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IHepiinyn

H evoopdtmon g eneepyasiog pUOIKNG YADGOAG GTNV OpOCT) VTOAOYIGTAOV £XEL GNUEUDGEL G0
VTIKT TPO0do Ta TEAELTOLO YPOVIa, XApT ot cvveyn eEEMEN g Pabidg unyovikng panong. 'Eva
KOIVOTOWO TPOPAN O TO 0010 GLVILALEL TN UNYAVIKT OpOoT] Kot TNV ene&epyacio pUGIKNG YADOOOS
glvat auTtd NG KUTATUNONG AVTIKEWWEVOVY 08 aKoAovBieg eucovav (Pivteo) pe Tn ypnon avoeopiKmv
EKQPAcE®V, OOV Uia TPATUCT] PUGIKNG YA®ooag kabopilel molo aviikeipevo Tpémel va kataTundel
o€ éva Pivteo. Mo and Tig HEYOADTEPEG TPOKANGELS OVTNG TNG EQAPHOYNG elvar 1 EALEWYT GLVOL®V
dedoUéEvmV Leyang KATpakag, Eottiog Tov VITEPPOAKE LEYAAOV XPOVOL KOl OVOPOTIYIG TPOCTAOELOC
7OV AeLTOVVTOL Yl T GLAAOYN Tove. EmumAéov, ta vdpyovta cOvorn ded0UEVOV DTTOPEPOVY OO
ETIKETEG KOKNG TOLOTNTOG KOOMG, COLPOVO, LLE L0l GYETIKT OVAAVGT], TEPITOV W0 OTIG OEKN OVOIPOPIKEG
EKQPACELG TOL TTEPLEYOVTUL GE QVTA ATOTLYYAVOLV VO TEPTYPUYOLV LOVOIIKA TO OVTIKEIIEVO-GTOYO.

O oKOTdG TNG TOPOVOHG LUETATTUYLOKNG EPYACIOG EIVOL VO, OVTILETORICEL OVTEG TIG TPOKANGELG
TPOTEIVOVTOG [0l KOVOTOHO HEBOSO Yl TNV TOPOY®YT GUVOETIKDY aVUPOPIKMDY EKPPACEMV Y10, L0
gwova (evog kapé Tov Pivreo). H pébodoc avtn mapdyet cuvOeTIKES OVaPOPIKEG EKPPATELS YPNCILO-
TOUDVTOG HOVO TIG ETIKETES OVAPOPAS TOV OVTIKEIEVOV P0G EIKOVOS 1| €vOg Pivieo, Kabmg kot ta
YOPOUKTNPIOTIKA TOVGS, TO OTTOL0L AV VEDOVTOL OO £VOL VTEPGVYYPOVO PaBV vELP®VIKO STKTLO EKTTALOED-
LLEVO Y10 TOV EVIOTIGHO AVTIKELEVMV KOl TOV XOPOKTNPIOTIKOV TOVG. 'Eva and to TAeoveKTAOTA TG
TPOTEWVOLEVNG LeBOSOL €lvar OTL 0 OPIGUAC TNG EMITPEMEL TNV EQAPHOYY| TNG GE OTOL0ONTOTE AALO
GUVOAO JESOUEVMV EVIOTIGUOD 1| KATATUNONG OVTIKELLEVOV.

XpNOHOTOIHVTAG TNV TPOTEWVAOLEVT] LEBOOO, ONovpyeital Kot TopoVGLELETOL TO TPMTO LEYOANG
KMUOKOG GOVOAO GUVOETIKOV dEGOUEVOV LE OVOPOPIKES EKPPAGELS Y10 KOTATINGN OVTIKEUEVOV GE
Bivteo, faociopévo og Eva VITAPYOV GHVOAO OEGOUEVOV KATATUNONG aVTIKEWWEVOVY o€ Pivteo. H mopov-
o0 epyacio TepIAaUPAvEL GTATIOTIKY AvAALGOT KABDS KOl GUYKPLOT] TOL TAPOYOLEVOL GUVOAOL GUVOE-
TIKOV SEO0UEVOV [LE VTLAPYOVTH GUVOAD SESOUEVOV KATAGKEVAGUEVA OO TOV (vVOPOTO.

Ta mepdparta mov dieEnydnoay o Tpio dSLoPoPETIKA GHVOLN SEFOUEVOV TTOL £X0VV XPNCLLOTOIN el
YlOL TV KOTATUNOT] OVTIKEHEVOV GE PIVTED LE TN (PTIOT AVOPOPIKDY EKPPAGEDV, ATOSEIKVDOVY TNV
OTTOTEAEGLOTIKOTITO TOV TOPAYOUEVOV CUVOETIKOV dEOOUEVOVY. ZVYKEKPLUEVA, TO OTOTEAEGLLOTOL
EMOEUVVOLV OTL TPO-EKTALOEVOVTAS £VOL B VELPOVIKS STKTVO LLE TO TPOTEWVOUEVO GUVOAO GUVOETL-
KOV dedopévov, givar dvvati n PeAtioon g wavoTnToS YEVIKELGNG TOL SIKTVOV GE SLOPOPETIKA
oVVoLa 0e00UEVA@V. To GUYKEKPIUEVO OTOTEALEGLA EYEL OKOLLA LLEYOADTEPT a&ial 0V OVOLOYIOTEL KOVEIC
OTL 1 emitevéN ToL d¢ cvumepAapPavel Kavéva emITAEOV KOGTOG Yo vooTueimon dedopévey amd
avOpdmovc.

A&Ee1g KAEO1A

Opaon Yroloyiotwv, Encéepyacio Ovokng 'wccag, Opaocn kot I'Adooa, Avagpopikéc Exppdcelg,
Katdtunon Avtikeipévav og Bivteo, apaywyn Zvvletikov Agdopévov






Abstract

Integrating computer vision with natural language processing has achieved significant progress
over the last years owing to the continuous evolution of deep learning. A novel vision and language
task, which is tackled in the present Master thesis is referring video object segmentation, in which a
language query defines which instance to segment from a video sequence. One of the biggest chal-
lenges for this task is the lack of relatively large annotated datasets since a tremendous amount of
time and human effort is required for annotation. Moreover, existing datasets suffer from poor qual-
ity annotations in the sense that approximately one out of ten referring expressions fails to uniquely
describe the target object, according to a relevant analysis.

The purpose of the present Master thesis is to address these challenges by proposing a novel
method for generating synthetic referring expressions for an image (video frame). This method pro-
duces synthetic referring expressions by using only the ground-truth annotations of objects as well as
their attributes, which are detected by a state-of-the-art object detection deep neural network. One
of the advantages of the proposed method is that its formulation allows its application to any object
detection or segmentation dataset.

By using the proposed method, the first large-scale dataset with synthetic referring expressions for
video object segmentation is created, based on an existing large benchmark dataset for video instance
segmentation. A statistical analysis and comparison of the created synthetic dataset with existing,
human-produced datasets is also provided in the present Master thesis.

The conducted experiments on three different datasets used for referring video object segmen-
tation prove the efficiency of the generated synthetic data. More specifically, the obtained results
demonstrate that by pre-training a deep neural network with the proposed synthetic dataset one can
improve the ability of the network to generalize across different datasets. This outcome is even more
important taking into account that no additional annotation cost is involved.

Key words

Computer Vision, Natural Language Processing, Vision and Language, Referring Expressions, Video
Object Segmentation, Synthetic Data Generation






Xovoyn

O 6VVOLAGHOG TNG OPACTG VITOAOYLIGTAV KoL TNG ENEEEPYATIAG PVOIKNG YADGGUG £YEL TPOGEAKVGEL
TO EVOLAPEPOV TNG EMIGTILOVIKTG KOWVOTNTAG TO TEAELTALN ¥POVIaL, oG Kot Oempeitotl Evo onHavTiKo
e Tpog T dnpovpyic. AVTOVOUMY GLGTNUATOV TEXVNTNAG VONHOGUVIG To omtoia Ba eivar tkavd va
0EL0TO10VY KoL ToL dVO €101 TANPOPOpiag Yo TNV EMIAVCT TPOPANUAT®Y TOV TPAYUATIKOD KOGHLOL
[Hulé6a, Yul8, Yel9]. 'Eva mapdderypo T£€T10100 TPOPAILOTOG, LHE TO 0010 KATATIAVETOL 1) TOPOVGO
LETATTLYLOKY] EPYOCIN, OTOTEAEL 1 KATAUTUN GO OVTIKEWLEV®V GE EIKOVEG Kot BIVTEO LLE T XP1OT) OVOLPO-
PIKOV EKPPAGEDY PLGIKNG YADGGAS. 26 avapOopIKn EKPPacT) 0pileTal Lo TPOTACT PUGIKNAG YADGGOG
oV Kol LOVO av amoTeAel akpiPn mepLypapy EVOG GUYKEKPIUEVOD KOl KAVEVOS GALOL AVTIKEILEVOL TTOL
epoaviletar oty idwe oknvn [Reit92]. To mpdPAnpa avtd ¥pnoiponolel cov odnyd pio avopoptkn
£KQPOGCT OV TEPLYPAPEL £V LOVAIIKO OVTIKEILEVO-CTOYO TPOKELUEVOD VO TO EVIOTICEL GE EMIMEDO
gwovoatotygiov dtoywpilovtag o and dAla avtikeipeva Tov 310V 1| GAAOL TOTTOV.

H ntpd000¢ 00to0 TV KOVOTOROV £pELVNTIKOD TTEdI0V £XEL ETOPEANOEL 0 TNV TPOSPATN TPOOSO
™™g Pabidg unyovikng udbnong n omoio yuo vo gival omodoTikn amortel peyddlo aptldpd dedopévav.
Qo1660, Hio and TIG KLUPLOTEPEG TPOKANGELS TOV TPOPANLOTOC LLE TO OTOI0 OGYOAEITOL 1) TOPOVGA
UETOTTUYLOKNY Epyacio eival 1 EAAENYT) HEYAA®Y GUVOL®V dedOUEVMV e BivTeo Ta ool va TepIAyL-
Bavouv TanTOYPOVa ETIKETEC AVTIKEILEV®V GE EMIMEDO EIKOVOGTOLXEIOV KO EKQPACELS PLGIKNG YADGC-
oag, omwg ivar yio mapdderypa to RefCOCO [Kazel4] yio ototikég eikdveg. H dnpovpyia aviroymv
GLVOL®OV JESOUEVMV amatTel LEYAAN TOcHTNTA YPOVOL Kot avOpdmivig Tpoondbetlag, yeyovdg mov
&xel ®ONCEL TNV EMGTNUOVIKT] KOWVOTNTO VO, ETEVOVGEL G LEBOOOVG OTMG 1| MUV OVTO-ETPAETOLEVN
péonon ko 1 xpnon cvvBetikdv dedopévav. Ta cuvBetikd dedopéva £xovv ypnoytorondel amotehe-
OLOTIKO OE OLAQOPEG EPEVVNTIKEG EPYNGTIEG TOGO GTNV OPUOT] VIOAOYIOTMV GE TPOPANLATA OTTMOG M
extipnon ontikng pong [Dosol5], n aviyvevon aviwkeipévoy [Pengls], n onpociodoyiki Kotdtunon
[Sale18] kot katdTunon avtikeévov o€ Bivieo [Khorl9], 6co kot 6e mpofAnpato wov cuvdvalovy
TN UNYOVIKN OPOIGT] KOL TNV ENEEEPYOTTO PUGIKNG YADCGTAG OTTMG 1) GLAAOYIOTIKN HEGM ecOvev [Liul9]
Kol 1 TAOYNon uécm dpacng kot YAdooog [Friel8].

AxolovBdvTag vt TV Katevbuvon, 1 Tapohco LETATTUYLOKT EPYOCIN TPOTEIVEL LK KOLVOTOLO
UEBOSO Yo TNV TOPAY@YT CUVOETIKOV AVOPOPIKAOY EKQPAGEMV Y10, i EIKOVA (VOGS KAPE TOV Pivteo),
N omoia Pociletar HOVO OTIC ETIKETEG AVAPOPAS TWV OVTIKELLEVOV KOOMG KOl GTO YOUPUKTNPIOTIKA
TOVG, TO OOl AviXVELOVTOL OO £va VIepovYypovo Pabdd vevpwvikod diktvo [RenlS] ekmondevpévo
Y10 TOV EVIOTIGIO OVTIKELLEVOV KOl TOV OPAKTNPIOTIK®V TovG. 1o cuykekpéva, | TPoTEVOUEVN
LEB0d0Gg TapdyeEl GUVOETIKES AVOPOPIKES EKPPACELS Y10 EVOL OVTIKEIIEVO-GTOYXO GLVIVLALOVTOG TOL OPOL-
KTNPIOTIKE TOL aVTIKEWWEVOL oL gviomilovtal amd To TpoavapepBEy vevpwvikd diKTvo pe GAAES
WO10TNTEG OTMG 1 KAGG™ TOL QVTIKEWEVOD, TO GYETIKO TOL MEYEDOG KOl 1| GYETIKN TOV B€om UE GAAQ
avtikeipeva, ol omoieg vroloyilovror pe Pdon Tig eTiKETES AVOEOPAS TV avTIKEEVDY. O TpOTOG LE
Tov omoio vroAoyilovrol Kot cuvovalovial ol v AOY® 1310TNTESG KUl TO YOPAKTNPLOTIKA TPOKEUEVO
VO GYNULOTIGTOVY OVOPOPIKES EKPPAGEIS TEPTYPAPETAL OVOAVTIKE Kot STvOvTaL avaAOYO TOPAdETY AT,

H mpotevopevn pébodog epapudletar e éva vmdpyov HeYdAng KAILaKAG GUVOLO JESOUEVOV
KATATUNONG avTIKeEVeY o€ Pivteo, to YouTube-VIS [Yangl9], to omoio ydpn oe avth ) pébodo
eUmAOLTILETAL [LE GUVOETIKES OVAPOPIKEG EKPPAGELS, XMPIG KOVEVA KOGTOG TOV Va. 0popd avOpdmivn
gpyocia. 'Eva onuavtikd mAeovEKTna TG TPOTEWVOUEVNC HEBOIOL glval OTL 0 OPIoUOG TG EMTPETEL
TNV EPAPLOYN TNG OE OTOLOONTOTE AAAO GUVOLO SEDOUEVOV EVIOTIGLOD 1) KATATUNONG OVTIKEWUEVOV
o€ ewdvec N Pivreo. Me v tpotevopevn pébodo, givat duvorr| 1 dNUovPYio TOALATADY OVOPOPIKOV
EKPPACEDV Y10 TO 1010 aVTIKEIEVO G KAOE KopE ToL Pivieo cuvdLALOVTUC TIG OLAPOPES IOLOTNTES KoL



"a bigger dog" "a small black dog" “a dog on the left"

"a bigger black dog on te left" "a black dog on the left"
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"a black dog"

Figure 0.1: Example of synthetic referring expressions automatically generated with the proposed
method. Multiple referring expressions can be created for the same video or even for the same frame.

