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Abstract

In this thesis, we focus on methods for detecting outliers in a multivariate setting. Outliers are also
referred to as abnormalities, discordants, deviants, or anomalies in the data mining and statistics
literature. It can be said that an outlier generally exhibits some abnormality or some kind of out
of the way behavior. Understanding the nature of outliers gives us a better insight into the data
generation process [2, 40]. Outlier detection is an integral part of the data analysis that sheds light

on objects that do not conform with the rest of the data.

After a brief Introduction, in Chapter 2 we illustrate some of the various methods that were
devised to deal with univariate samples. Moreover, we state the masking and swamping effect that,
as we will discuss, can be difficult to handle even in univariate samples. Finally, we apply these
methods to a normally distributed sample in order to demonstrate the masking effect and to compare

their results.

In the following chapters, we present different methods for multivariate data based on various
characteristics, which can be grouped into five big categories: Depth-based methods, Distance-based
methods, Density-based methods, methods based on Mahalanobis distance and Distribution-based
methods.

In Chapter 3, different notions of depth are presented and some of their corresponding detection
methods. Throughout the chapter, we discuss the notion of depth originated by Tukey that the
ISODEPTH and FDC algorithms were based on and the notion of Liu that led to the Modified Band

Depth which we will apply to multivariate samples.

In Chapter 4, we present outlier detection methods based on the distance between objects. More-
over, we present the first notion of outliers based on their distance, the DB outliers as well as the
one that is currently used based on the k nearest neighbor distance. Moreover, we present some of
the basic pruning methods that distance-based methods use in order to handle bigger datasets. In
addition, we present the definition of a reverse k-nearest neighbor by Hautamaki et al. Finally, we
apply the method that is used to find DB outliers, two methods computing k& nearest distances of

the objects along with the method based on Hautamaki’s definition.

In Chapter 5, density-based methods are listed, that take into account the local density of each
observation. We present the Local Outlier Factor (LOF) method, that is the basis of the best-known
density-based methods, along with a more robust extension of this notion known as the Robust
Kernel Outlier Factor (RKOF) method. In the same chapter we apply these methods and compare

their results.

In Chapter 6 we develop methods that are based on the Mahalanobis distance. The classical
Mahalanobis distance is presented as well as a more robust version of it. Their main difference is
that the first computes each observation’s distance based on the estimators of the mean and scatter
when all of the observations are taken into consideration while the second uses the the estimated
mean and scatter from a specific subset of observations. Apart from the x? quartile that is usually

used as a cutoff for these methods, we present Filzmoser’s extension, the adaptive quartile. Finally,



we test these methods and compare their results.

In Chapter 7, we present methods that detect outliers based on a distributional assumption.
Most of these methods are more efficient when normally distributed datasets are under examina-
tion. Moreover, we compare the methods that we present in this chapter with the help of package
“OutliersO3”.

Finally, in Chapters 8 and 9 we apply all these methods to the humus and dat datasets respectively.
Testing these methods on different datasets gives us the opportunity to compare them and to build

a more solid opinion about outlier detection, given in Chapter 10.



Resumen

En este TFM, nos centramos en el estudio de outliers en un marco multivariante. A los outliers
también se les denomina anormalidades, discordancias, desviaciones o anomalias en Mineria de Datos
y otra literarura estadistica. Puede decirse que un outlier exhibe alguna anormalidad o tipo de
comportamiento diferente al resto. Comprender la naturaleza de los outliers nos ayuda a comprender
el proceso de generacion de los datos. La deteccion de outliers es asi una parte integral del analisis
de datos que nos ayuda a identificar aquellos objetos que no estdn en consonancia con el resto de los
datos.

Tras una breve Introduccién, en el Capitulo 2 ilustramos algunos de los métodos disenados para
tratar con muestras univariantes. Introducimos ademéds los problemas de enmascaramiento y sat-
uracion que, como discutiremos, pueden ser dificil de solventar incluso en muestras univariantes.
Finalmente, aplicamos estos datos a una muestra normalmente distribuida para dirigir el efecto de

enmascaramiento y comparar los resultados que se obtienen.

En los siguientes capitulos, se presentan diferentes métodos basados en caracteristicas multi-
variantes, y que pueden agruparse en cinco grandes categorias: métdos basados en la profundidad,
métodos basados en distancias, métodos basados en densidad, métodos basados en la distancia de

Mahalanobis, y métodos basados en la distribucion.

En el Capitulo 3, se presentan diferentes definiciones de profundidad y sus correspondientes
métodos de deteccion. A lo largo del capitulo, se estudian la nociéon de profundidad, debida original-
mente a Tukey, y en la que se basan los algoritmos ISODEPTH y FDC, asi como la nocién de Liu,
que condujo al concepto de profundidad de banda modificada, técnica que aplicaremos a muestras

multivariantes.

En el Capitulo 4, se presentan métodos de deteccién de outliers basados en la distancia entre
objetos. Ademas, se presenta la primera nocién de outliers basada en su distancia, los DB outliers,
asi como la que se usa actualmente, basada en la distancia a los k-vecinos mas cercanos. Se presentan,
ademas, algunos de los métodos de poda basicos que utilizan los métodos basados en distancias para
manejar conjuntos de datos mas grandes. Se incluye también la definicién de inverso de k-vecinos
mas cercanos debida a Hautamaki y otros. Para finalizar, se aplica el métodos para encontrar DB
outliers, dos métodos para calcular las k distancias mas cercanas de los objetos, junto con método

basado en la definicién de Hautamaki.

En el Capitulo 5, se estudian los métodos basados en la densidad, que tienen en cuenta la densidad
local de cada observacion. Presentamos el método Local Outlier Factor (LOF), que es la base de los
métodos mas conocidos basados en la densidad, junto con una extensién mas robusta de esta nocién,
definida como método Robust Kernel Outlier Factor (RKOF). En el mismo capitulo se aplican estos
métodos y se comparan sus resultados.

En el Capitulo 6 se desarrollan métodos basados en la distancia de Mahalanobis. Se trata la
distancia de Mahalanobis clasica, asi como una versién mas robusta de ella. Su principal diferencia

es que, la primera calcula la distancia de cada observacion basandose en las estimaciones de la media



y la dispersién que se obtienen considerando todas las observaciones, mientras que la segunda utiliza
las estimaciones de la media y dispersiéon basadas en un subconjunto especifico de observaciones.
Aparte de cuantiles x?, que son usualmente utilizados como punto de corte en estos métodos, se
presenta la extension de Filzmoser, denominada cuantil adaptativo. Finalmente, se aplican estos

métodos y se comparan sus resultados.

En el Capitulo 7, se presentan métodos que detectan outliers basados en una hipdtesis distribu-
cional. La razén es que, la mayoria de estos métodos son mas eficientes cuando los datos bajo
consideracién se distribuyen normalmente. Ademas, los métodos presentados en este capitulo se

comparan con la ayuda del paquete OutliersO3.

Para finalizar, en los Capitulos 8 y 9, se aplican todos estos métodos a los conjuntos de datos
humus y dat, respectivamente. Contrastar estos métodos sobre diferentes conjuntos de datos nos da
la oportunidad de compararlos y construir una opiniéon mas sélida sobre la deteccién de outliers, la

cual se recoge en el Capitulo 10.
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1 Introduction

Over the years, many definitions have been made of outliers. Hawkins defines an outlier as “an
observation which deviates so much from the other observations as to arouse suspicions that it was
generated by a different mechanism”.[26]. Barnett and Lewis define an outlier in a set of data as “an
observation (or subset of observations) which appears to be inconsistent with the remainder of that
set of data” [4]. Outliers are also referred to as abnormalities, discordants, deviants, or anomalies in

the data mining and statistics literature [2].

So, an outlier generally exhibits some abnormality or some kind of out of the way behavior.
More specifically, the creation of an outlier is because of unusual behaviour of the generating process
underlying a given dataset. Understanding of the nature of the outliers gives us a better insight into

the data generation process [40].

Outlier detection can be useful in many applications [38] such:

e Medical Diagnosis: In many medical applications the data is collected from a variety of

devices, unusual patterns of which indicate disease conditions.

e Credit Card Fraud: Suppose that the number and password of one’s card is compromised.
This could lead to unreasonable expenses from the least likely places coming from this card i.e.
an unusual signal that can be detected through the transaction data that had been collected

over time by the bank.

e Sensor Networks: A sensor network is a communication system that monitors conditions like
humidity, pressure, vibrations, intensity of sound, level of pollution etc. in different locations.

Outlier detection is employed these networks in order to locate strange or false indices.

Throughout this thesis, we will present a variety of outlier detection methods that declare objects
that are not part of the rest of the data generated from an underlying process (denoted as normal
data, indicating that is the outlier-free subset of the data). For that purpose, we will make use of
packages [54, 35, 20, 18, 59| that are implemented in the statistical environment of R and apply these
methods on three datasets: Wood specific gravity, humus and dat in order to observe similarities
and differences between them.

Some basic ideas will be introduced in Chapter 2, referring to univariate data. However, this
thesis concentrates on outlier detection in multivariate data, for which a variety of different concepts

and methods — presented from Chapter 3 onwards — are available [23].



2 Univariate Case

To understand the nature of an outlier and its definitions that were given above, one must be familiar
with outlier detection in a univariate dataset.
Outlier detection methods can be categorized into many groups. The main two are: Tests of discor-

dancy (formal tests) and outlier labeling methods (informal tests) [4, 51].

Most formal tests use test statistics for hypothesis testing. They are usually based on assuming
some well-behaved distribution for the dataset, and for the extreme values a test is carried out on
whether or not it deviates from the assumed distribution declaring it outlier or not. Some tests are
for a single outlier and others for more than one. Selection of these tests mainly depends on the
number of outliers, and type of data distribution [51].

Many discordancy tests have been built (Dixon test, Shapiro-Wilk etc.) mostly in the years when
computer analysis was not at its peak and most of them are applicable to distributions such as
Normal, Exponential and Gamma.

While formal tests are quite efficient when examining datasets modeled by known distributions
(provided that tests based on these distributions are used), most distributions of real-world data may
be unknown or may not follow specific distributions such as the ones we gave above. In such cases,
data points may be incorrectly reported as outliers because of poor fit to the erroneous assumptions of
the model. Another disadvantage is that discordancy tests are very sensitive to masking or swamping

problems [51].

Masking Effect (an outlier is undetected as such): Masking can occur when a group of
outlying points contaminates the dataset in such a way that the mean and standard deviation
are affected by it resulting in misleading estimate. Thus, the distance of the outlying point
from the mean can be small. Accordingly, an outlier can mask other outliers which can be
detected only after omitting the first one.

Swamping Effect (a non-outlier is classified as an outlier): Swamping can occur when
an observation can be declared as outlier only in the presence of an additional outlying object.
That can be caused also from a contamination of the dataset in which the estimate of mean

and standard deviation can be defined far away from uncontaminated objects [1].

Informal tests are based on a criterion formed by various estimates of scale and location of the
underlying dataset and declare the observations that do not comply with this criterion as outliers.
The main difference between formal and informal tests is that the latter ones do not require test
statistics based on a certain distribution or a hypothesis to determine whether an extreme value is
an outlier or not according to this distribution.

We will now present some of the methods that can be used for outlier detection in the univariate

case.
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Figure 1: Histograms of Normal and LogNormal Distibution

The Z-score test for outliers is probably one of the most common tools for a rough evaluation
of the discrepancies that may exist in the underlying dataset. Suppose we examine one-dimensional
data observations, denoted by z1, xs, 3, ..7, with mean y and standard deviation o.

The Z-value for the data point x; is denoted as z; and is defined as follows:

|$i - #|

2= ———

g

The Z-value test computes the number of standard deviations by which the data varies from
the mean. Assuming that the data is generated from the normal distribution and having accurately
estimated the mean and standard deviation, one can have a very good picture of the outliers in the
data defining them as the observations which exceed the rule: z; > 3. We note that for efficient
estimations of mean and standard deviation, datasets with few observations are not recommended.

Although this method does not need specific distribution assumptions, it may not work well in
distributions with high skewness like the LogNormal Distribution (shown in Figure 1) [2].

Quite often, masking may occur when this method is applied, mainly due to the effect of outliers
on mean and standard deviation estimators. An example is given next. We will refer to this dataset
as contaminated normal dataset.

Application

We generate observations from the Normal Distribution with p = 10 and o = 2 and we replace
randomly the last two observations of that sample with the extreme values 18 and 20 which are

obviously far enough from the mean with respect to its standard variation.

11



normal_data<-rnorm(30,10,2)
normal_data_con<-c(normal_data[-(1:2)],18,20)

sd_normal_data_con<-abs(normal_data_con-mean(normal_data_con))/sd(normal_data_con)

ID T; 2 ID T; 2 2} 2

1 1229 048 || 16 || 888 0.75 || 0.73 0.79
2 727 133 || 17 || 12.561 0.56 || 1.52 0.83
3 11.33 0.13 || 18 || 12.04 0.39 || 0.31 0.62
4 111394 107 19| 7.61 1.21 || 1.48 1.36
5 || 12.57 0.58 || 20 || 10.07 0.32 || 0.86 0.26
6 1222 045 || 21 || 942 0.56 || 0.70 0.55
7 7.84 1.13 | 22 || 10.72 0.09 || 1.26 0.03
8 9.75 044 23 || 886 0.76 || 0.40 0.8
9 || 988 0.39 | 24 || 11.39 0.15 || 0.35 0.33
10 || 9.98 0.36 || 25 | 10.09 0.31 || 0.30 0.25
11 || 10.86 0.04 || 26 || 9.78 0.43 || 0.09 0.39
12 81 1.03 | 27 || 11.98 0.37 || 1.14 0.6
13 || 7.71 1.17 | 28 || 10.62 0.12 || 1.32 0.01
14 || 12.03 0.38 || 29 18 2.54 || 0.62 3.3
15 || 11.13 0.06 || 30 20 3.26 || 0.22

Table 1: z-values for the contaminated normal sample before and after omitting observation 30

As we can see from Table 1, only after omitting observation 30, the z-value test (denoted as z;)
manages to declare observation 29 as outlier. That is, because observation 30 masks observation
29 and because of the sensitivity of z-score to the presence of more than one outlier, the latter

observation fails to be detected.

2.2 Generalized extreme Studentized deviate test

The generalized extreme Studentized deviate (ESD) test [42] is a formal test used to detect one or
more outliers in a univariate dataset x,xo, ...x, that follows an approximately normal distribution

and is an extension of Grubbs test [24].
Grubbs test is defined for the hypothesis:
Hy,: There are no outliers in the data set

H;: There is exactly one outlier in the data set

12



In this test, an observation z; is declared as outlier when

maz;|x; — T| - thap-(n—1)
s Jo—2+£,,)n

where 1, is the 100 p percentage point from ¢ distribution with v degrees of freedom and p = 1 — %

R; =

for a significance level o (T and s denotes the sample mean and standard deviation respectively).

With the use of the modified version of the extreme studentized deviate, one can test for up to a
prespecified number r of outliers.

Given the upper bound, r (for r = 1 the modified method overlaps with the classical), the
generalized ESD test essentially performs r separate ESD tests. The generalized ESD test is defined
for the hypothesis:

Hy: There are no outliers in the data set

H;: There are up to r outliers in the data set

The test-statistic for one outlier is defined as R; = R;. In addition, we remove the observation
that maximizes |z; — Z| and we recompute the above statistic, denoted now as Ry, with n — 1
observations. We repeat this process until r observations have been removed. This results in the
r test statistics Ry, Rs, ..., R.. Corresponding to the r test statistics, we compute the following r
critical values .

A= Bl , )
\/(n —i—1+2, Yn—i+ 1)

1 =1,2,...,r. Finally, the largest ¢ that satisfies R; > \; determines the number of outliers as they

are detected in the first ¢ steps. Rosner showed that this approximation is very accurate when n > 25
42].

Application

Applying this method to the contaminated normal dataset previously introduced and setting
r = 3 we get the results above.

We note that we used rosner.test function from R package EnvStats

> rosnerTest(normal_data_con,3)

$statistic

R.1 R.2 R.3
3.257076 3.301117 2.026632
$alpha

[1] 0.05

$crit.value

lambda.1l lambda.2 lambda.3
2.908473 2.892705 2.876209
$all.stats

i Mean.i SD.1i Value Obs.Num R.i+1 lambda.i+1 Outlier

13



1 0 10.96163 2.774995 20.00000 30 3.257076  2.908473 TRUE
2 1 10.64996 2.226531 18.00000 29 3.301117  2.892705 TRUE
3 2 10.38746 1.751780 13.93767 4 2.026632 2.876209 FALSE

Given the above results, we observe that the generalized ESD test is more robust to outliers. The
disadvantage is that like any formal test, the generalized ESD test assumes that the data is modeled

by a particular distribution, in this case the normal distribution.

2.3 Tukey’s Method (Boxplot)

Tukey’s method [56], is an informal test for outliers that with the use of the median, lower quartile,
upper quartile, lower extreme, and upper extreme of a data set, constructs the boxplot. Its original
characteristics were the hinges and the Hspread which are similar to @1, 3 and IQR that are
defined below. It is considered to be less sensitive to extreme values of the data than the previous
methods because instead of the sample mean and the standard deviation which can be affected by

outliers, it uses quartiles on the simple assumption that outliers are the minority of the data.

A classical Boxplot consists of:

e The IQR (Inter Quartile Range) that is the distance between the lower (Q1) and upper (()3)
quartiles which are the medians of the lower and upper half of the dataset respectively. A box

is drawn to span IQ)QR and the median is drawn inside this box.

e The whiskers that extend from the edges of the box to the maximum and minimum data point
(adjacent values) inside the so-called inner fences. Inner fences are located at a distance
1.5 x IQR below Q1 above (3. Basically, the upper whisker is the minimum point that is
larger than Q1 — 1.5 x IQR and the upper whisker is the maximum point that is smaller than
R3+1.3x IQR

e Outer fences are located at a distance 3 x IQR below Q1 and above Q3.

Any value plotted outside the whiskers that is between the inner and outer fences is a possible
outlier. There is no statistical basis for the reason that Tukey uses 1.5 and 3 regarding the IQR to
make inner and outer fences [51].

Application

By applying this method to contaminated normal dataset, we get that Q1 = 9.42, Q3 = 12.04,
IQR = 2.62, median is 10.67 (which is the mean of observations 22, 28), lower and upper whisker
is 7.27 and 13.94 respectively. Finally, inner fences expresses the interval [5.49,15.97] and outer
fences [1.56,19.9]. In Figure 2, boxplot detects observations 29, 30 as they lie outside the computed

whiskers.

14
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Figure 2: Boxplot of the contaminated normal sample

While the previous method is limited to unimodal and reasonably symmetric data such as the
normal distribution, Tukey’s method is applicable to any other data since it makes no distributional
assumptions and it does not depend on a mean or standard deviation. Due to the fact that this
method is based on robust measures such as lower and upper quartiles and the IQR without con-
sidering the skewness of the data, its disadvantage is that more skewness to the data may result in
more wrongly defined outliers. That is why, in many cases the classical boxplot is used more as a

graphical tool to detect skewness in an underlying dataset than a test for detecting outliers.
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3 Depth-Based Methods

3.1 Introduction

Depth-based methods are integral to multivariate extreme value methods. Extreme value methods
usually (especially when they are applied to univariate data) try to model the underlying distribution
explicitly. Although this is not the case with depth-based methods, they were built to detect the

same kind of outliers [2].

Depth 2
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. . . B A
o Depth 3 Depth 4

Figure 3: Depth-Based Outlier Detection [2]

3.2 Aim of depth-based methods

Johnson et al. [28] state that even though over one hundred discordancy/outlier tests have been

developed [4], they are not suitable for proper outlier detection mainly for two reasons:

e Most of them are univariate so they are unsuitable for multidimensional data sets.

e All of them are distribution-based, which in many cases does not suit outlier analysis since in
most data sets we have no knowledge about the exact distribution and one has to proceed with

extensive testing in order to find a distribution that fits the attribute.

To avoid the aforementioned problems of distribution fitting and restriction to univariate data

sets, depth-based approaches have been developed.

16



3.3 Analytical approach of depth-based methods

In depth-based methods, convex hull analysis is used in order to find outliers. The idea is shown in
Figure 3 and Figure 4 where points in the outer boundaries of the data lie at the corners of the convex
hull i.e. a polygon with vertices, the points in the shallow layers of the dataset. Accordingly, such
points are considered to be extreme values and more likely to be outliers. A depth-based algorithm
proceeds in an iterative fashion. In the k-th iteration, every point at the vertices of the convex hull
is omitted from the initial dataset and assigned a depth of k. The algorithm keeps repeating this
process until the dataset is empty. Points with depth at most r are declared as outliers [2]. This

robust notion of depth, called depth contour was originally introduced by Tukey [56].

First, let us consider the univariate case. Suppose, a one-dimensional data set P = {p1, p2, p3, ..., Pn }

Definition 3.1. The depth of a point z relative to the data set P, is the minimum of the number of
data points to the left of z, and the number of data points to the right of z:

depthy(z; P) = min(#{i - pi < 2}, #{i,pi > 2})

Remark. In the univariate case, rank [57, 56] and depth are related. Moreover, extreme values
are considered to be the points of depth one as they lie far away from the rest of the dataset. In
addition, second lowest and second highest values based on rank assigned with depth two, and so
on. Consevely, the median is the point with the highest depth based on Definition 3.1 [49].

ﬂ-_
N—
5 o+
(\I.E..
tlr_

I 1 I I I

4 -2 0 2 4

x1

Figure 4: Example of depth contours. The deepest point in the sample is marked by a cross [32]
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Considering the multivariate case we present the following definition [57, 49].

Definition 3.2. The half-space depth of a point z € R? relative to a d-dimensional data cloud
P = {p1,p2,...pn} is defined as the smallest depth of z in any one-dimensional projection of the

data set.

Remark. The half-space depth is affine invariant because depth is invariant to linear trandormations

of the data p [13, 14] making it independent of the underlying coordinate system.

Given these two definitions we define a set P, as a contour of depth k of a data set P C R? if its

interior points have depth at least k, and the boundary points have depth equal to k:
Py = {p € R?|depth(p, P) > k}

Remark. P, is the intersection of all half-spaces that contain at least n + 1 — k points of the cloud,

hence it is convex [49].

The maximal depth depends on the shape of P meaning that the the computational complexity
of depth-based methods that map the underlying dataset into convex hulls increases exponentially
with dimensionality. That is because, a convex-hull in a d-dimensional space consists of at least 2¢
points so by moving to higher dimension the number of points lying at the vertices of the convex-hull
is also increased [2]. As a result these heuristic and non-probabilistic methods, due to their high

computational cost can only be trustworthy in low dimensional data sets.

3.4 Proposed depth-based methods

As we noted above, these methods do not scale up well because of their computational complexity.
Py is the intersection of a collection of half-planes, of which it can be assumed that their boundary
line passes through two data points. Each edge of P is thus part of a line through two data points,
and hence each vertex of the desired contour lies on the intersection of two such lines. So, naively
thinking, we can consider all lines through two data points, and compute all their intersection points,
of which there are O(n*). At each of these intersection points we then compute the half-space depth
by means of an algorithm of Rousseeuw and Ruts [47]. The intersection points with depth equal to
k are then stored, denoting their number by N;. The depth contour P is the convex-hull consisting
of these N points. The computation of the depth in all of the O(n?) points brings the total time
complexity to O(n’logn) [49].

Many algorithms have been proposed in order to reduce the high computational cost.

Ruts and Rousseeuw develop an algorithm called ISODEPTH, which computes 2-D depth con-
tours [43]. The key idea of their algorithm is based on dividers and for n < 1000 the time of
the proposed algorithm behaves as a multiple of O(n?logn). Although the ISODEPTH algorithm
managed to reduce the computational cost, it still remains high. Furthermore, ISODEPTH relies on

the non-existence of collinear points and removing all of them can be very time consuming.
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Johnson et al [28] propose the FDC algorithm which is an extension of ISODEPTH. FDC performs
better than ISODEPTH when n is not too small and is robust against collinear points. The main
difference between the two lies in the fact that ISODEPTH computes the dividers of all n data points
while FDC restricts the computation to a selected, much smaller, subset of points, thanks to the

construction of the appropriate convex hulls.

Definition 3.3. Given a point cloud P consisting of n points, a line L is an e-divider of P if there

are e points in P to the left of L, and (n — e) points in P to the right of L.

Remark. In the spirit of finding outliers, whenever e < (n — e), we say that the e points are to the

“outside” of L and the remaining points on the “inside” of L.

Definition 3.4. (a) We call the “inside region” and the “outside region”, denoted as I R(L) and
OR(L) respectively, the two subregions into which the line L divides the convex hull of P.

(b) Given a collection of e-dividers, we refer to the intersection of all their inside regions (i.e.,
NIR(L)) the e-intersected inside region.

The only interesting part of an e-divider is a finite segment of it. The line segments of the e-
dividers construct the inside region of a given convex hull. Suppose that the convex hull (denoted as

G3) of the entire point cloud of a given data set P is a polygon with an arbitrary number of vertices.

FDC algorithm:

e Returns this polygon as the zero-th depth contour.

e Computes the convex hull (denoted as H; suppose a polygon) of the remaining points in the

data cloud (i.e., all points except the ones on the outer boundaries)
e Computes all the one-dividers in the initial convex hull in the first iteration and

— If the convex hull that is constructed from the line segment of a one-divider and the rest
of the edges of the initial polygon G contains the polygon H, then the intersection of these

convex hulls gives the contour of depth equal to 1.

— Otherwise, the algorithm expands that convex hull in order for the polygon H to be inside
it.

e The algorithm moves to the next iteration (computing the two-dividers) until it finds all £ first

depth contours.
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3.5 Modified Band Depth (MBD)

The modified band depth measure introduced by Lopez-Pintado [33] also assigns a value indicating
how “deep” an observation is inside the sample but in a different notion than the one discussed
above. It is an extension of Liu’s simplicial depth function [31] which measures each observation’s
depth by the number of convex hulls (made of a given number of points i.e. vertices) that contain it.

