', \\\
S5
8E

_ A
\
Q"‘"
&'
NPOMHOE .
Q5L
nVpPopos

to

\

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF CHEMICAL ENGINEERING

Prioritization of Pharmacological Compounds
for Tumor Immunogenic Profile Manipulation
using Next-Generation Sequencing Data

DIPLOMA THESIS
Katopodi Xanthi-Lida

SUPERVISORS

Assist. Prof. Vlachos Ioannis S.
BIDMC, HMS, Broad Institute of the MIT and Harvard

Prof. Boudouvis Andreas
National Technical University of Athens

Athens, October 2020






“Facts do not cease to exist

because they are ignored"

Aldous Huxley






Acknowledgements

The present study was carried out in collaboration with the Non Coding Research Lab at
Beth Israel Deaconess Medical Center, HMS, Boston, MA, of Assistant Professor
Ioannis S. Vlachos. The diploma thesis I am now called to deliver contains but a small

fragment of my scientific journey as a member of the Non Coding Research Lab.

For this journey, I wholeheartedly thank my supervisor, Professor loannis Vlachos, for
giving me the opportunity to expand my scientific horizons and work on science that
strives to make a difference. I am truly grateful for our collaboration, his inspiring
mentorship, his never-ending guidance and support, as well as for the pure bliss of our

shared “Eureka!” moments.

Moreover, I would like to thank Professor Andreas Boudouvis, professor at the School of
Chemical Engineering of N.T.U.A., for accepting to supervise this diploma thesis on
behalf of the National Technical University of Athens. In actuality, I would like to
genuinely thank him for his assistance, encouragement and trust throughout the years I

spent as student at the School of Chemical Engineering.

Of course, this diploma thesis would have been entirely different if not for the extremely
insightful time spent with all members of the Non Coding Research Lab, especially
during our weekly lab meetings. I would like to particularly express my gratitude
towards Dr. Yered Pita-Judrez, for his patience, kindness and willingness to assist me

every time I reached out to him.

Furthermore, I am exceedingly grateful to my friends for their companionship and
encouragement, as well as to my iIGEM Athens family, for being a second scientific home

to me; special thanks to Maria Litsa for her aesthetic interventions and grammar lessons.

Last but not least, I am forever indebted to my parents and family, without whom I

would not be standing where I am.

So long, and thanks for all the fish,
X.L.K.



1



Abstract

Cancer is the second leading cause of death worldwide and one of the most well-
researched medical topics. Nevertheless, the lack of effective treatment for the majority of
tumor types 1s evident, while existing therapeutic approaches are unable to guarantee
desired results. In the frame of this diploma thesis, a novel holistic approach is adopted
for the discovery of drugs, compounds, and gene targets that can alter the Immunogenic

proﬁle of tumors and eXpand the arsenal of imrnunotherapeutics.

The approach described in this study comes as a means to eradicate the current
limitations of existing immunotherapies and improve their efﬁciency. In general,
immunotherapy leverages components of the immune system in order to boost its ability
to detect and destroy malignant cells. Unfortunately, only a small fraction of patients
respond to immunotherapy, with the primary reason being the ability of tumor cells to
bypass the immune system’s control. Thus, it is essential for the improvement of existing
immunotherapies that the tumor emanates its malignant nature in order for the immune
system to detect and combat cancer cells. The proposed method is based on the existence
of Tumor Specific Antigens (TSAs) that can elicit an immune response. The hypothesis
made is that personalized gene targeting and drug administration are able to manipulate
the antigenic profile of tumor cells as they will allow for the controlled generation of
strongly immunogenic TSAs; such TSAs will act as targets for the immune system.
Following this approach, tumors that were able to escape the control of the immune

system can now be sensitized to immunotherapy.

For this purpose, a plethora of publicly available Next Generation Sequencing (NGS)
studies were analyzed to reveal tumor-specific antigens whose production was induced
following drug administration or gene targeting. An annotation-free and hypothesis-free
approach to capture the expression and translation spaces was incorporated, allowing for
unbiased characterization of the putative antigen spaces. After comparison of the two
spaces to sets of data derived from healthy samples, results revealed signiﬁcant cancer-
specific effects on the transcriptome and translatome. Furthermore, the effect of
treatment on the expression space was also evident on all three case studies included in
the study, both in the number of treatment-specific transcripts and in the expression
change between treatment and control. Last but not least, the implernentation of a
database structure was initiated which will enable efficient storing of analyzed results and

cross-study comparisons.
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Ieprypadr

Ed® xat tpeig dekaetieg o kapkivog amotehel ) devtepn artia Oavérou maykooping, petd
©g kapduyyeiakéq mabfioeg. To 2017 kataypddoviar 9.56 ekatoppvpia Odvator
naykooping kat 31 yiAddeg oty EAAGSa, evd to 2018 Sraytyvdokovral 17 exatoppipia
véa meplotatiké Kapkivou avé tov kéopo. Autd mou mbavag ocuykAovilelr oe peyahitepo
Babpsd Sev etvar ta mpoavadepfévia volpepa autd kabd’ autd addé k&t mou kpURetat amd
aiow: N éAenPn amotedeopatik@v Oepameldv yia ta meplocdtepa £idn Kapkivou 1, akdun,

prag kabohikng Oepameiag, amoteAeopatikig yia 6Aoug Toug aobeveig kot Toug TUmOUG.

Me 1ov 6po “kapxivog” yapaxtnpiletar pra opdda voonpdtwv pe Kowvd yapaKtnpLotiko
v unepfolikn, aveldheyktn ko ywpiq mpoypappatiopd avamtuln kal dwaipeon twv
KUTTEPWV TOU 0pYaviopoU, pe 1§ artieg epdpéviong va evromilovion o Kuttapikd enimedo.
Yné ducioroyikég ocuvOikeg, 1o kUTtapa avarticoovial, Oiadopomololvial Kol
e€eldikevovtal, kot téAog Siapovvral mpokepévou va datnpnBei o uyuig opyaviopdg.
[TOxv extpomy amd ™ ouykekpipévn ¢uoiohoyikr mopeia odnyel oe mAeovélovia
kUTTapa Kat T dnpovpyia kuttapik®v dykwv. Oplopévol dykol, yvwortol wg kaior0eg,
dev elvar emkivduvor yua Vv vyeia ko, eopévwg, dev yapaktpiloviar oG KapKLvIKoL.
AvtiBeta, or kakonBelg dykol -kapkLviKoi dykol, Kapkivopata 1 veorAdopata- Oétouv oe
k{vduvo v vyela Tou aobevoug eve éxouv v WL6TNTA va petanndolv oe &AAoug LoToUg
T0U 0patog péow g Sradikaciag mg petdotaong. Efaipeon kapkivou mou 8e oynpartilet
otépeoug dykoug (solid tumors) amotehei n Aeuyaupia mou spoofddier ta kUTTAp TOU

afpatog.

O xapxivog propei va avantuydel oe dAoug Toug LoToUG Tou AVBpwivou COPATOG Kot wg
€K TOUTOU TpoKkUnTouV Sradopetikoi tomot kat popdpég kapkivou. [TAéov, kataypdpovrar
aeproodtepor and 200 timor kapkivou, o kabévag ex Twv omoiwv aviipetwmiletar kot
Oepametetar pe Stapopetikd tpdmo. [lap’ dAeg 1iq Sradpopés petaly twv THnwV Kapkivou,
UnGpEL évag PNYoVIOPOg TOU OPYXVIOHOU JIOU ENLYELPEL VO VTIPETWIIOEL TNV epddvion
KOPKLVOPGToV: To avoconontké ovotnpa. H  aAAnAenidpaon tou avooomountikol
ovoTApaTOg pe Tov Kapkivo diakpivetal oe tpetg dpdoelg. Xanv apdn pdon g e&dhendng
(elimination), ta kKapkvikd kKUTTApa avayvwpiloviar atd Ta KUTIEPA TOU AVOCOTOLNTLKOU
ko kataotpépovral. H avayvdpion amotedel onpavtiké otédio kat onpeio ekkivnong yua
Vv $pdon e€dhenng, mou dieukoAVvetar and T Sadikaoia Tapaywydg Kot tapouciaong
(presentation) twv KapKWIKGOV aviydovov (tumor antigens). Ta kapxkivikd avuydva
amote oV oAryomentidia moU mapdyovial Ot KapKLViKE KUTtapa, Siadépouv amd ta
aviyéva tov Ppuooloyik®v kuttdpwv (autoaviiyéva, self antigens), xatr Stav
napovotdlovial otV empdveld ToV KUTTGpwV xpokaiovv, oe avitibeon pe 1o
autoavtydva, avoooloyikn amdkpion. Me Alya Adyla, e KapKivikéd avityéve ouvietoUv
éva kaprviké “ofpa’, mpodidoviag TNV Kapkiviky ¢Uon Ttou Kuttdpou oto omoio

evromilovrat.



H 8evtepn $pdon arinienidpaong eivar auti g woppomiag (equilibrium), n omoia
enépyetal dtav 1 aAfpng e€dhendn TV KApKIVIKOV Kuttdpwv Sev elvat tAéov epikty. Xe
outr] T $&on, T KOUPKLVIKE KUTTAPO £X0UV OUCOWPEUOEL YEVETIKEG KOL ETLYEVETIKEQ
petaAréelg, kabwotoviag ta mo avlektxkd oty enibeon tou avocomountikov. To
avooonontikd ovotnpa and v &AAn, nepropiler tnv aveléheyktn Siaipeon ko efdmiwon
TV KAPKLVIKGOV KUTTGpwV, aAhé& de Suvatar va spokaiéoetl tnv e€dhenpr toug. To tpito
kot tedevtaio otéddio elvar autd g Swapuyrig (escape) Katd To 0m0(0 TO AVOCOTOLNTIKS
ovotnpa yével ﬂ)\ﬁpwq TOV é)\syxo TWV KOPKLVIKOV KUTTAPWV. Ta KAPKIVIKG KOTTOpOL,
é¢xoviag ovoowpevoel petadhdlelg mou ta kabwotolv mo avlektiké, emotpatevouv
KUTTAPLKOUG KOl QVOOOAOYLKOUG HNYaviopoUs mpog O6dpeAdg Ttoug, Siadelyouv twv

QHUVTIKOV PNYQVICHOV ToU 0pyaviopoU kat ouveyilouv va avastiooovial aveléleykta.