TOL YOPOKTIPIOTIKG TOV MGTE 01 TOPUYOUEVES GUVOETIKEG EKQPPAGELS VOL TO TTEPTYPAPOLVY LoVOIIKA. 'Eva
TOPASELY LA, SLUPOPETIKMV OVOPOPIKDY EKPPAGEDY 01 OTOIEG TOPAYOVTOL LLE TNV TPOTEWVOLEVT LEBODO
anewoviletar oty Ewova 0.1. To mapayopevo chvoro dedopévay, ovopatt SynthRef-YouTube-VIS,
omoteAel TO TPDOTO PEYAANG KAILOKOG GUVOAO CUVOETIKOV OVOPOPIKMDY EKPPAGEDV Y10, KOTATLUNON
avTIKEWEVDV o€ Pivteo mepiiapPavovtog 2,238 Pivteo kar 15,798 dropopetikég cuvheTIkég avapopt-
Kkég exppdoels. H otatiotikn avdAvon Kot 60YKPLoT| ToL TapoyOLEVOL GUVOAOL GLUVOETIK®MY OEOOLE-
VOV LLE DILAPYOVTA GUVOLN OEGOLUEVOV KATACKEVAGUEVA OO TOV AVOP®TO deiyvel OTL anTO VITEPTEPEL
OGOV aPOPA T0 HEGO OPO SLAPOPETIKMV AVOPOPIKDOV EKPPAGEDY OV AVTIKEILEVO.

H mpotevopevn péBodog aAAd Kat 1o v AOY® GOVOLO dES0UEVMVY 0ELOAOYOVVTOL LECH TTEPOUATOV
TOL OTOL0L TTPOLY LOTOTTOLOVVTOL YPTCLUOTOIMVTOG £va Pabl vevpwviko diktvo mov ovopdletar RefVOS
[Bell20]. To diktvo 0vtd YpNGILOTOlEl 6D0 VTEPSVYYPOVOH LOVTEAD Y10, TV KOOIKOTOINGT amd T1) Lol
TOV €IKOVOV (Kapé Tov Pivteo) Kot amd TV GAA TOV aVOQOPIKOV EKPPACEMV. ZVYKEKPUYEVA, TO
DeepLabv3 [Chenl7b] mwov éxet ypnoylomon0el e peydin enttuyio TN ONUAGIOAOYIKT KATATUN G,
KJdKomotel TNV ontikn €600, kar 1o BERT [Devl19], éva amd to wio enttuynpuéva Lovtéra ovamopd-
GTOONG PVOIKNG YADOOWG, KMOKOMOLEL TIC AvAPOPIKEG EKPPAcELS. O KATAAANAOG GUVOLAGHOG TOV
e&yOLEVMV OTTTIKAOV KOl YADWCGIKMV YOPUKTNPICTIKOV TOPAYEL TNV TEAKT KATATUNGN TOV OVTIKEUE-
VOV-GTOYOL € KB Kapé Tov Pivteo.

Ta melpdpoto ToV TPOypaToTomdnKay 6TV TapoHoa LETATTUYOKT Epyacia etval 800 eWdmv:

1. To mp®dTO 0POPE TNV TPO-EKTAIOEVGT) TOL LOVTEAOV LE TN PO TPOYUATIKAOV (TOPAYOLEVES
and avOpdTovg), cuVOETIK®OV (TapayOUeves e TNV TPOTEWOueEVN LEBOSO) 1| cuVOLAGHO Kot
TV 500 THTOV AVOPOPIKAOV EKPPAGE®V Kal TNV aEl0A0YNGT TOL GE 610 J10POPETIKA GHVOANL
dedopévav, to DAVIS-2017 [Khorl8] ka1 1o A2D Sentences [Gavrl8].

2. To devtepo meipopa amookonei otV anevdeiog cOYKPION TPAYUATIK®OV KOl GUVOETIKOV 0vaLpo-
PIKOV EKPPACEDV HECH TNG EKMAIOELONG TOL HOVTELOL 6TO 1010 GVUVOAO dedopévav Pivieo,
OPEVOG LLE TPAYLOTIKEG EKQPACELG KO APETEPOL e GLVOETIKES, KO TNG a&loAOYNOTG TOL GTO
1010 cHVOLO TPAYLLATIK®DY OEOOUEVAV.

To, 0TOTEAEGLATO TOV TPADOTOL TEIPALOTOG ETOEIKVOOVV OTL TPO-EKTOOEVOVTAG EVOL PafD vevpwVI-
K6 SIKTLO LLE TO TPOTEWVOLEVO GUVOLO GLUVOETIKMDY dEO0UEVMV, EIVOL EPIKTN 1) BEATIOGN TNG IKAVOTNTOG
YEVIKELONG TOV SIKTHOL GE SLOPOPETIKA GOHVOAN SEGOUEVMV, EIOIKA OTIV TEPITTMGT TOV TO. GUVOETIKA
d€00UEVA YPNOYOTOLOVVTAL GE GLVIVLOCUO pE TTpayuatikd. Emiong, axopoa peyoaivtepn Peitioon
0G0V apopd TNV axpifela KaTdTunong evromileTat dTav TO TPO-EKTOLOEVUEVO LOVTELO YPNCILOTOLEL-
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TOL 6€ VO S10POPETIKO GUVOLO JEGOUEVMV GO OVTO GTO OTOT0 EYEL EKTOOEVTEL. AVTO TO AMOTEAEG AL
€lvat oNUaVTIKO Y1aT 6€ TOALEG EPOPUOYEC TOV TPOYLOTIKOD KOGLLOV, T LOVTEAN UNYOVIKAG LABNoNC
dev £xouVv 1) SuVATOTNTA VO EKTOOEVOVTUL OTO TEAMKO GUVOLO dedopévamv, aAld facilovtar o€ peydro
Babpd oy mpo-ekmaidevon.

A6 TNV GAAN, TO OTOTEAECLLOTA TG CUYKPLOTG LETAED TTPAYHOTIKOV KO GUVOETIKOV AVOPOPIKOY
EKQPACEWY, 1 omoia deEdyetal 6To deVTEPO TTEIPApL, 0ONYOHV GTO GUUTEPAGLLO OTL Ol TPOYLLOTIKES
EKQPACELG, GVTOG O TAOVCLEG GTNV TEPLYPUPT] TOV OVTIKEILEV@V, 00N YOUV G peyaldtepn akpifeia
Kataunong. Qotdco, ov avaloyloTel Kovelg To HeYdAo KOGTOG Y10 TN GLAAOYN TV TPAYLATIKOV
EKPPACEDY KOL TO OVTIGTOLYO UNOEVIKO YOl T OMOVPYio TV CUVOETIKOV, To OTOTEAEGLLOTO Elval
ovykpiotpa. Katywo to 600 mepdpota mopovuctdlovol TG0 avaAvTIKOL TIVOKES [LE TOGOTIKA OTOTEAE-
GLOTO OGO KOLL TOLOTIK( ATOTEAEGLOTO TNG KOTATLIONG TMV OVTIKELEVOV OE SUPOPETIKEG AKOAOVOiEC
EWOVOV.

Eniong, mopatiBetor perétn g enidpaong e IANPOPOPIaG TOL EUTEPLEYETUL OTIS GLVOETIKEG
aVOPOPIKEG EKPPAGELG GTNV TEAMKT akpifela katdTunong. To amoteAéopato avtig deiyvouv 0Tt 660
TEPLOGOTEPES WOLOTNTEG TOV UVTIKEUEVOD CUUTEPIAAUPAVOVTAL GTIC GUVOETIKEG AVAPOPIKES EKPPACELS
(6mwg Yo mopddeyHo 1 GYETIKN Tov B€om 1M TO YpdUA TOV), TOGO PelTidveTon 1 TEMKN aKpifeia
KatdTUNone. Mia dAAN peAétn eoTidlel 6TO KATA TOGO TO “TAYOUA” TNG EKTOIOELONG TOV KMOIKOTO1-
NN TOV OVOQOPIKAOV EKQPAcE®V PLGIKNG YA®ocos (BERT), 6tav to 1101 Tpo-ekmondeupévo HovTELD
EKTOOEVETUL e CLUVOETIKEG EKQPACELS, UTOPEL VO GUUPAALEL TNV KOADTEPT UETEMEITO YEVIKELOT
TOV GTO TEMKO GVUVOAO dedopévav. H pedétn avtn deiyvel 0TL, TapOTL TO OTOTEAEGLLOTA dLOPEPOVY
avAAOYQ [LE TO TEMKO GUVOAO JES0UEVMV, 1) O10pOPa 6TV aKpifela katdTunong ival apeAntéa.

Télog, N TapoVoO, LETATTLYLOKY EPYACIO EVOUPPOVEL TNV TEPALTEP® EMEKTACN TNG TPOTEIVOVTOG
UeAAOVTIKEG KaTeELHHVGELG EpEVVaG. AVTEG APOPOVY TPOTOV GTNV EQUPHOYN TNG TPOTEWVOUEVNG HEDO-
d0v 6€ GAL0 GUVOLD SESOUEVOV EVTOTIGHOD KO KATATUNONG OVTIKELEVOV GE EIKOVEG KOl BivTeo Kot
dgbTEPOV OTNV EVIOYLOT TNG TPOTEVOUEVTG LeBOSOV YO TNV TOPOYDYN O TAOVCIOV GUVOETIKMV
EKPPACEWDV LLE TNV EI0AYMYT GALDV IGI0TNTOV 0TS Y10 TAPAOELY L Ol GYECELG LETAED TOV OVTIKELLE-
vov Ttov gpeavifoviot.
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Evyoaprotieg

H mapovca petamtuylokn epyacio, pe TV 0moiot OAOKANP®OVE® TO SOTUNUATIKO UETOTTUYLOKO
TPOYPALLO GTTOLO®V e TitAo “Emiotiun Agdopévev kot Mrnyovikr Mdédnon” tov EBvikod Metodpi-
ov [ToAvteyveiov, de Ba pmopovoe va €yet Epbet e1c mEpag ywpig TN GLVEPYOTia KOl T GUUTOPEVGON
LoV pe S1apopovg avBpdmovg, ot omoiot e fordnoay kad’ 6An t ddpKed AVTAG.

®a NBera Kat’ apydg va gvyaptotnom Oepud tov K. Kovotavtivo Kapdavtlolo, Avorinpmti
Kadnynm E.MLIL, yuo tv gukoipio wov pov €6m0e Vo EKTOVICMm TNV TOPOVCH. LLETATTLUYLOKY EPYACTOL
Thve oto BEL TO 0Tol0 LE EVOEPEPE, Y10 TNV EMIPAEYT TNG EPYOTTIAG LOV CUVOAKE, KOOMG KOl Y10 TN
GLYKOTAOEGT] TOV TPOKEWEVOD VO TPAYHOTOTOMC® £V LEPOC OTHG G TOVETIGTNUIO TNG ETAOYNG
pov oto ewtepkd. Koatdmv, Ba beha vo ek@pdom v euyvopoovvn Hov otov K. Xavier Gird-
i-Nieto, Avarinpot Kabnynt tov [Hoivteyvikov IMavemotnuiov Kataioviag, yioo v Tiun mov
pov €Kave vo yive HEAOG TOV €pYaoTNPION TOV KOl YLl TV (KP®G ETOTKOJOUNTIKY] GLUVEPYUGIO LLOC.
Emiong, evyapiotd tov k. [odpyo Xtdpov, Avaminpot) Kadnynm E.M.I1., o onoiog cuvaivece otn
LETOKIVION OV GTO TOVETICTNIO TOV e€MTEPIKOV, KABMS Kot Yio TNV T TOV POV £KOVE Vo gtvat
UELOG TNG EMLTPOTNG €EETOOTG TNG LETATTUYLOKNG EPYOCIOG LOV.

Idwitepa Beppéc evyapiotieg Ba NBeda va anoddow otov k. Carles Ventura, Enikovpo Kabnynt
010 Avowtd Iavemomwo KataAoviag, v ka Miriam Bellver, Yrnoyneuo Addktop oto Barcelona
Supercomputing Center, tnv ka Carina Silberer, Enicovpn Kadnyftpia tov [avemiotnpiov g Ztovt-
yiapdng kat tov K. Tdvvn Korovtion, Metadidaxtopikdé Epgovnth, yio v dyoyn cvvepyoocio
pog Ko v kebopiotikn] forfela Tov pov Topeiyav o OAo To GTASIO TNG LETOTTUYLOKNG EPYAGING
pov. Avaroyeg evyaptotieg Oa NOeha vo aroddcm otov K. Baiodun Ntovoko, Metadidaktoptkd
Epgovntn, yo v g&icov onpavtiky Pondela mov [ov TpocEPePE KOTA TH GLYYPOEN TNG EPYOCIOG
pov.