In order to visualize the idea, suppose a dataset P = (py, P2, .-, Pn), Where p; € R% fori = 1,...,n.
Now, consider the triangle generated by three arbitrary points p;, p;, pr. The idea of simplicial depth
function lies in the observation that a point’s depth depends on how many triangles of the (g)
possible combinations this point falls inside. Normally, points of high depth tend to be inside a
large proportion of triangles while points in the boundaries are not likely to fall in many triangles.
Therefore, high values of the simplicial function for a point indicate that it is deep in the data cloud,

while low values indicate the opposite.

In that context modified band depth is defined as follows

Definition 3.5. Let P = (py1,p2, ..., Pn), where p; € R? a d-dimensional point. The modified band
depth of a point p is

vepm) =53 (5) X ZOnintpn (0.pa (0} < p(6) < mas{pa (0.9 (B}

1<i1<ia<n

where Z(-) is the indicator function and p(k) is the k-th coordinate of p.

Based on Definition 3.5. the depth of an object p can be interpreted as the mean, over all pairs of
observations, of the proportions of coordinates whose values are between the minimum and maximum
of two values of points from the dataset.

MBD can be computed over all combinations of objects higher than two but it is shown that
choosing to test each object’s depth with respect to each pair of observations, we can have efficient
results and keep the computational complexity low at the same time. Moreover, MBD computational

cost is shown to be O(n? - d) which is much smaller than the aforementioned methods [33].
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3.6 Applying outlier detection using depth-based method to wood spe-
cific gravity data

To motivate the Least Median Squares method, Rousseeuw [43] contaminated a rather well behaved
real data set by replacing four observations. The raw data came from Draper and Smith [15] and were
used to determine the influence of anatomical factors on wood specific gravity, with five explanatory
variables and an intercept. Observations 4, 6, 8, and 19 are identified using LMS. These observations
do not appear to be obvious outliers from the Least Squares analysis [12].

More specifically, we go on applying outlier detection using the depth based method based on
the modified band depth measure implemented in the R-package ”OutlierDetection”. We note that
every function in this package also provides for bivariate data scatterplots showing the outlying

observations.

The code is as follows:

> depthout (my_data, rnames = FALSE, cutoff = 0.25, boottimes = 100)

The arguments of the above command are:

The Wood Gravity data

A logical value indicating whether the data set has rownames (default value is False)

A percentile threshold used for depth; basically after computing the MBD of all the observations
it declares that percentage of observations with the lowest MBD values (default is 0.05).

A number of bootstrap samples to find the cutoff (default is 100 samples) based on which,
the outlyingness of each object is computed in a sense of how frequent this observation was

detected as outlier.

Using this command we get the following results

$ Outlier Observations”

x1 x2 x3 x4 x5 y
4 0.437 0.1591 0.446 0.423 0.992 0.450
6 0.444 0.1628 0.429 0.411 0.984 0.431
8 0.413 0.1673 0.418 0.430 0.978 0.423
19 0.417 0.1687 0.405 0.415 0.981 0.401

$ Location of Outlier"
[11] 4 6 8 19
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$ Outlier Probability"
[1] 0.82 0.97 1.00 1.00

We also apply the original function implemented in the R-package ”"depthTools”. The code is

below

> MBD(my_data)
$ordering
[1] 14 156 516 21318 317 1 911 7 121020 4 6 8 19

$MBD
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
0.4333333 0.477193 0.4491228 0.2964912 0.4982456 0.2596491 0.4070175
[,8] [,9] [,10] [,11] [,12] [,13] [,14]
0.2315789 0.4333333 0.3859649 0.4122807 0.4035088 0.4631579 0.5017544
[,15] [,16] [,17] [,18] [,19] [,20]

0.5026316 0.4780702 0.4403509 0.4561404 0.1614035 0.3561404

As we see from the results, the aforementioned command correctly detects the outliers that inten-
tionally were included. Moreover the results of the two functions overlap completely as they both
have the same results. The advantage of the second functions is that we can have an ordering of
the observations i.e. a further insight about which point based on that method is further away from
the others. The first one, does not give any order even though it prints the same results but it is
able to return a proportion of times an object is detected as outlier after bootsrtaping. Applying the
command for different cutoffs we observe that depthout’s sensitivity increases with higher cutoff
values. Furthermore, the highest “outlyingness” of these observations are obtained by giving the
value 0.24 to the cutoff. The same results but with lower “outlyingness”, we obtain by giving values
for the cutoff from the space [0.23,0,27].

3.7 Conclusions

Depth-based methods are different from the other extreme value methods. They are able to de-
tect outliers from the outer boundaries of a data space without assuming any particular statistical
distribution of the underlying data nor requiring the existence of a metric distance function (as
distance-based methods do). Nevertheless, except for MBD they do not scale up well [2] in higher
dimensions and based on their structure they are unable to detect isolated points in the inside regions
of the convex-hull as they are suited for extreme value detection. In the underlying data, deapthout
was able to detect the true outliers of the dataset letting us assume that the nature of outlierness of

these observations is rather extreme than local.
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4 Distance-Based Methods

4.1 Introduction

Distance-based methods are a popular class of outlier-detection algorithms across a wide variety of
data domains, and define outlier scores on the basis of nearest neighbor distances. Distance-based
outlier analysis methods work with the assumption that the k-nearest neighbor distances of outlier

data points are much larger than normal data points. [2]

Knorr and Ng [29] propose the following distance-based definition for outliers that is consistent

with Hawkin’s definition and generalizes the one that Barnett and Lewis proposed :

Definition 4.1. An object O in a data set T"is a DB(p, D) outlier (DB stands for Distance Based),

if at least fraction p of the objects in T lies greater than distance D from O.

In simple terms, in a data set T" we define an object O as an outlier if no more than a certain
number of objects (denoted as k) are at a distance less than or equal to D from O. Defining that
fraction as % (where N is the number of data points in T') and giving a rather small value for k,
this fraction has to be close to unity in order to give proper results. Most distance-based algorithms

therefore work with the parameter k, because it is simpler, and more intuitive to understand.

Based on the notion of the above definition, many methods have been proposed for outlier detec-
tion, some of which will be discussed in this section. Moreover, we present Ramaswamy’s idea for

dealing with high dimensional data.

4.2 Aim of the distance-based methods

Like depth-based methods, distance-based methods do not need any statistical assumption about the
underlying data. Therefore, there are suitable for situations where the observed distribution does

not fit any standard distribution.

More importantly, they are well defined for d-dimensional data sets for any value of d. Unlike
the depth-based methods (except for MDB), DB-outliers are not restricted computationally to small
values of d. While depth-based methods rely on the computation of layers in the data space, outliers
detected by distance-based methods go beyond the data space and rely on the computation of dis-
tance values based on a metric distance function (Manhattan, Euclidean etc.). Computing all these
distances for all of the objects in their k£ nearest neighborhoods can be computationally expensive.
In the next chapter we will scratch the surface of how to deal with high dimensional data by a brief

presentation of Ramaswamy’s method.
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4.3 Analytical approach of the distance-based methods

Ramaswamy et al. [39] proposed a slightly different definition for an outlier based on the fact that

the main interest of a user is the identification of the top n outliers.

Definition 4.2. Given an input data set with NV points, parameters n and k and denoting as D*(x)
the distance of point  from its k-th nearest neighbor, a point x is a D¥ outlier, if there are no more
than n — 1 other points 2’ such that Dy(z') > Dy(z).

In other words, if we rank points according to the D*(x) distance, the top n points in this ranking
are considered to be outliers. Based on this definition, the user is no longer required to specify the
distance D (as in the previous one) to define the neighborhood of a point. Instead, the only thing

that has to be specified is the number of outliers of interest.

The simplest approach to the problem uses a nested loop approach. In the nested loop approach,
two arrays are maintained— the first array contains the candidates for outlier data points, and the
other array contains the points to which these candidates are compared in distance based processing.
Once more than k data points have been identified to lie within a distance of D* from a point in the
first array, that point is automatically marked as a non-outlier. Subsequently, no more time is spent
on distance computations involving that data point. Such an approach may require O(N?) distance
computations in the worst case. Since each distance computation may require O(p) time, it follows
that the overall running time is O(N?-p). Therefore, pruning methods are required in order to speed

up the distance computations|2, 39]

The approximation of a set of points using their minimum bounding rectangle (MBR), is a key
tool for these pruning methods. Upper and lower bounds on D¥(x) for points in each MBR are then
computed. These bounds provide useful information enabling us to prune entire MBRs that cannot

possibly contain outliers.

Most researchers use as distance metric the Euclidean distance (Ramaswamy et al. used the
squared Euclidean distance). Let us denote a point x in a d-dimensional space by x = (21, z, ..., 24)
and a d-dimensional rectangle R by the two endpoints of its major diagonal, r = (ry, 79, ...,74) and
r" = (r},7h,...,r}) such that r; < r} for i = 1,2,....d. We now give the following definitions that
describe the minimum and maximum distances between a point and a rectangle and between two

rectangles.

Definition 4.3. The minimum distance between a point x and a rectangle R (denoted by MINDIST (z,R))
[48] is defined as MINDIST(z,R)=3"7_, 62

)

where ¢; is defined as

T — X ,ifﬁL‘i<T'i
Jifrl <

0 , otherwise
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Definition 4.4. The maximum distance between a point x ad a rectangle R (denoted by MAXDIST (z,R))
is defined as MAXDIST(m,R):Zf:1 62

1

where 9; is defined as

. ri+r]

ry—xy o, if oy < S
5._
=

xr;—1; , otherwise

Definition 4.5. The minimum distance between two rectangles R, S (denoted by MINDIST(R,S))
is defined as MINDIST(R,S)=>_"_, 62, where ¢; is defined as

=1 "1

/

ri—s, L if s <y

— / s /
52— S — 1, ,lfT,L-<SZ‘
0 , otherwise

Definition 4.6. The maximum distance between two rectangles R,S (denoted by MAXDIST(R, S))
is defined as MAXDIST(R, S)=>_"_, 62, where &; = maz{|s; — r|, |7} — si|}.

=1 "1

Every point in R is at distance of at least MINDIST(z, R) from x and no point in R is at a
distance that exceeds MAXDIST (z, R) from x. Similarly every point in R is at a distance of at least
MINDIST(R, S) from every point in S (S is denoted similarly by the two endpoints s and s') and
no point in R is at a distance that exceeds MAXDIST(R, S) from every point in S (and vice versa)
39].
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Figure 5: Example of minimum bounded rectangles and their corresponding R-tree: A set of the
MBRs of some data geometric objects (not shown). These MBRs are D, E, F, G, H, I, J, K, L,
M, and N, which will be stored at the leaf level of the R-tree. The same figure demonstrates the
three MBRs (A, B, and C) that organize the aforementioned rectangles into an internal node of the
R-tree.[306]

4.3.1 Index-based approach

The aforementioned bounds can be used in conjunction with index structures such as the R-tree [6] for
estimating the k-nearest neighbor distance of data points. Of course any other spatial index structure
can be used. R-tree (an example is given in Figure 5) is preferred because it is an index structure
in which nearby objects are grouped and represented in rectangles in a way that no intersections
between the rectangles and their content objects can be made. So an R-tree uses minimum bounding
rectangles in order to represent the data at the nodes. In order to determine the outliers in the data
set, the points are processed one by one in order to determine their k-nearest neighbor distances.
The highest n such distances are maintained dynamically over the course of the algorithm. For the
efficient estimation of the D*(z) a pruning method can be applied: Looking in a arbitrary subset of
the input objects D*(z) for x is computed . If the aforementioned value is lower than the minimum
distance of a MBR then none of the points in that rectangle can be defined as k-neighbors of x. Such
subtrees of the R-tree can be completely pruned from consideration.

In addition, since we are interested in the top n outliers further pruning can be made in the
computation of D*(p). In each step of this index-based algorithm the top n outliers can be sorted
and the minimum distance among these outliers can be computed. If during the computation of
D¥(z) of a point & we find that its value is lower than the minimum distance of the top n outliers

then point z cannot possibly be an outlier.[2, 39, 29].
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Partition-Based speed-up: Since we are interested in detecting the top n outliers and
typically the value of n is small, unnecessary computations of distances D* of points cannot
be avoided in spite of the aforementioned pruning methods.

The key idea to this pruning method (it is more of a preprocessing step) is to cluster the data
into partitions and compute the lower and upper bounds on D for points in each partition. If
the upper bound of this partition is lower than the minimum distance of the top n outliers that
are provided in each step, then the whole partition can be avoided in further computations.
An approximation of this minimum distance can be obtained by sorting a certain number of

lower bounds of partitions that consist of at least n objects[2, 29, 39|

An extension to Ramaswamy’s work is the proposed method of Hautamaki et al. [25]. As we
discussed above, the algorithm needs a specific number of outliers as an input and that in most cases
is unknown. For this extension, two different variants are considered: mean of k-nearest neighbor
(kNN) distances (MeanDIST) and maximum of kNN distances (KDIST). Vectors with large average
ENN distance are all marked as outliers. When scanning the ordered list from smaller to larger
distances, we check if the difference between adjacent distances is larger than a given threshold. We

then define vectors beyond the cut point as outliers. We define the threshold as:
T = maac(Ll — Li—l) . t,

where L; is the KDIST or the MeanDIST of the i vector and t € (0, 1) is an input parameter.
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4.3.2 Reverse Nearest Neighbor approach

Most of the distance-based methods directly use the k-nearest neighbor distribution in order to define
outliers. A different approach is to use the number of reverse k-nearest neighbors in order to define

outliers [25]. Therefore, the concept of a reverse k-nearest neighbor is first defined.

Definition 4.7. A data point x is a reverse k-nearest neighbor of y, if and only if y is a k-nearest

neighbor of = [2].

Data points which have large k-nearest neighbor distances, will also have few reverse neighbors,
because the latter ones tend to have neighbors with smaller distances. Thus, an outlier is defined as

a point for which the number of reverse k-nearest neighbors is less than a user-defined threshold [2].

The reverse nearest neighbor approach can also be easily understood in terms of the underlying
k-nearest neighbor (kKNN) graph.

We define the k-nearest neighbor graph as a weighted directed graph, in which every vertex
represents a single vector, and the edges correspond to pointers to neighbor vectors. Every vertex
has exactly k edges to the k nearest vectors according to a given distance function. The weight of
the edge e;; is the distance between vectors x; and y;. The graph can be constructed by exhaustive
search considering all pairwise distances at the cost of O(N?) time.

Moreover, Hautamaki et al. [25] proposed a method in which an object (denoted by a vertex) is
defined as an outlier on the basis of its indegree number in the kNN graph. For a vertex, the number
of head ends (by the phrase head ends we mean the edges that point the underlying vertex; for
example a k nearest neighborhood of an object in a knn graph is shown by the edges that start from
the target object and end to its knn neighbor objects pointing their corresponding verices) adjacent
to a vertex is called the indegree of the vertex and the number of tail ends adjacent to a vertex is its
outdegree. In our case, the indegree number of an object can be interpret as the number of reverse k-
nearest neighbors, due to the observation that the k£ nearest neighbor of a point is not a symmetric
definition. The fact that a point is a k nearest neighbor of another point does not imply the opposite.
That observation of Hautamaki creates a connection between the distance based methods and the
density based methods that we will present in the next chapter. According to the above, an outlier

can be defined as follows:

Definition 4.8. Given kNN graph G for data set S, an outlier is a vertex, whose indegree is less
than or equal to 7' [25].

In other words, the proposed algorithm, after creating the kNN graph checks each vertex to see

if its indegree number is lower than a given threshold 7" and if it is, it marks it as an outlier.
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4.4 Applying outlier detection using distance-based methods to wood

specific gravity data

In this section we will test four functions on Wood specific gravity data (we recall that the Wood
specific gravity data is a data set of twenty observations on six variables, four of which (4, 6, 8,
19) are known to be outliers). The first one is based on the Definition 4.1 which is the original
seed of these methods. The following two measure knn distances and based on a cutoff declare the
exceeding objects as outliers. Finally, the last function is based on Hautamaki’s method and the

indegree number of objects discussed above.

¢ DB: Calculates how many observations are within each object’s neighborhood, which is formed
by a specific distance given by the user. The objects that have proportion of neighbors lower

than a user’s fraction are declared as outliers.

e nn: Computes the average k-nearest neighbor distance of observation and based on the boot-

strapped cutoff, labels an observation as outlier.

e nnk: Computes the k-th nearest neighbor distance of an observation and based on the boot-

strapped cutoff, labels an observation as outlier.

e KNN_IN: Calculates the indegree number of each observation given a k-nearest neighbors

graph.

We begin with the first function implemented in R package “DDoutlier” testing it with its default

settings. The code is below

> DB(my_data, d=1, fraction = 0.05)
$neighbors
[1] 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

$classification
[1] "Inlier" "Imlier" "Inlier" "Inlier" "Imnlier" "Inlier" "Inlier" "Inlier" "Inlier" "Inlie:

[13] "Inlier" "Inlier" "Inlier" "Inlier" "Inlier" "Inlier" "Inlier" "Inlier"

As we see from the results, the function tuned in these settings is unable to find any outlier. That
is because the arguments depend on the size of the dataset and on the distance between the objects.
In this case, it seems that the given distance is too high, and since this method does not depend
on a specific number of neighbors, unifies all objects in one neighborhood. In Table 2 we present
some results of DB function. Input value d decides the number of objects within each observation
and input value fraction represents a cutoff based on which we declare the outliers. Even though,

the function eventually manages to find the correct outliers in the dataset, one might think that this
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DB function
d fraction Outliers
0.1 7910121318 20
0.1 0.2 124567891011
12 13 16 17 18 19 20
0.3 1234567891011
121316 17 18 19 20
0.1 0
0.2 0.2 19
0.3 46819

Table 2: Number of detected outliers for different d and franctions for DB function

way is more complicating than helpful. That is because, the information of an efficient distance d is

strictly linked to the structure of the underlying data which is most of the times unknown.

On the contrary, functions nn and nnk (implemented in R package “OutlierDetection”) search
for outliers based on the distances of the objects within their neighborhoods which are equally sized
determined by a specific k given by the user (default value for &k is the number of the observations
times 0.05). Moreover, the number of outliers detected in the dataset depends on a percentile cutoff
value given by the user (default is 0.95). These algorithms compute all knn distances and flag
all observations whose distances exceed the latter threshold. Even though knn distances are not
given, in order to have an outlier score between the flagged outliers an outlier probability based on
bootstraping is employed (like in the depthout function). The difference between the two functions
is that the first one compute the average of the knn distances of each observation while the second

one computes the k-th nearest distance of each observation.

We begin testing the nn function and for that purpose we set the arguments according to the

(small) size of the dataset. The code of nn and the obtained results are given below.

nn(my_data, k = 5, cutoff = 0.75, boottimes = 100)

$ Outlier Observations”

x1 x2 x3 x4 x5 y
7 0.489 0.1231 0.562 0.455 0.824 0.481
9 0.536 0.1182 0.592 0.464 0.854 0.475
10 0.685 0.1564 0.631 0.564 0.914 0.486
12 0.703 0.1335 0.519 0.484 0.812 0.519

$ Location of Outlier"
[1] 7 9 10 12
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$ Outlier Probability"
[1] 0.96 0.82 0.99 0.97

The code of the nnk function as well as the obtained results are as follows

nnk(my_data, k = 5, cutoff = 0.75, boottimes = 100)
$ Outlier Observations”
x1 x2 x3 x4 x5 y
6 0.444 0.1628 0.429 0.411 0.984 0.431
8 0.413 0.1673 0.418 0.430 0.978 0.423
19 0.417 0.1687 0.405 0.415 0.981 0.401

$ Location of Outlier
[1] 6 8 19

$ Outlier Probability"
[1] 0.96 0.96 1.00

As we can see from the above results and Table 3, nnk is able to find the true outliers of the
dataset quicker than nn. That is because of the small size of the dataset. In small datasets the size
of the k nearest neighborhoods is accordingly small. So the average of the knn distances can not be
representative. For k = 10 both functions show the same results. Consequently, these functions in

larger datasets can provide in a high percentage the same outliers.

Outliers
nn nnk k
710 12 46819 6
71012 19 46819 7
781019 46819 8
681019 46819 9
46819 46819 10

Table 3: Number of detected outliers for different k for nn and nnk functions
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Finally we present Hautamaki’s method (implemented in R package DDoutlier). It works quite
differently from the other methods as it has as outlier score the indegree number of each observation.
Basically, it computes for a given k£ the number of times that an observation is a k£ nearest neighbor

of the other observations.

The code for KINN_IN function for £ = 5 and the obtained results are shown below

> KNN_IN(my_data,k=5)

(1] 8 7 7 310 3 56 3 2 1 5 3 410 9 4 4 7 3 2
> order (KNN_IN(my_data,k=5))

[1] 10 920 4 6 81219 1316 17 711 2 318 115 5 14

Based on the obtained results and Table 4, we observe a decrease in the number of observations
that satisfy T' < 3. Furthermore, we notice convergence (slower that the one we encountered in nnk

function) to the true outliers as we increase the value of k.

KNN_IN

k outliers
4 1012207946 817
19
10946819
10946819
46819
46819

NoN N0 o BN N @)

Table 4: Detected outliers for different k& based on their indegree number. Observations with 7' < 3

are presented
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4.5 Conclusions

Distance-based methods are able to detect outliers in data sets in which the underlying distribution
is unknown. Their main idea is that higher knn distances tend to come from more isolated points
of the dataset. Furthermore, these methods scale up better than the depth-based methods, because
they are not so much restricted to lower dimensions due to a variety of data structures and pruning
methods like the ones we discussed above. Applying some of these methods to a dataset known for its
contamination, we note that DB while successful, needs more information about the data structure
than the other three. Furthermore, it has no outlier score, thus giving no clue to the user of how
much of an outlier an observation is. Consequently, DB, can be unsuitable for high dimensional raw
datasets. On the other hand, nn, nnk and KINN_IN are much easier to handle as they search for
outliers in equally sized neighborhoods. However, the choice of k in order to have efficient results
is not clear. In the previous analysis we noticed a convergence to the true outliers increasing k.
However in higher dimensional datasets in which the number of outliers is unknown and and the
observations canot be represented in a graph the choice of k£ can be tricky as we will see in Chapter
8.
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5 Density-Based Methods

5.1 Introduction

Density-based approaches for outlier detection have been developed to deal with the local density
problems of the distance-based methods. In many applications there can be different regions and
varying characteristics in a dataset. Therefore it is more meaningful to search for outlying objects
based on other objects in each of their neighborhoods.

In a typical density-based framework, there are two parameters that define the notion of density

of an object.

e A parameter MinPts specifying the minimum number of objects, and

e A parameter specifying the volume under consideration.

These two parameters determine a density threshold for the algorithm to operate. To detect density-
based outliers, it is necessary to compare the densities of different sets of objects in the data.[40, 27]
In this section we will discuss the Local Outlying Factor (LOF) based on which many algorithms

were built and its properties. Next, we will describe an extension of LOF called the Robust Kernel-

based Outlier Factor (RKOF).

5.2 Aim of density-based methods

In the previous chapter, we presented the distance-based methods. These methods define as outliers
the objects that are a threshold distance away from a partition of the data set. They detect outliers
in a more global sense making them unable to find all kinds of outliers as they were proved to be
sensitive to data locality (except for the reverse-nearest neighbor approach that can handle local
data variations well).

As we can see in Figure 6, while both points p; and ps are outliers, a classical distance-based
method would probably detect only ps because it is far away from both clusters C; and C5. On the
other hand, point p; is too close to them and so it is considered as normal. Moreover, if we choose
to have a stricter threshold for the distance in order to reveal p;, the method will probably denote
more objects as outliers than the real ones.

In addition, all the aforementioned methods detect outliers in a binary concept declaring them
outliers or not. Density-based methods proceed to a quantification of how much of an outlier an

object is giving in that way more information about the outlying objects [40, §]
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Figure 6: Illustration of a local outlier [40].

5.3 Analytical approach of the density-based methods
5.3.1 Local Outlier Factor (LOF)

Most of the density-based methods follow the concept of local outlier factor which is a measure of
difference in density between an object and its neighborhood. That is why we begin our analysis
with the following definitions giving the k-distance and the k-distance neighborhood of a point p

[8]. As we have discussed in previous chapters a distance between two objects p and o is denoted by
d(p,0).

Definition 5.1. For any positive integer k, the k-distance of object p, denoted as di(p), is defined
as the distance d(p, 0) between p and an object o € D such that:

(a) for at least k objects o' € D\{p} it holds that d(p,o’) < d(p,0), and
(b) for at most k — 1 objects o' € D\{p} it holds that d(p, o) < d(p, o).

Definition 5.2. Given the k-distance of p, the k-distance neighborhood of p (denoted by N (p))

contains every object whose distance from p is not greater than the k-distance, i.e.

Ni(p) = {q € D\{p}ld(p,q) < di(p))}

. These objects q are called the k-nearest neighbors of p.

Remark. The cardinality of N(p) can be greater than k in case of ties in the k-distances of points.
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Definition 5.3. Let k£ be a natural number. The reachability distance of object p with respect to
object o is defined as rd(p, 0) = max{d(0), d(p,0)}.

Intuitively, if the two points are far away from each other then the reachability distance between
them is their actual distance. If on the contrary, they are close to each other then their reachability
distance equals the k-distance of point o.

While the above definitions work for any natural number k, we are only interested in the notion
of MinPts and we use the values of the rd(p,o0) (for all points o0 in Ni(p)) as a measure of volume
both of which determine the local density [8].

Definition 5.4. The local reachability density of p (denoted by Irdi(p)) is defined as

ZoeNk () " (p,0) ) ~1
[Ni(p)]

Intuitively, the local reachability density of an object p is the inverse of the average reachability

Irdy(p) = (

distance based on the k-nearest neighbors of p. It works as an estimator of the density at point p by
analyzing the k-distance of the objects in Ny(p).

Definition 5.5. The (local) outlier factor of p is defined as

lrd(o)

ZOEN}c (p) lrd(p)
| Ni(p)]

The outlier factor of object p is the average of the ratio of the local reachability density of p and

those of its k-nearest neighbors. Basically, it measures the outlierness of the point p. The higher the

value of LOF(p) the "more of an outlier” an observation is.

We continue the analysis by giving some properties of LOF.

Lemma 5.1. Let C be a collection of objects. Let rdy, denote the minimum reachability distance
of objects in C, i.e., rdpi = min{rd(p,q)|p,q € C}. Similarly, let rd,.. denote the mazimum
reachability distance of objects in C'. Let € be defined as :‘éﬁ — 1.

