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Abstract

Recently, with the continuous development of analysis tools and the growth of computa-

tional power, numerical optimization is increasingly being used to design new shapes with

improved (aerodynamic/hydrodynamic) performance using Computational Fluid Dynamics

(CFD) simulations. Since CFD simulations for complex problems are expensive, numerical

optimization methods should perform as efficiently as possible. Recent progress with CFD

adjoint solvers allows computing objective function gradients at a cost which does not scale

with the number of Degrees of Freedom (DoFs), making gradient-based optimization a

valuable option. At the same time, progress with gradient-free optimization methods (such

as evolutionary algorithms) makes them attractive to globally explore design spaces and

find improved shapes, sometimes according to more than one criterion. This thesis uses

both gradient-based and gradient-free methods for shape optimization in both internal and

external aerodynamics, including the design/optimization of blade rows.

A CFD-based shape optimization method involves several tools other than the CFD

evaluation software and the search method itself. The parameterization and mesh displace-

ment techniques as well as methods for handling constraints are among them. This thesis

focuses on these tools by proposing new methods, as described below.

Shape parameterization is fundamental in all aerodynamic shape optimization problems.

It determines the design space and the variety of reachable geometries; thus, it has a leading

role in the cost and success of the optimization. In industrial workflows, in particular,

shape optimization usually begins with a geometry obtained using Computer-Aided-Design

(CAD) software. This starting geometry defines the DoFs of the case and their bounds,

should the latter be necessary. In an industrial environment, an evident requirement is

that the solutions found by running the optimization loop must also be compatible with

the CAD software, at least to enable the manufacturing process. For this reason, this

thesis focuses on CAD-compatible parameterization methods that are able to export a

Boundary-Representation (B-Rep) model of the shape; B-Rep is a method to represent

shapes largely used in CAD software.
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Specifically, in the turbomachinery field, this dissertation uses and extends software

for modeling turbomachinery blade rows. This is referred to as the Geometric Modeler

for Turbomachinery (GMTurbo), and has been developed by and used in the Parallel CFD

& Optimization Unit (PCOpt) of the National Technical University of Athens (NTUA);

GMTurbo software was the outcome of a recently integrated PhD thesis at NTUA. In

the present thesis, new features and tools that allow its integration into automatic, CAD-

based, optimization loops are developed and tested. This includes the differentiation of the

parameterization procedure to support adjoint-based optimizations, and software to import

existing geometries into GMTurbo.

A new method, which will be referred to as B-Rep-Morpher, is proposed to support

shape optimization by offering a free-form deformation environment for generic aero-

dynamic geometries which remain in standard B-Rep format. The proposed technique

introduces a small number of “handles”, strategically placed around or on the shapes to be

optimized. Displacement vectors associated with these handles are used as the DoFs. Using

the Radial Basis Function (RBF)-based interpolation method, these displacements are trans-

ferred from the handles to the Non-Uniform Rational B-Spline (NURBS) control points of

the B-Rep model; the updated surface remains in B-Rep format and is, thus, exportable to

a STandard for the Exchange of Product model data (STEP) file. The B-Rep-Morpher is

differentiated since this is required in adjoint-based optimization.

Over and above performance criteria, shape optimizations are driven by constraints.

Therefore, part of this thesis concerns constraint imposition, including turbomachinery

design cases. Two families of constraints are considered. The first one comprises geometric

constraints related, for instance, with the minimum thickness of the designed turboma-

chinery blades or the space necessary for mounting the blades on the casing. Some

geometric constraints are merely satisfied by imposing appropriate bounds on the DoFs of

the parameterization method, whereas others must be considered as non-linear constraints.

For instance, this thesis illustrates a constraint parameterization technique to handle the

space into the blade profiles that is necessary to cut the thread to mount it on the casing.

The second family comprises performance constraints, such as the total pressure losses

in a turbomachinery row. In this dissertation, gradient-based and gradient-free numerical

techniques are used to solve constrained shape optimization problems. These are carried

out using already available Sequential Quadratic Programming (SQP) methods and Evolu-

tionary Algorithms (EAs). The latter implies the use of the Evolutionary Algorithm System

(EASY) software developed by the PCOpt/NTUA.

A CAD-based shape optimization framework is developed, coupling the flow solver
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of PCOpt/NTUA and its adjoint, GMTurbo or B-Rep-Morpher and gradient-based and

-free optimizers. Within this framework, the adaptation of an existing CFD mesh to the

new boundaries of the computational domain is also essential. This facilitates the CFD

evaluation of new shapes by avoiding costly and hardly automated re-meshing. To this end,

this thesis proposes a method to update an existing surface mesh, associated with a shape

parameterized as above. The displacement of the surface mesh nodes is used to adapt the

CFD volume mesh. Mesh displacement based on RBF interpolation is used for this task;

RBF interpolation is known for its ability to preserve the validity and quality of the mesh,

even for large displacements, without being affected by mesh connectivity. However, in

case of large meshes, such as those used in real-world CFD applications, RBF interpolation,

in its standard formulation, becomes excessively expensive. Methods to accelerate the

mesh displacement are investigated, and a new, two-step, RBF-based mesh displacement

method is proposed. In this method, the Fast Multipole Method (FMM) and the Sparse

Approximate Inverse (SPAI) preconditioner are used to reduce the computational cost of

the RBF interpolation.

The programmed framework is applied to shape optimization cases to assess its per-

formance. These cases include the optimization of the following shapes: (a) a double

elbow duct, to minimize total pressure losses, using SQP; (b) a compressor stator blade, to

minimize the deviation of the exit flow from the axial direction and the total pressure losses

of the flow while imposing geometric constraints, using SQP and EAs; (c) a turbine stator

to maximize the capacity and minimize the total pressure losses, using EAs; (d) an aircraft,

to minimize the drag and maximize the lift, using EAs.

Journal and conference papers that reflect work done in this PhD thesis are listed below:

• Journal papers:

– F. Gagliardi and K. C. Giannakoglou. ‘A Two–Step Radial Basis Function-

Based CFD Mesh Displacement Tool’. In: Advances in Engineering Software

128 (2019), pp. 86–97.

– F. Gagliardi and K. C. Giannakoglou. ‘RBF-Based Morphing of B-Rep Models

for use in Aerodynamic Shape Optimization’. In: Advances in Engineering

Software 138 (2019).

• Conference papers:

– F. Gagliardi, K. T. Tsiakas and K. C. Giannakoglou. ‘A Two-Step Mesh Adapt-

ation Tool Based on RBF with Application to Turbomachinery Optimization

Loops’. In: Evolutionary and Deterministic Methods for Design Optimization
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and Control with Applications to Industrial and Societal Problems. Springer,

2019, pp. 127–141.

– K. T. Tsiakas, F. Gagliardi, X. S. Trompoukis and K. C. Giannakoglou. ‘Shape

Optimization of Turbomachinery Rows using a Parametric Blade Modeller

and the Continuous Adjoint Method Running on GPUs’. In: 7th ECCOMAS

Conference Proceedings. 2016.

The research illustrated in this thesis was funded by the People Programme (ITN Marie

Curie Actions) of the European Union’s H2020 Framework Programme (MSCA-ITN-2014-

ETN) under REA Grant Agreement no. 642959 (IODA project). The author was an IODA

(Industrial Optimal Design using Adjoint CFD) Early Stage Researcher (ESR).



Acknowledgments

I want to express gratitude to my supervisor, professor Kyriakos C. Giannakoglou, for

guiding me during my doctoral studies. His passion and dedication to the work are a source

of inspiration and his investment in time and effort has been essential for creating this work.

I am sincerely thankful to all my colleagues and friends at the PCOpt/LTT who created

a cheerful and welcoming environment. Particularly to Konstantinos Samouchos, James

Koch, Kostantinos Tsiakas, Xenofon Trompoukis, Varvara Asouti, Dimitrios Kapsoulis,

Konstantinos Gkaragkounis, Ioannis Vryonis and Morteza Monfaredi. From them, I’ve

received excellent support and mentoring. In detail, I wish to express appreciation to V.

Asouti for the support regarding the EASY software and K. Tsiakas for the help with the

PUMA and GMTurbo software and his feedback on research ideas. A special thank goes to

the fellow PhD students J. Koch, K. Samouchos and C. Kapellos for the endless valuable

conversations.

I also thank the fellow PhD students of the IODA project. By collaborating on the same

research topics, we had the opportunity to share knowledge.

Another thank goes to peers who supported and inspired me even before starting the

doctoral studies. Above all, I am grateful to my family and girlfriend, who made this

journey possible.

xi



Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 CAD-Based Aerodynamic Shape Optimization . . . . . . . . . . . . . . . . . . . . 2

2 The B-Rep-Morpher Parameterization Tool . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Literature Survey on Shape Parameterization . . . . . . . . . . . . . . . . . . . . . 9

2.2 Shape-Morphing Strategy and Theoretical Background . . . . . . . . . . . . . . . 13

2.2.1 Shape-Morphing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 NURBS and Relevant Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 RBF-Based Interpolation and Relevant Issues . . . . . . . . . . . . . . . . . . 17

2.3 RBF-Based B-Rep Shape-Morphing Framework . . . . . . . . . . . . . . . . . . . 18

2.3.1 B-Rep Deformation Driven by Handles . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Geometric Continuity Correction . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Method Demonstration in CFD Shape Optimizations . . . . . . . . . . . . . . . . . 28

2.4.1 RAE-2822 Airfoil Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Double Elbow Duct Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.3 DPW2 Aircraft Model Optimization . . . . . . . . . . . . . . . . . . . . . . . 34

3 The GMTurbo Parameterization Tool . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Literature Survey on Turbomachinery Parameterization . . . . . . . . . . . . . . . . 39

3.2 GMTurbo Parameterization Process . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Meridional Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Mean-Camber-Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Superposition of Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.4 Building and Exporting the Shape to Standard CAD Exchange Files . . . . . . 47

xii



Contents xiii

3.3 GMTurbo B-Rep Re-Parameterization Tool . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Meridional Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Mean-Camber-Lines and Thickness Profiles . . . . . . . . . . . . . . . . . . . 49

3.4 GMTurbo and Re-parameterization Tool Demonstration . . . . . . . . . . . . . . . 53

4 CFD Surface Mesh Displacement and Parameterization Differentiation . . . . . . . 57

4.1 CFD Surface Mesh Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Differentiation of the Parameterization Procedure . . . . . . . . . . . . . . . . . . . 60

4.2.1 Algorithmic Steps of the Differentiation of the Parameterization Procedure . . . 62

4.2.2 Demonstration of the Differentiation of the Parameterization Procedure . . . . . 64

5 A Two-Step RBF-Based CFD Mesh Displacement Tool . . . . . . . . . . . . . . . . 67

5.1 Introduction and Literature Overview on Mesh Displacement . . . . . . . . . . . . 68

5.2 Background of RBF-Based Interpolation . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 The Two-Step Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Step 1: Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.2 Step 2: Corrector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Acceleration Methods for the Two-Step Strategy . . . . . . . . . . . . . . . . . . . 76

5.4.1 The SPAI Preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.2 The Fast Multipole Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.3 Integer Lattice-Based RBF Interpolation . . . . . . . . . . . . . . . . . . . . . 84

5.5 Parametric Studies and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.1 Two-Step Strategy vs. Standard RBF Interpolation . . . . . . . . . . . . . . . . 87

5.5.2 Scalability Studies on the Mesh Size . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.3 Parametric Study on the Predictor Matrix Size . . . . . . . . . . . . . . . . . . 88

5.5.4 RRD Turbine Stator CFD Shape Optimization . . . . . . . . . . . . . . . . . . 91

6 The Fast Multipole Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 The Octree Data-Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 The Black-Box Fast Multipole Method . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.1 Interpolation Based on Chebyshev Polynomials . . . . . . . . . . . . . . . . . 101

6.3.2 Interpolation-Based Low-Rank Approximation . . . . . . . . . . . . . . . . . . 103

6.3.3 The FMM Based on Chebyshev Interpolation . . . . . . . . . . . . . . . . . . 106

6.4 Software Performance and Implementation . . . . . . . . . . . . . . . . . . . . . . 109

6.4.1 Algorithm and Software Parallelization . . . . . . . . . . . . . . . . . . . . . . 111

7 Optimization of a Compressor Stator . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Optimization Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Shape Parameterizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



xiv Contents

7.3.1 Parameterization with GMTurbo . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.2 Parameterization with the B-Rep-Morpher . . . . . . . . . . . . . . . . . . . . 123

7.3.3 Parameterization of the Fixture Holes . . . . . . . . . . . . . . . . . . . . . . . 123

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4.1 Gradient-Free Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.4.2 Gradient-Based Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.2 Future Work Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A Non-Uniform Rational B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B Conformal Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

C The Newton’s and SQP Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

C.1 Newton’s Method and Quasi-Newton Methods . . . . . . . . . . . . . . . . . . . . 152

C.2 Sequential Quadratic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 153

D Evolutionary Algorithms and the EASY Software . . . . . . . . . . . . . . . . . . . 157

D.1 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

D.2 Evolutionary Algorithms in EASY . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

E The PUMA CFD Flow and Adjoint Solver . . . . . . . . . . . . . . . . . . . . . . . 161

E.1 RANS Equations for Compressible Flows . . . . . . . . . . . . . . . . . . . . . . . 161

E.2 The Continuous Adjoint Method for Aerodynamic Shape Optimization . . . . . . . 163

F Bi-Conjugate Gradient Stabilized Method . . . . . . . . . . . . . . . . . . . . . . . 165

G Parametric Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



Chapter 1

Introduction

Shape optimization requires coordinating a significant number of computational tools that

must be developed, if non-existent, and integrated efficiently. This chapter focuses on

shape parameterization and deformation methods, which are fundamental in the shape

optimization process, as well as the integration of constraints into the same process. Tools

needed by any shape optimization method are identified by distinguishing those used as a

black-box in this thesis and those extended or developed. A more thoughtful discussion

and literature survey regarding each of these tools are delegated to the following chapters.

1.1 Background

During the last decades, computer-based simulation techniques have been shaping product

development. In fact, the aerodynamic performance of objects is determined by their

shapes, and the exponential growth of computational power has led to the evolution and

exploitation of computer-based shape optimization methods [1, §1]. Simulations allow

evaluating performance, such as aerodynamic performance, of many design prototypes at

an early stage of the development workflow, thus reducing the need to perform experiments

and offering the possibility to identify potential problems with shapes in advance. Design

optimization aims at computing alternative designs with improved performance.

Aerodynamic (hydrodynamic, too) simulations are based on CFD techniques and tools.

The first computer applications modeling fluid flows appeared in the late 60s; since then, the

scientific community and industry proceeded with the development of solvers for accurately

modeling increasingly more complex flow features. The use of simulations is an alternative

to the pure experimental way and allows new designs to be tested rapidly, at a reduced cost.

The design improvement process is iterative; CFD simulations are used repetitively

1



2 1. Introduction

based on the gradually obtained knowledge, to achieve an improved design. In detail,

to improve the aerodynamic performance of shapes, complex flow features have to be

considered, which may not be intuitive for a human. Besides, manual shape changes

are labor-intensive and require deep expertise. It must also be taken into account that

modern engineering design must handle increasing requirements such as performance,

environmental impact and cost, which require large design spaces, namely a high number

of DoFs. Satisfying these needs calls for design spaces to be explored systematically,

which can only be accomplished through numerical optimization and computer-aided

design of shapes. In fact, apart from the availability of CFD codes and high-performance

computing, computer-based shape optimization has been enabled by the evolution of

approaches to numerically and programmatically manipulate shapes, namely CAD, and

the development of numerical optimization methods. Ever since the origin of CAD,

halfway of the 20th century, this technology continuously improved industrial product

development and production processes. What started with the use of spline-based modeling

techniques for designing car bodies, turbine/compressor blades, aircraft fuselages and wings

is now fundamental in a multitude of disciplines such as mechanical, aerospace and civil

engineering. Emerging technologies such as 3D printing techniques further demonstrate

the importance of CAD tools in next-generation product development and manufacturing.

1.2 CAD-Based Aerodynamic Shape Optimization

Figure 1.1 illustrates simplified CAD-based design optimization loops. The process starts

by parameterizing a reference shape with a set of DoFs. The reference shape’s performance

is evaluated by running a CFD simulation. Based on the results, an optimization algorithm

determines desirable search directions, to improve the current design in conformity to the

shape parameterization technique. The necessary CFD mesh is generated or deformed

according to the shape in each evaluation. This process is iterated until convergence of

the given objective function or until the user-defined maximum number of optimization

cycles be reached, and finally, the resulting improved shape is obtained. Some optimization

algorithms require the gradient of the performance criteria with respect to (w.r.t.) the DoFs,

to determine the search directions; this can be computed by combining the geometric

sensitivities of the surface mesh nodes w.r.t. the DoFs and those of the performance

criteria (objective functions) w.r.t. the surface mesh nodes. The former are computed by

differentiating the shape parameterization software; the latter require the differentiation of

the CFD flow solver, for instance through the adjoint technique. In an aerodynamic shape
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Figure 1.1: Schematic overview of two CAD- and CFD-based shape optimization loops

using a mesh deformation strategy, a single performance criterion and considering geometric

constraints. Colors identify the main constituents of the optimization loop: the parameterization

(red), the mesh generation or deformation (blue), the CFD solver (green) and the optimization

algorithm (yellow). Top: Gradient-free optimization workflow. Bottom: Gradient-based

optimization workflow. δx/δb are the sensitivities of the surface mesh nodes w.r.t. the DoFs.

δF/δx are the sensitivities of the performance criterion (objective function) w.r.t. the surface

mesh nodes. δF/δb are the sensitivities of the same quantity w.r.t. the DoFs.

optimization framework, adjoint solvers are developed to provide gradients at a cost that

does not scale with the number of DoFs. In Figure 1.1, the essential components of a shape

optimization workflow are identified, namely:

• the shape parameterization method and its differentiation, in case of gradient-based

optimizations;

• the CFD mesh generation or deformation technique;

• the numerical optimization algorithm;

• the CFD flow solver and its adjoint, in the case of gradient-based optimization.

This section gives a brief introduction to each of the components needed by a typical

optimization workflow, illustrating their roles and highlighting areas in which this thesis is

contributing to.

Computational Fluid Dynamics. CFD is dealing with the computational analysis of

systems involving fluid flow, heat transfer, and other associated phenomena [2]. CFD is

applicable in a wide range of research and engineering problems, including aerodynamics

and aerospace analysis, turbomachinery, weather simulation, environmental engineering,
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marine and biological applications, and engine and combustion analysis [3]. The past 20

years witnessed a significant increase in its use due to advantages such as its turnaround

time and scalability [2]. Industry and academia widely use CFD to simulate flows and

perform aerodynamic or hydrodynamic shape optimization.

The continuous adjoint method is helpful to compute the gradients of the performance

criteria, cast in the form of objective functions, w.r.t. surface displacement, at a computa-

tional cost substantially independent of the number of DoFs. To this end, the adjoint system

of equations corresponding to the governing fluid flow equations (a.k.a. state or primal

equations) is formulated and solved.

This thesis does not contribute to the development of the CFD solver and its adjoint,

which were both used as black-boxes. The Parallel-Unstructured-Multi-Row-Adjoint

(PUMA) flow solver suite, developed by the PCOpt/NTUA, was used. This is briefly

presented in Appendix E.

Numerical Optimization. Optimization problems are widely in use in many thematic

areas such as computer science, engineering and economics; the development of solution

methods for this kind of problems has been of interest in mathematics for centuries [4].

An optimization problem is formulated by first identifying one or more objectives, namely

quantitative measures of the performance of the system under study, such as the total

pressure losses of a compressor row or the lift or drag of a wing. The objective functions

depend on specific characteristics of the system controlled by values, called design variables

or DoFs. The goal of numerical optimization is to find the values of such variables that

minimize (or maximize) the objective. Often the optimization problem is constrained: for

instance, by limiting the values that the DoFs can assume or by some constraint functions

that must take on values in specific ranges. Constraints play an essential role in finding

meaningful optimal shapes. In CFD-based aerodynamic shape optimization, objective and

constraint functions are typically (not always) related to the aerodynamic performance.

Many optimization algorithms exist: choosing the right algorithm is fundamental as it

may determine how quickly and if a problem can be solved. Gradient-based methods use

the gradient of the objective function and constraints w.r.t. the DoFs to find the minimum (or

maximum) on the basin of attraction1 of the user-supplied starting point. On the contrary,

gradient-free methods are designed to find global or local optima without using derivative

information and by methodically searching the solution space.

1The basin of attraction is the set of initial values that would lead the steepest descent algorithm to the same

minimum.



1.2. CAD-Based Aerodynamic Shape Optimization 5

Optimization problems are defined by their size, namely the number and characteristics

of objective functions, constraints and DoFs. If the objective function and the constraints

are linear functions of the DoFs, the problem is a Linear Programming (LP) problem.

Quadratic Programming (QP) regards the minimization of a quadratic objective function

with linear constrains. For both the LP and QP problems, reliable solution procedures are

available [5, 6]. Non-Linear Programming (NP) problems are more challenging to solve:

the objective function and constraints are non-linear functions of the DoFs. Solving NP

problems generally requires iterative procedures in which search directions change in each

iteration.

In this thesis, NP is used to optimize aerodynamic shapes, such as in Chapter 7, inside

routines of the parameterization methods, such as in Chapter 2 and 3, and to handle

geometric constraints, such as in Section 7.3.3. Among the used algorithms, there are the

Quasi-Netwon and SQP methods, being gradient-based optimization techniques, and the

EA methods, which are all used as black-box tools. In Appendix C, the Quasi-Netwon and

SQP methods are reviewed. Regarding EA methods, the software suite EASY developed

by the PCOpt/NTUA, which is illustrated in Appendix D, is used.

Shape Parameterization. Shapes and meshes involved in CFD-based shape optimization

require parameterization; as the task that determines the DoFs, parameterization affects the

computational cost and the success of the optimization [7].

Geometry description must often fulfill disparate requirements. For the optimization

algorithm, it is crucial to have a parametric description that improves the ability to efficiently

explore the design space, limiting the possible redundancies, interdependence and number

of the DoFs, and avoiding geometric constraint violation. Moreover, if a gradient-based

optimization algorithm is used, with the adjoint method computing the gradient of the

objective function w.r.t. the surface displacement, the parameterization method must also

provide geometric sensitivities, namely the gradient of surface displacement w.r.t. the DoFs.

Through the chain rule, these yield the gradient of the objective function, w.r.t. the DoFs.

For the CFD solver, however, the geometry description must have rigorous requirements of

continuity and smoothness in order not to affect the quality of the numerical results. For the

optimization workflow, the CFD mesh must be available for each shape variation reliably.

Finally, from the industrial workflow point of view, the integration of the improved shapes

in the design process is paramount.

One of the main tasks of this thesis is to investigate CAD-based parameterization

methods. There are many parameterization approaches, and each of them has its pros and
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cons. In Chapter 2 and 3, the parameterization task is analyzed in-depth, a literature review

of various parameterization methods is provided, and multiple alternatives are compared.

CAD-based approaches are promising under many aspects, but criticalities must be solved.

Chapter 2 illustrates an original CAD-based morphing method developed and integ-

rated into shape optimization. The tool is named B-Rep-Morpher. In detail, the process

parameterizes the shape of B-Reps. The user defines a small number of “handles” to be

placed around or on the B-Rep shapes to be optimized. Displacement vectors associated

with these handles are used as DoFs during the optimization run. The technique transfers

the displacements of the handles to the surface, effectively morphing it. This approach

enables morphing surfaces directly in B-Rep format, retaining the ability to export the

shape in a standard CAD format. The performance of the proposed method is assessed in

aerodynamic shape optimization problems involving an airfoil, a duct, an aircraft model

and a compressor stationary blade row.

In Chapter 3, a turbomachinery blade row shape parameterization tool developed by the

PCOpt/NTUA [8] is extended. The extension includes the ability to build the geometry with

NURBS and export it in standard CAD format. The already available procedure is based on

design parameters that possess a clear physical or geometric meaning and corresponds to

the established description of turbomachinery blade rows using the mean-camber-surface

of the blade’s row and profile curves associated with it. The blade and casing geometry is

built up with NURBS curves and surfaces, which ensures high smoothness of the resulting

shape. NURBS curves are also used as input data, allowing for flexible control of the

shape with a tunable number of DoFs. The tool is tested in the generation of blades of

axial flow turbomachines. NURBS theory is briefly mentioned in Chapter 2 and deepened

in Appendix A. To import existing blades geometries into the optimization workflow,

a re-parameterization tool that performs the conversion from a B-Rep to the equivalent

parameterized blade is developed.

Chapter 4 illustrates the necessary tools to integrate the aforementioned parameteriza-

tions into optimization loops. In detail, it presents a strategy for updating the CFD surface

mesh to the already changed B-Rep-Morpher or GMTurbo models and the differentiation

of parameterization tools to support gradient-based optimizations.

CFD Mesh Generation and Displacement. Mesh generation is one of the focal points

in aerodynamic shape optimization. Generating a suitable mesh for complex shapes is

time-consuming. It may require manual labor, especially when dealing with meshes for

viscous flow simulations because it is necessary to simulate the boundary layer correctly.
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Therefore, in shape optimization, the automatic generation or displacement of meshes

according to shape variations is paramount. When using parameterization methods that

deform the computational mesh directly, the problem of mesh displacement is alleviated:

the parameterization method must still guarantee good quality deformed meshes. In this

thesis, CAD-based parameterization is used: as previously discussed, Chapter 4 presents a

method to adapt an existing surface mesh to CAD-based shape variations. Once the surface

mesh is adapted to a new shape, the volume mesh also needs to be deformed: Chapter 5

proposes a method based on RBF to displace large meshes. Mesh displacement based on

RBF interpolation is known for its ability to preserve the quality of the mesh, even for

large displacements, without being dependent on mesh connectivity. However, in case of

large meshes, such as those used in real-world CFD applications, RBF interpolation, in its

standard formulation, becomes excessively expensive. Chapter 5 proposes a cost reduction

technique for mesh displacement based on RBF by splitting the process into two steps and

accelerating it through the preconditioning of the linear system (needed by the RBF method)

based on geometric considerations and the FMM. The theory and performance of the FMM

and linear solvers are illustrated in detail in Chapter 6 and Appendix F, respectively. Such

a method and the programmed software are validated on three test cases related to the

deformation of CFD meshes inside a duct, a turbine stator row and around a car model. The

duct is optimized for total pressure losses using the SQP method and the turbine stator for

capacity and total pressure losses using EAs. Third-party software tools, such as Pointwise

[9] and AutoGrid5 [10], are used to generate meshes for all the CFD applications in this

thesis.

Finally, Chapter 7 deals with the optimization of a compressor stator using both the

parameterization method presented in Chapter 2 and 3, their differentiation presented in

Chapter 4, the mesh displacement techniques proposed in Chapter 4 and 5 and gradient-

based and -free optimization algorithms.





Chapter 2

The B-Rep-Morpher

Parameterization Tool

Parameterization is a crucial component in shape optimization, as it determines the design

space and, thus, it has an enormous influence on the optimization results. This chapter

is dedicated to a shape parameterization method based on morphing that acts directly

on NURBS-based B-Reps. The proposed technique requires the definition of a small

number of “handles”, which are strategically placed around or on the B-Rep shapes to be

optimized. Displacement vectors associated with these handles are used as design variables

during the optimization run. Using RBF as an interpolation method, these displacements

are transferred from the handles to the NURBS control points of the B-Rep model; this

approach offers the advantage that the updated surface remains in B-Rep format and is, thus,

exportable to a STEP file. The proposed method comprises two successive deformation

steps. Each deformation is controlled by an independent set of handles, increasing the

flexibility of the morphing action. The performance of the proposed method is assessed in

aerodynamic shape optimization problems involving an airfoil, a duct, an aircraft model

and a compressor stator. An assessment of the proposed method based on Parametric

Effectiveness (PE) is also included.

2.1 Literature Survey on Shape Parameterization

Surface parameterization techniques for use in shape optimization should:

• be able to handle complex, yet smooth, regular and realistic shapes and allow the

imposition of geometric constraints;

• ensure a wide range of reachable shapes with the minimum number of design

9
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variables because the complexity of shape optimization scales with this number

[11];

• give rise to properly scaled design variables to facilitate the convergence of the

optimization loop [12];

• be able to easily compute derivatives of surface nodal coordinates w.r.t. the design

variables; in gradient-based optimization, this should be combined with the adjoint

method that computes the gradients of the objective and constraint functions w.r.t.

the surface nodal coordinates [13];

• offer the ability to deform the existing CFD surface mesh by adapting it to the new

shape, which allows the displacement of the volume mesh to fit the new boundary, so

as to avoid re-meshing;

• retain compatibility with the CAD software for further processing in industrial

workflows.

Shape parameterization has been an area of continuous and extensive research; therefore, a

vast amount of relevant literature can be found. A detailed survey of shape parameterization

techniques for design optimization is provided in [14]; these techniques can be classified

into mesh-based and CAD-based ones.

Mesh-based parameterization. Mesh-based parameterization relies upon either direct

nodal deformations or space morphing techniques. The former perturb surface mesh nodes

and give rise to the most extensive design space but require smoothing to avoid unrealistic

designs or invalid meshes [15]. On the other hand, space morphing techniques deform

the space in which meshes are embedded. They speed-up the optimization process by

avoiding re-meshing and enable the continuation of new CFD simulations from a previous

one on a different domain. Space morphing/deformation functions d : �3 → �3 assign a

displacement to each point in space. Displacements imposed on a set of points (”handles”)

determine the deformation field. The most common space deformation techniques, such as

lattice-based Free Form Deformation (FFD) and RBF, are compared in [16]. FFD is a well-

established deformation technique. The basic idea of FFD is based on embedding the object

to be deformed in a parallelepiped lattice and deforming it using a trivariate tensor-product

Bézier or B-spline function. RBF is a method for interpolating scattered data, in this case

the displacement imposed on a set of scattered points; these are interpolated to the surface to

be deformed. In [16], their comparison is conducted on shapes such as a car body and a pipe

and is based on the following criteria: computational performance, numerical robustness,

adaptivity, precision and quality of the deformation. The computational performance of



2.1. Literature Survey on Shape Parameterization 11

the parameterization method is often negligible in shape optimization loops; nevertheless,

[16] concludes that RBF and FFD require the same amount of time when using a similar

number of handles. The robustness of a deformation method is quantified by considering

the capability of the technique to tolerate defects in the input data such as low-quality

mesh elements; again, [16] found that RBF and FFD had the same performance, which is

justified by the fact that both are space deformation methods. The quality of the deformation

includes several aspects; the most high-level one is that the deformation should be free of

unexpected oscillations or artifacts. In this case, [16] observed that RBF has better results

than FFD; in fact, FFD transformations are not easily predictable and have continuity

problems in case the control lattice covers only a portion of the shape to be deformed. The

adaptivity of a deformation method is quantified in terms of the capability of the technique

to approximate a particular shape with an as low as possible number of DoFs. Again, RBF

showed to be superior to FFD. The precision of a deformation method defines the accuracy

in fulfilling positional constraints. RBF allows for the exact fulfillment of these constraints

while FFD only for qualitative fulfillment. Moreover, RBF handles are placed arbitrarily

in space (point-based), in contrast to lattice-based FFD, which handles coincide with the

vertices of polyhedra. Finally, [16] recognizes the superiority of RBF over FFD on the

analyzed cases.

Examples of RBF-based parameterization are presented in [17] and [18]. In [17], airfoil

shapes in the discrete form are controlled by RBF handles placed off the shape. In [18],

the RBF model is employed to parameterize and optimize sails trim by applying rigid

displacements, such as rotation and translation, to sets of surface nodes. For instance, sail

shapes are modified by assigning a rigid rotation about one sail axis while keeping the points

on the other sail fixed; other transformations are also prescribed. The overall deformation

is achieved by applying rigid transformations in cascade to the points of the surface mesh;

then, their displacements are propagated to the interior mesh by RBF interpolation. RBF

handles with a null displacement are added to a cylindrical surface around the sails so that

the deformation induced by the RBF interpolation is limited in space.

Overall, mesh-based parameterizations succeed in building effective design spaces,

even for complicated shapes; however, any link with the CAD model is lost during the

optimization. Upon completion of the optimization loop, it is desirable to export the

optimized shapes in a CAD format, though this unavoidably introduces approximation

error and may compromise the obtained performance gain. During the optimization

loop, handling shapes in other than CAD formats generally makes it harder to impose

geometric constraints. For instance, keeping surfaces of revolution, such as the casing in
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turbomachinery applications, intact while morphing the blade surfaces requires handling

the intersection of the blade with the casing or keeping these intersections fixed; both

operations are readily available in CAD systems.

CAD-based parameterization. CAD-based methods can be classified as constructive,

NURBS-based and space morphing. In constructive CAD tools, shapes are defined starting

from standard geometric features, such as curves, extrusions and holes. This can be

done using generic CAD packages or application-specific parameterization software. For

instance, in turbomachinery design, it is common to have dedicated CAD kernels, which

use spanwise and chordwise distributions of various geometric quantities (angles and

thicknesses), usually in the form of polynomial or NURBS curves. The parameterization

technique proposed in Chapter 3 belongs to the latter; in the same chapter, a more detailed

literature overview of these methods is given. Constructive CAD tools generate geometries

from scratch and, if necessary, can vary the topology of the model. They are defined by

a sequence of instructions intrinsically accommodating geometric constraints, but they

may over-constrain the designed shapes. Moreover, constructive CAD methods are not

easily differentiable [19]. Pure NURBS-based methods may overcome this problem [20].

Such methods use NURBS control points’ coordinates, contained in B-Rep models, to

directly deform the shape, allowing for rich design spaces. It is challenging to generalize

such methods to cases with many trimmed patches by keeping adjacent NURBS surfaces

watertight and eventually tangent when control points are displaced. In [21], a technique for

respecting geometric continuities over NURBS patch interfaces, which relies on the discrete

filtering of the NURBS control point displacements, is presented; this provides a rich design

space and shape derivatives. However, NURBS-based methods can be impractical in some

industrial cases, the CAD models of which may contain thousands of NURBS control

points. The third class of methods, namely space morphing techniques applied to B-rep

models, displaces the NURBS control points indirectly; the parameterization technique

proposed in Chapter 2 belongs to the latter. These introduce just a few design variables and

provide smooth shape variations, even for CAD models with thousands of NURBS control

points; however, these methods are not commonly found in the literature. An approach

based on FFD, proposed in [22] for structural analysis, applies the same transformation to

both the CAD model and the computational mesh. However, the resulting CAD model only

approximates the corresponding mesh surface, and, in [22], the method is demonstrated

only for small shape modifications. Commercial CAD packages, such as Rhino [23], allow

using morphing boxes to alter a single NURBS surface. The software developed in [18] can
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approximately bring the shape of an RBF-morphed mesh back to CAD. In [24], a method

for editing B-Rep solid models via direct push-pull modeling of patches is proposed. In this

method, the user must specify the target location and orientation of the push-pulled faces.

Then, the solid undergoes a boundary regeneration process by combining the new surface

locations with the topology information. In this process, the solid model regeneration may

fail due to geometry-topology inconsistency; [24] introduced a paradigm to compute valid

solid models in such cases, by changing the topology. Despite its robustness, it cannot

easily be used for shape optimization.

The re-parameterization of geometries available in standard B-Rep formats, such as

STEP files [25, 26], in which shapes are represented by a collection of connected patches,

is a key component of the method proposed in this chapter. The method is based on shape

morphing techniques applied to these NURBS-based B-Rep models. Shape morphing relies

on the RBF interpolation model and decouples the construction of the reference geometry

from the parameterization to be used during the optimization; moreover, it can handle

complex geometries with a user-defined number of parameters, which result in well-scaled

design variables for use in shape optimization.

2.2 Shape-Morphing Strategy and Theoretical Background

Before the details of the proposed shape-morphing technique are presented in Section 2.3,

Section 2.2.1 concisely summarizes the main phases of the parameterization procedure

and its integration into shape optimization. They are based on two mathematical entities,

NURBS and RBF, for which the concepts and notations used in this chapter can be found

in Sections 2.2.2 and 2.2.3.

2.2.1 Shape-Morphing Strategy

Figure 2.1 illustrates the workflow defining the shape parameterization strategy based on

morphing. Firstly, the reference shape is imported in the form of a B-Rep model, practically

as a STEP file. Because STEP files might contain non-NURBS entities, these are converted

to NURBS, making them compatible with what follows. Handles, the purpose of which is

to deform the shapes, are then positioned on or around these NURBS patches. To increase

morphing flexibility, a series of successive deformation actions, each corresponding to a set

of handles, is necessary; according to them, shapes are incrementally deformed (multi-step

deformations). The displacements of the handles are used as design variables during the

optimization. Section 2.3 presents the details of the procedure for deforming sets of NURBS
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Figure 2.2: Left: Two intersecting/trimmed NURBS surfaces and bi-directional control nets.

The shared curve (dashed) and trimmed parts of the surfaces, invisible in the CAD model, are

illustrated. Right: Trimmed parametric domains of the two surfaces along with the dashed

p-curves corresponding to the shared curve. The green point is one of the many test points

controlling geometric continuities; see Section 2.3.2. It is represented on the curve-on-surface

and the two p-curves.

surfaces, following the displacement of handles, while satisfying geometric continuities.

