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Scope 
 

Hull is mainly composed by a continuous system of frames, plates, stiffeners and girders. 

Overall failure of a ship’s hull is governed by buckling and plastic collapse of the deck, 

bottom or side shell stiffened plates. Hence, is crucial to accurately calculate the ultimate 

strength of those elements. 

Regulations and guidelines concerning structural integrity of a ship and buckling of its 

structural components are typically based on text book formulas, modified to take into 

consideration different buckling modes, interaction between elements, nonlinear behavior 

etc. This type of approach has limitations concerning complex structural problems. 

Limitations concerning complex interactions, geometry or loads, could overcome by using 

Finite Element Method. 

The task of this work is to study the buckling and ultimate strength of an isolated stiffened 

plate and an isolated stiffened plate’s element (stiffener and attached plating), as parts of a 

ship’s deck, under compressive loading conditions, which results from the sagging of the 

hull, using Finite Element Method. The boundary conditions of an isolated structural 

element of deck (stiffened plate, stiffened plate’s element) should represent realistically the 

behavior of that element as part of the construction. The appropriate boundary conditions 

for an isolated stiffened plate model were obtained by monitoring displacements on the 

boundaries of a stiffened plate on the deck of a hull model subjected to longitudinal 

bending. Those boundary conditions used in the finite element analysis of an isolated 

stiffened plate model, so that conclusions about collapse mode, ultimate strength, stress 

distribution and load distribution among stiffened plate’s elements to be made.  Similarly, 

the appropriate boundary conditions for an isolated stiffened plate’s element were obtained 

through a stiffened plate model subjected to uniaxial compression, by monitoring the 

displacements on its elements’ boundaries. The obtained boundary conditions used in the 

finite element analysis of an isolated stiffened plate’s element model, so that conclusions 

about collapse mode, ultimate strength and stress distribution to be made along with a 

comparison between shell and cubic elements. Using evidences acquired from the study of 

the aforementioned models, evaluated whether is it possible or not, to predict the buckling 

behavior of a stiffened plate through the analysis of just one of its elements. 

This work fulfilled using Abaqus 6.14 
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PART 1 Fundamental Theory  
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1 Stiffened Plates and Stiffened Plate’s Buckling 

1.1 Stiffened Plates 
 

Stiffened plate structures are widely used in the aerospace, automobile and marine 

industries. The basic strength members in stiffened panel structures include support 

members (such as stiffeners, girders, and frames), and plates. The hull structure consists of 

stiffened panels (bottom construction, side shell construction, upper deck construction, 

bulkhead, etc). The plate receives loads such as water pressure, stiffeners and girders 

support the loads from the plate and transverse frames support loads from the stiffeners 

and girders. Structural members that contribute to the reaction moment of each cross 

section of the ship during hogging or sagging, receive normal stresses resulting from bending 

of the ship as a beam. 

 

FIGURE 1.1 Typical stiffened plate structure in a ship 

In an actual marine structure, an isolated stiffened panel does not exist, but it is a part of a 

continuous system of plates, stiffeners and frames. 

 

FIGURE 1.2 Part of a longitudinally and transversely stiffened tanker  
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A variety of sections have been historically used as stiffeners, however the simple flat 

stiffener, angle stiffener and tee stiffener are almost always used in modern designs. 

Stiffeners can be attached on one side of the plate (single sided), or on both sides (double 

sided). Stiffeners can also be doubled up, or even trebled, to form multi-leg stiffeners. 

 

FIGURE 1.3 Stiffener sections 

 

The geometry of a longitudinally stiffened plate is fully described by: plate’s length (L), total 

plate’s width (B), span between two stiffeners (s), plate’s thickness (tp), web’s height (hw), 

web’s thickness (tw) and flange’s width (bf) and flange’s thickness for tee and angle stiffener 

stiffened plate (tf). Considering that stiffeners are equally spread in transverse direction it’s 

valid that ( 1)B n s= +  , where n is the number of stiffeners. 

 

FIGURE 1.4 Tee stiffener stiffened plate principal components and dimensions 
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1.2  Buckling of Stiffened Plates 
 

1.2.1 Collapse Mode of Stiffened Plates 

 

The overall failure of ship structures is mainly governed by the buckling and plastic collapse 

of the stiffened panels in the deck, bottom, and sometimes the side shell. Therefore, the 

accurate and efficient calculation of the collapse strength of stiffened panels is an important 

task in the design and safety assessment of ship structures. 

The possible collapse modes of a stiffened panel can be categorized into the following eight 

types:  

• Overall collapse of the plating and stiffeners as a unit (FIG. 1.4 A) 

Plate collapse modes 

• Local plate buckling (longitudinal thrust) (FIG. 1.4 B) 

• Local plate buckling (transverse thrust) (FIG. 1.4 C) 

• Local plate buckling (biaxial thrust) (FIG. 1.4 D) 

Stiffener collapse modes 

• Beam-column type collapse of stiffeners (FIG. 1.4 E) 

• Local buckling of the stiffener web (FIG. 1.4 F) 

• Flexural–torsional buckling or tripping of the stiffeners (FIG. 1.4 G) 

 

FIGURE 1.5 Collapse modes of stiffened plates 
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1.2.2 Overall Buckling vs Local Buckling 

 

Stiffened plates can buckle overall or locally. In overall buckling, stiffeners buckle along with 

the plating. In local buckling either the stiffeners buckle because of inadequate rigidity or 

stability, or the plate panels buckle between the stiffeners, thus shedding extra load into the 

stiffeners so that eventually the stiffeners buckle too. Stiffener buckling is synonymous with 

overall buckling, because if the stiffeners buckle the plating is left with almost no lateral 

rigidity. Considering this, stiffeners should be at least as strong as the plating, meaning, they 

should have sufficient flexural and torsional rigidity so that neither overall buckling nor local 

stiffener buckling occurs before local plate buckling. 

A reliable way to ensure that a stiffened plate is designed sufficient is to calculate the overall 

buckling stress (σα)cr and torsional buckling stress of stiffeners (σα,Τ)cr and to compare it with 

plate buckling stress (σp)cr. 

Owen F. Hughes and Jeom Kee Paik (2010) mention a methodology to determine overall 

buckling stress of the stiffened plate, beam column buckling stress of the stiffeners and 

torsional buckling stress of the stiffeners. This methodology will be presented in chapters 

1.2.3 and 1.2.4. 

 

1.2.3 Stiffened Plate’s Overall Buckling Stress and Stiffeners Beam Column 

Buckling Stress 

 

A stiffened plate is considered, with stiffeners of the same size and with equal distance 

between them. Thus, regarding each stiffener and its associated width of plating as a column 

and assuming any axial load is distributed equally on those columns, it can be assumed that 

the elastic buckling stress of the stiffened plate, could be approached, calculating the elastic 

buckling stress of one of those columns, using Euler column buckling formula. Stiffened 

plates are designed such that plate buckling precedes overall buckling. As soon as 

compressive stresses acting on stiffened plate reach critical buckling stress of plate between 

stiffeners and its buckling occurs, the effective width of plate reduces. Overall buckling 

occurs without plate buckling for the plate between stiffeners taking place, thus for overall 

buckling, effective width of plate equals actual plate’s width. Hence, using Euler buckling 

column formula considering effective width of plating equals actual plate’s width, overall 

buckling stress for the stiffened plate is obtained. On the other hand, using Euler buckling 

column formula considering plating will not be fully effective over the width, beam column 

buckling stress of stiffeners is obtained. 
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Overall buckling stress of stiffened plates 

Overall elastic buckling stress (σα)cr can be obtained using Euler column buckling formula on 

one of the aforementioned columns considering plating is fully effective over the width. This 

column has an equivalent slenderness ratio (L/ρ)eq. In short panels the stiffeners are in fact a 

row of identical parallel columns and concerning buckling, independent. The equivalent 

slenderness ratio of each column is the actual slenderness of the section. 

eq

L

I

A b t

   
= = 

  

+ 

 (1.2.1) 

Where  

I =Moment of inertia of section comprised of stiffener together with plate  

A = Cross-sectional area of stiffener only 

b =plate’s width, t = plate’s thickness 

Parameter “γ” is the ratio of the flexural rigidity of the combined section to the flexural 

rigidity of the plating and parameter “Π” is the aspect ratio of the stiffened panel. 

2

3

EI 12(1 v )I

Db bt

−
 = =   (1.2.2) 

L a

B B
 = =    (1.2.3) 

Where 

E = Young modulus of section comprised of stiffener together with plate 

v =Poisson ratio 

I =Moment of inertia of section comprised of stiffener together with plate 

D = flexural rigidity of the plating, 
3

2

Et
D

12(1 v )
=

−
 (1.2.4) 

In long panels, the stiffeners receive some lateral restraint from the sides of the panel. Τhis 

could cause them to buckle in more than one half-wave. In this case, the equivalent 

slenderness ratio is smaller than the value given by equation (1.2.1). The effect occurs for 

large values of the panel aspect ratio “Π” and for small values of stiffener rigidity relative to 

the plating “γ”. From the work of Sharp (1966), it is possible to derive an aspect ratio 

coefficient “CΠ” which accounts for this effect as follows: 
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eq

CL
C

b t




  
= = 

   

 + 

 (1.2.5)  

Where 

1
C

2(1 1 )



=
 + + 

  (1.2.6) 

or 

C 1 =     (1.2.7) 

Whichever is lower. The resulting value of (1.2.5) is then used in the standard column 

buckling formula 

2

a cr 2

eq

( )
L

 
 =

 
 
 

 (1.2.8) 

Stiffeners beam column buckling stress 

Slender panels are normally designed such that plate buckling precedes overall buckling. 

When the latter occurs, the plate flange of the stiffener will not be fully effective over the 

width b. Instead, it is necessary to take some reduced effective width be. 

For elastic or near-elastic buckling, a satisfactory formula was derived by von Karman, 

Sechler, and, Donnell (1932), idealizing the state of stress within the buckled plate by 

assuming that, because of buckling, the center portion has no compressive stress, while the 

edge portions of the plate remain fully effective and carry a uniform stress. This means that 

the buckled center portion of the plate is discounted completely and the original plate of 

width “b” is replaced by an unbuckled plate of effective width “be”. It is clear that axial 

strength in the stiffener columns “σe” and the external applied stress “σα” are related by: 

e

e

b

b
 =   (1.2.9) 

 

FIGURE 1.6 Post-buckling stress distribution, effective width  
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To simulate the progressive growth of the buckling, it is further assumed that the (yet 

unbuckled) effective plate is always on the verge of further buckling, meaning the effective 

width is taken to be the width at which the equivalent plate would buckle at an applied 

stress of “σe”. This implies that 

2

e 2

e

D
k

b t


 =    (1.2.10) 

and for the original plate 

( )
2

a 2cr

D
k

b t


 =   (1.2.11) 

Assuming that “k” is the same for both cases: 

( )ae cr

e

b

b


=


   (1.2.12) 

Substituting equation 1.2.11 to 1.2.12: 

e 2

e

k E
b t

12(1 v )


=  

− 
 (1.2.13) 

Having an expression for “be” extracted, an expression for the ultimate or collapse load of 

slender stiffened panels can be obtained. The effective width is used to calculate the 

equivalent slenderness ratio from equation (1.2.5), using “be” as the plate flange width in 

calculating “I”, and “ρ”. Those values shall be denoted as ”Ie”, and “ρe” and the resulting 

value of equivalent slenderness ratio as “(L/ρe)eq”. The axial stress in the stiffener columns is 

“σe” and the critical value of this stress is  

2

e cr 2

e eq

( )
L

 
 =

 
 
 

  (1.2.14) 

This equation refers to “σe” rather than “σα”. Axial stress in the stiffener is larger than the 

external applied stress “σα” because of the reduced width of the plate. The quantity of 

interest is the value of “σα” corresponding to “(σe)cr”. From statics, the two are related by 

σα(bt + A) = σe(bet + A), and from this together with equation (1.2.14) : 

2

e
a cr 2

e eq

b t A
( )

bt A L

+  
 =

+  
 
 

 (1.2.15) 
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Because of the presence of “σe” in equation (1.2.13), the fore going sequence of calculations 

must be performed iteratively. A suitable procedure would be: 

1. Assume some initial value of be (e.g., 0.8b). 

2. Calculate “Ie”, and then evaluate “(L/ρe)eq” from equation (1.2.5), using “be” in place of 

“b”. 

3. Calculate “(σe)cr” from equation (1.2.14). Check that (σe)cr > (σp)cr. 

4. Using this value of “σe”, recalculate “be” from equation (1.2.13). 

5. Repeat from step 2 until “be”  has converged. 

6. Calculate (σα)cr from equation (1.2.15). 

 

1.2.4 Stiffener Tripping Buckling Stress 

 

Under uniaxial load, stiffeners act as columns, but torsional buckling differs from that of a 

column in three ways: 

• Rotation occurs about the line of attachment to the plating and not about shear 

center 

• Plate offers some restraint against this rotation 

• The rotation is not necessarily rigid body rotation. Considering a construction with a 

sturdy plate and stiffeners with slender webs, sideways displacement of stiffener’s 

flange could occur due to web bending.  

 

 

 

FIGURE 1.7 Effect of web bending 
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From the basic theory of the torsion of thin-walled sections is known that for all cross- 

sectional shapes that are composed of thin rectangles which meet at a common point, the 

shear center is at this point and the warping constant is zero. The differential equation for 

the torsional buckling of a column about an enforced axis of rotation under the action of an 

applied axial stress for the above case is 

( )
4 2

2

sz sp4 2

d d
EI d GJ I 0

dx dx
 

 
− − +  =  (1.2.16) 

Where  

szI = moment of inertia of the stiffener about an axis through the centroid of the stiffener 

and parallel to the web 

d =stiffener web height + (tp + tf)/2 

spI = polar moment of inertia of the stiffener about the center of rotation 

 = axial stress  

 = distributed rotational restraint which the plating exerts on the stiffener 

If the ends of the stiffener are regarded as simply supported, the solution for φ(x) is a 

buckling mode in which the rotation φ varies sinusoidally in m half-waves over the length a. 

The elastic torsional stress that would cause tripping according to elastic theory, will be 

denoted as “σα,T”. From the foregoing equation, it may be seen that σα,T is the minimum 

value of σα that satisfies the following, in which m is a positive integer. 

( )
4 4 2 2

2

sz sp4 2

m m
EI d GJ I ( ,m) 0

a a
  

 
− − +  =  (1.2.17) 

In the absence of other factors, the rotational restraint offered by the plating comes directly 

from the plates flexural rigidity which causes, in response to the rotation φ of the stiffener, a 

total distributed restraining moment MR = 2M along the line of the stiffener attachment, as 

shown in FIGURE 1.7. If the individual plate panels are long, that is, if a>> b, then we may 

ignore aspect ratio effects, and by considering a unit strip of plating across the span b it may 

be shown that φ= ½Mb/D. Therefore, the rotational restraint coefficient is 

 

R 4D

b



 = =


 (1.2.18) 
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FIGURE 1.8 Restraining moment exerted by plating 

 

 

1.2.4.1 Plate-Web Interaction 

 

The above assume that displacement of the stiffener is entirely due to rigid body rotation. 

