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ABSTRACT 

Water distribution networks (WDN) deploy digital devices not only to monitor and 

control utility operations but also to increase automation and ultimately their 

efficiency. Although their digitalization is essential, it comes with a cost: it exposes 

the WDN to the risks of a Cyber-Physical System, i.e. cyber-attacks. The overall aim 

of this diploma thesis is to develop new and improve upon existing machine learning 

methods for cyber-physical attack detection on Water Distribution Networks. The 

innovation of this work resides in two main developments (a) the use of novel 

stochastic methods to generate the water demand timeseries needed to train 

existing machine learning models, in an effort to improve their overall performance 

in the presence of uncertainty and (b) the exploration and use of a novel family of 

machine learning methods that take both the spatial and temporal dimensions of 

a water network into account, in an effort to improve the ability of the model to 

represent the water network more accurately. To approach the first objective, we 

generate new, synthetic datasets for the study of cyber-physical attack detection 

on water distribution networks by performing simulations on a real medium size WDN 

under stochastically generated water demands. The second objective is 

approached by exploring the use of Spatio-Temporal Graph Neural Networks as 

cyber-physical attack detection tools. Finally, we test the detection performance 

of various ML algorithms (including SVDD, Autoencoder, Structural Convolutional 

Neural Networks) on our datasets and preexisting ones as well, and discuss.  

  

Key words: Cyber security, Cyber-physical attacks, Water Distribution Systems, 

Machine Learning, Convolutional Neural Networks, Autoencoder, Support Vector 

Data Description classifier, Time-series, Stochastic methods, Water demands 
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ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ / EXTENDED ABSTRACT IN GREEK 

ΕΙΣΑΓΩΓΗ 

Στα πλαίσια της εποχής ψηφιακού εκσυγχρονισμού, ο τομέας διαχείρισης υδατικών 

πόρων δεν θα μπορούσε να μείνει ανεπηρέαστος. Τα Δίκτυα Διανομής Νερού (ΔΔΝ) 

χρησιμοποιούν ψηφιακές συσκευές όχι μόνο για την εξασφάλιση της καλής 

λειτουργίας τους, αλλά και για να ενισχύσουν την αυτοματοποίησή τους και τελικώς 

να βελτιστοποιήσουν την λειτουργία τους. Παρόλο που η ψηφιοποίηση των ΔΔΝ 

αποτελεί πλέον προϋπόθεση για την καλή λειτουργία τους, ελλοχεύει συγχρόνως και 

ο κίνδυνος έκθεσης τους σε κυβερνοεπιθέσεις. 

Δεδομένου ότι μια κυβερνοεπίθεση θα είχε καταστροφικές συνέπειες, τελευταία 

παρατηρείται ένα αυξανόμενο ερευνητικό ενδιαφέρον για την κυβερνοασφάλεια των 

Υδατικών Υποδομών. Μία από τις σημαντικότερες πτυχές αυτού του νέου ερευνητικού 

πεδίου είναι η διάγνωση κυβερνοεπιθέσεων σε ΔΔΝ. Στόχος είναι η ανάπτυξη 

εργαλείων που θα επιτρέπουν τη διάγνωση των κυβερνοεπιθέσεων έγκαιρα, δηλαδή 

προτού  προλάβουν να προκληθούν μη αναστρέψιμες ζημιές στο δίκτυο. 

Συχνά σε προβλήματα ανίχνευσης ανωμαλιών εφαρμόζονται μέθοδοι Μηχανικής 

Μάθησης με πολλά υποσχόμενα αποτελέσματα. Απαραίτητη προϋπόθεση για την 

εφαρμογή τους είναι η διαθεσιμότητα επαρκών δεδομένων.  Στις περιπτώσεις που τα 

διαθέσιμα δεδομένα είναι περιορισμένα αποτελεί κοινή πρακτική να 

χρησιμοποιούνται σε συνδυασμό με συνθετικά. Έχει μάλιστα αποδειχθεί στο  

[1] ότι στην επιστήμη των δεδομένων (Data Science) η χρήση συνθετικών δεδομένων 

μπορεί ακόμη και να αντικαταστήσει τη χρήση  πραγματικών δεδομένων.  

Δυστυχώς όμως στον τομέα των υδατικών πόρων, όπου η ψηφιοποίηση είναι 

σχετικά πρόσφατη, τα διαθέσιμα δεδομένα είναι κατά κανόνα περιορισμένα. Στις 

περιπτώσεις δε, που απαιτούνται δεδομένα για τον σχεδιασμό και την ανάλυση των 

υδατικών συστημάτων, είθισται η αξιοποίηση στοχαστικών μεθόδων. 

Για την ανάλυση και προσομοίωση ενός ΔΔΝ είναι απαραίτητη η γνώση των 

αναμενόμενων καταναλώσεων και η επιστήμη υδατικών πόρων παρέχει 

αποτελεσματικά εργαλεία για τη στοχαστική μοντελοποίηση της κατανάλωσης του 

νερού. Υπό αυτό το πρίσμα, είναι εύλογο να υποθέσουμε ότι η εκπαίδευση μοντέλων 

Μηχανικής Μάθησης με δεδομένα που έχουν προκύψει από προσομοιώσεις με 

στοχαστικές ζητήσεις νερού θα μπορούσε να συνεισφέρει στον εντοπισμό επιθέσεων 

σε δίκτυα διανομής νερού. 

Επιπλέον, επειδή τα Δίκτυα Διανομής Νερού έχουν εγγενώς δομή γράφου, είναι 

εξίσου εύλογο να υποτεθεί ότι τα Νευρωνικά Δίκτυα σε Γράφους (Graph Neural 

Networks) θα μπορούσαν να είναι χρήσιμα εργαλεία για τον εντοπισμό 

κυβερνοεπιθέσεων. Τα Νευρωνικά Δίκτυα σε Γράφους, εμπνευσμένα από τα 

Συνελικτικά Νευρωνικά Δίκτυα (Convolutional Neural Networks), είναι αλγόριθμοι 

βαθιάς μηχανικής μάθησης που είναι σε θέση να ενσωματώνουν στην αρχιτεκτονική 

τους τις χωρικές πληροφορίες ενός γράφου.  

Με βάση τα παραπάνω, ο κύριος σκοπός της παρούσας διπλωματικής εργασίας 

είναι να αναπτυχθούν νέες αλλά και να βελτιωθούν οι υπάρχουσες μέθοδοι 

μηχανικής μάθησης για την ανίχνευση κυβερνοεπιθέσεων στα Δίκτυα Διανομής 
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Νερού. Η καινοτομία της εργασίας έγκειται σε δύο βασικούς παράγοντες: (α) στη 

χρήση στοχαστικών μεθόδων για τη δημιουργία συνθετικών χρονοσειρών ζήτησης 

νερού που είναι απαραίτητες για την εκπαίδευση των μοντέλων μηχανικής μάθησης, 

σε μια προσπάθεια βελτίωσης της συνολικής απόδοσής τους κάτω από τις 

συνθήκες αβεβαιότητας και (β) στην εξερεύνηση και χρήση μιας νέας κατηγορίας 

μεθόδων μηχανικής μάθησης που λαμβάνει υπόψη τόσο τις χωρικές όσο και τις 

χρονικές διαστάσεις ενός δικτύου νερού και αποσκοπεί στη βελτίωση της ικανότητας 

του μοντέλου να αναπαριστά με μεγαλύτερη ακρίβεια το δίκτυο νερού. 

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 

Κατηγορίες Κυβερνοφυσικών επιθέσεων σε Δίκτυα Διανομής Νερού  

Ένας τρόπος ταξινόμησης των κυβερνο-φυσικών επιθέσεων (cyber-attacks) σε ένα 

δίκτυο διανομής νερού είναι με βάση το τμήμα του δικτύου που στοχοποιείται. Τα 

στοιχεία ενός δικτύου διανομής νερού που ορίζονται ως ευάλωτα σε 

κυβερνοεπιθέσεις είναι: οι αισθητήρες (sensors), οι υδραυλικοί ενεργοποιητές 

(actuators), οι προγραμματιζόμενοι λογικοί ελεγκτές (Programmable Logic 

Controllers – PLCs), το σύστημα τηλελέγχου και τηλεχειρισμού (SCADA), καθώς και οι 

μεταξύ τους ασύρματες και ενσύρματες ζεύξεις (communication links).  

Οι επιθέσεις διαχωρίζονται επίσης, όπως υποδηλώνει και το όνομά τους, σε φυσικές 

επιθέσεις και σε επιθέσεις στον κυβερνοχώρο. Οι αισθητήρες και οι υδραυλικοί 

ενεργοποιητές είναι ευάλωτοι σε φυσικές επιθέσεις, καθώς απαιτείται πρόσβαση στη 

φυσική υποδομή για να λάβει χώρα η επίθεση. Επιπλέον στις φυσικές επιθέσεις 

κατατάσσονται και οι επιθέσεις στις ενσύρματες ζεύξεις μεταξύ των συνιστωσών του 

δικτύου. Αν και επίθεση αυτού του είδους μπορεί να μοιάζει απίθανη, είναι δόκιμο να 

λαμβάνεται υπόψη κατά τη θωράκιση ενός δικτύου διανομής νερού, καθώς υπάρχει 

πάντα η περίπτωση ένας υδραυλικός ενεργοποιητής ή ένας αισθητήρας να 

βρίσκεται σε μια απομακρυσμένη (ή χωρίς επαρκή παρακολούθηση) περιοχή που 

να είναι προσβάσιμη σε έναν εισβολέα. 

Οι επιθέσεις στον κυβερνοχώρο είναι οι επιθέσεις που γίνονται ενάντια στην 

ασύρματη ζεύξη μεταξύ των συνιστωσών του δικτύου. Όλες οι επιθέσεις ανεξάρτητα 

από το στόχο τους και από το αν γίνονται στον κυβερνοχώρο ή αν είναι φυσικές, 

ανήκουν σε μία από τις τρείς κατηγορίες: 

Επιθέσεις υποκλοπής (eavesdropping attacks): στοχεύουν στην υποκλοπή 

ευαίσθητων πληροφοριών όπως η κατάσταση και ο τρόπος συμπεριφοράς του 

δικτύου διανομής νερού. Οι επιθέσεις υποκλοπής αποτελούν συνήθως το πρώτο 

στάδιο για έναν επιτιθέμενο και τον βοηθούν να σχεδιάσει πιο προηγμένες μορφές 

επιθέσεων.  

Επιθέσεις άρνησης εξυπηρέτησης (Denial of Service – DoS attacks): καθιστούν το 

σύστημα μη διαθέσιμο ή παρεμποδίζουν την επικοινωνία των στοιχείων του δικτύου, 

άρα και την ομαλή λειτουργία του.  

Επιθέσεις εξαπάτησης (deception attacks): έχουν σκοπό την τροποποίηση και 

μετάδοση εσφαλμένων πληροφοριών στο δίκτυο. Αυτή η επίθεση μπορεί όχι μόνο 

να διαταράξει την ομαλή λειτουργία του δικτύου αλλά και να χρησιμοποιηθεί ως 

εργαλείο συγκάλυψης των επιθέσεων που λαμβάνουν χώρα, από το σύστημα 

τηλελέγχου και τηλεχειρισμού (SCADA).  
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Η επιθέσεις συγκάλυψης (deception attacks) είναι και η βασική πρόκληση που έχουν 

να αντιμετωπίσουν οι αλγόριθμοι διάγνωσης επιθέσεων. Ένας καλός αλγόριθμος 

ανίχνευσης κυβερνοφυσικών επιθέσεων είναι αυτός που έχει τη δυνατότητα να 

διαγιγνώσκει συναφείς ανωμαλίες (contextual anomalies). Συναφείς ανωμαλίες είναι 

παρατηρήσεις οι οποίες αποκλίνουν σε ένα συγκεκριμένο περιβάλλον και μόνο σε 

αυτό, έχουν δηλαδή τιμές οι οποίες ανήκουν μεν στα προηγούμενα ιστορικά τους 

όρια, αλλά θεωρούνται ανώμαλες εντός ενός συγκεκριμένου χρονικού πλαισίου και 

με βάση τις παρατηρήσεις που έχουν προηγηθεί.  

Μια τυπική μέθοδος εντοπισμού ανωμαλιών  

Έστω ότι έχουμε ένα σύνοδο δεδομένων 𝑋 και ότι η κατανομή των δεδομένων του 

περιέχει καθαρά και ανώμαλα δεδομένα: 

𝑝𝑓𝑢𝑙𝑙(𝑥, 𝑦)~𝑝(𝑦 = 1)𝑝(𝑥|𝑦 = 1) + 𝑝(𝑦 = 0)𝑝(𝑥|𝑦 = 0) 

𝑝𝑛𝑜𝑟𝑚𝑎𝑙(𝑥)~𝑝(𝑥|𝑦 = 0) 
𝑝𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙(𝑥)~𝑝(𝑥|𝑦 = 1) 

Ο στόχος των προβλημάτων ανίχνευσης ανωμαλιών είναι όσο το δυνατόν καλύτερη 

εκτίμηση των κατανομών 𝑝𝑛𝑜𝑟𝑚𝑎𝑙(𝑥) and 𝑝𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙(𝑥).  

Ένα χαρακτηριστικό του προβλήματος ανίχνευσης επιθέσεων σε ένα σύστημα 

διανομής νερού, είναι ότι οι επιθέσεις που έχουμε στην διάθεση μας αποτελούν μόνο 

ένα μικρό ποσοστό του συνόλου των επιθέσεων που θα μπορούσαν να συμβούν 

σε ένα δίκτυο, καθώς δεν είναι εφικτό να σχεδιαστεί και να μοντελοποιηθεί κάθε 

πιθανό σενάριο. Για αυτό, η πιο αποτελεσματική μέθοδος για τον εντοπισμό 

επιθέσεων σε Δίκτυα Διανομής νερού είναι μέσω ημι-επιβλεπόμενης μάθησης. 

Στο πρόβλημα της ημι-επιβλεπόμενης μάθησης έχουμε διαθέσιμο ένα σύνολο 

δεδομένων που εμπεριέχει μόνο καθαρά δεδομένα (δηλαδή δεδομένα κανονικής 

λειτουργίας του δικτύου) και αυτό χρησιμοποιείται για την εκπαίδευση ενός 

αλγορίθμου μηχανικής μάθησης με στόχο των εντοπισμό των ανωμαλιών 

(επιθέσεων) σε ένα σύνολο ελέγχου (test dataset).  

𝐷𝑡𝑟𝑎𝑖𝑛 = 𝑋𝑡𝑟𝑎𝑖𝑛~𝑝𝑛𝑜𝑟𝑚𝑎𝑙(𝑥) 
𝐷𝑡𝑒𝑠𝑡 = 𝑋𝑡𝑒𝑠𝑡~𝑝𝑓𝑢𝑙𝑙(𝑥) 

Αφού ο αλγόριθμος χρησιμοποιήσει το σύνολο εκπαίδευσης για να μοντελοποιήσει 

την κατανομή των καθαρών δεδομένων, στη συνέχεια αναθέτει μια βαθμολογία σε 

κάθε δείγμα ανάλογα με το κατά πόσο μπορεί να θεωρηθεί ως ανωμαλία (anomaly 

score). Τελικά, το δείγμα επισημειώνεται ως αναμενόμενο ή μη, με βάση ένα όριο 

αποκοπής. Πιο συγκεκριμένα, ένα δείγμα χαρακτηρίζεται ως ανώμαλο, όταν η 

βαθμολογία του είναι μεγαλύτερη από ένα προκαθορισμένο όριο αποκοπής.  

Αλγόριθμοι Μηχανικής Μάθησης για τον εντοπισμό επιθέσεων σε δίκτυα διανομής 

νερού 

Παρακάτω παρουσιάζονται εν συντομία τα χαρακτηριστικά των αλγορίθμων 

μηχανική μάθησης που αξιοποιήθηκαν στην παρούσα διπλωματική για τη διάγνωση 

επιθέσεων σε δίκτυα νερού.  
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Support Vector Data Description Classifier 

Ο ταξινομητής Support Vector Data Description (SVDD) δημιουργεί ένα σφαιρικό 

σύνορο γύρω από ένα σύνολο δεδομένων πολλών μεταβλητών χρησιμοποιώντας 

συναρτήσεις πυρήνα. Υπολογίζοντας την απόσταση ενός νέου δείγματος από το 

σφαιρικό αυτό όριο, μπορεί κανείς να αποφασίσει αν αυτό το δείγμα ανήκει στην 

κατανομή των δεδομένων εκπαίδευσης ή όχι. Ο ταξινομητής SVDD δημιουργεί το 

σφαιρικό σύνορο, λύνοντας το ακόλουθο πρόβλημα βελτιστοποίησης: 

𝑚𝑖𝑛𝑅
𝑅,𝛼

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝜑(𝑥𝑖) − 𝑎‖ ≤ 𝑅 

όπου R και a = μεταβλητές απόφασης και 𝜑(𝑥𝑖) = μια συνάρτηση μετασχηματισμού 

των δεδομένων εισόδου σε δεδομένα υψηλότερης διάστασης. Μετά το στάδιο της 

εκπαίδευσης και αφού έχουν οριστεί οι τιμές των 𝑅𝑜𝑝𝑡 και 𝛼𝑜𝑝𝑡, μπορεί να υπολογιστεί 

για κάθε νέο δείγμα η απόστασή του από το σφαιρικό όριο από τη σχέση:  

𝐷𝑉 = ‖𝜑(𝑥𝑖) − 𝛼𝑜𝑝𝑡‖ − 𝑅𝑜𝑝𝑡 

Όταν η τιμή  DV για ένα δείγμα είναι θετική (𝐷𝑉 > 0), τότε το δείγμα βρίσκεται εκτός του 

σφαιρικού χώρου που ορίστηκε με βάση τα δεδομένα εκπαίδευσης και 

χαρακτηρίζεται ως ανωμαλία. 

Αυτοκωδικοποιητές – Autoencoders 

Ένας αυτοκωδικοποιητής είναι ένα νευρωνικό δίκτυο που προσπαθεί να αντιγράψει 

την είσοδό του στην έξοδό του. Με άλλα λόγια, εκπαιδεύεται στο να αναπαριστά ένα 

δεδομένο εισόδου 𝑥 στην έξοδο του 𝑟 μέσω μιας εσωτερικής αναπαράστασης h. Ο 

αυτοκωδικοποιητής αποτελείται από δύο μέρη: έναν κωδικοποιητή 𝑓 (ο οποίος 

αναπαριστά το 𝑥 σε μία μικρότερη διάσταση ℎ, ℎ = 𝑓(𝑥)) και έναν αποκωδικοποιητή 

𝑔 (που παράγει μία ανακατασκευή 𝑟 του ℎ, 𝑟 = 𝑔(ℎ)).   

 
Εικόνα 1: Βασική δομή ενός αυτοκωδικοποιητή. 

Λόγω της αρχιτεκτονικής τους, οι αυτοκωδικοποιητές έχουν την ικανότητα να 

ανακαλύπτουν συσχετίσεις μεταξύ των δεδομένων και αποτελούν χρήσιμα εργαλεία 

στην ανίχνευση ανωμαλιών.  

