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Εκτεταμένη Περίληψη στα Ελληνικά

0.1 Εισαγωγή

Η ραγδαία εξέλιξη της μηχανικής μάθησης (machine learning) και πιο συγκεκριμένα των βαθιών
νευρικών δικτύων (deep learning) έχει ευννοήσει σημαντικά την ανάπτυξη αυτόματων διαλογικών
συστημάτων ικανών όχι μόνο να βοηθήσουν τους ανθρώπους σε συγκεκριμένες υπηρεσίες, όπως για
παράδειγμα αγορά αεροπορικών εισητηρίων, κρατήσεων σε εστιατόρια, αγορές μέσω Ίντερνετ, πα-
ροχή εξυπηρέτησης πελατών κ.α, αλλά και να τους ψυχαγωγήσουν.

Ανάμεσα στις ποικίλες προσεγγίσεις για την δημιουργία αυτόματων διαλογικών συστημάτων, τα δια-
λογικά συστήματα ανοιχτού πεδίου που βασιίζονται σε μεθόδους παραγωγής γλώσσας (generation-
based open-domain chatbots) φαίνεται να έχουν ιδιαίτερο ερευνητικό ενδιαφέρον. Χάρη στην εξέ-
λιξη των βαθιών νευρικών δικτύων, ποικίλα τέτοια συστήματα έχουν αναπτυχθεί, όντας ικανά να
συνομιλήσουν με ανθρώπους παράγοντας οχί μόνο συντακτικά αλλά και νοηματικά ορθές προτάσεις.
Ωστόσο, σε μία εποικοδομητική συζήτηση πέραν από την κατανόηση και την επίγνωση του θέματος
συζήτησης, είναι σημαντικό κανείς να μπορεί να αντιληφθεί και τα συναισθήματα του συνομιλητή
κατά τον διάλογο. Κάτι τέτοιο, ενώ είναι σχετικά απλό για τους ανθρώπους να καταλαβαίνουν και να
αναγνωρίζουν τα συναισθήματα των συνομιλητών τους σε ένα διάλογο, για τα συστήματα τεχνητής
νοημοσύνης (Artificial Intelligence systems) αποτελεί μια σημαντική πρόκληση.

Στα πλαίσια αυτής της διπλωματικής εργασίας, στοχεύουμε να συνεισφέρουμε στα πλαίσια του να
δημιουρηθεί ένας αυτόματος συνομιλητής ικανός να ανταποκριθεί κατάλληλα στον χρήστη, κατα-
νοώντας όχι μόνο τι συζητιέται αλλά και ποικίλα συναισθήματα που κρύβονται στην συνομιλία,
ανταποκρινόμενος τελικά με παρόμοιο συναισθηματικό τρόπο. Πιο συγκεκριμένα, αρχικά εισάγουμε
τον αναγνώστη στον κλάδο των διαλογικών συστημάτων και των γλωσσικών μοντέλων (language
models). Στην συνέχεια, παρουσιάζουμε κάποιες βασικές έννοιες και μεθόδους της μηχανικής μά-
θησης και των βαθιών νευρικών δικτύων. Ύστερα, εστιάζουμε στο τομέα της Επεξεργασίας Φυσι-
κής Γλώσσας (Natural Language Processing), μελετώντας μεθόδους δημιουργίας μαθηματικών ανα-
παραστάσεων των λέξεων και γενικότερα της γλώσσας (language representations) και προσπάθειες
μοντελοποίησης (language modeling). Έπειτα αναλύουμε σε βάθος generation-based αρχιτεκτονι-
κές βαθιών νευρωνικών δικτύων, παραδοσιακές αλλά και σύγχρονες, που χρησιμοποιούνται για την
παραγωγή διαλόγου (dialog generation). Αφού μελετήσουμε εξονυχιστικά τις αρχιτεκτονικές αυτές,
παρουσιάζουμε τις πιο ευρέως χρησιμοποιούμενες μεθόδους αποκωδικοποιήσης (decoding methods)
καθώς και μεθόδους αξιολόγησης των διαλογικών συστημάτων.

Ύστερα λοιπόν από την μελέτη της παραγωγής γλώσσας με χρήση generation-based μοντέλων, εμ-
βαθύνουμε στην δημιουργία αυτόματων διαλογικών συστημάτων με χαρακτηριστικά ενσυναίσθησης
(empathetic chatbots), χρησιμοποιώντας generation-based μοντέλα. Πιο συγκεκριμένα, εστιάζοντας
στην εργασία Empathetic Dialogues που προτείνεται από την ερευνητική ομάδα του Facebook, με-
λετάμε τις ήδη υπάρχουσες προσεγγίσεις και πειραματιζόμαστε με διαφορετικές προσεγγίσεις για
την βελτίωση των αποτελεσμάτων. Τελικά, οι προτεινόμενες προσεγγίσεις μας, που βασίζονται στο
μοντέλο T5, βελτιώνουν τα state-of-the-art αποτελέσματα με βάση την μετρική αξιολόγησης BLEU,
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επιτυγχάνοντας παράλληλα κοντινά αποτελέσματα με αυτά των state-of-the-art μοντέλων με βάση την
μετρική perplexity. Τέλος, παρουσιάζουμε κάποια χαρακτηριστικά παραδείγματα διαλόγων, για μία
πιο αντικειμενική αξιολόγηση, και αφού σχολιάσουμε τα αποτελέσματα, προτείνουμε μια σειρά από
μελοντικές προεκτάσεις που θα μπορούσαν να συνεισφέρουν σημαντικά στον υπό μελέτη ερευνητικό
τομέα.

0.1.1 Διαλογικά Συστήματα

Τα αυτόματα διαλογικά συστήματα εμπίπτουν σε δύο γενικές κατηγορίες: τα προσανατολισμένα σε
συγκεκριμένες εργασίες (task-oriented) και τα μη προσανατολισμένα σε εργασίες (non-task oriented).
Τα διαλογικά συστήματα που ανήκουν στην πρώτη κατηγορία συστημάτων, έχουν σχεδιαστεί για συ-
γκεκριμένες εργασίες και έχουν ρυθμιστεί έτσι ώστε να πραγματοποιούν σύντομες συνομιλίες με τον
χρήστη. Κύριος στόχος τους είναι να βοηθήσουν τον χρήστη να ολοκληρώσει μια συγκεκριμένη εργα-
σία, αντλώντας διάφορες πληροφορίες για τον στόχο προς επίτευξη και παράγοντας σχετικές απαντή-
σεις. Αυτοί οι πράκτορες μπορούν να εφαρμοστούν σε διάφορους τομείς, όπως κρατήσεις σε εστια-
τόρια, αεροπορικά ταξίδια, ψώνια ή και παραγγελίες φαγητού. Τέτοιους ψηφιακούς βοηθούς μπορεί
κανείς να βρει σε κάθε κινητό τηλέφωνο ή οικιακούς ελεγκτές (π.χ. Siri, Cortana, Alexa, Google
Now / Home κ.λπ.) των οποίων τα αυτόματα διαλογικά συστήματα μπορούν να δώσουν ταξιδιωτικές
οδηγίες, να ελέγξουν οικιακές συσκευές, να βρουν εστιατόρια ή να βοηθήσουν να πραγματοποιηθούν
τηλεφωνικές κλήσεις ακομά και να στείλουν κείμενα σε μορφή SMS. Το κλειδί για να θεωρήσει κανείς
αυτά τα συστημάτα επιτυχημένα είναι να βοηθήσουν τον χρήστη να ολοκληρώσει την απαιτούμενη
εργασία το συντομότερο δυνατό. Έτσι, η κύρια προσοχή δίνεται στην ολοκλήρωση εργασιών, έχοντας
σύντομες συνομιλίες.

Από την άλλη πλευρά, οι πράκτορες που δεν είναι προσανατολισμένοι στην εκπλήρωση συγκεκριμέ-
νων εργασίων, έχουν σχεδιαστεί για εκτεταμένες συνομιλίες και με στόχο να μιμηθούν την αδόμητη
συνομιλία της ανθρώπινης αλληλεπίδρασης μεταξύ ανθρώπων, αντί να επικεντρώνονται στην ολο-
κλήρωση εργασιών. Η έρευνα για συστήματα διαλόγου που δεν βασίζονται σε στόχους επιστρέφει
στα μέσα της δεκαετίας του ’60. Ξεκίνησε με το διάσημο πρόγραμμα ELIZA [1], του Weizenbaum,
ένα συστήμα βασιζόμενο μονάχα σε απλούς κανόνες κατάτμησης/ανάλυσης κειμένου. Το συγκεκρι-
μένο σύστημα κατάφερε να μιμηθεί αρκετά πειστικά ένα ανθρωποκεντρικό ψυχοθεραπευτή με το να
επαναδιατυπώνει διάφορες δηλώσεις και με το να θέτει ερωτήσεις. Στην ίδια ερευνητική κατεύθυνση
κινήθηκαν στην συνέχεια και άλλοι ερευνητές, οι οποίοι χρησιμοποίησαν απλούς κανόνες ανάλυσης
κειμένου για να κατασκευάσουν το σύστημα διαλόγου PARRY [2], το οποίο κατάφερε να μιμηθεί
την παθολογική συμπεριφορά ενός παρανοϊκού ασθενούς στο βαθμό που οι κλινικοί γιατροί δεν μπο-
ρούσαν να το διακρίνουν από πραγματικούς ασθενείς. Στις μέρες μας, ως εξέλιξη αυτών των πρώτων
συστημάτων, αναπτύχθηκαν διάφορα συστήματα που δεν εστιάζουν σε πρακτικούς σκοπούς, όπως
τα προαναφερθέντα, αλλά εστιάζουν στην ψυχαγωγία όπως για παράδειγμα το σύστημα XiaoIce της
Microsoft [3].

Τα αυτόματα διαλογικά συστήματα που δεν έχουν ως στόχο την εκπλήρωση συγκεκριμένων εργα-
σιών (chatbots) μπορούν περαιτέρω να χωριστούν σε δύο κατηγορίες, ανάλογα με την αρχιτεκτονική
τους: chatbots με βάση κανόνες (rule-based) και συλλογές δεδομένων (corpus-based). Τα rule-based
chatbots βασίζονται σε κανόνες μετατροπής μοτίβων που χρησιμοποιούνται για την κωδικοποίηση
της εισόδου και για την παραγωγή μιας απάντησης. Τα chatbots αυτής της κατηγορίας χρησιμοποιούν
λέξεις-κλειδιά που σχετίζονται με μια κατάταξη, με συγκεκριμένες λέξεις να έχουν υψηλότερη κατά-
ταξη και γενικότερες λέξεις να έχουν χαμηλή κατάταξη. Δεδομένης λοιπόν της εισόδου, τα chatbots
βάσει κανόνα βρίσκουν τη λέξη με την υψηλότερη κατάταξη λέξεων-κλειδιών στην είσοδο και, στη
συνέχεια, επιλέγουν τον κανόνα με την υψηλότερη κατάταξη που ταιριάζει καλύτερα στην είσοδο.
Σχηματίζοντας έτσι ένα κωδικοποιημένο μοτίβο, εφαρμόζεται στην συνέχεια ένας κανόνας μετασχη-
ματισμού στο μοτίβο αυτό για την παραγωγή μιας απάντησης. Το πρώτο chatbot που εφαρμόστηκε
βασισμένο σε κανόνες ήταν το ELIZA. Σήμερα, ορισμένα μοντέρνα chatbots ακολουθούν επίσης την
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αρχιτεκτονική που βασίζεται σε κανόνες, όπως το ALICE chatbot [4], το οποίο χρησιμοποιεί μια ενη-
μερωμένη έκδοση της αρχιτεκτονικής του ELIZA.

Από την άλλη πλευρά, τα chatbots που βασίζονται σε corpus, αντί να χρησιμοποιούν χειροποίητους
κανόνες, χρησιμοποιούν μια πληθώρα διαλόγων μεταξύ ανθρώππων για να δώσουν μια απάντηση.
Αυτά τα chatbots χωρίζονται περαιτέρω σε δύο κατηγορίες: τα retrieval-based και τα generation-
based. Τα συστήματα που ανήκουν στην πρώτη κατηγορία επιλέγουν καθοριστικά από ένα σταθερό
σύνολο πιθανών απαντήσεων. Πιο συγκεκριμένα, αυτά τα chatbots αντιστοιχούν το ιστορικό διαλόγου
και τις εξωτερικές γνώσεις (π.χ. μια βάση δεδομένων, η οποία μπορεί να ερωτηθεί από το σύστημα) σε
μια ενέργεια απόκρισης. Συστήματα που αναζητούν μέσω μιας βάσης δεδομένων διαλόγων και επι-
λέγουν απαντήσεις βασιζόμενα στην ομοιότητα των ερωτοαπαντήσεωνς [5, 6], ανήκουν σε αυτήν την
κατηγορία. Σε αντίθεση με τα συστήματα ανάκτησης, τα generation-based συστήματα προσπαθούν
να παράγουν απαντήσεις δημιουργόντας μια πιθανοτική κατανομή έναντι των πιθανών απαντήσεων.
Αυτά τα συστήματα δημιουργούν απαντήσεις λέξη-προς-λέξη, δειγματοληπτώντας λέξεις με βάση
μια κατανομή πιθανότητας στο λεξιλόγιο που χρησιμοποιείται. Τα generation-based συστήματα μπο-
ρούν επίσης να συνδυάσουν εξωτερικές γνώσεις από βάσεις δεδομένων για να παράγουν καλύτερες
απαντήσεις. Ένα από τα πιο δημοφιλή generation-based διαλογικά συστήματα είναι το Meena [7],
το οποίο προτάθηκε από την Google και εκπαιδεύτηκε σε συζητήσεις ανοιχτού πεδίου προερχόμενες
από τα μέσα κοινωνικής δικτύωσης. Πρόσφατα επίσης, το FacebookAI, δημιούργησε το BlenderBot
[8], το μεγαλύτερο διαλογικό σύστημα ανοιχτού τομέα που έχει κατασκευαστεί μέχρι στιγμής. Αυτό
το διαλογικό σύστημα συνδυάζει αρχιτεκτονικές ανάκτησης όσο και generation-based, έχοντας συ-
νολικά 9.4 δισεκατομμύρια παραμέτρους. Είναι ένα διαλογικό σύστημα με πολλαπλές ικανότητες εν-
συναίσθησης, προσωπικότητας και γνώσης, το οποίο σύμφωνα με αξιολογήσεις που βασίζονται στην
ανθρώπινη κρίση φαίνεται να έλκει το ενδιαφέρον των χρηστών. Ωστόσο, σε αυτή τη διπλωματική
εργασία μελετάμε μόνο generation-based συστήματα χωρίς τη χρήση εξωτερικών γνώσεων (μεθόδων
ανάκτησης).

0.1.2 Μεταφορά Μάθησης (Transfer Learning) & Γλωσσικά Μοντέλα (Language
Models)

Στον τομέα της επεξεργασίας φυσικής γλώσσας (NLP), τα βαθιά νευρικά δίκτυα έχουν βελτιώσει την
απόδοση των μοντέλων σε πολλές εργασίες. Ωστόσο, η εκπαίδευση ενός μοντέλου από το μηδέν απαι-
τεί πληθώρα επισημειωμένων δεδομένων (labeled data). Για παράδειγμα, η εκπαίδευση ενός συστήμα-
τος διαλόγου απαιτεί εκατομμύρια δεδομένα, με συγκεκριμένες επισημειωμένες απαντήσεις (targets).
Ωστόσο, σε πολλές πρακτικές εφαρμογές, υπάρχουν λίγα διαθέσιμα επισημειωμένα δεδομένα για την
εποπτεία της εκπαίδευσης του μοντέλου. Σε αυτές τις περιπτώσεις, η χρήση της μεταφοράς μάθησης
(transfer learning) προσφέρει μια εναλλακτική λύση. Τα μοντέλα προεκπαιδεύονται σε μια παρόμοια
εργασία και, στη συνέχεια, προσαρμόζονται στην απαιτούμενη εργασία, χρησιμοποιώντας τις γνώσεις
που αποκτήθηκαν από τη διαδικασία προεκπαίδευσης. Έτσι, προκειμένου να επιτύχουμε ικανοποιη-
τικά αποτελέσματα κατά τη δημιουργία ενός αυτόματου συνομιλητή, προεκπαιδεύουμε ένα μοντέλο
ως γλωσσικό μοντέλο. Με αυτόν τον τρόπο, το μοντέλο που χρησιμοποιείται είναι σε θέση να δη-
μιουργήσει υψηλού επιπέδου αναπαραστάσεις της γλώσσας, χρησιμοποιώντας αυτήν τη γνώση κατά
τη διάρκεια της βελτιστοποίησης (fine-tuning).

Στη μοντελοποίηση γλωσσών, το μοντέλο υπολογίζει μια πιθανότητα κατανομής σε μια ακολουθία
λέξεων, δημιουργώντας μια μοναδική αναπαράσταση για κάθε λέξη που προέκυψε, βάσει ενός προη-
γούμενου περιεχομένου. Με άλλα λόγια, ένα γλωσσικό μοντέλο καλείται να υπολογίσει την πιθανό-
τητα εμφάνισης ενός αριθμού λέξεων σε μια συγκεκριμένη ακολουθία. Πιο συγκεκριμένα, ένα γλωσ-
σικό μοντέλο δεδομένης μιας ακολουθίας λέξεων ως είσοδο, προσπαθεί να προβλέψει την επόμενη
λέξη. Με αυτόν τον τρόπο λοιπόν, το μοντέλο μπορεί να δημιουργήσει αναπαραστάσεις λέξεων με
βάση το περιεχόμενο/ιστορικό. Ως αποτέλεσμα, δεν απαιτεί επισημειωμένα εκπαιδευτικά δεδομένα,
που είναι δύσκολο να βρεθούν. Το απλό κείμενο, ωστόσο, διατίθεται σε μεγάλες ποσότητες για κάθε
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πιθανή εργασία. Έτσι, τα γλωσσικά μοντέλα μπορούν να εκπαιδευτούν σε μια πληθώρα δεδομένων
που είναι διαθέσιμα δωρεάν. Λόγω της ικανότητας των γλωσσικών μοντέλων να εξάγουν γενικές ανα-
παραστάσεις λέξεων με βάση το περιεχόμενο/ιστορικό, χρησιμοποιούνται πλέον ευρέως σε πολλούς
τομείς. Ένας τέτοιος τομέας είναι τα διαλογικά συστήματα.

0.1.3 Εκμάθηση Πολλαπλών Εργασιών (Multi-task Learning)

Η εκμάθηση πολλαπλών εργασιών είναι μια τεχνική μάθησης στην οποία θέλουμε να εκπαιδεύσουμε
ένα μοντέλο σε πολλές σχετικές εργασίες ταυτόχρονα. Με άλλα λόγια, θέλουμε το μοντέλο να κάνει
προβλέψεις για κάθε μία από τις εργασίες ταυτόχρονα. Ο στόχος αυτού είναι να εκμεταλλευτούμε τις
πληροφορίες σε ένα από τα προβλήματα, ώστε να μπορούμε να βελτιώσουμε την απόδοση στα υπό-
λοιπα προβλήματα. Στην μάθηση με χρήση βαθιών νευρωνικών δικτύων, η βασική ιδέα της εφαρμο-
γής εκμάθησης πολλαπλών εργασιών είναι να έχουμε διαφορετικά δίκτυα που αποτελούν μέρος της
ίδιας δομής και να έχουν μερικές κοινές παραμέτρους. Έτσι, το κοινόχρηστο μέρος επηρεάζεται από
όλα τα προβλήματα, ενώ τα μη κοινόχρηστα μέρη επηρεάζονται από τα δεδομένα εκπαίδευσης κάθε
εργασίας ανεξάρτητα.

0.2 Αυτόματη Παραγωγή Διαλόγου με χρήση Generation-based
Μοντέλων

Η βασική ιδέα πίσω από τα generation-based μοντέλα είναι η παραγωγή προτάσεων λέξη προς λέξη,
βασιζόμενα σε ένα προηγούμενο περιεχόμενο/ιστορικό που στην πιο απλή περίπτωση μπορεί να απο-
τελείται από την προηγούμενη στροφή (turn) του διαλόγου. Διάφορες generation-based αρχιτεκτο-
νικές έχουν προταθεί για διαλογικά συστήματα. Παρακάτω θα μελετήσουμε κάποιες βασικές πα-
ραδοσιακές αρχιτεκτονικές (vanilla seq2seq και vanilla seq2seq με attention) και στην συνέχεια θα
εστιάσουμε και σε πιο συγχρονες (Transformer Encoder Decoder, BERT, GPT2 και Τ5). Επιπλέον,
θα μελετήσουμε τις βασικές μεθόδους αποκωδικοποίησης που χρησιμοποιούνται κατά την παραγωγή
απαντήσεων, καθώς επίσης και τις κύριες μετρικές που χρησιμοποιούνται σήμερα για την αξιολόγηση
των διαλογικών συστημάτων.

0.2.1 Vanilla seq2seq

Μια από τις απλούστερες αρχιτεκτονικές που μπορεί να χρησιμοποιηθεί σε διαλογικά συστήματα
είναι αυτή των μοντέλων ακολουθίας σε ακολουθία (seq2seq). Το απλούστερο μοντέλο αυτής της κα-
τηγορίας είναι το Vanilla seq2seq. Η ιδέα του μοντέλου είναι η αντιστοίχιση μιας ακολουθίας εισόδου
μεταβλητού μήκους σε μια ακολουθία εξόδου επίσης μεταβλητού μήκους. Για να επιτευχθεί η αντι-
στοίχιση αυτή χρησιμοποιείται ένα μοντέλο κωδικοποιητή (encoder) για την απόκτηση μιας σταθερού
μήκους διανυσματικής αναπαράστασης της ακολουθίας εισόδου, που αντιπροσωπεύει τις κωδικοποι-
ημένες πληροφορίες. Επιπλέον, χρησιμοποιείται και ένα μοντέλο αποκωδικοποιητή (decoder) για την
εξαγωγή της ακολουθίας εξόδου, αποκωδικοποιώντας τη σταθερού μήκους διανυσματική αναπαρά-
σταση που έχει προκύψει από τον κωδικοποιητή και δημιουργώντας έτσι μια απάντηση λέξη προς
λέξη. Η περιγραφόμενη αρχιτεκτονική απεικονίζεται στην Εικόνα 0.1.

0.2.2 Vanilla seq2seq με attention

Tο κύριο μειονέκτημα του μοντέλου Vanilla seq2seq έγγειται στο γεγονός οτι είναι σχεδόν ανίκανο να
αντιπροσωπεύει μακροπρόθεσμες ακολουθίες με τη χρήση μιας απλής διανυσματικής αναπαράστα-
σης σταθερού μήκους. Προκειμένου λοιπόν να μοντελοποιηθούν καλύτερα μακροπρόθεσμες ακολου-
θίες, ο μηχανισμός προσοχής (attention mechanism) εφαρμόστηκε στον τομέα του NLP. Ο μηχανι-
σμός προσοχής, αντί να βασίζεται μόνο στην κρυφή κατάσταση (hidden state) του αποκωδικοποιητή,
αναγκάζει το μοντέλο να μάθει να εστιάζει (να παρακολουθεί) σε συγκεκριμένα μέρη της ακολουθίας
εισόδου κατά την αποκωδικοποίηση, διαφορετικά κάθε φορά που παράγει μία νέα λέξη. Στην Εικόνα
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Σχήμα 0.1: H αρχιτεκτονική Vanilla seq2seq, αποτελούμενη από τον κωδικοποιητή και τον αποκωδι-
κοποιητή. Πηγή: [9]

0.2 απείκονίζεται ο μηχανισμός προσοχής που υλοποιήθηκε από τον Bahdanau [11]. Με βάση αυτόν
τον μηχανισμό για κάθε λέξη υπολογίζουμε μία “βαθμολογία προσοχής” (attention score), η οποία
καθορίζει κατά πόσο πρέπει να ληφθεί υπόψιν η συγκεκριμένη κρυφή κατάσταση του κωδικοποιητή
στην έξοδο. Στην συνέχεια, με μία σειρά από κατάλληλες πράξεις περνάμε αυτή την πληροφία στην
κρυφή κατάσταση του αποκωδικοποιητή και παράγουμε την επόμενη λέξη.

0.2.3 Transformer Encoder Decoder

Το 2017, προτάθηκε η αρχιτεκτονική του δικτύου Transformer [12], επιτυγχάνοντας όχι μόνο καλύ-
τερη ποιότητα των παραγόμενων απαντήσεων, αλλά απαιτώντας πολύ λιγότερο χρόνο εκπαίδευσης.
Το μοντέλο Transformer βασίζεται εξ ολοκλήρου στο μηχανισμό αυτοπροσοχής (self-attention) για
τον υπολογισμό των αναπαραστάσεων της εισόδου και της εξόδου. Αποτελείται από μια στοίβα κωδι-
κοποιητών και μία αποκωδικοποιητών. Η στοίβα του κωδικοποιητή αποτελείται από N πανομοιότυπα
επίπεδα κωδικοποιητών. Κάθε ένα από αυτά αποτελείται από 2 υποεπίπεδα. Το πρώτο υποεπίπεδο εί-
ναι ένας μηχανισμός αυτοπροσοχής πολλαπλών κεφαλών (multi-head self-attention), ένω το δεύτερο
είναι ενα πλήρως συνδεδεμένο δίκτυο τροφοδοσίας προς τα εμπρός. Μέσω του μηχανισμού αυτο-
προσοχής ο κωδικοποιητής βρίσκει τις αλληλοσυχεστίσεις των λέξεων που αποτελούν την είσοδο,
δίνοντας στην συνέχεια κατάλληλη έμφαση σε κάθε μια από αυτές. Όσον αφορά την στοίβα του
αποκωδικοποιητή αποτελείται και εκείνη από Ν πανομοιότυπα επίπεδα αποκωδικοποιητών. Εκτός
από τα δύο υποεπίπεδα που συναντήσαμε στον κωδικοποιητή, κάθε στρώμα αποκωδικοποιητή έχει
επίσης ένα τρίτο υποεπίπεδο, το οποίο εφαρμόζει αυτοπροσοχή πολλαπλών κεφαλών (multi-head
self-attention) στις εξόδους της στοίβας κωδικοποιητή. Η αυτοπροσοχή σε κάθε υποεπίπεδο αποκω-
δικοποιητή έχει τροποποιηθεί με τέτοιο τρόπο ώστε να αποφεύγεται η προσοχή (παρακαλούθηση) σε
επόμενες θέσεις, και να εστιάζει σε προηγούμενες. Η απεικόνιση του μοντέλου φαίνεται στην Εικόνα
0.3.
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Σχήμα 0.2: Η αρχιτεκτονική Vanilla seq2seq ενισχυμένη με τον μηχανισμό προσοχής (attention).
Πηγή: [10]

0.2.4 BERT

To BERT μοντέλο βασίζεται αρχιτεκτονικά στην ιδέα του Transformer. Αποτελείται από μια στοίβα
κωδικοποιητών χρησιμοποιώντας την δυνατότητα αυτοπροσοχής πολλών κεφαλών (multi-head self-
attention) σε δύο κατευθύνσεις. Ένας από τους κύριους λόγους για την καλή απόδοση του BERT
σε διαφορετικές εργασίες (tasks) είναι η προεκπαίδευσή του σε δύο μη εποπτευόμενες εργασίες. Με
αυτόν τον τρόπο, το μοντέλο έχει τη δυνατότητα να κατανοεί τα μοτίβα της γλώσσας. Η πρώτη ερ-
γασία στην οποία το μοντέλο είναι προεκπαιδευμένο ονομάζεται “μοντελοποίηση γλώσσας με κενά”
(masked language modeling - MLM). Σε αυτήν την εργασία, το 15% των λέξεων κάθε ακολουθίας
καλύπτεται τυχαία και το μοντέλο προσπαθεί να προβλέψει τις λέξεις αυτές. Η δεύτερη εργασία ονο-
μάζεται “πρόβλεψη επόμενης πρότασης” (Next Sentence Prediction - NSP). Πολλές σημαντικές με-
ταγενέστερες εργασίες, όπως η απάντηση ερωτήσεων (QA) και η “κατανόηση φυσικής γλώσσας”
(Natural Language Inference - NLI) βασίζονται στην κατανόηση της σχέσης μεταξύ δύο προτάσεων,
οι οποίες δεν καταγράφονται άμεσα από τη μοντελοποίηση γλωσσών. Κατά συνέπεια, προκειμένου
να μπορεί το μοντέλο να κατανοεί τις σχέσεις των προτάσεων, είναι προ-εκπαιδευμένο να προβλέπει
αν μία πρόταση (Β) αποτελεί συνέχεια μίας άλλης πρότασης (Α) σε ένα κείμενο. Για τη διαδικασία
προεκπαίδευσης χρησιμοποιούνται κείμενα από το BooksCorpus και την Αγγλική Βικιπαίδεια. Η δια-
δικασία προεκπαίδευσης (pre-training) και βελτιστοποίησης εκπαίδευσης (fine-tuning) απεικονίζεται
στην Εικόνα 0.4.

0.2.5 GPT2

Η αρχιτεκτονική του μοντέλου δεν είναι μια ιδιαίτερα νέα αρχιτεκτονική, καθώς είναι σαν και αυτή
του αποκωδικοποιητή του Transformer (decoder-only transformer). Το GPT2 μοντέλο δηλαδή αποτε-
λείται μόνο από μια στοίβα αποκωδικοποιητών. Κάθε αποκωδικοποιητής αποτελείται από δύο υπο-
επίπεδα, το επίπεδο πολλών κεφαλών αυτοπροσοχής (multi-head self-attention) και το επίπεδο με
το πλήρες δίκτυο τροφοδοσίας προς τα εμπρός. Στο επίπεδο αυτοπροσοχής χρησιμοποιείται “masked
self-attention”, δηλαδή το μοντέλο εστιάζει σε λέξεις που βρίσκονται σε προηγούμενες θέσεις από την
τρέχουσα. Το μοντέλο είναι εκπαιδευμένο ως γλωσσικό μοντέλο, στο σύνολο δεδομένων WebText,
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Σχήμα 0.3: Η αρχιτεκτονική Transformer Encoder Decoder. Πηγή: [12]

Σχήμα 0.4: Διαδικασίες pre-training και fine-tuning του μοντέλου BERT. Πηγή: [13]

προσπαθώντας να προβλέψει την επόμενη λέξη. Η απεικόνιση του μοντέλου φαίνεται στην Εικόνα
0.5.

