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Η σελίδα αυτή είναι σκόπιμα λευκή.



 

Περίληψη 

 

Η χρήση δύο καμερών και συνεπακόλουθα στερεοσκοπικής όρασης για την μέτρηση της θέσης 

αντικειμένων στο χώρο μέσω εικόνας, είναι μια τερχνική, που χρησιμοποείται ιδιαίτερα συχνά 

για την επίλυση προβλημάτων μέτρησης τριασδιάστατης θέσης επιθυμυτών αντικειμένων, 

ειδικά στον τομέα των αυτόνομων ρομποτικών χειριστών για την αντίλειψη του 

περιβάλλοντος. 

Σε ελεγχόμενα περιβάλλοντα, όπως ένα επιστημονικό εργαστήριο οι τεχνικές υπολογιστικής 

όρασεις για την ανίχνευση και την μέτρηση της θέσης των επιθυμητών αντικειμένων είναι 

αρκετά ακριβείς. Αρκετά διαδεδομένοι για αυτό το πρόβλημα αισθητήρες προσδιορισμού 

θέσης με χρήση υπολογιστικής όρασης όπως το Kinect ή το Intel Real Sense, ένω επιλύουν το 

πρόβλήμα προσδιρισμού της θέσης των αντικειμένων, εντούτοις αυτό περιορίζεται σε μικρες 

αποστάσεις από τον οπτικό αισθητήρα, της τάξης των μερικών μέτρων. Αρα οι αισθήρες αυτοί 

δεν ενδείκνυται για την μέτρηση μέγαλων αποστάσεων. 

Αισθητήρες απόστασης και μέτρησης χρόνου επιστροφής εκπεμπόμενου σήματος μπορόυν να 

χρησιμοποιηθούν για την εξαγωγή τριασδιάστατης πληροφορίας της θέσης των αντικειμένων, 

δημιουργώντας point cloud. Παρόλο αυτά είναι δύσκολο να ανιχνευτή το επιθυμητό 

αντικέιμενο από το point cloud, πόσο μάλλον όταν απαιτείται ανίχνευση πολλών αντικειμένων. 

Επιπλέον οι σχεδίαση αυτών των αισθητήρων είναι αρκετά περίπλοκη και κοστοβόρα με 

αποτέλεσμα να κοστίζουν αρκετά ακριβά σε σύγκριση με τις κάμερες ( ταξεις μεγέθους 

διαφορά κόστους). 

Για την ναυσιπλοΐα τα πιο διάσημα συστήματα παρακολούθησης και τα πιο συνηθισμένα 

βασίζονται σε αισθητήρες χρόνου πτήσης (time of flight) όπως το Radar. Αν και είναι αρκετά 

ακριβείς τις περισσότερες φορές δεν μπορούν να παρέχουν τρισδιάστατες πληροφορίες θέσης. 

Για το σκοπό αυτό, η παρούσα διατριβή προτείνει έναν αλγόριθμο πραγματικού χρόνου για 

τον εντοπισμό και την εκτίμηση της θέσης 3D πολλαπλών πλοίων χρησιμοποιώντας μόνο δύο 

εικόνες της ίδιας σκηνής από ένα στερεοσκοπικό σύστημα κάμερας. 

Πιο συγκεκριμένα, η παρούσα διατριβή παρουσιάζει το σχεδιασμό, την ανάπτυξη και την 

εγαρμογή ενός στερεοσκοπικού συστήματος εντοπισμού θαλάσσιων σκαφών, με στόχο την 

παροχή ακριβών και ισχυρών αποτελεσμάτων θέσης που θα μπορούσαν να χρησιμοποιηθούν 

για την αποφυγή σύγκρουσης στον τομέα της αυτόνομης ναυτιλίας. Οι σχεδιαστικοί μας στόχοι 

είναι να παρέχουμε μια λύση που να είναι φθηνότερη από τις παραδοσιακές λύσεις, αλλά 

ταυτόχρονα να παρέχει περισσότερες πληροφορίες σχετικά με την θέση για τα αντικείμενα που 

εντοπίστηκαν, με ακρίβεια και ευρωστεία. Για το λόγο αυτό, μετά από εξαντλητική αναζήτηση 

στην τρέχουσα διαθέσιμη τεχνολογία αλγορίθμων αντίληψης, προτείναμε ένα στερεοσκοπικό 

σύστημα που εκμεταλλεύεται τις δυνατότητες των νευρωνικων δικτύων για την ανίχνευση 

θαλάσσιων σκαφών. 

Επιπλέον παρουσιάζεται και αναπτύσεται ένας βελτιωμένος γρήγορος αλγόριθμος εύρεσης 

του ορίζοντα που χρησιμέυει στην ακύρωση λανθασμένων εκτιμήσεων από το νευρωνικό 

δίκτυο. Στην συνέχεια με την χρήση των οπτικών πληροφοριών από τις εικόνες του 

στερεοσκοπικού συστήματος και με την χρήση ενός βελτιωμένου αλγορίθμου εκτίμησης της 

τρισδιάστατης θέσης, διορθώνονται τυχόντα σφάλματα στην σχετική θέση της μιας κάμερας 
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ως προς την άλλη. Η καινοτομία του συγκεκριμένου αλγορίθμου έγκειται στο ότι δεν 

χρείαζεται εξωτερικά σημεία (markers) τοποθετημένους πάνω στο σκάφος σε ακριβή θέση από 

τις στερεοσκοπικές κάμερες. Ο πλήρης αλγόριθμος εύρεσης και εκτίμησης τρισδιάστατης 

θέσης θαλάσσιων σκαφών, ενσωματώνεται σε κατάλληλα ενσωματωμένο υπολογιστικό 

σύστημα που σχεδιάστηκε, πετυχαί οντας 5FPS συνεχών εκτιμήσεων, κάτω από διαφορετικές 

συνθήκες φωτισμού. 

Τέλος η ακρίβεια και ευρωστεία του αλγορίθμου και συνολικά του ενσωματωμένου 

συστήματος, στην εύρεση και εκτίμηση της τρισδιάστατης θέσης των θαλάσσιων σκαφών, 

αξιολογείται εκτενώς μέσα από αρκετά πειράματα. 
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Abstract 
 

In computer vision, triangulation via arranging two cameras in a stereo setup has become the 

norm in order to estimate the 3D pose of a particular object of interest and is used in most 

autonomous robots to help perceive the environment. 

In experiments limited to laboratory environments, classical computer vision techniques such 

as stereo correspondence search and triangulation work decently well. Moreover, one could 

utilize off-the-shelf equipment such as the Kinect sensor or Intel RealSense. The drawback 

being that such sensors have limitations when taken outdoor and have only a limited range (up 

to a few meters). This makes it infeasible to use such setups for long-range pose estimation. 

Range and time-of-flight sensors can be used to extract 3D information using raw data provided 

by such sensors from point clouds. But again, detecting particular objects in such point clouds 

is non-trivial. Having to do this for multiple objects of interest only compounds the task. 

Although, time-of-flight sensor manufacturers are trying to cut down costs and make such with 

competitive prices but are still a long way from manufacturing accurate sensors available at a 

competitive price such as cameras (which are orders of magnitude cheaper and provide most 

information per cent).  

In maritime industry the most famous surveillance systems and the most common are based on 

time-of-flights sensors like Radar. Although they are quite accurate most of the times they 

could not provide three-dimensional positional informations. To this end this thesis propose a 

low-latency real-time pipeline to detect and estimate 3D position of multiple Sea-Vessels using 

just  two images of the same scene from a stereo based camera system. 

More specifically this thesis presents the design, development and implantation of a 

stereoscopic Sea-Vessels detection and localization system, aiming to provide accurate and 

robust results that could be used for avoidance collision in autonomous shipping. Our design 

goals are to provide a solution, which could be orders cheaper than the traditional solutions but 

providing more positional information for the detected objects, accurately and robustly. For 

this reason, after exhaustive search in current available hardware and perception  algorithms 

technology we proposed a stereoscopic system exploiting neural networks for detecting Sea-

Vessels.  

An improved fast horizon line detection pipeline is also presented and implemented in order to 

eliminate false Sea-Vessel detections. For estimating the 3D position of those detections, our 

system exploits the informations provided by the stereoscopic view. Furthermore, an improved 

3D estimation algorithm is proposed, using just as measurements the detected Sea-Vessels in 

the current frame. This eliminate the need of precisely positioning specific markers in Ship’s 

hull and calibrate them with respect to the stereo rig. Our real time prototype system is capable 

of achieving 5FPS of continues detecting and pose estimating of Sea-Vessels in different Sea 

environments  

Finally the performance of the system is evaluated by conducting several tests in different 

lighting conditions, after the testing and approval of each sub-module of the system 
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Chapter 1 
 

 

1 Introduction  
  

 

1.1 State-of-the-Art 
 

 This Chapter describes briefly why Vessel Detection and 3D Pose estimation is important for 

autonomous shipping. It then describes why existing traditional surveillance systems lack to 

fulfill the requirements of the autonomous shipping. A novel stereo based camera system with 

the use of deep neural networks, as well as computer vision techniques is introduced, which 

eases some of the problems of traditional  navigational devices equipped on Sea-Vessels. 

 The interest in remote-controlled and autonomous ships has been increasing in the fields of 

marine industry and information technology[11][1][40][16][31]. A key technology in 

autonomous ships is the situational awareness equipment required to safely operate and 

navigate. 

 Automatic surveillance of coastal areas is gaining importance due to the increasing global ship 

traffic: Tankers, container ships, and bulk carriers are the most important means of 

transportation of our time [39]. Moreover, the presence of environment protection issues and 

new dangerous threats coming from the sea, including illegal smuggling and fishing, 

immigration, oil spills and piracy, encourage the development of intelligent monitoring 

systems. 

 Ocean-going vessels are equipped with various electronic devices for navigation, such as 

automatic radar plotting aid (ARPA) and automatic identification system (AIS). However, 

existing devices are not perfect, and the navigational abilities of ships are restricted by these 

devices. In addition, the AIS is not mandatory for ships under 300 GT, and small vessels cannot 

be detected by the AIS, which increases the collision risk. The occurrences of accidents at sea 

prove that existing navigational devices are inadequate. Studies show that up to 75 to 96% of 

maritime accidents and casualties are due to some form of human error [29][15].  

 More specifically, an important cause of collision is an improper look-out being maintained 

by navigation officers, which accounts for 86% of collisions [34]. This makes the authorities 

and researchers pay more attention to increase the navigational safety[31]. It is desirable to 

have many choices for safety navigation which support the applicability of The International 

Regulations for Preventing Collisions at Sea (COLREGs) (IMO, 1972) in which the target 

object location and course are essential information for obstacle avoidance. Figure 1.1 

illustrates a crossing situation according to COLREGs rules. In the figure, V0 and V1 are 

speeds of own vessel and target vessel, respectively and X-Z is the coordinate system for own 

vessel. As it can be seen from the figure, the action for the collision avoidance depends on the 

location, course and the speed of the target vessel. Recently some studies are carried out for 
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the application of COLREGs in autonomous surface vehicles. These studies assume that the 

obstacles are already detected and their algorithm makes localization and mapping in 

accordance with COLREGs rules ([29], [5],[36]).  However Sea-Vessel detection and 3D 

Position Estimation is a very complex step for collision avoidance, which is the topic of this 

thesis. 

 

  

Figure 1.1 Crossing (Own vessel gives way) [16]. 

 

Especially, automatic Sea-Vessel detection becomes more important for the safety navigation 

of ships. Automatic ship detection is reported in some papers ([33],[26]), which utilized digital 

images. However, these studies use a single camera. In this case, it is very difficult to obtain 

the location of a target. The [15][16] have proposed a new approach for the detection and 

localization of other ships by means of a stereo vision system. Although they are using stereo 

vision system they need a huge amount of computing power and the resulting detection is not 

real time. 

 

1.2 Engineering Challenges 
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Two are the main engineering challenges hinder the development of a Sea-Vessel detection 

system capable of estimating the 3D position of each Vessel using conventional sensor 

technology. 

 System Design 

With the current micro-processor technology, it is challenging to build a 3D position 

Vessel detection system that is capable of flawless detection and localization of Sea-

Vessels in real time, using conventional sensors like cameras and small micro-

processors, but still matches the size, cost, performance and delay preferences for use 

in maritime industry, from various types of Sea-Vessels. The problem arise because of 

the use of conventional cameras as the only sensor of the system, which they generate 

a huge amount of raw data ready to be processed in every frame. 

 

 Efficient Detection Algorithm 

A surveillance system capable of detecting Vessels and estimate the 3D position of 

each, must have an efficient detection algorithm, which is fast and low computing 

power consuming. Traditional choices for vision systems are conventional computer 

vision techniques, which are although consuming in computing power [15],[16].   

 

1.3 Scope of Investigation 
 

A stereo camera based system is presented with the use of neural networks and computer vision 

techniques in order to precisely detect and estimate the 3D pose of several vessels in each 

camera frame. Especially a stand alone micro-computing system with two cameras and an 

external TPU(Tensor Processing Unit) was designed and implemented, capable of capturing 

frames, recognize and detect Vessels in every frame and then estimate their 3D pose relative 

to the ship in real time. Novel position estimation algorithm was implemented, with rotational 

position error of stereo cameras elimination. Test were carried out to determine how the actual 

embedded system performed in practice. 

 

1.4 Thesis Outline 
 

 Chapter 2 Hardware Design Concept – Technology 

 Chapter 3 Sea-Vessels Detection Algorithm 

 Chapter 4 Fast Horizon Line Detection Algorithm 

 Chapter 5 Stereo Fusion & 3D Position Estimation 

 Chapter 6 Experiments 

 Chapter 7 Conclusion 
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Chapter 2 
 

 

2 Hardware Design Concept-Technology 
 

 

Setting up a perception pipeline on a real-time system involves a coherent and clever interplay 

between software and hardware. Although, undermined more often than not, choosing 

appropriate hardware can greatly benefit the whole system. With proper choices it can improve 

raw sensor dataflow management, sub-system performance and eventually the overall 

throughput of the system. To ensure an efficient and effective perception system we build a 

customized camera hardware setup with choices based on goals and requirements defined at 

the onset. We postpone the discussion of the novel “Sea-Vessel detection” scheme and 

consequently position estimates of multiple vessels at every image frame by exploiting stereo 

vision configuration until the next chapter. The main focus of this chapter is to discuss the 

development of the hardware setup and raw data acquisition which is as crucial, if not more, 

as the software and processing of raw data. 

 

2.1 Design Choices 
 

As mentioned earlier, choosing the most relevant sensor based on the application can already 

have a monumental impact on the pipeline. Keeping multiple constraints such as limited on-

board computation and sharing with other modules, sensor envelope and the package goals, a 

computational cost effective detection pipeline was implemented. The time delay from the raw 

image information to be taken till the end of the detection and estimation pipeline played a 

central role to the overall design hardware architecture.  