Adyw g onNpaciag Tou avoooToLNTIKOU CUOTHHATOG OTNV GHUVA TOU OpYRVIOROU, Kat On
Aapfévovrag v’ SPv 1 Suvapikl aAAnAenidpaocn tou pe tov Kapkivo, N aflomoinon
TAPAYSVIWV TOU RVOCOIOLNTIKOU YL& TNV KATWTOAEHNON KapKIvwpdtov éxet avaderydel wg
n mo exavaotatky pédodog Oepameing Tou Kapkivou, yvwor] wg avoooBepameia.
Ilpooeyyioewg omv avooobepaneia mepihapfdvouv 1 ypron avactoréwv onpeiov
ehéyyov, yevetkd tpomomonpévev T Aeppokuttdpwy, pOVOKAWVIKOV avIIOwpETwV Kot
epfoiinv, pe otéyxo ™V LOYUPSTEPT) AVOCOAOYLIKY QIIOKPLOT] TOU OPYQVIOHOU £VAVTL TOU
kapkivou. Ouv avoooBepameieq ouvAbwg empépouv elaipetikd amoteAéopata, pe
paxpdypovn (aon ko Alyeq mapevépyeteg. Avotuydg, povo éva pikpd mocootd twv
aolevdv aviamokpivetar otnv avooolepaneia, yeyovég mou amodidetar otnv
oAumAokdTnTa TOU EAEYYOU Kat pUBPLONG TwV vOCOAOYIKOV paviopdv aAhd Kat otnv
TOAUTAOKSTNTA KAl avopoloyévelr Tou (Blou Tou KAPKIVOU KOl TOU KOPKLVIKOU

aepR&Aiovrog.

Zro emikevipo Twv pehetdv yw v unépfaon twv meploptopdv g avocobepameiag
Bploketar o £yKupog YapaKTINELOPOG TOU QAVILYOVIKOU Kol avOOOAOYLKOU Jpodih twv
KOPKLVIKOV KUTTdpwv. X0yypoveg npooeyyioelg nepthapfévouv tnv avéivon dedopévwv
ANAnAoUyong Endpevng I'evedg (Next Generation Sequencing, NGS) ywx v evpeon
KAPKLVIKOV avTlydveov Kol T HeAétn autdv og mpog v mibavy avocoloykr amdkpion
tou opyaviopoU. IlapdAinia, epeuvovtar eig B&bog ov pryaviopoi avayvodpiong twv
KAPKLVIKOV KUTIEPWV atd TO (VOOOTOLNTIKG CUOTNHA, Ol KUTTAPLKO{ Kol avoooAoylkol
pnxaviopoi mou epmAékoviar oty avétuln Tou Kapkivou Kat 10 Kapkivikd mepRédAiov.
H sAnpéotepn xatavénon twv sapapétpov auvtdv aflomoteitar yia v efatopikeupévn
npooéyylon Tou Kapkivou péow Tou oyediaopol prag Oepameicg oupfatig kot
QTOTEAECPQTIKAG Yyl Tov ek&Gotote aobevr), oAAd kar yw v avekdAuvpn véwv
Oepamevtikdv mapaydéviov mou SVvaviar va Redtidoouv v amodotikétnTar NG
avoooBepaneiag yia 10 oUvoro Twv acbevav. Ot upiotdpeveg épeuveg, av Kot enLyelpoUv
va aravtioouv oto kaipio epdtnpa g PeAtiwong tng amodotikétnrag Tng
avoooBepaneiag, katd mAeoPndia votepolv otnv oAotikh mpooéyylon tou {ntipartog,

oUYVE AyvOmwVTaG ONHAVTIKEG TOUPAPETPOUG.



AvtiBeta, n pébodog mou avalVetar otV napovoa SuTAwpatiky envyepel va amoteAéoet
muldva yia v efdhenn tov unapydviwv meploplop®v otnv avooobepaneia péow g
avalfmong kabolikdv otabepdv yia 600 duvatdv mepioodtepoug aobeveiq kot Tomoug
kapkivou. ‘Erot, vioBeteitar pra autopatonoinpévn mpooéyyion tou {ntipatog, péow tng
peAéng dappdrwv, ouctdv Kat yovidiwv-otéywv mou SVvaviar va petafdAiouv to
aVOOOAOYLKS TPOPIA TwWV KAPKLVIKOV KUTTEPWY, EVIOYUOVING OUVERMG TNV ATodoTikOTnTa
twv avooolepameiv. H pébodog mou mpoteiverar Paociletar oty Umapln kKapkivikov
avityévev (tumor specific antigens - TSAs) mou tpokadovv avoooloyiky ardkplon, Kat 1

Baowkr undOeon mou mpaypatomoteitar eivar N axdioubn: n_yopriynon dappaxkoloykov

ovowOv f/kau i otdyevon yovidiwv oe acBeveic pe kapkivo smpokadel  petafSoAn tou

QVILYOVIKOU Toug stpodid emtpémoviag v eheyydpevn aapaywyn Loyupd avoooyoviK®V

QVTLYOVWYV IOV Oa astoteAéoouv OTéY0 Yl TO vOoOomOLNTIKd ovoTtnua. Euvsmbg, pe v

napovoa npoodyyion didetal éva emuAéov epyadeio yia ) PeAtioon g amodotikdtnTag
G avoocoBepameiag kabbdg Sykor mou Siépeuyav TOU AyOU TOU AVOOOTOLNTIKOU
ovotApatog mAéov petatpémovial oe LOYUP& @vVOOOYOoVIKO{ Kal eudAwToL OTnV

avoooBepameio.

Me ) pébodo auth enavaliomoteitar IAnBdpa fdn vrapydvVIwy etpapdtwy aAhniolyiong
endpevng yevedg amd n vitro, tm vivo ko kKAvikég épeuveg. Xe autég mepihapfévovral
TEPUTTAOEL] UYLOV KAl KAPKIVIKOV detypdtwy, pe i§ ywpiq v otdyevon yovidiwv f/kat
TNV XOPHYNOT PAPHAKOAOYIKOV ouoL®dV. X1dyog eivar  avédeldn exkeivov twv dappdrwv
Kol YoviSiwv-0téwV Tou eMTPETOUV TOV YELPLORS TOU aviLtyovikoU mpodil twv acbevov
kot 0dnyovv oe évrova avoooyovikoUg dykoug, eudAwtoug otnv avooobepameia. [a v

enitevln tou okomoU autoy, 1o {nrovpevo mpooeyyiletar amd Vo Sievbivoelg: TV

petaypadr-ékdppaon kot v petdppaon).

Zmv smapovoa perétn mpoteivetar pia kaboAkr, apepdAnmin mpooéyyon yia v
Xaptoypadpnorn 1600 tou Y®Opov petaypadrig 600 Kol ToU yOPou petddppaong, odnydviag oe
xaproypddnon mbavdv avityovikdv xdpwv ota 800 autd enimeda. Apyikd, n ovykplon
KapKIVIKQV detypdtov pe vyt avédele v Umapln petaypadpikdv Kol petadppaoTik@v
YEYOVOTOV mou amavidvial poévo otov kapkivo. [TapdAAnia, péow g avédivong tpidrv
Sradopetikdv peretdv mou mepihapfévouv yopriynon dappaxkoloyikig ovoiag f/kal
otdyevorn yovidiwv, unoypappiotnke 1 enidpaon g ekdortote Oepameiag omy ékppaon,
amoteAdvTag oyupd emyelpnpa yia v undbeon g (EPaydynong TOU aVILYOVIKOU
apodih kapkvik®OV Kuttdpwy. Téhog, mapovoidletar n dnpovpyia pag Réong dedopévav
mou Oa emrpéPer v amobfkevon twv enefepyaopévov dedopévwv amd Tig peléteg
alniovyong, kabdg xar v ovykplon petadd autdv mpog avédeldn exelvov twv
pappdrwv mou Suvaviar va mpokahécouv v toyupdtepn petafoAr] oto avoooAoyikd

TPOPIA TOV KAPKLVIKOV KUTTEpWV.
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Section A

Theoretical Background

Chapter A.l. Introduction

he term “czmcer”, as a medical term to refer to internal or external tumors, was first

coined by the ancient Greek physician Hippocrates (460-370BC). Hippocrates

studied the solid masses, and the finger-like projections of metastatic cancer cells
most probably reminded him of crabs’ legs and claws. The words he used to describe this
medical condition were “kapkivog” (carcinos) and “kapxivopa” (carcinoma), both of
which refer to a crab in greek. The Roman encyclopaedist and physician Aulus Cornelius
Celsus (25-50 BC) translated Hippocrates’ term into “cancer”, the roman for crab; hence
the widespread medical term. Some centuries later, Claudius Galenus (Galen, 129-200
AD) adopted the greek word
“6ykog” (oncos) for the
tumors, the literal translation
of which is “volume” but can
in context refer to a certain
-or increasing- quantity, and
by extent to a developing
mass. Galenus’ term is still
used in greek medicine for

tumors, but also acted as the

base EOI' the name Of cancer

specialists: oncologists!. Figure A.1: Cancer cells under the microscope?



A.l.1. Cancer

The medical term “cancer” refers to a collection of related diseases that are all
characterized by an excessive and uncontrollable division of abnormal cells. The initiation
of this uncontrollable growth of cells may take place anywhere in the human body,
leading to the formation of malignant tumors!3. Cancer cells also have the ability to
spread to different tissues during a process called metastasis, affecting not only

neighboring tissue but even distant parts of the body!“.

Cancer is categorized in several groups with regards to the tissue that gives rise to it.
Carcinoma originates from the skin or in tissues that line internal organs. Sarcoma
originates from bone, cartilage, fat, muscle, blood vessels, or other connective or
supportive tissue. Central nervous system cancers originate from brain and spinal cord
tissues. Hematologic malignancies include leukemia, lymphoma and multiple myeloma.
Leukemia originates from the blood and bone marrow, while lymphoma and myeloma

originate from immune cells3.

The origin of cancer lies primarily on a molecular level as a patient’s DNA has or
accumulates mutations that were not repaired. The vast majority of mutations that act as
triggers for cancer occur on genes that encode functional proteins, which in turn control
how cells function. Therefore, such mutations will disrupt the mechanisms that the cells
employ to grow and dividel. Of course, any living human accumulates mutations on their

DNA throughout their life, however the majority does not lead to cancer.

Genetic mutations appear during one’s life as a result of environmental exposures,
including exposure to carcinogenic substances or chemicals, or to radiation -UV rays
from the sun or other manmade sources of radiation. Moreover, cancer-causing mutations
might be the result of unhealthy habits, such as tobacco usage, alcohol consumption or
even an unhealthy diet. There have also been several cases of infectious agents -viruses,
bacteria and parasites- associated with cancer. Last but not least, it should be noted that

genetic mutations that cause cancer can also be inherited from one’s parents!-.

Each cancer patient bears their own unique genetic profile associated with their disease.
Furthermore, clonal evolution of tumors suggests that a single malignant cell giving rise
to a population of cancer cells causes tumor heterogeneity in pathology and molecular/
genetic profiles. This concept is often linked to Darwinian selection at the micro-level, as
intratumor cellular diversity gives rise to cancer cell populations with different abilities
regarding expansion and proliferation, as well as resistance to therapy. Taking these into

account, it’s not far-fetched to assume that each patient’s cancer is different®.



A.1.2. Cancer in Numbers

Cancer is the second leading cause of death in the world, following cardiovascular
diseases. 2017 marks 9.6 million deaths caused by cancer worldwide, of which 700

thousand were documented in the United States and 31 thousand in Greece’.

