

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

«ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ»

Μεταπτυχιακή Eργασία

Position Estimation of Multiple Sea Vessels Using a Stereo-Based Camera

System and Neural Networks

του

Γεωργή Στέφανου

Eπιβλέπων Kαθηγητής: Παπαλάμπρου Γεώργιος ΣΝΜΜ

Συνεπιβλέποντες: Χ. Παπαδόπουλος, Αναπληρωτής Καθηγητής ΣΝΜΜ,

 Α. Γκίνης Αναπληρωτής Καθηγητής ΣΝΜΜ

AΘHNA 20.....

Η σελίδα αυτή είναι σκόπιμα λευκή.

Περίληψη

Η χρήση δύο καμερών και συνεπακόλουθα στερεοσκοπικής όρασης για την μέτρηση της θέσης

αντικειμένων στο χώρο μέσω εικόνας, είναι μια τερχνική, που χρησιμοποείται ιδιαίτερα συχνά

για την επίλυση προβλημάτων μέτρησης τριασδιάστατης θέσης επιθυμυτών αντικειμένων,

ειδικά στον τομέα των αυτόνομων ρομποτικών χειριστών για την αντίλειψη του

περιβάλλοντος.

Σε ελεγχόμενα περιβάλλοντα, όπως ένα επιστημονικό εργαστήριο οι τεχνικές υπολογιστικής

όρασεις για την ανίχνευση και την μέτρηση της θέσης των επιθυμητών αντικειμένων είναι

αρκετά ακριβείς. Αρκετά διαδεδομένοι για αυτό το πρόβλημα αισθητήρες προσδιορισμού

θέσης με χρήση υπολογιστικής όρασης όπως το Kinect ή το Intel Real Sense, ένω επιλύουν το

πρόβλήμα προσδιρισμού της θέσης των αντικειμένων, εντούτοις αυτό περιορίζεται σε μικρες

αποστάσεις από τον οπτικό αισθητήρα, της τάξης των μερικών μέτρων. Αρα οι αισθήρες αυτοί

δεν ενδείκνυται για την μέτρηση μέγαλων αποστάσεων.

Αισθητήρες απόστασης και μέτρησης χρόνου επιστροφής εκπεμπόμενου σήματος μπορόυν να

χρησιμοποιηθούν για την εξαγωγή τριασδιάστατης πληροφορίας της θέσης των αντικειμένων,

δημιουργώντας point cloud. Παρόλο αυτά είναι δύσκολο να ανιχνευτή το επιθυμητό

αντικέιμενο από το point cloud, πόσο μάλλον όταν απαιτείται ανίχνευση πολλών αντικειμένων.

Επιπλέον οι σχεδίαση αυτών των αισθητήρων είναι αρκετά περίπλοκη και κοστοβόρα με

αποτέλεσμα να κοστίζουν αρκετά ακριβά σε σύγκριση με τις κάμερες (ταξεις μεγέθους

διαφορά κόστους).

Για την ναυσιπλοΐα τα πιο διάσημα συστήματα παρακολούθησης και τα πιο συνηθισμένα

βασίζονται σε αισθητήρες χρόνου πτήσης (time of flight) όπως το Radar. Αν και είναι αρκετά

ακριβείς τις περισσότερες φορές δεν μπορούν να παρέχουν τρισδιάστατες πληροφορίες θέσης.

Για το σκοπό αυτό, η παρούσα διατριβή προτείνει έναν αλγόριθμο πραγματικού χρόνου για

τον εντοπισμό και την εκτίμηση της θέσης 3D πολλαπλών πλοίων χρησιμοποιώντας μόνο δύο

εικόνες της ίδιας σκηνής από ένα στερεοσκοπικό σύστημα κάμερας.

Πιο συγκεκριμένα, η παρούσα διατριβή παρουσιάζει το σχεδιασμό, την ανάπτυξη και την

εγαρμογή ενός στερεοσκοπικού συστήματος εντοπισμού θαλάσσιων σκαφών, με στόχο την

παροχή ακριβών και ισχυρών αποτελεσμάτων θέσης που θα μπορούσαν να χρησιμοποιηθούν

για την αποφυγή σύγκρουσης στον τομέα της αυτόνομης ναυτιλίας. Οι σχεδιαστικοί μας στόχοι

είναι να παρέχουμε μια λύση που να είναι φθηνότερη από τις παραδοσιακές λύσεις, αλλά

ταυτόχρονα να παρέχει περισσότερες πληροφορίες σχετικά με την θέση για τα αντικείμενα που

εντοπίστηκαν, με ακρίβεια και ευρωστεία. Για το λόγο αυτό, μετά από εξαντλητική αναζήτηση

στην τρέχουσα διαθέσιμη τεχνολογία αλγορίθμων αντίληψης, προτείναμε ένα στερεοσκοπικό

σύστημα που εκμεταλλεύεται τις δυνατότητες των νευρωνικων δικτύων για την ανίχνευση

θαλάσσιων σκαφών.

Επιπλέον παρουσιάζεται και αναπτύσεται ένας βελτιωμένος γρήγορος αλγόριθμος εύρεσης

του ορίζοντα που χρησιμέυει στην ακύρωση λανθασμένων εκτιμήσεων από το νευρωνικό

δίκτυο. Στην συνέχεια με την χρήση των οπτικών πληροφοριών από τις εικόνες του

στερεοσκοπικού συστήματος και με την χρήση ενός βελτιωμένου αλγορίθμου εκτίμησης της

τρισδιάστατης θέσης, διορθώνονται τυχόντα σφάλματα στην σχετική θέση της μιας κάμερας

4

ως προς την άλλη. Η καινοτομία του συγκεκριμένου αλγορίθμου έγκειται στο ότι δεν

χρείαζεται εξωτερικά σημεία (markers) τοποθετημένους πάνω στο σκάφος σε ακριβή θέση από

τις στερεοσκοπικές κάμερες. Ο πλήρης αλγόριθμος εύρεσης και εκτίμησης τρισδιάστατης

θέσης θαλάσσιων σκαφών, ενσωματώνεται σε κατάλληλα ενσωματωμένο υπολογιστικό

σύστημα που σχεδιάστηκε, πετυχαί οντας 5FPS συνεχών εκτιμήσεων, κάτω από διαφορετικές

συνθήκες φωτισμού.

Τέλος η ακρίβεια και ευρωστεία του αλγορίθμου και συνολικά του ενσωματωμένου

συστήματος, στην εύρεση και εκτίμηση της τρισδιάστατης θέσης των θαλάσσιων σκαφών,

αξιολογείται εκτενώς μέσα από αρκετά πειράματα.

5

Abstract

In computer vision, triangulation via arranging two cameras in a stereo setup has become the

norm in order to estimate the 3D pose of a particular object of interest and is used in most

autonomous robots to help perceive the environment.

In experiments limited to laboratory environments, classical computer vision techniques such

as stereo correspondence search and triangulation work decently well. Moreover, one could

utilize off-the-shelf equipment such as the Kinect sensor or Intel RealSense. The drawback

being that such sensors have limitations when taken outdoor and have only a limited range (up

to a few meters). This makes it infeasible to use such setups for long-range pose estimation.

Range and time-of-flight sensors can be used to extract 3D information using raw data provided

by such sensors from point clouds. But again, detecting particular objects in such point clouds

is non-trivial. Having to do this for multiple objects of interest only compounds the task.

Although, time-of-flight sensor manufacturers are trying to cut down costs and make such with

competitive prices but are still a long way from manufacturing accurate sensors available at a

competitive price such as cameras (which are orders of magnitude cheaper and provide most

information per cent).

In maritime industry the most famous surveillance systems and the most common are based on

time-of-flights sensors like Radar. Although they are quite accurate most of the times they

could not provide three-dimensional positional informations. To this end this thesis propose a

low-latency real-time pipeline to detect and estimate 3D position of multiple Sea-Vessels using

just two images of the same scene from a stereo based camera system.

More specifically this thesis presents the design, development and implantation of a

stereoscopic Sea-Vessels detection and localization system, aiming to provide accurate and

robust results that could be used for avoidance collision in autonomous shipping. Our design

goals are to provide a solution, which could be orders cheaper than the traditional solutions but

providing more positional information for the detected objects, accurately and robustly. For

this reason, after exhaustive search in current available hardware and perception algorithms

technology we proposed a stereoscopic system exploiting neural networks for detecting Sea-

Vessels.

An improved fast horizon line detection pipeline is also presented and implemented in order to

eliminate false Sea-Vessel detections. For estimating the 3D position of those detections, our

system exploits the informations provided by the stereoscopic view. Furthermore, an improved

3D estimation algorithm is proposed, using just as measurements the detected Sea-Vessels in

the current frame. This eliminate the need of precisely positioning specific markers in Ship’s

hull and calibrate them with respect to the stereo rig. Our real time prototype system is capable

of achieving 5FPS of continues detecting and pose estimating of Sea-Vessels in different Sea

environments

Finally the performance of the system is evaluated by conducting several tests in different

lighting conditions, after the testing and approval of each sub-module of the system

6

7

Ευχαριστίες

Η ολοκλήρωση της συγκεκριμένης μεταπτυχιακής διατριβής δεν θα ήταν δυνατή εάν δεν

υπήρχαν συγκεκριμένα άτομα που μου παρείχαν την απαραίτητη γνώση και στήριξη όπου και

όποτε χρειάστηκε.

Αρχικά τον καθηγητή κ. Γεώργιο Παπαλάμπρου, που ήταν ο εμπνευστής της συγκεκριμένης

εργασίας και με βοήθησε σημαντικά καθ’ ́όλη τη διάρκεια με τις γνώσεις του, καθώς και στην

ποιοτικότερη ανάλυση της διαδικασίας και των παραγόμενων αποτελεσμάτων, αλλά και της

φιλικής σχέσης και υποστήριξης που μου παρείχε.

Τέλος, ένα πολύ μεγάλο ευχαριστώ στην οικογένεια μου και στους φίλους μου, που με

βοήθησαν, ο καθένας με τον δικό του μοναδικό τρόπο να φέρω εις πέρας αυτό το κοπιαστικό

έργο.

Σε όλους αυτούς, λοιπόν, τους ανθρώπους που πέρασαν μέρος του χρόνου τους για να με

ενθαρρύνουν και να με βοηθήσουν με κάθε τρόπο για να πραγματοποιήσω όχι μία ακόμα

εργασία, αλλά ένα προσωπικό όνειρο, ένα μεγάλο ευχαριστώ.

8

Contents

1 Introduction.. 15

1.1 State-of-the-Art ... 15

1.2 Engineering Challenges ... 16

1.3 Scope of Investigation ... 17

1.4 Thesis Outline ... 17

2 Hardware Design Concept-Technology .. 18

2.1 Design Choices .. 18

2.1.1 Choosing the right Sensor ... 18

2.1.2 Additional Hardware Parameters... 19

2.2 System integration ... 20

2.3 Image Acquisition ... 21

2.4 Neural Network Processing Unit.. 22

3 Sea-Vessels Detection Algorithm ... 24

3.1 Anatomy of neural network ... 24

3.1.1 Neural Models: networks of layers .. 27

3.1.2 Loss functions and optimizers: keys to configuring the learning process 27

3.2 Fundamentals of Machine Learning ... 28

3.2.1 Supervised learning .. 28

3.2.2 Unsupervised learning .. 28

3.2.4 Reinforcement learning ... 29

3.3 Deep learning for Computer Vision ... 29

3.3.1 The convolution operation .. 29

3.3.1 Training a convnet .. 32

3.3.2 Using a pretrained convnet .. 33

3.3.3 Feature extraction ... 33

3.3.4 Fine-tuning ... 35

3.3.5 Transfer Learning ... 35

3.4 Customizing YOLOv3 for Sea-Vessels Detection .. 36

3.4.1 YOLO Model Architecture ... 36

3.4.2 Yolov3 Model Architecture .. 39

3.4.3 Multiple Sea-Vessels Detection .. 42

4 Fast Horizon Line Detection Algorithm .. 48

4.1 The need for Horizon Line detection.. 48

9

4.2 Fast Horizon Line Detector .. 49

4.2.1 Edge Detection ... 49

4.2.2 Multi-Scale edge detection .. 51

4.2.3 Horizon Line Estimation ... 54

5 Stereo Fussion & 3D Position Estimation ... 59

5.1 Camera Model ... 59

5.1.1 Pinhole Camera Model – Intrinsics & Extrinsics ... 59

5.1.2 Lens Distortion Models ... 64

5.2 Stereo Imaging and 3D Pose Estimation .. 68

5.2.1 Epipolar Geometry.. 68

5.2.2 Essential Matrix .. 70

5.2.3 Fundamental Matrix .. 71

5.2.4 Stereo Calibration ... 73

5.2.5 3D Position Estimation ... 74

5.2.6 Stereo Rectification .. 76

5.3 Stereo Fusion ... 78

5.4 Improved 3D Position Estimation .. 79

6 Experiments ... 85

6.1 Application Requirements ... 85

6.1.1 Neural Network Pre-Requirements ... 85

6.1.2 Inference at Edge – Movidius Stick NCS2 Pre-requirements 85

6.2 System Configuration .. 86

6.3 Experiments .. 88

6.3.1 3D position accuracy .. 88

6.3.2 Processing Time and Delays of the Pipeline .. 92

7 Conclusions and Future Work .. 94

7.1 Thesis Contributions .. 94

7.2 Future Work .. 95

Appendix A... 97

A.1 Pre-Requirements for deploying Yolov3 based model on Intel NCS2 97

A.2 Configuration of the Intel NCS2 ... 97

Bibliography ... 99

10

List of Figures

Figure 1.1 Crossing (Own vessel gives way) [16]. ... 16

Figure 2.2 A view of the most essential raspberry pi4 characteristics 20

Figure 2.3 Presents our hardware computational selection, comprises of Raspberry Pi4 as the

main system control board and the Intel Neural Compute Stick2 which executes our deep neural

network ... 21

Figure 2.4 An image of the camera sensor that were used .. 22

Figure 2.5 Two different views of our designed camera bases in solidworks........................ 22

Figure 2.5 A view from the neural compute stick. One can gain a basic intuition of the size of

the stick and the arrangement of the processing unit.[18] ... 23

Figure 2.6 Schematic architecture of the Tensor Proseccing Unit of the Neural Compute Stick

[18] ... 23

Figure 3.1 The fundamental cell of a neural network, a neuron. ... 24

Figure 3.2 A neural network is parameterized by its weights. .. 25

Figure 3.3 The loss score is used as a feedback signal to adjust the weights. 25

Figure 3.4 A generic diagram of how neural-networks trained and how they constructed. The

loss score is used as a feedback to adjust the weights... 26

Figure 3.5 Images can be broken into local patterns such as edges, textures, and so on. 30

Figure 3.6 The visual world forms a spatial hierarchy of visual modules: hyperlocal edges

combine into local objects such as eyes or ears, which combine into high-level concepts such

as “cat.” .. 31

Figure 3.7 How convolution works.. 32

Figure 3.8 Swapping classifiers while keeping the same convolutional base 34

Figure 3.9 Different learning processes between traditional machine learning and transfer

learning. .. 36

Figure 3.10 Yolo system models detection as a regression problem. It divides the image into

an S × S grid and for each grid cell predicts B bounding boxes, confidence for those boxes, and

C class probabilities. These predictions are encoded as an S × S × (B ∗ 5 + C) tensor.[21] .. 38

Figure 3.11 Our detection network has 24 convolutional layers followed by 2 fully connected

layers. Alternating 1 × 1 convolutional layers reduce the features space from preceding

layers.[21] ... 39

Figure 3.13 The completely Yolo v3 model architecture. After the feature extractor (Darknet-

53) one can see that feature maps with different sizes are upsampled and used for prediction,

yield three different prediction feature maps. This is called feature pyramid. 40

Figure 3.14 Bounding boxes with dimension priors and location prediction. We predict the

width and height of the box as offsets from cluster centroids. We predict the center coordinates

of the box relative to the location of filter application using a sigmoid function. This figure

blatantly self-plagiarized from [20] ... 41

Figure 3.12 Yolov3 structure but leverages it as a feature pyramid, with predictions made

independently at all levels ... 42

Figure 3.13 The different clusters and the centroid of each cluster is depicted for Yolov3-tiny.