Tehevtaio aAld e€icov onpovtikd, o NOela Vo VYOPICTHC® TOVG PIAOVG LoV Kol KUPIOG TV
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Chapter 1

Introduction

Inspired by the great success of deep learning in the fields of computer vision (CV) and natural
language processing (NLP), the research community has invested in the integration of the aforemen-
tioned fields, by proposing several vision and language tasks and by trying to build models capable
of combining visual and linguistic information effectively. A recently proposed vision and language
task, addressed in the present Master thesis, is referring video object segmentation in which, given a
linguistic phrase and a video, the goal is to generate a binary mask for the referred object in all the
video frames where it is present. A visual description of the aforementioned task is provided in Figure
1.1.

1.1 Vision and Language Integration

Recent advancements in deep learning research has led the fields of computer vision and natural
language processing see a significant progress in several tasks independently. This success has also
increased the interest in solving challenges that combine visual and linguistic information, i.e. the
integration of vision and language. Integrating vision and language is considered an important step
towards the creation of powerful artificial intelligence (Al) systems that will be able to reason by
processing multi-modal input.

Figure 1.1: The task of referring video object segmentation. Top: A referring expression and a video
are given as input. Bottom: A segmentation mask of the referent (highlighted in red) is produced at
every frame. The provided referring expression is from the Refer-YouTube-VOS dataset [Se020].
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After more than half a century of research in neural networks and machine learning, deep learn-
ing has been establishing as the state-of-the-art technique of artificial intelligence since its break-
through in 2012, when Krizhevsky et al. [Kriz12] presented a deep neural network, called AlexNet,
which outperformed by a large margin all previous techniques in the Large Scale Visual Recogni-
tion Challenge (LSVRC). The release of large, high-quality, publicly available labelled datasets like
ImageNet [Deng09], along with the empowerment of parallel GPU computing, which enabled the
transition from CPU-based to GPU-based training, has led to the domination of deep learning in nu-
merous Al fields, including computer vision and natural language processing.

More specifically, by using deep learning, computer vision has achieved prominent improve-
ments in tasks such as visual content classification [Kriz12, Simo14, Hel6], object detection [Ren1S5,
Redm16], semantic [Chenl7a], instance [Hel7] and video object segmentation [Caell7, Ventl9].
Convolutional neural networks (CNNs) [Fuku80, LeCu90] have become the standard approach for
solving computer vision tasks. Most of the techniques rely on transferable general visual features by
leveraging tasks such as image classification, detection, semantic segmentation, and action recogni-
tion. Usually, most preferred transferable global image representations are learned with deep CNN ar-
chitectures like VGG [Simo14] and ResNets [He16] using large datasets such as ImageNet [Deng09].
These networks are used as the backbone of task-specific networks which transfer and enhance the
obtained feature representations for solving downstream tasks.

Besides computer vision, deep learning has contributed to the significant progress in NLP re-
search and its applications. For a long time, the majority of methods applied to NLP problems em-
ployed hand-crafted features using n-grams and bag-of-words [Joac98] models or standard machine
learning techniques like Support Vector Machines (SVMs) [Cort95]. Such methods had been fac-
ing problems such as the curse of dimensionality since linguistic information was represented with
high-dimensional features. However, with the recent popularity and success of word embeddings like
word2vec [Miko13], which are low-dimensional, distributed representations, deep neural networks
have achieved superior results on various language-related tasks as compared to previously used tech-
niques.

Similar to CNNs for computer vision, several neural network architectures and techniques have
been established in NLP research such as Recurrent Neural Networks (RNNs) [Rume86], Long Short-
Term Memory (LSTM) [Hoch97] and the attention mechanism [Vasw17] in order to efficiently cap-
ture context in textual information. Especially in the last years, NLP has focused its efforts in solv-
ing multiple tasks at once with unsupervised pre-training of deep generalized language models like
ELMo [Petel18], GPT-3 [Radf18] and BERT [Devl19], using large unlabeled corpora such as Wikipedia
articles. These models have achieved incredible results in a wide variety of tasks such as machine
translation, question answering and language inference.

Encouraged by the independent success of deep learning in CV and NLP fields, the research com-
munity has endeavored to build models combining vision and language. The aim of this integration
is to produce systems which are able to provide complete understanding of visual and textual content
at the same time. Several of the most important challenges that such systems have to tackle include:

e Generation of textual descriptions about visual content and vice versa, i.e. generation of visual
content from textual descriptions

o Identification of objects and their relationships in visual content for reasoning or answering
questions about them

e Navigation in an environment by leveraging input from both vision and natural language in-
structions

e Generation of short captions or longer stories about visual content

o Translation of textual content from one language to another using visual content for disambigua-
tion
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The aforementioned challenges can be associated to many practical applications of vision and
language. One possible application in the biomedical domain can be the assistance of visually impaired
individuals to get a holistic visual scene understanding by getting information about a scene from
its textual descriptions and by answers received when asking questions about it. Other applications
include automatic surveillance, autonomous driving, human-computer interaction and navigation.

Several tasks integrating language and vision have been proposed during the past years. An
overview of them is depicted in Figure 1.2. These tasks include language observed in different levels
such as words, phrases, sentences, paragraphs and documents while visual information is represented
with images or videos. A brief description of the tasks presented in Figure 1.2 is provided below:

Referring Expression Generation and Comprehension/Segmentation: Referring expression gen-
eration focuses on the creation of referring expressions (noun phrases) that identify specific
entities called targets or referents [Maol6]. The inverse task is comprehension where target
objects must be localized [Hul6b] or segmented [Hul6a] based on such expressions.

Visual Description Generation (Captioning): The goal of visual description generation or im-
age/video captioning is to generate either global or dense descriptions of a given visual input in
the form of a sentence [Elli13].

Visual Storytelling: The aim of visual storytelling is to generate stories from one or more im-
ages or a video. Visual storytelling extends visual description generation by creating several
sentences forming something similar to a paragraph [Huan16].

Visual Question Answering: The goal of visual question answering (VQA) is to learn a model
which comprehends the visual content at both global and local-level for finding an association
with pairs of questions and answers in the natural language form [Anto15].

Visual Dialogue: The goal of the visual dialogue task is to create an Al agent which, given an
image, a history about dialogues and a question about the image, is able to infer context from
the history, and answer the question accurately [Das17].

Visual Reasoning: Visual reasoning targets to answer sophisticated queries by reasoning about
the visual world. Efforts in this task have focused on creating diagnostic tests going beyond
benchmarks such as VQA and reducing the biases of question-answer pairs by having detailed
annotations describing the kind of reasoning each question requires [John17].

: Language Vision i
; (Teext) lnage or Vides) !

|

Caption Generation J Storytelling ‘ Question Answering J [ Dialog ‘ i
Reasoning 1 Referring Expression ‘ Entailment W ‘ Visual Generation J :

. Y i

Navigation ‘ Machine Translation W i

Figure 1.2: Different tasks combining vision and language [Mogal9].
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e [mage Entailment: The task of predicting whether an image semantically entails a text, given
image-sentence pairs where premise is defined by an image instead of a natural language sen-
tence [Xiel9].

e Language-to-Vision Generation: The aim of this task is to generate images/videos conditioned
on natural language descriptions. The rapid evolution of generative adversarial networks (GANs)
[Good14] has helped the growth of this task [Mans15].

o Vision-and-Language Navigation: The goal of vision-and-language navigation is to enable an
agent or a robot to navigate within an environment given by the photo-realistic image views by
interpreting natural language instructions [Andel8].

o Multi-modal Machine Translation: This task refers to the translation of a source language de-
scription into a target language using image/video information as additional context [Spec16].

1.2 Referring Video Object Segmentation

Video object segmentation is the task whose goal is to separate foreground objects from the back-
ground throughout a video sequence. This task has attracted wide attention lately due to its appli-
cability to many practical problems including video analysis and video editing. Typically, this task
has been addressed in semi-supervised or unsupervised setups. In the first case [Caell7, Vent19], a
user manually annotates an object in a video frame and a system generates a pixel-wise binary mask
for the object in the rest of the frames. The drawback of this setting is that pixel-wise annotations
involve tedious and time-consuming human effort. In the unsupervised scenario [Goel18, Wang19b],
estimation of object masks is performed without any guidance, by using salient features, independent
motions, or known class labels. Although such approaches may be suitable for video analysis, accord-
ing to Seo et al. [Se020], the ambiguity and the lack of flexibility in defining foreground objects make
them unsuitable for video editing which requires to segment arbitrary objects or their parts flexibly.

As an alternative approach, language referring expressions have been proposed as a different form
of supervision for the task of video object segmentation. Referring expressions are linguistic ex-
pressions that allow the identification of an individual object (the referent) in a discourse or scene.
According to computational linguistics and natural language processing community, a (noun) phrase
is considered as a referring expression if it is an accurate description of the referent, but not of any
other object in the current scene [Reit92]. Such linguistic expressions allow a more natural and direct
human-computer interaction than interactive annotations in form of bounding boxes, masks, scribbles
or points. Also, such expressions could be parsed from human speech processing systems allowing a
direct human-machine communication in applications such as autonomous driving where the driver
would refer to an object in the road scene and the car would identify it.

The task of video object segmentation using referring expressions is a novel task first addressed by
Khoreva et al. [Khor18] in 2018 and later tackled in a similar setting from Gavrilyuk et al. [Gavrl§]
and Wang et al. [Wang19a] as “actor-action segmentation from a sentence”. The name referring video
object segmentation, in correspondence to referring image segmentation, was introduced by Seo et
al. [Se020] who also released the first large-scale benchmark for the task, called Refer-YouTube-VOS,
in a concurrent work to the present Master thesis. An example illustrating the task of referring video
object segmentation is provided in Figure 1.1.

1.3 Main Challenges and Motivation

Despite the increasing interest and research in the field, referring video object segmentation re-
mains an extremely challenging task which is still far from being solved. The main challenges for the
task which are presented below, are divided into those concerning data and those concerning models.
In terms of models used for referring video object segmentation, challenges include:
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e Temporal consistency: In contrast to static images, where the task of referring image segmen-
tation has achieved significant progress, the video domain is more challenging as objects ap-
pearing in a video may disappear, reappear or be occluded from other objects. Consistency of
segmentation masks across video frames is a challenging task and previous works have em-
ployed different techniques in order to achieve it. Recurrent architectures [Seo20] and 3D
CNNs [Gavrl8, Wangl9a] are some of the ways previous works have tackled this challenge.
Also, Khoreva et al. [Khorl8] include a temporal consistency score in their objective function
used for computing box proposals in each frame, based on the assumption that objects tend to
move smoothly, and thus box proposals in consecutive frames should have a high overlap.

e Model size: Models used for the task of referring video object segmentation suffer from ex-
cessive size in terms of parameters which leads to huge memory requirements and the need
of a great amount of time to train. The combination of vision and language demands at least
two branches for encoding the visual and linguistic data, usually a deep CNN and a LSTM re-
spectively. Especially in videos, where the time dimension is added, architectures can be even
more complex in order to achieve temporal consistency as described above. Also, as presented
in Chapter 2, many of these architectures use attention to effectively capture the dependencies
between visual and linguistic features, adding extra layers and parameters to the deep archi-
tectures. This is a significant challenge considering the embedding of such models in cars or
mobile phones which have restricted memory and computational resources.

The present Master thesis focuses on the challenges concerning the limitations of currently available
datasets for the task of referring video object segmentation. In particular, the main challenges are:

e Lack of large-scale datasets: Before the release of Refer-YouTube-VOS [Seo020], which was
created concurrently with the present Master thesis, no large-scale dataset existed for the task
of referring video object segmentation. As it is explained in Subsection 2.2.2, existing datasets
used for language-guided video object segmentation were limited either in terms of the number
of videos [Khor18] or object classes [Gavrl8]. Especially in deep learning and computer vision
research, large datasets and benchmarks have proven their fundamental importance, enabling
targeted progress and objective comparisons, thus their absence can impend the evolution of a
scientific field. The annotation cost in terms of money and/or time is one of the main reasons for
the absence of large-scale datasets. The present work addresses this challenge by proposing a
method to automatically generate synthetic referring expression, thus eliminating human labour-
intensive annotations.

“the man in red is running in a race”

Figure 1.3: Example of an invalid referring expression from A2D Sentences [Gavr18] dataset. The
expression on top of the video frame fails to uniquely identify a specific object.
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Figure 1.4: Categorization of referring expressions by their difficulty and correctness in the validation
set of DAVIS-2017 and the test set of A2D Sentences [Bell20].

e Referring expressions quality: A previous work [Bell20] has argued that existing benchmarks

used for video object segmentation with referring expressions are annotated with expressions
that sometimes fail to address the objective of the task, namely to unambiguously refer to
a specific object. Actually, because of the huge annotation time of large-scale dataset, lan-
guage expressions in existing benchmarks for referring image and video object segmentation
are mainly collected through crowdsourcing platforms like Amazon Mechanical Turk'. Al-
though the crowdsourced annotations are usually validated from other experts, cases of bad
annotations are still observed, like in the example of A2D Sentences [Gavrl8], appearing in
Figure 1.3. In this example, the provided referring expression ( “the man in red is running in a
race”) fails to unambiguously refer to a specific object, as it could be referring to three differ-
ent instances present in the depicted video frame. An extensive analysis of the aforementioned
work, illustrated in Figure 1.4, shows that approximately 10% of the referring expressions of
two existing datasets used for the addressed task fail to uniquely describe the target object (“no
RE” standing for “Not a Referring Expression”).