This is only accurate if the flexural rigidity of the stiffener web is much larger than that of the 

plate. In practice, some of the sideways displacement of the stiffener flange occurs because 

of bending of the web, and this effect becomes important if the plating is sturdy or if the 

stiffener web is slender (FIG. 1.9). Sharp (1966) has presented an expression that accounts 

for this effect.  

 

r a

4D
C C

b
 =   (1.2.19) 

Where 

r 3

p

w

1
C

t d
1 0,4

t b

=
 

+  
 

  (1.2.20) 

( )

2

a 2

p cr

2 m
C 1 1

 
 = − −
  
 

 (1.2.21) 

Cr is the factor by which the plate rotational restraint is reduced because of web bending 

and Ca is the factor taking account of stiffened plate’s aspect ratio. 

From the expression for “Ca”, it may be seen that for σα=(σp)cr, the factor Ca, and hence also 

the plate rotational restraint Kφ, is proportional to 1-(m/α)2; that is, the restraint disappears 

when m =α. This reflects the fact that if the plate panel between the stiffeners buckling 

pattern matches that of the stiffener (α= m) then as “σα” approaches plates critical buckling 

strength “(σp)cr”, the plate loses its ability to provide any rotational restraint. For stiffened 

panels of usual proportions, tripping occurs in a single half-wave, m = 1, and hence it is 
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mainly square or short panels in which this loss of stiffness can occur. Final expression of the 

rotational restraint coefficient is 

2

3 2

cr,pp

w

24D 1 m
1 1

b t d
1 0,4

t b




 
 

   
 = − −            +     

 (1.2.22) 

Substituting equation 1.4.22 to 1.4.17 and solving for “σα” torsional buckling stress can be 

acquired as the minimum value of σα  

2 2 2
2 2r

, sz3 2 2 2

r
sp 4

min 4DC1 m a
GJ EI d b

2C b tm 1,2... a b m
 

 
    

 = + + +   
=      +

  

 (1.2.23) 

As mentioned previously, in stiffened panels of average proportions the critical tripping 

mode is usually the m = 1 mode, but of course this cannot be simply assumed, the correct 

value of m must be ascertained in each case. An estimate can be obtained regarding m as a 

continuous variable, differentiate equation (1.2.23) with respect to “m”, and set this equal 

to zero. The result is 

r
4

2

sz

4DCa
m

EI d b



 (1.2.24) 

After obtaining this estimate, torsional buckling stress can be obtained trying the two 

integer values above and below it to see which value gives the lowest value in equation 

(1.4.20). 

1.2.5 Long Plate Buckling Stress 

 

The elastic buckling strength of a long plate subjected to uniaxial compression can be 

expressed as: 

( )
( )

22

p 2cr

k t

b12 1 v

   
 =  

−  
  (1.4.22) 

Where, 

k = plate’s buckling coefficient  

t = plate’s thickness 

b =plate’s width 
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Buckling coefficient “k” is determined depending on loading, boundary conditions and 

plate’s aspect ratio. The effect of boundary conditions on a rectangular plate under uniaxial 

compression is illustrated in figure 1.8. Assuming a rectangular plate with simply supported 

edges under uniaxial load, buckling coefficient “k” is expressed as: 

2
a mb

k
mb a

 
= + 
 

 (1.4.23) 

Where 

a = plate’s length 

b =plate’s width 

m = number of halfwaves of buckling mode in the direction of load 

 

FIGURE 1.9 Effect of boundary conditions on a rectangular plate under uniaxial compression 

Stiffened plates are designed so that local panel buckling takes place before overall buckling 

occurs. For such design, local buckling strength of plate between stiffeners is affected by the 

interaction between the plate and the stiffener’s web. Assuming simply supported edges is 

the most representative boundary condition for plate edges in a high level of accuracy, 

buckling coefficient could be assumed to equal 4 (FIGURE 1.8) However, due to the 

aforementioned interaction, buckling coefficient’s “k” value is expected to change slightly 

from the above ideal conditions. 

Stiffener’s web could be studied as plates using equation (1.4.22), substituting “t” with web 

thickness “tw” and “b” with web’s height “hw”. When flatbars are used as stiffeners, 

assuming a plate with three simple supported edges and one free, since plate provides 

restriction to the web, is representative of the conditions on the web’s boundaries. Hence, 

the buckling coefficient equals 0.5 (FIGURE 1.8). When tee-stiffeners are used, the 
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appropriate conditions for the boundaries is to consider four simply supported edges, since 

stiffener’s flange and plate provide restriction to the web, thus “k” equals 4. Due to 

interactions with plate and flange (tee-stiffeners), buckling coefficient is expected to be 

slightly different from this of the ideal conditions above. 

According to IACS CSR (2019, Part 1, Chapter 8 Section 5, tables 2,3) buckling coefficient for 

plate’s between stiffeners (kp ), for the boundary conditions mentioned could be taken as: 

 

p long

8,4
k F

1,1
=

 +
  (1.4.24) 

Where, 

 = 1, for equally distributed load 

longF c 1= +  for w

p

t
1

t
 or 

3

w
long

p

t
F c 1

t

 
= +  

 

for w

p

t
1

t
  

c 0,1= (flatbar stiffeners) or c 0,3= (tee-stiffeners) 

According to ABS (2019, Rules for building and classing, Marine vessels, Part 3 Hull 

construction and equipment, p. 388) for flanged profile stiffeners, the ideal buckling stress of 

the web is given by: 

( )
2

w
p,w crit

w

t
3,8

h

 
 =  

 
  (1.4.25) 
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2  Buckling Finite Element Analysis  
 

M. Mano (2009, p.125) referring to finite element method, mentions that the finite element 

method (FEM) is an essential and powerful tool for solving structural problems not only in 

the field of shipbuilding but also in the design of most industrial products and even in non-

structural fields. FEM can be used for a wide variety of problems in linear and nonlinear solid 

mechanics, dynamics, and ships’ structural stability problems, in accordance with the 

development of computer technology and its popularization. The conventional method in 

solving stress and deformation problems is an analytical one using theories of beams, 

columns and plates, etc. As a result, its application is restricted to most simple structures 

and loads. On the other hand, FEM:  

(1) divides a structure into small elements 

(2) assumes each element to be a mathematical model 

(3) assembles the elements and solves the overall 

Hence it is possible for complex structural problems to be solved in a short time. 

Characteristics of FEM are as follows:  

• It does not give an exact solution but solves approximately, because structures are 

modeled as a combination of simple elements and/or loads. 

• It is a kind of numerical experiment without experimental devices, models, or 

instruments. Hence it is economical and time-saving. 

• It can solve actual structural problems by using some models, although their shapes 

and loads are complex. It is even used for non-structural problems.  

• It is used for a wide variety of steel, nonferrous materials and complex materials. 

• It relies on computer technology for both hardware and software. 

Nevertheless, FEM should be considered only as a practical tool, thus the extracted 

results must be checked and assessed continuously combined with engineering 

experience and correct interpretation. 

 

FIGURE 2.1 Basic concept of FEM 
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2.1  Buckling Linear Finite Element Analysis 
 

Linear buckling analysis (also known as Eigenvalue buckling analysis) predicts the theoretical 

buckling strength and collapse mode of an ideal elastic structure. It is the first step during 

the structural stability verification of a construction. However, imperfections and 

nonlinearities prevent most real-world constructions from achieving their theoretical 

buckling strength. 

 Assuming and incremental loading pattern  
n

P , buckling problem is formulated as an 

eigenvalue problem 

       
m,n m,nn n

i i iK q K q=    (2.1.1) 

Where 

 
m,n

K =  stiffness matrix 

 
m,n

K =  geometric stiffness matrix or stress stiffness matrix due to the incremental 

loading pattern  
n

P  

 
n

iq =  eigenvector of displacements 

i =  eigenvalue (used to multiply the loads which generated  
m,n

K
) 

The geometric stiffness matrix is determined by the element geometry and stress 

conditions, and is independent of the elastic properties. It reflects the increasement of 

bending stiffness of an element under axial tension or the reduction of bending stiffness of 

an element under compression. 

The analysis is conducted in two steps:  

• Static structural analysis for the given load     
m,n n n

iK q P=  where stress 

stiffness matrix  
m.n

K
 is calculated  

• Eigenvalue buckling problem (2.1.1) is solved to find i   and  
n

iq   
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2.2 Nonlinear Finite Element Analysis 
 

The behavior of real structures differs from this predicted from linear analysis. A nonlinear 

analysis demonstrates a nonlinear relation between applied forces and displacements. In a 

model, nonlinearities result in a changing stiffness matrix during the load application, 

opposed to the linear analysis, where the stiffened matrix remains constant. 

Sources of nonlinearities could be: 

• Geometrical nonlinearities 

• Material nonlinearities 

• Boundary nonlinearities 

Geometrical nonlinearities 

Geometric nonlinearity occurs whenever the magnitude of the displacements affects the 

response of the structure. This may be caused by: a) Large deflections or rotations, b) “Snap 

through”, c) Initial stresses or load stiffening. 

For example, considering a cantilever beam loaded vertically at the tip. If the tip deflection is 

small, the analysis can be considered as being approximately linear. However, if the tip 

deflections are large, the shape of the structure and, hence, its stiffness changes. In addition, 

if the load does not remain perpendicular to the beam, the action of the load on the 

structure changes significantly. As the cantilever beam deflects, the load can be resolved 

into a component perpendicular to the beam and a component acting along the length of 

the beam. Both of these effects contribute to the nonlinear response of the cantilever beam. 

 

FIGURE 2.2 Large deflection of cantilever beam 

One would expect large deflections and rotations to have a significant effect on the way that 

structures carry loads. However, displacements do not necessarily have to be large relative 

to the dimensions of the structure for geometric nonlinearity to be important. Consider the 

“snap through” under applied pressure of a large panel with a shallow curve. In this example 

there is a dramatic change in the stiffness of the panel as it deforms. As the panel “snaps 

through,” the stiffness becomes negative. Thus, although the magnitude of the 

displacements, relative to the panel's dimensions, is quite small, there is significant 

geometric nonlinearity in the simulation, which must be taken into consideration. 



 
19 

 

 

FIGURE 2.3 Snap-through of a large panel 

Material nonlinearities 

Material nonlinearity involves the nonlinear behavior of a material based on a current 

deformation, deformation history, rate of deformation, temperature, pressure, and so on. 

Examples of nonlinear material models are large strain (visco) elasto-plasticity and 

hyperelasticity (rubber and plastic materials). Most metals have a fairly linear stress/strain 

relationship at low strain values, but at higher strains the material yields, at which point the 

response becomes nonlinear and irreversible. Rubber materials can be approximated by a 

nonlinear, reversible (elastic) response. 

 

FIGURE 2.4 Stress-strain curve for an elastic-plastic material under uniaxial tension (left), Stress-strain curve for 
a rubber-type material (right) 

 

Boundary nonlinearities 

 

Boundary nonlinearity occurs if the boundary conditions change during the analysis. 

Consider a cantilever beam that deflects under an applied load until it hits a “stop.” The 

vertical deflection of the tip is linearly related to the load (if the deflection is small) until it 

contacts the stop. There is then a sudden change in the boundary condition at the tip of the 

beam, preventing any further vertical deflection, and so the response of the beam is no 
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longer linear. Boundary nonlinearities are extremely discontinuous, when contact occurs 

during a simulation, there is a large and instantaneous change in the response of the 

structure. 

 

FIGURE 2.5 Cantilever beam hitting a stop. 

 

Generally, the buckling load obtained from a linear buckling analysis is higher than the 

true buckling load of a structure. The reason is that there are no imperfections included in a 

linear buckling analysis, which are present in a real life situation. The nonlinear buckling 

analysis is a simulation procedure that allows for large deformations and geometrical and/or 

material nonlinearities. There are several ways of modeling imperfections. Sometimes a 

small out of plane force or translation of some nodes in the normal direction of the plate is 

sufficient in order to excite the first eigenmode. The most common and structured way to 

model imperfections is to use the pattern of the first eigenmode (under the assumption that 

this is the true shape of the buckling mode), obtained from the linear buckling analysis. 

 

 

 

FIGURE 2.6 Nonlinear analysis procedure 

A major problem in nonlinear buckling analysis is to quantify and motivate the amount 

of imperfection that has to be included in the analysis. For this aim an imperfection 

sensitivity analysis has to be carried out or proposed values to be used. Assuming a stiffened 

panel, maximum plate displacement magnitude according to IACS CSR is proposed to be the 

span between stiffeners in mm divided by 200 (s/200) and maximum stiffener displacement 

magnitude is proposed to be stiffeners length in mm divided by 1000 (L/1000). 

In the figure below is depicted the load versus out of plane deflection paths. it is possible to 

see the effect of imperfections in contrast to an ideal buckling path. Including imperfections 

reduces the buckling load of a structure (the secondary path has no imperfections). 
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FIGURE 2.7 Imperfection sensitivity analysis 

 

Iteration Methods and Post-buckling Analysis 

In nonlinear analysis, the stiffness matrix [K] and/or the load vector {f } in the 

structural equations, [K] {u}  = {f }  , become functions of the displacements, {u}. This makes 

it no longer possible to solve the systems of equations directly for the displacements by 

inverting the stiffness matrix. Consequently, a tangent stiffness matrix, [K]t , is created, 

which includes both the effect of changing geometry as well as stiffening due to stress. The 

procedure then becomes to solve [K]t {Δu}={Δf } by use of an iteration method, e.g. the 

Newton-Raphson method. It must be noted that convergence is not guaranteed for any 

iteration method, however stability is improved if load steps are smaller, e.g. applying load 

incrementally.   

 

FIGURE 2.8 Secant and Tangent Stiffness 
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The Newton-Raphson method is the most rapidly convergent process and has a quadratic 

convergence rate and is also the most commonly implemented solution scheme in 

commercial FE software. Calculation of Tangent Stiffness Matrix is a computational 

expensive procedure. Since Newton Raphson method requires to calculate tangent stiffness 

Matrix after each iteration, modified Newton-Raphson method is often used. In Modified 

Newton-Rapson method, Tangent Stiffness Matrix is calculated for each increment, leading 

to a computational cheaper solution. However, using Modified Newton Raphson method on 

hardening structures could easily lead to diverge. 

 

FIGURE 2.9 Diverge of Modified Newton-Raphson Method  

It can be of interest to verify if the structure continues to carry the load after it has reached 

its critical limit or if it looses all its stiffness and collapses. Post-buckling can be divided into 

two different types. The first type is called stable posτ-buckling and the second is called 

unstable post-buckling. The characteristic of stable post-buckling behavior is when the 

structure continues to carry the load that it is subjected and keep its stiffness. The definition 

of unstable post-buckling is when the structure loses its stiffness and is no more able to 

carry the same amount of load. This often leads to that the structure starts to undergo very 

large geometrical changes for decreased or unchanged loading. 

 

FIGURE 2.10 Post buckling paths 
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The Newton-Raphson methods perform poorly for bucking problems, where the slope at 

limit points is exactly equal to 0, also present problems in case of snap-through and snap-

back points, failing to predict the complete load-displacement response. 

