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Modelling of structures using the Isogeometric Method

Abstract

Isogeometric Analysis was proposed as an alternative spatial discretization method,
that addresses the need for an integrated pipeline of Computer Aided Design and Com-
puter Aided Engineering industries, towards the development of efficient and reliable
structures. To this end, CAD shape functions ranging from Bézier to T-Splines are
utilized, that allow the exact geometrical representation of arbitrarily complex geome-
tries, while at the same time rendering the mesh generation procedure of other spatial
discretization techniques such as FEM obsolete. Due to the high smoothness of the
shape functions over conventional approaches, IGA has showcased significant advantages
in various computational mechanics fields such as structural dynamics, fluid mechanics
and optimization problems. In addition, the description of intricate geometries with
highly continuous shape functions, enables IGA to be effectively used for shell theories
such as Kirchhoff-Love thin shells, that required special treatment in the case of FEM.
The latter resulted in the introduction of various shell formulations, for miscellaneous
materials. Unfortunately, the strongest asset of isogeometric methods, which is the
increased interelement continuity of the shape functions, constitutes at the same time its
greatest weakness. Despite resulting in a smooth variation of the analysis characteristics
and enhanced accuracy, a significant computational burden is added to the formation
and solution of the resulting linear systems due to their increased bandwidth and reduced
sparsity patterns. This rendering the introduction of efficient solution schemes a necessity
for the establishment of isogeometric methods.

To this end, this dissertation introduces a family of methods, to address the efficient
implementation of solution schemes for the purpose of isogeometric Galerkin and colloca-
tion methods. Specifically, for the case of isogeometric Galerkin method, an appropriate
modification of the overlapping nature of NURBS shape functions is introduced, in
the form of truncated shape functions. This modification generates a non-overlapping
equivalent of the initial model that retains the same geometry, yet has reduced accuracy.
As a result,with the aid of IETI domain decomposition method, applied to the inter-
face among adjacent subdomains, the non-overlapping model can serve as an efficient
preconditioner for the PCG iterative method. In a similar fashion, a non-overlapping
decomposition of the non-symmetric matrices derived from isogeometric collocation
methods is proposed, that allows the development of a GMRES preconditioner based on
P-FETI-DP domain decomposition method. Finally, in order to unify all existing thin
shell isogeometric formulations, a framework is proposed that examines isogeometric

v



shells under the prism of semi-concurrent multiscale analysis. To this end, a nested
IGA-FEM analysis scheme is introduced, where macroscale shell modeling is performed
with isogeometric Kirchhoff-Love shell elements, while Representative Volume Elements
are discretized with solid finite elements. The required plane-stress constitutive law is
then extracted from a homogenization process, thus leading to the introduction of a
framework that can efficiently address composite materials of arbitrary microstructural
topology.
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PERILHYH THS
DIDAKTORIKHS DIATRIBHS

me tÐtlo

�ProsomoÐwsh Kataskeu¸n me thn Isogewmetrik  Mèjodo�
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KÔrioc skopìc twn upologistik¸n mejìdwn eÐnai melèth kai h ermhneÐa twn fusik¸n

fainomènwn mèsw thc majhmatik c touc montelopoÐshc. H diadikasÐa aut  suqn� odhgeÐ

sth met�frash enìc fusikoÔ fainomènou se ìrouc merik¸n diaforik¸n exis¸sewn, h lÔsh

twn opoÐwn anazhteÐtai apì majhmatikoÔc kai epist monec. H eÔresh analutik c lÔshc se

aut� ta probl mata den einai p�nta efikt  gegonìc pou od ghse touc epist monec sthn a-

n�ptuxh upologistik¸n mejìdwn. Mia apì tic plèon diadedomènec upologistikèc mejìdouc

eÐnai aut  twn Peperasmènwn StoiqeÐwn, h opoÐa diakritopoieÐ ton forèa kai prosfèrei

mia proseggistik  lÔsh thc diaforik c exÐswshc se èna peperasmèno pl joc shmeÐwn tou.

K�jwc ìmwc h poluplokìthta twn forèwn proc epÐlush aux�nei, dhmiourgeÐtai h an�gkh

miac stenìterhc sÔndeshc thc an�lushc me th sqedÐash tou prosomoi¸matoc.

H sqedÐash me th bo jeia upologist  (Computer Aided Design) eÐnai to episthmonikì

pedÐo pou èqei wc basikì stìqo th dieukìlunsh thc diadikasÐac dhmiourgÐac leptomer¸n

sqedÐwn, ekmetalleuìmenh thn teqnologik  prìodo twn upologist¸n. Mia apì tic pr¸tec

suneisforèc se autì to antikeÐmeno prot�jhke apì ton Ferguson san mia exèlixh twn

poluwnumik¸n kampul¸n. Oi kampÔlec Ferguson apoteloÔn mia eidik  kathgorÐa poluw-

numik¸n kampul¸n trÐtou bajmoÔ, oi opoÐec upologÐzontai dedomènhc thc jèshc kai thc

efaptomènhc thc kampÔlhc, sto arqikì kai telikì thc shmeÐo. H genÐkeush thc prìta-

shc aut c gia opoiod pote poluwnumikì bajmì, od ghse sth dhmiourgÐa twn kampul¸n

Hermite, ìpou gia ton to upologismì miac kampÔlhc bajmoÔ (2𝑘 + 1), qrhsimpoioÔntai 𝑘

timèc se k�je �kro thc. Par� thc saf  touc majhmatik  anapar�stash, oi poluwnumikèc

kampÔlec egkataleÐfjhkan nwrÐc apì th sqediastik  koinìthta afoÔ den jewroÔntai pra-

ktikèc gia touc skopoÔc thc sqedÐashc. To gegonìc autì autì ofeÐletai sthn majhmatik 

fÔsh twn ufist�menwn algorÐjmwn gia ton upologismì touc, oi opoÐoi ephre�zontai sh-

mantik� apì sf�lmata apokop c, eidik� se akraÐec timèc twn poluwnumik¸n suntelest¸n.

Me skopì na amblÔnoun to parap�nw meionèkthma twn poluwnumik¸n kampul¸n, prot�jh-

kan oi kampÔlec Bézier, oi opoÐec jewroÔntai isodÔnamec me tic poluwnumikèc kampÔlec

all� antimetwpÐzoun ta meionekt mata touc. Pleìn to sq ma thc kampÔlhc exart�tai mìno
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apì ta shmeÐa elègqou (control points), ta opoÐa eÐnai shmeÐa ston kartesianì trisdi�stato

q¸ro. H allag  aut  sth diadikasÐa sqedÐashc thc prosdÐdei �meso fusikì nìhma, en¸ oi

metabolèc sthn kampÔlh ulopoioÔntai eukolìtera. Epiprìsjeta, o arijmìc twn shmeÐwn

elègqou gia th dhmiourgÐa miac kampÔlhc Bézier sundèetai �mesa me ton poluwnumikì thc

bajmì kai odhgeÐ sth dhmiourgÐa kampul¸n me auxhmènh omalìthta. Dustuq¸c, autì to

pleonèkthma twn kampul¸n Bézier, apoteleÐ tautìqrona kai to megalÔtero meionèkthma

touc, kaj¸c h suneqìmenh aÔxhsh tou poluwnumikoÔ bajmoÔ dhmiourgeÐ ast�jeiec twn

algorÐjmwn, en¸ h epirro  k�je shmeÐou elègqou se olìklhro to m koc thc kampÔlhc, du-

sqairènei thn tmhmatik  allag  thc. Gia to lìgo autì, eis qjhsan oi B-Splines, oi opoÐec

apoteloÔn mia genÐkeush twn kampul¸n Bézier enìc parametrikoÔ diast matoc se peris-

sìtera. H epèktash aut  apemplèkei ton arijmì twn shmeÐwn elègqou apì ton poluwnumi-

kì bajmì thc kampÔlhc kai dÐnei th dunatìthta stouc sqediastèc na elègxoun memonomèna

tm mata thc kampÔlhc, en¸ h eisagwg  kìmbwn (knots) epitrèpei apìtomec allagèc sth

sunèqeia thc gewmetrÐac. Par' ìla aut�, h adunamÐa thc teqnologÐac twn B-Splines na

anaparast sei to sÔnolo twn kwnik¸n tom¸n, od ghse sthn an�gkh an�ptuxhc miac nèc

teqnologÐac sqedÐashc pou ja lÔnei to sugkekrimèno prìblhma. 'Etsi dhmiourg jhkan oi

NURBS. H diafor� touc me thn prohgoÔmenh teqnologÐa twn B-Splines, ègkeitai sthn

eisagwg  miac tim c b�rouc se k�je shmeÐo elègqou thc kampÔlhc. Me ton trìpo autì,

dhmiourgeÐtai mia probol  apì ton q¸ro R𝑑+1 ston R𝑑, ìpou 𝑑 oi diast�seic thc gewme-

trÐac, pou epitrèpei thn anapar�stash poluplokìterwn sqedÐwn kai kwnik¸n tom¸n. Oi

periorismoÐ twn NURBS emfanÐzontai se gewmetrÐec anwtèrwn diast�sewn, ìpwc oi epi-

f�neiec kai oi ìgkoi kaj¸c h anapar�stash miac gewmetrÐac ston parametrikì thc q¸ro,

prèpei na antistoiqeÐ se èna eujÔgrammo tm ma, orjog¸nio   kuboeidèc sq ma, gegonìc

pou periorÐzei tic dunatìthtec anapar�stashc exairetik� polÔplokwn gewmetri¸n. H pio

prìsfath teqnologÐa gewmetrik c sqedÐashc pou dhmiourg jhke, eÐnai oi T-Splines, oi

opoÐec katargoÔn thn anapar�stash tou parametrikoÔ q¸rou thc gewmetrÐac wc tanu-

stik� ginìmena monodi�statwn axìnwn ìpwc sunèbaine sta NURBS, epitrèpontac ètsi th
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gewmetrik  apeikìnish exairetik� polÔplokwn gewmetri¸n kai gia pr¸th for� thn topik 

pÔknwsh tou diktÔou thc gewmetrÐac.

Par�llhla me thn an�ptuxh thc teqnologÐac sqediasmoÔ me upologist  (𝐶𝐴𝐷), ana-

ptÔqjhke h episthmonik  perioq  thc an�lushc forèwn mhqanikoÔ me upologist  (𝐶𝐴𝐸).

H dhmiourgÐa gewmetri¸n suneq¸c auxanìmenhc poluplokìthtac apì touc sqediastèc,

dhmiourgeÐ to epiprìsjeto b�roc stouc mhqanikoÔc, thc metatrop c thc gewmetrik c

plhroforÐac se dedomèna kat�llhla gia ta logismik� an�lushc. Autì to q�sma meta-

xÔ sqedÐashc kai an�lushc, dhmioÔrghse stadiak� mia auxanìmenh apìklish metaxÔ twn

dÔo teqnologi¸n. H Isogewmetrik  An�lush prot�jhke wc mia teqnologÐa qwrik c dia-

kritopoÐhshc, h opoÐa antimetwpÐzei thn an�gkh gia mia koin  exèlixh twn teqnologi¸n

sqedÐashc kai an�lushc forèwn, me skopì na amblÔnei ta probl mata qr shc proseggi-

stik c gewmetrÐac kat� thn an�lush. Autì to epitugq�nei me th qr sh twn sunart sewn

sqedÐashc san koin  b�sh kai gia thn an�lush twn forèwn. H isogewmetrik  an�lush

emfanÐzei pollèc omoiìthtec me thn prok�toqo teqnologÐa thc, ta Peperasmèna StoiqeÐa,

kaj¸c kai oi duo apoteloÔn isoparametrikèc ulopoi seic thc mejìdou 𝐺𝑎𝑙𝑒𝑟𝑘𝑖𝑛 kai dia-

throÔn parìmoia ro  tou k¸dika kai idiìthtec, ìpwc to eÔroc diagwnÐou twn paragìmenwn

mhtr¸wn. Apì mia �llh optik , pollèc ptuqèc thc mejìdou twn peperasmènwn stoiqeÐwn

paÔoun na isqÔoun. Gia par�deigma, h teqnik  diakritopoÐhshc thc gewmetrÐac katargeÐtai,

afoÔ plèon qrhsimopoieÐtai h arqik  gewmetrÐa gia thn an�lush, en¸ oi kìmboi, pou eÐnai

ta shmeÐa elègqou, den an koun plèon kat� kanìna p�nw sth gewmetrÐa.

Gia to lìgo autì, ja oristoÔn ed¸ oi basikèc posìthtec olokl rwshc pou antistoiqoÔn

me ta isoparametrik� peperasmèna stoiqeÐa thc teqnologÐac 𝐹𝐸𝑀 . Sthn perÐptwsh twn

sunart sewn sq matoc 𝑁𝑈𝑅𝐵𝑆, ta stoiqeÐa eÐnai par�gwga tou dianÔsmatoc kìmbwn

(𝑘𝑛𝑜𝑡 𝑣𝑒𝑐𝑡𝑜𝑟). Sugkekrimèna sth monodi�stath perÐptwsh, ta stoiqeÐa orÐzontai wc ta

mh mhdenik� diast mata metaxÔ diadoqik¸n diakrit¸n tim¸n tou dianÔsmatoc kìmbwn. 'Ena

par�deigma diaqwrismoÔ enìc monodi�statou �xona se stoiqeÐa apeikonÐzetai sto Sq ma

1. Sthn perÐptwsh disdi�statwn   trisdi�statwn gewmetri¸n ta stoiqeÐa prokÔptoun se
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aut n thn perÐptwsh wc to tanustikì ginìmeno metaxÔ twn stoiqeÐwn pou èqoun dhmiourgeÐ

gia k�je èna apì touc parametrikoÔc �xonec x,h,z tou parametrikoÔ q¸rou tou forèa ìpwc

faÐnetai sto Sq ma 2.

Sq ma 1: Isogewmetrik� stoiqeÐa gia monoparametrikì �xona pou orÐzetai apì to di�nusma

kìmbwn Ξ = {0, 0, 0, 1, 2, 2, 3, 3, 3}.