 

2.1.1 Choosing the right Sensor 
The perception pipeline has a two camera setup. Two cameras, on the extremities, act as a 

stereo pair to help triangulate detected Sea-Vessels and compute the position in space regarding 

to the coordinate system attached to left camera. Parameters that are thoroughly considered: 

 Noise and corruption free transmission: The speed and quality transmission of raw 

image data from the cameras to the micro-processing board plays a key role to the 

overall throughput of the system. One more key factor is the need of taking frames 

simultaneously from both cameras. These requirements and with the simplicity that 

USB communication is provide, led as to adopt it as the main communication 

protocol of each module in our system. 
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 Neutralizing sudden changes in lighting: To ensure that glares and sudden lighting 

changes do not render the cameras useless, CMOS (Complementary Metal-Oxide 

Semiconductor) sensors are chosen over CCD (Charged Coupled Device). CCD 

sensors are susceptible to washed out image pixels due to glare while CMOS based 

sensors are not.  

 

2.1.2 Additional Hardware Parameters 
 

After the selection of the sensors, it is time for the computational cost of the Sea-Vessel 

detection pipeline to be considered and the way that should be treated the raw data, that coming 

from the camera. The following parameters led as to the selection of the embedded computation 

system. 

 Computing Power: As mentioned previously cameras generating a huge amount 

of raw image data which should be processed by a powerful computation system 

in order to achieve   satisfactory results in respect to the time of vessel 

identification. Further more, the computation system should provide an 

acceptable amount of external-peripheral modules connectivities and should be 

capable of monitoring them flowless. These parameters in addition with the 

need of a compact, low power consuming and powerful computational board 

led as to the adoption of a Raspberry Pi 4 

 Simplicity to configuration: Another key parameter was that we needed a 

system that is simple to configure to our needs and yet easy to program it. The 

supported Debian OS which is based on Linux and the vast community of 

Raspberry Pi played a crucial role to the selection of the board  

 Another reason led as in this decision was that, we wanted a system which could 

be a stand-alone computing system, carrying external monitors and all the 

sensors and modules and be commercially available and low cost. 

 Detection-Pipeline: The traditional computational-heavy computer vision 

techniques and the progress of technology in the field of creating specialized 

hardware for tensors processing, led as to switch our design and implementation 

of the detection pipeline to the deep neural networks. That gave the possibility 

to build a system which is scalable and facilitate the computational load of the 

main processing unit of the system. For this reason the Intel Neural Compute 

Stick 2 (NCS2) [18] was chosen as the main processing unit of the detection 

pipeline over other modules. This peripheral is fully functional and configurable 

with the Raspberry Pi [17] and also provides, at a low-cost, a powerful Vision 

Processing Unit (VPU). The VPU takes advantage of the computation power of 

16 tensor processing units with a shared high speed memory. The NCS2 is 

connected to the main system (Pi 4) via a USB3 port of the main board. 

 Open Source Software: was an essential parameter of the system 

implementation. Since we wanted a hardware that is supported by open source 



20 

 

and publicly available software we ended up with the above hardware 

selection[17][27][37].  

 

In the following picture the Raspberry Pi 4 with its main modules is depicted. Following a table 

with the most essential characteristics of the Raspberry Pi is prevented. 

 

 

Figure 2.2 A view of the most essential raspberry pi4 characteristics 

 

 

Table 2.1 Most Important Raspberry Pi4 Model B Specifications 

CPU Quad core Cortex-A72 (ARM v8) 64-bit 

CPU Clock 1.5GHz 

RAM Memory 4GB LPDDR4-@3200MHz SDRAM 

Serial Communication 2 USB 3.0 ports; 2 USB 2.0 ports, I2C, SPI 

Display Support  2-lane MIPI DSI display port, 2×micro-HDMI ports 

Embedded Graphics 500 MHz VideoCore VI, OpenGL ES 3.0 graphics 

Wireless Communication  802.11ac (2.4 / 5 GHz), Bluetooth 5.0 

Power Consuption 3.4 watts 

Power Driving  3A, 5V 

Size  88 x 58 x 19.5mm 

 

 

2.2 System integration 
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The Raspberry Pi4 (Figure 2.3) which is the main computing board of the system was 

connecting with the cameras and the Neural Compute Stick (NCS2) via USB (Figure 2.3). 

Furthermore a monitor was connected to one of the HDMI ports. It was found that the 

temperature of the Raspberry Pi board was increasing a lot during inference and for this reason 

an active cooling system was attached, as shown bellow (Figure 2.3).    

 

 Figure 2.3 Presents our hardware computational selection, comprises of Raspberry Pi4 as the 

main system control board and the Intel Neural Compute Stick2 which executes our deep 

neural network   

 

 

2.3 Image Acquisition 
  

The cameras that were used are shown in Figure …. They acquire raw image frames with a rate 

of maximum 30 frames per second at a resolution of 1280x720 pixels . Another key feature of 

this camera is that it has a fixed focal length, which ensures that there is no need to compute it 

in every frame compared with automatic focus cameras. As it is already known the cameras 

are connected to the main board via USB.  

 

Table 2.2 Camera Sensor - Logitech C270 Specifications 

Resolution 720p/30fps 

Focus Fixed 

Field of View 60 degrees 

 

We also designed and builded in a 3D printer bases for our cameras in order to form a 

stereoscopic image acquisition system, as it is shown in figure 2.5. 
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Figure 2.4 An image of the camera sensor that were used 

 

 

 

Figure 2.5 Two different views of our designed camera bases in solidworks. 

 

2.4 Neural Network Processing Unit 
 

As described already special study was carried out in the time execution of the detection 

pipeline. This led us to bypass the limited onboard computational power concerning to tensors 

multiplications of the CPU and the embedded GPU of the Raspberry Pi4, which have not 

sufficient tensor processing throughput and to substitute with the Intel Neural Compute Stick2 

(Fig. 2.5).  
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Figure 2.5 A view from the neural compute stick. One can gain a basic intuition of the size of 

the stick and the arrangement of the processing unit.[18]  

 

This device is based in a tensor processing unit, which exists in each of the 16 Cores (Shaves) 

and leverages the convolutional operations that is executed in each of the millions neurons of 

the neural network, that we used. Apart from that there is also some hardware implemented 

computer vision operations, which means that in a single clock the computation is done. In the 

following figure 2.6 one can see the semantic architecture of the TPU (Tensor Processing Unit) 

 

 

 

Figure 2.6 Schematic architecture of the Tensor Proseccing Unit of the Neural Compute Stick 

[18]  
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Chapter 3 
 

3 Sea-Vessels Detection Algorithm 
 

 This chapter shifts the focus on how to detect multiple Sea-Vessels from a single image 

exploiting deep neural networks. Although, it is an ill-posed problem but with a priori 

information and a new dataset regarding to the desired new object detection task, a well trained 

neural network can be exploited and reconfigured for our new task. At the beginning of this 

chapter the basic theory of  deep neural networks is presented, focused on the problem of object 

detection. Then the benefits of knowledge transfer in neural networks is thoroughly discussed. 

Finally, the methods and the implementation of our deep neural network based on YOLO 

architecture is deeply discussed and some visual results are presented.   

 

3.1 Anatomy of neural network 
 

  As it is already known machine learning is about mapping inputs (such as images) to targets 

(such as the label “cat”), which is done by observing many examples of input and targets. It is 

also known that deep neural networks do this input-to-target mapping via a deep sequence of 

simple data transformations (layers) and that these data transformations are learned by 

exposure to examples. But how this learning happens, concretely? The specification of what a 

layer does to its input data is stored in the layer’s weights, which in essence are a bunch of 

numbers. In technical terms, it could be said that the transformation implemented by a layer is 

parameterized by its weights (see figure 3.2). (Weights are also sometimes called the 

parameters of a layer.) In this context, learning means finding a set of values for the weights of 

all layers in a network, such that the network will correctly map example inputs to their 

associated targets. But here’s the thing: a deep neural network can contain tens of millions of 

parameters. Finding the correct value for all of them may seem like a daunting task, especially 

given that modifying the value of one parameter will affect the behavior of all the others![13]  

 

Figure 3.1 The fundamental cell of a neural network, a neuron. 
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Figure 3.2 A neural network is parameterized by its weights. 

 

To control something, first we need to be able to observe it. To control the output of a neural 

network, we need to be able to measure how far this output is from what it is expected. This is 

the job of the loss function of the network, also called the objective function. The loss function 

takes the predictions of the network and the true target (what we wanted the network to output) 

and computes a distance score, capturing how well the network has done on this specific 

example (see figure 3.3).  

 

Figure 3.3 The loss score is used as a feedback signal to adjust the weights. 

 

Initially, the weights of the network are assigned random values, so the network merely 

implements a series of random transformations. Naturally, its output is far from what it should 

ideally be, and the loss score is accordingly very high. But with every example the network 

processes, the weights are adjusted a little in the correct direction, and the loss score decreases. 

This is the training loop, which, repeated a sufficient number of times (typically tens of 

iterations over thousands of examples), yields weight values that minimize the loss function. 
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A network with a minimal loss is one for which the outputs are as close as they can be to the 

targets: a trained network. Once again, it’s a simple mechanism that, once scaled, ends up 

looking like magic[13]. 

Training a neural network revolves around the following objects: 

 Layers, which are combined into a network (or model) 

 The input data and corresponding targets 

 The loss function, which defines the feedback signal used for learning 

 The optimizer, which determines how learning proceeds 

The interaction of all them can be visualized as illustrated in figure 3.4 : the network, composed 

of layers that are chained together, maps the input data to predictions. The loss function then 

compares these predictions to the targets, producing a loss value: a measure of how well the 

network’s predictions match what was expected. The optimizer uses this loss value to update 

the network’s weights. 

 

Figure 3.4 A generic diagram of how neural-networks trained and how they constructed. The 

loss score is used as a feedback to adjust the weights. 

 

The fundamental data structure in neural networks is the layer. A layer is a data-processing 

module that takes as input one or more tensors and that outputs one or more tensors. Some 

layers are stateless, but more frequently layers have a state: the layer’s weights, one or several 

tensors learned, which together contain the network’s knowledge. 

One can think of layers as the LEGO bricks of deep learning. 
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3.1.1 Neural Models: networks of layers 
A deep-learning model is a directed, acyclic graph of layers. The most common instance is a 

linear stack of layers, mapping a single input to a single output. The most common network 

topologies, which although are not covering all the cases, are:  

 Two-branch networks 

 Multihead networks 

 Inception blocks 

The topology of a network defines a hypothesis space. A meaningful definition of machine 

learning can be as “searching for useful representations of some input data, within a predefined 

space of possibilities, using guidance from a feedback signal.” By choosing a network 

topology, the space of possibilities (hypothesis space) is constrained to a specific series of 

tensor operations, mapping input data to output data. What will then be searched for is a good 

set of values for the weight tensors involved in these tensor operations. 

Picking the right network architecture is more an art than a science; and although there are 

some best practices and principles one can rely on, only practice can help in becoming a proper 

neural-network architect. The next few chapters will concentrate in explicit principles for 

building neural networks and developing intuition as to what works or doesn’t work for specific 

problems[13]. 

 

3.1.2 Loss functions and optimizers: keys to configuring the learning process 
Once the network architecture is defined, there is still need two more things to be defined[13]: 

 Loss function (objective function)—The quantity that will be minimized during 

training. It represents a measure of success for the task at hand. 

 Optimizer—Determines how the network will be updated based on the loss 

function. It implements the weight parameters update strategic at the end of each 

training iteration, could be for example a specific variant of stochastic gradient 

descent ( SGD ). 

A neural network that has multiple outputs may have multiple loss functions (one per output). 

But the gradient-descent process must be based on a single scalar loss value; so, for multi-loss 

networks, all losses are combined (via averaging) into a single scalar quantity. 

Choosing the right objective function for the right problem is extremely important: the network 

will take any shortcut it can, to minimize the loss; so if the objective doesn’t fully correlate 

with success for the task at hand, the network will end up doing things you may not have 

wanted. Imagine a stupid, omnipotent AI trained via SGD (Stochastic Gradient Descent) [13], 

with this poorly chosen objective function: “maximizing the average well-being of all humans 

alive.” To make its job easier, this AI might choose to kill all humans except a few and focus 

on the well-being of the remaining ones—because average well-being isn’t affected by how 

many humans are left. That might not be what we intended[13]! Finally, it could be argued that 

all neural networks that are build will be just as ruthless in lowering their loss function, so one 

should choose the objective wisely, or will have to face unintended side effects. 
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Fortunately, when it comes to common problems such as classification, regression, and 

sequence prediction, there are simple guidelines that can be followed, to choose the correct 

loss. For instance,  binary cross-entropy could be use for a two-class classification problem, 

categorical cross-entropy for a many-class classification problem, meansquared error for a 

regression problem, connectionist temporal classification ( CTC ) for a sequence-learning 

problem, and so on. Only when working on truly new research problems there is need to be 

developed new-customized objective functions. 

 

3.2 Fundamentals of Machine Learning 
Having a deep intuition of how neural-networks are constructed and the fundamental elements 

that they consist of, it is time to structure into branches the scientific field of machine learning. 

Although it is a vast field with a complex subfield taxonomy. Machine-learning algorithms 

generally fall into four broad categories, described in the following sections[13]. 

 

3.2.1 Supervised learning 
This is by far the most common case. It consists of learning to map input data to known targets 

(also called annotations), given a set of examples (often annotated by humans). Generally, 

almost all applications of deep learning that are in the spotlight these days belong in this 

category, such as optical character recognition, speech recognition, image classification, and 

language translation. Although supervised learning mostly consists of classification and 

regression, there are more exotic variants as well, including the following[13] (with examples): 

 Sequence generation—Given a picture, predict a caption describing it. Sequence 

generation can sometimes be reformulated as a series of classification problems 

(such as repeatedly predicting a word or token in a sequence). 

 Syntax tree prediction—Given a sentence, predict its decomposition into a syntax 

tree. 

 Object detection—Given a picture, draw a bounding box around certain objects 

inside the picture. This can also be expressed as a classification problem (given 

many candidate bounding boxes, classify the contents of each one) or as a joint 

classification and regression problem, where the bounding-box coordinates are 

predicted via vector regression. 

 Image segmentation—Given a picture, draw a pixel-level mask on a specific object. 

 

3.2.2 Unsupervised learning 
This branch of machine learning consists of finding interesting transformations of the input 

data without the help of any targets, for the purposes of data visualization, data compression, 

or data denoising, or to better understand the correlations present in the data at hand. 