With red star the centroid of each cluster and with colored dots, the corresponding anchor boxes

that belongs to this cluster are presented. ... 43

11

Figure 3.14 The different clusters and the centroid of each cluster is depicted for Yolov3. With

red star the centroid of each cluster and with colored dots, the corresponding anchor boxes that

belongs to this cluster are presented... 44

Figure 3.15 The average loss function is depicted .. 44

Figure 3.16 The average loss function is depicted. As is shown after 5000 epoch the loss

function starts to converge to a steady value near 1. .. 45

Figure 3.17 Variable learning rate training. ... 46

Figure 3.18 a) An image of a busy port and the detected Sea-Vessels within the oat annotated

boxes .. 46

Figure 3.18 b) Images of detected Sea-Vessels with different light conditions. 47

Figure 4.1 General Diagram of Sea-Vessels detection and 3D position estimation algorithm

pipeline. .. 48

Figure 4.3 Sobel Non-maximum Suppression method. Left the point A is not local maximum

and it is not considered as an edge point. In the right image although point A is local maximum

and that’s why it is consider as an edge point. ... 50

Figure 4.4 Edge decision threshold. ... 51

Figure 4.5.1 The final edge-map after applying three different size smooth Gaussian filters to

the original image bellow and thresholding. .. 53

Figure 4.5.2 Above the final edge-map after applying three different size smooth Gaussian

filters to the original image bellow. Then using thresholding the three different edge maps are

concatenated into one final. ... 53

Figure 4.6 The accumulator array where the lines are voted for a every θ, d based on equation

1.. 54

Figure 4.7.1 Images of horizon line detected using square windows to compare the two

different areas of sky and see. It is also written the deviation values computed in each side of

the line. In the right the computed finale-edge map from which the lines where computed is

shown. .. 55

Figure 4.7.2 Horizon line detected left and the correspondent final edge-map right, before

thresholding, are depicted. In left there are two lines as horizon line detected. This facilitates

the need of thresholding the computing deviation values. .. 55

Figure 4.7.3 Horizon line detected left and the correspondent final edge-map right, before

thresholding, are depicted. As it is clearly shown false detections due to waves or patterns like

the horizon line occurs very often. The need of properly adjusting all the parameters of the

algorithm is clearly depicted. ... 56

Figure 4.8.1 The resulting Horizon line detection algorithm. In the left, images of the horizon

line as well as the small window for comparing the intensity values above and under the line

are presented. It is also written the squared deviation value of the two windows in each side. In

the right are shown the correspondent final edge map of the left images 57

Figure 4.8.2 Images of detected horizon lines left and the corresponding final edge-map right.

The images depicted the capability and robusteness of the proposed algorithm to detect horizon

lines in different light conditions ... 58

Figure 5.2 The projection model of a pinhole camera is presented. A point Q = (X, Y, Z) is

projected onto the image plane by the ray passing through the centre of projection, and the

resulting point on the image is q = (z, y, f) The image is generated by intersecting these rays

with the image plane, which happens to be exactly a distance f from the center of projection.

This makes the similar triangles relationship x/f = X/Z more directly evident than before. The

negative sign is gone because the object image is no longer upside down. 60

12

Figure 5.3 Basic Projection model of a pinhole camera. .. 61

Figure 5.4 Radial distorting is presented. Objects rays that passes away from the center of the

lens have more radial distortion than the others passing closer from the lens center[14]....... 65

Figure 5.5 Showing the two different cases of barrel distortion [22] 65

Figure 5.6 Tangential distortion due to manufacturing process error in correctly positioning

and aligning of lens and image sensor. .. 66

Figure 5.7 Calibration rig and corresponding image point. From point correspondeces, iterative

algorithms find the parameters of the camera... 66

Figure 5.8 Calibration board and different position of the calibration board. 67

Figure 5.9 Left the undistorted image of the right raw image as it was taken directly from the

camera. As it is shown in the left the radial distortion is dominating the distortion of the image.

At the edges of the left image one can see the affect of the lens distortion. After un-distortion

curves that were curves remain and lines that were curved due to distortion are corrected. .. 68

Figure 5.10 The Epipolar Plane formed from the points P, O and O’ of the epipolar geometry

of the cameras, is colored gray. In this plane belongs the center of the cameras (O & O’) , the

two image points p , p’ of P and the world point P. .. 69

Figure 5.11 Epipolar geometry and epipolar constrains ... 70

Figure 5.12 Epipolar Geometry. .. 70

Figure 5.13 Left the calibration block and the founded blocks from the left camera. Right image

the correspondent image from the right camera and the founded blocks of the calibration block.

 ... 74

Figure 5.14 Depth estimation from perfectly undistorted, align stereo rig. [14] 75

 ... 76

Figure 5.15 Stereo rig with undistorted and rectified images. It is also prevented the reference

coordinate system for our system attached to the left camera. [14]....................................... 76

Figure 5.17 A rectified stereo pair: the two image planes Π and Π′are reprojected ontoa

common plane ̄Π= ̄Π′parallel to the baseline. The epipolar lineslandl′associated withthe

pointspandp′in the two pictures map onto a common scanline ̄l= ̄l′also parallelto the baseline

and passing through the reprojected points ̄pand ̄p′. The rectified imagesare easily constructed

by considering each input image as a polyhedral mesh and usingtexture mapping to render the

projection of this mesh into the plane ̄Π= ̄Π′. ... 77

Figure 5.18 The overall Sea-Vessel detection and 3D position estimation algorithm pipeline.

 ... 79

Figure 5.19 Parabola fitting of similarities in order to compute the sub-pixel position of the

disparity [15] ... 81

Figure 5.20 In the left, the image from the left camera is presented and the detected Sea-Vessel

is in green box. With red numbers the depth (0.56 meters) of the object from the left camera

with the use of all the above steps is shown and with blue numbers at the bottom of the box the

corresponding depth (0.88 meters) as it was measured without rectification. In the right the

corresponding frame from the right camera. The two cameras was positioned 0.6 meters away

from the monitor and in almost parallel configuration. .. 82

Figure 5.21 b) Presents the corresponding radar-like image of the estimated 3D position of the

detected Sea-Vessels from our algorithm. This screen is part of our detection-estimation

algorithm... 83

 ... 84

Figure 5.22 a) Image from the left camera . With red numbers are the depth estimated with

rectification of the stereo images and with blue numbers at the bottom of each green box the

13

depth measure without stereo rectification. As we can see the error in depth measuring without

the rectification technique is not acceptable. The two cameras was positioned 0.6 meters away

from the monitor and in almost parallel configuration. .. 84

Figure 6.1 The main steps for prepairing a neural network to run in Movidius NCS2 are

presented ... 86

Figure 6.2 At left the detection results of the Yolov3 with input size at 608x608x3 tensor size.

Middle the detection results of the Yolov3 with input size at 416x416x3 tensor size. Right the

detection results of the Yolov3-Tiny implementation with input size at 416x416x3 tensor size.

The encapsulation of fewer knowledge for Sea-Vessels from the Yolov3-Tiny model is clearly

depicted from the lack of the 4th Ship detection. This is expected due to less neural layers of

the tiny model. .. 87

Figure 6.3 Depth distance between left cameras coordinate frame of the stereo system and real

one as estimated from the meter. With red color the reference Z-distance-depth is depicted and

with blue points the depth estimated from the stereo system by using stereo rectification. With

green the points of the Z-distance from the left camera of the stereo system, as it was estimated

without stereo rectification. As we can see the two estimated distances of the detected Sea-

Vessels are pretty close to each and to the real one, but with more oscillations as far as is

concerned the estimation method without image rectification. ... 89

Figure 6.4. In this diagram the error in estimating the distance of each method is depicted. With

blue color the error between the estimated distance with stereo rectification and the real one is

presented. With green color the error between the estimated distance without stereo

rectification and the real one is presented. Finally with red color the difference between the

estimated distance of the two methods, with and without rectification is depicted. We can

clearly observe that the best depth accuracy comes from the method with stereo rectification,

which achieves a maximum distance -depth error of +- 8cm. ... 90

Figure 6.5 The estimated depth-distance of the detected Sea-Vessels from the stereo cameras

computed with the stereo rectification method are depicted in X-Axis. In Y-Axis the depth of

the Sea-Vessels from the stereo cameras as measured with the meter. With red line the perfect

estimations are depicted. ... 91

Figure 6.6 The estimated depth-distance of the detected Sea-Vessels from the stereo cameras

computed without the stereo rectification method are depicted in X-Axis. In Y-Axis the depth

of the Sea-Vessels from the stereo cameras as measured with the meter. With red line the

perfect estimations are depicted. For 1.1m distance of the stereo cameras we observe the bigger

error that is introduced to the measurements, compared with the results from the previous

figure. ... 92

Figure 6.7: Data flow and time delays of the sub-modules of the system pipeline. 93

14

15

Chapter 1

1 Introduction

1.1 State-of-the-Art

 This Chapter describes briefly why Vessel Detection and 3D Pose estimation is important for

autonomous shipping. It then describes why existing traditional surveillance systems lack to

fulfill the requirements of the autonomous shipping. A novel stereo based camera system with

the use of deep neural networks, as well as computer vision techniques is introduced, which

eases some of the problems of traditional navigational devices equipped on Sea-Vessels.

 The interest in remote-controlled and autonomous ships has been increasing in the fields of

marine industry and information technology[11][1][40][16][31]. A key technology in

autonomous ships is the situational awareness equipment required to safely operate and

navigate.

 Automatic surveillance of coastal areas is gaining importance due to the increasing global ship

traffic: Tankers, container ships, and bulk carriers are the most important means of

transportation of our time [39]. Moreover, the presence of environment protection issues and

new dangerous threats coming from the sea, including illegal smuggling and fishing,

immigration, oil spills and piracy, encourage the development of intelligent monitoring

systems.

 Ocean-going vessels are equipped with various electronic devices for navigation, such as

automatic radar plotting aid (ARPA) and automatic identification system (AIS). However,

existing devices are not perfect, and the navigational abilities of ships are restricted by these

devices. In addition, the AIS is not mandatory for ships under 300 GT, and small vessels cannot

be detected by the AIS, which increases the collision risk. The occurrences of accidents at sea

prove that existing navigational devices are inadequate. Studies show that up to 75 to 96% of

maritime accidents and casualties are due to some form of human error [29][15].

 More specifically, an important cause of collision is an improper look-out being maintained

by navigation officers, which accounts for 86% of collisions [34]. This makes the authorities

and researchers pay more attention to increase the navigational safety[31]. It is desirable to

have many choices for safety navigation which support the applicability of The International

Regulations for Preventing Collisions at Sea (COLREGs) (IMO, 1972) in which the target

object location and course are essential information for obstacle avoidance. Figure 1.1

illustrates a crossing situation according to COLREGs rules. In the figure, V0 and V1 are

speeds of own vessel and target vessel, respectively and X-Z is the coordinate system for own

vessel. As it can be seen from the figure, the action for the collision avoidance depends on the

location, course and the speed of the target vessel. Recently some studies are carried out for

16

the application of COLREGs in autonomous surface vehicles. These studies assume that the

obstacles are already detected and their algorithm makes localization and mapping in

accordance with COLREGs rules ([29], [5],[36]). However Sea-Vessel detection and 3D

Position Estimation is a very complex step for collision avoidance, which is the topic of this

thesis.

Figure 1.1 Crossing (Own vessel gives way) [16].

Especially, automatic Sea-Vessel detection becomes more important for the safety navigation

of ships. Automatic ship detection is reported in some papers ([33],[26]), which utilized digital

images. However, these studies use a single camera. In this case, it is very difficult to obtain

the location of a target. The [15][16] have proposed a new approach for the detection and

localization of other ships by means of a stereo vision system. Although they are using stereo

vision system they need a huge amount of computing power and the resulting detection is not

real time.

1.2 Engineering Challenges

17

Two are the main engineering challenges hinder the development of a Sea-Vessel detection

system capable of estimating the 3D position of each Vessel using conventional sensor

technology.

 System Design

With the current micro-processor technology, it is challenging to build a 3D position

Vessel detection system that is capable of flawless detection and localization of Sea-

Vessels in real time, using conventional sensors like cameras and small micro-

processors, but still matches the size, cost, performance and delay preferences for use

in maritime industry, from various types of Sea-Vessels. The problem arise because of

the use of conventional cameras as the only sensor of the system, which they generate

a huge amount of raw data ready to be processed in every frame.

 Efficient Detection Algorithm

A surveillance system capable of detecting Vessels and estimate the 3D position of

each, must have an efficient detection algorithm, which is fast and low computing

power consuming. Traditional choices for vision systems are conventional computer

vision techniques, which are although consuming in computing power [15],[16].

1.3 Scope of Investigation

A stereo camera based system is presented with the use of neural networks and computer vision

techniques in order to precisely detect and estimate the 3D pose of several vessels in each

camera frame. Especially a stand alone micro-computing system with two cameras and an

external TPU(Tensor Processing Unit) was designed and implemented, capable of capturing

frames, recognize and detect Vessels in every frame and then estimate their 3D pose relative

to the ship in real time. Novel position estimation algorithm was implemented, with rotational

position error of stereo cameras elimination. Test were carried out to determine how the actual

embedded system performed in practice.

1.4 Thesis Outline

 Chapter 2 Hardware Design Concept – Technology

 Chapter 3 Sea-Vessels Detection Algorithm

 Chapter 4 Fast Horizon Line Detection Algorithm

 Chapter 5 Stereo Fusion & 3D Position Estimation

 Chapter 6 Experiments

 Chapter 7 Conclusion

18

Chapter 2

2 Hardware Design Concept-Technology

Setting up a perception pipeline on a real-time system involves a coherent and clever interplay

between software and hardware. Although, undermined more often than not, choosing

appropriate hardware can greatly benefit the whole system. With proper choices it can improve

raw sensor dataflow management, sub-system performance and eventually the overall

throughput of the system. To ensure an efficient and effective perception system we build a

customized camera hardware setup with choices based on goals and requirements defined at

the onset. We postpone the discussion of the novel “Sea-Vessel detection” scheme and

consequently position estimates of multiple vessels at every image frame by exploiting stereo

vision configuration until the next chapter. The main focus of this chapter is to discuss the

development of the hardware setup and raw data acquisition which is as crucial, if not more,

as the software and processing of raw data.

2.1 Design Choices

As mentioned earlier, choosing the most relevant sensor based on the application can already

have a monumental impact on the pipeline. Keeping multiple constraints such as limited on-

board computation and sharing with other modules, sensor envelope and the package goals, a

computational cost effective detection pipeline was implemented. The time delay from the raw

image information to be taken till the end of the detection and estimation pipeline played a

central role to the overall design hardware architecture.

2.1.1 Choosing the right Sensor
The perception pipeline has a two camera setup. Two cameras, on the extremities, act as a

stereo pair to help triangulate detected Sea-Vessels and compute the position in space regarding

to the coordinate system attached to left camera. Parameters that are thoroughly considered:

 Noise and corruption free transmission: The speed and quality transmission of raw

image data from the cameras to the micro-processing board plays a key role to the

overall throughput of the system. One more key factor is the need of taking frames

simultaneously from both cameras. These requirements and with the simplicity that

USB communication is provide, led as to adopt it as the main communication

protocol of each module in our system.

19

 Neutralizing sudden changes in lighting: To ensure that glares and sudden lighting

changes do not render the cameras useless, CMOS (Complementary Metal-Oxide

Semiconductor) sensors are chosen over CCD (Charged Coupled Device). CCD

sensors are susceptible to washed out image pixels due to glare while CMOS based

sensors are not.

2.1.2 Additional Hardware Parameters

After the selection of the sensors, it is time for the computational cost of the Sea-Vessel

detection pipeline to be considered and the way that should be treated the raw data, that coming

from the camera. The following parameters led as to the selection of the embedded computation

system.

 Computing Power: As mentioned previously cameras generating a huge amount

of raw image data which should be processed by a powerful computation system

in order to achieve satisfactory results in respect to the time of vessel

identification. Further more, the computation system should provide an

acceptable amount of external-peripheral modules connectivities and should be

capable of monitoring them flowless. These parameters in addition with the

need of a compact, low power consuming and powerful computational board

led as to the adoption of a Raspberry Pi 4

 Simplicity to configuration: Another key parameter was that we needed a

system that is simple to configure to our needs and yet easy to program it. The

supported Debian OS which is based on Linux and the vast community of

Raspberry Pi played a crucial role to the selection of the board

 Another reason led as in this decision was that, we wanted a system which could

be a stand-alone computing system, carrying external monitors and all the

sensors and modules and be commercially available and low cost.

 Detection-Pipeline: The traditional computational-heavy computer vision

techniques and the progress of technology in the field of creating specialized

hardware for tensors processing, led as to switch our design and implementation

of the detection pipeline to the deep neural networks. That gave the possibility

to build a system which is scalable and facilitate the computational load of the

main processing unit of the system. For this reason the Intel Neural Compute

Stick 2 (NCS2) [18] was chosen as the main processing unit of the detection

pipeline over other modules. This peripheral is fully functional and configurable

with the Raspberry Pi [17] and also provides, at a low-cost, a powerful Vision

Processing Unit (VPU). The VPU takes advantage of the computation power of

16 tensor processing units with a shared high speed memory. The NCS2 is

connected to the main system (Pi 4) via a USB3 port of the main board.

 Open Source Software: was an essential parameter of the system

implementation. Since we wanted a hardware that is supported by open source

20

and publicly available software we ended up with the above hardware

selection[17][27][37].

