοι συγκεντρώνουν την ηλιακή ακτινοβολία σε μια μικρότερη περιοχή (δέκτης) σε σύγκριση με το συνολικό άνοιγμα που λαμβάνει την ακτινοβολία. Η συγκέντρωση αυτή επιτυγχάνεται με παρεμβολή μιας ανακλαστικής ή διαθλαστικής συσκευής μεταξύ του ήλιου (που αποτελεί την πηγή της ακτινοβολίας) και της επιφάνειας απορρόφησης. Με την γεωμετρία αυτή επιτυγχάνονται υψηλότερες θερμοκρασίες σε σχέση με τους επίπεδους συλλέκτες και
μειώνονται οι θερμικές απώλειες. Αντίθετα με τις θερμικές απώλειες, παρατηρείται αύξηση των οπτικών απώλειων εξαιτίας της μη ιδανικής ανάκλασης στο κάτοπτρο.

Ευνοϊκές συνθήκες για την λειτουργία των συγκεντρωτικών συλλεκτών είναι η ύπαρξη μεγάλης ποσότητας άμεσης ηλιακής ακτινοβολίας, σε αντίθεση με την ύπαρξη διάχυτης ακτινοβολίας η οποία επιδρά αρνητικά στην απόδοση του. Άλλοι παράμετροι που αξίζει να αναφερθούν και επηρεάζουν τον βαθμό απόδοσης των συλλεκτών είναι: η ένταση της ηλιακής ακτινοβολίας, τα τεχνικά χαρακτηριστικά του απορροφητή και το εργαζόμενο μέσο που χρησιμοποιείται για την μεταφορά της θερμότητας.

2.2.1 Κατηγοριοποίηση ηλιακών συγκεντρωτικών συλλεκτών

Οι συγκεντρωτικοί ηλιακοί συλλέκτες οι οποίοι χρησιμοποιούνται χωρίζονται στις παρακάτω κατηγορίες:

- CPC (Compound Parabolic Concentrator) ή σύνθετος παραβολικός συλλέκτης.
- PTC (Parabolic Trough Concentrator) ή παραβολικός συλλέκτης με κάτοπτρο
- Επιμήκης συλλέκτης με φακούς/κάτοπτρα Frensel
- Συλλέκτης με παραβολοειδές κάτοπτρο(Solar Dish Collector)
- Ηλιακός πύργος (Solar Tower)

Στην Εικόνα 2.1 παρουσιάζονται οι κύριες τεχνολογίες συγκεντρωτικών συλλεκτών.

Εικόνα 2.1 Κύριες τεχνολογίες συγκεντρωτικών συλλεκτών [6]

Οι συγκεντρωτικοί συλλέκτες κατηγοριοποιούνται ανάλογα με το είδος του συγκεντρωτή σε επιμέρους κατηγορίες:[5]

- Ο συγκεντρωτής να είναι ανακλαστικός (κάτοπτρο) ή διαθλαστικός (διαθέτει φακό)
- Ο συγκεντρωτής να είναι επιμήκης (δισδιάστατος) που εστιάζει σε ευθεία γραμμή ή κυκλικός τρισδιάστατος εκ περιστροφής που εστιάζει σε σημείο.
- Ο συγκεντρωτής μπορεί να είναι συνεχής, δηλαδή να αποτελείται από μόνο ένα κομμάτι, ή τμηματικός.

Στον παρακάτω πίνακα (Πίνακας 2.1) παρουσιάζονται σε ποια κατηγορία ανήκουν οι βασικοί συγκεντρωτικοί ηλιακοί συλλέκτες.

Πίνακας 2.1 Κατηγοριοποίηση συνήθων συγκεντρωτικών συλλεκτών

<table>
<thead>
<tr>
<th>Συλλέκτης</th>
<th>Ανακλαστικός ή Διαθλαστικός</th>
<th>Επιμήκης ή Κυκλικός</th>
<th>Συνεχής ή Τμηματικός</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC</td>
<td>Ανακλαστικός</td>
<td>Επιμήκης</td>
<td>Συνεχής/Συνεχής</td>
</tr>
<tr>
<td>PTC</td>
<td>Ανακλαστικός</td>
<td>Επιμήκης</td>
<td>Συνεχής</td>
</tr>
</tbody>
</table>
17

<table>
<thead>
<tr>
<th>Φρένσελ</th>
<th>Ανακλαστικός/Διαθλαστικός</th>
<th>Επιμήκης</th>
<th>Τμηματικός</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Dish Collector</td>
<td>Ανακλαστικός</td>
<td>Κυκλικός</td>
<td>Συνεχής</td>
</tr>
<tr>
<td>Solar Tower</td>
<td>Ανακλαστικός/Διαθλαστικός</td>
<td>Κυκλικός</td>
<td>Τμηματικός</td>
</tr>
</tbody>
</table>

2.3 Επιμήκης παραβολικός συλλέκτης

Οι παραβολικοί κατοπτρικοί συλλέκτες (Parabolic Trough Collectors–PTC) αποτελούν το πιο διαδεδομένο είδος συγκεντρωτικών συλλεκτών. Τα βασικά μέρη ενός παραβολικού συλλέκτη είναι το κάτοπτρο και ο σωλήνας κενού ο οποίος είναι τοποθετημένος στη γραμμή εστίασης. Για την κατασκευή του, ένα ανακλαστικό υλικό κάμπτεται με σκοπό να πάρει την μορφή παραβολής. Μέσω της γεωμετρίας και των γεωμετρικών ιδιοτήτων που παρουσιάζει, η ηλιακή ακτινοβολία κατευθύνεται στην γραμμή εστίασης, πάνω στην οποία τοποθετείται σωλήνας κενού υψηλών προδιαγραφών.

Εικόνα 2.2 Παραβολικός Επιμήκης συλλέκτης [7]

Το κάτοπτρο, επειδή χρησιμοποιείται για να συγκεντρώνει την ηλιακή ακτινοβολία πρέπει η ανακλαστικότητα (reflectivity) να είναι υψηλή με σκοπό την μείωση των οπτικών απωλειών. Επειδή η ανακλαστικότητα διαφέρει ανάλογα με το μήκος κύματος της ακτινοβολίας, η κατασκευή τους γίνεται με βάση το φάσμα της ηλιακής ακτινοβολίας. Τα πιο συνηθισμένα κάτοπτρα αποτελούνται από γυάλινους καθρέπτες με ασημένια αποκάλυψη. [8]

Αναφορικά με τους σωλήνες κενού, αυτοί αποτελούνται από δύο ομόκεντρους σωλήνες: τον απορροφητήρα και το κάλυμμα. Η επιλεκτική επιφάνεια του απορροφητήρα σε συνδυασμό με τις συνθήκες κενού που επικρατούν ανάμεσα σε κάλυμμα και απορροφητήρα οδηγούν σε μικρό συντελεστή απωλειών θερμότητας.
Εικόνα 2.3 Εμπορικοί σωλήνες κενού για χρήση με παραβολικούς συλλέκτες [9]

Οι βασικότερες ιδιότητες του απορροφητήρα είναι ο συντελεστής εκπομπής του μέσω του οποίου καθορίζονται οι απώλειες ακτινοβολίας και ο συντελεστής απορρόφησης ο οποίος καθορίζει το ποσοστό της προσπίπτουσας ακτινοβολίας που αξιοποιείται. Για την βέλτιστη λειτουργία του συλλέκτη ο συντελεστής εκπομπής πρέπει να είναι μικρός και ο συντελεστής απορρόφησης όσο το δυνατό μεγαλύτερος. Για το λόγο αυτό γίνεται ειδική επεξεργασία στην επιφάνεια του με σκοπό την μείωση του πρώτου συντελεστή. Η επεξεργασία αυτή έχει σαν αποτέλεσμα οι σύγχρονοι απορροφητές να έχουν συντελεστή απορρόφησης της τάξης του 90% και συντελεστή εκπομπής της τάξης του 10%. [5]

Στο σημείο αυτό αξίζει να σημειωθεί ότι η τιμή του συντελεστή εκπομπής αυξάνεται με την αύξηση της θερμοκρασίας και επομένως πρέπει να λαμβάνεται υπόψη την θερμοκρασία λειτουργίας του συστήματος κατά τη διάρκεια του σχεδιασμού, ώστε στο σημείο αυτό η τιμή του να είναι η χαμηλότερη δυνατή για την εξασφάλιση της βέλτιστης λειτουργίας. Επιπλέον, για την βέλτιστη εποχιακή λειτουργία πρέπει να υπολογίζεται και το κατάλληλο μέγεθος του απορροφητήρα καθώς αυτός πρέπει να έχει τέτοιες διαστάσεις ώστε να συλλέγεται η απαραίτητη ηλιακή ακτινοβολία και να μειώνεται η απώλεια. Επιπλέον, για την βέλτιστη λειτουργία πρέπει να υπολογίζεται και το κατάλληλο μέγεθος του απορροφητήρα καθώς αυτός πρέπει να έχει τέτοιες διαστάσεις ώστε να συλλέγεται η απαραίτητη ηλιακή ακτινοβολία και να μειώνεται η απώλεια. [10]

Το κάλυμμα στις περισσότερες περιπτώσεις είναι από γυαλί και η σημαντικότερη ιδιότητά του είναι ο συντελεστής απορρόφησης της ηλιακής ακτινοβολίας. Όσο μεγαλύτερος είναι ο συγκεκριμένος συντελεστής τόσο μικρότερες είναι και οι οπτικές απώλειες του καλύμματος. Στα σύγχρονα καλύμματα τιμές μεγαλύτερες του 90% είναι αποδεκτές. [5]

Τελικά, η θερμότητα που συλλέγεται μεταφέρεται για αξιοποίηση προς την εκάστοτε εφαρμογή με την χρήση θερμοσαπογώγων ρευστών. Για την λειτουργία εγκαταστάσεων που απαιτούν υψηλές θερμοκρασίες γίνεται χρήση θερμικών ελαίων, τα οποία μπορεί να είναι είτε φυσικά είτε συνθετικά. Τα τελευταία ανάλογα και με την αύξηση τους μπορούν να λειτουργήσουν σε υψηλότερες θερμοκρασίες σε σύγκριση με τα φυσικά αλλά παρουσιάζουν και μειονεκτήματα.
Αρχικά έχουν μεγαλύτερο κόστος αγοράς και λειτουργίας, καθώς κρίνεται αναγκαία η περιοδική τους αντικατάσταση. Ένα άλλο μειονέκτημα είναι πως δεν είναι τόσο φιλικά προς το περιβάλλον. [11]

Γενικά οι ιδιότητες τις οποίες ένα ιδανικό εργαζόμενο μέσο πρέπει να διαθέτει είναι:

- Υψηλή τιμή ειδικής θερμοχωρητικότητας για να μπορεί να παραλαμβάνει μεγάλα ποσά θερμότητας.
- Μεγάλη τιμή θερμικής αγωγιμότητας έτσι ώστε να θερμαίνεται ομοιόμορφα σε μικρό χρόνο.
- Χαμηλή συνεκτικότητα για να είναι μικρή η πτώση πίεσης στις αντικαταστάσεις και κατά συνέπεια να μειώνεται το απαιτούμενο έργο.

2.3.1 Εφαρμογές παραβολικών συλλεκτών

Οι εφαρμογές των παραβολικών συλλεκτών εκτείνονται από την παραγωγή ζεστού νερού έως και την ηλεκτροπαραγωγή. Αναλυτικότερα οι χρήσεις των παραβολικών συλλεκτών είναι:

1. Εργοστάσια παραγωγής ηλεκτρικής ενέργειας

Εικόνα 2.4 Σταθμός παραγωγής ηλεκτρισμού με παραβολικούς συλλέκτες [8]

Στην Εικόνα 2.4 παρουσιάζεται ένας σταθμός ηλεκτροπαραγωγής με αποθήκευση ενέργειας.

Η βασικότερη εφαρμογή των παραβολικών συλλεκτών είναι στα εργοστάσια παραγωγής ηλεκτρικής ενέργειας. Αυτά χωρίζονται σε δύο κατηγορίες ανάλογα με την μέθοδο παραγωγής ατμού. Στην πρώτη κατηγορία ανήκουν τα εργοστάσια στα οποία ο ατμός παράγεται απευθείας στους συλλέκτες και οδηγείται στον στρόβιλο της εγκατάστασης. Στην δεύτερη κατηγορία, εντάσσονται τα εργοστάσια τα οποία χρησιμοποιούν θερμικό έλαιο το οποίο μέσω εναλλάκτη δίνει την απαραίτητη θερμότητα στο εργαζόμενο μέσο του εργοπαραγωγού κύκλου. [12] Επίσης υπάρχουν εργοστάσια συνδυασμένου κύκλου όπου τα ηλιακά παρέχουν ένα μέρος της θερμότητας στον λέβητα ανάκτησης θερμότητας, όπως στην Εικόνα 2.5.
Εικόνα 2.5 Συνδυασμένο κύκλος όπου οι συλλέκτες προσφέρουν θερμότητα [8]

Οι σταθμοί αυτοί μπορούν να λειτουργήσουν 10 με 12 ώρες όταν χρησιμοποιείται μόνο ηλιακή ενέργεια[10]. Για συνεχή λειτουργία είτε συνδυάζονται με συστήματα θερμικής αποθήκευσης ενέργειας είτε λειτουργούν σαν υβριδικά εργοστάσια στα οποία 2 ή περισσότερες πηγές θερμότητας συνδυάζονται για την πρόσδοση της απαιτούμενης θερμότητας. Έτσι τα ηλιακά μπορούν να συνδυαστούν με λέβητα βιομάζας ή φυσικού αερίου (βλέπε Εικόνα 2.6).

Εικόνα 2.6 Υβριδικού εργοστάσιο, συνδυασμός παραβολικών συλλεκτών με λέβητα [8]
2. Παραγωγή ζεστού νερού χρήσης
Με την χρήση των συλλεκτών είναι δυνατή η παραγωγή ζεστού νερού χρήσης για κτήρια και
βιομηχανίες. Αναλυτικότερα, μεγάλες εγκαταστάσεις όπως για παράδειγμα αθλητικά κέντρα,
αεροδρόμια και ξενοδοχειακές μονάδες έχουν μεγάλες ανάγκες για παραγωγή ζεστού νερού
χρήσης το οποίο μπορεί να παραχθεί από χρήση ηλιακών συλλεκτών.

3. Συστήματα κλιματισμού και ψύξης
Οι παραβολικοί συλλέκτες μπορούν να συζευχθούν με συστήματα ψύξης τα οποία λειτουργούν
με θερμότητα. Τέτοια συστήματα είναι οι μηχανές απορρόφησης και προσρόφησης καθώς και
τα συστήματα με αφυγραντικό μέσο τα οποία χρησιμοποιούνται σε σε ψευδοκλιματισμού. Οι
ψύκτες απορρόφησης/προσρόφησης χρησιμοποιούνται συνήθως σε βιομηχανίες τροφίμων,
φαρμακοβιομηχανίες και σε μεγάλα κτίρια με υψηλά κλιματιστικά φορτία.

4. Συστήματα αφαλάτωσης
Παραβολικοί συλλέκτες χρησιμοποιούνται σε συστήματα αφαλάτωσης ιδιαίτερα σε περιοχές με
υψηλό ηλιακό δυναμικό. Η ξηρασία συνοδεύεται με την υψηλή ηλιακή ακτινοβολία και αυτή η
εφαρμογή μπορεί να εφαρμοστεί με επιτυχία ιδιαίτερα σε απομακρυσμένα νησιά.

2.4 Οργανικός κύκλος Rankine
Ο οργανικός κύκλος Rankine αποτελεί μια καινοτόμα, ραγδαία αναπτυσσόμενη τεχνολογία
μετατροπής θερμικής ενέργειας σε ηλεκτρική, η οποία μπορεί να συνεισφέρει στην προσπάθεια
μείωσης των εκπομπών διοξειδίου του άνθρακα στην ηλεκτροπαραγωγή. Εξαιτίας της
ικανότητας του να λειτουργήσει σε χαμηλές θερμοκρασίες και με χαμηλές ποσότητες
θερμότητας, ο ORC είναι ιδανικός και χρησιμοποιείται δη σε αρκετές εφαρμογές μηδενικών
εκπομπών CO2 όπως η αξιοποίηση της απορριπτόμενης θερμότητας από μηχανές και από
ενεργοβόρες βιομηχανικές διεργασίες, και η αξιοποίηση ανανεώσιμων πηγών ενέργειας όπως
η βιομάζα, η ηλιακή και η γεωθερμική. Επιπλέον, εξαιτίας της σπονδυλωτής του κατασκευής,
συστήματα ORC μπορούν να ενσωματωθούν σε μικρής κλίμακας οικιακά συστήματα
συμπαραγωγής ηλεκτρικής και θερμότητας καθώς και συστήματα τριπαραγωγής (ψύξη-
θέρμανση-ηλεκτρισμός). Τα διεσπαρμένα αυτά συστήματα είναι υψηλής απόδοσης και σε
συνδυασμό με τις ανανεώσιμες πηγές ενέργειας μπορούν να έχουν σημαντικό ρόλο στο μέλλον
tης ενέργειας το οποίο θα στηρίζεται στην αποκεντρωμένη παραγωγή. Τέλος, εφαρμογές αυτές
έχουν την δυνατότητα να βελτιώσουν την ποιότητα ζωής των ατόμων σε απομακρυσμένες ή
υπανάπτυκτες περιοχές οι οποίες δεν έχουν πρόσβαση σε ηλεκτρική ενέργεια.[13]

Αν και ο κύκλος Rankine με εργαζόμενο μέσο το νερό-ατμό χρησιμοποιείται ευρέως, η ιδέα για
tην χρησιμοποίηση οργανικών μέσων δεν είναι καινούργια. Το 1826, ο Thomas Howard,
catatχύρωσε με δίπλωμα ευρεσιτεχνίας την υλοποίηση μιας μηχανής που χρησιμοποιείν ως εργαζόμενο μέσο. Το 1826, ο Thomas Howard,
catatχύρωσε με δίπλωμα ευρεσιτεχνίας την υλοποίηση μιας μηχανής που χρησιμοποιείται στον αιθέρα σαν εργαζόμενο μέσο. Η πρώτη εµπορική διάθεση της τεχνολογίας του οργανικού κύκλου καταγράφεται το 1890, όταν η εταιρεία Gas Engine & Power Company of New York
ισχυρίζεται ότι έχει πωλήσει 500 μηχανές που χρησιμοποιούσαν νάφθα, οι οποίες στηρίζονταν στο σχέδιο του Ofeldt.[14]

Ο Frank Shuman το 1907, ήταν ο πρώτος που είχε την ιδέα για μια μηχανή ORC που βασίζεται στην ηλιακή ενέργεια: χρησιμοποίησε επίπεδους ηλιακούς συλλέκτες οι οποίοι είχαν επιφάνεια περίπου 110 m² για να αυξήσει την θερμοκρασία του αιθέρα στους περίπου 120 °C και να οδηγήσει μια μηχανή ποτίσματος.[14]
Σύμφωνα με έρευνα των Tartiere και Astolfi, [15] μέχρι το τέλος του 2016, η συνολική δυναμικότητα των μονάδων που βασίζονται στον οργανικό κύκλο Rankine ανέρχεται περίπου στα 2701 MW, δυναμικότητα που προέρχεται από 1754 μονάδες. Οι εγκαταστάσεις που εκμεταλλεύονται την γεωθερμική ενέργεια αποτελούν το 74.8% της συνολικής εγκαταστημένης ισχύς ενώ ακολουθούν οι εγκαταστάσεις βιομάζας με 11% και οι εγκαταστάσεις ανάκτησης θερμότητας με 13.9%. Συγκρίνοντας τον αριθμό των μονάδων ανά τύπο, οι μονάδες ανάκτησης θερμότητας ξεπερνούν σε αριθμό αυτές της γεωθερμίας όπως φαίνεται από την Εικόνα 2.7. Αυτό οφείλεται στο γεγονός ότι οι μονάδες γεωθερμίας και βιομάζας στοχεύουν σε μεγαλύτερη ισχύ σε σχέση με τις μονάδες ανάκτησης θερμότητας. Παρά την εκτεταμένη ερευνητική δραστηριότητα γύρω από τις ηλιακές μονάδες ORC, αυτές δεν έχουν εκτεταμένη εμπορική εφαρμογή εξαιτίας του μεγάλου κόστους επένδυσης στο ηλιακό πάρκο και της μείωσης του κόστους των φωτοβολταϊκών συστημάτων.