This procedure results in modified B-Rep models to be exported as STEP files. Associated

with the same task is the deformation of the CFD surface mesh of the reference shape by

adapting it to the deformed B-Rep model: the algorithm is illustrated in detail in Chapter

4 and summarized as follows. To this end, the NURBS parametric coordinates of each

surface mesh node are needed. If not available from the mesh generation software, these

should be reconstructed by projecting mesh nodes onto the NURBS parametric space of

the patches pertaining to the reference B-rep model. Once the shape has been morphed, the

trimming-curves displacements of the NURBS surfaces in the parametric space drive the

RBF-based displacement of the nodal parametric coordinates; the so-computed new nodal

parametric coordinates determine the new positions of the surface mesh nodes. The last

phase is the displacement of the 3D CFD mesh, for which the RBF-based method described

in Chapter 5 is used.

2.2.2 NURBS and Relevant Issues

NURBS are analytical functions describing 2D or 3D curves up to complex 3D surfaces.

Because of their flexibility, NURBS are frequently employed in CAD systems. In standard

vendor-neutral file formats for exchanging information among CAD systems, such as the

STEP file format, B-Rep primarily (though not exclusively, as noted above) relies upon
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NURBS patches, for the purpose of portability. Using NURBS patches to represent shapes

enables the exchange of information in standard CAD format.

A NURBS curve is a parametric curve mathematically defined as

C(u) =

I∑

i=0

Ri(u)Pi , (2.1)

where Pi are the control points forming a control polygon/net, Ri(u) are the rational basis

functions, and u is the parameter. If Pi ∈ �2, C(u) is a curve on a plane else, if Pi ∈ �3,

C(u) is a curve in the 3D space. Similarly, a NURBS surface is a two-parameter (u and v)

function, defined as

S(u, v) =

I∑

i=0

J∑

j=0

Ri, j(u, v)Pi, j . (2.2)

In this case, the control points Pi, j ∈ �3 form a bi-directional control net [27]. More

information about NURBS theory is provided in Appendix A.

NURBS surfaces have the limitation of being four-sided patches; thus, to create complex

shapes, many trimmed patches must be combined. Trimming is the operation that “cuts”

surfaces using curves lying on them, increasing the flexibility in shape representation. For

instance, a surface with a hole can be represented by a single trimmed surface. The trimmed-

away portions of the surface are neither discarded nor rendered when showing the B-Rep

model. Curves used for trimming surfaces are called curves-on-surface (Ccs) or p-curves

(Cpc) if represented in the parametric space of surfaces sharing the 3D curve-on-surface.

P-curves and curves-on-surface are also used to describe the natural edges of surfaces. The

portion of the surface that is part of the B-Rep model is the parametric domain Ω, defined

by a set of p-curves forming one or more loops in the parametric space of a surface, as

illustrated in Figure 2.2, where the shared Ccs corresponds to two Cpc in the parametric

domains of the two intersecting surfaces. Trimming is a crucial operation for building

complex shapes. However, it may introduce gaps between intersecting NURBS patches;

continuity across these interfaces (to a specified tolerance) is ensured by appropriate control

points positioning rather than by making control points on the edges of the surfaces coincide.

In a B-Rep model, G0 continuity does not require that adjacent NURBS surfaces share the

same number or distribution of control points. Figure 2.2 illustrates a simple example in

which the control points of a curve-on-surface do not coincide with those of the adjacent

surface. Such configurations create geometric continuity issues when B-Rep models are

changing during an optimization loop; a remedy to this is presented in Section 2.3.2.
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Table 2.1: RBF activation functions.

Name φ(r) Used for
See

Section

Inverse

multiquadric [28]

((
r

σ

)2

+ 1

)−1/2
Shape morphing and

3D mesh displacement
2.3.1, 5.3.1

Wendland C2 [29]






(

1 − r
σ

)4 (

1 + 4 r
σ

)

if r < σ

0 if r ≥ σ
Shape morphing 2.3.1

Wendland C0 [29]






(

1 − r
σ

)2
if r < σ

0 if r ≥ σ
Continuity fixing and

3D mesh displacement
2.3.2, 5.3.2

Thin plate

spline [30]
r log rr Displacement of

parametric coordinates
4.1

2.2.3 RBF-Based Interpolation and Relevant Issues

RBF interpolation is extremely versatile since it can interpolate values given at scattered

points by returning the exact values at those points. In this study, quantities to be interpolated

are the known 2D or 3D displacements defined at distinct source nodes, which are

• the handles of the (3D) parameterization in Section 2.3.1,

• NURBS control points (3D) in Section 2.3.2,

• NURBS parametric coordinates (2D) in Section 4.1,

• mesh nodes (3D) in Section 4.1 and Chapter 5.

Radial basis functions are real-valued functions φ : �→ � depending only on the distances

of a point x ∈ �Q from the so-called RBF interpolation sources xk ∈ �Q, k ∈ [1,K]. The

RBF deformation function d : �Q → �Q takes the form

d(x) =

K∑

k=1

ckφ(‖x − xk‖), (2.3)

where ‖.‖ is the Euclidean distance, and the coefficients ck ∈ �Q are computed so as to

correctly reproduce the imposed displacements d(xk) = δk ∈ �Q, ∀k ∈ [1,K] at the source

nodes; this requires the numerical solution of a K × K linear system. Because the method

proposed in this chapter requires the solution of linear systems of small size, computational

cost is not an issue, even in multi-step deformations.

The behavior of the interpolation is profoundly influenced by the chosen RBF activation

function φ [31], with either local or global support. Activation functions used in this thesis

are reported in Table 2.1; some of them depend on σ which also affects the interpolation

[31]. In locally supported RBF activation functions, σ determines the region of influence
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of the RBF around each source node; this implies that φ(r) , 0 if and only if r < σ. The

displacement of the handles dictated by the optimization is interpolated at the NURBS

control points using the RBF method, with the Wendland C2 function (if the user wishes

to apply local deformations) or the inverse multiquadric function (for global ones). These

functions are bounded (|φ(r)| ≤ 1, ∀r ≥ 0) and strictly monotonically decreasing (φ(r1) >

φ(r2), ∀r1 < r2, r1 ≥ 0); that is, the displacements interpolated at the NURBS control points

fade away far from the handles, providing smooth and intuitive deformations (Section 2.3.1).

Nodal displacements in the 2D parametric space of NURBS surfaces are computed using

the σ-free thin plate spline function, which has excellent interpolation capabilities in spaces

where deformations are known along the boundaries and interpolated at the internal nodes

(Section 4.1). Local deformations of surface mesh nodes (Section 4.1) and NURBS control

points (Section 2.3.2) are carried out with the Wendland C0 function. In RBF interpolations

with global support, equation 2.3 is extended by additional polynomial terms to guarantee

the exact affine displacement by respecting translation, rotation and scaling. These terms

are not included in this chapter; the reader may find more about them in Section 5.2, in

which additional aspects of RBF interpolations are analyzed, or [32].

2.3 RBF-Based B-Rep Shape-Morphing Framework

In the proposed method, shapes described by or transformed into NURBS patches undergo

RBF-based morphing, see Section 2.3.1. By doing so, geometric continuities at the

interfaces of NURBS patches can be jeopardized. Section 2.3.2 proposes an approach for

preserving positional (G0) and tangential (G1) continuity between surfaces. Hereafter,

surfaces and curves of a B-Rep model are not indexed.

2.3.1 B-Rep Deformation Driven by Handles

During the optimization, shapes are modified by associating displacement vectors δk,

k ∈ [1,K] to a user-defined number of handles Hk. These displacements are interpolated

at the NURBS control points Pi, i ∈ [0, I] and Pi, j, (i, j) ∈ [I × J] of curves Ccs(u) and

surfaces S(u, v). Changed NURBS curves Ĉcs(u) and surfaces Ŝ(u, v) are created by means

of the same rational basis functions Ri(u) and Ri, j(u, v) as the reference ones and displaced

control points P̂i and P̂i, j. The so-morphed NURBS curves and surfaces are computed as

Ĉcs(u) =

I∑

i=0

Ri(u) (Pi + dM(Pi))
︸           ︷︷           ︸

P̂i

(2.4)
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Figure 2.3: Deformation of two NURBS curves describing a 2D airfoil shape. The NURBS

curves alter by interpolating the displacements δ of the RBF handles H to the control points P.

and

Ŝ(u, v) =

I∑

i=0

J∑

j=0

Ri, j(u, v)
(

Pi, j + dM(Pi, j)
)

︸              ︷︷              ︸

P̂i, j

, (2.5)

where dM(.) is an RBF deformation operator (equation 2.3) trained on the displacements

δn of Hk, k ∈ [1,K]. A 2D example is illustrated in Figure 2.3: two handles are used to

deform an airfoil shape described by two NURBS curves, separately for its pressure and

suction sides, which together form the B-Rep model.

In shape morphing, a frequent requirement is to keep certain parts of the overall shape

fixed. Two possible ways to fulfill this requirement are proposed. In the first, although

the entire geometry is considered deformable, fixed handles coinciding with the NURBS

control points, describing the portion of the shape that should remain intact, are inserted.

This option must be used if a smooth transition from deformable to fixed parts is required.

For example, this approach is used in Section 2.4.2 to keep the inlet and outlet sections

of a duct fixed while deforming its central part, ensuring a smooth transition in between.

The other option is to deform only a subset of the NURBS surfaces in the B-rep model.

After the deformation action, the p-curves at the intersection of deformed and undeformed

surfaces are updated by re-trimming. This allows the displacement of the intersection lines

over the fixed surfaces while maintaining the validity of the CAD model. This approach is

used in Section 2.4.3 to redesign an aircraft wing while keeping its fuselage fixed and, in

Section 5.5.4 and Chapter 7, to keep the same axisymmetric hub and shroud surfaces of a

stationary blade-row while deforming the blade itself. Updated p-curves in the deformed

B-Rep model are denoted by Ĉpc.

The RBF interpolation offers flexibility in shape modifications, allowing handles to be
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Figure 2.4: Two-step deformation of an airfoil shape. ∆1 = [δ1, δ2]T are the displacements of

the set of handlesH1 = [H1,H2]T which are active in the first step (red). ∆2 = [δ3, δ4]T are

the displacements of the set of handlesH2 = [H3,H4]T which are active in the second step

(green). Top-left: The first step, in which active handles are marked in red and passive in green.

New active handles are used to train the deformation function d1 : �2 → �2, which is used

to displace the passive handles from positionsH2 toH ′2 together with the shape. Top-right:

The second step, in which green handles become active. Active handles are used to train the

deformation function d2 : �2 → �2 to further displace the shape deformed by d1. Bottom:

Schematics for the construction of the two-step deformation function dM : �2 → �2.

placed in arbitrary locations. For even higher flexibility, multi-step deformations1 can be

used: these are performed one after the other to deform surfaces incrementally. In each step,

different sets of handles are used. Using more than one step makes it possible to perform

more complex shape modifications, defining multiple sets of handles with increasing levels

of control. Practically, the use of a few handles producing low-frequency deformations

and many handles making high-frequency ones is recommended. In most cases, this

gives rise to a two-step deformation approach. However, the proposed method and the

programmed software support any number of steps. By solving the RBF problems (one

for each step) sequentially, it is possible to use various activation functions and σ values.

It is recommended that handles responsible for low-frequency deformations be placed at

a distance from the shape; just a few of them are usually enough. Activation functions

associated with these handles should be of global support. In contrast, handles responsible

for high-frequency deformations should be placed on or next to the shape surface, in areas

where higher deformation resolution is needed. The corresponding activation functions

should be of local support. Depending on the application, users can choose whether handles

1”Multi-step deformations” denotes a sequence of distinct deformations and not the division of a single

deformation into many steps.
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move along the axes of the Cartesian or cylindrical coordinate system.

One of the metrics that can be used to measure the performance of the proposed method

is the Parametric Effectiveness (PE) [33, 34]. PE is used to compute the degree to which

the proposed method alters the search space compared to an optimization controlling

NURBS control point positions directly. PE is the ratio of the maximum objective function

improvement that can be achieved using the parameterization in hands to the one that

could be achieved if surface nodal points were free to move independently; both must be

computed with the same root-mean-squared boundary displacement. PE requires derivatives

computed from an available adjoint run [35]. The definition of PE is provided in Appendix

G.

Unlike single-step RBF-based deformation, in which all handles interact with each

other, the use of various sets of handles allows successive modifications over the same part

of the shape. Each step allows deforming the shape with a different geometric modeling

paradigm. However, to maintain the modeling paradigm imposed by the user at each

step, sets of handles must be displaced hierarchically. In each step, a distinction is made

between active and passive sets of handles. The former is a single set used to train the

RBF deformation function of the current step. The latter includes all sets that will become

active in the subsequent steps; their position is passively displaced by the RBF deformation

functions of all previous steps. More precisely, to perform an S -step deformation, handles

must be organized in S setsH s, s ∈ [1, S ]:

H1 = [H1, · · · ,Hn1
]T, H2 = [Hn1+1, · · · ,Hn2

]T, · · · ,

HS = [HnS−1+1, · · · ,HN]T , 1 ≤ n1 < · · · < nS−1 < nS ≡ N .
(2.6)

For an S -step deformation, the operator dM in equations 2.4 and 2.5 includes the deforma-

tion functions of all steps, namely dM(x) = (dS ◦ dS−1 ◦ ... ◦ d1)(x) for S steps, where the

sth deformation function is trained on the set

H
′
s =





Hns−1+1+ (ds−1 ◦ · · · ◦ d1 ◦ d0)(Hns−1+1)

...

Hns−1 + (ds−1 ◦ · · · ◦ d1 ◦ d0)(Hns−1)

Hns
+ (ds−1 ◦ · · · ◦ d1 ◦ d0)(Hns

)





, (2.7)

for the set of displacements ∆s = {δn, n ∈ [ns−1 + 1, ns]}; d0(x) is the null deformation

function (x = d0(x)).

This process is better explained using the following pair of examples. The first one
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concerns the arbitrary deformation of an airfoil. In Figure 2.4, the first deformation step

makes low-frequency shape modifications and, also, displaces the position of the handles

of the second step. The second step makes high-frequency shape modifications. In the

second step, handles placed close to the surface remain close to it even after the first-step

deformation, maintaining the same modeling paradigm prescribed on the reference shape.

Figure 2.4 also illustrates the composition of a two-step deformation function. The second

example, shown in Figure 2.5, is concerned with the shape optimization of the double

elbow duct further analyzed in Section 2.4.2. The duct shape is altered by displacing two

sets of handles corresponding to two deformation steps. In the first step, the four active

handles deform the duct shape and are used to displace the passive handles of the second

step (from the “blue” to the “black” position). In the second step, the second set of handles

becomes active and additionally deforms the shape through its displacement.

In the 2D airfoil case of Figure 2.3, after the deformation, C0 continuity at the lead-

ing and trailing edges is guaranteed because the first and last control points of the two

NURBS curves coincide. In fact, if two control points Pα and Pβ coincide before the

transformation (Pα ≡ Pβ), this will be the case for the deformed shape, too, because

of dM(Pα) ≡ dM(Pβ). However, in 3D CAD models, this is generally not the case, and

positional and tangential (G0 and G1) continuity between surfaces must be recovered after

the RBF-based deformation by repositioning some NURBS surface control points. For

example, any shape-morphing action applied to a CAD model, such as the DPW6 wing-

body configuration, Figure 2.6, would break the G0 continuity of some surfaces, rendering

the CAD model invalid. The DPW6 is an aerodynamic model representative of a modern

transonic commercial aircraft with the CAD model available [36]. The wing geometry is

defined by 9 NURBS patches, containing 34,765 control points overall, whereas the half of

the fuselage is formed by 23 patches, containing 134,128 control points overall. Figure 2.6

illustrates the shape-morphing action based on a two-step deformation. In the first step, one

handle, which is allowed to move in the xz-plane, controls the overall shape of the wing.

In the second step, handles placed close to the leading and trailing edges control the wing

locally through their displacements in the z-direction; displacements in the x-direction are

not allowed in order to keep the axial chord of the wing constant. The fuselage shape is

excluded from the morphing actions and its shape remains intact. The deformation action

smoothly changes the shape of the wing but creates gaps, such as those at the narrow

trailing edge surface or over the small surface at the tip of the wing, which renders the

deformed CAD model temporarily invalid, Figure 2.7. In Section 2.3.2, a procedure for

repairing discontinuities of these kinds is proposed.
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Figure 2.5: Double elbow duct. Reference (blue) and optimized (red) geometry for minimum

total pressure losses. The shape is altered by displacing the handles (spheres) using a two-step

approach. The first step is based on 4 handles (large spheres), whereas the second on 30 handles

(smaller spheres). Handles are shown in their initial (blue) and final (red) positions. Moreover,

the intermediate (black) positions of the handles of the second step are shown. These are

computed after the deformation action of the first step. Inlet and outlet sections are kept intact

by fixed handles (not shown), coinciding with the NURBS control points.



24 2. The B-Rep-Morpher Parameterization Tool

Figure 2.6: DPW6 aircraft. Shape deformation. The fuselage shape remains intact while the

wing is deformed. The initial shape of the wing and the initial handle positions are shown

in blue, the deformed wing and the final handle positions in red. The deformation action is

carried out in two steps; the black spheres show the positions of the handles at the beginning of

the second step.

Figure 2.7: DPW6 aircraft. G0 continuity fixing. The RBF-based displacements of the

NURBS control points create gaps at joints, violating G0 continuity. The surfaces are sewed

by minimizing the squared distances between test points, here illustrated as red spheres placed

along the edges of the CAD model. Top: Close-up view of a narrow surface at the wing trailing

edge, top-left, and a small surface at the wing-tip, top-right, prior to the fix. Bottom: Same

close-up views after the fix.
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2.3.2 Geometric Continuity Correction

As mentioned above, during the RBF deformation, NURBS control points are displaced in

a way that generally violates continuity between neighboring NURBS patches in the B-rep

model, which needs to be corrected. G0 continuity is ensured by “sewing” the p-curves

Ĉpc(u) of the deformed surfaces to the corresponding deformed curves-on-surface Ĉcs(u)

by modifying the surfaces. This approach requires an evaluation of the G0 continuity at

test points distributed on the curves-on-surface. Figure 2.2 shows a single test point on a

curve-on-surface and the corresponding p-curves of adjacent surfaces; Figure 2.7 illustrates

some test points in the Cartesian space for the DPW6 B-rep model. These test points

ucs,t, t ∈ [1,NT ] are distributed in the parametric space of the curves-on-surface Ccs of the

reference B-Rep model, and the corresponding parameters upc,t of each p-curve Cpc in the

corresponding surface S are computed by solving

min
upc,t

∣
∣
∣
∣

∣
∣
∣
∣S( ut, vt

︸︷︷︸

Cpc

(

upc,t

)

) − Ccs

(

ucs,t

)
∣
∣
∣
∣

∣
∣
∣
∣ . (2.8)

Such a minimization problem is solved with Newton’s Method (Appendix C). Multiple

ways to compute (by equations 2.1 and 2.2) the same 3D point on the surface of the model,

up to a tolerance, are established; in fact, for all test points, Ccs

(

ucs,t

) ≈ S
(

Cpc

(

upc,t

))

.

After the B-Rep model is deformed, Ĉcs

(

ucs,t

)

and Ŝ
(

Ĉpc

(

upc,t

))

no longer coincide. In

order to fix it, a minimization problem is set up to reduce the distance between the points

computed through the deformed curves-on-surface Ĉcs

(

ucs,t

)

and p-curves Ŝ
(

Ĉpc

(

upc,t

))

.

This minimization problem uses a subset of the control points P̂Γ := [∀ P̂i, j : (i, j) ∈ Γ] in

each surface Ŝ as DoFs. Namely, the minimization problem is defined for each surface as

min
∆P̂Γ

CG0(∆P̂Γ) = min
∆P̂Γ

NT∑

t=1

∣
∣
∣
∣

∣
∣
∣
∣ Ŝ

(

Ĉpc

(

upc,t

))

− Ĉcs

(

ucs,t

)

+

+
∑

(i, j)∈Γ
Ri, j

(

Ĉpc

(

upc,t

))

∆P̂i, j

∣
∣
∣
∣

∣
∣
∣
∣

2
, (2.9)

where Ŝ
(

Ĉpc

(

upc,t

))

is the point computed on the deformed surface, Ĉcs

(

ucs,t

)

is the point

computed on the deformed curve and ∆P̂Γ := [∀ ∆P̂i, j : (i, j) ∈ Γ] are the corrections to

the surface control points identified by Γ. Γ is the set of indices defined as

Γ =

NT⋃

t=1

Γt , Γt = ∀(i, j) ∈ [I × J] :
Ri, j(ut, vt)

∑I
l=0

∑J
m=0 Rl,m(ut, vt)

≥ R̄t , (2.10)
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where R̄t is a threshold defined by averaging all non-zero Ri, j(ut, vt). It is necessary to

modify only the control points identified by Γ, instead of the full set (i, j) ∈ [I × J], in order

to well pose the minimization problem of equation 2.9. Due to the local support property of

NURBS, many control points might play no role in minimizing the cost function CG0(∆P̂Γ).

To avoid singularities in the Hessian matrix derived from CG0, these control points must not

be included in the minimization problem. Excluding control points that have little influence

also improves robustness and convergence rate. Test points are automatically arranged on

the curves-on-surface based on distance, curvature and knot-distributions criteria. Since

NURBS are polynomial expressions, testing the G-continuities of two NURBS entities at a

finite number of points is sufficient to guarantee continuity along the entire curve-on-surface.

The proposed method based on the minimization of CG0(∆P̂Γ) overcomes over-sampling,

with the only extra burden being the increased computational cost for computing CG0;

however, the number of DoFs (∆P̂Γ) of the cost function is independent of the number of

test points. When computing the new surface according to the corrections ∆P̂Γ, since these

corrections are applied only to the control points identified by Γ in each NURBS surface,

the resulting shape might be irregular; that is, some rows of control points might move while

others remain unaffected. An additional procedure is, therefore, applied to regularize the

deformation induced by the corrections. The displacements ∆P̂Γ := [∀ ∆P̂i, j : (i, j) ∈ Γ]

computed by minimizing CG0(∆P̂Γ) are propagated to the rest of the control points by the

RBF interpolation. The locally supported RBF activation function used in this phase is the

Wendland C0 (Table 2.1) with σ chosen to be four times the maximum displacement norm,

σ = 4 max(i, j)∈Γ
∥
∥
∥∆P̂i, j

∥
∥
∥, so as to smoothly propagate the deformation while retaining a

local effect. The deformed G0-continuous surfaces are given by

ˆ̂S(u, v) =

I∑

i=0

J∑

j=0

Ri, j(u, v)
(

P̂i + dC(P̂i, j)
)

, (2.11)

where dC is the interpolation operator (C stands for correction). As mentioned above, the

minimization problem of equation 2.9 is solved using Newton’s method. The latter requires

the computation of the Hessian matrix. The gradient of CG0 w.r.t. the displacement of a

control point ∆P̂l,k is:

∂CG0

∂∆P̂l,k

= 2

NT∑

t

Rl,k(ut, vt)




Ŝ (ut, vt) − Ĉcs

(

ucs,t

)

+
∑

(i, j)∈Γ
Ri, j(ut, vt)∆P̂i, j




. (2.12)
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The second derivatives of the cost function CG0 w.r.t. two corrections ∆P̂i, j and ∆P̂l,k are

∂2CG0

∂∆P̂i, j∂∆P̂l,k

=





2
∑NT

t Ri, j(ut, vt)Rl,k(ut, vt) 0 0

0 2
∑NT

t Ri, j(ut, vt)Rl,k(ut, vt) 0

0 0 2
∑NT

t Ri, j(ut, vt)Rl,k(ut, vt)





.

(2.13)

Since the Hessian matrix is constant (i.e., it does not depend on the NURBS control point

positions), and many of its entries are zero due to the local support property of the NURBS,

the Hessian matrix for each NURBS surface is inverted once with a sparse decomposition

[37]. Similarly, the computationally expensive rational basis functions that appear in the

objective function and its first derivative are computed just once and re-used, since they

do not change during the minimization of CG0. In fact, by pre-computing these quantities,

it is possible to reduce the time needed to perform a Newton iteration by as much as two

orders of magnitude. Moreover, these minimization problems, being independent of each

other, can be solved in parallel. In some B-Rep models, the distribution of control points

does not allow the optimization to reduce the CG0 objective function sufficiently to make

the CAD model valid. In fact, a curve that contains too few control points cannot be sewed

to another curve effectively due to the limitation in shape flexibility. In this case, additional

knots are inserted into the reference B-rep model.

G1 continuity is corrected by solving a constrained minimization problem: on condition

that G0 continuity is satisfied, G1 continuity requires that adjacent NURBS surfaces share

the same tangent plane along the shared curve-on-surface. For two adjacent surfaces

S1 and S2 that are G0 continuous at the points (ut, vt)S 1 on S1 and (ut, vt)S 2 on S2 (i.e.

S1 ((ut, vt)S 1) � S2 ((ut, vt)S 2)), the G1 continuity condition at such test points is expressed

as

det

(

∂S1(u, v)

∂u

∣
∣
∣
∣
∣(

ut, vt)S 1

,
∂S1(u, v)

∂v

∣
∣
∣
∣
∣(

ut, vt)S 1

,
∂S2(u, v)

∂u

∣
∣
∣
∣
∣(

ut, vt)S 2

)

= 0 , (2.14)

which is a measure of the coplanarity of the tangential vectors computed at the test points

on the two surfaces.

From equation 2.14, a differentiable cost function can easily be derived as the summa-

tion of the determinants of all test points shared by two or more surfaces and minimized by

displacing the surface NURBS control points similarly to the G0 correction case. Whereas
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G0 continuity correction requires solving an independent unconstrained problem for each

surface, G1 continuity calls for the solution of a constrained optimization problem involving

all surfaces; the cost function for the latter involves the displacement of the control points

of all deformable surfaces of the B-Rep model. However, the RBF deformation function is

implicitly smooth [38], and in many cases, G1 continuity does not need to be fixed. The

Sequential Quadratic Programming (SQP) method is used to handle the gradient-based

constrained optimization with many design variables. The corrective deformation, which

ensures G1 continuity, is interpolated with the RBF method at all NURBS control points.

2.4 Method Demonstration in CFD Shape Optimizations

This section demonstrates the application of the proposed method and the programmed

software in three shape optimization case studies. First, the method is used in a 2D case, to

(re-)parameterize an airfoil by also computing its effect on the search space through the

computation of the PE. Then, the method contributes to the gradient-based optimization of

a double elbow duct and a multi-objective EA-based optimization of an aircraft wing. All

CFD simulations are performed using the PUMA solver, employing the Spalart-Allmaras

turbulence model (Appendix E). Here, the emphasis (within the optimization loop) is

on the capabilities of the B-Rep-Morpher. However, to perform the optimization task,

additional tools that are presented in some of the next chapters are also used. In detail, the

differentiation of the parameterization tool is presented in Chapter 4, as well as the method

to adapt the surface mesh to the changed shapes. Then the volume meshes are displaced

with the two-step RBF-based mesh displacement software developed in this thesis and

described in Chapter 5. EA-based optimizations are performed using the in-house software

EASY (Appendix D), whereas gradient-based optimizations rely upon the SQP (Appendix

C) and the adjoint methods (Appendix E). Although the proposed method and software

support an arbitrary number of deformation steps, all applications presented herein make

use of a two-step deformation approach.

2.4.1 RAE-2822 Airfoil Optimization

Several studies on the RAE 2822 airfoil can be found [39]. The free-stream flow conditions

correspond to test case 6 of [40] with Mach number equal to 0.725, flow angle 2.92◦ and

Reynolds number 6.50 × 106. The quantity to be minimized is the drag coefficient CD.

Inequality constraints are imposed on the lift coefficient CL ≥ CL
0, the pitching moment

coefficient Cm ≤ Cm
0 and the airfoil area A ≥ A0. CL

0, Cm
0 and A0 are the corresponding
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Figure 2.8: RAE 2822 airfoil. The NURBS-based parameterizations introducing the NURBS

control points ordinates as DoFs are illustrated. During the optimization, the control points

corresponding to the leading and trailing edges are kept fixed. From top to bottom, the airfoil

is parameterized with 12, 14 and 16 DoFs.

Figure 2.9: RAE 2822 airfoil. The RBF-based parameterizations introducing the RBF handles

displacements in the y-direction as DoFs are illustrated. The RBF handles displacements

control the position of the NURBS control points. During the optimization, the handles

corresponding to the leading and trailing edges are kept fixed. From top to bottom, the airfoil

is parameterized with 4, 6 and 8 DoFs.

Figure 2.10: RAE 2822 airfoil. Original shape compared to the ones with improved drag

obtained from different shape optimizations employing the NURBS control point positions and

RBF handles displacements as DoFs. Differences in the shapes are barely visible.
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Figure 2.11: RAE 2822 airfoil. Mach number fields around the initial and optimized airfoils.

Top-Left: the initial shape. Middle: shapes optimized with the RBF-based parameterization;

from left to right, the airfoil is parameterized with 4, 6 and 8 DoFs respectively. Bottom:

shapes optimized with the NURBS-based parameterization; from left to right, the airfoil is

parameterized with 12, 14 and 16 DoFs respectively.

Figure 2.12: RAE 2822 airfoil. CD improvement obtained by optimizing the shape of the

airfoil with different numbers of DoFs and two different parameterization methods. Constraints

are imposed on CL, Cm and A. C0
D

is the drag coefficient of the initial shape.
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values of the initial shape. Leading and trailing edges are kept fixed, which results in

constant axial chord length. The gradient-based optimization is conducted using an SQP-

based algorithm by also bounding the DoFs. The continuous adjoint and the NURBS

derivatives are used to compute the gradients.

Lift, drag and pitching moment coefficients are, respectively, defined as

CL =
2FL

ρu2S
, CD =

2FD

ρu2S
, Cm =

M

qS c
, (2.15)

where FL and FD are the lift and drag forces, M the pitching moment, u the speed of the

airfoil relative to the fluid, S the reference surface area, q the dynamic pressure and c the

airfoil chord-length.

The purpose here is to assess the quality of shapes computed by the proposed paramet-

erization method compared to the outcome of an optimization with the NURBS control

points’ coordinates as DoFs. To this end, the parametric effectivenesses (Appendix G) in

either parameterization are also computed. In detail, the two parameterization methods to

be compared, with different numbers of DoFs each, are:

• Three airfoil parameterizations based on NURBS curves with varying numbers of

control points each. NURBS curves for the pressure and suction sides with 8, 9 or 10

control points are used. During the optimization, only 6, 7 or 8 control points per

curve, respectively, are allowed to move in the y-direction yielding 12,14 or 16 DoFs

in total. These are illustrated in Figure 2.8.

• Three parameterizations based on RBF handles which control the NURBS curves.

The pressure and suction sides are approximated using NURBS curves with 10

control points each; their positions are controlled by 6, 8 or 10 handles placed around

the airfoil, Figure 2.9. During the optimization, 4, 6 or 8 handles, respectively, move

in the y-direction; thus, the optimization is conducted with 4, 6, or 8 DoFs. These are

illustrated in Figure 2.9. The inverse multiquadric activation function with global

support is used.

The PE of the NURBS-based parameterization with 16 DoFs is equal to 0.65 for

the baseline shape. The use of the proposed method with 8 DoFs yields a PE value of

0.55. Even if the parameterization based on handles reduces the number of DoFs by

50%, the PE is, however, decreased by just 16%. Figure 2.12 illustrates the CD that the

two parameterization methods with different numbers of DoFs achieve. As expected, by

increasing the DoFs, slightly lower CD values result. However, the reduction in the number

of DoFs by the proposed method implies just a small decrease in the capabilities of the
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Figure 2.13: Double elbow duct. Convergence history in terms of equivalent flow solution

counts (the gradient computation cost is about that of one flow solution) of four SQP-based

optimizations using various numbers of DoFs. One is conducted by using 12 DoFs (first

deformation step) and the other by using 102 DoFs (first and second steps). Two more

convergence histories are obtained by suspending the optimization with 12 DoFs and re-

starting it with 102 DoFs, by retaining the values of the first 12 DoFs; these are referred to as

“Continuation”.

optimization. The proposed parameterization finds designs that reduce CD up to ∼20%.

Comparatively, the pure NURBS parameterization finds designs that reduce CD up to ∼22%

but with significantly more DoFs. To conclude, the parameterizations based on NURBS

curves controlled by RBF handles can reach an almost similar CD reduction and shape with

a reduced number of DoFs, compared to that based purely on NURBS, for the case under

consideration. Figure 2.10 illustrates some of the improved shapes compared to the initial

one: differences are small. Figure 2.11 illustrates the Mach number field for the initial and

optimized shapes. A shock wave appears over the suction side of the initial airfoil. On

the optimized airfoils, different shock wave patterns appear due to the different shapes;

thus, different values of CL and Cm are computed. However, it can be seen that, for all the

optimized shapes, the shock intensity is significantly reduced and, consequently, the drag

induced by the shock becomes smaller.

2.4.2 Double Elbow Duct Optimization

The double elbow duct B-Rep model is composed of a single untrimmed NURBS surface

with 2,128 control points. The reference shape and parameterization are illustrated in

Figure 2.5. The shape-morphing action is based on a two-step deformation. In the first

step, 4 handles placed off the surface control the entire shape, whereas the second step uses

30 handles on the surface, with local support. Each handle is allowed to move in all three

Cartesian directions, thus contributing three DoFs to the optimization. Therefore, the total

number of DoFs is 3(30 + 4) = 102. Fixed handles are placed at the inlet and outlet, in
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Figure 2.14: Double elbow duct. View of the secondary flow structure at a cross-section

between the two elbows for the reference shape (left) and the ones optimized by employing 12

DoFs (middle) and 102 DoFs (right). Contours represent the normalized velocity magnitude

over the cross-section plane.

positions corresponding to the NURBS control points, to constrain the displacement of

these sections of the duct. The gradient-based shape optimization is conducted to reduce

the mass-averaged total pressure losses ∆pt of the duct defined as

∆pt =

−
∫

S I

ptρV ·n dS −
∫

S O

ptρV ·n dS

∫

S I

(pt − p)ρV ·n dS

, (2.16)

where p is the pressure, pt the total pressure, ρ the density, V the velocity, n the outward unit

vector normal to the surface and S O and S I the duct outlet and inlet, respectively. The fluid

is incompressible, and the Reynolds number based on the hydraulic diameter of the inlet is

equal to 106. Figure 4.8 depicts geometric sensitivities for the displacement of a handle
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along the z-direction. Figure 2.13 compares the optimization convergence histories by using

different numbers of DoFs for the parameterization. The convergence of the optimization

conducted using a “one-shot” run with all 102 DoFs simultaneously is compared to that

obtained by starting with a low-dimensional design space allowing low-frequency shape

changes (first step) and, then, adding the DoFs which are responsible for high-frequency

shape modifications (second step). It appears that a small number of DoFs offers a great

gain in the optimization in the first cycles. In contrast, using all handles simultaneously

from the beginning leads to more extended SQP line searches and higher computational

cost. Specifically, the SQP-based algorithm is able to reduce the total pressure losses w.r.t.

the starting shape by almost 40% using 12 DoFs, at half the cost of the first SQP cycle

employing 102 DoFs, which enables a reduction of “just” 20%. However, after a few cycles,

the latter can make better design improvements by exploiting the greater number of DoFs.

The best convergence rate is obtained by using a sequential optimization strategy in which

only a few DoFs are initially used for a few SQP cycles and the optimization continues

with a larger number of DoFs. This strategy also results in a slightly better design.

Figure 2.5 illustrates the improved geometries computed by the proposed paramet-

erization method and compares them with the reference geometry. Figure 2.14 presents

the secondary flow between the two elbows for the reference shape and the optimal ones,

resulting from optimizations conducted using 12 and 102 DoFs. The first deformation step

changed the duct shape mainly by increasing its cross-sectional area, thus slowing down the

flow, which reduces the wall shear stress and diffusion losses. The increased length between

the two elbows and changes in their curvature contribute to the suppression of secondary

flows and the reduction of centripetal forces required to turn the flow, hence reducing

diffusion losses and areas with flow separation. The second deformation step introduces

more local control and performs local changes; this results to less intense secondary flow

patterns and lower total pressure losses.

2.4.3 DPW2 Aircraft Model Optimization

In this section, aerodynamic shape optimization is conducted for the DPW2 wing-body

configuration [41]. The DPW2 common research model is representative of a commercial

aircraft. The wing geometry is defined by 13 NURBS patches, containing 3,638 control

points overall; half of the fuselage is formed by 11 patches, containing 4,577 control points

overall. Figure 2.16 illustrates the wing parameterization adopted, which is similar to the

one illustrated in Figure 2.6 for the DPW6 test case. That is, in the first step, one handle

is allowed to move in the XZ-plane and controls the overall shape of the wing. In the
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Figure 2.15: DPW2 aircraft. Results of the EA-based optimization for maximum lift and

minimum drag. The wing shapes corresponding to the two Pareto points marked with integers

(1 and 2) are compared to the reference design illustrated in Figure 2.16.