Unsupervised learning is the bread and butter of data analytics, and it’s often a necessary step 

in better understanding a dataset before attempting to solve a supervised-learning problem. 

Dimensionality reduction and clustering are well-known categories of unsupervised 

learning[13]. 
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3.2.3 Self-supervised learning 

This is a specific instance of supervised learning, but it’s different enough that it deserves its 

own category. Self-supervised learning is supervised learning without human-annotated 

labels—you can think of it as supervised learning without any humans in the loop. There are 

still labels involved (because the learning has to be supervised by something), but they’re 

generated from the input data, typically using a heuristic algorithm.  

For instance, autoencoders are a well-known instance of self-supervised learning, where the 

generated targets are the input, unmodified. In the same way, trying to predict the next frame 

in a video, given past frames, or the next word in a text, given previous words, are instances of 

self-supervised learning (temporally supervised learning, in this case: supervision comes from 

future input data). Note that the distinction between supervised, self-supervised, and 

unsupervised learning can be blurry sometimes—these categories are more of a continuum 

without solid borders. Self-supervised learning can be reinterpreted as either supervised or 

unsupervised learning, depending on whether you pay attention to the learning mechanism or 

to the context of its application[13]. 

 

3.2.4 Reinforcement learning 
Long overlooked, this branch of machine learning recently started to get a lot of attention after 

Google DeepMind successfully applied it to learning to play Atari games (and, later, learning 

to play Go at the highest level). In reinforcement learning, an agent receives information about 

its environment and learns to choose actions that will maximize some reward. For instance, a 

neural network that “looks” at a video-game screen and outputs game actions in order to 

maximize its score can be trained via reinforcement learning. 

 Currently, reinforcement learning is mostly a research area and hasn’t yet had significant 

practical successes beyond games. In time, however, it is expected reinforcement learning to 

take over an increasingly large range of real-world applications: self-driving cars, robotics, 

resource management, education, and so on. It’s an idea whose time has come, or will come 

soon[13]. 

 

 

3.3 Deep learning for Computer Vision  
This section introduces convolutional neural networks, also known as convnets, a type of deep-

learning model almost universally used in computer vision applications[13]. 

 

3.3.1 The convolution operation 
The fundamental difference between a densely connected layer and a convolution layer is this: 

Dense layers learn global patterns in their input feature space, whereas convolution layers learn 

local patterns (see figure 3.5): in the case of images, patterns found in small 2D windows of 

the inputs[13]. 
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Figure 3.5 Images can be broken into local patterns such as edges, textures, and so on. 

 

 

 

This key characteristic gives convnets two interesting properties: 

 The patterns they learn are translation invariant. After learning a certain pattern in 

the lower-right corner of a picture, a convnet can recognize it anywhere: for 

example, in the upper-left corner. A densely connected network would have to learn 

the pattern a new if it appeared at a new location. This makes convnets data efficient 

when processing images (because the visual world is fundamentally translation 

invariant): they need fewer training samples to learn representations that have 

generalization power. 

 They can learn spatial hierarchies of patterns (see figure 3.6). A first convolution 

layer will learn small local patterns such as edges, a second convolution layer will 

learn larger patterns made of the features of the first layers, and so on. This allows 

convnets to efficiently learn increasingly complex and abstract visual concepts 

(because the visual world is fundamentally spatially hierarchical). 

 

 

Convolutions operate over 3D tensors, called feature maps, with two spatial axes (height and 

width) as well as a depth axis (also called the channels axis). For an RGB image, the dimension 

of the depth axis is 3, because the image has three color channels: red, green, and blue. For a 

black-and-white picture, the depth is 1 (levels of gray). The convolution operation extracts 

patches from its input feature map and applies the same transformation to all of these patches, 

producing an output feature map. This output feature map is still a 3D tensor: it has a width 

and a height. Its depth can be arbitrary, because the output depth is a parameter of the layer, 

and the different  

 

 



31 

 

 

Figure 3.6 The visual world forms a spatial hierarchy of visual modules: hyperlocal edges 

combine into local objects such as eyes or ears, which combine into high-level concepts such 

as “cat.” 

 

 

channels in that depth axis no longer stand for specific colors as in RGB input; rather, they 

stand for filters. Filters encode specific aspects of the input data: at a high level, a single filter 

could encode the concept “presence of a face in the input,” for instance [13]. 

Convolutions are defined by two key parameters:  

 Size of the patches extracted from the inputs—These are typically 3 × 3 or 5 × 5 or  

7 × 7  

 Depth of the output feature map—The number of filters computed by the 

convolution. Common depth values are power of 2, for example 32, 64, 128, 256 

and so on. 

A convolution works by sliding these windows of size 3 × 3 or 5 × 5 over the 3D input feature 

map, stopping at every possible location, and extracting the 3D patch of surrounding features 

(shape (windowheight, windowwidth, inputdepth). Each such 3D patch is then transformed 

(via a tensor product with the same learned weight matrix, called the convolution kernel ) into 

a 1D vector of shape (outputdepth,). All of these vectors are then spatially reassembled into a 

3D output map of shape (height, width, outputdepth). Every spatial location in the output 

feature map corresponds to the same location in the input feature map (for example, the lower-

right corner of the output contains information about the lower-right corner of the input)[13]. 

For instance, with 3 × 3 windows, the vector output[i, j, :] comes from the 3D patch input[i-

1:i+1, j-1:j+1, :] . The full process is detailed in figure 3.7.  
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Figure 3.7 How convolution works 

 

Note that the output width and height may differ from the input width and height. They may 

differ for two reasons: 

 Border effects, which can be countered by padding the input feature map 

 The use of strides. 

 

3.3.1 Training a convnet  
 

Having to train an image-classification, object-detection model using very little data is a 

common situation, which will likely encounter in practice when do computer vision in a 

professional context. A “few” samples can mean anywhere from a few hundred to a few tens 

of thousands of images[13]. In our case we had available almost 3.000 samples(images) well 

annotated from the COCO dataset[8]. A basic strategic to tackle this problem is to use data 

augmentation, which is a powerful technique for mitigating overfitting in computer vision. 

Although by alone this technique can’t solve overfitting perfectly[13]. For this reason three 

more essential techniques for applying deep learning to small datasets can be used. They are 

feature extraction with a pretrained network, transfer-learning which we used and fine-tune a 
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pretrained network. These three techniques will be presented bellow briefly in order to obtain 

a more solid intuition about them and to clarify our selection of using a pretrained network.  

There is the prevailing view that deep learning only works when lots of data is available. This 

is valid in part: one fundamental characteristic of deep learning is that it can find interesting 

features in the training data on its own, without any need for manual feature engineering, and 

this can only be achieved when lots of training examples are available. This is especially true 

for problems where the input samples are very high-dimensional, like images [13].  

But what constitutes lots of samples is relative—relative to the size and depth of the network 

that is going to be trained, for start. It isn’t possible to train a convnet to solve a complex 

problem with just a few tens of samples, but a few hundred can potentially suffice if the model 

is small and well regularized and the task is simple. Because convnets learn local, translation-

invariant features, they’re highly data efficient on perceptual problems. Training a convnet 

from scratch on a very small image dataset will still yield reasonable results despite a relative 

lack of data, without the need for any custom feature engineering [13].  

What’s more, deep-learning models are by nature highly repurposable: one can take, say, an 

image-classification or speech-to-text model trained on a large-scale dataset and reuse it on a 

significantly different problem with only minor changes. Specifically, in the case of computer 

vision, many pretrained models (usually trained on the ImageNet and/or COCO dataset[8]) are 

now publicly available for download and can be used to bootstrap powerful vision models out 

of very little data. That’s what we did by using two different implementations, namely  

YOLOv3 and tiny-YOLOv3, which they will be presented in the next section.  

 

3.3.2 Using a pretrained convnet 
 

A common and highly effective approach to deep learning on small image datasets is to use a 

pretrained network. A pretrained network is a saved network that was previously trained on a 

large dataset, typically on a large-scale image-classification, object-detection task. If this 

original dataset is large enough and general enough, then the spatial hierarchy of features 

learned by the pretrained network can effectively act as a generic model of the visual world, 

and hence its features can prove useful for many different computer-vision problems, even 

though these new problems may involve completely different classes than those of the original 

task. For instance, one might train a network on ImageNet (where classes are mostly animals 

and everyday objects) and then repurpose this trained network for something as remote as 

identifying furniture items in images. Such portability of learned features across different 

problems is a key advantage of deep learning compared to many older, shallow-learning 

approaches, and it makes deep learning very effective for small-data problems[13]. We took  

advantage of this technique by exploiting the pretrained YOLOv3 networks on COCO-object 

detection Dataset[8], which comprises of 80 classes of everyday objects, like cars, boats, 

persons and so on. This technique is thoroughly described bellow in transfer learning section. 

 

3.3.3 Feature extraction 
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Feature extraction consists of using the representations learned by a previous network to extract 

interesting features from new samples. These features are then run through a new classifier, 

which is trained from scratch. 

As it is known, convnets used for image classification – object detection comprise two parts: 

they start with a series of pooling and convolution layers, and they end with a densely 

connected classifier. The first part is called the convolutional base of the model. In the case of 

convnets, feature extraction consists of taking the convolutional base of a previously trained 

network, running the new data through it, and training a new classifier on top of the output (see 

figure 3.8). 

 

 

Figure 3.8 Swapping classifiers while keeping the same convolutional base 

 

Why only reuse the convolutional base? Could also be reused the densely connected classifier 

as well? In general, doing so should be avoided. The reason is that the representations learned 

by the convolutional base are likely to be more generic and therefore more reusable: the feature 

maps of a convnet are presence maps of generic concepts over a picture, which is likely to be 

useful regardless of the computer-vision problem at hand. But the representations learned by 

the classifier will necessarily be specific to the set of classes on which the model was trained—

they will only contain information about the presence probability of this or that class in the 

entire picture. Additionally, representations found in densely connected layers no longer 

contain any information about where objects are located in the input image: these layers get rid 

of the notion of space, whereas the object location is still described by convolutional feature 

maps. For problems where object location matters, densely connected features are largely 

useless. 

Note that the level of generality (and therefore reusability) of the representations extracted by 

specific convolution layers depends on the depth of the layer in the model. Layers that come 

earlier in the model extract local, highly generic feature maps (such as visual edges, colors, and 

textures), whereas layers that are higher up extract more-abstract concepts (such as “cat ear” 
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or “dog eye”). So if the new dataset differs a lot from the dataset on which the original model 

was trained, it may be better off using only the first few layers of the model to do feature 

extraction, rather than using the entire convolutional base. 

 

3.3.4 Fine-tuning 
 

Another widely used technique for model reuse, complementary to feature extraction, is fine-

tuning. Fine-tuning consists of unfreezing a few of the top layers of a frozen model base used 

for feature extraction, and jointly training both the newly added part of the model (in this case, 

the fully connected classifier) and these top layers. This is called fine-tuning because it slightly 

adjusts the more abstract representations of the model being reused, in order to make them 

more relevant for the problem at hand[13]. 

 

3.3.5 Transfer Learning 
 

The idea of transfer learning is inspired by the fact that people can intelligently apply 

knowledge learned previously to solve new problems. For example, learning to play one 

instrument can facilitate faster learning of another instrument. Transfer learning has gained 

attention since its discussion in the Neural Information Processing Systems 1995 workshop on 

Learning to Learn[35], which focused on the need for lifelong machine learning methods that 

retain and reuse previously learned knowledge. Another good analogy is with traditional 

software development: We almost never write a program completely from scratch; every 

application makes heavy use of code libraries that take care of common functionality. 

Maximizing code reuse is a best practice for software development, and transfer learning is 

essentially the machine learning equivalent[4]. 

Transfer learning is an artificial intelligence (AI) practice that uses data, deep learning recipes, 

and models developed for one task, and reapplies them to a different, but similar, task. In other 

words, it's a method in machine learning where a model developed for one task is used as a 

starting point for a model in a second task. Reuse of pretrained models allows improved 

performance when modeling the second task, hence achieving results faster. 

Vast quantities of readily available data are great, but it isn't a prerequisite for success. With 

modern machine learning and deep learning techniques, knowledge acquired by a machine 

working on one task can be transferred to a new task if the two are somewhat related. This 

eventually helps to reduce training time significantly, thus improving productivity. In figure 

3.9 the differences between traditional machine learning and with the use of transfer learning 

are presented. 

There are different types of transfer learning which can be summarize into three categories  as 

shown in the following table (3.1). The scope of this section is not to prevent deeply the 

different approaches of transfer learning but to state our selection of inductive transfer learning. 

The reason is that after careful consideration of different regression-object detection models, 

the YoLoV3 had the better response. We pause the explanation of YoLo V3 model till the next 

section. By looking to our feature space it was obvious that the fastest approach for Sea-Vessels 
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detection was to retrain the YoLo V3 to our dataset, exploiting the learning of the different 

features that learned previously by the network in a much bigger and diverse dataset. That gave 

also the ability to have better detection results in Sea-Vessels Detection. 

 

Figure 3.9 Different learning processes between traditional machine learning and transfer 

learning. 

 

 

3.4 Customizing YOLOv3 for Sea-Vessels Detection 
 

Before one can actually estimate 3D position of multiple objects from a single image, it is 

necessary first to be able to detect these objects of interest given a single image. As mention 

above we exploited the performance and accuracy of Yolo V3 object detector, customizing it 

although for our new task of Vessels detection. This section describes the Yolo V3 model 

architecture and continues with the steps that were performed before the retraining of the model 

till the first use of the final model and the first inference.  

 

3.4.1 YOLO Model Architecture 
 

The first YOLO model architecture in 2016 introduced a new approach to object detection[21]. 

Prior work on object detection repurposes classifiers to perform detection. Instead, Yolo model 

frame object detection as a regression problem to spatially separated bounding boxes and 

associated class probabilities. A single neural network predicts bounding boxes and class 

probabilities directly from full images in one evaluation. Since the whole detection pipeline is 

a single network, it can be optimized end-to-end directly on detection performance. This gave 

Yolo model an extremely small processing time from end-to-end detection and outstanding 

performance compared with the model that where state-of-the art at that time[21]. 

What was genius about Yolo architecture was that it unified the separate components of object 

detection into a single neural network. Yolo network uses features from the entire image to 

predict each bounding box. It also predicts all bounding boxes across all classes for an image 
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simultaneously. This means the network reasons globally about the full image and all the 

objects in the image[21].  

The YOLO design enables end-to-end training and realtime speeds while maintaining high 

average precision. Yolo system divides the input image into an SxS grid. If the center of an 

object falls into a grid cell, that grid cell is responsible for detecting that object. Each grid cell 

predicts B bounding boxes and confidence scores for those boxes. These confidence scores 

reflect how confident the model is that the box contains an object and also how accurate it 

thinks the box is that it predicts. Formally it is defined confidence as Pr(Object) * IOUtruthpred 

. If no object exists in that cell, the confidence scores should be zero. Otherwise, the confidence 

score to equal the intersection over union (IOU) between the predicted box and the ground 

truth[21].  