 

FIGURE 2.11 The Newton’s method cannot accurately predict the solution after a limit point is reached 

 

For the post-buckling study, the Riks iteration method is used. Ιt is a variant of the Arc 

Length method. Unlike the Newton-Raphson method, this method uses an extra constraint 

and allows the solver to reach the convergence with lower applied load and find the 

equilibrium. This property of the Riks method makes it possible to trace the behavior after a 

limit point is reached, even though that the stiffness matrix is not positive definite.  The 

Newton method can also work as a solution scheme when doing post-buckling analysis but 

only with the requirement that the post-buckling path is stable. This is hard to know in 

advance, so therefore the Riks method is recommended for this kind of analysis because it is 

valid for both stable and unstable behavior of the post-buckling paths.  

 

FIGURE 2.12 A representation of Arclength Method 
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PART 2 FEM Analysis 
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3 Investigation Strategy 
 

This work focuses on the study of buckling behavior and ultimate strength of a stiffened 

plate belonging to a ship’s deck and the stiffened plate’s elements, under compressive loads 

resulting from the sagging of the hull, using a one span model in the longitudinal direction. 

Transverse frames of the hull can’t be included in a one span model, although they have a 

great effect on the structure. However, the boundary conditions of an isolated structural 

element should be such that represent realistically the behavior of that element as part of 

the construction. Hence, for the appropriate boundary conditions to be obtained, the 

procedure described afterwards followed. Firstly, a three-span model of a VLCC’s hull with a 

span switch of L/2+L+L/2 subjecting to pure bending were analyzed. From this analysis, 

observing deformation of the frames and making the essential assumptions, the appropriate 

boundary conditions for the analysis of a one span model of the same hull were extracted. 

Analyzing the one-span model of the hull and observing displacements on the boundaries of 

a stiffened plate on its deck, realistic boundary conditions for deck’s stiffened plate were 

obtained. Boundary conditions obtained for deck’s stiffened plate used in the analysis of an 

identical isolated stiffened plate under compression, so that their validity could be 

evaluated. Typically, continuous plates consisting of 5 to 10 stiffeners are used in marine 

structures, therefore a model of stiffened plate with 6 stiffeners subjecting to uniaxial 

compression were analyzed, so that accurate conclusions about buckling collapse mode, 

ultimate strength, stress distribution and load distribution among stiffened plate’s elements 

to be made. Observing the displacement in the boundaries of stiffened plate’s elements, the 

boundary conditions for the analysis of a stiffened plate’s isolated element were obtained.  

    

 

Figure 3.1 Investigation strategy 
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Finite element models described on table 3.1 used to accomplish the aforementioned 

procedure.  

 

 
Model 

 
Longitudinal 

span 

 
Load 

 
Solver 

 
Element 

type 

 
Mesh size 

Comments on BC 

Transverse section 
nodes’ transverse 

displacement 
(Stiffened Plate) 

longitudinal edge 
nodes’ transverse 

displacement 
(Stiffened Plate) 

 
 
 

VLCC’s Hull 
 

3 (L/2+L+L/2) Pure bending Dynamic 
Implicit 

S4R 250 mm _ _ 

1 (L) Pure Bending Dynamic 
Implicit 

S4R 250 mm free _ 

1 (L) Pure Bending Dynamic 
Implicit 

S4R 250 mm suppressed _ 

 
VLCC’s deck 

stiffened plate with 
24 stiffeners 

 

1 (L) Uniaxial 
compression 

Dynamic 
Implicit 

S4R 250mm free common 

1 (L) Uniaxial 
compression 

Dynamic 
Implicit 

S4R 250mm suppressed suppressed 

 
Stiffened plate with 

6 stiffeners 
 

1 (L) Uniaxial 
compression 

Static, Riks S4R 50mm free common 

1 (L) Uniaxial 
compression 

Static, Riks S4R 50mm suppressed suppressed 

 
 
 

Single element of 
stiffened plate 

 

1 (L) Uniaxial 
compression 

Static, Riks S4R 50mm free common 

1 (L) Uniaxial 
compression 

Static, Riks S4R 50mm suppressed suppressed 

1 (L) Uniaxial 
compression 

Static, Riks C3D8R 20*20*4 mm free common 

1 (L) Uniaxial 
compression 

Static, Riks C3D8R 20*20*4 mm suppressed Suppressed 

 

Table 3.1 Models used for the study 
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4 Hull Analysis 
 

This chapter focuses on the analysis of a VLCC’s hull. The goal is to observe the displacement 

on the boundaries of a stiffened plate with 24 stiffeners on deck, as hull is sagging, so that 

realistic boundary conditions which represent the behavior of an isolated stiffened plate as 

structural element of the hull could be obtained. Firstly, a three-span model of a hull will be 

studied and the behavior of the aforementioned stiffened plate will be observed. At the 

same time the deformation of the transverse frames will be inspected. Making the 

appropriate assumptions, based on the results from the analysis of three span model, 

regarding deformation of frames, two different one-span models of the same hull will be 

analyzed. One assuming that nodes on transverse section of the model are free to move in 

transverse direction and one assuming transverse translation of nodes is suppressed. 

Inspecting the translation on the boundaries of the stiffened plate with 24 stiffeners, two 

different sets of boundary conditions for the analysis of an isolated stiffened plate emerge. 

One evolves from the assumption that nodes on the transverse cross-section of one-span 

model are free to move in transverse direction and the other from the assumption the 

translation of the same nodes is suppressed. The extracted boundary conditions will be 

tested and evaluated by analyzing two models of an isolated stiffened plate, identical with 

this on the deck of the VLCC. One model is considered to have free transverse translation of 

nodes on transverse section and common transverse translation of nodes on longitudinal 

edges and the other is consider to have suppressed transverse translation of nodes on 

transverse section and suppressed transverse translation of nodes on longitudinal edges 

 

 

4.1 Three-span Hull Model with Transverse Frame  
 

The model represents a VLCC’s hull of 58m width and 32m height. In the longitudinal 

direction, the three-span model consists of 5 parts, 2 transverse frames 15 mm thick, 2 bays 

of 2.56 m length (L/2) and one bay of 5.12 m length (L). Through the analysis of this model, 

useful data for the condition structural elements of the deck encounter can be obtained. The 

investigation will concentrate on the horizontal stiffened plate in the middle of the deck, as 

hull is imposed to sagging. At the same time the appropriate boundary conditions for the 

simplified one span hull model will be approached. 
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FIGURE 4.1 Parts of model, final assembly and area of interest 

 

 

4.1.1 Model Geometry, Mesh and Material Properties 

 

Model Geometry 

Each bay designed accurately according to the dimensions of a VLCC. There are three 

stiffener types in the construction (tee-stiffeners, angular stiffeners, tee-stiffeners with 

angular stiffeners to stiffen webs). Principal stiffener dimensions vary and not all plates of 

the construction have the same thickness. 

The area of interest on deck consists of a 5.12 m long stiffened plate with 23 tee-stiffeners. 

Span between stiffeners is 910mm. Plates thickness is 17.5 mm. Web’s height and thickness 

is 400mm and 13mm respectively and flange has a width of 130mm and a thickness of 

18mm. 

Stiffened plate geometry 
(deck, area of interest) 

s (mm) 910 

L (mm) 5120 

tp (mm) 17,5 

hw (mm) 400 

tw (mm) 13 

bf (mm) 130 

tf (mm) 18 
TABLE 4.1 Stiffened plate geometry (deck, area of interest) 

A typical frame geometry designed with detail to the cut-outs where stiffeners and 

transverse frame intersects. There are five types of cut-outs on the construction as shown in 

FIGURE 4.2 and their dimensions depends on the dimensions of the intersecting stiffener. A 

portion of stiffener’s web of about 90% (regarding cut-out type) is connected with the 
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transverse frame as if they were a single body. Flange of stiffeners with a portion of about 

10% of the stiffener’s web, in the web-flange connection end, have no interaction with 

transverse frame. 

 

 

FIGURE 4.2 Types of Cut-outs on Transverse frame 

 

FIGURE 4.3 Transverse frame and details 
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Very large size of model sets limits to its discretization. Complex cut-outs’ geometry together 

with the use of large finite elements leads to a problematic mesh. To deal with this, 

geometry of frame’s cut-outs simplified as shown in FIGURE 4.4, in such way that 

intersection between stiffeners and web doesn’t affect. 

 

FIGURE 4.4 Simplified geometry of transverse frame and details 

 

 

Mesh 

Discretization of the model should be such that processing time is reasonable and at the 
same time critical details of geometry, especially those affecting connections of frame and 
bays, are taken into account. Considering this, use of reduced integration shell elements S4R 
of 250 mm length is proposed. It should be noted that this mesh isn’t dense enough for an 
ultimate strength analysis of stiffened plate elements that form the hull. For the ultimate 
strength analysis of stiffened plate structures that involve an elastic-plastic large deflection 
response, current practice indicates that at least eight four-noded plate-shell elements are 
required to model the plating in between stiffeners. However, this analysis does not aim to 
accurately estimate stresses and displacements of construction, but to give an approach of 
displacements of nodes on the boundaries of a stiffened plate on deck, so that reasonable 
assumptions to be made leading to realistic boundary conditions that represent the behavior 
of an isolated element as part of the construction and to create a one span model of the 
same hull. 
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FIGURE 4.5 Mesh of three-span model 

 
Material Properties 

Material used is AH32. AH32 steel is a structural high tensile strength marine steel mainly 

used for making the hull of ship building and ship repairing, offshore oil drilling platforms, 

the platform pipe joints and other components. It is an isotropic material that has Young’s 

modulus/modulus of elasticity (E) of 206 GPa, Poisson’s ratio (ν) of 0.3 and Yield strength 

(σy) of 315 MPa. 

 

AH32 steel 

Young’s modulus E (GPa) 206 

Poisson’s ratio v 0.3 

Yield strength σy (MPa) 315 
 

TABLE 4.2 Material properties of hull 

 
 

4.1.2 Boundary Conditions 

 

Boundary conditions are applied so that hull is imposed to pure longitudinal bending. To 

maintain symmetry, at each longitudinal end of the model, one Reference Point (RP) is 

placed at the center of surface of each cross section. Edge nodes of each cross section are 

controlled by RPs through kinematic coupling constraint. Coupled degrees of freedom are 

longitudinal translation, rotation around transverse axis and rotation around vertical axis, 

meaning edge nodes follow RP’s motion as rigid body for the coupled degrees of freedom 

and at the same time cross section remains plain. One RP is clamped and the other is free to 

move in vertical and longitudinal directions and rotate around transverse axis. Transverse 
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frame isn’t considered rigid body. To avoid local buckling of transverse frame and 

considering pure longitudinal bending, transverse frame must remain plane as hull bends, so 

rotation around vertical and longitudinal axis is forbitten and at the same time an equation 

has been set on frame’s nodes, forcing them to rotate as rigid body around transverse axis. 

 

x=transverse, y=vertical, z=longitudinal 

Location Translation Rotation Constraints 

 Ux Uy Uz URx URy URz  

RP1 Suppressed Free Free Free Suppressed Suppressed Kinematic coupling with 
longitudinal edge nodes. 
Constrained degrees of 
freedom: Uz, URx, URy 

RP2 Suppressed Suppressed Suppressed Suppressed Suppressed Suppressed Kinematic coupling with 
longitudinal edge nodes. 
Constrained degrees of 
freedom: Uz, URx, URy 

Transverse 
Frames 

Free Free Free Free Suppressed Suppressed Equation, URx=common 

 

TABLE 4.3 Boundary conditions for three span model of VLCC’s hull 

 

4.1.3  Linear Analysis 

 

The model is imposed to pure longitudinal bending by subjecting moment about transverse 

axis to the free to move/rotate RP. 

The first eigenmode located to the deck arises at the horizontal stiffened plate at the middle 

of the deck (FIGURE 4.6). Z-axis and X-axis are antisymmetry axis. Six half waves are being 

formed and plate buckling seems to be dominant. Deformation of the plate is higher at the 

middle and is decreasing as edges of the plate are approached. Stiffeners’ webs seem to 

buckle locally. 

 

FIGURE 4.6 First antisymmetric buckling mode that forms on deck 
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FIGURE 4.7 First symmetric/antisymmetric buckling mode that forms on deck (Z-X plane) 

 

 

 

FIGURE 4.8 First symmetric/antisymmetric buckling mode that forms on deck (stiffeners view) 

 

4.1.4 Nonlinear Analysis 

 

The aforementioned eigenmode would be utilized as initial geometrical imperfections of the 

model, applied with the proposed tolerance level. Since plate buckling is the dominating 

source of buckling, maximum amplitude of 4.55 mm (s/200) is applied. 

The model is imposed to pure longitudinal bending by subjecting rotation about transverse 

axis to the free to move/rotate RP. 

Simulation run using dynamic implicit solver of quasi static type. RP rotates with a radial 

velocity of 0,0015 rad/s. It is proposed that Kinetic Energy should be less than 5% of Internal 

Energy of the model, so that could be regarded negligible and the consideration of quasi 

static loads is true. During the analysis Kinetic energy values remain lower than the proposed 

maximum value.  

 



 
34 

 

 

FIGURE 4.9 Rotation of RP  

Hourglass energy is work done by the forces calculated to resist hourglass modes. 

Hourglass modes are nonphysical, zero-energy modes of deformation that produce zero 

strain and no stress. Hourglass modes occur in reduced integration solid, shell, and thick 

shell elements, like S4R elements used for this simulation. For this analysis Hourglass Energy 

values remain under 10% of Internal Energy of model. Values under 5% of Internal Energy 

are noticed for the first 5 s of the analysis. It should be noted that critical values of the 

analysis such as maximum reaction moment of Hull or maximum axial stress of the 

Horizontal Stiffened Plate are reached while Hourglass energy is under the 5% limit. 

 

FIGURE 4.10 Internal, kinetic and hourglass energy comparison for 3 span Hull model 

During the analysis the Reaction Moment-Rotation curve of the Hull reaches its peak on 

linear trend and drops slowly. At the same time deck’s structural elements are under 

compression. The Stress-Rotation curve of the horizontal stiffened plate in the middle of the 

deck reaches its peak on linear trend and drops quickly. 
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FIGURE 4.11 Reaction moment-RP rotation curve and Stress-RP rotation curve for hull and horizontal stiffened 
plate on deck  

It is noted that maximum Reaction moment of Hull and maximum Stress of the plate do not 

achieve for the same rotation. Bearing in mind that imperfections are applied only on the 

Horizontal plate of the deck and not on the whole model, this behavior can be explained. 

The “imperfect” plate is more vulnerable on compressive loads than the rest of the model. 

When reaching its critical buckling load and collapses, the other “perfect” parts of Hull under 

compression, which haven’t reached their critical buckling load, overcome the instability due 

to the loss of strength capacity of the “imperfect” plate. 

 

 

FIGURE 4.12 Von Misses stress on stiffened plate’s collapse step (left), maximum reaction moment of hull step 
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Stiffened plate loose stability under a combination of local plate buckling and local web 

buckling (FIGURE 4.13). Local plate buckling is dominant and six halfwaves are being formed 

to the plating between stiffeners. The same collapse mode predicted through the linear 

analysis of the model. 

 

 

FIGURE 4.13 Transverse (left) and vertical (right) displacement of stiffened plate when it collapses 

 

As hull bends, frame remains plane but its nodes are free to move on their local vertical and 

transverse direction. As shown in FIGURE 4.14 change in vertical length of frame varies from 

2 mm to -1 mm, which can be assumed negligible. Change in transverse length of frame 

varies from 15 mm near deck to -9.5 mm near bottom. Frame lengthens in transverse 

direction above neutral axis and shortens below. It’s not clear whether this change in length 

is negligible and it should be investigated. 

