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Περίληψη

Στην Εποχή της Πληροφορίας, τα νευρωνικά δίκτυα και οι μέθοδοι βαθείας εκμάθησης

έχουν αναδειχθεί ως ένα από τα πιο επιτυχημένα εργαλεία για την αντιμετώπιση σύν-

θετων και δύσκολων εγχειρημάτων, τόσο στον χώρο της έρευνας όσο και σε διάφορες

εφαρμογές, από την δημιουργία δικτύν που αναγνωρίζουν όγκους σε εικόνες από κύτ-

ταρα, μέχρι συστήματα που ξεπερνάνε τα ανθρώπινα όρια σε παιχνίδια όπως το σκάκι.

Στον χώρο της Βιοπληροφορικής, οι συνήθεις έρευνες με σκοπό την αναγνώριση του

μηχανισμού δράσης φαρμάκων, περιστρέφονται γύρω από την διαχείριση δεδομέων γο-

νιδιακής έκφρασης, με περιορισμένη χρήση μεθόδων βαθείας εκμάθησης. Ιδιαίτερα για

τα σηματοδοτικά δίκτυα πρωτεϊνών, χρησιμοποιούνται απλές μέθοδοι ανάλυσης δικτύων

ή μοντελοποίηση δυναμικών συστημάτων για την μέχρι τώρα εξαγωγή συμπερασμάτων

εξ αυτών. Στην παρούσα διπλωματική εργασία, γίνεται μία προσπάθεια χρήσης μο-

ντέλων νευρωνικών δικτύων γράφων εμπνευσμένων απο την έρευνα στην εκμάθηση

γλώσσας, σε δεδομένα διαφόρων σηματοδοτικών δικτύων. Στη προκειμένη περίπτωση,

από όσο γνωρίζουμε, είναι η πρώτη φορά που πραγματοποιείται αυτή η προσπάθεια.



Στο πλαίσιο αυτό, επιδεικνύουμε πως τα χρησιμοποιούμενα μοντέλα εκμάθησης, ε-

πιτυγχάνουν ικανοποιητική συσταδοποίηση αναπαραστάσεων σηματοδοτικών δικτύων

στο χώρο, με σημείο αναφοράς τον μηχανισμό δράσης του φαρμάκου από το οποίο

προήλθαν. Παράλληλα, επιτυγχάνεται η περαιτέρω κατανόηση των λειτουργιών των

δικτύων με μεθόδους αναγνώρισης των πιό σημαντικών πρωτεϊνών που επιδρούν στην

συσταδοποίηση με βάση τον μηχανισμό δράσης.
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Abstract

In the era of Big Data, deep learning has emerged as a succesful approach in dealing

with complex and challenging problems in every �eld of research and scienti�c appli-

cations, from playing chess better than a human to recognising malignant cells from

cell image data. Classical bioinformatics research mostly relies on gene expression

data to provide insight into the mechanism of action of selected drugs, with minimal

use of deep learning methods. Signaling networks, on the other hand, are interpreted

using network analysis and dynamical systems modelling methods. In the present

thesis, we incorporate a speci�c class of neural networks for graphs, by exploiting

architectures stemming from NLP research and apply them into a dataset of biolo-

gical signaling networks. To the best of our knowledge, this is the �rst time Graph

Neural Networks are combined with signaling pathway data. We demonstrate that

our methods can, in an unsupervised way, cluster pathways with similar mechanisms

of action together , while simultaneously providing an interpretable framework for

identifying the signi�cance of individual proteins in a pathway.
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Chapter 1

Introduction

1.1 Overview of Deep Learning in Research

Over the past decade, deep learning has emerged as a versatile and e�cient ap-

proach for accomplishing complex tasks in multiple �elds, such as computer vision

[5], Natural Language Processing [9],[42] as well as autonomous driving [20] and

computer/board games. As the years go by, neural networks have evolved as the

industry standard both when dealing with structured (images, graphs etc.) as well

as unstructured data. In accordance with the subject of this thesis, the use of

Arti�cial Neural Networks (ANNs) has hitherto demonstrated tremendous perfor-

mance in the �eld of deep learning both in biology and medicine. Examples of such

applications make use of MRI data [8], methods regarding cellular image analysis

[36] as well as chemical compound based inference [15], [31] aiming on drug discovery.

The aforementioned capability of ANNs to exhibit human-level performance on var-

ious datasets and tasks, comes with the heavy price of reduced interpretability ,i.e.

the ability to provide meaningful and understandable explanations to human re-

searchers. This reduced interpretability is an extremely important factor to account

for when dealing with biological and medicinal cases as it reduces con�dence to pre-

dictive results coming from ANNs due to the high stakes of many of its applications

such as clinical diagnostics.

1



CHAPTER 1. INTRODUCTION

1.2 Motivation

The present thesis incorporates deep learning techniques and ANNs in order to

extract meaningful representations from signaling networks. It is not the �rst

time biological networks have been used as data for various research purposes [16],

[14] but to the best of our knowledge, it is indeed the �rst time that Graph Neural

Networks(GNNs) applied on this type of data have been used for the purpose of rep-

resentation learning. We believe that such biological network data have a promising

future in the �eld of computational biology, due to the fact that they can encapsu-

late a tremendous amount of information both in terms of their connectivity as well

as the available features each node includes. Essentialy, each node (protein) of the

signaling network can be treated the same a word appears in a sentence. Essentially,

if we consider the case of Directed Acyclic Graphs, each single branch of the DAG

contains information on the nodes that compose it and thus on the whole graph,

immitating the behaviour of sentences in documents. Such practices allow us to

treat these types of networks with techniques that are similarly used in the �eld of

Natural Language Processing leveraging both the connectivity and content in var-

ious ways. Moreover, the aforementioned issues of interpretability can be reduced

due to not only the selected neural network architecture assigned for each task but

through the analysis of each nodes importance in each selected scenario.

In the following pages, unsupervised, supervised as well as semi-supervised tech-

niques against various tasks will be studied, in order to prove that signaling network

data do indeed provide both adequate and interpetable results.

2



Chapter 2

Theoretical Prerequisites

2.1 Biology

2.1.1 Systems Biology

Systems biology is an integrative discipline connecting the molecular components

within a single biological scale and also among di�erent scales (e.g. cells, tissues

and organ systems) to physiological functions and organismal phenotypes through

quantitative reasoning, computational models and high-throughput experimental

technologies. Systems biology uses a wide range of quantitative experimental and

computational methodologies to decode information �ow from genes, proteins and

other subcellular components of signaling, regulatory and functional pathways to

control cell, tissue, organ and organismal level functions.[54]

2.1.2 DNA

DNA, or deoxyribonucleic acid is the central information storage system of most

organisms including a portion of viruses. It is a molecule that is composed of two

conjugate polynucleotide chains that coil around each other held by hydrogen bonds

and form a double helix. The name comes from its structure, which is a sugar and

phosphate backbone which have bases sticking out from it. DNA encodes infor-

mation through the order, or sequence, of the nucleotides along each strand. Each

base�A, C, T, or G�can be considered as a letter in a four-letter alphabet that

3
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spells out biological messages in the chemical structure of the DNA. The complete

set of information in an organism's DNA is called its genome, and it carries the

information for all the proteins the organism will ever synthesize. [3]

Figure 2.1: DNA structure, U.S. National Library of Medicine

2.1.3 RNA

Like DNA, RNA is a linear polymer made of four di�erent types of nucleotide

subunits linked together by phosphodiester bonds. It di�ers from DNA chemically

in two respects:

1. The nucleotides in RNA are ribonucleotides�that is, they contain the sugar

ribose (hence the name ribonucleic acid) rather than deoxyribose;

2. Although, like DNA, RNA contains the bases adenine (A), guanine (G), and

cytosine (C), it contains the base uracil (U) instead of the thymine (T) in

DNA since U, like T, can base-pair by hydrogen-bonding with A.

4
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Apart from the small chemical di�erences, DNA and RNA have a tremendous di�er-

ence in overall structure.Whereas DNA always occurs in cells as a double-stranded

helix, RNA is single-stranded. RNA chains therefore fold up into a variety of shapes,

just as a polypeptide chain folds up to form the �nal shape of a protein. [3]

2.1.4 Gene Expression

In general, with the term gene expression(GEx) we refer to the natural process

in which the aforementioned information that is stored inside the DNA is converted

into functional products like proteins or di�erent types of RNA. The process of gene

expression is being deployed by two basic operations, transcription and transla-

tion.

Figure 2.2: The process of transcription (Image Credit: Genome Research Limited)

The �rst step a cell takes in reading out a needed part of its genetic instructions

is to copy a particular portion of its DNA nucleotide sequence�a gene�into an

RNA nucleotide sequence. The information in RNA, although copied into another

chemical form, is still written in essentially the same language as it is in DNA�the

5
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language of a nucleotide sequence. Hence the name transcription. RNA in the cell

is completely created by DNA transcription, which begins by opening and unwind-

ing of a small portion of the DNA double helix to expose the bases on each DNA

strand. One of the two strands of the DNA double helix then acts as a template

for the synthesis of an RNA molecule.The enzymes that perform transcription are

called RNA polymerases and the transcript is called messenger RNA (mRNA).

The second process, translation, occurs when the aforementioned messenger RNA

has carried the transcribed the needed information from the DNA to the cells' ribo-

somes, in which proteins are being created. The translation of mRNA into protein

depends on adaptor molecules that can recognize and bind both to the codon(three

letters) and, at another site on their surface, to the amino acid. These adaptors

consist of a set of small RNA molecules known as transfer RNAs (tRNAs), each

about 80 nucleotides in length.Once the tRNA is bound, it releases its amino acid

and the adjacent amino acids all join together into a long chain called a polypeptid,

continuing the process above until the protein is formed.[3]

Figure 2.3: The process of transcription (Image Credit: Genome Research Limited)

6
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2.1.5 Proteins

Proteins are by far one of the most chemically complex and functionaly sophisticated

molecules known so far. A protein molecule is made from a long chain of amino acids

(20 di�erent types of amino acids) each linked to its neighbor through a covalent

peptide bond, thus the alternate name polypeptides. Each type of protein has a

unique sequence of amino acids.