In the following picture the Raspberry Pi 4 with its main modules is depicted. Following a table

with the most essential characteristics of the Raspberry Pi is prevented.

Figure 2.2 A view of the most essential raspberry pi4 characteristics

Table 2.1 Most Important Raspberry Pi4 Model B Specifications

CPU Quad core Cortex-A72 (ARM v8) 64-bit

CPU Clock 1.5GHz

RAM Memory 4GB LPDDR4-@3200MHz SDRAM

Serial Communication 2 USB 3.0 ports; 2 USB 2.0 ports, I2C, SPI

Display Support 2-lane MIPI DSI display port, 2×micro-HDMI ports

Embedded Graphics 500 MHz VideoCore VI, OpenGL ES 3.0 graphics

Wireless Communication 802.11ac (2.4 / 5 GHz), Bluetooth 5.0

Power Consuption 3.4 watts

Power Driving 3A, 5V

Size 88 x 58 x 19.5mm

2.2 System integration

21

The Raspberry Pi4 (Figure 2.3) which is the main computing board of the system was

connecting with the cameras and the Neural Compute Stick (NCS2) via USB (Figure 2.3).

Furthermore a monitor was connected to one of the HDMI ports. It was found that the

temperature of the Raspberry Pi board was increasing a lot during inference and for this reason

an active cooling system was attached, as shown bellow (Figure 2.3).

 Figure 2.3 Presents our hardware computational selection, comprises of Raspberry Pi4 as the

main system control board and the Intel Neural Compute Stick2 which executes our deep

neural network

2.3 Image Acquisition

The cameras that were used are shown in Figure …. They acquire raw image frames with a rate

of maximum 30 frames per second at a resolution of 1280x720 pixels . Another key feature of

this camera is that it has a fixed focal length, which ensures that there is no need to compute it

in every frame compared with automatic focus cameras. As it is already known the cameras

are connected to the main board via USB.

Table 2.2 Camera Sensor - Logitech C270 Specifications

Resolution 720p/30fps

Focus Fixed

Field of View 60 degrees

We also designed and builded in a 3D printer bases for our cameras in order to form a

stereoscopic image acquisition system, as it is shown in figure 2.5.

22

Figure 2.4 An image of the camera sensor that were used

Figure 2.5 Two different views of our designed camera bases in solidworks.

2.4 Neural Network Processing Unit

As described already special study was carried out in the time execution of the detection

pipeline. This led us to bypass the limited onboard computational power concerning to tensors

multiplications of the CPU and the embedded GPU of the Raspberry Pi4, which have not

sufficient tensor processing throughput and to substitute with the Intel Neural Compute Stick2

(Fig. 2.5).

23

Figure 2.5 A view from the neural compute stick. One can gain a basic intuition of the size of

the stick and the arrangement of the processing unit.[18]

This device is based in a tensor processing unit, which exists in each of the 16 Cores (Shaves)

and leverages the convolutional operations that is executed in each of the millions neurons of

the neural network, that we used. Apart from that there is also some hardware implemented

computer vision operations, which means that in a single clock the computation is done. In the

following figure 2.6 one can see the semantic architecture of the TPU (Tensor Processing Unit)

Figure 2.6 Schematic architecture of the Tensor Proseccing Unit of the Neural Compute Stick

[18]

24

Chapter 3

3 Sea-Vessels Detection Algorithm

 This chapter shifts the focus on how to detect multiple Sea-Vessels from a single image

exploiting deep neural networks. Although, it is an ill-posed problem but with a priori

information and a new dataset regarding to the desired new object detection task, a well trained

neural network can be exploited and reconfigured for our new task. At the beginning of this

chapter the basic theory of deep neural networks is presented, focused on the problem of object

detection. Then the benefits of knowledge transfer in neural networks is thoroughly discussed.

Finally, the methods and the implementation of our deep neural network based on YOLO

architecture is deeply discussed and some visual results are presented.

3.1 Anatomy of neural network

 As it is already known machine learning is about mapping inputs (such as images) to targets

(such as the label “cat”), which is done by observing many examples of input and targets. It is

also known that deep neural networks do this input-to-target mapping via a deep sequence of

simple data transformations (layers) and that these data transformations are learned by

exposure to examples. But how this learning happens, concretely? The specification of what a

layer does to its input data is stored in the layer’s weights, which in essence are a bunch of

numbers. In technical terms, it could be said that the transformation implemented by a layer is

parameterized by its weights (see figure 3.2). (Weights are also sometimes called the

parameters of a layer.) In this context, learning means finding a set of values for the weights of

all layers in a network, such that the network will correctly map example inputs to their

associated targets. But here’s the thing: a deep neural network can contain tens of millions of

parameters. Finding the correct value for all of them may seem like a daunting task, especially

given that modifying the value of one parameter will affect the behavior of all the others![13]

Figure 3.1 The fundamental cell of a neural network, a neuron.

25

Figure 3.2 A neural network is parameterized by its weights.

To control something, first we need to be able to observe it. To control the output of a neural

network, we need to be able to measure how far this output is from what it is expected. This is

the job of the loss function of the network, also called the objective function. The loss function

takes the predictions of the network and the true target (what we wanted the network to output)

and computes a distance score, capturing how well the network has done on this specific

example (see figure 3.3).

Figure 3.3 The loss score is used as a feedback signal to adjust the weights.

Initially, the weights of the network are assigned random values, so the network merely

implements a series of random transformations. Naturally, its output is far from what it should

ideally be, and the loss score is accordingly very high. But with every example the network

processes, the weights are adjusted a little in the correct direction, and the loss score decreases.

This is the training loop, which, repeated a sufficient number of times (typically tens of

iterations over thousands of examples), yields weight values that minimize the loss function.

26

A network with a minimal loss is one for which the outputs are as close as they can be to the

targets: a trained network. Once again, it’s a simple mechanism that, once scaled, ends up

looking like magic[13].

Training a neural network revolves around the following objects:

 Layers, which are combined into a network (or model)

 The input data and corresponding targets

 The loss function, which defines the feedback signal used for learning

 The optimizer, which determines how learning proceeds

The interaction of all them can be visualized as illustrated in figure 3.4 : the network, composed

of layers that are chained together, maps the input data to predictions. The loss function then

compares these predictions to the targets, producing a loss value: a measure of how well the

network’s predictions match what was expected. The optimizer uses this loss value to update

the network’s weights.

Figure 3.4 A generic diagram of how neural-networks trained and how they constructed. The

loss score is used as a feedback to adjust the weights.

The fundamental data structure in neural networks is the layer. A layer is a data-processing

module that takes as input one or more tensors and that outputs one or more tensors. Some

layers are stateless, but more frequently layers have a state: the layer’s weights, one or several

tensors learned, which together contain the network’s knowledge.

One can think of layers as the LEGO bricks of deep learning.

27

3.1.1 Neural Models: networks of layers
A deep-learning model is a directed, acyclic graph of layers. The most common instance is a

linear stack of layers, mapping a single input to a single output. The most common network

topologies, which although are not covering all the cases, are:

 Two-branch networks

 Multihead networks

 Inception blocks

The topology of a network defines a hypothesis space. A meaningful definition of machine

learning can be as “searching for useful representations of some input data, within a predefined

space of possibilities, using guidance from a feedback signal.” By choosing a network

topology, the space of possibilities (hypothesis space) is constrained to a specific series of

tensor operations, mapping input data to output data. What will then be searched for is a good

set of values for the weight tensors involved in these tensor operations.

Picking the right network architecture is more an art than a science; and although there are

some best practices and principles one can rely on, only practice can help in becoming a proper

neural-network architect. The next few chapters will concentrate in explicit principles for

building neural networks and developing intuition as to what works or doesn’t work for specific

problems[13].

3.1.2 Loss functions and optimizers: keys to configuring the learning process
Once the network architecture is defined, there is still need two more things to be defined[13]:

 Loss function (objective function)—The quantity that will be minimized during

training. It represents a measure of success for the task at hand.

 Optimizer—Determines how the network will be updated based on the loss

function. It implements the weight parameters update strategic at the end of each

training iteration, could be for example a specific variant of stochastic gradient

descent (SGD).

A neural network that has multiple outputs may have multiple loss functions (one per output).

But the gradient-descent process must be based on a single scalar loss value; so, for multi-loss

networks, all losses are combined (via averaging) into a single scalar quantity.

Choosing the right objective function for the right problem is extremely important: the network

will take any shortcut it can, to minimize the loss; so if the objective doesn’t fully correlate

with success for the task at hand, the network will end up doing things you may not have

wanted. Imagine a stupid, omnipotent AI trained via SGD (Stochastic Gradient Descent) [13],

with this poorly chosen objective function: “maximizing the average well-being of all humans

alive.” To make its job easier, this AI might choose to kill all humans except a few and focus

on the well-being of the remaining ones—because average well-being isn’t affected by how

many humans are left. That might not be what we intended[13]! Finally, it could be argued that

all neural networks that are build will be just as ruthless in lowering their loss function, so one

should choose the objective wisely, or will have to face unintended side effects.

28

Fortunately, when it comes to common problems such as classification, regression, and

sequence prediction, there are simple guidelines that can be followed, to choose the correct

loss. For instance, binary cross-entropy could be use for a two-class classification problem,

categorical cross-entropy for a many-class classification problem, meansquared error for a

regression problem, connectionist temporal classification (CTC) for a sequence-learning

problem, and so on. Only when working on truly new research problems there is need to be

developed new-customized objective functions.

3.2 Fundamentals of Machine Learning
Having a deep intuition of how neural-networks are constructed and the fundamental elements

that they consist of, it is time to structure into branches the scientific field of machine learning.

Although it is a vast field with a complex subfield taxonomy. Machine-learning algorithms

generally fall into four broad categories, described in the following sections[13].

3.2.1 Supervised learning
This is by far the most common case. It consists of learning to map input data to known targets

(also called annotations), given a set of examples (often annotated by humans). Generally,

almost all applications of deep learning that are in the spotlight these days belong in this

category, such as optical character recognition, speech recognition, image classification, and

language translation. Although supervised learning mostly consists of classification and

regression, there are more exotic variants as well, including the following[13] (with examples):

 Sequence generation—Given a picture, predict a caption describing it. Sequence

generation can sometimes be reformulated as a series of classification problems

(such as repeatedly predicting a word or token in a sequence).

 Syntax tree prediction—Given a sentence, predict its decomposition into a syntax

tree.

 Object detection—Given a picture, draw a bounding box around certain objects

inside the picture. This can also be expressed as a classification problem (given

many candidate bounding boxes, classify the contents of each one) or as a joint

classification and regression problem, where the bounding-box coordinates are

predicted via vector regression.

 Image segmentation—Given a picture, draw a pixel-level mask on a specific object.

3.2.2 Unsupervised learning
This branch of machine learning consists of finding interesting transformations of the input

data without the help of any targets, for the purposes of data visualization, data compression,

or data denoising, or to better understand the correlations present in the data at hand.

Unsupervised learning is the bread and butter of data analytics, and it’s often a necessary step

in better understanding a dataset before attempting to solve a supervised-learning problem.

Dimensionality reduction and clustering are well-known categories of unsupervised

learning[13].

29

3.2.3 Self-supervised learning

This is a specific instance of supervised learning, but it’s different enough that it deserves its

own category. Self-supervised learning is supervised learning without human-annotated

labels—you can think of it as supervised learning without any humans in the loop. There are

still labels involved (because the learning has to be supervised by something), but they’re

generated from the input data, typically using a heuristic algorithm.

For instance, autoencoders are a well-known instance of self-supervised learning, where the

generated targets are the input, unmodified. In the same way, trying to predict the next frame

in a video, given past frames, or the next word in a text, given previous words, are instances of

self-supervised learning (temporally supervised learning, in this case: supervision comes from

future input data). Note that the distinction between supervised, self-supervised, and

unsupervised learning can be blurry sometimes—these categories are more of a continuum

without solid borders. Self-supervised learning can be reinterpreted as either supervised or

unsupervised learning, depending on whether you pay attention to the learning mechanism or

to the context of its application[13].

3.2.4 Reinforcement learning
Long overlooked, this branch of machine learning recently started to get a lot of attention after

Google DeepMind successfully applied it to learning to play Atari games (and, later, learning

to play Go at the highest level). In reinforcement learning, an agent receives information about

its environment and learns to choose actions that will maximize some reward. For instance, a

neural network that “looks” at a video-game screen and outputs game actions in order to

maximize its score can be trained via reinforcement learning.

 Currently, reinforcement learning is mostly a research area and hasn’t yet had significant

practical successes beyond games. In time, however, it is expected reinforcement learning to

take over an increasingly large range of real-world applications: self-driving cars, robotics,

resource management, education, and so on. It’s an idea whose time has come, or will come

soon[13].

3.3 Deep learning for Computer Vision
This section introduces convolutional neural networks, also known as convnets, a type of deep-

learning model almost universally used in computer vision applications[13].

3.3.1 The convolution operation
The fundamental difference between a densely connected layer and a convolution layer is this:

Dense layers learn global patterns in their input feature space, whereas convolution layers learn

local patterns (see figure 3.5): in the case of images, patterns found in small 2D windows of

the inputs[13].

30

Figure 3.5 Images can be broken into local patterns such as edges, textures, and so on.

This key characteristic gives convnets two interesting properties:

 The patterns they learn are translation invariant. After learning a certain pattern in

the lower-right corner of a picture, a convnet can recognize it anywhere: for

example, in the upper-left corner. A densely connected network would have to learn

the pattern a new if it appeared at a new location. This makes convnets data efficient

when processing images (because the visual world is fundamentally translation

invariant): they need fewer training samples to learn representations that have

generalization power.

 They can learn spatial hierarchies of patterns (see figure 3.6). A first convolution

layer will learn small local patterns such as edges, a second convolution layer will

learn larger patterns made of the features of the first layers, and so on. This allows

convnets to efficiently learn increasingly complex and abstract visual concepts

(because the visual world is fundamentally spatially hierarchical).

Convolutions operate over 3D tensors, called feature maps, with two spatial axes (height and

width) as well as a depth axis (also called the channels axis). For an RGB image, the dimension

of the depth axis is 3, because the image has three color channels: red, green, and blue. For a

black-and-white picture, the depth is 1 (levels of gray). The convolution operation extracts

patches from its input feature map and applies the same transformation to all of these patches,

producing an output feature map. This output feature map is still a 3D tensor: it has a width

and a height. Its depth can be arbitrary, because the output depth is a parameter of the layer,

and the different

31

Figure 3.6 The visual world forms a spatial hierarchy of visual modules: hyperlocal edges

combine into local objects such as eyes or ears, which combine into high-level concepts such

as “cat.”

channels in that depth axis no longer stand for specific colors as in RGB input; rather, they

stand for filters. Filters encode specific aspects of the input data: at a high level, a single filter

could encode the concept “presence of a face in the input,” for instance [13].

Convolutions are defined by two key parameters:

 Size of the patches extracted from the inputs—These are typically 3 × 3 or 5 × 5 or

7 × 7

 Depth of the output feature map—The number of filters computed by the

convolution. Common depth values are power of 2, for example 32, 64, 128, 256

and so on.

A convolution works by sliding these windows of size 3 × 3 or 5 × 5 over the 3D input feature

map, stopping at every possible location, and extracting the 3D patch of surrounding features

(shape (windowheight, windowwidth, inputdepth). Each such 3D patch is then transformed

(via a tensor product with the same learned weight matrix, called the convolution kernel) into

a 1D vector of shape (outputdepth,). All of these vectors are then spatially reassembled into a

3D output map of shape (height, width, outputdepth). Every spatial location in the output

feature map corresponds to the same location in the input feature map (for example, the lower-

right corner of the output contains information about the lower-right corner of the input)[13].

For instance, with 3 × 3 windows, the vector output[i, j, :] comes from the 3D patch input[i-

1:i+1, j-1:j+1, :] . The full process is detailed in figure 3.7.

32

Figure 3.7 How convolution works

Note that the output width and height may differ from the input width and height. They may

differ for two reasons:

 Border effects, which can be countered by padding the input feature map

 The use of strides.

3.3.1 Training a convnet

Having to train an image-classification, object-detection model using very little data is a

common situation, which will likely encounter in practice when do computer vision in a

professional context. A “few” samples can mean anywhere from a few hundred to a few tens

of thousands of images[13]. In our case we had available almost 3.000 samples(images) well

annotated from the COCO dataset[8]. A basic strategic to tackle this problem is to use data

augmentation, which is a powerful technique for mitigating overfitting in computer vision.

Although by alone this technique can’t solve overfitting perfectly[13]. For this reason three

more essential techniques for applying deep learning to small datasets can be used. They are

feature extraction with a pretrained network, transfer-learning which we used and fine-tune a

33

pretrained network. These three techniques will be presented bellow briefly in order to obtain

a more solid intuition about them and to clarify our selection of using a pretrained network.