As it is also observed in Figure 1.4, a significant proportion of the videos in existing datasets

concerns trivial cases in which the target object could be identified with simple phrases. For example,
in a video including one dog and one ball, each of them can be referred unambiguously, using just the
class or supercategory in which it belongs i.e. simply saying “a dog/animal” and “a ball”.

Inspired by this simple scenario and the fact that existing datasets for object detection/segmentation

are labeled in terms of the objects class, the idea of the present work is to create high quality synthetic
referring expressions, starting from the referent’s class and then enhancing them with other cues, with-
out any human annotation cost. The proposed synthetic referring expressions are created on top of the
YouTube-VIS [Yangl9] dataset, which is described in detail in Section 3.1. The main advantage of
this dataset is that all instances of a specified set of classes are annotated, allowing thus the creation
of valid referring expressions.

1.4 Thesis Objectives and Structure

The present Master’s thesis has the following objectives:
1. Study current methods in referring video object segmentation by reviewing related literature.
2. Underline the main challenges encountered on this task.

3. Propose a novel method for generating synthetic referring expressions.
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4. Present and disseminate the first large-scale synthetic dataset for referring video object segmen-
tation.

5. Evaluate the effectiveness of the proposed synthetic data in pre-training a deep neural network
for the current task.

6. Compare the obtained performance using synthetic data with previous works.

7. Suggest future research directions regarding the use of synthetic referring expressions for video
object segmentation.

Relevant literature is reviewed in Chapter 2 where previous research works in the task of refer-
ring image and video object segmentation are explored by analyzing different techniques employed
for solving the task. A review of object detection models based on deep learning is also included
emphasizing on the one which is used in the proposed method. In the last section of this chapter,
examples of scientific works using synthetic data in computer vision, natural language processing and
their combination are presented.

Following, Chapter 3 describes in detail the proposed method for generating synthetic referring
expressions by explaining how different cues are combined for their creation. Moreover, Chapter 3
introduces the synthetic dataset created using the aforementioned method and includes an analysis
of its statistics as well as some examples of synthetic referring expressions with their corresponding
video frames.

Chapter 4 consists of an extensive analysis of the conducted experiments and the obtained results.
More specifically, the training setups and quantitative evaluation metrics used in the experiments
are described in detail and tables as well as figures of results comparing with previous works are
illustrated.

Finally, in Chapter 5, the conclusions of the present thesis are summarized and future research
directions for the topic under study are suggested.
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Chapter 2

Literature Review

2.1 Referring Image Segmentation

2.1.1 Methods

Referring image segmentation, the task of segmenting objects or regions in images given a linguis-
tic expression, was introduced by Hu et al. [Hul6a]. The authors distinguish this task from previous
ones that were restricted to a fixed set of classes, like semantic segmentation [Longl5, Chenl7a],
the task of predicting pixel-wise labels for a predefined set of object or stuff categories, or instance
segmentation [Hel7], which additionally distinguishes different instances of an object class. Previous
works about grounding natural language expressions were limited to only resolving a bounding box
in an image [Hul6b, Mao16], therefore this was the first attempt of grounding language at pixel level.

The model they employ for solving this novel tasks consists of four main components which
are depicted in Figure 2.1. The first is a language encoder based on a LSTM network. The input
language expression is first converted into a sequence of fixed-length vectors using an embedding
matrix. Then each of the 7 word embeddings of the sequence S = (wj, ..., w;) is processed by the
LSTM network at each time step ¢. At the final time step ¢ = T', when the the whole text sequence
is processed by the LSTM, the hidden state h, of dimension D;.,; = 1000 is used as the encoded
vector representation of the language expression. The second and third components of the model are
two fully convolutional neural networks where the first of them is used as the image encoder and
the second as a pixel classification network. The image encoder is a fully convolutional network as
the one proposed by Long et al. [Long15] for semantic segmentation which, given an image of input
W x X, outputs a spatial feature map of dimension w X x x D;,,. This means that the final spatial
feature map includes D;,,, = 1000 local descriptors for each pixel of the pooled w x x image where

i ™
input natural language

. | W x H high resolution
. wa response ma
expression AT >  LSTM network p p
‘right woman™
/ D, dimensional )
final hidden state h_ —n
L2-normalized . -
—, 1] K /,’—-.,\
encoded [ segmentation output '
expression upsarnplmg with
{7 o demnmlutmn
fully
il convolutional
classification | ¢
network
wxhx D Spatlal spatial | \ )
featuré map coordinates w x h low resolution - 22222~
L2-normalized response map

Figure 2.1: Model used by Hu ef al. [Hul6a] who introduced the task of referring image segmentation.
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w = W/sand h = H/s with s = 32. Also, two extra channels are added to each local descriptor,
representing the relative coordinates of each pixel location from the upper left corner and the lower
right corner of the feature map (represented as (—1,—1) and (+1, 1) respectively), so that the model
can reason about spatial relationships found in expressions e.g. “cat on the left”.

After having extracted the visual and language features, h. is first tiled and concatenated to the
local descriptor at each spatial location of the spatial feature map to obtain a w X h x D* (where
D* = Dy 4 Dyegr + 2) multi-modal spatial map containing both visual and linguistic features. The
combined features are then passed through the third component of the model which is a two-layer
fully convolutional classifier consisting of two 1 x 1 convolutions, that outputs a w x h low resolution
segmentation map of the image. In order to recover the original image size, an upsampling operation
using deconvolution (or transpose convolution) [Zeil11] is performed producing a W x H high reso-
lution response map, whose values represent the confidence of whether a pixel belongs to the referred
object. Since their work was the first to directly predict segmentation based on natural language ex-
pressions, the authors compare their model’s performance with strong baselines they created such as
segmentation from bounding boxes or classification proposals and combination of per-word semantic
segmentation, indicating that their method outperforms all these baselines.

Instead of modeling the image and langauge features independently and then combining them to
produce the segmentation map, subsequent works tried to jointly model the two modalities, in order to
better exploit the correlations between words and image regions. Liu et al. [Liul7] combine visual and
word features with an LSTM to recurrently refine the segmentation masks. Dynamic filters were used
in [Marg18] and [Chen19b] to capture the recursive nature of language and the spatial information of
the target object respectively. Li et al. [Li18] presented a recurrent refinement network (RRN) which
refines the segmentation result by utilizing the feature pyramid structures in order to take advantage
of multi-scale semantics.

Other works in referring image segmentation leverage attention to model the visual information
of each word. MAttNet [Yul8] decomposes referring expressions using three modules related to the
object’s appearance, location and relationships with other objects and then uses both language and
visual attention to direct each module to focus on the desired part of the expression and the image.
Shi et al. [Shil8] use attention to extract keywords from a referring expression which are important
for identifying the target object. Cross-modal self-attention is used in CMSA [Yel9] to better capture
the long-range dependencies between linguistic and visual features. While STEP [Chen19a] works in
the same direction, it also uses a convRNN [Xing15] to refine the textual representation and improve
the segmentation. A recent work by Hu et al. [Hu20] proposes a bi-directional cross-modal attention
module to learn the relationships between multi-modal features. Finally, Huang ef al. [Huan20] use
multi-modal graph reasoning to identify the correct object as well as suppress other irrelevant ones.

2.1.2 Relevant datasets
RefCOCO

RefCOCO is a large-scale dataset and benchmark for referring image segmentation. It is collected
on top of the Microsoft COCO (Common Objects in Context) image collection [Lin14], which includes
images of complex everyday scenes containing common objects in their natural context.

It is one of the three most frequently used benchmarks for referring image segmentation: Ref-
COCO, RefCOCO+ and RefCOCOg [Yul6]. RefCOCOg was collected using Amazon Mechanical
Turk in a non-interactive setup, while RefCOCO and RefCOCO+ were collected using the Refer-it
Game [Kazel4]. In this two-player game, the first player is shown an image with a segmented target
object and asked to write a natural language expression referring to the target object. The second
player is shown only the image and the referring expression and asked to click on the corresponding
object. Ifthe target object is correctly identified, the players receive points and swap roles. Otherwise,
a new image and target object is assigned to them. Images in these collections were selected with the
requirement to contain two or more objects of the same object category.
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RefCOCO consists of 142,209 referring expressions for 50,000 objects in 19,994 images. The
average number of words in its sentences is 3.61. Unlike RefCOCO+, where annotators are disal-
lowed to use location words in their referring expressions, RefCOCO does not have any restrictions
on its expressions. Moreover RefCOCO’s referring expressions tend to be more concise than the ones
from RefCOCOg which have an average length of 8.43. Another advantage of RefCOCO over Ref-
COCOg is that is contains more instances of same-category objects, having an average of 3.9 over 1.6
respectively.

Besides images, RefCOCO has been used for pre-training frame-based models on the task of refer-
ring video object segmentation like in the works of Khoreva et al. [Khor18] and Bellver et al. [Bell20],
since a similar large-scale dataset for videos was not available. In the experiments of the present work,
RefCOCO is also used along with the proposed synthetic dataset in order to assess how the synthetic
data can contribute to a better pre-training of a deep neural network.

2.2 Referring Video Object Segmentation

2.2.1 Methods

Despite the increasing interest in referring image segmentation, only a few works have explored
the segmentation of objects using referring expressions in the video domain i.e. referring video object
segmentation. Khoreva et al. [Khor18] were the first to transfer the referring expression segmentation
task from images to videos by collecting referring expressions for the DAVIS-2017 dataset [Pont17].
They use the image-based MAttNet [ Yul8] model, pretrained on RefCOCO [Kaze14], to localize the
target object, and then train a segmentation network with DAVIS-2017 to produce the pixel-wise pre-
diction. They also employ a temporal consistency score in their objective function used for computing
box proposals in each frame, in order to ensure a high overlap between box proposals in consecutive
frames, based on the assumption that objects tend to move smoothly. Gavrilyuk et al. [Gavr18], in
a relevant work, provide natural language sentences for Actor-Action Dataset (A2D) [Xul5] and J-
HMDB [Jhual3] which are datasets used for action and human pose recognition and segmentation.
They employ a 3D fully-convolutional model with dynamic filters in order to segment an actor in
each frame of a video as specified by a language query. Although the task is similar to referring
video object segmentation, the referring expressions they provide are intended to describe an actor
and its action. The first large-scale dataset for referring video object segmentation, called Refer-
YouTube-VOS, has been created concurrently to the present Master thesis by Seo ef al. [Se020] on top
of YouTube-VOS [Xul8], a popular benchmark for video object segmentation. Besides the dataset,
the authors propose a model called URVOS, which performs language-based object segmentation and
mask propagation jointly using a single deep neural network. The network combines a cross-modal
attention module, inspired by CMSA [Yel9] and a memory attention module to encourage temporal
consistency across frames.

RefVOS

In another recent work, RefVOS [Bell20] has been the first model to leverage BERT [Devl19]
for encoding the referring expressions. They have shown that using BERT instead of a bidirectional
LSTM fed with GloVe embeddings [Penn14], which is a common practice in related works, brings
significant improvements to the final segmentation. In the present Master thesis, RefVOS is the model
used for the conducted experiments which aim at evaluating the proposed method and the generated
synthetic dataset. A visual description of the architecture of RefVOS is depicted in Figure 2.3.

RefVOS is a frame-based model which uses DeepLabv3 [Chenl7b] as its visual encoder. Con-
volutional Neural Networks deployed in fully convolutional fashion have shown to be effective for
the task of semantic segmentation. However, the repeated combination of max-pooling and striding
at consecutive layers of these networks significantly reduces the spatial resolution of the resulting
feature maps. In order to recover the spatial resolution, deconvolutional (or transposed convolution)
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Figure 2.2: Illustration of atrous convolution with rates 1 (standard convolution), 6 and 24.

layers [Zeil11] have been employed in previous works using also skip connections to combine high
resolution features from the contracting path to the upsampled output [Longl5, Nohl5, Ronnl5].
Instead of decreasing and then increasing the feature maps spatial resolution, DeepLabv3 uses
“atrous convolution”, which was originally developed for the efficient computation of the undecimated
wavelet transform in the “algorithme a trous” scheme [Hols90] and then used in the convolutional
neural networks context [Gius13, Serm13, Papal5]. Considering two-dimensional signals, for each
location 7 on the output y and a filter w, atrous convolution is applied over the input feature map x as:

ylil = afi+r- klwlk] (2.1)

k

where atrous rate r corresponds to the stride with which the input signal is sampled. This is equivalent
to convolving the input x with upsampled filters produced by inserting » — 1 zeros between two
consecutive filter values along each spatial dimension (hence the name “atrous convolution” where
the French word “trous” means holes in English). Typical convolution is a special case of Equation 2.1
where » = 1. A visualization of atrous convolution with different atrous rates can be seen in Figure
2.2. By increasing the atrous rate r, one is able to use a wider field-of-view without the need to apply
multiple convolutions or use larger kernels, i.e. without increasing the computational cost.

As seen in Figure 2.3 (top branch), DeepLabv3 applies four parallel atrous convolutions with dif-
ferent atrous rates, an architecture called Atrous Spatial Pyramid Pooling (ASPP) initially proposed
in the first version of DeepLab [Chenl7a], which is used in order to effectively capture multi-scale
information. Besides the three 3 x 3 atrous convolutions, a 1 x 1 convolution and a global average
pooling layer are involved. The features extracted from the five different operations are further pro-
cessed in separate branches and fused to generate the final result. RefVOS model applies the ASPP
architecture with atrous rates of 12, 24 and 36, as depicted in Figure 2.3.

The authors of DeepLabv3 also introduce the term of output stride to denote the ratio of input
image resolution to the final feature map output resolution. Typical CNN architectures used for clas-
sification have an output stride of 32, meaning that the dimension of final feature responses, before
fully connected layers, is 32 times smaller than the respective of the input image. Atrous convolu-
tions, from the other side, allow to extract dense features without significantly decreasing the spatial
resolution. RefVOS [Bell20] uses the architecture of DeepLabv3 with an output stride of eight.