Εικόνα 2.7 Εγκαταστάσεις ORC ανά τύπο και κατασκευαστή [15]

Στην Εικόνα 2.8 παρουσιάζεται η εξέλιξη της ισχύς των εγκατεστημένων μονάδων ανάλογα με το είδος τους σε συνάρτηση με το χρόνο, από το οποίο είναι εμφανής η ραγδαία εξάπλωση της γεωθερμίας. Επιπλέον, μετά την περίοδο 1984-2003, όπου η γεωθερμία ήταν σχεδόν η μοναδική πηγή θερμότητας για τους οργανικούς κύκλους, παρατηρείται αύξηση στις εγκαταστάσεις βιομάζας και ανάκτησης θερμότητας.
Εικόνα 2.8 Εξέλιξη της εγκατάστασης μονάδων ORC ανά τύπο [15]

2.4.1 Αρχιτεκτονικές οργανικού κύκλου Rankine
Για την βελτίωση του βαθμού απόδοσης των οργανικών κύκλων Rankine αλλά και γενικότερα του κύκλου Rankine έχουν προταθεί διάφορες παραλλαγές παρακάτω. Οι βασικότερες αρχιτεκτονικές αναπτύσσονται στα παρακάτω κεφάλαια.

2.4.1.1 Υπερθέρμανση του εργαζόμενου μέσου
Η υπερθέρμανση του εργαζόμενου μέσου είναι συνήθης πρακτική στο κύκλους Rankine. Σχήμα του κύκλου με τα εξαρτήματα που χρησιμοποιούνται και το αντίστοιχο διάγραμμα θερμοκρασίας- εντροπίας παρουσιάζεται στην Εικόνα 2.9.

Εικόνα 2.9 Διάταξη ORC με υπερθέρμανση εργαζόμενου μέσου και το αντίστοιχο διάγραμμα T-s [16]

2.4.1.2 ORC με την χρήση αναγεννητή
Συχνά στου οργανικούς κύκλους συνιστάται η χρήση αναγεννητή για την επαναχρησιμοποίηση της θερμότητας που εξέρχεται από την εκτόνωση για την προθέρμανση του εργαζόμενου μέσου
πριν την είσοδο του στον στροβίλο. Η διάταξη του συγκεκριμένου κύκλου καθώς και το αντίστοιχο διάγραμμα δίνεται στην Εικόνα 2.10.

Εικόνα 2.10 Διάταξη ORC με αναγεννητή και το αντίστοιχο διάγραμμα T-s [16]

Με την χρήση του αναγεννητή επιτυγχάνεται η αύξηση του βαθμού απόδοσης του καθώς αξιοποιείται μέρος της θερμότητας που σε διαφορετική περίπτωση θα απορριπτόταν στο περιβάλλον, μειώνοντας παράλληλα τις απαιτήσεις για θερμότητα εισόδου για την παραγωγή του ιδίου έργου εξόδου.

2.4.1.3 ORC με πολλαπλές βαθμίδες ατμοποίησης
Ένα άλλος τρόπος για την αύξηση της απόδοσης του οργανικού κύκλου είναι ο διαχωρισμός του σε διαφορετικές πιέσεις ατμοποίησης. Με τον τρόπο αυτό αυξάνεται η θερμότητα που μπορεί να αξιοποιηθεί από τον κύκλο. Το διάγραμμα του κύκλου παρουσιάζεται στην Εικόνα 2.11 μαζί με το αντίστοιχο διάγραμμα T-s.

Εικόνα 2.11 Διάταξη ORC με πολλαπλές βαθμίδες ατμοποίησης και το αντίστοιχο διάγραμμα T-s [16]

2.4.1.4 Κύκλος διαχωρισμού
Οι κύκλοι διαχωρισμού χρησιμοποιούνται σε εφαρμογές που γίνεται χρήση γεωθερμικής ενέργειας. Η λειτουργία τους βασίζεται στην μείωση της πίεσης του εργαζόμενου μέσου, στην περίπτωση των γεωθερμικών εφαρμογών το ίδιο το ρευστό της θερμής πηγής, σε μία δεξαμενή και στην συνέχεια ο ατμός και το ρευστό που βρίσκεται σε υγρή φάση κατευθύνονται αντίστοιχα
στον στρόβιλο και στον συμπυκνωτή. Για την αύξηση της παροχής μάζας του ατμού μπορούν να χρησιμοποιηθούν περισσότερες δεξαμενές συνδεδεμένες σε σειρά.

Στους οργανικούς κύκλους το εργαζόμενο μέσο το θερμοαγώγιμο ρευστό από την πηγή μεταφοράς θερμότητας, μεταφέρει τη θερμότητα στο οργανικό μέσο το οποίο με την σειρά του εισέρχεται στις δεξαμενές διαχωρισμού.

Στην Εικόνα 2.12 παρουσιάζονται διατάξεις του κύκλου διαχωρισμού και τα αντίστοιχα διαγράμματα T-s.

Στην Εικόνα 2.13 παρουσιάζονται διατάξεις του τριμερούς κύκλου και το αντίστοιχο διάγραμμα T-s.

Εικόνα 2.12 Διάταξη κύκλου διαχωρισμού και το αντίστοιχο διάγραμμα T-s[16]

2.4.1.5 Τριμερείς κύκλοι
Οι τριμερείς κύκλοι, οι οποίοι αποτελούν απλοποιημένους κύκλους διαχωρισμού, στο εργαζόμενο μέσο δεν μειώνεται η πίεση του πριν την είσοδο στο στρόβιλο αλλά εισάγεται απευθείας σε αυτόν μετά την προθέρμανση του και βρισκόμενο σε κατάσταση κορεσμένου νερού.

Και οι δύο παραπάνω κύκλοι, έχουν χαμηλότερο βαθμό απόδοσης από τον απλό κύκλο ORC, επιτυγχάνουν μεγαλύτερο βαθμό αξιοποίησης της πηγής θερμότητας, το οποίο μπορεί να οδηγήσει σε μεγαλύτερους βαθμούς απόδοσης της συνολικής εγκατάστασης.

Στην Εικόνα 2.13 παρουσιάζονται διατάξεις του τριμερούς κύκλου και το αντίστοιχο διάγραμμα T-s.
Εικόνα 2.13 Διάταξη τριμερή κύκλου και το αντίστοιχο διάγραμμα T-s [16]

2.4.1.6 Οργανικός κύκλος Rankine με την χρήση ζεοτροπικών μειγμάτων

Μια διαφορετική μέθοδος για την αποφυγή αναστρεψιμοτήτων που σχετίζονται με την μη ισοθερμοκρασιακή προσθήκη θερμότητας, είναι η χρήση ζεοτροπικών μιγμάτων σαν εργαζόμενων μέσων. Η μη ισοθερμοκρασιακή αλλαγή φάσης των μέσων αυτών επιτρέπει την καλύτερη αντιστοίχηση των θερμοκρασιακών προφίλ στον συμπυκνωτή και στον ατμοποιητή. Η διάταξη του κύκλου παραμένει η ίδια με τον απλό ORC.

Εικόνα 2.14 Διάταξη κρίσιμου ORC και το αντίστοιχο διάγραμμα T-s [16]

2.4.1.7 Κρίσιμοι κύκλοι ORC

Η κύρια διαφορά μεταξύ του υποκρίσιμου και του κρίσιμου οργανικού κύκλου Rankine βρίσκεται στη διαδικασία θέρμανσης του εργαζόμενου μέσου. Η διάταξη μιας τέτοιας εγκατάστασης είναι ίδια με αυτή του απλού κύκλου όπως φαίνεται και στην Εικόνα 2.14.

Το εργαζόμενο μέσο στον κρίσιμο κύκλο συμπίεσται απευθείας σε υπερκρίσιμη πίεση και θερμαίνεται στην υπερκρίσιμη φάση, αποφεύγοντας την διφασική περιοχή. Με τον τρόπο αυτό η μεταφορά θερμότητας γίνεται με μεγαλύτερη αποδοτικότητα σε σύγκριση με τον απλό οργανικό κύκλο Rankine.

Στους κρίσιμους κύκλους η αλλαγή φάσης από την υγρή στην αέρια πραγματοποιείται υπό υπερκρίσιμη πίεση, ενώ η συμπύκνωση πραγματοποιείται στην συνηθισμένη διφασική περιοχή. Αντίθετα στους υπερκρίσιμους κύκλους και η συμπύκνωση και η ατμοποίηση πραγματοποιείται σε υπερκρίσιμη κατάσταση.
2.5 Υπερκρίσιμος κύκλος Brayton

Για την κάλυψη των στόχων που έχουν τεθεί από τις κυβερνήσεις αναφορικά με την προστασία του περιβάλλοντος, εκτός από την χρήση ανανεώσιμων πηγών ενέργειας, ένας άλλος τρόπος μείωσης των εκπομπών του διοξειδίου του άνθρακα είναι η βελτίωση των βαθμών απόδοσης των κύκλων ισχύος που χρησιμοποιούνται στην ηλεκτροπαραγωγή. Για την επίτευξη του παραπάνω στόχου έχει προταθεί η χρήση του υπερκρίσιμου κύκλου Brayton. [17]

Εκμετάλλευοντας τις ιδιότητες των ρευστών κοντά στην κρίσιμη περιοχή, οι κύκλοι ισχύος με εργαζόμενα μέσα σε υπερκρίσιμη φάση, μπορούν να λειτουργήσουν με υψηλές θερμικές αποδόσεις, της τάξης του 50%. [18]

Οι υψηλές πυκνότητες των υπερκρίσιμων ρευστών επιτρέπουν την χρήση μικρής κλίμακας μηχανημάτων σε σχέση με τους συμβατικούς κύκλους που χρησιμοποιούν αέρα ή ατμό.

Αν και έχουν μελετηθεί διάφορα ρευστά για την χρήση τους μαζί με τον υπερκρίσιμο κύκλο Brayton [19], ιδανική θεωρείται η χρήση του διοξειδίου του άνθρακα. Το μέσο αυτό θεωρείται ιδανικό καθώς το κρίσιμο θερμοκρασιατικό του είναι πολύ κοντά στην θερμοκρασία περιβάλλοντος (31 °C), επιτρέποντας έτσι την σύζευξη του υπερκρίσιμου κύκλου με CO₂ με ένα μεγάλο εύρος εφαρμογών που θα αναλυθούν στην συνέχεια. Επιπλέον, παρουσιάζεται πολλά πλεονεκτήματα ως εργαζόμενο μέσο, λόγω της αξιοπιστίας του, της μη τοξικότητας του, του χαμηλού κόστους και της άμεσης διαθεσιμότητας του.

2.5.1 Πλεονεκτήματα υπερκρίσιμου κύκλου

Στους παραδοσιακούς κύκλους ισχύος με την χρήση ατμού, η εγκατάσταση αποτελείται από πολλά υποσυστήματα που είναι απαραίτητα για την λειτουργία του σε συνδυασμό με μεγάλους σε όγκο εναλλάκτες θερμότητας και συμπιεστές. Επομένως είναι δύσκολη η μείωση του μεγέθους της εγκατάστασης. Η χρήση του υπερκρίσιμου κύκλου Brayton (SCBC) με εργαζόμενο μέσο το sCO₂ έχει σημαντικά πλεονεκτήματα τόσο σε μέγεθος όσο και απόδοση. Στα πλεονεκτήματα αυτά περιλαμβάνονται επίσης: [20]

1. Εξαιτίας του μειωμένου έργου συμπίεσης, ο SCBC παρουσιάζει υψηλούς συντελεστές απόδοσης όταν χρησιμοποιείται σε εφαρμογές με σχετικά υψηλές θερμοκρασίες. Στην Εικόνα 2.15 παρουσιάζονται οι αποδόσεις διαφόρων κύκλων παραγωγής ισχύος με διαφορετικές διατάξεις για εύρος θερμοκρασιών υπό τυπικές συνθήκες λειτουργίας. Στους κύκλους συμπιεστές παρουσιάζεται ο κύκλος Rankine με ατμό, ο κύκλος Brayton με εργαζόμενο μέσο το ήλιο (He) υπό δύο διαφορετικές παραλλαγές, μία με ένα στρόβιλο και ένα συμπιέστη και μία με 3 στρόβιλους και 6 συμπιέστες με αναγεννητήρα και ο υπερκρίσιμος Brayton με επανασυμπίεση (RCBC). Όπως φαίνεται στο παρακάτω διάγραμμα, ο υπερκρίσιμος Brayton έχει μεγαλύτερο βαθμό απόδοσης για εύρος θερμοκρασιών από 450 °C ως 700 °C.
2. Η κρίσιμη πίεση είναι περίπου το ένα τρίτο της κρίσιμης πίεσης του νερού, επιτρέποντας την λειτουργία του κύκλου σε χαμηλή πίεση.

3. Η μεγάλη πυκνότητα του υπερκρίσιμου διοξειδίου του άνθρακα επιτρέπει την χρήση μικρότερων σε μέγεθος εξαρτημάτων, συμπεριλαμβανομένου μικρότερων στροβίλων και μικρότερων εναλλακτικών θερμότητας. Επειδή η ελάχιστη πίεση λειτουργίας του SCBC είναι περίπου 7400 kPa, η οποία είναι αρκετά μεγαλύτερη σε σχέση με τους κύκλους Rankine με εξαρτήματα στροβίλων και με τον κύκλο Brayton (περίπου 100 kPa), η πυκνότητα του CO₂ παραμένει μεγάλη σε όλη την διάρκεια του κύκλου. Από τα παραπάνω προκύπτει ότι η ογκομετρική παροχή μειώνεται εφόσον η πυκνότητα του υπερκρίσιμου διοξειδίου του άνθρακα μειώνεται. Το μικρό μέγεθος των εξαρτημάτων μειώνει το συνολικό μέγεθος της εγκατάστασης και επίσης το κόστος επένδυσης.

4. Απαιτεί λιγότερα στάδια στροβίλων όσο και συμπιεστών σε σχέση με τον αντίστοιχο κύκλο ηλίου, γεγονός που οδηγεί σε αισθητή μείωση του βάρους της κατασκευής.

2.5.2 Ιδιότητες του διοξειδίου του άνθρακα

Η συμπεριφορά του διοξειδίου του άνθρακα στην υπερκρίσιμη περιοχή εμφανίζει μια μεγάλη διαφοροποίηση από την συμπεριφορά των ιδανικών αερίων. Αυτό που παρατηρείται είναι η απότομη μεταβολή των θερμοδυναμικών ιδιοτήτων του CO₂ στην περιοχή του κρίσιμου σημείου για μικρές μεταβολές της θερμοκρασίας και της πίεσης. Οι ιδιότητες που εμφανίζουν τις μεγαλύτερες διακυμάνσεις και κατ’ επέκταση το μεγαλύτερο ενδιαφέρον είναι η πυκνότητα,
ο ειδικός λόγος θερμοχωρητικοτήτων και η ειδική θερμοχωρητικότητα υπό σταθερή πίεση. Το άμεσο αντίκτυπο της συμπεριφοράς αυτής είναι ότι οι θερμοδυναμικές σχέσεις που χρησιμοποιούνται σε υπολογισμούς για ιδανικά αέρια δεν μπορούν να χρησιμοποιηθούν για υπερκρίσιμα ρευστά, οπότε γίνεται η χρήση ειδικών βιβλιοθηκών που είναι βασισμένες στα πιο ακριβή μοντέλα περιγραφής ρευστών και μιγμάτων.

Η πυκνότητα που παρουσιάζουν τα υπερκρίσιμα ρευστά είναι μεγαλύτερη από τα συνήθη ρευστά γεγονός που φαίνεται και στο μικρό μέγεθος των στροβιλομηχανών όπως αναλύθηκε σε προηγούμενη παράγραφο. Όπως φαίνεται και στην Εικόνα 2.16 έχει μεγάλη μεταβολή κοντά στο κρίσιμο σημείο όποτε δεν μπορεί να εκτιμηθεί από τις κλασικές θερμοδυναμικές σχέσεις.

Εικόνα 2.16 Διάγραμμα μεταβολής πυκνότητας συναρτήσει θερμοκρασίας και πίεσης [20]

Από την θερμοδυναμική είναι γνωστό ότι η ειδική θερμοχωρητικότητα σε σταθερή πίεση C_p ορίζεται ως το ποσό της θερμότητας που απαιτείται να προστεθεί σε ένα ρευστό ώστε να αυξηθεί η θερμοκρασία κατά 1 °C ανά μονάδα μάζας. Το C_p χρησιμοποιείται για τον θερμοδυναμικό χαρακτηρισμό ενός κύκλου, αλλά όπως φαίνεται και στην Εικόνα 2.17 η μεταβολή του κοντά στην υπερκρίσιμη περιοχή είναι αρκετά μεγάλη για να μπορεί να προσδιοριστεί από τις υπάρχουσες θερμοδυναμικές σχέσεις.
Εικόνα 2.17 Μεταβολή ειδικής θερμοχωρητικότητας συναρτήσει θερμοκρασίας & πίεσης [22]

2.5.3 Διατάξεις υπερκρίσιμου κύκλου Brayton
Έχουν προταθεί πολλές διατάξεις του υπερκρίσιμου κύκλου Brayton, αλλά αυτές που έχουν μελετηθεί περισσότερο είναι ο απλός κύκλος (simple), ο κύκλος με αναγεννητή (recuperated) και ο κύκλος επανασυμπίεσης (recompression). Οι παραπάνω διατάξεις και τα αντίστοιχα διαγράμματα θερμοκρασίας εντροπίας παρουσιάζονται στην Εικόνα 2.18.

Ο κύκλος που έχει αποδειχθεί θεωρητικά πως έχει την μεγαλύτερη απόδοση και συγκεντρώνει σημαντικό ερευνητικό ενδιαφέρον ως πιο αποδοτικός είναι ο κύκλος επανασυμπίεσης.

Επιπλέον ο υπερκρίσιμος κύκλος Brayton έχει μελετηθεί σε συνδυασμό με άλλους κύκλους ισχύος όπως για παράδειγμα η απορριπτόμενη θερμότητα να είναι είσοδος σε οργανικό κύκλο Rankine. [23] Στην μελέτη αυτή η θερμότητα προέρχεται από ηλιακή ακτινοβολία.
Εικόνα 2.18 Διαφορετικές διατάξεις υπερκρίσιμου κύκλου Brayton που έχουν μελετηθεί με τα αντίστοιχα διαγράμματα $T-s$ [22]
Εικόνα 2.19 Διάγραμμα υπερκρίσιμου κύκλου με ORC

2.5.4 Εφαρμογές υπερκρίσιμου κύκλου Brayton
Τα συστήματα παραγωγής ισχύος που βασίζονται στον υπερκρίσιμο κύκλο Brayton μπορούν να χρησιμοποιηθούν σε ένα μεγάλο εύρος εφαρμογών το οποίο παρουσιάζεται στην Εικόνα 2.20. Σε αυτήν οι εφαρμογές είναι ομαδοποιημένες με βάση την πηγή θερμότητας, η οποία περιλαμβάνει εφαρμογές ανάκτησης θερμότητας, εφαρμογές συγκεντρωτικής ηλιακής ενέργειας, ορυκτά καύσιμα, πυρηνική ενέργεια και γεωθερμία. Επιπλέον στην εικόνα είναι εμφανές το εύρος των θερμοκρασιών της κάθε εφαρμογής.

Η διερεύνηση των συστημάτων αυτών πραγματοποιείται εξαιτίας των μοναδικών και σε μερικές περιπτώσεις επαναστατικών λύσεων που μπορεί να προσφέρει η τεχνολογία αυτή. Μέσω του υπερκρίσιμου κύκλου μπορεί να γίνει σημαντική βελτίωση της απόδοσης που μπορεί να καταστήσει οικονομικά βιώσιμη μια επένδυση ή ακόμα και να δημιουργήσει νέες.
Εικόνα 2.20 Εφαρμογές sCO2 ανάλογα με την πηγή θερμότητας και το εύρος των θερμοκρασιών λειτουργίας [22]

2.6 Εργαζόμενα μέσα

Η απόδοση και η οικονομική βιωσιμότητα ενός οργανικού κύκλου Rankine είναι άμεσα συνδεδεμένη με τις θερμοδυναμικές ιδιότητες και την απόδοση του εργαζόμενου μέσου. Αυτό καθιστά την επιλογή του εργαζόμενου μέσου ως ένα από τα κριτικά σημεία σημεία. Η επιλογή αυτή αποτελεί μια πολύπλοκη διαδικασία καθώς υπάρχει διαθεσιμότητα μεγάλου αριθμού ρευστών που μπορούν να καλύψουν τις απαιτήσεις κάθε εφαρμογής για κάθε θερμοκρασιακό εύρος. Υπάρχει πληθώρα διαφορετικών οργανικών μέσων και κυρίως ανήκουν σε μία από τις παρακάτω κατηγορίες: ψυκτικό μέσο, υδρογονάνθρακες, σιλοξάνια και οι αλκοόλες. Στην εικόνα λεία να μελετήσει την επιλογή του είδους του οργανικού μέσου που χρησιμοποιείται ανάλογα με το εύρος της θερμοκρασίας της εφαρμογής [24].

