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Iepixndn

X1 S ouate auTr, LENETAUE To TEOBANU TNE UEYLIO TOTOMOTS EL000HUATOS OE dnponpacieg
avaBoANOUEVNC AmOBOYAC YIot TNV TWANGT TOANUTAGY avTiTiTwY. Ao TNV €lo0ywy TOUg ond
touc Milgrom xou Segal, ol dnuonpacies avaforhéuevne anodoyric éxouv yenotuonoindel extevie
¥den 0TI AELOONUEIWTES WOLOTNTES TOUG, avapopLxd Tpoavy) LaNY|Beia xar weak group-strategy-
proofness. H neplocdtepn épeuva otig dnuponpacieg avafariouevne anodoync elte elxe ecTlaoTel
GTO GTOYO NG HEYLOTOTOMONS TNG XOWWVIXTC WPENELS, ElTe elye axoloubroel pia mpocéyyion
YepoTERNC TEp(nTwoNg.  XTn Simhwpotixy auth epoappolovue PAC pdbnon otic dnuonpacieg
avoBadAouevne amodoy e xou delyvouue OTL, UTS QUOLXEC UTOBEGELS YLOL TIC XATUVOUES TOV TUX TV,
808€VTWY XATOLWY BELYUETWY TWV XATOVOUMY AUTKOY lvol EQLXTH 1) udbnor Snuompactedy avaforho-
pevne anodoyhc we UPnAo avapevépevo ewoddnua. Eotidlouue oe 2 Sioxexpiuéva meptfdriovtos
‘Eva neplBarhov plag nopouétpou, dnpompaciec TONNATAGY avTitinwy Ye naixtes pe abpoiotixée
ouvapthoels aflog, xot éva TEPLBAANOV TONNATAGY TP TEwY, dNUOTEACIEC TONNUTNGY avTLT-
nwv pe malxteg pe submodular cuvapthoelc aglog.

Yy nepintwon twv maxtdv ye abpooTixéc ocuvaptrioelc alog, mopéyoupe plo TpoTtdTUTN
vlomoinom Twv dnuompouctey t-emnédwy tov Morgenstern xou Roughgarden w¢ dnuomnpacieg
avaBoANOUEVNC AmOBOYAC KO, XENOULOTIOLOVTAS TNV UNOTOINGT] QUTH, TOREYOUUE Gvw SpLal YLoL TNV
BELYUATIXT) TONUTAOXATNTO TTOU oL TE(TOL YLl TOV TPOGdLoptops Wiag dnponpacieg avafaiiouevne
anodoy NS HE AvaeVOUEVO ElcddNUa aubaipeTa xovtd 670 BéENTIoTo. To 6016 pag ue Ty Tpocéyyion
auth ebvan €€loou xaXd e to avtiotowo Gplo e apyxic epyacioc. ‘Emeita enextelvouye to
AmOTENECUS Hag oUTO amd dNUOTEACIEC TONNATAWY avTITOTWY ot dnuompacie pe avbaipetoug
polymatroid meplopiopoie. T va to enextelivoupe autd, enextelvoupe 11 Soun TwV SNUOTEACL)Y
t-emnédwy, npochétovtag pla emmAéov ToEdUETEO avd einedo, To oxop ToL ETTESOU auTtol. ‘Onwe
oel€ape yior TOALPATEOEWDY TEPIBANNOVTA, AUTO EVIOYVEL ONUAVTIXE TIC EXPEOUC TIXES LXAVOTNTES
e xAdomng eved audvel eNdytota TV YeudodidoTtacy e, XNy medln, autd onuaivel Tt xaveic
unopel va emtiyel Tov (810 Noyo TEOCEYYLONG XENOWMOTOLWVTAS TOND AlydTEQN ENIMED, XoUu XAUTS
GUVETELXL UE WUXEOTERT DELYUITLXY) TONUTAOXOTNTAL

Yy nepintoon mou ot taixteg éxouv submodular cuvoptroelg a&Ldv, TPOTEVOUYE TNV XNdoT
Twv unit bundling dnuorpaciwyv. H mpocéyyior wog elvan oyetind npwtotunn: Ewcdyouue éva véo
UNYOVIOUO, TOV "ex TV TpoTtépwv BENTIOTO” unyavioud, o omolog mdvto emiéyel tnv otabepn
avdBeor pe N YeyoNOTEEY AVUUEVOUEVY] XoWavixY w@éNeta. ‘Eneito, mpoxewévou va @pdEouue
TEOC TA TAVW TO CPANHA AVTITPOc®TEUOTC TN unit bundling x\dong yenoylonotolue Ty ovoe-
VOUEVY] XOWOVIXT] WPENELXL TOU UNYOVIOUOU ouToV 0 plar Slemopt| petadd NS AvVoEVOUEYNS KOV~
e o@éretag Tou VCG unyaviopol xot ToU avopeEVOUEVOU ELGOBHUATOS TOU BEATIOTOU Unyo-
viopoU and tny unit bundling »\dor. Xuvdudlovtag autd to Vo Pedyuata delyvouue dti, LUTO
QUOLXEC UTOBECELS VLol TIC XAUTAVOUES TWV TAX TV, B0BEVTWY XdmolwV SeryUdtwy TV adlddv Toug
elvon Buvath 1 udbnom plac dnponpaciog avaBaANOUEVNE ATOQPAUOTC UE AVUUEVOUEVO ELCOBNUA (G0
ME TNV avopevouevn xowovixr] wgéleta Tou VCG, uelov xdmotoug wixpols abpototixols 6poug
ToUL elval LTTOYEOUULXOL GTOV OELBUO TV TUXTOV XAl TIC BLICTIORES TWV XUTOVOUDY OV TOUG.
To amotéeoua autd ebvor afloonuelwto dedouévou 6Tl 610 TERBANNOY awTo, xavévae weakly
group-strategyproof unyoviopog dev pnopel vo eyyundel xowvovixry o@érelo mou elvor Tévw omd
% npocéyyion tNg PENTIOTNG.

TéNog, enexTEVOUUE Tl AMOTENEGUOTOL OIS X0 YLOL TEQLBAANOVTOL Uiolg X0t TOANATIAGY LETAUPAT-
0OV 6NV TEp(nTwor 6ToL 0 aplBude SelyudToV elvol ONUAVTIXSE TEPLOPLOUEVOS. LuyXeXpUEVA, Yia
10 mepBdihov plog mapauétpou mpotelvouue plo dnuonpacto avafoiiouevne andgoaone n onola,
AENOWOTOLOVTOS €Vor LoV Delyuo, ETTUYYSVEL TOUNGIOTOV T Tou BEXTIOTOU avauevouevou
eloodrfuatoc. Ta v anddelln auty ypeeldotnxe vo emexTelvOUUE TNV €VVOLd TV “UlOOUETPWY
pnyaviopdy”’ mou ewehyaryov ol Hartline xou Roughgarden oe avfoipeta tepifdilovta plog mopo-



ii

uétpou. ‘Emeita, yia 10 TEpLBAANOY TOANGDY TopouéTewy Tpotelvouue évay unyoviopéd o omolog,
YeNoWonolwvTaS 2 delyuata, €xel AVaUEVOUEVO EWGOBNUA ToL elvor TOUNdyLoTov 0.589 autol Tou
elye o UNYAVIOUOS OTNY TEOGEYYLOY BELYHATIXNC TONUTAOXOTNTAS Yl TO (Blo meptffdihov. Tmo
T Bleg guonég umoBécelc Yot TIC XAUTAVOUES TV TouxT®y, autd eivon 0.589 mpocéyyion tng
AVOHEVOUEVTS XOWVWVIXHAS wpéletag Tou VOG, uelov xdnotoug uixpolc abpoiotixole 6poue.

AgZeg xXewdid: Avtopatonomuévos Xxediaopos Mnyaviouwy, Anponpaciec Avaforouevng

Anodoyfc, Anuonpaciec ITodamhdv Avtitinwy, Anuonpacies t-emnédwy, Aetypatid Iloxunho-
xoTNTOL
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Abstract

In this thesis, we study the problem of revenue maximization in deferred-acceptance multi-
unit auctions. Since their introduction by Milgrom and Segal, deferred-acceptance auctions
have been used extensively due to heir remarkable incentive properties, namely weak group-
strategyproofness and obvious truthfulness. Most of the work on deferred-acceptance auctions
has either focused on the objective of social welfare maximization or adopted a worst-case anal-
ysis approach. In this thesis we apply the framework of PAC learning to deferred-acceptance
auctions and show that, under natural distributions assumptions, given few samples, it is
possible to learn deferred-acceptance auctions with very high expected revenue.

We focus on two distinct environments: a single-parameter environment, multi-unit auc-
tions with bidders with additive valuation functions, and a multi-parameter environment,
multi-unit auctions with bidders with submodular valuation functions.

In case of bidders with linear valuations, we provide a novel implementation of Morgenstern
and Roughgarden’s t-level auctions as deferred-acceptance auctions and, using that implemen-
tation, we upper bound the sample complexity of determining a deferred-acceptance auction
with expected revenue arbitrarily close to optimal. Our bound using that approach is equally
good to that of their original paper.

Then, we extend this result from multi-unit auctions to environments with arbitrary poly-
matroid constraints. To achieve this, we extend the framework of ¢-level auctions, adding an
additional parameter per level, its level score. As we show for polymatroid environments, this
significantly increases the expressive capabilities of the class, while only slightly increasing its
pseudo-dimension. In practice, this means that one can achieve the same approximation ratio
using fewer levels and thus with decreased sample complexity.

In case of bidders with submodular valuation functions, we propose the class of unit
bundling mechanisms with non-anonymous bundle sizes and reserve prices. We introduce a
new mechanism, which we call “a priori optimal”. The “a priori optimal” mechanism always
chooses the fixed allocation with the highest expected social welfare. Then, in order to estab-
lish a representation error bound for the unit bundling mechanism class, we use the expected
social welfare of this mechanism as an interface between the expected social welfare of VCG
and the expected revenue of the optimal mechanism from the unit bundling class. In order
to establish a generalization error bound for the mechanism class, we use Balcan’s sample
complexity framework. Combining these two bounds we prove that, under natural distribution
assumptions, given some samples of the bidders’ valuations, it is possible to learn a deferred-
acceptance auction with expected revenue equal to the expected social welfare of VCG minus
some small additive terms that are sublinear in the number of players and the variances of their
valuation distributions. We remark that in this environment, no weakly group-strategyproof
mechanism can guarantee social welfare that is within a factor of % from the optimal one.

Afterwards, we extend both our results for single- and multi-parameter environments to the
case where the number of samples is severely restricted. Specifically, for the single-parameter
environment, we propose a mechanism that, using a single sample, achieves on expectation
over the draw of that sample an expected revenue within a factor of i from the optimal one.
For the proof we extend Hartline and Roughgarden’s notion of commensurate mechanisms
to arbitrary single-parameter environments. Finally, for the multi-parameter environment we
propose a mechanism that, using two samples, achieves on expectation over the draw of those
two samples, an expected revenue within a factor of 0.589 from the expected revenue achieved
in our sample complexity approach. Under the same set of distribution assumptions as in our
sample complexity approach, this is a 0.589-approximation of the expected social welfare of
VCG, minus some smaller additive terms.
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Evyapiotieg

H exnévnon g dimiopatxdc You gpyaciuc onuatodotel xou ETOAUWES TNV ONOXAHPWOT TV
TREOTTUYLIXAY KOV GTIoUdWY 611 oo Twv Hhextporoywv Mnyavixddv xon Mnyovixwv Troko-
YIOTOV. XE auTH) Hou TNy mpoondfeta uhpyoy ToA ol Tou ue Bornoav xon yia autd Bo HBela
vo toug euyoptothon. O x. Pwtdxng xow o x. Ilamaondpou and tnv apyxh TV oTOUBKOY
Hou Hou xivnoav To evBlopépov vor aoyornbd mepautépw pe To avtxelyevo e (OewpnTixhc)
ID\npogopixric. H xaBodrynomn tou x. Pwtdxnm, wg emPrénovra xabnynty| wou, frav xabopio txhc
onuaciag 6To TEMTO LoV AUTO EEELYNTIXG €pyo. Idlaltepa oNUAVTIX YLot TNV TEAyUaTOTOMON TNE
napovoag epyaotag oy xat 1 cugfolt] Tou daxtopxol tou gortnty Havaryiwtn Iatoivdxou.
H goitntueh pou eunelpior Aoy Lovadixy| ¥den oToug QINOUS UOU TOU YVORICU OTY) GYONT Xol
poall mopeuthxope autd ta xeovia. TéNog, Ba HBeda vo euyaploTiow TOUS YOVEIS HOU Yot TNV
AMEPLOPLO TN CTAPLEN XU XATOVONOT) TOUG ONOL AUTE, TaL YPOVLAL.
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Chapter 1

Extetoapevn EANAnvixn
ITepixndn

Y10 xe@diato auto Ba cuvoldicoupe To TEpLEYOUEVO TNE ToPONGUS BITALPATIXAC, divovTag Boacixol
0pLOPOUS X0 TAPOUCLALOVTHG Tal XUPLOTERO AMOTENECUATE oS, Xwplc anodellels

1.1 Ewcayoyn

31N Bewplo oy vioy, pe Tov 6po ‘malyvio’ evvoolue xdfe xaTAG TOOY OO TO TENLXO UTOTENEGUA
e€apTdron and Tic dpdoelc 800 1 TEPLOCHTEPWY UENDY TTOL OXETTOVTOL XoUl TEATTOUY CTEATNYIXY, Ol
onolol ovopdloviar otpatnyixol naixtec. Me tov 6po ‘oyediooudc pnyoviopody’ (Mechanism De-
sign) evvoolue 10 oyedlaoud evog Taryviou TETOLU HOTE, OTAV Ol TAUXTES TEETTOUY G TEATNH Y,
10 malyvio vo odnyelton oe pioe NOom mou yeyioTonolel xdmola avTXEWEVIX cuVdETNON.  XTa
modyvior autd, wdbe aixtng éxel T Suh Tou cuvdpTnom ‘weéletac’ (utility) xou Spo pe povadnd
YVOUOVA T UEYIGTOTONoT NG SXNC TOU WPENELS OTO TEAS anoTéNeoua Tou monyviou. Kow
TEaXTIX 0TO OYEdLoUS pnyovioudv elvon vor e€acpaniler 6t ol maixtee Sev €youv xivntpeo
vor dnaodcoouy Peudeic mAnpogopieg oto unyaviopd. Me autd tov tpdémo, o oxedlaoThg ExEl
LOYUPOTEPES EYYUNHOELS YLt TO TeAX amotéreopa. Ot unyoviopol ywpllovtor oe 0o Pooixéc
XAUTNY0plES, AVANOYOL UE TOV TEOTO TOU OAATAETILOPOUY Ol TAXTEC UE AUTOUG: X TOUC UNYAVIoUOUC
‘dueone amoxdiudne’ (direct revelation), oTouc omoloUc Ol TUXTES AVUXOWVMVOUV GUECH GTO
UNXOVIOUO TIC TTROTWNOELS TOUG X0 G TOUC ‘EUUESOUS’, OTIOU Ol TUXTES BE BNAWYOLY TIC TEOTIUACELS
TOUC GTO UNYAVIOUO, ONAG O unyoviowde e€eNlooetan avdroyo He TiC TpdEels Twy mouxtdv. Evog
direct revelation unyaviopdc pe n naixteg xou éva cOvoro O and duvatd amoTeENEGUATA AELTOURYEL
oc e&hc: Kdbe naixtne @ éxer pla ‘ouvdptnon adlac’ (valuation function) v; : O — Ry xou xdvet
oto poviopd wio ‘dfwon’ (bid) tne ofiog tou yio xdbe anoténeoya, b;. O unyaviopds ayxd
cUANéyeL ta bids OAwv Tov Touxtdv, xou érerta aviiotowyilet to b = (by,be,...,b,) € B ot
éva mlavéd anotéreopa O € O péon ulog ouvdptnone f : B — O. H ouvdptnon auth cuyvd
avagpépeton ot BiNoypapia we ‘allocation function’. TéXog, o unyovioudc yenowonolel uio
deltepn cuvdpTnom p : B — R yio va UToXoy(oEeL TO SLAVUGUA TANPWUMY TOV TOUXTOV.

Ye éva single-parameter neptfdihov xdbe molxtng avoxovmdvel 6To unyaviopd plo pévo T,
eve oe multi-parameter ToANEC.

YuvhBog éva single-parameter neplBdANov opiletar wg e€ng:

® 1 oTpATNHYLXOl TUUXTES.



2 CHAPTER 1. Extetauévn ENXAnvixy) Hepihndn

o 'Eva nenepacuévo oivoro O and egixtd amoteréopata. Xe x40 anotéheopa €va UTOGUVONO
TOV TUXTOV ‘XEEDILOLY’, £V oL uTdNoLToL dyL.

o Kdbe naixtng éxel plo adio, n omola elvon xow, yia OXo tot amoteréopato ota onola xepdilet,
On\adn) Bev elaptdton amd To ool dANoL TalxTeS ‘épbioay’. Auth Tou axplBne Ty o&la
BNNDVEL GTO PNYAVIoUd.

Avtiotowya, éva multi-parameter nepiBdilov oplleton wg e€rg:
® 1 oTEATNYLXO!l TAUXTEC.
o 'Eva nenepacyévo ahvoro O and epixtd anoteNéoyota.

o Kdbe naixtne i éxel pla tpocwmind oio v;(0) YO € O.

H weéleaa (utility) xdfe naixtn i opiletan cuvibuc o 1 dlapopd tne o&iog Tou Lo To aToTéNETUA
Tou xabopLoE 0 UNYAvIoUoS, Uelov To TL 0 TUXTNG AUTAHC XONELTAL VoL TATIPCOOEL Ud TO UNYAVIOUO,
Omhadh) w;(b) = v;(f(D)) — pi(b). Qeéleiec authc e popehc ovopdlovton oty PiPiioypopio
“beudo-ypauuxéc’ (quasi-linear). H otpotnyud b; tou naixtn i ovoudletan xvpiagyn otoarnyxn
gdv YeYIoTOTOlEl TNV WPENELE Tov, aveEdpTHTOS TWV CTEATNYIXGY b_; TwV LTONOTWV TOUXTOV.
TéNog, évac unyoviopoe ovoudletar gulalnine edv yior xdbe mobetn ebvon xuplopyn oteatny va
OVOXOWVWOEL GTO UNYAViold TNy mparypatixr] Tou ofia yio xdfe anotéreoya.

INa single-parameter nepifdihovta, o Myerson mpoodidpioe v eavr xan ovoryxolor cuvOrxm
GoTe Vo ebvan €vag UNyovIoUOS GINOAAING X0 TAUTOXEOVA XAVEVAS TOUXTNG VAL UMY EYEL pVINTLXY
o@ENEL, €4V TdpeL U€pog oTo unyavious. O 2 autés ouvlrxec pali ot BiNoypapia ovopdlovto
Dominant Strategy Incentive Compatitable (DSIC). Loupwva pe to Aduua tov Myerson, évag
unyoviopoe pe allocation function f xou payment rule p yio éva single-parameter nepiféihov
elvow DSIC e€dv xon uévo av yio xdfe maixtn ¢ pe Siwor b; oto unyavioud xa dniwoeg b_; and
TOUC UTONOLTOUC TaixTES, Loy VEL:

e H f;(b;,b_;) clvou abouca 6710 TpHOTO NS dpLopa.

o Trdpyer évac povadinde xavdvae TANeopdy Tou xaboté to unyavious (f,p) DSIC. Autde
Blveton and Tov TONO:

b; d
pi(biab—i):/o Z@fi(ﬁb—i)dz (1.1)

Ov Snuompaoies k-povddwy (k-unit auctions) amoteholv pla elduh vnoxatnyople twv multi-
parameter nepBorNéviwy. Xe autéc, undpyouv k, étou k € N U {oo} dwbéoa ‘avtitura’ tou
Bou ayabol diadéoya mpog tdANon. Kdbe maixtng €xel éva valuation function v; : N — Ry,
onhadn 1 ofio tou eoptdtan and to méoa oavtituna tou oyofol Bo mhpel.  INBavde oxonde
Tou dnpornpdtn oo meptPdrhov autd, dnwe To oplooue, Ba umopoloe va elvon va umoloyiocet
wlo avébeon & = (1,22, ..,T,) TETOW OOTE Vo UEYIOTOTIOETOL TO dBpotopd Twv a&idy GAwY
TOV TOUXTOV Ylol To Tead anotérecpa. To dbpoioyo autd cuvavtdton otn Bifioypapio we
‘vovovi weéres” (Social Welfare) xon opileton o Z?Zl vi(z;). Evac d\\og mbavde oxonde
ToU BNUoTEdTy 0To kYo aUTo Ba UToEOUGCE VoL AV VoL UEYLO TOTOWCEL TO etoddnud Tov omd TN
onuonpacio, dnAadr 0 dBpOLOUN TV TANEWHUMY OXWY TOV TOUXTWY GTO TENXO ATOTENECUO TOU
unxoviogod. H xovevin) ogéleta xat 1o elo6dnua oTo teind anotéreoua efvat ol 0o o cuyVée
OVTIXELUEVIXES CUVUPTATELC GTO OYEDIAOUSO UNYOVICUMY.

‘Evog andé toug pnyaviogols mou cuvavtolvtol mo ouyvd ot Bihoypagpia eivar o VCG, o
omnolog mapovatdleton avouTIXd oty unoevotnta 3.3.3. O Aoyog yia Tov onolo cuvavtdTon
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1600 ouyvd ot Bihoypapla elvon BLOTL elvan @INaARONG xan Tawtdypova peyictonolel, oe xdbe
multi-parameter mepidiNov xar vy x80e valuation profile v = (v1,v2,...,Vn) TNV KOWWLXA
oeéren. otdéoo, o VCG unyavioude dev epopuoletar ouyvd oty mpdn. O Noyog elvar 6Tt
0E TOANG TEPLBANNOVTA, 1) UTONOYLOTIXY) TOU TONUTAOXOTNTA Efval TOCO UEYENN Tou xabioTd
¥eHom Tou adLVATY.

H xowovixh wgéneta elvan, xatd pio évvola, povaduer: Iow xdbe AN avtixewevixy cuvdptnon
TOU CUVAVTATOL GTNV TEAET, eV UTEEYEL GINONNONG UNnXavVionoS Tou Vo Tn) peylotonolel ot xdbe
neplBarNov, yia xdbe valuation profile. Xuvifwg Nowndv, oxombéC TOU GYEBLAG T UNYAVICUODY
elvat vou mpoobloploel €vay N AVIoUS TOU UEYIOTOTOWNCEL TNV avauevoueyy Ty TS EXACTOTE
AVTLXELUEVIXHC CLUVEPTNOTG.

To B0 woyler xou vy 0 eloddnuo. Ac mdpoupe TV meplntwon Onou UndEyEL Hovo éva ayabd
TPOC TOANOT xou évag urodriglog ayopactic Ue tpoowmix ol v yia to ayabs. Me puévo évay
umoriplo ayopaoth, o xHeog tov direct-revelation DSIC unyoviouov i to npdfinuo avtd
elvor TONO wxpdc: elvon axplBoc Ohec ol mbavée ‘avoptnuévee Twwée’ (posted prices), dnhadh o
UNYOVIoUOG Teoopépel To aryalfd oe xdmola Ty xou 0 uToPrQloc ayopao TS Unopel elte Vo TNV
deytel, xou v oryopdioel to aryaldd oty Tr awth, eite va v anoppider. To va peyiotomolioel
xavelg TV xowovixr) wgélela oe autéd To TepBAANov elvon TeETEWUEVD: OETovTag T UNdév yia
10 ayafd, o unoriplog aryopaothc o maipvel Tdvta to oryaBd, aol elvon Swpeedv. Ac unobBécoupe
OpWS OTL 0 OXEDTTAG UNXOVIOUWY HBENE VoL HEYIC TOTIOLAGEL TO ELGOBNUA Tou unyaviopol. Ilde
énpene va Bgoel v T Y to ayabd; Ex tov votépov (Ue dAAa Aoy, edv propoloe vo
povtéder v adia v Tou unodriglou ayopaoTh Yo To ayabd), Ba émpene va Béoel Ty T
tou ayoBol on e v. Mn yvwpilovtac v Tn v, elvor mpogavéc 6Tt Bev undpyel posted-price
UNYOVIOUOE TTOU Vot PEYLo TOToLEL To elo6dMua Yot %8B mbovi| aior v Tou unodmnpiov ayopacth. T
TO AOYO AUTO, OTAV 1) AVTIXEWEVIXT GUVAETNOT TOU EVOLUPEREL TOV BNUOTEATY Vol TO ELGOBNHUA TOU
UNYOVIOUO0, OXOTIOC TOU GYEBLIGC TF) UNYAVIOW®Y EVOL VoL UEYLOTOTIOLACEL TO avauevouevo eloodnua
TOU UNYAVIOUOU.

Trdeyer ouwe DSIC unyovionde mou vor UEYIOTOTOIEL TO AVOUEVOUEVO ELGODNUAL, BEBOUEVOV TWV
HUTOVOUWY TV 0LV TV TOUXTOV yio To. dlapopeTixd evdeydpeve; H omdvinom, yia single-
parameter nepiBdilovta, elvon Beter). O pmyaviouds autodg mpoxnTel and TNy mopatienon 6Tl
via single-parameter negifdiNovta, ot TANEWPES TwV TauxToOY dlvovton and To Njupa tou Myer-
son. Ialpvovtog avapevoueves TWES TV OTIC TANPWHUES AUTES XOL UEYLIO TOTOLWVTAS TNV ovdbeon
TOU PNYAVIOHOV WS TPOS UTEC TPOXUTTEL O AVTITTOLY0S UNYAVIoNOS, 0 omolog ovoudletol eniong
Myerson unyoviouos. H uévn npobindbeor elvar b1t oL xatavopés tov mouxtdyv elvon xavorixés, to
omofo dlouncOnuixd onuaivel 6Tl oL ‘oupéc Toug’ Bev meénel va pBivouv Tdpo TOND oY dL.

H enduevn hoyu| epidtnon eivan €dv umdpyel xdtt avtiotowo pe to unyavioud Myerson yia
multi-parameter neplBdihovta, dnhady évac DSIC unyaviopnds mou, BeSOUEVOV TWV XUTAVOURDY
TV o€LOdV TOV TUXTOV, Vo UeYIoTOTOlEl To avauevouevo ewoédnua. H andvinorn sivon apvruxs:
Axduo xon yior TNV Qavopevxd am\y) mepintworn 6mou umdpyouv uévo 2 ayabd Siabéoa mpog
TOANoN Xt 2 UTOPAPLOL AYOPUCTES, O UNYAVIOHOS TOU UEYIOTOTOIEL TO VOHUEVOUEVO ELTODNUA
Oev elvat yYvwotoc.

1.2 Anponpacicc AvaPariopevne Anodoxng

O dnpuonpaciee avafarhopevne anodoyfc (deferred-acceptance auctions / DA auctions) mpotd-
By and Toug Milgrom xou Segal. Xty cpyixt) TOUG LOEPY, AUTTH 1) OLXOYEVELY TV TTEQLOPLOUEVY
oe single-parameter neplBdANovta, 6mou xdfe maixtne oto TENXO oamotéleoua elte Bo elvan
‘vixntic’, mou omnuodver 6tL Bo eEunnpetnBel and to unyxovioud, eite Bo elvan “yauévos’. Omnwg
elvon cuvnblouévo oe tétola tepLBINNOVTa, GTO unyavioud xdfe tolxTng avoxowvmyvel Ty agio Tou
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4 CHAPTER 1. Extetauévn ENXAnvixy) Hepihndn

€xEL YI0L QUTOV VAL VIXHCEL, EVE O Unyoviolds Bewpel 6tL xdBe maixtng éxer undevuer oior ylor o
UTOTENEGUATO GTOL OTOLOL Y GVEL.

Mio dnuonpacto avaforhopevng anodoyfic e€ehiooetar Ye yOpouc. Apyxd, dXot ol maixteg elvon
evepyol. Xe xdbe yUpo, o maixtng mou @aiveTton ‘AydTERO UTOOYOUEVOS  amOXAeleTaL and TO
UNYOVIOUO, PEXELC OTOU OU TUXTEC TOU AMOMEVOUV Vo amoTeENODY e@xTh) A0oT. Ou mAnpouéc
npoxinTouy aneubelag and to Nuua tou Myerson: Kdbe vixntrg minpdvel 1o Aydtepo nou Ba
UTOPOUGE VO SNADOCEL GTO UNYOVICUO, DESOUEVODV TV BNAMOEWY TWV UTONOITWY TOUXTOV XoL VoL
e€unnpetnel and to unyoaviopd. And autol Toug TNV LBLUTEROTNTA TEOXVTTEL Xl TO OVOUO TV
dnuompoctdyv avaforouevne anodoyrc: Xe avtiBeon pe o cuvnBiouévo, o unyaviopos anogacilet
pe (ev duvdpuel Suvopixd) drinoto 1pdmo yio To Toous Taixtes Bo amoxheloet, by Toloue TalxTeS
Do amodeytel, péyplc 6TOU TO0 GOVONO TOV EVATOUEVAVTOV TAUXTOV oV ATOTENODY EQUXTH AVUOT).
Mio Nemtopépeia Lotnfc onuaociog o Tic dnuompasies avaforéuevne anodoyric elvon étL o
unyoviopog, o6tav oftohoyel tov exdotote maixty, 8 Aowfdver unddPv Tou TIC BNADCES TV
UTIONOLTIWVY TIOUXTEY TIOU EV €Y0LV ATOXNELTTEL oxOUT. AUTO €XEL WS AMOTENETHA OTL X3BE VixnThS
0e umopel oANALOVTOC TNV TPOCPOEE TOU VoL ETMNEEGCEL TNG TANPOUES TOV UTONOTWV VIXNTOVY,
EXTOC XoU €8V AANEEEL TNV TPOGPOPE TOL GE Xdmota Tpoopopd Ue tnv omola Bu éxave o (Bloc.

O \oyog yua tov ontolo ot Milgrom xon Segal npdtetvay Tnv ouxoyEVela auTH UNYAVIoUY etvor yiortt
onwe anéde&ay, ot dnuonpacie avaarouevng anodoyic noeouctdlouy oploUéves aEloonUEelwTES,
xo OTAVLES, WLOTNTES. Apyixd, ol dnuonpaociec avafarkouevne arodoyhc eivon moopavde pilalf-
/Beis (obviously strategyproof - OSP). Mio otpatnywh Neyeton mpopavds xvolagyn (obviously
dominant) 6tav, vl xdbe mbovy| dpopomoinon and auvthy, 610 onueio bnou oL dlo oTpaTYIKES
BLPOPOTIOLOUVTAL YLoL TIEMTY QPOPd oL UE TIC TANPOoQoplec mou Biabétel o malxtne oto onuelo
aUTO, oxOU Xl TO XONOTEPO BuvaTd amoTENESUN LUTO TNV Blaoporoinoy dev elvon xoATeRO
anb TO YEROTERO DUVITO AMOTENECUO YLl TOV X TN LTO TNV xuplapyn otpatnyx. Auth n
WLoTNToL pmopel va gpunveubel xou amd v omtxn yovio Twv mowxtdv: Mia otpatnyi elvan
TEOPAVS XLElOEYT AV XL HOVO oY 0xXOUo Xot €Vog “vonuxd meploplopévos” maixtng umopel va
ouveldntonotioel 6t elvan acBevae xuplopyn. "Evag unyxovioudc ovopdleton mpopavds gulainine
edv utdpyel onpeio looppoTiag Ue HOVO TEOPAVEE XUPLEYES OTEATNYXES. DTNy TEAEEY, To Vo elvor
évag unxoviopog OSP tov xofotd ‘mpooeyyiowo’ xon amd malxteg Tou 8ev XaTovooly akyoptBuixy
Bewpla mowyviov. Autéd elvar onuavTind oE TEPITTOCELS OOV 1) CUUUETOYN TEPLOCOTEPWV TUX TV
070 oy Vio BEATIOVEL TNY TOLOTNTA TOU TENLXOU AMOTENECUATOC.

Mio emniéov o&loonuelw WBLOTNTA TV dNUoneacldy avafoihouevne anodoyhc ebvon oTL elvor
acbevae yroovm-gilaiidec (weakly group strategy-proof - WGSP). Autéd onuaiver 6t xavévog
CUVOOTILOUOS TOUXTOV OE UTORPEL VoL CUVWHUOTNOEL UE TETOLO TEOTO XUTA TOU BNUOTEATY Xol GUANO-
yixd vo umofdAhouv Peudeic SNAMoEC TETOIEC DGTE OXOL T UENT TOU GUVAOTLGUOL VoL €X0UV
HEYONUTERT O@QENELN amd OTL GV BeV Elyay CUUMETACKEL OTO GUVUCTUOMO X avTl auTtoU elyay
OnAGoel TV tparypater] Toug adio. Xtny mpdln, autd cuvemdyeTon OTL Xavévag TakxTng BV €xel
xivntpo va cuvaoTio Tel Ue IANOUC XTd TOU BNUoTEdTY. Xto alyypovo x6couo, 1 utdbeon 4TL ol
naixtec ot évo mawyvidl 8 Ba emxovwvhcouy Yetalld Toug, Wialtepa oe ayopés UPNATC onuaciog
ue Nyoug malxteg, elvon un peaNloTIxH.