Sq ma 2: Isogewmetrik� stoiqeÐa gia disdi�stato qwrÐo pou orÐzetai apì to di�nusma

kìmbwn Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 4} 𝐻 = {0, 0, 0, 1, 2, 3, 3, 3}.
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Sq ma 3: DiadikasÐa upologismoÔ twn stoiqeÐwn olokl rwshc gia sunart seic sq matoc

𝑇 − 𝑆𝑝𝑙𝑖𝑛𝑒𝑠.

Se antÐjesh me thn teqnologÐa sqedÐashc 𝑁𝑈𝑅𝐵𝑆, sthn perÐptwsh thc teqnologÐac

𝑇 −𝑆𝑝𝑙𝑖𝑛𝑒𝑠 h eÔresh twn stoiqeÐwn olokl rwshc einai arket� pio polÔplokh diadikasÐa.

Xekin� me thn eÔresh twn parametrik¸n jèsewn twn shmeÐwn elègqou pou onom�zontai

𝑎𝑛𝑐ℎ𝑜𝑟𝑠, ston q¸ro deikt¸n   𝑖𝑛𝑑𝑒𝑥. O q¸roc autìc eÐnai bohjhtikìc q¸roc thc Iso-

gewmetrik c An�lushc,o opoÐoc parousi�zei tic timèc tou dianÔsmatoc kìmbwn se Ðsec

apost�seic, anex�rthta an diadoqikèc timèc sumpÐptoun. Ta 𝑎𝑛𝑐ℎ𝑜𝑟𝑠 topojetoÔntai eÐte

sto kèntro eÐte stic akmèc twn polug¸nwn pou sqhmatÐzontai sto q¸ro deikt¸n, an�loga

me ton poluwnumikì bajmì twn sunart sewn sq matoc. Sth sunèqeia lìgw apousÐac tou

kajolikoÔ dianÔsmatoc kìmbwn, upologÐzontai ta topik� dianÔsmata kìmbwn k�je shmeÐou

elègqou. Par�deigma twn topik¸n dianusm�twn parousi�zetai sto Sq ma 3a. To tanusti-
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kì ginìmeno aut¸n twn topik¸n dianusm�twn kìmbwn orÐzei thn epif�neia epirro c k�je

sun�rthshc, ìpwc h skiagrafhmènh epif�neia pou apeikonÐzetai sto Sq ma 3b . 'Opwc

einai fanerì, h epif�neia epirro c orÐzei grammèc ston q¸ro 𝑖𝑛𝑑𝑒𝑥 pou den up rqan sto

arqikì dÐktuo. Autèc oi grammèc apokaloÔntai grammèc meiwmènhc sunèqeiac, kaj¸c sto

ìrio touc orÐzetai h sÔndesh twn tmhm�twn poluwnumik¸n sunart sewn thc teqnologÐac

𝑇 − 𝑆𝑝𝑙𝑖𝑛𝑒𝑠. To sÔnolo aut¸n twn gramm¸n, orÐzei mia nèa diamèrish se orjogwnik�

qwrÐa, tou q¸rou 𝑖𝑛𝑑𝑒𝑥 pou eÐnai kai ta zhtoÔmena stoiqeÐa olokl rwshc.

Sq ma 4: Exagwg  diktÔou stoiqeÐwn 𝐵𝑒𝑧𝑖𝑒𝑟 apo dÐktuo 𝑇 − 𝑆𝑝𝑙𝑖𝑛𝑒𝑠.

Tìso h teqnologÐa twn 𝑇 − 𝑆𝑝𝑙𝑖𝑛𝑒𝑠 ìso kai aut  twn 𝑁𝑈𝑅𝐵𝑆, apoteloÔn mia ge-

nÐkeush twn sunart sewn sqediasmoÔ 𝐵𝑒𝑧𝑖𝑒𝑟. Gia to lìgo autì, pollèc forèc kat� thn

an�lush forèwn me thn isogewmetrik  mèjodo, epilègetai h anagwg  twn stoiqeÐwn o-

lokl rwshc polÔplokwn sunart sewn se sunart seic 𝐵𝑒𝑧𝑖𝑒𝑟. Oi sunart seic 𝐵𝑒𝑧𝑖𝑒𝑟

apeikonÐzoun ton tuqaÐo parametrikì q¸ro twn sunart sewn 𝑁𝑈𝑅𝐵𝑆,𝑇 − 𝑆𝑝𝑙𝑖𝑛𝑒𝑠 ston

Ðdio parametrikì qwrÐo [−1, 1] twn peperasmènwn stoiqeÐwn, en¸ oi sunart seic sq ma-

toc eÐnai Ðdiec se ìla ta stoiqeÐa olokl rwshc kai mporoÔn na epanaqrhsimopoihjoÔn gia

ton upologismì tou mhtr¸ou stibarìthtac twn forèwn. Sto sq ma 4 parousi�zetai èna

par�deigma exagwg c stoiqeÐwn 𝐵𝑒𝑧𝑖𝑒𝑟 apì èna plègma sunart sewn 𝑇 − 𝑆𝑝𝑙𝑖𝑛𝑒𝑠.

H an�lush forèwn me thn isogewmetrik  mèjodo 𝐺𝑎𝑙𝑒𝑟𝑘𝑖𝑛, pou qrhsimopoieÐ san po-
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sìthtec olokl rwshc ta stoiqeÐa pou perigr�fhkan prohgoumènwc, èqei apodeiqjeÐ pwc

par�gei apotelèsmata, me shmantik� auxhmènh akrÐbeia an� bajmì eleujerÐac, se sqèsh me

th mèjodo twn peperasmènwn stoiqeÐwn. Autì ofeÐletai kurÐwc sthn auxhmènh sunèqeia

twn sunart sewn sq matoc, h opoÐa se sunduasmì me to mhdenismì tou gewmetrikoÔ

sf�lmatoc odhgeÐ se auxhmènh omalìthta twn qarakthristik¸n deÔterhc t�xhc, ìpwc oi

t�seic kai paramorf¸seic. Dustuq¸c, autì to pleonèkthma thc isogewmetrik c an�lushc

sunodeÔetai apì èna auxhmèno kìstoc gia th mìrfwsh twn mhtr¸wn, afoÔ ta apaitoÔme-

na shmeÐa olokl rwshc eÐnai t�xhc megèjouc perissìtera se sqèsh me ta peperasmèna

stoiqeÐa. 'Etsi h episthmonik  koinìthta, èstreye tic prosp�jeiec thc sthn an�ptuxh

enallaktik¸n trìpwn arijmhtik c olokl rwshc pou na elaqistopoioÔn to kìstoc mìr-

fwshc twn mhtr¸wn. Autì od ghse sth qr sh thc mejìdou 𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 gia thn an�lush

problhm�twn sunoriak¸n tim¸n sta plaÐsia thc isogewmetrik c an�lushc. H mèjodoc

𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 mei¸nei drastik� ton arijmì twn apaitoÔmenwn shmeÐwn olokl rwshc, pou e-

Ðnai plèon Ðsoc me ton arijmì shmeÐwn elègqou tou forèa. H basik  diafor� thc mejìdou

𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 se sqèsh me th 𝐺𝑎𝑙𝑒𝑟𝑘𝑖𝑛, eÐnai oti apaiteÐtai h ikanopoÐhsh thc isqur c mor-

f c thc diaforik c exÐswshc se periorismèno pl joc shmeÐwn. 'Etsi oi exis¸seic thc

grammik c elastikìthtac pou parousi�zontai sthn exÐswsh1,

∇ · (𝐶∇𝑆u) + f = 0 𝑖𝑛 Ω (1aþ)

u = g 𝑜𝑛 Γ𝐷 (1bþ)

(𝐶∇𝑆u) · n = h 𝑜𝑛 Γ𝑁 (1gþ)

mporoÔn na grafoÔn se mia exÐswsh wc ex c

∫︁
Ω
(𝐶∇𝑆u) : ∇𝑆w𝑑Ω =

∫︁
Ω
f ·w𝑑Ω+

∫︁
Γ𝑁

ℎ ·w𝑑Γ (2)
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en¸ kai stic duo mejìdouc 𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 kai 𝐺𝑎𝑙𝑒𝑟𝑘𝑖𝑛, o ìroc 𝑢 afor� thn parembol  tou

pedÐou twn metakin sewn me qr sh twn sunart sewn sq matoc, sthn 𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 o ìroc 𝑤

afor� tic sunart seic dokim c (𝑡𝑒𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠), oi opoÐec epilègontai na antikatastajoÔn

apì th sun�rthsh 𝐷𝑖𝑟𝑎𝑐 𝑑𝑒𝑙𝑡𝑎.

∫︁
Ω
[∇ · (𝐶∇𝑆u) + f ] ·w𝑑Ω−

∫︁
Γ𝑁

[(𝐶∇𝑆u) · n− h] ·w𝑑Γ = 0 (3)

Met� apì an�ptuxh thc teleutaÐac sqèshc, katal goume ston upologismì tou mhtr¸ou

stibarìthtac thc 𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 mèsw thc sqèshc

𝐾𝑖𝑗 =

⎧⎪⎨⎪⎩
𝐿(𝑁𝑗(𝜉𝑖𝑗)), 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑘,

n𝑖 · 𝐶∇𝑁𝑗(𝜉𝑖𝑗), 𝑓𝑜𝑟 𝑘 + 1 ≤ 𝑖 ≤ 𝑛

(4)

kai tou antÐstoiqou dianÔsmatoc exwterik¸n dr�sewn antÐstoiqa:

𝑓𝑖 =

⎧⎪⎨⎪⎩
−𝐿(𝑢̃𝐷(𝜉𝑖𝑗)) + 𝑓(𝜉𝑖𝑗), 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑘

−n𝑖 · 𝐶∇𝑢𝐷(𝜉𝑖𝑗)𝑖 + ℎ(𝜉𝑖𝑗), 𝑓𝑜𝑟 𝑘 + 1 ≤ 𝑖 ≤ 𝑛

(5)

ìpou oi telestèc 𝐿,𝐵 sth disdi�stash elastikìthta upologÐzontai wc ex c:

𝐿 =

⎛⎝(𝜆+ 2𝜇) 𝜕2

𝜕𝑥2 + 𝜇 𝜕2

𝜕𝑦2
(𝜆+ 𝜇) 𝜕2

𝜕𝑥𝜕𝑦

(𝜆+ 𝜇) 𝜕2

𝜕𝑥𝜕𝑦 (𝜆+ 2𝜇) 𝜕2

𝜕𝑦2
+ 𝜇 𝜕2

𝜕𝑥2

⎞⎠ (6)

𝐵 =

⎛⎝(𝜆+ 2𝜇)𝑛𝑥
𝜕
𝜕𝑥 + 𝜇𝑛𝑦

𝜕
𝜕𝑦 𝜆𝑛𝑥

𝜕
𝜕𝑦 + 𝜇𝑛𝑦

𝜕
𝜕𝑥

𝜆𝑛𝑦
𝜕
𝜕𝑥 + 𝜇𝑛𝑥

𝜕
𝜕𝑦 (𝜆+ 2𝜇)𝑛𝑦

𝜕
𝜕𝑦 + 𝜇𝑛𝑥

𝜕
𝜕𝑥

⎞⎠ (7)

Met� thn antimet¸pish tou zht matoc thc apodotik c mìrfwshc twn mhtr¸wn stiba-

rìthtac, èna deÔtero z thma pou egeÐretai afor� thn apodotik  epÐlush twn grammik¸n

susthm�twn pou prokÔptoun. Se antÐjesh me th mèdodo twn peperasmènwn stoiqeÐwn, h

opoÐa met� apì pollèc dekaetÐec èreunac èqei anaptÔxei kat�llhlouc epilÔtec gia k�je
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eÐdouc prìblhma, h Isogewmetrik  An�lush eÐnai mia prìsfath teqnologÐa, sthn opoÐa

k�je teqnik  kai algìrijmoc prèpei na efarmosteÐ kai na ereunhjeÐ apì thn arq . 'Etsi

ta kuriìtera eÐdh epilut¸n grammik¸n exis¸sewn, ìpwc oi �mesoi, oi epanalhptikoÐ kaj¸c

kai oi epilÔtec me b�sh th mèjodo twn upoforèwn prèpei na elegqjoÔn gia thn ep�rkei�

touc. Sugkekrimèna:

'Amesoi EpilÔtec:

EÐnai epilÔtec pou basÐzontai kurÐwc se mejìdouc paragontopoÐhshc tou mhtr¸ou sti-

barìthtac. O pio gnwstìc algìrijmoc paragontopoÐhshc gia summetrikoÔc pÐnakec, ìpwc

autoÐ pou par�gontai apì th mèjodo twn peperasmènwn stoiqeÐwn   thn isogeometri-

k  mèjodo 𝐺𝑎𝑙𝑒𝑟𝑘𝑖𝑛, eÐnai h paragontopoÐhsh 𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦, h opoÐa metatrèpei to mhtr¸o

stibarìthtac se ginìmeno �nw kai k�tw trigwnikoÔ pÐnaka. AntÐstoiqa, sthn perÐptw-

sh mh-summetrik¸n pin�kwn, ìpwc autoÐ pou prokÔptoun apì thn isogewmetrik  mèjodo

𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, mporeÐ na efarmosteÐ o algìrijmoc paragontopoÐhshc 𝐿𝑈 . Oi �mesoi epi-

lÔtec eÐnai idiaÐtera apodotikoÐ sthn perÐptwsh pou qrei�zetai epÐlush sust matoc me

pollapl� dexi� mèlh. Mèqri 100 qili�dec bajmoÔc eleujerÐac jewroÔntai pio apodoti-

koÐ, all� to megalÔtero meionèkthma touc eÐnai h meg�lh apaÐthsh touc se mn mh, pou

touc kajist� anapotelesmatikoÔc gia foreÐc meg�lhc klÐmakac. Kat� thn efarmog  touc

sthn Isogewmetrik  An�lush parousi�zoun auxhmèno upologistikì kìstoc, exaitÐac thc

aÔxhshc tou eÔrouc diagwnÐou, kaj¸c kai thc aÔxhshc tou pl jouc twn mh-mhdenik¸n

stoiqeÐwn.

EpanalhptikoÐ EpilÔtec:

DeÔterh shmantik  kathgorÐa epilut¸n eÐnai oi epanalhptikoÐ epilÔtec. Stìqoc touc

eÐnai na proseggÐsoun thn telik  lÔsh mèsa apì epanal yeic. 'Otan èna sugkekrimèno

krit rio akrÐbeiac ikanopoihjeÐ, tìte jewroÔme ìti èqoume sÔgklish sthn telik  lÔsh.

