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||Prologue|| 

Pre-Thoughts 

Since the beginning of this research for the formulation of the present thesis, have been posed 

a-priori some guidelines. These compose the basic pillars of the research and writing of this 

thesis. The key pillars are the following: 

Writing Code_ It is crucial a thesis on a Master of Science program which is related with com-

putational engineering to take advantage the potential of writing source code. In other words 

writing source code gives a deeper knowledge on a subject. However, computational software 

is used to boost and enforce the research. Also, there is no doubt that programming provides a 

more active relation with the researcher than the passive use of software. 

Space Designing_ It was a major need to connect this thesis with architectural design terms. 

Both architectural design/concept and computational engineering could be underpinning each 

other. Structural topology optimization it is a powerful and versatile tool which could cooperate 

perfectly with designer’s needs. Consequently, it is a fact that it would be the baseline of this 

thesis. 15 

Keep it simple_ The motto “keep it simple” is essential over a sector (computational engineer-

ing), where from its nature is multidisciplinary and has unlimited possibilities. In other words, 

the limits over a master thesis should be solid, focused and not to deviate in order to solve each 

sub-case of every issue. 

Future work_ The most important key pillar is the potential of evolving the present work. It has 

been obvious, since the beginning, that this thesis should be a baseline work for future research. 

Hence, this research would be a study over the subject that it would be selected. 

Let’s try to answer 

Given the foresaid, a question has been raised: “How structural topology optimization, could 

be cooperate with space design parameters?” The question itself with the use of “how” indi-

cates the way/s or better posed the methodology/ies, with which this question could be an-

swered. 

In order to response, it would be crucial to introduce and address the “space design parame-

ters” term. One of the most important parameter in architectural design is window/void design. 

Natural light has concerned lots of architects since the existence of architecture. The psychology 30 
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and the comfort of the end-user of a space it is a basic parameter that most designers/architects 

take into consideration. Thus, natural light availability and end-user’s visual comfort were se-

lected to represent these parameters. Nevertheless, the need to “keep it simple”, led the focus 

and evolution of the present research to the origins of these subjects, which is daylight availa-

bility. This parameter has been decided to be the one that will be connected with structural 

topology optimization. 

To sum up, the present work studies ways which structural topology optimization could get 

connected with daylight analysis and propose a set of methodologies addressed to engineers 

and designers. The architectural background combined with Computational engineering offers 

a variation of tools that has been helpful in order to achieve this connection. 

Research Tools 

As it has been already foresaid the variety of academic and designing computational tools has 

been used to form the outcome of this thesis: 

Literature 

First of all the major tool has been the research over the literature and bibliography around 45 

structural topology optimization and daylight analysis. It is crucial a project to use (or reject) 

academic solid references, which helps to evolve the ratiocination of an academic project. Else-

vier, ScienceDirect, Academia.Edu, the libraries of National Technical University of Athens and 

Technical Chamber of Greece were the major academic source of literature review. As it has 

been already mentioned a variety of designing computational tools has been used such as: 

MATLAB 

MATLAB is a powerful tool when it comes to programming linear algebra. Is quite fast and offers 

versatility to the programmer. In addition, the majority of academic issues around structural 

topology optimization are related with MATLAB. Hence, it has been the base of all the compu-

tational source codes that have been developed and appear over the appendices. 

Python 3 

Even though, MATLAB is capable to face basic issues of structural topology optimization and 

daylight analysis, it lacks of potential to get connected with any existing designing software. On 

the other hand, python is a program language that has a vast application over various sectors. 
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Lots of designing software is cooperating really good with python. Also, Python has a big library 60 

of tools that could save time from the designer/engineer. 

Grasshopper 

Grasshopper launched in 2007 (official grasshopper website) and is a standard plug-in of Rhino 

6 designing software, which gives the opportunity to introduce parametric design in order to 

produce geometries. It combines attributes of designing and programming and gives the control 

to the end-user about the outcome. Grasshopper comes with a variety of plug-ins, which could 

make various analyses over different issues. Also, it can be connected with various program 

languages one of them is python. 

Ladybug tools 

Last but not least, there are the Ladybug tools (Ladybug, Honeybee). Ladybug tools are open-

source python libraries, which are capable to connect various software which are related with 

environmental design. Also, they can be connected with grasshopper as a plug-in where could 

model sun and daylight analysis using the Radiance, Daysim and Energy-Plus software. Espe-

cially, honeybee can offer a fast way to produce a daylight analysis over a basic geometry. 

Structure of the thesis 75 

After tool’s demonstration a thesis overview is following. Chapter 1 contains literature overview 

for structural topology optimization and daylight analysis. In Chapter 2, there is an extensive 

analysis of Bi-directional Evolutionary Structural Optimization structural topology optimization 

algorithm. Cases of gravitational load and distributed load are included. Afterwards, Daylight 

coefficients method is provided in Chapter 3, with code development provided in appendix. 

Over Chapter 4 there is a detailed description of daylight analysis on Grasshopper’s Honeybee. 

Additionally, the comparison between GH design method with Daylight Coefficient method. In 

Chapter 5, a design framework and study case is provided. Last but not least conclusions of 

thesis analysis are provided in Chapter 6. 
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||Chapter 01|| 
Literature Review 

Abstract 

In this chapter it will be demonstrated a brief review over history and issues of topology opti-

mization and daylight analysis. The scope of the introduction is to familiarize the reader about 

the definitions regarding of these two subjects, as well as the concept of this thesis. Topology 90 

Optimization research was focused on the three benchmark methods: Solid Isotropic Material 

with Penalization, Bi-direction Evolutionary Structural Optimization, Level-Set Methods, while 

Daylight Analysis narrowed at Sky Model evolution, Daylight coefficients and Climate Based 

Daylight Models. The research over the literature, about these sectors was useful on under-

standing their nature and taking decisions about the methods that would be used on this thesis. 

Keywords: Topology optimization, timeline, daylight analysis, SIMP, BESO, Level-Set, Daylight 

Coefficients, Sky model, Climate Based Daylight Model. 

1.1 Topology Optimization (TO) 

1.1.1 Definitions and Timeline 

There is no doubt that over the past decades topology optimization in on an ongoing evolution 

due to the benefits that can offer. Its application is being introduced more and more into indus-

trial products and that has turn into a popular subject in academic community, so as to explore 

the full potential of topology optimization (T.O). This success is accompanied with two other 

developments the first is about industrial production and the second about material science. 

Furthermore, additive manufacturing has reached to a point that is accessible, cheaper and 105 

more accurate that used to be. So, it is more than capable to support the complexity of T.O 

designs and produce the accurately. 

Moreover, the study and development of new composite materials, as well as the success to 

study their properties with precision, lead to apply designs to various industries such as to aer-

onautics. The term topology optimization is a way to resolve a design problem by finding the 

optimal density distribution of material in a fixed domain (Bendsoe and Sigmund, Topology 

Optimization: Theory Methods and Applications 2003). So , there is no doubt that there is an 

upward tendency is study and application of Topology Optimization, because of the idea of 
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producing something that has its maximum potential but with the minimum material/cost/en-

ergy consumption. 

It is too difficult to catalogue and mention every book and paper referred to topology optimi-

zation till today. Nevertheless are some major publications that helped topology optimization’s 

evolution and this is the reason are worth-mentioned (Rozvany, A critical review of established 

methods of structural topology optimization 2009). The first attempt, which is recorded, travels 

back to the beginnings of 20th century. Australian inventor Michell AGM (Michell 1904) pub-120 

lished his study on the criteria/ stain constraints under a truss structure attains the minimum 

material to be constructed (“limit of economy of material”). His study was the limestone of the 

following studies about T.O. The basic problem was that the complexity of the subject was 

needing a computational power that became available and accessible, after a few decades. 

From the 70’s, new types of computer offered an access to a vast numerical investigation on 

the subject of T.O, with their advanced computing capabilities and numerical simulation meth-

ods. 

At the same exact timeline, the work of Michell’s study was brought again on the spotlight, the 

main figure who evolved his work was Rozvany G. (1972) and his partners. Their work focused 

to Michell’s theory to grillage (beam systems). Taking into consideration these applications, 

Prager and Rozvany (1977) developed the “optimal layout theory”, which is considered the first 

general theory of T.O. The first applications were on grid-type structures and the calculation of 

their exact analytical solutions. The major problem, till then, was that the a topology optimiza-

tion’s problem could be formulated as a binary design, where the structure consists either solid 

material or void. Consequently, this formulation derived to “ill-posed” solutions, which could 135 

not provide admissible designs with refined geometrical details in the continuum framework. 

(Chwng and Olhoff 1981, Kohn and Strang 1986) 

The solution came with the landmark paper of Bendsoe and Kikuchi (1988), who proposed the 

application of homogenization method of topology optimization consists of solving a class of 

shape optimization problem where the topology is made from an infinite number of micro scale 

voids which produces a porous structure, which lead to stable computational schemes (well-

posed problem formulation). Since then numerical topology have been flourished and various 

methods have been starting to appear. Organizing them by chronological order of their appear-

ance they are:  
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• density based methods 

• evolutionary procedures 

• bubble methods 

• topological derivative 

• level-set methods 

• phase field method 150 

Regarding on their update mechanism, all these approaches could be generally categorized into 

two basic groups, either density or boundary variation. 

1.1.2 Benchmark Topology optimization methods 

Even though, a variety of methods has appeared over the last thirty years, the most popular 

among them are still S.I.M.P, E.S.O/B.E.S.O and Level-Set method, which worth a further analy-

sis. 

1.1.2.1 Solid Isotropic Material with Penalization (SIMP) 

SIMP is the oldest and one of the most implemented methodologies to crate structural topology 

optimization analysis. It is a density-based approach, where the distribution of material’s den-

sity is connected with the material distribution scheme. By discretizing the design domain, a 

power-law interpolation function between solid/void is used in order to calculate the mechan-

ical properties (like stiffness tensor). Consequently, this power-law eliminates unquestioningly 

intermediate density values by penalizing them. The outcome of this procedure is a structure 

with solid and void configuration. Although, this method ends with some major drawbacks, 

since its invention SIMP has been through lots of modification (modified interpolation scheme, 165 

RAMP etc.) in order to mitigate its inherited drawbacks. (Bendsoe and Sigmund 2003, Zhou and 

Rozvany 1991) 

1.1.2.2 Bi-directional Evolutionary Structural Optimization (BESO) 

BESO (Querin, Steven και Xie 1998) also referred in literature as ESO/BESO method, is the evo-

lution of ESO method (Xie and Steven 1993). The optimization of the structure in this method 

is related with addition/removal of elements. These are the design variables, which BESO uses 

to “search” the stiffest design in a given design domain (Huang και Xie, Convergent and mesh-

independent solutions for bi-directional evolutionary structural optimization method 2007)One 

of the major drawbacks of BESO used to be its unstable nature on the basic structural topology 

optimization problem. Sensitivity analysis helped to overcome it, though. A variety of designing 
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microstructures for materials to structural topology optimization problems have been success-

fully resolved with the application of BESO (Radman 2013) 

1.1.2.3 Level-Set Method (LSM) 

Level-Set Method (Osher and Sethian 1988) is the youngest among the benchmark methods in 

terms of academic interest, yet stills very popular. It uses the level set function concept in order 180 

to track the motion of the structural boundaries in combination with a speed function. This 

method is characterized as an evolutionary one. The main concept is the addition or removal of 

material in regions of high and low stress respectively. In addition, a threshold (percentages of 

the maximum initial stress) defines the rate of elimination or addition of material. The main 

difference of the other method is that is by its nature a non-mesh dependent method which 

makes popular in 3d printing projects, because it eliminates the post-processing procedure in 

order a 3d-optimized topology need to pass with the mess dependent methods.  

1.2 Daylight Analysis 

1.2.1 Definitions and Timeline 

Daylight analysis counts approximately the same years as topology optimization. It started with 

the measurements of outdoor illumination around the 1895 (Walsh 1951). The need of calcu-

lating illumination is connected to the building performance and the user’s comfort. Hence, 

after the invention of photometer, by the physicist Trotter, a variety of methods have been 

developed since then, in order to achieve a relatively accurate way to model the natural light. 

(Kota and Haberl 2009) 195 

In the beginning graph type methods were developed. Among the most noticeable are Waldram 

diagrams (which still useful in bioclimatic design for small scales), Pliejel‘s pepper-pot diagrams, 

Building Research Establishment (BRE) daylight protractors and Graphic Daylight Design 

Method (GDDM) method (Fuller 1985). Afterwards, calculation methods were added to the em-

pirical methods of daylight calculation. Gradually, with the computational tool advancement, 

daylight analysis became more and more accurate. Consequently, static (Daylight Factor, DF) 

and dynamic (Daylight Autonomy, DA) indicators develop, which evaluate the daylight perfor-

mance of a space. As a result, software has been developed which could perform daylight anal-

ysis like RADIANCE (Reinhart and Herkel 2000) and DAYSIM (Ward and Rubinstein 1988). 
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1.2.2 Sky Models 

Daylight Analysis calculations has been more accurate with the help of the models of sky, which 

is a combination of computation methods, which have been validated with numerical experi-

ments. There is doubt that, the amount of light which enters inside an interior space is a result 

of its “openings” and the distribution of sky luminance. The life of sky models starts around 

1921 by Kimball and Hand (1921), (1922), (H. Kimball 1923). They studied the sky luminance in 210 

Chicago and Washington by performing extensive measurements for three years. They ended 

by dividing their measurements into two general categories overcast and clear sky. After some 

years, G. I. Pokrovsky (1929), taking into consideration Rayleigh scattering, proposed a new for-

mula to calculate the luminance distribution of a clear cloudless. In 1942 Moon and Spencer 

(1942) demonstrated an empirical formula to represent the luminance distribution under the 

average overcast sky. 

In the beginning of 50s McDermott and Gordon-Smith (1951) proposed a method to calculate 

the luminance distribution of fully overcast sky. Later in 1955, the Moon-Spenser’s model was 

adopted by The International Commission on Illumination (CIE 1955) as the standard for com-

puting the overcast sky luminance distribution (Hopkinson, Petherbridge and Longmore 1966). 

While the same year, Kittler (1967) developed a method for luminance distribution calculation 

of the clear blue sky. CIE adopted (CIE 1973) Kittler’s model, as standard for computational 

model for luminance distribution of the clear blue sky with sun. Although, the limestone of sky 

models published by Perez and his partners (Perez, Seals and Michalsky 1993), where all sky 

conditions were modeled from overcast to clear, through partly cloudy. 225 

1.2.3 Daylight Calculation Models 

As it has been foresaid, daylight analysis counts approximately 100 years of life. Among these 

years a variety of methods have been invented. Many of them have been translated into soft-

ware. Nevertheless, are there two benchmark models, which affect the timeline and evolution 

of the daylight analysis methods. The Daylight Coefficient method by Tregenza and Waters 

(1983) and Climate-Based Daylight Modeling method by Mardaljevic (2000) are the two meth-

ods which affected the research directions of the present thesis.  
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1.2.3.1 Daylight Coefficient method (DC) 

Daylight Factor and Lumen Method 

Before proceed to the description of DC method, it is essential to explain the concept of Daylight 

Factor (DF) and Lumen Method (LM). Both are analytical expressions of daylight calculations 

and are the harbingers of the contemporary methods. 