Structural Convolutional Neural Networks 

Ta Δομικά Συνελικτικά Νευρωνικά Δίκτυα είναι ένας αλγόριθμος βαθιάς μηχανικής 

μάθησης, ο οποίος είναι εμπνευσμένος από τα νευρωνικά δίκτυα σε γράφους 

(Graph Neural Networks – GNNs) και τα μονοδιάστατα συνελικτικά νευρωνικά δίκτυα 

(1D CNNs). Τα SCNN έχουν τη δυνατότητα να μοντελοποιούν δεδομένα τα οποία 

έχουν χωροχρονικά χαρακτηριστικά ενσωματώνοντας στην αρχιτεκτονική τους τον 

πίνακα γειτνίασης (adjacency matrix) ενός γράφου. Αυτό το χαρακτηριστικό τους 

επιτρέπει να αποτυπώνουν καλύτερα τις συσχετίσεις μεταξύ των στοιχείων ενός 
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γράφου και να κάνουν ακριβέστερες προβλέψεις σε δεδομένα χρονοσειρών με δομή 

γράφου.  

ΔΕΔΟΜΕΝΑ 

Τα δεδομένα που χρησιμοποιήσαμε προέρχονται από ένα διαγωνισμό με θέμα την 

κυβερνοασφάλεια των συστημάτων διανομής νερού. Ο διαγωνισμός που 

ονομάζεται BATADAL είχε ως στόχο τη διάγνωση των επιθέσεων σε ένα πραγματικό 

δίκτυο διανομής νερού, που ονομάζεται C-Town.  

Τα διαθέσιμα δεδομένα από αυτόν τον διαγωνισμό είναι τα ακόλουθα: 

- Τρία σύνολα δεδομένων από τρεις διαφορετικές προσομοιώσεις, με 

καταγεγραμμένες ωριαίες μετρήσεις SCADA που αφορούν 43 διαφορετικές 

μεταβλητές του δικτύου. 

• dataset03: σύνολο δεδομένων με μετρήσεις SCADA διάρκειας ενός έτους. Στο 

συγκεκριμένο σύνολο δεδομένων δεν περιέχεται καμία επίθεση.  

• dataset04: σύνολο δεδομένων που περιέχει μετρήσεις από μια προσομοίωση 

διάρκειας 6 μηνών και περιλαμβάνει 7 κυβερνοεπιθέσεις. 

• testdataset: σύνολο δεδομένων που περιέχει μετρήσεις διάρκειας 3 μηνών και 

περιλαμβάνει 7 διαφορετικές επιθέσεις. 

-Ένας πίνακας που περιγράφει τα σενάρια επίθεσης των "dataset04" και 

"testdataset". 

-Ένα αρχείο που ονομάζεται "ctown.inp", περιέχει τοπογραφικές, υδραυλικές και 

υδρολογικές πληροφορίες του C-Town και επιτρέπει την προσομοίωσή του σε 

περιβάλλον EPANET. Ανάμεσα στις πληροφορίες που περιέχονται σε αυτό το αρχείο 

είναι και: 

• η μέση μηνιαία ζήτηση νερού σε κάθε κόμβο του δικτύου.  

• μια τυπική διακύμανση ζήτησης νερού διάρκειας μιας εβδομάδας για κάθε 

μία από τις πέντε ζώνες του δικτύου.  

ΜΕΘΟΔΟΛΟΓΙΑ 

Η μεθοδολογία που ακολουθήσαμε για την επίτευξη του σκοπού της εργασίας 

χωρίζεται σε δύο μέρη: 

Α. Στο πρώτο μέρος, ο στόχος είναι να δημιουργηθούν νέα σύνολα δεδομένων, 

αντίστοιχα με αυτά που είναι διαθέσιμα στο BATADAL. Η διαδικασία που 

ακολουθούμε είναι η εξής: 

• Αρχικά χρησιμοποιώντας τη μεθοδολογία του [2], δημιουργούμε συνθετικές 

χρονοσειρές μοτίβων ζήτησης νερού. Με αυτή τη μεθοδολογία, προκύπτουν 

δύο διαφορετικά είδη μοτίβων ζήτησης: το ένα έχει προσομοιωθεί με χρήση 

της κατανομής Βήτα και το άλλο με βάση την κατανομή Γάμμα. Επιπλέον, 

κατασκευάζεται και ένα τρίτο μοτίβο ζητήσεων με μία απλοϊκή μέθοδο, 

προκειμένου να έχουμε ένα μέτρο σύγκρισης για τη συνεισφορά του κάθε 

μοτίβου στη διάγνωση επιθέσεων.  

• Με τη βοήθεια του εργαλείου epanetCPA αναπαραγάγουμε τα σενάρια 

επιθέσεων του BATADAL και τρέχουμε νέες προσομοιώσεις με τα συνθετικά 

μοτίβα ζήτησης νερού, για να δημιουργήσουμε τα δικά μας σετ δεδομένων, 
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τα οποία απαιτούνται για την εκπαίδευση των αλγορίθμων μηχανικής 

μάθησης.  

Β. Το δεύτερο μέρος αφορά τον εντοπισμό των επιθέσεων με χρήση αλγορίθμων 

μηχανικής μάθησης. Στην παρούσα διπλωματική χρησιμοποιούνται τρεις 

διαφορετικοί αλγόριθμοι μηχανικής μάθησης: 

• Οι δύο είναι αλγόριθμοι [3], [4] που βασίζονται σε μεθοδολογίες που έχουν 

δημοσιευθεί και εφαρμοσθεί στα σύνολα δεδομένων του διαγωνισμού 

BATADAL. Η πρώτη μεθοδολογία χρησιμοποιεί έναν ταξινομητή SVDD, ενώ η 

δεύτερη κάνει χρήση ενός Αυτοκωδικοποιητή (Autoencoder). 

• Ο τρίτος αλγόριθμος βασίζεται στα έργα των [5], [6] που μοντελοποιούν 

χρονοσειρές με δομή γράφου.  

  



 

 

xi 

 

ΑΠΟΤΕΛΕΣΜΑΤΑ 

Τα κυριότερα αποτελέσματα της μεθόδου μας συνοψίζονται στους παρακάτω 

πίνακες: 

SVDD 

Πίνακας 1: Αποτελέσματα SVDD – Η απόδοσή του υπολογίστηκε με βάση τη μετρική S όπως 

ορίστηκε στο διαγωνισμό BATADAL.  

train batadal train random train beta train gamma 

test batadal test batadal test batadal test batadal 

  The Train Score 

is 0.956   

The Train Score 

is 0.929   

The Train Score is 

0.924   

The Train Score 

is 0.919 

  The Test Score 

is 0.954   

The Test Score 

is 0.932   

The Test Score is 

0.919   

The Test Score 

is 0.885 

  The optimal L is 

11    

The optimal L is 

8    

The optimal L is 

10    

The optimal L is 

3  

  The optimal TH 

is 0.018   

The optimal TH 

is 0.013   

The optimal TH is 

0.011   

The optimal TH 

is 0.012 

test random test random test random test random 

  The Train Score 

is 0.956   

The Train Score 

is 0.929   

The Train Score is 

0.924   

The Train Score 

is 0.919 

  The Test Score 

is 0.781   

The Test Score 

is 0.897   

The Test Score is 

0.876   

The Test Score 

is 0.877 

  The optimal L is 

11    

The optimal L is 

8    

The optimal L is 

10    

The optimal L is 

3  

  The optimal TH 

is 0.018   

The optimal TH 

is 0.013   

The optimal TH is 

0.011   

The optimal TH 

is 0.012 

test beta test beta test beta test beta 

  The Train Score 

is 0.956   

The Train Score 

is 0.929   

The Train Score is 

0.924   

The Train Score 

is 0.919 

  The Test Score 

is 0.805   

The Test Score 

is 0.922   

The Test Score is 

0.922   

The Test Score 

is 0.906 

  The optimal L is 

11    

The optimal L is 

8    

The optimal L is 

10    

The optimal L is 

3  

  The optimal TH 

is 0.018   

The optimal TH 

is 0.013   

The optimal TH is 

0.011   

The optimal TH 

is 0.012 

test gamma test gamma test gamma test gamma 

  The Train Score 

is 0.956   

The Train Score 

is 0.929   

The Train Score is 

0.924   

The Train Score 

is 0.919 

  

The Test Score 

is 0.791   

The Test Score 

is 0.903   

The Test Score is 

0.879   

The Test Score 

is 0.881 

  

The optimal L is 

11    

The optimal L is 

8    

The optimal L is 

10    

The optimal L is 

3  

  The optimal TH 

is 0.018   

The optimal TH 

is 0.013   

The optimal TH is 

0.011   

The optimal TH 

is 0.012 
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Αυτοκωδικοποιητής 

 
Πίνακας 2: Μέση απόδοση (μετά από 10 διαφορετικές διαδικασίες εκπαίδευσης) του 

αυτοκωδικοποιητή σε κάθε ένα από τα διαθέσιμα σύνολα δεδομένων. 

Model FP FN TP Rec Pre F1 score 
S score 

(BATADAL) 
       dataset_r06 

random 92 151 341 0.693 ± 0.043 0.795 ± 0.065 0.738 ± 0.022 0.82 ± 0.045 

gamma 59 149 343 0.697 ± 0.071 0.856 ± 0.03 0.766 ± 0.041 0.825 ± 0.069 

beta 84 144 348 0.707 ± 0.06 0.812 ± 0.053 0.753 ± 0.025 0.83 ± 0.048 

batadal 370 117 375 0.761 ± 0.044 0.504 ± 0.017 0.606 ± 0.016 0.861 ± 0.018 
       dataset_r03 

random 58 87 320 0.785 ± 0.077 0.848 ± 0.037 0.813 ± 0.045 0.882 ± 0.029 

gamma 49 93 314 0.772 ± 0.13 0.868 ± 0.013 0.81 ± 0.078 0.876 ± 0.047 

beta 54 88 319 0.784 ± 0.082 0.86 ± 0.037 0.817 ± 0.04 0.886 ± 0.025 

batadal 176 76 331 0.812 ± 0.06 0.653 ± 0.014 0.723 ± 0.024 0.877 ± 0.02 
       dataset_g06 

random 173 151 341 0.692 ± 0.041 0.668 ± 0.057 0.678 ± 0.029 0.815 ± 0.036 

gamma 86 142 350 0.711 ± 0.074 0.81 ± 0.054 0.753 ± 0.03 0.829 ± 0.068 

beta 124 141 351 0.714 ± 0.064 0.748 ± 0.059 0.727 ± 0.028 0.838 ± 0.043 

batadal 535 125 367 0.745 ± 0.041 0.407 ± 0.009 0.526 ± 0.013 0.834 ± 0.026 
       dataset_g03 

random 84 106 301 0.739 ± 0.075 0.783 ± 0.033 0.758 ± 0.038 0.878 ± 0.03 

gamma 47 113 294 0.723 ± 0.117 0.866 ± 0.034 0.782 ± 0.073 0.866 ± 0.044 

beta 60 107 300 0.737 ± 0.072 0.836 ± 0.042 0.781 ± 0.036 0.874 ± 0.029 

batadal 244 88 319 0.783 ± 0.065 0.565 ± 0.012 0.656 ± 0.031 0.804 ± 0.025 
       dataset_b06 

random 140 156 336 0.683 ± 0.043 0.713 ± 0.064 0.695 ± 0.029 0.837 ± 0.039 

gamma 73 155 337 0.685 ± 0.075 0.826 ± 0.042 0.745 ± 0.041 0.826 ± 0.094 

beta 92 143 349 0.709 ± 0.073 0.798 ± 0.054 0.747 ± 0.032 0.854 ± 0.055 

batadal 461 104 388 0.789 ± 0.058 0.458 ± 0.011 0.579 ± 0.017 0.875 ± 0.015 
       dataset_b03 

random 64 103 304 0.747 ± 0.077 0.829 ± 0.051 0.783 ± 0.045 0.893 ± 0.024 

gamma 45 105 302 0.742 ± 0.128 0.871 ± 0.016 0.796 ± 0.081 0.896 ± 0.038 

beta 53 98 309 0.759 ± 0.083 0.859 ± 0.048 0.802 ± 0.045 0.9 ± 0.025 

batadal 206 86 321 0.789 ± 0.064 0.61 ± 0.013 0.687 ± 0.027 0.886 ± 0.02 
       batadal_06 

random 288 114 378 0.768 ± 0.083 0.704 ± 0.251 0.698 ± 0.144 0.788 ± 0.038 

gamma 499 113 379 0.77 ± 0.154 0.665 ± 0.312 0.642 ± 0.19 0.753 ± 0.104 

beta 595 104 388 0.788 ± 0.107 0.52 ± 0.265 0.575 ± 0.147 0.764 ± 0.047 

batadal 63 109 383 0.779 ± 0.049 0.861 ± 0.036 0.816 ± 0.025 0.821 ± 0.028 
       batadal_03 

random 137 88 319 0.783 ± 0.079 0.774 ± 0.199 0.757 ± 0.098 0.889 ± 0.021 

gamma 236 90 317 0.78 ± 0.136 0.728 ± 0.262 0.705 ± 0.147 0.836 ± 0.096 

beta 273 77 331 0.812 ± 0.084 0.637 ± 0.232 0.681 ± 0.116 0.842 ± 0.063 

batadal 33 84 323 0.794 ± 0.059 0.909 ± 0.026 0.846 ± 0.034 0.914 ± 0.018 
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SCNN (Structural Convolutional Neural Network) 

Πίνακας 3: Μέση απόδοση (μετά από 10 διαφορετικές διαδικασίες εκπαίδευσης) του μοντέλου 

SCNN σε κάθε ένα από τα διαθέσιμα σύνολα δεδομένων. 

MODEL FP FN TP Recall Precision F1 score 
S score 

(BATADAL) 
       dataset_r06 

random 42 172 320 0.65 ± 0.026 0.886 ± 0.028 0.749 ± 0.012 0.853 ± 0.034 

gamma 28 193 299 0.607 ± 0.025 0.913 ± 0.013 0.729 ± 0.019 0.806 ± 0.051 

beta 66 172 320 0.651 ± 0.032 0.835 ± 0.059 0.729 ± 0.01 0.835 ± 0.029 

batadal 542 104 388 0.788 ± 0.042 0.425 ± 0.058 0.549 ± 0.041 0.907 ± 0.008 
       dataset_r03 

random 43 107 300 0.737 ± 0.036 0.875 ± 0.014 0.8 ± 0.02 0.922 ± 0.013 

gamma 36 119 288 0.708 ± 0.05 0.89 ± 0.009 0.788 ± 0.03 0.912 ± 0.017 

beta 49 102 305 0.75 ± 0.036 0.862 ± 0.023 0.801 ± 0.017 0.922 ± 0.014 

batadal 246 48 359 0.882 ± 0.031 0.597 ± 0.047 0.711 ± 0.026 0.936 ± 0.005 
       dataset_g06 

random 84 167 326 0.662 ± 0.023 0.796 ± 0.027 0.722 ± 0.011 0.883 ± 0.008 

gamma 41 175 317 0.643 ± 0.011 0.886 ± 0.013 0.746 ± 0.005 0.855 ± 0.029 

beta 80 159 333 0.678 ± 0.025 0.808 ± 0.039 0.736 ± 0.011 0.885 ± 0.016 

batadal 590 104 388 0.789 ± 0.033 0.402 ± 0.046 0.531 ± 0.035 0.903 ± 0.009 
       dataset_g03 

random 47 102 305 0.75 ± 0.042 0.867 ± 0.017 0.803 ± 0.023 0.929 ± 0.01 

gamma 36 120 287 0.705 ± 0.055 0.889 ± 0.008 0.785 ± 0.035 0.916 ± 0.019 

beta 53 92 315 0.774 ± 0.037 0.858 ± 0.025 0.813 ± 0.015 0.935 ± 0.008 

batadal 321 43 364 0.895 ± 0.015 0.536 ± 0.05 0.669 ± 0.037 0.928 ± 0.007 
       dataset_b06 

random 53 175 317 0.644 ± 0.031 0.857 ± 0.032 0.734 ± 0.017 0.889 ± 0.018 

gamma 31 199 293 0.595 ± 0.021 0.904 ± 0.023 0.717 ± 0.012 0.833 ± 0.055 

beta 52 165 328 0.666 ± 0.034 0.865 ± 0.034 0.751 ± 0.015 0.895 ± 0.02 

batadal 543 102 390 0.793 ± 0.029 0.425 ± 0.051 0.551 ± 0.038 0.905 ± 0.008 
       dataset_b03 

random 51 107 300 0.738 ± 0.045 0.856 ± 0.011 0.792 ± 0.025 0.927 ± 0.011 

gamma 46 123 284 0.698 ± 0.054 0.861 ± 0.006 0.77 ± 0.034 0.914 ± 0.017 

beta 50 99 308 0.756 ± 0.032 0.859 ± 0.011 0.804 ± 0.018 0.932 ± 0.008 

batadal 225 58 349 0.858 ± 0.022 0.614 ± 0.054 0.714 ± 0.031 0.933 ± 0.005 
       batadal06 

random 24 238 255 0.517 ± 0.041 0.916 ± 0.015 0.66 ± 0.033 0.855 ± 0.015 

gamma 19 257 235 0.477 ± 0.03 0.925 ± 0.018 0.629 ± 0.024 0.842 ± 0.012 

beta 39 222 270 0.549 ± 0.038 0.878 ± 0.045 0.674 ± 0.021 0.862 ± 0.017 

batadal 65 181 311 0.632 ± 0.042 0.83 ± 0.031 0.716 ± 0.02 0.891 ± 0.01 
       batadal03 

random 30 163 244 0.6 ± 0.052 0.891 ± 0.007 0.716 ± 0.038 0.883 ± 0.014 

gamma 28 177 231 0.566 ± 0.042 0.893 ± 0.006 0.692 ± 0.032 0.877 ± 0.011 

beta 34 158 250 0.613 ± 0.046 0.881 ± 0.013 0.722 ± 0.031 0.887 ± 0.012 

batadal 45 122 285 0.7 ± 0.038 0.866 ± 0.023 0.773 ± 0.019 0.906 ± 0.009 
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ΣΥΜΠΕΡΑΣΜΑΤΑ 

Μερικά από τα βασικότερα συμπεράσματα αυτής της εργασίας είναι τα ακόλουθα:  

Η επιλογή του συνόλου εκπαίδευσης σχετίζεται άμεσα με την απόδοση του 

αλγόριθμου. Αυτό παρατηρήθηκε ειδικά στην περίπτωση του αυτοκωδικοποιητή, 

όπου η χρήση στοχαστικών συνόλων δεδομένων για εκπαίδευση, βελτίωσε την 

απόδοσή τους στον εντοπισμό επιθέσεων. 

Η απόδοση των αυτοκωδικοποιητών εξαρτάται σε μεγάλο βαθμό από το σύνολο 

δεδομένων με βάση το οποίο θα ρυθμίσουμε το κατώφλι ανωμαλίας. Αντίθετα στα 

SCNΝ παρατηρήθηκε ότι η απόδοσή τους ήταν αρκετά καλή χωρίς να χρειάζεται να 

γίνει πρώτα αλλαγή στο σύνολο ρύθμισης κατωφλιού. 

