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Αbstract 

Three phenomenological constitutive models are presented for the response of reinforced 

concrete elements. The first is a simple uniaxial stress-strain model, based on Mohr-

Coulomb failure criterion, developed by Gerolymos et al (2014). This model possesses 

considerable flexibility to reproduce the macroscopic behavior of reinforced concrete 

circular sections. The second is a mathematically simple model, also formulated within the 

framework of classical elastoplasticity. Concrete material is described by Mohr-Coulomb 

failure criterion and it is combined with elastoplastic reinforcement elements. The third 

approach is a combination of elastoplastic reinforcement elements and an advanced model 

for concrete material, that employs Mohr-Coulomb failure criterion for deviatoric loading 

and Rankine for tension. Due to its formulation it accounts for strain hardening and 

softening. Nonlinear three-dimensional analysis is used to conduct a thorough 

investigation on the performance of the aforementioned models utilizing Plaxis 3D Finite 

Element Software. The models are first calibrated and then compared and validated against 

results from computer codes. After validation, the proposed models are implemented in 

pile-soil interaction cases and their performance is evaluated utilizing Broms theory (1964) 

of ultimate pile lateral capacity. Nonlinear behavior of the soil and the pile is considered, 

and pile-soil response is investigated through a detailed parametric study.   
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1 Introduction 

 

1.1 Layout 

In chapter 1 the scope of this diploma thesis is presented, followed by the definition of the 

problem that triggered motivation for this study. 

In chapter 2 the relevant theoretical background is given. The fundamentals of  concrete 

material, as well as structural reinforcing steel are presented. Emphasis is given in the 

nonlinear behavior of concrete. To give more insight in the stress-strain relation, the main 

parameters affecting the softening behavior of concrete in tension and compression are 

outlined. Consequently, a brief description of the function of reinforced concrete elements 

follows, and some empirical methods for the estimation of the plastic hinge length of RC 

flexural members are outlined. The last part contains a short introduction to the use of pile 

foundations, focusing on the behavior of laterally loaded piles.  

In chapter 3 a brief description of the Finite Element Method is presented, and the basic 

concepts of constitutive modeling are presented. Subsequently, Plaxis 3D Software utilized 

in the analysis, is introduced and the three constitutive models used to simulate the behavior 

of reinforced concrete elements, are described. Lastly, mesh dependency of key parameters 

is investigated, in order to avoid unobjective results in the analyses. 

In chapter 4, a simple pushover analysis of a reinforced concrete circular column with the 

use of Plaxis 3D code is presented. The setup of 3 different models, in order to investigate 

the behavior of the RC column, is described. For each setup reinforced concrete material is 

simulated by the three suggested models. The first is an elastoplastic model based on Mohr-

Coulomb failure criterion, simulating concrete material, combined with structural 3D 

elements for reinforcement. For the second approach, Plaxis Concrete constitutive model is 

applied. Again structural 3D elements are used for reinforcement. The basic aim is to 

capture the real behavior of structural reinforced concrete. For this reason calibration of the 

most affecting parameters is carried out. The third approach is based on the macroscopic 

Mohr-Coulomb simplified constitutive model proposed by Gerolymos et al (2014). In this 

approach no detailed reinforcement is required as it simulates in a uniform approach the 

elastoplastic response of circular reinforced concrete elements. Input parameters are 
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calibrated according to the results from the second model setup. Consequently results 

extracted from numerical analyses are compared with each other as well as with two 

computer codes. These codes are: USC_RC, which is a fiber analysis calculation tool, and 

Response-2000, used for the analysis of strength and ductility of reinforced concrete 

structures.  

 In chapter 5 the previous analyzed phenomenological constitutive models are applied to a 

volume pile, in order to evaluate their performance in soil structure interaction cases. A 

single pile subjected to lateral force and consequently to a combination of horizontal and 

axial force, is studied. Nonlinear behavior of the pile is considered and thorough parametric 

study is carried out considering full bond conditions between pile and soil, as well as sliding 

and gapping. Moreover the influence of vertical loads on lateral response is discussed. 

Results from numerical analyses for the three developed constitutive models are compared 

and evaluated. 

In chapter 6 results derived from this study are discussed. Conclusions are presented 

regarding the capabilities of each constitutive model to simulate reinforced concrete 

elements. Lastly recommendations for further research are made. 

 

1.2 Scope of work 

 The aim of this thesis is the presentation of  phenomenological constitutive models for the 

nonlinear response of reinforced concrete elements. Three different constitutive relations are 

proposed to simulate reinforced concrete material in numerical analyses, utilizing Plaxis 3D 

Finite Element code. Key parameters are calibrated and the validity of each model is verified 

through comparison with results from computer codes based on Fiber analysis and Modified 

Compression Field Theory. The first approach considers a Mohr-Coulomb model for 

concrete material, based on the assumption of perfect elastoplasticity. It is combined with 

detailed reinforcement simulated by structural 3D elements whose behavior is described by 

von Mises yield criterion. The second approach combines the advanced Plaxis Concrete 

model with detailed reinforcement. Concrete is an elastoplastic material model that 

approaches the real behavior of concrete as a quasi-brittle material. It accounts for strain 

hardening and stiffness reduction due to cracking, while again, the behavior of 

reinforcement elements is described by von Mises yield criterion.  The third model is based 

on the macroscopic Mohr-coulomb approach, as proposed by Gerolymos et al (2014). It is a 
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simplified model that combines well known constitutive relations, easy implementation and 

simple geometry, as no detailed reinforcement needs to be incorporated and reinforced 

concrete material is described uniformly.  

 

1.3 Problem definition  

In order to predict the behavior of reinforced concrete elements, many computational tools 

have been developed. These programs are mostly designed based on existing models in 

literature and standards. When it comes to sectional  analysis these simple tools predict quite 

accurately the response of the reinforced concrete section, but when it comes to full member 

performance, deviations from reality are observed. These deviations are associated with the 

assumptions used to predict plastic hinge length. There are numerous simplified methods 

estimating plastic hinge length in literature, but they do not contain all factors affecting 

plastic hinge formation. As a result not in a few cases in experiments or in reality different 

failure or failure modes are observed from what expected. In numerical simulations, as they 

are a  powerful tool for nonlinear analyses, the plastic hinge length is calculated more 

accurately, and more realistic failure mechanisms are obtained. A realistic solution for a 

structural problem involving concrete depends in large part on the choice of an appropriate 

constitutive model. In the past decades, intensive studies have led to a better understanding 

of the behavior of quasi-brittle media. Therefore many models have been developed for the 

simulation of concrete material in finite element methods. However these ‘exact' constitutive 

models exist in more sophisticated FE software packages. On account of this, in many cases, 

simplified stress-strain relations must be adopted, based on well-known failure criteria such 

as Tresca or Mohr-Coulomb. Furthermore when soil-structure interaction is studied in FEM 

simulations, the foundation system usually is considered to have an elastic response. 

However foundation inelasticity in many cases must be considered especially when there is 

risk of large deflections. For such cases the exact failure mechanism of the reinforced 

concrete foundation system must be inspected and factors that affect post-yielding 

deformability to be considered for a safer design.     
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2 Theoretical Background 

 

2.1  Introduction  

Concrete is one of the most widely used construction material. Ιt is a composite material that 

is produced after the hardening of a mixture consisting of aggregates, cement and water. 

During the admixture other physical or chemical ingredients can be added to give desirable 

properties to the concrete material depending on the requirements of the structure. The main 

characteristic of concrete is its high compressive strength contrary to its limited tensile 

strength. Due to this fact, in most applications reinforcement is added to undertake the 

tensile stresses generated by applied loads. Reinforcement components usually are steel bars 

that can be produced in various diameters or fibers made of steel or polymers. In order to 

understand the response of reinforced concrete elements under different loading conditions, 

deep knowledge of the fundamentals of concrete material behavior is required, bringing the 

stress-strain relation into focus. In the following paragraphs concrete material behavior 

under compressive and tensile loading is described, as well as the characteristics of 

structural steel used as reinforcement. Lastly, the basic principles of designing reinforced 

concrete structures are outlined, followed by the features of plastic hinge length in flexural 

members. 
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2.2  Concrete under compression   

The compressive strength governs the behavior of concrete as it is the basis to define many 

other of its properties . The characteristic compressive strength can be determined by 

executing uniaxial compression tests on cylindrical or prismatic specimens from the 

maximum load the specimen can receive until it fails. A typical stress strain diagram of 

normal strength concrete is illustrated in Figure 2.2.1, below. 

 

 

Figure 2.2.1. Stress-strain diagram of normal strength concrete 

 

As shown in the figure, at first the material behaves linear elastically, until it reaches the 

yield stress (σpl). In this part of the curve the strains are reversible (elastic strains). When 

reaching the yield stress plastic strains are generated and the concrete hardens non linearly. 

At this point the first cracks are generated. These cracks are the result of the flow of the soft 

cement matrix around the stiffer aggregates due to loading. This movement leads to lateral 

tension and cracking, and stresses developed in front and behind aggregates create shear 

cones. As failure proceeds along the sides of these shear cones, the critical crack length is 

reached. At this point concrete has reached its peak strength the and the material starts to 

fail. After that moment, strain softening follows as the load that can be carried by concrete 

decreases with an increase in strain. Stain softening can be observed if the test is strain 

controlled. At last the sample completely fails due to the excessive crack propagation. The 

material’s strength after failure is called residual strength. 
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 Although rupture of concrete structures is closely related to compressive failure of concrete 

material in the crashing zone, few studies have been carried out. Researchers mostly 

concentrated on tensile fracture, due to the ease of cracking observation, as it is a local 

phenomenon. Compressive failure is much more complex, as many microcracks develop and 

connect, therefore volumetric observation is needed. For many years compressive stain 

softening was neglected, whereas research carried out by Van Mier (1984) showed that 

compressive softening can be analyzed in a similar way to tensile softening.  According to 

Nakamura & Higai (2001) concrete under uniaxial compression has a definite size of 

fracture zone that depends mostly on maximum aggregate size, distance between aggregates 

and compressive strength. 

 

2.3  Concrete under tension  

Generally, concrete has relatively limited tensile strength which is only 5-10 % of its 

compressive strength. The tensile strength can in principle be derived directly from uniaxial 

tension tests, although due to the experimental difficulties of these tests, indirect methods 

like the 4-point bend beam are currently used. The different response of concrete in tension 

and compression is depicted in Figure 2.3.1. 

 

Figure 2.3.1. Uniaxial behavior of concrete (Chen and Han, 1982) 
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As shown in the diagram above, failure under tensile loading is more brittle and no residual 

strength is observed. While attention is paid in tensile loading, a more detailed stress - 

deformation response is illustrated  in Figure 2.3.2 below: 

                

Figure 2.3.2. Stress-deformation results from experiments by Cornelissen et al., (1962)  

 

As one can see, the stress-deformation relationship before reaching the peak tensile strength 

is linear. This domain describes the un-cracked concrete under tensile loading. When the 

tensile stress reaches the 90% of the tensile strength cracks start to develop. These cracks 

grow mostly perpendicular to the loading axis. If these cracks prevent the transfer of forces 

through the material significant softening takes place. Generally as soon as cracking occurs 

it is assumed that the material loses its tensile strength. 

In this case reinforcement should be able to receive all the tensile forces, before the crack 

propagates and leads to failure. In principle, the response of concrete under tensile loading is 

described by a stress strain relation for the linear part before cracking and a stress-crack 

opening relation for the part till rupture. In this domain tensile stress and crack width are 

related by the fracture energy GF. 

                             

Figure 2.3.3. Softening curve under tensile loading (Bazant and Planas,1998) 
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2.4  Structural steel reinforcement 

The behavior of structural reinforcing steel can be described by stress-strain relations 

obtained from coupon tests of bars loaded monotonically in tension. It is assumed that 

reinforcing steel behaves in compression, as in tension, which is a reasonable simplification 

for reinforced concrete elements.  A typical  stress-strain curve is visualized in Figure 2.4.1. 

        

Figure 2.4.1 Experimental stress-strain curve of reinforcing steel 

 

At the initial part of the curve steel behaves linear elastically until the yield stress is reached. 

After reaching the yield stress, a yield plateau follows and then a strain hardening range in 

which stress increases with strain. At the last range of the diagram stress drops until fracture 

occurs. For simplicity and calculation purposes the stress-strain relation of steel 

reinforcement can be replaced by an idealized diagram (Figure 2.4.2). Two different 

idealizations are commonly used in literature depending on the desired level of accuracy 

(ASCE 1982).  
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Figure 2.4.2. Simplified stress-strain curves for steel: (a) linear elastic-perfectly plastic 

response, (b) linear strain hardening after yielding 

 

In the first approach (Figure 2.4.2(a)) the behavior of steel is considered linear-elastic 

perfectly plastic, as strain hardening after yielding is neglected. In the second idealization 

(Figure 2.4.2(b)) yielding is followed by linear strain hardening. This approach is preferable 

when ductility of a member plays a major role, as it is necessary to evaluate the steel stress 

at strains higher than yield to more accurately assess the strength of members at large 

deformations, e.g. in seismic design. 

For design purposes the following stress-strain diagram can be applied. 

 

Figure 2.4.3. Stress-strain diagram of steel for design purposes, according to EN 1992-1-1 
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Branch A is the schematized behavior dependent on characteristic values, while branch B on 

design values (characteristic values divided by a factor of safety ��.).  As illustrated, despite 

the modulus of elasticity �� and the characteristic yield strength ��	, ductility parameters 

need to be defined. These are strain at maximum stress, 
�	 and the ratio between tensile 

and yield strength, ��		 /��	 . According to EN-1992 - 1-1 the stiffness of the initial linear 

part can be assumed to be equal to 200 GPa and the characteristic yield strength to 500 MPa. 

 

2.5  Reinforced concrete elements  

Generally all concrete structures are reinforced with some type of reinforcement. Non 

reinforced concrete members are assumed to carry only small gravity loads or perform a 

non-life-threatening function. In all other applications concrete has to be reinforced.  Adding 

reinforcement to a structure element subjected to bending (from loads perpendicular to 

element’s axis) increases its strength, due to the fact that failure does not occur at the 

moment when concrete fails in tension . After cracking due to tensile loading, it is 

considered that concrete loses its tensile strength. At this point reinforcement has to take up 

tensile forces, in order to limit the crack and stop propagation. Therefore at least the tensile 

zone of a structure has to be reinforced. The main objective in the design process of RC 

elements is yielding of reinforcement to come first of failure of concrete in compression. 

The overall performance of RC members depends on the response of a small zone called 

plastic hinge. In this zone plastic deformation occurs after yielding. 

 

2.5.1 Methods of estimating plastic hinge length of RC flexural members 

Generally a plastic hinge is the region of a RC element with the most severe damages, due to 

large plastic deformations. In this area wide cracking, crashing, or spalling of concrete and 

yielding of longitudinal reinforcement, depending on type of failure, are observed. When it 

comes to full member response, when the ultimate bending moment and curvature are 

reached in critical section, the region of plastic curvature is spread over a length of element. 

The ultimate curvature distribution over the length of the member can be idealized into 

elastic and plastic region. Plastic region represents the plastic hinge zone. 
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The behavior of plastic hinges is a very complex matter basically due to the nonlinear 

behavior of materials. Plastic hinge zone depends on various factors such as the magnitude 

of axial load, longitudinal reinforcement ratio, level of confinement, yield penetration, shear 

span ratio, concrete compressive strength and load type (static or dynamic). Only with many 

assumptions and simplifications it can be calculated analytically. Typically for this region, 

an equivalent length is estimated, where  plastic curvature is assumed to be constant or to 

have a linear distribution. Indicatively some different methods for curvature distribution in 

the plastic hinge zone are depicted in Figure 2.5.1. For Priestley & Park  plastic hinge length 

depends on column height, longitudinal steel yield strength and rebar diameter. Curvature 

distribution is considered to be uniform along the plastic hinge length and the effect of axial 

force is neglected. According to Rohleder (2017), for Esmaeily’s first method (2002) a 

linear distribution of curvature along plastic hinge length is considered, taking into account 

the effect of axial force, followed by Esmaeily’s second method (2002) that divides the 

transition zone in two parts one of linear increased curvature distribution and one of 

constant. The length of constant curvature is considered equal to the section depth for 

columns with height to depth ratio of less than 12.5 or otherwise, equal to 0.08×L, where L 

is the column height. Curvature distribution along the second part is assumed to be linear 

and its length depends on axial and lateral loading (Rohleder, 2017). 

