

ΕΦΑΡΜΟΓΕΣ ΜΗΧΑΝΙΚΗΣ ΜΑΘΗΣΗΣ ΣΤΗ
ΔΙΑΓΝΩΣΗ ΚΥΒΕΡΝΟΕΠΙΘΕΣΕΩΝ ΣΕ ΕΤΑΙΡΕΙΕΣ

ΝΕΡΟΥ ΣΕ ΠΡΑΓΜΑΤΙΚΟ ΧΡΟΝΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Τομέας Υδατικών Πόρων και Περιβάλλοντος

Διπλωματική Εργασία

Τσιάμη Λυδία-Μαρία

Επιβλέπων: Μακρόπουλος Χρήστος, Αναπληρωτής Καθηγητής ΕΜΠ

DIPLOMA THESIS

Machine Learning applications for real-time
detection of cyber-physical attacks

on Water Distribution Systems

Οκτώβριος 2020

ΕΦΑΡΜΟΓΕΣ ΜΗΧΑΝΙΚΗΣ ΜΑΘΗΣΗΣ ΣΤΗ
ΔΙΑΓΝΩΣΗ ΚΥΒΕΡΝΟΕΠΙΘΕΣΕΩΝ ΣΕ

ΕΤΑΙΡΕΙΕΣ ΝΕΡΟΥ ΣΕ ΠΡΑΓΜΑΤΙΚΟ ΧΡΟΝΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Τομέας Υδατικών Πόρων και Περιβάλλοντος

Διπλωματική Εργασία

DIPLOMA THESIS

Machine Learning applications for real-time
detection of cyber-physical attacks

on Water Distribution Systems

Τσιάμη Λυδία-Μαρία

Επιβλέπων: Μακρόπουλος Χρήστος, Αναπληρωτής Καθηγητής, ΕΜΠ

Οκτώβριος 2020

i

ΕΥΧΑΡΙΣΤΙΕΣ / ACKNOWLEDGEMENTS

Η παρούσα διπλωματική εργασία αποτελεί το τελευταίο και πολύ σημαντικό για εμένα

κεφάλαιο των προπτυχιακών σπουδών μου στη Σχολή Πολιτικών Μηχανικών του

Εθνικού Μετσόβιου Πολυτεχνείου. Είναι πραγματικά αξιοσημείωτη η συνειδητοποίηση

ότι η Σχολή διαμόρφωσε τόσο καθοριστικά τον τρόπο σκέψης μου και με εφοδίασε

με τόσες πολύτιμες γνώσεις. Σε αυτό το σημείο θα ήθελα να ευχαριστήσω από

καρδιάς όλα τα πρόσωπα που συνέβαλλαν, το καθένα με το δικό του τρόπο, στην

εκπόνηση αυτής της εργασίας.

Πρωταρχικά, θα ήθελα να ευχαριστήσω θερμά τον καθηγητή μου και επιβλέποντα κ.

Χρήστο Μακρόπουλο για την εμπιστοσύνη που μου έδειξε με την ανάθεση ενός

θέματος που μου προσέφερε την ευκαιρία να ασχοληθώ με ένα ζήτημα που όχι μόνο

μου είναι εξαιρετικά ενδιαφέρον, αλλά και μου άνοιξε νέους επιστημονικούς

ορίζοντες. Η επιστημονική του κατάρτιση είναι για εμένα αξιοθαύμαστη και η

συμβολή του στάθηκε καθοριστική, καθώς με καθοδήγησε και με ενέπνευσε να

ασχοληθώ με ζητήματα που κατά το ξεκίνημα της εργασίας, δεν φανταζόμουν καν

ότι θα καταφέρω να προσεγγίσω. Με βοήθησε να δοκιμάσω τις δυνάμεις μου και

μου παρουσίασε τα πιο πρόσφατα επιστημονικά άρθρα που αποτέλεσαν για εμένα

μεγάλη πηγή έμπνευσης και γνώσης.

Οφείλω να ευχαριστήσω ιδιαίτερα και τον Δρ. Πολιτικό Μηχανικό, Παναγιώτη

Κοσσιέρη, για την ουσιαστική του συμμετοχή στο στοχαστικό κομμάτι της εργασίας,

καθώς και για τις πολύτιμες συμβουλές και το χρόνο που αφιέρωσε στις

τηλεδιασκέψεις μας εν μέσω πανδημίας.

Θα ήθελα να ευχαριστήσω και τον επίκουρο καθηγητή κ. Ανδρέα Ευστρατιάδη,

καθώς χάρη σε εκείνον ξεκίνησα την προηγούμενη χρονιά την πορεία μου στον

τομέα της Μηχανικής Μάθησης, με την ερευνητική εργασία που παρουσιάσαμε στο

-καθοριστικό για εμένα- συνέδριο της E.G.U. το 2019, αλλά και τον καθηγητή και

πρώην κοσμήτορα της Σχολής κ. Δημήτρη Κουτσογιάννη που κάθε χρόνο δίνει την

ευκαιρία στους φοιτητές να συμμετάσχουν σε αυτό το συνέδριο.

Θα ήθελα επίσης να ευχαριστήσω τον Ian Covert, Υποψήφιο Διδάκτορα στο

Πανεπιστήμιο της Ουάσιγκτον, ο οποίος πρόθυμα μοιράστηκε μαζί μου μέρος του

κώδικά που ανέπτυξε κατά την πρακτική του στη Google AI Healthcare.

Τέλος, ευχαριστώ το φίλο μου Βασίλη για τη στήριξή του καθώς και τους γονείς μου

και την αδελφή μου Αθηνά για την αγάπη και τη συμπαράστασή τους.

Τσιάμη Λυδία-Μαρία

Αθήνα, Οκτώβριος 2020

ii

iii

ABSTRACT

Water distribution networks (WDN) deploy digital devices not only to monitor and

control utility operations but also to increase automation and ultimately their

efficiency. Although their digitalization is essential, it comes with a cost: it exposes

the WDN to the risks of a Cyber-Physical System, i.e. cyber-attacks. The overall aim

of this diploma thesis is to develop new and improve upon existing machine learning

methods for cyber-physical attack detection on Water Distribution Networks. The

innovation of this work resides in two main developments (a) the use of novel

stochastic methods to generate the water demand timeseries needed to train

existing machine learning models, in an effort to improve their overall performance

in the presence of uncertainty and (b) the exploration and use of a novel family of

machine learning methods that take both the spatial and temporal dimensions of

a water network into account, in an effort to improve the ability of the model to

represent the water network more accurately. To approach the first objective, we

generate new, synthetic datasets for the study of cyber-physical attack detection

on water distribution networks by performing simulations on a real medium size WDN

under stochastically generated water demands. The second objective is

approached by exploring the use of Spatio-Temporal Graph Neural Networks as

cyber-physical attack detection tools. Finally, we test the detection performance

of various ML algorithms (including SVDD, Autoencoder, Structural Convolutional

Neural Networks) on our datasets and preexisting ones as well, and discuss.

Key words: Cyber security, Cyber-physical attacks, Water Distribution Systems,

Machine Learning, Convolutional Neural Networks, Autoencoder, Support Vector

Data Description classifier, Time-series, Stochastic methods, Water demands

iv

v

ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ / EXTENDED ABSTRACT IN GREEK

ΕΙΣΑΓΩΓΗ

Στα πλαίσια της εποχής ψηφιακού εκσυγχρονισμού, ο τομέας διαχείρισης υδατικών

πόρων δεν θα μπορούσε να μείνει ανεπηρέαστος. Τα Δίκτυα Διανομής Νερού (ΔΔΝ)

χρησιμοποιούν ψηφιακές συσκευές όχι μόνο για την εξασφάλιση της καλής

λειτουργίας τους, αλλά και για να ενισχύσουν την αυτοματοποίησή τους και τελικώς

να βελτιστοποιήσουν την λειτουργία τους. Παρόλο που η ψηφιοποίηση των ΔΔΝ

αποτελεί πλέον προϋπόθεση για την καλή λειτουργία τους, ελλοχεύει συγχρόνως και

ο κίνδυνος έκθεσης τους σε κυβερνοεπιθέσεις.

Δεδομένου ότι μια κυβερνοεπίθεση θα είχε καταστροφικές συνέπειες, τελευταία

παρατηρείται ένα αυξανόμενο ερευνητικό ενδιαφέρον για την κυβερνοασφάλεια των

Υδατικών Υποδομών. Μία από τις σημαντικότερες πτυχές αυτού του νέου ερευνητικού

πεδίου είναι η διάγνωση κυβερνοεπιθέσεων σε ΔΔΝ. Στόχος είναι η ανάπτυξη

εργαλείων που θα επιτρέπουν τη διάγνωση των κυβερνοεπιθέσεων έγκαιρα, δηλαδή

προτού προλάβουν να προκληθούν μη αναστρέψιμες ζημιές στο δίκτυο.

Συχνά σε προβλήματα ανίχνευσης ανωμαλιών εφαρμόζονται μέθοδοι Μηχανικής

Μάθησης με πολλά υποσχόμενα αποτελέσματα. Απαραίτητη προϋπόθεση για την

εφαρμογή τους είναι η διαθεσιμότητα επαρκών δεδομένων. Στις περιπτώσεις που τα

διαθέσιμα δεδομένα είναι περιορισμένα αποτελεί κοινή πρακτική να

χρησιμοποιούνται σε συνδυασμό με συνθετικά. Έχει μάλιστα αποδειχθεί στο

[1] ότι στην επιστήμη των δεδομένων (Data Science) η χρήση συνθετικών δεδομένων

μπορεί ακόμη και να αντικαταστήσει τη χρήση πραγματικών δεδομένων.

Δυστυχώς όμως στον τομέα των υδατικών πόρων, όπου η ψηφιοποίηση είναι

σχετικά πρόσφατη, τα διαθέσιμα δεδομένα είναι κατά κανόνα περιορισμένα. Στις

περιπτώσεις δε, που απαιτούνται δεδομένα για τον σχεδιασμό και την ανάλυση των

υδατικών συστημάτων, είθισται η αξιοποίηση στοχαστικών μεθόδων.

Για την ανάλυση και προσομοίωση ενός ΔΔΝ είναι απαραίτητη η γνώση των

αναμενόμενων καταναλώσεων και η επιστήμη υδατικών πόρων παρέχει

αποτελεσματικά εργαλεία για τη στοχαστική μοντελοποίηση της κατανάλωσης του

νερού. Υπό αυτό το πρίσμα, είναι εύλογο να υποθέσουμε ότι η εκπαίδευση μοντέλων

Μηχανικής Μάθησης με δεδομένα που έχουν προκύψει από προσομοιώσεις με

στοχαστικές ζητήσεις νερού θα μπορούσε να συνεισφέρει στον εντοπισμό επιθέσεων

σε δίκτυα διανομής νερού.

Επιπλέον, επειδή τα Δίκτυα Διανομής Νερού έχουν εγγενώς δομή γράφου, είναι

εξίσου εύλογο να υποτεθεί ότι τα Νευρωνικά Δίκτυα σε Γράφους (Graph Neural

Networks) θα μπορούσαν να είναι χρήσιμα εργαλεία για τον εντοπισμό

κυβερνοεπιθέσεων. Τα Νευρωνικά Δίκτυα σε Γράφους, εμπνευσμένα από τα

Συνελικτικά Νευρωνικά Δίκτυα (Convolutional Neural Networks), είναι αλγόριθμοι

βαθιάς μηχανικής μάθησης που είναι σε θέση να ενσωματώνουν στην αρχιτεκτονική

τους τις χωρικές πληροφορίες ενός γράφου.

Με βάση τα παραπάνω, ο κύριος σκοπός της παρούσας διπλωματικής εργασίας

είναι να αναπτυχθούν νέες αλλά και να βελτιωθούν οι υπάρχουσες μέθοδοι

μηχανικής μάθησης για την ανίχνευση κυβερνοεπιθέσεων στα Δίκτυα Διανομής

vi

Νερού. Η καινοτομία της εργασίας έγκειται σε δύο βασικούς παράγοντες: (α) στη

χρήση στοχαστικών μεθόδων για τη δημιουργία συνθετικών χρονοσειρών ζήτησης

νερού που είναι απαραίτητες για την εκπαίδευση των μοντέλων μηχανικής μάθησης,

σε μια προσπάθεια βελτίωσης της συνολικής απόδοσής τους κάτω από τις

συνθήκες αβεβαιότητας και (β) στην εξερεύνηση και χρήση μιας νέας κατηγορίας

μεθόδων μηχανικής μάθησης που λαμβάνει υπόψη τόσο τις χωρικές όσο και τις

χρονικές διαστάσεις ενός δικτύου νερού και αποσκοπεί στη βελτίωση της ικανότητας

του μοντέλου να αναπαριστά με μεγαλύτερη ακρίβεια το δίκτυο νερού.

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ

Κατηγορίες Κυβερνοφυσικών επιθέσεων σε Δίκτυα Διανομής Νερού

Ένας τρόπος ταξινόμησης των κυβερνο-φυσικών επιθέσεων (cyber-attacks) σε ένα

δίκτυο διανομής νερού είναι με βάση το τμήμα του δικτύου που στοχοποιείται. Τα

στοιχεία ενός δικτύου διανομής νερού που ορίζονται ως ευάλωτα σε

κυβερνοεπιθέσεις είναι: οι αισθητήρες (sensors), οι υδραυλικοί ενεργοποιητές

(actuators), οι προγραμματιζόμενοι λογικοί ελεγκτές (Programmable Logic

Controllers – PLCs), το σύστημα τηλελέγχου και τηλεχειρισμού (SCADA), καθώς και οι

μεταξύ τους ασύρματες και ενσύρματες ζεύξεις (communication links).

Οι επιθέσεις διαχωρίζονται επίσης, όπως υποδηλώνει και το όνομά τους, σε φυσικές

επιθέσεις και σε επιθέσεις στον κυβερνοχώρο. Οι αισθητήρες και οι υδραυλικοί

ενεργοποιητές είναι ευάλωτοι σε φυσικές επιθέσεις, καθώς απαιτείται πρόσβαση στη

φυσική υποδομή για να λάβει χώρα η επίθεση. Επιπλέον στις φυσικές επιθέσεις

κατατάσσονται και οι επιθέσεις στις ενσύρματες ζεύξεις μεταξύ των συνιστωσών του

δικτύου. Αν και επίθεση αυτού του είδους μπορεί να μοιάζει απίθανη, είναι δόκιμο να

λαμβάνεται υπόψη κατά τη θωράκιση ενός δικτύου διανομής νερού, καθώς υπάρχει

πάντα η περίπτωση ένας υδραυλικός ενεργοποιητής ή ένας αισθητήρας να

βρίσκεται σε μια απομακρυσμένη (ή χωρίς επαρκή παρακολούθηση) περιοχή που

να είναι προσβάσιμη σε έναν εισβολέα.

Οι επιθέσεις στον κυβερνοχώρο είναι οι επιθέσεις που γίνονται ενάντια στην

ασύρματη ζεύξη μεταξύ των συνιστωσών του δικτύου. Όλες οι επιθέσεις ανεξάρτητα

από το στόχο τους και από το αν γίνονται στον κυβερνοχώρο ή αν είναι φυσικές,

ανήκουν σε μία από τις τρείς κατηγορίες:

Επιθέσεις υποκλοπής (eavesdropping attacks): στοχεύουν στην υποκλοπή

ευαίσθητων πληροφοριών όπως η κατάσταση και ο τρόπος συμπεριφοράς του

δικτύου διανομής νερού. Οι επιθέσεις υποκλοπής αποτελούν συνήθως το πρώτο

στάδιο για έναν επιτιθέμενο και τον βοηθούν να σχεδιάσει πιο προηγμένες μορφές

επιθέσεων.

Επιθέσεις άρνησης εξυπηρέτησης (Denial of Service – DoS attacks): καθιστούν το

σύστημα μη διαθέσιμο ή παρεμποδίζουν την επικοινωνία των στοιχείων του δικτύου,

άρα και την ομαλή λειτουργία του.

Επιθέσεις εξαπάτησης (deception attacks): έχουν σκοπό την τροποποίηση και

μετάδοση εσφαλμένων πληροφοριών στο δίκτυο. Αυτή η επίθεση μπορεί όχι μόνο

να διαταράξει την ομαλή λειτουργία του δικτύου αλλά και να χρησιμοποιηθεί ως

εργαλείο συγκάλυψης των επιθέσεων που λαμβάνουν χώρα, από το σύστημα

τηλελέγχου και τηλεχειρισμού (SCADA).

vii

Η επιθέσεις συγκάλυψης (deception attacks) είναι και η βασική πρόκληση που έχουν

να αντιμετωπίσουν οι αλγόριθμοι διάγνωσης επιθέσεων. Ένας καλός αλγόριθμος

ανίχνευσης κυβερνοφυσικών επιθέσεων είναι αυτός που έχει τη δυνατότητα να

διαγιγνώσκει συναφείς ανωμαλίες (contextual anomalies). Συναφείς ανωμαλίες είναι

παρατηρήσεις οι οποίες αποκλίνουν σε ένα συγκεκριμένο περιβάλλον και μόνο σε

αυτό, έχουν δηλαδή τιμές οι οποίες ανήκουν μεν στα προηγούμενα ιστορικά τους

όρια, αλλά θεωρούνται ανώμαλες εντός ενός συγκεκριμένου χρονικού πλαισίου και

με βάση τις παρατηρήσεις που έχουν προηγηθεί.

Μια τυπική μέθοδος εντοπισμού ανωμαλιών

Έστω ότι έχουμε ένα σύνοδο δεδομένων 𝑋 και ότι η κατανομή των δεδομένων του

περιέχει καθαρά και ανώμαλα δεδομένα:

𝑝𝑓𝑢𝑙𝑙(𝑥, 𝑦)~𝑝(𝑦 = 1)𝑝(𝑥|𝑦 = 1) + 𝑝(𝑦 = 0)𝑝(𝑥|𝑦 = 0)

𝑝𝑛𝑜𝑟𝑚𝑎𝑙(𝑥)~𝑝(𝑥|𝑦 = 0)
𝑝𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙(𝑥)~𝑝(𝑥|𝑦 = 1)

Ο στόχος των προβλημάτων ανίχνευσης ανωμαλιών είναι όσο το δυνατόν καλύτερη

εκτίμηση των κατανομών 𝑝𝑛𝑜𝑟𝑚𝑎𝑙(𝑥) and 𝑝𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙(𝑥).

Ένα χαρακτηριστικό του προβλήματος ανίχνευσης επιθέσεων σε ένα σύστημα

διανομής νερού, είναι ότι οι επιθέσεις που έχουμε στην διάθεση μας αποτελούν μόνο

ένα μικρό ποσοστό του συνόλου των επιθέσεων που θα μπορούσαν να συμβούν

σε ένα δίκτυο, καθώς δεν είναι εφικτό να σχεδιαστεί και να μοντελοποιηθεί κάθε

πιθανό σενάριο. Για αυτό, η πιο αποτελεσματική μέθοδος για τον εντοπισμό

επιθέσεων σε Δίκτυα Διανομής νερού είναι μέσω ημι-επιβλεπόμενης μάθησης.

Στο πρόβλημα της ημι-επιβλεπόμενης μάθησης έχουμε διαθέσιμο ένα σύνολο

δεδομένων που εμπεριέχει μόνο καθαρά δεδομένα (δηλαδή δεδομένα κανονικής

λειτουργίας του δικτύου) και αυτό χρησιμοποιείται για την εκπαίδευση ενός

αλγορίθμου μηχανικής μάθησης με στόχο των εντοπισμό των ανωμαλιών

(επιθέσεων) σε ένα σύνολο ελέγχου (test dataset).

𝐷𝑡𝑟𝑎𝑖𝑛 = 𝑋𝑡𝑟𝑎𝑖𝑛~𝑝𝑛𝑜𝑟𝑚𝑎𝑙(𝑥)
𝐷𝑡𝑒𝑠𝑡 = 𝑋𝑡𝑒𝑠𝑡~𝑝𝑓𝑢𝑙𝑙(𝑥)

Αφού ο αλγόριθμος χρησιμοποιήσει το σύνολο εκπαίδευσης για να μοντελοποιήσει

την κατανομή των καθαρών δεδομένων, στη συνέχεια αναθέτει μια βαθμολογία σε

κάθε δείγμα ανάλογα με το κατά πόσο μπορεί να θεωρηθεί ως ανωμαλία (anomaly

score). Τελικά, το δείγμα επισημειώνεται ως αναμενόμενο ή μη, με βάση ένα όριο

αποκοπής. Πιο συγκεκριμένα, ένα δείγμα χαρακτηρίζεται ως ανώμαλο, όταν η

βαθμολογία του είναι μεγαλύτερη από ένα προκαθορισμένο όριο αποκοπής.