 

FIGURE 4.14 Change in vertical and transverse length of frame when horizontal stiffened plates buckles 
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As Hull sags deck is imposed to compression, leading its structural elements to buckle. The 

“imperfect” horizontal stiffened plate in the middle of the deck, reaches critical buckling 

stress of 280 MPa for a strain of 0,00152.  

 

FIGURE 4.15 Stress-strain curve for horizontal stiffened plate on deck 

 

Taking advantage of symmetry, conditions on the boundaries of plate as Hull is imposed to 

pure bending can be examined using two edges of the plate, one transverse edge and one 

longitudinal. 

 

 

FIGURE 4.16 Edges of plate used to examine boundary conditions 
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It is observed that as plate shortens, the node on the middle of the transverse edge remains 

motionless, as excpected due to symmetry. Nodes lying on the left and right of the 

motionless middle point, move away from it antisymmetricaly. Each node’s Transverse 

Displacement-Strain curve seperatly, reaches its peak with almost linear trend. For each 

curve seperatly, when buckling occurs peak is reached. Post buckling displacement of all 

nodes reduces. The furhter away from the motionless middle node a node is, the greater its 

displacement is.  

 

 

FIGURE 4.17 Transverse displacement-Strain curve of nodes on transverse edge of plate (left), transverse 
displacement of nodes on transverse edge on stiffened plate’s buckling step (right) 

 

As shown in FIGURE 4.18 nodes on longitudinal edge of the plate have common 

displacement through transverse direction. This behavior remains post buckling, but changes 

after a while. Post buckling all nodes displacement reduces. 

 

 

FIGURE 4.18 Transverse displacement-Strain curve of nodes on longitudinal edge of plate (left), transverse 
displacement of nodes on longitudinal edge on stiffened plate’s buckling step (right) 
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4.2 One-span Hull Model  

  
The model is a simplification of the model of 58m width and 32m height VLCC’s hull 

described on chapter 4.1. In the longitudinal direction, the one span model consists only of 

one bay of 5.12 m length (L). 

As on the previous three span model of chapter 4.1, the investigation will concentrate on 

the horizontal stiffened plate in the middle of the deck, as hull is sagging. 

 

FIGURE 4.19 Final assembly of model and Area of interest 

 

4.2.1 Model Geometry, Mesh and Material Properties 

 

Model Geometry 

Βay designed accurately according to the dimensions of the same VLCC as on Chapter 4.1. 

There are three stiffener types in the construction (tee-stiffeners, angular stiffeners, tee-

stiffeners with angular stiffeners to stiffen webs). Principal stiffener dimensions vary and not 

all plates of the construction have the same thickness. 

Area of interest on deck consists of a 5.12 m long stiffened plate with 23 tee-stiffeners. Span 

between stiffeners is 910mm. Plates thickness is 17.5 mm. Web’s height and thickness is 

400mm and 13mm respectively and flange has a width of 165mm and a thickness of 18mm. 
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Stiffened plate geometry 
(deck, area of interest) 

s (mm) 910 

L (mm) 5120 

tp (mm) 17,5 

hw (mm) 400 

tw (mm) 13 

bf (mm) 130 

tf (mm) 18 
 

TABLE 4.4 Stiffened plate geometry (deck, area of interest) 

Mesh 

Although considering size of one span model a denser mesh than this used for the analysis of 
three span model could be used, shell elements S4R of 250 mm length is proposed. Using 
the same elements on both simulations makes sure that any differences on the results of the 
analysis are products of the assumptions made to simplify the three-span to one-span 
model, since mesh used on both simulations leads to equally accurate estimations of 
stresses and displacements 
 

 
FIGURE 4.20 Mesh of one-span model 

Material properties 

Material used is AH32. AH32 steel is a structural high tensile strength marine steel mainly 

used for making the hull of ship building and ship repairing, offshore oil drilling platforms, 

the platform pipe joints and other components. It is an isotropic material that has Young’s 

modulus/modulus of elasticity (E) of 206 GPa, Poisson’s ratio (ν) of 0.3 and Yield strength 

(σy) of 315 MPa. 

AH32 steel 

Young’s modulus E (GPa) 206 

Poisson’s ratio v 0.3 

Yield strength σy (MPa) 315 
TABLE 4.5 Material properties of hull 
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4.2.2 Boundary Conditions 

 

Boundary conditions are applied so that hull is subjected to pure longitudinal bending. To 

maintain symmetry, at each transverse section of the model, one Reference Point (RP) is 

placed at the center of surface of each edge cross section.  One RP is clamped and the other 

is free to move in vertical and longitudinal directions and rotate around transverse axis. 

Nodes of each cross section are controlled by RPs through kinematic coupling constraint. 

Kinematic constraints are imposed by eliminating the chosen degrees of freedom at 

the coupling nodes. Constrained edge nodes follow RP’s motion as rigid body for the 

constrained degrees of freedom. Considering pure longitudinal bending, cross-sections must 

remain plane as hull bends, so longitudinal translation, rotation around transverse axis, 

rotation around vertical axis and rotation around longitudinal axis should be constrained by 

kinematic coupling. Taking into account results from the analysis of three span model 

(chapter 4.1.4), it is assumed that transverse’s edge local vertical dimensions remain 

constant. This is achieved coupling vertical translation of the cross-section nodes with RP 

motion and under the influence of aforementioned constraints. From three-span model 

analysis is not clear, whether transverse displacement of nodes on transverse edge should 

be considered negligible, therefore two sets of boundary conditions should be set. One 

considering transverse displacements significant and another considering them negligible, 

meaning transverse translation free and coupled with RP respectively.  

 

x=transverse, y=vertical, z=longitudinal 

Location Translation Rotation Constraints 

 Ux Uy Uz URx URy URz  

RP1 Suppressed Free Free Free Suppressed Suppressed Kinematic coupling with 
transversel edge nodes. 
Constrained degrees of 

freedom: Uy, Uz,  
URx, URy, Urz 

RP2 Suppressed Suppressed Suppressed Suppressed Suppressed Suppressed Kinematic coupling with 
transverse edge nodes. 
Constrained degrees of 

freedom: Uy, Uz,  
URx, URy, Urz 

TABLE 4.6 Boundary conditions considering nodes on transverse edge are free to move through transverse 
direction 

x=transverse, y=vertical, z=longitudinal 

Location Translation Rotation Constraints 

 Ux Uy Uz URx URy URz  

RP1 Suppressed Free Free Free Suppressed Suppressed Kinematic coupling with 
transverse edge nodes. 
Constrained degrees of 

freedom: Ux, Uy, Uz,  
URx, URy, Urz 

RP2 Suppressed Suppressed Suppressed Suppressed Suppressed Suppressed Kinematic coupling with 
transverse edge nodes. 
Constrained degrees of 

freedom: Ux, Uy, Uz,  
URx, URy, Urz 

TABLE 4.7 Boundary conditions considering nodes on transverse edge to move as rigid body through transverse 
direction 
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4.2.3 Analysis Considering Free Transverse Displacement for Transverse Section 

Nodes 

4.2.3.1 Linear Analysis 

 

The model is imposed to pure longitudinal bending by subjecting rotation about transverse 

axis to the free to move/rotate RP. 

The first eigenmode located to the deck arises at the horizontal stiffened plate at the middle 

of the deck. The eigenmode is similar to the one arises from linear analysis of three-span 

model. Z-axis and X-axis are antisymmetry axis. Six half waves are being formed and plate 

buckling seems to be dominant. Deformation of the plate and stiffeners is higher at the 

middle and is decreasing as edges of the plate are approached. Stiffeners’ webs seem to 

buckle locally. The same collapse mode predicted from linear analysis of three-span model. 

 

FIGURE 4.21 First antisymmetric buckling mode that forms on deck 

 

 

FIGURE 4.22 First symmetric/antisymmetric buckling mode that forms on deck (Z-X plane) 
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FIGURE 4.23 First symmetric/antisymmetric buckling mode that forms on deck (stiffeners view) 

 

4.2.3.2 Nonlinear Analysis 

 

The aforementioned eigenmode would be utilized as initial geometrical imperfections of the 

model, applied with the proposed tolerance level. Since plate buckling is the dominating 

source of buckling, maximum amplitude of 4.55 mm (s/200) is applied. 

The model is imposed to pure longitudinal bending by subjecting rotation about transverse 

axis to the free to move/rotate RP. 

 

FIGURE 4.24 Rotation of RP 
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Simulation run using dynamic implicit solver of quasi static type. RP rotates with a radial 

velocity of 0,0015 rad/s. During the analysis Kinetic Energy remains under 5% of Internal 

Energy of the model, so could be regarded negligible and the consideration of quasi static 

loads is true.  

For this analysis Hourglass Energy values remain under 10% of Internal Energy of model. 

Values under 5% of Internal Energy are noticed for the first 5 s of the analysis. It should be 

noted that critical values of the analysis such as maximum reaction moment of Hull or 

maximum axial stress of the Horizontal Stiffened Plate are reached while Hourglass energy is 

under the 5% limit. 

 

FIGURE 4.25 Internal, kinetic and hourglass energy comparison 

Reaction Moment-RP rotation curve for Hull reaches its peak with linear trend. After 

reaching peak, Reaction Moment remains constant while RP rotates and drops slowly after 

0,001 rotation angle. Stress-RP rotation curve reaches its peak with linear trend and drops 

quickly. (FIGURE 4.26) 

 

FIGURE 4.26 Reaction moment-RP rotation curve and Stress-RP rotation curve for hull and horizontal stiffened 
plate on deck respectively 
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Maximum Reaction Moment of Hull and maximum stress of Stiffened plate do not achieve 

for the same rotation of reference point. The same behavior noted analyzing the three-span 

model (Chapter 4.1.4) As mentioned before, the reason for this behavior is that geometrical 

imperfections are applied only on the horizontal stiffened plate of deck while the other 

components of structure are geometrically perfect. Any loss of stability due to imperfect 

plate collapse, is overcome by geometrically perfect elements of Hull. 

 

FIGURE 4.27 Von Misses stress on stiffened plate’s collapse step (left), maximum reaction moment of hull step 

 

As shown in FIGURE 4.28 local plate buckling is dominating when stiffened plate collapses. 

At the same time stiffeners’ webs buckle locally. Through linear analysis of the model the 

same collapse mode is predicted. The stiffened plate on the three-span model collapses 

under the same mode. 

 

 

FIGURE 4.28 Transverse (left) and vertical (right) displacement of stiffened plate when it collapses 
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One span model does not contain any transverse frame. Since frames would be right on the 

transverse sections of the one span model, comparing the change in vertical and transverse 

length between the cross section of one span model and frame of the three-span model, 

would help to draw conclusions about the impact that makes the absence of frame.  As 

shown in FIGURE 4.29, boundary conditions set to the transverse cross-section of the model 

seem to make hull more stiff vertically and less stiff transversely. 

 

FIGURE 4.29 Change in vertical and transverse length of transverse cross section when horizontal stiffened 
plate collapses 

As Hull sags deck is imposed to compression, leading its structural elements to buckle. The 

“imperfect” Horizontal Stiffened Plate in the middle of the deck, reaches critical buckling 

stress of 273 MPa for a strain of 0,00144. Critical buckling stress of the stiffened plate which 

is part of one-span model is a little lower compared to the equivalent resulting from three-

span model. At the same time shortening strain before instability occurs, falls too from 

0,00152 for the three-span model to 0,00144 for the one span model. 

 

FIGURE 4.30 Stress-strain curve for horizontal stiffened plate on deck 

 



 
47 

 

Taking advantage of symmetry, conditions on the boundaries of plate, as Hull is imposed to 

pure bending, can be examined using two edges of the plate, one transverse edge and one 

longitudinal. 

 

 

FIGURE 4.31 Edges of stiffened plate used to examine boundary conditions 

 

Conditions on the boundaries of the plate are similar to those of three-span model analysis. 

As shown in FIGURE 4.32 as plate shortens, the node on the middle of the Transverse edge 

remains motionless. Nodes lying on the left and right of the motionless middle point, move 

away from it antisymmetricaly. Each node’s Transverse Displacement-Strain curve 

separetely, reaches its peak with almost linear trend. For each curve separetely, when 

buckling occurs peak is reached. Post buckling all nodes’ displacement reduces. The further 

away from the motionless middle node a node is, the greater its displacement is. When plate 

buckles, Transverse Displacement of nodes on Transverse edge of stiffened plate, changes 

equivalently with three-span model. Maximum difference in displacement values between 

two cases is about 0,25 mm.  

 

FIGURE 4.32 Transverse displacement-Strain curve of nodes on transverse edge of Plate (left), Transverse 
Displacement of nodes on Transverse edge on stiffened plate’s buckling step (right) 
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It is observed (FIGURE 4.33) that nodes on longitudinal edge of the plate have common 

displacement through transverse direction. This behavior remains post buckling, but changes 

after a while. Post buckling all nodes displacement reduces. The same behavior noticed for 

nodes on longitudinal edge for three-span model. Comparing displacement values when 

buckling of plate occurs, maximum difference between three-span and one-span model 

analysis is about 0,325 mm. 

 

 

FIGURE 4.33 Transverse displacement-Strain curve of nodes on longitudinal edge of plate (left), transverse 
displacement of nodes on longitudinal edge on stiffened plate’s buckling step (right) 
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4.2.4 Analysis Considering Suppressed Transverse Displacement for Transverse 

Section Nodes  

4.2.4.1 Linear Analysis 

 

The model is imposed to pure longitudinal bending by subjecting moment about transverse 

axis to the free to move/rotate RP. 

The first eigenmode located to the deck arises at the horizontal stiffened plate at the middle 

of the deck. Applied moment results to completely different buckling formulations from 

what has been encountered on three-span model. Z-axis is symmetry axis and X-axis is 

antisymmetry axis. One half wave is being formed on the plate between stiffeners. 

Deformation of stiffeners and plate is equivalent significant. Critical part is considered in the 

middle where deformation of both stiffeners and plate are higher than closer to the edge of 

stiffened plate. The eigenmode acquired differs from this resulting from linear buckling 

analysis of three-span model. 

 

FIGURE 4.34 First symmetric/antisymmetric buckling mode that forms on deck 

 

FIGURE 4.35 First symmetric/antisymmetric buckling mode that forms on deck (Z-X plane) 
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FIGURE 4.36 First symmetric/antisymmetric buckling mode that forms on deck (stiffeners view) 

 

4.2.4.2 Nonlinear Analysis 

 

The aforementioned eigenmode would be utilized as initial geometrical imperfections of the 

model, applied with the proposed tolerance level. Since stiffeners deformation is slightly 

higher than this of plate, maximum amplitude of 5,12 mm (L/1000) is applied. 

The model is imposed to pure longitudinal bending by subjecting rotation about transverse 

axis to the free to move/rotate RP. 

 

FIGURE 4.37 Rotation of RP 
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As on previous simulations, dynamic implicit solver of quasi static type used. RP rotates with 

a radial velocity of 0,0015 rad/s. During the analysis Kinetic Energy remains under 5% of 

Internal Energy of the model, so could be regarded negligible and the consideration of quasi 

static loads is true.  

For this analysis Hourglass Energy values remain under 10% of Internal Energy of model. 