'Enac apì touc pio gnwstoÔc algìrijmouc epanalhptik c epÐlushc susthm�twn me sum-

metrik�, jetik� orismèna mhtr¸a, eÐnai o algìrijmoc twn prostajeropoihmènwn suzug¸n

dianusmatik¸n klÐsewn (Preconditioned Conjegate Gradient).AntÐstoiqa, sthn perÐptwsh
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mh-summetrik¸n mhtr¸wn eÐnai eurèwc diadedomènoc o algìrijmoc genikeumènhc elaqisto-

poi shc upoloÐpou (Generalized Minimal Residual). H taqÔthta sÔgklishc twn epa-

nalhptik¸n epilut¸n exart�tai �mesa apì ton prostajeropoiht  pou ja qrhsimopoihjeÐ,

opoÐoc èqei stìqo na ektim sei th lÔsh tou epìmeno epanalhptikoÔ b matoc me mikrì u-

pologistikì kìstoc. H efarmog  touc sthn Isogewmetrik  An�lush apodeiknÔetai, ìpwc

kai sthn perÐptwsh twn �meswn epilut¸n, na ephre�zetai shmantik� apì thn auxhmènh su-

nèqeia dÐnontac ewc kai 2𝑝 megalÔterouc qrìnouc se sqèsh me mia epÐlush me thn el�qisth

dunat  sunèqeia, ìpou 𝑝 o poluwnumikìc bajmìc twn sunart sewn sq matoc.

Mèjodoi epÐlushc me upoforeÐc:

TeleutaÐa kathgorÐa algorÐjmwn epÐlushc grammik¸n susthm�twn pou melet jhkan e-

Ðnai oi mèjodoi epÐlushc me upoforeÐc. Oi algìrijmoi autoÐ basÐzontai ston diaqwrismì

enìc forèa se mikrìtera tm mata pou onom�zontai upoforeÐc. Sthn perÐptwsh forèwn

isogewmetrik c an�lushc, pou èqoun sqediasteÐ me thn teqnologÐa sqedÐashc NURBS,

o forèac eÐnai fusik� diakritopoihmènoc se epimèrouc tm mata pou onom�zontai patches.

H dhmiourgÐa twn patches kat� th di�rkeia thc sqedÐashc, ofeÐletai sthn apaÐthsh thc

teqnologÐac sqedÐashc NURBS ta fusik� qwrÐa pou perigr�fei na apeikonÐzontai ston

parametrikì q¸ro wc eujÔgramma tm mata, orjog¸nia   kÔboi. Ekmetalleuìmenh to fu-

sikì autì qwrismì, prot�jhke h teqnologÐa 𝐼𝐸𝑇𝐼, h opoÐa apoteleÐ mia isogewmetrik 

prosèggish thc duðk c-prwtogenoÔc mejìdou epÐlushc forèwn (𝐹𝐸𝑇𝐼 −𝐷𝑃 ) gia foreÐc

diakritopoimènouc me thn isogewmetrik  mèjodo 𝐺𝑎𝑙𝑒𝑟𝑘𝑖𝑛. H mèjodoc aut  metatrèpei to

sunolikì grammikì sÔsthma, sto endosunoriakì prìblhma metaxÔ twn upoforèwn, mei-

¸nontac shmantik� to mègejoc tou telikoÔ sust matoc proc epÐlush. Parìla aut�, h

sugkekrimènh mèjodoc parousi�zei èna shmantikì meionèkthma. H dhmiourgÐa twn upofo-

rèwn exart�tai apì tic apait seic th sqedÐashc, me apotèlesma oi upoforeÐc na dhmiour-

goÔntai me aujaÐreto trìpo kai mègejoc. Autì èqei san apotèlesma, mia anisokatanom 

tou upologistikoÔ fìrtou metaxÔ twn upoforèwn kat� thn efarmog  thc mejìdou.

Sta plaÐsia aut c thc diatrÐbhc proteÐnontai kai ulopoioÔntai enallaktikoÐ trìpoi dia-
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qwrismoÔ tou forèa se upoforeÐc, pou amblÔnoun to meionèkthma thc mejìdou 𝐼𝐸𝑇𝐼. H

pr¸th enallaktik  onom�sthke 𝐼𝐸𝑇𝐼 −𝑃 kai apoteleÐ mia epèktash thc ufist�menhc me-

jìdou 𝐼𝐸𝑇𝐼, h opoÐa qwrÐzei ta anisomegèjh tm mata se perissìterouc upoforeÐc. Autì

epitugq�netai mèsw thc meÐwshc thc sunèqeiac stouc kìmbouc (𝑘𝑛𝑜𝑡𝑠) twn parametrik¸n

axìnwn. 'Otan h sunèqeia enìc kìmbou meiwjeÐ, mèsw thc aÔxhshc thc pollaplìthtac

tou se 𝐶0, tìte o arqikìc forèac mporeÐ na diaspasteÐ sto shmeÐo tou kìmbou se duo

upoforeÐc. Autìc o nèoc diaqwrismìc, èqei jetik  epÐdrash sthn epÐlush enìc forèa me

th mèjodo thc IETI, kaj¸c apaleÐfei thn anisokatanom  tou upologistikoÔ fortÐou, ei-

s�gwntac ìmwc epiplèon kìstoc lìgw eisagwg c nèwn kìmbwn. H deÔterh enallaktik 

prosèggish pou prot�jhke gia to qwrismì upoforèwn, eÐnai h mèjodoc 𝐼𝐸𝑇𝐼 −𝑂. Sthn

perÐptwsh aut  den apaiteÐtai meÐwsh thc sunèqeiac stouc kìmbouc, all� prokÔptei a-

pì ton arqikì forèa jewr¸ntac mia dieurumènh diepif�neia metaxÔ twn nèwn upoforèwn.

'Opwc akrib¸c h 𝐼𝐸𝑇𝐼 − 𝑃 , ètsi kai h mèjodoc 𝐼𝐸𝑇𝐼 − 𝑂 katafèrnei na amblÔnei to

meionèkthma thc mejìdou 𝐼𝐸𝑇𝐼. To meionèkthma thc 𝐼𝐸𝑇𝐼 −𝑂 eÐnai ìti aux�nei shmanti-

k� to endosunoriakì prìblhma metaxÔ twn upoforèwn, aux�nontac shmantik� to kìstoc

epÐlushc tou endosunoriakoÔ probl matoc. H diafor� twn dÔo mejìdwn 𝐼𝐸𝑇𝐼 − 𝑃 kai

𝐼𝐸𝑇𝐼 − 𝑂 ìson afor� to mègejoc tou endosunoriakoÔ probl matoc apeikonÐzetai sto

sq ma 5, ìpou faÐnetai h shmantik  diafor� metaxÔ twn dÔo mejodologi¸n.
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Sq ma 5: Allhlepikaluptìmenec kai mh mèjodoi qwrimoÔ upoforèwn

Par� tic eunoðkèc touc idiìthtec, oi mèjodoi 𝐼𝐸𝑇𝐼 − 𝑃 kai 𝐼𝐸𝑇𝐼 − 𝑂, dhmiorgoÔn

nèa meionekt mata, ìpwc h aÔxhsh tou megèjouc tou endosunoriakoÔ probl matoc, pou

epibarÔnoun shmantik� thn epÐlush tou telikoÔ probl matoc. Gia to lìgo autì eis�ge-

tai mia akìma mejodologÐa epÐlushc me upoforeÐc, h opoÐa sundu�zei ta pleonekt mata

miac epanalhptik c mejìdou ìpwc h 𝑃𝐶𝐺, me mejìdouc upoforèwn, h opoÐa onom�sthke

𝑃𝐶𝐺 − 𝐼𝐸𝑇𝐼 − 𝑁 . Sugkekrimèna, h mèjodoc aut  eis�gei èna prosomoÐwma pou èqei

thn Ðdia gewmetrÐa kai Ðdiec idiìthtec me to arqikì, all� oi sunart seic sq matoc èqoun

apokopeÐ sth diepif�neia metaxÔ upoforèwn. Autèc oi asunèqeiec èqoun san apotèlesma

th meiwmènh akrÐbeia tou nèou prosomoi¸matoc. To nèo autì prosomoÐwma den mporeÐ na

qrhsimopoihjeÐ gia thn epÐlush tou sunolikoÔ forèa, mporeÐ ìmwc na apotelèsei ènan apo-

dotikì prostajeropoiht  gia mia epanalhptik  mèjodo epÐlushc ìpwc h 𝑃𝐶𝐺. To sq ma

6 apeikonÐzei grafik� th mejodologÐa apokop c twn sunart sewn sq matoc, ìpou h kìk-

kinh diakekkomènh gramm  apoteleÐ èna par�deigma shmeÐou qwrismoÔ twn sunart sewn

gia �rtio poluwnumikì bajmì, en¸ h pr�sinh antÐstoiqa gia perittì.

Parametrikèc diereun seic pragmatopoi jhkan, gia na apotim soun thn apotelesmati-

kìthta thc proteinìmenhc mejìdou 𝑃𝐶𝐺− 𝐼𝐸𝑇𝐼 −𝑁 , tìso gia diaforetikoÔc poluwnu-
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mikoÔc bajmoÔc ìso kai gia poikÐlec diakritopoi seic forèwn. Ta apotelèsmata èdeixan

mikr  epirro  twn parap�nw qarakthristik¸n ston arijmì epanal yewn pou apaitoÔntai

gia th sÔgklish thc mejìdou. Tautìqrona, ègine sÔgkrish thc proteinìmenhc mejìdou me

touc dÔo enallaktikoÔc trìpouc qwrismoÔ se upoforeÐc, 𝐼𝐸𝑇𝐼−𝑃 kai 𝐼𝐸𝑇𝐼−𝑂. Oi fo-

reÐc pou melet jhkan kumaÐnontai apì 100 qili�dec bajmoÔc eleujerÐac èwc 1 ekatommÔrio

kai arijmì upoforèwn apì 9 ewc 4.800. Ta apotelèsmata thc sÔgkrishc parousi�zontai

grafik� sto sq ma 7 kai deÐqnoun thn epit�qunsh thc mejìdou 𝑃𝐶𝐺 − 𝐼𝐸𝑇𝐼 − 𝑁 se

sqèsh me tic 𝐼𝐸𝑇𝐼 − 𝑃 kai 𝐼𝐸𝑇𝐼 −𝑂. 'Opwc faÐnetai kai apì to sq ma, h proteinìmenh

mèjodoc parousi�zei mia epit�qunsh 1, 7𝑥 se sqèsh me thn IETI-O kai 2, 3𝑥 se sÔgkrish

me thn 𝐼𝐸𝑇𝐼 − 𝑃 , me auxhtik  t�sh kaj¸c o arijmìc twn bajm¸n eleujerÐac megal¸nei.

Ta prohgoÔmena apotelèsmata kajistoÔn thn mèjodo 𝑃𝐶𝐺− 𝐼𝐸𝑇𝐼 −𝑁 , idanik  gia thn

epÐlush grammik¸n susthm�twn pou prokÔptoun apì thn isogewmetrik  mèjodo me je-

¸rhsh 𝐺𝑎𝑙𝑒𝑟𝑘𝑖𝑛, kaj¸c epitrèpei ton tuqaÐo qwrismì tou forèa se upoforeÐc, epomènwc

katafèrnei na exasfalÐsei thn omoiìmorfh katanom  tou upologistikoÔ fortÐou metaxÔ

twn upoforèwn kai sunep¸c sÔmfwna kai me ta arijmhtik� apotelèsmata prosfèrei mia

shmantik  beltÐwsh tìso se ìrouc epanal yewn ìso kai upologistikoÔ qrìnou se sqèsh

me up�rqousec mejìdouc epÐlushc.
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Sq ma 6: MeÐwsh sunèqeiac sunart sewn sq matoc me skopì to qwrismì forèa se mh

allhlepikaluptìmenouc upoforeÐc.

Sq ma 7: BeltÐwsh epid¸shc mejìdoc 𝑃𝐶𝐺− 𝐼𝐸𝑇𝐼−𝑁 se sqèsh me prohgoÔmenec mejìdouc.
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H melèth gia thn epÐlush susthm�twn me upoforeÐc epekteÐnetai sth sunèqeia thc dia-

trib c kai sthn perÐptwsh mh-summetrik¸n susthm�twn pou phg�zoun apì thn mèjodo

𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. P�ra to meiwmèno thc kìstoc kat� th f�sh mìrfwshc twn mhtr¸wn, h mèjo-

doc 𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 metatopÐzei shmantikì komm�ti tou upologistikoÔ kìstouc sthn epÐlush

twn paragìmenwn grammik¸n susthm�twn kaj¸c ta mhtr¸a eÐnai mh summetrik�. H up�r-

qousa bibliografÐa epikentr¸netai sth dhmiourgÐa apotelesmatik¸n prostajeropoiht¸n

gia thn epit�qunsh thc mejìdou 𝐺𝑀𝑅𝐸𝑆. Sto plaÐsio autì, h monadik  sumbol  me

th qr sh upoforèwn, apodÐdetai sthn dhmiourgÐa enìc prostajeropoiht  me th mèjodo

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑆𝑐ℎ𝑤𝑎𝑟𝑧 (𝑂𝐴𝑆). Par� th eunoðkèc dunatìthtèc thc, h mèjodoc

aut  parousi�zei èna shmantikì meionèkthma, pou eÐnai to auxhmèno eÔroc thc z¸nhc allh-

lepik�luyhc metaxÔ twn upoforèwn. To eÔroc autì mporeÐ na gÐnei apagoreutik� meg�lo

sthn perÐptwsh auxhmènou poluwnumikoÔ bajmoÔ twn sunart sewn sq matoc, epibarÔno-

ntac ètsi shmantik� to apaitoÔmeno upologistikì kìstoc gia thn epÐlush.