Αλγόριθμοι Μηχανικής Μάθησης για τον εντοπισμό επιθέσεων σε δίκτυα διανομής

νερού

Παρακάτω παρουσιάζονται εν συντομία τα χαρακτηριστικά των αλγορίθμων

μηχανική μάθησης που αξιοποιήθηκαν στην παρούσα διπλωματική για τη διάγνωση

επιθέσεων σε δίκτυα νερού.

viii

Support Vector Data Description Classifier

Ο ταξινομητής Support Vector Data Description (SVDD) δημιουργεί ένα σφαιρικό

σύνορο γύρω από ένα σύνολο δεδομένων πολλών μεταβλητών χρησιμοποιώντας

συναρτήσεις πυρήνα. Υπολογίζοντας την απόσταση ενός νέου δείγματος από το

σφαιρικό αυτό όριο, μπορεί κανείς να αποφασίσει αν αυτό το δείγμα ανήκει στην

κατανομή των δεδομένων εκπαίδευσης ή όχι. Ο ταξινομητής SVDD δημιουργεί το

σφαιρικό σύνορο, λύνοντας το ακόλουθο πρόβλημα βελτιστοποίησης:

𝑚𝑖𝑛𝑅
𝑅,𝛼

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝜑(𝑥𝑖) − 𝑎‖ ≤ 𝑅

όπου R και a = μεταβλητές απόφασης και 𝜑(𝑥𝑖) = μια συνάρτηση μετασχηματισμού

των δεδομένων εισόδου σε δεδομένα υψηλότερης διάστασης. Μετά το στάδιο της

εκπαίδευσης και αφού έχουν οριστεί οι τιμές των 𝑅𝑜𝑝𝑡 και 𝛼𝑜𝑝𝑡, μπορεί να υπολογιστεί

για κάθε νέο δείγμα η απόστασή του από το σφαιρικό όριο από τη σχέση:

𝐷𝑉 = ‖𝜑(𝑥𝑖) − 𝛼𝑜𝑝𝑡‖ − 𝑅𝑜𝑝𝑡

Όταν η τιμή DV για ένα δείγμα είναι θετική (𝐷𝑉 > 0), τότε το δείγμα βρίσκεται εκτός του

σφαιρικού χώρου που ορίστηκε με βάση τα δεδομένα εκπαίδευσης και

χαρακτηρίζεται ως ανωμαλία.

Αυτοκωδικοποιητές – Autoencoders

Ένας αυτοκωδικοποιητής είναι ένα νευρωνικό δίκτυο που προσπαθεί να αντιγράψει

την είσοδό του στην έξοδό του. Με άλλα λόγια, εκπαιδεύεται στο να αναπαριστά ένα

δεδομένο εισόδου 𝑥 στην έξοδο του 𝑟 μέσω μιας εσωτερικής αναπαράστασης h. Ο

αυτοκωδικοποιητής αποτελείται από δύο μέρη: έναν κωδικοποιητή 𝑓 (ο οποίος

αναπαριστά το 𝑥 σε μία μικρότερη διάσταση ℎ, ℎ = 𝑓(𝑥)) και έναν αποκωδικοποιητή

𝑔 (που παράγει μία ανακατασκευή 𝑟 του ℎ, 𝑟 = 𝑔(ℎ)).

Εικόνα 1: Βασική δομή ενός αυτοκωδικοποιητή.

Λόγω της αρχιτεκτονικής τους, οι αυτοκωδικοποιητές έχουν την ικανότητα να

ανακαλύπτουν συσχετίσεις μεταξύ των δεδομένων και αποτελούν χρήσιμα εργαλεία

στην ανίχνευση ανωμαλιών.

Structural Convolutional Neural Networks

Ta Δομικά Συνελικτικά Νευρωνικά Δίκτυα είναι ένας αλγόριθμος βαθιάς μηχανικής

μάθησης, ο οποίος είναι εμπνευσμένος από τα νευρωνικά δίκτυα σε γράφους

(Graph Neural Networks – GNNs) και τα μονοδιάστατα συνελικτικά νευρωνικά δίκτυα

(1D CNNs). Τα SCNN έχουν τη δυνατότητα να μοντελοποιούν δεδομένα τα οποία

έχουν χωροχρονικά χαρακτηριστικά ενσωματώνοντας στην αρχιτεκτονική τους τον

πίνακα γειτνίασης (adjacency matrix) ενός γράφου. Αυτό το χαρακτηριστικό τους

επιτρέπει να αποτυπώνουν καλύτερα τις συσχετίσεις μεταξύ των στοιχείων ενός

ix

γράφου και να κάνουν ακριβέστερες προβλέψεις σε δεδομένα χρονοσειρών με δομή

γράφου.

ΔΕΔΟΜΕΝΑ

Τα δεδομένα που χρησιμοποιήσαμε προέρχονται από ένα διαγωνισμό με θέμα την

κυβερνοασφάλεια των συστημάτων διανομής νερού. Ο διαγωνισμός που

ονομάζεται BATADAL είχε ως στόχο τη διάγνωση των επιθέσεων σε ένα πραγματικό

δίκτυο διανομής νερού, που ονομάζεται C-Town.

Τα διαθέσιμα δεδομένα από αυτόν τον διαγωνισμό είναι τα ακόλουθα:

- Τρία σύνολα δεδομένων από τρεις διαφορετικές προσομοιώσεις, με

καταγεγραμμένες ωριαίες μετρήσεις SCADA που αφορούν 43 διαφορετικές

μεταβλητές του δικτύου.

• dataset03: σύνολο δεδομένων με μετρήσεις SCADA διάρκειας ενός έτους. Στο

συγκεκριμένο σύνολο δεδομένων δεν περιέχεται καμία επίθεση.

• dataset04: σύνολο δεδομένων που περιέχει μετρήσεις από μια προσομοίωση

διάρκειας 6 μηνών και περιλαμβάνει 7 κυβερνοεπιθέσεις.

• testdataset: σύνολο δεδομένων που περιέχει μετρήσεις διάρκειας 3 μηνών και

περιλαμβάνει 7 διαφορετικές επιθέσεις.

-Ένας πίνακας που περιγράφει τα σενάρια επίθεσης των "dataset04" και

"testdataset".

-Ένα αρχείο που ονομάζεται "ctown.inp", περιέχει τοπογραφικές, υδραυλικές και

υδρολογικές πληροφορίες του C-Town και επιτρέπει την προσομοίωσή του σε

περιβάλλον EPANET. Ανάμεσα στις πληροφορίες που περιέχονται σε αυτό το αρχείο

είναι και:

• η μέση μηνιαία ζήτηση νερού σε κάθε κόμβο του δικτύου.

• μια τυπική διακύμανση ζήτησης νερού διάρκειας μιας εβδομάδας για κάθε

μία από τις πέντε ζώνες του δικτύου.

ΜΕΘΟΔΟΛΟΓΙΑ

Η μεθοδολογία που ακολουθήσαμε για την επίτευξη του σκοπού της εργασίας

χωρίζεται σε δύο μέρη:

Α. Στο πρώτο μέρος, ο στόχος είναι να δημιουργηθούν νέα σύνολα δεδομένων,

αντίστοιχα με αυτά που είναι διαθέσιμα στο BATADAL. Η διαδικασία που

ακολουθούμε είναι η εξής:

• Αρχικά χρησιμοποιώντας τη μεθοδολογία του [2], δημιουργούμε συνθετικές

χρονοσειρές μοτίβων ζήτησης νερού. Με αυτή τη μεθοδολογία, προκύπτουν

δύο διαφορετικά είδη μοτίβων ζήτησης: το ένα έχει προσομοιωθεί με χρήση

της κατανομής Βήτα και το άλλο με βάση την κατανομή Γάμμα. Επιπλέον,

κατασκευάζεται και ένα τρίτο μοτίβο ζητήσεων με μία απλοϊκή μέθοδο,

προκειμένου να έχουμε ένα μέτρο σύγκρισης για τη συνεισφορά του κάθε

μοτίβου στη διάγνωση επιθέσεων.

• Με τη βοήθεια του εργαλείου epanetCPA αναπαραγάγουμε τα σενάρια

επιθέσεων του BATADAL και τρέχουμε νέες προσομοιώσεις με τα συνθετικά

μοτίβα ζήτησης νερού, για να δημιουργήσουμε τα δικά μας σετ δεδομένων,

x

τα οποία απαιτούνται για την εκπαίδευση των αλγορίθμων μηχανικής

μάθησης.

Β. Το δεύτερο μέρος αφορά τον εντοπισμό των επιθέσεων με χρήση αλγορίθμων

μηχανικής μάθησης. Στην παρούσα διπλωματική χρησιμοποιούνται τρεις

διαφορετικοί αλγόριθμοι μηχανικής μάθησης:

• Οι δύο είναι αλγόριθμοι [3], [4] που βασίζονται σε μεθοδολογίες που έχουν

δημοσιευθεί και εφαρμοσθεί στα σύνολα δεδομένων του διαγωνισμού

BATADAL. Η πρώτη μεθοδολογία χρησιμοποιεί έναν ταξινομητή SVDD, ενώ η

δεύτερη κάνει χρήση ενός Αυτοκωδικοποιητή (Autoencoder).

• Ο τρίτος αλγόριθμος βασίζεται στα έργα των [5], [6] που μοντελοποιούν

χρονοσειρές με δομή γράφου.

xi

ΑΠΟΤΕΛΕΣΜΑΤΑ

Τα κυριότερα αποτελέσματα της μεθόδου μας συνοψίζονται στους παρακάτω

πίνακες:

SVDD

Πίνακας 1: Αποτελέσματα SVDD – Η απόδοσή του υπολογίστηκε με βάση τη μετρική S όπως

ορίστηκε στο διαγωνισμό BATADAL.

train batadal train random train beta train gamma

test batadal test batadal test batadal test batadal

 The Train Score

is 0.956

The Train Score

is 0.929

The Train Score is

0.924

The Train Score

is 0.919

 The Test Score

is 0.954

The Test Score

is 0.932

The Test Score is

0.919

The Test Score

is 0.885

 The optimal L is

11

The optimal L is

8

The optimal L is

10

The optimal L is

3

 The optimal TH

is 0.018

The optimal TH

is 0.013

The optimal TH is

0.011

The optimal TH

is 0.012

test random test random test random test random

 The Train Score

is 0.956

The Train Score

is 0.929

The Train Score is

0.924

The Train Score

is 0.919

 The Test Score

is 0.781

The Test Score

is 0.897

The Test Score is

0.876

The Test Score

is 0.877

 The optimal L is

11

The optimal L is

8

The optimal L is

10

The optimal L is

3

 The optimal TH

is 0.018

The optimal TH

is 0.013

The optimal TH is

0.011

The optimal TH

is 0.012

test beta test beta test beta test beta

 The Train Score

is 0.956

The Train Score

is 0.929

The Train Score is

0.924

The Train Score

is 0.919

 The Test Score

is 0.805

The Test Score

is 0.922

The Test Score is

0.922

The Test Score

is 0.906

 The optimal L is

11

The optimal L is

8

The optimal L is

10

The optimal L is

3

 The optimal TH

is 0.018

The optimal TH

is 0.013

The optimal TH is

0.011

The optimal TH

is 0.012

test gamma test gamma test gamma test gamma

 The Train Score

is 0.956

The Train Score

is 0.929

The Train Score is

0.924

The Train Score

is 0.919

The Test Score

is 0.791

The Test Score

is 0.903

The Test Score is

0.879

The Test Score

is 0.881

The optimal L is

11

The optimal L is

8

The optimal L is

10

The optimal L is

3

 The optimal TH

is 0.018

The optimal TH

is 0.013

The optimal TH is

0.011

The optimal TH

is 0.012

xii

Αυτοκωδικοποιητής

Πίνακας 2: Μέση απόδοση (μετά από 10 διαφορετικές διαδικασίες εκπαίδευσης) του

αυτοκωδικοποιητή σε κάθε ένα από τα διαθέσιμα σύνολα δεδομένων.

Model FP FN TP Rec Pre F1 score
S score

(BATADAL)
 dataset_r06

random 92 151 341 0.693 ± 0.043 0.795 ± 0.065 0.738 ± 0.022 0.82 ± 0.045

gamma 59 149 343 0.697 ± 0.071 0.856 ± 0.03 0.766 ± 0.041 0.825 ± 0.069

beta 84 144 348 0.707 ± 0.06 0.812 ± 0.053 0.753 ± 0.025 0.83 ± 0.048

batadal 370 117 375 0.761 ± 0.044 0.504 ± 0.017 0.606 ± 0.016 0.861 ± 0.018
 dataset_r03

random 58 87 320 0.785 ± 0.077 0.848 ± 0.037 0.813 ± 0.045 0.882 ± 0.029

gamma 49 93 314 0.772 ± 0.13 0.868 ± 0.013 0.81 ± 0.078 0.876 ± 0.047

beta 54 88 319 0.784 ± 0.082 0.86 ± 0.037 0.817 ± 0.04 0.886 ± 0.025

batadal 176 76 331 0.812 ± 0.06 0.653 ± 0.014 0.723 ± 0.024 0.877 ± 0.02
 dataset_g06

random 173 151 341 0.692 ± 0.041 0.668 ± 0.057 0.678 ± 0.029 0.815 ± 0.036

gamma 86 142 350 0.711 ± 0.074 0.81 ± 0.054 0.753 ± 0.03 0.829 ± 0.068

beta 124 141 351 0.714 ± 0.064 0.748 ± 0.059 0.727 ± 0.028 0.838 ± 0.043

batadal 535 125 367 0.745 ± 0.041 0.407 ± 0.009 0.526 ± 0.013 0.834 ± 0.026
 dataset_g03

random 84 106 301 0.739 ± 0.075 0.783 ± 0.033 0.758 ± 0.038 0.878 ± 0.03

gamma 47 113 294 0.723 ± 0.117 0.866 ± 0.034 0.782 ± 0.073 0.866 ± 0.044

beta 60 107 300 0.737 ± 0.072 0.836 ± 0.042 0.781 ± 0.036 0.874 ± 0.029

batadal 244 88 319 0.783 ± 0.065 0.565 ± 0.012 0.656 ± 0.031 0.804 ± 0.025
 dataset_b06

random 140 156 336 0.683 ± 0.043 0.713 ± 0.064 0.695 ± 0.029 0.837 ± 0.039

gamma 73 155 337 0.685 ± 0.075 0.826 ± 0.042 0.745 ± 0.041 0.826 ± 0.094

beta 92 143 349 0.709 ± 0.073 0.798 ± 0.054 0.747 ± 0.032 0.854 ± 0.055

batadal 461 104 388 0.789 ± 0.058 0.458 ± 0.011 0.579 ± 0.017 0.875 ± 0.015
 dataset_b03

random 64 103 304 0.747 ± 0.077 0.829 ± 0.051 0.783 ± 0.045 0.893 ± 0.024

gamma 45 105 302 0.742 ± 0.128 0.871 ± 0.016 0.796 ± 0.081 0.896 ± 0.038

beta 53 98 309 0.759 ± 0.083 0.859 ± 0.048 0.802 ± 0.045 0.9 ± 0.025

batadal 206 86 321 0.789 ± 0.064 0.61 ± 0.013 0.687 ± 0.027 0.886 ± 0.02
 batadal_06

random 288 114 378 0.768 ± 0.083 0.704 ± 0.251 0.698 ± 0.144 0.788 ± 0.038

gamma 499 113 379 0.77 ± 0.154 0.665 ± 0.312 0.642 ± 0.19 0.753 ± 0.104

beta 595 104 388 0.788 ± 0.107 0.52 ± 0.265 0.575 ± 0.147 0.764 ± 0.047

batadal 63 109 383 0.779 ± 0.049 0.861 ± 0.036 0.816 ± 0.025 0.821 ± 0.028
 batadal_03

random 137 88 319 0.783 ± 0.079 0.774 ± 0.199 0.757 ± 0.098 0.889 ± 0.021

gamma 236 90 317 0.78 ± 0.136 0.728 ± 0.262 0.705 ± 0.147 0.836 ± 0.096

beta 273 77 331 0.812 ± 0.084 0.637 ± 0.232 0.681 ± 0.116 0.842 ± 0.063

batadal 33 84 323 0.794 ± 0.059 0.909 ± 0.026 0.846 ± 0.034 0.914 ± 0.018

xiii

SCNN (Structural Convolutional Neural Network)

Πίνακας 3: Μέση απόδοση (μετά από 10 διαφορετικές διαδικασίες εκπαίδευσης) του μοντέλου

SCNN σε κάθε ένα από τα διαθέσιμα σύνολα δεδομένων.

MODEL FP FN TP Recall Precision F1 score
S score

(BATADAL)
 dataset_r06

random 42 172 320 0.65 ± 0.026 0.886 ± 0.028 0.749 ± 0.012 0.853 ± 0.034

gamma 28 193 299 0.607 ± 0.025 0.913 ± 0.013 0.729 ± 0.019 0.806 ± 0.051

beta 66 172 320 0.651 ± 0.032 0.835 ± 0.059 0.729 ± 0.01 0.835 ± 0.029

batadal 542 104 388 0.788 ± 0.042 0.425 ± 0.058 0.549 ± 0.041 0.907 ± 0.008
 dataset_r03

random 43 107 300 0.737 ± 0.036 0.875 ± 0.014 0.8 ± 0.02 0.922 ± 0.013

gamma 36 119 288 0.708 ± 0.05 0.89 ± 0.009 0.788 ± 0.03 0.912 ± 0.017

beta 49 102 305 0.75 ± 0.036 0.862 ± 0.023 0.801 ± 0.017 0.922 ± 0.014

batadal 246 48 359 0.882 ± 0.031 0.597 ± 0.047 0.711 ± 0.026 0.936 ± 0.005
 dataset_g06

random 84 167 326 0.662 ± 0.023 0.796 ± 0.027 0.722 ± 0.011 0.883 ± 0.008

gamma 41 175 317 0.643 ± 0.011 0.886 ± 0.013 0.746 ± 0.005 0.855 ± 0.029

beta 80 159 333 0.678 ± 0.025 0.808 ± 0.039 0.736 ± 0.011 0.885 ± 0.016

batadal 590 104 388 0.789 ± 0.033 0.402 ± 0.046 0.531 ± 0.035 0.903 ± 0.009
 dataset_g03

random 47 102 305 0.75 ± 0.042 0.867 ± 0.017 0.803 ± 0.023 0.929 ± 0.01

gamma 36 120 287 0.705 ± 0.055 0.889 ± 0.008 0.785 ± 0.035 0.916 ± 0.019

beta 53 92 315 0.774 ± 0.037 0.858 ± 0.025 0.813 ± 0.015 0.935 ± 0.008

batadal 321 43 364 0.895 ± 0.015 0.536 ± 0.05 0.669 ± 0.037 0.928 ± 0.007
 dataset_b06

random 53 175 317 0.644 ± 0.031 0.857 ± 0.032 0.734 ± 0.017 0.889 ± 0.018

gamma 31 199 293 0.595 ± 0.021 0.904 ± 0.023 0.717 ± 0.012 0.833 ± 0.055

beta 52 165 328 0.666 ± 0.034 0.865 ± 0.034 0.751 ± 0.015 0.895 ± 0.02

batadal 543 102 390 0.793 ± 0.029 0.425 ± 0.051 0.551 ± 0.038 0.905 ± 0.008
 dataset_b03

random 51 107 300 0.738 ± 0.045 0.856 ± 0.011 0.792 ± 0.025 0.927 ± 0.011

gamma 46 123 284 0.698 ± 0.054 0.861 ± 0.006 0.77 ± 0.034 0.914 ± 0.017

beta 50 99 308 0.756 ± 0.032 0.859 ± 0.011 0.804 ± 0.018 0.932 ± 0.008

batadal 225 58 349 0.858 ± 0.022 0.614 ± 0.054 0.714 ± 0.031 0.933 ± 0.005
 batadal06

random 24 238 255 0.517 ± 0.041 0.916 ± 0.015 0.66 ± 0.033 0.855 ± 0.015

gamma 19 257 235 0.477 ± 0.03 0.925 ± 0.018 0.629 ± 0.024 0.842 ± 0.012

beta 39 222 270 0.549 ± 0.038 0.878 ± 0.045 0.674 ± 0.021 0.862 ± 0.017

batadal 65 181 311 0.632 ± 0.042 0.83 ± 0.031 0.716 ± 0.02 0.891 ± 0.01
 batadal03

random 30 163 244 0.6 ± 0.052 0.891 ± 0.007 0.716 ± 0.038 0.883 ± 0.014

gamma 28 177 231 0.566 ± 0.042 0.893 ± 0.006 0.692 ± 0.032 0.877 ± 0.011

beta 34 158 250 0.613 ± 0.046 0.881 ± 0.013 0.722 ± 0.031 0.887 ± 0.012

batadal 45 122 285 0.7 ± 0.038 0.866 ± 0.023 0.773 ± 0.019 0.906 ± 0.009

xiv

ΣΥΜΠΕΡΑΣΜΑΤΑ

Μερικά από τα βασικότερα συμπεράσματα αυτής της εργασίας είναι τα ακόλουθα:

Η επιλογή του συνόλου εκπαίδευσης σχετίζεται άμεσα με την απόδοση του

αλγόριθμου. Αυτό παρατηρήθηκε ειδικά στην περίπτωση του αυτοκωδικοποιητή,

όπου η χρήση στοχαστικών συνόλων δεδομένων για εκπαίδευση, βελτίωσε την

απόδοσή τους στον εντοπισμό επιθέσεων.

Η απόδοση των αυτοκωδικοποιητών εξαρτάται σε μεγάλο βαθμό από το σύνολο

δεδομένων με βάση το οποίο θα ρυθμίσουμε το κατώφλι ανωμαλίας. Αντίθετα στα

SCNΝ παρατηρήθηκε ότι η απόδοσή τους ήταν αρκετά καλή χωρίς να χρειάζεται να

γίνει πρώτα αλλαγή στο σύνολο ρύθμισης κατωφλιού.

Η επιλογή μίας μόνο μετρικής απόδοσης έχει πολύ μεγάλη σημασία για έναν

αλγόριθμο εντοπισμού ανωμαλιών. Καταρχήν επιτρέπει να συγκρίνουμε μεταξύ τους

διαφορετικά μοντέλα. Επιπλέον όμως, καθορίζει και την τελική απόδοση ενός

μοντέλου, όπως είδαμε στην περίπτωση του SVDD που απέτυχε να διαγνώσει

επιθέσεις όταν η μετρική απόδοσής του για την επιλογή κατωφλιού ανωμαλίας, ήταν

αυτή που είχε προταθεί από το διαγωνισμό BATADAL.