Figure 2.4: Peptide bond [3]

The biological properties of proteins depend entirely on their physical interaction

with other molecules. For example, antibodies, Y shaped proteins that are produced

by the immmune system, bind to viruses or bacteria, actin molecules bind to each

other to assemble into actin �laments, and so on. The substance that is bound by

the protein is called a ligand. The region of a protein that associates with a ligand,

known as the ligand's binding site, usually consists of a cavity in the protein surface

formed by a particular arrangement of amino acids.[3]

7
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2.1.6 Signaling Networks

One of the most important issues in biology is the study of the various interac-

tions between cellular molecules which determine their biological properties. Such

interaction networks are usually classi�ed according to the type of the molecules

involved, these usuall being genes or proteins. Networks that involve cell signaling,

i.e. the response of a cell to internal and external stimuli (chemical or even of me-

chanical and elecrical nature) and coordinate the regulation of its activity are called

Signaling Networks.

Figure 2.5: An example signaling network [1]

Individual pathways transmit signals along linear tracts resulting in regulation of

discrete cell functions. This type of information transfer is an important part of the

cellular repertoire of regulatory mechanisms.Inside the cell, there exists a particular

family of proteins called receptors that bind to signaling molecules and initiate an

8
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initial response.Such signaling molecules include Hormones which are the major

signaling molecules of the endocrine system, Neurotransmitters, which are signal-

ing molecules of the nervous system and Cytokines which are signaling molecules of

the immune system. Essentially, carrying out complex biological processes requires

the cooperation of several cells along with their speci�c functions, by the process of

cell signaling.[26],[25],[13]

2.2 Machine Learning

Since the mathematical theory behind deep learning and neural networks is beyond

the scope of this thesis, the following subsections include a brief overview of neural

networks as well as the selected architectures that correspond to the methods chosen

to be presented in this thesis.

2.2.1 Neural Networks

Traditional machine learning techniques such as Linear Regression, Support Vector

Machines (SVMs) as well as Random Forests have proven extremely useful to the

Machine Leaning and Computer Science community for decades. But during the

times of the so called Fourth Industrial Revolution, petabytes of data generated

every day created the need of scalable models that can match both the tremendous

amount as well as the increased structural complexity of the incoming data. Thus,

neural networks have been widely employed over the past few years in order to de-

velop models that address the aforementioned issues.

Deep Learning is a sub�eld of Arti�cial Intelligence which utilizes ANNs. Inspired

by biological neural networks, the basic building block of ANNs are neurons which

are essentialy a form of mathematical entity that holds a real number. Each neuron

accepts the value of previous connected neurons as input, and maps into a non-linear

function, also called an activation function: xnew = s(w ∗ xprev + b) where w, b are

the trainable parameters of the node called weight and bias and s is the non-linear

9
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activation function. Neurons, in their turn form layers a series of whom describes

the basic architecture of a Feedforward Neural Network.

Neural networks are generally trained by optimizing a selected cost function that

most adequately describes the task at hand. These cost functions accept the net-

works output as well as the ground truth labels as input and are trained using op-

timization algorithms that revolve around Stochastic Gradient Descend (SGD).[19]

2.2.2 Graph Convolutional Neural Networks

Originally introduced by Kipf andWelling [27] Graph Convolutional Networks (GCNs)

have become the starting point when working with graphs using neural networks.

In their simplest form, GCNs operate on undirected graphs G = (V ,E) where G is

the graph and V , E describe the set of vertices and edges of the graph respectively.

A simple propagation rule would be

f(H(l), A) = σ
(
AH(l)W (l)

)
, (2.1)

when W (l) is the weight matrix on layer i, A is the adjacency matrix and H(l) is the

feature matrix of the graph nodes in layer i. Therefore, this process imitates the way

typical Convolutional Neural Networks work, in the sense that a �lter propagates

around the graph, reading both the information of each node as well as aggregating

the features of their neighbourhood. There are countless variations of the original

GCNs, few of whom will be addressed later in the thesis, as many of them were used

extensively during our �rst trials with the type of networks this thesis deals with.

2.2.3 Overview of Transformer Networks

Created as an alternative to complex recurrent or convolutional neural networks,

transformers (Vaswani et. al) follow a much simpler architecture but exhibit more

powerful representations. The main structure makes use of the typical encoder-

decoder architecture, binded together with an attention mechanism. It is important

10
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to explain the vanilla transformer to the reader, since the basic models used in this

thesis belong to this family of neural network architectures. We will be focusing on

the encoder part of the transformer and especially the attention mechanisms as the

modi�ed variations we employ are inspired by them.

The encoder is composed of a stack of N identical layers. Each layer has two

sub-layers. The �rst is a multi-head self-attention mechanism, and the second is

a simple, position-wise, fully connected feed-forward network. Each sublayer is also

connected using residual connections [21].

Figure 2.6: Self-Attention Feed Forward Architecture

In general, attention functions can be described as mapping a query and a set of

key-value pairs to an output, where the query, keys, values, and output are all

vectors. The output is computed as a weighted sum of the values, where the weight

assigned to each value is computed by a compatibility function of the query with

the corresponding key.

Scaled Dot-Product Attention

The attention mechanism between the queries, keys and values in the original paper

is called scaled dot-product attention. In practice, for each graph we have the three

11
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Q, K, V matrices that correspond to the total query, key and value vectors of the

graph's node features. The attention is calculated as:

Attention(Q,K, V ) = softmax(
QKT

√
dK

) (2.2)

where 1√
dK

is a scaling factor. Thus, nodes with features that are similar (due to

their dot products) will be binded with a higher attention score between them than

dissimilar nodes.

Figure 2.7: Scaled Dot-Product Attention [58]

Multi-Head Attention

Instead of single dot-product attention on the whole feature vectors q, k, v it was

found that linearly projecting those vectors h times with di�erent, learned linear

projection was more bene�cial. For example, if the dimensionality of the graph

features dmodel was 1024 and we selected 4 heads, then we would end up with 4

triplets of Q, K, V matrices with 256 dimensions, along with their corresponding

12
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weight matrices. In its general form, multi-head attention is described as:

MultiHead(Q,K, V ) = Concat(head1, head2, ..., headh)W
0 (2.3)

with each head corresponding to the previously calculated dot-product attention.

Figure 2.8: Multi-Head Attention [58]

Vanilla Encoder Architecture

The previously mentioned attentions mechanisms are the two most important parts

concerning the architecture used in this thesis. Since it was originally designed to

deal with NLP tasks, the modifed Graph Transformer that we employ di�ers with

the vanilla transfomer in terms of attentional mechanisms but not in the general

encoder architecture. Thus, we end up with Figure 2.9 which, in this thesis, will be

considered the universal architecture of the transformer encoder.

As far as Positional Encoding is concerned, it is out of the scope of this thesis to

thoroughly explain the math behind the original version. In general, it refers to

a vector added to the initial node features that poinpoints each words location in

13
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the sentence. This positional encoding vector has a sinusoidal form, and the reader

is encouraged to brie�y study it in the original paper. Our modi�ed positional

encoding will be introduces in the Methods section of this thesis.[58]

Figure 2.9: Transfomer Encoder [58]
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Chapter 3

Data

Even with the best neural network architectures and methods available, it is of

paramount importance that the data selected to accomplish the given task are of

the best available quality in order to attain robust predictive results. The ways of

gathering and preprocessing said data will be presented in the next sections of the

thesis. Some of this data is available at the NTUA's System Biology Lab Github

page 1, but due to the restrictive size of others such as the signaling network graphs,

the option of uploading them to our repository was not available.

3.1 Preprocessing and Quality Control

3.1.1 CMAP

CMAP or the Connectivity Map project by the Broad Institute LINCS Center for

Transcriptomics, provided us with the transcriptomic signatures needed to develop

the appropriate signaling networks. The version of CMAP that was used was the

GSE92742, with a level 5 transformed z-score. Note that only the di�erential ex-

pression of the 978 landmark genes in the L1000 assay was considered.[51]

3.1.2 TAS Quality

Quantifying the quality of the given data was based on its Transcriptional Activity

1https://github.com/BioSysLab
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Score (TAS)[51]. TAS is computed as the geometric mean of the Signature Strength

(SS, the number of di�erentially expressed genes within a signature with absolute

z-score greater than 2) and the Replicate Correlation (CC, 75th quantile of the

spearman correlations between all pairwise combinations of replicate level 4 pro�les

on a given experiment) for a signature, scaled by the square root of the number of

landmark genes. TAS ranges from 0 to 1 and the quality score ranges from 1 to 8,

with the category of quality 1, which corresponds to a transcriptomic activity score

greated than 0.4 and more than 2 replicates, containing the best quality signatures.

For the selected experiments, only the 7788 available signatures of Quality Score 1

were selected to ensure the validity of our results.

3.1.3 CARNIVAL

CARNIVAL (CAusal Reasoning pipeline for Network identi�cation using Integer

VALue programming)[32] is a causal network contextualization tool, that identi-

�es upstream regulatory signaling pathways by using downstream gene expression

data. It integrates various sources of prior knowledge, like signed and directed

protein-protein interaction networks [55][25], transcription factor targets, as well as

pathway signatures.

Figure 3.1: CARNIVAL Pipeline [32]
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The aforementioned Quality 1 data were processed with CARNIVAL, along with

the following recources:

� Transcription factor activities from DoRothEA[18], a gene set resource con-

taining signed transcription factor (TF) - target interactions

� Signed and directed Protein-Protein Interaction (PPI) networks from Omni-

Path[57]

� Pathway scores out of gene expressions from PROGENy[47]

� An Integer Linear Programming (ILP) solver from which the optimal predicted

signaling network topology arises, speci�cally IBM ILOG CPLEX. The ILP

problems are linearly constrainted from both the TF's activities as well as the

PPI.

