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Abstract

The main object of this Thesis Project is the development of an integrated
methodology for security portfolio management. The methodology consists of two
basic phases: The first phase of the process involves the problem of security selection,
while the second phase involves the problem of security portfolio optimisation. The
proposed methodology includes an alternative combinatorial approach of the above
problems, resulting in the configuration of a consistent decision support framework.

The first phase focuses on the selection of the securities which will potentially
be included to the portfolio. The solution of this problem is approached with the
Multiple-criteria Decision Analysis (MCDA). More specifically, initially the decision
maker (DM) selects the market and the industrial sectors that he wishes to invest in.
Subsequently, four MCDA ranking methods are applied to the pool of the selected
securities: ELECTRE 3, PROMETHEE, MAUT and TOPSIS. Finally, the first
phase includes the cumulative ranking of the securities, based on the individual
ranking of each method.

The second phase focuses on the problem of portfolio optimisation. The DM
should set the number of securities that will be selected from the cumulative ranking
of the previous phase. In this point, four individual methodologies are proposed for
portfolio optimisation: (a) the classic mean-variance methodology, equipped with
a complete series of policy constraints, (b) the goal programming methodology, (c)
the multiobjective programming methodology which includes the optimisation of
PROMETHEE net flow and (d) the genetic algorithm methodology for portfolio
optimisation.

As part of the Thesis project, an integrated information system was developed
which includes some of the most important MCDA methods. The information
system was developed in Python 3 programming language and was deployed as
a Web Application with Django Web Framework. The information system offers a
friendly Graphical User Interface (GUI) and efficiently implements a series of MCDA
methods, exporting extensive solutions for a wide range of MCDA problems.

The validity of the proposed methodology is verified through an illustrative
experimental application on four major international stock exchanges (NYSE,
NASDAC, Paris, Tokyo) and 3 industrial sectors (Technological, Energy, Financial),
including a pool of 2000 equities. The input data of the application were drawn from
Yahoo Finance and Investing databases and the time horizon of the experimental
application was set to 3.5 years (January 1, 2016 - June 31, 2019)

Keywords: Multicriteria decision analysis; Financial engineering; Portfolio
optimisation theory; Security; Modern portfolio theory; Goal programming; Linear
programming; Genetic Algorithms; Multicriteria decision support information
systems; Decision support systems
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Evpeio Iepihndn

Kegpdiowo 1: Etcaywy

Y1 onuepwv  emoyf), €va ombd  ToL  ONUOVTIXOTEPX  TEOBAYUOTO  TOU
YENUATOTLOTWTIXOY Touea elvon 1 Onuiovpyla xan 1 Oloyelplon evog amodoTxo0
YapTopuiaxiou emevdloewy otn Bdon evog mohdmAoxou TEpYBdAloVTOS TO omoio
yopoxtnelleton and poydola adENcT TOU AVIAYWVIOUOU X0l COUPOTIXEC OLXOVOUIXES
uetoPoréc oe edvixd xan Oiedvég eminedo. T'evixd, T0 YaUpTOPUAGXIO ETEVOLCEWY
elvor €va GOVORO TEQLOUGLUXMY OTOLYEIWY TOU amoxTHUNXAY UE 0TOYO TN Onuiovpyi
AEEO0UC YLOL TOV ETEVOUTH).

Méyer ) Oexaetio tou 1950, 70 Evvolr Twv yoapTo@ulaxiwy ftav Tehelng
olpopetxr). H emévduorn oe petoyéc amoteholoe uio Tuyoda droadwacio xodog dev
UTIARY ALY ETOEXT) OLXOVOULXY OTOLYELd, EVE® EAGYLOTOL dvilpwToL Ely oy GUVELBNTOTOL|OEL
N onuacta TN dayeiplong Twy enevdloewy. Ol eMEVOUTES EMIXEVTPOVOVTAY GUV TKC
OTIC EUXLpleC TOU TPOCPEREL XGVE UETOY T XU OYL OTN OYECT *EEOOUC-XLVOUVOU.

H mopoamdvey xatdotacn dihale plixd amd to 1952, 6tav o PBeofeuuévoc pe
Nourneh H. Markowitz dnuoocteuce tnv epeuvntixy tou epyaota pe titho ”Portfolio
Selection”, émou eworjyaye 0 pordnuatcd oyéon HeTall x€pdoug xat ploxou. Lougunva
UE TO MOVTENO UEcou-Oloxduavong tou Markowitz, €vag cuvduAGUOS BLaPORETIXGY
EWWY PETOYWY ETLPEPEL UXEOTERO ploxo amd ula uévo petoyr. Xtn oLVEYEL, oL
eMEVOUTES Lextvnooy Vo SMULOUEYOLY YUETOQUASXLO TTOU EUVOOUCHY GUYXEXQPLIEVOUC
EMEVOUTIXOUC TUTOUS X0 TIPOTUINACELS, YPNOHLOTOLOVTAS TO HOVTEAD UEGOU-DLAXVUAVOTG
1 dhha povieha mou mpoomdinoay vo to emextelvouv.  (l¢ ex ToUTOU, OYUEQPA N
oradtxactor dnuoupyiog xou diayelplong yopTopuiaxiwy petoywy Exel avamtuydel xou
xohhepynlel onuavTxd.

Qot600, elvor YVwoTé OTL 1 Tayxdoua owovouio el loTopixd avortapoydet
omd EVIOVEC OLUXUMAVOELS, XaMoTOVTOG TG PETOYEC uiot amd TIC T EUSAWTES
ayopéc. To yaptopuldoao yetoyoy cbvar 1 o emxivouvr Tomolétnon tne oyopdc
Y 800 xUploug héyoug, olugwva pe toug Xidonas et al.  (2010).  Ilpcdtov,
0EV UTdPYEL BUVITOTNTA UTUAOLPHC UEEOUS TOU XWWOLYOU, ETEVOUOVTAS OF TiTAoug
oTadephic amo6doone xan o Topdywya TpotdovTa. Acitepov, 1 Sradaoctio dioyeiptone
YapTopuAaiou peToY®Y eltvon eEatpeTd BUGKOAN AOYW TN UTOEENS UEYSAOL aptdpo0
UETOY®V Tou dlomporypatevovton oe yenuatiothota.  To yeyovoe autd xahotd
omopodTNTN TN OlEpelvNoT YIMAOwY TiTAwy, ot omolot Swtilevion w¢ emMEVOUTIXEC
EMAOYEC.

H drayeipion yaptopuloiou eivon éva mohd Tepimhoxo TedBAnue, xadog edpdleton
oe tpla BlopopeTnd enineda Adne amopdoewv: (i) emhoyy| petoyxdY TiTAWY TOU
EVOOUATMOVOUY TIC XOAUTERES EMEVOUTIXEC Tpoonuxée, (ii) Stavopr tou ddéoiuou
xepoaiou yior Ty enitevén Bértiotne alvieone yaptoguloxiou xau (iii) cuyxprtxy
a&LOAOYNOT) TWV XATUACHEVACUEVLV YOOTOPUAAXEWY.

ITépav To0TOU, TO TEOBANUA TNG Blayelplone YUETOPUANXIOU UETOY MY CUVOEETIL
Ue TeElg dhheg Vepehiddelg mapopétooug mou emneedlouy xdlde Sadwacio Afdng
ano@doewy: (i) offeBoudtnra, (ii) Umapdn molhamhdv xprtnplwy xou (iil) to mpogi
X0 TIC TEOTYWNOELS Tou amoactlovTa.
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2ITOYO0GC Ko AVTIXELUEVO TNG OLTAOUATIXNS

Yhuepa, N ovyxn Yot ovdmTUEn OAOXANPOUEVEDY UEVOOOAOYIXGDY Thaciwy xou
CUCTNUATOY UTOCTARIENG amogdocwy elval toyvpdtepn and moté. To mhaloto autd
TEETEL VUL EVOWUATOVOUY O ToL XPLTHELOL X0k TIC AAANAETLORACELS UETACD TOUS, xadg
xan TNV aBELordTNTA TG YENUUTOTLOTOTIXAG oY OPAS X0 TA DLUPOPETIXSL Y AEUXTNRLOTIXG,
AL TIG AVEYHES TGV EVOLUPEQOUEVV.

Agetnpio autric T epeuvnTixrc mpoomdetag etvor 1 xhaoixr) Yewpla uéoou -
otocpavong Tou Markowitz. Auth n mpooéyyion elvar Tohd yeriowun ahid dev emapxel
YL TNV ATOTEAECUATIXY AV TWETOTILOT TOL TEOBAAHATOC TNG dlaryelptong yapTopuiaxiey
UETOYOV. )¢ €X TOUTOU, TO TPOTELVOUEVO UEVOBONOYINO TAXLCLO ETUBLOXEL VoL amaAoleL
TIC aBLVOIEC TOU UOVTENOL PEGOU - BLaXOUOVOTG X VoL EEMEQAOEL TIG UTHPYOUCES
OLOXOALEC UTOAOYLIOUOV.

To avtixeiuevo tng SImAoUATIXAC Epyaciag elvon 1) ovamTUET IS OROXATEWUEVNG
uedodoloyiog UTOCTHELENS ATOPACEWY Yiol TN Sl Elptor yoeTOQUANXIWY UETOY DY, OTO
TAlGLO TNE EVTOVNG UETUBANTOTNTOC Xou TNG ALEAVOUEVNCS ABEfondTnTog TOU GUYYEOVOU
owovouxoL TEpBdihovog.

O otoyog g Simhowuatinic epyacioc elvol 0 EVIOTIOUOS OAWY TWV TOQUUETOMY
TOU TEOPBAAUATOS, 1) EXTETAUEVY AVAAUCT) TV AAANAETLORACEWY UETAL) TOUG Xat TEAOG
1 OLoEPKCT) EVOS Blapavolg Xl GUVETOUS TAALGEOU UTOOTARIENG AMOPACEWY.

Yuvelcopd xal aglo TN SLTAWUXATIXNAS

Cevind, 1 SimAoUaTinr CUUBEAAEL GTNY ETIGTNUOVIXY| XOLVOTNTO £VaL OAOXANPWUEVO
uedodoloyixd mhalolo dayelplong yopToguAoxiou ueETOY MY, xS xaL Eva oY Ypovo
oVoTtnua Mng arogdoewy. Emnpéoieta, xdie pepovwpévo otddio tng pevodoroyiog
Yo umopolioe va eQopUooTel e emiTuUYyla, oxoun X EEYWELOTY and To GUVOAO Tou
uedoboloyixol mhouolou. Xuyxexpéva, 1 oupfohn tng epyaocioc cuvodileton ota
TP T orueio:

H Simhepotin) cUUBIAAEL 6N AETTOUERY| ETLOXOTNCT) TV UGLCTAUEVODY YVOOENDY
otov Toua Tng dlayelplong yapToguiaxiny, Tapouctdlovtag T Bucxés Evvoleg TNng
oy yeovng Vewplag yaptogpuiaxiou. Emmiéoy, emvyeipeitar yior Aettopcpnc meplypapn
TOL Toéd TNG TOALXELTNELXAC avdAuang anogdoeny (MCDA).

Avarntiooeton éva ohoxhnenuévo pedodoroyixd mhalolo to onoto @Lhodolel va
ouUTEPABEL OAN TN Sradixacio Slayelplong yaptogpuiaxiou. To uedodoroyind Thalolo
amoteheitar omd 800 nlplec pdoelc: o) TN Ydon TNS EMAOYAS yapTouIaxiou xot B) T
@dom tne BeAtioTonolnong Tou yapTogulaxiou.

H mpodtn @don tne dwdwactiog Pacileton o pla mohuxpitnplaxt| uedodoloyia
Mg amogdoemy Yo TY ETAOYY TV XUTIANAOY peToyoY TiThwy. H dadixaocta
outh Baoiletan o téooepic Yepehddelg uedodoug xoatdtaing ol omoleg cuvoLdLovTon
Y10 VO UTOOTNRIEOLY TNV ETLAOYT] TV XOAUTEPWY UETOYIXWY TITAWY.
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Y10 mhafoto Tng mpotewouevne pedodolroyiog avamTOGoETOL Vel OMOXANPWUEVO
UTOCGUCTNUA UTOAOYIGUOU  YPNUATOOIXOVOULXGOY OEXTGY.  Auté TOo LTOGUGTNUA
TephopPdver  oplouéva yprowo  gpyoleior  Exovixomoinong ot UTOAOYIGHOU
O TATIO TIXWY OEIXTOV.

H 8ebtepn gdon tne pedodoroyiag otnpiletar oe cuveyeic padnuoatixés pedodoug
Behtiotonoinone. Enopévwe, €youv avamtuylel opiopéva poviéha Bertiotonoinong
YUETOPUAUXIOL OTIWS: TEOTOTOINGT) TOU LOVTEAOU UEGOU-OLUXVUAVOTG, TROCEYYLOT| UE
YEVETIXG ahyopLduo xan uedodoloyia TEOYEAUUUATIOUO) CTOYMV.

Téhog, oto mhaiolo aUTOU TOU €PYOU AVATTUCOETOL €VO TARES TANPOPOELOXO
olotnua Yyl voo utootneiydel oAdxinen 1 dwdwacta.  Emmiéov, to umocloTrua
TONUXPLTTRLOG OVIAUCTC AmOPAcENY avamtOYInxe ©¢ e@appoyy) web mou eqopudlet
wa oetpd LEVOBeY ToAATAGY xpLTnelny Ye Aettoucpeic Aoelc Brua Tpog Briuo.

Aour TNS SIMAWUATIXNG

H Simhopatiny anotelelton and €€ xe@dhona xou 600 mapaptiuata. Axoroudel
o GUVTOUY TEQLYPAPT] TOU TEPLEYOUEVOL TOUG.

Kegpdhowo 1

Y10 lo xeqdhao tng SmAwuaTixAc yivETon Wior olvToun eloaywyr oTo TpoBAnua,
xadopilovtog Tor xpLo yopaxTnElo Txd xou o loTopwd undfudpo. Kadopilovta o
OTOY0G TNG OMAWUATIXNG XIS Xot 1) GUUBOAY| TNG OTNY ETUC TNUOVIXT] XOLVOTNTA.
Téhog, emyelpeitan o TEpLypa@r| TNG BoUNS TNG OLTAWUATIXAC.

Kegpdiaio 2

Y10 20 xegdhouo Tng epyaociog, meoyuaTomOlElTOL Ual EICUYWYT] 0TO TEOBANUA TNG
drayetptone yoaptopuraxiov. To xepdlono Eexvd pe Toug VeUEMMOELS OPLOUOUS %ol
NV TEpLypapy] TNS €vvolag NG Olaopomoinong.  MTr GUVEYEL, TUEOUCLAlETAL TO
TeOBANUa Tng PehTioTonoinoNg TOU YAUPTOQUANXIOU UE Xou YWEIC oVOLYTEC TWAHOELS.
Téhog, ewodryetan N teplntwon Tou axivouvou yeeoypdpou. To xepdhoo tepieyet eniong
ueptéc Baoéc amodellelc TV YeUeMWImY EEIOOOEWY.

Kegpdhowo 3

210 30 xe@dhono TNG BITAWUUTIXAC Topouctdlovtal ol cuoyeTiloueves uedodoroyleg.
To xepdhoo ywplleton oe 600 pépn. XTo TEWTO UEEOg YIVETOL W ELOOYWYT| OTIC
OLOXELTES UEVHOOUG OVIAUOTIC ATOPACEWY TOAATAGDY XELTNEIWY, CUUTEQLAAUBAVOUEVKY
UEPXOY BAOXOY OPLOUMY oL UL LOTOPIXAG EMOXOTNONG.  XTO0 OeVTEPO UEQOC,
TEUYUOTOTOLELTAL L0l ELGOYWYT|) GTOV TOAUXQLTARLO HOUNUTIXG TROYQUUUATIOUO.

Kegpdiaio 4
Y10 40 xe@dhono Tng epyaoiuc TopouctdleTon N TEOTEWVOUEVT Uedodoloyio. Apyixd,

26 Thesis



Evpeio [Tepiindm

yivetow por emoxdémnom e pedodoroyiog péow emeENyNUATIXGY SlorypouudTony. Ev
ouveyela, TEpLYpdpoVTUL AETTOUERMS oL dUo @doelg tng pedodoroyiag. H mpotn
(pdoT aPopd oTNY ETAOYT YoeTOPUANXIOL, CUUTERLAUBAVOUEVOL TOU (JELBOXDOLXA TCV
uedodwy xatdtaine. H Seltepn @domn agopd ot Peltiotonoinor yoptopuiaxiwy utd
TOMTAG XELTARLAL, Xol TEQLANUPBAVEL TAL TROTEWVOUEVA LOVTEAN TNG OLTAWUATIXNS.

Kegpdhiowo 5

Y10 50 xe@dhouo TN epyasiug, TUEOUCLICOUUE TO TANEOQORLIXG GUCTNHO TOU
viorotel ) pedodoroyio. To xepdiono eiodyer dha tar epyareta xou Tic BBAtodrxeg
mou yenowwomotfinxay.  Emmiéov, mepthapfBdver To Baocwxd Sorypduuato UML
TOU TEELYPAPOLY TO TANEOPORLAXG CUCTNUA.  XTO OE0TEPO PEPOS TOU XEQUANLOU
TopouctdleTon Wiot oUVTOUT Tapovaiaot g eqopuoyhc. Téhog, oto teleutaio Yépog
ToU xEQahalou TopouctdleTon Eva U€POC TOU TNYolou XMBXAL.

Kegpdiowo 6

Y10 60 xe@dhono NG SmAwPATIXNG TapouctdleTal €va PEPOC TWV AMOTEAEOUATWY
NG TELRUUOTIXAG EQUPUOYAS TNG TEOTEWOUEYNS Uedodohoyloc.  Buyxexpuéva,
nopouctdlovtar Ta anoteréopota xde Briuatoc tng pedodoloyiag yr TV ayopd
e Néag Topxung. ¥to téhog tou xegouralou, mpoyuatomoleiton 1 enahfdeuon tng
uedodoroylouc oe out-of-sample dedoyeva.

Kegdhowo 7
Téhog, 610 7o xe@dhano NG epyaciog SLUTUTWVOVTOL TO CUUTEQECUATA TOU GUVOAOU
Tou €pyou xou cLLNTOUVTAL Ol XVPIEG UEAAOVTIXEC TOOOTITIXES.

IMopdptnua A
Y10 mopdpTnua A, TopouctdleTal 0 x0pLog GYXOC TOU TNYAoU XMBXA, GUVOBEVOUEVOS
amo Buc TEog BrUo ATOTEAECUATA XAl CUVTOUN OYOALL.

IMopdptnua B

Y10 mapdptnua B nopoucidleton 0 %x0plog 6 Y0 TWV AMOTEAEOUATWY TNG EQPUPUOYHS
¢ mpotewvouevng uedodoroyiog.  Ta amoteAéopata mou moapouctdlovial G AUTO
TO UEQOC QVOPEPOVTOL OF TEEWS OmO TOUg MEYAADTEQOUS PBrounyovixols Touelg
(TEXVOAOYIXOC, EVERYELOXOSC XUl OXOVOULIXOC) Xal OE TEGOEPN UEYGAU YENUATIo Tl
(NYSE, NASDAQ x.At.).
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Kegpdiowo 2: To mpoBAnua tng Olayelplong

X AP TOPULAAXLIOU

Y10 mopdv xe@dhono avamTtOcoETAL TO TEOPANUN TNg Olyelplong UETOYIXOU
YapTopuAaxiou xau ewdxdTERA TNG ueVodoloyiag u€cou - Sloxduavong Tou avamtOyUnxe
a6 tov Harry Markowitz (1952, 1959). To mpdfinue tne obvideonc Ttou
YapTopuAuiou elorydn kg Eva TETEUYWVIXO TEOBANUA HOUINUATIXOY TEOY QUUUATIOUOD.
Ané 1671e, moMol emoTAUOVES TpooTdinoay va BeATidoouy auty TN pedodoroyia
xou vo Yepameloouy T aduvouie NG,  YEMOWOTOLOVTNG TOWIAEG  TEYVIXEC
Behtiotonolnong xan dhheg pedodoug emyeenoloxrc €peuvag.  H mopousioon tou
uedodohoyixol mhauctou Yécou - dloxduavone avanTOoCETAUL OF TEGOEPLC EVOTNTEC.

Yy @t evétnTa YivETow Uiot GUVTOUN ETLOXOTNGT] TV BACIXOY EVVOLOY TOU
amoTeAOUY TO TEOPANUA.  MTn 0eUTEpn evOTNTA TopouctdleTon 1 EUEAONG oy
¢ owaoporoinong.  Iiveton wa eloaywyn otlc 600 BLAPOPETIXES CUVLOTWOES TOU
XWOUVOU (GUOTNUATIXGS XAl U GUC TNUATIXOS XIVOUVOC), avoADOVTIS TOUS TORAYOVTES
mou xadoToOV avayxaio TNV LIVETNOT WoC OTEATNYXNAS dlagopotoinong.  Ltny
Teltn eVOTNTO TPAYUOTOTIOLE(TOL Wiot AETTOMEPNC TEQELYPAPT] TOU TEOBANUAUTOC TNG
BehtioTonoinong tou yapToguhaxiov. Eiodyovtal ol évvoleg TV AmOTEAEGUUTIXGDY
YAETOQPUAOXIKY X0l TOU ATOTEAECUATIXGY PETMOTOU. AVoAleTon TO600 1) TEPIMTWOT TOU
ETUTEETOVTOL Ol AVOLY TEC TWAHOELS OGO X 1) TERIMTWoT Tou dev emitpénovton. TéAog,
elodryeTal 1) €vvola Tou axtvduvou yeeoypdgpou. H avdhuon yoeiletar xou mtdh avdhoya
Ue To xadeoTOC avolyTOY TwANCEWY, eV TéAOG, avanTOocoVToL 000 OLUPORETIXES
amodEl&ELS Yior TNV TEQIMTWOT oVOLY TV TWAHCEMV.

To xepdharo autd 00y NoE oTOL dAoudo CUUTERIOUATAL

e To povtého péoou - dlaxduavone Pactleton oe €va TETPAYWVIXO TEOBANUA
Lo NUoTIXOU TEOYPUUUOTIONOU TO 0Tolo TEQLAUUBAVEL OTUAVTIXY UTONOYLOTIXT
TOAUTAOXOTNTAL. Ewwodtepa, o umohoyloudg tou mivoxo cuVOLOUAVONS
xadloTotar Tohd dUoxohog og TEPITTWON oL 0 aELUOSC TV YEEoYEdPWY Elval
ueydrog. H mohumioxdtnta tou alyopituou yio €lcodo n uetoyiney Tithwy etvat
e TéEew O(nz), XxNoTOVTOC £TOL TO TEOBANUOL U1 YEUUUIXO.

e To npotewdpevo poviédo Baotletor oe 800 xprtthpla (amddoon xon xivouvog),
ATOTUYYAVOVTOG ETOL VO ATEOVIOEL PEQAOTIXG OAEC TIC TOQUUETOEOUS TOU
TeoPAfuaTog. AvtideTo, uiot 0A0OXANEWUEVT) TEOCEYYIOT ATAUTEL TNV EVOOUATWON
OAOY TV TapauéTEnY Tou enneedlouv Ty ayopd. Katd cuvéneia, to mpoBinua
oLayelplong yaptopuioxiou etvor Eva TEOBANUL TOAATAGY XELTNElwy, OTwWe X
1 mhetonplo Twv TpoBAnudtwy Adne anogdoewmy oruepa.

o H cupBatinf) mpocéyylon dev Aoufdvel unddny to mpoih Tou anogasilovta.
Ov mpotiufoec tou amogaocilovta €youv TepdoTia ornuacio 6T Oladixacia
olayelplong yoptogulaxiou.  Tor ToEddelyud, €vag CUVTNENTIXOG ETEVOUTYC
mdaverg Yo evolapepdTay Yoo T ehaytotonolnot tou xvdivou, eve avtieta
évog emeTindg enevouTE Yo TPOTYWOUGE Vo UEYIG TOTOLAGEL TNV AmbO0GT).

Ev xotokeldl, to mpofBinuo tng dayeiptong yaptoguiaxiou eivon va TedBAnua
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TOMATAGY XpLTnplwy xodode Tepthaufdvel ToAlolg mopdyovies. Kotd ouvéneia, 1
avéyxn Yoo oAoxhnpwpEveS pedodohoyieg elvon emtox Ty TEoxeEEVOU var emthudoly
To TpoAvapEPUEVTA TROBAYUATA.
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Kegpdiowo 3: Enioxdnnon CLUVOLPLV
LEVOBOANOYLOV

H avdhuon Tou mpoPAfuatoc dayeipione yoptogulaxiou onuatodétnos tny
avayxn v véo pedodoloyixd mhalolo UTOGTARIENG OTMOPACEWY, TEOXEWEVOU VA
UTEPXEPACTOUY Tal LTy ovTa TEoPBAAuaTa xou var Yepaneudoly oL aVETHPXEIEC TOU
GUULTIXOU HOVTENOL UECOU - DLOXOUAVOTC.

210 Tplto xe@dhono yivetan pior GOVIOUT ELCAYWYT) GTNY AVEAUCT| ATOPACEWY e
TOMTAG xpLTrptaL, xS Elva TO XATOAANAGTERO UEVOB0AOYIXO EpYakelD UTOOTHRIENC
e Sadwaciog AMng anogpdoenmy oto TeoBinua Tne Syeipiong yopToguAaxiou.

LNV meo T evOTNTA TopouctdlovTon ol factxég EVVOLES auTO) TOU ETLC TNUOVIXOU
medlou, xodmg xan por Yevixy|) uedodohoyixr emoxOTnoT), avoklovTag TG TECOEELS
pdoelc utoo NG amogdoewy. Emmpdoieta, yiveton uio elcoywyr oTic Slaxpitéc
TohuxpLtrpteg UEV6B0UG LTOC TARIENS ATOPACERY, TUEOLUGLELOVTAS TOUG TEELS 3ol
touelc (multiattribute utility theory, outranking relations theory, preference
disaggregation approach).

Ytn OeUTeERY eVOTNTA AvamTOGoOVTUL OL TEYVIXEC ouveyols [eltiotomolnong.
Zexvovtog  amd T YeUeNdn €vvold TOU  YRUUUIXOU  TEOYQROUUATIONOU, OTLC
EMOUEVES TOEAYEAPOUS YIVETAUL Lol ELCUYWYT) OTOV TETPAYWVIXO XL TOV OXEQULO
TEOYPUUUITIONS.  XTn cLVEyElr TopouoldleToan To  uedodoloyixd TAAUCIO TGV
TEOBANUATOY  TEOYEUUUATIONOU  OTOY®Y, oxOAOUUOUUEVO amd  Wia ELoaYwYY| OF
YeEVETIXOUS olydpriuouc.

Baowd otoiyeia xow pedodohoyixd nAaiclo

To 1985, o Roy, évag and toug Wputeg TN oLYypovng Vemplag mohuxpltnolaxhc
avdALOTG, ToEOUGEATE EVaL YEVIXO UEVOBOAOYIXG TAXLGLO Yior TOAUBLAC TAUTO TROBAT LT
Mdne  amogdoewy. H owdwoaocta  avdluong  moluxpltnolaxoy  TeoBAnudTe:y
nepthopfdvel Técoepa QAGELS:

ddorn 1: Avtixeipevo tng andgaong

Ye auth) TN @dor), undpyouv dvo onapoitnta Puata: (a) Auotnedc oplouds Tou
ouvolou A Ty evalhaxTix®y Aoewy Tou Teolifuatoc xat (b) mpocdloplonds TNg
TEOBANUATIXAC TNG ATOPIUOT.

To clvoho A 1wy evahhoxTnwy hMOoewY Tou TEOBAAUNTOC umopel va efvar éva
oLVEYEC 1) €val BloELTO GUVOAO. LNV TEP(mTWwon evog cuveyols TEOBAAUATOS, TO
oLveYEc 6UVOAO ANooEwY opileTan amd padnuaTnés eELGMOOELS UE TOOES BIUOTACELS OOEC
10 TANYOC TV PETABANTOV amdacng. TNy TEpInTwor evog dlxettod TeofAfuatog,
T0 GUVOAO TOV EPIXTOV Aoewv xadoplleTon pe e€ovTAntixy anopidunon Twv otolyeiwy
TouL.
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H mpofinuotue tne andgaong xadopilel tov tpoém0 pE TOV Oomolo mpémel va
eleTaoTOUV oL evahhoxTinég AVoelg. Lougova ue Tov Roy, urdpyouv téooepig xipleg
AT YOPLEC DLoXELTMY TEOBATUTWY:

i. Ta mpofBifuarto emAOYTC apopolyV TNV XATACTACT) 60U 0 ano(ucilwy XaAelTon va
ETMAEEEL TIC XATOMNAOTERES EVUANAXTIXES AUOELS.

ii. Ta mpoPAfuoata Ta&vOUNong a@opoly TNV XATACTUoY) XAt TNV omola oL
EVOANIXTINES ADOELC TIEETEL Var T voun oy ot TeoxaoploUEVES XaTTYOpiES.

iii. To mpoBAAuota XaTdTang apopoly TNV XUTAGTACT XATE TNV OTOlA OL EVUANIXTIXES
Aooelg mepEmel vau xoTatay Yoy xatd @divouca celpd.

iv. To mpoPBAfuoTo TEPLYPAUPTIC AVUPEQOVTUL OTNY XATACTACT] OTOU Ol EVOANUXTINEG
ANOGELG TEQLY PAPOVTAL CUUPVA UE TNV ETUOOCELS OF UEUOVWUEVA XPLTAQLAL.

®don 2: Xuvenrg owxoyévela xpLtnpeiny

Kdde mopdyovtog mou emnpedlel Wi amdgaon Vewpeiton xpitripo.  Tumxd,
eva xpLthplo elvon Wi wovotovn cuvdptnon f 1 omola dnhavel Tnv mpotiunon tou
amogucilovia, €T0L MHOTE YL OTOEGONTOTE BVO EVAANIXTIXES T;, T; VO Loy 00UV Ol
axdlovdec eEloMoELC:

flai) = fz;) &z~ x5 (2)

OTOU 0 GUUBOAIOUOS T; = T; ONAWVEL OTL 1) EVAAAUXTIXY T; ElVOL TEOTWOTEQRT oo
™ x; o 0 oLUBOAOUOS T; ~ T; ONAOVEL OTL UTdpyEL adlaupopior YETAL) Twy BUO
EVOANAXTIXWY ETUAOYOV.

Auti| 1 Sadixacta €xel k¢ amoTEAEGUN T1) SLUUOPPWOT LG CUVETOUE OLXOYEVELIG
xprtnplwyv. Eva cOvoho xprtnplwy FF = { f1,. .., fy} Slooppdvel o GUVeTH otxoyévela
xpLtnelowy, av xon uovo dv ThAneolvtol oL axdAoudes WLOTNTEC:

1. MovoTovio: 'Eva oivoho xpitnpiwy Yewmpeiton povdtovo edv ot uévo edv yia
x&e Buo evolhaxTxéc Nooele x;, x5 av fy(x;) > fr(x;) Yo onolodrmote xpithpLo
k xou fi(x;) = fi(x;) yw onotodrinote dhho xpithpto | negk, cuunepoivetar 6Tt
T0 T; = 5.

2. Endpxeio: 'Eva cOvolo xpitnplwy Yewpelton 6Tt dtardétel tnv B16TNTOL TN
eMpxELag €8V xou YOVO €8V yior BU0 evodhaxTixég Aoele x;, xj, av fi(x;) =
fr(x;) yio omolodrinote xpithplo k, ouunepoiveton 6Tl z; ~ ;.

3. Mn nAeovaocuog: 'Eva cbvolo xpitnplwy Yewpeiton 6Tt dev elvon mhcovdlov
gdv %o HOVO EQV 1) XUTEEYTOT OTIOLOLOY|TOTE XpLTnpelou odnyel ot tapoflaon Twvy
WBLOTATWY NS YovoToviag 1 TNG ECAVTIANTIXOTNTAC.
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®Pdion 3: IlpdTuno Xuvolixrc A&loldynong

To mpdTuno cuvohixic a&lordynone opiletar we N cUVIEST OAWY TWV XELTNEiwWY,
TpoxeWEvVou va avohuiel To TEoPAnua clugwva pe tor xodoptopéva tpoBiiuata. To
UOVTELO TNG OLVOMXTNC AElOAOYNONC UTOREL Vo EQPUPUOCTEL Yiol VoL TROGOLOPLOTEL Lot
GLVOAXY| OELOAOYNON TWV EVOANOXTIXOY AVCE®Y, va Olepeuvniel To clvoho ADcEwY
(ytor ouvey) TpoBAAUTA) X VoL EXTEAEGTOVY Ol GLYXEIOELC PETAZ) OGhwY TwV (euyY
EVOANOXTIXWDV.

®don 4: Trootipilrn AMdng anogpdoeswy

Avth 1 @dom tne dwdixaoctoc tepthauBdverl Oheg Tic BpaoTnetdTnTeS oL Bondolv
ToV ano@actlovTa Vo XUTAVOROEL Tol ATOTEAECUOTA TNG EQUOUOYNS Tou povtélou. O
e6hog tou cupfolhou elvon xodoploTixAg onuaciog EMEWDY TEETEL VAL OPYUVOOEL TLC
OMAVTNOELG PE EVOLY XATAVOTTO TEOTO.

YuunepdopaTa

H emoxémnon twv cuvapay mToAuxetthpiwy uedodoloyiwy odnyel oto axdrovda
CUUTERAUOUOTAL:

e Eyouv avantuydel mowxiiec pédodor LTOoTARENG ATOPACEWY UE TOMNATAL
xpLTrpla, oL oTtoleg VoL UToPOUGAY VoL EQUPUOG TOUY GE TOWIAAL BLUXELTA X0t GUVEYN
TpoBhAuaTa Adne amopdoewy. AuTéc oL TEYVIXES efvar IXaVES VoL avTIIETLTI oLV
TEOPAAUOTO UE TOAASL AVTIXPOUOUEVA XELTHPLY, YEYOVOS ToU Tig xadoTd TOAD
Yeriowee oTo mpofBinua dayelplong yopTo@uiaxiou.

o Mepwéc uédodol moAamAGY  xpLTnelnv (tmpotyoovmég TEOY QUUMUATIONOC,
olvletol yevetxol ahybprduol xhm.)  €youv PeYSAo UTOAOYIOTIXG @OETO.
Enopévwg, oe meplntworn mou o apiude tov evodloxtixwy ebvar peydhog,
n eniluorn oplopévewy TEoBANudTeY elvar BUOXOAN 1) axOud X UVEQLXTY),
xahoTovTag amapaltnTn TNV €€edpeEcn MG TEOCEYYIOTIXNC AVoNG 1) EVOC
oUVOAOU ANICEWY.

e O cmotnuovixde Tougag TN Olxyelplong  yoptogulaxiou Eyel  onuavtind
reprimpeto avdmtuéng. H avdryxn ohoxAnewuévmy uedodohoyLody xat GUCTNUATEY
UTOC TARLENG ATOPACEMY Elvol UEYIAT), TROXEWEVOL Vo BeATiwydolv oL UTdpy 0VoES
uedodoroyleg.
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Kegpdhowo 4: Ilpoteivouevn pedodoroyia

Eiwcaywyn

‘Onoe €xel 1o avagpepdel, 0 6x0mo¢ TNS BTAWPATIXAS epyaolag elvor 1 ovamTugn
eVOg ohoxAnpwuévou uedodohoyxol mhawctou yio T dloyelplon yaptogulaxiou. H
otadactor dlayelplong yopTo@uhaxiou eivon €var Tohd mepimAoxo mEOBAnua, xadag
amoteheiton amd 800 OTAOW TOU AMOUTOUV WL CEWRY ONUAVTX®DVY anogdoswy. H
TEOTN QPAOT) EMXEVIPOVETUL OTNV ETAOYY| YapToPuANXioU, dNAUdY oTNY ETAOYY TGV
LoYLEOTEPWY ETEVOUTIXWY euxatplwy. H deltepn @dorn tepihopfdvel tn BeitioTonolinon
Tou yopTo@UAAxioL, BNAUDY TOV TEOCOLOPIOUS TNG ATOBOTIXOTERNS XUTAVOUHS TOU
Olordéoilou xepahaiou oTo EMASYUEVA YEEOYQAUPA TROXEWEVOU Vo, UEYIGTOTOINVEL 1)
amOd00T).

Ye autd To xePdhono, mopouctdleTon 1) TEoTEWOUEVY pedodoloyin 6To mAdicto
¢ Otmhwpatxc. O amdTeEpog 6TdY0¢ elvol 1) AMOTEASOUATIXY| Ol ElOLOT UETOY XY
YopToQuUANXiKY, Tor oTolo amoTEAODY Uit amd TG TO ETUXIVOUVES ETEVOUCELS GTNY oY 0pdL.
H mpotewouevn pedodoroyio gprhodolel vor GUVBUACEL TIC UTHEYOVOES YVOOELS UE EVa
oUVOAO VEMENTIXOVY X0l TEAXTIXMY XOVOTOULOY.  LTNY TEOTN QACT AVAUTTICCOVTOL
téooeplc pédodol AAdne amogdoewy TOAMATAOY xeitnplwy yla Ty Tadlvounon
TV Odéowy TITAWY xaL TNV aviyVEUOT] TV XUAVTERWY EMEVOUTIXGY EUXALOLWY.
Metd 0 Owdixaoia emAoyrc yapTo@uhaxiou, umoloyilovial oL ONUAVTIXOTEQOL
Yenuatoolxovouixol delxteg BAoel Lo TOPIXMY BEBOUEVLY XaL, eV ouveyela, TpotelveTon
wa oetpd amd povtéra BertioTonolnong yopetoguiaxiou. H Bdon autdv twv yovtéiny
ebvoar 1 xhaooixr) pédodog péoou - Bxdpavone, 1 omolor mopopével 1 Baocuxn
uedodog Pehtiotomoinong yaptopuiaxiou yia teploodtepn amd 60 yeowia. Tehog, Ta
ETMAEYUEVA YAUPTOPUAGXIL OELOAOYOUVTOL Xall GLUYXEIVOVTAL TPOXEWEVOL Vo emAeyDel To
XATAAANAOTERO YOPTOPUAIXIO CUUPOVA UE TO TRO@IA Tou anogucilovtoc.

Enmtoxénnon Medosoloylag

7 4 4 4 7 7
Evo  extetapévo  Oudypouua  Tou  TEOTEWVOPEVOU  Ueldodoloyixol  mAouciou
napouctdleton oo dudrypaupa [I}

®don I: Enthoyr yapTopuiaxiou

H mpodytn @dom agopd oto mpoflinue tng emhoyhc yaptoguioxiou, dnhadh tnv
oVATTUET EVOS GUVOAOU UETOYIXGY TITA®Y 0L 0Tolol YewpolvTal ETEVOUTIXES EUXLlEC.
O amogactllwv xuheiton va emhé€el Tov PBlopnyavind Touéo xou TNV oyopd GTNV
ormofa emupel va emevdloel, Ue cUVETELL TN Onuiovpyid EVOC GUVOAOU UETOYIXWDVY
TitAwv Tou amoteholy TiC evahhaxTixéc Aboelg Tou mpoPAfuatoc. To mpdlAnua tne
ETUAOYYIC YARTOPUAXIOU ETLAVETOL UE TNV YENOT| TNG AVIAUOTG ATOPUCERY UE TOAATAS
xprthipla (MCDA). o cuyxexpyéva, oTic evahhoxtixég Aoelc egapudlovton TEaoERLS
ToAUXELTAPLEG EYODBOL, BAoel TOXIAWY OLXOVOUIXKDY BEXTMY OL OTOLOL YENOWEDOLY WG

Thesis 33



Evpeio Iepihndn

redefinement
e e e e e e e e e e e e e e e e mmm—mm— = @ ___________________________

DM selects
stock exchange

Input:

Security Indices

DM does not wish
security exclusion

PROMETHEE II \\ ELECTRE III \ \ MAUT \\ TOPSIS \

| |

PROMETHEE II ELECTRE III MAUT TOPSIS
ranking ranking ranking ranking

Cumulative ranking
of securities

DM selects from
the improved set

Historical data input redefinement
MUY | o o e e e oo - - o D
of k-best securities

!

Financial statistics
& visualisation

No DM selects Yes
without optimisation

Multicriteria portfolio

optimisation
Mean - Variance Goal Programming Genetic Algorithm PROMETHEE flow PROMETHEE flow
MIQP model model model bi-objective model 3-objective model

Pareto set of
optimal portfolios

DM selects Yes @
without comparison

Multicriteria portfolio _ redefinement
comparative evaluation

1
1
1
1
1
Portfolio ranking 1
1
1
1
1
1

DM selects
portfolio

Figure 1: Extevric mapouvoiaon yedodoroyixol mhaciou
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xpLthpla Tou TpoPAfuatoc. Kdie uédodoc mopéyet plar xatdtaln Twy YETOYIXWY TITAWY,
UE CLVETELL 1) CLVOAXT| XOTATaEN TwY TITAWY va utohoyiletar w¢ o oTauouévog
UECOC OPOC TWYV TECOUPMY UEHOVOUEVWY XaTatdienmy. Metd to mépag tn Swdwaotog,
0 anogacilwy eite EMAEYEL TO YAUPTOPUAAXIO UE TOUC XOADTEQOUS UETOYIXOUS TITAOUC
OTWE TEOEXLY Y amd TNV Topamdve dtadacta, eite emavanpoodiopilel To TEOBAnUa ot
TEPIMTWOT oL To anoTéAeoua xELiel un IXavoToINTIXO.

®dom II: Behtiotonoinon yaptogpuiaxiou

H 6eltepn @domn agopd oo mpdAnua tng Behtiotonoinong Tou yopTtoguiaxiov.
To apynd mpoéfAinua Beitiotomoinong diauoppwinxe we TEoBAinua 600 xpLtnelny
OTIOU 1) AVOUEVOUEVY OmOB0CY) TOu yopTo@uhaxiou TEETEL Vo peyloTomotniel, evw
o xivduvog Tou yaptogulaxiouv meénel va ehoytotonoinel (Markowitz 1952). To
uedodohoyind TAulcto TG TaEoUCUS ERYACIAS TROTEIVEL Uia OELRY OO LOVTEAN YOl TNV
TPOGEYYIOT ToU TEOBAY|UuTOC. TTo®ToV, SlaTuTMVETIL EVaL EVUAAAXTIXG HOVTENO UEXTOU
ox€PULOU  TTEOYPUUUATIONOY 6Tou  emiBdhhovian emimpdcieTol oxépatol TEPLOPLoUOL
yioo Tov €Aeyyo TOu oUVTEAESTH otdluione xdde ypeoypdgou.  Emmpdoieta,
ToEOVCLICETOL Lot BIG TOY XY TEOCEYYLOT), OTOU UEYIC TOTOLEITOL 1) 0OT) TG TOALXELTHELOG
uedooou PROMETHEE xa elayiotonowelton o deixtng beta tou yoaptoguiaxiou.
Téhog, etodyeton pio uedodoroyio TEOYEAUUATIONOL GTOYWY, XIS Xal Vo LOVTEAO
yeveTxol ahyoplduou.

Yy tedwr| @don emyelpelton Ua CUYXELTIXH oaVIALCT] TV YAETOQUANXIKY
mou mophydnoav.  To yoptopuidxio mou mpoéxuday omd TIC ToEUTAVE UEYEBOUC
Behtiotonoinong cuyxpivovial WoTe Vo A Y00V Tar TO XATIAANAAL Y AETOPUASH LY
olUQwva Ue To TPoiA Tou arogacilovToc.

YVUTEPACUATA

2170 POV XEPIANO TEAYHATOTOAUNXE Ular TATENS ToEOUGTNoT) TNG TEOTEWVOUEVNG
uedodoloyiag, 1 omola QUIOBOEEL Vo EVOWUATMOOEL OAEC TIC TOQUUETPOUS TOU
TpoPhAuaTog Tng drayelpiong yaptogpuiaxiov. H mpotewvouevn uedodohoyio ywelotnxe
oe 600 @doelc: (o) oTNV TEHOTN PEoT TUPOUCIECTAXE Ul OAOXANEWUEVY uedodohoyin
Yot To TedPBANUa TG ETAOYHS YopTogulaxiou xot () otn devtepn @dom ToEoLCIAGTNXE
Ut oeLed EVAARXTIXGDY HEYOBOAOYUMY TOU GTOYEVOLY GTNY ENLAUGT TOL TEOBAAUATOG
¢ BedtioTomoinong yapToguiuxiov.

o Adyoug mhnpotntag, celvan omopoltnto va mpaypotomoinUel uioe oUvToun
TEPLYPUPT| TNG TEMXAS Pdong Tou TEOPAAATOS, 1) ool TepLhopfBdvel TNV ETAOYY TOU
AATOAANAOTEQOU YopTOQUAAXIOU aTd TO GUVONO AMOTEAEGUATIXWY YopTOQUAAXiWY. Y
auTY| TN QdoT Sedouévou evog pareto BEATIOTOU GUVOROL UTIODHPLWY YoETOPUANXIWY,
TO TEOPBANUO EYXELTOL GTOV TPOGOLOPLOUS TOU XuTahhnAdTEPOL YopTouAaxiov. Etvor
TEOQAVES OTL 1) TWO ONUAVTIXY TORAUETEOC Tou TEofBAAuatog elvar To TPOIA Tou
amoguciCovtog, To omolo xavopilel Tov TEéTO Pe Tov omolo Vo TEENEL var uToo TrELy Vel
ot AN arno@dcewy.
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(61600, o TMEPIMTWOT TOU 0 EMEVOUTAC OV €YElL XAUTUANEEL O TEAXY| ambdpaoT),
avamtiooeTon éva uedodohoyd mhaiolo Yy TV utos TR TG AdNS amdpacEwy.
To mpdfAnua Tng eMAOYAS TOU XATOAANAOTEROU YopTOQUAAXiOU aTtd TO GUYOAO TLV
BérTioTeVv yapTtogulaxiny umopel vo Auldel wg Soxpttd ToAuxplthiplo TEéBANua, 6Tou
oL evaAhoxTixéC MOoELC efvon ONoL TAL AMOTEASOUOTIXG YOUOTOPUAIA XOL TOL XQLTHARL
umopolv v xodoploTolv oe emxovwvior pe Tov amogactlovia. ¢ ex ToUTOL,
T0 pevodohoyixd mhaicto mou yenoworoinxe oty ®don I yia tnv emAoyy| Twv
AKATOAANAOTEQWY Y PEOYRAPWY UTopel va yenotwonomdel xou e autd TO TEOBANUY
Y10l TOV TPOGOLOPLOUG TOU XATAAANAGTEROL YapTouAdxiov. Metd tnv eqoupuoyy| Tov
TOALXELTAPLWY UEVOBWY ETLTUY YAVETOL 1) TEAXT XUTATALT) TGV YapTOPUANX{KY ot TEAOC
0 EMEVOUTHC €YEL TN BUVATOTNTA VoL ETAECEL TO XATUAANAOTERO YOETOPUALXLO.

Yuvodllovtag, To mpotewouevo pedodoroyixd mhalolo  umooTnellel  Tov
amogociCovia e €va 0AoxANEnuévo woviéro, e€etdlovtag xdle @dorn tng dSaduactog.
Emuniéov, 10 mo onuavtixd eniteuyua elvon 1 EVOWUATOON TWV TEOTUNCEWY TOU
EMEVOUTH o1 1) OAANAETBpaoT e ToV amogacilovta o€ xdlde onueio Tng dladixaciag.
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Kegpdiowo 5: IIAnpogoploxd chotnua

H mopouctaon tng mpotewduevng pedodoroylag unoypdupios v avdyxn
Yoo oUYYQEOVH TANEOQOELUXE CUOTAUNTY, To OTolo UAOTOLOOV T TPOTELVOUEVES
uedodouc.  Yto mAalolo TNG TAUPOLCUS OLTAWUATIXAG OYEOLICTNXE Xt avamTOYUNXE
Eval TANEOQOELIXG GUOTNUN UTOCTARLENG AMOPICEMY.  LXOTOC TOU TANEOQOELIX00
OLOTAUATOS EIVOL 1) AMTOTEAEOUATIXNY EQPAPUOYT| TV AhY0RIIUMY TOL TNE TEOTEWOUEVNG
uedodoloyiag yior TNy LTOoTHEEN TNg dladixaclag APNe amopdoewy.

To mAnpogoplaxd clotrue aroteheiton amd Té€ooepa unocuoTiuata. To mpwTto
UTOGUC TN TEQLAUBAVEL TNV EQUPUOYY| TWY TOAUXPLTAGILY UEVOOWY UTOCTARIENS
ATOPACEWY TOU YPNOWOTOWUVTAL 6TV TEoTewoUevr pedodoroyia.  To dedtepo
UTOGUG TN UTOOTNRICEL TOV UTOAOYIOUO TWV OXOVOUIXOY CTATIOTIXGY detxT®yv. To
Tp{to uTocUG TN EPapudlet Tic uEYEB0UC BEATIOTOTOINGNC TOANATAMY AVTIXEWEVIXGDY
CLVaPTACEY Yl TN [eATioTomoinomn Tou emAeypevou yaptoguiaxiov.  Télog,
70 TET0PTO LUTOoUOTNUA uTooTNellel TN Bradwacior cuYXEITIXAC A&lOAGYNONG TOVY
TR VEVTOV YapTOPUANXIWY.