Η επιλογή μίας μόνο μετρικής απόδοσης έχει πολύ μεγάλη σημασία για έναν 

αλγόριθμο εντοπισμού ανωμαλιών. Καταρχήν επιτρέπει να συγκρίνουμε μεταξύ τους 

διαφορετικά μοντέλα. Επιπλέον όμως, καθορίζει και την τελική απόδοση ενός 

μοντέλου, όπως είδαμε στην περίπτωση του SVDD που απέτυχε να διαγνώσει 

επιθέσεις όταν η μετρική απόδοσής του για την επιλογή κατωφλιού ανωμαλίας, ήταν 

αυτή που είχε προταθεί από το διαγωνισμό BATADAL.  

Τα πρώτα αποτελέσματα δείχνουν ότι τα μοντέλα SCNN φαίνεται να είναι λιγότερο 

ευαίσθητα (σε σχέση με τους αυτοκωδικοποιητές) στις εντονότερες διακυμάνσεις που 

έχουν οι στοχαστικές ζητήσεις, καθώς παρατηρούνται μικρότερες διαφορές μεταξύ 

στοχαστικών και μη στοχαστικών μοντέλων.  
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INTRODUCTION 

General Context 

In the era of unprecedented technological advancements, the water sector is 

going under digital transformation. Water distribution networks (WDN) deploy digital 

devices not only to monitor and control utility operations, but to increase 

automation and ultimately their efficiency. Although water digitalization is essential, 

it comes with a cost: it exposes the WDN to the risks of a Cyber-Physical System, i.e. 

cyber-attacks.  

Since the impact of a potential attack could be enormous, the research interest on 

the security of Water Infrastructures is growing. One critical aspect of ongoing 

research is the ability to detect attacks [7]. Even if an attacker hacks the WDN, a lot 

of damage could be avoided if the attack is promptly detected. 

Machine Learning methods are implemented in anomaly detection problems with 

promising results. The creation of reliable ML models requires a vast amount of data 

for training. This is not the case in the water sector, whom digitalization is recent and 

the data availability is poor. For decades instead, water resource systems analysis is 

relying on stochastic methods to tackle the hydrological randomness and 

uncertainty [8]. 

When real data are limited, the use of synthetic data in Machine Learning is 

frequent. It has been proven that the use of synthetic data can replace the use of 

real data in data science [1]. Furthermore, stochastic modelling of water demand 

is dominating in water resources design and management [2]. In this respect, we 

evaluate whether training Machine Learning models with stochastically generated 

water demands will improve their performance in detecting anomalous behavior in 

the network. Taking into account that synthetic timeseries are providing a more 

realistic representation of water demands, we expect the ML model to generalize 

better to unknown data.  

Since a WDN has graph structure, we also implement Graph Neural Networks in the 

detection of cyber-physical attacks and compare them with baseline methods [3], 

[4]. Graph Neural Networks, inspired by Convolutional Neural Networks, are able to 

take into account the spatial information of arbitrary graph structures. Our intension 

is to examine whether their inherent ability to understand relations between the 

nodes of a graph, i.e. the nodes of a Water Distribution Network, makes them 

valuable tools in anomaly detection. This is because, when a hacker takes control 

of the WDN, the data transmitted are altered in an effort to conceal the attack. 

Aim 

The overall aim of this diploma thesis is to develop new and improve upon existing 

machine learning methods for cyber-physical attack detection on Water 

Distribution Networks (WDN). The innovation of this work resides in two main 

developments (a) the use of novel stochastic methods to generate the water 
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demand timeseries needed to train existing machine learning models, in an effort 

to improve their overall performance in the presence of uncertainty and (b) the 

exploration and use of a novel family of machine learning methods that take both 

the spatial and temporal dimensions of a water network into account, in an effort 

to improve the ability of the model to represent the water network more accurately.  

 

Thesis Structure 

The thesis is structured into six chapters as follows: 

In the first chapter we present a brief overview of similar to the subject, state-of-the-

art research. We focus on methods of generating stochastically, water demands, 

detecting cyber-physical attacks on water distribution networks and present some 

of the research done on spatiotemporal problems with the use of Graph Neural 

Networks.  

In the second chapter we make a presentation of the basic theoretical tools used 

and we provide some insight on the rationale behind approaching an anomaly 

detection problem.  

In the third chapter we present the available datasets and the water distribution 

network we applied our methodology on. 

In the fourth chapter we provide the methodology outline of this dissertation 

In the fifth chapter we present the first part of our methodology which relies on the 

generation of synthetic water demand timeseries, the simulation of cyber-physical 

attacks and ultimately the creation of a new set of datasets aiming to capture the 

presence of uncertainty in water distribution networks. 

In the sixth chapter we apply three different machine learning algorithms to detect 

the attacks contained in the available datasets and report their performance. 

In the seventh chapter we present the major conclusions drawn from the models’ 

performance 
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1. LITERATURE REVIEW 

 Stochastic methods for water demand estimation 

Creating a model for water distribution systems that is consistent between the 

observed data of the real network and the simulated data from a hydraulic analysis 

model, is key into creating robust anomaly detection algorithms. One of the most 

important input components in a WDS model is water demands, but their estimation 

is usually complicated due to the stochastic behavior of water consumption.  To 

represent the random nature of water requirements, a common practice is the use 

of models that generate water demands stochastically.  

Kossieris et al. in their paper [2] describe the most essential stochastic methods for 

water demand modelling and one of the most widespread ones involves the use of 

pulse-based models. Based on the assumption that residential demand (or the 

demand of household water appliances) can be described by a rectangular pulse, 

Poisson rectangular pulse (PRP) [9]–[11] and Poisson-cluster processes [12]–[14]  

have been used to generate synthetic water demands at fine temporal and spatial 

scale. Then synthetic demand records can be obtained by aggregating the pulses 

of those fine resolution data. 

Apart from pulse-based methods, Gargano [15] proposed a method for the 

probabilistic representation of the daily trend of residential water demand for 

different number of users, using a mixed-type distribution to describe the whole 

process. Furthermore, Alvisi et al. [12] using a bottom up-approach, employed 

random polynomial processes along with reordering techniques to enable the 

generation of synthetic water demand data which are statistically consistent (in 

terms of mean, variance and spatio-temporal correlations) with the observed time 

series at lower and higher spatial and temporal scales.  

Finally, Kossieris et al. [13], [16] proposed a method based on Nataf-type simulation 

models [17], [18] that combines the widely used class of linear stochastic models 

(e.g. autoregressive models) with the concept of Nataf’s joint distribution model to 

enable the explicit reproduction of the marginal distribution and the dependence 

structure of the process. One of the advantages of this methodology is that it allows 

the accounting of important marginal properties such as tail behavior and hence 

the reproduction of extremes. This is very useful in the design of WDS that require 

characterization of peak flows at different temporal resolutions. 

The benefit of realistic reproduction of extremes can also be transferred in anomaly 

detection problems, where creating a model that is able to distinguish normal peaks 

from outliers is essential. Hence, in this dissertation the Kossieris et al. [2] method is 

chosen to stochastically generate water demands.
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 Cyber-physical attacks on 

Water Distribution Systems 

Before creating effective protection methods against cyber-physical attacks on 

Water Distribution Networks, it is important to understand the nature of CPAs and 

the network’s response to them. For that reason, there is an emerging scientific 

interest in developing tools to assess the effect of cyber-physical threats on the 

hydraulic behavior of water distribution systems.  

Perelman et al. [19] first presented an approach to assess the vulnerability of small 

scale water networks, while Adepu et al. [20] investigated cyber-physical attacks in 

the context of a laboratory testbed to obtain the response of an operational water 

distribution system. 

Taormina et al. [21] approached the problem by creating simulation-based tool, 

named epanetCPA, to assess the risks associated to CPAs. The authors presented a 

modeling framework consisting of two main components, namely an attack model 

that characterizes a broad range of attacks on cyber components (e.g., sensors, 

PLCs, and SCADA) and a MATLAB toolbox (epanetCPA) that automatically 

implements in EPANET all attacks based on the attack model. 

Nikolopoulos et al. [22] introduced a Python-based modeling platform for stress-

testing WDNs under CPAs aiming to aid risk management practices. This modeling 

platform, named RISKNOUGHT, by incorporating the interconnection between 

cyber and physical processes, allows to simulate WDS’s response in a higher fidelity 

and a more realistic way than simulation solutions that mostly focus on the outcome 

of a cyber operation and the state of cyber-component. 

 Detecting cyber-physical attacks 

on Water Distribution Systems 

The area of anomaly detection and intrusion detection in Industrial Control Systems 

has been widely studied. When it comes to the water distribution sector, a recent 

example is the Battle of the Attack Detection Algorithms (BATADAL), an 

international competition on water distribution system cyber-attack detection [7]. 

In that competition seven teams demonstrated their solutions on a simulated 

dataset. The best results were shown by the authors of [23] who proposed a model-

based approach that employed EPANET to simulate the hydraulic processed of the 

water distribution systems, and then used the error between the EPANET simulated 

values and the available observations to detect anomalous behavior. The limitation 

of this approach is that in real world problems creating a precise system model is 

hindered by various factors, such as the inherent variability of demand patterns and 

the uncertainties of the hydraulic model. 

Another team that achieved a high score in the competition is Abokifa et al. [24] 

that introduced a three-stage detection method with each stage targeting at a 

different type of anomaly. More specifically, after checking for violations in any of 

the actuator rules, they used statistical fences to detect simple outliers, ANNs for 

contextual anomalies and finally they detected global anomalies via PCA 

decomposition. A similar approach took also Giacomoni et al. [25] who also verified 
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the integrity of the actuator rules and SCADA data and separated data into normal 

and anomalous by performing principal component analysis (PCA).  

Moreover Brentan et al. [26] used Recurrent Neural Networks to forecast tank water 

levels and by comparing their predictions with the available observations, detected 

when the system was under attack. Chandy et al. [27] approached the problem 

with a combination of control rules verification and the use of a Convolutional 

Variational Autoencoder that calculated the reconstruction probability of the data: 

the lower the probability, the higher the chance of the data being anomalous. 

Pasha et al. ‘s method [28] involved three interconnected modules. These modules 

focused on consistency checks, pattern recognition, and hydraulic and system 

relationships. Lastly, Aghashahi et al. [29] implemented a two-stage method which 

included dimensionality reduction from the multidimensional observed time series 

data to a four-dimensional feature vector that was then passed to a classifier to 

detect attacks (Random Forest).  

After the BATADAL competition finished, the datasets provided are still publicly 

available and are one of the few cases of open-source datasets available for the 

research in cyber security of water networks. Those datasets gave a springboard to 

more researchers to study cyber-physical attacks on WDNs. A few examples include 

Taormina et al. [4] who used an Autoencoder (AE) and Kravchik et al. [30] that 

experimented also with an AE and 1D Convolutional Neural Networks (CNNs), PCA-

Reconstruction and frequency domain analysis. Moreover, Ramotsoela et al. [31] 

proposed an ensemble technique that focuses mostly on traditional Machine 

Learning algorithms for anomaly detection by using both density-based and 

Quadratic Discriminant Analysis (QDA). Kadosh et al. [3] examined the use of 

support vector data description (SVDD) method along with a feature selection 

methodology.  

Finally, in this work some of the key methodologies in cyber-physical attack 

detection in WDS have been mentioned. The methodologies mentioned are a 

good starting point to gain insight into the problem of CPA detection and although 

there are various other approaches that have been proposed for that particular 

matter, conducting a more rigorous survey is out of the scope of this dissertation.   

 Graph Neural Networks 

Recently, there is an increasing number of applications regarding data generated 

from non-Euclidean domains that can be represented as graphs with complex 

interconnections and dependencies between its components. Although deep 

learning has been very successful in capturing Euclidean data, the complexity of 

graphs has imposed challenges on the existing deep learning algorithms. As a result, 

new definitions and operations that generalize the existing deep learning methods 

(such as CNNs, RNNs and Autoencoders) have been rapidly developed to handle 

the complexity of graph data. These new generalizations are the base of a new 

type of deep learning method, that operates on relational data i.e. graphs, named 

Graph Neural Networks (GNNs).  

There are numerous different types of architectures of Graph Neural Networks most 

of them cited in [32]. In this dissertation we only mention the GNN architecture we 

found most relevant to our topic i.e. GNN architectures applicable on spatio-

temporal graph data. 
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This category is the CNN-based, Spatio-Temporal Graph Neural Network (STGNN). 

STGNNs model graphs that are dynamic in terms of their node inputs, while assuming 

interdependency between connected nodes. STGNNs have already been 

implemented successfully in many problems including traffic prediction, human 

skeleton movement prediction, and human brain networks.  

Accurate traffic forecasting is essential in a smart transportation system. Since the 

traffic condition of one road depends on its adjacent road’s conditions, it is critical 

to incorporate spatial dependency when performing traffic speed forecasting. 

STGNNs allow to capture both the spatial and temporal dependencies of a graph 

simultaneously, by considering the traffic network as a spatial-temporal graph, 

where the nodes are sensors installed on roads, the edges are measured by the 

distance between pairs of nodes, and each node has the average traffic speed 

within a window as dynamic input-features. Yu et al. in their paper [33] propose a 

type of Spatio-Temporal Convolutional Networks for traffic forecasting and 

evaluate their model on real-world traffic datasets with promising results.  

In human kinematics, capturing the motion of a human is not straightforward as it is 

subject to the constraints of the human body. Teh et al. in their paper [5] model 

human hand motion by representing as a graph the human joints which are linked 

by skeletons. Modelling the human hand as a graph allowed them to predict its 

motion and led them to propose a Structural Convolutional Neural Network (SCNN) 

architecture for time series data with arbitrary graph structure. 

Last but not least, Covert et al. [34] proposed the Temporal Graph Convolutional 

Network (TGCN) to automatically detect seizures from electroencephalograms 

(EEGs). By modelling the electrodes placed on a patient’s scalp as a graph, the 

researchers used TGCNs to detect from EEGs when precisely the seizures occur and 

the parts of the brain that are most involved.  

Water Distribution Networks have an inherent spatio-temporal structure and from 

the above it is evident that STGNNs seem like a potentially useful tool to model them 

with. As far as we know, to this day Graph Neural Networks have not been applied 

yet in cyber-physical attack detection on WDS. 
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2. THEORETICAL TOOLS 

 Types of cyber-physical attacks 

on Water Distribution Systems 

A cyber-physical system such as a water distribution network has three basic 

security goals: operational integrity, availability and confidentiality. Each security 

goal can be targeted by a specific type of cyber-physical attack. Operational 

integrity, which means that the system components are able to function as 

intended and provide a barrier between the water in the system and external 

threats, can be compromised with deception attacks that alter the information sent 

or received by sensors, actuators or controllers. Availability denotes that the system 

is ready for use upon demand and it can be threatened by Denial of Service attacks 

(DoS) which occur when an attacker renders the system unavailable. Finally, 

confidentiality, which relates to keeping sensitive information safe from 

unauthorized users, is susceptible to eavesdropping attacks. Eavesdropping attacks 

are essentially the act of stealthily accessing sensitive information of a WDS such as 

the system’s state and behavior [21].   

According to [21], cyber-physical attacks on WDS can also be classified on the basis 

of the element being attacked i.e. the target. The elements that could potentially 

be under attack in a WDS are sensors, actuators, PLCs and SCADA, as well as the 

communication links connecting them.  

As their name implies attacks can also be either cyber or physical. Sensors and 

actuators are only susceptible to physical attacks since the attacker needs to have 

direct physical access to the target to damage, manipulate or replace it. Attacks 

on the connection between different elements of the network can as well be 

physical, if the connection is hardwired. Although a physical attack might be 

unlikely it should be considered when securing a WDS in case an actuator or sensor 

is in a remote (or poorly monitored) area that might be accessible to an attacker.  

Attacks on the connection link between different elements of the network, when 

the connection is wireless are considered to be cyber-attacks. All attacks no matter 

the target or whether they are cyber or physical, could be deception, denial of 

service or eavesdropping attacks.  

To elaborate, let’s assume a cyber-attack targeted to the connection link between 

two PLCs. If one PLC monitors the water level from a tank and transmits it to the 

other PLC which controls a pump on the basis of the tank’s water level, then when 

the connection is interrupted and the content shared between them is 

manipulated (deception), a disruption on the normal pumping operations is 

caused. The attacker may also eavesdrop the communication or prevent one of 

the PLCs from sending/receiving the sensor reading by flooding the communication 

channel with traffic (denial of service). 

Another example, is a cyber-attack targeted to the connecting link between PLC 

and SCADA.  Again, the communication can be manipulated, eavesdropped or 
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temporarily interrupted by flooding the communication channel. As a result, 

incomplete or altered information reaches the SCADA. What is important is that the 

adversary might resort to this attack to conceal other actions from human operators 

or event detection algorithms implemented at SCADA level.  

Attack concealment is the key challenge attack detection algorithms face. A good 

CPA detection algorithm is not one that identifies outliers per se, but one that is able 

to uncover contextual anomalies. Contextual anomalies are suspicious 

observations that even if their magnitude is well within the previous historic bounds, 

are anomalous within a specific temporal context based on their previous 

observations.  

The figure below is an extract from [21] and illustrates the different types of cyber-

physical attacks on a simple water distribution system consisting of one pump, one 

valve, one tank and a few demand nodes.  

 
Figure 1: Graphical representation of types of cyber-physical attacks on a water distribution 

system 
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 A common anomaly detection approach 

We assume there is a dataset X, that its distribution contains normal and anomalous 

data: 

𝑝𝑓𝑢𝑙𝑙(𝑥, 𝑦)~𝑝(𝑦 = 1)𝑝(𝑥|𝑦 = 1) + 𝑝(𝑦 = 0)𝑝(𝑥|𝑦 = 0) 

𝑝𝑛𝑜𝑟𝑚𝑎𝑙(𝑥)~𝑝(𝑥|𝑦 = 0) 
𝑝𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙(𝑥)~𝑝(𝑥|𝑦 = 1) 

In anomaly detection our goal is to make the best possible estimation of the 

𝑝𝑛𝑜𝑟𝑚𝑎𝑙(𝑥) and 𝑝𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙(𝑥) distributions.  

When it comes to the problem of detecting attacks in a Water Distribution System, 

we only have available a small portion of the entire (anomalous) set of cyber-

physical attacks that could threaten it- it is not plausible to identify and model all 

possible attack scenarios. Thus, the most effective way of detecting anomalies on 

a WDS is by utilizing semi-supervised algorithms. 

Semi-supervised learning is when the training set available contains only normal 

points and the task is to identify the anomalous points in a test set. This is also called 

novelty detection: 

𝐷𝑡𝑟𝑎𝑖𝑛 = 𝑋𝑡𝑟𝑎𝑖𝑛~𝑝𝑛𝑜𝑟𝑚𝑎𝑙(𝑥) 
𝐷𝑡𝑒𝑠𝑡 = 𝑋𝑡𝑒𝑠𝑡~𝑝𝑓𝑢𝑙𝑙(𝑥) 

After using 𝐷𝑡𝑟𝑎𝑖𝑛 to model the distribution of normal data, the algorithm is able to 

assign to each data point an anomaly score. It is expected that most observations 

will get low scores while the anomalous hopefully will have higher anomaly score. 

To make a final decision whether a point is anomalous or not, the detection 

algorithm needs a score threshold. The threshold will separate the normal data from 

the anomalous and it must be determined how high the anomaly score should be 

for the data to be considered anomalous. For instance, if we train an algorithm to 

forecast the SCADA readings of a WDN at a time 𝑡 and we calculate the error 

between the observed readings and the predicted ones, how large should be the 

error in order to issue an attack alarm? 