Values under 5% of Internal Energy are noticed for the first 5 s of the analysis. 

 

FIGURE 4.38 Internal, kinetic and hourglass energy comparison 

Reaction Moment-RP rotation curve for Hull reaches its peak with linear trend. After 

reaching peak, Reaction Moment remains constant while RP rotates and drops slowly after 

about 0,0008 rotation angle of RP. Stress-RP rotation curve reaches its peak with linear 

trend and drops quickly. (FIGURE 4.39) 

 

FIGURE 4.39 Reaction moment-RP rotation curve and Stress-RP rotation curve for hull and horizontal stiffened 
plate on deck respectively 



 
52 

 

Maximum Reaction Moment of Hull and maximum stress of Stiffened plate do not achieve 

for the same rotation. The same behavior noted on previous models too (Chapter 4.1.4, 

Chapter 4.2.3.2) As mentioned before, the reason for this behavior is that geometrical 

imperfections are applied only on horizontal stiffened plate on deck and the other 

components of structure are geometrically perfect. Any loss of stability due to imperfect 

plate collapse, is overcome by geometrically perfect elements of Hull. 

 

 

FIGURE 4.40 Von Misses stress on stiffened plate’s buckling step (left), maximum reaction moment of hull step 
(right) 

The stiffened plate on deck collapses under a combination of local plate buckling and 

stiffener tripping (FIGURE 4.41). Five halfwaves are being formed to the plating between 

stiffeners. Linear analysis of the model predicted a different collapse mode, with plating 

between stiffeners buckling overall. Collapse mode also differs from this predicted from the 

three-span analysis of the model. 

 

FIGURE 4.41 Transverse (left) and vertical (right) displacement of stiffened plate when it collapses 

 

Transverse frame on three-span model is placed on the intersection between two bays. One-

span model does not contain any transverse frame, however its effect on the transverse 

cross section of the bay modeled through boundary conditions. Nodes on transverse cross 

section of the model are assumed to move as rigid body through local transverse and 



 
53 

 

vertical direction. The aforementioned assumptions seem to make Hull more stiff 

transversely and vertically, since frame’s impact is overestimated.  

 

FIGURE 4.42 Change in vertical and transverse length of transverse cross section when horizontal stiffened 
plate buckles 

As Hull sags and structural elements buckle, the “imperfect” Horizontal Stiffened Plate in the 

middle of the deck, reaches critical buckling stress of 291 MPa for a strain of 0,00142. Critical 

buckling stress of the stiffened plate which is part of one-span model is a little higher 

compared to the equivalent resulting from three-span model. At the same time shortening 

strain before instability occurs, falls too.  

 

 

FIGURE 4.43 Stress-strain curve for Horizontal stiffened plate on deck 
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Taking advantage of symmetry, conditions on the boundaries of plate, as hull is imposed to 

pure bending, can be examined using two edges of the plate, one transverse edge and one 

longitudinal. 

 

FIGURE 4.44 Edges of plate used to examine boundary conditions 

 

Conditions on the boundaries of the plate do not have similarities compared to those of 

three-span Hull model analysis. As plate shortens, the nodes on of the transverse edge 

remains motionless pre-buckling and post-buckling, as expected due to boundary conditions. 

 

FIGURE 4.45 Transverse displacement-Strain curve of nodes on transverse edge of stiffened plate (left), 
transverse displacement of nodes on transverse edge on stiffened plate’s buckling step (right) 

 

Nodes on Longitudinal Edge of the plate have zero displacement in transverse direction. This 

behavior does not match with the expected, according to the analysis of three-span model. 

Considering that no boundary conditions set for the longitudinal edges of the plate, it can be 

concluded that boundary conditions on the transverse edge have great influence in the 

behavior of nodes on the plate’s longitudinal edges. 
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FIGURE 4.46 Transverse displacement-Strain curve of nodes on longitudinal edge of stiffened plate (left), 
transverse displacement of nodes on longitudinal edge on stiffened plate’s buckling step (right) 

 

 

 

 

4.3 One-span Deck’s Stiffened Plate Model 
 

The behavior of a stiffened plate on a ships deck as hull is sagging, can be studied through a 

model of an isolated stiffened plate under uniaxial compression, using the appropriate 

boundary conditions. In chapter 4.2 showed that for a hull subjected to sagging, different 

considerations about stiffness of transverse frame alters significantly the conditions a 

stiffened plate on deck encounters, affecting also the conditions on the longitudinal edges of 

the plate and leading to different collapse modes. Specifically, showed that underestimating 

stiffness of the transverse frame assuming that nodes on the transverse cross-section of a 

one span model of a hull are free to move in transverse direction, followed from common 

transverse displacement of nodes on longitudinal edges of the plate. On the other hand, 

overestimating stiffness of transverse frame by assuming translation of nodes on the 

transverse section of hull is suppressed, followed from zero displacement of nodes on 

longitudinal edges of the plate. Collapse mode is governed by local plate buckling of plate 

between stiffeners for the first case and by stiffener tripping for the second. This chapter 

aims to investigate whether an isolated stiffened plate follows the same behavior under the 

aforementioned assumptions and whether setting those boundary conditions on an isolated 

stiffened plate describe appropriately its behavior as part of a construction. This will be 

fulfilled by comparing ultimate strength and collapse mode of the isolated plate with those 

acquired for an identical stiffened plate, through the analysis of three-span and one-span 

hull model subjected to bending.  
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4.3.1 Model Geometry, Mesh and Material Properties 

 

Model geometry 

One-span model of a plate 5.12 m long stiffened plate with 23 tee-stiffeners has been used. 

Span between stiffeners is 910mm. Plates thickness is 17.5 mm. Web’s height and thickness 

is 400mm and 13mm respectively and flange has a width of 165mm and a thickness of 

18mm. 

 

FIGURE 4.47 Isolated stiffened plate with 24 stiffeners model 

 

Stiffened plate geometry  

s (mm) 910 

L (mm) 5120 

tp (mm) 17,5 

hw (mm) 400 

tw (mm) 13 

bf (mm) 130 

tf (mm) 18 
TABLE 4.8 Stiffened plate geometry 

Mesh 

Size of model allows much denser mesh than previous analysis to be used. However, it is 
proposed that the same mesh as previous models should be used, shell elements S4R of 250 
mm length. Using the same elements in simulations, makes sure that any differences on the 
results of the analysis are products of the assumptions made to simplify models, since mesh 
used on simulations leads to equally accurate estimations of stresses and displacements 
 
Material Properties 

Material used is AH32. AH32 steel is a structural high tensile strength marine steel mainly 

used for making the hull of ship building and ship repairing, offshore oil drilling platforms, 

the platform pipe joints and other components. It is an isotropic material that has Young’s 

modulus/modulus of elasticity (E) of 206 GPa, Poisson’s ratio (ν) of 0.3 and Yield strength 

(σy) of 315 MPa. 
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AH32 steel 

Young’s modulus E (GPa) 206 

Poisson’s ratio v 0.3 

Yield strength σy (MPa) 315 
TABLE 4.9 Material properties of stiffened plate 

 

 

4.3.2 Boundary Conditions  

 

The successful approach of real conditions encountered on ship’s deck’s structures depends 

on the accurate simulation of the model’s boundaries. Boundary conditions shall be such 

that the structural element can be checked for its buckling capacity as Hull sags and deck 

compresses. 

Taking into account conclusions from previous analysis, two different sets of boundary 

conditions were introduced corresponding to the model edges. 

One transverse edge should be free to move in longitudinal direction imposing to 

compressive loads. Thence an equation has been set between plate’s and stiffeners’ edge 

nodes and a Reference point. Keeping the relative displacement between Reference point 

and edge nodes constant any load acting on the reference point is forcing edge nodes to 

move as rigid body in axial direction. Both the plate and the stiffeners shall not translate in 

any plane, also vertical displacement should be suppressed. As on previous models, 

regarding transverse movement of edge nodes, two cases shall be examined one considering 

free movement and one considering nodes don’t move in transverse direction. 

On the opposite transverse side, model shall comply with the same boundary conditions, 

with an additional restriction in longitudinal direction to resist force acting on loaded edge. 

Concerning longitudinal edges, all rotations shall be suppressed, along with vertical 

displacements. As ascertained on previous analysis, whether nodes on transverse edge 

move in transverse direction or not, has a great impact in the transverse displacement of 

nodes on longitudinal edge, hence assuming free transverse movement of nodes on 

transverse edge results common transverse displacement of nodes on longitudinal edge and 

suppressed transverse movement of nodes on transverse edge results nodes on longitudinal 

edge not to move in transverse direction. 
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x=transverse, y=vertical, z=longitudinal 

Location Translation Rotation Constraints 

 Ux Uy Uz URx URy URz  

Transverse 
Edge 1 

Free Suppressed Free Suppressed Suppressed Suppressed Equation, Uz=common. 
Relative displacement 
between RP and edge’s 
nodes is constant 

Transverse 
edge 2 

Free Suppressed Suppressed Suppressed Suppressed Suppressed  

Longitudinal 
Edges 

Free Suppressed Free Suppressed Suppressed Suppressed Equation, Ux=common 

RP Suppressed Suppressed Free Suppressed Suppressed Suppressed  
TABLE 4.10 Boundary conditions considering transverse edge nodes are free to move in transverse direction 

and longitudinal edges nodes have common transverse displacement 

 

x=transverse, y=vertical, z=longitudinal 

Location Translation Rotation Constraints 

 Ux Uy Uz URx URy URz  

Transverse 
Edge 1 

Suppressed Suppressed Free Suppressed Suppressed Suppressed Equation, Uz=common. 
Relative displacement 
between RP and edge’s 
nodes is constant 

Transverse 
edge 2 

Suppressed Suppressed Suppressed Suppressed Suppressed Suppressed  

Longitudinal 
Edges 

Suppressed Suppressed Free Suppressed Suppressed Suppressed  

RP Suppressed Suppressed Free Suppressed Suppressed Suppressed  
TABLE 4.11 Boundary conditions considering transverse edge and longitudinal edge nodes have zero transverse 

displacement 

 

4.3.3 Transverse Edge Nodes are Free to Move in Transverse Direction, 

Longitudinal Edge Nodes have Common Transverse Displacement 

4.3.3.1 Linear Analysis 

 

The model is imposed to pure uniaxial compression by subjecting force through longitudinal 

axis to the free to move RP. 

Six half waves are being formed and plate buckling seems to be dominant. Deformation of 

the plate and stiffeners is higher at the middle and is decreasing as edges of the plate are 

approached. Stiffeners seem to buckle locally at the webs. Collapse mode predicted from 

linear eigenvalue analysis is similar with collapse mode acquired from the analysis of three-

span and one-span model with equivalent boundary conditions. 

The buckling load is 203,931 MN, which is equivalent to a critical buckling stress of 367 MPa. 
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FIGURE 4.48 First symmetric/antisymmetric buckling mode that forms on Stiffened Plate 

 

 

FIGURE 4.49 First symmetric/antisymmetric buckling mode that forms on Stiffened Plate (Z-X plane) 

 

FIGURE 4.50 First symmetric/antisymmetric buckling mode that forms on Stiffened Plate (stiffeners view) 
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4.3.3.2 Nonlinear Analysis 

 

The aforementioned eigenmode would be utilized as initial geometrical imperfections of the 

model, applied with the proposed tolerance level. Since plate buckling is the dominant 

source of buckling, maximum amplitude of 4,55 mm (s/200) is applied. 

The model is imposed to pure uniaxial compression by subjecting displacement in 

longitudinal axis to the free to move RP. 

 

FIGURE 4.51 RP movement 

As on previous simulations, dynamic implicit solver of quasi static type used. RP moves with 

a velocity of 1 mm/s. During the analysis Kinetic Energy remains under 5% of Internal Energy 

of the model, so could be regarded negligible and the consideration of quasi static loads is 

true.  

For this analysis Hourglass Energy values remain under 5% of Internal Energy of model.  

 

FIGURE 4.52 Internal, Kinetic and Hourglass Energy comparison  
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Results from eigenvalue analysis conclude that plate is not expected to collapse before 

material yielding. However, maximum stress of 269 MPa is reached for a strain of 0,00149. 

The stiffened plate is expected to not achieve its theoretical buckling strength predicted 

from linear analysis, due to nonlinearities and inserted imperfections.  Stress-Strain curve of 

the stiffened plate is almost identical with the equivalent curve acquired from the one-span 

hull model analysis. Compared with the Stress-strain curve of stiffened plate acquired from 

three-span model analysis, maximum Stress value is slightly lower and is reached for lower 

strain. 

 

FIGURE 4.53 Stress-strain curve for stiffened plate  

 

 

Stiffened plate collapses under the collapse mode predicted from linear analysis. Maximum 

displacements when instability occurs shows a compilation of local plate buckling with six 

half waves and local stiffener web buckling with a slight torsion of the stiffeners locally. 

Stiffeners’ deformation seems to maximize close to the longitudinal edge, while plating 

seems to have greater displacement near the middle. The same collapse mode is observed 

for the stiffened plate on the equivalent one-span hull model analysis. When buckling occurs 

almost the whole structure yields. (FIGURE 4.54) 
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FIGURE 4.54 Von Misses stresses (left), transverse displacement (top right), vertical displacement (bottom 
right) when buckling occurs 

Conditions on the boundaries of the plate are similar to those of three-span and one-span 

Hull model analysis. As plate shortens, the node on the middle of the Transverse edge 

remains motionless. Nodes lying on the left and right of the motionless middle point, move 

away from it antisymmetrically. Each node’s Transverse Displacement-Strain curve 

separately, reaches its peak with almost linear trend. For each curve separately, when 

buckling occurs peak is reached. Post buckling all nodes’ displacement reduces. The further 

away from the motionless middle node a node is, the greater its displacement is.  

 

 

FIGURE 4.55 Transverse displacement-Strain curve of nodes on transverse edge of stiffened plate (left), 
transverse displacement of nodes on transverse edge on stiffened plate’s buckling step (right) 

 

Boundary conditions used, force nodes on longitudinal edge of the stiffened plate to have 

common displacement through transverse direction. Post buckling all nodes displacement 

reduces. Transverse displacement values of nodes when construction reaches maximum 

load capacity are very close to those acquired from the one-span hull analysis.  
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FIGURE 4.56 Transverse displacement-Strain curve of nodes on longitudinal edge of stiffened plate (left), 
transverse displacement of nodes on longitudinal edge on stiffened plate’s buckling step (right) 
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4.3.4 Transverse Edge and Longitudinal Edge Nodes have zero Transverse 

Displacement  

4.3.4.1 Linear Analysis 

 

The model is imposed to pure uniaxial compression by subjecting force through longitudinal 

axis to the free to move RP. 

Plate between stiffeners buckles overall. Deformation of stiffeners and plate is equivalent 

significant, but stiffeners deformation is slightly higher. Critical part is considered in the 

middle where deformation of both stiffeners and plate are higher. Collapse mode predicted 

from linear eigenvalue analysis is similar with collapse mode acquired from the analysis of 

one-span model with equivalent boundary conditions, but doesn’t match with collapse 

mode predicted from three-span hull model analysis. 