DF It was introduced by the English physicist Trotter and elaborated by Hopkinson. The defini-

tion of DF is the ration (%) between the illumination of an interior horizontal plane and the 

corresponding exterior illumination. Hopkinson, enriched this definition saying that: “it is pos-240 

sible to define the DF as a summation of three individual contributions, that take account the 

sky component (SC), the external reflected component (ERC) and the internal reflected compo-

nent (IRC).” (Gherri 2015). 

LM in another analytical expression of daylight analysis, which is based on empirical methods. 

H.G. Fruhling introduced LM, in 1928 but with some simplifications, which did not take account 

the ERC and IRC (Kota and Haberl 2009). Dresler . (1952) extended the LM by adding the re-

flected components 

This is a simpler posing of the split flux* method. 

DC Method: Overview 

DC method is an analytical method which was based on numerical calculation of the three fore-

said components of DF. According to its inspirators the DF is simply a weighted integral of the 

daylight coefficients (Tregenza and Wilson 2011). It is based on the inspired idea of sky dome 

division into equal 145 patches, with a conical aperture of 10o15’, in order to cover the 68% of 

the celestial dome. Additionally, this subdivision assisted the calculation of the illumination of 

a point as a summation of the contribution of each sky’s segment. Hence, the total illumination 255 

could be measured with precision as a linear super-imposition of the contribution of each sky 

segment filtered on a point, described by the relationship which will be explained extensively 

in the chapter 4: 

 
E(x) = ∑DC(x)n ∗ Ln ∗ ΔSn

N

n=1
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One of the major advantages is the precision of illumination measurement under any sky con-

dition. On the other hand one of DC’s major disadvantage is its weakness to express simultane-

ously changes of the sky illumination levels because of the weather change. That is the reason 

that in literature it could find it as a Static Model. Last but not least, according to Reinhart DC is 

the baseline to the dynamic approaches research. 

1.2.3.2 Climate-Based Daylight modeling method (CBDM) 

Climate-Based Daylight Modelling (CBDM) was introduced by Mardaljevic in 2000. It is formed 

in order to “predicting” the continuous variations of quantity and quality of light radiation. By 

taking into consideration weather data sets of a region it can analyze with precision the illumi-

nation from the sky and the sun. It is based on the update of DC with a Standard Daylight Coef-

ficient scheme (SDC), which includes sky diffuse contributions, diffuse ground contributions, 

solar contributions and indirect solar contributions. (Gherri 2015) 270 

With the development of CBDM method new metrics were introduced in order to describe their 

impact inside of a space: 

Useful Daylight Illuminance (UDI) 

UDI is a parameter that indicates the attainment of levels of natural illumination considered 

useful. Additionally, UDI can be associated with the detention of the excessive levels of natural 

light associated with forms of visual discomfort, irritating glare and overheating. In other words, 

UDI is defined as the set of the illuminations that lie within the range 100 to 2500 lux in fact it 

has been established that daily illuminations that fall within 100-2500lux interval can generically 

be defined useful. (Nabil and Mardaljevic 2005) 

Daylight Autonomy (DA) 

DA is a measurement of the annual percentage frequency at which a pre-determined minimum 

level of illumination (usually 500 lux) can be maintained on the working plane thanks to only 

natural light. (Rogers 2006) 

continuous Daylight Autonomy (cDA) 

cDA assigns partial credits thereby introducing illumination thresholds lower than previous 285 

ones, useful to analyze specific visual tasks, which do not necessarily require the attainment the 

500 lux foreseen traditionally by DA. (Gherri 2015) 
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spatial Daylight Autonomy (sDA) 

sDA is the percentage of a work area or the plane of calculation on which fall 300 lux for at least 

50% of the year, basing the calculation on a working day of 10 hours. (Heschong, et al. 2012) 

1.3 Summary 

According to the research over the literature, is obvious that the issue of TO is a very popular 

one. The basic difficulty since the beginning has been which one TO method is the “best” or the 

“most suitable” to cover thesis’ needs. There is no a solid answer to this issue. As a result, the 

main axis of selecting a topology optimization method and integrated with daylight analysis 

disciplines, and its potential for further research like the constructability (additive manufactur-

ing procedures AM). 

Given that SIMP is the most mature method, there is a vast investigation over it. Almost every 

issue that is new it multidisciplinary topology optimization, it has been approached with SIMP 

method. On the other hand BESO and LSM are relatively “younger” than SIMP, which gives 300 

space for more experimentation and learning through an academic procedure like this thesis. 

Both have given samples of excellent compatibility with additive manufacturing. However, 

BESO has been developed for structural designs and its solid/void design variable helps its as-

sociation with daylight design. This association will be demonstrated over the chapter 5. 

On the other hand daylight analysis also is a popular subject for engineers and designers. It is 

an issue with great complexity, requiring a good knowledge of fluid mechanics, as well as ge-

ometry. Dynamic models are more accurate and more related to reality, although they are ex-

tremely complicated. There is plethora of software which could make the calculations under 

the prism of a dynamic model. However, the scope of this thesis is to produce computational 

tools. Thus, the static model of DC is more accessible (yet not less complicated) and it could be 

the baseline to comprehend the computational procedure for the dynamic model too.   
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||Chapter 02|| 

Bi-Directional Evolutionary Structural Optimization in 2D 

Abstract 

In this Chapter an extensive analysis of Bi-Directional Evolutionary Structural Optimization 315 

(BESO) algorithm will be introduced. The research over this method was addressed to issues, 

which are associated with relatively realistic conditions. More specific, inputs such as real ma-

terial indices (concrete) and loading cases (gravitational load, distributed load) were majorly 

studied. Hence, modification of the source code was made to comply these research. Its results 

were visualized and presented also in this chapter. 

Keywords: BESO, concrete, loading cases, code modifications 

 

 

Figure 1 
Cantilever Beam Benchmark example from soft-kill BESO provided by Huang and Xie. On the left is the design do-
main while on the right is the optimized one. (Inputs of optimization) mesh size: 80x60, Young’s modulus: 27000 

GPa, Poison ratio: 0.2 Load: -30KN, volume fraction: 0.45, evolution rate: 0.01(outputs of optimization) iterations: 
91, C=0.003 Nm. 

Bi-Directional Evolutionary Structural Optimization (BESO), by its present form, was developed 

(Huang and Xie 2007), to overcome the deficiencies of ESO method (solution existence, checker-330 

board, mesh dependency, local optimum etc.). The main concept of this method is that, at every 
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iteration, allows the simultaneous removal and addition of material. Two unrelated parameters, 

(RR) Rejection Ration and (IR) Inclusion Ratio, determine the amount of elements, which will be 

removed or added respectively. (Xia, et al. 2016) 

The major goal in structural topology optimization is the search of the structure with the “best” 

stiffness matrix, over a design domain. As, it was mentioned, (hard-kill) BESO is based on the 

adding/removing element procedure, where the element is defined as a design variable. In this 

thesis, the last update (that is the generalize form of BESO) it will be used, which is called soft-

kill BESO. Hence, the basic scheme of optimization problem with volume constraint is stated as: 

 
Min: C =

1

2
fΤu 

(2.01) 

 
Subject to: V∗ −∑Vixi

N

i=1

= 0 
(2.02) 

 xi = xmin or  1 (2.03) 

Where (2.1) express strain’s energy compliance and Vi, V* are the volume of an individual ele-

ment and the prescribed volume of the design domain respectively. The binary design variable 

xi is the relative density of the ith element, where xmin is a small value which defines the void 

element. Consequently, no element is completely removed. This is the major difference be-

tween the soft-kill and the hard-kill BESO, i.e. xmin= 0 in hard-kill while xmin=0,001 in soft-kill. 

2.1 Material Interpolation Scheme 345 

The material interpolation scheme with penalization was introduced in the SIMP method  

(Bendsøe 1989), (Bendsoe and Sigmund 2003), (Rietz 2001), (Zhou and Rozvany 1991). In order 

to achieve a nearly solid-void design, element density is a function interpolation of Young’s 

modulus of the intermediate material: 

 E(xi) = E0xi
p

 (2.04) 

where E0 it is the solid material Young;s modulus and p is the penalization exponent. By assum-

ing the independence of Poisson’s ration among the design variable, the global stiffness matrix 

KG is expressed by the local (elemental) stiffness matrices and the variables xi: 
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KG =∑xi

p
Ki
0

n

i=1

 
(2.05) 

where the K on the second part express the stiffness matrix of the solid element. 

2.2 Sensitivity Analysis 

By considering the mean compliance C (eq. 2.1) as the objective function and the design variable 

xi continuously changes from xmin to 1, the sensitivity of the objective function in respect to the 

changing design variable is: 

 dC

dxi
=
1

2

dfT

dxi
u +

1

2
fΤ
du

dxi
 

(2.06) 

For the definition of the sensitivity of the displacement vector, adjoint method is going to be 

applied. Nevertheless, will be added an extra term with a Lagrangian multiplier to the objective 

function without affecting the equilibrium of a static structure: 360 

 
C =

1

2
fTu + λT(f − Ku) 

(2.07) 

Therefore, the sensitivity in respect to the change in the design variable can be formed as: 

 dC

dxi
=
1

2

dfT

dxi
u +

1

2
fΤ
du

dxi
+
dλΤ

dxi
(f − Ku) + λΤ (

df

dxi
−
dK

dxi
u − K

du

dxi
) 

(2.08) 

Due to the equilibrium 

 dλΤ

dxi
(f − Ku) = 0 

(2.09) 

Because element’s variation does not affect the applies load vector 

 df

dxi
= 0 

(2.10) 

The modified objective function summarized into: 

 dC

dxi
= (

1

2
fT − λTΚ)

du

dxi
− λΤ

dΚ

dxi
u 

(2.11) 
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Given that (f-Ku) due to the static equilibrium the λ (Lagrangian multiplier) has no constraint so 

can be chosen freely. In order to eliminate the term of displacement derivative from (2.11), λ 

has to verify the below relation: 

 1

2
fT − λΤΚ = 0 

(2.12) 

Therefore, emerges that λ in order to satisfy (2.12) and the static equilibrium has to be: 

 
λ =

1

2
u 

(2.13) 

Consequently, the eq (2.11) is formed as: 

 dC

dxi
= −

1

2
uT
dK

dxi
u 

(2.14) 

The last step is to introduce the interpolation scheme of (2.5) into the (2.14), as a result the 

basis for sensitivity number it is formed: 

 dC

dxi
= −

1

2
pxi

p−1
ui
TKi

0ui 
(2.15) 

Considering that in BESO, the design variables character is discrete, only two bound materials 

are allowed. So the sensitivity number follows the relation below: 

 

αi = −
1

p

dC

dxi
=

{
 

 
1

2
ui
TKi

0ui , when xi = 1

xmin
p−1

2
ui
TKi

0ui, when xi = xmin

 

(2.16) 

When the penalty exponent p tends to infinity, then (2.16) ends: 

 
αi == {

1

2
ui
TKi

0ui , when xi = 1

0  , when xi = xmin

 
(2.17) 

Which indicates that the soft-kill method is more generic than the hard-kill one.  375 
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2.3 Stabilizing the Evolutionary Process 

Because of the nature of the sensitivity numbers, which are based on the discretization of de-

sign variables (solid/void), both objective function and topology were difficult to converge. 

Therefore, this is one the main problem in ESO/BESO methods was that large oscillations were 

observed in the evolution history of the objective function. Huang and Xie (2007) have found 

that averaging the sensitivity number with its historical information is an effective way to solve 

this problem. The simple averaging scheme is given as: 

 
αi =

αi
k + αi

k−1

2
 

(2.18) 

where k is the current iteration number. Then let αk i = αi which will be used for the next itera-

tion. Thus, the updated sensitivity number includes the whole history of the sensitivity infor-

mation in the previous iterations 

2.4 Element Removal/Addition and Convergence Criterion 

Target volume for the next iteration (Vk+1) is essential to be defined before elements addition 

or removal from the design domain. Considering that the volume constraint (V*) could be 

smaller or greater than the initial volume in each iteration which defines the increment or re-

moval over the target volume. Volume’s evolution can be expressed as: 390 

 Vk+1 = Vk(1 ± ER), (k = 1,2,3… ) (2.19) 

ER is the evolutionary volume ratio, which becomes equal to zero once the volume constraint 

is satisfied. 

In BESO, the sensitivity number of elements works as an indicator to be sorted (from the highest 

to the lowest). In order to achieve the desire volume of the final design in each iteration, there 

addition or removal of element/s according to the follow relations: 

 αi ≤ αdel
th  (2.20a) 

 αi > αadd
th  (2.20b) 

The second part refers to threshold sensitivity numbers. Depending on the volume needs of the 

iteration, BESO uses either 2.19a or 2.19b. So as to avoid extremely large quantities of elements 



 

14 
 

to be added or removed and the method to lose its integrity a volume addition ration (AR) must 

be defined. 

 
AR =

number of added elements

total elements
 

(2.21) 

If AR>ARmax then the sensitivity threshold must be calculated. ARmax is introduced to ensure that 

not too many elements are added in a single iteration normally is around 1%.  

Last but not least, the converge criterion, which its compliance completes the evolution of the 

design, is satisfied when: 

 
error =

|∑ Ck−i+1
N
i=1 − ∑ Ck−N+1

N
i=1 |

∑ Ck−i+1
N
i=1

≤ τ 
(2.22) 

Where k is the current iteration number, τ convergence tolerance criterion and N is a selected 

integer number. Normally, N=5 which implies that the change in the mean compliance over the 405 

last 10 iterations is acceptably small. 

2.5 BESO Algorithm and Flowchart 

The steps of BESO method can organized into the following a step algorithm and a Flowchart. 

(Aremu, et al. 2010) 

1| Discretize the design domain with finite element mesh and introduce the constraints and 

other design variables (ER, V* and AR) 

2| Run the finite element analysis and calculate the sensitivity number of each element 

3| Filtering the sensitivity numbers. 

4| Set target Volume for the next iteration 

5a| if the target volume is greater to the subjected one, check the removal threshold and 

remove the elements with sensitivity number smaller than the threshold. 

6b| if the target volume is smaller to the subjected one, check the addition threshold and 

remove the elements with sensitivity number greater than the threshold. 

7| Check the compliance convergence if the error is greater than the tolerance repeat the 

procedure from step 2 420 
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Figure 2 
Flowchart of Bi-directional Structural Optimization Method 

2.6 Design Variables 

Before, proceed to the study case inputs it is crucial to present the main design variables, which 

will affect the outcome of optimized design product. These are the support of the structure and 

the loading conditions. Both are going to affect the structural topology optimization procedure 

and produce the desired outcome, which is expected to be close to some relatively realistic 

conditions. 