Determining a threshold is one of the key challenges in anomaly detection. A 

threshold score that is too low might catch most anomalies, but might also lead to 

a high rate of false detections. Too many false detections become a destruction, 

waste time and are overwhelming. The person responsible for dealing with potential 

attacks might also become habituated to the alarm raising the danger that they 

will not respond appropriately to a true attack -it’s a case of the danger of “crying 

wolf”. On the other side setting a threshold that is too high although it will decrease 

the number of false detections, it might also miss attacks. However, missing CPAs on 

a WDN, might have enormous long-term consequences. As a result, the decision is 

a trade-off between true and false detection. 

With a few positive samples (attacks), like in the case of semi-supervised learning, 

and the appropriate classification metric, it is possible to find a satisfactory 

threshold. In the following section we present in detail the most common 

classification metrics. 
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2.2.1 Anomaly Detection Metrics 

To assess how well a model performs and to compare its performance with other 

models it is important to determine an evaluation metric. In binary classification 

problems, such as anomaly detection where the goal is to define whether a system 

is under attack or not, there are numerous metrics available to use.  

Choosing a single-number metric speeds up our ability to make a decision when 

selecting among a large number of models and to fine-tune the anomaly detection 

threshold. It gives a clear preference ranking and therefore a clear direction 

progress. However, each evaluation metric gives us a different perspective of the 

algorithm’s performance, so the choice of a single-number metric is not 

straightforward and it must be aligned with the predefined research objectives.   

Below, we present some basic classification metrics along with some of the 

limitations each one faces. 

Confusion Matrix 

In binary classification problems, a confusion matrix is a 2 × 2 matrix that offers 

detailed information about a model’s performance. A confusion matrix summarizes 

a model’s performance on a specific dataset by depicting the correlation between 

the actual label and the model’s classification i.e. False Negatives, True Negatives, 

False Positives and True Positives. More specifically, in a binary classification 

problem, like determining if a system is under attack or not, we define as: 

• True positive: When the system is under attack and the model’s prediction is 

also that the system is under attack. 

• True negative: When the system is not under attack and the model’s 

prediction is also that the system is not under attack. 

• False positive: When the system is not under attack and the model’s 

prediction is that the system is under attack. 

• False negative: When the system is under attack and the model’s prediction 

is that the system is not under attack. 

Confusion matrices contain sufficient information to calculate a variety of 

performance metrics, like precision and recall (see Figure below). 

 
Figure 2: Confusion matrix, precision, accuracy and recall 
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Recall 

Recall is a measurement that describes how many of the “true” predictions for all 

data points were actually “true”. In other words, it measures the model’s ability to 

correctly classify the state of the water distribution system as under attack. Recall is 

also known as sensitivity or true positive rate.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Recall can be a deceiving metric in case an algorithm issues every instance as an 

attack. In that case the algorithm has detected every attack instance. There are 

no false negatives. Such model would return a recall score of 1.0, but contribute 

little. 

Precision  

Precision is a measurement that describes how many of the true predictions are 

actually true. In other words, it measures the model’s ability to prevent false alarms. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Precision is slightly harder to be deceiving. This can happen if an algorithm issues 

correctly only one alarm. Because no false positives are generated and the 

numerator is above zero, this gives maximum precision 1.0. 

Accuracy 

Accuracy is a measurement that describes how many predictions were correctly 

classified over the entire dataset.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
 

Accuracy can be a deceiving metric in imbalanced classification datasets. For 

example, in anomaly detection problems data points labeled as “under attack” 

(Positives) are significantly less than “under normal conditions” points (Negatives). 

As a result, even when failing to detect all Positive instances, i.e. not detecting any 

of the attacks, the accuracy score will still have a relatively high value.  

From the above more metrics can be derived, such as the following: 

Specificity  

Specificity or True Negative Rate is another metric that determines the model’s 

ability to avoid false alarms. It is similar to recall, but instead of the proportion of true 

positives to all of the true data points, it’s the proportion of false positives to all of 

the false data points. In our case, it is the ration between the number of timesteps 

correctly classified as safe conditions and the total number of time steps during 

which the system is in safe conditions.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
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The drawback of specificity in imbalanced classification datasets is that it 

determines as more important True Negatives. True Negatives in anomaly detection 

problems are the majority class of the datasets, thus specificity presents very small 

variance and makes it hard to capture the differences in an algorithm’s 

performance. 

F-score 

F-score is the weighted harmonic mean of precision and recall: 

𝐹𝛽 = (1 + 𝛽2)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

where 𝛽 determines the balance between precision and recall, with high values 

favoring recall. 

When 𝛽 = 1 the F-score is called F1-score and it considers equally recall and 

precision. In other words, it takes into account both how well the model makes true 

predictions that are actually true (i.e. how many of the issued alarms were actually 

“under attack” labels) and how many of the total true predictions that model 

correctly predicted (i.e. how many “under-attack” labels out of the total were 

correctly detected).  

The advantage of F-score is that, when using it, the focus is given to true positives, 

false positives and false negatives, while no attention is given to the majority class 

i.e. the true negative group. 

The main disadvantage of F score is that one is unable to distinguish low recall from 

low-precision models when using solely F-score as an evaluation metric.  
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 Machine Learning Algorithms 

2.3.1 Feedforward Neural Networks 

Suppose that (x,y) are points of a function f, where y=f(x). An Artificial Neural 

Network (ANN) is a deep learning algorithm that given some training examples (x,y) 

learns to approximate the function f.  

The ANN’s structure consists of neurons (depicted as nodes) that are organized into 

layers. A neuron’s function is to receive inputs from n sources and then generate 

one output value. The neuron calculates the output by applying an activation 

function (nonlinear transformation) to a weighted sum of input values. Then it sends 

its output to m succeeding neurons.  

 

Figure 3: Structure of an artificial neuron 

One example activation function is the ReLU (Rectified Linear Unit) function which 

is as follows: 

If 𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑘𝑗𝑥𝑘
𝑛
𝑘=0 + 𝑏  is the weighted sum of the input and 𝑜𝑗 is the output of the 

neuron, then 

𝑜𝑗 = {
𝑛𝑒𝑡𝑗 , 𝑛𝑒𝑡𝑗 ≥ 𝜃𝑗

0   , 𝑛𝑒𝑡𝑗 < 𝜃𝑗
, 𝑤ℎ𝑒𝑟𝑒 𝜃𝑗 = 0 

There are many activation functions that can be used in a neuron (see Figure 

below) and they are essential in neural networks, as they introduce non-linear 

properties into the network. This way a neural network can understand more 

complex patterns and give more accurate results.  
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Figure 4: Types of commonly used activation functions in deep learning. 

A set of neurons forms a layer and usually in an ANN there are three kinds of layers: 

the input, hidden and output layer. The input layer is the first layer of the network 

and the one that receives the input data (x). The output layer is the one that 

receives the ANN’s predictions (outputs or 𝑦̂) and the hidden layer is a layer 

between the input and the output. A hidden layer typically contains an activation 

function for training. When a neural network has more than one hidden layers it is 

called a deep neural network.  

 
Figure 5: Typical architecture of an artificial neural network 

As a result, information x flows through the layers of an ANN, until it reaches radically 

transformed the last layer which it outputs a prediction 𝑦̂. The goal of an ANN is to 

adjust its parameters i.e. the weights of the neurons, until its prediction 𝑦̂ is as close 

as possible to the objective 𝑦. Neural networks with different architectures can be 

designed, i.e. width (number of neurons in a layer) and depth (number of hidden 

layers) etc., until complex non-linear functions are learned.  

To measure the performance of a neural network a loss/cost function is defined. The 

loss function usually depicts the error of the predicted value. Depending on the 

nature of the problem a different cost function can be chosen (mean squared error, 

mean absolute error, cross entropy loss). During training, a neural network 
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determines through an iterative process the ideal weights for each input feature 

that minimize the cost function.  

The algorithm used to minimize the cost function is called gradient descent. In 

gradient descent the model’s parameters are adjusted iteratively until finding the 

ones that minimize the loss. The gradients of loss are calculated with a process 

called backpropagation. In backpropagation, first the output values of each node 

are calculated in a forward pass and then the partial derivative of the error with 

respect to each parameter is calculated in a backward pass through the graph.  
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2.3.2 The Convolution Operation 

The convolution operation is a two-step mathematical operation between an input 

matrix and a convolutional filter/kernel. The convolution involves the following: 

1. Element wise multiplication of the kernel and a slice of the input matrix.  

2. Summation of all the values in the resulting product matrix 

The output is called an activation map and has the same shape as the 

convolution filter. The activation map consists of the results of the convolutional 

operations.  

For example, given a 5 × 5 input matrix and a 3 × 3 kernel: 

 

We perform each convolution operation between a 3 × 3 slice of the input matrix 

and the kernel 
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From the above, a convolution is a specialized kind of linear operation and the 

kernel has the same rank as the input matrix. For instance, if the input matrix is a 

28 × 28 matrix, then the kernel can be any 2d matrix with a shape smaller than 

28 × 28. 

2.3.3 Convolutional Neural Network 

Convolutional Neural Networks are neural networks that use the convolution 

operation in place of general matrix multiplication (see “Feedforward Neural 

Networks”) in at least one of their layers. A typical convolutional layer has three 

components: 

1. Convolution stage: This layer performs several convolution operations to 

produce the activation maps. 

2. Detector stage: An activation function is applied to each element of each 

activation map.  

3. Pooling stage: The pooling function is used to modify the output of the 

convolutional layer further. Pooling, like convolution, divides the matrix into 

slices and usually keeps either the maximum or average value across the 

pooled area. As a result, the output matrix is reduced to a smaller matrix. 

For example, suppose the pooling operation divides the convolutional matrix into 

2x2 slices with a 1x1 stride. As the following diagram illustrates, four pooling 

operations take place. Imagine that each pooling operation picks the maximum 

value of the four in that slice: 
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Figure 6: Typical architecture of a Convolutional Neural Network 

To further elaborate, in the Figure above it is depicted a typical convolutional neural 

network. The input layer is an image matrix followed by two convolutional layers 

(Convolution-ReLU-Pooling). Their output is then reshaped to flatten out its spatial 

dimensions resulting in a 1D matrix. That matrix is then used as an input to an ordinary 

feedforward neural network. 

The convolutional kernels’ weights are parameters of the CNN and are obtained 

via training. Without convolutions a neural network would have to learn a weight 

for each input unit. With convolutional filters the algorithm has to learn only the 

weights for each filter, meaning that fewer parameters are stored and the memory 

requirements to train the model are reduced.  

The use of the convolution operation is a characteristic of CNNs that allows them to 

“leverage three important ideas that improve a machine learning system: sparse 

interactions, parameter sharing and equivariant representations”[35]. These 

characteristics have made CNNs very successful in processing data with grid-like 

topography, like time series data (they can be considered as one-dimensional grid 

data), and images (two-dimensional grids of pixels).  
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2.3.4 Introduction to graphs and adjacency matrices 

A graph is data structure for representing relationships. It comprises of nodes (or 

vertices) and edges connected together to represent relational information. 

Formally, a graph 𝐺 is a tuple consisting of a finite set of 𝑉(𝐺) of vertices and a finite 

set 𝐸(𝐺) of edges, where each edge is an unordered pair of vertices. An edge 

between two nodes u and v is often denoted as (u,v). 

For example, the graph illustrated below comprises of 5 nodes and 6 edges. A graph 

is called a directed graph if each edge is associated with a direction (see Figure 7 

below). A directed edge can be considered as a one-way street. On the other side, 

an undirected graph is a graph that the connection order doesn’t matter and it 

can be thought as a graph where each edge is directed.  

 
Figure 7: (a) Undirected graph and (b) directed graph 

Now, let us suppose that 𝐺 is a graph with the vertex set 𝑉 =  {𝑣1, 𝑣2, … , 𝑣𝑛} and the 

edge set 𝐸 =  {𝑒1, 𝑒2, … , 𝑒𝑚}. The adjacency matrix 𝐴(𝐺) of 𝐺 is an 𝑛 × 𝑛 matrix 𝐴(𝐺) =
[𝑎𝑖𝑗  ] in which 𝑎𝑖𝑗  indicates the number of edges joining two vertices 𝑣𝑖 and 𝑣𝑗. The 

Figure below illustrates a graph (a) and its adjacency matrix (b). 

 
Figure 8: (a) A graph G with 5 nodes and 6 edges and (b) the adjacency matrix of graph G 
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2.3.5 Structural Convolutional Neural Networks  

Teh et al. have proposed the Structural Convolutional Neural Network (SCNN) for 

general graph-structured CNNs for time series analysis [5].  In their paper they 

describe their model as a “neural network architecture that defines and uses 

specialized convolutional kernel with an arbitrary definable adjacency matrix.” 

First are defined the following for a graph with 𝐹 number of nodes and the 

adjacency matrix 𝐴 ∈ ℝ𝐹×𝐹: 

𝑦⃗𝑙−1 = [𝑦⃗
1

𝑙−1, … , 𝑦⃗
𝐹

𝑙−1 ]
𝑇

 , previous layer’s output 

𝑦⃗𝑙 = [𝑦⃗
1

𝑙 , … , 𝑦⃗
𝐹

𝑙  ]
𝑇

, current layer’s output 

𝑊⃗⃗⃗⃗𝑙 = [𝑊⃗⃗⃗⃗1

𝑙
, … , 𝑊⃗⃗⃗⃗𝐹

𝑙
 ]

𝑇

, current layer’s weights 

𝑏⃗⃗𝑙 = [𝑏⃗⃗
1

𝑙, … , 𝑏⃗⃗
𝐹

𝑙 ]
𝑇

, current layer’s biases 

where 

𝑦⃗−1 ∈ ℝ𝑇×𝐹×𝑁 , 

𝑦⃗𝑙 ∈ ℝ𝑇−(𝑡−1)×𝐹×𝑀, 

𝑊⃗⃗⃗⃗ 𝑙 ∈ ℝ𝐹×𝑡×𝐹×𝑁×𝑀, 

𝑏⃗⃗𝑙 ∈ ℝ𝐹×𝑀, 
𝑦⃗𝑖

𝑙−1 ∈ ℝ𝑇×1×𝑁 , ∀ 𝑖 = 1,… , 𝐹, 

𝑦⃗𝑖
𝑙 ∈ ℝ(𝑇−(𝑡−1))×1×𝑁, ∀ 𝑖 = 1,… , 𝐹, 

𝑊⃗⃗⃗⃗𝑖
𝑙 ∈ ℝ𝑡×𝐹×𝑁×𝑀, ∀ 𝑖 = 1,… , 𝐹, 

𝑏⃗⃗𝑖
𝑙 ∈ ℝ1×𝑀, ∀ 𝑖 = 1,… , 𝐹. 

The kernel is made up of 𝐹 sub-kernels and each of the sub-kernels 𝑖, which 

corresponds to node 𝐼, has weights 𝑊𝑖
𝑙 with the dimension of 𝑡 × 𝐹 × 𝑁 × 𝑀. The sub-

kernels are slid across the temporal dimension of the input producing an output of 

(𝑇 − (𝑡 − 1)) × 1 × 𝑀 for each node 𝑖. The output is then passed through an 

activation function 𝑔 to produce: 

𝑦⃗𝑖
𝑙 = 𝑔(𝑊⃗⃗⃗⃗𝑖

𝑙 ∗ 𝑦⃗𝑙−1 + 𝑏⃗⃗𝑖
𝑙) 

𝑊⃗⃗⃗⃗𝑖
𝑙 =

[
 
 
 
 
 

 
𝑤⃗⃗⃗𝑖1

𝑙

.

.

.
 𝑤⃗⃗⃗𝑖𝐹

𝑙

 ]
 
 
 
 
 

   

where ∗ is the convolution operation, 

𝑊⃗⃗⃗⃗𝑖
𝑙 ∗ 𝑦⃗𝑙−1 = ∑ 𝑤⃗⃗⃗𝑖𝑗

𝑙 ∗ 𝑦⃗𝑗
𝑙−1

𝐹

𝑗=1

 

and 𝑤⃗⃗⃗𝑖𝑗
𝑙  is the sub-kernel weights for the 𝑖 node with its 𝑗 neighbor. 
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2.3.6 Temporal Graph Convolutional Networks (TGCN) 

Covert et al. proposed in their paper [34] a model (TGCN) that takes into account 

“the graph topology of a structural time series and applies feature extractors that 

are localized and shared over both the temporal and spatial dimensions of the 

input”. 

Inspired by Graph neural networks (GNNs) that use neighborhood aggregation 

schemes, their model is based on a proposed spatio-temporal convolutional (STC) 

layer described below: 

Suppose that the input layer 𝑙 is ℎ𝑙−1 ∈ ℝ𝑇𝑙−1×𝑝×𝑐𝑙−1
, where 𝑇𝑙−1 is the number of time 

points at the previous layer, and ℎ𝑖
𝑙−1 ∈ ℝ𝑇𝑙−1×𝑐𝑙−1

, represents the hidden features 

associated with sequence 𝑖. The STC layer can be used with two different 

propagation rules.  

Both rules begin by applying a 1D convolution (denoted by ∗) with filter 𝑊𝑖𝑛𝑡
𝑙  to each 

sequence of hidden features ℎ𝑖
𝑙−1, resulting in an intermediate set of features 

denoted by 𝑎𝑖
𝑙. Note that filter 𝑊𝑖𝑛𝑡

𝑙  is shared across all sequences in the layer 𝑙. The 

two rules differ in how they handle the aggregation of features from a node and its 

neighbors.  

Rule A aggregates features from the node’s neighborhood including the node itself, 

and then applies nonlinearity g. The aggregation operation (e.g. mean, max) is 

performed along the spatial dimension, so that the temporal and channel 

dimension are retained.  

𝑹𝒖𝒍𝒆 𝑨 

𝑎𝑖
𝑙 = 𝑊𝑖𝑛𝑡

𝑙 ∗ ℎ𝑖
𝑙−1 

𝑧𝑖
𝑙 = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ({𝑎𝑗

𝑙𝑓𝑜𝑟 𝑗 𝑖𝑛 𝑁(𝑖)}) 

ℎ𝑖
𝑙 = 𝑔(𝑧𝑖

𝑙) 

Rule B first aggregates features across a node’s neighbors, and then combines 

these features with the node’s own features by concatenating them and passing 

them through an additional nonlinear operation, parameterized by 𝑊𝑐𝑜𝑚𝑏
𝑙 . This 

prevents the node’s feature from being “diluted” by the features from its 

neighboring nodes.  