0.2.6 Text-to-Text Transfer Transformer (T5)

Το T5 μοντέλο ακολουθεί ακριβώς την ίδια αρχιτεκτονική του Transformer Encoder Decoder μοντέ-
λου. Ως προς την εκπαίδευση, η βασική ιδέα πίσω από το μοντέλο T5 είναι η μετατροπή όλων των
εργασιών NLP σε μια ενοποιημένη μορφή κειμένου σε κείμενο (text-to-text) όπου η είσοδος και η
έξοδος είναι πάντα συμβολοσειρές κειμένου. Αυτή η προσέγγιση μορφής κειμένου σε κείμενο μας
επιτρέπει να εφαρμόζουμε εύκολα το ίδιο μοντέλο, την ίδια διαδικασία εκπαίδευσης και την ίδια δια-
δικασία αποκωδικοποίησης σε κάθε εργασία που εξετάζεται, όπως η απάντηση ερωτήσεων (question
answering), η συνοπτική παρουσίαση εγγράφων (document summarization), η ταξινόμηση συναι-
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Σχήμα 0.5: Αναπαράσταση του GPT2 μοντέλου.

σθημάτων (sentiment classification) και οι εργασίες μηχανικής μετάφρασης (machine translation). Οι
ερευνητές, για να εκπαιδεύσουν ένα μεμονωμένο μοντέλο για το διαφορετικό σύνολο εργασιών που
περιγράφονται παραπάνω, πρόσθεσαν ένα πρόθεμα (prefix) στην αρχική ακολουθία εισόδου πριν την
τροφοδοτήσουν στον κωδικοποιητή, προκειμένου να καθορίσουν ποια εργασία θα πρέπει το μοντέλο
να εκτελέσει. Για παράδειγμα, προκειμένου το μοντέλο να μεταφράσει την πρόταση “That is good.”
από τα Αγγλικά στα Γερμανικά, η πρόταση “translate English to German: That is good.” τροφοδο-
τείται ως είσοδος στο μοντέλο, και η πρόταση “Das ist gut.” χρησιμοποιείται ως στόχος (target). Το
μοντέλο είναι προεκπαιδευμένο σε δεδομένα χωρίς ετικέτες, προκειμένου να γενικευθεί η γνώση που
θα είναι χρήσιμη κατά τη διάρκεια της βελτιστοποίησης της εκπαίδευσης (fine-tuning). Χρησιμοποιή-
θηκε τo “Colossal Clean Crawled Corpus (C4)” σύνολο δεδομένων. Η τεχνική του “masked language
modeling”, που χρησιμοποιήθηκε και στο BERT, εφραμόστηκε προκειμένου το μοντέλο να μάθει να
προβλέπει τις κρυμμένες λέξεις. Όσον αφορά τη διαδικασία βελτιστοποίησης (fine-tuning), οι ερευ-
νητές πειραματίστηκαν με διαφορετικές προσεγγίσεις, όπως η εφαρμογή fine-tuning σε κάθε εργασία
ξεχωριστά, η εκμάθηση πολλαπλών εργασιών (multi-task learning), η εκπαίδευση πολλαπλών εργα-
σιών αφήνοντας μία εργασία (leave-one-out multi-task learning) κ.α. Ο μηχανισμός λειτουργίας του
μοντέλου για διαφορετικές εργασίες φαίνεται στην Εικόνα 0.6.

Σχήμα 0.6: Απεικόνιση του μηχανισμού λειτουργίας του μοντέλου Τ5 σε διαφορετικές εργασίες.
Πηγή: [14]

0.2.7 Μέθοδοι Αποκωδικοποίησης

Εκτός από τις βελτιωμένες αρχιτεκτονικές των Transformers και τα πάρα πολλά μη εποπτευόμενα
δεδομένα εκπαίδευσης, οι μέθοδοι αποκωδικοποίησης παίζουν επίσης σημαντικό ρόλο στη δημιουρ-
γία συνεκτικών και άπταιστων απαντήσεων. Η μέθοδος αποκωδικοποίησης είναι μια στρατηγική που
εφαρμόζεται στον αποκωδικοποιητή, σύμφωνα με την οποία επιλέγουμε από το λεξιλόγιο του μο-
ντέλου που χρησιμοποιείται, ποια λέξη θα παραχθεί. Οι βασικότερες μέθοδοι αποκωδικοποίησης που
χρησιμοποιούνται σήμερα είναι:
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• Άπληστη αποκωδικοποίηση (greedy decoding):Ηάπληστη αποκωδικοποίηση είναι η απλού-
στερη μέθοδος αποκωδικοποίησης που μπορεί να χρησιμοποιηθεί για τη δημιουργία προτά-
σεων. Σύμφωνα με αυτήν τη μέθοδο, δεδομένων των προηγούμενων λέξεων που δημιουργήθη-
καν, σε κάθε χρονικό βήμα, επιλέγουμε τη λέξη με την υψηλότερη πιθανότητα εμφάνισης.

• Ακτινωτή αποκωδικοποίηση (beam search): Η ακτινωτή αποκωδικοποίηση αναλύει περισ-
σότερες διαδρομές σε κάθε χρονικό βήμα (αντί να επιλέγει απλά την λέξη με την μεγαλύτερη
πιθανότητα εμφάνισης). Έτσι, σε κάθε χρονικό βήμα, διατηρεί τις περισσότερες πιθανότητες
υποθέσεων και τελικά επιλέγει την υπόθεση που έχει τη συνολική υψηλότερη πιθανότητα. Ο
αριθμός των υποθέσεων που διατηρούνται σε κάθε χρονικό βήμα είναι μια παράμετρος που
καθορίζεται από τον ερευνητή, που ονομάζεται αριθμός “beams”.

• Top-k δειγματοληψία (Top-k sampling):Κατά τη δειγματοληψία top-k, οι k πιθανότερες επό-
μενες λέξεις φιλτράρονται και η μάζα πιθανότητας ανακατανέμεται μόνο σε αυτές τις λέξεις k.
Ωστόσο, αυτό μπορεί να είναι προβληματικό καθώς ορισμένες λέξεις μπορεί να ληφθούν ως
δείγμα από μια πολύ εστασμένη κατανομή, ενώ άλλες από μια πολύ πιο επίπεδη κατανομή.

• Top-p δειγματοληψία (Top-p (nucleus) sampling): Στη δειγματοληψία top-p επιλέγουμε λέ-
ξεις από το μικρότερο δυνατό σύνολο λέξεων, των οποίων η συσσωρευτική πιθανότητα υπερ-
βαίνει ένα όριο πιθανότητας p. Αυτή η μέθοδος αποκωδικοποίησης επιτρέπει δυναμική επιλογή
λέξεων.

• Top-k Top-p δειγματοληψία (Top-k Top-p Sampling): Σε αυτή την περίπτωση συνδυάζο-
νται οι δύο προηγούμενες μέθοδοι. Στο πρώτο βήμα εφαρμόζουμε top-k φιλτράρισμα και στην
συνέχεια top-p δειγματοληψία.

0.2.8 Μέθοδοι Αξιολόγησης

Οι μέθοδοι αξιολόγησης των απαντήσεων ενός διαλογικού συστήματος μπορούν να διακριθούν σε
αυτόματες και σε αυτές που γίνονται με βάση την ανθρώπινη κρίση. Οι πιο συνηθισμένες μετρικές
που χρησιμοποιούνται και ανήκουν στην πρώτη κατηγορία είναι:

• Perplexity

• BLEU

• Distinct-n

ενώ αυτές που ανήκουν στην δεύτερη είναι:

• Σύγκριση κατά ζεύγη

• Αξιολόγηση συνάφειας

• Αξιολόγηση συνοχής

Οι παραπάνω μέθοδοι περιγράφονται αναλυτικά στην ενότητα 4.11 στο πλήρες κείμενο (αγγλικό κεί-
μενο).

0.3 Διαλογικά Συστημάτα Ενσυναίσθησης με χρήση Generation-based
Μοντέλων

Τα σύγχρονα διαλογικά συστήματα επιτυγχάνουν εντυπωσιακά αποτελέσματα, όντας ικανά να επι-
κοινωνούν με τον χρήστη, διατηρώντας το ενδιαφέρον του. Ωστόσο πέρα από την κατανόηση του
τι συζητείται, είναι σημαντικό ένα διαλογικό σύστημα να αντιλαμβάνεται τι αισθάνεται ο χρήστης.
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Ενώ κάτι τέτοιο συμβαίνει ασυνείδητα κατά τον διάλογο που αναπτύσσεται μεταξύ ανθρώπων, για
τα διαλογικά συστήματα αποτελεί σημαντική πρόκληση. Βασιζόμενοι λοιπόν στην πρόκληση του να
δημιουργήσουμε διαλογικά συστήματα ικανά να κατανοούν και να αναγνωρίζουν τα συναισθήματα
που κρύβονται πίσω από μια συζήτηση, καθώς και να παράγουν απαντήσεις κατάλληλου συναισθη-
ματικού περιεχομένου, δείχνοντας ενσυναίσθηση, μελετάμε την εργασία με θέμα “Διάλογοι με Εν-
συναίσθηση”, που προτάθηκε από την Facebook. Στα πλαίσια λοιπόν αυτής της μελέτης, αρχικά πα-
ρουσιάζουμε τα σύνολα δεδομένων (datasets) τα οποία χρησιμοποιήσαμε, μελετάμε αρχιτεκτονικές
βασισμένες σε generation-based μοντέλα που έχουν προταθεί από άλλους ερευνητές και προτείνουμε
δικές μας ιδέες. Στην συνέχεια παρουσιάζουμε τα αποτελέσματα των πειραμάτων μας συγκρίνοντας
τα αποτελέσματα.

0.3.1 Σύνολα Δεδομένων (Datasets)

Στα πλαίσια αυτής της διπλωματικής χρησιμοποιήσαμε το Empathetic Dialogues dataset και το ConvAI2
dataset, τα οποία περιγράφουμε εν συντομία παρακάτω.

• Empathetic Dialogues Dataset: Το Empathetic Dialogues Dataset αποτελεί το κύριο dataset
που χρησιμοποιήσαμε για βελτιστοποίηση (fine-tuning) των μοντέλων μας. Αποτελείται από
συζητήσεις ανοιχτού περιεχομένου (open-domain) μεταξύ δύο συνομιλητών. Κάθε συζήτηση
βασίζεται σε μία κατάσταση στην οποία έχει βρεθεί ο ένας εκ των δύο συνομιλητών και σχε-
τίζεται με ένα συγκεκριμένο συναίσθημα. Τα βασικά στατιστικά χαρακτηριστικά του dataset
φαίνονται στον πίνακα 0.1.

Πίνακας 0.1: Στατιστικά του Empathetic Dialogue dataset

Train V alid. Test

Αριθμός διαλόγων 19433 2770 2547
Αριθμός στροφών (turns) 84324 12078 10973
Μέσος αριθμός στροφών διαλόγων 4.31 4.36 4.31

Για πλήρη κατανόηση παρουσιάζουμε ένα παραδείγμα από το σύνολο εκπαίδευσης στην Εικόνα
0.7.

Σχήμα 0.7: Παραδείγμα διαλόγου από το σύνολο εκπαίδευσης του Empathetic Dialogues dataset.

• ConvAI2 Dataset: Το ConvAI2 Dataset αποτελεί το δεύτερο dataset που χρησιμοποιήσαμε
για προεκπαίδευση (pretraining) των μοντέλων. Αποτελείται και αυτό από συζητήσεις ανοιχτού
περιεχομένου (open-domain) μεταξύ δύο συνομιλητών, όπου κάθε ένας έχει ένα συγκεκριμένο
προφίλ προσωπικότητας. Τα βασικά στατιστικά χαρακτηριστικά του dataset φαίνονται στον
πίνακα 0.2.
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Πίνακας 0.2: Στατιστκά του ConvAI2 dataset

Train V alid. Test(Hidden)

Αριθμός διαλόγων 17,878 1000 1015
Αριθμός στροφών (turns) 131438 7801 6634
Αριθμός προσωπικοτήτων 1155 100 100

Ομοίως με πριν, για βαθύτερη κατανόηση παρουσιάζουμε ένα παράδειγμα στον πίνακα 0.2.

Πίνακας 0.3: Παράδειγμα διαλόγου του ConvAI2

Persona 1 Persona 2

I like to ski I am an artist
My wife does not like me anymore I have four children
I have went to Mexico 4 times this year I recently got a cat
I hate Mexican food I enjoy walking for exercise
I like to eat cheetos I love watching Game of Thrones
[PERSON 1:] Hi
[PERSON 2:] Hello ! How are you today ?
[PERSON 1:] I am good thank you , how are you.
[PERSON 2:] Great, thanks ! My children and I were just about to watch Game of Thrones.
[PERSON 1:] Nice ! How old are your children?
[PERSON 2:] I have four that range in age from 10 to 21. You?
[PERSON 1:] I do not have children at the moment.
[PERSON 2:] That just means you get to keep all the popcorn for yourself.
[PERSON 1:] And Cheetos at the moment!
[PERSON 2:] Good choice. Do you watch Game of Thrones?
[PERSON 1:] No, I do not have much time for TV.
[PERSON 2:] I usually spend my time painting: but, I love the show.

0.3.2 Βασικές Αρχιτεκτονικές (Baseline Architectures)

Σε αυτό το μέρος αναφέρουμε τις βασικές αρχιτεκτονικές που χρησιμοποιήθηκαν από άλλους ερευ-
νητές (πίνακας 0.4). Για περισσότερες πληροφορίες παρακαλούμε τον αναγνώστη να ανατρέξει στην
πλήρη διπλωματική εργασία (αγγλικό κείμενο).

0.3.3 Προτεινόμενες Αρχιτεκτονικές (Proposed Architectures)

Σε αυτό το μέρος παρουσιάζουμε τα generation-based μοντέλα που χρησιμοποιήσαμε. Αρχικά πει-
ραματιστήκαμε με τα μοντέλα BERT2BERT και BERT2GPT2, και στην συνέχεια με 3 προσεγγίσεις
βασισμένες στο μοντέλο T5. Πιο αναλυτικά:

• BERT2BERT: Το μοντέλο BERT2BERΤ ακολουθεί την seq2seq αρχιτεκτονική. Αποτελείται
από έναν BERT encoder και έναν BERT decoder.

• BERT2GPT2: Το μοντέλο BERT2BERΤ ακολουθεί και αυτό την seq2seq αρχιτεκτονική. Απο-
τελείται από έναν BERT encoder και έναν GPT2 decoder.

• T5-baseline: Σε αυτή την προσέγγιση χρησιμοποιήσαμε το T5 μοντέλο ως έχει.
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Πίνακας 0.4: Βασικές Αρχιτεκτονικές (Baseline Architectures)

Όνομα Μοντέλου Προεκπαίδευση Χαρακτηριστικά Βιβλ.

(1) Vaswani Full Transformer Reddit Dataset transformer [15, 16]
(2) Multitask Transformer Reddit Dataset transformer, multitasking [15, 16]
(3) Prepend-k Reddit Dataset transformer, prepending [15, 16]
(4) Ensemble of Encoders Reddit Dataset transformer, ensembling [15, 16]
(5) CAiRE Book Corpus, PersonaChat GPT, multitasking [17]
(6) GPT2-baseline WebText GPT2 [18]
(7) GPT2-prepend WebText GPT2, prepending [18]
(8) DodecaDialogue MT Reddit, Twitter transformer, multitasking [19]
(9) DodecaDialogue MT+FT Reddit, Twitter transformer, multitasking,

finetuning [19]
(10) BST Generative Reddit Dataset transformer, multitasking [8]

• T5-multitask1: Σε αυτή την προσέγγιση προεκτείναμε το T5-baseline, προσθέτοντας έναν τα-
ξινομητή πάνω από τον encoder. Έτσι με την χρήση της εκμάθησης πολλαπλών εργασιών
(multi-task learning) προσπαθήσαμε να βελτιώσουμε την αναγνώριση συναισθημάτος στον διά-
λογο και παράλληλα να ληφθεί αύτη υπόψιν κατά την αποκωδικοποίηση.

• T5-multitask2: Σε αυτή την προσέγγιση προεκτείναμε το T5-multitask1, προσθέτοντας έναν
ακόμη ταξινομητή πάνω από τον decoder. Κατά την εκπαίδευση χρησιμοποιήσαμε τις ίδιες
ετικέτες συναισθήματος για τους δύο ταξινομητές με σκοπό την καλύτερη μοντελοποίηση της
ενσυναίσθησης. Αυτή η προσέγγιση θεωρητικά δεν έχει μόνο στόχο να παράξει μία απάντηση
αλλά και να “τιμωρήσει” το μοντέλο στην περίπτωση που το συναίσθημα της απάντησης δεν
είναι το επιθυμητό. Η αρχιτεκτονική του μοντέλου φαίνεται στην Εικόνα 0.8.

Σχήμα 0.8: Αναπαράσταση της αρχιτεκτονικής του μοντέλου T5-multitask2.
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0.3.4 Πειράματα και Αποτελέσματα

Σε αυτή την υποενότητα, παρουσιάζουμε τα αποτελέσματα των μοντέλων που χρησιμοποιήθηκαν από
άλλους ερευνητές, καθώς επίσης και αυτά που προέκυψαν από τις αρχιτεκτονικές που προτείναμε.
Χρησιμοποιούμε τις μετρικές Perplexity (PPL) και BLEU score για αξιολόγηση. Αναφέρουμε εδώ,
ότι η ένδειξη “(P+ED)” σε κάποια από τα μοντέλα μας δηλώνει ότι το μοντέλο προεκπαιδεύτηκε
πρώτα στο ConvAI2 Dataset και στην συνέχεια βελτιστοποήθηκε στο Empathetic Dialogues, ενώ η
ένδειξη “(ED)” δηλώνει ότι δεν έγινε κάποια επιπλέον προεκπαίδευση. Τα αποτελέσματα φαίνονται
στον πίνακα 0.5.

Πίνακας 0.5: Πίνακας Αποτελεσμάτων

Μοντέλο PPL AVG BLEU

Vaswani Full Transformer [15, 16] 21.24 6.27
Multitask Transformer [15, 16] 24.07 5.42
EmoPrepend-1 [15, 16] 24.30 4.36
TopicPrepend-1 [15, 16] 25.40 4.17
Ensem-DM [15, 16] 19.05 6.83
Ensem-DM+ [15, 16] 19.10 6.77
CAiRE [17] 13.32 7.03
GPT2-baseline [18] 18.32* 7.71*
GPT2-prepend [18] 19.49* 7.78*
BST Generative [8] 11.48* -
DodecaDialogue MT+FT [19] 11.4 8.1
DodecaDialogue MT [19] 11.5 8.4
Ours-Vaswani Full Transformer (ED) 33.46 -
Ours-Vaswani Full Transformer (P+ED) 28.64 -
BERT2BERT (ED) 20.77 5.53
BERT2BERT (P+ED) 19.54 6.78
BERT2GPT2 (ED) 17.93 7.22
BERT2GPT2 (P+ED) 21.48 7.19
T5 (ED) 12.40 9.31
T5 (P+ED) 12.51 9.68
T5-multitask1 12.58 9.28
T5-multitask2 12.96 9.13

Το * δηλώνει ότι τα αποτελέσματα μετρώνται στο validation σύνολο

Παρατηρώντας τα αποτελέσματα συμπεραίνουμε σε συντομία τα παρακάτω:

• Παρατηρούμε ότι το μοντέλο DocedaDialogue MT+FT παρουσιάζει state-of-the-art αποτελέ-
σματα όσον αφορά το Perplexity.

• Παρατηρούμε επίσης ότι όσον αφορά τα μοντέλα Ours-Vaswani Full Transformer (ED) και
Ours-Vaswani Full Transformer (P+ED) (τα οποια υλοποιήσαμε εμείς) παράγουν αποτελέ-
σματα τα οποία απέχουν αρκετά από εκείνα των υπόλοιπων μοντέλων. Ο λόγος για τον οποίον
αποτυγχάνουν αυτά τα δύο μοντέλα να εκπαιδευτούν σωστά είναι ο περιορισμένος αριθμός των
δεδομένων.

• Στην περίπτωση των BERT2BERT και BERT2GPT2 μοντέλων, παρατηρούμε οτι τα παραγώ-
μενα αποτελέσματα είναι συγκρίσιμα με αυτά των αρχικών προσεγγίσεων [15, 16]. Συγκεκρι-
μένα το BERT2GPT2 παράγει καλύτερα αποτελέσματα και στις δύο μετρικές. Ωστόσο όμως
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τα δύο αυτά μοντέλα δεν παράγουν καλύτερα αποτελέσματα από το CAiRE μοντέλο και τα
state-of-the-art.

• Όσον αφορά τις προσεγγίσεις μας που βασίζονται στο μοντέλο T5, παρατηρούμε ότι όλες
παράγουν state-of-the-art αποτελέσματα όσον αφορά την μετρική BLEU. Πιο συγκεκριμένα,
το μοντέλο Τ5 (P+ED) βελτιώνει την state-of-the-art μετρική BLEU κατά 19.5%, ενώ πα-
ράλληλα προσεγγίζει την state-of-the-art μετρική Perplexity (την οποία πετυχαίνει το μοντέλο
DodecaDialogue MT+FT) με διαφορά 9.7%.

• Τέλος, αξίζει να επισημάνουμε ότι τα T5-multitask1 και T5-multitask2 φαίνεται να μην βελ-
τιώνουν την ποιότητα των απαντήσεων, σύμφωνα με τις αναφερόμενες μετρικές.

0.4 Συνεισφορές & Μελλοντικές Προεκτάσεις

Σε αυτήν τη διπλωματική εργασία, μελετήσαμε σε βάθος τη δουλειά που έχει γίνει στον τομέα της
δημιουργίας διαλογικών συστημάτων με ενσυναίσθηση, χρησιμοποιώντας generation-based μοντέλα.
Επιπλέον, προτείναμε δικές μας ιδέες για περαιτέρω βελτίωση αυτών των συστημάτων. Πιο συγκε-
κριμένα, αρχικά, αναλύσαμε τις παραδοσιακές αρχιτεκτονικές (vanilla seq2seq, vanilla seq2seq με
attention) που χρησιμοποιούνται για την παραγωγή διαλόγου, και στην συνέχεια μελετήσαμε τα state-
of-the-art μοντέλα (Transformer Encoder Decoder, BERT, GPT2 και T5), παρέχοντας λοιπόν στον
αναγνώστη το κατάλληλο θεωρητικό υπόβαθρο. Στην συνέχεια επικεντρωθήκαμε στο πρόβλημα της
παραγωγής διαλόγων με ενσυναίσθηση, ένα πρόβλημα που εισήγαγε το Facebook για τη δημιουργία
διαλογικών συστημάτων ενσυναίσθησης. Στα πλαίσια αυτής της εργασίας μελετήσαμε τα μοντέλα
που έχουν προταθεί από άλλους ερευνητές και στην συνέχεια προτείναμε δικές μας προσεγγίσεις.
Τελικά, οι προτεινόμενες προσεγγίσεις μας, που βασίζονται στο μοντέλο T5, βελτιώνουν τα state-of-
the-art αποτελέσματα με βάση την μετρική αξιολόγησης BLEU, επιτυγχάνοντας παράλληλα κοντινά
αποτελέσματα με αυτά των state-of-the-art μοντέλων με βάση την μετρική perplexity.

Τέλος, προκειμένου να επεκτήνουμε και να βελτιώσουμε την έρευνα που έγινε σε αυτή την διπλωμα-
τική εργασία προτείνουμε κάποιες μελλοντικές προεκτάσεις. Αυτές εν συντομία είναι:

• Προτείνουμε να εκπαιδεύσουμε τα Τ5-based μοντέλα σε διαφορετικά tasks διαλόγου με χρήση
εκμάθησης πολλαπλών εργασιών (multi-task learning), προκειμένου να αποκτήσουν περισσό-
τερες δεξιότητες.

• Προτείνουμε επίσης την χρήση μετρικών ομοιότητας μεταξύ των δύο διανυσματικών αναπα-
ραστάσεων που εμπεριέχουν την συναισθηματική πληροφορία (στο μοντέλο T5-multitask2).
Με αυτήν την προσέγγιση μπορούμε να μοντελοποιήσουμε καλύτερα την ενσυναίσθηση.

• Επίσης η ενίσχυση αυτής της εργασίας με human evaluation μετρικές θα βοηθούσε πολύ ώστε
να κρίνουμε τα αποτελέσματα πιο αντικειμενικά.

• Και τέλος, προτείνουμε να μελετηθούν περισσότερο τα μοντέλα σε χαμηλότερο επίπεδο, πα-
ρατηρώντας ποια μέρη αυτών δουλεύουν καλά και ποιά όχι (ablation study).
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Abstract

Among the various approaches for building conversational agents able to entertain humans, open do-
main generation-based chatbots is a significant field of research. However, beyond understanding
what is being discussed, human communication requires awareness of how someone is feeling. Fol-
lowing this perspective, in this diploma thesis, we study dialog generation and specifically we focus
on the challenging task of building empathetic conversational agents, which are able to understand
any implied feelings and respond accordingly.
First, we provide the reader with a brief theoretical background on machine learning (ML), deep learn-
ing (DL) and Natural Language Processing (NLP). Then we study in depth generation-based models
for dialog generation. More specifically, we analyze the traditional vanilla seq2seq architecture, the
vanilla seq2seq with attention and the Hierarchical Recurrent Encoder Decoder (HRED) architecture.
Afterwards, we study transformer-based models that can be used in dialogue generation such as the
Transformer Encoder Decoder, the BERT, the GPT-2, and the T5 models. After presenting the theo-
retical background of those architectures, we analyze the most commonly used decoding methods in
dialog generation providing typical examples for better understanding. Finally, we present the most
common automatic and human evaluation metrics/methods used for ranking dialog systems.

From the perspective of creating conversational agents that are able to understand the implied feel-
ings of a conversation and respond accordingly, we focus on the Empathetic Dialogues task, a task
proposed by Facebook. After, a brief introduction to the task and related work, we conduct several
experiments and discuss the results. More specifically, at first, we analyze the datasets we used for the
experiments (Empathetic Dialogues and ConvAI2) and then we present the baseline architectures used
by other researchers on the task. Afterwards, we propose new ways for further improving the results
of the task. More specifically, we experiment with the BERT2BERT and BERT2GPT2 architectures,
achieving comparable results with already proposed models, but without reaching the state-of-the-art
results. Furthermore, we experiment with three versions of the T5 model. In the first approach, we
use the T5 model as is but fine-tune it on the Empathetic Dialogues dataset. In the second and the
third approaches, we extend the T5 baseline architecture with multi-task learning. All of the T5-based
approaches achieve state-of-the-art results in average BLEU score metric, while their performance as
far as perplexity is concerned is close to the current state-of-the-art model. Moreover, after present-
ing the results of the experiments we provide various examples to demonstrate the performance of the
proposed models more qualitatively. To further improve the proposed approach, we refer to promising
future extensions and modifications that we suggest for future study.

Key words

Empathy, dialog systems, chatbots, deep learning, machine learning, natural language processing,
dialogue generation, transformers, HRED, BERT, GPT2, T5, BERT2BERT, BERT2GPT2, seq2seq,
multi-task learning, transfer learning
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Chapter 1

Introduction

1.1 Motivation

Language is considered to be one of the hallmarks of human civilization. The ability to communicate
has led to the development of a remarkable culture that may not exist again. Since dialogue is regarded
as a fundamental element of human civilization, developing systems that are capable of understanding
human language and communicating with humans is one of the most challenging tasks towards Arti-
ficial Intelligence (AI). This has become an active area of research in the domains of AI and Natural
Language Processing (NLP), in particular.

With the advances of Machine Learning (ML), and particularly Deep Learning (DL), various dialog
systems have been developed not only able to help humans complete tasks in several domains such as
flight booking, restaurant reservations, online shopping, and customer care but also to entertain them.
However, the complexity of human language makes the task of dialogue generation really challenging.

Among the various approaches in building conversational agents able to entertain humans, open do-
main generation-based chatbots is a significant field of research, as those agents seem to be the most
human-like being able to discuss almost everything. Thankfully to the advance of Deep Learning vari-
ous generation-based conversational agents are implemented being able to communicate with humans,
producing syntactically and grammatically coherent responses. However, beyond understanding what
is being discussed, human communication requires awareness of how someone is feeling. While it is
straightforward for humans to recognize and acknowledge others’ feelings in a conversation, this is a
significant challenge for AI systems. Humans feel and express different types of emotions depending
on the situation of the conversation. Natural communication is frequently prompted by people shar-
ing their feelings or circumstances. We should also consider that emotions also play an important role
during a conversation, as they help the conversational partner to better understand the situation of the
speaker, developing a confidential relationship between the speaker and the listener. ELIZA [1], one
of the first chatbots developed, focused most of its attention on asking its conversational partners why
they were feeling a certain way. Without going any further, listening to somebody saying “I was fired
from work yesterday.” and giving a response like “Why were you fired?” is contextually relevant but
is not enough, as the response is emotionally empty. However, providing a response like “Oh! I am
so sorry to hear that. Why were you fired?”, is more human-like and relevant to the emotional state
of the user. Consequently, one of the most significant challenges for a dialogue agent is to appropri-
ately respond to a conversation partner that is describing personal experiences, by understanding and
acknowledging any implied feelings — a skill we refer to as empathetic responding.

Following this perspective, Facebook introduced the Empathetic Dialogues task [16], a task aiming
to create dialog systems that are able to react in an empathetic way. To this end, we aim to contribute
towards making a conversational agent able to appropriately respond to a conversation partner, by un-
derstanding the implied feelings and responding in an empathetic engaging way. In our research, we
experiment with state-of-the-art deep learning generation-based models using the dataset introduced
in Empathetic Dialogues task, and we present our approaches to further improve upon empathetic
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dialog systems.

1.2 Dialogue Systems

The development of natural language is one of the most important characteristics of human civiliza-
tion. Humans developed natural language in order to be able to coexist, communicate, and evolve as
a social human being. From the moment of birth until the end of our life, we use natural language to
communicate. So, the dialog is rightly considered to be the most fundamental element of language,
as it is a significant part of our daily life. All of us use this kind of language, whether we are talking
with our families, or hanging out with friends, or even participating in business meetings.

The rapid evolution of technology, promoted the creation of systems that are able to communicate
with humans. Human-computer interaction (HCI) is a technology that allows communication be-
tween users and computers using natural language. Automated conversational agents are systems
(machines) that have been designed to communicate with humans, imitating human behavior during
the conversation. Those systems are widely applied in several domains such as many service indus-
tries to help schedule meetings, make restaurant reservations, shop online, and support customer care,
and so on. However, conversational agents are not only used to offer services but to entertain humans
too.

