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MepiAngn

Ov olyypovol vnohoyiotée ypeewdloviar neptocotepy RAM xadog ol diepyasiec orjuepa
telvouv va €youv Ueydho anotimwua WvAung. Ou ohoéva xan HEYAADTERES YWENTIXOTNTES
UVAUNG OUWS, OONYNOOV Xl OE ALENUEVE XOOTN UETAPEOONC TWV EXOVIXGV BIELIUVOEDVY.
[ty avTetodmon autod ToU TEOBAAUATOS, Ol XATACKELAGTES LALXOU Tapelyav ota TLB
™ duvatdtnta va utootneilouy yhiddec eyypapéc yior YeYdho YeYEDN oeMBwY () dmwe
ovopdlovton peydres oelideg). Omdte n eudivny Yo TNV Pelwor Tou x60ToUC PETAPROONS
Twv dlevdivoeny Tépaoe and TO UAXO 0TO EXACTOTE AOYLOUIXO.

To Ingens etvon €vag TpOGPATOG UNYAVIGUOS TOL Olayelpliletan TIg HEYAAES OEAIBES UE TEOTO
CUVTOVIOEVO ot Ywelc va yeewdletar Ty TopéuBaon Tou yerotn. Avtwetwnillovioc tnv
CLYOYT| TNG UVAUNS WS TORO TTOU TEETEL Vo dtavenUel o OAeg TIC BlERYAOIES Xou TAUEAXONOU-
YOVTOC TNV YpNon xou TNV CLYVOTNTH TWV CEABWY TNg uvAung, to Ingens eivon oe Yéon
vo e€ahelel pla oetpd and mtodoloyleg dixane cUUTERLPORAC xou ATOBOCNC, EVONUXES GTNV
TEEYOLO LTOCTHELET TV PEYSIAWY GEABWY.

Y1y tp€youca Simhwpatix epyacio anodexviouye Ot 1 aduvauio Tou Ingens var oavoxth-
OEL TIG UEYAAEG OEMDES, UTOpEL Vo 00NYNOEL, OE OPIOUEVA GEVAQLA, GE GOLXT| XUTAVOUT TWV
UEYSAWY GEADBWY TOU CUGTAUATOS. LTNV CUVEYELX BElYVOUUE TS AUTY| 1) AOLXT) XUTAVOUT
umopel vor 0dnyNoeL xaL o€ Blapopég oTnV anodoaor. Aaufdvovtac unodiy To yeYovog OTL
OE WPEPIXEC TEQTTAOOELS oL adixiec oty anddoon elvon pn amodextéc (m.y. oevdpla mapo-
yhc cloud unneect®y, 61OV 0 TEPOYOC TUPEYEL GTOUC TEAGTOUS TOU EXOVIXES UNYAVES TOU
{Btou TUTTOVL), CYEDACOPE Ko UNOTIOLACUUE EVOLY UNYOVLOUS arvoxatavounic UEYSA®Y oEABWY,
ovéopatt HPRM (cuvtopoypagio tne ayyhurc gpdone Huge Page Redistribution Mech-
anism), o omnofog dlopdvel To eldttwpa Tou Ingens. Emxvpdooue v Aettoupyla tou
HPRM nocotixonowwvtag to Badud otov onolo unopel va pewwoel tny odixio mou undpyet
0T0 GLOTNUA OE CUYXELOY UE TNV TROETAEYUEVY exdoyt| Tou Ingens. Télog, cuyxpivaue
TNV amod00T| eQapuoY®Y otay autég €tpeyav oc Ingens ye HPRM xou o mpoemheyuévo
Ingens.

NéEerg Kheldd

Ewovue) uviun, Meydheg oehideg, Awoyelpion MyvAune, Avadiovour, Ingens



Abstract

Modern computing is hungry for RAM, with today’s workloads that tend to have large
memory footprints. Increased memory capacities have led to increased translation over-
heads as well. In response, hardware manufacturers provided TLBs, with thousand
of entries for large page sizes (called huge pages). It was then the system software’s
responsibility to take advantage of such changes.

Ingens is a recently proposed framework that provides transparent huge page support in
a principled, coordinated way. By treating memory contiguity as a resource that has to
be shared across processes and by tracking utilization and access frequency of memory
pages, Ingens is able to eliminate a number of fairness and performance pathologies
endemic to current huge page support.

In this diploma thesis we demonstrate that Ingens’ inability to reclaim huge pages could
lead, in certain scenarios, to an unfair distribution of the system’s available huge pages.
We then show how this unfair distribution could lead to differences in performance.
Motivated by the fact that in some cases (e.g. cloud provider scenarios with purchased
VM instances) unfairness is unacceptable we designed and implemented a huge page
redistribution mechanism, or HPRM, that corrects Ingens’ shortcoming. We validated
HPRM'’s functionality by quantifying the degree to which it is able to decrease the
system’s unfairness when compared to default Ingens’. We also evaluated how HPRM
affected performance relative to default Ingens.

Keywords

Virtual memory, Huge pages, Memory management, Redistribution, Ingens
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Ewcaywrn

Ou oUyypoves eQoapUoYEc Pe PeYdAa amoTuTtGpoTo Wvhung eivar théov ouvides [1]. T va
xAAOPOUY TIC AUENUEVES AVAYXES GE UVIUY), OL GUYYPOVES TAATPOPUES UTONOYLO TV TAEOV
unoo tneilouy yeyahitepeg ywentixdtnteg oe DRAM. Qotdo0, oL augnuéveg ywpntixdtnteg
TEOXOAOUY GNUAVTIXT TEOXANON Yiot TN PeTAPpaon dieudivoewy. ‘Olot ol abyypovol enel-
EPYUCTES Ypnoylonololy Tivaxeg oeAdwY yia Ti¢ Yetappdoelg dieudivoewy. o vor emi-
TaryOvouy TNV Bladixaoior TNG METAPEAOTS Ol EMECEQYACTES AMOUNXEVOUY TIC TILO TEOCPIUTES
uetappdoelg dievdivoewy o pio ewdiny) uviun cache mou ovoudletan TLB. Qotdco, 1
ywenuxdtnta touv TLB (aprdude xataywperioeny x péyedoc oehidac) dev pmopel var xhi-
woxwdel ue Tov (Blo puiud 6mwe xou n DRAM, xadede elvon moAd dboxolo vo awéndet o apt-
Yo xatayweroewy TLB ywelc tny emfBdouvon xdécTtoug 1 emnpdc¥etwy xoaduc Tepoemy.
Q¢ anotéheoya, Olepyaciec ue UEYAAO AmOTOMWUA UVAUNG BLOVOLUY PEYOAES TOVES OTNV
enidoon (performance) ané actoylec TLB xou and tnv yetdgpacn dievdivoewy [?] dtav
yenotponowoty Baowée oehidec (dnh. 4KB). To mpdfBinua yiveton mo coPopd Ue eovixd
nepiBdhhovto dmou amontovvton 8Vo eninedo petdppoaone dieudivoewy [4, 5]. Tétowou tomou
diepyaoiec €youv TomoUeThoEL Tal YEVIXG €€000 PETAPEUOTS DIEVTUVOE®Y GTO GTOYACTEO
Twv enelepyaoTdv Yevixnic yehone [6, 7, 8, 9]. Xe andvtnom, oL cUYYPOVES UPYITEXTOVIXES
€pyovTon Ue XohOTEEY UTOCTARIEN Yial MEYAAUTERD UEYEDT CEADBWY, 1| Yot HeYdAes oedibes
(huge pages) 6nwe ovoudlovton. ‘Oneg LTOBNAGVEL Xou TO GVoULL, OL UEYAAES GEAIDBES €y 0UV
auénuévo péyedoc oe obyxplon e to péyedoc uoc mapadootoxrc oelidoc (dnh. 4KB).
I mopdderyua 1 apyrtextovixt| x86-64bit utootneilel oeAideg 2MB xou 1GB extog amd Tig
oehidec Ty 4KB. Y11 napoboa Simhwpatixd, Ouws, OTAV AVUPEROUICTE OF UEYUAES OEALDES
evvoolue Tic oeAldeg peyédoug 2MB.

To ogpéln Tou mpooxouilouv ot dicpyaoiec and Tig Yeydheg oehideg eivon dvo: (1) Avydtepeg

actoyiec TLB, agol pia xoatayweion TLB avtictowyel o moAd yeyolltepn mocodTnta
ewovixfic pviune (m.y. 2MB yu 4KB) xou (2) ov aotoylec TLB npoxaholv uxpdtepec
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xaduoteproel. Autd yiotl pe 4KB oeidee, n petdppoaon pag exxovixnc dievduvorng amontel
TEPLOCOTERES AVAUPORES GTNY UVAUT OE GYECT| UE T1 TERITTWOT) TOL YENOWOTOLOUVTOL UEYAAES
oehidec. T mapdderypo otny apyitextoviny| x86-64bit ye 4KB oehidec, n petdppoaon wag
eovixrc dieduvone amoutel Ty Sidoyton pag tepapyiog 4 mvdxwy cehidwv (Ewéva 0.1).
Avt¥étwe pe 2MB oeldeg 1 petdgpaon tne (Blag exovixrg dledduvong amoutel Ty didoyton
3 mvdxwv celidwv (Ewdva 0.2).

pgd oftset pud oftset pmd offset pte offset page offset pod offset pud offset pmd offset page offset

VA[ oo [ oo | eos [ ems | mws | VA [ oo st abits 2101

 —
4 KB physical page 2 MB physical page
pad pud pmd ote pod pud pmd

Ewéva 0.1: 286-64bit: aotoxia TLB (0eAida 4KB) Eiwkéva 0.2: ©86-64bit: aotoxia TLB (0ekiba 2MB)

Mopd tnv extetapévn utoothetln oto LAxd [10], oL peydhec oehidec Topelyay un xovonot-
NTxég emdOoELC oE onuavTixés epopuoyés (11,12, 13, 14, 15, 16] Autd ta Yépata emdooewy
ogeihovton cuyVa oE AvEToEXELS AAYORPLIUOUS BLUYEIPLONG TWV AELTOURYIXMY CUC TNUATWY
[17, 18, 19]. 'Etot, n eudivn yio xohUtepn UnooThEEN TwV YeYGhwY oeABLY xou Belti-
WUEVT ATOBO0T| EOVIXTC UVAUNG EXEL UETATOTUOTEL OO TO UAXO OTO EXFCTOTE AOYLOUIXO
TOV CUCTNUATOV.

Apywd to Linux, vnootipile v yenomn Twv UeYdhwy oeAMdnv péow wag BiBAodfxng
(libhugetlbfs [22]). Me autdv tov tpémo T0 Bdpoc Tne dlayeiptons Twv YeYdhwy oeABwy
emPBdpuve Tov yeNoTn, o onolog €npene xdde Popd var SECUEVEL EX TWV TEOTEPWY UEYBOAES
oeNdeg Tou cuoTApaToc. Anuoupyfinxe, Aoldy, 1 oavdyxn yio Evoy unyoviouo dloyelplong
HEYGAWY oeNBwv Bdtapavy (transparent) otov yefotn. H 1déa eivor 6Tt 0 muphvoag tou
AELTOLEYIXOU GUOTAUATOS EXYWEEL UEYAAES GEADES auTOHATA, Ywelc dNAadY| TNy Tapéufac
Tou yprotn. H vrnootheln evic Swgavolc tpémou Syelpione yeydhwv celidnv [23, 24]
elvor 0 HOVABIXOS TEOTIOC VAL (PEPOUUE TA OPENT) TWV UEYIAWY CEMBWY GE OAES TIC EQPUPUOYES.

To Linux eiofyorye €vay dlapavy| unyovioud Sloyelplons Twy UEYIAnY 6eAdmY 0 omolog
euvoel TNy eniboom Twv BlepYaotdY 0AAS dev hauBdver oy Véuato OTwe 1) dlxoun XoTavoun
TWV PEYGAWY GEAB®Y, 0 havidvey ypdvog tou opdhuatoc oehidag (page fault latency), n
£Z0XOVOUNTT] X0 O XUTAXEQUATIOUOS TN UVAUNG. XE amdvTnon autdy tov eMelpewny Tou
Linux vionotidnxe to Ingens [20]. To Ingens eivon évog npdopoutoc dlapavic unyovtouoc
Oloyelplong UEYIAWY GeABwY 0 omolog haufdver utddiy xou LooppoTel pe amodoTxd TeEOTo
T OPENT) TWV UEYIAWY GEADBWY UE TA TEOBAAUTO TOU AT ONULOUEYOLV.

Y10 mhalolo TN mopoVoag SIMAWUATIXAC ERYCIUG Xat UEAETWVTAS TpooexTxd To Ingens
avaxoAOoe Twe To oty To cuoTNuA Beloxeton uTo Tieon uvAuNng, to Ingens dev umopel oe
OPLOPEVES TEEQITTWOOELS VoL TETUYEL Uit Blxann xatovour| UEYIAWY GEMBWVY avauESH OTIC UTO
extéleon depyaoiec. Eyovtag, Aowmdv, wg xivntpo 10 yeYovog 6Tl 6 oplouéva TERL3AA-
AovTaL 1) GO XATOVOUT] TWV TOPMWY TOU CUCTAUNTOC elval oVETITEENTY, OYEddoUUE Xal
UAOTIOLACUUE EVOY UNYAVIOUO TOU AUVEL TOV EV AOYw Teptoploud Tou Ingens.
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Awayeipton Meyddwv X ehidwv

To Linux exyweel (allocates) peydhec oehidec pe 5o tpdTOLE:

1) ZOyypova, TNV oYU TOU GPIALATOS Wog oehiBag av o muprvag uropel va Beet 2MB
GUVEYOUEVNS PUOLXNG UVIUNG.

2) AcUyypova, ye Ty yphon evoc vidatog tuphiva ovouatt khugepaged, o€ nepintwon mou
o muphvag Oev elvan oe H€on va Peel 160 eAedlepo PO cUYYPOVA, ETEWDT Yia ToEABELYU
N wviun ebvon xotaxeppatioyévn. Ondte nuprvag tpofBaivel oe cuurieon puvAune (memory
compaction) xou avoBEAAEL TNV ExYOENON NG HEYIANC oeABoC yia apydTepo.