𝑹𝒖𝒍𝒆 𝑩 

𝑎𝑖
𝑙 = 𝑊𝑖𝑛𝑡

𝑙 ∗ ℎ𝑖
𝑙−1 

𝑧𝑖
𝑙 = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ({𝑎𝑗

𝑙𝑓𝑜𝑟 𝑗 𝑖𝑛 𝑁(𝑖) \ 𝑖 }) 

ℎ𝑖
𝑙 = 𝑔2 (𝑊𝑐𝑜𝑚𝑏

𝑙 ∗ 𝑔1([𝑧𝑖
𝑙 , 𝑎𝑖

𝑙])) 

The neighborhood of node 𝑖 is defines as 𝑁(𝑖) = { 𝑗   𝑠. 𝑡.   𝐴𝑖𝑗 = 1}, i.e. it’s the set of 

nodes that have and edge to 𝑖. The only parameter for rule 𝐴 is the convolutional 

kernel 𝑊𝑐𝑜𝑚𝑏
𝑙 ∈ ℝ𝑡2

𝑙×𝑐𝑙×𝑐𝑙−1
. The two parameters for rule 𝐵 are 𝑊𝑖𝑛𝑡

𝑙 , and the second 

convolutional kernel 𝑊𝑐𝑜𝑚𝑏
𝑙 ∈ ℝ𝑡2

𝑙×𝑐𝑙×(2∗𝑐𝑙). In rule 𝐴 the hyperparameters are the 

choice of nonlinearity 𝑔, the temporal kernel size 𝑡𝑙, and the number of channels 𝑐𝑙. 

Rule 𝐵 has the additional hyperparameter 𝑡2
𝑙 , which could simply be set to 1 or 𝑡𝑙, 

as well the possibility of a second nonlinearity. For the two rules, note that filters are 

shared both spatially and temporally.  
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The adjacency matrix of the sequences is used when we aggregate features across 

𝑁(𝑖). An interesting property of STC layers is the independence between the number 

of parameters and the input adjacency matrix, which allows a TGCN model to 

accept inputs wit arbitrary graph topologies.  

In the paper discussed, the authors also propose incorporating information not only 

from nodes that are directly connected, but also from nearby nodes that are 

reachable within 𝑘 steps. To obtain the k-step reachability matrix, they use the 

operation 𝐴(𝑘) = 𝟙 (𝐴𝑘) where 𝐴𝑘 is the adjacency matrix to the kth power, 𝟙(∙) is an 

element-wise indicator function. Setting 𝑘 > 1 enables information to spread 

through the graph using fewer layers.  

2.3.7 Autoencoders 

An autoencoder is a neural network that is trained to attempt to copy its input to its 

output. Internally, it has a hidden layer h that describes a code used to represent 

the input. The network may be viewed as consisting of two parts: an encoder 

function ℎ = 𝑓(𝑥) and a decoder that produces a reconstruction 𝑟 = 𝑔(ℎ). 

 
Figure 9: The general structure of an Autoencoder 

If an autoencoder succeeds in simply learning to set 𝑔(𝑓(𝑥)) = 𝑥 everywhere, then 

it is not especially useful. Instead, autoencoders are designed to be unable to learn 

to copy perfectly. Usually they are restricted in ways that allow them to copy only 

approximately, and to copy only input that resembled the training data. Because 

the model is forced to prioritize which aspects of the input should be copies, it often 

learns useful properties of the data.  

Copying the input to the output may sound useless, but we are typically not 

interested in the output of the decoder. Instead, we hope that training the 

autoencoder to perform the input copying task will result in h taking on useful 

properties.  

One way to obtain useful features from the autoencoder is to constrain h to have a 

smaller dimension than x. An autoencoder whose code dimension is less that the 

input dimension is called, undercomplete. Learning an undercomplete 

representation forces the autoencoder to capture the most salient features of the 

training data.  

Unfortunately, if the encoder and decoder are allowed too much capacity, the 

autoencoder can learn to perform the copying task without extracting useful 

information about the distribution of the data.  

Autoencoders can be used for a wide variety of applications. Commonly, they are 

used in problems like dimensionality reduction, data denoising, feature extractions 

and anomaly detection.   
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2.3.8 Support Vector Data Description Classifier 

The Support Vector Data Description (SVDD) classifier is designed to create a tight 

spherical boundary around any numerical multidimensional data using Kernel 

functions. By calculating the relative location of a new observation to the spherical 

boundary, one can decide whether the observation belongs to the fitted data or is 

considered an outlier. The SVDD classifier requires two tuning parameters. The first is 

the C parameter. When 𝐶 ≥ 1, it means that no outliers are expected in the training 

dataset. Then, for 𝐶 ≥ 1, the SVDD solves the following optimization problem: 

𝑚𝑖𝑛𝑅
𝑅,𝛼

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝜑(𝑥𝑖) − 𝑎‖ ≤ 𝑅 

where R and a=decision variables; and 𝜑(𝑥𝑖) =  function mapping the data to a 

higher-dimensional space. Herein, 𝜑 = radial basis function: ∑ exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
)𝑖,𝑗  for 

a pair of samples in the datasets 𝑥𝑖 , 𝑥𝑗 ; and 𝛾 = second tuning parameter for the 

SVDD algorithm. In the prediction stage after the optimal decision variable 𝑅𝑜𝑝𝑡 , 𝛼𝑜𝑝𝑡 

are determined, the decision value (DV) for any test instance 𝑥 is given as detailed 

in the following equation: 

𝐷𝑉 = ‖𝜑(𝑥𝑖) − 𝛼𝑜𝑝𝑡‖ − 𝑅𝑜𝑝𝑡 

where the boundary for the classification is obtained when 𝐷𝑉 = 0. 

SVDD is useful for obtaining a geometric description of data and in most 

applications also for detecting outliers. SVDD is used in domains where most of the 

data are in one class. Applications of SVDD include equipment prognostics, 

cybersecurity and intrusion detection, fraud identification and others. 
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3. DATA DESCRIPTION 

 The network of C- Town  

The network of C-Town was first introduced in the “Battle of the Water Calibration 

Networks”[36]. It is based on a real-world water distribution network and consists of 

one reservoir, seven cylindrical tanks (T1-T7), one actuated valve (V2), 429 pipes, 

388 nodes, and 5 pumping stations (S1-S5) for a total of 11 pumps (PU1-PU11). 

Control rules of the network are programmed into the Programmable Logic 

Controllers (PLCs). C-Town has nine PLCs that record, receive and send information 

about tanks, pumps and valves based on their control logic. Table 1 showcases the 

sensors and actuators controlled by the PLCs in C-Town. PLCs share with each other 

information related to their control rules and send their records to the Supervisory 

Control And Data Acquisition system (SCADA). SCADA’s role is to coordinate the 

operations and store the readings provided by the nine PLCs. Since SCADA is a 

remote operating system, it is part of the cyber network of C-town, thus making the 

WDN susceptible to cyber-attacks. 
 

Table 1: Sensors and actuators monitored/controlled by the PLCs in C-Town, Source:[7] 

PLC Sensor Actuators (Controlling sensor)  

PLC1 - PU1 (T1), PU2(T1) 

PLC2 T1 - 

PLC3 T2 V2(T2), PU4(T3), PU5(T3), PU6(T4), PU7(T4) 

PLC4 T3 - 

PLC5 - PU8(T5), PU9(-), PU10(T7), PU11(T7) 

PLC6 T4 - 

PLC7 T5 - 

PLC8 T6 - 

PLC9 T7 - 

The hydraulic behavior of C-town can be simulated by using EPANET, an open 

source software that performs hydraulic analysis on WDSs. EPANET is a demand-

driven analysis tool, and to perform simulations the water demand at each node of 

the network at each time step is required. The water demand of a node at each 

time step is calculated by multiplying the base demand of a node by its 

corresponding demand pattern.  

Base demand is the average or nominal demand for water at each node, while the 

demand pattern is a time pattern used to characterize time variation in demand at 

each node. The demand pattern provides multipliers that are applied to the base 

demand to determine actual demand in a given time period. A network can have 

different base demands at each node and multiple demand patterns. C-Town is 

divided into five DMAs (District Metered Areas), each with its own demand pattern.



 

30 Data Description 

 

 

 

 

 

 

 

 
Figure 10: The network of C-Town 
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Figure 11: District Metered Areas (DMAs) of C-Town 
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 The BATADAL Competition (BATle of the Attack 

Detection ALgorithms) 

C-Town was again featured as a benchmark network in the BATtle of the Attack 

Detection ALgorithms (BATADAL), an international competition on cyber security of 

water distribution systems held at the World Environmental and Water Resources 

Congress (Sacramento, California, May 21-25, 2017) [7]. One of the outcomes of this 

competition is the openly available resources for the study of CPAs on WDNs, which 

are the following:  

-Three datasets with SCADA readings from three different simulations: 

dataset03: this dataset contains readings from a one-year EPANET simulation. During 

this simulation the network was only under safe conditions. 

dataset04: this dataset has SCADA readings with a span of 6 months, containing 7 

attacks. 

testdataset: a 3-month dataset with 7 different attacks. 

All three datasets contain hourly SCADA readings from 43 variables of the network. 

These variables are: 

• water level at all seven tanks of the network (T1-T7) 

• status and flow of all 11 pumps (PU1-PU11) and the actuated valve (V2) of 

the network  

• pressure at 24 pipes of the network (corresponding to the inlet and outlet 

pressure of the pumps and the actuated valve) 

-A table describing each attack scenario featured in the datasets “dataset04” and 

“testdataset” 

-An EPANET input file named “ctown.inp” containing information (topographical 

and hydrological) about the distribution system. Among the information in the C-

Town EPANET input file are: 

• Monthly water base demands given at each node of the network. 

• One week of hourly demand patterns for each of the five DMAs. 

The SCADA readings provided in the available datasets, have been simulated using 

demand patterns different from the ones included in the “ctown.inp” EPANET file 

and are not publicly available. Furthermore, the datasets containing attacks have 

been simulated using epanetCPA, a MATLAB toolbox that allows to design a variety 

of cyber-attacks and simulate with EPANET the hydraulic response of the WDN -

[21],[37], [38]. 

 The challenge of the competition 

The BATADAL contestants were asked to create algorithms to detect all the attacks 

contained in the datasets presented above. The algorithms’ performance was 

evaluated with a combination of metrics: time-to-detection and classification 

accuracy.  

The first metric, time-to detection is the following: 
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𝑆𝑇𝑇𝐷 = 1 −
1

𝛮𝐴

∑
𝑇𝑇𝐷𝑖

𝛥𝛵𝑖

𝑁𝐴

𝑖=1

 

where 𝑁𝐴 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑎𝑐𝑘𝑠, 
𝑇𝑇𝐷𝑖

𝛥𝛵𝑖
= the time to detection of attack 𝑖 as a ratio of 

the total attack duration 𝛥𝛵𝑖.  

The second metric, classification performance is defined as: 

𝑆𝐶𝑀 =
𝑇𝑃𝑅 + 𝑇𝑁𝑅

2
 

where 𝑇𝑃𝑅 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒, i.e. the ratio of true positives (TP) to the sum of true 

positives (TP) and false negatives (FN) and 𝑇𝑁𝑅 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒, i.e. the ratio of 

true negatives (TN) to the sum of true negatives (TN) and false positives (FP). 

The two metrics are combined into a single score: 

𝑆 = 𝛾𝑆𝑇𝑇𝐷 + (1 − 𝛾)𝑆𝐶𝑀 

where 𝛾 = 0.5 is a coefficient that determines the relevant importance of the two 

evaluation metrics (here considered equally important). 

A naïve algorithm that predicts the system to be always in safe conditions gets a 

score S equal to 0.25 (𝑆𝑇𝑇𝐷 = 0, 𝑆𝐶𝑀 = 0.5). On the other hand, flagging the system as 

always under attack yields a value of 𝑆 equal to 0.75 (𝑆𝑇𝑇𝐷 = 1, 𝑆𝐶𝑀 = 0.5). This 

showcases the fact that 𝑆 is biased towards attack identification, since the 

consequences of failing to disclose an attack are deemed more costly than issuing 

false alarms.  

From the above, an algorithm with a score 𝑆 larger that 0.75 means that it 

performed better than the naïve detection mechanisms. 
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4. METHODOLOGY 
 Methodology Outline 

The goal of this dissertation is to contribute to the research of cyber-physical attacks 

detection on simulation-based data on water distribution systems. We do that by: 

(a) Generating new, more realistic datasets for the study of cyber-physical 

attack detection on water distribution networks. To do that, we perform 

simulations using stochastically generated demand patterns. 

(b) Evaluating the performance of published algorithms for CPA detection on 

WDNs on our, more realistic datasets. We also compare the algorithms’ 

performance on our datasets with their performance on naive, non-realistic 

datasets. Moreover, we also report the algorithms’ performance on pre-

existing, non-realistic datasets to evaluate each algorithm holistically.  

(c) Exploring the use of Spatio-Temporal Graph Neural Networks on the CPA 

detection on WDNs problem. 

To apply this methodology we build upon the simulated datasets featured on 

BATADAL, an international competition on cyber-security of water distribution 

networks [7].  

The practical application of the methodology is divided into two parts: 

The first part is about creating the new, more realistic datasets. To do that we: 

A. Generate synthetic demand patterns using Kossieris et al. methodology [2] 

B. Design attack scenarios similar to the ones featured in BATADAL [7]. 

C. Run simulations to obtain the hydraulic behavior of C-Town [38].  

The second part is about detecting attacks using different machine learning 

algorithms. We use three different approaches: 

A. Two published machine learning approaches that have been implemented 

successfully to the BATADAL datasets by Taormina et al. and Kadosh et al. 

The first applies an Autoencoder to detect the attacks [4], while the other 

an SVDD classifier [3]. 

B. A third approach that hasn’t been implemented to a water distribution 

network’s CPA detection problem yet. It is based on the works of Teh et al.[5] 

and Covert et al [34] on graph-structured time series data. 

 Software and Code Repositories  

Most of our research relies on open source software. Synthetic water demands were 

generated using anySim1, an R package developed by Tsoukalas and Kossieris [39]. 

The attack scenarios were simulated in epanetCPA2, a MATLAB toolbox developed 

by Taormina et al. [7], [21]. The SVDD code is available for MATLAB in the published 

article [3]. The code for the Autoencoder3 was developed by Taormina et al [4] 

using the Keras library.  Finally, the code for the SCNN [5] and TGCN [34] layers was 

kindly provided by Ian Covert, PhD student at University of Washington. The code 

for our model, based on SCNNs, was written using the deep-learning framework 

PyTorch.  

 
1 https://github.com/itsoukal/anySim 
2 https://github.com/rtaormina/epanetCPA 
3 https://github.com/rtaormina/aeed 

https://github.com/itsoukal/anySim
https://github.com/rtaormina/epanetCPA
https://github.com/rtaormina/aeed
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5.PART I: CREATING NEW DATASETS 

 Generating synthetic demands 

The synthetic demand patterns are generated using the methodology proposed by 

Kossieris et al. [2]. This stochastic modelling strategy builds upon Nataf’s joint 

distribution model and was chosen because it preserves both the distributional and 

dependence properties of a process. Based on the available hourly one-week 

demand patterns of C-Town, synthetic demand patterns are generated by 

selecting an appropriate probability and autocorrelation function that resemble 

the marginal and dependence properties of demand patterns of BATADAL 

datasets. The generation of synthetic series was conducted via anySim an R 

package, developed by Tsoukalas and Kossieris, [39] which implements the 

aforementioned methodology.   

To evaluate the performance of ML models with the use of stochastically generated 

demand patterns, we also need a non-stochastically generated dataset. Since the 

demand patterns that the BATADAL datasets originated from, are not publicly 

available, a new benchmark dataset was created: To create a naïve demand 

pattern with n-week duration, the one-week hourly demand patterns available from 

the ctown.inp file are repeated n-times and each of the hourly demands are 

multiplied with a random4 number between 0.90 and 1.10. The resulting demand 

pattern is essentially n noisy versions of the available one-week demand pattern, 

concatenated into a single n-week demand pattern.  

To be more precise, the goal is to create datasets corresponding to the ones 

available in BATADAL, meaning that we need to run 12, 6 and 3-month simulations 

on epanetCPA. Simulations with a specific duration require demand patterns of 

equal length, thus we also need 3 demand pattern datasets with a horizon of 12, 6 

and 3 months respectively.  

To gain more insight of the effect of stochastically generated demand patterns in 

the CPA detection algorithms, two different categories of synthetic demand 

patterns are generated. The distinguishing feature of each DP category is the 

marginal distribution from which it was generated. The first category of synthetic 

demand patterns is generated using the Beta probability distribution function, while 

the second category using the Gamma probability distribution function. Demand 

patterns simulated using the Beta distribution resemble a lot more the available one-

week demand patterns, while demand patterns generated using the Gamma 

distribution function present larger fluctuations. Considering the non-stochastic 

dataset: 

3 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 ∗ 3 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑖. 𝑒. 12, 6 𝑎𝑛𝑑 3 𝑚𝑜𝑛𝑡ℎ𝑠) = 

9 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠. 

The resulting demand pattern datasets are summarized in the table below:

 
4 Using the RANDBETWEEN() formula in MS Office Excel 
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Table 2: Summarization of the generated demand pattern datasets 

Name Duration 

(months) 

Generation 

Environment 

Probability 

Distribution 

Generation Method 

dempat_b12 12 anySim Beta Stochastic 

dempat_b06 6  anySim Beta Stochastic 

dempat_b03 3 anySim Beta Stochastic 

dempat_g12 12 anySim Gamma Stochastic 

dempat_g06 6 anySim Gamma Stochastic 

dempat_g03 3 anySim Gamma Stochastic 

dempat_r12 12 MS Excel Random1 Non-stochastic 

dempat_r06 6 MS Excel Random1 Non-stochastic 

dempat_r03 3 MS Excel Random1 Non-stochastic 

 

(a) 

 

(b) 

 

(c) 

 
Figure 12: Hourly water demand variation in DMA_1 of C-Town during a year across the 

different demand pattern categories. (a) dempat_r12 – demand pattern generated non-

stochastically, (b) dempat_b12 – demand pattern generated using the Beta distribution as 

the marginal distribution function, (c) dempat_g12 – demand pattern generated using the 

Gamma distribution function. 

The charts above depict three demand pattern datasets from three different 

demand pattern categories. Note how the demand pattern that was generated 

non-stochastically has a fairly regular motif, while the stochastically generate 

demand patterns present larger fluctuations and higher demand peaks.   

0,5

1
dempat_r12

0,5

1
dempat_b12

0,5

1
dempat_g12
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 Generating cyber-physical attacks and running 

simulations 

To create attack scenarios similar to the ones featured in BATADAL, we use 

epanetCPA [21]. First, the available attack descriptions were translated into 

executable by epanetCPA attack scenarios. Then, having available the attack 

scenarios, demand patterns and the C-Town EPANET input file for each dataset, we 

run the epanetCPA simulations to obtain the hydraulic response of the network. 

Note that the simulated SCADA readings during an attack are altered in an attempt 

to conceal the physical impact of the attack to the network thus making the CPA 

detection a challenging task. 

The table below shows that the attacks in BATADAL include malicious activation of 

hydraulic actuators, change of actuator settings and deception attacks. 

Deception attacks are used to manipulate the information sent or received by 

sensors and PLCs and to alter the information received by SCADA. 

 
Table 3: Attack scenarios featured in the BATADAL datasets. 

Identifier 

Starting 

time 

(dd/mm/YY 

HH) 

Ending time 

(dd/mm/Y

Y HH) 

Duration 

(h) 
Attack Description 

SCADA 

concealment 

(altered 

readings) 

1 

13/09/16 23 16/09/16 00 50 Attacker changes L_T7 

thresholds controlling PU10 

and PU11 by altering 

SCADA transmission to 

PLC5. This causes low 

levels in T7. 

Replay attack 

(L_T7). 

2 

26/09/16 11 27/09/16 10 24 Like Attack 1 Replay attack 

(L_T7, F_PU10, 

F_PU11, S_PU10, 

S_PU11).  