The end result, after using CARNIVAL, were 7788 weighted, signed and directed

signaling networks, as well as their corresponding unweighted networks per signa-

ture, a number which varies from 5 to 100 per weighted signaling network. The

weighted networks are produced by adding the unweighted ones, thus edge weights

describe the percentage of times a certain edge appeared in the unweighted graphs.

3.2 Graph Features

After processing the initial GEx data with CARNIVAL, we end up with the previ-

ously mentioned 7788 graphs corresponding to the Quality 1 signatures. In order

to feed those graphs to the models described in the Methods section, node and

edge features need to be properly established so that their mathematical equivalents

provide useful representations to be fed in neural networks.

3.2.1 Node Features

Each node of the graphs that this thesis is focused on, is an individual protein of a cell

signaling network. Thus, when each graph is being processed, each node's features

need to have a multi-dimensional distributed representation that mathematically
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describes the the proteins' various modes of action and their biological signi�cance

i.e. their place in the biological map. In the following subsections, two ways of

dealing with this issue will be brie�y presented; one concerning protein embeddings

that arise from their Gene Ontology (GO) terms and the other of embeddings that

are concerned with the amino acid sequence of each individual protein.

CorEx

The node features described in the following subsections, due to the complexity of

their components, exhibit a dimensionality that exceeds 2000 features. From a cer-

tain point of view, this huge dimensionality might seem that is more than adequate

to explain the biological features of each protein in the graph. But while this is

partially true, the computational complexity that follows this high dimensionality

will increase the training of each neural network almost exponentially. This problem

which falls under the Curse of Dimensionality can be solved by employing methods

of dimensionality reduction.

Thus, we make use of CorEx[49][50], a method used to discover structure in high

dimensional data using Correlation Explanation, hence the name. This particu-

lar unsupervised algorithm searches for a prede�ned number of latent factors that

can best explain the correlation between the original high dimensional data, using

multivariate mutual information. An accurate mathematical explanation of the Cor-

relation Explanation method is thoroughly analyzed in the citations provided in this

subsection.

GO Term Features

The GO knowledge base [4] [56] is the world's largest information database on the

function of genes. In our case, it provides a set of hierachically controlled vocabulary

which is divided in three distinct functional categories:

Biological Processes Also called biological programs, they are the largest pro-

cesses accomplished by multiple molecular activities. Examples include DNA
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repair or signal transduction, although not referring to a pathway process.

Molecular Function Molecular-level activities performed by gene products. Molec-

ular function terms describe activities that occur at the molecular level, such

as �catalysis� or �transport�. GO molecular function terms represent activities

rather than the entities (molecules or complexes) that perform the actions,

and do not specify where, when, or in what context the action takes place.

Molecular functions generally correspond to activities that can be performed

by individual gene products (i.e. a protein or RNA), but some activities are

performed by molecular complexes composed of multiple gene products.

Cellular Component The locations relative to cellular structures in which a gene

product performs a function, either cellular compartments (e.g., mitochon-

drion), or stable macromolecular complexes of which they are parts (e.g., the

ribosome). Unlike the other aspects of GO, cellular component classes refer

not to processes but rather a cellular anatomy.

The tool used to insert the aforementioned GO terms into our dataset was topGO

[2], an R package for testing GO terms while accounting for the topology of the

Gene Ontology graph.

Amino Acid Sequence Features

Apart from the Gene Ontology terms, another way is to encode the aspects of pro-

tein function and structure based on each individual proteins amino acid sequence.

A novel way to represent protein sequences as continuous vectors (distributed rep-

resentations) is presented in [22]. SeqVeq(Sequence-to-Vector)2 uses a bi-directional

model inspired from NLP tasks called ELMo [44] to capture the biophysical prop-

erties of sequences from big unlabelled data, speci�cally the UniProt50 database.

This method has been proved rather e�ective in terms of predictive results in various

tasks, just by using protein sequence data, outperforming even some methods using

evolutionary information.

2https://github.com/rostlab/SeqVec
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3.2.2 Edge Features

In every graph, the edges represent the type of connection two nodes share. In our
case, the connection between two neighboring nodes (in a directed fashion) depict
three di�erent relational entities:

Protein Interaction In the cell signaling network, which is computationally for-

mulated as a Directed Acyclic Graph(DAG), proteins either upregulate or

downregulate the next protein in each branch of the DAG, originally being

represented as a 1 or a -1 respectively. Since this formulation cannot be di-

rectly understood by neural networks, it was changed with one hot vectors,

thus changing 1 to [1 0] and -1 to [0 1], enforcing a categorical attribute to

this connection.

Edge Weight In the case of weighted graphs, it quanti�es the appearance of the

edge in each of the unweighted graphs from which the original was produces.

Ranges from 0 to 1, where 1 means this edge appeared in every unweighted

graph.

PPR Weight In the Methods section, Personalised Page Rank is presented as

a method to enforce a relative positioning feature of each protein inside the

graph. This attribute is represented as a single number ranging from 0 to 1

and signi�es the ease of getting from protein A to protein B and is directly

linked to the aforementioned edge weight.

3.3 Mechanisms of Action

Each signature ID corresponds to GEx data, after a drug has been administered

to a cell line, where the corresponding cell signaling network exhibits the cells'

response to each drug. For much less than half of the experiments, speci�cally 2733

signatures, we were able to acquire the administered drugs' possible mechanism of

action(s). Since the original labels were not consistent, we had to group similar

labels together, e.g. grouping all DNA or kinase inhibitors, or arbitrarily select one

of the available mechanisms of action for each drug and if possible, grouping that as

well. By following this procedure, we end up with 255 unique mechanism of action

labels.
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It is very important to take into account the fact that each one of those labels is

not de�nitive and unique for each drug. More that one labels may correspond to

one speci�c drug, and this heavily undermines the training evaluation metrics. The

goal of those labels is to provide us with a baseline evaluation procedure, in order

to focus our attention in interpeting each signaling network pathways in terms of an

attributed mechanism of action.
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Methods

The ultimate goal of this thesis is to provide a series of supervised and unsuper-

vised methods so that the potential signi�cance of cell signaling networks is exhib-

ited. In the following sections, we will describe the architecture of our implemen-

tation of the Transformer, as well as the methods that will be used along the way.

The code for each model and implementation can be found at our repository at

https://github.com/BioSysLab/deepSNEM.

4.1 The Signaling Network Transformer

In the Machine Leaning section of Chapter 2, a brief overview of the original

Transformer[58] was presented. In order to process the cell sigaling network graphs

using a neural network, instead of the standard way of employing a Convolutional

Graph Neural Network, we chose to implement a novel, modi�ed version of the

Transformer for graphs. There are three di�erent functional di�erences between our

model and the original version, which will be presented in the following subsections.

4.1.1 Positional Encoding Alternatives

As mentioned in the theoretical section of this thesis, the original Transformer used

a method called Positional Encoding to enforce a sense of placement of each word

inside the sentence. In similar fashion, in order for each protein to have an edge
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feature that depicts its relative position with child and parent proteins in the DAG,

we make use of the Personalised PageRank algorithm[41], a graph di�usion method

based on the PageRank algorithm by former Google CEO Larry Page and others.

Another alternative is the use of the Floyd-Warshal algorithm, a much more com-

putationally feasible alternative with similar results.

PPR Algorithm

For the undirected graph G = (V , E), with node set V and edge set E we denote

N = |V| the number of nodes and A its adjacency matrix. The di�usion matrix is

then

S =
∞∑
k=0

θPPRk Trw (4.1)

with the weighting coe�cients θPPRk = α(1 − α)k and the random walk transition

matrix Trw = AD−1 with D being the degree matrix. Those values represent the

PageRank algorithm and are selected so that Eq. 4.1 converges.

Essentially, graph di�usion exchanges the normal adjacency matrix A with a spar-

si�ed version of the generalized graph di�usion matrix S. This matrix de�nes a

weighted and directed graph, and the model we aim to augment is applied to this

graph instead. The sparsi�ed matrix S̃ is used in the modi�ed scaled dot-product

attention described in the following sections.

Floyd-Warshall Algorithm

The Floyd-Warshall algorithm is an algorithm used to calculate shortest path dis-

tances in a weighted graph with positive or negative edges, by comparing all possible

paths through the graph between each pair of vertices. Let dist(k, i, j) be be the

length of the shortest path from i to j that uses only the vertices u1, u2, ..., uk as
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intermediate vertices. Then:

� k=0 is our base case as dist(0, i, j) is the length of each vertex i to vertex j if
it exists, and its ∞ otherwise.

� dist(k, i, j) = min(dist(k − 1, i, k) + dist(k − 1, j, k), dist(k − 1, i, j))

The pseudocode of the Floyd-Warshall algorithm is described bellow:

Algorithm 1 Floyd Warshall Shortest Path Distance Matrix

for i← 1 to N do
for j ← 1 to N do

if there exists and edge from i to j then
dist[0][i][j]← length of edge from i to j

else
dist[0][i][j]←∞

end if
end for

end for
for k ← 1 to N do

for i← 1 to N do
for j ← 1 to N do

dist[k][i][j]← min(dist[k − 1][i][j], dist[k − 1][i][k] + dist[k − 1][k][j])
end for

end for
end for

Then dist[N ][i][j] describes the shortest path distance between node i to node j.

Relative Positional Encoding

In the original Transformer paper, we mentioned that they used a novel absolute

positional encoding scheme, based on sinusoidal functions. Speci�cally, they use

the following positional encoding formulas where pos is the absolute position in the

sequence and i is the ith element of the positional encoding vector. Note that dk

corresponds to each node feature vector dimension since this positional encoding

should �t with every chosen word embedding size.

PE(pos,2i) = sin(pos/100002i/dk) (4.2)
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PE(pos,2i+1) = cos(pos/100002i/dk) (4.3)

The intuition behind this speci�c encoding lies on the fact that the model would be

able to generalise to longer sequences due to the use of sinusoidal functions, instead

of a simple [0,1] distance scheme with predi�ned maximum sequence distances.