                                                

 

Figure 2.5.1. Curvature distribution along column height according to (a) Priestley & Park, 

(b) Esmaeily’s first method  and  (c) Esmaeily’s second method  by Rohleder (2017) 
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However the physical plastic hinge length may be quite deferent. Due to the uncertainties 

involved in the determination of plastic hinge length, Finite Element Method is becoming 

more and more popular to obtain nonlinear structural response.  Three regions develop in the 

plastic hinge zone, which are: 

• Rebar yielding zone 

• Concrete crashing zone 

• Curvature localization zone  

 

Some of the many empirical equations that  have been proposed for the prediction of the 

equivalent plastic hinge length, are outlined in Table 2.1 below: 

Table 2.1: Proposed expressions of estimating plastic hinge length 

Priestley and Park (1987) �� = 0.08�� + 	6���     (for RC columns) 

Paulay and Priestley (1992) �� = 0.08�� + 0.022���		��  (for RC beams and columns) 

Coleman and Spacone (2001) �� 	/		!0.6� "
#$		 −	
 		 + � /� &'	 
Panagiotakos and Fardis  (2001) 0.18) + 0.021*����� 

Bae and  Bayrak (2008) L,	/	h = .0.3p	/p$ + 3A2/	A3 	− 0.14"z/	h& + 0.25 ≥ 0.25     

where: A3:  gross area of concrete section, 

A2: area of tension reinforcement,  d9: diameter of longitundinal reinforcement, E;: Young modulus of concrete, f=: concrete compressive strength,  f>: yield strength of reinforcement,  

G?=	: concrete compressive fracture energy, 

h:  height of the member, 

@A:	0,85	� D*EF*�G + ��*�,  

z: distance from critical section to point of contraflexure, ε=	: peak compressive strain,  ε#$	: strain at 20% of the compressive strength 
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2.6  Pile foundations 

Piling is the most common method of deep foundation. Piles are usually columnar slender 

elements that transfer loads from the superstructure through weak compressible soils onto 

stiffer soils or rock formations (Tomlinson, 1994). They can be subjected to compressive, 

uplift or lateral loads, as well as to combined vertical and horizontal loads when are used in 

retaining structures or bridge piers. Piles are distinguished from other foundation types due 

to their higher slenderness ratio. Figure 2.6.1 presents a rough categorization of foundation 

types. 

 

 

Figure 2.6.1. Different foundation types that are used in structural systems (Gerolymos & 

Gazetas, 2006) 

 

The first piles were made of timber. Due to its strength combined with lightness and ease of 

cutting and handling, it remained the only material used for piling for centuries. Timber was 

gradually replaced by concrete and steel because of the significantly increased compressive, 

bending and tensile capacity that these materials provided compared to timber. Reinforced 

concrete which was developed in the late nineteenth and early twentieth century, largely 

replaced timber. At first mostly precast concrete piles were used. However with the 

improvement of drilling machines precast driven piles were partially replaced by numerous 

forms of cast in situ piles. Nowadays,  highly efficient machines for drilling pile boreholes 
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of large diameters and great depth have been developed, capable to drill stiff soils or soft 

rock formations. The estimation of the load carrying capacity of  piles is a complex matter, 

based on theoretical concepts from sciences of rock and soil mechanics and on empirical 

experience. The basis of pile bearing capacity is that the total resistance of the pile to 

compression loads is the sum of two components, namely skin friction and tip resistance. If 

skin friction is the main parameter that resists loads from the superstructure the pile is called 

friction pile, and if on the other hand resistance is obtained from the stiff bearing layer the 

pile is called end-bearing pile, as illustrated in Figure 2.6.2. Most piles use some end bearing 

and some friction, in order to resist the action of loads. 

 

       

Figure 2.6.2. Types of bearing pile (Tomlinson, 1994) 

 

However the function of a pile is a much more complex matter depending on various 

parameters, such as installation method, soil conditions, loading type etc.The selection of the 

proper pile type is very important and depends mostly on the location and type of structure, 

ground conditions, durability and cost (Tomlinson, 1994). According to the British Standard 

Code of Practice and Foundations there are three pile categories as follows: 

• Large displacement piles, which are driven or jacked into the ground and displace 

the soil 

• Small-displacement piles, which are also driven but they include rolled steel H, U or 

I sections and pipe or box sections driven in open end such the soil enters the hollow 

section 
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• Replacement piles (bored-and-cast-in-place piles), which are formed by first 

removing the soil by boring and afterwards placing steel reinforcement and concrete. 

 

Driven piles are useful in offshore applications, or in very loose soils. Bored piles are more 

popular, especially in urban areas as there is minimal vibration and noise and can be used in 

cases of limited space available without risk of heave. 

 

2.6.1  Piles under lateral loading  

In the case of foundations of bridges, transmission towers, wind turbines, offshore structures 

and for other type of megastructures, piles are also subjected to lateral loads. The lateral load 

resistance, as well as the maximum deflection of the pile is critically important in the design 

of structures.  

In pile foundations lateral loading could be:  

• Static or dynamic forces on the pile head, e.g. due to wind, earthquakes, traction of 

braking vehicles, waves  etc.  

• Horizontal forces caused by soil displacement and act over the whole length of the 

pile, in piled walls, bridge pier foundations or piles for soil improvement, for 

example. 

The behavior of the piles in horizontal loads depends on many factors as the relative 

stiffness of the pile soil system, the stress-strain relation describing the behavior of the soil 

as well as its strength properties and the fixity conditions of the pile head. 

If we consider the case of an unrestrained pile at the head subjected to horizontal force, 

initially the load is carried by the surrounding soil close to the head of the pile. At low 

loading stages the soil behaves elastically but pressure is also transferred at greater depths. A 

rigid pile tends to rotate when passive resistance of the soil is exceeded if it is free headed, 

or translates horizontally if it is restrained. Flexible piles behave differently. The passive 

resistance at  the lower part of the pile is infinite and rotation cannot occur. The lower part 

of the pile remains vertical and a plastic hinge is developed, as the pile fails in bending, at 

the maximum bending moment. If the pile is fixed headed, high bending stresses develop at 

the point of restraint and another plastic hinge may be created at that point. Failure 

mechanisms of piles are depicted in Figure 2.6.3. 
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Figure 2.6.3. Failure mechanisms of rigid and flexible piles (Broms 1964) 

 

The behavior of piles under lateral loads, as mentioned above is a complex matter as many 

factors interact. Dominant role plays the relative stiffness between the pile and the soil 

which defines the failure mechanism. Loading type plays a crucial factor for the degree of 

yielding of the soil. For solving lateral loaded piles some empirical methods have been 

developed with many simplifications and assumptions in order to provide simple solutions 

to such a complex matter. Such simple solutions have been provided by Broms (1964). 

Broms has established graphical relationships for the prediction of ultimate lateral 

resistance, examining separately rigid and flexible piles in cohesive and non-cohesive soils. 

Broms theory is an ultimate capacity method and both pile and soil develop their full 

inelastic response. The basic assumption is that pile movements are adequate to fully 

mobilize plastic capacities everywhere and elastic deflections are ignored. For long flexible 

piles in cohesive soils, which is the case to be examined later in this report, Broms (1964) 

assumed that as the passive resistance of the soil is infinite, the maximum  horizontal load 

that a pile can carry is determined from the ultimate moment resistance of the pile material. 

In Figure 2.6.4  soil reactions and bending moments along the pile and the graph used to 

predict ultimate lateral resistance according to ultimate bending resistance, are illustrated. 
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(a)    

Figure 2.6.4. (a) Soil reactions and bending moments, (b) Ultimate lateral resistance, for 

free headed long piles in cohesive soils (Broms 1964) 

 

The piles can be categorized also in respect to the ratio L/D (L=length, D=diameter). A short 

pile behaves and rotates as a rigid body under lateral loads and has a ratio L/D<10. A long 

pile has a high slenderness ratio (L/D >10) and after a certain length (active length lc) the 

rest of the pile remains inactive under lateral loading. Under vertical loading the forces are 

received by the friction of the pile walls at full length. The active length lc is the minimum 

length after which the displacement at the pile head under a certain lateral load remains 

unaffected.   

According to Gazetas (1991) the equations that determine the active length in an elastic half-

space, are dependent of the relative pile-soil stiffness and the soil elastic modulus 

distribution: 

 

I 		 ≈ 1.5	�	 KLMLN 	O$.#P	,			   for uniform distribution of Es 

 

(2.6.1.1) 

					I 		 ≈ 1.5	�	 KLMLQN 	O$.##  ,   for linear increase of Es with depth  

 

(2.6.1.2) 

The maximum force a pile can undertake at any depth, is the sum of passive soil resistance, 

that bears movement of the pile and friction resistance at the sides, less active earth pressure 
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behind the pile. Lateral soil resistance along the pile, at first was calculated using force 

equilibrium on the developed passive soil wedge (Matlock 1970; Reese et al. 1975), or a 

“strain wedge” mode of soil failure (Ashour & Norris, 2000). These methods assumed that 

failure is related with the creation of a soil wedge near ground surface and lateral flow below 

the wedge. However this type of failure is not observed for all pile types e.g. batter or 

capped piles and therefore other solutions had to be found, independent of soil failure 

modes. A simplified approach for solving piles under lateral loading is to consider the pile 

as a beam and the soil instead of an elastic half-space, a medium consisted of discrete 

springs. When considering elastic behavior there are some analytical expressions to 

calculate pile head displacement and rotation, while for non-linear unelastic behavior the 

artifice of ‘p-y’ curves is employed. The p−y approach has been widely used to design piles 

subjected to lateral loading. Based on the Winkler foundation theory, the method models the 

lateral soil-structure interaction with empirically derived nonlinear springs. The ‘p-y’ curves 

represent the deformation of the soil at any given depth below the surface, caused by 

horizontally applied pressures until yielding of the soil. After yielding the deformation 

increases with constant pressure. The key to this method is that each discrete vertical area of 

soil has its only p-y curve which is independent of the stiffness of the pile as well as loading 

conditions below and above. 

 

 

Figure 2.6.5. P-y curves (Matlock 1970) 
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3  Finite Element Analysis and constitutive models 

 

3.1  Introduction  

Finite element analysis is a numerical method used for solving complex mathematical or 

engineering problems by utilizing mathematical techniques. Numerical methods are the most 

suitable for solving  problems that require  representative simulations for the complex 

nonlinear behavior of materials in order to satisfy all the theoretical requirements. Finite 

Element Method Analysis is an extremely useful tool for evaluating a design, inspection of 

the performance of a product in real life, optimizing parameters and making comparisons 

between alternative solutions.  

In this chapter  the fundamentals of Finite Element Analysis are presented, emphasizing on 

constitutive modeling and elastoplastic material models. Consequently follows a brief 

presentation of PLAXIS Software which is utilized in the three dimensional analysis in this 

thesis. 

 

3.2  Basic principles of Finite Element Analysis 

In general FEM is an approximate method, that is utilized to solve complex problems that 

other methods are unable to. When the boundaries of the examined medium are complex 

most methods analytical solutions cannot be found, or lots of computer time is required. 

With  FEM analysis  a compatible field of functions defined throughout the material, which 

meet certain boundary conditions, is determined. With this approach, if we consider for 

example the problem of the displacement of a material, the initial problem of the 

determination of the field of displacements at each point of the material is transformed in the 

problem of determining a finite number of unknown coefficients.  This is feasible with the 

division of  the material into a number of distinguished elements. The functions used 

through these elements are simple and usually have polynomial form. This division of the 

continuum in individual small parts is the basis of FEA. This parts are called ‘finite 

elements’. The word finite is used to describe the limited number of degrees of freedom for 

each element. Each element consists of a number of nodes and each node has a number of 

degrees of freedom that correspond to the discrete values of the unknowns of the problem to 
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be solved. The whole, divided into elements, geometry is known as mesh, and the process of 

creating a mesh is called discretization.  

 

The stages of FEM analysis to problems of elasticity (or generally deformation of materials) 

in two or three dimensions (Desai, 1979) are outlined below:  

• Division of the examined field, in finite elements.  

• Selecting appropriate functions for the distribution of unknown variables in each element  

• Determining the functions linking the open deformation with the strain - displacement and 

the functions that connect the tension with stress-strain to connect the cause (tension, force) 

with the result (displacement) that is the unknown value.  

• Construct the fundamental equations for each element (element equations).  

• Aggregate by node of the element equations for definition of the final system and 

introduction of boundary conditions.  

• Calculating the intensive state of each element as a function of the displacements at the 

nodes of the element. 

• Calculation of the secondary values resulting from the solution (i.e. open deformations, 

tensions, etc.).  

• Evaluation of the results.  

Today a large number programs have been developed that solve composite engineering 

problems with the finite element method. By analyzing the system in its elements, individual 

behavior is more easily understood, and then the ability to synthesize and view the entire 

system allows the study of its total behavior (Valalas, 1981). The user should only define the 

appropriate geometry, construction process, material parameters and boundary conditions. 

However attention must be paid, as FEM is an approximate method.   Accuracy and validity 

of the solutions need to be assessed with great care after the deep comprehension of the 

basic characteristics of the system being modeled and the expected response. Moreover the 

user should have a very good understanding of the limitations of the software used for the 

analysis .If a model is correctly set up, highly complicated problems can be solved, 

providing accurate results. 
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3.2.1  Discretization 

As mentioned above the process of dividing the medium examined into smaller elements or 

segments is called discretization. The finite elements are interconnected at specific points 

called  nodes, with straight or curved segments, creating a mesh, as shown in Figure 3.2.1. 

On each node correspond the physical quantities describing the cause and effect. 

 

    

Figure 3.2.1. Body division in elements (Agioutantis 2002) 

 

 Creating a suitable mesh for an analysis is  one of the keys for accurate results. If a mesh is 

too coarse the distribution of the variable investigated may be not resoluted adequately and 

if it is extremely fine, large calculation time will be needed and it is possible not to end up to 

a solution. Typical element shapes are triangular and rectangular for one dimensional 

analysis, quadrilateral for two dimensions, and pyramidal or prismatic for three-dimensions, 

respectively. The simplest forms of elements are those in which the number of the element 

nodes is equal to the number of sides. For linear functions in 2D and 3D the most common 

elements are illustrated in Figure 3.2.2 below. 



 
 

22 
 

  

Figure 3.2.2. Node placement and geometry for 2D and 3D linear elements 

 

The number of degrees of freedom of an element is the set of unknown variables that 

correspond to each element. An element may have two or more nodes and 1, 2, 3 or more 

degrees of freedom in each node, depending on the problem to be solved. In the usual cases 

of engineering problems, each node has two or three degrees of freedom that correspond to 

the vector components of the node displacement. For the successful simulation of the 

behavior of a medium with the FEM the proper discetization is essential.  This process 

includes the following stages (Agioutantis, 2002):  

• Selection of the geometry of the element  

• Selection of the number of nodes and by extension the degrees of freedom of each  element  

• Selection of the form functions of each element  

• Selection of the density of the grid  

A common practice for selecting the geometry of an element is the use of smaller elements 

where large values or high deviations of the calculated variables are expected. It is possible, 

depending on the requirements of the problem, to increase the degrees of freedom of an 

element by adding more nodes, such as the use of a quadrilateral element with eight nodes. 
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The selection of functions that express the distribution of the unknown variables (e.g., 

displacements) to each element as a function of the values of the variables in the nodes is 

directly related to the desired precision in the calculations but also with the time for 

resolving the problem. These functions are called shape functions (Agioutantis, 2002) 

 

3.2.2  Shape functions 

The equations that define the approximate distribution of variables across the elements of a 

created mesh, are called shape functions. Shape functions can have any mathematical form, 

with most common the polynomial, as they are quite simple to differentiate and to integrate. 

In addition, the accuracy of the analysis can be improved by increasing the grade of the 

polynomial equations. High grade polynomial functions provide more accurate results. 

However, by increasing the grade of polynomial, calculation time is increased also.  

In the general case, the displacement at each node of an element is expressed as a function of 

the generalized coordinates.  For an element with two nodes the displacement is expressed as 

follows:                                                                                                                       

u=a1+a2y			 (3.2.2.1) 

 where a1 and a2 contain the displacements, as well as the coordinates of nodes 1,2.   