Each bounding box consists of 5 predictions: x, y, w, h, and confidence. The (x; y) coordinates 

represent the center of the box relative to the bounds of the grid cell. The width and height are 

predicted relative to the whole image. Finally the confidence prediction represents the IOU 

between the predicted box and any ground truth box. Each grid cell also predicts C conditional 

class probabilities, Pr(Classi|Object). These probabilities are conditioned on the grid cell 

containing an object.[21]  

Yolo only predicts  one set of class probabilities per grid cell, regardless of the number of boxes 

B. At test time the conditional class probabilities and the individual box confidence predictions 

are multiplied, 

Pr(Classij|Object) ∗  Pr(Object) ∗  IOUtruthpred = Pr(Classi)  ∗  IOUtruthpred     (1) 

which gives the class-specific confidence scores for each box. These scores encode both the 

probability of that class appearing in the box and how well the predicted box fits the object.  

The Yolo architecture presented in Figure 3.11 implement this model as a convolutional neural 

network and evaluate it on the PASCAL VOC detection dataset [25]. The initial convolutional 

layers of the network extract features from the image while the fully connected layers predict 

the output probabilities and coordinates. Yolo network architecture is inspired by the 

GoogLeNet model for image classification [32]. Yolo network has 24 convolutional layers 

followed by 2 fully connected layers as shown bellow. 
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Figure 3.10 Yolo system models detection as a regression problem. It divides the image into 

an S × S grid and for each grid cell predicts B bounding boxes, confidence for those boxes, 

and C class probabilities. These predictions are encoded as an S × S × (B ∗ 5 + C) tensor.[21] 

 

 

During training Yolo optimize the following, multi-part loss function: 
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Figure 3.11 Our detection network has 24 convolutional layers followed by 2 fully connected 

layers. Alternating 1 × 1 convolutional layers reduce the features space from preceding 

layers.[21] 

 

 

3.4.2 Yolov3 Model Architecture 
Based on the above described architecture authors of Yolo did some impressing changes in 

model architecture which gave it an outstanding performance and detection accuracy. First of 

all Yolov3[20] is a little bigger than before having more layers as is shown in figures 3.12 & 

3.13.  

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Yolo V3 feature extractor network 

architecture Darknet-53[20] 
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Figure 3.13 The completely Yolo v3 model architecture. After the feature extractor (Darknet-

53) one can see that feature maps with different sizes are upsampled and used for prediction, 

yield three different prediction feature maps. This is called feature pyramid. 

 

Furthermore the system predicts bounding boxes using dimension clusters as anchor boxes 

(figure 3.14). The network predicts 4 coordinates for each bounding box, tx ,ty , tw , th . If the 

cell is offset from the top left corner of the image by (cx , cy ) and the bounding box prior has 

width and height pw, ph , then the predictions correspond to: 

 

               (Eq. 1) 

 

During training sum of squared error loss function is used.  

YOLOv3 predicts an objectness score for each bounding box using logistic regression. This 

should be 1 if the bounding box prior overlaps a ground truth object by more than any other 

bounding box prior. If the bounding box prior is not the best but does overlap a ground truth 

object by more than some threshold the prediction is ingored, following [32]. Threshold of .5 

is used. Unlike [32] Yolo system only assigns one bounding box prior for each ground truth 

object. If a bounding box prior is not assigned to a ground truth object it incurs no loss for 

coordinate or class predictions, only objectness. Finally, each box predicts the classes the 

bounding box may contain using multilabel classification[20].  
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Figure 3.14 Bounding boxes with dimension priors and location prediction. We predict the 

width and height of the box as offsets from cluster centroids. We predict the center coordinates 

of the box relative to the location of filter application using a sigmoid function. This figure 

blatantly self-plagiarized from [20] 

 

 

A key role characteristic of Yolov3 model architecture is that it makes predictions across three 

differen scales. Meaning that features are extracted from those scales using a similar concept 

to feature pyramid networks [38]. From the base feature extractor of Yolov3 model, several 

convolutional layers were added. The last of these predicts a 3-d tensor encoding bounding 

box, objectness, and class predictions.  Yolov3 originally created for COCO [8], predicts 3 

boxes at each scale so the tensor is N × N × [3 ∗ (4 + 1 + 1)] for the 4 bounding box offsets, 1 

objectness prediction, and 1 class prediction. The real YoloV3 model calculates 80 class 

predictions, meaning that the output tensor is  N × N × [3 ∗ (4 + 1 + 80)] for the COCO. 

Next the feature map from 2 layers previous is taken and is upsampled it by 2×. Also a feature 

map from earlier in the network is taken and is merged with the upsampled features using 

concatenation (Figure 3.12). This method allows Yolov3 model to get more meaningful 

semantic information from the upsampled features and finer-grained information from the 

earlier feature map. Then a few more convolutional layers to process this combined feature 

map are added, and eventually a similar tensor is predicted, although now twice the size. The 

same design is performed one more time to predict boxes for the final scale. Thus the 

predictions for the 3rd scale benefit from all the prior computation as well as finegrained 

features from early on in the network[20]. 
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Figure 3.12 Yolov3 structure but leverages it as a feature pyramid, with predictions made 

independently at all levels 

 

 

3.4.3 Multiple Sea-Vessels Detection  
 

It is time now to present the steps that were executed in order to adjust necessarily the Yolov3 

model architecture to our task of Sea-Vessel detection. Specifically we modified and retrained 

the Yolov3 as well as the Yolov3_tiny model, which is a smaller version of Yolov3, exploiting 

the learned features that these networks learned previously.  

For our task we used the dataset from COCO object detection competition[8], which comprises 

of more than 150 thousands of well annotated images from 80 different classes. We kept the 

images that contained only Sea-Vessels, yielding more than 3.000 images. In order to achieve 

sufficient detection accuracy we had to change the anchor boxes that the original network used.  

In order to determine the anchor boxes of the Yolov3 models based on the new task of Sea-

Vessels detection, we implemented a k-means clustering system[23]. For Yolov3 we used  9 

clusters and for Yolov3-tiny we used 6 clusters. The k-means algorithm computed the new 

centers of the anchor boxes based on the our dataset (see figure 3.13 & 3.14). The K-mean 

clustering system was implemented in python.  
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Figure 3.13 The different clusters and the centroid of each cluster is depicted for Yolov3-tiny. 

With red star the centroid of each cluster and with colored dots, the corresponding anchor 

boxes that belongs to this cluster are presented.   

 

 

Having the new anchor boxes determined it is time to retrain our models. We used the 

framework from the authors of Yolo, which is Darknet. Every training needed a whole week 

in a medium-sized computer running on a Nvidia 1060 6Gb graphic card. We trained every 

network for more than 40.000 epochs. The resulting average loss function is in figures 3.15 & 

3.16  depicted. From the figures one can see that after 5000 epoch model is starting to learn the 

new feature.  
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Figure 3.14 The different clusters and the centroid of each cluster is depicted for Yolov3. With 

red star the centroid of each cluster and with colored dots, the corresponding anchor boxes 

that belongs to this cluster are presented.   

 

 

Figure 3.15 The average loss function is depicted 
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Figure 3.16 The average loss function is depicted. As is shown after 5000 epoch the loss 

function starts to converge to a steady value near 1. 

 

For retraining the models a variable learning rate was used. This training strategy is well known  

to machine learning community and tries to tackle the fact that at the begging of training big 

loss values will be encountered causing to big weight changes of the pretrained network. This 

causes the network to forget the learned features that are previously learned, a phenomenon 

which is not desired. For this reason at the begging of the training a learning rate starting almost 

from 0 till 0.001 progressively, is used for 1000 epochs. This is called burn-in or warm-up 

period in deep learning community (figure 3.17).    

 

In the following table the performances of the two different implementations namely YoloV3 

and YoloV3_tiny are presented 

 

Model Precision Recall Average Precision 

Yolo V3 @ 608 0.982 0.948 0.838 

Yolo V3 @ 416 0.975 0.917 0.824 

Yolo V3 tiny @ 416 0.979 0.786 0.763 

 

Table 5.1 Performance of Yolo V3 different implementations at Sea-Vessels detection  
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Figure 3.17 Variable learning rate training. 

 

 

The resulting networks performed extremely well on detecting Sea-Vessels in different weather 

and lighting conditions.  Exemplary images are shown bellow in different lighting conditions , 

proving the robustness of the networks. 

 

 

Figure 3.18 a) An image of a busy port and the detected Sea-Vessels within the oat annotated 

boxes 
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Figure 3.18 b) Images of detected Sea-Vessels with different light conditions. 
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Chapter 4  
 

 

4 Fast Horizon Line Detection Algorithm 
 

This chapter present the fast horizon line detection algorithm exploiting computer vision 

techniques . First the theory of the computer vision tools that were used is presented. Then the 

fast horizon line detection algorithm is further studied. Finally the performance of the proposed 

detection algorithm is thoroughly investigating.  

 

4.1 The need for Horizon Line detection 
 

As explained in the previous section, with the help of Sea-Vessel object detector, one can find 

multiple Sea-Vessels of interest in a single image. The question is, due to determined object 

detection precision, how do we decide for a bad detection. One simple but yet powerful 

technique is to use the horizon line of the open sea to discard false Sea-Vessel detections.  

As is shown by the general diagram pipeline (Fig. 4.1) from images to 3D Sea-Vessel 

detections , first we take an image frame then we detect bounding boxes containing Sea-

Vessels. We exploit that information in our horizon line detector in order to form a ROI (Region 

Of Interest) in the image frame, where the horizon detection would take place and then we 

discard false positives. In order to compute the ROI we took the information of the highest and 

lowest detected Sea-Vessel in the image and after applying a threshold we cutted the image 

and the ROI was directly formed. 

 

 

Figure 4.1 General Diagram of Sea-Vessels detection and 3D position estimation algorithm 

pipeline. 

 



49 

 

One key characteristic between Sea and Sky surface is that these areas have different color and 

light intensity distribution which we exploit it in order to detect the horizon line. We make the 

assumption that the horizon line is generally represented as a straight line in a maritime 

scenario. Based on this assumption we employ a series of computer vision techniques but 

combined with such a way that the overall time execution is not affecting the overall system 

performance. 

 

 

4.2 Fast Horizon Line Detector  
 

As described previously we begin by cutting the initial image and form a ROI. After that we 

use a feature detector in order to detect the horizon line (Figure 4.2). As a feature detector we 

used the simple but yet powerful Canny edge detector. It was developed by John F. Canny in 

1986[19]. It is a multi-stage algorithm. The first step is to filter the image with a smoothing 

filter like Gaussian and then apply Canny edge detector.  

 

 

Figure 4.2 Horizon line detection pipeline. The steps for detecting the horizon line are depicted 

in this diagram 

 

4.2.1 Edge Detection  
 

After that Canny edge detector tries to find intensity gradient of the input image. This is 

achieved by applying Sobel kernel filter in both horizontal and vertical direction to get first 
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derivative in horizontal direction (Gx) and vertical direction (Gy). From these two images, we 

can find edge gradient and direction for each pixel as follows: 

              (Eq. 1) 

Gradient direction is always perpendicular to edges. It is rounded to one of four angles 

representing vertical, horizontal and two diagonal directions. After getting gradient magnitude 

and direction, a full scan of image is done to remove any unwanted pixels which may not 

constitute the edge. For this, at every pixel, pixel is checked if it is a local maximum in its 

neighborhood in the direction of gradient, as shown in the figure 4.3 bellow. 

Point A is on the edge ( in vertical direction). Gradient direction is normal to the edge. Point B 

and C are in gradient directions. So point A is checked with point B and C to see if it forms a 

local maximum. If so, it is considered for the next stage, otherwise, it is suppressed (putted to 

zero). 

 

 

Figure 4.3 Sobel Non-maximum Suppression method. Left the point A is not local maximum 

and it is not considered as an edge point. In the right image although point A is local maximum 

and that’s why it is consider as an edge point. 

 

 

The next stage decides which edges are really edges and which are not. For this, we need two 

threshold values, minVal and maxVal. Any edges with intensity gradient more than maxVal 

are sure to be edges and those below minVal are sure to be non-edges, so discarded. Those who 

lie between these two thresholds are classified edges or non-edges based on their connectivity. 

If they are connected to “sure-edge” pixels, they are considered to be part of edges. Otherwise, 

they are also discarded. See the figure 4.4 below: 
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Figure 4.4 Edge decision threshold. 

 

The edge A is above the maxVal, so considered as “sure-edge”. Although edge C is below 

maxVal, it is connected to edge A, so that also considered as valid edge and we get that full 

curve. But edge B, although it is above minVal and is in same region as that of edge C, it is not 

connected to any “sure-edge”, so that is discarded. So it is very important that we have to select 

minVal and maxVal accordingly to get the correct result. This stage also removes small pixels 

noises on the assumption that edges are long lines. So what we finally get is strong edges in 

the image. 

 

4.2.2 Multi-Scale edge detection 
 

Maritime scenes contain many edges generated by wakes from ships, sunlight, and waves. This 

makes the detection of horizon line ambiguous, because of too many generated edges. In order 

to tackle this problem, we used multi-scale edge detection. The scale in edge detection is related 

to the size of the smoothing filter applied before edge detection[6].  

Large-scale edge detection can identify reliable edges related to the horizon, but it loses 

detailed structures. In addition, recent research pointed out that detecting edges at multiple 

scales can reduce the inherent ambiguity of edge detection at a single scale. Therefore, several 

methods, [24] adopting a multi-scale approach, have been proposed to mitigate sensitivity to 

parameters of edge detection and to reduce the effect of noisy edges[6]. 

Multi-scale edge detection is distinguishable by the method of analyzing the information 

detected at different scales.[24] Previous works have independently processed edge 

information detected on different scales, so that horizon line estimation is applied to the number 

of scales. This was one reason for increasing the processing time of the horizon detection 

method, when adopting multi-scale edge detection. In addition, MusCoWERT [30] detected 

edges on different scales and analyzed their length, because it suffers from processing times 

requiring an order of tens of seconds. 
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This Paper [6] proposed a method which used three different scales of smoothing filter and 

then merging the resulting edges based on a threshold intensity value. In our implementation, 

the proposed method applies different smoothing values in ROI but for every scale applies the 

Canny edge detector with different threshold values, giving more importance to scales with 

bigger smoothing filters. This gave us the ability to isolate more accurately the dominant lines.  