O I'vatlénng, Mopxdune xan Roughgarden enéxtevoay tny évvolo Twv SNUOTEaotedY ovaBar\oye-
V¢ anodoyfc o TepldANovTa 6Tou UTEEYOLY TONNATAG “entlneda eunneétnong” and 1o Unyavio-
10, e€oo@anilovtos 6Tl OXEC OL ONUAVTIXES WBLOTNTES TV ONUOTEACLOY VoA AOUEVNE anodoxhc,
onwe el opotel and toug Milgrom xon Segal, Siatnpolvtar. Auty T véa xatryopla unyovioUody
v ovlpooay pemxevuéves dnuompaoies avapaldduevns amodoyns (generalized single-parameter
DA auction). Xuyxexpiévo:

Opiopobc (Tevixeupéveg dnuonpaoiec avaPariépevne anodoynfc). Mia yevixevuévn dnuonpacio
avoBokopevne anodoyfic Nettovpyel oe Saxexpiuévoug yipoug t > 1. TuuPorilovue ye Ay C N
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T0 GUVONO TV UXOMO-EVERYOY ToUXTMOV 6Ty opy Tou yipou t. Apyxd evar A; = N, xou
Aip1 C Ap yoxdbe t > 1. H Snuonpaocio avaforhépevne anodoyic xaboplletor mafpng ond 2
GUVON CUVAPTHOEWV:

e Tic cuvapthoeis aEioNéynone o (b;, bar\ 4, ), oL onoleg ebvan acbevie adZouceg oTo
TEWTO TOUS OGPLOUAL.

e Tic cuvapthoels ‘cacpdiong’ (clinching functions) gt (bar\ 4, ), oL omoleg eivan un

AOEOVUGES WE TEOS TO GUVONO TWV EVERY MV TAUXTOV, SNNadY) g?t“ (banAy,) = 9 (bpr\a,)-

Ye xdfe yOpo t, edv Ay # 0, 161 xdmolog evepyol maixtn i € argminieAt{alAt (bi, bana,) }
omoxAeleton amd To Unxoviold, To eninedo eEumNEETNoric TOU OpLOTIXOTOIELTOL GUUPOVOL UE TN
ouvdptnon e€AoPINCNC TOU O g,LAt (bar\4,) %oL TO ETOUEVO GUVONO EVERYOV TAUXTGV €ivol TO
At+1 = At \ {Z}

H enidoon twv unyaviouny avoBailoueves anodoyfc €xouv peretndel extevde, xuplng ouwg
omd TNy omTxy] ywvio Tng worst-case analysis. Ye aut T Simhopatixy epyacion mpootafolye,
EVOVTAS XATOLES EVNOYES UTOBETELS YLol TIC XUTAVOUES TOV GELOY TWV TOUXTWY, VO EVTIOTIGOUUE
neplBAANOVTA 6TIOU UTOPEL XaVElS, YENOULOTOLWVTAS xdmola delypata and Ti¢ oa&le TV TUXTOY, v
xataoxevdoet dnponpascies avaforouevne amodoyhc pe VYNNG avapevéuevo ewoodnua. ‘Enetta,
MENETAUE TS TEOTOTOLOVVTOL T ToL ATOTEANECUATA EQY TEPLOPICOUUE ONUAVTIXE ToV aplBud Twv
OELYUATOV.

1.3 ExpdOnorn Anponpaciwv AvoPorlounevng Antodoyng

Ye auth) Ty evotnta Bo peketHoouue To TEOPANUA TNG exuddnone dnponpactdy Ue VYNNG avaue-
vouevo ewoddnua yia dnuonpaciec k-avtitinwv tou dou ayabol. H evétnro yweileton oe 2
UTOEVOTNTES, UE Bdom To edv Bploxdpacte oe single- 1§ multi-parameter neplBdiNov.

1.3.1 Single-Parameter IlegifdX\AovTa

Yty unoevotnta auty Ba Tpotelvoupe pio vEa xAdom dnuoneaolidy avaBolAOUEYNS amodoy g ot
Ba Bécoupe Eva dvw QEdrypo GTNY SELYUATIXT) TOAUTAOXOTNTO TTOU OTOLTELTAL (3G TE VoL TEOGOLOPLG TE
ulot dnuompocia péoa and TV OXOYEVELN AUTH UE OVOUEVOUEVO ELo6dTNUo avbaipeta xovtd oTo
BéXtioTo Yo single-parameter multi-unit auctions. Kdbe naixtng xatd tn didpxeta tng dnuonpa-
olog avaxowover éva YOUUERO GTO pnyaviopd: v ol Tou avd avtituno tou ayabol, v o
UNYOVIoUOE Yvepilel amd ety péyet Tov HEYLOTO optBs aVTIXELEVWY YLoL Tot oTtolar EVOLAPEPETAL O
xdbe maixtng. To nepifBddhov opiletan Tumnd wg e€hc:

To IepiBdXXov (TTaixtec pe abpototinée aliec)

® 1 TalxTEC.
o Trdpyouv m avtituno Tou ayabol dbéoiuo Tpog TWANO.
o Kdfe maixtng i éxet plo Yvoo T EX TV TEOTEPWV OTO UNYAVIoUO (hiTnon d;.

o Kdbe naixtng i éxer abporotns) adio, péypel ™ {hnor| tou d;:
Do xé&Be madxtn i, 0 o&la Tov yior x; avtituna Tou ayabol, dedopévou 6T z; < d;, elvon
€T V.

o H ofia touv xdbe maixtn i avd avtitumo tou ayobol, v;, axoloubel xdmolo xoTavouy| Ue
ouvdptnon tuxvotntac mbavotnroe f(+) xou virtual valuation function ¢;(+).
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o O odiec xon Twv 1 noux TV avd avtituto tou ayabol eivon pparypévec oto [1, H.

H owoyéveia unyoviopoy mov meotelvoupe yia To TEPLBAANOY auTd Yoy EVTOVA EUTVEVCUEVT AT
v ooyévela twv t-level auctions twv Morgenstern xoaw Roughgarden ([23]). T to Néyo awtd
v ovoudoaye “linear DA t-level auctions”.

Opiop6c 5.4 (Tpaypixéc DA Snuonpooies t-emnédwy). Kdbe naintng i avtetonilet t xotdohio:

0<lo <l < <lit_1. Autd 1o clhvoro t - n aplBucdv opilel pio ypauuxr dnuompocio

avaBarAépevne anodoyhc t-emmédwy Ye Tov Topaxdte xavéva avidbeons: Eotw v = (v1,v2, ..., p)
0 didvuopa Ty alidv (valuation profile) tov nouxtdv:

1. T xd8e maixtn @ pe t;(v;) oupPolifouyue tov deixtn T ToU peyaNiTEROU TOU XoTw@PAloU [;
Tou ebvan pxpdtepo 1 ioo tou v; (R —1, €dv v; < l; ). To t;(v;) T0 amoxakolye to eninedo
Tou makx T .

2. To€wounoe 6Xoug touc molxTec amd 10 YAUNNOTERO eninedo mpog To LYMAGTERO, Xou YLot
Touc malxteg mou Peloxovtar oo Blo eninedo ypnoylonolnoe Evay VIETEPUIVIOTIXG XxavOVa
=< o vor dtakévels vt (motog etvon gmhdtepa omd molov evtde tou Blou emmEdoL).

3. DA avdBeom: Sexivo va anoxhelelc Toug naixteg, and to yaunioTepo eninedo mpoc to
uPniotepo. Kdbe maixtng, tn otiyun mou tepuatileton xepdilel, uéxpet 1o dpto tne {itnorc
ToU, 660 TO BUVATOV TEPLOTOTERN AVTIXEIUEV, BEGOUEVOU OTL TOL EVATOUEVOVTOL OV TIXEIMEVL
aEx00V YLt Vo XoA0Pouy TAewS TN {ATNCT TWV OXOUA-EVERY WY TOUXTEY.

4. Kavovog mAneopdv: O povadinds tou xofotd to punyaviopsd ehanniin. Kdébe naixtne,
v xébe avtituno mou xepdilel, TANEMVEL T0 eENdyLoTO Tou o umopovice va elxe BNADGEL
oto unyavioud xon va xepdilel o avtixelyevo auto.

ITeoétaon: H owoyévelo Bnpompaotddy mou poG Teplypdpnue Teptéyel LOVo €y xupes dnuomnpacies
avoBodAoueVNE anodoyrc. AeBouEvey TV XATOEALWY Ta avTiotolya scoring xau clinching func-
tions etvou:

e scoring functions: o7 (b;, ba\a,) = ti(vi).

e clinching functions: glAt (ba\a,) = min {cli7 m — min {m, EjGAt\{i} dj}}.

Tt ot TV uToX TN Y Opic TWY BNUOTIEAGLOY AVABIANOUEVNC amOBOYTC TOU O Oplcae UTONO-
yioope TNV BELYHATIXNY TOAUTAOXOTNTO (G TE Vo Tpocdloploetl xavels, yia xdfe single-parameter
neptBdANOV OTC TEPLYRAPNXE TNV aEY TNS LToEVOTNTAC, Wia dnponpoacia and TNy ouxoyEvel
ME AVAUEVOUEVO EloOdNpa aubalpeTtar x0VTd 6T0 BENTIOTO, BNAADY) TO AVUMEVOUEVO ELGODNUAL TOU
unxoviopol Myerson. H Sobixacio mou axohoubricaye elvon opxetd cuvnBiouévn to teleutaia
YEOVIOL GTNV aUTOYATOTOINUEVY) oyedlaon unyaviop®y. Apyixd gedéaue to generalizaiton error
TOU PNYAVoUoU, dNhadn yia xdBe unyaviowd amd TNV ooYEVELd, TN UEYIO TN ATOXNLOY) TOU UTOpEEL
Vo €XEL TO OVOUEVOUEVO ELCOBNUA TOU GTOV TEAYUATIXO XOOUO GE OYECT UE TO EUMELPLX) TOV
e1060mua oo delypota. o vo to emtiyoupe autod, ypeldotnxe emmAéov va @pdoupe TNy Peudo-
0l taom g owoyévelag. Emerta @pdoue to representation error tou Unyovioldol, dn\ad To
1660 ToN) Umopel va Tpooeyyioel To eloédNUA TOU BENTIOTOU UNYAVIGHOL and TNV OXOYEVELX TO
BéXTIoTO E166dNUA Tou unyaviopol Myerson. Yuvdudlovtag ta generalization xou representation
error bounds nou del€ape xou AOVOVTUC WS TEOS TOV 0Pl BeLyUdTWY, TEOXVTTEL €val Ave PEdr U
YOl TN DELYUOTIXT) TONUTIAOXOTNTA TNG OLXOYEVELAC.
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BOeopenpa 5.2. H Peudo-didotaon tov ypopux®y SNUoTeaotdY avaBarNOUevne arnodoync t-
emnédwv elvon O(ntlog(nt)).

Ocwpenpa 5.3. Xt0 nepdANov mou TEpLYpdYNXE TNV dEXN TNG UTOEVOTNTOG OUTAC, Yid
t=[2]+log s H=0(;+log . H) 1 x\don wov ypouuxdy dnponpactdv avafa\opevne
anodoyhc t-emnéduv nepléyel i dnpompacia e avauevouevo eloddnue Toukdytotov (1 —€) popéc
T0 BéNtioTo.

Ot anodeleic xat Twv 2 autoy Bewpnudtov elvon apxeTd TEXVIXES, XoL Yo AUTO TO AOYO ToEUNE(TO-
v and v nepiindm auty. Ilepiéyxovtar duwe 6To xUplo oA TNEG BIMAWPATIXAC. LUVdudlovTdc
o 2 autd Bewpruota, apxetd evxola urnopel vo anodelfel xaveic To TapoxdTe ToOPLOUL:

ITépiopa 5.2. Me mfavotnto ToundyloTtov 1 — 6, 0 unyavionds amd Ty xNECT TV YRUUIXOY
onuoneactdv avaBorNouevng amodoync t-emnédmy ToL EUNELPXE UEYLoTOTOLEL TO ELoOBTNUL OE Evat
oclOvoro N Berypdrtwv eivan pla 1 — O(e)-tpoocéyion Tou Myerson yio m avtitTumo TPOg THOANOT
xou n moixteg pe ofec o7o [1, H], yuat = O(L + logy . H) xou

N=0 <<H€m>2 <nt log(nt) In @ +1In ;)) =0 (W) . (1.2)

To anotéreoya autd Ytav, xatd o évvola, avopevopevo. Ou I'vatlérng, Mapxdxne xo Rough-
garden édeilov 6Tl oe single-parameter nepdiNovta authc e popyhic 0 VCG unyaviouds, o
onolog oplleTol WS O PUNYAVIOUOS TTOU UEYICTOTOLEL TNV XOWWVIXH wPENELa, uropel vo uNomolnBel
g yevixeupévn dnponpacio avaforhouevne anodoyhc. O Myerson unyovioudc peylotonolel to
OVOUEVOUEVO ELGODNUA, 1) LOODUVAUO YEYIOTOTIOLEL TNV EXOVIXT XOWVWVIXY| wPENELR, 1) oTtola elvon
(o1 UE TIC OAVOUEVOUEVES TANPOUES TWV TAXTOV. E@dcov Notndv o unyovioyds mou Yeylo Tonotel
TNV XOWOVIXT WPENELX EfVal UNOTIOLACLHOS w¢ Snuompacia avaBarkouevng anodoyc, To (Blo mpénet
VoL LOYDEL XOUL YLOL TOV UNYOVIOUO TIOU UEYLOTOTOLEL TNV ELXOVIXY) XOWVWVIXT] OQENELXL, ONAXBY YLot TOV
Myerson. Enouévng 1o mpdBAnpa xatahfyeL GTO Vol Teocdloploel xavelg TNy ulomolnon auty| Tou
Myerson xau énetta vo QpdEet Tov anontduevo aplfud detypdtov Gote va pdbel o unyavioudc Tic
ouvopthoele exovinnic adiouc (virtual valuation functions) 6hwv TV TouxTAOY.

1.3.2 Multi-Parameter IlegifdXAovta

Yt unoevotnta auty) Ba tpotelvoupe plo xAdoT BNUOTEACLAOY, oL OTOlEC Elvor TETELUUEVA OVOBoANG-
pevng amodoynfc, xan Bo Bécouue €va xdTw PEAYUA OTO OVUUEVOUEVO ELCOBNHUA TNG EUTELRXS
Béxtiotng dnpompacioc and TNV oOYEVELDL QUTY, CUVOPTAHCEL TOU dpluol Twv SelyudItwy mou
xenotwonoibnxay vl tov tpocdloploud tne. Twpa Peioxdpacte oe multi-parameter neplBdANov:
x&Be malxTng xortd TN SLdpxelo TN SNUOTPAGIAS AVAXOWOVEL M YOUUEPX GTO Unyaviowd: tnv o&la
Tou Yl To éva avtituno tou ayabol, énetta Ty emimAéov adlo Tou Yo éva BedTERO, X OUTW
xabeéhic. To nepifdihov opileton Tumxd we e&c:

To IepiBdXNov (Tlaixtec pe submodular aliec)

o n maixTeS.
o Trndpyouv m avtituno tou ayabol diabéouuo npog OO,

o Kdbe maixtng ¢ OnAOVEL TIC M 00Laxés Tov adles GTo UNYAVIOUS, Vi 1, Vi 2, - - - Vim,
omou v; ;: H alo mou €xel yia tov naixtn ¢ vo anoxtioel o j-0016 aviitund Tou Tou
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8 CHAPTER 1. Extetauévn ENXAnvixy) Hepihndn

ayabo0, dedouévou ot éxel eaoparioet KON j — 1 avtituna. ot xde naixtn 4, n ofio Tou
o z; avtituna tou ayafol, dedopévou 6Tt z; < d;, elvon x; - v;.

o H cuvdptnon oioc xdbe maixtn eivow submodular: v; 1 > v 0 > -+ > v, Vi

o Kdbe oplone o€l v; ; axolouBel xdnowr Gaussian ¥ Sub-Gaussian xatoavouy| Fj ;.

Auté 10 Uvoro unobécewy elvon apxetd Quoixd: Eva yeydho ebpog xatavopdv avixouy o tic Sub-
Gaussian, cugnepihapfoavouévov Tov Gaussian xat Twv mixtures of Gaussians, twv oyoldpoppwy
xon %&b AANTG Qparyuévne xatovourc. Aluohntixd, xdbe xatavoun pe oupéc ol omoleg (pbivouy
TOLNGYLoTOV TGO Yeryopa 600 autés xdnolag Gaussian xatovounurc ivon Sub-Gaussian.
Autd 1o mepiBdiNov elvon dpxeTd O AmoTNTXXG AmO EXEIVO TNC TEOYNYOUUEVNS UTOEVOTNTOG.
Topa dev npdxeitan ylo éva single-parameter neptfdiov, ondte dev undpyel o unyoviopos My-
erson wote vo xabopilel to PéNTIoTO avapevouevo ewoddnua. T To Noyo autod, Ba mpénet
VoL GUYXEIVOUUE TO AVOEVOUEVO ELGOBNUO TOU unyaviolol mou mpotelvoupe oneubelog ye tny
avopevouevn xowovixt wgéleta Tou VOCG, 1 onola amotelel TeTpWUévo dvew QEdryUo yio TO
OVAUUEVOUEVO ELGOBNUO OTIOLOLBNTOTE PLAONTOTN UMY avIGHOD.

Opiop6c 6.1 (Unit-Bundling Anponplociec). Kdbe unit-bundling Snponpocio avaPalhéuevne
amodoyhc yio n nalxtes unopel vo tpoodloplo tel povadixd and Ti¢ mopauéteous e {(s1, S2, . . ., Spn)
€N | sy +s2+ -+ 5, <m}xowr,72,...,7 € Ry, Autd 1o ohvoro 2n apilBudv opllet
ulo unit-bundling Snuompacia avaforhéuevne anodoyric ue Toug TaPAXdTW XaUvoveES avdBeong xou
TANewg:

o Ilpbogepe oe %d0e malxtn ¢ Eva bundle s; avtitdnwy oe T 73 avd avtituno, SO 7; - - - S5
GUVOALXAL.

o O maixteg mou 6éyovTal TNV TEocopd Toug avatifevton Tov avtioTolyo aplbud avtixeévey
mou 6ple to bundle toug xar TANEGVOUY TNV avtioTolyn T, EVE oL umdNoLToL Bev
BatiBevron xavéva avTituno Tou AVTIXEWWEVOU XaL BEV TANEWVOLY T{moTa.

e mpWTH avdyveoT), 1 XAEoT aUTH UNoviop®y (owe va Selyver amhoixr. Autéd Sumc dev oy le
oty mpaypatxoT . AlancOntixd, ou dnyonpacieg avaPariouevng amodoyhc ‘SoUAEDOLUY KON
otav ot cuvopthoelc adloc Tov Tuxtoy eivar 0Bpolo TXES, OANG byl TO00 XoAd dTav auTéG elvor
submodular. Me tnv owoyévela auth 0 oxondg pog elvon vo tpoadlopicoupe ylow xdbe malxtr,
ue Bdon ta delypata, o BéNTIOTO onuelo 610 onolo va “ypoupxonoliooupe’ TN cuvdptnoT adiog
Tou.

H npocéyyiot pac otn cuvéyelo elvan TapeUpepnc Ue EXEVY TOU axONOLBACUUE VLol TIC YPOUUIXES
onuonpacieg avaforiouevne anodoyhc t-emnédwyv: O edpardcoupe €vo representation xon éva
geranlization error @pdrypa yia TNV owxoyévela, xan énelta Ba cuvdudooupe Ta 2. o To gener-
alization error ¢@pdryua o xenowwonoljoouue Ty Bla Noyxr UE TNV TEOYNYOVUUEVT UTOEVOTNTA,
OnhadY) Bor BelEoupe mpwTa Evar dvw @Edryuo vl TNV Peudo-didotaon e xAdong. T to repre-
sentation error @pdyuo, Bo mpénel thpa va detouue 6Tl 1 XAdom Tou mpoTElvouUE TEPLEYEL Eval
UNYOVIOUO UE OVUUEVOUEVO ELGOBNUA ‘XOVTA GTNV AVOEVOUEVY) Xowwvixn wpéiela Tou VCG.
I va ppdgouye Ty Peudo-Bido taom tng xhdone twv Unit-Bundling dnuonpoacidyv B yenoiuonour-
coupe 0 xVplo anotéheopa and tnv gpyooia “A General Theory of Sample Complexity for
Multi-Item Profit Maximization”. I'ta Xéyoug mAnpdtnTag, o napabétouye mopaxdte.

Optopdc ((d, t)-delineable). Aéue 6t pia xX\don unyaviopay C eivon (d, t)-delineable €dv:
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1. H »\don C anotekelton amd unyoviopols Tou TapaeTeonoolvion and diavioyota p oand
éva slvoro P C R? xou

2. T xdbe v 610 Tedlo TV TNE xatavourc D twv cuVapTACEWY AELOY TV TOUX TV, UTHEYEL
€vol 6OVONO H To t UTERETUTEB WY TETOLWY MO TE Yior xdbe ouvextixd nepoyl) P’ tou P\ H
TO ELGOBNUO TOU UNYAVIOUOD GTO U Vo Vol YEOUULXT CUVERTNOT TV TUEOUETPWY TOU
uNxXoVLoUo0.

Awouofntind, 600 peyoitepoc elvon o aplBude ¢ twv unepemnédmy mou yweilouv ula x\don
UMY OVIOUOY OE YOUUUXES TEQLOYES, TOOO UEYUNVTERT] ELVOL 1) EXPEAC TIXTH LXAVOTNTA TG OLXOYEVELS
QUTAC, Xa XAT’ EMEXTUOY TOCO UeyunlTtepo elvar To generalization error tng x\dong owthc. Ot
ouyypagelc Tng gpyaoiag autrc Bepekinoay T daicbnon auty pe To mapaxdTw Bedprnuo.

Ocewpnuo. Edv ulo xhdon pnovioumyv eivan (d, t)-delineable, n eudo-didotach g elvon
O(dlog(dt)).

It Tnv Unit-Bundling »\don mou ewcdryoue anodellape to mopoxdton Bemdpnua:

BOcwpenpa 6.1 Hxldon twv unit bundling dnuompoaciov avaforhopevng anodoyhc yio 1 takxTteg
%o m avtituna Tou ayaol dlabéotua Tpog tdINon eivar (2n, nm)-delineable.

H anddeiln auth elye opxetéc TeVInéc NEMTOULPEIES, WOTOGO N NOYWT TNG NTaY OXETIXA omA:
TN omolodrinote didvuopa v, TO ELGOBNUL TOU UNYUVIoHOU UTopel Vo exppactel ©g To dbpoloua
TV TANPWUOY TV n touxtey. ‘Eneita, uropel xovele vo 8eiel 6t yior xdfe molxtn, yio %8B éva
an6 to m + 1 mbavd bundle sizes yia Tov malxtn AUTOVY, UTEEYOUV HOVO 2 YEOUULXES TEQLOYEC:
H neployh otnv onola ayopdlet to bundle, xou n neploy) otnv onola dev to aryopdlet, oL onoleg
draywptlovtar and 1o unepeninedo oto onolo 1 Tty tou bundle elvar axpBe lon e Ty o&ia Tou
nalxtn o owté. Ilodhomhaoidlovtog pe m+1 yio dho o mbovd bundle sizes, undpyouv axplfde
m + 1 tétolo unepeninedo yia xdfe maixtn. Télog, moXhanhaoidlovtoc Ye 10 GUVONLXG oplBud
TOV TUXTOV, TEoXOTTEL OTL YL xdBe v UTdEY oLV To ToAD n(m + 1) urnepenineda Tou ywpeilouv To
YWEO P 10V TUpAUETEWY TOU UNYOVICUO) CE TMEQLOYES OTOU TO ELCOBNUA EIVOL YEUUULXO.

Ané oS00 mapandve Bewphuata dueca TEoxOTTEL:

Oespnpa 6.2 H eudo-didotaon tne ¥ \done twv unit bundling Snuonpacidv avafohépevne
amodoyic yioe n TadxteS xar m avtituna Tou ayadol dwbéoya tpoc TdANon givar O(nlog(nm)).

To vo Beyerudooupe éva representation error bound ylor auTH TV OLXOYEVELX HTAV TILO ATOUTNTLXO.
H Poowh tpdxAnor, 6neg avagépaue ol oTny eloaywyt, elvor 6Tl Tpa TpENel Vo cuyxplvouue
TO OVOUEVOUEVO EloHBNUA Tou BENTIOTOU unyoviogol amd TNV AdoT TOU TEOTEVOUYE UE TNV
avoapevouevn xowovixn ogélela tou VOCG. T'a vo 1o emitiyoude auTo YeNoWoTOMouUE Ula apXETd
eoter) texviny: Ewodyape évav véo pmyavioud, tov “ex tov npotépwnv BENTIOTO unyoviopd”, Ty
OVOUEVOUEVT) XOWOVIXT) WPENELX TOU OTIOOU YENOULOTOLACUUE WS DLETAPY| AVIUETA GTO AVIUEVOUEVO
£LoOdNUA TOU BENTIOTOU UNYAVIOUOU TNG BIXAS LA XNEOTIC XOL TNV OVUUEVOUEVT) XOWWVLXT) WPENELXL
tou VCG. X1 ouvéyeta ppdéape Tic 2 autég dlaopés, To dbpoloua twv otolwv anotere! aneubeioc
évoL dve Pedrypo oTo representation error tne xhdong poc. Apxixd opllouye Tov unyavioud autov:

Opiopo6c (ex tov npotépwv PENTiotog unyaviopds - A). O A elvou évag utobBetinde pmnyaviouds.

AloBéTel TENELD YVAOOT TOV XATAVOUDY ONOY TV TOXTOV ot ETNEYEL, Ywelc vor NdPet xabBdiou
UTOPY TOU TIC TROYoTXES a€leg TwV Toux TV, TNV otabepn avdbeon Twy avtixeluévey oe TalxTES
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HE TN UEYLO TN OVUUEVOUEVT XOVWVIXT] a&ld.

XN ouvéyela, anodelEope YENOHLOTOLMVTOG Eval apXeTd TEXVIXO Toploua TS epyaciag “Revenue
Optimization with Approximate Bid Predictions” 1t yia 10 ovopevouevo elo6dnue tou BENTIoTou
unyaviopol and Ty xhdon UB oy el

BOcewpenpa 6.3 I'a xdbe xatavour) F' twv cuvopTioeny afldy TOV TUUXTOY, 1) XAJoN Tov unit
bundling cuvapthcenv teptéyel Eva unyaviops M yLol To AVUUEVOUEVO ELGOBTUA TOU OTIolou Loy VEL:

Eo[Rev(M, v)] > E, [SW(A,v)] — znj(séi)l/?’@?/i” (1.3)

i=1

6mou B H avopevouevn agio tou maixtn ¢ vyl Tov aplud avtititov tou ayofod mou Tou
avatiBevtar and to pmnyaviopd A,

7;%: H 8100T0pd TS 0LOCWEEUTIXAC XaTavoufic e aflug TOU TN 4 VLo TOV ApIBG AVTIXEWEVOV
ou Tou avatifevton and Tov unyavious A, SnMadh 7> = Zj;l ol ;.

H anédeiln unopel vo cuvolotel we e€hic: H xhdon UB nepiéyet Evay pmnyoviopd M mou emhéyel
yia x&fe maixtn to Blo péyeboc bundle ye tnv avdbeon tou Taixtn awtod oto pnyavioud A xou
otn ouvéyela B€TeL, yio xdle malxty, T BéNTIoTN T yia To bundle autéd. ‘Eneita 1o yévo mou
pével etvon vor peorytel yior xdbe ol 1 dlapopd avdueoa oty afio Tou yio To bundle avtd ¥
TN OVOPEVOUEVNS TIAPWUTG TOU, BEBOUEVOU OTL O UNYXAVIOHOC ExEl ETAEEEL TN BENTIOTN TWY Yia
7o bundle awté. Trdpyet dunc éva ndplopa g epyaoiog Tou Tpoavapépaue Tou @edlel, yio xdbe
xatovoyr|, axelde auty T dlapoged.

Topa T0 p6évo ToL PEVEL yiol Vo EBpaCOLUE €va representation error bound yia v UB x\don
elvor vor PEEEOUUE T BLopopd VAUEST GTNY AVOEVOUEVT XOWwVixY) wpéreto Tou VCG xou exeivn
tou A. Me 10 nopoxdtw Bedpnua deiaue axplfcdc autéd yio Gaussian xou Sub-Gaussian xatovouéq.

BOevenpa 6.5 Y10 TeptPAANOV TNG UTOEVOTNTOC AUTAS, YLOL TNV AVUUEVOUEVT] XOVOVIXT] WPENELDL
ToU eX TV TEOTépwY BéNTIoTOL unyaviouol A toydet:

E,[SW(A,v)] > E,[SW(VCG,v)] — iﬁﬂ/ﬂog(nm)7 (1.4)

OTOV Ty > T2 > -+ > Oy ebvon éva total ordering twv TUTIXOV OTOXNGEWY TWV XUTAVOUMY
ONWY TWV NIM 0pLIXGOY ALY TWV TULXTOV.

H xevtpu] 10éa tng anddedng Arav 6Tt yia xdBe didvuopo adudv v, 1 avébeon tou A unopel
va ‘petatpanel’ oty avddeon tou VOG pe to moAd m ‘yetonavioelc’ aviitimov, omou ue ula
‘uetdBeon’ agaipolue éva avtxelyevo and évav naixtn mou éxafie meplocdtepa otov A and bt
otov VCG xau 1o avabétoupe oe xdmolov mou éxofie Ayotepa. H avouevduevn Sopopd twv
2 unyoaviouoy etvor oxplpde to avopevouevo x€pdoc’ ot xowvwvixh ogéiewo tou VOG and Tic
petonaviioelc awtés. Téhog v Gaussian xou Sub-Gaussian xatovoués QEIEaue T0 AVUUEVOUEVO
#EEBO0C TWV UETAXVACE®Y QUTWY, TOU AECKHS CUVETHYETOL OTL PEAEUUE TNV OVAUEVOUEVT Dlapopd
NG XOWOVIXAS WPENELIS TWV BUO UNYAVIOUOY.

Yuvdudlovtdg ta Bewpriuata 6.2, 6.3 xou 6.5 dueco npoxinTel T0 {NTOVUEVO ToOPLGHAL:

ITépiopa 6.3 Y10 meplBdANov Tng UTOEVOTATOG AUTAS, Yiot Tov Unxoviod M € UB ue to
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eUTELPXS PéYLOTO EL06ONUA OE Eval GUVONO N BELYUSTWY TOV XATUVOUWDY TOV TOUXTOV, Loy LEL:

n

Ey[Rev(M, )] > E[SW(VCG, v)] — Y (3B;)/%5,*° — ZM:E“/Z log(nm)

i=1 i=1

—0 (U\/n log(nm)/N + U+/In(1/3) /N) (1.5)

A&ilelt va oyoldoouye to amotéleoyo owtd: T maixteg pe submodular cuvaptioelg ofiag,
xavévag weakly group strategyproof unyoviopog de pnopet vo eyyunfel oe xdbe Sidvuoua o€y v
TPoGEYYLoN TNG xoWwVIXAC wpéletag Tou VOG xabtepn and % Euelc pwg aoyorndixoue ye to
oaxOpa BUGKONGTERO TEOPBATUO TOU VO GUYXPIVOUNE TO ELGOBNUO TOL UNYoVIOUO) TOL TROTEVOUUE
aneubeloc pe ™y xowovinh ogélew tou VCG. Aeiope dtL edv ot adlec Twv mouxtdv oxorouvboly
Gaussian xat Sub-Gaussian xotavopés, 808éviwv xdnowwv deryudtwy amd T XUTUVOUES QUTES,
elvon duvatd va pdfel xavels pio dnuonpaocio avaforNopevne anodoyhc YE AVOUEVOUEVO ELGHBNUA
(oo pe TV avauevouevn xowvovixh ogéreta tou VOG pelov 3 abpolotixoile dpouc:
1. Tov 6po 2?21(3§i)1/3@2/3: Edv 6ev umipye 1 teltn pilo ndve and xdbe 6po tou abpoicua-
TOG 0L Ol GUVOAIXES TUTUXES AMOXAOELS ONWY TOV Tt TV ytot Tov aptfud avTtitdnwy Tou
Toug Bivovton and tov A ftav yovdda, téte autd To dbpolopa Bo Yitav (oo ye 3 gopéc v
avoevopevn xowvovixth ogéiela Tov VCG. Befolwg, yia ‘eOhoyes’ TWwég Topopétony Tmv
xaTovopmy afldy Tov Tuxtdy, N teltn ella xablotd to dbpolopa autd téEelc ueyEéBouc
ULXEOTEPO ATd TNV AVOPEVOUEVT] xownvixh) wgéleta Tou VCG.

2. Tov épo Y1 7;4/21og(nm): O dpoc autde eZuptdton Ypopuxd omd Tig TUTIXES amoxhioeLs
TOV XUTAVOUMY AELOY TWV TOUXTOY, GO0 UTOYEOUUIXS antd TG DIUOTORES TOUS, UTOYPOLULIXS.
and tov aplud TV TUxTOV, xol ‘oXedOV’ yoouuxd and tov aplfud TV avTIXEWEVWY
Sbéopnv mpoc mdANon. YTnd v evloyn undbeor ot v xdBe xotavopry alluc Twv
TOLXTOV, 1) AVOUEVOUEVY T TNG XATAVOURC UTAC Vol ONUAVTIXG MEYUNVTERY amtd TNV
TUTIXTY] AOXNLOY) TG XATavopnc auTAS, Xot autéc o dpog elvon tdET peyéboug pixpdtepog
and TNV avVoEVOUEVY xowveovxr wpéleta Tou VCG.

3. Tov 6po O (U\/n log(nm)/N + U\/ln(l/é)/N): To unéroind ‘xouudtt’ autol Tou 6pou
Tépa omd 1o nlog(nm) mpogpyeton aneubeiog and To Bedpnuo opoLdpopPNS SUYANOTS TOU
Pollard, xou etvor xowvd oe oyedov xdbe Tpocéyyion avaAuone BelyUaTIXE TOANUTAOXOTNTAC.
I var cutlohoyficoude NoLTéV YLoL To €8V aUTOS 0 6p0¢ elvol xaNOG, apxel vo emxevtpwbholue
oo nlog(nm), v Peudo-didotacy dnhadr mou Belloue yior TV TEOTEWVOUEVY XNdom UB.
Tro un-avodvoues Twwée yio to bundles, dnhady dtapopetinée Tég ot xdbe mabxtn, 7
eZdptnom e Peudo-didotaong and Tov aplBud Twv TouxTdy n etvar avopevouevr. Téxog, yio
oUVPTAGELS BELDV TV TUXTOY TOU EEXETOVTOL dPeca amd ToV aplBUd TOV AVTIXEWEVWY TOU
AapPdvouy, avopevouevo efvat 1 SELYUATIXG TONUTAOXOTNTO TOU PNy aviopol vo e€apTtdton
xau amd Tov optfud Tev avtxelwévoy m. Autdg o 6pog elvon hoimdy, xatd uin évvola, ‘6co
xan6¢’ Bo umopovioe va ebvon. o pla mepiocdtepo eic BaBog avdluoT auTdY TV LoXURLOUMY
TpoTelVOUUE GTOV EVOLUPEROUEVD avaryvwoTn TNy gpyaoia “A General Theory of Sample
Complexity for Multi-Item Profit Maximization”.