There is the prevailing view that deep learning only works when lots of data is available. This

is valid in part: one fundamental characteristic of deep learning is that it can find interesting

features in the training data on its own, without any need for manual feature engineering, and

this can only be achieved when lots of training examples are available. This is especially true

for problems where the input samples are very high-dimensional, like images [13].

But what constitutes lots of samples is relative—relative to the size and depth of the network

that is going to be trained, for start. It isn’t possible to train a convnet to solve a complex

problem with just a few tens of samples, but a few hundred can potentially suffice if the model

is small and well regularized and the task is simple. Because convnets learn local, translation-

invariant features, they’re highly data efficient on perceptual problems. Training a convnet

from scratch on a very small image dataset will still yield reasonable results despite a relative

lack of data, without the need for any custom feature engineering [13].

What’s more, deep-learning models are by nature highly repurposable: one can take, say, an

image-classification or speech-to-text model trained on a large-scale dataset and reuse it on a

significantly different problem with only minor changes. Specifically, in the case of computer

vision, many pretrained models (usually trained on the ImageNet and/or COCO dataset[8]) are

now publicly available for download and can be used to bootstrap powerful vision models out

of very little data. That’s what we did by using two different implementations, namely

YOLOv3 and tiny-YOLOv3, which they will be presented in the next section.

3.3.2 Using a pretrained convnet

A common and highly effective approach to deep learning on small image datasets is to use a

pretrained network. A pretrained network is a saved network that was previously trained on a

large dataset, typically on a large-scale image-classification, object-detection task. If this

original dataset is large enough and general enough, then the spatial hierarchy of features

learned by the pretrained network can effectively act as a generic model of the visual world,

and hence its features can prove useful for many different computer-vision problems, even

though these new problems may involve completely different classes than those of the original

task. For instance, one might train a network on ImageNet (where classes are mostly animals

and everyday objects) and then repurpose this trained network for something as remote as

identifying furniture items in images. Such portability of learned features across different

problems is a key advantage of deep learning compared to many older, shallow-learning

approaches, and it makes deep learning very effective for small-data problems[13]. We took

advantage of this technique by exploiting the pretrained YOLOv3 networks on COCO-object

detection Dataset[8], which comprises of 80 classes of everyday objects, like cars, boats,

persons and so on. This technique is thoroughly described bellow in transfer learning section.

3.3.3 Feature extraction

34

Feature extraction consists of using the representations learned by a previous network to extract

interesting features from new samples. These features are then run through a new classifier,

which is trained from scratch.

As it is known, convnets used for image classification – object detection comprise two parts:

they start with a series of pooling and convolution layers, and they end with a densely

connected classifier. The first part is called the convolutional base of the model. In the case of

convnets, feature extraction consists of taking the convolutional base of a previously trained

network, running the new data through it, and training a new classifier on top of the output (see

figure 3.8).

Figure 3.8 Swapping classifiers while keeping the same convolutional base

Why only reuse the convolutional base? Could also be reused the densely connected classifier

as well? In general, doing so should be avoided. The reason is that the representations learned

by the convolutional base are likely to be more generic and therefore more reusable: the feature

maps of a convnet are presence maps of generic concepts over a picture, which is likely to be

useful regardless of the computer-vision problem at hand. But the representations learned by

the classifier will necessarily be specific to the set of classes on which the model was trained—

they will only contain information about the presence probability of this or that class in the

entire picture. Additionally, representations found in densely connected layers no longer

contain any information about where objects are located in the input image: these layers get rid

of the notion of space, whereas the object location is still described by convolutional feature

maps. For problems where object location matters, densely connected features are largely

useless.

Note that the level of generality (and therefore reusability) of the representations extracted by

specific convolution layers depends on the depth of the layer in the model. Layers that come

earlier in the model extract local, highly generic feature maps (such as visual edges, colors, and

textures), whereas layers that are higher up extract more-abstract concepts (such as “cat ear”

35

or “dog eye”). So if the new dataset differs a lot from the dataset on which the original model

was trained, it may be better off using only the first few layers of the model to do feature

extraction, rather than using the entire convolutional base.

3.3.4 Fine-tuning

Another widely used technique for model reuse, complementary to feature extraction, is fine-

tuning. Fine-tuning consists of unfreezing a few of the top layers of a frozen model base used

for feature extraction, and jointly training both the newly added part of the model (in this case,

the fully connected classifier) and these top layers. This is called fine-tuning because it slightly

adjusts the more abstract representations of the model being reused, in order to make them

more relevant for the problem at hand[13].

3.3.5 Transfer Learning

The idea of transfer learning is inspired by the fact that people can intelligently apply

knowledge learned previously to solve new problems. For example, learning to play one

instrument can facilitate faster learning of another instrument. Transfer learning has gained

attention since its discussion in the Neural Information Processing Systems 1995 workshop on

Learning to Learn[35], which focused on the need for lifelong machine learning methods that

retain and reuse previously learned knowledge. Another good analogy is with traditional

software development: We almost never write a program completely from scratch; every

application makes heavy use of code libraries that take care of common functionality.

Maximizing code reuse is a best practice for software development, and transfer learning is

essentially the machine learning equivalent[4].

Transfer learning is an artificial intelligence (AI) practice that uses data, deep learning recipes,

and models developed for one task, and reapplies them to a different, but similar, task. In other

words, it's a method in machine learning where a model developed for one task is used as a

starting point for a model in a second task. Reuse of pretrained models allows improved

performance when modeling the second task, hence achieving results faster.

Vast quantities of readily available data are great, but it isn't a prerequisite for success. With

modern machine learning and deep learning techniques, knowledge acquired by a machine

working on one task can be transferred to a new task if the two are somewhat related. This

eventually helps to reduce training time significantly, thus improving productivity. In figure

3.9 the differences between traditional machine learning and with the use of transfer learning

are presented.

There are different types of transfer learning which can be summarize into three categories as

shown in the following table (3.1). The scope of this section is not to prevent deeply the

different approaches of transfer learning but to state our selection of inductive transfer learning.

The reason is that after careful consideration of different regression-object detection models,

the YoLoV3 had the better response. We pause the explanation of YoLo V3 model till the next

section. By looking to our feature space it was obvious that the fastest approach for Sea-Vessels

36

detection was to retrain the YoLo V3 to our dataset, exploiting the learning of the different

features that learned previously by the network in a much bigger and diverse dataset. That gave

also the ability to have better detection results in Sea-Vessels Detection.

Figure 3.9 Different learning processes between traditional machine learning and transfer

learning.

3.4 Customizing YOLOv3 for Sea-Vessels Detection

Before one can actually estimate 3D position of multiple objects from a single image, it is

necessary first to be able to detect these objects of interest given a single image. As mention

above we exploited the performance and accuracy of Yolo V3 object detector, customizing it

although for our new task of Vessels detection. This section describes the Yolo V3 model

architecture and continues with the steps that were performed before the retraining of the model

till the first use of the final model and the first inference.

3.4.1 YOLO Model Architecture

The first YOLO model architecture in 2016 introduced a new approach to object detection[21].

Prior work on object detection repurposes classifiers to perform detection. Instead, Yolo model

frame object detection as a regression problem to spatially separated bounding boxes and

associated class probabilities. A single neural network predicts bounding boxes and class

probabilities directly from full images in one evaluation. Since the whole detection pipeline is

a single network, it can be optimized end-to-end directly on detection performance. This gave

Yolo model an extremely small processing time from end-to-end detection and outstanding

performance compared with the model that where state-of-the art at that time[21].

What was genius about Yolo architecture was that it unified the separate components of object

detection into a single neural network. Yolo network uses features from the entire image to

predict each bounding box. It also predicts all bounding boxes across all classes for an image

37

simultaneously. This means the network reasons globally about the full image and all the

objects in the image[21].

The YOLO design enables end-to-end training and realtime speeds while maintaining high

average precision. Yolo system divides the input image into an SxS grid. If the center of an

object falls into a grid cell, that grid cell is responsible for detecting that object. Each grid cell

predicts B bounding boxes and confidence scores for those boxes. These confidence scores

reflect how confident the model is that the box contains an object and also how accurate it

thinks the box is that it predicts. Formally it is defined confidence as Pr(Object) * IOUtruthpred

. If no object exists in that cell, the confidence scores should be zero. Otherwise, the confidence

score to equal the intersection over union (IOU) between the predicted box and the ground

truth[21].

Each bounding box consists of 5 predictions: x, y, w, h, and confidence. The (x; y) coordinates

represent the center of the box relative to the bounds of the grid cell. The width and height are

predicted relative to the whole image. Finally the confidence prediction represents the IOU

between the predicted box and any ground truth box. Each grid cell also predicts C conditional

class probabilities, Pr(Classi|Object). These probabilities are conditioned on the grid cell

containing an object.[21]

Yolo only predicts one set of class probabilities per grid cell, regardless of the number of boxes

B. At test time the conditional class probabilities and the individual box confidence predictions

are multiplied,

Pr(Classij|Object) ∗ Pr(Object) ∗ IOUtruthpred = Pr(Classi) ∗ IOUtruthpred (1)

which gives the class-specific confidence scores for each box. These scores encode both the

probability of that class appearing in the box and how well the predicted box fits the object.

The Yolo architecture presented in Figure 3.11 implement this model as a convolutional neural

network and evaluate it on the PASCAL VOC detection dataset [25]. The initial convolutional

layers of the network extract features from the image while the fully connected layers predict

the output probabilities and coordinates. Yolo network architecture is inspired by the

GoogLeNet model for image classification [32]. Yolo network has 24 convolutional layers

followed by 2 fully connected layers as shown bellow.

38

Figure 3.10 Yolo system models detection as a regression problem. It divides the image into

an S × S grid and for each grid cell predicts B bounding boxes, confidence for those boxes,

and C class probabilities. These predictions are encoded as an S × S × (B ∗ 5 + C) tensor.[21]

During training Yolo optimize the following, multi-part loss function:

39

Figure 3.11 Our detection network has 24 convolutional layers followed by 2 fully connected

layers. Alternating 1 × 1 convolutional layers reduce the features space from preceding

layers.[21]

3.4.2 Yolov3 Model Architecture
Based on the above described architecture authors of Yolo did some impressing changes in

model architecture which gave it an outstanding performance and detection accuracy. First of

all Yolov3[20] is a little bigger than before having more layers as is shown in figures 3.12 &

3.13.

Figure 3.12 Yolo V3 feature extractor network

architecture Darknet-53[20]

40

Figure 3.13 The completely Yolo v3 model architecture. After the feature extractor (Darknet-

53) one can see that feature maps with different sizes are upsampled and used for prediction,

yield three different prediction feature maps. This is called feature pyramid.

Furthermore the system predicts bounding boxes using dimension clusters as anchor boxes

(figure 3.14). The network predicts 4 coordinates for each bounding box, tx ,ty , tw , th . If the

cell is offset from the top left corner of the image by (cx , cy) and the bounding box prior has

width and height pw, ph , then the predictions correspond to:

 (Eq. 1)

During training sum of squared error loss function is used.

YOLOv3 predicts an objectness score for each bounding box using logistic regression. This

should be 1 if the bounding box prior overlaps a ground truth object by more than any other

bounding box prior. If the bounding box prior is not the best but does overlap a ground truth

object by more than some threshold the prediction is ingored, following [32]. Threshold of .5

is used. Unlike [32] Yolo system only assigns one bounding box prior for each ground truth

object. If a bounding box prior is not assigned to a ground truth object it incurs no loss for

coordinate or class predictions, only objectness. Finally, each box predicts the classes the

bounding box may contain using multilabel classification[20].

41

Figure 3.14 Bounding boxes with dimension priors and location prediction. We predict the

width and height of the box as offsets from cluster centroids. We predict the center coordinates

of the box relative to the location of filter application using a sigmoid function. This figure

blatantly self-plagiarized from [20]

A key role characteristic of Yolov3 model architecture is that it makes predictions across three

differen scales. Meaning that features are extracted from those scales using a similar concept

to feature pyramid networks [38]. From the base feature extractor of Yolov3 model, several

convolutional layers were added. The last of these predicts a 3-d tensor encoding bounding

box, objectness, and class predictions. Yolov3 originally created for COCO [8], predicts 3

boxes at each scale so the tensor is N × N × [3 ∗ (4 + 1 + 1)] for the 4 bounding box offsets, 1

objectness prediction, and 1 class prediction. The real YoloV3 model calculates 80 class

predictions, meaning that the output tensor is N × N × [3 ∗ (4 + 1 + 80)] for the COCO.

Next the feature map from 2 layers previous is taken and is upsampled it by 2×. Also a feature

map from earlier in the network is taken and is merged with the upsampled features using

concatenation (Figure 3.12). This method allows Yolov3 model to get more meaningful

semantic information from the upsampled features and finer-grained information from the

earlier feature map. Then a few more convolutional layers to process this combined feature

map are added, and eventually a similar tensor is predicted, although now twice the size. The

same design is performed one more time to predict boxes for the final scale. Thus the

predictions for the 3rd scale benefit from all the prior computation as well as finegrained

features from early on in the network[20].

42

Figure 3.12 Yolov3 structure but leverages it as a feature pyramid, with predictions made

independently at all levels

3.4.3 Multiple Sea-Vessels Detection

It is time now to present the steps that were executed in order to adjust necessarily the Yolov3

model architecture to our task of Sea-Vessel detection. Specifically we modified and retrained

the Yolov3 as well as the Yolov3_tiny model, which is a smaller version of Yolov3, exploiting

the learned features that these networks learned previously.

For our task we used the dataset from COCO object detection competition[8], which comprises

of more than 150 thousands of well annotated images from 80 different classes. We kept the

images that contained only Sea-Vessels, yielding more than 3.000 images. In order to achieve

sufficient detection accuracy we had to change the anchor boxes that the original network used.

In order to determine the anchor boxes of the Yolov3 models based on the new task of Sea-

Vessels detection, we implemented a k-means clustering system[23]. For Yolov3 we used 9

clusters and for Yolov3-tiny we used 6 clusters. The k-means algorithm computed the new

centers of the anchor boxes based on the our dataset (see figure 3.13 & 3.14). The K-mean

clustering system was implemented in python.

43

Figure 3.13 The different clusters and the centroid of each cluster is depicted for Yolov3-tiny.

With red star the centroid of each cluster and with colored dots, the corresponding anchor

boxes that belongs to this cluster are presented.

Having the new anchor boxes determined it is time to retrain our models. We used the

framework from the authors of Yolo, which is Darknet. Every training needed a whole week

in a medium-sized computer running on a Nvidia 1060 6Gb graphic card. We trained every

network for more than 40.000 epochs. The resulting average loss function is in figures 3.15 &

3.16 depicted. From the figures one can see that after 5000 epoch model is starting to learn the

new feature.

44

Figure 3.14 The different clusters and the centroid of each cluster is depicted for Yolov3. With

red star the centroid of each cluster and with colored dots, the corresponding anchor boxes

that belongs to this cluster are presented.

Figure 3.15 The average loss function is depicted

45

Figure 3.16 The average loss function is depicted. As is shown after 5000 epoch the loss

function starts to converge to a steady value near 1.

For retraining the models a variable learning rate was used. This training strategy is well known

to machine learning community and tries to tackle the fact that at the begging of training big

loss values will be encountered causing to big weight changes of the pretrained network. This

causes the network to forget the learned features that are previously learned, a phenomenon

which is not desired. For this reason at the begging of the training a learning rate starting almost

from 0 till 0.001 progressively, is used for 1000 epochs. This is called burn-in or warm-up

period in deep learning community (figure 3.17).

In the following table the performances of the two different implementations namely YoloV3

and YoloV3_tiny are presented

Model Precision Recall Average Precision

Yolo V3 @ 608 0.982 0.948 0.838

Yolo V3 @ 416 0.975 0.917 0.824

Yolo V3 tiny @ 416 0.979 0.786 0.763

Table 5.1 Performance of Yolo V3 different implementations at Sea-Vessels detection

46

Figure 3.17 Variable learning rate training.

The resulting networks performed extremely well on detecting Sea-Vessels in different weather

and lighting conditions. Exemplary images are shown bellow in different lighting conditions ,

proving the robustness of the networks.

Figure 3.18 a) An image of a busy port and the detected Sea-Vessels within the oat annotated

boxes

47

Figure 3.18 b) Images of detected Sea-Vessels with different light conditions.

48

Chapter 4

4 Fast Horizon Line Detection Algorithm

This chapter present the fast horizon line detection algorithm exploiting computer vision

techniques . First the theory of the computer vision tools that were used is presented. Then the

fast horizon line detection algorithm is further studied. Finally the performance of the proposed

detection algorithm is thoroughly investigating.