Then for all objects p € C, such that:

(a) all the k-nearest neighbors q of p are in C, and

(b) all the k-nearest neighbors o of q are also in C,

it holds that 7 < LOF(p) <1+e.
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Proof. 1t holds that rd(p,q) > rdmin, Vg € Ni(p). Therefore, based on Definition 5.4 it holds for
the reachability distance of p that Irdy(p) < Td1, . In contrast, it can be seen that Irdy(p) > dem
because it holds that rd(p, q) < rdma:, Vq € Ni(p).

Let ¢ be a k-nearest neighbor of p. Working in the same way, we can prove that the local

reachability density of ¢ is between the same bounds.
Thus, taking into consideration Definition 1.5 we prove for the upper bound that

1

rdy i
D oeNu(®) P2 e Ny A -
LOFk( ) — k\P) lr (p) S rdmazx — rdmin — 1 + €
[ Ni(p)] [ Ne(p)| s
. We work analogously for the lower bound. O]

The interpretation of Lemma 5.1. is that if a point p is in a dense area of a cluster C' then its
k-nearest neighbors will also be in C' along with their k& nearest neighborhoods, leading to a value of
e close to zero and a LOF(p) close to one. Thus for that kind of points Lemma 5.1. gives efficiently
tight bounds denoting that they cannot be possible outliers [8]

The following theorem is an extension of Lemma 5.1. It corresponds to points that are on the
borders of a cluster and gives the same bounds as Lemma 5.1. when a point deep in the cluster is

considered.

First we present the following terminology [8].
Definition 5.6. For any object p let

e the direct,,;,(p) denotes the minimum reachability distance between p and a k-nearest neighbor
of p, i.e.,
directmin(p) = min{rdi(p, q)lq € Ni(p)}

e the direct .. (p) denotes the maximum reachability distance between p and a k-nearest neighbor
of p, i.e.,
direc{:max (p) - max{rdk (pa Q) |q € Nk (p)}

e the indirect,,;,(p) denotes the minimum reachability distance between ¢ and a k-nearest neigh-

bor of ¢, i.e.,
indirect i (p) = min{rdy(q,0)|q € Nk(p) and o € Ni(q)}

e the indirect,,..(p) denotes the maximum reachability distance between g and a k-nearest neigh-

bor of ¢, i.e.,
indirect,q.(p) = mazx{rdy(q,o)|q € Ni(p) and o € Ni(q)}
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Theorem 5.2. Let p be an object from the database D, and 1 < k < |D|.

Then, it is the case that

directin indirect oz
————— < LOFi(p) £ ——

indirect oz direct min

Proof. 1t is similar to the previous proof. In this case we will deal with the lower bound and

analogously we can get the upper bound. By definition of direct,,..(p) we obtain

rdg(p, 0) < direct .. (p) Yo € Ni(p)
From the above inequality we derive
1

> -
= l?”dk(p) = diT’BCtmal’(p) (2)

(ZoeNk(p) rdy(p, 0)) ! <
| Ni(p)| — directmaz(p)
Again by definition of indirect,,;,(p) we find

rdi(o,q) > indirect i, (p)

Similarly we find

<quNk.(o) Tdk(O, q) ) - < 1 1

Ird
| Nk (0)] — indirect i, (p) = Irdy(o)

 —
— directyin(p)

From the inequalities (1) and (2) we get the final step

1
le(O) direct,,in (P) ) )
2 2 0e Ny (p) Trd(p) < 2 s0eNi () Tdirectman®) & LOFy(p) > mc?zrectmax
|NL(p)] |Nk(p) directmin

]

Remark. For points deep inside the cluster Theorem 5.2 is equivalent to Lemma 5.1 as the values

of indirect,,q, and direct,,;, coincide with the values of rd,,,, and rd,,;, respectively.

Finally, we present (without its proof) Theorem 5.3 - an extension of Theorem 5.2 - which gives
more efficient bounds for the points whose k-nearest neighborhood overlaps with more than one
cluster [8].

Theorem 5.3. Let p be an object from the database D, 1 < k < |D|, and Cy,Cy, ..., C, be a partition
of Ni(p), i.e. Ng(p) =CrUCU...UC, U{p} with C;NC; =0, C; #0, for1 <i,j<n,i#j.
Furthermore, let & = % be the percentage of objects in p’s meighborhood, which are also in
C;. Let the notions direct.,,, (p) direct.,,.(p) indirect., ;. (p) indirect!, . (p) be defined analogously to
direCtmin(p), direct . (p), indirecti,(p), and indirect .. (p) but restricted to the set C;.

Then, it holds that

(o) LOF(p) = (Z?:l & - directim.n(p)> : <Z” é—)

i=1 Girecthyer (7)
) L0P(p) < (S 6 - dinct () - ( Syt )
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Breunig et al.[8] originally presented the LOF method as a density-based approach because of its
ability to adjust to regions of varying density. For example, in the case of Figure 6, the LOF values
of data points in clusters C; and C5 will be quite close to one, even though the densities of the two
clusters are different. On the other hand, the LOF values of both the outlying points p; and p, will
be much higher since they will be computed in terms of the average of ratios of local reachability
densities [40].

In general, the maximum value of LOF(p) over a range of different values of k is used as the
outlier score in order to rank the different objects. The computational complexity of the LOF method
obviously depends on the size of the underlying database. For low dimensional data, distances of the
k nearest neighbors are computed with complexity of O(n) using a grid-based approach (n indicates
the number of observations) while in data sets of a higher dimension they can be computed with
complexity O(nlogn) using an index-based approach. Finally the computational cost of the LOF
values is O(k - n). Subsequently, many investigations [27, 30] into the LOF method were able to

reduce the computational complexity and handle bigger data sets [§].

5.3.2 Robust Kernel-Based Local Outlier Factor(RKOF)

The RKOF method is an extension of the LOF method in which the same framework is used with
more efficient density estimates. The LOF method employs the local reachability distance as a
density estimate which in large data sets can be inaccurate especially in the presence of outlying
points. In order to achieve more accurate density estimation the RKOF method employs a kernel

density estimate for the computation of outlier factors [21].

In the univariate case, the kernel estimator [52] is defined by
~ 1 r — Xz
= — E K

where X; denotes the i-th observation in a data set with cardinality n , h is the window width (also

called the smoothing parameter) and K(-) is a kernel function that satisfies fj;o K(z)=1

f@) [
0.4

0.3r
0.2
0.1

Figure 7: Kernel estimate by individual kernels with window width 0.4 [52]
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Intuitively, the kernel estimator is expressed by the sum of “bumps” placed at the observations.
The shape of the bumps and their width are determined by the kernel function K (-) and the smooth-

ing parameter h respectively.

With the purpose of allowing the scale parameter of the bumps to vary among the observations

to which they correspond, we define the variable kernel estimate [52] by

. IR 1 T X
f@):ﬁ;h.dk<xj> 'K(h-dj,k)’

where dj(X;) denotes the distance from point X to its k- nearest neighbor. We note that the window

width around X is proportional to di(X;) so that points in more sparse regions will have flatter
kernels. For fixed k,only the parameter h is responsible for the degree of smoothing. The choice of
k determines the degree of h’s sensitivity to the data locality [52]

Extending to the multivariate case, the kernel function K(-) is a function defined in d-dimensional

space that satisfies

K(x)=1,xcR?
Rd

The most common multivariate kernel functions are the Gaussian
_4d T
K(x)=(2-7m) 2 exp(—=x" x)

and the Epanechnikov

K(x): .c;l,(d_2>.(1_XTX) ,ifXTx<1

S Wi

, otherwise

where ¢, is the volume of the unit d-dimensional sphere [52].

Returning to the RKOF method, we present an extension of the variable kernel estimator in the

multivariate case.

Definition 5.7. The local kernel density estimate of p is defined as

Ao = (@) " togg = Zuep 2/ @
9 D]
where h is the smoothing parameter, v is the sensitivity parameter, K (-) is the multivariate kernel
function and A, is the local bandwidth factor. f(-) is a pilot density estimate that satisfies f(g) > 0
for all the objects, « is the sensitivity parameter that satisfies 0 < o < 1, and ¢ is the geometric

mean of f(q).
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Remark. In the original (multivariate) variable kernel estimate parameter vy equals the dimension
of the data set. [21, 52]

kde(p) is computed locally in the k-distance neighborhood of object p while also retaining the
adaptive kernel window width that, as we discussed, is allowed to vary from one object to another.
Basically, the pilot density estimate is used to get a rough idea about the density and yields a
pattern of bandwidths (corresponding to the various observations) which are used to build the kernel

local estimate [52].

Gao et al. [21] use as pilot density estimate the following function

Substituting this into the kde(p) we obtain

1 b—o
ZoeNk(p) (C-di(0)™)7 K(C-dk(o)a)

|Nk(p>|

where the default values of C' and a equal one.

kde(p) = ,C=h-g

Definition 5.8. The weighted density estimate of p’s neighborhood is defined as

2

Zoeni () W  ke(0) (G~

wde(p) = JWo = exp g —
ZoENk (p) Wo "o

where w, is the weight of object o in the k-distance neighborhood of object p, ¢ is the variance with
the default value 1, and dy, .. = min{d,(o)lo € Ni(p)}.

min

Based on the definition of LOF, the detection performance is sensitive to the parameter k, which
must be sufficiently large in order for the k- distance neighborhood to consist of enough normal points
so that outliers have the chance to be detected. In the weighted neighborhood density estimate, the
weight of the neighbor object is a monotonically decreasing function of its k-distance with the largest
weight equal to one for the nearest neighbor. Thus, the weighted neighborhood density estimate is
able to detect outlying objects accurately even if the number of outliers in the neighborhood equals
the number of normal objects making it more robust than the local reachability density used in the
LOF method [21].

Definition 5.9. The robust kernel-based outlier factor of p is defined as

RIcOR() = 1e0)

where wde(p) is the density estimate of the k-distance neighborhood of p, and kde(p) is the local

density estimate of p.

As for LOF, RKOF measures the degree to which a point is outlying. The larger the RKOF value
of a point the more probable it is to be an outlier. The computational complexity is the same as
LOF’s [52].
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5.4 Applying outlier detection using LOF and RKOF algorithms to

wood specific gravity data

In this section we will test three functions on Wood specific gravity data (we recall that the Wood
specific gravity data is a data set of twenty observations on six variables, four of which (4, 6, 8, 19)
are known to be outliers).

e LOF: Computes a local density for observations with a user-given k-nearest neighbors. The
density is compared to the density of the respective nearest neighbors, resulting in the local
outlier factor.

e RKOF': Computes a kernel density estimation by comparing density estimation to the density
of neighboring observations resulting in the robust kernel outlier factor. A Gaussian kernel is

used for density estimation, given a bandwidth with k-distance.

e dens: Computes the RKOF values based on RKOF function and based on a user-given per-
centile cutoff declares as outliers the observations whose RKOF values exceed the underlying

cutoff. Moreover, it provides an outlier probability like in depthout, nn and nnk

The first two functions can be found in "DDoutlier” package while the latter is implemented in
”OutlierDetection”

We begin with the first function. Its code is below
LOF(dataset, k)

The only arguments needed are the underlying data set and the MinPts determining the local density.

The function returns the LOF value of each observation.

We obtain the following results

LOF (my_data, k = 6)
[1] 0.9320898 1.0289675 0.9792408 1.3571371 0.9723653 1.3929624 1.3058637
1.4051025 1.1767145 1.2400128 1.1262819 1.2063343 1.1032250
[14] 0.9712314 1.0205625 0.9908529 0.9442170 1.1100389 1.4282616 1.0432364

Sorting the above scores in ascending order with order() function we obtain the following vector

> order (LOF (my_data, k = 6))
(1] 117 14 5 316 15 2201318 11 91210 7 4 6 8 19
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We note that observations 4, 6, 8, 19 have the higher LOF values for k=6, 7, ..., 15 (see Table
5). However, for values higher than eight we observe lower LOF values converging to one. The LOF
method was indeed able to direct higher scores to the true outliers of the data set. Due to the fact
that normal data points have a LOF value close to one and taking into consideration the fourth
observation, a question arises whether a value equal to 1.3571371 is high enough for this object to

be denoted as an outlier.

The code of the second function is as follows
RKOF (dataset, k , C = 1, alpha = 1, sigma2 = 1)

The first two arguments are the same as for the first function while the other ones have been intro-
duced in the previous chapter. Moreover, C is a multiplication parameter for k-distance of neighbor-
ing observations acting like a bandwidth increaser. Default is one such that k-distance is used for the
Gaussian kernel. Finally, alpha is a sensitivity parameter for k-distance (small alpha creates small
variance in RKOF and vice versa) and sigma2 is a variance parameter for weighting of neighboring
observations. Both of them have also default value equal to one. The function returns the RKOF

value of each observation.

We obtain the following results

RKOF (my_data, k = 8, C = 1, alpha = 1, sigma2 = 1)
[1] 1.0274242 0.9525171 0.9304886 2.4660712 0.9138639 2.4192465 2.2790186
2.6386842 1.7495769 1.9928869 1.1746130 1.6597684 1.4778650
[14] 0.7717380 0.8477847 1.0204903 1.0984443 1.3634725 2.8206986 1.3187638

order (RKOF (my_data, k = 8, C = 1, alpha = 1, sigma2 = 1))
[1] 14 15 5 3 216 1 17 11 20 18 1312 910 7 6 4 8 19

We note that observations 4, 6, 8, 9 have the higher RKOF values for k=8, ..., 19 (see in Table
5). Moreover, for values 10 or higher these observations are in the same order as in LOF method.
The main difference apart from £ is the fact that the method directs much higher RKOF values to
the outlying points (by these results one could denote the seventh observation also as an outlier,

although in varying values of k its score keeps reducing).

Furthermore, if we choose to change the value of sigma2 to 0.1 we obtain the following results

>RKOF (my_data, k=7, C=1, alpha = 1, sigma2 =0.1)
[1] 1.0963566 1.1197494 1.0016784 3.7314614 1.0502284 3.8828330 2.7476913 3.2005587
2.3847559 2.5486490 1.5015050 2.1789623 2.0767597 0.8336603 0.9017041 1.1594693
1.2525511 1.8449604 3.4199065 1.5509820
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order (RKOF (my_data, k = 7, C = 1, alpha = 1, sigma2 = 0.11))
[1] 14 15 3 5 1 216 17 11 20 18 1312 910 7 819 4 6

As we can see from the above results, giving a smaller value to the parameter sigma2, not only
we detect the true outliers with the highest RKOF values faster (smaller k) but also we obtain a
clearer idea of the outlying objects through their RKOF values as the latter ones have much bigger
values than the rest of the data. Finally, we can safely speculate that the nature of these outliers
having been already compared with three different kind of methods is that of an extreme value,

because of their mutual sensitivity to that kind of outliers.

Outliers

LOF RKOF (o0 =1) RKOF (o =0.1) k
46819129710 131712189207 10 | 171312182097 10 |4
91268191074 1118912204 7 10 1118122097104 5
91210746819 18104891267 19121097486 6
91210746819 12910819746 12910781946 7
131210746819 12910764819 12910746819 8
131210746819 91210746198 91271046819 9
181210746819 91210746819 91210746819 10

Table 5: Number of detected outliers for different k for LOF and RKOF functions

As we see in Table 5, LOF can be considered more efficient, in the sense of assigning the highest
values to the true outliers at smaller values of k. That could be due to the small size of the dataset and
the small percentage of contamination (20%). Either way, we observe in both methods a convergence
in the ascending order of the observations while the methods are declaring the true outliers. Moreover,
this phenomenon also appeared when testing K NN _IN function for different values of k indicating

a similarity in the behaviour of these methods.

Finally, we present dens function. Its code and obtained results for k = 4 are below

>dens(my_data, k = 4, C = 1, alpha = 1, sigma2 = 1,cutoff = 0.75, rnames = F,
boottimes = 100)

$ Location of Outlier"
[11 7 9 10 20

$ Outlier Probability"
[1] 1.00 0.89 1.00 0.94
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According to the results, dens function is indeed consistent with the RKOF values presented
above for £k = 4 in Table 5. The only difference is that it declared only the ones that had values
higher that the given percentage. This can be very helpful for datasets with more observations.
Moreover, instead of the order given by the RKOF values, an outlier possibility is given as an outlier
score indicating which observation is declared as an outlier the most. Accordingly, the ascending
order of the outliers based on their outlier possibility matches the ascending order presented in Table
5.

5.5 Conclusions

Density-based methods work efficiently in data sets with varying local densities, while other methods
may not recognise all the non normal objects. The LOF method is the basis for many density-based
methods and is able to adjust to these local density variations and measure the “outlyingness” of
the objects by their LOF values. The RKOF method extends the latter method. It is more robust
to the choice of £ and as we noticed earlier outlying observations receive higher scores than LOF’s

making much easier the decision to the user to denote them.
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6 Mahalanobis distance

6.1 Introduction

The methods presented in Chapters 5 and 6 are based on the most fundamental idea in multivariate
data analysis, that is to measure the similarity of the objects in target data by their distance from each
other. As we have already discussed, objects with large distance show low similarity, while objects
with small distance between them are considered to belong to the same category or to have similar
properties (that part of the data is also called normal). The distance between objects depends on
the selected distance metric function, the dimension, and on the scaling of each dimension. Distance
measurements in high-dimensional space are extensions of distance measures in two dimensions [62].

Let two objects be defined by the vectors x4 = (z4,, %4y, ..., Z4,), X5 = (Tp,,TB,, ..., Tp,). Most
used is the Euclidean Distance (denoted by dgycidgean()) which is equivalent to that used in daily
life. Applying Pythagoras’ rule gives

a !

dEuclidean(XA,XB) = (Z(IBj - $Aj)2> = (XB - XA)T(XB - XA)

j=1

Over the years, different kinds of measures have been introduced such us the Minkowski distance

d 1
d d
A inkowski = ( E (ZEB]' - l'Aj> )

=1

and the Manhattan distance
d
dManhattan = HXB - XA||1 = Z |3§'Bj - xAj‘
7=1

. The Mahalanobis distance analyzed below considers the distribution of the object points in the
variable space (as characterized by the covariance matrix) and more importantly is not affected by

the scaling of the variables [62].

6.2 Aim of the Mahalanobis distance

The concept of the Mahalanobis distance can also be used in the context of detecting multivariate
outliers. In Figure 8, we show how more concentrated to the data are the ellipses formed from the
Mahalanobis distances of all the objects from the center than the circles formed by the Euclidean
distances of the objects to the center. Unlike Euclidean distace, Mahalanobis distance takes into
account the correlation between the variables via the covarience matrix so that it can provide safer
results concerning the outliers and the geometrical structure of the dataset in general. In that context,
multivariate outliers can be interpreted as points that are far away from the ellipse or ellipsoid (if
we are dealing with high dimensional data) i.e. those noted with exceptionally high Mahalanobis
distances [62].
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Figure 8: Euclidean distance (left) and Mahalanobis distance (right) [62]

6.3 Analytical approach of the Mahalanobis distance

In general, the Mahalanobis distance between two d-dimensional objects x4 and xg without any

distributional assumption is defined by

MD(x4,xp) = \/[(XB —x4)T - S T (xp — x4)]

where S is the sample covariance of the data matrix. The computation of the Mahalanobis distance
requires the inversion of the covariance matrix S [62].

Even though Mahalanobis distance can be assigned to all kinds of datasets, its values correspond
to coherent results when the entire dataset is assumed to be normally distributed about its mean
in the form of a multivariate Gaussian distribution. Let p be the d-dimensional mean vector of a
d-dimensional data set, and 3 be its d x d covariance matrix. In this case, the (i, j)th entry of the
covariance matrix is equal to the covariance between the dimensions ¢ and j. The covariance matrix
¥ (d x d) is a quadratic, symmetric matrix which consist of the covariances o, between every two
variables x; and xj . The cases j = k (main diagonal) are “covariances” between one and the same

variable, which are in fact the variances o;; of the variables z; for j =1, ..., d.

The probability distribution f(x) for a d-dimensional data point x can be defined as follows:
1

VIEL-(2-m)3

The value of |3| denotes the determinant of the covariance matrix. We note that the term in the

P RGO

f(x) =

exponent is (half) the squared Mahalanobis distance between the data point x and the mean p of

the data. The value in the exponent of the normal distribution above is used as the outlier score [2].
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Suppose a n X d data matrix X (n observations d variables). The classical measure of covariance

between two variables x; and x;, is the sample covariance, sj;, defined by
1 n
Sik = T 2(% —X;) - (@i — Xx)
1=

For mean-centered variables and written in vector notation

n
1 E T
i—

Based on the above definition, the sample covariance matrix S can be calculated for mean-centered

X by
1

n—1

S = X" X

In general, S is given by
1

n—1

S = (X -1x)" (X - 1x),

where 1 is a vector of ones of length n and X = (%1, Zo, ..., Z4) is the mean vector.

Another measure for the relation of variables x; and x; is their correlation originally proposed

by Pearson defined by
_ D (@i — Xj) - (T — Xy)
Vi (@ = %5)2 - /2 (i — Xp)?

The range of 7, is -1 to +1; a value of +1 indicates a perfect linear relationship, a value of -1

Tjk

indicates a perfect inverse linear relationship; absolute values of approximately < 0.3 indicate a poor

or no linear relationship [62]

The Mahalanobis distance is similar to the Euclidean distance, except that it normalizes the data
on the basis of the inter-attribute correlations. For example, if the axis system of the data were
to be rotated to the principal directions (using principal components analysis) then the data would
have no correlations between the target variables and so the Mahalanobis distance would not be
affected by them. The Mahalanobis distance is simply equal to the Euclidean distance in such a
transformed (axes-rotated) data set after dividing each of the transformed coordinate values by the
standard deviation of that direction. This approach recognizes the fact that the different directions
of correlation have different variance, and the data should be treated in a statistically normalized
way along these directions [2].

Thus, the information about the distribution of the object points in the variable space is contained
in the covariance matrix and its estimation as well as the mean’s can be affected by a possible
contamination of the dataset. As we will discuss more specifically in Chapter 7, a sufficient number
of anomalous points can damage the estimations of scale and location of a target dataset, leading to

erroneous Mahalanobis distances, that is, outlier scores.
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A more robust measure, can be derived from a robust covariance estimator such as the minimum
covariance determinant (MCD) estimator [43, 46, 62]. The MCD estimator searches for a subset
of h observations having the smallest determinant of their classical sample covariance matrix. The
robust location estimator T is then defined as the arithmetic mean of these h observations, and the
robust covariance estimator is given by the sample covariance matrix of the h observations as well

as the correlation for each pair of variables.

The Mahalanobis distance based on the assumption that the dataset is Normally distributed
approximately follows a chi-square distribution x% with d degrees of freedom (d is the number of
variables). If an object has a larger squared Mahalanobis distance than the cutoff it is exceptionally
high and can therefore be considered as a potential multivariate outlier. One can then take a quantile
of the chi-square distribution, like the 97.5% quantile x§’0.975 as cutoff value.

Even though for higher dimensions we cannot visualize the ellipsoid formed by the Mahalanobis
distances of the d-dimensional points, due to the fact that their values are one-dimensional, a index
plot can be made showing each observation by its Mahalanobis distance value and a straight line

indicating the cutoff value. Observations that exceed this line are considered to be outliers.

Moreover, Garrett [22] proposed the x? plot in order to detect the outliers. This plots the empirical
distribution function of the robust Mahalanobis distances (denoted by RD that is the Mahalanobis
distances computed using the MCD estimations of location and scatter) against the x? distribution.
The cutoff value can also be used as a break in the tails and observations whose MD exceed the

break are considered to be outliers.

On that basis, Filzmoser [16] introduced the adaptive quartile. The adaptive quartile is basically
a threshold that takes into account the difference between the empirical and a theoretical distribution
of the RD’s in the tails. If we denote by G,,(u) the empirical distribution of the RD? and by G, (u)
the theoretical function of x? then we can compare their tails in order to detect outliers, since for
multivariate normally distributed samples G,, converges to G. Defining the tails by 6 = X2 475 We

obtain
Pu(8) = sup(G(u) — Gp(u))"

u>0
indicating the positive differences beyond the tails (in case of multivariate normally distributed data
a critical value pe.+(d, n, d) is employed for more exact value of p,, (), denoted as «,(6) [16]). Finally,
the target cutoff is defined by

ea(0) = G (1= pu(0)
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6.4 Applying outlier detection using Mahalanobis distance to wood spe-

cific gravity data

In this section we will apply two detection methods using the Mahalanobis distance. The first, is the
classical one as discussed above and the second one is based on the MCD estimator.

We recall that the Wood specific is a data set of twenty observations on six variables, four of
which (4, 6, 8, 19) are known to be outliers.

We use four different functions that were built in the software enviroment of R:

e maha: Computes the Mahalanobis distance of an observation and based on the Chi square
cutoff, labels an observation as outlier. Outlyingness of the labelled “outlier” is also reported

based on its p values (That is a vector of (1 — p) values of the detected observations).

e aq.plot: Plots the ordered squared robust Mahalanobis distances of the observations against
the empirical distribution of the RD?. In addition the distribution function of x? is plotted
as well as two vertical lines corresponding to the z2-quantile specified in the argument list
(default is 0.975) and the adjusted quantile. Three additional graphics are created (the first
showing the data, the second showing the outliers detected by the specified quantile of the x?2
distribution and the third showing these detected outliers by the adjusted quantile). In case
of d > 2 the data is projected on the first two robust principal components (i.e. principal

component analysis based on a covariance matrix estimated by the MCD method).

e Moutlier: Plots the classical and the robust (based on the MCD estimator) Mahalanobis
distance.

We begin with the first function. Its code and obtained results are below

> maha(my_data,cutoff=0.8)

\begin{verbatim}

$ Outlier Observations”

x1 X2 x3 x4 x5 y
7 0.489 0.1231 0.562 0.455 0.824 0.481
11 0.664 0.1588 0.506 0.481 0.867 0.554
12 0.703 0.1335 0.519 0.484 0.812 0.519
16 0.523 0.1320 0.505 0.612 0.919 0.508

$ Location of Outlier"
[1] 7 11 12 16

$ Outlier Probability"
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[1] 0.8850952 0.8922186 0.8136708 0.8487555

As we see from the above results, none of the true outliers were detected. Furthermore, if we
increase the percentile threshold to 0.9, the method fails to detect any outlier. We speculate that
the presence of these contaminated outliers caused a swamping effect, with normal points like 7, 11,
12 and 16 detected as outliers.

