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Abstract

Cancer is the second leading cause of death worldwide and one of the most well-
researched medical topics. Nevertheless, the lack of effective treatment for the majority of 
tumor types is evident, while existing therapeutic approaches are unable to guarantee 
desired results. In the frame of this diploma thesis, a novel holistic approach is adopted 
for the discovery of drugs, compounds, and gene targets that can alter the immunogenic 
profile of tumors and expand the arsenal of immunotherapeutics.

The approach described in this study comes as a means to eradicate the current 
limitations of existing immunotherapies and improve their efficiency. In general, 
immunotherapy leverages components of the immune system in order to boost its ability 
to detect and destroy malignant cells. Unfortunately, only a small fraction of patients 
respond to immunotherapy, with the primary reason being the ability of tumor cells to 
bypass the immune system’s control. Thus, it is essential for the improvement of existing 
immunotherapies that the tumor emanates its malignant nature in order for the immune 
system to detect and combat cancer cells. The proposed method is based on the existence 
of Tumor Specific Antigens (TSAs) that can elicit an immune response. The hypothesis 
made is that personalized gene targeting and drug administration are able to manipulate 
the antigenic profile of tumor cells as they will allow for the controlled generation of 
strongly immunogenic TSAs; such TSAs will act as targets for the immune system. 
Following this approach, tumors that were able to escape the control of the immune 
system can now be sensitized to immunotherapy. 

For this purpose, a plethora of publicly available Next Generation Sequencing (NGS) 
studies were analyzed to reveal tumor-specific antigens whose production was induced 
following drug administration or gene targeting. An annotation-free and hypothesis-free 
approach to capture the expression and translation spaces was incorporated, allowing for 
unbiased characterization of the putative antigen spaces. After comparison of the two 
spaces to sets of data derived from healthy samples, results revealed significant cancer-
specific effects on the transcriptome and translatome. Furthermore, the effect of 
treatment on the expression space was also evident on all three case studies included in 
the study, both in the number of treatment-specific transcripts and in the expression 
change between treatment and control. Last but not least, the implementation of a 
database structure was initiated which will enable efficient storing of analyzed results and  
cross-study comparisons.
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Abstract (Greek)
Περιγραφή

Εδώ και τρεις δεκαετίες ο καρκίνος αποτελεί τη δεύτερη αιτία θανάτου παγκοσµίως, µετά 
τις καρδιαγγειακές παθήσεις. Το 2017 καταγράφονται 9.56 εκατοµµύρια θάνατοι 
παγκοσµίως και 31 χιλιάδες στην Ελλάδα, ενώ το 2018 διαγιγνώσκονται 17 εκατοµµύρια 
νέα περιστατικά καρκίνου ανά τον κόσµο. Αυτό που πιθανώς συγκλονίζει σε µεγαλύτερο 
βαθµό δεν είναι τα προαναφερθέντα νούµερα αυτά καθ’ αυτά αλλά κάτι που κρύβεται από 
πίσω: η έλλειψη αποτελεσµατικών θεραπειών για τα περισσότερα είδη καρκίνου ή, ακόµη, 
µιας καθολικής θεραπείας, αποτελεσµατικής για όλους τους ασθενείς και τους τύπους. 

Με τον όρο “καρκίνος” χαρακτηρίζεται µια οµάδα νοσηµάτων µε κοινό χαρακτηριστικό 
την υπερβολική, ανεξέλεγκτη και χωρίς προγραµµατισµό ανάπτυξη και διαίρεση των 
κυττάρων του οργανισµού, µε τις αιτίες εµφάνισης να εντοπίζονται σε κυτταρικό επίπεδο. 
Υπό φυσιολογικές συνθήκες, τα κύτταρα αναπτύσσονται, διαφοροποιούνται και 
εξειδικεύονται, και τέλος διαιρούνται προκειµένου να διατηρηθεί ο υγιής οργανισµός. 
Πιθανή εκτροπή από τη συγκεκριµένη φυσιολογική πορεία οδηγεί σε πλεονάζοντα 
κύτταρα και τη δηµιουργία κυτταρικών όγκων. Ορισµένοι όγκοι, γνωστοί ως καλοήθεις, 
δεν είναι επικίνδυνοι για την υγεία και, εποµένως, δεν χαρακτηρίζονται ως καρκινικοί. 
Αντίθετα, οι κακοήθεις όγκοι -καρκινικοί όγκοι, καρκινώµατα ή νεοπλάσµατα- θέτουν σε 
κίνδυνο την υγεία του ασθενούς ενώ έχουν την ιδιότητα να µεταπηδούν σε άλλους ιστούς 
του σώµατος µέσω της διαδικασίας της µετάστασης. Εξαίρεση καρκίνου που δε σχηµατίζει 
στέρεους όγκους (solid tumors) αποτελεί η λευχαιµία που προσβάλλει τα κύτταρα του 
αίµατος. 

Ο καρκίνος µπορεί να αναπτυχθεί σε όλους τους ιστούς του ανθρωπίνου σώµατος και ως 
εκ τούτου προκύπτουν διαφορετικοί τύποι και µορφές καρκίνου. Πλέον, καταγράφονται 
περισσότεροι από 200 τύποι καρκίνου, ο καθένας εκ των οποίων αντιµετωπίζεται και 
θεραπεύεται µε διαφορετικό τρόπο. Παρ’ όλες τις διαφορές µεταξύ των τύπων καρκίνου, 
υπάρχει ένας µηχανισµός του οργανισµού που επιχειρεί να αντιµετωπίσει την εµφάνιση 
καρκινωµάτων: το ανοσοποιητικό σύστηµα. Η αλληλεπίδραση του ανοσοποιητικού 
συστήµατος µε τον καρκίνο διακρίνεται σε τρεις φάσεις. Στην πρώτη φάση της εξάλειψης 
(elimination), τα καρκινικά κύτταρα αναγνωρίζονται από τα κύτταρα του ανοσοποιητικού 
και καταστρέφονται. Η αναγνώριση αποτελεί σηµαντικό στάδιο και σηµείο εκκίνησης για 
την φάση εξάλειψης, που διευκολύνεται από τη διαδικασία παραγωγής και παρουσίασης 
(presentation) των καρκινικών αντιγόνων (tumor antigens). Τα καρκινικά αντιγόνα 
αποτελούν ολιγοπεπτίδια που παράγονται στα καρκινικά κύτταρα, διαφέρουν από τα 
αντιγόνα των φυσιολογικών κυττάρων (αυτοαντιγόνα, self antigens), και όταν 
παρουσιάζονται στην επιφάνεια των κυττάρων προκαλούν, σε αντίθεση µε τα 
αυτοαντιγόνα, ανοσολογική απόκριση. Με λίγα λόγια, τα καρκινικά αντιγόνα συνιστούν 
ένα καρκινικό “σήµα”, προδίδοντας την καρκινική φύση του κυττάρου στο οποίο 
εντοπίζονται. 
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Η δεύτερη φάση αλληλεπίδρασης είναι αυτή της ισορροπίας (equilibrium), η οποία 
επέρχεται όταν η πλήρης εξάλειψη των καρκινικών κυττάρων δεν είναι πλέον εφικτή. Σε 
αυτή τη φάση, τα καρκινικά κύτταρα έχουν συσσωρεύσει γενετικές και επιγενετικές 
µεταλλάξεις, καθιστώντας τα πιο ανθεκτικά στην επίθεση του ανοσοποιητικού. Το 
ανοσοποιητικό σύστηµα από την άλλη, περιορίζει την ανεξέλεγκτη διαίρεση και εξάπλωση 
των καρκινικών κυττάρων, αλλά δε δύναται να προκαλέσει την εξάλειψή τους. Το τρίτο 
και τελευταίο στάδιο είναι αυτό της διαφυγής (escape) κατά το οποίο το ανοσοποιητικό 
σύστηµα χάνει πλήρως τον έλεγχο των καρκινικών κυττάρων. Τα καρκινικά κύτταρα, 
έχοντας συσσωρεύσει µεταλλάξεις που τα καθιστούν πιο ανθεκτικά, επιστρατεύουν 
κυτταρικούς και ανοσολογικούς µηχανισµούς προς όφελός τους, διαφεύγουν των 
αµυντικών µηχανισµών του οργανισµού και συνεχίζουν να αναπτύσσονται ανεξέλεγκτα. 

Λόγω της σηµασίας του ανοσοποιητικού συστήµατος στην άµυνα του οργανισµού, και δη 
λαµβάνοντας υπ’ όψιν τη δυναµική αλληλεπίδραση του µε τον καρκίνο, η αξιοποίηση 
παραγόντων του ανοσοποιητικού για την καταπολέµηση καρκινωµάτων έχει αναδειχθεί ως 
η πιο επαναστατική µέθοδος θεραπείας του καρκίνου, γνωστή ως ανοσοθεραπεία. 
Προσεγγίσεις στην ανοσοθεραπεία περιλαµβάνουν τη χρήση αναστολέων σηµείων 
ελέγχου, γενετικά τροποποιηµένων Τ λεµφοκυττάρων, µονοκλωνικών αντισωµάτων και 
εµβολίων, µε στόχο την ισχυρότερη ανοσολογική απόκριση του οργανισµού έναντι του 
καρκίνου. Οι ανοσοθεραπείες συνήθως επιφέρουν εξαιρετικά αποτελέσµατα, µε 
µακρόχρονη ίαση και λίγες παρενέργειες. Δυστυχώς, µόνο ένα µικρό ποσοστό των 
ασθενών ανταποκρίνεται στην ανοσοθεραπεία, γεγονός που αποδίδεται στην 
πολυπλοκότητα του ελέγχου και ρύθµισης των ανοσολογικών µηχανισµών αλλά και στην 
πολυπλοκότητα και ανοµοιογένεια του ίδιου του καρκίνου και του καρκινικού 
περιβάλλοντος. 