Emniéov, 1o mp®to umocUoTNua ovamTOOCETUL WG OLUOXTLOXT EQUOUOY.
H ouyxexpyévn mhatgopuo Teoo@épel éva @uAxd  ypopixd TeEpBdhov  ehoTn
GUI »on mpoc@épel amod0TIXEC UAOTIOIACELS GUYXEXQUIEVOY TOAUXQPLTARLWY UEVOBWY,
TOEEYOVTAG  EXTETOMEVEG AVUOELS Yl évar €upl QAo TEOPANUATODY  TOMATAGOY
xpLTnplwy.

ApYLTEXTOVIXY) CUCTHUATOG

To minpogoptaxd oot avartiyInxe ot YAwooa tpoypoupatiopod Python
3, YeYovog mou 1o oo td Brardéoiuo Yoo Aettovpyd cucthuata Windows, Linux
xow macOS. Emmiéov, yio TNy ovdntuln Twv EMPEEOUS AELTOURYLOY TOU GUC TAUATOC
xenowlomolinxe évag apriuog Bihiotnxay tne yAnooag Python. Ou xuplotepeg etvor
ot: Pandas, NumPy, MatPlotlib xou MIP. ¥1n cuvéyeta Siveton pia oOvtoun ene€rynon
TV ToEandve BiBAlodnxoy:

H Bihodvpxn MatPlotlib eivon 1 onuoavtixdtepn PiBhodnxn oyedioong xou
TOEOUGIAOTC  YRUPIXWY TORUCTAoEWY TNg Yhwooag Python.  Tlogéyer yoopixéc
TOEUC TACELC UYNAAC TOLOTNTUC OE [Lol TOWXA{OL oo BLUPOPETING POPUST OVAAOYA [E
Tig exdotote avdyxec. H Bihoddxn Pandas ebvan uio BBAodAxm avoutod xwoxo
TOU TaEEYEL YPNOWES OOopéS OEDOUEVLVY xan epyaheior avdAuomg BEBOUEVKDVY LPNATC
am6dooNg Yo TN YAwooo mpoyeoupatiopod Python. H BiBAwodhxn NumPy eivou 7
Vepehoone BiBhodnxn yio emoTnuovixy TAnpogopixy| ue tnv Python, xodog mepléyet
Otdpopar yeriotda epyahela pe xupLoTEPo Tov Tivoxa N-Olaotdocwy o omolog moapeyeL
0TO YPNOTN Wit OELRd amd Yprouleg Acttoupyxotntee. Tehog, n BihodAxn MIP elvou
wat BiBaodnxn tng Python yio tn povtehomoinom xon enthuon mpoBinudtony yeouuxo)
A0 UEXTOU-0XEQULOV TIROY PUUUATIOUOV.
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[MTapouvocioocrn TOAUXELTARLOS TAATPOLUAS

210 TAAloLo TOU EPYOU TNG OLTAWUATIXNG, TO TEWTO ETUTEDO TOU TATPOPOPLAXKOV

OLOTHUATOS AVATTUYINXE WS BLadixTuoXT EQoEUOYT. AuTh 1 e@apuoyY| TeEpLhouBdvel
Ut amodoTixy| VAoTolNeT plog oelpde PEVO0wY TOALXELTNELXS AVEAUCTC ATOPACEWY,
onwe oo ELECTRE, PROMETHEE, MAUT xow TOPSIS. To épyo ulonoufinxe oc
éva amé to yvwototepa Python frameworks pe tnv ovopacio Django. Ytny moapdypapo
oUTH TaEoLCLdlovTaL UEELXE IO TAL TO ONUAVTIXG YUQUXTNELOTIXG TNG TAATPORUAS:

ToEOLCLAUOT) TOU TEPLEYOUEVOU TNG EQUPUOYTC OIS QPALVETOL GTNV ELXOVAL .

H apywr) oehida Tou cuoTAUaTOC Elvol OYEBLACUEVY] OOTE VO TROCPEQEL Ld

MyCriteria Home About ELECTRE1 ELECTRE1VETO PROMETHEE TOPSIS AHP Login Register

Welcome to MyCriterial

This website provides an online platform where you can apply many multicriteria methods which generally support decision making. You only have choose
the method you desire to apply and upload the Input information in .csv format.

Website Content

Currently, the 5 following methods are supported:

« ELECTRE1

« ELECTRE 1 (with VETO)

« PROMETHEE

« TOPSIS

« AHP &

You are recommended to visit the About section, where you can find detailed ir ion about the appropriate format of the .csv file that you should.load.

Future Improvements
In the near future, the platform will be extended in order to support the following operations:
= Step by step execution of the methods

.« Implementation of further methods (e.g. MAUT, ELECTRE Tri)
= Graph format and colors chosen by the user

Figure 2: Apyu) O96vn

38

Thesis



Evpeio [Tepiindm

O yprotng €yel 0 duvaToHTNTO VoL ETAEEEL OTOLBHTOTE UMb TLC UTOOTNEL OUEVES
TOAUXELTAPLEG UEVOOOUG, AMOXTWVTAS TPOCPBAOT) OTIC AETTOUEQRE(C TANPOPORIES Xou TIg
ATOUTACELS ELGOBOL TNG ETMAEYUEVNG peYOdoL. MTny axévoz ToEOVCLALETAL EVOEXTIXG
1 oehida tng pedodou PROMETHEE.

MyCriteria  Home About ELECTRE1 ELECTRE1VETO PROMETHEE TOPSIS AHP Login Register

PROMETHEE

The Preference Ranking Organization METHod for Enrichment of Evaluations - PROMETHEE - methed is a partial ranking of the actions. It is based on the
positive and negative flows. It includes preferences, indifferences and incomparabilities. It has particular application in decision making, and is used around
the world in a wide variety of decision scenarios

|I'1pUT. Parameters
The following parameters are required for PROMETHEE:

« Number of Criteria

« Number of Alternatives &
« Optimization Type

« Weights of Criteria

« VETO Thresholds

« Preference Thresholds

« Indifference Thresholds

« Criterion Type

« Decision Matrix

Let's Start
Please upload a .csv input file:

File:

Choose File | No file chosen

! (=]
L]

Figure 3: O0évn moAuxpttrptag uedosou

To dedouéva €166d0L unopoly va etoayYoly otny TAaT@opua ot dpyelo Lopphc
.csv 1y .als. Extoc ond tig yevixée mhnpogoplec (evolhaxtixée hoels, xpLthpta, Wited
amogdoewy xou Bden), n xdle uédodoc mepthopPdver Sapopetind oTtotyein el6HG0L.
[ mopdiderypa, otn pédodo PROMETHEE etvar amapatitnto va xodopiotel o tOnog
Tou xpuTnpElou xou Tor xatdAAnha xato@Ate.  Metd Tn Sadicacio eloaywyig Tou
apyelou €l06d0LU OTNY TAATPOPUA, TO ETOUEVO GTAO0 TEPLAoUBAVEL TNV TapousiaoT
TWV AMOTEAECUATOVY. 2To oy Auata Tng emévag [ ntopouvoidleton i odévn €€660L UETA
TNV EQUEUOYY| OPLOHEVLY o6 TIC UTOG TNELLOUEVES UEVHBOUC.

Ideal Solution: Non-Ideal Solution:
1. Cterion: 0,007 1. Criterion: 0.018
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2. Crterion: 0.062 2 Crterion: 00
3. Crteron: 0.11 3. Crterion: 0,013
ELECTRE 1 4. Crteion: 0.002 4. Crteron: 0,033
TOPSIS Method 5. Criteon: 0,042 5. Ciftrion: 0.003
m - 6. Crterion: 0,036 6. Criterion: 0,014
Step By Step Solution 7. Cteron: 0216 7. Ceron: 0036 |
eciion i 8. Crterion: 0.087 8. Crterion: 0016
Separation distance from the Ideal  Separation distance from the Non-ideal
Solution: Solution:
1. Atematve: 0.207 1. Atemative: 0,055
2 Atematve: 0222 2. Aemative: 0049
3. Atematve: 0212 3. Altemative: 0.061
4. Atematve: 0217 4. Atemative: 0074
5. Aemative: 0156 5. Atemative: 0106
6. Atematve: 013 6. Atemative: 0163
7. Atemative: 0185 7. Aemative: 0108
8. Atematve: 0178 8. Altemative: 0,086
" o 0206 9. Atemative: 0081
‘ N o = 10, Atemative: 0.104 10, Atematve: 0.211
(a) ELECTRE I (b) TOPSIS (i) (c) TOPSIS (ii)

Figure 4: O06vn mapouvciaong 1oV amoteheoudTwy
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Téhog, N amewdVIoN TV ATOTEAEGUATWY UTopel vo tparypotortomndel xhixdpovtog
™V avtioTolyn emAoyY oTr oeAida anotekeopdtwy. O TpdToC anewdviong eCupTdTon
and TN P€Vodo xa TpocupudleTon dusc oTNY xatnyopla Tng uedodou. I napdderyua,
Yoo Tic pedddoug xatdtodne mopdyeton €va barplot ue Ty el xotdtoln TV
EVOANOXTIXOVY  ETLAOY®Y, EVG Yol TI¢ UEVOOOUC EMAOYAC TOQAYETUL TO YRAPNUA
xuplopylac, TaPoUCLALOVTOC TOLEC EVOANUXTIXES XUPLIOYOLY EVOVTL GAA®Y, OTwC
TOEOUCLACETOL GTNV ELXOVAL

Promethee Method

0.2

0.l

-0.2
N T B

alternatives

closeness

(a) Médodoc xatdraine (b) Méboboc emhoyrc

Figure 5: O06vn ontixonolnong twv anotekeoudtonv
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Kegpdiowo  6: Egapuoyy,  mpotewvopevng
uevodohoylog

Yto mEonyoUUEVO  XEQAALOL  EYLVE ULl TEELYQUPY,  TOU  TEOTELVOUEVOU
uedodoroyixol mhatciou xoi €MTAEOV TOQOUCIICTNXE TO TANPOPOELIXG GUOTNUA
mou LAorotel TNV tpotewouevn pedodoroyia. doTtdo0, elvor amapalTnTo 1) EYRUEOTNTA
Tou PeYod0A0YIXO0 TAGIOU Vo BOXWACTEL UE TEOYUUTIXG OEDOUEVO.  LUVETKC,
Olelhy0n Wit EXTEVAC TELRUUATINYG EQUOUOYT] TOU TEOTEWOUEVOU UEVOB0AOYIXO00
mhaotov oe TECOEPLC UEYAAEC AYORES, GUUTERLAOUBAVOUEVLY OAWY TV QPACEWY aTd
TNV ETAOYY TWV YPEEOYEAPWY uéypl xou TN BEATIoTOTOMGT TOU YopToQUAaxiou.

XapaxtneloTixd Tedlov QU OYNS

H npotewduevn pedodoroyio doxpdotnxe oe éva ohvoho mepinou 800 ytAddmy
UETOYXOY  T{TAWV. O ypovixde opiCovtac tng avdiuone oplotnxe ota Tl
nuepohoytoxd €tn (2016 - 2018). Ot tithot BroywploTnxay avdAoyo Ue TOV BLognyovixd
TopE XL TO yenuaTioTheo 6To omolo avrxouv. Ou owovouxol delxteg yior Toug
tithoug M@dnxay and tn Bdorn dedopévwy investing.com. £26T6G0, Yo EVOL CNUAVTIXO
aprdud yeeoypdpuwy dev umhpyay EToEXY oTolyelo.  XUVETGMC, oL EToupeleg Tou Oev
TAnpoVoay Ti¢ anathoels (eAheimovto Bedouéva, undevixéc Twée xAt.) eloupéinxoy
amo TNV TELROPOTIXY EQapUoYT. MTov mivaxa (1] xatoypdpeTton o apriudg UETOYIXGDY
TitAwv xde yenuotioTneiou, YwEoPEVOL avIAOYA UE TOV BLounyavixd Toug XAADO.

Xenuomothowo | Biopnyavixbe xrdoc Aptﬂpo/q Tty | Apidude ,‘ct'c)\(ov 5,15 Y UVoAOC ’ocpn()pog
TELPAPATOC avenapxt otolyela YEEOYPAPLVY

technology 69 177 246

NYSE energy 89 131 220
financial 358 461 819

technology 326 213 539

NASDAQ energy 6 40 46
financial 93 471 564

technology 50 91 141

CAC 40 energy 7 8 15
financial 33 24 57

Nikkei technology 485 263 748
995 energy 30 4 34
financial 143 51 194

Table 1: ITAnpogopieg dedoUEVeY €LGOB0U EPUPUOYS
AnoteAécpaTa

[Tpoxewevou va Veweniel 1 mpotevouevn uedodoroyla OAOXANPWUEVY o
oLveThc, ebvar amapaltnTo Ol AmOdOCES TwV TopuyVEVIKWY  yopToQUAAXiLY  Va
oLYxEWoLY UE TIC UmOBOCELC TOU TEOCPEREL 1) aY0pd, OF UETAYEVEGTEQO YPOVIXO
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optlovta amd TN ypeovixh) oTiyUh TN emévduonc.  Méow authc tng Sradixactog
TEUYHATOTOLELTAL 1) ETUXVEWOT TV TR VEVIWY ATOTEAEGUATOY.

H Swdwactia g moTonolnone Twv amoteleoudtony mpoyUotonoteitar ¢ eEhc:
Amodevietar OTL T YUPTOPUAdXIL TOU TEOTEIVOVTOL GTOV EMEVOUTH] amo TNy
TeoTEWVOUEYY pedodoroyia, mopouctdlouy ouota 1 xahOTeRn amddoCT), OE OYEoN WE
Toug Ocixteg avagopds Tng ayopds.  Emopévwe, 1 dwdixaoia Tou eréyyou Twv
amotekeoudtov eivar Poactouévr oe dedouéva Ta omolo elvon UETAYEVECTEQO amd TO
apyx6 Oetypo. To amoteAéopota Tng SLadxaciag ETXVEWONS TWV ATOTEAEOUNTWY YL
TIC TEOOERLC AYOPES TAUPOLCIALOVTOL OTIC YRUPIXES TORAUO TAOELS @ - @

Out-of-sample Validation

NYSE Stock Exchange

Figure 6: Xuyxpttt| ypeagpixy Ttapousiaon tng péong nuepriolag anddoong (%) v o
ETAEYVEVTA YARTOPUASXLOL XAl TO BEXTY OVUPORAC TNG oy ORdC (NYSE)

Out-of-sample Validation

NASDAQ Stock Exchange

Figure 7: Yuyxpitxt| yeagpxn topousiaon tng HEong nuepnolag anddoong (%) o o
emAeyVEVTa YopTOQUAGXIA Xat To BelxTn avapopdc tne ayopds (NASDAQ)
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Out-of-sample Validation

PARIS Stock Exchange

Figure 8: Euyxpirtiny| ypagixr mopousioon tne péong nuephotac anddoone (%) yio ta
ETUAEYVEVTA YAPTOQUASXL 0L TO BEXTY) AVUPORES TNG AYORAC (PARIS)

Out-of-sample Validation

TOKYO Stock Exchange

Figure 9: Yuyxpitiny| yeapixt| mapouciaon Tng UEOTS NUERTOLIS AmddOOTS (%) v T
eMAEYVEVTA YopTOQUAGXIa Xat To BeixTn avapopds tne ayopdc (TOKYO)

To omoteréopato g Oladwactag  enoifleuong (out-of-sample validation
process) ovédeile v ofomioTion TS mpoteoUEVne pedodoloylag, odnywvTog oe
avoronTxd anoteréopata. Ot amoddoel TV TapoyIEviny YapToQUAMI®Y UECW
NG TEOTEWOUEVNS pedodoroyiog Yempolvton LOLUTERN AVTAY VIO TIXEC OE GUYXQLOT| UE
TIC AMOBOGELS TTOU TPOCEPERE 1) oy Opd XTd TO (B0 Yeovixd didotnue. Mdhiota, 1 ol
TWV ANOTEAEOUSTWY TNG ETahdeuong pueyediveton SEBOUEVOL OTL Lol OELRE YPEOYPAPLY
eCoupédnxay amo TN Sadwacior Aoy NG ENAELPNS ETUPEXWY BEBOUEVLV.
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Kegpdhowo 7: Xuunepdouator Xol TEOOTTIXES

Yhuepa, 1 avdyxn Y ohoxhnpwuévo uedodoloyixd mhaiolo xon cLUCTAUATO
UTOC TAELENG amoPdoewy elvor toyupoTeen amd toté. Autéc ol pedodoroyieg mpénel
Vol GUUTERLAUBAVOUY OXOL TOL OLVTIXQOUOUEVOL XPLTARLOL XO TIC AAANAETBEAOELS PETOED
Toug, xadmg ot TNV aBEfoudTNTA TG YENUATOTLIOTWTXAC YORAC XAl TA OLUPORETIXY
TEOPIA TV QopEwV AMPNC AmOPAcEWY.  LUVETWS, auTh 1 epyaocior cUUBEAAEL oTNY
AVAYVORLOT, OOV TV TUPUUETEWY TOU TEOPAUNTOS TG Oloyeiptong yapToguiaxiou
XU TV AAANAETIORACEWY UETAUEY OADY AUTMV TWV TOEAYOVIOVY. ME AUTO TO XEQPIALO,
Topouctdlovtal T x0OpLal CUUTERAOUOTA TWY TEOTYOVUEVLY XEPUNLWV.

YuunepdouaTa

To Booxd yovtého péoou - droaxdpavone Basileton ae 800 xpithpto (anddoorn xou
xvBuvog), YEYOVOS TTou TO Xaho T8 AVETOEXES YLOL TNV OVTIUETHOTLOT EVOS PEAMG TEXOU
meofBhiuatoc.  Avtidétwe, pa oAoxAnewuévn TEOGEYYIoT amoUTEL TNV EVOWUATKOON
OOV TWV AVTIXPOUOUEVWY XpLTrplwy Tou emnpedlouv TNV ayopd acpdictag. Katd
oLVETEW, TO TEOBANUY dryeiplong yaptoguiaxiou elvar Eva TEOBANUL TOAAUTAGY
xpLtnplwy To onolo amawtel éva ohoxAnpwuévo uedodohoyixd mhaiclo edpaouévo ot
TOMNNAUTAG XpLTARLAL.

‘Eyovtac avayvopioer 6hec Tic Suoxohiec Tou mpofiruatoc xon TiC eAAElELC
oTic umdpyouceg pedodoroyieg, N Teéyouvca cpyacia TepLAaufdvel TV avdmTuln evoc
oLoxAnEnuévou pedodohoynol mhaictou yio Tn Suayeipion yaptoguhaxiou. To mhaicio
ouTé anoteheltar amd BV wVELEG PACELS: (i) N Qdom NS EMAOYTS YapToQuAaxiou X
(ii) ™ gdon e Bektiotomoinang yoptoguiaxiov.

H pedodoloyio Suwryeipiong yoptogpuiaxiou Tovilel v avdyxn ywr cUyyeova
TANEOQOELIXE GUGTNUAT oTtold VAOTOLO0V amOTEAECUOTIXG Tot VewenTind YOVTEAL.
{d¢ ex ToUTOL, GTO TAUGIO AUTOY TOU €0YOU OYEBLICTNXE EVOL GUCTNHO TANROPOELKY
To omolo VAOTOLEl TIC TPOTEWOUEVEC TOAUXQLTARIES  HEVOBO0UC. H yidooa
TEOYEUUUOTIONOU Tou  Yenowomotfinxe Yy Tnv ulomoinon eivon 1 Python 3,
OUVODEVOUEVY amO UEPIXEC EToTNUOVIXES BiModAxec dmwe o matplotlib, numpy
xou pandas. Emmiéov, to unocUotnuo emAoyrg yoptogulaxiou avamtiydnxe g

eqopuoyr| web.

Téhog, 1 mpotewvduevn uedodohoyio epaupudoTNxe ETTUY KOS O TEooEpLC diedvelc
ayopéc, oe Teelc and toug ueyailTEpoug Prounyavixolc xhddous. H umoloyiotind
mpoondeior HToy oNUavTIXG YaunhoTepn o€ olyxpeion UE Tig ouuPBatixég pedodoug,
EVR T AMOTEAEOUATA TNG TEOTEWOUEVNG pedodoroyiag xota TN dwdixaocio Tng g
moTonoinong Aoy WnTépee eVIappUVTLXSL.
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ITecoonmtixeg

H nopoltoa gpyacio dnuoupyel evoLapepOUCES UEANOVTIXEG TIPOOTTIXES EQELUVIC,
Ol XUPLOTEPEC EX TWV OTOIWY TOEOUGIALOVTOL TOEUXET:

Yhormoinon nAfpoug TANEOPOELIXOY CUCTARATOS WS OLABLXTUAXMN
epappoY”: XTo Thaiclo  Tng  Tapoloug  OIMAWUATIXAG,  OYEDoTNXE  Eval
ONOXANPWUEVO  TTANPOQORLIXG CGUCTNUN UTOCTARIENG AMOPACEWY. Mdiiota, TO
UTOCUCTNUA  ETAOYHG  YapTopUAUXioL YpeeoyYEdpwy Ue Toluxplthpleg  pedodoug
ovamTOYINXE ©¢ dladTuoxr EQapuoyr. Mia onuavtinf TeoonTix oe auTd TOV TOUEY
elvot 1 avdmTUEY OAOXATNEOU TOU GUG TAUATOC WS BladxTuoxy epapuoyr. H mpoéxtaon
ouTY OeVv elvan WBLNTéPWS BUGXOAO Vo UAomotnUel, xodme 1 ovdmTudn TV UTOAOITKY
UTOCUG TNUATOY anoTehel Yevixeuon Tng undpyoucaug BLUBIXTUAXTHG EQUOUOYYS.

AlaocOVdeoY) TOU  TANEOPOELAXOV  CUCTAKRATOS WUE ERTOPLXES
epappoveég: To avamtuydév mhnpogopiaxd cUOTNUN UAOTOEL TNV TEOTEWOUEVT
uedodohoyio doyelplong UETOYIXOY YUETOPUAAXIWY, CUVICTOVTIG EVOL OAOXATPOUEVO
epyoheio UTOCTARIENG EMEVOUTIXWY AMOPICEWY. XE AUTO TO TEDIO 1) GLUPAULVOUEVT)
UEAAOVTIXT| TEOOTTIXY 0ol OTN BLUCUVOEST] TOU TANEOGPOELIXO) GUCTHUNTOS HE
UTdEYOUoEC EUTOPEC EgapuoYéc.  Méow tng Swolvdeong autrc Vo xataoTel
TAneéoTepn 1 Sodixacia UTOCTARIENG TNG EMEVOUTIXAC ATOQACNC YLt XGUE TEALT.
Befalwe 1 mpoomtiny| auth yeetdleton Waltepn mpocoyr, xadog yevvovtour Véuota
ACPUAELIS TG EQPAQUOYTC.
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CHAPTER 1

Introduction

1.1 Introduction

Nowadays, one of the major problems of the financial sector is the creation and
management of an efficient investment portfolio under the complex environment of
globalised society, rapidly increasing competition and sweeping economic changes
at national and international level. Generally, investment portfolio is a group
(portfolio) of assets, which were acquired based on a specific economic objective,
aiming to generate profit for the investor.

Until the 1950s, the concept of portfolios was completely different. Investing
in equities was a gambling process as there was insufficient financial data available
and few people had realized the importance of investment management. Investors
usually focused on the opportunities offered by each equity and not in a return-risk
relationship.

The above situation radically changed since 1952, when nobel laureate H.
Markowitz published his research work under the title ”Portfolio Selection” [11],
where he introduced the mathematical relation between the return and the risk
of a security. According to Markowitz mean-variance model, a combination of
different kinds of equities is less risky than owning only one type. Subsequently,
investors started creating portfolios that favored specific investment styles and
preferences, using the mean-variance model or other models which tried to expand
it and extinguish its weaknesses. Therefore, nowadays the process of creating and
managing equity portfolios has significantly developed and cultivated.

However, it is well known that the global economy has historically been shaken
by strong fluctuations, making equities one of the most vulnerable markets. Equity
portfolios are the most risky market placement for two main reasons, according to
Xidonas (2010) [27]. Firstly, there is no possibility of differentiating part of the risk,
investing in fixed-income securities and deposit or derivative products. Secondly, the
process of equity portfolio management is extremely difficult due to the existence of
a large number of equities traded on Stock markets. This fact renders necessary the
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investigation of thousands of securities, which are available as investment choices.

Equity portfolio management is a very complex problem, as it focuses on three
different levels of decision-making:(i) selecting equity securities which encapsulate
the best investment prospects, (ii) distributing the available capital in order
to achieve optimal portfolio composition and (iii) comparative evaluation of the
constructed portfolios

Besides, the problem of equity portfolio management is linked to three other
fundamental parameters that affect each decision-making process: (i) uncertainty,
(i) the existence of multiple criteria and (iii) the profile and preferences of the
decision-maker (DM)

Last but not least, another crucial parameter is the existence of many
stakeholders because of the complexity of modern economies and markets. In fact,
the whole process is made more difficult by the fact that these stakeholders usually
have different, or even conflicting, interests. More specifically, the entities that
constitute the environment of this particular problem, can be grouped into four
categories: (a) entities which are associated with the supervision of the market, (b)
companies listed on the stock market, (c) institutional and private investors and (d)
investment service providers.

In conclusion, the above parameters demonstrate the enormous complexity
and uncertainty in the financial decision-making process and imply the need for
appropriate indicators and supportive decision tools. These tools are intended to
replace decision-making based exclusively on empirical approaches with modern
methods of analysis, resulting in a more efficient treatment of investment risks and
equity portfolios management.

48 Thesis



Introduction

1.2 Thesis Target and Objective

As discussed in the above section, the need for development of integrated
methodological frameworks and decision support systems today is stronger than
ever. These frameworks should encapsulate all the criteria and the interactions
between them, as well as the uncertainty of the financial market and the different
profiles and needs of the stakeholders.

The origin of this research effort is the classic mean-variance theory of
Markowitz. This approach is very useful but not sufficient in order to effectively
address the problem of equity portfolios management. Therefore, the proposed
framework aspires to extinguish the weaknesses of the mean-variance model and to
overcome the existing computational difficulties

The subject of this thesis is the development of an integrated decision-support
methodology for equity portfolios management, in the context of strong volatility
and growing uncertainty in the modern financial environment.

The purpose of this thesis is the identification of all the parameters of the
problem, the extensive analysis of the interactions between them and finally the
configuration of a transparent and consistent decision-support framework.

Additionally, the thesis includes the development of an integrated portfolio
management information system, which implements the proposed methodology. The
validity of the information system was succesfully verified through an extensive
experimental application on four major international stock exchanges.
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1.3 Thesis Contribution and Value

Generally, the thesis contributes to the scientific society an integrated
methodological framework for equity portfolio management, as well as a modern
decision-support information system. Additionally, each of the individual steps
of the methodology could be successfully applied, even separately from the entire
framework.

More specifically, the contribution of the thesis is described in the following

paragraph

Overview and presentation
of existing knowledge in
Portfolio Management

Integrated Portfolio
Management information
system

Integrated methodological
framework for Portfolio
Management

Thesis Contribution

Individual methodologies Multicriteria methodology
for Portfolio Optimisation for Portfolio Selection
Integrated Financial
Engineering system

Figure 1.1: Thesis Contribution

The thesis contributes an elaborate overview of the existing knowledge in the
field of Portfolio Management, including a wide range of tecnhical terminology and
presenting the basic concepts of modern portfolio theory (MPT). Additionally, a
detailed discussion of multicriteria decision analysis (MCDA) is attempted.

An integrated methodological framework is developed which aspires to include
the whole procedure of portfolio management. The methodological framework
consists of two basic subsystems: (a) the portfolio selection subsystem, (b) the
portfolio optimisation subsystem.

The first phase of the process is based on a multicriteria decision-making
methodology for security selection. This process is based on four fundamental
MCDA ranking methods which are combined in order to support the selection of
the best securities. In this thesis project, these MCDA methods are explained in
detail and additionally pseudocode for these methods is included.

As part of the proposed methodology, an integrated subsystem for security
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returns and statistical indexes is developped. This subsystem includes some useful
visualisation tools for inspecting security values and returns as well as a variety of
statistical indices such as correlation, kurtosis etc.

The second phase of the methodology demands continuous mathematical
optimisation methods. In this project, we develop various models for portfolio
optimisation, including a mean-variance model, a genetic algorithm approach, a goal-
programming mathematical optimisation method and a multidimensional MCDA
optimisation technique involving the PROMETHEE flow.

Finally, as part of this project, a complete information system is developed
in order to support the whole procedure. Additionally, the MCDA subsystem was
designed as a web application which implement a variety of multicriteria methods
with step-by-step detailed solutions. This application provides a useful, user-friendly
tool for decision support with many alternatives.
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1.4 Thesis Structure

The thesis consists of six chapters and two appendices. Here is a brief
description of their contents.

Chapter 1

In the 1st chapter of the thesis, a brief introduction to the problem was made,
defining the main attributes and the historical background. The thesis target and
objective were defined, as well as its contribution to the scientific society. Finally,
there was a description of the thesis structure.

Chapter 2

In the 2nd chapter of the thesis, we make an introduction to the portfolio
management problem. The chapter begins with some definitions of the fundamental
formulas and the description of the concept of diversification. Additionally, there
is a presentation of the portfolio optimisation problem with and without shrt sales.
Finally, the case of the risk free asset is introduced. The chapter also contains some
basic proofs of the fundamental equations for completeness reasons.

Chapter 3

In the 3rd chapter of the thesis, there is a presentation of the related methodologies
of the thesis. The chapter is divided in two parts. In the first part, there is an
introduction to the discrete multiple-criteria decision analysis methods, including
some basic definitions and a historical overview. In the second part, there is an
introduction to multiobjective mathematical programming. There is an introduction
to linear, quadratic and integer programming. The second part of the chapter
discusses the concepts of multiobjective programming, goal programming and
genetic algorithms.

Chapter 4

In the 4th chapter of the thesis, we present the proposed methodology. Initially,
there is an overview of the methodology, including some illustrative diagrams. The
two phases of the methodology are described in detail. The first phase discusses
the problem of MCDA portfolio selection, including pseudocode of the ranking
methods. The second phase presents the methodologies for multiobjective portfolio
optimisation.

Chapter 5

In the 5th chapter of the thesis, we present the information system that was
developped as part of the thesis. The chapter covers all the tools and libraries
that were used. Additionally, it includes the basic UML diagrams which describe the
information system. In the second part of the chapter, there is a brief presentation of
the MCDA web application including pictures from the front-end and explanation of
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the user interaction surface. Finally, in the last part a small part of the source code
is presented with jupiter notebook, which demonstrates the security visualisation
and financial statistics subsystem.

Chapter 6

In the 6th chapter of the thesis, we demonstrate a small part of the empirical
testing results. More specifically, we explicitly present the results of each step of the
methodological framework. The main volume of the empirical testing is placed in
the appendix.

Chapter 7
Finally, in the 7th chapter of the thesis, a conclusion of the whole project is made
and the future prospects are discussed.

Appendix A

In appendix A, we present the main volume of the source code in a jupiter
notebook, accompanied by step-by-step results, in order to explain the code in a
more understable way. The source code of the four MCDA methods, as well as the
optimisation techniques is placed in the appendix, accompanied by short comments.

Appendix B

In appendix B, the extensive results of the empirical testing are presented. The
results presented in this part refer to three of the largest industrial sectors
(technological, energy and financial) and four major stock exchanges (NYSE,
NASDAQ), Paris, Tokyo).
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CHAPTER 2 me—

The Portfolio Management
Problem

2.1 Introduction

In this chapter there is a discussion of the portfolio management problem and
more specifically the mean-variance methodology developped by Harry Markowitz
(1952, 1959) [11], |12]. The problem of portfolio composition was introduced as
a quadratic mathematical programming problem. Since then many scientists have
attempted to improve this methodology and cure its weaknesses using a variety of
optimisation techniques and other operational research methods. The presentation
of the mean-variance methodological framework is developed in four sections.

In section 1 there is a brief discussion of the basic concepts that constitute
the problem. The most significant terms are defined, such as the return and the
risk both in case of a single security, as well as in the general case of a portfolio of
securities. Additionally, the cases of a portfolio including two and three securities
are presented, offering an introduction to the problem.

In section 2 the fundamental principle of diversification is presented. A
presentation of the two different components of risk (systematic and non-systematic
risk) is attempted, analysing the factors that make necessary the endorsement of a
diversified strategy. Finally, some analytical proofs for portfolio risk are given.

In section 3 there is a detailed description of the problem of portfolio
optimisation. = The concepts of efficient portfolios and efficient frontier are
introduced. Both the case that short sales are allowed and the case that short
sales are restricted, are discussed. Additionally, a theoritical proof for the detection
of the efficient frontier is given in case of short sales.

In section 4 the concept of the risk free security is introduced. The analysis is
again divided according to the existance of short sales. Finally, two different proofs
are developed in case of short sales, offering two different views of the same problem.
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2.2 Fundamental Formulas

A legal contract which allows the investor to receive some future economic
benefits under specific and clearly formulated conditions is called security. Common
stocks or equities are a subcategory of securities which provide the investor the right
to participate in the profits of the company.

The percentage variation of an investment’s value over a given period of time
is defined as security arithmetic return. Let S; be the value of a security at time ¢.
The arithmetic return of a security is defined as follows:
St =S

St-1
Given the arithmetic return for a specific number of periods T', the expected return
E(r), also known as mean return is given by:

Tt (2.1)

E(r) = > o (2.2)

Any deviation from the expected return is considered as risk. The typical
measure of risk that is used in security markets is the standard deviation of a
security’s return over a number of periods. Therefore, risk o can be measured
with the variance criterion, as follows:

o2 = %Z[rt _ B(r)? (2.3)

t=1

The term portfolio refers to any combination of financial assets such as stocks,
bonds and cash. Each asset participates in the portfolio in some proportion which
is determined by the value of the asset relatively to the total value of the portfolio.
In the following section, the concept of security portfolios is discussed.

Let P be a portfolio consisting of m securities. The portfolio return E(rp) and
risk 0% are defined as follows:

m

E(rp) =Y w;E(r;) (2.4)
=1
0'123 = ZUJZQO'? + Z Z W; W04 (25)
i=1 i=1 j=1,j#i

where E(r;), o2 are the expected return and the variance of the iy, security, o;; is
the covariance between securities ¢ and j and w; is the participation percentage of
security ¢ in the portfolio.

The covariance between the returns of securities © and j is defined as follows :

7 = COV(rir)) = 2 S lrae = B(r)lfrye — E(ry)] (2.6)

i=1
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The standard deviation of the portfolio is called portfolio volatility:
op =4/02 (2.7)

For a portfolio which consists of two securities with expected returns r; and
ry, variances o3 and o3, respectively and covariance o, the above definitions are

formed as follows:

Portfolio return:
E(rp) = wy E(r1) + wa E(re) = wy E(ry) + (1 — wy) E(ra). (2.8)

Portfolio variance:

2_ 92 9 9 9
0, = W0} + Wy05 + 2W1Wa012 (2.9)

For a portfolio which consists of three securities with expected returns ry, ro
and r3, variances o7, o3 and o3 and covariances g9, 013 and 093 the above definitions

are formed as follows:

Portfolio return:
E(r,) = wy E(r1) + wa E(r2) + w3 E(r3) (2.10)

Portfolio variance:

2 2 2 2 2 2 2
0, = W07 + W50 + w305 + 2W1we012 + 2w1W3013 + 2WaW3023 (2.11)
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2.3 Diversification

According to Doumpos [25], a portfolio’s risk can be reduced by holding
combinations of securities which are not positively correlated. Thus, the portfolio
variance is reduced. Holding a diversified portfolio of assets results in less significant
exposure to individual asset risk. Therefore, diversification allows the investor to
achieve the same portfolio expected return with a reduced percentage of risk. In the
following paragraph, the significance of diversification strategies is explained.

On the one side, the portfolio expected return is a linear function of the
individual securities which constitute the portfolio. As a consequence, the mazimum
return portfolio is the portfolio that consists of the security with the greatest return
with proportion equal to 1. On the other side, the portfolio’s risk is a non-linear
function of the portfolio’s securities proportions.

Assuming an equally distributed portfolio of infinite securities the following two
observations indicate the benefits of diversification:

Uncorrelated securities

Firstly, assuming the fact that an investor could build a portfolio consisting
of infinite uncorrelated securities, then the portfolio risk can be totally eliminated,
according to the following proof:

Proof. Let 0% be the portfolio risk. For any pair of of securities i and j which are
totally uncorrelated, the following applies: o;; = 0. In this case the portfolio risk is:

op =Y wio] (2.12)
=1

Assuming an equally distributed portfolio consisting of m uncorrelated
securities participating with weighting factor w; = 1/m:

VAR 1—
lim o%(m) = lim § (—) o7 = lim —o2=0 (2.13)
m—o0 m
=1

m—00 m—oo M

]

Correlated securities

Secondly, assuming the -most realistic- case that an investor could build a
portfolio consisting of infinite securities, which are not uncorrelated, then the
portfolio risk is defined by the securities correlations, because the risk of each
individual security is eliminated.
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Proof. Let % be the portfolio risk of an equally distributed portfolio consisting of
m securities participating with weighting factor w; = 1/m:

m 1 2 m m 1 2
. 2 I il 2 - .
nlwp(mhii%o[ (m> LRODDY (m) ]
i=1 i=1 j=1,j#i (2.14)

1— —1
lim op(m) = lim (—02 + = U_U> =0y
m

m—00 m—oco \ M

]

As a conclusion, if the investor has the opportunity to compose a portfolio
including infinite securities, the portfolio risk is determined by the correlations of
the securities, while the individual risk of each security extinguishes. This fact
signifies the necessity of a diversification strategy. Additionally, the total portfolio
risk can be analysed in two components:

The first component is called non-systematic risk It reflects the risk of each
individual security and it is not affected by the behaviour of the other securities.
This component can be eradicated by an appropriate diversification strategy.

The second component is called systematic risk. If a portfolio’s systematic risk
is greater than 1, then it is expected to have higher volatility than the market. On
the contrary, if a portfolio’s systematic risk is lower than 1, then it is expected to
have lower volatility than the market. If a portfolio has zero systematic risk then it is
not affected by the market. The market is usually represented by a well known index
like S&P 500 or RUSSELL 2000 INDEX. This component of risk is not possible to
be eradicated with diversification atrategy.
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2.4 Portfolio Optimisation

The observations made in the above section lead to the conclusion that a
diversification strategy is necessary for the construction of a solid portfolio. The
first major methodological framework was developed by H. Markowitz in 1952
introducing the concept of the efficient portfolio. According to Markowitz definition,
a portfolio P is efficient if and only if there is no other portfolio P’ such that
E(rp) > E(rp) and op: < op, given that at least one inequality is strict. The set
including all the efficient portfolios is called efficient frontier.

As indicated in figure 2.1} a feasible portfolio is any portfolio with proportions
summing to one. As stated by Benninga [20], the set of all feasible portfolios is
called feasible set and it is depicted as the area inside and to the right of the curved
line. All portfolios which have minimum variance for a given mean return are called
envelope portfolios and they are depicted on the envelope of the feasible set. Finally
all portfolios which have maximum return given the portfolio variance are called
efficient portfolios and are depicted by the dense line in figure 2.1}

Efficient Frontier Visualisation

Infeasible

/ Portfolio

. . eﬂ‘ FTO
Efficient pffict

Portfolio \

Feasible, but
not efficient
Portfolio

Portfolio expected return

Envelope, but
not efficient
Portfolio

Portfolio standard deviation

Figure 2.1: Visualisation of the efficient frontier
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In this point we present the suitable techniques for portfolio optimisation
considering two main cases: (a) when short sales are allowed and (b) when short
sales are restricted:

Short sales allowed

In the first case, short sales are allowed, thus not constraining the weighting
factors to be positive. The problem is defined as follows:

min 0% = %WTVW
_ T
max E(rp)=r'w (2.15)

st. efw = 1
w € R

The suggested approach is to transform the expected return R into a parameter
and solve the problem of risk minimisation. This is a quadratic programming
problem with linear contraints and can be solved using the Lagrange multipliers
A, leading to a linear system of equations.

5[4

The following proof, given by Doumpos [25] describes the solution of the initial
problem.

Proof. Let us consider a portfolio consisting of m securities. The purpose of this
analysis is the composition of the optimal risk portfolio, given the expected return
R. In this case the following problem is formulated:

min o3 = tw’Vw
W

st. r'w = R
2.17
elw =1 (2.17)
w € R
where e represents the unary column-vector: e = (1,1,...,1)T, r is the expected

return vector and V is a positive definite matrix. This hypothesis restricts all
securities to include some risk, resulting in a strictly convex risk function.

Let A\; and Ay be the Lagrange multipliers of the two constraints, the following
function is formulated:

1
Z = §WTVW + A (1 —ef'w) + (R —r''w) (2.18)
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In order to maximise this function its partial derivatives are set equal to zero:

%:Oé Vw — e — \r =0
ow
0L
0L
\a—>\2:O:> I'TW:R }

The first of the above equations gives:

w=MV5ie+ MV ir (2.20)

Substituting to the other two equations, the following system of linear functions

is formulated:
{AleTV_le + el Viilr=1 }

2.21
MriVie+ or'Volr =R ( )

Given that V! is a symmetric matrix, we take e V~!r = r"V~le. Therefore,
let a =e’V=le, b=elV-!r and ¢ = r’V~!r, the linear system is transformed as

follows:
AM+b\ =1
a0 (2.22)
b/\1 + C)\Q =R

The solution of the linear system is given by the following equations:

—b
e
ac —
A (2.23)
A2 = ac — b2

The optimal portfolio composition is determined substituting A; and Ay in
(2.20). The portfolio risk is computed as follows:

Vw — A\je— r=20 =
wiVw — \wle — ywlir =0 =
02—\ — AR =0 = (2.24)

, aR*>—20R+c

o. =

3

ac — b?

The constants a, b, ¢ are independent from the expected return R. In order to
determine the global minimum variance portfolio (GMVP), the constraint of the
expected return R should be aborted. In this case the langrangian multipliers are
Ao = 0= R =b/a and thus \; = 1/a. The GMVP portfolio composition and the
minimum portfolio risk are, respectively, calculated:

V-le
eTV-le

1
w=MVile+ LV ir=>-V-le
a
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1
0'12):)\1+>\2R:—
a

Short sales restricted

The general approach assumes that there is a short sales restriction, thus
allowing the portfolio proportions vary in range [0,1]. The original portfolio
optimisation problem is formulated as follows:

m

max E(rp) Z
=1
mm op Z Z WiW;045 (2.25)

i=1 j=1,5
m
=1
w; > 0, 1=1,2,....m

In matrix form the problem is formulated as follows:

max FE(rp) =r'w
w

min 02 = fwTVw

(2.26)
s.t. el

w 1
w 0

AVANI

where V is the variance-covariance matrix, r is the return column vector, e is the
unary vector and w is the weighting factor vector.

This is a quadratic programming problem with linear restrictions. In 1956,
Markowitz developed a general procedure for quadratic problems that can handle
additional linear constraints and determine the entire set of efficient portfolios. This
procedure was called the critical line method. An alternative approach for the
specification of the efficient frontier is to solve the problem of risk minimisation,
parametrically on the expected portfolio return, as follows:

Il
=y

(2.27)

g
IVl
(@)

where parameter R is the predefined expected portfolio return. Varying the expected
return R between the edge values of minimum variance portfolio and mazimum
return portfolio, results in the determination of all points of the efficient frontier.
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2.5 The Risk Free Asset

A security which has a certain rate of return, free of the various possible sources
of risk is called risk free security. Given the existance of a risk free security , the
investor would be interested to compose a portfolio F'P which combines the risk free
security F' with a risk portfolio P constituted from a set of other securities.

Let rr be the return of the risk free security and rp, 0% the expected return
and the risk of the risk portfolio, respectively. Additionally, let us consider 0% = 0
for the risk free security and zero correlation between the risk portfolio and the risk
free security (ppp = 0). The investor would be interested to invest a proportion of
the available capital wp to the risk portfolio, and the remaining part 1 — wp to the
risk free security. The portfolio risk is given by the following equation:

opp = (1 —wp)?0r +wpop + 2wp(l — wp)prp Op OF = WHoP (2.28)

Therefore, the portfolio risk is defined exclusively as the risk of portfolio P, related
to its weighting factor in the portfolio F'P. From the above equation we take wp =
orp/op. Thus, the portfolio return is:

E(TFP) = (1—wp)7’F—|—U}PE(7”p) =

OFpP OFpP
E = (1 — FE
rep) = (=g e 4 5 - Ere) = (2.29)
E _
E(rpp) = rp 4 2BV ZTE
op

The portfolio return is a linear function of risk, resulting to the formulation of
a new efficient frontier. As shown in the above diagram, in case that there is a risk
free security, the efficient portfolios are placed in the line that intersects the vertical
axis at point rg. Consequently, there is only one optimal portfolio F'P, which is
determined by the risk portfolio P placed in the tangent of the above equation with
the risk portfolios efficient frontier (figure .

The portfolio P includes m risk securities with weighting factors wy, wo, . .., wy,
and the risk free security with weighting factor wg, such that wy +ws + - - - + w,,, +
wpr = 1. The problem lies to the definition of the proportions of the portfolio F'P.
The portfolio return and risk are calculated as follows:

E(TFP) :wFTF—Fi’wiE(’H) =
=1
E(rpp) = (1 — Xm:w) rE+ Zm:wiE(n-) = (2.30)
=1 i=1
E(TFP) =7rp+ iwl[E(n) — TF]
i=1
opp — Xm: zm:wiwjaij (231)
i=1 j=1
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Efficient frontier visualisation
with risk free security

E(rp)

Portfolio expected return

It

Portfolio standard deviation

Figure 2.2: Visualisation of the efficient frontier with risk free security

At this point we present the suitable techniques for portfolio optimisation
considering two main cases (short sales allowance and short sales restriction).

Short sales allowed

In case that short sales are allowed, the problem is similar to the respective
problem without risk free security. Two different proofs are provided. The first
proof based on the matrix form of the problem follows the same approach with the
previous chapter using the lagrangian multipliers. The second one is a pure algebraic
proof, and it is based on the maximisation of the frontier slope.

The following proof, given by Doumpos [25] describes the solution of the initial
problem.

Proof. Let rp represent the return of the risk free security. The purpose of this
analysis is the composition of the optimal risk portfolio, given the expected return
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R. In vector form the problem is formulated as follows:

min o7, = tw'Vw
w

st. rp+(r—rre)fw = R (2.32)
w e R
where e represents the unary column-vector: e = (1,1,...,1)7 and V is a positive

definite matrix.

Let A be the Lagrange multiplier of the constraint, the following function is
formulated:

1
L = 5wTVw +A[R—rp— (r—rpe)’w| (2.33)

In order to maximise this function the partial derivatives are set equal to zero:

%:Oé Vw — Ar —rpe) =0
ow
(2.34)
%—Oﬁ R—rp—(r—rpe)fw=0
N F F =
The first equation of (2.34) gives us:
w = AV ! (r —rpe) (2.35)
so substituting w to the second equation gives:
_ R — rr R — rp
—rp = Ar — V=i — A= =
R—rp (r —rpe) (r —rpe) & & rre)Vi{r —rpe) g

Now, substituting this equation to (2.35), w can be calculated as follows:
R—
— "PV-l(r — rpe) (2.36)

The vector w determines the risk portfolio composition. The weighting factor of the
risk free security in portfolio F'P is then calculated as follows:

W =

wp=1-Y w (2.37)
=1

The portfolio risk is given by the first equation of (2.34)
Vw — Ar—rpe =0 &
w! Vw — Aw’ (r — rpe = 0Vw &
orp — AR —71r] =0 & (2.38)
2 (R—rr)®

Opp = d

From the above equation we can see that the portfolio return R is a linear
function of risk:

R:TF—I—O'FP\/E (239)
[
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Portfolio expected return

Portfolio standard deviation

Figure 2.3: Maximisation of the envelope 6 for the determination of the efficient
frontier given a risk free security

The second proof for this case is based on the maximisation of the slope of
the efficient frontier. This proof was given by Xidonas et al. [24]. The slope of
the line that relates the risk free security to the risk portfolio is equal to the excess
return of the portfolio divided to its volatility (figure . The excess return of a
portfolio represents the difference between the portfolio expected return and the risk
free security return. Therefore, the aim is to maximise the slope and the problem is
formulated as follows:

E(rp) —rp

max 6=
w O'P

st Yw = 1 (240)
i=1

w; € R i:1,2,...,m

The problem could be solved like the previous ones, with lagrange multipliers.
However, a different approach is followed, as the only restriction of the problem
is incorporated in the objective function. Thus, the problem is transformed to a
maximisation problem with no restrictions. The proof is given below:
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Proof. Given that:

rE = (Z wz') rp=Y (wrp)

the objective function takes the following form:

o — > i wilri —rr) (2.41)
N m m m 1/2 ’
(Zi:l wio? + 3300, Zj:l, i wiwjgij)

The weighting factors wy, of the invested capital -which maximise the objective
function 6 can be determined solving the following system of partial derivatives
00/0wy, if they are set equal to zero:

m m m —-1/2
Tk—T'F E U) + E E W;W;0;4 E wl z_TF
i=1 j=1, ji

m m m —3/2 m
_% <Z U)?O'l2 + Z Z wiwjal-j) <2wk0']3 + 2 Z ’lUjO'kj) =0=
i=1

i=1 j=1, j#i Jj=1, j#k

sz z_TF m
):0

(re —7r) — | — wyor + Z WjOpj
St e3s 3 ey |\ AT
i=1 i=1 j=1, j#i
(2.42)
Let A\ be:
S
L — (2.43)
D wii+), X, wawy
i=1 i=1 j=1, j#i
the last equation gives:
(Tk — T’F) - A (wkai + Z ij'kj) =0
mhark (2.44)
ry—Tp = )\wkai + Z AW
j=1, j#k

Let the new variable Z, = Awy, the last equation gives for every variable ¢:

’I“Z'—’I“F:Zlgli—l—ZQO'Qi—i—"'—|—Zi0'2~2—|—"-—|—ZmO'mi (245)
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thus formulating the following linear system:

7"1—TF:Z1<7%+22021+"'+Zm0m1
ro —rp = 21013 + Z205 + 4 ZyOma

"'m —TFP = Zlalm + ZQUZm + -+ Zmo_rzn

The weighting factors wy, of the invested capital are obtained solving the above
linear system using the following equation:

Zy

a7 (2.46)

Wp =

Short sales restricted

In case that short sales are not allowed, the problem is similar to the one with
short sales allowed, but an additional restrictrion concerning the weighting factors
is added (w; > 0). The definition of the problem is presented below:

max 0= —E(TP) —r
w O'P

st Yw = 1 (2.47)
i=1

wp > 0 i=1,2,...,m

This is a quadratic programming problem with linear restrictions. The solution
of this problem can be given using algorithm based on Kuhn-Tucker conditions.
These conditions secure that if a solution is found, then this solution is guaranteed
to be optimal. The Kuhn-Tucker conditions are presented as follows:

00
ow;
w;U; =0 (2.48)
w; >0
U; >0

+U; =0

Any solution that satisfies these conditions, is an optimal portfolio of the efficient
frontier.
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2.6 Conclusion

The preceding analysis has articulated the following conclusions:

The mean-variance model is based on a quadratic mathematical programming
problem which involves a significant amount of calculations due to its
complexity. More specifically, the calculation of the covariance matrix becomes
very difficult in case that the number of securities is large. The complexity
of the algorithm for an input of n securities is n(n — 1)/2, i.e. O(n?), thus
making the problem non linear. Various alternative measures of risk have
been proposed, in order to overcome this problem, such as the mean absolute
deviation (MAD) which would result in a linear problem.