Conversational agents fall into two general categories, task-oriented and non-task-oriented agents.
Task-oriented dialog agents also known as goal-based agents, are designed for particular tasks and set
up to have short conversations with the user. The main goal is to help the user to complete a spe-
cific task, by getting information from the user and producing relevant responses. Various services
that we use in our daily life, such as booking, traveling, shopping, or even ordering food applications
are supported by those conversational agents. Without going any further, both domestic controllers
and cellphone assistants (Siri, Alexa, Google Now/Home, etc.) make use of dialog systems in order
to communicate with the user and complete the asked tasks, such as making restaurant reservations,
giving traveling directions and making phone calls [38]. The key to the success of those agents is to
help the user to complete the required task as soon as possible. So, the main focus is given to task
completion, having short conversations, reducing the time of conversation to the minimum.

On the other hand, non-task oriented agents are designed for extended conversations and are set up to
mimic the unstructured conversation of human-human interaction, rather than focusing on task com-
pletion. Research on non-goal-driven dialogue systems goes back to the mid-60s. It began, perhaps,
with Weizenbaum’s famous program ELIZA, a system based only on simple text parsing rules that
managed to convincingly mimic a Rogerian psychotherapist by persistently rephrasing statements or
asking questions [1]. A few years later the PARRY chatbot [2] was created, using simple text parsing
rules. PARRY managed to mimic the pathological behavior of a paranoid patient to the extent that
clinicians could not distinguish it from real patients.However, afterwards various systems have been
developed not focusing on practical purposes such as the ELIZA agent, but having an entertainment
value such as Microsoft’s XiaoIce system [3].

Non-task-oriented dialog systems (chatbots) can further be separated into two categories, according
to their architecture: rule-based and corpus-based chatbots. Rule-based chatbots are based on pattern-
transform rules that are used to encode the input sentence and to produce a response. Rule-based
chatbots use keywords that are associated with a rank, with specific words being more highly ranked,
and more general words being low ranked. Given the input sentence, rule-based chatbots find the
word with the highest keyword rank in the input sentence and then choose the highest-ranked rule that
best matches the input sentence. Afterwards a transform rule is applied to the pattern rule to produce
a response. The very first rule-based chatbot that was implemented was the ELIZA [1]. Nowadays,
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some modern chatbots also follow the rule-based architecture such as the ALICE chatbot [4], which
uses an updated version of ELIZA’s architecture.

On the other hand, corpus-based chatbots, instead of using hand-built rules, mine human-human con-
versations to produce a response. Those chatbots are further divided into two categories: retrieval-
based and generation-based chatbots. Systems that belong in the first category select deterministically
from a fixed set of possible responses. More specifically, those chatbots map the dialogue history and
external knowledge (e.g. a database, which can be queried by the system) to a response action. Sys-
tems that search through a database of dialogues and pick responses with the most similar context,
belong to this category [5, 6]. In contrast to retrieval systems, generation-based systems attempt to
generate responses by keeping a posterior distribution over possible responses. Those systems gener-
ate responses word-by-word, by sampling words from the probability distribution over the vocabulary
used. Generation-based systems usually combine external knowledge from databases to produce more
informative responses, however, in this diploma thesis we study generation-based systems without the
use of external knowledge. One of the most famous generation-based open-domain chatbots is Meena
[7] proposed by Google, which was trained on open-domain conversations from social media. Re-
cently, FacebookAI also built the BlenderBot [8], the largest-ever open-domain chatbot. This chatbot
combines both retrieval and generation based architectures and has 9.4 billion parameters totally. It is
a human-like chatbot with multiple conversational skills including empathy, personality and knowl-
edge, and outperforms other chatbots in terms of engagement level according to human evaluations.

1.3 Language Models

In the field of natural language processing (NLP), deep neural networks have improved models’ per-
formance in many tasks. However, training a model from scratch requires a plethora of labeled data.
For instance, training a dialog system requires millions of data, with specific answers as labels (tar-
gets). However, in many practical applications, there are a few data available with tags to do super-
vised training of the model. In these cases, the use of transfer learning (described in Section 2.5) offers
an alternative solution. The models are pre-trained in a similar task, and then are fine-tuned in the re-
quired task, by utilizing the knowledge acquired from the pre-training process. So, in order to achieve
satisfactory results when building a conversational agent, we pre-train a model as a language model.
In this way, the model used is able to create high-level representations of the language, utilizing this
knowledge afterwards during fine-tuning.

In language modeling, the model calculates a probabilistic distribution over a sequence of words,
creating a unique representation for each word occurred, based on a previous context. In other words,
a language model is called to calculate the likelihood of occurrence of a number of words in a particu-
lar sequence. More specifically, a language model given a sequence of words as input tries to predict
the next word. In this way, the model is capable of creating word representations based on context.
As a result, it does not require training data with labels, which are hard to find. Plain text, however, is
available in large quantities for each possible task. So, language models can be trained in a plethora
of data that are available for free. Due to the ability of language models to export general word repre-
sentations based on content, are now widely used in many domains. Such a domain is dialog systems.
We further analyze the use of language models in Section 3.4.

1.4 Emotion Recognition

As alreadymentioned, a challenging task in building dialog systems is to understand the feelings of the
user, as apart from understanding what is being discussed it is crucial to acknowledge how someone is
feeling. Emotions play an important role during a conversation, as they help the conversational part-
ner to better understand the situation of the speaker, developing a confidential relationship between
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the speaker and the listener. From this perspective, is considered crucial to briefly study emotion
recognition.

In NLP, emotion recognition is the process of recognising distinct emotions that are implied in the
written word. The analysis of the implied feelings of the user can be considered as an extension of
the sentiment analysis task. Sentiment analysis in its simplest form aims to detect positive, negative,
or neutral feelings from the text, while emotion detection and recognition aim to detect and recognize
types of feelings through the expression of texts, such as anger, disgust, fear, happiness, sadness, and
surprise.

Thousands of articles have been written on the methods and applications of automated emotion recog-
nition. Therefore, this is a significant field of NLP, which seems to be extremely useful, in many
domains such as marketing, advertising [39, 40], automated question-answering [41], and especially
in dialog systems [42, 43, 44, 45, 46]. We further study emotion recognition in Section 3.5.

1.5 Goals & Contributions

In this diploma thesis, we aim to contribute to the direction of research methods that make a conver-
sational agent able to appropriately respond to a conversation partner, by understanding the implied
feelings and responding in an empathetic engaging way. As we already mentioned, except that natural
communication is frequently prompted by people sharing their feelings or circumstances, understand-
ing any implied emotions during a conversation is beneficial as the conversational partner embraces
the speaker’s feelings and focuses his interest on the dialog. In this way, he is able to develop a more
confidential relationship with the speaker. From this perspective, we consider crucial to enhance con-
versational agents with empathy (and generally with emotions) in order to be more human-like.

Empathetic Dialogues [16] is a task proposed by Facebook, which aims to create dialog systems that
are able to react in an empathetic way. Empathetic responding not only benefits open-domain chat-
bots but also task-oriented conversational agents, as many researchers have noticed that reacting in
an empathetic way or generally displaying a caring attitude, is associated with better results in many
tasks [47, 48, 49]. Following this work, we aim to contribute to the direction of research methods that
make a conversational agent able to respond in an empathetic way.

In this research, after studying in depth the work done in the field of creating empathetic conversational
agents, we experiment with state-of-the-art deep learning generation-based models for empathetic di-
alogue generation and propose our new ways to further improve upon these systems. Focusing on
the Empathetic Dialogues task, we experiment with different approaches to improve the state-of-the-
art results. More specifically, we experiment with BERT2BERT and BERT2GPT2 models achieving
comparable results with those of the baselines. We also present our approaches based on the T5model,
improving the state-of-the-art results concerning the BLEU score by 19.5%, while their performance
as far as perplexity is concerned, is close to the current state-of-the-art model, having a difference of
9.7%.

1.6 Thesis Organisation

This diploma thesis is structured as follows:

In Chapter 2 we provide technical background knowledge in machine learning and deep learning.
More specifically, at first, we introduce the reader to the basic concepts of machine learning and we
study some conventional machine learning models used in classification tasks. Afterwards, we in-
troduce the basic concepts of deep learning and present the most common recurrent neural networks
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(RNNs, LSTMs and GRUs), along with an introduction to attention mechanisms. Finally, the con-
cepts of transfer and multi-task learning are introduced, also presenting the motivation of their use.

In Chapter 3, the natural language processing background needed for this thesis is presented. Af-
ter briefly presenting popular natural language processing tasks and applications, we analyze the most
common language representation methods (frequency-based, Word2Vec, Glove and contextualized
embeddings). Then, we present language modeling with the use of n-gram models and neural net-
works. Finally, a brief description of emotion recognition using NLP is given.

In Chapter 4, we provide a theoretical background for understanding in depth dialogue generation
using generation-based models. At first we analyse some basic and state-of-the-art models in depth,
and then we focus on the decoding methods used for generating responses and on the most common
evaluation metrics used for evaluating dialog systems.

In Chapter 5, we study in depth dialogue generation with empathy. After a brief introduction to
the task, we present the recent work done and the datasets we used on the experiments we conducted.
We analyse in depth baseline architectures proposed in recent studies and then we introduce proposed
architectures to be applied to the task. Finally, we train the proposed models on the aforementioned
datasets and present the corresponding results.

Finally, Chapter 6 presents our conclusions where we summarize our findings and provide an out-
look into the future.
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Chapter 2

Technical Background

In this Chapter we provide the reader with technical background knowledge in machine learning and
deep learning. In Section 2.1 we present the basic methods of machine learning and in Section 2.2 we
introduce traditional machine learning models used in classification tasks. In Section 2.3 an introduc-
tion in deep learning is done, presenting artificial neural networks (ANNs), activation functions, the
backpropagation method and optimization strategies. Afterwards, in Section 2.4 we study recurrent
neural networks and attention mechanisms. Finally, in Sections 2.5, 2.6 brief descriptions of transfer
learning and multi-task learning methods are given accordingly.

2.1 Introduction to Machine Learning

In the 1950s, we saw the first computer game program claiming to be able to beat the checkers’ world
champion. Around the same time, in 1957, Frank Rosenblatt invented the “Perceptron” which was
a very simple linear classifier [50]. At that time, it was a real breakthrough. Then, we see several
years of stagnation of the neural network field due to its difficulties in solving certain problems. In
the 1990s, machine learning methods started to gain in popularity thanks to the ability to extract in-
teresting results by learning from a plethora of data.
Machine learning (ML) is a sub-field of artificial intelligence (AI). According to Arthur Samuel, ma-
chine learning enables computers to learn from data without being explicitly programmed [51]. The
goal of machine learning generally is to build models that are able to understand unstructured data
and make predictions or decisions. The primary aim is to allow the computers to learn this process
automatically, without human intervention or assistance and adjust actions accordingly. We should
mention here that machine learning differs from traditional computational approaches, as in traditional
computing, algorithms are sets of explicitly programmed instructions used by computers to calculate
or solve a problem, while in machine learning computers are not explicitly programmed.
Nowadays, most technologies have benefited from machine learning. Facial recognition technology
allows social media platforms to help users tag and share photos of friends. Optical character recog-
nition (OCR) technology which converts images to text, is also using machine learning. Recommen-
dation engines, powered by machine learning, suggest what movies or television shows to watch next
based on user preferences. Self-driving cars also rely on machine learning for navigation. Machine
learning algorithms are also used in applications such as email filtering and detection of network in-
truders, where it is infeasible to develop an algorithm of specific instructions for performing the task.
Machine learning is closely related to computational statistics, which focuses on making predictions
using computers. The study of mathematical optimization delivers methods, theory, and application
domains to the field of machine learning. Data mining is a field of study within machine learning and
focuses on exploratory data analysis through unsupervised learning. In its application across business
problems, machine learning is also referred to as predictive analytics.
In machine learning, tasks are generally classified into broad categories. These categories are based
on how learning is received or how feedback on the learning is given to the system developed. Three
of the most widely adopted machine learning methods are:

• supervised learning which provides the algorithm with labeled data in order to be trained using
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the input and the labeled data

• unsupervised learning which provides the algorithm with no labeled data in order to allow it to
find structure within the input data

• semi-supervised learning which provides the algorithm with mixed labeled and not labeled data

Let’s explore those methods in more detail.

2.1.1 Supervised Learning

In supervised learning, an AI system is provided with samples that are labeled, which means that
each sample is tagged with a correct label. In other words, there are input variables X and an output
variable Y . The goal is to build an algorithm that learns the mapping function f from the input to the
output [52].

Y = f(X) (2.1)

So, the primary aim is to approximate the mapping function so well that when we have a new input
sample, we can predict the output variables for that sample. The process of an algorithm learning
from the training dataset can be thought of as a teacher supervising the learning process. Known the
correct answers (entitled labels), the algorithm iteratively makes predictions on the training data and is
corrected by the teacher according to a calculated error. Learning stops when the algorithm achieves
an acceptable level of performance.
Tasks in supervised learning are distinguished into classification tasks and regression tasks. Regres-
sion is the procedure of mapping an input sample to a continuous output value, such as an integer or
a floating-point value. On the other hand, classification is the task of identifying to which of a set of
categories or classes an unseen observation belongs, given a training procedure of input samples that
belong to the set of these classes. The simplest case of a classification task is to have two possible
categories, which is known as binary classification.
An example of binary classification is shown in Figure 2.1 for filtering emails as “Spam” or “Not
spam”.

Figure 2.1: Example of binary classification. Image source: [20]

We initially take some data and mark them as “Spam” or “Not Spam”. Those labeled data are used to
train the model. Once the model is trained, we can test it by feeding it with a new email and check if
the model is able to predict the right output.
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2.1.2 Unsupervised Learning

In unsupervised learning, data are unlabeled. In other words, the training set consists of a set of input
vectors X without any corresponding target values. So the learning algorithm is left to find com-
monalities among its input data and find patterns where the target values are either not observable or
infeasible to obtain. [53]
As unlabeled data are more abundant than labeled data, machine learning methods that facilitate unsu-
pervised learning are particularly valuable. The goal of unsupervised learning may be as straightfor-
ward as discovering hidden patterns within a dataset, but it may also have a goal of feature learning,
which allows the computational machine to automatically discover the representations that are needed
to classify raw data.
Clustering is a large subclass of unsupervised tasks. The goal is to group observations together in
such a way that members of a common group are similar to each other and different from members
of other groups. However, it is often difficult to know how many clusters should exist or how they
should look. Association is also a common unsupervised task. An association rule learning problem
is where we want to discover rules that describe large portions of our data, such as people that buy X
also tend to buy Y.

2.1.3 Semi-supervised Learning

Semi-supervised learning algorithms represent a middle ground between supervised and unsupervised
algorithms. These algorithms operate on data that have a few labels but are mostly unlabeled. [54].
Traditionally, one would either choose the supervised route and operate only on the data with labels,
vastly reducing the size of the dataset, otherwise, one would choose the unsupervised route and discard
the labels while keeping the rest of the dataset for something like clustering. On the contrary, a semi-
supervised machine-learning algorithm would partially train a model using a small set of labeled data.
Then the partially trained model would label the unlabeled data (creation of “pseudo-labeled” data).
Finally, meging the labeled and pseudo-labeled data, a semi-supervised approach would combine both
the descriptive and predictive aspects of supervised and unsupervised learning.

2.2 Traditional Machine Learning Models

As already mentioned in Section 2.1.1, and according to the equation 2.1 the primary aim of each
supervised learning algorithm is to learn the mapping function f from the input X to the output Y .
The more accurate the mapping is, the better the learning. The question is what kind of function we
can use. In the simplest case, the function f is assumed to be a linear function of the following form:

f(x) = xW + b (2.2)

where x ∈ Rdin ,W ∈ Rdin×dout and b ∈ Rdout . So, assuming that the function f is a linear function
our goal now is to find the best set of parameters θ = {W, b} in order to have an accurate mapping.

2.2.1 Loss Function

Let’s assume that the input x is fed to the model. The output of the model is the prediction made,
denoted with ŷ. In order to quantify the error between the predicted output ŷ and the true label y, the
notion of the loss function is introduced. Formally, the loss function L(ŷ, y) assigns a numerical score
(a scalar) to a predicted output ŷ given the true output y. The less the numerical score is, the better the
prediction made. So, the parameters of the learned function are determined by minimizing the loss L
over the training examples.
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Given a labeled training set (x1:N , y1:N ), the per-instance loss function L and a parameterized func-
tion f(x, θ), we define the total loss over the training set with respect to the parameters θ as follows:

L(θ) = − 1

N

N∑
i=1

L (f (xi; θ) , yi) (2.3)

We notice that the total loss is the average sum of the losses over all training examples. The goal is
now to determine the optimal parameters θ̂ that minimize the total loss L:

θ̂ = argmin
θ
L(θ) = argmin

θ

1

N

N∑
i=1

L (f (xi; θ) , yi) (2.4)

Now we will define the notion of entropy and then we will study the most common loss functions
used in classification tasks.

Suppose we want to communicate a set of n events from a particular probability distribution p of
dataset X. Information entropy is the minimum average encoding size of information in dataset X to
communicate the events [55]. More formally it is described as follows:

H(p) =
∑
x

p(x) log
1

p(x)
(2.5)

We might also recall that information quantifies the number of bits required to encode and transmit
an event. Lower probability events have more information, higher probability events have less in-
formation. If entropy is high, we have a big amount of information and also many events with low
probabilities. So, entropy apart from the amount of information can also be seen as a measure of un-
certainty.

Cross-entropy is defined as the minimum average of encoding size of communicating an event from
one distribution to another. More formally it is described as:

Hp(q) =
∑
x

q(x) log
(

1

p(x)

)
(2.6)

Binary entropy is the case with only two categories. According to Bernoulli process with probability
p, if we let X be a random variable that can take the values 0 and 1, the binary-entropy is defined as:

H(X) = plog
1

p
+ (1− p) log

1

1− p
= −p log p− (1− p) log(1− p) (2.7)

Binary cross-entropy loss: Binary cross-entropy loss [56] is used in binary classification. Let’s
assume two target classes labeled with the values 0 and 1. We use the sigmoid activation function
(described in equation 2.22)on the classifier in order keep the output prediction ŷ in the range [0, 1].
The output ŷ is interpreted as the conditional probability ŷ = P (y = 1|x). Thus, the rule used to
determine if a new sample is classified to the first or to the second class is the following:

prediction =

{
0, if ŷ < 0.5
1, if ŷ ≥ 0.5

(2.8)

So, themodel is trained tomaximize the log conditional probabilityP (y = 1|x) or equally tominimize
the binary cross-entropy loss:

Lbinary (ŷ, y) = −y log ŷ − (1− y) log(1− ŷ) (2.9)
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Negative log-likelihood loss: Negative log-likelihood loss [56] is also known as categorical cross-
entropy loss. It can be used for multi-class classification problems (when a probabilistic interpretation
of scores is desired). Let y = y1, ..., yn be a vector representing the true multinomial distribution over
the labels 1, ..., n, and let ŷ = ŷ1, ..., ŷn be the linear classifier’s output, which was transformed by the
softmax function and represents the class membership conditional distribution ŷi = P (y = 1 | x)).
The categorical cross-entropy loss for the i-th sample is described as:

L (ŷi, yi) = −yi log (ŷi) (2.10)

In order to find the optimal parameters for the model, we want to maximize the likelihood or equiva-
lently to minimize the average negative log-likelihood over all the training samples. So, the objective
function takes the following form:

Lcross-entropy (ŷ, y) = −
1

N

N∑
i=1

y[i] log
(
ŷ[i]
)

(2.11)

We should mention here that negative log-likelihood loss is significant for training the neural networks
and especially in our case for training generative models. The value of the loss allows computing
the error of the neural network and with the use of a parameter optimizer, the gradient ∇θL(ŷ, y) is
computed to find a local minimum. Then the parameters (weights) of the model are optimized using
the backpropagation algorithm [57]. We should note that the loss is not computed on each iteration
over the whole dataset, but over a mini subset of samples called a batch.

2.2.2 Support Vector Machines (SVMs)

[58] Consider we have a two-class classification problem, where the two classes are linearly separable
and we want to find a separating hyperplane. More formally, suppose that the training dataset com-
prises of N input vectors x1, x2, ..., xN , where xi ∈ Rd and the corresponding labels y1, y2, ..., yN ,
where yi ∈ {−1, 1}. Assuming that those N input samples are linearly separable we want to find a
separating hyperplane of the following form:

f(x) = wTx+ b (2.12)

where x ∈ Rd, w ∈ Rd and b ∈ Rd. By definition there exists at least one choice of the parameters w
and b such that a function of the form 2.12 satisfies f(xi) > 0 for points having yi = 1 and f(xi) < 0
for points having yi = −1, so that yi·f(xi) > 0 for all training points.
As shown in Figure 2.2a we can notice that there are infinite possible hyperplanes that linearly separate
the two classes. The goal of the SVM algorithm is to choose the optimal hyperplane, which is the
hyperplane that has better performance on classifying unseen samples. By choosing a hyperplane that
is close to a sample xi, if we see a new sample close to xi it is likely to be misclassified, having poor
generalization as shown in Figure 2.2b. On the other hand, by choosing hyperplane as far as possible
from any sample, new samples close to the old samples are likely to be classified correctly, having
a good generalization as shown in Figure 2.2c. So, in order to have good generalization, we must
find the hyperplane for which the minimum distance between the two classes (margin) is as wide as
possible [59]. In other words, by maximizing the margin we can find the optimal hyperplane as shown
in Figure 2.2d.
The samples that are closest to the separating hyperplane are called support vectors and completely
define the optimal hyperplane (of course, we do not know which samples are support vectors without
finding the optimal hyperplane).
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(a) Possible separation hyperplanes
(b) Choosing a hyperplane close to xi (poor gener-
alization).

(c) Choosing a hyperplane as far as possible from
any sample (good generalization).

(d) Maximizing the margin and choosing the optimal
hyperplane.

Figure 2.2: Different hyperplane choices. Image source: [59]

If f(x) separates the data, the geometric distance between a point xi and a hyperplane f(x) = 0
is:

z =
|f(xi)|
∥w∥

(2.13)

Furthermore, we are only interested in solutions for which all data points are correctly classified, so
that yi·f(xi) > 0 for all i. Then, the distance between a point xi and the optimal hyperplane is given
by:

yif (xi)

∥w∥
=

yi
(
wTxi + b

)
∥w∥

(2.14)

We can set f(x) = +1 and f(x) = −1 for the closest points of each class being on the boundaries,
in order to maximize the margin. Considering now that xi is an example closest to the boundary, its
distance from the optimal hyperplane becomes:

yif (xi)

∥w∥
=

1

∥w∥
(2.15)

So now the problem is to maximize the margin:

m =
2

∥w∥ (2.16)
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with the following constraints:

wTxi + b ≥ 1, for each yi = +1 (2.17)

wTxi + b ≤ −1, for each yi = −1 (2.18)

The above problem is reducible to determining the parameters w and b, for minimizing 1
2∥w∥

2. So
our problem now becomes:

min
w,b

1

2
∥w∥2

s.t. yi(w
Txi + b) ≥ 1, i = 1, 2, ..., N

(2.19)

We should note here that 1
2∥w∥

2 is a quadratic function, thus there is a global minimum. The problem
of equation 2.19 is solved using Lagrange multipliers.

2.2.3 Logistic Regression

Logistic Regression (LR) is used to solve linear classification problems. The difference between other
simple classifiers is that it calculates the probability of an input sample x ∈ Rd belonging to a class,
by giving as output a value in the range [0,1]. [52, 60, 61]
Suppose that we study a binary classification problem with classes y = {0, 1}. The activation of the
LR classifier is determined by applying a sigmoid function (described in equation 2.22) over the fitted
line in order to get the final classification decision.

So the activation of LR for a given input vector x becomes:

P (y = 1|x) = hw(x) = σ
(
wTx

)
=

1

1 + e−wT x
(2.20)

If the output is greater than 0.5 then the sample x is classified to the first class with a probability of
P (y = 1|x), otherwise to the second with a probability of P (y = 0|x) = 1− P (y = 1|x).

Supposing that we have a training set and we want to train a LR classifier in order to do classifi-
cation between those two classes, we train the model using the binary cross entropy loss mentioned
in Section 2.2.1, which takes the following form:

J(w) = −[y log(P (y = 1 | x)) + (1− y) log(1− P (y = 1 | x))] (2.21)

2.3 Introduction to Deep Learning

Deep learning is essentially a branch of machine learning which tries to model data using complex ar-
chitectures with non-linear transformations. [62, 63] Two significant differences between deep learn-
ing andmachine learningmethods are the size of themodels [64] used and the part of feature extraction
from data. In traditional machine learning, the algorithm is given a set of relevant features to analyze.
However, in deep learning, the algorithm decides for itself what features are relevant, by processing
a plethora of data. The elementary bricks of deep learning are the neural networks, which are com-
bined to form large (“deep”) models. Deep learning techniques have enabled significant progress in
the field of computer vision, natural language processing, and speech recognition as they are used in a
wide variety of applications seen nowadays such as self-driving cars, voice search, and voice-activated
assistants, automatic machine translation systems, automatic brain cancer detection systems, etc.
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2.3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models that are based on the abstract represen-
tation of human neurons. The goal of modeling biological neural systems gave a rise to the area of
ANNs. So, by imitating neurons, the basic computational unit of the human nervous system, the deep
learning community achieved significant results in many tasks. For that reason, a brief high-level
description of the biological neuron human system is given in the following part.

The basic computational unit of the brain is the neuron [65]. Our nervous system consists of bil-
lions of neurons. The analogy between the biological neuron and its mathematical model is illustrated
in Figure 2.3.

Figure 2.3: An illustration of a biological neuron (left) and its mathematical notation (right). Image
Source: [21]

A typical biological neuron consists of a cell body (soma), dendrites, and a single axon. The soma
is usually compact. The axon and dendrites are filaments that extrude from it. Dendrites typically
branch profusely and extend a few hundred micrometers from the soma. [66] The axon leaves the
soma at a swelling called the axon hillock, and travels for as far as 1 meter in humans. It branches but
usually maintains a constant diameter. At the farthest tip of the axon’s branches are axon terminals,
where the neuron can transmit a signal across the synapse to another cell [67]. Each neuron receives
input signals via the dendrites and the impulses are carried across the cell body. Then, output signals
are produced along the single axon of the neuron and they are transmitted to other neurons across the
synapses. Similarly, in the computational model of a neuron, the axons of the neurons are connected
via synapses with other neurons. Then, each of the dendrites carries the signal to the cell body of
the neuron. More specifically, the input signals that travel along the axons, denoted with xi, interact
multiplicatively with the synaptic strength of the synapse, denoted with wi and pass through the den-
drites to the cell body. The synaptic strengths (wi) are learnable weights and control the strength of
the influence of one neuron on another. Then, the signals carried from the dendrites to the cell body,
denoted with wixi, are summed and if the final sum is above a certain threshold the neuron can fire,
sending a spike along its axon. The information transferred through the axon is highly related to the
firing rate. Thus in the computational model, we model the firing rate with the use of an activation
function, denoted with f . Some of the most common activation functions used are the sigmoid, the
hyperbolic tangent and the rectified linear unit functions, which are described in Section 2.3.2.

In order to model complex data structures and create models that are able to learn non-linear func-
tions and perform well on machine learning tasks, architectures that combine artificial neurons are
designed. The simplest case of such architectures is the multi-layer perceptron (MLP), which consists
of three layers (in its simplest form): the input layer, the hidden layer and the output layer. Each of
the nodes of the hidden and output layer is a neuron that uses a non-linear activation function, exactly
as we described it before. Multi-layer perceptrons differ from linear perceptrons as they can separate
data that are non-linearly separable. A multi-layer perceptron that consists of more than one hidden
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layers, is considered to be a deep neural network, while a multi-layer perceptron with one hidden layer
is considered to be a simple neural network. The input layer of a deep neural network gets the input
data and forwards them to the first hidden layer without any computation. Then the first hidden layer
processes the data and creates a representation of them. The output of the first hidden layer is for-
warded to the next hidden layers, constructing higher-level representations while moving to “higher”
hidden layers. Finally, the last hidden layer forwards the final representation to the output layer, which
makes a decision depending on the task. A comparison between a simple and a deep neural network
is shown in Figure 2.4.

Figure 2.4: An illustration of a simple (left) and a deep (right) neural network. Image Source: [22]

2.3.2 Activation Functions

In this subsection we study the most commonly used non-linear activation functions and we analyse
their advantages and disadvantages. The use of non-linear activation functions is significant in order
to introduce non-linear real-world properties to artificial neural networks. If the activation function
is not applied, the output signal becomes a simple linear function. Linear functions are only single-
grade polynomials. A non-activated neural network will act as a linear regression with limited learning
power. So, the use of non-linear activation functions is fundamental as we want our models to learn
non-linear states and be able to distinguish non-linearly separable data.

Sigmoid function:
The sigmoid non-linearity is described by the following mathematical form:

σ(x) =
1

1 + e−x
(2.22)

The sigmoid function takes a real-valued number and outputs a real number in range [0, 1]. The sig-
moid function is commonly used for classifiers as small changes in x are large in y, making the network
to notice small changes in features. However, at either tail of 0 or 1, the derivative values are very
small, converging to 0. In this way, the gradients “vanish” making the model unable to learn (more
specifically the learning is minimal). The sigmoid function is graphically illustrated in Figure 2.5

Hyperbolic Tangent (tanh) function:
The hyperbolic tangent function (tanh) is described by the following mathematical form:

f(x) = tanh(x) =
ex − e−x

ex + e−x
(2.23)
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Figure 2.5: The sigmoid activation function.

Figure 2.6: The tanh activation function.

The output values of the tanh function are in range [−1, 1]. The advantage over the sigmoid function
is that its derivative is more steep, which means it can lead to higher value outputs. This means that it
will be more efficient because it has a wider range for faster learning and grading. However, the same
problem that the gradients converge to 0 at the tail of 0 and 1 still exists. A graphical illustration of
the tanh function is shown in Figure 2.6.

Rectified Linear Unit (ReLU) function:
The ReLU activation function is described by the following mathematical form:

f(x) = x+ = max(0, x) (2.24)
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Figure 2.7: The Rectified Linear Unit (ReLU) activation function.

The ReLU activation function simply thresholds the input at zero. In contrast to sigmoid and tanh fuc-
tions, it does not involve any computationally expensive operations, so it converges faster. We should
also note here that the ReLU function avoids the vanishing gradient problem. Moreover, sigmoid and
hyperbolic tangent functions cause almost all neurons to be activated in the same way, while the ReLU
function is sparsely activated, making it more likely that neurons learn more meaningful aspects of
the problem. However, that is not always the case, as neurons may get stuck by producing always
0 as output, if the input is negative. Finally, the problem of exploding gradients may occur, where
weights are essentially “exploding”, i.e., their values are rapidly increasing. A graphical illustration
of the ReLU function is shown in Figure 2.7.