Sta plaÐsia aut c thc diatrib c melet jhkan tìso prwtogeneÐc ìso duðkèc mèjodoi

epÐlushc me upoforeÐc me stìqo na antimetwpÐsoun ta meionekt mata thc 𝑂𝐴𝑆 kai na ei-

s�goun èna apotelesmatikìtero prostajeropoiht  gia th mèjodo 𝐺𝑀𝑅𝐸𝑆. Oi prwtoge-

neÐc mèjodoi ìpwc gia par�deigma h kÔria sunoriak  mèjodoc (𝑃𝑟𝑖𝑚𝑎𝑙 𝑆𝑢𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑀𝑒𝑡ℎ𝑜𝑑),

eis�goun èna endosunoriakì prìblhma metaxÔ twn upoforèwn , tou opoÐou oi �gnwstec

posìthtec eÐnai oi metakin seic twn sunoriak¸n kìmbwn. AntÐjeta, stic duðkèc mejìdouc,

oi �gnwstec posìthtec tou endosunoriakoÔ probl matoc eÐnai ta duðk� megèjh twn me-

takin sewn, dhlad  oi dun�meic allhlepÐdrashc metaxÔ twn endosunoriak¸n kìmbwn. Gia

na gÐnei efikt  h qr sh twn ufist�menwn mejìdwn epÐlushc me upoforeÐc pou eÐnai gnw-

stèc apì th mèjodo twn peperasmènwn stoiqeÐwn, prèpei arqik� na dhmiourgeijeÐ èna

mh allhlepikaluptìmeno prosomoÐwma, mèsw thc kat�rghshc thc allhlepik�luyhc twn

sunart sewn sq matoc. 'Ena par�deigma meÐwshc thc sunèqeiac metaxÔ twn upoforèwn

apeikonÐzetai sto Sq ma 8.

Me dedomènh thn anwtèrw diamèrish tou forèa se mh allhlepikaluptìmenouc upofore-
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Sq ma 8: MeÐwsh allhlepik�luyhc metaxÔ upoforèwn.

Ðc, h anaz thsh thc katallhlìterhc mejìdou prostajeropoÐhshc xekÐnhse me thn mèjodo

𝐼𝐸𝑇𝐼, pou apoteleÐ thn isogewmetrik  diatÔpwsh thc mejìdou 𝐹𝐸𝑇𝐼 −𝐷𝑃 . Ta apote-

lèsmata thc ulopoÐhshc aut c  tan esfalmèna, kaj¸c merikoÐ foreÐc sunèklinan se l�joc

lÔsh kai se �llec peript¸seic den  tan dunat  h sÔgklish tou algorÐjmou. H sumperifor�

aut  mporeÐ na ermhneuteÐ exet�zontac th mhqanik  analogÐa enìc ìrou tou mhtr¸ou stiba-

rìthtac. Sugkekrimèna, sthn perÐptwsh summetrik¸n mhtr¸wn stibarìthtac, ìpwc sthn

isogewmetrik  mèjodo 𝐺𝑎𝑙𝑒𝑟𝑘𝑖𝑛, o ìrocK𝑖𝑗 ekfr�zei th dÔname pou prèpei na askhjeÐ sto

bajmì eleujerÐac 𝑖 prokeimènou na anaptuqjeÐ monadiaÐa metatìpish ston kìmbo 𝑗. Sthn

perÐptwsh ìmwc mh-summetrik¸n mhtr¸wn ìpwc sth mèjodo 𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, aut  h mhqanik 

analogÐa paÔei na isqÔei kaj¸c oi grammèc tou mhtr¸ou stibarìthtac, antiproswpeÔoun

shmeÐa olokl rwshc thc mejìdou, en¸ oi st lec touc bajmoÔc eleujerÐac twn kìmbwn me

apotèlesma na p�youn na ufÐstantai kai ta duðk� megèjh pou antiproswpeÔontai apì tic

dun�meic allhlepÐdrashc.
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Gia to lìgo autì, h mèjodoc 𝐹𝐸𝑇𝐼 − 𝐷𝑃 jewr jhke anapotelesmatik  kai h diere-

Ônhsh suneqÐsthke me tic prwtogeneÐc mejìdouc. H 𝑃𝑆𝑀 exet�sthke pr¸th, me epituq 

apotelèsmata. H efarmog  thc san prostajeropoiht c thc 𝐺𝑀𝑅𝐸𝑆 gia thn epÐlush

tou kajolikoÔ probl matoc, meÐwse drastik� tic epanal yeic. K�jwc ìmwc to mègejoc

tou endosunoriakoÔ probl matoc aux�nei, aux�noun tautìqrona kai oi antÐstoiqec epana-

l yeic gia thn epÐlush tou. Gia to lìgo autì exetasthke h mèjodoc 𝑃 − 𝐹𝐸𝑇𝐼 − 𝐷𝑃

¸c prostajeropoiht c thc kajolik c 𝐺𝑀𝑅𝐸𝑆. Pèra apì to kajolikì endosunoriakì

prìblhma h mèjodoc aut  eis�gei kai to adrì (𝑐𝑜𝑎𝑟𝑠𝑒) prìblhma, to opoÐo qrhsimopoie-

Ðtai gia thn epit�qunsh thc lÔshc tou endosunoriakoÔ probl matoc. Sugkekrimèna, oi

kìmboi tou adroÔ probl matoc epilègontai wc ta shmeÐa elègqou pou an koun se peris-

sìterouc apì duo upoforeÐc   se 2 upoforeÐc all� eÐnai tautìqrona kai shmeÐa elègqou

tou sunìrou tou forèa. H diadikasÐa qwrismoÔ tou forèa se upoforeÐc kai h epilog  twn

endosunoriak¸n kai gwniak¸n kìmbwn tou adroÔ probl matoc apeikonÐzetai sto Sq ma 9.

Ta sugkritik� apìtelèsmata thc qr shc tou prostajeropoiht  𝑃 − 𝐹𝐸𝑇𝐼 −𝐷𝑃 se

sqèsh me tic up�rqousec enallaktikèc parousi�zontai sto Sq ma 10. Apì thn episkìph-

sh twn apotelesm�twn eÐnai fanerì ìti h proteinìmenh mèjodoc prostajeropoÐhshc tou

kajolikoÔ probl matoc me th mèjodo 𝑃 −𝐹𝐸𝑇𝐼−𝐷𝑃 , prosfèrei shmantik  meÐwsh tìso

anaforik� me ton arijmì epanal yewn ìso kai me ton sunolikì apaitoÔmeno qrìno gia thn

epÐlush tou sust matoc.

'Eqontac antimetwpÐsei epituq¸c thn epÐlush problhm�twn suneqoÔc mèsou pou diakri-

topoioÔntai eÐte me th mèjodo 𝐺𝑎𝑙𝑒𝑟𝑘𝑖𝑛 eÐte me th mèjodo 𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, to teleutaÐo tm ma

thc diatrib c epikentr¸netai sth melèth polÔplokwn kataskeu¸n me domik� isogewmetri-

k� stoiqeÐa kelÔfouc. Me dedomèno ìti h isogewmetrik  an�lush mporeÐ na perigr�yei me

mhdenikì gewmetrikì sf�lma osod pote polÔplokec gewmetrÐec, jewreÐtai idanik  sthn

perÐptwsh an�lushc leptìtoiqwn kataskeu¸n ìpou oi arqikèc gewmetrikèc atèleiec mpo-

roÔn na ephre�soun shmantik� thn telik  mhqanik  apìkrish tou forèa. Oi leptìtoiqec

kataskeuèc sta plaÐsia twn upologistik¸n mejìdwn perigr�fontai suqn� apì duo jew-
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Sq ma 9: Endosunoriakì kai adrì prìblhma thc mejìdou 𝑃 − 𝐹𝐸𝑇𝐼 −𝐷𝑃 .

Sq ma 10: SÔgkrish epidìsewn mejìdwn epÐlushc forèwn diakritopoihmènwn me 𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.

rÐec, sugkekrimèna thn Kirchhoff-Love gia leptìtoiqa kelÔfh kai thn Reisner-Midlin gia

kelÔfh me meg�lo p�qoc. Parìlo pou oi perissìterec kataskeuèc an koun sthn pr¸th

kathgorÐa, oi periorismoÐ sunèqeiac thc mejìdou peperasmènwn stoiqeÐwn, kajièrwsan thn
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jewrÐa Reisner-Midlin sthn pleionìthta twn logismik¸n. Oi auxhmènh sunèqeia apì 𝐶0

se 𝐶𝑝−1 pou eis�getai sthn gewmetrÐa twn forèwn me thn isogewmetrik  an�lush, epi-

trèpei plèon mia �mesh ulopoÐhsh se k¸dika thc teqnologÐac twn leptìtoiqwn keluf¸n.

Gia to lìgo autì, kai san epèktash twn ufist�menwn jewri¸n lept¸n keluf¸n gia dia-

foretik� ulik�, eis�getai mia mejodologÐa an�lushc touc, h opoÐa mporeÐ na sundejeÐ me

opoiod pote ulikì lamb�nontac upìyh th mikrodom  tou mèsw miac an�lushc pollapl¸n

klim�kwn.

Sugkekrimèna oi kataskeuèc pou lamb�nontai upìyh sthn proteinìmenh mejodologÐa

èqoun mia makrodom  pou anaparist�tai me stoiqeÐa kelÔfouc, en¸ h mikrodom  tou eÐnai

èna sÔnjeto ulikì pou mporeÐ na perièqei tuqaÐa egkleÐsmata   ken�. Autèc oi eterogèniec

thc mikrodom c jewroÔntai mh antilhptèc se makroskopikèc diast�seic, ìmwc gia na lhfjeÐ

upìyh h epirro  touc stic katastatikèc exis¸seic, proteÐnetai èna emfoleumèno sq ma

Isogewmetrik  An�lushc - Peperasmènwn StoiqeÐwn to opoÐo perigr�fetai sqhmatik�

sthn eikìna 11.
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Sq ma 11: Emfwleumènh diadikasÐa isogewmetrik c an�lushc-peperasmènwn stoiqeÐwn gia

ton upologismì katastatik¸n sqèsewn me th bo jeia an�lushc pollapl¸n klim�kwn.

Sugkekrimèna sto pr¸to b ma thc diadikasÐac, gÐnetai sqedÐash kai diakritopoÐhsh tou

makromontèlou me stoiqeÐa kelÔfouc me th qr sh sunart sewn sq matoc 𝑇 − 𝑆𝑝𝑙𝑖𝑛𝑒𝑠.

Apì to prosomoÐwma autì ex�gontai ta antÐstoiqa stoiqeÐa Bezier, ta opoÐa apoteloÔn th

b�sh gia ton upologismì tou mhtr¸ou stibarìthtac. Gia k�je shmeÐo olokl rwshc thc

mèshc epif�neiac tou kelÔfouc, orÐzetai èna pl joc shmeÐwn olokl rwshc kat� to p�qoc

thc diatom c. K�je èna apì aut� ta shmeÐa orÐzei mia z¸nh ulikoÔ pou paramorf¸netai

se sunj kec epÐpedhc èntashc. Aut  h strwmatopoihmènh anapar�stash epitrèpei epÐshc

thn montelopoÐhsh thc metablhtìthtac tou ulikoÔ sto p�qoc thc diatom c. Sto deÔtero

b ma thc diadikasÐac, oi katastatikèc sqèseic tou ulikoÔ ex�gontai se k�je shmeÐo olo-

kl rwshc thc mèshc epif�neiac mèsw thc upologistik c omogenopoÐhshc tou. Se k�je

shmeÐo olokl rwshc thc diatom c, orÐzetai ènac trisdi�statoc antiproswpeutikìc ìgkoc,

diakritopoi mènoc me peperasmèna stoiqeÐa trisdi�stathc elastikìthtac, ston opoÐo en-

swmat¸nontai tuqaÐa egkleÐsmata. Ta egkleÐsmata aut� mporoÔn na prosomoiwjoÔn me
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domik� peperasmèna stoiqeÐa, ìpwc diktu¸mata, dokoÐ kai kelÔfh. Se perÐptwsh tuqaÐac

morf c ogkometrik¸n egkleism�twn, aut� mporoÔn na diakritopoihjoÔn kai na prosomoiw-

joÔn me trisdi�stata peperasmèna stoiqeÐa suneqoÔc mèsou, ìpwc faÐnetai kai sthn eikìna

12

Sq ma 12: ParadeÐgmata qarakthristik¸n ìgkwn

Ston antiproswpeutikì ìgko pou apèqei apìstash z apì th mèsh epif�neia thc diatom c,

epib�llontai isodÔnamec metatopÐseic pou upologÐzontai me b�sh tic entìc epipèdou para-

morf¸seic tou makroskopikoÔ prosomoi¸matoc sto sugkekrimèno shmeÐo. Me ton trìpo

autì orÐzetai to prìblhma sunoriak¸n tim¸n tou antiproswpeutikoÔ ìgkou. Sta plaÐsia

thc proteinìmenhc diadikasÐac jewroÔme grammik  apìkrish tou antiproswpeutikoÔ ìgkou,

all� h epèktash se mh-grammikèc gewmetrÐec mporeÐ na efarmosteÐ �mesa qwrÐc allagèc

sthn diadikasÐa.
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Sq ma 13: Epibol  sunoriak¸n sunjhk¸n qarakthristikoÔ ìgkou mesw eikonikoÔ stoiqeÐou

thc mèshc epif�neiac.

Sto sq ma 13, apeikonÐzetai grafik� h epibol  twn metatopÐsewn ston antiproswpeutikì

ìgko. Sugkekrimèna, oi makroskopikèc paramorf¸seic 𝜖𝑀 metafr�zontai se epiballìme-

nec metatopÐseic sto eikonikì stoiqeÐo 𝐴𝐵𝐶𝐷 tou sq matoc 13 mèsw thc sqèshc 8.

𝑢̂𝑚 = 𝜖𝑀X̂𝑀 (8)

Me dedomènec tic entìc epipèdou metakin seic tou eikonikoÔ stoiqeÐou, gÐnetai epibol 

twn metakin sewn twn entìc epipèdou bajm¸n eleujerÐac, twn pleurik¸n epifanei¸n tou

antiproswpeutikoÔ ìgkou. AntÐjeta, oi ektìc epipèdou bajmoÐ eleujerÐac tou forèa eÐnai

eleÔjeroi na paramorfwjoÔn, me exaÐresh tou katakìrufouc bajmoÔc eleujerÐac twn

shmeÐwn 3,4,7 me skopì thn apofug  tuqìn kin sewn stereoÔ s¸matoc. Sth sunèqeia, me

qr sh tou tÔpou
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Sq ma 14: Di�gramma epirro c prosanatolismoÔ 𝐶𝑁𝑇 sthn makroskopik  mhqanik 

sumperifor�.