Τα πρώτα αποτελέσματα δείχνουν ότι τα μοντέλα SCNN φαίνεται να είναι λιγότερο

ευαίσθητα (σε σχέση με τους αυτοκωδικοποιητές) στις εντονότερες διακυμάνσεις που

έχουν οι στοχαστικές ζητήσεις, καθώς παρατηρούνται μικρότερες διαφορές μεταξύ

στοχαστικών και μη στοχαστικών μοντέλων.

xv

CONTENTS

Ευχαριστίες / Acknowledgements .. i

Abstract .. iii

Εκτενής Περίληψη / Extended Abstract in Greek ... v

Introduction ... 1

General Context ... 1

Aim .. 1

Thesis Structure .. 2

1. Literature Review ... 5

1.1 Stochastic methods for water demand estimation ... 5

1.2 Cyber-physical attacks on Water Distribution Systems 6

1.3 Detecting cyber-physical attacks on Water Distribution Systems 6

1.4 Graph Neural Networks ... 7

2. Theoretical Tools .. 11

2.1 Types of cyber-physical attacks on Water Distribution Systems 11

2.2 A common anomaly detection approach .. 13

2.2.1 Anomaly Detection Metrics .. 14

2.3 Machine Learning Algorithms... 17

2.3.1 Feedforward Neural Networks .. 17

2.3.2 The Convolution Operation ... 20

2.3.3 Convolutional Neural Network ... 21

2.3.4 Introduction to graphs and adjacency matrices 23

2.3.5 Structural Convolutional Neural Networks ... 24

2.3.6 Temporal Graph Convolutional Networks (TGCN) 25

2.3.7 Autoencoders ... 26

2.3.8 Support Vector Data Description Classifier ... 27

3. Data Description .. 29

3.1 The network of C- Town ... 29

3.2 The BATADAL Competition (BATle of the Attack Detection ALgorithms).... 32

3.3 The challenge of the competition ... 32

xvi

4. Methodology ... 35

4.1 Methodology Outline .. 35

4.2 Software and Code Repositories ... 35

5. PART I: Creating New Datasets .. 37

5.1 Generating synthetic demands ... 37

5.2 Generating cyber-physical attacks and running simulations 39

6. PART II: Detecting Attacks .. 45

6.1 Support Vector Data Description Classifier... 45

6.2 Autoencoder .. 48

6.3 Structural Convolutional Neural Networks .. 56

7. Conclusions .. 65

Bibliography .. 67

APPENDIX .. A-1

epanetCPA simulations .. A-1

SVDD detection trajectories .. A-51

Autoencoder detection trajectories .. A-52

SCNN detection trajectories .. A-52

file:///C:/Users/lydts/Documents/ntua/Διπλωματική%20Εργασία/Notes/Τεύχος/Dropbox/Διορθώσεις_Δπλωματική%20Εργασία_Τσιάμη%20Λυδία%20Μαρία.docx%23_Toc55664367
file:///C:/Users/lydts/Documents/ntua/Διπλωματική%20Εργασία/Notes/Τεύχος/Dropbox/Διορθώσεις_Δπλωματική%20Εργασία_Τσιάμη%20Λυδία%20Μαρία.docx%23_Toc55664370
file:///C:/Users/lydts/Documents/ntua/Διπλωματική%20Εργασία/Notes/Τεύχος/Dropbox/Διορθώσεις_Δπλωματική%20Εργασία_Τσιάμη%20Λυδία%20Μαρία.docx%23_Toc55664371

xvii

L I S T O F T A B L E S

Table 1: Sensors and actuators monitored/controlled by the PLCs in C-Town......... 29

Table 2: Summarization of the generated demand pattern datasets 38

Table 3: Attack scenarios featured in the BATADAL datasets. 39

Table 4: Available datasets summarization... 41

Table 5: Basic characteristics of each attack scenario in terms of Target-Action-

Effect .. 41

Table 6: SVVD models' performance ... 47

Table 7: Architecture of each Autoencoder model .. 49

Table 8: Mean performance of AE models. .. 50

Table 9 : Average Performance of the AE. Threshold has been finetuned for each

one based on the f1 score .. 51

Table 10: The best performing models (according to their performance on their

development set) ... 53

Table 11: Average performance of all the AE models when their threshold-tuning set

is drawn from the same distribution as the test set... 54

Table 12: Comparison between the SCNN models. Each entry shows the mean and

standard deviation across 10 runs .. 60

Table 13: Average performance and standard deviation of SCNN across 10 trainings

 .. 61

Table 14 : Performance of the best SCNN models (chosen based on their

performance on the development set). ... 63

xviii

L I S T O F F I G U R E S
Figure 1: Graphical representation of types of cyber-physical attacks on a water

distribution system .. 12

Figure 2: Confusion matrix, precision, accuracy and recall 14

Figure 3: Structure of an artificial neuron ... 17

Figure 4: Types of commonly used activation functions in deep learning. 18

Figure 5: Typical architecture of an artificial neural network 18

Figure 6: Typical architecture of a Convolutional Neural Network 22

Figure 7: (a) Undirected graph and (b) directed graph ... 23

Figure 8: (a) A graph G with 5 nodes and 6 edges and (b) the adjacency matrix of

graph G ... 23

Figure 9: The general structure of an Autoencoder ... 26

Figure 10: The network of C-Town .. 30

Figure 11: District Metered Areas (DMAs) of C-Town ... 31

Figure 12: Hourly water demand variation in DMA_1 of C-Town during a year across

the different demand pattern categories .. 38

Figure 13: (a) The available variables’ measurements of C-Town, (b) The resulting

condensed network created based on the available variables, (c) The resulting

(with 1-step reachability) Graph of the network. ... 58

file:///C:/Users/lydts/Documents/ntua/Διπλωματική%20Εργασία/Notes/Τεύχος/Dropbox/Διορθώσεις_Δπλωματική%20Εργασία_Τσιάμη%20Λυδία%20Μαρία.docx%23_Toc55648951
file:///C:/Users/lydts/Documents/ntua/Διπλωματική%20Εργασία/Notes/Τεύχος/Dropbox/Διορθώσεις_Δπλωματική%20Εργασία_Τσιάμη%20Λυδία%20Μαρία.docx%23_Toc55648951
file:///C:/Users/lydts/Documents/ntua/Διπλωματική%20Εργασία/Notes/Τεύχος/Dropbox/Διορθώσεις_Δπλωματική%20Εργασία_Τσιάμη%20Λυδία%20Μαρία.docx%23_Toc55648951

I INTRODUCTION

1

INTRODUCTION

General Context

In the era of unprecedented technological advancements, the water sector is

going under digital transformation. Water distribution networks (WDN) deploy digital

devices not only to monitor and control utility operations, but to increase

automation and ultimately their efficiency. Although water digitalization is essential,

it comes with a cost: it exposes the WDN to the risks of a Cyber-Physical System, i.e.

cyber-attacks.

Since the impact of a potential attack could be enormous, the research interest on

the security of Water Infrastructures is growing. One critical aspect of ongoing

research is the ability to detect attacks [7]. Even if an attacker hacks the WDN, a lot

of damage could be avoided if the attack is promptly detected.

Machine Learning methods are implemented in anomaly detection problems with

promising results. The creation of reliable ML models requires a vast amount of data

for training. This is not the case in the water sector, whom digitalization is recent and

the data availability is poor. For decades instead, water resource systems analysis is

relying on stochastic methods to tackle the hydrological randomness and

uncertainty [8].

When real data are limited, the use of synthetic data in Machine Learning is

frequent. It has been proven that the use of synthetic data can replace the use of

real data in data science [1]. Furthermore, stochastic modelling of water demand

is dominating in water resources design and management [2]. In this respect, we

evaluate whether training Machine Learning models with stochastically generated

water demands will improve their performance in detecting anomalous behavior in

the network. Taking into account that synthetic timeseries are providing a more

realistic representation of water demands, we expect the ML model to generalize

better to unknown data.

Since a WDN has graph structure, we also implement Graph Neural Networks in the

detection of cyber-physical attacks and compare them with baseline methods [3],

[4]. Graph Neural Networks, inspired by Convolutional Neural Networks, are able to

take into account the spatial information of arbitrary graph structures. Our intension

is to examine whether their inherent ability to understand relations between the

nodes of a graph, i.e. the nodes of a Water Distribution Network, makes them

valuable tools in anomaly detection. This is because, when a hacker takes control

of the WDN, the data transmitted are altered in an effort to conceal the attack.

Aim

The overall aim of this diploma thesis is to develop new and improve upon existing

machine learning methods for cyber-physical attack detection on Water

Distribution Networks (WDN). The innovation of this work resides in two main

developments (a) the use of novel stochastic methods to generate the water

2 Introduction

demand timeseries needed to train existing machine learning models, in an effort

to improve their overall performance in the presence of uncertainty and (b) the

exploration and use of a novel family of machine learning methods that take both

the spatial and temporal dimensions of a water network into account, in an effort

to improve the ability of the model to represent the water network more accurately.

Thesis Structure

The thesis is structured into six chapters as follows:

In the first chapter we present a brief overview of similar to the subject, state-of-the-

art research. We focus on methods of generating stochastically, water demands,

detecting cyber-physical attacks on water distribution networks and present some

of the research done on spatiotemporal problems with the use of Graph Neural

Networks.

In the second chapter we make a presentation of the basic theoretical tools used

and we provide some insight on the rationale behind approaching an anomaly

detection problem.

In the third chapter we present the available datasets and the water distribution

network we applied our methodology on.

In the fourth chapter we provide the methodology outline of this dissertation

In the fifth chapter we present the first part of our methodology which relies on the

generation of synthetic water demand timeseries, the simulation of cyber-physical

attacks and ultimately the creation of a new set of datasets aiming to capture the

presence of uncertainty in water distribution networks.

In the sixth chapter we apply three different machine learning algorithms to detect

the attacks contained in the available datasets and report their performance.

In the seventh chapter we present the major conclusions drawn from the models’

performance

Introduction 3

1 LITERATURE

REVIEW

5

1. LITERATURE REVIEW

 Stochastic methods for water demand estimation

Creating a model for water distribution systems that is consistent between the

observed data of the real network and the simulated data from a hydraulic analysis

model, is key into creating robust anomaly detection algorithms. One of the most

important input components in a WDS model is water demands, but their estimation

is usually complicated due to the stochastic behavior of water consumption. To

represent the random nature of water requirements, a common practice is the use

of models that generate water demands stochastically.

Kossieris et al. in their paper [2] describe the most essential stochastic methods for

water demand modelling and one of the most widespread ones involves the use of

pulse-based models. Based on the assumption that residential demand (or the

demand of household water appliances) can be described by a rectangular pulse,

Poisson rectangular pulse (PRP) [9]–[11] and Poisson-cluster processes [12]–[14]

have been used to generate synthetic water demands at fine temporal and spatial

scale. Then synthetic demand records can be obtained by aggregating the pulses

of those fine resolution data.

Apart from pulse-based methods, Gargano [15] proposed a method for the

probabilistic representation of the daily trend of residential water demand for

different number of users, using a mixed-type distribution to describe the whole

process. Furthermore, Alvisi et al. [12] using a bottom up-approach, employed

random polynomial processes along with reordering techniques to enable the

generation of synthetic water demand data which are statistically consistent (in

terms of mean, variance and spatio-temporal correlations) with the observed time

series at lower and higher spatial and temporal scales.

Finally, Kossieris et al. [13], [16] proposed a method based on Nataf-type simulation

models [17], [18] that combines the widely used class of linear stochastic models

(e.g. autoregressive models) with the concept of Nataf’s joint distribution model to

enable the explicit reproduction of the marginal distribution and the dependence

structure of the process. One of the advantages of this methodology is that it allows

the accounting of important marginal properties such as tail behavior and hence

the reproduction of extremes. This is very useful in the design of WDS that require

characterization of peak flows at different temporal resolutions.

The benefit of realistic reproduction of extremes can also be transferred in anomaly

detection problems, where creating a model that is able to distinguish normal peaks

from outliers is essential. Hence, in this dissertation the Kossieris et al. [2] method is

chosen to stochastically generate water demands.

6 Literature Review

 Cyber-physical attacks on

Water Distribution Systems

Before creating effective protection methods against cyber-physical attacks on

Water Distribution Networks, it is important to understand the nature of CPAs and

the network’s response to them. For that reason, there is an emerging scientific

interest in developing tools to assess the effect of cyber-physical threats on the

hydraulic behavior of water distribution systems.

Perelman et al. [19] first presented an approach to assess the vulnerability of small

scale water networks, while Adepu et al. [20] investigated cyber-physical attacks in

the context of a laboratory testbed to obtain the response of an operational water

distribution system.

Taormina et al. [21] approached the problem by creating simulation-based tool,

named epanetCPA, to assess the risks associated to CPAs. The authors presented a

modeling framework consisting of two main components, namely an attack model

that characterizes a broad range of attacks on cyber components (e.g., sensors,

PLCs, and SCADA) and a MATLAB toolbox (epanetCPA) that automatically

implements in EPANET all attacks based on the attack model.

Nikolopoulos et al. [22] introduced a Python-based modeling platform for stress-

testing WDNs under CPAs aiming to aid risk management practices. This modeling

platform, named RISKNOUGHT, by incorporating the interconnection between

cyber and physical processes, allows to simulate WDS’s response in a higher fidelity

and a more realistic way than simulation solutions that mostly focus on the outcome

of a cyber operation and the state of cyber-component.

 Detecting cyber-physical attacks

on Water Distribution Systems

The area of anomaly detection and intrusion detection in Industrial Control Systems

has been widely studied. When it comes to the water distribution sector, a recent

example is the Battle of the Attack Detection Algorithms (BATADAL), an

international competition on water distribution system cyber-attack detection [7].

In that competition seven teams demonstrated their solutions on a simulated

dataset. The best results were shown by the authors of [23] who proposed a model-

based approach that employed EPANET to simulate the hydraulic processed of the

water distribution systems, and then used the error between the EPANET simulated

values and the available observations to detect anomalous behavior. The limitation

of this approach is that in real world problems creating a precise system model is

hindered by various factors, such as the inherent variability of demand patterns and

the uncertainties of the hydraulic model.

Another team that achieved a high score in the competition is Abokifa et al. [24]

that introduced a three-stage detection method with each stage targeting at a

different type of anomaly. More specifically, after checking for violations in any of

the actuator rules, they used statistical fences to detect simple outliers, ANNs for

contextual anomalies and finally they detected global anomalies via PCA

decomposition. A similar approach took also Giacomoni et al. [25] who also verified

Literature Review 7

the integrity of the actuator rules and SCADA data and separated data into normal

and anomalous by performing principal component analysis (PCA).

Moreover Brentan et al. [26] used Recurrent Neural Networks to forecast tank water

levels and by comparing their predictions with the available observations, detected

when the system was under attack. Chandy et al. [27] approached the problem

with a combination of control rules verification and the use of a Convolutional

Variational Autoencoder that calculated the reconstruction probability of the data:

the lower the probability, the higher the chance of the data being anomalous.

Pasha et al. ‘s method [28] involved three interconnected modules. These modules

focused on consistency checks, pattern recognition, and hydraulic and system

relationships. Lastly, Aghashahi et al. [29] implemented a two-stage method which

included dimensionality reduction from the multidimensional observed time series

data to a four-dimensional feature vector that was then passed to a classifier to

detect attacks (Random Forest).

After the BATADAL competition finished, the datasets provided are still publicly

available and are one of the few cases of open-source datasets available for the

research in cyber security of water networks. Those datasets gave a springboard to

more researchers to study cyber-physical attacks on WDNs. A few examples include

Taormina et al. [4] who used an Autoencoder (AE) and Kravchik et al. [30] that

experimented also with an AE and 1D Convolutional Neural Networks (CNNs), PCA-

Reconstruction and frequency domain analysis. Moreover, Ramotsoela et al. [31]

proposed an ensemble technique that focuses mostly on traditional Machine

Learning algorithms for anomaly detection by using both density-based and

Quadratic Discriminant Analysis (QDA). Kadosh et al. [3] examined the use of

support vector data description (SVDD) method along with a feature selection

methodology.

Finally, in this work some of the key methodologies in cyber-physical attack

detection in WDS have been mentioned. The methodologies mentioned are a

good starting point to gain insight into the problem of CPA detection and although

there are various other approaches that have been proposed for that particular

matter, conducting a more rigorous survey is out of the scope of this dissertation.

 Graph Neural Networks

Recently, there is an increasing number of applications regarding data generated

from non-Euclidean domains that can be represented as graphs with complex

interconnections and dependencies between its components. Although deep

learning has been very successful in capturing Euclidean data, the complexity of

graphs has imposed challenges on the existing deep learning algorithms. As a result,

new definitions and operations that generalize the existing deep learning methods

(such as CNNs, RNNs and Autoencoders) have been rapidly developed to handle

the complexity of graph data. These new generalizations are the base of a new

type of deep learning method, that operates on relational data i.e. graphs, named

Graph Neural Networks (GNNs).

There are numerous different types of architectures of Graph Neural Networks most

of them cited in [32]. In this dissertation we only mention the GNN architecture we

found most relevant to our topic i.e. GNN architectures applicable on spatio-

temporal graph data.

8 Literature Review

This category is the CNN-based, Spatio-Temporal Graph Neural Network (STGNN).

STGNNs model graphs that are dynamic in terms of their node inputs, while assuming

interdependency between connected nodes. STGNNs have already been

implemented successfully in many problems including traffic prediction, human

skeleton movement prediction, and human brain networks.

Accurate traffic forecasting is essential in a smart transportation system. Since the

traffic condition of one road depends on its adjacent road’s conditions, it is critical

to incorporate spatial dependency when performing traffic speed forecasting.

STGNNs allow to capture both the spatial and temporal dependencies of a graph

simultaneously, by considering the traffic network as a spatial-temporal graph,

where the nodes are sensors installed on roads, the edges are measured by the

distance between pairs of nodes, and each node has the average traffic speed

within a window as dynamic input-features. Yu et al. in their paper [33] propose a

type of Spatio-Temporal Convolutional Networks for traffic forecasting and

evaluate their model on real-world traffic datasets with promising results.

In human kinematics, capturing the motion of a human is not straightforward as it is

subject to the constraints of the human body. Teh et al. in their paper [5] model

human hand motion by representing as a graph the human joints which are linked

by skeletons. Modelling the human hand as a graph allowed them to predict its

motion and led them to propose a Structural Convolutional Neural Network (SCNN)

architecture for time series data with arbitrary graph structure.

Last but not least, Covert et al. [34] proposed the Temporal Graph Convolutional

Network (TGCN) to automatically detect seizures from electroencephalograms

(EEGs). By modelling the electrodes placed on a patient’s scalp as a graph, the

researchers used TGCNs to detect from EEGs when precisely the seizures occur and

the parts of the brain that are most involved.

Water Distribution Networks have an inherent spatio-temporal structure and from

the above it is evident that STGNNs seem like a potentially useful tool to model them

with. As far as we know, to this day Graph Neural Networks have not been applied

yet in cyber-physical attack detection on WDS.

Literature Review 9

2 THEORETICAL

TOOLS

11

2. THEORETICAL TOOLS

 Types of cyber-physical attacks

on Water Distribution Systems

A cyber-physical system such as a water distribution network has three basic

security goals: operational integrity, availability and confidentiality. Each security

goal can be targeted by a specific type of cyber-physical attack. Operational

integrity, which means that the system components are able to function as

intended and provide a barrier between the water in the system and external

threats, can be compromised with deception attacks that alter the information sent

or received by sensors, actuators or controllers. Availability denotes that the system

is ready for use upon demand and it can be threatened by Denial of Service attacks

(DoS) which occur when an attacker renders the system unavailable. Finally,

confidentiality, which relates to keeping sensitive information safe from

unauthorized users, is susceptible to eavesdropping attacks. Eavesdropping attacks

are essentially the act of stealthily accessing sensitive information of a WDS such as

the system’s state and behavior [21].

According to [21], cyber-physical attacks on WDS can also be classified on the basis

of the element being attacked i.e. the target. The elements that could potentially

be under attack in a WDS are sensors, actuators, PLCs and SCADA, as well as the

communication links connecting them.

As their name implies attacks can also be either cyber or physical. Sensors and

actuators are only susceptible to physical attacks since the attacker needs to have

direct physical access to the target to damage, manipulate or replace it. Attacks

on the connection between different elements of the network can as well be

physical, if the connection is hardwired. Although a physical attack might be

unlikely it should be considered when securing a WDS in case an actuator or sensor

is in a remote (or poorly monitored) area that might be accessible to an attacker.

Attacks on the connection link between different elements of the network, when

the connection is wireless are considered to be cyber-attacks. All attacks no matter

the target or whether they are cyber or physical, could be deception, denial of

service or eavesdropping attacks.

To elaborate, let’s assume a cyber-attack targeted to the connection link between

two PLCs. If one PLC monitors the water level from a tank and transmits it to the

other PLC which controls a pump on the basis of the tank’s water level, then when

the connection is interrupted and the content shared between them is

manipulated (deception), a disruption on the normal pumping operations is

caused. The attacker may also eavesdrop the communication or prevent one of

the PLCs from sending/receiving the sensor reading by flooding the communication

channel with traffic (denial of service).

Another example, is a cyber-attack targeted to the connecting link between PLC

and SCADA. Again, the communication can be manipulated, eavesdropped or

12 Theoretical Tools

temporarily interrupted by flooding the communication channel. As a result,

incomplete or altered information reaches the SCADA. What is important is that the

adversary might resort to this attack to conceal other actions from human operators

or event detection algorithms implemented at SCADA level.