Gaussian Error Linear Unit (GELU) function:
The GELU activation function [68] is used in the most recent Transformers – Google’s BERT [13]
and OpenAI’s GPT-2 [69]. It is described by the following mathematical form:

GELU(x) = xP (X ≤ x) = xΦ(x) = x · 1
2
[1 + erf(x/

√
2)] (2.25)

where Φ(x) = P (X ≤ x), X ∼ N (0, 1) is the cumulative distribution function of the standard
normal distribution. The GELU function can also be approximated as:

0.5x
(
1 + tanh

[√
2/π

(
x+ 0.044715x3

)])
(2.26)

Figure 2.8: The Gaussian Error Linear Unit (GELU) activation function.

The GELU function has a negative coefficient, which shifts to a positive coefficient. So when x is
greater than zero, the output will be x, except from when x ∈ [0, 1], where it slightly leans to a smaller
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y-value. That formulation relates to stochastic regularizers because it is a modified expectation of
adaptive dropout, providing neurons with more abstract probabilistic view. The GELU function also
avoids the vanishing gradient problem and seems to be the state-of-the-art specifically in Transformer
models (described in Chapter 4).

2.3.3 Backpropagation

Backpropagation is a widely used algorithm for training neural networks. During the training process,
what we want to do is to find the optimal parameters (weights) for the model in order to minimize
a given loss function. So, we have to compute the gradients. Even though the gradient computation
for a neural network follows the chain rule [70], it can be very complex and error-prone. Fortunately,
gradients can be efficiently computed using the backpropagation algorithm [71, 72]. Backpropagation
methodically computes the derivatives of a complex expression using the chain-rule, while caching
intermediary results. For updating the weights of the network after each computation of the loss
function L, we use the partial derivatives ∂L

∂w of the loss function with respect to any learnable weight
w of the network [70]. In this way, the model is being trained improving its performance.

2.3.4 Optimization

As already mentioned, during the training process of a model, we update the parameters of the model
in order to minimize the loss. The procedure of optimally changing the weights of the model is called
optimization. One of the most common categories of optimization algorithms is the gradient-based.
The gradient at a certain point is the slope of the tangent to the function at that point, and it points to
the direction of the steepest increase of the function. So, the weights of the model are updated in the
opposite direction in order to minimize the loss. In the following part we analyse some of the most
common gradient-based methods.

Gradient Descent (GD): The gradient descent algorithm computes the gradient of the loss function
for the entire dataset with respect to the parameters θ of the model at each step (iteration) [70, 73].
Let J(θ) be the loss function and α small enough ∈ R the learning rate. The learnable parameters of
the model are updated according to the following mathematical form:

θ = θ − α∇θJ(θ) (2.27)

While the gradient descent algorithm is very simple to implement, it is not guaranteed to converge at
a global minimum. It is possible to get stuck to a local minimum if the learning rate is not properly
chosen. Moreover, if the dataset used is large, computing at each iteration the loss over the entire
dataset may be computationally expensive and inefficient.

Stochastic Gradient Descent (SGD): The stochastic gradient descent algorithm [74] is a variant
of gradient descent. In contrast to gradient descent it computes the gradient of the loss function over
a subset of samples, and not for the whole dataset. So, it makes an estimation of the gradient using a
sample, instead of computing the true gradient using all samples. Let x be the training examples and
y the corresponding labels. The parameters are updated according to the following algorithm:

θ = θ − α∇θJ (θ; x; y) (2.28)
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Result: set of parameters θ
initialization of convergence criterion ϵ;
initialization of learning rate α;
initialization of parameters θ;
while ||α∇θJ(θ)|| > ϵ do

x, y = randomly chose n training samples;
for i=1,2,..n do

θ = θ − α∇θJ
(
θ; x(i); y(i)

)
;

end
end

Algorithm 1: SGD pseudo-alogrithm
This algorithm needs less time to converge to a minimum, which in large datasets is a significant as-
pect.

As we already mentioned, the gradient-based algorithms described do not guarantee convergence.
On the one hand, choosing a small learning rate slows convergence making it also possible to get
stuck to local minimums. On the other hand, choosing a very large learning rate can hinder conver-
gence and cause the loss function to fluctuate around the minimum or even diverge. In Figure 2.9 an
illustration of both circumstances is shown.

Figure 2.9: Choosing the learning rate is challenging as a too small value (left figure) may result
in a long training process that could get stuck, whereas a too large value may result in learning a
sub-optimal set of weights too fast or an unstable training process.

Adam: The Adam optimizer [75] differs from the previously described optimizers, where the learning
rate remains the same for all weight updates. The Adam optimizer is an adaptive learning rate opti-
mizer, which means that it keeps a learning rate for each parameter of the model, adapting it separately
for each weight. Adam is well suited for problems that are large in parameters, is computationally ef-
ficient and has little memory requirement.

A number of alternate optimization algorithms have been introduced, similar to the Adam optimizer.
Currently, Adam [75], Adagrad [76], Adadelta [77] and BertAdam [13] optimizers are the most widely
used in deep neural models for NLP.

2.4 Deep Neural Networks

2.4.1 Recurrent Neural Networks

“Humans don’t start their thinking from scratch every second. As you read this essay, you understand
each word based on your understanding of previous words. You don’t throw everything away and
start thinking from scratch again. Your thoughts have persistence.” [23]. Traditional neural networks
can’t do this and this is a major drawback. However, recurrent neural networks address this issue.
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Recurrent neural networks (RNNs) are a type of artificial neural network designed to recognize pat-
terns in sequences of data, such as numerical times series data emanating from sensors, stock markets
and government agencies (but also including text, genomes, handwriting and the spoken word). What
differentiates RNNs from other neural networks is that they take time and sequence into account. The
core idea behind RNNs is to process information sequentially. Connections between units of an RNN
form a directed graph along a sequence. They are called recurrent because they perform the same task
for every element of a sequence, making the output dependent upon previous inputs. This allows it to
exhibit temporal dynamic behavior for a time sequence and gives them the ability to have an “internal
memory” which captures the information calculated so far. Intuitively, RNNs are able to remember
important things about the input they received which enables them to make precise predictions for the
data that comes next [64].

Vanilla RNNs: A recurrent neural network can be thought of as multiple copies of the same net-
work, each passing a message to a successor. A simple visualization of an RNN is displayed in Figure
2.10. Actually unrolling an RNN is just a way of better visualizing the behavior and the underlying
mechanisms of this NN, but the core functionality is the same in both representations. At each time
step, the input vector xt is passed through the RNN. The RNN updates it’s hidden state ht (based on
the input vector xt and the RNN’s hidden state of the previous time step ht−1) , which forwards to the
next successor and also gives as output the yt. So, the RNN “remembers” the context of the input it
has already seen while training.

Figure 2.10: Unrolled Recurrent Neural Network. Image source: [23]

Formally, at each time step t, the equations that describe the function of the RNN are:

ht = fh (Whhht−1 +Whxxt + bh) (2.29)

yt = fy (Wyhht + by) (2.30)

where ht is the hidden state at time step t, xt is the input vector at time step t, yt is the output vector
at time step t, bh is the bias for h, by is the bias for y and fx, fh are the activation functions for x
and h respectively. The are three separate matrices of weights: Whx (input-to-hidden weights),Whh

(hidden-to-hidden), andWyh (hidden-to-output).
Moreover, it is worth mentioning that we could stack piles of RNN layers on top of each other by
simply connecting the activation of each cell at time step t, which is ht, as an input to the next RNN
layer for the same time step.

Bidirectional RNNs: As mentioned previously, the data passed through the RNN is processed se-
quentially and finally the last hidden state of the RNN captures the encoded information. It is also
possible to acquire more information from the data, not only by processing the data forwardly but
backwards too. A bidirectional RNN (BRNN) can be used for this purpose and it is illustrated in
Figure 2.11.
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Figure 2.11: A Bidirectional Recurrent Neural Network. Practically, it’s a left-to-right and a right-to-
left RNN zipped together. Image source: [24]

So a bidirectional RNN consists of an RNN which processes the input sequence from the begging
to the end (left to right), and another one which processes the input in reverse (right to left). Then,
for each time step t, the hidden states are merged in order to have a final representation of the input
sequence at each time step. More specifically, we compute the hidden state of the forward RNN

−→
ht ,

as well as the corresponding hidden state of the backward RNN
←−
ht and then we concatenate them at

each time step t. The hidden state at the last time step contains the information of the fully encoded
sequence.

The problem of the long-term dependencies: One of the appeals of RNNs is the idea that they
might be able to connect previous information to the present task, such as using previousmusic frames,
might inform the understanding of the present frame. Although the fact that in theory RNN are abso-
lutely capable of handling “long-term dependencies”, in practice they do not seem able to learn them
[78, 79, 80, 81]. For example, consider a language model trying to predict the next word based on the
previous ones. If we are trying to predict the last word in “the clouds are in the sky,” we don’t need
any further context – it is pretty obvious the next word is going to be sky. In such cases, where the
gap between the relevant information and the place that it’s needed is small, RNNs can learn to use
the past information (illustrated in Figure 2.12). However, when trying to predict the last word in the
text “I grew up in France… I speak fluent French.”, recent information suggests that the word is the
name of the language, but if we want to narrow down which language, we need the context of France,
from further back. So there is a long-term dependence which the RNN can’t learn. The reason of this
failure, is the vanishing gradient problem (described in subsection 2.3.2) which Hochreiter identified
first in his diploma thesis in 1991 [78].

Figure 2.12: A short-term dependence being able to be learned from the RNN. Image source: [23]
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Later, Long Short-TermMemoryNetworks (LSTMs)were proposed by SeppHochreiter [82],overcoming
the problem of the vanishing gradient, and consequently capturing better long-term dependencies.

LSTMs: The Long Short-Term Memory networks partially overcome the problem mentioned above
by preserving long-term dependencies using the cell state. [82, 83]

Figure 2.13: The inner architecture of the LSTM unit, containing four interacting layers. Image
source:[23]

The core components of the LSTM architecture are the input,forget and output gates and of course the
cell state. After a formal explanation, we will explain more those components.
Given a sequence x1, x2, . . . , xt, . . . , xn of vectors of an input sequence of length n, for vector xt,
with inputs ht−1 and ct−1, ht and ct are computed as follows:

ft = σ (Wf [ht−1;xt] + bf ) (2.31)

it = σ (Wi[ht−1;xt] + bi) (2.32)

ot = σ (Wo[ht−1;xt] + bo) (2.33)

c̃t = tanh (Wc[ht−1;xt] + bc) (2.34)

ct = ft ⊙ ct−1 + it ⊙ c̃t (2.35)

ht = ot ⊙ tanh (ct) (2.36)

Now we will intuitively explain the main components:

Input gate(it): The input state regulates the amount of information that will flow from the sigmoid
activation of the previous time step ht−1 alongside with the information of the current input vector xt
when we are updating the current state weights. More formally, the current input vector xt and the
hidden state of the previous time step ht−1 are passed into a sigmoid activation function which forces
the output values to range between 0 and 1 (0 means unimportant, 1 means important). Then those
values are used for updating the current states.
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Forget gate(ft): The forget gate controls the information that would be kept or thrown away. The
current input vector xt is passed into a sigmoid function alongside with the hidden state of the previ-
ous time step ht−1. The output values of the sigmoid function range between 0 and 1, which means
forgetting or keeping the relevant information.

Cell state(ct): The cell state is computed by adding the the information which has been controlled
by the aforementioned gates(input and forget gate). The cell state of the previous time step ct−1 is
pointwise multiplied by the “forget” vector ft, controlling which information to forget and which not.
The current input vector xt and the previous hidden state ht−1 are also passed to the tanh function to
squish values between -1 and 1 (c̃t). Then, it is pointwise multiplied with the c̃t. So the input gate
filters the important information of the input vector and the previous hidden state to be kept. Finally
we add those two terms and we have the cell state.

Output gate(ot): The output gate decides what the new hidden state would be. The hidden state
of the previous time step ht−1 and the current input vector are passed into a sigmoid function. Then,
the cell state is passed to the tanh function. Finally, we multiply ot with the output of the tanh function,
in order to determine which information the new hidden state will carry.

GRUs: The researchers in [84] introduced the Gated recurrent unit (GRU). The GRU is like an LSTM
with a forget gate, but has fewer parameters as it lacks the output gate. The LSTM is “strictly stronger”
than GRU as claimed by Gail Weiss, Yoav Goldberg and Eran Yahav [85]. The inner architecture of
the GRU unit is illustrated in Figure 2.14. Following the previous notation, the equations that describe

Figure 2.14: The inner architecture of the GRU unit. Image source: [25]

the function of the GRU are the following:

zt = σ (Wz[ht−1;xt]) (2.37)

rt = σ (Wr[ht−1;xt]) (2.38)

h̃t = tanh (W [rt ⊙ ht−1;xt]) (2.39)
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ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (2.40)

where σ is the logistic sigmoid, σ(x) ∈ [0, 1], ⊙ represents the element-wise scalar product between
vectors, andWz,Wr,W are matrices to be learned.

2.4.2 Attention Mechanisms

Attention has been a fairly popular concept and a useful tool in the deep learning community in recent
years.The idea of attention,is to some extent, motivated by how we pay visual attention to different
regions of an image or correlate words in one sentence. For example, let’s take a look in the picture of
a Shiba Inu in Figure 2.15. Human visual attention allows us to focus on a certain region of an image
with “high resolution”(i.e., focusing on the ear on the yellow box), while perceiving the surrounding
image in “low resolution”(i.e., we do not pay attention to the snowy background or to the sweater).
Given a small patch of an image, pixels in the rest provide clues of what should be displayed there.
We expect to see a pointy ear in the yellow box, because we have seen a dog’s nose, another pointy ear
on the right, and Shiba’s mystery eyes (stuff in the red boxes). However, the snowy background and
the sweater would not be as helpful as the aforementioned doggy features. Similarly, we can explain
the relationship between words in one sentence or close context. For example, when we see “eating”,
we expect to encounter a food word very soon.

Figure 2.15: A Shiba Inu in a men’s outfit. An example of visual attention.
[86]

So, the attention mechanism in deep learning is based on the concept of directing our focus, and
paying greater attention to certain factors when processing the data. Attention is most commonly
used in sequence-to-sequence models [87], as the fixed-length context vector, created by sequence-
to-sequence models, is incapable of representing long-term sequences. Once attention is introduced
[11] the problem is solved, as instead of attempting to learn a single representation for each sentence,
the model pays attention to specific input vectors of the input sequence, based on the attention weights.
Using attention, we obtain a context vector ci, which consumes three pieces of information:

• Encoder’s hidden state (encoder model described in Section 4.3)

• Decoder’s hidden state (decoder model described in Section 4.3)

• alignment between source and target
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Table 2.1: A summary table of several popular attention mechanisms

Name Score− function Citation

Content-base attention score
(
h
(dec)
i , h

(enc)
j

)
= cosine

[
h
(dec)
i , h

(enc)
j

]
[88]

Additive(*) score
(
h
(dec)
i , h

(enc)
j

)
= v⊤a tanh

(
Wa

[
h
(dec)
i ;h

(enc)
j

])
[11]

Location-base(**) αi,j = softmax
(
Wah

(dec)
i

)
[27]

General score
(
h
(dec)
i , h

(enc)
j

)
= h

(dec)
i

⊤
Wah

(enc)
j [27]

Dot-product score
(
h
(dec)
i , h

(enc)
j

)
= h

(dec)
i

⊤
h
(enc)
j [27]

Scaled-Dot-product (***) score
(
h
(dec)
i , h

(enc)
j

)
=

h
(dec)
i

⊤
h
(enc)
j√

n
[12]

(*) Referred to as “concat” in [27] and as “additive attention” in [12].
(**) This simplifies the softmax alignment to only depend on the target position.
(***) It adds a scaling factor 1/

√
n (n is the dimension of the source hidden state), motivated by the concern

that when the input is large, the softmax function may have an extremely small gradient, making it hard to
use for efficient learning.

Table 2.2: A summary table of broad categories of attention types

Name Description Citation

Self attention Relating different positions of the same input sequence. [26]
Global/Soft attention Attending to the entire input state space. [89]
Local/Hard attention Attending to part of input state space; i.e., a patch of the input image. [89, 27]

Let’s assume that the encoder network has hidden states h(enc)1 , h
(enc)
2 , . . . , h

(enc)
n and the decoder

network has hidden state h(dec)i at current time-step i. The context vector ci is calculated at time-step
i as an average of the encoder’s states weighted with the attention scores αi:

ci =
n∑

j=1

αi,jh
(enc)
j (2.41)

αi,j = softmax
(
score

(
h
(dec)
i , h

(enc)
j

))
(2.42)

where the softmax function is defined as:

softmax (zi) =
ezi∑

j=1Kezj
(2.43)

where i = 1,..,K and z = (zi,…,zK) ∈ RK . The score(h(dec)i , s
(enc)
j ) function calculates an unormal-

ized alignment score defining how much each source hidden state must be considered for each output.
So the weights αi,j are calculated based on how well match the pair of input at position j and output
at position i. A summary of attention mechanisms and the corresponding score functions is shown in
Table 2.1. A summary of broader categories of attention mechanisms is shown in Table 2.2.
In the following we analyse some of the attention mechanisms shown in Tables 2.1,2.2.

59



Additive attention

The original (additive) attention mechanism proposed by [11] uses a feed-forward neural network with
a single hidden layer to calculate the alignment scores. This network is jointly trained with the other
parts of the model. The score function is therefore in the following form given that tanh is used as
the non-linear activation function:

score
(
h
(dec)
i , h

(enc)
j

)
= v⊤a tanh

(
Wa

[
h
(dec)
i ;h

(enc)
j

])
(2.44)

where va andWa are both weight matrices to be learned in the alignment model. We can also extend
this method by learning separate transformations for h(dec)i and h(enc)j . Assuming the weight matrices
W1 and W2 for h

(dec)
i and h

(enc)
j respectively, we can then sum the transformed matrices as shown

below:

score
(
h
(dec)
i , h

(enc)
j

)
= v⊤a tanh(W1h

(dec)
i +W2h

(enc)
j ) (2.45)

The matrix of alignment scores is a nice byproduct to explicitly show the correlation between source
and target words, as the one shown in Figure 2.16.

Figure 2.16: Alignment matrix of “L’accord sur l’Espace économique européen a été signé en août
1992” (French) and its English translation “The agreement on the European EconomicAreawas signed
in August 1992”. We notice that the attention mechanism when translating the French word “zone”
pays attention to the English word “Area” in spite of the fact that the words are not aligned. Image
source: [11]

Multiplicative attention

The researchers in [27] proposed multiplicative (known also as general) attention, which simplifies
the attention method by calculating the score function as shown in the following equation:

score
(
h
(dec)
i , h

(enc)
j

)
= h

(dec)
i

⊤
Wah

(enc)
j (2.46)

In spite of the fact that additive and multiplicative attention have similar complexity, multiplicative
attention is more widely used as it is faster and more space-efficient in practice as it can be imple-
mented more efficiently using matrix multiplication. While in small dimensionalities of the decoder
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states dh, both methods perform equally well, in larger dimensions additive attention seems to lack
efficiency [90]. One way to mitigate this is to scale score(h(dec)i , h

(enc)
j ) by 1/

√
dh [12].

Self-attention

Self-attention, also known as intra-attention, is an attention mechanism relating different positions
of a single sequence in order to compute a representation of the same sequence. It has been shown
to be very useful in machine reading [26], abstractive summarization [91], textual entailment [92]
or image description generation [93]. So, by using self-attention without any additional information,
we can still extract relevant aspects from the sentence by allowing it to attend to itself [94] and learn
the correlation between the current words and the previous part of the sentence. Theoretically self-
attention can adopt any score functions, by just replacing the target sequence with the same input
sequence. More specifically, the unormalized alignment scores can be calculated for each hidden
state hi using the score function shown in the following equation:

score(hi) = v⊤a tanh(Wahi) (2.47)

So assuming that we have a matrixH for all hidden states given asH = [h1,h2,…,hn]we can calculate
the attention matrix a and the final representation c using the following equations:

a = softmax(v⊤a tanh(WaH
⊤)) (2.48)

c = Ha⊤ (2.49)

The example in Figure 2.17, shows how the self-attention mechanism enables us to learn the correla-
tion between the current words and the previous part of the sentence in the field of reading compre-
hension.

Figure 2.17: The current word is in red and the size of the blue shade indicates the activation level.
Image source: [26]

Soft and Hard attention

Soft attention: In soft attention, the attention mechanism has access to the entire source. The align-
ment weights are learned and placed “softly” over all source positions. This type of attention makes
the model smooth and differentiable. However, it is really expensive when the input is large.
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Hard attention: In hard attention, the attention mechanism selects a specific window of the input to
attend. So, the calculations needed during inference time are fewer, but the model is non-differentiable
and requires more complicated techniques such as variance reduction or reinforcement learning to
train.

Global and Local attention

[27, 95] Global and Local attention mechanisms differ in terms of whether the attention is placed over
all source positions or only a few source positions. These two mechanisms were proposed by [27]
expanding the encoder-decoder architecture referred in Section 4.3. Common to these attention mech-
anisms is the fact that both at each time step t during the decoding phase receive as input the decoder’s
hidden state h(dec)t and the goal is to produce the context vector ct that captures relevant source-side
information to help predict the current target word yt. More specifically, given the decoder’s hidden
state h(dec)t and the context vector ct, a simple concatenation layer is used to combine the information
from both vectors and produce the new attention hidden state, as shown in the following equation:

h̃t = tanh
(
Wc

[
ct;h

(dec)
t

])
(2.50)

The attention hidden state h̃t is then used for predicting the current word yt. What differs in global
and local attention is the computation of the context vector ct.

Global attention: In global attention the context vector ct is produced by paying attention to all
source positions, so the model considers all the hidden states from the encoder h(enc)j . In this attention
type, a variable-length alignment vector at, whose size equals the number of time steps on the source
side, is derived by comparing the current decoder’s hidden state h(dec)t with each source (encoder’s)
hidden state h(enc)j :

at(j) = align
(
h
(dec)
t , h

(enc)
j

)
=

exp
(
score

(
h
(dec)
t , h

(enc)
j

))
∑

j′ exp
(
score

(
h
(dec)
t , h

(enc)
j′

)) (2.51)

where the score function is described with one of the three different alternatives following:

score
(
h
(dec)
t , h

(enc)
j

)
=


h
(dec)
t

⊤
h
(enc)
j dot

h
(dec)
t

⊤
Wah

(enc)
j general

v⊤a tanh
(
Wa

[
h
(dec)
t ;h

(enc)
j

])
concat

(2.52)

The fact that the global attention mechanism has to attend to all words on the source side for each
target word, is a main drawback, as this process is expensive and can potentially render it impractical
to translate longer sequences, e.g., paragraphs or documents. An illustration of the global attention
mechanism is shown in Figure 2.18.

Local attention: The local attention mechanism is an interesting blend between hard and soft at-
tention. An improvement over the hard attention mechanism has been made in order to make the
model differentiable. In local attention, the context vector ct is produced by paying attention to a few
source positions. By selectively focusing on a small window of context, the process has an advan-
tage of avoiding the expensive computation incurred in the soft and global attention and also makes it
easier to train the model than the hard attention approach as the model is differentiable. More specifi-
cally, the model first generates an aligned-position pt for each target word at time step t. The context
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Figure 2.18: Global attentional model: at each time step t, themodel infers a variable-length alignment
weight vector at based on the current target state h

(dec)
t and all source states h(enc)j . A global context

vector ct is then computed as the weighted average, according to at, over all the source state. Image
source: [27]

vector ct is then derived as a weighted average over the set of source (encoder’s) hidden states within
the window [pt−D, pt + D], where D is empirically selected. The local alignment vector at is now
fixed-dimensional, i.e., ∈ R2D+1. This type of attention has two variants, depending on the selec-
tion of the aligned-position pt. In the first variant, the monotonic alignment (local-m), it is assumed
that the source and target sequences are roughly monotonically aligned, by setting pt = t. Then, the
alignment vector at is calculated with equation 2.51. In the second variant, the predictive alignment
(local-p), the model predicts the alignment positions as follows:

pt = S · sigmoid
(
v⊤p tanh

(
Wph

(dec)
t

))
(2.53)

where Wp and vp are model’s matrices to be learned and S is the is the source sentence length. As
a result of the sigmoid use, pt ∈ [0, S]. To favor alignment points near pt, a Gaussian distribution
centered around pt is used. Specifically, the alignment weights are now defined as:

at(j) = align
(
h
(dec)
t , h

(enc)
j

)
exp

(
−(s− pt)

2

2σ2

)
(2.54)

where the standard deviation is empirically set as σ = D
2 and the align() function is the same as in

equation 2.51. We should also note that pt is a real number, whereas s is an integer within the window
centered at pt. The local attention mechanism is very similar to the selective attention proposed by
[96], which is used in image generation tasks. An illustration of the local attention mechanism is
shown in Figure 2.19.

Key-Value-Query attention

This type of attention mechanism was introduced by [12] and is used in the Transformer model de-
scribed in Section 4.6 (using self-attention). The attention function can be described as mapping a
query and a set of key-value pairs to an output, where the query, keys, values, and output are all vec-
tors. The output is computed as a weighted sum of the values, where the weight assigned to each value
is computed by a compatibility function of the query with the corresponding key. Based on the Key-
Value-Query attention we analyse Scaled-Dot-Product and Multi-Head attention mechanisms which
were proposed in [12].
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Figure 2.19: Local attention model: the model first predicts a single aligned position pt for the current
target word. A window centered around the source position pt is then used to compute a context vector
ct, a weighted average of the source hidden states in the window. The weights at are inferred from
the current target state h(dec)t and those source states h(enc)s in the window. Image source: [27]

Scaled-Dot-Product attention

In Scaled-Dot-Product attention the input consists of queries and keys of dimension dk and values of
dimension dv. The dot-products of each query with all keys is calculated and then each one is divided
by
√
dk and finally a softmax function is applied to obtain the weight of each value. The output is

computed as a weighted sum of the values and the respective weights. More specifically, all queries,
keys and values are packed together into the matrixes Q,K,V respectively. So, the attention function
computes the weights for all values simultaneously as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2.55)

Additive attention can also be used insted of dot-product (multiplicative) attention. As mentioned
before, additive attention uses a feed-forward network with a single hidden layer. However, while
the two are similar in theoretical complexity, dot-product attention is much faster and more space-
efficient in practice, since it can be implemented using highly optimized matrix multiplication code.
While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot-product attention without scaling for larger values of dk [97]. So using large values of dk causes
the dot products to grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients. In order to counteract this effect, the dot-products are divided by

√
dk. An

illustration of scaled-dot-product attention is shown in Figure 2.20a

Multi-Head attention

The Multi-head attention mechanism extends the scaled-dot-product attention mechanism. Instead of
performing a single attention function with dmodel-dimensional keys, values and queries, it linearly
projects the queries, keys and values h times, with different learned linear projections to dk, dk and
dv dimensions, respectively. In this way, the model can jointly attend to information from differ-
ent representation subspaces at different positions. The multi-head attention function is described as
follows:

MultiHead (Q,K, V ) = Concat ( head 1, . . . , head h)W
O

where head i = Attention
(
QWQ

i ,KWK
i , V W∨

i

) (2.56)
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(a) Scaled-Dot-Product attention us-
ing queries, keys and values.

(b) Multi-Head attention using queries, keys
and values.

Figure 2.20: Scaled-Dot-Product and Multi-Head attention mechanisms. Image source: [12]

where the projection parameters are WQ
i ∈ Rdmodel ×dk ,WK

i ∈ Rdmodel ×dk ,W V
i ∈ Rdmodel ×dv and

WO ∈ Rhdv×dmodel . It’s worth mentioning that in [12] the dimensions dk and dv are set as dk =
dv = dmodel/h so that with the reduced dimension of each head, the total computational cost is similar
to that of the single-head attention with full dimensionality. The multi-head attention mechanism is
illustrated in Figure 2.20b.

2.5 Transfer Learning

Aswe have alreadymentioned, in many deep learning tasks we need a plethora of data in order to build
a model that produces satisfying results. However, in many practical applications there are a few data
available with tags to do a supervised training of the model as getting the amounts of data required for
supervised models can become unfeasible due to time restrictions and computational limitations. It is
also noticed that training a model on a small specific dataset may not be as effective. In these cases,
the use of transfer learning offers an alternative solution.

The goal of transfer learning is to improve the performance of the model in a specific task (the target
task), by utilizing knowledge acquired from training on the source task [98]. More formally, given
a source domain DS , a corresponding source task TS , as well as a target domain DT and a target
task TT , transfer learning’s objective is to enable us to learn the target conditional probability dis-
tribution P (YT |XT ) in DT with the information gained from DS and TS , where XT is the feature
space and YT is the label space of task T and DS ̸= DT or TS ̸= TT . Through the pre-training
process on the source task, the model gains initial knowledge and learns to create high-level represen-
tations. So, when it is then fine-tuned on the target task, not only it learns faster, but it also reaches
a higher performance level compared to the performance level achieved without transfer learning [99].

It is also worth mentioning the special case where the source task is an unsupervised task. This is
an interesting scenario because we often have very large amounts of unlabeled training data, that can
be used during pre-training boosting the model’s performance by far. Such a scenario is also found
in dialogue systems, where the models are pre-trained as language models and then are fine-tuned on
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Figure 2.21: An illustration of the transfer learning technique.

the target dialog task.

The process of transfer learning is illustrated in Figure 2.21.

2.6 Multi-task Learning

Multi-task learning (MTL) is a learning technique in which we want to train a model in many related
tasks simultaneously. In other words, we want the model to generate predictions for multiple tasks at
the same time. The motivation behind that is to try to take advantage of the information in one of the
problems so that we can improve the performance in the other problems [100, 101]. In deep learning,
the basic idea of implementing multi-task learning is to have different networks that are part of the
same structure and have a few common parameters. Thus, the shared part is affected by all problems,
while the non-shared parts are affected by the training data of each task independently.

(a) Hard parameter sharing approach.
(b) Soft parameter sharing approach.

Figure 2.22: Multi-task learning techniques. Image source:[28]

Multi-task learning can be implemented with hard or soft parameter sharing. In hard parameter shar-
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ing all the hidden layers of the network are shared among all tasks, while there is an independent
output head for each task for making a suitable prediction. Hard parameter sharing reduces the risk of
overfitting. The idea behind this is that the more problems the model tries to learn to solve at the same
time, the more it is forced to find a common representation that is effective for all problems, making a
better generalization. On the other hand, in soft parameter sharing, some of the hidden parameters are
shared and others not. The output heads are independent as in the first case, of course. An illustration
of both methods is given in Figure 2.22.

2.7 Summary

In this Chapter, an introduction to the basic principles and the theoretical background of machine
learning and deep neural networks is given. This background is cornerstone of this diploma thesis as
some of the models which we will study in the next sections are based on the basic principles we have
described. Specifically, a basic understanding of recurrent neural networks, attention mechanisms,
transfer learning and multi-task learning is very important in order to fully grasp the ideas and ex-
periments presented in the following. In the next Chapter we introduce the reader to the objective of
Natural Language Processing (NLP), a significant field of research for understanding dialog systems.