3 

09/10/16 09 11/10/16 20 60 Attacker alters L_T1 

readings arrings to PLC2 

with a constant low level. 

PLC1 recieves the 

manipulated readings 

from PLC2 and keeps 

Pumps PU1 and PU2 on, 

driving T1 to overflow. 

Polyline to 

offset L_T1 

increase. 

4 

29/10/16 19 02/11/16 16 94 As in Attack 3  Replay attack 

(L_T1, F_PU1, 

F_PU2, S_PU1, 

S_PU2, P_J269, 

P_J280).  

5 

26/11/16 17 29/11/16 04 60 Working speed of PU7 

reduces to 0.9 of nominal 

speed causes lower water 

levels in T4 

- 

6 
06/12/16 07 10/12/16 04 94 As in Attack 5, but speed 

reduced to 0.7 

Replay attack 

(L_T4). 

7 

14/12/16 15 19/12/16 04 110 As in attack 6 Replay attack 

(L_T1, F_PU1, 

F_PU2, S_PU1, 

S_PU2).  
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Identifier 

Starting 

time 

(dd/mm/YY 

HH) 

Ending time 

(dd/mm/Y

Y HH) 

Duration 

(h) 
Attack Description 

SCADA 

concealment 

(altered 

readings) 

8 

16/01/17 09 19/01/17 06 70 Attacker changes L_T3 

thresholds controlling PU4 

and PU5 by gaining 

control of PLC3. Low levels 

in T3. 

Replay attack 

(L_T3, F_PU4, 

F_PU5, S_PU4, 

S_PU5). 

9 

30/01/17 08 02/02/17 00 65 Attacker alters L_T2 

readings arriving to PLC3, 

which reads a constant 

low level and forces Valve 

V2 open, leading T2 to 

overflow. 

Polyline to 

offset L_T2 

increase. 

10 
09/02/17 03 10/02/17 09 31 Malicious activation of 

Pump PU3. 

- 

11 12/02/17 01 13/02/17 07 31 As in Attack 10. - 

12 

24/02/17 05 28/02/17 08 100 As in Attack 9. Replay attack 

(L_T2, F_V2, 

S_V2, P_J422, 

P_J14) 

13 

10/03/17 14 13/03/17 21 80 Attacker changes L_T7 

thresholds controlling PU10 

and PU11 by gaining 

control of PLC5, causing 

the pumps to switch 

continuously. 

Replay attack 

(L_T7, F_PU10, 

F_PU11, S_PU10, 

S_PU11, P_J317, 

P_J307). Inlet 

pressure 

(P_J307) 

concealment 

terminates 

before that of 

other variables. 

14 
25/03/17 20 27/03/17 01 30 Alteration of T4 signal 

arriving at PLC6.  

- 

In BATADAL each dataset has its own attack scenarios: 

“dataset03” has no attacks (12-month dataset) 

“dataset04” has 7 attacks (1-7) and has a 6-month duration 

“testdataset” has 7 attacks (8-14) with a 3-month duration 

As a result, the duration of each simulation defines the attack scenarios it will 

contain. One-year simulations do not contain any attacks, 6-month simulations 

contain attacks 1-7 and 3-month simulations contain attacks 8-14. The starting time 

and duration of each attack is the same as in the BATADAL datasets.  

Therefore, the resulting simulations are nine with six of them containing attacks and 

three representing the hydraulic behavior of the network under normal conditions. 

In the table below are summarized the basic characteristics of all the datasets in 

our disposal. 
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Table 4: Available datasets summarization 

Dataset Duration (months) Attacks Demand Pattern Category Source 

dataset_r12 12 None non-stochastic  epanetCPA simulation 

dataset_r06 6 1-7 non-stochastic epanetCPA simulation 

dataset_r03 3 8-14 non-stochastic epanetCPA simulation 

dataset_b12 12 None stochastic (Beta) epanetCPA simulation 

dataset_b06 6 1-7 stochastic (Beta) epanetCPA simulation 

dataset_b03 3 8-14 stochastic (Beta) epanetCPA simulation 

dataset_b012 12 None stochastic (Gamma) epanetCPA simulation 

dataset_g06 6 1-7 stochastic (Gamma) epanetCPA simulation 

dataset_g03 3 8-14 stochastic (Gamma) epanetCPA simulation 

dataset03 12 None non-stochastic BATADAL 

dataset04 6 1-7 non-stochastic BATADAL 

testdataset 3 8-14 non-stochastic BATADAL 

To further elaborate on the process of translating an attack scenario into an 

epanetCPA one and to showcase what the output of each simulation is, some of 

the key steps taken are described below: 

First a table is constructed that breaks down the basic characteristics of each 

attack. This is a critical step towards implementing the attack scenarios described 

on BATADAL. 

 
Table 5: Basic characteristics of each attack scenario in terms of Target-Action-Effect 

ATTACK TARGET ACTION EFFECT 

epanetCPA  

ATTACK CATEGORY 

1 SCADA to PLC9 

Alter PU10, PU11 activation 

levels 

PU10, PU11 off (T7 

level decreases) Attack On Control 

 PLC9 to SCADA 

Replay T7 level from the 

previous 48 h to SCADA SCADA deception 

Attack On 

Communication 

2 SCADA to PLC9 

Alter PU10, PU11 activation 

levels 

PU10, PU11 off (T7 

level decreases) Attack On Control 

 PLC9 to SCADA 

Replay T7 level from the 

previous 48 h to SCADA SCADA deception 

Attack On 

Communication 

 PLC5 to SCADA 

Replay PU10 & PU11 flow and 

status from the previous 48 h to 

SCADA SCADA deception 

Attack On 

Communication 

3 PLC2 to PLC1 

Report T1_level = 0.5 m (low 

level) to PLC1  

PU1 & PU2 on (T1 

level increases) 

Attack On 

Communication 

 PLC2 to SCADA 

Report T1 level with a -2.0 m 

offset SCADA deception 

Attack On 

Communication 

4 PLC2 to PLC1 

Report T1_level = 0.5 m (low 

level) to PLC1  

PU1 & PU2 on (T1 

level increases) 

Attack On 

Communication 

 PLC1 to SCADA 

Replay T1 level, PU1 & PU2 flow 

and status, and J269 & J280 

pressure from the previous 48 h 

to SCADA SCADA deception 

Attack On 

Communication 

5 PU7 

Speed of PU7 reduced to 0.9 of 

its nominal speed T4 level decreases Attack On Actuator 

6 PU7 

Speed of PU7 reduced to 0.7 of 

its nominal speed T4 level decreases Attack On Actuator 
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ATTACK TARGET ACTION EFFECT 

epanetCPA  

ATTACK CATEGORY 

 PLC6 to SCADA 

Replay T4 level from the 

previours 48 h SCADA deception 

Attack On 

Communication 

7 PU7 

Speed of PU7 reduced to 0.7 of 

its nominal speed T4 level decreases Attack On Actuator 

 PLC2 to SCADA 

Replay T1 level from the 

previous 48 h SCADA deception 

Attack  On 

Communication 

 PLC1 to SCADA 

Replay PU1 & PU2 flow and 

status from the previous 48 hours SCADA deception 

Attack On 

Communication 

8 PLC3 Alter PU4 & PU5 activation levels 

PU4 & PU5 off (T3 

level decreases) Attack On Control 

 PLC4 to SCADA 

Replay T3 level from the 

previous 48 h SCADA deception 

Attack On 

Communication 

 PLC3 to SCADA 

Replay PU4 & PU5 flow and 

status from the previous 48 h SCADA deception 

Attack On 

Communication 

9 Sensor T2 

Report T2 level = 0.5 m (low 

level) PLC3 deception Attack On Sensor 

 PLC3 to SCADA 

Report T2 level with a -2.0 m 

offset SCADA deception 

Attack On 

Communication 

10 PU3 Turn PU3 on PU3 on Attack On Actuator 

11 PU4 Turn PU3 on PU3 on Attack On Actuator 

12 Sensor T2 

Report T2 level = 0.5 m (low 

level) V2 on Attack On Sensor 

 PLC3 to SCADA 

Replay T2 level, V2 flow and 

status and J422 & J14 pressure 

from the previous 48 h SCADA deception 

Attack On 

Communication 

13 PLC5 

Alter PU10, PU11 activation 

levels 

PU10, PU11 switch 

on/off continuously Attack On Control 

 PLC9 to SCADA 

Replay T7 level from the 

previous 48 h to SCADA SCADA deception 

Attack On 

Communication 

 PLC5 to SCADA 

Replay PU10 & PU11 flow and 

status and J317 & J307 pressure 

from the previous 48 h to 

SCADA. The replay attack of 

J307 terminates earlier SCADA deception 

Attack On 

Communication 

14 PLC6 to PLC3 Alter T4 signal arriving to PLC6  T6 level increasing 

Attack On 

Communication 

Then each action is translated into epanetCPA executable scenarios. For instance, 

the attack #12 is implemented using two attack categories on epanetCPA: 

1. Attack on a Sensor: The sensor monitoring the water level of Tank 2, transmits 

a constant low level equal to 0.5 m. According to the C-Town control rules 

Valve V2 is forced to open. 

 
2. Attack on Communication: The measurements sent by the sensors reporting 

L_T2, F_V2, S_V2, P_J422 and P_J14, to SCADA, are substituted with data 

recorded during the same hour, two days before.  

 

Similarly: 
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Communication, PLC3-F_V2-SCADA,   TIME==1230, TIME==1329, replay 48 0 120 0 

Communication, PLC3-P_J422-SCADA, TIME==1230, TIME==1329, replay 48 0 120 0 

Communication, PLC3-P_J14-SCADA,  TIME==1230, TIME==1329, replay 48 0 120 0 

Finally, having available the demand patterns and the attack scenarios we can run 

the epanetCPA simulations. The effect of the attacks on the WDS can be 

showcased with an extract from “dataset_g03” during attack #12: 

 

For more information, all attack scenarios and their effect on each dataset are 

available in Appendix. 
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6. PART II: DETECTING ATTACKS 

In this dissertation the cyber-physical attack detection is done utilizing three 

different approaches. More specifically: 

A. Two published machine learning approaches that have been implemented 

successfully to the BATADAL datasets by Taormina et al. and Kadosh et al. 

The first applies an Autoencoder to detect the attacks [4], while the other 

an SVDD classifier [3]. 

B. A third approach that hasn’t been implemented to a water distribution 

network’s CPA detection problem yet. It is based on the works of Teh et al.[5] 

and Covert et al [34] on graph-structured time series data. 

 Support Vector Data Description Classifier 

Kadosh et al. proposed a one-class cyber-attack detection system (OCDS) using a 

Support Vector Data Description Classifier (SVDD) [3]. SVDD creates a spherical 

boundary around a numeric multi-dimensional dataset. By training SVDD with data 

under normal conditions, a boundary is created that can be used to separate 

anomalies (cyber-attacks) from data that are under normal condition operation.  

The performance of the classification algorithm relies heavily on the chosen group 

of features. For that reason, the authors train the model using features of the WDS 

that are carefully selected based on the physical understanding of its topology. To 

do that, C-Town’s five DMAs are utilized to assemble five groups of features. Each 

DMA’s group of features is used as an input to a different classifier, meaning that a 

different model is constructed for each DMA. 

To detect situations where pumps’ control rules are violated (given that the control 

rules are a function of tanks’ volumes), the authors added two extra features in their 

model. The first is the amount of storage in the DMA tanks at each time. While the 

second is the average inflow for each DMA. Average inflow in a DMA is used to 

avoid the overestimation of a DMA’s inflow due to the sparse SCADA readings 

available (every 1 hour).  

Each feature is defined below as: 

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡: 𝛥𝑉𝑡 = 𝑉𝑡+1 − 𝑉𝑡 ,   

where,  

𝑉𝑡: 𝑡ℎ𝑒 𝑡𝑎𝑛𝑘 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 , 

𝑉𝑡: 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑜𝑙𝑢𝑚𝑒𝑠 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 𝑜𝑛 𝑡𝑎𝑛𝑘𝑠 𝑖𝑛 𝑎 𝐷𝑀𝐴. 

and 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑓𝑙𝑜𝑤: 𝑄̅𝑡
𝑖𝑛 = 0.5 ∙ (𝑄̅𝑡+1

𝑖𝑛 + 𝑄̅𝑡
𝑖𝑛) 

where,  

𝑄̅𝑡
𝑖𝑛: 𝑖𝑛𝑓𝑙𝑜𝑤 𝑓𝑜𝑟 𝑡ℎ𝑒 𝐷𝑀𝐴 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡.
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Furthermore, to tackle the varying magnitudes and correlations of the demands 

during the day, each hour of the day has a dedicated classifier. That means that 

5 𝐷𝑀𝐴𝑠 × 24 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 = 120 different classifiers were trained. The DMA-based 

classifiers take into account the spatial variability, while the hourly-based consider 

the temporal variability of the WDS.  

Each SVDD constructs a boundary for each DMA based on the attack-free training 

dataset. After the training, when we input an unknown to the SVDD sample, it 

outputs the distance (DV) of that sample from the boundary. If the distance is 

positive it means that the sample is out of the boundary, i.e. anomalous. A different 

distance is calculated for each DMA. To detect the attacks the maximum distance 

across the five DMAs is kept. Then given the fact that an adjacent sequence of 

positive distances increases the likelihood of an attack the authors use a moving 

average lag L, to derive a smoother aggregated DV. When the aggregated 

distance is above a threshold, TH, then the sample is identified as under attack. Both 

L and TH are hyperparameters of the SVDD. To choose the values of these 

hyperparameters the authors apply an automatic numerical process that choses 

the combination of the hyperparameters that perform better in detecting the 

attacks of the 6-month dataset. Finally, they test their algorithm using the 

“test_dataset” that has a 3-month horizon and seven attacks.  

The metric score used to characterize the performance and to tune the L and TH 

hyperparameters, is the S score as defined in BATADAL.  

In our experiments we evaluate the performance of the SVDD when trained with 

stochastically and non-stochastically generated datasets. More specifically, we 

train four different SVDD classifiers (equal to the number of attack-free datasets we 

have available) and evaluate their performance on the four 3-month test sets 

(dataset_r03/b03/g03 and batadal_03). 

Table 6 shows the performance of each SVDD classifier on the test datasets. The first 

thing to notice is that (based on the S score) the classifier trained with the “batadal” 

dataset, fails to generalize on our datasets. Furthermore, the classifier trained with 

the non-stochastically generated dataset “random” seems to perform generally 

better on all test datasets. 

However, after a visual inspection of the results, we notice that, the SVDD classifier, 

no matter the training set used, is prone to issuing a very large number of false 

positives. The reason behind this phenomenon might be that either the SVDD 

classifier is not a robust algorithm for anomaly detection regarding this particular 

problem, or that the S score used to optimize the hyperparameters is a misleading 

metric.  

For future research we propose that the hyperparameters TH and L are tuned using 

the F1 score and for now, we deem this algorithm as unsuccessful.  
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Table 6: SVVD models' performance 

train batadal train random train beta train gamma 

test batadal test batadal test batadal test batadal 

  The Train Score 

is 0.956   

The Train Score 

is 0.929   

The Train Score is 

0.924   

The Train Score 

is 0.919 

  The Test Score 

is 0.954   

The Test Score 

is 0.932   

The Test Score is 

0.919   

The Test Score 

is 0.885 

  The optimal L is 

11    

The optimal L is 

8    

The optimal L is 

10    

The optimal L is 

3  

  The optimal TH 

is 0.018   

The optimal TH 

is 0.013   

The optimal TH is 

0.011   

The optimal TH 

is 0.012 

test random test random test random test random 

  The Train Score 

is 0.956   

The Train Score 

is 0.929   

The Train Score is 

0.924   

The Train Score 

is 0.919 

  The Test Score 

is 0.781   

The Test Score 

is 0.897   

The Test Score is 

0.876   

The Test Score 

is 0.877 

  The optimal L is 

11    

The optimal L is 

8    

The optimal L is 

10    

The optimal L is 

3  

  The optimal TH 

is 0.018   

The optimal TH 

is 0.013   

The optimal TH is 

0.011   

The optimal TH 

is 0.012 

test beta test beta test beta test beta 

  The Train Score 

is 0.956   

The Train Score 

is 0.929   

The Train Score is 

0.924   

The Train Score 

is 0.919 

  The Test Score 

is 0.805   

The Test Score 

is 0.922   

The Test Score is 

0.922   

The Test Score 

is 0.906 

  The optimal L is 

11    

The optimal L is 

8    

The optimal L is 

10    

The optimal L is 

3  

  The optimal TH 

is 0.018   

The optimal TH 

is 0.013   

The optimal TH is 

0.011   

The optimal TH 

is 0.012 

test gamma test gamma test gamma test gamma 

  The Train Score 

is 0.956   

The Train Score 

is 0.929   

The Train Score is 

0.924   

The Train Score 

is 0.919 

  

The Test Score 

is 0.791   

The Test Score 

is 0.903   

The Test Score is 

0.879   

The Test Score 

is 0.881 

  

The optimal L is 

11    

The optimal L is 

8    

The optimal L is 

10    

The optimal L is 

3  

  The optimal TH 

is 0.018   

The optimal TH 

is 0.013   

The optimal TH is 

0.011   

The optimal TH 

is 0.012 
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 Autoencoder 

The second ML model used is an Autoencoder (AE) for CPA detection as proposed 

by Taormina et al. [4]. In the paper, the researchers use an AE to detect the attacks 

of BATADAL. Both the encoder and decoder of the proposed AE are two deep fully 

connected ANNs. In brief, the methodology outline is the following: 

The goal of the AE is to learn a representation of the network under safe conditions. 

Consequently, it is trained to reconstruct its input based on the attack-free dataset 

(dataset03). Since the autoencoder is trained only on attack-free instances, when 

the input contains anomalies, i.e. concealed attacks, the reconstruction error is 

expected to be larger. By defining an error threshold (𝑡ℎ𝑒𝑡𝑎), the network is classified 

as “under attack” when the threshold is surpassed by the average reconstruction 

error of a window of length 𝑛 hours (smoothing window). 

The AE’s architecture consists of a feedforward neural network acting as an 

encoder and another feedforward neural network acting as a decoder. The depth 

and width of each FNN layer is a function between the number of hidden layers (𝑛𝑙) 
and the compression factor (𝑐𝑓). The compression factor is the ratio of the size of 

the input layer (in this case 43, for 43 different SCADA readings) to that of the 

midmost hidden layer hosting the encoded representation. The attack-free dataset 

is split into train and validation set. The validation dataset is used to monitor the 

algorithm’s performance during training and to avoid overfitting. 

Two important hyperparameters of the proposed algorithm are the threshold 𝑡ℎ𝑒𝑡𝑎 

and the window length 𝑛. The threshold 𝑡ℎ𝑒𝑡𝑎 is associated with different percentiles 

of the error distribution of the validation dataset. When the autoencoder outputs 

consecutively in a window length of n hours a reconstruction error greater than 

𝑡ℎ𝑒𝑡𝑎, then the network is classified as under attack.  

Taormina et al. tested quite a few autoencoder architectures and various 

combinations of 𝑡ℎ𝑒𝑡𝑎 and 𝑛 to detect the CPAs of the BATADAL datasets. To 

compare the performance of the different architectures tested they referred to the 

F1 score, instead of the BATADAL S score.  