Figure 2.16: DPW2 aircraft. Two selected designs (red) from the front on non-dominated

solutions in Figure 2.15 are shown in comparison to the reference design (blue), with the

corresponding handle displacements. The fuselage shape remains intact (gray). The shape-

morphing action is based on a two-step deformation: the single handle of the first step appears

as the largest sphere.
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second step, handles placed close to the leading and trailing edges control the shape locally

by moving in the Z direction, whereas the fuselage shape is kept intact by excluding the

corresponding surfaces from the morphing action. The intersection between fuselage and

wing is updated by re-trimming. The two-objective shape optimization aims at minimum

drag and maximum lift at an infinite Mach number of 0.75, Reynolds number of 3 × 106

and 0◦ infinite flow angle. The optimization is carried out with EASY; in detail, with a

(5, 10) Metamodel-Assisted EA (MAEA) using RBF metamodels. Figure 2.15 illustrates

the Pareto front for the two objective functions, found at the cost of 250 CFD evaluations;

Figure 2.17 illustrates the pressure distributions on the surface of some of these designs and

the refrence one. On the Pareto front, a solution that increases the CL/CD ratio by 3.0%,

improving both lift and drag, can be identified. Another design improves the CL/CD ratio

by 4.3%; however, in this case, CL increases at the expense of CD. [42] was able to reduce

CD by 2.6% by keeping the CL equal to that of the initial geometry by varying the angle of

attack. A gradient-based method and a CAD-free lattice-based FFD parameterization for

the wing and wing-body junction were used with 96 DoFs overall. A similar improvement

is achieved with the proposed parameterization, yielding ≈ 2.75% reduction in CD while

keeping CL equal to that of the reference geometry, though with just 12 DoFs.
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Figure 2.17: DPW2 aircraft. Total pressure distribution on the surface of three selected designs

from Figure 2.15. Top: reference design. Middle: design marked with 1 in the above-mentioned

figure. Bottom: design marked with 2.





Chapter 3

The GMTurbo Parameterization

Tool

This chapter is concerned with the parameterization of blades with a dedicated blade

parameterization method that exploits fundamental notions of turbomachinery. This method

is programmed at and used by the PCOpt/NTUA (its standard version has been developed

in the context of the PhD thesis of K. Tsiakas [8] and extended in this thesis) and will

be referred to as the GMTurbo parameterization software. The procedure is based on

design parameters that possess a clear physical or geometric meaning and corresponds to

the established construction of turbomachinery rows using the mean-camber-surface of

the blade and profile curves associated with it. GMTurbo is here extended by building

up the blade and casing geometry with NURBS curves and surfaces, which assures high

smoothness of the resulting shape. NURBS curves are also used as input data, allowing for

a flexible control of shapes with a tunable number of DoFs. NURBS patches are exported

to other CAD or meshing software via standard exchange files. The tool is tested in the

generation of blades of axial flow turbomachines. To import existing blade geometries into

the optimization workflow, a re-parameterization tool that performs the conversion from a

B-Rep representation to a GMTurbo-parameterized blade is herein developed.

3.1 Literature Survey on Turbomachinery Parameterization

Compressor and turbine blades are designed and customized for each specific application

in products. Hence, methods to design and optimize the shapes of blades, taking into

account various performance parameters, are essential. Commonly used CAD packages

provide tools for the parameterization of complex geometries, such as surface and solid

39
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modeling. However, these tools are not conveniently applicable to turbomachinery design

and CFD-based shape optimization. Designers favor working with tools which involve

design parameters with aerodynamic and physical meanings. For example, the tangent

direction of the mean-camber-line or -surface at the leading edge of a blade, which is

related to the velocity triangles of the fluid flow, is one of the favored parameters. At the

same time, the shapes created by the design method must be compatible with existing

CAD technologies in order for them to be included in manufacturing workflows and be

compatible with external mesh generation tools and analysis software. Therefore, the

parameterization tool must be equipped with the ability to export the shape in standard

CAD formats, such as B-Reps in STEP or IGES format.

Turbomachinery row parameterization methods have been developed since the advent

of CAD technology. For instance, [43] relies on conformal mapping to produce airfoils

in 2D that correspond to airfoils lying on surfaces of revolution in 3D. [44] recommended

a model to construct axial turbine blade sections, using 11 parameters which define the

position and radii of the leading and trailing edge circles and blade angles, the pressure

and suction sides tangency points on these circles and throat position on the suction side.

The suction side downstream of the throat is represented with an arc, whereas third order

polynomials are used for the upstream part of the suction side and the pressure side. At

junction points, C1 continuity is guaranteed. The method was extended in [45], using

Bezier curves instead of polynomials and circular arcs, raising the number of parameters to

17. In [46], the blade section geometry is formed by two thickness distributions attached

to two parabolic camber-lines. The pressure and suction sides are defined by fourth-order

splines, ensuring C3 continuity at junction points. The method was modified in [47] so

that the central parts of the suction and pressure sides be defined by mapping a desirable

curvature distribution determined using a Bezier curve, leading to smooth Mach numbers

distributions.

Several researchers used Bezier or B-Spline curves, eventually adding a circle at the

leading and trailing edges, to parameterize and, then, optimize blade shapes. In [48], blade

surfaces are constructed by lofting airfoils given as B-spline curves. Airfoils must lie

on planar, cylindrical or conic surfaces. [49] used Bezier curves to model an airfoil. To

ensure curves’ continuity at the leading and trailing edges, some Bezier control points

were aligned. The airfoil was optimized using control points’ coordinates and the stagger

angle as DoFs. [50] employed fourth-order splines to parameterize blade sections, for the

design of transonic turbine rows. [51] combined the B-Spline representation of airfoils

with the typical construction using the camber-line. The B-Spline control points are placed
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combining the camber-line with the thickness distributions. However, coordinates of control

points are generally not suitable for optimizing 3D blades and even less to design shapes.

For this reason, the parameterization should use parameters with physical meaning. [52]

used a shape parameterization method based on Bezier curves to model 3D axial turbine and

compressor rows. The camber-line of each 2D blade section is described by a Bezier curve

with three control points, with their location determined by the leading and trailing edge

blade angles, stagger angle and axial chord. Pressure and suction sides of the blade sections

are defined using two Bezier curves, their role being to superimpose thickness on either side

of the camber-line. The first control point of suction and pressure side curves corresponds

with the leading edge; the second one is placed perpendicularly to the camber-line. The 3D

blade shape is built superimposing 2D blade sections lying on cylindrical surfaces. The

2D sections are stacked using a line passing by the leading or trailing edge or the center

of gravity of the section. A Bezier curve specifies the stacking line. [52] used a similar

approach. The camber-line is defined by a curve with four control points with their location

determined by six design parameters. These are the angular coordinates of leading and

trailing edges in the cylindrical coordinate system, the angles that the camber-line forms

with the tangents to the circles of the surface of revolution and two parameters that regulate

the curve camber. 2D sections are built in a conformal space by adding thickness to the

camber-line and transferred to the 3D space to construct the overall blade shape.

More recently, the progress made in CAD technology has offered the possibility to

develop more advanced parameterization tools. Companies or academic teams have de-

veloped many software packages for turbomachinery design and parameterization for shape

optimization. TURBODesign Suite [53] is a turbomachinery row modeler, based on a

3D inverse design method. The software handles various kinds of machines such as fans,

pumps, compressors and turbines in axial or radial configurations. Rows are generated by

providing data such as the speed of rotation, flow-related quantities at the inlet section,

the meridional profile, blade thickness and the number of blades in the row. PropCad

[54] is a software suite for the geometric modeling of marine propellers. The designs

are generated by resorting to a database of common propeller shapes. The designed geo-

metries may be exported in standard CAD format for further analysis with external tools.

FINE/Design3D [55] is a software suite composed of various tools to design and improve

the multidisciplinary performance of turbomachinery cascades. The suite has parametric

modeling capabilities and provides multiple optimization algorithms. It interfaces with

the mesh generator and CFD solver from the same software house. The BladeModeler

[56] software is a tool for the design of rotating machinery components. It is used to
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design axial, mixed-flow and radial blade components. It allows the inclusion of geometric

features, such as blade fillets, cut-offs and trims as well as the possibility to import complex

tip geometries. BladeCAD [57] is a shape design tool for turbomachinery rows. The tool

requires the definition of the blade cross-sections, which are then skinned into 3D geometry.

Sections are built by providing blade angles, chord length, stagger angle, and thicknesses

distributions. The T4T [58] software was developed for blades design purposes. The tool

satisfies the basic requirements of turbomachinery blade design; it is compatible with CAD,

mesh generators and analysis software through standard CAD output formats.

The use of a CAD package with general applicability, such as SolidWorks [59], to

directly construct parametric models for turbomachinery blades is an alternative approach,

with the substantial advantage that the designer makes use of all the infrastructure of the

CAD package [25]. However, the designer might be asked to build dedicated parametric

models for different types of blades. Additionally, the designer should rely on the geometric

modeling tools of the specific CAD package, and it may be difficult to introduce other

geometric modeling and geometric manipulation methodologies.

The motivation for developing the GMTurbo software [8], presented in this section,

was to create a tool fulfilling essential requirements of turbomachinery row shape design,

compatible with in-house analysis, mesh generation and morphing tools, differentiable (to

be included in adjoint-based shape optimization) and with available and extendable source

code. The method creates the row geometry by first parameterizing the shape of the blade’s

mean-camber-surface and, then, adding thickness. The majority of data given as input to the

parameterization software are NURBS curves defining the meridional shape of the row as

well as other geometric distributions in the spanwise direction. The NURBS curves make

the parameterization method quite flexible, offering also a compact description for a wide

range of blade geometries. To parameterize axisymmetric geometries, conformal mapping

of a surface of revolution on the (m-meridional; θ-peripheral) plane is used. The final shape

is generated by NURBS surface generation techniques such as skinning, revolving and

trimming. NURBS also makes easier joining curves with C1 continuity along the leading

and trailing edges and exporting the shape in standard CAD format easier enough.

The background GMTurbo code has been developed within K. Tsiakas’ PhD thesis [8]

(in the same NTUA research group). In this thesis, it is extended to build the shape repres-

entation in NURBS format, Section 3.2.4 and the re-parameterization tool is developed to

import existing blades into the GMTurbo format, Section 3.3. Section 3.2 illustrates the

whole parameterization method. Two main ingredients used in the method described are

NURBS (Appendix A) and conformal mapping (Appendix B).
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3.2 GMTurbo Parameterization Process

The GMTurbo parameterization process of turbomachinery blades consists of four basic

steps, as follows:

1. Parameterization of the row generatrices and the meridional shape of the leading and

trailing edges, Section 3.2.1.

2. Parameterization of the mean-camber-surface of the blade, Section 3.2.2.

3. Superposition of thickness distribution on the mean-camber-surface to form the blade

shape, Section 3.2.3.

4. Build and export the geometry in standard CAD format, Section 3.2.4.

In the following sections, the term “streamwise” refers to a distribution of data from

inlet to outlet, whereas spanwise refers to a distribution from hub to shroud.

3.2.1 Meridional Shape

The first step of the row construction is the definition of the meridional shape of a single

blade. For rows that revolves around the z-axis, the meridional shape is a projected 2D

rz-space obtained from the cylindrical coordinate space rθz by omitting the coordinate

θ. The meridional shape is defined by four NURBS curves in the rz-space. These define

(a) the hub generatrix, (b) the shroud generatrix, (c) the trace of the leading edge and (d) the

trace of the trailing edge. Inlet and outlet boundaries are added to the meridional projection

by connecting hub and shroud with a segment. Overall, these six curves determine an

area called meridional contour for which a parameterization h : [0, 1]2 → �2 is defined as

follows:

h(u, v) = (r(u, v), z(u, v))T , (3.1)

with h(u, 0) and h(u, 1) being the hub and shroud, respectively, and h(0, v) and h(1, v) the

inlet and outlet, respectively. Moreover, the leading and trailing edges traces are defined by

h(uLE , v) and h(uT E , v).

The user specifies also Npos spanwise positions vi : i ∈ [1, . . . ,Npos], with v1 = 0

and vNpos
= 1, to generate additional intermediate streamwise generatrices. Each of these

generatrices corresponds to a surface of revolution; the blade is built upon these intermediate

surfaces of revolution between hub and shroud. As a result, the isospan generatrices defining

these surfaces need to be computed through linear interpolation between the hub and shroud

generatrices. These are defined by blending hub and shroud curves. Then, the mapping of
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Figure 3.1: GMTurbo meridional shape parameterization. The leading and trailing edges

traces and the hub and shroud generatrices are illustrated along with inlet and outlet boundaries

(dotted curves) and the generatrices of intermediate (isospan) surfaces of revolution (dashed

curves), on which blade sections are defined. Solid curves are provided as input to GMTurbo

in the form of NURBS curves. Dashed and dotted curves are generated by the software. The

image of h(u, v) (equation 3.1) is highlighted in light gray.

Equation B.1 is defined for each spanwise position vi as:

Φ|vi
: (r(u, vi) cos θ, r(u, vi) sin θ, z(u, vi)) 7→ (m(u, vi), θ)

with m(u, vi) =

∫ u

0

√
(

dr(t,vi)
dt

)2
+

(
dz(t,vi)

dt

)2

r(t, vi)
dt .

(3.2)

An example of the meridional shape and the isospan curves is illustrated in Figure 3.1.

In a shape optimization, the control points of the leading and trailing edges are moved

in the z-direction to modify the shape smoothly. If the meridional space occupied by the

row has to remain fixed, these quantities are usually not modified. Using NURBS, the

number of control points, i.e. the number of DoFs, is user-defined. The control points of

the generatrices can be displaced to optimize the casing shape.

3.2.2 Mean-Camber-Surface

The second step after the definition of the meridional shape of a single blade is the construc-

tion of its medial surface. This construction is done discretely by building a camber-line

on each isospan section v ∈ [0, 1], as defined in the previous section. Each camber-line is

built on the mθ-plane corresponding to this isospan surface of revolution and is chosen to

be represented by a cubic NURBS curve. Each of the blade isospan position requires the
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Figure 3.2: GMTurbo camber-line parameterization. Illustration of a camber-line on the mθ

plane with some parameters. The curve is represented by a NURBS curve with four control

points. For higher values of ξLE , the control point P1 moves towards P̃; analogously for ξT E

and the control point P2.

following three steps to define the four control points P0, P1, P2 and P3 of the NURBS

curve characterizing the camber-line.

• Define the leading and trailing edges peripheral positions θLE and θT E , respectively.

Control points P0 and P1 are, then, defined as:

P0 = (mLE , θLE)T

P3 = (mT E , θT E)T .
(3.3)

mLE and mT E are inferred from the meridional shape.

• Define the metal angle βLE and βT E at the leading and trailing edges, respectively.

These angles allow defining the point P̃ as the intersection of the line passing by P0

and having angular coefficient βLE with the line passing by P3 and having angular

coefficient βT E . Since the mapping defined by Equation 3.2 is conformal, all angles

on the mθ-plane are preserved during the inverse mapping to the 3D space.

• Define how the metal angles fade along the camber-line by defining the parameters

ξLE ∈ [0, 1] and ξT E ∈ [0, 1]. The control points P1 and P2 are defined by:

P1 = ξLEP0 + (1 − ξLE)P̃

P2 = ξT EP3 + (1 − ξT E)P̃ .
(3.4)

Figure 3.2 illustrates the quantities defined above (θLE , θT E , βLE , βT E , ξLE , ξT E) used
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to construct the camber-line at each isospan section. All these quantities are defined as

spanwise distributions via NURBS to provide a smooth and flexible design scheme.

In a shape optimization, the control points of these distributions are moved to modify

the shape smoothly.

3.2.3 Superposition of Thickness

After building the camber-line for each spanwise position, the blade thickness must be

added to create the blade profiles. The user defines non-dimensional semi-thickness profiles

for the pressure and suction side at several spanwise positions in the function of the arc-

length of the camber-line and two streamwise distributions for the pressure and suction side,

of factors to dimensionalize the former profiles. By performing spanwise interpolations,

the non-dimensional semi-thickness factor for each point on the pressure and suction side

is computed. Then, a streamwise distribution for the semi-thickness of each blade side is

used to compute the dimensional value of the semi-thickness of any point of the blade. The

semi-thickness is added on the mθ-plane normal to the camber-line, to ensure that the blade

profile sides lie on the isospan surfaces of revolution. The length preserving factor 1/r of

equation B.7 is also taken into account. Namely:

xPS (t, vi) = xMCL (u(t), vi) + τPS (t) sPS (vi)
n (u(t), vi)

r (t, vi)

xS S (t, vi) = xMCL (u(t), vi) + τS S (t) sS S (vi)
n (u(t), vi)

r (t, vi)

(3.5)

where xPS (u, vi) and xS S (u, vi) are the pressure and suction side curves at the isospan

position vi, respectively, xMCL(s, vi) the camber-line on the mθ-plane corresponding to vi;

t is the parameters that make u(t) an arc-length normalized parameter of the camber-line

curve. τPS (t) and τS S (t) denote the non-dimensional semi-thickness, sPS (vi) and sS S (vi)

the thickness scaling factor at the particular isospan position vi, n the unit vector normal

to the camber-line and r(t, vi) the radius. The first and second control points of τPS (t) and

τS S (t) must have the same abscissa to ensure a C1 continuous junction at the leading and

trailing edges between the pressure and suction sides. The streamwise non-dimensional

distributions of the semi-thickness at various isospan positions and the two spanwise

distributions of the thickness for the pressure and suction side are defined as NURBS

curves.
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Figure 3.3: Left: Airfoils in the mθ-plane. Right: 3D representation of the airfoils on the

surface of revolution. Figure B.1 illustrates the 3D reference system.

3.2.4 Building and Exporting the Shape to Standard CAD Exchange Files

The 3D blade shape construction is completed by performing the inverse mapping of the

airfoils defined in the mθ-planes to the corresponding axisymmetric surfaces defined by the

isospan meridional curves. The inverse mapping consists of producing the blade sections in

Cartesian coordinates by inverting the mapping Φ defined in equation 3.2. Namely:

Φ−1
∣
∣
∣
vi

: (m(u, vi), θ) 7→ (r(u, vi) cos θ, r(u, vi) sin θ, z(u, vi))

with u : m(u, vi) =

∫ u

0

√
(

dr(t,vi)
dt

)2
+

(
dz(t,vi)

dt

)2

r(t, vi)
dt .

(3.6)

The inverse mapping requires to invert the integral of m(u, vi), to find the parameter u

from the value of m, which is done numerically employing a hash table [60] and linear

interpolation. The parameter u is used to find the values of r- and z-coordinates from the

meridional projection; this is combined with the peripheral θ-coordinate to yield the 3D

blade sections lying on the surface of revolution defined at each isospan blade section.

Figure 3.3 illustrates the mapping of some airfoils into a surface of revolution.

For various applications, such as numerical simulations, it is fundamental to have a

high-quality B-Rep model of the blade available in an exchangeable format. GMTurbo

is extended to export the geometry to vendor-neutral CAD formats, IGES or STEP, for

visualization and mesh generation purposes. IGES and STEP formats support many

different entities, among which free-form surfaces in the form of NURBS surfaces that can

be used to describe the skin of 3D models. The NURBS surfaces defining the whole row or

the fluid domain of a single blade are constructed as follows.
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In the 3D Cartesian space, airfoils are spanwise interpolated through NURBS curves,

and a skinning algorithm [27, §10.3] is used to construct the NURBS surfaces of the blade.

After the definition of the blade shape, the construction of the whole row is performed

by rotating the blade by the user-defined pitch angle around the axis. Hub and shroud

surfaces are generated as surfaces of revolution [27, §8.5] based on the generatrices defined

by the user on the meridional projection. The definition of the fluid domain requires to

build also the inlet, outlet and periodic surfaces; these are created as follows. Similar

to the blades themselves, periodic surfaces are generated through skinning, and the inlet

and outlet boundaries are produced as Coons patches through bilinear blending [27, §8.2].

Finally, hub and shroud surfaces must be trimmed: in order to avoid numerical instabilities,

the blade sides are extended; the extension algorithm is described in detail in [61].

3.3 GMTurbo B-Rep Re-Parameterization Tool

Shape optimization usually starts from a reference shape to be modified in order to achieve

better performance. Sometimes, the initial geometry is available in B-Rep format, being

the standard for exchanging CAD files. However, in order to employ GMTurbo in the

optimization process, the shape must first be translated in the GMTurbo format. In this

section, a method to import a B-Rep format into a GMTurbo compatible form is presented.

The procedure requires to compute the meridional shape, Section 3.3.1, and camber-lines

and thickness profiles, Section 3.3.2, of the existing B-Rep model.

3.3.1 Meridional Shape

The first step of the re-parameterization technique is the computation of the meridional

contour. Having the NURBS surfaces of the hub and shroud, the generatrices of each surface

are obtained by taking an isoparametric line from the NURBS surfaces. These curves, one

for the hub and one for the shroud, are the generatrices in the Cartesian xyz-coordinates

that must be projected onto the rz-plane using the expressions

r =

√

x2 + y2

z =z

(3.7)

for the NURBS control points’ coordinates, for a row revolving around the z-axis. If the

B-Rep model revolves around another cardinal axis, equations 3.7 should be adjusted

accordingly.
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Figure 3.4: GMTurbo B-Rep re-parameterization tool. The blade is intersected with three

revolved surfaces at isospan 0, 0.5 and 1. The intersections are illustrated as dashed red curves.

Next, a user-defined number of Npos spanwise generatrices is created. Having the

NURBS curves of the hub and shroud generatrices on the meridional plane, a linear

interpolation of the control points produces intermediate generatrices, similarly to the ones

illustrated in Figure 3.1. After defining the Npos generatrices, in order to attain spanwise

distributions of data, the operations take place for each spanwise generatrix, as described in

the following sections. Leading and trailing edge meridional traces are also defined in the

next section.

3.3.2 Mean-Camber-Lines and Thickness Profiles

Based on the Npos generatrices defined in the previous section, Npos NURBS surfaces of

revolution are generated. Then, the intersections of these NURBS surfaces with the pressure

and suction side surfaces, in NURBS form, are computed; the resulting NURBS curves are

illustrated in Figure 3.4. These curves are the airfoils lying on the surfaces of revolution;

the airfoils in the mθ-space are computed using the mapping Φ : (x, y, z) 7→ (m, θ) defined

in equation 3.2. Then, the analysis continues with the Npos airfoils defined on the mθ-planes.

For each airfoil at span position vi, i ∈ [1,Npos], the set of parameters that must be identified

are the values of θLE , θT E , βLE , βT E , ξLE , ξT E , the airfoil thickness profile curves τPS (t) and

τS S (t) and the thickness factors values sPS and sS S for the pressure and suction sides.

These values require the definition of an approximated airfoil camber-line compatible with

the GMTurbo parameterization: a cubic NURBS curve with four control points.

An algorithm, which computes the approximated camber-line using the exact definition
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of camber-line in a least-square sense, is developed: a line joining the leading and trailing

edges of an airfoil being equidistant from the pressure and suction side curves. The structure

of the algorithm is the following:

1. compute the Voronoi diagram of the airfoil boundary nodes (densely sampled);

2. prune Voronoi nodes lying outside the airfoil shape to obtain its skeleton;

3. reduce the density of nodes of the skeleton by k-means clustering;

4. least-square-fit the skeleton with a cubic NURBS with 4 control points by an EA;

5. refine the camber-line by SQP iterations.

The description of each of these steps follows.

The first and second steps refer to a skeletonization algorithm. Skeletonization is the

process of generating the medial axis or “skeleton” of a shape. It was first discerned by

[62] that for polygonal shapes, vertices of the Voronoi tessellation are an approximation

of the skeleton of the shape. The Voronoi tessellation is a partitioning of a plane into

regions based on proximity to a set of points; the Voronoi vertices delimit these regions.

More details on the Voronoi tessellation are available in [63]. Skeleton and camber-line

concepts are fundamentally related, mainly because both are based on the computation of

the minimum distance of a point to a fixed set of points. In detail, the Voronoi tessellation

generates a graph that divides the space into regions containing one of the seed points (the

sampled points of the airfoil shape); any point within each region is closest to the seed

point in that region. By construction, the Voronoi vertices are equidistant to at least three

of the seed points. These three equidistant points from each center-point can be used to

create circles inscribed in the airfoil, which is the typical construction procedure of the

camber-line. [64] showed that the skeleton approximation converges to the actual skeleton

as the sampling density becomes infinite; in practice, a “dense” sampling, in the order of

thousands of points, is enough. The second step of the complete algorithm is necessary

because the Voronoi tessellation generates vertices outside the airfoil shape, which leads to

circles that would not be inscribed in the airfoil and whose centers, then, do not belong to

the camber-line. These extra vertices are removed by solving the point-in-polygon problem

by the ray-casting algorithm [65].

The skeletonization of an airfoil is illustrated in Figure 3.5. The algorithm succeeded in

finding the camber-line for a large extent of the airfoil, but it fails close to the leading and

trailing edges, where it might even create forks due to the radius of inscribed circles being

lower than the semi-thickness. For this reason, refinement is needed in the following steps.

The third step, which reduces the density of nodes in the skeleton, is optional, though

useful for the following reason. A NURBS curve must be fitted on the skeleton point
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Figure 3.5: GMTurbo B-Rep re-parameterization tool. Approximated mean-camber-line

computed by the Voronoi skeletonization algorithm. The point cloud is reduced by k-means

clustering.

Figure 3.6: GMTurbo B-Rep re-parameterization tool. Result of the least-square fitting

and refinement of the camber-line curve. Test points and segments used by the SQP-based

refinement are illustrated.
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cloud using a least square algorithm. The dense sampling of the airfoil shape needed by

the skeletonization algorithm leads to skeletons formed by thousands of points, which are

impractical to fit. For this reason, the amount of points is firstly reduced, from thousands

to hundreds, using the k-means clustering algorithm [66]. k-means clustering partitions

n observations into k clusters in which each observation belongs to the cluster with the

nearest mean, serving as a representative point of the cluster. Such an algorithm provides a

subset of the original point cloud that is a set of “well-distributed” skeleton points.

In the fourth step, the point cloud approximating the camber-line is fitted with a 4-

points cubic NURBS. Curve fitting is based on a numerical optimization process. The

objective function is the sum of the squares of the distances between the skeleton points

and the curve. The DoFs are the mθ-coordinates of the control points P1 and P2 and

two NURBS parametric coordinates p0 and p3. Being xBLADE(p) the airfoil periodic1.

NURBS curve, P0 = xBLADE(p0) and P3 = xBLADE(p3), so that the resulting curve is

implicitly constrained to have two intersections with the airfoil curve defining the leading

and trailing edges. The periodicity of the airfoil curve is required to make the objective

function continuous. To avoid local minima and due to the difficulty in providing a suitable

set of initial DoFs, which would lead to the global minimum of the least-squares objective

function, an EA-based optimization is used. Upper and lower bounds for P1 and P2 are

determined from the enlarged (doubled) bounding-box of the point cloud. The bounds of

p0 and p3 are the minimum and maximum parametric coordinates of the airfoil contour.

The resulting camber-line curve is an approximation of the real one, and especially next to

the leading and trailing edges, the error might be higher due to the weakness of the Voronoi

skeletonization mentioned before.

These approximations lead to the last step, which is a refinement of the camber-line

estimate. A new objective function is set up, which is optimized by an SQP-based algorithm.

The objective function is built at several test points sampled on the camber-line. A set of

NURBS parametric coordinates determines the test points. A perpendicular line to the

camber-line is constructed for each test point and intersected with the airfoil profiles so

that two segments are identified: one on the side of the pressure side and another one on

the side of the suction side. Figure 3.6 clarifies the segments. The objective is the sum of

the absolute value of the difference of length between the segments on the pressure and

suction side. Such an objective function reflects the definition above of camber-line: given

1A periodic curve is a closed curve with coinciding start and endpoints. The start and endpoints have

unclamped spans so that derivatives continuities are guaranteed. Moreover, the parametric coordinate is also

periodic, which means that parametric coordinates outside the range [0, 1] have an equivalent in such range so

that the curve can be swept continuously. More information is provided in Appendix A.
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the diameter and a center-point, it is possible to draw circles inscribed into the airfoil.

Having computed the NURBS cubic camber-line, hence P0, P1, P2, P3 and P̃ the

angles θLE , θT E , βLE , βT E and coefficients ξLE and ξT E are computed from their definitions:

θLE = P0,θ θT E = P3,θ

βLE = tan−1

(

P1,θ − P0,θ

P1,m − P0,m

)

βT E = tan−1

(

P2,θ − P3,θ

P2,m − P3,m

)

ξLE =

∥
∥
∥P1 − P̃

∥
∥
∥

∥
∥
∥P0 − P̃

∥
∥
∥

ξT E =

∥
∥
∥P2 − P̃

∥
∥
∥

∥
∥
∥P3 − P̃

∥
∥
∥

(3.8)

The last step to the complete re-parameterization of the blade B-Rep is the computa-

tion of the thickness profiles, which are combinations of the non-dimensional streamwise

thickness profiles for each spanwise position and the spanwise thickness factor distribu-

tions. Having the airfoil and camber-line NURBS representations, the normal distances of

the camber-line to both sides are computed, providing the dimensional thickness profile

curves. Then, normalizing each profile so that its maximum value is one leads to the non-

dimensional thickness profiles needed by GMTurbo. Finally, the normalization factor of

each thickness profile is used to build the spanwise thickness factor curves for the pressure

and suction sides.

3.4 GMTurbo and Re-parameterization Tool Demonstration

Indicative blade rows are presented in order to demonstrate the capabilities of GMTurbo

and the GMTurbo re-parameterization tool. Figure 3.7 and 3.8 illustrates a turbine and

a compressor stator, respectively, designed using the GMTurbo software. In detail, in

Figure 3.7, a stator named MEL, which has been presented in [67] is demonstrated. This

is imported in GMTurbo using the re-parameterization tool. In Figure 3.8, a compressor

stator named TUB is presented. The shape illustrated herein is the result of an optimization

conducted in Chapter 7. The starting shape that was imported in GMTurbo is illustrated in

Figure 7.1. The MEL blade is designed using the input curves in Figure 3.9. The optimized

TUB blade is created using the input curves in Figure 3.10, whereas the starting geometry

is created with the ones in Figure 7.9.
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Figure 3.7: MEL Stator. NURBS surfaces generated using GMTURBO. Left: a single blade.

Right: the full row.

Figure 3.8: TUB optimized blade (See Chapter 7). NURBS surfaces generated using

GMTURBO. Left: a single blade. Right: the full row.
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Figure 3.9: MEL Stator. Curves used as input to GMTurbo.



56 3. The GMTurbo Parameterization Tool

Figure 3.10: TUB optimized blade (See Chapter 7). Curves used as input to GMTurbo.



Chapter 4

CFD Surface Mesh Displacement

and Parameterization

Differentiation

In this chapter, two methods to integrate GMTurbo and the B-Rep-Morpher into gradient-

based and -free shape optimization loops are illustrated. In detail, Section 4.1 presents a

tool to deform CFD surface meshes according to deformed B-Rep models, and Section 4.2

explains a differentiation tool to compute geometric sensitivities; these are essential when

using adjoint to compute gradients (in gradient-based optimization loops).

The strategy for updating the CFD surface mesh to the already changed B-Rep models

enables the inclusion of the proposed parameterization methods into optimization loops,

avoiding any into-the-loop dependence on mesh generation packages. The surface mesh is

updated by computing new nodal coordinates based on the updated NURBS parametric

coordinates; these are computed according to changes in the parametric domain of trimmed

surfaces by an RBF-based interpolation. The displacement of the surface nodes is, then,

processed to displace the CFD volume mesh.

4.1 CFD Surface Mesh Displacement

Deforming an existing 3D CFD mesh according to a morphed CAD model is fundamental

to reduce the computational cost of aerodynamic shape optimizations. The proposed CFD

surface mesh displacement method exploits the fact that, in the shape-morphing strategy

presented in Chapter 2 and in the turbomachinery blades parameterization tool presented

57
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Figure 4.1: DPW6 aircraft. Results of the projection of a CFD surface mesh onto the CAD

model. Residual values ||S(u, v) − s|| are normalized w.r.t. the length of the diagonal of the

surface mesh bounding box β. The edges of the CAD model are also shown as black dashed

curves.

in Chapter 3, the CAD model topology does not alter during the deformations; thus, the

NURBS-based representation of shapes enables the mapping of the CFD mesh surface

nodes onto the (u, v) NURBS surfaces parametric spaces. Such a mapping works by

determining which NURBS surface a mesh node s ∈ �3 belongs to and identifying the

parameters (u, v), so that s ≈ S(u, v) by taking into account the domain Ω of each NURBS

surface (part of the surface that is not trimmed, Figure 2.2). The projection of each surface

mesh node is checked separately on each surface. That is, for each surface, the (u, v)

parameters of each node are computed by solving the problem

min
(u,v)∈Ω

‖S(u, v) − s‖ . (4.1)

Surface mesh nodes at joints belong to more than one surface, and their parametric

values are computed for all of them. Because the problem of equation 4.1 is overdetermined

(three equations with two unknowns), it is solved by non-linear least-squares. Care must be

taken in case the NURBS patch is not C1 continuous and in order to provide a good starting

point for the least-squares iterations. More details on the point projection algorithm can

be found in [27, §6.1]. Because the projection task is expensive, even if fully parallelized,

due to a large number of CFD surface mesh nodes to be projected, the (u, v) values are

computed once and stored. Figure 4.1 illustrates the residuals of the projection of a CFD

surface mesh on the B-rep model of the DPW6 case. Mesh nodes lying close to or along

the boundary of the parametric domains Ω are subject to higher residual values from the

minimization of the problem in equation 4.1 due to CAD model tolerances involved in the

definition of the domain Ω itself.

When deforming NURBS surfaces, their parametric domains Ω might change due to

changes in the p-curves Cpc, as described in Section 2.3.1 for the B-Rep-Morpher and

analogously for the GMTurbo. Before computing the surface mesh, the mesh projected
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Figure 4.2: RRD stator (Chapter 5). Displacement of the hub surface mesh in the NURBS

surface parametric space. Left: Initial positions of the nodes in the u − v plane. Middle:

displacements plotted along the p-curves of the reference and morphed shape. Right: The

nodes displaced by the RBF interpolation. Colors represent the magnitude of the nodal

displacements.

Figure 4.3: RRD stator. Reference and a morphed Cartesian mesh. Left: The reference surface

mesh projected onto the (u, v) space of the hub surface. Right: The morphed mesh computed

with the morphed (û, v̂) parametric nodes.

Figure 4.4: TUB stator. Adaptation of the surface mesh of the shroud for a design variation.

Right: the adaptation of the mesh in the (u, v) NURBS parametric space. Left: the CFD mesh

in the Cartesian space; top-left, the reference surface mesh; bottom-left the displaced surface

mesh.
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onto the parametric domain Ω needs to be adapted to the new parametric domain Ω̂ defined

by the new p-curves Ĉpc. The parametric domain is adapted using RBF-based interpolation.

As noted, there is a one-to-one correspondence between surfaces, curves and p-curves of the

reference and deformed CAD models. For each parametric domain, nodes are distributed

equidistantly along the p-curves (distances are measured in the parametric space of the

surface) obtained from the reference and deformed CAD models: the displacement of each

node (u, v) ∈ Ω, computed from the p-curves, is used to find the RBF deformation function

dPAR : �2 → �2. The thin-plate spline activation function (Table 2.1) is used. The new

parametric values contained in Ω̂ are then computed as (û, v̂) = (u, v) + dPAR(u, v) and used

to find the new CFD surface mesh nodes ŝ = ˆ̂S(û, v̂), where ˆ̂S is the new NURBS surface.

For nodes along the joints, the average position is taken, and the surrounding nodes are

adjusted by local RBF interpolation based on the Wendland C0; this ensures the validity of

the CFD surface mesh in case computational nodes are close to each other according to the

user-defined geometric tolerance associated with the B-Rep model.

Figures 4.2 and 4.3 illustrate the procedure for displacing the surface mesh in the

NURBS parametric space for the hub surface of a turbine stator parameterized with the

B-Rep-Morpher tool. The reference mesh in Figure 4.3 is projected onto and displaced

into the NURBS parametric space of the hub surface, Figure 4.2. The displaced surface

mesh in the Cartesian space is illustrated in Figure 4.3. Figure 4.4 shows the corresponding

procedure for a compressor stator parametrized with the GMTurbo tool.

4.2 Differentiation of the Parameterization Procedure

CFD simulations are computationally expensive. In this regard, the use of a gradient-based

optimization approach, which requires few iterations to find the optimum, is desirable.

However, gradient-based methods require the gradient of the objective function w.r.t.

the design variables. The simplest approach to compute the derivatives for each design

variable is by means of Finite Differencess (FDs), where the effect of a parameter change

is computed by analyzing both the baseline and perturbed geometries. For each DoF,

the parameterization method creates a perturbed geometry for which the value change in

performance enables to compute the derivative. This strategy is subject to the so-called

“curse of dimensionality”, and quickly becomes impractical for models with large design

spaces.

Gradient-based methods supported by the continuous or discrete adjoint for computing

the objective function gradient have become very attractive in CFD-based optimization
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with many design variables, mainly because adjoint methods compute gradients at a cost

independent of their number. However, adjoint methods primarily compute sensitivities of

an objective function F w.r.t. the nodal coordinates on the mesh surface, namely ∂F /∂x
[13]. To obtain the sensitivities of F w.r.t. the design variables b, the parameterization

method must be differentiated (i.e., ∂x/∂b must be computed; geometric sensitivities) and

linked to the sensitivities computed by the adjoint method through the chain rule

∂F
∂b
=
∂F
∂x

∂x

∂b
. (4.2)

Three main methods are acknowledged for computing the aforementioned geometric

sensitivities:

• Direct (analytic) differentiation. Closed-form expressions can be produced by dif-

ferentiating all operations within the parameterization tool. Sensitivities computed

in this way are generally accurate to working precision but can be unfeasible for

sophisticated modeling features, such as NURBS surface-surface intersections.