If in the above relation the vectors u are replaced with the individual components, it gives: 

 

u1=a1+a1y1																																																																																																								 (3.2.2.2) 

 

u2=a1+a2y2                                                                                                         (3.2.2.3) 

 

 

{q}=[A]{a}                                                                                                         

 

(3.2.2.4) 

 

where {q} is the vector of unknown displacements, [A] is the array with the coordinates of 

the element and {a} the unknown coefficients. Resolving we get: 
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	u = 	∑	uiNi					     (3.2.2.5) 

Regarding to two-dimensional elements, the actions taken to connect cause-effect are 

summarized below, while for three-dimensional elements the actions are similar:  

The displacement at each point of an element is expressed as a function of displacements at 

the nodes {ui} from the relationship:  

 

      u = N1u1 +N2u2 + N3u3 + N4u4                                                                           (3.2.2.6) 

 

The constitutive equations of behavior represented by relationships of the form: 

 σij= f(εij)                                                                                                                (3.2.2.7) 

      which can be written in the form of tables as follows: 

{σ}=[Ε] {ε}                                                                                                           (3.2.2.8) 

 

where table [E] represents a generalized record of the elastic properties of the material. The 

dynamic energy of each element arises as a sum of the internal energy as well as the work of 

the external forces that affect the element according to the relation: 

 Dynamic Energy = Internal Energy – External Forces Work  

The External Forces belong to three categories: 

 • Field Forces (e.g. gravitational)  

• Tensions (e..g hydrostatic)  

• Point forces  

The relationship that connects the force {F} that each node receives and the displacement 

{Q} is: 

{F} = [K] {Q}                                                                                                      (3.2.2.9) 

 

The dimension of the vector {F} for each element depends on the number of nodes of the 

element and on the degree of freedom of each node. For two-dimensional quadrilaterals, 
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there is a total of eight degrees of freedom. The physical significance of the matrix [K] may 

be given by an example of a pair of nodes, with a single degree of freedom connected by a 

virtual spring, where the coefficient of the matrix Kij represents the constant of the  spring 

that connect the nodes (degrees of freedom) of the element (Agioutantis, 2002). It is obvious 

that the solution of the above equation over the vector of displacements will give the values 

of the unknown variables. However, in order to solve the  individual equations, the boundary 

conditions applied to the solid must be defined and then the inversion of the global stiffness 

matrix [K]  to be made. 

 

3.2.3  Boundary conditions 

After creating and correlating the individual equations of the elements, the definition of the 

boundary conditions follows. Without defining the boundary conditions is the system of 

equations cannot be solved because the global stiffness matrix cannot be reversed. In order 

to prevent uncontrolled movement in the form of a rigid body,  restrictions called boundary 

conditions must be applied in order to keep the model in equilibrium. 

There are three types of boundary conditions (Agiouantis, 2002):  

• Determining the requested parameter (displacement). These conditions are called 

geometric and are also known as Dirichlet conditions.  

• Determining the change of the requested parameter (derivative of the displacement). These 

conditions are called natural border conditions and are known as the Neumann conditions.  

• Determining both of the above parameters or mixed conditions. These are known as the 

mixed boundary conditions. In a mixed boundary value problem, the solution is required to 

satisfy a Dirichlet or a Neumann boundary condition in a mutually exclusive way on disjoint 

parts of the boundary. 
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3.2.4  Material behavior models 

The choice of the appropriate model of a material (e.g., soil, concrete, steel) and the values 

of  parameters that define it is one of the most important factors for the successful numerical 

simulation of its behavior. These models are called constitutive models and basically they 

are stress-strain relations that represent the unique features of a real material in finite 

element analysis. 

The simplest model that can be used is the linear elastic model. The material is assumed to 

be deformed linearly and isotropically, as given by the following relation: 

XYZ = [1 + \ ∗ ^
YZ +	 \1 − 2\ ∗ 
__ ∗ `YZa (3.2.4.1) 

 where: XYZ : the stress tensor indicating the intense condition in the body[ΜPa], 

[ : the modulus of elasticity of the material [MPa]  

ν: the Poisson ratio of the material 

 
YZ : the tensor of strain 

 `YZ : the unit tensor (Kronecker delta).  

For the case of deformation in one dimension, the relation turns into:  

σ = Εε, where: 

σ: the stress applied to the material [MPa],  

E: modulus of elasticity [MPa]. 

 

There are many other, more complex, constitutive models that can describe the nonlinear 

behavior of materials. Such models approach the behavior of concrete. From a macroscopic 

point of view, the classical elastoplasticity can simulate the behavior of concrete particularly 

in the pre-peak regime. The basic concepts of elastoplastic material behavior models  are 

described in the following paragraph. 
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3.2.5 Elastoplastic constitutive models 

The fundamentals of the theory of elastoplastic constitutive models will be given with the 

example of the rheological model, shown in Figure 3.2.3 below.  

 

Figure 3.2.3. Elastoplastic serial model of spring and friction element (Willam, 2003) 

 
b = 	 			
bc		 +	 		
bd		               (3.2.5.1) 
  

The basic concept of elastoplasticity  is the division of strain rate into elastic and inelastic 

components.  

The state of stress in the elastic spring shown in figure 3.2.3 is limited by the slip conditions 

of the friction element. The behavior in the elastic regime, where X ≤ X� is described by 

Hooke’s law,  

 
bc =	 Xb[ 
       (3.2.5.2) 

 

While the plastic response is activated when stress reaches the yield condition X = X�. In 

that case,  


bd =	 Xb[d 
     (3.2.5.3) 

 

Consequently, 


b = Xb[ +	 Xb[d = Xb[cd 
      (3.2.5.4) 

 

With the elastoplastic tangent stiffness, 

		�cd =	 �	��� + �� 
                 

(3.2.5.5) 
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According to the value of the elastoplastic tangent stiffness the response of the material can 

be described as:  

• Hardening when  �cd > 0 

• Softening when �cd < 0 

• Perfectly plastic when �cd = 0 

                              

Figure 3.2.4. Load-Unload-Reload response of an elastoplastic material (Willam 2003) 

 

Moreover a yield condition must be defined in the form of a yield function as:  

h"X& = 	 |X| −	X�	 = 0 

 

                                    

(3.2.5.6) 

which acts as a threshold condition when stress demand reaches the yield capacity if the 

material. Therefore plastic loading requires: (i) the stress path to reach the yield strength and 

(ii) under persistent plastic action the criterion 
b	
 > 0 to be satisfied as 	
b d = LLj	LM 	
b. After 

the definition of the yield surface, which defines whether the material behaves elastically or 

plastically, the plastic flow rule needs to be determined. It is roughly the relationship 

between the plastic strain and stress, as follows: 

�
Ydd = 	�k l�lmno,        where � is the yield surface                   

(3.2.5.7) 

�
Ydd = 	�k lElmno,        where g is the plastic potential function                     

(3.2.5.8) 
 

Lastly a Hardening rule describes the evolution of the yield surface sand other internal 

variables with plastic strain, 
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�"X& = 	p	"		
d		& 
 

                 

(3.2.5.9) 

Two basic types can be distinguished: Isotropic hardening and kinematic hardening 

 

3.3 Plaxis Finite Element Software 

PLAXIS is a finite element program, developed for the analysis of deformation, stability and 

groundwater flow for various types of geotechnical applications. Initially a 2D finite element 

code was created for the analysis of river embankments on the soft soils of Holland. 

Gradually, PLAXIS was extended to cover most areas of geotechnical engineering and in 

1998 the first Plaxis 2D for windows was released. The need for 3D modeling in order to 

realistically describe an engineering problem and improve the accuracy of results led to the 

development of PLAXIS 3D program. Plaxis 3D is a full three-dimensional finite element 

program that uses a convenient graphical user interface that enables users to easily generate 

a geometry and a finite element mesh. Structures and foundations can be modeled by 

structural elements. These elements are fixed end or node to node anchors, geogrids for soil 

reinforcement, plates, beams and embedded beams, which are beam elements used as piles, 

rock bolts or grout bodies, including interface elements to model soil-structure interaction. 

Volume elements can also be used in the design. These volume elements are used to model 

soil materials, or structures such as piles.   Specific material models are included to describe 

the behavior of these soil (layers) and structures realistically. Those material models use 

constitutive laws to capture the behavior of real materials. Depending on the problem to be 

solved different types of analysis are available, e.g., plastic, dynamic consolidation etc. 

Also,   different construction stages to represent real construction sequence can be added. 

The main advantage of PLAXIS 3D program is that it can be used by engineers that are not 

experts in FE analysis. However the users need to be able to evaluate the output results and 

before modeling to have fully understood the problem under investigation to select proper 

parameters, boundary conditions etc. It is also important to compare results with other 

solutions such as empirical formulas, analytical solutions or even hand calculations. As 

mentioned above Plaxis provides a big number of different constitutive models to describe 

the actual behavior of material. The constitutive models in this thesis are described in the 

following chapters. 
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3.4 Constitutive models used in numerical simulation 

3.4.1  Mohr-Coulomb model  

The Mohr-Coulomb model is a linear elastic - perfectly plastic model. 

The basic principle of elastoplasticity, as mentioned above, is that total strain or strain rate is 

divided in two components , an elastic part and a plastic part : 

 

 
 = 	 
c +	
d                                             
b = 	 			
bc		 +	 		
bd		 (3.4.1.1) 

 

The first part contains elastic reversible on unloading strains, while the second irreversible, 

plastic strains. 

 

Figure 3.4.1. Basic idea of an elastic- perfectly plastic model (PLAXIS 3D,2018)  

 

The linear part of the above diagram is based on Hooke’s law and the perfectly plastic on the 

Mohr-Coulomb failure criterion.  

 

Generally in order to evaluate whether yielding occurs or not a yield function �is introduced. 

When the condition � = 0	is satisfied plastic yielding occurs. This condition can be 

presented as a surface in principal stress space. For perfectly plastic models this surface is 

fixed and not affected by straining. Hooke’s law is used to relate the stress rates to the 

elastic strain rates. Substitution of Eq.(3.4.1.1) into Hooke’s law leads to: 

  

 σb r= Deεbt = Dt	"εb − 	εb,&                         (3.4.1.2) 
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For Mohr-Coulomb failure criterion, except the yield function � a plastic potential function 

ɡ is introduced. In general, the plastic strain rates are written as:  

εbu = λ ∂ɡ∂σr (3.4.1.3) 

 

In which λ is the plastic multiplier. For purely elastic behavior λ is zero, where as in the case 

of plastic behavior λ is positive: 

 

    λ = 0           for:         f < 0          or:     
y?zy{| 	Dt	εb 	< 0    (Elasticity)                (3.4.1.4a) 

    λ > 0          for:         f = 0         and:     
y?zy{| 	Dt	εb 	> 0    (Plasticity)                (3.4.1.4b) 

 

These equations may be used to obtain the following relationship between the effective 

stress rates and strain rates strain rates for elastic perfectly-plastic behavior: 

σb r =	}Dt − adDt ∂ɡ∂σr 	∂f~∂σr Dt� εb   (3.4.1.5) 

 

d = 	∂f~∂σr 	Dt ∂ɡ∂σr   (3.4.1.6) 

 

If the material behavior is elastic, as defined by Eq. (3.4.1.4a), the value of α is equal to 

zero, whilst for plasticity, α is equal to unity. 
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3.4.1.1  Formulation and input parameters of the Mohr-Coulomb model 

The Mohr Coulomb yield condition is an extension of Coulomb’s friction law. The full 

Mohr-Coulomb yield condition consists of six yield functions when formulated in terms of 

principle stresses (Smith & Griffith 1982). The condition � = 0 for all yield functions 

represent a fixed hexagonal cone, as illustrated in Figure 3.4.2. 

                                         

Figure 3.4.2. Mohr-Coulomb  yield surface in principal stress space (PLAXIS 3D, 2018)  

 

In addition to the yield functions, six plastic potential functions are defined. 

The Mohr-Coulomb yield  and plastic potential functions in p’-q space are defined in terms 

of principle stresses as follows: 

�#� =	12 "X′� − X′�& + 12 "X′� + X′�& − �cos�	 ≤ 0�
 

(3.4.1.7) 

 

�#� =	12 "X′� − X′�& + 12 "X′� + X′�& sin� 
(3.4.1.8) 

 

The above yield function contains two plastic model parameters, friction angle � and  

cohesion �, while a third plasticity parameter is included in the plastic potential function, the 

dilatancy angle ψ. For c >0 the criterion allows for tension. 

When tensile strength needs to be taken into account tension cut-off must be defined. In this 

case Mohr circles with positive principle stresses are allowed. The tension cut off introduces 

an additional yield surface, defined in p’-q space as: 
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�� = X′� −	X� ≤ 0 (3.4.1.9a) 

 �� = X′� −	X� ≤ 0  (3.4.1.9b) 

 

From the above condition, another parameter needs to be defined, which is the allowable 

tensile stress X� . Besides the aforementioned parameters accounting for plasticity and 

tensile strength, two elastic parameters are required, the elastic Young modulus E and 

Poisson’s ratio v. The input parameters required for the Mohr-Coulomb model, are listed in 

Table 3.1.  

 

Table 3.1: Input parameters for Mohr-Coulomb model 

Parameter Description Unit 

E Young’s modulus kN/m2 

v Poisson’s ratio - 

c Cohesion kN/m2 

φ Friction angle ᵒ 

ψ Dilatancy angle ᵒ X� Tension cut-off / tensile strength kN/m2 
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3.4.2  Macroscopic model  

 

3.4.2.1  Introduction 

In this chapter a macroscopic Mohr-Coulomb based approach for the behavior of reinforced 

concrete circular elements, as developed by  Gerolymos et al., (2014) is described.  

This approach gives a realistic constitutive law for the behavior of circular RC elements in 

numerical simulations. It was first introduced to describe the elastoplastic response of piles. 

Until the development of this approach, pile failure was ignored and no installation effects 

were taken into account.  

With this phenomenological approach, the following were succeeded: 

 

• Inclusion of the pile material behavior into the soil-foundation system 

• Incorporation of the effect of load combination to the alteration of pile material 

properties 

• Simulation in a uniform approach the elastoplastic pile response 

• Realistic representation of pile soil interaction  
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3.4.2.2  Analytical solution  

If we consider  a circular reinforced concrete pile subjected to combined bending moment 

and axial force, and isolate a cross-section, there is the following stress distribution. 

                            

Figure 3.4.3 Stress distribution on a random pile section under moment and axial load in 

full plasticity (Papakyriakopoulos , 2013). 

 

By applying force equilibrium in the axial direction, of a pile section subjected to moment 

and axial load in full plasticity one obtains:  

"σ= − �����)	A=	 = "σ� + �����)	A�	 (3.4.2.1) 

 

In which σ= and σ� are the compressive and tensile strength of the composite section, 

respectively: 

σ= =	 #==�2"�&�F2��	"�& ,  σ� =	 #==�2"�&�j2��	"�&    (3.4.2.2) 

  

In the equations above two plastic parameters of the Mohr-Coulomb model are included, 

cohesion c and internal friction angle φ. In Eq. (3.4.2.1), A= and A� are the pile section areas 

under compression and tension respectively, defined as: 

A=	 =	� 2�x"D − x&��$ 	dx ,   A�	 =	� 2�x"D − x&��� 	dx (3.4.2.3) 
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in which D is the pile diameter and x$	is abscissa of the neutral axis. By applying moment 

limit equilibrium with respect to the center of the pile section, the following equation is 

derived:  

� =	X � 2��"� − �&	��
$ 	"x$ − �&�� + 

	X� � 2��"� − �&	��� 	"x$ − �&�� + K�# −	x$O   

(3.4.2.4)  

 

Eqs (3.4.2.1) and (3.4.2.4)  form a non-linear algebraic system. For a known pile diameter 

and combination of bending moment-axial force at failure conditions there are three 

unknowns: c , φ and x$	.  This system can be solved with the use of a genetic-algorithm 

based optimization procedure, utilizing MATLAB. For a predefined M-N failure envelope is 

best fit is targeted by minimizing the relative root mean squared error (rRMSE) of the 

bending moment at failure: 

rRMSE"M& = 	¥��	 	∑ "¦§F	¦z,§¦z,§ &#��¨�   
(3.4.2.5) 

 

In which M� is the bending moment computed by Eq. (3.4.2.4) , M~,� is the target bending 

moment, and n, the number of pairs that define the failure envelope. 

This simplified Mohr-Coulomb based constitutive law can be reduced to a Tresca with 

tension cut-off, by simply equating the compressive strength in Eq. (3.4.2.1) with σ= = 2c, 

and σ� with the tension cut-off. 
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3.4.3  Concrete model 

 

3.4.3.1  Introduction 

As mentioned in Chapter 1, generally when modeling concrete elements in geotechnical 

applications, linear elastic approach is adopted due to their high stiffness compared to the 

one of the soil. However, in not a few cases, the real behavior of structural concrete as a 

composite nonlinear material must be represented for a correct design.   