The buckling load is 135,113 MN, which is equivalent to a critical buckling stress of 243 MPa 

 

 

FIGURE 4.57 First symmetric/antisymmetric buckling mode that forms on stiffened plate 
 

 

FIGURE 4.58 First symmetric/antisymmetric buckling mode that forms on stiffened plate (Stiffeners view) 
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4.3.4.2 Nonlinear Analysis 

 

The model is imposed to pure uniaxial compression by subjecting displacement through 

longitudinal axis to the free to move RP. 

The aforementioned eigenmode would be utilized as initial geometrical imperfections of the 

model, applied with the proposed tolerance level. Since stiffeners deformation amplitude is 

slightly higher than this of plate, maximum amplitude of 5,12 mm (L/1000) is applied. 

 

FIGURE 4.59 RP movement 

As on previous simulations, dynamic implicit solver of quasi static type used. RP moves with 

a velocity of 1 mm/s. During the analysis Kinetic Energy remains under 5% of Internal Energy 

of the model, so could be regarded negligible and the consideration of quasi static loads is 

true.  

For this analysis Hourglass Energy values remain under 5% of Internal Energy of model. 

 

FIGURE 4.60 Internal, kinetic and hourglass energy comparison 
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Results from eigenvalue analysis conclude that Stiffened Plate expected to collapse under 

243 MPa compressive axial stress. However, maximum axial stress of 285 MPa is reached for 

a strain of 0,00143 before construction collapses. This behavior is unexpected, since 

nonlinearities and inserted imperfections are expected to decrease construction’s buckling 

capacity. Stress-Strain curve of the stiffened plate is almost identical with the equivalent 

curve acquired from the one-span Hull model analysis. Compared with the Stress-strain 

curve of stiffened plate acquired from three span Hull model analysis, maximum Stress value 

is slightly higher and is reached for lower strain and with a completely different collapse 

mode. 

 

FIGURE 4.61 Stress-strain curve for stiffened plate 

 

When structure loses stability almost the whole of the construction yields. Maximum 

displacements when instability occurs shows that stiffeners collapse under tripping. 

Stiffeners’ deformation seems to maximize in the middle of each stiffener and gets more 

significant approaching the middle of the construction. Buckling mode of plating between 

stiffeners differs from this predicted from linear eigenvalue analysis. According to linear 

analysis plating is expected to buckle overall, however it seems to buckle forming five 

halfwaves. It must be noted that for the equivalent one-span hull model, stiffened plate 

collapses under the same mode. 
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FIGURE 4.62 Von Misses stresses (left), transverse displacement (top right), vertical displacement (bottom 
right) when buckling occurs 

 

 

Conditions on the boundaries of the plate do not have similarities compared to those of 

three-span hull model analysis but are identical with those from one-span hull model with 

equivelent boundary conditions. As plate shortens, the nodes on of the transverse and 

longitudinal edges remain motionless pre-buckling and post-buckling, as expected due to 

boundary conditions. 

 

 

 

FIGURE 4.63 Transverse displacement-Strain curve of nodes on Transverse edge of stiffened late (left), 
transverse displacement of nodes on transverse edge on stiffened plate’s buckling step (right) 
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FIGURE 4.64 Transverse displacement-Strain curve of nodes on longitudinal edge of stiffened plate (left), 
transverse displacement of nodes on longitudinal edge of stiffened plate on buckling step (right) 
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5 One-span Stiffened Plate with 6 Stiffeners Model 
 

Analysis results from chapter 4 lead to useful conclusions about the conditions a stiffened 

plate encounters as structural element of a ship’s deck, as hull is sagging. Boundary 

conditions obtained from previous procedure could be used to simulate the behavior of any 

stiffened plate on deck of a ship. Typically, stiffened plates consisting of 5 to 10 stiffeners are 

often used in marine structures. Hence, a stiffened plate within this range regarding number 

of stiffeners will be studied. 

This chapter aims to accurately investigate the behavior (collapse mode, ultimate strength) 

of a stiffened plate with 6 stiffeners and its elements under compressive loads. 

Displacement of nodes in the boundaries of stiffened plate’s elements will be monitored, to 

obtain the appropriate boundary conditions that represent realistically the behavior of an 

isolated stiffened plate’s element.  

 

 

 

FIGURE 5.1 Stiffened plate with 6 stiffeners model 
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5.1 Model mesh, Geometry and Material Properties 
 

Model Geometry 

One-span model of a 5.12 m long stiffened plate with 6 tee-stiffeners has been used. Span 

between stiffeners is 910mm. Plates thickness is 17.5 mm. Web’s height and thickness is 

400mm and 13mm respectively and flange has a width of 165mm and a thickness of 18mm. 

 

 

Stiffened plate geometry  

s (mm) 910 

L (mm) 5120 

tp (mm) 17,5 

hw (mm) 400 

tw (mm) 13 

bf (mm) 130 

tf (mm) 18 
TABLE 5.1 Stiffened Plate geometry 

 

Mesh 

The use of S4R type elements of 50 mm it is proposed. The discretization of model with 
elements of this size leads to highly accurate estimations of stresses and displacements with 
sufficient processing time. A converge study has been made as shown in FIGURE 5.2 for both 
of the sets of boundary conditions used. Using denser mesh than the proposed of 50m 
elements increases greatly the computational cost while the increase in accuracy is 
insignificant.  

 
FIGURE 5.2 Mesh convergence study, transverse edge nodes are free to move in transverse direction and 

longitudinal edges nodes have common transverse displacement (left) transverse edge and longitudinal edge 
nodes have zero transverse displacement (right) 
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Material properties 

Material used is AH32. AH32 steel is a structural high tensile strength marine steel mainly 

used for making the hull of ship building and ship repairing, offshore oil drilling platforms, 

the platform pipe joints and other components. It is an isotropic material that has Young’s 

modulus/modulus of elasticity (E) of 206 GPa, Poisson’s ratio (ν) of 0.3 and Yield strength 

(σy) of 315 MPa. 

 

AH32 steel 

Young’s modulus E (GPa) 206 

Poisson’s ratio v 0.3 

Yield strength σy (MPa) 315 
TABLE 5.2 Material properties of stiffened plate 

 

 

5.2 Boundary Conditions 
 

Boundary conditions described in chapter 4.3.2 approach realistically the conditions 

encountered by a stiffened plate as structural element of a ship’s deck.  

One transverse edge should be free to move in longitudinal direction imposing to 

compressive axial loads. Thence an equation has been set between plate’s and stiffeners’ 

edge nodes and a Reference point. Keeping the relative displacement between Reference 

point and edge nodes constant any load acting on the reference point is forcing edge nodes 

to move as rigid body in axial direction. Both the plate and the stiffeners shall not translate 

in any plane, also vertical displacement should be suppressed. As on previous models, 

regarding transverse movement of transverse edge nodes, two cases shall be examined one 

considering free movement and one considering nodes don’t move in transverse direction. 

On the opposite transverse side, model shall comply with the same boundary conditions, 

with an additional restriction in longitudinal direction to resist force acting on loaded edge. 

Concerning longitudinal edges, all rotations shall be suppressed, along with vertical 

displacements. As ascertained on previous analysis, whether nodes on transverse edge 

move in transverse direction or not, has a great impact in the transverse displacement of 

nodes on longitudinal edge, hence assuming free transverse movement of nodes on 

transverse edge results common transverse displacement of nodes on longitudinal edge and 

suppressed transverse movement of nodes on transverse edge results nodes on longitudinal 

edge not to move in transverse direction. 
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x=transverse, y=vertical, z=longitudinal 

Location Translation Rotation Constraints 

 Ux Uy Uz URx URy URz  

Transverse 
Edge 1 

Free Suppressed Free Suppressed Suppressed Suppressed Equation, Uz=common. 
Relative displacement 
between RP and edge’s 
nodes is constant 

Transverse 
edge 2 

Free Suppressed Suppressed Suppressed Suppressed Suppressed  

Longitudinal 
Edges 

Free Suppressed Free Suppressed Suppressed Suppressed Equation, Ux=common 

RP Suppressed Suppressed Free Suppressed Suppressed Suppressed  
TABLE 5.3 Boundary conditions considering transverse edge nodes are free to move in transverse direction and 

longitudinal edges nodes have common transverse displacement 

 

 

 

x=transverse, y=vertical, z=longitudinal 

Location Translation Rotation Constraints 

 Ux Uy Uz URx URy URz  

Transverse 
Edge 1 

Suppressed Suppressed Free Suppressed Suppressed Suppressed Equation, Uz=common. 
Relative displacement 
between RP and edge’s 
nodes is constant 

Transverse 
edge 2 

Suppressed Suppressed Suppressed Suppressed Suppressed Suppressed  

Longitudinal 
Edges 

Suppressed Suppressed Free Suppressed Suppressed Suppressed  

RP Suppressed Suppressed Free Suppressed Suppressed Suppressed  
TABLE 5.4 Boundary conditions considering transverse edge and longitudinal edge nodes have zero transverse 

displacement 
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5.3 Transverse Edge Nodes are Free to move in Transverse 

Direction, Longitudinal Edge Nodes have Common Transverse 

Displacement 

5.3.1 Linear Analysis 

The model is imposed to pure uniaxial compression by subjecting force in longitudinal 

direction to the free to move RP. 

Six half waves are being formed and plate buckling seems to be dominant. Deformation of 

the plate and stiffeners is higher at the middle and is decreasing as edges of the plate are 

approached. Stiffeners seem to buckle locally at the web. 

The buckling load is 51,12750 MN, which is equivalent to a critical buckling stress of 326 MPa 

 

FIGURE 5.3 First buckling mode 

 

5.3.2 Nonlinear Analysis 

 

The aforementioned eigenmode would be utilized as initial geometrical imperfections of the 

model, applied with the proposed tolerance level. Since plate buckling is the dominant 

source of buckling, maximum amplitude of 4,55 mm (s/200) is applied. 

The model is subjected to pure uniaxial compression by subjecting displacement in 

longitudinal axis to the free to move RP. Simulation run using Rik’s Method. 

As shown in FIGURE 5.4 hourglass energy is under the proposed tolerance level of 5% of 

internal energy. 
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FIGURE 5.4 Internal and hourglass energy comparison  

Linear Eigenvalue buckling analysis estimates a buckling load of 51,2750 MN, which is 

equivalent to a critical buckling stress of 326 MPa. Material yielding occurs at 315 MPa. 

Structure loses its stability after reaching peak value of 270 MPa for 0,00144 shortening 

strain. Curve reaches peak value on linear trend and drops quickly afterwards. It’s 

reasonable that due to inserted initial imperfections value of maximum stress before 

instability occurs drops compared to this predicted from linear analysis. 

 

FIGURE 5.5 Stress-strain curve for stiffened plate 
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When structure loses stability almost the whole of the construction yields. Maximum 

displacements when instability occurs shows a compilation of local plate buckling with six 

half waves as linear eigenvalue analysis predicts and local stiffener web buckling with a slight 

torsion of the stiffeners locally.  

 

 

 

FIGURE 5.6 Von Misses stress (right), transverse displacement (top left), vertical displacement (bottom left) 
when buckling occurs. 

 

It is observed that stiffened plate’s elements behave similarly under the applied load. All 

curves in FIGURE 5.7 reach peak value for the same shortening strain, the same strain 

construction loses stability for. However not all element’s ultimate buckling strength is the 

same. Elements closer to the center of the construction are more vulnerable and collapse 

after reaching a load value of 261 MPa. Elements closer to the longitudinal edges collapse 

under 277 MPa load. 
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FIGURE 5.7 Stress-strain curve for each element of stiffened plate (left) and maximum stress of each 
element(right) 

 

Taking advantage of symmetry, investigating first three, from right to left, stiffener’s nodes 

displacements, accurate conclusions about the shape construction collapses under can be 

made. For each stiffener three paths investigated. Path 1 contains nodes on the intersection 

between web and flange, Path 2 contains nodes on the intersection between web and plate 

and Path 3 contains nodes on the long axis of the web. 

 

FIGURE 5.8 Paths on stiffeners 

 

Deflection follows the same pattern in all stiffeners (FIGURE 5.9). Vertical displacement of 

nodes on Path 1 is greater than this of nodes on Path 2 in all three stiffeners. Deflection of 

nodes on Path 3 is greater than this of nodes on Path 1. Peaks and troughs of Displacement-

Distance along Path curves are reached for almost the same distance for Path 1 and Path 3. 

Considering those it can be conclude that when construction collapses stiffeners webs 
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buckle locally but at the same time contributes to the local torsion of the stiffener.  

Amplitude of deflection gets lower approaching stiffened plates longitudinal edges.  

 

FIGURE 5.9 Transverse displacement on stiffeners’ paths when structure collapses 

 

Again, taking advantage of symmetry and investigating vertical displacement of nodes on 

paths between stiffeners, conclusions about the shape of plate when structure collapses can 

be made.  

 

FIGURE 5.10 Paths on plate between stiffeners 
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When structure collapses, plate between stiffeners loses its stability and buckles locally. As 

linear eigenvalue buckling analysis estimates six halfwaves are formed. Amplitude of 

halfwaves gets higher closer to the center of the Stiffened Plate. Plate’s deformation is 

significantly higher that this of stiffeners.  

 

FIGURE 5.11 Vertical displacement on paths between stiffeners when structure collapses 

 

 

The key to approach the conditions each element of the stiffened plate encounters on its 

longitudinal edges, is the relative transverse displacement between stiffener and element’s 

longitudinal edges. Stiffener transverse displacement is measured through Path 2 of FIGURE 

5.8 and elements’ boundaries are the paths showed in FIGURE 5.10. As shown in FIGURE 

5.12 and FIGURE 5.13, each of the construction’s elements experience same pattern 

conditions on its longitudinal boundaries. Nodes of each longitudinal edge of each element 

move almost together in transverse direction, moving away from the stiffener. Post-buckling 

the distance between stiffener and longitudinal edges of each elements reduces. After the 

collapse of construction, halfwaves formed locally on the stiffener’s web, spread and their 

amplitude gets higher affecting the intersection between stiffener’s web and plating. Hence, 

it is observed that for nodes on the intersection with the same longitudinal coordinate as the 

web’s halfwaves, relative transverse displacement with longitudinal edges increases or 

decreases rapidly. 
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FIGURE 5.12 Relative transverse displacement of stiffeners and neighboring paths (each node separately) 

 

FIGURE 5.13 Relative transverse displacement of stiffeners and neighboring paths when structure collapses 
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5.4 Transverse Edge and Longitudinal Edge Nodes have Zero 

Transverse Displacement  

5.4.1 Linear Analysis 

 

The model is subjected to pure uniaxial compression by subjecting force through 

longitudinal axis to the free to move RP. 

Plate between stiffeners buckles overall. Deformation of stiffeners and plate is equivalent 

significant. Critical part is considered in the middle where deformation of both stiffeners and 

plate are higher than closer to the edge of stiffened plate 

The buckling load is 36,4867 MN, which is equivalent to a critical buckling stress of 233 MPa 

 

 

FIGURE 5.14 First buckling mode 

 

 

5.4.2 Nonlinear Analysis 

 

The aforementioned eigenmode would be utilized as initial geometrical imperfections of the 

model, applied with the proposed tolerance level. Since stiffeners deformation is slightly 

higher than this of plate, maximum amplitude of 5,12 mm (L/200) is applied. 

The model is imposed to pure uniaxial compression by subjecting displacement in 

longitudinal axis to the free to move RP. Simulation run using Rik’s Method. 