1.4 Ilepropiloviag tov AplOud Astypdtoyv

To amoTENEGUATE YOG TOU TOEOVCLAG TNXOY O TNV TEOTYOVUEVY) UTOEVOTNTO YTOY TOAD UTOGYOUEVOL.
I x&Be nepBdANov mou pekethoaue, dellaue 6Tl doBévtwvy apxet®V deryudtoy, elval e@ixtd va
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12 CHAPTER 1. Extetauévn ENXAnvixy) Hepihndn

pdBet xavelc pio dnuompacio avaforhoyevne unodoxhc Ue TOND LPNAG avauevOUEVo EloOdNUA. e
XATOLES Ay OPEC UEYINTS ONuociag, OTWC Yiol TUPADELYUO OL GTIS 0y OPES UmOVOUNC PACHATOS OO
yenowonolobvtal dnuompasies avaforiouevne anodoyic, ol dnuompaciec unopel vo elvol apxetd
ondviec. T tétolo mpofAfuata, 1 undbeon 6Tl Slabétel xavels un-ctabepd aplbud deryudtwy, 1
BANEC YVADOELS VLol TIC XATAVOUES aELdV TV ToUXTOY, (one va elvar un peantotixd. Evo Noyxd
enépevo Prido eivon Vo UENETACOUUE TS UTOPOVUE VoL XUTACHEUAGOUUE BNuoTeacies avaBarNouevng
amodoyfg mou, XENOWOTOLOVTUS Evay TOND uixpd, oTabepd apldud Beryudtwy xon ol dANN
YVOON VL0l TIG XATOVOUES TOV TOUX TRV, TETUYAVOUY AVOIEVOUEVO lo6dUa Tou elvan pia otabep
npocéyylon autol nou Selloue otL unopel va emteuylel pe neplocdtepa delyuota. Kou méhl Ba
acyornBolue 1600 ye single- 6co xou multi-parameter negifdrovta, duolo oYeddY pe aUTE TNC
TEOTYOVUEVNS EVOTNTAC.

1.4.1 Single-Parameter IlepifdXAovTa

To nepBddhov mou Bo yeXetricoupe oe auth Ty unoevotnTa eivon to (Blo pe Ty avtioTtoryn
neplnTwor énou elyoue TOANG delyparta. H uovn dlagopd lvon 6TL Tehpo SEV AmoUTOOUE OL XUTAVOUES
a€LOOV TV X TRV Vot elvor TepLoplopéves o€ xdmoto Sidotnua [1, H], oAN& wévo 6t eivon xovoviréc.
Auto elvan pio onpovtind acbevéotepn undbeon: Kdbe qparypévn xatovopr) etvon xo xavovixy.

To IepiBdirov (Tlaixtec pe abpootinée akieg, xavovixéc xotavouéc)

o 1 TalxTEC.
o Trdpyouv m avtituno tou ayabol diabéoulo npog THOANOY.
o Kdfe naixtng i éxel pla yvoo T ex Twv Tpotépnv oTo Unyxaviowd ghnon d;.

o Kdfe naixtng i éxel abpoiotinn agla, uéxpl ) {itnoy| tou d;:
Do x&Be madxtn ¢, n o&la Tov yiow x; avtituna tou ayabol, dedopévou 6Tl z; < d;, elvon
ZTi V5.

o H ofia tou xdbe maixtn 7 avd avtituno tou ayabol, v;, axoloubel xdmolo xotavour| ue
ouvdptnon tuxvotntac mbavotnroag f(+) xou virtual valuation function ¢;(+).

o Ou xatavopée auTég elvon xavovixeég.

H npocéyyion yoc oe autd 1o neptfdiov fitav epnvevouévn and v epyacio Twv Hartline xou
Roughgarden pe titho “Simple versus Optimal Mechanisms”. ¥tn 8| yoc nepintwon wotdoo,
anoutoOvVIaY Xdmoleg un-TteTpwpéveg Tpononotfoeic. Ot Hartline xow Roughgarden otnv epyooia
Toug aUTH eloryaryoy TNV évvola Tou ‘Binhovturou’ (duplicated) mepiBdihovrog.

Opiopbe (Aumhéturno Iepifdihov). Kdbe naixtng @ ye xotavops; F; avuxadiotato ond éva
Letyog mauxtodv 4,7 twv onolov ou agieg elvon 1.i.d. Selyporo and v xatavour F;. O epuxtéc
avabéoelc 010 BTAGTUTO TEPLBEANOV Elvol aUTES TTOL IXAVOTIOLOVV:

1. Ané xdbe Ceuydpt 4,1 To mOND évag TodxTng €xet un-undevixr| avdbeon.

2. H avdbeon, av epunveubel ye tov Quoxd tne TeoTo we 1) avdleon oTo apyixd TEpLBANNOY,
elvon et} 6T0 MEPIBANNOV QUTO.

Miot d\NT) onuovTixer €vvola mou ewctpyoryov ot Hartline xow Roughgarden #toy auth twv “avéhoywv
unyoviouy”’ (commensurate mechanisms). Ou Hartline xauw Roughgarden v eiofyoryav yio

12



CHAPTER 1. Extetopévn EXAnvixy Hepihndn 13

duadixd mepBANNOVTA, eV euelc TNV emexTelvaE UE TOV TO QuUOIXd TedTo ot avbalpeta single-
parameter meptffdAhovta. Hopoxdte napatibeton ameubeiog o enextapévoc oplopde.

Optopdc (Single-Parameter Avéhoyoc Mmnyaviopds). Eotw M xoaw M’ 800 pmyoviopol yio
xdmoto single-parameter nepiBéiNov. Eoto z;(v), 2} (v) navdBeon otov naixtn i Tov 2 unyaviopoy
oto mpoih v v. O unyoviopdc M elvon single-parameter avéhoyoc pe to unyoviopd M’
A%

E, Z zi(v)pi(vi)| >0 (C1)

i:xy (v)#x) (v)

pide i

Ey | Y pi(v)| > E, Yo wweiv) ], (C2)

ieN iz (v)#x)(v)

6mov p;(v): H mAnpopni tou naixtn i otov M yia 1o mpogi\ ofidv v, v avdbeon z;(v) .
O Noyog nou elodyaye Ty €vvola Tov single-parameter avahoywv UnyavIopey etvot 6Tt UTopoVYE,
avtiotoyo TV TpetdHTUTY Epyacia, Vo anodelEoude GTL LoYUEL TO TUEAUXET® AAUMAL.

Adppo 7.1 Edv évac unyaviopos M eivar single-parameter avéhoyoc pe évav unyovioud M,
TOTE VIO TO AVOHUEVOUEVO €GO TV D)0 UNYUVICUDY Loy VEL:

E, [Rev(M,v)] > % -E, [Rev(M', v)]. (1.6)
H onédeiln otnpileton oto ot xdbe pla and tig ouvhrixeg C1 xou C2 apxolv Yo va det€ouv 6t t0
OVOPEVOUEVO LGB Tou unyaviopoy M’ anéd toug naixtee Tou tawtilovton ¥ dev tawtilovton
avtioTolyo ol avabéoelg Ty Vo unyavIouny eival UxeoTepo 1) (00 TOU AVOUEVOUEVOU GUVONLXOU
€L000YuUaToS TOL Pnyaviopol M.

O ubdvoc Noyocg oL avaPERUUE TNV EVVOLA TOU BLTAOTUTOU TEPLBAANOVTOG GE QUTY TNV BLTAOUOTLXY
epyootia elvon 6L unopéoaye va detouue dTL Loylel To e€Xg:

Appor 7.2 Yto nepldihov plag Snuonpaciag TONNATADY ovTITOTWY OTOU Ol TOUXTES €YOUV
abpototinée oieg mou axolouBolv xdmota xovovix) xoatavout|, o VCG unyaviopds 6to Bimhétumto
neplBdrNov elvar single-parameter avdhoyog ye tov BéltioTo pnyavioud, Myerson, oto apyixd
neptBEANOV.

H xevtewr éa wdpa elvon 1 e€ng: Xe tétolou eldoug meptddhovta, ot I'vatlénng, Mapxdune xou
Roughgarden €dei&av 611 0 VCG unyaviopdc unopet vo ulononbel we dnuompacio avafBariouevng
arodoyrc. Edv howndv o druonpdtng uropoloe Ye xdmolo TeoTo Vo ‘DImAACLAcEL TOUG THUXTEC,
X0l VoL EQPApULOCEL o€ T TO TEELBAANOV TNV Lloroinon tou VOG wg dnuonpacio avaBariouevng
anodoy g, Tote Oa elye avouevouevo eloédNUL T0 Wod and OTL Ue To unyoviopd Myerson, Snhady
70 oo and 1o BérTiIoTo. O dnuonedtng mpogavg 8e pnopel vo Bithaotdoet Toug Tadxteg. Autod
OUWS OV UTOEEl Vo xdvel elvan, edv €xel €va delypa amd Ty o&la Tou xdBe maixTy, Vo eQapudoEL
Tov unyaviopd avtd avtwetoniloviac to xdbe delypo v; ©¢ To dimhétuno i Tou avticToryou
Tl 4, TEOCOUOLMVOVTOS E AUTS TOV TROTO Toug dmhdTuToug tadxtec. And xdbe Ledyoc 4,7,
onote xepdilel 0 aubevtinde TalxTNG, AUTOC TANPAOVEL Xavovixd to avtioTol o nocd. Amd v
SN uepld, émote xepdilel To delyua mou avTPeTeniloupe g To BIMAGTUTS Tou, O BnpoTEdTNS
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14 CHAPTER 1. Extetauévn ENXAnvixy) Hepihndn

BEV TANPOVETOL, POV TNV TEAYHATIXOTNTA BEV UTHPYEL O AVTICTOLYOG TOUXTNG AANG ATAWS €Vt
delypa tne o&lag tou. ‘Etol, Noyw cuppetplag, and xdbe {ebyog muuxtddv, o ox€orn PE TO €AV
umApyay oL Bltmhétumol makxTes, Ye mhovotnTa % 0 UNYAVIOUOC TIOU TPOGOUOLOVEL BITAGTUTOUG
naixteg BEV TANPWVETAU, EMOUEVWS EXEL OVUUEVOUEVO EloddNUa axplBve To uod and 6t o VCG
o7t0 (mparypoatind) SAotunto TEPLBAANOV. ZUVOANXE NOLTGV, 0 PNOVIoHOC auTOS UE €val delyua
: . / . 1.1 _1 :

TETUYUVEL AVAUUEVOUEVO ELGOBNUA TOUNGYIGTOY 5+ 5 = 7 ToU BéNTioToL.

ITépiopa 7.1 e xdbe dnuonpacior TOANATAGY avTitdnwy 6nou oL naixteg éxouv abpoloTixéc
o&lec mouU axONOLBOUY XUVOVIXEC XUTAVOUES, UTdEYEL tio yevixeuuévr druonpacio avaBariouevng
anodoy g 1 onold, ¥eNnoWWonolnvTaS éva Selyuo Twv oLV TV TUXTOY, ETULTUYYAVEL AVOUEVOUEVO

€LoOBNUA TOU €lvol TOUNGYLGTOV €val TETaPTO TO BENTIOTOU.

1.4.2 Multi-Parameter IlegifdXAovta

To nepBdrNov mou B yeXeTrioouye o€ aUTH TNV UToEVOTNHTA elvar axelBd To (Blo ue TNy avtiotoun
neplntwon émou elyope TONNG Selyuota. ‘ONot ol naixteg éxouv submodular cuvaptrceic ofiog,
oL ontoleg anoppéouv and Gaussian xou Sub-Gaussian xatovouéc. Luyxexpiuévar:

To IepiBdXXov (Tlaixtec pe submodular aliec)

o n maixteg.
e Trndoyouv m avtituno tou ayabod diabéoo Tpog THANCY.

o Kdbe maixtng ¢ OnAOVEL TIC M 00Laxés Tov adles GTo UNYAVIOUS, Vi 1, Vi 2, - - - s Vim,
omou v; ;: H agla mou €xel yia tov maixtn ¢ vo anoxthicel o j-00T6 aviitund Tou Tou
ayobol, dedouévou ot €xel e€acparioet Ndn j — 1 avtituma. o xdbe noabxtn ¢, ) o&la Tou
Yo z; avtituno tou ayafol, dedouévou 6Tl z; < d;, elvan x; - v;.

o H ocuvdptnon a&loac xdfe moixtn elvon submodular: v; 1 > v 0 > -+ > v; 4, Vi

o Kdbe oplone o€l v; ; axoroubel xdnowr Gaussian ¥ Sub-Gaussian xatovouy| Fj ;.

[ to meptfdihov autd mpotelvoupe évay oyetixd anho unyavioud, o onolog oe avtibeon pe v
TEOYYOUUEVY] UTOEVOTN T, enotuomotel twpa 2 delypata. o 1o Néyo autd tov ovoudooue o
pnoviops 2 derypdtov (Two Samples Mechanism - TSM):

Algorithm 1: O Mnyaviopéc Abo Aevypdtov (TSM)

1 Yuvée€e 2 Belypato amd T XATUVOUES OAWY TOV TOULXTOY;

2 Egdppooce tov VCG o710 mpdto delypa. Eotw & = (21, %2,...2,) n avdbeon tne
EXTENEOTC AUTA;

3 T xdBe maintn i mpocdidploe v a&ia Tou 15 vt To bundle z; avtitinwy Touv ayabold
670 deVUTEPO Belyua;

4 Y1 dnuompacio tpocépepe ot xdBe maixtn ¢ €va bundle z; avtitinwy o T 0.85 - 7;;

H npocéyyion yoc otnv avdAuon Tou unyoviodol autol efval aveloyr HE TNV TEpinTwor 6mov
dlabétope meplocbtepa delyuata yior To (Blo meptBdrNov. Apynd Ba ppdEoupe T Slopopd petadd
TNC HOWOVIXAC WPERELNG TOU UNYOVIOHOU QUTOU 0L TNG UVUUEVOUEVNS XOWOVIXAC WPENELNS TOU
VCG. 'Eneita 0o @pd&ouue Tt Blopopd YETOEY TNC OVOUEVOUEVNE XOWWVIXNC WPENELNS XAl TOU
OVOHEVOUEVOU ELGOBNUATOS TOU unyoviodod autold. To dbpooua Twv 500 auT®Y Blaopwy amaLTel
€vol EUUECO PEArYUa YIaL TT) DLOPOEE AVAUES GTNY AVOUEVOUEVT XOWWwVIXTH w@érela Tou VOCG xou
TO AVOUEVOUEVO ELGOBNHUOL TOU UNYAVIOUOU OV TEOTEVOUUE.

14
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Adppor 7.1 Y10 meptBdANoV auThS TN UTOEVOTNTAS, YLol TNV UVOUEVOUEVT] XOWVOVIXY WPENELDL
e avopevépevne avdbeone & = (z1,Z2,...,Tyn) TOU 0 TSEM unyavioude xobdpioe 6o TEGTO
Belyua oy bel:

E, [SW(x,v) ZZ’U” > E, [SW(A,v)] — 2¢/2log(nm Z (1.7)

=1 j=1

OOV 01 > 02 > -+ > Opmp ebvon €va total ordering tov TumIXOV AmOXACEWY TV XOTOVOUWV
ONODV TV NIM 0PLIXWY 0LV TWV TOUXTOV.

H anédeln auth elvon mopdpota pe exeivn tou Bewphpatoc 6.5. T Guassian xou Sub-Gaussian
XUTUVOUES, UTOPOVUE Vo BEIEOUUE OTL TO OVOEVOUEVO UEYLOTO TIOU M ANO TIC MM OPLUXES THIES
uropel vor améyouy omé TV avapevopevn Toug T ebvan /2log(nm) Y10 7. Autd buwg toyleL
%oyt Ty xatavopy| & mou enéleée o VCG oto mpodto delypo. H avauovy elvar éti 1 avdbeon
auTH 670 TEMTO delypa Vo elXE To TOND péypl xan /2 log(nm) it | T ueyaUTEPN GUVONXA oot
and TNy avoevopevn tne. Avtiotolya, 1 oavopovn ylo TNV avabeor Tou ex Tev TEoTEpwY BENTIGTOU
uneviopol etvon 6T 0T0 TEdTo delypa propel v Aoy To XD /2log(nm) Y- T yaun\otepn
am6 TNV AVAUEVOUEVT T TNS. Autd ta 800, oe cuVBLAOUS UE TO YEYOVOG OTL GTO TIPMOTO delypa
n avdBeon x éxel ueyariteen 1 lon xowvwvixy wgéleta ond onoladnrote GANN avdbeor apol elvor
outy) Tou emhéyel 0 VOG apéows anodetxviouy to {nroluevo.

Auté to Mjppa, o8 cUVBLUCUS UE TO PEAYUN OVHUECO GTNV VOHUEVOUEVY] XOWOVIXY) WPENELL TOU
A xon tou VCG apxodv )G TE Vol ESpaLtGOUHE EVol XET PEAyHOL VLol TNV OVUUEVOUEVT] XOWWVLXN
o@ENela Tou unyaviopol TSM mou mpotelvouue. ot va ohoxnpwbel 1 avdhuon pog, apxel
VO QEAEOVUE TN BLoPopd AVIUESH OTNY OVOHEVOUEVY Xowovixr weéiela tou TSM xou oto
OVOUEVOUEVO ELOOONUE Tou. AUTH ETULTUYYEVETHL UE TO TENEUTOHO UG AL

Adppoa 7.5 'Eoto © = (:rl, T2, ..., Tn) N avdeon tov o TEM pmyovioudc xabdploe oo mpeTo
Eewpa %o é070 Bj, G;° 1 ovoevopevn T X n Suaomopd tne Fy, ™ avapevéuewne aflc Tou
nolxtn @y z; ovtitumo tou ayofol. Téte, €dv o xotovopés v OAWY TV TOUXTOV Efval
monotone hazard rate, yia o avouevouevo elo6dnua 1ou TSM oydet:

Eo[Rev(TSM, v)] > 0.589 - E,[SW(z,v)] — 0.589 - > _(3B,)"/35,*/* (1.8)
i=1
H oanédelln tou Mupatog etvan apxetd texvixn xan napokeineton and v neptindmn owth. Luvdud-

Covtag o Mppato 7.1 xou 7.5 pe 0 @pdrypa avEUESH GTNY OVOUEVOUEVT] XOWVWVLXT 0@ENELD TOU
A xou tou VCG nou del€ope oto Bevdpnua 6.5 npoxdntel to teleutalo pog néplopo:

ITépiopa 7.3 Xto nepfdrhov plag dnuompaoiog TOANATAGY oVTITUTWY OTOU Ol TOUXTES €Y 0UV
submodular o&ieg mou axorouvbolv Gaussian xou Sub-Gaussian o€ieg, yio To avapevouevo eloddN-
ot Tou unyaviopol TSM, drou 1 avauovn etvat téve oo 800 SelyUaTo TOU O UNYAVIGUOS YETOHLO-
Tolnoe, oyLeL:

Eo[Rev(TSM, v)] > 0589 - Eo[SW(VCG, v)] — 1.767/2log(nm) Y &; — 0.589 - > (3B,)"/35,*/*

(1.9)

A&ilel vo oyoNNGooupe T6G0 xand elvar to anotéleopa autd: Ta submodular bidders, xovévog
weakly group-strategyproof unyoviouog 8e unopel vo eyyundel 6tL 1 xowvwvixry Tou weérelor Bu
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16 CHAPTER 1. Extetauévn ENXAnvixy) Hepihndn

elvar Tévew amd 1/\@ TpocEyyion TNe BENTIOTNG xoWwVIXAC wpéNelas, dnhady) awtrg tou VCG.
Euele, npotelvape évav unyavioud o omnolog, pe edroyec-@uoxéc utobéoelc yio Tic XaTovouéc
OELOV TV TAXTOV, YENOWOTOLOVTAS HOVo 800 Selypata and TiC XUTavouéc Toug TeTuyalvel, on
expectation ndvw ota V0 BelyuaTo TOL YENOWOTOIMOE, AVOUEVOUEVO ElGOdNUA oy etvon 0.589-
TEOGEYYION TNE AVOUEVOUEVNS XxovwVixc ngéhelac Tou VCG, uelov xdtt afpoio tixolg dpoug Tou
onwg e€nynoaue, ylot EUNOYEC xatavoués elvon TaEn ueyéBoug pxpdtepol amd TO AVUUEVOUEVO
€L060TUL.

Mia evdiagpépovoa teeutaia nopathpnom elvon 6Tl 6NV Tep(nTOOT ToL €Y0LUE TOND TEPLOPLOUEVAL
delyuata, 1600 010 single- 060 xou 6to multi-parameter neplBdANov, ouclaoTixd yenoonoloLue
Tar Belypato auTd we Wio TEOGEYYIOY TWV XATINATAGOY TOPUUETOWY Yol EVOL UNYAVIOHO OTO TNV
avtioTolyn oxoyévela Tou TpoTelvope yia To (Blo teplBdANov oty neplntwon dnou elyoue TONNS
oelyuata.  Luyxexpwéva, oto single-parameter nepBdANov, XENOLIOTOLACUUE OUCLAGTIXG €val
delypo omd Ty o€l Tou xdbe TalxTn ¢ g uio TeocEyyiom Tou BENTIGTOL XaTwEAiou Tou ; ¢ ot pia
onuonpacio evog emnédou. Xto multi-parameter neplBAANOV amd TNV SANT UEELS, XENOHLOTOLCOUE
éva Delyua Yo va tpoadlopicouue ula tpocéyylon Twv BéNTiotwy bundle sizes evég unit bundling
unxoviouol, o évar Bebtepo Belyua yiar vo mpoodlopicovue Tic BéNTIoTES TIéS yior Toe bundles
oTA.
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Chapter 2

Introduction

Imagine you own a traveling agency. The summer has arrived and you want to hire buses in
order to transport people from the city to the beach and back. As a private company, your
aim is to make as much profit from this endeavor as possible. How should you price your seats?
Set a price too low and all the buses will be filled, but you won’t make too much money. Set
a price too high and there will be empty seats, which imply lost revenue. After some thought,
the logical next step is to try auctioning-off the seats. The thought process is that you have a
finite number of seats, and the potential clients will bid for them. Those with the higher bids
will get a seat, at the price they bid, until the buses are filled. At first glance this seems like
a good idea: Now the buses will be filled and the prices will be high due to the competition
between the travelers for the seats. But after some more careful examination, you realize your
plan has one fatal flaw: The travelers will realize that if they bid too high they will get a seat,
but someone else may have gotten a seat for a much lower price. Compared to the passenger
that bid less and still got a seat, they overpaid. After this realization, the potential buyers will
start bidding less than the intended to in an attempt to save money, driving down the prices.

As if this problem was not hard enough to solve, imagine that instead of buses it involved
airplanes. Once again, your aim is to maximize your profit for the seats sold. Now there are
different types of seats (economy class, extended legroom, business class) that correspond to
different levels of service. Additionally, the potential travelers can bid for more than one seat,
as they may want to go on a family trip. But families are special: Either all members of the
family will travel, or none of them, and if you are to service them then they need to be assigned
adjacent seats. Finally, people at business class paid a higher price, for a higher quality of
service. They don’t want to be woken up to the sound of crying babies.

It becomes apparent that in such complex and unprincipled systems the people’s preferences
may collude, in the sense that they cannot all be satisfied at the same time. As a result, the
agents will start behaving selfishly, each trying to maximize their own satisfaction without
taking into consideration how their actions might negatively impact others. This context com-
prises a game where many people, whom we call agents, interact with each other in an attempt
to satisfy their own desires. These agents each have their own private strategy and their sole
aim is to maximize their own “satisfaction” in the final outcome, the so called wutility.

The field of Game Theory tries to formalize, in a principled way, the interactions between
the agents, how their actions may lead to different outcomes and the benefits and losses of
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18 CHAPTER 2. INTRODUCTION

every agent in those outcomes. In such a game, even if the agents understand game theory,
it is not unlikely that if the agents each try to maximize their own payoffs this may lead to
a highly inefficient solution, in the sense that in the final outcome, the sum of the players’
utilities, the so called Social Welfare, may be low. This is the central problem that Mechanism
Design, the science of rule making, tries to fix: Given that the agents behave selfishly, each
trying to maximize their own utility, can we design games, the so called mechanisms, where
the final solution will be efficient with respect to some objective? For this reason, mechanism
design can be thought of as game theory in reverse. In this field we mainly focus on designing
mechanisms where agents maximize their utilities by acting truthfully, effectively removing
the agents’ incentives to lie about their preferences. As a result we are able to predict the
actions of the players and therefore to reason about the outcome of the mechanism. In simple
words, the aim of mechanism design is to design systems for strategic agents that have good
performance guarantees.

Informally, a mechanism is described by a set of feasible outcomes, O, an allocation rule, f,
and a payment rule, p = (p1,pa,...,pn). Each agent ¢ has a private, i.e. not known to the
mechanism, valuation function v;(O) — Ry, and their goal is to maximize their wutility, the
difference between their value for the final outcome O € O minus what they had to pay to the
mechanism. In most cases, both the final outcome O and the payment rule are a function of
the declared preferences b of all the players, thus agent 4’s utility is u;(b) = v;(O) — p;(b). A
mechanism is truthful if no agent can increase her utility by misreporting her preferences no
matter the actions of the other players in the mechanism. From the definition of the utilities
of the agents it becomes apparent that in order to ensure truthfulness, careful consideration of
both the allocation and payment rules is required.

The two most standard measures of performance in mechanism design are the total utility of
all the agents in the outcome that the mechanism chooses, also known as the social welfare
of the mechanism, and the total payments that the mechanism collected from all the agents,
also known as the revenue of the mechanism. The social welfare of the outcome O is formally
defined as EZL:I v;(0), while its revenue, when players declare values b to the mechanism is
defined as Y- ; p;(b). Problems in mechanism design are split into 2 main categories, single-
parameter and multi-parameter ones, depending on whether the players declare one or multiple
values to the mechanism. In this thesis, we focus on a particular kind of mechanisms: they
are called Auctions and are mechanisms specifically designed for the exchange of goods and
money. Auctions have been extensively studied by both Economists and Computer Scientists.

Single-Parameter Auctions

Suppose you have a single item that you want to auction off and there are n interested potential
buyers. From a mechanism design perspective, each of those agents i has a private valuation
v; for the item. If they are the winner of the auction then their utility is their value for the
item minus their payment to the auction, i.e. u; = v; — p;. If they don’t win the auction,
then they don’t get the item and they obviously pay nothing. In this case, their utility is zero.
Let’s suppose that the goal of the mechanism designer is to allocate the item to the agent, or
bidder in this case, that wants it more, i.e. the one with the highest value for the item. In this
setting, this is equivalent to maximizing the social welfare of the mechanism. As we alluded to
earlier, whether a mechanism is truthful or not depends on its payment rule. We are going to
compare two different payment rules, and illustrate how neither of them achieve truthfulness.
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First, let’s assume that the mechanism gives the item away for free, i.e. the payment of the
winning bidder i is p; = 0, as is everyone else’s payment. Let’s now observe the utilities of
the agents: For every agent ¢ her utility in case she wins the item is now u; = v;, while her
utility in case she doesn’t win is zero. It is clear that every bidder has a higher utility for
winning the item than not winning it. Therefore, they would misreport their value, declaring
to the mechanism as high a value as possible for the item in the hope that they are indeed the
winning bidder. Now suppose instead that we charged the winning bidder their declared value,
also called her bid, b;. This mechanism is known as first-price auction. Then, the utility of
the winning bidder ¢ is u; = v; — b;, and the utility of every losing bidder is zero. If a bidder
bids her true value and wins the auction, then her utility is zero. The only way for a bidder to
have a positive utility in this mechanism is to win the item with a bid lower than her value for
it, once again breaking truthfulness. The solution to this problem was given by Vickrey [9],
who introduced the aptly named second-price auction. In this mechanism, the bidder with the
highest bid gets the item, but unlike the first-price auction, now she pays a price equal to the
second highest bid. The truthfulness of the second-price auction is presented in subsection 3.2.1.

A question that then arises naturally is the following: If we want to design a truthful mechanism
for a different, arbitrary single-parameter environment, or with a different allocation rule, is
there a corresponding payment rule such that the resulting mechanism is truthful? The answer
to that question was given by Myerson [6], who proved that in order for a mechanism to be
truthful its allocation rule must be monotone non-decreasing, meaning that for every bidder, if
they increase their bid then their allocation by the mechanism can only increase. At the same
time, for a fixed monotone allocation rule, there is a unique payment rule (see subsection 3.2.2)
that renders the resulting mechanism truthful. Intuitively, for every quantity that some bidder
is allocated, they pay the minimum they could have bid and won that quantity. Myerson’s
lemma has a very profound consequence: If we are only interested in truthful mechanisms that
charge zero to losing bidders, then for any allocation rule, the payment rule is uniquely defined.
Therefore, we can think of a mechanism simply in terms of its allocation rule.

Multi-Parameter Auctions

Now assume that we face a more general problem, for example there are multiple identical
copies of the item we want to auction off. This setting is known as a multi-unit auction. A
multi-unit auction consists of a set of m identical units of an item to be allocated to n bidders.
Each bidder 7 has a valuation function v; : N — R,. It is a natural assumption that valuation
functions are non-decreasing, i.e. v;(j) < v;(k) for all k > j, and normalized, i.e v;(0) = 0. For
the objective of social welfare, the goal is to compute an allocation x = (z1, z3,...,z,) of the
units to the bidders that maximizes Y., v;(x;) while for the object of revenue maximization,
the goal is to maximize the total payments of the bidders.

In this thesis, we focus on multi-unit auctions with budget-additive or submodular bidders.
The valuation function of some bidder ¢ in a multi-unit auction is budget-additive if it increases
by the same amount for every additional unit they are allocated (up to some maximum amount
of units that they are interested in), i.e. their valuation for x; units is v - ;, where v is their
value per unit, and it is submodular if for every j < k it holds v;(j+1) —v; () > v;(k+1) —v; (k).
Intuitively, a bidder with additive valuation cares the same for gaining additional units, while a
bidder with a submodular one has diminishing returns for multiple units. The class of budget-
additive valuations is a proper subset of the class of submodular ones.
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Suppose the goal of the mechanism designer is to maximize social welfare. Is there a truthful
mechanism that achieves that? Perhaps surprisingly, the answer to that question is positive.
For any multi-parameter environment, there is a truthful mechanism that always terminates
with an optimal solution. This mechanism was a result of the work by Vickrey [9], Clarke
[7] and Groves [8] and is known as the Vickrey-Clarke-Groves (VCG) mechanism. VCG is
the unique truthful social welfare-maximizing mechanism and can be applied in very general
mechanism design environments. The main idea behind the mechanism is to align the utility of
every agent with the social welfare of the final outcome and charge them their externality, i.e.
the total loss in value they caused to the rest of the bidders (for further details see subsection

Revenue Maximization

In practice, the one that chooses the rules of the auction is the one who possesses the items
that are to be auctioned off, i.e. the auctioneer. The most natural objective for the auctioneer
is, undoubtedly, to sell those items for the highest amount of money possible, i.e. revenue
mazimization. For the objective of social welfare, there is a truthful mechanism that in any
environment finds the optimal solution. Does something similar hold true for the objective of
revenue maximization? The answer is a bit more complicated than it was for social welfare.
In case of a single-parameter environment, for all truthful mechanisms, their payment rules
are a function of their allocation rules, as defined by Myerson’s lemma. Therefore, by taking
expectations over the bidders’ valuations, for any truthful mechanism in a single-parameter
environment the mechanism designer can determine its expected revenue. As it turns out,
the expected revenue from every bidder is equal to a function of the distribution of their
valuation. This function is called their virtual valuation function. Then, the problem of revenue
maximization reduces to simply choosing the allocation rule that maximizes the expected
revenue, i.e. the sum of the virtual values of all the bidders. The resulting mechanism is
named Myerson, and under some mild assumptions about the bidders’ valuation distributions,
is truthful and maximizes the expected revenue. For general multi-parameter environments,
the problem is even more complicated. Now Myerson’s lemma no longer holds, thus reasoning
about the payments of any mechanism is a much more involved process. Even for two bidders
and two items available for sale, the revenue-maximizing mechanism is not known.

Automated Mechanism Design

Maximizing revenue in multi-parameter environments is particularly challenging. Even for
relatively simple settings, revenue-maximizing mechanisms are in most cases not known. Fur-
thermore, for the settings where the revenue-maximizing mechanism is known, in order for it
to work it requires knowledge of the distribution over the bidders’ valuations. In an attempt
to circumvent these two fundamental issues, the idea of using samples to guide the design of
mechanisms was born. Sample-based mechanism design was first introduced in the context
of automated mechanism design. In automated mechanism design, the goal is to design algo-
rithms that take as input information about the set of bidders and return a mechanism that
maximizes some objective function, such as revenue [32, 33, 34]. In the early days of automated
mechanism design, the input information about the bidders was an explicit description of the
distribution over their valuations. The support of this distribution is often doubly exponential,
rendering obtaining and storing it prohibitive. In response, sample-based mechanism design
was introduced where the input is now a set of samples from this distribution [35, 36, 37].
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Another important contribution of these papers was that they introduced the idea of search-
ing for the best mechanism in a parameterized space where any parameter vector yields an
incentive-compatible mechanism, meaning that every bidder has an incentive to participate in
the mechanism and bid truthfully. This was in contrast to the traditional, up to that point,
approach of viewing mechanism design as an unrestricted optimization problem and modeling
those constraints afterwards.

This parameterized approach to mechanism design became very popular in the research com-
munity. Numerous follow-up papers adopted this approach of parameterized, sample-based
revenue maximization, while also trying to prove generalization guarantees for their results
[23, 38, 25, 39]. The aim in these papers is not simply to learn some parameter vector such
that the corresponding mechanism has high revenue in the samples, but to provide generaliza-
tion guarantees that this mechanism will also perform well in the real world, provided that the
samples were independent draws from the true distribution of the bidders’ valuations. This
statistical guarantee usually takes the form: “With probability at least 1 — §, the expected
revenue of the mechanism we determined on the samples will be at most € lower in the real
world than it was in the samples, provided we used at least a number N of samples”. The
mechanism designer then has the choice to configure both the ‘chance of failure’ § and the
expected ‘generalization error’ € according to her needs, and the required number of samples
N changes accordingly. Because these results give the required number of samples for some
generalization guarantee to hold, they are called sample complexity results in the literature.