VA VA
PM PM
= :
; ]
huge page | huge page | 2
region 43 3 region 2
4 4
2 2
newly
allocated
huge page
Ewcéva 0.3: Ilepioxny peydAng oeridag avt- Ewova 0.4: To anotéleoua tng mpoaywyns piag me-
oTo10évn) 0€ BidoTapTeS UEAIBES PUOIKTIS PIOXTIS HEVAANS 0edibag o€ pia peydAn oedida
HYIunS

To khugepaged tpé€yel meplodind 6TO TUEUCHAVIO OXAVAPWVTAS TOV ELXOVIXO YO OLEL-
YOVOEWY TV BIEQYAUCLOV TROXEWEVOL Vo “Tpoaydyel” opddec amd 512 cuveyouevee oeADES
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EXOVIXAC UVAUNG 1) 0AAOC Tieployéc ueYdhwy oehidwyv (huge page regions), oe peydheg
oehidec. Me tov 6po “mpoaydyel” evvoolue OTL avtioToyel autéc Tig 512 cuveydueveg
oENDES EXOVIXAC UVAUNG, OL OTIOLES aEY XA UTOREL VoL AVTIO TOLY0UCOY GE BLACTORTES OEALBES
oty guoweh uviun (Ewéva 0.3), oe 512 cuveydueves oelidec puohc pviune. T va to
xatapépel autd To khugepaged exywpel pla peydhn cehido otny Quor UVAUN xou ovTL-
Yedpel yéoa ot auTh Ti¢ Tavag OLdoTapTeg GEMOES PUOLXNC UVAUNG TNG TERLOY NS UEYAANG
oehidac (Ewdva 0.4).
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Awaxeipton MeydAwv X elidwv oto Linux: lNeproplopol

Ye auTh) TNV EVOTNTA TEPLYPAPOUUE TOUS TEQLOPLOUOUS GTOV BLapavy| UMy oviopo dlayelptong
TOV PEYIAWY oeEABwWY Tou Linux mou odrynoav otny vhomoinor Tou Ingens, ylag tpdopatng
Noong otny dayelptong ueydhwy ceAldwy Yo To Linux.

Aoavidvev yeodvog cpalpatog oehidag

‘Onwe yvwpellovye and TNy TeoNyoUUEYY EVOTNTA, 6TV TAUEOUCIALETUL GQPIAU GEADIC o
plo teptoy Y| uvAung, To Linux mpoonadel vo dwodéoel mpwta war ueydan oealda. Mbvo €dv
ATOTOYEL 1) EXYOENON WIaG UEYAANE oeAldag, To Linux Yo Swowdéoel wa 4KB oelida yio va
ixavorotnoetl To altnuo. Auth n emdetin| tpocéyyion audvel TNy xaducTERNOT GPAAUATOS
oeAidac yia Vo AdYouC:

1) To Linux npénet vo undevioet tnv tepdotio ceAido mptv tny emoteéder otov yerotn. To
TEOBANUA EYXELTOL OTO YEYOVOC OTL OL TERACTIEG OEABES elvan 512 opéc YeyohlTepeg amod
g Pacixéc oeMBES o, ETOPEVLS, elvor TOAD TLO GEYEC VoL UNBEVIGTOLY.

2) To Linux ynopel vo tpoywerioel oe cUYypovn cuunieorn UvAunG oe pla TpooTdveto v
otrd€oel o TepdoTiar GEAIDA TN OTUYUT| TOU OQAAUATOC TG GeAldac. Autd cuufalvel cuyvd
OTaY 1) UWVAUN elvol XAUTUXEQUATIOUEVT], UE ATOTEAEOUA, Teployes EAcOUEPNS GUVEYOUEVNS
QUOIXAC UVAUNG Bev Bploxovton ebxoha.

Ecwtepixdg xaTaxXeEpUATIONOS

To Linux 6ev AauBdver unodiy to av 1 peydin oehido mou Yo dcdoet oe pio diepyacio Yo
yenowonondel oTny ohAOTNTA TNE UE ATOTEAECUA TOAES UEYAAES GEADES VOL YENOWLOTIOLOUY-
Ton ev pépr. o mapdderyua, pla diepyaotio umopet va yenoylornotet povo tic pioég 4K oeiideg
ToU TEPLEYOVTAL OE Uiot UEYAAT oeAida. AuTd Ouwe dev otopatd To Linux amd to var Ty
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exywenoeL oTny diepyaoto.
EZwTtepindg xATAKEPUATIOUOG

H dninotn npocéyyion xatavounc HeYdhwy oehidny tou Linux xatavohover yeriyopd Tig
CUVEYELEC GTNY PUOLXY| UVAUY OPHVOVTOC TNV UTOAOLT QUGLXT UVAUT) XUTUXEQUATICUEVT).

‘ABLxmn XATAVOWUY] LEYAIAWY CEABWY

To vpa tuprjva khugepaged dev dlavépet dixona Tig UEYIAES GEADES TOU CLUOTAUATOS GE OAES
TI¢ UTO exTéleoT) Olepyacieg, xodmg TPOAYEL OE PEYAAES OEMOBES OAES TIC TEPLOYES UEYAUANC
oehidag yiog diepyaotac mply yetoxivniel otny enduevn. Euvoeitor, Aowndy, n diepyacio tou
to khugepaged 0o emhé€er mpmdtn.
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Ingens: Awaxeipton MeydAwv Xeidwv

To Ingens eivon évag mpdcQUTOC Blapavic UNYOVIoHOS Blayelptong UEYIAWY GEABWY xau
Baoileton o BYO apyéc:

1) H ouvoy uviune ebvan évag mépog mou mpénet vo mopéyetan e&loou petald tov Ot
ABLHACUDV.

2) H Biyelpion e ouvéyetag puvAune anotel TANpoQoplec oyeTXd Ue TN Yeromn xou T
CLYVOTNTA TNG TEOGLUCTC TWV GEADBWY UVAUNG.

To Ingens éyel oyedlaoTel Ue TpOTO TOU VoL AVTETWTILEL Tar TPoBARuaTo TOU lvan eVOTULXd
oTOV TEOTO pE Tov omolo To Linux Suyeptplleton Tic peydhes oelldec. Luyxexpiuévo:

1) T vo pewdoer tov haviddvovta tou o@dlpatog tne oeAidac mou oyetileton Ue TOV
oUYYEOVO UNBEVIOUO TwV UEYSAwY CEABwWY, To Ingens amhd Sev exywpel peydiec oeiideg
obyyeova. AvTiiETng OAEC OL TPOUYWYES OE UEYIAES CEABES TTROYUTOTOLOUVTOL AGUY POV
UE TNV YeNom €VOC VAUATOS TLEHVA, ovOUaTL promote-kth.

2) T v avtieTwnioel Tov eowtepnd xotaxeppatiopd to Ingens tpofaivel oe cuvtnenTxd
EXYWENOT UEYSAWY CEADBWY OTaY 1 UV €lval TOAD XUTUXEQUAUTIOUEVT).  LUYXEXQUIEVY
TPOGYEL PLat TEPLOY T HEYGAWY GEAB®Y uévo dtav 1o 90% twv 4K oehidwv tou mepiéyovton
o€ ouTY £Y0LY AVTIGTOLYIOTEL e oeAideg TNg puowhc uviung. To Ingens avtidauBdveta To
n6TE N wvAun elvon ToAL xotaxepuatiopévn péow wag petewhe (FMFET [25]).

3) It vor petpdoer Tov e€mteptnd xotoxeppotiopd to Ingens mpoPoivel oe neplodixt| TEoEY-
epYh (proactive) ocuunicon uvAung, 6tov 1 uviun eivat TOA) XOTOXEPUATIOUEVT.

4) T vo metyer plo Bixaun xotavour Twv Slrdéouny PeYSAmY GENBWY TOU GUCTHUO-
T0¢ 0TI¢ UTO extéheot) dlepyaoieg, To Ingens ewodyel Ty €vvola NG TEOTEPUOTNTAUSC GTO
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promote-kth.

To vrua promote-kth anotehel tnv poyoxoxxold tou Ingens, xaddc ulomolel OAeg TIC
TEOUYWYES TWV UEYIAWY oeAldwy. TTpdxerton yio pla Srapopomoinuévn exdoyr Tou khugepaged
Tou Linux o emtedel T1¢ nopaxdte Aettovpyleg:

1) Ixavomnolel 6T0 TopaoxAVIO Tor uTAUOTA YLol UEYSAES GENDES, UE TNV OEWRd TOL oUTA
xatagddvouy (First Come First Served), ta onofo to Linux Yo ixavonololoe v oty
EVOC OPANIATOS CENDAC.

2) Otav enelepyactel dho aUTE ToL UTAUATE OXAVELEL TOV EXOVIXG YDEO DELYUVOEWY
e o adMUEVNG Blepyaciog Tou LUTEEYEL 0TO GUGTNUO YLl VoL TOU EXYWENOEL UEYIAES
oehidec. EnovolopfBdver autr tn dtadascta péyet vo emiteuy Vel plor dixonn xatovour| HEYhwy
CINIYI

To Ingens ciodyel 600 yetpixée, v Fairness M mou yapaxtneilel xdde diepyaocio xon
v Unfairness O nou yopaxtneiler 1o obotnua. Iho adunuévn oplleta 1 diepyacio p
ue TN peyahteen Ty Fairness M. Alxourn oplCeton exelvn 1 xatavour| UEYIA®DY CEABWY
mou undevilel to Un fairness O tou cucthpatoc. Xe xdie nepintwon to Ingens yvwpellel
avoL THOO OTUYUT XATA TOCO 1) UTHPYOUCH XATAVOUY) UEYSAWY GEABWY elvar dduxn xou o€
Tepintwon nou elvor, o ol diepyacio TEENEL Vo OWOEL UEYIAES GENDES Yol VoL XEVEL TNV
xaTorvout| dlxoun.
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Awayeipton Meyadwv X ehidwv oto Ingens: lNepLopiopoi

To Ingens eyyudton dixain TwV xatovour| LEYIAWY GEAB®Y YeTAdD Twy dlepyactdy. Ot cuy-
yeagelc Tou Ingens to amodexviouy pe €va TElpopa. NUYHEXPUEVA, TEEYOUY TAUTOYPOVA
3 otrywotuna evog benchmark. e avtideon pe to Linux, to Ingens etvor ixoavd to yolpd-
oel dixono OAeg TIg Olodéouleg UeYdAeg OEADEC oTa 3 OTIYUOTUTIA UE ATMOTEAEOUA AUTAL VOl
TEAELWVOUY TNV (Blal YPOoVIXT| OTLYUN.

Ou ouyypageic Tou Ingens urtootneilouy OTL 1 Blxoun XATAVOUY| TWV UEYIAWY CEADBWY elvon
xerown o cevdpla tapoyric cloud urneesiov, 6Tou o Tdpoyog TUREYEL GTOUS TEAITOUS TOU
EXOVIXEC UNYvVES TOU (Blou TUTOL. € QUTES TIC TMEQITTWOELS, AOLTOY, Ol UEYUAES OEAIBES
TOU GUOTAUATOS TOU TUPOYOU TEETEL VoL LOLRAGTOVY LGOTIOGU GE OAES TIG ELXOVLXEG UMY AUVES
TPOXEWEVOL oL TeheuTaiec var €youv Tic (Blec emdboelc. Av dev polpatoly lodmooa, Yo
UTIOPYEL AMOXALOT| OTIE ETUDOCELS TWV EXOVIXWY UNYaveY. AuTo Tpogavns Yo ducaupecToLoe
Toug TEAdTEC oL oTolot €YouV xade AOYO VoL TERLUEVOUY (BLEC EMBOCELS OO OAES TIC ELXOVIXEC
unyovég tou (Blou Tonou.

EvtoUtolg, undpyet éva éuputo mpdPinua oto oyediaoud Tou Ingens mou To anotpénel vo
TETOYEL YLOL OLXOLT) XATOVOUT| UEYUAWY CGEMOWY 1 GANMG Wlal OiXALT] XATAG TACT|, OF UEPKES
TEPIMTOOES. AUTO TO OYEBLICTING EAATTOUN TNYALEL amd TNV avixavoTnTo Tou Ingens va
OLUVEUEL EX VEOU TG PEYAAEC oeAideS. ‘Otay AEpe OLavEpeL ex VEOU PEYSAEC GEADES EVVOOUUE
var Zavapotpdler Tic Hon undpyouoes ceMdes (pe dixono TEéTO). Buyxexpuuéva ol TpooTd-
Yeleg tou Ingens vo methyouv plor Sixoun xaTdoTACT GTOUUATOOY OTAY BEV UTERYOLY GAAES
otrdéoiueg Yeydheg oeAldec 610 clOTNUA.  AVOAUTIXOTERY, OTAV 1) UTHEYOUCA XUTAVOUT
TOV PEYAA®Y CEABWVY Evar ddixr, To Ingens Yo mpoomadrioel vo tn Sopdwoel divovtog
HEYdAES oEMDBES oty adwnuévn digpyaota. 2otéco av to promote-kth dev Peel emopxr
eheUeQO YOPO OTN QPUOLXY) UVIUTN TEOXEWEVOL Vo EXYWENOEL Uiot UEYAAT CENDA ETELDT
T0 olotnua Beloxetan umd mieon pviung, xouio peydhn oehido Yo doldel oty adixnuévn
oepyaota. AnoteAeopatind 1 adxnuévr Siepyooio Tapauével adxnuevr ot to Ingens €yel
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“ 7 99 7 7 ’ 7 ’ ’ ’ ’
XOMHoEL” o€ auTh TNV ddxn xatdotaon. Hapaxdte napoucidlouue dUo cevdpia oTa omolo
GUVAVTOUUE TO TEOBANUL AUTO.

To netpdparto xan and to d0o oevdpla ta €youye Teé€et oe évay Intel ®) Xeon®) ProcessorE5-
2630 v4 (ITivoxag 0.1). Xe xdde oevdplo TpéYOuUe 2 OTLYUIOTUTO TOU HETPOTIEOY PUUUATOC
facesim(Parsec 3.0 benchmark [28]) ue 6o tpotepondtnTa ahhd e ypovixn dapopd. I
VO TPOCOUOLWCOUUE CUVUTXES Ttieong uvAung metv amd xdde melpoua TEEYOUE Eval ELOXA
oyedlaopévo Gedpwua muphva (kernel module). Ppovtilouvue va otpeadpouye Ty uvAuN
TOU GUOTAUATOS TOGO OOTE OL OLIETIES UEYIAES GEAIBES TOU GUOTAUATOS VAL (PTEVOUY UOVO
Yt To €val a6 T 600 CTLYULOTUTIOL TOU TELPAUATOC.