Number of deaths by cause, World, 2017

Cardiovascular diseases I 17.79 million
Cancers I ©.56 million

Respiratory diseases | 3.91 million
Lower respiratory infections I 2.56 million
Dementia 1IN 2.51 million
Digestive diseases I 2.38 million
Neonatal disorders I 1.78 million
Diarrheal diseases I 1.57 million
Diabetes I 1.37 million
Liver diseases I 1.32 million
Road injuries Il 1.24 million
Kidney disease Il 1.23 million
Tuberculosis I 1.18 million
HIV/AIDS [l 954,492
Suicide Il 793,823
Malaria |l 619,827
Homicide |l 405,346
Parkinson disease ] 340,639
Drowning I 295,210
Meningitis i 288,021
Nutritional deficiencies | 269,997
Protein-energy malnutrition | 231,771
Maternal disorders | 193,639
Alcohol use disorders | 184,934
Drug use disorders ]| 166,613
Conflict | 129,720
Hepatitis | 126,391
Fire | 120,632
Poisonings | 72,371
Heat (hot and cold exposure) | 53,350
Terrorism | 26,445
Natural disasters | 9,603

0 2 million

14 million

10 million
OurWorldInData.org/causes-of-death « CC BY

6 million

Source: IHME, Global Burden of Disease

Figure A.2: Number of deaths by cause worldwide for 20176.

2018 marks 18 million new cases of cancer worldwide, with the United States bearing the
first place in cancer occurrence since the 1990s with approximately 4 times more

incidents per 100,000 population than the world average”s.



Cancer incidence, 2017
New cases of any type of cancer (i.e. incidence) measured as the number of new cases per 100,000 people. This

has been age-standardized, assuming a constant age structure of the population for comparisons between

countries and over time.

No data 0 100 150 200 250 500 750 >1,000
\ ]| i I [E— |

Source: Institute for Health Metrics and Evaluation (IHME) CC BY

Figure A.3: World map of cancer incidence per 100,000 people for 20178.

Cancer incidence, 1990 to 2017
New cases of any type of cancer (i.e. incidence) measured as the number of new cases per 100,000 people. This

has been age-standardized, assuming a constant age structure of the population for comparisons between

countries and over time.
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Figure A.4: Chart of cancer incidence per 100,000 people for 2017, including statistics for
worldwide occurrences as for the United States, United Kingdom, China and Greece8.



A.1.3. Next Generation Sequencing

In 2003, one of the most rigorous and insightful international projects was completed
-The Human Genome Project. World-known scientists from all around the globe joined
forces in order to unveil the truth of our own existence through own main task:
deciphering the human DNA. This endeavor included the sequencing of the whole
human genome -i.e. the uncovering of the order of the nucleotides that comprise the
chromosomes of humans- as well as the identification of genes, their location on the

genome, and their functions®.

Nowada_ys, almost 20 years later, sequencing has become yet a standard procedure for
multiple biological projects. The dawn of Next Generation Sequencing (NGS) ushered a
new era of gaining insight on the genomic, transcriptomic -and many more “-omic”-
profiles of organisms, cells, clinical samples. This second generation of sequencing
methods allows for massively parallel deep sequencing of DINA!01l, Among the most
prominent NGS experimental procedures are the following:

« Whole Genome Sequencing (WGS): The technique by which the whole genome of
an organism is sequenced. This includes all the chromosomes and mitochondria of

an organisrn, and, in the case of plants, of the Chloroplasts.

* Whole Exome Sequencing (WES): The technique by which all protein coding
regions of the genome are sequenced. Those regions are called exons, therefore this

technique was called exome sequencing.

« RNA Sequencing (RNA-Seq): The technique by which the RNA 1s sequenced.
RNA 1s the transcribed version of the DNA, with multiple functions inside the cell.
Messenger RNA (mRINA) acts as an intermediate between the DNA and protein
synthesis, while other types of RNA may have structural functions, act as
transporters, exhibit various regulatory functions, and many more. RNA-Seq 1is
capable of capturing the majority of RNA types that are transcribed in a sample, or,

with proper sample preparation, selectively sequence a certain type of RNA.

+ Ribosome Profiling (Ribo-seq): The technique by which actively translated mRNA
molecules are sequenced. RNA is sequenced here as well, however the sample
preparation and RNA targeting procedure varies greatly compared to RNA-seq;
thus, Ribo-seq holds a different place in the panel of NGS techniques.



Chapter A.2. Cancer Immunology

he immune system combats

numerous threats: exogenous,

such as bacteria, viruses and
other pathogens, as well as endogenous,
such as cancer. It is the major defense
mechanism of the human body, with
extraordinary cells and mechanisms at its
disposal, and is comprised of two arms:
the innate and adaptive immunity. One
could envision the innate immunity as a
first line of defense against external or
internal enemies, whereas the adaptive

immunity is a more sophisticated and

well-trained army of cells. But how does

the ; ¢ bat 9 Figure A.5: Multiple T-cells (blue) attacking
€ 1Immune system combat caner: B16F10 tumor cells (green)m.



A.2.1. The Immune System versus Cancer

The modus operandi of the immune system is based on a dynamic interaction between its
two arms, the innate and the adaptive -or acquired- immunity. Innate immune responses
are considered ancient defense mechanisms, relying on the recognition of typical,
pathogen-associated motifs via a set of receptors. These receptors, termed pattern
recognition receptors (PRRs), are non-specific, and bind to the pathogen-associated
molecular patterns (PAMPs) or the damage-associated molecular patters (DAMPs),

eliciting a swift immune response!314.

On the contrary, acquired immunity revolves around the fundamental ability to
specifically detect an extraordinarily diverse set of molecules (i.e. antigens) and rapidly
induce an immune response. This ability, termed immunological memory, is based upon
prior encounter with the particular threat, to which end the innate immunity plays a
crucial role!4. In brief, innate immune cells encounter exogenous or endogenous threats,
gather information on their macromolecular profile, and then pass the acquired
knowledge to the adaptive immune cells; those cells in turn are trained on the new
agenda, begin patrolling for potential breaches in defense, and upon contact with the

known enemy, they are activated, attacking and eradicating the threat.

The explanation above is but a simplification of the sophisticated approach with which
the immune system coordinates its defense against cancer and all other potential threats.
In order for this defense machinery to be successful, it requires a great amount of fine-
tuning between a variety of different cells that belong to both branches of the immune
system. Certain types of cells that partake in this procedure are of particular notice,

especially in cancer immunology, and will be concisely discussed.

Prior to that, another important term should be introduced: the term “antigen”, which
more often than not is associated with the term “antibody” as its counterpart, referring to
a molecule that induces the production of antibodies. However, this tautologic definition
of antigens is not entirely accurate. At a molecular level, an antigen is a molecule that can
be recognized by -i.e. bound specifically to- the antigen-binding domain of an “antigen
receptor” -i.e. an antibody or T-cell receptor (TCR)!. Again, this second definition is
tautological as well; yet, it implies a one-on-one relationship between an antigen and a
receptor, while not being limited to exogenous or endogenous threats, or even antibodies.
In fact, the second definition also introduces self antigens normally produced in healthy

cells, which serve as a sanity check for the immune system.

With regards to endogenous and exogenous threats, antigens in essence refer to products
that are not normally produced by a healthy organism, hence are indicators of external
intruders or internal abnormalities, serving the self vs non-self distinction. As such, tumor
antigens are a significant signal produced by cancer cells, emanating their malignant
nature. At the same time, they act as means to train the adaptive immune cells on
identifying tumor cells. The latter is facilitated with the help of antigen presenting cells
(APCs). APCs are mostly innate immune cells, which differ significantly from each other
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both in antigen uptake -the acquisition of antigens- and effector functions -inducing

certain abilities to the cells they are presenting the antigen to!“.

In order to induce an immune response against cancer, there are two phases involved: the
priming and effector phases. An interesting example of antigen presenting cells that
participate in this process are dendritic cells (DCs). During the priming phase, immature
DCs obtain the tumor antigens of dying cancer cells, exhibiting phagocytic behavior
towards apoptotic cells!314. Cell death induces danger signals which function as
stimulants to increase immunogenicity and, alongside antigens, lead to the maturation of
dendritic cells. Upon maturation, DCs travel to the lymph nodes where they train the
lymphocytes, T cells and B cells, the adaptive immune cells responsible for carrying out
adaptive immunity. Trained lymphocytes carry antigen receptors specific for a given
antigen, namely antigen-specific receptors, and proliferate only after exposure to said

antigens!3.

Subsequently, the effector phase is initiated, with the continuous interaction between
innate and adaptive immunity. During this phase, cytotoxic T cells (cytotoxic T
lymphocytes, CTLs) are the main effector cells, charged with the responsibility to
recognize, attack and eradicate tumor cells. Moreover, T helper cells are also developed
during the priming phase, and they are responsible for mentainance and effectiveness of

cytotoxic T cells!3.14.15,

A.2.2. Cancer Immunosurveillance and Immunoediting

In 1957, Thomas!¢ and Burnet!” introduced the Immunosurveillance Hypothesis, a
notion that portrays the active role of the immune system in monitoring the development
of tumors by recognizing and eliminating malignant cells!8. This theory has since been
reviewed and extended to a new notion termed Cancer Immunoediting, as strong
experirnental evidence suggests that the immune system does not only combat tumor
cells, while at some cases is manipulated to enable their proliferation. Although this might
seem counter-intuitive -as the sole purpose of the immune system is to attack potential
threats-, the progressive evolution of tumors enables them to avoid components with anti-
tumor properties and hijack a plethora of immune pathways and mechanisms to mask
their malignant nature!819. The dynamic interaction between the immune system and
cancer, as portrayed in Cancer Immunoediting theory, is divided in three phases:

elimination, equilibrium, and escape!3.19.

During the elimination phase -the Immunosurveillance Hypothesis analogue-, the
malignant cells are recognized and destroyed b_y components of the immune system.
Recognition of tumor cells is a most important step as well as the initiation point during
the elimination phase. It involves the appearance of threat signals that are either secreted
by tumor cells -e.g. interferons (IFNs), signaling molecules that are produced by cells in
response to abnormal behavior and activate immune cells- or presented on the surface of



tumor cells!3. The latter category of molecules includes antigens which are the leading
signals in distinguishing between normal cells -“self”- and tumor cells -“non-self”. Cell
antigens, be it self or tumor, are peptides typically 9 to 11 amino acids long that are
displayed on the cell surface; in cancer they are termed tumor antigens or neoantigens.
The production, presentation, and recognition of tumor antigens will be discussed later in
more detail. However, it should be noted that neoantigens are significantly different from
self antigens, and that fact from an immunological perspective ensures that the
components of the immune system will be able to distinguish them from self antigens and
recognize them as threat signals?0. Following tumor cell recognition, the immune cells are

activated to respond and eradicate the malignant transformed cells.

If the immune system fails to destroy tumor cells during the elimination phase, the
equilibrium phase is established. During this state, the tumor further evolves and mutates
into more resilient forms which the immune system can restrict but cannot destroy. In a
sense, this phase serves as a functional dormanc_y state between the immune system and
tumor, all the while both sides seek routes for asserting dominance over one another. The
equilibrium phase has been described as a long-lasting period throughout which no

clinical manifestations of cancer are reported!3.