4.1 The need for Horizon Line detection

As explained in the previous section, with the help of Sea-Vessel object detector, one can find

multiple Sea-Vessels of interest in a single image. The question is, due to determined object

detection precision, how do we decide for a bad detection. One simple but yet powerful

technique is to use the horizon line of the open sea to discard false Sea-Vessel detections.

As is shown by the general diagram pipeline (Fig. 4.1) from images to 3D Sea-Vessel

detections , first we take an image frame then we detect bounding boxes containing Sea-

Vessels. We exploit that information in our horizon line detector in order to form a ROI (Region

Of Interest) in the image frame, where the horizon detection would take place and then we

discard false positives. In order to compute the ROI we took the information of the highest and

lowest detected Sea-Vessel in the image and after applying a threshold we cutted the image

and the ROI was directly formed.

Figure 4.1 General Diagram of Sea-Vessels detection and 3D position estimation algorithm

pipeline.

49

One key characteristic between Sea and Sky surface is that these areas have different color and

light intensity distribution which we exploit it in order to detect the horizon line. We make the

assumption that the horizon line is generally represented as a straight line in a maritime

scenario. Based on this assumption we employ a series of computer vision techniques but

combined with such a way that the overall time execution is not affecting the overall system

performance.

4.2 Fast Horizon Line Detector

As described previously we begin by cutting the initial image and form a ROI. After that we

use a feature detector in order to detect the horizon line (Figure 4.2). As a feature detector we

used the simple but yet powerful Canny edge detector. It was developed by John F. Canny in

1986[19]. It is a multi-stage algorithm. The first step is to filter the image with a smoothing

filter like Gaussian and then apply Canny edge detector.

Figure 4.2 Horizon line detection pipeline. The steps for detecting the horizon line are depicted

in this diagram

4.2.1 Edge Detection

After that Canny edge detector tries to find intensity gradient of the input image. This is

achieved by applying Sobel kernel filter in both horizontal and vertical direction to get first

50

derivative in horizontal direction (Gx) and vertical direction (Gy). From these two images, we

can find edge gradient and direction for each pixel as follows:

 (Eq. 1)

Gradient direction is always perpendicular to edges. It is rounded to one of four angles

representing vertical, horizontal and two diagonal directions. After getting gradient magnitude

and direction, a full scan of image is done to remove any unwanted pixels which may not

constitute the edge. For this, at every pixel, pixel is checked if it is a local maximum in its

neighborhood in the direction of gradient, as shown in the figure 4.3 bellow.

Point A is on the edge (in vertical direction). Gradient direction is normal to the edge. Point B

and C are in gradient directions. So point A is checked with point B and C to see if it forms a

local maximum. If so, it is considered for the next stage, otherwise, it is suppressed (putted to

zero).

Figure 4.3 Sobel Non-maximum Suppression method. Left the point A is not local maximum

and it is not considered as an edge point. In the right image although point A is local maximum

and that’s why it is consider as an edge point.

The next stage decides which edges are really edges and which are not. For this, we need two

threshold values, minVal and maxVal. Any edges with intensity gradient more than maxVal

are sure to be edges and those below minVal are sure to be non-edges, so discarded. Those who

lie between these two thresholds are classified edges or non-edges based on their connectivity.

If they are connected to “sure-edge” pixels, they are considered to be part of edges. Otherwise,

they are also discarded. See the figure 4.4 below:

51

Figure 4.4 Edge decision threshold.

The edge A is above the maxVal, so considered as “sure-edge”. Although edge C is below

maxVal, it is connected to edge A, so that also considered as valid edge and we get that full

curve. But edge B, although it is above minVal and is in same region as that of edge C, it is not

connected to any “sure-edge”, so that is discarded. So it is very important that we have to select

minVal and maxVal accordingly to get the correct result. This stage also removes small pixels

noises on the assumption that edges are long lines. So what we finally get is strong edges in

the image.

4.2.2 Multi-Scale edge detection

Maritime scenes contain many edges generated by wakes from ships, sunlight, and waves. This

makes the detection of horizon line ambiguous, because of too many generated edges. In order

to tackle this problem, we used multi-scale edge detection. The scale in edge detection is related

to the size of the smoothing filter applied before edge detection[6].

Large-scale edge detection can identify reliable edges related to the horizon, but it loses

detailed structures. In addition, recent research pointed out that detecting edges at multiple

scales can reduce the inherent ambiguity of edge detection at a single scale. Therefore, several

methods, [24] adopting a multi-scale approach, have been proposed to mitigate sensitivity to

parameters of edge detection and to reduce the effect of noisy edges[6].

Multi-scale edge detection is distinguishable by the method of analyzing the information

detected at different scales.[24] Previous works have independently processed edge

information detected on different scales, so that horizon line estimation is applied to the number

of scales. This was one reason for increasing the processing time of the horizon detection

method, when adopting multi-scale edge detection. In addition, MusCoWERT [30] detected

edges on different scales and analyzed their length, because it suffers from processing times

requiring an order of tens of seconds.

52

This Paper [6] proposed a method which used three different scales of smoothing filter and

then merging the resulting edges based on a threshold intensity value. In our implementation,

the proposed method applies different smoothing values in ROI but for every scale applies the

Canny edge detector with different threshold values, giving more importance to scales with

bigger smoothing filters. This gave us the ability to isolate more accurately the dominant lines.

The proposed method detects edges from the images by applying a smoothing filter of various

sizes. Then, it applies the Canny edge detector with different low and high threshold values of

edges, based on intensity distribution of the ROI. More specifically before we compute the

edges in each scale, we compute the median intensity value of the cropped image (ROI). Then

we compute the threshold values for the edge detector using the median value of the ROI as a

central value. Using the type

lower = int(max(0, (1.0 - sigma) * v))

upper = int(min(255, (1.0 - sigma) * v))

Where the sigma parameter is consider as normal deviation. Then the edge images at different

scales are synthesized to a single edge map.

Detecting a horizon by analyzing a combined edge map can reduce the inherent ambiguity of

edge detection using a single scale, while increasing the processing speed of horizon detection.

The proposed method uses the Gaussian filter as a smoothing filter. The Canny edge detector

is applied to multi-scale images independently. Then, the weighted edge map is synthesized

using the edge maps to which the Canny edge detector is applied, as follows

 (Eq. 2)

where N is the number of median filters, of the scale s, and Es is the edge maps of the scale s.

The edges related to the horizon were consistently detected on edge maps at various scales

because of the strong brightness changes near the horizon. Thus, the proposed method applies

thresholding to the weighted edge map to suppress noisy edges, while keeping the edges

associated with the horizon. The thresholding to the weight edge maps is applied as follows

 (Eq. 3)

where t is the threshold for filtering the noisy edges; we set the threshold to 170.

The example image of the edge maps generated from the multi-scale images and the weighted

edge map applying the thresholding are shown in figure 4.5. To improve the readability of the

edge maps in figure 4.5, a dilation filter with a 5 x 5 rectangular structuring element is first

applied to the edge maps.

Figure 4.5 shows that the proposed multi-scale edge detection can preserve the edges associated

with the horizon while suppressing the noisy edges. The proposed method reduces edges

unrelated to the horizon, but there still exist outlier edges. Therefore, a method is necessary to

reduce the effect of out-lier edges when estimating the horizon line.

53

Figure 4.5.1 The final edge-map after applying three different size smooth Gaussian filters to

the original image bellow and thresholding.

Figure 4.5.2 Above the final edge-map after applying three different size smooth Gaussian

filters to the original image bellow. Then using thresholding the three different edge maps are

concatenated into one final.

54

4.2.3 Horizon Line Estimation

The representative method for estimating the horizon from the edge image are the Hough

transform. The method using Hough transform can robustly estimate the parameter of horizon,

even when there are small numbers of edges related to the horizon or there are many noisy

edges. This is because Hough transforms tend to be most successfully applied to line finding.

A line is easily parameterized as a collection of points (x, y) such that

x cosθ + y sinθ + r = 0

Now any pair of (θ, r) represents a unique line, where r ≥ 0 is the perpendicular distance from

the line to the origin, and 0 ≤ θ < 2π. We call the set of pairs (θ, r) line space; the space can be

visualized as a half-infinite cylinder. There is a family of lines that passes through any point

token. In particular, the lines that lie on the curve in line space given by r = −x0 cosθ + y0 sinθ

all pass through the point token at (x0 , y0).

Because the image has a known size, there is some R such that we are not interested in lines

for r > R, these lines will be too far away from the origin for us to see them. This means that

the lines we are interested in, form a bounded subset of the plane, and we discretise this with

some convenient grid figure 4.6. The grid elements can be thought of as buckets, into which

we will sort votes. This grid of buckets is referred to as the accumulator array. Now for each

point token we add a vote to the total formed for every grid element on the curve corresponding

to the point token. If there are many point tokens that are collinear, we expect that there will

be many votes in the grid element corresponding to that line.

Figure 4.6 The accumulator array where the lines are voted for a every θ, d based on equation

1

After applying the Hough Transform in our multi-scale edge map, we get many candidate

horizon lines. In order to decide the right one we discard lines that having a slope bigger than

45 degrees. This is not sufficient to cancel all the outliers and present only the dominant horizon

line. In order to tackle this problem, we exploited the difference in color distribution and

55

intensity of the sea-sky. The horizon line lies on the boundary of these two spaces and we

exploit those differences by computing the deviation of the intensity value of two boxes above

and bellow the horizon line in each end point of the line (figures 4.7).

 (Eq. 4)

where N is the size of image window to be checked and in our application was 10pixels

Figure 4.7.1 Images of horizon line detected using square windows to compare the two

different areas of sky and see. It is also written the deviation values computed in each side of

the line. In the right the computed finale-edge map from which the lines where computed is

shown.

Figure 4.7.2 Horizon line detected left and the correspondent final edge-map right, before

thresholding, are depicted. In left there are two lines as horizon line detected. This facilitates

the need of thresholding the computing deviation values.

56

The threshold of the deviation values in each side of the horizon line should be adjusted

properly in order to discard false detections as shown above (figure 4.7.2). Not only the

deviation threshold values should be adjusted, but also the window size. Window size plays a

crucial role in discarding false detections and also in speed of algorithm. Because the bigger

the size more reliable are the results but more slowly runs the algorithm. So there exist a trade-

off which the engineer should be carry on. One final parameter that should be taken into

account, is the size of the smoothing Gaussian windows applied at the step before computing

edges.

Figure 4.7.3 Horizon line detected left and the correspondent final edge-map right, before

thresholding, are depicted. As it is clearly shown false detections due to waves or patterns like

the horizon line occurs very often. The need of properly adjusting all the parameters of the

algorithm is clearly depicted.

After thresholded and configured properly the window size at 10 pixels square, we were able

to discard false horizon line detection, keeping only the dominant horizon line (Fig. 4.8). This

technique works also when the horizon line is not expanded in the whole image, but in a small

segment. For example when there is another objects like See-Vessel or islands. Although this

technique is giving more robustness to overall horizon line detection algorithm, the horizon

line should be existed as a segment for more than 50% of the width of the image. The horizon

line was programmed in python using OpenCV. The related code is at appendix.

57

Figure 4.8.1 The resulting Horizon line detection algorithm. In the left, images of the horizon

line as well as the small window for comparing the intensity values above and under the line

are presented. It is also written the squared deviation value of the two windows in each side.

In the right are shown the correspondent final edge map of the left images

58

Figure 4.8.2 Images of detected horizon lines left and the corresponding final edge-map right.

The images depicted the capability and robusteness of the proposed algorithm to detect horizon

lines in different light conditions

59

Chapter 5

5 Stereo Fussion & 3D Position Estimation

This chapter is focused on the estimation of the 3D position of the detected object. This is

accomplished by the use of a second camera, which enhances our system with more optical

information, necessary to estimate the 3D position of the See-Vessels corresponding to the

cameras. After describing the fundamentals of stereo vision, which are essential for our

application, the method of fussing the images from the two camera sensors is analyzed. Then

a proposed method for noise reduction and better position estimation of the detected See-

Vessels is presented. This method is capable of correcting the error in camera orientation,

compare to each other, in every frame and without the need of use of external fix-points

(markers) calibrated with respect to the stereo system, as it is done in the majority of stereo

based 3D position estimation system.

5.1 Camera Model

Most of the time cameras are model using the pinhole camera model. This is because of

simplicity of this camera model. A pinhole is an imaginary wall with a tiny hole in the center,

that blocks all rays except those passing through the tiny aperture in the center. In this section,

we will start with a pinhole camera model to get a handle on the basic geometry of projecting

rays. Unfortunately, a real pinhole is not a very good way to make images because it does not

gather enough light for rapid exposure. This is why human eyes and cameras use lenses to

gather more light than what would be available at a single point. The downside, however, is

that gathering more light with a lens not only forces us to move beyond the simple geometry

of the pinhole model but also introduces distortions from the lens itself [10].

5.1.1 Pinhole Camera Model – Intrinsics & Extrinsics
In pinhole camera model, light is envisioned as entering from the scene or a distant object, but

only a single ray enters from any particular point. In a physical pinhole camera, this point is

then “projected” onto an imaging surface. As a result, the image on this image plane (also

called the projective plane) is always in focus, and the size of the image relative to the distant

object is given by a single parameter of the camera: its focal length. For our idealized pinhole

camera, the distance from the pinhole aperture to the screen is precisely the focal length. This

is shown in Figure 5.1, where f is the focal length of the camera, Z is the distance from the

camera to the object, X is the length of the object, and x is the object’s image on the imaging

plane[14]. In the figure 5.1, we can see by similar triangles that –x/f = X/Z, or

60

Figure 5.1 Pinhole camera model. The image plane corresponds to the pixel array of a typical

camera sensor. The optical rays passing through the pinhole aperture from the pinhole plane,

which is focal length away from the image plane[14].

In figure 5.2, the pinhole and the image plane change position. The main difference is that the

object now appears as it is, right side up. The point in the pinhole is reinterpreted as the center

of projection. Using this interpretation, every ray leaves a point on the distant object and heads

for the center of projection. The point at the intersection of the image plane and the optical axis

is referred to as the principal point. On this new frontal image plane (see Figure 5.2), which is

the equivalent of the old projective or image plane, the image of the distant object is exactly

the same size as it was on the image plane in figure 5.1 [14].

Figure 5.2 The projection model of a pinhole camera is presented. A point Q = (X, Y, Z) is

projected onto the image plane by the ray passing through the centre of projection, and the

resulting point on the image is q = (z, y, f) The image is generated by intersecting these rays

with the image plane, which happens to be exactly a distance f from the center of projection.

61

This makes the similar triangles relationship x/f = X/Z more directly evident than before. The

negative sign is gone because the object image is no longer upside down.

Figure 5.3 Basic Projection model of a pinhole camera.

As discussed earlier, a point X in 3D space can be mapped (or projected) into a 2D point x in

the image plane Π′ (Fig. 5.3). This R3→R2 mapping is referred to as a projective

transformation. This projection of 3D points into the image plane does not directly correspond

to what we see in actual digital images for several reasons. First, points in the digital images

are, in general, in a different reference system than those in the image plane. Second, digital

images are divided into discrete pixels, whereas points in the image plane are continuous.

Finally, the physical sensors can introduce non-linearity such as distortion to the mapping. To

account for these differences, we will introduce a number of additional transformations that

allow us to map any point from the 3D world to pixel coordinates. Image coordinates have their

origin P at the image center where the Z axis intersects the image plane (Fig. 5.3). On the other

hand, digital images typically have their origin at the lower-left corner of the image [22]. Thus,

2D points in the image plane and 2D points in the image are offset by a translation vector

[cx,cy]T. To accommodate this change of coordinate systems, the mapping now becomes

 (1)

The next effect we must account for is that the points in digital images are expressed in pixels,

while points in image plane are represented in physical measurements (e.g. centimeters). In

order to accommodate this change of units, we must introduce two new parameters k and l.

These parameters, whose units would be something like pixels*m-1, correspond to the change

62

of units in the two axes of the image plane. Note that k and l may be different because the

aspect ratio of the unit element is not guaranteed to be one. If k=l, we often say that the camera

has square pixels [22]. The previous mapping is adjusted to be

 (2)

In order to form better this non linear transformation from world points (x,y,z) to discrete

camera points (x’, y’), we attempt to rewrite this equation using matrix multiplications between

a matrix and the input vector P = (x,y,z). However, from Equation 2, it is obvious that this

projection P→P′ is not linear, as the operation divides one of the input parameters (namely z).

Still, representing this projection as a matrix-vector product would be useful for future

derivations [22].

One way to get around this problem is to change the coordinate systems. A new coordinate is

introduced, such that any point P′=(x′,y′) becomes (x′,y′,1). Similarly, any point P=(x,y,z)

becomes (x,y,z,1). This augmented space is referred to as the homogeneous coordinate system.

As it is known, to convert some Euclidean vector (v1,...,vn) to homogeneous coordinates, we

simply append a 1 in a new dimension to get (v1,...,vn,1). Note that the equality between a

vector and its homogeneous coordinates only occurs when the final coordinate equals to one.