• Algorithmic differentiation [68]. It is a technique to evaluate the derivative of a

function specified by a computer program. The source code must be modified. It

is based on the fact that any computer program executes a sequence of elementary

arithmetic operations such as additions and multiplications and elementary functions

such as exp, log and sin. By applying the chain rule in cascade to these operations,

derivatives can be computed automatically.

• Numerical differentiation, namely FDs [69]. Differences between the base and

perturbed geometries (first-order accurate) or just perturbed geometries (second-order

accurate) are computed. While conceptually simple, this method requires pairing

corresponding points on the base and perturbed geometries, before computing the

corresponding deviation. Moreover, the selection of an appropriate perturbation size,

in order to balance truncation and round-off errors, is fundamental.

[70] adopted an approach based on FDs and the parametric position of mesh nodes on

the surface of the reference CAD model. Following a design variable perturbation, the

new surface nodes positions are computed based on the parametric values computed on

the original model, without taking into account the displacement of trimmed intersections.

[71] used the FDs method to compute geometric sensitivities by comparing the parametric

description of the faces in the original CAD model with the parametric description after the

perturbation of one of the design parameters. [72] proposed an approach to compute the

geometric sensitivities based on the computation of the intersection between an embedded
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boundary Cartesian mesh and a mesh of the component geometry. [19] and [73] computed

geometric sensitivities using methods based on geometric faceting representations, such as

STL format exported directly from the CAD package or more accurate meshes. Baseline

and perturbed faceted shapes presentations are compared by projecting the former onto

the latter. [74] applied algorithmic differentiation to the open-source CAD kernel Open

CASCADE Technology.

The differentiation method herein used makes use of FDs. Sensitivities with the FDs

method are obtained by computing the relative change of the shape boundary position

due to single design variable perturbations. Consequently, the cost for computing all the

sensitivities δx/δb scales linearly with the number of design variables. However, the time

required to generate a single design by running the parameterization software is usually

low, and the method is readily parallelizable. Moreover, with FDs, the parameterization

is treated as a black box, which implies a straightforward implementation. Thanks to the

strategy implemented to displace the CFD surface mesh according to shape variations

(Section 4.1), geometric sensitivities are easily computed at the surface mesh nodes.

This section is structured as follows. Section 4.2.1 describes the algorithmic steps of

the differentiation of GMTurbo (illustrated in Chapter 3) and the B-Rep-Morpher software

(illustrated in Chapter 2). Applications shown in Section 4.2.2 include the TUB compressor

stator (illustrated in Chapter 7) and a double elbow duct.

4.2.1 Algorithmic Steps of the Differentiation of the Parameterization Pro-

cedure

New NURBS 
Surfaces Ɐ bi ±εFD

Parameterization

New Surface 
Grid Ɐ bi ±εFD

Surface Grid
Adaptation Tool

Finite Difference
Scheme

Perturbed
Design Variables 

Ɐ bi ±εFD
Design Variables

Perturbation
Design

Variables
b

Geometric 
sensitivities

δxj/δbi

Figure 4.5: Sketch of the differentiation procedure for the GMTurbo and B-Rep-Morpher

parameterization tool. Input to the process is the set of design variables. Each design variable is

perturbed and used to generate the new NURBS surfaces with the GMTurbo or B-Rep-Morpher

parameterization. The new NURBS surfaces are used to feed the surface mesh displacement

tool (see Section 4.1). Finally, the so-generated meshes are used to compute the geometric

sensitivities using the FDs method.

The differentiation process is sketched in Figure 4.5. This approach requires to perturb

each design variable and compute the surface mesh for each of the unperturbed and
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Figure 4.6: TUB stator. FDs step-size independence study for 4 design variables of the

GMTurbo tool. BW stands for backward, FW for forward and CD for the central difference

scheme. Comparison is made after the combination with the flow sensitivities as prescribed by

the chain rule in Equation 4.2. The relative difference is defined by equation 4.6.

perturbed models. Then, the FDs scheme is applied for nodes lying on the surface. Given

a point on the original geometry, it must be possible to determine its new position on the

perturbed ones. To this end, the algorithm described in Section 4.1 fits the purpose and

provides geometric sensitivities directly on the surface mesh nodes, which is requisite to

apply the chain rule of equation 4.2. Since the surface mesh displacement method applies to

both the GMTurbo and B-Rep-Morpher parameterization tools, the differentiation procedure

is the same for both.

Denoting by Si+(u, v) the surface generated by adding εFD to the design variable bi,

Si−(u, v) the surface generated by subtracting εFD from the design variable bi, the geometric

sensitivities for a surface node j is computed using one of the following schemes:

• forward difference

∂xj

∂bi

=
Si+(u j, v j) − S(u j, v j)

εFD

+ O(εFD) (4.3)

• backward difference

∂xj

∂bi

=
S(u j, v j) − Si−(u j, v j)

εFD

+ O(εFD) (4.4)
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• central difference

∂xj

∂bi

=
Si+(u j, v j) − Si−(u j, v j)

2 εFD

+ O(εFD
2) (4.5)

4.2.2 Demonstration of the Differentiation of the Parameterization Proced-

ure

The software has been integrated into CAD-based, gradient-based shape optimizations.

Examples can be found in Chapter 7 and Section 2.4. Figure 4.7 illustrates the geometric

sensitivities for 4 design variables for the TUB compressor stator blade shown in Chapter 7

and parameterized with the GMTurbo tool. Figure 4.8 depicts geometric sensitivities for

the displacement of a handle along the z-direction of the parameterization of the double

elbow duct using the B-Rep-Morpher tool.

An FDs step-size independence study is carried out for the TUB compressor stator

blade: 7 different step sizes ranging from 10−2 to 10−8 and three different schemes, forward,

backward and central difference, are used. The relative difference, by changing the scheme

and step-size for 4 design variables, is shown in Figure 4.6. The design variables are the

same 4 presented in Figure 4.7. The comparison is made after the combination of the

geometric sensitivities with the flow ones as prescribed by the chain rule in Equation 4.2.

The relative difference is defined as

∣
∣
∣
∣
δF
δbi
−

(
δF
δbi

)

re f

∣
∣
∣
∣

∣
∣
∣
∣

(
δF
δbi

)

re f

∣
∣
∣
∣

(4.6)

where the reference value
(
δF
δbi

)

re f
is computed as the average of the gradients δF

δbi
, by

varying the step-size and scheme for each design variable bi. As can be seen, reducing the

step-size, the relative difference converges to an acceptable value, which makes the method

robust and precise for a wide range of step-sizes.
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Figure 4.7: TUB stator. Geometric sensitivity w.r.t. 4 design variables. Colors quantify normal

sensitivities. Blue indicates that the surface is pulled outwards the fluid domain by a positive

change in the design variable, whereas red that the surface is pushed in the opposite direction.

Top-Left: θLE . Top-Right: βLE . Bottom-Left: ζLE . Bottom-Right: Thickness profile coefficient

of the pressure side.
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Figure 4.8: Double elbow duct. Geometric sensitivity w.r.t. a design variable, namely the

displacement in the z-direction of the handle illustrated as a sphere. Colors quantify normal

sensitivities. Blue indicates that the surface is pulled outwards the fluid domain by a displace-

ment of the handle in the positive z-direction, whereas red that the surface is pushed in the

opposite direction. Vectors illustrate 3D geometric sensitivities.



Chapter 5

A Two-Step Radial Basis

Function-Based CFD Mesh

Displacement Tool

Mesh displacement based on RBF interpolation [32] is known for its ability to preserve

the validity and quality of the mesh, even for large displacements, without being affected

by mesh connectivity. However, in case of large meshes, such as those used in real-world

CFD applications, RBF interpolation, in its standard formulation, becomes excessively

expensive. This chapter proposes a cost reduction technique for mesh displacement based

on RBF by splitting the process into two steps. In the first step, named “predictor”, a

data reduction algorithm that adaptively agglomerates mesh boundary nodes by reducing

the RBF interpolation problem size is used. Upon completion of the first step, due to the

agglomeration and the fact that the RBF interpolation is applied to the boundary nodes

too, the so-displaced boundaries do not perfectly match the given displacements; thus, the

position of the boundary nodes must be corrected during the second step, named “corrector”.

The latter performs a local deformation based on RBF kernels with local support, to make

the boundary conform to the known displacements of its nodes. The proposed method

is accelerated by means of the Sparse Approximate Inverse (SPAI) preconditioner based

on geometric considerations and the Fast Multipole Method (FMM). The method and the

programmed software are validated on three test cases related to the deformation of CFD

meshes inside a duct and a turbine stator row as well as around a car model.

67
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5.1 Introduction and Literature Overview on Mesh Displace-

ment

In CFD, the need for adapting an existing mesh to displaced boundaries arises in many

applications, including aerodynamic shape optimizations, aeroelastic simulations and flow

simulations in the presence of moving bodies. Mesh displacement is an alternative to

re-meshing since the latter might hinder the continuation of new simulations from available

numerical solutions on the unstructured mesh, for instance, of the previous domain.

Various mesh displacement methods have been proposed in the past to meet specific

requirements springing from diverse types of simulations or even disciplines. These can be

classified in several ways. Some of the encountered classifications are methods based on

interpolations, control meshes and physical analogies [75], algebraic vs. partial differential

equation methods [76], connectivity-based vs. point-based methods [77], methods for

structured or unstructured meshes [78] and techniques that can more or less efficiently be

parallelized [79]. Recent surveys, such as [75] and [80], enumerate the pros and cons of

mesh displacement methods based on various applications and quality criteria. In detail,

[80] compared six methods based on physical analogies on eight test cases, while [75]

overviewed many conventional methods from a theoretical point of view.

Mesh displacement methods that have been around for a long time are spring analogies

that model the mesh as a network of linear [81], torsional [82], semi-torsional [83] and

ball-vertex springs [84] and solve the static equilibrium equations to find the updated nodal

locations. Generally, in the linear spring analogy approach, each edge of the mesh is

replaced by a tension spring with the spring stiffness taken to be inversely proportional to

the edge length. The equilibrium lengths of the springs are set equal to the initial lengths of

the mesh elements edges, and the known displacements at the mesh boundaries are used

as boundary conditions of the model. Other methods based on the same analogy have

been proposed to improve the quality and robustness of the technique: for instance, the

ball-vertex method introduces supplementary linear springs that resist the motion of a vertex

toward the opposite faces. These methods are efficient for meshes for structural analysis

and inviscid flow simulations; [75] reported invalid elements and high computational cost

to handle large displacements of CFD meshes with stretched elements for viscous flow

simulations. Besides, these methods require the connectivity of the CFD mesh to be

available, and extension to generic polyhedral hybrid meshes is, thus, difficult.

Continuum elastic approaches have been proposed by several authors, such as [85–87].

They displace the mesh by solving the linear elasticity equations on the mesh itself; thus,
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connectivity should be known. The elasticity equations contain material properties, which

are related to the mesh characteristics. For instance, the modulus of elasticity can be set to

be the inverse of a mesh element volume or related to its aspect ratio1, which leads to rigid

displacement of mesh elements close to the mesh boundary. Usually, the elasticity equations

are discretized with a Finite Element Method (FEM) method. Laplacian methods [88] solve

the Laplace PDEs to diffuse the surface mesh node displacements into the domain. The

method is efficient for single-frequency deformations, although large multiple frequency

deformations may lead to invalid meshes. Better quality of the displaced mesh can be

achieved by solving the biharmonic smoothing equation [89], at an increased computational

cost. The algebraic damping method [90] is based on the displacement of each internal

mesh node in terms of the displacement of the closest node on the moving boundaries.

The resulting deformation appears to be very rigid close to the boundaries but, for large

mesh deformations, algebraic smoothing might be necessary to improve mesh quality. The

Delaunay graph method [91] is based on the generation of a control mesh based on the

Delaunay triangulation of the boundary nodes and the mapping of the internal nodes on

the Delaunay graph. The triangulation is adapted to geometry changes, and volume mesh

nodes are relocated through barycentric interpolation. The Inverse Distance Weighting

(IDW) method [92] computes the location of internal nodes through the direct interpolation

of the boundary nodal displacements using weights depending on their distance from the

boundary; usually, the squared distance is used which has been found to preserve better

mesh orthogonality close the boundaries. Transfinite interpolation [93] is based on the

interpolation of the deformations along mesh lines, which is computationally efficient

though limited to structured meshes [94].

Mesh displacement based on RBF interpolation has proved to be robust for large

deformations [18]. [75] compared the most common techniques, including linear and

torsional springs, linear elasticity and several interpolation-based methods such as the

RBF and IDW. The paper concluded by recognizing mesh displacement based on RBF

interpolation as one of the most promising approaches regarding robustness and mesh

quality; its high computational cost and bad scalability can be mitigated by greedy data

reduction algorithms. [95] benchmarked a mesh displacement approach based on RBF

interpolation against six techniques previously tested in [80] and concluded that the former,

though more expensive, yields deformed meshes of better quality. [92] compared mesh

displacement based on RBF and IDW and demonstrated a reduction in the computational

1For the face of a polyhedral mesh element the aspect ratio is the maximum edge length squared to face

area. If the area is zero the aspect ratio is considered zero.
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cost of the latter, compared to the former, by a factor of 20, for a hexahedral mesh for

inviscid flow simulations with ∼75, 000 cells. However, the RBF method produced slightly

better mesh quality than IDW.

The inefficiency of the RBF-based mesh displacement, in its standard form, is due

to the need to solve a linear system of equations with rank equal to the number of the

displaced and fixed boundary nodes, besides the computation of the displacements of the

internal nodes. In recent years, many researchers focused on the cost reduction of RBF

interpolation. Despite the progress made in this field during the last years, the problem is

still open to new strategies and improvements.

The use of RBF kernels with local support was the first breakthrough to reduce the cost

of RBF interpolations [31]. They lead to sparse matrices that can be solved more efficiently.

However, a trade-off between the smooth propagation of the deformation (mesh quality)

and the sparsity of the matrix (computational cost) exists. For large deformations, local

support must be enlarged, and the problem becomes similar to one with RBF kernels with

global support, vanishing the benefits of local support [31]. This problem was alleviated in

[96] by dividing the deformations into smaller steps controlled by locally supported RBF

interpolations with small radii, leading to a series of very sparse linear systems to be solved.

Similar methods, to be referred to as multilevel RBF techniques, involve successive levels

of nested RBF interpolations through which, on each level, the solution from the previous

coarser level is interpolated [97, 98]. The mesh displacement method proposed in [99] was

based on domain decomposition and local RBF interpolations resulting in a series of small

problems.

Greedy algorithms [78] typically start from a coarse approximation to the mesh deform-

ation and iteratively refine it until the desired accuracy is reached. Greedy methods use a

subset of the surface mesh nodes to describe the new shape, leaving the rest of the nodes

for error checking; so, they are more efficient than standard RBF interpolation, although

they cannot precisely reproduce all surface deformations. The iterative procedure required

to guarantee the error drop to a prescribed tolerance is time-consuming for tight tolerances.

[100] compared various data reduction methods both by considering the actually imposed

displacements and computing the subset of surface mesh nodes a priori. [77] proposed an

agglomeration strategy of the boundary nodes as in multigrid methods. [101] suggested

an incremental least-squares solver, which, similarly to greedy algorithms, uses a subset

of the surface mesh nodes to approximate the deformation. [102] proposed the use of a

multiscale RBF interpolation with multiple support radii to capture deformations at different

scales. The interpolation matrix is built starting from a coarse subset of source nodes. The
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algorithm proceeds by iteratively adding the remaining source nodes using a support radius

such that the newly added nodes do not affect the previous, ending up with an easier to

solve linear system. [78] suggested a correction step such as a Delaunay graph mapping,

after the approximation step; however, locally supported RBF interpolation appears to be a

better choice from the quality and robustness point of view [103].

This chapter introduces a two-step cost reduction technique for mesh displacement,

Section 5.3. The two steps successively deform the mesh based on RBF interpolation, the

principles of which are outlined in Section 5.2. The interpolation is further accelerated

thanks to the SPAI preconditioner, Section 5.4.1, the FMM, Section 5.4.2, and an integer

lattice-based method, Section 5.4.3.

The proposed strategy and the programmed software are used on three benchmark test

cases, Section 5.5. In Section 5.5.1, the mesh quality resulting from the proposed method is

compared with standard RBF. In Section 5.5.2, the scalability of the software is analyzed in

order to make it efficient in cases with huge mesh sizes. In Section 5.5.3, the performance

of the software is investigated by varying the main input parameters. Finally, in Section

5.5.4, the effectiveness of the proposed mesh displacement method to large displacements

is tested by using it in evolutionary algorithm-based optimization.

5.2 Background of RBF-Based Interpolation

The theory regarding RBF interpolation was already given in Section 2.2.3; herein, the

method is extended with more notation, and issues arising from the different use of the

mathematical tool are highlighted. An RBF network is a weighted linear combination of

RBF kernels interpolating scattered data in the Q-dimensional space. In mesh displacement,

in specific, the quantities to be interpolated are the known 3D displacements at the K

surface mesh nodes or, generally, at K distinct source nodes. A 3D RBF kernel φk(x) =

φ(r=‖x − xk‖) is a real-valued function depending on the distance r of a point x ∈ �3 from

the so-called RBF interpolation source xk ∈ �3. ‖.‖ stands for the Euclidean distance.

To interpolate the given displacements δk, 1 ≤ k ≤ K, K RBF kernels centered at the

respective nodes must be used. The RBF interpolant d : �3 → �3 takes the form:

d(x) =

K∑

k=1

wkφk(x), (5.1)

where the weights wk ∈ �3 are computed so as to exactly reproduce the known displace-

ments d(xk) = δk at the K source nodes; this requires the numerical solution of a K × K



72 5. A Two-Step RBF-Based CFD Mesh Displacement Tool

linear system, with different right-hand side (r.h.s.) arrays.

Equation 5.1 is often modified by adding a polynomial term to preserve affine motion,

i.e., translation, rotation and scaling [32, §6]. In 3D, the RBF interpolant, including a

degree-one polynomial, takes the following form:

dπ(x) =

K∑

k=1

wkφk(x) + a0 + a1x + a2y + a3z, (5.2)

where aq ∈ �3, 0 ≤ q ≤ 3 are the polynomial coefficients. To compute the new degrees of

freedom, new conditions are introduced; assuming that the sources are not co-planar these

conditions are:
K∑

k=1

wk = 0 and

K∑

k=1

wk ⊙ xk = 0 , (5.3)

where 0 ∈ �3 denotes the zero vector and ⊙ the entry-wise product operator. Then, if

Φ =





φ1(x1) · · · φK(x1)

...
. . .

...

φ1(xK) · · · φK(xK)





, P =





1 xT
1

...
...

1 xT
K





,

W =





wT
1
...

wT
K





and A =





aT
0
...

aT
3





, ∆ =





δ
T
1
...

δ
T
K





.

(5.4)

the (K + 4) × (K + 4) linear system to be solved is





Φ P

PT 0









W

A




=





∆

0




. (5.5)

For large K values, the computation of W and A by solving equation 5.5 becomes expensive.

It exhibits poor scalability if implemented naively, due to both the complexity of linear

solvers and its stiffness. Solving equation 5.5 is referred to as the training phase of the

interpolation, whereas computing the displacements dπ(x) for all mesh nodes or targets, by

equation 5.2, is the interpolation phase. More about the theory on the solvability of these

types of interpolations can be found in [104].

The behavior of the RBF interpolation is profoundly influenced by the chosen kernel φ

[31], being of either local or global support. The former requires the definition of a local

support radius rs, which determines the region of influence of the kernel around each source

node. Since φ(r) , 0 if and only if r < rs, displacements imposed on the source nodes
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affect only mesh nodes lying inside the region of influence of the corresponding kernel.

A low-valued support radius leads to a better conditioned and sparser matrix Φ, whereas

deformation is dissipated over a smaller portion of the interior mesh. By appropriately

selecting the kernel φ(r), see Section 5.3, matrixΦ becomes symmetric and positive definite.

However, the block-matrix on the left-hand side of equation 5.5 is generally non-positive

definite.

5.3 The Two-Step Strategy

The proposed two-step strategy divides the mesh displacement problem into two successive,

both RBF-based, interpolation steps:

• In the first step (predictor), all mesh nodes (surface and interior) are targets of a

global RBF interpolation, and a coarsened set of source nodes is generated by a data

reduction method. The latter takes both the spatial distributions of mesh nodes and the

displacement field to be interpolated into account. In this step, the interpolant takes

the form of equation 5.2, including degree-one polynomial terms. After displacing

the entire mesh, though, the boundary nodes do not generally respect the known

displacements.

• The second step (corrector) corrects the position of the surface mesh nodes through

local deformations. All surface mesh nodes become sources, and only the internal

nodes in a small volume close to the surface become targets. In this step, the RBF

interpolant takes the form of equation 5.1.

The two steps are more manageable than the original problem. In fact, the first step

generates a “small” but dense coefficient matrix (its rank might be by orders of magnitude

lower than the number of surface nodes) whereas the second step generates a “big” (rank

equal to the number of surface nodes), though very sparse, matrix. This strategy allows for

a noticeable reduction in the computational cost of displacing a mesh.

5.3.1 Step 1: Predictor

The predictor is based on data reduction according to which the source nodes set is

coarsened by clustering. The objective is to generate a reduced set of sources that are

representative of the displacement field of the surface mesh. For this purpose, an adaptive

octree data-structure that recursively splits the Cartesian space is employed. By considering

the surface mesh nodal density and the spatial gradient of the displacements, more sources

are generated in areas of rapid variation in the imposed surface nodes displacements. In
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detail, the algorithm starts from a single parent box containing all surface mesh nodes.

Each parent box is recursively split based on the number of contained surface nodes (to

ensure proper resolution in densely populated zones) and the maximum difference in the

displacements of the contained surface nodes (to ensure appropriate resolution where the

displacement field rapidly changes). Empty boxes are ignored, and parent boxes, the

division of which would yield only one child box, are subdivided irrespective of the above

criteria until a maximum depth limit is reached. The centers of leaf (childless) octree boxes

are used as RBF interpolation sources in the predictor training phase. Each source takes

on the averaged displacement of the surface mesh nodes contained in the corresponding

leaf box of the octree. Figures 5.1 and 5.2 illustrate, respectively, an example of selected

interpolation sources on the CFD surface mesh of a duct and the octree structure used to

identify such sources.

The approximation to the displacement introduced by the predictor is measured by the

nodal error, which is defined at each (ith) surface mesh node xi, as:

Ei =

√

∆xT
i
∆xi , (5.6)

where, in the predictor step, ∆xi = δi − dπ,Predictor(xi) is the difference between the known

displacement δi of the ith surface mesh node and that computed within the predictor step,

dπ,Predictor(xi). In contrast to greedy methods that usually minimize the surface error norm

(summing up all surface nodal errors), in the proposed method, any deviation from the

known boundary displacements is resolved in the corrector step. The role of the predictor

step is to generate a reduced set of source points and approximate the displacement field.

A global support RBF kernel is chosen by considering characteristics such as mesh

quality preservation [78], flop count and condition number of the linear system to be solved.

In the predictor step, the inverse multi-quadric kernel, Table 2.1, is used, where σ is the

parameter regulating the decay of the kernel, selected to be equal to half of the mesh

bounding box diagonal length.

The linear systems (one per Cartesian direction) in equation 5.5 (including the poly-

nomial term), assembled with the reduced set of RBF sources, are solved by an iterative

method. Since the coefficient matrix in equation 5.5 is non-positive definite, the selected

solver is based on the Bi-Conjugate Gradient Stabilized (BiCGStab) algorithm (Appendix

F), coupled with the SPAI preconditioner. The iterative method solves systems with mul-

tiple r.h.s. arrays (the displacements along the three Cartesian directions) at once using

parallel matrix-matrix multiplications. After solving equation 5.5, the displacement field is
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Figure 5.1: Double elbow duct. RBF sources (spheres) generated by the data reduction

algorithm in the predictor step for the duct studied in Section 5.5. Colors from blue to red

represent small to large displacements δ. The reference and displaced duct shapes are depicted

in gray and blue, respectively (see also Figure 5.10). Most RBF sources lie in the area of the

high spatial gradient of the displacements. The computed sources do not necessarily lie on the

mesh surface.

Figure 5.2: Double elbow duct. Octree used by the data reduction algorithm in the predictor

step for the duct studied in Section 5.5. The barycenters of the leaf bins are used as RBF

sources. The surface mesh nodes are depicted in red.
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obtained by evaluating equation 5.2 at all mesh nodes. The FMM, Section 5.4.2, is used to

speed up this evaluation.

5.3.2 Step 2: Corrector

The corrector step is based on a local RBF interpolation method. The kernel used in this

step is the Wendland C0 function, Table 2.1. A tradeoff among the smooth propagation

of the deformations in the volume mesh, computational cost and memory requirements,

depending on the choice of the support radius, is expected. In the corrector, the interpolation

sources coincide with the surface mesh nodes with prescribed displacements. Since the

predictor has already displaced the surface mesh nodes close to their known target positions,

the remaining surface displacements ∆xi are minor. As a rule of the thumb, the support

radius should be at least three times larger than the largest error Ei of all surface nodes.

The linear system in equation 5.5 (without the polynomial term, this time) is solved

by taking into account the new nodal positions computed by the predictor and imposing

the displacements on the surface nodes to be equal to the already computed differences

∆xi. The system is sparse and positive definite for the Wendland C0 activation function;

however, due to the non-symmetric SPAI preconditioner, the BiCGStab algorithm is used.

Then, the displacement field is obtained by evaluating equation 5.1. The method presented

in Section 5.4.3 is used to speed up this evaluation.

5.4 Acceleration Methods for the Two-Step Strategy

Techniques to efficiently carry out the training and interpolation phases, in both the predictor

and corrector steps, are proposed. These methods are:

• The Sparse Approximate Inverse preconditioner [105] for the acceleration of the

training phase in both steps.

• The Fast Multipole Method [106] for the acceleration of the interpolation phase in

the predictor step.

• An integer lattice-based technique for the acceleration of the interpolation phase in

the corrector step.

5.4.1 The SPAI Preconditioner

Preconditioning is essential to quickly solve the linear system in equation 5.5, during the

training phase in both steps. Recently, preconditioning techniques based on the SPAI have
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been developed [107]. Their main advantage is that they are inherently parallel since many

independent small linear systems must be solved. SPAI preconditioners work properly for

a wide range of applications [108] and are immune to numerical difficulties such as pivot

breakdowns as well as instabilities, which might occur in incomplete LU (ILU) [109].

In the literature, SPAI preconditioners are applied to sparse linear systems, although

a few applications with dense systems can also be found. For instance, [110] compared

diagonal, symmetric successive overrelaxation, ILU and SPAI preconditioners coupled with

a Generalized Minimal Residual (GMRES) solver and found that the SPAI preconditioner

gives better convergence rates, for a dense matrix arising from the discretization of an

electromagnetic scattering problem.

The SPAI preconditioner M is a sparse approximate inverse of a sparse approximation

to Φ (equation 5.4). The method assumes that a sparse matrix can effectively approximate

the inverse of a full (predictor) or sparse (corrector step) matrix. Recall that the inverse of a

sparse and, certainly, a dense matrix is generally dense. Nevertheless, for a decaying RBF

kernel, many of the entries inΦ are small, and many of the entries inΦ−1 are also expected

to be small [111]. All these small entries are neglected, so that sparse (or sparser, if Φ is

already sparse) approximations to Φ and Φ−1 are employed.

The computation of the preconditioner M requires the minimization of the Frobenius

norm2:

min
M
‖SM − I‖2F , (5.7)

where I is the identity matrix, and S is a sparse matrix approximatingΦ; S is formed by the

largest entries in Φ. In equation 5.7, the Frobenius norm ‖.‖F is employed since it allows

decomposing the minimization problem into K (rank of Φ) independent linear problems.

In fact, a property of the Frobenius norm allows splitting it into a sum of Euclidean norms

[112]:

‖SM − I‖2F =
K∑

k=1

‖Smk − ek‖22 , (5.8)

where mk is the kth column of M, and ek is the kth row of I. Each summand in equation

5.8 constitutes a linear system to be solved, the rank of which is reduced based on the

sparsity of S and M. For this reason, S and M are subject to sparsity constraints to balance

the quality of the preconditioner (the preconditioned system should converge rapidly) and

its construction and application time. A complete overview of the theory of the SPAI

preconditioner is provided in [105].

2The Frobenius norm is of a matrix is defined as the square-root of the sum of the absolute squares of its

elements.
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Figure 5.3: Graphical representation of the definition of the sub-matrix Φ(Ik,Ik) to solve the

linear system of each (kth) summand of equation 5.8. The integer lattice determines the set of

indices Ik (see example in Figure 5.4). Top: full matrix Φ and sparse kth column mk of the

preconditioner M. Bottom: the reduced matrix Φ(Ik,Ik) that is solved to find mk(Ik).

Figure 5.4: Regular Cartesian 2D integer lattice built over a cloud of sources. Square-

and diamond-sources are the third-level lattice neighbors of the diamond-sources. Round

marks are considered as far-away sources and, therefore, excluded from the neighbors of the

diamond-sources. The integer lattice is used to define a priori the sparsity pattern of the SPAI

preconditioner, i.e., sets of indices Ik. The two diamond sources yield the same set of indices

Ik. In 3D, the lattice is formed by regular Cartesian cubes.
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The criteria for selecting the sparsity (non-zero) pattern of M are discussed below.

The strategy is to maintain low the number of non-zero entries in M while capturing the

largest entries inΦ−1 that are the most significant regarding the quality of the preconditioner.

Reliable results can be obtained using a precomputed sparsity pattern [113]. Thus, strategies

to identify a suitable sparsity structure for M dynamically are not used. They have general

applicability but are time-consuming, and the procedure to identify the preconditioner

sparsity structure cannot easily be parallelized [105, 109, 114].

By first assuming that identical sparsity patterns for M and S are given, it is possible to

define a set of indices pinpointing the non-zero entries in each column of the preconditioner

mk, as follows:

Ik = {∀ j ∈ [1,K] s.t. mk( j) , 0} . (5.9)

Then, Ik identifies the columns of Φ to be kept in the linear system of the kth summand of

equation 5.8. Ik also identifies the rows of Φ that are kept, in order to reduce the number

of rows of each linear system in such summands. The retained non-zero entries in each

column of the preconditioner mk are computed by solving the following K linear systems:

Φ(Ik,Ik)mi(Ik) = ei(Ik). (5.10)

in which the coefficient matrices are square, symmetric and positive definite. Figure 5.3

illustrates graphically how the sub-matrix Φ(Ik,Ik) is formed by a known set of indices

Ik (as in the example of Figure 5.4) to compute the entries of the kth column of the

preconditioner. With a sparser matrix M, smaller sub-matrices Φ(Ik,Ik) are derived so

that Cholesky factorization can efficiently solve the linear systems of equation 5.10, to

compute mk. In this regard, if the indices of the rows of Φ forming the sub-matrices in

equation 5.10 were not the same with the indices of the columns, QR decompositions would

be needed being about four times more costly than Cholesky.

Using the same sparsity pattern for S and M is justified by the fact that the position

of the large entries in Φ−1, which contribute the most to the quality of the preconditioner,

tend to be at the location of the large entries in Φ. This is theoretically supported by the

work presented in [111]: for a banded positive definite matrix, its inverse entries decay

exponentially away from the bands. This behavior is illustrated for two RBF coefficient

matrices in Figures 5.5 and 5.6.

The description of the strategy used to a priori define the sparsity pattern of S and M,

namely the sets of indices Ik, 1 ≤ k ≤ K, previously assumed to be given, follows. The

sparsity pattern is the sets of indices Ik identifying the entries with the highest value in
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Figure 5.5: Double elbow duct. Patterns of an RBF training matrix Φ (top) and its inverse

Φ
−1 (bottom) of the predictor. Φ is originated from the reduced set of sources of the duct case

of Figure 5.1. Both matrices are symmetric, and their rank is ∼104. Large to small entries are

depicted in blue to white. The range (0, 1] of the entries of Φ corresponds to the image of the

multiquadric activation function. In Φ−1, only entries close to the diagonal (but not just the

diagonal itself) are predominant since the largest entries in Φ are close to the diagonal.
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Figure 5.6: RRD Turbine stator. Patterns of an RBF training matrix Φ (top) and its inverse

Φ
−1 (bottom) of the predictor. Φ is originated from the reduced set of sources of the reference

shape of the turbine stator case of Figure 5.12. Both matrices are symmetric, and their rank is

∼104. Large to small entries are depicted in blue to white. The range (0, 1] of the entries of Φ

corresponds to the image of the multiquadric activation function. In Φ−1, predominant entries

far from the diagonal also match the predominant entries of Φ.
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each row of Φ. For each RBF interpolation source, the largest entries inΦ arise from the

other sources in the neighborhood, due to the behavior of the RBF kernel. The sets Ik

are, then, formed by the indices of the rows generated by the neighbor sources, including

the kth source itself. To facilitate the neighbors’ searching procedure, a regular Cartesian

integer lattice tessellating the space is constructed. The neighbors of each RBF source are

defined through the lattice neighbors. Several levels of lattice neighbors can be determined.

First-level neighbors are all nodes in the box containing the source itself. Second-level

ones are nodes contained in the neighboring boxes of the first-level box in addition to the

first-level itself and so forth. In Figure 5.4, a 2D explicative lattice is illustrated with three

levels of neighbors. The distance between lattice points and the number of levels that define

the neighbor’s nodes are used to adjust the sparsity pattern of S and M.

Using the integer lattice to compute a priori the sparsity pattern, has a beneficial effect.

In fact, all nodes in a lattice box have the same set of neighbor nodes Ik. The same set of

neighbor nodes Ik leads to the same reduced matrix Φ(Ik,Ik), which is factorized only

once to build all the columns of the preconditioner corresponding to the nodes contained

in the lattice box having the Ik set of neighbors; this reduces significantly the number of

Cholesky decompositions needed.

Figure 5.7 illustrates the time required for the linear solver to converge, in the training

phase of the predictor step of the duct case (Section 5.5.1), including the set-up time for

various preconditioners. The SPAI preconditioner reduces the time needed to converge to a

reasonably accurate solution by one order of magnitude. This saving in time becomes higher

for larger matrices. The influence of the neighbor grouping strategy based on the integer

lattice is also illustrated: for the preconditioner with density 5%, the grouping strategy

reduces the number of decompositions needed from ∼104 to just ∼7 × 102, reducing the

set-up time by a factor of approximately 15.

As previously mentioned, the SPAI preconditioner is non-symmetric, and a solver for

non-symmetric matrices (BiCGStab) must be used. SinceΦ is a symmetric positive definite

matrix, a symmetric positive definite preconditioner was also investigated to employ faster

iterative solvers. One of them was Conjugate Gradient (CG), used in the corrector step

and not in the predictor, due to the polynomial terms, which make the coefficient matrix

non-positive definite. The Factorized Sparse Approximate Inverse (FSPAI) preconditioner

[105] (positive definite) would exhibit much better performances compared to the SPAI

preconditioner if the strategy to reduce the number of sub-matrices decompositions was

not included. Since a sub-matrix must be factorized for each column of the preconditioner

(factorizations cannot be re-used to build multiple columns), the set-up time of the FSPAI
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Figure 5.7: Double elbow duct. History of the residual of the full linear system (rank ∼104)

assembled from the reduced set of RBF sources (Figure 5.1) without polynomial terms for

various combinations of iterative solvers and SPAI preconditioners plotted as a function of

normalized time. For the sake of fairness, the set-up time for the preconditioners, which

appears as a delay before the solvers take over, is also considered. Percentages in the legend

refer to the density (which is equal to 1 minus the sparsity of the matrix) of the preconditioners.

The non-preconditioned CG solver does not have any set-up time, but the convergence rate

is severely affected by ill-conditioning. Two different SPAI preconditioners were used with

different densities, to demonstrate that a correlation exists between density and quality but, of

course, a denser preconditioner costs more. The preconditioner named “Column by Column” is

built without the neighbor’s grouping strategy based on the integer lattice: the preconditioners

built with the grouping strategy have similar performance and much lower set-up time.

becomes predominant compared to the time for solving the system, similarly to the “SPAI

column by column” in Figure 5.7. On the other hand, methods for the symmetrization

of SPAI can be used in conjunction with solvers for symmetric non-positive definite

matrices. For instance, [115] suggested a symmetrization strategy in conjunction with the

Symmetric Quasi-Minimal Residual (SQMR) method, finding better convergence rates that

non-symmetric SPAI used in combination with GMRES.

5.4.2 The Fast Multipole Method

The FMM is used to speed up the interpolation phase of the predictor step. Its role is to

accelerate the computation of summations involved in equation 5.1; the FMM approximates

the ΦW product, whereas PA and PTW, which appear in equation 5.2, are considered

separately. The FMM was initially developed in [116] to approximately solve N-body

gravitational and electrostatic potential simulations, within any user-defined precision,

with runtime complexity O(N) instead of O(N2) of the direct computation. The same
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algorithm is applied to RBF interpolations to compute interactions of RBF kernels [117],

thus reducing also the computational complexity of the RBF interpolation. The theory

and performances of the FMM are described in Chapter 6. The FMM computes the

displacement of each target node considering the real contribution of the nearby source

mesh nodes and low-rank approximations for the remaining far-away contributions. In

this work, the black-box Fast Multipole Method (bbFMM) [106] is adopted; according

to this, the low-rank approximation is based on polynomial interpolation on Chebyshev

nodes implemented to simultaneously compute displacements along the three Cartesian

directions.