The third phase of escape is established as soon as the immune system is incapable of
sustaining the dynamic equilibrium with the tumor, and/or cancer cells manage to evade
the immune system’s control by developing or utilizing cellular mechanisms to their
advantage. Up to this point, cancer cells have accumulated numerous genetic and
epigenetic alterations and have hijacked a plethora of mechanisms to escape immune

control, leading to clinical manifestations of cancer.

A.2.3. Antigen Processing and Presentation Machinery

Antigen presentation on the cell surface involves several steps, all of which take place on
a molecular level, with the process being common for both normal and tumor cells. All
antigens, self and non-self, are the processed products of proteins expressed in the cells.

Antigen processing and presentation involves the following steps?!:

a. Proteins intended for degradation -mainly because they are deemed unneeded
or damaged- are tagged during a biological process called ubiquitination,
during which the small molecule ubiquitin is attached to the protein. Ubiquitin
acts as a signal for the protein-transport machinery of the cell to move said

protein for degradation?2.

b. The tagged proteins are moved to and degraded into smaller peptides by the

proteasome -a protein complex found in the cytosol of the cells.

c. The peptides bind to HSP90 on the cytosol -a chaperone protein that acts as a

protein stabilizer and aids protein degradation?!.23.



d. The peptides are transported to the endoplasmic reticulum (ER) by the TAP1-

TAP2 protein complex, also known as the transporter associated with antigen

processing (TAP)21.24,

e. In the endoplasmic reticulum, the peptides are trimmed to appropriate length,

9 to 11 amino acids long, by ER aminopeptidases associated with antigen

processing (ERAP).

f. The trimmed peptides, still in the endoplasmic reticulum, bind to newly
synthesized major histocompatibility complex (MHC) class I molecules with
the help of chaperone proteins!3.21.24,

g. The MHC-I-antigen complex is transported to the cell surface and the peptide

is thus presented.

As briefly mentioned above, the major histocompatibility complex (MHC) class 1
molecule serves as the platform where the antigens bind to, and thus can be presented on
the cell surface after the complex is transported there. MHC-I molecules are therefore

regarded as extremely crucial components of the antigen presentation machinery.

Once the antigen is bound and presented by MHC-I, cytotoxic T lymphocytes (cytotoxic
T cells or TCLs) bind to the antigen and recognize its self or non-self nature. In the case
of non-self antigens -or of self antigens in autoimmune diseases- the T cells are activated
and attack the cell that presented the non-self antigen. Specifically for cancer, the tumor-
restricted expression of tumor antigens -a.k.a. neoantigens- guarantees the targeted
activity of T cells against the tumor cells and subsequent absence of activity against

normal cells20.

A.2.4. Sources of Tumor Specific Antigens

In health_y cells, self antigens are the processed products of proteins normaﬂy expressed
by those cells. As such, self antigens do not elicit an immune response as the immune cells
have been trained to tolerate them and not be activated by them. However, in cancer cells
tumor-specific antigens (TSAs) fall under at least one of the following general categories

which describe their non-self nature:

a. They are the processed products of proteins or peptides not norrnaﬂ_y

expressed 1n healthy cells.

b. They are the processed products of proteins or peptides normally expressed n

tissues different from the ones in question.

c. They are the processed products of proteins or peptides normally expressed in

healthy cells but are over-expressed in the tumor cells in question.

A more detailed depiction of the putative sources of tumor specific antigens is given in the

figure below:
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Figure A.6: Schematic of a cancer cell and the possible sources of neoantigens. These include
non-synonymous mutations, protein fusions, cancer-specific exon inclusion, intron retention,
translational tread through, expression of retroviral elements, expression of Cancer Testis
Antigens (CTAs), alternative ORFs -to name the most well-documented ones.

A.2.5. Immune Escape Mechanisms

Immune escape is of particular interest from both clinical and therapeutic perspectives.

Known escape mechanisms include the following!3:

a. Defective tumor antigen processing and presentation machinery.

b. Lack of immune activating pathways.

c. Presence of mechanisms that inhibit immune response and induce an
Immunosuppressive state.

d. Development of resistant tumor cells as a result of accumulated genetic

mutations.

The aforementioned mechanisms may shape immune response by affecting three distinct
areas of immune regulation: the tumor’s antigenicity (a), immunogenicity (b and c), and
microenvironment (c). The accumulation of genetic mutations that leads to resistant
tumor cells (d) is an umbrella case that spans over all three aspects, and sometimes could

even be considered the end result of successful immune escape action of tumor cells.
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Antigenicity

The ability of the immune system to distinguish between healthy and tumor cells is of
paramount importance for an effective response against malignant cells. As discussed in
previous sections, immune cells are able to do so via the recognition of non-self tumor
antigens found on the surface of cancer cells. Therefore, retention of antigenicity is
crucial for the immune system. On the contrary, loss of antigenicity serves as a way for

cancer to escape immune surveillance and proliferate.

Loss of antigenicity may occur due to immune selection of cancer cells -i.e. the process by
which cancer cells evolve and adapt to escape immune surveillance. Thus, cytotoxic T
cells are not able to recognize cancer cells and attack them. However, antigenicity might
also be compromised due to the accumulation of defects in the antigen presentation
machinery that lead to partial or total loss of antigen presentation. Therefore, even if a
tumor expresses sufficient antigens that may elicit an immune response, the immune
system'’s ability to detect those cells and eradicate them also depends on the functionality
of the MHC-antigen complex. In fact, defects of the antigen presentation machinery have
been associated with a number of common solid tumors, including melanoma, breast,

lung, renal, prostate and bladder cancers!825,
Immunogenicity

Even if tumors retain their antigenicity, enabling recognition by immune cells, they can
still escape immune surveillance by decreasing their immunogenicity. This can be
achieved via pathways that induce the downregulation of immune responses. Proteins
CTLA4 (cytotoxic T-lymphocyte-associated protein 4) and PD-1 (programmed cell death
protein 1) and the latter’s ligand, PD-L1 (programmed death-ligand 1) have been linked
with pathways that suppress the immune system. These molecules exhibit inhibitory

abilities, actively obstructing anti-tumor T cell responses!826,
Tumor Microenvironment

The tumor microenvironment (TME) refers to normal cells, blood vessels, and molecules
that surround and sustain malignant cells. Research evidence suggests that tumor
proliferation or eradication relies on a dynamic interaction between the tumor cells and
the tumor microenvironment, while TME is also said to shape therapeutic responses and

resistance2’28,

Tumors retaining antigenicity and immunogenicity may still be able to escape immune
surveillance by altering the tumor microenvironment into one that suppresses infiltration
of leukocytes. Tumor infiltrating lymphocytes (TILs) are essentially T cells that pervade
tumor tissue, recognize malignant cells and proceed with elimination, thus being an
important pillar in immune-mediated eradication of cancer. The immunosuppressive
tumor microenvironment that some tumors establish may lead to reduced invasion of

TILs, inactivation of TILs, or even manipulation of TILs to the tumor’s advantage!829.
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Chapter A.3. Cancer Immunotherapy

or Medicine was awarded jointly to
James P. Allison and Tasuku Honjo
“for their discovery of cancer therapy by

In 2018, the Nobel Prize in Physiology

inhibition of negative immune regulation,”
marking the beginning of a new era in
cancer immunotherapy3’. The two
researchers had been studying CTLA-4 and
PD-1, respectively, since the 1990s,
revealing their corresponding roles on
suppressing the activity of cytotoxic T cells.
Reverse engineering this knowledge, they
both worked on the concept of removing
the breaks that keep the T cells inactive by
inhibiting the action of CTLA-4 and PD-I.
This breakthrough expanded the arsenal of

immunotherapeutics and allowed for new

Figure A.7: James P. Allison (left) and Tasuku
Honjo (right), the 2018 Nobel laureates in
Physiology or Medicine3.

approaches in cancer treatment, with authorities having since approved the use of immune

checkpoint blockade for numerous different types of cancer with outstanding results3!.
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A.3.1. Types of Immunotherapies

Cancer immunotherapies leverage components of the immune system in order to boost its
ability to recognize, attack, and destroy cancer cells. Types of immunotherapies include
the following32.33;

« Monoclonal Antibodies (MABs): MABs are immune system proteins produced in
the lab. One category of MABs attaches itself to the surface of cancer cells,
facilitating the recognition of said cancer cells by the immune system. Another
category acts as switches that regulate pathways and machinery used by cancer cells
to proliferate. A third category of MABs may attach to both cancer and T cells,

assisting cancer cells eradication by T cells34.35.

« T cell Transfer Therapy: The goal of this therapy is to provide the patient’s immune
system with more robust T cells that will be able to destroy malignant cells. There
are two types of T cell transfer therapies: tumor infiltrating lymphocytes (TILs)
therapy and CAR-T cells therapy. During TIL therapy, which is based on the ability
of TILs to recognize tumor cells, TILs are extracted from the TME, cultivated to
increase their numbers, and then re-inserted intravenously to the patient’s blood
stream. On the other hand, CAR T cell therapy includes the modification of T cells
in order to be able to produce a chimeric antigen receptor (CAR) which exhibits

higher speciﬁcity In recognizing a particular antigen26:36.37,

» Immune System Modulators: This type of molecules are based on proteins
normally produced by the immune system, including cytokines. As an
immunotherapy method, immune system modulators are either natural or artificial,

and are used to stimulate a more robust immune response38.39.

« Immune Checkpoint Inhibitors (ICI): The work of Allison and Honjo expanded
the potential of cancer immunotherapies by introducing a revolutionary approach.
Immune checkpoints, such as CTLA-4 and PD-1, are proteins normally expressed
in immune cells, and their role is to suppress strong immune responses so that
cytotoxic T cells do not destroy healthy cells. By releasing those immune breaks, T
cells are authorized for an all-out cancer cell eradication. This can be achieved with
molecules that inhibit the action of the immune checkpoints; therefore this type of

therapy was named immune checkpoint inhibition3149,

« Cancer Vaccines: As all types of vaccines, cancer vaccines utilize molecules or cells
that train the immune system to recognize and attack a threat -in an upcoming
encounter- or stimulate it into action -if the disease is present. Cancer vaccines
include preventive and treatment vaccines, that either contain tumor antigens,
whole cancer cells, or immune cells vaccine. Cancer vaccines are still available as

part of clinical trials2041,

14



A.3.2. Advantages

The crux in cancer immunotherapy is how normal defense mechanisms of a patient can
be used, or further accentuated to eliminate cancer cells. Hence, the focus of cancer
treatment has been shifted from the tumor to the host’s immune system. This aspect in

itself serves as a revolutionary path in cancer therapies, owning to its universal character.

Immunotherapies have demonstrated their efficacy for a plethora of cancer types, and
particularly so against cancers that have been resistant to chemotherapy or radiation
therapy, e.g. melanoma, with outstanding results and long-term survival rates. The latter
is based on the ability of the immune system to form an immunologic memory, which is
further amplified through immunotherapy. This has been apparent in patients with
metastatic cancers as well; metastatic cancers are considered an incurable disease for the
majority of patients, with immunotherapy managing, in several cases, to confront the

complicated nature of metastasis26:42.