For identifying outliers, it is crucial how center mean and covariance are estimated from the data.
Since the classical estimators, arithmetic mean vector X and sample covariance matrix S are sensitive

to outliers, they can be inefficient for the purpose of outlier detection.

The code of the second function is as follows
> aqg.plot(my_data, delta=qchisq(0.975, df=ncol(x)), quan=0.6, alpha=0.05)
The arguments of the function are

e x: A given data set

delta: A quantile of the y? distribution with degrees of freedom equal to the numbers of

variables of the data. This quantile appears as cyan-colored vertical line in the plot.

e quan: A proportion of observations which are used for MCD estimations.

alpha: Maximum thresholding proportion of outlying observations (optional scalar, default:

alpha = 0.05). For a = 0.025 overlap with the quartile cutoff of x2 ;75

In Figure 9, the upper left plot shows the RD; of the objects projected on the first two principal
components. The two plots on the bottom marks outliers, the observations that exceed (on the
left) x4 quantile and (on the right) the adjusted quantile. Finally, the upper right plot, shows the
empirical distribution of the RD; as well as the chi? distribution and the aforementioned cutoff values
labeled by cyan and blue colors.

Based on the following results, the method managed to detect the true outliers in the data set.

Moreover, all three plots detected the same outliers along with the results in Boolean form (TRUE-
FALSE)

Projection to the first and second robust principal components.
Proportion of total variation (explained variance): 0.6152118
$outliers
[1] FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
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Figure 9: Plots produced by the aq.plot function (wood specific data)

Finally, we give another presentation of the above results with the plots below. The code of the

function Moutlier is
> Moutlier(my_data, quantile = 0.975, plot = TRUE)

The values of the function are the data set and a quantile (cutoff value) for the Mahalanobis
distance. These plots are given along with the scores for both methods (Classical vs Robust) plus

the value with the outlier cutoff. The horizontal line indicates the cutoff value: /23 75 = 3.801233

$md
[1] 2.245038 1.246945 2.306514 2.032232 2.154265 2.061767 3.199989 2.130094 2.424357 2.7966’
[15] 1.553139 3.069379 2.153202 2.178547 2.488627 2.342370

$rd
[1] 1.3006229 0.7936416 1.2717753 17.3993341 1.4017126 19.8568695 3.6723871 19.8399457

[13] 1.0419987 1.3601641 1.0569889 3.3563387 1.1397842 1.2200950 22.8174234 1.0946777

$cutoff
[1] 3.801233
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Figure 10: Classical Mahalanobis distance scores (left) Robust Mahalanobis distance scores (right)

Based on Figure 10, the first method does not detect any outlier while the other one was able to
detect the known outliers plus the 11th observation with a value of 3.93 which is a little above the

line.

6.5 Conclusions

Mahalanobis distance is a distance-based method for outlier detection. It is a distance measure that
accounts for the covariance structure, estimated by the sample covariance matrix S. The problem of
swamping arise due to the influence of outliers on classical location and scatter estimates (sample
mean and sample covariance matrix), which implies that the estimated distance will not be robust to
outliers. That is why we also choose robust versions of the Mahalanobis distance such as the one that
is based on the MCD estimator. A problem with the Mahalanobis distance is the need to invert the
covariance matrix which may be difficult with highly correlating variables. Moreover, in cases which
the data may have many different clusters with different orientations, this kind of distance-based

method may not be effective.
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7 Distribution-Based Methods

7.1 Introduction

In this section we present some methods that aim to declare objects in a data set as outliers based on
a certain assumption. The most common is that the objects have been generated from a multivariate
Gaussian distribution. The squared distances of the objects from their estimated center are x?
distributed with p numbers of freedom and the distances that exceed a certain cutoff value based on
the x? distribution declared as outliers.

Generally, in order to provide efficient outlier analysis, it is desirable for these methods to have
some properties, that is, to be affine equivariant, robust and computationally not too expensive.

An estimator T is affine equivariant if it yields
T(X-A+b)=T(X)-A+b,

where X is the data matrix, A is any non singular matrix and b a random vector, meaning that
it does not depend on any orientation of the data. A method in order to be robust, has to have high
breakdown point, that is handling properly the data even if the percentage of the contamination is
high [11, 7]. The combination of these two properties forces the computational cost to increase. In
this section we will discuss how these methods handle these requirements in order to provide efficient

results.

7.2 FastMCD algorithm

The minimum covariance determinant (MCD) estimator was originally proposed by Rousseeuw [43]
and its objective is to find in a data set (of n observations) h observations whose classical covariance
matrix has the lowest determinant. Basically, it corresponds to finding the h points for which the
classical tolerance ellipsoid (for a given level) has minimum volume, and then taking its center. It
is considered to be one of the robust tools that were built in order to deal with the masking and
swamping effect that prevents the Mahanalobis distance from being able to handle the presence of

many outliers in the underlying data set [45, 43].
The main idea of the MCD method lies in the following theorem [45]
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Theorem 7.1. Consider a data set N = {x1,.,x,}, where x; = (x;1,...,x;p) for i =1,...,n is a
p-variate observation. Let Hy C {1,..,n} with |H\| = h, and put Ty := £ - 3., X; and Sy =
5 Y icm,(Xi = T1) - (x; — T1)". If det(Sy) # 0, define the relative distances

di(i) := \/(X, ~Ty)-S;t-(x;,—Ty) fori=1,..,n.

Now take Hy such that {di(i)|i € Ha} := {(d1)1.n, (d1)2:ns -5 (d1)pn }, where (di)1n < (di)om < ...

(dy)p.n are the ordered distances , and compute Ty and Sy based on Hy. Then

IN

d@t(SQ) S det(Sl)
with equality if and only if To =T and Sy = S;.

Theorem 1.1 generates an iterative process in which we move from pair (T, S) to pair (Txi1, Sg11),
by producing Hy.1, computing each time the n distances (with respect to (T, Si)) and sorting them
in an ascending order. Since the determinants are non-negative and it holds that det(Sy41) < det(Sk)
for all £ € N the procedure converges (in practice the number of iterations is lower than ten) [45].

With that being said, we note that the MCD algorithm basically applies Theorem 1.1 to initial

choices of H; subsets until convergence and keeps the one with the lowest determinant.

Corollary 7.1.1. The MCD subset H of N is separated from N\ H by an ellipsoid.

Proof. Suppose any H subset of the iteration process generated by Theorem 1.1. By definition of H
it holds that

d*(i) <\ = {(x ~-T) -5t (x— T)}M Va; € H,

where A is the the maximum squared distance of the observations 1,...,h (and the least distance of

the observations A, ...,n). On the other hand for the remaining points it holds that
d*(i) >\ Va; ¢ H

Defining the ellipsoid F = {x | (x—T) -8 (x—T) < )\}, we get that H C E and N\ H C E.
[

Remark. There is at least one point in H subset in the borders of the ellipsoid while it is not

necessary for z; ¢ H to be.
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Based on Corollary 7.1.1. [45] we have to be careful in the choice of the initial H;. It can be
arbitrary, but in that way the method will be inefficient in data sets with many outliers since the
ellipsoid that will be constructed may consist of outlying objects. From a non-robust perspective,
one could choose h to be equal with n. In that way the MCD location estimate T; would be the
arithmetic mean and MCD scatter estimate S; would be the covariance matrix of the whole data set.
The best initial choice is an H subset of p 4+ 1 objects to which we will keep adding objects until it
yields a non-negative determinant (having a subset with fewer observations than variables would be
pointless since it will always give zero determinant). In that way we note that h = %pﬂ gives MCD
its highest possible breakdown value [34]. Alternatively, due to the fact that most cases of data sets
are no more than 25% contaminated, a good choice for the initial cardinality of the H subset would
be 0.75 - n [45].

Having enough proper initial choices, the algorithm begins with the iterations. It has been proved
that robust solutions are provided in the first two or three steps so a pruning can be made in the
remaining iterations.

Finally, when the method deals with high dimensional data sets, it provides a pre-processing step
in which a partition is made of the data set. Then, after the algorithm is applied to each partition it
stores the ten best solutions for each partition. Then the subsets are pooled, yielding a merged set
to which we apply the algorithm with initial subsets the ones that the algorithm stored in the first
place. The ten best solutions after the iteration steps are stored and used as initial subsets for the
whole data set to which the method is applied one final time giving the pair (T fyu, Sfun) with the

lowest determinant among these ten.

The latter pair is used for the robust distances of the observations defined as

RD; = \/(Xz‘ — Tpur)' - Sy - (% = Tpar) i=1,...,n

If the data is generated from the multivariate Gaussian distribution we denote

Tyep = Tru  and  Spyep = medsfel; | S fui
Xp,0.5
The method flags the observations that exceed a cutoff value (in most cases that value is |/X2 o g75,
where p is the number of the variables).
The MCD method is affine equivariant, that is, when the data is translated or subjected to a
linear transformation, the resulting (T fuy, S fuu) will transform accordingly. The computational cost
of each iteration is O(n) [45].
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7.3 BACON algorithm

The blocked adaptive computationally efficient outlier nominators (BACON) algorithm was intro-
duced by Billor et al. [7]. The method like FastMCD searches through an iterative process for a
subset with certain properties. Moreover, this subset is considered to be free of outlying objects,

thus declaring every object that is not in that subset as an outlier.
Consider an n x p data matrix.

BACON algorithm starts by choosing a basic subset of m > p observations using one of the

following methods:

(a) It computes the Mahalanobis distances of the observations

MD; =\/(x,—T)-S1-(x,—T) i=1,...n

where T and S are the mean and covariance matrix respectively of all n observations. The
m = ¢ - p (where ¢ is an integer given by the user) observations with the smallest distances

form the initial basic subset.

(b) It computes the distances of the observations from the median i.e. ||x; — m||, where m =

/

) and || - || is the vector norm. The m observations with the smallest distances

med(x],..,x

form the initial basic subset.

We note that method (a) is affine equivariant but it is not robust which means that it gives poor
results when the rate of the contamination is high. In contrast, method (b) is not affine equivariant
as the median depends on the linear transformation of the data, but is robust being able to handle
up to 40% contamination in the data.

After computing the initial basic subset with either of these methods, the BACON algorithm com-
putes for all observations their distances (discrepancies) respectively from this subset characterized

by the pair (T, S;) where T is its mean and S, its covariance matrix

di = \/(Xz —Tb)/ . Sb_l . (Xi —Tb) 7= 1,...,7’L

The observations whose discrepancies satisfy d; < cppr - th% form a new basic subject based on
which the distances of all the observations are again computed and tested by the latter inequality
leading to a more concentrated subset. This iteration process stops when the subset no longer
changes.

Once the iteration process is terminated the objects not located in the returned subset are declared

as outliers.
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Suppose that 7 is the number of objects in the 4y, iteration. c,,,, plays the role of a correction

factor defined by ¢,y = cpp + cpr Where

- +p+1
Chr = max{0, h——i—:}’ = %
+1 1
cn,,=1+p +

n—p n—h—p
Based on its definition, ¢y, is considered to be an inflation factor in the case of a significantly

lower value of r than the value of h

7.4 Skewness-adjusted Outlyingness

The robust distances of the observations in a data set based on the MCD estimator provide efficient
conclusions about the outlying observations when the uncontaminated objects are generated from
the multivariate Gaussian distribution. However, the method may be inefficient when it deals with
data sets of high skewness. Brys et al. [9] presented a modification of the outlyingness measure that
can handle skewness (We note that this method does not need an distributional assumption, but we

listed it in this section for illustrating the OutliersO3 package).
The Stahel-Donoho outlyingness measure [53, 13] is defined as:

oD — mam]xg v —med;(x]; - v)|

/
j
veH mady(X), - V)

where mady(x), - v) is the the median absolute deviation defined as
mady(x), - v) = medg|x), - v — med;(X) - v)|

We denote as H the space of the unit length vectors v (directions) that are perpendicular to the
hyperplanes that are spanned by an arbitrary number of points in the data set. Like the robust

distances this measure is expressed as a rejection rule for all the objects whose SD exceeds the value

of \/ Xz,o.975-

The skewness-adjusted outlyingness measure [9] is defined as

Ixl v — med;(x) - v)|

AO; = max

ver <C2 (V) N medj (X; ’ V)) ’ 1x;-v>medj(x;-v) + (medj (X; ) V) -G (V>) ’ 1x§-v<medj(x;-v)

where ¢;(v) and c3(v) are the end points of the skewness adjusted boxplot [61] of the projected data.
It is based on the classical boxplot (discussed in Chapter 2) with the only difference that it takes

into account the skewness of the data.

It is defined as

Q1 — 1.5 e 35 MO TOR, Q34+ 1.5- "M . TOQR] ,if MC >0

[01702] =
[Q1 —1.5.e*MC . TOR, Q3 +1.5->MCO.TQR] |if MC <0
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where M C' is a robust measure of skewness called medcouple [10] and is defined as

zr —med;(x;)) — (med;(x;) — x;
MC(X]-) _ med ( k J( ])) ( J( J) )
x;<med;(x;)<wy T — X5
Remark. When the data is symmetric we obtain MC = 0 in every direction and the modified
boxplot is equivalent to the classical. However, when the data is right skewed then M C > 0 enabling
c1 and ¢y to exceed the endpoints of the classical boxplot (specially for ¢;). In contrast, when the

data is left skewed, MC < 0 resulting again in a wider space [9].

Like the Stahel-Donoho outlyingness measure, its modification measures distances between the
projected data and their median with the difference that AQO; takes into account the skewness of
the projected data. Moreover, since it is fatal computationally to project all observations on every
univariate direction v the method generates 250 of them since it has been proved that exceeding this
number does not have significantly better results.

The cutoff value of the skewness-adjusted outlyingness measure in most cases is the upper bound of
the modified boxplot e.g. cutoff = 1.5-e*MY.TQR where right skewness is taken into consideration.
We recall that the squared SD;’s are approximately x? distributed and y? considered to be a right
skewed distribution. Although for the SD,’s there is no assumption about the distribution it is
typically right skewed.

Once the AO;’s are computed, the method denotes as outliers the observations whose AO exceeds
the above cutoff. Like the MCD method, the aforementioned method is affine equivariant [9].
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7.5 FastPCS algorithm

The Projection Congruent Subset (PCS) method was proposed by Vakili et al. [60] and like the
FastMCD and AO provides an outlyingness index measuring how much each observation departs
from the pattern set by the majority of the data. It adopts some steps of the FastMCD method
as it strives to select among many possible H-subsets of observations one devoid of outliers. Then,
the outlyingness index is simply the distance of each observation to this subset. The main difference
from the FastMCD method is the choice of the H subset rendering it less sensitive to outliers. More
specifically, in case of fastMCD, the presence of a large enough number of outliers can prevent the
method from finding an efficient H subset of normal observations for the estimation of location and
scatter.

PC'S looks for the H-subset of multivariate observations that is most congruent along many
univariate projections. For that purpose, FastPCS starts with m random choices of subsets consisting
of p observations, x; = (%, ...,%;,). It then considers K random directions ay,; such that {x |
X}« Qi = 1} is a hyperplane for k = 1,2, ..., K.

In addition, it computes the squared orthogonal distances from each object to a,,, defined by

(X - tmp — 1)°

[|evme]*

&2 (i) = i=p+1,..n

It denotes the set of h observations with the lowest squared distances denoted as H,,p.

Furthermore, it follows an iterative process similar to the one we discussed in the FastMCD

method for the computation of an optimal subset H in which the algorithm:

e commences with M subsets H? of p + 1 observations and for each of them it computes the

following measure among K directions

d;%,i (k)

fé%% dy 5 (0mi)
m

Di(HEn) =

1=1,....n

>Q
RSP
=

e Then for a given point ¢ [60] it computes H!, a set of points that satisfy
Di(Hm) < Dq(Hm)

n+p+1]
2

e It continues until convergence. Empirically, after three steps H> consist of | objects.

e Returns the optimal H,,
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Once the H,, subset is given, the method proceeds to the computation of the incongruence index

of H,, along a,,; defined as
ave & (o)
1€EHm

e i (am)

I(Hp, i) = log

The value of this index is always positive and measures the relation of the subsets. Smaller values
indicate more exact overlapping between the projection of the objects of H,, along a,,; with the
objects of H,,x.

The key point that makes this algorithm more insensitive to the presence of many outliers lies
in the observation that a disjoint form of H,,; tends to be less congruent with an optimal H,, than
a cohesive one. It has been proven [60] that a cohesive subset H,,, when joined with the optimal
H,, produces a set H,,, U H,, bigger than the one that would have been produced with a disjoint
one. That results in a denominator in I(H,,, a,,) bigger in the latter case while the numerator
remains the same in both cases ending up with a higher value of I(H,,, ax) in case of a disjoint or
contaminated subset [60].

Finally, the algorithm takes into consideration all the K projections removing the dependence

among [ (H,,, ani) by taking the average among them
I(H,,) = avel_ I(H,,, ami)

Among the M different values of I(H,,) that are computed FastPCS chooses the smallest. Iden-
tically to the FastMCD method, the pair of (Tpcs, Spes) is computed which gives to the user the

final outlyingness index of each observation defined by

d%os(i) = \/(Xz — Tspc) - SJ;(IJS “(x; = Tpes) i=1,...,n

Any observation whose dpg exceeds the cutof f = |/x2.975 is considered to be an outlier.

We note that the initial number M of the H,, subsets must be large enough in order to find an
uncontaminated subset. As for the number of projections, it has been proven that no more than 25
are needed for efficient results due to the more concentrated work on the computation of the H,,
subset, while for the Skewness -adjusted Outlyingness 250 are generated. Each computation of H,,
has a complexity of O(p® +n - p) [60].

Due to the fact that FastPCS in order to run, needs an input data set of 25 - p objects we will
not be able to run it for the Wood specific gravity data to illustrate the O3plot.
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7.6 HDoutliers algorithm

One could say that the HD algorithm presented by Wilkinson [64] is a mixture of methods. It is able
to handle high dimensional data of categorical and continuous variables. HDoutliers differs from the
previously mentioned methods because it is based on the exponential distribution. The basic idea

for the distributional assumption lies in the following theorem [63]

Theorem 7.2. Let {x;}, fori=1,....,n, be a sample of independent identically distributed random

variables. If the upper order statistics are defined as
X1, 1S the largest element of {x;}

Xo., 1S the second largest element and so on..

and their successive differences

D; =Xy, — Xit+1:n

then if the extreme value index is 0, then the differences D; are asymptotically independent and

exponentially distributed with means proportional to 1/i, for i =1,2,... as long asi < n

We note that, the extreme value index is a parameter that controls shape in the generalized

extreme value family defined by

G(z):exp[—(ug%)

where p and o control location and scale respectively [50]. So basically, HDoutliers after partitioning

P

], 1+¢- 2>
ag

the data into exemplars [64], takes from each exemplar its representative observations fitting to them
an exponential distribution.

More specifically the algorithm commences with normalizing the data if the variables are not on
a common scale (we omit its transformation step to the data set in case of the presence of categorical
values and its reduction step when a data consist of more that 10000 observations-briefly it uses
random projections reducing the dimensionality to a default p').

Next, it creates a list of exemplars by adding the first row of the data matrix declaring it to be

its center. For all the remaining rows their distances from the first row are computed. If a distance

exceeds § = —2L+ then the observation responsible is added to the exemplar list representing its
(logn)P
center. If not, it is added to the exemplar centered in the first row. The value of § is designed to

be below the expected value of the distances between @

way the data set is divided into balls of the same radius and centered on actual points. Furthermore,

pairs of the normalized points. In that

it computes all nearest neighbor distances between objects in each exemplar and fits an exponential
distribution to their upper tail.

Any exemplar that is significantly far from the other exemplars based on the upper 1 —« (default
is 0.05) point of the fitted cumulative distribution function is considered to be outlying. We note

that an exemplar can be a single observation or a bunch of observations.
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7.7 DDC algorithm

This particular method is quite different from any other method that we have discussed so far. That
is because it does not handle outliers in a n x d data matrix as d-dimensional observations but
as single deviating data cells. Generally, outlying methods detect cases that do not belong in the
dataset, because they are members of a different population, handling them as points in d-dimensional
space making them in that way indivisible (and not looking in each dimension seperately). In [44]
Rousseeuw et al. consider each case as a row in the n x d data matrix that can be divided into cells.
Matrix-wise, the motivation for this method was the simple assumption that some rows may be
outlying due to some of their columns’ values while other may be normal. It has been proved [3] that
given a fraction € of contaminated cells at random positions, the expected fraction of contaminated

rows is

1—(1—¢)
which quickly exceeds 50% for increasing € and d. Many methods under that percentage of contam-
ination are unable to reach sufficient conclusions about the outlying objects.

The DDC algorithm runs with any underlying distribution for the data set. However, it works
ideally under the assumption that the x; rows of the underlying data set are generated from the
multivariate Gaussian with unknown d-variate mean p and positive semi definite covariance matrix

3.
Suppose a n x d data matrix X.
The DDC algorithm firstly standardizes X to Z

== (4)
J

where m; is a robust estimator of location for each column j and is computed as follows
n
m;j = robLoc(x;) = 2i Wiy Tij .
D i1 Wi
where the weights are given by

x;; — med;(x;;) £\ %) 2
wij:W< J —— ) and W(t):(l—(—)>, it <c
’ med;|z;; — med;(x;;)] c

where c is a positive constant (default value is 3).

Furthermore, s; is a robust estimator of scale for each column j and is computed as follows

1 ig 10
s = robSCale(Xj> = medj‘xij — mj’ . \/5 . ave?p( Tig — My )

med;|wi; —m|

where p(t) = min(t?,b%), b* = 2.5 and § = 0.845 ensuring consistency for Gaussian data.

We note that this method of estimation constitutes the first step of the M-estimators algorithm
44, 37].
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After the columnwise standarization in (1), the DDC algorithm creates a new matrix denoted as

U defined as
zij o if |z < /X3
’U,ij _ J | ]| Xl,p (5)

NA |, otherwise

where x7  is the py, quantile of the x? distribution with 1 degree of freedom. Basically U matrix is
an outlier detector in the univariate case of each column flagging the values that exceed a certain
cut off value.

In addition, the DDC algorithm takes into consideration the bivariate correlations between vari-
ables for each observation.

For columns j,h with ¢ # h DDC employs a robust correlation measure dented as cor;h, that
is the plain product-moment correlation of the data points (u;;, u;,) inside the ellipse around (0,0)

with coverage probability p as in (2) implied by the initial correlation estimate

2 2
(robScale(qu + uzh)) — <T0bScale(uij - uzh)>
4

(6)

Pjn =

DDC algorithm uses only the pairs (j,h) that satisfy corj, > 0.5 computing a robust slope b;;, of
a robust regression line without intercept that predicts variable j from variable h. That line is

computed from the points that satisfy |r;;| < Xip -m(r5n) where rp; = w;; —bjp-w, fori =1,....n.

Uih

DDC denotes \Aj;, as the initial slope of the (j, h) pair defined as \;, = med; (uﬂ )

Furthermore, DDC algorithm computes the predicted values of ,; considering only the variables
that their correlation measure with the jy, is above 0.5 (constructing along with h an index space

denoted as H;) as follows
Uij = G({bjh “ug | hoe Hj}) (7)
where G is a combination rule that handles the NA values.
Finally, DDC algorithm computes the standardized cell residuals, defined as

p M Wy
W (s
mi (dij — wij)

and flags in each column j the cells that satisfy |ri;| > /X7,
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7.8 Applying outlier detection using distribution-based methods to wood
specific gravity data

In this section we will illustrate the plot O3. Plot 03 was designed for outlier detection. What makes
it so intuitive is the fact that it is able to detect outliers in lower dimensions of the underlying data
set through varying combinations of the respective variables. Unwin [58] originally presented this
plot concerning outlier detection. The O3 plots are able to detect outliers employing the six different
methods that were presented above.

We illustrate the Plot O3, with the use of the well known by now Wood specific gravity data.
We employ the following functions from the R package Outliers03

e O3prep: Identifies outliers for the variable combinations and tolerance levels specified. It is

used as an input for the following functions.

e O3plotT: Draws O3 plots for one method and up to three tolerance levels and supporting

parallel coordinate plots.

e O3plotM: Draws O3 plots for more than one methods enabling the comparison between them

and supporting parallel coordinate plots.
We begin our analysis testing the FastMCD method to the data inputting 0.5 as a tolerance value

> MCD <- 03prep(my_data, kl1=1, method=c("MCD"),tols = 0.05)
> MCD_plot <- 03plotT(MCD)
> MCD_plot$g03

The O3 Plot is divided into two blocks by the two white columns in the middle. In the left block
each column represents a different variable and each row a different combination of them. Gray
cells show which variable participates in each combination while the blue dashed lines separate each
group of different number of variables participating in the combination. The variables are sorted by
their frequency of participation in the combinations. In the right block each column represents an
observation. Red cells in each row indicate the outlying objects flagged by the underlying method

for the combination of the variables in that row.
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Outliers identified by MCD at tolerance [JJij 005

Figure 11: O3 plot from the FastMCD algorithm

As we can see from Figure 11, the MCD method with a tolerance level of 0.05 detects six observa-
tions outlying. We note that the 11th observation was flagged by the most combinations of variables
along with the 7th. Also these were the only objects detected to be outlying when all of the variables
were combined. The MCD method seems to be affected by a masking effect maybe due to the low
number of observations in the data set.

Cases ever found to be outliers by MCD for tol= 0.01

x1 X2 x3 x4 x5 ¥

Figure 12: A parallel coordinate plot of all the data. The cases ever found to be outliers are coloured
red
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Relaxing the tolerance FastMCD detects three more objects as outliers (shown in Figure 13)
although only in univariate and bivariate combinations. In contrast, a stricter tolerance level of
value equal to 0.01 leads to the detection of four outliers, 16,9,7 and 11. In figure 12 we see these

objects through a parallel coordinate plot.