𝐶 =
1

‖𝑉 ‖
𝐷𝐾̃𝑒𝑒𝐷

𝑇 (9)

prokÔptei h suneisfor� tou mhtr¸ou epÐpedhc èntashc apì k�je z¸nh thc diatom c, ìpou

𝑉 o ìgkoc thc diatom c kai 𝐾̃𝑒𝑒 to mhtr¸o stibarìthtac tou antiproswpeutikoÔ ìgkou

statik� sumpukwmèno stouc entìc epipèdou periferiakoÔc bajmoÔc eleujerÐac. Met� apì

olokl rwsh kat� to p�qoc thc diatom c se k�je shmeÐo mèshc epif�neiac, prokÔptoun ta

katastatik� mhtr¸a kaj¸c kai oi antÐstoiqec t�seic sth mèsh epif�neia tou forèa.

Me th bo jeia stoqastik¸n diadikasi¸n, melet jhkan kataskeuèc pragmatik c klÐma-

kac, me th qr sh thc parap�nw emfwleumènhc diadikasÐac upologismoÔ twn katastatik¸n

mhtr¸wn, tìso se tuqaÐa katanom  ulikoÔ mèsa sto Ðdio forèa, ìso kai diakumainìmeno

ulikì metaxÔ diadoqik¸n analÔsewn. H exètash twn apotelesm�twn, anadeiknÔei th shma-

sÐa thc leptomeroÔc prosomoÐwshc thc mikrodom c tou ulikoÔ, kaj¸c mikrèc diakum�nseic

sth periektikìthta   sto ulikì twn egkleism�twn, apodeiknÔetai pwc èqei shmantik  e-

pÐptwsh sth duskamyÐa tou sunolikoÔ forèa, ephre�zontac th sunolik  antoq  ewc kai

30% se sqèsh me thn arqik  onomastik  tim , ìpwc faÐnetai kai sto Sq ma 14.
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0
Introduction

0.1 Motivation

Until the early 20𝑡ℎ century, scientists and mathematicians tried to interpret the be-

havior of natural phenomena by introducing mathematical models that replaced their

fundamental physics. In most cases, this required the transformation of an engineering

system in terms of partial differential equations. At first, it was plausible for scientists

to find an analytical solution that satisfied the boundary values problems at hand,

yet the ever rising need to describe more complex natural systems, quickly eliminated

the possibility of attaining an exact solution field that satisfies the problem. Instead,

techniques to approximate the exact solution were devised. One of the most widespread

methods for approximating the partial differential equation (PDE), the Finite Element

Method (FEM), was born in the field of aeronautics. It wasn’t until 1944, when John

Argyris, faced the problem of reliably simulating inclined geometry wings, that the FEM

method was born. After experimenting with all known methods with unsatisfactory

results, he coined the use of the first triangular finite element and its implementation

in the first electromechanical computers and published the ”Energy theorems” book

where he first registers the method. In the years to come, many scientists such as

Clough, Turner and Martin calculated the stiffness matrices of various elements, with

Zienkiewicz being the first to publish a book on the field. In alignment with the evolution
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of computers, a large number of publications followed, that allowed engineers to become

acquainted to the method and subsequently apply it to numerous aspects of their re-

spective scientific fields. Even though the evolution of computational methods, with the

spearhead being FEM was rapid, some significant deficiencies remained. For instance,

exact representation of complicated geometries remains an open issue as even higher

order finite elements can only reduce the geometrical error. This inherent approximation

leads to erroneous results in geometry sensitive analyses such as shell buckling. In a

similar manner, adaptive refinement techniques cannot be efficiently implemented, since

in case of non-trivial geometries the immediate connection with the Computer Aided

Design (CAD) representation is not existent. All the above deficiencies of the existing

Computer Aided Engineering (CAE) methods, have raised the need for a common

development pipeline with CAD.

Computer Aided Design is defined as the drafting procedure utilizing computers. Its

main goal is to aid designers to produce accurate blueprints in a less laborious procedure.

One of the earliest works in the field of design was proposed by Ferguson in 1964 [74].

This work introduced Ferguson curves, which are a specific category of third degree power

basis curves calculated with known positions and gradients of the curve at its starting

and ending points. The generalization of Ferguson curves for arbitrary polynomial degree

yields Hermite curves [L’Hermite], where a (2𝑘+1) degree curve is evaluated by utilizing

k values at its starting and ending points. Despite their straightforward mathematical

representation, power basis curves were early deprecated by designers as they were

considered impractical for design purposes. This is attributed to the algebraic nature of

the existing algorithms which are prone to round-off errors, along with the accompanying

coefficients that convey only little information regarding the geometry of the curve. To

this end, Bézier curves were introduced by Pierre Bézier [111, 37, 42, 75, 81, 72, 88], as

a design tool for the bodywork of cars. They are considered equivalent with polynomial

curves, yet remedy some of their disadvantages. The shape of the Bézier curve now

depends only on Control Points, which are Cartesian points that control the curves

shape, while allowing for a more natural design process and manipulation of the curve.

In addition, the augmented polynomial degree is tightly coupled to number of points

used for the representation of the curve, fact that automatically leads to smoother curves.

Unfortunately, this property of Bézier curves is at the same time their greatest merit, as

well as their major drawback, as the increased polynomial degree, leads to instability of

the algorithms. B-Splines were introduced [162, 54, 58, 149, 59] as a generalization of one
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span Bézier curves into multiple intervals. They disengage the number of shape function

of the curve from the polynomial degree, thus enabling local shape function support. In

addition to the partial control of the curves, abrupt changes of the curves’ geometry is

now allowed due to the introduction of the Knots which divide the curve into piece-wise

polynomial segments. Yet, the constantly increasing need of designers to reproduce ever

more complex shapes, rendered B-Splines insufficient as they cannot accurately represent

all conic sections. To this end, Non-Uniform Rational B-Splines (NURBS) technology

were introduced [180, 175, 142, 143], that incorporate a weight for each of the curve

control points. This extensions introduces a projection that allows for the accurate

description of more elaborate geometries. The limitation of NURBS arises due to the fact

that surface or solid geometries cannot be efficiently represented as the physical geometry

must be mapped into a linear, rectangular or cuboid domain in parameter space. As a

result, the burden is sifted to designer to partition the geometrical domain into NURBS

suitable parts. Each of these individual geometries defines a single parameter space

called Patch, that can have different attributes with its adjacent pieces thus rendering it

uncommon for their edges to coincide. T-Splines technology was recently introduced

[170, 169, 168] to remedy the deficiencies of NURBS. Specifically, T-Splines abolish the

tensor product parameter space structure of former technologies. This makes attainable

the water-tight connection between patches, while being the first technology that enables

true local refinement of the geometry.

Isogeometric Analysis (IGA) was introduced in [89] by T.J.R. Hughes in order to

address the need of a common development pipeline between CAD and CAE industries

in order to overcome geometry approximation issues that arise in analysis. The main

idea behind the method is the utilization of the underlying geometry mesh as a basis

for analysis. This concept renders the process of meshing the geometry obsolete, thus

minimizing the time needed for an analysis suitable discretization. These favorable

properties of IGA render it more efficient in various computational mechanics fields, such

as optimization problems [181, 122, 148, 147, 171, 136]. Due to the high smoothness of

CAD shape functions, the method has showcased significant advantages over conventional

approaches in fluid mechanics applications [79, 133, 21, 22, 23, 135, 134] as well, while

its utilization in structural dynamics applications [53, 65, 90, 30, 91] rendered favorable

results over its FEM alternatives. These initial works, were mainly focused on continuum

mechanics applications by utilizing the discretization of bivariate or trivariate domains

with CAD shape functions, such as NURBS and T-Splines later on. Apart from planar
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and solid geometries, IGA is considered ideal for the analysis of shell structures, due to

its ability to accurately describe complex geometries. Shell theories are derived from a

dimensionality reduction of structures, for which one of the dimensions is significantly

smaller than the rest. In case of shells, the redacted dimension regards the thickness of the

structure. As a result, shell theories transform the three-dimensional elasticity equation,

into two dimensional domains, represented only by the midsurface of the structure. Two

major shell theory branches exist based on the thickness of the shell’s section. In case of

thick shells, transverse shear deformation is taken into account and thus Reissner-Midlin

theory is used, while for thin shells Kirchhoff-Love theory is more suitable. Even though

most industrial products belong to the thin shell case, its computational limitations

when formulated in the FEM framework, made Reissner-Midlin theory dominant in most

commercial FEM codes. This is attributed to the prerequisite of Kirchhoff-Love shells

for a minimum 𝐶1 continuity between adjacent elements, which classical FEM cannot

efficiently provide, thus resulting to non-conforming meshes. Special care must be taken

for thin shell theory to be applicable in the context of FEM such as non-local formulations,

nodal enforcement of 𝐶1 continuity or even penalty method applied to selected material

points. The main benefit of IGA in this field is that the higher interelement continuity of

the utilized shape functions, enables a straightforward implementation of Kirchhoff-Love

shells. Specifically, the first isogeometric Kirchhoff-Love formulation was introduced in

[99], which introduced a geometrically non-linear, rotation-free element. Having [99]

as a basis, many material formulation where then coupled with it. For instance, [100]

extended the latter formulation to large strains and compressible and incompressible

hyperelastic non-linear material laws. Progressive damage models of composite laminates

in the frameowrk of isogeometric thin shells were explored in [61], while biological

membranes were investigated in [174]. In a similar fashion, the first plasticity models

applied to Kirchhoff-Love shells appeared in [7] and composite laminate materials

coupled with gradient enhanced damage models in [144]. Apart from the application of

different material in the Kirchhoff-Love theory, significant contributions were performed

in combining shells with different shape functions such as T-Splines in [39, 117, 40]

or rational triangular Bezier splines in [186]. Finally, different aspects of Kirchhoff-

Love shells were explored in a multitude of contributions, ranging from the coupling of

non-conforming Kirchhoff-Love shell patches [85, 82, 163], to membrane locking effects

addressed with mixed formulations.

All the aforementioned contributions, have their roots on the fact that a remarkable
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accuracy per degree of freedom is introduced along with IGA, which is mainly attributed

to the increased interelement continuity of the shape functions. Unfortunately, this

augmented accuracy comes at a compelling cost for the assembly of the resulting stiffness

matrices in case of Galerkin discretizations [92, 15].To this end, the efforts of the scientific

community have been shifted towards the development of computational effortless

alternatives. This process lead to the development of isogeometric collocation methods

[18, 11], which require the evaluation of a single integration point per shape function for

the computation of the stiffness matrix, thus alleviating the computational cost for the

assembly. Since its introduction a plethora of contributions studied the enforcement of

Dirichlet [44] and Neumann [60] boundary conditions, while at same time delving into the

method’s convergence and integration properties [160, 113, 66, 131]. The majority of the

published manuscripts explored the coupling of isogeometric collocation with structural

elements. Specifically, scientific areas such as Beams [28, 124, 125, 126, 20, 98] and Rods

[14, 17, 182, 183, 129] were extensively explored, as isogeometric collocation methods

were proven extremely capable at alleviating locking effects [29, 14]. In a similar fashion

new formulation for surface structural elements that utilize isogeometric collocation

methods for their integration were proposed, such as plate [150, 97, 139, 128] and shell

structural elements [31, 16, 101, 128]. In addition, due to their favorable properties,

isogeometric collocation methods are utilized for the modelling of computationally

demanding computational mechanics fields such as Phase-Field modelling [80, 159] and

dynamic applications [62, 30, 65].

As mentioned in the latest paragraphs, the strongest asset of isogeometric methods is

the increased interelement continuity of the utilized shape functions. In case of CAD,

this results in smooth and accurate representation of curves, while for computational

methods it provides smooth variation of the analysis characteristics. This property,

despite providing enhanced accuracy, adds a significant computational burden to the

solution of the resulting linear systems due to their reduced sparsity patterns. As a

result, efficient solution schemes for large-scale isogeometric applications are a necessity

for the establishment of IGA. In case of isogeometric Galerkin discretizations, various

methods have been proposed in order to address the solution of the resulting linear

systems. Initial publications were focused on assessing the relationship between solution

cost and degrees of freedom (dof) in case of IGA. Continuities ranging from minimum

𝐶0 of FEM to full 𝐶𝑝−1 continuity of IGA were studied in [51] to provide a theoretical

relationship between solution cost and polynomial order for the case of direct solvers, while
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MUMPS [8] and PARDISO [158] solvers provided the equivalent solution times. This

research was afterwards extended to iterative solvers, where the PCG solution algorithm

was employed with various preconditioners, such as diagonal Jacobi [140], Successive

Symmetric Over-Relaxation (SSOR) [45] and incomplete Cholesky factorizations [95]

in order to assess their computational cost in case of highly continuous isogeometric

discretizations. These investigations made the need for efficient solution schemes for

IGA even more profound, hence the scientific community redirected its efforts to the

development of efficient and scalable domain decomposition solvers. The first attempt in

this direction was performed by [55] where overlapping additive Schwarz preconditioners

were exploited for the solution of isogeometric elliptic problems. The latter work was

extended in [179] by providing Schwarz preconditioners in both primal and mixed

formulations for the case of the linear elasticity PDE. Balancing Domain Decomposition

by Constraints (BDDC) preconditioner for isogeometric scalar elliptic problems was

investigated in [27], which in [57] was paired with a novel scaling method. Isogeometric

Tearing and Interconnecting (IETI) was also introduced [106] as an isogeometric variant

of the well-known Finite Element Tearing Interconnecting Dual-Primal (FETI-DP)

method. In a similar fashion, isogeometric mortar methods were investigated in [35, 36],

in order to address the coupling of non-conforming subdomains.