Furthermore, the side effects of immunotherapy are usually mild, especially compared to
chemotherapies or radiation therapies which most certainly will expose the patient’s
healthy cells to additional perils2.

A.3.3. Limitations

Pitfalls in cancer immunotherapy with regards to side effects may include overstimulation
or misdirection of the action of the immune system, with symptoms varying from fever
and inflammation to more severe conditions that resemble autoimmune diseases2. At the
same time, currently available immune therapies are costly, and the therapeutic agents are

often associated with significant toxicity?3.

However, the major challenge In cancer imrnunotherapy emerges with respect to its
efficacy and consistency across the majority of cancer patients and cancer types. Even if
imrnunotherapies have demonstrated outstanding results, they have done so only for a
small fraction of the patients. Moreover, in several cases, patients have exhibited acquired
resistance to immunotherapy, with responders relapsing after a period of response. Such
facts may not come as a surprise, taking into account the highly complex nature of cancer
-across patients with different genomic profiles and also given the intratumor diversity-,
the exceedingly regulated nature of the immune system, as well as the dynamic
interaction between the two, with the latter sometimes leading to immune-protected

tumors2644,

The inability to predict whether a certain type of immune therapy will be of benefit for a
specific patient is evident, and alarming. The fact that the medical community is not able
to distinguish the appropriate approach for the treatment of a patient, poses an obstacle

of paramount importance. This lack unveils the need to determine the mechanisms of
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tumor immune escape and/or how the immune system selects for proliferating tumors.
Furthermore, it calls for the discovery of additional biomarkers that will point to the
suitable treatment. For example, thus far, high expression of PD-L1 has been a strong
indicator of response to anti-PD-1 therapy; however, this has not been the case for all
tumors, and PD-1 is but a single molecule that may act as a biomarker!84445,

At the same time, genomic instability due to accumulation of non-synonymous mutations,
may lead to production of immunogenic tumor antigens, while several studies have linked
the high Tumor Mutation Burden (TMB) with response to immunotherapy. However, a
majority of those antigens do not seem to lead to the induction of T cell responses. This
observation leads to two main conclusions: First, the tumor mutation burden cannot
always be an indicator of response to therapy. Secondly, naturally occurring tumor
antigens may not be sufficient for proper activation of an immune response, or the
continuous exchange between the tumor and the immune system may have lead to
selection of the tumor antigen repertoire that will not elicit such a response, or tumor may
actively block antigen presentation. Again, the need for understanding the underlying
mechanisms of immune escape 1s brought forth, alongside the urgency for biomarkers of

diagnostic, predictive, prognostic and/or therapeutic value20.45,

A.3.4. Anticipated Innovations

All of the limitations brought up in the previous paragraphs point to one of the most
anticipated innovations in cancer treatment: the personalization of immunotherapy that
will allow for efficient, targeted treatments with long-lasting results. Since each patient’s
tumor is unique, the identification of all prominent factors that enable tumor progression
and shape the immune response will allow for the selection of the most suitable therapy,

or even a combination of therapies.

In order to facilitate the personalized aspect of cancer treatment, a number of other
innovations are expected to occur: First of all, the unveiling of the immune escape
mechanism and pathways that may bring forth therapeutic targets or prognostic
biomarkers. Furthermore, a more accurate charting of the antigenic and immunogenic
profile of tumor cells, allowing for the utilization of tumor antigens as therapeutic targets.
Last but not least, the discovery of therapeutic approaches that might synergistically
enhance each other; for example, there have been indications of T cell checkpoint
inhibition therapies being accentuated by tumor antigen-reactive T cells, and vice

versa2045,

All of the above innovations are expected to lead to better treatment outcomes, higher
long~term survival rates and lower relapse rates, reduced treatment cost and toxicity, and,

overall, to efficient and consistent methods to combat cancer once and for all.
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A.3.5. Manipulation of the Immunogenic Profile

In order to unveil the underlying “structure” of cancer immunity, several research groups
have deliberately tinkered with pathways, mechanisms, and molecules involved with
cancer. The end goal is to reveal potential therapeutic targets or prognostic markers from
the observed outcomes. Other research groups, at the same time, have discovered various

cancer-specific phenomena that shed light on the production of tumor antigens.

Falling under the latter category, it has been shown that aberrant splicing related to
accumulation of mutations in genes associated with the spliceosome has led to intron
retention events in cancer. This may lead to the production of immunogenic antigens,
since intron retention events do not often occur in healthy cells®. Furthermore, it has
been shown that endogenous retroelements may be a primary source of tumor antigens 1n
cancer cells. Dysregulation of pathways that suppress their expression in healthy tissue
may fall apart in the malignant environment of cancer cells, leading to the production of
endogenous viral proteins, and subsequently of immunogenic antigens?’. More related

results can be found in paragraph A.2.4.

In addition, multiple pathways and their components have been studied over the years
due to their implication in cancer progression. For example, components of RNA
methylation and demethylation pathways, such as the enzyme FTO, have been linked to
tumorigenesis?®. Another important enzyme studied by many groups is PRMTS,
associated with methylation and splicing. Combination of immune checkpoint inhibition
with pharmacological inhibition of PRMT5 showed limited tumor growth in mouse
models, suggesting that inhibition of PRMT5 in a clinical context may enhance an anti-
tumor immune response?®. A handful of studies have also demonstrated how targeting
specific pathways, mechanisms, and molecules may lead to a change in the immunogenic
profiles of cells. Among the mechanisms studied, is the DNA mismatch repair (MMR)
system, responsible for the repair of erroneous incorporation of bases that might arise
during DNA replication. MMR-deficient and MMR-defective tumors, as well as
purposeful inactivation of MMR with the clinical agent temozolomide, showed increased

mutational burden, which in turn lead to production of tumor antigens®0.

All of the above are, milder or stronger -as in the case of MMR inactivation-, indicators
that alteration of the immunogenic profile is possible via interference with drugs or
compounds, or by targeting speciﬁc genes and pathways that have been related to cancer.
This interference seems to be a pillar in inducing production of antigens that may act as

targets for the cytotoxic T cells.
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Purpose of this Study

The essential reason behind patients not being able to respond to cancer immunotherapy
primarily lies with the exceedingly diverse nature of cancer, both across patients and
across cells that comprise the same tumor, as well as its ability to escape immune
surveillance, and proliferate. The immune escape mechanisms, already known to a certain
degree, need to be circumvented or confronted in order for the immunotherapy to show

its true potential in eradicating tumors.

State of the art approaches focus on two main aspects: First, targeting of mechanisms,
cellular procedures, and molecules that are known to be implicated in cancer, in order to
uncover their therapeutic potential; Secondly, characterization of the tumor immunogenic
landscape, primarily by focusing on specific potential sources of tumor antigens. Both
approaches are partially restricting, and rely on hypotheses that have been suggested by
previous studies, all the while possibly disregarding the importance of the different

immune escape mechanisms that might be at play.

This study introduces a holistic approach for the accurate characterization of the
antigenic profile of cancer cells, which revolves around two axes: expression and
translation. First of all, the proposed method goes beyond putative genomic sources of
antigens, extracting products of any genomic, transcriptomic, translatomic, or other
origin, procedure, or anomaly. Furthermore, this study focuses on how the antigenic
profile can be manipulated, searching for antigens that are produced solely in cancer cells
and exclusively after drug administration or gene expression perturbation. The analysis
of compounds or genes does not rely on prior knowledge of a relationship between said
compounds or genes with cancer. On the contrary, all publicly available datasets with
cases of drug administration or gene targeting in tumor cells are potential sources of
information for the suggested method. Analysis of such a vast set of datasets allows for
the generation of universal, hypothesis-free metrics that can highlight prominent
antigens, and prioritize compounds or genes that can be used to alter the antigenic profile

of tumors.
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Section B

Methods

The methods implemented below were developed, tested, and discussed in the Non-
coding Research Lab of Assistant Professor loannis S. Vlachos at Beth Israel Deaconess
Medical Center, Harvard Medical School, Boston, MA. The analyses were performed on

a High Performance Computing environment, on Harvard’s O2 Server.
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B.1. Capturing the Kmerome

Analysis of RNA-Seq studies reveals information on the transcriptome, the actively
transcribed RNA molecules for each sample. In this study, the goal is to go beyond the
expression space and search for abundance of kmers of specific lengths. Antigens are
usually 9 to 11 amino acids long, which correspond to RNA sequences of lengths 27, 30
and 33, respectively. Therefore, the kmers of interest that may lead to antigens are 27, 30,
and 33 nucleotides long; such kmer spaces are generated and analyzed below. B.1. Panel

of Normals

B.1.1. The Panel of Normals

The Genotype-Tissue Expression (GTEx) project is an ongoing endeavor to study tissue-
specific gene expression and regulation. Healthy samples from all human tissues are
included in the database, containing WGS, WES, and RNA-Seq experiments®!. In order
to highlight the tumor-specific nature of certain transcripts that may prove to have an
antigenic potential, a control baseline needs to be created. Normally expressed genes and
transcripts from GTEx RNA-Seq samples are the means to create a Panel of Normals,
which provides the transcriptomic basis of non-tumor transcripts and acts as a first layer
of filter to yield tumor-specific antigens.

The following tissues were utilized in creating the PoNs from GTEx samples:

Tissue Sex Number of Samples Total Number of
Samples

Male 5

Adipose Tissue 10
Female 5
Male 5

Adrenal Gland 10
Female 5
Male 5

Blood Vessel 10
Female 5
Male 5

Brain 10
Female 5
Male 5

Breast 10
Female 5
Male 5

Colon 10
Female 5
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Male 5

Esophagus 10
Female 5
Male 5

Heart 10
Female 5
Male 5

Lung 10
Female 5
Male 5

Muscle 10
Female 5
Male 5

Nerve 10
Female 5

Ovary Female 5 5
Male 5

Pancreas 10
Female 5
Male 5

Pituitary 10
Female 5

Prostate Male 5 5
Male 5

Salivary Gland 10
Female 5
Male 5

Skin 10
Female 5
Male 5

Small Intestine 10
Female 5
Male 5

Spleen 10
Female 5
Male 5

Stomach 10
Female 5
Male 5

Thyroid 10
Female 5

Uterus Female 5 5

Vagina Female 5 5

TOTAL 210

Table B.1: Composition of the Panel of Normals with regards to the tissue origin of the GTEx RNA-

Seq samples used.



A total of 210 GTEx RNA-Seq samples were analyzed, taken from 23 tissue types and
both sexes, apart from sex-specific tissues -ovary, prostate, uterus, vagina. Testis samples
were excluded from the creation of the PoNs, as testis transcripts have been identified as

Immunogenic antigens in tumors originating from tissues different from testis -Cancer

Testis Antigens, CTAs.
The samples above were analyzed as follows:

« Downloaded from dbGaP, the database of Genotypes and Phenotypes.
¢ Quality control was performed following best practices®?:
« Initial quality control of reads using FastQC5 and MultiQC?5.
 Trimming of adapter sequences using Cutadapt®.
+ Secondary quality control of trimmed reads using FastQC? and MultiQC5>.
« Unstranded studies were converted to stranded to resolve read orientation.
Homebrew pipeline”.
+ Reverse reads were reverse complemented to resolve sense orientation. Homebrew
pipeline”.
« Reads were kmer-ized using Jellyfish3 to nucleotide sequences of lengths lengths
27, 30, and 33 bases, to capture the 9-11a.a. length of the antigens.
« Panels of Normals for different kmer lengths (k = 27, 30, and 33) were created by

concatenating results from all samples to a single file containing unique instances of
all kmers found on healthy GTEx samples.