There is a trade-off between computational complexity and approximation error and

whether this approach becomes advantageous depends not only on the mesh size but also

on the minimum nodal distance, which determines the maximum allowed error due to the

approximations made by FMM. In fact, the risk is to introduce a significant error in the

interpolated displacements that could damage mesh quality. An accuracy analysis is also

reported in Chapter 6.

The matrix-matrix products required by the BiCGStab iterative solver applied to equa-

tion 5.5 were replaced by the FMM to take advantage of the lowered multiplication

complexity. However, issues regarding the accuracy and convergence of the BiCGStab

solver arose: nearly exact matrix-matrix products were required for the solver not to

converge to a wrong solution, [117]. The approach proposed in [118], based on nested

GMRES solvers employing FMM-based matrix-matrix multiplication approximations with

different accuracies, was investigated to remedy the issues of the BiCGStab solver using

the FMM-based matrix-matrix multiplication. In this nested scheme, the inner solver was

used as a preconditioner for the outer solver. The inner solver was using FMM-based

matrix-matrix multiplications with reduced accuracy (low cost), whereas the outer solver

was using accurate ones (at a higher cost). The inner solver was preconditioned by SPAI.

Even if this approach worked well, the cost has increased, concluding that such an approach

seems attractive only for huge dense linear systems, which is not the case in either step of

the proposed method.

5.4.3 Integer Lattice-Based RBF Interpolation

The FMM is not used in the corrector since the piecewise definition of the locally supported

RBF kernel makes the low-rank approximation by the bbFMM unreliable. Instead, a faster

method is proposed for the exact interpolation of RBF networks with small local support

radii. A neighbors’ search procedure based on an integer lattice is used to accelerate
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Table 5.1: Double elbow duct. Quality metrics for the reference and displaced meshes, using

standard RBF and the proposed two-step strategy. Lower aspect ratios are favorable regarding

CFD solution accuracy.

Reference Standard RBF Two-Step Strategy

Max. aspect ratio 6574 6810 6597

Avg. aspect ratio 4.12 4.02 4.02

Min. cell volume 2.87 × 10−11 8.99 × 10−12 1.45 × 10−11

Table 5.2: Double elbow duct. Maximum and average surface error norm Ei for the reference

and displaced CFD surface mesh illustrated in Figures 5.1 and 5.10. The first column lists the

values of the error function prior to mesh displacement. The column labeled “Predictor Step”

gives the same norms upon completion of this step. The corrector merely drops both error

norms to zero.

Reference Predictor Step

Max. Ei 2.01 × 10−1 1.77 × 10−3

Avg. Ei 5.76 × 10−2 7.68 × 10−5

the interpolation phase of the corrector step by avoiding the computation of zero-valued

summands in equation 5.1. The integer lattice used in this section is similar to the one

explained in Section 5.4.1 (see also Figure 5.4) but contains both sources and targets and

is scaled so that the distance between lattice points be equal to the local support radius rs

of the RBF network. Then, the contributions from the sources on the first two level lattice

neighbors are the only ones that must be evaluated to compute the displacement of the

target nodes in each lattice box. In fact, due to the local support of the RBF kernel, only

sources within a radius rs from a target node contribute to its displacement.

This strategy reduces the interpolation cost by about two orders of magnitude for the

duct and RRD turbine stator cases of Section 5.5. Moreover, this procedure is readily

amenable to parallelization since the computed displacements are independent of each

other. Additionally, the same neighbors’ search procedure is used to reduce the coefficient

matrix filling time in equation 5.5.

5.5 Parametric Studies and Results

Below, four tests, on three 3D CFD meshes, are reported. In Section 5.5.1, a comparison of

mesh displacement performed with the standard RBF model, and the proposed method is

presented for a double elbow duct. The same double elbow duct and a turbine stator, named

RRD, are used in Section 5.5.2 to assess the software performance and scalability w.r.t.
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Figure 5.8: Wall-clock time and RAM requirements for the double elbow duct (top) and

RRD turbine stator (bottom) mesh displacements, for different mesh sizes. Cost is broken

down into five main steps in the bar chart: data reduction, predictor training and interpolation

(Section 5.3.1) as well as corrector training and interpolation (Section 5.3.2). The bar chart

and computational time refer to the left vertical axis, whereas the peak memory curve points to

the right one.

mesh sizes. In Section 5.5.3, the performance of the software while varying the predictor

step size is investigated for the displacement of a polyhedral mesh, with up to 22-face

polyhedral cells. Finally, in Section 5.5.4, the effect of increasing deformations on the

mesh quality of the turbine stator CFD mesh is investigated in the frame of evolutionary

algorithm-based optimization. In all cases, mesh quality assessment is based on commonly

used metrics such as the maximum skewness3 and the minimum orthogonality4. The goal

is to minimize the degradation of mesh quality after the displacement. Performance is

measured on a computational node with two 6-core Intel(R) Xeon(R) CPU E5-2620 v2 @

2.10 GHz processors.

3The skewness of two faces of a mesh element is computed as the dot product of the two face unit normals.
4The orthogonality of a face of a mesh element is computed as one minus the absolute value of the dot

product of two unit vectors which point in the direction of two adjacent edges of the face.
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5.5.1 Two-Step Strategy vs. Standard RBF Interpolation

The quality of the mesh within a double elbow duct, deformed using the programmed

software, is compared with the outcome of standard RBF with the inverse multiquadric

activation function. The displacement is representative of a shape variation that could

occur in evolutionary-based shape optimizations. The mesh, having ∼2.50 × 106 nodes, is

suitable for viscous flow simulations and is comprised of tetrahedra, pyramids, prisms and

hexahedra. Reference and final shapes are illustrated in Figure 5.10. Table 5.1 presents

quality metrics for the reference and displaced meshes, which indicate the ability of the

proposed method to achieve results of better quality, for the considered case and metrics,

w.r.t. standard RBF interpolation. This is justified by the fact that, with the two-step

strategy, the deformation is interpolated sequentially, which has a beneficial effect on the

mesh quality preservation [31]. In fact, the maximum cell aspect ratio has increased just

by 0.3% using the two-step strategy, against the 3.6% increase by the standard model; the

average aspect ratio has increased by 2.4% using either method.

Table 5.2 and Figure 5.10 illustrate the nodal error norms (equation 5.6) of the reference

and displaced surface mesh at each step of the two-step procedure. In the first step, the

RBF interpolation is carried out using ∼104 nodes, Figure 5.1, as a consequence of the

data reduction algorithm. The first step significantly reduces the nodal error norms, but the

resulting surface mesh does not perfectly fit the new geometry. The second step uses all the

∼6 × 104 surface mesh nodes to perform the RBF interpolation that corrects all boundary

nodal displacements. In the second step, the sparsity of the linear system that needs to be

solved to perform the RBF interpolation is ∼99.8%.

5.5.2 Scalability Studies on the Mesh Size

Figure 5.8 illustrates the results of the investigation of the time and memory requirements

for performing the displacement of increasingly larger RRD turbine stator and double elbow

duct CFD meshes. The turbine stator mesh is displaced from the reference to the second

deformed shape of Figure 5.12, whereas the shape modification of the double elbow duct

is that of Figure 5.10. The time required to morph the meshes is similar in both cases for

similar mesh sizes. In both cases, the predictor interpolation and the corrector training

are the most expensive phases. The former scales linearly with the mesh size, thanks to

the FMM – the latter scales super-linearly due to the increased matrix size. The predictor

training time is almost constant since the imposed surface mesh displacements are similar

for all mesh sizes. The corrector interpolation phase also scales super-linearly with the
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Figure 5.9: DrivAer car model. Wall-clock time for the mesh displacement, as illustrated

in Figure 4, by varying the coarsening in the predictor. Wall-clock time measurements are

represented as circles, whereas the curve represents the wall-clock time trend. The time spent

in the predictor step against the overall mesh displacement time is also marked with colors

from red to white.

mesh size due to the increased number of RBF kernel evaluations, but contributes just a

little to the total computational cost, thanks to the integer lattice-based strategy.

5.5.3 Parametric Study on the Predictor Matrix Size

The DrivAer car geometry is a test case developed by the Technical University of Munich

[119] that is herein used in the fastback configuration with mirrors, wheels and a smooth

under-body. The mesh with ∼4.20 × 106 nodes, ∼3.58 × 105 of which are surface mesh

nodes, consists of various types of elements, with up to 22-face polyhedra. The reference

mesh is displaced to the deformed one, as a result of shape optimization for minimizing

drag [120] (not included in this thesis). Mesh quality metrics are listed in Table 5.3. The

results exhibit small differences in the maximum aspect ratio, which increases by 10% with

almost the same maximum skewness. Moreover, no degenerated elements are observed.

Figure 5.9 reports an investigation of the time required to displace a mesh as a function

of the predictor training matrix size. Additionally, the same figure shows the time spent

in the predictor against the overall time required to displace the mesh. The results display

that, in this case, an optimal size for the coarsening exists. More importantly, the trend of

the overall time required, around the optimal predictor training matrix size, is nearly flat,

and non-optimal predictor sizes yield an increase in computational cost below 50%, for this

case. In fact, the lowest required time found is ∼11 min, while the highest is ∼15 min. The

predictor training matrix size is controlled by the user-defined data reduction parameters.
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Figure 5.10: Double elbow duct. Detail of the reference (top) and displaced (middle) CFD

unstructured meshes. On the bottom, the two shapes are compared and the low-to-high nodal

error norms of the CFD mesh, after the 1st step of the two-step strategy, are illustrated on the

displaced shape with colors ranging from blue (low absolute values) to red (high absolute

values).
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Figure 5.11: DrivAer car model. Reference (blue) and optimal (red) shape as a result of drag

optimization. The most important shape modifications are located at the front (top figure) and

rear (bottom figure) parts of the car model.
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Table 5.3: DrivAer car model. Quality metrics of the unstructured polyhedral mesh around

the reference and deformed designs illustrated in Figure 5.11.

Reference Deformed

Min. Jacobian >0 >0

Max aspect ratio 36.0 39.4

Max skewness 3.5 3.5

Figure 5.12: RRD turbine stator blade. From left to right: reference, 1st and 2nd deformed

shapes selected from the front of non-dominated solutions of the two-objective optimization of

the turbine stator.

5.5.4 RRD Turbine Stator CFD Shape Optimization

In this section, the proposed mesh displacement strategy is incorporated into an EA-based

shape optimization of the turbine stator, using the software EASY (Appendix D). A (10;

20)-EA is used to optimize the shape. The computational budget is limited to 250 solver

calls. The transonic flows, for the various designs, are resolved with the PUMA solver

(Appendix E), employing the Spalart-Allmaras turbulence model. The simulation takes

≈ 70 minutes on 2 NVIDIA Tesla K40 GPUs.

The blade has a maximum chord length of 60 mm. Hub and shroud average radii are

221 mm and 268 mm, respectively. Inlet and outlet conditions are provided in the form of

radial profiles, corresponding to 565 K average inlet total temperature, 190 kPa average

inlet total pressure, 0.1◦ and 0.4◦ average inlet peripheral and radial flow angles respectively

and 114 kPa average outlet static pressure. The blade shape is parameterized with the B-

Rep-Morpher tool, and there are overall 8 design variables. The surface mesh conforming to

each new boundary is obtained by inverting and displacing nodes in the NURBS parametric

space, taking special care of trimmed surfaces, as described in Section 4.1; in detail, Figure

4.2 and 4.3 present the current case and a part of the computational mesh. The volume mesh

is deformed using the two-step method presented in Section 5.3 with additional treatments

for the matching periodic boundaries. The mesh is block-structured with viscous layers and
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Table 5.4: RRD turbine stator blade. Quality metrics and objective function values for the

block-structured volume mesh of the turbine stator reported for the reference and two non-

dominated designs illustrated in Figure 5.12. The sign of the Jacobian is used to check the

validity of the mesh. Larger orthogonality metric values and lower normal skewness values are

favorable regarding CFD solution accuracy. y+ < 1 of the first nodes off the wall is desirable to

guarantee that the mesh near the wall is adequate for CFD simulations with a low-Re turbulence

model. In the second deformed mesh, the max. y+ is higher than 1 only for a small number

of nodes, so the results are still considered reliable. Surface mesh quality metrics are also

reported since they represent bounds for the quality metrics of the volume mesh.

Reference 1st Def. 2nd Def.

Capacity [ms
√

K] 5.23 × 10−4 7.45 × 10−4 7.43 × 10−4

Total Pressure Losses 6.82 × 10−2 4.92 × 10−2 9.67 × 10−2

Min. Jacobian >0 >0 >0

Min. min. orthogonality 0.17 0.14 0.08

Avg. min. orthogonality 0.74 0.68 0.62

Max. max. normal skewness 0.84 0.86 0.93

Avg. max. normal skewness 0.27 0.32 0.39

Max. y+ 0.67 0.95 1.19

Min. surface orthogonality 0.17 0.12 0.07

Max. max. surface normal skewness 0.84 0.89 0.93

∼2.20 × 106 nodes, ∼1.20 × 105 out of which are surface nodes.

The optimization aimed at minimizing the mass-averaged total pressure losses and

maximizing row capacity. The total pressure losses between the inlet S I and outlet S O are

expressed in the form of the non-dimensional quantity

∆Pt =
pt|S I

− pt|S O

(pt − p)|S I

, (5.11)

where p is the pressure, pt the total pressure, and operators . |S I
and . |S O

represent mass-

flow-averaging at inlet and outlet, respectively. Capacity is defined as

C = ṁ

√

TT

pT

∣
∣
∣
∣
∣
∣
∣
∣
∣
S O

, (5.12)

where ṁ is the mass flow and Tt the total temperature. A geometric constraint to keep the

axial chord of the stator blade constant is also imposed. The row is composed of 34 blades.

Figure 5.13 illustrates the front of non-dominated solutions and Figure 5.12 illustrates

the shapes for the reference and two improved designs. The mass flow, total pressure and

total temperature distributions are illustrated in Figure 5.14, 5.15 and 5.16, respectively.
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Figure 5.13: RRD turbine stator blade. EA-based optimization with the B-Rep-Morpher

parameterization method. The shapes of the two non-dominated solutions, marked with

integers, are compared to the reference design in Figure 5.12.

To evaluate the quality of the obtained deformed meshes, adapted to the improved shapes,

various quality metrics for structured meshes were computed, as presented in Table 5.4,

along with the results of the optimization. The results indicated the absence of degenerated

elements (minimum Jacobian > 0) even for large deformations. A negative impact on

the worse quality metrics (min. min. orthogonality and max. max. normal skewness)

resulted, which is attributed to just a few elements since averaged quality metrics (avg. min.

orthogonality and avg. max. normal skewness) are preserved. Moreover, it should be taken

into account that, when a volume mesh is deformed, the quality of surface deformations

represents a bound for the volume mesh quality. For this reason, in Table 5.4, the quality

metrics for the surface mesh are also tabulated, exhibiting the same trend as the volume

mesh quality metrics.
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Figure 5.14: RRD turbine stator blade. ρVa (kg/m2s) iso-areas at the stator outlet for the

reference (left), designs marked with 1 (middle) and designs marked with 2 (right) in the front

on non-dominated solutions of Figure 5.13. Higher values imply higher capacity.

Figure 5.15: RRD turbine stator blade. pt (MPa) iso-areas at the stator outlet for the reference

(left), designs marked with 1 (middle) and designs marked with 2 (right) in the front on

non-dominated solutions of Figure 5.13. Higher values imply lower total pressure losses and

lower capacity.

Figure 5.16: RRD turbine stator blade. Tt (K) iso-areas at the stator outlet for the reference

(left), designs marked with 1 (middle) and designs marked with 2 (right) in the front on

non-dominated solutions of Figure 5.13. Higher values imply higher capacity.



Chapter 6

The Fast Multipole Method

In Chapter 5, the FMM [116] has been used to speed-up the interpolation phase of the

predictor step of the mesh displacement tool. In this chapter, the FMM is described in more

detail and the performance of its implementation are analyzed.

6.1 Introduction

As previously noted, the FMM is a technique to compute sums such as:

d(xn) =

K∑

k=1

wkφ(xn, yk), n = 1, . . . ,N (6.1)

with computational complexity O(K + N) instead of O(KN), at the cost of committing a

predictable error ǫ1. The computation of these kinds of sums is closely related to a number

of problems involving the interaction of K sources to N targets, such as gravitational

systems in astrophysics and electrostatic potential evaluation in physics. d(xn) represents a

field value computed at a target point xn; the value is computed considering the influence

of all the sources located at yk. φ(xn, yk) is the kernel function governing the interaction

of the kth source with the nth target. The most straightforward approach is to evaluate all

pairwise interactions among sources and targets. While this direct approach is accurate

within machine precision, the computational complexity of the solution is O(KN). The

direct approach is appropriate only for small numbers of sources and targets or in cases

in which very high accuracy is needed. For larger numbers of sources and targets, more

efficient algorithms have been devised, such as treecodes [121] and the FMM. The principal

1In equation 5.1 the function d(x) is �3 → �3 however, for easiness of the exposition of the FMM, herein

the function d(xn) : �3 → � is considered instead.

95
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Figure 6.1: Schematic of the interactions of K sources and N targets. Left: Interactions using

the direct method with O(KN) complexity. Right: Schematic of the interactions for the FMM

with O(K + N) complexity. The approximation introduced by the FMM reduces the number of

operations at the price of damaging accuracy.

Figure 6.2: Schematic of the interactions of sources and targets for the FMM from the

geometric point of view of the hierarchical decomposition. The various operators of the FMM

are illustrated.
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idea of these fast algorithms is to separately handle near-field (
∥
∥
∥xn − yk

∥
∥
∥→ 0) and far-field

(
∥
∥
∥xn − yk

∥
∥
∥ → ∞) contributions to d(xn). The near-field is computed directly, and the

far-field can be approximated and hence computed with lower complexity (and accuracy).

Figure 6.1 demonstrates how the source “particles” interact with the target “particles”

with the direct method and the FMM. Figure 6.2 illustrates by schematic how the FMM

approximation is achieved by clustering far-away sources and targets into successively

larger groups and aggregating values in multipole and local expansions. A multipole

expansion represents the “potential” generated by sources contained inside a bin; a local

expansion of a bin represents the potential of all well-separated sources. In the FMM, the

sequence of computations is as follows. The algorithm requires first an upward pass of the

octree. The source particles are aggregated to multipole expansion employing the Particles

to Multipole (P2M) operator. Then, multipole expansions are aggregated into greater

groups applying the Multipole to Multipole (M2M) operator. Then, during the downward

pass, the multipole expansions are translated to local expansions between well-separated

bins using the Multipole to Local (M2L) operator. Local expansions of larger parent2

bins are accumulated to children bins with the Local to Local (L2L) operator. Values

d(xn) at the target particles are computed by considering the contribution of neighbor

sources employing the Particles to Particles (P2P) operator and the contribution of all other

sources with the local expansion accumulated in each leaf bin with the Local to Particles

(L2P) operator. Both Figures 6.1 and 6.2 show that larger bins interact with others being

significantly far-away, and smaller bins interact with closer ones.

Common to each FMM method are two fundamental ingredients:

• An octree data-structure used to spatially organize the RBF sources and targets as

well as to differentiate near and far nodes at various levels, which is illustrated in

Section 6.2.

• A low-rank approximation method to build the operators needed by the FMM, which

is illustrated in Section 6.3.

The performance of the implemented FMM code is analyzed in Section 6.4.

6.2 The Octree Data-Structure

The FMM requires the definition of a spatial hierarchy: the domain comprising sources and

targets is hierarchically partitioned into increasing levels of refinement and, then, the near-

and far-fields interactions are identified at each level. A quadtree in 2D or an octree in 3D

2Bins that contain other bins.
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Figure 6.3: 2D quadtree. Neighbors of a bin β are illustrated in dark-gray (each bin is neighbor

of itself) and colleagues in light-gray. The white bins are well-separated from β. In 3D, a bin

has up to 27 colleagues, and its interaction list may comprise up to 189 bins (63 − 33).

is used for this purpose, and for each bin of the tree, an interaction list w.r.t. the other bins

is defined.

Source and target distributions encountered in the mesh displacement application3 are

highly non-uniform, especially if meshes for viscous simulations are employed, due to the

presence of viscous layers. Therefore, the octree used to build the interaction lists must

adapt to such distributions, also taking the difference between sources and targets into

account.

The data-structure is built as follows: the computational domain is defined to be the

smallest cube containing all sources and targets. This cube is the octree bin at level l = 0.

Then, a hierarchy of children bins, that refine the computational domain into smaller regions

is built. Levels of refinement are added with a top-down algorithm dividing bins recursively

in eight cubic bins of equal size. Before going into details of the octree subdivision criteria,

the following definitions must be introduced:

• A bin α is defined to be a child of a bin β if α is obtained by a single subdivision of β.

The bin β is defined to be the parent bin of α. A bin is set to be a leaf if it is childless.

• Two bins are defined to be colleagues if they are at the same octree level l and share

at least a boundary point; a bin is a colleague of itself.

• Each bin β is associated with an interaction list comprising the children of the

colleagues of its parents, which are not colleagues of β.

3For instance, the sources are the surface mesh nodes and the targets the internal volume nodes.
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Figure 6.4: Adaptive list-1,-2,-3 and -4 for the bin β. Bins marked with f (far) are not

considered in the adaptive lists of β.

Figure 6.3 illustrates the colleagues and interaction list for a bin in a quadtree. A bin is

divided following the subsequent rules:

• A bin that does not contain sources and targets is ignored.

• A bin that contains fewer sources or targets than a user-defined threshold is set as a

leaf; otherwise, it is considered a parent bin, and is divided into 8 children bins.

The following adaptive lists, namely sets of bins, are defined to be used by the FMM

operators in Section 6.3:

List-1 of leaf bin β, L
β

1
, is the set comprising all leaf bins at any octree refinement level

that share at least a boundary point with β; β is included in this set. If β is a parent

box, its list-1 is empty.

List-2 of a bin β, L
β

2
, is its interaction list, namely the children of the colleagues of β’s

parents which are not colleagues of β.

List-3 of a leaf bin β, L
β

3
, is the set comprising all descendants of β’s colleagues that do

not share any boundary point with β but whose parent boxes share at least a boundary

point with β. If β is a parent box, its list-3 is empty.

List-4 of a bin β, L
β

4
, is the set comprising the bins on which β is in their list-3.

Figure 6.4 illustrates such lists for a bin in a quadtree. Each bin containing sources is

associated with a multipole expansion; each bin containing targets is associated with a local

expansion. Figure 6.5 illustrates the leaf bins of the octree constructed on the CFD mesh of

a compressor stator.
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Figure 6.5: TUB stator (Chapter 7). Leaf bins of an octree used by the FMM. The octree is

constructed on the CFD mesh. The surface mesh nodes are depicted in red.
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Figure 6.6: Chebyshev Polynomials. Left: Roots of the first 11 Chebyshev polynomials.

Right: First five Chebyshev polynomials.

6.3 The Black-Box Fast Multipole Method

[116] first developed an FMM technique for the kernel φ(xi, yk) = 1/r with r = ||xi−yk||; the

approximation of φ for r sufficiently large (well-separated sources and targets) was obtained

by using analytical expansions of φ. Therefore, the extension of this method to other

kernels requires the development of analytical expansions, which was done in [122–125].

FMM techniques that rely only on discrete values of φ have also been investigated. For

instance, in [126], interpolation based on the Legendre polynomials and the Singular Values

Decomposition (SVD) method are used to build a kernel-independent (black-box) FMM

technique with a controllable error. The FMM technique used by the mesh displacement

tool presented in Chapter 5 is based on the black-box Fast Multipole Method (bbFMM)

[106]. The advantage of the bbFMM is that the only input needed is the ability to evaluate

φ at various points, with the only requirement that φ must be asymptotically smooth [127].

The bbFMM is based on the approximation of the kernel function through polynomial

interpolation on Chebyshev nodes. Before going into the details of the bbFMM in Section

6.3.2 and 6.3.3, Section 6.3.1 recalls some properties of Chebyshev polynomials.

6.3.1 Interpolation Based on Chebyshev Polynomials

The Chebyshev polynomials are a sequence of orthogonal polynomials. The Chebyshev

polynomials TL are polynomials of degree L satisfying the relation

TL(x) = cos(L arccos(x)) (6.2)

on the interval x ∈ [−1, 1]. The image of TL(x) is also in the interval [−1, 1]. Generic

intervals [a, b], other than [−1, 1], are considered by scaling the variable x, that is x →
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1
2
((b − a)x + a + b). From equation 6.2 the recursive definition generating the polynomial

expressions is built:

T0(x) = cos(0) = 1

T1(x) = cos(arccos(x)) = x

TL(x) = 2xTL−1(x) − TL−2(x) , L = 2, 3, . . .

(6.3)

TL has L roots located at the nodes

x̂l = cos

(

2l − 1

2L
π

)

, l = 1, . . . , L (6.4)

which are called Chebyshev nodes. These cluster near the end of the domains, as illustrated

in Figure 6.6. Polynomial interpolation on the Chebyshev nodes improves the stability

of the interpolation scheme, compared to polynomial interpolation using equally-spaced

nodes. The latter suffers from Runge’s phenomenon; namely, the interpolation error

does not converge uniformly as the number of interpolation nodes L increase [128, §13].

Polynomial interpolation on the Chebyshev nodes ensures uniform convergence to the

interpolated function. Another advantage of the interpolation on the Chebyshev nodes is

that it minimizes the maximum interpolation error and spreads it across the whole domain

[−1; 1] [128, §8]. Using the Chebyshev nodes as interpolation nodes, the approximating

polynomial to a function g(x) can be expressed as a Chebyshev series [128, §4]:

pL−1(x) =

L−1∑

λ=0

cλTλ(x) (6.5)

with

cλ =






1
n

∑L
l=1 g(x̂l) for λ = 0

2
n

∑L
l=1 g(x̂l)Tλ(x̂l) for λ > 0

(6.6)

For convenience, equation 6.5 can be written as

pL−1(x) =

L∑

l=1

g(x̂l)S L(x̂l, x) (6.7)

with

S L(x, y) =
1

L
+

2

L

L−1∑

λ=1

Tλ(x)Tλ(y) (6.8)
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Figure 6.7: Chebyshev Polynomials. Left: Interpolation error for φ = 1/
√

1 + x2, in the

domain x ∈ [0, 2] for a various number of Chebyshev nodes L. Right: Maximum interpolation

error for two kernels in the domain x ∈ [0, 2] in function of the number of Chebyshev nodes.

The convergence study for the Chebyshev series of equation 6.7 to the continuous and

differentiable function g(x) is given in [129, §5.7].

The interpolation can be extended to higher dimensions using the tensor product of the

functions S L, one for each dimension. For instance, in 3D, the polynomial approximation

pL−1(x) : �3 → � of the function g(x) : �3 → � with x = (x1, x2, x3)T is expressed as

pL−1(x) =

L3
∑

l=1

g(x̂l)RL(x̂l, x) (6.9)

with x̂l = (x̂l1, x̂l2, x̂l3)T, li ∈ {1, . . . , L}, being the vectors of Chebyshev roots and

RL(x̂l, x) = S L(x̂l1, x1)S L(x̂l2, x2)S L(x̂l3, x3) . (6.10)

The vectors of Chebyshev roots x̂l, l ∈ 1, . . . , L3 are properly defined to span all L3

combinations of L (1D) roots.

L determines the accuracy of the polynomial interpolation; higher accuracy requires

higher L values. Figure 6.7 illustrates the interpolation error as a function of the number of

Chebyshev nodes used.

6.3.2 Interpolation-Based Low-Rank Approximation

The construction of an interpolation-based low-rank approximation works as follows. By

introducing the function µl and νl : �3 → �, a low-rank separable approximation of the
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kernel φ can be constructed as:

φ(xn, yk) ≈
L∑

l

µl(xn)νl(yk) . (6.11)

Substituting equation 6.11 in equation 6.1 the result is:

d(xn) =

L∑

l=1




µl(xn)

K∑

k=1

wkνl(yk)




, n = 1, . . . ,N . (6.12)

In equation 6.12, d(xn), n = 1, . . . ,N may be computed in two steps:

• Transform the sources using the interpolation basis function:

Wl =

K∑

k=1

wkνl(yk), l = 1, . . . , L . (6.13)

• Compute d(x) at the target points:

d(xn) =

L∑

l=1

µl(xn)Wl, n = 1, . . . ,N . (6.14)

These two steps together have computational complexity O(L(K + N)).

In the bbFMM, the low-rank approximation of φ is constructed with an interpolation

scheme. The functions µl and νl are built as follows. A Λ-point interpolant of a function

g(x), x ∈ [−1, 1] can be expressed as:

pL−1(x) =

Λ∑

l=1

g(xl)ℓl(x) , (6.15)

where ℓl represent the interpolating functions, i.e. a polynomial, and x̂l the interpolation

nodes, i.e. the Chebyshev nodes. Equation 6.15 is used to build a low-rank approximation

of the kernel φ by first fixing the variable y which makes φ(x, y) only function of x:

φ(x, y) ≈
Λ∑

l=1

φ(x̂l, y)ℓl(x) . (6.16)

Then, φ(x̂l, y) is only a function of y and equation 6.15 is used again to give:

φ(x, y) ≈
Λ∑

l=1

Λ∑

λ=1

φ(x̂l, ŷλ)ℓl(x)ℓλ(x) , (6.17)
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which is a low-rank approximation of φ in the form of equation 6.11 with:

µl(x) = ℓl(x)

νl(y) =

Λ∑

λ=1

φ(x̂l, ŷλ)ℓλ(x) .
(6.18)

The interpolating functions ℓl(x) and ℓλ(x) in equation 6.17 can be identified with the

functions RL of equation 6.10, and the index Λ with L3 (in 3D), as in equation 6.9; (L − 1)

is the polynomial interpolation degree. Therefore, the low-rank approximation of the kernel

φ : �3 → � employing Chebyshev polynomials is:

φ(x, y) ≈
L3
∑

l=1

L3
∑

λ=1

φ(x̂l, ŷλ)RL(x̂l, x)RL(ŷλ, y) (6.19)

Replacing this expression into equation 6.1 and switching the order of summations the

result is:

d(xn) =

K∑

k=1

wkφ(xn, yk)

≈
K∑

k=1

wk

L3
∑

l=1

L3
∑

λ=1

φ(x̂l, ŷλ)RL(x̂l, xn)RL(ŷλ, yk)

=

L3
∑

l=1

RL(x̂l, xn)

L3
∑

λ=1

φ(x̂l, ŷλ)

K∑

k=1

wkRL(ŷλ, yk), n = 1, . . . ,N

(6.20)

Equation 6.20 is the basis to build the bbFMM. In fact, a fast summation method can be

constructed with the following three steps:

• Compute the weights at the Chebyshev nodes ŷλ (multipole expansion):

Wλ =

K∑

k=1

wkRL(ŷλ, yk) , λ = 1, . . . , L3 (6.21)

• Compute d(x) at the Chebyshev nodes x̂l (local expansion):

Dl =

L3
∑

λ=1

Wλφ(x̂l, ŷλ) , l = 1, . . . , L3 (6.22)
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• Compute d(x) at the targets xn:

d(xn) =

L3
∑

l=1

DlRL(x̂l, yn) , n = 1, . . . ,N (6.23)

These three steps have overall computational complexity O(L3(K + N) + L6) that is approx-

imately O(L3K) for K > N ≫ L

6.3.3 The FMM Based on Chebyshev Interpolation

In Section 6.3.2, a method to perform summations such as equation 6.1, trading compu-

tational complexity with precision, has been presented for continuous kernels based on

a low-rank approximation using interpolation based on Chebyshev polynomials. For the

low-rank approximation of equation 6.19 to accurately represent φ, the targets and source

domains need to be well-separated since equation 6.19 is a far-field approximation of the

kernel φ. Far-field interactions are computed at various levels of refinements; on each level,

only targets that are sufficiently far-away from the sources, but that cannot be taken into ac-

count on less refined levels, are involved. On the most refined level, interactions that are not

sufficiently far-away are computed directly. Thus, the need for an octree data-structure with

the (adaptive) interaction lists, illustrated in Section 6.2. The combination of such an octree

and the fast summation method illustrated in Section 6.3.2 gives rise to an approximate

multilevel fast summation method. This is summarized in the following steps:

1. The octree data-structure and the adaptive list-1,-2,-3 and -4 are built. The adaptive

octree is built by recursion from the whole domain on level 0 until the most refined

level I.

2. Multipole expansionsW β

λ
, λ = 1, . . . , L3 are formed for each bin β that contains

sources (upward pass).

2.1 For each bin β in the set of leaf bins BLea f (that contains sources) multipole

expansions are formed by computing the weightsW β

λ
at the Chebyshev nodes

ŷ
β

λ
from the weights associated with the sources wk (P2M):

W β

λ
=

∑

yk ∈ β
wkRL(ŷ

β

λ
, yk) , λ = 1, . . . , L3, ∀ β ∈ BLeaf . (6.24)

2.2 From the refined to coarse octree level, for each bin β in the set of parent bins

at level η, B
η

Parent
(that contains sources), multipole expansions are formed by
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computing the weightsW β

λ
at the Chebyshev nodes ŷ

β

λ
merging the multipole

expansion of the children of β, that are the bins α in the sets B
β

child
(M2M):

W β

λ
=

∑

α ∈ B
β

child

L3
∑

l = 1

W α
λRL(ŷ

β

λ
, ŷαl ) ,

λ = 1, . . . , L3, ∀ β ∈ B
η

Parent
η = I − 1, . . . , 2 .

(6.25)

3. Local expansionsD β
λ
, λ = 1, . . . , L3 are formed for each bin β that contains targets

(downward pass):

D β
λ
= D β

λ
|M2L +D βλ|P2L +D βλ|L2L . (6.26)

3.1 For each bin β (that contains targets) contributions to the local expansionsD β
λ

from multipole expansions of bins in the list-2 of β (M2L) are added:

D β
λ
|M2L =

∑

α ∈ L
β

2

L3
∑

l = 1

W α
l φ(x̂

β

λ
, ŷαl ) , λ = 1, . . . , L3, ∀ β . (6.27)

3.2 For each bin β (that contains targets) contributions are added to the local

expansions D β
λ

from multipole expansions of bins α in the list-4 of β if the

sources in α are more than L3. Otherwise, sources are accounted for directly

(M2L/Particles to Local (P2L)):

D β
λ
|P2L =

∑

α ∈ L
β

4






L3
∑

l = 1

W α
l φ(x̂

β

λ
, ŷαl ) if #(yk ∈ α) > L3

∑

yk ∈ α
wkφ(x̂

β

λ
, yk) if #(yk ∈ α) ≤ L3

,

λ = 1, . . . , L3, ∀ β .

(6.28)

3.3 From coarse to refined octree level, for each bin β (that contains targets) contri-

butions are added from the local expansionsD α
λ

of β parent bin, α (L2L):

D β
λ
|L2L =

L3
∑

l = 1

D αl RL(x̂
β

λ
, x̂αl ) ,

λ = 1, . . . , L3, ∀ β ∈ B η, η = 3, . . . ,I, (α : α ∈ B
β

child
) .

(6.29)

4. Values dn approximating d(xn) are evaluated at target nodes xn, n = 1, . . . ,N consid-
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ering approximate far-fields contributions accumulated in the local expansions and

exact direct contributions from the near-fields:

dn = dn|L2P + dn|P2P + dn|M2P . (6.30)

4.1 Far-fields contributions are added to dn in each leaf bin β (that contains targets),

adding the contributions from local expansions accumulated in β (L2P):

dn|L2P =

L3
∑

λ = 1

D β
λ
RL(x̂

β

λ
, xn) , n = 1, . . . ,N, (β : β ∋ xn) . (6.31)

4.2 Direct contributions are added to dn in each leaf bin β (that contains targets),

considering sources in the bins of the list-1 of β (P2P):

dn|P2P =
∑

α ∈ L
β

1

∑

yk ∈ α
wkφ(xn, yk) , n = 1, . . . ,N, (β : β ∋ xn) . (6.32)

4.3 Contributions to targets xn in each leaf bin β, coming from sources in bins α in

the list-3 of β are added to dn considering the multipole expansions of each bin

α if the sources in α are more than L3 otherwise sources in α are accounted for

directly (P2P/Multipole to Particle (M2P)):

dn|M2P =
∑

α ∈ L
β

3






L3
∑

λ = 1

W α
λφ(xn, ŷ

α
λ) if #(yk ∈ α) > L3

∑

yk ∈ α
wkφ(xn, yk) if #(yk ∈ α) ≤ L3

,

n = 1, . . . ,N, (β : β ∋ xn) .

(6.33)

The P2M, M2M, M2L, L2L, L2P and P2P operators are schematically illustrated in Figure

6.2. The P2L and M2P operators are introduced in the adaptive bbFMM for the following

reason. Consider an interaction between a source bin and a target bin in its L4 list; if

the source particles in a source bin are fewer than the Chebyshev nodes of the multipole

expansion, L3 in 3D, contributions to the local expansion of the target bin are computed

directly from the sources, thanks to the P2L operator. Similarly, when targets in a target bin

that is in the L3 list of a source bin with fewer sources than the number of Chebyshev nodes

of the multipole expansion, the contributions to the target nodes are added by evaluating the

multipole expansion directly at the target particles positions, thanks to the M2P operator.
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Figure 6.8: Wall-clock time for the evaluation of equation 5.1 by varying the number of sources

and target nodes (retaining the ratio 1:10) for a uniform distribution randomly generated in

a unit cube using the bbFMM method for the multiquadric RBF kernel. The FMM-based

interpolations include the FMM set-up time. Three numbers of Chebyshev nodes L employed

in the interpolation are illustrated.