Attack concealment is the key challenge attack detection algorithms face. A good

CPA detection algorithm is not one that identifies outliers per se, but one that is able

to uncover contextual anomalies. Contextual anomalies are suspicious

observations that even if their magnitude is well within the previous historic bounds,

are anomalous within a specific temporal context based on their previous

observations.

The figure below is an extract from [21] and illustrates the different types of cyber-

physical attacks on a simple water distribution system consisting of one pump, one

valve, one tank and a few demand nodes.

Figure 1: Graphical representation of types of cyber-physical attacks on a water distribution

system

 Theoretical Tools 13

 A common anomaly detection approach

We assume there is a dataset X, that its distribution contains normal and anomalous

data:

𝑝𝑓𝑢𝑙𝑙(𝑥, 𝑦)~𝑝(𝑦 = 1)𝑝(𝑥|𝑦 = 1) + 𝑝(𝑦 = 0)𝑝(𝑥|𝑦 = 0)

𝑝𝑛𝑜𝑟𝑚𝑎𝑙(𝑥)~𝑝(𝑥|𝑦 = 0)
𝑝𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙(𝑥)~𝑝(𝑥|𝑦 = 1)

In anomaly detection our goal is to make the best possible estimation of the

𝑝𝑛𝑜𝑟𝑚𝑎𝑙(𝑥) and 𝑝𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙(𝑥) distributions.

When it comes to the problem of detecting attacks in a Water Distribution System,

we only have available a small portion of the entire (anomalous) set of cyber-

physical attacks that could threaten it- it is not plausible to identify and model all

possible attack scenarios. Thus, the most effective way of detecting anomalies on

a WDS is by utilizing semi-supervised algorithms.

Semi-supervised learning is when the training set available contains only normal

points and the task is to identify the anomalous points in a test set. This is also called

novelty detection:

𝐷𝑡𝑟𝑎𝑖𝑛 = 𝑋𝑡𝑟𝑎𝑖𝑛~𝑝𝑛𝑜𝑟𝑚𝑎𝑙(𝑥)
𝐷𝑡𝑒𝑠𝑡 = 𝑋𝑡𝑒𝑠𝑡~𝑝𝑓𝑢𝑙𝑙(𝑥)

After using 𝐷𝑡𝑟𝑎𝑖𝑛 to model the distribution of normal data, the algorithm is able to

assign to each data point an anomaly score. It is expected that most observations

will get low scores while the anomalous hopefully will have higher anomaly score.

To make a final decision whether a point is anomalous or not, the detection

algorithm needs a score threshold. The threshold will separate the normal data from

the anomalous and it must be determined how high the anomaly score should be

for the data to be considered anomalous. For instance, if we train an algorithm to

forecast the SCADA readings of a WDN at a time 𝑡 and we calculate the error

between the observed readings and the predicted ones, how large should be the

error in order to issue an attack alarm?

Determining a threshold is one of the key challenges in anomaly detection. A

threshold score that is too low might catch most anomalies, but might also lead to

a high rate of false detections. Too many false detections become a destruction,

waste time and are overwhelming. The person responsible for dealing with potential

attacks might also become habituated to the alarm raising the danger that they

will not respond appropriately to a true attack -it’s a case of the danger of “crying

wolf”. On the other side setting a threshold that is too high although it will decrease

the number of false detections, it might also miss attacks. However, missing CPAs on

a WDN, might have enormous long-term consequences. As a result, the decision is

a trade-off between true and false detection.

With a few positive samples (attacks), like in the case of semi-supervised learning,

and the appropriate classification metric, it is possible to find a satisfactory

threshold. In the following section we present in detail the most common

classification metrics.

14 Theoretical Tools

2.2.1 Anomaly Detection Metrics

To assess how well a model performs and to compare its performance with other

models it is important to determine an evaluation metric. In binary classification

problems, such as anomaly detection where the goal is to define whether a system

is under attack or not, there are numerous metrics available to use.

Choosing a single-number metric speeds up our ability to make a decision when

selecting among a large number of models and to fine-tune the anomaly detection

threshold. It gives a clear preference ranking and therefore a clear direction

progress. However, each evaluation metric gives us a different perspective of the

algorithm’s performance, so the choice of a single-number metric is not

straightforward and it must be aligned with the predefined research objectives.

Below, we present some basic classification metrics along with some of the

limitations each one faces.

Confusion Matrix

In binary classification problems, a confusion matrix is a 2 × 2 matrix that offers

detailed information about a model’s performance. A confusion matrix summarizes

a model’s performance on a specific dataset by depicting the correlation between

the actual label and the model’s classification i.e. False Negatives, True Negatives,

False Positives and True Positives. More specifically, in a binary classification

problem, like determining if a system is under attack or not, we define as:

• True positive: When the system is under attack and the model’s prediction is

also that the system is under attack.

• True negative: When the system is not under attack and the model’s

prediction is also that the system is not under attack.

• False positive: When the system is not under attack and the model’s

prediction is that the system is under attack.

• False negative: When the system is under attack and the model’s prediction

is that the system is not under attack.

Confusion matrices contain sufficient information to calculate a variety of

performance metrics, like precision and recall (see Figure below).

Figure 2: Confusion matrix, precision, accuracy and recall

 Theoretical Tools 15

Recall

Recall is a measurement that describes how many of the “true” predictions for all

data points were actually “true”. In other words, it measures the model’s ability to

correctly classify the state of the water distribution system as under attack. Recall is

also known as sensitivity or true positive rate.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Recall can be a deceiving metric in case an algorithm issues every instance as an

attack. In that case the algorithm has detected every attack instance. There are

no false negatives. Such model would return a recall score of 1.0, but contribute

little.

Precision

Precision is a measurement that describes how many of the true predictions are

actually true. In other words, it measures the model’s ability to prevent false alarms.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Precision is slightly harder to be deceiving. This can happen if an algorithm issues

correctly only one alarm. Because no false positives are generated and the

numerator is above zero, this gives maximum precision 1.0.

Accuracy

Accuracy is a measurement that describes how many predictions were correctly

classified over the entire dataset.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙

Accuracy can be a deceiving metric in imbalanced classification datasets. For

example, in anomaly detection problems data points labeled as “under attack”

(Positives) are significantly less than “under normal conditions” points (Negatives).

As a result, even when failing to detect all Positive instances, i.e. not detecting any

of the attacks, the accuracy score will still have a relatively high value.

From the above more metrics can be derived, such as the following:

Specificity

Specificity or True Negative Rate is another metric that determines the model’s

ability to avoid false alarms. It is similar to recall, but instead of the proportion of true

positives to all of the true data points, it’s the proportion of false positives to all of

the false data points. In our case, it is the ration between the number of timesteps

correctly classified as safe conditions and the total number of time steps during

which the system is in safe conditions.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

16 Theoretical Tools

The drawback of specificity in imbalanced classification datasets is that it

determines as more important True Negatives. True Negatives in anomaly detection

problems are the majority class of the datasets, thus specificity presents very small

variance and makes it hard to capture the differences in an algorithm’s

performance.

F-score

F-score is the weighted harmonic mean of precision and recall:

𝐹𝛽 = (1 + 𝛽2)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

where 𝛽 determines the balance between precision and recall, with high values

favoring recall.

When 𝛽 = 1 the F-score is called F1-score and it considers equally recall and

precision. In other words, it takes into account both how well the model makes true

predictions that are actually true (i.e. how many of the issued alarms were actually

“under attack” labels) and how many of the total true predictions that model

correctly predicted (i.e. how many “under-attack” labels out of the total were

correctly detected).

The advantage of F-score is that, when using it, the focus is given to true positives,

false positives and false negatives, while no attention is given to the majority class

i.e. the true negative group.

The main disadvantage of F score is that one is unable to distinguish low recall from

low-precision models when using solely F-score as an evaluation metric.

 Theoretical Tools 17

 Machine Learning Algorithms

2.3.1 Feedforward Neural Networks

Suppose that (x,y) are points of a function f, where y=f(x). An Artificial Neural

Network (ANN) is a deep learning algorithm that given some training examples (x,y)

learns to approximate the function f.

The ANN’s structure consists of neurons (depicted as nodes) that are organized into

layers. A neuron’s function is to receive inputs from n sources and then generate

one output value. The neuron calculates the output by applying an activation

function (nonlinear transformation) to a weighted sum of input values. Then it sends

its output to m succeeding neurons.

Figure 3: Structure of an artificial neuron

One example activation function is the ReLU (Rectified Linear Unit) function which

is as follows:

If 𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑘𝑗𝑥𝑘
𝑛
𝑘=0 + 𝑏 is the weighted sum of the input and 𝑜𝑗 is the output of the

neuron, then

𝑜𝑗 = {
𝑛𝑒𝑡𝑗 , 𝑛𝑒𝑡𝑗 ≥ 𝜃𝑗

0 , 𝑛𝑒𝑡𝑗 < 𝜃𝑗
, 𝑤ℎ𝑒𝑟𝑒 𝜃𝑗 = 0

There are many activation functions that can be used in a neuron (see Figure

below) and they are essential in neural networks, as they introduce non-linear

properties into the network. This way a neural network can understand more

complex patterns and give more accurate results.

18 Theoretical Tools

Figure 4: Types of commonly used activation functions in deep learning.

A set of neurons forms a layer and usually in an ANN there are three kinds of layers:

the input, hidden and output layer. The input layer is the first layer of the network

and the one that receives the input data (x). The output layer is the one that

receives the ANN’s predictions (outputs or 𝑦̂) and the hidden layer is a layer

between the input and the output. A hidden layer typically contains an activation

function for training. When a neural network has more than one hidden layers it is

called a deep neural network.

Figure 5: Typical architecture of an artificial neural network

As a result, information x flows through the layers of an ANN, until it reaches radically

transformed the last layer which it outputs a prediction 𝑦̂. The goal of an ANN is to

adjust its parameters i.e. the weights of the neurons, until its prediction 𝑦̂ is as close

as possible to the objective 𝑦. Neural networks with different architectures can be

designed, i.e. width (number of neurons in a layer) and depth (number of hidden

layers) etc., until complex non-linear functions are learned.

To measure the performance of a neural network a loss/cost function is defined. The

loss function usually depicts the error of the predicted value. Depending on the

nature of the problem a different cost function can be chosen (mean squared error,

mean absolute error, cross entropy loss). During training, a neural network

 Theoretical Tools 19

determines through an iterative process the ideal weights for each input feature

that minimize the cost function.

The algorithm used to minimize the cost function is called gradient descent. In

gradient descent the model’s parameters are adjusted iteratively until finding the

ones that minimize the loss. The gradients of loss are calculated with a process

called backpropagation. In backpropagation, first the output values of each node

are calculated in a forward pass and then the partial derivative of the error with

respect to each parameter is calculated in a backward pass through the graph.

20 Theoretical Tools

2.3.2 The Convolution Operation

The convolution operation is a two-step mathematical operation between an input

matrix and a convolutional filter/kernel. The convolution involves the following:

1. Element wise multiplication of the kernel and a slice of the input matrix.

2. Summation of all the values in the resulting product matrix

The output is called an activation map and has the same shape as the

convolution filter. The activation map consists of the results of the convolutional

operations.

For example, given a 5 × 5 input matrix and a 3 × 3 kernel:

We perform each convolution operation between a 3 × 3 slice of the input matrix

and the kernel

 Theoretical Tools 21

From the above, a convolution is a specialized kind of linear operation and the

kernel has the same rank as the input matrix. For instance, if the input matrix is a

28 × 28 matrix, then the kernel can be any 2d matrix with a shape smaller than

28 × 28.

2.3.3 Convolutional Neural Network

Convolutional Neural Networks are neural networks that use the convolution

operation in place of general matrix multiplication (see “Feedforward Neural

Networks”) in at least one of their layers. A typical convolutional layer has three

components:

1. Convolution stage: This layer performs several convolution operations to

produce the activation maps.

2. Detector stage: An activation function is applied to each element of each

activation map.

3. Pooling stage: The pooling function is used to modify the output of the

convolutional layer further. Pooling, like convolution, divides the matrix into

slices and usually keeps either the maximum or average value across the

pooled area. As a result, the output matrix is reduced to a smaller matrix.

For example, suppose the pooling operation divides the convolutional matrix into

2x2 slices with a 1x1 stride. As the following diagram illustrates, four pooling

operations take place. Imagine that each pooling operation picks the maximum

value of the four in that slice:

22 Theoretical Tools

Figure 6: Typical architecture of a Convolutional Neural Network

To further elaborate, in the Figure above it is depicted a typical convolutional neural

network. The input layer is an image matrix followed by two convolutional layers

(Convolution-ReLU-Pooling). Their output is then reshaped to flatten out its spatial

dimensions resulting in a 1D matrix. That matrix is then used as an input to an ordinary

feedforward neural network.

The convolutional kernels’ weights are parameters of the CNN and are obtained

via training. Without convolutions a neural network would have to learn a weight

for each input unit. With convolutional filters the algorithm has to learn only the

weights for each filter, meaning that fewer parameters are stored and the memory

requirements to train the model are reduced.

The use of the convolution operation is a characteristic of CNNs that allows them to

“leverage three important ideas that improve a machine learning system: sparse

interactions, parameter sharing and equivariant representations”[35]. These

characteristics have made CNNs very successful in processing data with grid-like

topography, like time series data (they can be considered as one-dimensional grid

data), and images (two-dimensional grids of pixels).

 Theoretical Tools 23

2.3.4 Introduction to graphs and adjacency matrices

A graph is data structure for representing relationships. It comprises of nodes (or

vertices) and edges connected together to represent relational information.

Formally, a graph 𝐺 is a tuple consisting of a finite set of 𝑉(𝐺) of vertices and a finite

set 𝐸(𝐺) of edges, where each edge is an unordered pair of vertices. An edge

between two nodes u and v is often denoted as (u,v).

For example, the graph illustrated below comprises of 5 nodes and 6 edges. A graph

is called a directed graph if each edge is associated with a direction (see Figure 7

below). A directed edge can be considered as a one-way street. On the other side,

an undirected graph is a graph that the connection order doesn’t matter and it

can be thought as a graph where each edge is directed.

Figure 7: (a) Undirected graph and (b) directed graph

Now, let us suppose that 𝐺 is a graph with the vertex set 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} and the

edge set 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑚}. The adjacency matrix 𝐴(𝐺) of 𝐺 is an 𝑛 × 𝑛 matrix 𝐴(𝐺) =
[𝑎𝑖𝑗] in which 𝑎𝑖𝑗 indicates the number of edges joining two vertices 𝑣𝑖 and 𝑣𝑗. The

Figure below illustrates a graph (a) and its adjacency matrix (b).

Figure 8: (a) A graph G with 5 nodes and 6 edges and (b) the adjacency matrix of graph G

24 Theoretical Tools

2.3.5 Structural Convolutional Neural Networks

Teh et al. have proposed the Structural Convolutional Neural Network (SCNN) for

general graph-structured CNNs for time series analysis [5]. In their paper they

describe their model as a “neural network architecture that defines and uses

specialized convolutional kernel with an arbitrary definable adjacency matrix.”

First are defined the following for a graph with 𝐹 number of nodes and the

adjacency matrix 𝐴 ∈ ℝ𝐹×𝐹:

𝑦⃗𝑙−1 = [𝑦⃗
1

𝑙−1, … , 𝑦⃗
𝐹

𝑙−1]
𝑇

 , previous layer’s output

𝑦⃗𝑙 = [𝑦⃗
1

𝑙 , … , 𝑦⃗
𝐹

𝑙]
𝑇

, current layer’s output

𝑊⃗⃗⃗⃗𝑙 = [𝑊⃗⃗⃗⃗1

𝑙
, … , 𝑊⃗⃗⃗⃗𝐹

𝑙
]

𝑇

, current layer’s weights

𝑏⃗⃗𝑙 = [𝑏⃗⃗
1

𝑙, … , 𝑏⃗⃗
𝐹

𝑙]
𝑇

, current layer’s biases

where

𝑦⃗−1 ∈ ℝ𝑇×𝐹×𝑁 ,

𝑦⃗𝑙 ∈ ℝ𝑇−(𝑡−1)×𝐹×𝑀,

𝑊⃗⃗⃗⃗ 𝑙 ∈ ℝ𝐹×𝑡×𝐹×𝑁×𝑀,

𝑏⃗⃗𝑙 ∈ ℝ𝐹×𝑀,
𝑦⃗𝑖

𝑙−1 ∈ ℝ𝑇×1×𝑁 , ∀ 𝑖 = 1,… , 𝐹,

𝑦⃗𝑖
𝑙 ∈ ℝ(𝑇−(𝑡−1))×1×𝑁, ∀ 𝑖 = 1,… , 𝐹,

𝑊⃗⃗⃗⃗𝑖
𝑙 ∈ ℝ𝑡×𝐹×𝑁×𝑀, ∀ 𝑖 = 1,… , 𝐹,

𝑏⃗⃗𝑖
𝑙 ∈ ℝ1×𝑀, ∀ 𝑖 = 1,… , 𝐹.

The kernel is made up of 𝐹 sub-kernels and each of the sub-kernels 𝑖, which

corresponds to node 𝐼, has weights 𝑊𝑖
𝑙 with the dimension of 𝑡 × 𝐹 × 𝑁 × 𝑀. The sub-

kernels are slid across the temporal dimension of the input producing an output of

(𝑇 − (𝑡 − 1)) × 1 × 𝑀 for each node 𝑖. The output is then passed through an

activation function 𝑔 to produce:

𝑦⃗𝑖
𝑙 = 𝑔(𝑊⃗⃗⃗⃗𝑖

𝑙 ∗ 𝑦⃗𝑙−1 + 𝑏⃗⃗𝑖
𝑙)

𝑊⃗⃗⃗⃗𝑖
𝑙 =

[

𝑤⃗⃗⃗𝑖1

𝑙

.

.

.
 𝑤⃗⃗⃗𝑖𝐹

𝑙

]

where ∗ is the convolution operation,

𝑊⃗⃗⃗⃗𝑖
𝑙 ∗ 𝑦⃗𝑙−1 = ∑ 𝑤⃗⃗⃗𝑖𝑗

𝑙 ∗ 𝑦⃗𝑗
𝑙−1

𝐹

𝑗=1

and 𝑤⃗⃗⃗𝑖𝑗
𝑙 is the sub-kernel weights for the 𝑖 node with its 𝑗 neighbor.

 Theoretical Tools 25

2.3.6 Temporal Graph Convolutional Networks (TGCN)

Covert et al. proposed in their paper [34] a model (TGCN) that takes into account

“the graph topology of a structural time series and applies feature extractors that

are localized and shared over both the temporal and spatial dimensions of the

input”.

Inspired by Graph neural networks (GNNs) that use neighborhood aggregation

schemes, their model is based on a proposed spatio-temporal convolutional (STC)

layer described below:

Suppose that the input layer 𝑙 is ℎ𝑙−1 ∈ ℝ𝑇𝑙−1×𝑝×𝑐𝑙−1
, where 𝑇𝑙−1 is the number of time

points at the previous layer, and ℎ𝑖
𝑙−1 ∈ ℝ𝑇𝑙−1×𝑐𝑙−1

, represents the hidden features

associated with sequence 𝑖. The STC layer can be used with two different

propagation rules.

Both rules begin by applying a 1D convolution (denoted by ∗) with filter 𝑊𝑖𝑛𝑡
𝑙 to each

sequence of hidden features ℎ𝑖
𝑙−1, resulting in an intermediate set of features

denoted by 𝑎𝑖
𝑙. Note that filter 𝑊𝑖𝑛𝑡

𝑙 is shared across all sequences in the layer 𝑙. The

two rules differ in how they handle the aggregation of features from a node and its

neighbors.

Rule A aggregates features from the node’s neighborhood including the node itself,

and then applies nonlinearity g. The aggregation operation (e.g. mean, max) is

performed along the spatial dimension, so that the temporal and channel

dimension are retained.

𝑹𝒖𝒍𝒆 𝑨

𝑎𝑖
𝑙 = 𝑊𝑖𝑛𝑡

𝑙 ∗ ℎ𝑖
𝑙−1

𝑧𝑖
𝑙 = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ({𝑎𝑗

𝑙𝑓𝑜𝑟 𝑗 𝑖𝑛 𝑁(𝑖)})

ℎ𝑖
𝑙 = 𝑔(𝑧𝑖

𝑙)

Rule B first aggregates features across a node’s neighbors, and then combines

these features with the node’s own features by concatenating them and passing

them through an additional nonlinear operation, parameterized by 𝑊𝑐𝑜𝑚𝑏
𝑙 . This

prevents the node’s feature from being “diluted” by the features from its

neighboring nodes.

𝑹𝒖𝒍𝒆 𝑩

𝑎𝑖
𝑙 = 𝑊𝑖𝑛𝑡

𝑙 ∗ ℎ𝑖
𝑙−1

𝑧𝑖
𝑙 = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ({𝑎𝑗

𝑙𝑓𝑜𝑟 𝑗 𝑖𝑛 𝑁(𝑖) \ 𝑖 })

ℎ𝑖
𝑙 = 𝑔2 (𝑊𝑐𝑜𝑚𝑏

𝑙 ∗ 𝑔1([𝑧𝑖
𝑙 , 𝑎𝑖

𝑙]))

The neighborhood of node 𝑖 is defines as 𝑁(𝑖) = { 𝑗 𝑠. 𝑡. 𝐴𝑖𝑗 = 1}, i.e. it’s the set of

nodes that have and edge to 𝑖. The only parameter for rule 𝐴 is the convolutional

kernel 𝑊𝑐𝑜𝑚𝑏
𝑙 ∈ ℝ𝑡2

𝑙×𝑐𝑙×𝑐𝑙−1
. The two parameters for rule 𝐵 are 𝑊𝑖𝑛𝑡

𝑙 , and the second

convolutional kernel 𝑊𝑐𝑜𝑚𝑏
𝑙 ∈ ℝ𝑡2

𝑙×𝑐𝑙×(2∗𝑐𝑙). In rule 𝐴 the hyperparameters are the

choice of nonlinearity 𝑔, the temporal kernel size 𝑡𝑙, and the number of channels 𝑐𝑙.