The proposed model is based on two criteria (return and risk), thus failing to
create a realistic framework of the problem. On the contrary, an integrated
approach demands the incorporation of all parameters that affect the security
market. Consequently, the portfolio management problem is a multiple-criteria
problem, like the majority of decision problems nowadays.

The conventional approach fails to insert all the components of risk in the
methodological framework. This weakness has been cured by other models
which embody multidimensional nature of risk, such as the capital asset pricing
model (CAPM) of Sharpe (1964).

The classic approach does not take into consideration the decision-maker’s
profile. The preferences of the decision-maker are of enormous significance in
the process of portfolio management. A risk averse investor would probably
care about minimising the risk, while an aggresive investor might prefer to
maximise the return.

Finally, the assumptions of the mean-variance approach have been criticised
as weak, because the statistical indexes that are used do not have a brief
explaination in economic theory. For example, it is said that the assumption
which considers that the return of securities follow normal distribution, is
unrealistic.

In conclusion, the problem of portfolio management has a multicriterial

nature, as it includes a variety of factors. Consequently, the need for integrated
methodologies is imperative in order to cure the above-mentioned problems.
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CHAPTER 3 s

Related Methodologies Overview

3.1 Introduction

The discussion of the portfolio management problem signified the need for
new methodological decision support frameworks, in order to overcome the existing
problems and cure the inadequacies of the conventional mean-variance model.

In this chapter, there is a short introduction to multiple-criteria decision
analysis, as it is the most appropriate field to support the portfolio management
decision-making process, according to Xidonas et al. [23].

In the first section there is a presentation of the basic concepts of this scientific
field, as well as a general methodology overview, analysing the four phases of decision
support. Additionally, an introduction to discrete multicriteria decision support
methods is made, presenting and comparing the three basic sectors (multiattribute
utility theory, outranking relations theory, preference disaggregation approach).

In the second section the continuous optimisation methods are developed.
Beginning with the fundamental concept of linear programming, in the following
paragraphs there is a discussion about quadratic and integer programming
problems. The following paragraph is about multiobjective programming problems.
Afterwards, the methodological framework of goal programming problems is
presented, followed by an introduction to genetic algorithms.

All these techniques are involved in some part of the proposed methodology,
necessitating the need for a brief introduction before the development of the
methodological decision support framework.
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3.2 Discrete Multiple-Criteria Decision Analysis

Multiple-criteria decision analysis (MCDA) or Multiple-criteria decision-making
(MCDM) belongs to the scientific field of operational research. The main objective
of all methodological approaches in the field of multicriteria decision analysis is the
development of models that incorporate all the parameters of the problem in order
to support the decision-maker in the decision-making process.

3.2.1 Basic concepts and methodology

In 1985, Roy, one of the founders of multicriteria analysis modern theory,
presented a general methodological framework for multidimensional decision-making
problems [3]. As shown in figure , the analysis process of multicriteria decision
making problems involves four stages among which feedback can be developed.

Ph I Decision e

ase Objective i

( ) [ Consistent | :

Phase 11 Family of |¢------ .

L ) Criteria | :

[ ] Global | ;

Phase III Evaluation [«<------ -

L ) Model | E

Phase IV IS)ecision ________ E
upport

Figure 3.1: Multicriteria decision analysis methodological framework (Roy, 1985)

Phase 1: Decision Objective

In this phase, there are two basic tasks which is necessary to be completed:
(a) Strict definition of set A of alternatives or actions of the problem and (b)
identification of the decision problematic.

The set A of the alternatives of the problem could be a continuous set or a
discrete set. In the case of a continuous problem, the continuous set of solutions is
defined by mathematical equations (linear inequalities) as a super-hydride with as
many dimensions as the multitude of the decision variables. In the case of a discrete

72 Thesis



Related Methodologies Overview

problem, the set of feasible solutions is defined by the exhaustive enumeration of its
elements.

The decision problematic determines the way that alternatives should be

examined. According to Roy (1985) [3] , there are four main categories of discrete
problems (figure |3.2)):

Discrete Decision Problems

Set of alternatives: A = {a1,aq,...,a,}
Choice Classification Ranking Description
Problems Problems Problems Problems

Class 1: {a;,...}
Class 2: {a;,...}

Description of
the alternatives
characteristics

Figure 3.2: Discrete decision problematics

i. Choice problems refer to the situation where the DM must choose the most
suitable alternatives.

ii. Classification problems refer to the situation where the alternatives must be
classified in predefined classes.

iii. Ranking problems refer to the situation where the alternatives should be ranked
in decreasing order.

iv. Description problems refer to the situation where the alternatives are described
according to their performance in individual criteria.

Phase 2: Consistent Family of Criteria

Each factor that affects a decision is considered to be a criterion. Formally,
a criterion is a monotonic function f which declares the preference of the decision
maker, so as for any two alternatives z;, z; the following equations apply:

flai) = flz;) &z~ (3.2)
where the notation z; > z; declares that alternative z; is preferable to x; and the
notation x; ~ x; declares that there is indifference between the two alternatives.
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This procedure results in the configuration of a consistent family of criteria. A
set of criteria F' = {fi,..., f,} configures a consistent family of criteria, if and only
if the following properties are satisfied:

1. Monotonicity: A set of criteria is considered monotonic if and only if for
any two alternatives wx;, x; such that fi(x;) > fi(x;) for any criterion k£ and
filz;) = fi(x;) for any other criterion [ # k, it is concluded that x; > x;.

2. Exhaustivity: A set of criteria is considered to be exhaustive if and only if
for any two alternatives z;, x; such that fi(z;) = fi(x;) for any criterion k, it
is concluded that z; ~ z;.

3. Non-redundancy: A set of criteria is considered to be non-redundant if and
only if the removal of any criterion, leads to monotonicity or exhaustivity
property violation.

Phase 3: Global Evaluation Model

The global evaluation model is defined as the composition of all the criteria,
in order to analyse the problem according to the determined problematic. The
global evaluation model can be applied to determine a total evaluation of the
alternatives, to explore the solution set (for continuous problems) and to execute
pairwise comparisons between all pairs of alternatives.

Phase 4: Decision Support

This phase of the process involves all the activities which help the decision maker
understand the results of the application of the model. The role of the consultant
is of crucial importance because he must organise the answers in a comprehensible
way.

There are three main fields which deal with discrete multiple-criteria decision
problems:

e Multiattribute utility theory
e Outranking relation theory

e Preference disaggregation approach

3.2.2 DMultiattribute utility theory

Multiattribute utility theory (MAUT) constitutes a generalisation of classical
utility theory. From the early stages of multicreteria decision analysis, multiattribute
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utility theory has been one of its fundamental subfields, supporting both its
theoretical and its practical evolution.

Mutliattribute utility theory uses a wvalue function or (utility function) U(g)
which represents the value system that the decision maker follows. This function
has the following expression:

U(g) = U(91,92, - 9n) (3.3)

where g is the evaluation criteria vector: g = g1, 9o, ..., gn.

In general, utility functions are non-linear monotonically increasing functions
that meet the following properties:

Ulg,) >U(gy) & x =2

and
U(gm> = U(gx’> Sr~a

The most widely known form of the utility function is the additive:

U(g) = prui(g1) + paua(g2) + -+ - + Puttn(gn) (3.4)

where u; are the partial utility functions of the evaluation criteria and p; are the
criteria weighting factors, which should sum to one. Each weighting level implies
the trade-off that the decision-maker is willing to pay, in order to succeed unary
increasement over the corresponfing criterion.

The additive utility function is based on the important hypothesis of mutual
preferential independence of the evaluation criteria, which is explained as follows:
A subset ¢’ of the set of evalutaion criteria ¢’ C g, is considered to be preferential
independent of the rest of the criteria, if and only if the preference of the decision-
maker about the alternatives, which differ only in terms of the criteria of ¢’, are not
affected by the rest of the criteria. The set of the evaluation criteria is considered to
fulfill the assumption of mutual preferential independence, if and only if each subset
is preferential independent of the rest of the criteria.

The utility function construction process should be based on the cooperation
of the decision-maker himself with an expert analyst. The significance level of
the evaluation criteria, as well as the form of the partial utility function must
be determined before the construction of the utility function. The determination
of the partial utility functions, is based on interactive techniques, such as direct
questions to the decision maker, which lead to a detailed understanding of the way
the decision-maker evaluates the alternatives in each criterion. The best known
technique is called midpoint value technique (Keeney and Raiffa, 1993).

3.2.3 Outranking relations theory

The outranking relations theory is a special methological multicreteria analysis
sector, which emerged at late 1960s with Bernard Roy’s study and the presentation
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of the ELECTRE family methods (ELimination Et Choix Traduisant la Realite)
(Roy, 1968, 1991, 1996)[2] [5] |4] and has widely spread, especially in Europe, since.
It must be noted that the outranking relations theory has its roots social choice
theory (Arrow and Raynaud,1986) [9].

Unlike multiattribute utility theory which aims at the development of a utility
function, the goal of the outranking relations theory is the development of a
methological framework that allows pairwise comparison between alternatives. All
the techniques that are based on the outranking relations theory are applied in two
basic phases. The first phases includes the development of an outranking relation
between the examined alternatives, while in the second phase the outranking relation
is exploited for the evaluation of the alternatives in the desired form (ranking,
classification, choice).

The outranking relation S is a bilateral relation defined in the set of alternatives,
such that:

Sz’ & alternative x is at least as good as alternative 2’ (3.5)

The idea of outranking relation is that the comparison of two alternatives x and
2’ is based on the power of both positive indications, which support the fact that
alternative 7 is better than alternative j and negative indications, which support
the opposite fact. In case that the power of positive indications is significant and
the power of negative indications is insignificant, we can assume that there is an
outranking relation xSx’ between alternatives x and a’.

In fact, the outranking relations theory differs from the multiattribute utility
theory in two major points:

e The outranking relation is not transitive. In utility theory the evaluation of
the alternatives with the utility function maintains the transitive property.
On the contrary, the development and use of outranking relations allows the
representation of cases where, while the alterative z; is preferable to x,, and
xo is preferable to 3, finally x; is neither preferable nor indifferent to x3.

e The outranking relation is not complete. The completeness property refers to
the complete evaluation and ranking of all the alternatives. The multiattribute
utility theory leads to a complete evaluation of the alternatives, developing
appropriate utility functions. On the other side, the outranking relations
theory does not necessarily demand the decision-maker’s preferences to carry
the transitive property, thus a complete evaluation is often impossible. The
non-completeness property is very important due to the fact that the complete
ranking of the alternatives is unrealistic in a variety of problems.

Therefore, the incomparability property is a property of outranking relations
theory, that makes it extremely useful for this category of problems. The information
provided by the decision-maker is important for the development of the outranking
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relation. This information is quite different, depending on the particular method
used. However, in the majority of cases it is about (a)the significance of the
evaluation criteria (weighting factors) and (b) the preference, indifference and veto
thresholds. These thresholds contribute to the development of a fuzzy outranking
relation, where there is partial preference or even indifference among the alternatives.

3.2.4 Preference disaggregation approach

The preference disaggregation approach (Jacquet-Lagreze and Siskos, 1982,
2001) [13] [14] invlolves the development of a methological framework which can
be used for the analysis of decisions made by the decision-maker, in order to
determine the appropriate criteria synthesis model that meets the value system
and the preferences of the decision-maker.

The preference disaggregation approach follows a reverse process compared to
the multiattribute utility theory and the outranking relations theory. This approach
considers that the decision-maker (consciously or not) follows a value system which
results in the decisions he makes. It tries to detect the way that decisions are made
and finally reproduce a similar decision-making model. In order to manage to imitate
the decision-maker, this method requires a training sample consisting of: (a) a set
of decision made by the decision-maker, (b) the evaluation of a set of hypothetical
actions and (c) the evaluation of a subset of the examined alternatives.

In Table [3.1] there is an overview of the methods of each field, according to
Xidonas(2009):

H Multiattribute Utility ‘ Outranking Relation | Preference Disaggregation H

AHP ELECTRE UTA
TOPSIS QUALIFLEX UTASTAR
MAUT PROMETHEE UTADIS
MCBETH ORESTE MHDIS
ANP REGIME
EVAMIX
MELCHIOR
TACTIC
PRAGMA
MAPPAC
ARGUS
IDRA
PACMAN

Table 3.1: Overview of discrete MCDA methods

Thesis 77



Related Methodologies Overview

3.3 Multiobjective Mathematical Programming

3.3.1 Introduction

A problem that requires to choose the best solution from a set of feasible
solutions is called optimisation problem. These problems are cured by a scientific
field which is called mathematical optimisation (or mathematical programming).
There are two main categories of optimisation problems: Discrete optimisation refers
to problems with discrete variables and the solution is one or more elements of the
feasible set, which is a countable set of possible solutions. Continuous optimisation
refers to problems with continuous variables and the solution requires to optimise
a continuous function subject to one or more equality or inequality constraints.
The concept of discrete optimisation was discussed in the previous section. In this
section, a brief introduction to continuous optimisation problems will be made.

The standard form of a continuous optimisation problem is the following:
min  f(z)
s.t. gi(x) <0, i=1,....m (3.6)

where f : R"™ — R is the objective function which should be minimised over a vector
z, gi(x) < 0 are m inequality constraints and hj(x) = 0 are n equality constraints,
where m, n > 0. In the above definition, the objective function should be minimised
by convention. In case of maximisation problem, the objective function should be
negated, thus transforming the problem to minimisation problem.

In the following paragraphs, some of the major subfields of continuous
optimisation -which will be used in the methodological framework- will be discussed.

Linear programming

Linear programming (LP) (Dantzig, 1998) [8] is a continuous mathematical
optimisation method which is used in a category of optimisation problems, when
all the contraints are strictly expressed with linear equations. More specifically,
this technique can be used if the objective function of the problem is linear and
the requirements of the problem are linear equality or inequality constraints. These
linear constraints form a convex polyhedron which is called feasible region of the
problem. The linear function is defined on this polyhedron. A linear programming
algorithm finds the point where this function has the smallest value (for minimisation
problem). Some of the most famous applications of linear programming are in the
fields of operational reasearch, enginnering, scheduling and transportation.

Let = represent a vector of decision variables, b, ¢ represent column vectors of
known constants and A represent a matrix of known constants. The linear problem
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canonical form is expressed as follows:

min c¢'x
st. Ax < b (3.7)
x > 0

The inequalities Ax < b and x > 0 are linear constraints which determine a convex
polytope.

A more intuitive definition of a linear programming problem is the standard
form, which includes the description of the objective function, the decision variables
and the problem constraints. There are two categories of linear programming
algorithms. The first category consists of exchange algorithms, such as the simplex
algorithm and the criss-cross algorithm. The simplex algorithm was introduced by
Dantzig in 1947 and it is one of the most efficient LP algorithms. The algorithm
detects a feasible solution at a random vertex of the polyhedron and then walks
along the other vertices until the optimal solution is found. The second category
consists of interior point algorithms, such as the ellipsoid algorithm, the projective
algorithm of Karmarkar etc.

Quadratic programming

Quadratic programming (QP) is a continuous mathematical optimisation
method which is used for linear constrained quadratic optimisation problems.
More specifically, the objective function is a quadratic function and the problem
restrictions are formed as linear equations and inequations. QP is a specific type of
nonlinear optimisation.

Let = represent a vector of n decision variables, ¢ a n-dimensional vector, b a m-
dimensional vector, () a n x n symmetric real matrix and A a m x n real vector. The
quadratic programming problem with n variables and m constraints is formulated
as follows: o .

min - 5x Px+c'x (3.8)
st. Ax < b

The solution of quadratic programming problems is particularly simple when @)
is positive definite and there are only equality constraints. The solution is produced
using Lagrange multipliers and seeking the extremum of the Lagrangian. The
portfolio optimisation problem, which was discussed in section 2.2.4, belongs to
this category. Therefore given the quadratic problem

S 1T T
min $x Qx+c x

p 3.9
st. Ax = b (39)

if A is a set of Lagrange multipliers, the solution is given by the linear system:
Q AT|[x]| [-c
{ A olh=1s (3.10)
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If @ is a positive definite matrix, the appropriate algorithm is the ellipsoid method
which provides the solution in polynomial time. Otherwise, the problem is NP-
hard, which means that there is not algorithm with polynomial complexity for the
problem.

Integer programming

Integer programming (IP) is a mathematical optimization method for some
particular problems where all the variables are restricted to be integers. In the
special case that the objective function and a part of the constraints are linear
expressions but the decision variables are integer variables, the appropriate method
is called integer linear programming (ILP). Particularly, in case that even some of the
decision variables are continuous, the method is called mixed-integer programming
(MIP). Finally, in case that both some of the decision variables are continuous
and the objective function or some of the constraints are linear functions, then the
problem belongs a particular subcategory called mixed-integer linear programming
(MILP). MILP problems will be part of the proposed methodological framework.

The canonical form of an ILP problem is expressed as:

min c¢'x

s.t. Ax <b,
x>0,

and x € Z",

(3.11)

where ¢, b are vectors and A is a matrix, under the constraint that all entries are
integers.

There are two subcategories of integer programming depending on the range of
the decision variables. The first subcategory involves all the problems which demand
a decision to be taken. In these problems the integer variables represent decisions
with possible answers 'yes’ or 'mo’, which are translated as 1 or 0. Therefore,
problems in which integer variables are restricted in the range {0, 1} are called belong
to zero-one linear programming. The second subcategory involves problems in which
the integer variables represent discrete quantities, p.e. number of discrete pieces of
a product. Such problems frequently appear in production planning, scheduling etc.

In the last decades, a variety of algorithms have been developed, in order to
find the optimal solution of an IP problem. The most naive approach is called LP
relaxation, recommending to remove all integer constraints, solve the relaxed LP
problem and then round the solution. However, this technique may find a non-
optimal solution or even a non-feasible one if any constraints are violated during the
round process. The optimal solution can be found with cutting plane methods and
branch and bound techniques. Finally, another approach to detect an approximate
solution to ILP problems is the field of heuristic methods, which do not guarantee
an optimal solution but offer better complexity.
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3.3.2 Goal programming

Goal programming (GP) (Charnes and Cooper, 1955, 1961) [19] [21] is
a multiobjective optimization technique which extends the concept of linear
programming in order to solve problems with multiple conflicting objective functions.
The goal programming methodology is quite simple, as each objective function is
assigned a goal or target value to be achieved, according to the DM’s requirements.
Any deviation from this target value is punished with a penalty value. Finally, the
weighted sum of all penalty values must be minimised. This technique is useful
for the following purposes: (a) The determination of the degree that each goal is
fulfilled given the available resources, (b) the estimation of the required resources
in order to achieve a predefined goal and (c) the computation of the best feasible
solution under a varying amount of resources and goal priorities.

Let fi(x), fo(z),. .., fr(x) be a set of k objective function and = € X, where X
is the feasibleset of the decision vectors. Let us introduce the deviational variables
(or slack variables) d; , d;” which represent the amount by which each goal deviates
from the target value. More specifically, the vector d~ represents the amount by
which each goal’s target value is underachieved, and vector d* represents the amount
by which each goal’s target is overachived. Finally, let g; represent the target value
of the iy, objective function. The problem is formulated as follows:

, i whdf  w;d;
min +
dtd= = Gi 9i
st. filx)+dy —df = o
o) +dy —df = g5 (3.12)
fu(@) +dy; —di Yk

AVANI

dy,df

0 Vie{l,2,...,k}

where w;" represents the weighting factor of the overachievement penalty of the iy,
objective function and w; represents the weighting factor of the underachievement
penalty of the i, objective function.

In case that underachievement of a particular goal is undesirable a greater
weighting factor w™ is assigned (i.e. w~ = 1), else if underachievement is desirable
or neutral the weighting factor is set equal to zero (w~ = 0). Accordingly, if
overachievement of a particular goal is undesirable a greater weighting factor w™ is
assigned (i.e. w™ = 1), else if overachievement is desirable or neutral the weighting
factor is set equal to zero (w™ = 0).

The emerging problem is a linear programming minimisation problem which can
be easily solved with the methods mentioned above, in order to minimise deviational
variables and, subsequently approach the target value of each goal.
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3.3.3 Multi-objective programming

Multi-objective optimisation is a sector of MCDA used for mathematical
optimisation problems that require more than one objective function to be optimized
simultaneously.

More specifically, multiobjective linear programming (Steuer, 1986) [18] is an
extension of linear programming in case that there are multiple objective functions
fi(x) =clx, i =1,2,...,k. The problem is formulated as follows:

min - {f1(x), fa(%), .., fa(x)}
st. Ax<b (3.13)
x>0

In multiobjective programming, there is not an optimal solution because of the
existance of many objective functions, as it is infeasible to optimise all objective
functions simultaneously. Subsequently, the concept of the optimal solution is
replaced with the concept of an efficient (or Pareto optimal) solution, based on
dominance theory. In the following paragraphs, the most important definitions of
multiattribute theory are introduced (Doumpos, 2009) [26].

Any solution x which satisfies the restrictions of the problem is called feasible
solution. The set of all feasible solutions is called feasible set.

A feasible solution x is called Pareto dominant to another feasible solution x’
if and only if: (a) f;(x) < fi(x') Vi € {1,2,...,k} and (b) f;(x), f;(x/) for at least
onei € {1,2,...}.

A solution xx is called Pareto optimal, if and only if there is no other feasible
solution that dominates it. The set consinsting of all Pareto optimal solutions is
called Pareto frontier or Pareto boundary.

Finally, a solution x is called weakly optimal if and only if ther is no other
feasible solution such that f;(x") > f;(x) Vi.

3.3.4 Genetic Algorithms

Evolutionary computation and algorithms

Fvolutionary computation is a scientific subfield of artificial intelligence which is
involved with a variety of algorithms for global optimisation. These algorithms are
polulation-based trial and error solvers which incorporate metaheuristic or stochastic
optimisation characteristics. In biological terms, a population of feasible solutions is
subjected to a natural selection process, resulting in a gradual evolution , optimising
the fitness function of the problem.
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FEvolutionary algorithms are based on the collective learning process within a
population of individuals, each of which represents a search point in the space of
potential solutions to a given problem (Back and Schwefel, 1993) . The population is
arbitrarily initialized, and it evolves toward better and better regions of the search
space with randomized processes of selection, mutation, and recombination. The
environment which is called fitness value delivers quality information about the
search points. The selection process favors those individuals of higher fitness to
reproduce more often than those of lower fitness. The recombination mechanism
allows the mixing of parental information while passing it to their descendants, and
mutation introduces innovation into the population.

Genetic algorithms (GA) are the most known evolutionary algorithms. The
concept of general adaptive processes, concentrating on the idea of a system receiving
sensory inputs from the environment by binary detectors was initially introduced
by J. Holland in 1962. As a result, structures in the search space were modified
by operators selected by an adaptive plan, judging the quality of previous trials
with an evaluation metric. In a genetic algorithm, a population of individuals is
evolved toward better solutions. Each solution has a set of characteristics, called
chromosomes which can be mutated and altered.

Algorithm 1: Genetic Algorithm Standard Form
input: popSize (Size of Population), elit (rate of elitism), mut (rate of
mutations), maz/ter (maximum number of iterations);
create popSize random feasible solutions
save created solutions in population aray
while ! terminal condition do

for i in range(maxIter) do
select the best popsize x elit solutions from population

save them in popul2

for j in range(crossover) do
select two random solutions from population

generate and save new solutions to popul3
end

for j in range(crossover) do
select a solution from popul3 and mutate with ratemut

if newSolution.isFeasible() then
| Update popul3 with new solution

end

end

end

update population = pop2 + pop3
end

Result: the best solution in population

The algorithm starts from a population of randomly generated solutions, called
individuals. The process continues iteratively, with the population in each iteration
called generation. In each generation, the fitness function is evaluated for every
individual in the population. The fitness function should represent the objective
function of the optimisation problem. Individuals with the best fitting score are
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selected, while the least desired individuals are rejected. Thus, each individual is
modified and a new generation of individuals is created. The new generation is used
as input to the next iteration of the process. The algorithm stops in two cases:
firstly, if an optimal solution is found subject to the fitness function and secondly,
if the maximum number of iteration has been conducted.

The selected genetic algorithm that will be used in the proposed methodology
is called differential evolution. Differential evolution (Storn, Price) is a stochastic
population based method which is used in order to find the global minimum
of a multivariate function. Every time that it passes through the population,
the algorithm mutates each candidate solution by mixing it with other candidate
solutions in order to create a trial candidate. By default the best solution vector
is updated continuously within a single iteration. This is a slight modification of
the original differential evolution algorithm, which can lead to faster convergence as
trial vectors can immediately benefit from improved solutions.

The genetic algorithms general methodology is presented in figure 3.3

Random Choice of
initial population

Evaluation of
population individuals

Creation of
new generation

Cross evaluation

Fitness function
calculation

Mutation,
Alteration

Criteria satisfiability

Choice of the best individuals

Figure 3.3: Genetic algorithms methodology
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3.4 Conclusion

The overview of the related multiobjective methodologies provides the followign
concluding points:

e A variety of multiple-criteria decision support methods have been developed,
which could be applied to a variety of discrete and continuous decision
problems. These techniques seem capable of dealing with many conflicting
criteria, which is very useful in the portfolio management problem, having
discussed its multivariate nature .

e Some multiple-criteria methods (quadratic and multiobjective programming,
complex genetic algorithms etc.) have large calculation load. Therefore, in
case that there are many alternatives the solution of some problems is difficult
or even unfeasible, making necessary to find an approximate solution or a
subset of all the feasible solutions.

e The scientific field of portfolio management has great improvement margin.
The need of integrated methodologies and decision support systems are of
great necessity, in order to improve the existing methodologies.
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CHAPTER 4 ——

Proposed Methodology

4.1 Introduction

As already mentioned, the purpose of the thesis is the development of an
integrated methodological framework for portfolio management. The process of
portfolio management is a very complex problem, as it consists of two phases which
demand a variety of decisions. The first phase focuses on portfolio selection, i.e.
the selection of the strongest investment opportunities. The second phase includes
portfolio optimization, the determination of the most efficient allocation of the
available capital to the selected securities in order to maximize return.

In this chapter, we present the proposed methodology in the context of
the thesis. The following analysis is based on Xidonas et al. scientific work
presented on Xidonas thesis project [27] [15], as well as the book Multicriteria
Portfolio Management [1]. The ultimate goal is the effective management of security
portfolios, which constitute one of the most risky market investments. The proposed
methodology aspires to combine existing knowledge with a set of theoritical and
practical innovations. In the first phase, four multiple-criteria decision making
methods are deployed in order to rank the available securities and detect the best
investment opportunities. After the security selection process, the most important
financial statistical indexes are calculated based on historical data and, subsequently,
a variety of portfolio optimisation models are suggested. The basis of these models is
the typical mean-variance approach which remains the basic portfolio optimisation
method for more than 60 years. Finally, the selected portfolios are evaluated and
compared in order to select the most appropriate portfolio according to the profile
of the DM.

This chapter has the following structure: In section 3.2 an overview of the
proposed methodology is presented. The two phases of the process are explicitly
analysed in sections 3.3 and 3.4. Finally, in section 3.5 there is a conclusion of the
main points of the chapter.
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4.2 Methodology Overview

In the current section an overview of the proposed methodological framework
will be provided, as an introduction to the various methods which are discussed in
the following sections. The methodological framework consists of two main phases,
(a) portfolio selection and (b)portfolio optimisation as indicated in diagram

Evaluation of securities
and detection of investing
opportunities

Implementation of portfolio
strategy and capital
allocation

Adjustment to the investor’s
profile and strategical
development

Phase 1
Portfolio Selection

Phase 11

Portfolio Optimisation N

Portfolio Evaluation

Figure 4.1: Portfolio management methodology phases

The aim of the following overview is to unify all the individual methodologies in
a structured and compact framework. As shown in diagram the two main phases
are not independent from each other. On the contrary, they are interdependent as
there is a strong connection and communication among them. Additionally, the
whole methodology should be applied in communication with the decision-maker,
as it is necessary to interact with the model importing his preferences during the

process.

An extensive diagram of the proposed methodological framework is presented

in diagram [4.2]
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Figure 4.2: Methodological framework extensive presentation

Thesis &9



Proposed Methodology

Phase I: Multicriteria Portfolio Selection

The first phase is concerned with the portfolio selection problem, i.e. the
construction of a kurn of securities which are considered to be investment
opportunities. The decision-maker must select the industrial sector and the stock
exchange that he wants to get involved with, resulting in a pool of securities which
constitute the problem alternatives. The problem of security selection is healed with
multiple-criteria decision analysis (MCDA). More specifically, four ranking MCDA
methods are applied to the alternatives, under a variety of financial indexes which
serve as the criteria of the multiobjective optimisation problem. FEach method
provides a ranking of the securities and finally the cumulative ranking of the
securities can be calculated as the weighted average of the four individual rankings.
After the whole process, the desision-maker can either construct a portfolio with
the k—best ranked securities, or redefine the problem in case that the result is
unsatisfaying.

Phase II: Multiobjective Portfolio Optimisation

The second phase is concerned with the problem of portfolio optimisation.
Initially, some of the most major financial indexes are calculated based on the
historical data of the improved set of securities. These indexes are significant
for two reasons: Firstly, they serve as an additional decision support instrument
and secondly they are necessary for the covariance matrix calculation as it will be
discussed in the following paragraphs. The original optimisation problem was a bi-
criteria problem where the expected return is maximized and the risk is minimized
(Markowitz 1952). The methodological framework of this thesis proposes a series
of models to approach the problem. Firstly, a bi-objective integer programming
problem is formulated based on the mean - variance model, where additional
integer constraints are imposed in order to control the weighting factor of each
security. Secondly, another bi-objective optimisation approach is introduced where
the net flow of PROMETHEE method should be maximized and portfolio beta index
should be minimised. Additionally, a goal programming methodology is introduced.
Finally, an implementation of a genetic algorithm for portfolio optimisation is
presented.
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4.3 Phase I: Multicriteria Portfolio Selection

Multiple criteria decision analysis (MCDA) methods are widely used for the
study of a wide variety of financial problems. More specifically, the problem of
security selection involves all the features of MCDA, such as alternatives, evaluation
criteria and objective functions, rendering it one of the most suitable approaches. In
this phase of the process, the decision- maker, has to evaluate and select the securities
that are available as investment opportunities. This step is necessary because of the
vast amount of securities traded in international stock markets. Consequently, the
portfolio should consist of a limited number of those securities, excluding securities
which have undesirable characteristics.

Before presenting a detailed description of the problem, it is necessary to
emphasize the following characteristics of the methodology:

e Firstly, the process of security evaluation is based on specific financial indexes,
after an extensive study of the existing literature. These indexes constitute
the evaluation criteria of the analysis and will be thoroughly analysed in the
following paragraph.

e Secondly, the companies should be categorized into predefined classes before
the evaluation is applied, depending on their activity and the industrial sector
they belong to. The necessity of this step derives from the fact that the
comparison of financial indexes among companies of different industrial sectors
would be a contentious assumption.

The methodological framework of the first phase is depicted in diagram

In the following paragraphs, a detailed description of the portfolio selection
problem is given:

Problem Definition

Let A={ay,...,a,} be a set of n alternatives and let F' = {fi,..., f,} be a
consistent family of ¢ criteria. Without loss of generality, we make the assumption
that the above criteria should be maximized. Therefore, let us consider the following
multicriteria problem:

max{fi(a), fa(a), .., fy(a)|a € A} (4.1)

The input of the above problem is imported in a 2-dimensional table, containing
n x ¢ evaluations, which is called evaluation matrix. Each row corresponds to an
alternative action and each column corresponds to an evaluation criterion. The
element of the 7;, row and the k;, column describes the performance of alternative
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Figure 4.3: Methodological framework for Phase I

a; in criterion f;. The evaluation matrix of a multiple criteria decision problem is
presented in table

fiC) | o) | fiG) o] S
ar | filar) | folar) |- | fi(

as | fi(az) | falas) | -~ | fiaz) | -~ | fola2)
a;i | fila) | folag) | ---| filas) |-~ fq(ai)
an | filan) | folan) | --- fj(an) T fq(an)

Table 4.1: MCDA problem evaluation table

Problem alternatives

As already mentioned, the set of alternatives A = {a4,...,a,} consists of the
securities of a specific stock exchange and a specific industrial sector. In the
beginning of the process the decision maker selects the industrial sector, as well
as the stock exchange. These two components constitute the environment of the
study. The set of securities have been classified in 11 classes representing the main
industrial sectors are presented in table [£.2]
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Class Industrial sector
Basic materials
Capital goods
Consumer cyclical
Consumer non-cyclical
Energy
Financial
Healthcare
Services
Technology
Transportation
Utilities

Ae—mDODoOEH-HOoOQm e

Table 4.2: Classification of industrial sectors

Problem criteria

The evaluation process of securities is based on a set of suitable financial criteria,
which depend on the accounting and economic plans of the companies, as well as
on experts’ analysis. In this paragraph, an extensive presentation of the criteria is
provided (table ).

Criteria Utility Units
A Price-to-Earnings Ratio Minimisation | Percentage
B Earnings per share Maximisation | Percentage
C Revenue Maximisation Dollars
D Beta Minimisation | Fraction
E Dividend Yield Maximisation | Percentage
F | Monthly technical recommendation | Maximisation Rank
G Year-to-date performance Maximisation | Percentage
H 1 year performance Maximisation | Percentage

Table 4.3: Problem criteria

Offset and thresholds assignment

The determination of the offset of the criteria is a matter of great significance
for the efficiency of multicriteria techniques. The main methodologies for offset
determination are: (a) the direct weighting system (Hokkanen - Salminen, 1997),
(b) the Mousseau system (Mousseau, 1995), (c) the pack of cards technique) (Simos,
1990) and (d) the resistance to change grid method (Rogers and Bruen, 1998). The
process of offset allocation must be developed with the assistance of the decision-
maker, because his profile and his preferences among the significance of conflicting
criteria must be considered during the decision-support model.
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Some of the MCDA methods that are used in the proposed methodology
include some additional thresholds. In the proposed techniques there are three
types of thresholds: (a) preference threshold, (b) indifference threshold and (c) veto
threshold. Preference threshold implies that an alternative is totaly preferable to
anothe. Indifference threshold signifies that two alternatives are almost equally
prefered. Finally, veto threshold represents the threshold that renders a dominated
alternative eliminated from the selection process. Threshold determination is a
quite complicated process which should be executed in communication with financial
experts.

4.3.1 ELECTRE III

The ELECTRE family in MCDA problems is based on the concept of outranking
relationship. An alternative a; outranks as if and only if there is sufficient evidence
to believe that a; is better than as or at least a; is as good as ay. More specifically,
ELECTRE III method is used for ranking problems, using a structured procedure
to calculate the the outranking relationship between each pair of alternatives. It
includes a preference threshold, an indifference threshold and a veto threshold.

Let ¢(f;) and p(f;) represent the indifference and preference thresholds for each
criterion f;, i =1, ..., q, respectively, and let P denote a strong preference, () denote
a weak preference and I denote indiferrence between a; and ay for criterion k. If

fr(a;) > fi(a;), then:

fe(ai) > fi(a;) + p(f) & a1Pay

felay) +q(f) < frlai) < filas) + p(f) & a1Qay

filag) < filai) < fula;) +q(fi) & arlay

The algorithm of the ELECTRE III method is presented below:

Step 1: Outranking Degree The outranking degree Cy(a;,a;), (0 <
Ci(a;,a;) < 1) of the alternative a; and the alternative a; for criterion f; is
calculated according to the preference definitions (linear interpolation):

(0 if filay) = fula) > p(fi)
Cila;,a;) = 1 if Je(ay) — fela:) < q(fe)

p(fr) + frla:) — fir(ay)
{ p(fr) — a(fx)

otherwise

(4.2)
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Algorithm 2: ELECTRE III Algorithm

input: n (alternatives), ¢ (criteria), f;(a;) (evaluation table);
for all pairs of alternatives a;, a;, i,5 € {1,...,n} do
for all criteria f, k € {1,...,q} do
| compute outranking degree Cj(a;, a;)

end
end
for all pairs of alternatives a;, a;, i,5 € {1,...,n} do
| compute concordance index C(a;, a;)
end
for all pairs of alternatives a;, a;, i,5 € {1,...,n} do

for all criteria f, k € {1,...,q} do
| compute disconcordance index Dg(a;, a;)

end
end
for all pairs of alternatives a;, a;, i,5 € {1,...,n} do
| compute degree of outranking relationship S(a;, a;)
end
for all alternatives a;, i € {1,...,n} do

compute concordance credibility index ¢ (a;)
compute disconcordance credibility index ¢~ (a;)
compute net credibility index ¢(a;)

end

Final Ranking = SortDesc(¢)

Result: FinalRanking

Step 2: Concordance Index The concordance index C(a;, a;) is computed
for each pair of alternatives a;, a;, as follows:

q
Z wiCi(a;, a;)
k=1

q

C(Gi, Clj) =

(4.3)

Step 3: Disconcordance Index Let v(fy) represent the veto threshold for
criterion f. The veto threshold rejects the possibility of a;Sa; if, for any criterion f3,
the relationship fi(a;) > fr(a;)+v(fx) is satisfied. The discordance index D(a;, a;),
(0 < Dg(ai,aj) < 1) for each criterion is defined as follows:

(0 if Fila;) — filas) < p(fi)
Dy(as, a;) = ! if Frlag) = filai) > a(fr)

frla;) — fulai) — p(fr)
\ v(fr) — p(fx)

otherwise

(4.4)
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Step 4: Degree of Outranking Relationship Let J(a;, a;) represent the
set of criteria for which Dg(a;,aj) > C(a;,aj). The degree of outranking S(a;, a;)
is:
C(ai,aj) if Dk(ai,aj) S C(ai,aj) Vk e J
S(ai>aj) = 1—Dk(ai,aj)

therwi
= Claya) otherwise

Cla;, a;) x H

kGJ(ai,aj)

(4.5)

Step 5: Concordance and Disconcordance Credibility Degrees The
concordance credibility degree ¢*(a;) is an indicator that measures how an
alternative a; dominates all the other alternatives. The definition of concordance
credibility degree is:

0" (a;) = ) Slas, ) (4.6)
z€A
The disconcordance credibility degree ¢~ (a;) is an indicator that measures how
an alternative a; is dominated by all the other alternatives. The definition of
disconcordance credibility degree is:

¢ (a:) = S(w,a;) (4.7)

z€A

Step 6: Net Credibility Degree Finally, the net credibility degree ¢(a;) is
an indicator of the value of the alternative a;. A higher net credibility degree implies
a better alternative. The definition of the net credibility degree for an alternative
a; is:

dla;) = ¢"(a;) — ¢~ (a;) (4.8)

The ELECTRE III final ranking is obtained by ordering the alternatives
according to the decreasing values of the net flow scores.

4.3.2 PROMETHEE II

The PROMETHEE I and PROMETHEE II methods were introduced by J.P.
Brans in 1982 at a conference at the Université Laval, Québec, Canada (L’'Ingéniérie
de la Décision. Elaboration d’instruments d’Aide a la Décision) and have been
extensively applied since then in fields such as business, healthcare and education.
The acronym PROMETHEE stands for Preference Ranking Organization METHod
for Enrichment of Evaluations. PROMETHEE I is a partial ranking of the actions,
as it is based on the positive and negative flows. It includes preferences, indifferences
and incomparabilities. On the contrary, PROMETHEE II is a complete ranking of
the actions, as it is based on the multicriteria net flow. It includes a preference
threshold and an indifference threshold which will be explained in the following
paragraphs.
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The algorithm of the PROMETHEE II method is presented below:

Algorithm 3: PROMETHEE II Algorithm
input: n (alternatives), ¢ (criteria), fi(a;) (evaluation table), P; (preference
funcion);
for all criteria f, k € {1,...,q} do
| di(ai,a;) = fr(ai) — fu(ay)

end

for all pairs of alternatives a;, a;, i,5 € {1,...,n} do
| me(ai, a5) = Pyldi(ai, a;)]

end

for all criteria fy, k € {1,...,q} do
| m(ai, a;) = sum(mi(a;, a;))
end
for all pairs of alternatives a;, a;, i,7 € {1,...,n} do
¢" (a;) = sum(7(a;, a;))
¢~ (a;) = sum(m(a;, a;))

end

for all alternatives a;, i € {1,...,n} do
| (@) = ¢" (@) — ¢~ (a)

end

Final Ranking = SortDesc(¢)
Result: FinalRanking

Step 1: Pairwise comparisons Firstly, pairwise comparisons are made
between all the alternatives for each criterion. dy(a;,a;) is the difference between
the evaluations of alternatives a; and a; for criterion fj:

di(ai, a;) = fir(a;) — fr(ay) (4.9)

Step 2: Preference degree The differences calculated in step 1 are
translated to preference degrees, according to the selected criterion, as follows:

Wk(ai, G,j) = Pk[dk(al, Clj)] (410)
where P, : R — [0,1] is a positive non-decreasing preference function such that

P;(0) = 0. Six different types of preference functions are proposed by PROMETHEE

method. These functions are presented at the end of the section.

Step 3: Multicriteria preference degree The pairwise comparison of the
alternatives is completed computing the multicriteria preference degree of each pair,
as follows:

q
W(ai;aj) = Zﬂ—k(aiaaj) * Wk (4-11)
i=1

where wy, represents the weight of criterion fi, making the assumption that wy > 0

q
and Zwk =1.
k=1
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Step 4: Multicriteria preference flows Let us define the two following
outranking flows:
The positive outranking flow expresses how an alternative is outranking all the
others, demonstrating its outranking character. A higher positive outranking flow
implies a better alternative.

6" (a) = - ! > w(a ) (4.12)

The negative outranking flow expresses how an alternative is outranked by all the
others, demonstrating its outranked character. A lower positive outranking flow
implies a better alternative.

6(0) = - ! S a(ea) (4.13)

An ideal alternative would have a positive outranking flow equal to 1 and a
negative outranking flow equal to 0. The positive and negative outranking flows
are aggregated into the net preference flow:

¢(a) = ¢"(a) — ¢ (a) (4.14)

The PROMETHEE 1II final ranking is obtained by ordering the alternatives
according to the decreasing values of the net flow scores.

Promethee preference functions Let d; be the difference of two
alternatives a;, a; and let g;, p; be the indifference and preference thresholds. These
parameters are exlained, as follows: when the difference d; is smaller than the
indifference threshold, then it is considered as negligible, therefore the preference
degree becomes equal to zero. On the contrary, if the difference is larger than the
preference threshold, then it is considered to be significant, therefore the preference
degree is equal to one. Otherwise, if the difference is between the two thresholds,
the preference degree is computed using a linear interpolation. The six criteria are
presented below:

Usual Criterion

0 ifd, <0
Pj(d;) =

U-shape Criterion
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V-shape Criterion

131

Py if |d;| <pj
Pi(d;) = I

Lot fd| > p;

Level Criterion

0 if |d;| <g
Pi(dj) =4 5 if ¢ <l|dj| <pj
L ifdj] > p;

Linear Criterion

(0 if |dj| < g
d. _q. .
Py(d;) = gﬁ if q; <|d;| <py
J J
L 1 if ’dj| >pj

Gaussian Criterion

P
[l
0 q d
P
[l
o q d
P
[ S
05F------ —_—
i
,
:
:
0 q P d
P

Thesis

99



Proposed Methodology

4.3.3 MAUT

Multi-Attribute Utility Theory (MAUT) (Keeney and Raiffa, 1993) [10] is
a structured methodology which was originally designed in order to handle the
tradeoffs among multiple objective functions. It was originally developed by Keeney
and Raiffa in 1993. MAUT belongs to the family of multiple-criteria utility theory
and it has the advantage that it is adaptable to the profile of the DM, as it can
describe optimistic and pessimistic behaviours.

The algorithm of the MAUT method is presented below:

Algorithm 4: MAUT Algorithm

input: n (alternatives), ¢ (criteria), w; (weights), fi(a;) (evaluation table);
for all alternatives a;, i € {1,...,n} do

for all criteria fy, k € {1,...,q} do
| compute normalised decision matrix z(a;)
end

end
for all alternatives a;, i € {1,...,n} do
for all criteria fi, k€ {1,...,q} do
| compute integrated DM’s attitude ug(a;)

end
end
for all alternatives a;, i € {1,...,n} do
| compute utility U (i) = sum(wyug(a;))
end

Final Ranking = SortDesc(U)
Result: FinalRanking

Step 1: Normalised Decision Matrix Let f(amin), fx(@min) represent the
minimum and maximum value for criterion k. The evaluation table is normalised,
as follows:

For maximisation criteria:
fi(ai) = fr(amin)

0@ = 5 T Felamen) (4.15)

For minimisation criteria:

wp(a;) = fe(@maz) — fr(a;)
i fk’((lmax) — fk(amm)

(4.16)

Step 2: Integration of DM Attitude The attitude of the decision-maker
is incorporated into the normalised decision matrix, as follows:
1 _ eCZ‘i

1 —ec

ug(a;) =

where ¢ is an index that represents the attitude of the decision maker.
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Concave Utility Linear Utility Convex Utility
c~0 c>0

Step 3: Utility Function The Utility function is computed as follows:

Ui = Zwkuk(ai) (4.17)

The MAUT final ranking is obtained by ordering the alternatives according to the
decreasing values of the utility function.

4.3.4 TOPSIS

TOPSIS (Hwang and Yoon, 1981) [16] is a multi-criteria decision analysis
method. It was originally developed by Ching-Lai Hwang and Yoon in 1981 and
further developped by Yoon in 1987, and Hwang, Lai and Liu in 1993. The acronym
TOPSIS stands for Technique for Order of Preference by Similarity to Ideal Solution.
It is based on the geometric distance from the positive ideal solution (PIS) and the
negative ideal solution (NIS). A good alternative has a short distance from the PIS
and a long distance from the NIS.

The algorithm of the TOPSIS method is presented below:

Step 1: Normalised Decision Matrix Given the n x ¢ decision matrix,
using the following normalisation method, a new normalised decision matrix is

calculated:

ri(a;) = iC) (4.18)

Z?:l Tk (aj)2

Step 2: Weighted Normalised Decision Matrix In this step, the offsets
are incorporated in order to quantify the relative importance of the different criteria.
The weighted decision matrix is constructed by multiplying each element of each
column of the normalized decision matrix by the offsets:

q
ti(a;) = re(a;) - wg, where wy = Wk/ZVVJ, j=1,2,...,q (4.19)
j=1
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Algorithm 5: TOPSIS Algorithm

input: n (alternatives), ¢ (criteria), w; (weights), fi(a;) (evaluation table);
for all alternatives a;, i € {1,...,n} do
for all criteria fy, k € {1,...,q} do
| compute normalised score 74(a;)
end

end
for all alternatives a;, i € {1,...,n} do
for all criteria fi, k€ {1,...,q} do
| compute weighted normalised score ¢ (a;)
end
end
compute positive ideal solution A™
compute negative ideal solution A~
for all alternatives a;, i € {1,...,n} do
compute separation distance from positive ideal solution S¥(7)
compute separation distance from negative ideal solution S~ (¢)
compute relative closeness to the positive ideal solution C~ (4
end
Final Ranking = SortDesc(C)
Result: FinalRanking

Step 3: Positive and Negative Ideal Solution The positive ideal AT and
the negative ideal A~ solutions are defined according to the weighted normalised
decision matrix:

A* = {(min(tx(a;) |1 =1,2,...,n) | k€ J_), (max(tx(a;) | i =1,2,....n) | k € J;)}}
(4.20)

A7 = {(max(ty(a;) |i=1,2,...,n) | k€ J_), (min(tx(a;) | i =1,2,...,n) | k € J)}}
(4.21)

where,

J+:{k: 1,2,,q|k}
for maximisation criteria and

Jo={k=1,2,...,q |k}
for minimisation criteria.
Step 4: Separation Distance from the Ideal and Non-Ideal Solution

Let ¢} be the positive ideal value and ¢, be the positive ideal value for criterion
k. The separation distance (L? — Distance) of each alternative from the ideal and
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non-ideal solution is calculated:

St= > (trla) =), i=12...n (4.22)
k=1
q

S;= | D (tela) = )2, i=12,...,n (4.23)
k=1

Step 5: Relative Closeness to the Ideal Solution Finally, for each
alternative the relative closeness to the ideal solution is computed. The TOPSIS
final ranking is obtained by ordering the alternatives according to the decreasing
values of the relative closeness scores.