Therefore, when converting back from arbitrary homogeneous coordinates (v1,...,vn, w), we

get Euclidean coordinates (v1/w,...,vn/w, 1)[22]. Using homogeneous coordinates, we can

formulate

 (3)

From this point on, assume that we will work in homogeneous coordinates, unless stated

otherwise. We will drop the h index, so any point P or P′ can be assumed to be in homogeneous

coordinates [22]. As seen from equation 3,we can represent the relationship between a point in

3D space and its image coordinates by a matrix vector relationship:

 (4)

63

This transformation can be decomposed into:

 (5)

The matrix K is often referred to as the camera matrix. This matrix contains some of the critical

parameters that are useful to characterize a camera model. Two parameters are currently

missing from our formulation: skewness and distortion. We often say that an image is skewed

when the camera coordinate system is skewed. In this case, the angle between the two axes

are slightly larger or smaller than 90 degrees. Most cameras have zero-skew, but some degree

of skewness may occur because of sensor manufacturing errors [22]. Deriving the new camera

matrix accounting for skewness is outside the scope but is shown bellow:

 (6)

So far, it is described a mapping between a point P in the 3D camera reference system to a

point P′ in the 2D image plane. But what if the information about the 3D world is available in

a different coordinate system? Then, there is need to include an additional transformation that

relates points from the world reference system to the camera reference system. This

transformation is captured by a rotation matrix R and translation vector T [22]. Therefore, given

a point in a world reference system Pw, we can compute its camera coordinates as follows:

 (7)

Substituting this in equation (5) and simplifying gives:

 (8)

This completes the mapping from a 3D point P in an arbitrary world reference system to the

image plane. As is shown the projection matrix M consists of two types of parameters: intrinsic

and extrinsic parameters. All parameters contained in the camera matrix K are the intrinsic

parameters, which change as the type of camera changes. The extrinsic parameters include the

64

rotation and translation, which do not depend on the camera’s build. Overall, one can find that

the 3×4 projection matrix M has 11 degrees of freedom: 5 from the intrinsic camera matrix, 3

from extrinsic rotation, and 3 from extrinsic translation[22].

5.1.2 Lens Distortion Models

Real world cameras are using lens. Lens are not perfect and therefore they introduce distortion.

The reason is mainly because of the manufacturing process. Perfect lens need to be parabolic

whether in reality, mathematically ideal parabolic scheme is not easy achievable. Most of the

times real world camera lens are more spherical and not perfectly align to camera sensor. This

means that the center of the Len is not align exactly with the center of the image sensor (CCD

or CMOS). Taking account those inaccuracies the pinhole model that were described

previously lacks. It is proofed that for simply applications, lens distortions can be as Radial and

Tangential [14][22].

Radial distortion, distort the rays of light that are near the edges of the imager. This bulging

phenomenon is the source of the “barrel” or “fish-eye” effect. Figure 5.4 gives some intuition

as to why radial distortion occurs. With some lenses, rays farther from the center of the lens

are bent more than those closer in. A typical inexpensive lens is, in effect, stronger than it ought

to be as you get farther from the center. Barrel distortion is particularly noticeable in cheap

web cameras but less apparent in high-end cameras, where a lot of effort is put into fancy lens

systems that minimize radial distortion [14].

As far as radial distortion is concerned, the distortion is 0 at the (optical) center of the imager

and increases as we move toward the periphery. In practice, this distortion is small and can be

characterized by the first few terms of a Taylor series expansion around r = 0. For cheap web

cameras, the first two such terms are used; the first of which is conventionally called k1 and

the second k2. For highly distorted cameras such as fish-eye lenses one can use a third radial

distortion term k3. In general, the radial location of a point on the imager will be rescaled

according to the following equations [14]:

65

Figure 5.4 Radial distorting is presented. Objects rays that passes away from the center of the

lens have more radial distortion than the others passing closer from the lens center[14].

Where x,y correspond to the original location (on the imager) of the distorted point and

(xcorrected, ycorrected) correspond to the new location as a result of the correction. Generally

there are two types of radial distortion. The radial distortion is increasing as the radial distance

of the point (x,y) in image plane, from the optical center increases [14].

One can safely classify the radial distortion as pincushion distortion when the magnification

increases and barrel distortion when the magnification decreases as shown in figure 5.5. Radial

distortion is caused by the fact that different portions of the lens have differing focal lengths

[14].

Figure 5.5 Showing the two different cases of barrel distortion [22]

Tangential distortion is the second-largest common distortion figure 5.6. Tangential distortion

is due to manufacturing defects resulting from the lens not being exactly parallel to the imaging

plane. Tangential distortion is minimally characterized by two additional parameters, p1 and

p2, such that:

66

Finally, there are in total 5 distortion coefficients that are required for a proper distortion

elimination.

Figure 5.6 Tangential distortion due to manufacturing process error in correctly positioning

and aligning of lens and image sensor.

At this point a complete mathematically model for a digital camera is formed. As is presented

above the model parameters can be divided into intrinsic, extrinsic and distortion parameters.

In order to compute all these parameters, there is a technique calling Calibration. Calibration

uses some known 3D points corresponding to a world frame (Figure 5.7). Then after taking

image frames of these points, the number of the frame and the number of points differ for every

calibration method, the desired parameters are estimated. The majority of these methods are

using iterative algorithms, minimizing a cost function and forming an optimization problem,

in order to compute all the camera parameters. It is not intended to describe the calibration

technique and its different calibration methods. One can be referred to [41].

Figure 5.7 Calibration rig and corresponding image point. From point correspondeces,

iterative algorithms find the parameters of the camera.

67

We used the calibration method proposed from OpenCV. The algorithm that OpenCV uses to

solve for the focal lengths and offsets is based on Zhang’s method [41], but OpenCV uses a

different method based on Brown [12] to solve for the distortion parameters. OpenCV

algorithm uses a plane chessboard. This chessboard is captured in image frames in different

angles and based on those frames all the camera parameters are computed [14].

For our system implementation we did several calibrations and took the average of those values

for a more accurate result. In figure 5.8 one can see the detected corners of the chessboard.

Figure 5.8 Calibration board and different position of the calibration board.

In the following images (Figure 5.9) a comparison between the raw image as it is taken from

the system’s camera affected to lens distortion and the undistorted version of the same image

is presented. As it can be show in the undistorted image, some black regions are created in the

edges of the image as a result of missing pixels dues to lens distortion.

68

Figure 5.9 Left the undistorted image of the right raw image as it was taken directly from the

camera. As it is shown in the left the radial distortion is dominating the distortion of the image.

At the edges of the left image one can see the affect of the lens distortion. After un-distortion

curves that were curves remain and lines that were curved due to distortion are corrected.

5.2 Stereo Imaging and 3D Pose Estimation

Let’s swift to stereo imaging and position estimation of object of interest in an image. Despite

the wealth of information contained in an image frame, the depth of a scene point along the

corresponding projection ray is not directly accessible in a single image. With at least two

pictures, on the other hand, depth can be measured through triangulation. This is of course one

of the reasons why most animals have at least two eyes and/or move their head when looking

for friend or foe, as well as the motivation for equipping autonomous robots with stereo or

motion analysis systems. Before building such a program, we must understand how several

views of the same scene constrain its three-dimensional structure as well as the corresponding

camera configurations [10].

5.2.1 Epipolar Geometry

Epipolar geometry is the basic geometry of a stereo imaging system. In essence, this geometry

combines two pinhole models (one for each camera) and some interesting new points called

the epipoles (see Figure 5.10). Before explaining what these epipoles are good for, we will start

by taking a moment to define them clearly and to add some related terminology. When we are

done, we will have a concise understanding of this overall geometry and will also find that we

69

can narrow down considerably the possible locations of corresponding points on the two stereo

cameras [10]. This added discovery will be important to our stereo implementation.

Figure 5.10 The Epipolar Plane formed from the points P, O and O’ of the epipolar geometry

of the cameras, is colored gray. In this plane belongs the center of the cameras (O & O’) , the

two image points p , p’ of P and the world point P.

Consider the images p and p′ of a point P observed by two cameras with optical centers O and

O′. These five points all belong to the epipolar plane defined by the two intersecting rays OP

and O′P (Figure 5.10). In particular, the point p′ lies on the line l′ where this plane and the

retina Π′ of the second camera intersect. The line l′ is the epipolar line associated with the point

p, and it passes through the point e′ where the baseline joining the optical centers O and O′

intersects Π′. Likewise, the point p lies on the epipolar line l associated with the point p′, and

this line passes through the intersection e of the baseline with the plane Π [10].

The points e and e′ are called the epipoles of the two cameras. The epipole e′ is the (virtual)

image of the optical center O of the first camera in the image observed by the second camera,

and vice versa. As noted, before, if p and p′ are images of the same point, then p′ must lie on

the epipolar line associated with p. This epipolar constraint plays a fundamental role in stereo

vision and motion analysis [10].

The epipoles and the epipolar constrain help us founding correspondences between the images

in the stereo configuration. Assuming that our cameras are calibrated and the intrinsic and

extrinsic parameters are known, as well as the distortion coefficients, a point view from the left

camera (x) can be found to the right camera (x′) lining to the epipolar line (l′) in the right

camera, that correspond to the point in the left. The above description will be given in a

mathematically form bellow. So, the epipolar constraint greatly limits the search for these

correspondences (figure 5.11). For choosing the best match, more constraints are necessary in

order to decide [10].

70

Figure 5.11 Epipolar geometry and epipolar constrains

5.2.2 Essential Matrix

Let’s formulate the epipolar constraint that was described above with the assumption that our

cameras are calibrated, meaning that the intrinsic and extrinsic parameters are known and the

distortion parameters as well (Figure 5.12). This implies that x = �̂� . Clearly, the epipolar

constraint implies that the three vectors Ox, O′x′,and OO′ are coplanar [10]. Equivalently, one

of them must lie in the plane spanned by the other two, or

 (Eq. 9)

Rewriting this coordinate-independent equation in the coordinate frame associated to the first

camera as:

 (Eq. 10)

Figure 5.12 Epipolar Geometry.

71

where x=(u,v,1)T and x’=(u’,v’,1)T denote the homogenous image coordinate vectors of x and

x′, t is the coordinate vector of the translation OO′ separating the two coordinate systems, and

R is the rotation matrix such that a free vector with coordinates w′ in the second coordinate

system has coordinates Rw′ in the first one (in this case the two projection matrices are given

in the coordinate system attached to the first camera by (Id 0) and (RT, −RTt) [10]. Equation

(10) can finally be rewritten as:

 (Eq. 11)

where E=[t×]R, and [a×] denotes the skew-symmetric matrix such that [a×]x=a×x is the cross-

product of the vectors a and x. The matrix E is called the essential matrix, and it was first

introduced by Longuet-Higgins. Its nine coefficients are only defined up to scale, and they can

be parameterized by the three degrees of freedom of the rotation matrix R and the two degrees

of freedom defining the direction of the translation vector t [10].

Note that

 Ex′ can be interpreted as the coordinate vector representing the epipolar line

associated with the point x′ in the first image: indeed, an image line l can be defined

by its equation au+bv+c=0, where (u,v) denote the coordinates of a point on the

line, (a,b) is the unit normal to the line, and c is the (signed) distance between the

origin and l. Alternatively, we can define the line equation in terms of the

homogeneous coordinate vector x=(u,v,1)T of a point on the line and the vector

l=(a,b,c)T by l·x= 0, in which case the constraint a2+b2= 1 is relaxed since the

equation holds independently of any scale change applied to l.

 Eq. (11) expresses the fact that the point x lies on the epipolar line associated with

the vector Ex′.

 By symmetry, it is also clear that Ex′ is the coordinate vector representing the

epipolar line associated with x in the second image.

 Epipoles belongs also to the epipolar E· e =0 lines so for the left epipole and

𝒆′𝑻 ∙ 𝑬 = 𝟎

 Essential matrix E is singular, having rank=2

5.2.3 Fundamental Matrix

The essential matrix E uses camera coordinates. This implies that the intrinsic parameters of

the cameras are known, because by looking to pixel coordinates one can use the following

equations and compute the image coordinates. But what happens when the cameras are not

calibrated and the intrinsic parameters (Camera Calibration Matrix -K) are not known? The

solution is given by the Fundamental matrix. The Fundamental matrix encapsulates the change

72

of coordinates and gives us a method to compute the epipolar lines and to work directly to

image pixel coordinates [10].

 (Eq. 12)

By substituting Eq. 12 to Eq. 11 we compute:

 (Eq. 13)

Where:

 (Eq. 14)

 is the Fundamental matrix, which gives us the ability to work with the images without the need

to calibrate our cameras. It has rank 2 and depends on the intrinsic and extrinsic parameters (

f, R, t) [10].

Likewise with essential matrix the fundamental matrix is defined by seven independent

coefficients and can in principle be estimated from seven point correspondences. Methods for

estimating the essential and fundamental matrices from a minimal number of parameters indeed

exist, but they are far too involved to be described here [10].

One simple estimation of fundamental matrix could be found by forming the Eq.13 into the

following form, using at least 8 points. It is also called the 8-point algorithm [10].

(Eq. 15)

73

Since (Eq. 15) is homogeneous in the coefficients of F, one can for example set F33= 1 and

use eight point correspondences xi↔x′i(i=1,..,8) to setup an 8×8 system of non-homogeneous

linear quations:

 (Eq. 16)

which is sufficient for estimating the fundamental matrix. This is the eight-point algorithm

proposed by Hugh Christopher Longuet-Higgins in 1981.

We used the embedded function from OpenCV [14], in order to compute the Fundamental

matrix, using although more than 8 points. OpenCV function for estimating the fundamental

matrix form a linear least square problem as :

 (Eq. 17)

with respect to the coefficients of F under the constraint that the vector formed by these

coefficients has unit norm. Additionally we exploited the RANSAC functionality that this

function provide in order to discard outliers. Points that are false matched. This is done by

RANSAC algorithm which computes the dominant affine transformation of the points in left

frame that are matched to the right. Points from left frame that are not correspond more than a

distance threshold to the initial right matches, are considered false matches and are discarded.

With this technique, the computation of Fundamental matrix is more precise and this is very

important in 3D position estimation of the detected See-Vessels.

5.2.4 Stereo Calibration

Stereo calibration is the process of computing the geometrical relationship between the two

cameras in space, namely the matrices R, t. Using the same technique as with the single camera

calibration method, one can use a chessboard visible from both cameras and after taking several

74

pictures in different positions the rotation matrix and the translation vector of the two cameras

are computed. The process is the same as per single camera calibration, with the difference that

the correspondences of the same points, projected in the two images, are exploited.

In our system, there is need at the beginning of the configuration of the system to calibrate the

cameras. We did that by using a chessboard and taking several frames in different positions. In

the following images one can see some of the stereo calibration images that were used. We

used the OpenCV function cv2.stereocalibrate() in order to compute the rotation matrix R and

the translation vector t of the coordinate systems of the two cameras figure 5.13.

Figure 5.13 Left the calibration block and the founded blocks from the left camera. Right image

the correspondent image from the right camera and the founded blocks of the calibration block.

5.2.5 3D Position Estimation

Estimating the position of object-points from the coordinate system of the camera is a well-

established problem, which is often called in literature scene reconstruction. The aim is from

images to reconstruct the scene that are captured in those images. This is not an easy task

because of the discretization that is introduced from digital cameras, the distortion that produce

on images not perfectly used lens and the inaccuracy between the cameras in stereo

configuration, as well as of the matched points in two images. Although there are methods to

estimate the depth of the scene and and as a result the 3D position of desired object-points,

using a single camera or one frame, we focused on stereo configuration because of the accuracy

and robustness that is provided [14].

The method to estimate the 3D position of object-points from images is by triangulating those

points, with the correspondent points in the two frames and by exploiting the stereo

configuration, as shown in the next figure 5.14. As is shown in the figure 5.14 bellow, in this

simplified case, taking xl and xr to be the horizontal positions of the points in the left and right

75

frames (respectively), allows us to show that the depth is inversely proportional to the disparity

between [14]

Figure 5.14 Depth estimation from perfectly undistorted, align stereo rig. [14]

these views, where the disparity is defined simply by d=xl – xr – (cl - cr). Then by using similar

triangles one can compute:

 (Eq. 18)

where cl and cr are the coordinates of the principal points of the two image sensors, computed

from the calibration process. We used this approach because in real world cheap cameras the

two centers are not in the center of the sensor array (CCD /CMOS) as described in the lens

distortion section above. A more helpful figure shows this case (figure 5.15)

76

Figure 5.15 Stereo rig with undistorted and rectified images. It is also prevented the reference

coordinate system for our system attached to the left camera. [14]

5.2.6 Stereo Rectification

As mentioned previously many times the images are thought as rectified. This means that their

image planes are parallel-coplanar to each other and their epipolar lines are parallel lines with

the images x-axis. This means that for every point in one image, one searchs for

correspondences in the other image by looking at the line parallel to the image x-axis and with

the same y value. This means that correspondences in right image lies to the line y = yl figure

5.16.