Rule 𝐵 has the additional hyperparameter 𝑡2
𝑙 , which could simply be set to 1 or 𝑡𝑙,

as well the possibility of a second nonlinearity. For the two rules, note that filters are

shared both spatially and temporally.

26 Theoretical Tools

The adjacency matrix of the sequences is used when we aggregate features across

𝑁(𝑖). An interesting property of STC layers is the independence between the number

of parameters and the input adjacency matrix, which allows a TGCN model to

accept inputs wit arbitrary graph topologies.

In the paper discussed, the authors also propose incorporating information not only

from nodes that are directly connected, but also from nearby nodes that are

reachable within 𝑘 steps. To obtain the k-step reachability matrix, they use the

operation 𝐴(𝑘) = 𝟙 (𝐴𝑘) where 𝐴𝑘 is the adjacency matrix to the kth power, 𝟙(∙) is an

element-wise indicator function. Setting 𝑘 > 1 enables information to spread

through the graph using fewer layers.

2.3.7 Autoencoders

An autoencoder is a neural network that is trained to attempt to copy its input to its

output. Internally, it has a hidden layer h that describes a code used to represent

the input. The network may be viewed as consisting of two parts: an encoder

function ℎ = 𝑓(𝑥) and a decoder that produces a reconstruction 𝑟 = 𝑔(ℎ).

Figure 9: The general structure of an Autoencoder

If an autoencoder succeeds in simply learning to set 𝑔(𝑓(𝑥)) = 𝑥 everywhere, then

it is not especially useful. Instead, autoencoders are designed to be unable to learn

to copy perfectly. Usually they are restricted in ways that allow them to copy only

approximately, and to copy only input that resembled the training data. Because

the model is forced to prioritize which aspects of the input should be copies, it often

learns useful properties of the data.

Copying the input to the output may sound useless, but we are typically not

interested in the output of the decoder. Instead, we hope that training the

autoencoder to perform the input copying task will result in h taking on useful

properties.

One way to obtain useful features from the autoencoder is to constrain h to have a

smaller dimension than x. An autoencoder whose code dimension is less that the

input dimension is called, undercomplete. Learning an undercomplete

representation forces the autoencoder to capture the most salient features of the

training data.

Unfortunately, if the encoder and decoder are allowed too much capacity, the

autoencoder can learn to perform the copying task without extracting useful

information about the distribution of the data.

Autoencoders can be used for a wide variety of applications. Commonly, they are

used in problems like dimensionality reduction, data denoising, feature extractions

and anomaly detection.

 Theoretical Tools 27

2.3.8 Support Vector Data Description Classifier

The Support Vector Data Description (SVDD) classifier is designed to create a tight

spherical boundary around any numerical multidimensional data using Kernel

functions. By calculating the relative location of a new observation to the spherical

boundary, one can decide whether the observation belongs to the fitted data or is

considered an outlier. The SVDD classifier requires two tuning parameters. The first is

the C parameter. When 𝐶 ≥ 1, it means that no outliers are expected in the training

dataset. Then, for 𝐶 ≥ 1, the SVDD solves the following optimization problem:

𝑚𝑖𝑛𝑅
𝑅,𝛼

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝜑(𝑥𝑖) − 𝑎‖ ≤ 𝑅

where R and a=decision variables; and 𝜑(𝑥𝑖) = function mapping the data to a

higher-dimensional space. Herein, 𝜑 = radial basis function: ∑ exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
)𝑖,𝑗 for

a pair of samples in the datasets 𝑥𝑖 , 𝑥𝑗 ; and 𝛾 = second tuning parameter for the

SVDD algorithm. In the prediction stage after the optimal decision variable 𝑅𝑜𝑝𝑡 , 𝛼𝑜𝑝𝑡

are determined, the decision value (DV) for any test instance 𝑥 is given as detailed

in the following equation:

𝐷𝑉 = ‖𝜑(𝑥𝑖) − 𝛼𝑜𝑝𝑡‖ − 𝑅𝑜𝑝𝑡

where the boundary for the classification is obtained when 𝐷𝑉 = 0.

SVDD is useful for obtaining a geometric description of data and in most

applications also for detecting outliers. SVDD is used in domains where most of the

data are in one class. Applications of SVDD include equipment prognostics,

cybersecurity and intrusion detection, fraud identification and others.

3 DATA

DESCRIPTION

29

3. DATA DESCRIPTION

 The network of C- Town

The network of C-Town was first introduced in the “Battle of the Water Calibration

Networks”[36]. It is based on a real-world water distribution network and consists of

one reservoir, seven cylindrical tanks (T1-T7), one actuated valve (V2), 429 pipes,

388 nodes, and 5 pumping stations (S1-S5) for a total of 11 pumps (PU1-PU11).

Control rules of the network are programmed into the Programmable Logic

Controllers (PLCs). C-Town has nine PLCs that record, receive and send information

about tanks, pumps and valves based on their control logic. Table 1 showcases the

sensors and actuators controlled by the PLCs in C-Town. PLCs share with each other

information related to their control rules and send their records to the Supervisory

Control And Data Acquisition system (SCADA). SCADA’s role is to coordinate the

operations and store the readings provided by the nine PLCs. Since SCADA is a

remote operating system, it is part of the cyber network of C-town, thus making the

WDN susceptible to cyber-attacks.

Table 1: Sensors and actuators monitored/controlled by the PLCs in C-Town, Source:[7]

PLC Sensor Actuators (Controlling sensor)

PLC1 - PU1 (T1), PU2(T1)

PLC2 T1 -

PLC3 T2 V2(T2), PU4(T3), PU5(T3), PU6(T4), PU7(T4)

PLC4 T3 -

PLC5 - PU8(T5), PU9(-), PU10(T7), PU11(T7)

PLC6 T4 -

PLC7 T5 -

PLC8 T6 -

PLC9 T7 -

The hydraulic behavior of C-town can be simulated by using EPANET, an open

source software that performs hydraulic analysis on WDSs. EPANET is a demand-

driven analysis tool, and to perform simulations the water demand at each node of

the network at each time step is required. The water demand of a node at each

time step is calculated by multiplying the base demand of a node by its

corresponding demand pattern.

Base demand is the average or nominal demand for water at each node, while the

demand pattern is a time pattern used to characterize time variation in demand at

each node. The demand pattern provides multipliers that are applied to the base

demand to determine actual demand in a given time period. A network can have

different base demands at each node and multiple demand patterns. C-Town is

divided into five DMAs (District Metered Areas), each with its own demand pattern.

30 Data Description

Figure 10: The network of C-Town

 Data Description 31

Figure 11: District Metered Areas (DMAs) of C-Town

32 Data Description

 The BATADAL Competition (BATle of the Attack

Detection ALgorithms)

C-Town was again featured as a benchmark network in the BATtle of the Attack

Detection ALgorithms (BATADAL), an international competition on cyber security of

water distribution systems held at the World Environmental and Water Resources

Congress (Sacramento, California, May 21-25, 2017) [7]. One of the outcomes of this

competition is the openly available resources for the study of CPAs on WDNs, which

are the following:

-Three datasets with SCADA readings from three different simulations:

dataset03: this dataset contains readings from a one-year EPANET simulation. During

this simulation the network was only under safe conditions.

dataset04: this dataset has SCADA readings with a span of 6 months, containing 7

attacks.

testdataset: a 3-month dataset with 7 different attacks.

All three datasets contain hourly SCADA readings from 43 variables of the network.

These variables are:

• water level at all seven tanks of the network (T1-T7)

• status and flow of all 11 pumps (PU1-PU11) and the actuated valve (V2) of

the network

• pressure at 24 pipes of the network (corresponding to the inlet and outlet

pressure of the pumps and the actuated valve)

-A table describing each attack scenario featured in the datasets “dataset04” and

“testdataset”

-An EPANET input file named “ctown.inp” containing information (topographical

and hydrological) about the distribution system. Among the information in the C-

Town EPANET input file are:

• Monthly water base demands given at each node of the network.

• One week of hourly demand patterns for each of the five DMAs.

The SCADA readings provided in the available datasets, have been simulated using

demand patterns different from the ones included in the “ctown.inp” EPANET file

and are not publicly available. Furthermore, the datasets containing attacks have

been simulated using epanetCPA, a MATLAB toolbox that allows to design a variety

of cyber-attacks and simulate with EPANET the hydraulic response of the WDN -

[21],[37], [38].

 The challenge of the competition

The BATADAL contestants were asked to create algorithms to detect all the attacks

contained in the datasets presented above. The algorithms’ performance was

evaluated with a combination of metrics: time-to-detection and classification

accuracy.

The first metric, time-to detection is the following:

 Data Description 33

𝑆𝑇𝑇𝐷 = 1 −
1

𝛮𝐴

∑
𝑇𝑇𝐷𝑖

𝛥𝛵𝑖

𝑁𝐴

𝑖=1

where 𝑁𝐴 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑎𝑐𝑘𝑠,
𝑇𝑇𝐷𝑖

𝛥𝛵𝑖
= the time to detection of attack 𝑖 as a ratio of

the total attack duration 𝛥𝛵𝑖.

The second metric, classification performance is defined as:

𝑆𝐶𝑀 =
𝑇𝑃𝑅 + 𝑇𝑁𝑅

2

where 𝑇𝑃𝑅 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒, i.e. the ratio of true positives (TP) to the sum of true

positives (TP) and false negatives (FN) and 𝑇𝑁𝑅 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒, i.e. the ratio of

true negatives (TN) to the sum of true negatives (TN) and false positives (FP).

The two metrics are combined into a single score:

𝑆 = 𝛾𝑆𝑇𝑇𝐷 + (1 − 𝛾)𝑆𝐶𝑀

where 𝛾 = 0.5 is a coefficient that determines the relevant importance of the two

evaluation metrics (here considered equally important).

A naïve algorithm that predicts the system to be always in safe conditions gets a

score S equal to 0.25 (𝑆𝑇𝑇𝐷 = 0, 𝑆𝐶𝑀 = 0.5). On the other hand, flagging the system as

always under attack yields a value of 𝑆 equal to 0.75 (𝑆𝑇𝑇𝐷 = 1, 𝑆𝐶𝑀 = 0.5). This

showcases the fact that 𝑆 is biased towards attack identification, since the

consequences of failing to disclose an attack are deemed more costly than issuing

false alarms.

From the above, an algorithm with a score 𝑆 larger that 0.75 means that it

performed better than the naïve detection mechanisms.

4 METHODOLOGY

35

4. METHODOLOGY
 Methodology Outline

The goal of this dissertation is to contribute to the research of cyber-physical attacks

detection on simulation-based data on water distribution systems. We do that by:

(a) Generating new, more realistic datasets for the study of cyber-physical

attack detection on water distribution networks. To do that, we perform

simulations using stochastically generated demand patterns.

(b) Evaluating the performance of published algorithms for CPA detection on

WDNs on our, more realistic datasets. We also compare the algorithms’

performance on our datasets with their performance on naive, non-realistic

datasets. Moreover, we also report the algorithms’ performance on pre-

existing, non-realistic datasets to evaluate each algorithm holistically.

(c) Exploring the use of Spatio-Temporal Graph Neural Networks on the CPA

detection on WDNs problem.

To apply this methodology we build upon the simulated datasets featured on

BATADAL, an international competition on cyber-security of water distribution

networks [7].

The practical application of the methodology is divided into two parts:

The first part is about creating the new, more realistic datasets. To do that we:

A. Generate synthetic demand patterns using Kossieris et al. methodology [2]

B. Design attack scenarios similar to the ones featured in BATADAL [7].

C. Run simulations to obtain the hydraulic behavior of C-Town [38].

The second part is about detecting attacks using different machine learning

algorithms. We use three different approaches:

A. Two published machine learning approaches that have been implemented

successfully to the BATADAL datasets by Taormina et al. and Kadosh et al.

The first applies an Autoencoder to detect the attacks [4], while the other

an SVDD classifier [3].

B. A third approach that hasn’t been implemented to a water distribution

network’s CPA detection problem yet. It is based on the works of Teh et al.[5]

and Covert et al [34] on graph-structured time series data.

 Software and Code Repositories

Most of our research relies on open source software. Synthetic water demands were

generated using anySim1, an R package developed by Tsoukalas and Kossieris [39].

The attack scenarios were simulated in epanetCPA2, a MATLAB toolbox developed

by Taormina et al. [7], [21]. The SVDD code is available for MATLAB in the published

article [3]. The code for the Autoencoder3 was developed by Taormina et al [4]

using the Keras library. Finally, the code for the SCNN [5] and TGCN [34] layers was

kindly provided by Ian Covert, PhD student at University of Washington. The code

for our model, based on SCNNs, was written using the deep-learning framework

PyTorch.

1 https://github.com/itsoukal/anySim
2 https://github.com/rtaormina/epanetCPA
3 https://github.com/rtaormina/aeed

https://github.com/itsoukal/anySim
https://github.com/rtaormina/epanetCPA
https://github.com/rtaormina/aeed

5 PART I:

CREATING NEW

DATASETS

37

5.PART I: CREATING NEW DATASETS

 Generating synthetic demands

The synthetic demand patterns are generated using the methodology proposed by

Kossieris et al. [2]. This stochastic modelling strategy builds upon Nataf’s joint

distribution model and was chosen because it preserves both the distributional and

dependence properties of a process. Based on the available hourly one-week

demand patterns of C-Town, synthetic demand patterns are generated by

selecting an appropriate probability and autocorrelation function that resemble

the marginal and dependence properties of demand patterns of BATADAL

datasets. The generation of synthetic series was conducted via anySim an R

package, developed by Tsoukalas and Kossieris, [39] which implements the

aforementioned methodology.

To evaluate the performance of ML models with the use of stochastically generated

demand patterns, we also need a non-stochastically generated dataset. Since the

demand patterns that the BATADAL datasets originated from, are not publicly

available, a new benchmark dataset was created: To create a naïve demand

pattern with n-week duration, the one-week hourly demand patterns available from

the ctown.inp file are repeated n-times and each of the hourly demands are

multiplied with a random4 number between 0.90 and 1.10. The resulting demand

pattern is essentially n noisy versions of the available one-week demand pattern,

concatenated into a single n-week demand pattern.

To be more precise, the goal is to create datasets corresponding to the ones

available in BATADAL, meaning that we need to run 12, 6 and 3-month simulations

on epanetCPA. Simulations with a specific duration require demand patterns of

equal length, thus we also need 3 demand pattern datasets with a horizon of 12, 6

and 3 months respectively.

To gain more insight of the effect of stochastically generated demand patterns in

the CPA detection algorithms, two different categories of synthetic demand

patterns are generated. The distinguishing feature of each DP category is the

marginal distribution from which it was generated. The first category of synthetic

demand patterns is generated using the Beta probability distribution function, while

the second category using the Gamma probability distribution function. Demand

patterns simulated using the Beta distribution resemble a lot more the available one-

week demand patterns, while demand patterns generated using the Gamma

distribution function present larger fluctuations. Considering the non-stochastic

dataset:

3 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 ∗ 3 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑖. 𝑒. 12, 6 𝑎𝑛𝑑 3 𝑚𝑜𝑛𝑡ℎ𝑠) =

9 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠.

The resulting demand pattern datasets are summarized in the table below:

4 Using the RANDBETWEEN() formula in MS Office Excel

38 PART I: Creating New Datasets

Table 2: Summarization of the generated demand pattern datasets

Name Duration

(months)

Generation

Environment

Probability

Distribution

Generation Method

dempat_b12 12 anySim Beta Stochastic

dempat_b06 6 anySim Beta Stochastic

dempat_b03 3 anySim Beta Stochastic

dempat_g12 12 anySim Gamma Stochastic

dempat_g06 6 anySim Gamma Stochastic

dempat_g03 3 anySim Gamma Stochastic

dempat_r12 12 MS Excel Random1 Non-stochastic

dempat_r06 6 MS Excel Random1 Non-stochastic

dempat_r03 3 MS Excel Random1 Non-stochastic

(a)

(b)

(c)

Figure 12: Hourly water demand variation in DMA_1 of C-Town during a year across the

different demand pattern categories. (a) dempat_r12 – demand pattern generated non-

stochastically, (b) dempat_b12 – demand pattern generated using the Beta distribution as

the marginal distribution function, (c) dempat_g12 – demand pattern generated using the

Gamma distribution function.

The charts above depict three demand pattern datasets from three different

demand pattern categories. Note how the demand pattern that was generated

non-stochastically has a fairly regular motif, while the stochastically generate

demand patterns present larger fluctuations and higher demand peaks.

0,5

1
dempat_r12

0,5

1
dempat_b12

0,5

1
dempat_g12

 PART I: Creating New Datasets 39

 Generating cyber-physical attacks and running

simulations

To create attack scenarios similar to the ones featured in BATADAL, we use

epanetCPA [21]. First, the available attack descriptions were translated into

executable by epanetCPA attack scenarios. Then, having available the attack

scenarios, demand patterns and the C-Town EPANET input file for each dataset, we

run the epanetCPA simulations to obtain the hydraulic response of the network.

Note that the simulated SCADA readings during an attack are altered in an attempt

to conceal the physical impact of the attack to the network thus making the CPA

detection a challenging task.

The table below shows that the attacks in BATADAL include malicious activation of

hydraulic actuators, change of actuator settings and deception attacks.

Deception attacks are used to manipulate the information sent or received by

sensors and PLCs and to alter the information received by SCADA.

Table 3: Attack scenarios featured in the BATADAL datasets.

Identifier

Starting

time

(dd/mm/YY

HH)

Ending time

(dd/mm/Y

Y HH)

Duration

(h)
Attack Description

SCADA

concealment

(altered

readings)

1

13/09/16 23 16/09/16 00 50 Attacker changes L_T7

thresholds controlling PU10

and PU11 by altering

SCADA transmission to

PLC5. This causes low

levels in T7.

Replay attack

(L_T7).

2

26/09/16 11 27/09/16 10 24 Like Attack 1 Replay attack

(L_T7, F_PU10,

F_PU11, S_PU10,

S_PU11).

3

09/10/16 09 11/10/16 20 60 Attacker alters L_T1

readings arrings to PLC2

with a constant low level.

PLC1 recieves the

manipulated readings

from PLC2 and keeps

Pumps PU1 and PU2 on,

driving T1 to overflow.

Polyline to

offset L_T1

increase.

4

29/10/16 19 02/11/16 16 94 As in Attack 3 Replay attack

(L_T1, F_PU1,

F_PU2, S_PU1,

S_PU2, P_J269,

P_J280).

5

26/11/16 17 29/11/16 04 60 Working speed of PU7

reduces to 0.9 of nominal

speed causes lower water

levels in T4

-

6
06/12/16 07 10/12/16 04 94 As in Attack 5, but speed

reduced to 0.7

Replay attack

(L_T4).

7

14/12/16 15 19/12/16 04 110 As in attack 6 Replay attack

(L_T1, F_PU1,

F_PU2, S_PU1,

S_PU2).

40 PART I: Creating New Datasets

Identifier

Starting

time

(dd/mm/YY

HH)

Ending time

(dd/mm/Y

Y HH)

Duration

(h)
Attack Description

SCADA

concealment

(altered

readings)

8

16/01/17 09 19/01/17 06 70 Attacker changes L_T3

thresholds controlling PU4

and PU5 by gaining

control of PLC3. Low levels

in T3.

Replay attack

(L_T3, F_PU4,

F_PU5, S_PU4,

S_PU5).

9

30/01/17 08 02/02/17 00 65 Attacker alters L_T2

readings arriving to PLC3,

which reads a constant

low level and forces Valve

V2 open, leading T2 to

overflow.

Polyline to

offset L_T2

increase.

10
09/02/17 03 10/02/17 09 31 Malicious activation of

Pump PU3.

-

11 12/02/17 01 13/02/17 07 31 As in Attack 10. -

12

24/02/17 05 28/02/17 08 100 As in Attack 9. Replay attack

(L_T2, F_V2,

S_V2, P_J422,

P_J14)

13

10/03/17 14 13/03/17 21 80 Attacker changes L_T7

thresholds controlling PU10

and PU11 by gaining

control of PLC5, causing

the pumps to switch

continuously.

Replay attack

(L_T7, F_PU10,

F_PU11, S_PU10,

S_PU11, P_J317,

P_J307). Inlet

pressure

(P_J307)

concealment

terminates

before that of

other variables.

14
25/03/17 20 27/03/17 01 30 Alteration of T4 signal

arriving at PLC6.

-

In BATADAL each dataset has its own attack scenarios:

“dataset03” has no attacks (12-month dataset)

“dataset04” has 7 attacks (1-7) and has a 6-month duration

“testdataset” has 7 attacks (8-14) with a 3-month duration

As a result, the duration of each simulation defines the attack scenarios it will

contain. One-year simulations do not contain any attacks, 6-month simulations

contain attacks 1-7 and 3-month simulations contain attacks 8-14. The starting time

and duration of each attack is the same as in the BATADAL datasets.

Therefore, the resulting simulations are nine with six of them containing attacks and

three representing the hydraulic behavior of the network under normal conditions.