6.4 Software Performance and Implementation

The benefits of code optimization, multi-threading, and parameter tuning are substantial to

develop fast software for the FMM. In this section, the performance of the programmed

software is analyzed. In detail, this section examines the software execution time scaling

w.r.t. the number of particles, the effect on the performance of the maximum number of

particles per octree leaf bin, and the time required by the various FMM operators. Software

performance is measured on a computational node with two 6-core Intel(R) Xeon(R) CPU

E5-2620 v2 @ 2.10 GHz processors.

Figure 6.8 illustrates the time required to perform RBF interpolations for various

numbers of particles, uniformly distributed in a unit cube, with and without the FMM.

Computational time trends reflect the O(N + K) complexity of the FMM against the

O(NK) complexity of the direct computation. The FMM-based RBF interpolation is more

affordable for a large number of particles, even if the parallel implementation is more

involved since it requires many synchronization points compared to the direct computation.

The efficient parallelization of FMM codes is an active research area; for instance, see

[130]. Some comments regarding the parallel implementation of the bbFMM used in this

thesis are reported in Section 6.4.1.
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Figures 6.9 and 6.11 illustrate the FMM execution time w.r.t. the number of Chebyshev

nodes L and bin capacity βC , for a uniform and non-uniform distribution, respectively.

The uniform distribution of sources and targets is randomly generated, respectively, on

the surface and into a unit cube whereas in the non-uniform distribution sources and

targets correspond to the surface and volume nodes, respectively, of the CFD mesh on

and within the compressor stator case (see Figure 6.5). Figures 6.10 and 6.12 illustrate

the decomposition of the time required by the FMM into the time needed by the various

operators and tree data structure for the two particle distributions and bin capacities. For

both particle distributions, the execution time of the M2L operator quickly increases with

L. For the non-uniform distribution, the time required by the P2P operator has a greater

cost than in the uniform case, due to the increased L3 and L4 list sizes in favor of L2 lists.

In fact, due to the decreased L2 list sizes, the M2L operator cost is much lower than the

high-precision uniform distribution case. Moreover, the adaptive octree is optimized to be

traversed efficiently when non-uniform distributions of particles are employed.

One of the reasons for the high cost of the M2L operator in the original algorithm

is that, in 3D, there are up to 189 source bins per target bin; the source bins contain

multipole expansions and the target bins contain local expansions. Therefore, the M2L

operator requires up to 189 L3 × L3 matrix-vector products, which result in the increased

computational time for increasing L. In the programmed software, the matrices required

by the M2L operator, named translation matrices, are precomputed. The kernel φ used for

mesh displacement is translation-invariant, which allows precomputing the 316 translation

matrices corresponding to the possible interactions between bins containing multipole

expansions and a bin containing a local expansion for each octree level4. In Figures 6.10

and 6.12, the time needed for these computations is included in the set-up phase.

More efficient M2L operators for large L have been proposed. For instance, [106]

proposed to use SVD compression to reduce the size of the matrix-vector products. If the

kernel φ is homogeneous5, it is possible to compute one SVD with size (316 · L3) × L3

containing all the translations of the M2L operator. In fact, in this case, the M2L operator

is simply appropriately scaled to be used in each octree level. However, if the FMM-based

summations are performed only once, the cost to compute the SVD is counterbalanced

by the time saved in the M2L operations only for large K. Moreover, if the kernel φ is

not homogeneous but just translation-invariant, which is the case for the kernels used for

mesh displacement, the SVD must be computed for each octree level. In [127], the number

4In 3D, each target bin interacts with up to 63 − 33 = 189 source bins. The union of the possible translation

matrices for 8 bins comprises 73 − 33 = 316 translation matrices.
5A function φ(r) is homogeneous of degree m if φ(αr) = αmφ(r) for any nonzero real α.
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of translation matrices to be considered in each level is reduced to 16, instead of 316, by

using symmetry planes. The remaining matrices are expressed as permutations thereof.

This has a significant impact on the precomputation time when using SVD compression.

As noted, the M2L cost in the non-uniform distribution has less impact, so that for mesh

displacement, it is reasonable to use the original bbFMM algorithm without modifications.

Similarly to the M2L operator, other operators make use of matrices computed in the

set-up phase and, then, reused for each bin appropriately. For instance, the M2M and L2L

operators are a single matrix-vector product; on each level, 8 matrices correspond to the

interactions of a parent bin with a child bin or vice versa. On the other hand, operators

involving particles, such as P2M, L2P and P2P are implemented as matrix-free matrix-

vector products since each bin generates a different matrix than the others. As expected,

the P2P operator and tree construction costs are independent of L. This means that for low

L, the P2P operator has a more significant relative impact on the total execution time, but it

diminishes for high L, where the M2L operator becomes the most expensive one.

The execution time strongly depends on the maximum number of particles per bin βC

employed in the octree construction. Lower values, such as 20, lead to octrees with more

levels, which in turn lead to higher computational cost due to the disequilibrium between

the high cost of the M2L operator and the low cost of the P2P one. For higher βC , such

as 200, the execution time diminishes, and the M2L and P2P operators are more balanced.

For even higher βC , the execution time slowly increases.

6.4.1 Algorithm and Software Parallelization

The increasing degree of parallelism of modern hardware architectures and software scalab-

ility requirements involves the need to parallelize the implemented software.

As noted, the FMM-based RBF interpolation is more affordable for large meshes, even

if the parallel implementation is more involved since it requires many synchronization

points [130], compared to the direct computation. In fact, the direct computation is not

affected by parallel slowdown effects because of the absence of synchronization overheads

that are detrimental to achieve a good parallel efficiency6. In fact, in the direct computation,

the summation for each target node, equation 6.1, can be carried out independently, which

is without synchronization points.

Different parallelization schemes of the FMM algorithm have been proposed to exploit

multicore architectures and increase parallel efficiency. [131] proposed a two-level strategy

6Parallel efficiency is defined as the speed-up divided by the number of units of execution, such as processors

and cores.
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Figure 6.9: Uniform distribution. Time fractions and errors for the FMM-based summations

for a uniform distribution of ∼1.40 × 105 sources on the surface of a unit cube and ∼2.31 × 106

targets in the volume of a unit cube for a various number of Chebyshev nodes L. Time appears

as the fraction of the time needed to perform the interpolation using the bbFMM over the time

needed for the standard RBF interpolation (evaluation of equation 6.1). The kernel used for

the summation is φ = 1/
√

r2 + 1. The bar chart and FMM computational time refer to the

left vertical axis, whereas the circles to the right one, which is in the logarithmic scale. The

bar chart reports the time required by the main operators of the FMM. The sum of the time

required by the operators is not the total time required by the FMM because some operators

are computed in parallel. Left: Errors and times needed for the FMM-based summations using

an octree with at most 500 sources and targets per leaf bin. Right: The same as the left chart,

but using an octree with at most 1000 sources and targets per leaf bin. The direct computation

takes 410 seconds. Times are averaged over 100 runs.

Figure 6.10: Uniform distribution. Time fractions and errors for the FMM-based summations

for the same source and target distribution of Figure 6.9 and for a various number of Chebyshev

nodes L and octree bin capacities βC . Time appears as the fraction of the time needed to perform

the interpolation using the bbFMM over the time needed for the standard RBF interpolation

(evaluation of equation 6.1). The kernel used for the summation is φ = 1/
√

r2 + 1. Left: Time

fractions for a various number of Chebyshev nodes L. Right: Time fractions for various octree

bin capacities βC .
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Figure 6.11: TUB compressor stator CFD mesh. Same as Figure 6.9 but for the TUB mesh

with stretched mesh layers for viscous simulations with ∼1.40 × 105 sources (surface mesh

nodes) and ∼2.31 × 106 targets (all mesh nodes). The octree bin capacity βC is also different.

Figure 6.12: TUB compressor stator CFD mesh. Same as Figure 6.10 but for the TUB mesh.
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Figure 6.13: TUB compressor stator CFD mesh. Wall-clock times for the FMM-based

summations for the TUB mesh for a various number of Chebyshev nodes L and octree bin

capacity βC as a function of the number of cores.

Figure 6.14: TUB compressor stator CFD mesh. Normalized wall-clock times for the FMM-

based summations for the TUB mesh for a various L and βC as a function of the number of

cores. Time is normalized w.r.t. the wall-clock time needed for direct computation for the same

number of threads.
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Figure 6.15: TUB compressor stator CFD mesh. Parallel speedup using OpenMP for the

FMM-based summations for the TUB mesh for a various L and βC as a function of the number

of cores.
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using POSIX threads at the coarser level and multithreaded BLAS routines at the finer

level. [132] suggested OpenMP implementations based on the fork-join model. An “omp-

parallel-for” pragma directive with static scheduling is used to loop over all bins on each

level of the octree. In [133], both MPI and OpenMP are used. [132] also employs SIMD

instructions to exploit processors parallelism for an adaptive FMM. A task-based approach

is examined in [130].

The implemented software based on the bbFMM algorithm is parallelized with a task

flow model for shared memory architectures. In this model, synchronizations are performed

between successive levels of the octree and interleaving far-field and near field tasks.

Diverse technologies can be used to implement the parallel software. The implemented one

relies on SIMD vectorization (see [134]) and OpenMP directives (see [135]).

Near- and far-field are the two primary tasks of any FMM. In fact, near- and far-field

contributions can be computed independently and then summed. In detail, the interaction

of the various FMM is summarized as follows. The P2P, P2M and L2P operators, concerns

only the leaf bins. The M2M and L2L operators always involve two octree levels, unlike

the M2L, which operates only on one level at a time. A bottom-up octree traversal performs

in order the P2M and M2M operators, then the M2L operator is performed on each level

and bin independently, finally a top-down traverse performs the L2L and L2P operators.

The P2P can be performed at any time, but when the L2P operator is being performed.

Such interactions lead to the following parallelization strategy. Considering that the

M2L and P2P operators are the most expensive, “omp-sections” are used to compute in

parallel the P2P operators and the sequence of operators P2M, M2M, M2L and L2L. The

L2P operators follow these “omp-sections”. Into these two “omp-sections”, the FMM

operators are further parallelized employing the “omp-task” directives. Synchronization

points (“omp-taskwait directives”) are required between the P2M, M2M, M2L and L2L

operators and for each octree level when performing the M2M and L2L operators. However,

the numerous synchronization points required by the far-field computation are compensated

by the concurrent task insertion made by the near-field section.

Benefits are also obtained by the parallelization of the octree data structure set-up.

During the octree construction, a divide and conquer technique is used. Such a strategy

is implemented as a recursive algorithm. The root level is divided into eight octants, and

each octant is treated as a new octree. After a “sub-octree” is constructed, it is merged into

the parent octree. The procedure is repeated up to a certain octree level that guarantees a

balance between the need to copy the data to initialize and merge a new “sub-octree” and

the lowered complexity for building such a sub-octree on a reduced set of particles. Each
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sub-octree is, then, independent of the others at the same level, and it is constructed in

parallel.

Figures 6.13, 6.14 and 6.15 illustrate the wall-clock time scaling as a function of

the number of threads used. In detail, Figure 6.13 illustrates the wall-clock time for an

increasing number of threads: the time needed to perform the FMM-based summation

diminishes with the number of threads used. Figure 6.14 illustrates the wall-clock time for

an increasing number of threads normalized w.r.t. the wall-clock time needed by the direct

summation for the same amount of threads. Figure 6.15 illustrates the parallel speed-up of

the programmed software compared to the ideal one: up to six threads, the programmed

software scales almost ideally. For large L, the deviation from the ideal speed-up is larger.



Chapter 7

Optimization of a Compressor

Stator

The TUB TurboLab Stator Blade is a typical turbomachinery optimization test case. Geo-

metric constraints strongly influence the optimized shape. Previous chapters illustrated

various test cases to demonstrate the method at hand; the test case presented in this chapter

uses most of the methods previously exposed to perform the optimization.

Two parameterization methods are used: GMTurbo and the B-Rep-Morpher. The

blade is imported in GMTurbo by means of the re-parameterization tool. The mesh is

adapted to any shape change by using the surface mesh adaptation tool and the RBF-based

mesh displacement tool. The blade is optimized with SQP-based and EA-based (EASY)

methods. The fluid flow is computed using the in-house GPU-based RANS solver, PUMA.

SQP-based methods use the gradients computed by the continuous adjoint to the RANS

solver and the differentiated parameterizations. Results concerning shapes and fluid flows

are illustrated for the various combinations of parameterization and optimization methods.

7.1 Introduction

The TurboLab Berlin compressor stator common research model has been tested in the

measurement rig of the Chair for Aero Engines at TU Berlin. In the past, several research

groups from academia and industry studied this case [136–139], and experiments were

conducted on the original geometry and one optimized by I. Vasilopoulos [140, 141].

This stator is an aerodynamic model of a blade typically found in modern jet engine

compressors. The geometry in CAD format can be downloaded from [142]. The annular

reference cascade illustrated in Figure 7.1 is formed by 15 untwisted shrouded blades with

117
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Figure 7.1: TUB stator. Left: Reference row assembly. Right: Reference geometry of a single

blade with the placeholder cylinders for the fixture holes.

a spanwise constant chord. This case is used with both the GMTurbo, Section 7.3.1, and

B-Rep-Morpher tools, Section 7.3.2, in the frameworks of a gradient-free multi-objective

optimization, Section 7.4.1, and gradient-based constrained optimizations, Section 7.4.2.

The optimization set-up, including the mesh, objective, and constraints, are presented in

Section 7.2.

7.2 Optimization Set-Up

The functional considered are the mass-averaged total pressure losses between the inlet

and outlet of the CFD domain and the deviation of the mass-averaged exit flow from the

axial direction. The mass-averaged total pressure losses are defined in equation 2.16; the

mass-averaged deviation of the exit flow from the axial direction is defined as

α =


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1
2

180

π
, (7.1)

where Va is the axial velocity component. These two functionals are contradicting since

to achieve higher flow turning, the pressure losses are expected to increase. Higher flow

turning is herein required to achieve a more axial outflow.

The shape is optimized for the operating point with the inlet total temperature, inlet

total pressure and inlet whirl angle spanwise profiles of Figure 7.2; these lead to average
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Figure 7.2: TUB stator. From left to right, radial inlet profiles for the total temperature, total

pressure and whirl angle.

inlet total temperature of 300.52K, average inlet total pressure of 1.04 × 105 Pa and average

inlet whirl angle of 39.83◦. The pitch angle and inlet turbulence intensity are equal to 0◦

and 4%, respectively, being spanwise uniform. The back-pressure is adjusted so as to give

the desired mass flow rate of 9.0 kg/s (full annulus). A steady RANS compressible flow

solver with the Spalart-Allmaras turbulence model is used to compute the flow. This solver

is part of the in-house PUMA flow solver suite (Appendix E).

The CFD mesh is block-structured with viscous layers; it consists of ∼2.32 × 106 nodes,

∼1.43 × 105 out of which are surface nodes. The surface mesh is illustrated in Figure 7.3.

The mesh has been selected after carrying out a mesh independence study to achieve a

nearly mesh-independent computation of the objectives. The maximum y+ value of the first

series of nodes off the walls is below one with a margin that allows morphed meshes to

have max y+ < 1 still.

The essential geometric characteristics are given in Figures 7.4 and 7.5. Figure 7.5 also

illustrates some of the geometric constraints that must be fulfilled, specifically:

• There are 15 blades.

• The axial chord of the blade is kept constant.

• The leading and trailing edge radii must be greater than 1 mm.

• The thickness of the blade cannot decrease.

• The blade must be mountable in the casing (hub and shroud). Specifically, two holes

for the fixture in the middle of the blade with a radius of 2.5 mm and a depth of 20

mm are required. Thus, the blade thickness at these positions has to accommodate a

cylinder of material with a depth of 20 mm and a radius of 5 mm to allow for cutting

of the thread at both hub and shroud. The two holes can be placed arbitrarily inside

the profile shape but have to be at least 60 mm apart from each other.

Most geometric constraints are handled by imposing lower and upper limits on the design
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Figure 7.3: TUB stator. Computational surface mesh of the TUB stator baseline shape. Only

solid walls are illustrated. Left: view from above the shroud surface. Right: details of the

leading (top) and trailing (bottom) edges at the shroud.

variables. However, to fit the cylinders inside the blade, an appropriate constraint function

is defined by exploiting the availability of the CAD description into the optimization loop.

The way this constraint is imposed is illustrated in Section 7.3.3.

Before proceeding to the parameterization and optimization, a simulation of the ref-

erence geometry is carried out. Some results regarding the flow are illustrated in Figures

7.6, 7.7 and 7.8. The mass-averaged exit flow angle deviation α is equal to 6.27◦ for the

reference geometry. Its distribution at the outlet is illustrated in Figure 7.8. The outlet flow

angle highly deviates from the axial direction, which means that the reference stator does

not achieve a satisfactory flow turning.

7.3 Shape Parameterizations

This section is organized as follows. Section 7.3.1 illustrates the TUB compressor row

parameterization based on GMTurbo. Analogously, Section 7.3.2, illustrates the paramet-

erization based on the B-Rep-Morpher. Section 7.3.3 illustrates the parameterization of

the fixture holes used to handle the geometric constraint. Both GMTurbo and the B-Rep-

Morpher parameterizations are differentiated, with the method illustrated in Section 4.2,

to support gradient-based optimization using the adjoint method to compute the gradients.

Although the cost of computing geometric sensitivities with such a method scales with the
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Figure 7.4: TUB stator. Geometric definitions illustrated for the baseline geometry. Dimen-

sions are in millimeters.
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Figure 7.5: TUB stator. Geometric definitions illustrated for the baseline geometry at the hub

and shroud. Dimensions are in millimeters.

number of design parameters, the total cost for the parameters used in this case is negligible

compared to the cost of the primal and adjoint solutions. The surface mesh is adapted to

shape changes of the NURBS surfaces by using the method illustrated in Section 4.1.

7.3.1 Parameterization with GMTurbo

The process described in Section 3.3 is used to extract the design parameters used by

GMTurbo, Chapter 3, to generate the geometry. Two blade sections were used to extract

the parameters; the original blade in CAD format is produced by extruding a planar

airfoil so that two generatrices are sufficient to capture the geometry with the GMTurbo

parameterization.

Figure 7.9 illustrates the input curves. Even if quantities are constant, few control points

are inserted into the curves in order to add flexibility to the parameterization while keeping

the blade representation compact. The total number of DoFs used by the optimization is 32

and distributed as follows: (a) 6 DoFs for βLE , (b) 6 DoFs for βT E , (c) 4 DoFs for θLE , (d) 4

DoFs for θT E , (e) 6 DoFs for ζLE and (f) 6 DoFs for ζT E . The first of the five control points

of θLE is kept fixed to avoid mere displacement of the blade. The meridional projection, the

casing and the thicknesses of the blade are kept constant.
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Figure 7.6: TUB stator. Total pressure contour plots on transversal planes.

Figure 7.7: TUB stator. Contour plots of the deviation of the flow angle from the axial

direction.
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Figure 7.8: TUB stator. Contour plots of
(

cos−1
(

Va

|V|

))2
ρVa (kg/m2/s) at the outlet of the

baseline shape of the stator.

7.3.2 Parameterization with the B-Rep-Morpher

The B-Rep-Morpher is described in Chapter 2. The parameterization employs a two-step

deformation method: the first step is controlled by 6 and the second by 24 RBF handles.

Handles are displaced by changing their cylindrical coordinates in the azimuthal direction

so that each one gives a DoF for the optimization. Displacing the blade only in the azimuthal

direction of the cylindrical coordinates guarantees that the axial chord of the blade remains

constant, as required by the geometric constraints. Figure 7.10 illustrates the handles. Hub

and shroud must remain surfaces of revolution: because a non-rigid displacement of the

NURBS control points would violate this constraint, these surfaces are excluded from the

morphing action, and their p-curves are updated by re-trimming as described in Section 2.3.

7.3.3 Parameterization of the Fixture Holes

The fixture holes constraint has been described in Section 7.2. Checking if the constraint

is fulfilled (both cylinders fit) or violated (one or both cylinders do not fit) sums up to

checking if an intersection between the NURBS description of the holes and blade profiles

exists. However, for better constraint handling, two continuous functions are used during

the optimization, one for the hub and another for the shroud, defined as follows: (a) if the

constraint is fulfilled, the function value is equal to the minimum distance between the

cylinders and the blade profiles or (b) if the constraint is violated, the function value is

equal to the additive inverse of the cubic root of the minimum volume intersection between

the cylinders and the CFD domain. By naming C such a function (namely CHUB for the

holes at the hub and CSHROUD for the holes at the shroud):
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Figure 7.9: TUB stator. GMTurbo input curves. In the meridional shape (top), only the hub,

shroud, TE and LE curves are inputs. The control points of the NURBS curves (black points)

are also illustrated.
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Figure 7.10: TUB stator. The B-Rep-Morpher parameterization using the handles (blue

spheres) displaced in the azimuthal direction as DoFs is illustrated. The blade shape is altered

by displacing the handles using the two-step approach. The first step is based on 6 handles

(large spheres) whereas the second on 24 handles (smaller spheres).

C = min
u1,v1,u2,v2,α1,α2

c (7.2)

where

c =






3
√

V∩ if V∩ > 0

−d if V∩ = 0
. (7.3)

V∩ is the volume of the cylinders that fall outside the blade profiles, d is the minimum

distance between the cylinders and the blade profiles. Computing C requires to minimize the

quantity c: u1, v1, u2, v2, α1 and α2 are the DoFs of the holes parameterization. Specifically,

u1, v1 and u2, v2 are pairs of parametric coordinates on the hub or shroud NURBS surfaces,

S; they are used to determine the cylinder base’s centers S(u1, v1) and S(u2, v2). α1 and

α2 are the angles of inclination of the cylinder in the peripheral direction. Figure 7.11

illustrates these 6 DoFs. Constraints on the minimization problem are also considered: the

cylinders must be at least 60mm apart, and the cylinder base centers must be inside the

blade profiles. The constrained fitting problems are solved by EA-based optimizations.
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Figure 7.11: TUB stator. Left: Illustration of the six DoFs, u1, v1, u2, v2, α1 and α2, used to

find the two holes for the fixture that fit in the blade profiles, if any. The airfoil at the bottom

is the portion of the hub surface trimmed by the blade surfaces. Right: the volume of the

cylinders that does not fit into the blade profile is illustrated in red.

7.4 Results

Section 7.4.1 illustrates the performance and shapes of the blades found by running an

EA-based shape optimization with the software EASY (Appendix D). Similarly, Section

7.4.2 illustrates the result of gradient-based constrained optimizations. The outcomes of

the optimizations are not comparable since they are run with different bounds on the design

variables.

The literature contains results regarding the TUB shape optimization. For instance,

[141] introduced 192 DoFs and optimized the blade for three operating points using a

weighted combination of total pressure losses and stator exit flow angle (formulated differ-

ently than in this thesis) as objective function and slightly different test case conditions. By

giving equal weights to the two normalized objectives, [141] decreased the exit flow angle

from 4.56◦ to 2.8◦ and the total pressure losses by 3.2% w.r.t. the baseline. Comparatively,

the Pareto member (resulting from the analysis illustrated in Section 7.4.1) marked with [2]

in Figure 7.12 reduces the exit flow angle from 6.27◦ to 4.18◦ and total pressure losses by

0.8% (relative difference) w.r.t. the baseline, employing 30 DoFs. [139] optimized the TUB

shape w.r.t. the total pressure losses and the exit whirl angle distribution by means of a

differentiated CAD tool and a differentiated CFD solver, with 192 DoFs. The optimization

reduced the exit whirl angle of about 2◦ while keeping the total pressure losses nearly

constant. Comparatively, the results illustrated in Figure 7.19 (resulting from the analysis

illustrated in Section 7.4.2) yields a reduction of the whirl angle of 3.75◦ while keeping the

total pressure losses nearly constant and employing 32 DoFs. However, differences in the

test case conditions and constraints used prevent a full comparison.



7.4. Results 127

Figure 7.12: TUB stator. EA-based optimization with two parameterization methods: the

fronts of non-dominated solutions computed using the B-Rep-Morpher and GMTurbo are

compared. The two independent optimizations were performed at the same computational cost.

The combined front (final set of non-dominated solutions by considering both fronts) is shown

as filled symbols. The shapes of the six Pareto points, marked with integers, are compared to

the reference design in Figure 7.13 and 7.14.

7.4.1 Gradient-Free Optimization

The objectives of both optimizations, using GMTurbo and the B-Rep-Morpher, are min.

total pressure losses and min. deviation of the exit flow angle from the axial direction. A

MAEA, provided by EASY, is used for the two-objective optimization: RBF networks

are used as metamodels to speed-up the optimization process. The overall computational

budget is restricted to 500 CFD solver calls. The EA is run with a population of 30

offspring, 10 parents and 7 elite members. The crossover operator (two-point crossover)

uses 3 parents to generate one offspring and the mutation probability is 0.1%. The results

of the optimizations are compared in Figure 7.12. The B-Rep-Morpher-based optimization

computes a front of non-dominated solutions similar to that computed by the dedicated

CAD kernel, GMTurbo. Even if the termination criteria prevent full convergence, both

optimizations captures different parts of the front of non-dominated solutions.

Some of the shapes resulting from the optimization are shown in Figure 7.13 and 7.14.

Figures 7.15 and 7.16 illustrate fields related to the two objectives at the outlet and midspan

of the CFD domain.
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Figure 7.13: TUB stator. B-Rep-Morpher. Left: Compliance with the geometric constraint

regarding the fixture holes for the shape marked with “1” (dimensions are in millimeters). Right:

Three shapes (red) from the front on non-dominated solutions in Figure 7.12, in comparison

with the reference shape (blue), with the corresponding handle displacements. The shape-

morphing action is based on a two-step deformation: the handles of the first step are shown

with bigger symbols.

Figure 7.14: TUB stator. GMTurbo. Right: Three shapes (red) from the front on non-

dominated solutions in Figure 7.12, in comparison with the reference shape (blue).
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Figure 7.15: TUB stator. B-Rep-Morpher.
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iso-areas at the stator outlet for three designs from the front on non-dominated solutions of

Figure 7.12. Higher values imply higher objective function values.

Figure 7.16: TUB stator. B-Rep-Morpher.
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function values.
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Figure 7.17: TUB stator. GMTurbo.
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at the stator outlet for three designs from the front on non-dominated solutions of Figure 7.12.

Figure 7.18: TUB stator. GMTurbo.((
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tion 2.16) iso-areas at the stator midspan (left) and outlet (right) for three designs from

the front on non-dominated solutions of Figure 7.12.
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7.4.2 Gradient-Based Optimization

Here, gradient-based optimization deals with single-objective problems. An algorithm

based on SQP is used with bounds for each design variable. Gradients are assessed by

combining sensitivities computed by the continuous adjoint method available in the PUMA

flow solver suite and those computed by differentiating the parameterization method.

Four studies are performed:

• use the GMTurbo parameterization to minimize α such that ∆pt ≤ ∆pt0+1.5%. ∆pt0

is the value of ∆pt for the initial shape.

• use the GMTurbo parameterization to minimize ∆pt such that α ≤ α0. α0 is the value

of α for the initial shape.

• use the B-Rep-Morpher parameterization to minimize α such that ∆pt ≤ ∆pt0+1.5%.

• use the B-Rep-Morpher parameterization to minimize ∆pt such that α ≤ α0.

When considering ∆pt as a constraint, a tolerance is added, which allows finding more

“interesting” geometries that stress more the software and methods under test due to higher

mesh and shape displacements involved.

Optimizations converge to a stationary point without the necessity to regenerate the

mesh due to invalid elements. Convergence histories are illustrated in Figure 7.19, 7.20,

7.21 and 7.22. SQP requires 8 to 12 iterations to reach a minimum.

The shapes of the blades resulting from the optimizations are illustrated in Figure 7.23,

7.24, 7.25 and 7.26. The optimal design variables w.r.t. α of the GMTurbo parameterization

are illustrated in Figure 3.10. Figure 7.27 illustrates the cylinders’ holes fitted into the

blades’ optimal shapes.

The optimization of α using GMTurbo reaches a value of 2.51◦ compared to 2.98◦

employing the B-Rep-Morpher. However, the total pressure losses of the GMTurbo-based

optimization are 13.10%, which is close to the constraint value, in contrast to 12.58% of

the shape found with the B-Rep-Morpher parameterization. Analogously, the optimization

of ∆pt using GMTurbo reaches a value of 11.15% compared to 11.22% using the B-Rep-

Morpher. However, the deviation of the exit flow angle from the axial direction of the

GMTurbo-based optimization is 6.22◦, which is, again, close to the constraint value, in

contrast to 5.75◦ of the shape found with the B-Rep-Morpher parameterization.
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Figure 7.19: GMTurbo. SQP convergence history for the optimization case: minα, ∆pt ≤
∆pt0 + 1.5%. The corresponding final shape is illustrated in Figure 7.23.

Figure 7.20: GMTurbo. SQP convergence history for the optimization case: min∆pt, α ≤ α0.

The corresponding final shape is illustrated in Figure 7.24.

Figure 7.21: B-Rep-Morpher. SQP convergence history for the optimization case:

minα, ∆pt ≤ ∆pt0 + 1.5%. The corresponding final shape is illustrated in Figure 7.25.

Figure 7.22: B-Rep-Morpher. SQP convergence history for the optimization case:

min∆pt, α ≤ α0. The corresponding final shape is illustrated in Figure 7.26.
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Figure 7.23: GMTurbo. Shape resulting from the optimization case: minα, ∆pt ≤ ∆pt0+1.5%.

The corresponding SQP convergence history is illustrated in Figure 7.19.

Figure 7.24: GMTurbo. Shape resulting from the optimization case: min∆pt, α ≤ α0. The

corresponding SQP convergence history is illustrated in Figure 7.20.
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Figure 7.25: B-Rep-Morpher. Shape resulting from the optimization case: minα, ∆pt ≤
∆pt0 + 1.5%. The corresponding SQP convergence history is illustrated in Figure 7.21.

Figure 7.26: B-Rep-Morpher. Shape resulting from the optimization case:min∆pt, α ≤ α0.

The corresponding SQP convergence history is illustrated in Figure 7.22.



7.4. Results 135

Figure 7.27: Cylinders fitted into the optimal shape of the TUB found by the gradient-based

optimizations. Top: GMTurbo. Bottom: B-Rep-Morpher. Left: minα, ∆pt ≤ ∆pt0 + 1.5%.

Right: min∆pt, α ≤ α0.





Chapter 8

Closure

The aim of this thesis was the development of an automated and adaptable workflow

for aerodynamic shape optimization. This dissertation focuses on CAD-based geometry

parameterization, as well as mesh displacement, and their application in gradient-based

(adjoint) and gradient-free CFD-based shape optimization problems.

Chapter 2 presented a new shape-morphing method, named B-Rep-Morpher, that acts

directly on the NURBS-based B-Rep models of the bodies to be designed, which can thus

be integrated into any aerodynamic (or hydrodynamic) shape optimization loop by ensuring

that the optimal solution to be designed remains CAD compatible. The morphing action

involves a small number of user-defined “handles” placed around or on the B-Rep shapes to

be optimized. Their displacements are controlled by the optimization loop in a hierarchical

or multi-step manner and affect the NURBS control points pertaining to the B-Rep model

through RBF-based interpolations, with local or global support, depending on the step.

Compared to B-Rep deformation methods that use the position of NURBS control points

as design variables directly, the proposed method enables the parameterization of generic

shapes provided in standard CAD format with a relatively small number of parameters. For

instance, in Section 2.4.3, a wing with tens of thousands of NURBS control points was

parameterized with some dozens of design variables, enabling the carrying out of efficient

gradient-free optimization. The adoption of NURBS surfaces and curves enables the use

of B-Rep models in standard formats, such as STEP format, to import and export shapes

for further analysis in the design workflow. It also allows their use in optimization loops,

by assisting for instance the imposition of geometric constraints, as demonstrated in the

compressor stator in Chapter 7. An additional advantage of the proposed method is that

thanks to the multi-step deformations, it acts as a smooth multi-frequency shape-morphing

tool. Moreover, it provides a scalable number of shape parameters, enabling to enrich
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design spaces sequentially, as shown in Section 2.4.2 for a duct shape.

It is always possible to reduce the number of DoFs considerably, but parametric

effectiveness needs to be considered too. In Section 2.4.1, the PE of the B-Rep-Morpher in

a 2D case was compared with the standard NURBS parameterization. Even if the proposed

method reduced the number of DoFs by 60%, the PE was reduced by just 22%, which is

very satisfactory. As demonstrated in the compressor stator case, Chapter 7, the proposed

B-Rep-Morpher enables the exploration of shape variations that constructive CAD methods,

despite their indisputable robustness, might “miss”.

An existing geometric modeler for the design and shape parameterization of turboma-

chinery rows, namely the GMTurbo tool introduced in the PhD thesis of K. Tsiakas [8], is

briefly presented in Chapter 3. The software was used to produce and optimize turboma-

chinery blades successfully. The compactness of such parameterization results in shape

representations working with a controllable number of DoFs. Thanks to the extension im-

plemented in this thesis, the tool can retain CAD compatibility throughout the optimization,

providing the shapes in an appropriate format, such as STEP format, for subsequent stages

of a design workflow. Furthermore, Section 3.3 presented software that converts blade

geometries given in B-Rep formats, to GMTurbo formats, through a series of geometric

computations. Geometries have been successfully imported and then optimized, such as in

Chapter 7.

Chapter 4 illustrated two key components enabling the integration of GMTurbo and

the B-Rep-Morpher software into automatic shape optimization loops. In detail, Section

4.1 illustrated a framework that allows for the deformation of surface meshes based on

parameter changes of a reference CAD-based design model, namely GMTurbo or B-Rep-

Morpher models. A key idea of this framework is to exploit the flexibility of RBF-based

interpolation techniques in order to morph the NURBS parametric coordinates of the

surface nodes of a volumetric simulation mesh according to displaced trimming curves.

When coupled with the volumetric mesh displacement method presented in Chapter 5, this

component allows for the implementation of CAD-based design optimization processes

with no need for re-meshing. Another indispensable part of the gradient-based optimization

is the differentiation of the parameterization: this is performed by means of FDs, which

give satisfactory results in terms of time and accuracy, as illustrated in Section 4.2.

Chapter 5 illustrated a new RBF-based mesh displacement method capable of deforming

CFD volumetric meshes, given the displacements of all surface mesh nodes. The proposed

method places itself among a series of recent efforts to develop faster algorithms for mesh

displacement based on RBF. It combines a two-step strategy with an effective preconditioner
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based on SPAI to accelerate the training phases in both steps. The FMM and an integer

lattice are used to speed up the predictor and corrector interpolation phases, respectively.

The predictor reduces the problem size by solving an interpolation problem on a reduced

dataset generated by a fast spatial decomposition method based on octree. This results in a

geometric approximation of the boundaries, which is corrected by the local deformation

in the second step. For instance, in the double elbow duct case, Section 5.5, the standard

RBF requires the solution of a linear system approximately of rank 105 whereas, with the

proposed method, the RBF training phase is subdivided into the solution of a dense linear

system approximately of rank 104 and a sparse linear system approximately of rank 105,

although with just 0.5% of non-zero entries. The SPAI preconditioner reduces the number

of iterations needed by the iterative solver by more than one order of magnitude. The

computation of the SPAI preconditioner is easily performed in parallel and a strategy, based

on geometric considerations, to compute the non-zero structure and reduce the number of

dense decompositions, by a factor 15, for the duct case, was proposed.

The performance of the FMM-based interpolation is assessed against standard RBF

interpolation, resulting to order of magnitudes saving in computational cost for large CFD

meshes. For example, by using the FMM for an RBF model with 1.25 × 105 source and

2 × 106 target nodes, the time needed to compute the displacements of the internal nodes is

reduced by 10 times for parallel implementations yielding 10−7 maximum relative error or

100 times for 10−3. Using the integer lattice to avoid the computation of the zero-valued

RBF kernels is beneficial for both the training and interpolation phase of the corrector

step. For instance, for the duct case, it was possible to cut the time needed to assemble the

training matrix and perform the RBF interpolation by a factor of 100. The resulting mesh

displacement tool operates regardless of the mesh type: it is fast compared to the typical

time needed to perform the CFD simulations and preserves mesh quality as well as viscous

layers even for large deformations.

The duct and RRD turbine stator cases, Section 5.5, were used to indicate the scalability

of the software for increasing mesh sizes. For example, for the RRD turbine stator, the

time needed to displace a mesh with ∼2.20 × 106 nodes is less than 2 min while the same

displacements applied to a mesh with ∼2.20 × 107 nodes require ∼12 min. Software

performance is measured on a computational node with two 6-core Intel(R) Xeon(R)

CPU E5-2620 v2 @ 2.10 GHz processors. The performance of the mesh displacement

software was also examined by varying the coarsening of the predictor step. Results indicate

that the performance differs by varying the predictor size. However, for the DrivAer car

case, Section 5.5.3, the time required to displace the mesh is nearly constant for a wide
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range of predictor training matrix sizes, and non-optimal parameters yield an increase

in computational time of at most 50%. In Section 5.5.4, multi-objective evolutionary

optimization of the RRD turbine stator was performed to assess the robustness of the

software over large displacements. Optimal solutions were found that reduce the total

pressure losses up to 27% and increase the capacity up to 88% without the need to generate

new meshes even for large shape modifications.