2.6.1 Gravity Load Design variable 

One of the main goals of this thesis is the design product to be self-support, so whole design 

process is based on self-weight structural analysis. Over the above sections, the function of 

BESO was analyzed extensively. In this section, some methods will be demonstrated, which are 

capable to integrate gravity-loads into both topology optimization and FE analysis methods. 435 

2.6.1.1 Gravity load Discretization 

The generalization of the static equation which is used to displacement model of finite elements 

analysis is: 
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 Ku⃗ = F⃗  (2.23a) 

F expresses the force vector and it can be divided into surface load vector and body load vector: 

 Ku⃗ = Rs⃗⃗⃗⃗ + Rb⃗⃗ ⃗⃗   (2.23b) 

Weight forces are regarded as body forces and affect the whole body and its structural behavior 

in the continuum. In terms of finites elements, when discretize weight-loads, they are propor-

tionally distributed on each element’s nodes. Therefore, each element contribution on the total 

body weight load is expressed by: 

 

R⃗⃗ b
e =∭NTρg⃗ dV

Ve

= ρg⃗ ∭NTdV

Ve

 

(2.24) 

Where N is the element’s shape function and ρg are the constant values which describe mate-

rial’s density and gravitational acceleration. Given that, the elemental gravity force can be cal-

culated, the sum of every sub-load it will calculate the total one: 

 
R⃗⃗ b =∑R⃗⃗ b

i

n

i=1

 
(2.25) 

According to the above statements, there is direct impact between gravitational load and the 

element’s nodes and their coordinates. BESO method uses Finite Element Method in order to 

reach to an optimum result. So, inherits the mesh dependency nature of the structural analysis 

that uses. Hence, the quality and structure of the mesh/grid are key ingredients to a successful 450 

outcome. When it comes to examples and applications in 2-D cases, a structured rectangular 

grid it is used. This grid consists of four-node linear quadrilateral elements, which are a special 

category of an iso-parametric four-node element. Consequently, the whole approach it will be 

the generic one.  
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2.6.1.2 Sensitivity analysis for Gravity-Load 

Generally topology optimization examples and studies are dedicated to fixed loads. However, 

gravity load is a significantly important parameter in various engineering problems, especial in 

civil engineering. There are plenty of matters which emerge with the use of gravity load into 

the evolutionary method. Huang and Xie (2011) studied the case of gravity load into BESO 

method. 

The elemental load of a four-node quad element, which is aligned with the global direction, can 

be obtained: 

 
fi = Viρig [0  

1

4
  0  

1

4
  0  

1

4
  0  

1

4
  ]
T

 
(2.26) 

g is the gravity acceleration. The elemental variation affects only the self-weight loads. Hence, 

the external forces variation of (2.10) is updated: 

 df

dxi
= Viρ

0gf−Tui 
(2.27) 

Consequently, the variation of mean compliance of 2.15 is updated as well: 465 

 dC

dxi
= Viρ

0gf−Tui −
1 + p

2[1 + p(1 − xi)]
2
ui
TKi

0ui 
(2.28) 

And sensitivity number of 2.16 ends with the below form 

 

αi = −
1

p + 1

dC

dxi
=

{
 
 

 
 −

Viρ
0g

p + 1
f−Tui +

1

2
ui
TKi

0ui, xi = 1

−
Viρ

0g

p + 1
f−Tui +

1

2[1 + p(1 − xmin)]
2
ui
TKi

0ui, xi = xmin

 

(2.29) 

Huang and Xie (2011) were experimenting with both soft kill and hard kill method with gravita-

tional load implementation, where concluded that both work relatively the same so the sensi-

tivity number can be translated as in the relation (2.17). Indeed by using the gravitational load 

with hard kill sensitivity scheme the arch problem were more stable and easy during the com-

putational procedure. In Appendix A1 there is the addition on the soft-kill BESO by Huang and 

Xie with gravitational load. 
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Figure 3 
Application of BESO Algorithm using only gravitational load as a nodal design variable. Same material variables and 

BESO tuning has been used as the benchmark cantilever beam approach. 

2.6.2 Distributed Load Design variable 

The equal distributed load it could be translated as a nodal across the domain boundary like 

that: 

 
fi = N ∗ F [0 0  0  

1

n
  0  

1

n
  0  0 ]

T

 
(2.30) 

Where I the boundary element, n the number of the boundary elements receiving the F force 480 

and N the dimension of the boundary. In Appendix A, there is the modified MATLAB function, 

which has been used in order to define the distributed load. 

2.6.3 Structure’s support 

The support of the structure in a topology optimization case it is expressed in the form of con-

straints. In the 2d case, which is examined the nodal degrees of freedom are movements over 

the direction x and y respectively. In order to discretize a wall that is founded in the ground, the 

restriction of the movements on the discretized border which is related with the founded bor-

der of the structure is an accepted way to model it. 
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Figure 4  
study cases  
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||Chapter 03|| 

Daylight Coefficients 

Abstract 

This chapter is based on the benchmark paper, which Tregenza and Waters published in 1983, 495 

entitled as “Daylight Coefficients”. The definition of the term, as well as the analysis about the 

mathematical model which express it, will be the main issue. Additionally, will be explained the 

transition from the natural integral model to discrete, in order to be computed through reiter-

ative procedure. Last but not least a code was developed (appendix c). Scope of a source code 

development was not the highly accuracy of the results. It was obvious that there were plenty 

of commercial or open source programs that could offer a better result. However, by under-

standing the computational procedure of daylight coefficients was assisted to enrich the 

knowledge and research over the subject of daylight analysis. 

Keywords: Daylight Coefficients, computational code 

3.1 Definition 

The quantity of daylight*, falling on a room’s surface is a result of two factors: sky’s luminance 

and the geometry and materials of its surrounding. These factors are independent, mostly for 

practical reasons. However, the polar character of the sky vault, as well as the state of clearness 

of the sky make its luminance varies independently from one angle to another. Needless to say 

the interior does not follow every variation of sky changes, but only those which can “watch” 510 

through its windows. Also, sometimes it is possible that the surroundings could affect more the 

illumination of the interior than the sky. 

As it is foresaid, the illumination of a point in the interior of a room is a contribution of the sky, 

the exterior reflectance and the interior reflectance components. By introducing the concept 

of superimposition principle, it is possible to examine separately the contribution of these three 

components and then by adding them to calculate the total illumination of a room. 

3.2 Sky component 

The following relation demonstrates the contribution to the illuminance at a point from a 

small patch of sky. More material regarding sky division and patch definition where explained 

on the appendix B2 (P. Tregenza 1987): 
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 ΔΕ = DθφLθφΔSθφ (3.01) 

where Lθφ and Sθφ are the luminance and the angular size of the sky element at azimuth φ and 

altitude θ respectively. Dθφ is a quantity which depends on room’s geometry and its surfaces’ 

reflectance, windows’ transmittance and surrounding. This quantity is called Daylight Coeffi-

cient and is indicator of the sensitivity of internal illuminance to the changes of a sky element. 

The total daylight illuminance at a point is obtained by the double integration of the (3.01): 525 

 

Ε = ∫ ∫ DθφLθφ cos θ dθdφ

π/2

0

2π

0

 

(3.02) 

DC for a horizontal and vertical unobstructed surface can be calculated from 3.03a and 3.03b 

respectively: 

 Dθφ = sinθ (3.03a) 

 
Dθφ = {

cos θ cos(φ − ν) , 0 ≤ θ ≤
π

2
  and  −

π

2
≤ φ ≤

π

2
0

 
(3.03β

) 

3.3 Single point Daylight Coefficient 

Let’s consider a typical rectangular room with a window on one of its walls and a point at the 

center of its volume. The DC of this point is a result of direct and inter-reflected light. For direct 

light: 

 Dθφo
= sinθTω (3.04) 

3.04 is the DC from the sky and external reflected for a sky patch with θ, φ altitude and azimuth, 

where Tω is the glass transmittance at incident angle ω. 

For inter-reflected light, the concept of split-flux principle is used, which allows to examine sep-

arately: 

• The ground reflected light 

• The upper surfaces of the room reflected light 

• The light which is enter from the window and is reflected by the lower surfaces of the 

room 
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Egsky =

L sin θRg

π
 

(3.05a) 

 
Fwind−g =

Lsin θRgW

2
 

(3.05b

) 

The first relation expresses the luminance due to sky element of unit solid angle, where L is the 540 

luminance of the sky element and Rg is the mean ground reflectance. The second one is the flux, 

which ground will receive from the window, where W is the window area. By the same way they 

can be calculated the fluxes received and reflected from upper room surfaces: 

 
L ∗ Dup_received =

L sinθ RgWT

2
 

(3.06a) 

 
L ∗ Dup−reflected =

Lsin θRgRcwWT

2
 

(3.06b

) 

Where T is the mean glass transmittance and Rcw is the reflectance of upper walls and ceiling. 

So, the inter-reflected mean luminance of the interior due to ground is: 

 
Emean_g =

Lsinθ RgRcwWT

2A(1 − R)
 

(3.07) 

Where A and R are area and mean reflectivity of the room respectively. Thus the DC from the 

ground reflection is: 

 
Dθφg

=
sin θRgRcwWT

2A(1 − R)
 

(3.08) 

Following a similar derivation, the DC of the inter-reflected light which enters in the room 

through the window and is reflected by the lower parts of the room is: 

 
Dθφlow

=
cos θRfwWTω
2A(1 − R)

 
(3.08) 

 cosω = cosθcos (φ − ν)   

By adding these three daylight coefficients, point DC could be calculated: 
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 Dθφ = Dθφ0
+ Dθφg

+ Dθφlow
 (3.09) 

3.4 Finite Element implementation 

The foresaid analysis is addressed to calculate the illuminance of on point inside the room. Nev-

ertheless, the implementation of finite elements can discretize the procedure and make it com-

putationally friendly. The room now is being divided into m finite elements and the sky into n 

finite patches of equal size respectively. With the assumption that the interior distances are 555 

really small compared with the exterior, the illuminance at the center of each element can be 

calculated. Given the relation from (3.02) the illuminance of m point is the double integral which 

could be expressed as the summation of: 

 
Em =∑DiSiLi

n

i=1

 
(3.10) 

In terms of linear algebra D is a vector, which express the daylight coefficients for the m point. 

By calculating (3.10) for every point, the total illuminance of the room can be calculated. 

 
Ej =∑∑DiSiLi

n

i=1

m

j=1

 
(3.11) 

The equation (3.11) easily can be expressed in matrix form as: 

 

[

E1
E2
⋮
Em

] = [

D11 D12 … D1n
D21
⋮

D22
⋮

…
⋱

D2n
⋮

Dm1 Dm2 … Dmn

] [

S1L1
S2L2
⋮

SnLn

] 

(3.12) 

So, the illuminance it can be expressed as a vector [E] of the product of the daylight coefficient 

matrix [D] with sky’s patches luminance and solid angle vector [S*L]. The matrix [D] it is a prod-

uct of three sub-matrices which are related with the three foresaid inter-reflection categories. 

More specific: 

 [D] = [R3][R2][R1] (3.13) 
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Figure 5 
Illustration of daylight coefficient components 

3.4.1 Externally reflected components 

The matrix R1 expresses the externally reflected components of daylight coefficients. Exterior 570 

surfaces could either diffuse or obstruct the light coming from a sky element. This could be 

expressed as a matrix which its rows are reinforce or weaken the light quantity related to each 

sky patch. In other words R1 is a n x n, where n is the number of sky elements, transformation 

matrix where the natural skylight changes in respect with the unique exterior surrounding of 

each place. A special case, and the most simple, is where there is no obstruction in any zone 

then R1 is the unity matrix. 
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 [R1] = I (3.14) 

3.3.2 Direct component 

 

Figure 6 
Illustration of R2 Direct Component 

R2 matrix represents the relation of room with the sky elements, so its size is m x n, where m is 

the number of the room elements and n the one for sky patches. An element r2, is non-zero in 

case of the two lines which connect the center of an element with this of the window and the 

sky element’s centers respectively are collinear. In case of a non-zero element which is on a 

horizontal plane r2 is: 585 

 r2ij = sinθ Tω (3.14) 

where θ is the altitude of the sky element and Tω is the window transmittance. In case of a 

vertical surface point with azimuth v (normal vector direction) the (3.14) is expressed as: 

 r2ij = cosθ cos(φ − ν) Tω (3.15) 

where θ and φ are the altitude and azimuth of the sky element respectively. 

Note that in case which sky patches are relatively very large compared with the window area, a 

significant amount of the sky may be invisible, which means that the equations must incorpo-

rate appropriate factors. 
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3.3.3 Internal reflected components 

The illuminance after inter-reflection is a result of the initial illuminance E0i adding the inter-

reflected one. More specific: 

 Ei = E1αi1 + E2αi2 +⋯+ E0ι +⋯+ Emαim (3.17) 

where αij is the ration of illuminance that receives i surface element from the reflected light 

from j surface element. The above relation could be expressed also in a matrix form like: 

 

[

E01
E02
⋮

E0m

] = [

1 − α11 −α12 … −α1m
−α21
⋮

1 − α22
⋮

…
⋱

−α1m
⋮

−αm1   −αm2 … 1 − αmm

] [

E1
E2
⋮
Em

] 

(3.18) 

The quantity αij could be analyzed as: 

 αij = ρifij (3.18a) 

where ρ is the reflectance and f is the form factor (view factor) that is a unit-less geometric 

quantity. For more information about form factors there is a section on the (appendix B3) 

(Tzempelikos 2001), (Alshaibani 1996). The relation (3.18) explains that the initial illuminance is 600 

the product of a matrix A, which is defined by the geometric relation and material’s reflection 

properties of the sub-surfaces of the interior, with the end illuminance. By inverting this matrix 

the following relation occurs: 

 [E] = [A]−1[E0] (3.19) 

Given that the initial illuminance is a product direct and external reflected components the re-

versed A matrix is the R3 matrix. 

 [R3] = [A]
−1 (3.20) 

3.3.4 Sky luminance 

The sky luminance is multi-variant parameter, because of the light’s nature. It passes through 

various transformations till it reaches the ground of the earth. In equation 3.12 a vector S*L it 

is formed which is the product of a patch’s solid angle with its own brightness. This vector can 

be translated into a matrix dot product: 
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[

S1L1
S2L2
⋮

SnLn

] = [

  S1 0 … 0
  0
⋮

S2
⋮

…
⋱

0
⋮

 0  0 … Sn

] [

L1
L2
⋮
Ln

] 

(3.21) 

The L vector it could be further sub-divided into other matrix-vector products which are related 

with the sky condition: 

 [L] = [T2][T1][L0] (3.22) 

where T1 is a transition matrix which gives the clear sky luminance distribution, while the T2 is 

the matrix which defines the change of distribution for example because of the clouds. 