Στο επίκεντρο των µελετών για την υπέρβαση των περιορισµών της ανοσοθεραπείας 
βρίσκεται ο έγκυρος χαρακτηρισµός του αντιγονικού και ανοσολογικού προφίλ των 
καρκινικών κυττάρων. Σύγχρονες προσεγγίσεις περιλαµβάνουν την ανάλυση δεδοµένων 
Αλληλούχισης Επόµενης Γενεάς (Next Generation Sequencing, NGS) για την εύρεση 
καρκινικών αντιγόνων και τη µελέτη αυτών ως προς την πιθανή ανοσολογική απόκριση 
του οργανισµού. Παράλληλα, ερευνώνται εις βάθος οι µηχανισµοί αναγνώρισης των 
καρκινικών κυττάρων από το ανοσοποιητικό σύστηµα, οι κυτταρικοί και ανοσολογικοί 
µηχανισµοί που εµπλέκονται στην ανάπτυξη του καρκίνου και το καρκινικό περιβάλλον. 
Η πληρέστερη κατανόηση των παραµέτρων αυτών αξιοποιείται για την εξατοµικευµένη 
προσέγγιση του καρκίνου µέσω του σχεδιασµού µιας θεραπείας συµβατής και 
αποτελεσµατικής για τον εκάστοτε ασθενή, αλλά και για την ανακάλυψη νέων 
θεραπευτικών παραγόντων που δύνανται να βελτιώσουν την αποδοτικότητα της 
ανοσοθεραπείας για το σύνολο των ασθενών. Οι υφιστάµενες έρευνες, αν και επιχειρούν 
να απαντήσουν στο καίριο ερώτηµα της βελτίωσης της αποδοτικότητας της 
ανοσοθεραπείας, κατά πλειοψηφία υστερούν στην ολιστική προσέγγιση του ζητήµατος, 
συχνά αγνοώντας σηµαντικές παραµέτρους. 
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Αντίθετα, η µέθοδος που αναλύεται στην παρούσα διπλωµατική επιχειρεί να αποτελέσει 
πυλώνα για την εξάλειψη των υπαρχόντων περιορισµών στην ανοσοθεραπεία µέσω της 
αναζήτησης καθολικών σταθερών για όσο δυνατόν περισσότερους ασθενείς και τύπους 
καρκίνου. Έτσι, υιοθετείται µια αυτοµατοποιηµένη προσέγγιση του ζητήµατος, µέσω της 
µελέτης φαρµάκων, ουσιών και γονιδίων-στόχων που δύνανται να µεταβάλλουν το 
ανοσολογικό προφίλ των καρκινικών κυττάρων, ενισχύοντας συνεπώς την αποδοτικότητα 
των ανοσοθεραπειών. Η µέθοδος που προτείνεται βασίζεται στην ύπαρξη καρκινικών 
αντιγόνων (tumor specific antigens - TSAs) που προκαλούν ανοσολογική απόκριση, και η 
βασική υπόθεση που πραγµατοποιείται είναι η ακόλουθη: η χορήγηση φαρµακολογικών 
ουσιών ή/και η στόχευση γονιδίων σε ασθενείς µε καρκίνο προκαλεί τη µεταβολή του 
αντιγονικού τους προφίλ επιτρέποντας την ελεγχόµενη παραγωγή ισχυρά ανοσογονικών 
αντιγόνων που θα αποτελέσουν στόχο για το ανοσοποιητικό σύστηµα. Συνεπώς, µε την 
παρούσα προσέγγιση δίδεται ένα επιπλέον εργαλείο για τη βελτίωση της αποδοτικότητας 
της ανοσοθεραπείας καθώς όγκοι που διέφευγαν του ελέγχου του ανοσοποιητικού 
συστήµατος πλέον µετατρέπονται σε ισχυρά ανοσογονικοί και ευάλωτοι στην 
ανοσοθεραπεία.

Με τη µέθοδο αυτή επαναξιοποιείται πληθώρα ήδη υπαρχόντων πειραµάτων αλληλούχισης 
επόµενης γενεάς από in vitro, in vivo και κλινικές έρευνες. Σε αυτές περιλαµβάνονται 
περιπτώσεις υγιών και καρκινικών δειγµάτων, µε ή χωρίς την στόχευση γονιδίων ή/και  
την χορήγηση φαρµακολογικών ουσιών. Στόχος είναι η ανάδειξη εκείνων των φαρµάκων 
και γονιδίων-στόχων που επιτρέπουν τον χειρισµό του αντιγονικού προφίλ των ασθενών 
και οδηγούν σε έντονα ανοσογονικούς όγκους, ευάλωτους στην ανοσοθεραπεία. Για την 
επίτευξη του σκοπού αυτού, το ζητούµενο προσεγγίζεται από δύο διευθύνσεις: την 
µεταγραφή-έκφραση και την µετάφραση.

Στην παρούσα µελέτη προτείνεται µια καθολική, αµερόληπτη προσέγγιση για την 
χαρτογράφηση τόσο του χώρου µεταγραφής όσο και του χώρου µετάφρασης, οδηγώντας σε 
χαρτογράφηση πιθανών αντιγονικών χώρων στα δύο αυτά επίπεδα. Αρχικά, η σύγκριση 
καρκινικών δειγµάτων µε υγιή ανέδειξε την ύπαρξη µεταγραφικών και µεταφραστικών 
γεγονότων που απαντώνται µόνο στον καρκίνο. Παράλληλα, µέσω της ανάλυσης τριών 
διαφορετικών µελετών που περιλαµβάνουν χορήγηση φαρµακολογικής ουσίας ή/και 
στόχευση γονιδίων, υπογραµµίστηκε η επίδραση της εκάστοτε θεραπείας στην έκφραση, 
αποτελώντας ισχυρό επιχείρηµα για την υπόθεση της χειραγώγησης του αντιγονικού 
προφίλ καρκινικών κυττάρων. Τέλος, παρουσιάζεται η δηµιουργία µιας βάσης δεδοµένων 
που θα επιτρέψει την αποθήκευση των επεξεργασµένων δεδοµένων από τις µελέτες 
αλληλούχισης, καθώς και την σύγκριση µεταξύ αυτών προς ανάδειξη εκείνων των 
φαρµάκων που δύνανται να προκαλέσουν την ισχυρότερη µεταβολή στο ανοσολογικό 
προφίλ των καρκινικών κυττάρων.
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Section A  
Section A - Theoretical Background

Chapter A.1. Introduction

The term “cancer”, as a medical term to refer to internal or external tumors, was first 
coined by the ancient Greek physician Hippocrates (460-370BC). Hippocrates 
studied the solid masses, and the finger-like projections of metastatic cancer cells 

most probably reminded him of crabs’ legs and claws. Τhe words he used to describe this 
medical condition were “καρκίνος” (carcinos) and “καρκίνωµα” (carcinoma), both of 
which refer to a crab in greek. The Roman encyclopaedist and physician Aulus Cornelius 
Celsus (25-50 BC) translated Hippocrates’ term into “cancer”, the roman for crab; hence 
the widespread medical term. Some centuries later, Claudius Galenus (Galen, 129-200 
AD) adopted the greek word 
“όγκος” (oncos) for the 
tumors, the literal translation 
of which is “volume” but can 
in context refer to a certain 
-or increasing- quantity, and 
by extent to a developing 
mass. Galenus’ term is still 
used in greek medicine for 
tumors, but also acted as the 
base for the name of cancer 
specialists: oncologists1.

1

Figure A.1: Cancer cells under the microscope2



A.1.1. Cancer

The medical term “cancer” refers to a collection of related diseases that are all 
characterized by an excessive and uncontrollable division of abnormal cells. The initiation 
of this uncontrollable growth of cells may take place anywhere in the human body, 
leading to the formation of malignant tumors1,3. Cancer cells also have the ability to 
spread to different tissues during a process called metastasis, affecting not only 
neighboring tissue but even distant parts of the body1,4.

Cancer is categorized in several groups with regards to the tissue that gives rise to it. 
Carcinoma originates from the skin or in tissues that line internal organs. Sarcoma 
originates from bone, cartilage, fat, muscle, blood vessels, or other connective or 
supportive tissue. Central nervous system cancers originate from brain and spinal cord 
tissues. Hematologic malignancies include leukemia, lymphoma and multiple myeloma. 
Leukemia originates from the blood and bone marrow, while lymphoma and myeloma 
originate from immune cells3.

The origin of cancer lies primarily on a molecular level as a patient’s DNA has or 
accumulates mutations that were not repaired. The vast majority of mutations that act as 
triggers for cancer occur on genes that encode functional proteins, which in turn control 
how cells function. Therefore, such mutations will disrupt the mechanisms that the cells 
employ to grow and divide1. Of course, any living human accumulates mutations on their 
DNA throughout their life, however the majority does not lead to cancer.

Genetic mutations appear during one’s life as a result of environmental exposures, 
including exposure to carcinogenic substances or chemicals, or to radiation -UV rays 
from the sun or other manmade sources of radiation. Moreover, cancer-causing mutations 
might be the result of unhealthy habits, such as tobacco usage, alcohol consumption or 
even an unhealthy diet. There have also been several cases of infectious agents -viruses, 
bacteria and parasites- associated with cancer. Last but not least, it should be noted that 
genetic mutations that cause cancer can also be inherited from one’s parents1,5.

Each cancer patient bears their own unique genetic profile associated with their disease. 
Furthermore, clonal evolution of tumors suggests that a single malignant cell giving rise 
to a population of cancer cells causes tumor heterogeneity in pathology and molecular/ 
genetic profiles. This concept is often linked to Darwinian selection at the micro-level, as 
intratumor cellular diversity gives rise to cancer cell populations with different abilities 
regarding expansion and proliferation, as well as resistance to therapy. Taking these into 
account, it’s not far-fetched to assume that each patient’s cancer is different6.
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A.1.2. Cancer in Numbers

Cancer is the second leading cause of death in the world, following cardiovascular 
diseases. 2017 marks 9.6 million deaths caused by cancer worldwide, of which 700 
thousand were documented in the United States and 31 thousand in Greece7. 

2018 marks 18 million new cases of cancer worldwide, with the United States bearing the 
first place in cancer occurrence since the 1990s with approximately 4 times more 
incidents per 100,000 population than the world average7,8. 

3

Figure A.2: Number of deaths by cause worldwide for 20176.
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Figure A.3: World map of cancer incidence per 100,000 people for 20178.

Figure A.4: Chart of cancer incidence per 100,000 people for 2017, including statistics for 
worldwide occurrences as for the United States, United Kingdom, China and Greece8.



A.1.3. Next Generation Sequencing

In 2003, one of the most rigorous and insightful international projects was completed 
-The Human Genome Project. World-known scientists from all around the globe joined 
forces in order to unveil the truth of our own existence through own main task: 
deciphering the human DNA. This endeavor included the sequencing of the whole 
human genome -i.e. the uncovering of the order of the nucleotides that comprise the 
chromosomes of humans- as well as the identification of genes, their location on the 
genome, and their functions9. 

Nowadays, almost 20 years later, sequencing has become yet a standard procedure for 
multiple biological projects. The dawn of Next Generation Sequencing (NGS) ushered a 
new era of gaining insight on the genomic, transcriptomic -and many more “-omic”- 
profiles of organisms, cells, clinical samples. This second generation of sequencing 
methods allows for massively parallel deep sequencing of DNA10,11. Among the most 
prominent NGS experimental procedures are the following:

• Whole Genome Sequencing (WGS): The technique by which the whole genome of 
an organism is sequenced. This includes all the chromosomes and mitochondria of 
an organism, and, in the case of plants, of the chloroplasts.