Finally, in order to recover feature maps to the original image resolution for efficient segmen-
tation, DeepLabv3 uses bilinear interpolation, which is sufficient in this setting because the feature
maps produced with atrous convolutions are quite smooth. This way there is no need for extra de-
convolutional (transpose convolution) layers which would increase the number of parameters and
consequently memory requirements and total training time.

In order to obtain a linguistic embedding for the referring expression, RefVOS uses BERT, which
stands for Bidirectional Encoder Representations from Transformers, and is a state-of-the-art language
representation model presented by Devlin ef al. [Devl19] (Google Al). Language model pre-training
has been shown to be effective for improving performance in several natural language processing
tasks. Before the publication of BERT, two typical strategies for applying pre-trained language rep-
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Figure 2.3: Architecture of the RefVOS model [Bell20].

resentations to downstream tasks were used: (i) feature-based, such as ELMo [Petel8] and (ii) fine-
tuning, such as the Generative Pre-trained Transformer (OpenAl GPT) [Radf18].

The aforementioned approaches share the same objective function during pre-training, where they
use unidirectional language models to learn general language representations. This means that they
look at a text sequence either from left to right or combined left-to-right and right-to-left while training.
In contrast, BERT is applying a bidirectional training and its performance in several downstream tasks
shows that a language model which is bidirectionally trained can have a deeper sense of language
context and flow than a single-direction language model.

BERT makes use of Transformer [Vasw17], an attention mechanism that learns contextual rela-
tions between words (or sub-words) in a text. As opposed to directional models, which read the text
input sequentially (left-to-right or right-to-left), the Transformer encoder reads the entire sequence of
words at once, therefore it is considered bidirectional. This characteristic allows the model to learn the
context of a word based on all of its surroundings (left and right of the word). In order to achieve that,
the authors of BERT, use a “masked language model” (MLM) pre-training objective, inspired by the
Cloze task [Tayl53]. The masked language model randomly masks some of the tokens from the input,
and the objective is to predict the original vocabulary id of the masked word based only on its con-
text. Unlike left-to-right language model pre-training, the MLM objective enables the representation
to fuse both left and right context, which allows a bidirectional pre-training.

Sentences given as input to BERT are transformed to token sequences. The first token of every
sequence is always a special classification token ([CLS]). The final hidden state corresponding to
this token is used as the aggregate sequence representation for classification tasks. Since in the task
of referring image/video object segmentation the whole sentence is important for the identification
of the referred object, RefVOS uses the learned embedding corresponding to the [CLS] token as its
linguistic representation, which is subsequently combined with the visual features.

The output of BERT is a 768-dimensional vector for each token of the sequence. To obtain a multi-
modal embedding, the encoded linguistic phrase is first converted to a 256-dimensional embedding
through a linear projection, in order to match the number of extracted visual features from DeepLabv3,
i.e. the feature maps. Then, the linguistic embedding is element-wise multiplied with the visual
features at every pixel position, producing a multi-modal embedding. Finally, a 1 x 1 convolutional
layer predicts two maps, one for the foreground class, i.e. the referent, and another for the background.

2.2.2 Relevant datasets
DAVIS-2017

The first dataset combining video object segmentation and referring expressions was DAVIS-
2017 [Pont17], where the name DAVIS stands for “Densely Annotated Video Segmentation”. The first
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DAVIS dataset was presented in 2016 by Perazzi et al. [Peral 6], being the first benchmark specifically
designed for the task of video object segmentation, including 50 videos with one pixel-wise annotated
object in each. In 2017 a new version of DAVIS was released by Pont-Tuset et al. [Pont17], which,
besides having a bigger number of sequences (100 additional videos), was modified to include multiple
annotated objects in its videos, in contrast with the previous version. Of course, for the task of referring
video object segmentation, which is tackled in this work, DAVIS-2017 is a more suitable benchmark,
since disambiguation between different classes of objects is one of the main challenges of this task.

DAVIS-2017 was annotated with referring expressions by Khoreva et al. [Khor18], who were
the first to propose the replacement of the first frame mask supervision with a referring expression
for the task of video object segmentation. They collected two different types of annotations from two
annotators: (i) first frame annotations which are the ones produced by only looking at the first frame of
the video and (ii) full video annotations which are produced after seeing the whole video sequence. The
annotation procedure involved a non-interactive referential two-player game setup. A first annotator
was asked to provide a language description of the object, which has a mask annotation by looking
either at the first frame or at the full video (according to the type of annotation previously described).
Then another annotator is given the first frame or full video and the corresponding description, and
is asked to identify the referred object. If the second annotator correctly identifies the target object
the expression is accepted, otherwise, it is corrected to remove ambiguity and to specify the object
uniquely.

The augmented with referring expressions DAVIS-2017 contains 1,544 referring expressions for
386 unique objects appearing in 150 videos. The average length for the first frame and full video
expressions is 5.5 and 6.3 words respectively. Although the videos of DAVIS-2017 consist of a large
number of annotated frames (69.7 on average) in comparison to other relevant datasets, its validation
set (which is used as a test set) is much smaller than the respective of other datasets, including only
30 videos. For this reason the experiments of the present work include also an evaluation on both
the training and validation sets of DAVIS-2017 (90 videos in total), for the models which are not
fine-tuned on this dataset.

A2D Sentences

Another dataset used in language-guided video object segmentation is A2D Sentences, created by
Gavrilyuk et al. [Gavr18]. This dataset is based on the Actor-Action Dataset (A2D) [Xul5], which
is a benchmark for action understanding consisting of 3,782 videos from YouTube. It includes seven
annotated actor classes considered to perform a set of eight possible actions. A2D Sentences is the
augmented version of A2D with natural language descriptions, stating what each actor is doing in each
video.

The creators of the dataset, following the guidelines of RefCOCO dataset [Kaze14], ask the anno-
tators for a discriminative referring expression of each actor instance if multiple objects are present in
a video. A2D Sentences is finally composed of 6,656 sentences for 3,782 videos and 4,825 objects.
Its sentences contain on average more words than the extended with referring exprssions DAVIS-
2017 [Khorl8] (7.3 versus 5.9). Since it is a dataset targeted for action description, its sentences
emphasize on verbs having a total of 225 different verbs.

Refer-YouTube-VOS

The last video dataset augmented with referring expressions is Refer-YouTube-VOS, created by
Seo et al. [Se020] who collected crowd-sourced referring expression for YouTube-VOS [Xul8] using
Amazon Mechanical Turk. YouTube-VOS is the largest existing benchmark for video object segmen-
tation, including more than four thousand high-resolution videos collected from YouTube with a small
duration of three to six seconds each. It includes pixel-level mask annotations for 94 different object
categories at every five frames, while its videos have a frame rate of 30 frames per second.
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In order to collect crowd-sourced referring expressions, the authors of Refer-YouTube-VOS firstly
selected around 50 annotators after performing a validation test. Each annotator was given a pair of
videos, the original video and the mask-overlaid one with the target object highlighted, and was asked
to provide a discriminative sentence within 20 words that describes the target object accurately. Sim-
ilar to Khoreva et al. [Khorl8], two types of annotations were collected, one based on the first-frame
and one on the full video. After the initial annotation, a verification and cleaning step was conducted
for all annotations, and objects which could not be localized using just the produced language expres-
sion, were excluded from the dataset. In the end, Refer-YouTube-VOS consists of 27,899 expressions,
referring to 7,451 objects in 3,975 videos, being the largest dataset with referring expressions in the
video domain. Finally, Refer-YouTube-VOS has the largest average number of words per referring
expression which is 7.5 for the first-frame annotations and 10.0 for the full-video ones.

Since YouTube-VOS, the basis of Refer-YouTube-VOS, and YouTube- VIS, the basis of the present
work’s proposed synthetic dataset, have a high overlap in their videos, the subset of Refer-YouTube-
VOS that corresponds to YouTube-VIS has served as a benchmark for a direct comparison of the
human-produced referring expressions with the respective synthetic ones proposed in the present Mas-
ter thesis.

2.3 Object Detection

Object detection is the task of locating and classifying existing objects of a certain semantic class,
as well as labeling them with rectangular bounding boxes which show the confidence of their exis-
tence. Being a classic computer vision problem, before the deep learning revolution in 2010s object
detection has been approached with other machine learning-based methods. These methods first ex-
tract hand-crafted features like Haar [Viol01] or HOG [Dala05] features and SIFT keypoints [Lowe99]
and then use machine learning techniques such as SVMs [Cort95] to do the classification.

However, after the recent advancements in deep learning, CNN-based methods have pushed the
state-of-the-art in object detection as these techniques are able to detect objects in an end-to-end fash-
ion without specifically defining features, outperforming classic computer vision methods in terms of
detection accuracy. The frameworks of deep learning-based object detection methods can be mainly
categorized into two types. The first one follows the traditional two-stage object detection pipeline,
generating region proposals at first and then classifying each proposal into different object classes.
The second considers object detection as a regression or classification problem, adopting a unified
framework to acquire final object classes and locations in one step (single-stage detectors).

Two-Stage Detectors

Regarding two-stage detectors, the first stage is called a Region Proposal Network (RPN). A RPN
takes an image (of any size) as input and outputs a set of rectangular object proposals, each with an ob-
jectness score, which measures the proposal’s membership to a known set of object classes versus the
background. Two-stage object detectors were introduced in the Selective Search work [Uijl13], while
R-CNN [Girs14] was the first work to upgrade the second-stage classifier to a convolutional neural
network yielding large gains in accuracy and introducing the deep learning era of object detection.
The RPN of R-CNN extracts nearly 2000 region proposals, warps them into a square and feeds them
to a convolutional neural network that produces a 4096-dimensional feature vector as output. Finally,
a SVM takes as input these features acting as a classifier which decides on the presence of the object
within that candidate region proposal. Besides predicting the presence of an object within the region
proposal, the algorithm also predicts four values which are offset values to increase the precision of
the bounding box. The pipeline of R-CNN is illustrated in Figure 2.4a.

Fast R-CNN [Girs15] instead of inputting 2000 region proposals to the CNN, uses the CNN to
generate a feature map from the input image. From the convolutional feature map, the region proposals
are identified and warped into squares. Then, a region of interest (Rol) pooling layer is used to reshape
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Figure 2.4: Overview of R-CNN [Girs14] and Fast R-CNN [Girs15] two-stage frameworks for object
detection.

them into a fixed size so that they can be fed into a fully connected layer. The Rol pooling operation
significantly speeds up the process as the same input feature map can be used for a big number of
region proposals of different size to finally get a list of corresponding feature maps with a fixed size.
Finally, from the Rol feature vector, a softmax layer is used to predict the class of the proposed region
and a softmax regression layer to predict the bounding box coordinates. An overview of the Fast
R-CNN network is depicted in Figure 2.4b.

Both of the above algorithms (R-CNN and Fast R-CNN) use selective search [Uijl13] to find out
the region proposals, which is a slow and time-consuming process affecting the performance of the
network. To face this bottleneck and eliminate selective search, Faster R-CNN by Ren ef al. [Renl5]
employs a fully-convolutional network as a separate region proposal network (RPN) which has the
ability to predict object bounds and scores at each position simultaneously. In this way the region
proposal stage acts in a nearly cost-free way by sharing full-image convolutional features with the de-
tection network. More specifically, for every point in the output feature map of the fully-convolutional
network, the RPN has to learn whether an object is present in the input image at its corresponding lo-
cation and estimate its size. This is done by placing a set of k£ “anchors” on the input image for each
location in the output feature map. These anchors are rectangles that indicate possible objects in var-
ious sizes and aspect ratios at this location. As the network moves through each pixel in the feature
map, it has to check whether these & corresponding anchors spanning the input image actually contain
objects, and refine these anchors’ coordinates to give bounding boxes as “object proposals” or regions
of interest. Finally, these proposals are given to a Fast R-CNN [Girs15] object detector (Figure 2.4b)
which predicts the class of the proposed region and also the bounding box coordinates. A high-level
representation of the architecture of Faster R-CNN is illustrated in Figure 2.5.

The proposed method of the present Master thesis employs Faster R-CNN in order to detect at-
tributes of the target objects which are used for the generation of synthetic referring expressions. As
explained above and depicted in Figure 2.4b, the Rol feature vector of Fast R-CNN is guided to two
sibling fully connected networks, one for the classification of the bounding box to the available object
classes and a second for the prediction of the bounding box coordinates. These two branches are called
“Rol heads” or just “heads”. The proposed method for generating referring expressions uses Faster
R-CNN extended with an attribute head by Tang et al. [Tang20] which is trained in order to detect a
number of attributes for the detected objects like for example their color.

Subsequently to the R-CNN family of object detectors, other two-stage frameworks that have
made an impact in object detection include R-FCN [Dail6] and FPN [Lin17]. R-FCN, while using
a RPN similar to the one of Faster R-CNN [Ren15], modifies the classification network to a region-
based fully convolutional detector where almost all computation is shared on the entire image, instead
of applying a costly per-region subnetwork hundreds of times. The last convolutional layer of the
detector produces position-sensitive score maps for each object class and then a position-sensitive
Rol pooling layer is appended to aggregate the responses from these score maps and predict the class,
while another convolutional layer is appended to obtain class-agnostic bounding boxes.

FPN (Feature Pyramid Network), from the other side, uses an architecture with a bottom-up path-
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Figure 2.5: Architecture of Faster R-CNN [Ren15].

way, a top-down pathway and several lateral connections to combine low-resolution and semantically
strong features with high-resolution and semantically weak features. While the bottom-up pathway is
a basic backbone convolutional network, in order to build the top-down pathway, feature maps from
higher network stages are upsampled at first and then enhanced with those of the same spatial size
from the bottom-up pathway via lateral connections. Meanwhile, FPN is independent of the back-
bone CNN architecture and can be applied to different stages of object detection (e.g. region proposal
generation) and to many other computer vision tasks (e.g. instance segmentation).