3.4 Window design 615 

As it has been done for the topology optimization, it is essential to define the design variable 

for daylight analysis. This is definitely the window design. The amount of area, geometry and 

material of a window could significantly affect the daylight availability of an interior space. In 

this study the amount of the area is what will be taken as a design variable. According to Archi-

tect’s Data Book (Neufert 2007), there are some directions for window design, driven from em-

pirical studies. Some minimums are provided regarding the size of window over a room. More 

specific, among all of these a minimum of 17% of the room’s area is needed as window area 

and for spaces with height greater than 3.5 meters a minimum of 30% of the interior opposite 

to the window wall.  
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||Chapter 04|| 

BESO and Daylight Analysis: 

Grasshopper Formulation and code comparison 

Abstract 

In this chapter will be presented the connection between structural topology optimization with 

daylight analysis in Grasshopper (GH) with the help of Honeybee. This will be accomplished with 630 

the combination of two of their benchmark projects respectively cantilever beam (as loading 

and support parameters) and daylight coefficients. The scope of this connection is to focus only 

on the design process. In other words, no realistic inputs were introduced. An illustration of the 

designing method’s on GH will be the main theme of this chapter. Also, will be presented a 

comparison between the parametric procedure over GH and the code over various standard 

CIE cloudy skies. 

Keywords: daylight analysis, structural topology optimization, connection, benchmark, grass-

hopper, honeybee, illustration, design method 

4.1 Rhino’s Grasshopper 

As it is foresaid, grasshopper is rhino’s plug-in, which is an useful tool for parametric design. 

Grasshopper works with operational buttons/ toggles, which receive inputs either mathemati-

cal (equations etc.) either geometrical (connecting rhino’s designed geometries with toggles). 

However, it seems extremely difficult to provide a detailed writing description. Consequently, 

an illustrated algorithm of the steps which have been followed, accompanied with some de-

scription, explain the procedure clearer. 645 

4.2 Structural Topology Optimization 

STEP 1. Link GH with BESO 

Introduce the python code in grasshopper. The basic GHpython plugin is unable to process the 

extra python libraries such as numpy. Hence, for this task it used CH_Cpython plugin, created 

by Mahmoud Abdel Rahman. In the CH_Cpython toggle, is copied a simplified version of BESO 

algorithm where all the function of appendix A2 are merge into one script. The toggle receives 

the same inputs as BESO: mesh size, volume fraction, filtering radius, iterations number (to 

avoid the while loop), penalization number and evolution rate. The outputs are a numpy 2D 

array and a list x1: 
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Figure 7 
CH_Ppython toggle with BESO script

 

STEP 2 Plane and Grid Construction 

Construct the plane (a) and form the grid where the design variables will be set. In order to 

achieve that it is necessary to design a point in rhino environment and connect it with a GH 660 

point toggle. Then use this point as the plane’s origin (center) and two vectors for its directions. 

Then connect the plane with the rectangular grid creation (b). The size of the grid cells should 

be coincide with the grid set over the topology optimization: 

 

Figure 8 
from left: to right (a)plane construction and (b) rectangle grid (recgrid), on the bottom the GH connection scheme 

of plane and grid toggles. 
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After this configuration on the rhino screen it will be appeared a generic plane in a form of 

rectangular grid and inside (or out of its borders depending of its size) the desired grid, as it is 

illustrated on the following figure 9: 

 

Figure 9 
plane and grid visualization from grasshopper to rhino’s environment 

STEP 3 Pattern Design 675 

If the topology optimization procedure with BESO algorithm it is approached with absolute de-

signing criteria, it is nothing more than a pattern with solid and void rectangles. So the third 

step is to help GH read the x1 output as a pattern list. Firstly, it should be drawn one rectangle 

curve and a surface corresponding to that curve. In figure 8, the rectangle A and the surface B, 

should be on the same place in order to succeed this configuration. Then they must be set as a 

GH curve and geometry respectively. 

 

Figure 10 
pattern source geometries 

Afterwards, this geometries will be seperatly merged with two empty ones (representing the 

void). with the GH merge toggle (c) in a data tree*. The first merge toggle it will receive the 

curve (defining the region) and the second one the surface (definining the solid/void mode), 

this will help use as many time as the pattern requires. In the meanwhile, repeat data toggle (d) 

gothers the results of the BESO list of the step 1 and stores it as the data to be repeated and 

uses for its length, the one of the grid cell’s list (e). The way to connect the above sub-steps is 690 
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with two list item (f) toggles coresponding to the merges. So, the will correspond its data tree 

to 0 / 1 list value.  

 

Figure 11 
from the left to right (c) merge, (d) repeat data, (e) list length, (f) list item, (g) rectangle mapping 

 

Figure 12 
Pattern configuration. In D on repeat data it is expected a 0/1 list 

Last but not least, this identification should be shown over the grid. Rectangle mapping toggle 

(g) it will provide this outcome, by receiving the geometry merge indexes and the curve source 

indexes by the corresponding list item (f) toggles and by using the grid cells’ as its target. 

Eventually the end product it is shown in figure 11. This geometry is sensitive in every change 

of topology optimization’s list, and will follow its changes. 

 

Figure 13 705 
Procedure outcome: Cantilever Beam pattern 

The final sub-step is to translate this pattern into a form which will be useful for the daylight 

analysis, so brep* it is used in order to achieve that. 
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4.3 Daylight Analysis 

Daylight analysis is available in GH through honeybee, which is one of ladybug tool created by 

Mostapha Sadeghipour Roudsari and Chris Mackey. It is an easy way use the attributes of radi-

ance, Daysim and energy-plus all in GH platform. In the current case for this project analysis the 

grid-based daylight is used. 

The most useful honeybee toggles were honeybee surfaces, standard CIE sky component, rad 

parameters, grid base analysis and run daylight simulation toggle: 

    ….      

Figure 14 
Above. From left to right the honeybee surface (a) cie standard sky (b) rad parameters (c) test point (d). Below grid 

based daylight analysis (e), daylight analysis simulation (f) 

….  720 

STEP 1 Honey-bee surfaces 

The first step is to match every room geometry with Honebee surfaces. This kind of toggle gives 

indentities to a surface that is essential for a daylight simulation to be run. In the case of a 

simple room six surfaces they are going to be needed. One for floor, one for roof, three for 

exterior walls and one for the façade with the structural TO pattern. Consequnetly, six 

honeybee surfaces toggles will need and six coressponding brep geometries. The Façade’s has 

already been created from the stuctural TO procedure:  
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Figure 15 
Room’s components designed (above) and set as honeybee components (below) 

 

All these surfaces will be merged into one brep that it will be used as a honeybee object for the 

daylight analysis. 

STEP 2 CIE Sky Definition and rad parameters 

 735 

Figure 16 
Sky type component 

The sky element (b toggle) is essential to run a daylight analysis. The CIE overcast standard sky 

it will be used like it has been used for daylight coefficient code. In Honeybee a weather file  
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*.epw is needed, a vector which defines the true north and sliders for the month, day, hour and 

sky type. 

On the other hand rad parameters (radiance parameters) will be used to define ambient 

characteristics. _ad_ is for ambient divisions for Monte Carlo method and _ar_ the ambient 

resolution. 

 

Figure 17 
Rad (Radiance program) parameters  

STEP 3 Test Points, Grid-Based Analysis and Daylight Simulation 

 

Figure 18 750 
Grid Testing Point definition component 

A plane, which an offset grid test points will be used to simulate the daylight analysis. By as-

sembling all the elements and connecting them with the grid-based analysis toggle and day-

light simulation toggle, the radiance program it will run and produce files with the results, 

which can be later used for simulation purposes 
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Figure 19 
Grid-Based Analysis and Daylight Simulation components 

4.4 Code Inputs 

Once the design method, in Grasshopper it is formed, a validation of the written code of day-

light coefficients seems to be needed. In order to procced it, a study case is mandatory, where 

specific inputs will be provided. First of all should be defined the finite element discretization 

over the room. The elemental size that has been chosen is 0.1m x 0.1m. This in terms of struc-

tural topology optimization creates a coarse mesh, but in terms of window design is the mini-

mum window that can be constructed. Additionally, it has been found computationally heavy 765 

to compute at the same time in finer meshed both topology optimization and daylight coeffi-

cient algorithms. A source code is provided in appendix A1 and B1. 

Also no realistic material inputs have been provided in order to focus on the design methods. 

The study case it will need to define the geometry and variables like hour, day, month. Hence, 

the following list it summarize the basic variables of study case: 

• Room geometry: 3 x 3 x 3 m. 

• Rooms division elemental size: 0.1 x 0.1 m 

• Material: the design material provided be BESO algorithm (Huang and Xie) 

• Façade: an optimized geometry with cantilever beam’s constraint is used with 0.45 tar-

get volume. The reason is to check code’s behavior with a non-conventional geometry. 

Figure 11 

• Hour: three samples of hours: h = 10:00, 12:00, 14:00. 

• Day: the 21st is chosen as a sample. 
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• Month: all months taken into consideration. 

• Location: Athens 780 

• Luminosity test point grid: 0.1 x 0.1 m (900 testing points) over the floor level.  

4.4.1 CIE Standard Skies Formula 

The following part describes the steps of calculating the relative luminance distribution. The 

position of both sky elements (Appendix Β2) and sun are the main variables of sky illuminance 

distribution (P. Tregenza 2004), (Darula and Kittler 2002). Additionally, there are some indica-

tors a, b, c, d, e which has been introduced so as to describe the atmospheric conditions, which 

affect sky’s luminosity. The following ration gives the luminosity level of each sky’s element: 

 
Li =

Lai
Lz

=
f(x)φ(z)

f(gz)φ(0)
 

(4.01) 

In order to calculate Lα of each sky elements, f and φ are provided: 

 f(z) = 1 + c ∗ [exp(dx) − exp (d
π

2
)] + ecos2x (4.02) 

 

φ(z) = {
1 + aexp (

b

cosz
) ,when 0 ≤ z <

π

2

1,when z =
π

2
 

 

(4.03) 

Where gs is the altitude of the sun, z is the angular distance between element’s center and 

zenith (π/2 – g), zs is the angular distance between sun’s center and zenith (π/2 – gs) and x is 

the shortest angular distance between element’s and sun’s centers respectively. x is given by 

the following relation: 

 x = arccos(coszs cosz + sinzs sinz cos |a − as|) (4.04) 

Where α and αs are the azimuth angles of the sky element and the sun. Hence, by defining sun’s 

position, sky’s geometry and condition (a, b, c, d, e), it is possible to model the sky condition for 

the study case.  795 



 

37 
 

4.5 GH simulation 

The same procedure it has been followed in GH with the same inputs as the code. The sky type, 

which has been chosen, is “cloudy” and Athens weather data has been provide (epw). The re-

sults of the simulation has been visualized in the following figure: 

  

  

  

   

  

   
 Figure 20 

From top to bottom January’s, February’s, March’s, April’s,  May’s and June’s results for 10:00 | 12:00 | 14:00 Ath-
ens zone time 
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  810 

  

   

  

   

Figure 21 
From top to bottom July’s, August’s, September’s, October’s, November’s and December’s results for 10:00 | 12:00 

| 14:00 Athens zone time. 

4.6 Comparison 

The mean luminance under of a variety of different CIE cloudy standard skies, in three different 

sky geometries, in respect with the honeybee model has been summarized over the figures 17, 

18, 19. The sky types that where most related to HB sky have been type 2, 4, 6, 7. Type 2 and 

Type 4 standard skies are referred as overcast and Type 6 and Type 7 as Partly cloudy. 
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Figure 22 
Type 2 of CIE Standard General Skies for 10:00 | 12:00| 14:00 o’ clock 825 

 

Figure 23 
Type 4 of CIE Standard General Skies for 10:00 | 12:00| 14:00 o’ clock 

 

Figure 24 
Type 6 of CIE Standard General Skies for 10:00 | 12:00| 14:00 o’ clock 

 

Figure 25 
Type 7 of CIE Standard General Skies for 10:00 | 12:00| 14:00 o’ clock 

According to the graphs Type 4 seems to be numerically closer to HB sky for R=500, 1000 of the 

sky dome and for the 12:00 and 14:00. At 10:00, R=500 seems to function better, even though 

there is a great difference in months with low sun’s altitude (January, December). On the other 
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hand, Type 7 for R = 1000 gives results close to the HB sky. It is obvious that this issue need 

further examination over more sky geometries and sky types. Additionally form factor calcula-

tion needs improvement in order to succeed a more accurate outcome. 840 

Another issue in this comparison it has been that HB does not provide arithmetical information. 

The lack of the reflectivity number of the surfaces, the sky indices of “cloudy sky” has not been 

helpful over this comparison. Nevertheless, the goal has not been to develop the most accurate 

daylight coefficient method but to point the fact that there is a major advantage of control by 

computing this method instead of using the HB. Moreover, GH needs approximately ten 

minutes in order to run a single simulation, while the code with the appropriate setups only 35 

seconds. There is no doubt, that the code of DC need more elaboration, thus the study case it 

will use the GB and HB to crosscheck different room geometry and finer façade mesh.  
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||Chapter 05|| 
Design Strategies 

Abstract 

In this chapter a more solid and relatively realistic case study will be presented to examine the 

dual issue of optimization. The main direction is the way, which daylight analysis and structural 

topology optimization could cooperate in order to organize a design strategy. More specific, 

structural topology optimization is converted into a space design parameter, not related to one 855 

single target volume, but over a set of these. Finding the minimum of the target volumes’ sub-

set, which satisfies both topology optimization and daylight analysis, will provide the optimum 

solution. Grasshopper’s Honeybee was used in order to subtract results from a validate method 

over the scientific community. 

Keywords: dual optimization, honeybee, grasshopper, set of target volume 

5.1 The issue of duality 

The procedure of structural topology optimization as it known till today is a static procedure, 

while daylight is not. However, it can be searched this geometry of the domain which could 

satisfy the majority of the need for natural light over a year. In order to combine the structural 

topology optimization with daylight analysis it was mandatory to infuse the one into another. 

Openings or voids are the words that are often referred to windows in architectural. This asso-

ciation gave the idea to connect the window design which is the basic parameter of daylight 

availability inside a building, with the void design variable of structural topology optimization. 

(Marler and Arora 2004) 

The major issue over this connection was the computational time. The more fine and detailed 870 

the elements of a TO and Daylight Analysis become the more computational time it takes. In 

order to, reduce calculations, as well as time, the following algorithm introduced. A range of 

target volumes was set according to window design and structural topology optimization design 

needs. In the meantime, a lower and upper boundary for mean illuminance was defined accord-

ing to the use of space (house, office etc.). BESO provided the geometries of these target vol-

umes and the Daylight Analysis evaluated them by keeping some and eliminating others. The 

minimum value of this subset is the desired one. There is no doubt that the set of the new target 

volume’s should be researched further over various issues of daylight analysis (visual comfort 

etc.). 
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The following types trying to mathematically describe the procedure: 

 Min:  Vj
∗ = Vj−1

∗ − st, st = 0.5  V∗ ∈ [0.7, 0.35] (5.01) 

 
Min: C =

1

2
fΤu 

(5.02a) 

 
Subject to: Vj

∗ −∑Vixi

N

i=1

= 0 
(5.02b) 

 xi = xmin or  1 (5.02c) 

 
{
Emax ≥ Ej ≥ Emin , select Vj

∗ 

otherwise reject Vj
∗  

(5.03) 

5.2 Algorithm steps and Flow Chart 

 

Figure 26 
Flow Chart BESO and Daylight Analysis 
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1| Define the set of target volumes 885 

2| Run Structural Topology Optimization for the target volume 

3| Run daylight analysis for the target volume 

4| Check mean illuminance. If Emax > Emean > Emin then save x design variable matrix. 