Two of the most impactful papers in this direction were [23] by Morgenstern and Roughgarden
and [12] by Balcan et al. In the first paper, Morgenstern and Roughgarden introduced the class
of t-level auctions. Intuitively, every auction in that class uses, for every bidder, a step function
with ¢ steps as a proxy for their virtual valuation function, and chooses a final allocation that is
optimal with respect to these steps. The authors then proved that, for what they characterized
as ‘simple’ environments, a close approximation of those step functions to the virtual valuation
functions of the bidders implies an equally close approximation of the expected revenue of the
corresponding auction to that of the optimal one. Then, for these settings, the problem of
maximizing revenue reduces to learning a t¢-step function for every bidder that approximates
closely enough their virtual valuation function. They then upper bounded the number of
required samples, i.e. the sample complexity to do so. This means that for those settings,
they upper bounded the sample complexity of learning revenue-optimal auctions. The second
paper was much less applied. In that paper, the authors didn’t propose any new mechanism
classes but they instead introduced a novel way of reasoning about the expressive capability,
and therefore the intrinsic complexity, of any mechanism class. As we discussed earlier, in
the parameterized approach to automated mechanism design, any mechanism from a given
mechanism class is uniquely defined by some parameter vector p. Therefore, if we fix some
arbitrary valuation profile v, then the revenue of any mechanism in that class is solely a
function of its parameter vector p. Balcan et al. proved that if, for any fixed v, the parameter
space of the class can be broken into regions where the revenue on that valuation profile is
a linear function of p, then the pseudo-dimension of that mechanism class can be directly
upper bounded in relation to the number of such regions. Pseudo-dimension is a measure of
the expressive capability of any class. Using that measure, one can then easily bound the
sample complexity of determining an optimal mechanism from that class. Effectively, with this
paper the authors provided a framework for reasoning about the sample complexity of any
mechanism class, provided that the mechanism designer has a very good understanding of the
class in question.
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Deferred-Acceptance Auctions

Now suppose that you want to design a mechanism for some environment with very complex
restrictions on the set of feasible solutions. Even for the seemingly easy objective of social
welfare maximization, calculating the optimal solution can take doubly exponential time. A
logical next step then is to field a mechanism that uses some greedy algorithm to choose a final
solution. Greedy algorithms have been used extensively in mechanism design. They may not
find the optimal solution, but for many settings, they can achieve a constant approximation of
it. Milgrom and Segal [14] took this idea of using greedy algorithms one step further. Tradi-
tional greedy approaches to mechanism design were forward-greedy: The allocation algorithm
one by one accepted the bidders that seemed the most ‘promising’, according to its greedy
heuristic and subject to feasibility constraints, until a maximal feasible solution was reached.
Milgrom and Segal instead proposed the framework of deferred-acceptance auctions (DA), a
family of mechanisms that can be thought of as running an adaptive, backward greedy algo-
rithm for deciding the set of accepted bidders: Now at every round the ‘least promising’ bidder
is excluded by the mechanism, until the set of bidders that remain constitute a feasible solution.

The fact that DA auctions use backward greedy algorithms instead of forward ones gives af-
fords them many appealing properties. For one, DA auctions are truthful, even in the sense of
obvious strategyproofness formalized by Li [16]. This means that even non-expert bidders can
understand that truthful bidding is a dominant strategy, and in turn, will be incentivized to
participate in the mechanism. This is crucial in settings where the participation of more agents
in the mechanism enables it to find better solutions. Furthermore, every DA auction satisfies
group-strategyproofness. This means that no coalition of bidders can collectively submit false
bids in such a way that makes every bidder of that coalition strictly better off. Effectively,
no bidder has an incentive to collude against the auctioneer. For those reasons DA auctions
have been fielded in many critical applications, namely for the reverse auction part of spectrum
reallocation [17]. DA auctions, as they were introduced by Milgrom and Segal, were restricted
to binary environments, where every bidder is either a ‘winner’ or a ‘loser’. Gkatzelis, Markakis
and Roughgarden [18] extended the framework of DA auctions to non-binary settings, where
each bidder receives some level of service, subject to feasibility constraints.

The performance of DA auctions for the objective of social welfare has been studied exten-
sively. Unfortunately, in some settings DA auctions do not achieve a good approximation
for that objective. A high-level explanation would be that in those settings, backward greedy
algorithms are inferior to forward greedy ones, and the former may not even lead to maximal
solutions. Motivated by this concern, Diitting et al. [20] explored the performance and lim-
itations of deferred-acceptance auctions for the objective of social welfare maximization from
an approximation algorithms viewpoint. On the positive side, for combinatorial auctions with
single-minded bidders DA auctions can nearly match the performance of arbitrary truthful and
computationally efficient mechanisms. On the negative side, even for 2 bidders and 2 copies
of the same item available for sale, with arbitrary valuations no DA auction can guarantee an
approximation factor to social welfare that is better than % [18].

Our Results: Intuition and Contribution

The performance of deferred-acceptance auctions for the objective of social welfare maximiza-
tion has been well documented. On the contrary, the power and limitations of DA auctions
for the objective of revenue maximization are much less understood. In this thesis, our aim
is to discover environments in which, under some natural distribution assumptions, deferred-
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acceptance auctions perform well for the objective of revenue maximization. Specifically, we
determine environments in which, given some samples of the bidders distributions, it is possible
to learn DA auctions with high expected revenue. With this goal in mind, we explore both
single- and multi- parameter environments.

The first single-parameter environment we focus on are multi-unit auctions with budget-
additive bidders. In this environment, there are identical copies of the same good available
for sale and the bidders have a constant value per unit of the good that they are allocated.
This is true up to the point where they are no longer interested in acquiring more units. They
each declare a single number to the mechanism, their valuation per unit of the good. Intu-
itively, in this environment, VCG is implementable as a DA auction [18]. Therefore, if every
bidder’s virtual valuation function was known then the revenue-optimal mechanism, as the
virtual surplus-maximizing mechanism, would also be implementable as a DA auction. Thus,
the problem of learning a revenue-optimal DA auction in this environment reduces to learning
the virtual valuation function of every bidder. To do this, it suffices to observe that in this en-
vironment, ¢-level auctions are implementable as DA auctions. After some slight modifications
to their pseudo-dimension argument (because it doesn’t carry over to multi-unit environments
immediately), we have successfully upper bounded the sample complexity of learning revenue
optimal ¢-level multi-unit auctions for budget-additive bidders, which are also DA auctions.
Encouraged by this result, we then moved to single-parameter environments with arbitrary
polymatroid constraints. Pictorially, now there are no indivisible units to be allocated to
the bidders, but instead the space of feasible allocations constitutes some polyhedron in the
n-dimensional space. This environment is highly expressive, and can capture very intricate
restrictions on the set of feasible restrictions. A first idea, since this is still a single-parameter,
albeit complex, environment, would be to once again use t-level auctions. However, this ap-
proach is flawed: The final allocation of a t-level auction is optimal with respect to its levels, not
the actual value of the corresponding virtual valuation function at those points. The problem
is that those levels are not proportional to the actual value of the virtual valuation function
at those points. Therefore, maximizing with respect to the levels, for complex environments
such as those with polymatroid constraints, does not necessarily mean that the solution is also
optimal with respect to the virtual valuation functions of the bidders. To circumvent this, we
proposed a new mechanism class, which we named extended t-level auctions. The difference is
that now every level is supplied with one additional parameter, its level score. The auction does
not choose a solution that is maximal with respect to the levels, but with respect to those level
scores. Intuitively, if the level scores at every level are proportional to the virtual valuation
function of the corresponding bidder at that point, then the level score-optimal allocation will
also be approximately optimal with respect to the virtual valuation functions of the bidders.
This mechanism class has significantly higher expressive capabilities than the original ¢-level
auctions, yet we proved that the same pseudo-dimension and sample complexity bounds as for
the original t-level auctions still hold (theorems 5.7 and 5.8).

Then we shifted our attention to multi-parameter environments. Specifically, we studied multi-
unit auctions with submodular bidders. Again, there are m identical copies of the same item
available for sale, but now the bidders experience diminishing returns for additional copies
of the same item. They each declare to the mechanism m numbers, their value for the first
unit, then their additional value for a second, a third and so on. This environment introduces
two new challenges: Now the revenue-optimal mechanism is not known, which means that we
will have to compare the expected revenue of any mechanism we propose directly against the
expected optimal social welfare, which is an immediate upper bound on the expected revenue
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of any individually rational mechanism. Furthermore, in this environment VCG is not imple-
mentable as a DA auction [18, Section 7|. This means that even the expected social welfare
of the optimal mechanism for that objective is not very close to the expected optimal social
welfare, let alone the expected revenue. Our approach to this environment was quite novel:
Intuitively, the issue with ‘conventional’ DA auctions for this environment is that for subse-
quent units, DA auctions need to charge a higher price in order to ensure truthfulness. When
bidders are submodular however, their value per unit decreases. This means that either the
prices of the initial units will be too low, and a lot of potential revenue will be ‘left on the
table’ for the bidders, or the prices will be too high initially and a lot of units will remain
unsold. In order to get around this problem, we propose the unit bundling mechanism class:
Each bidder is offered a specific bundle of units, at a specific total price, and they can either
accept or decline their offer. The parameters of any mechanism from that class are the bundle
size of each bidder and the corresponding asking price for that bundle. In order to compare the
expected revenue of the optimal mechanism from this class against the optimal social welfare,
we use the expected social welfare of the optimal fixed allocation as an interface: We compare
separately the expected revenue of the optimal mechanism from the unit bundling class against
the expected social welfare of the optimal fixed allocation and then we compare the expected
social welfare of that allocation against the expected social welfare of VCG. After this the only
thing left to show is that it is possible to learn those optimal bundle sizes and reserve prices.
To do this, we proved that the parameter space can be broken into regions where the revenue
is linear and used Balcan’s sample complexity framework to bound the pseudo-dimension of
the class. Putting these together, we upper bounded the sample complexity of learning a DA
auction that, provided the bidders’ distributions are Sub-Gaussian, achieves expected revenue
close to the expected Social Welfare of VCG, minus some small additive terms.

Finally, we studied how these results change in the case that the number of samples is severely
restricted. In the case of a multi-unit auction with budget-additive bidders, we were heavily
inspired by [29]. In that paper, Hartline and Roughgarden introduced the notion of commensu-
rate mechanisms for binary environments. They proved that if a mechanism is commensurate
with another, then the first achieves at least half the expected revenue of the second. In this
thesis we extended the notion of commensurate mechanisms to arbitrary single-parameter en-
vironments in the most natural way, and similarly proved that the same revenue property still
holds. Using this notion of commensurate mechanisms, we introduced a new DA auction that,
using a single sample, achieves on expectation at least one fourth of the expected revenue of
Myerson. For multi-parameter environments, our proposed mechanism can be described quite
simply: Use one sample to determine an approximation of the optimal bundle sizes for every
bidder and a second one to determine the asking prices. The proof that the resulting bundle
sizes using a single sample will be close to optimal with respect to social welfare was done from
scratch. The proof that those reserve prices are close to the optimal ones was an application of
one of the main results of [31]. The resulting mechanism achieves on expectation, using only
two samples, an almost 0.589-approximation of the expected revenue of the optimal mechanism
from the unit bundling class.
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Organization of the Thesis

In chapter 3 we will make a brief introduction to Mechanism Design, going over fundamental
definitions and theorems. We will overview the notions of dominant strategy, truthfulness and
the Rewvelation Principle. For single-parameter environments, we will explain the Second-Price
Auction, Myerson’s Lemma and the Myerson Mechanism. For multi-parameter environments
we will overview the basic valuation classes and their relationship as well as the VCG mecha-
nism.

In chapter 4 we will introduce the reader to some of the most recent trends in mechanism
design. In the first half of this chapter we will make a brief introduction to PAC learning and
the notion of uniform convergence and how these can be applied to automated mechanism
design. Then we will overview the notions of generalization and representation error bounds,
and explain how these two can be used together to establish what are called sample complexity
bounds. Finally, we will present the main results from Balcan’s sample complexity framework
[12]. In the second half of this chapter we will present deferred-acceptance auctions in more de-
tail. We will formalize their definition and their remarkable incentive properties and overview
their power and limitations.

All our contributions are included in chapters 5 to 7. In chapter 5 we study single-parameter
environments. First, we show how for multi-unit auctions with budget-additive bidders t-level
auctions are implementable as DA auctions, which means that we immediately get an upper
bound on the sample complexity of learning revenue-maximizing DA auctions for this environ-
ment. Then, we introduce the class of extended t-level auctions and upper bound the sample
complexity of learning revenue optimal auctions for environments with polymatroid constraints
using this mechanism class. In chapter 6 we introduce the a priori optimal mechanism and
the unit bundling mechanism class. We show that this mechanism has expected revenue close
to that of VCG. Then, using Balcan’s framework to bound the pseudo-dimension of the unit
bundling class and the a priori optimal mechanism as an interface between that class and VCG,
we upper bound the sample complexity of learning auctions from that class with high expected
revenue. Finally, in chapter 7 we explore how the results of both of the previous chapters
change in case where the number of samples is severely restricted.
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Chapter 3

Basics of Mechanism Design

First we will present some fundamental definitions in the area of mechanism design as well as
the most basic mechanisms for single and multi-parameter environments.

3.1 Preliminaries

The basic setup: Assume that there are n agents participating in the mechanism, and let O
be the set of feasible outcomes. Each agent ¢ has a private valuation function v; : O — Ry,
representing her value for each possible outcome, and reports her bid b; : O — Ry to the
mechanism. After collecting the bids, the mechanism uses a function f : b — O, called the
allocation rule, which maps the bid profile, b = (b1,ba,...,by,), to an outcome, and a function
p: b — R, called the payment rule, which determines the payments of all bidders. Any
deterministic mechanism is uniquely defined by its pair of functions (f, p).

Notation: By x_; we express the vector & with its i—th coordinate removed, i.e.
b*i = (b17 b27 ) bi*la bi+17 ey bn)

Definition 3.1. (Quasi-Linear Utility, [3]). In a mechanism (f,p) we say that the utility
functions of all players are quasi-linear if:

u; = v;(f(b)) — ps(b) Vi€ [n] (3.1)
where b is the bid profile of the agents and [n] = {1,2,...,n}.

Note: In all of our work, we assume that all agents have quasi-linear utilities. This is standard
in mechanism design.

Definition 3.2. (Dominant Strategy). A bidding strategy b; is dominant if it maximizes
agent i’s utility, regardless of the strategies b_; of the other agents. Formally:

0i(f(bi, b-i)) — pi(bi, b—) > vi(f(b},b-;)) — pi(b}, b—;) (3:2)
for every other strategy b_; of agent i, and every strategy profile b_; of the other agents.

A mechanism is called truthful if for every agent, truthtelling is a dominant strategy. Formally,
we have:
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Definition 3.3. (Truthfulness, [2]). Let (f,p) be a mechanism. Then, mechanism (f,p) is
truthful if for all i € [n] and for every v} it holds that:

vi(f(vi,v_3)) = pi(vi,v_i) > vi(f(vj,v_i)) — pi(v,v_;) (3.3)

When an agent enters a mechanism, it is important for her to know that her participation in the
mechanism cannot result in her having negative utility. Mechanisms satisfying this property
are called individually rational. Formally:

Definition 3.4. (Individually Rational, [2]). A mechanism (f,p) is individually rational
if for all i € [n] and for all valuation profiles v = (v1,va,...,Uy), it holds:

vi(f(v)) —pi(v) 20 (3-4)

Definition 3.5. (Dominant Strategy Incentive Compatible). A mechanism is Dominant
Strategy Incentive Compatible (DSIC) if it is truthful and individually rational.

Assume that some mechanism (f, p) is non-DSIC, in the sense that every agent has a dominant
strategy, but that strategy might not be truthtelling. The question that naturally arises is
whether (f,p) can be simulated by another mechanism, (f’,p’), such that (f’,p") is DSIC. The
answer to that question is positive, and this result is called the Revelation Principle. Formally,
we have:

Theorem 3.1 (Revelation Principle). For every mechanism (f,p) in which every agent has a
dominant strategy, there is an equivalent direct-revelation DSIC mechanism (f',p’).

Proof. From our assumptions, every agent has a private valuation v; and a dominant strategy
$;(v;). This means that each agent would declare her valuation as s;(v;) to the mechanism
(f,p). We can now construct an equivalent mechanism (f’,p’) that accepts each agent’s bid
b;, applies the function s; on the declared bid b; for every agent i € [n| and then outputs the
same allocation and payments as (f,p) on those transformed bids. Formally, we can define
F(b) = F(s(b)) and p'(b) = p(s(b), where s(b) = (s1(b1), 52(b2); - - -, 5 (b).

As a result, an agent ¢ who has private valuation v; and dominant strategy s;(v;) would only
reduce her utility by reporting a bid other than s;(v;) pm (f,p), and therefore a bid other than
b; on (f’,p’). Hence, mechanism (f’,p’) is DSIC. O

Up to this point, we have not mentioned anything regarding the measure of efficiency of mecha-
nisms. Naturally, efficiency varies according to the mechanism designer’s wishes. For example,
if a government is to decide about the construction or not of a public project, then the appro-
priate efficiency measure is the total welfare of the community. If a seller was to auction her
car, she probably would want to earn as much money from the sale as possible. In this case,
the appropriate efficiency measure would be the revenue of the mechanism. Formally:

Definition 3.6. (Social Welfare). Let (f,p) a mechanism and o € O its output on some
valuation profile. Then, the Social Welfare of that outcome is defined as:

SW = Zvi(o) (3.5)

The revenue of the mechanism is defined naturally as the sum of the payments made to the
mechanism by all participating agents. Formally:
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Definition 3.7. (Revenue). Let (f,p) be a mechanism and b € R the bid profile of the
agents. Then, the revenue on this bid profile is defined as:

REV = En: pi(b) (3.6)
=1

Finally, we are going to define the concepts of approximation and randomized algorithms,
which are widely used in Mechanism Design:

Definition 3.8. (Approximation in Mechanism Design, [3]). We say that a mechanism
p-approximates the optimal solution if: ALG > p- OPT, where p < 1, ALG is the efficiency
of the mechanism and OPT is the efficiency of the optimal solution, for the given efficiency
measure.

Definition 3.9. (Randomization in Mechanism Design,[3]). We say that a randomized
mechanism p-approximates the optimal solution if: E[ALG] > p- OPT, where p < 1, ALG is
the efficiency of the mechanism and OPT is the efficiency of the optimal solution, for the given
efficiency measure.

3.2 Single-Parameter Environments

3.2.1 Single-item Auctions

Suppose that we want to design an auction for an indivisible item, so as to maximize the Social
Welfare, i.e. allocate the item to the agent that wants it the most. As hinted earlier, we cannot
give the item for free, nor charge the winning agent her bid, as in both these scenarios agents
have incentives to misreport their true valuations, and this can lead to inefficient allocations.
Thus, we have to find the appropriate payment rule, so that no agent can increase her utility
by lying about her valuation. The solution to this problem is known in the literature as the
Second-Price or Vickrey Auction: In this auction, every bidder submits her bid. Once all bids
are collected, the highest bidder gets the item, and pays for it a price equal the second highest
bid.

Theorem 3.2. The Second-Price Auction is DSIC.

Proof. Let n be the number of agents that participate in the auction. Fix an arbitrary agent
i, and let v; be her valuation for the item for sale. It suffices to prove that it is a dominant
strategy for bidder i to bid her true valuation, i.e. b; = v;. Let b_; be the bid profile of the
other agents, and let B be the highest bid among them, i.e. B = max;;b;. There are 2
distinct cases:

e v; < B: If b; < v; then the outcome of the auction remains the same as if agent ¢ had
bid v;, and she does not get the item. Her utility then remains zero, as it would have
been if she had instead bid her true valuation. If b; > v; there are 2 possible outcomes:
If it still holds that b; < B bidder 7 again doesn’t win the item and her utility remains
0. If on the other hand it holds that b; > B then bidder 7 will win the item, and pay a
price equal to the second highest bid, B. Now her utility is v; — B < 0. Thus, if v; < B,
agent ¢ cannot increase her utility by misreporting her valuation.

e v; > B: If b; > v; then the outcome of the auction remains exactly the same as if bidder
¢ had bid her true valuation: Bidder ¢ wins the item, and she pays a price equal to the
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second highest bid, B. If on the other hand b; < v; there are 2 possible outcomes: If it
still holds that b; > B then bidder ¢ still wins the unit, and pays a price of B, so her
utility is unchanged. If however b; < B, then bidder i no longer wins the item, and she
pays nothing.

In any case, it is clear that agent ¢ cannot increase her utility by misreporting her valuation,
regardless of the bids of the other agents. Thus, truthtelling is a dominant strategy and the
mechanism is DSIC. O

3.2.2 Multi-Unit Auctions and Myerson’s Lemma

Now suppose that we have multiple, or even infinite copies of the same item available for
sale. These auctions are called multi-unit auctions. This time agents report their “valuations
per unit” of the good. A modification of the second-price auction could also work in this
environment. A question that naturally arises in practice is the following: If we want to
implement a different allocation rule f(-), is there a corresponding payment rule p(-) that
would make the resulting mechanism (f,p) DSIC? The answer to this question was given by
Myerson. Formally:

Theorem 3.3. (Myerson’s Lemma, [6]). A mechanism (f,p) for a single-parameter environ-
ment is DSIC if and only if, for every bidder i with bid b; and bid profile b_; by the other
players, it holds:

e fi(bi,b_;) is non-decreasing in its first argument.

e There is a unique payment rule making the mechanism (f,p) DSIC. That rule is given
by the formula:

b;
pi(bi7b,i):/0 zdizfi(z,b,i)dz (3.7)

3.3 Multi-Parameter Environments

In the previous section, we restricted our attention to cases where bidders only reported a single
number to the mechanism. Informally, this is the definition of single-parameter environments.
But what if we are facing a more complicated problem, e.g. one where there are multiple
different items to be auctioned, and bidders have different valuations for different sets of items?
What would an appropriate payment rule in this case look like, in order to ensure truthfulness?
A reasonable assumption would be that running a separate Second-Price Auction for each item
would result in a DSIC mechanism, since as we discussed earlier, the Second-Price Auction
is DSIC. This is true if bidders have additive valuations, meaning that for every bidder, her
valuation for a set of items is simply the sum of that bidder’s valuations for the items contained
in that bundle. However that is not generally the case: For complex bidder valuations, running
separate Second-Price Auctions for each item is not a DSIC mechanism. It is apparent that
when designing a mechanism in such settings, careful consideration of the bidders’ valuations
is required.

3.3.1 Combinatorial Auctions

We are now ready to define the notion of a Combinatorial Auction. Informally, these are a
special case of a multi-parameter environment defined earlier, where the valuation function of
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every bidder is defined over the set of all 2™ subsets of the m different items. In this case, each
different outcome is uniquely defined by specifying for every item, which bidder, if any, gets
it. Thus, the sets of possible outcomes is exactly (n+ 1)™, and different from the set of values
that every bidder must report to the mechanism. The reason for this differentiation behind
the set of declared values and possible outcomes is that every agent is indifferent to who gets
an item, if it is not her.

Definition 3.10. (Combinatorial Auction). A Combinatorial Auction consists of a set
U of m distinct items to be allocated to n bidders. FEach bidder i has a valuation function
v; : 2Y — R,. Valuations functions v are assumed to be nmormalized, i.e. v(()) = 0, and
non-decreasing, i.e. v(S) < v(T) for all S CT. This last property is called free disposal.

3.3.2 Valuation Classes

In this section we are going to give some basic definitions about valuation classes. Valuation
classes are strongly correlated with the difficulty of the mechanism design problem. Let v be
a valuation function, and U the set of m, possibly distinct, items.

Definition 3.11. (Additive Function). A set function v : 2V — R, is additive if for every
SCU:

v(8) = v({s}) (3.8)

jeS

This is the least general class of valuation functions and implies that there are no dependencies
between the items of any possible set. As discussed earlier, if the mechanism design goal is to
maximize social welfare, in this setting the problem can be solved optimally through parallel
second-price auctions.

Definition 3.12. (Gross Substitutes Valuation). An agent is said to have a gross sub-
stitutes valuation if, whenever the prices of some items increase and the prices of other items
remain constant, the agent’s demand for the items whose price remain constant weakly in-
creases.

The above definition is rather informal. However, this thesis does not involve gross substitutes
valuations, therefore the formal definition is deferred since it requires some more technical
background.

Definition 3.13. (Submodular). A set function v : 2V — R, is submodular if for every
SCT CU and item j ¢ S it holds:

v(SU{j}) —v(S) <o(TU{j}) —v(T) (3.9)

Submodularity can be seen as the discrete analog of concavity. A more intuitive interpretation
is that agents have “diminishing returns” for being allocated more items. Submodular valuations
arise naturally in many economic settings.

Definition 3.14. (Fractionally Sabadditive (XO0S)). A set function v : 2V — R, is
fractionally subadditive if there exist additive functions wy : 2Y — R, such that for every
SCU:

v(S) = ml?xwk(S) (3.10)
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Definition 3.15. (Subadditive). A set function v : 2V — R is subadditive if for each subset
S and T of U:

v(S)+v(T) >v(SUT) (3.11)
If all agents participating in a market have subadditive valuations, then the combination of

any two bundles of items cannot increase their value. This is also called a complement-free
market.

The main reason we mentioned these valuation classes is the natural relation between them:

Additive C Gross Substitutes C Submodular € XOS C Subadditive (3.12)

Figure 3.1: Relation between valuation function classes

3.3.3 Vickrey-Clarkes-Groves Mechanism

Based on the diversity of possible valuation classes of the agents, one may assume that in
complex settings with general valuation functions maximizing the Social Welfare might be
impossible. Perhaps surprisingly, there exists a DSIC mechanism such that in any setting and
for any valuation profile, it maximizes the Social Welfare. To illustrate this mechanism, we’ll
first define a multi-parameter environment in its most abstract form:

e There are n agents.
e There is a set O of possible outcomes.

e Every agent has a private valuation function v;(0),Vo € O.
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In any such environment, there is a DSIC mechanism that maximizes Social Welfare when
the agents utilities are quasi-linear. This mechanism is called the Vickrey-Clarkes-Groves
mechanism (VCG). Formally:

Theorem 3.4. (VCG mechanism, [7, 8, 9]). In every general mechanism design en-
vironment, there is a DSIC Social Welfare-mazimizing mechanism (f,p) with allocation and
payment rules defined as follows:

o f(b) = 0" = argmaxeeo >_;_ bi(0)
e pi(b) = mazeeo Ej;éi bj(0) — Ej;éi bj(0")
Intuitively, each agent ¢ is asked to pay the difference that her participation in the mechanism

caused to the Social Welfare of all the other agents except her. This is known as the externality
of agent 1.

Proof. Fix an arbitrary agent 4, and let v; be her valuation. Our first goal is to prove that it is
a dominant strategy for agent i to bid her true valuation function, i.e. b; = v;. Let b_; be the
bid profile of all the other agents except ¢. From the definition of the allocation and payment
rules, it follows immediately that the utility of bidder i is:

ui = 0i(0") = pi(0") = |vi(0") + D b;(0%) | — max D by (o) (3.13)

J#i J#i
Agent i cannot influence the final term of the right hand side of equation (3.13), because
that term only depends on the bids of the other agents. Therefore, in order to increase her

utility, agent ¢ should maximize the first of the right hand side of equation (3.13). However,
by the definition of the allocation rule, the term [vi(o*) + 220 (o*)} is maximized when

agent ¢ reveals her true valuation profile. Misreporting can only lead to outcomes with lower
welfare, and lower utility for agent i. Thus, it is a dominant strategy for every agent i to bid
her valuation function. Finally, it is easy to verify that truthtelling guarantees non-negative
utilities for all agents, since the maximization space for the first term of the RHS of equation
(3.13) is strictly bigger than that of the negative term. Thus, the VCG mechanism is DSIC. [

Despite its nice theoretical properties, VCG is rarely used in practice. There are many valid
reasons behind VCG’s obscurity. Suppose we need to create a combinatorial auction for some
setting with n agents and m items available for sale. For m items, there are 2" different
possible item bundles. VCG can indeed find the socially optimal solution, but in order to
do so, each agent must declare her value for each of those bundles. Therefore, each agent
needs to calculate, and communicate to the mechanism, her value for 2™ bundles. It follows
immediately that the amount of values that each agent needs to communicate to the mechanism
grows exponentially with the number of items available. And this is a communication bound:
It holds even if P = NP.

But VCG does not suffer only from the communication problem that we just described: It can
only be implemented in polynomial time for very specific classes of valuations functions. In
general environments, the time required for implementing VCG grows exponentially with the
number of goods available in the auction.

Finally, even though we proved that VCG is DSIC, meaning that for every agent it is a dominant
strategy to bid her true valuation, VCG is vulnerable to collusion among agents: This means
that if a group of agents cooperated, they could possibly all misreport their valuations in such
a way that strictly increased the utility of every agent in the colluding group. The interested
reader can learn more in [1].
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Example 3.1. Let’s take as an example a case where there are 3 agents, and the municipality
is trying to decide whether to build a school or a public pool in some plot of land. Agents 1
and 2 have are parents and don’t like swimming very much, so it is vi(school) = va(school) = 5
and vy (pool) = va(pool) = 0. Agent 3 on the other hand has no children, but she is an avid
swimmer: vs(pool) = 9 and vs(school) = 0. If all agents bid their true valuations, then VCG
would decide that a school should be built, and the payments would be py = ps = 4 and p3 = 0.
If however, agents 1 and 2 colluded and reported vi(school) = vi(school) = 10 then again,
the VCG mechanism would decide that a school should be built, but now the payments would
instead be pj = phy = ps = 0. Perhaps surprisingly, by bidding more, agents 1 and 2 and up
paying less.

This example illustrates one more potential issue with VCG: Even for relatively simple envi-
ronments, VCG may exhibit bad revenue performance. In some cases, like a public project or
any other auction organized by the public sector, the revenue of the mechanism may not be
a major concern. In most practical applications however, the erpected revenue is one of the
primary factors driving mechanism design.

3.4 Revenue Maximization and Bayesian Analysis

In the previous section we saw that even though VCG maximizes social welfare, we cannot
provide strong guarantees about its revenue. One may wonder why we started our analysis
with the goal of welfare-maximization, and not the perhaps more natural objective of revenue-
maximization. This is a common convention in most Algorithmic Game Theory courses, and
the main reason behind this choice is pedagogical: social welfare is special. In every single or
multi-parameter environment, there is a DSIC mechanism for maximizing social welfare ex post,
intuitively meaning as well as if the auction designer knew the private valuations of all agents
in advance. This is a very strong performance guarantee, and it cannot generally be achieved
for most other possible objective functions. This is also the case for revenue maximization.
The following example is illuminating. Suppose there is only one agent, and one item available
for sale. In this case, the space of DSIC, direct-revelation mechanisms is very simple: The
auctioneer posts a fixed price, also called the reserve price for the item. If the bidder’s valuation
for the item is higher than that price, then she buys the item at that price, else the item remains
unsold. This family of mechanisms is called posted-price mechanisms.

How can we reason about their revenue performance? If the posted price is higher than the
value of the agent for the item, then she won’t buy it and the revenue of the mechanism is
trivially zero. If on the other hand the posted price is lower than the value of the agent for
the item, then she will buy it, and the revenue of the mechanism is exactly equal to the posted
price. Therefore, as long as the agent buys the item, the higher the posted price, the higher
the revenue. It becomes apparent that unlike the objective of welfare maximization, for the
objective of revenue maximization, different auctions do better on different inputs.

3.4.1 Bayesian Analysis

For this reason, comparing different auctions for revenue maximization requires a model to
reason about trade-offs across different inputs. The most prevalent and well-studied model for
doing this is average-case or Bayesian analysis. The crux of the matter is that every bidder
i’s valuation is a sample from some distribution F;. The auctioneer doesn’t know the private
valuations of the bidders, but knows their distributions. In practice, these distributions could
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have been derived from data from past auctions. The aim of the auctioneer now is to maximize
the expected revenue of the auction.

Let’s focus on single-parameter environments. If we restrict our attention to DSIC, direct-
revelation mechanisms then from Myerson’s lemma we know the unique payment rule p for
any monotone allocation rule f. Therefore, the problem of revenue maximization for single-
parameter environments reduces to finding the allocation rule that maximizes the expected
payments according to Myerson’s Lemma, and ensuring that that allocation rule is indeed
monotone.

If we assume truthful bids (because we only consider DSIC mechanisms), express the revenue
of the mechanism as the sum of expected payments according to Myerson’s lemma and take
linearity of expectations over the valuations of the players, after some manipulation of the
resulting integrals, we have:

n n

Zpi(v)] = ZEV pi(v)] = > _Ey[¢i(vi) - 2:(v)] = Ey [Z ¢i(vs) - Iv:(")] (3.14)

=1 i=1

E,

The RHS of formula (3.14) is the exact expected revenue of a mechanism with allocation rule
x = (x1,%2,...,%,). If we remove all the ¢’s from the above equation, we are left with the
expected social welfare of the auction. For this reason, this quantity is called the expected
virtual welfare of an auction. For the ¢’s, formally we have:

Definition 3.16. (Virtual Valuation Function, [3]). The virtual valuation ¢;(v;) of
bidder © with valuation v; drawn from the distribution F; is:

1 — Fi(v)

¢i(vi) = v; o) (3.15)
An important remark is that the virtual valuation of an agent depends on her valuation and
her distribution, but not on those of the other agents.
From formula (3.14) it becomes clear that if we want to maximize the expected revenue, we
have to choose an allocation rule that maximizes the expected virtual social welfare. But we
havenyet made sure that the resulting mechanism is truthful. In order for that to be the
case, from Myerson’s lemma the allocation rule has to be monotone, meaning that if an agent
bids more, her allocation can only increase. From formula (3.14) it follows immediately that
an equivalent condition is that the virtual valuation function of every bidder is monotone
non-decreasing with respect to her bid. Formally:

Definition 3.17. (Regular Distribution, [3]). A distribution F is reqular if the corre-

sponding virtual valuation function ¢v) = v — 1}5)(;)) is nondecreasing.

Note: In some books, for a distribution to be called regular the corresponding virtual valuation
function has to be strictly increasing. In most applications however, that assumption can be
relaxed to allow non-decreasing virtual valuation functions.

An important subclass of regular distributions that arises often in practice is monotone hazard
rate distributions. For these distributions, the second, negative term of the virtual valuation
function is by itself monotone non-decreasing. Formally:

Definition 3.18. (Monotone Hazard Rate Distribution (MHR), [3]). A distribution

I satisfies the monotone hazard rate condition if 1fg’)v) s monotone non-decreasing in the

support of the distribution.
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Pictorially, a MHR distribution has tails that decay at least as fast as those of an exponential
distribution.

Now we are ready to define the mechanism that maximizes expected revenue in single-parameter
environments. This is commonly referred to as Virtual Surplus Mazimization mechanism
(VSM) or simply Myerson mechanism. As we hinted to earlier, for the mechanism to be DSIC
the valuation distributions of all bidders have to satisfy the regularity condition. Alternatively,
they can be ironed to make them monotone, while at the same time preserving the virtual wel-
fare of the auctions that matter. For a textbook treatment of the topic, we refer the interested
reader to [3, Chapter 3.

Definition 3.19. (Myerson Mechanism, [10]). Consider an arbitrary single-parameter
environment and valuation distributions Fy, Fy, .-+ F,. The virtual welfare-mazimizing alloca-
tion rule is now defined as that which, for for each input v chooses the feasible allocation that
magzimizes the virtual welfare Y- | ¢;(v;)xi(v). If every distribution F; is reqular, then this
allocation rule is monotone, Coupling it with the unique payment rule of Myerson to meet the
DSIC constraint, we obtain the revenue-optimal auction.
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Chapter 4

Frontiers of Mechanism Design

In this chapter we will overview some of the more modern approaches to mechanism design
that have become prevalent in the last years.