1° Yevdpro

Teéyouue TO TEMOTO GTIYULOTUTIO XaL OTAV TEREL OAES TIE DLtdETUES OEAMBES TOU CUCTAUATOC
TEEyoupE xou To devTepo. Ilupatnpolue 6Tl To 6elTEPO GTIYULOTUTO TalpVeEL UEYIAEG GEAIDES
Hovo 6tav 1o mpdTo TEAEWoEL TNV extéheon Tou (Ewdva 0.5). To Ingens ovuhopBdveton
WS 1) XATOVOUT] TWV UEYIAWY GEABWY elvon dduxn xododg awgdveton 1 uetewr; Unfairness
(Ewéva 0.6). H xatoavour| eivan ddixn xodode oto obotnuo tpéyouv 2 otiypdtuna {ong
TEOTEQAUOTNTOC AAAG UOVO TO €val EYEL UEYAAEC OEAIDEC.

Ingens' huge page distribution Ingens' unfairness
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Ewcdva 0.5: 1° oevdpio pe mpoemreyuévo Ingens - Ewdva 0.6: 1° oevdpio pe mpoemreyuévo Ingens -
Aiepyaoies Unfairness

2° Yevdelo

Enextelvoupye 1o 1o cevdpio ahhdloviog TIC TROTEPAUOTNTES TWV CGTLYULOTUTLV SUVOULXA.
LUyrEXPIIEVO AUEAVOUUE TNV TEOTEPAULOTNTO TOU GEUTEPOU GTLYHLOTUTIOU X0l UELWVOUUE TNV
Tpotepao T ToL TEwToL. To Ingens avtihaufdveton TNy tpdovetn adixio and TNV ahhoyT
e npotepondTnTag (Eixdva 0.8) adhd Sev umopel var xatavéUer avahoyo TL YEYAhES oeAideS
(Ewxéva 0.7).

Kot ota 600 napandve cevdpia to Ingens €yel “xolnioel” oe pla ddwn xatdotooy. Eyov-
T WS ®YNTPO TO YEYOVOC OTL GE PEELXd TEQUBAAAOVTAL 1) dOXT) XUTAVOUT] TWV TOPWY TOU
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Ingens' huge page distribution 700000 Ingens' unfairness
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Ewéva 0.7: 2° oevdpio ue npoemAeyuévo Ingens - Eiwkdva 0.8: 2° oevdpio pe mpoemdeyuévo Ingens -
Aiepyaoieg Unfairness

OUCTAUATOS EVOL OVETTRETTY), OYEBIACOUE Xl UNOTIOLACOUE EVOLY UMY OVLOUO AVOXATOVOUNG
HEYSA®Y oeNBwY, ovopatt HPRM (and tov ayyhixd 6po Huge Page Redistribution Mech-
anism), tou Bondd to Ingens va avtioTeédel TNy EdLXN xoTavoun TwY YEYSA®Y OEABWY oTa
TUPATAVE CEVIQLAL.
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Huge Page Redistribution Mechanism: X xediocon

H éa niow and to oyedaoud tou HPRM elvar amhr. ‘Otoav plor obixnuévn diepyaoto
{ntroet uio yeydn oehida xau Sev umdpyouy dladéoiue ueYdheg oehiBec 6TO GUOTNUA, TO
HPRM oanodeoyever (deallocates) tn Mydtepo ouyvd yenotwonotoluevn (least frequenlty
used) peydhn celido and TNy mo euvonuévn dadacta yior vor eEunneethioet To oftnuo. EE
oplouol, autnh 1 dadixaocior Yo 0dnyroet o uo mo dixoun xatdotaon. llpénel eniong va
onuetwVel 6Tt to HPRM avodiavéuel yeydheg oeAldeg povo otav autéd elvon amopaitnTo,
OnAadt 6Tay war adnuévn diepyaotio {NTAceL pio UEYGAT oeAdAL.

To HPRM vlomoujinxe péoa oto promote-kth xou emexteivel v AettovpydtnTa Tou.
Ewwodtepa, to HPRM evepyornoeiton dtav o promote-kth aduvatel va ixavomolioel €va
alTnpo HeYEAng oeAidog Aoyw EMkewdng Brardéoumy peydhwy oeiidwy. ‘Otay evepyonowniel,
to HPRM:

1) ehéyyer edv Yo pmopovioe vo emtteuyVel doudtepn xatovoun UEYIAWY CEMBWY UE TNV
EXTAPOOT AU TOV TOU AUTAUATOS UEYIANG oehidac. Edv oyt, to HPRM amoppintel o altnua.
Edv vou, to HPRM

2) eméyel tny depyoaoio and v onoio Yo eheudepioel pio peydhn oehido. Metd,

3) Bploxet T MydTERO GUYVE YPNOWOTOLOUUEVT LEYAAN oeAda Tne emAeyuévng diepyaoiog.
Telhxd, to HPRM

4) amodeopelel auTh TNV PEYSAN oehiBa and TNV emAeypévn diepyooion Xou TNV ETLOTEEPEL
oto promote-kth yio vo e€unnpetrioel To altnua.

21



Huge Page Redistribution Mechanism: A&LoAéynon

Ye auto 10 xe@dhano Yo afloOAOYCOUUE TOV UNYAVIOUO TOU ovomTLEUUE TOCO OE EIMESO
enidoong oe oyéon e To mpoemheypévo Ingens 660 xou o eminEdO BixANG HATAVOUAS TWV
UEYSAwY GEABWY.

Mepaportiky MAoctpdppa

‘ONoL 0L EXTEAETELS UETRPOTROYPUUUATOY TOU TAEOLGLELoVTaL GTNY ToEOUCA SITAWUNTIXY €0-
yoota €ywvov oe éva NUMA node xau oc enelepyooth Intel® Xeon®) E5-2630 v4 tou
omolou Ta yopaxTneoTixd (atvovton otov Ilivoxa 0.1.

Owoyéveia Encepyactay Broadwell
Baowxn Xuyvotnta Encepyaocty || 2.20 GHz
Apwduog IMTupHvey 10
Apipog Nnudtwy 20
L1 (data) Cache (avd muphva) 32KB
L2 Cache (avd nughva) 256 KB
Last Level Cache (xowv?) 25 MB

IHivaxag 0.1: Xapaxtnpiotikd Intel® Xeon® E5-2630 v4.

Mo vae mpocopouncouue cuvinxeg tieong uviung, mewy amd xdie nelpaua Ty oLUE Eva ELBXY
oyedaopévo dptpwua muphva. Me autdv tov 1pémo Teplopllovue Tig SLECIUES UEYAAES
oehidec Tou cuoThuaTog oe T€Tolo Padud OOTE VoL PTEVOUV HOVO YLoL TO GTLYUOTUTO TOU
OTA TELRAUATOL UOC TREYOUUE TRMTO.
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NMwg to HPRM AYvelL tovg lNepropiopovg tov Ingens

EnavohauBdvoupe ta oevdpta mou Teplypdpnxay 6To xe@dioto Aloyelpion Meydhwy Lehidnv
oto Ingens: Ileplopiopol yior vor ehéyEoupe TNV AELTOLRYIXOTNTA TOU UNYAVIOHOD UG UOVO
TOU AUTY T POEA TOL TELRAUTA To TEEYOLUE Oyt o€ TpoemheyUévo Ingens aAAd oc Ingens
ue HPRM.

1° Yevdpro

[apatneotue mwe to Ingens ye HPRM ovoxoataveuer tig oeAldeg Tou cuoTAUATOS OTOY
Zexvd Ty extéleon To deltepo oTiyutoTuTo. ‘Etol xdde otiypdtumo malpver aneudeiog to
ueptdlo mou tou avahoyel and tic drdéotuec peydhec oehidec Touv cuothpatoc (Ewdva 0.9).
I'Vowtd xon n petpuer) Unfairness pewdveton anvedeiog (Ewdve 0.10). O Adyog yia tov omolo
1) AVOXOTAVOUT] TWV UEYAAWY CEANBWY BLOXOTTETAUL TEOCWELVE OPEINETOL OTO TOOES UEYBOAES
oelideg Exel {nThoeL U€ypl exelvn TN Ypovixh oTiyuY| To BelTEQO OTIYUOTUTO.

HPRM's huge page distribution HPRM's unfairness
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Ewcéva 0.9: 1° oevdpio pe npoemleyuévo Ingens - FEikdva 0.10: 1° oevdpio pe mpoemileyuévo Ingens
Aiepyaoies - Unfairness

29 Yevdpelo

Axdpo xon 6tary ahhdloupe TIC TEOTEPAUOTNTES TWV OlEPYUoIOY duvauixd to Ingens ue
HPRM éyer tn duvatdtnta vo netiyet plo dixoun xatdotaot yopdlovioc Tig dladéotueg
HEYSAES GEADEC TOU GUCTAMATOS OTA OVO CTLYUOTUTA AVOAOYLXA UE TIC TEOTEQUUOTNTES
TOUC. XTO OTLYUOTUTIO OV EXTEAECTNUE OEUTEPO BWOUUE TOAD PEYUADTERY TROTEPAUOTNTA
o€ OYEaT UE TO TEMTO, YUAUTO Xl XATEANEE VoL TdpeL TNV TAodN@plor TwV YeydAwY GENBWY
tou ovothuatog (Ewéva 0.11). Etnv Ewéva 0.12 n npotn adénorn tou Unfairness un-
OONAWYVEL TNV EXTEAECT] TOU BEUTEPOU GTLYMOTOTOU Xt 1) OEUTEEY TNV aAAwyY| Tou Bdpouc.
Ko otic 800 nepintodoeic to Ingens ye HPRM pewdyvel to Unfairness.
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HPRM's huge page distribution HPRM's unfairness
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Ewéva 0.11: 2° oevdpio pe mpoemdeyuévo Ingens Ewdva 0.12: 1° oevdpio pe mpoemdeyuévo Ingens
- Awepyaoieg - Unfairness

AvdéAvon Ertisooneg ko Adikiog

Méypl otyurc €youpe anodellet 6Tt to Ingens ye HPRM eivon og 9€on va Aboel To teplop-
o6 Tou TpoemAeypévou Ingens, avoxaTavEUOVTUS TIC UEYAAES OEABES TOU GUOTHUATOS UE
évay Oixono TeoTo. Me auTh TN TapdyEapo Vo EEETACOUUE OV 1) OVOXATOVOUY| TOV UEYSAWY
oehldwy empépel xan xotavour g entdoong. o va o xdvouue autd axoroudolue Tnv
ax6Aouln dladacta allohdYNoTg.

[ xodéva amd ta yetponpoyeduuata Tou Ilivoxa 0.2 tpéyouue dVo oTIYUOTUTA UE CUY-
XEXPUIEVT] YPOVIXT] UETAUTOTILOT), OE TpoeTAEYUEVO Ingens xou og Ingens ye HPRM. Yxondg
Mo Vol VoL GLUYXEIVOUUE TOUG YPOVOUS EXTENECTIC TWVY CTIYULOTUTLY 0T 800 aUTd TEQLBAA-
hovta. Ilpwy and xdie nelpopo oTeeGdpOLUE TNV UVAUT EXTEAWVTAC €V EWBIXE OYEBLICUEVO
dGevpwua TUEHVA, WOTE oL BLECIUES HEYAAES OEAIBES TOU GUGTAUATOS VAL PTEVOUY HOVO YLo
TO oTLYULOTUTO TTou TEéyEl TewTo. (¢ Baoixéc tuée (baseline values) Yewpolue toug ypd-
VOUG EXTEAECTC TWV UETPOTPOYRUUUATWY OTAV €Vl GTIYULOTUTO TOUG TREYEL ATOUOVOUEVO
oe npoemheyuévo Ingens (Ilivaxac 0.3). T'Voutd xo ota Sorypdppota mou axohoudolv
ToEOUGIALOVUE HOVO eTPBEAOVVOELS GE GUYXEIOT UE TIC OEYIXES THIES.

Merponpdypaupa || RSS
Blackscholes [28] 600MB

Canneal [28] 900MB
XSBench [29] 8GB
Train [30] 30GB

Hivaxas 0.2: Metponpoypdupata pe to RSS tovg

Ano tic Ewoveg 0.14 , 0.15, 0.16 mopatneodue 6Tl oTnV TEPITTWOT TOU TEOETUAEYUEVOU
Ingens, o oTywdTUTO TOU EXTEAECTNXAY TEWTA XU TARAY OAEC TG OLodEoUES HEYSAES
oehldeg Tig omoleg SlathENoAY PEYPL XU TO TENOG TNG EXTEAECTC TOUS PLOVOUY TIC IXPOTEPES
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Xpbvog extéleonc (dsutepdienta)
Mezpongdypappa || Ilpoemheypévo Ingens (Baseline) | Linux 4K
Blackscholes 110.7 110.8 (0.1%)
Canneal 740 798 (7.3%)
XSBench 811 958 (15.3%)
Train 854 1094 (22%)

Hivaxag 0.3: Baoikés tiués ka1 empPpddvvon tov Linux pe 4K oedides oe oUykpion e to mpoemAeyuévo
Ingens

Blackscholes

1.6
| 1.5
| I
0.0 - I ; :
1 2 1

Ewéva 0.13: EmBpadivoes Blackscholes o€ tpoemi- Eiwxdva 0.14: EmiBpaddvoeas Canneal o€ mpoemiAey-

. Canneal

\
e default Ingens 2

\
e default Ingens
s HPRM

ms HPRM

16
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16.6
) 13.6 13.7 .
10.6
mi I 7
5- _
0- 0 0 0 0 -

Canneal 1 Canneal 2 Canneal_1 Canneal_2

slowdown %
=
°
slowdown %

)
@
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Aeypévo Ingens kai o€ Ingens ue HPRM pévo Ingens kai o€ Ingens pe HPRM.
) . XSBench | ) ) ) Train
- mm default Ingens i mm default Ingens
e HPRM

25 s HPRM

d 23.2
| 21
20 - _
18.5
"

. 15 - _
| 9.9 i

5- _

1.9

XSBench_1 XSBench_2 XSBench_1 XSBench_2 Train_1 Train_2 Train_1 Train_2

slowdown %
5
slowdown %

o
5

Ewcéva 0.15: EmBpadvvoeisc XSBench o€ npoemdey- Eiwxdva 0.16: EmiBpadivoes Train o€ tpoemAe yuévo
uévo Ingens ka1 o€ Ingens pe HPRM Ingens ka1 o€ Ingens pe HPRM.

emPBpadivoelg. To oTiyloTuna TOL EXTEAECTNXOY BEVTEPA XU TOUEVOLY UEYAAES OEABES
HOVO GTO TENOC TNE EXTENETTC TOUC BLKOVOLY TIg ueYahUTepeg emPBpadivoelg. LNy nepintmon
tou Ingens ye HPRM oduwe mapatneolue 6Tt ol emPBpadivoelc Twv oTYHoTOTWY TAN-
olacoy TOAD, oV xou TIC MEQLOCOTERES POPES 1) CUVOAXY| EMBRABLYVOT TWV CTIYUOTOTWY
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auAinxe. Mty Ewdva 0.13 Brénouue ot To petpompdypopua blackscholes dev enw@eiei-
Ton omé T YPNoN MEYAAWY CEABWY xou OTL Tot o TypLoTUTY o8 ept3dAiov Ingens ye HPRM
dev mopouoldlouv auénuéves eTPBPadUVOEL OE OYEDT) UE TNV EXTEAECT| TOUC GE TROETUAEY-
uévo Ingens.