Εικόνα 2.21 Κατηγοριοποίηση οργανικών μέσων ανάλογα με το εύρος θερμοκρασίας [24]
Τα εργαζόμενα μέσα ταξινομούνται ανάλογα με την κλίση της καμπύλης κορεσμού του ρευστού στο διάγραμμα θερμοκρασία-εντροπίας. Οι τρεις βασικοί τύποι που προκύπτουν από αυτήν την κατηγοριοποίηση είναι τα υγρά, τα ισεντροπικά και τα ξηρά ρευστά. Όπως παρουσιάζεται στην Εικόνα 2.22 τα υγρά ρευστά χαρακτηρίζονται από αρνητική κλίση στην καμπύλη κορεσμού, τα ισεντροπικά έχουν κάθετη κλίση στο ίδιο διάγραμμα ενώ στα ξηρά η καμπύλη κορεσμού έχει θετική κλίση. [25]

![Diagram](image)

Εικόνα 2.22 Διαγράμματα Τ-s (α) υγρών ρευστών (β) ισεντροπικών ρευστών (γ) ξηρών ρευστών [25]

Στην περίπτωση που χρησιμοποιούνται υγρά ρευστά όπως για παράδειγμα το νερό, είναι απαραίτητη η υπερθέρμανσή τους πριν την είσοδο στο στρόβιλο ώστε να εξασφαλιστεί η ατμώδης κατάσταση, αφού τα σταγόνια νερής κατάστασης μπορούν να προκαλέσουν σοβαρά προβλήματα στο στροβίλου. Η προσθήκη αυτή δεν είναι αναγκαία στην περίπτωση των ισεντροπικών και ξηρών ρευστών καθώς στα πρώτα η κατάσταση κορεσμένου ατμού στην υψηλή πίεση εξασφαλίζει είτε κορεσμένο είτε υπέρθερμο ατμό στην έξοδο ενώ στα δεύτερα στην έξοδο του στροβίλου επικρατεί πάντα υπέρθερμος ατμός [24]. Συνεπώς τα ξηρά και τα ισεντροπικά ρευστά προτίμονται από τα υγρά καθώς δεν συμπυκνώνονται με την εκτόνωση στον στροβίλο στην περίπτωση που δεν χρησιμοποιείται υπερθέρμανση.

Η χρήση οργανικού ρευστού παρουσιάζει περισσότερα πλεονέκτημα παρά την χρήση νερού-ατμού, εκτός από την μη χρήση υπερθέρμανσης. Αναλυτικότερα:

- Επιλέγοντας εργαζόμενο μέσο με χαμηλή θερμοκρασία βρασμού δίνεται η δυνατότητα για εκμετάλλευση πηγών ενέργειας χαμηλής θερμοκρασίας.
- Ρευστά με υψηλή πυκνότητα ατμού οδηγούν στην χρήση μικρότερου στροβίλου.
- Δεν είναι απαραίτητη εξαέρωση και τα συστήματα απομετάλωσης είναι απλά στην λειτουργία τους.
- Συχαίνει πιο συμπύκνωσης είναι ίση ή μεγαλύτερη από την ατμοσφαιρική με αποτέλεσμα να αποφεύγεται η διήθηση αέρα.
- Η πίεση ατμοποίησης είναι χαμηλότερη οδηγώντας σε πιο απλούς στροβίλους που δεν έχουν υψηλή κριτήρια αντοχής.

Από την άλλη πλευρά τα οργανικά μέσα είναι πιο ακριβά στην αγορά τους, πιο επικίνδυνα στην χρήση τους (εύφλεκτα, τοξικά) και λιγότερο φιλικά προς το περιβάλλον. Επιπλέον, μέρος των οργανικών μέσω παρουσιάζουν χειρότερες ιδιότητες μεταφοράς θερμότητας με συνέπεια την χρήση μεγαλύτερων εναλλακτών θερμότητας σε σύγκριση με ένα σύστημα νερού-ατμού. Επίσης έχουν υψηλό ιξώδες ρευστού στην υγρή φάση με αποτέλεσμα να απαιτούνται μεγαλύτερες αντλίες.
Εικόνα 2.23 Καμπύλες κορεσμού οργανικών μέσου σε σύγκριση με του νερού [26]

Τα κριτήρια επιλογής του εργαζόμενου μέσου περιλαμβάνουν τις θερμοδυναμικές και φυσικές ιδιότητες τους. Αναλυτικότερα τα κριτήρια επιλογής και πως αυτά επηρεάζουν τη λειτουργία του κύκλου αναλύονται στη συνέχεια [27]:

Θερμική ευστάθεια. Η θερμική ευστάθεια (thermal stability) του ρευστού που χρησιμοποιείται στον ORC μπορεί να περιορίσει την θερμοκρασία της πηγής θερμότητας και να περιορίσει τον χρόνο ζωής της εγκατάστασης με αρνητικές συνέπειες στην οικονομική της απόδοση. Πάνω από μια θερμοκρασία η χημική σύσταση του ρευστού μπορεί να μεταβληθεί επηρεάζοντας την λειτουργία του κύκλου και να οδηγήσει στην δημιουργία τοξικών αποβλήτων που στην περίπτωση που υπάρχουν διαρροές μπορούν να προκαλέσουν προβλήματα στην υγεία.

Λανθάνουσα θερμότητα εξάτμισης (enthalpy of exsolution). Η υψηλή λανθάνουσα θερμότητα επιτρέπει την μεταφορά του μεγαλύτερου ποσοστού θερμότητας κατά την διαδικασία αλλαγής φάσης του ρευστού. Με τον τρόπο αυτό αποφεύγεται η ανάγκη για την ρύθμιση της υπερθέρμανσης και εκτόνωσης του μέσου μέσω αναγεννητικής θέρμανσης με σκοπό την αύξηση του βαθμού απόδοσης. Σε όρους παραγόμενου εργού, για τις ίδιες θερμοκρασίες λειτουργίας, έχει αποδειχθεί ότι παράγεται περισσότερο έργο όταν το εργαζόμενο μέσο έχει υψηλότερη ενθαλπία εξάτμισης. Σε όρους παραγόμενου έργου, για τις ίδιες θερμοκρασίες λειτουργίας, έχει αποδειχθεί ότι παράγεται περισσότερο έργο όταν το εργαζόμενο μέσο έχει υψηλότερη ενθαλπία εξάτμισης. Στην περίπτωση όμως όπου υπάρχει διακύμανση στις θερμοκρασίες στην πηγή θερμότητας προτιμούνται ρευστά με χαμηλή ενθαλπία εξάτμισης.

Πυκνότητα. Χαμηλή πυκνότητα ατμού οδηγεί σε μεγαλύτερες ογκομετρικές παροχές του οργανικού μέσου οι οποίες προκαλούν μεγαλύτερη πτώση πίεσης στους εναλλάκτες οργανικού μέσου
θερμότητας και καθιστούν αναγκαία την χρήση μεγαλύτερων στροβίλων. Οι επιπτώσεις αυτές έχουν αντίκτυπο στο κόστος της εγκατάστασης. Επιπλέον, μεγάλη πυκνότητα επιδρά θετικά στον ισεντροπικό βαθμό απόδοσης του στροβίλου όπως αυτό θα αναλυθεί σε επόμενα κεφάλαια.

Ειδική θερμοχωρητικότητα. Μερικοί ερευνητές έχουν προσπαθήσει να συνδέσουν την ειδική θερμοχωρητικότητα με την απαιτούμενη ισχύ της αντλίας της εγκατάστασης, αλλά σύμφωνα με τους Bao και Zhao [27] δεν υπάρχει άμεση σχέση μεταξύ των δύο μεγεθών.

Κρίσιμη θερμοκρασία. Τα ρευστά με μεγαλύτερη κρίσιμη θερμοκρασία προσφέρουν μεγαλύτερη συνολική απόδοση στον κύκλο αλλά έχουν χαμηλότερη πίεση συμπύκνωσης. Επιπλέον ρευστά με μεγάλη κρίσιμη θερμοκρασία παρουσιάζουν μικρότερη πυκνότητα ατμών.

Μοριακό βάρος. Το μεγάλο μοριακό βάρος έχει θετική επίπτωση στην απόδοση του στροβίλου αλλά τα ρευστά με μεγάλο μοριακό βάρος και μεγάλη κρίσιμη πίεση χρειάζονται μεγάλη επιφάνεια συναλλαγής θερμότητας.

Ιξώδες. Προτιμάται η χρήση ρευστών με χαμηλό ιξώδες στην ατμώδη και υγρή φάση καθώς μειώνονται οι απώλειες τριβής στις σωληνώσεις και στους εναλλάκτες θερμότητα.

Θερμική αγωγιμότητα. Για την επίτευξη υψηλών συντελεστών μεταφοράς θερμότητας στους εναλλάκτες θερμότητας, είναι απαραίτητη η χρήση ρευστών με μεγάλη θερμική αγωγιμότητα.

Οι παραπάνω θερμοδυναμικές και φυσικές ιδιότητες των οργανικών ρευστών λαμβάνονται υπόψη κατά την διαδικασία επιλογής εργαζόμενου μέσου σε επόμενο κεφάλαιο.

2.7 Οργανικοί κύκλοι Rankine με ηλιακή ενέργεια

Η πρώτη εμπορική εγκατάσταση ηλιακού οργανικού κύκλου Rankine αφορά εγκατάσταση 1 MWe στην Αριζόνα των Ηνωμένων Πολιτειών Αμερικής που ολοκληρώθηκε το 2006 και χρησιμοποιεί παραβολικούς ηλιακούς συλλέκτες. Το εργοστάσιο αποτελείται από 10340 m^2 παραβολικών συλλέκτων και χρησιμοποιεί θερμικό έλαιο σαν ρευστό μεταφοράς θερμότητας. Το ρευστό αυτό έχει θερμοκρασία 300 ℃. Το οργανικό μέσο που χρησιμοποιείται στον κύκλο ισχύος είναι n-Pentane. Η ολική απόδοση της εγκατάστασης (λόγος παραγόμενης ηλεκτρικής ενέργειας προς ηλιακή ενέργεια στους συλλέκτες) είναι 12.1%. Η εγκατάσταση αυτή αποτελεί την μεγαλύτερη αυτού του είδους και αποτελεί παράδειγμα καθώς απέδειξε την ευκολία του ηλιακού ORC σε σύγκριση με το κύκλο Rankine με ατμό, καθώς μπορεί να δουλέψει χωρίς συνεχή ηλεκτροπαραγωγή από ανθρώπους. [28]

Το Δεκέμβριο του 2009 μια εγκατάσταση ηλιακού ORC δημιουργήθηκε στην έρημο Kona στη Χαβάη από το Εθνικό Εργαστήριο Ενέργειας της Χαβάης (National Energy Laboratory of Hawaii Authority). Και αυτό το εργοστάσιο χρησιμοποιεί παραβολικούς ηλιακούς συλλέκτες με συνολική θερμική δυνατότητα 2 MW και δυνατότητα παραγωγής 500kWe. Το ηλιακό πάρκο χρησιμοποιεί θερμικό έλαιο το οποίο θερμαίνεται σε θερμοκρασία 200 ℃ πριν την είσοδο στην μονάδα παραγωγής ηλεκτρικής ενέργειας. [29]

Στο Μαρόκο ένα εργοστάσιο παραγωγής τσιμέντου το οποίο λειτουργεί από το 2010 και χρησιμοποιεί ως κύριο κάυσιμο για την λειτουργία του άνθρακα, έχει εγκαταστήσει μονάδα παραγωγής ηλεκτρικής ενέργειας με την χρήση ORC εκμεταλλευόμενο την θερμότητα που απορρίπτει στο περιβάλλον. Το 2014 στην ηλεκτροπαραγωγική μονάδα προστέθηκε σύστημα συγκεντρωτικής ηλιακής ενέργειας για αύξηση της παραγωγής του ηλεκτρισμού. Το σύστημα αυτό αποτελείται από παραβολικούς συλλέκτες που έχουν τη δυνατότητα να παράγουν 3.9
ΜWth. Αέρας εισάγεται στο ηλιακό πάρκο σε θερμοκρασία 270 °C και εξέρχεται σε θερμοκρασία 570 °C. [30] Επιπλέον έχει εγκατασταθεί σύστημα θερμικής αποθήκευσης ενέργειας 5 ωρών. Το διάγραμμα της εγκατάστασης φαίνεται στην παρακάτω εικόνα:

Εικόνα 2.24 Διάγραμμα εγκατάστασης [30]

Ο ζεστός αέρας από τους συλλέκτες εισέρχεται σε εναλλάκτη θερμότητα όπου προστίθεται στην θερμότητα που προέρχεται από το ήδη εγκατεστημένο σύστημα ανάκτησης θερμότητας πριν εισέρθει στην ατμοποιητή του οργανικού κύκλου Rankine. Η θερμοκρασία του οργανικού μέσου φτάνει τους 200 °C και εισέρχεται σε στρόβιλο με ονομαστική ισχύ 2 MWe.

Στην Ευρώπη, 3 εργοστάσια κατασκευάστηκαν στην Ισπανία, τα Andasol I, II & III τα οποία έχουν ονομαστική ισχύ 50 MW το καθένα. Το σημαντικό με αυτά τα εργοστάσια είναι η ύπαρξη αποθήκευσης ενέργειας που βασίζεται σε άλας. [31]

Συγκεκριμένα, οι μονάδες που λειτουργούν με συγκεκριμένοι ηλιακούς συλλέκτες σε συνδυασμό με οργανικούς κύκλους Rankine με εύρος παραγωγής 50kW-5MW παρουσιάζονται στον παρακάτω πίνακα:[32]
Πίνακας 2.2 Συγκεντρωτικός πίνακας εγκαταστάσεων

2.8 Αποθήκευση ενέργειας

Η ενέργεια που παράγεται από διατάξεις ανανεώσιμων πηγών ενέργειας, όπως είναι για παράδειγμα τα φωτοβολταϊκά στοιχεία και οι ανεμογεννήτριες, κυμαίνεται σημαντικά σε ωριαία, ημερήσια και εποχιακή βάση λόγω της διαθεσιμότητας της ενέργειας της πηγής. Κατά συνέπεια, οι ανανεώσιμες πηγές ενέργειας έχουν το μειονέκτημα της χρονικής αναντιστοιχίας της παραγωγής (προσφοράς) που δεν επιδέχεται ανθρώπινη παρέμβαση με τη κατανάλωση (ζήτηση) ενέργειας. Η αναντιστοιχία αυτή σημαίνει ότι υπάρχουν περιπτώσεις κατά τις οποίες η ενέργεια δεν είναι διαθέσιμη όταν απαιτείται, ή υπάρχει πλεόνασμα ενέργειας. Δημιουργείται, επομένως, η ανάγκη επίσημης αποθήκευσης της ενέργειας στα συστήματα παραγωγής των ΑΠΕ.

Υπάρχει μια μεγάλη ποικιλία από τεχνικές συστημάτων αποθήκευσης ενέργειας υπό ανάπτυξη, οι οποίες μπορούν να ομαδοποιηθούν στις ακόλουθες μορφές:

- Μηχανική αποθήκευση ενέργειας. Η μηχανική ενέργεια μπορεί να αποθηκευτεί είτε ως κινητική ενέργεια που αποδίδεται σε γραμμική ή περιστροφική κίνηση, είτε ως δυναμική ενέργεια π.χ. το ενεργειακό δυναμικό ενός υπερυψωμένου αντικειμένου, είτε ως ενέργεια συμπίεσης ή ενέργεια παραμορφώσεως ενός ελαστικού υλικού ή ενέργεια συμπίεσης ενός αερίου. Σημαντικότερες τεχνικές είναι αυτές της άντλησης νερού σε ταμιευτήρες, της αποθήκευσης ενέργειας υπό μορφή πεπιεσμένου αέρα και της αποθήκευσης σε βολάν (flywheel).

- Θερμική αποθήκευση ενέργειας. Η θερμική ενέργεια μπορεί να αποθηκευτεί αυξάνοντας την θερμοκρασία μιας ουσίας, αλλάζοντας την φάση της ουσίας ή με συνδυασμό των δύο.

- Χημική αποθήκευση ενέργειας. Η ενέργεια, μπορεί να αποθηκευτεί σε συστήματα τα οποία διέπονται από τις αρχές της ηλεκτροχημείας. Αποτελούνται από στοιχεία τα οποία όταν αντιδρούν χημικά απορροφούν ή αποδίδουν ενέργεια. Οι πιο γνωστές συσκευές χημικής αποθήκευσης είναι οι ηλεκτρικοί συσσωρευτές (μπαταρίες) και οι ηλεκτροχημικοί πυκνωτές.

2.8.1 Θερμική αποθήκευση ενέργειας

Τα συστήματα θερμικής αποθήκευσης ενέργειας αποθηκεύουν ενέργεια ψύχοντας, ρωτιώνοντας, τήκοντας, σταθεροποιώντας ή εξατμίζοντας ένα υλικό, ενώ η αποθηκευμένη ενέργεια είναι διαθέσιμη όταν η διαδικασία αποθήκευσης αντιστρέφεται. Υπάρχουν δύο
μεγάλες κατηγορίες αποθήκευσης της θερμικής ενέργειας: η αποθήκευση αισθητής θερμότητας και η αποθήκευση λανθάνουσας θερμότητας. [33]

Στην πρώτη κατηγορία (αποθήκευση αισθητής θερμότητας) η θερμική ενέργεια αποθηκεύεται με την αύξηση της μέσης θερμοκρασίας του μέσου που χρησιμοποιείται. Επομένως η αποτελεσματικότητα της εξαρτάται από την ειδική θερμότητα του υλικού αποθήκευσης και όταν ο όγκος του μέσου είναι σημαντικός και από την πυκνότητά του. Τα συστήματα αυτά χρησιμοποιούν συνήθως πετρώματα, το έδαφος ή νερό. Συγκρίνοντας τα υλικά αυτά αξίζει να σημειωθεί ότι ενώ η ειδική θερμότητα του νερού ανά όγκο δεν είναι τόσο υψηλή όσο πολλών στερεών, έχει το πλεονέκτημα ότι είναι ένα υγρό που μπορεί να μεταφέρεται και να αντλείται εύκολα. Τα στερεά έχουν το πλεονέκτημα των υψηλότερων τιμών ειδικής θερμότητας οι οποίες επιτρέπουν αποθήκευση θερμότητας υψηλής θερμοκρασίας. Σε διατάξεις όπου απαιτείται θερμότητα υψηλής θερμοκρασίας όπως για παράδειγμα η ηλεκτροπαραγωγή, χρησιμοποιούνται τετηγμένα αλάτα.

Στη δεύτερη κατηγορία (αποθήκευση λανθάνουσας θερμότητας) αξιοποιούνται κυρίως υλικά αλλαγής φάσης (PCM - Phase Change Materials), όπου η αποθήκευση της θερμικής ενέργειας πραγματοποιείται όταν το υλικό αλλάζει φάση, συνήθως από την στερεή στην υγρή κατάσταση (θερμότητα τήξης). Το σημαντικότερο πλεονέκτημα των υλικών αυτών είναι ότι με τη χρήση τους η πυκνότητα της λανθάνουσας αποθήκευσης θερμότητας είναι μεγαλύτερη από εκείνη της αισθητής, με αποτέλεσμα να απαιτούνται μικρότερα στοιχεία αποθήκευσης με ταυτόχρονη ελαχιστοποίηση των απωλειών. Αν και στον συγκεκριμένο τομέα έχουν γίνει σημαντικές πρόοδοι, εξακολουθούν να υφίστανται ορισμένα σημαντικά εμπόδια στην ανάπτυξη αξιόπιστων και πρακτικών συστημάτων. Τα κυρίως από αυτά αφορούν τις αβεβαιότητες σχετικά με την μακροπρόθεσμη θερμική συμπεριφορά, το αυξημένο κόστος και τη μειωμένη δυνατότητα αποθήκευσης.

Η βασική αρχή λειτουργίας όλων των συστημάτων θερμικής αποθήκευσης είναι ίδια και περιλαμβάνει το στάδιο της φόρτισης του υλικού αποθήκευσης, το στάδιο της αποθήκευσης της θερμότητας και το στάδιο της αποφόρτισης/απόρριψης για την τελική χρήση.