Chapter 6 illustrated the FMM method and analyzed its performance both in terms

of accuracy and computational time. An efficient data structure allows using the FMM

with CFD applications involving meshes with highly non-uniform spatial mesh nodes

distributions. The parallel implementation based on the task-flow paradigm allows the

parallelization of the FMM; using 8 cores, the parallel speedup is close to the ideal one.

The parametric studies allowed the tuning of the parameters of the method to achieve the

best performance. For instance, it was found that the execution time is strongly dependent

on the maximum number of particles in each octree bin and a near-optimal value of 200,

for the cases under study, was determined.

Finally, in Chapter 7, the TUB stator was successfully optimized using the methods

presented in Chapters 2 ,3, 4 and 5. For instance, the optimization was conducted with

both EAs and the SQP method by combining them with both the B-Rep-Morpher and

the GMTurbo parameterization methods, as well as their differentiation. The blade was

imported in GMTurbo with the re-parameterization tool. The surface and volumetric

mesh have been displaced with the surface mesh displacement method and the two steps

RBF method, respectively. Moreover, the geometric constraint regarding the fixture holes

has been integrated into the optimization process. Drastically different shapes have been

found that improve the total pressure losses, deviation of the exit flow angle from the axial

direction or both. In detail, the total pressure losses are improved up to 0.5% (absolute

difference) and the deviation of the exit flow angle up to 3.75◦. This showed that the

coordination of the developments discussed above led to a modular shape optimization

framework for computationally intensive CFD-based optimization problems with the CAD

into-the-loop.

8.1 Contributions

The main contributions of this thesis are listed below:

• Developed a modular CAD-based shape optimization framework. Assessed its

performance and demonstrated its effectiveness in various test cases, using different
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parameterizations and gradient-free and -based optimization algorithms.

• Investigated the underlying principle of GMTurbo and extended it to make it more

powerful and automatic. Extensions include:

– The possibility to build shapes with NURBS and export them in IGES or STEP

format; previously, the shape was built discretely (non-CFD surface mesh) and

only STL format was supported.

– Implementation of a method to compute geometric sensitivities.

– Implementation of a strategy allowing for the deformation of surface meshes

based on parameter changes of a reference GMTurbo model. The deformation

can maintain the axisymmetry and periodicity of the surface mesh.

– Developed software that converts a blade geometry given in a B-Rep format, to

a GMTurbo format.

• Developed a new parameterization method for aerodynamic shape optimization

capable of morphing CAD-compatible B-Rep models by displacing user-defined

handles, named B-Rep-Morpher. The method is associated with the:

– Possibility to import and export shapes in IGES or STEP format.

– Implementation of a method to compute geometric sensitivities.

– Implementation of a strategy allowing for the deformation of surface meshes

based on parameter changes of a reference B-Rep-Morpher model. The deform-

ation can maintain the axisymmetry and periodicity of the surface mesh.

• Developed a new method to reduce the computational cost of RBF-based mesh

displacement. The technique and the developed software relies on:

– A predictor-corrector procedure; the predictor uses an RBF-centers coarsening

method to reduce the computational cost.

– Parallel implementation of SPAI preconditioners. No contributions were made

to the theory of the SPAI. The number of decompositions needed by the SPAI

was reduced, by means of an integer lattice-based approach.

– Parallel implementation of the bbFMM. No contributions were made to the

theory of the bbFMM.

– Parallel implementation of the multi-r.h.s. BiCGStab method. No contributions

were made to the theory of the BiCGStab method itself.

– An integer lattice-based RBF interpolation method.

• Developed a method to quantify the violation or compliance with the constraint

regarding the turbomachinery blades fixture holes.
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8.2 Future Work Recommendations

This PhD thesis relied upon software and methods developed at the PCOpt/NTUA, which

has been further enriched and integrated with new techniques and software.

Regarding the B-Rep-Morpher, a natural direction for future work is the integration

of additional types of geometric constraints such as the adherence to maximal or minimal

thicknesses, or relations between multiple parts, such as rigid movements of parts attached

to deforming shapes.

Concerning the two-step RBF mesh displacement method, it can be extended to handle

mesh displacement for fluid-structure interaction simulations. The software can be parallel-

ized with CUDA and MPI to improve parallel performance and scalability further.

Regarding the further development of GMTurbo, the software can be extended to handle

new features such as cooling holes, cooling slots, squealers, nonaxisymmetric hub and

shroud, variable tip clearance, volute geometry generation, blade roots, interactive blade

design, integrated mesh generation and uncertainty quantification techniques.

Concerning the TUB test case, it would be interesting to build and test in a measurement

rig some of the shapes resulting from the optimizations presented in this thesis.

Finally, it is useful to investigate performances of the proposed methods in more

complex design optimization scenarios, such as turbomachinery rows with tip clearance or

wings with a nacelle attached.



Appendix A

Non-Uniform Rational B-Splines

Non-Uniform Rational B-Spline (NURBS) [27, 143] is a mathematical model that can be

used to parameterize curves and surfaces. “Non-Uniform” refers to the parameterization

of the shape, denoting the non-uniformity of the length of the curve segments constituting

a whole curve. “Rational” refers to the underlying mathematical representation, which

allows NURBS to represent exact conics (such as parabolic curves, circles, and ellipses).

“B-splines” are parametric piecewise polynomial curves [144, §6]. NURBS curves and

surfaces are useful for a number of reasons: (a) NURBS shapes are invariant under affine

transformations [143, §7.1]; operations such as translations and rotations are applied to

NURBS curves and surfaces by just applying them to their control points. (b) The NURBS

model offers one common mathematical form for both analytical and free-form shapes.

(c) NURBS provides the flexibility to design a large variety of shapes. (d) Algorithms

involving NURBS are generally efficient and computationally accurate.

This appendix only gives some basics of NURBS. Computational operations on NURBS

geometries is achieved through a series of algorithms that can be found in the literature.

Typical examples are the interpolation or approximation of a set of points with NURBS

curves, projection or inversion of a point on NURBS curve/surfaces, intersection and

blending between two NURBS curves/surfaces, knot insertion and removal, degree elevation

and construction of surfaces from curves. The latter includes coons, skinned, revolved and

extended surfaces. These algorithms have been implemented, as found in the literature, for

instance, to enable the NURBS representation of shapes into GMTurbo (Chapter 3). Apart

from the NURBS construction techniques, more advanced geometry modeling algorithms

are used, such as solid-solid intersection (Chapter 7). In this case, external libraries have

been used, such as Open Cascade[145].

In Section 2.2.2, NURBS curves C(u) and surfaces S(u, v) have been introduced; their
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mathematical definitions are:

C(u) =

I∑

i=0

Ri(u)Pi and S(u, v) =

I∑

i=0

J∑

j=0

Ri, j(u, v)Pi, j . (A.1)

The rational basis functions Ri(u) and Ri, j(u, v) are defined as:

Ri(u) =
Ni,n(u)wi

∑I
j=0 N j,n(u)w j

and Ri, j(u, v) =
Ni,n(u)N j,m(v)wi, j

∑I
p=0

∑J
q=0 Np,n(u)Nq,m(v)wp,q

. (A.2)

Np,n(u) are the ith B-Spline basis functions of degree p and wi > 0 (wi, j) are the ith ((i, j)th)

weights associated with the ith ((i, j)th) control points Pi (Pi, j). The definition of the

B-Spline basis functions requires to introduce the concept of knots.

Knot Vector The knots divide a NURBS curve into segments linked with a certain degree

of continuity. Knots are organized in a knot vector that is a sequence of non-decreasing

real values, the knots, U = uk : k = 0, . . . ,K. NURBS surfaces require two knot vectors.

A knot vector can be clamped or unclamped. A clamped knot vector of degree p has

the first and last knots with multiplicity equal to p + 1. If this does not hold, the knot vector

is referred to as as unclamped. Unclamped knot vectors are valuable in the definition of

periodic curves, namely closed curves (with coinciding first and last points) with “missing”

knots, which help maintain a certain degree of continuity across the curve’s begin and end.

The knot span is the range of parameter values between two successive knots. Consecutive

knots can have equal values (knot span of zero-length). Some coinciding knots are referred

to as a knot with a certain multiplicity. The knot spans are also used to classify knot vectors.

In detail, an unclamped knot vector is uniform if all knot spans have the same length. A

clamped knot vector is uniform if all internal knot spans have identical lengths. In all other

cases, the knot vector becomes nonuniform.

B-Spline Basis Functions The definition of the basis functions is recursive in degree

p. The degree-0 basis functions Ni,p(u) are piecewise constant: they are one over the

corresponding knot span and zero everywhere else. For degrees higher than 0, the basis

function Ni,p is a linear combination of Ni,p−1 and Ni+1,p−1. The latter two functions are

non-zero for p knot spans and overlapping for p − 1 knot spans. According to [146], the
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basis function Ni,p(u) is defined as

Ni,p(u) =











1 if u ∈ [ui, ui+1)

0 elsewhere
if p = 0

fi,p(u)Ni,p−1(u) + gi+1,p(u)Ni+1,p−1(u) if p > 0

; (A.3)

fi,p(u) increases linearly from zero to one on the span where Ni,p−1(u) is non-zero, and

gi+1,p(u) decreases linearly from one to zero on the span where Ni+1,p−1(u) is non-zero so

that fi,p(u) and gi,p(u) are positive when the corresponding lower order basis functions are

non-zero. In detail, fi,p(u) and gi,p(u) are defined as

fi,p(u) =
u − ui

ui+p − ui

and gi,p(u) = 1 − fi,p(u) =
ui+p − u

ui+p − ui

. (A.4)

Whenever equation A.4 results to the quotient 0/0 this is defined to be 0 [27, §2.2].

[27, §2] reports many important properties of basis functions. Some are as follows:

(a) the sum of the basis functions for any value of the parameter u is equal to 1 (partition of

unity); (b) the basis functions are non-negative in the whole real domain; (c) p + 1 basis

function are non-zero in any knot-span with positive length; (d) all derivatives of a basis

function exist in the interior of a knot span; (e) at a knot with multiplicity s, the basis

function is p − s times differentiable.

Figure A.1 shows the degree-0, -1 and -2 basis functions for a specific knot vector; a

curve based on such a knot-vector is illustrated in Figure A.2. The knot span [0.15, 0.25)

is shorter than the others. On that knot span, the peak in the quadratic basis function is

more distinct, reaching almost one. On the contrary, the adjacent basis functions decrease

to zero more quickly. In the geometric interpretation, this means that a curve based on

such a knot vector approaches the corresponding control point closely: see the 3rd control

point in Figure A.2. In the case of a double knot, the length of the knot span becomes zero,

and the peak in the quadratic basis function reaches one, as in the case of the double knot

at 0.75, corresponding to the 6th control point of the curve. The quadratic basis function

is no longer differentiable at that point, and a degree-2 curve will have a sharp corner if

the neighbor control points are not collinear. Finally, periodic uniform knot vectors yield

periodic uniform basis functions, namely each basis function is a translate of the others.

NURBS Curve and Surface Properties A NURBS curve is defined by its order, a set

of weighted control points, and a knot vector. The order of a NURBS curve determines
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Figure A.1: Non-zero NURBS basis functions of 0th (top), 1st (middle) and 2nd (bottom)

degree defined on the knot vector [0, 0, 0, 0.150.25, 0.50, 0.75, 0.75, 1, 1, 1]

Figure A.2: A NURBS quadratic curve (blue) with its control polygon (red).

Figure A.3: A NURBS quadratic curve (blue) with its control polygon (red). The curve section

affected by the displacement of the control point P3 is dotted.
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Figure A.4: NURBS quadratic surface. A NURBS surface (gray and translucent) with its

control polygon (black).

the number of successive control points that influence each point on the curve. The curve

is modeled mathematically by a piecewise polynomial of degree equal to the order of the

curve minus one. In practice, cubic (fourth-order) curves are the ones most commonly

used; curves of orders higher than 7 are numerically expensive to evaluate, due to the

recursive procedure to compute the basis functions. Each control point is assigned a weight:

the weight defines how much does a control point “attract” the curve and is essential to

parameterize exact conics such as parabolic curves, circles, and ellipses.

NURBS curves have the following useful properties: (a) For clamped knot vectors,

C(u) interpolates P0 and PI , that is C(u0) = P0 and C(uK) = PI . (b) C(u) is a piecewise

polynomial curve, formed by polynomials of degree p. (c) The number of knots K, number

of control points N and the degree p are connected through K = N + p + 1;. (d) Any

affine transformation can be applied to C(u) by applying it to its control points and weights.

(e) Changes to the position of a control point Pi affect only the section of the curve on the

interval u ∈ [ui, ui+p+1); see Figure A.3. (f) C(u) is infinitely differentiable on the interior

of knot spans and is p − s times differentiable at a knot of multiplicity s.

NURBS surfaces are tensor product surfaces. The latter are based on bidirectional

curve scheme; this means that they employ bivariate basis functions which are the product

of univariate basis functions specified on the two distinct parametric directions, as inferred

from equation A.1. NURBS surfaces are defined through an (I + 1)× (J + 1) grid of control

points Pi, j and two-knot vectors and orders, one for each parametric direction. The main

properties of NURBS curves are also applicable to NURBS surfaces. Figures A.4 and 2.2

illustrate examples of NURBS surfaces.
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Conformal Mapping

The GMTurbo parameterization described in Chapter 3 relies on conformal mapping to

produce airfoils in 2D that correspond to airfoils lying on surfaces of revolution in 3D.

In mathematics, a conformal map is a function that preserves orientation and angles

locally. Two metrics g and h are said to be conformally equivalent if there exists a strictly

positive function c so that g = ch. Then, the function c is called the conformal factor. The

conformal (or angle preserving) mapping, which is of interest in the context of the blade

parameterization method, is that of a surface of revolution on the mθ-plane. The mapping

of the mθ-plane in the 3D Cartesian space is illustrated in Figure B.1.

Let the generatrix of the surface of revolution be defined parametrically in the zr plane

as G(u) = (z(u), r(u)). Then, in the Cartesian space the surface of revolution is represented

by S(u, θ) = (r(u) cos θ, r(u) sin θ, z(u)). A mapping Φ of S in the mθ-space is defined as:

Φ : (r(u) cos θ, r(u) sin θ, z(u)) 7→ (m(u), θ)

with m(u) =

∫ u

0

√
(

dr(t)
dt

)2
+

(
dz(t)

dt

)2

r(t)
dt

(B.1)

Figure B.1: A surface of revolution in the 3D Cartesian space and the representation of the

conformal mθ 2D space.
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Let s(u, θ) = (r(u) cos θ, r(u) sin θ, z(u)) denote a point on the surface and p(u, θ) =

(m(u), θ) denote the same point mapped onto the (m, θ) plane. The metrics of the first

fundamental form1 of s are given as

Es =
∂s

∂u
· ∂s
∂u
=

[

∂r(u)

∂u

]2

+

[

∂z(u)

∂u

]2

Fs =
∂s

∂u
· ∂s
∂θ
= −r(u)

∂r(u)

∂u
cos θ sin θ + r(u)

∂r(u)

∂u
cos θ sin θ = 0

Gs =
∂s

∂θ
· ∂s
∂θ
= r2(u) sin2 θ + r2(u) cos2 θ = r2(u)

(B.2)

Likewise, the metrics of the first fundamental form of p are given as

Es =
∂p

∂u
· ∂p
∂u
=

[
∂r(u)
∂u

]2
+

[
∂z(u)
∂u

]2

r2(u)

Fs =
∂p

∂u
· ∂p
∂θ
= 0

Gs =
∂p

∂θ
· ∂p
∂θ
= 1

(B.3)

From Equations B.2 and B.3, it can be shown that

Es =
1

r2(u)
Ep , Fs =

1

r2(u)
Fp , Gs =

1

r2(u)
Gp (B.4)

Equation B.4 proves that the mapping defined by Equation B.1 is conformal with the

conformal factor c = 1
r2(u)

. The length is not preserved by the mapping. However, a relation

exists [147], as follows. An infinitesimally small length dℓs on the 3D surface of revolution

is expressed as

dℓs =
√

Esdu2 + Fsdudθ +Gsdθ2 (B.5)

while the same infinitesimal length dℓp on the 2D conformal space of the surface is

expressed as

dℓp =

√

Epdu2 + Fpdudθ +Gpdθ2 (B.6)

Combining Equations B.5, B.6 and B.4, it is easily proven that

dℓs

dℓp
=

1

r
(B.7)

1In differential geometry, the first fundamental form of a surface is the inner product on the tangent vectors

of the surface in three-dimensional Euclidean space [147, §16.6].



Appendix C

The Newton’s and SQP Methods

In this appendix, some of the gradient-based numerical optimization methods for non-linear

unconstrained and constrained problems that are used in the thesis are reviewed.

An optimization problem is formulated by first identifying one or more objectives,

namely quantitative measures of the performance of the system under study, such as the

pressure losses of a compressor row. The objective functions depend on the design variables

or DoFs. The goal of numerical optimization is to find the values of the variables that

optimize the objectives. Often the optimization problem is constrained, in some way: for

instance, by limiting the values of the DoFs or by some other functions that must be in

specific ranges. Formally, non-linear problems with one objective can be written as

min
x

f0(x)

subject to fi(x) ≤ 0, i ∈ I

fi(x) = 0, i ∈ E

x ∈ X

(C.1)

where

• x = (x1, . . . , xN)T is the vector of DoFs,

• f0(x) is the scalar objective function (to be minimized),

• fi(x), i ∈ E are the equality constraints,

• fi(x), i ∈ I are the inequality constraints,

• X = {x : xmin
j
< x j < xmax

j
, j ∈ [1, . . . ,N]} are the variable bounds,

• I and E are sets of indeces.

The class of gradient-based optimization methods includes, among a vast realm, steepest

descent [148], Newton and quasi-Newton [149, 150] and SQP [151]. These methods are
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suitable for smooth (twice differentiable)-non-linear objective functions and constraints,

and may find the minimum of the basin of attraction of the user-supplied starting point.

Line Search Line search are methods used as part of larger optimization algorithms, such

as Newton and SQP. At each iteration k of the main algorithm, the line-search method look

for for an improved point xk+1 along the line containing the current point xk and parallel to

the search direction pk, which is a vector determined by the main algorithm. Namely, the

method finds the next iterate xk+1 by:

xk+1 = xk + ηpk . (C.2)

The distance to move along pk is determined by the step-length η that is found by approx-

imately solving:

min
η>0

f0
(

xk + ηpk

)

. (C.3)

Line search algorithms generate a limited number of trial step-lengths until they establish

one that approximates the minimum of equation C.3 so that f0
(

xk + ηpk

)

< f0 (xk). At

each new iterate of the outer optimization method, computing a new search direction, the

line search method compute a new step-length. The Wolfe conditions are prevalently used

inexact line search conditions [12, §3.1].

C.1 Newton’s Method and Quasi-Newton Methods

Newton’s Method and Quasi-Newton Methods [149, 150] are used for unconstrained

Non-Linear Programming such as the geometric problem is Section 2.3.2.

Newton’s Method Newton’s methods use a second-order Taylor series expansion of the

function about the point f (xk + p):

f0(xk + p) ≈ f0(xk) + pT
∇ f0(xk) +

1

2
pT
∇

2 f0(xk)p . (C.4)

Assuming that ∇2 f0(xk) is positive definite, the Newton search direction is vector p that

minimizes the right-hand-side of equation C.4, that is:

pN
k = −

(

∇
2 f0(xk)

)−1
∇ f0(xk) . (C.5)
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The Newton direction pN
k

can be used when ∇2 f0(xk) is positive definite; otherwise,
(

∇
2 f0(xk)

)−1
in equation C.5 would be undefined. In such a case, methods that modify the

definition of pk while retaining the second-order information, exist [12, §3.4]. Methods

that use the Newton direction have a fast rate of convergence, typically quadratic. The

main weakness of the Newton method is the need to compute the Hessian of the objective

function, which usually is an expensive process.

Quasi-Newton Methods Quasi-Newton search directions provide an attractive alternat-

ive to Newton’s method since they do not require computation of the Hessian and still attain

a super-linear convergence rate. In place of the exact Hessian∇2 f0(xk), they use an ap-

proximation Bk, which is updated in each iteration k to consider the additional information

obtained: the updates rely on the fact that changes in the gradient ∇ f0 yield information

about the second derivative of f0 along the search direction. Two of the most widely used

formulas for updating the Hessian approximation Bk are the Symmetric-Rank-one (SR1)

formula [152] and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula [153]. The

latter is defined by

Bk+1 = Bk +
ykyT

k

yT
k

sk

−
BksksT

k
BT

k

sT
k

Bksk

, (C.6)

where sk = xk+1 − xk and yk = ∇ fk+1 − ∇ fk. The derivation of such equations is illustrated

in [12, §6.1]. The quasi-Newton search direction is, then, defined as

p
QN

k
= − (Bk)−1

∇ f0(xk) . (C.7)

The BFGS formula generates positive-definite approximations whenever the initial approx-

imation B0 is positive-definite and sT
k

yk > 0 [12, §6.1]. The initial Hessian approximation

B0 can be chosen to be the identity matrix or a multiple of it, which reflects the DoFs

scaling. A strategy for solving optimization problems with the quasi-Newton method is

illustrated in Algorithm C.1.

C.2 Sequential Quadratic Programming

Optimization theory for smooth problems of the form of equation C.1 is based on the

Lagrangian L(x, λ) function that combines the objective function f0(x) and the constraints
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Algorithm C.1: BFGS-based quasi-Newton method

Given x0, B0 and ǫg > 0

k = 0

repeat

Compute the gradient ∇ f (xk)

Compute the search direction pk by equation C.7

Compute the step-length η by performing a line search

Compute xk+1 by equation C.2

Compute Bk+1 by equation C.6

k ← k + 1

until ‖∇ f (xk)‖ ≥ ǫg

fi(x), i ∈ I ∪ E. Its definition is:

L(x, λ) = f0(x) +
∑

i∈I∪E
λi fi(x) (C.8)

where λ = {λi, i ∈ I∪E} is the vector of Lagrangian multipliers.Such a problem is solved by

seeking for stationary points of the Lagrangian which respect certain optimality conditions,

known as the Karush-Kuhn-Tucker (KKT) conditions [12, §12.4], and assumptions on the

constraints [12, §12.6]. The solution of the KKT equations constitutes the basis of several

non-linear programming algorithms, such as the SQP method.

SQP methods are state of the art in non-linear programming methods. For instance,

[154] has implemented and tested a version that (according to the authors) outperforms

every other tested method in terms of efficiency, accuracy, and percentage of successful

solutions, over a considerable number of test problems. Based on [155–158], the SQP

method allows mimicking Newton’s method for constrained optimization. At each iteration,

an approximation to the Hessian of the Lagrangian function is made using a quasi-Newton

updating method; this is then used to generate a QP subproblem whose solution is used to

form a search direction for a line search procedure.

Given the problem description in equation C.1, the main idea is the formulation of a

QP subproblem based on a quadratic approximation of the Lagrangian function of equation

C.8 with linearized constraints. Namely, the problem at an iterate (xk, λk) is modeled as:

min
p
L(xk, λk) + pT

∇xL(xk, λk) +
1

2
pT
∇

2
xxL(xk, λk)p

subject to fi(xk) + pT
∇ fi(xk) ≤ 0, i ∈ I

fi(xk) + pT
∇ fi(xk) = 0, i ∈ E

(C.9)
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where ∇2
xxL(xk, λk) is the Hessian of the Lagrangian function; bounds constraints, if any,

are handled as inequality constraints.

Under certain conditions described in [12, §18.1], the quadratic problem in equation

C.9 can be solved by QP programming [12, §16.1] leading to the solution pk and updated

Lagrangian multipliers. For each SQP iteration, pk is used to obtain the new iterate

xk+1 = xk +ηpk, where η is determined by an appropriate line search procedure. Many SQP

methods approximate the Hessian of the Lagrangian through a quasi-Newton approach, such

as the BFGS update formula (equation C.6) with sk = xk+1 − xk and yk = ∇L(xk+1, λk+1)−
∇L(xk, λk+1). [157] recommended keeping the Hessian positive definite even though it

might be indefinite at the solution point. To ensure the positive definitiveness of the

approximated Hessian, the damped BFGS updating for SQP has been devised: in equation

C.6, yk is interchanged with rk which is defined as

rk = θkyk + (1 − θk)Bksk (C.10)

where

θk =






1 if sT
k

y ≥ 0.2sT
k

Bksk

(

0.8sT
k

Bksk

)

/
(

sT
k

Bksk − sT
k

y
)

otherwise
. (C.11)

This modified BFGS update method interpolates the current Bk and the one corresponding

to the BFGS. The choice of θk ensures that the new approximation is close enough to the

current approximation to guarantee positive definitiveness.

Apart from using a different quasi-Newton update, SQP algorithms also need adjust-

ments to the line search strategy to ensure convergence from remote starting points. It is

common to use a merit function, to control the step-size in the line search. [156] suggested

the following possibility for such a function:

φ(x, µ) = f0(x) +
∑

i∈E
µi| fi(x)| +

∑

i∈I
µi max (0, fi(x)) . (C.12)

µi are penalty parameters which [157] updated, at a iteration k, with the following strategy:

µi = (µk+1)i = max

(

λi,
(µk)i + λi

2

)

, (µ0)i =
‖∇ f0(x0)‖
‖∇ fi(x0)‖ , i ∈ I ∪ E. (C.13)

This allows positive contribution from inactive constraints in the QP solution at an iteration

k but were recently active. An optimization procedure based on SQP in sketched in

Algorithm C.2.
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Algorithm C.2: SQP Method

Given (x0, λ0) and B0

k = 0

repeat
Compute pk and λk+1 by solving the QP problem in equation C.9 with Bk in place of

∇
2
xxL(xk, λk)

Compute (µk)i, i ∈ I ∪ E by equation C.12 such that pk is a descent direction for φ at

xk

Compute the step-length η by performing a line search on the merit function φ

Compute xk+1 by equation C.2

Compute Bk+1 by equation C.6 with rk in place of yk

k ← k + 1

until optimality conditions satisfied.



Appendix D

Evolutionary Algorithms and the

EASY Software

Gradient-free optimization methods include, among many others, simulated annealing

[159], Particle Swarm Optimization (PSO) [160], surrogate optimization [161], Generalized

Pattern Search (GPS) [162] and Evolutionary Algorithms (EAs) [163]. This appendix

focuses on the latter and the Evolutionary Algorithm System (EASY) software [164–167]

developed by the PCOpt/NTUA. EASY supports MAEAs with several metamodel types

and other methods to enhance EAs, such as distributed, asynchronous and hierarchical

search.

D.1 Evolutionary Algorithms

Extensive descriptions of EAs can be found in [163, 168, 169]. The theory of evolution of

species inspired EAs; the algorithms mimick natural processes of parent selection, cros-

sover (the combination of parents) and mutation (random changes) among a population

of “individuals”. Each individual is a candidate solution of the optimization problem,

whose genotype is the set of DoFs or design variables, and whose phenotype is the ob-

jective function and constraint values. Such evolution operators have a certain degree of

randomness so that EAs are classified as stochastic methods. Over successive generations,

the population “evolves” toward one with expectedly better-performing individuals. EAs

methods address optimization problems where the objective or constraint functions are

smooth, non-smooth and non-differentiable, and the DoFs are discrete or continuous; the

user does not need to provide any initial point. The objective and constraints are treated as

black-box functions. Extension to multi-objective optimization computing Pareto fronts of
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non-dominated solutions is also in use [170].

However, EAs have a significant disadvantage, which is the large number of candidate

solutions to be evaluated in order to reach the optimal solution. Such a disadvantage is

detrimental in case the candidate solution evaluation is time-consuming, as in the case of

CFD-based simulations: surrogate optimization is best suited to time-consuming objective

functions. A surrogate or metamodel is a function that approximates the objective function.

The metamodel is useful because it takes practically zero time to evaluate a new candidate

solution. So, for instance, to search for a minimum of the objective function, an optimization

can be run on the metamodel to find an approximation to the minimizer of the objective

function. Response surfaces, Radial Basis Function [171] or other models are used as

metamodels, trained on a set of evaluated candidate solutions. EAs assisted with surrogate

evaluation models are referred to as Metamodel-Assisted EAs (MAEAs). In MAEAs,

surrogate metamodels management is important [172]. Surrogate models can be trained

either before the EA optimization starts, which is referred to as an MAEA with off-line

trained metamodels or during the evolution by exploiting newly computed information,

which is referred to as an MAEA with on-line trained metamodels [173]. The former are

usually trained by a Design of Experiments (DoE) [174]. Moreover, surrogate optimization

must consider the range of validity of the underlying metamodel: based on this criterion,

metamodels are distinct between global and local ones [172].

D.2 Evolutionary Algorithms in EASY

The PCOpt/LTT has been developing EA strategies for the last two decades, and it has

implemented them in software named EASY [175]. The algorithm used by the EASY

software is the (µ, λ)-EA: it handles three different populations in each generation, namely

the offspring population with λ individuals, the parent population with µ individuals and

the elite population with ǫ individuals. Constrained optimization is handled using a penalty

function [164, §2.3.4]. The outline of the algorithm is as follows.

Initialization Initialize the offspring population at random, by considering the user-defined

lower and upper bounds for each design variable. Optionally, the user can inject

individuals in the initial population.

Evaluation Compute the objectives and constraints values of each individual of the current

offspring population. The evaluated individuals are stored in a database to avoid

repeated evaluations.
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Fitness Assignment Compute the fitness values of each individual of the current three

populations. For single-objective problems, the fitness coincides with the object-

ive. For multi-objective problems, the fitness is computed with Pareto dominance

techniques [164, §2.3.3].

Elite Selection Chose the elite population among the non-dominated individuals of the

current offspring population and the previous elite population. If the number exceeds

the user-defined max. number ǫ, trimming is necessary. This operator supports the

monotonic convergence of the algorithm over the generations by retaining the best

solutions.

Elitism Operator The members of the elite population substitute some members in the

current offspring population.

Parent Selection Form the parent population by selecting µ members, based on their

fitness, from the union of the previous parent population and the current offspring

population. Lower fitness leads to greater selection probability and an individual can

be selected more than once as a parent, in which case it contributes to the “genes” of

more than one child. Various strategies exist to select the parents, see [164, §2.3.2].

Crossover Operator Create a new offspring population applying the crossover operator

to the parent population. Parents are selected with a certain probability, again based

on their fitness, and combined in different ways to produce a new offspring. This

operator enables the algorithm to extract the best “genes” from various parents and

recombine them into potentially fitter children. Many strategies exist, see [164,

§2.3.2].

Mutation Operator Members of the offspring population undergo mutations with a small

user-defined probability. This operator helps to maintain the diversity in the popula-

tion and explore the design space by overcoming the stagnation of the evolution.

Termination Criteria The algorithm stops when one of the user-supplied stopping criteria

is met, such as the number of evaluations. Otherwise, the algorithm returns to the

evaluation step.

In EASY, the process can be assisted by metamodels as follows. In [176], the

PCOpt/LTT proposed a MAEA strategy based on the low-cost pre-evaluation method:

metamodels are trained and used in each generation, and only a few best candidates, ac-

cording to the metamodel-based evaluations, are re-evaluated with CFD simulations during

a pre-evaluation phase. This low-cost pre-evaluation phase starts once a predefined number

of individuals is available in the database, to train the metamodel; up to that point, the stand-

ard EA is used. Information computed with the problem-specific model is continuously
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added to the on-line metamodels. In multi-objective optimization, different metamodels are

trained to predict different objective functions. Compared to the standard algorithm above,

MAEAs substitute the evaluation phase with the following one.

Evaluation Once the database contains a sufficient number of entries, the evaluation starts

according to the following steps. Otherwise, the standard EA evaluation phase is

used.

Inexact Pre-Evaluation Train the local metamodel(s) using the database entries to

compute the objective and constraint function values of each individual of the

current offspring population.

Selection for Individuals to be Re-Evaluated Select the most promising individu-

als, λe, based on the objective function values approximated by the metamodels.

Usually, 10% of the current offspring population is selected.

Exact Evaluation Re-evaluate exactly and store in the database the λe individuals.

A comprehensive description of the methods implemented in EASY is available in the

D. Kapsoulis’ PhD Thesis [164] (same group).



Appendix E

The PUMA CFD Flow and Adjoint

Solver

For CFD computations and their adjoint counterparts, this thesis relies upon CFD software

developed by the PCOpt/NTUA which is named PUMA (Parallel-Unstructured-Multi-Row-

Adjoint) [8, 164, 177–181]. The flow models used in this thesis consist of the Reynolds-

Averaged Navier-Stokes (RANS) equations for either compressible or incompressible flows

with the Spalart-Allmaras turbulence model [182]. The PUMA solver is implemented

on NVIDIA Graphics Processing Units (GPUs) using CUDA [183], taking advantage of

the parallel speed-up they offer: up to 45x compared to the CPU implementation of the

same code [184]. Moreover, PUMA is capable of running on many GPUs on the same

or different computational nodes, using MPI. This appendix illustrates the basics of the

governing equations for compressible flows.

E.1 RANS Equations for Compressible Flows

The equations are expressed w.r.t. a (relative) non–inertial frame of reference rotating

at a constant speed (occasionally zero). By defining a coordinate system O(x1 x2 x3)

which rotates at a constant rotation speed ωm (m = 1, 2, 3), then the RANS equations for

compressible flows are expressed as

Rn =
∂ f inv

nk

∂xk

−
∂ f vis

nk

∂xk

+ S n = 0 . (E.1)
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Rn is the residual of the mean-flow Navier-Stokes (NS) equations. Inviscid fluxes f inv
nk

,

viscous fluxes f vis
nk

and source terms S n (corresponding to the Coriolis force) are defined as:

f inv
nk =





ρvR
k

ρvA
1

vR
k
+ pδ1k

ρvA
2

vR
k
+ pδ2k

ρvA
3

vR
k
+ pδ3k

ρhtv
R
k
+ vF

k
p





, f vis
nk =





0

τ1k

τ2k

τ3k

vA
ℓ
τℓk + qk





and S n =





0

ρε1ℓkωℓv
A
k

ρε2ℓkωℓv
A
k

ρε3ℓkωℓv
A
k

0





. (E.2)

vA
m (m = 1, 2, 3) are the velocity components w.r.t. the absolute/inertial frame of reference, ρ

the fluid density, p the static pressure, vR
m the relative velocity components, qk the heat flux

and ht the total enthalpy. τmk are the components of the viscous stress tensor for Newtonian

fluids that are function of the bulk viscosity µ and turbulent viscosity µt. The relative

velocity components vR
m are linked to the absolute ones vA

m by the relation vA
m = vR

m + vF
m,

with vF
m = εmℓkωk

(

xk − xC
k

)

being the rotating/non-inertial frame velocity and xC
k

the

position vector of the center of rotation. δmk and εmℓk are the Kronecker and Levi-Civita

symbols, respectively. The turbulent viscosity µt is computed by means of the one-equation

Spalart-Allmaras turbulence model [182]. Moreover, Un =
[

ρ ρvA
1
ρvA

2
ρvA

3
ρE

]

are the

conservative mean-flow variables.

To fully define the flow problem, the mean-flow and Spalart-Allmaras equations must

be solved for a particular set of boundary conditions. Some of the conditions used in this

thesis are as follows.

Symmetry Normal gradients of flow variables and the normal velocity across the boundary

are set to 0.

Periodic Flow variables are equal along periodically paired points; in the case of peripheral

periodicity, vector and tensor quantities are properly rotated.

Wall For no-slip walls, the relative velocity is set equal to the wall boundary velocity and

the turbulence variable to 0, for the Spalart-Allmaras model.

Inlet For subsonic inlet boundaries, the total pressure, total temperature, inlet absolute

velocity direction and inlet turbulence level are specified. The static pressure, absolute

velocity magnitude or the local Mach number are extrapolated from the flow domain.

Outlet At subsonic outlets, the outlet static pressure distribution, the outlet mean static

pressure or the outlet mass flow rate is specified.

Far-Field Depending on the local velocity, if the flow enters the domain, the boundary is

locally considered as an inlet; otherwise, it is locally considered as an outlet.
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The inviscid fluxes are computed using the Roe’s approximate Riemann solver [185].

The spatial discretization of the inviscid fluxes is second-order accurate, with appropriate

flux limiters [186]. Viscous fluxes are computed using an edge-based central difference

scheme. The discretized equations are solved using a time-marching algorithm and a

point-implicit Jacobi scheme. More details on the RANS equations and their discretization

are provided in [8, §2].

E.2 The Continuous Adjoint Method for Aerodynamic Shape

Optimization

As illustrated in Section 4.2, in gradient-based shape optimization, it is necessary to compute

the gradient of an objective function F w.r.t. a set of design variables bi, i = 1, . . . ,N. This

section briefly illustrates how to obtain this gradient using the continuous adjoint method

for compressible flows. Herein, the partial derivative ∂Φ
∂bi

is associated with the change in a

field quantity Φ induced solely by changes in the flow variables caused by changes in bi,

while the total derivative δΦ
δbi

takes into account also the change in Φ due to the change in

position xk of mesh nodes.