As shown in FIGURE 5.15 hourglass energy is under the proposed tolerance level of 5% of 

internal energy. 
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FIGURE 5.15 Internal and hourglass energy comparison 

 

Linear Eigenvalue buckling analysis estimates a buckling load of 36,4867 MN, which is 

equivalent to a critical buckling stress of 233 MPa. Material yielding occurs at 315 MPa. 

Structure loses its stability after reaching peak value of 282 MPa for 0,00139 shortening 

strain. It must be noted that maximum load before structure collapses is higher than this 

estimated from linear buckling analysis. Considering that inserting initial imperfections 

should lead to reduced strength of the construction, this behavior must be explained. 

 

FIGURE 5.16 Stress-strain curve for Stiffened Plate 
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When structure loses stability almost the whole of the construction yields. Maximum 

displacements when instability occurs shows a compilation of stiffener tripping with a slight 

local buckling of the webs near the longitudinal ends of the stiffeners. Stiffeners’ 

deformation seems to maximize in the middle of each stiffener and gets more significant 

approaching the middle of the construction. Buckling mode of plating between stiffeners 

differs from this predicted from linear eigenvalue analysis. According to linear analysis 

plating is expected to buckle overall, however it seems to buckle forming five halfwaves. 

 

 

 

 

FIGURE 5.17 Von Misses stress (right), transverse displacement (top left), vertical displacement (bottom left) 
when buckling occurs. 

 

 

Stiffened Plate’s elements behave similarly under the applied load. All curves reach peak 

value for the same shortening strain, the same strain construction loses stability for. 

However not all element’s ultimate buckling strength is the same. Elements closer to the 

center of the construction are more vulnerable and collapse after reaching a load value of 

276 MPa. Elements closer to the longitudinal edges collapse under 289 MPa load. 
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FIGURE 5.18 Stress-strain curve for each element of stiffened plate (left) and maximum stress of each 
element(right) 

 

Taking advantage of symmetry, investigating first three, from right to left, stiffener’s nodes 

displacements, accurate conclusions about the shape construction collapses under can be 

made. For each stiffener three paths investigated. Path 1 which contains nodes on the 

intersection between web and flange, Path 2 wick contains nodes on the intersection 

between web and plate and Path 3, which contains nodes on the long axis of the web. 

 

 

FIGURE 5.19 Paths on stiffeners 

Deflection follows the same pattern in all stiffeners. Close to the ends of the stiffeners, 

transverse displacement of nodes on Path 3 is higher than this of nodes on Path 1 and path 

2, there stiffener’s web buckles locally which also contributes to local torsion of the 

stiffener. Approaching middle of stiffener translation of nodes on Path 1 is higher than this 

of nodes on Path 2 and Path 3, so it can be concluded that in this position stiffener is 



 
84 

 

governed by tripping. It must be noted that this is not the expected collapse mode of 

stiffeners according to linear buckling eigenmode analysis. 

 

FIGURE 5.20 Transverse displacement on stiffeners’ paths when structure collapses 

 

Again, taking advantage of symmetry and investigating vertical displacement of nodes on 

paths between stiffeners, conclusions about the shape of plate when structure collapses can 

be made.  

 

 

FIGURE 5.21 Vertical displacement on paths between stiffeners when structure collapses 
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According to linear buckling eigenmode analysis, when structure reaches its maximum 

buckling capacity plate between stiffeners is expected to buckle overall. However, this is not 

the actual response of the plate. Plate collapses forming five halfwaves. For each plate 

separately, deformation is higher close to the longitudinal ends. 

Collapse mode of both the plate and the stiffeners differs from this predicted from linear 

buckling eigenmode analysis. This different mode shape seems that can carry further load 

than this predicted from linear analysis 

 

FIGURE 5.22 Vertical displacement on paths between stiffeners when structure collapses 

As a plate is axially compressed tends to deform transversely too. However, boundary 

conditions force nodes on the longitudinal edges of the stiffened plate to not move in 

transverse direction. Hence, a force is acting on the nodes of longitudinal edge nodes 

preventing them from translating transversely (FIGURE 5.23). A loading condition equivalent 

to biaxial compression is generated. Ratio of load acting on transverse and longitudinal 

edges is not constant as plate shortens longitudinally (FIGURE 5.24). Different ratio of loads 

acting on edges, leads to different collapse modes. As shown in FIGURE 5.25, a stiffened 

plate subjected to biaxial load with σz/σx=6 is expected to collapse under a collapse mode of 

overall plate buckling for the plate between stiffeners and stiffener tripping. For a load ratio 

σz/σx=8,5 the collapse mode is expected to be local plate buckling and local web buckling. As 

the stiffened plate studied in this chapter shortens, experiences different load ratios, 

therefore a collapse mode affected by all different load ratios is formed. This could explain 

that nonlinear predicts higher buckling capacity and different collapse mode than this 

expected from linear analysis.   
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FIGURE 5.23 Reaction force on longitudinal edge of the stiffened plate 

 

FIGURE 5.24 Stresses acting on stiffened plate’s edges(left) and ratio of stresses(right) 

 

 

FIGURE 5.25 First eigenmode for biaxial compression σz/σx=6 (top left), σz/σx=6,5 (top right), σz/σx=7,5 (bottom 
left), σz/σx=8,5 (bottom right), 
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Transverse displacement of Path 2 in FIGURE 5.19 defines transverse displacement of 

stiffener. Paths in FIGURE 5.21 coincide with the stiffened plate’s elements longitudinal 

edges. Relative transverse displacement of an element’s stiffener and elements longitudinal 

edges, defines the transverse displacement the longitudinal edges of an isolated stiffened 

plate’s element experience. As shown in FIGURE 5.26, 5.27 each of the construction’s 

elements experience equivalent conditions on its longitudinal boundaries. Nodes of each 

longitudinal edge of each element barely move in transverse direction. Since displacement 

values are quite low could be considered insignificant. When structure collapses stiffeners 

are tripping in the middle and web buckles locally near the ends of the stiffeners. Post-

buckling halfwaves formed on the stiffener’s webs spread, affecting the intersection 

between web and plating. As a result, post-buckling, relative transverse displacement of 

nodes near the aforementioned halfwaves and nodes on the element’s longitudinal 

boundaries increases or decreases rapidly. 

 

 

 

FIGURE 5.26 Relative transverse displacement stiffeners and neighboring paths (each node separately) 
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FIGURE 5.27 Relative transverse displacement of stiffeners and neighboring paths when structure collapses 
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6 Isolated Stiffened Plate’s Element Model  
  

This chapter aims to investigate the behavior (collapse mode, ultimate strength) of an 

isolated stiffened plate’s element under compressive loads. Observing how the isolated 

element responds under compressive loads and comparing its behavior with this of a 

stiffened plate, it could be evaluated whether a plate could be studied analyzing just one of 

its elements (stiffener and attached plating). Realistic boundary conditions approached using 

conclusions extracted from chapter 5. For the study, models with both shell and cubic 

elements used. Hence, it is possible to compare the performance of shell and cubic elements 

. 

6.1 Model Geometry, Mesh, and Material Properties 
 

Model geometry 

Two identical models of a stiffened plate’s elements created, one considering element’s 

components (flange, web, effective width of plate) are homogeneous shells and one 

considering them homogeneous solids. 

 

FIGURE 6.1 Shell model (left) and solid model(right) 

 

Element geometry 

s (mm) 910 

L (mm) 5120 

tp (mm) 17,5 

hw (mm) 400 

tw (mm) 13 

bf (mm) 130 

tf (mm) 18 
TABLE 6.1 Element geometry 
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Mesh 

Homogenous shell model was discretized by S4R type elements of 50 mm size. 

Homogeneous solid model was discretized by C3D8R type elements of 20 mm length, 20 mm 

width and 4 mm height. On the intersection between web and flange/plate elements of 20 

mm length, 4 mm width and 4 mm height used. Finally, on web elements of 20 mm length, 4 

mm width and 20 mm height used. 

For the shell elements a mesh convergence study occurred, as shown in FIGURE 6.3. On the 

other hand, size of solid elements procced from limitations due to computational cost and 

needs for an accurate analysis. The number of elements should be the lowest possible and at 

the same time shells composing the element should discretized using at least 4 to 5 finite 

elements across the thickness. Additionally, the ratio of smallest to largest element’s 

dimension should keep low. Considering all of the above the aforementioned proposed size 

for the mesh used. 

 

FIGURE 6.2 Discretized solid model using cubic elements 

 

 

FIGURE 6.3 Mesh convergence study, transverse edge nodes are free to move in transverse direction and 
longitudinal edges nodes have common transverse displacement (left) transverse edge and longitudinal edge 

nodes have zero transverse displacement (right) 
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Material properties 

Material used is AH32. AH32 steel is a structural high tensile strength marine steel mainly 

used for making the hull of ship building and ship repairing, offshore oil drilling platforms, 

the platform pipe joints and other components. It is an isotropic material that has Young’s 

modulus/modulus of elasticity (E) of 206 GPa, Poisson’s ratio (ν) of 0.3 and Yield strength 

(σy) of 315 MPa. 

 

AH32 steel 

Young’s modulus E (GPa) 206 

Poisson’s ratio v 0.3 

Yield strength σy (MPa) 315 
TABLE 6.2 Material properties of stiffened plate’s element 

 

 

6.2 Boundary Conditions 
 

One transverse edge should be free to move in longitudinal direction imposing to 

compressive axial stress. Thence an equation has been set between plate’s and stiffeners’ 

edge nodes and a reference point. Keeping the relative displacement between reference 

point and edge nodes constant any load acting on the reference point is forcing edge nodes 

to move as rigid body in axial direction. Both the plate and the stiffeners shall not translate 

in any plane, also vertical displacement should be suppressed. As on previous models, 

regarding transverse movement of edge nodes, two cases shall be examined one considering 

free movement and one considering nodes don’t move in transverse direction. 

On the opposite transverse side, model shall comply with the same boundary conditions, 

with an additional restriction in longitudinal direction to resist force acting on loaded edge. 

Concerning longitudinal edges, rotations around vertical and longitudinal axis shall be 

suppressed. As concluded on previous analysis (Chapter 5), assuming free transverse 

movement of nodes on transverse edge results in common transverse displacement of 

nodes on longitudinal edge and suppressed transverse movement of nodes on transverse 

edge results nodes on longitudinal edge not to move in transverse direction. 
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x=transverse, y=vertical, z=longitudinal 

Location Translation Rotation Constraints 

 Ux Uy Uz URx URy URz  

Transverse 
Edge 1 

Free Suppressed Free Suppressed Suppressed Suppressed Equation, Uz=common. 
Relative displacement 
between RP and edge’s 
nodes is constant 

Transverse 
edge 2 

Free Suppressed Suppressed Suppressed Suppressed Suppressed  

Longitudinal 
Edges 

Free Free Free Free Suppressed Suppressed Equation, Ux=common 

RP Suppressed Suppressed Free Suppressed Suppressed Suppressed  
 

TABLE 6.3 Boundary conditions considering transverse edge nodes are free to move in transverse direction and 
longitudinal edges nodes have common transverse displacement 

 

 

x=transverse, y=vertical, z=longitudinal 

Location Translation Rotation Constraints 

 Ux Uy Uz URx URy URz  

Transverse 
Edge 1 

Suppressed Suppressed Free Suppressed Suppressed Suppressed Equation, Uz=common. 
Relative displacement 
between RP and edge’s 
nodes is constant 

Transverse 
edge 2 

Suppressed Suppressed Suppressed Suppressed Suppressed Suppressed  

Longitudinal 
Edges 

Suppressed Free Free Free Suppressed Suppressed  

RP Suppressed Suppressed Free Suppressed Suppressed Suppressed  
 

TABLE 6.4 Boundary conditions considering transverse edge and longitudinal edge nodes have zero transverse 
displacement 
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6.3 Transverse Edge Nodes are Free to move in Transverse 

Direction, Longitudinal Edge Nodes have Common Transverse 

Displacement 

6.3.1 Linear Analysis 

Both shell elements and cubic elements models are imposed to pure uniaxial compression 

by subjecting force in longitudinal direction to the free to move RP. 

For both shell and cubic element models six half waves are being formed and plate buckling 

seems to be dominant. Deformation of the plate and stiffeners is higher at the middle and is 

decreasing as edges of the plate are approached. Stiffeners seem to buckle locally at the 

web. 

The buckling load is 7,49975 MN, which is equivalent to a critical buckling stress of 320 MPa 

for shell model and 7,53567 MN or 321 MPa for solid model. 

 

 

FIGURE 6.4 First buckling mode for shell (left) and solid (right) model 

 

6.3.2 Nonlinear Analysis 

 

Each of the aforementioned eigenmodes would be utilized as initial geometrical 

imperfections to the counterpart model, applied with the proposed tolerance level. Since 

plate buckling is the dominant source of buckling, maximum amplitude of 4,55 mm (s/200) is 

applied. 

Each model is imposed to pure uniaxial compression by subjecting displacement in 

longitudinal axis to the free to move RP. Simulation run using Rik’s Method. 

As shown in FIGURE 6.5 and FIGURE 6.6 Hourglass Energy is under 5% of Internal Energy for 

shell elements model. When it comes to solid elements model, Hourglass Energy remains 

under 5% of Internal Energy for Longitudinal Shortening Strain of the stiffened plate’s 

element of 0,005 and for strain up to 0,012 Hourglass Energy values range between 5% and 
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10% of Internal Energy. In solid elements model Hourglass Energy is higher than this of shell 

elements model, which is expected to result a stiffer behavior for solid element model.  

 

FIGURE 6.5 Internal and hourglass energy comparison for shell elements model 

 

 

 

FIGURE 6.6 Internal and hourglass energy comparison for solid elements model  



 
95 

 

 

Linear Eigenvalue buckling analysis of shell elements model estimates a buckling load of 

7,49975 MN, which is equivalent to a critical buckling stress of 320 MPa. The estimation for 

cubic elements model is 7,53567 MN or 321 MPa. As shown in FIGURE 6.7 The theoretical 

buckling load is not achieved neither for shell elements model nor for solid elements model. 

This behavior is expected, considering nonlinearities and assigned imperfections. 

For both models is predicted that the stiffened plate element collapses under almost the 

same load and strain. For shell elements analysis, maximum compressive stress is equal to 

258 MPa for a shortening strain of 0,00144 and for cubic elements analysis 260 MPa and 

0,00147 respectively. Post buckling cubic element model is stiffer. According to Common 

Structural Rules (CSR) maximum compressive stress the element can carry is 258 MPa for a 

shortening strain of 0,00153, however collapse mode predicted from CSR is not equivalent 

with this acquired from FEM analysis, since CSR predicts that stiffeners buckle due to 

torsion. 