)
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R A S
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Outliers identified by MCD at tolerances l:‘ 01 I:\ 0.05 . 0.01
Figure 13: O3 plot from the FastMCD algorithm for different tolerance values

We continue our analysis by giving the code for the BACON algorithm

>BAC <- 03prep(my_data, k1=1, method=c("BAC"), tols = c(0.1,0.05,0.01))
>BAC_plot <- 03plotT(bac)
>BAC_plot$g03
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Outliers identified by BAC at tolerances D 0.1 |:| 0.05 . 001

Figure 14: O3 plot from the BACON algorithm for different tolerance values
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In Figure 14 the BACON method is illustrated. From the 03 plot we see that the algorithm
detected in almost all the combinations the true outliers. We observe, though, that it did not flag
any object when all variables were combined. As we see in Figure 15, omitting variables x3 and y
from the data set, observations 4, 6, 8, 19 yield very low values in variables x1 and x4 and very high
values in x2 and x5. Furthermore, an increase of the tolerance value led to a significant increase of
the outlying objects in the univariate case of variable x5. Finally we note that the BACON algorithm
was indeed successful in finding the correct outliers in the underlying data set of 20% contamination
7, 11].

Cases ever found to be outliers by BAC for tol= 0.01

Figure 15: A parallel coordinate plot of the data considering only variables x1, x2, x4, x5

The code for the skewness-adjusted outlyingness measure is given below

> adjout <- 03prep(my_data, ki1=1, method=c("adjOut"), tols = ¢(0.1,0.05,0.01))
> adjout_plot <- 03plotT(adjout)
>adjout_plot$g03

The tolerance level in this case tends to be less sensitive in this method as we observe in Figure
16 that it identifies only three observations that have been also declared in the FastMCD method.
Although it did not give proper results it tends to give fewer outliers than the FastMCD.
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Qutliers identified by adjOut at tolerances D 01

Figure 16: O3 plot from the AO measure for different tolerance values

We examine the results of the HDoutliers algorithm by the following commands

> HDo <- 03prep(my_data, k1=1, method=c("HDo"), tols = ¢(0.1,0.05,0.01))
> HDo_plot <- 03plotT(HDo)
>HDo_plot$g03

R W 0 SR

%

Outliers identified by HDo at tolerances D 01 |:| 0.05

Figure 17: O3 plot from the HDoutliers algorithm for different tolerance values

As we see in Figure 17, HDoutliers is more sensitive than the aforementioned alogirithms cellwise
declaring observation 7 as an outlier in the most variable combinations. Like BACON and AO, it

fails to detect outliers when all variables are combined .
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Finally we present the code for the DDC algorithm below

> DDC <- 03prep(my_data, k1=1, method=c("DDC"), tols = c(0.1,0.05,0.01))
> DDC_plot <- 03plotT(DDC)
>DDC_plot$g03

Outliers identified by DDC at tolerances D 0.1 D 0.05 . 0.01

Figure 18: O3 plot from the DDC algorithm for different tolerance values

In Figure 18 we observe efficient results as the DDC algorithm was able to detect the true
outlying objects. More specifically observations 4, 6, 8, 19 are the only ones that were detected
in the combination of variables x1, x2, x3, x4, y. However the observation found as an outlier in
most cases was the 10th. Finally we observe that relaxing the tolerance value leads to more outlying

objects in lower dimensions and less in fewer dimensions.

7.9 Conclusions

Distribution-based methods have the advantage that they respond well to exact fit situations, that
is datasest that are generated from the multivariate normal distribution. Moreover, most of the
methods we discussed are robust so they can handle heavily contaminated data sets. Plot03 unifies
these methods and modifies them in order to detect outliers in every possible combination of the
data variables. This new tool enables the user to see the discrepancies in lower dimensions having in
that way more information about the data. This in fact is very useful when we want to look at the
behaviour of a data set with many variables in a smaller subset without any reduction method. The
poor results that most of the methods produced is probably due to the small number of observations

in the underlying data set.
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8 Humus Layer (O-horizon) of the Kola Data

The humus dataset is implemented in the mvoutlier package. The data originates from the Kola
Project, which was a geological survey and data collection effort conducted from 1993-1998. Samples
from the humus ground layer were taken from Norway, Finland, and Russia and elemental ground
makeup was recorded for 617 unique observations. The humus ground layer is formed from decom-
posing organic litter to include leaves, roots, branches, etc [55, 41, 17]. Humus layer is a data frame
with 617 observations on 44 different variables.

Before we begin our analysis we omit the first 3 variables because they represent the ID and
the coordinates of each observation.We then measure the skewness of the data using the function

skewness() from the R package moments.

Ag 6.1136720 Ni 9.3199522
Al 3.0464415 P 11.7156569
As 10.3667974 Pb  18.9472707
B 2.7078609 Rb 1.7673577
Ba 1.6708973 S 0.7695066
Be 6.3772582 Sb 1.8081578
Bi 2.7778763 Sc 2.5496159
Ca 6.9433935 Si 0.6158160
Cd 2.2540816 Sr  13.3922063
Co 8.3331150 Th 8.6649278
Cr 9.3505637 T1 1.8492946
Cu 12.2560644 U 20.0555647
Fe 6.2160905 v 3.5954228
Hg 4.0259441 Y 14.8257164
K 5.1160085 Zn 1.7124205
La 9.8782389 C -1.9757673
Mg 3.4694265 H -1.8453518
Mn 9.4020969 N -0.1644502
Mo 6.4442158 LOI -2.0947662
Na  10.7304293 pH 1.1165646

Cond 0.2414859
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As we can see from the above results, we deal with a high skewed data set that we have to log

transform in order to reduce the skewness.

log_humus<-cbind (humus [1:3],log(humus [4:27]) ,humus [28] ,log(humus [29:30]) ,humus [31],
log (humus [32:38]) ,1og(1+50.8-humus [39]) ,1log(1+7.1-humus [40]) ,humus [41],
log(1+98.8-humus [42]) , log (humus [43]) ,humus [44])

We note that variables like Cond did not need log transformation because of its very low value
of skewness. We only transformed when the absolute value of skewness was above 1. Furthermore,
for variables with negative skewness we log transform the reflected variables. As we can see below,

the log transformation of the dataset reduced by a lot the skewness of the variables.

Ag 0.07686216 Ni 1.21638725
Al 0.36323030 P 1.07475529
As 1.80696684 Pb 1.73450733
B 0.67454365 Rb -0.42419502
Ba -0.09421180 S 0.76950659
Be 0.37050354 Sb -1.04440349
Bi 0.23926369 Sc 0.01473079
Ca 0.01180195 Si 0.61581603
Cd 0.14538457 Sr 1.52768415
Co 0.94174909 Th 0.73218060
Cr 0.73792750 T1 0.10688968
Cu 2.15778988 U 1.03944466
Fe 0.60438594 v 0.59391029
Hg 0.39483989 Y 0.74417940
K 0.41581384 Zn -0.26501122
La 0.50176916 C 0.09347919
Mg 0.72110704 H 0.86359353
Mn 0.13273250 N -0.16445024
Mo 1.65680056 LOI 0.18002052
Na -0.25920409 pH 0.68674777

Cond  0.24148593
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8.1 Outlier analysis

We begin our analysis by running all the methods that we presented in the previous chapters based
on OutlierDetection package with their default settings. The advantage of these functions is that
while they use the outlier methods they employ a cutoff produced by bootstrapping. Therefore, each
observation which is denoted as an outlier, comes with a bootstrapped estimated probability of its

outlyingness.

> depthout_log_humus_dflt <- depthout(log_humus, rnames = FALSE, cutoff = 0.05,
boottimes = 100)

As we discussed, this method based on depth, computes the Modified Band Depth of each obser-
vation. Those that have the lowest values are considered to be outliers. For that purpose we tuned
a cutoff of 5%.

The results are given below

depthout_log_humus_dflt$ Location of Outlier"
[1] 28 35 60 75 133 160 173 201 232 238 256 258 275 297 301 383 390 399 409 451
478 487 615
> depthout_log_humus_dflt$ Outlier Probability"
(1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
1.00 0.99 1.00 1.00 1.00 1.00 1.00

We find that 23 observations have the least depth in the data set and they are lying in the
shallowest layers of the data set.

We now present the distance based functions nn and nnk and their results

> nn_log_humus_dflt <- nn(log_humus, k = dflt, cutoff = 0.95, Method = "euclidean",
rnames = FALSE, boottimes = 100)

> nn_log_humus_dflt$ Location of Outlier"

[1] 17 22 27 28 34 54 75 79 106 125 133 160 168 232 235 258 266 390 449 569

612 615

> nn_log_humus_df1t$ Outlier Probability"

[1] 1.00 0.99 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
>

> nnk_log_humus_dflt <-nnk(log_humus, k = dflt, cutoff = 0.95, Method = "euclidean",
rnames = FALSE, boottimes = 100)
> nnk_log_humus_dflt$ Location of Outlier”

[1] 17 22 27 28 75 79 106 125 133 160 161 168 232 235 240 258 266 358 390 449

569 612 615
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> nnk_log_humus_dflt$ Outlier Probability"
[1] 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00

In these methods we use for k£ nearest neighbors the default setting which equals 30 as it is
the integer part of the product 0.05*nrow(log-humus). We note that the cutoff in this case is 0.95
because the methods declare outliers with the highest distances exceeding this value. We recall
that nn computes the average of the k£ nearest neighbor distances while nnk computes the actual k
nearest neighbors distances. nnk detects a total of 23 observations as outliers out of which 8 points
were also detected in the depth-based method. nn method returns almost identical results to nnk

due to the large number of observations in the dataset.

In the context of distance we also present Hautamaki’s method concerning the in-degree number

of each observations. We recall that lower in-degree indicates higher outlying probability.

We present the 24 lower in-degree values with 7" = 8 as a cutoff

> which(8>=KNN_IN(log_humus, k= dflt))

>order (KNN_IN(log_humus, k= dflt)) [1:24]
77 615 28 34 75 125 168 355 449 258 385 569 68 232 266 311 399 582
27 41 66 160 201 515

We find that 8 observations match with the results of depthout while 12 match those of nnk’s.

Continuing our analysis we perform the function that detects outlying objects taking into ac-
count their RKOF values. We recall that higher RKOF values express higher probability of the
corresponding observations to be outliers.

The code along with the results are below

>df1t=0.05*nrow(log_humus)
> dens_log_humus_dflt <- dens(log_humus, k = dflt, C = 1, alpha = 1, sigma2 = 1,
cutoff = 0.95, rnames = F, boottimes = 100)
> dens_log_humus_dflt$ Location of Outlier"

(1] 17 22 27 28 34 41 75 77 79 106 125 133 160 168 201 232 258

266 390 399 449 565 569 615
> dens_log_humus_dflt$ Outlier Probability"

(1] 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 0.95 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

We note that this method detects 24 ouliers, 10 of which are also detected by the depth-based
method.
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For the purpose of finding outliers based on local density and the number of outliers detected
by the dens function we present the 24 highest LOF and RKOF values that were built in the
DDoutliers package with the default settings.

> order (LOF (log_humus,k=dflt)) [694:617]
[1] 41 565 133 22 399 79 106 201 160 34 390 27 232 266 17 125
77 258 569 168 75 449 28 615
> order (RKOF (log_humus, k=dflt, C=1, alpha = 1, sigma2 = 1)) [594:617]
[1] 133 41 565 399 22 79 106 201 160 390 34 27 266 17 232 125 258
77 569 168 75 449 28 615

First of all, we note that the dens function is consistent with the RKOF values produced by
the RKOF function. Furthermore, compering results between LOF and RKOF there is only a
small difference in the order of the outliers due to the different weighting of the two methods. The
advantage of these methods is that they measure each observation’s outlyingness. We also notice
that observations 615 and 28 with the highest LOF and RKOF values also have the second and third

lowest in-degree values, respectively showing some kind of consistency between these methods.

Consequently we expect that observations 168, 75, 449, 28, and 615 that were detected with high
LOF and RKOF values and also detected in most methods are indeed outlying.

Finally, we present the outliers detected by the Mahalanobis distance. Objects whose Mahalanobis
distance exceeds the cutoff y /x3; o975 = 7.78 are declared outliers.

> maha_log_humus <- maha(log_humus,0.975)
> maha_log_humus$ Location of Outlier"
9 27 28 31 34 35 53 60 61 63 65 67 70 75 87 90 97 116 125 133
135 139 168 173 194 200 219 232 235 237 238 240 258 261 265 275 290 299 311
332 341 352 359 362 376 378 383 390 395 399 418 420 427 441 449 459 469 478
480 487 488 501 518 521 557 558 569 573 574 576 580 605 613 614 615

We note a tremendous increase in the number of detected outliers as in this case 75 observations
are considered to be outlying. The underlying size increases as we can see in Figure 19 when we
compute robust distances instead. That is because the ellipsoid constructed from all observations is
affected by the contaminated objects. In contrast, robust distances are based on the MCD estimators
of center and covariance which are computed with fewer observations which are considered to be
uncontaminated, thus being able to capture all the outliers that classical Mahalanobis distance could

not with the same cutoff.
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Different methods have different cutoffs. For example squared Mahalanobis distances with the

assumption that the objects are generated from a p-variate Gaussian distribution, are X;Z; distributed

and thus a percentile of X12; is used as a cutoff. The previous methods do not need any distribution

assumptions but their sensitivity in most cases depends on k and of course on the percentile cutoff

that we choose to use.
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Classical Mahalanobis distance
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Index of object

Robust Mahalanobis distance
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Index of object

Figure 19: Mahalanobis distances versus the object number. On the left, distances are computed

using classical estimates for for location and covariance. On the right, they are computed based on

the MCD estimator

Number of outliers
dens nnk Percentage
25 23 5
26 24 10
24 25 15 0.95
26 22 20
23 21 25
83 83 5
85 83 10
88 84 15 0.85
87 84 20
84 85 25

Table 6: Number of detected outliers for different k£ and percentages for den and nnk
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k Observations

5 T=0: 344177126 171 224 232 237 311
355 428 458 605

T=1:12 25 61 66 97 135 140 166 201
211 243 258 262 299 326 379 381 393
399 406 452 466 491 519 532 535 546
565 580 582 610 614 615

10 T=0: 77 311 355

T=1: 34 126 582 605 615

T=2: 4166 68 111 139 171 201 232 258

379 428
KNN_IN 15 T=0: 311 355
T=1: 77
T=2: 34 68 139 201 258 379 615
20 T=0:0

T=1:77 311 355
T=2: 34 68 615
25 T=0:0

T=1: 0
T=2:77 355 615

Table 7: Number of detected outliers by KNN_IN for different cutoffs T’

In Table 7 we observe that increasing the number of k£ we detect fewer outliers with these in-
degrees values. For example when k = 25 we detect only 77, 355, 615 with indegree value equal to

2. That means that in neighborhoods of 25 points three observations participate in only two.
In Table 8 we observe different LOF and RKOF values for different k. When applying these

methods there is no clear answer about the optimal choice of k. Bigger k indicates bigger scale
for the neighborhood. Increasing k& we detect a weak convergence of the methods. For example
for k = 15,20,25 observations 75, 449, 28, 615 based on their LOF values are outlying with the
same ascending order. In case of RKOF we detect a slightly weaker convergence as we detect for
the same k, observations only 449, 28, 615 outlying in the same order. We speculate that the log
transformation had a smoothing effect to the distances of the data objects making the neighborhoods

less contaminated so that the robustness of the RKOF provided the same results as LOF.
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Methods k Observations

5 515 61 399 458 171 610 54 385 126 582
66 311 201 258 34 390 355 41 77 28 232
615 569 75 449

10 61 554 582 458 201 390 311 355 17 27
385 34 160 41 258 266 125 232 168 569
77 75 449 28 615

LOF 15 22 311 355 399 79 41 201 106 385 27
160 390 34 17 266 232 125 258 168 77
569 75 449 28 615

20 117 565 41 22 399 385 79 106 201 160
17 390 34 27 266 232 125 77 258 168
569 75 449 28 615

25 117 41 385 565 22 399 79 106 201 27 34
160 390 232 17 266 125 77 258 569 168
75 449 28 615

5 135 160 201 54 61 399 385 610 582 28
311 171 126 66 258 34 615 77 355 390
41 569 232 75 449

10 201 458 554 582 390 61 17 311 27 385
34 355 258 160 266 125 168 41 232 569
77 75 449 28 615

RKOF 15 22 79 399 106 311 201 355 390 41 385
17 27 160 34 266 258 125 168 232 77
569 449 75 28 615

20 565 355 22 399 79 41 385 106 201 390
17 160 34 27 266 125 232 258 168 77
569 75 449 28 615

25 117 399 41 22 565 385 79 106 201 390
34 160 27 17 266 232 125 258 168 77
569 75 449 28 615

Table 8: LOF and RKOF values for different k. The 25 highest values are listed.

78



So far we have a rough idea about the outlying objects, but due to the high dimensionality we
do not have a picture of the objects. For that purpose, we will use the 03 plots that are can be very

useful when we want to see the nature of the objects in smaller dimensions.

We choose randomly four variables (Al, Co, Cu, Ni) for examination. Our goal is to figure out if

the previous results have any consistency in lower dimensions.

We begin our analysis by comparing HDoutliers and FastPCS. For these methods to be com-
parable, we choose different tolerance levels. We recall that HDoutliers labels observations as outliers
if they fall in the (1 — «) tail of the fitted exponential distribution. On the other hand the tolerance
level of FastPCS equals 1 —a where « in this case is the size of the subsets used in the algorithm. The
algorithm after computing an optimal subset declares as outliers all the observations whose distances
exceed a Y3 cutoff. For illustrative reasons we choose a low tolerance level for FastPCS while in

HDoutliers we use the default setting.

>HPmethods <- 03prep(sd_log_humus, method=c("HDo", "PCS"),tolHDo = 0.05,
tolPCS = 0.01)

>HPmethods_03 <- 03plotM(HPmethods)

>HPmethods_03$g03

(a] ] \a) A
o oy LRGPP SEEO SR S s eip e g o d

Outliers identified by D HDo D PCS

Figure 20: O3 Plot comparing HDoutliers and FastPCS

In Figure 20, we notice that for the given tolerance levels the two methods do not overlap. That is
partly because FastPCS does not detect ouliers in the univariate case. On the other hand we observe
that HDoutliers while it detects a lot of outlying objects (especially in variables Cu and Ni), fails to
detect outlier in higher dimensions. The idea of the method is, as we discussed, to group cases that

are very close together in exemplars before calculating nearest neighbor distances. If there are too
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many cases with the same or close values, this can result in the algorithm identifying far too many
cases as outliers. For example all observations until 615 are not detected by FastPCS even though
they are considered to be outliers by HDOutliers.

Finally increasing the tolerance level for the FastPCS to 0.25 (indicating initial subsets of 0.75 -
617 ~ 461 objects) the method detects 268 observations.

Next, we present the comparison of FastMCD and adjOut. The tolerance level for the first
method corresponds to the quantile (default is 0.975) of x2 set by the user. In this case it is set to
that small value (1-0.999) in order for the plot to be representative. As for the latter method, its
tolerance method corresponds to the quantiles that we want to use in order to build the skewness
adjusted boxplot.

> Mamethods <- 03prep(sd_log_humus, method=c("MCD", "adjOut"),
tolMCD = 0.001,toladj = 0.2)

> Mamethods_humus_03 <- 03plotT(Mamethods)
>Mamethods_humus_03$g03
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Figure 21: O3 Plot comparing FastMCD and adjOut

The FastMCD method results in many more outliers than adjOut as we notice in Figure 21. That
is because of the different perspective of their cutoffs. Moreover, unlike FastMCD, adjOut does not
have any distributional assumption and its cutoff takes into account the skewness of the data. We
recall that we have already log transformed the data before the analysis and due to the fact that this
modified boxplot is wider than the classical one, we find this insensitivity of the method reasonable.
That is probably why adjOut does not detect any outliers in the univariate case. Furthermore, we

notice that in most cases the results of adjOut overlap with FastMcd’s. Of interest is observation
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615 which is detected by adjOut only when Al, Cu, Ni are combined and based on our analysis so
far it is probably outlying.

We note that most observations are detected by the combination of Co, Cu, Ni. As we see in
Figure 22 outliers (labelled as red) correspond to high values in these three variables in comparison

with the non outlying points.

Cases ever found to be outliers by 2 methods

Figure 22: Parallel Coordinate Plot for FastMCD and adjOut

Finally we present the O3 plot of DDC and BACON. The tolerance level for DDC is o which
indicates the 1 — a percentile of x? (it is a cellwise detection). As for BACON we choose a tolerance
level of 0.95. We recall that the cutoff value for the latter method is the value of Xi 0.95

’ 617

> DBmethods <- 03prep(sd_log_humus, method=c("BAC", "DDC"),tolBAC = 0.95,tolDDC = 0.03)
> DBmethods_humus_03 <- 03plotM(DBmethods)
> DBmethods_humus_03$g03

In Figure 23 we note that like FastPCS, the DDC algorithm does not detect outliers in the
univariate case. We further note that BACON like FastMCD detects a large number of outliers.
However BACON is not considered to be a robust tool as its breakdown point is 20%. In addition we
notice, in rows c0110 (indicating that Co and Ni are the variables combined) and c0111 an overlapping
of the two methods in the most detected observations. We also note many differences in the flagged

cells due to the fact that DDC takes into account the robust correlations between variables while

BACON does not.
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Figure 23: Plot comparing DDC and BACON

As we discussed FastMCD, BACON and FastPCS have a similar perspective on detecting outliers.
Their common key idea is that all of these methods search for an “outlier free” subset and based
on that flag the bigger distances. Figure 24 shows the consistency of these methods. Moreover, we
observe that the BACON method detects the most cases followed by FastMCD and finally the fewest
cases are detected by FastPCS.
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t

No of methods identifying outliers . 1 . 2 . 3

Figure 24: Plot comparing FastMCD FastPCS and BACON
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We present the code for Figure 6 along with the outliers flagged by each method below

PBMmethods <- 03prep(sd_log_humus, method=c("BAC", "MCD","PCS"),tolBAC = 0.95,
tolMCD = 0.001,t0lPCS = 0.01)
PBMmethods_humus_03 <- 03plotM(DBmethods)
PBMmethods_humus_03$g03
PBMmethods_humus_03$n0ut
PCS BAC MCD
12 48 42

Looking at the above plots we observe that the combination of variables Cu and Ni results in the
most observations detected as outliers. We recall that we have already log transformed our data in
the prepocessing step. Looking at Figure 25 we see a linear relationship between the log transformed
variables. Moreover, we have labelled the observations that were most detected by the methods in
the OutliersO03 package. We observe, that observations 87, 35, 28, 67, 75 were flagged by all the
methods the most times by most combinations. Scatterplot shows that these observations are indeed
far away from the rest of the data. While observations 28 and 75 seem to be strong outliers when the
whole dataset is tested, observations 87, 35, 67 do not share the same role. Moreover, observations
like 449 and 615 based on this scatterplot do not seem to be outlying so much from the rest of the
data even though they were noted by the most LOF and RKOF values when the whole dataset was
tested. Therefore, it can be seen that a subset of variables can interpret the outlyingness of some
objects but it also shows that possible strong outliers can be presented as normal points and vice

versa.
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Figure 25: Scatterplot of Cu and Ni
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Finally, we search for outliers in the dataset after being reduced to lower dimension. For that
purpose we employ the method of Principal Components Analysis (PCA). PCA is the most famous
procedure for dimension reduction. It produces the Principal Components that are fewer than the
original variables when the latter are highly correlated (like the log transformations of Cu and Ni
presented in Figure 25). Briefly, Principal components are the eigenvectors of the covariance data
matrix with the highest eigenvalues multiplied by the underlying data matrix. Consequently they are
linear transformations of the original variables, orthogonal and uncorrelated. Thus, in this section
with the use of PCA we represent the distances between objects in 41-dimensional space in the
directions with the maximum variance i.e. information of the dataset.

We present the code we used for the computation of the principal components and the first 5

components based on their proportion of variance.

PCA_log_humus<-princomp(log_humus)

Components 1 2 3 4 5
Proportion of variance || 0.93 0.067 0.0065 4.04x107° | 1.86 x 107°

Table 9: Components ordered by their proportion of variance

Based on Table 9 keeping only the first two components we can retain approximately 99% of
the original variance. That means that we can actually visualize the distances of the observations
without losing information.

With the scores computed above, we run again the methods setting as k (when required) the
values in Table 10. We compare the results of the methods before and after the PCA giving a

proportion of their intersecting values. The R code we used to obtain the scores is below.

PC12_log_humus<-PCA_log_humus$scores[,1:2]

Percentage

g 5 10 15 20 30
Methods
dens 56% 76% 91.97% | 95.83% | 92%
LOF 76% 76% 92% 100% 96%
KNN_IN 36% 44% 60% 72% 80%
nnk 92% 84% 84% 88% 92%
maha 16%
depthout 37.5%

Table 10: Percentages of consistency before and after PCA
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Figure 26: Scatterplot with the principal components for the dens method with £k = 20. The

observations labeled red are the detected outliers

400-

ol

399

232

™ -
£ 5
s 5
n Z O
W
% . d
-
" -
.
-
- -
. e
T L e L o.oh o0
* Sem, * .ﬂ s :
. . - ... - M .

4 aa
.. - .”. ... ?.mm
LR, .___..... ..1.... o
..oo
Lo nt ity .um_u.u x .ﬂu.. L
..4. uo. .ﬂooouoo.-
.
w uo“ 5 *s va
HY M. . F
:.._ . u Do
[=>]
@
o
{{=]
s}
L
G- (=71
=
-4
L
: ; :
Zo|qelE A

201 T™

-1000

-2000

Variable1

Figure 27: Scatterplot with the principal components for the dens method with k£ = 5. The observa-

tions labeled red are the detected outliers
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Figure 28: Scatterplot with the principal components for the nnk method with & = 15. The obser-

vations labeled red are the detected outliers
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Figure 29: Scatterplot with the principal components for the nnk method with £ = 5. The observa-

tions labeled red are the detected outliers
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For LOF and KNN_IN, we compared the 25 highest values while in the remaining methods, the
percentage is computed taking as denominator the larger number number of detected outliers before
and after PCA of each method (we omitted nn and RKOF due to their consistency with nnk and
dens respectively). We note that these proportions of common detected outliers do not imply the
same weighting order.