Let F be an integral quantity defined along some surface boundaries of the flow domain

S Obj and/or over the fluid volume Ω such that

F =

∫

S Obj

FS dS . (E.3)

The adjoint formulation starts by defining the augmented function

Faug = F +

∫

Ω

ΨnRndΩ +

∫

Ω

ν̃aRµ̃dΩ, n = 1, . . . , 5 , (E.4)

where Ψn are the mean-flow adjoint variables, ν̃a the adjoint turbulence model variable

and Rµ̃ the residual of the turbulence model equation. Upon convergence of the flow

equations, the residuals tend to zero and, consequently, Faug tends to F, so that the required

sensitivities can be computed from
δFaug

δbi
. By differentiating equation E.4 and applying the

Leibniz theorem:

δFaug

δbi

=
δF

δbi

+

∫

Ω

Ψn

∂Rn

∂bi

dΩ+

∫

∂Ω

ΨnRn

δxk

δbi

nkdS +

∫

Ω

ν̃a
∂Rµ̃

∂bi

dΩ+

∫

∂Ω

ν̃aRµ̃
δxk

δbi

nkdS . (E.5)
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The term δF
δbi

is developed based on the definition of the specific objective function F.

During the mathematical development of
δFaug

δbi
, volume integrals containing variations of

flow quantities w.r.t. the design variables arise. Because variations of flow quantities w.r.t.

the design variables are associated with high computational cost, the integrals containing

them are set equal to zero and by doing so, a new set of Partial Differential Equations

(PDEs), the so-called field adjoint equations, arise:

− Anmk

∂Ψn

∂xk

− Km +KSA
m + S

adj
m = 0 . (E.6)

The terms Km and KSA
m result from the differentiation of the mean-flow viscous terms and

the differentiation of the turbulence model, S
adj
m is the adjoint to the Coriolis force and

Anmk =
∂ f inv

nk

∂Um
is the inviscid flux Jacobian of the flow equations. An equation is similarly

developed for the Spalart-Allmaras turbulence model [8, §3.1.3].

After having treated all volume integrals arising from the differentiation of Faug, the

surface integrals remain. The dependency of the sensitivity derivatives computation formula

on the variation of the flow variables along the boundaries is eliminated by setting any

integral containing these variations to zero. At the same time, the flow boundary conditions

must also be considered: variations in the imposed quantities are zero and integrals must

be developed so that variations in imposed quantities are eliminated. The factors associ-

ated with the remaining flow quantity variations (like variations in pressure for the wall

boundaries) are set to zero, which lead to the boundary conditions of adjoint RANS and SA

PDEs. Each type of boundary condition gives rise to specific adjoint boundary conditions

and sensitivity derivatives equations as exposed in detail in [8, §3.1.4]. Upon convergence

of the adjoint PDEs, the expression for computing the sensitivity derivatives includes only

surface integrals containing variations in geometric quantities.

The adjoint PDEs equations are solved in PUMA similarly to the primal PDEs. The

PhD thesis of K. Tsiakas [8] contains an extensive review of the RANS equations, the

continuous adjoint method for compressible and incompressible flows, accompanied with

formulations for the boundary conditions and the strategies for their numerical solution in

PUMA.



Appendix F

Bi-Conjugate Gradient Stabilized

Method

The Bi-Conjugate Gradient Stabilized (BiCGStab) method is used in Chapter 5 for solving

the RBF interpolation and is herein analyzed; this requires to briefly illustrate also the

Conjugate Gradient (CG) and Bi-Conjugate Gradient (BiCG) method.

Conjugate Gradient Method The CG method is suitable for symmetric positive definite

linear systems. The technique generates successive approximations to the solution and

corresponding residuals and search directions. Only a few vectors need to be stored in

memory, and a few scalars are computed to keep track of orthogonality conditions that

indicate that the distance to the exact solution is minimized according to a metric. The

metric and method come from the fact that the solution of the linear system is also the zero

of the quadratic function

f (x) =
1

2
xT Ax − xTb. (F.1)

The second derivative of f (x), ∇2 f (x) = A guarantees that a solution exists and is unique

since A is positive definite. The first derivative ∇ f (x) = Ax − b intuitively gives a search

direction. However, such a quantity is only used as a metric to check the convergence,

namely the residual. The search direction, instead, is computed so that it is orthogonal to

previous search directions.

In detail, at an iteration k, the approximated solution xk is updated by a multiple αk of

the search direction vector pk:

xk = xk−1 + αk pk. (F.2)
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Equivalently, the residuals rk = b − Axk are updated as

rk = rk−1 − αk Apk. (F.3)

Using

αk = (rT
k−1rk−1)(pT

k Apk) (F.4)

minimizes rT
k

Ark. The search direction is updated by

pk = rk + βk−1 pk−1. (F.5)

Using

βk = (rT
k rk)(rT

k−1rk−1) (F.6)

guarantees that rk−1 and rk be orthogonal.

The CG method was originally proposed in [187]. A more formal explanation of the

CG method with reference to many theoretical properties and convergence analyses can be

found in [188, §7.6] and [189, §2.3.1].

Bi-Conjugate Gradient Method The CG method is not proper for non-symmetric sys-

tems because the residual vectors cannot be made orthogonal with short recurrences [190].

The BiCG method replaces the orthogonal sequence of residuals by two mutually orthogonal

sequences. In detail, the BiCG method augments the updating formulas of the residuals

involving both the coefficient matrix and its transpose. Thus, the technique requires to

update two sequences of residuals

rk = rk−1 − αk Apk and r̂k = r̂k−1 − αk AT p̂k (F.7)

and two sequences of directions

pk = rk + βk−1 pk−1 and p̂k = r̂k + βk−1 p̂k−1 (F.8)

Using

αk =
r̂T

k−1
rk−1

p̂T
k

Apk

and βk =
r̂T

k
rk

r̂T
k−1

rk−1

(F.9)

ensures bi-orthogonality relations r̂T
i

r j = p̂i Apj = 0 with i , j to be fulfilled. The BiCG

method is unstable and may break down, for instance, when zT
0

r̂0 approaches 0 [189,

§2.3.5]; the BiCGStab method improves upon this strategy.
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Algorithm F.1: Bi-conjugate gradient stabilized method [189, §2.3.8]

Given x0, A, M, b

r0 = b − Ax0

r̂ = r0

for k = 1, 2, . . . do

ρk−1 = r̂Trk−1

if ρk−1 = 0 then method fails

if k = 1 then

p1 = r0

else

βk−1 = (ρk−1/ρk−2)(αk−1/ωk−1)

pk = rk−1 + βk−1(pk−1 − ωk−1vk−1)

p̂ = M−1 pk

vk = Ap̂k

αk = ρk−1/(r̂T
k
vk)

s = rk−1 − αkvk

if ‖s‖ small enough then

xk = xk−1 + αk p̂

exit the loop

ŝ = M−1sk

t = Aŝ

wk = (tTs)(tT t)

xk = xk−1 + αk p̂+ ωk ŝ

rk = s − ωk t

if Convergence criteria fulfilled then exit the loop

Bi-Conjugate Gradient Stabilized Method In the BiCG method, the recurrence op-

erations in equations F.7 and F.8 are used to update the residuals and search directions,

respectively. These can also be written as (see [191, §7.4.1]):

rk = Pk(A)r0, r̂k = Pk(AT)r̂0

pk = Tk(A)r0, p̂k = Tk(AT)r̂0

(F.10)

where Pk(A) and Tk(A) are the kth-degree polynomial in A. Their recurrence relations are

then defined as:

Pk(A) = Pk−1(A) − αk ATk−1(A) and Tk(A) = Pk(A) − βk+1Tk−1(A) (F.11)

This view suggests that, for instance, if Pk(A) reduces r0 to a smaller vector rk, then it might

be advantageous to apply this “contraction” operator twice, by computing rk = P2
k
(A)r0.

Such a strategy is adopted by the Conjugate Gradient Squared (CGS) method.

The BiCGStab method was proposed in [192], and it is based on the same concept, but

instead of applying the operators Pk(A) and Tk(A) twice, it makes use of a new polynomial
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which is defined recursively for stability purposes. Namely:

rk = Qk(A)Pk(A)r0, r̂k = Qk(A)Pk(AT)r̂0

pk = Qk(A)Tk(A)r0, p̂k = Qk(A)Tk(AT)r̂0

(F.12)

The recurrence relation of Qk(t) is defined by Qk+1(t) = (1 − ωkt)Qk(t) ; the derivation of

the scalar ωk is described in [191, §7.4.2]. Basically, Qk(A) stands for a steepest descent

update. The computation of some parameters appearing in the BiCG method, such as αk

and βk, must be rearranged based on the new information, as explained in [192]. Moreover,

in the BiCG, vectors generated using AT and MT are only used to compute scalar quantities;

additional considerations allow to derive these scalar quantities avoiding the use of the

transpose matrices, which, in some applications, are difficult to compute. A resulting

strategy based on these modifications is illustrated in Algorithm F.1.
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Parametric Effectiveness

Parametric Effectiveness (PE) was introduced in [33] and [35]; it measures the ability of

the DoFs defining a CAD shape to be used for optimization. PE has been used in Chapter 2

to assess the B-Rep-Morpher method. It compares the change in performance achievable

by a specific parameterization to the performance improvement attainable if the surface of

the model was free to move, surface node by surface node (in the discrete sense).

PE is defined as the ratio of the change in performance achieved by perturbing all

the DoFs and the shape surface node-by-node in the steepest descent sense subject to the

constraint of equal root-mean-squared boundary displacement. In detail, the linearized

variation in the objective function F due to a variation in the DoFs b, in the steepest descent

direction (∆b = −ηCAD (dF/db)), is defined as

∆FCAD =
dF

db
∆b = −ηCAD

(

dF

db

)2

. (G.1)

Equivalently, the linearized variation in F due to a variation in the nodal coordinates x of

the shape surface is

∆FNodal =
dF

dx
∆x = −ηNodal

(

dF

dx

)2

. (G.2)

These lead to the definition of the PE as

PE =
∆FCAD

∆FNodal
=
ηCAD

ηNodal

(
dF
db

)2

(
dF
dx

)2
. (G.3)

The ratio ηCAD/ηNodal is computed from the constraint of equal root-mean-squared
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boundary (S) displacement, by assuming that [33]

∫

S

(

∆xNodal · n
)2

dS =

∫

S

(

∆xCAD · n
)2

dS . (G.4)

By taking into account that

∆xNodal = −ηNodal

(

dF

dx

)T

and ∆xCAD =
dx

db
∆b = −ηCAD

dx

db

(

dF

db

)T

(G.5)

we get

ηCAD

ηNodal

=

√√√√√√√√√√

∫

S

(

dx
db

(
dF
db

)T · n
)2

dS

∫

S

((
dF
dx

)T · n
)2

dS

, (G.6)

where n is the surface normal.

The quantity dF
dx

is computed by the adjoint method, dx
db

by the differentiation of the

shape parameterization and dF
db

by the chain rule.

Higher PE values indicate that the DoFs of the model can optimally change the shape.

Low PE values indicate that the parameterization of the model is less adequate to improve

the specific objective function F.
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[1] D. Thévenin and G. Janiga. Optimization and Computational Fluid Dynamics. Springer

Science & Business Media, 2008 (cit. on p. 1).

[2] H. K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics:

The Finite Volume Method. Pearson Education, 2007 (cit. on pp. 3, 4).

[3] Wikipedia Contributors. Computational Fluid Dynamics — Wikipedia, The Free Encyc-

lopedia. https://en.wikipedia.org/w/index.php?title=Computational_fluid_

dynamics&oldid=915311506. [Online; accessed 25-September-2019]. 2019 (cit. on p. 4).

[4] Wikipedia Contributors. Mathematical Optimization — Wikipedia, The Free Encyclopedia.

https://en.wikipedia.org/w/index.php?title=Mathematical_optimization&oldid=

918504161. [Online; accessed 29-September-2019]. 2019 (cit. on p. 4).

[5] L. S. Lasdon. Optimization Theory for Large Systems. Courier Corporation, 2002 (cit. on

p. 5).

[6] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1998 (cit. on

p. 5).

[7] G. R. Anderson and M. J. Aftosmis. ‘Adaptive Shape Parameterization for Aerodynamic

Design’. In: NASA - Technical Report NAS-2015-02 (2015) (cit. on p. 5).

[8] K. T. Tsiakas. ‘Development of Shape Parameterization Techniques, a Flow Solver and

its Adjoint, for Optimization on GPUs. Turbomachinery and External Aerodynamics

Applications’. PhD Thesis. National Technical University of Athens (NTUA), 2019 (cit. on

pp. 6, 39, 42, 138, 161, 163, 164).

[9] Pointwise™Mesh Generation Software. https://www.pointwise.com/. [Online; accessed

4-October-2019] (cit. on p. 7).

[10] Autogrid5™Mesh Generation Software. https://www.numeca.com/product/autogrid5.

[Online; accessed 4-October-2019] (cit. on p. 7).

[11] P. N. Koch, T. W. Simpson, J. K. Allen and F. Mistree. ‘Statistical Approximations for

Multidisciplinary Design Optimization: The Problem of Size’. In: Journal of Aircraft 36.1

(1999), pp. 275–286 (cit. on p. 10).

[12] S. Wright and J. Nocedal. Numerical Optimization. 2nd ed. Springer-Verlag, 2006 (cit. on

pp. 10, 152–155).

[13] K. T. Tsiakas, F. Gagliardi, X. S. Trompoukis and K. C. Giannakoglou. ‘Shape Optimization

of Turbomachinery Rows using a Parametric Blade Modeller and the Continuous Adjoint

Method Running on GPUs’. In: 7th ECCOMAS Conference Proceedings. 2016 (cit. on

pp. 10, 61).

[14] J. A. Samareh. ‘Survey of Shape Parameterization Techniques for High-Fidelity Mul-

tidisciplinary Shape Optimization’. In: AIAA Journal 39.5 (2001), pp. 877–884 (cit. on

p. 10).

171

https://en.wikipedia.org/w/index.php?title=Computational_fluid_dynamics&oldid=915311506
https://en.wikipedia.org/w/index.php?title=Computational_fluid_dynamics&oldid=915311506
https://en.wikipedia.org/w/index.php?title=Mathematical_optimization&oldid=918504161
https://en.wikipedia.org/w/index.php?title=Mathematical_optimization&oldid=918504161
https://www.pointwise.com/
https://www.numeca.com/product/autogrid5


172 Bibliography

[15] A. G. Liatsikouras and G. Pierrot. ‘Soft Handle Triggering: A CAD-Free Parameterization

Tool for Adjoint-Based Optimization Methods’. In: 6th ECCM and 7th ECFD Conference

Proceedings. 2018 (cit. on p. 10).

[16] D. Sieger, S. Menzel and M. Botsch. ‘On Shape Deformation Techniques for Simulation-

Based Design Optimization’. In: New Challenges in Grid Generation and Adaptivity for

Scientific Computing. Springer, 2015, pp. 281–303 (cit. on pp. 10, 11).

[17] A. M. Morris, C. B. Allen and T. C. S. Rendall. ‘CFD-Based Optimization of Aerofoils

using Radial Basis Functions for Domain Element Parameterization and Mesh Deforma-

tion’. In: International Journal for Numerical Methods in Fluids 58.8 (2008), pp. 827–860

(cit. on p. 11).

[18] M. E. Biancolini, I. M. Viola and M. Riotte. ‘Sails Trim Optimisation using CFD and RBF

Mesh Morphing’. In: Computers & Fluids 93 (2014), pp. 46–60 (cit. on pp. 11, 12, 69).

[19] T. T. Robinson, C. G. Armstrong, H.-S. Chua, C. Othmer and T. Grahs. ‘Optimizing Para-

meterized CAD Geometries using Sensitivities Based on Adjoint Functions’. In: Computer-

Aided Design and Applications 9.3 (2012), pp. 253–268 (cit. on pp. 12, 62).

[20] M. J. Martin, E. Andres, M. Widhalm, P. Bitrian and C. Lozano. ‘Non-Uniform Rational

B-Splines-Based Aerodynamic Shape Design Optimization with the DLR TAU Code’. In:

Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace

Engineering 226.10 (2012), pp. 1225–1242 (cit. on p. 12).

[21] S. Xu, W. Jahn and J.-D. Muller. ‘CAD-Based Shape Optimisation with CFD using a

Discrete Adjoint’. In: International Journal for Numerical Methods in Fluids 74.3 (2014),

pp. 153–168 (cit. on p. 12).

[22] A. Brune, T. Weber-Martins and R. Anderl. ‘Morphing Boxes for the Integration of Shape

Optimization in the Product Design Process’. In: Computer-Aided Design and Applications

15.2 (2018), pp. 219–226 (cit. on p. 12).

[23] R. McNeel et al. Rhinoceros Version 6. 2018. url: https://www.rhino3d.com/ (cit. on

p. 12).

[24] Q. Zou and H.-Y. Feng. ‘Push-Pull Direct Modeling of Solid CAD Models’. In: Advances

in Engineering Software 127 (2019), pp. 59–69 (cit. on p. 13).

[25] Wikipedia Contributors. ISO 10303 — Wikipedia, The Free Encyclopedia. https://en.

wikipedia.org/w/index.php?title=ISO_10303&oldid=927302944. [Online; accessed

10-January-2020]. 2019 (cit. on p. 13).

[26] Product Data Representation and Exchange – Part 203: Application Protocol: Configur-

ation Controlled 3D Design of Mechanical Parts and Assemblies. ISO 10303-242, 2014

(cit. on p. 13).

[27] L. Piegl and W. Tiller. The NURBS Book. Springer Science & Business Media, 1997 (cit. on

pp. 16, 48, 58, 143, 145).

[28] M. D. Buhmann. Radial Basis Functions: Theory and Implementations. Cambridge Mono-

graphs on Applied and Computational Mathematics. Cambridge University Press, 2009

(cit. on p. 17).

[29] H. Wendland. ‘Piecewise Polynomial, Positive Definite and Compactly Supported Radial

Functions of Minimal Degree’. In: Advances in Computational Mathematics 4.1 (1995),

pp. 389–396 (cit. on p. 17).

[30] Wikipedia Contributors. Thin Plate Spline — Wikipedia, The Free Encyclopedia. https:

//en.wikipedia.org/w/index.php?title=Thin_plate_spline&oldid=889887924.

[Online; accessed 3-October-2019]. 2019 (cit. on p. 17).

https://www.rhino3d.com/
https://en.wikipedia.org/w/index.php?title=ISO_10303&oldid=927302944
https://en.wikipedia.org/w/index.php?title=ISO_10303&oldid=927302944
https://en.wikipedia.org/w/index.php?title=Thin_plate_spline&oldid=889887924
https://en.wikipedia.org/w/index.php?title=Thin_plate_spline&oldid=889887924


Bibliography 173

[31] A. de Boer, M. S. Van der Schoot and H. Bijl. ‘Mesh Deformation Based on Radial Basis

Function Interpolation’. In: Computers and Structures 85.1114 (2007), pp. 784–795 (cit. on

pp. 17, 70, 72, 87).

[32] G. E. Fasshauer. Meshfree Approximation Methods with Matlab. Vol. 6. World Scientific

Publishing Company, 2007 (cit. on pp. 18, 67, 72).

[33] T. T. Robinson, C. G. Armstrong and H.-S. Chua. ‘Determining the Parametric Effectiveness

of a CAD Model’. In: Engineering with Computers 29.1 (2013), pp. 111–126 (cit. on pp. 21,

169, 170).

[34] T. T. Robinson, C. G. Armstrong and H.-S. Chua. ‘Strategies for Adding Features to

cad Models in Order to Optimize Performance’. In: Structural and Multidisciplinary

Optimization 46.3 (2012), pp. 415–424 (cit. on p. 21).

[35] D. Agarwal, C. Kapellos, T. T. Robinson and C. G. Armstrong. ‘Using Parametric Effect-

iveness for Efficient CAD-Based Adjoint Optimization’. In: Computer-Aided Design and

Applications 16.4 (2019), pp. 703–719 (cit. on pp. 21, 169).

[36] 6th AIAA CFD Drag Prediction Workshop. url: https://aiaa-dpw.larc.nasa.gov/

(visited on 01/04/2018) (cit. on p. 22).

[37] J. W. Demmel, J. R. Gilbert and X. S. Li. ‘An Asynchronous Parallel Supernodal Algorithm

for Sparse Gaussian Elimination’. In: SIAM Journal on Matrix Analysis and Applications

20.4 (1999), pp. 915–952 (cit. on p. 27).

[38] H. Wendland. ‘On the Smoothness of Positive Definite and Radial Functions’. In: Journal

of Computational and Applied Mathematics 101.1-2 (1999), pp. 177–188 (cit. on p. 28).

[39] M. Drela. ‘Pros and Cons of Airfoil Optimization’. In: Frontiers of Computational Fluid

Dynamics 1998 (1998), pp. 363–381 (cit. on p. 28).

[40] J. J. Thibert, M. Granjacques and L. H. Ohman. AGARD Advisory Report No. 138 -

Experimental Data Base for Computer Program Assessment. Advisory Group for Aerospace

Research and Development, 1979 (cit. on p. 28).

[41] 2nd AIAA CFD Drag Prediction Workshop. url: https://aiaa-dpw.larc.nasa.gov/

Workshop2/ (visited on 01/04/2018) (cit. on p. 34).

[42] J. Brezillon and R. P. Dwight. ‘Aerodynamic Shape Optimization using the Discrete Adjoint

of the Navier-Stokes Equations: Applications Towards Complex 3D Configurations’. In:

KATnet II Conference on Key Aerodynamic Technologies. 36-1. 2009 (cit. on p. 36).

[43] H. N. Cantrell and J. E. Fowler. ‘The Aerodynamic Design of Two-Dimensional Turbine

Cascades for Incompressible Flow with a High-Speed Computer’. In: Journal of Basic

Engineering 81.3 (1959), pp. 349–359 (cit. on p. 40).

[44] L. J. Pritchard. ‘An Eleven Parameter Axial Turbine Airfoil Geometry Model’. In: ASME

1985 International Gas Turbine Conference and Exhibit. Vol. 1. 3. American Society of

Mechanical Engineers. 1985, pp. 1–12 (cit. on p. 40).

[45] M. A. Trigg, G. R. Tubby and A. G. Sheard. ‘Automatic Genetic Optimization Approach to

Two-Dimensional Blade Profile Design for Steam Turbines’. In: Journal of Turbomachinery

121.1 (1999), pp. 11–17 (cit. on p. 40).

[46] T. Korakianitis. ‘Hierarchical Development of Three Direct-Design Methods for Two-

Dimensional Axial-Turbomachinery Cascades’. In: Journal of Turbomachinery 115.2

(1993), pp. 314–324 (cit. on p. 40).

[47] T. Korakianitis. ‘Prescribed-Curvature-Distribution Airfoils for the Preliminary Geometric

Design of Axial-Turbomachinery Cascades’. In: Journal of Turbomachinery 115.2 (1993),

pp. 325–333 (cit. on p. 40).

https://aiaa-dpw.larc.nasa.gov/
https://aiaa-dpw.larc.nasa.gov/Workshop2/
https://aiaa-dpw.larc.nasa.gov/Workshop2/


174 Bibliography

[48] J. Hoschek and R. Muller. ‘Turbine Blade Design by Lofted B-Spline Surfaces’. In: Journal

of Computational and Applied Mathematics 119.1-2 (2000), pp. 235–248 (cit. on p. 40).

[49] S. Goel, J. I. Cofer and H. Singh. ‘Turbine Airfoil Design Optimization’. In: ASME 1996

International Gas Turbine and Aeroengine Congress and Exhibition. American Society of

Mechanical Engineers. 1996, V001T01A055–V001T01A055 (cit. on p. 40).

[50] J. Li, Z. Feng, J. Chang and Z. Shen. ‘Aerodynamic Optimum Design of Transonic Turbine

Cascades using Genetic Algorithms’. In: Journal of Thermal Science 6.2 (1997), pp. 111–

116 (cit. on p. 40).

[51] K. Yamamoto and O. Inoue. ‘Applications of Genetic Algorithm to Aerodynamic Shape

Optimization’. In: 12th Computational Fluid Dynamics Conference. 1995, p. 1650 (cit. on

p. 40).

[52] M. Rossgatterer, B. Juttler, M. Kapl and G. Della Vecchia. ‘Medial Design of Blades

for Hydroelectric Turbines and Ship Propellers’. In: Computers & Graphics 36.5 (2012),

pp. 434–444 (cit. on p. 41).

[53] TURBODesign Suite. [Online; accessed 14-May-2019]. 2019. url: https : / / www .

adtechnology.com/ (cit. on p. 41).

[54] PropCad. [Online; accessed 14-May-2019]. 2019. url: https://hydrocompinc.com/

software/propcad (cit. on p. 41).

[55] FINE/Design3D. [Online; accessed 14-May-2019]. 2019. url: https://www.numeca.com/

product/finedesign3d (cit. on p. 41).

[56] BladeModeler. [Online; accessed 14-May-2019]. 2019. url: https://www.ansys.com/

products/fluids/ansys-blademodeler (cit. on p. 41).

[57] P. L. Miller, J. H. Oliver, D. P. Miller and D. L. Tweedt. ‘BladeCAD: An Interactive

Geometric Design Tool for Turbomachinery Blades’. In: (1996) (cit. on p. 42).

[58] G. N. Koini, S. S. Sarakinos and I. K. Nikolos. ‘A Software Tool for Parametric Design of

Turbomachinery Blades’. In: Advances in Engineering Software 40.1 (2009), pp. 41–51

(cit. on p. 42).

[59] Solidworks. [Online; accessed 25-July-2019]. 2019. url: https://www.solidworks.com/

it (cit. on p. 42).

[60] Wikipedia Contributors. Hash table — Wikipedia, The Free Encyclopedia. https://en.

wikipedia.org/w/index.php?title=Hash_table&oldid=904649285. [Online; accessed

8-July-2019]. 2019 (cit. on p. 47).

[61] S.-M. Hu, C.-L. Tai and S.-H. Zhang. ‘An Extension Algorithm for B-Splines by Curve

Unclamping’. In: Computer-Aided Design 34.5 (2002), pp. 415–419 (cit. on p. 48).

[62] D. G. Kirkpatrick. ‘Efficient Computation of Continuous Skeletons’. In: 20th Annual

Symposium on Foundations of Computer Science (sfcs 1979). IEEE. 1979, pp. 18–27

(cit. on p. 50).

[63] Wikipedia Contributors. Voronoi diagram — Wikipedia, The Free Encyclopedia. [Online;

accessed 17-July-2019]. 2019. url: https://en.wikipedia.org/w/index.php?title=

Voronoi_diagram&oldid=903684632 (cit. on p. 50).

[64] M. Schmitt. ‘Some Examples of Algorithms Analysis in Computational Geometry by

Means of Mathematical Morphological Techniques’. In: French Workshop on Geometry

and Robotics. Springer. 1988, pp. 225–246 (cit. on p. 50).

[65] Wikipedia Contributors. Point in Polygon — Wikipedia, The Free Encyclopedia. https:

//en.wikipedia.org/w/index.php?title=Point_in_polygon&oldid=906498053.

[Online; accessed 17-July-2019]. 2019 (cit. on p. 50).

https://www.adtechnology.com/
https://www.adtechnology.com/
https://hydrocompinc.com/software/propcad
https://hydrocompinc.com/software/propcad
https://www.numeca.com/product/finedesign3d
https://www.numeca.com/product/finedesign3d
https://www.ansys.com/products/fluids/ansys-blademodeler
https://www.ansys.com/products/fluids/ansys-blademodeler
https://www.solidworks.com/it
https://www.solidworks.com/it
https://en.wikipedia.org/w/index.php?title=Hash_table&oldid=904649285
https://en.wikipedia.org/w/index.php?title=Hash_table&oldid=904649285
https://en.wikipedia.org/w/index.php?title=Voronoi_diagram&oldid=903684632
https://en.wikipedia.org/w/index.php?title=Voronoi_diagram&oldid=903684632
https://en.wikipedia.org/w/index.php?title=Point_in_polygon&oldid=906498053
https://en.wikipedia.org/w/index.php?title=Point_in_polygon&oldid=906498053


Bibliography 175

[66] Wikipedia Contributors. k-means Clustering — Wikipedia, The Free Encyclopedia. https:

//en.wikipedia.org/w/index.php?title=K-means_clustering&oldid=905043786.

[Online; accessed 17-July-2019]. 2019 (cit. on p. 52).

[67] L. Fottner. Test Cases for Computation of Internal Flows in Aero Engine Components.

AGARD-AR-275. 1990 (cit. on p. 53).

[68] Wikipedia Contributors. Automatic Differentiation — Wikipedia, The Free Encyclopedia.

https://en.wikipedia.org/w/index.php?title=Automatic_differentiation&oldid=

944490943. [Online; accessed 14-April-2020]. 2020 (cit. on p. 61).

[69] Wikipedia Contributors. Finite Difference — Wikipedia, Wikipedia, The Free Encyclo-

pedia. https://en.wikipedia.org/w/index.php?title=Finite_difference&oldid=

948576715. [Online; accessed 14-April-2020]. 2020 (cit. on p. 61).

[70] S. Chen and D. Torterelli. ‘Three-Dimensional Shape Optimization with Variational Geo-

metry’. In: Structural Optimization 13.2-3 (1997), pp. 81–94 (cit. on p. 61).

[71] E. Hardee, K.-H. Chang, J. Tu, K. K. Choi, I. Grindeanu and X. Yu. ‘A CAD-Based Design

Parameterization for Shape Optimization of Elastic Solids’. In: Advances in Engineering

Software 30.3 (1999), pp. 185–199 (cit. on p. 61).

[72] M. Nemec and M. J. Aftosmis. ‘Adjoint Sensitivity Computations for an Embedded-

Boundary Cartesian Mesh Method’. In: Journal of Computational Physics 227.4 (2008),

pp. 2724–2742 (cit. on p. 61).

[73] D. Agarwal, T. T. Robinson, C. G. Armstrong, S. Marques, I. Vasilopoulos and M. Meyer.

‘Parametric Design Velocity Computation for CAD-Based Design Optimization using

Adjoint Methods’. In: Engineering with Computers 34.2 (2018), pp. 225–239 (cit. on

p. 62).
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[139] M. Banović, I. Vasilopoulos, A. Walther and M. Meyer. ‘Algorithmic Differentiation of an

Industrial Airfoil Design Tool Coupled with the Adjoint CFD Method’. In: Optimization

and Engineering (2019), pp. 1–22 (cit. on pp. 117, 126).

[140] I. Vasilopoulos. ‘CAD-Based and CAD-Free Aerodynamic Shape Optimization of Tur-

bomachinery Blade Rows using the Adjoint Method’. PhD Thesis. National Technical

University of Athens (NTUA), 2020 (cit. on p. 117).

[141] J. Mihalyovics, C. Bruck, D. Peitsch, I. Vasilopoulos and M. Meyer. ‘Numerical and

Experimental Investigations on Optimized 3D Compressor Airfoils’. In: ASME Turbo Expo

2018: Turbomachinery Technical Conference and Exposition. 2018, AT39A038 (cit. on

pp. 117, 126).

[142] AboutFlow Project Website: TU Berlin TurboLab Stator Case. 2016. url: http : / /

aboutflow.sems.qmul.ac.uk/events/munich2016/benchmark/testcase3/ (cit. on

p. 117).

[143] D. F. Rogers. An Introduction to NURBS: With Historical Perspective. Elsevier, 2000

(cit. on p. 143).

[144] J. Gallier and J. H. Gallier. Curves and Surfaces in Geometric Modeling: Theory and

Algorithms. Morgan Kaufmann, 2000 (cit. on p. 143).

[145] Open CASCADE Technology (OCCT) C++ Libraries. https://www.opencascade.com/.

[Online; accessed 5-October-2019] (cit. on p. 143).

[146] C. de Boor. Subroutine Package for Calculating with B-Splines. Tech. rep. Los Alamos

Scientific Lab., N. Mex., 1971 (cit. on p. 144).

[147] E. Abbena, S. Salamon and A. Gray. Modern Differential Geometry of Curves and Surfaces

with Mathematica. Chapman and Hall/CRC, 2017 (cit. on p. 150).
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Acronyms

1D One-Dimensional

2D Two-Dimensional

3D Three-Dimensional

a.k.a. also known as

B-Rep Boundary-Representation

bbFMM black-box Fast Multipole Method

BFGS Broyden-Fletcher-Goldfarb-Shanno

BiCG Bi-Conjugate Gradient

BiCGStab Bi-Conjugate Gradient Stabilized

BLAS Basic Linear Algebra Subprograms

CAD Computer-Aided-Design

CFD Computational Fluid Dynamics

CG Conjugate Gradient

CGS Conjugate Gradient Squared

CUDA Compute Unified Device Architecture

DoE Design of Experiments

DoF Degree of Freedom

EA Evolutionary Algorithm

EASY Evolutionary Algorithm System

EU European Union

FD Finite Differences

FEM Finite Element Method

FFD Free Form Deformation

FMM Fast Multipole Method

FSPAI Factorized Sparse Approximate Inverse

GMRES Generalized Minimal Residual

GMTurbo Geometric Modeler for Turbomachinery

GPS Generalized Pattern Search

GPU Graphics Processing Unit

HPC High-Performance Computing

IODA Industrial Optimal Design using Adjoint CFD

ITN Initial Training Network

KKT Karush-Kuhn-Tucker

L2L Local to Local

L2P Local to Particles

LE Leading Edge

LP Linear Programming

M2L Multipole to Local

M2M Multipole to Multipole
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M2P Multipole to Particle

MAEA Metamodel-Assisted EA

MPI Message Passing Interface

NP Non-Linear Programming

NS Navier-Stokes

NTUA National Technical University of Athens

NURBS Non-Uniform Rational B-Spline

OpenMP Open Multiprocessing

P2L Particles to Local

P2M Particles to Multipole

P2P Particles to Particles

PCOpt Parallel CFD & Optimization Unit

PDE Partial Differential Equation

PE Parametric Effectiveness

POSIX Portable Operating System Interface for Unix

PSO Particle Swarm Optimization

PUMA Parallel-Unstructured-Multi-Row-Adjoint

QP Quadratic Programming

r.h.s. right-hand side

RANS Reynolds-Averaged Navier-Stokes

RBF Radial Basis Function

SA Spalart-Allmaras

SIMD Single Instruction stream, Multiple Data stream

SPAI Sparse Approximate Inverse

SQMR Symmetric Quasi-Minimal Residual

SQP Sequential Quadratic Programming

SR1 Symmetric-Rank-one

STEP STandard for the Exchange of Product model data

STL Stereo Lithography interface format

SVD Singular Values Decomposition

TE Trailing Edge

TUB Technical University of Berlin

w.r.t. with respect to


	Abstract
	Acknowledgments
	Contents
	Introduction
	Background
	CAD-Based Aerodynamic Shape Optimization

	The B-Rep-Morpher Parameterization Tool
	Literature Survey on Shape Parameterization
	Shape-Morphing Strategy and Theoretical Background 
	Shape-Morphing Strategy
	NURBS and Relevant Issues
	RBF-Based Interpolation and Relevant Issues

	RBF-Based B-Rep Shape-Morphing Framework
	B-Rep Deformation Driven by Handles
	Geometric Continuity Correction

	Method Demonstration in CFD Shape Optimizations
	RAE-2822 Airfoil Optimization
	Double Elbow Duct Optimization
	DPW2 Aircraft Model Optimization


	The GMTurbo Parameterization Tool
	Literature Survey on Turbomachinery Parameterization
	GMTurbo Parameterization Process
	Meridional Shape
	Mean-Camber-Surface
	Superposition of Thickness
	Building and Exporting the Shape to Standard CAD Exchange Files

	GMTurbo B-Rep Re-Parameterization Tool
	Meridional Shape
	Mean-Camber-Lines and Thickness Profiles

	GMTurbo and Re-parameterization Tool Demonstration

	CFD Surface Mesh Displacement and Parameterization Differentiation
	CFD Surface Mesh Displacement
	Differentiation of the Parameterization Procedure
	Algorithmic Steps of the Differentiation of the Parameterization Procedure
	Demonstration of the Differentiation of the Parameterization Procedure


	A Two-Step RBF-Based CFD Mesh Displacement Tool
	Introduction and Literature Overview on Mesh Displacement
	Background of RBF-Based Interpolation
	The Two-Step Strategy
	Step 1: Predictor
	Step 2: Corrector

	Acceleration Methods for the Two-Step Strategy
	The SPAI Preconditioner
	The Fast Multipole Method
	Integer Lattice-Based RBF Interpolation 

	Parametric Studies and Results
	Two-Step Strategy vs. Standard RBF Interpolation
	Scalability Studies on the Mesh Size
	Parametric Study on the Predictor Matrix Size
	RRD Turbine Stator CFD Shape Optimization


	The Fast Multipole Method
	Introduction
	The Octree Data-Structure
	The Black-Box Fast Multipole Method
	Interpolation Based on Chebyshev Polynomials
	Interpolation-Based Low-Rank Approximation
	The FMM Based on Chebyshev Interpolation

	Software Performance and Implementation
	Algorithm and Software Parallelization


	Optimization of a Compressor Stator
	Introduction
	Optimization Set-Up
	Shape Parameterizations
	Parameterization with GMTurbo
	Parameterization with the B-Rep-Morpher
	Parameterization of the Fixture Holes

	Results
	Gradient-Free Optimization
	Gradient-Based Optimization


	Closure
	Contributions
	Future Work Recommendations

	Non-Uniform Rational B-Splines
	Conformal Mapping
	The Newton’s and SQP Methods
	Newton's Method and Quasi-Newton Methods
	Sequential Quadratic Programming

	Evolutionary Algorithms and the EASY Software
	Evolutionary Algorithms
	Evolutionary Algorithms in EASY

	The PUMA CFD Flow and Adjoint Solver
	RANS Equations for Compressible Flows
	The Continuous Adjoint Method for Aerodynamic Shape Optimization

	Bi-Conjugate Gradient Stabilized Method
	Parametric Effectiveness
	Bibliography
	Acronyms