• Whole Exome Sequencing (WES): The technique by which all protein coding 
regions of the genome are sequenced. Those regions are called exons, therefore this 
technique was called exome sequencing.

• RNA Sequencing (RNA-Seq): The technique by which the RNA is sequenced. 
RNA is the transcribed version of the DNA, with multiple functions inside the cell. 
Messenger RNA (mRNA) acts as an intermediate between the DNA and protein 
synthesis, while other types of RNA may have structural functions, act as 
transporters, exhibit various regulatory functions, and many more. RNA-Seq is 
capable of capturing the majority of RNA types that are transcribed in a sample, or, 
with proper sample preparation, selectively sequence a certain type of RNA.

• Ribosome Profiling (Ribo-seq): The technique by which actively translated mRNA 
molecules are sequenced. RNA is sequenced here as well, however the sample 
preparation and RNA targeting procedure varies greatly compared to RNA-seq; 
thus, Ribo-seq holds a different place in the panel of NGS techniques.
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Chapter A.2. Cancer Immunology

The immune system combats 
numerous threats: exogenous, 
such as bacteria, viruses and 

other pathogens, as well as endogenous, 
such as cancer. It is the major defense 
mechanism of the human body, with 
extraordinary cells and mechanisms at its 
disposal, and is comprised of two arms: 
the innate and adaptive immunity. One 
could envision the innate immunity as a 
first line of defense against external or 
internal enemies, whereas the adaptive 
immunity is a more sophisticated and 
well-trained army of cells. But how does 
the immune system combat caner?
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Figure A.5: Multiple T-cells (blue) attacking 
B16F10 tumor cells (green)12.



A.2.1. The Immune System versus Cancer

The modus operandi of the immune system is based on a dynamic interaction between its 
two arms, the innate and the adaptive -or acquired- immunity. Innate immune responses 
are considered ancient defense mechanisms, relying on the recognition of typical, 
pathogen-associated motifs via a set of receptors. These receptors, termed pattern 
recognition receptors (PRRs), are non-specific, and bind to the pathogen-associated 
molecular patterns (PAMPs) or the damage-associated molecular patters (DAMPs), 
eliciting a swift immune response13,14.

On the contrary, acquired immunity revolves around the fundamental ability to 
specifically detect an extraordinarily diverse set of molecules (i.e. antigens) and rapidly 
induce an immune response. This ability, termed immunological memory, is based upon 
prior encounter with the particular threat, to which end the innate immunity plays a 
crucial role14. In brief, innate immune cells encounter exogenous or endogenous threats, 
gather information on their macromolecular profile, and then pass the acquired 
knowledge to the adaptive immune cells; those cells in turn are trained on the new 
agenda, begin patrolling for potential breaches in defense, and upon contact with the 
known enemy, they are activated, attacking and eradicating the threat.

The explanation above is but a simplification of the sophisticated approach with which 
the immune system coordinates its defense against cancer and all other potential threats. 
In order for this defense machinery to be successful, it requires a great amount of fine-
tuning between a variety of different cells that belong to both branches of the immune 
system. Certain types of cells that partake in this procedure are of particular notice, 
especially in cancer immunology, and will be concisely discussed.

Prior to that, another important term should be introduced: the term “antigen”, which 
more often than not is associated with the term “antibody” as its counterpart, referring to 
a molecule that induces the production of antibodies. However, this tautologic definition 
of antigens is not entirely accurate. At a molecular level, an antigen is a molecule that can 
be recognized by -i.e. bound specifically to- the antigen-binding domain of an “antigen 
receptor” -i.e. an antibody or T-cell receptor (TCR)14. Again, this second definition is 
tautological as well; yet, it implies a one-on-one relationship between an antigen and a 
receptor, while not being limited to exogenous or endogenous threats, or even antibodies. 
In fact, the second definition also introduces self antigens normally produced in healthy 
cells, which serve as a sanity check for the immune system.

With regards to endogenous and exogenous threats, antigens in essence refer to products 
that are not normally produced by a healthy organism, hence are indicators of external 
intruders or internal abnormalities, serving the self vs non-self distinction. As such, tumor 
antigens are a significant signal produced by cancer cells, emanating their malignant 
nature. At the same time, they act as means to train the adaptive immune cells on 
identifying tumor cells. The latter is facilitated with the help of antigen presenting cells 
(APCs). APCs are mostly innate immune cells, which differ significantly from each other 
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both in antigen uptake -the acquisition of antigens- and effector functions -inducing 
certain abilities to the cells they are presenting the antigen to14. 

In order to induce an immune response against cancer, there are two phases involved: the 
priming and effector phases. An interesting example of antigen presenting cells that 
participate in this process are dendritic cells (DCs). During the priming phase, immature 
DCs obtain the tumor antigens of dying cancer cells, exhibiting phagocytic behavior 
towards apoptotic cells13,14. Cell death induces danger signals which function as 
stimulants to increase immunogenicity and, alongside antigens, lead to the maturation of 
dendritic cells. Upon maturation, DCs travel to the lymph nodes where they train the 
lymphocytes, T cells and B cells, the adaptive immune cells responsible for carrying out 
adaptive immunity. Trained lymphocytes carry antigen receptors specific for a given 
antigen, namely antigen-specific receptors, and proliferate only after exposure to said 
antigens13.

Subsequently, the effector phase is initiated, with the continuous interaction between 
innate and adaptive immunity. During this phase, cytotoxic T cells (cytotoxic T 
lymphocytes, CTLs) are the main effector cells, charged with the responsibility to 
recognize, attack and eradicate tumor cells. Moreover, T helper cells are also developed 
during the priming phase, and they are responsible for mentainance and effectiveness of 
cytotoxic T cells13,14,15.

A.2.2. Cancer Immunosurveillance and Immunoediting

In 1957, Thomas16 and Burnet17 introduced the Immunosurveillance Hypothesis, a 
notion that portrays the active role of the immune system in monitoring the development 
of tumors by recognizing and eliminating malignant cells18. This theory has since been 
reviewed and extended to a new notion termed Cancer Immunoediting, as strong 
experimental evidence suggests that the immune system does not only combat tumor 
cells, while at some cases is manipulated to enable their proliferation. Although this might 
seem counter-intuitive -as the sole purpose of the immune system is to attack potential 
threats-, the progressive evolution of tumors enables them to avoid components with anti-
tumor properties and hijack a plethora of immune pathways and mechanisms to mask 
their malignant nature18,19. The dynamic interaction between the immune system and 
cancer, as portrayed in Cancer Immunoediting theory, is divided in three phases: 
elimination, equilibrium, and escape13,19. 

During the elimination phase -the Immunosurveillance Hypothesis analogue-, the 
malignant cells are recognized and destroyed by components of the immune system. 
Recognition of tumor cells is a most important step as well as the initiation point during 
the elimination phase. It involves the appearance of threat signals that are either secreted 
by tumor cells -e.g. interferons (IFNs), signaling molecules that are produced by cells in 
response to abnormal behavior and activate immune cells- or presented on the surface of 

8



tumor cells13. The latter category of molecules includes antigens which are the leading 
signals in distinguishing between normal cells -“self”- and tumor cells -“non-self”. Cell 
antigens, be it self or tumor, are peptides typically 9 to 11 amino acids long that are 
displayed on the cell surface; in cancer they are termed tumor antigens or neoantigens. 
The production, presentation, and recognition of tumor antigens will be discussed later in 
more detail. However, it should be noted that neoantigens are significantly different from 
self antigens, and that fact from an immunological perspective ensures that the 
components of the immune system will be able to distinguish them from self antigens and 
recognize them as threat signals20. Following tumor cell recognition, the immune cells are 
activated to respond and eradicate the malignant transformed cells. 

If the immune system fails to destroy tumor cells during the elimination phase, the 
equilibrium phase is established. During this state, the tumor further evolves and mutates 
into more resilient forms which the immune system can restrict but cannot destroy. In a 
sense, this phase serves as a functional dormancy state between the immune system and 
tumor, all the while both sides seek routes for asserting dominance over one another. The 
equilibrium phase has been described as a long-lasting period throughout which no 
clinical manifestations of cancer are reported13.

The third phase of escape is established as soon as the immune system is incapable of 
sustaining the dynamic equilibrium with the tumor, and/or cancer cells manage to evade 
the immune system’s control by developing or utilizing cellular mechanisms to their 
advantage. Up to this point, cancer cells have accumulated numerous genetic and 
epigenetic alterations and have hijacked a plethora of mechanisms to escape immune 
control, leading to clinical manifestations of cancer.

A.2.3. Antigen Processing and Presentation Machinery

Antigen presentation on the cell surface involves several steps, all of which take place on 
a molecular level, with the process being common for both normal and tumor cells. All 
antigens, self and non-self, are the processed products of proteins expressed in the cells. 
Antigen processing and presentation involves the following steps21:

a. Proteins intended for degradation -mainly because they are deemed unneeded 
or damaged- are tagged during a biological process called ubiquitination, 
during which the small molecule ubiquitin is attached to the protein. Ubiquitin 
acts as a signal for the protein-transport machinery of the cell to move said 
protein for degradation22.

b. The tagged proteins are moved to and degraded into smaller peptides by the 
proteasome -a protein complex found in the cytosol of the cells.

c. The peptides bind to HSP90 on the cytosol -a chaperone protein that acts as a 
protein stabilizer and aids protein degradation21,23.
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d. The peptides are transported to the endoplasmic reticulum (ER) by the TAP1-
TAP2 protein complex, also known as the transporter associated with antigen 
processing (TAP)21,24.

e. In the endoplasmic reticulum, the peptides are trimmed to appropriate length, 
9 to 11 amino acids long, by ER aminopeptidases associated with antigen 
processing (ERAP).

f. The trimmed peptides, still in the endoplasmic reticulum, bind to newly 
synthesized major histocompatibility complex (MHC) class I molecules with 
the help of chaperone proteins13,21,24. 

g. The MHC-I-antigen complex is transported to the cell surface and the peptide 
is thus presented.

As briefly mentioned above, the major histocompatibility complex (MHC) class I 
molecule serves as the platform where the antigens bind to, and thus can be presented on 
the cell surface after the complex is transported there. MHC-I molecules are therefore 
regarded as extremely crucial components of the antigen presentation machinery.