Since we found from principal components analysis that we can project the whole dataset in two
dimensions without losing almost any information, we are able to visualize it in a scatterplot. As we
can see in the next figures, the objects form one cluster and the outliers seem to be in the form of

extreme values.

We observe that increasing k£ in dens and LOF, the number of mutually detected ouliers also
increases in each method before and after applying PCA to the data. Moreover, we observe the same
thing for KNN_IN but with smaller rate. If we set k = 60 we get a percentage of consistency equal

to 96% . On the contrary, the nnk method shows consistency in lower values of k.

In Figures 26 and 27 we see exactly why there is such a difference in the consistency between the
results before and after applying PCA to the dataset. Choosing k& = 5 makes the algorithm search
for outliers in an undesirably local prospect. Based in Figure 27, the method detects observations
that they do not seem to be outlying, just because the knn neighborhood we chose for local detection
is too small. Furthermore, even though PCA managed to retain almost all the information of the
variables, some of it is inevitably missing and it is more likely to be seen in objects that are close to
each other than the ones that were already sufficiently far. Consequently, the method tuned in & = 5,
was set to detect outliers even inside the underlying region in which the distance of the objects after
PCA was slightly changed. In contrast, nnk function marks as outliers those observations that have
the highest knn distances, that is, the points that are away from the region not depending so much

on the value of k. That is why, its results we obtained before and after applying PCA were similar.

For the purpose of comparing these two methods, we note that due to the fact that the objects
formed one cluster, they detected almost the same objects. nnk function detected observation 133
while dens did not even though both of the methods detected observation 106. However, dens
function managed to detect observations 399 and 565 which can be (based on the plots) declared as
outliers. Furthermore interesting is the case of observation 385 which even though it may not be

considered as extreme, is definitely isolated from the region and was detected only by dens.

Finally, maha and depthout values do not seem to be as consistent as the aforementioned
methods. depthout takes into account every pair of points in computing the modified band width

of each observation without having a fluctuation parameter like distance or density based methods.
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The case of the maha function is interesting. We present the results after running the maha
function on the scores of the principal components.

>maha_PC12_log_humus<-maha(PC12_log_humus,0.975)

>maha_PC12_log_humus$ Location of Outlier-”

>[1] 17 27 28 34 41 75 79 106 125 160 168 201 232 258 266 399 449 569 615
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Figure 30: Scatterplot with the principal components for the maha method with /X3 o975 ~ 2.72
cutoff. The observations labeled red are the detected outliers
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We recall that before applying PCA, the maha function detected 75 outlying observations. It is
known that by employing the PCA method the underlying data matrix is projected into the directions
that best explain the data set. With that being said, we can assume that objects that were not
explained by the principal components are probably the outlying ones. Consequently, applying PCA

to the data is very useful in the case of methods that declare outliers by their Mahalanobis distances.
Finally, we compare the results from the classical Mahalanobis distances with the robust distances.

For that purpose, we employ the following codes

> Moutlier_PC12_log_humus<-Moutlier (PC12_log_humus, quantile=0.975,plot=TRUE)
> which(Moutlier_PC12_log_humus$cutoff<Moutlier_PC12_log_humus$rd)
12 17 27 28 34 36 40 41 49 54 61 73 75 77 79 106 125 160 168 201 221
232 244 258 266 268 275 375 399 449 569 615

Mahalanobis distance

-—- e ittt o

Classical Mahalanobis distance

Robus

0 100 200 300 400 500 600 0 100 200 300 400 500 600

Index of object Index of object

Figure 31: Plots showing the classical and robust Mahalanobis distances for /X3 o975 =~ 2.72 cutoff.
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Observing Figure 31 and the results we notice an increase in the number of outliers in the robust
case, but considering that most of the outlying objects were only slightly above the cutoff line,
both of the methods share the same set of outliers. Moreover, we employ the aq.plot function which
compares the exceeding robust distances using the cutoff from y? and an adjusted quantile depending
on the empirical distribution of the robust distances. As we notice from the results, the exceeding
robust distances based on the adjusted cutoff and taking into account the scatterplots presented in
Figure 32, are more consistent with dens and maha than the ones exceeding the ,/x3g75 value.
However, interesting is the case of observation 77 that was only detected with the classical cutoff

and not the adjusted.

> aq.plot_log_humus <- aq.plot(PC12_log_humus, delta=qchisq(0.975,
df=ncol (PC12_log_humus)), quan=1/2, alpha=0.05)
which(TRUE==aq.plot_log_humus$outliers)

>[1] 17 27 28 34 41 49 75 106 125 160 168 201 221 232 244 258 266 399 449 569 615
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Figure 32: Upper left plot shows the robust Mahalanobis distances. Upper right plot shows the
empirical distribution of the robust distances. The red line labels the y? distribution and the two
vertical lines label the 97.5% cutoff and the adjusted quantile cutoff respectively. The two lower plots

labels in red the outliers that exceed each cutoff.
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8.2 Conclusions

In this section, we presented all the methods that we have introduced, applying them to the humus
dataset. First, we did a search for outliers applying all methods tuned to their default settings
in the whole data. Even though we found common outlying objects in all of the methods, different
methods detect different kind of outliers. Moreover, there is no straight answer to which are the right
parameters for the optimal selection, due to high dimensionality of the raw data. In that context, we
examined a subset of variables, to see if some of the strong outliers that were detected in the whole
data frame could have originated from it with the use of the methods employed by the R package
Outliers03. We noticed overlapping between most of the methods, specifically FastMCD, BACON
and FastPCS. Finally we applied PCA to the data, which probably because of the high correlation
of the variables could be projected in only two directions that preserved the variance of the objects.
Moreover we observed a consistency of the percentages of the common outliers being detected for
each method before and after PCA. Based on that last observation and the fact that we are able to
visualize the data in a scatterplot, we compared the methods with k best suited for each method.
We note that the lowest consistency percentage was yielded by the Mahalanobis distance method

which before PCA declared far more observations than the other methods.

91



9 dat dataset

In this section we will apply the methods presented above in the dat dataset where the majority of the
data came from a bivariate Normal distribution [19]. The dat dataset is included in the mvoutlier
package. It is an illustrative data example consisting of 100 observations on two variables. It is

constructed to have outliers.

In Figure 33, we mark the observations that can be considered as observations far away from the
bulk of the dataset.
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Figure 33: Scatterplot showing possible outlying points

9.1 Outlier analysis

We begin our analysis by applying the maha function to the data. Its code and the obtained results
are shown below

maha_dat$ Location of QOutlier"
[1] 58

> maha_dat$ Outlier Probability"
[1] 0.9887983

As we can see from the results the maha function detected only one observation. We speculate
that the contamination in the dataset by extreme values, prevented the appropriate estimation of
scale and location, leading to a masking effect for the rest of the outliying objects.
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We continue our analysis by computing the robust Mahalanobis distances of the objects employing
the MCD method.

> Moutlier_dat<-Moutlier(dat,quantile=0.975, plot=TRUE)
> which(Moutlier_dat$cutoff<Moutlier_dat$rd)
(1] 1 2 3 4 5 6 7 8 9 10 36

As we can see from the results and Figure 34 the Mahalanobis distances based on the MCD
method exceeding the cutoff correspond to the objects forming the cluster to the bottom right plus
observation 36. That means that the ellipse constructed by the MCD estimators of location and

scale separates these points from the rest of the data in which observation 58 is included.
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Figure 34: Plots showing (left) classical Mahalanobis distances versus the robust distances for cutoff

\/X%,o.975 =2.72

We obtain the same results using as cutoff for the robust Mahalanobis distances the adjusted

quartile, shown below in Figure 35.

aq.plot_dat <- aq.plot(dat, delta=qchisq(0.975, df=ncol(dat)), quan=1/2, alpha=0.05)
>which(TRUE==aq.plot_dat$outliers)
(1] 1+ 2 3 4 5 6 7 8 9 10 36
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Figure 35: Upper left plot shows the robust Mahalanobis distances. Upper right plot shows the
empirical distribution of the robust distances. The red line labels the y? distribution and the two
vertical lines label the 97.5% cutoff and the adjusted quantile cutoff respectively. The two lower plots

labels in red the outliers that exceed each cutoff.
We continue our analysis by applying three methods implemented in the OutliersO3 package.

PBMMethods_dat <- 03prep(dat, method=c("PCS", "BAC", "MCD"),tolPCS=0.1,
tolBAC=0.95,t0olMCD =0.01 )

As we see in Figure 36, FastMCD, FastPCS and BACON overlap completely except for observation
36 which is only detected by BACON. Moreover, we notice that these results also overlaps with the
results obtained by the Mahalanobis distances. This is quite reasonable, one might think, because
all four methods form an ellipse based on the identification of an optimal subset of h observations

and based on a X;a cutoff declare the outliers.
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Figure 36: Plot comparing FastMCD, FastPCS and BACON

Next we apply the depth-based method to the data.

> depthout_dat <- depthout(dat, rnames = FALSE, cutoff

> depthout_dat$ Location of Outlier”

(1] 4 5 6 7 9 10 36 58

> depthout_dat$ Outlier Probability"

[1] 1.00 0.95 0.95 1.00 0.99 0.90 0.99 0.96

> depthout_dat$ Location of QOutlier"

(1] 1+ 2 3 4 5 6 7 8 9 10 11 23 25 26 27
28 29 31 33 34 36 58 62 73 77 90 94
> depthout_dat$ Outlier Probability"

[1] 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.97 1.00
1.00 0.97 1.00 0.90 0.95 1.00 0.98 0.90 0.74 1.00
1.00 1.00 1.00 1.00 0.92 1.00 0.97 0.96

= 0.1, boottimes = 100)

In Figures 37 and 38 we see that increasing the percentile threshold the observations that are

only in the border of the data cloud are detected. For the underlying dataset we conclude that this

way of searching for outliers is less focused than the other methods above.
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Figure 37:

Scatterplot of observations detected by depthout for percentile threshold 0.1
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Figure 38: Scatterplot of observations detected by depthout for percentile threshold 0.3
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nnk function

number of outliers k
11 27 28 34 36 58 77 78 90 94 98 )
11 28 35 36 58 62 69 73 77 78 90 94 6
11 25 28 35 36 58 62 69 77 78 90 94 7
11 25 27 28 33 34 36 58 62 69 77 78 90 8
11 25 27 28 33 36 58 62 69 77 78 90 9
11 25 27 28 33 36 58 62 69 77 90 94 10
1234567891011 36 58 11
1234567891036 58 15
1234567891036 58 30
12345678910 3658 40

Table 11: Number of detected outliers for different & for nnk for percentile equal to 0.85
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Figure 39: Scatterplot of observations detected by nnk for percentile threshold 0.85
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In Table 11 we present the outliers detected by the nnk function for different values of k. We
observe an instability in the first values and then a convergence to the observations that were also
detected by the robust Mahalanobis distances plus observation 58 that in the latter method was
considered to be extreme but not as outlier. Moreover, in Figure 39, choosing £k = 7 sets the
algorithm to search for outliers only in the bulk of data to the left of the scatterplot where it detects
the observations that are on its border while the small cluster to the right does not get detected for

any outlying action due to the small value of k.

KNN_IN function
number of outliers
158 836 100 11 28 8590 91 94 98 9 5
11 58 36 28 77 90 94 27 33 62 20 25 73 10
58 11 36 62 27 33 90 94 25 28 73 77 1 15
58 11 36 27 62 90 25 28 73 94 33 77 1 16
58 11 36 27 62 90 25 28 73 94 33 77 1 17
58 11 36 27 62 28 90 94 25 33 73 1 2 18
58 11 36 27 6228 90 257394 12 3 19
58 36 11 276228 2573901234 20
36582345678910271 30
3658345679108 1262 40

Table 12: Number of detected outliers for different k£ for NNK_IN. The thirteen observations with

the lowest indegree number are listed

Applying KNIN_IN to the dataset we obtain the same results as nnk for high values of k. The
difference between these methods lies in k = 15. Setting £ = 15 the KININ_IN method detects values
that are indeed far away from the right data cloud, marked with red colour as we see in Figure 40.
Moreover, it detects observation 1 (marked with black colour) which is isolated from both clusters.
Consequently, for £ = 15 KNN_IN handles both of the clusters as outlier-free subsets points and
detects as outliers the points that are far away from each cluster. That is why, this method even if
it uses knn distances, also shares some of the properties of a density based method as it searches for

observations that participate in the fewest k nearest neighborhoods.
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Figure 40: Scatterplot of observations detected by KINN_IN

detected outliers

LOF RKOF
11 8081986117490 77369491 58 | 81100 11 809461 7790367419158 |5
81 353290 62 77 33 27 91 69 11 36 58 | 98 33 32 81 27 77 94 90 11 69 91 36 58 | 10
32 28 62 25 77 90 27 91 33 69 11 36 58 | 81 94 32 28 33 27 77 90 11 91 69 36 58 | 11
790425829127 3369 11 36 58 7728 30 33 27 90 2 8 91 11 36 69 58 12
823965691074 113658 9136582710411 3669 58 13
1823651097411 3658 1657943669 10112858 14
182973366510114 58 79693636521184 10538 15
1136 8213651058974 3611821103659 7458 20
11823613581065974 11368215831065974 30
1136812365109 7584 11368123586510974 40

Table 13 shows the thirteen most outlying observations based on their LOF and RKOF values
(the computed RKOF values are based on the default settings of RKOF function). We notice that

both methods follow the same pattern, noting an instability in small values of k while for higher

Table 14 shows the outliers based on the highest RKOF values, the computations of which were

values both methods detect the objects marked in Figure 33 .

99

Table 13: Detected outliers for different £ for LOF and RKOF. The thirteen observations with the
highest LOF and RKOF values are listed

made setting C' = 0.1. Parameter C' influences the knn distances enabling RKOF to be more sensitive

for objects in the spatial regions of the dataset as we see in Figure 41. We note, observations 99 and




24 to be detected for the first time as outliers lying inside the data cloud. Such isolated observations
were not detected by any of the previous methods, because most of the previous methods are able
to detect outliers on a more global scale. Finally, we note that by setting £ = 11 and C' = 0.1 the
method handles the cluster in the right-hand side of the scatterplot as uncontaminated and searches

for outliers in the borders and in spatial regions of the left cluster.

RKOF function
detected outliers

80 45 18 4 10 100 91 69 11 61 36 58 1 5

78 11 24 18 99 30 80 100 36 69 61 91 58 10
78 99 18 24 11 30 80 100 36 69 61 91 58 11
18 78 99 24 11 30 80 100 36 69 61 91 58 12
18 80 78 24 99 11 30 100 36 69 61 91 58 13
37 78 80 24 99 100 11 30 36 69 61 91 58 14
78 37 24 80 100 99 11 30 36 61 69 91 58 15
89 80 99 78 24 100 11 30 36 69 61 91 58 20
80 78 89 99 24 100 30 11 36 61 69 91 58 30
78 34 80 24 100 89 30 11 61 36 69 91 58 40

Table 14: Detected outliers for different k& for RKOF with C=0.1

58

04 5 o b | Class
* MNormal

“  Qutlier

Variable2
[ =]
&
[{=]
-

€0
o

ol

25 0.0 25 5.0
Variable1

Figure 41: Scatterplot of observations detected by RKOF for k = 11
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9.2 Conclusions

In this chapter we searched for outliers in the dat dataset. As we saw in the scatterplots, the data
points form one big spatial cluster and a small cluster with a lot fewer objects. Distribution-based
methods, like FastMCD, BACON FastPCS and robust Mahalanobis distances, were able to detect
the bulk of the normal data and separate it from the outlying objects. We observe that these methods
did not declare observation 58 as an outlier. Furthermore, the depth-based method based on the
modified band depth, assigned lower depths to the observations that were on the global borders of
the data cloud. Distance-based method nnk for high values of k£ recognized as outliers the small
cluster that is far away from the rest of the data as well as some objects of extreme values lying
in the bounds of the big cluster while for lower values of & it did not search for outlying objects in
the small cluster. KININ_IN behaved like nnk for high values of k£ but for lower values k£ handled
both clusters as normal and searched for outliers with respect to each cluster. Finally, density-based
methods for high values of k& gave the same results as nnk and KINNN_IN while for small values

(especially the RKOF') they searched also for isolated points within the big cluster.
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10 General Conclusions

Outlier detection has always been a hot topic in data analysis because there is no general method to
search for points out of a pattern. Moreover, outlier analysis helps the user to make a more focussed
interpretation for the target dataset and at the same time to unlock possible prospects for further

investigation based on the detected abnormalities.

Consequently, this inability to construct a generally effective method led to a variety of different
outlier detection methods, some of which were discussed and examined above. Briefly, in Chapters
3, 5 and 6 we presented methods that unlike the methods introduced in the later chapters do not
depend on the distribution generating the data. However, they are also based on a certain assumption
whether this is depth, distance or density. Inevitably, all of the aforementioned methods differ in the

kind of outliers they are searching for.

Testing these methods on the humus and dat datasets we conclude that no method outperforms
all the others.

In case of dat, we noticed that even though the objects are normally distributed, widespread con-
tamination can mask the true outlying objects when applying classical methods like the Mahalanobis
distance so robust tools have to be employed. Moreover, we encountered a significant difference be-
tween distributional and non-distributional methods. While the latter methods declared some of the
points as outliers, the former methods labeled them as normal points of extreme values. Finally,
methods based on the data’s density are able to detect points that for the rest of the methods could
be considered normal as they are designed to be more sensitive searching for isolated points in the
inside regions.

In case of humus, we saw how these methods work in higher dimensions. Moreover, we searched
for outliers in a subset of variables to see the behaviour of the outlying objects detected on the
global scale. Finally, we analyzed how the obtained results change after using the PCA method
showing that Mahalanobis distance can be affected greatly by a dimension reduction even if most of
the information is retained. In contrast, methods based on distance were consistent after variable
reduction while methods based on density showed that the local regions of each observation can be

modified after using PCA even if we are able to retain most of the variation.
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[Tepiindmn

YNy Topolou epyacio, EMXEVTIPWVOUACTE G UEVOBOUE avlyVEUGTC EXTROTIWY TORUTNENOEWY GE TOAUDL-
dotato yweo. Iho avahutind, pia éxtponn mapathenom ex@edlel xdmolou elBoug aVMUAATE CUUTERLPORES
070 GUVOAMXO GUVOAO BedoUEVLY. H xatavdnom autric Tng cuUTERLPOEAS xou YEVIXOTERP TNE PUOTS TV
EXTEOTIWY ToRUTNENOEWY BiVEL uiot xahOTepn etdva Yo TNV Btadacio TapaywY g Twv dedopévewy. Ero-
HEVWS, 1) AVEYVEUOT) EXTEOTWY THRATNPNOEWY, ATOTEAEL AVATOOTIUG TO XOUUATL GTNY O TUATIO TIXT| AVAAUOT
OedOEVWY, TO oTolo ply Vel pw¢ ot exclva To oMuelol TOL BEV CUUUOPPMVOVTOL UE T UTOAOLTY DEDOUEVOL.

Metd ané pio oOvToun elooywyy), 6To XEQPAAO 2 ToEOUCLILOUUE XATOLES amd TIC Towiheg pedddoug
TOL CYNUATIOTNXAY Yiot TNV EVEECT] LOVOOLAG TUTWY EXTROTMVY TopaTneRoewy. Emmhéov avadeuvbouue
miovd TEoBAAUATA TOU UToPoLY Vo TEOXANUOUY Xatd TNV EUPECT) TMV EXTEOTWY TUPATNENCEWY 0XOUN
XU 070 dovodldoTato yweo. Télog, epupudlovue autéc Tic pedodoug oe éva GOVOLO BEBOUEVKY TOU
eyel mopory¥el amd TNV LOVODLAGC TOTY XAVOVLXY| XATAVOUY|, TEOXEWEVOL VoL UTOYRUUUIcOUUE ouTd Tor TIpo-
BAAuaTO XL VoL GUYXEIVOUNE TO OTOTEAEOUATA.

2T EMOUEVOL XEQGANA, TOPOUCLILOUUE BlapopeTXée Yedddoug Yoo TohuBldc ToTa Sedouéva, Poot-
OUEVES OE OLdpopa yopaxTneloTixd, ta Bacixdtepa and T onola ebvan: To Bddog, 1 amdoTacy, 1 TU-
AVOTNTA, 1) XATAVOUT| xai 1) améotaor Mahalanobis.

210 xe@dhato 3, ylvetar 1 mapouctaoT) BLUPORETIXGY eVVolwy Tou Bdioug xau xdmoleg and Tig Je-
Y660ug Tou Bactlovton otic avtioToryes évvole. 1o avahutixd, culntdue Ty évvola Tou Bddoug omwe
oplotnxe and tov Tukey xou Toug aiyopiduouc IDODEPTH xow FDC mou Baciotnxay o authy xon thny
évvola Tou Bddoug émwe oplotnxe and to Liu nou arotéhece tnv Pdom yio tnv Teonomoinuévn Zaovn
Béouc (Modified Band Depth), tyv onota e@opuélouye o€ tohudidotorto delyporto.

Y10 xepdhoo 4, mapouotdlovue UeVOBOUC aviyveuong EXTPoTwY TopaTnenoewy, Tou BaciCovto
oTNV anooTaon UETHED TwV 0edoévey. Emnpociétng, mopouctdloude ToV Tp®To Yeovixd oploud Tng
EXTEOTING TORATAENONG TOU TEOXUTTEL eCouTiog TNG AmOOTACNG TNG omO To UTOAOLTO OEGOUEVA, OTWS
X0 TOV OPLOUO TOU YENOLWOTOLE(TOL o TOAD amd Toug oVYypovoug alyoplduoug xat Bactletar otny k-
OGT1] XOVTWVOTERY) YELTOVIA. LTNV CUVEYELN, TOPOUCLALOUUE XATOLEC HEPOBOUC TTOL UELDVOUY CTUAVTIXG
TOV YPOVO AV VEUONC EXEIVWY TWV EXTROTIWY TUPATNPHOEWY, TEOXEWEVOU oL avTicTolyol ahydprduol vo
elvon amoteheopaTixol xou 6e YeyolUTEQD GUVOAa dedouévey. Emimhiéov napouotdloupe Tov optoud Tou
avtioTpopou k-00100 xovTIvOTEPOL Yeltova and tov Hautamaki. Télog, eqapudlouye v pédodo mou
YENOWOTOLEl TOV TPWTO YEoVixd 0ploud, xadne xat 600 Yedddoug BACIONEVEC GTOV UTOAOYIOUS TwV k

AOVTIVOTEPWY ATOCTAGEWY, OTWS xou TNV péYodo mou PBuciletan otov optopd tou Hautamaki.

Y10 xe@dhano 5, mapatéTouue YEVOBOUS aviyVEUOTC EXTEOTLY THRATNENCENY oL houfdvouy Loy
™V Tomixy) TuxvoTNnTa xdde mapatripenone. Ioapoucidloupe Ty pédodo tou Tomixol mapdyovia ExTpo-
nne nopathenone (Local Outlier Factor), mou yoapoxtneiletoar we n Bdon tov mo yvoo oy Yedddwy
muxvétnrog, pali ue Ty ebpwotn enéxtacn e v ovopatt Robust Kernel Outlier Factor (RKOF).

270 (B0 xepdhano epapuolovue auTéS TIg HEVOBOUC Xot GUYXEIVOUUE Tar amoTeAéouaTo PETAE) TOUC.



Y10 xepdhao 6, avartiocouue YeY6B0UG Ol OTOIEC UVADELXVIOUY EXTPOTEC TaPUTNENOELS e 3o
Vv anoctacr) Mahalanobis. Ilio cuyxexpiéva nopouvoidlouue tnv xAacowr| anéctacr Mahalanobis
xadog xou pla mo eVpwotn exdoyr| Te. H xdpia Sapopd toug Beloxeton 6T0 YEYOVOS TS 1) TEMTN
umohoyileton yio xdde onueio yeNoLOTOWMVTAS TIC EXTYHACELS TOU HEGOU X0t TNE BACTIORAS OTAY OAES OL
TopaTnERoelg Exouv Anglel utddy, eve 1 BelTeET YENoWOTOLEl EXElVES TIC EXTIUAOELS TOU €YOLV TROEA-
Vel and eva «BEATIOTO» UTGOLVOAD TapaTNEoEWY. Extdg amd To TtocooTiudelo Tng e AATOVOUTG TOU
ouvidwe yenoyonoteiton oav @edyua (andoTtacel Tou Eenepvoly To onoio, Yempeltal Twe AvTo ToLY oV
o€ EXTPOTES TUPUTNENOELS), Tapouatdloue TNy enéxtoon tou Filzmoser. Téhoc, Soxpdlovue autég Tic
ued6d0UC xon cLYXEVOLUE Tal amOTEAECUATAL.

210 To xepdhono, mapouctdloupe pedodoug mou Pacilovtor 0Ty uTEVEST KOS To EXACTOTE SEdOUEVA
mpoéyovTal omd YVwoTy| xatavour. O meplocdtepee and autés TIC Yedodoug elvor amOTEAEOUAUTIXES
oe dedouéva ta onola mpooeyyilouv TV xavovxr) xotavouy. Emnpoclétwe, cuyxplivouue autéc Tig
uedodoug ue v Pordeia Tou moxgtou ‘OutliersO3’.

Téhog, oo xepdhona 8 xou 9 epopudlovye Oheg auTES TIc pedddoug ota dedouéva ‘humus’ xon ‘dat’
avtiotoyo. Aoxpdlovtag dhec Tig mpoavapep¥évteg Yedddoug ot BLapopeTixd dedoUEva, Aoufdvouue
UL TANEECTERT ELXOVAL GYETIXG UE TNV OVIYVEUCT) EXTOOTIWY TORATNEHOEWY, TNV ontola tapadéTouye oTo
xepdiano 10.