The proposed method detects edges from the images by applying a smoothing filter of various 

sizes. Then, it applies the Canny edge detector with different low and high threshold values of 

edges, based on intensity distribution of the ROI. More specifically before we compute the 

edges in each scale, we compute the median intensity value of the cropped image (ROI). Then 

we compute the threshold values for the edge detector using the median value of the ROI as a 

central value. Using the type  

lower = int(max(0, (1.0 - sigma) * v)) 

upper = int(min(255, (1.0 - sigma) * v)) 

Where the sigma parameter is consider as normal deviation. Then the edge images at different 

scales are synthesized to a single edge map.  

Detecting a horizon by analyzing a combined edge map can reduce the inherent ambiguity of 

edge detection using a single scale, while increasing the processing speed of horizon detection. 

The proposed method uses the Gaussian filter as a smoothing filter. The Canny edge detector 

is applied to multi-scale images independently. Then, the weighted edge map is synthesized 

using the edge maps to which the Canny edge detector is applied, as follows  

                                              (Eq. 2) 

where N is the number of median filters, of the scale s, and Es is the edge maps of the scale s.  

The edges related to the horizon were consistently detected on edge maps at various scales 

because of the strong brightness changes near the horizon. Thus, the proposed method applies 

thresholding to the weighted edge map to suppress noisy edges, while keeping the edges 

associated with the horizon. The thresholding to the weight edge maps is applied as follows

  

                (Eq. 3) 

where t is the threshold for filtering the noisy edges; we set the threshold to 170. 

The example image of the edge maps generated from the multi-scale images and the weighted 

edge map applying the thresholding are shown in figure 4.5. To improve the readability of the 

edge maps in figure 4.5, a dilation filter with a 5 x 5 rectangular structuring element is first 

applied to the edge maps.  

Figure 4.5 shows that the proposed multi-scale edge detection can preserve the edges associated 

with the horizon while suppressing the noisy edges. The proposed method reduces edges 

unrelated to the horizon, but there still exist outlier edges. Therefore, a method is necessary to 

reduce the effect of out-lier edges when estimating the horizon line. 
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Figure 4.5.1 The final edge-map after applying three different size smooth Gaussian filters to 

the original image bellow and thresholding. 

Figure 4.5.2 Above the final edge-map after applying three different size smooth Gaussian 

filters to the original image bellow. Then using thresholding the three different edge maps are 

concatenated into one final.  
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4.2.3 Horizon Line Estimation 
 

The representative method for estimating the horizon from the edge image are the Hough 

transform. The method using Hough transform can robustly estimate the parameter of horizon, 

even when there are small numbers of edges related to the horizon or there are many noisy 

edges. This is because Hough transforms tend to be most successfully applied to line finding.  

A line is easily parameterized as a collection of points (x, y) such that 

x cosθ + y sinθ + r = 0 

Now any pair of (θ, r) represents a unique line, where r ≥ 0 is the perpendicular distance from 

the line to the origin, and 0 ≤ θ < 2π. We call the set of pairs (θ, r) line space; the space can be 

visualized as a half-infinite cylinder. There is a family of lines that passes through any point 

token. In particular, the lines that lie on the curve in line space given by r = −x0 cosθ + y0 sinθ 

all pass through the point token at (x0 , y0 ). 

Because the image has a known size, there is some R such that we are not interested in lines 

for r > R, these lines will be too far away from the origin for us to see them. This means that 

the lines we are interested in, form a bounded subset of the plane, and we discretise this with 

some convenient grid figure 4.6. The grid elements can be thought of as buckets, into which 

we will sort votes. This grid of buckets is referred to as the accumulator array. Now for each 

point token we add a vote to the total formed for every grid element on the curve corresponding 

to the point token. If there are many point tokens that are collinear, we expect that there will 

be many votes in the grid element corresponding to that line. 

 

Figure 4.6 The accumulator array where the lines are voted for a every θ, d based on equation 

1 

 

After applying the Hough Transform in our multi-scale edge map, we get many candidate 

horizon lines. In order to decide the right one we discard lines that having a slope bigger than 

45 degrees. This is not sufficient to cancel all the outliers and present only the dominant horizon 

line. In order to tackle this problem, we exploited the difference in color distribution and 
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intensity of the sea-sky. The horizon line lies on the boundary of these two spaces and we 

exploit those differences by computing the deviation of the intensity value of two boxes above 

and bellow the horizon line in each end point of the line ( figures 4.7).  

 

       (Eq. 4) 

where N is the size of image window to be checked and in our application was 10pixels 

 

 

 

Figure 4.7.1 Images of horizon line detected using square windows to compare the two 

different areas of sky and see. It is also written the deviation values computed in each side of 

the line. In the right the computed finale-edge map from which the lines where computed is 

shown. 

 

 

Figure 4.7.2 Horizon line detected left and the correspondent final edge-map right, before 

thresholding, are depicted. In left there are two lines as horizon line detected. This facilitates 

the need of thresholding the computing deviation values.  
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The threshold of the deviation values in each side of the horizon line should be adjusted 

properly in order to discard false detections as shown above ( figure 4.7.2). Not only the 

deviation threshold values should be adjusted, but also the window size. Window size plays a 

crucial role in discarding false detections and also in speed of algorithm. Because the bigger 

the size more reliable are the results but more slowly runs the algorithm. So there exist a trade-

off which the engineer should be carry on. One final parameter that should be taken into 

account, is the size of the smoothing  Gaussian windows applied at the step before computing 

edges. 

 

 

Figure 4.7.3 Horizon line detected left and the correspondent final edge-map right, before 

thresholding, are depicted. As it is clearly shown false detections due to waves or patterns like 

the horizon line occurs very often. The need of properly adjusting all the parameters of the 

algorithm is clearly depicted. 

 

After thresholded and configured properly the window size at 10 pixels square, we were able 

to discard false horizon line detection, keeping only the dominant horizon line (Fig. 4.8). This 

technique works also when the horizon line is not expanded in the whole image, but in a small 

segment. For example when there is another objects like See-Vessel or islands. Although this 

technique is giving more robustness  to overall horizon line detection algorithm, the horizon 

line should be existed as a segment for more than 50% of the width of the image.  The horizon 

line was programmed in python using OpenCV. The related code is at appendix. 
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Figure 4.8.1 The resulting Horizon line detection algorithm. In the left, images of the horizon 

line as well as the small window for comparing the intensity values above and under the line 

are presented. It is also written the squared deviation value of the two windows in each side. 

In the right are shown the correspondent final edge map of the left images 
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Figure 4.8.2 Images of detected horizon lines left and the corresponding final edge-map right. 

The images depicted the capability and robusteness of the proposed algorithm to detect horizon 

lines in different light conditions 
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Chapter 5 
 

 

 

5 Stereo Fussion & 3D Position Estimation 
 

This chapter is focused on the estimation of the 3D position of the detected object. This is 

accomplished by the use of a second camera, which enhances our system with more optical 

information, necessary to estimate the 3D position of the See-Vessels corresponding to the 

cameras. After describing the fundamentals of stereo vision, which are essential for our 

application, the method of fussing the images from the two camera sensors is analyzed. Then 

a proposed method for noise reduction and better position estimation of the detected See-

Vessels is presented. This method is capable of correcting the error in camera orientation, 

compare to each other, in every frame and without the need of use of external fix-points 

(markers) calibrated with respect to the stereo system, as it is done in the majority of stereo 

based 3D position estimation system.   

 

5.1 Camera Model 
 

Most of the time cameras are model using the pinhole camera model. This is because of 

simplicity of this camera model. A pinhole is an imaginary wall with a tiny hole in the center, 

that blocks all rays except those passing through the tiny aperture in the center. In this section, 

we will start with a pinhole camera model to get a handle on the basic geometry of projecting 

rays. Unfortunately, a real pinhole is not a very good way to make images because it does not 

gather enough light for rapid exposure. This is why human eyes and cameras use lenses to 

gather more light than what would be available at a single point. The downside, however, is 

that gathering more light with a lens not only forces us to move beyond the simple geometry 

of the pinhole model but also introduces distortions from the lens itself [10]. 

 

5.1.1 Pinhole Camera Model – Intrinsics & Extrinsics 
In pinhole camera model, light is envisioned as entering from the scene or a distant object, but 

only a single ray enters from any particular point. In a physical pinhole camera, this point is 

then “projected” onto an imaging surface. As a result, the image on this image plane (also 

called the projective plane) is always in focus, and the size of the image relative to the distant 

object is given by a single parameter of the camera: its focal length. For our idealized pinhole 

camera, the distance from the pinhole aperture to the screen is precisely the focal length. This 

is shown in Figure 5.1, where f is the focal length of the camera, Z is the distance from the 

camera to the object, X is the length of the object, and x is the object’s image on the imaging 

plane[14]. In the figure 5.1, we can see by similar triangles that –x/f = X/Z, or 
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Figure 5.1 Pinhole camera model. The image plane corresponds to the pixel array of a typical 

camera sensor. The optical rays passing through the pinhole aperture from the pinhole plane, 

which is focal length away from the image plane[14].  

 

In figure 5.2, the pinhole and the image plane change position. The main difference is that the 

object now appears as it is, right side up. The point in the pinhole is reinterpreted as the center 

of projection. Using this interpretation, every ray leaves a point on the distant object and heads 

for the center of projection. The point at the intersection of the image plane and the optical axis 

is referred to as the principal point. On this new frontal image plane (see Figure 5.2), which is 

the equivalent of the old projective or image plane, the image of the distant object is exactly 

the same size as it was on the image plane in figure 5.1 [14]. 

                                                                                                                                                          

Figure 5.2 The projection model of a pinhole camera is presented. A point Q = (X, Y, Z) is 

projected onto the image plane by the ray passing through the centre of projection, and the 

resulting point on the image is q = (z, y, f ) The image is generated by intersecting these rays 

with the image plane, which happens to be exactly a distance f from the center of projection. 
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This makes the similar triangles relationship x/f = X/Z more directly evident than before. The 

negative sign is gone because the object image is no longer upside down. 

 

 

 

Figure 5.3 Basic Projection model of a pinhole camera. 

 

As discussed earlier, a point X in 3D space can be mapped (or projected) into a 2D point x in 

the image plane Π′ (Fig. 5.3). This R3→R2 mapping is referred to as a projective 

transformation. This projection of 3D points into the image plane does not directly correspond 

to what we see in actual digital images for several reasons. First, points in the digital images 

are, in general, in a different reference system than those in the image plane. Second, digital 

images are divided into discrete pixels, whereas points in the image plane are continuous. 

Finally, the physical sensors can introduce non-linearity such as distortion to the mapping. To 

account for these differences, we will introduce a number of additional transformations that 

allow us to map any point from the 3D world to pixel coordinates. Image coordinates have their 

origin P at the image center where the Z axis intersects the image plane (Fig. 5.3). On the other 

hand, digital images typically have their origin at the lower-left corner of the image [22]. Thus, 

2D points in the image plane and 2D points in the image are offset by a translation vector 

[cx,cy]T. To accommodate this change of coordinate systems, the mapping now becomes 

 

      

      (1) 

 

 

The next effect we must account for is that the points in digital images are expressed in pixels, 

while points in image plane are represented in physical measurements (e.g.  centimeters).  In 

order to accommodate this change of units,  we must introduce two new parameters k and l. 

These parameters, whose units would be something like pixels*m-1, correspond to the change 
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of units in  the  two  axes  of  the  image  plane. Note that k and l may be different because the 

aspect ratio of  the unit element is not guaranteed to be one. If  k=l, we often say that the camera 

has square pixels [22]. The previous mapping is adjusted to be 

 

     

    (2) 

 

In order to form better this non linear transformation from world points (x,y,z) to discrete 

camera points (x’, y’), we attempt to rewrite this equation using matrix multiplications between 

a matrix and the input vector P = (x,y,z). However, from Equation 2, it is obvious that this 

projection P→P′ is not linear, as the operation divides one of the input parameters (namely z). 

Still, representing this projection as a matrix-vector product would be useful for future 

derivations [22].   

One way to get around this problem is to change the coordinate systems. A  new  coordinate is 

introduced, such that any point P′=(x′,y′) becomes (x′,y′,1). Similarly, any point P=(x,y,z) 

becomes (x,y,z,1). This augmented space is referred to as the homogeneous coordinate system. 

As it is known, to convert some Euclidean vector (v1,...,vn) to homogeneous coordinates, we 

simply  append a 1 in a new dimension to get (v1,...,vn,1).  Note that the equality between a 

vector and its homogeneous coordinates only occurs when the final coordinate equals to one. 

Therefore, when converting back from arbitrary homogeneous coordinates (v1,...,vn, w), we  

get  Euclidean  coordinates  (v1/w,...,vn/w, 1)[22]. Using homogeneous coordinates, we can 

formulate 

 

 

 (3) 

 

 

From this point on, assume that we will work in homogeneous coordinates, unless stated 

otherwise. We will drop the h index, so any point P or P′ can be assumed  to be in homogeneous  

coordinates [22]. As seen from equation 3,we can represent the relationship between a point in 

3D space and its image coordinates by a matrix vector relationship:  

 

 

 

 

  (4) 

 

 



63 

 

 

This transformation can be decomposed into:   

 

  

  

  (5) 

 

The matrix K is often referred to as the camera matrix. This matrix contains some of the critical 

parameters that are useful to characterize a camera model. Two parameters are currently 

missing from our formulation: skewness and distortion. We often say that an image is skewed 

when the camera coordinate system is skewed.  In this case, the angle between the two axes 

are slightly larger or smaller than 90 degrees.  Most cameras have zero-skew, but some degree 

of skewness may occur because of sensor manufacturing errors [22]. Deriving the new camera 

matrix accounting for skewness is outside the scope but is shown bellow:  

 

 

     

     (6) 

 

 

So far, it is described a mapping between a point P in the 3D camera reference system to a 

point P′ in the 2D image plane. But what if the information about the 3D world is available in 

a different  coordinate system? Then, there is need to include an additional transformation that 

relates points from the world reference system to the camera reference system. This 

transformation is captured by a rotation matrix R and translation vector T [22]. Therefore, given 

a point in a world reference system Pw, we can compute its camera coordinates as follows: 

 

        (7) 

 

Substituting this in equation (5) and simplifying gives: 

 

      (8) 

 

This completes the mapping from a 3D point P in an arbitrary world reference system to the 

image plane. As is shown the projection matrix M consists of two types of parameters: intrinsic 

and extrinsic parameters. All parameters contained in the camera matrix K are the intrinsic 

parameters, which change as the type of camera changes. The extrinsic parameters include the 
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rotation and translation, which do not depend on the camera’s build. Overall, one can find that 

the 3×4 projection matrix M has 11 degrees of freedom: 5 from the intrinsic camera matrix, 3 

from extrinsic rotation, and 3 from extrinsic translation[22]. 