Shaw et. al [48] proposed a relative positional encoding method, based on the hy-

pothesis that it is more useful than absolute positional encoding. We adopted this

method and constructed a graph relative encoding scheme. For every unweight-

ed/weighted graph in the dataset we initially calculate all the simple paths starting

from the perturbation node to every other node in the graph. Since the process

of calculating every node pair in each one of the 70000 graphs is computationally

ine�ective, we precalculated a protein path distance matrix PD in which

PDij =
√
PE(posi) ∗ PE(posj)T (4.4)

So, for every graph we construct the sequence distance matrix Aseq de�ned as

Aseq(i, j) = PD(posi, posj) (4.5)

Another more computationally e�cient alternative would be to use the Floyd-

Warshall distance matrix. By using its elements with equations 4.2 and 4.3 we

construct the matrix R ∈ Rh×N×N×dhead , where Rhij represents the relative posi-

tional embedding vector of head h. Note that dhead corresponds to the dimension

of each attention head.
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4.1.2 Activity Embedding

Apart from the activity edge features that were described in a previous section, each

node(protein) is embedded with two distinct positive values that range from 0 to 1.

Those two values refer to the frequency each node in the weighted graphs had an

upregulated or downregulated activity value in the initial unweighted graphs from

which it was created.

Instead of just plugging those values in the feature vector of each individual protein,

thus assigning only two weight values to each activity, we decided to use a more ap-

propriate method to enhance the presence of such importan features. By projecting

this 1x2 xact vector into a 1xdk vector, where dk is the dimensionality of each protein

feature vector, we end up with a trainable activity vector uact = xactwact, with wact

being the 2xdk weight matrix. The activity embedding is added with the trainable

feature vector uprot of each protein before they are processed by the Transformer

encoder.

4.1.3 Modi�ed Scaled Dot-Product Attention

The modi�ed version of the scaled dot-product attention described in a previous

section, has to account for both the new positional encoding method as well as the

insertion of the edge features the DAG contains, something the word sentences that

were processed with the original Transformer did not include.

Recall the query and key matrices Q, K from Eq 2.2. In the modi�ed attention

scheme, Uh
act = Xh

actW
h
act and U

h
prot = Xh

protW
h
prot represent the matrices of each pro-

teins activity and functional features for head h respectively. Uedge represents the

(3xN) edge matrix of the graph, with features described in the Data section, with

N being the number of proteins. So, the modi�ed attention weights Wattn are cal-

culated in the following scheme:
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W h
attn = softmax

(
(UQh

act + UQh
prot) ∗ (UKh

act + UKh
prot)

T

√
dk

+ β ∗ (Uedge ~We)

)
(4.6)

where We is the (1x3) edge weight and b is the bias. Essentialy, the process Uedge~

We describes a pointwise convolution operation on the edge features. Also, β is a

trainable parameter that weights the importance of the edge features.

Since the multi-head attention scheme remains the same, after the concatenation of

each attention head, the value matrix V is weighted using the concatenated attention

heads as

X = Wattn(U
V
act + UV

prot) (4.7)

where X is the (N x dk) resulting node feature matrix before the pointwise feed-

forward network, following the typical Transformer architecture.Adding our relative

positional embedding and the trainable parameter c, results in the �nal form of the

self attention mechanism:

W h
attn = softmax

(
Ch + β(Uedge ~We) + c ∗ PD

)
(4.8)

where PD is the relative positional encoding matrix and is shared among each head.

D is de�ned as the pairwise protein embedding multiplication matrix for each head:

Ch = (UQh
act + UQh

prot)(U
Kh
act + UKh

prot)
T (4.9)

The Floyd-Warshall alternative exhibits a di�erent attention scheme, which is as
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follows:

W h
attn = softmax

(
Ch + β(Uedge ~We) +

(UQh
act + UQh

prot)R
FW
c√

dhead

)
(4.10)

where RFW
c is the corrected R FW matrix in terms of dimensions, so that the

equation above holds. We can now identify three di�erent components that arise

from the attention mechanism. Ch is the content attention component, β(Uedge~We)

is the edge component and (UQh
act + UQh

prot)R
FW
c is the position component of each

attention head.

4.2 Unsupervised Learning

The aim of unsupervised learning is to distinguish certain patterns in a speci�c

dataset by using unlabeled data and minimal human interaction. In this thesis, we

will test our signaling network data in a series of unsupervised tasks to determine

whether they prove useful. Additional models that will be used during the process

will be brie�y presented. Note that our DAG Transformer and some other models

were developed with PyTorch[43] and PyTorch Geometric[12] and others were built

using Tensor�ow-Keras[11].

4.2.1 Additional Models

Graph2Vec

Graph2Vec[38] is an unsupervised neural graph embedding framework in order to

learn task agnostic, data-driven distributed representations of arbitrary sized graphs.

It is based on recent document embedding models, speci�cally Doc2Vec[29] in which

the way that words/sentences compose documents is being exploited in order to learn

speci�c document oriented embeddings. Note that this method doesnt need the node

features that were mentioned in the data section, but each protein is labeled with

a unique name. Apart from their original name, we further add a plus sign (+) to
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upregulated proteins and a minus sign (-) in the case of downregulated proteins to

signify this functional attribute.

Siamese GED

As described in the DeepSIBA paper[15], this type of neural network consists of

a siamese encoder architecture, where the encoder contains a multitude of graph

convolutional, batch normalization, pooling and dropout layers. The hyperparame-

ters of this architecture are given in the appropriate Hyperparameter section of the

Supplamentary Material. The Siamese GED architecture is shown in Fig 4.1:

Figure 4.1: The Siamese GED architecture[15]

4.2.2 Graph Autoencoders

Initially called Autoassociative Neural Networks[28] autoencoders are a type of

ANNs that produce compressed encodings of data in a completely unsupervised

manner. It is a form of Non-Linear Principal Component Analysis and remains

a basic method that involves neural networks in the process of dimensionality re-

duction. The input data is fed to the encoder which creates a latent compressed

representation of the original data. The decoder then tries to reconstruct the orig-

inal input data by minimizing a reconstruction loss like the Mean Squared Error

(MSE) or Binary Cross Entropy.
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Figure 4.2: Basic Autoencoder architecture

Graph autoencoder(GAE)[46][33] share the same logic in terms of architecture, but

with a few key di�erences. In GAEs, the reconstruction error that the network is

trained to optimize has to account for both the node features as well as the overall

graph structure. Thus, in the typical GAEs the decoder either tries to reconstruct

the original adjacency matrix A or the node features X and some times even both

simultaneously.

The selected architecture of our graph encoders revolves around edge prediction

i.e. the network has to reconstruct the original adjacency matrix. We deliberately

avoid predicting each nodes features due to the fact that the node embeddings are

also trainable, a dangerous practice which in many cases, results in trivial solutions

like zeros on each node embedding or identical node embeddings, none of which

have any actual meaning. In our case, by using the proposed signaling network

Transformer, after the Multi-Head Attention is performed, we end up with the global

attentive node feature matrix X from Eq 4.7. As a global pooling method, we use

Set2Set[30] and we end up with the summary vector ~s = Set2Set(X). Since we are

interested in creating meaningful graph embeddings, we "�lter" X with the trainable
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summary vector, ending up with the �nal global embedding matrixXs = X�~s where

Xs : RN×dk and � denotes the elementwise product of the summary vector s and

each one of the X node features.

After calculating Xs, it is used to calculate the pairwise euclidean distances between

nodes, thus constructing the pairwise distance matrix De, which is de�ned as:

De
ij =

∥∥xsi − xsj∥∥ (4.11)

In order to calculate the probability Pe that a distance between two nodes is an edge

in the corresponding graph, we use a modi�ed form of the Fermi-Dirac distribution

Pe(i, j) =

[
exp

De
ij − r
t

+ 1

]−1
(4.12)

in which r is the radius and t is the temperature coe�cient. For each (positive)

edge that exists in each graph being processed, we sample 10 negative edges (Ã) to

train against. The BCE based loss function that we train to optimize is de�ned as

follows:

L = EA [logPe(i, j)] + EÃ [log (1− Pe(i, j))] (4.13)

4.2.3 Deep Graph Infomax

Information Theoretic De�nitions[6][37]

Entropy Let X be a random variable on a (discrete) space X and x an element

sampled from X . For every positive integer d, we denote by X a d-dimensional

random vector (X1, ..., Xd) ∈ X d, and by the letter x an element from X d. The

Shannon entropy of a random variable X on a discrete space X measures its
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uncertainty during an experiment and is de�ned as

H[X] = −
∑
x∈X

P (X = x)log[P (X = x)] (4.14)

The joint entropy of a pair of random variables (X, Y) expresses the uncertainty

one has about the combination of these variables:

H[X, Y ] = −
∑

x∈X ,y∈Y

P (X = x, Y = y)log[P (X = x, Y = y)] (4.15)

Finally, the conditional entropy of a random variable X given another variable

Y expresess the uncertainty on X which remains while Y is known:

H[X|Y ] = −
∑

x∈X ,y∈Y

P (X = x, Y = y)log[P (X = x|Y = y)] (4.16)

Mutual Information It is a general measure of the dependence between two ran-

dom variables X, Y. It expresses the quantity of information one has obtained

on X by observing Y. The discrete mutual information between two random

variables X and Y is de�ned as:

I(X;Y ) =
∑

x∈X ,y∈Y

P (X = x, Y = y) log
P (X = x, Y = y)

P (X = x)P (Y = y)
(4.17)

If we recall the de�nition of the Kullback-Leibler divergence between the dis-

tributions P, Q

KL(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(4.18)

then Eq 4.7 describes the KL divergence between the joint distribution P(X,

Y) and the product distribution P(X)P(Y). In terms of Shannon entropy, MI

can be de�ned as

I(X;Y ) = H[X]−H[X|Y ]

= H[X] +H[Y ]−H[X, Y ]

= H[X, Y ]−H[X|Y ]−H[Y |X]

(4.19)

The Deep Graph InfoMax[59][24] approach to learning a suitable encoder relies on
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maximiziting local mutual information i.e. to obtain node representations that cap-

ture the global information content of the entire signaling network, which in this

case is represented by a summary vector ~s. We also refer to ~h as each node's patch

representation after the DAG Transformer Encoder forward pass.