C;=87/(SHf+S7), 0<C; <1, i=1,2,...,n (4.24)

4.3.5 Cumulative Ranking

After the application of the four MCDA methods, four ranking lists of the
alternatives have been formulated. However, the decision-maker should be provided
with a final ranking in order to select the k-best securities among them. The
suggested methodology to combine the four rankings is the weighted average
measure. More specifically, each ranking method is provided with a weighting
factor wy, k = {1,2,3,4}. The cummulative ranking index C'R; for alternative

7 is calculated as follows: ,

CRZ = Z WeET (425)

where r;, represents the ranking of alternative ¢ in method k.
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4.4 Phase I1: Multiobjective Portfolio
Optimisation

In the second phase let us introduce the concept of portfolio optimisation. This
section cures the problem of capital allocation to the selected securities. Portfolio
optimisation is the process of determining the best combination of the weighting
factors of securities with the goal to minimise risk and maximise the profit.

The methodological framework of the first phase is depicted in diagram

Historical data input
of k-best securities

Financial statistics
& visualisation

DM selects Yes @
without optimisation

Z
o
Multicriteria portfolio \ 1 T 'Sd_efjnement
optimisation !

o 2

S %Oo'

§ L4

Mean - Variance Goal Programming Genetic Algorithm PROMETHEE flow PROMETHEE flow
MIQP model model model bi-objective model 3-objective model

Set of Pareto

optimal portfolios

I

DM selects
without comparison

Figure 4.4: Methodological framework for Phase 11

The developed methodologies that will be discussed and compared in the
following paragraphs are:
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1. implementation of the conventional mean-variance model, as well as a mixed-
integer variation of the mean-variance method.

2. implementation of a goal programming optimisation model.
3. implementation of a genetic algorithm based on historical data.

4. implementation of bi-objective optimisation problem which involves the
PROMETHEE net flow, as well as a MOIP variation of this problem

5. implementation of a 3-objective optimisation problem which involves the
PROMETHEE net flow combined with two additional objective functions.

4.4.1 Mean - Variance MIQP Model

The conventional formulation of the portfolio optimisation problem was initially
expressed as a nonlinear bi-criteria optimisation problem in 1952. According to
Markowitz the portfolio expected return should be maximized and the portfolio risk
should be minimized. The risk is quantified as the variance of portfolio returns,
resulting in a quadratic programming problem.

Let E(R;) be the expected return and w; the weighting factor of security i. The
first objective concerns the portfolio expected return and is expressed as follows:

maXE ZwE

where m is the total number of securities. Let o0;; be the covariance between
securities ¢ and j. The second objective concerns the portfolio risk which is expressed

as follows:
m m
. 2
Hlu%n Op = E E W; W04

i=1 j=1j#i

Moving to the model’s set of constraints, the corresponding expression for
capital completeness is introduced:

i=1

while the restriction concerning no short sales allowance is:

The above equations constitute a bi-objective quadratic optimisation problem
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which is presented below:

max E(rp) = sz‘E(ri)

=1

m m
mqgn 0123 = Z WiW; 045 496
i=1 j=1,j#i (4.26)
m
i=1
w; > O, i:1,2,...,m

The problem is solved parametrically for a predefined parameter of the portfolio
expected return. Let R be the portfolio expected return. The problem is transformed
into a linear programming problem with an additional restriction concerning the
expected return, which is presented below:

. =1 j=1,j#1
= (4.27)
Su -1
=1
w > 0, i=1,2,....m

In this section, a variation of the conventional mean-variance model is developed
(Xidonas & Mavrotas, 2012) [22]. The model is equipped with binary variables b;,
in order to control the existence of each security in the portfolio. More specifically,
if b; = 1 the 4y, security participates in the portfolio, else if b; = 0 it does not. The
use of binary variables allows the direct determination of the number of securities
in the portfolio, producing the following cardinality constraint equation:

Sp < ibi < Su
i—1

where S; and Sy are the minimum and maximum number of securities allowed to
participate in the portfolio.

Moreover, the diversification of the portfolio can be supported constraining the
upper bound of each security weight. In order to determine the lower and upper
weighting factor of each security the following restrictions are introduced:

wi—WbeizO, i:1,2,...,m

wi—WUXbiﬁ(), i:1,2,...,m

where Wy and Wy are the minimum and maximum security weights that are allowed
in the portfolio.
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Thus, the following multiobjective integer programming (MOIP) problem is
formulated:

(4.28)

NgEl
@‘
AV
©

ST
Wbe > 0 1=1,2,....m
—Wyxb < 0 1=1,2,....m

Similarly to the previous problem, the solution is determined parametrically for
a predefined parameter of the portfolio expected return. The problem is transformed
into a mixed-integer quadratic programming (MIQP) problem with an additional
restriction for the expected return, which is presented below:

rnm aP_ E E WW; 045

. 1=1 j=1,j#i
i=1
Zbi < Sy

St

(4.29)
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The formulated problem can be solved parametrically considering the parameter
R, thus producing the efficient frontier of solutions.

4.4.2 Goal Programming Model

Another approach to the portfolio optimisation problem is the development of a
goal programming model. As discussed in the previous chapter, goal programming is
a multiobjective optimisation method which is used to handle problem of conflicting
objective functions.
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The decision variables of the goal programming problem will be the weighting
factor w of each security. Let w; be the weighting factor of the #;, security. The
following goals are defined:

1. The beta index of the portfolio Sp, which is defined as the weighted sum of
the individual beta index of each security, is given the target value fg.

Bp = sz’ X f3;
i=1

2. The portfolio dividend yield, which is defined as the weighted sum of the
individual dividend yield of each security, is given the target value DYg

DYp:iwi x DY;

i=1

3. The portfolio PROMETHEE flow, which is defined as the weighted sum of the
individual flow of each security, is given the target value ¢¢

op = Zwi X @i
i=1

The model is equipped with binary variables b, in order to control the existence
of each security in the portfolio, producing the following cardinality constraint
equation:

m
SL <Y b < Sy
i=1
where S, and Sy are the minimum and maximum number of securities allowed to
participate in the portfolio.

In order to determine the lower and upper weighting factor of each security the
following restrictions are introduced:

wi—WbeiZO, 1=1,2,....m

wi—WUXbiSO, i:1,2,...,m

where Wy and Wy, are the minimum and maximum security weights that are allowed
in the portfolio.

Introducing the deviational (or slack) variables d;", d;” the problem is formulated
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as follows:
min wfdf—l—wfdf_'_w;d;“%—w;d;_i_w;d;%—wgdg
dt,d- Ba DYg da
S.t. Z wlﬂi -+ d; — d;r = ﬁG
i=1

> wDY;+dy —dj = DYg
=1
szﬁbz’ +dy —dj = ¢c
i=1 (4.30)

sz' < Su

i;l

Dbio> 8

%’rfl

S =

=1
wi—Wbei > 0 z:1,2,...,m
'LUi—WUXbi < 0 i:1,2,...,m

where w™, w™ are the weights of the deviational variables. Attention is needed not
to confuse the weighting factor w of each security with the overachievement and
underachievement weights w™,w™ of the deviational variables

4.4.3 Genetic Algorithm Model

In this paragraph we introduce an implementation of an alternative model
applying a genetic algorithm. The philosophy of this problem differs from all the
other, as the weighting factors are determined with the assistance of a market index.
Additionally, another significant difference is that in this case there is a unique
solution of the optimisation problem, while the other problems result in a set of
pareto efficient solutions.

More specifically, let m be the market index and 7, the return of index m in
period ¢. Let us define, also, m securities and r;; the return of security j in period
1. The portfolio return in period i is equal to:

m
Tip = Z ij'ij (431)
j=1
where w; is the proportion of the security j in portfolio p.

We say that the constructed portfolio beats the market index in period i if the
following inequation applies:
Tip Z Tim (432)

Therefore, the genetic algorithm takes as input the historical data for T" periods
and attemps to maximise the percentage of cases that the constructed portfolio beats
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the market index. This claim is quantified as follows:

N (4.33)
=1
W >0 Vi=1,2,...N

where b; is a binary variable that takes the value 1 if r;, > r;, in period ¢, else it
takes the value 0.

Conclusively, the genetic algorithm provides the optimal portfolio proportions,
such that the percentage that the constructed portfolio results in better return than
the market index is maximised.

4.4.4 MOIP PROMETHEE Flow Model

PROMETHEE Flow Bi-Objective Model

In this paragraph, an alternative approach to the classic mean-variance model
is presented. This approach connects the concept of the PROMETHEE method of
multiple-criteria decision analysis with a measure of risk, in this case Beta index.
The beta index of a portofolio is the average of the beta indexes of the participating
securities. Let ¢; represent the PROMETHEE net flow of the i;, security. The first
objective function of the problem involves the maximisation of the average net flow:

m
mazr, ¢p= ZM@
i=1

The second objective of the problem involves the minimisation of portfolio beta
index:

m
min, [p = Z w; i
i—1

Therefore, adding to the model the constraints of capital completeness and no
short sales allowance, a bi-objective linear programming optimisation problem is
formulated as follows:

max ¢p = Z w;Q;
i=1
i=1 ’

i=1

w; > 0, 1=1,2,....m
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If we introduce binary variables to the above problem, accordingly to the
extension of mean - variance model, a bi-objective integer programming problem
is formulated as follows:

m

max ¢p = Z w;Q;
i=1
m

min Bp = wif;
i=1

“m
=1

< Su
= (4.35)
Zbi > S
%?1
S -
=1
’LUi—WLXbi > 0 i:1,2,..,m
wi—WUxbl- < 0 i:1,2,. , M

The above problems can be solved parametrically, transforming one objective
function into an additional constraint, accordingly to the conventional mean-
variance model.

PROMETHEE Flow 3-Objective Model

Finally, in this paragraph a 3-objective variation of the above model is
introduced, in order to incorporate another objective function in the portfolio
optimisation problem.

Without loss of generality, let PROMETHEE flow be the first objective
function. Alternatively, any other method could be introduced, such as ELECTRE
ITII, MAUT or TOPSIS. We selected the PROMETHEE net flow, because of
PROMETHEE’s capability to use a variety of functions depending on the criterion.
Therefore, the first goal is to optimise the net flow of PROMETHEE as it was
introduced in Phase A.

We propose, the second objective to be the Beta index in order to incorporate a
measure of risk to the model. Finally, let us introduce the dividend yield as a third
objective function.

Additionally, the problem could be equipped with integer decision variables in
order to control the number of securities with non-zero proportion to the portfolio.
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Based on the above observations the optimisation problem is formulated as follows:
m
max ¢p = Z w;Q;
i=1
m
min  fSp = Z w; i
i=1

max DYp = ZwiDYi

=1
" S0 < s (4.36)

=1
Zbi > Sp
;L;,?l
S =
=1

wi—Wbei > 0 z':1,2,...,m

wi—WUxbi S 0 i:1,2,...,m

This is a multiobjective programming problem in 3 dimensions with integer
variables. It is obvious that the computational complexity of the above problem
becomes huge, especially if the number of securities is significantly large. A
variety of methodologies have been proposed for problems like this such as the e-
constraint method, which faces the problem as a 1-objective optimisation problem,
transforming the remaining objectives into constraints. However, in this paragraph
a methodology based on goal programming and the MINIMAX objective is proposed
to solve this MOLP problem.

The first step of the methodology is to solve the model to find the solution
that minimises each objective function ignoring the other objective function. If we
solve the problem for all objective functions, we obtain the optimal value for each
objective, respectively.

The next step is to formulate the goal programming problem. The target value
for each objective function is set equal to the optimal value calculated in the previous
step. The percentage deviation from this target can be computed as follows:

‘o actual value — target value (4.37)

target value

for goals derived from minimisation objectives,

t t value — actual val
. arget value — actual value (4.38)
target value

for goals derived from maximisation objectives.

Therefore, having determined the goals of the GP model, the last step involves
the configuration of the objective function. The implementation of the objective
function is made with the introduction of a MINIMAX variable (3 which should be
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minimised. If w; is the offset for the i, objective function, the goal is to minimise
the maximum of w;t;. The above claim is expressed with the following mathematical
equation:

min ()
s.t. w1t1 S Q
Wty < Q (4.39)
waty < Q

Thus, a set of pareto optimal solutions derives from the adjustment of the
weighting factors w;.
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4.5 Conclusion

In the current chapter, there was a complete presentation of the proposed
methodology, which tried to incorporate all the parameters of the problem of efficient
portfolio management. The proposed methodology was split in two phases: (a)
in the first phase we introduced an integrated methodology for the problem of
security selection and (b) in the second phase we presented a variety of alternative
methodologies which aim to solving the problem of portfolio optimisation.

For completeness reasons, it is necessary to make a quick discussion about the
final decision problematic, concerning the selection of the most suitable portfolio
from the set of efficient portfolios. Given a pareto efficient set of candidate portfolios,
the problems lies to the determination of the most appropriate one. It is obvious that
the most significant parameter of the problem is the profile of the decision-maker.
The decision-maker’s profile creates a clear picture about how a person makes a
decision and determines the way that he should be supported in decision-making.
For instance, a risk-averse decision-maker would probably exclude all the portfolios
that result in increased portfolio risk, while on the contrary an aggressive decision-
maker would select one of the most risky portfolios of the efficient set. Subsequently,
the decision-maker might determine the suitable portfolio without any additional
support.

However, in case that the investor has not reached to a final decision a
methodological framework for decision support of the final phase is developed. The
problem of selecting the most dominant portfolio of all the feasible ones can be solved
as a discrete MCDA problem, where the alternatives are all the efficient portfolios
and the criteria can be set in communication with the decision-maker. Therefore,
the methodological framework that was used in Phase I for security selection can be
also used to this problem for the determination of the most suitable portfolio. After
the application of the MCDA methods a final ranking of the portfolios is obtained
and finally the investor has the opportunity to select the most appropriate one.

After the presentation of the suggested methodology for portfolio selection, we
can conclude that the proposed methodological framework provides the decision-
maker with an integrated decision-support model, considering every aspect of
the whole procedure. Additionally, the most significant accomplishment is the
incorporation of the investor’s preferences and the interaction with the DM at every
part of the process.
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5.1 Introduction

The presentation of the proposed methodology emphasised the need for modern
information systems in order to implement the necessary methods. In the context
of the current thesis, a decision support information system was designed and
developed. The purpose of the information system is to implement efficiently the
algorithms described in the previous section in order to support the decision-making
process.

The information system consists of four subsystems. The first subsystem
includes an implementation of the multiple-criteria decision support methods
that are used in the proposed methodology. The second subsystem supports
financial statistics calculation. The third subsystem implements the multiobjective
programming methods for portfolio optimisation. Finally, the fourth subsystem
assists the evaluation process, offering a visualisation of the efficient portfolios.

In addition, the first subsystem is deployed as a web application. The
specific platform offers a friendly graphical user interface GUI and offers efficient
implementations of specific MCDA methods, providing extensive solutions for a wide
range of multiple-criteria problems.
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5.2 System Architecture and Attributes

In this section, there is a brief introduction to the programming tools which
were used, as well as the libraries that supported the visualisation of data and
the optimisation methods. The information system is developed in Python 3
programming language, which makes it available for Windows, Linux and macOS
operating systems.

Python 3.0 Programming Language

Python is a general-purpose, high level scripting programming language, which
is widely used nowadays. It was initially designed by Guido van Rossum in 1991
and developed by Python Software Foundation. Its main goals is to provide code
readability, and simplify complex concepts. It is an interpreted language, i.e. the
steps of code compilation and execution are unified and the program can be directly
executed from the source code. Additionally, it is platform independent as it can be
used on Linux, Windows, Macintosh and multiple other operating systems. Python
can be used for a variety of tasks in many sectors including:

1. Mathematics and physics
2. Quantitative finance and financial econometrics

Machine learning, neural networks and artificial intelligence

- W

Big data applications and data engineering

ot

Network security, prototyping applications
6. Enterprise and business applications, web frameworks and applicaitons etc.
More specifically, Python 3.0 (also called ”"Python 3000” or "Py3K”) was

released on December 3, 2008. It has a wide variety of advantages, the most
important of which are presented below:

e It incorporates an extensive support of additional libraries, such as NumPy
for numerical calculation and Pandas for data analysis.

e [t provides object-oriented utilities, it is portable and interactive.

e [t is an open source language, with a developed community.

e [t is considered an easy to learn programming language, providing user-friendly

data structures.

In the following paragraphs we make a quick introduction to the libraries that
were used for the implementation of the model. The main libraries which support
the development of the information system are matplotlib, pandas, numpy and mip.
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Matplotlib [6] is a Python plotting library which produces high quality
figures in a variety of formats, such as plots, histograms, power spectra, bar charts,
errorcharts, scatterplots, etc. Matplotlib can be used in Python scripts, the Python
and IPython shells, the Jupyter notebook and web application servers. It was
originally written by John D. Hunter, providing an interface with close resemblanse
to MatLab and it has an active development community.

Pandas [17] is an open source library which provides high performance, useful
data structures and data analysis tools for the Python programming language. Some
of the most important included features are an efficient DataFrame object for data
manipulation with integrated indexing, tools for reading and writing data between
different formats (CSV, text files, Microsoft Excel etc.) and flexible reshaping
functionality of data sets. It incorporates significant optimisations providing high
performance and it has a wide variety of uses in academic and commercial fields.

NumPy [7] is the fundamental library for scientific computing with Python,
as it contains various useful tools. The most important functionalities are the N-
dimensional array object, the tools for importing C/C++ and Fortran code, as
well a variety of function, such as linear algebra, Fourier transform, and random
number capabilities. Additionally, NumPy can also be used as an efficient multi-
dimensional container of generic data, allowing NumPy to integrate with a wide
variety of databases with very high speed.

MIP is a library of Python tools for the modeling and solution of Mixed-
Integer Linear programming problems. Some of the main functionalities provided
by MIP are the following: Firstly, high level modeling capability, offering the
opportunity of easy implementation of linear relations, as in high level languages.
Besides, the Python MIP package is deeply integrated with many solvers, such as
Branch-and-Cut and the commercial solver Gurobi.

NumPy Scientific Computing
/ Pandas Data Manipulation
/
Python 3.0
Programming Language —
\ Matplotlib Data Visualisation
MIP Optimisation Solver

Figure 5.1: Programming language and additional packages
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5.3 Interaction Diagrams

In this section, we present the basic UML interaction diagrams of the
information system, in order to demonstrate how it can be used. Through these
diagrams, the interaction between the decision-maker and the information system

is reflected.

Use Case Diagram A use case diagram is a graphic demmonstration of the
interactions among the elements of an information system. In the following diagram
the three parts of the system are the decision-maker, the information system and
the Yahoo Finance database. The use case diagram is presented in figure [5.2}

Information System

Market Selection

Offset and Threshold
Determination

Connection with Database

Optimisation method

selection

Financial Indices
Integration

Time Horizon
Specification

Number of Securities
Specification

Historical Data Integration

Portfolio
Selection/Optimisation
Methodology

Yahoo Finance
Database

Financial Indexes Fetching

Historical Data Fetching

Figure 5.2: UML Use Case Diagram
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Sequential Diagram A sequential diagram describes the interactions among each
part of the system arranged in time sequence. It shows the sequence of messages
which are exchanged between the different parts of the system (decision-maker,
database etc.), in order to achieve the functionality of each scenario. The sequential
diagram of the system is presented in figure [5.3

Information System

=

Financial indexes request

Yahoo Finance
Database

Financial indexes fetching

L
S
L Confirmation message
3 @
Offset and threshold selection N
® 3
L Portfolio selection
3 @
Time horizon selection N
® 3
L Confirmation message
5 @
. Number of securites specification J
=

Multiple Criteria
portfolio selection
methodology

Historical data request

Historical data fetching

Confirmation message
3 o
. Optimisation method selection N
1 Multiobjective
portfolio optimisation
methodology
Portfolio optimisation

Figure 5.3: UML Sequential Diagram
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Communication Diagram A communication diagram describes the interactions
between the various parts of the system in the form of sequenced messages.
These diagrams are composed of a combination of sequence and use case diagrams
incorporating both the static and the dynamic behavior of the information system.
The communication diagram of the system is presented in figure [5.4

1. Market Selection 3. Financial Indexes
2. Industrial Sector Selection Request

5. Offset and Threshold
Determination 9. Historical Data Request

7. Time Horizon Specification

4. Financial Indexes
Fetching

6. MCDA Portfolio Selection 10. Historical Data Fetching

Information System

Yahoo Finance Database

8. Number of Securities 12. Multiobjective Portfolio
Specification Optimisation

11. Optimisation Technique 13. Portfolio Comparative
Selection Evaluation

Figure 5.4: UML Communication Diagram
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5.4 MCDA Platform

As part of the thesis project, a module of the information system was
deployed as a web application. This application includes an efficient implementation
of a wvariety of multicriteria decision analysis methods, such as ELECTRE,
PROMETHEE, MAUT and TOPSIS. This project is implemented in one of the
most used Python web frameworks called Django.

Django is a high-level Python free and open-source web framework which
supports rapid development combined with modern design. It follows the
conventional model-template-view web arcitecture and it is used for the creation
of database-driven websites. Django framework is generally based to an MVC
architecture, as it consists of an object-relational mapper (ORM) that mediates
between data models. Additionally, it includes a relational database called Model,
a subsystem for processing HTTP requests known as View and a URL dispatcher
called Controller.

In this paragraph, we introduce some of the most important features of the
MCDA platform. Initially, the homepage of the system is designed in order to
present the application’s content (Figure .

MyCriteria  Home About ELECTRE1l ELECTRELVETO PROMETHEE TOPSIS AHP Login Register

Welcome to MyCriterial

This website provides an online platform where you can apply many multicriteria methods which generally support decision making. You only have choose
the method you desire to apply and upload the Input information in .csv format.

Website Content
Currently, the 5 following methods are supported:

« ELECTRE1

« ELECTRE 1 (with VETO)

« PROMETHEE

« TOPSIS

« AHP )

You are recommended to visit the About section, where you can find detailed information about the appropriate format of the .csv file that you should'load.
Future Improvemems
In the near future, the platform will be extended in order to support the following operations:

« Step by step execution of the methods
« Implementation of further methods (e.g. MAUT, ELECTRE Tri)
« Graph format and colors chosen by the user

Figure 5.5: Homepage screen

The user is able to select one of the supported MCDA methods and have
access to the detailed information and the input prerequisites of the selected method
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(Figure [5.6)).

MyCriteria  Home About ELECTRE1 ELECTRELVETO PROMETHEE TOPSIS AHP Login Register

PROMETHEE

The Preference Ranking Organization METHod for Enrichment of Evaluations - PROMETHEE - method is a partial ranking of the actions. It is based on the,
positive and negative flows. It includes preferences, indifferences and incomparabilities. It has particular application in decision making, and is used around
the world in a wide variety of decision scenarios.

Input Parameters
The following parameters are required for PROMETHEE:

Number of Criteria

Number of Alternatives &
Optimization Type

Weights of Criteria

VETO Thresholds

Preference Thresholds

Indifference Thresholds

Criterion Type

Decision Matrix

Let's Start

Please upload a .csv input file:

File:

Choose File | No file chosen

Figure 5.6: Individual method page screen

The platform supports all necessary methods for the proposed methodology,
which are (a) ELECTRE III (b) PROMETHEE II (¢) MAUT and (d) TOPSIS.
Except from these ranking methods, the platform also supports two choice methods:
ELECTRE I and ELECTRE VETO. Additionally, there is an About page which
refers to the format of the necessary input (Figure .

MyCriteria  Home About ELECTRE1 ELECTRELVETO PROMETHEE TOPSIS AHP Login Register

Introduction

In this section, it is given a detailed example of haw the csv input file's format should be.

.csv Example Format

In the picture below, a default format picture of the .csv file is presented.

A B c 0 E F G 1 1 J K L

* Mumber of itera

2 umber of Ahematives:

3 Optinization Type

1 Weights:

5 Nato Thrsholds:
€ Prference Thresholds:

7 indifeence Thesholde:
& critrion fonlyforPromethee):
5

Details
- Firsily, the user types the number of criteria in cell B
+ Secondly, the user types the number of altematives in cell B2.
+ Then, for each criterion the user types the aptimization type: "0" for maximization or "1" for minimization, in cells B3-C3-D3 etc. (it is necessary to

Figure 5.7: About page screen

122 Thesis



Information System

The input can be given in .csv or .xls format to the platform. Except from the
general information (alternatives, criteria, decision matrix and weights), different
additional information should be imported according to the method. For example,
in PROMETHEE methods, it is necessary the criterion type and the appropriate
thresholds to be determined. After the procedure of commiting the input file to te
platform, the next stage incorporates the presentation of the results. In the following
figures, you can see the output screen for the application of some of the supported

methods (Figure [5.8).

TOPSIS Method

(a) ELECTRE I o (b) TOPSIS (i) (c) TOPSIS (ii)

Figure 5.8: Results Presentation Screen

Finally a visualisation of the results can be produced by clicking the
corresponding button at the results page. The visualisation depends on the method
and it is adjusted to the method category. For instance, for a ranking method a
barplot with the final ranking of the alternatives is produced, while for a choice
method the dominance graph is alternatively produced, showing which alternatives

dominate over the others (Figure [5.9).

Promethee Method

02

ne .

o 1 2 3 4
alternatives

(a) Ranking method (b) Choice method

closeness

Figure 5.9: Results Visualisation Screen
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5.5 Source Code Presentation

In this section, we present and explain a part of the source code of the
information system. More specifically, the implementation of portfolio optimisation
process is presented. It includes the connection with the Yahoo API, the
manipulation of the historical data, the calculation of the most significant statistical
indexes and finally the portfolio optimisation procedure based on the mean-variance
model.

The whole source code, including the MCDA methods as well as the alternative
optimisation techniques is presented in detail in the appendix. The presentation of
the code is made using the Jupiter Notebook application which is designed to support
the interactive development and presentation of data science projects. Therefore,
the source code presentation begins in the following paragraph:

from pandas_datareader import data
import pandas as pd

import matplotlib.pyplot as plt
import numpy as np

import seaborn as sns

import scipy.optimize as sco

Data Fetching

Determination of parameters

After importing all necessary libraries, we must define the securities, as
well as the starting and ending date of the empirical testing. The list
tickers contains the names of the securities and the variables startDate,
endDate contain the duration of the simulation. As you can see, the
selected time horizon is 4 years, from 1-1-2016 until 31-12-2019 and the
selected equities of this example are 6 securities from the energy sector
of NYSE stock exchange.

tickers = [’BP’, ’CELP’, ’CE0’, ’CVI’, ’CVX’, ’CZZ’]
startDate = ’2016-01-01"
endDate = ’2019-12-31"

Connection to the Yahoo API

In the following part, we make the connection with the yahoo! finance
API. This connection is made with the data.DataReader function of the
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pandas library. It takes four arguments: (a) a list with the names of the
securities, (b) the starting date, (¢) the ending date and (d) the name of
the API (in this case ‘yahoo’). For example, in the following cell you can
see the historical values of the first security ‘BP’. The result contains the
values ‘High’, ‘Low’, ‘Open’, ‘Close’, ‘Volume’ and ‘Adj Close’.

historicalDataBP = data.DataReader(’BP’,
—endDate)

Date

2016-01-04
2016-01-05
2016-01-06
2016-01-07
2016-01-08

2019-12-24
2019-12-26
2019-12-27
2019-12-30
2019-12-31

31.
30.
30.
29.
29.

38.
38.
38.
37.
37.

[1006 rows x 6

High

170000
990000
410000
820000
450001
139999
200001
250000

970001
480000

columns]

Raw Data from Yahoo API
display(historicalDataBP)

Raw Data from Yahoo API

30.
30.
29.
29.
28.

37.
37.
37.
37.
37.

Data Pre-processing

Low

510000
379999
930000
000000
840000
959999
939999
860001

570000
330101

30.
30.
29.
29.
29.

37.
38.
38.
37.
37.

Open

799999
920000
930000
070000
410000
970001
060001
240002

799999
799999

31.
30.
30.
29.
28.

38.
37.
37.
37.

’yahoo’, startDate,._

=== \n" )

Close Volume Adj Close
059999  7582300.0 23.981899
930000  7234400.0 23.881523
299999 10055100.0 23.395094
430000 15156000.0 22.723352
910000 13901300.0 22.321848
040001  2348400.0 38.040001
980000  4504200.0 37.980000
860001  5436600.0 37.860001
599998  6105900.0 37.599998
439999 432547.0 37.439999

37.

From all the security values we only need the data of the ‘Open’ column
in order to use it for the empirical testing. Therefore, we firstly draw
all the desired data from the Yahoo API and then we discard the
unnecessary columns, as follows:

historicalValues = data.DataReader(tickers,
<—>endDate )

stockValues = historicalValues[’Open’]

’yahoo’, startDate,.

num0fDates = stockValues.shape[0]
num0fSecurities = stockValues.shape[1]
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print ("Number of securities:", numOfSecurities)

print ("Number of dates:", numOfDates, "\n")

print (" Stock Values ============== \n")
display(stockValues)

Number of securities: 6
Number of dates: 1006

Stock Values

Symbols BP CELP CEO CVI CvVX
Date

2016-01-04 30.799999
2016-01-05 30.920000
2016-01-06 29.930000
2016-01-07 29.070000
2016-01-08 29.410000

.80 103.059998 38.880001  89.529999
.64 103.500000 37.970001  89.050003
.26 101.250000 37.759998  87.440002
.10 97.790001 36.740002  84.550003
.49 97.220001 37.389999  83.389999

~ 00 0 00
W wwww

2019-12-24 37.970001
2019-12-26 38.060001
2019-12-27 38.240002
2019-12-30 37.799999
2019-12-31 37.799999

©O© O © O ©

[1006 rows x 6 columns]

Security Values Visualisation

Individual diagram for one security

Now, the dataframe stockValues contains the historical values of the
securities. These values can be easily visualised with matplotlib library.
The visualisation of security ‘BP’ is presented below:

from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()

plt.style.use(’dark_background’)

fig, ax = plt.subplots(figsize=(16,9))

.60 163.460007 41.320000 120.430000 22.
.65 163.229996 41.009998 120.669998 23.
.40 165.500000 41.049999 120.889999 23.
.33 165.369995 40.369999 120.440002 22.
.33 165.369995 40.369999 120.440002 22.

CzZ

.590000
.550000
.330000
.090000
.050000

250000
230000
450001
940001
940001
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plt.suptitle(’Visualisation of Security "BP" Values’, fontsize=18,._
—~fontweight="bold’)

ax.plot(stockValues.index, stockValues[’BP’], color=’red’, lw=1)
ax.set_xlabel(’Date’, fontsize=13)

ax.set_ylabel (’Security value ($)’, fontsize=13)

[56]: Text(0, 0.5, ’Security value ($)’)

Visualisation of Security "BP" Values

Common diagram for all securities

Additionally, the values of all the securities can be visualised in the same
figure, as follows:

[6]: fig = stockValues.plot(figsize=(16,9))
plt.suptitle(’Visualisation of Security Values’, fontsize=18,.
—fontweight="bold’)
plt.ylabel("Security Value ($)")

[6]: Text(0, 0.5, ’Security Value ($)’)
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Visualisation of Security Values
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Security Returns

Returns calculation

The following step is the calculation of the arithmetical return of the
securities. This step is executed by converting the pandas dataframe to
numpy array in order to make the calculations and then converting the
returns list back to dataframe. Given the historical values the calculation
of the arithmetical return is presented below:

[7]: stockValuesArray = pd.DataFrame(stockValues) .to_numpy()
stockReturnsArray = np.empty(shape = (numOfDates-1,._
—num0fSecurities))
for i in range(numOfSecurities):
for j in range(numOfDates-1):
stockReturnsArray[j] [1] =_
— (stockValuesArray[j+1] [i]-stockValuesArray[j] [i])/
—stockValuesArray[j] [i]
returnDates = stockValues.index[1:]
stockReturns = pd.DataFrame(stockReturnsArray, index=returnDates,.
—columns=stockValues.columns)
print ("============Stock Returns ============ \n")
display(stockReturns)
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Symbols
Date
2016-01-05
2016-01-06
2016-01-07
2016-01-08
2016-01-11

2019-12-24
2019-12-26
2019-12-27
2019-12-30
2019-12-31

BP

.003896
.032018
.028734
.011696
.005100
.006895
.002370
.004729

.011506
.000000

[1005 rows x 6 columns]

Stock Returns

CELP

.018182
.045139
.018182
.075309
.065421
.001043
.005208
.025907

.007447
.000000

Returns Visualisation

CEO

.004269
.021739
.034173
.005829
.017692
.009511
.001407
.013907

.000786
.000000

CVI

.023405
.005531
.027013
.017692
.013373
.000967
.007502
.000975

.016565
.000000

CVX

.005361
.018080
.033051
.013720
.006476
.009387
.001993
.001823

.003722
.000000

CzZ

.011142
.061972
.072072
.012945
.022951
.002704
.044045
.009471

.021748
.000000

The visualisation of the return of each security is presented in the
following figure:

fig, ax =

for j in range(numOfSecurities):

colors

if stockReturnsArray[i] [j] > O:
colors[i] = (0,1,0)

ax[j//3,jh3].

—.color=colors)

ax[j//3,3%3].
ax[j//3,j%3].
ax[j//3,j%3]1.
ax[j//3,j%3].

plt.subplots(2, 3, figsize=(16,9))

np.array([(1,0,0)]*1len(returnDates))
for i in range(numOfDates-1):

set_title(stockValues.columns[j])
set_xticklabels([])
set_xlabel("Date")
set_ylabel("Return")

bar(returnDates, stockReturnsArrayl[:,j]l,._

fig.suptitle(’Visualisation of Security Returns’,.

—fontweight="bold’, fontsize=14)
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Visualisation of Security Returns
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Financial Statistics

Basic statistical indexes

In the next step, some fundamental statistical indexes of the data are
calculated. This proccess is made with the numpy library which supports
a variety of statistical calculations, as shown in the following section:

from scipy.stats import kurtosis, skew

MinReturn = [0 for i in range(numOfSecurities)]
MaxReturn = [0 for i in range(numOfSecurities)]
MedianReturn = [0 for i in range(numOfSecurities)]

MeanReturn = [0 for i in range(numOfSecurities)]
SD = [0 for i in range(numOfSecurities)]

VaR99 = [0 for i in range(numOfSecurities)]
VaR97 = [0 for i in range(numOfSecurities)]
VaR95 = [0 for i in range(numOfSecurities)]

Skewness = [0 for i in range(numOfSecurities)]
Kurtosis = [0 for i in range(numOfSecurities)]
AbsMinPerSD = [0 for i in range(numOfSecurities)]

for i in range(numOfSecurities):
MinReturn[i] = np.min(stockReturnsArrayl[:,i])
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MaxReturn[i] = np.max(stockReturnsArrayl[:,i])
MedianReturn[i] = np.median(stockReturnsArrayl[:,i])
MeanReturn[i] = np.mean(stockReturnsArrayl[:,i])

SD[i] = np.std(stockReturnsArray[:,i])

VaR99[i] = np.percentile(stockReturnsArrayl[:,i], 1)
VaR97[i] = np.percentile(stockReturnsArrayl[:,i], 3)
VaR95[i] = np.percentile(stockReturnsArrayl[:,i], 5)
Skewness[i] = skew(stockReturnsArray[:,i], bias=False)
Kurtosis[i] = kurtosis(stockReturnsArrayl[:,i], bias=False)
AbsMinPerSD[i] = np.abs(MinReturn[i])/SD[i]

statistics = pd.DataFrame(
{’MinReturn’: MinReturn,
’MaxReturn’: MaxReturn,
’Median’: MedianReturn,
’Mean’: MeanReturn,
’SD’: 8D,
’VaR99’: VaR99,
’VaR97’ : VaR97,
’VaR95’ : VaR95,
’Skewness’: Skewness,
’Kurtosis’: Kurtosis,
’AbsMinPerSD’: AbsMinPerSD,
}, index=stockValues.columns)

display(statistics)
MinReturn MaxReturn Median Mean SD VaR99 \

Symbols
BP -0.078008 0.073658 0.000274 0.000311 0.014651 -0.037868
CELP -0.207407 0.252144 0.000000 0.000704 0.036102 -0.088097
CEO -0.066644 0.089765 0.000671 0.000620 0.017273 -0.046547
CVI -0.129289 0.217920 0.000633 0.000386 0.026544 -0.062649
CVX -0.057246 0.071827 0.000417 0.000376 0.012722 -0.030420
CZzZ -0.149343 0.129114 0.001453 0.002143 0.024357 -0.060368

VaR97 VaR95 Skewness Kurtosis AbsMinPerSD
Symbols
BP -0.028095 -0.023373 -0.061069 2.605570 5.324494
CELP -0.067235 -0.055164 0.569211 6.275317 5.745003
CEO -0.031514 -0.026274 0.047546 1.686140 3.858304
CVI -0.048366 -0.042152 0.700962 7.239242 4.870644
CVX -0.024094 -0.020710 -0.017391 2.519382 4.499711
CZz -0.039525 -0.033042 0.050106 3.464028 6.131390
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Covariance - Correlation

Now, given the arithmetical returns of the securities we can compute the
variance-covariance matrix among all the securities. The computation
can be achieved with the pandas function cov() which calculates the
covariance matrix of a dataframe.

= stockReturns.cov()

= np.array(cov)

cov
covarianceMatrix
print ("
display(cov)
Symbols BP
Symbols

BP 0.000215 O
CELP 0.000081 O
CEO 0.000160 O
CVI 0.000119 O
CVX 0.000119 O
CZZ 0.000123 O

Covariance Matrix

Covariance Matrix

CELP

.000081
.001305
.000119
.000106
.000073
.000140

O O O O O O

CEO

.000160
.000119
.000299
.000130
.000118
.000152

O O O O O O

B " )

CVI CVX CzzZ
.000119 0.000119 0.000123
.000106 0.000073 0.000140
.000130 0.000118 0.000152
.000705 0.000105 0.000133
.000105 0.000162 0.000098
.000133 0.000098 0.000594

The correlation matrix can be computed accordingly, with the corr()

function:

correlation = stockReturns.corr()
Correlation Matrix
correlation.style.background_gradient (cmap=’Wistia’).

—set_precision(4)

print ("

Portfolio Optimisation

In this section we attempt to optimise the portfolio of securities, using
the mean - variance method. The optimisation problem is a quadratic
bi-objective problem, which will be solved parametrically setting the
expected return as a parameter. We use the scipy optimiser library in

order to solve the problem:
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Global Minimum Variance Portfolio

Initially, we compute the global minimum variance portfolio (GMVP)
using the scipy minimise function. The minimise function takes as an
argument the mean return column-vector and the covariance 2D matrix
and computes the proportions of the GMVP minimising the quantity
defined in the function named ‘Portfolio Volatility’ which is the standard
deviation of the portfolio. Additionally, we set the constraint that the
weights sum to 1 and that the bounds of the proportions are (0,1),
imposing the short sales restriction.

#0bjective Function
def portfolioVolatility(weights, MeanReturn, covarianceMatrix):
std = np.sqrt(np.dot(weights.T, np.dot(covarianceMatrix,.
—weights)))
return std

#Constraints

args = (MeanReturn, covarianceMatrix)

constraints = ({’type’: ’eq’, ’fun’: lambda x: np.sum(x) - 13})
bound = (0,0.5)

bounds = tuple(bound for asset in range(numOfSecurities))

#Optimisation Function

minVolatilityPortfolio = sco.minimize(portfolioVolatility,.
—numOfSecurities*[1./numOfSecurities,], args=args,.
—method="SLSOP’, bounds=bounds, constraints=constraints)

sdPortl = np.sqrt(np.dot(minVolatilityPortfolio[’x’].T, np.
—dot(covarianceMatrix, minVolatilityPortfolio[’x’])))
retPortl = np.sum(MeanReturn*minVolatilityPortfolio[’x’] )

print ("Risk of minimum volatility portfolio:", sdPortl)

print ("Return of minimum volatility portfolio:", retPortl)

print("Sharpe Ratio of minimum volatility portfolio:", retPortl/
—»sdPort1)

fig = plt.figure()

plt.bar(tickers,minVolatilityPortfolio[’x’], color=’b’)

fig.suptitle(’Minimum Volatility Portfolio’, color=’white’,.
—size="18")

plt.xlabel (’Stocks’, size=’14")

plt.ylabel(’Portfolio Percentage’, size=’14’)

Risk of minimum volatility portfolio: 0.01185387330551697
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Return of minimum volatility portfolio: 0.0005110703485548262
Sharpe Ratio of minimum volatility portfolio: 0.04311420709355536

Text (0, 0.5, ’Portfolio Percentage’)

Minimum Volatility Portfolio
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Max Sharpe Ratio Portfolio

With the same function we can compute the portfolio that maximises
the sharpe ratio. The only difference between this and the previous step
is the different minimisation function, which now is altered in order to
maximise sharpe ratio. Because of the definition of the scipy minimise
function we should form a minimisation problem. Therefore, we define
the quantity of negative sharpe ratio, which should be minimised in order
to maximise positive sharpe ratio.

#0bjective Function
def negSharpeRatio(weights, MeanReturn, covarianceMatrix):
returns = np.sum(MeanReturn*weights )
std = np.sqrt(np.dot(weights.T, np.dot(covarianceMatrix,.
—weights)))
return (- returns / std)

#Constraints

args = (MeanReturn, covarianceMatrix)

constraints = ({’type’: ’eq’, ’fun’: lambda x: np.sum(x) - 13})
bound = (0,0.5)
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bounds = tuple(bound for asset in range(numOfSecurities))

#Optimisation Function

maxSharpeRatioPortfolio = sco.minimize(negSharpeRatio,.
—numOfSecurities*[1./numOfSecurities,], args=args,.
—method=’"SLSQOP’, bounds=bounds, constraints=constraints)

sdPort2 = np.sqrt(np.dot(maxSharpeRatioPortfolio[’x’].T, np.
—dot(covarianceMatrix, maxSharpeRatioPortfolio[’x’])))
retPort2 = np.sum(MeanReturn*maxSharpeRatioPortfolio[’x’] )

print ("Risk of maximum sharpe ratio portfolio:", sdPort2)
print ("Return of maximum sharpe ratio portfolio:", retPort2)
print ("Maximum Sharpe Ratio:", retPort2/sdPort2)

fig = plt.figure()

plt.bar(tickers,maxSharpeRatioPortfolio[’x’], color=’b’)

fig.suptitle(’Maximum Sharpe Ratio Portfolio’, color=’white’,.
—8ize="18")

plt.xlabel (’Stocks’, size=’14")

plt.ylabel(’Portfolio Percentage’, size=’14’)

Risk of maximum sharpe ratio portfolio: 0.015744182005376268
Return of maximum sharpe ratio portfolio: 0.001315897380338851
Maximum Sharpe Ratio: 0.0835799141479375

[13]: Text(0, 0.5, ’Portfolio Percentage’)

Maximum Sharpe Ratio Portfolio
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[14]: #Objective Function
def negReturn(weights, MeanReturn, covarianceMatrix):
returns = np.sum(MeanReturn*weights )
return (- returns)

#Constraints
args = (MeanReturn, covarianceMatrix)
constraints = ({’type’: ’eq’, ’fun’: lambda x: np.sum(x) - 13})

bound = (0,0.5)
bounds = tuple(bound for asset in range(numOfSecurities))

#O0ptimisation Function

maxReturnPortfolio = sco.minimize(negReturn, numOfSecuritiesx*[1./
—numOfSecurities,], args=args, method=’SLSQP’, bounds=bounds, .
—.constraints=constraints)

sdPort3 = np.sqrt(np.dot(maxReturnPortfolio[’x’].T, np.
—dot (covarianceMatrix, maxReturnPortfolio[’x’])))
retPort3 = np.sum(MeanReturn*maxReturnPortfolio[’x’] )

print ("Risk of maximum return portfolio:", sdPort3)

print ("Maximum Return:", retPort3)

print ("Sharpe Ratio of maximum return portfolio:", retPort3/
—sdPort3)

fig = plt.figure()

plt.bar(tickers,maxReturnPortfolio[’x’], color='b’)
fig.suptitle(’Maximum Return Portfolio’, color=’white’, size=’18’)
plt.xlabel (’Stocks’, size=’14")

plt.ylabel (’Portfolio Percentage’, size=’14’)

Risk of maximum return portfolio: 0.016711916652493088
Maximum Return: 0.0013399086900049058
Sharpe Ratio of maximum return portfolio: 0.08017684134422834

Maximum Return Portfolio

BP CELP CEO o]
Stocks
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Efficient Frontier

In this step, we parametrically solve the same problem in order to
gradually find the efficient frontier. Therefore, we compute a number
of efficient portfolios between the GMVP and the maximum return
portfolio.

numOfPortfolios = 20
returnRange = np.linspace(retPortl, retPort3, numOfPortfolios)
efficientFrontier = []
AllReturns = []
A11SDs = []
for target in returnRange:
args = (MeanReturn, covarianceMatrix)
constraints = ({’type’: ’eq’, ’fun’: lambda x: np.
—sum(MeanReturn*x) - target},
{’type’: ’eq’, ’fun’: lambda x: np.
—sum(x) - 1})
bounds = tuple((0,0.5) for asset in range(numOfSecurities))
result = sco.minimize(portfolioVolatility, numOfSecurities*[1./
—numOfSecurities,], args=args, method=’SLSQP’, bounds=bounds, .
—.constraints=constraints)
efficientFrontier.append(result)
A11SDs . append(np.sqrt(np.dot(result[’x’].T, np.
—dot(covarianceMatrix, result[’x’]))))
Al1Returns.append(np.sum(MeanReturn*result[’x’]))

fig = plt.figure(figsize=(14, 8))

ax = plt.subplot(1l,1,1)

plt.scatter(sdPortl, retPortl, c=’b’, marker=’*’, s=100,.
—label="Minimum Volatility’)

plt.scatter(sdPort2, retPort2, c=’g’, marker=’*’, s=100,._
—label="Maximum Sharpe Ratio’)

plt.plot([p[’fun’] for p in efficientFrontier], AllReturns,.
—~linestyle=’-.’, color=’red’, label=’efficient frontier’)

ax.set_title(’Portfolio Optimization based on Efficient Frontier’,.
—color="white’, size=’187)

plt.xlabel(’Portfolio Volatility’, size=’14’)

plt.ylabel(’Portfolio Returns’, size=’14’)

plt.legend(prop={’size’: 12})

<matplotlib.legend.Legend at 0x7f1f488ffb90>
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Portfolio Optimization based on Efficient Frontier
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The formulated portfolios are presented below:

efficientPortfolios = [0 for i in range(numOfPortfolios)]
for i in range(numOfPortfolios):
efficientPortfolios[i] = efficientFrontier[i].x

weightingFactor = [[0 for i in range(numOfPortfolios)] for j in.
—range (numO0fSecurities)]
for i in range(numOfSecurities):
for j in range(numOfPortfolios):
weightingFactor[i] [j] = efficientFrontier[j].x[i]

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(16,9))

ax = fig.add_subplot(111l, projection=’3d’)

for ¢, z in zip([’r’, ’g’, ’b’, ’y’, ’c’, ’m’], [0, 1, 2, 3, 4,.
r>5:|>:

xs = np.arange (numOfPortfolios)
ys = weightingFactor[z]
cs = [c] * len(xs)

ax.bar(xs, ys, zs=z, zdir=’y’, color=cs, alpha=0.7, width=0.4)
plt.yticks(np.arange(6), tickers)
plt.xticks(np.arange (num0fPortfolios))

ax.set_xlabel (’Portfolios’)
ax.set_ylabel (’Securities’)
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ax.set_zlabel (’Proportion’)
ax.set_title(’Set of Efficient Portfolios’, color=’white’,._
~8ize="18")

[16]: Text(0.5, 0.92, ’Set of Efficient Portfolios?’)

Set of Efficient Portfolios

Security average proportion and participation

Finally, we can determine the percrentage of participation of each
security in the efficient portfolios in order to obtain another perspective
of the solution. In the following section, we present the according idea:

[17]: securityParticipation = [0 for i in range(numOfSecurities)]
for i in range(numOfSecurities):
for j in range(numOfPortfolios):
if weightingFactor[i] [j] >= 0.05:
securityParticipation[i] = securityParticipation[i] + 1
securityParticipation[i] = securityParticipation[i] /.
—num0fPortfolios

securityAvgProportion = [0 for i in range(numOfSecurities)]
for i in range(numOfSecurities):

securityAvgProportion[i] = np.mean(weightingFactor[i])

fig = plt.figure(figsize=(12,7))
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ax = fig.add_subplot(111)

for i in range(numOfSecurities):
plt.scatter(securityParticipation[i],.
—securityAvgProportion[i], label=tickers[i], s=200)
plt.legend(prop={’size’: 12})
ax.set_xlabel (’Average Participation’)
ax.set_ylabel(’Average Proportion’)
ax.set_title(’Security Evaluation’, color=’white’, size=’18’)

[17]: Text(0.5, 1.0, ’Security Evaluation’)

Security Evaluation

04 06
Average Participation

The securities which are placed in the upper right section of the figure
are the most dominant investment opportunities.
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CHAPTER 6

Empirical Testing

6.1 Introduction

This chapter presents the empirical testing of the proposed methodology on real
data. This step is very important, because it is necessary that the methodology is
explicitly tested to verify its validity. Consequently, a large experimental application
of the proposed methodological framework was conducted, including securities from
four stock exchanges (NYSE, NASDAQ), Paris and Tokyo). Thus, every step of
the methodological framework is examined, while the results are tested with an
out-of-sample validation process.