 

5.1.2 Lens Distortion Models 
 

Real world cameras are using lens. Lens are not perfect and therefore they introduce distortion. 

The reason is mainly because of the manufacturing process. Perfect lens need to be parabolic 

whether in reality, mathematically ideal parabolic scheme is not easy achievable. Most of the 

times real world camera lens are more spherical and not perfectly align to camera sensor. This 

means that the center of the Len is not align exactly with the center of the image sensor ( CCD 

or CMOS).  Taking account those inaccuracies the pinhole model that were described 

previously lacks. It is proofed that for simply applications, lens distortions can be as Radial and 

Tangential [14][22].  

Radial distortion, distort the rays of light that are near the edges of the imager. This bulging 

phenomenon is the source of the “barrel” or “fish-eye” effect. Figure 5.4 gives some intuition 

as to why radial distortion occurs. With some lenses, rays farther from the center of the lens 

are bent more than those closer in. A typical inexpensive lens is, in effect, stronger than it ought 

to be as you get farther from the center. Barrel distortion is particularly noticeable in cheap 

web cameras but less apparent in high-end cameras, where a lot of effort is put into fancy lens 

systems that minimize radial distortion [14]. 

As far as radial distortion is concerned, the distortion is 0 at the (optical) center of the imager 

and increases as we move toward the periphery. In practice, this distortion is small and can be 

characterized by the first few terms of a Taylor series expansion around r = 0. For cheap web 

cameras, the first two such terms are used; the first of which is conventionally called k1 and 

the second k2. For highly distorted cameras such as fish-eye lenses one can use a third radial 

distortion term k3. In general, the radial location of a point on the imager will be rescaled 

according to the following equations [14]: 
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Figure 5.4 Radial distorting is presented. Objects rays that passes away from the center of the 

lens have more radial distortion than the others passing closer from the lens center[14].  

 

Where x,y correspond to the original location (on the imager) of the distorted point and 

(xcorrected, ycorrected) correspond to the new location as a result of the correction. Generally 

there are two types of radial distortion. The radial distortion is increasing as the radial distance 

of the point (x,y) in image plane, from the optical center increases [14].  

One can safely classify the radial distortion as pincushion distortion when the magnification 

increases and barrel distortion when the magnification decreases as shown in figure 5.5. Radial 

distortion is caused by the fact that different portions of the lens have differing focal lengths 

[14].  

  

Figure 5.5  Showing the two different cases of barrel distortion [22] 

 

Tangential distortion is the second-largest common distortion figure 5.6. Tangential distortion 

is due to manufacturing defects resulting from the lens not being exactly parallel to the imaging 

plane. Tangential distortion is minimally characterized by two additional parameters, p1 and 

p2, such that: 
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Finally, there are in total 5 distortion coefficients that are required for a proper distortion 

elimination.  

Figure 5.6 Tangential distortion due to manufacturing process error in correctly positioning 

and aligning of lens and image sensor.  

 

At this point a complete mathematically model for a digital camera is formed. As is presented 

above the model parameters can be divided into intrinsic, extrinsic and distortion parameters. 

In order to compute all these parameters, there is a technique calling Calibration. Calibration 

uses some known 3D points corresponding to a world frame (Figure 5.7). Then after taking 

image frames of these points, the number of the frame and the number of points differ for every 

calibration method, the desired parameters are estimated. The majority of these methods are 

using iterative algorithms, minimizing a cost function and forming an optimization problem, 

in order to compute all the camera parameters. It is not intended to describe the calibration 

technique and its different calibration methods. One can be referred to [41]. 

 

 

Figure 5.7 Calibration rig and corresponding image point. From point correspondeces, 

iterative algorithms find the parameters of the camera. 
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We used the calibration method proposed from OpenCV. The algorithm that OpenCV uses  to 

solve for the focal lengths and offsets is based on Zhang’s method [41], but OpenCV uses a 

different method based on Brown [12] to solve for the distortion parameters. OpenCV 

algorithm uses a plane chessboard. This chessboard is captured in image frames in different 

angles and based on those frames all the camera parameters are computed [14].  

For our system implementation we did several calibrations and took the average of those values 

for a more accurate result. In figure 5.8 one can see the detected corners of the chessboard.  

 

 

Figure 5.8 Calibration board and different position of the calibration board. 

 

In the following images (Figure 5.9) a comparison between the raw image as it is taken from 

the system’s camera affected to lens distortion and the undistorted version of the same image 

is presented. As it can be show in the undistorted image, some black regions are created in the 

edges of the image as a result of missing pixels dues to lens distortion. 
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Figure 5.9 Left the undistorted image of the right raw image as it was taken directly from the 

camera. As it is shown in the left the radial distortion is dominating the distortion of the image. 

At the edges of the left image one can see the affect of the lens distortion. After un-distortion 

curves that were curves remain and lines that were curved due to distortion are corrected.  

 

 

5.2 Stereo Imaging and 3D Pose Estimation 
 

Let’s swift to stereo imaging and position estimation of object of interest in an image. Despite 

the wealth of information contained in an image frame, the depth of a scene point along the 

corresponding projection ray is not directly accessible in a single image. With at least two 

pictures, on the other hand, depth can be measured through triangulation. This is of course one 

of the reasons why most animals have at least two eyes and/or move their head when looking 

for friend or foe, as well as the motivation for equipping autonomous robots with stereo or 

motion analysis systems. Before building such a program, we must understand how several 

views of the same scene constrain its three-dimensional structure as well as the corresponding 

camera configurations [10]. 

 

 

5.2.1 Epipolar Geometry 
 

Epipolar geometry is the basic geometry of a stereo imaging system.  In  essence, this geometry 

combines two pinhole models (one for each camera) and some interesting new points called 

the epipoles (see Figure 5.10). Before explaining what these epipoles are good for, we will start 

by taking a moment to define them clearly and to add some related terminology. When we are 

done, we will have a concise understanding of this overall geometry and will also find that we 
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can narrow down considerably the possible locations of corresponding points on the two stereo 

cameras [10].  This added discovery will be important to our stereo implementation. 

 

 

Figure 5.10 The Epipolar Plane formed from the points P, O and O’ of the epipolar geometry 

of the cameras, is colored gray. In this plane belongs the center of the cameras (O & O’) , the 

two image points p , p’ of P and the world point P. 

 

 

Consider the images p and p′ of a point P observed by two cameras with optical centers O and 

O′. These five points all belong to the epipolar plane defined by the two intersecting rays OP 

and O′P (Figure 5.10). In particular, the point p′ lies on the line l′ where this plane and the 

retina Π′ of the second camera intersect. The line l′ is the epipolar line associated with the point 

p, and it passes through the point e′ where the baseline joining the optical centers O and O′ 

intersects Π′. Likewise, the point p lies on the epipolar line l associated with the point p′, and 

this line passes through the intersection e of the baseline with the plane Π [10]. 

The points e and e′ are called the epipoles of the two cameras. The epipole e′ is the (virtual) 

image of the optical center O of the first camera in the image observed by the second camera, 

and vice versa. As noted, before, if p and p′ are images of the same point, then p′ must lie on 

the epipolar line associated with p. This epipolar constraint plays a fundamental role in stereo 

vision and motion analysis [10].  

The epipoles and the epipolar constrain help us founding correspondences between the images 

in the stereo configuration. Assuming that our cameras are calibrated and the intrinsic and 

extrinsic parameters are known, as well as the distortion coefficients, a point view from the left 

camera (x) can be found to the right camera (x′) lining to the epipolar line (l′) in the right 

camera, that correspond to the point in the left. The above description will be given in a 

mathematically form bellow.  So, the epipolar constraint greatly limits the search for these 

correspondences (figure 5.11).  For choosing the best match, more constraints are necessary in 

order to decide [10]. 
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Figure 5.11 Epipolar geometry and epipolar constrains 

 

 

5.2.2 Essential Matrix 
 

Let’s formulate the epipolar constraint that was described above with the assumption that our 

cameras are calibrated, meaning  that the intrinsic and extrinsic parameters are known and the 

distortion parameters as well (Figure 5.12). This implies that x = �̂� . Clearly, the epipolar 

constraint implies that the three vectors Ox, O′x′,and OO′ are coplanar [10]. Equivalently, one 

of them must lie in the plane spanned by the other two, or 

                                  

           (Eq. 9) 

 

Rewriting this coordinate-independent equation in the coordinate frame associated to the first 

camera as: 

         (Eq. 10) 

 

Figure 5.12 Epipolar Geometry. 
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where x=(u,v,1)T and x’=(u’,v’,1)T denote the homogenous image coordinate vectors of x and 

x′,  t is the coordinate vector of the translation OO′ separating the two coordinate systems, and 

R is the rotation matrix such that a free vector with coordinates w′ in the second coordinate 

system has coordinates Rw′ in the first one (in this case the two projection matrices are given 

in the coordinate system attached to the first camera by (Id 0) and (RT, −RTt) [10]. Equation 

(10) can finally be rewritten as: 

 

           (Eq. 11) 

 

where E=[t×]R, and [a×] denotes the skew-symmetric matrix such that [a×]x=a×x is the cross-

product of the vectors a and x. The matrix E is called the essential matrix, and it was first 

introduced by Longuet-Higgins. Its nine coefficients are only defined up to scale, and they can 

be parameterized by the three degrees of freedom of the rotation matrix R and the two degrees 

of freedom defining the direction of the translation vector t [10]. 

Note that  

 Ex′ can be interpreted as the coordinate vector representing the epipolar line 

associated with the point x′ in the first image: indeed, an image line l can be defined 

by its equation au+bv+c=0, where (u,v) denote the coordinates of a point on the 

line, (a,b) is the unit normal to the line, and c is the (signed) distance between the 

origin and l. Alternatively, we can define the line equation in terms of the 

homogeneous coordinate vector x=(u,v,1)T of a point on the line and the vector 

l=(a,b,c)T by l·x= 0, in which case the constraint a2+b2= 1 is relaxed since the 

equation holds independently of any scale change applied to l.  

 Eq. (11) expresses the fact that the point x lies on the epipolar line associated with 

the vector Ex′.  

 By symmetry, it is also clear that Ex′ is the coordinate vector representing the 

epipolar line associated with x in the second image.   

 Epipoles belongs also to the epipolar  E· e =0 lines so for the left epipole and         

𝒆′𝑻 ∙ 𝑬 = 𝟎 

 Essential matrix E is singular, having rank=2 

 

 

5.2.3 Fundamental Matrix 
 

The essential matrix E uses camera coordinates. This implies that the intrinsic parameters of 

the cameras are known, because by looking to pixel coordinates one can use the following 

equations and compute the image coordinates. But what happens when the cameras are not 

calibrated and the intrinsic parameters (Camera Calibration Matrix -K) are not known? The 

solution is given by the Fundamental matrix. The Fundamental matrix encapsulates the change 
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of coordinates and gives us a method to compute the epipolar lines and to work directly to 

image pixel coordinates [10]. 

                        (Eq. 12) 

By substituting Eq. 12 to Eq. 11 we compute: 

                    

        (Eq. 13) 

 

Where:                                                                                                                            

                                         (Eq. 14) 

 

 is the Fundamental matrix, which gives us the ability to work with the images without the need 

to calibrate our cameras. It has rank 2 and depends on the intrinsic and extrinsic parameters ( 

f, R, t)  [10]. 

Likewise with essential matrix the fundamental matrix is defined by seven independent 

coefficients and can in principle be estimated from seven point correspondences. Methods for 

estimating the essential and fundamental matrices from a minimal number of parameters indeed 

exist, but they are far too involved to be described here [10].  

 

One simple estimation of fundamental matrix could be found by forming the Eq.13 into the 

following form, using at least 8 points. It is also called the 8-point algorithm [10].  

 

 

(Eq. 15) 
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Since (Eq. 15) is homogeneous in the coefficients of F, one can for example set F33= 1 and 

use eight point correspondences xi↔x′i(i=1,..,8) to setup an 8×8 system of non-homogeneous 

linear quations: 

 

 

 

 

 

 

     (Eq. 16) 

 

 

which is sufficient for estimating the fundamental matrix. This is the eight-point algorithm 

proposed by Hugh Christopher Longuet-Higgins in 1981. 

We used the embedded function from OpenCV [14], in order to compute the Fundamental 

matrix, using although more than 8 points. OpenCV function for estimating the fundamental 

matrix form a linear least square problem as :  

 

                        (Eq. 17)  

 

with respect to the coefficients of F under the constraint that the vector formed by these 

coefficients has unit norm. Additionally we exploited the RANSAC functionality that this 

function provide in order to discard outliers. Points that are false matched. This is done by 

RANSAC algorithm which computes the dominant affine transformation of the points in left 

frame that are matched to the right. Points from left frame that are not correspond more than a 

distance threshold to the initial right matches, are considered false matches and are discarded. 

With this technique, the computation of Fundamental matrix is more precise and this is very 

important in 3D position estimation of the detected See-Vessels. 

 

 

5.2.4 Stereo Calibration 
 

Stereo calibration is the process of computing the geometrical relationship between the two 

cameras in space, namely the matrices R, t. Using the same technique as with the single camera 

calibration method, one can use a chessboard visible from both cameras and after taking several 
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pictures in different positions the rotation matrix and the translation vector of the two cameras 

are computed. The process is the same as per single camera calibration, with the difference that 

the correspondences of the same points, projected in the two images, are exploited.  

In our system, there is need at the beginning of the configuration of the system to calibrate the 

cameras. We did that by using a chessboard and taking several frames in different positions. In 

the following images one can see some of the stereo calibration images that were used. We 

used the OpenCV function cv2.stereocalibrate() in order to compute the rotation matrix R and 

the translation vector t of the coordinate systems of the two cameras figure 5.13.  

 

 

Figure 5.13 Left the calibration block and the founded blocks from the left camera. Right image 

the correspondent image from the right camera and the founded blocks of the calibration block. 

 

 

5.2.5 3D Position Estimation 
 

Estimating the position of object-points from the coordinate system of the camera is a well-

established problem, which is often called in literature scene reconstruction. The aim is from 

images to reconstruct the scene that are captured in those images. This is not an easy task 

because of the discretization that is introduced from digital cameras, the distortion that produce 

on images not perfectly used lens and the inaccuracy between the cameras in stereo 

configuration, as well as of the matched points in two images. Although there are methods to 

estimate the depth of the scene and and as a result the 3D position of desired object-points, 

using a single camera or one frame, we focused on stereo configuration because of the accuracy 

and robustness that is provided [14].  