Once the antigen is bound and presented by MHC-I, cytotoxic T lymphocytes (cytotoxic 
T cells or TCLs) bind to the antigen and recognize its self or non-self nature. In the case 
of non-self antigens -or of self antigens in autoimmune diseases- the T cells are activated 
and attack the cell that presented the non-self antigen. Specifically for cancer, the tumor-
restricted expression of tumor antigens -a.k.a. neoantigens- guarantees the targeted 
activity of T cells against the tumor cells and subsequent absence of activity against 
normal cells20.

A.2.4. Sources of Tumor Specific Antigens

In healthy cells, self antigens are the processed products of proteins normally expressed 
by those cells. As such, self antigens do not elicit an immune response as the immune cells 
have been trained to tolerate them and not be activated by them. However, in cancer cells 
tumor-specific antigens (TSAs) fall under at least one of the following general categories 
which describe their non-self nature:

a. They are the processed products of proteins or peptides not normally 
expressed in healthy cells.

b. They are the processed products of proteins or peptides normally expressed in 
tissues different from the ones in question.

c. They are the processed products of proteins or peptides normally expressed in 
healthy cells but are over-expressed in the tumor cells in question.

A more detailed depiction of the putative sources of tumor specific antigens is given in the 
figure below:
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A.2.5. Immune Escape Mechanisms

Immune escape is of particular interest from both clinical and therapeutic perspectives. 
Known escape mechanisms include the following13: 

a. Defective tumor antigen processing and presentation machinery.
b. Lack of immune activating pathways.
c. Presence of mechanisms that inhibit immune response and induce an 

immunosuppressive state.
d. Development of resistant tumor cells as a result of accumulated genetic 

mutations. 

The aforementioned mechanisms may shape immune response by affecting three distinct 
areas of immune regulation: the tumor’s antigenicity (a), immunogenicity (b and c), and 
microenvironment (c). The accumulation of genetic mutations that leads to resistant 
tumor cells (d) is an umbrella case that spans over all three aspects, and sometimes could 
even be considered the end result of successful immune escape action of tumor cells.
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Figure A.6: Schematic of a cancer cell and the possible sources of neoantigens. These include 
non-synonymous mutations, protein fusions, cancer-specific exon inclusion, intron retention, 

translational tread through, expression of retroviral elements, expression of Cancer Testis 
Antigens (CTAs), alternative ORFs -to name the most well-documented ones.



Antigenicity

The ability of the immune system to distinguish between healthy and tumor cells is of 
paramount importance for an effective response against malignant cells. As discussed in 
previous sections, immune cells are able to do so via the recognition of non-self tumor 
antigens found on the surface of cancer cells. Therefore, retention of antigenicity is 
crucial for the immune system. On the contrary, loss of antigenicity serves as a way for 
cancer to escape immune surveillance and proliferate.

Loss of antigenicity may occur due to immune selection of cancer cells -i.e. the process by 
which cancer cells evolve and adapt to escape immune surveillance. Thus, cytotoxic T 
cells are not able to recognize cancer cells and attack them. However, antigenicity might 
also be compromised due to the accumulation of defects in the antigen presentation 
machinery that lead to partial or total loss of antigen presentation. Therefore, even if a 
tumor expresses sufficient antigens that may elicit an immune response, the immune 
system’s ability to detect those cells and eradicate them also depends on the functionality 
of the MHC-antigen complex. In fact, defects of the antigen presentation machinery have 
been associated with a number of common solid tumors, including melanoma, breast, 
lung, renal, prostate and bladder cancers18,25.

Immunogenicity

Even if tumors retain their antigenicity, enabling recognition by immune cells, they can 
still escape immune surveillance by decreasing their immunogenicity. This can be 
achieved via pathways that induce the downregulation of immune responses. Proteins 
CTLA4 (cytotoxic T-lymphocyte-associated protein 4) and PD-1 (programmed cell death 
protein 1) and the latter’s ligand, PD-L1 (programmed death-ligand 1) have been linked 
with pathways that suppress the immune system. These molecules exhibit inhibitory 
abilities, actively obstructing anti-tumor T cell responses18,26.

Tumor Microenvironment

The tumor microenvironment (TME) refers to normal cells, blood vessels, and molecules 
that surround and sustain malignant cells. Research evidence suggests that tumor 
proliferation or eradication relies on a dynamic interaction between the tumor cells and 
the tumor microenvironment, while TME is also said to shape therapeutic responses and 
resistance27,28. 

Tumors retaining antigenicity and immunogenicity may still be able to escape immune 
surveillance by altering the tumor microenvironment into one that suppresses infiltration 
of leukocytes. Tumor infiltrating lymphocytes (TILs) are essentially T cells that pervade 
tumor tissue, recognize malignant cells and proceed with elimination, thus being an 
important pillar in immune-mediated eradication of cancer. The immunosuppressive 
tumor microenvironment that some tumors establish may lead to reduced invasion of 
TILs, inactivation of TILs, or even manipulation of TILs to the tumor’s advantage18,29. 
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Chapter A.3. Cancer Immunotherapy

In 2018, the Nobel Prize in Physiology 
or Medicine was awarded jointly to 
James P. Allison and Tasuku Honjo 

“for their discovery of cancer therapy by 
inhibition of negative immune regulation,” 
marking the beginning of a new era in 
cancer immunotherapy30. The two 
researchers had been studying CTLA-4 and 
PD-1, respectively, since the 1990s, 
revealing their corresponding roles on 
suppressing the activity of cytotoxic T cells. 
Reverse engineering this knowledge, they 
both worked on the concept of removing 
the breaks that keep the T cells inactive by 
inhibiting the action of CTLA-4 and PD-1. 
This breakthrough expanded the arsenal of 
immunotherapeutics and allowed for new 
approaches in cancer treatment, with authorities having since approved the use of immune 
checkpoint blockade for numerous different types of cancer with outstanding results31. 
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Figure A.7: James P. Allison (left) and Tasuku 
Honjo (right), the 2018 Nobel laureates in 

Physiology or Medicine30.



A.3.1. Types of Immunotherapies

Cancer immunotherapies leverage components of the immune system in order to boost its 
ability to recognize, attack, and destroy cancer cells. Types of immunotherapies include 
the following32,33:

• Monoclonal Antibodies (MABs): MABs are immune system proteins produced in 
the lab. One category of MABs attaches itself to the surface of cancer cells, 
facilitating the recognition of said cancer cells by the immune system. Another 
category acts as switches that regulate pathways and machinery used by cancer cells 
to proliferate. A third category of MABs may attach to both cancer and T cells, 
assisting cancer cells eradication by T cells34,35.

• T cell Transfer Therapy: The goal of this therapy is to provide the patient’s immune 
system with more robust T cells that will be able to destroy malignant cells. There 
are two types of T cell transfer therapies: tumor infiltrating lymphocytes (TILs) 
therapy and CAR-T cells therapy. During TIL therapy, which is based on the ability 
of TILs to recognize tumor cells, TILs are extracted from the TME, cultivated to 
increase their numbers, and then re-inserted intravenously to the patient’s blood 
stream. On the other hand, CAR T cell therapy includes the modification of T cells 
in order to be able to produce a chimeric antigen receptor (CAR) which exhibits 
higher specificity in recognizing a particular antigen26,36,37. 

• Immune System Modulators: This type of molecules are based on proteins 
normally produced by the immune system, including cytokines. As an 
immunotherapy method, immune system modulators are either natural or artificial, 
and are used to stimulate a more robust immune response38,39.

• Immune Checkpoint Inhibitors (ICI): The work of Allison and Honjo expanded 
the potential of cancer immunotherapies by introducing a revolutionary approach. 
Immune checkpoints, such as CTLA-4 and PD-1, are proteins normally expressed 
in immune cells, and their role is to suppress strong immune responses so that 
cytotoxic T cells do not destroy healthy cells. By releasing those immune breaks, T 
cells are authorized for an all-out cancer cell eradication. This can be achieved with 
molecules that inhibit the action of the immune checkpoints; therefore this type of 
therapy was named immune checkpoint inhibition31,40.

• Cancer Vaccines: As all types of vaccines, cancer vaccines utilize molecules or cells 
that train the immune system to recognize and attack a threat -in an upcoming 
encounter- or stimulate it into action -if the disease is present. Cancer vaccines 
include preventive and treatment vaccines, that either contain tumor antigens, 
whole cancer cells, or immune cells vaccine. Cancer vaccines are still available as 
part of clinical trials20,41.
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A.3.2. Advantages

The crux in cancer immunotherapy is how normal defense mechanisms of a patient can 
be used, or further accentuated to eliminate cancer cells. Hence, the focus of cancer 
treatment has been shifted from the tumor to the host’s immune system. This aspect in 
itself serves as a revolutionary path in cancer therapies, owning to its universal character. 

Immunotherapies have demonstrated their efficacy for a plethora of cancer types, and 
particularly so against cancers that have been resistant to chemotherapy or radiation 
therapy, e.g. melanoma, with outstanding results and long-term survival rates. The latter 
is based on the ability of the immune system to form an immunologic memory, which is 
further amplified through immunotherapy. This has been apparent in patients with 
metastatic cancers as well; metastatic cancers are considered an incurable disease for the 
majority of patients, with immunotherapy managing, in several cases, to confront the 
complicated nature of metastasis26,42. 

Furthermore, the side effects of immunotherapy are usually mild, especially compared to 
chemotherapies or radiation therapies which most certainly will expose the patient’s 
healthy cells to additional perils42.

A.3.3. Limitations

Pitfalls in cancer immunotherapy with regards to side effects may include overstimulation 
or misdirection of the action of the immune system, with symptoms varying from fever 
and inflammation to more severe conditions that resemble autoimmune diseases42. At the 
same time, currently available immune therapies are costly, and the therapeutic agents are 
often associated with significant toxicity43.

However, the major challenge in cancer immunotherapy emerges with respect to its 
efficacy and consistency across the majority of cancer patients and cancer types. Even if 
immunotherapies have demonstrated outstanding results, they have done so only for a 
small fraction of the patients. Moreover, in several cases, patients have exhibited acquired 
resistance to immunotherapy, with responders relapsing after a period of response. Such 
facts may not come as a surprise, taking into account the highly complex nature of cancer 
-across patients with different genomic profiles and also given the intratumor diversity-, 
the exceedingly regulated nature of the immune system, as well as the dynamic 
interaction between the two, with the latter sometimes leading to immune-protected 
tumors26,44. 

The inability to predict whether a certain type of immune therapy will be of benefit for a 
specific patient is evident, and alarming. The fact that the medical community is not able 
to distinguish the appropriate approach for the treatment of a patient, poses an obstacle 
of paramount importance. This lack unveils the need to determine the mechanisms of 
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tumor immune escape and/or how the immune system selects for proliferating tumors. 
Furthermore, it calls for the discovery of additional biomarkers that will point to the 
suitable treatment. For example, thus far, high expression of PD-L1 has been a strong 
indicator of response to anti-PD-1 therapy; however, this has not been the case for all 
tumors, and PD-1 is but a single molecule that may act as a biomarker18,44,45.