5| If Emean < Emax, repeat step 2, else end procedure. 

5.3 Case study 

In this section a combination (with numerical inputs) of the main ingredients of this thesis will 

be presented in steps. 

1| First of all, define room’s geometry. A space of 4m x 4m x 3m was the case study, only one 

of the four wall was the window wall. 

2| Specify the set of target volumes. The maximum target volume was 0.70, which is the mini-

mum needs of windows, and the minimum was 0.45, which is the target volume where the 

optimized result retains its continuity. The step of target volume set was 0.05, so:  

 V∗ = [0.45, 0.50, 0.55, 0.60, 0.65, 0.70] (5.04) 

 

Figure 27 
from left to right and top to bottom target volumes: 0.70, 0.65, 0.60, 0.55, 0.50, 0.45 900 
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3| Run BESO for each target volume. The inputs of the algorithm were nelx = 160, nely = 120, 

penalization 3., filter radius 3. for target volumes equal-greater than 0.60 or else 6. Material 

inputs were related with concrete, thickness of the wall is 0.25 m and the loading case was 

distributed over the roof. 

4| Set boundaries of mean illuminance. The maximum acceptable is 2000 lux, while the mini-

mum for spaces for simple visual tasks is 500 lux. (Futrell, Ozelkanb and Brentrupc 2015) 

5| Over a range of target volumes, where structural TO compliance is converged, run daylight 

analysis over the 21st of December (smallest day) and 21st of June (largest day). 

6| Select the minimum over the set of target volumes, which satisfies the illuminance con-

straint. 

Over the following figures there is the simulation both the optimized wall and illumination lev-

els. For the topology optimization it was used the MATLAB code and for daylight analysis was 

used honeybee over cloudy sky. After this procedure the accepted target volumes are 0.45, 0.50 

and 0.55. Consequently the minimum volume which maximize the daylight in the current case 

study is 0.45. Nevertheless, it would be interesting to examine these three designs over various 915 

indices of daylight analysis. 

  

   

Figure 28 
from left to right and top to bottom HB grid-based daylight analysis for 10:00 | 12:00 | 14:00 of 21st of July and De-

cember. TARGET VOLUME 0.70 
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Figure 29 
from left to right and top to bottom HB grid-based daylight analysis for 10:00 | 12:00 | 14:00 of 21st of July and De-

cember. TARGET VOLUME 0.65 

  

   

Figure 30 
from left to right and top to bottom HB grid-based daylight analysis for 10:00 | 12:00 | 14:00 of 21st of July and De-930 

cember. TARGET VOLUME 0.60 
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Figure 31 
from left to right and top to bottom HB grid-based daylight analysis for 10:00 | 12:00 | 14:00 of 21st of July and De-

cember. TARGET VOLUME 0.55 

  

   

Figure 32 
from left to right and top to bottom HB grid-based daylight analysis for 10:00 | 12:00 | 14:00 of 21st of July and De-

cember. TARGET VOLUME 0.50 
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Figure 33 
from left to right and top to bottom HB grid-based daylight analysis for 10:00 | 12:00 | 14:00 of 21st of July and De-945 

cember. TARGET VOLUME 0.45 
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||Chapter 06|| 

Conclusions 

The flashpoint of this thesis was whether structural topology optimization could cooperate with 

qualitative space design parameters. After the research, computation and writing procedure it 

is clear that it is possible to connect both structural and daylight analysis. Firstly, a break down 

and extensive research over these two subjects was the first step. An element based design 

variable structural topology optimization algorithm was chosen for strategic reason. It seemed 

to be easier to connect it with the daylight analysis in coding level. 

Then the connection occurred through the design variables, because the minimization of strain 

energy by reducing the volume of a design domain could cooperate with the maximization of 

daylight in a room. At the begging the goal was to make daylight analysis a parameter of struc-

tural topology optimization. This would have been succeeded by introducing daylight as a con-

straint. However, this goal was modified and evolved during the research over these two turned 960 

into a dual optimization matter. 

So, the connection over these two subjects was updated in two main procedures. The one was 

this of the search of the minimum volume over a target volumes’ set, which minimize the strain 

energy. On the other hand the second maximized the daylight under a set of constraints of 

minimum and maximum mean daylight levels. The combination of both of them was the main 

headline of this thesis framework. The design methodology which has been proposed success-

fully analyzed it. It is clear that a further research over distinctive study cases has to be made in 

order to check the upper limit of mean illuminance. But the results demonstrated a logical pat-

tern over the minimization/maximization procedure of solid volume/ windows. 

Last but not least, the manufacturability of the geometry even though it was not as an autono-

mous chapter and goal of this thesis is always present by the choices that were taken over the 

study case (material, support an d loading cases). To sum up, the chapter structure of this thesis 

reflects the reasoning which was followed in order to organize and actualize this design method. 

The results of this method were quit promising and it could be the basis to evolve it through 

the upcoming future thoughts, which also was one of the major if not the most important goal, 975 

to set the basis for future academic work. 
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6.1 Future thoughts 

During the thesis’ writing a list of thoughts, concerns and remarks were immerged, hence there 

catalogued and enlisted for future academic work over this subject. 

• The basic connection between structural topology optimization has been completed 

successfully. The duality matter was resolved successfully in a basic yet efficient form. 

The next step is to incorporate daylight analysis with a more organic way into the struc-

tural topology optimization procedure. 

• The realistic conditions of the materials and loading gave results which are 3d-printer 

friendly. Also, the loading case of distributed load over one edge offers a geometry with 

acceptable geometry’s angle. However, manufacturability should be considered and 

studied further. 

• Void control, related with the filtering scheme, in topology optimization could collabo-

rate well with daylight analysis. 

• The sensitivity Analysis of structural topology optimization could be linked with the day-990 

light analysis in order to avoid regions of overexposure on the sun/light. 

• Changing the type of topology optimization it would be challenging. Also a study over 

the lattice structure it would be highly related to shading needs of a space. 

• The change of 2d domain into 3d domain will evolve this procedure. 

• The calculation of form factors could be improved with more sophisticated new meth-

ods which are computationally more efficient than the direct. 

• The daylight analysis method could be evolved from static to dynamic. Hence it will be 

more accurate with the realistic conditions. 

• Visual comfort indices according to the hours of occupancy of the place (dynamic indi-

ces) it will evolve the present design procedure and make this research extremely use-

ful. 

• Although, writing code has not been as much efficient as the grasshopper, in terms of 

results, it has been the baseline of the whole computational procedure comprehension. 

• Grasshopper procedure is closer to a generative design mentality, where the designer 

takes the final decision, while the code procedure is more deterministic. 1005 

• By updating the form factors calculation by more contemporary and sophisticated 

methods, it would be possible to make a stronger computational tool natural light dis-

tribution inside of a room. 
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• Enrich the design method with other type of analysis, such as: thermal analysis, energy 

analysis.  
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||Appendices|| 

A1. Matlab and a simple Python3 Code for 2D BESO. 

%%%%  MODIFIED SOFT-KILL BESO CODE IN ORDER TO CORRESPOND OVER  %%%% 
%%%%   GRAVITATIONAL LOAD AND STRUCTURES DESIGNED INTO METERS   %%%% 
%%%%           THE MODIFICATION PRODUCED  BY DIMITRIS GONIDAKIS           %%%% 
%%%%               ORIGINAL SOURCE CODE  BY X. HUANG and Y.M. XIE               %%%% 
%%%%                 THIS CODE IS FOR ACADEMIC SCOPE IT DOES NOT                  %%%% 
%%%%                              TESTED ON REAL CONSTRUCTIONS                                %%%% 
 
el_x = 0.5; 1020 
el_y = 0.5; 
height = 3; 
width = 2; 
nelx= width/el_x; 
nely= height/el_y; 
volfrac = 0.45; 
er = 0.01; 
rmin = 5.; 
 
% INITIALIZE 
x(1:nely,1:nelx) = 1.; 
vol=1.; 
i = 0; 
change = 1.; 
penal = 3.; 1035 
[KE] = lk; 
 
% START iTH ITERATION 
while change>0.0001 
    i = i + 1; 
    vol = max(vol*(1-er),volfrac); 
    if i >1; 
        olddc = dc; 
    end 
    % FE-ANALYSIS 
    [U]=FE(nelx,nely,x,penal, width, height); 
    % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS 
    c(i) = 0.; 
    for ely = 1:nely 
        for elx = 1:nelx 1050 
          n1 = (nely+1)*(elx-1)+ely; 
          n2 = (nely+1)* elx +ely; 
          Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2;2*n2+1;2*n2+2;2*n1+1;2*n1+2],1); 
          if (x(ely,elx) == 1); 
             dc(ely,elx) =0.5*Ue'*KE*Ue; 
          else 
             dc(ely,elx) =0% 
          end 
          c(i) = c(i) +x(ely,elx)^(penal)*0.5*Ue'*KE*Ue;% strain energy compliance 
        end 
    end 
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% FILTERING OF SENSITIVITIES 
[dc] = check(nelx,nely,rmin,dc); 
% STABLIZATION OF EVOLUTIONARY PROCESS 1065 
if i > 1; 
    dc = (dc+olddc)/2.; 
end 
% BESO DESIGN UPDATE 
[x] = ADDDEL(nelx,nely,vol,dc,x); 
 
% PRINT RESULTS 
if i>10; 
change=abs(sum(c(i-9:i-5))-sum(c(i-4:i)))/sum(c(i-4:i)); 
end 
disp([' It.: ' sprintf('%4i',i) ' Obj.: ' sprintf('%10.4f',c(i))... 
' Vol.: ' sprintf('%6.3f',sum(sum(x))/(nelx*nely)) ' ch.: ' sprintf('%6.3f',change )]) 
 
% PLOT DENSITIES 
colormap(gray); imagesc(-x); axis equal; axis tight; 1080 
axis off; 
pause(1e-6); 
  
end 
 
%%%%%%%%%% MESH-INDEPENDENCY FILTER%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [dcf]=check(nelx,nely,rmin,dc) 
dcf=zeros(nely,nelx); 
for i = 1:nelx 
    for j = 1:nely 
        sum=0.0; 
        for k = max(i-floor(rmin),1):min(i+floor(rmin),nelx) 
            for l = max(j-floor(rmin),1):min(j+floor(rmin),nely) 
                fac = rmin-sqrt((i-k)^2+(j-l)^2); 1095 
                sum = sum+max(0,fac); 
                dcf(j,i) = dcf(j,i) + max(0,fac)*dc(l,k); 
            end 
        end 
        dcf(j,i) = dcf(j,i)/sum; 
    end 
end 
end 
 
%%%%%%%%%% OPTIMALITY CRITERIA UPDATE%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [x]=ADDDEL(nelx,nely,volfra,dc,x) 
l1 = min(min(dc)); l2 = max(max(dc)); 
while ((l2-l1)/l2 > 1.0e-5) 
th = (l1+l2)/2.0; 1110 
x = max(0.001,sign(dc-th)); 
if sum(sum(x))-volfra*(nelx*nely) > 0; 
l1 = th; 
else 
l2 = th; 
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end 
end 
 
%%%%%%%%%% ELEMENT STIFFNESS MATRIX%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [KE]=lk 
E = 1. ; 
E = 27085 * 10^9; 
nu = 0.21; 
k=[ 1/2-nu/6 1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ... 1125 
-1/4+nu/12 -1/8-nu/8 nu/6 1/8-3*nu/8]; 
KE = E/(1-nu^2)*[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8) 
k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3) 
k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2) 
k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5) 
k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4) 
k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7) 
k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6) 
k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)]; 
 

The function of Fe analysis contains the cases of both gravity and distributed load. In order to 

achieve stability by using both at the same time it has been noticed that: the mesh, must not 

be coarse, penalization should not be greater than 3, volume fraction and sensitivity radius 

should be revised wisely in respect of the mesh quality. 

 1140 
%%%%%%% FE-ANALYSIS WITH GRAVITATIONAL LOADS $$$%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [U]=FE(nelx,nely,x,penal, width, height) 
[KE] = lk; 
K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1)); 
F = zeros(2*(nely+1)*(nelx+1),1); 
U = zeros(2*(nely+1)*(nelx+1),1); 
for elx = 1:nelx 
    for ely = 1:nely 
        n1 = (nely+1)*(elx-1)+ely; 
        n2 = (nely+1)* elx +ely; 
        edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2]; 
        K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE; 
    end 
end 1155 
% % DEFINE GRAVITY LOAD 
d = 2240; % concrete density 
g = 10; % gravitational accelaration 
th = 0.25; % geometry's thickness 
Vel = width*height*th/(nelx*nely); % elemental volume 
Fg=d*g*Vel; % elemental gravitational load 
  
% % NODES DEFINITION 
W=[1 (nely+1) (nely+1)*(nelx+1)-nely (nely+1)*(nelx+1)]; 
w1=[2:nely]; 
w2=[(nely+2):(nely+1):(nely+1)*(nelx)]; 
w3=[(2*(nely+1)):(nely+1):(nely+1)*(nelx)]; 
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w4=[((nely+1)*(nelx)+2):((nely+1)*(nelx+1)-1)]; 
w5=[1:(nely+1)*(nelx+1)]; 
  1170 
W1=union(w1,w2); 
W2=union(w3,w4); 
W3=union(W1,W2); 
W4=setdiff(w5,W3); 
W5=setdiff(W4,W); 
  
% % GRAVITATIONAL LOAD ASSIGNMENT OVER THE NODES 
F(2*W')=-Fg/4; % corner nodes 
F(2*W3')=-Fg/2; % border nodes 
F(2*W5')=-Fg; % internal nodes 
  
% % SUPPORT DEFINITION FOR THE ARCH PROBLEM 
% sup = [(nely+1) (nely+1)*(nelx+1)]; 
% fixeddofs=[2*sup-1  2*sup ]; 
% fixeddofs = sort(fixeddofs); 1185 
  
% % DEFINE DISTRUBUTED LOAD || SUPPORT NODES || NODES WITH LOADS 
% Fd=35*10^3*width/(nelx+1); % 30 KN/m 
% supd=[(nely+1):(nely+1):(nely+1)*(nelx+1)]; 
% loadd = [1 : (nely+1) : ((nely+1)*(nelx)+1)]; 
% fixeddofs=[2*supd-1  2*supd]; 
% fixeddofs = sort(fixeddofs); 
F(2*loadd,1)= -Fd; 
  
  
alldofs = [1:2*(nely+1)*(nelx+1)]; 
freedofs = setdiff(alldofs,fixeddofs); 
  
% SOLVING 
U(freedofs,:) = K(freedofs,freedofs) \ F(freedofs,:); 1200 
U(fixeddofs,:)= 0; 
  
end 

A2. Python 3 translation code of BESO MATLAB algorithm. 