ITocoTtuxomolwvTag Tic dtapopes adixiog

[N vae tocotconolficoupe tov Bodud otov omoio to Ingens ye HPRM xatdpepe vo yeundoet
v adulo Tng emldoong oe oyéon e To mpoemAeyUévo Ingens ypnowonodue TNy HETEXN
Unfairness [31] (dev éyet opordtnra ye tny petpwr) Un fairness O tou Ingens). Opiletan
o¢ e&hg:

O Slowdown

HSlowdown

Unfairness =

OOV O slowdown EVOL 1) TUTLXT AOXALOT) TV Slowdowns, siowdown N HEOT TWN Twv Slowdown
xau to uéyevog Slowdown oplleton wg e&g:

1 _ exec—cydescoezecution

Slowdown = =
Progress exec_cyclesqione

Me v petpuer auty| éva clotnua etvon dixono 6tav OAeg Tou ot dlepyasieg Pudvouy Tig (Bleg
emPBeadivoelg, ondte N Yetexn looutan pe undév. Amoé tnv Ewodva 0.17 napatneoldue 6T
7o Ingens ye HPRM xatdgpepe va peidoet oc Oheg Tig mepintwoelg to Unfairness mou ¥tov
evONux6 6To mpoemAeypévo Ingens.

Unfairness

mmm default Ingens
HPRM

0.08

oo 0.08 0.08 .
0.06 - -
0.04 - -
0.034
002 1 0.016 -
0.007
0.001
0.00 - 0 g 0 -

Canneal XsBench Train

Ewdéva 0.17: Xoykpion Unfairness peta&d tpoeni-
Aeyuévov Ingens kar Ingens ye HPRM
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ITocotuxonolwvTag Tig dtapopég enidoong

o vo tocotixonoticoupe tov Padud otov omolo to Ingens ye HPRM ennpéace tnv cuvo-
Ay enidoor TwY oTYHOTUTWY Yenotponowlue ty uetpix WeightedSpeedup [32] mou
oplleTtan wg e&ng:

IPC;
Weighted Speedup = Z W?PC-

OTOU TO 1 LoOUTL UE 2 XS 0T MEWAUATA YOG Yenowonojoaue 2 otiyuiotuna, to I PC;
toolton Ye o I PC tou i oTyoTOToU 6TaY EXTEAELTOL TORIAANACL UE TO GANO OTLYULOTUTO
xan to Singlel PC; wooltan ye o I PC Tou i oTtyplotimou 6tay eXTEAELTL OE AmouOvLon).

Weighted Speedup
mmm default Ingens

2.0 - HPRM

182
173 173 LA

16

[

=3
o

e
I

0.0 - !
canneal xsBench Train

Ewova 0.18: XVykpion Weighted Speedup peta&d
mpoemAeyuévov Ingens kar Ingens ue HPRM

H petpun auth) unodnh@vel Yelworn oTov Ypovo extéleans xou Woavixd .ol pe 80o. And
v Ewxéva 18 mopoatneolue 6Tl otnyv yeviny| tepintwon to Ingens ye HPRM yeuwdvel to
CUYOAWT| €TOOCT TWV CTYMOTOTWY G OYEoT UE To TpoemAeypévo Ingens. Av xou o
axpBelc Adyol yia Toug omoloug TapaTNEETOL AUTY 1) CURTERLPOEA £y ouv apedel wg uEAAOV-
T EMEXTUON TOU UNYOVIOUOU UTOROUUE Vo xdvouue Ty e€ig emonuavon. ‘Onwg yvopl-
Coupe to HPRM oe pio npoondiielor vo uny Pewdoel Ty cUVoAxT| eiBoon TOU GUC TAULITOS
amodEGUEVEL TIC MY OTERO YPNOULOTOLOVUEVES UEYAAES GEADES TNE TILO EUVOTUEVNC OlEpYaaiag
xan Ti¢ emoTEEPEL 0To Ingens yia var Tig exywenoel oty o adixnuévn diepyaotia. 20td6c0
0ev Yvopllouue Toleg TEployeg UEYIANG oehibag Tng o adixmuévng dicpyaoiog To Ingens
TEOAYEL OE UEYAAEC CEAIDES. O UTOPOUGE XIANT TA VAL TEOXY AYEL TIC TEPLOYES UEYAANG OEAL-
oog mou dev emdeyovton actoyieg TLB. Ye autAv tny neplntwor, Aoimdy, 1 avaxotavoun
TOV YEYSAWY OEABWY Yo YELROTEREVE TNV GUVOAXT ETBOCT] TWV CTIYULOTUTOV.
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> vumepdopata kot MeAhovtikég ETtektdoelg

Ané to nopamdve melpdpota cuunepatvoupe we to HPRM da urnopodoe va evowyotwmdet
070 TpoeTAEYUEVO Ingens, mpoxeévou va GUVBEAUEL TO TEAEUTOLO GTNY TEOCTAUEL TOU
vo TeTUYEL Pl Slxoun xatavour| HEYIhwY GeABwY oxoua xat oe eWdxéc tepintwoelc. AZlet,
AOLTOV, 0 Unyoviopog autog vo uehetniel xou vo e€ehydel tepoutépw. Iditepa, we ouvéyela
e mapovoag epyaoiog Yo fTay EVOLPEROY Vai:

o Mehetniel n ouvépyla uetalld Tou unyaviouol cuumieons uviung tou Ingens xou Tou
HPRM xodedg xon ot 800 unyaviopol Bordouv otny eniteudn plag dixoung xatdotaong
6TV oL YeYGAeg OeABES TOU GUGTAUNTOC Elval TEPLOPLOUEVEC.

o Aliohoynlel n anotekeopatixdtnta Tou HPRM otnv emBoAr npoteponothtwy.
e Meletnbolv ot emintidoelg Tou Ingens oe euxovind mepBdihova.
e Meletniel n yenowotnto tou HPRM oe eovixd nepidirovta.

e Meletniel To mwe ot ToATiég mpoaywyhc Tou Ingens ennpedlouv tny dadixacio Tne
OVOXATAVOUTG CEADBWY.

e Evoowpatwiody yetprioeic ouyvotntog tpdofucns oeAMdwy 0Tl TOMTIXES TRoaYwYhS
Tou Ingens.

28



Introduction

Modern applications with large memory footprints are now commonplace[l]. To meet
their needs modern computing platforms have increased their DRAM capacities. Never-
theless, increased capacities cause a considerable challenge for address translation. All
modern processors use page tables for address translations and TLBs to cache virtual-
to-physical mappings. TLB capacity (number of entries x page size), though, cannot
scale at the same rate as DRAM, since it is very challenging to increase the number of
TLB entries without adding extra latency and energy overheads. As a result, large mem-
ory workloads experience crippling performance penalties from TLB misses and address
translation [2, 3]when they use base pages (i.e., 4KB). The problem becomes more severe
with virtualized environments where two layers of address translation are needed [4, 5].
Such workloads have put address translation overheads in general-purpose processors
into focus [6, 7, 8, 9]. In response, modern architectures come with better support for
larger page sizes, or huge pages, which reduce address translation overheads by reducing
the frequency of TLB misses.

Despite hardware support available[10], huge pages have provided unsatisfactory perfor-
mance on important applications [11, 12, 13, 14, 15, 16]. These performance issues are
often due to inadequate OS-based management algorithms [17, 18, 19]. So, the burden
of better huge page support and improved virtual memory performance has shifted from
the hardware to the system software.

OS-based management algorithms are called to balance the benefits huge pages offer
to the running process with their shortcomings. In particular, they have to balance
complex trade-offs between address translation overheads (i.e., MMU overheads), page
fault latency, memory bloat and fairness. We begin by presenting two representative
systems: Linux and a recent research paper Ingens [20].

Linux: Linux allocates huge pages to a process in two ways: (1) synchronously, at
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the time of page fault, or (2) asynchronously with the use of a dedicated kernel thread
called khugepaged which allocates huge pages in the background. The idea is that when
memory is fragmented and as a result there is not enough free contiguous space in
physical memory for a huge page allocation at the time of a page fault, Linux proceeds
with an optional memory compaction [21] and triggers the asynchronous way. It should
be reminded that, similarly to base pages, huge pages have to be zeroed synchronously
(except for COW pages) before getting mapped for security reasons.

Ingens: Ingens is a state-of-the-art memory manager for the operating system and hy-
pervisor, that is better at handling the trade-offs associated with huge page management
when compared to Linux. In summary: (1) Ingens uses an adaptive policy to balance ad-
dress translation overhead and memory bloat: it uses conservative utilization-threshold
based huge page allocation to prevent memory bloat under high memory pressure but
relaxes the threshold to allocate huge pages aggressively under no memory pressure, to
try and achieve the best of both worlds. (2) To avoid high page fault latency associated
with synchronous huge page-zeroing, Ingens only allocates huge pages in the background
with a dedicated kernel thread, called promote-kth which is a differentiated version of
khugepaged. (3) In contrast to Linux, Ingens treats memory contiguity as a resource
and employs a share-based policy to allocate huge pages fairly.

In this thesis, we demonstrate that in memory pressure scenarios, where memory com-
paction fails to generate enough free space for further huge page allocations, Ingens is
unable to achieve a fair state when processes are spawned with a time offset or when their
priorities change dynamically. To this matter, we introduce a huge page redistribution
mechanism called HPRM. HPRM is a mechanism that triggers automatically when
Ingens is “stuck” in an unfair state. When triggered, it reclaims the least frequently
used huge pages, so that Ingens can distribute them in a way to reverse the unfair state.
HPRM follows Ingens’ line, and thus all its functionality takes place in the background.
In our evaluation, we show that, in contrast to default Ingens, Ingens with HPRM is
able to achieve a fair state even when huge pages are limited and processes spawn with
a time offset. We also quantify how much Ingens with HPRM affected performance and
unfairness when compared to default Ingens.
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Background

2.1 The address translation process

Virtual memory is a layer of indirection between memory as seen by applications (the
virtual address space) and the underlying physical memory of the hardware. Virtual
memory is mapped into physical memory, i.e., memory addresses used by a process, called
virtual addresses, are mapped into physical addresses in computer memory. Therefore,
in order for the process to access the physical memory a virtual-to-physical address
translation is interleaved. The virtual-to-physical address translations of a process are
stored in a suitable data structure, called page table. Each program has its own page
table and it is managed by the OS.

VA TLB hit
CPU TLB Cache
TLB miss
Page
Table

Figure 2.1: The address translation process

While these page tables reside in memory, the processor stores the recent virtual-to-
physical address translations in a special hardware cache, called TLB (Translation Looka-
side Buffer). As a result, when a virtual address needs to be translated into a physical
address, the TLB is searched first. If a match is found (TLB hit), the retrieved physical
address can be used to access the memory. If the requested address in not in the TLB,
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the translation proceeds on looking up the process’ page table. This page table lookup
is called a page walk. Figure 2.1 depicts the address translation process.

pgd offset pud offset pmd offset pte offset page offset

VA | 9 bits | 9 bits | 9 bits | 9 bits | 12 bits |

4 KB physical page

pad pud pmd pte

PA

Figure 2.2: 286_64 Page Table Layout (4K page)

Page walks have a large performance penalty, when compared to the processor speed,
as it involves reading the contents of multiple memory locations. E.g., x86-64 micro-
architecture, with the use of multilevel page tables, incurs a penalty of four memory
references on each TLB miss (Figure 2.2). After the physical address is determined by
the page walk, the virtual to physical mapping is cached into the TLB.

2.2 Motivation for Transparent Huge Pages

Modern applications have an increasing need for memory. This need was met with the
growth of DRAM’s capacities. Because TLB capacities cannot scale at the same rate
as DRAM, TLB misses and address translation cripples the performance of applica-
tions with large memory footprint, when these workloads use 4K pages. This problem
aggravates in virtualization scenarios, where for every memory reference, two address
translations are performed: guest virtual address to guest physical address and guest
physical address to host physical address.

A measure to relieve big memory workloads from the address translation burden is the
increase of TLB reach. TLB reach is the total memory size mapped by a TLB (number
of entries x page size). An increased TLB reach would reduce the likelihood of TLB
misses. TLB reach can be expanded by increasing the number of TLB entries or by
increasing page size.

Increasing the number of TLB entries would be either very costly, since TLB is a hard-
ware cache or would add extra latency. However, since TLB lookup is on the critical
path of each memory access, even a small increase in latency is prohibitive. As a result
modern ISAs and microarchitectures support huge pages.