The input data for the first phase of the process (incl. financial indexes of the
securities) were drawn from www.investing.com. The input data for the second
phase of the process (incl. historical data for time-horizon of 3 years) were drawn
from the www.finance.yahoo.com.

In the second section of the chapter, we present the main characteristics of the
application field. The third section of the chapter includes a detailed description
of the empirical testing process for NYSE stock exchange. The corresponding
procedure for the other three stock exchanges (NASDAQ, Paris and Tokyo) is
described in appendix B. This section is divided into two parts. The first part
describes the first phase of the methodology while the second part presents the
results of the second phase of the methodology. Finally, the fourth section contains
the out-of-sample validation procedure of the results.
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6.2 Empirical Testing Information

The proposed methodology was applied to four stock exchanges: (a) NYSE, (b)
NASDAQ, (c¢) Paris and (d) Tokyo. The total number of the examined securities is
about two thousands, while the time horizon of the analysis was set to four calendar
years.

The set of the examined securities was splited according to the industrial sector
and the stock exchange of each security. The companies which participated in the
empirical testing process belong to three industrial sectors: (a) technological, (b)
energy and (c) financial. The input data for the first phase were fetched from the
www .investing. com database. However, for a large number of securities there were
insufficient data. Therefore, the companies that did not satisfy the requirements
(missing data, zero values etc.) were excluded from the experiment. In table|6.1| we
record the securities of each stock exchange, splitted according to their industrial
sector. In the last column we present the total number of securities in each sector
(including the securities with insufficient data).

. Number of Number of securities | Total number
Stock exchange | Industrial sector . .\ . S I,
experiment securities with missing data of securities
technology 69 177 246
NYSE energy 89 131 220
financial 358 461 819
technology 326 213 539
NASDAQ energy 6 40 46
financial 93 471 564
technology 50 91 141
Paris energy 7 8 15
financial 33 24 57
technology 485 263 748
Tokyo energy 30 4 34
financial 143 51 194

Table 6.1: Empirical testing input information

In tables[6.2]-[6.5] there is a presentation of the securities of each stock exchange.
More specifically, the securities of NYSE stock exchange are recorded in table [6.2]
the securities of NASDAQ stock exchange are recorded in table[6.3] the securities of
Paris stock exchange are recorded in table and, finally, the securities of Tokyo
stock exchange are recorded in table [6.5]

These tables include only the securities which were used in the empirical testing
process (companies with missing data are not recorded). The first column includes
the securities of the technological sector, the second column includes the securities
of the energy sector and the third column includes the securities of the financial
sector.
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Technology Energy Financial
1 ABB ADR Petroleo Brasileiro ADR Reptg 2 Pref | Nuveen CA MVF 2
2 Accenture Phillips 66 Nuveen High Income 2020 Target Term
3 SAP ADR Phillips 66 Partners LP Nuveen Dow 30Sm
4 Infosys ADR Baker Hughes A Ellsworth Growth Pref A
5 Wipro ADR GasLog Partners Pref A Federal Agricultural Mortgage A
6 BT ADR Adams Resources&Energy Chimera Investment Pref A
7 STMicroelectronics ADR | Ecopetrol ADR Ares Management Pref A
8 Canon ADR Total ADR Apollo Global Management A
9 Agilent Technologies Petroleo Brasileiro Petrobras ADR Ladder Capital A
10 | Allegion PLC CNOOC ADR Aberdeen Emerging Markets Equity
11 Ametek Sinopec Shanghai Petrochemical ADR | Aberdeen Asia-Pacific
12 | Amphenol Royal Dutch Shell ADR Adams Diversified Equity Closed
13 AO Smith Equinor ADR Barclays ADR
14 Scne App In ENI ADR Santander Chile ADR
15 | Rockwell Automation PetroChina ADR Sumitomo Mitsui Financial ADR
16 | AVX Transportadora Gas ADR Mitsubishi UFJ Financial ADR
17 | AZZ BP ADR China Life Insurance ADR
18 | Badger Meter Royal Dutch Shell B ADR Aegon ADR
19 Belden Plains All American Pipeline Banco Bilbao ADR
20 | Regal Beloit YPF Sociedad Anonima Credit Suisse ADR
21 Benchmark Electronics Archrock Prudential Public ADR
22 Broadridge Teck Resources B Lloyds Banking ADR
23 | BWX Tech BP Prudhoe Bay Royalty Trust ING ADR
24 | CAE Inc. Cabot Oil&Gas BBVA Banco Frances ADR
25 | Jabil Circuit Canadian Natural Santander ADR
26 | TE Connectivity Cenovus Energy Inc Itau CorpBanca ADR
27 | Issuer Direct Corp Chevron Westpac Banking ADR
28 | CTS Corp Cimarex Energy Nuveen California Div Advantag Muni
29 | Danaher CONSOL Coal BlackRock Long Term Muni Advantage
30 | Deluxe Concho Resources Aflac
31 DXC Technology ConocoPhillips AG Mortgage Investment
32 Eaton Continental Resources AG Mortgage Invest Trust Pb Pref
33 | Espey Mfg&Electronics Cosan Ltd AG Mortgage Invest Trust Pa Pref
34 Methode Electronics Crestwood Equity Partners LP Federal Agricultural Mortgage
35 | Emerson Crossamerica Partners LP Great Ajax Corp
36 | Energizer CVR Energy Alliance Data Systems
37 | Enersys Cypress Energy Partners LP AllianceBernstein Holding LP
38 | ESCO Technologies Delek Logistics Partners LP AllianzGI Diversifiedome Convertibl
39 | Evertec Inc Delek US Energy AllianzGI Equity Convertible Closed
40 | FactSet Research Devon Energy Ares Dynamic Credit Allocation Inc
69 | Xerox MPLX LP Arthur J Gallagher
70 Suburban Propane Partners LP Western Asset Mortgage
89 Williams Great Western Bancorp Inc
90 Berkshire Hills Bancorp
358 Westwood
Table 6.2: List of NYSE securities used in empirical testing
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Technology Energy Financial
1 Bel Fuse A Diamondback Nuveen NASDAQ 100 Dyn Over
2 Cognizant A Alliance Resource 1st Source
3 Activision Blizzard Viper Energy Ut 1st Constitution Bancorp
4 Formula Systems ADR Dorchester Minerals | Bancorp 34
5 LM Ericsson B ADR Hallador National General A Pref
6 Allied Motion TransGlobe Energy | Donegal A
7 Amdocs ACNB
8 American Software Hennessy Ad
9 Analog Devices Grupo Financiero Galicia ADR
10 | Apple Alcentra Capital Corp
11 Applied Materials Alerus Fin
12 | Jack Henry& Associates Amark Preci
13 | AstroNova America First Tax
14 | AudioCodes German American Bancorp
15 | Hollysys Automation Tech American National Bankshares
16 | Avnet American River
17 | Bel Fuse B Atlantic American
18 Blackbaud American National Insurance
19 Broadcom Ameris
20 | Bruker AMERISAFE
21 Cabot AmeriServ
22 | Camtek TD Ameritrade
23 | CDK Global Holdings LLC Ames
24 | CDW Corp Apollo Invest
25 Cerner Ares Capital
93 Xperi Northwest Bancshares
94 Huntington Bancshares
329 Zions

Table 6.3: List of NASDAQ securities used in empirical testing
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Technology Energy Financial
1 Akka Total BNP Paribas
2 | Alten TechnipFMC AXA
3 | Artois Nom. Rubis Credit Agricole
4 | Atos GTT Societe Generale
5 | Aubay Total Gabon Amundi
6 | Aures Tech Maurel et Prom Natixis
7 | Axway Docks des Petroles dAmbes | CNP Assurances
8 | Capgemini SCOR
9 Cofidur Euronext
10 | Coheris Eurazeo
11 | CS Communication FFP
12 | Dassault Systemes Rothschild & Co
13 | Delfingen CRCAM Langued
14 | Devoteam CRCAM Brie Picardie 2
15 | DNXcorp Coface
16 | Schneider Electric CRCAM Atlantique
17 | Environnement April
18 | Esker Crcam Touraine
19 | Evolis Crcam Ille-Vil
20 | Fiducial Office Altamir
21 | GEA Ca Toulouse 31 CCI
22 | Perrier Gerard Crcam Morbihan
23 | ITS Group Galimmo
24 | Groupe Open ABC Arbitrage
25 | Guillemot Viel Et Compagnie
26 | Harvest Union Financiere
27 | Hitechpros IDI
28 | Infotel Crcam Norm.Sei
29 | Ingenico Crcam Sud RA
30 | Innelec Lebon
31 | Pharmagest Interactive Crcam Loire Ht
32 | Lacroix Groupe IRD
33 | Legrand Idsud
34 | Linedata Services
35 | Mersen
36 | Neurones
37 | Prodware
38 | Quadient
39 | Rexel
Table 6.4: List of Paris Stock Exchange securities used in empirical testing
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25
26
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28
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34
35
36
37
38
39
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482

Technology

Yaskawa Electric Corp.
Advantest Corp.
Rohm Ltd
Hitachi
Corp
Nitto Denko Co

High-Technologies

Shimadzu Corp
Otsuka Corp
Disco Corp

Trend Micro Inc.

Ricoh

Konami Corp.

Itochu Techno Solutions
Hamamatsu Photonics KK
It Holdings Corp

SCSK Corp

Nikon Corp.

Brother Industries Ltd
Seiko Epson Cor
KakakuCom Inc

NGK Insulators

Alps Electric

Hirose Electric Co Ltd
Yokogawa Electric Corp.
Fuji Electric

SUMCO Corp.

Azbil Corp

Konica Minolta, Inc.
Nihon Unisys Ltd
Lasertec Corp

Taiyo Yuden

Ns Solutions Corp

Ibiden Co Ltd

Dainippon Screen Mfg.
Obic Business Consultants
Capcom Co Ltd

Koei Tecmo Holdings
Canon Marketing Japan Inc
DeNA Co

Anritsu Corp

FTGroup
Marvelous Inc

Obic Co Ltd

Energy

San-Ai Oil

BP Castrol KK

Mitsui Matsushima Co Ltd
Idemitsu Kosan Co Ltd

Sinanen Co Ltd

Itochu Enex Co Ltd

Toell Co Ltd

Nippon Coke & Engineering
Ltd

Inpex Corp.

Marubeni Corp.

Sojitz Corp.

Sala Corp

Kamei Corp

Iwatani Corp

Tokai Holdings Corp
MORESCO Corp

Cosmo Energy Holdings
Daimaru Enawin

K&O Energy Group Inc

JP Petroleum Exploration
Ltd

Yamashin-Filter

Mitsuuroko Group Holdings
Sumiseki Holdings Inc

JX Holdings, Inc.

Taiheiyo Kouhatsuorporated
Mitsui

Nissin Shoji

Toa Oil

Shinko Plantech

Sanrin

Financial

The 77 Bank Ltd
Nihon M&A Center
Acom Co Ltd
Activia Properties

MS&AD Insurance
Holdings

Advance Create
Japan Investment Adviser
Aeon Financial Service Co
Ltd

Aichi Bank Ltd

Aizawa Securities

Akatsuki

Akita Bank Ltd

Anicom Holdings Inc

Anshin Guarantor Service
Aomori Bank Ltd

Asax Co Ltd

Ashikaga Holdings

Astmax

Awa Bank Ltd

Yamanashi Chuo Bank

Group

Shiga Bank Ltd

Kiyo Bank Ltd

Bank of Kochi Ltd
Chukyo Bank Ltd

Taiko Bank Ltd

Kita Nippon Bank
Yamagata Bank Ltd
Oita Bank Ltd
Miyazaki Bank Ltd
Ehime Bank Ltd
Fukushima Bank Ltd
The Bank Of Kyoto Ltd
The Chugoku Bank Ltd
The Iyo Bank Ltd

The Hiroshima Bank Ltd
Chiba Kogyo Bank
Bank of Iwate Ltd
Michinoku Bank Ltd
San-in Godo Bank

United Urban

Table 6.5: List of Tokyo stock exchange securities used in empirical testing
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6.3 Results Presentation

In this section there is a detailed presentation of a set of tables and figures that
describe the input data and the obtained results of the empirical testing process
during each phase of the methodological framework.

It is necessary to mark the fact that this section refers to the NYSE stock
exchange experimental results. The results for the remaining three stock exchanges
are placed in Appendix B of the thesis.

The first part of the section includes the input data of the empirical testing. In
the second paragraph, the results of the first phase of the methodological framework
are presented. Finally, in the third paragraph, the results of the second phase of the
methodology are presented.

6.3.1 Phase I: Multicriteria portfolio selection

The first phase of the empirical testing includes the portfolio selection process,
based on multicriteria decision analysis methods. The aim of this phase is to locate
the securities which have a strong evolutionary potential. The process is based on
four multicriteria decision analysis methods.

The input values that must be determined in order to perform the four ranking
methods include the evaluation matriz which contains the performance of each
alternative in the determined financial criteria, as well as the offsets and the
thresholds for each criterion.

The selection of the offsets was determined according to three different
scenarios, in order to conduct a sensitivity analysis on the results. In this paragraph,
the results according to the scenario of equal offsets among the alternatives are
presented.

The thresholds configuration differs significantly according to the multicriteria
method. For each ranking method the configuration process was based on the
particion of the values’ range. Firstly, we determine the range by calculating the
minimum and maximum value of the alternatives for each criterion and secondly
we split this range as follows: (i) For ELECTRE III method which invloves three
different thresholds (preference p, indifference ¢ and veto v) we split the range
in four sections and assign the values respectively: ¢(i) < p(i) < wv(i), (ii) For
PROMETHEE II method which invloves two different thresholds (preference p and
indifference ¢) we split the range in three sections and assign the values respectively:
q(i) < p(i), (iii) MAUT and TOPSIS methods do not involve any thresholds.

In tables - the input data for each industrial sector are presented.
More specifically, the companies of the energy sector are recorded in table [6.6] the
companies of the financial sector are recorded in table and finally the companies
from the technological sector are recorded in table [6.8]
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Decision Matrix P/E Ratio | EPS | Rev (B) | Beta | DY(%) | Mon | YID (%) | 1 Year
Petroleo Brasileiro ADR Reptg 2 Pref | 12.23 1.15 101.69 1.47 | 1.61 3 11.56 -6.44
Phillips 66 9.21 11.57 | 109.68 1.07 | 3.38 5 23.74 -2.61
Phillips 66 Partners LP 13.26 4.16 1.1 0.86 | 6.19 b) 31.09 7.52
Baker Hughes A 170.91 0.13 | 23.54 1.02 | 3.3 1 1.4 -29.34
GasLog Partners Pref A 10.31 1.91 0.376 0.98 | 11.17 5 16.76 0.59
Adams Resources&Energy 40.77 0.73 | 1.84 0.78 | 3.21 1 -22.76 -25.88
Ecopetrol ADR 10.41 1.64 | 21.64 1.6 8.14 1 7.43 -33.1
Total ADR 12.39 3.96 | 185.04 0.75 | 5.92 1 -4.48 -19.06
Petroleo Brasileiro Petrobras ADR 12.25 1.15 101.69 1.47 | 1.61 2 8.3 -8.21
CNOOC ADR 8.24 18.09 | 34.02 1.07 | 6.25 1 -2.22 -18.59
Sinopec Shanghai Petrochemical ADR | 7.57 3.8 14.14 0.99 | 12.63 1 -33.32 -41.24
Royal Dutch Shell ADR 11.58 4.94 | 376.66 0.87 | 6.57 1 -1.73 -12.26
Equinor ADR 7.49 2.47 74.02 0.99 | 5.3 1 -12.71 -31.25
ENI ADR 14.31 2.1 128.73 0.78 | 6.16 1 -4.44 -16.71
PetroChina ADR 12.39 4.14 360.8 1.16 | 7.21 1 -16.62 -31.94
Transportadora Gas ADR 4.57 1.75 | 0.952 0.89 | 22.68 1 -44.67 -39.68
BP ADR 14.13 2.63 294.14 0.77 | 6.62 1 -2 -16.59
Royal Dutch Shell B ADR 11.58 4.94 | 376.66 0.87 | 6.57 1 -3.64 -14.19
Plains All American Pipeline 4.87 3.94 34.21 1.02 | 7.51 1 -4.39 -21.38
YPF Sociedad Anonima 8.36 1.1 12.49 1.46 | 2.37 1 -29.05 -35.55
Archrock 22.73 0.41 | 094 2.85 | 6.18 1 25.37 -17.78
Teck Resources B 4.45 3.34 9.61 1.51 | 1.02 1 -26.37 -31.73
BP Prudhoe Bay Royalty Trust 2.07 4.14 | 0.089 -0.2 | 26.03 1 -60.44 -76.49
Cabot Oil&Gas 9.08 1.93 | 2.44 0.54 | 2.06 1 -21.66 -25.11
Canadian Natural 8.28 3 15.45 1.21 | 3.96 1 3.11 -14.33
Cenovus Energy Inc 44.31 0.18 15.9 1.02 | 1.43 1 16.22 -6.74
Chevron 14.68 7.71 152.89 1.01 | 4.21 2 5.33 -2.7
Cimarex Energy 7.24 6.19 | 2.34 1.36 | 1.78 1 -27.23 -51.78
CONSOL Coal 7.2 1.75 | 0.34 1.06 | 16.26 1 -23.71 -30.94
Concho Resources 26.24 2.45 4.49 1.26 | 0.78 1 -37.55 -57.33
ConocoPhillips 8.88 6.18 | 35.94 1.05 | 3.06 1 -10.38 -24.31
Continental Resources 11.11 2.5 4.76 1.72 | 0.72 1 -30.93 -54.08
Cosan Ltd 12.35 1.22 | 5.78 1.19 | 0.55 5 70.45 107.76
Crestwood Equity Partners LP 13.75 2.55 3.22 2.04 | 6.85 3 25.47 -5.25
Williams 327.38 0.07 | 8.6 1.56 | 6.68 1 3.13 -14.77

Table 6.6: Evaluation Table input data for NYSE Energy Sector
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Decision Matrix P/E Ratio | EPS | Rev (B) | Beta | DY(%) | Mon | YID (%) | 1 Year
Nuveen CA MVF 2 43.47 0.38 | 0.002 0.06 | 3.09 5 8.01 4.77
Nuveen High Income 2020 Target Term | 18.47 0.54 0.01 0.02 | 3.19 2 -0.4 1.54
Nuveen Dow 30Sm 15.72 1.12 | 0.015 0.97 | 6.72 3 9.12 -4.71
Ellsworth Growth Pref A 9.21 1.15 | 0.003 0.88 | 4.54 5 11.69 6.43
Federal Agricultural Mortgage A 9.16 8.94 | 0.609 1.19 | 3.42 5 26.23 10.68
Chimera Investment Pref A 21.89 0.91 1.36 0.62 | 10.06 5 6.26 5.08
Ares Management Pref A 39.19 0.68 1.35 1.47 | 4.64 5 4.65 5.18
Apollo Global Management A 30.02 1.29 | 1.72 149 | 5.12 5 60.76 29.9
Ladder Capital A 12.6 1.36 | 0.553 1.03 | 7.94 5 10.73 -2
Aberdeen Emerging Markets Equity 10.31 0.68 | 0.02 0.71 | 3.08 3 11.34 10.3
Aberdeen Asia-Pacific 71.33 0.06 | 0.083 0.51 | 7.8 3 9.3 5.49
Adams Diversified Equity Closed 7.95 1.99 0.031 1 1.27 5 25.67 1.28
Barclays ADR 9.14 0.91 26.52 0.97 | 4.28 1 3.9 -16.36
Santander Chile ADR 16.67 1.73 2.66 0.63 | 3.83 1 6.76 -11.69
Sumitomo Mitsui Financial ADR 7.37 0.94 24.33 1.23 | 9.39 3 -3.08 -4.48
Mitsubishi UFJ Financial ADR 8.26 0.61 29.95 1.37 | 3.94 1 10.74 -1.76
China Life Insurance ADR 14.81 0.81 101.14 1.54 | 0.97 1 -8.39 -29
Aegon ADR 10.19 0.41 | 49.17 1.36 | 7.94 1 14.68 11.91
Banco Bilbao ADR 6.65 0.79 | 24.59 1.06 | 5.52 1 0.38 -8.61
Credit Suisse ADR 13.51 0.91 18.39 1.44 | 2.09 1 13.44 -6.31
Prudential Public ADR 20.99 1.77 | 65.73 1.46 | 3.4 1 -62.49 -57.29
Lloyds Banking ADR 11.21 0.27 | 54.24 1.06 | 7.13 1 6.19 -6.06
ING ADR 8.35 1.3 24.65 1.35 | 6.98 1 5.03 -6.26
BBVA Banco Frances ADR 2.69 1.58 1.45 0.73 | 6.13 2 20.31 5.84
Santander ADR 8.17 0.5 67.96 1.2 6.29 1 -4.91 -9.36
Itau CorpBanca ADR 18 0.63 1.56 0.97 | 1.98 1 -17.21 -23.76
Westpac Banking ADR 14.43 1.35 | 29.08 0.93 | 10.32 3 12.94 5.11
Nuveen California Div Advantag Muni 33.85 0.44 | 0.151 0.02 | 4.19 5 17.1 20.4
BlackRock Long Term Muni Advantage | 15.71 0.83 | 0.012 0.19 | 4.64 5 21.56 19.98
Aflac 12.81 4.12 21.94 0.71 | 2.04 5 15.58 19.14
AG Mortgage Investment 26.24 0.57 | 0.163 0.95 | 12.08 1 -5.84 -12.89
AG Mortgage Invest Trust Pb Pref 26.16 0.57 | 0.163 0.95 | 12.12 3 4.75 -0.08
AG Mortgage Invest Trust Pa Pref 26.16 0.57 | 0.163 0.95 | 12.12 4 5.74 0.83
Federal Agricultural Mortgage 9.37 8.94 | 0.609 1.19 | 3.34 5 38.58 20.28
Great Ajax Corp 12.48 1.24 | 0.118 0.79 | 8.25 5 29.96 20.83
Alliance Data Systems 7.6 16.12 | 6.69 1.68 | 2.06 1 -17.9 -44.78
AllianceBernstein Holding LP 12.02 2.34 0.251 1.19 | 8.45 3 1.72 -6.96
AllianzGI Diversifiedome Convertibl 9.77 2.32 0.014 1.39 | 8.84 3 22.72 0.26
AllianzGI Equity Convertible Closed 17.27 1.22 | 0.018 1.11 | 7.19 3 14.56 -0.28
Ares Dynamic Credit Allocation Inc 22.69 0.65 | 0.044 0.55 | 8.76 1 7.46 -4.08
BlackRock Credit Allocationome Tr 16.86 0.8 0.117 0.34 | 7.43 5 20.75 13.45
Allstate 14.32 7.55 | 42.12 0.82 | 1.85 5 30.09 11.26
Ally Financial Inc 8.19 391 | 5.79 1.29 | 2.12 5 35.17 19.42
Artisan Partners AM 10.48 248 | 0.792 1.88 | 9.23 1 21.69 -5.49
New America High Income Closed Fund | 10.24 0.89 | 0.02 0.55 | 7.28 5 19.18 10.3
Reinsurance of America 13.87 11.3 13.43 0.65 | 1.79 5 22.44 6.8
Bank of America 10.59 2.81 | 57.92 1.61 | 2.42 5 11.75 15.93
Nuveen Build America Bond Closed 30.63 0.71 0.04 0 5.35 5 12.86 12.4
American Financial 13.04 7.86 7.7 0.84 | 1.76 5 14.59 3.76
First American 12.52 4.76 | 5.76 0.88 | 2.82 5 32.82 27.53
Argo Group Int 20.6 3.29 1.91 0.58 | 1.83 5 1.58 12.93

Table 6.7: Evaluation Table input data for NYSE Financial Sector
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Decision Matrix P/E Ratio | EPS | Rev (B) | Beta | DY(%) | Mon | YTD (%) | 1 Year
ABB ADR 43.75 0.41 | 41.68 1.19 | 4.33 1 -4.52 -14.63
Accenture 25.05 7.36 43.22 1.056 | 1.74 5 30.37 15.3
SAP ADR 40.2 2.87 | 293 1.11 | 1.45 3 15.77 0.63
Infosys ADR 22.1 0.5 12.3 0.48 | 2.2 5 17.44 14.78
Wipro ADR 16.74 0.22 | 8.55 0.5 0.29 1 -5.71 -4.22
BT ADR 7.82 1.33 | 23.46 0.81 | 9.26 1 -30.46 -31.81
STMicroelectronics ADR | 16.03 1.22 | 9.42 1.41 | 1.22 5 41.5 17.96
Canon ADR 16.66 1.58 | 33.8 0.59 | 5.61 1 -4.71 -14.78
Agilent Technologies 21.76 3.4 5.09 1.45 | 0.89 5 9.69 11.71
Allegion PLC 23.03 4.37 | 2.8 1.16 | 1.07 5 26.33 20.21
Ametek 25.01 3.92 5.04 1.21 | 0.64 5 29.91 20.81
Amphenol 23.8 4.01 8.33 1.04 | 1.05 5 17.88 12.33
AO Smith 18.66 2.48 3.08 149 | 1.9 1 8.52 -2.97
Scne App In 29.82 2.8 5.58 1.31 | 1.77 5 30.96 17.34
Rockwell Automation 17.01 9.1 6.69 1.42 | 2.51 2 2.87 -10.41
AVX 9.68 1.6 1.74 1.17 | 2.98 2 1.38 -6.13
A77 18.11 2.13 0.953 1.43 | 1.76 1 -4.48 -15.61
Badger Meter 41.93 1.24 0.423 0.78 | 1.31 3 5.87 9.64
Belden 12.48 3.97 2.54 237 | 04 1 18.63 -18.62
Regal Beloit 12.62 547 | 3.53 1.6 1.74 1 -1.44 -9.69
Benchmark Electronics 23.01 1.28 2.5 0.85 | 2.04 5 38.67 26.32
Broadridge 30.08 4.07 | 4.36 0.7 1.76 5 27.31 4.42
BWX Tech 27.75 1.99 1.79 1.05 | 1.23 5 44.31 -4.07
CAE Inc. 26.88 0.91 2.58 0.82 | 1.25 5 32.81 29.22
Jabil Circuit 20.28 1.72 | 25.28 0.97 | 0.92 5 40.58 46.86
TE Connectivity 9.37 9.4 13.15 1.17 | 2.09 4 16.45 11.61
Issuer Direct Corp 61.59 0.17 | 0.015 0.76 | 1.95 1 -9.43 -31.92
CTS Corp 20.72 1.51 0.477 1.29 | 0.51 5 21.05 3.67
Danaher 40.74 3.41 20.25 0.95 | 0.49 5 34.56 34.22
Deluxe 19.87 2.27 2.01 1.35 | 2.66 1 17.33 -11.48
DXC Technology 6.7 3.94 | 20.36 1.96 | 3.18 1 -49.99 -69.67
Eaton 15.29 5.14 21.71 1.42 | 3.61 3 14.48 -1.47
Espey Mfg&Electronics 23.47 0.98 0.036 0.23 | 4.35 1 -7.7 -20.14
Methode Electronics 13.47 2.43 1.05 1.45 | 1.35 5 40.23 13.13
Emerson 20.23 3.14 18.29 1.37 | 3.08 3 8.87 -9.55
Energizer 91.94 0.43 | 2.23 0.67 | 3.05 1 -12.76 -33.7
Enersys 17.55 347 | 2.92 1.6 1.15 1 -21.48 -23.75
ESCO Technologies 24.93 3.24 | 0.807 1.07 | 04 5 22.44 324
Evertec Inc 23.81 1.31 0.471 0.73 | 0.64 5 8.4 35.67
FactSet Research 26.55 9.09 1.44 0.95 | 1.19 4 20.64 13.42
Fortive 36.69 1.77 | 6.31 1.22 | 0.43 1 -3.3 -17.39
GlobalSCAPE 21.23 0.55 | 0.037 0.57 | 0.52 5 174.9 204.11
Northrop Grumman 18.15 20.26 | 32.89 0.8 1.44 5 50.57 21.95
Hewlett Packard 19.41 0.73 | 29.87 1.63 | 3.19 1 6.81 -8.5
Hexcel 22.98 3.36 | 2.32 1.04 | 0.88 5 34.74 26.68
Hill-Rom 32.46 3.02 | 2.88 0.86 | 0.86 5 10.71 11.13
HP Inc 5.89 2.72 | 58.72 1.47 | 4 1 -21.65 -32.28
Hubbell 19.84 6.63 | 4.61 1.48 | 2.56 5 32.37 8.23
IBM 11.75 12.01 | 77.86 1.36 | 4.59 4 24.16 0.2
Vishay Intertechnology 8.32 2.09 2.99 1.51 | 2.18 3 -3.33 -5.12
MSCI 33.64 6.62 1.48 1.12 | 1.22 5 51.02 44.54
Table 6.8: Evaluation Table input data for NYSE Technology Sector
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In tables [6.9] - [6.11], the results of each multicriteria method are presented for
each sector. More specifically, the results for the energy sector are presented in
the results for the technological sector are presented in [6.10] and the results for the
financial sector are presented in [6.11]

‘ Name ‘ ELECTRE 3 ‘ MAUT ‘ PROMETHEE ‘ TOPSIS ‘
Petroleo Brasileiro ADR Reptg 2 Pref 7.69 39.55 14.15 48.63
Phillips 66 45.05 56.91 31.13 57.29
Phillips 66 Partners LP 38.22 51.22 30.92 52.48
Baker Hughes A -33.91 23.96 -19.06 31.68
GasLog Partners Pref A 50.10 49.62 31.80 50.48
Adams Resources&Energy -31.25 27.77 -14.89 41.21
Ecopetrol ADR -10.05 31.04 -5.20 45.89
Total ADR 41.59 40.34 15.27 50.14
Petroleo Brasileiro Petrobras ADR 3.77 36.04 10.80 47.80
CNOOC ADR 46.46 44.38 3.98 54.57
Sinopec Shanghai Petrochemical ADR 19.84 32.62 -6.79 44.53
Royal Dutch Shell ADR 53.86 47.88 18.97 54.97
Equinor ADR -15.52 33.15 2.12 45.97
ENI ADR 38.02 37.24 15.06 47.96
PetroChina ADR 48.68 43.36 5.50 51.66
Transportadora Gas ADR 40.38 34.41 -6.74 44.76
BP ADR 52.87 43.54 18.17 51.76
Royal Dutch Shell B ADR 53.58 47.59 17.83 54.60
Plains All American Pipeline -0.31 35.05 5.02 47.65
YPF Sociedad Anonima -46.86 25.51 -28.10 42.22
Archrock -56.54 25.91 -7.47 45.01
Teck Resources B -49.26 26.86 -29.55 43.31
BP Prudhoe Bay Royalty Trust 34.96 37.94 -5.74 44.78
Cabot Oil&Gas -26.78 30.46 -11.82 43.73
Canadian Natural -27.97 32.59 -3.75 46.99
Cenovus Energy Inc -29.00 30.58 -2.69 44.43
Chevron 39.26 45.11 25.05 53.07
Cimarex Energy -48.09 27.97 -32.74 43.53
CONSOL Coal 33.59 33.40 -2.31 45.33
Concho Resources -54.79 23.49 -35.52 39.76
ConocoPhillips -23.01 33.93 -7.10 47.14
Continental Resources -59.52 23.08 -39.99 40.95
Cosan Ltd 30.66 55.74 22.84 57.70
Crestwood Equity Partners LP -20.84 38.30 10.80 48.82
Crossamerica Partners LP 32.81 38.39 25.25 47.89
CVR Energy 35.79 49.90 26.43 52.54
Cypress Energy Partners LP 42.26 51.66 32.68 54.35
Delek Logistics Partners LP 28.54 39.40 22.82 48.59
Devon Energy -64.52 23.77 -32.66 42.93
Encana -59.82 21.64 -41.06 40.84
Holly Energy Partners LP 19.65 33.10 1.04 44.88
Williams -60.82 17.77 -17.75 22.76

Table 6.9: Phase A results for NYSE Energy Sector
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‘ Name ‘ ELECTRE 3 ‘ MAUT ‘ PROMETHEE ‘ TOPSIS ‘
ABB ADR 11.57 26.99 -22.32 30.96
Accenture 51.66 62.42 38.03 43.95
SAP ADR 1.74 40.47 -3.72 33.49
Infosys ADR 18.75 57.52 23.24 38.55
Wipro ADR -28.89 23.38 -31.61 29.81
BT ADR 17.89 33.19 -19.79 34.52
STMicroelectronics ADR 10.58 54.31 16.04 39.92
Canon ADR 10.05 32.53 -10.75 34.49
Agilent Technologies 6.24 52.21 7.06 36.48
Allegion PLC 13.61 54.72 18.49 38.85
Ametek 12.99 53.93 16.71 38.90
Amphenol 12.00 54.99 16.37 37.65
AO Smith -38.05 22.11 -34.04 30.28
Scnc App In 12.27 54.04 16.38 38.58
Rockwell Automation -14.77 33.92 -13.80 33.17
AVX -21.38 31.78 -19.73 31.76
AZ7 -41.62 20.76 -40.30 27.80
Badger Meter -10.87 36.89 -12.37 30.58
Belden -53.64 17.91 -41.09 29.68
Regal Beloit -39.90 22.81 -33.96 30.32
Benchmark Electronics 18.31 56.26 24.59 40.38
Broadridge 16.30 56.31 21.43 37.98
BWX Tech 9.47 53.57 14.17 37.62
CAE Inc. 14.35 54.87 21.77 39.49
Jabil Circuit 25.64 58.72 33.93 43.90
TE Connectivity 19.82 52.45 10.45 39.97
Issuer Direct Corp -42.43 18.35 -44.52 21.92
CTS Corp 4.02 51.20 5.86 35.71
Danaher 23.20 56.17 29.11 40.79
Deluxe -35.54 23.27 -30.23 30.79
DXC Technology -46.48 20.48 -38.87 25.97
Xerox -3.92 48.70 4.03 40.19

Table 6.10: Phase A results for NYSE Technology Sector
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Name ‘ ELECTRE 3 ‘ MAUT ‘ PROMETHEE ‘ TOPSIS ‘
Nuveen CA MVF 2 38.46 46.75 1.96 28.30
Nuveen High Income 2020 Target Term 25.03 39.12 -7.67 29.03
Nuveen Dow 30Sm 5.26 39.64 -7.08 28.91
Ellsworth Growth Pref A 170.49 47.55 3.71 30.42
Federal Agricultural Mortgage A 117.01 48.83 16.19 33.06
Chimera Investment Pref A -301.05 48.96 13.82 29.95
Ares Management Pref A -100.73 40.85 -12.01 27.03
Apollo Global Management A -206.36 49.72 14.39 35.24
Ladder Capital A 95.02 46.88 5.62 29.40
Aberdeen Emerging Markets Equity 125.01 41.73 -5.66 30.79
Aberdeen Asia-Pacific -20.04 37.36 -8.76 26.31
Adams Diversified Equity Closed 163.72 46.79 0.19 31.29
Barclays ADR -28.00 32.83 -20.10 28.61
Santander Chile ADR -148.79 33.15 -17.59 27.93
Sumitomo Mitsui Financial ADR 62.70 40.39 -6.28 29.70
Mitsubishi UFJ Financial ADR -42.05 33.11 -18.40 30.64
China Life Insurance ADR -10.27 29.70 -32.27 32.63
Aegon ADR -57.21 37.19 -0.50 33.61
Banco Bilbao ADR 74.45 33.46 -17.61 29.43
Credit Suisse ADR -133.90 30.77 -25.57 29.27
Prudential Public ADR -240.19 20.80 -35.21 23.81
Lloyds Banking ADR -44.85 35.85 -5.50 32.11
ING ADR -51.04 33.20 -15.32 30.23
BBVA Banco Frances ADR 361.38 41.06 0.82 31.81
Santander ADR -64.06 34.57 -12.04 32.36
Itau CorpBanca ADR -154.06 26.98 -38.60 24.33
Westpac Banking ADR 66.33 44.23 8.37 32.13
Nuveen California Div Advantag Muni -133.58 50.80 14.67 30.98
BlackRock Long Term Muni Advantage 128.35 52.47 19.33 32.74
Aflac 109.97 50.37 16.05 33.31
AG Mortgage Investment -242.42 32.11 -16.78 26.50
AG Mortgage Invest Trust Pb Pref -326.60 40.67 -1.94 28.96
AG Mortgage Invest Trust Pa Pref -364.20 43.98 1.55 29.05
Federal Agricultural Mortgage 131.64 50.89 23.55 34.86
Great Ajax Corp 140.96 52.22 23.22 33.46
Alliance Data Systems 46.65 25.47 -33.43 27.20
AllianceBernstein Holding LP 5.02 38.93 -8.49 28.66
AllianzGI Diversifiedome Convertibl 38.71 41.01 -1.25 30.88
AllianzGI Equity Convertible Closed -52.78 39.95 -5.22 29.30
Ares Dynamic Credit Allocation Inc -324.81 35.28 -5.84 28.43
BlackRock Credit Allocationome Tr 86.51 51.94 21.29 31.89
Bancroft 157.38 49.87 12.73 32.49

Table 6.11: Phase A results for NYSE Financial Sector
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Given the results of the multicriteria methods, the final step of the first
phase involves the cumulative ranking of the securities. The cumulative ranking

is graphically presented in figures -6.4

Figure shows the cumulative ranking for the securities that belong to the
technological sector.

Figure shows the cumulative ranking for the securities that belong to the
energy sector.

Finally, figure [6.3] shows the cumulative ranking for the securities that belong
to the financial sector. While in the first two cases the number of securities is not
too large, the financial sector contains a large amount of securities thus making
the visualisation indistinct. Therefore, figure [6.4 which includes only the most
favourable securities of the financial sector, has been incorporated.

Finally, the first phase terminates with the formulation of the most suitable
portfolio for each sector. Making the assumption that we select the 20-highest
ranked securities from each industrial sector, the portfolio has been formulated as
shown in table [6.12]

MCDA Final Ranking

TRE 3 (Ranking)
IETHEE (Ranking)

T
=
o

w
o
<
Q
(]

©
o
o
o

1\

Badger Meter

Leidos
Vishay Intertechnology

Danaher
TE Connectivity

Benchmark Electronics
Kemet

Nelnet
Broadridge

FactSet Research
Fortive

Hexcel
Ametek
SAP ADR
Emerson
ABB ADR
Enersys

CTS Corp

Rockwell Automation

United Microelectronics
Materion

Hewlett Packard

CAE Inc.
Espey Mfg&Electronics

Hubbell

P
9]
c
c
>

2

S
2
9]
>
S
c
S
o
€
9]
]
c
]
H
©
fid

Scnc App In

Amphenol
Evertec Inc
TransUnion
Yirendai Ltd

g
F]
2
c
9]
o]
o
<

Roper Technologies —
Infosys ADR
Allegion PLC
STMicroelectronics ADR
ESCO Technologies
Thomson Reuters
Servotronics
DXC Technology
Issuer Direct Corp

c
©
£
€
2
o)
a
o
£
S
o
=z

Companies
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First American
Walker&Dunlop

PennyMac Mortgage

Blackrock Muni Target Term Closed
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Companies

BanColombia
0ld Republic
Manulife

Federated Investors B
Central Securities

Essent Group Ltd
Ares Commercial RE

Franklin Universal Closed Fund

Nuveen Intermediate Du
Duff and Phelps Glob

BlackRock Long T
New America High Income Closed Fund

ranking for the most dominant NYSE energy securities

Technology Energy Financial
Northrop Grumman Phillips 66 Renaissancere
GlobalSCAPE NACCO Industries White Mountains Insurance
Accenture Cypress Energy Partners LP Triplepoint Venture
Synnex Global Partners JPMorgan
IBM Sunoco LP Cohen Steers TR Realty Closed
Taiwan Semiconductor TC Energy Santander Consumer USA Holdings Inc
Motorola Royal Dutch Shell ADR BlackRock Taxable Muni Bond Trust
Jabil Circuit GasLog Partners Pref A Hartford
Oracle Phillips 66 Partners LP Wells Fargo Real Estate Invest Pref
MSCI Royal Dutch Shell B ADR Nuveen AMT Free Muni Credit
Roper Technologies World Fuel Services MFS California
Danaher Cosan Ltd Wells Fargo Pref L
Leidos Magellan Saratoga Investment Corp
Benchmark Electronics CVR Energy Allstate
Infosys ADR BP ADR Blackrock Muni Target Term Closed
Hubbell Chevron PennyMac Mortgage
Nelnet CNOOC ADR Flaherty and Crumrine Dynamic Pref
CAE Inc. Exxon Mobil Metlife Inc Pref
Hexcel ONEOK PNC Financial
Broadridge PetroChina ADR Reinsurance of America
Table 6.12: Selected securities from NYSE stock exchange

156

Thesis




Empirical Testing

Figures - depict the security values for all companies that participate
in the process during the time horizon of the experiment. The visualisation of
the security values is an important step of the process, as it demonstrates the
characteristics of the securities. Table includes the most significant financial
indexes for the selected securities.

Visualisation of Security Values

N S
II“ "HMI,JH"\,.,-"J"/ \L‘_.J‘ Wy

(A
| “'I

Figure 6.6: Value Visualisation for NYSE energy securities
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Visualisation of Security Values

Figure 6.7: Value Visualisation for NYSE financial securities
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MinRet MaxRet Median Mean SD VaR99 VaR97 VaR95 Skewness Kurtosis MinPerSD
NOC 0.077808 | 0.063431 | 0.000676 | 0.000448 | 0.013467 | -0.049242 | -0.024005 | -0.019069 | -0.674012 | 6.010290 | 5.777613
GSB 0.145414 | 0.112329 | 0.000000 | 0.000529 | 0.025610 | -0.068713 | -0.049494 | -0.037134 | -0.178767 | 3.616340 | 5.678001
ACN 0.056337 | 0.051843 | 0.001509 | 0.000480 | 0.011213 | -0.035905 | -0.022927 | -0.017429 | -0.658652 | 3.198245 | 5.024272
SNX ~0.106592 | 0.083184 | 0.001181 | 0.000057 | 0.018689 | -0.062642 | -0.037670 | -0.027143 | -0.647182 | 4.394566 | 5.703297
IBM -0.089540 | 0.071541 | 0.000000 | -0.000162 | 0.012330 | -0.036385 | -0.022937 | -0.017667 | -0.478771 | 7.086411 | 7.261800
TSM 0.073449 | 0.052043 | 0.000766 | 0.000795 | 0.014376 | -0.039892 | -0.026994 | -0.022551 | -0.310216 | 1.943694 | 5.109037
MSI 20.054133 | 0.058159 | 0.001211 | 0.000757 | 0.012276 | -0.035977 | -0.026263 | -0.018172 | -0.169242 | 2.672601 | 4.409556
JBL -0.083417 | 0.134342 | 0.001056 | 0.000260 | 0.017974 | -0.050843 | -0.036011 | -0.020023 | 0.238747 | 7.066522 | 4.640916
ORCL | -0.107381 | 0.084395 | 0.000842 | 0.000388 | 0.013077 | -0.039936 | -0.027570 | -0.019280 | -0.578328 | 11.245113 | 8.211162
MSCI | -0.084600 | 0.142090 | 0.001597 | 0.001079 | 0.015456 | -0.039073 | -0.028230 | -0.021382 | 0.579821 | 12.724204 | 5.473484
ROP -0.083342 | 0.051727 | 0.000013 | 0.000553 | 0.012257 | -0.034488 | -0.022477 | -0.018602 | -0.770306 | 6.374014 | 6.799291
DHR -0.060621 | 0.063723 | 0.000638 | 0.000576 | 0.010544 | -0.029102 | -0.010503 | -0.015026 | 0.017092 | 5.072333 | 5.749169
LDOS | -0.234929 | 0.080472 | 0.000780 | 0.000090 | 0.017017 | -0.050421 | -0.026742 | -0.022870 | -3.663357 | 49.360685 | 13.805557
BHE 0.153169 | 0.056000 | 0.001546 | 0.000182 | 0.016489 | -0.050639 | -0.031140 | -0.024771 | -1.902171 | 13.712781 | 9.289050
INFY | -0.079694 | 0.066125 | 0.000000 | 0.000287 | 0.014153 | -0.036931 | -0.027278 | -0.021654 | -0.212132 | 3.641736 | 5.631038
HUBB | -0.119682 | 0.069599 | 0.000000 | 0.000088 | 0.014425 | -0.035496 | -0.026763 | -0.021403 | -0.945870 | 10.359222 | 8.296801
NNI 0.097416 | 0.127130 | 0.001553 | 0.000784 | 0.018295 | -0.048459 | -0.032050 | -0.026833 | 0.186857 | 6.357661 | 5.324801
CAE 20.052734 | 0.057234 | 0.000978 | 0.000734 | 0.012595 | -0.034766 | -0.023228 | -0.010422 | -0.077775 | 2.497146 | 4.186947
HXL -0.063379 | 0.080656 | 0.000662 | 0.000406 | 0.014856 | -0.038635 | -0.027071 | -0.022961 | 0.187992 | 3.901582 | 4.266157
BR -0.100575 | 0.089993 | 0.000853 | 0.000866 | 0.012592 | -0.032041 | -0.021722 | -0.016875 | -0.418587 | 10.824529 | 7.987370
PSX -0.052226 | 0.049867 | 0.000263 | 0.000156 | 0.013342 | -0.035732 | -0.020424 | -0.022674 | -0.069855 | 1.821956 | 3.914278
NC -0.088623 | 0.282276 | 0.002196 | 0.002056 | 0.028773 | -0.058687 | -0.050514 | -0.040731 | 2.434129 | 22.467297 | 3.080038
CELP | -0.207407 | 0.252144 | 0.000000 | 0.000172 | 0.038552 | -0.001408 | -0.071286 | -0.060333 | 0.572526 | 6.099420 | 5.379910
GLP 0206842 | 0.106250 | 0.000000 | 0.000207 | 0.023876 | -0.053926 | -0.030066 | -0.034394 | -0.404502 | 8.979767 | 8.663231
SUN 0.124734 | 0.152829 | 0.000000 | -0.000267 | 0.021671 | -0.054210 | -0.036399 | -0.030947 | 0.492752 | 9.187671 | 5.755837
TRP -0.044504 | 0.073667 | 0.000583 | 0.000225 | 0.012816 | -0.031137 | -0.024725 | -0.020866 | 0.150100 | 1.782739 | 3.472476
RDS-A | -0.079804 | 0.097415 | 0.000779 | 0.000454 | 0.015527 | -0.037409 | -0.028919 | -0.024275 | 0.232366 | 4.328223 | 5.139826
GLOP | -0.124204 | 0.118321 | 0.000432 | 0.000592 | 0.020525 | -0.053575 | -0.035926 | -0.029338 | 0.020716 | 5.040865 | 6.051268
PSXP | -0.076577 | 0.072812 | 0.000227 | -0.000340 | 0.016672 | -0.041726 | -0.030632 | -0.027324 | 0.064466 | 1.811138 | 4.593196
RDS-B | -0.088053 | 0.102781 | 0.001063 | 0.000488 | 0.015950 | -0.038365 | -0.028660 | -0.025406 | 0.231354 | 5.102997 | 5.520447
INT 0.191685 | 0.155319 | 0.000776 | -0.000544 | 0.022117 | -0.064801 | -0.039957 | -0.020993 | -0.994850 | 16.387535 | 8.666700
C7Z 0.149343 | 0.129114 | 0.001208 | 0.001521 | 0.025560 | -0.066787 | -0.042760 | -0.034030 | 0.060838 | 3.691457 | 5.842848
MMP | -0.070588 | 0.062347 | -0.000134 | -0.000142 | 0.014212 | -0.036271 | -0.026411 | -0.023050 | 0.204543 | 2.775524 | 4.066742
CVI 0.1202890 | 0.217920 | 0.000450 | 0.000220 | 0.028745 | -0.070141 | -0.052375 | -0.045590 | 0.747455 | 6.694582 | 4.497853
BP ~0.078008 | 0.073658 | 0.000286 | 0.000404 | 0.015362 | -0.040129 | -0.028710 | -0.024827 | -0.112656 | 2.572632 | 5.077860
CVX 0.057246 | 0.071827 | 0.000537 | 0.000348 | 0.013054 | -0.032956 | -0.024475 | -0.021098 | -0.029018 | 2.861619 | 4.385386
CEO -0.066644 | 0.089765 | 0.000671 | 0.000682 | 0.017798 | -0.047548 | -0.033100 | -0.027702 | 0.018867 | 1.796554 | 3.744422
XOM | -0.057277 | 0.044560 | 0.000357 | -0.000107 | 0.010948 | -0.032464 | -0.022010 | -0.018559 | -0.350791 | 2.129880 | 5.231755
OKE 0.102469 | 0.173115 | 0.001211 | 0.001221 | 0.020016 | -0.051275 | -0.034962 | -0.029202 | 0.618880 | 9.150568 | 5.119342
PTR -0.060679 | 0.079934 | -0.000577 | 0.000088 | 0.016750 | -0.042951 | -0.030406 | -0.025048 | 0.368817 | 2.304807 | 3.622653
RNR -0.081077 | 0.074774 | 0.000495 | 0.000293 | 0.012492 | -0.035414 | -0.022093 | -0.017910 | -0.126635 | 6.468945 | 6.490299
WTM | -0.047301 | 0.048832 | 0.000000 | 0.000263 | 0.009417 | -0.022648 | -0.016780 | -0.014517 | 0.239646 | 3.256256 | 5.022833
TPVG | -0.073724 | 0.075510 | 0.000000 | 0.000016 | 0.014773 | -0.042986 | -0.028417 | -0.023696 | -0.223974 | 3.070499 | 4.090380
JPM -0.059050 | 0.046361 | 0.000816 | 0.000650 | 0.013320 | -0.037998 | -0.025805 | -0.020167 | -0.246559 | 2.147910 | 4.433260
RFI -0.038693 | 0.034331 | 0.000000 | -0.000151 | 0.008889 | -0.026188 | -0.017003 | -0.015284 | -0.351757 | 1.720516 | 4.352864
SC 0.176916 | 0.159692 | 0.000000 | 0.000474 | 0.025096 | -0.071158 | -0.043279 | -0.034471 | -0.018554 | 9.003217 | 7.049472
BBN 0.036272 | 0.042471 | 0.000437 | 0.000045 | 0.007102 | -0.022376 | -0.015489 | -0.010964 | -0.250472 | 4.240600 | 5.107474
HIG -0.065277 | 0.056965 | 0.000245 | 0.000123 | 0.012738 | -0.035785 | -0.025203 | -0.021255 | -0.105075 | 3.405590 | 5.124597
NVG -0.030447 | 0.025381 | 0.000000 | -0.000043 | 0.005344 | -0.014984 | -0.011292 | -0.008829 | -0.469550 | 3.911184 | 5.696834
WFEC | -0.101485 | 0.056119 | 0.000000 | -0.000097 | 0.013671 | -0.039483 | -0.024013 | -0.021315 | -0.530029 | 5.006321 | 7.423595
SAR -0.084481 | 0.069110 | 0.000411 | 0.000484 | 0.015293 | -0.040435 | -0.030324 | -0.023445 | -0.231054 | 3.138825 | 5.524081
ALL -0.054447 | 0.061405 | 0.000770 | 0.000454 | 0.010449 | -0.030831 | -0.020749 | -0.015803 | -0.258645 | 4.073240 | 5.210772
BTT ~0.036693 | 0.032045 | 0.000000 | -0.000063 | 0.005571 | -0.014312 | -0.010154 | -0.008074 | -0.183475 | 6.377144 | 6.586755
PMT 0.120473 | 0.061785 | 0.000973 | 0.000395 | 0.013679 | -0.040792 | -0.027168 | -0.022181 | -1.322685 | 10.234292 | 8.806875
DFP 0.034714 | 0.035406 | 0.000372 | -0.000106 | 0.007421 | -0.021357 | -0.016318 | -0.012610 | -0.350134 | 2.451549 | 4.677797
MET 0.080176 | 0.085203 | 0.000435 | 0.000093 | 0.016102 | -0.050673 | -0.034506 | -0.026505 | -0.078583 | 4.120069 | 4.979360
PNC 0.059738 | 0.045776 | 0.000617 | 0.000367 | 0.013296 | -0.041085 | -0.026321 | -0.021236 | -0.485273 | 2.003130 | 4.492779
RGA 0.056277 | 0.053854 | 0.000842 | 0.000743 | 0.012492 | -0.037142 | -0.024446 | -0.019967 | -0.196426 | 2.613224 | 4.505104
Table 6.13: Statistical indexes for the selected securities
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6.3.2 Phase II: Multiobjective portfolio optimisation

The second phase of the methodological framework includes the portfolio
optimisation process. Therefore, the objective of this phase is the determination
of the proportion of each security in the portfolio, given a set of securities which
were selected in phase I. The results of the first phase (identification of the securities
which serve as the best investment prospects) are the input for the second phase of
the proposed methodology.