H nopoaxdte nepiindrn ywpeiletar oc Siagpopetind xe@dAoud, k€ OXOTO VO CUVO-

dloet v apyixr) LeAET TOVILOVIAC TA CNUAVIIXOTERA OTUEi.
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1 Ewaywyn

Me 7o mépacua Twv Yedvey, Tohhol oplopol €youv doVel oyeTind Ue To Tt elvon pio ExTpoTY ToEATAENOT).
O Hawkins opiCel w¢ éxtpomn, ‘exelvn TNV mopatAenoy mou amoxAelvel 1660 TOAD amd T UTOAOLTEG
TOEATNEYOELS WOTE VoL ONULOURYEL TNV LTOVOLA TG EYEL TPoENTEL amtd BlaopeTind unyavioud’. O Barnett
xou o Lewis opilouv w¢ éxtponn mopatienon oe uiot cUAAOYT Bedouévwy, ‘exeivn T tapatienon (¥ to
oVUVOAO ncxpocmpr’]oecov) TOL QOUVETAL TS EVOL AVTLPATIXT UE TIC UTOAOLTES TURATNEHOELS TNG CUANOYHC'.

LUUTEQUOUATIXG, ot EXTEOTN TaPATHENOT| TUEOUCLALEL, EV YEVEL, XdToloU EIBOUC AAAOTEOCUAAT GU-
urepLpopd. 1o cuyxexpyéva, 1 dnuoveyla Wag EXTEOTNG TUPATACNONG TEOXUTTEL amd TNV acLYHho TN
CUUTIEQLPOREL TN OVATORAY W YLXNG DLadaciog TV GEBOUEVKY, OTOTE, XATAVOWVTAS TNV OOT) TwV BEdO-
UEVODVY haufdvoupe Yvaaon Yo Ty Sladuactior auTh.

H aviyveuon éxtponwy napatnerioeny, unopel vo gavel yeriowrn oc TOAES EQupUOYES OTLC:

o Tatpwey] Aldyvwon: e TOMEC WTEIKES EQPUPUOYES Tal DEBOPEVA GUAAEYOVTAL amd pla ToL-
Mo pnyavnudtoy, acuvidioto potiBa Twy omoiwy, LTOBEXVIOLY XJTOolL EIBOUC YOGOAOYIXNS

XAUTAC TUOTG.

o Arndtn IIictwtixedy Koaptov: Eotw nwe €yet unoxhanel o aprdude xon o avtioToryog xwol-
%0¢ UG TOTXNC %dpTac eVvOC yeNoth. To yeyovoc autd, unopel va 0dnyfoel oe aveynTes ayopéc,
and TonoVeoleg 0TI onoleg o Blog o yenotng dev Va Aray mavé va etye emoxeptet! To é€oda
ouTd xorhoTOVTOL ¢ aoLVAToTA BEBOUEVA, OVAUPOEIXE UE TNV UTOAOLTY GUALOYY| avTioTOLY WY

e€60wv (ta omola €youv culheyVel and tnv exdotote tpdmela) Tou YENOT.

o Aixtua AlocUntripwyv: Xe éva dixtuo acinthipwy, xataypdpovia cuvinxes 6Twe 1 vypaola,
1 mleon, dovAoels, T0G0GTY UOAUVOTC AT ot OlaopeTinég Tonoveoieg. H aviyveuvon éxtponwmv
TUPATNENOEWY OE QUTY| TNV TEPITTWON YENOWOTOLETAUL TEOXEWEVOL VoL EVIOTUOTOVY TeplepYeg 1)

A&doc evdeilerlc.



2 Movooidotatn Ilepintwon

H aviyvevon éxtponwy napatnerioenmy uropel vo ywpelotel otic e€ng xatnyoplec:

e E)éyyouc, ot onofot Basilovtar oe pla undevixy| unddeon Hy (formal tests)

e E)éyyouc, ol onolot Basilovial oTig exTIUAOELC Tou Péoou xou Tng Slaomopds (informal tests)
Booxd petovextiporta Tne medtng xotnyoplag bvou:

e Masking Effect (aduvopio yopoxtnplopol plac mopathenone we éxtponng)

e Swamping Effect (LI)SUBV’]Q YAEAUXTNEIOUOG Uidg TopaTienong we éxrpomqg).

2.1 Medodol oty Movodidotatr llepintwon
Booixéc yédodol otny povodldotaty Tepintwon anoteholy:
e /-score
e O yevixeupévog éheyyoc tou Grubb (Generalized extreme Studentized deviate Test)

e H pédodoc tou Tukey (Boxplot)

2.1.1 Z-score

‘Eotw nwe e€etdloupe LOVOBLIOTUTES TUPUTNENOELS, T1, T2, T3, ..Ty, UE UECO [ XOL TUTIXT| ATOXALOY) T

H Z-tn v 1o onuelo x; cupforiCeton pe z; xon opileton we e&hc:

_ |z —
o

7

O Z-score éheyyog, unoloyiCel Tov apriud twv TUTIXGV anoxiioewy and Tov onolo xdle onucio
OLUPEPEL AT TOV PETO.

‘Extponec opllovtan oL mapatneroelc, ot omoleg unepBaivouv Tov xovova:

2.1.2 H yé90dog touv Tukey (Boxplot)
‘Eva tumixé Boxplot mepieyet:

e To eowtepd elpoc tetoptnuopinv (Inter Quartile Range-IQR) nou eivan 1 anéotacy wetold
TOU XUTWTEEOU (1 %L Tou avwtepou (3 tetaptnuopiou. 'Eva «xoutly dlaypdgel autd to 0pog

QUTO Xo 1) BLIPECOC TaPOUGLALETAL UEGA TOU HE €VoL ELVVYQOUUO TUHAUOL.
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o Ta Aeyouevo «uoucTtdniay (whiskers) ta omoio enexteivovton and g 8o amévoavtt TAEUPES TOU
AOUTLOU UEYPEL TNV EAGYLOTH X0 HEYLOTT) TYY| TNG CUALOYNG avTioTolyd, 6T0 TAACLO TwV AEYOUEVGLY
inner fences (eowtepxol @pdytec), To omola Bploxovtar o andotaon 1.5 x QR xdtw ond 10 @y

4 ’
xoL Téve and 1o Q3

o To heydpeva outer fences (eEwtepinol @pdytec) to omoio Bploxovton oe amdotaon 3 X IQR mdve

and To Q1 xou xATw and 10 Q1.

OrnowdAnoTe T 0To YEdPNUa auTd, Tou Tapouctdletal exTog Twv whiskers xau etvon avdueco oo

inner xou outer fences yapaxtnelleton we Extpomny).

2.2 Egappoyn

Hapdryoupe mapatnerioeic amd v Koavovixr xoatavour| ue péoo = 10 xou dlaonopd o = 2 %ot ovTixo-
Yo tolpe, Tuyala, Tig 600 TEAsUTaleg ToRUTNENOELS TOu BelypaTtog ue Ti¢ axpalee Tyég 18 xon 20, mou
TEOPAVAS ATEYOLY OPXETE TOAD Amd TOV UEGO WE TEOSC XAl TNV TUTIXT| TOUC OTOXALOT).

‘Onwe gatveton amd tov Iivaxa 1, pévo agol anoxddpouue tnv napatienon 30, o z-score €leyyoc (oL

Téc Tou omoiou, aupfoliloviar e ;) emituyydver vo avadel€et Ty napothienon 29 we éxtponn.

ID x; zi || ID x; 2 2 2

1 (1229 048 | 16 || 8.88 0.75 || 0.73 0.79
2 727 133 || 17 || 12,51 0.56 || 1.52 0.83
3 | 11.33 0.13 || 18 || 12.04 0.39 | 0.31 0.62
4 11394 1.07 | 19| 7.61 1.21 || 148 1.36
o || 12.57 0.58 || 20 || 10.07 0.32 || 0.86 0.26
6 || 12.22 045 | 21 || 942 0.56 [ 0.70 0.55
7 7.84 1.13 || 22 || 10.72 0.09 || 1.26 0.03
8 9.75 044 23 || 886 0.76 | 0.40 0.8
9 988 039 24 || 11.39 0.15 || 0.35 0.33
10 || 9.98 0.36 || 25 || 10.09 0.31 || 0.30 0.25
11 || 10.86 0.04 || 26 || 9.78 0.43 || 0.09 0.39
12 81 1.03 | 27 | 11.98 0.37 || 1.14 0.6
13 || 7.71 1.17 | 28 || 10.62 0.12 || 1.32 0.01
14 || 12.03 0.38 || 29 18 2.54 || 0.62 3.3
15 || 11.13 0.06 || 30 20 3.26 || 0.22

ivoxag 1t 2-TWES TOU CUOAUOUEVOUY XaVOVIX0) BELYUATOS TPV XAl HETE TNV ATOXOTY| TNG TOQUTYENONS
30.



Avudétoe, oty Ewdva 1, 1 pyédodoc tou Tukey avadewviel tic napatnerioeic 29 xou 30 ywelg

XAmoLoL ETUTAEOY EVEQYELAL.

18 20
|
o

18

12

10

Ewéva 1: To Boxplot tou «uolucuévouy xoavovixol delyuatog.
Hapatnpolue ot

e Y10 Z-score éleyyo, n napatienon 30 «xplfety (masking effect) tnv mopatienon 29, Aoyw tne
svanonotag Tou erEyyou, oTNY TaEousia TEPLOGOTERWY ATt Pl EXTEOTNG TURATHENONS, UE UTO-

Téheopa 1 TeEhevTadar var uny umopel vor vty veuel.

e To Boxplot xatagépvel va aviyvedoel xou Tic 500 €xTpomes mapatneroels, encidr| Baciletar o

€0pOTO PETEO OTIWC TO XATWTERO X0 AVMTEQO TETUPTNUOEL0 xou To IQR.



3 lloAuvdidotatn Ilepintwon

Hapouoidloupe didpopec YedddOUE Yia TNV TOAUBLIC TATY TERITTWOT), BUCIOUEVES GE BLAPOPAL Y UPUX T

ELOTIXE, OL OTOLEG UTOPOVY VoL YWEWOTOUY OTIC EENG HEYTAES XUTNYORIES:

e Mévodot mou Bacilovton o1o Bddoc.

M¢é9dodol mou BaciCovton otny andotaot).

Médodol nou BaciCovton oty TuxvéTNTA.

Médodot tou Bactlovto oty andéotact. Mahalanobis.

Mé9odot Tou ﬁuoilovroa o€ pio xotovoun.

3.1 Meévodol nou Pacifoviow oto Bddog

O pévodot mou PaciCovtar 6To Bddog, amoTehody aVaTOGTUCTO XOUUATL UEVOOWY TOU EWBIXELOVTAL GTIG
oxpalec TUIES.

2x0omo¢ TV ueY6dwy Tou Bddoug

e O meplocdtepol Yool aviyveuong EXTEOTWY TURAUTNPACEWY APOPOUCAY TNV LOVOOLAoTUTY Te-

elntwor, xahoTOVTIG TEC ATy OREUTIXES VLol TOAUOLAG TUTY) AVIAUGT) BEBOUEVWLY.

e Ooeg pédodol Yytav mohuvdidotateg, Pacilovtay ot pio undevixy| unddeon, x4t To onolo Bev avTo-

TOXEIVETOL OE BEBOUEVY TTOU BEV EYOLY TEOEAJEL AT HATOLL XAUTAVOUT.

Ewéva 2: Aviyveuon éxtponwy mapatneriocwy, ue Bdorn to Bddoc.



3.1.1 Tpeonrorowmueévy Zwvn Bddoug

e To pétpo tne tpomomoinuévne {ovne Bédouc MBD (modified band depth measure) mpotddnxe
am6 v Lopez-Pintado to 2010.

o Eivan pla eméxtaon tne anhrc ouvdptnong Badouc (simplicial depth function) tou Liu, mou pyetpdet
10 Bédoc xdie mapatipnong and Tov aptdud TWY XUETHY TOAUYGVKY (Tar omola €Youv oav XOpUEES

o (Lo ToL oMelar) Tou TV EpLxhelouy avtioToly L.

Optopog 3.1. Eotw P = (p1,P2; - Pn), 010U p; € R? éva d-8idotato onpelo. H tponomotrnuévn
Lwvn Badoug Tou onueiou p etvan
MBD(p) =

éz ( )_ Z Z{min{p;, (k), pi,(k)} < p(k) < maz{p;, (k), pi(k)}}

1<i1<ig<n

6mou Z(+) ebvan 1 delxtptar ouvdptnon xou p(k) eivor 1 k-ooth cuvtetayyévn Tou p.

3.2 Mebodot mou Bacilovtal oIV andcTAcT)
e O pgdodol tou Bddoug eivon uToroyloTixd axpifol.
o Ynueiot Tou GUVOAOU, UE UEYIAES ATOCTAOELS A-XOVTIVOTEPWY YELTOVWY 0pilovTal (¢ EXTEOTAL.

o Ilopoucidalouye TpeLC Blapope TS 0pIoUOUS, BAoEL TV omoirY avamTiyInXay TEELS BlUPOPETIXES
uévodot mou mpotddnxay ond tov Knor xou tov Ng (1998), tov Ramaswamy (2000), xou tov
Hautamaki (2004).

Opiopog 3.2 (Ilpocéyyion tou Knor). Eva onueio O oe éva obvoho T' eivan DB(p, D) éxtponn
nopathenon (DB npoépyeton and 1N pedon Distance Based), av toukdyiotov éva noGooté p onueiwy

otnv T anéyel andotooy ueyahitepn and D and to onucio O.

Opwowodc 3.3 (Ilpocéyyion tou Ramaswamy). ‘Eotew cOvolo dedopévwy pe N onuela, topopétpoug
n xou k xon 9étovtag ue D¥(x) tny ambotaon evéc onueiov  and Tov k-0676 xovTvéTepo YElTOVa TOU,
éva onpeto x etvan DF éxtpomo, av Bev undpyouv Tapamdve and n— 1 ko onueio 2’ Tou Vo avoTololy
v oyéon Di(x') > Dy(x).

Optowodc 3.4 (Ilpocéyyion tou Hautamaki). Eva onueio x opiletoa we avtiotpogog k-06t6¢ xovTi-

vOTEQOS YElTOVaS Tou Y, av X UévVo av To Y ebvon Evag k-00Tog X0oVTIVOTEROS YElTOVAC Tou .
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IMopatnerosig

3.3

H npocéyyion tou Knor emotpéper pior Stoduner| évderdn (av ebvon 1 oyt pla napathpnon, éxtponn)

ToEd Evar PETEo Tou var delyvel Thoo ExTpomr uio TopaTtAENoT UTopel Vo elvol.

H ambéhutn andotaon and tov k-06T6 x0vTvoTeRo YElTOVA 1) 1) UECT) AMOOTACT) OAWY TWV k-00TOV

AOVTIVOTEPWY YELTOVWY UTtopel vau yernotpononiel we eva T€Tolo PeTpo.

H mpocéyyion tou avtiotpogou k-00t00 xovtvotepou yeitova Yewpeltar plar uiln tov uedodwv

mou Baocilovtoun 6Ty andoTacT xar oTig ue¥6doug Tou BaciCovtar 6TV TUXVOTNTA.

Ynueio Tou €yoLY UEYIAEC ATOCTACELS 0O TOUC k-00TOUE XOVTIVOTEROUS Ye(ToVES, Va €youy eTtiong

Ayoug avtioTpogpoug k-00T00¢ X0OVTIVOTEPOUS YElTOVES.

Q¢ éxtpoto, yapaxtnelleton To onueio 6mou o PGS TWV AVTICTEOPWY k-0GTMY XOVTVOTEQKV

yertdvov (indegree number) tou onofov, eivat UixpdTEROS amd €vor 0pLOUEVO amd Tov yeroTh Gplo.

Mrnogel va yiver ebxoha xatavonty| n npoceyyion tou Hautamaki oto mhaloto tou ypaphuatog

k-00t¢v xovtvétepwy yertdvewy (kNN graph).

Megdodot mouv Bacilovtar oTnV TLXVOTNTA

Y16y0¢ TV PeVOOWY TUXVHTNTOC

Lopgova pe Ty Ewdva 3 mapatnpeodue ot

Ko tar 600 omnueio pr %o po ebvon €xtpoma.
Mia xhaoowr| pédodoc andotaone miavotato vo aviyveue To onueio ps.

To onueio p1 elvon apxetd xovta 6T xovovixd onueia Touv cuumAéypatoc (cluster) Cp wote va

Vewpnlel xou exetvo xavovixo.

Av emé€oue €va To aUGTNEG OPl0 OGOV APORd TNV ATOCTAGCT|, TROXEEVOL VoL AVIOEIEOUE TO

1, elvar ToA) miavd ¢90odoc (tou Knor) vo aviyveue mopamdve onueio extdc Tou pr.
9 9

Avutéc ot pgdodol avamtiyInxay Yo vor avTYETWTIGOUY Tol TEOBANUATA TOTUXHS TUXVOTNTOC.

11
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Ewéva 3: Anexdviorn Tomxd EXTponng mopatienorng.

Ye éva Tumixd mhaiolo uedddou TuxvOTNTOC, UTdEY oLV 800 TaeduETEOL Tou YapaxTnellouy TNy

EVVOLUL TNG TUXVOTNTOG EVOS oTnpeiou.

(o) H napduetpoc MinPts mou avagépetar otov ehdytoto apidud onueiny xo

(B) wlo mopdueTEog TOL VoL avapEpETaL OTNV €VTAoT X4Tw ond TNV onolo BlepeuvdTon 1 TomXN

TUXVOTNTAL.
Hapovoidloupe 500 pedddouc:

(') To LOF (Local Outlier Factor), ané tov Breunig (2000).
(") To RKOF (Robust Kernel Outlier Factor), ané tov Gao (2013).

To LOF etvor éva uétpo Slapopdc muxvotntag HeTadd EVOS GNUEOL X TG avTIGTOLY NG YELTOVLAS
Tou. H pédodoc LOF yenowomolel cav extiunon muxvotntag Tny ando1aon TOTXAS TEOCITOTNTOG
(local reachability distance).

To RKOF anotehel pla eméxtaon tou LOF. H pédodog tou RKOF yenowonotel pla extiunon

muxvétnog tuphva (kernel) yior 1oV UTOAOYIOUS TV TAUPOYOVTWY TWV EXTEOTIWV TOEATNENCENY.

Kot ot 800 pédodot yetpoly tov Badud extoonic xdle mapatrienong. ‘Oco ueyahitepn elvor auTh

N Ty 1600 To mavo elvon ol avtioTolyeg TapATNENOELS Vo elvon EXTEOTEC.

12



3.3.1 ITapdyovrag Tonxd 'Extponng Ilapatrpnong

Optowodc 3.5. 'Eotw k évoc puowde apriude. H andotoon mpoottdtnrog (reachability distance) evoc

onueiov p e mpog 1o onueio o optleta we rd(p, 0) = max{dy(0), d(p,0)}.

Optowode 3.6. H andotoon tomixrc npoottétntac (local reachability distance) tou p (oupfoiilovtac

™V e rdg(p)) opileton we

ZoeNk ) "k (p,0) ) ~1
[Ni(p)]

Optowode 3.7. O nopdyoviac (tomxic) éxtponne mopathenone tou p opileton wg

Irdy(p) = (

lrd(o)

ZoeNk (p) lrd(p)

FORE) =N, )

IMopatnenosig

e H andotaon Tomxrg ntpoottéTnTag Acttoupyel oo plo extiunom tuxvotnTog 6to onueio p avoAvo-

VIO TG K-00TEC XOVTIVOTEQES AMOOTAOELS TWV ONUEY GTNY Ni(p) yertovid.

e To onuelo Tou Bploxovtal 6TNY TO TUXVH TEELOY T TOU GUUTAEYUATOS Telvouy Vo €youy Tweég LOF

{oec pe TNV povada.

e ‘Oco upnrdtepec Twéc LOF (p) 1660 «MEPIOCOTERO EXTEOTECY EIVAL OL TURUTNEHOELS OV TIC O

UELOVOLV.

3.3.2 Robust Kernel Outler Factor

Yy pévodo RKOF yenotuonoteiton to (dto mAalolo, UE O ATOTEAECUATINES EXTIUACELS TUXVOTNTOC.

2T HovodldoTatr TERITTWOT), 1) exTiUnon Tuprva oplleTon wg:

. " - X;
= 3o (%)

6Tou

10 X; oudfoAMlel TNV i-00TY TaEATHENON.

10 h oupPohilet 1o TAdtog (opiletan eniong we tapdyovtog oguionoinong).

e To K(-) elvou 1 cuvdpTnom muphva TOU IXAVOTIOLEL TNV OYéo fj:oo K(x)dx = 1.

13
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Ewéva 4: Extiunon mupfjva and pegoveuévoug tupfveg tidtoug 0.4.

o Emtpénovtog otny TapdueTeo h TV <eL0YXOUATOVY VoL SLUPEQOUY UVIAOYX UE TIC TORUTNENOELS

yio Tic onole oynuatiloviat, opiCoupe TNV eXTUNOY TUPHVYL GC:
" 1 < 1 r—X;
== - K J
f(z) nZh-dk(Xj) (h.djk)’
Jj=1 ’

e Otav 10 k elvan otadepd, povo n moapdueteog h etvon unebuvn yio 1o Badud ouaromoinorg.

e H cmhoyy| Tou k xadopilet to Badud tng evoncdnoiag tou h Tomuixd.

Yty moludidotatn mepintwon, 1 ouvdptnon muprva K (+) eivar pla ouvdptnon oplopévn otov d-

OLIOTUTO YWEO TOU LXAVOTIOLEL TNV Oy Eom:

K(x)dz =1,x € R?
Rd

O o cuvrtelg cuvopthoeg Tupnva, ebvar ) I'xaouvciovy

K(x) = (2-7)"

-exp(—=x'x)

vl
DO | =
~

wou n Enavétowo
n

K(x) = et (d=2)-(1—xTx) ,wwxTx<1

e NI

, OTNEPWLOE

OTou ¢q Elvat 0 OYX0¢ TN hovodtatag d-OldoTaTNG oPolpag.
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Opwowodg 3.8. H extiunon tng tTomxhc muxvotTnTog TuThvol (local kernel density) tou p optleTon we:

1 —o
kd 2o Nu(r) T T K(C'gk(o)a> C=h-g°
ep) = Ne@)] R
> enlog f(q) 1
logg = quT’ flo) = m

émou o h elvon o mapdyovtoc opolorolnong, To v eivor TopdueTeog evoncdnoioc, to K(-) eivon 1 ToAUSL-
doTaTn oLVdETNOY TUETVAL XAl To « efvan ToEdUETEOC euanoinciag Tou xavorolel T oyéon 0 < o < 1,
6mou 10 g elvan 0 YEWUETEOC Wéooc Tou f(g) xar to f(+) elvan 1 exTiunon TG TUXVOTNTAUC TOU XOVTL-

vOTEQOL Ye{ToVaL.

Optowodc 3.9. O otaduopévoc extiuntric nuxvotntac (weighted density estimate) tng yertovide tou

p oplleTon we:

dy (0)
ZoeNk(p) Wo - kd€<0) T 1

)2
I wo — eXp { - dkMin 2 }
ZOGNk(P) Wo 20

OTIOL TO W, ebvar 10 Bdpog Tou oNUEloL 0 GTNY YEITOVIA TV k-0GTMV XOVTIVOTEPWY GNUELY Tou p, TO O
= min{d,(o)|o € Ni(p)}.

wde(p) =

elvon 1) BLOCOUOVOT) UE TIOOOLY PUUUEVT) TUA TNV HOVEdX xou dj,

Opiopoc 3.10. O napdyovrtog éxtponne mapatrienone RKOF tou p opileta wc:

_ wde(p)
kde(p)’

RKOF(p)

6mou wde(p) etvon N extiunon TLXVOTNTAUC TNE YELTOVLAC k-0GTEOY XOVTIVOTERWY GNUElWY Tou P xat kde(p)

ebvon 1 extiunon g TOTUXAC TUXVOTNTOS TOU P.

o ITapdpetpor: k, C, a, o2
o Ilpodrypopuévee Twéc C, o xou o? elvou {oec UE TNV OVADAL.

e 'Oco peyaritepn 1 i RKOF, 1600 mo mdoavéd pia napatrenon vo etvon €xtpomn.
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3.4 Meévodot nouv Paciloviow otnv andctacry Mahalanobis
‘Eote 800 onueia optouévo amd tar Stoviopoto X4 = (Ta,, Tays -, La,), XB = (T, TBys -, TB,)-
Optopoc 3.11. H EuxAeideia andctacy opileta wg e€ng:
d 3
2 T
ductidean(X,X5) = (Z@:Bj ) ) = (x5 — %)7(X5 — Xa)
j=1

Opwopodg 3.12. H andotaon Mahalanobis petagd 600 d-dudotatwy onueionv x4 xa x5 opillovion wg

e€hc:

MD(x4,xp) = \/[(XB —x4)T-S7 1t (xp —x4)]

omou S eivan o mivoxag cuvdlxduavone. O unoloyloude e andotacne Mahalanobis amontel Ty

AVTIOTOPT| TOU Ttivoa GLVBLIXOUAVOTNG S.

e Ou anootdoeic Mahalanobis 6hwv twv onueiwy and to xévipo oynuatiCouv erleldelc ol omoleg
lVoll TLO GUYXEVTPWUEVES, WS TEOE TO Oelyua, amd Toug xUxhoug ot omoiot oynuatilovtal and omod

Tic Euxeldetlec anootdoeic Twv onuelwy and to xEVTeo.

e H omdotaon Mahalanobis AouBdver unddy Ty cuoyétnon YeTald TV UETUBANTOY, Péow Tou

Thvorcor oLUVBLIXOUAVOTC.

Ewéva 5: H Ewdeidewa andotaon (opotepd) xou n andéotoorn Mahalanobis (6e&io).
Opwopdeg 3.13. H ouvdptnon muxvotnrag mavotntag e Kavovixig xotavourc (p(i) oe évo d-
ddototo onueio & oplleton we e€nc:

f(E) = L o B E DT

VIEL-(2-m)?

H i1 070 exdetind tng Kavovixrig xatavourg tapandve, YeroLonotleiton ooy

KETEPO EXTEPOTNC.
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Or tetpaywviouéveg anootdoelc Mahalanobis oxohovdolyv nepimou Ty Xﬁ xatavour pe d Boduoig

ehevdeploc.

Av plo tapatrenon onuewdoet anéctacn Mahalanobis peyoibtepn and éva npoxadtoplouévo 6plo,

t61e umopel var Yewpniel miovy] TOALBLAGTATY) EXTEOTY] TAEATY YO

Yuvnthopévo mocootudpo e X5 xatavourc, dewpeltar autd e tdéng tou 97.5% pe 27 g7

oav Twr Tou oplou.