As the name implies, huge pages have an increased size compare to the size of a tra-
ditional page (i.e. 4KB). For example, x86-64 supports 2MB pages and 1GB pages in
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addition to the default 4KB pages. In our study, though, when we refer to huge pages
we mean the 2MB sized pages. Initial huge page support in Linux used a similar sep-
arate interface for huge page allocation that a developer must invoke explicitly, called
hugetlbfs [22]. Nevertheless, such an approach requires manual intervention for reserving
huge pages in advance and considers each application in isolation. Hence, transparent
huge page (or THP for abbreviation) support is vital.

The idea is that the kernel allocates huge pages automatically, i.e., without the inter-
vention of users and without the shortcomings of hugetlgbfs. THP support [23, 24] is
the only practical way to bring the benefits of huge pages to all applications. Besides
that, transparent management of huge pages best supports the multi-programmed and
dynamic workloads typical of web applications and analytics where memory is contended
and access patterns are often unpredictable.

2.3 Benefits of Huge Pages

There are two main reasons for which applications are running faster:

1) fewer TLB misses, since a single TLB entry maps a much larger amount of virtual
memory (e.g., 2MB instead of 4KB) which leads to a larger TLB reach. The larger the
TLB reach the smaller the likelihood of TLB misses.

2) TLB misses run faster. Figure 2.2 shows that in x86-64bit architecture with 4KB
pages, a virtual address translation requires 4 page table traversals. Contrarily, with
2MB pages, a virtual address translation requires 3 page table traversals (Figure 2.3).
As a result, page table walks run faster.

pgd offset pud offset pmd offset page offset

VA | 9 bits | 9 bits | 9 bits 21 bits |

2 MB physical page

pgd pud pmd

PA

Figure 2.3: 286_64 Page Table Layout (2MB page)
It should be noted that the benefits of THPs are more prominent in virtualization envi-

ronments, where, in contrast to native environments, address translation cost is multiple
times higher.
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2.4 Linux’s THP management

Linux’s THP allocates a huge page through two mechanisms:

1) synchronously, at the time of page fault, in case the kernel is able to find 2MB of
contiguous physical memory, and

2) asynchronously, in a background kernel thread called khugepaged, in case the kernel
is not able to find that much free space.

We describe those two mechanisms in detail below.

2.4.1 Synchronous Mechanism

The synchronous mechanism is implemented in the page fault critical path. When a
page fault occurs, the following steps are followed:

1) The kernel tries to allocate a huge page. Depending on the success of this allocation
there are two options.

2a) If the huge page allocation succeeded then the kernel maps the virtual huge page
region containing the faulted page with the newly allocated huge page. For security
reasons, the newly allocated huge page is zeroed synchronously (except for copy-on-
write pages) before getting mapped.

2b) If the huge page allocation failed the kernel can optionally compact memory syn-
chronously and try to allocate a huge page once again. In the meantime, the process
who caused the page fault stalls. However, memory compaction can be performed asyn-
chronously as well. In this scenario the faulted process will wake a kernel thread, kcom-
pactd, to compact memory in the background so that huge pages are available in the
near future. From then on, it’s the responsibility of another kernel thread, khugepaged
(see Asynchronous Mechanism), to use the newly freed space for huge page allocations.

3) Whatever the outcome of the huge page allocation, the kernel adds the process to
a list called, khugepaged scan list, if it was not added already. This list is used by
khugepaged (see Asynchronous Mechanism). The members of this list are processes,
which are candidates for hugepage promotions.

2.4.2 Asynchronous Mechanism

The asynchronous mechanism is implemented by khugepaged. Khugepaged is a kernel
thread which wakes periodically (by default every 10sec) and promotes huge pages in the
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background. This mechanism is useful when memory is fragmented and thus, the kernel
is unable to find 2MB of contiguous physical memory at the time of the page fault.

Khugepaged’s functionality is summarized in the following actions:

1) After khugepaged wakes, it selects the process located in the head of khugepage scan
list.

VA VA
PM PM
B :
; ]
huge page | huge page | 2
region 45 3 region 2 3
4 4
2 2
5
newly
allocated 4
huge page
Figure 2.4: A wirtual huge page region Figure 2.5: Promotion of a huge page region to a
mapped to physical memory huge page

2) Then, khugepaged scans a predefined-sized area (by default 8 hugepage regions) of
the selected process’ virtual address space in order to find huge page regions that are
huge page compatible, i.e., that meet certain requirements related to THP’s constrains
(e.g., Linux supports huge pages only for anonymous memory). Note that the physical
pages backing the virtual huge page region might not be contiguous as shown in Figure
2.4.

3) If a huge page compatible region is found in the virtual address space, khugepaged
tries to allocate a huge page. If the allocation is successful the kernel copies the data
from the possibly discontiguous physical memory to the recently allocated huge page and
maps it into the process’ virtual address space (Figure 2.5). Afterwards, khugepaged
frees the original discontiguous physical memory. If the allocation failed khugepaged
sleeps.

4) When khugepaged finishes scanning 8 huge page regions of the selected process’ virtual
address space, it will sleep. The next time khugepaged wakes, it will scan the next 8
virtual huge page regions of the same process. Only after scanning the process’ entire
virual address space khugepaged will move to the next process of khugepage scan list.
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2.5 Linux’s THP management limitations

In this section we describe the limitations in Linux’s THP management that led to the
design Ingens, a recent huge page management solution for Linux.

Page fault latency

As we know from the previous section when a page fault occurs on an anonymous memory
region, Linux always tries to allocate a huge page first. Only if that allocation fails Linux
will allocate a base page to back the request. This aggressive approach increases page
fault latency for two reasons:

1) Linux must zero the huge page before returning it to the user. The problem lies in
the fact that huge pages are 512x larger than base pages, and thus, are much slower to
clear.

2) Linux may proceed to a synchronous memory compaction in an effort to allocate
a huge page at the time of the page fault. This is often the case when memory is
fragmented and as a result, free contiguous physical memory in in short supply.

Memory bloat

While Linux’s aggressive huge page allocation is aimed at minimizing MMU overheads,
it can often lead to memory bloat. Memory bloat occurs when a process reserves more
memory than it uses, e.g., it may use only half of the base pages contained in a huge
page. As a result processes tend to have an increased memory footprint.

Fragmentation
The use of huge pages causes both internal and external fragmentation.

Internal fragmentation is caused when a chunk of allocated memory (e.g. a huge page)
is not fully utilized and as a consequence the unusable part of it, which could be used
for other memory requests, goes to waste. Internal fragmentation is the precondition
for problems with memory bloat, since when a process uses a fraction of its allocated
memory, it’s going to have an increased memory footprint.

External fragmentation arises when free physical memory is separated in small blocks
and is interleaved with allocated memory. Linux’s THP management intensifies this
problem because its greedy huge page allocation approach consumes quickly available
physical memory contiguity leaving the remaining physical memory fragmented. The
result is that free storage is available but not contiguous and thus, unusable for huge
page allocations. Consequently, Linux has to start memory compaction to serve future
huge page requests.

36



Unfair performance

Khugepaged does not distribute huge pages fairly, since it promotes all huge pages in
a process before moving to the next one. This can lead to unfair performance among
processes especially when huge pages become scarce ,e.g., a process may obtain all the
available huge pages without leaving any for processes who run at the same time.

2.6 Ingens’ THP management

Ingens is a recent huge page management framework which addresses the above problems
endemic to Linux’s THP management. It is based on two principles:

1) Memory contiguity is a resource that should be granted equally among processes.

2) Memory contiguity management requires information about utilization and access
frequency of memory pages.

2.6.1 Ingens’ Features

Ingens’ features are presented below alongside with some essential implementation de-
tails. It should be noted that Ingens was built on top of Linux. Specifically, Ingens
modifies the memory management code of Linux.

Fast page faults

To avoid high page fault latency associated with synchronous huge page-zeroing, Ingens,
simply, does not allocate huge pages synchronously. All huge page promotions are carried
out asynchronously by a dedicated kernel thread, called promote-kth. Promote-kth is a
differentiated version of Linux’s khugepaged. The most important differences between
those two are:

1) Promote-kth maintains alongside khugepaged scan list two other lists called: hugepage
worklist and hpage scan list. Hugepage worklist is a global list containing promotion
requests from the page fault handler. In default Linux’s case these requests are served
synchronously. However, in Ingens’ case they are buffered and served in FCFS order in
the background. In addition, promote-kth has to process all the requests from hugepage
worklist first, before moving to khugepage scan list. Promote-kth is not allowed to sleep
for as long as there are unprocessed huge page requests in huge page worklist. Hpage
scan list is another global list that contains all the processes that Ingens monitors.

2) Khugepaged always selects the process located in the head of khugepaged scan list
and has to scan its whole virtual address space, 8 hugepage regions at a time, for huge
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page promotions before moving to the next one. Contrariwise, promote-kth selects the
process that has the highest priority in khugepaged scan list and it has to do so every
time it wakes (i.e., every time it finishes scanning 8 hugepage regions of a process). This
priority-based selection is performed in an effort to distribute equally huge pages among
processes (see Fair Promotion).

Utilization based promotion and Frequency based demotion

To make policy decisions on promotion and demotion of huge pages , Ingens introduced
two efficient mechanisms to measure the utilization of huge page regions and how fre-
quently they are accessed. Both of them are described below:

Util bitvector (utilization tracking)

Util bitvector is a 512 bit vector that records which base pages are used within each
huge-page sized memory region (an aligned huge page region is made of 512 base pages).
As a result there is one util bitvector per hugepage region. Since processes generally
have multiple huge page regions all the util bitvectors of a process are stored in a radix
tree (there is one radix tree per process). The util bitvectors are updated by the page
fault handler.

Ingens allocates huge pages for virtual huge page regions whose utilization exceeds a cer-
tain threshold (90% by default), e.g., if the number of base pages mapped in a huge page
region is at least 90% of this region (i.e., at least 460 base pages mapped) then promote-
kth promotes them to a huge page. This utilization threshold allows Ingens to control
and therefore mitigate memory bloat. A higher utilization threshold increases address
translation overheads but diminishes memory bloating. A lower utilization threshold
intensifies memory bloating but decreases address translation overheads. To achieve the
best of both worlds, Ingens uses an adaptive policy. It uses a conservative utilization-
threshold based strategy when memory is fragmented. Nevertheless, when memory
fragmentation is low Ingens behaves like Linux, promoting huge pages at the first oppor-
tunity. To quantify memory fragmentation Ingens uses the Free Memory Fragmentation
Index (FMFT [25]): when FMFI<0.5 memory fragmentation is low; when FMFI>0.5
memory is highly fragmented.

Access bitvector (frequency tracking)

Access bitvector is a per-page (base or huge) 8-bit vector which records the access history
of a process to its pages. In order to determine whether a page is frequently accessed or
not, Ingens computes the exponential moving average (EMA [26]), defined as follows:

F; = a(weight(access bitvector)) + (1 — a)Fy—

The weight is simply the sum of the set bits in the access bitvector, Ft is the access
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frequency value of a page at time t and o is a parameter between 0 and 1(Ingens sets
o to 0.4). This formula suggests that the access frequency value Ft of a page at time t
depends not only from the state of the access bitvector at time t but from older access
frequency values as well. In any case, a high access frequency value indicates a frequently
accessed page. Specifically, Ingens considers a page frequently accessed when its access
frequency value Ft exceeds a certain threshold.

The access bitvectors of a process are updated by a dedicated kernel thread called Scan-
kth, which runs periodically (by default every 5sec). To figure out if a page is currently
used Scan-kth uses idle page tracking [27]. A currently used page translates to a set bit
at the page’s access bitvector, while a non currently used page translates to a cleared
bit. To make room for the new information the bitvector shifts by one position.

Ingens uses frequency information to balance page sharing with application performance.
Although huge pages increase application performance, the base pages within them can
not be shared. As a consequence, a huge page has to be demoted to enable the sharing of
identical base pages contained within the huge page. In contrast to KVM, which always
favours memory savings over performance, Ingens denies the demotion of frequently
accessed huge pages.

Proactive Compaction

With utilization based promotion Ingens mitigates internal fragmentation. To cope with
external fragmentation Ingens employs proactive compaction. Proactive compaction
happens in promote-kth and it is triggered when the fragmentation state of physical
memory exceeds a certain threshold (FMFI>0.8 by default). With less external frag-
mentation Ingens is able to allocate more huge pages.

Fair Performance

To achieve fair distribution of huge pages across multiple processes, Ingens introduced
a per process metric, called memory promotion metric. Mathematically, it is defined as
follows:

S
(f+7(1=1))

M:H

where S is the process’ huge page share priority and it depends on the process’ huge
page requirement and a user defined weight W. A big value of W indicates that the
corresponding process is of high priority, as far the user is concerned. Respectively, the
bigger the huge page requirement of a process, the bigger its huge page share priority
S gets. H is the number of bytes backed by huge pages allocated to the process. (f +
1(1-f)) is a penalty factor for idle huge pages. f equals to the number of idle huge pages
divided by the total number of huge pages used by this process. T is a parameter that
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controls idleness penalty (i.e., the magnitude of penalty enforced to a process as a result
of its idle huge pages).

Intuitively, if two processes share the same H and f, then the process with the larger
S will have the larger M as well. A large value of M suggests that the corresponding
process is an underprivileged one, in terms of huge page promotions, and thus its huge
page requests should be prioritized. In another case, if two processes share the same
S, then the process with the larger value of H(f + t(1-f)) results in a small M. A
small value of M indicates that the corresponding process is an overprivileged one and
therefore its huge page requests should be deprioritized.

Scan-kth updates periodically each process’ memory promotion metric but promote-
kth is the one who uses it. As we’ve seen from previous paragraph, promote-kth has
to process, in FCFS order, the huge page requests from hugepage worklist first before
moving to khugepage scan list. In contrast to Linux, promote-kth does not serve the
huge page requests from khugepage scan list in FCFS order but rather in a memory-
promotion-metric based order. That is, promote-kth selects the process that has the
larger M.

Since Ingens tries to achieve a fair distribution of huge pages among multiple processes,
a metric is needed for measuring how fair the current huge page distribution is. The
metric is defined as follows:

0=> (M; = M)?

i

where 4 is the number of processes who requested huge page promotions, M, is the
memory promotion metric of process i and M is the mean of all processes’ memory
promotion metric. In a perfect fair state all the M; equal M, yielding a 0-valued O.
Promote-kth iteratively selects the process with the biggest M; and scans its virtual
address space to promote huge pages, in an effort to minimize . This iteration stops
when O is close to zero or when there is not enough free contiguous physical memory
for huge page allocations.