For the graph-level summary vectors ~s, we use a readout function R : RN×dk , which

in our case is either an average pooling of the node features, or the Set2Set[30] global

pooling method.

In order to maximize the local MI, a discriminator D : Rdk×Rdk → R is used so that

for each node i of the graph D(~hi, ~s) it represents the probability scores assinged to

the summary-patch pair.

The functionality of the discriminator depends on the existence of both positive and

negative samples. For the graph G with a summary ~s negative samples are produced

by pairing the summary with patch representations from another graph G̃ namely ~̃hj.

We use a combination of corrupted samples from each input graph as well as patch

representations from graphs with a di�erent signature id i.e. a di�erent experiment,

that should be di�erent in nature. Corrupted representations are produced from an

explicit, stochastic corruption function C : RN×dk × RN×N → RM×dk × RM×M such

that G̃ = C(G). In our case, C is a random permutation of both the node features

as well as the edge positions of the whole graph. Note that we slightly abuse the

notation of G. With this symbol, in our case, we represent the node and adjacency

matrix (X, A).

Noise Contrastive Estimation (NCE)[40] is used as a lower bound on MI along

with a standard Binary Cross Entropy (BCE) loss between the samples fromt the

joint (positive examples) and the samples from the product of marginals (negative
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examples).Thus, the objective to be optimized is:

L =
1

N +M

(
N∑
i=1

EG
[
logD(~hi, ~s)

]
+

M∑
j=1

EG̃

[
log

(
1−D( ~̃hj, ~s)

)])
(4.20)

As the discriminator probability estimation function we can choose the Fermi-Dirac

distribution used in the Graph Autoencoder, as an alternative to the sigmoid func-

tion used in the original paper, due to the extra two degrees of freedom it includes.

The loss function of Eq. 4.20 corresponds to the MI estimator used in the original

Deep Graph Infomax paper.

We can use a variation of this loss function based on the Jensen-Shannon Mutual

Information estimator as in InfoGraph[52] with the following notation, based on

Nowozin et.al[39]. Let Iφ,ψ be the mutual information estimator modeled by a

discriminator Dψ parametrised by a neural network with parameters ψ.As φ, we

denote the parameters of our modi�ed transformer neural network. The Jensen-

Shannon MI estimator is:

Iφ,ψ
(
hiφ, sφ

)
:= EP

[
−sp

(
−Dψ,φ

(
hiφ, sφ

))]
− EP̃

[
sp
(
Dψ,φ

(
h̃iφ, sφ

))]
(4.21)

where P is the empirical distribution of the input data set, P̃ is the negative dis-

tribution from which we sample from (either via the corruption function C or even

better P̃ = P, i.e. masking networks from di�erent signatures as described later in

this section) and sp is the softplus function sp(z) = (1+ ez). Thus, the new model's

unsupervised loss is

Lunsupervised = −
1

N

N∑
i

Iφ,ψ
(
hiφ, sφ

)
+ γDφ, ψ (V||Uφ,ψ) (4.22)
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The second term is a regularization loss, which denotes matching the pushforward

distribution of our summary vectors to a prior distribution, with the most successive

being the uniform distribution. The e�ects of this loss term were exhibited in the

Signature as well as the Duplicate Similarity Task as depicted in the Results section.

Prior Matching was inspired by research on adversarial methods in deep learning.

Instead of the Jensen-Shannon Divergence used in the original InfoGraph paper,we

can make use of MINE (Mutual Information Neural Estimation)[7] which again

uses a neural network as a discriminator, but is based on the Donsker Varadhan

lower bound on KL divergence. Using the same notation, the unsupervised MINE

objective can be formulated as follows:

LMINE
unsupervised = −

1

N

N∑
i

Dψ,φ

(
hiφ, sφ

)
+ ln

1

M

M∑
j

e
Dψ,φ

(
h̃jφ,sφ

)
(4.23)

where M refers to the number of nodes of the sampled negative graph. In order for

the model to distinguish between duplicate experiments more easily, we make use

of a shared mask between samples that come from a same signature, so that when

multiplied, the negative expectation term between duplicate signatures will zero out

and the positive one has a masking value of 1, thus forcing it to enhance mutual

information between both duplicate experiments as well as graphs that come from

the same signature, during the training phase.

4.2.4 Unsupervised Embedding Evaluation Tasks

The embeddings that are produced using the aforementioned unsupervised methods

should be able to represent the functional and biological characteristics. Signal-

ing networks that exhibit similar characteristics in the biological space should be

closer in the embedding space than with those that di�er in terms of functionality.

We initially employ three di�erent evaluation methods to determine whether the

unsupervised embeddings are functionally and biologically distinguishable. These
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methods usually involve the unweighted networks, since we want to compare graphs

from di�erent signatures.

Signature Similarity Task (SST) As mentioned in the data section, each signa-

ture identi�cation, after being processed with CARNIVAL, produces a multi-

tude of unweighted signaling networks with a number that ranges from 5 to 100

graphs per signature id. Unweighted graphs that arise from the same signature

should be closer in the embedding space than pairs that come from di�erent

signatures. We use our unsupervised learning models to learn embeddings that

exhibit this behaviour and provide the results with various graphs.

Duplicate Similarity Task (DST) In out dataset, there exist di�erent signature

ids but they correspond to the same experiment performed at a di�erent place

in time, keeping the exact same characteristics in terms of dosage, drug, cell

line etc. Ideally, those experiments should be completely identical both in

terms of their GEx as well as the corresponding signaling networks produced.

But as it turns out, we notice networks with slightly di�erent structure for

those duplicate experiments. Each model should be able to identify networks

coming from the same experiment in terms of their distribution in the embed-

ding space, this being the main goal of the task.

Mechanism of Action Distinction (MAD) Task For each of the labeled un-

supervised embeddings after training, we attempt to visualize them in 2-D

including the mechanism of action labels attributed to each, by using certain

visualization techniques based on manifold learning clustering methods(t-SNE

or UMAP). The visualization will help us determine whether the unsupervised

embeddings encapsulate adequate information that can help distinguish di�er-

ent mechanisms of action without having to perform multi-class classi�cation.

Apart from producing unsupervised embeddings, the models mentioned in this sec-

tions have an equally important role. It is common practice to pretrain unsupervised

models in order to assist with future supervised downstream tasks, such as classi-

�cation or regression.By splitting the trained encoder from the whole unsupervised

model - when this is technically possible - and plugging it to a classi�er, we will be

able to leverage the unsupervised pretrained weights.
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4.3 Semi-Supervised Learning

Apart from the toy datasets the machine learning commynity is accustomed to,

most of the real world data sets come either completely or partly unlabelled. Thus,

methods that combine both supervised and unsupervised learning arised to address

this issue. As mentioned previously, our dataset consists of 7788 unique signatures

and 2733 of them are actually labelled. A fully supervised method would have to

not take account of the unlabelled data thus throwing away a potentially valuable

amount of information. We modify two of our models to �t with this training

method, the Siamese GED network and the Deep Graph Infomax.

In the case of the Siamese GED, we can train based on the mechanism of action

labels by introducing a loss based on each pairs labels, apart from their structural

distance.

In order to train the Infomax model we introduce a new supervised loss between

positive and negative examples. The fact that makes this loss supervised is that

the distinction between positive and negative samples depends on their mechanism

of action. So, by creating pairs of signatures with di�erent mechanisms of action,

we enforce the model to learn their biological and structural distinction via mutual

information maximization. Since we use two di�erent encoders for this task, let χ

be the parameters of a new encoder and ψ
′
the parameters of the corresponding

discriminator,both with the exact same architecture as the unsupervised case. The

supervised MI is then:

Iχ,ψ′
(
hiχ, sχ

)
:= EP

[
−sp

(
−Dψ′ ,χ

(
hiχ, sχ

))]
− E

P̃′

[
sp
(
Dψ′ ,χ

(
h̃jχ, sχ

))]
(4.24)
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and the loss:

Lsupervised = −
1

N +M

(
N∑
i

(
−sp

(
−Dψ′ ,χ

(
hiχ, sχ

)))
−

M∑
j

(
sp
(
Dψ′ ,χ

(
h̃jχ, sχ

))))
(4.25)

Lastly, we also need a way to connect the two seperate encoder parameters during

training. Based on [52] we also tie the global embeddings using mutual information,

but in a di�erent way. We want the global embeddings of the positive examples to

share more information with the unsupervised ones rather than the negative ones.

This global loss is formulated as follows, based on the notation of the previous

equations:

Lglobal = sp
(
Dψ′′ ,φ,χ (sχ, sφ)

)
− sp

(
Dψ′′ ,χ (sχs̃χ)

)
(4.26)

Thus, the semi supervised objective is

Lsemi = Lsupervised + Lunsupervised + λ ∗ Lglobal (4.27)

where λ is a chosen hyperparameter. Since this method does not explicitly train the

networks in identifying we dont expect it to be rather con�dent in case of individual

mechanism of action prediction. If we were to further push the network towards the

classi�cation of the labelled instances of the dataset, we could change Lsupervised to

a typical classi�cation loss and update the global parameters accordingly.

4.4 Masked Semi-Supervised Learning

After trying various combinations of the methods described in the previous two

sections, we came to the conclusion that masking does indeed boost the model's

performance since it introduces much needed bias regarding the input data in a

rather safe way. To be more speci�c, in the semi-supervised environment, we de-

veloped a fast and reliable way to introduce the mechanism of action labels into
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the dataset. Apart from the already used duplicate masking method, each positive

and negative sample is masked with a similar one hot encoded binary mask that

indicates each labelled graph's attributed mechanism of action.

In each seperate mask, we also encode the uncertainty we have about the mechanism

of action labels. We demonstrate this technique with a simple example. Consider

the case of three total labels in our dataset 1, 2 and 3. Then the label number 2

would have the one hot encoded vector [0,1,0]. Say that we are 90% sure about the

validity of this label. Then, the mechanism of action vector turns into [0.33,0.9,0.33].