Similar research initiatives addressed the solution of the linear systems emerging

from isogeometric collocation method, which despite alleviating the computational

cost for the formation of the resulting matrices, shift the burden to the solution of

their non-symmetric linear systems whose condition number grows rapidly in cases

of mesh refinement or augmented polynomial degree. To address this issue, several

methods have been proposed. In [25] overlapping Schwarz preconditioners accelerated

with GMRES [156] iterative method was studied. In this research, the non-symmetric

matrix was decomposed into a set of overlapping submatrices, while a coarse problem

was introduced based on an interpolation operator between the reference domain and

the tensor product structure generated from the univariate common points among

subdomains. The solution of nanolithography problems was investigated in [114], where

a multi-frontal solver was implemented for Graphic Processing Units (GPU) for the case

of one-dimensional isogeometric collocation. Finally, optimal multilevel preconditioners

accelerated by GMRES were investigated in [47], for collocation discretizations deriving

from second order elliptic problems.

The current research aims to address the efficient implementation of isogeometric
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methods in real-scale mechanical applicaions. Specifically, [173] proposes a family of

algorithms for the purposes of IGA, that exploit the advantages of iterative solution

schemes when combined with Domain Decomposition Methods (DDM), in the context

of isogeometric Galerkin discretizations. By introducing an appropriate modification to

the overlapping nature of NURBS shape functions, a robust and scalable preconditioner

is developed that minimizes the computational cost for the solution of large-scale

isogeometric problems. In this work, the PCG iterative solver is combined with the IETI

domain decomposition method, that showcases a considerable improvement compared

to existing solution techniques in case of positive definite symmetric linear systems,

while at the same time ensuring properly load balanced subdomains partitioning. In a

similar fashion, [178] introduces a non-overlapping decomposition of the non-symmetric

matrices deriving from isogeometric collocation methods. This allows development of a

preconditioner based on P-FETI-DP domain decomposition method. Thus, a two-level

algorithm is generated based on GMRES iterative method. The preconditioner utilizes

static condensation to minimize the global problem to the an interface problem among

adjacent subdomains. The interface problem which is also a non-symmetric matrix, is

then preconditioner by the first iteration of the FETI-DP method, which translates to

a coarse problem defined by the common degrees among more than two subdomains.

Numerical results indicate an enhanced performance of the proposed solution scheme,

compared to the most competitive alternative, the overlapping additive Schwarz method.

Finally, in terms of modelling of real-life structures, [177] extends existing isogeometric

thin shell formulations, to incorporate constitutive laws generated by stochastic multiscale

analyses. The integration of the constitutive law is performed through the thickness

of the shell, where an arbitrary Representative Volume Element (RVE) defines the

microstructural topology of the composite material under consideration. Numerical

results demonstrate the applicability of the proposed formulation in both benchmark and

real-scale numerical examples, thus rendering this formulation ideal for the simulation of

shell structures in combination with composite materials.

0.2 Outline

This thesis is organized in 6 chapters as follows:

Chapter 1 presents the basic concepts of CAD shape functions, which lay foundations

for the establishments of Isogeometric Analysis method. With starting point being
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the polynomial curves and their equivalent shape functions, this Chapter analyzes the

historical evolution of geometrical representations, browsing through Bézier curves,

B-Splines, NURBS and T-Splines and the reasons that lead to the establishment and

equivalent deprecation of each individual methodology.

Chapter 2 introduces the Isogeometric Analysis method. In analogy to Finite Elements,

the transformation of the mesh-less geometrical representation of CAD objects, into

analysis related entities such as elements and integration points is presented. Elemental

quantities in each shape function category are addressed explicitly, while their application

on the linear elasticity PDE is examined for continuum mechanics, structural shell

elements and the strong form of the PDE via the utilization of the isogeometric collocation

method.

Chapter 3 provides the basic concepts of solution schemes utilized for the efficient

solution of the linear systems deriving from isogeometric analysis. Two major categories

of iterative and domain decomposition solution schemes are studied, thus introducing

the concepts of robust and efficient solution methods for tackling both symmetric and

non-symmetric linear systems. Specifically, for the case of iterative solvers, PCG and

GMRES algorithms are studied, while the isogeometric equivalents of FETI-DP, PSM

and P-FETI-DP method are elaborated.

Chapter 4 addresses the solution of symmetric positive definite linear systems de-

riving from the isogeometric Galerkin method for the case of B-Splines and NURBS

discretizations. The increased interlement continuity that accompanies isogeometric

analysis, along with the augmented shape function polynomial degrees, lead to a severe

deterioration of the solution performance of the resulting linear systems. By proposing

an appropriate non-overlapping decomposition of the domain into subdomains, a scalable

and robust domain decomposition preconditioner emerges, that accelerates the PCG

method. Numerical results showcase the efficacy of the proposed solution scheme that

enables the subdivisioning of a model in an arbitrary fashion that ensures properly load

balanced subdomains, while offering a substantial computational improvement compared

to existing methods.

Chapter 5 addresses the solution of non-symmetric linear systems arising from the

integration of the computational domain using the isogeometric collocation method.

Additional to the increased population and bandwidth of the resulting matrices, in-

troduces with the isogeometric Galerkin method, collocation significantly burdens the

computational cost for the solution of the resulting linear systems due to their non-
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symmetric nature. To this end, a family of primal non-overlapping domain decomposition

solution schemes are studied in this chapter in order to provide a scalable and robust

preconditioner that accelerates the iterative GMRES method.

Chapter 6 examines the performance of isogeometric shells under the prism of semi-

concurrent multiscale material modelling. Specifically, existing isogeometric thin shell

formulations, employing Kirchhoff-Love shell theory, are extended to incorporate detailed

modelling of advanced composites. A nested IGA-FEM multiscale analysis scheme is

proposed, in which IGA is used for the discretization of the macroscopic level and

FEM for the discretization of the corresponding RVE. As a result, the plane stress

material required for the integration of the shell stiffness is derived via a computational

homogenization procedure, thus taking into account the material microstructural topology.

Numerical results, showcase the effect of detailed material modelling to the overall

mechanical performance of the shell structure, as well as the applicability of the proposed

formulation to real life applications.

Finally, Chapter 7 provides the conclusions drawn from this research and presents a

summary of the contributions.
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1
Computer Aided Design

1.1 Introduction

Until the early 20th century, designers were creating blueprints by hand utilizing flexible

wooden or metal stripes to design any curves needed. The design process required

extensive effort as any manipulation or correction to the design might lead to a re-

iteration of the whole blueprint. Smooth polynomial lines (Splines) were introduced in

1960s with Bézier curves, which were simultaneously developed by Paul de Casteljau

and Pierre Bézier and used for the design of automobiles. B-Splines and NURBS were

introduced in the 1980s and were extensively developed and used in the industry. Recently,

the design technology of T-Splines was proposed by Sederberg as a generalization of

NURBS that can accommodate arbitrarily complex geometries. The mathematical

breakthroughs of the design technology as well as the rapid evolution of the personal

computer led to the evolution of Computer Aided Design (CAD) which replaces the

manual drafting process and thus minimizes the required effort.

In this chapter, the evolution path of CAD from polynomial curves to advanced Splines

is presented. The aim of this review is to introduce the basic principles of CAD shape

functions, curves, surfaces and volumes that will be utilized throughout the rest of the

manuscript, as well as the reasons that lead to their establishment.
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1.2 Polynomial curves

The fundamental representations of curves and surfaces, in geometrical modeling, are

performed with the aid of implicit and parametric equations. The implicit equation of a

curve in the Cartesian plane XY is given by an equation of the form:

𝑓(𝑥, 𝑦) = 0 (1.1)

Equation 1.1 describes the relationship between the x and y coordinates of every point

that lies on the curve. An example of a ellipse described with an implicit equation forms

is 𝑓(𝑥, 𝑦) = 𝑥2

𝑎2
+ 𝑦2

𝑏2
− 1 = 0.

Figure 1.1: Ellipse

In contrast to the implicit case, the parametric form provides a separate equation for

each of the coordinates of the curve points as functions of an independent parameter.

𝐶(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) 𝑡0 ≤ 𝑡 < 𝑡1 (1.2)

With the aid of the parametric form, the equation of the ellipse can be written as

follows:

𝑥(𝑡) = 𝑎 · 𝑐𝑜𝑠(𝑡)

𝑦(𝑡) = 𝑏 · 𝑠𝑖𝑛(𝑡) 0 ≤ 𝑡 < 2𝜋
(1.3)

Comparing these two equation forms, it is apparent that the implicit form cannot

provide directly points that belong to the curve while it is highly depended on the
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coordinate system. As a result, the transformation to alternative coordinate systems is

quite cumbersome. On the contrary, in the parametric form, any point of the curve can

be imminently derived from the equations, even if the equations describe a closed or a

multiple valued curve. The basic disadvantage of the parametric form is that it is not

straightforward to determine whether a random point belongs to the curve. All free form

curves presented in this chapter are based on the parametric representation of curves.

One of the most common types of parametric curves are power basis functions, where

the curve equation is a sum over powers of a parameter 𝑢, multiplied by equivalent poly-

nomial coefficients 𝑎𝑖. The general equation form that provides the power representation

of curves is:

𝐶(𝑢) =
𝑛∑︁

𝑖=0

𝑎𝑖 · 𝑢𝑖 (1.4)

1.2.1 Ferguson curves

Ferguson curves were proposed by Ferguson in 1964 [74] to aid the design of aircraft

surfaces. Ferguson curves are a specific category of third degree power basis curves. A

simple third degree power basis curve is defined as

𝐶(𝑢) = 𝑎0 + 𝑎1 · 𝑢+ 𝑎2 · 𝑢2 + 𝑎3 · 𝑢3 0 ≤ 𝑢 ≤ 1 (1.5)

In the case of Ferguson curves, functions 1, 𝑢, 𝑢2, 𝑢3 are replaced the Hermite polyno-

mials as follows:

1 𝑖𝑠 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑤𝑖𝑡ℎ (1− 3𝑢2 + 2𝑢3)

𝑢 𝑖𝑠 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑤𝑖𝑡ℎ (3𝑢2 − 2𝑢3)

𝑢2 𝑖𝑠 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑤𝑖𝑡ℎ (𝑢− 2𝑢2 + 𝑢3)

𝑢3 𝑖𝑠 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑤𝑖𝑡ℎ (−𝑢2 + 𝑢3)

(1.6)

For this choice of polynomial functions the polynomial coefficients known and are the

positions and derivatives of the curve at its initial and final point. Specifically, 𝑎0 = 𝐶(0),

𝑎1 = 𝐶(1) and 𝑎2 = 𝐶 ′(0) 𝑎3 = 𝐶 ′(1) equivalently. As result eq. 1.5 with the aid of 1.6

becomes:
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𝐶(𝑢) =(1− 3𝑢2 + 2𝑢3) · 𝐶(0) + (3𝑢2 − 2𝑢3) · 𝐶(1)+

(𝑢− 2𝑢2 + 𝑢3) · 𝐶 ′(0) + (−𝑢2 + 𝑢3) · 𝐶 ′(1)
(1.7)

The basic deficiency of a Ferguson curve is that is represented only by two points and

as a result a multitude of n-1 Ferguson curves are needed to interpolate n points. In

order to merge consecutive Ferguson curves, compatibility of the positions, derivatives

as well as 𝐶2 continuity are required. This translates the solution of a system with n-2

equations in order to determine the internal derivative values for internal points. A

generalization of the Ferguson curves for arbitrary degree is attained by Hermite curves,

where a (2k+1) degree curve is defined by utilizing 𝑘 derivatives at the start and end

point of the curve.

The power representation of curves was abandoned early as it was considered imprac-

tical by designers due to their significant disadvantages. The most important one is that

they are considered unnatural for interactive shape design, as the polynomial coefficients

𝑎𝑖 convey little information about the geometry of curve. In addition, most algorithms for

the evaluation of polynomial curves have an algebraic background rather than geometric

one, while they are prone to round-off errors when the polynomial coefficients vary

greatly in size.

1.3 Bézier curves

Bézier curves were introduced by Pierre Bézier in the 1960s [111] as a design tool for the

bodywork of cars. They are considered mathematically equivalent with polynomial curve

forms as they use polynomials for the coordinate functions. A thorough investigation of

Bézier curves theory can be found in [37, 42, 75, 81, 72, 88].

Bézier curves remedy the disadvantages of power basis polynomials. The shape of

curve depends only on the Control Points of the curve, thus allowing a more natural

design process and manipulation of the curve. At the same time, the number of points

used for the definition of a Bézier curve 𝑛 is tight coupled to its polynomial degree

𝑝 (p=n-1). This leads to smoother curves as higher continuity is achieved due to the

increase of the polynomial degree. The general form of a Bézier curve is given by:
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𝐶(𝑢) =
𝑛∑︁

𝑖=0

𝐵𝑖,𝑛(𝑢)𝑃𝑖 0 ≤ 𝑢 ≤ 1 (1.8)

where 𝐵𝑖,𝑛 are the Bernstein polynomials given by:

𝐵𝑖,𝑛 = 𝐷(𝑛, 𝑖)𝑢𝑖(1− 𝑢)𝑛−𝑖 (1.9)

and 𝐷(𝑛, 𝑖) the binomial coefficients.

𝐷(𝑛, 𝑖) =
𝑛!

𝑖!(𝑛− 𝑖)!
(1.10)

Figure 1.2 gives an example of the Bernstein polynomials used for various polynomial

degrees. As noted, there is an immediate connection between the polynomial degree of the

curve and the number of shape function or equivalent Control Points. For instance, for

degree 𝑝 = 2, a multitude of three Bernstein polynomials are required for the evaluation

of the curve. In addition, by examining the form of the Bernstein polynomials the

following properties are apparent. The shape functions are defined in the span [0, 1] and

the shape functions are symmetric across x=0.5 axis, their values are non-negative and

they abide to the partition of unity property.

Figure 1.3 illustrates an example of a cubic Bézier curve, where some principal

properties are illustrated. Initially, the curve is interpolatory to the first and last Control

Points and tangential to the Control Polygon, depicted with green line segments, at the

edges of the curve. Since Bernstein polynomials are symmetric across the middle of the

parametric domain, this property is also transferred to the curve and thus an inversion

of the curve’s Control Points does not affect the shape of the curve. A manipulation

of a Control Point affects the entirety of the curve, as all Bernstein polynomials span

throughout the parametric domain, while the most affect area of the curve is near the

maximum value of the equivalent Bernstein shape function affected.