The portfolio includes securities from all three industrial sectors. Therefore, the
number of securities that will participate in the second phase of the process is 60.
More specifically, we select the 20 most favourable companies from each industrial
sector. Phase II includes four different methods for portfolio optimisation: (a)
mean - variance MIQP model, (b) goal programming model, (¢) PROMETHEE
flow multiobjective model and (d) genetic algorithm model.

Method 1: Mean - Variance MIQP model

The first method is based on a variation of the mean - variance approach, which
is extended with additional constraints. More specifically, the imposed constraints
are the following:

1. Minimum number of securities to participate in a portfolio equal to 4.

2. Maximum number of securities to participate in a portfolio equal to 40 of the
total number of securities.

3. Minimum percentage of capital invested in a security (if this security
participates to the portfolio) equal to 0.05%.

4. Maximum percentage of capital invested in a security (if this security
participates to the portfolio) equal to 40%.

5. Minimum percentage of capital invested on a specific industrial sector equal
to 5%.

6. Maximum percentage of capital invested on a specific industrial sector equal
to 70%.

Figure shows a 3-dimensional visualisation of the efficient portfolios. More
specifically, x-axis represents the pareto optimal portfolios, y-axis represents the 20
securities, while z-axis demonstrates the percentage of capital investment.

The minimum volatility and maximum sharpe ratio portfolios are depicted in

figure [6.9]

Table shows the composition of each pareto optimal portfolio, i.e. the
percentage of capital invested in each security.

160 Thesis



Empirical Testing

Finally, figure [6.10] shows the most dominant securities. The horizontal axis
denotes the average participation of each security in the portfolios. Therefore, the
securities which are placed in the right part of the figure participate in the majority
of the pareto optimal portfolio. The vertical axis denotes the average proportion
of each security in the portfolios. The securities which are placed in the upper
section of the figure participate with a greater proportion in the portfolios than the
securities which are placed lower. Conclusively, the securities which are placed in
the upper right section of the figure are the best investment options.

_aSet of Efficient Portfolios

Figure 6.8: Visualisation of efficient portfolios for NYSE stock exchange

Minimum Volatility Portfolio Maximum Sharpe Ratio Portfolio

(a) Minimum volatility portfolio for (b) Maximum sharpe ratio portfolio for
NYSE stock exchange NYSE stock exchange

Figure 6.9: GMVP & Max Sharpe Ratio portfolios
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Portf ‘ NOC GSB ACN SNX IBM TSM MSI JBL ORCL MSCI ROP DHR LDOS BHE DFP MET PNC RGA
1 0.01 0.00 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.00 0.0 0.00 0.0 0.01 0.08 0.0 0.00 0.00
2 0.01 0.00 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.00 0.0 0.01 0.0 0.00 0.08 0.0 0.01 0.00
3 0.01 0.01 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.00 0.0 0.01 0.0 0.00 0.07 0.0 0.01 0.00
4 0.00 0.01 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.00 0.0 0.02 0.0 0.00 0.06 0.0 0.00 0.00
5 0.01 0.01 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.00 0.0 0.02 0.0 0.00 0.06 0.0 0.00 0.00
6 0.00 0.01 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.00 0.0 0.03 0.0 0.00 0.05 0.0 0.00 0.01
7 0.00 0.01 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.00 0.0 0.03 0.0 0.00 0.04 0.0 0.00 0.02
8 0.00 0.01 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.00 0.0 0.03 0.0 0.00 0.03 0.0 0.00 0.02
9 0.00 0.01 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.00 0.0 0.03 0.0 0.00 0.00 0.0 0.00 0.03
10 0.00 0.01 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.00 0.0 0.03 0.0 0.00 0.00 0.0 0.00 0.03
11 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.01 0.0 0.03 0.0 0.00 0.00 0.0 0.00 0.03
12 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.01 0.0 0.03 0.0 0.00 0.00 0.0 0.00 0.03
13 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.02 0.0 0.03 0.0 0.00 0.00 0.0 0.00 0.03
14 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.02 0.0 0.03 0.0 0.00 0.00 0.0 0.00 0.03
15 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.03 0.0 0.03 0.0 0.00 0.00 0.0 0.00 0.03
16 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.03 0.0 0.03 0.0 0.00 0.00 0.0 0.00 0.04
17 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.04 0.0 0.03 0.0 0.00 0.00 0.0 0.00 0.04
18 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.05 0.0 0.03 0.0 0.00 0.00 0.0 0.00 0.04
19 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.05 0.0 0.03 0.0 0.00 0.00 0.0 0.00 0.04
20 0.00 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.06 0.0 0.03 0.0 0.00 0.00 0.0 0.00 0.05
21 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.06 0.0 0.03 0.0 0.00 0.00 0.0 0.00 0.05
22 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.06 0.0 0.02 0.0 0.00 0.00 0.0 0.00 0.06
23 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.07 0.0 0.02 0.0 0.00 0.00 0.0 0.00 0.06
24 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.07 0.0 0.01 0.0 0.00 0.00 0.0 0.00 0.07
25 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.08 0.0 0.02 0.0 0.00 0.00 0.0 0.00 0.06
26 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.08 0.0 0.02 0.0 0.00 0.00 0.0 0.00 0.06
27 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.09 0.0 0.01 0.0 0.00 0.00 0.0 0.00 0.07
28 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.10 0.0 0.02 0.0 0.00 0.00 0.0 0.00 0.07
29 0.00 0.01 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.11 0.0 0.01 0.0 0.00 0.00 0.0 0.00 0.07
30 0.00 0.01 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.12 0.0 0.02 0.0 0.00 0.00 0.0 0.00 0.07
31 0.00 0.00 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.13 0.0 0.02 0.0 0.00 0.00 0.0 0.00 0.07
32 0.00 0.00 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.14 0.0 0.02 0.0 0.00 0.00 0.0 0.00 0.07
33 0.00 0.00 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.15 0.0 0.01 0.0 0.00 0.00 0.0 0.00 0.07
34 0.00 0.00 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.16 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.07
35 0.00 0.00 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.17 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.06
36 0.00 0.00 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.18 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.06
37 0.00 0.00 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.19 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.05
38 0.00 0.00 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.21 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.03
39 0.00 0.00 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.22 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.02
40 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.24 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.01
41 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.23 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.00
42 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.23 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.00
43 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.22 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.00
44 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.21 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.00
45 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.21 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.00
46 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.23 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.00
47 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.19 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.00
48 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.15 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.00
49 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.11 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.00
50 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.08 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.00

Table 6.14: Set of efficient portfolios for NYSE stock exchange

Security Evaluation

Figure 6.10: NYSE securities comparative evaluation
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Method 2: Goal programming model

The second method is a goal programming model, with the following
constraints:
1. Goal 1: Portfolio beta set equal to 0.9
2. Goal 2: Portfolio dividend yield set equal to 1.5 %
3. Goal 3: Percentage of securities with revenue > 30 billions set equal to 50 %.

4. Minimum percentage of capital invested in a security (if this security
participates to the portfolio) equal to 0.03 %.

5. Maximum percentage of capital invested in a security (if this security
participates to the portfolio) equal to 20 %.

6. Minimum number of securities to participate in a portfolio equal to 20.
7. Maximum number of securities to participate in a portfolio equal to 40.

The three goals were equipped with deviational variables, while the four
constraints are strict. The goal programming model resulted in the portfolio

presented in table

NOC GSB ACN SNX IBM TSM MSI JBL ORCL  MSCI
0.1158 0.0300 0.0 0.0 0.0 0.0  0.0300 0.0 0.2000 0.0
ROP DHR LDOS BHE INFY HUBB NNI CAE HXL BR
0.0300 0.0299 0.0 0.0443 0.0356 0.0 0.0300 0.0300 0.0  0.0305
PSX NC CELP GLP SUN TRP RDS-A GLOP PSXP RDS-B
0.0 0.0300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
INT CzZZ MMP CVI BP CVX CEO XOM OKE PTR
0.0300 0.0300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RNR WTM TPVG JPM RFI SC BBN HIG NVG WFC
0.0300 0.0300 0.0 0.0 0.0 0.0 0.0 0.0300 0.0 0.0
SAR ALL BTT PMT DFP MET PNC RGA
0.0 0.1541 0.0300 0.0 0.0 0.0 0.0 0.0300

Table 6.15: Goal programming portfolio for NYSE stock exchange

Method 3: PROMETHEE flow multiobjective programming model

The third method is a biobjective programming model which includes two
objective functions: (a) the PROMETHEE net flow of the alternatives and (b)
the portfolio beta. The model is equipped with the following constraints:

1. Minimum percentage of capital invested in a security (if this security
participates to the portfolio) equal to 0.03 %.
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2. Maximum percentage of capital invested in a security (if this security
participates to the portfolio) equal to 20 %.

3. Minimum number of securities to participate in a portfolio equal to 20.

4. Maximum number of securities to participate in a portfolio equal to 40.

The problem was solved parametrically, setting portfolio beta as a parameter.
The efficient frontier is presented in the following figure.

The efficient portfolios are presented in the following table.

Efficient Frontier

b
]
o 0.

i)

F]
s3]

0.32 034
PROMETHEE Net Flow

Figure 6.11: Visualisation of efficient portfolios for NYSE stock exchange

Method 4: Genetic algorithm model

Finally, the fourth method is a genetic algorithm model. This method differs
from the previous methods, as it is a passive strategy for portfolio optimisation.
More specifically, the returns of the securities are compared to the returns of the
market index. The target is to maximise the number of time periods that the
constructed portfolio beats the market index.

The resulting portfolio of this method is presented in the following table.
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Portf ‘ NOC GSB ACN SNX IBM TSM MSI JBL ORCL MSCI ROP DHR LDOS BHE DFP MET PNC RGA
1 0.00 0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.03 0.00 0.00 0.03
2 0.03 0.03 0.00 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.03 0.00 0.00 0.00
3 0.03 0.03 0.00 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.03 0.00 0.00 0.00
4 0.03 0.03 0.03 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.03 0.00 0.00 0.00
5 0.09 0.03 0.03 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.03 0.00 0.00 0.00
6 0.14 0.03 0.03 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.03 0.00 0.00 0.00
7 0.18 0.03 0.03 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.03 0.00 0.00 0.00
8 0.20 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.0 0.03 0.00 0.00 0.00
9 0.20 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.0 0.03 0.00 0.00 0.00
10 0.20 0.03 0.03 0.08 0.00 0.03 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.0 0.03 0.00 0.00 0.00
11 0.20 0.03 0.03 0.10 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00
12 0.20 0.03 0.03 0.11 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00
13 0.20 0.03 0.03 0.16 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00
14 0.20 0.03 0.03 0.17 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.03 0.00 0.0 0.00 0.00 0.00 0.00
15 0.20 0.03 0.03 0.20 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00
16 0.20 0.03 0.04 0.20 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.03 0.00 0.0 0.00 0.00 0.00 0.00
17 0.20 0.03 0.04 0.20 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.03 0.00 0.0 0.00 0.00 0.00 0.00
18 0.20 0.03 0.09 0.20 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.03 0.00 0.0 0.00 0.00 0.00 0.00
19 0.20 0.03 0.09 0.20 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.03 0.03 0.0 0.00 0.00 0.00 0.00
20 0.20 0.00 0.08 0.20 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.03 0.0 0.00 0.00 0.00 0.00
21 0.20 0.00 0.04 0.20 0.03 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.03 0.0 0.00 0.00 0.00 0.00
22 0.20 0.00 0.04 0.20 0.03 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.03 0.0 0.00 0.00 0.00 0.00
23 0.18 0.00 0.03 0.20 0.03 0.03 0.00 0.03 0.03 0.03 0.00 0.00 0.03 0.0 0.00 0.00 0.00 0.00
24 0.13 0.00 0.03 0.20 0.03 0.03 0.00 0.03 0.03 0.03 0.00 0.00 0.03 0.0 0.00 0.00 0.00 0.00
25 0.09 0.00 0.03 0.20 0.03 0.03 0.00 0.03 0.03 0.03 0.00 0.00 0.03 0.0 0.00 0.00 0.00 0.00
26 0.04 0.00 0.03 0.20 0.03 0.03 0.00 0.03 0.03 0.03 0.00 0.00 0.08 0.0 0.00 0.00 0.00 0.00
27 0.03 0.00 0.03 0.17 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.00 0.12 0.0 0.00 0.00 0.00 0.00
28 0.03 0.00 0.03 0.10 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.00 0.19 0.0 0.00 0.00 0.00 0.00
29 0.03 0.00 0.03 0.04 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.00 0.20 0.0 0.00 0.00 0.00 0.00
30 0.00 0.00 0.03 0.00 0.03 0.00 0.00 0.00 0.03 0.03 0.03 0.00 0.20 0.0 0.00 0.03 0.03 0.00

Table 6.16: Set of efficient portfolios for NYSE stock exchange with MOIP PROMETHEE
method
NOC GSB ACN SNX IBM TSM MSI JBL ORCL MSCI
0.1  0.005 0.003 0.209 0.004 0.0 0.003 0.005 0.003 0.004
ROP DHR LDOS BHE INFY HUBB NNI CAE HXL BR
0.322  0.003 0.003 0.005 0.004 0.004 0.003 0.004 0.196 0.003
PSX NC CELP GLP SUN TRP RDS-A GLOP PSXP RDS-B
0.003 0.0 0.0 0.0 0.003 0.004 0.003 0.005 0.005 0.004
INT CZZ  MMP CVI BP CVvX CEO XOM OKE PTR
0.003  0.004 0.002 0.003 0.003 0.004 0.004 0.003 0.002 0.004
RNR WTM TPVG JPM RFI SC BBN HIG NVG WEC
0.003  0.003 0.004 0.004 0.004 0.004 0.003 0.003 0.005 0.004
SAR ALL BTT PMT DFP MET PNC RGA
0.004  0.002 0.004 0.003 0.003 0 0 0.003
Table 6.17: Genetic algorithm portfolio for NYSE stock exchange
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6.4 Out-of-sample Validation

Generally, the comparison of the output of the proposed methodological
framework to the market returns is a necessary procedure in order to evaluate
the accuracy of the methodology. This procedure is vital for the confirmation of
the produced output. It is obvious that the comparison must take place after the
moment of the investment. Therefore, the goal of the validation is to prove that the
produced portfolios perform equally good or better compared to the market indexes,
for a period after the analysis time horizon.

Therefore, the validation process is based on out-of-sample data, which do not
belong to the initial set of input data which were used during the analysis. Thus, the
portfolio optimisation procedure was based on daily data for the time period from
01/01/2016 until 31/12/2018. The validation process takes place in the following
time period, from 01/01/2019 until 30/06/2019. The comparison was conducted for
three different time periods: (a) short-term (1 month), (b) mid-term (3 months),
(c) long-term (6 months).

NYSE Stock Exchange The results of the validation process for NYSE
stock exchange are presented in table [6.18 Additionally, figure includes a
comparative graphical representation of the expected daily capital return (%) for the
selected optimal portfolio with every optimisation model compared to the market
index. The empirical testing procedure for NYSE stock exchange resulted in the
following findings:

e During the period of January 2019 (1 month time horizon), all four models
perform better than NYSE market index. The PROMETHEE flow model
seems to offer the best expected return compared to the other models, while
the MIQP mean - variance model offers the lowest expected return.

e During the period of January-March 2019 (3 month time horizon), the genetic
algorithm model seems to perform better than the other models. However, it is
important to note that all the models offer a higher expected return compared
to the market index.

e Finally, during the period of January-June 2019 (6 month time horizon), all
four models offer similar expected return, which is significantly higher than
the market index return. Among the four models, the MIQP mean - variance
model seems to offer slightly better results for a long term.
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. . Market | MIQP Mean | Goal MOIP PROMETHEE | Genetic
Time Horizon . . .
Index — Variance Programming | flow Algorithm
1 month 0.4048 0.441 0.4874 0.6948 0.468
3 months 0.2049 0.2648 0.2836 0.2932 0.3135
6 months 0.1182 0.2565 0.2336 0.2353 0.2119

Table 6.18: Expected daily capital return (%) for selected optimal portfolios and
market index (NYSE stock exchange)

Out-of-sample Validation

NYSE Stock Exchange

1 month 4 months & months

Figure 6.12: Comparative graphical representation of expected daily capital return
(%) for selected optimal portfolio and market index (NYSE stock exchange)

NASDAQ Stock Exchange The results of the validation process for NASDAQ
stock exchange are presented in table [6.19] Additionally, figure includes a
comparative graphical representation of the expected daily capital return (%) for
the selected optimal portfolio with every optimisation model compared to the market
index. The empirical testing procedure for NASDAQ stock exchange resulted in the
following findings:

e During the period of January 2019 (1 month time horizon), we observe
that all four models perform better than NASDAQ market index. The goal
programming model seems to offer the best expected return compared to the
other models, while the MIQP mean - variance model offers the lowest expected
return.

e During the period of January-March 2019 (3 month time horizon), we note that
all four models offer significantly better return than NASDAQ market index.
Among the four models, the genetic algorithm model seems to perform worse
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than the other models, while the other three models offer similar expected

return.

e Finally, during the period of January-June 2019 (6 month time horizon), it
is obvious that the goal programming model offers the best result, while the
PROMETHEE flow model performs equally well. As in the previous cases, all
four models are more profitable than the market index.

. . Market | MIQP Mean | Goal MOIP PROMETHEE | Genetic
Time Horizon . . .
Index — Variance Programming | flow Algorithm
1 month 0.4612 0.3318 0.2924 0.3719 0.3456
3 months 0.2914 0.1996 0.2938 0.2861 0.2807
6 months 0.1712 0.1904 0.2081 0.2766 0.1847

Table 6.19: Expected daily capital return (%) for selected optimal portfolios and
market index (NASDAQ stock exchange)

Out-of-sample Validation

NASDAQ Stock Exchange

Figure 6.13: Comparative graphical representation of expected daily capital return
(%) for selected optimal portfolio and market index (NASDAQ stock exchange)

PARIS Stock Exchange The results of the validation process for Paris stock
exchange are presented in table [6.20,  Additionally, figure includes a
comparative graphical representation of the expected daily capital return (%) for the
selected optimal portfolio with every optimisation model compared to the market
index. The empirical testing procedure for Paris stock exchange resulted in the
following findings:
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e During the period of January 2019 (1 month time horizon), only the goal
programming model performs better than CAC40 market index, while the
genetic programming model performs equally well. On the other hand the
PROMETHEE flow and the mean - variance models seem to offer lower
expected return compared to the market.

e During the period of January-March 2019 (3 month time horizon), the goal
programming model seems to perform better than all the other models, while
the genetic algorithm model offers similar expected return compared to the
market index.

e Finally, during the period of January-June 2019 (6 month time horizon),
the genetic algorithm model offers the greatest expected return. The only
model that performs slightly worse than the market index is the MIQP mean
- variance model.

. . Market | MIQP Mean | Goal MOIP PROMETHEE | Genetic
Time Horizon . . .
Index — Variance Programming | flow Algorithm
1 month 0.3517 0.2327 0.3864 0.2357 0.3384
3 months 0.2285 0.1852 0.3118 0.2355 0.1721
6 months 0.1513 0.0938 0.2391 0.1972 0.2692

Table 6.20: Expected daily capital return (%) for selected optimal portfolios and
market index (PARIS stock exchange)

Out-of-sample Validation

PARIS Stock Exchange
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Figure 6.14: Comparative graphical representation of expected daily capital return
(%) for selected optimal portfolio and market index (PARIS stock exchange)
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TOKYO Stock Exchange The results of the validation process for Tokyo
stock exchange are presented in table [6.21] Additionally, figure includes a
comparative graphical representation of the expected daily capital return (%) for the
selected optimal portfolio with every optimisation model compared to the market
index. The empirical testing procedure for Tokyo stock exchange resulted in the
following findings:

e During the period of January 2019 (1 month time horizon), all four models

perform better than Nikkei225 market index. The goal programming model
seems to offer the best expected return compared to the other models, while
the MIQP mean - variance and the genetic algorithm model offer the lowest
expected return.

During the period of January-March 2019 (3 month time horizon), all four
models continue to perform better than Nikkei225 market index. More
specifically, the goal programming model seems to perform slightly better than
the other models, while the genetic algorithm model offers the lowest expected
return.

Finally, during the period of January-June 2019 (6 month time horizon),
all four models offer higher expected return compared to the market index.
Among the four models, the goal programming model seems to offer slightly
better results for a long term.

. . Market | MIQP Mean | Goal MOIP PROMETHEE | Genetic
Time Horizon . . .
Index — Variance Programming | flow Algorithm
1 month 0.3277 0.5681 0.8468 0.6715 0.5368
3 months 0.139 0.3829 0.4103 0.3963 0.2942
6 months 0.0829 0.2032 0.288 0.2616 0.1368

Table 6.21: Expected daily capital return (%) for selected optimal portfolios and

market index (TOKYO stock exchange)
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Out-of-sample Validation

TOKYO Stock Exchange

Figure 6.15: Comparative graphical representation of expected daily capital return
(%) for selected optimal portfolio and market index (TOKYO stock exchange)

Conclusively, the out-of-sample validation certifies the validity of the
methodological framework. As stated in the previous paragraph the constructed
portfolios perform equally good or even better than the market index, thus rendering
the proposed methodology a reliable tool in the hands of the decision-maker.
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CHAPTER 7 s

Conclusion - Future Prospects

7.1 Conclusion

Nowadays, the necessity for integrated methodological frameworks and decision
support systems is stronger than ever. These methodologies should encapsulate all
the conflicting criteria and the interactions among them, as well as the uncertainty of
the financial market and the different profiles of the decision-makers. Consequently,
this thesis has contributed to the recognition of all the parameters of the portfolio
management problem and the interactions among all these factors. In this section,
we present the main conclusions of the previous chapters.

The fundamental mean-variance model is based on two criteria (return and
risk), which renders it insufficient to deal with a realistic problem. On the contrary,
an integrated approach demands the incorporation of all the conflicting criteria that
affect the security market. Consequently, the portfolio management problem is a
multiple-criteria problem which demands a multicriteria integrated methodological
framework.

The related methodologies overview leads to the conclusion that the
multicriteria decision analysis is the most suitable tool to use against the problem
of portfolio management. However, the existing methodologies have some major
disadvantages: (i) There are only few integrated methodologies that deal with
problem of portfolio management in a systemic and complete way and (ii) the
proposed methodologies involve large computational effort (even larger than the
mean-variance model) thus rendering them useless in the case that there is a large
number of securities.

Having recognised all the difficulties of the problem and the defficiencies in
the existing methodologies, the current thesis involves with the development of
a complete methodological framework for portfolio management. This framework
consists of two major phases: (i) The multicriteria portfolio selection phase and (ii)
the multiobjective optimisation phase. These two phases can be applied separately,
but they can also be used sequentially constituting an integrated methodological
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framework.

The process of portfolio management emphasises the necessity for modern
information system which implement the theoritical models efficiently. Therefore,
as part of this project an information system was designed which implements
the various methods. The programming language which was used for the whole
implementation is Python 3, accompanied with some scientific libraries such as
matplotlib, numpy and pandas. Additionally, the MCDA portfolio selection
subsystem was developped as a web application with a user-friendly user interface.

The proposed methodology was succesfully tested in four stock exchanges and in
three industrial sectors. The computational effort was significantly lower compared
to the conventional methods and the results of the proposed methodology in the
out-of-sample validation were very encouraging.

7.2 Future Prospects

The current thesis creates some future prospects of research on the portfolio
management problem. The major future prospects are the following:

Deployment of the whole information system as a web application:
As part of the project, an integrated decision support information system is
implemented. Additionally, the MCDA portfolio selection subsystem is deployed
as web application. An important future prospect in this field is the deployment of
the whole system as a web application. The implementation of the whole system
deployment is not of great difficulty, as the development of the other subsystems is
based on a generalisation of the existing application.

Connection of the information system to commercial applications: The
developed information system implements the proposed portfolio management
methodology, constituting an integrated decision support tool. The future prospect
in this scientific field includes the connection of the information system to existing
commercial applications. This connection would facilitate the decision support
procedure for each customer. However, this innovative prospect would lead to a
series of application security issues.
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Source Code Presentation

In this appendix we present the source code of the information system. The
appendix is organised in two paragraphs. In the first paragraph, there is a detailed
explanation of the code that implements the MCDA methods for portfolio selection,
whereas in the second paragraph there is a presentation of the multiobjective
portfolio optimisation techniques. The explanation of the source code is made with
Jupiter Notebook according to the presentation that was made in the main body of
the thesis.

Phase I: Multicriteria Portfolio Selection

The input data that is used in order to explain the source code is based
an original dataset of the experimental application. More specifically, it includes
financial indexes for the available securities of NYSE stock exchange that belong to
the technology industrial sector.

[1]: import csv
import numpy as np
import matplotlib.pyplot as plt
import fpdf
import math
import pandas as pd

After importing all necessary libraries we should define the input .csv
file that includes the financial indexes. This file is formulated from data
fetched by the investing.com database and it contains the evaluation
table for all criteria for each alternative.

[2] : | inputname = "/home/elissaios/Documents/Thesis/1) MCDA/1.NYSE/
—NYSE_TECHNQOLOGY.csv"
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file = open(inputname, "rt")
listl = list(csv.reader(file))

Now, listl contains all the information of the experiment of MCDA
portfolio selection. Therefore, the next step involves taking all the useful
data from this list.

[3]: criteria = int(list1[0][1])
alternatives = int(list1[1][1])
weights = [0 for y in range(criteria)]
optimizationType = [0 for y in range(criteria)l]
preferenceThreshold = [0 for y in range(criteria)]
criterion = [0 for y in range(criteria)l
indifferenceThreshold = [0 for y in range(criteria)]
criterionName = [0 for y in range(criteria)]
vetoThreshold = [0 for y in range(criteria)]
for i in range(criteria):
optimizationType[i] = int(list1[2][i+1])
weights[i] = float(1list1[3][i+1])
vetoThreshold[i] = float(list1[4][i+1])
criterion[i] = int(list1[7][i+1])
criterionName[i] = list1[9] [i+1]
preferenceThreshold[i] = float(list1[5][i+1])
indifferenceThreshold[i] = float(list1[6] [i+1])
decisionMatrix = [[0 for y in range(criteria)] for x in.
—range (alternatives)]
companyName = ["" for i in range(alternatives)]
for i in range(alternatives):
companyName [i] = 1ist1[i+10] [0]
for j in range(criteria):
decisionMatrix[i] [j] = float(list1[i+10][j+1])

In the following cell we print the decision matrix that we have taken from
the input list, in a dataframe form using pandas function dataframe as
follows:

[4]: print(" Decision Matrix ===\n")
df = pd.DataFrame.from_records(decisionMatrix, index=companyName..
- ,columns=criterionName)
display(df)

Decision Matrix
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P/E Ratio EPS Revenue (B) Beta Dividend Yield (%) \

ABB ADR 43.75 0.41 41.680 1.19 4. .33
Accenture 25.05 7.36 43.220 1.05 1.74
SAP ADR 40.20 2.87 29.300 1.11 1.45
Infosys ADR 22.10 0.50 12.300 0.48 2.20
Wipro ADR 16.74 0.22 8.550 0.50 0.29
Taiwan Semiconductor 24.51 2.00 32.670 0.97 3.26
Servotronics 7.20 1.37 0.051 0.53 1.62
Synnex 12.63 8.91 22.800 0.99 1.33
TransUnion 49.59 1.61 2.500 0.99 0.38
Xerox 12.01 2.40 9.380 1.80 3.48

Monthly YTD (%) 1 Year

ABB ADR 1.0 -4.52 -14.63
Accenture 5.0 30.37 15.30
SAP ADR 3.0 15.77 0.63
Infosys ADR 5.0 17.44 14.78
Wipro ADR 1.0 -5.71 -4 .22
Taiwan Semiconductor 5.0 32.57 23.37
Servotronics 2.0 -0.60 -4.90
Synnex 5.0 39.26 51.26
TransUnion 5.0 40.51 15.77
Xerox 4.0 45.85 14.27

[69 rows x 8 columns]

After we have translated all the data from the .csv file that was imported,
we present the source code of the implementation of the 4 MCDA ranking
methods for portfolio selection.

MAUT

Initially, we should calculate the normalised decision matrix:

0)
0)

[5]: maxValue = np.max(decisionMatrix, axis
minValue = np.min(decisionMatrix, axis

normalisedMatrix = [[0 for y in range(criteria)] for x in.
—range(alternatives)]
for i in range(alternatives):
for j in range(criteria):
if optimizationTypelj] ==
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—minValue[j])

normalisedMatrix[i] [j] =_
—(decisionMatrix[i] [j] - minValue[j])*1.0 / (maxValuel[j] -_

elif optimizationTypel[j] ==
normalisedMatrix[i] [j] = (maxValuel[j] -_
—decisionMatrix[i] [j1)*1.0 / (maxValue[j] - minValue[j])

Normalised decision Matrix.

df = pd.DataFrame.from_records(normalisedMatrix, index=companyName..
—,columns=criterionName)

display(df)

ABB ADR
Accenture
SAP ADR
Infosys ADR
Wipro ADR

Taiwan Semiconductor
Servotronics

Synnex

TransUnion

Xerox

ABB ADR
Accenture
SAP ADR
Infosys ADR
Wipro ADR

Taiwan Semiconductor
Servotronics

Synnex

TransUnion

Xerox

[69 rows x 8 columns]

Normalised decision Matrix

P/E Ratio

0.
.827771
.708517
.850992
.893183

SO O O O

O O O O O

680573

.832021
.968278
.92565635
.634603
.930416

O O O O O

O O O O O

EPS Revenue (B)

.018299
.362018
.139960
.022750
.008902
.096934
.065776
.438675

.077646
.116716

Dividend Yield (%)
0.
.161650
.129320
.212932
.000000

O O O O

O O O O O

450390

.331104
.148272
.115942
.010033
.355630

0.

o O O O

O O O O O

535230
.5565013
.376196
.157814
.109641
.419487
.000462
.292697

.031922
.120303

Monthly  YTD
0.

1
0
1
0

O B O B~

.00
.50
.00
.00

.00
.25
.00
.00
.75

00

o O O O O

O O O O O

.202188
.357330
.292410
.299835
.196896
.367113
.219618
.396861

.402419
.426164

Beta \
.611336
.668016
.643725
.898785
.890688

O O O O O

. 700405
.878543
.692308
.692308
.364372

O O O O O

&3] 1 Year
.201037
.310359
.266776
.308459
.239061

O O O O O

.339835
.236577
.441705
.312075
.306597

O O O O O

It is obvious that the values of the initial decision matrix have been
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normalised to 0-1. After the normalisation process the utility score is
calculated, as follows:

[6]: utilityScore = [0 for x in range(alternatives)]
utilityScorePer = [0 for x in range(alternatives)]

for i in range(alternatives):
tempSum = 0
for j in range(criteria):
tempSum += normalisedMatrix[i] [j] * weights[j]
utilityScore[i] = round(tempSum,4)
utilityScorePer[i] = round(round(tempSum,4) * 100,2)

print (" === Utility Score \n")
df = pd.DataFrame(utilityScore, index=companyName, .
—columns=["Score"])

display(df)

Utility Score

Score
ABB ADR 0.2699
Accenture 0.6242
SAP ADR 0.4047
Infosys ADR 0.5752
Wipro ADR 0.2338
Taiwan Semiconductor 0.6087
Servotronics 0.3268
Synnex 0.6304
TransUnion 0.5161
Xerox 0.4870

[69 rows x 1 columns]

Finally, the results should be sorted in order to find the ranking of
the method. The following shell describes this process and offers a
visualisation of the results.

[7]: tupledList = list(zip(companyName,utilityScorePer))
tupledListSorted = sorted(tupledList, key=lambda tup: tupl[i],._
—reverse=True)
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print (" MAUT Ranking \n")

df = pd.DataFrame(tupledListSorted, columns=["Company", "Score"])
df .index = df.index + 1

display(df)

i = np.arange(alternatives)
plt.figure(figsize=(16,9))
plt.bar(i+1, utilityScore, color = ’b’, edgecolor = ’black’)
plt.xlabel(’Alternatives’)
plt.ylabel(’Utility Score’)
plt.title(’MAUT Method’, fontsize=16)
ax = plt.gca()
ax.set_facecolor(’red’)
xlocs, xlabs = plt.xticks(np.arange(l, alternatives+1l, step=1))
xlocs=[i for i in range(l,alternatives+1)]
xlabs=[i/2 for i in range(l,alternatives+1)]
# plt.xzticks(zlocs, zlabs)
for i, v in enumerate(utilityScore):
plt.text(xlocs[i] -0.5/alternatives, v + 0.01, str(v),.
—~fontweight="bold’)

plt.show()

MAUT Ranking

Company Score
1 Northrop Grumman 69.84
2 GlobalSCAPE 67.71
3 IBM 63.81
4 Synnex 63.04
5 Accenture 62.42

65 Fortive 19.16

66 Issuer Direct Corp 18.35
67 Belden 17.91
68 Energizer 17.75
69 Yirendai Ltd 16.64

[69 rows x 2 columns]
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MAUT Method

07

06

0.5

=
=

Utility Score

=
W

02

01

123456786 910111213141516171819 202122 2324252627268 293031323334 35 3637 35 39404142 4344454647 454950 5152 53 54 555657 5859 606162 6364 65 6667 65659
Alternatives

TOPSIS

In TOPSIS method we initially calculate the normalised decision matrix
as you can see in the following cell:

[8]: normalisedDecisionMatrix = [[0 for i in range(criteria)] for y in.
—range(alternatives)]
for j in range(criteria):
sumOfPows = 0
for i in range(alternatives):
sum0fPows = sum0fPows + math.pow(decisionMatrix[i] [j],2)
sqSumOfPows = math.sqrt(sum0fPows)
for i in range(alternatives):
normalisedDecisionMatrix[i] [j] =_
—round(decisionMatrix[i] [j]1*1.0 / sqSumOfPows,3)

print (" Normalised decision Matrix.
— \n")

df = pd.DataFrame.from_records(normalisedDecisionMatrix,.
—index=companyName ,columns=criterionName)

display(df)

Normalised decision Matrix

P/E Ratio EPS Revenue (B) Beta \
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ABB ADR
Accenture
SAP ADR
Infosys ADR
Wipro ADR

Taiwan Semiconductor
Servotronics

Synnex

TransUnion

Xerox

ABB ADR
Accenture
SAP ADR
Infosys ADR
Wipro ADR

Taiwan Semiconductor
Servotronics

Synnex

TransUnion

Xerox

[69 rows x 8 columns]

.164
.094
.150
.083
.063

O O O O O

.092
.027
.047
.185
.045

O O O O O

O O O O O

o O O O O

.010
.187
.073
.013
.006
.051
.035
.226

.041
.061

Dividend Yield (%)

.208
.083
.070
.106
.014

O O O O O

.156
.078
.064
.018
.167

O O O O O

.267
277
.188
.079
.055

O O O O O

.210
.000
.146
.016
.060

O O O O O

Monthly

0.
.158
.095
.158
.032

SO O O O

SO O O O O

032

.158
.063
.158
.158
.126

.116
.103
.109
.047
.049

O O O O O

.095
.0562
.097
.097
.176

O O O O O

YTD (%)
-0.016
0.107
0.056
0.061
-0.020
.115
-0.002
.138

.143
.161

o

o O O

1 Year
-0.052
0.054
0.002
0.052
-0.015
0.082
-0.017
0.181
0.056
0.050

In the following step we incorporate the offset, computing the weight

decision matrix:

weightedDecisionMatrix = [[0 for i in range(criteria)] for y in.
—range(alternatives)]

for j in range(criteria):
for i in range(alternatives):
weightedDecisionMatrix[i] [j] =_
—round(normalisedDecisionMatrix[i] [j] * weights[j],3)

print (" = Weighted Decision Matrix ===============\n")
df = pd.DataFrame.from_records(weightedDecisionMatrix, .
—index=companyName ,columns=criterionName)
display(df)
Weighted Decision Matrix
P/E Ratio EPS Revenue (B) Beta \
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ABB ADR
Accenture
SAP ADR
Infosys ADR
Wipro ADR

Taiwan Semiconductor
Servotronics

Synnex

TransUnion

Xerox

ABB ADR
Accenture
SAP ADR
Infosys ADR
Wipro ADR

Taiwan Semiconductor
Servotronics

Synnex

TransUnion

Xerox

[69 rows x 8 columns]

.016
.009
.015
.008
.006

O O O O O

.009
.003
.005
.018
.004

O O O O O

O O O O O

O O O O O

.001
.019
.007
.001
.001
.005
.004
.023

.004
.006

Dividend Yield (%)

.021
.008
.007
.011
.001

SO O O O O

.016
.008
.006
.002
.017

SO O O O O

.027
.028
.019
.008
.006

O O O O O

.021
.000
.015
.002
.006

O O O O O

Monthly

0.
.047
.028
.047
.010

o O O O

O O O O O

010

.047
.019
.047
.047
.038

O O O O O

O O O O O

YTD

o

O O O

.012
.010
.011
.005
.005
.010
.005
.010

.010
.018

(%)
.002
.011
.006
.006
.002
.012
.000
.014

.014
.016

1 Year

-0.
0.
0.
0.

-0.

o

o O O

Subsequently, we calculate the positive and negative ideal solutions as

well as the distance of each alternative from them:

idealSolution = [0 for i in range(criteria)]

nonIdealSolution = [0 for i in range(criteria)]
for j in range(criteria):

maxValue = float(’-inf’)

minValue = float(’inf’)

for i in range(alternatives):

if weightedDecisionMatrix[i] [j] < minValue:

minValue

weightedDecisionMatrix[i] [j]

if weightedDecisionMatrix[i] [j] > maxValue:

maxValue

if optimizationTypelj] ==
idealSolution[j] = maxValue
nonIdealSolution[j] = minValue

elif optimizationTypel[j] ==

idealSolution[j] = minValue
nonldealSolution[j] = maxValue

weightedDecisionMatrix[i] [j]

005
005
000
005
002

.008
.002
.018
.006
.005
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sPlus = [0 for i in range(alternatives)]
sMinus = [0 for i in range(alternatives)]
for i in range(alternatives):
sumPlusTemp = 0
sumMinusTemp = 0O
for j in range(criteria):
sumPlusTemp = sumPlusTemp + math.
—pow(idealSolution[j]-weightedDecisionMatrix[i] [j],2)
sumMinusTemp = sumMinusTemp + math.
—pow(nonIdealSolution[j]-weightedDecisionMatrix[i] [j],2)
sPlus[i] = math.sqrt(sumPlusTemp)
sMinus[i] = math.sqrt(sumMinusTemp)

print (" Positive Ideal Solution \n")

df = pd.DataFrame(idealSolution, index=criterionName, .
—columns=["Score"])

display(df)

print("\n")

print (" Negative Ideal Solution \n")

df = pd.DataFrame(nonIdealSolution, index=criterionName,.
—columns=["Score"])

display(df)

print ("\n")

print (" Distance from Positive Ideal Solution.
y=============== \n")

df = pd.DataFrame(sPlus, index=companyName, columns=["Distance"])

display(df)

print ("\n")

print (" Distance from Negative Ideal Solution.
«yS============== \n")

df = pd.DataFrame(sMinus, index=companyName, columns=["Distance"])
display(df)

Positive Ideal Solution

Score
P/E Ratio 0.001
EPS 0.051
Revenue (B) 0.050
Beta 0.002
Dividend Yield (%) 0.044
Monthly 0.047
YTD (%) 0.062
1 Year 0.072

Negative Ideal Solution
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P/E Ratio

EPS

Revenue (B)

Beta

Dividend Yield (%)
Monthly

YTD (%) -
1 Year -

ABB ADR
Accenture
SAP ADR
Infosys ADR
Wipro ADR

Taiwan Semiconductor
Servotronics

Synnex

TransUnion

Xerox

[69 rows x 1 columns

ABB ADR
Accenture
SAP ADR
Infosys ADR
Wipro ADR

Taiwan Semiconductor
Servotronics

Synnex

TransUnion

Xerox

[69 rows x 1 columns

Score
0.049
0.000
0.000
0.026
0.001
0.010
0.018
0.025

Distance from Positive Ideal Solution

Distance
.123600
.100110
.114996
.114175
.131377

O O O O O

.102299
.126972
.093557
.115282
.107893

O O O O O

]

Distance from Negative Ideal Solution

Distance
.055417
.078486
.057896
.071638
.055785

O O O O O

.076844
.059632
.084929
.067764
.072505

O O O O O

]

Finally, we calculate the relative closeness of every alternative to the

ideal solution:
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C = [0 for i in range(alternatives)]
C2 = [0 for i in range(alternatives)]
for i in range(alternatives):
C2[i] = round(round(sMinus[i]*1.0 / (sMinus[i] + sPlus[i]),4)._
—% 100,2) #percentage
C[i] = sMinus[i]l*1.0 / (sMinus[i] + sPlus[i])
print (" Relative Closeness = \n")
df = pd.DataFrame(C, index=companyName, columns=["Distance"])
display(df)
Relative Closeness

Distance
ABB ADR 0.309561
Accenture 0.439460
SAP ADR 0.334870
Infosys ADR 0.385537
Wipro ADR 0.298058
Taiwan Semiconductor 0.428954
Servotronics 0.319564
Synnex 0.475830
TransUnion 0.370203
Xerox 0.401916

[69 rows x 1 columns]

The final ranking of TOPSIS method is provided if we sort the relative
closeness. In the following cell we describe this procedure as well the
visualisation of the results.

tupledList = list(zip(companyName,C))
tupledListSorted = sorted(tupledList, key=lambda tup: tup[l],._
—reverse=True)

print (" TOPSIS Ranking ==\n")

df = pd.DataFrame(tupledListSorted, columns=["Company", "Score'"])
df .index = df.index + 1

display(df)

i = np.arange(alternatives)
plt.figure(figsize=(16,9))

186 Thesis



Source Code Presentation

plt.bar(i+il, C, color = ’b’, edgecolor = ’black’)

plt.xlabel (’Alternatives’)

plt.ylabel (’Relative Closeness’)

plt.title(’TOPSIS Method’, fontsize=16)

ax = plt.gca()

ax.set_facecolor(’red’)

xlocs, xlabs = plt.xticks(np.arange(l, alternatives+1, step=1))
xlocs=[i for i in range(l,alternatives+1)]

xlabs=[i/2 for i in range(l,alternatives+1)]

# plt.zticks(zlocs, zlabs)

plt.show()
TOPSIS Ranking

Company Score
1 GlobalSCAPE 0.628233
2 Northrop Grumman 0.508793
3 IBM 0.486176
4 Synnex 0.475830
5 Accenture 0.439460
65 Enersys 0.263751
66 DXC Technology 0.259741
67 Fortive 0.255952
68 Issuer Direct Corp 0.219171
69 Energizer 0.194777

[69 rows x 2 columns]

TOPSIS Method

Relative Closeness

12345678 910111213141516171819 2021 93031, 3940414243 44454547 454950 51525354 555657 5850606162 636465 66676569
lternatives
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ELECTRE III

ELECTRE III belongs to the ELECTRE family methods which are based
on a different concept than the previous ones. This method is based on
pairwise comparisons between the alternatives. Firstly, we calculate the
agreement and the disagreement tables:

[13]: sumOfWeights = sum(weights)
agreementTable = [[0 for i in range(alternatives)] for y in.
—range(alternatives)]
for k in range(criteria):
if optimizationTypelk] ==
for i in range(alternatives):
for j in range(alternatives):
if il=j:
if decisionMatrix[j][k] - decisionMatrix[i] [k]._
—<= indifferenceThreshold[k]:
agreementTable[i] [j] =_
—round (agreementTable[i] [j] + 1.0 * weights[k],2)
elif decisionMatrix[j][k] -_
—.decisionMatrix[i] [k] <= preferenceThreshold[k]:
agreementTable[i] [j] =_
—round (agreementTable[i] [j] + ((decisionMatrix[i][k] -_
—decisionMatrix [j][k] + preferenceThreshold[k])*1.0 /_
— (preferenceThreshold[k] -indifferenceThreshold[k])) *._
~weights[k],2)
else:
agreementTable[i] [j] =_
—round (agreementTable[i] [j] + 0.0 * weights[k],2)
elif optimizationType[k] ==
for i in range(alternatives):
for j in range(alternatives):
if il=j:
if decisionMatrix[i] [k] - decisionMatrix[j] [k]._
—<= indifferenceThreshold[k]:
agreementTable[i] [j] =_
—round (agreementTable[i] [j] + 1.0 * weights[k],2)
elif decisionMatrix[i][k] -_
—.decisionMatrix[j] [k] <= preferenceThreshold[k]:
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agreementTable[i] [j] =_
—round (agreementTable[i] [j] + ((decisionMatrix[j][k] -_
—decisionMatrix [i] [k] + preferenceThreshold[k])*1.0 /_
— (preferenceThreshold[k]-indifferenceThreshold[k])) *._
—weights[k],2)

else:

agreementTable[i] [j] =_

—round(agreementTable[i] [j] + 0.0 * weights([k],2)

disagreementTable = [[[0 for k in range(criteria)] for i in.
—range(alternatives)] for j in range(alternatives)]
for k in range(criteria):
if optimizationTypelk] ==
for i in range(alternatives):
for j in range(alternatives):
if il=§:
if decisionMatrix[j][k] - decisionMatrix[i] [k].
—<= preferenceThreshold [k] :
disagreementTable[i] [j] [k]
elif decisionMatrix[j][k] -_
—.decisionMatrix[i] [k] <= vetoThreshold[k]:
disagreementTable[i] [j] [k] =_
—round(((decisionMatrix[j] [k] - decisionMatrix [i] [k] -_
—preferenceThreshold[k])*1.0 /_
— (vetoThreshold [k] -preferenceThreshold[k])),2)
else:
disagreementTable[i] [j][k] = 1
elif optimizationType[k] ==
for i in range(alternatives):
for j in range(alternatives):
if il=j:
if decisionMatrix[i] [k] - decisionMatrix[j] [k].
—<= indifferenceThreshold[k]:
disagreementTable[i] [j][k] = O
elif decisionMatrix[i] [k] -_
—decisionMatrix[j] [k] <= vetoThreshold[k]:
disagreementTable[i] [j] [k] =_
—round(((decisionMatrix[j] [k] - decisionMatrix [i] [k] +._
—preferenceThreshold[k])*1.0 /.
—(vetoThreshold [k] -preferenceThreshold[k])),2)
else:
disagreementTable[i] [j]1[k] = 1

Il
(@)

In the following step we are able to calculate the reliability and
dominance tables based on the above tables:
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[14]: reliabilityTable = [[0 for i in range(alternatives)] for y in.
—range(alternatives)]
for i in range(alternatives):
for j in range(alternatives):
if il=j:
reliabilityTable[i] [j] = agreementTable[i] [j]
for k in range(criteria):
if agreementTable[i] [j] <.
—disagreementTable[i] [j] [k]:
reliabilityTable[i] [j] =_

—round(reliabilityTable[i] [j] * ((1 - disagreementTable[i] [j][k]).
~/ (1 - agreementTable[i] [j])), 2)

d =0.8
dominanceTable = [[0 for i in range(alternatives)] for y in.
—range(alternatives)]
for i in range(alternatives):
for j in range(alternatives):
if i!=j and reliabilityTable[i] [j] >= d:
dominanceTable[i] [j] = 1

Finally, the proposed version of ELECTRE III suggests the calculation
of the positive and negative flow for each alternative. Based on these
two, we can compute the final ELECTRE III flow, as described in the
following cell:

[15]: phiPlus = [round(sum(x),6) for x in reliabilityTable ]
phiMinus = [round(sum(x),6) for x in zip(*reliabilityTable)]
phiEl = [round(xl - x2,6) for (x1, x2) in zip(phiPlus, phiMinus)]

print (" Positive Flow \n")

df = pd.DataFrame(phiPlus, index=companyName, columns=["Flow"])
display(df)

print("\n")

print (" Negative Flow \n")

df = pd.DataFrame(phiMinus, index=companyName, columns=["Flow"])
display(df)

print ("\n")

print (" ELECTRE III Flow === \n")

df = pd.DataFrame(phiEl, index=companyName, columns=["Flow"])
display(df)

Positive Flow

190 Thesis



Source Code Presentation

Flow
ABB ADR 26.06
Accenture 59.32
SAP ADR 50.52
Infosys ADR 53.95
Wipro ADR 22.68
Taiwan Semiconductor 61.14
Servotronics 38.14
Synnex 60.69
TransUnion 49.79
Xerox 41.90

[69 rows x 1 columns]

Negative Flow

Flow
ABB ADR 14.49
Accenture 7.66
SAP ADR 48.78
Infosys ADR 35.20
Wipro ADR 51.57
Taiwan Semiconductor 18.25
Servotronics 52.72
Synnex 26.64
TransUnion 41.05
Xerox 45 .82

[69 rows x 1 columns]

ELECTRE III

Flow
ABB ADR 11.57
Accenture 51.66
SAP ADR 1.74

Flow
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Infosys ADR 18.75
Wipro ADR -28.89

Taiwan Semiconductor 42.89

Servotronics -14.58
Synnex 34.05
TransUnion 8.74
Xerox -3.92

[69 rows x 1 columns]

The final ranking of ELECTRE III method is provided if we sort the
ELECTRE III flows. In the following cell we describe this procedure as
well the visualisation of the results:

tupledList = list(zip(companyName,phiEl))
tupledListSorted = sorted(tupledList, key=lambda tup: tup[l],._
—reverse=True)

print (" ELECTRE III Ranking \n")

df = pd.DataFrame(tupledListSorted, columns=["Company", "Score"])
df .index = df.index + 1

display(df)

i = np.arange(alternatives)
plt.figure(figsize=(16,9))

plt.bar(i+1, phiEl, color = ’b’, edgecolor = ’black’)
plt.xlabel(’Alternatives’)

plt.ylabel (’ELECTRE III Flow’)

plt.title(’ELECTRE III Method’, fontsize=16)

ax = plt.gca()

ax.set_facecolor(’red’)

xlocs, xlabs = plt.xticks(np.arange(l, alternatives+1l, step=1))
xlocs=[i for i in range(l,alternatives+1)]

xlabs=[i/2 for i in range(l,alternatives+1)]

# plt.zticks(zlocs, zlabs)

plt.show()

ELECTRE III Ranking

Company Score
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gD W N -

65
66
67
68
69

[69 rows x 2 columns]

Northrop Grumman
IBM

Accenture
GlobalSCAPE
Oracle

Enersys

DXC Technology
Kemet

Belden
Yirendai Ltd

ELECTRE Il Flow

61

51

50.
49.