Για το σχεδιασμό ενός συστήματος θερμικής αποθήκευσης, κρίσιμη παράμετρος είναι η περίοδος αποθήκευσης. Στις περιπτώσεις της βραχυπρόθεσμης αποθήκευσης, όπως συστήματα ημερήσιας αποθήκευσης, υπάρχουν σημαντικά πλεονέκτημα όπως οι μικρές επενδύσεις κεφαλαίου, οι μειωμένες επωλέσεις ενέργειας και ο μειωμένος όγκος εξοπλισμού. Αντίθετα σε διατάξεις εποχικής ή ετήσιας αποθήκευσης, η εφαρμογή των συστημάτων είναι οικονομικά βιώσιμη μόνο σε βιομηχανική κλίμακα.
3 Μοντελοποίηση ηλιακού πάρκου

Στο κεφάλαιο αυτό παρουσιάζονται η θεωρητική ανάλυση για τον τρόπο λειτουργίας του συγκροτήματος παραγωγής ηλεκτρικής ενέργειας και παρουσιάζονται τα επιμέρους υποσυστήματά του, τα οποία είναι το ηλιακό πάρκο, η μονάδα θερμικής αποθήκευσης ενέργειας και η μονάδα παραγωγής ενέργειας. Αναλυτικότερα, πραγματοποιείται λεπτομερής περιγραφή της δομής του ηλιακού πάρκου και αναλύονται οι λόγοι για τους οποίους έγινε αυτή η επιλογή ενώ γίνεται θερμική ανάλυση των παραβολικών συλλεκτών. Αναφορικά με την θερμική αποθήκευση ενέργειας, γίνεται μια βασική ανάλυση των συστημάτων καθώς η διπλωματική εστιάζεται στην λειτουργία της εγκατάστασης σε μόνιμη κατάσταση, κατά την οποία το μέσο αποθήκευσης δεν επηρεάζει κάποιο άλλο υποσύστημα. Η μονάδα παραγωγής ενέργειας εξετάζεται με λεπτομέρειας, αρχίζοντας από την επιλογή εργαζόμενου μέσου, στη συνέχεια με την κατάλληλη δομή και μοντελοποιώντας καθένα από τα εξαρτήματα ξεχωριστά. Τέλος γίνεται η συνολική μοντελοποίηση της μονάδας παραγωγής ηλεκτρικής ενέργειας από τον ήλιο στο σημείο λειτουργίας της.

3.1 Δομή συγκροτήματος

Στην παρούσα διπλωματική εργασία, για το συγκρότημα παραγωγής ηλεκτρικής ενέργειας με την χρήση ηλιακής ακτινοβολίας, επιλέγεται η τυπική εγκατάσταση η οποία μπορεί να χωριστεί σε τρία κύρια μέρη: το ηλιακό πάρκο, την μονάδα αποθήκευσης ενέργειας και την μονάδα παραγωγής ενέργειας. Τα παραπάνω μέρη, τα οποία παρουσιάζονται στην παρακάτω εικόνα, αποτελούν την βάση και αποτελούνται από μια σειρά διαφορετικών εξαρτημάτων και τεχνολογιών.

Εικόνα 3.1 Διάγραμμα της εγκατάστασης

3.2 Ηλιακό πάρκο

Μέσω του ηλιακού πάρκου γίνεται η συλλογή της ηλιακής ακτινοβολίας μέσω ηλιακών συλλεκτών. Υπάρχουν πολλές διαφορετικές τεχνολογίες συλλεκτών, οι οποίες έχουν αναλυθεί στο κεφάλαιο 2.2, οι οποίες εκτελούν την συγκεκριμένη διεργασία. Για την τάξη μεγέθους της παραγωγής ενέργειας που μελετάται, οι γραμμικοί συγκεντρωτικοί συλλέκτες αποτελούν την βέλτιστη επιλογή. Το κόστος της ενέργειας συγκρίνοντας μεταξύ των επιμήκων συλλεκτών με φακούς/κάτοπτρα Frensel (LFR) και των παραβολικών συλλεκτών (PT) για την ίδια εγκατάσταση παραγωγής με το ίδιο εργαζόμενο μέσω είναι σχεδόν ίδιο[34]. Οι πρώτοι έχουν μεγαλύτερες
οπτικές απώλειες και σε μεγάλες γωνίες πρόπτωσης ακτινοβολίας η οπτική απόδοση μειώνεται γρήγορα ενώ οι δεύτεροι παρουσιάζουν μεγαλύτερη συνολική θερμική απόδοση. Σε όρους καθαρής παραγωγής ηλεκτρικής ενέργειας κατά την διάρκεια ενός χρόνου μια μονάδα που χρησιμοποιεί παραβολικούς συλλέκτες μπορεί να έχει έως και 6% μεγαλύτερη συνολικά απόδοση σε σχέση με μία ίδιου μεγέθους μονάδα που έχει εγκαταστημένους συλλέκτες Fresnel.

Η τεχνολογία των παραβολικών συλλεκτών είναι πιο ώριμη τεχνολογικά σε σχέση με τους συλλέκτες Fresnel ως εκ τούτου είναι αυτή που χρησιμοποιείται ευρέως. Η αρχή που χρησιμοποιούνται μαζί με κύκλους Rankine. Η σημαντική πρόοδος έχει σημειωθεί στον τομέα της έρευνας και ανάπτυξης. Η Σημαντική παράμετρος της λειτουργίας του ηλιακού πάρκου είναι και η διάταξη των συλλεκτών. Η διάταξη καθορίζει την ευελιξία των μηχανών και τη διαλογή των συλλεκτών. Η αρχή αυτή επιτυγχάνεται όταν οι συλλέκτες τροφοδοτούνται με θερμοαγωγό ρεύμα ρέουσα και το κόστος διατήρησης της ποιότητας της υπόλοιπης συλλήψης.

Σημαντική εμφάνιση στην τεχνολογία της παραγωγής είναι την επιτυχία της τεχνολογίας των παραβολικών συλλεκτών, που είναι πιο ώριμης σε σχέση με τους συλλέκτες Fresnel. Η επιπλέον σημασία της αυτής τεχνολογίας είναι άκρως σημαντική, καθότι το έργο δεν επιτυγχάνεται με την χρήση της τεχνολογίας Fresnel. Η επιπλέον σημασία της αυτής τεχνολογίας είναι άκρως σημαντική, καθότι το έργο δεν επιτυγχάνεται με την χρήση της τεχνολογίας Fresnel.

Εικόνα 3.2 Διάταξη ηλιακού πάρκου
Σημαντικό στοιχείο του ηλιακού πάρκου είναι το ρευστό μεταφοράς ενέργειας από τους συλλέκτες στην μονάδα παραγωγής ηλεκτρικής ενέργειας. Τα θερμικά έλαια αποτελούν τα συνηθέστερα ρευστά που χρησιμοποιούνται ως θερμοαγώγια μέσα αφού η πλειοψηφία των μονάδων χρησιμοποιούν συνθετικά έλαια. Η εταιρεία Eastman έχει δημιουργήσει το Therminol 66, ένα συνθετικό έλαιο το οποίο προορίζεται για χρήση σε εφαρμογές όχι υπό πίεση. Το μέσο αυτό χρησιμοποιείται με ασφάλεια σε ένα θερμοκρασιακό εύρος από -3°C εώς 345°C ενώ είναι μη διαβρωτικό. Οι αναλυτικές ιδιότητες του Therminol 66 παραθέτονται στο παράρτημα.

3.2.1 Σύστημα παρακολούθησης του ήλιου (tracking system)

Για να είναι δυνατή η αξιοποίηση της ηλιακής ακτινοβολίας κάθε στιγμή με το βέλτιστο τρόπο, ένα σύστημα παρακολούθησης κρίνεται επιβεβλημένο. Για να είναι δυνατή η λειτουργία του συστήματος αυτού, είναι αναγκαίο να είναι γνωστή η θέση του ήλιου κάθε στιγμή. Η πληροφορία αυτή μπορεί να ληφθεί με δύο τρόπους: είτε να υπολογιστεί με την χρήση μαθηματικών αλγορίθμων είτε να χρησιμοποιηθούν αισθητήρες.

Το σύστημα παρακολούθησης του ήλιου μπορεί να τον παρακολουθεί πλήρως ή μερικώς τον ήλιο ανάλογα με την τεχνολογία που χρησιμοποιείται. Υπάρχει το θεωρητικό μοντέλο πλήρως παρακολούθησης του ήλιου (full tracking) όπου γίνεται η βέλτιστη αξιοποίηση του ήλιου. Επίσης υπάρχει το πολικό σύστημα με τον άξονα του συλλέκτη στη διεύθυνση Βορρά-Νότου το οποίο το οποίο η παρακολούθηση προσομοιάζει περίπου το σύστημα πλήρους παρακολούθησης. Τα δύο παραπάνω συστήματα χαρακτηρίζονται από μεγάλο κόστος ενώ υπάρχει δυσκολία στην πλήρη κίνησή τους με συνέπεια να μην εφαρμόζονται στην πράξη [5].

Στην πράξη υλοποιείται το σύστημα παρακολούθησης του ήλιου σε μια μόνο κατεύθυνση. Πιο συγκεκριμένα, ο άξονας του συλλέκτη τοποθετείται σε μια κατεύθυνση και η παρακολούθηση γίνεται στην κάθετη κατεύθυνση από αυτή.

Εικόνα 3.3 Σύστημα παρακολούθησης του ήλιου

3.2.2 Θερμική ανάλυση συλλεκτών

Η θερμική ανάλυση των συλλεκτών απαιτείται για τον υπολογισμό την χρήσιμης θερμότητας που συλλέγεται στον απορροφητήρα. Η θερμότητα μεταφέρεται από την ηλιακή ακτινοβολία που πέφτει στην επιφάνεια του ανακλαστήρα. Μέσω της ανάλυσης, υπάρχει η δυνατότητα να προβλέφθει η συμπεριφορά των παραβολικών συλλεκτών για συγκεκριμένες συνθήκες λειτουργίας τους.

Η βασική μεθοδολογία που ακολουθείται, στηρίζεται στον υπολογισμό των απαραίτητων μεγεθών σε ένα διαφορικό κομμάτι του απορροφητήρα. Αυτό επιτυγχάνεται με τον διαχωρισμό του μήκους του σε N πεπερασμένα στοιχεία τα οποία στη συνέχεια μοντελοποιούνται. Για κάθε διαφορικό κομμάτι, μέσω της ανάλυσης υπολογίζονται ξεχωριστά η ηλιακή θερμότητα που αποκτήθηκε και οι θερμικές απώλειες. Μέσω της θερμότητας που απορροφήθηκε, προκύπτει η
αύξηση στην μέση θερμοκρασία του ρευστού μεταφοράς θερμότητας, η οποία στην συνέχεια προβάλλεται σε όλο το μήκος του συλλέκτη και τελικά υπολογίζεται η συνολική θερμότητα.

Για την θερμική ανάλυση των συλλεκτών λαμβάνονται υπόψη οι παρακάτω παραδοχές:

- Οι θερμικές απώλειες στα συστήματα στήριξης των συλλεκτών θεωρούνται αμελητέες και δεν λαμβάνονται υπόψη κατά την διάρκεια των υπολογισμών.
- Οι σωληνώσεις που μεταφέρουν το θερμοαγωγό ρευστό μεταξύ των συλλεκτών, μεταξύ του ηλιακού πάρκου και της μονάδας παραγωγής ενέργειας και στην είσοδο και έξοδο της μονάδας είναι τέλεια μονωμένες και δεν παρουσιάζουν θερμικές απώλειες.
- Η θερμοκρασία του ρευστού μεταφοράς θεωρούνται συνέχεια κάτω από την θερμοκρασία βρασμού του.
- Για κάθε διαφορικό στοιχείο, παρατηρείται μεταβολή στη θερμοκρασία του μόνο κατά την αξονική κατεύθυνση και κατά συνέπεια αντιμετωπίζεται σαν μονοδιάστατο πρόβλημα μεταφοράς θερμότητας.

Εκτός από την χρήσιμη θερμότητα, μέσω της θερμικής ανάλυσης υπολογίζονται επίσης: η θερμοκρασία εξόδου του ρευστού μεταφοράς θερμότητας από το ηλιακό πάρκο και ο βαθμός απόδοσης των συλλεκτών. Στην παρακάτω εικόνα παρουσιάζεται η διακριτοποιημένη μορφή του συλλέκτη.

Εικόνα 3.4 Διαφορικός όγκος ελέγχου του απορροφητή [36]

Για τον υπολογισμό της χρήσιμης θερμότητας που απορροφάται χρησιμοποιείται η μέθοδος των θερμικών αντιστάσεων. Η ηλιακή ακτινοβολία συγκεντρώνεται από τον ανακλαστήρα του συλλέκτη στον σωλήνα κενού. Ένα μικρό ποσοστό της απορροφάται από το γυάλινο κάλυμμα του σωλήνα κενού και το υπόλοιπο φτάνει στην εξωτερική πλευρά του απορροφητή. Καθώς αυξάνεται η εξωτερική της θερμοκρασία, η θερμότητα μεταφέρεται στο ρευστό μεταφοράς θερμότητας που διέρχεται από αυτόν μέσω εξαναγκασμένης συναγωγής. Το υπόλοιπο αυτής θερμότητας χάνεται στο κενό μεταξύ των δύο σωληνώσεων, από τους οποίους αποτελείται ο σωλήνας κενού.
μέσω ακτινοβολίας. Οι απώλειες θερμότητας αυτές, διοχετεύονται μέσω του γυάλινου καλύμματος. Ο συνδυασμός της παραπάνω θερμότητας μαζί με αυτήν που είχε αρχικά απορροφηθεί από το κάλυμμα χάνεται στο περιβάλλον μέσω ενός συνδυασμού συναγωγής και ακτινοβολίας.

Στους υπολογισμούς έχει γίνει η παραδοχή ότι η θερμοκρασία περιβάλλοντος που επικρατεί στην περιφέρεια των συλλεκτών είναι ομοιόμορφη. Το γεγονός αυτό δεν ισχύει στην πραγματικότητα, αφού το κάτω μέρος του συλλέκτη η ροή θερμότητας είναι μεγαλύτερη. Για την μεθοδολογία που ακολουθείται στην παρούσα εργασία έχει αποδειχθεί ότι η συγκεκριμένη παραδοχή δεν εισάγει σφάλματα στους υπολογισμούς [37].

Εικόνα 3.5 Τομή του απορροφητή και οι θερμικές αντιστάσεις του συστήματος[36]

Οι ισολογισμοί ενέργειας που πραγματοποιούνται είναι:

\[
q_{\text{conv,HTF}} = q_{\text{cond,a}} \\
q_{\text{rad,an}} = q_{\text{sol,a}} - q_{\text{cod,a}} \\
q_{\text{cond,c}} = q_{\text{rad,an}}
\]
3.2.2.1 Ηλιακή θερμότητα
Η θερμότητα που απορροφάται από το γυάλινο κάλυμμα μπορεί να θεωρηθεί σαν ροή θερμότητας και πιο συγκεκριμένα σαν φαινόμενο παραγωγής θερμότητας. Η ποσότητα αυτή υπολογίζεται με βάση τον τύπο:

\[\dot{Q}_{\text{sol},c} = I_{b,n} n_{\text{opt}} a_c l_{ap} dx \]

Όπου η οπτική απόδοση στο κάλυμμα είναι:

\[n_{\text{opt}} = e_s h e_{\text{ge}} e_{\text{tr}} e_{\text{dm}} e_{\text{da}} e_{\text{un}} P_{\text{opt}} K_\theta \]

Οι τιμές των, παραπάνω παραμέτρων, που χρησιμοποιήθηκαν για τον υπολογισμό της οπτικής απόδοσης υπολογίστηκαν στον Εθνικό Εργαστήριο Ανανεώσιμης Ενέργειας (Nation Renewable Energy Laboratory - NREL) στις Ηνωμένες Πολιτείες της Αμερικής και βασίστηκαν στις δοκιμές πεδίου που πραγματοποιήθηκαν από τον Dudley. [37] Οι συντελεστές αυτοί λαμβάνουν υπόψη τις επιπτώσεις εξαιτίας της γεωμετρίας τού συλλέκτη (σκίαση, παρακολούθηση, τοποθέτησης), την διαπερατότητα του καθρέπτη και του γυάλινου καλύμματος (ανακλαστικότητα καθρέπτη και σκόνη). Επιπλέον, υπάρχει και μία παράμετρος για τις ανεξήγητες διαφορές μεταξύ των τιμών των πειρατικών δοκιμών και των τιμών που προκύπτουν από προσομοιώσεις.

Αξίζει να σημειωθεί πως οι τιμές των συντελεστών αυτών μπορούν να θεωρηθούν πως είναι ανεξάρτητες της θερμοκρασίας. Επιπλέον, οι τιμές αυτές ισχύουν για τιμές της αμέσης ακτινοβολίας και ο παράγοντας γωνίας πρόπτωσης χρησιμοποιείται για τον υπολογισμό των απώλειών λόγω γωνιών πρόπτωσης. Ο παράγοντας αυτός υπολογίζεται με βάση τον παρακάτω τύπο:

\[K_\theta = \cos \theta_i + 0.000884 \theta_i - 0.00005369 \theta_i^2 \]

Η ηλιακή ενέργεια που δεν απορροφάται από το κάλυμμα φτάνει στην εξωτερική επιφάνεια του απορροφητή. Η ενέργεια αυτή υπολογίζεται με βάση τον τύπο:

\[\dot{Q}_{\text{sol},a} = I_{b,n} a_a l_{ap} dx \]

Όπου η οπτική απόδοση του στον απορροφητή υπολογίζεται:

\[n_a = n_{\text{opt}} \tau_c \]

3.2.2.2 Αγωγή θερμότητας μέσω των τοιχωμάτων του απορροφητή
Η μεταφορά θερμότητας μέσω των τοιχωμάτων του απορροφητή γίνεται μέσω αγωγής. Αυτή υπολογίζεται με βάση τον νόμο του Fourier για την αγωγή μέσω κυλίνδρου από την σχέση:

\[\dot{Q}_{\text{cond},a} = \frac{T_{oa} - T_{ia}}{R_{\text{cond},a}} \]

Όπου:

\[R_{\text{cond},a} = \frac{\ln(D_{oa}/D_{ia})}{2\pi k_a \Delta x} \]

3.2.2.3 Μεταφορά θερμότητας στο θερμοαγώγιμο ρευστό
Η θερμότητα μεταφέρεται στο ρευστό μεταφόρας θερμότητας μέσω εξαναγκασμένης αγωγής. Η ροή του ρευστού καθορίζεται από τον αριθμό Reynolds μέσω του οποίου καθορίζεται αν η
ροή θεωρείται στρωτή ή τυρβώδη. Για να χαρακτηριστεί μια ροή ως στρωτή πρέπει ο αδιάστατος αριθμός Reynolds να βρίσκεται κάτω από την τιμή 2300. [38]

Για τον παραβολικούς ήλιακούς συλλέκτης ο αριθμός Reynolds είναι αρκετά μεγάλος για να διασφαλίζεται ότι η ροή είναι τυρβώδης. Για την περίπτωση της πλήρους τυρβώδης ροής (Re>10000) η μεταφορά θερμότητας εκφράζεται[36]:

\[
Nu_{HTF} = \frac{\sqrt{f/8} Re_{HTF} Pr_{HTF}}{12.48 Pr_{HTF}^{2/3} - 7.853 Pr_{HTF}^{1/3} + 3.613 \ln(Pr_{HTF}) + 5.8 + C}
\]

Για 0.2 \(\leq Pr \leq 2000\)

και 10^4 \(\leq Re \leq 5 \times 10^6\)

Όπου \(C = 2.78 \ln(\sqrt{f/8} Re_{HTF}/90)\) και \(f\) είναι ο παράγοντας τριβής Fanning, ο οποίος για λείους σωλήνες, υπολογίζεται από την σχέση \(f = (0.79 \ln Re_{HTF} - 1.64)^{-2}\).