This code is developed mainly to be used in Rhino/ Grasshopper, is an implicit translation of 

the MATLAB code. Hence there is space to more efficient in computational time terms. 

##### Code for calling  BESO algorithm ##### 
##### Developed by Dimitris Gonidakis ##### 
##################################### 
import matplotlib.pyplot as plt 
from matplotlib.colors import LogNorm 
 
[c, x, i] = beso(30, 30, 0.01, 3., 3., 0.45) 
print (‘Objective function’, c , ‘number of iterations’, i) 
 1215 
plt.figure() 
    plt.imshow(-x, cmap="gray", extent=[0, 80, 0, 80]) 
    plt.show() 
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#####       BESO algorithm       ##### 
############################# 
from IPython.display import display 
from element_stif import lk 
import numpy 
from FE import FE 
from check import check 
from OC import add_del 
 
def beso (nelx, nely, er, rmin, penal, volfrac): 
    F = numpy.zeros(shape = (2 * (nelx + 1) * (nely + 1), 1), dtype = numpy.float64) 1230 
    F [2*(nely+1)*(nelx+1)-nely-1,0] = -1 
    x = numpy.ones(shape = (nely, nelx) ) 
    dc = numpy.zeros(shape = (nely, nelx) ) 
    olddc = numpy.zeros(shape = (nely, nelx) ) 
    c = numpy.zeros(200) 
    A = numpy.zeros(8, dtype = "int8") 
    Ue = numpy.zeros(8) 
    U = numpy.zeros(shape = (2 * (nelx + 1) * (nely + 1), 1) ) 
    vol = 1.0 
    i = -1 
    change = 1.0 
    KE = lk() 
    while change > 0.001: 
        i = i + 1 
        vol = max(vol*(1-er), volfrac) 1245 
        if i > 0 : 
            olddc = dc 
        # FE-Analysis 
        U = FE (nelx, nely, x, penal, KE, F) 
        # Objective function and sensitivity Analysis 
        for ely in range(1+nely): 
            for elx in range(1+nelx): 
                n1 = (nely + 1) * (elx - 1) + ely 
                n2 = (nely + 1) * elx + ely 
                A = [2*n1-2, 2*n1-1, 2*n2-2, 2*n2-1, 2*n2, 2*n2+1, 2*n1, 2*n1+1] 
                for j in range(8): 
                    Ue [j] = U[A[j]] 
                Uet = numpy.transpose(Ue) 
                if x[ely-1, elx-1] == 1: 
                    dc [ely-1, elx-1] = 0.5  * numpy.dot(Ue, numpy.dot(KE, Uet)) 1260 
                    c [i] += 0.5 * numpy.dot(Ue, numpy.dot(KE, Uet)) 
                else: 
                    dc [ely-1, elx-1] = 0 
        # Filtering Sensitivities 
        dc = check (nelx, nely, rmin, dc) 
        # Stabilization of the evolutionary process 
        if i > 0: 
            dc = (dc + olddc)/2 
 
        # Update Design 
        x = add_del (nelx, nely, vol, dc, x) 
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        if i > 10: 
            change = abs((sum(c[i-9 : i-5])-sum(c[i-4 : i])))/sum(c[i-4 : i]) 
 1275 
        display(i, vol, c[i]) 
     
    return [c[i] x, i] 

 

#### FE- Analysis #### 
import numpy 
import math 
 
def FE (nelx, nely, x, penal, KE, F): 
    K = numpy.zeros(shape = (2 * (nelx + 1) * (nely + 1), 2 * (nelx + 1) * (nely + 1)), dtype = 
numpy.float64) 
    U = numpy.zeros(shape = (2 * (nelx + 1) * (nely + 1), 1), dtype='float64') 
    edof = numpy.zeros(8, dtype = "int8") 
 
    for elx in range(1, nelx+1): 1290 
        for ely in range(1, nely+1): 
            n1 = (nely + 1) * (elx - 1) + ely 
            n2 = (nely + 1) * elx + ely 
            edof = [2*n1-2, 2*n1-1, 2*n2-2, 2*n2-1, 2*n2, 2*n2+1, 2*n1, 2*n1+1] 
            A = (x[ely-1, elx-1]**penal)*KE 
            for i in range (8): 
 
                for j in range (8): 
                    K[edof[j], edof[i]] += A[j,i] 
 
    # define loads and supports 
    fixeddofs = numpy.arange(2*(nely+1),dtype='int') 
    alldofs = numpy.arange(2*(nely+1)*(nelx+1), dtype='int') 
    freedofs = numpy.setdiff1d(alldofs, fixeddofs) 
    kf = numpy.zeros(shape = (numpy.size(freedofs),numpy.size(freedofs)), dtype = numpy.float64) 1305 
    for i in range(numpy.size(freedofs)): 
        for j in range(numpy.size(freedofs)): 
            kf[i, j] += K[freedofs[i],freedofs[j]] 
 
    Ff = numpy.zeros(shape = (numpy.size(freedofs),1), dtype = numpy.float64) 
    for i in range(numpy.size(freedofs)): 
        Ff[i,0] += F[freedofs[i],0] 
    # solving 
    af = numpy.linalg.solve(kf, Ff) 
    #af = kf/Ff 
    for i in range(numpy.size(freedofs)): 
        U[freedofs[i]] += af[i] 
 
    return U 
 1320 
#####  Mesh- Independency Filter  ##### 
################################# 
import numpy 
import math 
import time 
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def check (nelx, nely, rmin, dc): 
 
    dcf=numpy.zeros(shape = (nely, nelx), dtype='float32') 
 
    for i in range(1, nelx+1): 
        for j in range(1,  nely+1): 
            sum = 0. 
            for k in range(max(i - math.floor(rmin), 1), min(i + 1 + math.floor(rmin),nelx)+1): 
                for l in range(max(j - math.floor(rmin), 1), min(j + 1 + math.floor(rmin),nely)+1): 1335 
                    fac = rmin - math.sqrt((i-k)**2 + (j-l)**2) 
                    sum += max(0, fac) 
                    dcf [j-1, i-1] += max(0, fac) * dc [l-1, k-1] 
 
            dcf [j-1, i-1] = dcf [j-1, i-1] / sum 
        return dcf 
 
#####  Optimality Criteria Update  ##### 
################################# 
import numpy 
 
def add_del (nelx, nely, volfrac, dc, x): 
 
    l1 = numpy.min(dc) 
    l2 = numpy.max(dc) 1350 
 
    while (l2-l1)/l2 > 10**(-4): 
        th = (l1 + l2) / 2 
        # for i in range (nelx): 
        #     for j in range (nely): 
        #         x[j,i] = max (0.001, numpy.sign(dc[j,i] - th)) 
        x = numpy.maximum(0.001 * numpy.ones(numpy.shape(x)), numpy.sign(dc - th)) 
 
        if (numpy.sum(x) - volfrac * (nelx * nely)) > 0: 
 
            l1 = th 
 
        else: 
 
            l2 = th 1365 
    return x 
#####   Element's stiffness matrix   ##### 
################################# 
import numpy 
 
def lk(): 
    E = 1.    # eleasticity number 
    nu = 0.3  # poisson nummber 
    k = [1/2 - nu/6, 1/8 + nu/8, -1/4 - nu/12, -1/8 + 3*nu/8, -1/4 + nu/12, 
         -1/8 - nu/8, nu/6, 1/8-3*nu/8] 
    k = numpy.array([[k[0], k[1], k[2], k[3], k[4], k[5], k[6], k[7]],\ 
                     [k[1], k[0], k[7], k[6], k[5], k[4], k[3], k[2]],\ 
                     [k[2], k[7], k[0], k[5], k[6], k[3], k[4], k[1]],\ 
                     [k[3], k[6], k[5], k[0], k[7], k[2], k[1], k[4]],\ 
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                     [k[4], k[5], k[6], k[7], k[0], k[1], k[2], k[3]],\ 1380 
                     [k[5], k[4], k[3], k[2], k[1], k[0], k[7], k[6]],\ 
                     [k[6], k[3], k[4], k[1], k[2], k[7], k[0], k[5]],\ 
                     [k[7], k[2], k[1], k[4], k[3], k[6], k[5], k[0]]], dtype='float64') 
 
    KE = (E/(1-nu**2)) * k 
    return KE 
 

A3. Elemental and Nodal enumeration Key for both MATLAB and Python code. 

 

Figure 34 
key of mesh reading in BESO algorithm 
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B1. Daylight Coefficients code. 

####### Code for calling performing ####### 
#### daylight analysis with the method ##### 
######### of daylight coefficients ######### 1395 
##### Developed by Dimitris Gonidakis ##### 
##################################### 
 
# this function receives the design variable matrix of BESO and reads it as solid/window pattern 
from coordinates import coordinates 
from dome import patches 
from Li import Li 
from S import S 
from R1 import R1 
from R2 import R2 
from R3 import R3r, R3 
from collinear import collinearity 
from reflectance import reflectance 
import numpy 
import math 1410 
import time 
from sun import sun 
 
def illuminance(x): 
    # location and time 
    # data for Zografou 
    lona = '23.782604'# longitude string 
    lata = '37.977806' # latitude string 
    eleva = 184 # elevation number 
    date = '2020/03/05 11:00:00' # string with the form 'year/month/day  hour:min:sec' 
 
    # rooms attributes 
    width = 3 # in meters 
    depth = 3 # in meters 
    height = 3 # in meters 1425 
    elx = 0.1 # in meters 
    ely = 0.1 # in meters 
    elz = 0.1 # in meters 
    refw = 0.14 # window's reflectance 
    refs = 0.8  # surface's reflectance 
    Tw =  0.74 
 
    #sky component 
    Rd = 1000 # sky dome radius 
 
    [g_s, a_s] = sun (lona, lata, eleva, date) # altittude and azimuth 
    [xf, yf, zf, k1, x, y, z, s_v, x_v, y_v, z_v] = coordinates(x, elx, ely, elz, width, depth, height) 
    [xd, yd, zd, bc, th ,ph] = patches (Rd) # band altittude, patch alltittude and azimuth 
    Ls = Li(g_s, a_s, th, ph) 
    Si = S(Rd) 1440 
    R_1 = R1() 
    el = elx  
    a = len(x) 
    col_bol = collinearity (xd, yd, zd, xf, yf, zf, k1, x_v, y_v, z_v, el, height, a, x) 
    R_2 = R2 (x, y, z, k1, width, depth, height, th, ph, Tw, col_bol, a) 
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    r_f = reflectance(s_v, refw, refs, k1, a) 
    R_3 = R3(k1, r_f, x, y, z, elx, ely, elz, depth, width, height) 
    C1 = numpy.dot(Si , Ls) 
    C2 = numpy.dot(R_1 , C1) 
    C3 = numpy.dot(R_2 , C2) 
    Ε = numpy.dot(R_3, C3) 
 
    return Ε 
 
# R1 matrix in unobstructed environment 1455 
import numpy 
 
def R1 (): 
    R = numpy.identity(145) 
    return R 
 
 
# R2 matrix 
import numpy 
import math 
 
def R2 (x, y, z, k, width, depth, height, th, ph, Tw, col_bol, a): 
    #print('R2') 
    # th alltitude of the sky element 
    # ph azimuth 1470 
 
    R2 = numpy.zeros (shape = (k, 145)) 
    pi = math.pi 
 
    for i in range (k): 
        for j in range (145): 
 
            if z[i] == 0 : 
                R2 [i, j] = math.sin(th[j]) * Tw 
            else: 
                if y[i] == width/2: 
                    R2 [i, j] = (math.cos(th[j]) * math.cos(ph[j]-pi) * Tw) 
                elif y[i] == -width/2: 
                    R2 [i, j] = (math.cos(th[j]) * math.cos(ph[j]-2*pi) * Tw) 
                if x[i] == -depth/2: 1485 
                    R2 [i, j] = 0#(math.cos(th[j]) * math.cos(ph[j]-pi) * Tw) 
 
                elif x[i] == depth/2: 
                    R2 [i, j] = (math.cos(th[j]) * math.cos(ph[j]-pi/2) * Tw) 
                if y[i] == -width/2: 
                    R2 [i, j] = (math.cos(th[j]) * math.cos(ph[j]-pi) * Tw) 
 
    R2 = R2 * col_bol 
    RR = numpy.savetxt('R2_250.csv', R2) 
 
    return R2 
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# R3 matrix functions, the first one calculates and stoles the form-factor matrix while the second one 
# reads a stored one in order to save time 1500 
 
import math 
import numpy 
from formfactorcheck import formfactorcheck_a 
 
def R3w (m, ro, x, y, z, elx, ely, elz, depth, width, height): 
    #print ('R3') 
 
    # x, y, z are the non-corrected coordinates 
    # ro is a list which has the elements reflectance factor 
    F = numpy.ones(shape = (m, m)) 
    ll = numpy.zeros(shape = (m, m), dtype = 'float64') 
 
    a = numpy.zeros(2) 
    b = numpy.zeros(2) 1515 
    c = numpy.zeros(2) 
    # ch = numpy.zeros(shape = m) 
    x = x + 10**(-4) 
    y = y + 10**(-4) 
 
    n = 0 
    for i in range(n, m): 
        #print(i) 
        for j in range(n, m): 
            if i == j: 
                F[i,j] = 1 
            else: 
                a [0] = x [i] 
                a [1] = x [j] 
                b [0] = y [i] 1530 
                b [1] = y [j] 
                c [0] = z [i] 
                c [1] = z [j] 
                f_f = (elx*ely)/(2*width*depth + 4*width*height) #formfactorcheck_a(a, b, c, elx, ely, elz, 
depth, width, height) 
                ll [i, j] = f_f 
                ll [j, i] = ll [i, j] 
                F [i, j] = -ro[i] * f_f 
                F [j, i] = F [i, j] 
 
        n += 1 
    ll = numpy.savetxt('ll_0_075m.csv', ll) 
 
    R3_3 = numpy.linalg.inv(F) 
 1545 
    return R3_3 
 
 
def R3r (m, ro, x, y, z, elx, ely, elz, depth, width, height): 
 
    F = numpy.ones(shape = (m, m)) 
    ll = numpy.genfromtxt('ll_0_1m333.csv',delimiter=' ') 
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    F = (-ll.T * ro).T 
    for i in range(m): 
        F [i, i] = 1 
 
    R3_3 = numpy.linalg.inv(F) 
 
    return R3_3 1560 

B2. Sky Condition 

 

Figure 35 
Sky Vault division 

In this appendix the schematic sky vault division, CIE standard skies table and codes for computing 

standard skies, sky’s geometry vault and sun’s position: (Tergenza 2004, S. Darula, R. Kittler 2002) 