-46.
-46.
-49.
-53.
-59.

.49
58.
.66

12

81
56
35
48
29

64
48

ELECTRE Ill Method

1234567 89101112131415161718192021227232425262725293031 323334 35 36 3736 394041424344 454647 48495051 525354 55565758 5960 6162 6364 65 6AET 65 EI
Alternatives

PROMETHEE I1

Finally, the PROMETHEE method is also based on pairwise

comparisons of the alternatives.

It differs from ELECTRE III as it

gives the opportunity to customise the comparison function based on
the decision-maker’s profile. Therefore, we must begin the presentation
of this method with the different functions for pairwise comparisons.

[17]: def usualCriterion(evaluationTable, k, alternatives,.
—decisionMatrix, indifferenceThreshold, preferenceThreshold,._

—weights, optimizationType) :
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for i in range(alternatives):
for j in range(alternatives):
if i!=j and decisionMatrix[i] [k] >=_
—decisionMatrix[j] [k]:
if decisionMatrix[i] [k] > decisionMatrix[j] [k]:
evaluationTable[i] [j] = evaluationTable[i] [j]._
~+ 1.0 * weights[k]

def quasiCriterion(evaluationTable, k, alternatives,.
—decisionMatrix, indifferenceThreshold, preferenceThreshold,._
—weights, optimizationType):
for i in range(alternatives):
for j in range(alternatives):
if i!=j and decisionMatrix[i] [k] >=_

—decisionMatrix[j] [k]:

if decisionMatrix[i] [k] - decisionMatrix[j][k] >.
—indifferenceThreshold[k] :

evaluationTable[i] [j] = evaluationTable[i] [j]._

~+ 1.0 * weights[k]

def linearPreferenceCriterion(evaluationTable, k, alternatives,.
—decisionMatrix, indifferenceThreshold, preferenceThreshold,._
—weights, optimizationType):
for i in range(alternatives):
for j in range(alternatives):
if i!=j and decisionMatrix[i] [k] >=_
—decisionMatrix[j] [k] :
if decisionMatrix[i] [k] - decisionMatrix[j][k] >._
—preferenceThreshold[k]:
evaluationTable[i] [j] = evaluationTable[i] [j]._
~+ 1.0 * weights[k]
else:
evaluationTable[i] [j] = evaluationTable[i] [j]._
—+ ((decisionMatrix[i] [k] - decisionMatrix [j][k])*1.0 /.
—preferenceThreshold[k]) * weights [k]

def levelCriterion(evaluationTable, k, alternatives,.
—decisionMatrix, indifferenceThreshold, preferenceThreshold,.
—weights, optimizationType):
for i in range(alternatives):
for j in range(alternatives):
if i!=j and decisionMatrix[i] [k] >=_

—decisionMatrix[j] [k]:

if decisionMatrix[i] [k] - decisionMatrix[j][k] >_
—preferenceThreshold[k] :

evaluationTable[i] [j] = evaluationTablel[i] [j]._

~+ 1.0 * weights[k]
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elif decisionMatrix[i] [k] - decisionMatrix[j] [k]._
—<= indifferenceThreshold[k]:
evaluationTable[i] [j]
~+ 0.0 * weights[k]
else:
evaluationTable[i] [j]

~+ 0.5 * weights[k]

evaluationTable[i] [j].

evaluationTable[i] [j]._

def linearPreferenceAndIndifferenceCriterion(evaluationTable, k,.
—alternatives, decisionMatrix, indifferenceThreshold, .
—preferenceThreshold, weights, optimizationType) :

if optimizationTypelk] ==
for i in range(alternatives):
for j in range(alternatives):
if i!=j and decisionMatrix[i] [k] >=_
—decisionMatrix[j] [k] :
if decisionMatrix[i] [k] - decisionMatrix[j] [k].
—> preferenceThreshold[k]:
evaluationTable[i] [j] =_
—evaluationTable[i] [j] + 1.0 * weights[k]
elif decisionMatrix[i][k] -_
—decisionMatrix[j] [k] > indifferenceThreshold[k]:
evaluationTable[i] [j] =._
—evaluationTable[i] [j] + ((decisionMatrix[i] [k] - decisionMatrix.
~[j][k] - indifferenceThreshold[k])*1.0 /.
— (preferenceThreshold[k]-indifferenceThreshold[k])) * weights[k]
else:
evaluationTable[i] [j] =_
—evaluationTable[i] [j] + 0.0 * weights[k]
elif optimizationType[k] ==
for i in range(alternatives):
for j in range(alternatives):
if i!=j and decisionMatrix[i] [k] >=_
—decisionMatrix[j] [k]:
if decisionMatrix[i] [k] - decisionMatrix[j] [k]._
—> preferenceThreshold[k]:
evaluationTable[j] [i] =_
—evaluationTable[j] [i] + 1.0 * weights [k]
elif decisionMatrix[i] [k] -_
—decisionMatrix[j] [k] > indifferenceThreshold[k]:
evaluationTable[j] [i] =_
—evaluationTable[j] [i] + ((decisionMatrix[i] [k] - decisionMatrix.
—~[jl[k] - indifferenceThreshold[k])*1.0 /_
— (preferenceThreshold[k]-indifferenceThreshold[k])) * weights[k]
else:
evaluationTable[j] [i] =_
—evaluationTable[j] [i] + 0.0 * weights [k]
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After the definition of the necessary functions we can calculate the
evaluation table between all the alternatives. The criterion used must
be defined by the user in the .csv file:

[18] : evaluationTable = [[0.0 for i in range(alternatives)] for y in.
—range(alternatives)]

for k in range(criteria):
if criterion[k] ==
usualCriterion(evaluationTable, k, alternatives,.
—decisionMatrix, indifferenceThreshold, preferenceThreshold,._
—weights, optimizationType)
elif criterionl[k] ==
quasiCriterion(evaluationTable, k, alternatives,.
—decisionMatrix, indifferenceThreshold, preferenceThreshold,._
—weights, optimizationType)
elif criterion[k] ==
linearPreferenceCriterion(evaluationTable, k,.
—alternatives, decisionMatrix, indifferenceThreshold, .
—preferenceThreshold, weights, optimizationType)
elif criterion[k] ==
levelCriterion(evaluationTable, k, alternatives,.
—decisionMatrix, indifferenceThreshold, preferenceThreshold,._
—weights, optimizationType)
elif criterion[k] ==
linearPreferenceAndIndifferenceCriterion(evaluationTable, .
—k, alternatives, decisionMatrix, indifferenceThreshold, .
—preferenceThreshold, weights, optimizationType)

After the calculation of the evaluation table, we can compute the positive
and negative flows just like in ELECTRE III method. The net flow of
PROMETHEE method is the difference between these two flows:

[19]: sumOfLines = np.sum(evaluationTable, axis=1)
sum0fColumns = np.sum(evaluationTable, axis=0)

phiPlus = sumOfLines*1.0 / (alternatives - 1)
phiMinus = sumOfColumns*1.0 / (alternatives - 1)
phi = phiPlus - phiMinus

phi2 = phiPlus - phiMinus

for i in range(alternatives):
phi2[i] = round(round(phil[i],4) * 100,2)

print (" = Positive Flow =============== \n")
df = pd.DataFrame(phiPlus, index=companyName, columns=["Flow"])
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display(df)

print ("\n")

print (" === Negative Flow \n")

df = pd.DataFrame(phiMinus, index=companyName, columns=["Flow"])
display(df)

print ("\n")

print (" PROMETHEE Net Flow \n")

df = pd.DataFrame(phi, index=companyName, columns=["Flow"])
display(df)

Positive Flow

Flow
ABB ADR 0.188274
Accenture 0.438920
SAP ADR 0.255892
Infosys ADR 0.334441
Wipro ADR 0.102204
Taiwan Semiconductor 0.415894
Servotronics 0.194646
Synnex 0.497768
TransUnion 0.285903
Xerox 0.319347

[69 rows x 1 columns]

Negative Flow

Flow
ABB ADR 0.411432
Accenture 0.058600
SAP ADR 0.293088
Infosys ADR 0.101991
Wipro ADR 0.418305
Taiwan Semiconductor 0.053415
Servotronics 0.363787
Synnex 0.048298
TransUnion 0.146850
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Xerox 0.279042

[69 rows x 1 columns]

PROMETHEE Net Flow

Flow
ABB ADR -0.223158
Accenture 0.380320
SAP ADR -0.037195
Infosys ADR 0.232450
Wipro ADR -0.316101

Taiwan Semiconductor 0.362479

Servotronics -0.169141
Synnex 0.449470
TransUnion 0.139053
Xerox 0.040305

[69 rows x 1 columns]

The final ranking of PROMETHEE IT method is provided if we sort the
net flows. In the following cell we describe this procedure as well the
visualisation of the results:

tupledList = list(zip(companyName,phiEl))
tupledListSorted = sorted(tupledList, key=lambda tup: tupl[l],._
—reverse=True)

print (" PROMETHEE II Ranking \n")
df = pd.DataFrame(tupledListSorted, columns=["Company", "Score"])
df .index = df.index + 1

display(df)

i = np.arange(alternatives)
plt.figure(figsize=(16,9))

plt.bar(i+l, phi, color = ’b’, edgecolor = ’black’)
plt.xlabel(’Alternatives’)

plt.ylabel (’PROMETHEE II Flow’)
plt.title(’PROMETHEE II Method’, fontsize=16)

ax = plt.gca()
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ax.set_facecolor(’red’)

xlocs, xlabs = plt.xticks(np.arange(l, alternatives+1, step=1))
xlocs=[i for i in range(l,alternatives+1)]

xlabs=[i/2 for i in range(l,alternatives+1)]

# plt.zticks(zlocs, zlabs)

plt.show()
PROMETHEE II Ranking

Company Score
1 Northrop Grumman 61.49
2 IBM 58.12
3 Accenture 51.66
4 GlobalSCAPE 50.81
5 Oracle 49.56
65 Enersys -46.35
66 DXC Technology -46.48
67 Kemet -49.29
68 Belden -53.64
69 Yirendai Ltd -59.48

[69 rows x 2 columns]

PROMETHEE Il Method

PROMETHEE Il Flow

12345678 9101112131415161715192021 22 23242526 27 28293031 3233 34353637 38394041 424344 45 464748495051 52 5354 555657 58596061 62 6364 A5 6667 6569
Alternatives
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Cumulative Ranking

The final ranking is the weighted sum of the rankings of the four MCDA
methods. Therefore, in the following cell we describe the calculation of
the cumulative score of each alternative as well as the final ranking and
a visualisation of the results.

[21]: decisionMatrix = np.array(decisionMatrix)
data = {’Name’:companyName, ’P/E Ratio’:decisionMatrix[:,0],’EPS’:
—.decisionMatrix[:,1],’Revenue (B)’:decisionMatrix[:,2],
’Beta’:decisionMatrix[:,3],’Dividend Yield’:
—decisionMatrix[:,4], ’Monthly’:decisionMatrix[:,5],’YTD’:
—decisionMatrix[:,6],
’1Year’ :decisionMatrix[:,7], ’ELECTRE 3’ :phiEl, ’MAUT’:
—utilityScorePer, ’PROMETHEE’:phi, ’TOPSIS’:C2}

df = pd.DataFrame(data)

df ["ELECTRE 3 (Ranking)"] = df ["ELECTRE 3"].rank()
df ["MAUT (Ranking)"] = df ["MAUT"].rank()

df ["PROMETHEE (Ranking)"] = df ["PROMETHEE"] .rank()
df ["TOPSIS (Ranking)"] = df ["TOPSIS"].rank()

df ["RankSum"] = df.iloc[:,13:17].sum(axis=1)
df .sort_values("RankSum", inplace=True, ascending=False)
display(df)

plt.style.use(’dark_background’)
ax = df.plot(x =’Name’,
y={’ELECTRE 3 (Ranking)’,’MAUT (Ranking)’,’TOPSIS.
< (Ranking)’, ’PROMETHEE (Ranking)’},
color={’green’,’red’,’yellow’,’blue’},
kind = ’bar’,
figsize=(24, 18),
stacked=True,
rot=90)
plt.suptitle("Cumulative Score", color=’grey’, size=’28’,.
~fontweight="bold’)
ax.set_title(’MCDA Final Ranking’, color=’grey’, size=’22’)
ax.tick_params(axis=’x’, colors=’white’, length=10,._
—labelsize=’x-large’)
ax.tick_params(axis=’y’, colors=’white’)
legend = plt.legend()
plt.setp(legend.get_texts(), color=’grey’, size=’22’)
plt.xlabel("Companies", color=’white’, size=’18")
plt.ylabel("Ranking", color=’white’, size=’18’)
plt.subplots_adjust(left=0.06, bottom=0.3, right=0.96, top=0.91,.
—wspace=0.2, hspace=0.2)
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Name P/E Ratio EPS Revenue (B) Beta Dividend Yield \

42 Northrop Grumman 18.15 20.26 32.890 0.80 1.44
41 GlobalSCAPE 21.23 0.55 0.037 0.57 0.52
1 Accenture 25.05 7.36 43.220 1.05 1.74
66 Synnex 12.63 8.91 22.800 0.99 1.33
48 IBM 11.75 12.01 77.860 1.36 4.59
40 Fortive 36.69 1.77 6.310 1.22 0.43
36 Enersys 17.55  3.47 2.920 1.60 1.15
35 Energizer 91.94 0.43 2.230 0.67 3.05
26 Issuer Direct Corp 61.59 0.17 0.015 0.76 1.95
53 Yirendai Ltd 3.17  2.07 2.550 2.70 4.27
Monthly YTD 1Year ELECTRE 3  MAUT PROMETHEE TOPSIS \
42 5.0 50.57 21.95 61.49 69.84 0.478513 50.88
41 5.0 174.90 204.11 50.81 67.71 0.326386 62.82
1 5.0 30.37 15.30 51.66 62.42 0.380320 43.95
66 5.0 39.26 51.26 34.05 63.04 0.449470 47.58
48 4.0 24.16 0.20 58.12 63.81 0.243433 48.62
40 1.0 -3.30 -17.39 -41.10 19.16 -0.418051 25.60
36 1.0 -21.48 -23.75 -46.35 19.29 -0.454859 26.38
35 1.0 -12.76 -33.70 -39.19 17.75 -0.436301 19.48
26 1.0 -9.43 -31.92 -42.43 18.35 -0.445197 21.92
53 1.0 -38.98 -59.25 -59.48 16.64 -0.463767 26.48

ELECTRE 3 (Ranking) MAUT (Ranking) PROMETHEE (Ranking) \

42 69.0 69.0 69.0
41 66.0 68.0 63.0
1 67.0 65.0 67.0
66 63.0 66.0 68.0
48 68.0 67.0 56.0
40 8.0 5.0 5.0
36 5.0 6.0 2.0
35 10.0 2.0 4.0
26 6.0 4.0 3.0
53 1.0 1.0 1.0

TOPSIS (Ranking) RankSum

42 68.0 275.0
41 69.0 266.0
1 65.0 264.0
66 66.0 263.0
48 67.0 258.0
40 3.0 21.0
36 5.0 18.0
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Phase II: Multiobjective Portfolio Optimisation
Goal Programming methodology

[1]: from mip import *
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pandas_datareader import data

Using Python-MIP package version 1.6.2

Input

The input of this method includes the following variables:

numSecurities (integer) is the number of securities,
securityName (str list) contains the names of the securities,
betalndex (float list) contains the beta index for each security,
DYIndex (float list) contains the dividend yield for each security.

[2]:

numSecurities = 10

tickers = [’AAPL’, °MSFT’, ’AUDC’, ’KLAC’, ’TTEC’, ’SLP’, ’EQIX’,._
~’WSTG’, ’CDW’, ’TER’]

betaIndex = [1.22, 1.23, 0.56, 1.71, 0.7, -0.32, 0.7, 0.39, 1.09,._
~1.56]

Rev = [259.03, 125.84, 0.186, 4.57, 1.57, 0.032, 5.34, 0.192, 17.
~04, 2.14]

DYIndex = [1.36, 1.48, 0.76, 1.91, 1.38, 0.72, 1.71, 4.63, 0.97, O.
~6]

Model Parameters

The parameters of the model are defined below:

e numPortfolios : Number of portfolios to be constructed.
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minSecurities : Minimum number of securities to participate in each portfolio.
maxSecurities : Maximum number of securities to participate in each portfolio.
lowerBound : Minimum value of the weight of each security.

upperBound : Maximum value of the weight of each security.
capitalThreshold : Threshold that determines the Billions needed to consider
a security as a high capitalisation investment

The target values of the goal programming model are set as follows:

e betaGoal : The target value for portfolio beta

e DYGoal : The target value for portfolio Dividend Yield

e highCapGoal : The target value for the percentage of high capitalisation
securities participating in the portfolio

Il
S

minSecurities
maxSecurities
lowerBound =
upperBound
betaGoal =
DYGoal = 1.
highCapGoal = 0.5

capitalThreshold = 100

10

I
~N o o
NN

The model is constructed below:

m = Model()

high = [0 for i in range(numSecurities)]
for i in range(numSecurities):
if Rev[i] > capitalThreshold:
high[i] =1
print (high)

onoff = [ m.add_var(var_type=BINARY) for i in range(numSecurities).
—]

weights = [ m.add_var(var_type=CONTINUQUS) for i in.

—range (numSecurities) ]

d1P = m.add_var(var_type=CONTINUQUS)
diM = m.add_var(var_type=CONTINUQUS)
d2P = m.add_var (var_type=CONTINUQOUS)
d2M = m.add_var(var_type=CONTINUQUS)
d3P = m.add_var(var_type=CONTINUQUS)
d3M = m.add_var(var_type=CONTINUQUS)
wilP =1
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wiM
w2P
w2M
w3P =
w3M

o
e e

m += xsum(weights[i] for i in range(numSecurities)) ==
m += xsum(onoff[i] for i in range(numSecurities)) <= maxSecurities
m += xsum(onoff[i] for i in range(numSecurities)) >= minSecurities
for i in range(numSecurities):

m += weights[i] - lowerBound * onoff[i] >= 0

m += weights[i] - upperBound * onoff[i] <= 0

m += xsum(weights[i] * betaIndex[i] for i in range(numSecurities)).
—+ diM - d1P == betaGoal

m += xsum(weights[i] * DYIndex[i] for i in range(numSecurities)) +_
—d2M - d2P == DYGoal

m += xsum(weights[i] * high[i] for i in range(numSecurities)) +_
—~d3M - d3P == highCapGoal

m.objective = minimize((wilP * d1P + wiM * diM) / betaGoal + (w2P *_
—~d2P + w2M * d2M) / DYGoal + (w3P * d3P + w3M * d3M) /.
~highCapGoal)

status = m.optimize()

print (" Model output = ")
print("Solution status : ", status, "\n")

obj = m.objective_value

print("Objective function = ", obj, "\n")

for i in range(numSecurities):
print(tickers[i],": ", weights[i].x * onoff[i].x)
print ()

print ("Portfolio beta = ", sum(weights[i].x * betaIndex[i] for i._
—in range(numSecurities)))

print ("Portfolio dividend yield = ", sum(weights[i].x * DYIndex[i]._
~for i in range(numSecurities)))

print ("High capitalisation percentage", sum(weights[i].x * high[i]._
~for i in range(numSecurities)))

portfolio = [0 for i in range(numSecurities)]
for i in range(numSecurities):
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portfolio[i] = onoff[i].x * weights[i] .x

Model output
Solution status : OptimizationStatus.0OPTIMAL

Objective function = 0.0
AAPL : 0.4
MSFT : 0.1
AUDC : 0.1504835306529128
KLAC : 0.0
TTEC : 0.0
SLP : 0.18532704255069749
EQIX : 0.0
WSTG : 0.1641894267963896
CDw : 0.0
TER : 0.0

Portfolio beta = 0.7
Portfolio dividend yield = 1.6999999999999997
High capitalisation percentage 0.5

Finally, the following cell contains the code of the portfolio visualisation.

from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()

plt.style.use(’dark_background’)

fig = plt.figure(figsize=(14, 8))

plt.bar(tickers,portfolio, color=’b’)

plt.suptitle(’Goal Programming Portfolio’, color=’white’,.
—~s8ize=’18")

plt.xticks(tickers, tickers, rotation=’vertical’)

plt.xlabel (’Stocks’, size=’14")

plt.ylabel (’Portfolio Percentage’, size=’14’)

Goal Programming Portfolio
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Genetic algorithm model

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import openpyxl

from scipy.optimize import differential_evolution
from scipy.optimize import LinearConstraint, minimize
from pandas_datareader import data

Securities Input Data

The input data of this model are the namesand the values of the securities. The
values are imported from yahoo finance database for a selected time period, which
is determined with the variables startDate and endDate. The nesxt step involves
the calculation of the arithmetic return for the selected securities.

#NASDAQ
tickers = [’AAPL’, °MSFT’, ’AUDC’, °’KLAC’, ’TTEC’, ’SLP’, ’EQIX’,._
~’WSTG’, ’CDW’, ’TER’]

startDate = ’2016-01-01"
endDate = ’2018-12-31"

historicalValues = data.DataReader(tickers, ’yahoo’, startDate,.
—endDate)

stockValues = historicalValues[’Open’]

numOfDates = stockValues.shape[0]

numSecurities = stockValues.shape[1]

stockValues = stockValues.fillna(method="ffill’)

numPeriods = numOfDates - 1
stockValuesArray = pd.DataFrame(stockValues) .to_numpy()
secReturns = np.empty(shape = (numPeriods, numSecurities))
for i in range(numSecurities):
for j in range(numPeriods):
secReturns[j] [i] =_
— (stockValuesArray[j+1] [i] -stockValuesArray[j] [i])/
—stockValuesArray[j] [i]
returnDates = stockValues.index[1:]
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stockReturns = pd.DataFrame(secReturns, index=returnDates,.
—columns=stockValues.columns)

Stock Returns

display(stockReturns)

Symbols
Date
2016-01-05
2016-01-06
2016-01-07
2016-01-08
2016-01-11

2018-12-24
2018-12-26
2018-12-27
2018-12-28
2018-12-31

Symbols
Date
2016-01-05
2016-01-06
2016-01-07
2016-01-08
2016-01-11

2018-12-24
2018-12-26
2018-12-27
2018-12-28
2018-12-31

-0.
.001013
.050843
.010652
.006540

O O O O

-0.
-0.
.015423
.008969
.010323

o O O

Stock Returns

AAPL

.030601
.049078
.018695
.001317
.004262

055527

EQIX

.005905
.005571
.016987
.000427
.023441

027522
023943

[753 rows x 10 columns]

.038866
.026003
.043725
.028097
.007836

.009387
.007659
.019846 0.
.000000
.027027
.044118
.021538
.031125

0
.006218 0.
.021627 0

MSFT

.011230 0.
.011105
.029823 0.
.006262 0.
.002673 -0.

O O O O

WSTG

Market Index Input Data

-0.

-0.
.003131
.002081
.008307
.020597

AUDC

086842
041162
000000
032828
007335

064453

CDW

.007969
.017770

002726

.009145
.008481
.044309
.015584
.035488

021659

.003866

KLAC

.005145
.009798
.033821
.011006
.005745
.025800
.029912
.032663

.042134
.019366

TER

.005865
.010325
.032290
.005133
.014811
.027833
.000682
.016349

.066354
.006600

The same process is followed for the market index.
the NASDAQ Composite index ("IXIC) because the seleted securities belong to
NASDAQ stock exchange. Therefore, we calculate the returns of the market index
for the selected time horizon.

\n")

TTEC

.026536
.037715
.008537
.001174
.008210
.045767
.005196
.054640

.027429
.024101

O O O O

SLP

.015448
.014644
.019688
.006067
.030151
.002847
.006282
.036890

.042146
.027836

In this case we select
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historicalValues = data.DataReader(’"IXIC’, ’yahoo’, startDate,.
—endDate)

indexValues = historicalValues[’0Open’]

numOfDates = stockValues.shape[0]

indexValues = indexValues.fillna(method=’ffill’)

display(indexValues)

numPeriods = numOfDates - 1
indexValuesArray = pd.DataFrame(indexValues) .to_numpy()
marketReturns = np.empty(shape = (numPeriods))
for j in range(numPeriods):
marketReturns[j] = (indexValuesArray[j+1]-indexValuesArrayl[jl)/
—indexValuesArray[j]
indexReturns = pd.DataFrame(marketReturns, index=returnDates)
print (" Stock Returns \n")
display(indexReturns)

Stock Returns

Date

2016-01-05 0.004122
2016-01-06 -0.021164
2016-01-07 -0.016071
2016-01-08 -0.003036
2016-01-11 -0.010288

2018-12-24 -0.044877
2018-12-26 -0.003286

2018-12-27 0.031853
2018-12-28 0.024717
2018-12-31 0.004947

[753 rows x 1 columns]

Multiobjective Function

In this point, we define the multiobjective function losses, which is about to be
optimised. This function calculates the number of times that the portfolio return
is smaller than the selected marfket index return for all dates during the selected
time period. This function needs to be minimised, as the target is to maximise the
number of times that the portfolio offers a better return.
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def losses(x):
losingTimes = O
portfReturn = [0 for i in range(numPeriods)]
for i in range(numPeriods):
for j in range(numSecurities):
portfReturn[i] += x[j] * secReturns[i] [j]
if portfReturn[i] < marketReturns[i]:
losingTimes += 1
return losingTimes

Finally, the function differential evolution solves this evolutionary problem.
The list of variables bounds sets the limits for each security’s percentage in
the portfolio. The function LinearConstraint imposes the capital completeness
constraint. The parameters of the model are the following (according to the scipy
documentation):

e maxiter: The maximum number of generations over which the entire
population is evolved.

e popsizeint: A multiplier for setting the total population size. The population
has popsize * len(x) individuals.

e mutation: The mutation constant. In the literature this is also known as
differential weight, being denoted by F.

e recombination: The recombination constant, should be in the range [0, 1].
Also known as the crossover probability, being denoted by CR. Increasing this
value allows a larger number of mutants to progress into the next generation,
but at the risk of population stability.

bounds = [(0,1) for i in range(numSecurities)]

constraints = LinearConstraint(np.ones(numSecurities), 1, 1)
result = differential_evolution(losses, bounds, maxiter=5000, .
—polish=True, popsize=10, mutation=1.95,
updating=’deferred’,.
—recombination=0.05, constraints=constraints)

for i in range(numSecurities):
print(tickers[i],": ", np.round(result.x[i],4))
print ("Percentage that portfolio beats the index:",.
— (numPeriods-result.fun) /numPeriods)

AAPL : 0.1226
MSFT : 0.1568
AUDC : 0.0018
KLAC : 0.0684
TTEC : 0.1567
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SLP : 0.0

EQIX : 0.0668

WSTG : 0.1488

CDW : 0.1578

TER : 0.1202

Percentage of portfolio wins over the market index: 0.6099

MOIP PROMETHEE flow 2-Dimensional model

from mip import *

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
from pandas_datareader import data

Using Python-MIP package version 1.6.2

Input

The input of this method includes the following variables:

numSecurities (integer) is the number of securities,

tickers (str list) contains the names of the securities,

betalndex (float list) contains the beta index for each security,
promIndex (float list) contains the dividend yield for each security.

numSecurities = 10

tickers = [’AAPL’, ’MSFT’, ’AUDC’, ’KLAC’, ’TTEC’, ’SLP’, ’EQIX’,.
—~’WSTG’, ’CDW’, ’TER’]

betalndex = [1.22, 1.23, 0.56, 1.71, 0.7, -0.32, 0.7, 0.39, 1.09,._
~1.56]
promIndex = [0.3136, 0.2861, 0.2999, 0.2978, 0.2840, 0.2683, 0.

2728, 0.3078, 0.2552, 0.1867]

Model Parameters

The model contains the following parameters:
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numPortfolios : Number of portfolios to be constructed.

minSecurities : Minimum number of securities to participate in each portfolio.
maxSecurities : Maximum number of securities to participate in each portfolio.
lowerBound : Minimum value of the weight of each security.

upperBound : Maximum value of the weight of each security.

numPortfolios = 20
minSecurities = 4
maxSecurities = 10
lowerBound = 0.05
upperBound = 0.5

Minimum Beta Portfolio

The first step of the process involves finding the portfolio which has the
minimum portfolio beta:

m = Model()

onoff = [ m.add_var(var_type=BINARY) for i in range(numSecurities).
—]

weights = [ m.add_var(var_type=CONTINUOUS) for i in.

—range (numSecurities) ]

m += xsum(weights[i] for i in range(numSecurities)) ==
m += xsum(onoff[i] for i in range(numSecurities)) <= maxSecurities
m += xsum(onoff[i] for i in range(numSecurities)) >= minSecurities
for i in range(numSecurities):

m += weights[i] - lowerBound * onoff[i] >= 0

m += weights[i] - upperBound * onoff[i] <= 0

m.objective = minimize(xsum(weights[i] * betalndex[i] for i in.
—range (numSecurities)))

status = m.optimize()
print(status, "\n")

minBeta = m.objective_value
print("Minimum Beta = ", minBeta, "\n")

OptimizationStatus.OPTIMAL

Minimum Beta = 0.059
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Maximum Beta Portfolio

The next step of the process involves finding the portfolio which has the

maximum portfolio beta:
m = Model()

onoff = [ m.add_var(var_type=BINARY) for i in range(numSecurities).
-]

weights = [ m.add_var(var_type=CONTINUOUS) for i in.
—range (numSecurities) ]

m += xsum(weights[i] for i in range(numSecurities)) ==
m += xsum(onoff[i] for i in range(numSecurities)) <= maxSecurities
m += xsum(onoff[i] for i in range(numSecurities)) >= minSecurities
for i in range(numSecurities):

m += weights[i] - lowerBound * onoff[i] >= 0

m += weights[i] - upperBound * onoff[i] <= 0

m.objective = maximize(xsum(weights[i] * betalndex[i] for i in.
—range (numSecurities)))

status = m.optimize()
print(status, "\n")

maxBeta = m.objective_value
print ("Maximum Beta = ", maxBeta, "\n")

OptimizationStatus.0OPTIMAL

Maximum Beta = 1.6015000000000001

Multiobjective Integer Programming Model

The problem is solved parametrically for various portfolio beta indexes between
the minimum and maximum portfolio beta calculated in the previous steps.
Therefore, in the following cell the procedure of finding the efficient frontier is

described. The model is equipped with the following variables:

e m represents an empty MILP model with default settings.
e onoff is a list of binary variables.

e weights is a list with continuous variables representing the weighting factor of

each security.
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e portfolios is a 2-dimensional list where the pareto optimal portfolios are saved
e netFlows and betas are two lists which contain the PROMETHEE net flow
and the beta index for each portfolio.

[6]: portfolios = [[0 for i in range(numSecurities)] for j in.
—range (numPortfolios)]
netFlows = [0 for i in range(numPortfolios)]
betas = [0 for i in range(numPortfolios)]

betas = np.linspace(minBeta, maxBeta, num=numPortfolios)
print(betas)

for k in range(numPortfolios):
portfolioBeta = betas[k]

m = Model()

onoff = [ m.add_var(var_type=BINARY) for i in.
—range (numSecurities) ]

weights = [ m.add_var(var_type=CONTINUQUS) for i in.
—range (numSecurities) ]

m += xsum(weights[i] for i in range(numSecurities)) ==

m += xsum(onoff[i] for i in range(numSecurities)) <=_
—maxSecurities

m += xsum(onoff[i] for i in range(numSecurities)) >=_
—minSecurities

for i in range(numSecurities):
m += weights[i] - lowerBound * onoff[i] >= 0
m += weights[i] - upperBound * onoff[i] <= 0

m += xsum(weights[i] * betaIndex[i] for i in.
—range (numSecurities)) == portfolioBeta

m.objective = maximize(xsum(weights[i] * promIndex[i] for i in.
—range (numSecurities)))

status = m.optimize()
netFlows[k] = m.objective_value

for i in range(numSecurities):
portfolios[k] [i] = onoff[i].x * weights[i] .x
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for i in range(numPortfolios):
print ("Portfolio", i, ": Beta = ", betas[i], " Net Flow = ",_
—netFlows[i] )

Portfolio 0 : Beta = 0.059 Net Flow = 0.286465

Portfolio 1 : Beta = 0.1401842105263158 Net Flow = O.
2910151074870274

Portfolio 2 : Beta = 0.2213684210526316 Net Flow = O.
52942423205741627

Portfolio 3 : Beta = 0.3025526315789474 Net Flow = 0.
—29715757177033497

Portfolio 4 : Beta = 0.3837368421052632 Net Flow = 0.
-30007282296650717

Portfolio 5 : Beta = 0.464921052631579 Net Flow = O.
-30297411881977676

Portfolio 6 : Beta = 0.5461052631578949 Net Flow = O.
-30465930622009574

Portfolio 7 : Beta = 0.6272894736842105 Net Flow = O.
-3063444936204146

Portfolio 8 : Beta = 0.7084736842105264 Net Flow = 0.
-30784415345592897

Portfolio 9 : Beta = 0.7896578947368422 Net Flow = O.
-3090829744816587

Portfolio 10 : Beta = 0.8708421052631581 Net Flow = O.
-3097444990488269

Portfolio 11 : Beta = 0.9520263157894737 Net Flow = O.
-30925555821371614

Portfolio 12 : Beta = 1.0332105263157896 Net Flow = O.
-30864052631578953

Portfolio 13 : Beta = 1.1143947368421054 Net Flow = O.
-30802549441786287

Portfolio 14 : Beta = 1.195578947368421 Net Flow = O.
-3074104625199362

Portfolio 15 : Beta = 1.276763157894737 Net Flow = 0.
-3067954306220096

Portfolio 16 : Beta = 1.3579473684210528 Net Flow = O.
-30577465628356604

Portfolio 17 : Beta = 1.4391315789473687 Net Flow = O.
-.3028568796992481

Portfolio 18 : Beta = 1.5203157894736845 Net Flow = O.
-2838658126934983

Portfolio 19 : Beta = 1.6015000000000001 Net Flow = O.

—25356499999999993

The efficient frontier is visualised below:
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[7]: from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()

plt.style.use(’dark_background’)

fig, ax = plt.subplots(figsize=(14,8))

ax.scatter(netFlows, betas, color=’lightcyan’)
plt.suptitle(’Efficient Frontier’, fontsize=18, fontweight=’bold’)
ax.set_xlabel (’PROMETHEE Net Flow’, fontsize=13)
ax.set_ylabel(’Beta Index’, fontsize=13)

[7]:

Efficient Frontier

=
O
m 0
i
[
(i)

028

PROMETHEE Net Flow

Finally, the constructed portfolios are presented in the following table:

[8]: df = pd.DataFrame(np.round(portfolios,2))

df .index = df.index + 1

df .columns = tickers

display(df)

ax = df .plot.bar(stacked=True, figsize=(16, 12), title =’Pareto.
—0Optimal Portfolios’)

ax.set_xlabel("Securities")

ax.set_ylabel("Portfolio Proportion")

AAPL MSFT AUDC KLAC TTEC SLP EQIX WSTG CDW TER
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0.0 0.40 0.0 0.00

0.00 0.00 0.05 0.00 0.05 0.50
0.06 0.00 0.05 0.00 0.00 0.42
0.05 0.00 0.12 0.00 0.00 0.33
0.05 0.00 0.22 0.00 0.00 0.23

0.05 0.00 0.31

1
2
3
4
5
6
7
8
9

0.0 0.48 0.0 0.00

0.0 0.50 0.0 0.00
0.0 0.50 0.0 0.00
0.0 0.50 0.0 0.00
0.0 0.50 0.0 0.00
0.0 0.50 0.0 0.00
0.0 0.50 0.0 0.00

0.0 0.48 0.0 0.00

0.00 0.00 0.14

0.05 0.00 0.40 0.00 0.00 0.05
0.17 0.00 0.28 0.00 0.00 0.05
0.30 0.00 0.15 0.00 0.00 0.05
0.42 0.00 0.05 0.00 0.00 0.05

0.0 0.50 0.0 0.00

0.0 0.41

10 0.39 0.00 0.06 0.05 0.00 0.00

11

0.0 0.00

0.49 0.00 0.05 0.05 0.00 0.00

0.0 0.35 0.0 0.00

12 0.50 0.00 0.05 0.10 0.00 0.00
13 0.50 0.00 0.05 0.17 0.00 0.00
14 0.50 0.00 0.05 0.23 0.00 0.00
15 0.50 0.00 0.05 0.29 0.00 0.00
16 0.50 0.00 0.05 0.35 0.00 0.00
17 0.47 0.00 0.05 0.43 0.00 0.00
18 0.40 0.05 0.00 0.50 0.05 0.00
19 0.29 0.05 0.00 0.50 0.00 0.00
20 0.05 0.05 0.00 0.50 0.00 0.00

0.0 0.28 0.0 0.00

0.0 0.22 0.0 0.00
0.0 0.16 0.0 0.00

0.0 0.10 0.0 0.00
0.0 0.05 0.0 0.00
0.0 0.00 0.0 0.00
0.0 0.00 0.0 0.16

0.0 0.00 0.0 0.40
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MOIP PROMETHEE flow 3-Dimensional Model

In this paragraph there is a presentation of the 3-Dimensional model involving
the PROMETHEE flow. The 3 objective function will be the portfolio beta index,
the portfolio dividend yield and the PROMETHEE flow. The input data for this
method are the beta indexes, the PROMETHEE net flows and the dividend yield

of each security:
from mip import *
import pandas as pd

import numpy as np
import matplotlib.pyplot as plt

numSecurities = 10

tickers = [’AAPL’, ’MSFT’, ’AUDC’, °’KLAC’, ’TTEC’, ’SLP’, ’EQIX’,.
—’WSTG’, ’CDW’, ’TER’]

[1.22, 1.23, 0.56, 1.71, 0.7, -0.32, 0.7, 0.39, 1.09,.

betalndex
~1.56]

promIndex = [0.3136, 0.2861, 0.2999, 0.2978, 0.2840, 0.2684, 0.
2728, 0.3078, 0.2552, 0.1867, 0.2351]

DYIndex = [1.36, 1.48, 0.76, 1.91, 1.38, 0.72, 1.71, 4.63, 0.97, O.
6]

Using Python-MIP package version 1.6.2

Model Parameters

The model contains the following parameters:

minSecurities : Minimum number of securities to participate in each portfolio.
maxSecurities : Maximum number of securities to participate in each portfolio.
lowerBound : Minimum value of the weight of each security.

upperBound : Maximum value of the weight of each security.

minSecurities = 6

maxSecurities = 10

lowerBound = 0.05
0.

0
upperBound = 0.3
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Determination of the objectives target values

We solve the 1-objective optimisation problem for each one of the objective
functions, in order to find their target values. Firstly, we solve the problem of
minimising the portfolio beta.

[3]: m = Model()

onoff = [ m.add_var(var_type=BINARY) for i in range(numSecurities).
-]

weights = [ m.add_var(var_type=CONTINUQUS) for i in.

—range (numSecurities) ]

m += xsum(weights[i] for i in range(numSecurities)) ==
m += xsum(onoff[i] for i in range(numSecurities)) <= maxSecurities
m += xsum(onoff[i] for i in range(numSecurities)) >= minSecurities
for i in range(numSecurities):

m += weights[i] - lowerBound * onoff[i] >= 0

m += weights[i] - upperBound * onoff[i] <= 0

m.objective = minimize(xsum(weights[i] * betalndex[i] for i in.
—range (numSecurities)))

status = m.optimize()

print(status, "\n")
minBeta = m.objective_value
print("Minimum Beta = ", minBeta, "\n")

OptimizationStatus.0OPTIMAL

Minimum Beta = 0.2854999999999999

Secondly, we solve the maximisation problem of the PROMETHEE flow
function.

[4]: m = Model()

onoff = [ m.add_var(var_type=BINARY) for i in range(numSecurities).
-]

weights = [ m.add_var(var_type=CONTINUOUS) for i in.

—range (numSecurities) ]

m += xsum(weights[i] for i in range(numSecurities)) ==
m += xsum(onoff[i] for i in range(numSecurities)) <= maxSecurities
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m += xsum(onoff[i] for i in range(numSecurities)) >= minSecurities
for i in range(numSecurities):

m += weights[i] - lowerBound * onoff[i] >= 0

m += weights[i] - upperBound * onoff[i] <= 0

m.objective = maximize(xsum(weights[i] * promIndex[i] for i in.
—range (numSecurities)))

status = m.optimize()

print(status, "\n")
maxProm = m.objective_value
print ("Maximum PROMETHEE flow = ", maxProm, "\n")

OptimizationStatus.OPTIMAL

Maximum PROMETHEE flow = 0.30479

Finally, we solve the problem of maximising the portfolio dividend yield.
[5]: m = Model()

onoff = [ m.add_var(var_type=BINARY) for i in range(numSecurities)._
=]

weights = [ m.add_var(var_type=CONTINUQOUS) for i in.
—range (numSecurities) ]

m += xsum(weights[i] for i in range(numSecurities)) ==
m += xsum(onoff[i] for i in range(numSecurities)) <= maxSecurities
m += xsum(onoff[i] for i in range(numSecurities)) >= minSecurities
for i in range(numSecurities):

m += weights[i] - lowerBound * onoff[i] >= 0

m += weights[i] - upperBound * onoff[i] <= 0

m.objective = maximize(xsum(weights[i] * DYIndex[i] for i in.
—range (numSecurities)))

status = m.optimize()
print(status, "\n")

maxDY = m.objective_value
print ("Maximum DY = ", maxDY, "\n")

OptimizationStatus.OPTIMAL
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Maximum DY = 2.6005

Minimax objective Optimisation Problem

In the following cell we set the final problem as a goal programming optimisation
problem with the minimax objective. The results for a random selection of offsets
is presented below:

m = Model()
wl=20.2
w2 = 0.1
w3 = 0.7

onoff = [ m.add_var(var_type=BINARY) for i in range(numSecurities).
-]

weights = [ m.add_var(var_type=CONTINUOUS) for i in.
—range (numSecurities) ]

Q = m.add_var(var_type=CONTINUQUS)

m += xsum(weights[i] for i in range(numSecurities)) == 1
m += xsum(onoff[i] for i in range(numSecurities)) <= maxSecurities
m += xsum(onoff[i] for i in range(numSecurities)) >= minSecurities
for i in range(numSecurities):

m += weights[i] - lowerBound * onoff[i] >= 0

m += weights[i] - upperBound * onoff[i] <= 0

m += wl * ((xsum(weights[i] * betaIndex[i] for i in.
—range (numSecurities))) - minBeta) / minBeta <= Q

m += w2 * (maxProm - (xsum(weights[i] * promIndex[i] for i in.
—range (numSecurities)))) / maxProm <= Q

m += w3 * (maxDY - (xsum(weights[i] * DYIndex[i] for i in.
—range (numSecurities)))) / maxDY <= Q

m.objective = minimize(Q)
status = m.optimize()
print(status, "\n")

minQ = m.objective_value
print("Q = u, minQ, n\nu)

for i in range(numSecurities):
print(tickers[i],": ", weights[i] .x * onoff[i] .x)
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print ()

print ("Portfolio beta = ", sum(weights[i].x * betaIndex[i] for i.

—in range(numSecurities)))

print ("Portfolio PROMETHEE flow = ", sum(weights[i].x *_

—promIndex[i] for i in range(numSecurities)))

print ("Portfolio DY = ", sum(weights[i].x * DYIndex[i] for i in.