For this reason the concrete material model was introduced, as an advancement of Shotcrete 

material model. Shotcrete was first implemented in the finite element software PLAXIS 2D 

2012 (Brinkgreve et al. 2012) in cooperation with Graz University of Technology, to model 

shotcrete linings in a more realistic way.  As Shotcrete linings are subjected in high loads 

almost immediately after their application, the influence of time dependent properties on the 

deformations and bearing capacity is significant. The models used before Shotcrete assumed 

linear elastic material behavior, with a stepwise increase of the modulus of elasticity 

(Schädlich & Schweiger, 2014). This approach resulted in higher bending moments than in 

reality, due to the fact that the reduction of stiffness due to cracking of concrete was not 

considered leading to over-dimensioning of the structure.  

The real complex nonlinear behavior of concrete needs to be taken into account, not only in 

tunneling, but also in other geotechnical applications. These could be soil reinforcement, soil 

improvements, concrete structures such as piles, beams or retaining walls etc. While 

Shotcrete model was mainly developed to model the behavior of shotcrete, it has also proven 

useful in applications related to soil improvements, for example jet grout columns. Since 

2017 Shotcrete material was almost exclusively used in Plaxis 2D modeling, as it was not so 

adequately tested in Plaxis 3D and in cases suffered from mesh dependency. 

 

The concrete model, at is present formulation is a part of Plaxis standard material library 

since the release of PLAXIS 2D 2018 and PLAXIS 3D 2018 and  it is considered the best 

standard model in Plaxis for modeling concrete elements. 
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3.4.3.2  Formulation of the concrete model 

As mentioned above, concrete model is an elastoplastic model for simulating the strain 

hardening-softening behavior, time dependent strength as well as creep and shrinkage 

(Schädlich & Schweiger, 2014). Hence the total strain in the model is determined not only 

by an elastic term and a plastic term, as LEPP model, but also a creep term and a shrinkage 

term 

	
 = 
c 	+ 
d	 +	
 © + 
�ª© (3.4.3.1) 

 

The concrete model employs a composite yield surface. To account for plasticity a Mohr-

Coulomb yield surface for deviatoric loading and a Rankine yield surface for tensile loading 

is adopted (Figure 3.4.4). 

 

 

Figure 3.4.4. Mohr-Coulomb and Rankine yield surfaces in deviatoric plane (Hibbit, 

Karlsson & Sorensen, 2014) 

 

The adoption of separate yield functions for compression and tension gives the user the 

ability, according to the problem under investigation (i.e. compression or tension), to 

calibrate the proper strength parameters. The yield functions of the model are given below:  
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h� = 	 m«Fm¬# +	m«jm¬F#m®¯# 			 �°±#m®¯j�°±   (3.4.3.2) 

	
h² = 	X� − ��  (3.4.3.3) 

Where � �	and ��  are the uniaxial compressive and tensile yield stresses and X©³�   is the 

intersection of the Mohr-Coulomb failure envelope and the isotropic axis. For a given 

maximum angle of friction �´µ¶  , X©³�	can be written as: 

X©³� =	� 	2 	· 1sin�´µ¶ − 1¸ 

 

(3.4.3.4) 

 

3.4.3.3 Strain hardening and softening behavior 

Compression 

Schütz, Potts and Zdravkovic (2011),  proposed the division of stress-strain curve in four 

parts to describe the behavior of concrete in compression. These parts are: 

• Part I - quadratic strain hardening 

• Part II - linear strain softening 

• Part III - linear strain softening 

• Part IV - constant residual strength  

       

Figure 3.4.5. Normalized stress-strain curve in compression (PLAXIS 3D, 2018) 



 
 

40 
 

As shown in Figure 3.4.5  normalized values are used for both axes. On the horizontal axis a 

normalized strain hardening/softening parameter (¹ = ε�, / ε=,,  ) is plotted against the ratio 

between the principal stress X� and the concrete strength f= , on the vertical axis. On the 

horizontal axis,	ε�, represents the compessive principal plastic strain and ε=,,  represents the 

plastic peak strain in uniaxial compression. On the vertical axis several normalized stress 

values are distinguished. For each part of the curve the stress-strain relation is further 

described (PLAXIS 3D, 2018) 

 

Part I describes the behavior of cracked concrete before it reaches its peak strength. 

The uniaxial yield stress � �  is mobilized with º  according to a quadratic function: 

 

� �,» =	� 	K� $¼ + "1 − � $¼&D2º − º #GO  (3.4.3.5) 

 

where � $¼  represents the point at which yielding starts, called “Normalized initially 

mobilised strength” (Schädlich & Schweiger, 2014). 

 

Part II describes the linear softening branch until failure strength is reached. Full 

mobilization of � 		 coincides with º�=1, where linear softening starts until the failure 

strength �  = � �¼�   is reached at º � = 
 �d /
 dd :	 
 

� �,»» =	� 		 ½1 + D� �¼ − 1G } º − 1º � − 1�¾ 
(3.4.3.6) 

 

Plastic failure strength 
 �d  is calculated from the fracture energy in compression � , and the 

characteristic length of the finite element Leq, as follows 


 �	d = 
 d	d −	 2� D1 + � �¼G� �c¿	             (3.4.3.7) 

 

The characteristic length of the average element size is calculated from the average element 

size *c�, of the created mesh.  
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In part III of the curve linear softening takes place and the plastic ultimate strain 
 �	d
is 

calculated as follows: 


 �d =	
 �d −	2� D� �¼ − � �¼G�  
    

(3.4.3.8) 

 

where  f=À�is the normalized residual strength and E Young’s modulus of elasticity.  

The yield stress � � for this part of the curve is : 

� �,»»» =	� ½� �¼ + D� �¼ − � �¼G } º − º �º � − º ��¾ 
                    (3.4.3.9) 

 

where H=À = ε=À, /ε=,	,
 . 

In the last part IV the residual strength remains constant with increasing strain: 

																					f=>,ÂÃ = f=f=À�                     (3.4.3.10) 
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Tension 

The response of concrete material under tension is characterized by a linear elastic 

hardening behavior until the peak tensile strength f�	 is reached, and a linear softening 

behavior until the ultimate tensile strength ( Figure 3.4.6)  

 On the horizontal axis a normalized strain softening parameter H� is plotted against the ratio 

between the principal stress X� and the concrete tensile strength f� , on the vertical axis, 

where :  

H� = ε�,/	ε�À, 		with ε�, = major principal plastic strain and ε�À,  = plastic ultimate strain in 

uniaxial tension as: 

f�>	 = f�	"1 + "f�À� − 1&H�& (3.4.3.11) 

 

Similar to compression ultimate peak strain is tension is derived from the fracture energy in 

tension G�, as follows: 

ε�À, =	 2G�"1 + f�À�&f�LtÄ 
(3.4.3.12) 

 

Once the residual strength is reached, f�À	 = f�À�		f� no further softening occurs. 

  

 Figure 3.4.6. Tension softening (Schädlich & Schweiger, 2014b) 
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3.4.3.4  Input parameters 

In order to describe the real behavior of structural concrete, including strain hardening and 

softening, creep and shrinkage Plaxis requires the input of 25 parameters. In this thesis, time 

dependent behavior of concrete is not investigated. All related to this study parameters are 

listed together with their range of recommender values, in Table 3.2 below and explained in 

detail.   

 

Table 3.2: Input parameters of concrete model with recommended values 

Parameter Description Recommended 

values 

Unit 

�#Å  Young’s modulus of cured 

concete at thydr 
[25, 30] GPa 

v Poisson’s ratio - - 

� ,#Å Uniaxial compressive strength 

of cured concrete at thydr 

Depending on 

strength class 
kN/m2 

� $¼ Normalized initially mobilized 

strength   
[0.10, 0.25] - 

� �¼ Normalized failure strength  [0.1] - 

� �¼ Normalized residual strength  [0.1] - 

� ,#Å Compressive fracture energy of 

cured concrete at thydr 
[30,70] kN/m 

�´µ¶ Maximum friction angle [35,43] ᵒ 

� Dilatancy angle [0,10] ᵒ 

��,#Å Uniaxial tensile strength of 

cured concrete at thydr 

Depending on 

strength class 
kN/m2 

���¼ Ratio of residual vs.peak tensile 

strength  
[0] - 

��,#Å Tensile fracture energy of cured 

concrete at thydr 

[0.05, 0.15] for 

plain Shotcrete 
kN/m 


 dd  Uniaxial plastic failure strain [-0.0007,-0.0012] - 

a Increase of εcp with increase of 

confining pressure 
[16,20] - 
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In this thesis concrete of class C30/37 is considered. Compressive strength 30 MPa is 

derived from uniaxial compression tests in cylindrical specimens and 37 MPa from cubic 

specimens. Concrete strength and stiffness parameters are listed in Table 3.3. 

Table 3.3 Concrete strength and stiffness properties 

Parameter Value Unit 

� 	 30 MPa � ´ 38 MPa � �	 2 MPa � ´  33 GPa �  30 GPa 

 

Firstly, the modulus of elasticity, E28, and the Poisson’s ratio, v, need to be defined. The 

modulus of elasticity depend on concrete class, therefore it is taken equal to 30 GPa. For the 

Poisson’s ratio, a value of 0.2 can be assumed.  

Concrete compressive	and tensile strengths are both defined from concrete class, as 

mentioned above (Table 3.3). The next parameters to be defined are the normalized values 

of concrete compressive and tensile strength. These are expressed as ratios of the 

compressive peak strength.  

First the normalized yield strength parameter, � $¼ , needs to be given. Usually this value is 

considered to be the 1/3 of the uniaxial compressive strength.  The next parameter to be 

defined is the normalized failure strength, � �¼.	 Results from uniaxial compression tests 

carried out by Van Mier (1984), indicate that failure occurs at a stress level equal to 84% -

85% of peak strength.  The last normalized parameter regarding the compressive behavior of 

concrete is the residual compressive strength, � �¼ . According to Reinhardt & Xu (1999) it 

is estimated that residual strength in compression is around 10% of the peak strength. The 

last parameter related to compression, is fracture energy � ,#Å. The compressive fracture 

energy �� is equal to the area between peak and failure strength/strain. It describes the 

energy needed before the concrete starts to fail after reaching peak strength and is an 

determining factor for describing the concrete stress-strain behavior. When using the 

concrete material model the fracture energy has to be chosen such that the right values of 

strain are obtained at the different stresses, as it defines plastic failure strain, 	
 �d  and plastic 

ultimate strain, 
 �d  , according to Eq. (3.4.3.7) and (3.4.3.8). 
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For the tensile behavior of concrete , the normalized residual strength, ���¼ , and tensile 

fracture energy ��,#Å need to be defined. According to Dai & Gao (2014) the residual tensile 

strength is around 5% of the peak tensile strength, although in most cases zero tensile 

residual strength is considered. ��,#Å  represents the area under the normalized stress-strain 

curve and it is the energy dissipated due to cracking in tensile loading. Strain at failure, 
��d  , 

is determined by this parameter, according to Eq. (3.4.3.12). 

A strain parameter that needs to be imputed, is the plastic peak strain, 	
 dd , which represents 

the strain at peak strength.  It marks the beginning of the post - peak, softening behavior, in a 

uniaxial compression test.  Peak strain according to experimental results is around 2 ‰. As a 

result the appropriate value for the plastic peak strain 
 dd  is 1‰, as for concrete with � 	= 30 

MPa and E = 30 GPa , the  elastic strain is 1‰, respectively.  

For the definition of the parameters �´µ¶, ψ and a triaxial tests need to be held. �´µ¶ is the 

angle of internal friction and ψ the dilatancy angle of concrete material. Τhe angle of  

friction according to Vermeer & de Borst (1984) is  35ᵒ, while according to Candappa et al. 

(2001) is 43ᵒ. In this thesis an angle of friction equal to 40ᵒ is considered. The dilatancy 

angle of structural concrete is around 13ᵒ (Vermeer & de Borst, 1984) under normal 

conditions. In this study Plaxis proposed values 0-10 degrees will be adopted.   

Parameter Æ  quantifies the impact of confinement. To account for increasing ductility with 

confining pressure in a triaxial compression test parameter a is used to describe the increase 

of plastic strain of confined concrete, according to the following relation:  


 d = 
 d,ÇÈ ·1 + Æ X�−� ¸ 
(3.4.3.13) 

In the subject under investigation the impact of these parameters (Æ, �´µ¶, �& is rather 

small, and as a result proposed values are taken into account without deeper investigation. 

Moreover only unconfined concrete is modeled in this thesis, so parameter a is taken equal 

to 0.  
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3.4.4  On the parameters ÉÊ , ÉË 
Introduction 

Fracture energy parameters describe the softening behavior of concrete in tension and 

compression. Cracking is the cause of failure of concrete both for compression and tension. 

In compression, extensive cracking leads to crashing. The evolution of cracks until 

maximum compressive strength is illustrated in  Figure 3.4.7 below. 

  

                   Figure 3.4.7. Evolution of cracks until peak compressive strength, (a) prior to loading, (b)   

65% of ultimate load (c) 85% of ultimate load (d) peak strength (Kotsovos and Newman, 

1977)  

 

When concrete reaches the peak strength the critical crack length is reached. After that, 

follows severe crack propagation and the load that can be carried out decreases. In tension, 

cracking is a more discrete phenomenon. In contrast to compression failure under tensile 

loading is local, as areas of concrete may remain intact. 

In finite element analysis of cracking, a general problem that researchers faced is  mesh 

dependency of results. Especially when strain softening was introduced it was discovered 
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that the convergence properties were incorrect and the calculation results were not objective 

with regard to the analyst's choice of the mesh, i.e., the results significantly change if the 

mesh is refined (Bazant and Cedolin, 1979, 1980, 1983). The effect of mesh size can be 

illustrated by a rectangular panel subjected to a prescribed vertical displacement. Two panels 

with different mesh sizes are loaded and the load-deflection diagram is extracted (Figure 

3.4.8). 

 

 

Figure 3.4.8. (a)  Panels of different mesh size, (b) load-deflection diagrams (Bazant, 1992) 

 

As illustrated, the peak load, as well as the post peak softening are strongly dependent on the 

element size h. Therefore, as h tends to zero the energy dissipated due cracking converges to 

zero too. In order to solve this setback, it was found that fracture energy must localize into a 

band of a single element width, in order energy dissipation to be independent from element 

subdivision. In Plaxis FE software, the smeared crack concept is adopted. Therefore, it uses 

normalization with respect to equivalent length of the finite element, Leq, in order to avoid 

mesh dependent numerical results. 

Fracture energy in tension is described by the parameter ��,#Å. This parameter governs the 

linear softening regime in the stress-strain diagram, from the peak tensile strength to the 

residual (Figure 3.4.6). The value of ��,#Å can be estimated from stress-strain curves of 

uniaxial tests. However, these tests are difficult to produce accurate results, as stress 

concentration associated with testing procedure, is usually inevitable. Usually indirect tests 

are used, like 4 point bend beam test. Barros & Figueiras (1999) carried out such tests on 
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notched beams of steel fibre reinforcement and proposed a correlation between fracture 

energy and fibre content  for plain concrete: 

�� = "1 + 13.195Í�	�.Å#Î&��$      (3.4.4.1) 

 

Where ��$ is the fracture energy of plain concrete (~0.1 kN/m) and Í�	is the fibre 

percentage in weight. 

The compressive fracture energy is described by the parameter � ,#Å . It is the area under the 

stress-strain diagram, between the peak strain and failure strain (Figure 3.4.5). This 

parameter describes the capability of concrete to plastically deform before it fails. Large 

values of �  mean ductile behavior, while small values lead to a more brittle failure, in 

smaller strain. In order to realistically define compressive fracture energy, uniaxial 

compression test results from literature, as well as proposed values from EN-1992-1-1 are 

taken into account. According to EN-1992-1-1, a value of 3.5 ‰ is proposed for the failure 

strain. Moreover uniaxial compression lab test results from Van Mier (1984) are taken into 

account. As illustrated in  Figure 3.4.9, failure strain which is assumed to be 84~85% of 

peak strength corresponds to a strain of ~ 3.5 ‰, which agrees with the failure criterion 

described by EN-1992-1-1 (2011). 

 

Figure 3.4.9. Stress strain uniaxial compression tests results by Van Mier (1984) 
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Lastly, taking into account experimental data, Hognestad (1951) developed a numerical 

expression, which treats the ascending part of the stress-strain diagram as a parabola and the 

descending as a straight line. This numerical expression is given as: 

For       0 < 
 < 	 
$,           
mm°Ï	 = 2 ÐÐ� 	K1 − ##Ñ�O                                            (3.4.4.2a) 

For      
$ < 
 < 	 
 �,         
mm°Ï	 = 1 − 0.15	 K ÐFÐ�	Ð°ÏFÐ�O                                     (3.4.4.2b) 

Considering all the above, compressive facture energy �  is fitted such that the stress-strain 

behavior of the model after peak stress corresponds to lab test results and  the 

aforementioned relations by Hognestad. Taking proposed values for parameters described in 

the previous paragraph (Table 3.4), the idealized stress strain diagram utilizing the Plaxis 

element test facility, is illustrated below, together with  stress-strain relation proposed by 

Hognestad (Figures 3.4.10 (a), (b)). 