B.1.2. Analysis of RNA-Seq Studies

RNA-Seq studies of samples treated with pharmacological compounds or subjected to
gene expression perturbation (gene knockdown, gene knock-out, up-regulation) were
analyzed to capture the transcriptomic change following said intervention. The samples

were analyzed as follows:

« Downloaded from SRA, the Sequence Read Archive.
¢ Quality control was performed following best practices®?:
« Initial quality control of reads using FastQC? and MultiQC#s.
+ Trimming of adapter sequences using Cutadapt6.
¢ Secondary quality control of trimmed reads using FastQC?% and MultiQC?5.

o Unstranded studies were converted to stranded to resolve read orientation.

Homebrew pipeline”.

* acknowledgements to Dr. Yered Pita-Judrez, loannis Vlachos Non-coding Research Lab
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« Reverse reads were reverse complemented to resolve sense orientation. Homebrew
pipeline®.

« Reads were kmer-ized using Jellyfish%3 to nucleotide sequences of lengths lengths
27, 30, and 33 bases, to capture the 9-11a.a. length of the antigens.

B.1.3. Generation of Universal Metrics

Kmer-ization of reads allowed for the extraction of the following sets of kmers per
treatment, for each kmer length (k = 27, 30, and 33), which can be used downstream for

further analysis:

1. Treatment kmers minus Panel of Normals kmers.
2. Treatment kmers minus Control kmers.

3. Treatment kmers minus Panel of Normals kmers and Control kmers.

The sets of kmers above were subjected to the following data handling, with the use of R
programming language for statistical computing®, for statistical comparisons and

generation of the most fitting metrics:

* Normalization of counts by number of reads sequenced -post-adapter trimming and
post- quality control trimming of reads.
* Normalization of counts by number of bases sequenced -post-adapter trimming and

post-quality control trimming of reads.

Fold Change (FC) of the treatment groups with respect to the control groups.

log2 Fold Change (log2FC) between treatment and control groups.
* Filtering of treatment kmers:
1. logeFC>3

2. Average coverage per treatment group >= 3 instances per million reads

* acknowledgements to Dr. Yered Pita-Judrez, loannis Vlachos Non-coding Research Lab
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B.2. Capturing the ORFome

Analysis of Ribo-Seq studies reveals information on the translatome, the actively
translated RNA molecules for each sample. This approach sheds light on which RNA
molecules are actually translated to proteins or peptides. As not everything that 1s
transcribed is going to be translated, the Ribo-Seq analysis acts as an extra layer of

filtering kmers for putative antigens.

The Open Reading Frame (ORF) corresponds to the DNA sequences that have the
ability to be translated, as they include a start codon -a triplet of bases, AUG- which the
ribosome recognizes and, hence, initiates translation. The approach described below,
associates Ribo-Seq reads with the statistically most probable ORF coordinates they

originated from.

B.2.1. Analysis of Ribo-Seq Studies

Ribo-Seq studies containing healthy samples, as well as cancer samples and cancer
samples treated with pharmacological compounds or subjected to gene expression
perturbation (gene knockdown, gene knock-out, up-regulation) were analyzed to capture
the translatome of healthy, cancer and cancer-treated samples. The samples were

analyzed as fOHOWSZ

* 45 datasets in total were manually curated.
* Samples were downloaded from SRA, the Sequence Read Archive.

* Samples were underwent quality control and analyzed with a homebrew pipeline”
that utilizes the PRICE method for inference of the active Open Reading Frames
(ORFs)%s.

* Owing to the highly heterogeneous nature of Ribo-Seq library preparations,
one needs to take into account how samples were prepared and modify the

analysis, especially at the adapter trimming step.

B.2.2. Panels

From the 45 different studies analyzed, 3 different panels were created:

1. Healthy Panel: Containing the ORFs of all analyzed healthy samples. This is an
analogue of the Panel of Normals but for actively translated RNA molecules/
ORFs. Healthy samples treated with pharmacological compounds or subjected to

gene expression perturbation were not included in this panel.

2. Cancer Panel: Containing the ORFs of all analyzed cancer samples.

* acknowledgements to Dr. Yered Pita-Judrez, loannis Vlachos Non-coding Research Lab
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3. Cancer Plus Panel: Containing the ORFs of all analyzed cancer samples that were
treated with pharmacological compounds or were subjected to gene expression

perturbation.

Panel Number of Samples
Healthy 209
Cancer 73
Cancer Plus 57

Table B.2: Number of Ribo-Seq samples used for the
generation of the 3 ORF Panels

To create the aforementioned panels the following steps were carried out:

* Curation of the Ribo-Seq datasets led to categorization of samples based on disease
state -healthy or cancer- and treatment methods -control or treated.

* For each sample, ORFs were filtered for False Discovery Rate (FDR) of 10% or
less, in order to extract those that are statistically more probable to be translated

and exclude false positives or noise.

* Results were gathered per panel type to allow for downstream statistical analysis.

Comparisons between panels was facilitated with the following data handling

approaches, and with the use of R%7.

* A list of ORF coordinates from all samples per panel was created, allowing for the
comparison of overlapping ORF's between panels.

* A table containing the raw counts for all samples per panel was created. Normalized
versions of the table were created with regards to a) the number of reads mapped on
the genome, and b) the number of reads mapped on the transcriptome.

* The average coverage per ORF per panel was calculated, to allow for direct

comparisons.
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B.3. Kmer Database

Analysis of dozens of different studies which correspond to hundreds of different
samples, and comparisons between them with the end goal of bringing forth the
difference in the expression space and kmerome requires fast and robust kmer algebra.
This is not an easy feat to do manually, and requires for structures that support such
large-scale queries.

To this end, a PostgreSQL Database was created in order to host the results of the
analyses described above. The database is designed to include sample metadata as well as
kmer post-analysis metadata.

To construct the Kmer DB, the following tools were implemented:

+ A first DB schema was created with dbdiagram.io%, an online tool which allows for
user-friendly database schema design and extraction of the SQL code required to

build said database.

 PostgreSQL, a free and open-source relational database management system was
chosen to host the designed DB®0.

« SQL code extracted from dbdiagram.io was revised and run to create the database.
Further improvements to the database structure were carried out with Navicat, a
user-friendly Graphical User Interface (GUI) that assist database management®!.

The Database schema is presented below:

TissuelD n
TissueType
P samplelD nt
Patholo
&y sampleSpecies
Organ
TissuelD KmerSample
CellD sampleSex samplelD kmerSequence
TissuelD sampleCondition S kmerLength
sampleGeneTarget
sampleGeneOutcome
CelllD MappingID nt
CellType sampleSource EESS !
kmerID
Cellid in sampleSourcelD
Assembl;
e sampleseqDepth Yy
chr
HLAID in CellType
start
HLAname el
MappingAnnotation end
MutationiD
MappingID strand
TissuelD
m LocusType OtherSourceoforigin

AnnotationSource
CellD

MutationID

MutationID int
MutatedGene

MutationEffect

Figure B.1: Kmer database schema. This schema practicaly captures two types of data for a particular
study: the sample metadata and the kmer metadata, the latter seeming from the study analysis.
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C.1. Capturing the Kmerome
C.1.1. The Panel of Normals

A total of 210 GTEx samples from different RNA-Seq studies were analyzed in order to
capture the kmerome of healthy human cells. Samples from both sexes were included to a
1:1 ratio in order to account for all the sex-associated genetic variation that might be at
play for different tissues. Sex-specific tissues were also included, maintaining the 1:1 ratio
to samples from other tissues and opposite sex. The only exception was testis tissue,
which was entirely excluded from the generation of the Panel of Normals, as testis

transcripts have exhibited antigenicity in various cancers (Cancer Testis Antigens,

CTAs).

Kmer-ization of the GTEx RNA-Seq studies led to the following results:

kmer Length Group Number of kmers
27 72,413,616
30 Panel of Normals 70,033,658
33 67,444,853

Table C.1: Number of kmers that comprise the Panel of Normals, for k=27, 30 and 33.

C.1.2. Manipulation Case Study 1

The first case study presented here contains the following samples:

Sample Condition Group
S2.1 Control Control
S2.2 Control Control
S2.3 Control Control
S2.4 Treated Treatment
S2.5 Treated Treatment
S2.6 Treated Treatment

Table C.2: Composition of samples comprising RNA-Seq Case
Stud_y 1.

28



In this case study, a certain exon is being targeted for skipping, as it had been

associated with increased expression in cancer.

For the control group, the number of kmers that follow the criteria below is calculated,

per kmer length:
* Kmers present in all samples that comprise the control group

« Kmers not present in the Panel of Normals

For the treatment group, the number of kmers that follow the criteria below is calculated,

per kmer length:
« Kmers present in all samples that comprise the treatment group
« Kmers not present in the Panel of Normals

and an extra set that follows also this criterion:

« Kmers not present in the Control group

This kind of kmer algebra allows for the calculation of a first set of metrics, shown on the
table below:

1. Number of kmers present in the control cancer sample, and not in healthy
2. Number of kmers present in the treated cancer sample, and not in healthy

3. Number of treatment-specific kmers

kmer Length Kmer Set Number of kmers

Control minus PoNs 17,604,370

27 Treated minus PoNs 16,717,627
Treatment-specific 536,488

Control minus PoNs 16,953,665

30 Treated minus PoNs 15,987,519
Treatment-specific 493,703

Control minus PoNs 16,248,209

33 Treated minus PoNs 15,218,827
Treatment-specific 452,363

Table C.3: Number of kmers for different sets from the control and treated groups, for k=27, 30 and 33.
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Already, these numbers capture two things; first of all, the difference in the expression
of kmers between healthy cells and cancer cells. Taking into account that the PoNs
kmerome is as big as 70 million kmers, the additional >15 million observed here that are
expressed exclusively in the cancer samples are an important signal for putative
antigenicity. Secondly, the third metric of treatment-specific kmers manages to capture
the effect of the treatment on the cancer cells, acting as a first layer of support for the

“manipulation of the kmerome” speculation.

However, the expression of the kmers in question might be a chance occurrence or they
may even be sequencing artifacts. The following comparisons act as a second, more strict
layer to distinguish between kmers whose expression was a chance event and those who
demonstrate a significant difference in expression between control and treatment

samples.

After excluding only PoNs kmers from all samples and normalizing with regards to the
number of reads sequenced -post trimming-, the Fold Change and loga(FoldChange)
between the treatment group and the control group are calculated. The kmers are then
filtered for a log2(FoldChange) greater than 3 -which corresponds to an 8-fold increase of
expression in the treatment group versus the control group-, as well as for at least 3

counts per million reads.