4.1 PAC Learning and Automated Mechanism Design

As we alluded to in the previous chapter, the design of revenue-maximizing mechanisms is a
notoriously challenging problem with tremendous real-world impact. Namely, even for 2 items
available for sale and 2 bidders, the revenue maximizing mechanism is not known. Addition-
ally, even for the settings where the revenue-maximizing mechanism is known, in order for it
to work it requires knowledge of the distribution over the bidders’ valuations. In an attempt
to circumvent these two fundamental issues, the idea of using samples to guide the design of
mechanisms was born. Sample-based mechanism design was first introduced in the context
of automated mechanism design. In automated mechanism design, the goal is to design algo-
rithms that take as input information about the set of bidders and return a mechanism that
maximizes some objective function, such as revenue [32, 33, 34]. In the early days of automated
mechanism design, the input information about the bidders was an explicit description of the
distribution over their valuations. The support of this distribution is often doubly exponential,
rendering obtaining and storing it prohibitive. In response, sample-based mechanism design
was introduced where the input is now a set of samples from this distribution [35, 36, 37].
The mechanism designer’s goal is to field a mechanism with high expected revenue on the
distribution over the agents’ valuation functions. One of the most common uses of samples
in automated mechanism design is for the mechanism designer to pick some mechanism class
that should theoretically “perform well” for the given setting, calculate the empirical revenue
on those samples for different mechanisms of that class and then field the empirically optimal
mechanism, i.e. the one that performed the best on the samples. Unfortunately, if the set of
mechanisms that the mechanism designer optimizes over is complex, a mechanism may have
high empirical revenue on a sufficiently small set of samples but low expected profit.

The solution to this problem is given by a framework of learning theory called probably approx-
imately correct learning (PAC learning). In this framework, the learner receives some samples
and is tasked with selecting a generalization function, called the hypothesis, from a certain
class of possible functions. The learner’s goal is that, with a high probability (the “proba-
bly” part), the selected function will have low “generalization error” (the approximately part),
meaning that its expected performance in the real world will be close to its performance in the
samples. But how can this framework be applied to automated mechanism design? Suppose
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the auctioneer is trying to field the optimal mechanism from some class of mechanisms C. For
any mechanism in that class, we can express its revenue on any valuation profile as a function
only of v, i.e. for any mechanism M € C, Rev(M,-) is a function only of v. Then, instead
of the auctioneer trying to maximize directly over the mechanism class C, she can instead
maximize over the set of their corresponding revenue functions, {Rev(M,:) | M € C} and
simply field the mechanism with the best performing revenue function from that set. Because
those revenue functions are, from a mathematical standpoint, simple scalar functions, the PAC
learning framework can be applied to them and provide statistical guarantees about how close
their performance in the real world will be to what it was in the samples. Those statistical
guarantees are dependent on the number of samples used to guide the selection of the revenue
function, and therefore the mechanism, and and some measure of the intrinsic complezity of
the set of functions the mechanism designer maximized over. In this section we will overview
those complexity measures and how they affect the statistical guarantees that PAC learning
can provide.

4.1.1 Pseudo-Dimension and Connection to Learning Theory

Perhaps the first concrete effort in computational learning theory of explaining the learning
process from a statistical point of view was developed by Vladimir Vapnik and Alexey Chervo-
nenkis during 1960-1990, in the aptly named Vapnik-Chorvenkis theory. At the heart of this
theory lies the definition of VC dimension.

Definition 4.1 (VC dimension). A classification model f with some parameter vector 6 is said
to shatter a set of data points (x1,xa,...,x,) if, for all assignments of labels to those points,
there exists a @ such that the model f makes no errors when evaluating that set of data points.
The VC dimension of a model f is the cardinality of the largest set that can be shattered by f.

The keen reader may have noticed that the VC dimension definition referred to a classification
problem. But in automated mechanism design the problem of revenue-maximization that
the mechanism designer faces is real-valued. The real-valued analog of VC dimension was
introduced by Pollard in 1984 and is called pseudo-dimension. Formally:

Definition 4.2 (Pseudo-Dimension, [5]). The pseudo-dimension of a function class F' is the
cardinality of the largest set S = {x1,29,...,xN} and respective thresholds y1,ys,...,yn such
that all 2V above/below patterns can be achieved by functions f € F.

Intuitively, the idea is to convert the real-valued functions back to a binary classification model,
and use VC dimensions. To do that, we supplement the sample set with appropriately-chosen
thresholds for each sample, and now the binary classification of each sample is whether the
real-valued function is above or below the corresponding threshold.

The main theorem bridging the gap between automated mechanism design and computational
learning theory is Pollard’s uniform convergence theorem. If applied to mechanism design, this
theorem provides a direct bound on the generalization error of a mechanism class, meaning for
any mechanism in the class, it upper bounds how far off its empirical revenue on the samples
can be from its actual expected revenue, in relation to the size of the sample set and the
pseudo-dimension of the class. Formally:

Theorem 4.1 (Uniform Convergence, [12]). For any 6 € (0,1) and any distribution D over v,
with probability at least 1 — & over the draw {v*,v2,...vN} ~ D", for any mechanism M € C,

~o(o/TRO o [FLR)
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where U: The maximum revenue achievable by mechanisms in C

4.1.2 Generalization and Representation Error Bounds

In the previous subsection we explored how the mechanism designer can utilize the sample
complexity of a mechanism class to effectively prove that the class generalizes well, meaning
that for any mechanism in the class, its empirical revenue in the real world is close to its
empirical revenue in the samples. The keen reader may then wonder why the mechanism
designer wouldn’t then always optimize over some fixed mechanism class with very low pseudo-
dimension, thus ensuring that the generalization error bound is very low. The answer is that in
this case, the mechanism class may exhibit high representation error: Indeed for any mechanism
in the class its performance in the real world is similar to its performance in the samples, but
the class probably only contains mechanisms that perform poorly, both in the samples and in
the real-world.

When trying to provide statistical guarantees for the performance of a mechanism class, another
component equally important to the generalization error bound of the class is the representation
error bound. Informally:

Definition 4.3. (Representation Error, [13]). The representation error of a mechanism
class C is the amount of revenue sacrificed, compared to the optimal mechanism, by restricting
the search space to auctions in C.

The representation error depends on the setting in question each time, and in the distributions
of the bidders valuations. This is the central challenge faced in automated mechanism design:
The mechanism designer needs to identify, for the setting in question each time, a mechanism
class C that balances representation error, i.e. the revenue sacrificed, with generalization error,
i.e. the learning error incurred when learning auctions from that class. If the mechanism
designer combines those 2 losses, she can then reason about how far-off the expected revenue
of the mechanism that she chose is from the expected revenue of the optimal mechanism, in
relation to the number of the samples used. Equivalently, the mechanism designer can calculate
how many samples are required so that the empirically optimal mechanism on the samples has
expected revenue that is a (1 — €)-approximation of the optimal one. This is known as the
sample complexity of the mechanism class.

4.1.3 Balcan’s Sample Complexity Framework

One of the most impactful papers in automated mechanism design was the 2018 paper “A
General Theory of Sample Complexity for Multi-Item Profit Maximization” by Maria-Florina
Balcan et al. In this paper the writers explored in depth how the mechanism designer can use
intrinsic properties of the structure of the mechanism class to prove strong sample complexity
bounds. This process requires a sharp understanding of the interplay between mechanism
parameters and buyer values, and how this interplay affects the final result of the mechanism.
Then, they applied their theoretical results to many not well-understood mechanism classes,
proving new sample complexity bounds or improving existing ones. In this thesis we will utilize
their theoretical results in a similar fashion in order to prove sample complexity bounds for
the mechanism classes that we introduce.

The first concept the writers introduced in this paper was that of delineable mechanism classes.

Definition 4.4 ((d,t)-delineable, [12]). We say a mechanism class C is (d,t)-delineable if:

1. The class C consists of mechanisms parameterized by vectors p from a set P C R?; and
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2. For any v in the support of the distribution D over buyers’ valuations, there is a set H of
t hyperplanes such that for any connected component P’ of P\ H the function Rev(p,v)
is linear over P'.

This is a novel way of viewing the intrinsic complexity of the structure of a mechanism class:
Fix any valuation profile v in the support of the distribution of the bidders’ valuations. The
revenue on that fixed valuation profile can be viewed as a function of only the parameter vector
p of the mechanism in that class. Then, the parameter space can be broken into subregions
where the profit on that valuation profile is linear in p. Intuitively, the higher the number
of those subregions, the higher the expressive capabilities, and therefore complexity, of the
mechanism class. Balcan et al. formalized this intuition in the following theorem:

Theorem 4.2. If C is (d,t)-delineable, the pseudo-dimension of C is O (dlog(dt)).

4.2 Deferred-Acceptance Auctions

4.2.1 Preliminaries

The framework of Deferred Acceptance (DA) auctions was introduced by the work of Milgrom
and Segal ([14]). This family of mechanisms was initially restricted to single-minded bidders:
Let N be the set of bidders and B; the bid space of bidder i, i.e. the total range of possible
values for her bid. In the auction, each bidder can either “win”, which means that she is
serviced, or “lose” which means that she is not serviced and pays nothing. Every bidder has
zero value for losing, and some value for winning, which is what she declares to the mechanism.
The preferences of each bidder only depend on whether she wins or loses, and how much she
has to pay in case she wins, i.e. they don’t depend on the set of the other winning bidders.
Informally, in their first introduction, deferred-acceptance auctions were a family of adaptive,
backwards-greedy algorithms for any such single-minded setting.

Definition 4.5 (Deferred-Acceptance Auction, [15]). A deferred-acceptance auction is a par-
ticular kind of mechanism described by a set of scoring functions, as follows. The set of bidders
that have not yet been finalized by the mechanism are called active. For each set A C N of
active bidders and each bidder i € A, there is a scoring function s : B; x Bnya — Ry that is
nondecreasing in its first argument. The auction then operates as follows. Let Ay C N denote
the set of active bidders in stage t. Initialize Ay = N. For each t > 1, if the set of active
bidders constitute a feasible solution, then stop the auction and output A; as the set of winning
bidders, otherwise, Ai11 = Ay \ argmin;e 4, sf‘t (bi, bny a,) and continue.

Intuitively, at each round the deferred-acceptance auction is finalizing, i.e. removing from the
active set, the bidder that seems the least promising, according to her scoring function.

Up to this point we have not defined the payment rule of a deferred-acceptance auction. In a
sense, we don’t have to: The environment is single-parameter and the scoring functions mono-
tone non-decreasing in the bids of the respective players. Thus, for the auction to be DSIC,
the payments have to be the ones specified by Myerson’s Lemma. However, due to the special
structure of deferred-acceptance auctions, there exists an elegant algorithm for calculating the
payments of the winning bidders:
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Algorithm 2: Calculating Payments in DA Auctions

Result: For each winning bidder i € Ar, p? (b) is her payment.
1 pY < inf B; Vbidder i;
2 for each round t > 1 do

3 for each winning bidder i do

4 pt(b) + max{p’ ', inf{b] € B; : sf‘t (b5, bn\a,) > sj‘t (bj,bnya4,) for j €
A\ Ay }}

5 end

6 end

In words, each winning bidder pays the minimum she could have been and still not gotten
finalized in any round of the auction, holding the bids of the other bidders fixed. A more careful
inspection of the algorithm reveals a very critical property of deferred-acceptance auctions:
holding fixed the final set of winners A7, winning bidders’ payments depend only on the bids
of the losing bidders, by 4,, and not on the bids of the winning bidders b4,.. This implies that
no winning bidder can affect another winner’s payment, except by changing to a losing bid. In
this chapter we will explore in detail the importance of this property.

4.2.2 Clock Auctions and Equivalence to Deferred-Acceptance Auc-
tions

Most of the remarkable properties of deferred-acceptance auctions stem from the fact that they
are equivalent to clock auctions. Thus, in order for one to better understand those properties,
a brief introduction to clock auctions is tantamount. Informally, an (ascending) clock auction
proposes an increasing sequence of prices to each bidder, with each new offer followed by a
decision period, in which that bidder whose price was strictly increased can decide whether she
wants to exit or to continue in the auction. Bidders that have never exited are called active, and
those that have are called inactive. Bidders who decide to continue when their price is increased
are said to accept the new offer. When the mechanism terminates, the still-active bidders are
the winners of the auction, and they each pay their highest accepted price. The differentiating
factor between different clock auctions is their pricing functions, which determine the prices
offered to each bidder. Formally:

Definition 4.6 (Ascending Clock Auction, [15]). A period-t history consists of the sets of
active bidders in all periods up to period t, i.e. A' = (A1, As,..., A;) € (2N)! such that
Ay C A 1 C---CAy. Let H denote the set of all such histories. An ascending clock auction
is defined by a price mapping p : H — RN such that for all t > 2 and all A, p(At) > p(A*~1).
The clock auction initializes A1 = N. In each period t > 1, given history A%, it offers prices
p(AY) to bidders. If p(At) = p(A'™1), the auction stops and bidder i is a winner if and only if
i € A, and in that case she pays p;(A?). If p(A') # p(A*=1), then each bidder in A chooses
whether or not to exit the set of active bidders. Letting E C A; denote the set of bidders
who chose to exit, the auction continues in period t + 1 with the new set of active bidders
Air1 = A\ By and new history ATt = (At Apyq).

To complete the description of the auction as an extensive-form mechanism, we also need to
describe bidders’ information sets. General information disclosure is allowed in clock auctions:
bidder i observes some signal o;(At) in addition to her current price p;(At) in history A’

Even though the formal description of clock auctions is quite involved, the strategies that
bidders implement are, in most cases, simple. Intuitively, every bidder accepts the offer of the
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mechanism as long as it is below her threshold, which in this case is called her cutoff. Formally:

Definition 4.7 (Cutoff Strategy, [15]). A strategy for bidder i in a clock auction is a cutoff
strategy with cutoff b; if it specifies exit if and only if p;(At) > b;, for some b; > p;(N).

The reasoning behind the condition b; > p;(IV) is that every bidder accepts her opening offer,
as it is usually some arbitrarily small value.

Definition 4.8 (Finite Clock Auction). We say that a clock auction is finite if there exists
some T such that the auction stops by period T'.

Example 4.1. Let’s say we have 3 cinema tickets available for sale, and 5 bidders that all want
to go to the cinema. Bidder’s one through five value for watching the movie is 3,4,5,6, and 7
respectively. An ascending clock auction we could implement in this scenario is the following:
Every bidder is contesting one ticket. Initially, we offer a price of 0 to every bidder. As long
as the bidders that accept the current offer are more than 3 (the number of available tickets),
we raise the asking price by 1 and continue. When the active bidders that remain are less or
equal to 3 we stop, and each bidder pays the latest accepted offer. Then, the cutoff strategies
of the bidders are also very simple: Every bidder accepts the offer of the auction, as long as
that offer is less or equal to her value for watching the movie. In our example, bidder 1 will be
the first that declines the asking price, when the price becomes 4, and bidder 2 will exit second,
one period later, when the asking price becomes 5. The 3 remaining bidders will all accept the
asking price of 5, the auction will terminate, and each of them will pay a price of 5 for their
ticket.

As mentioned earlier, the reason for discussing clock auctions in this thesis is their equivalence
to deferred-acceptance auctions, and the fact that this is the source of some of the remarkable
properties of the latter. This equivalence was first highlighted by Milgrom and Segal when
they introduced the framework of deferred-acceptance auctions. The following 2 propositions
show exactly this equivalence.

Proposition 4.1 ([15]). For every deferred-acceptance auction with finite bid spaces and thresh-
old pricing, there exists an equivalent clock auction in which bidders are restricted to cutoff
strategies.

Proof. Given bid spaces By, Ba, ..., By, for each v € R and bidder i let v+ = min{b; € B; :
b; > v} and v~ = max{b; € B; : b; < v}. Let the opening prices be p;(N) = min B; for
each bidder i. Given a deferred-acceptance auction with scoring rule s, we can construct an
equivalent clock auction as follows: The price increase rule in the clock auction increases the
price offered to each lowest-scoring bidder by the minimal amount, while leaving the prices
unchanged for the other bidders:

p'(At) _ {pi(At1)+7 ifi e argminjeAt S;'qt (pj(Atil)apN\At (At)+)

pi(AP1) else. (4.2)

An important remark is that the clock auction maintains p;(A%) = p;(A*=1) Vi € N\ A,
effectively memorizing the prices rejected by the bidders who have quit the auction. Thus,
their cutoffs can be inferred as p;(A?)~.

The equivalence becomes apparent: First, for every history of the clock auction, the next set
of bidders to quit in the clock auction is the set of bidders who have the lowest score among
the set of active bidders, thus the set of winners is the same in both auctions. Additionally, if
any winning bidder had declined any lower price, she would have exited at that point, so each
bidder’s final clock price is the lowest cutoff she could have used and still won. O
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Proposition 4.2 ([15]). For every finite clock auction in which bidders are restricted to cutoff
strategies, there exists an equivalent deferred-acceptance auction with finite bid spaces and
threshold prices.

Proof. Given a finite clock auction P, we can construct bid spaces and and a scoring function
to create an equivalent deferred-acceptance auction. We take each bidder i’s space to be
B; =p;(h) : h € H, i.e. the set of possible prices agent i could face in the clock auction.
Next, we construct the scoring function in the following manner: Holding fixed a set of bidders
S C N, and their bids bg € N9, let A;(S,bs) denote the set of active bidders in the clock
auction at round t in which every bidder j € S uses cutoff strategy b; and every bidder from
N\ S never exits. Formally, initialize A;(S,bs) = N and iterate by setting

At+1(S, bs) = At(S, bs) \ {] €s: bj < pj(At(S, bs))} (43)

This gives an infinite sequence {A4;(S,bs)};=, but the sets start repeating at the point where
the clock auction stops.

Now for given A,by\4,% € A and b;, define the score of agent i proportional to how long she
would remain active in the clock auction if she uses cutoff strategy b; and all bidders in N \ A
use cutoffs by 4, while bidders in A\ {i} never quit:

(Note that the score is oo in the case that the auction stops with agent 4 still active.) This score
is by construction non-decreasing in b;. Also by construction, given a set A of active bidders, the
set of bidders to be rejected by the scoring function in the next round (arg min;e 4 57 (b;, by 4))
is the set of bidders who would quit the soonest in the clock auction given the inactive bidders
have used cutoffs by 4. If no more bidders would exit the auction, then all active bidders have
a score of infinity, so the auction stops. Finally, as argued above, the winners’ clock auction
prices are their threshold prices: the winner would have lost by using any lower cutoff in B;
than her clock auction price. O

4.2.3 Incentive Properties and Use in Practice

As we alluded to earlier, the motivation behind deferred-acceptance auctions is their many
remarkable incentive properties. First of all, as we showed in the previous section, DA auctions
are implementable as ascending (or descending, in the case of procurement) clock auctions. This
in turn has many remarkable consequences. The primary one is perhaps the fact that clock
auctions, and by extension DA auctions when implemented as clock auctions, are obviously
strategyproof, in the sense formalized by Li:

Definition 4.9 (Obviously Dominant Strategy, [16]). A strategy is obviously dominant if, for
any deviation, at any information set where both strategies first diverge, the best outcome under
the deviation is no better than the worst outcome under the dominant strategy.

Definition 4.10 (Obviously Strategyproof Mechanism). A mechanism is obviously strate-
gyproof (OSP) if it has an equilibrium in obviously dominant strategies.

Despite the perhaps daunting formal definition, this has a very sound behavioral interpretation:
A strategy is obviously dominant if and only if even a cognitively limited agent can recognize
it as weakly dominant.

In practice, this is oftentimes a very desirable property: Let’s take as an example the FCC
Incentive Auction for reallocating spectrum. In simple terms, the aim of this auction was to
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take back spectrum licenses that weren’t used very efficiently, perhaps because they had been
allocated a long time ago, to small, local TV stations, and allocate them to someone else who
could put them to better use, for example a mobile network operator. It is apparent that the
participation in the reverse auction part of those small TV stations was critical. However,
those small TV stations didn’t have high budgets to hire expensive consultants to advise them
on how to bid on a complex mechanism. For their participation in the mechanism, obvious
strategyproofness of the mechanism was necessary. In contrast even mechanisms that seem
trivial to a mechanism designer, such as the sealed-bid Vickrey auction, are not obviously
strategy-proof in this sense.

An additional notable property of DA auctions is that they are weakly group-strategyproof
(WGSP). This means that no coalition of bidders can collude against the mechanism designer
and collectively submit false bids in such a way that all members of the coalition are strictly
better off. Effectively, no bidder has an incentive to collude against the mechanism designer.
In practice, this is a very important property: In the modern world, assuming that agents in
a game cannot or will not communicate, especially in high-impact markets with few agents,
might be unrealistic. For those reasons, the reverse auction part of the recently concluded FCC
incentive auction for reallocating spectrum was a DA auction [17]. For further advantages and
motivation behind DA auctions we refer the interested reader to [14, 15].

4.2.4 Extension to Multiple Levels of Service

Prior to the work of Gkatzelis, Markakis and Roughgarden, all work on DA auctions was
restricted to binary, single-parameter environments, where each bidder could either “win” or
“lose” and had some value for winning. However, in the real world things are oftentimes more
complicated than that: there exist multiple “levels of service’, as opposed to simply a binary
decision. Let’s take as an example a train ticket purchase. Depending on the buyer’s willingness
to pay, the available choices may include third, second and first class. In a multi-unit auction
with identical goods, the levels of service correspond to how many units of the good awarded to
the bidder. Gkatzelis, Markakis and Roughgarden [18] extended the framework of DA auctions
to such non-binary settings, and showed how it could be applied to some basic mechanism
design problems.

Initially, they extended the framework of DA auctions to non- binary, single-parameter settings:
There are multiple levels of service that each bidder can receive. Every bidder declares her
value v per level of service. Then, if she receives some level of service [, her value for that level
of service is v - [. In this thesis we also refer to this environment as linear bidders, because the
bidders’ valuations are linear in their level of service.

The key idea in order to extend the framework of DA auctions to non-binary settings was to
supply each auction with a clinching function, a special form of an allocation function. For
every auction, this function dictates the level of service that every bidder is allocated, based on
the number of rounds that she has remained active in the auction, her bid, and the bidders that
have already exited from the auction. Just like the DA auctions introduced by Milgrom and
Segal [14], these auctions operate in a sequence of stages. In the first stage all bidders are active
and after each stage, the bidder with the lowest score is finalized according to her clinching
function and she exits the mechanism. Finally, prices are simply set according to Myerson’s
Lemma. In order to retain the remarkable properties of the binary, single-parameter DA
auctions introduced by Milgrom and Segal, careful consideration of the scoring and clinching
functions is required. Formally:

Definition 4.11 (Generalized Single-Parameter DA Auction, [18]). A generalized single-
parameter auction operates in discrete stagest > 1. We denote by Ay C N the set of currently
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active bidders in the beginning of stage t; initially, Ay = N, and A1 C Ay for every t > 1.
The DA auction is fully defined by 2 sets of functions:

e The scoring functions O'ZAt (bi, by 4,), that are non-decreasing in their first argument.

e The clinching functions g?t(bN\At), which are non-increasing with respect to the set

o (bN\At+1) > g1114t (bN\At)'

of active bidders, i.e. g?
At each staget, if Ay # 0, then the level of service of some active bidder i € arg min;e 4, {af‘t (bi,bana,)}
is finalized, possibly with the use of some tie-breaking rule. That is, a bidder i with the lowest
score stops being active, we set A1 = Ay \ {i}, and her level of service is finalized at level
ngt (bava,). When we reach Ay = (), then the auction terminates and the payment of each
bidder is determined by Myerson’s Lemma.

There are some worthwhile remarks to be made: The conditions that the scoring function of
every bidder is non-decreasing in the bid of that player and that her clinching function is non-
increasing with respect to the set of active bidders together ensure that the allocation rule of the
mechanism is monotone non-decreasing with respect to the bid of the bidder: From Myerson’s
lemma, for any single-parameter environment, in order for any mechanism to be truthful, its
allocation rule must be monotone. Another important remark is that neither the scoring nor
the clinching function of any bidder depends on the bids of the other still active players. This
condition ensures the weak group-strategyproofness of all generalized DA auctions.

Then, Gkatzelis, Markakis and Roughgarden further generalized the framework of DA auctions
to multi-parameter environments with submodular bidders, i.e. bidders whose value for an
additional level of service weakly decreases with the level that they have already clinched. Let
L ={1,2,...,k} be the set of possible levels of service. The difference compared to the case of
budget-additive bidders is that now every bidder doesn’t report a single value, her value per
level, but instead reports k values, her marginal values for each subsequent level of service.
Once again, in order to maintain the incentive properties of DA auctions, careful consideration
of the scoring and clinching functions is required. Formally:

Definition 4.12 (Multi-Parameter Generalized DA auction, [18]). A multi-parameter DA
auction operates in stages t > 1. In each stage t a set of bidders Ay C N is active. Initially
Ay = N and Ay C Ay for every t > 1. The DA auction is fully defined by two collections of
functions:

e The scoring functions 01‘-4"(-, bnya,) that are non-decreasing in their first argument.
e The clinching functions gf‘(bN\At), that are non-decreasing with respect to the set of
A
bN\At+1) > 9; t(bN\At)'
At each stage t, if Ay # (), the score of bidder i is computed as:
i (bi(gie + 1), bana,), (4.5)

i.e. the score is a function of the bidder’s marginal value for receiving a level increase, given the
level that she has already clinched. At every stage, the bidder with the lowest score is finalized
at level g;; = gft(bN\At) and she is removed from the set of active bidders (A1 = A\ {i}).

active bidders, i.e. gf‘t“(

If defined in this way, all the incentive guarantees of single-parameter DA auctions carry over
in this setting.

Proposition 4.3 ([18]). Fvery multi-parameter DA auction is weakly group-strategyproof, and
has an equivalent clock auction implementation that is obviously strategyproof.
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4.2.5 Performance and Limitations of Deferred Acceptance Auc-
tions

Ever since their inception, the performance of deferred-acceptance auctions has been studied
extensively in many different settings and from different viewpoints. Milgrom and Segal [14]
initially introduced procurement DA auctions, motivated by FCC auctions for reallocating
spectrum. In a procurement auction, the bidders are the ones that possess the goods for sale,
and it is the auctioneer who is interested in buying. In a more recent version of that same
paper, they studied the social welfare that can be attained by DA procurement auctions for
near-matroid environments: In these settings, DA auctions can achieve near-optimal social
welfare. This result intuitively makes sense: For matroid environments, there are both forward
and backward greedy algorithms that are optimal [19].

The work of Milgrom and Segal was followed up by Dutting et al in [20], in which they explored
the power and limitations of DA auctions from the viewpoint of approximation algorithms. On
the positive side, they proved that for the object of social welfare, for single-minded bidders DA
auctions can have an almost matching approximation ratio to the state of the art mechanisms in
the literature, effectively strengthening the incentive guarantees of the known approximations.
On the negative side, for knapsack auctions they showed that no DA auction can achieve an
approximation ratio to the optimal social welfare that is sublogarithmic in the number of items.
On the other hand, there are known WGSP mechanisms that achieve a constant approximation
ratio in this setting.

Group-strategyproof mechanisms have also been studied independently of DA auctions, with
a big portion of those papers focusing on cost-sharing mechanisms, e.g. [21, 22]. Most of this
work was in the context of cost-sharing mechanisms. As is often the case, it was observed that
the stronger incentive guarantees come at a significant cost in terms of efficiency.

Finally, Gkatzelis, Markakis and Roughgarden studied the performance of multi-parameter DA
auctions in the setting of multi-unit auctions with submodular valuations [18]. They proved
that in these settings, the VCG mechanism is not implementable as a DA auction, establishing a
first gap between DA auctions and optimal mechanisms. They then strengthened it by proving
that even for 2 players and 2 units, no WGSP mechanism can guarantee an approximation
factor to the social welfare that is better than /2.

Most of the work thus far on the performance of deferred-acceptance auctions focused on the
objective of social welfare maximization, and from the perspective of a worst-case analysis. In
this thesis, we took a different approach on both of these critical points: We are attempting to
determine settings in which, if we make some natural assumptions about the bidders’ valuation
distributions, we can design DA auctions that, given some samples of the bidders’ distributions,
achieve expected revenue close to optimal.
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Chapter 5

Learning Revenue-Optimal
Deferred-Acceptance Auctions
for Single-Parameter
Environments

In the following two chapters we will determine settings in which, given some samples of the
bidders’ valuation distributions, one can learn DA auctions with high expected revenue. In this
chapter we will focus on single-parameter environments, specifically multi-unit auctions where
each bidder only declares a single number in the auction, her value per unit of the good. For
those environments we will determine sufficient conditions to learn DA auctions that achieve
expected revenue arbitrarily close to optimal, and upper bound the sample complexity to do
so. Then, we will extend those results to environments with polymatroid constraints.

5.1 Multi-Unit Auctions

5.1.1 t-level Auctions

For single-parameter environments, the mechanism classes we propose are modified versions of
the t-level auctions introduced by Morgenstern and Roughgarden in [23] that we show can be
implemented as DA auctions. For one to better understand the proposed mechanisms, a basic
understanding of t-level auctions is necessary.

In [23], Morgenstern and Roughgarden focused exclusively on single-parameter environments.
For those environments, they introduced the novel mechanism class of t-level auctions as a way
of balancing the competing demands of expressivity and simplicity. First, they introduced the
mechanism class for the singe-item case:

Definition 5.1 (Single-Item t-level Auctions). For each bidder i there are t numbers 0 < ; o <
lin <lip—1. This set of tn numbers defines a t-level auction with the following allocation and
payment rules. Consider a valuation profile v = (v1,va,...,0,):

1. For each bidder i, let t;(v;) denote the index T of the largest threshold I; . that lower
bounds v; (or —1, if v; <l o). We call t;(v;) the level of bidder i.
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2. Sort the bidders from highest level to lowest and, withing a level, use a fized lexicographical
tie-breaking ordering < to pick the winner.

3. Award the item to the first bidder in this sorted order (unless t; = —1 for every bidder
i, in which case there is no sale).

The payment rule is the unique one that render truthful bidding a dominant strategy and charges
0 to losing bidders: The winning bidder pays the lowest bid at which she would continue to win.

Intuitively, in a t-level auction there are ¢ possible prices that a bidder ¢ could face. Which of
those she will actually face in the auction depends solely on the bids of the other bidders.

Example 5.1. Consider the following 5-level auction for bidders a,b and c. Let l,. =
2,4,6,8,10], I,. = [1,4,8,10,12] and l.. = [1.4,4.3,7,11,13]. For example, if bidder a bids
less than 2 she is at level —1, a bid in [2,4) places her at level 0, a bid in [4,6) at level 1, a bid
in [6,8) at level 2, a bid in [8,10) at level 3 and finally a bid of at least 10 places her at level
4. Let ¢ < b < a. There are 3 distinct cases:

e Monopoly prices: If v, < 2, v, < 1 and v, € [4.3,7), then bidders a and b are at level
—1 and bidder c is at level 2. So, bidder ¢ wins and pays 1.4, the minimum she needs to
be in order to bid at least at level 0.

e Multiple at the highest level: If v, € [4,6), v, € [4,8) and v, € [1.4,4.3) then bidders
a and b are at level 2 and bidder c is at level 1. The highest level is 2, and there are
2 bidders at that level, a and b. Between them, the tie-breaking rule favors bidder a, so
she wins and pays 4, the minimum she needs to bid to be in level 2.

e Unique at the highest level: If v, > 10, v, € [4,8) and v. € [4.3,7) then bidder a is
at level 4, and bidders b and c are at level 1. Bidder a wins because she is at the highest
level, and she pays the 4, because even if she was not the only one at level 1, she would
still win.

The main theorem that Morgenstern and Roughgarden used to prove their sample complexity
bounds for this mechanism class was Pollard’s uniform convergence theorem. If solved for the
number of samples, it can be stated as:

Theorem 5.1 ([5]). Suppose C is a class of real-valued function with range in [0, H] and
pseudo-dimension Pdim(C). Then, for every e > 0 and § € [0,1], the sample complezxity of

(€, 0)-uniformly learning f with respect to C is N = O ((%)2 (Pdim(C) In (%) +In %))

One important remark is that this guarantee is realized by the learning algorithm that sim-
ply outputs the function (or mechanism, in the case of mechanism design) with the smallest
empirical error on the sample set. This is called empirical risk minimization (ERM).

Using this family of mechanisms, they managed to show that only a polynomial number of
samples is required to achieve expected revenue arbitrarily close to optimal in the single-item
setting. Their proof involved 2 main parts. The first part was showing that auctions of this kind
have small representation error, meaning that for every product distribution F' over bidders’
valuations, this family of mechanisms contains an auction with relatively small ¢ and expected
revenue close to optimal. The second part was to show that this mechanism class has low
pseudo-dimension, and therefore leads to small generalization error. We will defer those proofs
as we will need to perform relatively the same process later in our thesis.

They also extended their results to matroid environments. The generalization is pretty straight-
forward: They order the bidders by level, breaking ties within a level by the fixed lexicograph-
ical tie-breaking ordering, <, and greedily choose winners according tho this ordering, subject
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to feasibility constraints. Matroid environments have been well-studied in mechanism design.
Formally, they can be defined as:

Definition 5.2 (Matroid Environment). A collection X of subsets is a matroid iff it satisfies
2 properties:
1. Whenever X e X andY C X, Y € X and

2. For two sets |I1| < |I2|, I, Iy € X, there is always an augmenting element io € Iy \ I
such that I U {iz} € X.

5.1.2 Warm-Up: Unit-Demand Bidders

The first setting we will study is a multi-unit auction with unit demand bidders, i.e. there are
m identical copies of the good available for sale, and each bidder is interested in purchasing
one unit. One such example would be a selling bus tickets, where the bus only has a specific
number of seats available. This environment is a special case of a multi-unit auction with
bidder-specific demands that we will study later. The reason for exploring it separately is to
smoothly introduced the reader to an application of t-level auctions, and how they can be
implemented as DA auctions. First, we will have to formally define the setting.

The Setting (unit-demand bidders)
e 1 bidders.

e multi-unit auction with m units available for sale.

unit-demand bidders: Each bidder is interested in purchasing one unit of the good.

each bidder i’s value per unit, v;, follows a distribution with probability density function
fi(+) and virtual valuation function ¢;(-).

e The valuation distributions of all the bidders are bounded in [1, H].

The mechanism class we propose for this setting is in essence the t-level matroid auctions
introduced in [23]. Our main contribution in this subsection is showing how those t-level
auctions can be implemented as DA Auctions.

Definition 5.3 (Unit-Demand DA t-level Auctions). Each bidder i faces t thresholds: 0 <
lio <lin <--- <lit—1. This set of numbers defines a Unit-Demand DA t-level auction with
the following allocation rule. Consider a valuation profile v = (v1,v2,...,0,):

1. For each bidder i, let t;(v;) denote the index T of the largest threshold l; . that lower
bounds u; (or -1 if v; <l;o). We call t;(v;) the level of bidder i.