At the same time, genomic instability due to accumulation of non-synonymous mutations, 
may lead to production of immunogenic tumor antigens, while several studies have linked 
the high Tumor Mutation Burden (TMB) with response to immunotherapy. However, a 
majority of those antigens do not seem to lead to the induction of T cell responses. This 
observation leads to two main conclusions: First, the tumor mutation burden cannot 
always be an indicator of response to therapy. Secondly, naturally occurring tumor 
antigens may not be sufficient for proper activation of an immune response, or the 
continuous exchange between the tumor and the immune system may have lead to 
selection of the tumor antigen repertoire that will not elicit such a response, or tumor may 
actively block antigen presentation. Again, the need for understanding the underlying 
mechanisms of immune escape is brought forth, alongside the urgency for biomarkers of 
diagnostic, predictive, prognostic and/or therapeutic value20,45.

A.3.4. Anticipated Innovations

All of the limitations brought up in the previous paragraphs point to one of the most 
anticipated innovations in cancer treatment: the personalization of immunotherapy that 
will allow for efficient, targeted treatments with long-lasting results. Since each patient’s 
tumor is unique, the identification of all prominent factors that enable tumor progression 
and shape the immune response will allow for the selection of the most suitable therapy, 
or even a combination of therapies. 

In order to facilitate the personalized aspect of cancer treatment, a number of other 
innovations are expected to occur: First of all, the unveiling of the immune escape 
mechanism and pathways that may bring forth therapeutic targets or prognostic 
biomarkers. Furthermore, a more accurate charting of the antigenic and immunogenic 
profile of tumor cells, allowing for the utilization of tumor antigens as therapeutic targets. 
Last but not least, the discovery of therapeutic approaches that might synergistically 
enhance each other; for example, there have been indications of T cell checkpoint 
inhibition therapies being accentuated by tumor antigen-reactive T cells, and vice 
versa20,45.

All of the above innovations are expected to lead to better treatment outcomes, higher 
long-term survival rates and lower relapse rates, reduced treatment cost and toxicity, and, 
overall, to efficient and consistent methods to combat cancer once and for all.
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A.3.5. Manipulation of the Immunogenic Profile 

In order to unveil the underlying “structure” of cancer immunity, several research groups 
have deliberately tinkered with pathways, mechanisms, and molecules involved with 
cancer. The end goal is to reveal potential therapeutic targets or prognostic markers from 
the observed outcomes. Other research groups, at the same time, have discovered various 
cancer-specific phenomena that shed light on the production of tumor antigens.

Falling under the latter category, it has been shown that aberrant splicing related to 
accumulation of mutations in genes associated with the spliceosome has led to intron 
retention events in cancer. This may lead to the production of immunogenic antigens, 
since intron retention events do not often occur in healthy cells46. Furthermore, it has 
been shown that endogenous retroelements may be a primary source of tumor antigens in 
cancer cells. Dysregulation of pathways that suppress their expression in healthy tissue 
may fall apart in the malignant environment of cancer cells, leading to the production of 
endogenous viral proteins, and subsequently of immunogenic antigens47. More related 
results can be found in paragraph A.2.4.

In addition, multiple pathways and their components have been studied over the years 
due to their implication in cancer progression. For example, components of RNA 
methylation and demethylation pathways, such as the enzyme FTO, have been linked to 
tumorigenesis48. Another important enzyme studied by many groups is PRMT5, 
associated with methylation and splicing. Combination of immune checkpoint inhibition 
with pharmacological inhibition of PRMT5 showed limited tumor growth in mouse 
models, suggesting that inhibition of PRMT5 in a clinical context may enhance an anti-
tumor immune response49. A handful of studies have also demonstrated how targeting 
specific pathways, mechanisms, and molecules may lead to a change in the immunogenic 
profiles of cells. Among the mechanisms studied, is the DNA mismatch repair (MMR) 
system, responsible for the repair of erroneous incorporation of bases that might arise 
during DNA replication. MMR-deficient and MMR-defective tumors, as well as 
purposeful inactivation of MMR with the clinical agent temozolomide, showed increased 
mutational burden, which in turn lead to production of tumor antigens50. 

All of the above are, milder or stronger -as in the case of MMR inactivation-, indicators 
that alteration of the immunogenic profile is possible via interference with drugs or  
compounds, or by targeting specific genes and pathways that have been related to cancer. 
This interference seems to be a pillar in inducing production of antigens that may act as 
targets for the cytotoxic T cells.
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Purpose of this Study

The essential reason behind patients not being able to respond to cancer immunotherapy 
primarily lies with the exceedingly diverse nature of cancer, both across patients and 
across cells that comprise the same tumor, as well as its ability to escape immune 
surveillance, and proliferate. The immune escape mechanisms, already known to a certain 
degree, need to be circumvented or confronted in order for the immunotherapy to show 
its true potential in eradicating tumors. 

State of the art approaches focus on two main aspects: First, targeting of mechanisms, 
cellular procedures, and molecules that are known to be implicated in cancer, in order to 
uncover their therapeutic potential; Secondly, characterization of the tumor immunogenic 
landscape, primarily by focusing on specific potential sources of tumor antigens. Both 
approaches are partially restricting, and rely on hypotheses that have been suggested by 
previous studies, all the while possibly disregarding the importance of the different 
immune escape mechanisms that might be at play. 

This study introduces a holistic approach for the accurate characterization of the 
antigenic profile of cancer cells, which revolves around two axes: expression and 
translation. First of all, the proposed method goes beyond putative genomic sources of 
antigens, extracting products of any genomic, transcriptomic, translatomic, or other 
origin, procedure, or anomaly. Furthermore, this study focuses on how the antigenic 
profile can be manipulated, searching for antigens that are produced solely in cancer cells 
and exclusively after drug administration or gene expression perturbation. The analysis 
of compounds or genes does not rely on prior knowledge of a relationship between said 
compounds or genes with cancer. On the contrary, all publicly available datasets with 
cases of drug administration or gene targeting in tumor cells are potential sources of 
information for the suggested method. Analysis of such a vast set of datasets allows for 
the generation of universal, hypothesis-free metrics that can highlight prominent 
antigens, and prioritize compounds or genes that can be used to alter the antigenic profile 
of tumors.
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Section B
Section B - Methods

The methods implemented below were developed, tested, and discussed in the Non-
coding Research Lab of Assistant Professor Ioannis S. Vlachos at Beth Israel Deaconess 
Medical Center, Harvard Medical School, Boston, MA. The analyses were performed on 
a High Performance Computing environment, on Harvard’s O2 Server.
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B.1. Capturing the Kmerome

Analysis of RNA-Seq studies reveals information on the transcriptome, the actively 
transcribed RNA molecules for each sample. In this study, the goal is to go beyond the 
expression space and search for abundance of kmers of specific lengths. Antigens are 
usually 9 to 11 amino acids long, which correspond to RNA sequences of lengths 27, 30 
and 33, respectively. Therefore, the kmers of interest that may lead to antigens are 27, 30, 
and 33 nucleotides long; such kmer spaces are generated and analyzed below. B.1. Panel 
of Normals

B.1.1. The Panel of Normals

The Genotype-Tissue Expression (GTEx) project is an ongoing endeavor to study tissue-
specific gene expression and regulation. Healthy samples from all human tissues are 
included in the database, containing WGS, WES, and RNA-Seq experiments51. In order 
to highlight the tumor-specific nature of certain transcripts that may prove to have an 
antigenic potential, a control baseline needs to be created. Normally expressed genes and 
transcripts from GTEx RNA-Seq samples are the means to create a Panel of Normals, 
which provides the transcriptomic basis of non-tumor transcripts and acts as a first layer 
of filter to yield tumor-specific antigens.

The following tissues were utilized in creating the PoNs from GTEx samples:

Tissue Sex Number of Samples Total Number of 
Samples

Adipose Tissue
Male 5

10
Female 5

Adrenal Gland
Male 5

10
Female 5

Blood Vessel
Male 5

10
Female 5

Brain
Male 5

10
Female 5

Breast
Male 5

10
Female 5

Colon
Male 5

10
Female 5
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Esophagus
Male 5

10
Female 5

Heart
Male 5

10
Female 5

Lung
Male 5

10
Female 5

Muscle
Male 5

10
Female 5

Nerve
Male 5

10
Female 5

Ovary Female 5 5

Pancreas
Male 5

10
Female 5

Pituitary
Male 5

10
Female 5

Prostate Male 5 5

Salivary Gland
Male 5

10
Female 5

Skin
Male 5

10
Female 5

Small Intestine
Male 5

10
Female 5

Spleen
Male 5

10
Female 5

Stomach
Male 5

10
Female 5

Thyroid
Male 5

10
Female 5

Uterus Female 5 5

Vagina Female 5 5

TOTAL 210
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Table B.1: Composition of the Panel of Normals with regards to the tissue origin of the GTEx RNA-
Seq samples used.



A total of 210 GTEx RNA-Seq samples were analyzed, taken from 23 tissue types and 
both sexes, apart from sex-specific tissues -ovary, prostate, uterus, vagina. Testis samples 
were excluded from the creation of the PoNs, as testis transcripts have been identified as 
immunogenic antigens in tumors originating from tissues different from testis -Cancer 
Testis Antigens, CTAs.

The samples above were analyzed as follows:

• Downloaded from dbGaP, the database of Genotypes and Phenotypes. 
• Quality control was performed following best practices52:

• Initial quality control of reads using FastQC54 and MultiQC55.
• Trimming of adapter sequences using Cutadapt56.
• Secondary quality control of trimmed reads using FastQC54 and MultiQC55. 

• Unstranded studies were converted to stranded to resolve read orientation. 
Homebrew pipeline .*

• Reverse reads were reverse complemented to resolve sense orientation. Homebrew 
pipeline*.

• Reads were kmer-ized using Jellyfish53 to nucleotide sequences of lengths lengths 
27, 30, and 33 bases, to capture the 9-11a.a. length of the antigens.

• Panels of Normals for different kmer lengths (k = 27, 30, and 33) were created by 
concatenating results from all samples to a single file containing unique instances of 
all kmers found on healthy GTEx samples.

B.1.2. Analysis of RNA-Seq Studies

RNA-Seq studies of samples treated with pharmacological compounds or subjected to 
gene expression perturbation (gene knockdown, gene knock-out, up-regulation) were 
analyzed to capture the transcriptomic change following said intervention. The samples 
were analyzed as follows:

• Downloaded from SRA, the Sequence Read Archive.
• Quality control was performed following best practices52:

• Initial quality control of reads using FastQC54 and MultiQC55.
• Trimming of adapter sequences using Cutadapt56.
• Secondary quality control of trimmed reads using FastQC54 and MultiQC55.