Single-Stage Detectors

The previously described two-stage frameworks are composed of several correlated steps, includ-
ing region proposal generation, feature extraction, classification and bounding box regression, which
are usually trained separately. Even in the end-to-end Faster R-CNN [Ren15], an alternating training
is still required to obtain shared convolution parameters between the RPN and detection network. As
a result, the time spent in handling different components becomes the bottleneck in real-time applica-
tions.

From the other side, single-stage frameworks based on global regression/classification, mapping
directly from image pixels to bounding box coordinates and class probabilities, can significantly re-
duce training and testing time. The most successful and influential single-stage networks for object
detection are YOLO [Redm16] and Single Shot MultiBox Detector (SSD) [Liul6]. YOLO (standing
for ““You only look once”) makes use of the whole topmost feature map to predict confidences for both
object categories and bounding boxes. The basic idea of YOLO is that it divides the input image into
an S x S grid where each grid cell is responsible for predicting the object centered in it. Each grid
cell predicts bounding boxes and their corresponding confidence scores. At the same time, regardless
of the number of boxes, C' conditional class probabilities are also predicted in each grid cell, corre-
sponding to the known classes. The final bounding boxes are produced by combining the predicted
bounding boxes and their confidences, for each grid cell, with the class probabilities. Although YOLO
runs much faster than the state-of-the art two-stage object detectors, such as Faster R-CNN [Renl15],
its detection accuracy is generally inferior as it has difficulty in dealing with small objects in groups
or objects in unseen aspect ratios, which is caused by strong spatial constraints imposed on bounding
box predictions and its relatively coarse features due to multiple downsampling operations.
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Aiming at these problems, Liu et al.proposed a Single Shot MultiBox Detector (SSD) [Liul6],
inspired by the anchors adopted in MultiBox [Erhal4], the RPN of Faster R-CNN [Ren15] and multi-
scale representations [Bell16]. Given a specific feature map, instead of fixed grids adopted in YOLO,
the SSD takes advantage of a set of default anchor boxes with different aspect ratios and scales to
discretize the output space of bounding boxes. To handle objects with various sizes, the network fuses
predictions from multiple feature maps with different resolutions. By further leveraging techniques
such as hard negative mining, data augmentation and a larger number of carefully chosen default an-
chors, SSD significantly outperforms Faster R-CNN in terms of accuracy on standard object detection
benchmarks, while being three times faster.

2.4 Synthetic Data

Synthesizing training data has been explored in numerous applications in the fields of computer
vision and natural language processing. The need of large amounts of data to train CNNs has encour-
aged the generation of synthetic datasets for solving tasks where real data cannot be easily collected.
Flying Chairs [Doso15] and SURREAL [Varo17] are examples of synthetic datasets effectively used
together with real data for the tasks of optical flow and human pose/shape estimation, respectively.
Peng et al. [Pengl5] augmented existing datasets for few-shot object detection by synthesizing im-
ages from freely available 3D CAD models of objects. While in the aforementioned works synthetic
and real data are mixed, Saleh ef al. [Salel8] proposed an effective way to use only synthetic data
for semantic segmentation, by differentiating between foreground and background classes and us-
ing a detection-based approach. An enhanced Generative Adversarial Network (GAN) was used by
Shrivastava et al. [Shril 7] aiming to reduce the domain gap between real and synthetic images. The
authors showed the effectiveness of their method in the tasks of gaze and hand pose estimation. In a
more recent work, Khoreva et al. [Khor19] recommend a training strategy using fewer in-domain than
large-scale out-of-domain data, by exploiting the provided annotation on the first frame of a video to
synthesize realistic future video frames.

Synthetic linguistic data have also been used for training deep models on vision & language tasks.
Fried et al. [Friel 8] proposed a speaker-follower model to synthesize instructions for the task of vision-
and-language-navigation. Silberer and Pinkal [Silb18] addressed the task of visual semantic role la-
beling and proved the effectiveness of training with synthetic data automatically created by applying
a natural language processing model to image captions.

A highly related work to the present Master thesis is PhraseCut [Wu20]. Its authors address the
task of language-guided image segmentation and create synthetic referring phrases for the images of

walking people zebra lying on savanna

black shirt

short deer wipers on trains

Figure 2.6: Examples from the PhraseCut dataset [Wu20]. Referring phrases are produced by com-
bining object categories (brown text), attributes (blue text) and relationships (green text) with other
objects.
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Visual Genome dataset [Kris17] by combining the ground-truth (annotated by humans) object cate-
gories, attributes and relationships between them. Examples from the PhraseCut dataset are provided
in Figure 2.6. Since the dataset targets the segmentation of image regions and not only objects, the
generated expressions can refer to multiple objects, therefore they cannot be considered referring ex-
pressions, according to the definition given in Section 1.2. Another main difference between Phrase-
Cut and the work of the present Master thesis is that the proposed method of the present work is
dataset-independent and can be applied to any existing dataset that includes labeled object categories
and bounding boxes.
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Chapter 3

Proposed Method and Generated Dataset

3.1 YouTube-VIS Dataset

The dataset used for the generation of synthetic referring expressions is YouTube-VIS [Yang19],
which is created on top of the large-scale video object segmentation dataset called YouTube-VOS
[Xul8]. YouTube-VOS is the largest existing benchmark for video object segmentation, including
more than four thousand high-resolution videos collected from YouTube with a small duration of 3-6
seconds each. Although YouTube-VOS contains pixel-level mask annotations for 94 different object
categories, the reason that YouTube-VIS was preferred for creating synthetic referring expressions,
is that the former is not exhaustively annotated, meaning that not all objects appearing in a video
(belonging to those 94 categories) have a corresponding bounding box and segmentation mask anno-
tation.

In contrast, YouTube-VIS, despite having a smaller category set of 40 common objects, it has
the advantage that all instances belonging to those categories are labeled. In this way it serves as a
very good data source for the task of generating synthetic referring expressions, as it is necessary to
combine the information of all the present objects in a video frame in order to create valid referring
expressions. YouTube-VIS totally consists of 2,883 videos with 4,883 unique objects belonging to
40 categories and approximately 131K object masks. However, since ground-truth annotations for all
the frames are necessary to apply our proposed method, only the training set of YouTube-VIS can be
used for this task which includes 2,238 videos with 3,374 annotated objects appearing in them.

YouTube-VI5 (training set): Historgram of instances per video
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Figure 3.1: Histogram of object instances per video for the YouTube-VIS [Yang19] dataset.
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Figure 3.2: Overview of the proposed method for generating synthetic referring expressions. Top:
Ground truth labels (object class + bounding boxes) are used to compute a target object’s relative
location and size. Bottom: A Faster R-CNN object detector with attribute head outputs attributes for
the detected objects, which are filtered by the ground truth annotations. The combined cues create a
set of referring expressions that uniquely identify the target object.

3.2 Proposed Method

The proposed method takes advantage of the ground-truth annotations of YouTube-VIS [Yang19]
in order to generate synthetic referring expressions for the objects appearing in its videos. Specifi-
cally, the classes and bounding boxes of the target and other objects present in the frame are used in
order to determine a set of cues which, when combined, are able to generate a referring expression
that is close to a natural language expression. Also, Faster R-CNN [Renl5] (described in Section
2.3), enhanced with an attribute head by Tang et al. [Tang20], is employed for detecting attributes of
the target object. The overview of the method and the cues used for generating synthetic referring
expressions are illustrated in Figure 3.2. Four different cues are leveraged for generating a synthetic
referring expression for a target object: (i) object class, (ii) relative size, (iii) relative location and (iv)
attributes.

3.2.1 Object class

As already mentioned, in trivial cases where a single object of a known class is present, using the
object’s class is enough in order to generate a referring expression. However, the majority of cases
involves multiple objects of the same class, thus other cues are necessary in order to disambiguate
between instances. Relative size and location of a target object with respect to other objects of the
same class are cues that can be easily computed using their bounding boxes.

3.2.2 Relative size

Relative size can be important in scenarios where multiple objects of the same class with similar
characteristics are present. In the proposed method, in order to compute the relative size of a target
object, two scenarios are considered:

1. If there is only one more object of the same class as the target, the areas of the bounding boxes
of the two objects (target and other) are computed and compared. If the area A; of the target

object’s bounding box compared to the area A, of the other object’s bounding box is twice as
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big (A; >= 2A,) or small (A; <= 0.54,), then a characterization of “bigger” or “smaller”
is added to the synthetic referring expression respectively. Otherwise (0.54, < A; < 24,),
relative size is considered not applicable and is not included in the synthetic referring expression.

2. Ifthereare N >= 2 other objects of the same class as the target, the area A; of the target object’s
bounding box is compared to the areas A’ fori = 1,..., N of all the other objects’ bounding
boxes. Then, only if the area of the target object’s bounding box is two times bigger or smaller
from the areas of each of the other objects’ bounding boxes (Ai >= 2A! fori = 1,...,N or
Al <= 0.5A% fori = 1,..., N) a characterization of “the biggest” or “the smallest” is added
to the synthetic referring expression respectively.

3.2.3 Relative location

In scenarios where two or three objects of the same class are present in a particular video frame,
relative location between these objects can be used in order to disambiguate between them. If the
bounding boxes of the objects are fully separable, or partially above a certain threshold, then it is
assumed that relative location of the referent with respect to the other object(s) of the same class can
be used in order to generate a non-ambiguous referring phrase. In this case, the steps for determining
relative location are the following:

1. The pixel indices of the boundaries of the target and the other object’s bounding boxes are
considered in order to determine which axis (X or Y') is the most separative between them.

2. Then, three scenarios are considered:

(1) Bounding boxes are fully separable on the determined axis: If X-axis is the most separa-
tive and the target object’s bounding box pixel indices on the X -axis are smaller than those
of the other object’s, then relative location will be “on the left ”. Otherwise, if the indices
are bigger, it will be “on the right”. If Y -axis is the most separative and the target object’s
bounding box pixel indices on the Y -axis are smaller than those of the other object’s, then
relative location will be “in the back”, otherwise, “in the front”.

(i) Bounding boxes are partially separable on the determined axis: The degree of separation
between the two bounding boxes is calculated by finding the maximum non-overlapping
distance between the two bounding boxes. If this value is above a fixed threshold of 50
pixels, then relative location is applicable and one of the four options mentioned above
is selected, according to the determined axis and the location of the boundaries. If the
maximum non-overlapping distance is smaller than 50 pixels, relative location is not ap-
plicable.

(iii) Bounding boxes are not separable: This implies that one bounding box is enclosed inside
the other. Relative location is not applicable in this case.

3. If there are two other objects of the same class, besides the referent, steps 1 & 2 are computed
between the referent and each of the two other objects and the results are combined. In such
a case, if the referent is located, for example, on the right of the first other object and on the
left of the second one, then its relative location will be “in the middle”. In a similar way more
combinations of the 4 basic relative locations mentioned in step 2 can occur, e.g. “in the front
left”, “in the back right”, etc.

While the choice of “left” and “right” for the X -axis is trivial, “back” and “front” were selected
for the Y'-axis as they were found to be the most frequently used words for determining relative loca-
tion in the Y -axis in referring expressions of DAVIS-2017 [Khor18] and A2D Sentences [Gavrl8].
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3.2.4 Attributes

Attributes like the color of an object have been proved to be important for the task of referring
image/video object segmentation [Bell20]. In order to detect attributes for a target object, the proposed
method employs Faster R-CNN [Ren15] object detector enhanced with an attribute head by Tang et
al. [Tang20]. Faster R-CNN is pre-trained on Visual Genome [Kris17] with its attribute head enabled,
so that the model is able to predict attributes, like color, for the detected objects. Then, the pre-trained
model is run on YouTube-VIS [Yang19] to obtain, for each frame of a video, a set of detected objects
(with their bounding box coordinates) and their detected attributes. For each detected bounding box
from Faster R-CNN, its overlap with the referent’s ground truth bounding box is computed using their
Intersection-over-Union (IoU) which corresponds to the intersection area (in pixels) of the bounding
boxes divided by their union area (a detailed description of IoU is provided in Section 4.2). The
bounding box with the highest overlap is considered as the prediction which corresponds to the target
object, with the condition that IoU is over 50%. The procedure is visually explained in Figure 3.2.

The attributes predicted for the selected bounding box are filtered to color-like and non color-like
and the ones with the highest prediction score, if above 85%, are selected for the two subsets. For
color-like attributes, if the scores of the first two colors are very close, i.e. their score difference is lower
than 2%, both colors are used in the referring expression, since in many cases more than one color is
necessary to describe an object (e.g. “a yellow and green parrot”). For non color-like attributes only
the one with the highest score is selected. Non color-like attributes can be both adjectives (e.g. “large”,
“spotted”) or verbs (e.g. “walking”, “surfing”). The model is able to detect a total of 201 attributes.
An attribute is added to the referring expression of a target object only if no other objects belonging
to the same class have this attribute, so that the final expression satisfies the definition of a referring
expression which is to uniquely describe a target object.

3.2.5 Synthetic Referring Expressions

Finally, the aforementioned cues are combined in a natural order and a proper article is added to the
sentence, ending up with a complete synthetic referring expression. There might be cases where none
of the above cues are applicable for a target object and the generated synthetic language expression
may be ambiguous, although in the vast majority of cases the synthetic language expressions uniquely
identify the target object.