In the table below are summarized the basic characteristics of all the datasets in

our disposal.

 PART I: Creating New Datasets 41

Table 4: Available datasets summarization

Dataset Duration (months) Attacks Demand Pattern Category Source

dataset_r12 12 None non-stochastic epanetCPA simulation

dataset_r06 6 1-7 non-stochastic epanetCPA simulation

dataset_r03 3 8-14 non-stochastic epanetCPA simulation

dataset_b12 12 None stochastic (Beta) epanetCPA simulation

dataset_b06 6 1-7 stochastic (Beta) epanetCPA simulation

dataset_b03 3 8-14 stochastic (Beta) epanetCPA simulation

dataset_b012 12 None stochastic (Gamma) epanetCPA simulation

dataset_g06 6 1-7 stochastic (Gamma) epanetCPA simulation

dataset_g03 3 8-14 stochastic (Gamma) epanetCPA simulation

dataset03 12 None non-stochastic BATADAL

dataset04 6 1-7 non-stochastic BATADAL

testdataset 3 8-14 non-stochastic BATADAL

To further elaborate on the process of translating an attack scenario into an

epanetCPA one and to showcase what the output of each simulation is, some of

the key steps taken are described below:

First a table is constructed that breaks down the basic characteristics of each

attack. This is a critical step towards implementing the attack scenarios described

on BATADAL.

Table 5: Basic characteristics of each attack scenario in terms of Target-Action-Effect

ATTACK TARGET ACTION EFFECT

epanetCPA

ATTACK CATEGORY

1 SCADA to PLC9

Alter PU10, PU11 activation

levels

PU10, PU11 off (T7

level decreases) Attack On Control

 PLC9 to SCADA

Replay T7 level from the

previous 48 h to SCADA SCADA deception

Attack On

Communication

2 SCADA to PLC9

Alter PU10, PU11 activation

levels

PU10, PU11 off (T7

level decreases) Attack On Control

 PLC9 to SCADA

Replay T7 level from the

previous 48 h to SCADA SCADA deception

Attack On

Communication

 PLC5 to SCADA

Replay PU10 & PU11 flow and

status from the previous 48 h to

SCADA SCADA deception

Attack On

Communication

3 PLC2 to PLC1

Report T1_level = 0.5 m (low

level) to PLC1

PU1 & PU2 on (T1

level increases)

Attack On

Communication

 PLC2 to SCADA

Report T1 level with a -2.0 m

offset SCADA deception

Attack On

Communication

4 PLC2 to PLC1

Report T1_level = 0.5 m (low

level) to PLC1

PU1 & PU2 on (T1

level increases)

Attack On

Communication

 PLC1 to SCADA

Replay T1 level, PU1 & PU2 flow

and status, and J269 & J280

pressure from the previous 48 h

to SCADA SCADA deception

Attack On

Communication

5 PU7

Speed of PU7 reduced to 0.9 of

its nominal speed T4 level decreases Attack On Actuator

6 PU7

Speed of PU7 reduced to 0.7 of

its nominal speed T4 level decreases Attack On Actuator

42 PART I: Creating New Datasets

ATTACK TARGET ACTION EFFECT

epanetCPA

ATTACK CATEGORY

 PLC6 to SCADA

Replay T4 level from the

previours 48 h SCADA deception

Attack On

Communication

7 PU7

Speed of PU7 reduced to 0.7 of

its nominal speed T4 level decreases Attack On Actuator

 PLC2 to SCADA

Replay T1 level from the

previous 48 h SCADA deception

Attack On

Communication

 PLC1 to SCADA

Replay PU1 & PU2 flow and

status from the previous 48 hours SCADA deception

Attack On

Communication

8 PLC3 Alter PU4 & PU5 activation levels

PU4 & PU5 off (T3

level decreases) Attack On Control

 PLC4 to SCADA

Replay T3 level from the

previous 48 h SCADA deception

Attack On

Communication

 PLC3 to SCADA

Replay PU4 & PU5 flow and

status from the previous 48 h SCADA deception

Attack On

Communication

9 Sensor T2

Report T2 level = 0.5 m (low

level) PLC3 deception Attack On Sensor

 PLC3 to SCADA

Report T2 level with a -2.0 m

offset SCADA deception

Attack On

Communication

10 PU3 Turn PU3 on PU3 on Attack On Actuator

11 PU4 Turn PU3 on PU3 on Attack On Actuator

12 Sensor T2

Report T2 level = 0.5 m (low

level) V2 on Attack On Sensor

 PLC3 to SCADA

Replay T2 level, V2 flow and

status and J422 & J14 pressure

from the previous 48 h SCADA deception

Attack On

Communication

13 PLC5

Alter PU10, PU11 activation

levels

PU10, PU11 switch

on/off continuously Attack On Control

 PLC9 to SCADA

Replay T7 level from the

previous 48 h to SCADA SCADA deception

Attack On

Communication

 PLC5 to SCADA

Replay PU10 & PU11 flow and

status and J317 & J307 pressure

from the previous 48 h to

SCADA. The replay attack of

J307 terminates earlier SCADA deception

Attack On

Communication

14 PLC6 to PLC3 Alter T4 signal arriving to PLC6 T6 level increasing

Attack On

Communication

Then each action is translated into epanetCPA executable scenarios. For instance,

the attack #12 is implemented using two attack categories on epanetCPA:

1. Attack on a Sensor: The sensor monitoring the water level of Tank 2, transmits

a constant low level equal to 0.5 m. According to the C-Town control rules

Valve V2 is forced to open.

2. Attack on Communication: The measurements sent by the sensors reporting

L_T2, F_V2, S_V2, P_J422 and P_J14, to SCADA, are substituted with data

recorded during the same hour, two days before.

Similarly:

 PART I: Creating New Datasets 43

Communication, PLC3-F_V2-SCADA, TIME==1230, TIME==1329, replay 48 0 120 0

Communication, PLC3-P_J422-SCADA, TIME==1230, TIME==1329, replay 48 0 120 0

Communication, PLC3-P_J14-SCADA, TIME==1230, TIME==1329, replay 48 0 120 0

Finally, having available the demand patterns and the attack scenarios we can run

the epanetCPA simulations. The effect of the attacks on the WDS can be

showcased with an extract from “dataset_g03” during attack #12:

For more information, all attack scenarios and their effect on each dataset are

available in Appendix.

6 PART II:

DETECTING

ATTACKS

45

6. PART II: DETECTING ATTACKS

In this dissertation the cyber-physical attack detection is done utilizing three

different approaches. More specifically:

A. Two published machine learning approaches that have been implemented

successfully to the BATADAL datasets by Taormina et al. and Kadosh et al.

The first applies an Autoencoder to detect the attacks [4], while the other

an SVDD classifier [3].

B. A third approach that hasn’t been implemented to a water distribution

network’s CPA detection problem yet. It is based on the works of Teh et al.[5]

and Covert et al [34] on graph-structured time series data.

 Support Vector Data Description Classifier

Kadosh et al. proposed a one-class cyber-attack detection system (OCDS) using a

Support Vector Data Description Classifier (SVDD) [3]. SVDD creates a spherical

boundary around a numeric multi-dimensional dataset. By training SVDD with data

under normal conditions, a boundary is created that can be used to separate

anomalies (cyber-attacks) from data that are under normal condition operation.

The performance of the classification algorithm relies heavily on the chosen group

of features. For that reason, the authors train the model using features of the WDS

that are carefully selected based on the physical understanding of its topology. To

do that, C-Town’s five DMAs are utilized to assemble five groups of features. Each

DMA’s group of features is used as an input to a different classifier, meaning that a

different model is constructed for each DMA.

To detect situations where pumps’ control rules are violated (given that the control

rules are a function of tanks’ volumes), the authors added two extra features in their

model. The first is the amount of storage in the DMA tanks at each time. While the

second is the average inflow for each DMA. Average inflow in a DMA is used to

avoid the overestimation of a DMA’s inflow due to the sparse SCADA readings

available (every 1 hour).

Each feature is defined below as:

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡: 𝛥𝑉𝑡 = 𝑉𝑡+1 − 𝑉𝑡 ,

where,

𝑉𝑡: 𝑡ℎ𝑒 𝑡𝑎𝑛𝑘 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 ,

𝑉𝑡: 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑜𝑙𝑢𝑚𝑒𝑠 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 𝑜𝑛 𝑡𝑎𝑛𝑘𝑠 𝑖𝑛 𝑎 𝐷𝑀𝐴.

and

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑓𝑙𝑜𝑤: 𝑄̅𝑡
𝑖𝑛 = 0.5 ∙ (𝑄̅𝑡+1

𝑖𝑛 + 𝑄̅𝑡
𝑖𝑛)

where,

𝑄̅𝑡
𝑖𝑛: 𝑖𝑛𝑓𝑙𝑜𝑤 𝑓𝑜𝑟 𝑡ℎ𝑒 𝐷𝑀𝐴 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡.

46 PART II: Detecting Attacks

Furthermore, to tackle the varying magnitudes and correlations of the demands

during the day, each hour of the day has a dedicated classifier. That means that

5 𝐷𝑀𝐴𝑠 × 24 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 = 120 different classifiers were trained. The DMA-based

classifiers take into account the spatial variability, while the hourly-based consider

the temporal variability of the WDS.

Each SVDD constructs a boundary for each DMA based on the attack-free training

dataset. After the training, when we input an unknown to the SVDD sample, it

outputs the distance (DV) of that sample from the boundary. If the distance is

positive it means that the sample is out of the boundary, i.e. anomalous. A different

distance is calculated for each DMA. To detect the attacks the maximum distance

across the five DMAs is kept. Then given the fact that an adjacent sequence of

positive distances increases the likelihood of an attack the authors use a moving

average lag L, to derive a smoother aggregated DV. When the aggregated

distance is above a threshold, TH, then the sample is identified as under attack. Both

L and TH are hyperparameters of the SVDD. To choose the values of these

hyperparameters the authors apply an automatic numerical process that choses

the combination of the hyperparameters that perform better in detecting the

attacks of the 6-month dataset. Finally, they test their algorithm using the

“test_dataset” that has a 3-month horizon and seven attacks.

The metric score used to characterize the performance and to tune the L and TH

hyperparameters, is the S score as defined in BATADAL.

In our experiments we evaluate the performance of the SVDD when trained with

stochastically and non-stochastically generated datasets. More specifically, we

train four different SVDD classifiers (equal to the number of attack-free datasets we

have available) and evaluate their performance on the four 3-month test sets

(dataset_r03/b03/g03 and batadal_03).

Table 6 shows the performance of each SVDD classifier on the test datasets. The first

thing to notice is that (based on the S score) the classifier trained with the “batadal”

dataset, fails to generalize on our datasets. Furthermore, the classifier trained with

the non-stochastically generated dataset “random” seems to perform generally

better on all test datasets.

However, after a visual inspection of the results, we notice that, the SVDD classifier,

no matter the training set used, is prone to issuing a very large number of false

positives. The reason behind this phenomenon might be that either the SVDD

classifier is not a robust algorithm for anomaly detection regarding this particular

problem, or that the S score used to optimize the hyperparameters is a misleading

metric.

For future research we propose that the hyperparameters TH and L are tuned using

the F1 score and for now, we deem this algorithm as unsuccessful.

 Support Vector Data Description Classifier 47

Table 6: SVVD models' performance

train batadal train random train beta train gamma

test batadal test batadal test batadal test batadal

 The Train Score

is 0.956

The Train Score

is 0.929

The Train Score is

0.924

The Train Score

is 0.919

 The Test Score

is 0.954

The Test Score

is 0.932

The Test Score is

0.919

The Test Score

is 0.885

 The optimal L is

11

The optimal L is

8

The optimal L is

10

The optimal L is

3

 The optimal TH

is 0.018

The optimal TH

is 0.013

The optimal TH is

0.011

The optimal TH

is 0.012

test random test random test random test random

 The Train Score

is 0.956

The Train Score

is 0.929

The Train Score is

0.924

The Train Score

is 0.919

 The Test Score

is 0.781

The Test Score

is 0.897

The Test Score is

0.876

The Test Score

is 0.877

 The optimal L is

11

The optimal L is

8

The optimal L is

10

The optimal L is

3

 The optimal TH

is 0.018

The optimal TH

is 0.013

The optimal TH is

0.011

The optimal TH

is 0.012

test beta test beta test beta test beta

 The Train Score

is 0.956

The Train Score

is 0.929

The Train Score is

0.924

The Train Score

is 0.919

 The Test Score

is 0.805

The Test Score

is 0.922

The Test Score is

0.922

The Test Score

is 0.906

 The optimal L is

11

The optimal L is

8

The optimal L is

10

The optimal L is

3

 The optimal TH

is 0.018

The optimal TH

is 0.013

The optimal TH is

0.011

The optimal TH

is 0.012

test gamma test gamma test gamma test gamma

 The Train Score

is 0.956

The Train Score

is 0.929

The Train Score is

0.924

The Train Score

is 0.919

The Test Score

is 0.791

The Test Score

is 0.903

The Test Score is

0.879

The Test Score

is 0.881

The optimal L is

11

The optimal L is

8

The optimal L is

10

The optimal L is

3

 The optimal TH

is 0.018

The optimal TH

is 0.013

The optimal TH is

0.011

The optimal TH

is 0.012

48 PART II: Detecting Attacks

 Autoencoder

The second ML model used is an Autoencoder (AE) for CPA detection as proposed

by Taormina et al. [4]. In the paper, the researchers use an AE to detect the attacks

of BATADAL. Both the encoder and decoder of the proposed AE are two deep fully

connected ANNs. In brief, the methodology outline is the following:

The goal of the AE is to learn a representation of the network under safe conditions.

Consequently, it is trained to reconstruct its input based on the attack-free dataset

(dataset03). Since the autoencoder is trained only on attack-free instances, when

the input contains anomalies, i.e. concealed attacks, the reconstruction error is

expected to be larger. By defining an error threshold (𝑡ℎ𝑒𝑡𝑎), the network is classified

as “under attack” when the threshold is surpassed by the average reconstruction

error of a window of length 𝑛 hours (smoothing window).

The AE’s architecture consists of a feedforward neural network acting as an

encoder and another feedforward neural network acting as a decoder. The depth

and width of each FNN layer is a function between the number of hidden layers (𝑛𝑙)
and the compression factor (𝑐𝑓). The compression factor is the ratio of the size of

the input layer (in this case 43, for 43 different SCADA readings) to that of the

midmost hidden layer hosting the encoded representation. The attack-free dataset

is split into train and validation set. The validation dataset is used to monitor the

algorithm’s performance during training and to avoid overfitting.

Two important hyperparameters of the proposed algorithm are the threshold 𝑡ℎ𝑒𝑡𝑎

and the window length 𝑛. The threshold 𝑡ℎ𝑒𝑡𝑎 is associated with different percentiles

of the error distribution of the validation dataset. When the autoencoder outputs

consecutively in a window length of n hours a reconstruction error greater than

𝑡ℎ𝑒𝑡𝑎, then the network is classified as under attack.

Taormina et al. tested quite a few autoencoder architectures and various

combinations of 𝑡ℎ𝑒𝑡𝑎 and 𝑛 to detect the CPAs of the BATADAL datasets. To

compare the performance of the different architectures tested they referred to the

F1 score, instead of the BATADAL S score.

Applying the Autoencoder on our datasets

In this study four different autoencoder models are trained. Each model is trained

using one of the attack-free datasets available. Two thirds of the set are used for

training and the rest for validation. A development test containing attacks is also

used to fine-tune the threshold 𝑡ℎ𝑒𝑡𝑎. The train and development datasets have to

be originated from demand patterns drawn from the same distribution. For instance,

if the autoencoder is trained with the dataset “dataset_g12” which has been

simulated using demand patterns with marginal distribution the “Gamma

distribution”, then the threshold theta should be selected using the corresponding

6-month dataset, “dataset_g06”. The rest of the datasets containing attacks are

kept as test datasets to evaluate each autoencoder’s performance. All models use

a window length of 6 hours before issuing an alarm. This is based on the assumption

 Autoencoder 49

that we wish to know that the network is under attack, no later than six hours after

the attack begins5.

All AEs have the same number of hidden layers and compression factor to obtain

comparable results. The recommended from the paper [4] values of 𝑛𝐻 and 𝑐𝑓 are

used as default.

The only parameter different across the four AEs is the threshold 𝑡ℎ𝑒𝑡𝑎. To select the

𝑡ℎ𝑒𝑡𝑎 value, first each AE is trained. Then the F1 score of the development test is

calculated for different values of 𝑡ℎ𝑒𝑡𝑎. The 𝑡ℎ𝑒𝑡𝑎 value corresponding to the highest

F1 score for the development dataset is selected.

The table below summarizes the basic characteristics of each AE:

Table 7: Architecture of each Autoencoder model

Model’s Name Training Dataset

Development

Dataset

(to select 𝒕𝒉𝒆𝒕𝒂 value)

𝒏𝑯 𝒄𝒇

random dataset_r12 dataset_r06 5 2

beta dataset_b12 dataset_b06 5 2

gamma dataset_g12 dataset_g06 5 2

batadal dataset03 dataset04 5 2

From now on beta and gamma AEs will also be referred (for clarity reasons) as AEs

trained with stochastically generated data, and random and batadal as AEs

trained with non-stochastically generated data.

Evaluating the models’ performance

Evaluating the performance of each AE is not as straightforward as it seems. Neural

Networks, like AEs, are non-deterministic algorithms that present a variance in their

training performance. This is because the final outcome of the training depends

among others, on the random weight initialization, mini batch randomization etc.

Berg et al. in their paper [40] argue that the training variance is a phenomenon that

should not be ignored when evaluating the performance of an algorithm. For that

reason and to draw safer conclusions, each AE is trained 10 times and is evaluated

in two stages. First by comparing the average performance of each AE and then

by assessing the best one (out of the 10 trainings) from each category. The

performance of the AEs is evaluated using the F1 score, instead of the BATADAL S

score. S score is biased towards attack identification and is insensitive in false alarms.

Given that a model should not issue many false alarms, S score is not an insightful

5 Generally, larger windows allow for more confident predictions regarding the state of the network and

decrease the number of false alarms issued due to outliers. However, a prompt attack detection is

essential. The 6-hour window here is selected arbitrarily and not optimized, on the basis that the shortest

attack scenario lasts 24 hours and for the shake of comparing the algorithms’ performance with each

other. A novel approach would be to select a window length after considering both the cost of

detecting an attack 𝑛 hours after it starts and the cost of responding to 𝑚 false alarms.

50 PART II: Detecting Attacks

metric when it comes to that matter, thus we report it only for comprehensive

reasons.

Table 8: Mean performance of AE models.

Model FP FN TP Recall Precision F1 score
S score

BATADAL

random 102 126 324 0.723 ± 0.07 0.773 ± 0.081 0.744 ± 0.058 0.854 ± 0.046

gamma 60 126 323 0.721 ± 0.102 0.85 ± 0.04 0.775 ± 0.063 0.853 ± 0.066

beta 78 120 329 0.735 ± 0.075 0.819 ± 0.061 0.771 ± 0.046 0.864 ± 0.045

To begin with, Table 8 shows the average performance of each model on our

datasets (dataset_g06/ g03/ r06/ r03/ b06/ b03). It seems that AE gamma (i.e.

trained with dataset_g12/ threshold chosen based on dataset g06) has the highest

F1 score. However, when taking into account the standard deviations the betta

and gamma models appear to behave quite similarly.

The gamma model appears to also have the highest precision, even when

considering the standard deviation. With respect to recall, beta seems to perform

better when it comes to detecting attacks.

As for the average FP, we get a sense that random tends to issue the most false

alarms, and although beta and gamma are not much better at detecting True

Positives (attacks), they issue less False Positives.

After getting a sense of the average performance of each model, we proceed with

the examination of the average performance of each model on each test dataset.