 Figure 5.16 horizontal scan lines-

epipolar lines of corrspondent points in

two images

This is the reason, most stereo vision application are using parallel configured cameras. This

simplified the correspondence search problem and the computation of the disparity and as a

result the depth of the scene. When this configuration is not applied then one have to construct

a plane, in which the two stereo images will be co-planar and row-align (figure 5.17). This is

77

done by using image transformations, in order to transfer the images into this configuration

[14]. There are several methods that achieve this and can be mainly categorize into two main

categories depending on the type of stereo configuration:

 Uncalibrated stereo rectification

 Calibrated stereo rectification

It is not intended, to be described the different rectification methods. The only thing we have

to mention is that we used the rotation matrix R that relates the right camera coordinate system

with the left camera coordinate system in each frame in order to form the co-planar and to row-

alignment configuration that depicted in figure 5.17. This gave us better 3D position estimation

results despite that the two cameras were intended to be as much as possible in a parallel

configuration. One have not to do this step, if the parallel configuration of the cameras of the

stereo rig is well established and the estimated 3D position accuracy is acceptable. But our

system was though that it will be suffer from vibration due to ship movements. In our

application we had to guarantee that small deviations will be eliminated. Those vibrations could

happen, because of the heavy strikes of the Sea-Vessel (Ship) to diverse waves from small to

big and/or on-board propulsion engine vibrations, causing instantaneous deviation from the

desired configuration [14].

Figure 5.17 A rectified stereo pair: the two image planes Π and Π′are reprojected ontoa

common plane ̄Π= ̄Π′parallel to the baseline. The epipolar lineslandl′associated withthe

pointspandp′in the two pictures map onto a common scanline ̄l= l̄′also parallelto the baseline

and passing through the reprojected points ̄pand ̄p′. The rectified imagesare easily

constructed by considering each input image as a polyhedral mesh and usingtexture mapping

to render the projection of this mesh into the plane ̄Π= ̄Π′.

78

5.3 Stereo Fusion

As described our system uses a stereo rig (two cameras) in configurable position to each other

and detects Sea-Vessels and estimates their 3D position corresponding to the left camera. More

specifically we attach in each camera a coordinate system as depicted in figure 5.15. Also the

coordinate system of the left camera is taken as the reference coordinate system of the whole

system and the position of the detected Sea-Vessels are related with this. It is so far known that

after detecting the Sea-Vessel objects from the left image using deep neural networks (YoloV3

or YoloV3tiny) we attempt then to compute the position of them.

For this reason we fuse the information coming from the right camera with this information

coming from the left. This is done by computing the correspondences of the left detected object

to the right. It is worth mentioned that special care was given to take as much as possible frames

at the same time instant from both cameras. Thats why in our embedded system separated

threads was established for each camera in order the signal, which starts the camera to take a

frame, to have not to wait till the first camera finish the data transfer and then the second

camera to start caputing and sending the image. The cameras were connected into the same

serial bus via USB3 port on the Raspberry Pi4.

Having the right frame and knowing the object’s vertical (y) position from the left camera, we

exploited the fact that our stereo rig is coplanar and row-aligned and computed the matches on

the right frame in each horizontal scan-line using as matching criterion the maximization of the

normalized correlation of gray scale intensity values of the window object to each position of

the right’s frame scan-line .

 (Eq. 20)

Where T(x’,y’) corresponds to the template (detected Sea-Vessel) that we want to find at the

right frame, I(x,y) the intensity values of the right frame.

The searching for correspondences of every Sea-Vessel object of the left frame was done along

a horizontal line in the right image with height 10 to 20 pixels more than the height of the Sea-

Vessel box. This is done because we don’t undistort the frames in each cycle run of the

algorithm, because it’s a time consuming operation and we don’t care for the rest of the

information containing in the image.

So after finding the correspondent boxes with the Sea-Vessel in each frame, we undistort those

points. This help us to optimize more the computational time.

79

Figure 5.18 The overall Sea-Vessel detection and 3D position estimation algorithm pipeline.

5.4 Improved 3D Position Estimation

In the previous section a simple yet efficient method to estimate the depth of the scene and as

a result the desired object points was presented. It was also mentioned what one should do

when the pair of cameras in the stereo rig is not perfectly coplanar and row aligned. In this

section it will be described the steps that was fallen in order to compensate the instant error of

rotational position of the right camera related to the left. This error occurs very often in Sea

environment, where different types of waves and Ship movements causes instantaneous

vibrations.

The assumption of fixed, rigid position of each camera was used. In order to rectify the two

images, the rotational matrix of the right camera related to the left is needed. In many systems

and scientific works this is done by measuring the relative position of each camera from fixed,

well calibrated points (markers) that are rigidly attached to a fixed distance from the cameras.

This approach, although is more simpler and easy to algorithmic be implemented, it’s difficult

in practice because one have to precisely position those points in Ship Hull and quarantined

that they are not affected from any type of vibrations as the cameras.

Our approach in the other hand, simply exploits the correspondences in each frame. After the

points of bounding-boxes containing Sea-Vessels are undistorted, then the fundamental matrix

is computed and then using SVD the rotational matrix of the right camera related to the the left

is computed. Finally, we rectify the matched points of the right image and the left image and

then the position of every detected See-Vessel is computed. This approach is far more robust

and doesn’t need special configuration and expensive position sensors for perfectly calculating

the position of fixed markers. Finally, it is worth mention that the false matched points are filter

through RANSAC algorithm at the stage of fundamental matrix computation.

The computation of the rotation matrix from the fundamental matrix done using singular value

decomposition of the essential matrix and exploiting its rank 2 property.

80

 (Eq. 21)

Where K’ and K are the calibration matrices of each camera.

It is already known that the cameras coordinate systems expressed to left camera’s coordinate

system [10]. Thus, the projection matrix of each camera is:

P = K (I 0) and P’ = K’ (R t)

Essential matrix has two equal singular values (eigenvalues) and third one that is zero. Based

on the fact that E=SR, with S = [t]x we define:

 (Eq. 22)

S can be decomposed as: S = kUZUT with UЄO(3)

We have Z=±diag(1, 1, 0) W and thus:

 (Eq. 23)

A Singular Value Decomposition of E is thus, by using the equations E= SR and (23):

 (Eq.24)

The Singular Value Decomposition of E is:

 (Eq.25)

by comparing equations (24) and (25) we get the following two possible solutions for R

 (Eq. 26)

 (Eq. 27)

Only one solution is feasible

After computing the rotation matrix of the right camera related to the left we rectified the points

of the right camera by multiplying with the rotation matrix and then we used the left and right

points to compute the 3D position of the detected See-Vessels

81

 (Eq. 28)

then the disparity is computed:

 (Eq. 29)

After computing the disparity and in order to increase the accuracy of the measuring distance

we use subpixel accuracy of the disparity computation by using parabola fitting. In order to

compute disparity with sub-pixel accuracy we. The sub-pixel estimation is based on the

similarity measures of three-pixel locations – related pixel, previous pixel and next pixel–

calculated by the normalized correlation. After calculating the normalized correlation values,

parabola fitting is carried out,the centerline location of which is the estimated sub-pixel

position, as shown in Figure 5.19. The following equations used for the calculation of the

parabola fitting

 (Eq. 30)

where Cor(d-1), Cor(d) and Cor(d+1) are the simillarity measures of the previous pixel, related

pixel and next pixel locations respectively. Then the disparity is: d + dsub

Figure 5.19 Parabola fitting of similarities in order to compute the sub-pixel position of the

disparity [15]

Finally by using the reprojection matrix:

82

 (Eq. 31)

then the computation of the position of the object in homogeneous coordinates is:

 (Eq. 32)

Where the 3D coordinates with respect to the left camera is

 (Eq. 32)

In order to demonstrate the benefits of the proposed algorithm to better 3D position estimation,

we present following some images (Figure 5.20, 5.21, 5.22) of the results as it was measured

without stereo rectification and with stereo rectification. In some cases, the measured depth of

the un-rectified method was double of that computed with rectified stereo images, at the same

frame. The innovation that this algorithm introduce, is that it percept the rotational position of

each camera in each frame by simple finding correspondences in images. The last is done by

the neural network, which detects Sea-Vessels. This eliminates the need of precise marker

positioning on the hull of the Ship, as well as precise positioning cameras in a parallel frontal

plane to build a perfectly stereo rig.

Figure 5.20 In the left, the image from the left camera is presented and the detected Sea-Vessel

is in green box. With red numbers the depth (0.56 meters) of the object from the left camera

with the use of all the above steps is shown and with blue numbers at the bottom of the box the

corresponding depth (0.88 meters) as it was measured without rectification. In the right the

corresponding frame from the right camera. The two cameras was positioned 0.6 meters away

from the monitor and in almost parallel configuration.

83

Figure 5.21 a) Image from the left camera . With red numbers are the depth estimated with

rectification of the stereo images and with blue numbers at the bottom of each green box the

depth measure without stereo rectification. As we can see the error in depth measuring without

the rectification technique is not acceptable. The two cameras was positioned 0.6 meters away

from the monitor and in almost parallel configuration.

Figure 5.21 b) Presents the

corresponding radar-like image of the

estimated 3D position of the detected

Sea-Vessels from our algorithm. This

screen is part of our detection-

estimation algorithm

84

Figure 5.22 a) Image from the left camera . With red numbers are the depth estimated with

rectification of the stereo images and with blue numbers at the bottom of each green box the

depth measure without stereo rectification. As we can see the error in depth measuring without

the rectification technique is not acceptable. The two cameras was positioned 0.6 meters away

from the monitor and in almost parallel configuration.

Figure 5.21 b)

Presents the

corresponding radar-

like image of the

estimated 3D

position of the

detected Sea-Vessels

from our algorithm.

This screen is part of

our detection-

estimation algorithm

85

Chapter 6

6 Experiments

This chapter describes the experimental procedure. Fist system requirements and

configurations are described. Then the experimental procedure as well as the results are

prevented. The aim of this chapter is to present the novel system architecture and the

engineering techniques that were used to construct the system algorithm in order to minimize

the overall run-time. Special care was given to optimize the data flow and the inference time,

as it would be seen bellow.

6.1 Application Requirements

6.1.1 Neural Network Pre-Requirements

For training the neural network there is need of a host machine with enough computing power.

We used as a host machine a desktop, which could have one of the following requirements

installed:

 Windows 10 or Linux, preferred Ubuntu 16.04 or 18.04, preferred 16.04

 Danrknet, a C++ library for training Yolo

 CUDA kernels if GPU computation is preferred.

 OpenCV for image plots, it’s not necessary.

 Tensorflow compatible with CUDA kernels

It is worth noticing that the Yolo network in order to be trained need a station with enough

computing power and when a CUDA GPU exists, then the training procedure exploits the

computational power of parallel processing that GPU provides.

6.1.2 Inference at Edge – Movidius Stick NCS2 Pre-requirements

For installing and running the Intel Movidus NCS stick in the base machine as well as in edge-

Raspberry Pi4 the following packages are necessary:

86

 Windows 10 or Linux Ubuntu 16.04 or 18.04, preferred 16.04

 Intel OpenVino at least R1, it’s an Intel library for hardware optimization

 OpenCV 4

6.2 System Configuration

By using the Intel Movidius NCS2 stick, a sequence of steps are needed in order to be ready

for an inference. In appendix these steps are describing in more detail. Here we will use a

diagram in order to depict quickly those steps (figure 6.1).

Figure 6.1 The main steps for prepairing a neural network to run in Movidius NCS2 are

presented

In an embedded system with constraint power resources, like Raspberry Pi the OpenVino

library doesn’t include the Model Optimizer Toolkit. So, a host-based machine is needed for

the training, as described above.

After we trained the Yolov3 network in Darknet framework, on our host machine, we followed

the instructions for converting Yolov3 implemented in tensorflow to a format compatible with

the Intel NSC2 (see appendix). Then two files are generated, which are the model architecture

in .xml format and a binary file containing the trained weights of the network. From this point

one can use it for the desired task. We used it for our task of Sea-Vessels 3D position

estimation.

Steps for deploying a neural network in Intel NSC2:

 Train the network in an external library, we used Darknet

 Convert Yolo model from Darknet to Tensorflow library

87

 Create the two files of the network for deploying in NCS2, by running OpenVINO

model optimizer

 Download the two files to the embedded machine, in our case the Raspberry Pi4

 Load the two files of the network in the code and initialize the network in Intel NCS2

 Make an inference by providing an image

Steps for configuring the system in raspberry pi:

 Download the network files to the raspberry

 Connect the two cameras on the USB port

 Calibrate the cameras

 Run the application

Figure 6.2 At left the detection results of the Yolov3 with input size at 608x608x3 tensor size.

Middle the detection results of the Yolov3 with input size at 416x416x3 tensor size. Right the

detection results of the Yolov3-Tiny implementation with input size at 416x416x3 tensor size.

The encapsulation of fewer knowledge for Sea-Vessels from the Yolov3-Tiny model is clearly

depicted from the lack of the 4th Ship detection. This is expected due to less neural layers of

the tiny model.

88

6.3 Experiments

In this section, we will pay attention of the overall throughput of the algorithm and especially

the accuracy of the 3D position estimation of the detected Sea-Vessels. In the previous chapters

the robustness and the accuracy of each of the sub-modules was extensive analyzed and

discussed. As a result we will not pay attention of each of the sub-modules.

Figure 6.2 illustrates 3 images after were inferred from the three different Yolov3 neural

network implementations. There is an interesting observation. In the left and the middle we see

the detection results from the Yolov3 architecture for 608x608x3 input tensor size and for

416x416x3 input tensor size corresponding. As we see there are not big differences between

the output of those networks. The networks have correctly detected all the Sea-Vessels. This

not the case for the Yolov3-Tiny for 416x416x3 input tensor size implementation at the right.

As we can see it felts to detect all the objects. This is expected as it is much smaller compared

with the Yolov3 and as a result encapsulates less knowledge about Sea-Vessel objects. On the

other side, is much faster and can be used when the highest accuracy of detection is not first

priority.

6.3.1 3D position accuracy

Apart from color information, one of the most crucial aspect of the pipeline is the accuracy of

the 3D pose. Since this whole approach tries to solve an ill-posed problem by using additional

information, coming from the detected object of the right camera, it is necessary to compare

the accuracy of the pipeline. For this reason we compare of our system with a simple meter of

1mm accuracy. We run indoor tests by using a monitor showing frames with Sea-Vessels from

different viewing angles and lighting conditions. The purpose was to estimate the 3D position

and especially the distance-depth of the detected objects from the stereo cameras, which were

viewing the videos on the monitor. The stereo cameras were moving in the space and placing

in different positions corresponding to the monitor. After running the whole detection and

position estimation algorithm in real time, the results were collected and are depicted in the

following diagrams.

Figure 6.3 illustrates the two different Z-distance (depth) measurements of the stereo system

from the monitor, as well as the real one with red color. The stereo system was placed

successive to different distances from the monitor, starting from lower to bigger distance

values. The distance range that we could use was from 0.5m to 2m approximately. With blue

points the estimated distance of the stereo cameras from the monitor is depicted. As it is shown

the results are steady and instant disturbances of the orientations of one camera compared to

the other is eliminated, thought the process of image rectification. With green points the

estimated distance of the stereo cameras from the monitor is depicted. We can observe that

although the results are steady for the bigger amount of measurements, there is although an

oscillation at the measured distance of 1.1m. This is because without rectification the results

are sensitive to instant camera orientations disturbances.

Figure 6.4 illustrates the error in estimating the distance of each method. With blue color the

error between the estimated distance with stereo rectification and the real one is presented.

89

With green color the error between the estimated distance without stereo rectification and the

real one is presented. Finally with red color the difference between the estimated distance of

the two methods, with and without rectification is depicted. We can clearly observe that the

best depth accuracy comes from the method with stereo rectification, which achieves a

maximum distance -depth error of +- 8cm. At the same time (green color) the sensitivity of

the method without stereo rectification is clearly shown, which achieves a maximum error of

0.3m. This is because instant disturbances in camera’s orientation to each other change the

stereo configuration and this change affect the measured distance-depth. At the end a

comparison of the two estimated methods, with and without stereo rectification is depicted with

red color. As a conclusion the superiority of the method with stereo rectification against the

one without is clearly illustrated.

Figure 6.3 Depth distance between left cameras coordinate frame of the stereo system and real

one as estimated from the meter. With red color the reference Z-distance-depth is depicted and

with blue points the depth estimated from the stereo system by using stereo rectification. With

green the points of the Z-distance from the left camera of the stereo system, as it was estimated

without stereo rectification. As we can see the two estimated distances of the detected Sea-

Vessels are pretty close to each and to the real one, but with more oscillations as far as is

concerned the estimation method without image rectification.