67





Chapter 3

Natural Language Processing

3.1 Introduction

Everything we express, either verbally or in writing, carries huge amounts of information. The topic
we choose, our tone, our selection of words, everything adds some type of information that can be
interpreted and value can be extracted from it. In theory, we can understand and even predict human
behavior using that information. However, when having thousands of declarations to analyze, it is
almost impossible trying to encode text or speech with specific keywords. So, the matter is to under-
stand the meaning behind those words

Natural Language Processing (NLP) is a field of computer science, artificial intelligence and lin-
guistics, concerned with the interactions between computers and human (natural) languages. It is the
process of a computer extracting meaningful information from natural language input and/or produc-
ing natural language output. It is an analysis of human language based on semantics and various
parsing techniques [102]. NLP may focus on language processing or generation. The first of these
refers to the analysis of language for the purpose of producing a meaningful representation, while
the latter refers to the production of language from a representation. The task of language process-
ing is equivalent to the role of the reader/listener, while the task of language generation is that of the
writer/speaker. Much of the theory and technology are shared by these two divisions. [103]

NLP is performed by solving a number of sub-problems, where each sub-problem constitutes a level.
We should note here that, a portion of those levels could be applied, not necessarily all of them. For
example, some applications require the first three levels only. Also, the levels could be applied in a
different order independent of their granularity. The levels that NLP examines are:

Level 1 - Phonology: This level is applied only if the text’s origin is a speech. It deals with the
interpretation of speech sounds within and across words [104]. There are, in fact, three types of rules
used in the phonological analysis:

• phonetic rules – for sounds within words

• phonemic rules – for variations of pronunciation when words are spoken together

• prosodic rules – for fluctuation in stress and intonation across a sentence

Level 2 - Morphology: Deals with understanding distinct words according to their morphemes (mor-
phemes are the smallest units of meanings). In other words, this level deals with words formation.
English words are generally composed of a stem and an optional set of affixes. The stem, as a mor-
pheme that cannot be removed, is the true morphological base of an English word. For example, the
word “preregistration” can be morphologically analyzed into three separate morphemes: the prefix
“pre”, the root “registra”, and the suffix “tion”. [105]. This level of NLP can be useful in retrieval-
based dialog systems, where in order to match more responses to a query, words can be stemmed.
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Level 3 - Lexical: This level deals with understanding everything about distinct words according
to their position in the speech, their meanings, and their relation to other words. Each word is ana-
lyzed with respect to its lexical meaning and part-of-speech. In this level words are assigned with a
part-of-speech tag.

Level 4 - Syntactic: This level deals with analyzing the words of a sentence so as to uncover the
grammatical structure of the sentence. Generally, it focuses on the scientific study of the structure of
the sentence as an independent unit. Using the part-of-speech tagging output of the previous level we
group words into phrases and study their grammatical structure. [106].

Level 5 - Semantic: Semantic processing determines the possible meanings of a sentence by re-
lating the syntactic features and the different meanings of each word according to the context. Some
people may think it’s the level that determines the meaning, but actually, all the levels do [107, 108].

Level 6 - Discourse: While previous levels work with word-level and sentence-level units, the dis-
course level of NLP works with units of text longer than a sentence. It does not interpret texts as just
concatenated sentences, rather it focuses on the properties of the text as a whole that convey meaning
by making connections between component sentences [103]. In other words, in this level we study
the anaphora relationships between words in text longer than a sentence.

Level 7 - Pragmatic: This level is concerned with the purposeful use of language in situations and
utilizes context over and above the contents of the text for understanding. In other words, this level
deals with the use of real-world knowledge and understanding of how this impacts the meaning of
what is being communicated [103]. For example, let’s consider the following two sentences:

• The city councilors refused the demonstrators a permit because they feared violence.

• The city councilors refused the demonstrators a permit because they advocated revolution.

As we can see, the meaning of “they” in the two sentences is different. In order to figure out the
difference, “world knowledge” should be utilized.

3.2 Applications

Natural Language Processing is among the hottest topics in the field of data science. Companies are
putting tons of money into research in this field, as they can benefit from it because any application
that utilizes text is a candidate for NLP. The most common applications of NLP are:

Information Retrieval: The science of searching for documents, for information within documents,
and for metadata about documents.

Information Extraction: The recognition, tagging, and extraction into a structured representation,of
certain key elements of information, e.g., persons, companies, locations, organizations, from large
collections of text.

Automatic Speech Recognition: The task of automatically recognizing speech or in other words
extracting a textual representation of a spoken uttterance.

Natural Language Understanding (NLU): The task of understanding the natural language and pro-
ducing computer-machine based representations.

Natural Language Generation (NLG): The task of generating natural language from computer-
machine based representations.
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LanguageModeling: The task of determining the probability of a given sequence of words occurring
in a sentence. Language models analyze text data and are able of predicting the next word or character
in a document.

Dialogue Systems or Converastional Agent (CA): A computer system intended to converse with
humans.

Machine Translation: The use of computer software in order to translate text or speech from one
natural language to another.

Text Classification: A method for classifying texts (sentences, documents, etc) into a variety of
specific categories.

Text Summarization: The task of producing a shorter version of one or several documents that pre-
serves most of the input’s meaning.

Named Entity Recognition: The task of tagging entities in text with their corresponding type. Ap-
proaches typically use BIO notation, which differentiates the beginning (B) and the inside (I) of enti-
ties. O is used for non-entity tokens.

Sentiment Analysis: The task of classifying the polarity of a given text. Sentiment Analysis, in
its simplest form, aims to detect positive, neutral, or negative feelings from text.

3.3 Language Representations

In this section, we examine several ways through which words are transformed into mathematical
representations, in order to be used as input in our models to solve a variety of problems of NLP. It
is worth to mention that long before the organized establishment of the Natural Language Processing
Industry/Community, the idea of using separate symbols for each word prevailed. However, a number
of ways were proposed later to create more accurate representations. In the most recent studies, efforts
are made to create a vector representation for each word in the vocabulary. Those vector represen-
tations are called word embeddings or word vectors. The goal is to create word vectors that carry
a sense of similarity or differentiation between words that are similar or unrelated respectively. So,
once words are converted into word vectors, a variety of distance metrics such as Jaccard, Euclidean,
Cosine, etc., can be used to model the similarity or differentiation between them.

There are two different semantic approaches to creating word representations. The first one, which is
called denotational semantics, treats words as separate symbols, creates more sparse representations,
and does not give any sense of similarity or dissimilarity between words (localist representation).
On the contrary, the second one, called distributional semantics, creates representations based on con-
text, retaining similarities or dissimilarities between words. Distributional semantics embraces a wide
range of approaches based on the distributional hypothesis, in an attempt to capture meanings of lin-
guistic entities (words, phrases) from their usage in language. The idea of the distributional hypothesis
is that the distribution of words in a text holds a relationship with their corresponding meanings. More
specifically, the more semantically similar two words are, the more they will tend to show up in simi-
lar contexts and with similar distributions. It is summarized with the statement that “words that occur
in the same contexts tend to have similar meanings” [109]. Also, the hypothesis is often described by
the famous quote “a word is characterized by the company it keeps” [110]. The direct implication of
this hypothesis is that two words that are considered to be semantically similar are expected to occur
in similar contexts, and vice-versa.

71



In the following sections we present approaches for creating the popular word embeddings. More
specifically, in subsection 3.3.1 we examine some frequency based methods, in 3.3.2 we analyze the
Word2Vec method, in 3.3.3 the Glove method and finally in 3.3.4 we refer to Contextualized embed-
dings.

3.3.1 Frequency-based Methods

One-Hot Vectorization: In this method each word is represented as a vector of size R|V |×1, where in
every dimension we set the value 0, except one that receives the value 1 and the position in which it
receives this value corresponds to the index in which it is stored in the dictionary. Let’s provide an ex-
ample to make it clear. Assuming a dictionary V = {network, artificial, intelligence, human},
with |V | = 4, the following one-hot vectors can be produced:

wnetwork =


1
0
0
0

, wartificial =


0
1
0
0

, wintelligence =


0
0
1
0

, whuman =


0
0
0
1

 So, the matrix which

for each word contains the corresponding representation has dimensionality |V |× |V |. Consequently,
the larger the dimension of the vocabulary gets, the larger the dimensionality of the representations
will be.In this way, this matrix is quite sparse and we should also consider that for large dictionaries,
we will waste a lot of memory as the dimensions of the matrix become very large. Furthermore, this
method does not provide any semantic or relational information between the word vectors.

Count Vectorization: The idea of this method is very simple and similar to the previous one. Let’s
assume a corpus C ofD documents (d1, d2 , ..., dD) andN unique tokens extracted out of the corpus
C. The N tokens form the vocabulary. We create the count vector matrix M ∈ RN×D,where each
element mij of the matrix M contains the frequency (raw count) of ti in document dj . However,
we should note that the result is a sparse matrix M with very large dimensions, in this situation too.
Moreover, there is not any semantic or relational information between the word vectors. A random
visualization of the matrixM is illustrated in Figure 3.1.

TF-IDF Vectorization: This is another method which takes into account not just the occurrence of
a word in a single document but in the entire corpus. Common words like “a”,“I”,“am”,etc tend to
appear quite frequently in comparison to the words which are more important to a document. What we
want to do is to give more importance to words that appear in only a subset of documents and penalize
the words that appear in almost all documents. TF-IDF works by penalising these common words by
assigning them lower weights while giving importance to more “important” words. The TF-IDF is
the product of two statistic terms, the term frequency and inverse document frequency, as the
acronym reveals.
For the term frequency TF (t, d), the simplest choice is to use the raw count of a term in a document,
i.e., the number of times that term t occurs in document d. If we denote the raw count by ft,d, then the
simplest scheme is TF (t, d) = ft,d. Other variations include term frequency adjusted for document
length TF(t, d) = ft,d∑

t′∈d ft′,d
.

The inverse document frequency is a measure of how common or rare across all documents the
word is. It is the logarithmically scaled inverse fraction of the documents that contain the word
IDF(t,D) = log N

|{d∈D:t∈d}| , where N is the total number of documents in the corpus (N = |D|)
and |{d ∈ D : t ∈ d}| is the number of documents where the term t appears.
Then TF-IDF is calculated as TF − IDF (t, d,D) = TF (t, d)·IDF (t,D).

Window based co-occurrence vectorization: In it’s simplest form, similarly with the above method,
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Figure 3.1: Visualization of count vectorization matrixM . (Image source: [29])

we store to the matrix M co-occurrences of the items in a specific window. This simple counting
method results in a co-occurrence matrix, where the components of each vector can be interpreted as
weights denoting the strength of the relationship between the target and the respective context word.

3.3.2 Iteration-based Methods - Word2Vec

Due to the fact that frequency-based methods are computationally expensive, other approaches for
creating word vector representations have been more recently adopted [31, 111, 30]. The key idea
of those methods is that “similar” worlds will appear in “similar” contexts and the word vectors of
similar words should be also similar. The goal is to create word vector representations, by focusing on
predicting the word from its context or predicting the context from the word on every iteration. The
most important method adopted in the field of NLP, is the Word2Vec method, proposed by Mickolov
[30].

Word2vec is a particularly computationally efficient predictive model for learning word embeddings
from raw text. A large corpus of words is used as input to a two-layer neural network, which is trained
to construct linguistic contexts of words. Word vectors are positioned in the representation space in
such a way that words that share a common context in the corpus are located in close proximity to one
another in the representation space. Word2Vec method combines two prediction-based techniques:
CBOW(Continuous bag of words) and Skip-Gram , and the corresponding training methods which
are the Negative Sampling [112] and the Hierarchical Softmax [113]. As shown in Figure 3.2, the
CBOW mechanism tries to predict the “central” word given the context, while the Skip-Gram mech-
anism tries to predict the context given the “central” word.
Consequently, when the “central” word vector is not able to accurately predict the context of the
“central” word, an error is calculated, and through backpropagation, the word vectors are updated.
The Negative Sampling mechanism is used during training, to add “negative” samples in order to
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Figure 3.2: CBOW and Skip-Gram mechanisms used in Word2Vec. (Image source: [30])

better train the model and consequently the word embeddings, while the Hierarchical Softmax is used
to obtain a better probability distribution over the model’s vocabulary.

3.3.3 Glove

GloVe [114], unlike Word2vec, does not rely just on local statistics (local context information of
words), but incorporates global statistics (word co-occurrence) to obtain word vectors. The idea of
using global statistics to derive semantic relationships between words goes a long way back to latent
semantic analysis (LSA) [115]. Before training the actual model, a co-occurrence matrix X is con-
structed. Given a corpus having V words, the co-occurrence matrix X will be a |V | × |V | matrix,
where the i-th row and j-th column of X , Xij denotes how many times word i has co-occurred with
word j. Once X is ready, the word vectors are initialized for each word in the vocabulary and the
training is done by minimizing an objective function J , based on the sum of the square errors. This
way, the model utilizes the main benefit of count data— the ability to capture global statistics—while
simultaneously capturing meaningful linear substructures (like word2vec), achieving the creation of
a word vector space that retains important information concerning the meaning of the words.

3.3.4 Contextualized Embeddings

The word vectors described so far are static. However, a word may be used in different sentences
having a completely different meaning each time. Consequently, using static word vectors can lead
to misunderstandings as static vectors are not always able to represent the various meanings that a
word may have. The idea that the context should form the word vector representation and using
different word vectors according to the context may lead to better representations, gave rise to the
use of contextualized embeddings [116]. Contextualized embeddings come from training models like
Bert [13], ElMo [117], etc.

3.4 Language Modeling

In a variety of Natural Language Processing problems, we need to calculate the likelihood of occur-
rence of a number of words in a particular sequence. Language models are models which are able of
calculating the referred probability. Let’s denote the occurrence probability of a sequence ofM words

74



{w1, w2, ..., wM} with P (w1, w2, ..., wM ). The probability P (w1, w2, ..., wM ) can be calculated as:

P (w1, . . . , wM ) =
M∏
i=1

P (wi | w1, . . . , wi−1) (3.1)

We want the created model to give a little probability of occurrence to sequences that are syntactically
incorrect or are not widely used and vice versa to give higher probability to commonly used or syn-
tactically and grammatically correct sequences.

In the following parts of this section we will discuss and analyse some of the basic language models. It
is worth mentioning here that in this section we present traditional models and not the state-of-the-art
models for language modeling. However, in Chapter 4, we examine and analyze the state-of-the-art
models such as Transformers, BERT and GPT2 in the view of languagemodeling and natural language
generation.

3.4.1 N-Gram Language Models

We can refer to any sequence consisting of n consecutive words using the term “n-gram”. We may
often come across the terms “bigram” or “trigram” which actually refer to sequences consisting of
two and three consecutive words respectively such as “good student” and “deep neural networks”.
The simplest language model that assigns probabilities to sequences is the n-gram language model.
In n-gram language modeling, we have to split the word sequence and predict one word at a time. We
can describe this procedure using the chain rule with the following equation:

P (w1, w2, . . . , wM ) = P (w1)P (w2 | w1) . . . P (wM | w1, w2, . . . , wM−1) (3.2)

As we can see the language model probability P (w1, w2, ..., wM ) is a product of word probabilities
given the entire history of preceding words. However, using an n-gram model, instead of needing the
entire history for computing the probability P (w1, w2, ..., wM ), we can approximate this probability
using the history of the last n words. This model is called Markov chain model and the word
probability distribution, limiting the history to n words can be described by the following equation:

P (wM | w1, w2, . . . , wM−1) ≈ P (wM | wM−n, . . . , wM−2, wM−1) (3.3)

While the n-th order Markov assumption is clearly wrong for any n as sentences can have arbitrarily
long dependencies, it still produces strong language modeling results for relatively small values of n,
and was the dominant approach for language modeling for many decades.

Let’s now try to estimate that probability using maximum likelihood estimation. For the most com-
mon case of a bigram and a trigram language model, the estimation of the probabilities P (w2|w1) and
P (w3|w2, w1) is computed as:

P (w2 | w1) =
count (w1, w2)

count (w1)
(3.4)

P (w3 | w1, w2) =
count (w1, w2, w3)

count (w1, w2)
(3.5)

More intuitively, for the estimation of the probability P (w2|w1) we count how often in the training
corpus the word w1 is followed by the word w2 as opposed to other words and for the estimation of
the probability P (w3|w2, w1) we count how often the sequence of words w1, w2 is followed by the
word w3 as opposed to other words.

However, this type of language modeling has two main drawbacks. The first one concerns the fact that
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the numerator in equation 3.3 would be zero if the sequence of words w1, w2, w3 has never appeared
in the training corpus. Consequently, the probability of having the word w3 after the sequence of
words w1, w2 will also be set to zero. To deal with this problem smoothing techniques are used [118],
giving some chance of occurrence to those words. The second problem has to do with the occurrence
of the sequence w1, w2. If those words never appear in sequential order the denominator will be zero.
To face this problem, the backoff technique is used [119]. It is also worth mentioning here that the se-
lection of n, increases the computational needs as the model requires much more memory. However,
we should also keep in mind that the selection of n is crucial for the window of context which is taken
into consideration when the model assigns a probability to a word. So, having in mind this trade-off,
n should be carefully chosen.

3.4.2 Window-Based Neural Language Models

In 2003, Bengio proposed a window-based neural language model [31], overcoming “the curse of di-
mensionality”, one of the major problems in the field of NLP. Non-linear neural network models allow
conditioning on large context sizes with only a linear increase in the number of parameters, making the
computational needs affordable. On the one hand, the model tries to learn a word vector representation
space and on the other tries to learn a probability distribution for word sequences. The model takes
as input the corresponding word representation vectors of an n-th length word window of previous
words. This way, we can encode the words, whose word vectors are noted as C(wt−n+1), C(wt−2)
andC(wt−1) and are called word embeddings (C(w) ∈ Rdw ). The word embeddings are concatenated
and fed into a hidden layer, whose output is then provided to a softmax layer. The whole network is
illustrated in Figure 3.3.

Figure 3.3: Window-based neural network language model proposed by Bengio. (Image source: [31])

More formally, this process can be described by the following equations:

x = [C (wt−n+1) ;C (wt−2) ; . . . ;C (wt−1)] (3.6)
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ŷ = softmax (tanh (xW1 + b1)W2 + b2) (3.7)

where V is the vocabulary, wi ∈ V ,W1 ∈ Rn·dw×dhid , b1 ∈ Rdhid ,W2 ∈ Rdhid×|V|, b2 ∈ R|V|.

More recently, feed-forward neural networks have been replaced with RNNs and LSTMs (described in
Sec 2.4) for language modeling. Furthermore, the state-of-the-art models used, producing the best re-
sults, are the Transformers models, which are analysed in Chapter 4 in the view of language modeling
and natural language generation.

3.5 Emotion Recognition in NLP

Emotion Detection and Recognition from text is a recent field of research that is closely related to
Sentiment Analysis. While sentiment analysis in its simplest form aims to detect positive, neutral, or
negative feelings from text, emotion recognition aims to detect and recognize more specific feelings
based on text, such as anger, disgust, fear, happiness, sadness, and surprise. Undoubtedly, the Inter-
net contains large amounts of text that can be useful for emotional analysis such as product reviews,
news articles, stock market analyses, personal blogs/journals, social network websites, forums, fiction
excerpts, critiques, or political debates; any place where people discuss and share their opinion freely
could be a source. As emotion recognition is really important in understanding human experience and
communication, there is growing interest in this domain these days.

So far, three major approaches have been proposed for emotion modeling by the psychology research
community [120, 121]. These are the following:

• The Categorical approach: According to this approach, there is exists small number of basic
emotions being universally recognized. The most commonly used model for emotion recogni-
tion is proposed in [122], which involves six basic emotions: happiness, sadness, anger, fear,
surprise, and disgust.

• The Dimensional approach: According to this approach, the emotional states are not inde-
pendent but related to each other in a systematic manner. They can be represented using a
continuous emotional space of three dimensions: Valence, Arousal and Dominance. Valence
expresses how much positive or negative an emotion is, arousal refers to how excited or apa-
thetic an emotion is, while dominance refers to the power of the emotion.

• The Appraisal-based approach: This approach can be considered as an extension of the di-
mensional approach, based on appraisal theory. Appraisal theory is the theory in psychology
that emotions are extracted from our evaluations (appraisals) of events that cause specific re-
actions in different people. To put it simply, our appraisal of a situation causes an emotional
response. An example of this is when going on a first date. If the date is perceived as posi-
tive, one might feel happiness, joy, giddiness, excitement, and/or anticipation, because he has
appraised this event as one that could have positive long-term effects, i.e. starting a new rela-
tionship, engagement, or even marriage. On the other hand, if the date is perceived negatively,
the emotion caused might involve dejection, sadness, emptiness, or fear.

The approaches for detecting and recognizing emotions from the text, can be distinguished into five
categories including keyword-based approaches, rule-based approaches, traditional learning-based
approaches, deep learning approaches, and hybrid approaches [123]. A keyword-based approach re-
lies on finding occurrences of keywords in a given text and assigning an emotion label based on the
detected keyword [124, 125]. For example, the sentence “Sunny days always make me feel happy”
explicitly expresses happiness and includes the emotion keyword “happy”. However, the presence of

77



an emotion keyword does not always match the expressed emotion. For example, the sentence “Do
I look happy to you!” includes the emotion keyword “happy” but does not express that emotion. A
rule-based approach is based on the manipulation of knowledge to interpret information in a useful
way. First, text preprocessing is performed to the emotion dataset. Afterwards, some emotion rules are
selected using linguistic and computational concepts.Finally, they are applied on the emotion dataset
to determine the emotion labels [126].

A traditional learning-based approach provides systems the ability to automatically learn and improve
from experience. Traditional machine learning algorithms are often used to extract emotion labels
from text data [127, 128]. First, text preprocessing is performed on the emotion dataset. The prepro-
cessing steps may include tokenization, stop word removal, lemmatization, and POS tagging. Then
useful features are extracted from the text. Given the feature set and the emotion labels, traditional
classification models, such as SVM, are trained on the data. Finally, the trained models are used to
classify emotions in unseen text. However, deep learning approaches seem to achieve state-of-the-art
results on emotion recognition as they can model complex concepts of natural language and under-
stand the implied emotions. The most commonly used method is to use a language model to extract a
language representation of the input and then apply classification to predict the corresponding emotion
label. Transformers or Recurrent Neural Networks (RNNs) are usually used for extracting language
representations, while Dense Neural Networks (DNNs) or Convolutional Neural Networks (CNNs)
are used as emotion classifiers [129, 130, 131, 132, 133, 134]. Finally hybrid methods can combine
the aforementioned approaches [135, 136, 137]. In [135] the researchers proposed a combination of
keyword-based and learning-based approaches.

In this diploma thesis, we use emotion recognition on dialogue systems, in order to not only un-
derstand what is being discussed in the conversation but also to understand the implied feelings of the
user. In this way, the conversational agent is able to produce more engaging responses. The simplest
way to detect and recognize emotions in a dialog context is to use the word representations we intro-
duced before and feed the data to a neural network. However, those representations may be poor as
they are based on each word and the performance of the designed models may not be satisfying. More
complex models such as Transformers can be used to create the appropriate language representations
(contextualized embeddings), and with the addition of a simple neural network over the language
model, we can achieve satisfying results. We will take a deeper look into those architectures while
studying the models we have implemented, in Chapter 5.

3.6 Summary

In this Chapter we studied the basic principles of the Natural Language Processing (NLP) research
field. The language representations methods presented in Section 3.3 are essential for converting nat-
ural language into a mathematical form, that can be consumed by the models we implement. Creating
contextualized embeddings is an important field of research as they take the context into account,
leading to a better representation of the input related to the specific task. Moreover, in Section 3.4
we studied the basic language models, which are also important for creating conversational agents.
Understanding the basic ideas behind language modeling is essential as in the next chapter the modern
models presented are pre-trained so that they can primarily model language satisfactorily. Finally, we
gave a brief description of emotion recognition from text, another critical feature of the empathetic
dialogue agents we want to develop.
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Chapter 4

Dialog Generation using Generative Models - Theoretical
Background

4.1 Introduction

As previously mentioned in Section 1.2, a main category of dialogue systems is the non-task-oriented
dialogue systems known as chatbots too. Chatbots provide users with the means to participate in
different activities such as a game, entertainment, chitchat rather than focus on a particular task or
complete any task in a specific job [56, 6] like most task-oriented dialogue systems do [138, 5]. So
the main goal of those systems is to carry on extended conversations mimicking the unstructured con-
versational or “chats” characteristics of human-human interaction.
Some examples of the very first chatbots are ELIZA [1] and PARRY [2]. Both systems did not use
data for learning purposes, but in contrast with the most recent methods, they used a combination of
rules and patterns. Data-driven approaches have been proposed to overcome some of the limitations
of the hand-built rules. These approaches enabled chatbots to learn from massive amounts of avail-
able conversations between humans, such as conversations on chat platforms, on Twitter, or in movie
dialogs, summarized by [139], which are available in great quantities and have been shown to resem-
ble natural conversation. As mentioned in Section 1.2, the developed methods are retrieval-based or
generation-based [140]. Retrieval-based models obtain response candidates from a pre-built index,
rank the candidates and finally choose the response from the top-ranked ones [5, 141], while on the
other hand, generation-based methods use natural language generation (NLG) to select the response
[142].
In the following sections, we analyze in depth some of the generation-based approaches and we study
the most common decoding and evaluation methods used in dialogue generation. More specifically, in
Section 4.2 we present the related work, and from Section 4.3 to 4.9 we study in depth traditional and
recent generation-models. Afterwards, in Section 4.10 we study the most common decoding meth-
ods providing typical examples and finally in Section 4.11 we take a look at the most widely used
evaluation metrics.

4.2 Related Work

The basic idea behind generation-based methods is to synthesize a new sentence word by word as a
response to the user’s request [87] and was inspired by the work in machine translation. In 2001, the
researchers of [143] used phrase-based machine translation (SMT) in order to translate a user turn
to system response and showed that the SMT method was better-suited for response generation than
retrieval-based models on Twitter dataset [143, 144]. More specifically, the phrase-based SMTmodel
considers the strong structural relation between many request-response pairs (e.g., “the soup smells
delicious” - “I will bet it looks gorgeous too”), and extracts phrases like “smell-look” and “delicious-
gorgeous” from the dataset to translate the request to the response. However, this model could work
badly since the responses are often not semantically matched to the requests as in a translation task.
For example, it is likely that for a request the responses “having my fruit salad now”, “but it is 2 am
now” and “which restaurant” are appropriate. Afterwards, it became clear that the task of response

79



generation was a bit different from machine translation, as in machine translation words or phrases in
the source and target sentences tend to align well with each other, but in conversation, a user utterance
may share no words or phrases with a coherent response. Later, another technique derived from ma-
chine translation called sequence-to-sequence (seq2seq) seemed to work better in response generation
tasks [87, 142, 145].

The sequence-to-sequence architecture consists of an encoder model which encodes the user input
(request) and represents it as a vector, and a decoder model which decodes the vector (representa-
tion of encoded input) and generates a sentence word by word. The encoder and decoder models are
usually recurrent neural network (RNN) models. Formally, the encoder-decoder architecture can be
used in tasks which can be thought of as requiring the mapping of variable-length input sequences
in source language to variable-length sequences in target (e.g.[146]). Subsequently, attention-based
mechanisms were developed, which force the encoder to weigh parts of the encoded input more when
predicting certain portions of the output during the decoding phase [11, 27, 89]. This mechanism ob-
viates the need for direct input-output alignment, since attention-based models are able to learn input-
output correspondences based on loose couplings of input representations and output texts [147, 148].
Moreover, in order to better encode the context of the source sentence bidirectional RNN (BRNN)
models were used [149].Those models parse the input not only in forward direction, but in backward
too and as a result the amount of input information available to the network is increased.

However, a main problem with the simple sequence-to-sequence response generation is the inabil-
ity of the architecture to model prior context of the conversation. More specifically, the generated
response is based on the previous turn while the huge amount of information derived from previous
turns of the dialogue are ignored. To overcome this problem and to incorporate dialogue history in
response generation the hierarchical recurrent encoder-decoder (HRED) architecture was adopted, al-
lowing the model to summarize information over multiple prior turns [139, 33, 150, 151]. Later, in
order to model complex dependencies between sub-sequences such as found between the utterances
in a dialogue, the HRED model was enhanced with stochastic latent variables (VHRED) that span a
variable number of time steps. The introduced latent variables seem to facilitate both the generation
of meaningful, long and diverse responses and maintain dialogue state [152]. In addition, the need of
providing more appropriate and more informative responses lead to the use of external knowledge.
The researchers in [153] took advantage of the Memory Network [154] and proposed to condition
responses on both dialogue history and external facts. However the architectures mentioned above
focus on generating single responses and don’t produce continuous responses that cohere across mul-
tiple turns. So, some other techniques, such as reinforcement learning [155] and adversarial networks
[156, 157], were adopted to learn to choose responses that make the conversation seem more natural.

Later in 2017, a new simple network architecture based on the attention mechanism was proposed,
achieving not only much better quality of the generated responses but requiring significantly less time
to train too. This architecture is known as the Transformer architecture [12]. The Transformer model
uses entirely the attention mechanism to draw global dependencies between input and output. This
feature avoids recurrence and also allows for more parallelization. However, the encoder-decoder
architecture is still used in the transformer model. Recently, a lot of new state of the art models have
been proposed, based on the Transformer architecture. OpenAI-GPT2 [69], Tranfer-Transfo [158],
Bert [13], T5 [14] are few of these models that have significant progress in NLP and specifically in
dialog generation.
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4.3 Vanilla seq2seq model

The simplest version of sequence-to-sequence (seq2seq) models is the Vanilla seq2seq model. As
previously mentioned, the idea of the sequence-to-sequence model is to map a variable-length input
sequence to a variable-length output sequence. In order to achieve this mapping an encoder model is
used for obtaining a large fixed dimensional vector representation of the input sequence, representing
the encoded information. Additionally, a decoder model is used for extracting the output sequence
by decoding the fixed dimensional vector representation and generating a sentence word by word. In
order to fully understand the model’s underlying logic, we will go over the illustration in Figure 4.1,
in the context of NLP.

Figure 4.1: The vanilla seq2seq architecture. (Image source: [9])

Let’s assume that we have an encoder-decoder architecture which consists of two RNN’s, one for the
encoder and another one for the decoder. We can further separate the encoder-decoder architecture (in
the context of NLP) into five major layers:

• Encoder’s Embedding Layer

• Encoder’s Recurrent Layer

• Decoder’s Embedding Layer

• Decoder’s Recurrent Layer

• Decoder’s Output Layer

So the encoder consists of two layers: the embedding layer and the recurrent layer, and the decoder
consists of three layers: the embedding layer, the recurrent layer, and the output layer. Let’s now
explain each of these parts.