 Autoencoder 51

Table 9 : Average Performance of the AE. Threshold has been finetuned for each one based

on the f1 score

Model FP FN TP Rec Pre F1 score
S score

(BATADAL)
 dataset_r06

random 92 151 341 0.693 ± 0.043 0.795 ± 0.065 0.738 ± 0.022 0.82 ± 0.045

gamma 59 149 343 0.697 ± 0.071 0.856 ± 0.03 0.766 ± 0.041 0.825 ± 0.069

beta 84 144 348 0.707 ± 0.06 0.812 ± 0.053 0.753 ± 0.025 0.83 ± 0.048

batadal 370 117 375 0.761 ± 0.044 0.504 ± 0.017 0.606 ± 0.016 0.861 ± 0.018
 dataset_r03

random 58 87 320 0.785 ± 0.077 0.848 ± 0.037 0.813 ± 0.045 0.882 ± 0.029

gamma 49 93 314 0.772 ± 0.13 0.868 ± 0.013 0.81 ± 0.078 0.876 ± 0.047

beta 54 88 319 0.784 ± 0.082 0.86 ± 0.037 0.817 ± 0.04 0.886 ± 0.025

batadal 176 76 331 0.812 ± 0.06 0.653 ± 0.014 0.723 ± 0.024 0.877 ± 0.02
 dataset_g06

random 173 151 341 0.692 ± 0.041 0.668 ± 0.057 0.678 ± 0.029 0.815 ± 0.036

gamma 86 142 350 0.711 ± 0.074 0.81 ± 0.054 0.753 ± 0.03 0.829 ± 0.068

beta 124 141 351 0.714 ± 0.064 0.748 ± 0.059 0.727 ± 0.028 0.838 ± 0.043

batadal 535 125 367 0.745 ± 0.041 0.407 ± 0.009 0.526 ± 0.013 0.834 ± 0.026
 dataset_g03

random 84 106 301 0.739 ± 0.075 0.783 ± 0.033 0.758 ± 0.038 0.878 ± 0.03

gamma 47 113 294 0.723 ± 0.117 0.866 ± 0.034 0.782 ± 0.073 0.866 ± 0.044

beta 60 107 300 0.737 ± 0.072 0.836 ± 0.042 0.781 ± 0.036 0.874 ± 0.029

batadal 244 88 319 0.783 ± 0.065 0.565 ± 0.012 0.656 ± 0.031 0.804 ± 0.025
 dataset_b06

random 140 156 336 0.683 ± 0.043 0.713 ± 0.064 0.695 ± 0.029 0.837 ± 0.039

gamma 73 155 337 0.685 ± 0.075 0.826 ± 0.042 0.745 ± 0.041 0.826 ± 0.094

beta 92 143 349 0.709 ± 0.073 0.798 ± 0.054 0.747 ± 0.032 0.854 ± 0.055

batadal 461 104 388 0.789 ± 0.058 0.458 ± 0.011 0.579 ± 0.017 0.875 ± 0.015
 dataset_b03

random 64 103 304 0.747 ± 0.077 0.829 ± 0.051 0.783 ± 0.045 0.893 ± 0.024

gamma 45 105 302 0.742 ± 0.128 0.871 ± 0.016 0.796 ± 0.081 0.896 ± 0.038

beta 53 98 309 0.759 ± 0.083 0.859 ± 0.048 0.802 ± 0.045 0.9 ± 0.025

batadal 206 86 321 0.789 ± 0.064 0.61 ± 0.013 0.687 ± 0.027 0.886 ± 0.02
 batadal_06

random 288 114 378 0.768 ± 0.083 0.704 ± 0.251 0.698 ± 0.144 0.788 ± 0.038

gamma 499 113 379 0.77 ± 0.154 0.665 ± 0.312 0.642 ± 0.19 0.753 ± 0.104

beta 595 104 388 0.788 ± 0.107 0.52 ± 0.265 0.575 ± 0.147 0.764 ± 0.047

batadal 63 109 383 0.779 ± 0.049 0.861 ± 0.036 0.816 ± 0.025 0.821 ± 0.028
 batadal_03

random 137 88 319 0.783 ± 0.079 0.774 ± 0.199 0.757 ± 0.098 0.889 ± 0.021

gamma 236 90 317 0.78 ± 0.136 0.728 ± 0.262 0.705 ± 0.147 0.836 ± 0.096

beta 273 77 331 0.812 ± 0.084 0.637 ± 0.232 0.681 ± 0.116 0.842 ± 0.063

batadal 33 84 323 0.794 ± 0.059 0.909 ± 0.026 0.846 ± 0.034 0.914 ± 0.018

At first sight, we can see that our datasets fail to generalize on the BATADAL datasets

and vice versa. This is not unexpected as our datasets and the BATADAL have been

simulated using completely different demand patterns.

Moreover, when focusing on the new datasets (r06/ r03/ g06/ g03/ b06/ b03), it is

noticeable that the models trained with stochastically generated datasets (gamma

& beta) have the highest F1 score on all datasets, even on those that are not

stochastically generated (i.e. dataset_r06/ r03).

Again, AE gamma has the highest precision across all datasets, even when taking

into consideration the standard deviation. This suggests that it tends to issue less

52 PART II: Detecting Attacks

false alarms. Despite this, gamma model has the worst recall score, due to its high

variance between runs.

Although beta model tends to issue more false alarms than gamma, it has the best

average performance on all test datasets. This happens because beta model issues

less false alarms than random, and it detects more “attack” instances than gamma

does on each dataset.

 Autoencoder 53

Table 10: The best performing models (according to their performance on their development

set)

Model FP FN TP Recall Precision
F1

score

S score

(BATADAL)

dataset_r06
random 37 149 343 0.697 0.903 0.787 0.787

gamma 45 136 356 0.724 0.888 0.797 0.853

beta 79 121 371 0.754 0.824 0.788 0.872

batadal 425 94 398 0.809 0.484 0.605 0.876

dataset_r03
random 37 66 341 0.838 0.902 0.869 0.900

gamma 51 60 347 0.853 0.872 0.862 0.902

beta 50 52 355 0.872 0.877 0.874 0.908

batadal 199 42 365 0.897 0.647 0.752 0.911

dataset_g06
random 104 148 344 0.699 0.768 0.732 0.792

gamma 63 128 364 0.740 0.852 0.792 0.862

beta 116 118 374 0.760 0.763 0.762 0.867

batadal 590 89 403 0.819 0.406 0.543 0.868

dataset_g03
random 56 97 310 0.762 0.847 0.802 0.873

gamma 35 88 319 0.784 0.901 0.838 0.884

beta 47 77 330 0.811 0.875 0.842 0.895

batadal 257 46 361 0.887 0.584 0.704 0.852

dataset_b06
random 67 149 343 0.697 0.837 0.761 0.813

gamma 49 135 357 0.726 0.879 0.795 0.887

beta 77 110 382 0.776 0.832 0.803 0.908

batadal 524 67 425 0.864 0.448 0.590 0.872

dataset_b03
random 41 86 321 0.789 0.887 0.835 0.910

gamma 44 76 331 0.813 0.883 0.847 0.917

beta 46 63 344 0.845 0.882 0.863 0.925

batadal 231 50 357 0.877 0.607 0.718 0.916

batadal_06
random 158 97 395 0.803 0.714 0.756 0.831

gamma 216 84 408 0.829 0.654 0.731 0.832

beta 955 56 436 0.886 0.313 0.463 0.803

batadal 73 77 415 0.843 0.850 0.847 0.849

batadal_03
random 87 72 335 0.823 0.794 0.808 0.906

gamma 101 65 342 0.840 0.772 0.805 0.909

beta 436 46 361 0.887 0.453 0.600 0.843

batadal 34 55 352 0.865 0.912 0.888 0.938

Table 10 shows the performance of the best model from each run, chosen based

on the performance on their development set.

The models trained with stochastically generated datasets have once again the

highest F1-score.

In this case, the gamma could be considered as the best model across all datasets,

as it discloses a high number of TP, while it always issues less false alarms than beta.

54 PART II: Detecting Attacks

Table 11: Average performance of all the AE models when their threshold-tuning set is drawn

from the same distribution as the test set.

Model
Average of

FP
Average of

FN
Average of

TP
Average of

recall
Average of

precision
Average of

f1_score
Average of

S

batadal_06 THRESHOLD TUNING SET

batadal 65 114 378 0.768 0.854 0.809 0.821

random 36 138 354 0.719 0.908 0.802 0.776

gamma 33 146 346 0.703 0.913 0.793 0.777

beta 44 144 349 0.708 0.889 0.787 0.773

batadal_03 TEST DATASET

batadal 28 80 327 0.803 0.921 0.858 0.914

beta 22 94 313 0.768 0.935 0.842 0.904

gamma 16 101 306 0.751 0.951 0.839 0.888

random 18 101 306 0.753 0.946 0.837 0.904

Model
Average

of FP
Average

of FN
Average

of TP
Average of recall

Average of
precision

Average
of

f1_score

Average
of S

dataset_r06 THRESHOLD TUNING SET

beta 78 130 362 0.737 0.828 0.778 0.858

gamma 73 148 344 0.699 0.829 0.757 0.828

random 99 151 341 0.694 0.786 0.734 0.815

batadal 251 160 332 0.675 0.651 0.617 0.777

dataset_r03 TEST DATASET

beta 57 68 339 0.832 0.858 0.844 0.903

gamma 50 82 325 0.798 0.869 0.830 0.890

random 56 89 318 0.782 0.855 0.814 0.883

batadal 127 156 251 0.617 0.678 0.587 0.759

Model
Average

of FP
Average

of FN
Average

of TP
Average of

recall
Average of

precision
Average of

f1_score
Average

of S

dataset_b06 THRESHOLD TUNING SET

beta 88 133 359 0.730 0.810 0.766 0.875

gamma 83 142 350 0.711 0.819 0.757 0.859

random 148 151 341 0.692 0.711 0.696 0.844

batadal 443 98 394 0.801 0.501 0.593 0.855

dataset_b03 TEST DATASET

beta 55 79 328 0.806 0.858 0.831 0.914

gamma 51 97 310 0.763 0.861 0.806 0.901

random 66 117 290 0.712 0.821 0.755 0.881

batadal 203 91 316 0.776 0.625 0.663 0.862

Model
Average

of FP
Average

of FN
Average

of TP
Average of

recall
Average of

precision
Average of

f1_score
Average

of S

dataset_g06 THRESHOLD TUNING SET

random 80 187 305 0.620 0.823 0.695 0.745

gamma 86 150 342 0.696 0.807 0.743 0.822

beta 80 141 351 0.713 0.821 0.760 0.827

batadal 21 262 230 0.468 0.918 0.620 0.584

dataset_g03 TEST DATASET

random 45 189 218 0.535 0.846 0.630 0.788

gamma 46 119 289 0.709 0.866 0.774 0.865

beta 43 114 293 0.720 0.874 0.783 0.866

batadal 16 344 64 0.156 0.797 0.261 0.482

 Autoencoder 55

All the previous results show the performance of the models when their alarm

threshold is tuned based on a development set that is from the same demand

pattern category as the training set (e.g. train with batadal_12 and tune threshold

with batadal_06 etc.). But what would happen to the model’s performance if the

threshold was tuned using a different development set?

A realistic assumption is that in ML problems, we usually know the test set we would

like to do well on. Assuming that dataset r03/ b03/ g03 & batadal_03 are the test

sets we care about and that for each test set we have a corresponding

development set at our disposal (dataset_r06/ b06/ g06 & batadal_06), we train

each model with one of the training sets, but we tune the anomaly threshold with

the development set that corresponds to the test set we care about.

More specifically, assuming that we want to do well on the dataset “batadal_03”,

we will train four different models using the four different training datasets, but this

time we will tune their anomaly threshold using the “batadal_06” dataset.

Table 11 shows the average performance of all the models when their threshold is

tuned with a set drawn from the same distribution as the test set.

Note that, now that the development set has changed, all of our datasets

generalize well on the BATADAL datasets. Although none of them surpasses the

performance of the model trained with BATADAL datasets, all of the models perform

quite similarly.

In the case of dataset_r03, beta and gamma models outperform the random

model both in terms of precision as well as recall.

Finally, when it comes to datasets_g03 and dataset_b03 beta and then gamma

models have the quite similar performances, while random performs noticeably

worse in terms of recall (i.e. doesn’t disclose as well the attacks).

56 PART II: Detecting Attacks

 Structural Convolutional Neural Networks

Detecting cyber-physical attacks with a model that apart from the temporal,

considers the spatial structure of a WDS is an idea worth exploring for various

reasons. First of all, capturing both the spatial and temporal features of the network

as well as the correlations between them if done successfully is expected to improve

the model’s ability to detect contextual anomalies, thereby its ability to detect

deception attacks. Furthermore, compared to algorithms that rely only on temporal

information, the inclusion of the network’s structure is expected to contribute into

creating a more robust algorithm. This is because, structure is an inherent

characteristic of the network and a form of prior knowledge, while the temporal

information in a WDS are not only limited, but also accompanied by great

uncertainty.

One way to include the spatial information in a machine learning algorithm is to

consider the WDS as a graph-structured network. This is possible due to the innate

interconnection between its components, which allow us to depict the water

distribution network as a graph where its nodes (tanks, junctions etc.) are linked with

edges (pipes). A graph-structured network can then be modelled using Graph

Neural Networks (GNNs), a neural network type that operates on graphs. A special

kind of GNNs are the Temporal Graph Neural Networks, which leverage the spatio-

temporal information of time series data with an arbitrary graph topology.

In this dissertation, based on the work of Teh et al. [5] and Covert et al. [34], it is

explored whether the inclusion of the graph-structure of C-Town will improve a

model’s performance in detecting cyber-physical attacks. The basic concept is the

following: The model predicts the current SCADA measurements given 𝑛 prior

measurements. If the model’s prediction is not close to the observed measurements

(based on a predefined threshold) then an attack alarm is raised.

The methodology is divided into the following stages:

- The available event-free measurements are divided into subsequences

using a sliding window with length 𝑛 hours and a one-hour step size. The

subsequences are then used as an input to the GNNs while the output is the

observed measurements at the next time step.

- Based on the map of C-Town an adjacency matrix is created to describe

the connections only between the sensors whose measurements are

available.

- GNNs are trained to predict the measurements of the next hour

- Based on a hold-out dataset that contains attacks, a threshold theta is

chosen to detect the attacks.

- Finally, the model’s performance is evaluated using the remaining test

datasets.

Choosing a window size

To obtain subsequences and use them as input data, a popular method is to take

a window of a fixed size and slide it over the available datasets. The observations

within each window represent the different samples of our training dataset.

Determining a window size is not straightforward. It depends on the network’s

response time to water demand changes. By doing some initial experiments we

 Structural Convolutional Neural Networks 57

choose a window size of 8 hours, assuming that after including 8 hours of previous

observations, prior time points provide no additional information. Using a window

size of less than 8 hours defeats the purpose of using a temporal model that

operates on time series for the reason that, the subsequences would be too short to

model.

A way to make predictions with more recent data would be to use measurements

at a finer time scale, which in our case such measurements were not available.

Generally, a novel way to choose the optimal window size would be by examining

the correlations coefficients between the demand patterns and all the variables of

the network.

C-Town’s Adjacency Matrix

The adjacency matrix of C-Town is extracted directly from the available map,

where junctions, tanks, pumps and valves can be represented as nodes and pipes

as the edges that define whether the nodes are adjacent or not.

Given that the available measurements are only from some of the network’s

variables, it is not possible to use the adjacency matrix of the whole town. As a result,

a new, condensed adjacency matrix is created that describes the connections only

between the nodes whose observations are available.

The resulting adjacency matrix will allow to embed into the model the topology of

the WDS.

The adjacency matrix allows the exchange of information mainly between nodes

that are connected with a direct edge. To allow the model to incorporate

information from nodes that are reachable within k steps, the k-step reachability

adjacency matrix is used in the model instead. To obtain it from A, the operation

used is 𝐴(𝑘) = 𝟙 (𝐴𝑘) where 𝐴𝑘 is the adjacency matrix raised to the 𝑘th power, 𝟙(⋅) is
an element-wise indicator function, and 𝐴(0) = 𝐼. Setting 𝑘 > 1 enables information

to spread through the graph using fewer layers, setting k = 0 creates a layer that

operates on each sequence separately. Preliminary results showed that 𝐴2 tends to

yield better results that 𝐴1, so the 2-step reachability matrix was used on all the

models described below.

58 PART II: Detecting Attacks

Figure 13: (a) The available variables’ measurements of C-Town, (b) The resulting condensed

network created based on the available variables, (c) The resulting (with 1-step reachability)

Graph of the network.

 Structural Convolutional Neural Networks 59

Training the model

To learn the prediction task the architecture includes three stacked SCNN layers

with 32, 64 and 128 output channels correspondingly. The output of the last SCNN

layer is then flattened and passed in a fully connected layer with 150 neurons and

then its output is passed to a final linear layer to get the next hour forecast. All layers

use the ReLu activation function (except the linear layer, of course). The model is

trained with the subsequences of length W (W=8 hours) taken in mini-batches of size

B (B=16) from the training inputs 𝑋𝑡𝑟𝑎𝑖𝑛 and targets 𝑌𝑡𝑟𝑎𝑖𝑛. 30% of the training data (i.e.

the one-year dataset without events) are held as a validation set. The model is

trained by using the Adam optimizer to minimize the mean squared error (MSE) loss.

Early stopping is applied to prevent overfitting of the model and to reduce overall

time required for the training process. For this purpose, the MSE on the validation set

is tracked. In most cases, 10-20 epochs are sufficient to reach a minimum of the

validation error.

Detecting cyber-physical attacks

After the prediction model is trained, the validation time series 𝑋𝑣𝑎𝑙𝑖𝑑 is passed

through the model and a tensor 𝑌̂ is predicted. Then the prediction errors 𝐸 = 𝑌 − 𝑌̂

are calculated where Y contains the observed/target values for the next hour.

Estimating a multivariate Gaussian Distribution

One approach of statistically detecting anomalies, is to assume that the prediction

errors are roughly Gaussian distributed and the parameters (𝜇, 𝑆) of a multivariate

Gaussian distribution can be estimated [41]. For that reason, the covariance matrix

𝑆 and the mean vector 𝜇 are calculated for the prediction errors matrix 𝐸.

Given 𝜇, 𝑆 we can compute the Mahalanobis distance of a vector 𝑥⃗ from the mean

vector 𝜇. The squared Mahalanobis distance is defined as:

𝐷𝑀(𝑥⃗) = (𝑥⃗ − 𝜇)𝑇𝑆−1(𝑥⃗ − 𝜇)

Anomaly Detection

For data points that represent the network’s status when not under attack, the

corresponding Mahalanobis distance will be comparably small, since they are

located close to the mean of the distribution. On the other side, when the network

is under attack, the error vectors 𝑒 are expected to have large values in one or more

dimensions. Hence, the Mahalanobis distance can be used as a cyber-physical

attack indicator. By specifying a distance threshold, all instances that their error has

a Mahalanobis distance larger than the threshold will be flagged as anomalous.

While other researchers, use the average error across all parameters [4] or monitor

the error of each sensor individually [24] we decided that the Mahalanobis distance

is more fitting to detect attacks. This is because the average error does not take into

consideration the different error range each sensor has, thus it is more sensitive to

variables with higher error, while on the other hand, monitoring the error of each

sensor individually requires to fine tune multiple thresholds to define an attack rather

than just one global threshold.

60 PART II: Detecting Attacks

Choosing an attack threshold

Depending on the choice of the threshold, more or less points will be classified as

anomalous. If the threshold is set too small, the algorithm will likely produce many

false detections. If the threshold is chosen too large, some attacks might be missed.

In an attempt to avoid both scenarios, two different thresholds are incorporated in

our methodology. The first is 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑙𝑜𝑤𝑒𝑟, that monitors the error in a window of

length n=6hours and when more than 5 out of 6 instances’ errors surpass the

threshold, an alarm is issued. The second is 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑢𝑝𝑝𝑒𝑟, that issues an alarm

immediately when the error of an instance is greater than it. To fine-tune the value

of each threshold, we try different values until we maximize the F1 score and the

precision correspondingly on a hold-out set that contains attacks.

Results

Like in the case of AEs, we define four different models based on their training set.

Each model was trained 10 times and we report the performance of these models

by the mean and standard deviation of their performance.

Table 12: Comparison between the SCNN models. Each entry shows the mean and standard

deviation across 10 runs

MODEL FP FN TP Recall Precision F1 score
S score

(BATADAL)

random 53 138 311 0.697 ± 0.0567 0.856±0.0364 0.767±0.0375 0.901±0.0329

gamma 36 155 295 0.660 ± 0.0607 0.890±0.0206 0.756±0.0364 0.873±0.0554

beta 59 131 318 0.712 ± 0.0584 0.848±0.0392 0.772±0.0375 0.901±0.0385

Table 12 shows the average performance of each model on our datasets

(dataset_g06/g03/r06/r03/b06/b03). It seems that the model beta has the highest

F1 score.

Gamma model although has the highest precision it also has the lowest recall. That

might indicate that it is the least sensitive among all models in disclosing attacks but

the least prone in issuing false alarms.

Beta seems to perform better, but similarly to random model. Beta has the highest

recall score among all models, meaning that it is the model that detects most of

the “attack” instances on average.