Ο συντελεστής συναγωγής θερμότητας στο εσωτερικό του απορροφητή υπολογίζεται στην συνέχεια:

\[
h_{HTF} = Nu_{HTF} \frac{k_{HTF}}{D_{ia}}
\]

Και η θερμική αντίσταση λόγω συναγωγής:

\[
R_{conv,HTF} = \frac{1}{\pi D_{ia} h_{HTF} \Delta x}
\]

Η μεταφορά θερμότητας μέσω συναγωγής στο εσωτερικό του απορροφητή:

\[
\dot{Q}_{conv,HTF} = \frac{T_{ia} - T_{bulk}}{R_{conv,HTF}}
\]

Όπου \(T_{bulk}\) η μέση θερμοκρασία του ρευστού σε κάθε διακριτό τμήμα του απορροφητή. Μπορεί να υπολογιστεί κατά προσέγγιση από τον αριθμητικό μέσο της θερμοκρασίας. Αρα:

\[
T_{bulk} = \frac{T_{m,i-1} + T_{m,i+1}}{2}
\]

Οι ιδιότητες του ρευστού μεταφοράς θερμότητας θα υπολογίζονται στη θερμοκρασία:

\[
T_{film} = \frac{T_{bulk} - T_{ia}}{2}
\]

3.2.2.4 Μεταφορά θερμότητας στο δακτύλιο του απορροφητή

Η μεταφορά θερμότητας στον δακτύλιο του απορροφητή γίνεται μέσω ακτινοβολίας εξαιτίας του κενού που υπάρχει στην περιοχή αυτή, και υπολογίζεται από την σχέση:

\[
\dot{Q}_{rad,a} = \frac{T_{oa} - T_{ic}}{R_{rad,a}}
\]

Όπου:

\[
R_{rad,a} = \frac{1}{\pi D_{oa} h_{rad,a} \Delta x}
\]
Και ο υπολογισμός του $h_{rad,a}$ απλοποιημένος για ομόκεντρους κύκλους απείρου μήκος γίνεται μέσω του τύπου:

$$h_{rad,a} = \frac{\sigma (T_{oa} - T_a) (T_{oa}^2 + T_{ic}^2)}{\frac{1}{\varepsilon_a} + \frac{1 - \varepsilon c}{\varepsilon_c} \left(\frac{D_{oa}}{D_{ic}} \right)}$$

3.2.2.5 Αγωγή θερμότητας μέσω του γυάλινου κάλυμματος
Η απορρόφηση θερμότητας στο γυάλινο κάλυμμα έχει υπολογιστεί σε προηγούμενη παράγραφο. Η αγωγή θερμότητας μέσω του γυάλινου κάλυμματος υπολογίζεται με την χρήση του νόμου του Fourier:

$$\dot{Q}_{cond,c} = \frac{T_{ic} - T_{oc}}{R_{cond,c}}$$

όπου:

$$R_{cond,c} = \frac{\ln(D_{oc}/D_{ic})}{2\pi k_c \Delta x}$$

3.2.2.6 Μεταφορά θερμότητας από το κάλυμμα στο περιβάλλον
Οι απώλειες θερμότητας από το κάλυμμα εμφανίζονται στην εξωτερική επιφάνεια και πραγματοποιούνται μέσω ακτινοβολίας στον ουρανό και συναγωγής στον αέρα. Για την μοντελοποίηση των απωλειών με μεγαλύτερη ακρίβεια, θεωρείται πως οι απώλειες μέσω συναγωγής οφείλονται σε ένα συνδυασμό από μεταξύ φυσικής και εξαναγκασμένης συναγωγής. Η μοντελοποίηση αυτή κρίνεται απαραίτητη απαραίτητη εξαιτίας της διακύμανσης της έντασης του ανέμου και της αλλαγής της κατεύθυνσής του. Αναλυτικότερα, το σφάλμα που εισάγεται στους υπολογισμούς από την μη μοντελοποίηση της φυσικής συναγωγής κατά την διάρκεια υψηλών ταχυτήτων είναι αμελητέο, αλλά το σφάλμα είναι σημαντικό στην περίπτωση των μη ισχυρών ανέμων.

Ο σωλήνας κενού μπορεί να θεωρηθεί ως ισοθερμοκρασιακό για το μήκος του διακριτού όγκου ελέγχου. Για τον ισοθερμοκρασιακό οριζόντιο κύλινδρο σε ισοθερμοκρασιακό περιβάλλον ο συντελεστής μεταφοράς θερμότητας υπολογίζεται από τις παρακάτω εξισώσεις: [39]

\[Nu_T = 0.772Ra_{air}^{1/4} \]
\[f = 1 - \frac{0.13}{Nu_T^{0.16}} \]
\[Nu_i = \frac{2f}{\ln(1 + 2f/Nu_T)} \]
\[Nu_c = 0.103Ra_{air}^{1/4} \]
\[Nu_N = \left[(Nu_C)^{10} + (Nu_i^{10}) \right]^{1/10} \]
\[Nu_F = \alpha Re^n \]

Χρησιμοποιώντας την εξίσωση $Nu_N = Nu_F$ και τις σταθερές α και n από τον παρακάτω πίνακα, η τιμή Re_i υπολογίζεται από τους τύπους:

\[Re_i = (Nu_N/\alpha)^{1/n} \]
\[Re_{\text{eff}} = [(Re_i + Re_{\text{air}} \cos \varphi)^2 + (Re_{\text{air}} \sin \varphi)^2] \]

Για την μεικτή συναγωγή ο αριθμός Nusselt υπολογίζεται από την σχέση:

\[Nu_{\text{air}} = \alpha Re_{\text{eff}}^n \]

<table>
<thead>
<tr>
<th>Re</th>
<th>10^{-4} - 4 * 10^{-3}</th>
<th>4 * 10^{-3} - 9 * 10^{-2}</th>
<th>9 * 10^{-2} - 1.0</th>
<th>1.0 - 35</th>
<th>35 - 5 * 10^{3}</th>
<th>5 * 10^{3} - 5 * 10^{4}</th>
<th>5 * 10^{4} - 2 * 10^{5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.437</td>
<td>0.565</td>
<td>0.8</td>
<td>0.795</td>
<td>0.583</td>
<td>0.148</td>
<td>0.0208</td>
</tr>
<tr>
<td>n</td>
<td>0.0895</td>
<td>0.136</td>
<td>0.28</td>
<td>0.384</td>
<td>0.471</td>
<td>0.633</td>
<td>0.814</td>
</tr>
</tbody>
</table>

Ο συντελεστής μεταφοράς θερμότητας για την μεικτή συναγωγή για της εξωτερική επιφάνεια του συλλέκτη εκφράζεται από την σχέση:

\[h_{\text{air}} = Nu_{\text{air}} \frac{k_{\text{air}}}{D_{oc}} \]

Και η θερμική αντίσταση συναγωγής:

\[R_{\text{conv,air}} = \frac{1}{\pi D_{oc} h_{\text{air}} \Delta x} \]

Επομένως ο ρυθμός μεταφοράς θερμότητας υπολογίζεται από:

\[Q_{\text{cond,air}} = \frac{T_{oc} - T_{a}}{R_{\text{conv,air}}} \]

Αναφορικά με την μεταφορά θερμότητας λόγω ακτινοβολίας, θεωρείται ότι το κάτω μισό του σωλήνα κενού εκπέμπει ακτινοβολία στον ανακλαστήρα, και το πάνω μισό στον ουρανό. Ο ανακλαστήρας θεωρείται ότι έχει την ίδια θερμοκρασία με αυτή του αέρα.

Στην μοντελοποίηση που ακολουθείται στην παρούσα μελέτη, η χρήσιμη ηλιακή ακτινοβολία μελετήθηκε σαν απορρόφηση ενέργειας σε προηγούμενο κεφάλαιο. Η μεταφορά θερμότητας μέσω ακτινοβολίας μεταξύ του γυάλινου καλύμματος και του ουρανού προκαλείται εξαιτίας της διαφοράς θερμοκρασίας μεταξύ των δύο σωμάτων. Επειδή η θερμοκρασία του ουρανού εξαρτάται περισσότερο από τις συνθήκες που επικρατούν στα πιο ψηλά της στρώματα και στα επίπεδα αυτά οι συνθήκες παραμένουν σχεδόν σταθερές, θωρείται ότι η θερμοκρασία του ουρανού είναι 0 °C.

Με βάση τα παραπάνω, η μεταφορά θερμότητας μέσω ακτινοβολίας υπολογίζεται από τις παρακάτω σχέσεις:

\[Q_{\text{rad,sky}} = \frac{T_{oc} - T_s}{R_{\text{rad,sky}}} \]

\[Q_{\text{rad,ref}} = \frac{T_{oc} - T_a}{R_{\text{rad,a}}} \]

Όπου:
\[R_{\text{rad,sky}} = \frac{1}{\pi(D_{oc}/2)h_{\text{rad,sky}}\Delta x} \]
\[R_{\text{rad,ref}} = \frac{1}{\pi(D_{oc}/2)h_{\text{rad,ref}}\Delta x} \]

Οι τιμές των \(h_{\text{rad,sky}} \) και \(h_{\text{rad,ref}} \) υπολογίζονται από τις σχέσεις:
\[h_{\text{rad,sky}} = \sigma c(T_{oc} + T_{sky})(T_{oc}^2 + T_{sky}^2) \]
\[h_{\text{rad,ref}} = \sigma c(T_{oc} + T_{a})(T_{oc}^2 + T_{a}^2) \]

3.2.2.7 Βαθμός απόδοσης παραβολικών συλλέκτων
Ο θερμικός βαθμός απόδοσης των παραβολικών ορίζεται ως ο λόγος της θερμότητας που μεταφέρεται τελικά στο ρευστό μεταφορά θερμότητας προς το συνολικό ποσό της ηλιακής ακτινοβολίας που συγκεντρώνεται στον συλλέκτη. Ο λόγος αυτός εκφράζεται από την παρακάτω μαθηματική σχέση:
\[n_{\text{th}} = \frac{\dot{Q}_{\text{gain}}}{\dot{Q}_{\text{in}} n_{\text{opt}}} \]
Όπου \(n_{\text{opt}} \) ο οπτικός βαθμός απόδοσης όπως ορίστηκε από την εξίσωση και:
\[\dot{Q}_{\text{in}} = I_{b.n}A_{a} \]
Ο ολικός βαθμός απόδοσης του ηλιακού πάρκου ορίζεται από την σχέση:
\[n_{SF} = \frac{\dot{Q}_{\text{gain}}}{\dot{Q}_{\text{in}}} \]

3.2.3 Υπολογισμός πτώσης πίεσης
Για τον καθορισμό της ισχύος που απαιτείται για την διατήρηση της ροής του ρευστού μεταφοράς θερμότητας σε όλο το μήκος των αγωγών, υπολογίζεται η πτώση πίεση στο δίκτυο των σωληνώσεων. Με γνωστή τη πτώση πίεσης, καθορίζεται η απαιτούμενη ισχύς των αντλιών για να υπερνικήσουν τις απώλειες αυτές.
\[W_{sf,pump} = \frac{V \cdot \Delta P_{L}}{n_{sf,pump}} \]
Όπου:
\[\Delta P_{L} = \Delta P_{\text{major}} + \Delta P_{\text{minor}} \]

3.2.3.1 Κύριες απώλειες σωληνώσεων
Η πτώση πίεσης σε ένα αγωγό δίνεται από την σχέση:
\[\Delta P = f \frac{L \rho V_{\text{avg}}^2}{D} \]
Όπου \(f \) είναι ο συντελεστής τριβής του αγωγού.
Ανάλογα με το είδος της ροής μέσα στον αγωγό, αν είναι στρωτή ή τυρβώδης, ο συντελεστής τριβής υπολογίζεται από διαφορετική σχέση. Για την στρωτή ροή ο συντελεστής αυτός έχει προκύψει από την θεωρητική προσέγγιση ως εξής:
Αξίζει να σημειωθεί ότι στην περίπτωση της στρωτής ροής ο συντελεστής τριβής είναι συνάρτηση μόνο του αριθμού Reynolds και δεν εξαρτάται από την τραχύτητα του σωλήνα.

Στην περίπτωση της τυρβώδους ροής ο συντελεστής τριβής εξαρτάται τόσο από τον αριθμό Reynolds όσο και από την τραχύτητα του σωλήνα. Η εξίσωση Colebrook μέσω της οποίας υπολογίζεται ο συντελεστής f είναι:

$$\frac{1}{\sqrt{f}} \approx -1.8 \log \left[\frac{6.9}{Re} + \left(\frac{\varepsilon/D}{3.7} \right)^{1.11} \right]$$

3.2.3.2 Δευτερεύουσες απώλειες σωληνώσεων

Οι δευτερεύουσες απώλειες πίεσης οφείλονται στην παρουσία στοιχείων αλλαγής της κατεύθυνσης της ροής, σε στόμια εισόδου και εξόδου και βαλβίδων ελέγχου της ροής. Η πτώση πίεσης στις παραπάνω περιπτώσεις εκφράζεται από τον συντελεστή απωλειών, $\Delta P_{\text{minor}} = \Delta P_{\text{comp}} = \rho * K_L * \frac{V_{\text{avg}}^2}{2}$

3.2.4 Θερμική αποθήκευση ενέργειας

Ένα από τα σημαντικότερα πλεονεκτήματα της παραγωγής ηλεκτρικής ενέργειας με την χρήση συγκεντρωτικών συλλέκτων σε σύγκριση με την χρήση άλλων τεχνολογιών ανανεώσιμων πηγών ενέργειας είναι η ευκολία ενσωμάτωσης οικονομικά αποδοτικών τοπικών μονάδων αποθήκευσης ενέργειας. Η σχεδίαση αυτή έχει μηδενική επίπτωση στην απόδοση της μονάδας ενώ παράλληλα της δίνει την δυνατότητα διαχείρισης της ενέργειας μεταξύ της προσφοράς και της ζήτησης της ενέργειας. [40]

Για την ελαχιστοποίηση του κόστους της μονάδας, βασικός στόχος είναι η χρήση όσο το δυνατόν μικρότερου χώρου αποθήκευσης. Για το λόγο αυτό γίνεται χρήση συστήματος αποθήκευσης με θερμοκλίνη (thermocline heat storage system). Στο σύστημα αυτό γίνεται χρήση μιας δεξαμενής
στην οποία γίνεται η αποθήκευση του ζεστού και του κρύου ρευστού μεταφοράς θερμότητας με συνέπεια ο συνολικός όγκος της δεξαμενής να ισούται με τον όγκο του ρευστού. Το θερμό θερμοαγώγιμο ρευστό, το οποίο είναι και το μέσο στο οποίο γίνεται η αποθήκευση της ενέργειας, εισέρχεται στο πάνω μέρος της δεξαμενής ενώ το ψυχρό ρευστό αντλείται από τον πυθμένα. Με τον σωστό σχεδιασμό, το θερμό μέρος το οποίο έχει μικρότερη πυκνότητα σε σχέση με το ψυχρό, μένει στο πάνω μέρος και χρησιμοποιείται για την θέρμανση του εργαζόμενου μέσου της μονάδας παραγωγής ενέργειας. Με τον τρόπο αυτό δεν είναι απαραίτητη η χρήση εναλλάκτη θερμότητας μεταξύ του εργαζόμενου μέσου στο ηλιακό πάρκο και στην αποθήκη θερμικής ενέργειας, μειώνοντας σημαντικά την πολυπλοκότητα της μονάδας και κατά συνέπεια το κόστος της. Η αρχή λειτουργίας του συστήματος παρουσιάζεται στην παρακάτω εικόνα.

Εικόνα 3.6 Διάγραμμα συστήματος θερμικής αποθήκευσης ενέργειας

Η εξίσωση του ισολογισμού ενέργειας στην μονάδα θερμική αποθήκευση ενέργειας είναι:

\[\dot{Q}_{TES} = \dot{Q}_{SF} - \dot{Q}_{Evap} - \dot{Q}_L \]

Όπου:

- \(\dot{Q}_{SF} \) η θερμότητα από το ηλιακό πάρκο
- \(\dot{Q}_{Evap} \) η θερμότητα στον εξατμιστήρα
- \(\dot{Q}_L \) οι απώλειες

Η συνολική ενέργεια που αποθηκεύεται ή διοχετεύεται στο σύστημα σε kWh είναι:

\[Q_{TES} = \dot{Q}_{TES} \times \text{hour} \]

Η συνολική χωρητικότητα της δεξαμενής, \(Q_{TES,\max} \), εξαρτάται από τις ώρες που χρειάζεται να λειτουργήσει η μονάδα για να καλύψει την ζήτηση της ηλεκτρικής ενέργειας.

Ο όγκος της αποθήκης μπορεί να υπολογιστεί από την θερμοχωρητικότητα του υλικού μεταφοράς θερμότητας, η οποία ορίζεται από την σχέση:
\[C_{p,HTF} = \frac{Q_{TES,\text{max}}}{m_{TES} \cdot T} \]

Άρα ο όγκος είναι:

\[V_{TES} = \frac{m_{TES}}{\rho_{HTF}} = \frac{Q_{TES,\text{max}}}{\rho_{HTF} \cdot C_{p,HTF} \cdot \Delta T} \]

Ο σκοπός της εργασίας είναι η θερμοδυναμική βελτιστοποίηση των ηλιακών παραβολικών συλλεκτών και των κύκλων λειτουργίας, που θα συνδυαστούν, στο σημείο λειτουργίας. Για το λόγο αυτό θεωρείται ότι το σύστημα αποθήκευσης ενέργειας λειτουργεί στην μόνιμη κατάσταση του, δηλαδή δεν επηρεάζει την λειτουργία της μονάδας, και επομένως δεν υπολογίζονται τα μεγέθη της διάταξης του, όπως για παράδειγμα ο όγκος του για την βέλτιστη λειτουργία του.

3.3 Μοντελοποίηση κύκλων

Σκοπός της παρούσας εργασίας είναι ο βέλτιστος σχεδιασμός τριών διαφορετικών, μικρής κλίμακας, διατάξεων που ο καθένας θα υλοποιεί διαφορετικό κύκλο ισχύος. Οι κύκλοι που θα μελετηθούν είναι: ο οργανικός κύκλος Rankine, ο κρίσιμος κύκλος Rankine και ο υπερκρίσιμος κύκλος Brayton.

Ο σκοπός της εργασίας είναι η θερμοδυναμική βελτιστοποίηση των ηλιακών παραβολικών συλλεκτών και των κύκλων λειτουργίας, που θα συνδυαστούν, στο σημείο λειτουργίας. Για το λόγο αυτό θεωρείται ότι το σύστημα αποθήκευσης ενέργειας λειτουργεί στην μόνιμη κατάσταση του, δηλαδή δεν επηρεάζει την λειτουργία της μονάδας, και επομένως δεν υπολογίζονται τα μεγέθη της διάταξης του, όπως για παράδειγμα ο όγκος του για την βέλτιστη λειτουργία του.

3.3.1 Οργανικός κύκλος Rankine

Τα κύρια μέρη του οργανικού κύκλου Rankine είναι: η τροφοδοτική αντλία, ο ατμοποιητής, ο εκτονωτής, ο αναγεννητής και ο συμπυκνωτής. Ο υπερκρίσιμος κύκλος Rankine περιγράφεται ως εξής: η αντλία (1), η οποία παραλαμβάνει μηχανική ενέργεια από έναν κινητήρα, κυκλοφορεί το οργανικό μέσο μέσα στο κύκλωμα προς τον ατμοποιητή (2) ενώ παράλληλα τον συμπίεσε. Εντός του ατμοποιητή το μέσο προθερμάνεται και ατμοποιείται και έπειτα οδηγείται στον εκτονωτή (3). Ο εκτονωτής είναι συμπλεγμένος με γεννήτρια για την παραγωγή ηλεκτρικής ενέργειας. Το οργανικό μέσο οδηγείται στον συμπυκνωτή (4) όπου ψύχεται και καταλήγει στην είσοδο της αντλίας όπου παρακινείται ο κύκλος. Μεταξύ του στροβίλου και του συμπυκνωτή τοποθετείται αναγεννητής ο οποίος θα προθερμαίνει το οργανικό μέσο πριν την είσοδο του εναλλάκτη που επικοινωνεί με το κύκλωμα του ηλιακού πάρκου. Στην εικόνα παρουσιάζεται το διάγραμμα θερμοκρασίας–εντροπίας ενός τυπικού υποκρίσιμου οργανικού κύκλου Rankine και στην εικόνα γίνεται σχηματική αναπαράσταση του μονάδας παραγωγής ενέργειας.
Εικόνα 3.7 Διάγραμμα T-s υποκρίσιμου οργανικού κύκλου Rankine

Εικόνα 3.8 Διάγραμμα μονάδας παραγωγής ηλεκτρικής ενέργειας βασισμένη στον υποκρίσιμο ORC

Για την απλοποίηση της μελέτης γίνεται η υπόθεση ότι όλα τα συστήματα βρίσκονται στην μόνιμη κατάσταση τους και όλοι οι εναλλάκτες θερμότητας που χρησιμοποιούνται είναι αντιρροής.
3.3.1.1 Στρόβιλος
Αναφορικά με την απόδοση του στροβίλου, οι Macchi και Astolfi, όρισαν ένα σύνολο από συσχετισμούς για την εκτίμηση της σε στροβίλους αξονικής ροής ειδικά για χρήση σε οργανικούς κύκλους Rankine. Στην εργασία τους συσχέτισαν την απόδοση με τρεις αδιάστατες παραμέτρους, την παράμετρο μεγέθους (Size Parameter – SP), την αναλογία όγκου (Volume Ratio – V_r) και την ειδική ταχύτητα (N_s). Αναλυτικότερα, υπολογίστηκε ο βαθμός απόδοσης μια συγκεκριμένης βαθμίδας του στροβίλου, για διάφορες συνθήκες λειτουργίας με βάση τους παραπάνω παράγοντες και τα αποτελέσματα αυτά μπορούν να επεκταθούν και σε άλλες περιπτώσεις υπό την προϋπόθεση ότι ικανοποιούνται οι παρακάτω συνθήκες:

- Όλοι οι γεωμετρικοί λόγοι είναι ίσοι
- Έχουν την ίδια ειδική ταχύτητα
- Η ροή είναι πλήρως τυρβώδης έτσι ώστε οι επιπτώσεις του αριθμού Reynolds να είναι αμελητέες
- Ο αριθμός Mach να είναι παρόμοιος
- Η συμπεριφορά του ρευστού για το οποίο έγιναν οι μετρήσεις και αυτού που θα χρησιμοποιηθεί, να είναι παρόμοια

Οι παράμετροι προσδιορίζονται από τις παρακάτω εξισώσεις:

\[SP = \frac{V_{out,is}^{0.5}}{\Delta h_{is}^{0.25}} \]

\[V_r = \frac{V_{out,is}}{V_{in}} = \frac{\rho_{in}}{\rho_{out}} \]

\[N_s = \frac{RPM}{60} * \frac{V_{out,is}^{0.5}}{\Delta h_{is}^{0.75}} \]

Ακολουθώντας την διαδικασία που αναλύθηκε προηγουμένως για την απόδοση μονοβάθμιου στροβίλου που θα χρησιμοποιηθεί στην παρούσα μελέτη, προέκυψαν οι συσχέτισες που παρουσιάζονται στην παρακάτω εικόνα.