This simple masking scheme, after many di�erent experiments with various methods,

provided both fast -in terms of computation- as well as equally and usually better

clustering results.

4.5 Supervised Learning

During supervised learning procedures, each of the chosen models are being trained

to identify one of the drugs' mechanisms of action. The training circumstances are

de�nitely not on our side, since we can only account for 2733 labels in a dataset

consisting of 7788 di�erent experiments. Thus, the evaluation metrics for this task

will not be ideal, but the ultimate goal is not to provide a tool for predicting drug

mechanisms of action(at least for now), but to create an interpretable signaling

network embedding framework.

4.5.1 Additional Models

XGBoost

XGBoost[10] is an optimized distributed gradient boosting library. All its algorithms

are implemented under the Gradient Boosting framework, i.e. the production of a

classi�cation or regression model in the form of an ensemble of weak prediction

models. These aforementioned weak learners are in most cases decision trees.
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4.6 Node Importance Calculation

Evaluating each model's performance on the task at hand, that being supervised,

unsupervised or semi-supervised is one major part of this diploma thesis. But only

the task of training, especially for this quite challenging dataset, must be accompa-

nied by interpretable results with a biological signi�cance. A simple way in order to

generate said results, one can use a trained model and calculate the gradients of the

output with respect to the input. In our case, with the input being the total of the

graphs nodes accompanied by their node features - SeqVeq or GO term features- this

gradient , per node, is in the following form. Let F ∈ Rn → [0, 1] be the function

that represents our neural network in a supervised task and xji node j's i
th feature.

Then, the gradients with respect to each node:

Gradsj =

dk∑
i

∂F

∂xji
(4.28)

If yk represents the k
th intermediate layer, then by the chain rule:

Grads(xj) =

dk∑
i

∂F

∂ykn

∂ykn
∂ykn−1

· · · ∂yk1
∂xji

(4.29)

Instead of calculating said gradients using Eq 4.28, we can also employ a slightly

more complex gradient attribution method, called Integrated Gradients[53]. Let xj
′

be a baseline input node ,e.g. a black or white image for image classi�cation task

or the zero embedding vector for natural language processing tasks and in our case,

the original pretrained node embeddings.The integradient gradients of the output
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with respect to the input are calculated as follows:

IntegratedGrads(xj) :=

dk∑
i

(
(xji − x

j′

i )×
∫ 1

α

∂F (xj
′

i + α× (xji − x
j′

i ))

∂xji
dα

)
(4.30)

With this expression, we can calculate the gradient attribution of each node in the

graph thus determining their importance. Each of the gradients above can be calcu-

lated easily using PyTorch/Autograd and the integral is calculated using the Gauss-

Legendre integral approximation method, by using 50-100 forward-backpropagation

passes to estimate the IG.

The problem when using IG, as we veri�ed in our experiments, is that it is very

time consuming to evaluate large quantities of experimental data in terms of gra-

dient attribution, due to the increased number of backpropagation steps needed to

calculate each gradient attribution with a small convergence delta. So, in order to

quantify the importance of each node we use simple saliancy methods described by

Equations 4.28 and 4.29.
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Embedding Quality Evaluation

After presenting each one of the methods used in this thesis, both in terms of un-

supervised as well as supervised nature, the following sections include the results of

each model in the given tasks. Note that in each model, no hyperparameter train-

ing was performed due to both the multitude of the methods as well as the huge

computational cost of optimizing the hyperparameters of each model. Hyperparam-

eters were chosen empirically with trial and error, and the exact architecture of each

model is presented in the corresponding Hyperparameter section of the Supplamen-

tary Material.

5.1 Unsupervised Task Evaluation

Since we are not aiming to create a single model for a predictive task, but exhibit

the properties of the signaling network dataset, we consider that there is no point

in presenting most of the evaluation metrics during training. Instead, we focus on

presenting the results that involve the unsupervised evaluation tasks in Section 4.2.4,

the Signature Similarity Task and the Duplicate Similarity Task. The tasks were

performed with either the GO term node features or the SeqVeq node features, as

we refrained from using a mixture of both in order to determine the performance of

each initial representation on each given task.
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5.1.1 SST Evaluation

Recall the SST from Section 4.2.4. After training each model we calculate either

the cosine distances CD between pairs of graph embeddings u, v

CD(u, v) = 1− u · v
‖u‖2 ‖v‖2

(5.1)

or the Euclidean distance between u and v. The cosine distance provided more

consistent results, which is why we selected it as the appropriate distance metric

for each task. For each of the following distance plots, we select a number of un-

weighted graphs from the same signature and afterwards calculate their pairwise

cosine distances. Then, we calculate the pairwise distance of unweighted graphs

against di�erent random signature graphs, ending up with the distance distribution

plots presented in the following subsections.

Graph2Vec SST

Figure 5.1: Graph2Vec SST Performance
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As we can see, Graph2Vec is very succesful in distinguishing between graphs from

the same signatures against random ones. The form of these distribution is also

almost ideal, despite the minor overlapping. The black distribution has a very small

variance contrary to the red one, a fact which exhibits that the same signature

graphs have a minor cosine distance as opposed to the random graphs, where the

large distribution variance accounts for the varying di�erence between the random

graph distances. We also conctruct a UMAP plot of graph embeddings, with each

label corresponding to a signature.

Figure 5.2: UMAP plot of Graph2Vec graph embeddings. Each label corresponds to
a di�erent signature identi�cation.

Figure 5.2 clearly depicts the success of the Graph2Vec method. Embeddings from

the same signatures form very tight clusters that almost seem as one data point,
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except for the distribution of class 1 labels. The latter, form sparse clusters in 2-D

space which may lead us to believe that there exist multiple sub-categories of class

1 signatures, with slightly di�erent biological or structural information.

Siamese GED SST

We trained the Siamese GED model for 4 epochs, with various node embedding

sizes, speci�cally 128, 256 and 512. Since in most of our models the latter prevailed,

for constistency reasons we choose to present only the evaluation visualizations con-

cerning this embedding dimension.

Figure 5.3: Siamese GED SST Performance

We can see that Siamese GED is again succesful when dealing with similar ver-

sus random signature embedding distances. The black distribution again has very

small variance compared to the random distance one with minor overlap. In similar

fashion, we present the UMAP embeddings sampled from various signatures:
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Figure 5.4: UMAP plot of Siamese GED graph embeddings. Each label corresponds
to a di�erent signature identi�cation.

Based on the �gure above, its almost total similarity to Figure 5.2 leads us to the

same explanation of its form and the corresponding signaling network embeddings.

Graph Autoencoder SST

Similarly, we construct both the plots used in the previous evaluation methods. Note

that for the Graph Autoencoder method presented below, both GO and SeqVeq node

embeddings produced almost identical results, with no clear winner regarding the

evaluation task. We arbitrarily choose to present the SeqVeq pre-embedded model

evaluation graphs.

The density plot of Figure 5.5 is slight dissimilar as opossed to the previous two,
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Figure 5.5: Graph Autoencoder SST Performance

regarding the variance of the random graph distance distribution. This di�erence

is to be expected since the Graph Autoencoder is a non-contrastive method with a

very simple adjacency matrix reconstruction task, but still, it captures the essential

information to be able to distinguish between same signature graphs and random

ones. The UMAP embedding plot of �gure 5.6 is practically identical to the previous

two, but we present it for the sake of completeness.

Signaling Network Infomax SST

In the unsupervised setting, SNI was trained with the corruption function method

presented in section 4.2.3. We deliberately refrained from using a contrastive task

for DGI at the moment, since this adds possibly unwanted bias to our model i.e. by

inserting graphs from di�erent signatures as negative samples, since are not sure of

their dissimilarity. Instead, the corruption function o�ers a bias free method with

good results regarding the SST.
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Figure 5.6: UMAP plot of Graph Autoencoder graph embeddings. Each label corre-
sponds to a di�erent signature identi�cation.

In the SNI setting of Figure 5.7, we still notice the succesfulness on the SST task

in terms of signature distance di�erence. The expected UMAP embedding plot

of again shows that similar signature identi�cations form tight clusters, with the

consistent exception of class 1 signature identi�cations who are sparsely clustered

in small regions which is omitted as it is similar to the rest.

5.1.2 DST Evaluation

As opposed to the SST, the Duplicate Similarity Task (DST) is a slightly harder

task to deal with. This mainly due to the inconsistency of the original GEx data.

In the ideal case, GEx data obtained from the exact same experiment performed
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Figure 5.7: Deep Graph Infomax SST Performance

in a di�erent place in time - which we refer to as duplicate experiment- should be

completely identical, but this di�ers from reality by a margin. The noise that is

packed along with the original GEx data is of course administered into the signaling

networks produced by CARNIVAL. Thus, in the DST, we can see the e�ect of noisy

input data depicted in the density plots that will be presented in the following

sections. The aforemention distance density plots were created together with the

ones from the SST, meaning that they both stem from the exact same dataset with

the same training hyperparameters in each case to ensure consistency of each models

output in terms of post training intepretability.

Graph2Vec DST Evaluation

In the new more challenging task, we present the evaluation graphs in the same

order as before, starting from Graph2Vec.

While in the SST Graph2Vec and the other models had no problem distinguishing

between random and same signatures, we can clearly see the in�uence of noisy data
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Figure 5.8: Graph2Vec DST Performance

in the density plot of Figure 5.8. In this case, not only there is a relatively big

overlap among the two distributions, but their distributions have acquired a larger

variation than the previous ones, as well as multimodality.

Siamese-GED DST Evaluation

In the Siamese-GED model, we can see that the results are virtually the same. Mul-

timodality in the black distribution with increased variance than the SST and a

relatively big overlap between the two distributions. Note that both the Graph2Vec

and Siamese GED DST density plots have a distance that revolves around 0.10,

whereas in the SST case it was very close to 0.0 showing the signi�cant di�erence

between duplicate signatures. Figure 5.9 contains the aforementioned distance den-

sity plot.