 Structural Convolutional Neural Networks 61

Table 13: Average performance and standard deviation of SCNN across 10 trainings

MODEL FP FN TP Recall Precision F1 score
S score

(BATADAL)
 dataset_r06

random 42 172 320 0.65 ± 0.026 0.886 ± 0.028 0.749 ± 0.012 0.853 ± 0.034

gamma 28 193 299 0.607 ± 0.025 0.913 ± 0.013 0.729 ± 0.019 0.806 ± 0.051

beta 66 172 320 0.651 ± 0.032 0.835 ± 0.059 0.729 ± 0.01 0.835 ± 0.029

batadal 542 104 388 0.788 ± 0.042 0.425 ± 0.058 0.549 ± 0.041 0.907 ± 0.008
 dataset_r03

random 43 107 300 0.737 ± 0.036 0.875 ± 0.014 0.8 ± 0.02 0.922 ± 0.013

gamma 36 119 288 0.708 ± 0.05 0.89 ± 0.009 0.788 ± 0.03 0.912 ± 0.017

beta 49 102 305 0.75 ± 0.036 0.862 ± 0.023 0.801 ± 0.017 0.922 ± 0.014

batadal 246 48 359 0.882 ± 0.031 0.597 ± 0.047 0.711 ± 0.026 0.936 ± 0.005
 dataset_g06

random 84 167 326 0.662 ± 0.023 0.796 ± 0.027 0.722 ± 0.011 0.883 ± 0.008

gamma 41 175 317 0.643 ± 0.011 0.886 ± 0.013 0.746 ± 0.005 0.855 ± 0.029

beta 80 159 333 0.678 ± 0.025 0.808 ± 0.039 0.736 ± 0.011 0.885 ± 0.016

batadal 590 104 388 0.789 ± 0.033 0.402 ± 0.046 0.531 ± 0.035 0.903 ± 0.009
 dataset_g03

random 47 102 305 0.75 ± 0.042 0.867 ± 0.017 0.803 ± 0.023 0.929 ± 0.01

gamma 36 120 287 0.705 ± 0.055 0.889 ± 0.008 0.785 ± 0.035 0.916 ± 0.019

beta 53 92 315 0.774 ± 0.037 0.858 ± 0.025 0.813 ± 0.015 0.935 ± 0.008

batadal 321 43 364 0.895 ± 0.015 0.536 ± 0.05 0.669 ± 0.037 0.928 ± 0.007
 dataset_b06

random 53 175 317 0.644 ± 0.031 0.857 ± 0.032 0.734 ± 0.017 0.889 ± 0.018

gamma 31 199 293 0.595 ± 0.021 0.904 ± 0.023 0.717 ± 0.012 0.833 ± 0.055

beta 52 165 328 0.666 ± 0.034 0.865 ± 0.034 0.751 ± 0.015 0.895 ± 0.02

batadal 543 102 390 0.793 ± 0.029 0.425 ± 0.051 0.551 ± 0.038 0.905 ± 0.008
 dataset_b03

random 51 107 300 0.738 ± 0.045 0.856 ± 0.011 0.792 ± 0.025 0.927 ± 0.011

gamma 46 123 284 0.698 ± 0.054 0.861 ± 0.006 0.77 ± 0.034 0.914 ± 0.017

beta 50 99 308 0.756 ± 0.032 0.859 ± 0.011 0.804 ± 0.018 0.932 ± 0.008

batadal 225 58 349 0.858 ± 0.022 0.614 ± 0.054 0.714 ± 0.031 0.933 ± 0.005
 batadal06

random 24 238 255 0.517 ± 0.041 0.916 ± 0.015 0.66 ± 0.033 0.855 ± 0.015

gamma 19 257 235 0.477 ± 0.03 0.925 ± 0.018 0.629 ± 0.024 0.842 ± 0.012

beta 39 222 270 0.549 ± 0.038 0.878 ± 0.045 0.674 ± 0.021 0.862 ± 0.017

batadal 65 181 311 0.632 ± 0.042 0.83 ± 0.031 0.716 ± 0.02 0.891 ± 0.01
 batadal03

random 30 163 244 0.6 ± 0.052 0.891 ± 0.007 0.716 ± 0.038 0.883 ± 0.014

gamma 28 177 231 0.566 ± 0.042 0.893 ± 0.006 0.692 ± 0.032 0.877 ± 0.011

beta 34 158 250 0.613 ± 0.046 0.881 ± 0.013 0.722 ± 0.031 0.887 ± 0.012

batadal 45 122 285 0.7 ± 0.038 0.866 ± 0.023 0.773 ± 0.019 0.906 ± 0.009

At first sight, we can see that the batadal model fails to generalize on our data. On

the other side, SCNN models trained with our data do well on the batadal datasets

even when their anomaly threshold is fine-tuned using a dataset that is drawn from

a different distribution.

Note how that was not the case in the corresponding AE models. Their performance

on the batadal datasets improved only after changing the threshold tuning

dataset.

This might indicate that either SCNNs present less variance to the development set

or that the Mahalanobis distance helps to capture better the differences of the

prediction error between anomalous and normal data.

62 PART II: Detecting Attacks

When it comes to the performance of the models on our datasets, beta tends to

perform the best on almost all test datasets (based on the F1 score). Beta also

presents smaller variation (considering the standard deviations), thus making it a

more stable model.

Gamma distribution has the highest precision on all datasets, but the lowest recall.

Beta has the highest recall score, but issues more false alarms than random.

Generally, someone might say that the differences in performance between

random and beta are minor and that they perform similarly on average.

 Structural Convolutional Neural Networks 63

Table 14 : Performance of the best SCNN models (chosen based on their performance on

the development set).

Row

Labels

Sum of

FP

Sum of

FN

Sum of

TP

Sum of

Recall

Sum of

Precision

Sum of

F1 score
Sum of S

 dataset_r06
random 50 150 342 0.695 0.872 0.774 0.895

gamma 36 184 308 0.626 0.895 0.737 0.820

beta 93 152 340 0.691 0.785 0.735 0.885

batadal 708 74 418 0.850 0.371 0.517 0.914
 dataset_r03
beta 55 75 332 0.816 0.858 0.836 0.946

gamma 43 86 321 0.789 0.882 0.833 0.941

random 51 87 320 0.786 0.863 0.823 0.939

batadal 308 31 376 0.924 0.550 0.689 0.937
 dataset_g06
beta 83 143 349 0.709 0.808 0.755 0.906

gamma 48 167 325 0.661 0.871 0.751 0.868

random 99 142 350 0.711 0.780 0.744 0.888

batadal 776 85 407 0.827 0.344 0.486 0.897
 dataset_g03
beta 62 65 342 0.840 0.847 0.843 0.950

random 48 80 327 0.803 0.872 0.836 0.943

gamma 43 87 320 0.786 0.882 0.831 0.939

batadal 403 39 368 0.904 0.477 0.625 0.919

 dataset_b06
beta 60 143 349 0.709 0.853 0.775 0.920

random 58 148 344 0.699 0.856 0.770 0.919

gamma 42 181 311 0.632 0.881 0.736 0.880

batadal 738 97 395 0.803 0.349 0.486 0.895

 dataset_b03
beta 52 79 328 0.806 0.863 0.834 0.944

random 52 80 327 0.803 0.863 0.832 0.944

gamma 53 85 322 0.791 0.859 0.824 0.940

batadal 336 46 361 0.887 0.518 0.654 0.924
 batadal06
batadal 102 137 355 0.722 0.777 0.748 0.911

beta 49 188 304 0.618 0.861 0.720 0.885

random 30 204 288 0.585 0.906 0.711 0.874

gamma 22 236 256 0.520 0.921 0.665 0.861
 batadal03
random 35 118 289 0.710 0.892 0.791 0.912

batadal 65 103 304 0.747 0.824 0.784 0.916

beta 37 125 282 0.693 0.884 0.777 0.909

gamma 29 136 271 0.666 0.903 0.767 0.902

Table 14 shows the performance of the best SCNN models (chosen based on their

performance on the development set).

We notice that gamma is inferior to random and beta models, and although it is

the most precise it fails to disclose as many TP as the other models

We would argue that when it comes to the relative comparison between the best

models, no model seems to outperform significantly the others.

7 CONCLUSIONS

65

7. CONCLUSIONS

To summarize, in this dissertation we approached the problem of cyber-physical

attack detection on water distribution systems with the use of machine learning

algorithms. To train the different models we used two kinds of datasets. Datasets

that were stochastically generated in terms of the water demand variation and

datasets with fairly regular and consistent demand patterns.

Some of the major conclusions of this study are the following:

• The training dataset is directly correlated to the algorithm’s performance. We

noticed that in the case of the Autoencoder algorithm, stochastically

generated training datasets tend to improve its performance. More specifically,

training with data generated from the Beta distribution improved the algorithm

in terms of issuing less false positives and detecting more true positives. However,

training with stochastically generated datasets isn’t always reliable, like in the

case of training with data generated from Gamma distribution which made all

algorithms less sensitive in detecting attacks.

• AEs performance is very sensitive to the choice of the anomaly threshold. We

observed, that by just changing the threshold tuning set the AEs performance

on the BATADAL datasets changed dramatically.

• The choice of a single evaluation metric is of great importance. First of all, it

allows us to evaluate the different models’ performance. Moreover, in the case

where the threshold is tuned based on the value of a metric score, the metric

score we choose can have a great impact on the model’s performance. We

saw that in the case of the SVDD classifier where by choosing TH based on the

maximum S score from BATADAL, failed to have a good performance.

• Before choosing an evaluation metric, first we have to set a clear objective

about what makes an algorithm have a good performance in the framework

of Water Systems’ security. The problem of detecting cyber-physical attacks on

a water distribution network is very particular. The dataset classes (“attack”/”no

attack”) are imbalanced and while there are many metrics in machine learning

that tackle the problem of imbalanced datasets, not all “attack” instances are

equally important in a CPA dataset. That means that it should not be equally

important to detect “attack” instances towards the end of an attack vs. at the

beginning of it. The same concept applies also in the detection of FP. For

example, a model that issues a false alarm for 24 hours during a whole day is

not performing equally well with a model that issued 24 hours of false alarms in

the course of a month.

• Preliminary results of the SCNN models showed that they have less variance to

the fluctuations of the stochastically generated data, as models trained with

different datasets didn’t have substantial differences in performance like in the

case of AE.

• SCNNs performed better than AEs in the test datasets. Although AEs and SCNNs

have similar F1-score, SCNNs presented lower variance between runs, thus

making them more stable.

66 Conclusions

To conclude, our rationale behind using stochastically generated datasets in the

problem of WDS CPA detection was twofold. Firstly, using novel stochastic methods

to generate the water demand timeseries allowed us go a step further towards

creating more realistic simulation scenarios. This is because stochastically

generated water demands let us incorporate (to an extent) into the CPA detection

problem, the uncertainty associated with the variability and stochastic nature one

of the key components of urban water systems. Moreover, it lets us set a clear

direction towards anomaly detection progress. Given that stochastically generated

data allow to incorporate and study a large number of alternative scenarios,

extending the “bounded horizon” of observed data, it is of greater value to create

algorithms that perform well on them. With a novel stochastic method and a robust

model that performs well on stochastically generated data it is possible to open the

path for domain adaptation and robust learning in the water sector.

The second reason behind incorporating stochastically generated datasets to our

experiments was to observe the performance of different anomaly detection

algorithms. The core of machine learning is to create algorithms that learn from a

training set of data and our experiments showed that not only the performance of

the aforementioned CPA detection algorithms depends to an extent on the data

used during training, but that there are training datasets that are more valuable

than others, because they improve and generalize the algorithm’s performance.

67

BIBLIOGRAPHY

[1] N. Patki, R. Wedge, and K. Veeramachaneni, “The synthetic data vault,”

Proc. - 3rd IEEE Int. Conf. Data Sci. Adv. Anal. DSAA 2016, pp. 399–410, 2016,

doi: 10.1109/DSAA.2016.49.

[2] P. Kossieris, I. Tsoukalas, C. Makropoulos, and D. Savic, “Simulating marginal

and dependence behaviour of water demand processes at any fine time

scale,” Water (Switzerland), vol. 11, no. 5, 2019, doi: 10.3390/w11050885.

[3] N. Kadosh, A. Frid, and M. Housh, “Detecting cyber-physical attacks in water

distribution systems: one-class classifier approach,” J. Water Resour. Plan.

Manag., vol. 146, no. 8, pp. 1–13, 2020, doi: 10.1061/(ASCE)WR.1943-

5452.0001259.

[4] R. Taormina and S. Galelli, “Deep-learning approach to the detection and

localization of cyber-physical attacks on water distribution systems,” J. Water

Resour. Plan. Manag., vol. 144, no. 10, pp. 1–15, 2018, doi:

10.1061/(ASCE)WR.1943-5452.0000983.

[5] T. Teh, C. Auepanwiriyakul, J. A. Harston, and A. A. Faisal, “Generalised

Structural CNNs (SCNNs) for time series data with arbitrary graph topology,”

2018, [Online]. Available: http://arxiv.org/abs/1803.05419.

[6] V. L. Do, L. Fillatre, and I. Nikiforov, “A statistical method for detecting

cyber/physical attacks on SCADA systems,” 2014 IEEE Conf. Control Appl.

CCA 2014, pp. 364–369, 2014, doi: 10.1109/CCA.2014.6981373.

[7] R. Taormina et al., “Battle of the Attack Detection Algorithms: Disclosing

cyber attacks on water distribution networks,” J. Water Resour. Plan. Manag.,

vol. 144, no. 8, 2018, doi: 10.1061/(ASCE)WR.1943-5452.0000969.

[8] J. B. Marco, R. Harboe, and J. D. Salas, Eds., Stochastic Hydrology and its Use

in Water Resources Systems Simulation and Optimization. Dordrecht: Springer

Netherlands, 1993.

[9] S. G. Buchberger and L. Wu, “Model for Instantaneous Residential Water

Demands,” J. Hydraul. Eng., vol. 121, no. 3, pp. 232–246, Mar. 1995, doi:

10.1061/(ASCE)0733-9429(1995)121:3(232).

[10] S. G. Buchberger and G. J. Wells, “Intensity, Duration, and Frequency of

Residential Water Demands,” J. Water Resour. Plan. Manag., vol. 122, no. 1,

pp. 11–19, Jan. 1996, doi: 10.1061/(ASCE)0733-9496(1996)122:1(11).

[11] E. Creaco, P. Kossieris, L. Vamvakeridou-Lyroudia, C. Makropoulos, Z.

Kapelan, and D. Savic, “Parameterizing residential water demand pulse

models through smart meter readings,” Environ. Model. Softw., vol. 80, pp.

33–40, Jun. 2016, doi: 10.1016/j.envsoft.2016.02.019.

[12] S. Alvisi, M. Franchini, and A. Marinelli, “A Stochastic Model for Representing

Drinking Water Demand at Residential Level,” Water Resour. Manag., vol. 17,

no. 3, pp. 197–222, 2003, doi: 10.1023/A:1024100518186.

68 Bibliography

[13] P. Kossieris, C. Makropoulos, E. Creaco, L. Vamvakeridou-Lyroudia, and D. A.

Savic, “Assessing the Applicability of the Bartlett-Lewis Model in Simulating

Residential Water Demands,” Procedia Eng., vol. 154, pp. 123–131, 2016, doi:

10.1016/j.proeng.2016.07.429.

[14] P. Kossieris, “Multi­scale stochastic analysis and modelling of residential water

demand processes,” National Technical University of Athens, 2020.

[15] R. Gargano, C. Tricarico, G. del Giudice, and F. Granata, “A stochastic

model for daily residential water demand,” Water Supply, vol. 16, no. 6, pp.

1753–1767, Dec. 2016, doi: 10.2166/ws.2016.102.

[16] Kossieris, “Multi­scale stochastic analysis and modelling of residential water

demand processes,” PhD thesis, Dep. Water Resour. Environ. Eng., p. 304,

2020.

[17] I. Tsoukalas, C. Makropoulos, and D. Koutsoyiannis, “Simulation of Stochastic

Processes Exhibiting Any‐Range Dependence and Arbitrary Marginal

Distributions,” Water Resour. Res., vol. 54, no. 11, pp. 9484–9513, Nov. 2018,

doi: 10.1029/2017WR022462.

[18] I. Tsoukalas, A. Efstratiadis, and C. Makropoulos, “Stochastic Periodic

Autoregressive to Anything (SPARTA): Modeling and Simulation of

Cyclostationary Processes With Arbitrary Marginal Distributions,” Water

Resour. Res., vol. 54, no. 1, pp. 161–185, Jan. 2018, doi:

10.1002/2017WR021394.

[19] L. Perelman and S. Amin, “A network interdiction model for analyzing the

vulnerability of water distribution systems,” HiCoNS 2014 - Proc. 3rd Int. Conf.

High Confid. Networked Syst. (Part CPS Week), pp. 135–144, 2014, doi:

10.1145/2566468.2566480.

[20] S. Adepu, V. R. Palleti, G. Mishra, and A. Mathur, “Investigation of Cyber

Attacks on a Water Distribution System,” vol. 0, no. 0, pp. 1–23, 2019, [Online].

Available: http://arxiv.org/abs/1906.02279.

[21] R. Taormina, S. Galelli, N. O. Tippenhauer, E. Salomons, and A. Ostfeld,

“Characterizing cyber-physical attacks on water distribution systems,” J.

Water Resour. Plan. Manag., vol. 143, no. 5, pp. 1–12, 2017, doi:

10.1061/(ASCE)WR.1943-5452.0000749.

[22] D. Nikolopoulos, G. Moraitis, D. Bouziotas, A. Lykou, G. Karavokiros, and C.

Makropoulos, “Cyber-Physical Stress-Testing Platform for Water Distribution

Networks,” J. Environ. Eng. (United States), vol. 146, no. 7, pp. 1–21, 2020, doi:

10.1061/(ASCE)EE.1943-7870.0001722.

[23] M. Housh and Z. Ohar, “Model-based approach for cyber-physical attack

detection in water distribution systems,” Water Res., vol. 139, no. March, pp.

132–143, 2018, doi: 10.1016/j.watres.2018.03.039.

[24] A. A. Abokifa, K. Haddad, C. Lo, and P. Biswas, “Real-time identification of

cyber-physical attacks on water distribution systems via machine learning-

based anomaly detection techniques,” J. Water Resour. Plan. Manag., vol.

145, no. 1, pp. 1–13, 2019, doi: 10.1061/(ASCE)WR.1943-5452.0001023.

[25] M. Giacomoni, N. Gatsis, and A. Taha, “Identification of Cyber Attacks on

 Bibliography 69

Water Distribution Systems by Unveiling Low-Dimensionality in the Sensory

Data,” in World Environmental and Water Resources Congress 2017, pp. 660–

675.

[26] B. M. Brentan et al., “On-Line Cyber Attack Detection in Water Networks

through State Forecasting and Control by Pattern Recognition,” in World

Environmental and Water Resources Congress 2017, pp. 583–592.

[27] S. E. Chandy, A. Rasekh, Z. A. Barker, and M. Ehsan Shafiee, “Cyberattack

detection using deep generative models with variational inference,” J.

Water Resour. Plan. Manag., vol. 145, no. 2, 2019, doi:

10.1061/(ASCE)WR.1943-5452.0001007.

[28] M. F. K. Pasha, B. Kc, and S. L. Somasundaram, “An Approach to Detect the

Cyber-Physical Attack on Water Distribution System,” in World Environmental

and Water Resources Congress 2017, pp. 703–711.

[29] M. Aghashahi, R. Sundararajan, M. Pourahmadi, and M. K. Banks, “Water

distribution systems analysis symposium-battle of the attack detection

algorithms (BATADAL),” World Environ. Water Resour. Congr. 2017 Int.

Perspect. Hist. Heritage, Emerg. Technol. Student Pap. - Sel. Pap. from World

Environ. Water Resour. Congr. 2017, no. May 2017, pp. 101–108, 2017, doi:

10.1061/9780784480595.010.

[30] M. Kravchik and A. Shabtai, “Efficient Cyber Attacks Detection in Industrial

Control Systems Using Lightweight Neural Networks and PCA,” pp. 1–18, 2019,

[Online]. Available: http://arxiv.org/abs/1907.01216.

[31] D. T. Ramotsoela, G. P. Hancke, and A. M. Abu-Mahfouz, “Attack detection

in water distribution systems using machine learning,” Human-centric

Comput. Inf. Sci., vol. 9, no. 1, 2019, doi: 10.1186/s13673-019-0175-8.

[32] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A Comprehensive

Survey on Graph Neural Networks,” IEEE Trans. Neural Networks Learn. Syst.,

vol. XX, no. Xx, pp. 1–21, 2020, doi: 10.1109/tnnls.2020.2978386.

[33] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks: A

deep learning framework for traffic forecasting,” IJCAI Int. Jt. Conf. Artif.

Intell., vol. 2018-July, pp. 3634–3640, 2018, doi: 10.24963/ijcai.2018/505.

[34] I. Covert et al., “Temporal Graph Convolutional Networks for Automatic

Seizure Detection,” pp. 1–19, 2019, [Online]. Available:

http://arxiv.org/abs/1905.01375.

[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press, 2016.

[36] A. Ostfeld et al., “Battle of the water calibration networks,” J. Water Resour.

Plan. Manag., vol. 138, no. 5, pp. 523–532, 2012, doi: 10.1061/(ASCE)WR.1943-

5452.0000191.

[37] R. Taormina, S. Galelli, H. C. Douglas, N. O. Tippenhauer, E. Salomons, and A.

Ostfeld, “Modeling Cyber-Physical Attacks on Water Networks with

epanetCPA,” WDSA/CCWI Jt. Conf. Proc., vol. 1, 2018.

[38] R. Taormina, S. Galelli, N. O. Tippenhauer, E. Salomons, and A. Ostfeld,

“Simulation of cyber-physical attacks on water distribution systems with

70 Bibliography

EPANET,” Cryptol. Inf. Secur. Ser., vol. 14, pp. 123–130, 2016, doi: 10.3233/978-

1-61499-617-0-123.

[39] I. Tsoukalas, P. Kossieris, and C. Makropoulos, “Simulation of non-gaussian

correlated random variables, stochastic processes and random fields:

Introducing the anysim r-package for environmental applications and

beyond,” Water (Switzerland), vol. 12, no. 6, 2020, doi: 10.3390/w12061645.

[40] E. Van Den Berg, B. Ramabhadran, and M. Picheny, “Training variance and

performance evaluation of neural networks in speech,” ICASSP, IEEE Int.

Conf. Acoust. Speech Signal Process. - Proc., pp. 2287–2291, 2017, doi:

10.1109/ICASSP.2017.7952564.

[41] M. Thill, S. Däubener, W. Konen, and T. Bäck, “Anomaly detection in

electrocardiogram readings with stacked LSTM networks,” CEUR Workshop

Proc., vol. 2473, pp. 17–25, 2019.

APPENDIX

A-1

APPENDIX A
epanetCPA simulations

(only for the beta simulation)

dataset_b06

A-2

A-3

A-4

A-5

A-6

A-7

A-8

A-9

A-10

A-11

A-12

A-13

A-14

A-15

A-16

A-17

A-18

A-19

A-20

A-21

A-22

A-23

A-24

A-25

A-26

dataset_b03

A-27

A-28

A-29

A-30

A-31

A-32

A-33

A-34

A-35

A-36

A-37

A-38

A-39

A-40

A-41

A-42

A-43

A-44

A-45

A-46

A-47

A-48

A-49

A-50

A-51

SVDD detection trajectories

A-52

A-53

A-54

A-55

A-56

A-57

A-58

Autoencoder detection trajectories

A-59

A-60

A-61

A-62

SCNN detection trajectories

A-63

A-64

A-65