Since a video consists of a certain number of frames, and an object may change its location or

"a bigger dog" "a small black dog"

“a dog on the left"

"a bigger black dg on teleft"

"a Iack dog on te Ift" "a black dog"

Figure 3.3: Example of synthetic referring expressions automatically generated with the proposed
method. Multiple referring expressions can be created for the same video or even for the same frame.
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appearance throughout the video, one or more synthetic referring expressions are generated for each
frame of the video. In this way, a network can be trained with different referring expressions for the
same video or for the same frame, increasing its ability to generalize to other data. An example of
synthetic referring expressions generated with the proposed method for different frames of a video is
illustrated in Figure 3.3.

3.3 SynthRef-YouTube-VIS Dataset

Only a few datasets are available for the task of referring video object segmentation. As mentioned
in Section 2.2, Khoreva et al. [Khor18] and Gavrilyuk et al. [Gavr18] have augmented the DAVIS-
2017 [Pont17] and A2D [Xul5], J-HMDB [Jhual3] datasets respectively. However, the limited num-
ber of videos of the former and the restricted set of object categories of the latter make them unsuitable
for effectively pre-training a deep neural network for the task of referring video object segmentation.
In a concurrent work to the present Master thesis, Seo et al. [Se020] presented Refer-YouTube-VOS,
which is the first large-scale dataset created for the task of referring video object segmentation. They
employed Amazon Mechanical Turk to collect referring expressions for YouTube-VOS [Xul8], which
consists of a large number of videos and object categories.

One can understand that annotating a dataset such as YouTube-VOS, which includes 4,519 videos
and nearly 7,500 objects, involves a big annotation cost in terms of money and/or time. On the
contrary, the proposed dataset of synthetic referring expressions, which we call SynthRef-YouTube-
VIS, is created without any additional human annotation cost. SynthRef-YouTube-VIS is based on
YouTube-VIS [Yang19], a subset of YouTube-VOS [Xul8], originally used for the task of video in-
stance segmentation. The method used for generating SynthRef-YouTube-VIS is described in de-
tail in Section 3.2, while a qualitative comparison of the synthetic referring expression of SynthRef-
YouTube-VIS and the human-produced ones of Refer-YouTube-VOS for the same videos is illustrated
in Figure 3.4.

Human: “a baby panda eating beside an adult panda”
Synthetic: “a smaller giant panda on the right”

Human: “the ape behind the pole”
Synthetic: “a bigger ape”

Human: “a person skateboarding with a white helmet”
Synthetic: “a person in red skateboarding”

Figure 3.4: Comparison of human-produced referring expressions of Refer-YouTube-VOS [Se020]
with synthetic ones generated with the proposed method.
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Figure 3.5: Histogram of object instances by each class in SynthRef-YouTube- VIS train and validation
sets.

The official training set of YouTube-VIS is used for the creation of SynthRef-YouTube-VIS, since
ground-truth annotations for all the frames are necessary in order to apply our proposed method. In
this way, SynthRef-YouTube-VIS consists of 2,238 videos with 3,374 annotated objects appearing in
them. The dataset is further split in a train and test set for the experiments having 1791 training and
447 testing videos. As seen in Figure 3.5, all classes appear both in the training and the test set, in
contrast to DAVIS-2017 [Pont17] where there exist object classes in the validation set that are never
seen during training (see Figure 4.2 of Section 4.3).

A statistical analysis and comparison between the proposed synthetic dataset and other referring
video object segmentation datasets, which have been described in detail in Section 2.2.2, is illustrated
in Table 3.1. J-HMDB [Jhual3] is not included in the analysis since its videos only contain one
annotated object and thus is not suited for multi-instance segmentation.

Dataset Videos Objects Classes RE Type REs REs/Object
A2D Sentences [Gavrl8] 3,782 4,825 8 Human 6,656 1.4
DAVIS-2017 [Khor18] 150 386 78 Human 1,544 4.0
Refer-YouTube-VOS [Se020] 3,975 7,451 94 Human 27,899 3.7
SynthRef-YouTube-VIS (Ours) 2,238 3,774 40 Synthetic 15,798 4.2

Table 3.1: Statistics of the proposed dataset and comparison to existing ones. The last column indicates
the average number of unique referring expressions (REs) per object.

As depicted in Table 3.1, the proposed synthetic dataset includes a total of 15,798 unique referring
expressions for all 3,774 objects of YouTube-VIS training set. This number is quite higher than the
respective number of A2D Sentences [Gavr18] and DAVIS-2017 [Khor18]. Although it is smaller than
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Refer-YouTube-VOS [Seo020] in terms of videos and total number of expressions, SynthRef-YouTube-
VIS still has the highest average number of unique referring expressions per annotated object, which is
4.2. Finally, the average number of words of the synthetic referring expressions of SynthRef-YouTube-
VIS is 4.4, which is smaller than the respective of the other datasets. This is reasonable as the goal
of the proposed method is to generate simple and efficient synthetic referring expressions, using only
the previously described cues (object class, relative size/location and attributes).
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Chapter 4

Experimental Results

4.1 Training Details

The experiments of the present work intend to assess the benefits of training a model for the task
of referring video object segmentation using the synthetic referring expressions generated with the
proposed method. The model used in the experiments is RefVOS [Bell20], which is described in
detail in Section 2.2. Two types of experiments are conducted:

1. The first experiment consists of using the generated synthetic dataset, SynthRef-YouTube-VIS,
as an extra dataset for training a model which is already pre-trained with real (i.e. human-
produced) referring expressions and evaluating its performance on DAVIS-2017 [Khor18] and
A2D Sentences [Gavrl8].

2. In the second experiment, the model is trained, on the one hand, using only the proposed syn-
thetic data and, on the other hand, using only real data. Both models are evaluated on the real
referring expressions of Refer-YouTube-VOS [Se020] in order to compare the performance of
training on human versus synthetic referring expressions, on the same dataset.

Finally, an ablation study of different settings while pre-training with the synthetic referring ex-
pressions is also presented as well as an analysis of the impact of the information included in the
referring expressions on the segmentation accuracy.

4.1.1 Pre-training

Pre-training a deep neural network on a large dataset before fine-tuning it on a smaller one is a
common technique used in deep learning. As explained in the previous chapters, the present work
assesses how human and synthetic referring expressions can be used together or interchangeably for
pre-training a model for the task of referring video object segmentation. The two datasets used in
the experiments for pre-training are RefCOCO [Kazel4] and SynthRef-YouTube-VIS, which is the
synthetic dataset generated with the proposed method.

For pre-training the RefVOS model [Bell20], a batch size of eight video frames is used, which are
resized and then cropped/padded to a final resolution of 480x480. The large crop size is necessary for
the visual encoder (DeepLabv3 [Chenl7b]), so that atrous convolutions (see Section 2.2 for details)
with large rates are effective. Otherwise, the filter weights with a large atrous rate are mostly applied to
the padded zero region of the image or frame. The loss function employed is the binary cross-entropy
loss since the model predicts two classes, one for the foreground which corresponds to the target
object and one for the background. The optimizer employed is stochastic gradient descent (SGD)
with a momentum of 0.9.

The learning rate values and schedule depend on the dataset and the training step, i.e. if the model
is already trained on other data or not. When pre-training from scratch on RefCOCO or SynthRef-
YouTube-VIS, an initial learning rate is set to 0.01 and is decreased by 4 x 10~ at every epoch for a
total of 24 epochs. For training on SynthRef-YouTube-VIS after a first pre-training on RefCOCO, a
smaller learning rate of 10~ is used, which is linearly decreased by 4 x 10~° after every epoch for
20 epochs.
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4.1.2 Fine-tuning on the Evaluation Datasets

After the pre-training phase and before evaluating the model on a target dataset, it is a common
practice to also train the model on the target dataset, a process which is called fine-tuning. The exper-
iments conducted assess the model’s performance both when fine-tuning or not on the target dataset
before the evaluation. The batch size, optimizer and loss function are the same as the ones used in the
pre-training phase of the model and only the learning rate policy is adjusted to the target dataset.

For the evaluation of the proposed method and dataset three benchmarks on video object segmen-
tation are used, which have been further extended with referring expressions from previous works.
Two of these benchmarks are used for the first experiment where RefVOS (the model used) is pre-
trained either on RefCOCO [Kaze14] or SynthRef-YouTube-VIS or both of them. The first dataset is
DAVIS-2017 [Khor18] and the second is A2D Sentences [Gavrl8]. For fine-tuning on DAVIS-2017
the learning rate starts from 10~ and is decreased to 1075 after 10 epochs, training for a total of 15
epochs. For A2D Sentences, the learning rate is set to 10~ and is linearly decreased by 4 x 1076 after
every epoch, for 20 epochs in total. The third dataset is Refer-YouTube-VOS [Seo020] and it is used
for the second experiment as described above. Since in this experiment the model is not pre-trained on
RefCOCO, the same learning rate policy as when pre-training with SynthRef-YouTube-VIS is used,
which is, starting the learning rate from 0.01 and decreasing it by 4 x 10~ at every epoch for a total
of 24 epochs.

4.2 Quantitative Evaluation Metrics

In the task of object segmentation, given a ground truth mask G and a predicted segmentation mask
M, the typical evaluation process includes two measures, as proposed by Perazzi et al. [Peral6]:

1. Region Similarity J: The similarity of the ground truth and predicted segmentation regions is
measured using the Jaccard Index 7 defined as the Intersection-over-Union (IoU) of the two
regions i.e.:

_ IMNg]

J = IMUG|

2. Contour accuracy F: The predicted segmentation mask M can be interpreted as a set of closed
contours c(M) delimiting the spatial extent of the mask. Then, the contour-based precision and
P. and recall R, between the contour points of ¢(M) and ¢(G) can be computed using a bipartite
graph matching, which is approximated via morphology operators for efficiency [Peral6]. The
final accuracy is the typical F'-measure (or F} score) defined as:

_ 2P.R,
~ P.+R.

Based on the above measures, the following metrics are being used in the experiments for the
evaluation of the proposed method and the comparison to existing approaches:

e Precision@X : Given a threshold X in the range [0.5,0.9], a predicted mask for an object is
counted as true positive if its 7 is larger than X, and as false positive otherwise. Then, Preci-
sion@X is computed as the ratio between the number of true positives and the total number of
instances.

e Overall J(IoU) : Total intersection area of all objects divided by the total union area.

o Mean J (IoU): Average of the 7 measure (IoU) of all objects so that large and small regions
are treated equally.

o J&F: The average of the mean region based similarity (Mean 7 and the mean contour accu-
racy (Mean F).

50



The evaluation metrics in each experiment are selected according to the target dataset, so that a
comparison with previous works is possible.

Area of Overlap
loU =

Area of Union

Figure 4.1: Visual explanation of the Intersection-over-Union (IoU) or Jaccard Index (J)

4.3 Quantitative Results

Quantitative results, which are organized according to the target dataset, are presented below.
The DAVIS-2017 [Khor18] and A2D Sentences [Gavr18] datasets correspond to the first experiment
whereas Refer-YouTube-VOS [Se020] corresponds to the second.

DAVIS-2017 Validation

Results obtained in DAVIS-2017 validation set are compared with previous works from Khoreva
et al. [Khorl8], Seo et al. [Se020] and Bellver et al. [Bell20] in Table 4.1. Previous works follow
a standard approach, that is, pre-training a model on RefCOCO [Kaze14] and then fine-tuning on
DAVIS-2017. Performance is also assessed when the model is not fine-tuned on the target dataset but
only pre-trained either with human or both human and synthetic referring expressions.

By adding the synthetic referring expressions of SynthRef-YouTube-VIS in the pre-training phase
and without fine-tuning on DAVIS-2017, a significant gain of 4% is observed from the respective
model of [Bell20] (40.8) which is pretrained only on RefCOCO. The obtained J&F' of 44.8 also
outperforms the best models provided by Khoreva et al. [Khor18] (39.3) and Seo et al. [Se020] when
their model is pretrained on RefCOCO (44.1). It should be underlined that both previous models
have been fine-tuned on DAVIS-2017 in contrast to the proposed one. When the proposed pre-trained
model is also fine-tuned on DAVIS-2017 performance slightly increases from 44.8 to 45.3.

Pretrain +Pretrain
Model RefCOCO SynthRef-YouTube-VIS +Ft DAVIS J&F
RefVOS [Bell20] v 40.8
RefVOS (Ours) v v 44.8
Khoreva et al. [Khorl8] v v 39.3
URVOS [Se020] v v 44.1
RefVOS [Bell20] v v 45.1
RefVOS (Ours) v v v 45.3

Table 4.1: Quantitative results when pre-training with our synthetic referring expressions and evalu-
ating on DAVIS-2017 validation set.
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DAVIS-2017 Object Classes
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Training Set

Figure 4.2: Venn diagram of the object classes in DAVIS-2017 training and validation sets.

DAVIS-2017 Training & Validation

Since the validation set of DAVIS-2017 consists of only 30 videos with 21 object classes, an
evaluation on the 120 videos of the whole DAVIS-2017 (training plus validation sets) was also per-
formed, for the models which were not fine-tuned on this dataset. As illustrated in the Venn diagram
of Figure 4.2, DAVIS-2017 training set has 30 object classes that do not appear in the validation set.
By evaluating on both training and validation splits of DAVIS-2017, a total of 51 object classes are
included.

The results of this experiment are summarized in Table 4.2 confirming that pre-training with the
generated synthetic dataset helps the model generalize better in a new set of data, as J&F' increases
5 points, from 33.6 to 38.6. The performance when the model is pre-trained only on the synthetic
referring expressions of SynthRef-YouTube-VIS is also assessed in the second row of Table 4.2. It is
observed that the performance (27.0) is lower than when pretraining on RefCOCO (33.6), i.e. on real
data, but it is still comparable, if one takes into account the annotation cost of the two datasets, which
in this case (i.e. using only generated synthetic referring expressions) is equal to zero.