Graph Autoencoder DST Evaluation

The Graph Autoencoder produced rather acceptable results both in the SST as well

as the DST. In Figure 5.10, we do not spot the same behaviour as in the previous to
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Figure 5.9: Siamese GED DST Performance

DST distance density plots. The network is able to produce unsupervised embed-

dings without the multimodality that Graph2Vec and Siamese GED exhibited in

their DST plots. Yet, the unwanted overlap between the two distributions pertains,

enhancing the belief that it is mainly a problem regarding the input data. The

signi�cance of the training task can be easily seen in the di�erence between Figures

5.10 and 5.11. Even though both use the same architecture and dataset, their DST

density plots di�er substantially.

Signaling Network Infomax DST Evaluation

Lastly, we present the results produced by the SNI model on the DST. We notice an

even smaller overlap between the red and black distributiion, which indicates that

the method in a way succeeded in distinguishing between random and duplicate

signatures. This indicates that the method we used to train the model, i.e. masking

duplicate signatures under a same mask value, has successfully worked.
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Figure 5.10: Graph Autoencoder DST Performance

Figure 5.11: Signaling Network Infomax DST Performance
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5.1.3 MAD Task Evaluation

The third and �nal evaluation task is essentially the true purpose of this diploma

thesis. The ultimate goal that each one of the models must accomplish, is the

accurate and interpretable prediction of each drugs mechanism of action. But this

goal, from both a data analytics as well as a bioinformatics standpoint, is not as

simple as it might sound. Consider the case of a simple object detection neural

network which is trained on a labelled image dataset. In this image dataset, an

object labelled as "car" is de�nitely only a car and there is no question that it

may be a "plane" or a "dog". So the network can be trained to identify a single

label that describes the objects seen in training and testing time. In the case of

signaling networks, no one can be de�nitely sure that the drug administered has a

single mechanism of action labelled as "DNA kinase inhibitor" and simultaneously

not being an antidepressant. This is exaclty the reason which enhances the di�culty

of this task. In the �gures presented in the following subsections, each unsupervised

model embedding set was reduced in 2-D by t-SNE while attributing each signature

with its own label. Ten mechanisms of action were used for each unsupervised

embedding plot.

Graph2Vec MAD Evaluation

We evaluate the labelled unsupervised embeddings of Graph2Vec using t-SNE, as

shown in Figure 2.11. The output of the model caused the unsupervised embeddings

to be somehow unevenly clustered regarding their mechanism of action. We can see

some degree of clustering according to their mechanism of action, especially the

green, "dopamine antagonist" cluster which seems to be the most stable contrary to

the rest.

Siamese GED MAD Evaluation

In Figure 5.13, we repeated the same procedure for the labelled unsupervised em-

beddings of Siamese GED. The same explanation as in the case of Graph2Vec can
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Figure 5.12: Graph2Vec MAD Performance

be given for this �gure as well.

Graph Autoencoder MAD Evaluation

The same evaluation procedure is followed with the labelled Graph Autoencoder

unsupervised embeddings show in Figure 5.14. Again, the "hdac inhibitor"(green)

unsupervised embeddings seem to be the most tightly clustered, and in the Graph

Autoencoder case, the "atp synthesis inhibitor"(red) and "mtor inhibitor"(blue)

ones also seem to form non-sparse clusters. The rest again have small communities

of similar mechanism of action but not a centralised area where they all lie.
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Figure 5.13: Siamese GED MAD Performance

Signaling Network Infomax MAD Evaluation

Lastly, the SNI labelled unsupervised embeddings are being presented in Figure

5.15. In this case, we notice that despite the fact that again the "hdac inhibitor"

embeddings seem to cluster together, the other ones are more sparsely distributed,

in small similar mechanism of action communities. This is not necessarily unwanted,

since we do not really know if this 2-D overlapping means that the embeddings are

wrongly distributed. It may be the case that they share common structural or even

biological similarities.
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Figure 5.14: Graph Autoencoder MAD Performance

5.2 Semi-Supervised Task Evaluation

In this section, the semi-supervised embeddings of the Siamese GED model and

the semi supervised Signaling Network Infomax are being presented. Note that the

models were trained on di�erent dataset splits, since they tackle this task with a

slightly di�erent way in terms of batching.

5.2.1 Semi Supervised Siamese GED

The �gure belows depicts almost the ideal clustering of our mechanism of action

labels. Yet, this �gure shows a case of over�tting, since the same model was trained

on a huge dataset for almost 4 hours per epoch, and it greatly failed regarding the
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Figure 5.15: Signaling Network Infomax MAD Performance

evaluation on the test set. Nevertheless, one interesting aspect of it is the overlap

between the "mtor inhibitor" labelled signatures and the "pi3k inhibitor" ones, since

it is very usual for a drug to exhibit dual inhibition in the mTOR and PI3K kinases

[23].

5.2.2 Semi Supervised Signaling Network Infomax

The semi supervised Signaling Network embeddings are depicted in Figure 5.17.

Since this approach is less invasive than the previous one i.e. the embeddings were

not trained explicitly to match their labelled mechanisms of action, we do not notice

the same almost ideal clustering behaviour as in Figure 5.16. Nevertheless, the semi-

supervised SNI, has some improved performance compared to the unsupervised case.
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Figure 5.16: Semi Supervised Siamese GED Clustering Performance

Again, the HDAC inhibitor and mTOR/PI3K inhibitor mechanism of action seems

to have the best clustering. Note that initially, the green data points were either

mTOR, PI3K or both, but since they rather oftenly appear close in the embedding

space due to reasons of usual dual inhibition, we decided to group them under one

mutual category for visualization reasons.

It is very interesting that while the semi supervised model succeeded in clustering

the hdac and mtor/pi3k inhibitor labelled networks, it still struggles to clearly dis-

tinguish between the other mechanisms of action involved in Figure 5.17. In order

to determine this discrepancy quantitatively, one can continue with the node impor-
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tance calculation scheme provided in Section 4.5, thus determining the importance

the model attributed to each node in order to end up with such an embedding. We

can also calculate the node importance in the semi supervised or even the unsuper-

vised environment, but this is heavily intensive in terms of computation since we

have to calculate the importance of each node on every dimension of the output

data, i.e. N × 512× 1024 integrated gradients per network.

Figure 5.17: Semi Supervised SNI Clustering Performance

5.3 Supervised Learning Evaluation

So far, we have seen that both the supervised and semi-supervised techniques have

struggled against the di�ucult task of distinction between cell signaling networks
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Model Graph Type Node Embedding Type Submethod Accuracy Per Signature ID Accuracy Per Drug
Siamese GED Unweighted GO Term Embeddings k-NN 0.269 0.375
Siamese GED Unweighted GO Term Embeddings XGBoost 0.291 0.375
Graph2Vec Unweighted - XGBoost 0.3007 0.4375
Graph2Vec Weighted - XGBoost 0.3104 0.3125
SN Infomax Unweighted k-NN 0.29 0.375
SN Transformer Weighted SeqVeq Embeddings - 0.41 0.625

Table 5.1: Evaluation results using multiple methods and models. Each model was
trained on the same validation and test set. The results correspond to the mutual test
set. The available model architectures are presented in the corresponding Supplamen-
tary Material section. No hyperparameter optimization has been performed so far. Note
that the accuracy for the SN transformer was calculated by removing labelled graphs
with less that three labelled instances.

based on their corresponding mechanism of action. The attempt to train a su-

pervised model explicitly in terms of learning between single mechanisms of action

seems both futile and ,in a sense, wrong.

The futility of this practice lies mainly in the scarcity of labelled data throughout the

signaling network dataset. Recall that out of the 7788 unique signatures, only 2733

of them are labelled and considering that a validation and test data split should be

used, the available training data is reduced even further. The obvious solution is to

use the unweighted data , but due to their -even sometimes complete- similarity to

the weighted ones, they do not introduce much more variance into the input data,

thus not substantially increasing performance. This can also be validated by the

results of Table 5.1.

Secondly, the task itself is in a sense �awed. Take for example the already men-

tioned case between the mTOR and PI3K inhibitor mechanisms of action. In this

setting of the supervised case, pushing the model to explicitly chose between two

mechanisms of action that may both be actually correct, is inherently wrong from

both a biological as well as a data analytics standpoint.
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Chapter 6

Case Studies

Evaluating the quality of the embeddings was a major and extremely important part

of this thesis. If the models were not able to distinguish between signaling networks

with di�erent biological and structural features, then there would be no point in

further developing the methods described in the previous sections. Yet, such rela-

tively simple tasks are not the main concern of predictive models. We need to be

able not only to distinguish between signaling networks, but also get the appropriate

explanation from the model as to why this distinction was made.

Saliency methods as those described in Section 4.6 o�er a baseline approach in as-

sessing the true quality of the embeddings. For example, if we were to analyze

the e�ect of a drug that was applied on a certain cell line with a speci�c dosage,

provided that an appropriately trained and evaluated model was used, a saliency

method would provide us with the most important nodes(proteins) that a�ected the

selected loss function. If our models are actually useful, they have to be able to

identify important pathway features that can be validated by existing literature and

research. In the following sections, we study speci�c cases stemming from the input

dataset in order to determine whether the models are able to infer useful biological

and structural properties of selected signaling networks.
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6.1 Experimental Setup

Throughout the following case studies, we decide to use the Signaling Network In-

fomax models, trained in the Masked Unsupervised scheme. Since the labels are

somehow "dangerous" due to their grouping. Instead, the unsupervised labels in-

clude only the bias of masking duplicate experiments in each batch, which is some-

thing desirable. We employ two models with the exact same architecture used to

evaluate the quality of the embeddings, one trained with GO terms as node features

and the other with the SeqVeq amino acid sequence embeddings. Each model used

embeddings with a dimension of 512 and the output global embedding vector has

a size of 1024 real valued features. Both models were trained for 5 epochs with a

batch size of 32 graphs, and were validated in the SST, DST and MAD tasks in

order to ensure their validity.

Each evaluation was based on the global summary vectors of selected experiments.