We should also note here that since O fluctuates over a vast range of values, we chose
to illustrate its square root, in an effort to somewhat normalize it. Mathematically, O is
proportional to variance and thus its square root is proportional to standard deviation,
which could be used as well to evaluate fairness. Finally, from now on we shall refer to
the square root of metric O as Ingens’ unfairness metric.
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2.6.2 Ingens’ Kernel Threads

As we have seen from the previous paragraph Ingens’ features is based on two kernel
threads, promote-kth and scan-kth, which run periodically. We summarize their func-
tionality below:

Promote-kth: Promote-kth’s job is to fullfil promotion requests on the background.
At first, it serves, in FCFS order, the hugepage requests in hugepage worklist. Only after
promote-kth has processed all huge page requests in that list, is it allowed to sleep. If
hugepage worklist is empty, promote-kth selects the most underprivileged process from
khugepaged scan list, i.e., the process with the biggest promotion metric M, and scans its
virtual address space to promote huge pages. However, promote-kth does not promote
huge pages blindly. It promotes only highly utilized huge pages. Promotion-metric based
selection and utilization based promotion are the mechanisms that Ingens uses to achieve
fair distribution of huge pages and mitigate memory bloat respectively.

Scan-kth: Scan-kth’s responsibility is to update the processes’ access bitvectors and
promotion metrics. It does that only for the processes that are members of hugepage
scan list. From a process’ access bitvector, Ingens extracts frequency information that
is used to balance page sharing with performance. The updated promotion metrics will
be used by promote-kth to achieve fair distribution of huge pages.
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Huge Page Redistribution Mechanism

3.1 Motivation

Ingens guarantees a fair distribution of huge pages among the running processes. In-
gens’ authors prove that with an experiment. In particular, they run 3 instances of a
benchmark concurrently. In contrast to Linux, Ingens is able to share the available huge
pages across the 3 instances fairly and as a result all three of them finish at the same
time.

Ingens’ authors point out that fair huge page distribution could be really useful in cloud
provider scenarios, with purchased virtual machine instances of the same type. In such
scenarios the available huge pages have to be shared fairly across all the virtual machine
instances. That’s because the cloud provider’s customers have good reason to expect
similar performance from identical virtual machine instances.

Nevertheless, there is an inherent problem with Ingens’ design that forbids it from achiev-
ing a fair state, i.e., a distribution of huge pages, in certain cases. The design problem
stems from Ingens’ inability to redistribute huge pages. Specifically, Ingens’ effort to
achieve a fair distribution of the available huge pages is halted, when there aren’t any
available hugepages left.

As already stated, when in an unfair state, Ingens will try to reverse this situation by
allocating huge pages to the most underprivileged process. However, if promote-kth is
not able to find enough free contiguous physical memory for a huge page allocation due
to memory pressure, even after memory compaction is performed, no huge pages will be
given to the process. Memory compaction could fail to create enough space for a huge
page allocation, for example, in situations with high memory utilization or fragmentation
that was caused by kernel’s pages which are unmovable. As a result, the process remains
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underprivileged and Ingens is stuck in this unfair state.

Below, we present two scenarios where this problem arises. Both scenarios’ experiments
were ran on a Intel® Xeon® ProcessorE5-2630 v4 (Table 4.1). In both scenarios we
run 2 instances of facesim (Parsec 3.0 benchmark [28]) with a time offset. To simulate
memory pressure we run before each experiment a kernel module that fragments a user
defined portion of the system’s available huge pages (for more details see section System
Configuration. We adjust the portion of fragmentation, so that the system’s available
huge pages are enough to serve the huge page requests of only one instance.

15! Scenario

We run two instances of facesim at different times as shown in Figure 3.1. We set
the same weight to both instances (W = 16), because we want them to have the same
priority.

Facesiml starts executing at t=0 sec. Since facesim1 is the only process Ingens monitors,
huge pages are not contended and facesim1 ended up getting all the available huge pages
very quickly. For the time that facesim1 runs alone, the system is in an ideally fair state
(Ingens’ unfairness metric equals to zero), simply because there aren’t other processes to
claim a portion of the available huge pages. Generally,in every case that Ingens monitors
only one process, the system is considered to be in an ideally fair state.
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However, when facesim2 starts execution at a later time, Ingens’ unfairness metric O
skyrocketed (Figure 3.2). That happened because Ingens recognized that there were
currently 2 processes running in the system with the same priority, but only one of them
had huge pages. To reverse this unfair state, Ingens tried to find additional huge pages
and allocate them to facesim2, but it failed to do so, since facesim1 had already taken all
of the system’s available huge pages. As a result, this unfair distribution of huge pages
could not be changed.
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Actually, only after facesim1 finished, did Ingens’ unfairness metric O drop to zero again
and Ingens proceeded on allocating huge pages to facesim2. We could therefore imply,
that this unfair state was solved, only because facesiml finished execution. If facesiml
continued executing, this unfair state would remain as well.

274 Scenario

We extend the first scenario by dynamically changing the priority of the running pro-
cesses after spawning them. Once more, we run two instances of facesim. At first we run
the first instance, facesiml, and let it get all the system’s available huge pages and at a
later time we run the second instance, facesim2. After facesim2 has run for a while, we
also change the weight of the instances. In particular, we increase the weight of facesim?2
and we decrease the weight of facesim1l. We do that because, for example, facesim?2 is a
process with much more importance than facesiml and we want to prioritize it.
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As Figure 3.3 depicts, Ingens is unable to adapt to priority changes as well. Even if we
prioritize facesim2, it still doesn’t get any huge pages. Once again, facesim1 has to finish
first, before Ingens proceeds on allocating huge pages to facesim2.

The first peak in Figure 3.4 marks the time facesim2 started executing. The second peak
marks the time we prioritized facesim2 and deprioritized facesiml. The second peak is
much higher than the first one. The reason lies in the fact that, it is unfair for a normal
priority process to not have any huge pages. But it is unfairer for a high priority process
to not have any huge pages. In the beginning, Ingens’ unfairness metric O equals to zero
because only facesiml is monitored by Ingens. At the end, Ingens unfairness metric O
equals to zero, as well, because facesim2 is the only process Ingens monitors.
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Summary

In both scenarios Ingens has stuck in an unfair state. An unfair distribution of huge
pages though, translates to unfair treatment, which is not acceptable in some cases(e.g.,
in a cloud provider scenario) and should be treated immediately. To achieve this, we
introduce a huge page redistribution mechanism (HPRM), that complements the effort
Ingens’ compaction makes, in order to bring the system back to a fair state.

3.2 Design and implementation

Basically the goal of HPRM is to address the unfair distribution of huge pages when
there aren’t any available huge pages left, even after memory compaction is performed
(i.e., Ingens’ compaction mechanism is unable to generate enough free physical memory
contiguity for huge page allocations). It does that by redistributing the allocated huge
pages across the processes in a fair way.

The idea behind HPRM’s design is simple. When an underprivileged process requests
a huge page and there aren’t any available huge pages, HPRM deallocates the least
frequently used huge page from the most privileged process to serve the request. By
definition, this process will result in a fairer state. It should also be noted that HPRM’s
redistribution is “lazy”. It addresses the unfairness when it is needed, i.e., when an
underprivileged process requests a huge page.

HPRM is implemented inside promote-kth and extends its functionality. Particularly,
HPRM is triggered when promote-kth is unable to fulfill a huge page request due to the
lack of available huge pages. When triggered, HPRM:

1) checks whether a fairer distribution of huge pages could be achieved by fulfilling this
huge page request. If no, HPRM discards the huge page request. If yes, HPRM

2) selects a process from which a huge page is going to be deallocated. It, then,
3) finds the least frequently used huge page of the selected process. Eventually, it
4) deallocates this huge page and returns it to promote-kth to serve the request.
Below we present the implementation details of each step.

Actually, the first two steps are performed simultaneously. That’s because achieving
a fairer state, by fulfilling a huge page request, depends from which process HPRM is
going to deallocate a huge page from.

The first thing HPRM does is to check how much unfair the current distribution of
huge pages is, by calculating O. A 0O-valued O indicates that a perfect fair state has
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been already achieved and therefore, there is no need for huge page redistribution. As
a result, HPRM discards the huge page request and gives the control back to promote-
kth. However, a greater-than-zero value of O, shows that the current distribution of
huge pages is, more or less, unfair. In this case, HPRM examines whether the fulfillment
of this huge page request could lead to a smaller O., i.e., to a fairer state. Generally,
if the huge page request is made from an underprivileged process, its fulfillment will
translate to to a fairer state. If, on the other hand, the huge page request is made from
the most privileged process, its fulfillment will result in an unfairer state. In such cases,
HPRM, once again, discards the huge page request.

Algorithm 1: HPRM’s algorithm

Trigger: HPRM is triggered when promote-kth is unable to fulfill a huge page request

Result: if a fairer distribution can be achieved it returns to promote-kth the freed Ifu huge page from the most

privileged process else it returns NULL

Calculate M
Calculate O
if (O ==0)
return NULL
selected_process = NULL
for each process in huge page scan list:
{
Calculate M,,
Calculate M;
Calculate Myew
Calculate Opew
if (Onew < O)
{
0= Onew
selected_process = process
}
}

if (selected_process)
return NULL
lfu_hpage = find_1fu_hpage(selected_process)
deallocate(lfu_hpage)
return [fu_hpage

In practice HPRM tests every process in hugepage scan list for huge page deallocation
and calculates O in each case, so that a value of O corresponds to the process HPRM
considers taking a huge page from. If HPRM finds a value of O that is less than the
initial O, then we know that a underprivileged process made the request, and thus a
fairer state is achievable. However, that state, although fairer than the initial one, might
not be the fairest that could have been accomplished with one huge page redistribution.
To find the fairest state, HPRM proceeds on searching the rest processes in order to
find the smallest O. So, if the minimum value of O is less than the initial one then we
know, once again, that a underprivileged process made the request and thus, HPRM
will deallocate a huge page from the corresponding process to serve the request. We also
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know that the resulted huge page distribution is the fairest one that could have been
achieved with only one huge page redistribution. If the minimum value of O is greater
or equal than the initial one then we know that the most privileged process is the one
that made the request. As a result, the huge page request is discarded.

As already stated, if the huge page request was made from an underprivileged process,
HPRM selects a process and proceeds on deallocating a huge page from it. The question
that arises is which huge page, in particular, HPRM will deallocate from all the huge
pages the selected process may have.

In the context of our mechanism, deallocating a huge page does not imply freeing the
page, i.e., returning the page to the buddy allocator, since the huge page might be in
use by the process that requested it. Instead, it means migrating all the base pages
contained within the huge page, to another place in physical memory. The emptied huge
page can then be used by another process.

However, before migrating a base page, the kernel has to isolate it first. This isolation in-
volves acquiring heavily contended locks. HPRM seeks to deallocate the least frequently
used huge page of the selected process to avoid migrating highly utilized base pages,
which would lead to additional overhead. To find the least frequently used huge page,
HPRM performs a page walk. In particular HPRM, scans the selected process’ pmd
entries, since a single pmd entry corresponds to a huge page, and checks the frequency
of every huge page using its access bitvector. Once HPRM has found the least frequently
used huge page of the selected process, it deallocates the huge page and returns it to
promote-kth. Then, it’s promote-kth’s responsibility to allocate the emptied huge page
to the underprivileged process who made the request.

3.3 Example

To further explain how HPRM works and how it cooperates with default Ingens’ mech-
anisms we provide a simple example. We assume two equally weighted processes, A
and B, which run concurrently in a memory pressure environment. As a result, Ingens’
promote-kth won’t be able to allocate more huge pages than the existing ones. To sim-
plify our example we also assume that process B has 2 more huge pages than process A
and that neither process’ huge page requests are buffered. So promote-kth has to scan
itself for candidate huge page regions. The sequence of actions is as follows:

1) When promote-kth wakes it selects the most underprivileged running process, which
in our case is process A, because although equally as prioritized as process B, it has two
fewer huge pages. Then, promote-kth scans the virtual address space of process A for
candidate huge page regions. When promote-kth finds a huge page region that meets
Ingens’ utilization requirements (Figure 3.5) it tries to allocate a huge page. Due to
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memory pressure, that we assumed in our example, the allocation fails. Upon this failed
allocation HPRM is triggered.

2) When triggered HPRM confirms that by “transferring” a huge page from process B
to process A, a fairer state will be achieved. Consequently, it finds the least frequently
used huge page of process B and splits it, so that the base pages contained within it can
be referenced individually (Figure 3.6).

3) HPRM migrates the contained 4K pages out of the physical huge page region (Figure
3.7).

4) HPRM collapses the huge page region’s unused 4K pages into one huge page (Figure
3.8). It achieved that by properly changing the base pages’ metadata. It then returns
that huge page to promote-kth.

5) Promote-kth moves the selected huge page region’s physical pages to the huge page
that HPRM provided (Figure 3.9).

6) In the end, a fair state has been achieved since both processes have the same number
of huge pages (Figure 3.10).

Ifu huge
promote-kth promote-kth page

l A B | A | B

D = [

Physical Memory Physical Memory

Figure 3.5: Promote-kth finds a candidate huge Figure 3.6: HPRM finds and splits the lfu page of
page region in process A’s virtual ad- process B
dress space. HPRM is triggered
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Figure 3.7: HPRM migrates the contained 4K pages Figure 3.8: HPRM collapses the unused 4K pages
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Figure 3.9: Promote-kth allocates the unused huge Figure 3.10: Fair state: both processes have the
page to process A. same number of huge pages.
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Evaluation

4.1 System Configuration

All the experiments presented in this thesis were ran on a Intel® Xeon®) ProcessorE5-
2630 v4, within a single NUMA node. Specifications about the processor are listed in
the table below.