 

 

FIGURE 6.7 Stress-strain curves of single element 

 

Both on the model of shell and solid elements, almost the whole of the element yields when 

instability occurs (FIGURE 6.8). Von Mises stresses are distributed antisymmertically on the 

plates to the left and right of the stiffener.  
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FIGURE 6.8 Von Misses Stress distribution for shell model (left), solid model (right) when element collapses 

 

 

Maximum displacements when element collapses match with those acquired from the 

stiffened plate having equivalent boundary conditions. The element collapses under a 

compilation of local plate buckling with six half waves as linear eigenvalue analysis predicts 

and local stiffener web buckling and a slight torsion of the stiffeners locally. (FIGURE 6.9, 

6.10) 

 

 

 

FIGURE 6.9 Transverse displacement for shell model (left), solid model (right) when element collapses 
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FIGURE 6.10 Vertical displacement for shell model (left), solid model (right) when element collapses 

 

Results acquired from analysis of a single element of a stiffened plate seem to be a good 

estimation of a stiffened plate’s buckling capacity. Buckling capacity of an element is 

258/260 MPa for shell/cubic elements and this of a stiffened plate with 6 stiffeners is 270 

MPa. Shortening strain before collapse of the element is 0,00144/0,00147 for shell/cubic 

finite elements and 0,00144 for stiffened plate using shell elements.  

 

 

FIGURE 6.11 Single element and stiffened plate with 6 Stiffeners comparison 
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6.4 Transverse Edge and Longitudinal Edge Nodes have Zero 

Transverse Displacement  

6.4.1 Linear Analysis 

 

Both shell elements and cubic elements models are imposed to pure uniaxial compression 

by subjecting force in longitudinal direction to the free to move reference point. 

Plate between stiffeners buckles overall. Deformation of stiffeners and plate is equivalent 

significant. Critical part is considered in the middle where deformation of both stiffeners and 

plate are higher than closer to the edge of stiffened plate 

The buckling load is 5,08857 MN, which is equivalent to a critical buckling stress of 217 MPa 

for shell model and 5,01422 MN or 214 MPa for solid model. 

 

 

FIGURE 6.12 First buckling mode for shell (left) and solid (right) model 

 

6.4.1.1 Nonlinear Analysis 

 

The aforementioned eigenmode would be utilized as initial geometrical imperfections of the 

models, applied with the proposed tolerance level. Since stiffeners deformation is slightly 

higher than this of plate, maximum amplitude of 5,12 mm (L/200) is applied. 

Models are imposed to pure uniaxial compression by subjecting displacement in longitudinal 

axis to the free to move RP. Simulation run using Rik’s Method. 

Hourglass Energy compared with Internal Energy of the model is shown in FIGURE 6.13 and 

FIGURE 6.14 for shell elements model and cubic elements model respectively. For shell 

elements model Hourglass Energy values are below 5% of Internal Energy as the element is 

shortening. Hourglass Energy values in cubic elements model are below 5% of Internal 

Energy for shortening strain up to 0,004 and range between 5% and 10% for strain up to 
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0,011. Cubic elements model is expected to behave more stiff compared to shell elements 

model due to higher Hourglass Energy 

 

FIGURE 6.13 Internal and hourglass energy comparison for shell elements model 

 

 

FIGURE 6.14 Internal and hourglass energy comparison for solid elements model 
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Linear Eigenvalue buckling analysis estimates a buckling load of 217 MPa for shell elements 

model and 214 MPa for cubic elements model. In FIGURE 6.15 it is observed that structure 

loses its stability after reaching peak value of 276 MPa for 0,00138 shortening strain and 279 

MPa for a shortening strain of 0,00143 for shell and solid element models respectively. It 

must be noted that maximum load before structure collapses is higher than this estimated 

from linear buckling analysis on both cases (explained in Chapter 5.4.2). According to 

Common Structural Rules (CSR) maximum compressive stress the element can carry is 258 

MPa for a shortening strain of 0,00153. Collapse mode predicted from CSR is similar with 

this acquired from FEM analysis, since CSR predicts that stiffeners lose stability under 

torsional buckling. 

 

FIGURE 6.15 Stress-strain curves of single element 

 

Both on the model of shell and solid elements, almost the whole of the element yields when 

instability occurs (FIGURE 6.16). Collapse mode of the whole element has no symmetry or 

antisymmetry in transverse direction, thus there is no symmetry or antisymmetry in the way 

von Mises stresses are distributed on the plating to the left and right of the stiffener. For 

each plate, stresses are distributed symmetrically in longitudinal direction.  
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FIGURE 6.16 Von Misses Stress distribution for shell model (left), solid model (right) when element collapses 

 

Maximum displacements when instability occurs shows a compilation of stiffener tripping 

with a slight topical buckling of the webs near the longitudinal ends of the stiffeners for both 

shell and cubic elements. Stiffeners’ deformation seems to maximize in the middle of the 

stiffener. Buckling mode of plating between stiffeners differs from this predicted from linear 

eigenvalue analysis since the plates collapse forming five halfwaves (explained in Chapter 

5.4.2). The exact same behavior and collapse mode encountered on stiffened plate with 

equivalent boundary conditions. 

 

 

FIGURE 6.17 Transverse displacement for shell model (left), solid model (right) when element collapses 
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FIGURE 6.18 Vertical displacement for shell model (left), solid model (right) when element collapses 

 

Stress-shortening strain curve of stiffened plate with 6 stiffeners is almost identical with the 

curve acquired from the analysis of a single element using shell finite elements. Thus, seems 

that estimating buckling capacity of a stiffened plate analyzing just one of its elements could 

lead to accurate results. Specifically, the stiffened plate with 6 stiffeners and equivalent 

boundary conditions reached its buckling load of 282MPa for a shortening strain of 0,0139 

and the isolated element model reached its buckling load of 276/279 MPa for a shortening 

strain of 0,0138/0,0143 (shell/solid elements) 

 

FIGURE 6.19 Single element and stiffened plate with 6 stiffeners comparison 
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7 Conclusions 
 

This work is a study of the buckling and ultimate strength of a stiffened plate on a ship’s 

deck and stiffened plate’s element (stiffener and attached plating) under compressive 

loading conditions, which results from the sagging of the hull, using Finite Element Method. 

During the procedure, a series of 11 finite element models were studied. Firstly, a three-

span model of a VLCC’s hull subjecting to sagging was analyzed and the deformation of the 

transverse frames was monitored. The results of the analysis of the three-span model shown 

that vertical deformation of the frames is negligible. However, it is not clear whether 

transverse deformation of the frames is significant. Hence, for the analysis of a one-span 

model of the same hull under sagging, two different cases studied: 1) Nodes on transverse 

cross-section of the hull are free to move in transverse direction (transverse rigidity of 

transverse frames is underestimated) 2) Displacement of nodes of transverse cross-section 

of the hull is zero (transverse rigidity of transverse frames is overestimated). The results 

shown that the assumptions for the conditions encountered on the transverse cross-section 

of the hull, affects the behavior of deck’s structural elements. Investigating the behavior of a 

stiffened plate with 24 stiffeners on the deck, was observed that transverse displacement of 

its longitudinal boundaries alters depending on the conditions on the transverse cross-

section. Considering free transverse displacement of nodes on transverse cross-section, the 

nodes on longitudinal edges of the stiffened plate have common displacement in transverse 

direction. On the other hand, restricting the transverse displacement of nodes on transverse 

cross-section, the nodes on longitudinal edges of the stiffened plate barely move in 

transverse direction, hence their translation could be assumed zero. Therefore, two 

different sets of boundary conditions emerge for the analysis of an isolated stiffened plate. 

Those two different sets of boundary conditions were applied to an isolated one-span model 

of a stiffened plate with 24 stiffeners under compression. The analysis of the one-span 

model of the isolated stiffened plate shown that the applied boundary conditions simulate 

successfully the behavior of the stiffened plate as part of the equivalent one-span hull 

model. 

Marine structures have plates with 5 to 10 stiffeners. A model of a stiffened plate with 6 

stiffeners subjecting to uniaxial compression studied. The two aforementioned sets of 

boundary conditions were applied. Collapse mode, ultimate strength, stress distribution and 

load distribution along stiffened plate’s elements were obtained for both of the cases. At the 

same time transverse displacement on the boundaries of the stiffened plate’s elements for 

both of the cases were investigated. Hence, the appropriate boundary conditions 

representing realistically the behavior of an isolated stiffened plate element were acquired.  

As shown, the conditions an isolated element encounters on its boundaries, are affected by 

the boundary conditions of the plate it belongs to. Specifically, assuming a stiffened plate 

under uniaxial compression, whose nodes on the longitudinal boundaries have common 

transverse displacement, results in common transverse displacement for the nodes on the 

longitudinal boundaries of the stiffened plate’s elements. Similarly, assuming a stiffened 

plate under uniaxial compression, whose nodes on the longitudinal boundaries have 

restricted transverse displacement, results in zero transverse displacement for the nodes on 
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the boundaries of the stiffened plate’s elements. Finally, the behavior of an isolated 

stiffened plate’s element was simulated, using shell and solid finite elements and setting the 

equivalent boundary conditions derive from the stiffened plate analysis. It is shown that 

through the analysis of an isolated stiffened plate’s element, the collapse mode and ultimate 

strength of a stiffened plate could be approached acceptably. 

 

From procedure described above the following conclusions made: 

• When simplifying a three-span model of a hull to a one-span model with no 

transverse frame included, transverse rigidity of the transverse frame is either 

underestimated either overestimated. Those assumptions on boundary conditions 

affect the collapse mode and ultimate strength of deck’s stiffened plates. For the 

stiffened plate of the VLCC studied in this work, the three-span hull model analysis 

predicted a collapse mode governed by local plate buckling and local buckling of 

stiffener’s web. The ultimate strength of the stiffened plate was estimated 280 MPa. 

Underestimating transverse rigidity of transverse frames by setting free the 

transverse translation of the cross-sectional nodes in the one-span model of the 

same hull, lead to the same collapse mode with the three-span model for the 

stiffened plate, but ultimate strength was estimated 273 MPa (2,5% lower). 

Overestimating transverse rigidity of transverse frames, by suppressing transverse 

displacement of cross-sectional nodes in the one-span hull model, lead to a collapse 

mode for the plate which is a combination of local plate buckling and stiffener 

tripping. The ultimate strength calculated 291 MPa (4% higher). Underestimating the 

transverse rigidity of the frames, the ultimate strength of the deck’s stiffened plate 

is also underestimated. Similarly, overestimating transverse rigidity of the transverse 

frames, overestimates the ultimate strength of the stiffened plate on deck. 

• Transverse edge boundary conditions seem to have great impact on the response of 

the longitudinal boundaries of a stiffened plate. For the analysis of the one-span 

model of the hull, two different sets of boundary conditions assumed for the cross-

sectional edge of the model: 1) Transverse cross-sectional nodes are free to move in 

transverse direction 2) Transverse displacement of transverse cross-sectional nodes 

is restricted. For the first set of boundary conditions, was observed that nodes on 

longitudinal edges of a stiffened plate on deck have common displacement in 

transverse direction. For the second set, was observed that nodes barely move in 

transverse direction.  

• As a stiffened plate is subjected to uniaxial compression, its element’s ultimate 

strength seems to differ. For the cases studied in this work, the ultimate strength of 

the stiffened plate’s elements could differ up to 6,1% and 4,7% depending on the 

boundary conditions. Elements closer to stiffened plate’s longitudinal edges, where 

boundary conditions are applied, was found to withstand higher loads before 

collapse. 

• On a stiffened plate, suppressing transverse displacement of nodes on transverse 

and longitudinal edges and subjecting the plate to pure uniaxial compression, results 
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in biaxial compression with the ratio of loads acting on plate’s edges changing as 

plate shortens. Different load ratios for biaxial compression lead to different 

collapse modes. Hence, for the aforementioned boundary conditions, collapse mode 

predicted from linear analysis might differ from the resulting collapse mode of 

nonlinear analysis. 

• Boundary conditions simulating the behavior of an isolated stiffened plate’s element 

seem to be dependent of the boundary conditions of the stiffened plate. The cases 

studied, reveal that for a stiffened plate whose nodes on transverse edges are free 

to move in transverse direction and nodes on longitudinal edges have common 

transverse displacement, restrictions for the transverse displacement of the 

equivalent nodes of its elements (stiffener with attached plate) are the same. 

Similarly, for a stiffened plate whose transverse translation of nodes on transverse 

and longitudinal edges is suppressed, the transverse translation of the equivalent 

nodes of its elements is zero. 

•  Shell and solid elements seem to be equally accurate estimating ultimate strength 

of an isolated stiffened plate’s element. For the cases studied, models using cubic 

elements estimates a buckling stress 0,8% and 1,1% higher, depending on the 

boundary conditions, than the models using shell elements. Post buckling cubic 

elements seem to predict stiffer behavior of construction.  

• Results acquired from the study of an isolated element of a stiffened plate, seem to 

be an acceptable estimation of a stiffened plate’s buckling capacity. Comparing 

ultimate strength between a stiffened plate with 6 stiffeners and an isolated 

element was found that stresses predicted through the analysis of an isolated 

element are 4,4%/3,7% and 2,1%/1,1% lower, for models using shell/cubic elements, 

depending on boundary conditions. The collapse mode of the stiffened plate is 

estimated accurately through the analysis of an isolated element (stiffener with 

attached plate). 
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Model 

 
 

Longitudinal 
span 

 
 

Load 

 
 

Element 
type 

 
 

Mesh 
size 

Comments on BC Nonlinear Analysis  
 

Chapter 
Transverse 

section nodes’ 
transverse 

displacement 
(Stiffened 

Plate) 

longitudinal 
edge nodes’ 
transverse 

displacement 
(Stiffened 

Plate) 

Maximum 
Stress MPa 
(Stiffened 

Plate) 

Longitudinal 
Strain 

(Stiffened 
Plate) 

Collapse mode 

 
 
 
 

VLCC’s Hull 
 

3 
(L/2+L+L/2) 

Pure 
Bending 

S4R 250  _ _ 280 0,00152 Local plate 
buckling, local 
web buckling 

4.1 

1 (L) Pure 
Bending 

S4R 250  free _ 273 0,00144 Local plate 
buckling, local 
web buckling 

4.2.3 

1 (L) Pure 
Bending 

S4R 250  suppressed _ 291 0,00142 Local plate 
buckling, 

stiffener tripping 

4.2.4 

VLCC’s 
deck’s 

stiffened 
plate with 

24 
stiffeners 

1 (L) Uniaxial 
Compression 

S4R 250  free common 269 0,00149 Local plate 
buckling, local 
web buckling 

4.3.3 

1 (L) Uniaxial 
Compression 

S4R 250  suppressed suppressed 285 0,00143 Local plate 
buckling, 

stiffener tripping 

4.3.4 

 
Stiffened 

plate with 6 
stiffeners 

 

1 (L) Uniaxial 
Compression 

S4R 50 free common 270 0,00144 Local plate 
buckling, local 
web buckling 

5.3 

1 (L) Uniaxial 
Compression 

S4R 50 suppressed suppressed 282 0,00139 Local plate 
buckling, 

stiffener tripping 

5.4 

 
 

 
Single 

element of 
stiffened 

plate 
 

1 (L) Uniaxial 
Compression 

S4R 50 free common 258 0,00144 Local plate 
buckling, local 
web buckling 

6.3 

1 (L) Uniaxial 
Compression 

S4R 50 suppressed suppressed 276 0,00138 Local plate 
buckling, 

stiffener tripping 

6.4 

1 (L) Uniaxial 
Compression 

C3D8R 20*20*4 free common 260 0,00147 Local plate 
buckling, local 
web buckling 

6.3 

1 (L) Uniaxial 
Compression 

C3D8R 20*20*4 suppressed Suppressed 279 0,00143 Local plate 
buckling, 

stiffener tripping 

6.4 

 

TABLE 7.1 Table of results acquired from the study 
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