‘Eva o €0pnoTo pétpo, unopel va amoxtniel and évay eVpwoTo EXTNTY DLUXOUAVOTNE OIS TOV
eXTNTA TG eAdytotng opllovooc Tou mivaxa SloxUuavone (minimum covariance determi-
nant (MCD) estimator).

Feapuxy) Ilpocéyyion

3.5

Ye younhotepeg dlootdoels, wio EAkewdn/éva elherpoetdéc aymuatileton amd Tic anootdoec Ma-

halanobis. To ornuela extéc autol TOL EAAEU)OEWBOUE YopuxTnEloVToL WS EXTEOTES TUEATNPNOELS.

‘Eva ypdepnuo (index plot) Topouotdloviac TIC TS Twv anootdoewy Mahalanobis xdle mopo-

TeNnoNg xal Ui Yeouur], UTOBNAMYOVTAS TO TEOXAVOPIOUEVO GRLO.
X? yedynua, and tov Garrett (1989).

Adaptive x? yedonua, ané tov Filzmoser (2004).
papnu

Megdodot mou Bacilovton o plo xaTavoun

e authv TNV xatnyopla, ol yédodol oToyebOUV OTNV aVASELTN EXTEOTOV TapATNENOEWY, Poot-

ouévol oe dio undevixy| urddeon).

H mo ouvnbiopévr eivan, g dheg ol mapatnerioels €youv mpoéhdet and plo torudidotatn ['noou-

OLOVT| XUTOVOUT.

Hapouoidloupe €L alyopituouc:

Tov ahyéprduo FastMCD, and touc Rousseeuw xon Driessen (1999).
Tov ahyéerduo BACON, ané tov Billor (2000).

Tov olybprduo FastPCS, and toug Vakili xou Schmitt (2014).

Tov oly6prduo HDoutliers, ond tov Wilkinson (2018).

Tov ahybprduo Skewness-adjusted Outlierness, oand tov Brys (2005).

Tov ahyéeduo DDC, and toug Rousseeuw xon Bosche (2018).
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AXyoprdpog MCD

o O exuuntic eNdytotne opilovoog mivoxo dtoxdpovone (MCD estimator) mpotdinxe yior Tem)

popd am6d tov Rousseeuw (1984).

o Ocwpeltar éva amd Tor PEYOAUTEPA EVEWOTA EQYUAELX TTOU UTOPOLY VoL AVTIUETWT{COUY TEOBAATA

masking xot swamping,.
o H 18éa tng pedédou MCD Booileton oto mapaxdtey Yewponuo:

Ocvpnua 3.1. Eow odefyua N = {x1,.,X,}, onov X; = (T, ..., Tip) pe i = 1,...,n evar pia p-
didotatn naparﬁpnan Eotw Hi C {1,..,n} pe |[Hi| = h kat Ty == 5 - >, X ka1 Sy = § -
> ien, (Xi = T1) - (x; — T1)". Av det(S1) # 0, opilovpe tis oxeniés anootdoes

dl(l) = \/(XZ'—le'SII'(XZ'—Tl) QOOpZ: 1,...,71

Eotww tdpa, Hy téroo dote {di(i)|i € Ha} = {(d1)1:n, (d1)2n, s (d1)nin }, 610U (d1)1:0 < (d1)2im <

< (dy)pn €lvar o1 SrateTaypuéves arootdoerg kar vrodoyilovpe ta pétpa Ty ka1 Sy Pdoer tov Hy. Téte
det(Sg) S det(Sl)

pe Ty wdtnta va wyvel av kar uovo av Ty = T ka1 Sy = S;.

e To Oedprnuo 3.1 dnuovpyel pio emavonmTixy dtadxascta, e TNy onola petoxvoluaoTe and (ebyog

(T, Sk) o€ Levyoc (Thi1, Sk+1), mapdyovtac utocivoro Hi1.

e Ot opilovoec etvon un opvntixée xan woyler ot det(Sky1) < det(Sy) v xéde k € N, ondte 7

otadtxaoto cuyAivet.

e O aryopluoc MCD egapudler to Oetpnua 3.1 oe apywéc emhoyéc utocuvorwy Hy péypel va

emtevy Vel oUyXAMon xan eMAEYEL exelvo To UTOGUVORO e TNV WxpdTeEEn optlovoa.

o Ta meploodTepa OelypaTo BV Elvor TopaTdve amd 25% HOAUGUEVYL (ps EXTPOTES Tcocpownpr’]cag),

omote pla xohr) emAoyy| TAndopiduou yio o unocivoro H etvor 1 0.75 - n.

e To teheutaio (evydipt ypnotdomole{ton YLl TOV UTOAOYIOUS TWVY EVPWOTWY UTOCTAGEWY TWV THEO-

Tnerocwy mou opllovial w¢ eENC:

RD \/ Tfu” S;jll . (Xz‘ — Tfull) 7= 1, N

H pédodoc avadeinviel exelveg Tic mapatneNoelc mou Lemepvdvel pla tpoxadoptopévn Ty oplou

(ouvidwe 1 Tl auTh evon 4 /X3 g 975, OTIOU P Evol 0 apudS TV UETABANTOY), (S EXTPOTEC.
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AXyoépripog BACON

O ahyobpripoc BACON npotdidnxe yio mpodytn @opd anéd tov Billor (2000).

‘Onwe xou otny tepintwon tou FastMCD, o ahydpripoc BACON avalntd éva féhtioto unochvoho
TopatneroEwy xou utohoyilel Tic anootdoelc Mahalanobis w¢ mpog Tic extiuroelc Tou Yécou xou

NG SLoTORdE EXEVOU TOU UTOGUVOROL.

’ ’ ’ 7 2 ’ ’ ’
Or napatneroelc, OToU avomololV TN oyéon d; < Cppr - Xp,a oynuatilouvy To apyxd LTOGUYOAO.
H emavoknmre| dwadixaocta teppotiCetarl, 6Tay 10 UTOGUVOLO 0eV OAAAALEL TEQUTEQRW.

Agol tepuatiotel n dradwaota, ta onueio To onola dev Peloxovion péoa oe autd To PEATIOTO

uTocUVoLo, yapuxTnellovTal we ExTEoTA.

ANyobprdpog FastPCS

H pébodoc PCS npotddinxe anéd tov Vakili (2014).

Twoetel xdmotar Brwota amd v pédodo FastMCD xaddg otoyeler va emhélel petald ToAGOY

UTOoLUVOAWY H , exelvo T0 UTOGUYOAO TORUTNENCEWY TO OTolo Elvol XEVO amd EXTPOTEC TUEATY

er|oELC.

O ahyopripog PCS avalntd excivo 1o unocivoro H TOAUBIEOTATWY TOQAUTNRHOEWY, TOU TaELdleL
neplocdtepo (congruent) umoloyiloviag TS TETPAYWVIOUEVES 0PVOYMOVIES ATOCTACELS and xde

oruelo TEOBIAAOVTUC To GTO HOVOBLECTATO YWEO.

Aol vnohoyotel 1o Lebyoc (Tpes, Speg) ond 10 utocvvoro H,,, 1 uédodog yenotpomolel tny

(Bl Tty we tov akyodpwo FastMCD.

AXyoprdpor AO, DDC, HDoutliers

AO (skewness-adjusted outlingness): To pétpo autd, anotekel pio tpomomoinomn tou uétpou
Stahel-Donoho outlyingness (1981) to omnofo umopel va dayelptotel To TEOBANU TNg AogoTnTag

(skewness).

HDoutliers: O alyoéprduoc autdc, umopel vor aviyveloel EXTROTES ToRAUTNENOES OF BelypoTa Ta
omola amotehoLvToL and oNueia TEEAOTIWY OLUOTUCEWY (high dimentional data sets) ywetlovtag

I TopaTNENoELS o€ opddeS (exemplars).

DDC: O aiyéprdpoc DDC avalntd éxtpona onueio oe éva n X d mivoxa , Oyl ooy d-Old0ToTES

T[O(pO(TT]pY]OSLQ, AANGL ooty EEX(DPLOTO( OTOLYEL TLLVOXAL.
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4 Tlaxezta oto R
TNV TPOUCA UEAETY), EYIVE YENOT TV TAXETOV:

e OutlierDetection, twv Tiwary xou Kashikar (2019)

e DDoutlier, tou Madsen (2018)

mvoutlier, twv Filzmoser xot Gschwandtner (2018)

chemometrics, Tov Filzmoser xot Varmuza (2017)

OutliersO3, tou Unwin (2020)

depthTools, twv Lopez-Pintado xat Torrente (2013)

4.1 Xvvoetnoelg [Haxgtwy

And to taxéto DDoutlier A7é o mtoxéto OutlierDetection
e DB e depthout
e KNN_IN
e Nn
e LOF
e nnk
e RKOF
e dens

Ano 1o taxéto depthTools
e maha
e MBD

, , . A7é6 1o moxéto OutliersO3
And to toxéto chemometrics

e Moutlier e O3prep
A6 to taxéto mvoutlier e O3plotT
e aq.plot e O3plotT
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5 Egopuoyvég

To Setypato mou e€etdotnnay elvon:
e Wood specific gravity
e dat

e Humus

5.1 Wood specific gravity

O Rousseeuw (1980) «udhuver éva delypo avtixadioTdviog téooeplc napotneroec. O mopatn-
ENOELG TEOEYOVTOL amd UETENOES oL xodopilouv TNV EMEEOT) AVITOUXGOY TARAYOVIWY 0T PopltnTa
Tou C0hov, Ue TEVTE emednyNUaTIXéS PETOPANTES xou pla otodepr). O mopatnerioeic 4, 6, 8, xau 19
oV VEDTIXaY UE TNV Yefion e pedodou LMS. Autéc ol napatnerioelc 6ev elvon Tpo@avels EXTPOTES amod

TNV oVIAUOT) EAAYICTOV TETEUYWOVMY.

TTogTa Yuvapthoeg| K Ilocootd ‘Extponeg

depthout - 0.25 4,6, 8,19
nn 6 0.75 7,10, 12

Outlier nnk 6 0.75 4,6, 8,19

Detection
dens 10 0.75 4,6, 8,19
maha - 0.8 7, 11 |12

,16

KNN_IN 9 - 4,6, 8,19

DDoutlier | LOF 6 - 4,6, 8,19
RKOF 10 - 4,6, 8,19

Hivocag 2: Aprdudg EXTROTWY TURAUTNEHOEWY, Y10l BLUPORETIXES TWES TOL Kk %o TOGOGTA Yol TIG GUVIQ-

toelg Tou Taxétou OutlierDetection.
Hapatneroeis:

o [ peyohOtepeg Tég Tou K, ) nn aviyvelel TIC (Bleg TUpATNEYOES oY EXTEOTES, OTw 1 nnk.

e Ouxhaooixég arootdoeic Mahalanobis emppedotnxoy and TNy avTXATICTUOT TWV TUEAUTNRHCEWY.
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Ewéva 6: Tiéc xhaoody anoctdoewy Mahalanobis (apiotepd) - Tiéc edpwotov anootdoewy Ma-
halanobis (6e&id).
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Ewxoéva 7: O3 plot and tov ahyopripo tou BACON vy Sidgpopeg tiuée evanoinoioc.
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Cases ever found to be outliers by BAC for tol= 0.01

Ewoéva 8: T'pdgnua parallel coordinate tou detyuatog uévo pe tic yetafintég x1, x2, x4, x5.

5.2 Dat

e To clvolo dedopévwy dat elvon TeyvNTo, AMOTEAOUUEVO ATt TUPUTNENCELS TIOU TEOERYOVTAL OO
Vv oodLdotatn Koavovinr xoatavour).

e To cOvoho dedopévwy dat BploxeTton oTto Toxéto mvoutlier.

e 1o Oelypo autéd meptEyovton 100 BLodIdoTATES ToEATNENOELS.

58

46

Wariable 2

VZIE U.IEI 5 5.‘El
Variable 1

Ewova 9: Adrypauua Stoomopds, pe apriunuéves tic mavég EXTPOTES TapaTENoELS.
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Ewévo 10: Tpagruata ou Selyvouv (aptotepd) tic xhaooixés anootdoelc Mahalanobis ot tic ebpwoteg

anootdoels (Se€io) yior 6pL0 4/ X3 0975 = 2.72.
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Ewoéva 11: Awdypaupo mve aptotepd: EVpwotec anootdoeic Mahalanobis.  Awdrypoupo nédve de€ud:
Euretpu xatavour| 1wv edpwotwy atoctdoewy. Koxavn yoouur: H x> XATOYOUT o oL 8U0 xdeTeg
Yeopuée utodnhdvouy to 97.5% bpto xon to mpooopuootixd (adjusted) dplo avtiotoyya. To BVo xdtew

OLoryduoTar €Y0UV UE xOXxVOo O Tor ExTpoma onueio Tou €youy Eemepdoel xde dpto avtioTolya.
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R < S S N IR R IR A

No of methods identifying outliers . 1 . 3

Ewoéva 12: Adrypapuo obyxetone uedodwy FastMCD, FastPCS xow BACON.
IMopatnerostg

o H »daoow| andotaon Mahalanobis avédeile pévo v napatripenon 58 cav éxteomn).

e O elpwoTteg anootdoelg Mahalanobis mou Eemgpvolv 10 6pl0 AVTIGTOLOUY GTO GNUELY TTOU O)No-
tiCouv 10 UXEd clumAeyUa ouv TNV Tapathenon 36. H napatripnon 58 dev aviyvebinxe.

e Ou yédodor FastMCD, FastPCS xoaw BACON ouunintouv mifpwg Uetall Toug extdc Tng mo-
cathpenong 36 mou aviyvedinxe uoévo and v BACON. EmnAéov cuurnintouv eniong xou ye Tic
ebpwoteg amootdoelc Mahalanobis.

e ‘Ocov agopd tn ouvdptnon depthout, auldvoviag o mocooTwio Gplo, €yel W AMOTEAECUA TNV
aviY VEUOT) TIEPLOGOTEQMY THUPATNENOEWY OARS HOVO GTNY CUVOELAXY] TERLOYN TV CUUTAEY-
UTwY.

[

o6

Class

® MNormal

Variable2
=
o

: 5 ™ . *  Outlier

Gt

0 25 50

-2‘5 0
Variable1

Ewéva 13: Awdrypapo BlaoTopde Tou Oely Vel TIC EXTROTES TUQUTNENCELS TOU oLy VEDUNXOY omo TV
depthout pe mocootiado 6pto 0.1.
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58

a0~
i

i

3.

62 . 9

Class
*  Normal

& Dutfier

VWariable2
(=]
-

a4 99

25 0.0 25 5.0
Variable1

Ewoéva 14: Awdrypapo SlaoTopds mou Oely Vel TIC EXTPOTES TUQUTNENCELS TOU VL VEDUNXOY omto TNV
depthout pe mocootiaio 6pro 0.3.

nnk cuvdptnon

"Extponeg mapatneroeic k

11 27 28 34 36 58 77 78 90 94 98 5
11 28 35 36 58 62 69 73 77 78 90 94 6
7

8

9

11 25 28 35 36 58 62 69 77 78 90 94
11 25 27 28 33 34 36 58 62 69 77 78 90
11 25 27 28 33 36 58 62 69 77 78 90

11 25 27 28 33 36 58 62 69 77 90 94 10
1234567891011 3658 11
12345678910 3658 15
1234567891036 58 30
12345678910 3658 40

Hivoxag 3: "Extponeg nopatnerioelg yia didpopeg Tyeg Tou k yio Trv nnk ye nococtiado oplo 0.85.
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a5
25

25 0.0 25 5.0
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Ewéva 15 Awdrypappo SlaoTopdc Tou Oely Vel TIC EXTROTES TUQUTNENCELS TOU oVl VEDUNXOY omo TV

nnk yw &k = 7 xou tocootioo 6pto 0.85.

KNN_IN cuvdptnon
‘Extponec mopatnerioeic
158836 100 11 28 8590 91 94 98 9 )
11 58 36 28 77 90 94 27 33 62 20 25 73 10
58 11 36 62 27 33 90 94 25 28 73 77 1 15
58 11 36 27 62 90 25 28 73 94 33 77 1 16
58 11 36 27 62 90 25 28 73 94 33 77 1 17
58 11 36 27 62 28 90 94 25 33 73 1 2 18
58 11 36 27 6228 90 25 7394 1 2 3 19
58 36 11 276228 2573901234 20
36582345678910271 30
3658345679108 1262 40

Hivoxag 4: "Extponeg mopoatnenoelc yia ddpope Tiég tou k yioo vy NINKIN. Koraypdgtnxay ol

OEXATEE(C TUPATNEYOELC UE TOV YoUNAOTEQO BElXTY (indegree number).
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Variable 2
[ w

]
n
o
2 -

25 00
Variable 1

Ewoéva 16: Awdrypauo dlaoTopds mou Oely Vel TI¢ EXTPOTES TUPUTNENCELS TOU VLY VEDUNXOY omto TV
KNN_IN vy £k = 15.

IMopatnerostg

e ‘Ocov agopd v nnk, undpyel pla actdlela oTic apyixéc TWES Tou k xou Yetd olyxhion oe
TOEATNENOELS, TOU avty VELUTXaY eTtiong amd Tic e0pwoTteg anoctdoel Mahalanobis cuv tnv
TopATHENoN 58.

o Eméyovtac k = 7, o ahydprduoc puduileton €10l WOTE VoL oviyVeloEL LOVO TORATNETOELS AT

TO PEYOADTEQO CUUTAEYUN TUPATNPHOEWY 0T APLOTERY TOU LAY QAUUATOS BLUCTIORAG.

e Eogopudlovtac tnv KNNLIN nafpvouye ta (S amoteréoporta pe outd tng nnk yio Yeydheg Tyég
Tou k.

o 'l £ =15 n KNNLIN avtetwnilet xon Toe 800 GURTAEYUOATA GUV PUCLOAOYIXA UTOGUVORX

xo oLy VeVEL, yior xodéva amd autd, onuelo ta onola anéyouv and xdde clumheyua avtioToya.

e H yedodog KNNLIN, extog tov knn anoctdoeny mou yenowomolel, utodetel enlong xdmoleg amod
TIC IOTNTEC TV PEVOBY TNG TUXVOTNTAC, xS avalNTd TOEUTNEHOES TOU GUUUETEYOLY OTIG
NYOTEQEC k-00TEC XOVTIVOTERES YELTOVIEC.
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"Extponeg nopatner|oelg

LOF RKOF
11 8081986117490 7736949158 | 8110011809461 7790367419158 |5
81353290 62 77 33 27 91 69 11 36 58 | 98 33 32 81 27 77 94 90 11 69 91 36 58 | 10
3228 62 25 7790 27 91 33 69 11 36 58 | 81 94 32 28 33 27 77 90 11 91 69 36 58 | 11
790425829127 3369 11 36 58 7728 30 33 2790 2 8 91 11 36 69 58 12
823965691074 1136 58 91365827104 11 36 69 58 13
1823651097411 36 58 1657943669 1011 2858 14
182973366510114538 796936365211841058 15
1136 8213651058974 3611821103659 7458 20
11823613581065974 11368215831065974 30
1136 812365109758 4 1136 8123586510974 40

ivoxag 5: "Extponeg nopatnerosis yio didpopes tiwég tou k yio i LOF xou RKOF. Korarypdgptnyoy

ot dexartpeic mapatnenoelc pe Tic uhniotepeg Twée LOF o RKOF.

RKOF cuvdptnon
‘Extponeg mapatner|oeic

80 45 18 4 10 100 91 69 11 61 36 58 1 5

78 11 24 18 99 30 80 100 36 69 61 91 58 10
78 99 18 24 11 30 80 100 36 69 61 91 58 11
18 78 99 24 11 30 80 100 36 69 61 91 58 12
18 80 78 24 99 11 30 100 36 69 61 91 58 13
37 78 80 24 99 100 11 30 36 69 61 91 58 14
78 37 24 80 100 99 11 30 36 61 69 91 58 15
89 80 99 78 24 100 11 30 36 69 61 91 58 20
80 78 89 99 24 100 30 11 36 61 69 91 58 30
78 34 80 24 100 89 30 11 61 36 69 91 58 40

Hivoxac 6: "Extponee nopatnerioeic ya didpopec twéc tou k yio Ty RKOF pe ¢ = 0.1.
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Variable2

58

Class
* Normal

+  OQutlier

80

00 25 50
Variable1

Ewoéva 17 Awdrypappo dlaoTopds mou Oely Vel TIC EXTPOTES TUQUTNENCELS TOU oLy VEDUNXOY omto TV
RKOF pe k = 11.

IMopatnerosig

5.3

O pédodol LOF xa RKOF axohoudolv to (B0 potifo, onueidvovtag pio aotdideio o pixpég
Tiég Tou K eV oe peYahOTERES TWES ToU ot oL 800 uéYodol aviyVELoUV TIG (BLlEC TaPATNEHOELS
ue tnv nnk, extéc e mopoatienong 11.

H nopduetpoc C' emppedlerl Tic knn xdvovtag v RKOF mo evaiocintn oe napatneroec mou

Beloxovtar oTic AtydTERO TUXVES TEQLOYESC TOL BelypaToC.

Ou mapatnerioeic 99 xon 24 aviyveddnxay yio TemTn Qopd cav EXTEOTES Tapoho Tou BeloxovTol
OTO ECWTEPLXO TOU GUUTAEYHATOC.

Anopovwuéveg mapatnenoelc 6w auTég, deV aviyvelinxay and Tic UToAoeS Pedddous, xong

Ol TEPLOCOTERES A6 AUTES, avalnTolV EXTEOTES TopUTNENOELS Ot pla To xardohuxr xA{doxa.
Humus

To Setypo humus Peioxetoan 670 naxéto mvoutlier.

To dedopéva mpoépyovtar and to Kola Project, mou eivon plor yeohoyiny| épeuva xon cUAAE Y Inpay
v nepiodo 1993-1998.

H culhoyh humus armoteieiton amd 617 napatnerioetc pe 44 dlaopeTinée YeTaBAnTéC.

Ipoxewévou vo dlayetptotolue T AoLdTnta amd TNy omolo TdoyeL To Belyua, EMAEYOUUE VoL Ta
UETUUORPOCOUUE, hoyaprdullovTag To.
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Yuvontixd PBrpate avaAbong

o Apywd, e@apuoloue OAEG TIC CUVAPTNOELS TOU YeNolhoTolfuinxay g Thpa amd To R maxéta

“OutlierDetection” xou “DDoutlier” oe 6ho 10 ebpoc tou delypatoc.

o Yty ouvéyelo yenowomoolue to “03 plots” amd to R moxéto “OutliersO3” 1o omnolo etvou

eCoupeTINd YeRowo, av VeAcoupe Voo SoUUE TNV POCT] TwV BEBOPEVKY O UIXPOTEQES DLUCTAOELC.
o Eméyouue tuyaio técoeplc puetaBAnTég (Al, Co, Cu, Ni) npoc e&étoon,.
o Emmiéov, epopudlovpe v pédodo twv xiptwy cuviotwowy (PCA).

o Telud, epapuoloupe Oheg Tic UETOBOUC aviyVELONC EXTEOTWY TURATNENCEWY GTO BElYHo UETA TNV

epapuoy?) e PCA xou cuyxpivouue ta anotehéoyata.
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6 Xvunepdoyota

Egapuélovtoc dhec tic uedddoug ota dedouéva wood specific gravity, dat o humus xatedryouye oto
YEYOVOG, g xapia pedodog dev UTERTEREL OAOXATEWTIXG TNG GAAT.

Yy nepintwon tou dat, Tapatneolue TKg THEOAo Tou Tor onUEla eiVol XOVOVIXG XATAVEUNUEVD, EVaL
avoe TANYOC EXTEOTWY TUPATNEHOEWY UTOREL Vo LOAUVEL To Oelyua o TéTolo Podud, MoTe XhaUoOIXES
ugdodol 6mwe aut TN amdctacne Mahalanobis va unv divouy opld anoteAéopata, ONULOLEYHOVTIC TNV
avaryxn yie yerion mo e0pwo TV epyulelwy. Emmiedy, cuvavthoaue pla onuovTixy dtapopd ueTtold Ue-
VOBWY TOL YENOLOTOOVY UNBEVIXT UTOUEST) X0l AUTMY ToL BeV Yenotdomololy. O tedeutaieg avédetloy
oAV EXTEOTES, TUPATNEHOELS OTIOU Ol TEWTES Vewpnoay anhag axpolec. Téhog, uédodot mou Pocilovto
OTNV TUXVOTNTO XUTAPEQAY VAL oV VEVCOUY TapaTNENoEL;, 6mou ot umdlowteg pédodol Yedpnoay wg
puotohoyixd onuetor xaddg etvan avég vor avalNTACOLY ATOUOVOUEVA CTUEN AXOUT XoL OTO ECWTEPLXO
EVOC CUUTAEYUATOC TOU OELYHATOC.

Ytnv mepintwon Tou humus, xotoypddope mwg Aettoupyolv dheg auTég ot Y€VodoL, oe UEYURITERES
dlotdoelg. Emmiéov, avalnTtiooue €XTPOTES TOQAUTNEHOES OE UTOGUVOAY TURUTNENCEMY YLOL VOL XUTO-
YedPouUE TNV CUUTERLPORE TKV TUEATNEOEWY TOU YAURUXTNEIOTNXAY WS EXTEOTES, OTaY EYIVE EEETOON
Tou delyuatog oe 6ho To elpog Tou. TENOC, avaALCUUE TIC AANAYES OTA ATOTEAECUATA TTOU TTHEUE, 0Poy
epapuooope Ty pédodo tne PCA, unoypauuilovtac twe 1 anéctacrn Mahalanobis unopel va emippea-
otel and v pelwon didoTaong, oxoun x av dwtnenidel To YeyoAlTERO TO0GOGTH TN TANEoYopiag. Mie
avtideon e autry, ot pédodol mou Bactlovion GTNY ATOCTUOY, ATV CUVETEIC OTO AMOTEAECUATA TOUG
xou UeTd TNV egappoyy) e PCA, eva ot pédodol mou Bacilovton oty muxvoetnta, €561y Twe oL TOTUXES

YELTOVIES %A)E ToRaTHENONG TEOTOTOOVUVTOL UETH TNV UelwoT BLdc Taong.

32