Applying the Autoencoder on our datasets 

In this study four different autoencoder models are trained. Each model is trained 

using one of the attack-free datasets available. Two thirds of the set are used for 

training and the rest for validation. A development test containing attacks is also 

used to fine-tune the threshold 𝑡ℎ𝑒𝑡𝑎. The train and development datasets have to 

be originated from demand patterns drawn from the same distribution. For instance, 

if the autoencoder is trained with the dataset “dataset_g12” which has been 

simulated using demand patterns with marginal distribution the “Gamma 

distribution”, then the threshold theta should be selected using the corresponding 

6-month dataset, “dataset_g06”. The rest of the datasets containing attacks are 

kept as test datasets to evaluate each autoencoder’s performance. All models use 

a window length of 6 hours before issuing an alarm. This is based on the assumption 
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that we wish to know that the network is under attack, no later than six hours after 

the attack begins5.  

All AEs have the same number of hidden layers and compression factor to obtain 

comparable results. The recommended from the paper [4] values of 𝑛𝐻 and 𝑐𝑓 are 

used as default. 

The only parameter different across the four AEs is the threshold 𝑡ℎ𝑒𝑡𝑎. To select the 

𝑡ℎ𝑒𝑡𝑎 value, first each AE is trained. Then the F1 score of the development test is 

calculated for different values of 𝑡ℎ𝑒𝑡𝑎. The 𝑡ℎ𝑒𝑡𝑎 value corresponding to the highest 

F1 score for the development dataset is selected.  

The table below summarizes the basic characteristics of each AE: 

 
Table 7: Architecture of each Autoencoder model 

Model’s Name Training Dataset 

Development 

Dataset 

(to select 𝒕𝒉𝒆𝒕𝒂 value) 

𝒏𝑯 𝒄𝒇 

random dataset_r12 dataset_r06 5 2 

beta dataset_b12 dataset_b06 5 2 

gamma dataset_g12 dataset_g06 5 2 

batadal dataset03 dataset04 5 2 

From now on beta and gamma AEs will also be referred (for clarity reasons) as AEs 

trained with stochastically generated data, and random and batadal as AEs 

trained with non-stochastically generated data. 

Evaluating the models’ performance 

Evaluating the performance of each AE is not as straightforward as it seems. Neural 

Networks, like AEs, are non-deterministic algorithms that present a variance in their 

training performance. This is because the final outcome of the training depends 

among others, on the random weight initialization, mini batch randomization etc. 

Berg et al. in their paper [40] argue that the training variance is a phenomenon that 

should not be ignored when evaluating the performance of an algorithm. For that 

reason and to draw safer conclusions, each AE is trained 10 times and is evaluated 

in two stages. First by comparing the average performance of each AE and then 

by assessing the best one (out of the 10 trainings) from each category. The 

performance of the AEs is evaluated using the F1 score, instead of the BATADAL S 

score. S score is biased towards attack identification and is insensitive in false alarms. 

Given that a model should not issue many false alarms, S score is not an insightful 

 
5 Generally, larger windows allow for more confident predictions regarding the state of the network and 

decrease the number of false alarms issued due to outliers. However, a prompt attack detection is 

essential. The 6-hour window here is selected arbitrarily and not optimized, on the basis that the shortest 

attack scenario lasts 24 hours and for the shake of comparing the algorithms’ performance with each 

other. A novel approach would be to select a window length after considering both the cost of 

detecting an attack 𝑛 hours after it starts and the cost of responding to 𝑚 false alarms.  
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metric when it comes to that matter, thus we report it only for comprehensive 

reasons.  

 
Table 8: Mean performance of AE models. 

Model FP FN TP Recall Precision F1 score 
S score 

BATADAL 

random 102 126 324 0.723 ± 0.07 0.773 ± 0.081 0.744 ± 0.058 0.854 ± 0.046 

gamma 60 126 323 0.721 ± 0.102 0.85 ± 0.04 0.775 ± 0.063 0.853 ± 0.066 

beta 78 120 329 0.735 ± 0.075 0.819 ± 0.061 0.771 ± 0.046 0.864 ± 0.045 

 

To begin with, Table 8 shows the average performance of each model on our 

datasets (dataset_g06/ g03/ r06/ r03/ b06/ b03). It seems that AE gamma (i.e. 

trained with dataset_g12/ threshold chosen based on dataset g06) has the highest 

F1 score. However, when taking into account the standard deviations the betta 

and gamma models appear to behave quite similarly.  

The gamma model appears to also have the highest precision, even when 

considering the standard deviation. With respect to recall, beta seems to perform 

better when it comes to detecting attacks.  

As for the average FP, we get a sense that random tends to issue the most false 

alarms, and although beta and gamma are not much better at detecting True 

Positives (attacks), they issue less False Positives.  

After getting a sense of the average performance of each model, we proceed with 

the examination of the average performance of each model on each test dataset. 
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Table 9 : Average Performance of the AE. Threshold has been finetuned for each one based 

on the f1 score 

Model FP FN TP Rec Pre F1 score 
S score 

(BATADAL) 
       dataset_r06 

random 92 151 341 0.693 ± 0.043 0.795 ± 0.065 0.738 ± 0.022 0.82 ± 0.045 

gamma 59 149 343 0.697 ± 0.071 0.856 ± 0.03 0.766 ± 0.041 0.825 ± 0.069 

beta 84 144 348 0.707 ± 0.06 0.812 ± 0.053 0.753 ± 0.025 0.83 ± 0.048 

batadal 370 117 375 0.761 ± 0.044 0.504 ± 0.017 0.606 ± 0.016 0.861 ± 0.018 
       dataset_r03 

random 58 87 320 0.785 ± 0.077 0.848 ± 0.037 0.813 ± 0.045 0.882 ± 0.029 

gamma 49 93 314 0.772 ± 0.13 0.868 ± 0.013 0.81 ± 0.078 0.876 ± 0.047 

beta 54 88 319 0.784 ± 0.082 0.86 ± 0.037 0.817 ± 0.04 0.886 ± 0.025 

batadal 176 76 331 0.812 ± 0.06 0.653 ± 0.014 0.723 ± 0.024 0.877 ± 0.02 
       dataset_g06 

random 173 151 341 0.692 ± 0.041 0.668 ± 0.057 0.678 ± 0.029 0.815 ± 0.036 

gamma 86 142 350 0.711 ± 0.074 0.81 ± 0.054 0.753 ± 0.03 0.829 ± 0.068 

beta 124 141 351 0.714 ± 0.064 0.748 ± 0.059 0.727 ± 0.028 0.838 ± 0.043 

batadal 535 125 367 0.745 ± 0.041 0.407 ± 0.009 0.526 ± 0.013 0.834 ± 0.026 
       dataset_g03 

random 84 106 301 0.739 ± 0.075 0.783 ± 0.033 0.758 ± 0.038 0.878 ± 0.03 

gamma 47 113 294 0.723 ± 0.117 0.866 ± 0.034 0.782 ± 0.073 0.866 ± 0.044 

beta 60 107 300 0.737 ± 0.072 0.836 ± 0.042 0.781 ± 0.036 0.874 ± 0.029 

batadal 244 88 319 0.783 ± 0.065 0.565 ± 0.012 0.656 ± 0.031 0.804 ± 0.025 
       dataset_b06 

random 140 156 336 0.683 ± 0.043 0.713 ± 0.064 0.695 ± 0.029 0.837 ± 0.039 

gamma 73 155 337 0.685 ± 0.075 0.826 ± 0.042 0.745 ± 0.041 0.826 ± 0.094 

beta 92 143 349 0.709 ± 0.073 0.798 ± 0.054 0.747 ± 0.032 0.854 ± 0.055 

batadal 461 104 388 0.789 ± 0.058 0.458 ± 0.011 0.579 ± 0.017 0.875 ± 0.015 
       dataset_b03 

random 64 103 304 0.747 ± 0.077 0.829 ± 0.051 0.783 ± 0.045 0.893 ± 0.024 

gamma 45 105 302 0.742 ± 0.128 0.871 ± 0.016 0.796 ± 0.081 0.896 ± 0.038 

beta 53 98 309 0.759 ± 0.083 0.859 ± 0.048 0.802 ± 0.045 0.9 ± 0.025 

batadal 206 86 321 0.789 ± 0.064 0.61 ± 0.013 0.687 ± 0.027 0.886 ± 0.02 
       batadal_06 

random 288 114 378 0.768 ± 0.083 0.704 ± 0.251 0.698 ± 0.144 0.788 ± 0.038 

gamma 499 113 379 0.77 ± 0.154 0.665 ± 0.312 0.642 ± 0.19 0.753 ± 0.104 

beta 595 104 388 0.788 ± 0.107 0.52 ± 0.265 0.575 ± 0.147 0.764 ± 0.047 

batadal 63 109 383 0.779 ± 0.049 0.861 ± 0.036 0.816 ± 0.025 0.821 ± 0.028 
       batadal_03 

random 137 88 319 0.783 ± 0.079 0.774 ± 0.199 0.757 ± 0.098 0.889 ± 0.021 

gamma 236 90 317 0.78 ± 0.136 0.728 ± 0.262 0.705 ± 0.147 0.836 ± 0.096 

beta 273 77 331 0.812 ± 0.084 0.637 ± 0.232 0.681 ± 0.116 0.842 ± 0.063 

batadal 33 84 323 0.794 ± 0.059 0.909 ± 0.026 0.846 ± 0.034 0.914 ± 0.018 

At first sight, we can see that our datasets fail to generalize on the BATADAL datasets 

and vice versa. This is not unexpected as our datasets and the BATADAL have been 

simulated using completely different demand patterns.  

Moreover, when focusing on the new datasets (r06/ r03/ g06/ g03/ b06/ b03), it is 

noticeable that the models trained with stochastically generated datasets (gamma 

& beta) have the highest F1 score on all datasets, even on those that are not 

stochastically generated (i.e. dataset_r06/ r03).  

Again, AE gamma has the highest precision across all datasets, even when taking 

into consideration the standard deviation. This suggests that it tends to issue less 
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false alarms. Despite this, gamma model has the worst recall score, due to its high 

variance between runs.  

Although beta model tends to issue more false alarms than gamma, it has the best 

average performance on all test datasets. This happens because beta model issues 

less false alarms than random, and it detects more “attack” instances than gamma 

does on each dataset. 
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Table 10: The best performing models (according to their performance on their development 

set) 

Model FP FN TP Recall Precision 
F1 

score 

S score 

(BATADAL) 

dataset_r06        
random 37 149 343 0.697 0.903 0.787 0.787 

gamma 45 136 356 0.724 0.888 0.797 0.853 

beta 79 121 371 0.754 0.824 0.788 0.872 

batadal 425 94 398 0.809 0.484 0.605 0.876 

dataset_r03        
random 37 66 341 0.838 0.902 0.869 0.900 

gamma 51 60 347 0.853 0.872 0.862 0.902 

beta 50 52 355 0.872 0.877 0.874 0.908 

batadal 199 42 365 0.897 0.647 0.752 0.911 

dataset_g06        
random 104 148 344 0.699 0.768 0.732 0.792 

gamma 63 128 364 0.740 0.852 0.792 0.862 

beta 116 118 374 0.760 0.763 0.762 0.867 

batadal 590 89 403 0.819 0.406 0.543 0.868 

dataset_g03        
random 56 97 310 0.762 0.847 0.802 0.873 

gamma 35 88 319 0.784 0.901 0.838 0.884 

beta 47 77 330 0.811 0.875 0.842 0.895 

batadal 257 46 361 0.887 0.584 0.704 0.852 

dataset_b06        
random 67 149 343 0.697 0.837 0.761 0.813 

gamma 49 135 357 0.726 0.879 0.795 0.887 

beta 77 110 382 0.776 0.832 0.803 0.908 

batadal 524 67 425 0.864 0.448 0.590 0.872 

dataset_b03        
random 41 86 321 0.789 0.887 0.835 0.910 

gamma 44 76 331 0.813 0.883 0.847 0.917 

beta 46 63 344 0.845 0.882 0.863 0.925 

batadal 231 50 357 0.877 0.607 0.718 0.916 

batadal_06        
random 158 97 395 0.803 0.714 0.756 0.831 

gamma 216 84 408 0.829 0.654 0.731 0.832 

beta 955 56 436 0.886 0.313 0.463 0.803 

batadal 73 77 415 0.843 0.850 0.847 0.849 

batadal_03        
random 87 72 335 0.823 0.794 0.808 0.906 

gamma 101 65 342 0.840 0.772 0.805 0.909 

beta 436 46 361 0.887 0.453 0.600 0.843 

batadal 34 55 352 0.865 0.912 0.888 0.938 

 

Table 10 shows the performance of the best model from each run, chosen based 

on the performance on their development set. 

The models trained with stochastically generated datasets have once again the 

highest F1-score.  

In this case, the gamma could be considered as the best model across all datasets, 

as it discloses a high number of TP, while it always issues less false alarms than beta.  
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Table 11: Average performance of all the AE models when their threshold-tuning set is drawn 

from the same distribution as the test set. 

Model 
Average of 

FP 
Average of 

FN 
Average of 

TP 
Average of 

recall 
Average of 

precision 
Average of 

f1_score 
Average of 

S 

batadal_06 THRESHOLD TUNING SET 

batadal 65 114 378 0.768 0.854 0.809 0.821 

random 36 138 354 0.719 0.908 0.802 0.776 

gamma 33 146 346 0.703 0.913 0.793 0.777 

beta 44 144 349 0.708 0.889 0.787 0.773 

batadal_03 TEST DATASET 

batadal 28 80 327 0.803 0.921 0.858 0.914 

beta 22 94 313 0.768 0.935 0.842 0.904 

gamma 16 101 306 0.751 0.951 0.839 0.888 

random 18 101 306 0.753 0.946 0.837 0.904 

 

Model 
Average 

of FP 
Average 

of FN 
Average 

of TP 
Average of recall 

Average of 
precision 

Average 
of 

f1_score 

Average 
of S 

dataset_r06 THRESHOLD TUNING SET 

beta 78 130 362 0.737 0.828 0.778 0.858 

gamma 73 148 344 0.699 0.829 0.757 0.828 

random 99 151 341 0.694 0.786 0.734 0.815 

batadal 251 160 332 0.675 0.651 0.617 0.777 

dataset_r03 TEST DATASET 

beta 57 68 339 0.832 0.858 0.844 0.903 

gamma 50 82 325 0.798 0.869 0.830 0.890 

random 56 89 318 0.782 0.855 0.814 0.883 

batadal 127 156 251 0.617 0.678 0.587 0.759 

 

Model 
Average 

of FP 
Average 

of FN 
Average 

of TP 
Average of 

recall 
Average of 

precision 
Average of 

f1_score 
Average 

of S 

dataset_b06 THRESHOLD TUNING SET 

beta 88 133 359 0.730 0.810 0.766 0.875 

gamma 83 142 350 0.711 0.819 0.757 0.859 

random 148 151 341 0.692 0.711 0.696 0.844 

batadal 443 98 394 0.801 0.501 0.593 0.855 

dataset_b03 TEST DATASET 

beta 55 79 328 0.806 0.858 0.831 0.914 

gamma 51 97 310 0.763 0.861 0.806 0.901 

random 66 117 290 0.712 0.821 0.755 0.881 

batadal 203 91 316 0.776 0.625 0.663 0.862 

  

Model 
Average 

of FP 
Average 

of FN 
Average 

of TP 
Average of 

recall 
Average of 

precision 
Average of 

f1_score 
Average 

of S 

dataset_g06 THRESHOLD TUNING SET 

random 80 187 305 0.620 0.823 0.695 0.745 

gamma 86 150 342 0.696 0.807 0.743 0.822 

beta 80 141 351 0.713 0.821 0.760 0.827 

batadal 21 262 230 0.468 0.918 0.620 0.584 

dataset_g03 TEST DATASET 

random 45 189 218 0.535 0.846 0.630 0.788 

gamma 46 119 289 0.709 0.866 0.774 0.865 

beta 43 114 293 0.720 0.874 0.783 0.866 

batadal 16 344 64 0.156 0.797 0.261 0.482 
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All the previous results show the performance of the models when their alarm 

threshold is tuned based on a development set that is from the same demand 

pattern category as the training set (e.g. train with batadal_12 and tune threshold 

with batadal_06 etc.). But what would happen to the model’s performance if the 

threshold was tuned using a different development set? 

A realistic assumption is that in ML problems, we usually know the test set we would 

like to do well on. Assuming that dataset r03/ b03/ g03 & batadal_03 are the test 

sets we care about and that for each test set we have a corresponding 

development set at our disposal (dataset_r06/ b06/ g06 & batadal_06), we train 

each model with one of the training sets, but we tune the anomaly threshold with 

the development set that corresponds to the test set we care about. 

More specifically, assuming that we want to do well on the dataset “batadal_03”, 

we will train four different models using the four different training datasets, but this 

time we will tune their anomaly threshold using the “batadal_06” dataset. 

Table 11 shows the average performance of all the models when their threshold is 

tuned with a set drawn from the same distribution as the test set.  

Note that, now that the development set has changed, all of our datasets 

generalize well on the BATADAL datasets. Although none of them surpasses the 

performance of the model trained with BATADAL datasets, all of the models perform 

quite similarly.  

In the case of dataset_r03, beta and gamma models outperform the random 

model both in terms of precision as well as recall. 

Finally, when it comes to datasets_g03 and dataset_b03 beta and then gamma 

models have the quite similar performances, while random performs noticeably 

worse in terms of recall (i.e. doesn’t disclose as well the attacks).  
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 Structural Convolutional Neural Networks 

Detecting cyber-physical attacks with a model that apart from the temporal, 

considers the spatial structure of a WDS is an idea worth exploring for various 

reasons. First of all, capturing both the spatial and temporal features of the network 

as well as the correlations between them if done successfully is expected to improve 

the model’s ability to detect contextual anomalies, thereby its ability to detect 

deception attacks. Furthermore, compared to algorithms that rely only on temporal 

information, the inclusion of the network’s structure is expected to contribute into 

creating a more robust algorithm. This is because, structure is an inherent 

characteristic of the network and a form of prior knowledge, while the temporal 

information in a WDS are not only limited, but also accompanied by great 

uncertainty.  

One way to include the spatial information in a machine learning algorithm is to 

consider the WDS as a graph-structured network. This is possible due to the innate 

interconnection between its components, which allow us to depict the water 

distribution network as a graph where its nodes (tanks, junctions etc.) are linked with 

edges (pipes). A graph-structured network can then be modelled using Graph 

Neural Networks (GNNs), a neural network type that operates on graphs. A special 

kind of GNNs are the Temporal Graph Neural Networks, which leverage the spatio-

temporal information of time series data with an arbitrary graph topology. 

In this dissertation, based on the work of Teh et al. [5] and Covert et al. [34], it is 

explored whether the inclusion of the graph-structure of C-Town will improve a 

model’s performance in detecting cyber-physical attacks. The basic concept is the 

following: The model predicts the current SCADA measurements given 𝑛 prior 

measurements. If the model’s prediction is not close to the observed measurements 

(based on a predefined threshold) then an attack alarm is raised.   

The methodology is divided into the following stages: 

- The available event-free measurements are divided into subsequences 

using a sliding window with length 𝑛 hours and a one-hour step size. The 

subsequences are then used as an input to the GNNs while the output is the 

observed measurements at the next time step.  