     

(a)                                                                      (b) 

Figure 3.4.10. (a) Stress-strain diagram as proposed by Hognestad, (b) Idealized stress-

strain diagram for Concrete model 

 

Table 3.4: List of initial input parameters 

�#Å 

[GPa] 

ν 

[-] 

� ,#Å 

[ΜPa] 

� $¼  

[-] 

� �¼ 

[-] 

� �¼ 

[-] 

� ,#Å 

[kΝ/m] 

�´µ¶  

[ᵒ] 

� 

[ᵒ]]

]] 

f�,#Å 

[ΜPa]

���¼ 

[-] 

��,#Å	
[kΝ/m] 


 dd  

[-] 

30 0.2 30 0.3 0.84 0.1 46 40 5 2 0 0.1 -1‰ 
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3.4.5  Mesh sensitivity of fracture energy parameters 

 

3.4.5.1  Introduction 

As mentioned previously, a common problem in numerical simulations is mesh dependency 

of cracking. In the present study, inspection of mesh dependency of fracture parameters is 

performed, to avoid unobjective results.  

 

3.4.5.2  Modeling of uniaxial compression tests 

In order to inspect the relation between discretization and compressive fracture energy,  

uniaxial tests in cylindrical and cubic specimens are simulated. For cylindrical specimens 

the test sample is modeled as a cylindrical volume with slenderness ratio h/d = 2:1. For 

prismatic specimens the test sample is simulated as a solid cube, of dimensions 100 x 100 

x100 mm. Due to symmetry, only one quartile of the cube is modeled. It has to be pointed 

out that the objective of the numerical simulation of uniaxial compression tests is to 

investigate whether compressive fracture energy �  is mesh dependent and not to represent 

actual conditions of laboratory tests. After modeling the sample, mesh is created. Two 

meshes with significant difference in coarseness are created for cylindrical and cubic 

specimens, respectively. Results of stress-strain response are compared for a constant value 

of � , equal to 46 kN/m, as arised from the fitting described in the previous paragraph. 

Concrete properties are the same as listed in Table 3.4. As compressive fracture energy is 

related to the ductility of concrete, tests are strain controlled in order to consider softening 

behavior after reaching peak stress. The prescribed displacement is applied gradually until 

strength of specimen is exhausted, which can be determined from the descending branch of 

the stress-strain graph. Figure 3.4.2 shows the stages of the numerical simulation. 
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        (a)                                            (b)                                               (c) 

Figure 3.4.11. (a) Geometry and discretization of the concrete sample, (b) loading of the 

sample by applying  prescribed displacement, (c) deformed mesh at the moment of failure 

 

Results 

Results with � 	value kept constant indicate that coarser meshes present a more brittle 

response. Therefore higher values of compressive fracture energy are required to capture the 

expected behavior of concrete under uniaxial compression. In Tables 3.5 & 3.6 information 

about mesh coarseness is given together with the failure strain obtained from the analyses. 

Figure 3.4.12 presents a comparison of the results for cylindrical and prismatic specimens. 

From both diagrams one can observe that the pre-peak stress-strain response is independent 

of average element size. On the contrary the post-peak ‘cracked’ response is highly 

dependent on mesh. Furthermore, in Figure 3.4.13 the idealized stress-strain response as 

fitted to experimental results by Van Mier and relations by Hognestad,  is plotted together 

with stress strain results from simulated uniaxial tests, to show schematically the 
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independency of mesh coarseness in the pre-peak branch, and the deviations from expected 

response in the post-peak domain.  

 

 

Table 3.5: Results for cylindrical specimens 

Mesh type Nr of Elements Failure strain 

Coarse 822 ~ 3.6‰ 

Very Fine 20396 ~ 5.5‰ 

 

 

Table 3.6: Results for cubic specimens 

Mesh type Nr of Elements Failure strain 

Coarse 858 ~3.7 ‰ 

Very Fine 39205 ~ 4.25‰ 

 

 

   

(a)                                                                     (b) 

Figure 3.4.12. Comparison of stress-strain response from uniaxial tests (a) in cylinders, (b) 

in cubic samples 
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Figure 3.4.13. Comparison between response from modeled uniaxial compressive tests in 

cubic and cylindrical samples, and idealized stress-strain curve from Plaxis element test 

 

Additionally, not only quantitative difference in failure conditions is observed, but also 

qualitative. In coarse meshes failure surfaces are vague and wider than fine meshes. For the 

cylindrical samples modeled,  different types of failure correspond to different mesh sizes, 

as illustrated in Figure 3.4.14. Therefore in cases where cracking pattern and failure type 

really matters, values of compressive fracture energy should be optimized. 

  

             (a)                                 (b)                             (c)                                      (d)   

Figure 3.4.14. Comparison of  failure modes  (a) coarse mesh, side fractures , (b) fine mesh- 

diagonal fracture (c) coarse mesh, wide and vague failure surface, (d) fine mesh discrete 

failure surface  
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                                                                  (a)  

 

                    

                                               (b) 

Figure 3.4.15 Evolution of failure mechanism for cylindrical samples  (a) coarse mesh, (b) 

fine mesh 
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                                                               (a)  

 

        

                                                                (b)  

Figure 3.4.16. Evolution of failure mechanism for prisms (a) coarse mesh, (b) fine mesh 
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3.4.5.3  Modeling of simple uniaxial tensile tests 

In order to investigate whether tensile fracture energy �� is mesh dependent or not, a rough 

numerical simulation of a direct tensile test is modeled. Again, the objective is only to 

understand  the relation between element size and tensile fracture energy and not to 

represent actual procedures and laboratory conditions. Cylindrical specimens, as in uniaxial 

compression tests, of slenderness ratio h/d = 2:1 are modeled. Two meshes with significant 

difference in coarseness are created and results of load-deformation response are compared 

for a constant value of �� , equal to 0.1 kN/m. All input values of concrete properties are 

listed in Table 3.7 below. As tensile fracture energy represents the area below  the softening 

branch of load-deformation response, tests are displacement controlled. The prescribed 

displacement is applied gradually until failure of the specimen. The stages of the simulation 

are illustrated in Figure 3.4.17, below. 

 

                  

  (a)                                                   (b)                                               (c) 

Figure 3.4.mier17. (a) Finite element model of the concrete sample, (b) loading of the 

sample by applying  prescribed displacement, (c)  failure state 

 

Table 3.7: Concrete material parameters 

�#Å 

[GPa] 

ν 

[-] 

� ,#Å 

[ΜPa] 

� $¼  

[-] 

� �¼ 

[-] 

� �¼  

[-] 

� ,#Å 

[kΝ/m] 

�´µ¶  

[ᵒ] 

� 

[ᵒ]

]]] 

f�,#Å 

[ΜPa]

a] 

���¼ 

[-] 

��,#Å	
[kΝ/m] 


 dd  

[-] 

30 0.2 30 0.3 0.84 0.1 46 40 5 3 0 0.1 -1‰ 
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Results 

Results from analyses for the two meshes are given in Figure 3.4.19 and Table 3.8. As 

indicated on the load-deformation diagram below, the peak load, as well as the post peak 

response are significantly affected by the element size, while the pre-peak branch is the 

same for both meshes. The shape of the diagram resembles remarkably the diagram from the 

example of the loaded panel (see Fig. 3.4.8). As average element size decreases, energy 

dissipated due cracking decreases too. Therefore, it seems that tensile fracture energy	�� 	 is 

affected by mesh coarseness too.  

 

Table 3.8: Comparison of results for different mesh sizes 

Mesh type Nr of Elements Deformation at 

failure [mm] 

Maximum Load 

[kN] 

Coarse 822 0.252 2988 

Very Fine 12449 0.188 2215 

 

           

Figure 3.4.18 Comparison of force-deformation response from uniaxial tensile tests at 

constant �� = 0.1p /m 
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4 Pushover analysis of a reinforced concrete column  

4.1 General model setup 

 The three phenomenological constitutive relations described in the previous chapter are 

implemented in numerical simulations to model reinforced concrete material. Their 

performance is investigated though nonlinear pushover analyses of a circular reinforced 

concrete column. The column is modeled as a  3D soil volume element of 16 m length and 1 

m diameter. A total displacement fixity is placed at the bottom and a stress distribution or a 

uniform prescribed displacement, depending on the constitutive model, is applied on top.  

Moreover a plate element of high rigity is placed to act as a diaphragm. Afterwards the 

model is divided into a finite element mesh and incrementally increased lateral load is 

applied until failure of the system. For each approach, a further description of the model, 

input values, calibration procedure of critical parameters and computed results, are given in 

the next paragraphs. 

 

Figure 4.1.1. Geometry of the model 
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4.2 Detailed Mohr-Coulomb based model 

In this first modeling approach concrete material is described by Mohr-Coulomb failure 

criterion and it is combined with elastoplastic structural elements. A 3D view of the layout 

of reinforcement bars and a detailed cross-section, considering  longitudinal reinforcement 

ratio As=2%, are displayed in Figure 4.2.2 below. The Mohr-Coulomb model with tension 

cut off was proposed by Chen & Han (1988), and in order to describe the behavior of 

concrete material, only 5 input parameters are required. It is defined in terms of c and φ, 

directly derived from �  and �� (concrete compressive and tensile strength) as follows : 

	� = 	 sinF� ·� − ��� + ��¸ (4.2.1) 

 

 

 

� = 	1 − sin�2 cos� 	�  (4.2.2) 

 

By replacing with �   = 30 MPa and �� =2 MPa, the values for c and φ are extracted : 

� = 3879	p@Ó, � = 61° 
In addition it requires two elastic parameters: modulus of elasticity E and Poisson’s ratio v. 

Assuming concrete of class C30/37 modulus of elasticity is taken equal to 30 GPa and  

Poisson’s ratio equal to 0.2 . For this case, tension cutoff is considered zero.  

 

Figure 4.2.1. Stress-strain response of the Mohr-Coulomb model from Plaxis element test 

module 
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                                     (a)                                                                                (b) 

 

Figure 4.2.2 (a) 3D visualization and 2D cross-section detail of reinforcement bars (b) Numerical 

simulation of reinforcement with structural elements in Plaxis 3D 
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4.2.1  Modeling of reinforcement  

In this model detailed reinforcement, as shown in Figure 4.4.2 needs to be incorporated. In 

the present study, two options for modeling reinforcement are investigated. The first option 

is the incorporation of embedded  beam elements. Embedded beams are structural elements 

commonly used to model axially loaded piles. They include interface elements in order to be 

able to describe pile-soil interaction. As a result, theoretically, they could be used to 

simulate more accurately reinforcement of a concrete element, as bond stress between 

concrete and steel can be quantified, with the skin resistance ²�	Y¼	 (kN/m).  For our case ²�	Y¼	 is calculated as follows : 

²�	Y¼	 = Õ	∅	2,25	��l (4.2.1.1) 

In the analyses first elastoplastic embedded beams with a diameter of 32 mm are modeled. 

From Eq. (4.2.1.1) above, tskin is calculated equal to 452 kN/m. Initial input  parameters of 

elastoplastic embedded beams are listed in Table 4.1 below: 

 

Table 4.1: Initial input for elastoplastic embedded beams 

Ε 

[GPa] 

ν 

[-] 

γ 

[kN/m3] 

D 

[m] 

σy 

[MPa] 

tskin 

[kN/m] 

200 0.2 0.001 0.032 500 452 

 

Results with embedded beam elements 

Firstly 20 elastoplastic embedded beams are used, for longitudinal reinforcement ratio 

As=2% . Pushover analysis is force controlled  and the load is applied as a uniform lateral 

distributed stress. The computed results are initially compared with those extracted from the 

reference models USC_RC and Response-2000, which are implemented for the analysis of 

strength and ductility of reinforced concrete structures. At first, for  modulus of elasticity of 

concrete material E = 30 GPa, results from numerical analysis showed a much stiffer 

response in load-deformation terms. By trial and error, with reducing each time the modulus 

of elasticity, arised that approximately a 30% reduction of the modulus of elasticity was 

necessary in order the results to be at least comparable to the proposed fit. Moreover  

reduction of skin resistance did not seem to affect the results, as for a reduction of tskin to 
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50% and consequently to 5% of its initial calculated value, the response was quite similar 

(Figure 4.2.3). Due to these setbacks, the solution of 3D beams is adopted. Nevertheless, the 

performance of embedded beams under lateral loading conditions should be further 

investigated, something that could not be done thoroughly in the present study, due to the 

limited time available. 

                       

Figure 4.2.3. Comparison of pushover analyses results with different skin resistance (tskin) 

values 

 

Results with beam elements 

In this setup, at first 20 elastic beams with a diameter of 32 mm are used, for longitudinal 

reinforcement ratio As=2%. Again, force controlled type of analysis is chosen and the load 

is applied as a uniform lateral distributed stress.  Then the procedure is repeated with the use 

of elastoplastic beams of yield stress �� = 500 MPa. Results of the load - displacement 

response showed that 3D beam elements are functional, as for a prescribed displacement of 

1.0 meter the use of elastic beams leads to a linear response, while the use of elastoplastic 

beams leads to yielding (Figure 4.2.4a). Moreover overall response, with the use of 

elastoplastic beams, is comparable with our reference models (Figure 4.2.4b). By evaluating 

the above results 3D elastoplastic beams seem to realistically simulate the behavior of 

structural reinforcement and therefore are used in all the following analyses. 
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                                          (a) 

   

                                                                      (b) 

Figure 4.2.4. (a) Comparison of load-deflection response from Plaxis code with elastic and 

elastoplastic 3D beam elements, (b) Comparison of load-deflection response from Plaxis 

code and reference models 
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4.3 Detailed Concrete based model 

For this modeling Plaxis Concrete constitutive model is combined with detailed 

reinforcement. As for Mohr-Coulomb based model elastoplastic beam elements are used to 

simulate reinforcement bars, and Concrete model is applied to the volume pile. The 

geometry of the model and the layout of reinforcement is as illustrated in Figures 4.1.1 and 

4.2.2. For this approach, displacement controlled analysis is chosen, to capture the post-

yielding behavior until rupture. Time independent input parameters required, to describe 

nonlinear behavior of concrete material, are described in detail in chapter 3. All strength and 

strain parameters required can be directly defined from literature according to laboratory 

results, verified expressions based on experimental data or codes. These parameters, 

together with their values used in the following analyses are listed in Table 4.2, below. On 

the contrary parameters related to fracture energy cannot be directly defined, as according to 

what was proven in chapter 3, they are sensitive to mesh coarseness. Analyses without 

calibration of these parameters could lead to false estimation of ductility of concrete material 

and consequently result in a nonrealistic overall response of the member. It seems that in 

order to succeed accuracy of results, for each mesh created, optimum values for fracture 

energy parameters should be found. In the present case, a calibration procedure for 

compressive fracture energy		�  is performed. As reinforced concrete elements are modeled, 

reinforcement is used to take up the tensile stresses after concrete cracks. Tensile strength of 

concrete, in RC structures provides a small increase in the initial stiffness of a force-

displacement curve, without vitally affecting the total strength. Therefore tensile fracture 

energy ��	is taken equal to 0.1 kN/m as Plaxis proposes. However for problems that tensile 

strength of concrete is an important factor, tensile fracture energy should be calibrated. 

  

Table 4.2: Concrete parameters used for the analyses 

�#Å 

[GPa] 

ν 

[-] 

� ,#Å 

[ΜPa] 

� $¼  

[-] 

� �¼ 

[-] 

� �¼  

[-] 

�´µ¶  

[ᵒ] 

� 

[ᵒ] 

f�,#Å 

[ΜPa] 

���¼ 

[-] 

��,#Å	
[kΝ/m] 


 dd  

[-] 

30 0.2 30 0.3 0.84 0.1 40 5 2 0 0.1 -1‰ 
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4.3.1  Model calibration 

Calibration of compressive fracture energy �  is succeeded by fitting the stress-strain 

response of the model with curves from literature. As it determines the strain occurring 

between the peak and the failure strength, only the post peak response requires to be fitted. 

Tests by Van Mier (1984), proposed values from EN-1992 and equations proposed by 

Hognestad, as mentioned above, are utilized. The main objective is to achieve failure 

strength at strain equal to 3.5 ‰.           