Pretraining J&F
RefCOCO 33.6
SynthRef-YouTube-VIS 27.0
RefCOCO+SynthRef-YouTube-VIS 38.6

Table 4.2: Results on the training + validation sets of DAVIS-2017, without fine-tuning.

A2D Sentences

The same experiment is also conducted using the A2D Sentences dataset [Gavrl8]. At first, the
same model which was tested on DAVIS-2017, that is only pre-trained on RefCOCO [Kazel4] and
SynthRef-YouTube-VIS, is evaluated on the A2D Sentences test set, without fine-tuning. Then, in
a second setup, this model is also fine-tuned on A2D Sentences training set. Precision at several
thresholds and the Overall and Mean IoU (J) are reported in order to be able to compare the obtained
results with previous works.
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Results are reported in Table 4.3. The first two rows represent the performance without fine-
tuning on the target dataset (A2D Sentences). In this case it is observed that a second pre-training
of the model using the proposed synthetic dataset increases the Mean IoU by 12 points (from 25.6 to
37.6), the Overall loU by 8 points (from 41.4 to 49.4) as well as the Precision for all thresholds. This
result confirms that the synthetic data generated with the proposed method help the model to generalize
in a new dataset. This can be very important in a scenario where training data is not available for the
target dataset due to money or time constraints, as an extra pre-training with the proposed synthetic
dataset could give a significant increase to the segmentation accuracy.

The last two rows of Table 4.3 show the results obtained when further fine-tuning on the target
dataset. It is noticed that the performance is increased when fine-tuning on the target dataset, both
when synthetic data are used for pre-training or not (a result obtained by Bellver et al. [Bell20]). How-
ever, in contrast with DAVIS-2017 (Table 4.1), on A2D Sentences the synthetic data do not increase
the performance when fine-tuning on the target dataset. This can be explained from the nature of
A2D Sentences dataset and the type of its referring expressions. As already mentioned in Subsection
2.2.2, this dataset was created with the purpose of action description/recognition rather than object
identification, thus its expressions are quite different than the respective of RefCOCO and SynthRef-
YouTube-VIS, including mostly verbs and less attributes.

Training Prec Prec Prec Prec Prec Overall Mean
@0.5 @0.6 @0.7 @0.8 @0.9 J J
RefCOCO [Bell20] 279 241 197 12,6 34 41.4 25.6
RefCOCO + SynthRef-YouTube-VIS 428 360 27.0 158 3.5 49.4 37.6
RefCOCO + ft. A2D [Bell20] 578 531 456 310 93 67.2 49.7

RefCOCO + SynthRef-YouTube-VIS + ft. A2D 540 478 379 229 5.0 64.1 45.4

Table 4.3: Results on A2D Sentences dataset confirm the advantage of pre-training with synthetic
data when fine-tuning on the target dataset is not applicable.

Refer-YouTube-VOS

The second experiment focuses on comparing the generated synthetic referring expressions against
the human-produced ones for the same videos. This comparison is achieved by using Refer-YouTube-
VOS [Seo020] whose videos overlap with the respective ones from the proposed synthetic dataset,
namely SynthRef-YouTube-VIS.

By using the subset of Refer-YouTube-VOS that corresponds to SynthRef-YouTube-VIS, two dif-
ferent models are trained: one model is trained using the human-produced referring expressions of
Refer-YouTube-VOS, whereas a second model is trained using only the generated synthetic expres-
sions of SynthRef-YouTube-VIS. The evaluation is done on the test split of SynthRef-YouTube-VIS
but using the human-produced expressions of Refer-YouTube-VOS for both models in order to achieve
a fair comparison. Since both human and synthetic referring expressions are available for the same
videos, this result can be a measure of the domain gap between real and synthetic data for training.

Prec@ Prec@ Prec@ Prec@ Prec@ Overall Mean
Referring Expressions 0.5 0.6 0.7 0.8 0.9 IoU IoU

Synthetic 3227 2405 16.30 8.48 1.82 40.12  35.02
Human 38.61 31.69 2454 16.71 6.87 41.73  39.46

Table 4.4: Comparison of the performance on the subset of Refer-YouTube-VOS corresponding to
SynthRef-YouTube- VIS, when training with synthetic and human referring expressions.
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Results from this experiment are reported in Table 4.4. The results indicate that, even though the
model trained on human referring expressions outperforms the model trained on synthetic ones, the
drop in segmentation accuracy is not that big to prevent the use of the proposed synthetic data for
training. On the contrary, the obtained numbers show that synthetic referring expressions generated
with the proposed method can be used interchangeably with human ones when the latter are hard to
acquire because of time and/or money constraints.

a g|r| in the middle weanng a Iab coat and a black shirt” a g|r| in the middle wearing a Iab coat and a black shirt”

TR 3 5 3 : -

Nl BVl =
(a) Pretrained on RefCOCO (b) Pretrained on RefCOCO-+SynthRef-YouTube-VIS
Figure 4.3: Qualitative results on DAVIS-2017. Subfigure 4.3a (left) shows results when the model

is pre-trained only on RefCOCO, while Subfigure 4.3b (right) when it is also trained on the proposed
synthetic dataset.
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Figure 4.4: Qualitative results on A2D Sentences. The model in the left subfigure is pre-trained
only on RefCOCO, while the model in the right subfigure is also trained with the generated synthetic
referring expressions.
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4.4 Qualitative Results

Qualitative results from DAVIS-2017 validation set [Khor18] are illustrated in Figure 4.3. These
images are outputs of the experiment which corresponds to the first two rows of Table 4.1. The im-
provement of the segmentation masks for the referred objects is significant as is depicted in Subfigure
4.3b where the model is also pre-trained using the synthetic referring expressions. This is reflected
both in the ability of the model to identify the referred instance (first and last row) but also in correctly
segmenting the contour of the target object (second row).

Similar results for the A2D Sentences [Gavrl8] dataset are depicted in Figure 4.4. The illustrated
video frames correspond to the experiments reported on the first two rows of Table 4.3, where the
model is either pre-trained only on RefCOCO [Kazel4], or it is also pre-trained with the proposed
synthetic dataset. It can be easily observed that the segmentation results of the latter setup (Subfigure
4.4b) are superior compared to the the former.

4.5 Ablation Study

Synthetic Referring Expressions Analysis

In order to evaluate the effect of the information included in the synthetic referring expressions,
experiments with different amount of information were conducted, starting from a baseline where
the synthetic referring expressions consist of just the object class e.g. “a dog”. Then in the second
experiment, relative size and location are added and in the third and last experiment attributes are
included too. The model used in these experiments is first pre-trained on RefCOCO, then trained with
the synthetic referring expressions of SynthRef-YouTube-VIS, using different amount of information
in each experiment, as explained above, and it is finally fine-tuned on the training set of DAVIS-2017
and evaluated on the validation set.

Results in Table 4.5 indicate that performance gradually increases with the amount of information
provided in the synthetic referring expressions. This is explained because of the fact that in cases where
multiple objects of the same class are present in a video, bigger amount of information is necessary
in order to unambiguously identify a specific object. It is also remarkable that the final segmentation
accuracy in DAVIS-2017 is high, even when only the object class is used as referring expression,
during pre-training with SynthRef-YouTube-VIS. This happens for two reasons. The first is that the
model is already pre-trained on RefCOCO and the second is that DAVIS-2017 validation set includes
several videos where only one object instance from each class appears.

Referring Expression Information J&F

Obj. Class 42.0
+ Relative Size + Relative Location 43.5
+ Attributes 453

Table 4.5: Effect of the information included in the synthetic referring expressions on the final per-
formance on DAVIS-2017 validation set.

Freezing the language branch

A common approach when fine-tuning a model on a target dataset after firstly pre-training on
another one, is to freeze some of the layers in order to avoid overfitting to the target data. This is also
done for reducing the amount of time and memory a model needs to train, since by freezing some of
the layers, less parameters need to be calculated.

In the present work, a freezing of the language encoder layers (i.e. BERT model [Devl19]) is
assessed with the hypothesis that this way the model could avoid overfitting to the synthetic referring
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expressions when it is already pre-trained on RefCOCO [Kazel4] (i.e. human-produced referring
expressions). More specifically, the same configurations corresponding to the first experiment (as
explained in Section 4.1) were repeated with freezing the language branch and fine-tuning only the
visual one as well as the final layers after the multi-modal embedding is obtained.

However, results on DAVIS-2017 [Khor18] and A2D Sentences [Gavrl8] datasets have shown
that the effect on the segmentation accuracy is negligible. The results are summarized in Table 4.6.
In DAVIS-2017, fine-tuning BERT while pre-training with the proposed synthetic data yields slightly
better results, both when fine-tuning (the whole model) on the target dataset or not. On the contrary,
in A2D Sentences the segmentation accuracy is slightly better when the language encoder layers are
frozen during the pre-training using the synthetic referring expressions, regardless of whether the
model is fine-tuned on A2D Sentences or not. The different behaviour than DAVIS-2017, as previ-
ously explained, can be justified from the fact that the proposed synthetic referring expressions are
more similar to the ones of DAVIS-2017 than those of A2D Sentences, whose phrases intend to de-
scribe actions, containing a lot of verbs and less attributes. Nevertheless, similarly to DAVIS-2017,
freezing or not freezing the language encoder when pre-training with synthetic expressions brings
minor changes to the final segmentation accuracy (nearly 0.5%).

DAVIS-2017 Val | DAVIS-2017 Train+Val | A2D Sentences

No Ft. Ft. No Ft. No Ft. Ft.
BERT frozen 44.7 45.0 38.2 38.1 46.0
BERT fine-tuned  44.8 45.3 38.6 37.6 45.4

Table 4.6: Analysis of the performance when freezing the language branch while pre-training on the
proposed synthetic dataset. Results are split by target dataset and whether the model is fine-tuned on
it (Ft.) or not (No ft.). Note that when fine-tuning on the target dataset the language branch is also
fine-tuned. The reported metric for DAVIS-2017 is the J&F whereas for A2D Sentences it is the Mean
J.
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Chapter 5

Conclusions and Future Directions

This Master thesis proposes a simple yet effective method for automatically generating synthetic
referring expressions for an image or video frame and creates the first large-scale dataset with synthetic
referring expressions based on YouTube-VIS [Yangl9], a dataset for video instance segmentation.
Additionally, the synthetic dataset is evaluated by using it in the pre-training of a deep neural network
for the task of referring video object segmentation. From the experiments presented in Chapter 4,
several conclusions can be drawn for the utility of the proposed method and synthetic dataset while
future extensions of this work are also suggested.

5.1 Conclusions

The first conclusion which can be derived is that the synthetic referring expressions generated with
the proposed method can be effectively used to improve the performance of a deep neural network
on the task of referring video object segmentation. The obtained results on different benchmarks for
referring video object segmentation show that pre-training a model using the generated synthetic refer-
ring expressions, when it is additionally trained with human-produced referring expressions, increases
its ability to generalize across different datasets.

Moreover, the experimental results show that the observed gains using the synthetic referring
expressions are higher when the model is not fine-tuned on the human-produced referring expressions
of the target dataset. What can be deduced from this finding is that, a large-scale dataset of synthetic
referring expressions can be more useful in scenarios where training data for the target dataset are not
available, which can be true for many real world applications where new data from different sources
are seen at test time. This ability of applying a model trained on one source domain (e.g. one dataset)
to another target domain (e.g. another dataset) is called domain adaptation and it is a field that has
attracted much attention in the last years.

On the other hand, when directly comparing training a model with human-produced referring
expressions versus training purely on synthetic referring expressions on the same videos, it is observed
that human annotations yield better results. However, it is important to note that the proposed method
requires no additional annotation effort whereas human annotations can be unattainable in many cases
due to time or money constraints.

Finally, an ablation study concerning the information included in the synthetic referring expres-
sions, confirms that attributes of objects, like their color, are important and can significantly improve
the segmentation accuracy in the task of referring video object segmentation. This conclusion about
the role of attributes in referring expressions is reported in previous works [Bell20] and the present
work confirms the importance of attributes also in synthetic referring expressions.

5.2 Future Directions

As already mentioned in the previous chapters, the formulation of the proposed method for gen-
erating synthetic referring expressions allows its application to any other existing object detection or
segmentation dataset since only object classes and bounding boxes are required. Thus, a possible
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future direction would be to apply the proposed method to other datasets for pre-training the model,
where RefCOCO could be an option. Since the best results, presented in Chapter 4, were obtained
by pre-training the network on RefCOCO [Kaze14] (i.e. human-produced referring expressions) and
then on the proposed synthetic referring expression for the videos of YouTube-VIS [Yangl19], one
possible future work could be to produce synthetic referring expressions for the images of the Ref-
COCO dataset. This way an annotation cost-free pre-training could be made as well as a study of
the trade-off between the annotation cost and segmentation performance by using a variable ratio of
human-produced to synthetic referring expressions.

Another possible direction would be to enhance the proposed method by adding more cues to
the existing ones. An idea would be to use scene-graph generation models [Xul7, Tang20] in order
to predict relationships between the annotated objects. Scene graph generation aims at understand-
ing a visual scene through the detection of objects and the relationships between them by generat-
ing a visually-grounded scene graph where nodes represent objects and edges relationships between
them. Thus, in the same way that the proposed method predicts a set of attributes for the target ob-
jects, such a model could also detect relationships between objects, which could allow the creation
of better synthetic referring expressions by including the predicted relationships in them. An alter-
native which could also enrich the generated synthetic referring expressions could be to train the
attribute detector network on a different dataset with a bigger set of annotated attributes. For exam-
ple, the GQA dataset [Huds19] has a much bigger set of 501 attributes compared to the 201 of Visual
Genome [Kris17] which was used for training the attribute detector network of the proposed method.
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