Architecture family Broadwell
Processor Base Frequency 2.20 GHz
Number of Cores 10
Number of Threads 20
L1 (data) Cache (per core) 32KB
L2 Cache (per core) 256 KB
Last Level Cache (shared) 25 MB

Table 4.1: Intel® Xeon® ProcessorE5-2630 v specification

In all experiments we assume that our system is under memory pressure. To simulate
such conditions, before each experiment, we run a kernel module that fragments a user-
defined portion of the system’s available huge pages in a controlled way: it allocates 4K
pages and it blocks them from reclamation, swapping and migration. As a result, Ingens’
proactive compaction would not be able to generate free physical memory contiguity for
further huge page allocations. Additionally, in such memory pressure conditions Ingens
does not behave like Linux, which promotes huge pages aggressively, but rather adopts
utilization based promotion to prevent memory bloat. Therefore, the benchmarks shown
below, might not get all the huge pages that they requested but a portion of them.

In section 3.1 we presented two scenarios, where Ingens’ inability to redistribute huge
pages resulted in an unfair huge page distribution. With default Ingens’ mechanisms
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this unfair state was irreversible.

Our mechanism is able to reverse the unfair state where Ingens is stuck by redistributing
the already allocated huge pages in a fair way. To demonstrate that we repeat both
scenarios’ experiments described in section 3.1. Before each experiment, we run our
micro-benchmark, so that the system’s available huge pages are enough to back the
huge page requests of only one instance.

4.2 How HPRM solves Ingens’ limitations

In section 2.1 we presented two scenarios, where Ingens’ inability to redistribute huge
pages resulted in an unfair huge page distribution. With default Ingens’ mechanisms
this unfair state was irreversible.

Our mechanism is able to reverse the unfair state where Ingens is stuck by redistributing
the already allocated huge pages in a fair way. To demonstrate that we repeat both
scenarios’ experiments described in section 2.1. Before each experiment, we run our
micro-benchmark, so that the system’s available huge pages are enough to back the
huge page requests of only one instance.

15! Scenario

We run two equally weighted instances of facesim at the times portrayed in Figure 4.1.
It’s not of importance the exact time facesim2 started execution. In order to show how
HPRM works though, we make sure that facesim2 starts execution only after facesim1
has taken all of the system’s available huge pages.

Once more, for the time that facesim1 runs alone, the system is in an ideally fair state
(O =0). The moment facesim?2 started execution, Ingens recognized that this huge page
distribution is unfair and thus its unfairness metric O increased (Figure 4.2). From the
time facesim?2 started execution, all its huge page requests were buffered in hugepage
worklist. It’s promote-kth’s responsibility to process those requests.

In default Ingens, since there aren’t any available huge pages left, promote-kth would
discard those requests. In our case, HPRM is able to provide huge pages to promote-
kth, by deallocating them from facesiml. As a result, almost immediately, 41 huge pages
from facesiml were given to facesim2 (Figure 4.1) but then the huge page redistribution
was stopped. However, from Figure 4.1, we can imply that a fair state is not achieved
yet.

To understand why HPRM halted the huge page redistribution prematurely, we have
to take into consideration the huge page requirement of each instance at that moment,
i.e., how many huge pages they requested so far. In particular, facesim2’s huge page
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requirement was 104. So, 39.4% (41/104) of its huge page requests were served. It
should be noted that in fact, facesim2’s huge page requirement was 149 but scan-kth
did not manage to update this value in time and thus, promote-kth uses the old value.
Respectively, facesiml’s huge page requirement was 149 and therefore 38.2% (57/149)
of its huge page requests were served. Both percentages are so close that no further
huge page redistribution would make them even closer. Hence, a fair state was achieved
and Ingens unfairness metric O decreased to almost zero (Figure 4.2). A zeroed-value O
would have been achieved if both instances had the same percentage of their huge page
requests served, but with the current huge page requirement values this is unfeasible. In
summary, HPRM stopped the huge page redistribution process, because a fair state was
achieved (even though such an event can not be implied from Figure 4.1). In addition,
since a fair state was achieved, there is no need for promote-kth to process additional
huge page requests from facesim2. So, it deletes the remaining huge page requests of
facesim2 from hugepage worklist, where they were buffered.

Facesim2’s huge page requirement increased again almost instantly and thus, the huge
page distribution was considered unfair, once again. This is depicted in Figure 4.2 by a
small increase in O, after the first peak. Nevertheless, huge page redistribution didn’t
resume immediately. The reason is that since promote-kth deleted all of facesim2’s
buffered huge page requests, we don’t know which of facesim2’s huge page regions need
to be promoted to huge pages. Hence, promote-kth started scanning facesim?2’s virtual
address space to find candidate huge page regions. Every time promote-kth found a huge
page region that met Ingens’ promotion requirements, HPRM catered for providing
promote-kth with a huge page to back the request and so, huge page redistribution
resumed. To sum up, after facesim?2’s huge page requirement had increased, the pauses
in huge page redistribution were either due to the fact that promote-kth could not find
quickly enough a huge page region that met Ingens’ requirements or because promote-
kth was sleeping (promote-kth scans 8 virtual huge page regions of a process and then
sleeps).
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In the end, a fair huge page distribution is achieved. This is illustrated in Figure 4.2 with
a zeroed-value O. It should be noted that when facesim1 finished execution, promote-
kth begun to map the free huge pages to facesim2’s address space, 8 huge pages at a
time .

2"d Scenario

We repeat the experiment shown in the above scenario with the only exception that
we change the weight of the running instances dynamically, so that they have different
priorities. In particular, we increased the weight of facesim2 and decreased the weight
of facesiml. In that way, Ingens acknowledges facesim2 as a high priority process and
facesiml as a low priority one. It’s not of importance the exact time we changed the
weights of the benchmarks. However, to fully demonstrate our mechanism we make sure
that before we change the weights, the system is in a fair state, i.e., both instances have
a fair portion of the system’s available huge pages.
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The process, by which a fair huge page distribution is achieved, is the same as it was
described in the previous scenario. When facesim?2 started execution its huge page re-
quests were buffered, so that they can be processed in the background by promote-kth.
To reverse the unfair distribution of huge pages promote-kth begun to serve facesim?2’s
huge page requests with huge pages that were provided to it by HPRM. HPRM obtained
those pages by deallocating the least frequently used huge pages from facesiml. Huge
page redistribution was halted prematurely though, because, as far as Ingens was con-
cerned, a fair state was achieved. Ingens’ false perception was due to the fact that it was
using an old value of facesim?2’s huge page requirement, which was lower than the orig-
inal one, because scan-kth didn’t manage to update this value in time. However, huge
page redistribution was resumed but that time promote-kth wasn’t serving facesim2’s
buffered huge page requests. Instead, it was searching by itself facesim?2’s virtual address
space for candidate huge page regions. This process continued until both instances got
the same portion of the system’s available huge pages.
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When we changed the weights of the instances, the huge page distribution was con-
sidered unfair. Promote-kth started scanning facesim2’s virtual address space, 8 huge
page regions at a time, for huge page allocations. The reason it selected facesim2 was
because with the huge page distribution then, facesim2 was considered underprivileged
and facesiml overprivileged. In default Ingens, even if promote-kth had found a huge
page region that met Ingens’ promotion requirements, it wouldn’t be able to proceed to
a huge page allocation since there weren’t any available huge pages left in the system. As
a result the unfair state wouldn’t be solved. In this scenario, though, HPRM is triggered.
It deallocated the least frequently used huge pages of facesiml and provided them to
promote-kth. Consequently, promote-kth is able to reverse the unfair state by allocating
those pages to facesim2. That process continued until a fair state was achieved, i.e.,
both instances got a portion of the system’s available huge pages that was proportional
to their new weights. Considering that facesim2’s new weight (W = 62) is much larger
than the one facesiml got (W = 2), it will also acquire a much larger portion of the
available huge pages (Figure 4.3).

In Figure 4.4 the first peak marks the time facesim?2 started execution. Ingens’ un-
fairness metric was increased because facesim2, although equally weighted to facesiml,
didn’t own any huge pages. Unfairness is decreased instantly since promote-kth served
facesim?2’s buffered huge page requests without any pauses, until a fair state is attained.
The second largest increase marks the time we changed the instances’ weights. This
time unfairness is decreased gradually. That is due to the fact that promote-kth allo-
cates huge pages to facesim2 in batches of 8, since it scans facesim?2’s virtual address
space, 8 huge page regions at a time.

4.3 How HPRM works with multiple processes

In this section we demonstrate how HPRM works with multiple processes. We extend
the scenarios of section 4.2 by running an additional instance.

1%t Scenario

We run three equally weighted instances of facesim. We make sure that we run the third
instance only after a fair state is achieved between the other two instances, in the case
our mechanism works.

Figure 4.5 illustrates how default Ingens operates under the weight of three running
instances. In particular, for the time facesiml had all of the system’s available huge
pages, Ingens was unable to allocate huge pages to the other two. Only after facesiml
finished execution and its huge pages were freed, did Ingens proceed on sharing those
pages to the other instances, in a fair way. That is why both instances got huge pages
with the same rate. When facesim2 finished execution, huge pages were allocated to
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facesim3 with a higher rate, since it was the only running process Ingens monitored.
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In contrast to default Ingens, HPRM is able to adapt to the new situation by redistribut-
ing the system’s available huge pages again, when facesim3 started execution (Figure
4.6). It should be noted that when facesim2 started execution, huge page redistribution
was carried without any pauses. That time, scan-kth was able to update facesim?2’s huge
page requirement before a premature fair state was achieved. When facesim3 started ex-
ecution, though, scan-kth didn’t manage to update facesim3’s huge page requirement on
time and as a result huge page redistribution was stopped for a while. When facesim3’s
huge page requirement was updated, promote-kth started scanning its virtual address
space for huge page allocations and thus, huge page redistribution was resumed. It
should also be pointed out that when all instances were running concurrently, HPRM
was able to share fairly the burden of huge page deallocations between facesiml and
facesim2.
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In both Figure 4.7 and Figure 4.8, the first and second increase in Ingens’ unfairness
metric O denote the time facesim2 and facesim3 started execution, respectively. HPRM’s
first increase in O is equal to Ingens’ first increase in 0. However, HPRM’s second
increase in O is lower than Ingens’ second increase. That is due to the fact that after
the first huge page redistribution HPRM performed, the system is closer to a fair state,
i.e., less huge page transfers are needed to achieve a fair state.

2"d Scenario

We extend the scenario described above by changing the weight of the running instances
dynamically. In the beginning all three instances were equally weighted (W = 16). We
make sure that we change the weights, after a fair distribution has been attained, in the
case HPRM works. We double the weight of facesim2 (W = 32) and we triple the weight
of facesim3 (W = 48). We leave facesiml’s weight unchanged (W = 16). In that way,
we know that a fair state will be achieved when facesim2 has 2x and facesim3 3x the
huge pages facesim1 owns.

Figure 4.9 illustrates Ingens’ inability to adapt not only to the spawn of new instances
but to weight changes as well. Only after facesim1 finished execution, was Ingens able
to share its huge pages to the other 2 running instances in a fair way, i.e., in a way
proportional to their new weights. Since facesim3 had a bigger weight than facesim2,
Ingens allocated huge pages to facesim3 with a higher rate compared to facesim2.

Contrary to Ingens, HPRM is able to adapt to the spawning of new instances, as shown
in the previous scenario, and to weight changes as well. After the weights had been
changed, promote-kth started scanning facesim3’s virtual address space for huge page
allocations. Promote-kth selected facesim3 because with the new weights it was the
most underprivileged process. As a result, huge pages were allocated to facesim3 that
HPRM deallocated from facesiml, because with the new weight, it was the most priv-
ileged instance. So a fair state was achieved since every instance got a share of the
system’s available huge pages, proportional to its new weight (Figure 4.10). It is note-
worthy that facesiml’s weight didn’t change but huge pages were deallocated from it.
Facesim2’s weight was changed, but no huge pages were allocated to or deallocated from
it. Therefore the weights we set to the instances only matter in relation to each other.
Once more, when facesim1 finished execution, Ingens shared its huge pages to the other
two instances fairly, i.e., proportionally to their weights. When facesim?2 also finished
execution, all its huge pages were gradually allocated to facesim3.

Same with the previous scenario, in both Figure 4.11 and Figure 4.12 the first and second
increase in Ingens’ unfairness metric O denote the time facesim2 and facesim3 started
execution, respectively. The third increase in O marks the time we changed the weights
of the instances. The third increase in O is much lower in HPRM’s case compared to
the one in Ingens’ case. That is due to the fact that after HPRM’s initial redistributions
the system is closer to a fairer state.
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4.4 Performance and Fairness Analysis

Until now we have shown how HPRM is able to solve Ingens’ fairness problem by redis-
tributing the system’s available huge pages in a fair way. Also, by minimizing Ingens’
unfarness metric O we demonstrated that with our mechanism the resulting huge page
distribution is fair.

Our initial motivation was to share the performance benefits that huge pages offer to all
running processes, when Ingens could not. Therefore, we have yet to examine whether
sharing the huge pages results to a sharing of performance and whether that performance
sharing is indeed fair. In order to do that we use the following evaluation process.

We run 2 instances of the benchmarks presented in Table 4.2 with a specific time offset
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in both default Ingens and Ingens with HPRM and measure their execution times. We
use time offsets because we want to make sure to run the second instance only after
the first one has already taken all of the system’s available huge pages. In that way, we
know for sure that the only responsible for solving the unfair state is HPRM. If, on the
other case, we didn’t wait for the first instance to get all of the system’s available huge
pages, both HPRM and default Ingens’ mechanisms would be co-responsible for solving
the unfair state. Since we want to compare the benchmarks’ execution times in default
Ingens and Ingens with HPRM, we do not want to their mechanisms to be mixed.

Benchmark RSS
Blackscholes [28] || 600MB
Canneal [28] 900MB
XSBench [29] 8GB
Train [30] 30GB

Table 4.2: Benchmarks with RSS

Execution Time (sec)
Benchmarks | Default Ingens (Baseline) ‘ Linux 4K
Blackscholes 110.7 110.8 (0.1%)
Canneal 740 798 (7.3%)
XSBench 811 958 (15.3%)
Train 854 1094 (22%)

Table 4.3: Baseline values and performance slowdowns of Linux 4K when compared to default Ingens.