Εικόνα 3.9 Συσχέτιση απόδοσης μονοβάθμιου στροβίλου ORC
Στην Εικόνα 3.9, τα σημεία με μαύρο χρώμα δείχνουν την βέλτιστη σχεδίαση εκτονωτή για κάθε συνδυασμό των παραμέτρων SP, \(V_r \) και \(N_s \). Τα σημεία με κόκκινο χρώμα αντιπροσωπεύουν την σχεδίαση του στροβίλου για την βέλτιστη σχετική ταχύτητα (\(N_s \)) για κάθε συνδυασμό των παραμέτρων SP και \(V_r \). Λειτουργώντας σε βέλτιστη ταχύτητα, και χρησιμοποιώντας τους παραπάνω τύπους είναι δυνατός ο προσδιορισμός της απόδοσης του στροβίλου από την Εικόνα 3.9.

Η ακαθάριστη παραγωγή ενέργειας σε συνάρτηση της παροχής μάζας δίνεται από την σχέση:

\[
W_{\text{gross}} = \dot{m}_{PB,\text{is}}(h_3 - h_4)
\]

Λαμβάνοντας υπόψη τον βαθμό απόδοσης της γεννήτριας, η παραγωγή ενέργειας σε συνάρτηση της πραγματικής παροχής μάζας δίνεται από την σχέση:

\[
W_{\text{gross}} = \dot{m}_{PB}(h_3 - h_4)n_Tn_{\text{gen}}
\]

Επομένως έχοντας γνωστή την παραγωγή ενέργειας, η παροχή μάζας είναι:

\[
\dot{m}_{PB} = \frac{W_{\text{gross}}}{(h_3 - h_4)n_Tn_{\text{gen}}}
\]

Η πτώση πίεσης υπολογίζεται από τα γνωστά θερμοδυναμικά δεδομένα στις ανάλογες θέσεις, δηλαδή:

\[
\Delta P_T = P_3 - P_4
\]

3.3.1.2 Ατμοποιητής

Στην θέση του ατμοποιητή χρησιμοποιείται ένας πλακοειδής εναλλάκτης θερμότητας. Η επιλογή αυτή έγινε λόγω του μικρού του μεγέθους και της μεγάλης θερμότητας που μπορούν να εκμεταλλευτούν σε σχέση με τις διαστάσεις τους. Ο ισολογισμός ενέργειας στο εργαζόμενο μέσο στην μονάδα παραγωγής ενέργειας δίνεται από την σχέση:

\[
Q_{PB,e} = \dot{m}_{PB}(h_3 - h_2a)
\]

Ενώ ο ισολογισμός ενέργειας στην πλευρά του ηλιακού πάρκου, υπολογίζεται από:

\[
Q_{PB,e} = m_{SF}C_pSF(T_{SFi} - T_{SFo})
\]

Η μέση λογαριθμική θερμοκρασία είναι:

\[
\Delta T_{\text{lm, evapor}} = \frac{(T_{SFi} - T_3) - (T_{SFo} - T_2)}{\ln(T_{SFi} - T_3) - (T_{SFo} - T_2)}
\]

Η αντλία της εγκατάστασης πρέπει να υπερνικά την πτώση πίεσης στον ατμοποιητή, άρα είναι σημαντικό να είναι γνωστή αυτή η πτώση πίεσης. Η τιμή της είναι μικρότερη στη σχέση με την πτώση πίεσης στον στρόβιλο, επομένως σύμφωνα με τον Macchi & Astolfi [41] είναι επαρκές να θεωρηθεί μια τυπική τιμή για την πτώση πίεσης στον εναλλάκτη θερμότητας. Για την συγκεκριμένη μελέτη συγκεντρώθηκαν στοιχεία από εναλλάκτες του εμπορίου και η τιμή της πτώσης πίεσης θεωρήθηκε:

\[
\Delta P_{\text{evapor}} = 100kPa
\]

55
3.3.1.3 Συμπυκνωτής
Για την μείωση του κόστους της εγκατάστασης και τους κόστους συντήρησης χρησιμοποιείται ένας αερόψυκτος συμπυκνωτής έναντι ενός υδρόψυκτου. Επιπλέον με την επιλογή είναι δυνατή η εγκατάσταση ακόμα και σε περιοχές όπου η ποσότητα του διαθέσιμου νερού δεν είναι επαρκής. Η απορριπτόμενη θερμότητα στο περιβάλλον από τον συμπυκνωτή υπολογίζεται από την σχέση:

\[Q_{PB,con} = \dot{m}_{PB}(h_{4a} - h_3) \]

Για την βέλτιστη λειτουργία του συστήματος χρειάζονται όσο το δυνατό χαμηλότερες θερμοκρασίες συμπύκνωσης. Στην περίπτωση του αερόψυκτου συμπυκνωτή η θερμοκρασία αυτή εξαρτάται από την θερμοκρασία περιβάλλοντος η οποία αποτελεί και όριο. Μια τυπική τιμή για την διαφορά θερμοκρασίας μεταξύ αυτής του περιβάλλοντος και συμπύκνωσης είναι 27 °C. [39]

Για τον υπολογισμό της ισχύς που καταναλώνει ο ανεμιστήρας του συμπυκνωτή, χρησιμοποιείται μια γενική σχέση που την συνδέει με την ακαθάριστη ισχύ της μονάδας [39]. Η σχέση αυτή είναι:

\[W_{con,fan} = 0.02W_{gross} \]

Για την πτώση πίεσης στον συμπυκνωτή, ακολουθείται η ίδια λογική με αυτή που χρησιμοποιήθηκε για την πτώση πίεσης στον ατμοποιητή, δηλαδή για τους υπολογισμούς χρησιμοποιήθηκε μια τυπική τιμή. Ισχύει:

\[\Delta P_{con} = 1 \text{kPa} \]

3.3.1.4 Αναγεννητής
Με την χρήση του αναγεννητή μεταξύ του στροβίλου και του συμπυκνωτή για την προθέρμανση του εργαζόμενου μέσου πριν την είσοδο στον ατμοποιητή, επιτυγχάνεται η αύξηση της απόδοσης της εγκατάστασης καθώς μέρος της θερμότητας που θα απορριπτόταν στο περιβάλλον, χρησιμοποιείται. Το ισοζύγιο ενέργειας στο αναγεννητή δίνεται από την σχέση:

\[h_{2a} - h_2 = h_4 - h_{4a} \]

Τυπική τιμή για την πτώση πίεσης χρησιμοποιείται και στην περίπτωση του αναγεννητή. Ισχύει:

\[\Delta P_{rec} = 50 \text{kPa} \]

3.3.1.5 Τροφοδοτική αντλία
Η αντλία που χρησιμοποιείται στην εγκατάσταση είναι πολυβάθμια φυγοκεντρική μεταβλητής ταχύτητας, που αποτελεί και το πιο συνηθισμένο είδος σε εφαρμογές που αφορούν οργανικούς κύκλους Rankine.

Η ογκομετρική παροχή αποτελεί την πρώτη θεμελιώδη παράμετρο για την ανάλυση της απόδοσης των αντλιών. Η παροχή αυτή ορίζεται από την σχέση:

\[\dot{V} = \frac{\dot{m}}{\rho} \]

Η δεύτερη παράμετρος είναι το ολικό ύψος της αντλίας το οποίο ορίζεται μεταξύ της εισόδου και της εξόδου της από την σχέση:
\[H = \left(\frac{P + \frac{V^2}{2g} + z}{\rho g} \right)_{\text{out}} - \left(\frac{P + \frac{V^2}{2g} + z}{\rho g} \right)_{\text{in}} \]

Στην περίπτωση της ασυμπίεστης ροής όπου η διάμετρος εισόδου και εξόδου είναι η ίδια και δεν υπάρχει υψομετρική διαφορά μεταξύ τους, η εξίσωση ... Μπορεί να γραφτεί και ως:

\[H = \frac{P_{\text{out}} - P_{\text{in}}}{\rho g} = \Delta P \]

Η ισχύς στο ρευστό υπολογίζεται από την σχέση

\[W_{fl} = \rho g \dot{V} H = \dot{V} \Delta P \]

Λόγω των διάφορων απωλειών στην αντλία η πραγματική ισχύς που πρέπει να παρέχεται στον άξονα της είναι μεγαλύτερη από την ισχύ που δίνεται από την αντλία στο ρευστό και υπολογίστηκε από τον προηγούμενο τύπο. Έτσι εισάγεται η έννοια της απόδοσης της αντλίας που είναι ο λόγος της ισχύος στο ρευστό προς την ηλεκτρική ισχύ, δηλαδή:

\[n_{PB,pump} = \frac{W_{fl}}{W_{PB,pump}} \]

Επομένως για τον υπολογισμό της ισχύς της τροφοδοτικής αντλίας λαμβάνεται υπόψη η πτώση πίεσης στον στρόβιλο, στον ατμοποιητή και στον συμπυκνωτή. Έτσι, με βάση την ανάλυση που προηγήθηκε, η απαιτούμενη ισχύς της αντλίας υπολογίζεται από τον παρακάτω τύπο:

\[W_{PB,pump} = \frac{\dot{V} (\Delta P_T + \Delta P_{\text{evap}} + \Delta P_{\text{con}} + \Delta P_{\text{rec}})}{n_{PB,pump}} \]

Αρα η καθαρή παραγωγή ενέργειας υπολογίζεται από τον τύπο:

\[W_{\text{net}} = W_{\text{gross}} - W_{PB,pump} - W_{\text{con,fan}} - W_{\text{SF,pump}} \]

3.3.2 Υπερκρίσιμος κύκλος Brayton

Στην παρούσα εργασία μελετάται η περίπτωση ενός απλού κύκλου Brayton στον οποίο έχει προστεθεί ένας αναγεννητής για την αύξηση του βαθμού απόδοσης του. Ο κύκλος αυτός αποτελείται από 5 εξαρτήματα: τον συμπιεστή, τον αναγεννητή, τον κύριο εναλλάκτη θερμότητας, τον εκτονωτή και τον ψύκτη. Η διάταξη παρουσιάζεται στην παρακάτω εικόνα.
Ο κύκλος ξεκινάει από το σημείο 1, όπου το εργαζόμενο μέσο εισέρχεται στον συμπιεστή, στον οποίο αυξάνεται η πίεσή του. Στην θέση 1 είναι γνωστά τα θερμοδυναμικά χαρακτηριστικά του μέσου. Στην περίπτωση που μελετάται θα θεωρηθεί μια τυπική τιμή για τον βαθμό απόδοσης του συμπιεστή. Το ρευστό από τη συνέχεια, εξερχόμενο του συμπιεστή (θέση 2), εισέρχεται σε εναλλάκτη θερμότητας (αναγεννητήρι) ο οποίος δέχεται θερμότητα από το ρευστό που εξέρχεται από τον στρόβιλο. Με τον τρόπο αυτό μειώνονται οι εξεργειακές απώλειες που θα συνέβαιναν στην περίπτωση που η εναπομείνουσα θερμότητα από την έξοδο του στροβίλου χανόταν στο περιβάλλον στον ψύκτη.

Έπειτα το εργαζόμενο μέσο εισέρχεται στον κύριο εναλλάκτη θερμότητας (θέση 3) στον οποίο η θερμότητα από το ηλιακό πάρκο αυξάνεται την θερμοκρασία του μέσου. Για αυτή την εργασία η αποτελεσματικότητα του εναλλάκτη θεωρείται δεδομένη και ότι η πτώση πίεσης είναι αμελητέα. Εξερχόμενο από τον εναλλάκτη (θέση 4) εισέρχεται στο στρόβιλο για τον οποίο θεωρείται τυπική τιμή για την απόδοσή του. Στον στρόβιλο η ενέργεια μετατρέπεται από θερμότητα σε τοπική πίεση σε περιστροφική κίνηση στον άξονα. Το έργο που δημιουργείται στον στρόβιλο μπορεί να χρησιμοποιηθεί για την κίνηση της γεννήτριας για την παραγωγή ηλεκτρικής ενέργειας και στην περιστροφή του συμπιεστή. Στη συνέχεια το εργαζόμενο μέσο, εισέρχεται στον αναγεννητήρι (θέση 5) και μεταφέρει την θερμότητα στο ρευστό που εξέρχεται από τον συμπιεστή. Στη θέση 6, μετά τον αναγεννητήρι, το ρευστό εισέρχεται στον ψύκτη στον οποίο ψύχεται σε θερμοκρασία λίγο πάνω από το κρίσιμο σημείο στην καμπύλη κορεσμού. Στο παρακάτω διάγραμμα θερμοκρασίας-εντροπίας παρουσιάζεται ο κύκλος που αναλύθηκε προηγουμένως:
Εικόνα 3.11 Διάγραμμα T-s υπερκρίσιμου κύκλου Brayton

Για την πραγματοποίηση της θερμοδυναμικής μελέτης, θεωρήθηκε ότι στην θέση 1 η θερμοκρασία είναι 32 °C και η πίεση 8 MPa. Με την επιλογή των τιμών αυτών μειώνεται η ισχύς που χρειάζεται ο συμπιεστής και επιπλέον η θερμοκρασία αυτή είναι αρκετά υψηλή για να μην χρειάζεται μεγάλος εναλλάκτης για την ψύξη του ρευστού, μειώνοντας το κόστος της εγκατάστασης. Επιπλέον, όπως αναφέρθηκε και προηγουμένως η πτώση πίεσης σε όλους τους εναλλάκτες είναι αμελητέα και κατά συνέπεια δεν λαμβάνεται υπόψη στους υπολογισμούς που θα ακολουθήσουν.

Σε κάθε περίπτωση είναι γνωστή η θερμοδυναμική κατάσταση στο σημείο 1, και γνωρίζοντας τον λόγο πίεσης στον συμπιεστή, ο οποίος μεταβάλλεται για την εύρεση του βέλτιστου, υπολογίζεται η πίεση στο σημείο 2. Στη συνέχεια θεωρώντας ισεντροπική μεταβολή στο συμπιεστή, δηλαδή \[s_2' = s_1 \] και επομένως υπολογίζεται η ενθαλπία \[h_2 = f(s_2', P_2) \]. Στον συμπιεστή ισχύει:

\[
\dot{W}_c = \frac{\dot{m}(h_{2s} - h_1)}{n_c} = \dot{m}(h_2 - h_1)
\]

Από ισοζύγιο ενέργειας στον αναγεννητή προκύπτει:

\[
\dot{Q}_{rec} = \dot{m}_pB(h_3 - h_2) = \dot{m}_pB(h_5 - h_6)
\]

Για τον στρόβιλο:

\[
\dot{W}_t = \frac{(h_4 - h_{5s})}{n_t}
\]

Για την ψύξη χρησιμοποιείται αέρας και για απλοποίηση στους υπολογισμούς χρησιμοποιείται η σχέση ... για την εύρεση της ηλεκτρικής ενέργειας που απαιτείται στον ανεμιστήρα.
Τελικά η καθαρή παραγωγή ενέργειας υπολογίζεται από τον τύπο:

\[W_{\text{net}} = W_{\text{gross}} - W_c - W_{\text{cond, fan}} - W_{\text{SF, pump}} \]

3.3.3 Επιλογή εργαζόμενου μέσου

Η επιλογή του εργαζόμενου μέσου επηρεάζει όχι μόνο την απόδοση της εγκατάστασης αλλά και την σχεδίαση της, τη διασταυρολογήση των εξαρτημάτων, την ασφάλεια και γενικά το κόστος κατασκευής και λειτουργίας της.

Για την επιλογή του κατάλληλου εργαζόμενου μέσου η πρώτη ομάδα απαιτήσεων που πρέπει να κανοποιούνται είναι:

- Διαθεσιμότητα και κόστος. Λόγω του είδους της θερμικής αποθήκευσης ενέργειας που θα χρησιμοποιηθεί απαιτούνται μεγάλες ποσότητες ρευστού που μπορούν αυξήσουν το κόστος της εγκατάστασης.
- Μη-ευφλεκτό
- Μη-τοξικό
- Συμβατό με τα υλικά του εξοπλισμού και μη διαβρωτικό
- Περιβαλλοντικοί παράμετροι: οι δύο κυριότεροι δείκτες που πρέπει να ληφθούν υπόψη είναι: το δυναμικό αύξησης της θερμοκρασίας του πλανήτη (Global Warming Potential – GWP) και το δυναμικό καταστροφής της στιβάδας του όζοντος (Ozone Depletion Potential)

Η δεύτερη ομάδα αφορά τις θερμοδυναμικές και φυσικές ιδιότητες των ρευστών που αναλύθηκαν στο κεφάλαιο 2.6.

Αξίζει να τονιστεί ότι δεν υπάρχει εργαζόμενο μέσο που να καλύπτει όλα τα παραπάνω κριτήρια ταυτόχρονα και επομένως πρέπει να γίνουν ορισμένοι συμβιβασμοί.

Στην περίπτωση που υπάρχουν μεταβολές στην θερμοκρασία της πηγής θερμότητας, μπορεί να είναι ωφέλιμη η χρήση μιγμάτων αντί για καθαρές ουσίες εξαιτίας της μη ισοθερμοκρασιακής αλλαγής φάσης. Η ιδιότητα αυτή βελτιώνει την απόδοση του συστήματος σε αυτές τις εφαρμογές. Στις περιπτώσεις που η πηγή θερμότητας έχει σταθερή θερμοκρασία, είναι προτιμότερη η χρήση καθαρών ουσιών. Επειδή το ηλιακό πάρκο σε συνδυασμό με την θερμική αποθήκευση θερμότητας μπορεί να θεωρηθεί ως σταθερή πηγή θερμότητας μελετώνται μόνο καθαρές ουσίες.

Παρά το γεγονός ότι είναι διαθέσιμη μεγάλη ποικιλία από οργανικά μέσα, λίγα από αυτά έχουν χρησιμοποιηθεί σε εμπορικές εφαρμογές. Στο εργοστάσιο παραγωγής ηλεκτρικής ενέργειας στο οποίο είναι εγκατεστημένο ηλιακό πάρκο από παραβολικούς συλλέκτες σε συνδυασμό με οργανικό κύκλο Rankine, χρησιμοποιείται σαν εργαζόμενο μέσο το n-Pentane, το οποίο ανήκει στον υδρογονάνθρακες. Τα ρευστά αυτά έχουν χαμηλές επιθυμητές θερμοδυναμικές ιδιότητες και επιπλέον, για χρήση σε ηλιακές εφαρμογές προτείνεται και η χρησιμοποίηση του R245fa [27].

Το διοξείδιο του άνθρακα (CO2) έχει προσελκύσει ιδιαίτερη προσοχή, καθώς είναι ανέξοδο, μη τοξικό, μη εγκατεστημένο πάρκο από οργανικούς συλλέκτες σε συνδυασμό με οργανικό κύκλο Rankine, χρησιμοποιείται σαν εργαζόμενο μέσο στον κύκλο ισχύς της. Το διοξείδιο του άνθρακα (CO2) είναι ανέξοδο, μη τοξικό, μη ευφλεκτό και υπάρχει στη φύση. Από την περιβαλλοντική άποψη, έχει χαμηλό δυναμικό καταστροφής (ODP) και χαμηλό δυναμικό υπερθέρμανσης του πλανήτη (GWP). Στα πλεονεκτήματα προστίθεται και η χαμηλή κρίσιμη θερμοκρασία και πίεση του CO2 (31.1 °C και 7.38 MPa), η οποία διευκολύνει τη λειτουργία
συστημάτων εντός της υπερκρίσιμης περιοχής του υγρού με χρήση πηγής θερμότητας χαμηλών θερμοκρασιών (30 – 200°C).
4 Βελτιστοποίηση

Για τον προσδιορισμό του βέλτιστου σημείου λειτουργίας της μονάδας παραγωγής ηλεκτρικής ενέργειας με τη χρήση ηλιακών συγκεντρωτικών συλλέκτων, πραγματοποιείται θερμοδυναμική βελτιστοποίηση τόσο στο ηλιακό πάρκο όσο και στην μονάδα παραγωγής ανάλογα με τον κύκλο ισχύος που αυτή χρησιμοποιεί.