2. Sort the bidders from lowest level to highest level and, within a level, use a fized lexico-
graphical tie-breaking ordering < to pick a winner.

3. DA Allocation: Start finalizing the bidders, from lowest level to highest level. The first
n —m bidders to be finalized aren’t allocated a unit. Every one of the final n bidders is
allocated a unit when he is finalized, but only if his level is greater than -1.
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4. Payment Rule: In accordance with t-level matroid auctions, holding the bids of the
other bidders fixed, every bidder pays the minimum she could’ve bid and still won a unit.

Note: The ¢ notation is overloaded: ¢ can denote either some level of a t-level auction or a
specific round of a deferred-acceptance auction, depending on the context.

For this mechanism class, we will prove 2 things:

1. That any auction of the above mechanism class is a valid generalized DA auction, as
defined in [18].

2. That any auction in the above class is also a valid t-level matroid auction as defined
in [23]. This implies that we can use directly the sample complexity bounds from that

paper.

Proposition 5.1. Any unit-demand DA t-level auction, as described in definition 5.3, is a
valid generalized DA auction.

Proof. Let 0 <1l; o <l;; <--- <l;+_1 be the thresholds that bidder 7 faces in the unit-demand
DA t-level auction. These tn numbers uniquely define a generalized DA t-level auction with
the following set of scoring and clinching functions:

e scoring functions: o7 (b;, b a,) = ti(v)

0, if |At| >m

e clinching functions: ngt(bN\At) = {1 |
, else

The scoring function of every bidder is weakly increasing in her bid since the thresholds she
faces are weakly increasing and her level is simply the index of the highest level that is still
lower than her bid. Also, the scoring function of every bidder does not depend on the bids of
the other still active bidders.

The clinching function of every bidder does not depend on the bids of the other still active
bidders and is obviously non-increasing with respect to the set of active bidders. Both the
scoring and clinching functions satisfy all the conditions of definition 4.11, therefore any such
auction is a valid generalized DA auction. O

Proposition 5.2. Any unit-demand DA t-level auction, as described in definition 5.3 is a
valid t-level matroid auction.

Proof. First of all, the setting is a matroid:

e Suppose X is a feasible set of winners in the auction. Equivalently, X contains at most
m winners. Then, for any Y C X, it holds: ¥ C X = [|Y| < |X| < m. Thus, Y is
also feasible.

e Suppose I, I are 2 feasible sets of winners such that |I;| < |I3]. Then, I necessarily
contains at least 1 winner, is that I; does not, else it would be |I;| > |I2|, a contradiction.
Also, we have |I1| < |Iz] < m, since I, is feasible. It immediately follows that I Uiy is
feasible.

Now that we showed that the setting is a matroid, it suffices to prove that the allocation rule
coincides with this of matroid ¢-level auctions. Then, because both mechanisms use Myerson
payments, the payment rule will coincide also. But this is easy to see: For the exact same
thresholds, both the DA auction described and the matroid t-level auction will result in the
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exact same allocation; they will allocate the m units to the m bidders with the highest levels,
breaking ties in the same lexicographical ordering <, provided that their levels are non-negative.
O

From the previous 2 propositions, it follows immediately that in this setting, matroid t-level
auctions are equivalent to the unit-demand DA t-level auctions of definition 5.3. Therefore,
the sample complexity result of [23] for this mechanism class carries over:

Corollary 5.1 (Application of [23], Corollary 5.6). With probability 1 — 8, the empirical
revenue mazimizer for a sample of size N of the class of Unit-Demand DA t-level Auctions
is a (1 — O(e))-approzimation to Myerson for n bidders whose valuations are in [1, H], for

t=0(L+1log, H) and N=0 ((Hem)Q (ntlog(nt) In £ + ln%)) =0 (HQETZ").

This result was expected: In this environment, forward and backward greedy algorithms co-
incide. Therefore, matroid ¢-level auctions, that use a greedy algorithm, are also implementable
as DA auctions.

5.1.3 From Unit-Demand to Budget-Additive Bidders

In this section we will extend the previous result to the setting of bidders with linear valuations:
Now every bidder has an upper limit on the number of units she wants, named her demand,
that is known to the auctioneer prior to the auction. In the auction every bidder once again
only declares a single number: her value per unit of the good. This setting can capture from
unit-demand up to unbounded-demand bidders. Formally:

The Setting (Budget-Additive Bidders)
e n bidders.
e multi-unit auction with m units available for sale.
e every bidder ¢ has a publicly known demand d;.

e every bidder is additive, up to her demand d;:
For every bidder ¢, her value for acquiring x; units of the good (a service level x;), up to
d;, is x; - v;, where v;: her value per unit of the good. For more than d; units: her value
remains v; - d;. These valuation functions are called budget-additive.

e Every bidder i’s value per unit, v;, follows some distribution with probability density
function f;(-) and virtual valuation function ¢;(-).

o All n bidders have values per unit in [1, H].

Just like in the case of unit-demand bidders, the mechanism class we propose is once again
inspired by t-level auctions introduced in [23, Corollary 5.6]. However, in this case the clinching
function is not trivial and the arguments that establish an upper bound on the representation
and error bounds of the class are quite more involved.

Definition 5.4 (Linear Deferred-Acceptance t-level Auctions (LD.A)). Each bidder i faces t
thresholds: 0 < l; o0 <l;1 < -+ <lis—1. This set of t - n numbers defines a Linear DA t-level
auction with the following allocation and payment rules.

Consider a valuation profile v = (v1,va,...,V,):
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1. For each bidder i, let t;(v;) denote the index of the largest threshold l; » that lower bounds
v (or-1,ifv; <ljp). We call t;(v;) the level of bidder i.

2. Sort the bidders from lowest level to highest and, within a level, use a fixed lexicographical
tie-breaking ordering < to pick a winner.

3. DA Allocation: Start finalizing the bidders, from lowest level to highest. FEvery bidder
1s allocated, at the time that she is finalized, as many units as possible, provided that the
units left afterwards are enough to fully satisfy the demands of the still active bidders.

4. Payment Rule: The unique one that renders truthful bidding a dominant strategy
and charges zero to players that win no units: Every bidder, for every unit that she is
allocated, pays for it the minimum she could have bid and still won that unit.

Example 5.2. There are 3 bidders, a,b and c. The thresholds are the same for every bidder:
lo, =lp. =1.. =[2,4,6,8,10]. Their values per unit are v = (v1,ve,v3) = (4.5,6.5,9). Fvery
bidder is interested in acquiring up to 5 units and there are 8 units available for sale. Finally,
let a <b=<c. Then:

1. Bidder a is finalized first and clinches no units because in order to satisfy the demands
of all the still active bidders 10 units are required.

2. Bidderb is finalized second. She clinches 3 units, because the 5 units remaining afterwards
are enough to fully satisfy the only remaining bidder. For every one of those units she
pays a price of 4, because that is the minimum bid with which she would be at the same
level as bidder a and then bidder b would win those units because of the tie-breaking rule
<. So, her total payments are 3 -4 = 12.

3. Bidder c is finalized last and clinches all 5 units that she wanted. For the first 3 of those
units she pays a price of 4 per unit, because the reason that she won those units was that
she was finalized after bidder a. For the last 2 of her units she pays a price of 6 per unit
because the reason that she won those extra units was that she was finalized after bidder
b. Thus, her total payments are 3-4+2-6 = 24.

Proposition 5.3. Any linear DA auction, as described in definition 5./, is a valid generalized
DA auction.

Proof. Let 0 < l;0 < l;7 < -+ < lj4—1 be the thresholds that bidder ¢ faces in the unit-
demand DA t-level auction. Formally, t the clinching and scoring functions that correspond to
definition 5.4 are:

e scoring functions: o7 (b;, b a,) = ti(v)

e clinching functions: ngt (ba\a,) = min {di, m — min {m, EjeAt\{i} dj}}

Just like in the case of unit-demand bidders, the scoring function of every bidder is weakly
increasing in her bid since the thresholds she faces are weakly increasing and her level is simply
the index of the highest level that is still lower than her bid. Also, the scoring function of every
bidder does not depend on the bids of the other still active bidders.

The clinching function of every bidder does not depend on the bids of the other still active
bidders. Also, it is easy to see that as the set of active bidders decreases, the amout of units
that the still-active bidders clinch weakly increases: jeANi} d; strictly decreases as the set

of active bidders decreases, therefore min {m, > JeAN} d; ¢ weakly decreases.
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Both the scoring and clinching functions adhere to all the constraints of definition 4.11, there-
fore any such auction is a valid generalized DA auction.
O

Now that we have established that the £LD.A mechanism class only contains valid generalized
DA auctions, the next step is to determine the sample complexity of learning an auction from
this class that has expected revenue that is a (1 —¢€) fraction of the optimal. To do this, we will
bound separately the representation and generalization error of the class. The main idea is the
same as in [23]: Find the value of ¢ (number of thresholds) that balances optimally between a
high representation and a high generalization error.

5.1.4 Generalization Error Bound

Theorem 5.2. The pseudo-dimension of Linear DA t-level auctions with n bidders is O(ntlog(nt)).

The idea is similar to [23], but some non-trivial modifications are required. First, we will
introduce 2 standard results from learning theory:

Lemma 5.1 (Sauer’s Lemma). Let C be a set of functions from Q to {0,1} with VC dimension
d, and S C Q. Then:

HSN{z € Q:c(x)=1}:ceC} <S¢ (5.1)
Lemma 5.2. The set of linear separators in R* has VC dimension d + 1.

Proof. Consider a set of samples S of size N which can be shattered by linear DA t-level
auctions with revenue targets (r',r2,..., 7). We upper-bound the number of labelings of S
possible using linear DA t-level auctions, which yields an upper bound on N.

For a fixed sample set of size N, we partition the auctions into equivalence classes, identically
to the proof of [23, Theorem 3.3]. Across all auctions in an equivalence class, all comparisons
between two thresholds or a threshold and a bid are resolved identically. Just like in [23,
Theorem 3.3|, for n bidders, ¢ thresholds and a sample set of size N the number of equivalence
classes are at most (nN + nt)?"*. We now upper bound the number of distinct labelings any
fixed equivalence class C of auctions can generate.

Consider a class C of equivalent auctions. The allocation and payment rules are relatively
simple: The number of units a bidder ¢ wins depends only on 3 things: the ordering of the
bidders (by level), the fixed tie-breaking rule < and the demands of all bidders and thus, for
fixed demands, is a function only of bids and thresholds. This implies that, for every sample in
S, all auctions in the class C result in the exact same allocation (number of units allocated to
each bidder). This, along with Myerson payments, also imply that the payment of each winning
bidder is a fixed sum of thresholds and coefficients that correspond to how many additional
items he clinched because of that threshold:

pei(v) = Y lij-hei(v,]) (5.2)

J<t(vi)

where h¢ ;(v,j): How many additional units bidder i clinches in all auctions in C, for the
valuation profile v, because he is at least at level j. For any bidder i, the function h¢ ;() is the
same across all samples in set S, for any auction in C.

Now, we encode each A € C and sample v’ as an (nt + 1)-dimensional vector as follows: Let

z encode the value of /; . in the auction A. Define z7,,, = 1 for every A € C. Define

1, T
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yfT = he,i(v,7) (for how many units bidder ¢ is paying her 7-th threshold). Finally, define

yit 1= —rJ. The point is that, for every auction A in the class C and sample v7,
Ayl >0 (5.3)

if and only if Rev(A,v7) > rJ. Thus, the number of distinct labelings of the samples generated
by auctions in C is bounded above by the number of distinct sign patterns on N points in R™**!
generated by all linear separators (The y’-vectors are constant across C and can be viewed as
m fixed points in R™*! ; each auction A € C corresponds to the vector 2 of coefficients.).
Applying Sauer’s Lemma and Lemma 5.2, LDA t-level auctions can generate at most N™**2
labelings per equivalence class, and hence at most (nN + nt)?"+2 distinct labelings in total.
This imposes the restriction:

2N < (nN 4 nt)3"t+2 (5.4)

Solving for N yields the desired bound. O

5.1.5 Representation Error Bound

Theorem 5.3. Consider the environment described above (budget-additive bidders). Suppose F
is a product distribution with support [1, H|™. Then, fort = [%]+10g1+% H=06 (% +logy H),
the class of linear DA t-level auctions (LCDA) contains an auction with expected revenue at
least (1 — €) times the optimal one.

The proof is in the same vein as the proof of [23, Theorem 5.4], but once again some non-trivial
modifications are required.

Proof. Consider a fixed bidder i. We define t thresholds for i, bucketing her by her virtual
value, and prove that the t-level DA Auction A induced by these thresholds for each bidder
closely approximates the expected revenue of the optimal auction, Myerson, denoted M.

e Set ;0 = ¢~1(0), bidder i’s monopoly reserve.
e For 7 € [1,[2/€]], let l; - = ¢; (T 5) (¢; €10,1])
o For 7 € [[2/e], [2/€] + [logyy H1), let Lir = 671(d(1+ £ 121) (61> 1)

Let A denote the corresponding LDA t-level auction. Fix an arbitrary valuation profile v. We
will compare the Virtual Social Welfare of A to that of M. For every unit allocated to some
bidder i, up to her demand d;, the contribution of that unit to the virtual social welfare is
¢i(v;) (i.e. equal to that bidder’s virtual value).

e By its definition, M is optimal with respect to the virtual social welfare and allocates
units that correspond to the m highest duplicated virtual values, where each virtual value
¢;(v;) has been duplicated d; times (the demand of the corresponding bidder), provided
those m duplicated virtual values are positive.

e In a similar vein, the allocation of A is lexicographically optimal with respect to the
levels, rather than the exact virtual values. Since the allocation of M is the actual
optimal, it is also optimal with respect to the levels. Thus, the level of the unit with
the j-th highest virtual value in the allocation of A is the same as the unit with the
j-th highest virtual value in the allocation of M (otherwise A wouldn’t be optimal with
respect to the levels).
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e The 2 mechanisms always allocate the same number of units: the minimum between m
and the number of duplicated virtual values > 0.

e Then, by an accounting argument identical to [23, Theorem 3.5] summing up over all
units completes the proof:
— Consider a fixed valuation profile v.
— Let ¢* and 7’ denote the i-th highest unit in the allocation of A and M respectively.
— Both auctions only allocate to non-negative (ironed) virtual values.
— Let 7 be the level of i*

— If there is no tie at that level, then both Mechanisms allocate that same unit.

When there is a tie at level 7, the virtual value of the unit allocated by A is close
to that of M:

x If 7 € [0, [2/€]], then ¢y (vir) — dix (vi+) < £
@i

« I 7 € [[2/€], [2/€] + [log, s H]], then =t > 1 — £,
e These facts imply that:
EofRevi(A,v)] = Eolgr- (o) > [(1 - 5 ) Balow ()] — 5]
> (1-5) Edgwvi)] - 5 = (1= 5) ERens(M)] = 5 (5.5)

where Rev; (A, v): The contribution to the expected social welfare of A of the unit with
the ¢-th highest level, breaking ties according to <.

e Finally, because all bidders’ valuations are bounded in the range [1, H], at price 1 any
unit would be sold. Thus, $ is at most a 5-fraction of the expected revenue per unit at
the optimal reserve price.

e Summing over the m units with the highest levels and virtual values for A and M and
using linearity of expectations completes the proof.

O

Combining the previous 2 theorems (5.2 and 5.3) with theorem 5.1 and observing that the max-
imum possible revenue of any auction for valuations in [1, H] and m units is mH immediately
yields the following corollary:

Corollary 5.2. With probability 1 — §, the empirical revenue mazimizer for a sample of size
N of the class of Linear DA t-level auctions is a 1 — O(€)-approzimation to Myerson for m
units and n bidders whose valuations are in [1, H], for t = O(% +log,, . H) and

N=0 <<H€m>2 <ntlog(nt)lnH6m+ln(15)> -0 <H2g2"> (5.6)

Intuitively, this result makes sense: For bidders with linear valuations functions, it was proven
in [18] that VCG is implementable as a DA auction. Therefore Myerson, if viewed as the virtual
surplus maximization mechanism, is also implementable as a DA auction. Thus, the problem
of learning the revenue-maximizing DA auction for this setting reduces to learning the bidders’
virtual valuation functions and then implementing the resulting mechanism for those inferred
virtual valuation functions as a DA auction.
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5.2 Extending the Results to Polymatroid Constraints

A natural generalization of multi-unit auctions with identical goods are the settings where the
set of feasible outcomes is defined by a polymatroid constraint. Pictorially, in any such setting
the space of feasible solutions constitutes a polytope. Formally:

Definition 5.5 (Polymatroid Environment). For n agents in a polytope environment, the set
of feasible environments is defined via a given submodular function h : 2™ — R4, as follows:

P, = {leN"|Zli<h(S) VSCN} (5.7)

i€S

As a first example, a multi-unit auction with m available units can also be viewed as a polyma-
troid environment: The submodular constraint function in that case is the constant function
h(S) = m for every S C N, which can be naturally interpreted as “no subset of players can be
allocated more units than the total number of units available”.

For a more interesting example consider a keyword sponsored search auction, where the agents
are competing for a sequence of m < n advertising slots, and each slot j has a click-through
rate r;. Then, if bidder ¢’s value per click is v;, her total value for slot j is r; - v;. It has been
experimentally proven that higher slots have higher click-through rates, i.e. 71 > ro--- > rp,.
Now, the constraint can be naturally interpreted as “no group of agents can be allocated a
click-through rate higher than the total click through rate, and no group of k& < m agents
can be allocated more than the total click-through rate of the k highest slots”. Formally, the
polymatroid constraint in this setting is defined by the submodular function h(S) = Z‘ﬂl ;.
For more motivating examples behind polymatroid constraints we refer the interested reader
to [24].

We will shift our attention to perhaps the most natural extension of the multi-unit auctions we
studied previously. Once again every bidder’s value “per level of service” is bounded in some
range [1, H], but now the set of feasible outcomes is defined by some polymatroid constraint.
Formally:

The Setting (Polymatroid Constraints, Additive Valuations)
e 1 bidders

e every bidder is additive, up to her demand:
For every bidder 7, her value for acquiring a “level of service” x; is x; - v;, where v;: Her
value per level of service.

e Every bidder i’s value per unit, v;, follows some distribution with probability density
function f;(-) and virtual valuation function ¢;(-)

e All n bidders have values per unit on [1, H].

e The set of feasible allocations is defined via a given submodular function
h:2" = R4, as follows:

P, = {xGR”|in < h(S) vsgN}

i€S
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For this environment, the first mechanism class we propose are the polymatroid DA t-level
auctions. As the name suggests, this mechanism class is a combination of polymatroid DA
auctions introduced in [18] and ¢-level auctions introduced in [23].

Definition 5.6 (Polymatroid DA t-level auction (PD.A)). In a polymatroid DA t-level auction
every bidder i faces t thresholds, 0 < l; o <l;1 <--- <l 4—1. Let t;(b;) denote the index of the
largest threshold l;  that lower bounds b; (or —1, if b; < l; ). This set of t-n numbers defines
a Polymatroid DA t-level auction with the following sets of scoring and clinching functions:
Consider a bid profile b= (by,ba,...,by):

e Scoring function: o (b;, ba\a,) = ti(bs)

h(As) — (A \ {3}), if ti(bi) > 0

0, else

e Clinching function: g:* (bana,) = {

This DA auction has a very simple description: At every stage the bidder that is finalized
is the one with the lowest level, among the ones that are still active (breaking ties according
to the tie-breaking rule <). The clinching function is more interesting: At each stage ¢ each
bidder ¢ has clinched a level of service equal to her marginal contribution to the value of h(A;).
Because h is submodular, the marginal contribution weakly increases as A; shrinks, so this
is valid clinching function. Finally, it is easy to see that the scoring function of every bidder
does not depend on the bids of the other still-active players and is weakly increasing in her
bid, so this is valid scoring function. Thus, the PDA class only contains valid generalized DA
auctions.

Proposition 5.4. Any polymatroid DA t-level auction, as described in definition 5.6, is a valid
generalized DA auction.

Our approach is similar to the one for the multi-unit auction: We will establish representation
and generalization error bounds, and then combine them using Pollard’s uniform convergence
theorem.

Theorem 5.4 (Representation Error Bound). Consider the environment described above (lin-
ear bidders, polymatroid constraints). Suppose F is a product distribution with support in
[1, H]™. Provided t = O (%), there exists a polymatroid DA t-level auction with expected
revenue at least a 1 — € fraction of the optimal expected revenue.

Proof. Consider a fixed bidder i. We define ¢ thresholds for i bucketing her by her virtual
value, and prove that the ¢t-level DA Auction A induced by these thresholds for each bidder
closely approximates the expected revenue of the optimal auction M.

e Set l;0 = ¢~1(0), bidder i’s monopoly reserve.

e For 7 € [1,[2H /e]], let l;» = ¢; *(T - ¢/2)

We will compare the expected virtual social welfare of the polymatroid DA t-level auction with
those thresholds against the expected social welfare of Myerson mechanism. Consider a fixed
valuation profile v. Let ¢(v) = (¢1(v1), d2(v2), -+, dn(vy)) be the vector of all virtual values
in that valuation profile. Myerson is essentially solving the following linear problem:

max ¢(v) - x (5.8)
T € Py,
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On the other hand, our DA auction leads on the exact same allocation as Edmonds’ greedy

algorithm (already proven in [5]), for the vector t(v) = (¢t1(v1),t2(ve), - ,tn(vyn)), i.€. it solves:
max t(v) - x (5.9)
Tz e Py,

But for any bidder 4, at any point where her virtual value increases by exactly €/2 (past 0),
her level increases by 1. Thus, it holds that:

o If ti(Vi) < 0, then ¢i(vi) < 0.
o If tz(Vz) > 0, then ¢1(V2) S [tz(Vz) . %,ti(Vi) . % + %)

So, since the solution of our auction is optimal with respect to the vector t(v) = (t1(v1), t2(v2),
,tn(vy)), by the definition of the levels it is also optimal with respect to the vector

¢(v) =

. tg(vg), e % . tn(’Un))
= (¢>1(Ul) - 61,¢)2(U2) — €2, a¢n(vn) - Gn)a (5~10)

where: €; € [0,€/2) for all ¢ € N such that ¢;(v;) > 0.

The loss in approximation for those players that their virtual value (and level) is less than zero
doesn’t matter, because for the allocation of both our algorithm and the optimal one it holds
that x; = 0 for any player ¢ such that her virtual value (and therefore level) is below 0.

The reason why the allocation of our algorithm is also optimal with respect to the vector qg('v)
is because we multiplied all the coordinates of vector ¢()v with the same positive number, so
for any allocation it holds that z - ¢(v) = 5z - t(v).

Let x*,x be the allocations of Myerson and our mechanism respectively. For the expected
virtual social welfare of our mechanism we have:

iw7 >0

>E[ Y (6i(v) - 5) -]
iy >0

>E[ Y ¢i(v) <1 %) ;)
i >0

- (1—%) E[ Z ¢i(vi) - 7]

= (1-3) B dulwi) -] (5.11)
2 %

Where the first inequality follows from the fact that ¢(v) 2~q~5(v), the second inequality follows
from the fact that x is optimal with respect to the vector ¢(v), the first equality follows from
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the definition of a(v) and the second one follows from the fact that 7 > 0Vi. The third
inequality follows from the fact that as discussed earlier, for any player with non-negative
virtual value, €; € [0,€/2), the forth inequality follows from the fact that at price 1 everyone
would be interested in buying as high a level of service as possible, thus €/2 is always at most
a ¢/2-fraction of a winning bidder’s expected payment per unit. Finally, the forth equality
follows from linearity of expectations and the last one follows once again from the fact that
x; > 0Vi.

Combining equation 5.11 with the fact that for every mechanism its expected revenue is equal
to its expected virtual social welfare, it follows immediately that the expected revenue of our
polymatroid DA t-level auction is at least a 1 — § of the expected revenue of Myerson. O

Now, it suffices to establish a generalization error bound. Once again this will be accomplished
by bounding the pseudo-dimension of the class.

Theorem 5.5. The pseudo-dimension of polymatroid DA t-level auctions with n bidders is
O(ntlog(nt)).

The proof is identical to that of theorem 5.2. Again, for a fixed sample set and number of levels
t we can break the auctions into equivalence classes in the same way. Then, for any sample, all
auctions in an equivalence class will result in the same allocation and payment identity. Thus,
for any sample we can encode the common outcome of all auctions in an equivalence class
on that sample as an (nt + 1)-dimensional array and then repeat the same argument upper
bounding the number of possible labelings on that sample by the number of possible labelings
for that sample of linear separators in the (nt + 1)-dimensional space.

Finally, it suffices to observe that for a fixed polymatroid constraint defined by some submodu-
lar function i on a set A/ bidders the maximum possible revenue of any mechanism is H - h(N),
as this is the maximum possible social welfare, for any auction. This observation, along with
theorems 5.4, 5.5 and 5.1 immediately yield:

Corollary 5.3. With probability at least 1—0, for any environment with polymatroid constraints
defined by some submodular funciton h, the empirical revenue mazimizer for a sample set of
size N of the class of PDA t-level auctions is a 1 — O(€)-fraction to Myerson for n linear

bidders whose valuations per unit are in [1, H], for t = O (%) and

N=0 ((Hh(s))z (ntlog(nt)lnH'?(S) +1n(15>> =0 (HBMS)ZTL) ;

€ €

where H - h(S) is the mazimum social welfare that could be possible under those polymatroid
constraints, and therefore is an upper bound on the revenue achievable by any mechanism in
the class of PDA t-level auctions, for the given distribution F.

5.2.1 Improving the Previous Result

Even though the extension of DA auctions to settings with polymatroid constraints of the
previous section was interesting, the approach of that subsection was short sighted: Intuitively,
in the previous section the main idea was to learn, for every bidder, a discretization of her
virtual valuation function that is e-accurate additively over the whole range of positive virtual
values. But in order to achieve expected revenue at least (1 — €) times the optimal one, it is
only necessary to learn a discretization of all the bidders’ virtual valuation functions that is
e-accurate multiplicatively over that range. As a result, in the previous section the complexity
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of the t-levels required per bidder, and therefore samples, was blown up by about a factor of
H.

However, if we simply attempt to reduce the number of levels per bidder, this introduces a
new challenge: Unlike multi-unit auctions, for polymatroid constraints the fact that an auction
is optimal with respect to the levels does not imply that it is also optimal with respect to
the actual virtual valuations of the bidders, because the two quantities are no longer linearly
correlated (plus some small perturbation). To tackle this issue, we now supplied each level of
a DA t-level auction with one additional number, which we named the level score. Level scores
are learned on the samples, just like the level thresholds. The mechanism now does not choose
an allocation that is maximal with respect to the indexes of the levels, but with respect to the
level scores. Thus, if the level scores for any level are e-close multiplicatively to the virtual
value at that point, the virtual social welfare of the final allocation will also be e-close to the
virtual social welfare of the optimal allocation.

We call the mechanism class we just described extended polymatroid DA t¢-level auctions.
Formally:

Definition 5.7 (Extended Polymatroid DA t-level auction (EPDA)). In an extended poly-
matroid DA t-level auction every bidder i faces t thresholds, 0 < l;o0 < ;1 < -+ < iz 1.
Let t;(b;) = 7; denote the index of the largest threshold l; ; that lower bounds b; ( or —1, if
bi < l;0). For every one of the t levels of every bidder, there is an associated level score
satisfying: r;,—1 = —1, 0 < ryo <10 < -o- < ryp. When a bidder is at her level 7;, her
corresponding level score is r; .. This set of 2t -n parameters defines an extended polymatroid
DA t-level auction with the following sets of scoring and clinching functions: Consider a bid
profile b= (by,ba,...,by):

e Scoring function: a;‘“(bi7 bN\A,) = Titi(by) = Tiimi

h(As) — h(As \ {3}), if ti(bi) > 0

0,else

e Clinching function: gi*t (bava,) = {

The algorithmic description of this mechanism class is very similar to the one of polymatroid
DA t-level auctions, introduced in the previous subsection: At every stage the bidder that is
finalized is the one with the lowest level score, among the ones that are still active (breaking
ties according to the tie-breaking rule <). At each stage ¢t each bidder i has clinched a level of
service equal to her marginal contribution to the value of h(A;). Because h is submodular, the
marginal contribution weakly increases as A; shrinks, so this is valid clinching function. The
scoring function of every bidder does not depend on the bids of the other still active bidders,
and is weakly increasing in her bid: As a bidder increases her bid, her level weakly increases,
which in turn implies that her level score weakly increases, so this is once again a valid scoring
function. Thus, the EPDA class only contains valid generalized DA auctions.

Proposition 5.5. Any extended polymatroid DA t-level auction, as described in definition 5.7,
is a valid generalized DA auction.

Once again, in order to establish a sample complexity bound for this mechanism class our
approach will be to separately bound its representation and generalization errors. However,
now our definition has diverged so far from the original definition of t-level auctions that there
is no apparent way of generalizing the pseudo-dimension arguments of [23]. In order to bound
the pseudo-dimension of EPDA we will now resort to the sample complexity framework of
Balcan ([12]).
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Theorem 5.6. The class of extended polymatroid DA t-level auctions is (2nt, n*t?)-delineable.

Proof. For the parameter space P we have:

Liosliny -5 lie—1) € RY Vi € [n]
Ti05Tids -5 Tit—1) € Ry Vi € [n]
lig<lin<- - <lit—1) €R, Vien]

ri0 <rip <o <rip1) € RY Vi€ [n]

(
(
(
(

Fix a valuation profile v = (vy,vs,...,v,):

There are in total ¢t - n level scores.

Once we have have determined whether we are on the positive or negative side of all
(nt)(n(t — 1))/2 = O((nt)?) hyperplanes of the form r;;, > r;,, for all i # j and all
t1,ta € [t], we have determined a unique total ordering on all nt level scores (breaking
ties in level scores by some fixed lexicographical ordering on the bidders, <).

Thus, there are at most (nt)? hyperplanes splitting the parameter space in connected
components, in each of whom the total ordering of all nt level scores remains constant.

To determine the level of a single bidder ¢, we need to check whether we are on the
positive or negative side of all ¢ hyperplanes of the form: [, ; < v;, 7 € [t].The answer is

the unique index 7; for which it holds l; , < v; and l; 7,41 > v;.

Multiplying by n for all bidders, there are at most nt hyperplanes splitting the parameter
space into connected components, in each of whom the levels of all bidders, for a fixed
valuation profile v, are fixed.

Thus, in each connected component of the parameter space minus both the hyperplanes
for the total ordering of all nt “level scores” and the hyperplanes which determine the
level of each bidder, it holds:

1. The total ordering of all levels scores 7; ;, i € [n], j € [t] is fixed.

2. The level of each bidder is fixed.

3. The total ordering of all bidders by their level scores is fixed.
We will restrict our attention to one such connected component.

Now it suffices to observe that once all the above orderings are fixed, for a fixed valuation
profile v every mechanism in that connected component results in the same allocation:

1. Every mechanism starts finalizing the bidders one-by-one, from lowest level score
to highest.

2. For every mechanism in one such a connected component, the total ordering of all
bidders is the same, so bidders are finalized in the exact same order.

3. The allocation of every bidder depends only on the set of active bidders when she
is finalized.

4. Thus, because in every mechanism in that connected component, for a fixed valua-
tion profile the ordering in which bidders are finalized is the same, the set of active
bidders when every one is finalized is also the same and therefore the resulting
allocation of every bidder is the same.
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e Finally, for a fixed valuation profile in that connected component, the payment of every
bidder depends linearly on her thresholds, and does not depend (as long as we remain
in that connected component) on the level scores:

Let 7; be the actual level of bidder i. Let x;(¢;) be the allocation of bidder i, if her
level was t;, and let z;(0) = 0 . Holding the ordering of all nt level scores fixed (they
are in each connected component), and holding the bids of all other players except ¢
fixed to b_;, as i increases her bid, her level increases, which increases her level score,
which in turn increases her relative position on the ordering of bidders by level scores,
which finally increases her allocation. Then, Myerson payments dictate that the actual
payments of bidder ¢ are:

Ti

pi(v) = (@:(j) —@i(j - 1)) - &,L (5.12)

j=1

Allocation because of level j Min. bid for level j

e In each such connected component the levels of all the bidders and the ordering of all nt
level scores is fixed, so both all the 7;’s and the differences z;(j) — z;(j — 1) are fixed.

e This along with equation 5.12 and the fact that the total revenue is simply the sum
of the payments of all bidders imply that for a fixed valuation profile, the revenue of
the mechanism in each such connected component is linear in the parameters of the
mechanism (as long as we are in a connected component, the revenue depends linearly
on the thresholds /; ;, and does not depend on the level scores at all).

e Thus, for a fixed valuation profile v, the total number of hyperplanes splitting the
parameter space into regions where the profit from every bidder is linear is:

O((nt)?) + O(nt) = O((nt)?) (5.13)

For the scores  For the levels

Combining the above theorem with Balcan’s theorem 4.2 immediately yields:

Theorem 5.7. The pseudo-dimension of the class of extended polymatroid DA t-level auctions
is O(ntlog(nt)).

This immediately results in a generalization error bound for the mechanism class. The only
thing left now is to establish a representation error bound. The approach will be similar to
the one we took for polymatroid auctions in theorem 5.5 but some additional arguments are
required.

Theorem 5.8 (Representation Error Bound). Consider the environment described above (lin-
ear bidders, polymatroid constraints). Suppose F is a product distribution with support in
[1, H]™. Provided t = O (% +logy . H), there exists an extended polymatroid DA t-level auc-

tion with expected revenue at least (1 — %) times the optimal expected revenue.

Proof. Consider a fixed bidder i. We define ¢ thresholds for ¢ bucketing her by her virtual
value and their corresponding thresholds, and prove that the t-level DA Auction A induced by
these thresholds and scores for each bidder closely approximates the expected revenue of the
optimal auction M.
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e Set I, 0 = ¢~1(0), bidder i’s monopoly reserve and r; o = 0.
e For 7 € [L1,[2/e]], let ;- = ¢; *(T - ¢/2) (¢ € (0,1])
o For 7€ [1,[2/el],let rir =7
o For 7 € [[2/e], [2/€] + [logy,  H]], let
L =67 (L4 §)77T4D) (> 1)

o For 7 € [[2/€], [2/€] + [log, ¢ H]], let r; - = 11+ 5)745

For any bidder 4, from the definition of the level scores it holds:
o If ¢;(v;) < 0 then r; = —1.
o If ¢;(v;) € [0,1], then any time that bidder’s virtual value increases by €/2, her level
score increases by 1, so: ¢;(v;) € [g 1i(vi), § - ri(vi) + %)
e Finally if ¢;(v;) > 1 then ¢;(v;) € [g ri(vi), § - ri(vy) (1 + g))
The loss in approximation ratio from players with negative virtual value (and level score)

doesn’t matter, because for both our mechanism, and Myerson, their allocation will be 0. For
any player ¢ with ¢;(v;) > 0 it holds:

o If ¢z(vz) S [0, ].] then % . 7"1'(’02') S [Q%(U%) — %,QSZ('U,L)}
o If ¢i(v;) > 1 then §-7ri(vi) € [¢i(vi) - (1= §), di(vi)]

A final important remark is that for any bidder i with non-zero allocation by Myerson, her
expected payment “per unit” is at least 1, because all bidder values are bounded in [1,H], and
thus at price 1 everyone would be interested in purchasing as high an allocation as possible.
So, for any such bidder i it holds ¢;(v;) — § > (1 — §) ¢;(vi).