To limit the number of the system’s available huge pages, so that they are enough only
for one instance, we run our micro-benchmark before running each set of instances.
Of course, we adjust the portion of the system’s huge pages we want to fragment to
the RSS of the benchmark. For example, one instance of blackscholes needs about 304
huge pages and one instance of train about 14863. Therefore, in blackscholes’ case we
fragment the system’s memory so that only 300 huge pages are available and in train’s
case we fragment the system’s memory so that 14860 huge pages are available.

As baseline values we use the execution time of each benchmark running isolated in
default Ingens (Table 4.3). Table 4.4 contains the execution times of each instance, when
they are spawned with a time offset, in both default Ingens and Ingens with HPRM. The
values in parenthesis represent slowdown % over baseline value. It should be pointed out
that when two instances of a benchmark are running concurrently, they both experience
a slowdown when compared to the case they run in isolation. That’s because shared
resources (in our configuration last level cache) are being contended. That’s why, Table
4.4 contains only slowdowns.

Table 4.4 depicts (with the exception of blackscholes) that there are big performance
differences between the instances in default Ingens’ case and much smaller performance
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Execution Time (sec)

Benchmarks || Started execution | Default Ingens HPRM
Blackscholes_1 t1 = 0 sec 112.3 (1.4%) 112.4 (1.5%)
Blackscholes_2 t1 = 30 sec 112.5 (1.6%) 112.5 (1.6%)
Canneal 1 t1 = 0 sec 828 (10.6%) 856 (13.6%)
Canneal 2 t1 = 100 sec 887 (16.6%) 857 (13.7%)
XSBench_1 t1 = 0 sec 827(1.9%) 903 (10.2%)
XSBench_2 t1 = 100 sec 970 (16.4%) 915 (11.4%)
Train 1 t1 = 0 sec 948 (9.9%) 1081 (21%)
Train 2 t1 = 500 sec 1112 (23.2%) | 1048 (18.5%)

Table 4.4: Comparison between default Ingens’ and Ingens with HPRM’s slowdowns

differences in HPRM’s case. For example, with default Ingens, Canneal_1 has a slowdown
of 10.6% and Canneal_2 has 16.6% but with HPRM Canneal_1 has 13.6% and Canneal_2

13.7% (Figure 4.14). Similar results are found with XSBench (Figure 4.15) and Train
(Figure 4.16).

In default Ingens’ case, the instances that were spawned first take all of system’s available
huge pages and maintain them until the end of their execution. The instances that were
spawned at a later time get huge pages only after the first ones finish execution. As a
result, there is a big performance difference between them. In contrast to default Ingens,
Ingens with HPRM redistributes the system’s available huge pages as soon as the second
instances were spawned. As a consequence, instances experience similar performance.
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Figure 4.13: Blackscholes’ slowdowns in default In-
gens and Ingens with HPRM

Figure 4.14: Canneal’s slowdowns in default Ingens
and Ingens with HPRM

Figure 4.13 illustrates that Blackscholes experiences no tangible performance differences
whether it has huge pages or not. In default Ingens’ case, even though Blackscholes_1
gets all of the system’s available huge pages and maintains them until the end of its
execution, it has almost exactly the same performance (performace difference = 0.2%)
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as Blackscholes_2, which got huge pages only after Blackscholes_1 finished execution. No
performance difference is noticed in HPRM’s case, where huge pages were redistributed.
So, at first glance, Figure 4.13 does not help us compare our mechanism with default
Ingens. However, it demonstrates that our mechanism follows Ingens’ policy, that is,
functionality takes place in the background without intervening on the page fault’s criti-
cal execution path. As a result, Blackscholes’ instances experience no tangible slowdowns
with HPRM when compared to the slowdowns of default Ingens.
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Figure 4.15: XSBench’s slowdowns in default In- Figure 4.16: Train’s slowdowns in default Ingens
gens and Ingens with HPRM and Ingens with HPRM

In summary, HPRM was able to bring closer the performances that instances experi-
enced in default Ingens’ case. We can assume that in Canneal’s case (Figure 4.14),
HPRM achieved that more efficiently than in Train’s case (Figure 4.16). In Canneal’s
case the instances’ slowdowns were met in the middle, but in Train’s case, the perfor-
mance gap did not close that much while both of the instances’ slowdowns seem rather
increased. Before we rush to any conclusions though, we should first measure the degree
to which HPRM affected unfairness and performance, when compared to default Ingens.
We exclude Blackscholes from these measurements, since it won’t provide any useful
informations.

4.4.1 Quantifying unfairness

As unfairness indicator we chose the Unfairness metric [31] (which has nothing to do
with the Unfairness metric O of Ingens described in previous section) is defined as
follows:

0 Slowdown
HSlowdown

Unfairness =

where gowdown 1S the standard deviation of the Slowdowns, psiowdown 1S the mean
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Slowdown and Slowdown is defined as follows:

1 execfcydescoexecution
Slowdown = =
Progress exec_cyclesqione

This metric defines a system as completely fair when all tasks in the system experience
the same Slowdown, i.e., the standard deviation o of the Slowdowns is zero. So in a
ideally fair system Un fairness equals to zero. We use this metric to quantify the level
of unfairness in default Ingens’ case and by how much HPRM was able to decrease it.

Unfairness
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Figure 4.17: Unfairness comparison in default In-
gens and in Ingens with HPRM

Figure 4.17 depicts that Ingens with HPRM, by redistributing the system’s available
huge pages, is able to reduce the system’s Unfairness in all occasions. In Canneal’s
case, Un fairness dropped to almost zero. That is justified by the fact that with HPRM,
both Canneal’s instances experience the same performance (Figure 4.14). In Train’s case
Unfairness decreased as well but not as much as in Canneal’s case. Again, this is jus-
tified by the fact that even with HPRM, both Train’s instances experience somewhat
difference performance (Figure 4.16). So, in some occasions, even when HPRM redis-
tributes the system’s available huge pages in a fair way, there are still some performance
differences. Studying the exact reasons there are still performance differences is left for
future work. Nevertheless, we would like to make some observations.

In our experiments, the instance that was spawned first takes all the huge pages that it
needs right away (promote-kth serves buffered huge page requests). However, the second
instance takes only a portion of the huge pages that it needs immediately (because of
HPRM). To get all the huge pages that it needs, the second instance has to wait for the
first instance to finish execution and even then it gets them at a slow rate (promote-kth
has to scan for candidate huge page regions). As a result, the first instance executes for
a while with the maximum number of huge pages that it can get, while the second one,
in most cases, does not (Figure 4.1). Hence, there is an innate difference in performance
when the instances are spawned with a time offset.
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4.4.2 Quantifying performance

As performance indicator we chose the Weighted Speedup metric [32] which is defined
as follows:

1PC;
Weighted Speedup = Z W

where 7 equals to 2, since in our experiments we used 2 instances of each benchmark,
1PC; equals to the I PC of the ith application when it concurrently executes with other
applications and Singlel PC; equals to the I PC of the ith application when it executes
in isolation.

The Weighted Speedup metric indicates reduction in execution time. We use this metric
to quantify and compare the performance that each set of instances experience, as a
whole, in both default Ingens’ and HPRM’s case.

Since in our experiments we have 2 instances of each benchmark running concurrently
(after a specific time offset), Weighted Speedup results from the addition of two frac-
tions. Ideally the performance of the instance spawned first would not be affected by the
second instance and therefore I PC; would equal Singlel PC;. Hence, in our experiments
Weighted Speedup has a maximum value of 2.

Weighted Speedup
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Figure 4.18: Weighted Speedup comparison in de-
fault Ingens and in Ingens with
HPRM.

Figure 4.18 shows that HPRM lowers the cumulative performance of both instances in
XSBench and Train’s case. In Train’s case for example, the WeightedSpeedup dropped
from 1.67 to 1.6. In Canneal’s case, though, HPRM does not impose any performance
overheads to the instances when compared to default Ingens, since the WeightedSpeedup
remains the same.
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Recall, from the previous section, that HPRM did not cause any performance overheads
to the Blackscholes’ instances when compared to default Ingens (Figure 4.13) since all
its functionality takes place on the background. We could assume that HPRM’s per-
formance depends from the RSS of the benchmark, since Blackscholes has a far smaller
RSS when compared to Train (Table 4.2).

We could also assume that the performance overheads we see from Figure 4.18, are
caused by Ingens’ allocation decisions. I.e., we do not control where promote-kth will
allocate the huge pages that were provided to it by HPRM. As far as we know, it could
allocate them to memory regions that are not subject to TLB misses. Consequently,
the corresponding instance would not experience a better performance, even though
huge pages were allocated to it, and thus, huge page redistribution worsened the overall
performance. In any case, studying what exactly caused these performance overheads is
left for future work. The assumptions made above could be used for guidance.
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Related Work

Huge page management is an active research area. We briefly present two recent huge
page management solutions for Linux, MEGA [33] and Hawkeye [34].

MEGA

Mega’s approach is to promote only huge pages that will offer a long-term performance
gain. In particular, contrarily to Ingens, MEGA tracks the utilization of candidate huge
page regions for longer periods. In that way, MEGA avoids the performance overheads
due to the cost of frequent promotions and demotions. Additionally, MEGA’s authors
introduce a novel compaction algorithm that, in contrast to Ingens’ compaction algo-
rithm, seeks to move pages that are less utilized, to avoid interfering with “hot” pages,
which would lead to additional overhead.

Hawkeye

Hawkeye’s authors point out that Ingens has the following problems: (1) memory bloat
generated in the aggressive phase of Ingens ( i.e. when Ingens behaves like Linux which
happens when memory fragmentation is low) remain unrecovered. (2) By allocating huge
pages only in the background, Ingens nullifies an important advantage of huge pages,
namely fewer page faults for access patterns exhibiting high spatial locality. (3) With
Ingens two processes may have similar huge page requirements but one of them may have
significantly higher TLB pressure than the other. (4) Within a process Ingens promotes
huge pages through a sequential scan from lower to higher VAs.

As a response to these problems, Hawkeye: (1) tackles memory bloat by identifying
and de-duplicating zero-filled baseline pages present within allocated huge pages. (2)
It allocates huge pages both synchronously and asynchronously. At the same time it
avoids the high page fault latency associated with synchronous huge page zeroing, by
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asynchronously pre-zeroing free pages. (3) In contrast to Ingens who only uses utilization
informations to decide on whether it is going to promote a huge page region to a huge
page, Hawkeye uses utilization, recency and frequency measurements. (4) Finally its
fairness policy is based on sharing MMU overheads and not huge pages like Ingens.

Comparison with HPRM

Both MEGA and Hawkeye have not introduced a mechanism to redistribute huge pages
across the running processes. Instead, in memory pressure conditions Hawkeye splits the
huge pages with the most zero-filled baseline pages of the application that experiences
the lowest MMU overheads and MEGA also splits the less utilized huge pages. By
splitting huge pages and compacting memory both Hawkeye and MEGA could create
the free space in memory for further huge page allocations that then they could be given
to another process. So, in that way they can redistribute huge pages but not in a direct
way like HPRM does.
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Conclusion and Future Work

6.1 Conclusion

Ingens is a memory management redesign that addresses the problems endemic to the
huge page management policy of Linux and is better at handling the trade-offs between
performance, memory savings and fairness. Ingens ensures a fair huge page distribution
among the running processes. In this thesis, we demonstrate that in memory pressure
scenarios, where memory compaction fails to generate enough free space for further huge
page allocations, Ingens is unable to achieve a fair state when processes are spawned with
a time offset. To this matter we present two scenarios where Ingens’ deficiency arises
and causes an unfair distribution of huge pages.

Motivated by the fact that in some cases unfairness is unacceptable, (e.g. in cloud
provider scenarios with purchased VM instances) we designed and implemented a huge
page redistribution mechanism, called HPRM, that corrects Ingens’ unfairness short-
coming. HPRM is gracefully incorporated in Ingens’ existing mechanisms. We proved
that in contrast to default Ingens, Ingens with HPRM is able to achieve a fair state even
when multiple processes are spawned with a time offset and the system is under memory
pressure.

To test whether Ingens’ unfairness problem could lead to unfair performances as well, we
conducted experiments using a representative set of TLB-sensitive benchmarks. For each
benchmark, we spawned two instances with a time offset. To simulate memory pressure
we ran a specifically developed kernel module. The experiments indicated big perfor-
mance differences between the two instances. When we repeated the same experiments
using Ingens with HPRM, we saw far smaller performance differences. Actually, in one
case we, both instances experienced the same performance. By running an experiment
in both default Ingens and Ingens with HPRM, but this time using a TLB-insensitive
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benchmark, we demonstrated that HPRM does not worsen the instances’ execution times
when compared to default Ingens. Those results were expected, since HPRM’s function-
ality takes place in the background and does not interfere in any critical execution path.

Finally, we quantified the degree to which HPRM affected unfairness and performance
when compared to default Ingens, in the experiments presented above. To achieve that,
we used two metrics, one to measure unfairness and one to measure performance. Our
results indicated that HPRM lowered the system’s unfairness in every case. The results
also showed that, in the general case, HPRM lowered the overall performance of the
instances’ when compared to default Ingens. Since HPRM cooperates with Ingens,
further research work has to be done to find the exact cause of the performance overhead.
In particular, we would find it interesting to study how Ingens’ promotion decisions affect
the redistribution process (see Future Work 6.2).

6.2 Future Work

Based on these results we believe that HPRM is a mechanism that complements Ingens’
efforts to achieve a fair distribution of huge pages and worths to be studied and evolved.
Particularly, as a continuation of the present work we would find it interesting to:

e Study the synergy between Ingens’ proactive compaction and HPRM, since both
mechanisms help Ingens achieve a fair state when huge pages are scarce.

e Evaluate the effectiveness of HPRM when processes’ weights are changed dynam-
ically. In this thesis we evaluated the effectiveness of HPRM to achieve a fair
distribution of huge pages.

e Study the effects of Ingens’ unfairness problem in virtualized environments where
two layers of address translation cause additional MMU overheads. We assume
that in such environments the performance gap between the instances would be
larger.

e Study the usefulness of HPRM in virtualized environments.
e Study how Ingens’ promotion decisions affect the redistribution process.

e Incorporate frequency measurements in Ingens’ promotion decisions. As we know,
HPRM deallocates the least frequently used huge pages of the most privileged
process and provides them to promote-kth. Promote-kth could allocated those
pages to promote the most frequently accessed huge page regions of the most
underprivileged process.
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