It should be noted that samples that did not give any signal for a specific kmer were
assigned 0.01 counts per million reads, which corresponds to 1 count (unnormalized) for
the majority of studies.

The histogram below captures the distribution of the log2(FoldChange) metric, per kmer
length.

Distribution of the log2(FC) Metric per kmer Length
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Figure C.1: Histogram of logo(FoldChange) values for the Treatment group of Case Study 1, k=27, 30,
33.
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As expected, most kmers passing filters are gathered near the loga(FoldChange) > 3
threshold, and only a handful exhibit a loga(FoldChange) > 4. This filter is already rigid
enough, corresponding to an 8-fold change of expression between treatment and control,

yet still captures the potential of kmers to be significantly expressed versus a control

group.

The following can be noted for the kmers passing the filters:

Number of kmers

kmer Length Group Passing Filters
27 Treatment 847
30 Treatment 778
33 Treatment 694

Table C.4: Number of kmers passing filters from the Treatment group, for k=27, 30 and 33.

C.1.3. Manipulation Case Study 2

The second case study presented here contains the following samples:

Sample Condition Group
S1.1 Treated Group 1
S1.2 Treated Group 1
S1.3 Treated Group 2
S1.4 Treated Group 2
S1.5 Control Control
S1.6 Control Control

Table C.5: Composition of samples comprising RNA-Seq Case
Study 2.

In this case study, pharmacological inhibition of a gene occurs, with the protein
encoded by said gene being linked to various mechanisms of cancer progression. The

difference between the two treatment groups is the concentration of the compound with

which they were treated.

For the control group, the number of kmers that follow the criteria below is calculated,

per kmer length:
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« Kmers present in all samples that comprise the control group

« Kmers not present in the Panel of Normals

Number of kmers

Lo Lzt Group Passing Filters
27 Control minus PoNs 11,516,285
30 Control minus PoNs 11,732,211
33 Control minus PoNs 11,940,893

Table C.6: Number of kmers minus Pons for the Control group, for k=27, 30 and 33.

The sets of kmers for the control groups and their size manage to capture the difference
in kmer expression between cancer cells and healthy cells, taking into account that the
PoNs contains about 70 million kmers and the control groups for this study exhibit

expression of about 12 million kmers extra.

For the treatment groups, the number of kmers that follow the criteria below is
calculated, per kmer length:

¢ Kmers present in all samples that Comprise the treatment group
« Kmers not present in the Panel of Normals
and an extra set that follows also this criterion:
« Kmers not present in the Control group
and, owing to the sample architecture of this study, after excluding both PoNs and

Control kmers, the number for the following set of kmers is calculated as well:

 Kmers common between the treatment groups

Number of
Number of .
kmer Number of kmers ) treatment-specific
Group g treatment-specific
Length minus PoNs I kmers
mers
(all treatment groups)
Group 1 9,198,792 645,038
27 184,728
Group 2 9,644,186 426,260
Group 1 6,069,007 426,845
30 122,187
Group 2 9,755,018 437,358
Group 1 9,577,684 674,167
33 192,454
Group 2 9,961,257 446,483

Table C.7: Number of kmers for different sets of the Treatment Groups, k=27, 30, 33.
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The sets of kmers for the treatment groups and their size manage to capture the
difference in kmer expression between cancer cells and healthy cells, as well as the effect
of the treatment. Moreover, similarities between the different treatment groups are
observed, which might indicate a universal effect of the treatment across the samples,

irregardless of the compound concentration.

After excluding only PoNs kmers from all samples and normalizing with regards to the
number of reads sequenced -post trimming-, the Fold Change and log2(FoldChange)
between the treatment groups and the control group are calculated. The kmers are then
filtered for a loga(FoldChange) greater than 3 -which corresponds to an 8-fold increase of
expression 1n the treatment group versus the control group-, as well as for at least 3

counts per million reads.

It should be noted that samples that did not give any signal for a specific kmer were
assigned 0.01 counts per million reads, which corresponds to 1 count (unnormalized) for
the majority of studies.

The histograms below, one per group, capture the distribution of the logo(FoldChange)

metric, per kmer length.
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Figure C.2: Histogram of log2(FoldChange) values for Treatment Group 1 of Case Study 2, k=27, 30,
33.
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Distribution of the log2(FC) Metric per kmer Length
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Figure C.3: Histogram of log2(FoldChange) values for Treatment Group 2 of Case Study 2, k=27, 30,
33.

Both histograms exhibit similar characteristics: the majority of the kmers have a
logo(FoldChange) metric between 3 and 6.5-7, while there are a several outliers with a
loga(FoldChange) metric greater than 8. The latter might be indicative of kmers that

were highly expressed in the treatment groups versus non-existent in the control group.

The following can be noted for the kmers passing the filters:

Number of kmers

kmer Length Group passing filters

Group 1 2,646

27
Group 2 826
Group 1 1,875

30
Group 2 775
Group 1 2,717

33
Group 2 714

Table C.8: Number of kmers passing filters from the Treatment groups, for k=27, 30 and 33.

34



C.1.4. Manipulation Case Study 3

The third case study presented here contains the following samples:

Sample Condition Group
S3.1 Control Control 1
S3.2 Control Control 1
S3.3 Treated Group 1
S3.4 Treated Group 1
S3.5 Control Control 2
S3.6 Control Control 2
S3.7 Treated Group 2
S3.8 Treated Group 2
S3.9 Control Control 3
S3.10 Control Control 3
s3.11 Treated Group 3
S3.12 Treated Group 3
S3.13 Control Control 4
S3.14 Control Control 4
S3.15 Treated Group 4
S3.16 Treated Group 4

Table C.9: Composition of samples comprising RNA-Seq Case
Study 3.

In this case study, samples are treated with a drug with potential antitumor effects. Two

different cell types were utilized in this study, with both cell types originating from the
same type of tumor, thyroid gland medullary carcinoma; samples S3.1 to S3.8 are of

one particular cancer cell type, while S3.9 to S3.16 are of a different one, and all treated
samples were treated with the same drug. The differences between treated groups Group

1 against Group 2, and again Group 3 against Group 4 is the treatment time.

For the control groups, the number of kmers that follow the criteria below 1s Calculated,

per kmer length:

« Kmers present in all samples that comprise the control group
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« Kmers not present in the Panel of Normals

and, owing to the sample architecture of this study, the number for the following sets of

kmers are calculated as well:
« Kmers common between control groups of the same cell type

« Kmers common between all control groups

Number of kmers  Number of kmers

kmer mber of kmer
Len eth Group Numigis (;DONse S minus PoNs minus PoNs
& (same cell type) (diff cell type)
Control 1 3,287,993
2,668,824
Control 2 4,474,445
27 1,353,890
Control 3 5,434,409
2,517,404
Control 4 2,828,316
Control 1 2,918,981
2,346,644
Control 2 4,003,878
30 1,167,378
Control 3 4,815,948
2,182,813
Control 4 2,466,761
Control 1 2,624,309
2,007,132
Control 2 3,498,412
33 975,659
Control 3 4,157,622
1,836,811
Control 4 2,089,916

Table C.10: Number of kmers for different sets of kmers from the Control groups, k=27, 30, 33.

The sets of kmers for the control groups and their size manage to capture the difference
in kmer expression between cancer cells and healthy cells, taking into account that the
PoNs contains about 70 million kmers and the control groups for this study exhibit
expression of 3 to 5 million kmers extra. Moreover, similarities are observed between
kmers for the same cell type, which might be an indication of capturing cell type-specific
kmers.

Last but not least, similarities between the different cell type control groups are also
observed, with quite the high number of 1.3 million kmers, which might indicate two
different things: first, kmers shared for a specific type of tumor, as in this case study
both cell types come from the same tumor type, and, second, that there might be
sequencing or preparation artifacts.

36



For the treatment groups, the number of kmers that follow the criteria below is
calculated, per kmer length:

« Kmers present in all samples that comprise the treatment group
« Kmers not present in the Panel of Normals

and an extra set that follows also this criterion:
« Kmers not present in the Control group

and, owing to the sample architecture of this study, after excluding both PoNs and
Control kmers, the number for the following sets of kmers are calculated as well:

« Kmers common between treatment groups of the same cell type

« Kmers common between all treatment groups

Number of Number of Number of Number of
kmer G k o treatment- treatment-
roup mers minus treatment- X .
Length PoN ific kmer spemﬁc kmers spec1ﬁc kmers
OINS spectie ers (same cell type) (diff cell type)
Group 1 3,249,759 572,337
228,646
Group 2 2,895,296 731,466
27 74,490
Group 3 4,872,708 1,165,253
533,300
Group 4 4,499,933 2,436,016
Group 1 2,934,548 525,146
211,127
Group 2 2,615,985 675,452
30 67,753
Group 3 4,278,361 1,026,668
475,594
Group 4 3,976,631 2,199,283
Group 1 2,590,925 469,827
188,769
Group 2 2,311,473 608,804
33 59,5600
Group 3 3,662,071 882,102
413,113
Group 4 3,427,422 1,940,992

Table C.11: Number of kmers for different sets of kmers from the treatment groups, k=27, 30, 33.

The sets of kmers for the treatment groups and their size manage to capture the
difference in kmer expression between cancer cells and healthy cells, as well as the effect
of the treatment. Moreover, similarities between the different cell type treatment groups
are observed, which might indicate the effect of the treatment across cell types or for the

specific type of tumor, since both cell types originate from the same tumor type.

After excluding only PoNs kmers from all samples and normalizing with regards to the
number of reads sequenced -post trimming-, the Fold Change and log2(FoldChange)
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between the treatment group and the control group are calculated. The kmers are then
filtered for a log2(FoldChange) greater than 3 -which corresponds to an 8-fold increase of
expression 1n the treatment group versus the control group-, as well as for at least 3

counts per million reads.

It should be noted that samples that did not give any signal for a specific kmer were
assigned 0.01 counts per million reads, which corresponds to 1 count (unnormalized) for
the majority of studies.

The histograms below, one per group, capture the distribution of the loga(FoldChange)
metric, per kmer length.
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Figure C.4: Histogram of log2(FoldChange) values for Treatment Group 1 of Case Study 3, k=27, 30,
33.
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Figure C.5: Histogram of log2(FoldChange) values for Treatment Group 2 of Case Study 3, k=27, 30,
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Figure C.6: Histogram of loga(FoldChange) values for Treatment Group 3 of Case Study 3, k=27, 30,

33.
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Figure C.7: Histogram of log2(FoldChange) values for Treatment Group 1 of Case Study 3, k=27, 30,
33.

All four histograms exhibit similar characteristics: a group of kmers with
logQ(F oldChange) closest to the threshold, and then a sudden peak in the number of
kmers with log2(FoldChange) a very high log2(FoldChange) metric greater than 8, which
corresponds to 256-fold change in expression between the treatment groups and the
control groups. The latter indicates high abundance of kmers in the treatment groups that
were non-existent in the control groups. This observation might either indicate a
treatment-specific effect of extreme amplitude or an artificial signal that needs to be
discarded. Further analysis needs to be carried out in order to distinguish which of the
two scenarios are true.