• Unstranded studies were converted to stranded to resolve read orientation. 
Homebrew pipeline*.

 acknowledgements to Dr. Yered Pita-Juárez, Ioannis Vlachos Non-coding Research Lab*

22



• Reverse reads were reverse complemented to resolve sense orientation. Homebrew 
pipeline .*

• Reads were kmer-ized using Jellyfish53 to nucleotide sequences of lengths lengths 
27, 30, and 33 bases, to capture the 9-11a.a. length of the antigens.

B.1.3. Generation of Universal Metrics

Kmer-ization of reads allowed for the extraction of the following sets of kmers per 
treatment, for each kmer length (k = 27, 30, and 33), which can be used downstream for 
further analysis:

1. Treatment kmers minus Panel of Normals kmers.
2. Treatment kmers minus Control kmers.
3. Treatment kmers minus Panel of Normals kmers and Control kmers.

The sets of kmers above were subjected to the following data handling, with the use of R 
programming language for statistical computing57, for statistical comparisons and 
generation of the most fitting metrics:

• Normalization of counts by number of reads sequenced -post-adapter trimming and 
post- quality control trimming of reads.

• Normalization of counts by number of bases sequenced -post-adapter trimming and 
post-quality control trimming of reads.

• Fold Change (FC) of the treatment groups with respect to the control groups.
• log2 Fold Change (log2FC) between treatment and control groups.
• Filtering of treatment kmers:

1. log2FC > 3
2. Average coverage per treatment group >= 3 instances per million reads

 acknowledgements to Dr. Yered Pita-Juárez, Ioannis Vlachos Non-coding Research Lab*

23



B.2. Capturing the ORFome

Analysis of Ribo-Seq studies reveals information on the translatome, the actively 
translated RNA molecules for each sample. This approach sheds light on which RNA 
molecules are actually translated to proteins or peptides. As not everything that is 
transcribed is going to be translated, the Ribo-Seq analysis acts as an extra layer of 
filtering kmers for putative antigens. 

The Open Reading Frame (ORF) corresponds to the DNA sequences that have the 
ability to be translated, as they include a start codon -a triplet of bases, AUG- which the 
ribosome recognizes and, hence, initiates translation. The approach described below, 
associates Ribo-Seq reads with the statistically most probable ORF coordinates they 
originated from.

B.2.1. Analysis of Ribo-Seq Studies 

Ribo-Seq studies containing healthy samples, as well as cancer samples and cancer 
samples treated with pharmacological compounds or subjected to gene expression 
perturbation (gene knockdown, gene knock-out, up-regulation) were analyzed to capture 
the translatome of healthy, cancer and cancer-treated samples. The samples were 
analyzed as follows:

• 45 datasets in total were manually curated. 
• Samples were downloaded from SRA, the Sequence Read Archive.
• Samples were underwent quality control and analyzed with a homebrew pipeline  *

that utilizes the PRICE method for inference of the active Open Reading Frames 
(ORFs)58.

• Owing to the highly heterogeneous nature of Ribo-Seq library preparations, 
one needs to take into account how samples were prepared and modify the 
analysis, especially at the adapter trimming step.

B.2.2. Panels

From the 45 different studies analyzed, 3 different panels were created:

1. Healthy Panel: Containing the ORFs of all analyzed healthy samples. This is an 
analogue of the Panel of Normals but for actively translated RNA molecules/ 
ORFs. Healthy samples treated with pharmacological compounds or subjected to 
gene expression perturbation were not included in this panel.

2. Cancer Panel: Containing the ORFs of all analyzed cancer samples.

 acknowledgements to Dr. Yered Pita-Juárez, Ioannis Vlachos Non-coding Research Lab*
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3. Cancer Plus Panel: Containing the ORFs of all analyzed cancer samples that were 
treated with pharmacological compounds or were subjected to gene expression 
perturbation.

To create the aforementioned panels the following steps were carried out:

• Curation of the Ribo-Seq datasets led to categorization of samples based on disease 
state -healthy or cancer- and treatment methods -control or treated.

• For each sample, ORFs were filtered for False Discovery Rate (FDR) of 10% or 
less, in order to extract those that are statistically more probable to be translated 
and exclude false positives or noise. 

• Results were gathered per panel type to allow for downstream statistical analysis.

Comparisons between panels was facilitated with the following data handling 
approaches, and with the use of R57.

• A list of ORF coordinates from all samples per panel was created, allowing for the 
comparison of overlapping ORFs between panels. 

• A table containing the raw counts for all samples per panel was created. Normalized 
versions of the table were created with regards to a) the number of reads mapped on 
the genome, and b) the number of reads mapped on the transcriptome.

• The average coverage per ORF per panel was calculated, to allow for direct 
comparisons.
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Panel Number of Samples

Healthy 209

Cancer 73

Cancer Plus 57

Table B.2: Number of Ribo-Seq samples used for the 
generation of the 3 ORF Panels



B.3. Kmer Database

Analysis of dozens of different studies which correspond to hundreds of different 
samples, and comparisons between them with the end goal of bringing forth the 
difference in the expression space and kmerome requires fast and robust kmer algebra. 
This is not an easy feat to do manually, and requires for structures that support such 
large-scale queries. 

To this end, a PostgreSQL Database was created in order to host the results of the 
analyses described above. The database is designed to include sample metadata as well as 
kmer post-analysis metadata.

To construct the Kmer DB, the following tools were implemented:

• A first DB schema was created with dbdiagram.io59, an online tool which allows for 
user-friendly database schema design and extraction of the SQL code required to 
build said database. 

• PostgreSQL, a free and open-source relational database management system was 
chosen to host the designed DB60.

• SQL code extracted from dbdiagram.io was revised and run to create the database. 
Further improvements to the database structure were carried out with Navicat, a 
user-friendly Graphical User Interface (GUI) that assist database management61.

The Database schema is presented below:
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Figure B.1: Kmer database schema. This schema practicaly captures two types of data for a particular 
study: the sample metadata and the kmer metadata, the latter seeming from the study analysis.

http://dbdiagram.io
http://dbdiagram.io


Section C
Section C - Results
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C.1. Capturing the Kmerome

C.1.1. The Panel of Normals

A total of 210 GTEx samples from different RNA-Seq studies were analyzed in order to 
capture the kmerome of healthy human cells. Samples from both sexes were included to a 
1:1 ratio in order to account for all the sex-associated genetic variation that might be at 
play for different tissues. Sex-specific tissues were also included, maintaining the 1:1 ratio 
to samples from other tissues and opposite sex. The only exception was testis tissue, 
which was entirely excluded from the generation of the Panel of Normals, as testis 
transcripts have exhibited antigenicity in various cancers (Cancer Testis Antigens, 
CTAs).

Kmer-ization of the GTEx RNA-Seq studies led to the following results:

C.1.2. Manipulation Case Study 1

The first case study presented here contains the following samples:

kmer Length Group Number of kmers

27

Panel of Normals

72,413,616

30 70,033,658

33 67,444,853
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Table C.1: Number of kmers that comprise the Panel of Normals, for k=27, 30 and 33.

Table C.2: Composition of samples comprising RNA-Seq Case 
Study 1.

Sample Condition Group

S2.1 Control Control

S2.2 Control Control

S2.3 Control Control

S2.4 Treated Treatment

S2.5 Treated Treatment

S2.6 Treated Treatment



In this case study, a certain exon is being targeted for skipping, as it had been 
associated with increased expression in cancer. 

For the control group, the number of kmers that follow the criteria below is calculated, 
per kmer length:

• Kmers present in all samples that comprise the control group
• Kmers not present in the Panel of Normals

For the treatment group, the number of kmers that follow the criteria below is calculated, 
per kmer length:

• Kmers present in all samples that comprise the treatment group
• Kmers not present in the Panel of Normals

and an extra set that follows also this criterion:
• Kmers not present in the Control group

This kind of kmer algebra allows for the calculation of a first set of metrics, shown on the 
table below:

1. Number of kmers present in the control cancer sample, and not in healthy
2. Number of kmers present in the treated cancer sample, and not in healthy
3. Number of treatment-specific kmers

kmer Length Kmer Set Number of kmers

27

Control minus PoNs 17,604,370

Treated minus PoNs 16,717,527

Treatment-specific 536,488

30

Control minus PoNs 16,953,665

Treated minus PoNs 15,987,519

Treatment-specific 493,703

33

Control minus PoNs 16,248,209

Treated minus PoNs 15,218,827

Treatment-specific 452,363
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Table C.3: Number of kmers for different sets from the control and treated groups, for k=27, 30 and 33.



Already, these numbers capture two things; first of all, the difference in the expression 
of kmers between healthy cells and cancer cells. Taking into account that the PoNs 
kmerome is as big as 70 million kmers, the additional >15 million observed here that are 
expressed exclusively in the cancer samples are an important signal for putative 
antigenicity. Secondly, the third metric of treatment-specific kmers manages to capture 
the effect of the treatment on the cancer cells, acting as a first layer of support for the 
“manipulation of the kmerome” speculation.

However, the expression of the kmers in question might be a chance occurrence or they 
may even be sequencing artifacts. The following comparisons act as a second, more strict 
layer to distinguish between kmers whose expression was a chance event and those who 
demonstrate a significant difference in expression between control and treatment 
samples. 

After excluding only PoNs kmers from all samples and normalizing with regards to the 
number of reads sequenced -post trimming-, the Fold Change and log2(FoldChange) 
between the treatment group and the control group are calculated. The kmers are then 
filtered for a log2(FoldChange) greater than 3 -which corresponds to an 8-fold increase of 
expression in the treatment group versus the control group-, as well as for at least 3 
counts per million reads.

It should be noted that samples that did not give any signal for a specific kmer were 
assigned 0.01 counts per million reads, which corresponds to 1 count (unnormalized) for 
the majority of studies.

The histogram below captures the distribution of the log2(FoldChange) metric, per kmer 
length.
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Figure C.1: Histogram of log2(FoldChange) values for the Treatment group of Case Study 1, k=27, 30, 
33.



As expected, most kmers passing filters are gathered near the log2(FoldChange) > 3 
threshold, and only a handful exhibit a log2(FoldChange) > 4. This filter is already rigid 
enough, corresponding to an 8-fold change of expression between treatment and control, 
yet still captures the potential of kmers to be significantly expressed versus a control 
group.