Encoder’s Embedding Layer: As already mentioned in Section 3.3, each word is represented by
an embedding vector. The embedding layer of the encoder is used to convert each word of the input
sentence to the relevant embedding vector.
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Encoder’s Recurrent Layer: That is the RNN part as explained in Section 2.4. The encoder’s recur-
rent layer generates the hidden vectors from the embedding vectors. More specifically, at each time
step i, the recurrent layer gets as input the embedding vector of the i-th word.

Decoder’s Embedding Layer: The decoder’s embedding layer converts each word of the decoder’s
input to the relevant embedding vector.

Decoder’s Recurrent Layer: The decoder’s recurrent layer generates the hidden vectors from the
embedding vectors. More specifically, at each time step j, the recurrent layer gets as input the em-
bedding vector of the j − 1-th output.

Decoder’s Output Layer: The decoder’s output layer generates the probability of the j-th word
of the output sentence from the hidden vector. More specifically, at each time step j, it receives as
input the hidden vector and for each word in the vocabulary produces the probability of selecting this
word as the output word in position j.
So, having in mind the above parts we can now explain the whole procedure. Each word of the input
sentence is converted through the embedding layer to the relevant embedding vector and then it is fed
into the encoder RNN. At each time step i the encoder’s recurrent layer outputs a hidden vector which
contains the encoded information of the input sequence until the i-th word. Sequentially, the last hid-
den vector, which is received at the last time step, represents the encoded input sentence. We initialize
the decoder’s hidden state with this vector in order to generate an answer based on the encoded input
sentence and then we give as input to the decoder the “<BOS>” word which is the virtual word rep-
resenting the beginning of the sentence. The decoder’s embedding layer will convert this word to the
relevant embedding vector and the embedding vector will be fed as input to the decoder’s recurrent
layer. Then, a hidden vector is produced and fed to the decoder’s output layer. The decoder’s output
layer produces for each word in the vocabulary the probability of selecting this word as the output
word. Supposing that we use the “greedy” decoding method, which is the simplest decoding method
from those mentioned in section 4.10, we select as output word the one with the maximum probability.
At the next time step we feed the previous output as input and follow the procedure sequentially until
a maximum number of words to be generated is reached or until generating the word “<EOS>” which
is the virtual word representing the end of the sentence. Another alternative is to use teacher forcing
[159], a method for quickly and efficiently training our model. Using this method, instead of feeding
as input to the decoder the previous generated word, we feed the target word which is not the predicted
but the golden (ground truth) one.

We can now explain the above procedure more formally. Let’s consider a conversation consist-
ing of m turns, denoted as C = {X1, X2, ..., Xm}. A turn Xm is a sequence of words Xm =
{xm,1, xm,2, ..., xm,Nm}whereNm is the length of them-th turn and each of xi,j is the one-hot vector
of the words. For simplicity, we can simplify the notation. So, let’s consider one of those turns as the
input sequence, denoted withX = {x1, x2, , ..., xn} and the next one as the output sequence, denoted
with Y = {y1, y2, ..., yl}, where each of the xi and yj are one-hot vectors. Let’s also assume as z
the fixed-size vector which is produced by the encoder, containing the information of the encoded
input sequence. We can describe the process of generating Y with the probability of generating the
j-th element of the output sequence yj , given the output sequence until the j-th element and the input
sequence X , as follows:

Pθ (yj | Y<j , X) = Υ
(
h
(dec)
j , yj

)
(4.1)

h
(dec)
j = Ψ

(
h
(dec)
j−1 , yj−1

)
(4.2)

where Ψ is the function to generate the hidden vectors of the decoder h(dec)j , and Υ is the function
to calculate the generative probability of the one-hot vector yj . Both of them are defined later. When

82



j=1, h(dec)j−1 or h(dec)0 is z, and yj−1 or y0 is the one-hot vector of “<BOS>”.

Let’s also assume that H is the size of the hidden vector, D is the size of the embedding vector,
xi is the embedding vector of i-th word in the input sentence, E(enc) is the embedding matrix of the
encoder, h(enc)i is the i-th hidden vector of the encoder, yj is the embedding vector of j-th word in the
output sentence, E(dec) is the embedding matrix of the decoder and h(dec)j is the j-th hidden vector of
the decoder. A summarized table of the notations assumed is shown in 4.1.

Table 4.1: Summary of Mathematical Notation

Symbol Definition

C conversation consisting of m dialog turns
X or Xk the input sequence (k-th turn)
Y or Yk+1 the output sequence (k+1-th turn)
z the fixed length representation provided by the encoder
H the size of the hidden vector
D the size of the embedding vector
xi the one-hot vector of i-th word in the input sequence
xi the embedding vector of the i-th word in the input sequence
yj the one-hot vector of j-th word in the output sequence
yj the embedding vector of the j-th word in the output sequence
E(enc) the embedding matrix of the encoder
E(dec) the embedding matrix of the decoder
h
(enc)
i the i-th hidden vector of the encoder

h
(dec)
j the j-th hidden vector of the decoder

According to the notation introduced each embedding vector for the encoder’s embedding layer is
calculated by the following equation:

xi = E(enc)xi (4.3)

where E(enc) ∈ RD×|V(enc)| is the embedding matrix of the encoder and V(enc) the vocabulary of the
inputs.

Similarly, each embedding vector for the decoder’s embedding layer is calculated by the following
equation:

yj = E(dec)yj−1 (4.4)

where E(dec) ∈ RD×|V(dec)| is the embedding matrix of the decoder and V(dec) is the vocabulary of
the outputs.

Let’s assume now that we use uni-directional RNNs of one layer with tanh as activation function,
for the encoder and the decoder. The encoder’s hidden state is described by the following equation
(defining Ψ):

h
(enc)
i = tanh

(
W

(enc)
hh h

(enc)
i−1 +W

(enc)
xh xi + b(enc)

)
(4.5)

whereW (enc)
hh ∈ RH×H ,W (enc)

xh ∈ RH×D and b(enc) ∈ RH are matrices to be learned.
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Similarly, the decoder’s hidden state is described by the following equation:

h
(dec)
j = tanh

(
W

(dec)
hh h

(dec)
j−1 +W

(dec)
xh yj + b(dec)

)
(4.6)

whereW (dec)
hh ∈ RH×H ,W (dec)

xh ∈ RH×D and b(dec) ∈ RH are matrices to be learned.

We must also use the encoder’s hidden vector of the last position as the decoder’s hidden vector of
first position (initialise the hidden state of the decoder) as following:

h
(dec)
0 = z = h(enc)n (4.7)

Finally, the decoder’s output layer generates the probability of the j-th word of the output sentence
from the hidden vector. Assuming that pj is the probability of generating the one-hot vector yj of the
j-th word, pj is calculated with the use of the following equation (defining Υ):

pj = Pθ (yj | Y<j , X) = softmax
(
W (o)h

(dec)
j + b(o)

)
· yj (4.8)

whereW (o) ∈ R|V(dec)|×H and b(o) ∈ R|V(dec)| are also matrices to be learned.

4.4 Vanilla seq2seq model with attention

The main drawback of the sequence-to-sequence model was that it was almost incapable of repre-
senting long-term sequences with the use of a single fixed-length context vector. Thus, to overcome
that problem, the attention mechanism, which was already known in the field of image recognition
[160, 161, 162], was applied in the field of NLP too [84, 87, 11, 27]. The attention mechanism instead
of relying only on the hidden vector of the decoder, forces the model to learn to focus (to attend) on
specific parts of the input sequence when decoding. An example in a translation task is shown in Fig-
ure 4.2, where the model attends more specific parts of the input sequence when decoding the French
word “la”.

Figure 4.2: Alignment for the French word ‘la’ is distributed across the input sequence but mainly
on these 4 words: ‘the’, ‘European’, ‘Economic’ and ‘Area’. Darker purple indicates better attention
scores. Image source: [32]

From the attention mechanisms described in subsection 2.4.2 we analyze and explain the one proposed
by [11], expanding the sequence-to-sequence model. For placing different focus on different words,
attention assigns each word with an attention score (also knows as alignment score). The attention
scores define howmuch each source hidden state must be considered for each output and are calculated
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by a score function using the encoder’s and decoder’s hidden states. The choice of the score function
varies, but is usually one of those in equation 4.9.

f
(
h
(dec)
j−1 , h

(enc)
i

)
=


h
(dec)
j−1

T
h
(enc)
i dot

h
(dec)
j−1

T
Wah

(enc)
i general

vTa tanh
(
Wa

[
h
(dec)
j−1 ;h

(enc)
i

])
concat

(4.9)

where h
(dec)
j−1 and h

(enc)
i are the decoder’s and encoder’s hidden states we defined before, and va,

Wa are both weight matrices to be learned in the alignment model (as described in equation 2.52).
Those scores are then normalized by passing through a softmax layer and afterwards each of the
encoder’s hidden state is multiplied with the relevant attention score obtaining an alignment vector
(one for each hidden state). Then, the alignment vectors are summed up, calculating the context
vector. Sequentially, the context vector is concatenated with the decoder’s input and passed through
the decoder. The above process is presented in Figure 4.3 and the score (alignment) function used is
the dot-product.

Figure 4.3: A Sequence to sequence model with Bahdanau attention. Image source:[10]

4.5 HRED model

A main problem with the simple sequence-to-sequence architectures is the inability of modeling the
prior context of the conversation. The generated responses are based only on the previous turn of
the conversation, while a huge amount of information derived from previous turns of the dialogue
is ignored. The HRED (Hierarchical Encoder Decoder) model, which is an extension of the simpler
Encoder-Decoder architecture, attempts to overcome the limitation of generating an output based only
on the latest input received. In the case of conversational data, the HRED model considers each
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conversation as a sequence of turns (utterances), and each turn (utterance) as a sequence of words.
The HRED model consists of three different modules:

• the Encoder model

• the Context (Session) Encoder module

• the Decoder module

Below we analyse each one of the referenced modules.

Encoder: The encoder module handles the data at the lowest hierarchical level. It is responsible
for encoding the turn (utterance) into a fixed length vector. So, by processing each utterance word by
word, each utterance is mapped to an utterance vector which is the hidden state obtained after the last
token of the utterance has been processed.

Context Encoder: The context encoder module handles the data at the highest hierarchical level.
It is responsible for keeping the context of the conversation, thus it keeps track of the past utterances
by processing iteratively each utterance vector and updating its hidden state after every utterance. By
doing so, the context vector, which is the hidden state obtained after the last utterance is processed,
represents the entire conversation up to the last turn received.

Decoder: Similarly with the simple encoder-decoder architecture, the decoder performs the next ut-
terance prediction. The hidden state of the decoder is initialised with the context vector and then it
produces a probability distribution over the tokens in the next utterance.

The HRED model is represented in Figure 4.4.

Figure 4.4: The computational graph of the HRED architecture for a dialogue composed of three turns.
Each utterance is encoded into a dense vector and then mapped into the dialogue context, which is
used to decode (generate) the tokens in the next utterance. The encoder RNN encodes the tokens
appearing within the utterance, and the context RNN encodes the temporal structure of the utterances
appearing so far in the dialogue, allowing information and gradients to flow over longer time spans.
The decoder predicts one token at a time using a RNN. Image source: [33]

We can now explain the above procedure more formally, using the notation we introduced before.
Let’s assume that we use GRUs as encoder, context encoder and decoder models. The encoder for
each turn Xm in the conversation C, produces a fixed length representation vector by sequentially
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updating its hidden state. We denote with h(enc)i the i-th hidden vector of the encoder, with h(dec)i the
i-th hidden vector of the decoder and with h(cont)i the i-th hidden vector of the context encoder.

So the hidden state of the encoder is updated according to the following equation:

h
(enc)
i = GRUenc

(
h
(enc)
i−1 , x̄m,i

)
, i = 1, . . . , Nm (4.10)

where h(enc)0 = 0 the null vector, Nm is the length of them-th turn and xm,i is the one-hot vector of
i-th word inm-th turn as we mentioned before. TheGRUenc function is that one described in Section
2.4.

In summary, the encoder maps a turn to a fixed-length vector. Therefore, the obtained representa-
tion from the m-th turn qm ≡ h

(enc)
Nm

is a general, non-contextual representation of the turn m. The
computation of the q1, q2, ..., qm can be performed in parallel, thus lowering the computational cost.
Afterwards, the context encoder takes as input the sequence of representations q1, q2, ..., qm. Assum-
ing that a GRU model is used, we can describe the process with the following equation:

h
(cont)
i = GRUcont

(
h
(cont)
i−1 , qi

)
, i = 1, . . . ,m (4.11)

where h(cont)i ∈ RHcont is the context-level recurrent state,Hcont is its dimensionality and h
(cont)
0 = 0.

The context-level recurrent state h(cont)i summarizes the turns that have been processed up to position
i. It is worth mentioning, that each h(cont)i bears a particularly powerful characteristic: it is sensitive
to the order of previous turns and, as such, it can potentially encode order-dependent reformulation
patterns such as generalization or specification of the previous turns [163]. Additionally, it inherits
from the representation vectors qm the sensitivity to the order of words in the turns. Finally, the
decoder model is responsible for predicting the next turn Ym (output turn), given the previous turns
X1:m−1 (input turns), to estimate the probability shown in the next equation:

P (Ym | X1:m−1) =

Nm∏
n=1

P (ym,n | ym,1:n−1, X1:m−1) (4.12)

The desired conditioning on previous queries is obtained by initializing the hidden state of the decoder
with a non-linear transformation of h(cont)m−1 . So in this way, the information from the previous turns is
transferred to the decoder. The decoder’s hidden state is described by the following equation:

h
(dec)
i = GRUdec

(
h
(cont)
i−1 , x̄m,i

)
, i = 1, . . . , Nm (4.13)

Each state h(dec)i−1 is then used for computing the probability of generating the next word of the m-th
turn xm,i. This probability given the previous words and turns is expressed as:

P (ym,n = v | ym,1:n−1, X1:m−1) = softmax
(
W (o)h

(dec)
n−1 + b(o)

)
· ym,n (4.14)

whereW (o) ∈ R|V(dec)|×H and b(o) ∈ R|V(dec)| are also matrices to be learned.

4.6 Transformer Encoder Decoder model

In 2017, the Transformer network architecture was proposed by [12], achieving not only much better
quality of the generated responses but requiring significantly less time to train too. The Transformer
model relies entirely on self attention mechanism to compute representations of its input and output
without using sequence aligned RNNs or convolution. The model is based on the encoder-decoder
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structure, having an encoder and a decoder stack. The encoder maps an input sequence X to a se-
quence of continuous representations z. Given z, the decoder then generates an output sequence Y ,
generating one element at a time. At each step the model is auto-regressive, consuming the previously
generated words as additional input when generating the next [164].

Encoder Stack: The encoder stack consists of N = 6 identical layers, each one having two sub-
layers. The first sub-layer is a multi-head self attention mechanism, while the second is a simple
position-wise fully connected feed forward network. Residual connection [165] is also employed
around each of the sub-layers followed by layer normalization [166]. So, the output of each sub-layer
is LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself (the sub-layer’s structure, the layer normalization and the position-wise feed forward network
are explained below).

Decoder Stack: The decoder stack also consists ofN = 6 identical layers. In addition to the two sub-
layers in each encoder layer, each decoder layer has also a third sub-layer, which performs multi-head
attention over the outputs of the encoder stack. Similarly to the encoder stack, residual connections are
employed around each of the sub-layers followed by layer normalization. The self-attention sub-layer
in each decoder layer is also modified to prevent positions from attending to subsequent positions.
The masking which is applied, combined with the fact that the output embeddings are offset by one
position, ensures that the predictions for position i can depend only on the known outputs at positions
less than i (masked self-attention).
A high-level illustration of the transformer architecture in amachine translation task is shown in Figure
4.5.

Figure 4.5: A high level illustration of the transformer. The encoder stack consists of 6 identical
(encoder) layers and the decoder stack of 6 identical (decoder) layers too. Image source: [34]

In Figure 4.7 the encoder layer’s architecture is illustrated. Similarly to other sequence transduction
models, learned embeddings are used in order to convert input and output to vectors of dimension
dmodel. The dmodel dimension is set to 512 [12]. The input embeddings are illustrated with dark green
color. Since the model contains no recurrence and no convolution, there is no use of the order of
the input sentences. To deal with that issue, positional “encodings” (embeddings) are used to inject
some information about the relative or absolute position of the tokens in the sequence. There are
many choices of positional “encodings” learned and fixed [167], however in the original model the
following are used:

PE(pos,i) =

{
sin
(
pos/10000i/dmodel

)
, i is even

cos
(
pos/10000i−1/dmodel

)
, i is odd

(4.15)
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where pos is the position and i is the dimension. That is, each dimension of the positional encoding
corresponds to a sinusoid. The wavelengths form a geometric progression from 2π to 10000·2π.
Learned embeddings can also be used instead [12, 167]. An example of the position encoding of 20
words is shown in Figure 4.6. The positional embeddings are then summed with the input embeddings
resulting in the “light green” embeddings (Figure 4.7), which are then passed through the self-attention
layer.

Figure 4.6: A real example of positional encoding for 20 words (rows) with an embedding size of 512
(columns). Each row corresponds the positional encoding of a vector. Each row contains 512 values
– each with a value between 1 and -1. We’ve color-coded them so the pattern is visible.we can notice
that it appears split in half down the center. That’s because the values of the left half are generated by
one function (which uses sine), and the right half is generated by another function (which uses cosine).
They’re then concatenated to form each of the positional encoding vectors. Image source: [34]

As already mentioned each encoder layer uses multi-head self attention. The original proposed model
uses 8 heads (parallel attention layers) with each one having dk=dv=dmodel/h = 64 (see multi-head
attention in subsection 2.4.2). The 8 sets of Q,K, V weight matrices are calculated by multiplying
the input embedding with the corresponding learned weight matrices WQ,WK ,W V (see equation
2.56) for each one of the 8 sets. Then a set of 8 z matrices is produced, which are then concatenated
and multiplied by a weight matrix WO (see equation 2.56) to extract a final representation z. This
procedure happens for all inputs in parallel. Then, the residual connection (adding to the z vector the
corresponding input embedding as both have same dimension equal to 512) and layer normalization
is applied as shown in Figure 4.7. In the next step, the outputs of the “Add & Normalize” layer are
passed through the position-wise feed forward network, which is applied to each position separately
and identically. This consists of two linear transformations with a ReLU activation in between as
descibed in the following equation:

FFN(x) = max (0, xW1 + b1)W2 + b2 (4.16)

While the linear transformations are the same across different positions, they use different parameters
from layer to layer. The dimensionality of input and output is dmodel = 512, and the inner-layer has
dimensionality dff = 2048. Afterwards, the outputs of the feed forward layer and the outputs of the
previous sub-layer are passed through the second “Add & Normalize” layer. The process is repeated
for each one of the 6 layers, however only the first layer uses the input and positional embeddings,
while the following layers use the ouput of the previous ones.

Having covered the encoder-side we will now focus on the decoder-side. Let’s assume a transformer
model of 2 stacked encoders and decoders too. An illustration of this model is shown in Figure 4.8.
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Figure 4.7: An illustration of the first encoder layer in the encoder stack. Image source: [34]

Figure 4.8: An illustration of transformer with 2 stacked encoders and decoders. Image source: [34]

On the decoder-side, the output embeddings (the embedding of the target outputs shifted right) summed
with the corresponding positional encodings (shown in Figure 4.9) are given as input to the first sub-
layer. So, similarly to seq2seq models the output of each step is fed to the bottom decoder in the next
time step (after adding the positional embeddings).Afterwards, the same processas in the encoder lay-
ers, is followed for the first sub-layer. The only difference is that the self attention applied is masked,
in order to ensure that the predictions for position i can depend only on the known outputs at positions
less than i. As already has been mentioned, a third sub-layer has been added, named as “Encoder-
Decoder Attention”, which helps the decoder focus on appropriate places in the output of the encoder
stack (which carry information from the input sequence). So, the output of the top encoder layer is
transformed into a set of attention vectors K and V and those are used in the “Encoder-Decoder At-
tention” sub-layer, along with the outputs of the previous sub-layer. After receiving the outputs of the
last decoder layer those are passed from a usual learned linear transformation and a softmax function
to convert the decoder output to predicted next-token probabilities. In the original model [12] the
same weight matrix between the two embedding layers and the pre-softmax linear transformation is
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used, similar to [168].

Finally, a fully illustration of the transformer model is shown in Figure 4.9.

Figure 4.9: The Transformer-model architecture. Image source: [12]
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4.7 Bert model

The year 2018 has been an inflection point for the NLP community, with the release of ELMo by Allen
AI [117], Open-GPT by OpenAI [169], and BERT by Google [13]. Since 2018, a lot of attention has
been given to Transfer Learning techniques as they are widely used. Many researchers have been able
of conducting experiments, achieving much better results with less effort, time, and data just by using
pre-trained models and then fine tuning them in specific tasks. So,the release of BERT model is an
event described as marking the beginning of a new era in NLP.

The BERT (Bidirectional Encoder Representations from Transformers) [13] model is based on a num-
ber of clever ideas that have appeared in NLP recently, including but not limited to Semi-supervised
Sequence Learning [170], ELMo [117], ULMFiT [171], theOpenAI transformer [169] and theVaswani
Transformer [12]. BERT can be used in a wide variety of language tasks, with only adding a small
layer to the coremodel, such as classification, question-answering, named entity recognition tasks, etc.

One of the main reasons for the good performance of BERT on different NLP tasks was the pre-
training on two unsupervised tasks, unlike traditional left-to-right or right-to-left language models
[117, 169]. This way, the model is enabled to “understand” the patterns of the language.

The first task in which the model is pre-trained is called “masked language modeling” (MLM), which
is also referred to as a “Cloze” task in the literature [172]. In this task, the 15% of all WordPiece
tokens [173] of each sequence is masked randomly (using the [MASK] token) and the final hidden
vectors corresponding to the masked tokens are fed into an output softmax over the vocabulary, as in
a standard Language Modeling (LM). It is worth mentioning here, that in contrast to denoising auto-
encoders [174], only the masked words are predicted rather than reconstructing the entire input.

The second task is called “Next Sentence Prediction” (NSP). Many important downstream tasks such
as Question Answering (QA) and Natural Language Inference (NLI - the task of determining whether
a “hypothesis” is true (entailment), false (contradiction), or undetermined (neutral) given a “premise”)
are based on understanding the relationship between two sentences, which is not directly captured by
language modeling. Consequently, in order to train a model that understands sentence relationships,
the model is pre-trained for a binarized next sentence prediction task that can be trivially generated
from any monolingual corpus. Specifically, when choosing the sentences A and B for each pre-
training example, 50% of the time B is the actual next sentence that follows A (labeled as IsNext),
and 50% of the time it is a random sentence from the corpus (labeled as NotNext). Despite its sim-
plicity, the pre-training towards this task is very beneficial to both QA and NLI. For the pre-training
procedure the BooksCorpus (800M words) [175] and English Wikipedia texts (2,500M words) are
used. For finetuning, the BERT model is first initialized with the pre-trained parameters, and all of
the parameters are fine-tuned using labeled data from the downstream tasks (MNLI - a task similar
with NLI with more genres, NER - a task for locating and classifying named entities mentioned in
unstructured text into pre-defined categories , SQuAD - a task for reading comprehension). An illus-
tration of the overall pre-training and finetuning procedures is shown in Figure 4.10.

The BERT’s model architecture is based on the original Transformer implementation that we already
analysed in Section 4.6. BERT is basically a multi-layer bidirectional Transformer encoder, the multi-
head self-attention mechanism (described in Section 4.6) to attend the input sequence in two directions
as shown in Figure 4.11.

In the original paper two BERT models are presented. The BERTBASE has 12 layers in the En-
coder stack, while BERTLARGE has 24 layers in the Encoder stack. BERT architectures (BASE and
LARGE) also have larger feed forward-networks (768 and 1024 hidden units respectively), and more
attention heads (12 and 16 respectively) than the Transformer architecture suggested in the original
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Figure 4.10: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the
same architectures are used in both pre-training and fine-tuning. The same pre-trained model param-
eters are used to initialize models for different downstream tasks. During fine-tuning, all parameters
are fine-tuned. [CLS] is a special symbol added in front of every input example, and [SEP ] is a
special separator token (e.g, separating questions/answers). Image source: [13]

Figure 4.11: Self attention used in BERT model. Image source: [35]

paper (6 encoder layers, 512 hidden units, and 8 attention heads) [12]. Apart from extracting contex-
tual language embeddings, the BERT model can also be used for various tasks such as classification,
question answering or entity recognition tasks by simply adding a small network at the top of the
model as head. A number of ways to use BERT in different tasks are shown in Figure 4.12.

More specifically, in order to make BERT able to handle a variety of tasks, the input represen-
tation should be able to unambiguously represent both a single sentence and a pair of sentences
(e.g.,<Question, Answer>) in one token sequence. We should note here that a “sequence” refers to
the input token sequence to BERT, which may be a single sentence or two sentences packed together.
First of all, we tokenize the input sequence. In the original paper [13], the WordPiece [173] tokenizer
is used with a 30000 token vocabulary. The first token of every sequence is always a special clas-
sification token ([CLS]). The final hidden state corresponding to this token is used as the aggregate
sequence representation for classification tasks. Sentence pairs are packed together into a single se-
quence and two ways are used to differentiate the two sentences. First, the sentences are separated by
a special token ([SEP ]) and second a learned embedding is added to each token indicating whether
it belongs to sentence A or B. As shown in Figure 4.10,the input embedding is denoted as E, the
final hidden vector of the special [CLS] token as C ∈ RH , and the final hidden vector for the i-th
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Figure 4.12: The BERT model used in various tasks. Image source: [36]

input token as Ti ∈ RH . For a given token, its input representation is constructed by summing the
corresponding token, segment (first or second sentence), and position embeddings. A visualization
of this construction can be seen in Figure 4.13. Finally, we should also note that all input sequences
should be padded or truncated to a specific length to be fed into the model (512 tokens). An attention
mask must also be given in order to neglect the information of the padding tokens.

Figure 4.13: BERT input representation. The input embeddings are the sum of the token embeddings,
the segmentation embeddings and the position embeddings. Image source: [13]

4.8 GPT-2 model

The OpenAI GPT-2 [69] exhibits impressive ability of writing coherent and passionate essays that
exceed what we anticipated current language models are able to produce. The model’s architecture
is not a particularly novel architecture as it is very similar to the decoder-only transformer. So, the
GPT-2 model is build using transformer decoder blocks. Like traditional language models, the model
outputs one token at a time. It is an “auto-regression” model, as after each token (output) is produced,
it is added to the sequence of inputs and the new sequence becomes the input to the model in the next
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step. This idea has been already seen in the RNNs and many transformers such as the TransformerXL
[176] and XLNet [177] follow the same concept.

The GPT-2 model is released in 4 versions, the small, the medium , the large and the extra-large.
Each version differs in dimensionality having 768, 1024, 1280 and 1600 respectively. Depending on
the model’s dimensionality, the relative word embeddings dimensions are used. Each version of the
model differs in the number of decoder layers used in the decoder stack too, having 12, 24, 36 and 48
decoder layers respectively. We should note here that in contrast to the BERT versions described in
Section 4.7, the GPT-2’s versions have more parameters with 117, 345, 774 and 1558 million parame-
ters respectively [178, 179]. The model is trained without any explicit supervision on a large dataset,
called WebText, containing slightly over 8 million documents for a total of 40 GB of text, trying to
predict the next word.

We will now focus on the decoder layer of the GPT-2 model. The decoder layer consists of two
sub-layers, the masked multi-head self-attention layer and the feed forward layer. One key difference
in the self-attention layer with the BERT model, is that it masks future tokens – not by changing the
word to [MASK] like BERT, but by interfering in the self-attention calculation blocking information
from tokens that are to the right of the position being calculated. This attention mechanism is called
masked self-attention, and we have already described it in Section 4.6. An illustration of the simple
self-attention (used in BERT) and the masked self-attention mechanism is shown in Figure 4.14.

Figure 4.14: Self-attention (used in BERT) compared with masked self-attention (used in GPT2).
While in simple self-attention the model attends the entire input sequence, in masked self-attention
the model attends the words of the sequence until the current time-step. Image source: [35]

So, similarly to [180], the researchers used for the GPT2 the architecture shown in Figure 4.15. A simi-
lar architecture was also examined in [181] to create a languagemodel that predicts one letter/character
at a time. We should also note here that the GPT-2 model uses multi-head attention with 12, 24, 36

Figure 4.15: A simple illustration of the GPT-2 model. All the decoder layers are identical, each one
consisting of a masked self-attention layer and a feed-forward neural network.

and 48 layers in the small, medium, large and extra-large versions respectively.
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Figure 4.16: A simple illustration of producing the output vector using the “small” GPT-2 model.
Image source: [35]

The GPT-2 model can process 1024 tokens as input. Each one of those tokens flows through all
the decoder blocks along its own path. That’s a major advantage of the transformers architecture, as
the output generation can be performed in parallel, lowering significantly the computational cost.

The simplest way to run a trained GPT-2 is to allow it to generate sentences on its own (which is
technically called generation of unconditional samples) or to give it a prompt in order to make it gen-
erate sentences about a certain topic (generating interactive conditional samples). The trained model
uses the < |endoftext| > as a start token for generating words. Let’s denote it with < s > instead.
The input tokens are fed into the model, passing through all the decoder layers and finally producing
an output vector.
According to the decoder method used, an output word is selected from the vocabulary based on the
output vector. The most common decoding method is to select the word with the highest probability
from the vocabulary. However, we can use more complex methods to achieve better decoding results.
Those methods are analysed in Section 4.10. An illustration of the process described above is shown
in Figure 4.16.

As already mentioned in Section 4.6, the transformers can not model the sequential order of the input
words. Consequently, in order to maintain the sequential information the positional embeddings are
used (with the same dimension as the input embeddings), which are added to the input emebeddings.
In this way, the model keeps track of the sequential order of the input.

4.9 Text-To-Text Transfer Transformer (T5) model

As mentioned earlier, over the past few years, transfer learning has led to a new wave of state-of-
the-art results in natural language processing (NLP). The “Text-To-Text Transfer Transformer” (T5)
model, presented in [14], achieves state-of-the-art results on many NLP benchmarks while being flex-
ible enough to be fine-tuned to a variety of important tasks.