- Based on the map of C-Town an adjacency matrix is created to describe 

the connections only between the sensors whose measurements are 

available.  

- GNNs are trained to predict the measurements of the next hour 

- Based on a hold-out dataset that contains attacks, a threshold theta is 

chosen to detect the attacks. 

- Finally, the model’s performance is evaluated using the remaining test 

datasets.  

Choosing a window size 

To obtain subsequences and use them as input data, a popular method is to take 

a window of a fixed size and slide it over the available datasets. The observations 

within each window represent the different samples of our training dataset.  

Determining a window size is not straightforward. It depends on the network’s 

response time to water demand changes. By doing some initial experiments we 
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choose a window size of 8 hours, assuming that after including 8 hours of previous 

observations, prior time points provide no additional information. Using a window 

size of less than 8 hours defeats the purpose of using a temporal model that 

operates on time series for the reason that, the subsequences would be too short to 

model.  

A way to make predictions with more recent data would be to use measurements 

at a finer time scale, which in our case such measurements were not available.  

Generally, a novel way to choose the optimal window size would be by examining 

the correlations coefficients between the demand patterns and all the variables of 

the network.  

C-Town’s Adjacency Matrix 

The adjacency matrix of C-Town is extracted directly from the available map, 

where junctions, tanks, pumps and valves can be represented as nodes and pipes 

as the edges that define whether the nodes are adjacent or not. 

Given that the available measurements are only from some of the network’s 

variables, it is not possible to use the adjacency matrix of the whole town. As a result, 

a new, condensed adjacency matrix is created that describes the connections only 

between the nodes whose observations are available.  

The resulting adjacency matrix will allow to embed into the model the topology of 

the WDS.  

The adjacency matrix allows the exchange of information mainly between nodes 

that are connected with a direct edge. To allow the model to incorporate 

information from nodes that are reachable within k steps, the k-step reachability 

adjacency matrix is used in the model instead. To obtain it from A, the operation 

used is 𝐴(𝑘) = 𝟙 (𝐴𝑘) where 𝐴𝑘 is the adjacency matrix raised to the 𝑘th power, 𝟙(⋅) is 
an element-wise indicator function, and 𝐴(0)  =  𝐼. Setting 𝑘 > 1 enables information 

to spread through the graph using fewer layers, setting k = 0 creates a layer that 

operates on each sequence separately. Preliminary results showed that 𝐴2 tends to 

yield better results that 𝐴1, so the 2-step reachability matrix was used on all the 

models described below.  
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Figure 13: (a) The available variables’ measurements of C-Town, (b) The resulting condensed 

network created based on the available variables, (c) The resulting (with 1-step reachability) 

Graph of the network. 
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Training the model 

To learn the prediction task the architecture includes three stacked SCNN layers 

with 32, 64 and 128 output channels correspondingly. The output of the last SCNN 

layer is then flattened and passed in a fully connected layer with 150 neurons and 

then its output is passed to a final linear layer to get the next hour forecast. All layers 

use the ReLu activation function (except the linear layer, of course). The model is 

trained with the subsequences of length W (W=8 hours) taken in mini-batches of size 

B (B=16) from the training inputs 𝑋𝑡𝑟𝑎𝑖𝑛 and targets 𝑌𝑡𝑟𝑎𝑖𝑛. 30% of the training data (i.e. 

the one-year dataset without events) are held as a validation set. The model is 

trained by using the Adam optimizer to minimize the mean squared error (MSE) loss. 

Early stopping is applied to prevent overfitting of the model and to reduce overall 

time required for the training process. For this purpose, the MSE on the validation set 

is tracked.  In most cases, 10-20 epochs are sufficient to reach a minimum of the 

validation error. 

Detecting cyber-physical attacks 

After the prediction model is trained, the validation time series 𝑋𝑣𝑎𝑙𝑖𝑑 is passed 

through the model and a tensor 𝑌̂ is predicted. Then the prediction errors 𝐸 = 𝑌 − 𝑌̂ 

are calculated where Y contains the observed/target values for the next hour.  

Estimating a multivariate Gaussian Distribution 

One approach of statistically detecting anomalies, is to assume that the prediction 

errors are roughly Gaussian distributed and the parameters (𝜇, 𝑆) of a multivariate 

Gaussian distribution can be estimated [41]. For that reason, the covariance matrix 

𝑆 and the mean vector 𝜇 are calculated for the prediction errors matrix 𝐸.  

Given 𝜇, 𝑆 we can compute the Mahalanobis distance of a vector 𝑥⃗ from the mean 

vector 𝜇. The squared Mahalanobis distance is defined as: 

𝐷𝑀(𝑥⃗) = (𝑥⃗ − 𝜇)𝑇𝑆−1(𝑥⃗ − 𝜇) 

Anomaly Detection 

For data points that represent the network’s status when not under attack, the 

corresponding Mahalanobis distance will be comparably small, since they are 

located close to the mean of the distribution. On the other side, when the network 

is under attack, the error vectors 𝑒 are expected to have large values in one or more 

dimensions. Hence, the Mahalanobis distance can be used as a cyber-physical 

attack indicator. By specifying a distance threshold, all instances that their error has 

a Mahalanobis distance larger than the threshold will be flagged as anomalous.  

While other researchers, use the average error across all parameters [4] or monitor 

the error of each sensor individually [24] we decided that the Mahalanobis distance 

is more fitting to detect attacks. This is because the average error does not take into 

consideration the different error range each sensor has, thus it is more sensitive to 

variables with higher error, while on the other hand, monitoring the error of each 

sensor individually requires to fine tune multiple thresholds to define an attack rather 

than just one global threshold.  
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Choosing an attack threshold 

Depending on the choice of the threshold, more or less points will be classified as 

anomalous. If the threshold is set too small, the algorithm will likely produce many 

false detections. If the threshold is chosen too large, some attacks might be missed. 

In an attempt to avoid both scenarios, two different thresholds are incorporated in 

our methodology. The first is 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑙𝑜𝑤𝑒𝑟, that monitors the error in a window of 

length n=6hours and when more than 5 out of 6 instances’ errors surpass the 

threshold, an alarm is issued. The second is 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑢𝑝𝑝𝑒𝑟, that issues an alarm 

immediately when the error of an instance is greater than it. To fine-tune the value 

of each threshold, we try different values until we maximize the F1 score and the 

precision correspondingly on a hold-out set that contains attacks.  

Results 

Like in the case of AEs, we define four different models based on their training set. 

Each model was trained 10 times and we report the performance of these models 

by the mean and standard deviation of their performance.  

 
Table 12: Comparison between the SCNN models. Each entry shows the mean and standard 

deviation across 10 runs 

MODEL FP FN TP Recall Precision F1 score 
S score 

(BATADAL) 

random 53 138 311 0.697 ± 0.0567 0.856±0.0364 0.767±0.0375 0.901±0.0329 

gamma 36 155 295 0.660 ± 0.0607 0.890±0.0206  0.756±0.0364 0.873±0.0554 

beta 59 131 318 0.712 ± 0.0584 0.848±0.0392 0.772±0.0375 0.901±0.0385 

Table 12 shows the average performance of each model on our datasets 

(dataset_g06/g03/r06/r03/b06/b03). It seems that the model beta has the highest 

F1 score.  

Gamma model although has the highest precision it also has the lowest recall. That 

might indicate that it is the least sensitive among all models in disclosing attacks but 

the least prone in issuing false alarms.  

Beta seems to perform better, but similarly to random model. Beta has the highest 

recall score among all models, meaning that it is the model that detects most of 

the “attack” instances on average.  
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Table 13: Average performance and standard deviation of SCNN across 10 trainings  

MODEL FP FN TP Recall Precision F1 score 
S score 

(BATADAL) 
       dataset_r06 

random 42 172 320 0.65 ± 0.026 0.886 ± 0.028 0.749 ± 0.012 0.853 ± 0.034 

gamma 28 193 299 0.607 ± 0.025 0.913 ± 0.013 0.729 ± 0.019 0.806 ± 0.051 

beta 66 172 320 0.651 ± 0.032 0.835 ± 0.059 0.729 ± 0.01 0.835 ± 0.029 

batadal 542 104 388 0.788 ± 0.042 0.425 ± 0.058 0.549 ± 0.041 0.907 ± 0.008 
       dataset_r03 

random 43 107 300 0.737 ± 0.036 0.875 ± 0.014 0.8 ± 0.02 0.922 ± 0.013 

gamma 36 119 288 0.708 ± 0.05 0.89 ± 0.009 0.788 ± 0.03 0.912 ± 0.017 

beta 49 102 305 0.75 ± 0.036 0.862 ± 0.023 0.801 ± 0.017 0.922 ± 0.014 

batadal 246 48 359 0.882 ± 0.031 0.597 ± 0.047 0.711 ± 0.026 0.936 ± 0.005 
       dataset_g06 

random 84 167 326 0.662 ± 0.023 0.796 ± 0.027 0.722 ± 0.011 0.883 ± 0.008 

gamma 41 175 317 0.643 ± 0.011 0.886 ± 0.013 0.746 ± 0.005 0.855 ± 0.029 

beta 80 159 333 0.678 ± 0.025 0.808 ± 0.039 0.736 ± 0.011 0.885 ± 0.016 

batadal 590 104 388 0.789 ± 0.033 0.402 ± 0.046 0.531 ± 0.035 0.903 ± 0.009 
       dataset_g03 

random 47 102 305 0.75 ± 0.042 0.867 ± 0.017 0.803 ± 0.023 0.929 ± 0.01 

gamma 36 120 287 0.705 ± 0.055 0.889 ± 0.008 0.785 ± 0.035 0.916 ± 0.019 

beta 53 92 315 0.774 ± 0.037 0.858 ± 0.025 0.813 ± 0.015 0.935 ± 0.008 

batadal 321 43 364 0.895 ± 0.015 0.536 ± 0.05 0.669 ± 0.037 0.928 ± 0.007 
       dataset_b06 

random 53 175 317 0.644 ± 0.031 0.857 ± 0.032 0.734 ± 0.017 0.889 ± 0.018 

gamma 31 199 293 0.595 ± 0.021 0.904 ± 0.023 0.717 ± 0.012 0.833 ± 0.055 

beta 52 165 328 0.666 ± 0.034 0.865 ± 0.034 0.751 ± 0.015 0.895 ± 0.02 

batadal 543 102 390 0.793 ± 0.029 0.425 ± 0.051 0.551 ± 0.038 0.905 ± 0.008 
       dataset_b03 

random 51 107 300 0.738 ± 0.045 0.856 ± 0.011 0.792 ± 0.025 0.927 ± 0.011 

gamma 46 123 284 0.698 ± 0.054 0.861 ± 0.006 0.77 ± 0.034 0.914 ± 0.017 

beta 50 99 308 0.756 ± 0.032 0.859 ± 0.011 0.804 ± 0.018 0.932 ± 0.008 

batadal 225 58 349 0.858 ± 0.022 0.614 ± 0.054 0.714 ± 0.031 0.933 ± 0.005 
       batadal06 

random 24 238 255 0.517 ± 0.041 0.916 ± 0.015 0.66 ± 0.033 0.855 ± 0.015 

gamma 19 257 235 0.477 ± 0.03 0.925 ± 0.018 0.629 ± 0.024 0.842 ± 0.012 

beta 39 222 270 0.549 ± 0.038 0.878 ± 0.045 0.674 ± 0.021 0.862 ± 0.017 

batadal 65 181 311 0.632 ± 0.042 0.83 ± 0.031 0.716 ± 0.02 0.891 ± 0.01 
       batadal03 

random 30 163 244 0.6 ± 0.052 0.891 ± 0.007 0.716 ± 0.038 0.883 ± 0.014 

gamma 28 177 231 0.566 ± 0.042 0.893 ± 0.006 0.692 ± 0.032 0.877 ± 0.011 

beta 34 158 250 0.613 ± 0.046 0.881 ± 0.013 0.722 ± 0.031 0.887 ± 0.012 

batadal 45 122 285 0.7 ± 0.038 0.866 ± 0.023 0.773 ± 0.019 0.906 ± 0.009 

At first sight, we can see that the batadal model fails to generalize on our data. On 

the other side, SCNN models trained with our data do well on the batadal datasets 

even when their anomaly threshold is fine-tuned using a dataset that is drawn from 

a different distribution.  

Note how that was not the case in the corresponding AE models. Their performance 

on the batadal datasets improved only after changing the threshold tuning 

dataset. 

This might indicate that either SCNNs present less variance to the development set 

or that the Mahalanobis distance helps to capture better the differences of the 

prediction error between anomalous and normal data. 
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When it comes to the performance of the models on our datasets, beta tends to 

perform the best on almost all test datasets (based on the F1 score). Beta also 

presents smaller variation (considering the standard deviations), thus making it a 

more stable model.  

Gamma distribution has the highest precision on all datasets, but the lowest recall. 

Beta has the highest recall score, but issues more false alarms than random. 

Generally, someone might say that the differences in performance between 

random and beta are minor and that they perform similarly on average.  
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Table 14 : Performance of the best SCNN models (chosen based on their performance on 

the development set). 

Row 

Labels 

Sum of 

FP 

Sum of 

FN 

Sum of 

TP 

Sum of 

Recall 

Sum of 

Precision 

Sum of 

F1 score 
Sum of S 

       dataset_r06 
random 50 150 342 0.695 0.872 0.774 0.895 

gamma 36 184 308 0.626 0.895 0.737 0.820 

beta 93 152 340 0.691 0.785 0.735 0.885 

batadal 708 74 418 0.850 0.371 0.517 0.914 
      dataset_r03 
beta 55 75 332 0.816 0.858 0.836 0.946 

gamma 43 86 321 0.789 0.882 0.833 0.941 

random 51 87 320 0.786 0.863 0.823 0.939 

batadal 308 31 376 0.924 0.550 0.689 0.937 
      dataset_g06 
beta 83 143 349 0.709 0.808 0.755 0.906 

gamma 48 167 325 0.661 0.871 0.751 0.868 

random 99 142 350 0.711 0.780 0.744 0.888 

batadal 776 85 407 0.827 0.344 0.486 0.897 
      dataset_g03 
beta 62 65 342 0.840 0.847 0.843 0.950 

random 48 80 327 0.803 0.872 0.836 0.943 

gamma 43 87 320 0.786 0.882 0.831 0.939 

batadal 403 39 368 0.904 0.477 0.625 0.919 

      dataset_b06 
beta 60 143 349 0.709 0.853 0.775 0.920 

random 58 148 344 0.699 0.856 0.770 0.919 

gamma 42 181 311 0.632 0.881 0.736 0.880 

batadal 738 97 395 0.803 0.349 0.486 0.895 

      dataset_b03 
beta 52 79 328 0.806 0.863 0.834 0.944 

random 52 80 327 0.803 0.863 0.832 0.944 

gamma 53 85 322 0.791 0.859 0.824 0.940 

batadal 336 46 361 0.887 0.518 0.654 0.924 
      batadal06 
batadal 102 137 355 0.722 0.777 0.748 0.911 

beta 49 188 304 0.618 0.861 0.720 0.885 

random 30 204 288 0.585 0.906 0.711 0.874 

gamma 22 236 256 0.520 0.921 0.665 0.861 
      batadal03 
random 35 118 289 0.710 0.892 0.791 0.912 

batadal 65 103 304 0.747 0.824 0.784 0.916 

beta 37 125 282 0.693 0.884 0.777 0.909 

gamma 29 136 271 0.666 0.903 0.767 0.902 

Table 14 shows the performance of the best SCNN models (chosen based on their 

performance on the development set).  

We notice that gamma is inferior to random and beta models, and although it is 

the most precise it fails to disclose as many TP as the other models 

We would argue that when it comes to the relative comparison between the best 

models, no model seems to outperform significantly the others.  
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7. CONCLUSIONS 

To summarize, in this dissertation we approached the problem of cyber-physical 

attack detection on water distribution systems with the use of machine learning 

algorithms. To train the different models we used two kinds of datasets. Datasets 

that were stochastically generated in terms of the water demand variation and 

datasets with fairly regular and consistent demand patterns. 

Some of the major conclusions of this study are the following: 

• The training dataset is directly correlated to the algorithm’s performance. We 

noticed that in the case of the Autoencoder algorithm, stochastically 

generated training datasets tend to improve its performance. More specifically, 

training with data generated from the Beta distribution improved the algorithm 

in terms of issuing less false positives and detecting more true positives. However, 

training with stochastically generated datasets isn’t always reliable, like in the 

case of training with data generated from Gamma distribution which made all 

algorithms less sensitive in detecting attacks. 

• AEs performance is very sensitive to the choice of the anomaly threshold. We 

observed, that by just changing the threshold tuning set the AEs performance 

on the BATADAL datasets changed dramatically.  

• The choice of a single evaluation metric is of great importance. First of all, it 

allows us to evaluate the different models’ performance. Moreover, in the case 

where the threshold is tuned based on the value of a metric score, the metric 

score we choose can have a great impact on the model’s performance. We 

saw that in the case of the SVDD classifier where by choosing TH based on the 

maximum S score from BATADAL, failed to have a good performance.  

• Before choosing an evaluation metric, first we have to set a clear objective 

about what makes an algorithm have a good performance in the framework 

of Water Systems’ security. The problem of detecting cyber-physical attacks on 

a water distribution network is very particular. The dataset classes (“attack”/”no 

attack”) are imbalanced and while there are many metrics in machine learning 

that tackle the problem of imbalanced datasets, not all “attack” instances are 

equally important in a CPA dataset. That means that it should not be equally 

important to detect “attack” instances towards the end of an attack vs. at the 

beginning of it. The same concept applies also in the detection of FP. For 

example, a model that issues a false alarm for 24 hours during a whole day is 

not performing equally well with a model that issued 24 hours of false alarms in 

the course of a month.  

• Preliminary results of the SCNN models showed that they have less variance to 

the fluctuations of the stochastically generated data, as models trained with 

different datasets didn’t have substantial differences in performance like in the 

case of AE.  

• SCNNs performed better than AEs in the test datasets. Although AEs and SCNNs 

have similar F1-score, SCNNs presented lower variance between runs, thus 

making them more stable.
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To conclude, our rationale behind using stochastically generated datasets in the 

problem of WDS CPA detection was twofold. Firstly, using novel stochastic methods 

to generate the water demand timeseries allowed us go a step further towards 

creating more realistic simulation scenarios. This is because stochastically 

generated water demands let us incorporate (to an extent) into the CPA detection 

problem, the uncertainty associated with the variability and stochastic nature one 

of the key components of urban water systems. Moreover, it lets us set a clear 

direction towards anomaly detection progress. Given that stochastically generated 

data allow to incorporate and study a large number of alternative scenarios, 

extending the “bounded horizon” of observed data, it is of greater value to create 

algorithms that perform well on them. With a novel stochastic method and a robust 

model that performs well on stochastically generated data it is possible to open the 

path for domain adaptation and robust learning in the water sector.  

The second reason behind incorporating stochastically generated datasets to our 

experiments was to observe the performance of different anomaly detection 

algorithms.  The core of machine learning is to create algorithms that learn from a 

training set of data and our experiments showed that not only the performance of 

the aforementioned CPA detection algorithms depends to an extent on the data 

used during training, but that there are training datasets that are more valuable 

than others, because they improve and generalize the algorithm’s performance. 
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