Η βελτιστοποίηση πραγματοποιείται υπό την υπόθεση ότι η θερμική αποθήκη ενέργειας είναι πλήρως φορτισμένη, δηλαδή βρίσκεται στην μόνιμη κατάσταση, και κατά συνέπεια η θερμότητα στον κύκλο ισχύος προέρχεται από το ηλιακό πάρκο. Επιπλέον, θεωρείται ότι η εγκατάσταση λειτουργεί στο ηλιακό μεσημέρι και δεν χρησιμοποιείται μηχανισμός παρακολούθησης της τροχιάς του ήλιου.

Αρχικά, η προσδιορισμός της βελτιστοποίησης γίνεται υπό την υπόθεση ότι η θερμική αποθήκη ενέργειας είναι πλήρως φορτισμένη, δηλαδή βρίσκεται στην μόνιμη κατάσταση, και κατά συνέπεια η θερμότητα στον κύκλο ισχύος προέρχεται από το ηλιακό πάρκο. Επιπλέον, θεωρείται ότι η εγκατάσταση λειτουργεί στο ηλιακό μεσημέρι και δεν χρησιμοποιείται μηχανισμός παρακολούθησης της τροχιάς του ήλιου.

Αντικειμενική συνάρτηση της βελτιστοποίησης ορίζεται η ολική απόδοση της εγκατάστασης, η οποία ορίζεται ως ο λόγος της καθαρής ηλεκτρικής ενέργειας που παράγεται προς την ολική ηλιακή θερμότητα που πέφτει στους συγκεντρωτικούς συλλέκτες. Η εξίσωση της ολικής απόδοσης είναι:

\[n_{plant} = \frac{W_{net}}{Q_{in}} \]

όπου:

\[Q_{in} = I_{ba} \ast A_{sf} \]

\[I_{ba} \] είναι η ηλιακή ακτινοβολία στην τοποθεσία της εγκατάστασης του ηλιακού πάρκου.

Η συνολική απόδοση του εργοστασίου είναι συνάρτηση του βαθμού απόδοσης του παραβολικού συλλέκτη και του βαθμού απόδοσης της μονάδας παραγωγής ηλεκτρικής ενέργειας. Βασική πτυχή στη λειτουργία μιας τέτοιας εγκατάστασης είναι ο διόπτρας αντικρουόμενες τάσεις που υπάρχουν μεταξύ της θερμοκρασίας λειτουργίας και της απόδοσης του παραβολικού συλλέκτη (στον οποίο η αύξηση της θερμοκρασίας έχει αρνητική επίδραση στην απόδοση του) σε σύγκριση με αυτή στον θερμοδυναμικό κύκλο (στον οποίο η αύξηση της θερμοκρασίας λειτουργίας βελτιώνει την απόδοση του). Με βάση τα παραπάνω , υπάρχει σημείο λειτουργίας στο οποίο επιτυγχάνεται η βέλτιστη λειτουργία.

Για ακαθάριστη ηλεκτρική παραγωγή 1 MW, η διαδικασία της βελτιστοποίησης χωρίζεται σε δύο μέρη. Αρχικά, μεταβάλλοντας την θερμοκρασία εισόδου του θερμοσυμψυκτικού ρευστού και την παροχή μάζας του θερμοσυμψυκτικού ρευστού και την παροχή μάζας του προσδιορίζεται όλο το εύρος λειτουργίας των συλλεκτών. Ακολουθώντας την διαδικασία της διαλύσης της θερμοκρασίας στον θερμοσυμψυκτικό κύκλο (στον οποίο η αύξηση της θερμοκρασίας λειτουργίας βελτιώνει την απόδοση του), με βάση τα παραπάνω, υπάρχει σημείο λειτουργίας στο οποίο επιτυγχάνεται η βέλτιστη λειτουργία.
Εικόνα 4.1 Διάγραμμα ροής διαδικασίας εύρεσης συνθηκών λειτουργίας ηλιακού πάρκου
Τα δεδομένα που αφορούν τον ηλιακό παραβολικό συλλέκτη παρουσιάζονται στους παρακάτω πίνακες:

Πίνακας 4.1 Δεδομένα module παραβολικού συλλέκτη [42]

<table>
<thead>
<tr>
<th>Συλλέκτης</th>
<th>PTC module</th>
<th>Ultimate Trough</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μήκος ανοιχτού συλλέκτη</td>
<td></td>
<td>l_{ap}</td>
</tr>
<tr>
<td>Μήκος ενός module του</td>
<td></td>
<td>l_{m}</td>
</tr>
<tr>
<td>συλλέκτη</td>
<td></td>
<td>7.51 m</td>
</tr>
<tr>
<td>Αριθμός modules ανά συλλέκτη</td>
<td>N</td>
<td>10</td>
</tr>
<tr>
<td>Συνολικό μήκος συλλέκτη</td>
<td>L</td>
<td>245 m</td>
</tr>
</tbody>
</table>

Πίνακας 4.2 Δεδομένα παραβολικού συλλέκτη

<table>
<thead>
<tr>
<th>Δεδομένα συλλέκτη</th>
<th>Schott PTR 70</th>
<th>Steel type: DIN 1.4541</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τύπος απορροφητή</td>
<td>eps_{surf}</td>
<td>0.002 mm</td>
</tr>
<tr>
<td>Υλικό απορροφητή</td>
<td>D_{ia}</td>
<td>0.066 m</td>
</tr>
<tr>
<td>Τραχύτητα επιφάνειας</td>
<td>D_{oa}</td>
<td>0.07 m</td>
</tr>
<tr>
<td>Εσωτερική διάμετρος απορροφητή</td>
<td>k_{a}</td>
<td>$15 \frac{W}{m \times K}$</td>
</tr>
<tr>
<td>Εξωτερική διάμετρος απορροφητή</td>
<td>ε_{a}</td>
<td>0.095</td>
</tr>
<tr>
<td>Θερμική αγωγιμότητα απορροφητή</td>
<td>a_{a}</td>
<td>0.96</td>
</tr>
<tr>
<td>Συντελεστής εκπομπής απορροφητή</td>
<td>D_{ic}</td>
<td>0.12 m</td>
</tr>
<tr>
<td>Υλικό γυάλινου καλύμματος</td>
<td>D_{oc}</td>
<td>0.125 m</td>
</tr>
<tr>
<td>Εσωτερική διάμετρος γυάλινου καλύμματος</td>
<td>k_{c}</td>
<td>$1.2 \frac{W}{m \times K}$</td>
</tr>
<tr>
<td>Εξωτερική διάμετρος γυάλινου καλύμματος</td>
<td>ε_{c}</td>
<td>0.86</td>
</tr>
<tr>
<td>Θερμική αγωγιμότητα γυάλινου καλύμματος</td>
<td>a_{c}</td>
<td>0.02</td>
</tr>
<tr>
<td>Συντελεστής εκπομπής γυάλινου καλύμματος</td>
<td>τ_{c}</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Για τον υπολογισμό της οπτικής απόδοσης του συλλέκτη χρησιμοποιούνται οι παρακάτω συντελεστές:
Πίνακας 4.3 Συντελεστές υπολογισμού οπτικής απόδοσης

<table>
<thead>
<tr>
<th>Οπτική απόδοση</th>
<th>ρ_{cl}</th>
<th>0.94</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σφάλμα παρακολουθήσεις</td>
<td>e_{tr}</td>
<td>0.994</td>
</tr>
<tr>
<td>Σφάλμα γεωμετρίας</td>
<td>e_{ge}</td>
<td>1</td>
</tr>
<tr>
<td>Σκόνη στους καθρέπτες</td>
<td>e_{am}</td>
<td>0.97</td>
</tr>
<tr>
<td>Σκόνη στον συλλέκτη</td>
<td>e_{da}</td>
<td>0.995</td>
</tr>
<tr>
<td>Σκίαση συλλέκτη</td>
<td>e_{sh}</td>
<td>0.98</td>
</tr>
<tr>
<td>Μη υπολογισμένα σφάλματα</td>
<td>e_{un}</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Το δεύτερο μέρος της βελτιστοποίησης αφορά τους κύκλους ισχύος που χρησιμοποιούνται. Ανάλογα με τον κύκλο, για κάθε συνδυασμό πίεσης και θερμοκρασίας ατμοποίησης, υπάρχει ένας εύρος συνθηκών λειτουργίας (θερμοκρασίας και παροχής) του ηλιακού πάρκου που έχει την δυνατότητα να παρέχει την απαιτούμενη θερμότητα. Από το εύρος αυτό επιλέγεται η βέλτιστη.

Αναλυτικότερα, για τον υποκρίσιμο οργανικό κύκλο Rankine το μέγεθος που βελτιστοποιείται είναι η θερμοκρασία ατμοποίησης του οργανικού μέσου. Εξετάζονται δύο διαφορετικά εργαζόμενα μέσα, το n-Pentane και το R245fa. Οι περιορισμοί που εισέρχονται στην διαδικασία της βελτιστοποίησης προέρχονται από τα οργανικά ρεύματα και τις ιδιότητές τους. Ειδικότερα, το άνω ορίο της θερμοκρασίας ατμοποίησης εξαρτάται από την κρίσιμη θερμοκρασία του κάθε μέσου ενώ η θερμοκρασία συμπύκνωσης εξαρτάται από τις ομοσφαιρικές συνθήκες στην τοποθεσία της εγκατάστασης. Αναλυτικότερα τα μεγέθη παρουσιάζονται στον παρακάτω πίνακα.

Πίνακας 4.4 Δεδομένα βελτιστοποίησης υποκρίσιμου κύκλου Rankine

<table>
<thead>
<tr>
<th>Υποκρίσιμος ORC</th>
<th>Παράμετρος</th>
<th>Εργαζόμενο μέσο</th>
<th>N-Pentane</th>
<th>R245fa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Θερμοκρασία</td>
<td>$T_{air} + 27, ^{\circ}C$</td>
<td>$T_{air} + 27, ^{\circ}C$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>συμπύκνωσης</td>
<td>$= 46.6, ^{\circ}C$</td>
<td>$= 46.6, ^{\circ}C$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ελάχιστη θερμοκρασία</td>
<td>$T_{cond} + 2, ^{\circ}C$</td>
<td>$T_{cond} + 2, ^{\circ}C$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ατμοποίησης</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Μέγιστη θερμοκρασία</td>
<td>197 °C</td>
<td>154 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ατμοποίησης</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Πτώση πίεσης στον</td>
<td>100 kPa</td>
<td>100 kPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ατμοποιητή</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Πτώση πίεσης συμπυκνωτή</td>
<td>1 kPa</td>
<td>1 kPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(εργαζόμενο μέσο)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Πτώση πίεσης στον</td>
<td>50 kPa</td>
<td>50 kPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>αναγεννητή</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Βαθμός απόδοσης</td>
<td>0.75</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>αντλίας</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Βαθμός απόδοσης</td>
<td>0.96</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>γεννήτριας</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Βαθμός απόδοσης</td>
<td>Μεταβλητός</td>
<td>Μεταβλητός</td>
<td></td>
</tr>
<tr>
<td></td>
<td>στροβίλου</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Για τον κρίσιμο οργανικό κύκλο, οι προς βελτιστοποίηση μεταβλητές είναι η θερμοκρασία και η πίεση στην είσοδο του στροβίλου. Στον κύκλο αυτό μελετάται μόνο το R245fa σαν εργαζόμενο μέσο. Με βάση τα χαρακτηριστικά του ρευστού, το κάτω όριο της πίεσης τέθηκε στα 4 MPa, λίγο πάνω από την κρίσιμη πίεση και σαν άνω όριο τα 8 MPa, καθώς θεωρήθηκε ότι η τιμή αυτή είναι ασφαλή και μπορεί να επιτευχθεί χωρίς μεγάλο κόστος. Αναλυτικότερα τα μεγέθη παρουσιάζονται στον παρακάτω πίνακα:

Πίνακας 4.5 Δεδομένα βελτιστοποίησης κρίσιμου κύκλου Rankine

<table>
<thead>
<tr>
<th>Παράμετρος</th>
<th>Τιμή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Εργαζόμενο μέσο</td>
<td>R245fa</td>
</tr>
<tr>
<td>Θερμοκρασία συμπύκνωσης</td>
<td>(T_{air} + 27 ^\circ C = 46.6 ^\circ C)</td>
</tr>
<tr>
<td>Ελάχιστη θερμοκρασία εισόδου στον στρόβιλο</td>
<td>(T_{crit} + 3 ^\circ C = 157 ^\circ C)</td>
</tr>
<tr>
<td>Μέγιστη θερμοκρασία εισόδου στον στρόβιλο</td>
<td>250 ^\circ C</td>
</tr>
<tr>
<td>Ελάχιστη πίεση εισόδου στον στρόβιλο</td>
<td>4 MPa</td>
</tr>
<tr>
<td>Μέγιστη πίεση εισόδου στον στρόβιλο</td>
<td>8 MPa</td>
</tr>
<tr>
<td>Βαθμός απόδοσης αντλίας</td>
<td>0.75</td>
</tr>
<tr>
<td>Βαθμός απόδοσης γεννήτριας</td>
<td>0.96</td>
</tr>
<tr>
<td>Βαθμός απόδοσης στροβίλου</td>
<td>Μεταβλητός</td>
</tr>
</tbody>
</table>

Για τον υπερκρίσιμο κύκλο Brayton σε συνδυασμό με αναγεννητή, βελτιστοποιείται η θερμοκρασία εισόδου στον στρόβιλο και η πίεση στο σημείο αυτό. Χρησιμοποιήθηκαν δύο εργαζόμενα μέσα, το διοξείδιο του άνθρακα και το R245fa.

Πίνακας 4.6 Δεδομένα βελτιστοποίησης υπερκρίσιμου κύκλου Brayton

<table>
<thead>
<tr>
<th>Παράμετρος</th>
<th>Εργαζόμενο μέσο</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θερμοκρασία εισόδου στον συμπιεστή</td>
<td>32 ^\circ C</td>
</tr>
<tr>
<td>Πίεση εισόδου στον συμπιεστή</td>
<td>8 MPa</td>
</tr>
<tr>
<td>Μέγιστη θερμοκρασία εισόδου στον στρόβιλο</td>
<td>250 ^\circ C</td>
</tr>
<tr>
<td>Ελάχιστη πίεση εισόδου στον στρόβιλο</td>
<td>9 MPa</td>
</tr>
<tr>
<td>Μέγιστη πίεση εισόδου στον στρόβιλο</td>
<td>20 MPa</td>
</tr>
<tr>
<td>Βαθμός απόδοσης συμπιεστή</td>
<td>0.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Εργαζόμενο μέσο</th>
<th>R245fa</th>
</tr>
</thead>
<tbody>
<tr>
<td>155 ^\circ C</td>
<td>4 MPa</td>
</tr>
<tr>
<td>310 ^\circ C</td>
<td>4 MPa</td>
</tr>
<tr>
<td>9 MPa</td>
<td>4 MPa</td>
</tr>
<tr>
<td>20 MPa</td>
<td>20 MPa</td>
</tr>
</tbody>
</table>
Σαν τοποθεσία της εγκατάστασης θεωρείται η Αθήνα. Τα μετεωρολογικά χαρακτηριστικά που επικρατούν στην περιοχή αυτή παρουσιάζονται στον παρακάτω πίνακα και τα στοιχεία αυτά έχουν αντληθεί από τις τεχνικές οδηγίες του Τεχνικού Επιμελητηρίου Ελλάδος και συγκεκριμένα από την TOTEE 20701-3.

Πίνακας 4.7 Δεδομένα περιοχής εγκατάστασης της μονάδας

<table>
<thead>
<tr>
<th>Παράμετρος</th>
<th>Τιμή/Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Περιοχή</td>
<td>Athens</td>
</tr>
<tr>
<td>Γεωγραφικό πλάτος</td>
<td>38 °</td>
</tr>
<tr>
<td>Ηλιακή ακτινοβολία</td>
<td>800 W/m^2</td>
</tr>
<tr>
<td>Θερμοκρασία αέρα</td>
<td>19.6 °C</td>
</tr>
<tr>
<td>Θερμοκρασία ουρανού</td>
<td>0 °C</td>
</tr>
<tr>
<td>Ταχύτητα ανέμου</td>
<td>3.65 m/s</td>
</tr>
</tbody>
</table>

Η μοντελοποίηση έγινε με την χρήση της Matlab και οι εξισώσεις λύθηκαν ακολουθώντας τις διαδικασίες που παρουσιάστηκαν προηγουμένως και παρουσιάζονται στο παρακάτω διάγραμμα ροής. Τα θερμοδυναμικά δεδομένα των εργαζόμενων μέσων υπολογίστηκαν με την χρήση του υπολογιστικού πακέτου CoolProp.[43]
5 Αποτελέσματα

Οι συνθήκες λειτουργίας των ηλιακών παραβολικών προσδιορίστηκαν στο πρώτο μέρος της βελτιστοποίησης, μεταβάλλοντας την θερμοκρασία στην είσοδο κατά μία μονάδα και την παροχή μάζας κατά 0.5 kg/s. Η επίδραση της παροχής μάζας για τρεις διαφορετικές θερμοκρασίες εισόδου στον συλλέκτη, στην απόδοση του ηλιακού πάρκου, στην θερμοκρασία εξόδου, στην θερμότητα που προσδόθηκε στο σύστημα και στην πτώση πίεσης παρουσιάζονται στα παρακάτω διαγράμματα.

Εικόνα 5.1 Διάγραμμα βαθμού απόδοσης ηλιακού πάρκου-παροχής μάζας

Εικόνα 5.2 Διάγραμμα προσδιοδόμησης θερμότητας-παροχής μάζας
Εικόνα 5.3 Διάγραμμα θερμοκρασίας εξόδου-παροχής μάζας

Εικόνα 5.4 Διάγραμμα πτώσης πίεσης-παροχής μάζας
Από τα διαγράμματα προκύπτει ότι μέσω μεγαλύτερης παροχής θερμοαγωγιμού ρευστού επιτυγχάνεται αύξηση στην επίδοση των συλλεκτών καθώς αυξάνεται τόσο ο βαθμός απόδοσης των συλλεκτών όσο και η ποσότητα της θερμότητας που μεταφέρεται σε αυτό. Στην αρχή η αύξηση της απόδοσης και την προσδιδόμενης ενέργειας είναι απότομη αλλά εξομαλύνεται γρήγορα. Από το διάγραμμα 5.3 εξάγεται το συμπέρασμα ότι η θερμοκρασία εξόδου μειώνεται με την αύξηση της παροχής μάζας. Σε χαμηλές τιμές της παροχής η θερμοκρασία είναι μεγαλύτερη από το άνω όριο που θέτεται από τις προδιαγραφές του ρευστού μεταφοράς θερμότητας. Ο περιορισμός αυτός παρακολουθείται κατά την διάρκεια της βελτιστοποίησης. Στο διάγραμμα 5.4 παρατηρείται ότι η πτώση πίεσης αυξάνεται με την αύξηση της παροχής με επακόλουθη να αυξάνεται η απαιτούμενη ισχύς της τροφοδοτικής αντλίας για την υπερνίκηση των απωλειών και η ιδιοκατανάλωση της εγκατάστασης.

Αναφορικά με την επίδραση της θερμοκρασίας εισόδου στους συλλέκτες, στην απόδοση τους και στην θερμοκρασία εξόδου, από τα διαγράμματα 5.1 και 5.3, συμπεραίνεται ότι οι χαμηλότερες τιμές της βελτιώνουν τα αποτελέσματα στις προαναφερόμενες παραμέτρους. Από τις παραπάνω παρατηρήσεις διαπιστώνεται ότι οι μεγαλύτερες τιμές της παροχής μάζας βελτιώνουν την θερμική απόδοση του ηλιακού πάρκου με αρνητικές συνέπειες στην καθαρή παραγωγή ηλεκτρικής ενέργειας εξαιτίας της αυξημένης κατανάλωσης της τροφοδοτικής αντλίας. Λαμβάνοντας υπόψη τα παραπάνω συμπεράσματα, για την επιτυχία της βελτίωσης συνολικής απόδοσης, η παροχή μάζας επιλέγεται αντισταθμίζοντας την θερμική απόδοση των συλλεκτών και της κατανάλωσης της αντλίας.

Έχοντας προσδιορίσει τις συνθήκες λειτουργίας του ηλιακού πάρκου, πραγματοποιείται θερμοδυναμική βελτιστοποίηση για κάθε κύκλο ισχύος που χρησιμοποιηθεί, χρησιμοποιώντας σαν αντικειμενική συνάρτηση της ολική απόδοσης της εγκατάστασης. Για τον υποκρίσιμο οργανικό κύκλο Rankine με εργαζόμενο μέσο το n-Pentane, το σημείο λειτουργίας το οποίο προσδιορίστηκε μέσω της θερμοκρασίας εισόδου 458 K. Η παροχή μάζας του πεντανίου είναι 10.86 kg/s.