The basic idea behind the T5 model, is to convert all NLP tasks into a unified text-to-text-format
where the input and output are always text strings. This approach is inspired by previous unifying
frameworks for NLP tasks, including casting all text problems as question answering [182], language
modeling [69], or span extraction [183] tasks. This approach of text-to-text format, allows to easily
apply the same model, objective, training procedure and decoding process to every task considered,
such as question answering, document summarization, sentiment classification and machine trans-
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lation tasks. So, in order to train a single model on the diverse set of tasks described above, the
researchers added a task-specific (text) prefix to the original input sequence before feeding it to the
encoder, in order to specify which task the model should perform. For instance, to ask the model to
translate the sentence “That is good.” from English to German, the sequence “translate English to
German: That is good.” would be fed as input to the model and the sentence “Das ist gut.” would be
used as target.

The T5 model closely follows the original Encoder-Decoder Transformer architecture, proposed in
[12] and described in Section 4.6. First, an input sequence of tokens is mapped to a sequence of em-
beddings, which is then passed into the encoder. The encoder consists of a stack of “encoder layers”,
each of which comprises two subcomponents: a self-attention layer followed by a small feed-forward
network. The self-attention layer uses “fully-visible” attentionmask. Fully-visible masking allows the
self-attention mechanism to attend to any entry of the input when producing each entry of its output.
Layer normalization is applied to the input of each subcomponent. A simplified version of layer nor-
malization is used where the activations are only rescaled and no additive bias is applied. After layer
normalization, a residual skip connection is used. Dropout is also applied within the feed-forward
network, on the residual skip connection, on the attention weights, and at the input and output of the
entire stack.

The decoder is similar in structure with the encoder, except that it also includes a standard attention
mechanism after each self-attention layer, that attends to the output of the encoder. The self-attention
layers of the decoder use causal masking, which only allows the model to attend to past outputs. An
illustration of “fully-visible” and “causal” masking is shown in Figure 4.17. The output of the final
decoder block is fed into a dense layer with a softmax output. A simplified form of position embed-
dings is used, where each embedding is simply a scalar that is added to the corresponding logit used
for computing the attention weights. The position embeddings parameters are shared across all layers,
but within a given layer each attention head uses different learned position embeddings. More specif-
ically, for the T5-base model, the encoder and decoder stacks consist of 12 layers. The feed-forward
networks in each layer consist of a dense layer with an output dimensionality of 3072 followed by
a ReLU non-linear activation function and another dense layer. All attention mechanisms have 12
heads and the “key” and “value” matrices of all attention mechanisms have an inner dimensionality of
64. All other sub-layers and embeddings have a dimensionality of dmodel = 768. For regularization,
a dropout probability of 0.1 is used. In total, the T5-base model has about 220 million parameters.

Figure 4.17: Fully-visible and causal masks used in self-attention mechanism.

The model is pre-trained on unlabeled data, in order to generalize knowledge that will be useful during
fine-tuning. The “Colossal Clean Crawled Corpus” (C4), a large pre-training dataset of unlabeled data,
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which is a cleaned version of Common Crawl dataset (text scraped from the web) that is two orders of
magnitude larger than Wikipedia is used. With a denoising objective, the model is trained to predict
missing or otherwise corrupted tokens in the input. Inspired by BERT’s “masked language modeling”
objective, already mentioned in Section 4.7, and the “word dropout” regularization technique [184],
an objective that randomly samples and then drops out 15% of tokens in the input sequence, is de-
signed. 90% of the corrupted tokens are replaced with a special mask token and 10% are replaced
with a random token.The model is trained to predict those masked tokens.

As far as the fine-tuning process is concerned, the researchers experimented with different approaches
such as fine-tuning on each downstream task, multitask training, leave-one-out multitask training etc.

Finally, an illustration of how the T5 model is used in different tasks is shown in Figure 4.18

Figure 4.18: An illustration of how the T5 model is used in different tasks. Image source: [14]

4.10 Decoding Methods

4.10.1 Theoretical Background

Besides the improved transformer architectures and the massive unsupervised training data, decoding
methods also play a significant role in generating coherent and fluent responses. A decoding method
is a strategy applied on the decoder, according to which we select which word will be generated. Of
course, those methods can be applied to various models, such as XLNet [177], OpenAi-GPT [169],
CTRL [185], Transformer-XL [176], XLM [186], Bart [187] and T5 [14], for auto-regressive language
generation. In short, auto-regressive language generation is based on the assumption that the prob-
ability distribution of a word sequence can be decomposed into the product of conditional previous
words distributions:

P (x1:T | X0) =
T∏
t=1

P (xt | x1:t−1, X0) (4.17)

where x1:0 = ∅ and X0 being the initial context word sequence. The length T of the word sequence
is usually determined on-the-fly and corresponds to the timestep t = T where the “<EOS>” or the
“<|endoftext|>” token is generated.

In this subsection, we present the currently most prominent decoding methods, mainly greedy de-
coding, beam search, sampling, top-K sampling and top-p sampling.

Greedy decoding:
Greedy decoding is the simplest decoding method that can be used for generating sequences. Accord-
ing to this method, given the previous words that where generated, on each time-step we select the
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word with the highest occurrence probability. More formally, the word to be generated is selected
according to the following equation:

xt = argmaxx P (x | x1:t−1) (4.18)

An example of greedy decoding is shown in Figure 4.19.

Figure 4.19: An example of greedy decoding. Image source: [37]

In this example, starting from the word “The”, the algorithm greedily chooses the next word of highest
probability “nice” and so on, so that the final generated word sequence is “The nice woman”, having
an overall probability of 0.5× 0.4 = 0.2. As we previously mentioned the algorithm selects the word
with the highest probability of occurrence at each time-step, checking the probabilities of the next
time-step only, without “looking” any further. This leads to the problem, that a path with a higher
probability of occurrence may be neglected. This fact can be clearly seen in the previous example,
where the sequence “The dog has” is neglected, besides the fact that this path has a total probability
of 0.4× 0.9 = 0.36 which is greater than the one of the sequence “The nice woman”. Another major
problem that the use of greedy decoding creates, is that of repeating the same words or sequences.
While the generated words following the context may be reasonable, the model may quickly start re-
peating itself. This is a very common problem in language generation in general and seems to be even
more so in greedy decoding and beam search [188, 189].

Beam Search:
Beam search is one of the most common and reliable methods of decoding, that it still being used. It
aims to solve the issue of ignoring word sequences with higher probability, occurred in greedy decod-
ing method. It reduces the risk of missing hidden high probability word sequences by analyzing more
paths at each time-step. So, at each time-step it keeps the most likely of hypotheses and eventually
chooses the hypothesis that has the overall highest probability. The number of hypotheses kept at
each time-step is a parameter determined by the researcher, called “number of beams”. Let’s denote
this parameter with num_beams. An example of applying beam search with num_beams = 2 is
shown in Figure 4.20. At time step 1, besides the most likely hypothesis, which is “The woman”,
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Figure 4.20: An example of beam search using a number of beams equal to 2. Image source: [37]

beam search also keeps track of the second most likely one, “The dog”. At time step 2, beam search
finds that the word sequence “The dog has” has a higher probability than “The nice woman”, so it
selects the most likely one. However, we should note here that beam search is not guaranteed to find
the word sequence with the highest probability, but it always finds an output sequence with higher
probability than greedy decoding.
Regarding the issue of repetition, appearing in greedy decoding method, it may still occur in beam
search. However a simple approach to tackle this issue, is to use n-grams penalties as introduced by
[91] and [190]. The most commonly used n-grams penalty, makes sure that no n-gram appears twice,
by manually setting the probability of next words that could create an already seen n-gram to 0.
Another important feature of beam search that is worth mentioning, is that we can compare the top
beams after generation and choose that one that best fits the situation. In other words, we can gen-
erate more than one sequences and then select the most suitable. However, the number of returned
sequences must be of course less than the number of beams used.
However, beam search may not be always the best option for choosing in dialogue generation. Beam
search can work very well in tasks where the length of the desired generation is more or less pre-
dictable, as in machine translation [191, 192] in contrast to dialogue generation where the desired
output length can vary greatly. Moreover, high quality human language does not follow a distribution
of high probability for next words, as mentioned in [193], as humans want to “generate” text in a
surprising way, and not to be boring or predictable.

Sampling:
In order to encounter the issue mentioned by [193], and to introduce some randomness instead of pro-
ducing “boring” responses, we can use sampling methods for decoding.
In its most basic form, sampling means randomly picking the next word xt according to its conditional
probability distribution as shown below:

xt ∼ P (x|x1:t−1) (4.19)

Using sampling, language generation is not deterministic anymore. To understand better the sam-
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pling process an example is illustrated in Figure 4.21. In the example above, the word “car” is sam-

Figure 4.21: An example of sampling. Image source: [37]

pled from the conditioned probability distribution P (x|”The”), followed by sampling “drives” from
P (x|”The”, ”car”).
However, when sampling word sequences, it is very common that the models may produce incoher-
ent responses. On way to encounter this problem, is to use “temperature” on the softmax layer. By
lowering temperature, we make the probability distributionP (x|x1:t−1) sharper, increasing the like-
lihood of high probability words and decreasing the likelihood of low probability words. We should
note here that if we set temperature = 0 then the decoding method becomes the greedy decoding.
An illustration of applying temperature on the previous example could look as follows (Figure 4.22):

Figure 4.22: An example of sampling with temperature. Image source: [37]

Top-k Sampling:
Top-k sampling is a powerful sampling method introduced by [194]. During top-k sampling, the
k most likely next words are filtered and the probability mass is redistributed among only those k
words. However, this can be problematic as some words might be sampled from a very sharp distri-
bution (words with high probability before the redistribution), whereas others from a much more flat
distribution (words with very low probability before the redistribution).

Top-p (nucleus) Sampling:
To address the problemmentioned before with the use of top-k sampling, top-p (nucleus) samplingwas
introduced by [193]. Instead of sampling from the most likely k words, in top-p sampling we choose
words from the smallest possible set of words, whose cumulative probability exceeds the threshold-
probability p. This decoding method allows some dynamic selection of words.

Top-k Top-p Sampling: Top-p can also be used in combination with top-k sampling. In the first
step we apply k filtering, and then we apply top-p sampling. In this way, we can avoid very low
ranked words while allowing for some dynamic selection too.

4.10.2 Examples

Having already analysed the theoretical background of the most commonly used decoding methods in
the previous subsection, in this subsection we provide some characteristic examples. For the examples
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presented below, we fine-tuned the T5-base model on the EmpatheticDialogues dataset (described in
Section 5.3), a dataset of one-to-one engaging conversations. After fine-tuning the model, we selected
a conversation from the test set and we generated the last turn of the conversation using different de-
coding methods. We should note here that for all generation examples the maximum length used in
generation is 40. The results are presented in the following.

Greedy decoding:
At first we used the simplest generation method which is greedy decoding. The generated sentence is
shown in Figure 4.23.

Figure 4.23: A generation example using greedy decoding.

Beam search:
Then, we experimented with using the beam search decoding method with beam size of 4. We also
used a length penalty of 0.65. The generated sentence is shown in Figure 4.24.

Figure 4.24: A generation example using beam search.

Sampling: Then, we experimented with using the sampling decoding method without the use of
temperature. The generated sentence is shown in Figure 4.25.

Figure 4.25: A generation example using sampling decoding method.

Sampling with temperature: We also experimented with using the sampling with temperature of
0.9. The generated sentence is shown in Figure 4.26.

Figure 4.26: A generation example using sampling with temperature decoding method.
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Top-k Sampling: We also experimented with top-k sampling decoding method. We set topk equal
to 10. The generated sentence is shown in Figure 4.27.

Figure 4.27: A generation example using top-k sampling decoding method.

Top-p Sampling: Moreover, we experimented with top-p sampling decoding method. We set topp
equal to 0.9. The generated sentence is shown in Figure 4.28.

Figure 4.28: A generation example using top-p sampling decoding method.

Top-k Top-p Sampling: Finally, we experimented with top-k top-p sampling decoding method. We
set topk equal to 10 and topp equal to 0.9. The generated sentence is shown in Figure 4.29.

Figure 4.29: An generation example using top-k top-p sampling decoding method.

By reviewing the generated responses, we can notice that the first two (greedy decoding and beam
search) are not very relevant to the context, but they are syntactically and grammatically correct.
However, the responses that were generated using top-k, top-p and top-k top-p sampling are on topic.
Those three sampling techniques generated engaging responses that are closely relevant to the context
of the conversation, being also coherent and fluent.

4.11 Evaluation Metrics

In this section, we look into the most commonly used metrics, for evaluating the generated responses
of an open-domain conversational agent. Those metrics are divided into automatic and human-based
metrics.

Automatic metrics:
Although there is no well-established method for automatic evaluation of the response quality, there
are some automatic metrics for reference.
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• Word Perplexity: Word perplexity is a metric proposed to evaluate probabilistic language
models [31, 195], that has seen significant use for evaluating end-to-end dialogue systems. This
metric explicitly measures the probability that the model will generate the ground truth (actual)
next word given some context of the conversation. The lower the perplexity is, the better the
model. A re-weighted perplexity metric has also been proposed where stop-words, punctuation,
and other special tokens are removed before evaluating to focus on the semantic content of the
phrase [33]. However, in dialogue the distribution over the words in the next utterance can be
highly multi-modal as we have many possible responses, so that metric is not always objective
and may not be as suitable.

• BLEU: BLEU (bilingual evaluation understudy) metric [196] is also a metric widely used for
reference in dialogue systems, borrowed from machine translation tasks. BLEU metric grades
an output response according to n-gram matches to the reference. It is defined as:

BLEU = BP · exp

( N∑
n=1

wn log pn

)
(4.20)

where BP is the brevity penalty on the length of the utterance, pn is probability that the n-
grams in a generated response occur in the real response, N is the max number of grams and
wn is the weight for each n-gram (normally set as 1

n ). BLEU’s output is always a number
between 0 and 1. This value indicates how similar the candidate text is to the reference texts,
with values closer to 1 representing more similar texts. So, a higher BLEU score is indicative
of a better model as the generated response is closer to the real one. However, its effectiveness
on automatically assessing dialogue response generation is unclear, as BLEU correlates poorly
with human judgment according to [197].

• Response Diversity: Distinct-1 and Distinct-2 our two metrics introduced by [198], which
respectively measure the number of distinct unigrams and bigrams of the generated responses.
Those metrics try to measure the diversity of the generated responses. They may be useful in
combination with other such as BLEU and perplexity.

Human-based metrics:
Currently human evaluation is still the most convincing method for judging the response quality and
is widely applied in chatbot evaluation. The most common human-based metrics are:

• pair-wise comparison to let humans choose which of the two responses is more suitable, more
appropriate, and more helpful, etc. [142, 143]

• evaluating relevance: Humans grade the generated responses according to whether they seem
relevant to the conversation and on-topic. [16]

• evaluating fluency/coherency: Humans grade the responses according to whether they seem
understandable, logically and syntactically correct. [16]

4.12 Summary

In this chapter we provided a theoretical background knowledge for dialogue generation. At first,
we studied the vanilla seq2seq architecture using RNNs and we extended this architecture with the
attention mechanism. This architecture comprises the cornerstone for building conversational agents.
Then, we presented the HRED architecture, which comprises an essential approach for taking into
account the previous context of the conversation, when generating a new response. Moreover, we
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analyzed the Transformer Encoder Decoder architecture, a recent approach which achieves much bet-
ter results in dialogue generation than the previously mentioned architectures, using multi-head self-
attention on the encoder and multi-head causal attention on the decoder. Based on the transformer
model, we then studied the Bert and GPT-2 models which can also be used for dialog generation
achieving satisfying results. Furthermore, we presented the T5 model, a model pre-trained on a very
large corpus, which can achieve state-of-the-art results in dialog generation tasks. We summarize the
basic characteristics of the aforementioned models in table 4.2.

Table 4.2: Summary of the models we studied

Model Name Characteristics

Vanilla seq2seq simple seq2seq model
Vanilla seq2seq with attention attention over the encoder
HRED hierarchical encoding, able to encode previous context
Transformer Encoder Decoder seq2seq, self-attention, masked self-attention, able to encode previous context
BERT encoder stack, self-attention (bidirectional), emphasizes on encoding,

usupervised pretrained
GPT2 decoding stack, masked self-attention, emphasizes on decoding,

unsupervised pretraining
T5 seq2seq, self-attention, masked self-attention, usupervised pretraining

After studying in depth the aforementioned models, we reach to the conclusion that although vanilla
seq2seq and vanilla seq2seq with attention are traditional models, they are the starting key for dialog
generation as recent models have adopted many ideas of their architectures. For example, the Trans-
former model adopted the seq2seq architecture, enhancing it with the self-attentionmechanism. While
the transformer and the T5 models focus both on encoding and decoding processes, BERT and GPT2
do not follow the same way. In contrast, BERT focuses on the encoding process using an encoder
stack, while GPT2 focuses on the decoding process using the decoder stack. However, both of them
can achieve satisfactory results (as well as the T5 model) if they are used properly, as we will see in
the following chapter.

Furthermore, in Section 4.10 we provided a theoretical background of the most commonly used de-
coding methods, giving also plenty of examples for better understanding. Finally, we presented both
automated and human evaluation metrics for evaluating conversational agents. We should note here
that the mentioned automatic metrics are essential for evaluation, but of course human evaluation
should not be neglected as automatic metrics did not provide fully objective results. In the following
chapter, we study in depth dialog generation with empathy providing essential experiments (using the
state-of-the-art models we described in this chapter) and presenting the corresponding results.
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Chapter 5

Dialogue Generation with Empathy using Generative
Models

5.1 Introduction

The rapid development in the field of generative modeling using neural networks has helped in the
creation of intelligent conversational agents. Current conversational agents achieve impressive results
by being able to communicate with the user, keeping his interest high. However, beyond understand-
ing what is being discussed, human communication requires an awareness of what someone is feeling.
While it is straightforward for humans to recognize and acknowledge others’ feelings in a conversa-
tion, this is a significant challenge for AI systems. Humans use different types of emotions depending
on the situation of the conversation. Emotions also play an important role in mediating the engage-
ment level with conversational partners. We should also note that natural communication is frequently
prompted by people sharing their feelings or circumstances. A recent study found that 80% of Twitter
users seem to post mostly about themselves [199], and ELIZA [1], one of the earliest chatbots devel-
oped, focusedmost of its attention on asking its conversational partners why theywere feeling a certain
way. For instance, let’s take a look at the illustrated dialogue example in Figure 5.1. While giving a
response like “Why would anyone promote you?” is contextually relevant, “Congrats! That’s great!”
is more natural because it acknowledges the underlying feelings of accomplishment. As shown in this
example, people generally respond to others in a way that is empathetic or that acknowledges how the
other person feels. Consequently, one of the most significant challenges for a human-facing dialogue
agent is to appropriately respond to a conversation partner that is describing personal experiences, by
understanding and acknowledging any implied feelings— a skill we refer to as empathetic responding.

In the view of creating chatbots that are capable of understanding and acknowledging any implied
feelings, in this chapter we present the recent work done in that field, we conduct several experiments
using generative models, and finally, we analyze and compare the corresponding results. More specif-
ically, in Section 5.2 we present the related work that has already been done, in Section 5.3 we present

Figure 5.1: A dialogue example where acknowledging an inferred feeling is appropriate. Image
source: [16]
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and analyze the datasets used in our experiments, in Section 5.4 we present the baseline models that
have already been used, in Section 5.5 we introduce our proposed approaches, and finally, in Section
5.6 we present the experiments that have been conducted and we compare the results of the proposed
models with those of the baselines.

5.2 Related Work

Open-domain conversational models have been widely studied. Traditionally conversational agents
are built using the seq2seq architecture [200]. Prior research has shown that engaging with these
agents leads to short conversations [201] as the responses produced are dull and generic without con-
taining an emotional tone [202, 200]. Efforts to make the conversation more engaging were made
by keeping track of the context of the conversation [151, 33, 150, 152] or by trying to produce more
diverse responses [198, 155]. Others tried to promote response diversity by combining retrieval and
generation models [203, 204, 205]. Later, a trend was to produce personalized responses by condi-
tioning the generation on a persona profile to make the responses more consistent through the dialogue
[202]. The PersonaChat [206, 207] dataset was created and later it was extended in the ConvAI2 chal-
lenge [208]. Those works shown that we can make agents with more consistent personality by giving
personality information as input to the model. A lot of work has been presented later based on persona
profile conversational agents [209, 210, 207, 211, 158, 212, 213, 214]. However, those works focused
only on creating a conversational agent enacting a consistent persona, without taking into account the
feelings of the conversational partner.

Apart from producing engaging responses, understanding the situation, and producing the right emo-
tional responses, is another desirable trait. A lot of researches have focused on emotion [215, 216,
217, 218, 219, 220, 221] and empathy in the context of dialogue systems [42, 222, 43]. A frame-
work to control the sentiment and the emotion of the generated response through a manually specified
target was successfully introduced by [44, 45, 46] , while [223] introduced a new Twitter conversa-
tion dataset and proposed to distantly supervise the generation model with emojis. Others focused on
controlling the emotion of the generation response to encourage higher levels of affect [224]. Mean-
while, others proposed a new benchmark for empathetic dialogue generation [16] and trained models
to jointly predict the current emotional state and generate a response [225, 226, 16]. Later, the re-
searchers of [227] improved the initial baselines of [228] using the “Mixture of empathetic listeners”
framework. Recently, [229] proposed a method, using reinforcement learning [230], for generating
empathetic responses by improving the user sentiment look-ahead. Others [17, 18] used pretrained
language models, and by fine-tuning them on the Empathetic dataset, improved the initial baselines.

Meanwhile, other researchers experimented with using larger amounts of data and scaling the size
of the models, in order to provide state-of-the-art results in many NLP tasks. More specifically, Pre-
vious works [117, 169, 13] showed that leveraging a large amount of data to learn context-sensitive
features from a language model can create state-of-the-art models for a wide range of tasks. Taking
this further, [69, 177] deployed higher capacity models and improved the state-of-the-art results. Fi-
nally, while prior work has shown that scaling neural models in the number of parameters and the size
of the data they are trained on gives improved results, Facebook AI research team shown that other
ingredients are important for a high-performing chatbot too [8].

5.3 Data

In this section we present and analyse the datasets used in our experiments. We used the Empathetic-
Dialogues Dataset [16] and the ConvAI2 Dataset [208] (which extends the PersonaChat Dataset [206])
which are analysed in the following part.
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5.3.1 EmpatheticDialogues Dataset

The EmpatheticDialogues Dataset [16] is an open-domain conversation dataset consisting of around
25k conversations, publicly released with code to reproduce the main experimental results of the rel-
evant paper 1. We consider an open-domain one-on-one conversational setting where two people are
discussing a situation that happened to one of them, related to a given feeling. Each conversation
is grounded in a situation, which one participant writes about with a given emotion label. Then the
person who wrote the situation (Speaker) has an one-on-one conversation with another (Listener). In
the following part, we take a deeper look in the conversation format and then we analyse the data
collection procedure.

Emotion labels: As mentioned before, each conversation is grounded in a situation, which one par-
ticipant writes about in association with a given emotion label. There are 32 emotion labels, covering
a wide range of positive and negative emotions. Each conversation is provided with a single emotion
label in order to have a situation strongly related to (at least) one particular emotional experience.
However, in a given conversation similar emotions may be invoked as some emotions are closely
related. In Figure 5.2, a distribution over the emotion labels within the training set is depicted.

Figure 5.2: Distribution of emotion labels within EMPATHETICDIALOGUES training set and top 3
content words used by speaker/listener per category. Image source: [16]

One-on-One conversation: The person who wrote the situation description,is the “Speaker” ,and
initiates a conversation to talk about it. The other conversation participant, is the “Listener” and he
is unaware of the emotion label or the theme of the conversation. The Listener becomes aware of

1 https://github.com/facebookresearch/EmpatheticDialogues
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the underlying situation through what the Speaker says and responds. The Speaker and the Listener
exchange up to 6 turns.

Collection Details: The dialogues are collected using the ParlAI platform 2, by hiring 810 USworkers
to interact with Amazon Mechanical Turk (MTurk). A pair of workers are asked to:

• select an emotion word each (among 32 emotions) and describe a situation when they felt that
way

• and to have a conversation about each of the situations, as outlined below.

Each worker had to contribute to at least one situation description and one pair of conversations: one
as a Speaker about the situation he/she contributed, and one as a Listener about the situation con-
tributed by another worker. The workers were allowed to participate as many times they wanted for
the first 10k conversations approximately, but then the most ”frequently active” workers were limited
to a maximum number of 100 conversations. Finally, the median number of conversations per worker
was 8, while the average was 61 (some workers were more active contributors than others).

Setup: So, at first the workers were asked to describe in a few sentences a situation based on a feel-
ing label, trying to keep these descriptions between 1-3 sentences. In the second stage, two workers
were paired and asked to have two short chats with each other. In each chat, one worker (speaker)
starts a conversation about the situation they previously described, and the other worker (listener) re-
sponds. Neither can see what the other worker was given as emotion label or the situation description
they submitted, so they must respond to each others’ stories based solely on cues within the conver-
sation. Each conversation is allowed to be 4 to 8 utterances long. After the first few initial rounds
of data collection the workers were forced to select an emotion among three emotion labels that had
been the least chosen overall so far, if it was their first time working on the task. If they had already
performed the task, the offered emotion labels were among those that they had chosen the least often
before. In this way, the distribution over the emotion labels is almost balanced, as shown in Figure 5.2.

Summing up, the resulting dataset consists of 24,850 conversations. The data are splitted into approx-
imately 80% train, 10% validation and 10% test partitions and in order to prevent overlaps between
partitions, all sets of conversations with the same speaker providing the initial situation description are
set in the same partition. The final train/val/test split has 19533 / 2770 / 2547 conversations, respec-
tively. For the situation descriptions the average length is 19.8 words. Moreover, each conversation
has on average 4.31 utterances and the average utterance length is 15.2 words long. The basic statistics
are presented in table 5.1.

Table 5.1: Statistics of Empathetic Dialogue dataset

Train V alid. Test

Num. of conversations 19433 2770 2547
Num. of utterances 84324 12078 10973
Avg (utt.) length conversations 4.31 4.36 4.31

In Figure 5.3 we provide some conversations from the training set.

2 https://github.com/facebookresearch/ParlAI
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Figure 5.3: Random examples from Empathetic Dialogues training set.

5.3.2 ConvAI2 Dataset

The ConvAI2 dataset [208] is publicly available in ParlAI 3 and is based on the Persona-Chat dataset
[206]. As the ConvAI2 dataset extends the Persona-Chat dataset, it is considered necessary to first
give a brief description of the Persona-Chat dataset.

The Persona-Chat dataset is a crowd-sourced dataset, collected via AmazonMechanical Turk, consist-
ing of one-on-one open domain dialogue conversations, where each of the pair of speakers conditions
their dialogue on a given profile, which is provided. The data collection is based on the three follow-
ing stages:

Personas collection: A set of 1155 possible personas is crowdsourced, each consisting of at least
5 profile sentences. From the collected personas, 100 “never seen before” personas are set aside for
the validation set and 100 for test.

Revised personas: In order to avoid modeling that takes advantage of trivial word overlap, additional
rewritten sets of the same 1155 personas are crowdsourced, with related sentences that are rephrases,
generalizations or specializations.

Persona Chat: Two Turkers are paired and a random original persona is assigned on each one. Then,
they are asked to chat, while playing the part of the given character. The dialogs are turn-based, with
a maximum of 15 words per message.

3 https://github.com/facebookresearch/ParlAI/tree/master/parlai/tasks/convai2
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The resulted Persona-Chat dataset consists of 162,064 utterances over 10,907 dialogs, where 15,602
utterances (1000 dialogs) of which are set aside for validation, and 15,024 utterances (968 dialogs)
for test.

The ConvAI2 dataset extends the original Persona-Chat dataset by crowdsourcing further data. The
format of the dialogues remains the same. In table 5.2 the basic statistics of the dataset are shown. We
should note here, that the test set of the dataset is not publicly available, however that is not a matter
as the dataset was used only for pretraining our models. In table 5.3 an example dialogue is shown.

Table 5.2: Statistics of ConvAI2 dataset

Train V alid. Test(Hidden)

Num. of conversations 17,878 1000 1015
Num. of utterances 131438 7801 6634
Num. of personas 1155 100 100

Table 5.3: ConvAI2 dialogue example

Persona 1 Persona 2

I like to ski I am an artist
My wife does not like me anymore I have four children
I have went to Mexico 4 times this year I recently got a cat
I hate Mexican food I enjoy walking for exercise
I like to eat cheetos I love watching Game of Thrones
[PERSON 1:] Hi
[PERSON 2:] Hello ! How are you today ?
[PERSON 1:] I am good thank you , how are you.
[PERSON 2:] Great, thanks ! My children and I were just about to watch Game of Thrones.
[PERSON 1:] Nice ! How old are your children?
[PERSON 2:] I have four that range in age from 10 to 21. You?
[PERSON 1:] I do not have children at the moment.
[PERSON 2:] That just means you get to keep all the popcorn for yourself.
[PERSON 1:] And Cheetos at the moment!
[PERSON 2:] Good choice. Do you watch Game of Thrones?
[PERSON 1:] No, I do not have much time for TV.
[PERSON 2:] I usually spend my time painting: but, I love the show.

5.4 Baseline architectures

In this Section we describe in depth the generative models that have been already proposed in [16,
17, 18]. The official results of those models are presented in 5.6. We should also mention that all the
models are fine-tuned on the EmpatheticDialogues dataset. Before analyzing each of those models,
we provide a summary table that contains the basic characteristics of each model (Table 5.4).

Model 1 - Vaswani Full Transformer: In [15, 16] the researchers used the full transformer ar-
chitecture, which we already described in Section 4.6. The “base” model consists of 4 layers and 6
heads, while the “large” one has 5 layers instead.
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Table 5.4: Summary table of baseline architectures

Model Name Pretraining Architecture Characteristics Bib.

(1) Vaswani Full Transformer Reddit Dataset transformer [15, 16]
(2) Multitask Transformer Reddit Dataset transformer, multitasking emo [15, 16]
(3) Prepend-k Reddit Dataset transformer, prepending emo/topic [15, 16]
(4) Ensemble of Encoders Reddit Dataset transformer, ensembling emo [15, 16]
(5) CAiRE Book Corpus, PersonaChat GPT, multitasking (3 obj.) [17]
(6) GPT2-baseline WebText GPT2 [18]
(7) GPT2-prepend WebText GPT2, prepending (emo+situattion) [18]
(8) DodecaDialogue MT Reddit, Twitter transformer, multitasking (12 tasks) [19]
(9) DodecaDialogue MT+FT Reddit, Twitter transformer, multitasking (12 tasks),

finetuning [19]
(10) BST Generative Reddit Dataset transformer, multitasking (4 tasks) [8]

Model 2 -MultitaskTransformer: In [15] the researchers extended the previous architecture (Model
1) with multitask learning. They altered the objective function to also optimise for predicting the given
emotion label. They changed the architecture by adding a linear and a softmax layer on the encoder,
for predicting the emotion label from the context sentences. The objective function is altered to be the
average of the negative log-likelihood of predicting the next utterance and the negative log-likelihood
of the added linear layer being able to predict the correct emotion. An illustration of the model is
shown in Figure 5.4.