# sky division scheme Tregenza 145 patches 
# using the geometry attributes of sphere 
# and having the inputs by Tergenza 2004 
# the import data is the radius of sky dome 
# which is at least 60 times greater than our project's radius 
 
import math 
import numpy 
 1575 
def patches (R): 
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    pi = math.pi 
 
    x = numpy.zeros (shape = 145) 
    y = numpy.zeros (shape = 145) 
    z = numpy.zeros (shape = 145) 
    ph = numpy.zeros (shape = 145) #azimuth 
    th = numpy.zeros (shape = 145) 
 
    bp = int(8) # number of bands 
    np1 = [30, 30, 24, 24, 18, 12, 6, 1] 
    bc = numpy.zeros (shape = bp) 
 
    bc [0] = (6 * pi) / 180 
 1590 
    for i in range (1, bp): 
        bc[i] = bc[i-1] + (12 * pi) / 180 
 
    np = numpy.array(np1) 
 
    k = 0 # counter 
 
    for i in range(bp): 
        a = int(np[i]) 
        z [k] = math.sin(bc[i]) * R 
        st = (2*pi) / a 
        y [k] = math.cos(bc[i]) * R 
        rb = y [k] # radius band's centers 
        x [k] = 0 
        ang = 0 1605 
        for j in range(a): 
            ang += st 
            k += 1 
            if (k <= 144): 
                z [k] = z [k-1] 
                x [k] = math.sin(ang) * rb 
                y [k] = math.cos(ang) * rb 
                th [k] = bc [i] 
                ph [k] = ang 
 
    x [144] = 0 
    y [144] = 0 
 
 
    return [x, y, z, bc, th ,ph] 1620 
 
 
# the procedure is described on Tregenza 2004 and Darula, Kitler 2002 
 
import math 
import numpy 
from type import type 
 
def Li (g_s, a_s, gp, ap): 
    # gp = th ap = ph from dome function 
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    # g_s and g_s from the sun 
    # a b c d e are constants that define the sky conditions 
    h = 4 
    [a, b, c, d, e] = type(h) 
    Ls = numpy.zeros(shape = (145, 1)) 1635 
 
    cos = math.cos 
    sin = math.sin 
    pi =  math.pi 
    exp = math.exp 
 
    zs = pi/2 -  g_s 
 
    fi0 = 1 + a * exp(b)#/ cos(0)) 
    fzs = 1 + (c*exp(d * g_s) - exp(d * (pi/2))) + e * (cos(g_s))**2 
 
    for i in range(145): 
        z = pi/2 -  gp[i] 
        x = numpy.arccos(cos(zs) * cos(z) + sin(zs) * sin(z) * cos(abs(ap[i] - a_s))) 
 1650 
        if (z >= 0 and z < (pi / 2)): 
            fiz = 1 + a * exp(b / cos(z)) 
        else: 
            fiz = 1 
 
        fx = 1 + ( c*exp(d * x) - exp(d * (pi/2))) + e * (cos(x))**2 
 
        La = fx * fiz 
        Lz = fzs * fi0 
 
        Ls [i, 0] = La / Lz 
 
    return Ls 
 
# a definition which provides the code with different set of a, b, c, d, e variables according to the CIE 1665 
# standard sky 
def type(h): 
    if h == 1: 
        a, b, c, d, e = 4.0, -0.7, 0, -1.0, 0 
    elif h == 2: 
        a, b, c, d, e = 4.0, -0.7, 2, -1.0, 0.15 
    elif h == 3: 
        a, b, c, d, e = 1.1, -0.8, 0, -1.0, 0 
    elif h == 4: 
        a, b, c, d, e = 1.1, -0.8, 2, -1.0, 0.15 
    elif h == 5: 
        a, b, c, d, e = 0, -1.0, 0, -1.0, 0 
    elif h == 6: 
        a, b, c, d, e = 0, -1.0, 2, -1.0, 0.15 
    elif h == 7: 1680 
        a, b, c, d, e = 0, -1.0, 5, -1.0, 0.3 
    elif h == 8: 
        a, b, c, d, e = 0, -1.0, 10, -1.0, 0.45 
    elif h == 9: 
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        a, b, c, d, e = -1.0, -0.55, 2, -1.5, 0.15 
    elif h == 10: 
        a, b, c, d, e = -1.0, -0.55, 5, -2.5, 0.30 
    elif h == 11: 
        a, b, c, d, e = -1.0, -0.55, 10, -3.0, 0.45 
    elif h == 12: 
        a, b, c, d, e = -1.0, -0.32, 10, -3.0, 0.45 
    elif h == 13: 
        a, b, c, d, e = -1.0, -0.32, 16, -3.0, 0.30 
 
    return [a, b, c, d, e] 1695 
 

Type a b c d e Description 

1 4.0 -0.70 0 -1.0 0.00 CIE Standard Overcast Sky, alternative form Steep lumi-
nance gradation towards zenith, azimuthal uniformity 

2 4.0 -0.70 2 -1.5 0.15 Overcast, with steep luminance gradation and slight 
brightening towards the sun 

3 1.1 -0.80 0 -1.0 0.00 Overcast, moderately graded with azimuthal uniformity 

4 1.1 -0.80 2 -1.5 0.15 Overcast, moderately graded and slight brightening to-
wards the sun 

5 0 -1.00 0 -1.0 0.00 Sky of uniform luminance 

6 0 -1.00 2 -1.5 0.15 Partly cloudy sky, no gradation towards zenith, slight 
brightening towards the sun 

7 0 -1.00 5 -2.5 0.30 Partly cloudy sky, no gradation towards zenith, brighter 
circumsolar region 

8 0 -1.00 10 -3.0 0.45 Partly cloudy sky, no gradation towards zenith, distinct so-
lar corona 

9 -1 -0.55 2 -1.5 0.15 Partly cloudy, with the obscured sun 

10 -1 -0.55 5 -2.5 0.30 Partly cloudy, with brighter circumsolar region 

11 -1 -0.55 10 -3.0 0.45 White-blue sky with distinct solar corona 

12 -1 -0.32 10 -3.0 0.45 CIE Standard Clear Sky, low illuminance turbidity 

13 -1 -0.32 16 -3.0 0.30 CIE Standard Clear Sky, polluted atmosphere 

14 -1 -0.15 16 -3.0 0.30 Cloudless turbid sky with broad solar corona 

15 -1 -015 24 -2.8 0.15 White-blue turbid sky with broad solar corona 
Figure 36 

CIE Standard Skies indices 

# pathces angular area 
 
import math 
import numpy 
 
def S (R): 
 
    # pi = math.pi 
    # 
    # A = 2 * pi * R**2 
    # Aa = A / R**2 
    # Si = Aa / 145 1710 
    S = numpy.zeros(shape = (145,145)) 
    for i in range (145): 
        if i < 30: 
            S[i,i] = 0.0435 
        elif i >= 30 and i < 60: 
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            S[i,i] = 0.0416 
        elif i >= 60 and i < 84: 
            S[i,i] = 0.0474 
        elif i >= 84 and i < 108: 
            S[i,i] = 0.0407 
        elif i >= 108 and i < 126: 
            S[i,i] = 0.0429 
        elif i >= 126 and i < 138: 
            S[i,i] = 0.0445 
        elif i >= 138 and i < 144: 1725 
            S[i,i] = 0.0455 
        else: 
            S[i,i] = 0.0344 
    # tergenza says that divides the sky dome on equal pathces that means 
    # that every patch has the same area 
 
    return S 
 
# By using the ephem library calculates the sun's potition angles in respect 
# an observers potition 
import ephem 
import math 
 
def sun (lo, la, ele, d): 
 1740 
 
    A = ephem.Observer() 
    A.lon = lo 
    A.lat = la 
    A.elevation = ele 
    A.date = d 
    pi = math.pi 
 
 
    s_un = ephem.Sun(A) 
 
    g_s = float('%.10f' % (s_un.alt)) 
    a_s = float('%.10f' % (s_un.az)) 
 
    print (g_s*180/pi, a_s*180/pi) 1755 
 
    return [g_s, a_s]  
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B3. Form Factors 

Case 1 Elements on Parallel planes  

F12 =
1

2πΑ
∑∑∑∑[(−1)i+j+k+l G(xi, yj, ηk, ξl, )] 

2

l=1

2

k=1

2

j=1

2

i=1

 

A = (x2 − x1)(y2 − y1) 

G = vp ∗ arctan
v

p
+ uq ∗ arctan

u

q
−
z2

2
ln (u2 + v2 + z2) 

u = x − ξ, v = y − η, p = √u2 + z2, q = √v2 + z2 

 

Case 2 Parallel Elements sharing shame axes  

F12

=
2

πXY

[
 
 
 
 
ln [

(1 + X2)(1 + Y2)

1 + X2 + Y2
]

−
1
2

+ X√1 + Y2tan−1
X

√1 + Y2

+Y√1 + X2tan−1
Y

√1 + X2
− Ytan−1Y

]
 
 
 
 

 

 

X = Y =
w

h
 

 

Case 3 Perpendicular equal Elements Sharing one edge  

 

 

F12 =
1

4
+
1

π
[arctan 1 − √2arctan

1

√2
−
1

4
ln
4

3
] 

 

 

Case 4 Perpendicular Elements  

F12 =
1

2πΑ
∑∑∑∑[(−1)i+j+k+l G(xi, yj, ηk, ξl, )] 

2

l=1

2

k=1

2

j=1

2

i=1

 

A = (x2 − x1)(y2 − y1) 

G = (y − η)CarctanD −
C2

4
(1 − D2)ln (C2(1 + D2)) 

D =
y − η

C2
, C = √x2 + ξ2 
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In radiative heat transfer, a form factor is the proportion of the radiation which leaves a surface 

A that strikes surface a B. In a complex 'scene' there can be any number of different objects, 

which can be divided in turn into even more surfaces and surface segments. form factors are 

also sometimes known as configuration factors, view factors, angle factors or shape factors. The 

analytical types for form factor (view factor) calculation has been retrieved from the online li-

brary (Howell 2010). There are four cases counted in the form factor function. The following 

function is computing form factors over these four cases: 

### Analytical calculation of form factors of identical rectangle shape elements 
 
import math 
from G import Gpar 
from G import Gper 1770 
 
def par_opp_formf(a, b, c): # Case 1 
 
    x = a / c 
    y = b / c 
 
    pi =  math.pi 
 
    f1 = math.log(math.sqrt(((1 + x**2) * (1 + y**2))/(1 + x**2 + y**2))) 
    f2 = x * math.sqrt(1 + y**2) * math.atan(x / math.sqrt(1 + y**2)) 
    f3 = y * math.sqrt(1 + x**2) * math.atan(y / math.sqrt(1 + x**2)) 
    f4 = x * math.atan(x) 
    f5 = y * math.atan(y) 
 
    f_0 = (2 / (pi * x * y)) * (f1 + f2 + f3 - f4 - f5) 1785 
 
    return f_0 
 
 
def per_ax_formf(h , w, l): # Case 3 
    # this is the case of two perpendicular elements of the different size 
 
    pi =  math.pi 
 
    H = h / l 
    W = w / l 
 
    k1 = ((1 + W**2) * (1 + H**2)) / (1 + W**2 + H**2) 
    k2 = (W**2 * (1 + W**2 + H**2)) / ((1 + W**2) * (W**2 + H**2)) 
    k3 = (H**2 * (1 + W**2 + H**2)) / ((1 + H**2) * (W**2 + H**2)) 1800 
 
    f1 = W * math.atan(1 / W) 
    f2 = H * math.atan(1 / H) 
    f3 = math.sqrt(H**2 + W**2) * math.atan(math.sqrt(1 / (H**2 + W**2))) 
    f4 = (1 / 4) * math.log(k1 * (k2**(W**2)) * (k3**(H**2))) 
 
    f_0 = (1 / (W * pi)) * (f1 + f2 - f3 + f4) 
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    return f_0 
 
 
def par_formf(x, y, z, ks, et, elx, ely): # Case 2 
 
    for l in range(1,3): 
        for k in range(1,3): 1815 
            for j in range(1,3): 
                for i in range(1,3): 
 
                    Gο = Gpar(x[i-1], y[j-1], et[k-1], ks[l-1], z) 
                    Gο = Gο * ((-1)**(i+j+k+l)) 
                    Gsum = Gsum + Gο 
 
    f_0 = Gsum / (elx * ely) 
 
    return f_0 
 
 
def per_formf(x, y, ks, et, elx, ely): # Case 4 
    # from element with x, y coordinates to element with ksi eta 
 1830 
    Gsum = 0 
 
    for l in range(1,3): 
        for k in range(1,3): 
            for j in range(1,3): 
                for i in range(1,3): 
 
                    Gο = Gper(x[i-1], y[j-1], et[k-1], ks[l-1]) 
 
                    Gο = Gο * ((-1)**(i+j+k+l)) 
                    Gsum = Gsum + Gο 
                    #print (Gsum) 
    f_0 = Gsum / (elx * ely) 
 
    return f_0 1845 
 
# G function Calculation for parallel and perpendicular elements 
import math 
 
def Gpar (x, y, ks, et, z): 
 
    pi = math.pi 
 
    A = (y - et) * math.sqrt((x - ks)**2 + z**2) 
    B = (y - et) / math.sqrt((x - ks)**2 + z**2) 
    C = (x - ks) * math.sqrt((y - et)**2 + z**2) 
    D = (x - ks) / math.sqrt((y - et)**2 + z**2) 
    E = (z**2 / 1) * math.log((x - ks)**2 + (y - et)**2 + z**2) 
 
    G = (1 / (2 * pi)) * (A * math.atan(B) + C * math.atan(D) - E) 1860 
 
    return G 
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def Gper (x, y, ksi, et): 
 
    pi = math.pi 
 
    K = (y - et) / math.sqrt(x**2 + ksi**2) 
 
    A = (y - et) * math.sqrt(x**2 + ksi**2) * math.atan(K) 
    B = (1/4) * (x**2 + ksi**2) * (1 - K**2) 
    C = math.log((x**2 + ksi**2) * (1 + K**2)) 
 