Procedure and results 

As in Chapter 3, uniaxial compression tests are performed, but for the full scale model.  The 

objective is to find the relation between number of elements and compressive fracture 

energy in order the aforementioned failure criterion to be satisfied. A cylinder with 

slenderness ratio of h/d = 16:1 with 3D beams is modeled, as existence of beams affects 

discretization, and then beams are deactivated for the analysis. A fine mesh, consisting of 

43479 elements is created and then, prescribed displacement is applied stepwise until 

failure. Initially, a value of �  equal to 46 kN/m is considered (as calculated from the area 

under peak and failure strength of the idealized stress-strain response (see Figure 3.4.5). The 

‘specimen’ failed at a strain equal to 2.67 ‰ indicating that a higher value of	�  is required 

for this specific mesh. Analyses with different 	�  resulted in an optimum value, equal to 

100 kN/m. This value is adopted for the pushover analyses of the reinforced concrete 

column that follows. Results are shown in Figure 4.3.2.  
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Figure 4.3.1. Discretization of the column element and deviatoric strain γs at failure for two 

different values of 	�   

            

Figure 4.3.2. Stress-strain curves obtained for different values of compressive fracture 

energy   
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4.3.2  Pushover analyses results 

At first two analyses are carried out. For the first analysis, concrete material is defined by 

the parameters as described in the previous paragraph, in order to approach its real behavior. 

For the second analysis tensile strength, and tensile fracture energy of concrete are set equal 

to zero and parameters affecting strain hardening and softening in compression are set equal 

unity. Values of input parameters for the two analyses are given in Tables 4.4 & 4.5. 

Table 4.3: Input parameters for numerical simulation of real behavior of concrete 

�#Å 

[GPa] 

ν 

[-] 

� ,#Å 

[ΜPa] 

� $¼  

[-] 

� �¼ 

[-] 

� �¼  

[-] 

� ,#Å	
[kΝ/m]

�´µ¶  

[ᵒ] 

� 

[ᵒ]

f�,#Å 

[ΜPa]

���¼ 

[-] 

��,#Å	
[kΝ/m] 


 dd  

[-] 

30 0.2 30 0.3 0.84 0.1 100 40 5 2 0 0.1 -1‰ 

 

Table 4.4: Input parameters considering linear elastic - perfectly plastic behavior, without 

tensile strength 

�#Å 

[GPa] 

ν 

[-] 

� ,#Å 

[ΜPa] 

� $¼  

[-] 

� �¼ 

[-] 

� �¼  

[-] 

� ,#Å	
[kΝ/m]

�´µ¶  

[ᵒ] 

� 

[ᵒ]

f�,#Å 

[ΜPa]

���¼ 

[-] 

��,#Å	
[kΝ/m] 


 dd  

[-] 

30 0.2 30 1 1 1 100 40 5 0 0 0 -1‰ 

 

The second analysis has a double aim. The first is to compare results with the previous linear 

elastic-perfectly plastic Mohr-Coulomb based approach, and the second to investigate how 

tensile strength affects overall response. Plaxis element test facility is used to get an insight 

in the behavior of the models. Comparison of stress-strain curves extracted from Plaxis 

element test facility, for Detailed Mohr-Coulomb based approach and Detailed Concrete 

based model considering perfect elastoplasticity  and zero tensile strength, is illustrated in 

Figure 4.3.3 below. It is observed that stress-strain response is exactly the same. Because of 

this compliance the results of the pushover analysis are expected to be similar. Full 

member’s response results are illustrated in Figures 4.3.4 and 4.3.5. 
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(a)                                                                                   (b) 

Figure 4.3.3. (a) Stress-strain response of  Detailed Concrete based model with  proposed 

parameters (b) Comparison of stress-strain response from Detailed Mohr-Coulomb and 

Concrete based models considering linear elastic-perfectly plastic behavior and zero tensile 

strength  

 

 

                                 (a)                                                                      (b) 

Figure 4.3.4. Comparison of results from Plaxis 3D code with Detailed Concrete based 

model and reference models (a) load-deflection response (b) moment-curvature response  
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                               (a)                                                                        (b) 

Figure 4.3.5. Comparison of load-deflection response from (a) Detailed Mohr-Coulomb and 

Concrete based models considering perfect elastoplasticity  and zero tensile strength, (b) 

Comparison of Concrete based models response considering proposed parameters and 

parameters assuming  perfect elastoplasticity  and zero tensile strength 

 

Figure 4.3.4 (a) illustrates the results of force-deflection responses from the pushover 

analysis in Plaxis and from reference models, Response and USC_RC. Concrete based 

model and Response present similar results until a load of 80 kN and they reach almost 

exactly the same maximum load with insignificant deviation, equal to 0.05%. However 

Response presents a more brittle failure. Compared to fiber analysis Concrete based model 

has a stiffer response, and a difference in shape is observed in the initial ‘uncracked’ part 

due to the tensile strength of Concrete model. The deviation between the  maximum loads is 

higher and equal to 11%. In Figure 4.3.5 (a), results from the analysis of the Detailed Mohr-

Coulomb based model are plotted together with results from the second analysis using Plaxis 

Concrete model, with the assumption of perfect elastoplasticity, without tensile strength. 

The response is almost the same, with a slight deviation in the last part of the diagrams, in 

the region where plastic deformations are generated. Deviation of the maximum loads is 

equal to 2.05%. In order to understand this change, given that the two models have the same 

single stress point response, as it is indicated in Figure 4.3.3 (b), a closer look on failure 

mode should be taken.  
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            (a)                                                        (b) 

Figure 4.3.6. Comparison of  failure modes: (a) from analysis with Concrete based model 

(b) from analysis with Mohr-Coulomb based  model 

 

Figure 4.3.6 above depicts the different failure mechanism for each analysis. In analysis 

with detailed Concrete based model shear failure due to zero tensile strength is observed, 

while in the analysis with detailed Mohr-Coulomb based model, a plastic hinge is developed 

at the bottom of the pile. Therefore, it seems that Concrete model captures the behavior of 

concrete material at failure state more realistically.  

Figure 4.3.5 (b) illustrates the effect of tensile strength properties in the total response of the 

column. Tensile strength increases stiffness before yielding, with no significant contribution 

to the total strength. However as it is shown in Figure 4.3.7  below, it plays a major role for 

the failure mode of the column. For concrete with tensile strength flexural cracks can be 

visualized (at the side of tension), whether for concrete without tensile strength the failure 

mode has changed from flexure to shear. 
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Figure 4.3.7. Flexural cracks at failure for Detailed Concrete based model with tensile 

strength, 3D visualization and vertical cross - section 

         

Figure 4.3.8. Shear failure for Detailed Concrete based model with  zero tensile strength, 

3D visualization and vertical cross - section 
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A last observation, concerns the form of the load-deflection behavior of Concrete based 

model, considering tensile strength properties. As it illustrated in Figure 4.3.9 below, three 

parts can be distinguished. The first is a linear elastic part of high stiffness until cracking. 

The second is an almost linear domain with reduced stiffness and the third is the part after 

yielding with even more reduced stiffness, where plastic deformations increase until failure. 

Similar form of the response is obtained also from analyses for longitudinal reinforcement 

ratio equal to As = 1%. The same observations were noted by Maatkamp (2016), regarding 

results from Plaxis Shotcrete model in 2D analyses. 

 

 

Figure 4.3.9. Detailed Concrete based model: Parts of load-deformation response 

 

 

Figure 4.3.10 illustrates the distribution of plastic and tension cut-off points as well as  

normal stresses for the Detailed Mohr-Coulomb and Concrete based models, with proposed 

parameters for Concrete material model. Indicatively, a cross-section at the critical zone is 

chosen at the base of the column (-16m).  More tension cut-off points are observed for 

detailed Mohr-Coulomb based model compared to Concrete based, as it is expected due to 

the zero tensile strength assumption. 
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                                                       (a) 

 

 

                                                                 (b) 

Figure 4.3.10 Normal stresses and plastic point distribution for: (a) Detailed Concrete 

based model (b) Detailed  Mohr-Coulomb based model 
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         (a)                                        (b)                                     (c)  

Figure 4.3.11 Normal stress shadings at different loading steps of the pushover analysis, for 

Detailed Mohr-Coulomb based model. Applied loads: (a) 42 kN, (b) 150 kN,  (c) 180 kN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

75 
 

For analyses with reinforcement ratio equal to As=1%, when a number of beam elements 

was less than 20, e.g. 10Φ32, unexpected failure occurred at a low load stage and extensive 

cracking in the tensile zone was observed. Reinforcement bars seem not to function, as 

failure occurred before any beam had reached its yield strength. This is obviously a 

numerical error, probably due to the fact that stiffness matrix cannot be reversed easily in 

large areas of plain concrete as a very large number of equations needs to be solved. This 

fact leads in failure in load advancement procedure. In order to overcome this threshold a 

number of at least 20 beams was used with smaller diameters, e.g. 20Φ22 for As = 1%. 

However, detailed Mohr-Coulomb based model seems to be functional for smaller diameters 

of  beam elements, as illustrated in Figure 4.2.10 (a), below, where the load-deformation 

response is plotted considering 10 beams of 32 mm diameter. 

    

           (a)                                                                                 (b) 

Figure 4.3.12. Comparison of load-deflection responses from analyses with Detailed (a) 

Concrete based and (b) Mohr-Coulomb based models and from reference models , with 

As=1% 
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The following tables present the comparison between the ultimate calculated moments from 

Detailed models used in analyses and reference models, as well as the deviations between 

Concrete based model and the other approximate models.   

 

 

Tables 4.5 a-b: Comparison of ultimate bending Moments for: a- As=2% , b- As=1% 

 

a. Ultimate Bending Moment [kNm] 

As=2% 
Concrete 

based 

 

Mohr-
Coulomb 

based 

USC_RC Response 

 2989.6 3022.1 2678.5 3069.2 

          

Tables 4.6 a-b: Deviations of ultimate bending moments between Detailed Concrete based model and 

reference models for: 

 a- As= 2%, b - As=1% 

 

                 

 

 

 

 

 

 

b. Ultimate Bending Moment [kNm] 

As=1% 
Concrete 

based 

 

Mohr-
Coulomb 

based 

USC_RC 

 

Response 

1534.4 1646.4 1457.6 1681.3 

b.  Deviations (%)_As=1% 

Detailed M-C based -7.29 % 

USC_RC 5.01 % 

Response -9.57 % 

a. Deviations (%)_As=2% 

Detailed M-C based -1.088 % 

USC_RC 10.41% 

Response -2.66 % 
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4.3.3 Interaction analysis 

Until now, pushover analysis was performed considering only lateral loads applied to the 

reinforced concrete column, without imposing any axial load.  By evaluating the results 

arises the conclusion that Concrete model, is calibrated correctly and therefore it captures 

realistically the exact behavior of the reinforced concrete element,  in pure bending 

conditions, as it is expected from its advanced formulation. In this chapter the RC column is 

subjected to combined axial and lateral force, aiming to construct a reproduction of the M-N 

failure envelope for the calibration of Macroscopic model. 

 

Procedure  

The same model as in the previous analysis is used with longitudinal reinforcement ratio 

equal to As=2%.In the first stage of the analysis, the column is subjected to  distributed 

stress  simulating the axial force. From the  previous analyses arises the conclusion that, for 

reinforcement ratio As=2%, Response approaches better the behavior of concrete model in 

pure bending conditions (see Table 4.7a), than USC_RC. Therefore, the interaction curve 

extracted from Response is used as a guide for the vertical loading pattern,  from the 

ultimate axial compression capacity to the ultimate axial tension capacity. In the second 

stage, through force or displacement controlled analysis, depending on the magnitude of the 

axial force, the maximum load is calculated and multiplied by the length of the column. For 

small axial forces displacement controlled analysis gives better results, whether for larger 

axial loads (compressive or tensile), force controlled type of analysis is chosen, based on the 

criterion of  minimizing the deviation compared to Response. The failure envelope is 

determined by 11 points in total, extracted through the numerical analyses. In Figure 4.3.11 

the results from finite element analysis are plotted together with the interaction diagram 

from Response. 
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Figure 4.3.13. Comparison of results from numerical analyses and failure envelope from 

Response 

 

Results from numerical analyses indicate an overestimation of ultimate bending moment 

capacity as compressive axial force increases (compression controlled region), and an 

underestimation as tensile axial force increases (tension controlled region). In the vicinity of 

pure bending conditions  almost a perfect fit is observed. In order to have a second basis for 

comparison, results obtained from Plaxis are compared with a hand calculated interaction 

diagram, according to EC-2.  

 

 

Figure 4.3.14. Comparison of results from numerical analyses and interaction curve 

according to EC-2 
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A better fit is observed for most points. This fact indicates the problem defined in the 

present thesis, namely the deviations between different methods and models, in calculating 

ultimate capacity of a RC member. Results from Plaxis at failure state, for 4 indicative 

points of the interaction curve, are displayed in Figure 4.3.14. Observation of the failure 

mechanisms, confirm what is expected from theory.  More specifically: 

 

� brittle failure without yielding of reinforcement for points above balance point  

� ductile failure and yielding of the beam elements for points below balance point 

� sever cracking of the concrete under pure tension with reinforcement undertaking all 

tensile forces 

  

  

Figure 4.3.15 Illustration of 4 regions  from pure compression to pure tension 
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        (a)                              (b)                                             (c)                                          (d) 

 

Figure 4.3.16. Failure mechanisms for the 4 indicative combinations: (a) pure compression, 

(b) compression controlled region, (c) balance point, flexure crack pattern in tensile zone, 

crushing in compression (d) pure tension, severe cracking 
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4.4  Macroscopic Mohr - Coulomb based model 

 

In this modeling approach the column is represented as a soil volume with Mohr-Coulomb 

model ruling its response. As described in chapter 3, for the simulation of the reinforced 

circular concrete element no detailed reinforcement is required. With this simple constitutive 

law the behavior of a circular reinforced concrete pile can be simulated by defining only 4 

parameters. These are: 2 elastic parameters, modulus of elasticity	�, and Poisson’s ratio v, 

and two plastic parameters, cohesion c and tension cut-off, 	σ�. Gerolymos et al, (2014) 

calibrated the model according to interaction analysis results extracted from the computer 

code USC_RC and proposed values for c and σ�, for different diameters of piles and 

longitudinal reinforcement ratios. In the present study, a case of a circular column-pile is 

examined with a diameter of 1 m and longitudinal reinforcement ratio As = 2%. Therefore 

the proposed values can be directly applied in the FE model. These values are 16676 kPa for 

cohesion and 10067 for tension cut-off. Again, for this setup a total displacement fixity is 

placed at the bottom and a stress distribution is applied on top. A mesh consisting of 21940 

elements is generated.  

 

First results 

In analyses modulus of elasticity is set equal to 10 or 15 GPa. The reason for this is that it 

represents the effective modulus of elasticity and not the tangent, as Macroscopic model 

simulates the uniform behavior of the reinforced concrete element. Analysis with E=15 GPa 

leads to a stiffer response and provides only a slight increase of the total capacity of the pile 

(1.87 %). Comparative results are presented  Figures 4.4.1 (a)-(d), below. 
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                            (a)                                                                     (b) 
 
     
 

     
                        
                           (c)                                                                           (d) 

 

Figure 4.4.1. Comparison of results from pushover analyses 
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In Figure  4.4.1 (a) results from numerical and fiber analysis are presented. The two 

diagrams almost coincide. 

Figure 4.4.1 (b)   presents the comparison between analysis with E=15 GPa and results from 

Response. Similar behavior is observed at the initial part of the diagrams, until 140 kN 

approximately. From that point macroscopic model presents a more ductile behavior and 

produces higher plastic deformations. The deviation between the two responses is 7.8%. 

In figure 4.4.1 (c),  results from the analysis with E=15 GPa are exhibited together with 

results from Detailed Concrete based model considering tensile strength equal to 2 MPa. 

Again, a considerable deviation  of ultimate strength capacity between the 2 models, is 

observed (7.76%). 

Lastly, in Figure 4.4.1 (d), results from both numerical analyses compared to those from 

detailed Mohr-Coulomb based model, are displayed. For analysis with E=10 GPa a complete 

convergence is observed until a load of 90 kN. After that point macroscopic model gives 

higher plastic deformations (11.15% deviation). For analysis with E=15 GPa a smaller 

deviation in ultimate capacity is observed (9.10%). However macroscopic model presents a 

stiffer overall response. 