The major drawback of Bézier curves is the immediate link between polynomial degree

and the number of Control Points. Specifically, since p+1 Control Points are required

for the definition of the Bézier curve, p being the polynomial degree, it is apparent that

an increase of the polynomial degree raises the number of Control Point and affects the

stability of the algorithms. In addition to this, as Figure 1.2 illustrates, shape functions

*Created with Geogebra
�Created with Desmos
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(a) Linear (b) Quadratic

(c) Cubic (d) Quartic

Figure 1.2: Bernstein polynomials for various polynomial degrees.*

span throughout the parametric domain. This severely affects the geometric modeling

process as even minor alterations of the Control Points affects entirety of the curve.

1.4 B-Splines

B-Splines were introduced in [162] as a generalization of one span Bézier shape functions

into multiple consecutive intervals. They are considered an extension of Bézier curves

that were developed to alleviate their deficiencies. Specifically they introduced the local

support of shape functions, thus allowing partial control of the curves, while abrupt

changes of the curve continuity are allowed with Knots.

Since B-Splines are considered a superset of Bézier curves, there is an immediate

transformation between the two types. Specifically, each B-Spline curve can be split

into a multitude of Bézier sections that are connected with 𝐶2 continuity, while the new

Control Points of each Bézier curve section are calculated with the aid of the existing

B-Spline Control Points. Vice versa, a set of Bézier curves can be joined together to
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Figure 1.3: Bézier curve of polynomial degree p=3, created with 4 Control Points�

form a single B-Spline curve. The prerequisites for this merge are for the Bézier curves

to have the same polynomial degree and 𝐶2 continuity between them, while the B-Spline

Control Points are calculated from the existing Control Points of the Bézier curves.

1.4.1 Knot Value Vector

A knot value vector is defined as a sequence of non-diminishing numbers. It is a

generalization of the parent element [-1, 1] that defines the parameter space in both

isoparametric Finite and Bézier elements. At this point, it is important to distinguish

between the terms Knot Value Vector and Knot Vector that will be used for the definitions

from now on.

Knot Value Vector : Non decreasing sequence of parametric coordinates that define

the parametric space.

Knot Vector : The subset of unique values contained in the Knot Value Vector.

An example to clarify the difference between the two vectors is provided below for

polynomial degree equal to 3.

Knot Value Vector : Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}
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Knot Vector : Ξ′ = {0, 1, 2, 3, 4}

In the example of the Knot Value Vector, the initial and the final values are repeated

p+1 times, where p is the polynomial degree of the shape functions. This repetition

indicates the edges of the parametric domain. The Knot Value Vectors that posseses this

property are called Open Knot Value Vectors. Another category of Knot Value Vectors

are the Uniform Knot Value Vectors. The latter are defined as an ascending sequence of

equidistant parametric values. Even though the definition of an Open Uniform Knot

Value Vector seems to be a contradicting term based on the latter two definitions, in

scientific literature this terms is used to describe the internal values of the sequence,

excluding the initial and final values along with their multiplicity.

1.4.2 B-Spline spaces

The definition of B-Spline entities and their NURBS generalizations is based on three

spaces.

� Cartesian space

� Parameter space

� Index space

The Cartesian space is the best perceivable space among the three, as curves, surfaces

and solid entities are represented in it. On the other hand, Parameter and Index space

are based on the parametric nature of B-Spline objects and thus will be explained in

detail in the following subsections.

Parameter space

Parameter space is the space that defines the parametric domain of an isogeometric

entity. Complex Cartesian geometries such as curves, surfaces or solids are transformed

into line segments, rectangles and cuboids respectively. The parametric axes 𝜉, 𝜂, 𝜁 are

defined with the aid of the equivalent Knot Vectors per parametric direction. Specifically,

given a Knot Vector Ξ′ it’s minimum and maximum values represent the edges of the

domain while internal values define the Knots. In case of B-Splines entities of higher
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dimensions, univariate Knots are extended throughout the rest of the parametric domain

for all remaining axes and form knot lines, according to the full tensor product property.

Figure 1.4: Parameter space defined by the Knot Value vector Ξ = {0, 0, 0, 1, 2, 3, 4, 5, 5, 5}. Blue
circle indicate the Knots, while orange rhombi the parametric positions of the Control Points.

Index space

Index space is an auxiliary space of the B-Spline design technology. It is mainly utilized

to represent the values of the Knot Value Vector in equidistant positions, regardless of

their multiplicity. It mainly serves as a tool to determine the support of shape functions

and the parametric coordinates of the Control Points as the middle of the shape function

support.

Figure 1.5: Index space defined by the Knot Value vector Ξ = {0, 0, 0, 1, 2, 3, 4, 5, 5, 5}. Blue circle
indicate the Knots, while orange rhombi the parametric positions of the Control Points.

1.4.3 Control Points

In computer aided design, Control Points are defined as the Cartesian points that

determine the shape of the geometry. They were initially introduced in Bézier curves,

where a multitude of p+1 Cartesian points are required to define it, p being the

polynomial degree. From this set of Cartesian points, the initial and the final one are

interpolatory to the curve. As for the remaining ones it is not necessary for them to lie

on the geometry.
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Figure 1.6: Quadratic B-Spline curve with Knot Value Vector Ξ = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}. �

Figure 1.6 provides an example of a quadratic B-Spline curve, generated based on

the Knot Value Vector Ξ = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}. A multitude of 7 cyan circles

representing the Control Points are needed to define the curve. The Control Points are

interconnected with a yellow polygonal line representing the Control polygon of the curve.

As already stated at the initial point 𝑃0 and final point 𝑃6 the curve is interpolatory

and tangential to the Control polygon. In addition, 5 blue dots that lie on the curve

represent the Cartesian positions of the Knots Ξ′ = {0, 0.25, 0.5, 0.75, 1} that define the

discretization of the curve into piecewise polynomial parts.

Similar to Bézier curves, B-Splines are also defined by a set of Control Points. Assuming

a B-Spline curve of degree p, defined by an Open Uniform Knot Value Vector that contains

k values, the necessary number of Control Points to create it are n=k-p-1. There is an

one-to-one equivalence between Control Points and the shape functions of the curve in

both B-Spline and Bézier curves. In addition, by utilizing the Greville abscissae, the

parameteric coordinates of the Control Points can be computed

𝜉𝐶𝑃
𝑖 =

∑︀𝑝
𝑘=1 𝜉𝑖+1

𝑝
(1.11)

�Created with UTCS-BSpline Demo
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Figure 1.7: Quadratic B-Spline shape function with Knot Value Vector Ξ = {0, 0, 0, 1, 2, 2, 3, 3, 3}.
Points that lie on the parametric axis 𝜉 show the parametric coordinates of the Control Points. Color

equivalence maps shape function with respective Control Point. §

Figure 1.7 illustrates the equivalence between shape functions and Control Points in

the parametric space. The number shape function defined by the Knot Value vector

Ξ = {0, 0, 0, 1, 2, 2, 3, 3, 3} is 𝑛 = 𝑘−𝑝−1 = 9−2−1 = 6, where 𝑘 is the number of Knot

Value and 𝑝 the polynomial degree. Utilizing eq. 1.11 the parametric coordinates of

the Control Points are derived which are [0, 0.5, 1.5, 2, 2.5, 3]. Both shape functions and

Control Points are color coded to showcase their one-to-one equivalence, while as it can

be observed the parametric position of each control point coincides with the maximum

value of its equivalent shape function.

1.4.4 B-Spline shape functions

Given a Knot Value Vector Ξ = {𝜉1, 𝜉2, ..., 𝜉𝑖, ..., 𝜉𝑛+𝑝+1} with n+p+1 values, where p

is the polynomial degree of the curve and n the number of Control Points that define

its geometry, the shape function are computed recursively, with the aid of Cox-de Boor

recursive formula [54, 58] starting with piecewise constant shape functions

𝑁𝑖,0(𝜉) =

⎧⎨⎩0, 𝑖𝑓 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(1.12)

§Created with Desmos
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based on the formerly evaluated constant functions, piecewise functions of higher

degree are evaluated with the assumption that 0
0

.
= 0

𝑁𝑖,𝑝(𝜉) =
𝜉 − 𝜉𝑖

𝜉𝑖+𝑝 − 𝜉𝑖
·𝑁𝑖,𝑝−1(𝜉) +

𝜉𝑖+𝑝+1 − 𝜉

𝜉𝑖+𝑝 − 𝜉𝑖
·𝑁𝑖+1,𝑝−1(𝜉) (1.13)

1.4.5 Multi-variate B-Splines

B-Spline shape functions abide to a full tensor product nature. This means that for the

evaluation of multivariate B-Splines a multitude of univariate shape functions can be

combined. In addition, all properties of univariate B-Splines are retained in multivariate

cases.

Two-dimensional B-Splines 𝑅𝑝,𝑞
𝑖,𝑗 (𝜉, 𝜂) are calculated as a tensor product of two uni-

variate shape functions 𝑁𝑝
𝑖 (𝜉) and 𝑀 𝑞

𝑗 (𝜂) of parametric axes 𝜉 and 𝜂 equivalently.

𝑅𝑝,𝑞
𝑖,𝑗 (𝜉, 𝜂) = 𝑁𝑝

𝑖 (𝜉) ·𝑀
𝑞
𝑗 (𝜂) (1.14)

Similarly, three-dimensional B-Splines are calculated as a tensor of three univariate

shape functions 𝑁𝑝
𝑖 (𝜉) , 𝑀

𝑞
𝑗 (𝜂) and 𝐿𝑟

𝑘(𝜁) of parametric axes 𝜉, 𝜂 and 𝜁 equivalently.

𝑅𝑝,𝑞,𝑟
𝑖,𝑗,𝑘 (𝜉, 𝜂, 𝜁) = 𝑁𝑝

𝑖 (𝜉) ·𝑀
𝑞
𝑗 (𝜂) · 𝐿

𝑟
𝑘(𝜁) (1.15)

1.4.6 B-Spline shape function properties

According to [143], B-Spline shape functions possess the following properties.

1. Local Support

Local support is a result of the Cox-de Boor recursive algorithm and means that

shape functions are non-zero in certain knot spans of the parameter space. In

mathematical notation this is expressed by

𝑁𝑝
𝑖 (𝜉) = 0 ∀𝜉 /∈ [𝜉𝑖, 𝜉𝑖+𝑝+1] (1.16)

Specifically, observing Cox-de Boor recursive algorithm, it is apparent that for the

definition of a univariate shape function of degree p, two consecutive functions of
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degree p-1 are needed. In a similar fashion, the definition of two consecutive func-

tions of p-1 polynomial degree, requires three functions of degree p-2. Inductively,

p+1 constant functions are needed for the evaluation of a shape function of degree

p. Since each constant function has support of one knot span, the support of shape

function of degree p is the union of all constant B-Splines it depends on, hence

p+1 consecutive knot span. This dependency of higher degree shape functions

from lower degree ones is depicted in Figure 1.8, where it can be seen that four

constant shape functions, namely 𝑁0
5 (𝜉), 𝑁

0
6 (𝜉), 𝑁

0
7 (𝜉), 𝑁

0
8 (𝜉) are required for the

definition of the support of the third degree shape function 𝑁3
5 (𝜉).

Figure 1.8: Shape functions of lower degree required for the creation of 𝑁3
5 (𝜉)

2. Non-negativity

𝑁𝑝
𝑖 (𝜉) ≥ 0 (1.17)

3. Partition of unity

𝑛∑︁
𝑖=1

𝑁𝑝
𝑖 (𝜉) = 1 (1.18)
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4. 𝐶𝑝−𝑚 continuity across Knots with multiplicity m.

This property is a product of the Cox-de Boor recursive formula along with the

multiplicity of the Knots. Specifically, given a Knot Value Vector that defines the

parametric space of a B-Spline curve, the equivalent Knot Vector can be extracted.

The multiplicity m of a knot, is the number of times this value appears in the

Knot Value Vector. If the multiplicity of a knot is greater than one, then the shape

function has 𝐶𝑝−𝑚 continuity, which means that at this point the shape functions

has p-m continuous derivatives. The minimum continuity observed in case of an

Open Uniform Knot Value vectors is m=p+1 for the initial and the final Knots,

p being the polynomial degree. This translates to 𝐶𝑝−𝑚 = 𝐶−1 continuity that

indicates the edges of the parametric domain. In case of internal Knots, continuity

less than 𝐶0 is not acceptable. As a result, knot values can be repeated at most p

times. Note that as continuity decreases, shape functions tend to become steeper.

Figure 1.9: B-Spline shape functions continuity across a parametric domain defined by the Knot
Value Vector Ξ = {0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5}

Figure 1.9 provides an example of B-Spline shape functions with varying continuity

at each knot. The initial and final knot are repeated p+1 times thus indicating

the ends of the parametric domain. Internal Knots are displayed with continuity

ranging from 𝐶3 to 𝐶0 depending on the multiplicity of the equivalent knot value.
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The dependency of the shape function smoothness on the knot multiplicity is also

apparent in this figure, as the higher the multiplicity the lower the smoothness of

the function, with 𝐶0 being the extreme case where kinks appear.

These properties of B-Spline shape function were extensively discussed in [162, 54, 58,

149, 59].

1.4.7 B-Spline derivatives

Apart from the shape function that are utilized for the generation of the curve geometry,

their derivatives are also widely used in computational geometry and computational

mechanics applications. As a result, this subsection will provide the basic of B-Spline

derivatives that serves as a basis for advanced spline technologies that will be presented

in the following sections. Similar to B-Spline basis functions, B-Spline first derivative is

obtained from the following recursive formula:

𝑑

𝑑𝜉
𝑁𝑝

𝑖 (𝜉) =
𝑝

𝜉𝑖+𝑝 − 𝜉𝑖
·𝑁𝑝−1

𝑖 (𝜉)− 𝑝

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
·𝑁𝑝+1

𝑖+1 (𝜉) (1.19)

this equation can be generalized for the 𝑘𝑡ℎ derivative as follows:

𝑑𝑘

𝑑𝜉𝑘
𝑁𝑝

𝑖 (𝜉) =
𝑝!