The method to estimate the 3D position of object-points from images is by triangulating those 

points, with the correspondent points in the two frames and by exploiting the stereo 

configuration, as shown in the next figure 5.14. As is shown in the figure 5.14 bellow, in this 

simplified case, taking xl and xr to be the horizontal positions of the points in the left and right 
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frames (respectively), allows us to show that the depth is inversely proportional to the disparity 

between [14]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 Depth estimation from perfectly undistorted, align stereo rig. [14] 

 

these views, where the disparity is defined simply by d=xl – xr – (cl - cr). Then by using similar 

triangles one can compute: 

 

    (Eq. 18) 

 

where cl and cr are the coordinates of the principal points of the two image sensors, computed 

from the calibration process. We used this approach because in real world cheap cameras the 

two centers are not in the center of the sensor array (CCD /CMOS) as described in the lens 

distortion section above. A more helpful figure shows this case (figure 5.15)  
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Figure 5.15 Stereo rig with undistorted and rectified images. It is also prevented the  reference 

coordinate system for our system attached to the left camera. [14] 

 

 

5.2.6 Stereo Rectification 
 

As mentioned previously many times the images are thought as rectified. This means that their 

image planes are parallel-coplanar to each other and their epipolar lines are parallel lines with 

the images x-axis. This means that for every point in one image, one searchs for 

correspondences in the other image by looking at the line parallel to the image x-axis and with 

the same y value. This means that correspondences in right image lies to the line y = yl figure 

5.16.  

 

  

 

  Figure 5.16 horizontal scan lines-

epipolar lines of corrspondent points in 

two images 

 

 

 

This is the reason, most stereo vision application are using parallel configured cameras. This 

simplified the correspondence search problem and the computation of the disparity and as a 

result the depth of the scene. When this configuration is not applied then one have to construct 

a plane, in which the two stereo images will be co-planar and row-align (figure 5.17). This is 
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done by using image transformations, in order to transfer the images into this configuration 

[14]. There are several methods that achieve this and can be mainly categorize into two main 

categories depending on the type of stereo configuration: 

 Uncalibrated stereo rectification 

 Calibrated stereo rectification 

It is not intended, to be described the different rectification methods. The only thing we have 

to mention is that we used the rotation matrix R that relates the right camera coordinate system 

with the left camera coordinate system in each frame in order to form the co-planar and to row-

alignment configuration that depicted in figure 5.17. This gave us better 3D position estimation 

results despite that the two cameras were intended to be as much as possible in a parallel 

configuration. One have not to do this step, if the parallel configuration of the cameras of the 

stereo rig is well established and the estimated 3D position accuracy is acceptable.  But our 

system was though that it will be suffer from vibration due to ship movements. In our 

application we had to guarantee that small deviations will be eliminated. Those vibrations could 

happen, because of the heavy strikes of the Sea-Vessel (Ship) to diverse waves from small to 

big and/or on-board propulsion engine vibrations, causing instantaneous deviation from the 

desired configuration [14]. 

 

 

Figure 5.17 A rectified stereo pair: the two image planes Π and Π′are reprojected ontoa 

common plane ̄Π= ̄Π′parallel to the baseline. The epipolar lineslandl′associated withthe 

pointspandp′in the two pictures map onto a common scanline ̄l= l̄′also parallelto the baseline 

and passing through the reprojected points  ̄pand  ̄p′. The rectified imagesare easily 

constructed by considering each input image as a polyhedral mesh and usingtexture mapping 

to render the projection of this mesh into the plane ̄Π= ̄Π′. 
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5.3 Stereo Fusion 
 

As described our system uses a stereo rig (two cameras) in configurable position to each other 

and detects Sea-Vessels and estimates their 3D position corresponding to the left camera. More 

specifically we attach in each camera a coordinate system as depicted in figure 5.15. Also the 

coordinate system of the left camera is taken as the reference coordinate system of the whole 

system and the position of the detected Sea-Vessels are related with this. It is so far known that 

after detecting the Sea-Vessel objects from the left image using deep neural networks ( YoloV3 

or YoloV3tiny) we attempt then to compute the position of them.  

For this reason we fuse the information coming from the right camera with this information 

coming from the left. This is done by computing the correspondences of the left detected object 

to the right. It is worth mentioned that special care was given to take as much as possible frames 

at the same time instant from both cameras. Thats why in our embedded system separated 

threads was established for each camera in order the signal, which starts the camera to take a 

frame, to have not  to wait till the first camera finish the data transfer and then the second 

camera to start caputing and sending the image. The cameras were connected into the same 

serial bus via USB3 port on the Raspberry Pi4. 

Having the right frame and knowing the object’s vertical (y) position from the left camera, we 

exploited the fact that our stereo rig is coplanar and row-aligned and computed the matches on 

the right frame in each horizontal scan-line using as matching criterion the maximization of the 

normalized correlation of gray scale intensity values of the window object to each position of 

the right’s frame scan-line . 

 

    (Eq. 20) 

 

Where T(x’,y’) corresponds to the template ( detected Sea-Vessel ) that we want to find at the 

right frame, I(x,y) the intensity values of the right frame. 

The searching for correspondences of every Sea-Vessel object of the left frame was done along 

a horizontal line in the right image with height 10 to 20 pixels more than the height of the Sea-

Vessel box. This is done because we don’t undistort the frames in each cycle run of the 

algorithm, because it’s a time consuming operation and we don’t care for the rest of the 

information containing in the image. 

So after finding the correspondent boxes with the Sea-Vessel in each frame, we undistort those 

points. This help us to optimize more the computational time. 

 

 

 



79 

 

 

 

Figure 5.18 The overall Sea-Vessel detection and 3D position estimation algorithm pipeline. 

 

 

5.4 Improved 3D Position Estimation 
 

In the previous section a simple yet efficient method to estimate the depth of the scene and as 

a result the desired object points was presented. It was also mentioned what one should do 

when the pair of cameras in the stereo rig is not perfectly coplanar and row aligned. In this 

section it will be described the steps that was fallen in order to compensate the instant error of 

rotational position of the right camera related to the left. This error occurs very often in Sea 

environment, where different types of waves and Ship movements causes instantaneous 

vibrations.  

The assumption of fixed, rigid position of each camera was used. In order to rectify the two 

images, the rotational matrix of the right camera related to the left is needed. In many systems 

and scientific works this is done by measuring the relative position of each camera from fixed, 

well calibrated points (markers) that are rigidly attached to a fixed distance from the cameras. 

This approach, although is more simpler and easy to algorithmic be implemented, it’s difficult 

in practice  because one have to precisely position those points in Ship Hull and quarantined 

that they are not affected from any type of vibrations as the cameras.  

Our approach in the other hand, simply exploits the correspondences in each frame. After the 

points of bounding-boxes containing Sea-Vessels are undistorted, then the fundamental matrix 

is computed and then using SVD the rotational matrix of the right camera related to the the left 

is computed. Finally, we rectify the matched points of the right image and the left image and 

then the position of every detected See-Vessel is computed. This approach is far more robust 

and doesn’t need special configuration and expensive position sensors for perfectly calculating 

the position of fixed markers. Finally, it is worth mention that the false matched points are filter 

through RANSAC algorithm at the stage of fundamental matrix computation.   

The computation of the rotation matrix from the fundamental matrix done using singular value 

decomposition of the essential matrix and exploiting its rank 2 property. 
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                                   (Eq. 21) 

Where K’ and K are the calibration matrices of each camera.  

It is already known that the cameras coordinate systems expressed to left camera’s coordinate 

system [10]. Thus, the projection matrix of each camera is: 

P = K ( I 0 )   and   P’ = K’ ( R t ) 

Essential matrix has two equal singular values (eigenvalues) and third one that is zero. Based 

on the fact that E=SR, with S = [t]x we define: 

 

       (Eq. 22) 

 

S can be decomposed as: S = kUZUT with UЄO(3) 

We have Z=±diag(1, 1, 0) W and thus: 

 

            (Eq. 23) 

 

A Singular Value Decomposition of E is thus, by using the equations E= SR and (23): 

              (Eq.24) 

The Singular Value Decomposition of E is: 

           

                      (Eq.25)  

by comparing equations (24) and (25) we get the following two possible solutions for R 

         

         (Eq. 26) 

            

             (Eq. 27) 

Only one solution is feasible 

After computing the rotation matrix of the right camera related to the left we rectified the points 

of the right camera by multiplying with the rotation matrix and then we used the left and right 

points to compute the 3D position of the detected See-Vessels 
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                                (Eq. 28) 

then the disparity is computed: 

                     

                  (Eq. 29) 

After computing the disparity and in order to increase the accuracy of the measuring distance 

we use subpixel accuracy of the disparity computation by using parabola fitting. In order to 

compute disparity with sub-pixel accuracy we. The sub-pixel estimation is based on the 

similarity measures of three-pixel locations – related pixel, previous pixel and next pixel–

calculated by the normalized correlation. After calculating the normalized correlation values, 

parabola fitting is carried out,the centerline location of which is the estimated sub-pixel 

position, as shown in Figure 5.19. The following equations used for the calculation of the 

parabola fitting  

  

              (Eq. 30) 

   

where Cor(d-1), Cor(d) and Cor(d+1) are the simillarity measures of the previous pixel, related 

pixel and next pixel locations respectively. Then the disparity is:   d + dsub 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 Parabola fitting of similarities in order to compute the sub-pixel position of the 

disparity [15]  

 

 

Finally by using the reprojection matrix: 
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          (Eq. 31) 

then the computation of the position of the object in homogeneous coordinates is: 

                            (Eq. 32) 

Where the 3D coordinates with respect to the left camera is  

                            (Eq. 32) 

In order to demonstrate the benefits of the proposed algorithm to better 3D position estimation, 

we present following some images (Figure 5.20, 5.21, 5.22) of the results as it was measured 

without stereo rectification and with stereo rectification. In some cases, the measured depth of 

the un-rectified method was double of that computed with rectified stereo images, at the same 

frame. The innovation that this algorithm introduce, is that it percept the rotational position of 

each camera in each frame by simple finding correspondences in images. The last is done by 

the neural network, which detects Sea-Vessels. This eliminates the need of precise marker 

positioning on the hull of the Ship, as well as precise positioning cameras in a parallel frontal 

plane to build a perfectly stereo rig.  

  

 

Figure 5.20 In the left, the image from the left camera is presented and the detected Sea-Vessel 

is in green box. With red numbers the depth (0.56 meters) of  the object from the left camera 

with the use of all the above steps is shown and with blue numbers at the bottom of the box the 

corresponding depth (0.88 meters) as it was measured without rectification. In the right the 

corresponding frame from the right camera. The two cameras was positioned 0.6 meters away 

from the monitor and in almost parallel configuration. 
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Figure 5.21 a) Image from the left camera . With red numbers are the depth estimated with 

rectification of the stereo images and with blue numbers at the bottom of each green box the 

depth measure without stereo rectification. As we can see the error in depth measuring without 

the rectification technique is not acceptable. The two cameras was positioned 0.6 meters away 

from the monitor and in almost parallel configuration.  

 

 

 

 

 

Figure 5.21 b) Presents the 

corresponding radar-like image of the 

estimated 3D position of the detected 

Sea-Vessels from our algorithm. This 

screen is part of our detection-

estimation algorithm 
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Figure 5.22 a) Image from the left camera . With red numbers are the depth estimated with 

rectification of the stereo images and with blue numbers at the bottom of each green box the 

depth measure without stereo rectification. As we can see the error in depth measuring without 

the rectification technique is not acceptable. The two cameras was positioned 0.6 meters away 

from the monitor and in almost parallel configuration.  

 

 

 

 

 

 

Figure 5.21 b) 

Presents the 

corresponding radar-

like image of the 

estimated 3D 

position of the 

detected Sea-Vessels 

from our algorithm. 

This screen is part of 

our detection-

estimation algorithm 
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Chapter 6 
 

 

 

6 Experiments 
 

This chapter describes the experimental procedure. Fist system requirements and 

configurations are described. Then the experimental procedure as well as the results are 

prevented. The aim of this chapter is to present the novel system architecture and the 

engineering techniques that were used to construct the system algorithm in order to minimize 

the overall run-time. Special care was given to optimize the data flow and the inference time, 

as it would be seen bellow. 

 

6.1 Application Requirements 
 

6.1.1 Neural Network Pre-Requirements 
 

For training the neural network there is need of a host machine with enough computing power. 

We used as a host machine a desktop, which could have one of the following requirements  

installed: 

 Windows 10 or Linux, preferred Ubuntu 16.04 or 18.04, preferred 16.04 

 Danrknet, a C++ library for training Yolo 

 CUDA kernels if GPU computation is preferred.  

 OpenCV for image plots, it’s not necessary. 

 Tensorflow compatible with CUDA kernels 

 

It is worth noticing that the Yolo network in order to be trained need a station with enough 

computing power and when a CUDA GPU exists, then the training procedure exploits the 

computational power of parallel processing that GPU provides.  

 

6.1.2 Inference at Edge – Movidius Stick NCS2 Pre-requirements 
 

For installing and running the Intel Movidus NCS stick in the base machine as well as in edge-

Raspberry Pi4 the following packages are necessary: 
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 Windows 10 or Linux Ubuntu 16.04 or 18.04, preferred 16.04 

 Intel OpenVino at least R1, it’s an Intel library for hardware optimization 

 OpenCV 4 

 

 

6.2 System Configuration 
 

By using the Intel Movidius NCS2 stick, a sequence of steps are needed in order to be ready 

for an inference. In appendix these steps are describing in more detail. Here we will use a 

diagram in order to depict quickly those steps (figure 6.1).  

 

 

Figure 6.1 The main steps for prepairing a neural network to run in Movidius NCS2 are 

presented 

 

In an embedded system with constraint power resources, like Raspberry Pi the OpenVino 

library doesn’t include the Model Optimizer Toolkit. So, a host-based machine is needed for 

the training, as described above.  

After we trained the Yolov3 network in Darknet framework, on our host machine, we followed 

the instructions for converting Yolov3 implemented in tensorflow to a format compatible with 

the Intel NSC2 (see appendix). Then two files are generated, which are the model architecture 

in .xml format and a binary file containing the trained weights of the network. From this point 

one can use it for the desired task. We used it for our task of Sea-Vessels 3D position 

estimation. 

Steps for deploying a neural network in Intel NSC2: 

 Train the network in an external library, we used Darknet 

 Convert Yolo model from Darknet to Tensorflow library 
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 Create the two files of the network for deploying in NCS2, by running OpenVINO 

model optimizer 

 Download the two files to the embedded machine, in our case the Raspberry Pi4 

 Load the two files of the network in the code and initialize the network in Intel NCS2 

 Make an inference by providing an image 

 

Steps for configuring the system in raspberry pi: 

 Download the network files to the raspberry 

 Connect the two cameras on the USB port 

 Calibrate the cameras 

 Run the application 

 

 

 

Figure 6.2 At left the detection results of the Yolov3 with input size at 608x608x3 tensor size. 