Figure 5.4: Illustration of model 2 -Multitask Transformer, an architecture proposed by [15]. The con-
text representation hx outputted by the context encoder is used both as input to an emotion classifier,
and to generate the next utterance as in the “model 1” setting.

Model 3 - Prepend-k: In [15, 16] the researchers extended the full transformer architecture by adding
the best k predictions from a simple classifier to the input text. Then the concatenated text is forwarded
to the encoder. Two versions (EmoPrepend-k and TopicPrepend-k) of that model are presented in
[16], by trying to add supervised information from two prediction tasks: emotion detection and topic
detection. More specifically, for the “EmoPrepend-k” model, the top k predicted emotion labels from
the supervised classifier are merely prepended to the beginning of the token sequence as encoder input,
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while for the “TopicPrepend-k” model, the top k predicted topic labels from the supervised classifier
are prepended to beginning of the token sequence. We explain further the training procedure of the
classifier in Section 5.6. An illustration of the “EmoPrepend-k” architecture is shown in Figure 5.5.

Figure 5.5: Illustration of model 3 - EmoPrepend-k, an architecture proposed by [15, 16]. The input
sequence is first run through a pre-trained emotion classifier, and the top k predicted emotion labels
are prepended to the sequence, which is then run through the encoder to output a hidden representation
hw. The hidden representation is then used to generate the next utterance.

Model 4 - Ensemble of Encoders: In [15, 16] the researchers extended the full transformer archi-
tecture by replacing the simple encoder with the “Ensemble Encoder”. The ensemble encoder takes
the encoding hx from the simple transformer encoder, and concatenates it with the representation hc
from the penultimate layer of a deep classifier trained for emotion prediction. Then, the concatenated
encodings are linearly projected to the dimension required by the decoder and the output is given as
input to the decoder. Finally, the next utterance is produced. An illustration of the architecture de-
scribed, is shown in Figure 5.6. We should note here that as referred in [15], when training the dialogue
model, the basic transformer encoder and the emotion classifier are freezed (referred as “pre-trained”
in Figure 5.6).

Model 5 - CAiRE: In [17] the researchers used the Generative Pre-trained Transformer (GPT) [169]
model as a pretrained language model. The GPT model is a previous version of the GPT2, which
has been already described in Section 4.8. The GPT model is a causal (unidirectional) transformer
pre-trained using language modeling on a large corpus with long range dependencies, the Toronto
Book Corpus [231]. They used a version with 12 layers, 768 hidden states and 12 attention heads,
having in total 110M parameters. We should note here that they first pre-trained the model on the Per-
sonaChat dataset and then they fine-tuned it on EmpatheticDialogues. In Figure 5.7 an illustration of
the model’s architecture is shown. Following the fine-tuning schema of [158], they created a custom
persona for the CAiRE model and then they concatenated the custom persona, the dialogue history
and the reply with special separate tokens, representing all the input sources with the summation of
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Figure 5.6: Illustration of model 4 - Ensemble Encoders, an architecture proposed by [15]. The input
sequence is run through the encoder as well as a pre-trained emotion classifier with the last layer
removed. The outputs hw and hc are concatenated and linearly projected into a representation he.
Then the representation he is fed to the decoder and the next utterance is produced.

trainable positional embeddings, word embeddings, and dialogue state embeddings. Positional em-
beddings and word embeddings are required for transformer input, while dialogues state embeddings
were added to help CAiRE to model the hierarchical dialogue structure and to distinguish the persona
sentences, the dialogue context and the response. After the input representation is fed into the model,
we get the contextualized representations. They denoted as SEN the contextualized representation
coming from the last special token and asEMO the contextualized representation of the special token
before the reply. Using those contextualized representations they trained the model for generating the
next utterance (for further training details about the use of the distractor, shown in Figure 5.7, see in
Section 5.6).

Figure 5.7: Illustration of model 5 - CAiRE, a model proposed by [17].

Model 6 - GPT2-baseline: In [18], the researchers used the GPT2 pre-trained language model,
which we described in Section 4.8. They used a version with 12 layers and 12 heads, having in total
117M parameters, and they tried to predict the next response using the dialog history.
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Model 7 - GPT2-prepend: In [18], the researchers extended the baseline model (Model 6 - GPT2-
baseline) by prepending the emotion labels and the situation context to the dialog history, using special
tokens for separating them.

Model 8 - DodecaDialogue MT: In [19] the researchers employed a full transformer based archi-
tecture [12] which accepts an image (from ImageChat and IGC datasets - tasks for creating chatbots
able to discuss given images), external textual information and a dialog history as input and generates
a response. They performed multi-task learning on twelve dialogue tasks, building a single conver-
sational model. More specifically, they used a modification of the transformer seq2seq architecture,
by additionally adding pre-trained image features (from the ResNeXt-IG-3.5B model) to the encoder.
Their model consists of 8 layers, 512 dimensional embeddings and 16 attention heads and is based on
the ParlAI implementation [232].

Model 9 - DodecaDialogue MT+FT: In [19] the researchers extending the previous work, by fine-
tuning the models after multi-task training. They trained the previous model on twelve dialogue tasks
using multi-task learning and then they fine-tuned it on EmpatheticDialogues to improve the results
further. We should also mention here, that they followed the same procedure for each of the twelve
tasks, but we focus only on the model which was fine-tuned on the EmpatheticDialogues dataset.

Model 10 - BST Generative: In [8] the researchers used a standard seq2seq transformer architec-
ture, as described in Section 4.6, to generate responses, having approximately 90 million parameters.
In this approach they trained the model using multi-tasking on four dialogue tasks (Blended Skills,
ConvAI2, EmpatheticDialogues and Wizard-of-Wikipedia). The Blended Skills dataset [233], is a
new dataset consisting 76000 utterances, combining three different skills: engaging personality from
ConvAI2 [208], empathy from EmpatheticDialogues [16], and knowledge fromWizard-of-Wikipedia
(WoW) dataset [234]. We should also note that they also experimented with larger generative models
(having billion of parameters), retrieval and retrieve-and-refine models, but we do not refer them in
this diploma thesis as they considered to be out of scope.

In Section 5.6 we will discuss the training details and the reported results for all the previously referred
models.

5.5 Proposed architectures

In this Section we describe some generative models that were already introduced by [235, 14] in other
works, and we propose using them in EmpatheticDialogues Dataset. We compare the results of all
models in Section 5.6.

Model 11 - BERT2BERT: This model uses the seq2seq architecture, with encoder and decoder
both composed from Transformer layers. More specifically, a Bert encoder and a Bert decoder are
used. The model was proposed by [235] for sequence generation. We initialise the encoder and de-
coder parameters, using the “bert-base-uncased” checkpoint from the HuggingFace library [179]. The
BERT2BERT model has 224M parameters, as the BERT encoder and decoder models have 110M pa-
rameters (12 layers, 768 hiddens, 12 heads) each.

Model 12 - BERT2GPT2: This model also uses the seq2seq architecture as the previous one. We
use Bert as encoder and GPT2 model as decoder. Both are initialised with the corresponding public
checkpoints. We use the BERT vocabulary for the input and the GPT2 vocabulary for the output. The
model was firstly proposed by [235]. The BERT2GPT2 model has 224M parameters, as the Bert en-
coder model has 110M parameters (12 layers, 768 hiddens, 12 heads) while the GPT2 decoder model
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has 117M parameters (12 layers, 768 hiddens, 12 heads).

Model 13 - T5: This model architecture has been already discussed in Section 4.9. We use the base
model from the HuggingFace library [179] having 220M parameters with 12 layers, 768 hidden-
states, 3072 feed-forward hidden-states and 12 heads.

Model 14 - T5-multitask1: We extend the architecture of the T5 baseline model (model 13) with
multitask learning. We adopt the same idea applied in model 2 (described in Section 5.4). More
specifically, we add a classification head over the encoder, trying to predict the emotion of the user.
In this way, during the training process the model learns to generate responses according to the user’s
emotion.

Model 15 - T5-multitask2: We extend the architecture of the T5-multitask1 model (model 14) by
adding a classification head over the decoder too. This approach not only tries to predict the emo-
tion of the user, but to penalise the model if the generated response is emotionally misclassified. The
architecture used is illustrated in Figure 5.8.

Figure 5.8: Illustration of model 15.

We should also note here, that we have also implemented some of the models that were described in
Section 5.4 with slight differences in the training process. We denote those models in the tables of
Section 5.6 with the “ours” tag, in order to distinguish them from the original ones.

117



5.6 Experiments & Results

In this Section, we analyse the training details for the models described in Sections 5.4, 5.5 and then
we present the experiments that have been conducted. Finally, we compare the results of the proposed
models with those of the baselines.

Training Details of baseline models:

Models 1-4: The researchers in [15, 16], used a dump of 1.7 billion conversations to pre-train the
models on predicting replies. Then, they fine-tuned the models on EmpatheticDialogues dataset by
predicting the next utterance of the conversation using a context window of four previous utterances,
as that is the average length of each dialogue in the EmpatheticDialogues dataset. They also limited
the maximum number of word tokens in the context and response to 100 words. All models were
trained for up to 10 epochs and the versions with the lowest loss on the validation set were kept. They
used 300-d word embeddings, pretrained on common-crawl data using fastText [236]. The Adamax
optimizer was used, with a learning rate of 8e-4. For the multitask model (model 2), the objective
function was altered during the training procedure and it was set to be the average of the negative log-
likelihood of predicting the next utterance and the negative log-likelihood of the added linear layer
being able to predict the correct emotion. Moreover, for the Ensemble of Encoders model (model 4),
the researchers frozen both the Transformer encoder and the pretrained classifier and trained only the
linear layers used to predict the user’s emotion and the Transformer decoder. We have to note that they
experimented with two versions of the model. In the first one (Ensem-DM) they used the DeepMoji
classifier [237] with the weights as released by the authors, while in the second one (Ensem-DM+)
they used the same DeepMoji architecture, re-trained on the situation descriptions of the training set
of EmpatheticDialogues dataset. Finally, at inference time, they used diverse beam search from [188].

Model 5: The researchers in [17], followed the transfer learning strategy of [158] by pre-training the
model on the PersonaChat dataset [206], improving in this way the engagement and the consistency
of the model. Then, they fine-tuned the model on the EmpatheticDialogues dataset with a custom
persona and three objectives:

• language modeling

• response prediction

• dialogue emotion detection

As already mentioned, they created a custom persona with sentences such as “my name is caire”,“i
am a good friend of humans”, and formed the input by concatenating the custom persona, the dialog
history and the reply separating them with special tokens. Using the contextualized representations
produced by the model they trained the model in the three mentioned objectives:

• To optimize the emotion prediction objective, they pass the EMO representation (the contex-
tualized representation before the reply) into a linear classification head to predict the emotion.
For the emotion classification among 32 emotions, they use the cross-entropy loss, denoted with
Le.

• To optimize the response language modeling objective, they use the contextualized represen-
tation of gold reply to predict the next tokens, and finally compute the language model loss,
denoted with Ll using cross-entropy.

• To optimize the response prediction objective, at each training step they make two predictions.
One using the reply and another one using a distractor. At first they pass theSEN representation
(the contextualized representation of the last special token - see in Figure 5.7) using the reply
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to the input, to a linear classifier to classify if the response is correct or not. Then they sample
a distractor response from the training samples against the gold response. Using that distractor
to the input instead of the reply, they take one more SEN representation which is forwarded
to the linear classifier, predicting if the response is correct or not. Then, they calculate the
cross-entropy loss of that binary classification task, denoted with Ls.

Finally the final fine-tuning loss used is a weighted sum of the aforementioned losses, as shown in the
following equation:

L = α× Ll + Ls + Le (5.1)

where α is chosen by the researchers.

Models 6,7: The researchers in [18], fine-tuned the pretrainedmodels on EmpatheticDialogues dataset
using cross-entropy loss. The vocabulary size used was 50263. During inference time, they used the
nucleus sampling technique (which is described in Section 4.10) with p=0.9, instead of using beam
search.

Models 8,9: The researchers in [19], pre-trained the models in Reddit and Twitter (to some extend)
datasets, before multi-tasking on all of the twelve tasks or multi-tasking and then fine-tuning on a
specific task. The pre-training process only included text, while the image encoder was pre-trained
separately in previous work [238]. The models were trained with a batch size of 3072 sequences for
approximately 3 million updates using a learning rate of 5e-4, and an inverse square root scheduler.
Then the models were trained using multi-tasking on all tasks or fine-tuned on a specific task after
multi-tasking.

Models 10: The researchers in [8], pre-trained the model in Reddit dataset, and then they fine-tuned
it using multi-task learning on the four tasks of Blended-Skills, ConvAI2, EmpatheticDialogues and
WoW. In each blended dialogue, the model is provided a two sentence persona to condition on fol-
lowing PersonaChat [206], and additionally during one third of the conversations a WoW topic name
as well.

Training Details of our models:

In the following part we provide the training details for the models we implemented and applied on
EmpatheticDialogues. Before analysing the training details of each model, we should note here that
for predicting an utterance of the conversation, we use as context (history), a context window of four
previous utterances (turns).

Models 11-13 (BERT2BERT, BERT2GPT2, T5-baseline):
For the models 8 to 10 that we applied on EmpatheticDialogues dataset, we present two training ap-
proaches.The first one is to train them on EmpatheticDialogues and the other one is to pre-train them
on ConvAI2 dataset [208] and then to fine-tune them on EmpatheticDialogues. Due to limited re-
sources, we trained the models using small batches of sizes 8, 12 or 16.
In both approaches we used the “bert-base-uncased”, “gpt2” and “t5-base” versions to start training
(or pre-training). For the “Ours-Vaswani Full Transformer” models we used Transformer networks
as encoder and decoder with 4 layers, 6 attention heads and 500 hidden states each. We also used a
dropout rate of 0.2 and an attentional dropout rate of 0.1. We also used the gelu() activation function
and 1 million 300-d word vectors trained on Wikipedia 2017, UMBC webbase corpus, and statmt.org
news dataset [236].
During the training process (both pre-training and fine-tuning), we trained both the word embeddings
and the positional embeddings in the BERT2BERT, BERT2GPT2 and T5 models, while in the “Ours-
Vaswani Full Transformer” models we trained only the word embeddings and we used positional
embeddings coming from sine and cosine functions as in equation 4.15. During fine-tuning, for the
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BERT2BERT, BERT2GPT2 and T5 (without multitasking) models we used the Adam optimizer with
a learning rate of 2e-5, and for the “Ours-Vaswani Full Transformer” models we used the Adam opti-
mizer with a learning rate of 2e-6. We also used weight decay equal to 1e-6, for all the aforementioned
models. We should also mention here that all the models were trained with early-stopping, keeping
the checkpoint with the best language model loss in the validation set.

Model 14 (T5-multitask1):
For the T5-multitask1 model we used the “t5-base” version of T5, extending it with a linear classifier.
We first pre-trained the model (freezing the classifier) on ConvAI2 dataset and then we fine-tuned the
T5-multitask1 model on EmpatheticDialogues dataset. During fine-tuning, we focus on two objec-
tives:

• language modeling

• dialogue emotion detection

The decoder is used for the language modeling objective, while the classification head over the en-
coder, for detecting the emotion of the dialogue. Using the representations produced by the encoder
and the decoder, we train the model to optimize the mentioned objectives.

• To optimize the language modeling objective, we use the representation coming from the de-
coder to predict the next tokens, and finally we compute the language modeling loss denoted
with Llm using cross-entropy.

• To optimize the emotion prediction objective, we pass the representation of the dialogue his-
tory (coming from the encoder) through the emotion classifier. We try to classify correctly the
emotion of the dialogue among 32 emotions, using the cross-entropy loss, denoted with Lem

Finally the final fine-tuning loss used is a weighted sum of the aforementioned losses, as shown in the
following equation:

L = Llm + α× Le (5.2)

where α = 0.5. During fine-tuning, we use a batch size of 8, Adam optimizer with a learning rate of
8e-5 and a weight decay of 1e-6, training both the word and the positional embeddings. Finally, we
keep the model with the best language modeling loss in the validation set.

Model 15 (T5-multitask2):
For the T5-multitask2 model we used the “t5-base” version of T5, extending it with two linear classi-
fiers, one over the encoder and one over the decoder. We fine-tune the model on EmpatheticDialogues
dataset without pre-training on ConvAI2 dataset as we did with model 14. During fine-tuning, we fo-
cus on three objectives:

• language modeling

• dialogue emotion detection

• emotion detection on the generated response

The decoder is used for the language modeling objective, while the classification head over the en-
coder, for detecting the emotion of the dialogue. We use the classification head over the decoder to
detect the emotion of the generated response. Using the representations produced by the encoder and
the decoder, we train the model to optimize the mentioned objectives.

• To optimize the language modeling objective, we do exactly what we did with model 14 (T5-
multitask1). Let’s denote the loss with Llm.
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• To optimize the emotion prediction objective of the dialogue, we do exactly what we did with
model 14 (T5-multitask1). Let’s denote the loss with Lem−enc

• To optimize the emotion prediction objective over the generated response, we pass the represen-
tation coming from the decoder through the emotion classifier. We try to classify correctly the
emotion of the generated response among 32 emotions, using the cross-entropy loss, denoted
with Lem−dec. In this way, we penalise the model if the emotion of the generated response is
not the appropriate (forcing empathy).

Finally the final fine-tuning loss used is a weighted sum of the aforementioned losses, as shown in the
following equation:

L = Llm + α× Lem−enc + β × Lem−dec (5.3)

where α = 0.3 and β = 0.8. During fine-tuning, we use a batch size of 8, Adam optimizer with a
learning rate of 8e-5 and a weight decay of 1e-6, training both the word and the positional embeddings.
Finally, we keep the model with the best language modeling loss in the validation set.

Finally we should also mention that during inference time, we use top-p (nucleus) sampling method
with top-k filtering (top-p/top-k filtering), setting threshold probability p = 0.9, topk = 10 and
temperature = 1.0. We also add length penalty equal to 0.6 and we set the maximum length of the
generated response to be equal to 40.

Experimental Evaluation:
We evaluate the models on their ability to reproduce the Listener’s portion of the conversation (i.e. the
ability to react to someone else’s story), using automatic metrics. We compute the BLEU scores [196]
for the generated response, comparing against the actual response, following the practice of earlier
works in dialogue generation. Moreover, we compute and report the perplexity (PPL) of the actual
response. We report those two metrics on all of the models in order to compare them with the current
state-of-the-art models.

Results:
In Table 5.5, we report the results for all of the generative models described in the previous sections.
In Table 5.6 we present a summary of state-of-the-art models trained on EmpatheticDialogues dataset.

As it concerns the baseline architectures, we notice that the CAiRE model outperformed all the mod-
els proposed by [15, 16], but finally the DodecaDialogue MT+FT and DodecaDialogue MT mod-
els performed state-of-the-art results. More specifically, DodecaDialogue MT+FT model achieved a
state-of-the-art perplexity of 11.4, making clear that multi-tasking learning in different tasks boosts
the model’s performance. So, training a conversational agent with the view of being able to handle
multiple tasks and having multiple skills, makes the agent generalizable, being able to handle appro-
priately each situation with giving accurate responses. As it concerns our experiments, we should note
first that the Vaswani Full Transformer models failed in producing satisfying results. We can easily
notice that both of the models, that we implemented, have a huge difference in perplexity, compared
with the original one [15, 16]. More specifically, “Ours-Vaswani Full Transformer (ED)” and “Ours-
Vaswani Full Transformer (P+ED)” models have perplexity of 33.46 and 28.46 respectively, while
the official baseline model has 21.24. This difference makes sense, as the official baseline model was
pre-trained on the Reddit dataset, consisting of 1.7 billion conversations, while ours were pre-trained
on ConvAI2 dataset having significantly fewer conversations. Pre-training from scratch a model hav-
ing approximately 126 million parameters, on such a small dataset, makes it difficult to model the
natural language and to generate accurate responses. Unfortunatelly, we did not have the ability to
use the Reddit dataset to produce comparable results due to limited resources availability. Despite
that fact, the rest of the models that were used, were successfully trained as those models were al-
ready pre-trained in large datasets. Both BERT2BERT and BERT2GPT2 produce comparable results
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Table 5.5: Summary of results of all experiments

Model PPL AVG BLEU

Vaswani Full Transformer [15, 16] 21.24 6.27
Multitask Transformer [15, 16] 24.07 5.42
EmoPrepend-1 [15, 16] 24.30 4.36
TopicPrepend-1 [15, 16] 25.40 4.17
Ensem-DM [15, 16] 19.05 6.83
Ensem-DM+ [15, 16] 19.10 6.77
CAiRE [17] 13.32 7.03
GPT2-baseline [18] 18.32* 7.71*
GPT2-prepend [18] 19.49* 7.78*
BST Generative [8] 11.48* -
DodecaDialogue MT+FT [19] 11.4 8.1
DodecaDialogue MT [19] 11.5 8.4
Ours-Vaswani Full Transformer (ED) 33.46 -
Ours-Vaswani Full Transformer (P+ED) 28.64 -
BERT2BERT (ED) 20.77 5.53
BERT2BERT (P+ED) 19.54 6.78
BERT2GPT2 (ED) 17.93 7.22
BERT2GPT2 (P+ED) 21.48 7.19
T5 (ED) 12.40 9.31
T5 (P+ED) 12.51 9.68
T5-multitask1 12.58 9.28
T5-multitask2 12.96 9.13

* denotes results reported on validation set

with the baselines of [15, 16]. The BERT2GPT2(ED) model outperforms both in perplexity and in
average BLEU score the baselines of [15, 16]. Moreover, it has better perplexity than the baselines
proposed by [18], however it has worse average BLEU score. We should also note here that with a
pre-training on a larger dataset, such as the Reddit dataset, the BERT2BERT and BERT2GPT2models
may lead to significantly better results, as the pretraining on ConvAI2 dataset does not improve the
models’ performance due to its limited size. However, pre-training boosts the average BLEU score
(in most cases), as the models generate more diverse responses. As it concerns the approach of using
the T5 model, we clearly notice that there is a significant improvement compared with the previously
proposed models. Both the simple and multitask learning architectures, using the T5 model, perform
state-of-the-art results concerning the average BLEUmetric. More specifically, the T5 (P+ED) model
achieves close results in perplexity to the current state-of-the-art model (DodecaDialogue MT+FT),
having a 9.7% difference, and it outperforms the current state-of-the-art model (DodecaDialogue MT)
in average BLEU metric , by a difference of 19.5%.

Having studied the aforementioned results we can now draw some high-level conclusions. First of all,
we come to the conclusion that pretraining is really important for creating successful conversational
agents, especially when pretraining is done on large conversational data. Moreover, in most circum-
stances, we notice that seq2seq models seem to perform better in dialog generation tasks rather than
auto-regressive models, as seq2seq architectures can be used for successful conditional generation.
Furthermore, it is also worth mentioning that multi-task learning on various dialog tasks enhances
the conversational agent, having multiple dialog skills. However, multi-task learning techniques for
emotion classification may not always improve system’s performance.
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Table 5.6: Summary of results of state-of-the-art models

Model PPL AVG BLEU

BST Generative [8] 11.48* -
DodecaDialogue MT+FT [19] 11.4 8.1
DodecaDialogue MT [19] 11.5 8.4
T5 (ED) 12.40 9.31
T5 (P+ED) 12.51 9.68
T5-multitask1 12.58 9.28
T5-multitask2 12.96 9.13

* denotes results reported on validation set

Finally, we should note that perplexity is a metric that measures how well a model can predict the
test-set samples, without “real” generation. Of course, more than one responses can be suitable and
emotionally relevant to a dialogue history-context. So, judging a conversational agent only from the
view of the perplexity is not objective. However, the average BLEUmetric measures the quality of the
response using the “real” generation method. All of our models, based on T5, perform state-of-the-art
results in average BLEU metric while having comparable perplexity with the current state-of-the-art.

In the following, we provide some of the responses provided by the T5 (P+ED) model compared
with the actual responses in Figures 5.9, 5.10, 5.11, 5.12 and 5.13.

Figure 5.9: Example 1 of generation process.

Figure 5.10: Example 2 of generation process.
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Figure 5.11: Example 3 of generation process.

Figure 5.12: Example 4 of generation process.

Figure 5.13: Example 5 of generation process.

The above results show that the model is able to reproduce not only syntactically and grammatically
coherent responses, but also to express the appropriate emotion. We clearly notice the strong ability of
modeling the user’s emotions and generating empathetic and engaging responses, with the T5 based
architectures that we used.

5.7 Summary

In this chapter we studied in depth dialogue generation, not only focusing on the part of generating
syntactically and grammatically correct responses, but producing responses that will vary in emo-
tional content, thus engaging the user. More specifically, we focused on creating dialogue agents,
using generative models, that will be empathetic or in other words they will be emotionally relevant
responses with the user’s emotion. We used the EmpatheticDialogues dataset, a dataset focusing on
conversations with empathy, and the ConvAI2 dataset to enrich the context of conversations. We also
studied the recent work done in the field, using the most famous models in language modeling, the

124



Transformers and their expansions. We also applied variants of transformers in the EmpatheticDia-
logues dataset, achieving state-of-the-art results in the average BLEU metric while achieving close
perplexities to the current state-of-the-art models. Moreover, we introduced a novel architecture for
modeling empathy using multitask learning, which improved the current state-of-the-art BLEU met-
ric, but did not perform as well as the non-multitasking approach (using the T5 model as is). Finally,
we presented some of the generated responses of our best model, noticing that the generated responses,
not only seem to be fluent and coherent, but also to be rich in emotional context, relevant with that of
the user.
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Chapter 6

Epilogue

6.1 Conclusions

In this diploma thesis we studied in depth the work done in the field of creating empathetic conver-
sational agents using generation-based models and we also proposed ways to further improve upon
these systems. More specifically, at first, we analyzed the traditional architectures used for dialogue
generation, including the vanilla seq2seq model, its expansion with the attention mechanism, and the
HRED model. Then, we studied the state-of-the-art models that can be used in dialogue generation,
including the Vaswani encoder-decoder transformer [12], the Bert, the GPT2 and the T5models. After
providing a theoretical background for the aforementioned models we focused on the EmpatheticDi-
alogues task, a task proposed by Facebook for building empathetic dialog systems.

After presenting and studying the related work on the task we conducted several experiments, testing
various architectures for improving the results on the task further. The experiments conducted with
the use of the BERT2BERT and BERT2GPT2 models did not improve the state-of-the-art results.
However, the experiments based on the T5 architectures provided state-of-the-art results concerning
the BLEU metric, while achieving perplexity close to that of current state-of-the-art models. More
specifically, we experimented with three different architectures.

• The first one, which is our baseline architecture is to use The T5 model as is, on the Empathet-
icDialogues task.

• The second one, extends the baseline model with multi-task learning, adding over the encoder
a classification head. The goal of this extension is to better understand the implied feelings of
the conversation.

• The third one extends the second by adding a classification head over the decoder too. In this
way, we aim to model empathy by indirectly forcing the decoder to generate a response having
the same emotion as the rest of the conversation (that is extracted by the classification head over
the encoder). We achieve this, by using the same emotion label while training both emotion
classifiers.

Finally, all the T5-based architectures proposed, improved the state-of-the-art BLEU score, with the
baseline providing the best among all, improving the current state-of-the-art model (DodecaDialogue
MT) in average BLEUmetric by 19.5%. Furthermore, the baseline architecture achieved close results
in perplexity to the current state-of-the-art model (DodecaDialogue MT+FT), having a difference of
9.7%.

We should also note here that perplexity is a metric that measures how well a model can predict
the test-set samples, without “real” generation, while the BLEU score measures the quality of the
response using “real” generation. So, using only the perplexity metric for evaluation is not really ob-
jective. However, the BLEU metric is a metric usually applied for machine translation tasks, so we
can not rely only on this one. From this point of view, in the next section, we propose future work
concerning both the evaluation and the modification of the presented architectures.
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6.2 Future Work

In order to further improve our work, in this section we refer to future extensions and modifications
for future study. More specifically, we suggest to:

• Train the T5-basedmodels in various dialogue tasks, as it was done in [19, 8]. More specifically,
we can train the models using multi-tasking in more dialogue tasks, such as the EmpatheticDia-
logues, the ConvAI2, the WoW and the BST tasks, and then fine-tune them on EmpatheticDia-
logues. In this way, the models gain various skills and become able to generate more appropriate
responses.

• Use pre-trained classifiers for emotion classification to better understand the implied feelings
of the conversation.

• Extract emotion representations, in a d-dimensional space, through the use of emotion classifiers
instead of extracting a simple emotion. Then, we can use both the emotion representations
extracted from the encoder and the decoder, and add an auxiliary loss to better model empathy
using one of the following methods:

1. Calculate the distance between the emotion representations using p−norm (e.g. calculate
euclidean distance using p = 2) in order to measure their similarity. The less the distance,
the more empathetic the model.

2. Calculate the triplet margin loss, which is given by the following equation for each sample
in the mini-batch:

L(a, p, n) = max {d (ai, pi)− d (ai, ni) +margin, 0} (6.1)

where a denotes the anchor, p denotes a positive example, n denotes a negative example
and d (xi, yi) = ∥xi − yi∥k with k denoting the degree of the pairwise distance. The emo-
tion representation coming from the decoder is set as the anchor, while the one coming
from the encoder is set as the positive example. We also sample one “negative” emotion
label and we set it as the negative example. In this way, we have three different situations
for the calculated loss:

Figure 6.1: An illustration of triplet margin loss.

– Easy triplets: d(ai, ni) > d(ai, pi) + margin The negative sample is already suf-
ficiently distant from the anchor sample with respect to the positive sample in the
emotion representation space, so the calculated loss is 0.
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– Hard triplets: d(ai, ni) < d(ai, pi) The negative sample is closer to the anchor than
the positive. The loss is positive (and greater thanmargin).

– Semi-Hard triplets: d(ai, pi) < d(ai, ni) < d(ai, pi)+margin The negative sample
is more distant from the anchor than the positive, but the distance is not greater than
themargin, so the loss is still positive (and smaller thanmargin).

An illustration of the above loss is shown in Figure 6.1. In this way, the smaller the
computed loss, the more empathetic the model.

• Have humans evaluate the generated dialogues. More specifically, we propose grading the gen-
erated responses concerning relevance, fluency, coherency and empathy, and also doing a pair-
wise comparison between the responses of the current state-of-the-art models (DodecaDialogue
MT, DodecaDialogue MT+FT) and the proposed ones (T5, T5-multitask1, T5-multitask2).

• Finally, we also suggest doing an ablation study over the models, in order to better understand
the behavior of the constituent components.
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