Εικόνα 5.5 Διάγραμμα T-s θέλτιστου υποκρίσιμου κύκλου με εργαζόμενο μέσο το n-Pentane
Για το ηλιακό πάρκο, η συνολική παροχή μάζας του θερμοαγωγήμου ρευστού είναι 15.09 kg/s και η θερμοκρασία εισόδου και εξόδου είναι 353 K και 512.5 K αντίστοιχα. Για τις παραπάνω συνθήκες λειτουργίας, η καθαρή παραγωγή ηλεκτρικής ενέργειας είναι 897.05 kWe και η συνολική απόδοση του συστήματος είναι 14.12 %. Στο διάγραμμα 5.5 παρουσιάζεται το διάγραμμα T-s του βέλτιστου κύκλου και στο διάγραμμα 5.6 παρουσιάζεται η επίδραση της θερμοκρασίας εισόδου του στροβίλου στον συνολικό βαθμό απόδοσης της εγκατάστασης.

Εικόνα 5.6 Διάγραμμα βαθμού απόδοσης υποκρίσιμου κύκλου-θερμοκρασίας εισόδου στον στροβίλο με εργαζόμενο μέσο το n-Pentane

Για τον υποκρίσιμο οργανικό κύκλο Rankine με εργαζόμενο μέσο το R245fa, το σημείο λειτουργίας το οποίο προσδιορίστηκε μέσω της βελτιστοποίησης, επιτυγχάνεται με θερμοκρασία εισόδου στον στροβίλο τα 415 K. Η παροχή μάζας του R245fa είναι 30.57 kg/s. Για το ηλιακό πάρκο, η συνολική παροχή μάζας του θερμοαγωγήμου ρευστού είναι 19.95 kg/s και η θερμοκρασία εισόδου και εξόδου είναι 328 K και 493.8 K αντίστοιχα. Για τις παραπάνω συνθήκες λειτουργίας, η καθαρή παραγωγή ηλεκτρικής ενέργειας είναι 865.54 kWe και η συνολική απόδοση του συστήματος είναι 10.31 %. Στο διάγραμμα 5.7 παρουσιάζεται το διάγραμμα T-s του βέλτιστου κύκλου και στο διάγραμμα 5.8 παρουσιάζεται η επίδραση της θερμοκρασίας εισόδου του στροβίλου στον συνολικό βαθμό απόδοσης της εγκατάστασης.
Εικόνα 5.7 Διάγραμμα T-s βέλτιστου υποκρίσιμου κύκλου με R245fa

Εικόνα 5.8 Διάγραμμα βαθμού απόδοσης υποκρίσιμου κύκλου-θερμοκρασίας εισόδου στον στρόβιλο με εργαζόμενο μέσο το R245fa
Από τα παραπάνω αποτελέσματα, εξάγεται το συμπέρασμα ότι το n-Pentane αποτελεί την βέλτιστη επιλογή για την περίπτωση του υποκρίσιμου οργανικού κύκλου Rankine. Το γεγονός αυτό είναι συνέπεια της υψηλότερης κρίσιμης θερμοκρασίας που έχει σαν αποτέλεσμα την μεγαλύτερη διαφορά θερμοκρασίας μεταξύ της θερμοκρασίας εισόδου στον στρόβιλο και της θερμοκρασίας συμπύκνωσης. Από τα διαγράμματα 5.6 και 5.8 Αποδεικνύεται ότι σε υψηλές θερμοκρασίες λειτουργίας και των δύο οργανικών ρευστών, η συνολική απόδοση της εγκατάστασης μειώνεται καθώς οι αρνητικές επιπτώσεις των υψηλών θερμοκρασιών στο ηλιακό πάρκο υπερνικούν τις θετικές στην μονάδα παραγωγής ενέργειας.

Για τον κρίσιμο οργανικό κύκλο Rankine στον οποίο γίνεται χρήση του R245fa σαν οργανικό μέσο, το σημείο λειτουργίας επιτυγχάνεται όταν η πίεση στην είσοδο του στρόβιλου είναι 5 MPa και η θερμοκρασία 489 K. Η παροχή μάζας του R245fa είναι 19.91 kg/s. Για το ηλιακό πάρκο, η συνολική παροχή μάζας του θερμοσαγώγημου ρευστού είναι 13.97 kg/s και η θερμοκρασία εισόδου και εξόδου είναι 324 K και 490.9 K αντίστοιχα. Για τις παραπάνω συνθήκες λειτουργίας, η καθαρή παραγωγή ηλεκτρικής ενέργειας είναι 889.76 kWe και η συνολική απόδοση του συστήματος είναι 15.14 %. Στο διάγραμμα 5.9 παρουσιάζεται σε διάγραμμα T-s ο κύκλος ισχύος στο σημείο λειτουργίας και στο διάγραμμα 5.10 παρουσιάζεται η μεταβολή του συνολικού βαθμού απόδοσης της εγκατάστασης σε συνάρτηση της θερμοκρασίας εισόδου στον στρόβιλο για διάφορες τιμές της πίεσης στο ίδιο σημείο.

Εικόνα 5.9 Διάγραμμα T-s βέλτιστου κρίσιμου κύκλου με εργαζόμενο μέσο το R245fa
Εικόνα 5.10 Διάγραμμα βαθμού απόδοσης κρίσιμου κύκλου-θερμοκρασίας και πίεσης εισόδου στον στρόβιλο με εργαζόμενο μέσο το R245fa

Για τον υπερκρίσιμο κύκλο με εργαζόμενο μέσο το διοξείδιο του άνθρακα (CO₂) το σημείο λειτουργίας επιτυγχάνεται όταν η πίεση στην είσοδο του στροβίλου είναι 20 MPa και η θερμοκρασία 493.4 K. Η παροχή μάζας του CO₂ είναι 19.11 kg/s. Για το ηλιακό πάρκο, η συνολική παροχή μάζας του θερμοαγωγώμου ρευστού είναι 11.36 kg/s και η θερμοκρασία εισόδου και εξόδου είναι 330 K και 495.3 K αντίστοιχα. Για τις παραπάνω συνθήκες λειτουργίας, η καθαρή παραγωγή ηλεκτρικής ενέργειας είναι 631.97 kWe και η συνολική απόδοση του συστήματος είναι 13.23 %. Στο διάγραμμα 5.11 παρουσιάζεται σε διάγραμμα T-s ο κύκλος ισχύος στο σημείο λειτουργίας και στο διάγραμμα 5.12 παρουσιάζεται η μεταβολή του συνολικού βαθμού απόδοσης της εγκατάστασης σε συνάρτηση της θερμοκρασίας εισόδου στον στρόβιλο για διάφορες τιμές της πίεσης στο ίδιο σημείο.
Εικόνα 5.11 Διάγραμμα T-s θέλτιστου υπερκρίσιμου κύκλου με εργαζόμενο μέσο το CO2

Εικόνα 5.12 Διάγραμμα βαθμού απόδοσης υπερκρίσιμου κύκλου-θερμοκρασίας και πίεσης εισόδου με εργαζόμενο μέσο το CO2
Για τον υπερκρίσιμο κύκλο με εργαζόμενο μέσο το R245fa (CO₂) το σημείο λειτουργίας επιτυγχάνεται όταν η πίεση στην είσοδο του στροβίλου είναι 10 MPa και η θερμοκρασία 559.36 K. Η παροχή μάζας του R245fa είναι 54.9 kg/s. Για το ηλιακό πάρκο, η συνολική παροχή μάζας του θερμοσαγώγιμου ρευστού είναι 18.02 kg/s και η θερμοκρασία εισόδου και εξόδου είναι 444 K και 560.5K αντίστοιχα. Για τις παραπάνω συνθήκες λειτουργίας, η καθαρή παραγωγή ηλεκτρικής ενέργειας είναι 542.06 kWe και η συνολική απόδοση του συστήματος είναι 8.87 %. Στο διάγραμμα 5.13 παρουσιάζεται σε διάγραμμα T-s ο κύκλος ισχύος στο σημείο λειτουργίας και στο διάγραμμα 5.14 παρουσιάζεται η μεταβολή του συνολικού βαθμού απόδοσης της εγκατάστασης σε συνάρτηση της θερμοκρασίας εισόδου στον στρόβιλο για διάφορες τιμές της πίεσης στο ίδιο σημείο.

Εικόνα 5.13 Διάγραμμα T-s θέλτιστου υπερκρίσιμου κύκλου με εργαζόμενο μέσο το R245fa
Εικόνα 5.14 Βαθμός απόδοσης υπερκρίσιμου κύκλου- θερμοκρασίας και πίεσης εισόδου στον στρόβιλο με εργαζόμενο μέσο το R245fa
6 Συμπεράσματα

Σκοπός της παρούσας διπλωματικής εργασίας είναι η ανάλυση του οργανικού κύκλου Rankine και του υπερ-κρίσιμου κύκλου Brayton σε συνδυασμό με ένα μικρής κλίμακας ηλιακό πάρκο με παραβολικούς ηλιακούς συλλέκτες. Η ανάλυση αυτή λαμβάνει υπόψη της ένα ηλιακό συγκρότημα παραγωγής ηλεκτρικής ενέργειας της τάξης του 1 MWe.

Η εγκατάσταση αυτή αποτελείται από το ηλιακό πάρκο στο οποίο χρησιμοποιείται σαν ρευστό μεταφοράς θερμότητας η Therminol 66, μια αποθήκη θερμικής ενέργειας και μια μονάδα παραγωγής ηλεκτρικής ενέργειας. Τα εργαζόμενα μέσα στο κομμάτι των κύκλων ισχύος είναι τα: n-Pentane και R245fa για τους δύο τύπους του ORC και τα: CO₂ και R245fa για τον υπερκρίσιμο Brayton.

Αναπτύχθηκε διαδικασία βελτιστοποίησης για το ηλιακό πάρκο και τους κύκλους ισχύος βασισμένο στην μαθηματική μοντελοποίηση που παρουσιάστηκε στις προηγούμενες παραγράφους, με σκοπό την μεγιστοποίηση του ολικού βαθμού απόδοσης της εγκατάστασης (λόγος της καθαρής παραγόμενης ηλεκτρικής ισχύος προς την ηλιακή ακτινοβολία που προσπίπτει στο ηλιακό πάρκο). Τα κυριότερα συμπεράσματα της εργασίας είναι:

- Ο κρίσιμος οργανικός κύκλος Rankine με εργαζόμενο μέσο το R245fa παρουσίασε τον μεγαλύτερο ολικό βαθμό απόδοσης ο οποίος ανέρχεται στο 15.14%
- Το n-Pentane στον υποκρίσιμο ORC εμφανίζει μεγάλο βαθμό απόδοσης, συγκρίσιμο με τον κρίσιμο ORC.
- Συγκρίνοντας τα αποτελέσματα στους δύο υποκρίσιμους οργανικούς κύκλους, αυτός με οργανικό μέσο n-Pentane παρουσιάζει βαθμό απόδοσης 14.12% ενώ αυτός με οργανικό μέσο το R245fa, 10.31%
- Οι υπερ-κρίσιμοι κύκλοι αναμενόταν να έχουν μεγαλύτερους βαθμούς απόδοσης, αλλά η χαμηλή θερμοκρασία εξόδου από τους ηλιακούς συλλέκτες, η οποία προέκυψε από την διαδικασία βελτιστοποίησης του ηλιακού πάρκου, περιορίζει την επίδοση της εγκατάστασης.
- Συγκρίνοντας τα αποτελέσματα στους υπερκρίσιμους κύκλους, αυτός με εργαζόμενο μέσο το CO₂ παρουσιάζει καλύτερο βαθμό απόδοσης σε σύγκριση με το R245fa, με 13.23% έναντι 8.87%.
7 Βιβλιογραφία

8 Παράρτημα

Πίνακας 8.1 Ιδιότητες n-Pentane

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular formula</td>
<td>C_5H_{12}</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>72.15 g/mol</td>
</tr>
<tr>
<td>Chemical family</td>
<td>Paraffin series hydrocarbon</td>
</tr>
<tr>
<td>Appearance</td>
<td>Clear, colourless liquid</td>
</tr>
<tr>
<td>Physical State</td>
<td>Liquid at ambient temperature</td>
</tr>
<tr>
<td>Odour</td>
<td>Sweet petroleum odour</td>
</tr>
<tr>
<td>Melting point</td>
<td>-130 °C</td>
</tr>
<tr>
<td>Flash point</td>
<td>-40 °C</td>
</tr>
<tr>
<td>Boiling point</td>
<td>36 °C</td>
</tr>
<tr>
<td>Critical Temperature</td>
<td>197 °C</td>
</tr>
<tr>
<td>Auto ignition temperature</td>
<td>260 °C</td>
</tr>
<tr>
<td>Critical pressure</td>
<td>3.37 MPa</td>
</tr>
<tr>
<td>Density (@ 20 °C)</td>
<td>630 kg/m³</td>
</tr>
</tbody>
</table>
Πίνακας 8.2 Ιδιότητες R245fa

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular formula</td>
<td>C₃H₃F₅</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>134.03 g/mol</td>
</tr>
<tr>
<td>Chemical family</td>
<td>Hydrofluorocarbon</td>
</tr>
<tr>
<td>Appearance</td>
<td>Clear, colourless vapour</td>
</tr>
<tr>
<td>Physical State</td>
<td>Liquefied gas under pressure</td>
</tr>
<tr>
<td>Odour</td>
<td>Weak</td>
</tr>
<tr>
<td>Melting point</td>
<td>-103 °C</td>
</tr>
<tr>
<td>Flash point</td>
<td>Non-flammable</td>
</tr>
<tr>
<td>Boiling point</td>
<td>15.3 °C</td>
</tr>
<tr>
<td>Critical Temperature</td>
<td>134 °C</td>
</tr>
<tr>
<td>Auto ignition temperature</td>
<td>Non-flammable</td>
</tr>
<tr>
<td>Critical pressure</td>
<td>3.651 MPa</td>
</tr>
<tr>
<td>Density (@ 20 °C)</td>
<td>1339 kg/m³</td>
</tr>
</tbody>
</table>
Πίνακας 8.3 Ιδιότητες CO2

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidity (pKa1)</td>
<td>6.35</td>
</tr>
<tr>
<td>Acidity (pKa2)</td>
<td>10.33</td>
</tr>
<tr>
<td>Boiling Point - sublimation point</td>
<td>194.686</td>
</tr>
<tr>
<td>Critical density</td>
<td>10.63</td>
</tr>
<tr>
<td>Critical pressure</td>
<td>7.38</td>
</tr>
<tr>
<td>Critical temperature</td>
<td>304.13</td>
</tr>
<tr>
<td>Critical volume</td>
<td>94.12</td>
</tr>
<tr>
<td>Density</td>
<td>40.8</td>
</tr>
<tr>
<td>Density gas at 32°F/0°C 1 atm</td>
<td>44.9</td>
</tr>
<tr>
<td>Density liquid at -34.6 °F/-37°C, saturation pressure</td>
<td>25017</td>
</tr>
<tr>
<td>Density, solid at -109.3 °F/-78.5°C, 1 atm</td>
<td>35492</td>
</tr>
<tr>
<td>Flammable</td>
<td>no</td>
</tr>
<tr>
<td>Gas constant - R (individual)</td>
<td>188.92</td>
</tr>
<tr>
<td>Gibbs free energy of formation</td>
<td>-394.00</td>
</tr>
<tr>
<td>Heat (enthalpy) of combustion</td>
<td>0</td>
</tr>
<tr>
<td>Heat (enthalpy) of formation</td>
<td>-393.50</td>
</tr>
<tr>
<td>Heat (enthalpy) of fusion</td>
<td>9.02</td>
</tr>
<tr>
<td>Heat (enthalpy) of sublimation, at 180 K</td>
<td>28</td>
</tr>
<tr>
<td>Heat (enthalpy) of evaporation at 15°C</td>
<td>16.70</td>
</tr>
<tr>
<td>Heat (enthalpy) of evaporation at triple point</td>
<td>15.55</td>
</tr>
<tr>
<td>Specific heat capacity, Cp (isobaric)</td>
<td>37.35</td>
</tr>
<tr>
<td>Specific heat capacity, Cv (isochoric)</td>
<td>28.96</td>
</tr>
<tr>
<td>Ionization potential</td>
<td>13.77</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>44.0095</td>
</tr>
<tr>
<td>pH of saturated aqueous solution</td>
<td>3.7</td>
</tr>
<tr>
<td>Solubility in water</td>
<td>0.148</td>
</tr>
<tr>
<td>Sound velocity in gas</td>
<td>269</td>
</tr>
<tr>
<td>Specific Gravity (density relative to density of air)</td>
<td>1.53</td>
</tr>
<tr>
<td>Specific Heat Ratio - Cp/Cv</td>
<td>1.29</td>
</tr>
<tr>
<td>Specific Volume</td>
<td>0.0245</td>
</tr>
<tr>
<td>Standard molar entropy, S°</td>
<td>213.8</td>
</tr>
<tr>
<td>Sublimation Point</td>
<td>194.666</td>
</tr>
<tr>
<td>Surface tension at melting point</td>
<td>16.2</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>0.01063</td>
</tr>
<tr>
<td>Triple point pressure</td>
<td>0.580</td>
</tr>
<tr>
<td>Triple point temperature</td>
<td>216.59</td>
</tr>
<tr>
<td>Vapor (saturation) pressure</td>
<td>0.45</td>
</tr>
<tr>
<td>Viscosity, dynamic (absolute)</td>
<td>1.495</td>
</tr>
<tr>
<td>Viscosity, kinematic</td>
<td>0.834</td>
</tr>
</tbody>
</table>
Πίνακας 8.4 Ιδιότητες Therminol 66

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Clear, pale yellow liquid</td>
</tr>
<tr>
<td>Composition</td>
<td>Modified terphenyl</td>
</tr>
<tr>
<td>Maximum bulk temperature</td>
<td>345 °C</td>
</tr>
<tr>
<td>Maximum film temperature</td>
<td>375 °C</td>
</tr>
<tr>
<td>Normal boiling point</td>
<td>359 °C</td>
</tr>
<tr>
<td>Pumpability, at 300 mm2/s (cSt)</td>
<td>11 °C</td>
</tr>
<tr>
<td>Pumpability, at 2000 mm2/s (cSt)</td>
<td>−3 °C</td>
</tr>
<tr>
<td>Flash point, COC (ASTM D-92)</td>
<td>184 °C</td>
</tr>
<tr>
<td>Flash point, PMCC (ASTM D-93)</td>
<td>170 °C</td>
</tr>
<tr>
<td>Autoignition temperature (ASTM E-659)</td>
<td>374 °C</td>
</tr>
<tr>
<td>Autoignition temperature (DIN 51794)</td>
<td>399 °C</td>
</tr>
<tr>
<td>Pour point (ASTM D-97)</td>
<td>−32 °C</td>
</tr>
<tr>
<td>Coefficient of thermal expansion at 200°C</td>
<td>0.000819/°C</td>
</tr>
<tr>
<td>Total acidity (ASTM D-664)</td>
<td>< 0.2 mg KOH/g</td>
</tr>
<tr>
<td>Average molecular weight</td>
<td>252 g/mol</td>
</tr>
<tr>
<td>Pseudocritical temperature</td>
<td>569 °C</td>
</tr>
<tr>
<td>Pseudocritical pressure</td>
<td>24.3 bar</td>
</tr>
<tr>
<td>Pseudocritical density</td>
<td>317 kg/m3</td>
</tr>
<tr>
<td>Chlorine content, ppm (DIN 51577)</td>
<td>< 10 ppm</td>
</tr>
<tr>
<td>Copper corrosion (ASTM D-130)</td>
<td><= 1a</td>
</tr>
<tr>
<td>Moisture content, maximum (ASTM E-203)</td>
<td>150 ppm</td>
</tr>
<tr>
<td>Dielectric constant @ 23°C (ASTM D-924)</td>
<td>2.61</td>
</tr>
</tbody>
</table>

Physical Property Formulae

\[
\text{Density (kg/m}^3\text{)} = -0.614254 \times T\text{(°C)} - 0.000321 \times T^2\text{(°C)} + 1020.62
\]

\[
\text{Heat capacity (kJ/kg.K)} = 0.003313 \times T\text{(°C)} + 0.0000008970785 \times T^2\text{(°C)} + 1.496005
\]

\[
\text{Thermal Conductivity (W/m.K)} = -0.000333 \times T\text{(°C)} - 0.00000015 \times T^2\text{(°C)} + 0.118294
\]

\[
\text{Kinematic Viscosity (mm}^2\text{/s)} = e^{\left(\frac{586.375}{T\text{(°C)}+62.5} - 2.2399\right)}
\]

\[
\text{Vapour Pressure (kPa)} = e^{\left(\frac{-9094.51}{T\text{(°C)}+340} + 17.5371\right)}
\]

Εικόνα 8.1 Εξισώσεις υπολογισμού ιδιοτήτων Therminol 66