Middle the detection results of the Yolov3 with input size at 416x416x3 tensor size. Right  the 

detection results of the Yolov3-Tiny implementation with input size at 416x416x3 tensor size. 

The encapsulation of fewer knowledge for Sea-Vessels from the Yolov3-Tiny model is clearly 

depicted from the lack of the 4th Ship detection. This is expected due to less neural layers of 

the tiny model.  
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6.3 Experiments 
 

In this section, we will pay attention of the overall throughput of the algorithm and especially  

the accuracy of the 3D position estimation of the detected Sea-Vessels. In the previous chapters 

the robustness and the accuracy of each of the sub-modules was extensive analyzed and 

discussed. As a result we will not pay attention of each of the sub-modules. 

Figure 6.2 illustrates 3 images after were inferred from the three different Yolov3 neural 

network implementations. There is an interesting observation. In the left and the middle we see 

the detection results from the Yolov3 architecture for 608x608x3 input tensor size and for 

416x416x3 input tensor size corresponding. As we see there are not big differences between 

the output of those networks. The networks have correctly detected all the Sea-Vessels. This 

not the case for the Yolov3-Tiny for 416x416x3 input tensor size implementation at the right. 

As we can see it felts to detect all the objects. This is expected as it is much smaller compared 

with the Yolov3 and as a result encapsulates less knowledge about Sea-Vessel objects. On the 

other side, is much faster and can be used when the highest accuracy of detection is not first 

priority. 

 

6.3.1 3D position accuracy 
 

Apart from color information, one of the most crucial aspect of the pipeline is the accuracy of 

the 3D pose. Since this whole approach tries to solve an ill-posed problem by using additional 

information, coming from the detected object of the right camera, it is necessary to compare 

the accuracy of the pipeline. For this reason we compare of our system with a simple meter of 

1mm accuracy. We run indoor tests by using a monitor showing frames with Sea-Vessels from 

different viewing angles and lighting conditions. The purpose was to estimate the 3D position 

and especially the distance-depth of the detected objects from the stereo cameras, which were 

viewing the videos on the monitor. The stereo cameras were moving in the space and placing 

in different positions corresponding to the monitor. After running the whole detection and 

position estimation algorithm in real time, the results were collected and are depicted in the 

following diagrams. 

Figure 6.3 illustrates the two different Z-distance (depth) measurements of the stereo system 

from the monitor, as well as the real one with red color. The stereo system was placed 

successive to different distances from the monitor, starting from lower to bigger distance 

values. The distance range that we could use was from 0.5m to 2m approximately. With blue 

points the estimated distance of the stereo cameras from the monitor is depicted. As it is shown 

the results are steady and instant disturbances of the orientations of one camera compared to 

the other is eliminated, thought the process of image rectification. With green points the 

estimated distance of the stereo cameras from the monitor is depicted. We can observe that 

although the results are steady for the bigger amount of measurements, there is although an 

oscillation at the measured distance of 1.1m. This is because without rectification the results 

are sensitive to instant camera orientations disturbances.  

Figure 6.4 illustrates the error in estimating the distance of each method. With blue color the 

error between the estimated distance with stereo rectification and the real one is presented. 
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With green color the error between the estimated distance without stereo rectification and the 

real one is presented. Finally with red color the difference between the estimated distance of 

the two methods, with and without rectification is depicted. We can clearly observe that the 

best depth accuracy comes from the method with stereo rectification, which achieves a 

maximum   distance -depth error of +- 8cm. At the same time (green color) the sensitivity of 

the method without stereo rectification is clearly shown, which achieves a maximum error of 

0.3m. This is because instant disturbances in camera’s orientation to each other change the 

stereo configuration and this change affect the measured distance-depth. At the end a 

comparison of the two estimated methods, with and without stereo rectification is depicted with 

red color. As a conclusion the superiority of the method with stereo rectification against the 

one without is clearly illustrated.  

 

 

 

Figure 6.3 Depth distance between left cameras coordinate frame of the stereo system and real 

one as estimated from the meter. With red color the reference Z-distance-depth is depicted and 

with blue points the depth estimated from the stereo system by using stereo rectification. With 

green the points of the Z-distance from the left camera of the stereo system, as it was estimated 

without stereo rectification. As we can see the two estimated distances of the detected Sea-

Vessels are pretty close to each and to the real one, but with more oscillations as far as is 

concerned the estimation method without image rectification. 
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Figure 6.4. In this diagram the error in estimating the distance of each method is depicted. 

With blue color the error between the estimated distance with stereo rectification and the real 

one is presented. With green color the error between the estimated distance without stereo 

rectification and the real one is presented. Finally with red color the difference between the 

estimated distance of the two methods, with and without rectification is depicted. We can 

clearly observe that the best depth accuracy comes from the method with stereo rectification, 

which achieves a maximum   distance -depth error of +- 8cm.   

 

 

In Fig. 6.5,6.5 two diagrams of the estimated distance between the real one and the estimated 

distance from the stereo system is depicted. The x-axis represents the depth in meters of the 

detected Sea-Vessels from the stereo cameras and in y-axis the measured distance from the 

meter. The points correspond to the points that were presented in the previous diagrams. The 

perfect measurements of the depth-distance of the detected Sea-Vessels would be them which 

follow the line y=x that depicted with red color. As we see from the figure 6.5 compared with 

the figure 6.6, the estimated distance of the points in figure 6.5 have smaller error and thus 

smaller distribution around the line y=x of the perfect estimations. On the other hand, without 

using stereo rectification the results are more vulnerable to external disturbances in rotational 

position of the stereo cameras as is presented in figure 6.6.  
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Figure 6.5 The estimated depth-distance of the detected Sea-Vessels from the stereo cameras 

computed with the stereo rectification method are depicted in X-Axis. In Y-Axis the depth of 

the Sea-Vessels from the stereo cameras as measured with the meter. With red line the perfect 

estimations are depicted. 
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Figure 6.6 The estimated depth-distance of the detected Sea-Vessels from the stereo cameras 

computed without the stereo rectification method are depicted in X-Axis. In Y-Axis the depth of 

the Sea-Vessels from the stereo cameras as measured with the meter. With red line the perfect 

estimations are depicted. For 1.1m distance of the stereo cameras we observe the bigger error 

that is introduced to the measurements, compared with the results from the previous figure.  

 

 

6.3.2 Processing Time and Delays of the Pipeline 
 

One of the crucial parts during designing and developing the overall system architecture was 

the execution time from a single image shot to 3D position estimation results. For this reason 

our embedded system comprises a specific external processing unit for the execution of  the 

neural network as described in chapter 2. After measurements in each sub-module time 

execution, found that the USB cameras that were used introduced an increased time delay 

compared with the other sub-modules. Both cameras introduced a time delay of 160ms-200ms. 

The right camera frame was always 150ms approximately back from the left camera frame. It 

was surprisingly discovered that the execution of the neural network on the NSC2 was 

extremely fast compared with the two cameras, 10ms maximum for tiny Yolov3, causing the 

overall system pipeline operating at a maximum of 6 FPS! when there were not Sea-Vessels 

detected. When there were Sea-Vessels detected the rest of the sub-modules were introduced 

all-together approximately  100ms-300ms causing a minimum overall execution time of the 

system reaching 2FPS. One of the sub-modules with greater processing time demand was the 

Horizon-Line detection pipeline which execution time varies from 10ms to 150ms relative with 

the ROI (Region Of Interest). Next the sub-module with hight execution time demands was the 

correspondences matching sub-module between the two image frames, needing approximately 

10-35ms for each Sea-Vessel, depending on the Sea-Vessel detected size. The conclusion of 
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these results is that hardware which provides parallel execution like GPUs and TPUs are 

beneficial for image processing because it is a inherent parallel computational problem.  

Finally, our system at the fastest implementation, using the YoloV3-tiny implementation was 

capable of delivering 5FPS. For a real-time application with fast moving objects this is not 

sufficient, but for maritime industry, where the speeds are far less lower compared with auto-

mobile industry for example, this system could fit in very efficiently (Figure 6.7). 

 

 

Figure 6.7: Data flow and time delays of the sub-modules of the system pipeline. 
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Chapter 7 
 

 

 

7 Conclusions and Future Work 
 

 

7.1 Thesis Contributions 
 

According to Section 1.2, two major engineering challenges hinder the development process 

of a Sea-Vessel detection system capable of estimating the 3D position of each Vessel using 

stereoscopic images. First, it is challenging to build a compact embedded system which will 

detect and localize Sea-Vessels in real time without the need of huge computational power, 

consumption power and cost effective. Second, it is unclear what kind of detection algorithm 

must be used in order to achieve the best results in detection accuracy and execution time in a 

conventional embedded system. And finally, although the current huge evolution of hardware 

technology there is still a huge research in developing faster and more efficient hardware for 

big data processing.  

The work accomplished in this thesis has (i) demonstrated the feasibility of developing a 

stereoscopic detection and localization system of Sea-Vessels, (ii) proposed and  implemented 

an effective detection pipeline and (iii) demonstrated the accuracy of detecting and localizing 

Sea-Vessels, making the system ideal for autonomous Shipping and early collision awareness 

system   for maritime industry. These contributions can be further elaborated as follows: 

 Hardware design 

Setting up a perception pipeline on a real-time system involves a coherent 

and clever interplay between software and hardware. The embedded 

hardware architecture comprises of a tensor processing unit (Intel NSC2) 

for accelerating inference of our neural network model, connected to a 

Raspberry Pi4, an ARM based microcomputer and with two common usb-

cameras comprises our stereo based vision system. These selections based 

on the trade-off between computational power, consumption power and 

low-cost. 

 

 Sea-Vessels detection pipeline 

From early developing stages of the detection pipeline it was chosen to be 

used a stereoscopic system based on deep learning for Sea-Vessel 

detections. For this reason the Yolov3 model architecture was used and 

retrained – fine tuned suitably for our task. A K-means clustering system for 
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setting up correctly the bounding box anchors of our model was 

created[20][23]. Three different types of the neural network model 

architecture were developed and evaluated, with the results being more than 

satisfactory. One run of the smallest neural-network was accomplished in 

synchronous mode in 10ms maximum time in the neural compute stick 

(Intel NCS2). For delivering fastest results, in the code we used 

asynchronous execution of the detection pipeline from the main thread of 

the application, since the inference of the model was executed on the Intel 

NSC2. With this technique there was no lag in the main application thread 

for waiting the external module to reply. 

 

 Fast Horizon-Line detection pipeline 

In order to eliminate false detections of the neural network, a fast horizon 

line detection algorithm was developed, based in computer vision 

techniques. Standard engineering techniques were used in order to boost the 

accuracy and the time execution of the horizon-line detection pipeline, since 

it was running in the CPU of the embedded system. A combination of 

detected boxes information from the previous stage of neural network and 

the color information of the two regions at the boundary of sea surface was 

used in order to detect the horizon line. Again special effort was given in 

order to combine all these informations and to provide accurate and robust 

horizon-line estimation result. 

 

 3D position estimation of the detected Sea-Vessels 

Exploiting the information coming from the second camera and stereo 

geometry, a novel position estimation technique was developed. This 

technique is capable of detecting and correcting instant small rotational 

disturbances of the right camera coordinate frame corresponding to the left, 

by using RANSAC algorithm and the detected Sea-Vessels from the 

previous stages. The robustness and accuracy of the algorithm were proofed 

by several experiments. 

      

  

7.2 Future Work 
 

Before our perception and Sea-Vessels localization system can be ready for general used in 

Maritime industry, several hardware and software improvements are necessary. First the 

current camera sensors that were used are very slow and have small resolution, causing the 

system running slow.  More importantly, it is necessary to reduce the time from capturing a 

frame till this frame is transferred to the main application thread. Second, as were proofed the 

neural compute module is extremely fast compared with the CPU throughput of analyzing 
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images, for this reason it is proposed the fast horizon-line detection pipeline to be implemented 

with a neural network. By this way the overall execution time it is believed that will decrease, 

since the CPU needs more time to process the images. Third for a better time execution results 

it is suggested the whole software system architecture to be written in C++, since the python 

that were used for prototyping is an interpreted language and far more slowly from the C++.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 

 

Appendix A 
 

 

 

A.1 Pre-Requirements for deploying Yolov3 based model on Intel 

NCS2 
 

In this section the steps for deploying Yolov3 neural network model to the Intel Neural 

Compute Stick2 are presented. We made this procedure on a Linux host machine, so the steps 

correspond  to a Linux host machine configuration. 

Machine host pre-configuration: 

 Ubuntu Linux 16.04 

 CUDA GPU kernels 10.1 

 DarkNet Framework for training/testing the Network 

 TensorFlow versions between 1.11.0 and 1.13.0 

 Intel OpenVino 2019_R1.1 

After properly configuration of the host machine, one has to follow the bellow describing steps 

for deploying Yolov3 model on the Intel NCS2. It is worth noting that there is no need to have 

a configured machine precisely as follow, because new versions of each driver/library are 

coming. The above steps configurations were used for these thesis. 

 

 

A.2 Configuration of the Intel NCS2 
 

 

Configurations for deploying the Yolov3 model on Intel NSC2: 

 Convert Yolov3 model from DarkNet framework to a TensorFlow representation 

 Within TensorFlow create a frozen model file of .pb format 

 Navigate to openvino install directory and run model optimizer for creating the two 

necessary files of the network to be run on Intel NCS2 

The above described steps need some explanation. After we finished with the training and 

testing of our models on DarkNet framework, we had to use TensorFlow framework in order 

to run our model on Intel Movidius NCS2. This step is needed because OpenVino library which 

interfaces  with the Intel NCS2, it is not supporting DarkNet format based networks. On the 
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other hand TensorFlow provides a compatibility with the DarkNet framework and the trained 

weights of the Yolov3 model could be inserted in TensorFlow framework. Additionally 

OpenVino library is compatible with TensoFlow implemented networks. This helps because 

TensorFlow provides more functionalities as the DarkNet framework. 

Within TensorFlow we save our model, creating a frozen .pb file. A .pb file is a model 

representation of the Yolov3 in TensorFlow format. It comprises all the information of the 

neural network (topology, activation functions, weights). This format of file is acceptable by 

the model optimizer of the OpenVino library, which will convert-optimize the model 

appropriate for running on the Neural Compute Stick 2. The model optimizer should be 

provided with the .pd file of the Yolov3 model and then it creates two files, one .xml file which 

contains the graph topology of model and a binary file of the trained weights of each neuron in 

the neural network. Those two files can then be loaded in the neural compute stick by using the 

appropriate classes of the OpenVino framework. 

Finally we provide a link from the intel’s official website which explains the converting 

procedure and additionally provides the necessary statements  
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