 A general conclusion that can be derived by observing the results, is that for constitutive 

models in which tensile strength is taken into account, higher modulus of elasticity should 

be used in the numerical simulation with Macroscopic model. The reason for that, is the fact 

that tensile strength of concrete provides an increase of the initial stiffness of the response.  
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Recalibration of the model - Results 

In order to reduce the aforementioned deviations the model is recalibrated, utilizing 

moment-axial force combinations extracted from numerical analysis with detailed Concrete 

based model, as described in the previous chapter. The nonlinear algebraic system 

formulated by Eqs (4.3.3.1) and (4.3.3.4)  is solved through the optimization procedure 

described in chapter 3. The values derived are cohesion, c and angle of friction φ, which are 

computed equal to 10700 kPa and 35ᵒ respectively. The updated values are inserted in the 

numerical simulation of the RC pile and new results are obtained. Comparative results from 

analysis with E=10 GPa, are displayed in Figure 4.4.2. 

 

                                                         (a)                                                                                  (b) 

     

                                                         (c)                                                                                   (d) 

Figure 4.4.2. Comparison of results from pushover analyses 
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In Figure  4.4.2 (a) results from numerical and fiber analysis are presented. The two 

diagrams  coincide at the initial part, while higher deviation is observed after yielding, as 

USC_RC presents a smaller hardening stiffness, compared to macroscopic (11.6% 

deviation). 

In figure 4.4.2 (b) the two graphs are similar unless failure state,  where Response gives a 

more brittle failure. 

In Figure 4.4.2 (c), a stiffer response for Concrete based model is observed. However much 

better convergence is succeeded as the deviation is reduced to 1.0% compared to 7.76% 

obtained from the previous analysis. 

Lastly, in Figure 4.4.2 (d) the two models present the same response until 110 kN. After that 

point results from detailed Mohr-Coulomb based model indicate generation of plastic 

deformations at higher loading rates. However convergence is succeeded at failure state. It is 

remarkable that a 0.26% deviation between the 2 models is succeeded compared to 9.10% 

obtained from previous analysis. 

By evaluating the results, it seems that, recalibration of  Macroscopic model results in 

satisfactory convergence between the three proposed phenomenological models.  
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4.5 Discussion of results 

The response of the three proposed models used in the previous described numerical 

simulations is portrayed together with results from reference models, in terms of force-

displacement and moment-curvature (Figure 4.5.1 (a) and (b)). It is observed that the three 

developed phenomenological models coincide in terms of moment-curvature and remarkable 

convergence is succeeded for member responses at failure state.  Computer code Response 

presents a more brittle behavior, however insignificant deviations are indicated between 

Response and proposed models. Deviations from USC_RC are quite higher. By evaluating 

the results the proposed models seem to be capable to describe accurately the nonlinear 

behavior of reinforced concrete elements. Table 4.7 presents  bending moment capacities 

derived from all analyses for As=2% for a more detailed comparison. It has to be pointed 

out, that curvature is not a direct output of Plaxis 3D code. Therefore curvature was 

calculated utilizing the finite difference method for the area where  maximum curvature 

occurs, which is the bottom of the cantilever. 

 

 

Table 4.7: Comparison of ultimate bending Moments for As=2% 

Ultimate Bending Moment [kNm] 

As=2% 

Detailed  

Concrete 

based 

 

Detailed  

Mohr-Coulomb 

based 

Macroscopic 
USC_RC 

(fiber analysis) 

 

Response 

2990 3022 3030 2678 3069 
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                                                                         (a) 

      

                                                                               (b) 

Figure 4.5.1 Total results from numerical analyses and reference models (a) Force-

displacement response (b) Moment-curvature response 
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At this point, computational time required for analyses with the three suggested 

phenomenological models should be evaluated. For all model setups fine meshes were 

created. For Detailed Mohr-Coulomb based and Concrete based models, as they have the 

same geometrical properties the total number of elements created is almost the same. 

Therefore, any deviations in computational time between the two models are not associated 

with mesh coarseness. For Macroscopic approach, fine meshing led to a slightly smaller 

number of elements due to the different geometry of the model.  

A remarkable fact is that Macroscopic model require more than 20 times less computational 

time than the other two models. It seems that its formulation and geometric simplicity result 

in effortless calculations. Moreover from analyses arised that Detailed Mohr-Coulomb based 

model requires almost 1.3 times larger computational time than Concrete based model for 

the case examined. This is unexpected if we consider that Concrete material is a more 

advanced, complex model compared to Mohr-Coulomb  which is based on the assumption 

of perfect elastoplasticity. 
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5 Numerical analysis of pile - soil interaction   

5.1  Introduction 

In this chapter the behavior of a single pile subjected to monotonic lateral and combined 

lateral and vertical load, is investigated utilizing Plaxis 3D code. The three constitutive 

models defined and verified previously are applied to a reinforced concrete pile and pile-soil 

interaction is studied. As mentioned in the problem definition  usually in numerical 

simulations pile material is considered linear elastic and therefore response up to failure is 

not investigated. Therefore the performance of the models to represent the nonlinear pile 

behavior  is investigated considering two aspects. The first  is the influence of vertical 

loading on lateral response of piles embedded in clayey soil. The second aspect has to do 

with the influence of sliding and gapping of the pile from the surrounding soil, by examining 

cases assuming full bond conditions, as well as separation. Gapping, combined with inelastic 

structural response of the pile enhances difficulty of the problem. In numerical simulations  

interface properties define whether separation and sliding of the pile from the soil will be 

taken into account. Results of a series of  numerical analyses, in terms of horizontal force - 

pile head displacement, moment distribution along the pile, as well as deflection profiles, are 

finally compared and discussed.  
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5.2  Geometry 

Figure 5.2.1 illustrates the basic geometry of the model. A volume pile of 1 m diameter and 

16 m length is created in the middle of the geometry. The distance from the pile tip to the 

bottom of the model is considered 5 times of the pile diameter. The lateral boundaries are 

placed at a distance of 0.6L m, taking into account the effect of boundaries on the  pile’s 

response and computational time. For each case a fine mesh is created to ensure objective 

results.   

 

 

 

 

                                              Figure 5.2.1 Geometry of the model 

 



 
 

91 
 

5.3  Materials 

Soil 

The selected soil is one layered consisted of stiff clay under undrained conditions, with 

constant modulus of elasticity. The Mohr-Coulomb yield criterion is chosen to describe its 

behavior. Parameters for the soil material are listed in Table 5.1 below. 

 

Table 5.1:  Soil material parameters 

Soil Type Undrained shear 

strength, ×� 

[kPa] 

Modulusof 

Elasticity, Es 

[MPa] 

Unit Weight, 

γ 

[kN/m3] 

Poisson’s 

ratio,v 

[-] 

Clay             60             85        20           0.4 

 

 Pile  

The reinforced concrete pile is simulated as a 3D cylindrical soil volume element. As for the 

pushover analysis, for the pile-soil interaction the three developed phenomenological 

constitutive relations, are assigned to the pile volume.  At first the behavior of the pile is 

modeled via Mohr-Coulomb based models, namely Detailed and Macroscopic. Subsequently 

Concrete model is assigned to the pile material, which again needs to be calibrated due to 

the alteration of  mesh properties. A pile of 1m diameter is considered, with longitudinal 

reinforcement ratio As=2%. For Concrete and Detailed models the reinforcement is 

simulated with 20  elastoplastic 3D beam elements of 32 mm diameter and yield strength	�� 

= 500 MPa . The pile is 16 m long, free headed and full embedded in the clayey soil layer. A 

rigid plate is modeled at the top to avoid local stress concentration. 
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Interfaces  

In order to capture pile-soil interaction, interface elements are placed between the pile and 

the surrounding soil. Interfaces are double noded elements and provide the stresses due to 

applied horizontal loads in three components:  

• effective normal stress (σN’) 

• horizontal shear stress (τ2) 

• vertical shear stress (τ1) 

 

Τhe lateral resistance of the soil due to horizontal forces can be described by the normal 

stress (σN’) and the horizontal shear stress (τ2) as shown in Figure 5.3.1.below. 

 

       

                (a)                                                                           (b) 

Figure 5.3.1. Stress distrubition at interface elements (a) normal stresses (b)  shear stresses  

 

Interface properties are basically defined with the parameter	ØY¼�c©	. This parameter relates 

the strength of the interfaces with the strength of the soil, according to the following 

relations: tan�Y¼�c© = ØY¼�c©	 tan��³Y� (5.3.1) 

 �Y¼�c©	 =	ØY¼�c©	��³Y� (5.3.2) 
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When the interface is set as Rigid, ØY¼�c©	=1 and it has the same properties as the 

surrounding soil. Therefore full bonding conditions are considered. 

However, in general strength decreases at the interaction zone between the pile and the soil 

and using a smaller value may give more realistic results, taking separation and slipping  

effects into account. In this study both cases are investigated. 

5.4 Procedure 

As it was mentioned above, cases with only lateral loading as well as combined axial and 

horizontal force are studied. For each model 4 cases are studied, as presented in  Table 5.2. 

The stages of the finite element modeling are: 

 

1. Soil undergoes geostatic loading 

2. A cylindrical volume is replaced by the pile, which is either reinforced with 20 solid 

beam elements, or when applying Macroscopic model equivalent properties simulate 

the reinforced concrete material. Depending on the case examined, vertical load N is 

applied gradually until a specific value. This value is chosen to be around the 

ultimate compressive axial capacity of the pile divided by 1.5.  

3. The vertical load is kept constant and the lateral load is applied, in the form of 

horizontal uniform distributed stress until failure of the system.  

 

Table 5.2: Analysed cases 

Case 
Interface properties Axial Load 

Rinter=1 Rinter=0.85 None Nu/1.5 

A1 
�   �   

A2 
�    �  

B1 
 �  �   

B2 
 �   �  
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In order to validate the performance of the models applied, two different approaches are 

adopted.  

• For the first approach ultimate soil reaction per unit length is considered constant with 

depth  equal to: 

 @� = 	k�	×��,  (5.4.1) 

which is a well known expression for cohesive soils. Coefficient k� varies from 2 to 12 and 

usually a value of k� = 9 is used for soft clay, while  k� = 11 is more appropriate for stiff 

clay.	
The expected ultimate lateral capacity, calculated from static equilibrium is equal to :  

Ù� = �2@��d�,   (5.4.2) 

 where @� is the soil resistance and �d� the ultimate bending moment capacity of the pile 

member. By replacing in Eq (5.4.2) resulting ultimate lateral loads from numerical analyses k� is calculated and each time it is checked whether is within the aforementioned range (2 ≤k� ≤ 12&.Values of �d� are obtained from the pushover analysis described in chapter 4 and 

are listed in Table 4.8.  

 

• For the second approach the assumption of a trapezoidal distribution of soil resistance is 

adopted, as shown in Figure 5.4.1. Soil resistance is calculated according to the 

following formulation proposed by Matlock (1970) : 

 

Ú� = Kk# + mrÛ�Ï + Ü ÝlO ×�	�,           ) < 			 "Þ«FÞ�&lßN|àNÏ já  
(5.4.3) 

 
 

Where X′� is the vertical effective stress, �′� the effective specific weight of the soil and k�,k#	, Ü are dimensionless quantities. Broms (1964) proposed a value of k#=2 whereas 

Matlock (1970) used k#=3. For  Ü, Reese (1975) suggested a value of 2.83 for all types of 

clay, whereas Matlock (1970) stated that Ü was determined experimentally to be 0.5 for soft 

clay and 0.25 for medium clay. Here, a value of Ü equal to 0.25 is considered. Eq (5.4.3) can 

be written as Ú�= A + Bz and from static equilibrium one obtains: 
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Ù = *� +	â	2 �# 
(5.4.4) 

  

Ù� −	�d� − ã�# − ä�¬	� = 0  
(5.4.5) 

 
And by replacing (5.4.4) to (5.4.5) 

*�# +	ä	# ��		 −	�d� − ã	# �# - 
ä�¬	�  = 0 

(5.4.6) 

 

Therefore by solving the trinomial plastic hinge length � is equal to:  

 

� = åæ9.�ÚI#4. â# − 3. *�. �ÚI8. â� − *�8. â� + 3.�ÚI2. â è
�� − *2. â + *#

4. â# }¥9.�ÚI#4. â# − 3. *�. �ÚI8. â� − *�8. â� + 3.�ÚI2. â � 	�� 

 

 

 (5.4.7) 

 

 

Values �d� and B are known, therefore by replacing � in Eq (5.4.4) and setting Q equal to 

the ultimate lateral resistance from numerical analysis, k# can be obtained and check 

whether  Ú� ≤ 12×� D. 

    

 Figure 5.4.1.  Constant and  trapezoidal distrubition of ultimate soil resistance with depth 

 

 
 

 



 
 

96 
 

5.5  Mohr-Coulomb based model 

5.5.1 Detailed model 

For the first modeling approach of the nonlinear behavior of the pile material, perfect 

elastoplasticity is assumed. Therefore, the response of the pile volume is characterized by 

the Mohr-Coulomb failure criterion. A mesh consisted of 83810 elements is created and 

same elastic and plastic parameters as in chapter 4 are considered with the addition of 

tension cut-off. Tension cut-off is added for numerical reasons, in order to enable load 

advancement procedure. Parameters for the RC pile volume are listed in Table 5.3 below.  

 

Table 5.3 Parameters for pile material 

Ε 

[GPa] 

ν 

[-] 

γ 

[kN/m3] 

c 

[kPa] 

φ 

[°] 

σt 

[kPa] 

30 0.2 0.001 3879 61 200 

 
 

Results 

 

Results from numerical analyses for the four examined cases are presented in Figures 5.5.1 

and 5.5.2. The first observation has to do with ultimate lateral capacities obtained from 

analyses. For cases A1 and A2 lateral capacity reaches 1993 kN and 2070 kN respectively. 

Taking separation and gapping into account results in lower values for ultimate lateral 

capacity and larger deflections along the pile’s length, therefore in an increased active length 

where the pile undertakes the applied load and deforms. This is portrayed in Figure 5.5.2. 

For cases B1 and B2 the lateral capacity of the pile reaches 1565 kN and 1638 kN, 

respectively. For cases A1, A2 values of lateral capacity are quite high, yet within the limits 

derived from static equilibrium as described above for the assumption of constant 

distribution of lateral soil resistance.  For  cases B1 and B2 ultimate soil reaction is within 

the admissible range (Ú� ≤ 12×� D) for both assumptions. 
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                                    (a)                                                                               (b) 

Figure 5.5.1. Calculated pile head force-displacement curves for cases: (a) A1 –A2: full 

bonding conditions between pile and soil with and without axial force, (b) B1-B2: sliding 

and gapping enabled with and without axial force 

 
 
 
 

                                       
  

                                         Figure 5.5.2.  Pile deflection results for all cases 
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5.5.2 Macroscopic model  

In the second modeling approach the pile is represented as a 3D soil volume with Mohr-

Coulomb model describing its response. No detailed reinforcement is required, and 

parameters as obtained from the calibration procedure described in chapter 4 are assigned to 

the pile material.  A mesh consisting of 70702 elements is generated.  

The performance of the model for the examined cases is shown in Figures 5.5.3 and 5.5.4 

below. The same pattern as with Detailed model is observed. For cases A1 and A2 lateral 

capacity reaches 1935 kN and 2033 kN respectively. Gapping again results in  lower values 

for ultimate lateral capacity and larger deflections along the pile’s length, as well as in 

increased active length (Figure 5.5.4). For cases B1 and B2 the lateral capacity of the pile 

reaches 1433 kN and 1549 kN respectively. For all cases ultimate soil reaction is within the 

admissible range (Ú� ≤ 12×� D) for both assumptions. Implementation of Eqs (5.4.2), 

(5.4.4) and (5.4.7) with replacement of ultimate lateral capacities derived from analyses, 

result in acceptable values.   
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                                      (a)                                                                          (b) 

Figure 5.5.3. Calculated pile head  force-displacement curves for cases: (a) A1 –A2: full 

bond conditions between pile and soil with and without axial force, (b) B1-B2: sliding and 

gapping enabled with and without axial force 

 

           
                                    (a)                                                                               (b) 

Figure 5.5.4. (a) Pile deflection profile results, (b) Bending Moment envelopes for the 

examined cases  
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By evaluating the results for both models some first conclusions can be derived: 

 

(a) Axial force seems to increase lateral capacity. This is observed for both full bond and 

gapping and sliding conditions. This observation agrees with results from numerical 

experiments conducted by Papakyriakopoulos (2013), considering a free headed flexible pile 

embedded in medium clay (Es=25 MPa,	×� = 50	p@Ó&. Papakyriakopoulos applied to the 

pile combinations of horizontal force and moment under constant axial load. He repeated the 

procedure for many factors of safety against vertical loading and extracted ultimate 

capacities Hu and Mu. According to his results failure of the pile-soil system depends on the 

allocation of external loads. This is illustrated in Figure 5.5.5 below, where variation of 

plastic hinge length is shown in respect to the combination M-Q. In our case the pile is 

subjected only in lateral loading, therefore angle θ is zero and plastic hinge length is 

expected as marked.  