The following can be noted for the kmers passing the filters:

C.1.3. Manipulation Case Study 2

The second case study presented here contains the following samples:

In this case study, pharmacological inhibition of a gene occurs, with the protein 
encoded by said gene being linked to various mechanisms of cancer progression. The 
difference between the two treatment groups is the concentration of the compound with 
which they were treated. 

For the control group, the number of kmers that follow the criteria below is calculated, 
per kmer length:

kmer Length Group Number of kmers 
Passing Filters

27 Treatment 847

30 Treatment 778

33 Treatment 694
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Table C.4: Number of kmers passing filters from the Treatment group, for k=27, 30 and 33.

Sample Condition Group

S1.1 Treated Group 1

S1.2 Treated Group 1

S1.3 Treated Group 2

S1.4 Treated Group 2

S1.5 Control Control

S1.6 Control Control

Table C.5: Composition of samples comprising RNA-Seq Case 
Study 2.



• Kmers present in all samples that comprise the control group
• Kmers not present in the Panel of Normals

The sets of kmers for the control groups and their size manage to capture the difference 
in kmer expression between cancer cells and healthy cells, taking into account that the 
PoNs contains about 70 million kmers and the control groups for this study exhibit 
expression of about 12 million kmers extra. 

For the treatment groups, the number of kmers that follow the criteria below is 
calculated, per kmer length:

• Kmers present in all samples that comprise the treatment group
• Kmers not present in the Panel of Normals

and an extra set that follows also this criterion:
• Kmers not present in the Control group

and, owing to the sample architecture of this study, after excluding both PoNs and 
Control kmers, the number for the following set of kmers is calculated as well:

• Kmers common between the treatment groups

kmer Length Group Number of kmers 
Passing Filters

27 Control minus PoNs 11,516,285

30 Control minus PoNs 11,732,211

33 Control minus PoNs 11,940,893

kmer 
Length Group Number of kmers

minus PoNs

Number of 
treatment-specific 

kmers

Number of 
treatment-specific 

kmers
(all treatment groups)

27
Group 1 9,198,792 645,038

184,728
Group 2 9,544,186 426,260

30
Group 1 6,069,007 426,845

122,187
Group 2 9,755,018 437,358

33
Group 1 9,577,684 674,167

192,454
Group 2 9,961,257 446,483
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Table C.6: Number of kmers minus Pons for the Control group, for k=27, 30 and 33.

Table C.7: Number of kmers for different sets of the Treatment Groups, k=27, 30, 33.



The sets of kmers for the treatment groups and their size manage to capture the 
difference in kmer expression between cancer cells and healthy cells, as well as the effect 
of the treatment. Moreover, similarities between the different treatment groups are 
observed, which might indicate a universal effect of the treatment across the samples, 
irregardless of the compound concentration. 

After excluding only PoNs kmers from all samples and normalizing with regards to the 
number of reads sequenced -post trimming-, the Fold Change and log2(FoldChange) 
between the treatment groups and the control group are calculated. The kmers are then 
filtered for a log2(FoldChange) greater than 3 -which corresponds to an 8-fold increase of 
expression in the treatment group versus the control group-, as well as for at least 3 
counts per million reads.

It should be noted that samples that did not give any signal for a specific kmer were 
assigned 0.01 counts per million reads, which corresponds to 1 count (unnormalized) for 
the majority of studies.

 The histograms below, one per group, capture the distribution of the log2(FoldChange) 
metric, per kmer length.
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Figure C.2: Histogram of log2(FoldChange) values for Treatment Group 1 of Case Study 2, k=27, 30, 
33.



Both histograms exhibit similar characteristics: the majority of the kmers have a 
log2(FoldChange) metric between 3 and 6.5-7, while there are a several outliers with a 
log2(FoldChange) metric greater than 8. The latter might be indicative of kmers that 
were highly expressed in the treatment groups versus non-existent in the control group.

The following can be noted for the kmers passing the filters:

kmer Length Group Number of kmers
passing filters

27
Group 1 2,646

Group 2 826

30
Group 1 1,875

Group 2 775

33
Group 1 2,717

Group 2 714
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Figure C.3: Histogram of log2(FoldChange) values for Treatment Group 2 of Case Study 2, k=27, 30, 
33.

Table C.8: Number of kmers passing filters from the Treatment groups, for k=27, 30 and 33.



C.1.4. Manipulation Case Study 3

The third case study presented here contains the following samples:

In this case study, samples are treated with a drug with potential antitumor effects. Two 
different cell types were utilized in this study, with both cell types originating from the 
same type of tumor, thyroid gland medullary carcinoma; samples S3.1 to S3.8 are of 
one particular cancer cell type, while S3.9 to S3.16 are of a different one, and all treated 
samples were treated with the same drug. The differences between treated groups Group 
1 against Group 2, and again Group 3 against Group 4 is the treatment time. 

For the control groups, the number of kmers that follow the criteria below is calculated, 
per kmer length:

• Kmers present in all samples that comprise the control group
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Sample Condition Group

S3.1 Control Control 1

S3.2 Control Control 1

S3.3 Treated Group 1

S3.4 Treated Group 1

S3.5 Control Control 2

S3.6 Control Control 2

S3.7 Treated Group 2

S3.8 Treated Group 2

S3.9 Control Control 3

S3.10 Control Control 3

S3.11 Treated Group 3

S3.12 Treated Group 3

S3.13 Control Control 4

S3.14 Control Control 4

S3.15 Treated Group 4

S3.16 Treated Group 4

Table C.9: Composition of samples comprising RNA-Seq Case 
Study 3.



• Kmers not present in the Panel of Normals
and, owing to the sample architecture of this study, the number for the following sets of 
kmers are calculated as well:

• Kmers common between control groups of the same cell type
• Kmers common between all control groups

The sets of kmers for the control groups and their size manage to capture the difference 
in kmer expression between cancer cells and healthy cells, taking into account that the 
PoNs contains about 70 million kmers and the control groups for this study exhibit 
expression of 3 to 5 million kmers extra. Moreover, similarities are observed between 
kmers for the same cell type, which might be an indication of capturing cell type-specific 
kmers. 

Last but not least, similarities between the different cell type control groups are also 
observed, with quite the high number of 1.3 million kmers, which might indicate two 
different things: first, kmers shared for a specific type of tumor, as in this case study 
both cell types come from the same tumor type, and, second, that there might be 
sequencing or preparation artifacts.

kmer 
Length Group Number of kmers

minus PoNs

Number of kmers
minus PoNs
(same cell type)

Number of kmers
minus PoNs
(diff cell type)

27

Control 1 3,287,993
2,668,824

1,353,890
Control 2 4,474,445

Control 3 5,434,409
2,517,404

Control 4 2,828,316

30

Control 1 2,918,981
2,346,644

1,167,378
Control 2 4,003,878

Control 3 4,815,948
2,182,813

Control 4 2,466,761

33

Control 1 2,524,309
2,007,132

975,659
Control 2 3,498,412

Control 3 4,157,522
1,836,811

Control 4 2,089,916
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Table C.10: Number of kmers for different sets of kmers from the Control groups, k=27, 30, 33.



For the treatment groups, the number of kmers that follow the criteria below is 
calculated, per kmer length:

• Kmers present in all samples that comprise the treatment group
• Kmers not present in the Panel of Normals

and an extra set that follows also this criterion:
• Kmers not present in the Control group

and, owing to the sample architecture of this study, after excluding both PoNs and 
Control kmers, the number for the following sets of kmers are calculated as well:

• Kmers common between treatment groups of the same cell type
• Kmers common between all treatment groups

The sets of kmers for the treatment groups and their size manage to capture the 
difference in kmer expression between cancer cells and healthy cells, as well as the effect 
of the treatment. Moreover, similarities between the different cell type treatment groups 
are observed, which might indicate the effect of the treatment across cell types or for the 
specific type of tumor, since both cell types originate from the same tumor type.

After excluding only PoNs kmers from all samples and normalizing with regards to the 
number of reads sequenced -post trimming-, the Fold Change and log2(FoldChange) 

kmer 
Length Group

Number of 
kmers minus 

PoNs

Number of 
treatment-

specific kmers

Number of 
treatment-

specific kmers
(same cell type)

Number of 
treatment-

specific kmers
(diff cell type)

27

Group 1 3,249,759 572,337
228,646

74,490
Group 2 2,895,296 731,466

Group 3 4,872,708 1,165,253
533,300

Group 4 4,499,933 2,436,016

30

Group 1 2,934,548 525,146
211,127

67,753
Group 2 2,615,985 675,452

Group 3 4,278,361 1,026,668
475,594

Group 4 3,976,631 2,199,283

33

Group 1 2,590,925 469,827
188,769

59,500
Group 2 2,311,473 608,804

Group 3 3,662,071 882,102
413,113

Group 4 3,427,422 1,940,992
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Table C.11: Number of kmers for different sets of kmers from the treatment groups, k=27, 30, 33.



between the treatment group and the control group are calculated. The kmers are then 
filtered for a log2(FoldChange) greater than 3 -which corresponds to an 8-fold increase of 
expression in the treatment group versus the control group-, as well as for at least 3 
counts per million reads.

It should be noted that samples that did not give any signal for a specific kmer were 
assigned 0.01 counts per million reads, which corresponds to 1 count (unnormalized) for 
the majority of studies.

The histograms below, one per group, capture the distribution of the log2(FoldChange) 
metric, per kmer length.
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Figure C.4: Histogram of log2(FoldChange) values for Treatment Group 1 of Case Study 3, k=27, 30, 
33.
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Figure C.5: Histogram of log2(FoldChange) values for Treatment Group 2 of Case Study 3, k=27, 30, 
33.

Figure C.6: Histogram of log2(FoldChange) values for Treatment Group 3 of Case Study 3, k=27, 30, 
33.



 

All four histograms exhibit similar characteristics: a group of kmers with 
log2(FoldChange) closest to the threshold, and then a sudden peak in the number of 
kmers with log2(FoldChange) a very high log2(FoldChange) metric greater than 8, which 
corresponds to 256-fold change in expression between the treatment groups and the 
control groups. The latter indicates high abundance of kmers in the treatment groups that 
were non-existent in the control groups. This observation might either indicate a 
treatment-specific effect of extreme amplitude or an artificial signal that needs to be 
discarded. Further analysis needs to be carried out in order to distinguish which of the 
two scenarios are true.

The following can be noted for the kmers passing the filters and which are represented on 
the histograms above:

kmer Length Group Number of kmers passing filters

27

Group 1 6,040

Group 2 29,638

Group 3 11,798

Group 4 82,898
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Figure C.7: Histogram of log2(FoldChange) values for Treatment Group 1 of Case Study 3, k=27, 30, 
33.