We will compare the expected virtual social welfare of the EPDA t-level auction with those
thresholds and level scores against the expected virtual social welfare of Myerson. Consider a
fixed valuation profile v. Let ¢(v) = (é1(v1), d2(v2), -, dn(vy)) be the vector of all virtual
values in that valuation profile, and let r(v) = (r1(v1), r2(v2), -+ ,rn(v,)) be the corresponding
vector of all “level scores” in that valuation profile. Myerson is essentially solving the following
linear problem:

max ¢(v) - x (5.14)
z e Py,
On the other hand, our DA auction leads on the exact same allocation as Edmonds’ greedy
algorithm for optimization over polymatroids (already proven in [18]), for the vector r(v) =
(ri(vy),r2(va), -+ ,rn(vn)), ie. it solves:
maxr(v) - x (5.15)
T € P,
Let z*, x be the final allocations of Myerson and our EPDA t-level auction, respectively. z is
optimal with respect to the vector r(v), so it is also optimal with respect to the vector:

€ €

57"(1;) = (5 -rl(vl),§ -rg(vg),...,§ -rn(vn)) )
= (¢1(v1) — €1, ¢2(v2) — €2,...,On(Vn) — €,) = O(v) (5.16)

63



CHAPTER 5. LEARNING REVENUE-OPTIMAL DEFERRED-ACCEPTANCE AUCTIONS
64 FOR SINGLE-PARAMETER ENVIRONMENTS

where as we explained before, for any bidder ¢ with non-zero allocation either on z or x* it
holds that €; < § - ¢;(v;).
So, for the expected virtual social welfare of our mechanism, we have:

E[¢(v) - ] > E[p(v) - 2]
> E[g(v) - 2]

=B (¢i(vi) — ) - 2]]

i

=E| Z (i(vi) — &) - 7]

ixr >0
>E[ Y o) (1-5) - ai]
ix? >0
= (1 — %) E| Z ¢i(v;) - 7]
ix7 >0
= (1 — %) E[ Z oi(v;) - 7] + (1 - %) E| Z ¢i(vi) - 7]
ix7 >0 T =0

= (1-3) B o) -ai] (5.17)

Where the first inequality follows from the fact that for any 4 such that x; > 0 it holds
oi(vi) > ¢;(v;), the second inequality follows from the fact that x is optimal w.r.t. the vector
¢(v), the first equality follows from the definition of the vector ¢(v) and the second one from
the non-negativity of the vector z*. The third inequality follows from the fact that for any 4
for which z7 > 0 as proven earlier it holds that 0 < ¢; < § - ¢;(v;), the third equality follows
from linearity of expectations, the forth one from the fact that the second term is exactly 0,
and the last one follows once again from linearity of expectations.

Equation 5.17 and the fact that the expected revenue of any mechanism is equal to its expected
virtual social welfare immediately prove that the expected revenue of our extended polymatroid
DA t-level auction is at least a (1 — g)-fraction of the optimal expected revenue. O

As we discussed earlier, for a fixed polymatroid constraint defined by some submodular function
h on a set N bidders the maximum possible revenue of any mechanism is H - h(N). This
observation, along with theorems 5.7, 5.8 and 5.1 immediately yield:

Corollary 5.4. With probability at least 1—46, for any environment with polymatroid constraints
defined by some submodular function h, the empirical revenue mazimizer for a sample set of
size N of the class of extended polymatroid DA t-level auctions is a 1—O(e€)-fraction to Myerson
for n linear bidders whose valuations per unit are in [1, H], for t = O (% +logy . H) and

N=0 <(H?(5)>2 (ntlog(nt)lnH'?(S) +1n(15>> =0 (HQh‘e(f)%) ;

By supplying polymatroid DA t¢-level auctions with those level scores we managed to reduce
the number of levels required per bidder, for the same approximation to the optimal expected
revenue, by about a factor of H, which in turn reduced the number of required samples, for
the same parameters € and ¢ by a factor of H.
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Chapter 6

Learning Deferred-Acceptance
Auctions for Multi-Parameter
Environments

Now we will move to multi-parameter environments. For a multi-unit auction with m units
available for sale, every bidder now declares m numbers, her marginal values for clinching an
additional unit, provided she has already clinched 0 up to m — 1 units. Once again, we will
attempt to determine a mechanism class that, for a natural-enough set of assumptions about
the bidders’ distributions, given some samples of the bidders’ valuations achieves high expected
revenue. Multi-parameter environments introduce two new challenges: First, now the revenue-
optimal mechanism is not known. As a result, we will have to compare the expected revenue of
the mechanism class we propose directly against the expected social welfare of VCG, which is
of course an upper bound on the expected revenue of any mechanism. Secondly, Secondly, for
this kind of environments, the VCG mechanism is not implementable as a DA auction. In fact,
even for 2 units available for sale, no DA auction can guarantee in a worst-case analysis an
approximation ratio to the optimal social welfare that is better than % Since any dominant
strategy incentive compatible mechanism has, for any valuation profile, revenue less or equal to
its social welfare, this means that no DA auction can guarantee revenue that is a % fraction

of the social welfare of VCG.

6.1 Distribution Assumptions

The Setting (Submodular Bidders, Ordered Standard Deviations)
e 1 bidders.
e multi-unit auction with m units available for sale.

e cvery bidder ¢ declares m marginal values v; 1,v;2,...,V;m to the mechanism, where
v; ;: Bidder ¢’s value for acquiring her j-th unit of the good, provided she has already
clinched j — 1 units.

e cvery bidder’s valuation function is submodular: v; 1 > v; 0 > -+ > v; p, Vi

e Every marginal value v; ; follows some Gaussian or Sub-Gaussian distribution Fj ;.
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e For every bidder, the standard deviations of the distributions of her marginal values are
ordered in the same way as those values: 0,1 > 0j2 > -+ > 04m Vi

This set of assumptions is quite natural: A wide range of distributions are Sub-Gaussian,
including Gaussian distributions and mixtures of Gaussian distributions, uniform distributions
and all bounded distributions. Informally, any distribution with tails that are dominated
by (i.e. decay as fast as) the tails of a Gaussian is Sub-Gaussian. Additionally, in nature
oftentimes distributions with higher expected values also have higher variances. For example,
this is a much weaker assumption than assuming that the standard deviations or variances
of the distributions are proportional to their expected values. Finally, submodular valuation
functions arise naturally in many environments where bidders exhibit “diminishing returns” for
multiple units of the same good.

6.2 The Unit Bundling Mechanism Class

The mechanism class we propose for this setting has a very simple algorithmic description: For
every bidder, the optimal reserve price and bundle size were predetermined in the samples. In
the auction every bidder simply faces her predetermined reserve price. If her bid is higher than
that, then she is allocated that number of units and she pays her reserve price. Else, she is
finalized without clinching any units.

Definition 6.1 (Unit Bundling Mechanism Class - UB). FEvery unit-bundling DA auction for
n bidders and m units available for sale can be described by its parameters

{(s1,82,...,80) €N} | s14+534---+5, <m} andri,ra,...,r, € Ry. This set of 2n numbers
define a unit bundling DA auction with the following allocation and payment rules:

o Offer to each bidder i a bundle of s; units at a price of r; per unit, so s; - r; in total.

e DBidders that accept their offer get the corresponding bundles at those prices, while the
rest of the bidders are allocated no units and pay nothing.

This mechanism class may look overly simplistic, but in reality this is not the case. Intuitively,
DA auctions work well for bidders with linear valuation functions, but not for submodular
ones. With this mechanism class the aim is to determine, based on the samples, for every
bidder the optimal point in which to “straighten” her valuation function.

But first we need to prove that the auctions we just described are indeed valid generalized
deferred acceptance auctions:

Proposition 6.1. Any unit bundling DA auction, as described in definition 6.1, can be im-
plemented as a valid generalized multi-parameter deferred-acceptance auction.

Proof. Let s1,89,...,8, and 7r1,79,...,7, be the fixed parameters of some unit bundling auc-
tion, in accordance with definition 6.1. For every bidder ¢, we introduce in the original set of
active bidders, A1, a “duplicate” bidder ¢’. This duplicate bidder bids s;-r; and loses, according
to the tie-breaking rule against bidder 4, i.e. it holds i’ < i. The sets of scoring and clinching
functions of this multi-parameter deferred acceptance auctions are:

e Scoring function: o7 (b;, bar\ a,) = >y by
where b; ; : Bidder i’s j-th declared marginal value
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e

. P bn) = {o, if i' € A,
s;, else

For those scoring and clinching functions, the outcome of the auction will be exactly the one
described in definition 6.1: If some bidder i bids less than s; - r; for ¢ units, then she will
have a lower score than her duplicate i’, whose score will be exactly s; - r;. Thus, she will
be finalized before bidder i’ and according to her clinching function, she will be allocated 0
units. Alternatively, if she bids at least s; - ;, then she will be finalized after bidder ¢’. In this
case, according to her clinching function she will be allocated s; units. The price she will pay,
according to Myerson payments, is the minimum she could have bid and still won those units
which, according to the tie-breaking rule that favors i against ¢/, is exactly s; - r;.
The scoring function of every bidder is weakly increasing in her bid and does not depend on
the bids of the other still-active bidders. So, it is a valid scoring function. The clinching
function of every bidder is weakly increasing as the set of active bidders shrinks, so it is a valid
clinching function. Thus, for any valid parameter vectors s and 7, the resulting auction can
be implemented as a valid multi-parameter generalized DA auction. O

Our approach will be similar to the one we used in single-parameter environments: For the
proposed mechanism class, we will establish generalization and representation error bounds.
The main difference is that now in the representation bound, instead of the optimal expected
revenue, we will have to compare the expected revenue of the optimal mechanism from the
proposed mechanism class directly against the expected social welfare of VCG.

6.3 Generalization Error Bound

Our approach to bounding the generalization error of the unit bundling class is similar to what
we did for polymatroid environments: First we will bound the pseudo-dimension of the class
using the sample complexity framework introduced by Balcan in [12] and then we will apply
Pollard’s uniform convergence theorem.

Theorem 6.1. The class of unit bundling auctions for n bidders and m wunits available for
sale is (2n, nm)-delineable.

Proof. For the parameter space P of the mechanism class we have:
o (ri,ro,...,ry) €ERY
o (s1,82,...,8,) € N”
® 51 +s3+ 45, <m.

Fix a valuation profile v = (v1,v9,...,v,). Consider some fixed bidder i, and let v; =
(vi1,vi2,-.-,0im) be bidder ¢’s marginal values in that valuation profile. With respect to
bidder i, the parameter space P consists of m + 1 connected components: Each connected
component has some fixed value for the bundle size s; € {0,1,...,m}, while r; can take any
value in Ry. Because s; takes discrete values, regions of P with different values for s; corre-
spond to different connected components. Within each connected component the bundle size
of bidder 7 is fixed and as the reserve price per unit is raised, the revenue from bidder 7 is
raised, up to the point where the bidder is no longer interested in the bundle, and the revenue

67



CHAPTER 6. LEARNING DEFERRED-ACCEPTANCE AUCTIONS FOR
68 MULTI-PARAMETER ENVIRONMENTS

drops down to zero. Formally, let a be the value of the parameter s; in some fixed connected
component. Then, in that connected component the revenue from bidder 7 is:

. a
{a-m, if Zj:1 Vi > a-ry

Rev; ,(v) = (6.1)

0, else

It suffices to observe that in any connected component of P, s; - r; is linear in its 2 parameters
because in any connected component, s; is fixed to some constant a. Thus, in any such
connected component, there is only 1 hyperplane splitting it into 2 regions where the profit is
linear: 22:1 v;; = a-71;. Because there are m + 1 possible values for s;, there are in total
m + 1 such connected components for bidder i, and m corresponding hyperplanes (for s; = 0,
the revenue from bidder ¢ remains 0 regardless of r;). Because P can only lead to feasible
allocations and using the fact that the total revenue in any valuation profile is simply the sum
of the revenues from every bidder, for every valuation profile v, there are in total at most
n - m hyperplanes splitting P in connected components, in each of whom the revenue of the
mechanism class is linear in P. O

Combining the above theorem with Balcan’s theorem 4.2 immediately yields:

Theorem 6.2. The pseudo-dimension of the class of unit bundling auctions is O(nlog(nm)).

6.4 Representation Error Bound

In this section we will compare the expected revenue of the optimal mechanism from the unit
bundling mechanism class against the expected social welfare of VCG. The main idea is to
use an interface between these 2 mechanisms: a new mechanism, which we call the a priori
optimal mechanism, A. For this mechanism we can bound the difference between the expected
social welfare of VCG and its expected social welfare, and we can also bound the difference
between its expected social welfare and the expected social welfare of the optimal mechanism
from the unit bundling class. The sum of these two differences is an upper bound on the
difference between the expected social welfare of VCG and the expected revenue of the optimal
mechanism from the unit bundling class, which constitutes a representation error bound.

Definition 6.2 (The A Priori Optimal Mechanism, A). A is a hypothetical mechanism. It
has perfect distribution knowledge and chooses, without taking the bids into consideration, the
fized allocation with the highest expected social welfare.

In this setting A has a simple algorithmic description:

Algorithm 3: A Priori Optimal Mechanism for multi-unit auctions

Result: The fixed allocation with the highest expected social welfare
1 Sort all marginal values according to their expected value ;
2 Allocate to every bidder as many units as her expected marginal values in the m first
positions of that list, breaking ties according to < ;

Theorem 6.3. For any distribution F over the bidders’ valuation functions, the mechanism
class of unit bundling auctions contains a mechanism M with expected revenue satisfying:

Eo[Rev(M, v)] > Eo[SW(A,v)] — an(géi)l/i*@?/?’ (6.2)

i=1
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where E Bidder i’s expected value for the number of units she is allocated by A,
5;%: The variance of bidder i’s cumulative distribution for that number of units, i.e.

60 =Yl 0%
For the proof we will need a lesser known result from [25].
Corollary 6.1 ([25], Corollary 2). The following bound holds for any distribution D:
S < (3B)'/352/3 (6.3)
where B is the expected value of the distribution, o? is its variance and S is its separation.

Proof. For any distribution F' over the bidders’ valuation functions, the unit bundling class
contains a mechanism M that for every bidder ¢ has the same bundle size as what that bidder
was allocated in A and in addition, it has the optimal reserve price for that bundle and bidder.
Using linearity of expectations, the expected revenue of M is simply the sum of its expected
revenue on every bidder:

E,[Rev(M, v)] ZRevl (M,v)] = zn:Ev[Revi(M,v)} (6.4)

i=1

where Rev; (M, v): The revenue of M from bidder i on the valuation profile v.

We will restrict our attention to some fixed bidder i. Let s; be the amount of units she is
allocated in A and therefore her bundle size in M. Against bidder i, M faces a posted price
problem. In posted price problems with a single bidder, we can view the expected revenue
of the mechanism as the expected value of the bidder for the good (or bundle) available for
sale, minus her expected separation, i.e. the part of the bidder’s value for the good that the
mechanism could not extract as revenue. Formally:

E [Revl M U sz,g i

=B, - §, (6.5)

where E,- is bidder i’s expected value for a bundle of s} units and :S’\,» is the the expected
separation between her value for those units and the expected revenue.
Applying theorem 6.1 to the previous equation immediately yields:

Eo[Rev;(M,v)] > B; — (3B;)"/35;*/* (6.6)

Combining equations 6.4 and 6.6:

E,[Rev(M, v)] > En: [Ei — (3B)'3&Y 3]
=1

i El N Z(3§1)1/36\12/3
1=1

n
- > (3B (6.7)

=1

Where the first equality follows from linearity of expectations and the second one from the
fact that the expected social welfare of A is the sum of the expected value of all bidders in its
allocation. O
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The above theorem constitutes our bound between the expected revenue of the optimal mech-
anism from the unit bundling class and the expected social welfare of A. As we discussed in
the start of this section, the next step is to bound the difference between the expected social
welfare of VCG and the expected social welfare of A.

Theorem 6.4. In the setting described at the start of section 6.1, for the expected social welfare
of the a priori optimal mechanism, A it holds:

E,[SW(A,v)] > E,[SW(VCG,v)] — Z max{ flm i — s 1—i + Omyiy/2log((n — 1)m) + o1/2logm, 0}
i=1
(6.8)

For this proof we will need one additional lemma from probability theory.
Lemma 6.1 ([26]). Let Y = maxj<;<n X;, where X; ~ N'(u,0%). Then E[Y] < u+o+/2logn.
Lemma Proof.

exp(tE[Y]) < Elexp(tY)]

E|
[max exp(tX;)]

n

Il
=

IN

Elexp(tX;)
1

= nexp(tu + t*c?/2)

.
Il

The first inequality follows from Jensen’s inequality, and the second one is the Union Bound.
The last equality follows from the definition of the moment generating function.
Taking the logarithm of both sides of this inequality, we get

1 to?
E[Y] < p+ Ofn+%

2logn

This can be minimized by taking ¢ = , which gives the desired result

E[Y] < pu+oy/2logn (6.9)
O

Proof. For any valuation profile v, the allocation of A can be converted to the allocation of
VCG using at most m unit moves, where a “move” means removing a unit from some bidder
7/ that was allocated more units by A than by VCG and allocating it to a bidder ¢’ that was
allocated less. Of course, since for a fixed distribution F' over the bidders’ valuations the
allocation of A is fixed but the allocation of VCG is not, those moves depend on the actual
valuation profile v.

For any distribution F, the difference between the expected social welfare of VCG and the
expected social welfare of A, using linearity of expectations, is exactly the sum of the expected
gain in social welfare by each of those m moves. We define an ordering on those moves:
move(i): For a given valuation profile v, remove the unit that corresponds to the i-th lowest
marginal value, out of the ones that A satisfied, but VCG did not (i.e. remove it from the
corresponding bidder), and allocate it where it corresponds to the i-th highest ezpected marginal
value out of the ones that VCG did satisfy and A did not.
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Let gain(move(i)) be the gain in social welfare from move(i). It is obvious from the definition
of those moves that:

E,[SW(VCG,v) — SW(A,v)] = ZE,, [gain(move(i))] (6.10)

i=1

Now it suffices to bound the quantity E,[gain(move(i))]. This is quite an involved task. Let
W1 > e > -+ > lUmn be the expected values of all mn marginal values, in decreasing order
and let 71,72,...,0mn be their corresponding standard deviations. In our setting, for the
distributions of any bidder it holds that their standard deviations are ordered in the same way
as their expected values, thus: 1 > 75 > -+ > T.n-

We will restrict our attention to one such move, move(i) for some fixed i. For this move
the lowest possible expected value of the distribution of the unit we are removing from the
allocation of A is p;,+1—,; because by the definition of move(i), for the units that correspond to
lower expected marginal values in the allocation of A, if they were to be removed, they would
have been removed by previous moves. The corresponding variance of the distribution of that
unit is at most Efn+1_i.

Similarly, the highest possible expected value of the distribution of the unit we are adding,
from the allocation of VCG that was not in the allocation of A is pu,,1; because again, by
the definition of move(i), if units were to be allocated to marginal values with expected value

in {fmt1s fmt2s -« s Bmti—1}, they would have been allocated by previous moves. The corre-
sponding variance of the distribution of that unit is at most 72, , ;.

At a first glance, someone following along up to this point could assume that for the expected
gain of the i-th move it holds: E,[gain(move(i))] < pm+ti — fhmt1—i- However, this is not
the case. This would be true only if the units removed and added by that move were two
independent samples from their respective distributions. In reality, we have the prior knowledge
that those units were chosen and not chosen by VCG respectively, and our expectation needs
to account for that. The rest of the proof does exacty that.

When move(7) is allocating a unit to some marginal value, it only has (n—1)m options, because
m out of the nm marginal values are already included in the allocation of A. Because both
the mean and standard deviation/Sub-Gaussian parameter decrease as we “move down” in the
two sorted lists:

e If all the (n — 1)m marginal values not included in the allocation of 4 were sampled
from Gaussian/Sub-Gaussian distributions with parameters (pm+i,02,,;) (the highest
possible), their expected maximum would be at most

Himti + Tmin/ 210g((n — 1)m).

e If any of the (n — 1)m marginal values follows a distribution with either smaller mean
or standard deviation, the expected value of their maximum strongly decreases.

e Thus, using lemma 6.1 the expected value of the unit that the i-th move is adding to
the allocation of A is at most fim+i + omtin/21og((n — 1)m).

In the same vein, when move(i) is removing a unit from the allocation of A, it only has
m options, because A allocates at most m units. Because both the mean and standard
deviation/Sub-Gaussian parameter decrease as we “descend” the two sorted lists:

e The maximum possible variance of the distribution of a unit in the allocation of A is o3.

e If all the m marginal values in the allocation of A were sampled from Gaussian/Sub-
Gaussian distributions with parameters (fi;,11_i,07), their expected minimum would be

at least iy 1-; — 014/2log(m).
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e If any of the m marginal values follows a distribution with greater mean or lower variance,
the expected value of their minimum strongly increases.

e Thus, using lemma 6.1 the expected value of the unit that the i-th move is removing
from the allocation of A is at least pi,1+1—; — 014/21og(m).

Since the expected gain of every move, if performed, is simply the expected difference between
the unit being added and the unit being removed from the allocation of A:

Ey[gain(move(i))] < timti — thm+1—i + Om+iv/ 21og((n — 1)m) + 014/ 2logm (6.11)

Combining equations 6.11 and 6.10 with the fact that any move that will actually be performed
results in non-negative gain in social welfare:

Ey[SW(VCG,v) — SW(A,v)] = Y  Ey[gain(move(i))]

i=1

m
< Z max{ fimti — m+1—i + Om+iy/2log((n — 1)m) + 714/21logm, 0}
i=1
(6.12)

Using linearity of expectations and solving with respect to E,[SW(A,v)] immediately yields
the desired bound. O

This result has a very intuitive interpretation: Notice that the difference fiy4i — fhmt1—i 1S
always non-positive. Holding the variances/Sub-Gaussian parameters of all the distributions
fixed, as the “distance” between the expected values of the distributions increases, the difference
between the expected social welfare of VCG and A decreases. Now that the distributions are
“further apart” it is less likely for a marginal value to surpass some other with higher expected
value, thus VCG has a smaller chance of finding suitable units to swap, different than those of
A. Conversely, holding the expected values of the distributions of all marginal values fixed, as
their variances/Sub-Gaussian parameters increase, so does the difference between the expected
social welfare of VCG and A. For higher Sub-Gaussian parameters, the tails of the distributions
decay slower, therefore the regions and the probability mass where distributions of different
marginal valuations are overlapping increases. This means that VCG has a higher chance of
finding suitable units to “swap”, and therefore increase its social welfare compared to A.
Combining theorems 6.2, 6.3 and 6.4 with Pollard’s uniform convergence theorem and solving
for the expected revenue results in the following corollary:

Corollary 6.2. In the setting described at the start of section 6.1, for the empirically optimal
mechanism M € UB on a sample set of N valuation profiles, with probability at least 1 — § it
holds:

Eo[Rev(M, v)] > Eo[SW(VCG, v)] — i(3§1)1/3a2/3 -0 (U\/n log(nm)/N + U+/In(1/6) /N)

i=1

= max{fim i — ftms1-i + Fmyir/21og((n — 1)m) + 711/2logm, 0} (6.13)

i=1

where U: The mazimum profit achievable by mechanisms in UB.
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6.5 Relaxing the Distribution Assumptions

In this section we will relax the assumptions about the bidders’ valuation distributions and
show that a result very similar to corollary 6.2 still holds. Now the only assumptions that
we make are that all bidders have submodular valuation functions and their marginal values
follow exclusively Gaussian and Sub-Gaussian distributions. Formally:

The Setting (Submodular Bidders, Sub-Gaussian Distributions)
e 1 bidders.
e multi-unit auction with m units available for sale.

e every bidder ¢ declares m marginal values v;1,v;2,...,v;m to the mechanism, where
v;;: Bidder i’s value for acquiring her j-th unit of the good, provided she has already
clinched 7 — 1 units.

e every bidder’s valuation function is submodular: v; 1 > v;2 > -+ > v; , Vi

e Every marginal value v; ; follows some Gaussian or Sub-Gaussian distribution Fj ;.

As we alluded to when commenting on the previous setting (6.1), this set of assumptions is quite
natural: A wide range of distributions are Sub-Gaussian, including Gaussian distributions and
mixtures of Gaussian distributions, uniform distributions and all bounded distributions. Fur-
thermore, Gaussian distributions are perhaps the most common in nature, and it is a common
practice in statistical theory to use Gaussian distributions to represent real-valued distribu-
tions whose distributions are unknown ([27, 28]). Finally, submodular valuation functions arise
naturally in many environments where bidders exhibit “diminishing returns” for multiple units
of the same good.

Theorem 6.5 (Alternative to 6.4). In the setting describe above, for the expected social welfare
of the a priori optimal mechanism, A, it holds:

E,[SW(A,v)] > E,[SW(VCG,v) i V/2log(nm), (6.14)

where G1 > 09 > +++ > Tmn 1S a total ordering on the standard deviations of the distributions
of all nm marginal values.

Proof. The m marginal values that A satisfies are sampled from Gaussian/Sub-Gaussian dis-
tributions with parameters (u1,0%), (i2,03),. .., (tm,02,) respectively. Thus, the expected
social welfare of the allocation of A is exactly Z:’ll ;. This is greater or equal the a priori
expected social welfare of any other allocation.

Let v be a random sample of the players’ values, in which we compare the social welfare of A
with that of VCG. The expected social welfare of A on that sample, as on any other sample,
is >, wi. The expected social welfare of VCG is a bit harder to analyze:

e In any valuation profile v, VCG will allocate units in such a way that they correspond
to the m out of the nm highest marginal values.

e Suppose that on that valuation proﬁle v, VCG allocated a unit that corresponded to
some marginal value i. Let (u;,02) be the expected value and variance/Sub-Gaussian
parameter of the distribution of that marginal value 4.
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e There are nm marginal values in total. Even if all of them were i.i.d. samples from
the distribution of ¢, the expected value of the maximum of those nm samples, which is
the optimal that VCG could have picked, is at most p; + 0;1/2log(nm) (Application of
Lemma 6.1).

e Thus, the expected value of some marginal value 7 on a sample, provided that VCG
picked that marginal value on that sample, can only be at most o;4/2log(nm) greater
than the a priori expected value of that same marginal value, where o;: The standard
deviation/Sub-Gaussian parameter of the distribution of i.

e Using the fact that VCG, just like any other mechanism, can allocate at most m units,
summing up over all the units allocated by the VCG mechanism, their expected value
can be at most Y., 7;1/2log(nm) greater than their a priori expected value.

That, combined with the fact that A has a priori expected social welfare greater or equal to
that of any other allocation, immediately implies:

E,[SW(A,v)] > E,[SW(VCG, v)] i V/2log(nm) (6.15)

O

Combining theorems 6.2, 6.3 and 6.5 (instead of 6.4) with Pollard’s uniform convergence the-
orem and solving for the expected revenue yields:

Corollary 6.3. In the setting described at the start of this section, for the empirically optimal
mechanism M € UB on a sample set of N wvaluation profiles, with probability at least 1 — 0 it
holds:

Ey[Rev(M,v)] > E,[SW(VCG, v)] — 2(33 /35,23 _ Z v/2log(nm)

=1
~0 (U\/n log(nm) /N + U\/ln(l/é)/N) (6.16)

where U is the mazimum profit achievable by mechanisms in UB, G1 > G2 > +++ > Tmp @S G
total ordemng on the standard deviations of the distributions of all nm margmal values and
BZ, ;2 are the expected value and variance of FZ, bidder i’s valuation distribution for x; units,

~2 _ T; 2
i.e. 0 _ijl G4

At a first glance, it is hard to grasp if the above result is good. The expected revenue of M
is greater or equal to the expected social welfare of VCG, which is an obvious upper bound
on the expected revenue of any mechanism, minus three small, additive terms. The quantity
S 1(3B )1/3A2/3, if the third root over every term didn’t exist and the total variances of
the players were all equal to one would be equal to 3 times the expected social welfare of
VCG. Of course, by applying a third root over each of its terms it becomes an order of mag-
nitude smaller. The term .-, 7;1/2log(nm) is sublinear in the number of bidders n and
(almost) linear in the number of units available for sale, m. For high-valued goods, this term
compared to the expected social welfare of VCG becomes trivially small. The final quantity,

0 (U\/n log(nm)/N + U\/ln(l/é)/N>, is the generalization error of the proposed mechanism

class. Reasoning about this quantity is a bit harder, especially if one is not very familiar with
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sample complexity analysis. This term is a direct result of applying Pollard’s Uniform Con-
vergence Theorem (theorem 4.1), as is standard on learning theory, on the pseudo-dimension
bound that we established for the unit bundling mechanism class. In our case, this bound
depends on the number of bidders, n, and the number of units available for sale, m. But under
non-anonymous prices, the dependence on the number of bidders is expected. Finally, when
the valuations of the bidders are unit-dependent, the sample complexity bound should also
depend on the number of units available for sale. For a more intuitive explanation behind the
last 2 statements, we refer the interested reader to [12, sections 2 and 3.
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Chapter 7

Restricting The Number of
Samples

Our results up to this point were very promising. For any setting we studied, we showed
that given enough samples, it is possible to learn a deferred-acceptance auction with high
revenue. In some high-impact markets, like spectrum allocation where DA auctions are used
in practice, auctions can be quite rare. For those environments, assuming a non-constant
number of samples, or any other knowledge of the bidders’ valuation distributions, might be
unrealistic. Therefore, a logical next step for this thesis would be to design prior-independent
auctions that, using a very small number of samples, achieve expected revenue that is a constant
approximation of what can be achieved with an unrestricted number of samples. In this chapter
we tackle exactly this problem, both for single and multi-parameter environments.

7.1 Single-Parameter Environments

The first single-parameter setting we will study is once again a multi-unit auction with bidders
with linear valuations, as we studied in most of chapter 5. The only difference is that now the
only requirement for the valuation distribution of every bidder is that it is regular, instead of
having bounded support in some range [1, H]. This is a much weaker assumption. Formally:

The Setting (Budget-Additive Bidders, Regular distributions)
e n bidders.
e multi-unit auction with m units available for sale.
e every bidder ¢ has a publicly known demand d;.

e every bidder is additive, up to her demand d;:
For every bidder 4, her value for acquiring x; units of the good (a service level z;), up to
d;, is x; - v;, where v;: her value per unit of the good. For more than d; units: her value
remains v; - d;. Valuation functions of this form are called budget-additive.

e Every bidder ’s value per unit, v;, follows some distribution with probability density
function f;(-) and virtual valuation function ¢;(-).

e Those distributions are regular.
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Our approach for single-parameter environments was heavily inspired by Hartline and Rough-
garden’s “Simple versus Optimal Mechanisms”. In our case however, some non-trivial modifi-
cations of their results were required.

In their paper, Hartline and Roughgarden introduced the notion of a duplicated environment.
Intuitively, in a duplicated environment every bidder ¢ is competing with every other bidder
in the same way as she was in the original environment, but she is now competing with one
additional bidder: her duplicate i’. Regardless of the exact details of the original environment,
in the duplicated environment at most one of 7,7’ may have a non-zero allocation. Formally:

Definition 7.1 (Duplication of a Single-Parameter Environment, [29]). Each bidder i with
valuation distribution F; is replaced by a pair i,i" whose valuations are i.i.d. draws from Fj.
The feasible allocations in the duplicated environment are those satisfying:

1. At most one bidder from each pair is allocated any units.

2. The allocation, when naturally interpreted as an allocation in the original environment
(i.e. all units that were allocated to either i or i’ are instead allocated to i) is a feasible
allocation in that environment.

Another important notion that Hartline and Roughgarden introduced was that of commensu-
rate mechanisms. They introduced that notion for binary environments, meaning that every
bidder can either be a winning or a losing bidder. We extended that notion naturally to
generalized, single-parameter environments and then proved that our extension maintains the
desirable properties of the original definition.

Definition 7.2 (Single-Parameter Commensurate). Let M and M’ be two mechanisms for
a given single-parameter environment. Let x;(v) and zi(v) denote the allocation of the two
mechanisms to bidder i in the valuation profile v. The mechanism M is single-parameter
commensurate with M’ if:

E, > m(w)gi(w)| >0 (C1)
i (v)#x) (v)

and

> Ey > w(v)gi(v) (C2)

i:xi(v) £z (v)

E, lz pi('v)

ieEN

where p;(v): The payment of bidder i in M on valuation profile v, for x;(v) units.

The formal definition of commensurate mechanisms may look complicated at first glance. The
first condition (C1) requires that the expected virtual social welfare, but summed over only
the bidders with different allocations by the two mechanisms, is non-negative for the allocation
of M. This assertion is generally non-trivial: Even though the unconditional expected value
of a bidder’s virtual valuation is zero, now there is the implicit conditioning on those bidders
having different allocations in M’. The second condition (C2) asserts that the expected total
payments from bidders in M is greater than the expected virtual social welfare in M’, but
summed over only the bidders where the allocations of the two mechanisms differ.

At the heart of many of the results in [29] was the fact that satisfying the conditions of 7.2 is
a sufficient condition for the expected revenue of the mechanism M to be a 2-approximation
to that of the mechanism M’.
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Lemma 7.1 (Similar to [29], Lemma 3.9). If a mechanism M is single-parameter commensu-
rate with a mechanism M’, then

E, [Rev(M,v)] > % - Ey [Rev( M, v)]. (7.1)
Proof. We argue separately that
E, [Rev(M,v)] > E, > 2(v)ei(v) (7.2)
| iz (v) =2 (v) ]
and
Eo[Rev(M0)] 2E, | 3 l(0)ai(v) (7.3)
| iz (v) Az} (v) ]

Adding these two and applying linearity of expectations and Myerson’s lemma yields the theo-
rem: The left-hand side equals 2-E,, [Rev(M, v)] and the right-hand side equals E,, [Rev(M’, v)].
To derive inequality 7.2, write

E, [Rev(M,v)] = E, Z z;(v)pi(vs)
LieN
—E, > mi(@)gi(vi) | +Ey > wi(v)gi(v)

Li:zi (v)#x} (v) ] i:xy (v)=x(v)

SE, | Y maw)| =B | Y d@é)| (74

|2 (v) =2} (v) ] iy (v)=x(v)

where the first equality follows from Myerson’s lemma, the second from linearity of expectations
and the inequality follows from condition (C1).
Deriving inequality 7.3 is straightforward:

E, [Rev(M,v)] = E,

> pi(v)

iEN

> Ey > 2i()i(vs) (7.5)

iz (v) Az (v)

where the equality is the definition of revenue and the inequality follows immediately from
condition (C2). O

The reason we extended the definition of commensurate mechanisms, and the lemma regarding
their expected revenue, from binary to arbitrary single-parameter environments is that it could
be applied to multi-unit auctions with budget-additive bidders.