The following can be noted for the kmers passing the filters and which are represented on

the histograms above:

kmer Length Group Number of kmers passing filters
Group 1 6,040
Group 2 29,638
27
Group 3 11,798
Group 4 82,898
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Group 1 5,377

Group 2 26,738
30

Group 3 10,212

Group 4 75,335

Group 1 4,608

Group 2 23,128
33

Group 3 8,451

Group 4 66,157

Table C.12: Number of kmers passing filters from the Treatment groups, for k=27, 30 and 33.

C.2. Capturing the ORFome

Three different ORF panels were created from healthy, cancer and cancer-treated
samples, upon analysis of 45 Ribo-Seq studies. Each panel is comprised of the following
numbers of ORFs:

Panel Number of ORFs Number of Panel-specific ORFs
Healthy 333,461 -
Cancer 151,222 8,969
Cancer Plus 171,013 0

Table C.13: Number of ORFs and panel-specific ORFs per ORF Panel.

The Healthy Panel ORF is considered the Panel of Normals analogue for the Ribo-Seq
studies, capturing all ORFs translated in healthy cells, and is thus used as a baseline.
Panel-specific ORFs were isolated after panel comparisons. Cancer Panel-specific ORFs
do not overlap with any of the Healthy Panel ORFs, while Cancer Plus Panel-specific
ORFs do not overlap with any of the Healthy Panel ORFs or the Cancer Panel ORFs.
The latter was calculated this way in order to capture potential manipulation-specific
translation of ORFs. However, all Cancer Plus Panel ORFs seem to overlap with the
other two panels.
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Figure C.8: Boxplot of the logio(Average Coverage per ORF) of Cancer-Specific Panels, capturing
that, indeed, said ORFs are cancer-specific.

The plot above captures the average coverage per ORF of the Cancer panel Specific
ORFs -logl0 representation for clearer depiction. Even though the majority of the
Cancer Specific ORFs exhibit a logio(Average Coverage) between -1 and 0, which
corresponds to an average coverage of 0.1 to 1, the outliers are strong indicators of

cancer-specific translational events.

However, the basic purpose of the ORF Panels, apart from accurately capturing the
Translation Space, is to act as an extra layer of filtering for the Kmerome, with the end

goal of characterizing the Antigen Space with precision.

C.3. Kmer Algebra with the Kmer DB

The creation of the Kmer Database was based on two fundamental goals:

1. The storing of a large amount of analyzed information in a robust environment

2. The need for efficient and fast querying and filtering.

To this end, the database was created and tested with a small set of analyzed RINA-Seq
studies, in order to ensure it has been properly constructed, as well as to examine its user-

friendly nature and effectiveness in querying.
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GTCCATGGGGCTGGTGGCTGTCATGCT
CTGGTTGGAGCTCGGGCTGACATAATC
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Figure C.9: Two of the tables that comprise the kmer databases, containing kmer
information on the sequence, and length (table kmerinfo on the left) and kmer
frequency (table kmersample on the right). Table kmersample also has the role of
matching the kmer-id and sample-id keys.

The database has exhibited extraordinary capabilities, making kmer comparison across a
variety of different fields and parameters easier, faster, and more effective than manually

doing so. It is, thus, ready to host the results of the Kmerome analyses.
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Section D
Discussion
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D.1. Capturing the Expression Space of Antigens

State of the art approaches for capturing the antigen space through the analysis of RNA-
Seq samples primarily rely on the annotation of the human genome. They usually focus
on certain types of genomic regions that might act as sources for neoantigens -e.g.
endogenous retroviruses, non-coding regions, etc.-, as well as on phenomena occurring
due to the deregulation of normal procedures -e.g. intron retention, exon skipping or
inclusion, non-synonymous mutations, etc.- that lead to aberrant products during
expression or translation. Few exceptions of an annotation-free approach can be found in

the literature.

The current study opts for the latter, an annotation-free, hypothesis-free approach for
capturing the expression space, which in turn shapes a putative antigen space on the
expression level. The approach relies on the kmer-ization of the RINA-Seq reads to
sequences of lengths 27, 30, and 33 nucleotides long, corresponding to the 9-11 amino
acid long antigens. This annotation-free generation of the Kmerome of different samples
allows for direct comparisons between normally expressed kmers, as in the case of the

Panel of Normals, and kmers expressed in cancer samples.

Kmer differences between cancer and healthy samples can be significant in size, as shown
in the three case studies presented in the previous section. The 210 samples that comprise
the Panel of Normals have been shown to express about 70 million kmers. In the case
studies, results support that not only the cancer samples express kmers different to what
healthy cells produce, but they do so in large numbers, reaching even 17 million antigens

In one case.

Therefore, it would not be an overstatement to support that the method proposed in the
frame of this thesis accurately captures the expression space, without forcing any biases,
while constituting an effective method for separating cancer-specific expression events
from healthy ones. Further downstream analysis will allow for accurate characterization
of the biological nature of these cancer-specific events, and for exclusion of potential

artifacts.

D.2. Manipulation of the Antigen Space

In the frame of this thesis, a new approach for sensitizing patients to immunotherapy was
proposed: the manipulation of the antigenic and immunogenic profile of cancer patients,
via drug administration or gene targeting. The method built with that end goal enables
re-analysis of a vast collection of publicly available datasets to harvest of existing yet, up
until now, unnoticed transcriptomic information. Moreover, it is, to a large degree,

automated and can be further adjusted to allow for massive, parallel, and fast analysis of
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RINA-Seq datasets. Furthermore, different layers of metrics have been introduced and
tested on their ability to characterize the effect of a certain treatment on the expression

space.

Testing of the latter is demonstrated in the present study on three different case studies.
The three studies included three different manipulation approaches; targeted exon
skipping, targeted inhibition of gene with a pharmacological compound, and
administration of drug with previous indications of antitumor effects. Moreover, the
study architecture -number of samples, number of control and treatment groups-,
treatment time, and treatment concentration were all additional parameters for the case

studies.

In effect, none of these parameters were taken into account when analyzing the RNA-
Seq samples. On the contrary, all samples were processed in the exact same way, yielding
results in a hypothesis-free manner, with the use of universal metrics that allow for cross-
sample, cross-study evaluation of treatment effect. Analysis returned a high yield in
treatment-specific kmers, with numbers to the hundred thousands for each treatment
group. Further testing between comparable treatment groups, as in Case Studies 2 and 3,
yielded even shared kmers across the treatment groups. The latter is a strong indicator of
treatment-specific effects on the expression space, regardless of variables like treatment
time or concentration. Of course, downstream analysis should be carried out to exclude

sequencing or preparation artifacts and determine biologically significant outcomes.

An additional layer of metrics was incorporated in order to rigidly filter for important
treatment effects. After exclusion of PolNs kmers, kmers were filtered on two bases: first,
passing a signal threshold of 3 counts per million reads -treatment group average, and
second, passing a log2(FoldChange) threshold of 3 -which corresponds to an 8-fold
Increase in expression in the treatment group versus the control group. All case studies
resulted in several hundred to thousands of kmers passing aforementioned filters, thus
presenting a more adamant argument in favor of the “manipulation of the kmerome”

speculation.

D.3. Capturing the Translation Space of Antigens

Undoubtedly, not everything that gets transcribed gets to be translated, and although
every kmer is a putative antigen, the vast majority will not reach the immunogenic, or
even the antigenic, status. This calls for an extra layer of kmer filtering, this time with

input from the translation space.

An exhaustive analysis of publicly available Ribo-Seq datasets was performed, with 45

studies already incorporated into the Open Reading Frame Panels, and with only a dozen
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left. Upon analysis of the remaining Ribo-Seq studies, the ORF Panels will be complete,

as all publicly available information on Ribo-Seq data will have been integrated.

Generated ORF Panels already capture a significant portion of the effect of cancer on the
translation space, with thousands of cancer-specific ORFs identified. Those cancer-
specific ORFs show no overlap whatsoever with healthy ORFs, indicating strong effects
of tumor on the translation space. This fact alone points to the Cancer Panel being able to
act as an additional filter for kmers; in an analogous manner, the Healthy Panel can act as

a negative filter for kmers.

D.4. Ongoing Work and Future Prospects

Although this diploma thesis has built sturdy foundations to serve its purpose, it would
not be a hyperbole to declare that there are still margins for improvement. To state this,
one should recall the final goals of the present study:

1. Creation of universal metrics that capture change in the antigen space upon

drug administration and/or gene expression perturbation.

2. Use of aforementioned metrics to prioritize for manipulations that will

sensitize patients to immunotherapy.

As far as goal #1 goes, the broader one and the basis of this whole research structure, the
following are already being tested or considered for downstream implementation into the

pipeline:

1. Filtering of kmers with the ORF Panels.
2. Alignment of kmers to the genome. Characterization of the origin of reads.

3. Transition to a fully automated pipeline which will allow for parallel analysis of

massive sets of data.

4. Automated loading of analyzed results to the Kmer Database. Handling of
kmer comparisons inside the Kmer Database, utilizing the effectiveness,

robustness and speed of DB querying.
5. Incorporation of the MHC-antigen binding score into the universal metrics.

6. Incorporation of a presentation score into the universal metrics, based on Mass

Spectrometry Immunopeptidomic data.
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Appendix I: List of Abbreviations

APCs
CAR
CTAs
CTLs
CTLA-4
DAMPs
DB
DCs
DNA
ER
ERAP
FTO
GTEx
HSP90
ICI
IFNs
MABs
MHC
MMR
NGS
ORF
PAMPs
PD-1
PD-L1
PoNs
PRMT5
PRR
Ribo-Seq
RNA
RNA-Seq
SNV

Antigen Presenting Cells
Chimeric Antigen Receptor
Cancer Testis Antigens

Cytotoxic T Cells

Cytotoxic T-Lymphocyte-Associated protein 4

Damage-Associated Molecular Patterns
Database

Dendritic Cells

Deoxyribonucleic Acid

Endoplasmic Reticulum

Endoplasmic Reticulum Aminopeptidase
Fat Mass and Obesity-associated Protein
Genotype-Tissue Expression

Heat Shock Protein 90

Immune Checkpoint Inhibition
Interferons

Monoclonal Antibodies

Major Histocompatibility Complex
DNA Mismatch Repair

Next Generation Sequencing

Open Reading Frame
Pathogen-Associated Molecular Patterns
Programmed Cell Death Protein 1
Programmed Death-Ligand 1

Panel of Normals

Protein Arginine N-Methyltransferase 5
Patter Recognition Receptor

Ribosome Profiling

Ribonucleic Acid

RNA Sequencing

Single-Nucleotide Variant

53



TAP
TCR
TILs
TMB
TME
TSAs
WES
WGS

Transporter Associated with Antigen Processing
T Cell Receptor

Tumor Infiltrating Lymphocytes

Tumor Mutation Burden

Tumor Microenvironment

Tumor Specific Antigens

Whole Exome Sequencing

Whole Genome Sequencing
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