90

Figure 6.4. In this diagram the error in estimating the distance of each method is depicted.

With blue color the error between the estimated distance with stereo rectification and the real

one is presented. With green color the error between the estimated distance without stereo

rectification and the real one is presented. Finally with red color the difference between the

estimated distance of the two methods, with and without rectification is depicted. We can

clearly observe that the best depth accuracy comes from the method with stereo rectification,

which achieves a maximum distance -depth error of +- 8cm.

In Fig. 6.5,6.5 two diagrams of the estimated distance between the real one and the estimated

distance from the stereo system is depicted. The x-axis represents the depth in meters of the

detected Sea-Vessels from the stereo cameras and in y-axis the measured distance from the

meter. The points correspond to the points that were presented in the previous diagrams. The

perfect measurements of the depth-distance of the detected Sea-Vessels would be them which

follow the line y=x that depicted with red color. As we see from the figure 6.5 compared with

the figure 6.6, the estimated distance of the points in figure 6.5 have smaller error and thus

smaller distribution around the line y=x of the perfect estimations. On the other hand, without

using stereo rectification the results are more vulnerable to external disturbances in rotational

position of the stereo cameras as is presented in figure 6.6.

91

Figure 6.5 The estimated depth-distance of the detected Sea-Vessels from the stereo cameras

computed with the stereo rectification method are depicted in X-Axis. In Y-Axis the depth of

the Sea-Vessels from the stereo cameras as measured with the meter. With red line the perfect

estimations are depicted.

92

Figure 6.6 The estimated depth-distance of the detected Sea-Vessels from the stereo cameras

computed without the stereo rectification method are depicted in X-Axis. In Y-Axis the depth of

the Sea-Vessels from the stereo cameras as measured with the meter. With red line the perfect

estimations are depicted. For 1.1m distance of the stereo cameras we observe the bigger error

that is introduced to the measurements, compared with the results from the previous figure.

6.3.2 Processing Time and Delays of the Pipeline

One of the crucial parts during designing and developing the overall system architecture was

the execution time from a single image shot to 3D position estimation results. For this reason

our embedded system comprises a specific external processing unit for the execution of the

neural network as described in chapter 2. After measurements in each sub-module time

execution, found that the USB cameras that were used introduced an increased time delay

compared with the other sub-modules. Both cameras introduced a time delay of 160ms-200ms.

The right camera frame was always 150ms approximately back from the left camera frame. It

was surprisingly discovered that the execution of the neural network on the NSC2 was

extremely fast compared with the two cameras, 10ms maximum for tiny Yolov3, causing the

overall system pipeline operating at a maximum of 6 FPS! when there were not Sea-Vessels

detected. When there were Sea-Vessels detected the rest of the sub-modules were introduced

all-together approximately 100ms-300ms causing a minimum overall execution time of the

system reaching 2FPS. One of the sub-modules with greater processing time demand was the

Horizon-Line detection pipeline which execution time varies from 10ms to 150ms relative with

the ROI (Region Of Interest). Next the sub-module with hight execution time demands was the

correspondences matching sub-module between the two image frames, needing approximately

10-35ms for each Sea-Vessel, depending on the Sea-Vessel detected size. The conclusion of

93

these results is that hardware which provides parallel execution like GPUs and TPUs are

beneficial for image processing because it is a inherent parallel computational problem.

Finally, our system at the fastest implementation, using the YoloV3-tiny implementation was

capable of delivering 5FPS. For a real-time application with fast moving objects this is not

sufficient, but for maritime industry, where the speeds are far less lower compared with auto-

mobile industry for example, this system could fit in very efficiently (Figure 6.7).

Figure 6.7: Data flow and time delays of the sub-modules of the system pipeline.

94

Chapter 7

7 Conclusions and Future Work

7.1 Thesis Contributions

According to Section 1.2, two major engineering challenges hinder the development process

of a Sea-Vessel detection system capable of estimating the 3D position of each Vessel using

stereoscopic images. First, it is challenging to build a compact embedded system which will

detect and localize Sea-Vessels in real time without the need of huge computational power,

consumption power and cost effective. Second, it is unclear what kind of detection algorithm

must be used in order to achieve the best results in detection accuracy and execution time in a

conventional embedded system. And finally, although the current huge evolution of hardware

technology there is still a huge research in developing faster and more efficient hardware for

big data processing.

The work accomplished in this thesis has (i) demonstrated the feasibility of developing a

stereoscopic detection and localization system of Sea-Vessels, (ii) proposed and implemented

an effective detection pipeline and (iii) demonstrated the accuracy of detecting and localizing

Sea-Vessels, making the system ideal for autonomous Shipping and early collision awareness

system for maritime industry. These contributions can be further elaborated as follows:

 Hardware design

Setting up a perception pipeline on a real-time system involves a coherent

and clever interplay between software and hardware. The embedded

hardware architecture comprises of a tensor processing unit (Intel NSC2)

for accelerating inference of our neural network model, connected to a

Raspberry Pi4, an ARM based microcomputer and with two common usb-

cameras comprises our stereo based vision system. These selections based

on the trade-off between computational power, consumption power and

low-cost.

 Sea-Vessels detection pipeline

From early developing stages of the detection pipeline it was chosen to be

used a stereoscopic system based on deep learning for Sea-Vessel

detections. For this reason the Yolov3 model architecture was used and

retrained – fine tuned suitably for our task. A K-means clustering system for

95

setting up correctly the bounding box anchors of our model was

created[20][23]. Three different types of the neural network model

architecture were developed and evaluated, with the results being more than

satisfactory. One run of the smallest neural-network was accomplished in

synchronous mode in 10ms maximum time in the neural compute stick

(Intel NCS2). For delivering fastest results, in the code we used

asynchronous execution of the detection pipeline from the main thread of

the application, since the inference of the model was executed on the Intel

NSC2. With this technique there was no lag in the main application thread

for waiting the external module to reply.

 Fast Horizon-Line detection pipeline

In order to eliminate false detections of the neural network, a fast horizon

line detection algorithm was developed, based in computer vision

techniques. Standard engineering techniques were used in order to boost the

accuracy and the time execution of the horizon-line detection pipeline, since

it was running in the CPU of the embedded system. A combination of

detected boxes information from the previous stage of neural network and

the color information of the two regions at the boundary of sea surface was

used in order to detect the horizon line. Again special effort was given in

order to combine all these informations and to provide accurate and robust

horizon-line estimation result.

 3D position estimation of the detected Sea-Vessels

Exploiting the information coming from the second camera and stereo

geometry, a novel position estimation technique was developed. This

technique is capable of detecting and correcting instant small rotational

disturbances of the right camera coordinate frame corresponding to the left,

by using RANSAC algorithm and the detected Sea-Vessels from the

previous stages. The robustness and accuracy of the algorithm were proofed

by several experiments.

7.2 Future Work

Before our perception and Sea-Vessels localization system can be ready for general used in

Maritime industry, several hardware and software improvements are necessary. First the

current camera sensors that were used are very slow and have small resolution, causing the

system running slow. More importantly, it is necessary to reduce the time from capturing a

frame till this frame is transferred to the main application thread. Second, as were proofed the

neural compute module is extremely fast compared with the CPU throughput of analyzing

96

images, for this reason it is proposed the fast horizon-line detection pipeline to be implemented

with a neural network. By this way the overall execution time it is believed that will decrease,

since the CPU needs more time to process the images. Third for a better time execution results

it is suggested the whole software system architecture to be written in C++, since the python

that were used for prototyping is an interpreted language and far more slowly from the C++.

97

Appendix A

A.1 Pre-Requirements for deploying Yolov3 based model on Intel

NCS2

In this section the steps for deploying Yolov3 neural network model to the Intel Neural

Compute Stick2 are presented. We made this procedure on a Linux host machine, so the steps

correspond to a Linux host machine configuration.

Machine host pre-configuration:

 Ubuntu Linux 16.04

 CUDA GPU kernels 10.1

 DarkNet Framework for training/testing the Network

 TensorFlow versions between 1.11.0 and 1.13.0

 Intel OpenVino 2019_R1.1

After properly configuration of the host machine, one has to follow the bellow describing steps

for deploying Yolov3 model on the Intel NCS2. It is worth noting that there is no need to have

a configured machine precisely as follow, because new versions of each driver/library are

coming. The above steps configurations were used for these thesis.

A.2 Configuration of the Intel NCS2

Configurations for deploying the Yolov3 model on Intel NSC2:

 Convert Yolov3 model from DarkNet framework to a TensorFlow representation

 Within TensorFlow create a frozen model file of .pb format

 Navigate to openvino install directory and run model optimizer for creating the two

necessary files of the network to be run on Intel NCS2

The above described steps need some explanation. After we finished with the training and

testing of our models on DarkNet framework, we had to use TensorFlow framework in order

to run our model on Intel Movidius NCS2. This step is needed because OpenVino library which

interfaces with the Intel NCS2, it is not supporting DarkNet format based networks. On the

98

other hand TensorFlow provides a compatibility with the DarkNet framework and the trained

weights of the Yolov3 model could be inserted in TensorFlow framework. Additionally

OpenVino library is compatible with TensoFlow implemented networks. This helps because

TensorFlow provides more functionalities as the DarkNet framework.

Within TensorFlow we save our model, creating a frozen .pb file. A .pb file is a model

representation of the Yolov3 in TensorFlow format. It comprises all the information of the

neural network (topology, activation functions, weights). This format of file is acceptable by

the model optimizer of the OpenVino library, which will convert-optimize the model

appropriate for running on the Neural Compute Stick 2. The model optimizer should be

provided with the .pd file of the Yolov3 model and then it creates two files, one .xml file which

contains the graph topology of model and a binary file of the trained weights of each neuron in

the neural network. Those two files can then be loaded in the neural compute stick by using the

appropriate classes of the OpenVino framework.

Finally we provide a link from the intel’s official website which explains the converting

procedure and additionally provides the necessary statements

99

Bibliography

[1] Aayush Grover, Shashi Kumar, Anil Kumar, Ship Detection Using Sentinel-1 SAR

Data, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, Volume IV-5, 2018

[2] Adrien Bartoli CNRS – LASMEA, Søren I. Olsen DIKU: Lecture 16 – Camera Motion

From Two-View Relationships (Section 9.6)

[3] Ankit Dhal: Real-time 3D Pose Estimation with a Monocular Camera Using Deep

Learning and Object Priors On an Autonomous Race car, arXiv 1809.10548v1 ,27 Sep 2018

[4] Beenish Zia, Ramesh Illikkal and Bob Rogers, Use Transfer Learning for Efficient

Deep Learning Training on Intel® Xeon® Processors, White Paper

[5] Benjamin RM, Curcio J, Leonard JJ, Newman PM (2006). A Method for Protocol-

Based Collision Avoidance Between Autonomous Marine Surface Craft. J. Field

Robot.23(5):333-346.

[6] Chi Yoon Jeong , Hyun S Yang and KyeongDeok Moon: Fast horizon detection in

maritime images using region-of-interest, International Journal of Distributed Sensor Networks

2018, Vol. 14(7)

[7] Christoph Alexander Thieme, Ingrid Bouwer Utne, Stein Haugen: Assessing ship risk

model applicability to Marine Autonomous Surface Ships, Ocean Engineering 165 (2018) 140–

154

[8] COCO, cocodataset.org

[9] Cosimo Rubino, Student Member, IEEE, Marco Crocco , Member, IEEE, and Alessio

Del Bue , Member, IEEE:”3D Object Localisation from Multi-View Image Detections” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 40, No. 6, june 2018

[10] David A. Forsyth, Jean Ponce: Computer Vision a Modern Approach, Second Edition,

Pearson

[11] Domenico D. Bloisi, Fabio Previtali, Andrea Pennisi, Daniele Nardi, Michele Fiorini,

Senior Member, IEEE: Enhancing Automatic Maritime Surveillance Systems with Visual

Information, IEEE Transactions on Intelligent Transportation Systems

[12] Duane C. Brown: Close-Range Camera Calibration, DBA Systems, Inc. Melbourne,

Flu. 32901, 1971

[13] François Chollet: Deep Learning with Python. 2018 by Manning Publications Co

[14] Gary Bradski and Adrian Kaehler: Learning OpenCV, O’REILLY

[15] Gazi Kocak, Shigehiro Yamamoto and Takeshi Hashimoto: Detection and tracking of

ships using a stereo vision system, Scientific Research and Essays Vol. 8(7), pp. 288-303, 18

February, 2013 http://www.academicjournals.org/SRE

100

[16] Gazi Kocak, Shigehiro Yamamoto, Takeshi Hashimoto: Analyzing Influence of Ship

Movements on Stereo Camera System Set-up on Board Ship, Journal of the JIME Vol. 47, No.

6(2012)

[17] Intel Neural Toolkit, OpenVINO,

[18] Intel® Neural Compute Stick 2,

[19] John Canny Member IEEE: ”A Computational Approach to Edge Detection”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. Pami-8, No. 6, November

1986

[20] Joseph Redmon, Ali Farhadi, University of Washington: Yolov3: An incremental

Improvement, arXiv 2018 - https://pjreddie.com/darknet/yolo/

[21] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, University of

Washington, Allen Institute for AI, Facebook AI Research: You Only Look Once: Unified,

Real-Time Object Detection, CVPR 2016, http://pjreddie.com/yolo/

[22] Kenji Hata and Silvio Savarese: CS231A Course Notes 1: Camera Models

[23] Lloyd, Stuart P. "Least squares quantization in PCM." Information Theory, IEEE

Transactions on 28.2 (1982): 129-137

[24] Lopez-Molina C, Baets BD, Bustince H, et al. Multiscale edge detection based on

Gaussian smoothing and edge tracking. Knowl-Based Sys 2013; 44(Suppl. C): 101–111.

[25] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A.

Zisserman. “The pascal visual object classes challenge: A retrospective.” International Journal

of Computer Vision, 111(1):98–136, Jan. 2015.

[26] Martins A, Almeida JM, Ferreira H, Silva H, Dias N, Dias A, Almeida C, Silva EP

(2007). Autonomous surface vehicle docking maneuver with visual information. Proc. IEEE

Int. Conf.Robot.Autom., Roma, Italy.

[27] OpenCV opencv.org/

[28] Paolo Di Febbo, Carlo Dal Mutto, Kinh Tieu, Stefano Mattoccia Aquifi Inc. University

of Bologna: KCNN: Extremely-Efficient Hardware Keypoint Detection with a Compact

Convolutional Neural Network, CVPR 2018

[29] Perera LP, Carvalho JP, Guedes Soares C (2011). Fuzzy logic based decision making

system for collision avoidance of ocean navigation under critical collision conditions. J.Mar.

Sci. Technol. 16:84-89.

[30] Prasad DK, Rajan D, Rachmawati L, et al. MuSCoWERT: multi-scale consistence of

weighted edge radon transforms for horizon detection in maritime images. J Opt Soc Am A

2016; 33: 2491.

[31] Remote and Autonomous Ship, Ship Intelligence Marine, Rolls-Royce Aawa White

Paper

[32] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: “Towards real-time object

detection with region proposal networks”. arXiv preprint arXiv:1506.01497, 2015.

101

[33] Shimpo M, Hirasawa M, Oshima M (2005). Detection and tracking method of moving

ships through navigational image sequence. J. Japan Inst. Navigation 113:115-126.

[34] Shimpo M, Shu R, Yamamoto S (2008). Investigation of Image Processing Methods

Capable of Supporting Navigational Lookout. Proceedings of Asia Navigation Conference.

[35] Sinno Jialin Pan and Qiang Yang Fellow: A Survey on Transfer Learning, (Volume:

22 , , Oct. 2010)

[36] Statheros T, Howells G, McDonald-Maier K (2008). Autonomous Ship Collision

Avoidance Navigation Concepts, Technologies and Techniques. J. Navigation61:129-142.

[37] TensorFlow, www.tensorflow.org

[38] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge

Belongie: Feature Pyramid Networks for Object Detection, arXiv 1612.03144v2 [cs.CV] 19

Apr 2017

[39] World Ocean Review, “Global shipping - a dynamic market.” [Online]. Available:

worldoceanreview.com/en/wor-1/transport/global-shipping

[40] Yan Yan, Bok-Suk Shin, Xiaozhengmou, Wei Mou, Han Wang, School Of Electrical

And Electronic Engineering, Nanyang Technological University, Singapore: Efficient Horizon

Detection on Complex Sea for Sea Surveillance, International Journal Of Electrical, Electronics

And Data Communication, ISSN: 2320-2084 Volume-3, Issue-12, Dec.-2015

[41] Zhengyou Zhang, Senior Member, IEEE, A Flexible New Technique for C, 1971amera

Calibration, IEEE Transactions On Pattern Analysis And Machine Intelligence, Vol. 22, No.

11, November 2000