Lemma 7.2 (Similar to [29] Lemma 4.5). In a multi-unit auction with budget-additive bidders

and regqular valuation distributions, VCG with duplicates is single-parameter commensurate
with the optimal mechanism, Myerson, without duplicates.
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Proof. We begin with the first requirement, (C1) of our definition. Let A’ denote the set
of all “duplicated” bidders and v’ their valuation profile. Finally, let z(v,v’),2’'(v,v") denote
the allocation of the VCG mechanism (with duplicates) and the optimal mechanism (without
duplicates) respectively. By definition, z’(v,v”) is independent of v/, and cannot allocate any
items to duplicated bidders: z/, (v,v’) = 0 Vi’ € N.

Condition on v but not on v'; this fixes a’(v,v’). We argue that

Ev' Z .Ifi(U, v’)(bi(vi) > 0 (76)

IENUN: z;(v,0")#£z) (v,0')

The unconditional inequality in (C1) follows. We prove (7.6) by showing that the expected
combined contribution of each original bidder 7 and her duplicate ¢’ to the left-hand side is
non-negative. If one of 7,7’ has positive allocation, it is the bidder with higher valuation and
hence, by regularity, with higher virtual valuation.

First consider an original bidder ¢ such that z/(v,v") > 0. Since the valuation distributions
are regular, the optimal mechanism only selects bidders with a non-negative virtual valuation,
so ¢i(v;) > 0. It follows that the contribution from 4,4 to the left-hand side of (7.6) in this
case is non negative with probability 1: if x;(v,v’) = z;(v,v") = 0 the contribution to the
virtual social welfare is zero; otherwise it is max{z; (v,v’),z;(v,v")} - max{$;(v;), pi(vir)} >
> max{xi' (’U, 'U/)7 zi(vv vl)} : ¢1(Ul) > 0.

Now suppose that for the original bidder ¢ we have z}(v,v’) = 0. Condition further on the
valuations v’_; of all duplicates other than 7', and let £ denote the event that either z;(v,v’) > 0
or zy(v,v’) > 0 (both of these cannot occur at the same time). If =& occurs, then the
contribution from 4,4’ to the left-hand side of (7.6) is zero. Since v,v’_; are fixed, event &
occurs if and only if v; is at least some non-negative threshold ¢. In this case, the expected
contribution of 4,4’ is E,,, [max{z;(v,v")¢i(vi), zir (v, v")p;(vir)}], conditioned on v, v’ ; and .
This is lower bounded by the analogous conditional expectation of z; (v, v’)®;(v;/), which is
equivalent to

EUi/ [.CEZ‘/ (’U, 'U/)d)i (’Ui/)|’U,L'/ > t]. (77)

Since the unconditional expectation of a virtual valuation is zero, ¢; is non-decreasing by
regularity and z; (v,v’) > 0, the quantity in (7.7) is non-negative. Taking expectations over
whether or not £ occurs, and then over v’_; completes the argument.

For the proof of condition (C2), we will have to improvise. We will prove the condition
pointwise, for each valuation profile v,v’. For any valuation profile, VCG in the duplicated
environment allocates at least as many units as the optimal mechanism in the original envi-
ronment, since the allocation of the original environment is always feasible in the duplicated
environment, and VCG chooses a maximal solutions with respect to social welfare (and no neg-
ative values exist). Let i be the bidder with the highest virtual value per unit ¢;(v;) to whom
the optimal mechanism in the original environment allocated more units than VCG with re-
serves did, in the duplicated environment, i.e. «}(v,v") > z;(v,v’). Since z}(v,v’) > z;(v,v’),
allocating an additional unit to bidder ¢ was also possible on the duplicated environment (the
demands of all pairs of original /duplicated bidders are the same). Thus, for any unit that was
allocated differently by the VCG with reserves, the externality that that allocation caused was
at least v;. By the definition of VCG, for every unit allocated differently, for the payment p
that the winner of that unit has to make it holds p > v; > ¢;(v;),

where v; > ¢;(v;) follows by the definition of a virtual valuation. Summing up over all units

allocated differently by VCG with duplicates, and using the fact that it always allocates at
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least as many units as the optimal mechanism in the original environment, we have that the
total payments procured for those units by VCG with reserves is greater or equal the sum of
virtual values collected by the optimal mechanism, for all units that it allocated differently
than VCG with duplicates. This, combined with the fact that for the units that were allocated
in the same way both mechanisms earn payments equal to the corresponding (same) virtual
value completes the proof. O

The reason that we are interested in VCG with duplicates is that for a multi-unit auction, as
for any single-parameter environment with budget-additive bidders, VCG with duplicates is
implementable as a valid generalized DA auction.

Proposition 7.1. In any environment with polymatroid constraints, including a multi-unit
auction, VCG with duplicates is implementable as a generalized deferred-acceptance auction.

Proof. The proof is similar to [18, Section 4]. The main difference is that now the allocation of
every bidder has to adhere not only to the polymatroid constraint of the original environment,
but also to the constraint that for every pair of an original bidder and her duplicate, at most
one of them can have a non-zero allocation.

Let h: 2" — Ry be the submodular function defining the set of feasible outcomes:

P, = {leN"| > @i < h(S) vsmv} (7.8)

i€S

In any problem instance involving polymatroid constraints, there exists a simple generalized
DA auction that achieves the optimal social welfare in the duplicated environment. Given the
submodular function A of the polymatroid constraint, the scoring and clinching functions of
this auction are defined as follows:

e The polymatroid auction scoring function is
o7 (bis by a,) = bs (7.9)
e The polymatroid auction clinching function is

h(Ay) — h(A\ {i}), if i ¢ A,

0, else (7.10)

9{" (b a,) = {

where with i we denote for any bidder ¢ of the duplicated environment, the other bidder of the
pair of original and duplicated bidder that ¢ belongs to.

The scoring function of every bidder 7 is obviously valid, since it is weakly increasing in the bid
of ¢ and does not depend on the bids of the other still-active bidders. The clinching function is
also valid: At each stage t each bidder i € A; has clinched an allocation equal to her marginal
contribution to the value of h(A;). Since h is submodular, this marginal contribution weakly
increases as A; shrinks, so this is a valid clinching function. Thus, the mechanism proposed is
a valid single-parameter generalized deferred-acceptance auction in compliance with definition
4.11.

One can easily verify that this auction always yields the maximum possible social welfare.
Note that its outcome is exactly the same as the one that would arise if we instead used the
following forward-greedy algorithm: First give the bidder ¢ with the highest valuation the
highest allocation possible, i.e. h({i}) (note: as in the definition of duplicated environments,
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in the function h the units allocated to duplicated bidders are naturally interpreted as given
to the original ones, e.g. h({i'}) = h({i})). Then, give the second highest bidder j the highest
allocation possible, given the existing assignment to i, i.e. j gets h({3,j}) — h({i}) if her
duplicate has not already been allocated any units, else she gets 0, and so on. This greedy
algorithm has been proven to be optimal for polymatroid settings ([30]).

O

Combining lemmata 7.1 and 7.2 with proposition 7.1 immediately yields:

Theorem 7.1. In the setting described at the start of section 7.1, there exists a simple gener-
alized single-parameter auction that achieves, in the duplicated environment, at least half the
expected revenue of the optimal mechanism, Myerson, in the original environment.

The above theorem required quite a bit of work to be proven. One may wonder what was the
point behind it; after all, the mechanism designer cannot duplicate the bidders of an auction.
What the mechanism designer can do however is, if given a sample from every bidder’s valuation
distribution, use that sample to “simulate” the duplication of the environment.

Corollary 7.1. For every multi-unit auction setting with bidders with linear valuations drawn
independently from distributions that satisfy the reqularity condition, there exists a generalized
single-parameter deferred-acceptance auction that, using a single sample, achieves expected
revenue that is a i—fmction of the expected revenue of the optimal auction.

Proof. By theorem 7.1, there exists a generalized DA auction that achieves, in the duplicated
environment at least half the expected revenue of the optimal auction in the original envi-
ronment. In the duplicated environment, symmetry dictates that for every pair (i,i') of an
original bidder and her duplicate, if one of them has non-negative allocation, then it is equally
likely to be the original bidder or her duplicate. Thus, the expected revenue from the original
bidders is at least a quarter of that of the optimal auction in the original environment.

Given a sample s = (s1, 82,...,8,) of every bidder’s valuation distribution, we can use that
sample to simulate the duplication of the original environment: For every bidder ¢ with demand
d; and valuation v; her duplicate 7’ also has demand d; and valuation s; per unit. Then, we
can run the auction described in proposition 7.1 on this extended set of bidders. Because we
have restricted our attention to multi-unit auctions, the polymatroid DA auction described in
that proposition takes a special form. Let b; be the bid of bidder 7 in the auction, whether she
is an original or a simulated bidder. Then, the scoring and clinching functions of the auction
are:

e The multi-unit scoring function is

o (bs, by a,) = b; (7.11)
e The multi-unit clinching function is

d;

et (7.12)
2 G nAd

gZAf(bN\At) =min < d;,max < 0,m —
where } is the other bidder that belongs in the same pair of original, duplicate as j.
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There is one interesting remark regarding the term d;/ |{],;} N A;|. When every bidder is
finalized, the aim is that she is allocated up to her demand as many units as possible, provided
that the units left afterwards are enough to satisfy the demands of the still-active bidders. By
dividing by the demand of every still-active bidder by |{j, 7} N A:| we are ensuring that in the
case that both an original bidder and her duplicate are still active, then for that pair of bidders
their demand will only be accounted for once. The reasoning is that from every such pair of
bidders, in any feasible allocation at most one of them is allocated any units.

One intuitive way of interpreting this mechanism is the following: In our sample complexity
approach, the proposed mechanism was a modified version of t-level auctions, where the levels
were used as a discrete approximation of every bidder’s virtual valuation function. Now that
for every bidder only a single sample of her valuation distribution is available, we can field a
modified version of t-level auctions with a single level and threshold per bidder: Whether a
bidder is at level 0 or —1 corresponds to whether or not she has surpassed her duplicate. For
bidders that are at level 0, ties between them are broken according to their bids.

7.1.1 Generalizing to Environments with Polymatroid Constraints

In our sample complexity approach, we managed to extend our results for multi-unit auctions
to environments with polymatroid constraints. A question that arises naturally is if the same
generalization can be achieved for our single-sample result. The answer to that question is
positive. In fact, our approach will be the same as it was for multi-unit auctions: We will prove
that VCG in the duplicated environment achieves a constant approximation to the expected
revenue of Myerson in the original environment, and then use a single sample to “simulate”
VCG with duplicates. In order to reason about the expected revenue of VCG in the duplicated
environment we will utilize one of the main results of Hartline and Roughgarden’s “Simple
versus Optimal Mechanisms™

Lemma 7.3 ([29], Lemma 4.1). Let v1, vy denote two independent and identically distributed

samples from a monotone hazard rate distribution F with virtual valuation function ¢, and t a
non-negative real number. Then:

- E [max{vy, vo }| max{vy,va} > t]. (7.13)

Wl =

E [max{@(v1, v2)}| max{(v1, v)} > 1] >

The proof is highly technical and for that reason deferred to the original paper. With this
lemma, one can easily show that the expected revenue of VCG in a duplicated environment
with a polymatroid constraint is a constant-factor approximation to the expected revenue of
Myerson in the original environment, provided the valuation distributions satisfy the MHR
condition. The proof is very similar to the one of [29, Theorem 4.2].

Theorem 7.2. For every polymatroid environment with valuations drawn independently from
distributions that satisfy the monotone hazard rate condition, the expected revenue of VCG with
duplicates is at least a % fraction of the expected revenue of the optimal mechanism without
duplicates.

Proof. Fix a bidder 4, her duplicate 7', and bids v_;, v’ for the other bidders of the duplicated
environment. By the definition of the VCG mechanism, there is some threshold ¢ > 0 such that
on that valuation profile, if both v; and vy < t then both ¢ and i’ have zero allocation, and if
at least one of v;, v exceeds t, then the bidder among ¢, 4" with higher valuation, and therefore
higher virtual valuation, has non-negative allocation. Let « be the allocation of VCG. Lemma
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7.3 then implies that

Eu, v, [¢i(vi) - 2i(v,0") + di(vir) - wir (v,0") [ v_4,v" ]
1
> 3 Eo, v, Vi - 2i(0,0") + v - 2 (0,0") | v, 0" ] (7.14)
Taking expectations over v_;, v’ ,, summing up over all pairs of duplicates, and applying

linearity of expectations and Myerson’s lemma yields

2n
“Ey o lz v; -z (v, v’).] (7.15)
i=1

VCG always picks a social welfare-maximizing solution and the expected maximum possible
social welfare in the duplicated environment, which is exactly the right-hand side of 7.15,
is obviously at least that in the original environment. But the expected maximum possible
social welfare in the original environment in turn upper bounds the expected revenue of any
individually rational mechanism, like Myerson, in the original environment. The theorem
follows. O

Ey o [Rev(VCG, (v,0"))] >

Wl =

Once again, the auctioneer cannot feasibly “duplicate” the bidders. However, if the auctioneer
is given a sample of every bidder’s valuation distribution, she can use that sample to simulate
VCG with duplicates.

Corollary 7.2. For every polymatroid environment with bidders with linear valuations drawn
independently from distributions that satisfy the monotone hazard rate condition, there exists a
generalized single-parameter deferred-acceptance auction that, using a single sample, achieves
expected revenue that is a %—fmction of the expected revenue of the optimal auction.

Proof. By theorem 7.2, there exists a generalized DA auction that achieves in the duplicated
environment at least one third of the expected revenue of the optimal auction in the original
environment. In the duplicated environment, symmetry dictates that for every pair (i,i’) of
an original bidder and her duplicate, if one of them has non-negative allocation, then it is
equally likely to be the original bidder or her duplicate. Thus, the expected revenue from the

original bidders is at least a % . % = %—fraction of that of the optimal auction in the original
environment.
Given a sample s = (s1,82,...,8,) of every bidder’s valuation distribution, we can use that

sample to simulate the duplication of the original environment: For every bidder ¢ with demand
d; and valuation v; her duplicate 7’ also has demand d; and valuation s; per unit. Then, we
can run the auction described in proposition 7.1 on this extended set of bidders. O

Compared to our result for multi-unit auctions (corollary 7.1), the approximation guarantee
of 7.2 is significantly worse for polymatroid environments, one sixth instead of one fourth,
and it also holds for a subset of the functions that the original guarantee did, only monotone
hazard rate distributions instead of all regular distributions. It is important to understand why
that is the case. Multi-unit auctions, like matroid environments, are much more structured
than polymatroid environments. In both of these more structured environments, there is an
inherent exchange property: When comparing two maximal solutions x; and x5, whenever a
bidder ¢ had higher allocation on &; than on x5 this implied that there was also some bidder j
that had lower allocation on x; than on x> and that extra allocation of @; could have instead
been given to j. This coupled with the payment formula of VCG meant that whenever its
allocation on some valuation profile differed from that of Myerson, the bidder with the higher
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allocation on VCG had to pay for her extra allocation at least the value of some bidder that
was allocated more by Myerson. This exchange property, and in turn the payment property
we just described, do not hold for polymatroid environments.

7.2 Multi-Parameter Environments

In this section we will propose a multi-unit deferred acceptance auction for bidders with sub-
modular valuations that follow exclusively Gaussian and Sub-Gaussian distributions. For this
environment, as discussed in chapter 6, the revenue-maximizing mechanism is not known. For
this reason, as we did in that chapter, we will compare the expected revenue of the proposed
mechanism directly against the expected social welfare of VCG, which is an obvious upper
bound on the expected revenue of any mechanism. The setting we will study is exactly the
setting with relaxed distribution assumptions of chapter 6:

The Setting (Submodular Bidders, Sub-Gaussian Distributions)

e 1 bidders.
e multi-unit auction with m units available for sale.

e every bidder ¢ declares m marginal values v;1,v;2,...,v;m to the mechanism, where
v;,;: Bidder ¢’s value for acquiring her j-th unit of the good, provided she has already
clinched 5 — 1 units.

e every bidder’s valuation function is submodular: v; 1 > v;2 > -+ 2> vy, Vi

e Every marginal value v; ; follows some Gaussian or Sub-Gaussian distribution Fj ;.

The mechanism we propose for this setting was inspired by our own unit bundling mechanism
class (definition 6.1). In our sample complexity approach we could learn the optimal bundle
size and reserve price for every bidder. Now the idea is to use one sample to determine bundle
sizes that are relatively close to the optimal ones and then use a second sample to learn an
approximation of the bidders’ valuations for those bundles. Because this mechanism makes use
of two samples, we named it the two samples mechanism. Formally:

Algorithm 4: The Two Samples Mechanism (7SM)

1 Collect 2 samples of all bidders’ valuation distributions;

2 Run VCG on the first sample. Let © = (z1, 22, ... x,) be the allocation of that VCG;
3 For every bidder ¢ determine her value r; for a bundle of x; units in the second sample;
4 In the auction offer to each bidder ¢ a bundle of x; units at a price equal to 0.85 - r;;

Note that for each bidder 7 her reserve for a bundle of x; units is not her value for that bundle
in the second sample, but that number multiplied by 0.85. The reasoning behind that choice
will become clear later in the analysis.

First, we will reason about the expected social welfare, on any sample, of the allocation x that
was determined on the first sample.

Lemma 7.1. In the setting described above for the expected social welfare of the allocation
x = (21,22,...,%,) that the TSM mechanism determined on the first sample, on expectation
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over the draw of the sample it holds:

E, [SW(x,v) ZZUU > E, [SW(A,v)] — 24/21og(nm Z (7.16)

i=1 j=1

where G1 > To > -+ > Tmp 1S a total ordering on the standard deviations of the distributions
of all nm marginal values.

Remark. The notation SW(-,v) is overloaded. If its first argument is some mechanism M,
then it represents the social welfare that that mechanism achieves on that valuation profile,
according to its allocation rule, e.g. SW(VCG, v) is the social welfare of VCG on the valuation
profile v. If on the other hand the first argument of SW(-,v) is some allocation x, then
SW(x, v) denotes the social welfare of that allocation on that valuation profile.

Proof. The proof is an extension of theorem 6.5. The distribution assumptions are the same
as they were in that theorem. There, we proved that on expectation, the m out of the nm
marginal values that will “overshoot” (i.e. be higher than expected) the most their expected
values on the first sample v! will in total be at most /2log(nm) > ", &; higher than their
expected value. With an identical argument, one can prove that on expectation, the m out
of the nm marginal values that will “undershoot” (i.e. be lower than expected) the most their
expected values on that same sample v! will in total be at most /2log(nm) 221152‘ lower
than their total expected value. These statements also hold for the allocation x that 7TSM
determined on the sample and the fixed allocation of A:

E,[SW(z,v)] > SW(z,v') — v/2log(nm) ZEZ-
> SW(A,v') — \/2log(nm) iﬁi

> (EU [SW(A,v)] —

2O
<}
N
3
2
NgE
Ql
~__
|
DO
<}
PER
S
2
3
al

=E,[SW(A,v)] — 2¢/2log(nm) ioi (7.17)

where the first inequality follows from the fact that, as we explained, the social welfare of
allocation x will on expectation be at most /2 log(nm) 2111 @; higher on the sample v! than
its expected value and the second inequality follows from the fact that the allocation @ is the
result of running VCG on v!, so on that sample it has the highest possible social welfare of
any allocation, including the allocation of A. Finally, the third inequality follows from the fact
that the allocation of A, just like any other allocation, on expectation over the draw of the
sample v! can be at most \/2log(nm) Y/, ; lower on v' than its expected value. O

Lemma 7.1 shows that the expected social welfare of the allocation « that TSM determined
on the first sample is close to the expected social welfare of A, which in turn is close to the
expected social welfare of VCG. The next step is to show how close the expected revenue of
TSM is to the expected social welfare of . The following 2 lemmata do exactly that.

In order to prove our next lemma we will need one of the main results from Roughgarden’s
and Huang’s “Making the Most of Your Samples”.
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Theorem 7.3 ([31], Theorem 5.1). In the case of a single item available for sale and a single
buyer, setting a reserve price equal to 0.85 times the bidder’s valuation for the item on a
single sample is 0.589-approzimate to the optimal expected revenue for monotone hazard rate
distributions.

Providing an intuitive explanation for this result is not possible, as the proof is quite involved.
For this reason, we will give an intuitive explanation for another, more basic result that is
however in the same vein.

Theorem 7.4. In the case of a single item available for sale and a single buyer, setting a
reserve price equal to the bidder’s valuation for the item on a single sample is %-approa:imate
to the optimal expected revenue for reqular distributions.

Proof Sketch. Let D be the regular distribution of the valuation of the single bidder, and R(q)
be its revenue curve in probability space: For any ¢ € [0,1] the value of R(q) is the expected
revenue of posting a price such that the probability that the bidder with valuation distribution
D will purchase the item is ¢. If v(q) is that price, then the revenue curve in probability space is
simply R(q) = qu(q). For regular distributions. The optimal reserve price r*, also corresponds
to the optimal probability ¢* = v(r) that maximizes the expected revenue, and consequently,
R(q). Pictorially, the value of the expected revenue at the optimal reserve price corresponds
exactly to the height at R(¢*), which is the peak of the revenue curve. By setting a reserve
price equal to a random sample from the distribution, the expected revenue at that point will
be equal to a random point of R(q), with all points being equally likely, i.e. the expected
revenue will be fol R(q)dq. Pictorially, this is the total area under the curve R(gq). But for
regular distributions, the revenue curve in probability space is convex. This means that R(q)
is at least a triangle, with its highest point being R(q). But the area of a triangle with height

R(g*) and width 1 (the range of values that g can take) is exactly R(q*) - 3 = R(g*), i.e. half

of the expected revenue at the optimal reserve price. O

Lemma 7.4. Let * = (x1,x2,...,x,) be the allocation that the Two Samples Mechanism
(TSM) determined on the first sample. Then, if all the bidders’ distributions satisfy the
monotone hazard condition, the expected revenue of TSM is at least a 0.589-fraction of the
expected revenue of posting to each bidder ¢ the optimal price v} for a bundle of x; units.

Proof. Fix an arbitrary bidder ¢. Let F; be the monotone hazard rate distribution of bidder
1’s valuation for receiving x; units and r; the optimal reserve price for that bundle of z; units.
Let R;(p) = p(1 — F,(p)) denote bidder i’s revenue function for z; units in value space. Finally,
for notational bimplicity let v} (z;) be bidder 4’s value for x; units in the first sample, v, i

vj () = 3272, v; ;. The key observation is that the price r; that the Two Samples Mechamsm
will set for that bundle of units offered to bidder i is determined by the second sample, thus it
is a random, independent sample from the distribution F;. Applying theorem 7.3, we have:

Eoyi(ar) [Ri(0.85-v}(xi))} > 0.589 - R;(1) (7.18)

Summing up over all bidders and using linearity of expectations:

ZE e [ (0.85 - v} (s ))] 20.5895:1%(7“2‘) =

zn: (0.85 - v; (x;) ]z Z (7.19)
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Lemma 7.4 proves that the expected revenue of the two samples mechanism is a constant
approximation of the expected revenue if for those bundles, the auctioneer had set the optimal
reserve prices. The final step is to show that for those optimal reserve prices, the expected
revenue is close to the expected social welfare of the allocation & determined on the first sample.

Lemma 7.5. Let x = (z1,x2,.. a?n) be the allocation determined by the Two Samples Mech-
anism on the first sample. Let Bl,al be the expected value and variance of Fl, bidder ©’s
valuation distribution for x; units. Then, if all the valuation distributions are monotone haz-

ard rate, on expectation over the draw of the two samples v',v? that TSM used the following
bound holds:

Eo[Rev(TSM, )] > 0.589 - Eo[SW(,v)] — 0.589 - > (3B,)"/35,*/* (7.20)
i=1
Proof. The proof is an application of lemma 7.4, corollary 6.1 and linearity of expectations:

ZR 0.85 - vl(xz))]

i=1

E,[Rev(TSM,v)] =

> 0.589 - zn: R(r})
i=1

=0.589- ) {JEMMN@ [vi(:)] = Si]
i=1

—0589-Y B, i [vi(:)] —0.589- Z Si

i=1

>0.589- > B, —0.589 Z(séi)l/?’&f/g

=0.589 - Ey[SW(z,v)] — 0.589 - Y (3B;)'/%5,*/" (7.21)

i=1

where the first inequality follows from lemma 7.4, the second equality follows from the definition
of separation and the third equality from linearity of expectations. The final inequality follows
from corollary 6.1 and the final equality from the fact that the expected social welfare of the
allocation x is simply the sum of the expected value of every bidder for the units that she is
allocated in x.

O

Combining lemmata 7.1 and 7.5 with the lower bound on the expected social welfare of A of
theorem 6.5 yields the following corollary:

Corollary 7.3. In the setting of multi-unit auctions with submodular bidders whose valuations
follow Gaussian and Sub-Gaussian distributions, as described at the start of the section, for
the expected revenue of the Two Samples Mechanism, on expectation over the draw of the two
samples that determined the bundle sizes and reserve prices it holds:

Eo[Rev(TSM, v)] > 0.589 - E,[SW(VCG, v)] — 1.767+/21log(nm) Z —0.589 > (3B,)"/35,*/*
i=1 =1

(7.22)

88



CHAPTER 7. RESTRICTING THE NUMBER OF SAMPLES 89

where T, > 0o > +++ > Tmn 1S a total ordering on the standard deviations of the distributions
of all nm margmal values and B“Jz2 are the expected value and variance of F,, bidder v’s

valuation distribution for x; units, i.e. 6;- = 5o, 02

j=1%4j"
Proof. For the expected revenue of the Two Samples Mechanism, on expectation over the draw

of the two samples it used, it holds:

Eo[Rev(TSM, v)] > 0.589 - By [SW(z, v)] — 0.589 - > (3B;)"/%5;*/*

i=1

> (.589 - (Ev[SW(A,v)] 2log(nm Z ) —0.589 > (3B,)"/35;*/*
i=1 i=1
> 0.589 - (Ev[SW(VCG,v)] — 3/2log(nm Z ) —0.589 > (3B,)"/35;*/*
=1 =1

= 0.589 - E,[SW(VCG, v)] — 1.767+/2log(nm Z —0.589 > (3B,)"/35,*/*
=1 =1

(7.23)

where the first inequality follows from lemma 7.5, the second from lemma 7.1 and the final one
from theorem 6.5.

O

It is noteworthy that under the exact same distribution assumptions that we had used in our
sample complexity approach, we managed to propose a mechanism that, given only 2 samples
of the bidders’ valuation distributions, achieves expected revenue that is a 0.589-approximation
of the expected revenue that the unit-bundling class achieves using a logarithmic to the number
of bidders number of samples, minus an additional 1.178/2log(nm) > ;" 7;. For high-valued
items, this last term becomes trivially small compared to the expected revenue of the auction.
There is an interesting final remark to be made. Both in the case of budget-additive bidders
and in the case of submodular ones, when restricting the number of samples we are still
picking mechanisms from the corresponding mechanism class that we had proposed for the
same environment in our sample complexity approach: In the case of budget-additive bidders,
we use a single sample to determine an approximation of the threshold of a 1-level auction for
every bidder, while in the case of submodular bidders we are using one sample to determine
the bundle sizes and another to determine the reserve prices of a mechanism from the U5 class
(definition 6.1).

7.2.1 Generalizing the Previous Result for More Samples

It is possible that the auctioneer, in this setting, managed to procure a constant number of
samples that is higher than 2 yet not high enough so that the empirical revenue maximizer
from the UB class generalizes well. A question that naturally arises in this case is whether the
auctioneer could somehow utilize those extra samples, or she is restricting in utilizing only two
of them and fielding the two samples mechanism. Fortunately, the Two Samples Mechanism
can easily be extended to allow for more samples. We named the resulting mechanism the “Few
Samples Mechanism”. Formally:
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Algorithm 5: The Few Samples Mechanism (7 SM)

1 Collect N > 2 samples of all bidders’ valuation distributions;

2 Randomly exclude 1 sample. Use the IV — 1 samples left to calculate the average value
of all marginal values ;

3 Run VCG on the average marginal values calculated in step 2. Let
x = (x1,x9,...,%,) be the allocation of that VCG ;

4 For every bidder ¢ determine her value r; for a bundle of z; units in the sample that
was excluded in step 2;

5 In the auction offer to each bidder i a bundle of x; units at a price equal to 0.85 - r;;

Essentially, this mechanism now uses N — 1 samples to determine the bundle sizes that will
offer to each bidder, while TSM used only one. Intuitively, this more informed decision results
in bundle sizes that more closely resemble the allocation of A. The following lemma formalizes
this intuition.

Lemma 7.6. In the setting described at the start of this section, for the expected social welfare
of the allocation = (x1,x2,...,2,) that the Few Samples Mechanism determined on N — 1
out of the N samples, on expectation over the draw of those samples it holds:

2log(nm) = _
E, [SW(z, v) ZZU” > W(A,v)] —2 ﬁ;cr (7.24)

=1 j=1

where 1 > Gg > +++ > Gmn 18 a total ordering on the standard deviations of the distributions
of all nm marginal values.

The proof is very similar to that of lemma 7.1. The main difference is that now that the average
values of more samples are used to determine the bundle sizes offered to the bidders, the
variances of the distributions of those averages on the samples, if viewed as random variables,
are significantly lower than the variances of the original distributions.

Proof. In this setting, all marginal values follow exclusively Gaussian and Sub-Gaussian dis-

tributions with expected values p1, o, ..., ttmn and standard deviations/Sub-Gaussian pa-

rameters 01,09, ,...,0mn respectively. Then, their respective averages out of N — 1 samples

follow Gaussian and Sub-Gaussian distributions with expected values p1, pa, . - ., by and vari-
2

ances/ Sub-Gaussian parameters at most N L, ]\7 2 Tyoeo X{”” This implies that their standard

deviations/Sub-Gaussian parameters are at most \/ﬁ’ \/%, ey \7% With an argument

identical to that of lemma 7.1, now the most that the averages of m marginal values can either
“overshoot” or “undershoot” (1.e. be higher or lower than expected) their expected values is

- T 2log(nm)
v/ 2log(nm) ; N = N Z (7.25)

Once again, these statements also hold for the allocation & that FSM determined on the
sample and the fixed allocation of A. Let © be the vector of the empirically average marginal
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values, as determined by FSM on the N — 1 samples. Then
. 2log(nm) = _
> — - 7 .
E,[SW(z,v)] > SW(z, d) N1 ;:1 T

2log(nm) s _

><EU[SW(A,v)]— WZ”>‘ m;giﬁlgmza

i=1

= Ey[SW(A,v)] — 21/ ) QIOg nm) Z 7, (7.26)

where once again the first inequality follows from the fact that, as we explained, the social
welfare of allocation  will on expectation be at most /2log(nm)/(N — 1) 31" &, higher on
0 than its expected value and the second inequality follows from the fact that the allocation x
is the result of running VCG on 9, so on that valuation profile it has the highest possible social
welfare of any allocation, including the allocation of A. Finally, the third inequality follows
from the fact that the allocation of A, just like any other allocation, on expectation over the
valuation profile © can be at most \/2log(nm)/(N — 1) 37" &; lower on ¥ than its expected
value. O

As discussed earlier, lemma 7.6 yields a better approximation guarantee for the expected
social welfare of the allocation ® than lemma 7.1 in the case where more samples are available.
Combining it (instead of lemma 7.1) with lemma 7.5 and the lower bound on the expected
social welfare of A of theorem 6.5 yields the following corollary:

Corollary 7.4. In the setting of multi-unit auctions with submodular bidders whose valuations
follow (MHR) Gaussian/Sub-Gaussian distributions, as described at the start of the section,
for the expected revenue of the modified Two Samples Mechanism, on expectation over the draw
of the two samples that determined the bundle sizes and reserve prices it holds:

2 ~

E,[Reo(TSM, v)] > 0.589 - (]E,, [SW(VCG,v)] — <N + 1) 2log(nm) ZJZ 2 1/301-2/3)

(7.27)
where 01 > Ty > +++ 2 Oy 05 a total ordering on the standard deviations of the distributions
of all nm marginal values and B;,G:% are the expected value and variance of F;, bidder i’s
valuation distribution for x; units, i.e. G2 = Z? 1 az’j
Proof. For the expected revenue of the Few Samples Mechanism, on expectation over the draw
of the NV samples it used, it holds:

E,[Rev(FSM,v)] > 0.589 - <E,, [SW(,v)] - Z(SE)V%W?’)
> 0580 <Ev[SW(A,v)]—2 2log(nm) SR Z (35, 1/3~2/3>

> 0589 (E SWVCG )] — (2 1) V2logm 37 - i@én”%ﬂ

(7.28)
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where the first inequality follows from lemma 7.5, the second from lemma 7.1 and the final one
from theorem 6.5.

O

At a first glance, this result may be hard to grasp. The few samples mechanism, using some
small constant IV number of samples achieves expected revenue that is a 0.589-approximation of
the expected revenue that the unit-bundling class achieves using a logarithmic to the number of
bidders number of samples, minus an additional additive term, 1.1781/2log(nm)/(N — 1) 31" | 5.
As discussed earlier, for high-valued goods, this term becomes trivially small compared to the
expected revenue of the mechanism.
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Chapter 8

Conclusion and Future Work

In this work we explored the revenue performance of deferred-acceptance auctions for different
environments. Specifically, in the case of multi-unit auctions with budget-additive bidders,
as well as more general environments with polymatroid constraints, under natural distribution
assumptions, we proposed a novel DA auction mechanism class and upper-bounded the sample-
complexity of learning a revenue-optimal auction from that class. Then, in the case of bidders
with submodular valuations, we proposed another DA auction class and lower-bounded the
expected revenue of the empirical revenue maximizer of that class, in relation to the number
of samples used. Finally, we explored how both of these results change in the case where the
auctioneer only possesses a very restricted number of samples. The most meaningful question
that arises from our work, apart of course of improving the bounds we proved, is whether, and
how, these results generalize in the case where there are different goods available for sale. We
conjure that for bidders with additive and submodular valuation functions, similar results can
be proven, albeit with a higher sample complexity due to the more complex structure of the
valuation functions.
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