 

                                          

                                 

Figure 5.5.5. Variation of plastic hinge depth in respect to load combination angle θ 

(Papakyriakopoulos 2013)  
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(b) In Figure 5.5.4 (b) the bending moment profiles are depicted for the four examined 

cases. It is observed that gapping results in the full mobilization of bending moment capacity 

as well as in the increase of plastic hinge length. This is clearly depicted in Figure 5.5.6 

below.  

 

                          

                                                 (a)                         (b) 

Figure 5.5.6. Comparison of the plastic hinge depth � between cases considering (a) full bonding 

between pile and soil and (b) gap formation between the pile and the surrounding soil 
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(c)  For all analyzed cases with the two models, the failure mechanism of the pile is the same 

with the difference that separation and sliding causes the generation of more plastic points 

distributed along the pile. Plastic hinge formation and length are in accordance with results 

from Papakyriakopoulos, as described above. Moreover it seems that for all cases large 

deformation leads to yielding of main reinforcement for Detailed model. The evolution of 

the plastic hinge is illustrated in Figure 5.5.7 

 

 

             

         

Figure 5.5.7. Evolution of failure mechanism in terms of incremental deviatoric strain ∆γs 

 

 

 

 

 



 
 

103 
 

5.6 Detailed Concrete based model 

 

5.6.1 Model calibration procedure  

 

As it was extensively discussed in chapter 3,  fracture energy parameters of Concrete model 

are sensitive to mesh properties. For the pushover analysis of the RC column, in order to 

succeed accuracy of results a calibration procedure for the compressive fracture energy 

� 	has been performed. The mesh created consisted of 43479 elements and the geometry as 

well as the properties of the surrounding volume were different from the present case. For 

the pile-soil interaction examined in this chapter, a completely different mesh is created. 

Due to the expansion of the boundaries of the model, as well as the increased coarseness of 

the soil volume surrounding the pile, in total 81212 elements are generated. At first 

emphasis was placed on calibrating compressive fracture energy. As described in chapter 3, 

and can be visualized in Figure 5.6.1 (a),  decreased values for �  are required for fine 

meshes compared to coarser meshes. Analyses with the same parameters as before, with �  

=100 kN/m, indicated failure at  unexpected, low values without yielding of beam elements.  

However, results seemed to be insignificantly affected by the alteration of � , leading to the 

conclusion that compressive fracture energy is not the governing parameter for the soil 

structure interaction problem. The next step was to investigate the effect of tensile fracture 

energy ��. At first the same value as in the pushover analysis was considered (0.1 kN/m), 

keeping		�  constant, equal to 100 kN/m. Cases A1, A2, B1, B2 were examined. Failure 

occurred at  lower values for all of the examined cases without yielding of reinforcement. 

Considering mesh dependency of tensile fracture energy, according to the diagram shown in 

Figure 5.6.1 (b), for fine meshes higher values of �� 	are required in order to have equivalent 

results. As a consequence �� needed to be increased. For case A1, �� was gradually 

increased until the criteria  described in the previous paragraph, considering ultimate lateral 

resistance of the pile, to be satisfied and deviations of results from Detailed and 

Macroscopic models to be minimized. This was succeeded for �� equal to 0.6 kN/m, 

resulting in ultimate horizontal capacity equal to  1916 kN.  
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                                                            (a)                                                                    

 

                                                          (b) 

                    Figure 5.6.1 Mesh dependency of fracture energy parameters 



 
 

105 
 

5.6.2 Analyses and results 

 

After finding the appropriate value of tensile fracture energy, that seems to control the 

problem, cases A2, B1, B2 are also analyzed.  Results are presented in Figures 5.6.2 and 

5.6.3 below.  

   
                                             (a)                                                                                 (b) 
 

Figure 5.6.2. Calculated pile head  force-displacement curves for cases: (a) A1 –A2: full 

bond conditions between pile and soil with and without axial force, (b) B1-B2: sliding and 

gapping enabled with and without axial force 

                                                                                                                             
                                                                                      

                               Figure 5.6.3.  (a) Pile deflection results for all cases  
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By evaluating the results the following can be noted: 

(a) In accordance to results from previous analyses, axial force seems to increase lateral 

capacity. This is observed for both full bond and gapping-sliding conditions.  

 

(b) For all analyzed cases with detailed Concrete based model, the failure mechanism of the 

pile is the same, as shown in Figure 5.6.4 below, and again separation and sliding causes the 

generation of more plastic points distributed along the pile. Moreover it seems that for all 

cases large deformation leads to yielding of main reinforcement accompanying with flexural 

crack opening. 

 

                   

Figure 5.6.4. Evolution of failure mechanism in terms of incremental deviatoric strain ∆γs 
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5.7 Results and Discussion  

 

Results from analyses with the three proposed models are demonstrated in Figures 5.7.1, 

5.7.2. 

                       
                                                                    (a) 

                  

                                                                      (b) 

Figure 5.7.1. Comparison of computed head force displacement curves between the three 

proposed models, considering full bonding conditions (a) only lateral loading (b) combined 

axial and horizontal loading  
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                                                           (a)                       

 

                                                                (b) 

 

Figure 5.7.2. Comparison of computed head force displacement curves between the three 

proposed models, considering gapping effect (a) only lateral loading (b) combined axial and 

horizontal loading 
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By evaluating the results the following conclusions can be derived: 

 

• The three proposed models used to simulate the nonlinear pile material present almost the 

same response for all examined cases and the results are in accord with Broms theory of 

ultimate pile lateral capacity. The implementation of Broms limit equilibrium theory 

assuming both constant and trapezoidal distribution of lateral soil resistance per depth, as 

proposed by Matlock (1970), validates the results of ultimate lateral capacities extracted 

from analyses. Only exception is case A2 (full bonding pile-soil conditions) for analysis 

with detailed Mohr-Coulomb based model, considering trapezoidal distribution of Ú�. 

Therefore, the models seem to be capable of reproducing the response of reinforced 

concrete piles in pile-soil interaction problems considering double non linearity. For all 

examined cases Detailed Mohr-Coulomb based model gives increased ultimate lateral 

capacities, resulting though in insignificant deviations. Perhaps this is caused by the 

tension cut-off added to the pile material, in order to enable load advancement procedure. 

Deviations between the models are less than 5% in all cases. It has to be mentioned that 

deviations between Concrete based and Macroscopic models are less than 2.5%. The 

highest deviation is observed between responses from Macroscopic and Detailed 

considering gapping, however, still less than 5%.  Lateral ultimate capacities derived 

from analyses are presented in Table 5.4 below.  

 

Table 5.4 Ultimate lateral capacities derived from analyses with the three proposed models 

Case Ultimate Lateral Resistance [kN] 

Detailed  

Concrete based 

Detailed 

Mohr-Coulomb based 
Macroscopic 

A1 1915 1993 1935 

A2 2028 2070 2033 

B1 1512 1565 1487 

B2 1592 1638 1549 

 

Assuming constant ultimate lateral soil resistance with depth, as shown in Figure 5.4.1, 

derived values of k� coefficient for each model and each examined case are listed in Table 

5.5, below. These values are obtained by replacing in Eq (5.4.2) ultimate lateral loads from 

numerical analyses and ultimate bending moments extracted from pushover analyses as 
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presented in Table 4.7. In all examined cases the condition 	2 ≤ 	 k�≤ 12 is satisfied. For the 

second assumption of trapezoidal distribution with depth of ultimate lateral soil resistance, 

values of k# obtained by implementing static equilibrium, are presented in Table 5.6. The 

resulting ultimate soil resistance for all cases except case A2 for detailed Mohr-Coulomb 

based model, satisfies the aforementioned criteria. (Ú� ≤ 12×� D = 720 kN/m). Analysis of 

case A2 of detailed Mohr-Coulomb based model gives an increased		Ú� of  approximately 40 

kN 

 

Table 5.5: λ�	 values for ultimate soil lateral resistance, considering constant distribution with depth 

 

 Table 5.6: λ# Values for ultimate lateral soil resistance, considering trapezoidal distribution with depth 

 

 

   

Case 

	éê  
( @� = 	k�	×��) 

 Detailed  

Concrete based 

Detailed 

Mohr-Coulomb based 
Macroscopic 

A1 11 10 10 

A2 12 11 11 

B1 7 6 6 

B2 7 7 7 

Case 

	éë  

Ú� = Kk# + mrÛ�Ï + Ü ÝlO ×�	�  

Detailed  

Concrete based 

Detailed 

Mohr-Coulomb based 
Macroscopic 

A1 10 10 10 

A2 11 10 10 

B1 6 6 6 

B2 7 7 6 
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•  Axial force contributes to the increase of lateral capacity. The contribution is similar 

considering both full bond and gapping-sliding between the pile and the surrounding soil. 

Moreover axial force causes  the plastificication of the interface at the tip of the pile, as 

illustrated in Figure 5.7.4 below.  

 

•  For all examined cases plastic hinge formation and length is in accordance with results 

from Papakyriakopoulos (2013). Additionally, it seems that plastic hinge depth increases 

when gapping is taken into account, as it is clearly depicted in Figure 5.5.6. For Mohr-

Coulomb based models the failure mechanism is exactly the same, whether for Concrete 

a developing cracking pattern leads to a discrete flexural crack at failure state. The depth 

of this discrete crack is the same with the plastic hinge formation for the other two 

models. The failure mechanisms for Concrete and Mohr-Coulomb based models are 

compared in Figure 5.7.3 below. 

 

                              

Figure 5.7.3 Comparison of the failure mechanism between Concrete and Mohr-Coulomb 

based models 
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•  Gapping and sliding between the pile and the surrounding soil, and soil degradation have a 

significant impact on lateral capacity of piles. The stiffness of the pile is reduced and there 

is a loss of lateral capacity more than 400 kN, compared to full bonding cases. It seems  

that  the loss of confinement from the soil due to the gap produced between the near-

surface soil and the pile, leads to the reduction overall horizontal stiffness of the pile-soil 

system and larger deformations. 

 

• For cases considering full bonding between the pile and the surrounding soil Concrete 

based model presents a more brittle failure at lower displacement rates, followed by 

Detailed Mohr-Coulomb based model, while for Macroscopic model a yield plateau can be 

visualized. For cases considering gapping and sliding all models present a more ductile 

behavior, as yield plateaus are observed before failure * 

 

• In Figure 5.7.4 soil failure around the pile is illustrated. It is observed that in cases 

considering gapping effect soil plastification is extended beyond the proximal vicinity of 

the pile at shallow depths.  
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                                  (a)                                                  (b) 
 
 
 
 

 
 
                                   (c)                                                   (d) 
 
 

Figure 5.7.4. Plastic points distribution: (a) full bonding between pile and soil, (b) full 

bonding between pile and soil with the addition of axial load, (c) separation between the 

pile ad the soil, (d) separation between the pile and the soil with the addition of axial load 
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6 Conclusions and recommendations 

Conclusions 

In this thesis, three phenomenological constitutive models are presented, capable to describe 

the nonlinear behavior of reinforced concrete elements. First, key parameters are calibrated 

and then the proposed models are implemented in the pushover analysis of a reinforced 

concrete column. Their response is verified by cross validation, as well as by comparing 

their performance with computer codes used for the sectional and full-member analysis of 

reinforced concrete members. The comparison is made basically in terms of force-

displacement and moment-curvature responses and satisfactory convergence is succeeded 

between the three proposed, as well as reference models. Subsequently, the suggested 

phenomenological models are implemented in a soil-structure interaction application and 

their capability to reproduce the behavior of  reinforced concrete piles is evaluated. The 

results of the three proposed models extracted through FE analyses are in accordance with 

Broms (1964) limit equilibrium theory of ultimate pile lateral capacity. 

The important conclusions drawn for each proposed model are presented below: 

• Detailed Concrete based model, combined with elastoplastic 3D beam elements 

succeeds to capture the actual behavior of reinforced concrete elements. This is 

achieved due to its advanced stress-strain formulation that can describe strain 

hardening and softening of the concrete material. With Concrete model the exact 

failure modes and crack pattern of the members can be observed. This fact could be 

extremely useful for the investigation of failure mechanisms and the correct design 

of reinforced concrete structures utilizing Finite Element codes, avoiding 

catastrophic brittle failure types. Concrete material model, due to its aforementioned 

complex formulation requires the input of 25 parameters that are reduced to 14 when 

only strain hardening and softening are considered, ignoring time dependency, as in 

the present thesis. Most of these parameters can be derived from standard uniaxial 

tensile and compression tests. However parameters related to fracture energy are 

sensitive to mesh coarseness and require special handling to avoid unrealistic results. 

For each problem under investigation these parameters should be carefully 

calibrated.  

 



 
 

115 
 

• Detailed Mohr-Coulomb based model manages to satisfactory approach the 

nonlinear response of reinforced concrete elements. It is a combination of a simple 

linear elastic-perfectly plastic stress-strain relation for concrete material and 

elastoplastic 3D beam elements used as reinforcement. Although strain hardening 

and softening behavior are not incorporated and therefore crack pattern cannot be 

visualized, the model provides a good representation of ultimate capacity of the 

member. Therefore, it can provide accurate results and be used as a first order 

approximation. Additionally Mohr-Coulomb model for concrete material requires 

only 5 input parameters that are effortless derived from compressive and tensile 

strength of structural concrete. As a result it can be adopted  by any user without the 

need of deep knowledge of concrete theory. Lastly this  model can be implemented 

in any case and by any user, as Mohr Coulomb material model exists in all Finite 

Element Software packages. 

 

• Macroscopic model, as proposed by Gerolymos and Papakyriakopoulos (2014) 

succeeds to simulate the behavior of circular reinforced concrete elements uniformly 

combining ease of use and accuracy. The small number of parameters and short 

computational time required render the model easily implementable and flexible in 

effectively describe the overall behavior of a reinforced concrete element. This 

model is developed utilizing simple well known failure criteria, namely Mohr-

Coulomb and Tresca. The calibration of the model can easily be conducted as 

described by Papakyriakopoulos (2013) by the following steps:   

(a) Extraction of the failure envelope of the studied circular reinforced concrete 

section  

(b) Using the derived mathematical expressions and an optimization tool to calibrate 

the parameters of the model 

(c) Insertion of the calibrated parameters in the FE model and extraction of either the 

failure envelope ,or as in our case force-displacement response  

(d) Verification by comparing the extracted through FEM results with those of the 

reference models 

Due to its simplicity and remarkably small computational time required, 

Macroscopic model can be used as a first order prediction of the behavior of 
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reinforced concrete members when results need to be extracted rapidly. Lastly it can 

be implemented in all Finite Element codes without the need of exact and 

mathematically complex constitutive material models for concrete behavior.  

 

Recommendations for future research  

In this section some suggestions for future work are provided, considering the 

implementation of the three proposed constitutive models. 

•  In the present thesis the influence of confinement of concrete material was not 

studied, as only longitudinal detailed reinforcement was modeled. However in 

almost all cases transverse reinforcement is necessary to confine the concrete core 

and increase strength and ductility of the member. Plaxis Concrete model quantifies 

the increased ductility with confining pressure with  parameter a. Due to limited time 

available, for Detailed Mohr-Coulomb based approach only longitudinal 

reinforcement was modeled, with the use of 3D elastoplastic beam elements. 

Therefore in order to have a common basis of comparison, parameter a of Concrete 

model was set equal to 0. In future research, the detailed modeling of transverse 

reinforcement in Plaxis 3D FE code is proposed, for approaching  the actual behavior 

of structural reinforced concrete members. 

• A possible improvement for a more realistic modeling of reinforcement can be 

succeeded by using elements able to take into account bonding between 

reinforcement bars and concrete. On account of this, the performance of 3D 

embedded beam elements should be investigated in more detail. 

• Lastly, the use of the proposed constitutive models could be extended in dynamic 

problems. In this thesis only monotonic loading was considered. Moreover in most 

soil-structure interaction applications pile material is considered to be linear elastic. 

However, dynamic pile-soil interaction involves complicated material nonlinearities 

and the response of the piles up to failure is essential to be predicted. As a result the 

implementation of these phenomenological models to the pile material could be very 

useful to capture strength and stiffness reduction due to cycling loading. 
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