For each 1024 embedding dimension vector, we calculate the attribution score in

each level of representation for 10 di�erent graphs coming from the same signature

identi�cation, since the Saliency method is generally faster in calculating such quan-

tities. Lastly, due to the large amount of di�erent labels (255 di�erent mechanisms

of action), even after grouping them in categories with mutual biological features,

the following case studies cannot possibly contain each and every one of them. Since

every mechanism of action involves a number of di�erent drugs, we select a subset of

signature IDs to evaluate our methods on. We concern ourselves with two di�erent

categories:

HDAC Inhibitors Histone deacetylase inhibitors are chemical compounds that

inhibit histone deacetylases, which are a class of enzymes that operate by

removing acetyl groups from histones and other protein regulatory factors,

with functional consequences on chromatin remodeling and gene expression

pro�les[35]. We select this mechanism of action as, based on our embedding
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evaluation results, was the most easily clustered, and we expect the model to

provide reasonable intepretations.

ATP synthesis inhibitors Experiments that mainly concern the double motor

enzyme ATP Synthase, participating not only in ATP synthesis but also in

ATP hydrolysis-dependent processes and in the regulation of a proton gradient

across some membrane-dependent systems. In Section 5.1, these labels are the

red ones in each plot which seem to generally cluster well together.

6.2 HDAC Inhibitors

In this setup, our aim is to �rst determine whether the initial starting point for

each network, i.e. the initial node embeddings, exhibits di�erences in the aspect of

node importance per graph. We sample two di�erent experiments from the HDAC

inhibitor labelled data:

Signature ID Cell Line Primary Site Drug Name # Graphs

PCLB003_PC3_24H_BRD-K77908580-001-04-7_10 PC3 Prostate Entinostat 10

BRAF001_HEK293T_24H_BRD-K81418486-001-15-2_10 HEK293T Kidney Vorinostat 10

For the 20 unweighted graphs that concern Table 6.1, we obtain 20 global embedding

vectors of size 1024. Each node gradient attribution was calculated for each one of

the 1024 dimensions of the 20 global embeddings , a procedure that is being deployed

in order to account for the volatility of the gradients that are calculated using

the saliency method as well as the variability of each unweighted graph stemming

from the same experiment. We collect the top 20 nodes that concern the global

embeddings. The aforementioned attribution score histograms are shown in the

following �gures.

6.2.1 PC3 Entinostat

For the �rst sampled signature ID, we present the three di�erent mean attribution

plots along with the most important nodes calculated.

While �gures 6.1 and 6.2 which concern the SeqVeq and the GO terms respec-
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Figure 6.1: PC3-Entinostat six most important nodes per model initial embedding
type, based on their mean attributions to each dimension of the global embeddings.

tively, seem to generally agree on the major importance of proteins like MAPK10,

WWTR1, GSK3B or PRKACA, the randomly initialized model seems to follow a

slightly di�erent approach, that of attributing high importance to RAF1 but still

including both WWTR1 and PRKACA in the top �ve most important genes. In in-

stance, MAPKs (Mitogen Activated Protein Kinases) seem to play a very important

role in prostate cancer [45]

The AR (Androgen Receptor), who in all three cases except the GO term model has

a place in the top seven most important proteins and is also a succesor(is signaled

by MAPK8 in each of the directed graphs) of the MAPK8 kinase is also reported

to play pivotal roles in prostate cancer[17]. Transcriptional activity of the androgen

receptor (AR) is crucial for growth and survival of prostate cancer and therapies

aim at suppressing the transcriptional activity of the AR gene[60].

6.2.2 HEK 293T Vorinostat

HEK 293T is a human cell line, derived from the HEK 293 cell line, that expresses

a mutant version of the SV40 large T antigen, stemming from human embryonic

kidney 293 cells. The signaling networks that are created due to the e�ect of the drug

vorinostat, along with the three di�erent models, attribute the most importance to

the proteins in the following �gures. Note that we now selected the 5 most important

nodes per case.
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Figure 6.2: HEK 293T-Entinostat six most important nodes per model initial embed-
ding type, based on their mean attributions to each dimension of the global embeddings.

While in the PC3 signature ID there was a general agreement between the utmost

important nodes of each unweighted graph, this does not hold at such a level regard-

ing the HEK important genes of Figure 6.2. The interesting aspect is the agreement

between the SeqVeq and the randomly initialized model, both attributing the most

importance to the RHOA, ETS2, JAK1, CDK1, RB1 with the only di�erence being

the CASP1-SUMO2 pair.

Nevertheless, while the GO Terms model embeddings were generally inforced by

the GABPA and again, MAPK8 genes, the presence of JAK1 and ETS2 seems to

enforce every model's embedding decision.

6.3 ATP Synthesis Inhibitors

For the ATP synthesis inhibitor(ATPSI) labelled graphs, we decided to follow a

di�erent approach. Upon noticing the generally tight clustering amongst the ATPSI

labelled data, we hypothesized that it would be bene�cial if one would try to identify

the most important proteins involing all the experiments with the aforementioned

label.

The ATPSI labels involve 49 unique signature IDs, from experiments performed us-

ing ten di�erent drugs, including antimycin-a, digitoxin, ba�lomycin and other

known drugs that have a reported mechanism of action "ATP Synthase Inhibitor".
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Figure 6.3: ATPSI seven most important nodes per model initial embedding type,
based on their mean attributions to each dimension of the global embeddings.

The last two models seem to be heavily impacted by the WWTR1 protein. WWTR1,

often referred to as TAZ, stands for WW domain-containing transcription regulator

protein 1. It is a transcriptional coactivator which acts as a downstream regulatory

target in the Hippo signaling pathway that plays a pivotal role in organ size control

and tumor suppression by restricting proliferation and promoting apoptosis.
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Conclusion

7.1 Discussion and Limitations

As mentioned, approaches that combine GNNs and signaling networks have hitherto

not, to the best of our knowledge, been tested or developed. We consider such

biological data to be of paramount importance due to their increased interpretability.

The goal of our method is to "reduce" the size of biological signaling networks to a

single representation, with a speci�c place in a multi-dimensional euclidean space.

When an experiment is performed and the corresponding signaling network is pro-

duced, our methods can be used to identify the drug's potential mechanisms of

action, usually in an unsupervised way, in comparison to the representations avail-

able in the existing training library. Our methods were evaluated in three di�erent

tasks, each one with a speci�c purpose. The SSTs, DSTs and MAD tasks validated

the use of each proposed neural network architecture in accordance to the proposed

general use. All proposed models passed the test, with a variable degree of success,

distinguishing among the Graph2Vec and Signaling Network Infomax models.

However, the limited amount and the questionable biological completeness and va-

lidity of the data used, did not allow for a high degree of predictive con�dence in

further evaluation tests. Supervised methods face the barrier of insu�cient and
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unbalanced training and validation data, and important node identi�cation in an

unsupervised manner may succumb to pure structural components rather than an

accurate and interpretable biological meaning. The task itself as well, implies the si-

multaneous existance of multiple mechanisms of action per drug projecting a widely

known and extremely challenging issue in the �eld of Systems Pharmacology.

Even the protein importance calculation methods su�er from an obvious �aw. Unlike

image classi�cation tasks, were one can validate if the model spotted the correct

pixels in an image to make a prediction, the case with such data is nothing similar.

For a single experiment, even the extensive biological public research is not always

helpful in evaluating the quality of a representation..

However, the epistemic uncertainty induced by each model is insigni�cant compared

to the aleatoric uncertainty that depends on the input data. A major issue with our

input signaling networks is that rely on the public Protein to Protein Interaction

network, public GEx data and the hyperparameters of CARNIVAL. Even with the

best and most complete graph neural network architectures, if the input data are

incomplete, the results will be even more incomplete, as each method starting from

the initial experiment to the output of a neural network includes its own degree of

uncertainty. Also, CARNIVAL, while being a great and potent tool, is not designed

for large amounts of signaling networks. Even with a relatively small amount of

unique input GEx data - since about 8000 data points are insigni�cant compared to

the usual datasets in the Big Data era- the amount of time needed to extract the

signaling networks reached almost a month.

7.2 Future Work

Despite the limitations that arise from such challenging type of data, we consider

the methods described in this thesis as adequate for the baseline evaluation of each

model's representations of the input data. However there is still a lot of room for

improvement, both from a Deep Learning/Data Analysis as well as from a biological
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interpetability standpoint.

7.2.1 On improving Deep Learning performance

Base models included a modi�cation of the original Transformer model in order to

�t into the graph learning scheme. This architecture can be further improved by

trying to make the positional encoding architecture more computationally e�cient

as well as more appropriate for dealing with DAGs. Furthermore, it is essential to

perform hyperparameter tuning for the Infomax models and probably dispose of the

Graph Autoencoder since mutual information or constrastive methods in general

seem to consistently outperform it.

Mutual Information is also a major part that requires essential modi�cations. Lower

bounds on KL divergence such as the Donsker-Varadhan LB or estimators like the

Jensen-Shannon divergence su�er from various statistical limitations [34] and are

heaviliy dependent on the choice of architecture of the discriminator. So, one has to

establish better lower bounds on MI in order to improve the estimations and thus

model performance. Such MI estimators include Contrastive Predicting Coding [40]

or even other metrics for constrastive learning such as the newly proposed predictive

V-information [61].

7.2.2 On improving interpretability

So far, the gradient attribution methods used in this thesis may up to a certain point

increase the intepretability of the model in terms of node importance, but they are

unfortunately based on the global summary vectors instead of a more appropriate

metric. Using estimators other than MI, such as BCE loss if the task was supervised,

would de�nitely increase the interpetational capabilites of the whole procedure.

Furthermore, apart from extensive literature research we need to �rst establish,

with appropriate certainty, that the representations of each model are based both

on the biologically infused features of each node as well as the structure, without

those two being mutually exclusive. Consider the case of Graph2Vec for example,
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which only relies on the structure of each network and is still succesful in contrast

to the SeqVeq or GO term embeddings which are embedded with previous biological

knowledge. Trying to interpret each model, as seen in Chapter 6, may end up in

di�erent explanations that are highly dependant on the input data.
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