    G = (A - B * C) / (2 * pi) 
 1875 
    return G 
 
#### this set of functions resets the coordinates in order to #### 
####  parallel or perpendicular elements’ form factors will   #### 
####                                      be calculated                                    #### 
####                                 mapping.py    script                             #### 
import numpy 
def mapping_par(x, y, z, d, w, h, depth, width, height, elx, ely, elz): 
 
    a = numpy.zeros(2) 
    b = numpy.zeros(2) 
    m = numpy.zeros(2) 
    n = numpy.zeros(2) 
    global dista 
 1890 
    if d == depth : 
        a [0] = z [0] - elz / 2 
        a [1] = z [0] + elz / 2 
        b [0] = y [0] - ely / 2 
        b [1] = y [0] + ely / 2 
        m [0] = z [1] - elz / 2 
        m [1] = z [1] + elz / 2 
        n [0] = y [1] - ely / 2 
        n [1] = y [1] + ely / 2 
        dista = d 
 
    elif w == width: 
        a [0] = x [0] - elx / 2 # x1 
        a [1] = x [0] + elx / 2 # x2 
        b [0] = z [0] - elz / 2 1905 
        b [1] = z [0] + elz / 2 
        m [0] = x [1] - elx / 2 
        m [1] = x [1] + elx / 2 
        n [0] = z [1] - elz / 2 
        n [1] = z [1] + elz / 2 
 
        dista = w 
 
    elif h == height: 
        a [0] = x [0] - elx / 2 
        a [1] = x [0] + elx / 2 
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        b [0] = y [0] - ely / 2 
        b [1] = y [0] + ely / 2 
        m [0] = x [1] - elx / 2 
        m [1] = x [1] + elx / 2 1920 
        n [0] = y [1] - ely / 2 
        n [1] = y [1] + ely / 2 
        dista = h 
 
    return [a, b, dista, m, n] 
 
def mapping_per(x, y, z, d, w, h, depth, width, height, elx, ely, elz): 
 
    a = numpy.zeros(2) 
    b = numpy.zeros(2) 
    m = numpy.zeros(2) 
    n = numpy.zeros(2) 
 
    if (z [0] == 0 or z [0] == height) : 
        if (x [1] == 0 or x [1] == depth): 1935 
            a [0] = x [0] - elx / 2 
            a [1] = x [0] + elx / 2 
            b [0] = y [0] - ely / 2 
            b [1] = y [0] + ely / 2 
            m [0] = z [1] - elz / 2 
            m [1] = z [1] + elz / 2 
            n [0] = y [1] - ely / 2 
            n [1] = y [1] + ely / 2 
 
        else: 
            a [0] = y [0] - ely / 2 
            a [1] = y [0] + ely / 2 
            b [0] = x [0] - elx / 2 
            b [1] = x [0] + elx / 2 
            m [0] = z [1] - elz / 2 1950 
            m [1] = z [1] + elz / 2 
            n [0] = x [1] - elx / 2 
            n [1] = x [1] + elx / 2 
 
    elif (x [0] == 0 or x [0] == depth): 
        if (z [1] == 0 or z [1] == height): 
            a [0] = z [0] - elz / 2 
            a [1] = z [0] + elz / 2 
            b [0] = x [0] - elx / 2 
            b [1] = x [0] + elx / 2 
            m [0] = y [1] - ely / 2 
            m [1] = y [1] + ely / 2 
            n [0] = x [1] - elx / 2 
            n [1] = x [1] + elx / 2 
 1965 
        else: 
            a [0] = x [0] - elx / 2 
            a [1] = x [0] + elx / 2 
            b [0] = z [0] - elz / 2 
            b [1] = z [0] + elz / 2 
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            m [0] = y [1] - ely / 2 
            m [1] = y [1] + ely / 2 
            n [0] = z [1] - elz / 2 
            n [1] = z [1] + elz / 2 
 
    else: #(y [0] == 0 or y [0] == width): 
        if (z [1] == 0 or z [1] == height): 
            a [0] = z [0] - elz / 2 
            a [1] = z [0] + elz / 2 
            b [0] = y [0] - ely / 2 1980 
            b [1] = y [0] + ely / 2 
            m [0] = x [1] - elx / 2 
            m [1] = x [1] + elx / 2 
            n [0] = y [1] - ely / 2 
            n [1] = y [1] + ely / 2 
 
        else: 
            a [0] = y [0] - ely / 2 
            a [1] = y [0] + ely / 2 
            b [0] = z [0] - elz / 2 
            b [1] = z [0] + elz / 2 
            m [0] = x [1] - elx / 2 
            m [1] = x [1] + elx / 2 
            n [0] = z [1] - elz / 2 
            n [1] = z [1] + elz / 2 1995 
 
    return [a, b, m, n] 
 
####  This function performs analytical computation  #### 
####        of form factors over a simple geometry        #### 
####             developed by Dimitrios Gonidakis            #### 
#### improvements may needed for more accuracy #### 
 
import math 
from formfactors import par_opp_formf 
from formfactors import per_ax_formf 
from formfactors import par_formf 
from formfactors import per_formf 
from mapping import mapping_par 
from mapping import mapping_per 2010 
 
def formfactorcheck (x, y, z, elx, ely, elz, depth, width, height): 
    # we take as data the xf, yf, zf which are our room tranfered on the positive 
    # grids and so then the absolute valiues are takemn 
 
    d = abs(x[0] - x[1]) 
    w = abs(y[0] - y[1]) 
    h = abs(z[0] - z[1]) 
    h1 = abs(z[0] - z[1]) 
    h2 = abs(z[0] - z[1]) 
 
    global ffa 
 
    if  (x[0] == 10**(-4) and x[1] ==10**(-4)) or (x[0] == depth+10**(-4) and x[1] == depth+10**(-4)) or \ 
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        (y[0] == 10**(-4) and y[1] == 10**(-4)) or (y[0] == width+10**(-4) and y[1] == width+10**(-4)) or \ 2025 
        (z[0] == 0 and z[1] == 0) or (z[0] == height and z[1] == height) : 
        ffa = 0 
 
    else: 
 
        if (d == depth or w == width or h == height) : 
            if ((x[0] == x[1]) and (y[0] == y[1])) : 
 
                a = elx 
                b = ely 
                c = h 
                ffa = par_opp_formf(a, b, c) 
 
            elif ((z[0] == z[1]) and (y[0] == y[1])) : 
                a = elz 2040 
                b = ely 
                c = d 
                ffa = par_opp_formf(a, b, c) 
 
            elif ((z[0] == z[1]) and (x[0] == x[1])) : 
                a = elx 
                b = elz 
                c = w 
                ffa = par_opp_formf(a, b, c) 
 
            else:  
                [a, b, dist1, m, n] =  mapping_par(x, y, z, d, w, h, depth, width, height, elx, ely, elz) 
                ffa =  par_formf(a, b, dist1, m, n, elx, ely) 
 
        elif x[0] == x[1] and ((w == h) and w == elx/2) : 2055 
            h = elz 
            w = elx 
            l = ely 
            ffa = per_ax_formf(h , w, l) 
 
        elif y[0] == y[1] and ((d == h) and d == elx/2) : 
            h = elz 
            w = ely 
            l = elx 
            ffa = per_ax_formf(h , w, l) 
 
        elif z[0] == z[1] and ((w == d) and d == elx/2): 
            h = ely 
            w = elx 
            l = elz 2070 
            ffa = per_ax_formf(h , w, l) 
 
        else: 
            [a, b, m, n] = mapping_per(x, y, z, d, w, h, depth, width, height, elx, ely, elz) 
            ffa =  per_formf(a, b, m, n, elx, ely) 
 
    formf = ffa 
    return formf  
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B4 Complimentary functions of Daylight Coefficients 
# this function examines if three points are collinear and returns a boolean 
# list which can activate or deactivate the elements of the R2 matrix with 
# direct componetns 
 
import math 
import numpy 2085 
import time 
import matplotlib.pyplot as plt 
from matplotlib.colors import LogNorm 
 
def collinearity (xd, yd, zd, xe, ye, ze, o, xv, yv, zv, el, height, a, xx): 
    #print ('collinear') 
    #start_time = time.time() 
 
    # xd yd zd are the coordinates of sky patches 
    # xe ye ze are the coordinates of room elements 
    # xv yv zv are the coordinates of voids of the facade 
    ll = 0 
    col_bol = numpy.zeros (shape =  (o, 145)) 
 
    for i in range (145): 2100 
        #print (i) 
        for k in range (o): 
 
            for j in range (a): 
                if xx [j] == 0 and col_bol[k, i] != 1: 
 
                    if xe[k] == xv[j] and ye[k] == yv[j] and ze[k] == zv[j] : 
                        col_bol [k, i] = 0 
                    else: 
                        x1 = xv [j] - xe [k] 
                        y1 = yv [j] - ye [k] 
                        z1 = zv [j] - ze [k] 
 
                        x2 = xd [i] - xe [k] 
                        y2 = yd [i] - ye [k] 2115 
                        z2 = zd [i] - ze [k] 
 
                        if ((x2 != 0) and (y2 != 0) and (z2 != 0)) : 
                            a1 = x1 / x2 
                            a2 = y1 / y2 
                            a3 = z1 / z2 
                            if (a1 == a2 and a2 == a3): 
                                col_bol [k, i] = 1 
                                ll += 1 
                            elif (abs(a1-a2)<el/10 and abs(a2-a3)<el/10 and abs(a1-a3) < el/10): 
                                col_bol [k, i] = 1 
                                ll += 1 
                            else: 
                                col_bol [k, i] = 0 
                        elif ((x1 != 0) and (y1 != 0) and (z1 != 0)): 2130 
                            a1 = x2 / x1 
                            a2 = y2 / y1 
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                            a3 = z2 / z1 
                            if (a1 == a2 and a2 == a3): 
                                col_bol [k, i] = 1 
                                ll += 1 
                            elif (abs(a1-a2)<el/10 and abs(a2-a3)<el/10 and abs(a1-a3) < el/10): 
                                col_bol [k, i] = 1 
                                ll += 1 
                            else: 
                                col_bol [k, i] = 0 
                        else: 
                            col_bol [k, i] = 0 
 
    print('collinear', ll, 'from', 145*o) 2145 
 
    # plt.figure(1) 
    # ax = plt.axes() 
    # plt.imshow(-col_bol, cmap="gray", extent=[0, 145, 0, o]) 
    # plt.show() 
    #col_bol = numpy.where() 
    #kkk= numpy.savetxt('col_bol.csv', col_bol) 
    #print("--- %s seconds ---" % (time.time() - start_time)) 
    return col_bol 
 
# this function takes void_check output and corresponds to each element 
# plaster or glass reflectance 
 
import numpy 
 2160 
def reflectance(s_v, refw, refs, k1, a): 
    #print ('reflectance') 
 
    r_f =  numpy.full (k1, refs) 
 
    for i in range(a): 
        if s_v[i] == 0: 
            r_f [i] = refw 
 
    return r_f 
 
 
# a function which divides a room which consists of rectangular wall 
# into small equal elements and returns their coordinations 
 2175 
import numpy 
import matplotlib.pyplot as plt 
 
def coordinates(xt, elx, ely, elz, width, depth, height): 
 
    #print ('coordinates') 
 
    w = int(width / ely) 
    d = int(depth / elx) 
    h = int(height / elz) 
    k1 = 2 * (w * h) + 2 * (d * h) + 2 * (w * d) 
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    k1 = int(k1) 
 
    # xf, yf, zf ara the positive values of coordinates to make it easier for 
    #form factor relations 2190 
    xf = numpy.zeros (shape = k1) 
    yf = numpy.zeros (shape = k1) 
    zf = numpy.zeros (shape = k1) 
 
    # x, y, z are the correction of coordination in order the center of the floor 
    # to coincide with 0,0 
 
    x = numpy.zeros (shape = k1) 
    y = numpy.zeros (shape = k1) 
    z = numpy.zeros (shape = k1) 
 
    s_v = numpy.ones(shape = len(xt)) # is the updated solid/void for the construction 
    x_v = numpy.zeros(shape = len(xt)) 
    y_v = numpy.zeros(shape = len(xt)) 
    z_v = numpy.zeros(shape = len(xt)) 2205 
 
    k = 0 
    ii = 0 
 
    # defining the coordinates of the element's center for the window wall 
 
    for i in range (1, h + 1): 
        for j in range (1, w + 1): 
            xf[k] = depth 
            yf[k] = ely*j - ely/2 
            zf[k] = elz*i - elz/2 
            if xt [k] < 0.5: 
                s_v[k] = 0 
                x_v[k] = xf[k] 
                y_v[k] = yf[k] 2220 
                z_v[k] = zf[k] 
                #kk +=1 
            else: 
                z_v[i] = int(-200) 
                x_v[i] = int(-200) 
                y_v[i] = int(-200) 
            k += 1 
 
    #2 defining the coordinates of the element's center for the first side wall 
    for i in range (1, h + 1): 
        for j in range (1, d + 1): 
            yf[k] = 0 
            xf[k] = elx*j - elx/2 
            zf[k] = elz*i - elz/2 
            k += 1 2235 
 
    #3 defining the coordinates of the element's center for the back wall 
    for i in range (1, h + 1): 
        for j in range (1, w + 1): 
            xf[k] = 0 
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            yf[k] = ely*j - ely/2 
            zf[k] = elz*i - elz/2 
            k += 1 
 
    #4 defining the coordinates of the element's center for the second side wall 
    for i in range (1, h + 1): 
        for j in range (1, d + 1): 
            yf[k] = 0 
            xf[k] = elx*j - elx/2 
            zf[k] = elz*i - elz/2 2250 
            k += 1 
 
    #5 defining the coordinates of the element's center for the ceiling 
    for i in range (1, d + 1): 
        for j in range (1, w + 1): 
            zf[k] = height 
            xf[k] = elx*i - elx/2 
            yf[k] = ely*j - ely/2 
            k += 1 
 
    #6 defining the coordinates of the element's center for the floor 
    for i in range (1, d + 1): 
        for j in range (1, w + 1): 
            zf[k] = 0 
            xf[k] = elx*i - elx/2 2265 
            yf[k] = ely*j - ely/2 
            k += 1 
    # k2 = k 
    # for i in range (1, d + 1): 
    #     for j in range (1, w + 1): 
    #         zf[k] = 0.5 
    #         xf[k] = elx*i - elx/2 
    #         yf[k] = ely*j - ely/2 
    #         k += 1 
 
    for i in range(k): # room correction to centered 
        x[i] = xf[i] - depth/2 
        y[i] = yf[i] - width/2 
 
    z = zf 2280 
 
    plt.figure(1) 
    ax = plt.axes(projection='3d') 
    ax.scatter3D(x_v, y_v, z_v) 
 
 
    return [xf, yf, zf, k1, x, y, z, s_v, x_v, y_v, z_v] 
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||*Glossary|| 

Split Flux: The split flux formula is a simple algorithm derived from a manual calculation method 

established by BRE (The English Building Research Establishment). This method is based on the 

principle that the global illumination at a certain point in a room is the result of three distinctive 

components of daylight: 

1. the direct sky component (SC) 

2. the reflections from exterior surfaces (ERC)  

3. the reflections from internal surfaces (IRC). 2415 

Each component is calculated separately and then added up to obtain the global illumination in 

each sensor point. The internally reflected component is determined by an equation using the 

average reflectance of interior surfaces, the total glazing area and a correction factor for the 

external obstruction. Given these approximations, this method is likely to overestimate or un-

derestimate the amount of daylight. It is only recommended to use this method for spaces in 

which the window openings are parallel to the walls. (Iversen, et al. 2013) 

Daylight: Daylight is the combination of all direct and indirect sunlight during the daytime. 

Data tree: A data Tree is a hierarchical structure for storing data in nested lists. Data trees are 

created when a grasshopper component is structured to take in a data set and output multiple 

sets of data. Grasshopper handles this new data by nesting it in the form of sub-lists. These 

nested sub-lists work in the same way as folder structures on your computer in that accessing 

indexed items require moving through paths that are informed by their generation of parent 

lists and their own sub-index. 

Brep: In solid modeling and computer-aided design, boundary representation—often 

abbreviated as B-rep or BREP—is a method for representing shapes using the limits. 2430 

https://en.wikipedia.org/wiki/Sunlight
https://en.wikipedia.org/wiki/Daytime
https://en.wikipedia.org/wiki/Solid_modeling
https://en.wikipedia.org/wiki/Computer-aided_design


 

 
 

  



 

 
 

 