 

C.2. Capturing the ORFome

Three different ORF panels were created from healthy, cancer and cancer-treated 
samples, upon analysis of 45 Ribo-Seq studies. Each panel is comprised of the following 
numbers of ORFs:

The Healthy Panel ORF is considered the Panel of Normals analogue for the Ribo-Seq 
studies, capturing all ORFs translated in healthy cells, and is thus used as a baseline. 
Panel-specific ORFs were isolated after panel comparisons. Cancer Panel-specific ORFs 
do not overlap with any of the Healthy Panel ORFs, while Cancer Plus Panel-specific 
ORFs do not overlap with any of the Healthy Panel ORFs or the Cancer Panel ORFs. 
The latter was calculated this way in order to capture potential manipulation-specific 
translation of ORFs. However, all Cancer Plus Panel ORFs seem to overlap with the 
other two panels.

30

Group 1 5,377

Group 2 26,738

Group 3 10,212

Group 4 75,335

33

Group 1 4,608

Group 2 23,128

Group 3 8,451

Group 4 66,157
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Table C.12: Number of kmers passing filters from the Treatment groups, for k=27, 30 and 33.

Table C.13: Number of ORFs and panel-specific ORFs per ORF Panel.

Panel Number of ORFs Number of Panel-specific ORFs

Healthy 333,461 -

Cancer 151,222 8,969

Cancer Plus 171,013 0



The plot above captures the average coverage per ORF of the Cancer panel Specific 
ORFs -log10 representation for clearer depiction. Even though the majority of the 
Cancer Specific ORFs exhibit a log10(Average Coverage) between -1 and 0, which 
corresponds to an average coverage of 0.1 to 1, the outliers are strong indicators of 
cancer-specific translational events.

However, the basic purpose of the ORF Panels, apart from accurately capturing the 
Translation Space, is to act as an extra layer of filtering for the Kmerome, with the end 
goal of characterizing the Antigen Space with precision.

C.3. Kmer Algebra with the Kmer DB

The creation of the Kmer Database was based on two fundamental goals:

1. The storing of a large amount of analyzed information in a robust environment
2. The need for efficient and fast querying and filtering.

To this end, the database was created and tested with a small set of analyzed RNA-Seq 
studies, in order to ensure it has been properly constructed, as well as to examine its user-
friendly nature and effectiveness in querying.
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Figure C.8: Boxplot of the log10(Average Coverage per ORF) of Cancer-Specific Panels, capturing 
that, indeed, said ORFs are cancer-specific.



 

The database has exhibited extraordinary capabilities, making kmer comparison across a 
variety of different fields and parameters easier, faster, and more effective than manually 
doing so. It is, thus, ready to host the results of the Kmerome analyses.
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Figure C.9: Two of the tables that comprise the kmer databases, containing kmer 
information on the sequence, and length (table kmerinfo on the left) and kmer 

frequency (table kmersample on the right). Table kmersample also has the role of 
matching the kmer-id and sample-id keys.



Section D  
Section D - Discussion
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D.1. Capturing the Expression Space of Antigens

State of the art approaches for capturing the antigen space through the analysis of RNA-
Seq samples primarily rely on the annotation of the human genome. They usually focus 
on certain types of genomic regions that might act as sources for neoantigens -e.g. 
endogenous retroviruses, non-coding regions, etc.-, as well as on phenomena occurring 
due to the deregulation of normal procedures -e.g. intron retention, exon skipping or 
inclusion, non-synonymous mutations, etc.- that lead to aberrant products during 
expression or translation. Few exceptions of an annotation-free approach can be found in 
the literature.

The current study opts for the latter, an annotation-free, hypothesis-free approach for 
capturing the expression space, which in turn shapes a putative antigen space on the 
expression level. The approach relies on the kmer-ization of the RNA-Seq reads to 
sequences of lengths 27, 30, and 33 nucleotides long, corresponding to the 9-11 amino 
acid long antigens. This annotation-free generation of the Kmerome of different samples 
allows for direct comparisons between normally expressed kmers, as in the case of the 
Panel of Normals, and kmers expressed in cancer samples. 

Kmer differences between cancer and healthy samples can be significant in size, as shown 
in the three case studies presented in the previous section. The 210 samples that comprise 
the Panel of Normals have been shown to express about 70 million kmers. In the case 
studies, results support that not only the cancer samples express kmers different to what 
healthy cells produce, but they do so in large numbers, reaching even 17 million antigens 
in one case.

Therefore, it would not be an overstatement to support that the method proposed in the 
frame of this thesis accurately captures the expression space, without forcing any biases, 
while constituting an effective method for separating cancer-specific expression events 
from healthy ones. Further downstream analysis will allow for accurate characterization 
of the biological nature of these cancer-specific events, and for exclusion of potential 
artifacts.

D.2. Manipulation of the Antigen Space

In the frame of this thesis, a new approach for sensitizing patients to immunotherapy was 
proposed: the manipulation of the antigenic and immunogenic profile of cancer patients, 
via drug administration or gene targeting. The method built with that end goal enables 
re-analysis of a vast collection of publicly available datasets to harvest of existing yet, up 
until now, unnoticed transcriptomic information. Moreover, it is, to a large degree, 
automated and can be further adjusted to allow for massive, parallel, and fast analysis of 
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RNA-Seq datasets. Furthermore, different layers of metrics have been introduced and 
tested on their ability to characterize the effect of a certain treatment on the expression 
space. 

Testing of the latter is demonstrated in the present study on three different case studies. 
The three studies included three different manipulation approaches; targeted exon 
skipping, targeted inhibition of gene with a pharmacological compound, and 
administration of drug with previous indications of antitumor effects. Moreover, the 
study architecture -number of samples, number of control and treatment groups-, 
treatment time, and treatment concentration were all additional parameters for the case 
studies.

In effect, none of these parameters were taken into account when analyzing the RNA-
Seq samples. On the contrary, all samples were processed in the exact same way, yielding 
results in a hypothesis-free manner, with the use of universal metrics that allow for cross-
sample, cross-study evaluation of treatment effect. Analysis returned a high yield in 
treatment-specific kmers, with numbers to the hundred thousands for each treatment 
group. Further testing between comparable treatment groups, as in Case Studies 2 and 3, 
yielded even shared kmers across the treatment groups. The latter is a strong indicator of 
treatment-specific effects on the expression space, regardless of variables like treatment 
time or concentration. Of course, downstream analysis should be carried out to exclude 
sequencing or preparation artifacts and determine biologically significant outcomes.

An additional layer of metrics was incorporated in order to rigidly filter for important 
treatment effects. After exclusion of PoNs kmers, kmers were filtered on two bases: first, 
passing a signal threshold of 3 counts per million reads -treatment group average, and 
second, passing a log2(FoldChange) threshold of 3 -which corresponds to an 8-fold 
increase in expression in the treatment group versus the control group. All case studies 
resulted in several hundred to thousands of kmers passing aforementioned filters, thus 
presenting a more adamant argument in favor of the “manipulation of the kmerome” 
speculation.

D.3. Capturing the Translation Space of Antigens

Undoubtedly, not everything that gets transcribed gets to be translated, and although 
every kmer is a putative antigen, the vast majority will not reach the immunogenic, or 
even the antigenic, status. This calls for an extra layer of kmer filtering, this time with 
input from the translation space.

An exhaustive analysis of publicly available Ribo-Seq datasets was performed, with 45 
studies already incorporated into the Open Reading Frame Panels, and with only a dozen 

46



left. Upon analysis of the remaining Ribo-Seq studies, the ORF Panels will be complete, 
as all publicly available information on Ribo-Seq data will have been integrated.

Generated ORF Panels already capture a significant portion of the effect of cancer on the 
translation space, with thousands of cancer-specific ORFs identified. Those cancer-
specific ORFs show no overlap whatsoever with healthy ORFs, indicating strong effects 
of tumor on the translation space. This fact alone points to the Cancer Panel being able to 
act as an additional filter for kmers; in an analogous manner, the Healthy Panel can act as 
a negative filter for kmers. 

D.4. Ongoing Work and Future Prospects

Although this diploma thesis has built sturdy foundations to serve its purpose, it would 
not be a hyperbole to declare that there are still margins for improvement. To state this, 
one should recall the final goals of the present study:

1. Creation of universal metrics that capture change in the antigen space upon 
drug administration and/or gene expression perturbation.

2. Use of aforementioned metrics to prioritize for manipulations that will 
sensitize patients to immunotherapy.

As far as goal #1 goes, the broader one and the basis of this whole research structure, the 
following are already being tested or considered for downstream implementation into the 
pipeline:

1. Filtering of kmers with the ORF Panels.
2. Alignment of kmers to the genome. Characterization of the origin of reads.
3. Transition to a fully automated pipeline which will allow for parallel analysis of 

massive sets of data.
4. Automated loading of analyzed results to the Kmer Database. Handling of 

kmer comparisons inside the Kmer Database, utilizing the effectiveness, 
robustness and speed of DB querying.

5. Incorporation of the MHC-antigen binding score into the universal metrics.
6. Incorporation of a presentation score into the universal metrics, based on Mass 

Spectrometry Immunopeptidomic data.
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Appendix I: List of Abbreviations

APCs Antigen Presenting Cells

CAR Chimeric Antigen Receptor

CTAs Cancer Testis Antigens

CTLs Cytotoxic T Cells

CTLA-4 Cytotoxic T-Lymphocyte-Associated protein 4

DAMPs Damage-Associated Molecular Patterns

DB Database

DCs Dendritic Cells

DNA Deoxyribonucleic Acid

ER Endoplasmic Reticulum

ERAP Endoplasmic Reticulum Aminopeptidase

FTO Fat Mass and Obesity-associated Protein

GTEx Genotype-Tissue Expression

HSP90 Heat Shock Protein 90

ICI Immune Checkpoint Inhibition

IFNs Interferons

MABs Monoclonal Antibodies

MHC Major Histocompatibility Complex

MMR DNA Mismatch Repair

NGS Next Generation Sequencing

ORF Open Reading Frame

PAMPs Pathogen-Associated Molecular Patterns

PD-1 Programmed Cell Death Protein 1

PD-L1 Programmed Death-Ligand 1

PoNs Panel of Normals

PRMT5 Protein Arginine N-Methyltransferase 5

PRR Patter Recognition Receptor

Ribo-Seq Ribosome Profiling

RNA Ribonucleic Acid

RNA-Seq RNA Sequencing

SNV Single-Nucleotide Variant
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TAP Transporter Associated with Antigen Processing

TCR T Cell Receptor

TILs Tumor Infiltrating Lymphocytes

TMB Tumor Mutation Burden

TME Tumor Microenvironment

TSAs Tumor Specific Antigens

WES Whole Exome Sequencing

WGS Whole Genome Sequencing
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