—range (numSecurities)))

OptimizationStatus.OPTIMAL

Q = 0.08220335317946557

AAPL : 0.0
MSFT : 0.05
AUDC : 0.0
KLAC : 0.049999999999999996
TTEC : 0.05

SLP : 0.27564187581991456

EQIX : 0.27435812418008565

WSTG : 0.29999999999999993

CDW : 0.0

TER : 0.0

Portfolio beta = 0.4028452866636873

Portfolio PROMETHEE flow = 0.2845621757463924
Portfolio DY = 2.2951145429382844
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Extensive Experimental Results

This section covers the presentation of the empirical testing results for the stock
exchanges of NASDAQ), Paris and Tokyo. The objective of this section is to provide
a series of tables which describe the application of the methodology step-by-step for
each stock exchange. The structure of this chapter is according to the structure of
the NYSE stock exchange results presentation in chapter 6. More specifically, the
chapter is divided into three sections:

1. NASDAQ stock exchange: In tables[B.1]-[B.3|the input matrix for the three
industrial segments is presented. Tables - contain the results of the
first phase of the methodology. More specifically, there is a presentation of the
results of the four MCDA methods for each sector. The first phase is completed
with the cumulative ranking of the securities which is presented in table |B.7
The results of the second phase (portfolio optimisation) are included in four
tables. Firstly, the pareto optimal portfolios of the MIQP mean - variance
method are presented in table [B.8 Secondly, the goal programming portfolio
is presented in table [B.9, Table contains the pareto optimal portfolios
for the MOIP PROMETHEE flow method. Finally, the portfolio produced by
the genetic algorithm is presented in table |B.11]

2. Paris stock exchange: In tables - the input matrix for the three
industrial segments is presented. Tables - contain the results of the
first phase of the methodology. More specifically, there is a presentation of the
results of the four MCDA methods for each sector. The first phase is completed
with the cumulative ranking of the securities which is presented in table [B.18
The results of the second phase (portfolio optimisation) are included in four
tables. Firstly, the pareto optimal portfolios of the MIQP mean - variance
method are presented in table[B.19} Secondly, the goal programming portfolio
is presented in table [B.20] Table contains the pareto optimal portfolios
for the MOIP PROMETHEE flow method. Finally, the portfolio produced by
the genetic algorithm is presented in table |B.22|

3. Tokyo stock exchange: In tables - the input matrix for the three
industrial segments is presented. Tables - contain the results of the
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first phase of the methodology. More specifically, there is a presentation of the
results of the four MCDA methods for each sector. The first phase is completed
with the cumulative ranking of the securities which is presented in table [B.29]
The results of the second phase (portfolio optimisation) are included in four
tables. Firstly, the pareto optimal portfolios of the MIQP mean - variance
method are presented in table[B.30} Secondly, the goal programming portfolio
is presented in table [B.31} Table |B.32| contains the pareto optimal portfolios
for the MOIP PROMETHEE flow method. Finally, the portfolio produced by
the genetic algorithm is presented in table [B.33]
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NASDAQ stock exchange

Phase 1I: Portfolio Selection

Decision Matrix P/E Ratio | EPS | Rev (B) | Beta | DY(%) | Mon | YID (%) | 1 Year
Bel Fuse A 9.41 1.38 0.542 2.09 | 1.85 1 -5.45 -15.44
Cognizant A 16.52 3.6 16.46 1.05 | 1.35 1 -6.36 -35.71
Activision Blizzard 29.38 1.82 7.11 0.86 | 0.69 3 14.73 -27.65
Formula Systems ADR | 25.69 2.4 1.56 0.87 | 14 5 72.7 47.14
LM Ericsson B ADR 1320 0.01 23.17 0.54 | 1.31 1 -6.99 0
Allied Motion 19.41 1.74 0.34 1.52 | 0.35 2 -24.28 -24.36
Amdocs 22.62 2.9 4.06 0.39 | 1.74 5 12.12 7.58
American Software 74.12 0.21 0.108 0.5 2.84 5 48.33 34.43
Analog Devices 26.55 4.07 7.69 144 | 2 5 2591 29.16
Apple 19.72 11.51 | 259.03 1.22 | 1.36 5 43.93 5.87
Applied Materials 16.96 3 14.87 1.63 | 1.65 5 55.28 55.05
Jack Henry& Associates | 40.5 3.51 1.55 0.9 1.12 5 12.5 -3.38
AstroNova 17.16 0.89 0.141 0.4 1.83 1 -18.35 -24.95
Xperi 39.28 0.51 0.408 0.36 | 4.03 1 7.94 46.71

Table B.1: Evaluation Table input data for NASDAQ Technology Sector
Decision Matrix P/E Ratio | EPS | Rev (B) | Beta | DY(%) | Mon | YID (%) | 1 Year
Diamondback 13.44 6.25 | 3.05 0.81 | 0.89 1 -9.32 -33.86
Alliance Resource 3.8 3.56 | 2.07 0.97 | 15.95 1 -22.09 -31.77
Viper Energy Ut 38.1 0.68 | 0.284 1.33 | 7.25 1 -0.46 -30.38
Dorchester Minerals | 11.23 1.59 | 0.075 0.98 | 10.69 1 21.79 -6.6
Hallador 11.15 0.3 0.328 0.04 | 4.85 1 -34.71 -45.56
TransGlobe Energy | 4.84 0.26 | 0.164 1.18 | 3.39 1 -32.62 -57.86

Table B.2: Evaluation Table input data for NASDAQ Energy Sector

Decision Matrix P/E Ratio | EPS | Rev (B) | Beta | DY(%) | Mon | YID (%) | 1 Year
Nuveen NAS. 100 Dyn. Ov 23.9 0.94 | 0.01 1.15 | 6.93 4 12.35 -2.01
1st Source 13.93 3.32 1 0.19 1.05 | 2.34 3 14.45 -5.47
1st Constitution Bancorp 11.79 1.62 | 0.032 0.25 | 1.57 5 -4.26 -2
Bancorp 34 37.88 0.39 | 0.009 0.58 | 1.36 2 -0.47 -6.24
National General A Pref 11.29 2.01 | 4.6 0.62 | 0.88 5 25.99 8.84
Donegal A 29.34 0.49 | 0.798 0.25 | 4.03 3 5.57 2.86
ACNB 10.13 3.36 | 0.043 0.17 | 2.94 2 -13.38 -11.11
Hennessy Ad 8.4 1.33 | 0.045 0.9 4.94 2 11.29 -17.48
Grupo Financiero Galicia ADR | 3.51 3.66 | 2.39 1.31 | 2.82 1 -53.39 -42.76
Alcentra Capital Corp 14.11 0.63 | 0.026 0.59 | 8.08 5 38.33 50.42
Alerus Fin 12.93 1.65 | 0.101 0.6 2.62 3 11.32 -4.76
Amark Preci 36.14 0.31 | 4.78 0.01 | 2.83 1 -4.07 -16.41
America First Tax 12.92 0.6 0.088 0.36 | 6.45 5 37.9 40.14
Zions 10.75 4.15 | 1.62 1.56 | 3.05 3 9.62 -5.68

Table B.3: Evaluation Table input data for NASDAQ Financial Sector
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‘ Name ‘ ELECTRE 3 ‘ MAUT ‘ PROMETHEE ‘ TOPSIS ‘
Diamondback 0.77 50.50 11.92 57.86
Alliance Resource 3.88 52.91 26.01 56.85
Viper Energy Ut -3.17 21.31 -22.68 31.89
Dorchester Minerals 2.29 49.09 19.89 54.99
Hallador -0.67 29.75 -14.36 34.57
TransGlobe Energy -3.10 28.99 -20.79 30.76

Table B.4: Phase I results for NASDAQ Energy Sector

‘ Name ‘ ELECTRE 3 ‘ MAUT ‘ PROMETHEE ‘ TOPSIS ‘
Bel Fuse A -68.79 21.87 -37.96 40.79
Cognizant A -48.52 28.27 -23.47 42.11
Activision Blizzard -21.95 35.01 -17.25 41.47
Formula Systems ADR 36.06 53.34 25.57 46.41
LM Ericsson B ADR -66.26 20.62 -29.16 20.38
Allied Motion -54.09 24.66 -37.84 39.96
Amdocs 27.48 48.24 10.71 43.90
American Software 34.78 50.44 20.11 44.68
Analog Devices 10.52 47.38 9.78 45.11
Apple 72.58 67.99 31.36 67.67
Applied Materials 16.15 50.06 17.28 46.87
Jack Henry& Associates 5.26 44.65 0.74 42.77
Xperi -4.21 37.64 7.71 44.82

Table B.5: Phase I results for NASDAQ Technology Sector

‘ Name ‘ ELECTRE 3 ‘ MAUT ‘ PROMETHEE ‘ TOPSIS ‘
Nuveen NASDAQ 100 Dynamic -0.52 42.37 2.04 41.06
Ov
1st Source -73.66 37.21 -7.02 42.17
1st Constitution Bancorp 33.58 44.49 2.28 41.25
Bancorp 34 -102.57 31.59 -21.52 38.32
National General A Pref 240.82 49.91 24.42 47.76
Donegal A 48.64 41.03 14.12 41.09
ACNB -23.80 35.54 -9.09 41.03
Hennessy Ad -69.23 34.90 -9.49 41.15
Grupo Financiero Galicia ADR 52.31 22.39 -28.24 39.43
Alcentra Capital Corp 211.38 57.17 37.45 47.38
Alerus Fin -41.63 38.70 -3.80 41.81
Amark Preci 156.21 34.77 -3.52 41.67
Zions 102.93 36.54 2.13 43.32

Table B.6: Phase I results for NASDAQ Financial Sector
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Technology Energy Financial
Apple Alliance Resource Cincinnati Financial
Microsoft Diamondback Willis Towers Watson
AudioCodes Dorchester Minerals Erie Indemnity
KLA-Tencor Hallador Nasdaq Inc
TTEC TransGlobe Energy T Rowe
Simulations Plus Viper Energy Ut Alcentra Capital Corp
Equinix Ares Capital
Wayside CME Group
CDW Corp Principal Financial
Teradyne Market Axesss
Sapiens America First Tax
Formula Systems ADR LPL Financial
NXP First Capital
Intel The Carlyle
Seagate Verisk
Texas Instruments National General A Pref
CSG Systems New York Mortgage Pref
Garmin New York Mortgage Trust Inc Pref
NIC Selective
Elbit Systems Safety Insurance

Table B.7: Selected securities from NASDAQ stock exchange

Phase II: Portfolio Optimisation

Method 1: Mean - Variance MIQP model

Portf ‘ AAPL MSFT AUDC KLAC TTEC SLP EQIX WSTG CDW TER SPNS NYMT NYMTP SIGI SAFT
1 0.0 0.00 0.00 0.0 0.0 0.01 0.04 0.07 0.00 0.0 0.0 0.0 0.16 0.00 0.06
2 0.0 0.00 0.00 0.0 0.0 0.01 0.04 0.06 0.00 0.0 0.0 0.0 0.16 0.00 0.06
3 0.0 0.00 0.00 0.0 0.0 0.01 0.04 0.06 0.00 0.0 0.0 0.0 0.16 0.00 0.06
4 0.0 0.00 0.00 0.0 0.0 0.01 0.04 0.06 0.00 0.0 0.0 0.0 0.16 0.00 0.06
5 0.0 0.00 0.01 0.0 0.0 0.01 0.04 0.05 0.00 0.0 0.0 0.0 0.16 0.00 0.06
6 0.0 0.00 0.01 0.0 0.0 0.01 0.04 0.05 0.00 0.0 0.0 0.0 0.16 0.00 0.07
7 0.0 0.00 0.01 0.0 0.0 0.02 0.03 0.04 0.00 0.0 0.0 0.0 0.16 0.00 0.06
8 0.0 0.00 0.02 0.0 0.0 0.02 0.03 0.04 0.00 0.0 0.0 0.0 0.16 0.00 0.06
9 0.0 0.00 0.02 0.0 0.0 0.02 0.03 0.04 0.00 0.0 0.0 0.0 0.16 0.00 0.07

10 0.0 0.00 0.02 0.0 0.0 0.02 0.03 0.03 0.00 0.0 0.0 0.0 0.16 0.00 0.07
11 0.0 0.00 0.03 0.0 0.0 0.02 0.03 0.03 0.00 0.0 0.0 0.0 0.16 0.00 0.07
12 0.0 0.00 0.03 0.0 0.0 0.02 0.03 0.03 0.00 0.0 0.0 0.0 0.15 0.01 0.07
13 0.0 0.00 0.03 0.0 0.0 0.03 0.02 0.02 0.00 0.0 0.0 0.0 0.15 0.01 0.07
14 0.0 0.00 0.04 0.0 0.0 0.03 0.02 0.02 0.00 0.0 0.0 0.0 0.15 0.01 0.07
15 0.0 0.00 0.04 0.0 0.0 0.03 0.02 0.02 0.00 0.0 0.0 0.0 0.15 0.01 0.07
16 0.0 0.00 0.04 0.0 0.0 0.03 0.02 0.01 0.00 0.0 0.0 0.0 0.15 0.02 0.06
17 0.0 0.00 0.05 0.0 0.0 0.03 0.02 0.01 0.00 0.0 0.0 0.0 0.15 0.01 0.06
18 0.0 0.00 0.05 0.0 0.0 0.03 0.01 0.01 0.00 0.0 0.0 0.0 0.15 0.02 0.06
19 0.0 0.00 0.05 0.0 0.0 0.03 0.01 0.00 0.00 0.0 0.0 0.0 0.14 0.02 0.06
20 0.0 0.00 0.05 0.0 0.0 0.03 0.01 0.00 0.01 0.0 0.0 0.0 0.14 0.02 0.06
21 0.0 0.00 0.06 0.0 0.0 0.04 0.00 0.00 0.00 0.0 0.0 0.0 0.14 0.03 0.06
22 0.0 0.00 0.06 0.0 0.0 0.04 0.00 0.00 0.00 0.0 0.0 0.0 0.14 0.03 0.06
23 0.0 0.00 0.07 0.0 0.0 0.04 0.00 0.00 0.00 0.0 0.0 0.0 0.13 0.03 0.05
24 0.0 0.00 0.07 0.0 0.0 0.04 0.00 0.00 0.01 0.0 0.0 0.0 0.12 0.04 0.05
47 0.0 0.00 0.41 0.0 0.0 0.13 0.00 0.00 0.00 0.0 0.0 0.0 0.00 0.00 0.00
48 0.0 0.00 0.45 0.0 0.0 0.14 0.00 0.00 0.00 0.0 0.0 0.0 0.00 0.00 0.00
49 0.0 0.00 0.49 0.0 0.0 0.14 0.00 0.00 0.00 0.0 0.0 0.0 0.00 0.00 0.00
50 0.0 0.00 0.50 0.0 0.0 0.20 0.00 0.00 0.00 0.0 0.0 0.0 0.00 0.00 0.00

Table B.8: Pareto optimal portfolios for NASDAQ securities
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Method 2: Goal programming model

AAPL MSFT AUDC KLAC TTEC SLP EQIX WSTG CDW TER

0.2 0.1074 0.03 0.0 0.03 0.0411 0.03 0.0 0.0 0.0

SPNS FORTY NXPI INTC STX TXN CSGS GRMN EGOV ESLT

0.03 0.0 0.0 0.1714 0.0 0.0 0.0 0.0 0.0 0.03

ARLP FANG DMLP HNRG TGA VNOM CINF WLTW ERIE NDAQ

0.0 0.03 0.0 0.0 0.0 0.0 0.03 0.03 0.03 0.03

TROW ABDC ARCC CME PFG MKTX ATAX LPLA FCAP CcG

0.0 0.0 0.0 0.03 0.0 0.03 0.0 0.0 0.03 0.0

VRSK NGHC NYMT NYMTP SIGI SAFT
0.03 0.03 0.0 0.0 0.03 0.0
Table B.9: Goal programming portfolio for NASDAQ stock exchange
Method 3: PROMETHEE flow multiobjective programming model

Portf AAPL MSFT AUDC KLAC TTEC SLP EQIX WSTG CDW TER SPNS NYMT NYMTP SIGI SAFT
1 0.00 0.00 0.03 0.00 0.03 0.20 0.03 0.03 0.00 0.00 0.00 0.03 0.00 0.03 0.03
2 0.00 0.00 0.03 0.00 0.03 0.20 0.03 0.03 0.00 0.00 0.00 0.03 0.00 0.03 0.03
3 0.00 0.00 0.03 0.00 0.03 0.17 0.03 0.03 0.00 0.00 0.00 0.03 0.00 0.03 0.03
4 0.00 0.00 0.03 0.00 0.03 0.13 0.03 0.03 0.00 0.00 0.00 0.03 0.00 0.03 0.03
5 0.00 0.00 0.03 0.00 0.03 0.08 0.03 0.03 0.00 0.00 0.00 0.03 0.00 0.03 0.03
6 0.00 0.00 0.03 0.00 0.03 0.03 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.03
7 0.00 0.00 0.03 0.00 0.03 0.03 0.03 0.03 0.00 0.00 0.00 0.03 0.00 0.03 0.03
8 0.00 0.00 0.03 0.00 0.03 0.03 0.03 0.03 0.00 0.00 0.00 0.03 0.00 0.03 0.05
9 0.00 0.00 0.03 0.00 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.03 0.00 0.03 0.07
10 0.03 0.00 0.03 0.00 0.00 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.08
11 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.03 0.00 0.03 0.09
12 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.08
13 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.09
14 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.05
15 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03
16 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03
17 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03
18 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03
19 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03
20 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.03 0.03
21 0.03 0.03 0.00 0.04 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.03 0.03
22 0.03 0.03 0.00 0.08 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.03 0.03
23 0.03 0.03 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.03
24 0.03 0.03 0.00 0.10 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.03
25 0.03 0.03 0.00 0.14 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.03
26 0.03 0.03 0.00 0.18 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.03
27 0.03 0.03 0.00 0.20 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.03
28 0.03 0.03 0.00 0.20 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.03 0.03
29 0.03 0.03 0.00 0.20 0.00 0.00 0.00 0.00 0.03 0.03 0.03 0.00 0.00 0.00 0.03
30 0.03 0.03 0.00 0.20 0.00 0.00 0.00 0.00 0.03 0.03 0.03 0.00 0.00 0.00 0.00

Table B.10: Set of efficient portfolios for NASDAQ stock exchange with MOIP
PROMETHEE method

Method 4: Genetic algorithm model
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AAPL MSFT AUDC KLAC TTEC SLP EQIX WSTG CDW TER
0.0173 0.0262  0.0138 0.0549 0.0331 0.0193 0.0178 0.0333 0.031 0.0123
SPNS FORTY NXPI INTC STX TXN CSGS GRMN EGOV  ESLT
0.0131 0.0131  0.0104 0.0419 0.0137 0.0118 0.0101 0.0314 0.0164 0.0164
ARLP FANG DMLP HNRG TGA VNOM CINF WLTW ERIE NDAQ
0.0252 0.0225  0.0404 0.028 0.03  0.0148 0.0331 0.0134 0.0101 0.0166
TROW ABDC ARCC CME PFG MKTX ATAX LPLA FCAP CG
0.0214 0.0217  0.0194 0.0232 0.0283 0.011 0.0126 0.0283 0.0163 0.0117
VRSK NGHC NYMT NYMTP SIGI SAFT

0.0109 0.019  0.0255 0.0135 0.0394  0.0264

Table B.11: Genetic algorithm portfolio for NASDAQ stock exchange
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Paris stock exchange

Phase I: Portfolio Selection

Decision Matrix P/E Ratio | EPS | Rev (B) | Beta | DY(%) | Mon | YID (%) | 1 Year

Total 12.91 3.56 165.26 0.93 | 5.63 1 0.74 -11.94

TechnipFMC 15.76 4.26 11.44 1.02 | 2.14 1 17.85 -19.72

Rubis 17.97 2.86 5.08 0.59 | 3.1 5 9.32 13.94

GTT 25.92 3.32 0.241 0.71 | 3.82 ) 28.15 32.38

Total Gabon 2.77 47.45 | 0.78 0.74 | 7.47 1 5.6 -8.97

Maurel et Prom 8.75 0.31 0.597 0.83 | 1.45 1 -15.33 -36.54

Docks des Petroles dAmbes | 17.88 26.41 | 0.016 0.4 6.35 2 4.42 -5.22
Table B.12: Evaluation Table input data for Paris Energy Sector

Decision Matrix P/E Ratio | EPS | Rev (B) | Beta | DY(%) | Mon | YID (%) | 1 Year

Akka 20.21 2.87 0.793 1.24 | 1.2 4 31.45 5.25

Alten 22.32 4.67 2.46 0.92 | 0.96 5 43.47 27.98

Artois Nom. 109.29 44.1 0.156 0.41 | 0.71 1 -4.55 -18.99

Atos 12.24 5.46 12 0.79 | 2.54 3 2591 -7.41

Aubay 16.57 2.07 0.203 0.58 | 1.92 5 21.85 3.94

Aures Tech 14.92 1.15 0.05 0.43 | 5.82 1 -41.76 -52.08

Axway 238.64 0.04 0.287 0.91 | 3.83 1 -15.86 -33.86

Capgemini 23.47 4.69 13.74 1.06 | 1.54 4 26.84 6.48

Cofidur 3.44 80.91 | 0.077 0.12 | 2.88 1 -18.24 -21.02

Coheris 28.88 0.08 0.013 0.28 | 1.34 3 36.59 24.44

CS Communication | 26.16 0.16 | 0.216 0.46 | 0.96 1 0.97 -15.31

Wedia 19.42 1.19 | 0.005 0.53 | 1.3 3 0.87 -10.81

Table B.13: Evaluation Table input data for Paris Technology Sector

Decision Matrix | P/E Ratio | EPS | Rev (B) | Beta | DY(%) | Mon | YTD (%) | 1 Year
BNP Paribas 7.75 6.06 | 73.76 1.37 | 6.43 2 19.33 -3.32
AXA 38.48 0.62 | 125.06 1.3 5.29 5 27.04 7.11
Credit Agricole 8.54 1.35 | 68.7 1.48 | 5.46 3 22.53 -2.83
Societe Generale | 7.01 3.71 | 43.29 1.46 | 8.45 1 -6.11 -24.18
Amundi 14.61 4.37 | 5.78 1.62 | 3.92 5 38.21 13.6
Natixis 7.39 0.54 | 15.46 1.46 | 9.34 1 -3.79 -23.73
CNP Assurances | 9.33 1.92 | 16.44 0.82 | 4.69 1 -3.51 -7.89
SCOR 19.73 1.88 | 16.17 0.72 | 4.44 3 -6.32 -10.43
Euronext 23.63 3.03 | 0.775 0.84 | 2.42 5 42.15 29.06
Eurazeo 21.31 3.21 | 4.5 0.74 | 1.74 4 6.52 3.76
FFP 20.02 5.29 | 0.183 1.35 | 1.89 5 30.92 1.74
Idsud 96.17 0.74 | 0.001 0.46 | 0.28 5 33.64 9.16

Table B.14: Evaluation Table input data for Paris Financial Sector
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‘ Name ‘ ELECTRE 3 ‘ MAUT ‘ PROMETHEE ‘ TOPSIS ‘
Total 1.87 39.96 1.76 46.01
TechnipFMC -16.22 21.42 -24.20 35.46
Rubis 4.92 46.19 7.28 45.95
GTT -6.69 49.49 14.10 55.19
Total Gabon 2.83 54.22 20.84 47.81
Maurel et Prom 14.57 13.15 -40.29 15.43
Docks des Petroles dAmbes -1.28 48.42 20.49 41.14

Table B.15: Phase I results for Paris Energy Sector

‘ Name ‘ ELECTRE 3 ‘ MAUT ‘ PROMETHEE ‘ TOPSIS ‘
Akka -8.95 39.54 2.10 41.81
Alten 12.35 49.95 22.23 45.65
Artois Nom. -13.62 30.72 -15.37 38.05
Atos 31.67 44.56 13.85 45.87
Aubay 9.84 46.75 13.76 42.24
Aures Tech -23.84 24.50 -25.69 35.43
Axway -45.28 12.52 -42.77 13.53
Capgemini 31.90 47.02 16.59 46.00
Cofidur 24.54 44.05 -1.61 53.25
Coheris 6.90 45.37 18.61 43.53
CS Communication -18.40 29.17 -15.32 37.36
Wedia -9.33 36.14 -4.87 38.62

Table B.16: Phase I results for Paris Technology Sector

‘ Name ‘ ELECTRE 3 ‘ MAUT ‘ PROMETHEE ‘ TOPSIS ‘
BNP Paribas -5.60 45.84 3.74 48.68
AXA 6.35 54.93 3.69 52.32
Credit Agricole -7.09 44.78 0.47 46.53
Societe Generale -6.66 33.65 -18.29 38.58
Amundi -10.83 47.59 3.72 44.36
Natixis -1.62 30.83 -25.20 36.19
CNP Assurances -16.06 30.40 -22.09 37.35
SCOR -14.24 34.55 -24.01 34.88
Euronext -1.59 49.61 3.92 47.34
Eurazeo -12.72 37.39 -23.18 37.23
FFP -16.52 42.72 -11.08 40.53
Idsud -19.58 33.78 -15.05 34.12

Table B.17: Phase I results for Paris Financial Sector
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Technology Energy Financial
Schneider Electric Total Gabon Crcam Sud RA
Ingenico GTT CRCAM Atlantique
Legrand Rubis Crcam Touraine
Evolis Docks des Petroles dAmbes Crcam Norm.Sei
Tessi Total Crcam Morbihan
GEA Maurel et Prom Ca Toulouse 31 CCI
Capgemini TechnipFMC Coface
Harvest Crcam Loire Ht
Environnement AXA
Alten CRCAM Brie Picardie 2
Somfy Altamir
Atos Crcam Ille-Vil
Dassault Systemes CRCAM Langued
Cofidur Euronext
Perrier Gerard BNP Paribas
Coheris Groupe IRD
Thales ABC Arbitrage
Esker April
SPII Amundi
Aubay Credit Agricole

Table B.18: Selected securities from Paris stock exchange

Phase II: Portfolio Optimisation

Method 1: Mean - Variance MIQP model

Portf ‘ SU ING LR ALTVO GEA CAP ALTEV ATE SO ATO DSY IRD ABCA AMUN ACA ‘
1 0.0 0.0 0.02 0.04 0.07 0.0 0.03 0.0 0.0 0.0 0.00 0.12 0.03 0.0 0.0
2 0.0 0.0 0.02 0.04 0.07 0.0 0.03 0.0 0.0 0.0 0.00 0.12 0.03 0.0 0.0
3 0.0 0.0 0.01 0.03 0.07 0.0 0.03 0.0 0.0 0.0 0.00 0.13 0.03 0.0 0.0
4 0.0 0.0 0.01 0.03 0.07 0.0 0.03 0.0 0.0 0.0 0.01 0.13 0.03 0.0 0.0
5 0.0 0.0 0.00 0.03 0.07 0.0 0.03 0.0 0.0 0.0 0.01 0.13 0.03 0.0 0.0
6 0.0 0.0 0.00 0.02 0.06 0.0 0.03 0.0 0.0 0.0 0.01 0.13 0.03 0.0 0.0
7 0.0 0.0 0.00 0.02 0.06 0.0 0.03 0.0 0.0 0.0 0.01 0.13 0.03 0.0 0.0
8 0.0 0.0 0.00 0.02 0.06 0.0 0.02 0.0 0.0 0.0 0.01 0.14 0.03 0.0 0.0
9 0.0 0.0 0.00 0.01 0.06 0.0 0.02 0.0 0.0 0.0 0.00 0.14 0.02 0.0 0.0

10 0.0 0.0 0.00 0.01 0.06 0.0 0.02 0.0 0.0 0.0 0.00 0.15 0.02 0.0 0.0
11 0.0 0.0 0.00 0.00 0.05 0.0 0.02 0.0 0.0 0.0 0.00 0.15 0.02 0.0 0.0
12 0.0 0.0 0.00 0.00 0.05 0.0 0.02 0.0 0.0 0.0 0.00 0.15 0.02 0.0 0.0
13 0.0 0.0 0.00 0.00 0.05 0.0 0.02 0.0 0.0 0.0 0.00 0.16 0.02 0.0 0.0
14 0.0 0.0 0.00 0.00 0.04 0.0 0.01 0.0 0.0 0.0 0.01 0.17 0.01 0.0 0.0
15 0.0 0.0 0.00 0.00 0.04 0.0 0.01 0.0 0.0 0.0 0.01 0.17 0.01 0.0 0.0
16 0.0 0.0 0.00 0.00 0.03 0.0 0.01 0.0 0.0 0.0 0.01 0.18 0.01 0.0 0.0
17 0.0 0.0 0.00 0.00 0.03 0.0 0.01 0.0 0.0 0.0 0.01 0.19 0.01 0.0 0.0
18 0.0 0.0 0.00 0.00 0.03 0.0 0.00 0.0 0.0 0.0 0.01 0.20 0.01 0.0 0.0
19 0.0 0.0 0.00 0.00 0.02 0.0 0.00 0.0 0.0 0.0 0.01 0.20 0.00 0.0 0.0
20 0.0 0.0 0.00 0.00 0.02 0.0 0.00 0.0 0.0 0.0 0.01 0.21 0.00 0.0 0.0
21 0.0 0.0 0.00 0.00 0.01 0.0 0.00 0.0 0.0 0.0 0.01 0.22 0.00 0.0 0.0
22 0.0 0.0 0.00 0.00 0.00 0.0 0.00 0.0 0.0 0.0 0.01 0.23 0.00 0.0 0.0
23 0.0 0.0 0.00 0.00 0.00 0.0 0.00 0.0 0.0 0.0 0.01 0.24 0.00 0.0 0.0
24 0.0 0.0 0.00 0.00 0.00 0.0 0.00 0.0 0.0 0.0 0.01 0.25 0.00 0.0 0.0
47 0.0 0.0 0.00 0.00 0.00 0.0 0.00 0.0 0.0 0.0 0.00 0.50 0.00 0.0 0.0
48 0.0 0.0 0.00 0.00 0.00 0.0 0.00 0.0 0.0 0.0 0.00 0.50 0.00 0.0 0.0
49 0.0 0.0 0.00 0.00 0.00 0.0 0.00 0.0 0.0 0.0 0.00 0.50 0.00 0.0 0.0
50 0.0 0.0 0.00 0.00 0.00 0.0 0.00 0.0 0.0 0.0 0.00 0.50 0.00 0.0 0.0
Table B.19: Pareto optimal portfolios for Paris securities
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Method 2: Goal programming model

SU ING LR ALTVO GEA CAP ALTEV ATE SO ATO
0.03 0.0392 0.03 0.0 0.03 0.03 0.03 0.2 0.03 0.03
DSY ALCOF PERR COH HO SII EC GTT RUI FTI
0.2 0.0 0.0 0.03 0.03  0.0807 0.0 0.0 0.0 0.03
CRSU CRAV CRTO CCN CMO CAT31 COFA CRLO CS [LTA
0.0 0.0 0.03 0.0 0.03 0.0 0.0 0.0 0.03 0.0
CIv CRLA ENX BNP IRD ABCA AMUN ACA
0.0 0.0 0.03 0.03 0.0 0.0 0.0 0.03

Table B.20: Goal programming portfolio for Paris stock exchange

Method 3: PROMETHEE flow multiobjective programming model

Portf ‘ SU ING LR ALTVO GEA CAP ALTEV ATE SO ATO DSY IRD ABCA AMUN ACA
1 0.00 0.00 0.00 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.20 0.03 0.00 0.00
2 0.00 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.03 0.03 0.00 0.00
3 0.00 0.00 0.03 0.03 0.09 0.00 0.03 0.00 0.03 0.00 0.00 0.03 0.03 0.00 0.00
4 0.00 0.03 0.03 0.03 0.11 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00
5 0.03 0.03 0.03 0.03 0.09 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.00 0.00
6 0.03 0.03 0.03 0.08 0.20 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.00 0.00
7 0.03 0.03 0.03 0.12 0.17 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00
8 0.03 0.03 0.04 0.20 0.08 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00
9 0.04 0.03 0.08 0.20 0.03 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00
10 0.11 0.03 0.03 0.20 0.03 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00
11 0.14 0.03 0.03 0.20 0.03 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00
12 0.17 0.03 0.03 0.20 0.03 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00
13 0.20 0.03 0.03 0.20 0.03 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00
14 0.20 0.03 0.08 0.20 0.03 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00
15 0.20 0.03 0.14 0.15 0.03 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00
16 0.20 0.04 0.20 0.08 0.03 0.00 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00
17 0.20 0.06 0.20 0.06 0.03 0.03 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00
18 0.20 0.10 0.19 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.00 0.00 0.00
19 0.20 0.09 0.20 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.03 0.00
20 0.20 0.19 0.10 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.00 0.03 0.00
21 0.20 0.16 0.13 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.00 0.03 0.00
22 0.20 0.18 0.11 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.00 0.03 0.00
23 0.20 0.20 0.09 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.00 0.03 0.03
24 0.20 0.20 0.09 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.00 0.03 0.03
25 0.20 0.20 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.00 0.07 0.03
26 0.20 0.18 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.00 0.11 0.03
27 0.20 0.12 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.00 0.17 0.03
28 0.20 0.05 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.00 0.20 0.07
29 0.16 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.00 0.20 0.13
30 0.03 0.03 0.03 0.00 0.00 0.03 0.00 0.03 0.03 0.03 0.03 0.00 0.00 0.20 0.20

Table B.21: Set of efficient portfolios for Paris stock exchange with MOIP

PROMETHEE method

Method 4: Genetic algorithm model
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Extensive Experimental Results

SU ING LR ALTVO GEA CAP ALTEV ATE SO ATO

0.0004 0.0005 0.1471 0.244 0.0008  0.0025 0.0042 0.0991 0.0026 0.0019

DSY ALCOF PERR COH HO SIT EC GTT RUI FTI

0.0032 0.0025 0.0002 0.0 0.002 0.003 0.0028 0.0017 0.0009 0.0003

CRSU CRAV CRTO CCN CMO CAT31 COFA CRLO CS LTA

0.2517 0.0028 0.0015 0.0002 0.0035  0.0025 0.0037 0.1904 0.0038 0.0033
CIv CRLA ENX BNP IRD ABCA AMUN ACA
0.0031 0.0028  0.0033 0.0005 0.0032  0.0002 0.0025 0.0011

Table B.22: Genetic algorithm portfolio for Paris stock exchange
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Tokyo stock exchange

Phase I: Portfolio Selection

Decision Matrix P/E Ratio | EPS Rev (B) | Beta | DY(%) | Mon | YID (%) | 1 Year
San-Ai Oil 9.49 112.45 | 749.1 1.11 | 2.53 3 -3.4 -17.62
BP Castrol KK 20.06 72.08 | 12.85 1.01 | 5.39 3 17.58 -6.14
Mitsui Matsushima Co Ltd | 7.67 160.3 73.95 0.6 4.07 1 -9.69 -36.17
Idemitsu Kosan Co Ltd 12.78 242.52 | 4896.74 | 1.01 | 3.23 1 -15.37 -43.43
Sinanen Co Ltd 8.82 211.02 | 242.78 0.65 | 4.03 3 -23 -29.19
Itochu Enex Co Ltd 8.16 103.79 | 1001 0.79 | 4.96 1 -12.58 -22.99
Toell Co Ltd 15.17 52.01 23.67 098 | 1.9 1 20.03 -11.92
Nippon Coke & Eng Ltd 8.02 10.47 119.91 1.02 | 3.57 1 -8.79 -24.55
Inpex Corp. 12.77 74.64 1056.44 | 1.43 | 1.89 1 -3.22 -32.35
Sanrin 11.06 65.47 28.89 -0.17 | 2.62 4 -1.37 0.14
Table B.23: Evaluation Table input data for Tokyo Energy Sector
Decision Matrix P/E Ratio | EPS Rev (B) | Beta | DY(%) | Mon | YID (%) | 1 Year
Yaskawa Electric Corp. 42 90.71 438.17 1.36 | 1.36 5 41.22 19.44
Advantest Corp. 18.01 278.17 | 277.69 1.33 | 1.84 5 123.26 130.56
Rohm Ltd 24.25 350.57 | 388.65 1.3 1.76 5 20.74 14.56
Hitachi High-Technologies Corp | 18.42 346.36 | 719.69 1.01 | 1.65 5 84.66 76.49
Nitto Denko Co 14.22 380.76 | 983.73 1.55 | 3.32 1 -2.31 -31.86
Shimadzu Corp 24.68 107.21 | 386.33 1.13 | 1.06 3 21.71 -17.95
Otsuka Corp 20.21 202.17 | 820.16 1.07 | 2.08 5 35.26 5.42
Disco Corp 29.33 726.98 | 139.91 1.49 | 1.51 5 65.91 21.83
Obic Co Ltd 32.02 386.97 | 75.92 0.75 | 1.09 5 45.94 16.89

Table B.24: Evaluation Table input data for Tokyo Technology Sector

Decision Matrix P/E Ratio | EPS Rev (B) | Beta | DY(%) | Mon | YTD (%) | 1 Year
The 77 Bank Ltd 7.98 206.74 | 58.19 1.3 2.88 1 -15.31 -33.29
Nihon M&A Center 51.39 58.05 | 30.2 0.64 | 0.77 5 31.81 -5.93
Acom Co Ltd 15.05 29.03 | 278.75 0.91 | 0.46 5 19.5 0.47
Activia Properties 28.93 19700 | 28.66 0.08 | 3.44 5 30.26 20.62
MS&AD Insurance Group Hold. | 9.77 351.17 | 5318.69 | 1.28 | 4.08 3 9.51 -4.24
Advance Create 21.46 82 10.22 0.95 | 2.84 3 4.79 -19.07
Japan Investment Adviser 12.7 153.63 | 14.9 0.97 | 0.97 1 -37.34 -51.8
Aeon Financial Service Co Ltd 9.56 172.3 | 241.27 1.43 | 4.13 1 -17.2 -29
Aichi Bank Ltd 8.8 409.5 | 26.6 1.11 | 2.77 1 -5.15 -21.93
United Urban 27.14 7920 52.99 0.15 | 3.32 5 27.44 24.3

Table B.25: Evaluation Table input data for Tokyo Financial Sector
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‘ Name ‘ ELECTRE 3 ‘ MAUT ‘ PROMETHEE ‘ TOPSIS ‘
San-Ai Oil -8.26 35.41 -1.98 36.82
BP Castrol KK -7.03 43.83 -0.41 40.18
Mitsui Matsushima Co Ltd -7.30 34.96 -8.47 34.79
Idemitsu Kosan Co Ltd 6.25 34.21 -7.62 36.75
Sinanen Co Ltd -5.42 40.88 3.32 35.57
Itochu Enex Co Ltd 1.08 36.50 0.41 36.55
Toell Co Ltd -14.18 28.83 -24.27 38.09
Nippon Coke & Engineering Ltd -9.85 27.98 -25.99 33.67
Inpex Corp. -7.87 21.78 -29.78 31.25
Sanrin 8.87 48.76 9.52 42.24

Table B.26: Phase I results for Tokyo Energy Sector

‘ Name ‘ ELECTRE 3 ‘ MAUT ‘ PROMETHEE ‘ TOPSIS ‘
Yaskawa Electric Corp. 81.74 40.58 15.29 40.78
Advantest Corp. 362.00 49.74 36.81 45.76
Rohm Ltd 244.29 42.03 23.33 41.37
Hitachi High-Technologies Corp 377.45 48.11 49.79 44.51
Nitto Denko Co 106.09 30.57 -2.83 41.25
Shimadzu Corp -67.24 32.75 -5.57 39.99
Otsuka Corp 162.07 43.95 31.30 41.54
Disco Corp 327.65 43.86 26.62 42.84
Trend Micro Inc. -70.51 36.76 -4.64 39.50
Obic Co Ltd 323.88 43.46 30.73 41.28

Table B.27: Phase I results for Tokyo Technology Sector

‘ Name ‘ ELECTRE 3 ‘ MAUT ‘ PROMETHEE ‘ TOPSIS ‘
The 77 Bank Ltd -48.24 22.83 -17.64 37.85
Nihon M&A Center 44.83 38.46 12.44 38.75
Acom Co Ltd 34.99 37.18 10.81 40.46
Activia Properties 117.69 57.13 52.13 46.74
MS&AD  Insurance  Group 107.35 38.76 32.79 43.58
Holdings
Advance Create -21.52 32.48 0.86 38.62
Japan Investment Adviser -68.94 20.18 -33.76 36.34
Aeon Financial Service Co Ltd -43.10 24.18 -12.88 38.07
Aichi Bank Ltd 41.38 24.99 -3.73 38.54
United Urban 111.27 51.50 50.83 43.39

Table B.28: Phase I results for Tokyo Financial Sector
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Technology Energy Financial
Tokyo Electron Mitsui Kenedix Office
NEC Corp. JP Petroleum Exploration Ltd Activia Properties

Mitsubishi Electric

Mitsuuroko Group Holdings

Daiwa Office

Ryoyu Systems

Daimaru Enawin

Tosei REIT

Hitachi

Toa Oil

Kenedix Retail Reit

Hitachi High-Technologies Corp

Iwatani Corp

LaSalle Logiport

Advantest Corp.

Marubeni Corp.

Takara Leben Infrastructure

Oricon Sanrin United Urban
NuFlare Tech Sumiseki Holdings Inc Wealth Management
PCA Corp Tokai Holdings Corp Sekisui House Reit
SMC Corp Cosmo Energy Holdings Tokio Marine Holdings, Inc.
Synclayer Shinko Plantech Ichigo Hotel REIT
Holon JX Holdings, Inc. Healthcare Medical Invest
Softmax Sala Corp Hankyu REIT

Mamezou Holdings

BP Castrol KK

Nippon Healthcare

Lasertec Corp

Sojitz Corp.

MS&amp;AD Insurance Group Holdings

Nissin Electric

Kamei Corp

NEC Capital Solutions

Applied Tech

Itochu Enex Co Ltd

Newton Financial Consulting

Uchida Yoko Co Ltd

Sinanen Co Ltd

JACCS Co Ltd

TDK

Idemitsu Kosan Co Ltd

NKSJ Holdings, Inc.

Table B.29: Selected securities from Tokyo stock exchange

Phase II: Portfolio Optimisation

Method 1: Mean - Variance MIQP model

Portf 8035 6701 6503 4685 6501 8036 4800 6256 9629 4273 1724 8793 7169 8584 8630
1 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.03 0.0 0.00 0.0 0.00 0.0 0.0
2 0.0 0.0 0.0 0.07 0.0 0.0 0.0 0.0 0.04 0.0 0.00 0.0 0.01 0.0 0.0
3 0.0 0.0 0.0 0.07 0.0 0.0 0.0 0.0 0.04 0.0 0.00 0.0 0.02 0.0 0.0
4 0.0 0.0 0.0 0.08 0.0 0.0 0.0 0.0 0.05 0.0 0.00 0.0 0.02 0.0 0.0
5 0.0 0.0 0.0 0.08 0.0 0.0 0.0 0.0 0.05 0.0 0.00 0.0 0.02 0.0 0.0
6 0.0 0.0 0.0 0.09 0.0 0.0 0.0 0.0 0.05 0.0 0.00 0.0 0.03 0.0 0.0
7 0.0 0.0 0.0 0.09 0.0 0.0 0.0 0.0 0.05 0.0 0.00 0.0 0.03 0.0 0.0
8 0.0 0.0 0.0 0.10 0.0 0.0 0.0 0.0 0.05 0.0 0.00 0.0 0.03 0.0 0.0
9 0.0 0.0 0.0 0.10 0.0 0.0 0.0 0.0 0.05 0.0 0.00 0.0 0.04 0.0 0.0

10 0.0 0.0 0.0 0.10 0.0 0.0 0.0 0.0 0.06 0.0 0.01 0.0 0.04 0.0 0.0
11 0.0 0.0 0.0 0.11 0.0 0.0 0.0 0.0 0.05 0.0 0.01 0.0 0.04 0.0 0.0
12 0.0 0.0 0.0 0.12 0.0 0.0 0.0 0.0 0.05 0.0 0.01 0.0 0.05 0.0 0.0
13 0.0 0.0 0.0 0.12 0.0 0.0 0.0 0.0 0.05 0.0 0.01 0.0 0.05 0.0 0.0
14 0.0 0.0 0.0 0.13 0.0 0.0 0.0 0.0 0.05 0.0 0.01 0.0 0.06 0.0 0.0
15 0.0 0.0 0.0 0.12 0.0 0.0 0.0 0.0 0.05 0.0 0.02 0.0 0.06 0.0 0.0
16 0.0 0.0 0.0 0.13 0.0 0.0 0.0 0.0 0.04 0.0 0.02 0.0 0.06 0.0 0.0
17 0.0 0.0 0.0 0.14 0.0 0.0 0.0 0.0 0.04 0.0 0.02 0.0 0.06 0.0 0.0
18 0.0 0.0 0.0 0.14 0.0 0.0 0.0 0.0 0.03 0.0 0.02 0.0 0.06 0.0 0.0
19 0.0 0.0 0.0 0.14 0.0 0.0 0.0 0.0 0.03 0.0 0.03 0.0 0.06 0.0 0.0
20 0.0 0.0 0.0 0.15 0.0 0.0 0.0 0.0 0.02 0.0 0.03 0.0 0.06 0.0 0.0
21 0.0 0.0 0.0 0.16 0.0 0.0 0.0 0.0 0.02 0.0 0.03 0.0 0.06 0.0 0.0
22 0.0 0.0 0.0 0.16 0.0 0.0 0.0 0.0 0.01 0.0 0.04 0.0 0.06 0.0 0.0
23 0.0 0.0 0.0 0.17 0.0 0.0 0.0 0.0 0.01 0.0 0.04 0.0 0.07 0.0 0.0
24 0.0 0.0 0.0 0.17 0.0 0.0 0.0 0.0 0.00 0.0 0.04 0.0 0.07 0.0 0.0
47 0.0 0.0 0.0 0.00 0.0 0.0 0.0 0.0 0.00 0.0 0.09 0.0 0.00 0.0 0.0
48 0.0 0.0 0.0 0.00 0.0 0.0 0.0 0.0 0.00 0.0 0.08 0.0 0.00 0.0 0.0
49 0.0 0.0 0.0 0.00 0.0 0.0 0.0 0.0 0.00 0.0 0.04 0.0 0.00 0.0 0.0
50 0.0 0.0 0.0 0.00 0.0 0.0 0.0 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.0

Table B.30: Pareto optimal portfolios for Tokyo securities

Method 2: Goal programming model
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8035. T 6701.T 6503.T 4685.T 6501.T 8036.T 4800.T 6256.T 9629.T 6273.T
0.04 0.07 0.0 0.05 0.0 0.03 0.00 0.00 0.00 0.03
1724.T 7748.T 3671.T 3756.T 6920.T 6641.T 8057.T 6762.T 8031.T 8131.T
0.031 0.035 0.03 0.035 0.03 0.043 0.23 0.093 0.0 0.0
9818.T 5008.T 8002.T 7486.T 1514.T 3167.T 5021.T 6379.T 5020.T 2734.T
0.082 0.033 0.035 0.03 0.0 0.0 0.0 0.0 0.0 0.0
5015. T 2768.T 8037.T 8132.T 5019.T 8972.T 8976.T 3451.T 3453.T 8960.T
0.0 0.0 0.0 0.0 0.03 0.03 0.0 0.0 0.0 0.136
3772.T 3309.T 3455.T 8977.T 3308.T 8725.T 8793.T 7169.T 8584.T 8630.T
0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0

Table B.31: Goal programming portfolio for Tokyo stock exchange

Method 3: PROMETHEE flow multiobjective programming model

Portf 8035 6701 6503 4685 6501 8036 4800 6256 9629 4273 1724 8793 7169 8584 8630
1 0.00 0.00 0.00 0.03 0.00 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00
2 0.00 0.00 0.00 0.03 0.00 0.00 0.03 0.00 0.03 0.00 0.03 0.03 0.00 0.00 0.00
3 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.03 0.00 0.03 0.03 0.00 0.00 0.00
4 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.03 0.00 0.03 0.03 0.03 0.00 0.00
5 0.03 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.03 0.03 0.03 0.03 0.00 0.00 0.00
6 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.03 0.03 0.00 0.00 0.03 0.00 0.00 0.00
7 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.03 0.03 0.00 0.00 0.03 0.00 0.00 0.00
8 0.03 0.03 0.03 0.03 0.03 0.05 0.00 0.03 0.03 0.00 0.00 0.03 0.00 0.00 0.00
9 0.03 0.03 0.03 0.03 0.03 0.09 0.00 0.03 0.03 0.00 0.00 0.03 0.00 0.00 0.00
10 0.03 0.03 0.03 0.03 0.03 0.12 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.00
11 0.03 0.03 0.03 0.03 0.03 0.18 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.00
12 0.03 0.03 0.03 0.00 0.03 0.20 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.00
13 0.07 0.03 0.03 0.00 0.03 0.20 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.00
14 0.10 0.03 0.03 0.00 0.03 0.20 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.00
15 0.13 0.03 0.03 0.00 0.03 0.20 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.00
16 0.16 0.03 0.03 0.00 0.03 0.20 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.00
17 0.20 0.03 0.03 0.00 0.03 0.20 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.00
18 0.20 0.03 0.03 0.00 0.03 0.20 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.00
19 0.20 0.03 0.03 0.00 0.03 0.20 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.00
20 0.16 0.03 0.03 0.00 0.03 0.20 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.00
21 0.10 0.03 0.03 0.00 0.03 0.20 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.00
22 0.12 0.03 0.03 0.00 0.03 0.20 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.03
23 0.05 0.03 0.03 0.00 0.07 0.20 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.03
24 0.03 0.03 0.03 0.00 0.14 0.15 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.03
25 0.09 0.03 0.03 0.00 0.20 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.03
26 0.08 0.03 0.03 0.00 0.20 0.04 0.00 0.03 0.00 0.03 0.00 0.03 0.03 0.03 0.03
27 0.08 0.03 0.04 0.00 0.20 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.03 0.03 0.03
28 0.08 0.03 0.03 0.00 0.20 0.04 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.03
29 0.06 0.03 0.03 0.00 0.20 0.06 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.03
30 0.03 0.00 0.03 0.00 0.20 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.00 0.03 0.03

Table B.32: Set of efficient portfolios for Tokyo stock exchange with MOIP

PROMETHEE method

Method 4: Genetic algorithm model
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8035.T
0.0

6701.T
0.03

6503.T
0.0

4685.T
0.03

6501.T
0.0

8036.T
0.03

4800.T
0.03

6256.T
0.03

9629.T
0.03

6273.T
0.03

1724.T
0.031

7748.T
0.03

3671.T
0.03

3756.T
0.2

6920.T
0.03

6641.T
0.0

8057.T
0.03

6762.T
0.193

8031.T
0.0

8131.T
0.0

9818.T
0.082

5008.T
0.038

8002.T
0.0

7486.T
0.0

1514.T
0.0

3167.T
0.03

5021.T
0.0

6379.T
0.0

5020.T
0.0

2734.T
0.0

5015.T
0.0

2768.T
0.0

8037.T
0.0

8132.T
0.0

5019.T
0.03

8972.T
0.0

8976.T
0.0

3451.T
0.0

3453.T
0.0

8960.T
0.036

3772.T
0.0

3309.T
0.0

3455.T
0.0

8977. T
0.0

3308.T
0.0

8725.T
0.0

8793.T
0.0

7169.T
0.0

8584.T
0.0

8630.T
0.03

Table B.33: Genetic algorithm portfolio for Tokyo stock exchange
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