(𝑝− 𝑘)!
·

𝑘∑︁
𝑗=0

𝑎𝑘,𝑗 ·𝑁𝑝−𝑘
𝑖+𝑗 (𝜉) (1.20)

where the terms 𝑎𝑘,𝑗 are given by:

𝑎0,0 = 1

𝑎𝑘,0 =
𝑎𝑘−1,0

𝜉𝑖+𝑝−𝑘+1 − 𝜉𝑖

𝑎𝑘,𝑗 =
𝑎𝑘−1,𝑗 − 𝑎𝑘−1,𝑗−1

𝜉𝑖+𝑝+𝑗−𝑘+1 − 𝜉𝑖
, 𝑓𝑜𝑟𝑗 = 1, ..., 𝑘 − 1

𝑎𝑘,𝑘 =
−𝑎𝑘−1,𝑘−1

𝜉𝑖+𝑝+1 − 𝜉𝑖+𝑘

(1.21)

In case of multivariate B-Splines, their partial derivatives are obtained by applying

the quotient rule.
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𝜕

𝜕𝜉
𝑅𝑝,𝑞

𝑖,𝑗 (𝜉, 𝜂) =

(︂
𝑑

𝑑𝜉
𝑁𝑝

𝑖 (𝜉)

)︂
·𝑀 𝑞

𝑗 (𝜂)

𝜕

𝜕𝜂
𝑅𝑝,𝑞

𝑖,𝑗 (𝜉, 𝜂) = 𝑁𝑝
𝑖 (𝜉) ·

(︂
𝑑

𝑑𝜂
𝑀 𝑞

𝑗 (𝜂)

)︂
(1.22)

Derivatives of trivariate shape functions can be obtained in a similar manner.

𝜕

𝜕𝜉
𝑅𝑝,𝑞,𝑟

𝑖,𝑗,𝑘 (𝜉, 𝜂, 𝜁) =

(︂
𝑑

𝑑𝜉
𝑁𝑝

𝑖 (𝜉)

)︂
·𝑀 𝑞

𝑗 (𝜂) · 𝐿
𝑟
𝑘(𝜁)

𝜕

𝜕𝜂
𝑅𝑝,𝑞,𝑟

𝑖,𝑗,𝑘 (𝜉, 𝜂, 𝜁) = 𝑁𝑝
𝑖 (𝜉) ·

(︂
𝑑

𝑑𝜂
𝑀 𝑞

𝑗 (𝜂)

)︂
· 𝐿𝑟

𝑘(𝜁)

𝜕

𝜕𝜁
𝑅𝑝,𝑞,𝑟

𝑖,𝑗,𝑘 (𝜉, 𝜂, 𝜁) = 𝑁𝑝
𝑖 (𝜉) ·𝑀

𝑞
𝑗 (𝜂) ·

(︂
𝑑

𝑑𝜁
𝐿𝑟
𝑘(𝜁)

)︂ (1.23)

1.4.8 B-Spline Geometries

As already described for Bézier curves, B-Splines geometries can be created by combining

B-Spline shape functions with their corresponding Control Points. As a result, curves,

surfaces and solid parametric geometries can be generated using the detailed processes

described below.

B-Spline curves

A 𝑝𝑡ℎ degree B-Spline curve is defined by

𝐶(𝜉) =
{︀
𝑁𝑝

𝑖 (𝜉)
}︀𝑇

(1𝑥𝑛)

{︀
𝑃𝑖

}︀
(𝑛𝑥3)

=
𝑛∑︁

𝑖=1

𝑁𝑝
𝑖 (𝜉)

{︀
𝑃𝑖

}︀
(1𝑥3)

, 𝜉1 ≤ 𝜉 ≤ 𝜉𝑛+𝑝+1 (1.24)

where
{︀
𝑃𝑖

}︀
are the Control Points’ Cartesian coordinates of the curve and

{︀
𝑁𝑝

𝑖 (𝜉)
}︀

the 𝑝𝑡ℎ degree B-Spline basis functions defined by the open Knot Value vector Ξ ={︀
𝜉1, 𝜉2, ..., 𝜉𝑛+𝑝+1

}︀
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B-Spline surfaces

A B-Spline surface is obtained by taking a bidirectional net of Control Points, two Knot

Value vectors Ξ and H with respective polynomial degrees p, q and the tensor products

of the univariate B-Spline functions:

𝑆(𝜉, 𝜂) =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑅𝑝,𝑞
𝑖,𝑗 (𝜉, 𝜂)

{︀
𝑃𝑖,𝑗

}︀
(1𝑥3)

=

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑁𝑝
𝑖 (𝜉) ·𝑀

𝑞
𝑗 (𝜂)

{︀
𝑃𝑖,𝑗

}︀
(1𝑥3)

(1.25)

B-Spline solids

In the same fashion, a B-Spline volume is obtained by taking a three-dimensional net of

Control Points, three Knot Value Vectors, Ξ, H, Z, with respective polynomial degrees

p, q, r and the products of the univariate B-Spline functions:

(𝑥, 𝑦, 𝑧) = 𝑉 (𝜉, 𝜂, 𝜁) =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑙∑︁
𝑘=1

𝑅𝑝,𝑞,𝑟
𝑖,𝑗,𝑘 (𝜉, 𝜂, 𝜁)

{︀
𝑃𝑖,𝑗,𝑘

}︀
(1𝑥3)

=

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑙∑︁
𝑘=1

𝑁𝑝
𝑖 (𝜉) ·𝑀

𝑞
𝑗 (𝜂) · 𝐿

𝑟
𝑘(𝜁)

{︀
𝑃𝑖,𝑗,𝑘

}︀
(1𝑥3)

(1.26)

B-Spline geometry properties

B-Spline geometries abide to the following properties:

1. B-Spline curves are a generalization of Bézier curves.

2. B-Splines are piecewise polynomial curves.

3. Each basis function corresponds to a certain Control Point.

4. The first and the last Control Point as well as internal Control Points corresponding

to 𝐶0 continuous basis functions are interpolatory to the curve.

5. Moving a Control Point only affects part of the curve.

6. The Control Polygon is a piecewise linear approximation of the curve.
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7. Any transformation applied to the curve can be applied directly at the Control

Points.

1.5 NURBS

Existing CAD technologies such as Bézier and B-Spline curves allowed designers to

create complex geometries while having the ability to locally control the geometry. Yet,

the constantly increasing need of designers to accurately reproduce even more complex

shapes rendered these technologies unable to cope with the demands. Even though

linear or parabolic curves are precisely described by B-Splines, other conic sections such

as circle, ellipse or hyperbole are only approximated. To remedy this drawback, Non

Uniform Rational B-Splines were introduced [180, 175, 142]. The rational curves that

NURBS are based on, are introduced with the incorporation of a weight for each of

the Control Points that define the geometry. This transforms the non-homogeneous

coordinate space (X,Y,Z) of Bézier and B-Splines curves to a homogeneous coordinate

space (X,Y,Z,W) thus introducing a projection.

Figure 1.10: Projection of a non-rational B-Spline curve to the W=1 plane to create a Rational
B-Spline. ¶

¶Source: Wikimedia Commons
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Figure 1.10 provides an example of the projection of a curve from R3 to R2. Specifically,

a non-rational 3D curve 𝐶𝑊 (𝜉) is defined with 3D Control Points 𝑃𝑊 = {𝑋𝑊 , 𝑌 𝑊 , 𝑍𝑊 }.
The rational curve is calculated by projecting both the non-rational curve and the

projective Control Points onto the plane W=1, thus producing the equivalent NURBS

curve 𝐶(𝜉) and the 2D Control Points. The coordinate 𝑍𝑊 of the projective Control

Points define the weights 𝑤𝑖 of the resulting NURBS curve, while the 2D Control Points

coordinates are defined by

𝑃𝑖 = {𝑋𝑖, 𝑌𝑖} =

{︂
𝑋𝑊

𝑖

𝑍𝑊
𝑖

,
𝑌 𝑊
𝑖

𝑍𝑊
𝑖

}︂
(1.27)

This concept can be generalized for any geometries of arbitrary dimensions. Thus, in

order to create an d -dimensional Rational B-Spline, a (d+1) non-rational equivalent is

required, hence defining the projection R𝑑+1 → R𝑑.

1.5.1 NURBS Shape functions

In a similar fashion to B-Splines, in order to compute the shape functions of a NURBS

curve, a Knot Value Vector and the polynomial degree are needed along with the weights

𝑤𝑖 of the Control Points.

𝑅𝑝
𝑖 (𝜉) =

𝑁𝑝
𝑖 (𝜉) · 𝑤𝑖∑︀𝑛

𝑗=0𝑁
𝑝
𝑗 (𝜉)𝑤𝑖

(1.28)

where 𝑁𝑝
𝑖 (𝜉) are the equivalent 𝑝𝑡ℎ degree B-Spline shape functions. The denominator

is called weighting function 𝑊 (𝜉) and is defined as:

𝑊 (𝜉) =
𝑛∑︁

𝑗=0

𝑁𝑝
𝑗 (𝜉)𝑤𝑖 (1.29)

As a generalization of B-Splines, NURBS maintain all of their properties, most

significant among them, the full tensor product nature. As a result, NURBS shape

functions of higher dimensions are calculated as tensor products of univariate NURBS

functions. Specifically, for the two-dimensional case

𝑅𝑝,𝑞
𝑖,𝑗 (𝜉, 𝜂) =

𝑁𝑝
𝑖 (𝜉) ·𝑀

𝑞
𝑗 (𝜂) · 𝑤𝑖𝑗∑︀𝑛

𝑖′=1

∑︀𝑚
𝑗′=1

{︁
𝑁𝑝

𝑖′(𝜉) ·𝑀
𝑞
𝑗′(𝜂) · 𝑤𝑖′𝑗′

}︁ (1.30)
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and the equivalent weighting function:

𝑊 (𝜉, 𝜂) =

𝑛∑︁
𝑖′=1

𝑚∑︁
𝑗′=1

{︁
𝑁𝑝

𝑖′(𝜉) ·𝑀
𝑞
𝑗′(𝜂) · 𝑤𝑖′𝑗′

}︁
(1.31)

Similarly, the tensor product is expanded for the three-dimensional case.

𝑅𝑝,𝑞,𝑟
𝑖,𝑗,𝑘 (𝜉, 𝜂, 𝜁) =

𝑁𝑝
𝑖 (𝜉) ·𝑀

𝑞
𝑗 (𝜂) · 𝐿𝑟

𝑘(𝜁) · 𝑤𝑖𝑗𝑘∑︀𝑛
𝑖′=1

∑︀𝑚
𝑗′=1

∑︀𝑙
𝑘′=1

{︁
𝑁𝑝

𝑖′(𝜉) ·𝑀
𝑞
𝑗′(𝜂) · 𝐿𝑟

𝑘′ · 𝑤𝑖′𝑗′𝑘′

}︁ (1.32)

the weighting function is now defined as:

𝑊 (𝜉, 𝜂, 𝜁) =

𝑛∑︁
𝑖′=1

𝑚∑︁
𝑗′=1

𝑙∑︁
𝑘′=1

{︁
𝑁𝑝

𝑖′(𝜉) ·𝑀
𝑞
𝑗′(𝜂) · 𝐿

𝑟
𝑘′ · 𝑤𝑖′𝑗′𝑘′

}︁
(1.33)

1.5.2 NURBS Shape function derivatives

By application of the quotient rule to eqs.1.28-1.33 the derivatives of the NURBS shape

functions are calculated. For the 1D case, the first derivatives are obtained by

𝑑

𝑑𝜉
𝑅𝑝

𝑖 (𝜉) =

(︂
𝑑
𝑑𝜉𝑁

𝑝
𝑖 (𝜉)

)︂
·𝑊 (𝜉)−

(︂
𝑑
𝑑𝜉𝑊 (𝜉)

)︂
·𝑁𝑝

𝑖 (𝜉)

𝑊 (𝜉)2
(1.34)

where

𝑑

𝑑𝜉
𝑊 (𝜉) =

𝑛∑︁
𝑖=1

(︂
𝑑

𝑑𝜉
𝑁𝑝

𝑖 (𝜉)

)︂
· 𝑤𝑖 (1.35)

For two-dimensional shape functions:

𝜕

𝜕𝜉
𝑅𝑝,𝑞

𝑖,𝑗 (𝜉, 𝜂) =

(︂
𝑑
𝑑𝜉𝑁

𝑝
𝑖 (𝜉)

)︂
·𝑀 𝑞

𝑗 (𝜂) ·𝑊 (𝜉, 𝜂)−
(︂

𝜕
𝜕𝜉 𝜉𝑊 (𝜉, 𝜂)

)︂
·𝑁𝑝

𝑖 (𝜉) ·𝑀
𝑞
𝑗 (𝜂)

𝑊 (𝜉, 𝜂)2
· 𝑤𝑖𝑗

(1.36)
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𝜕

𝜕𝜂
𝑅𝑝,𝑞

𝑖,𝑗 (𝜉, 𝜂) =

𝑁𝑝
𝑖 (𝜉) ·

(︂
𝑑
𝑑𝜂𝑀

𝑞
𝑗 (𝜂)

)︂
·𝑊 (𝜉, 𝜂)−

(︂
𝜕
𝜕𝜂𝑊 (𝜉, 𝜂)

)︂
·𝑁𝑝

𝑖 (𝜉) ·𝑀
𝑞
𝑗 (𝜂)

𝑊 (𝜉, 𝜂)2
· 𝑤𝑖𝑗

(1.37)

𝜕

𝜕𝜉
𝑊 (𝜉, 𝜂) =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

(︂
𝑑

𝑑𝜉
𝑁𝑝

𝑖 (𝜉)

)︂
·𝑀 𝑞

𝑗 (𝜂) · 𝑤𝑖𝑗 (1.38)

𝜕

𝜕𝜂
𝑊 (𝜉, 𝜂) =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑁𝑝
𝑖 (𝜉) ·

(︂
𝑑

𝑑𝜂
𝑀 𝑞

𝑗 (𝜂)

)︂
· 𝑤𝑖𝑗 (1.39)

Equivalently, first derivatives of three-dimensional shape functions are evaluated as

follows:

𝜕

𝜕𝜉
𝑅𝑝,𝑞,𝑟

𝑖,𝑗,𝑘 (𝜉, 𝜂, 𝜁) =

(︂
𝑑
𝑑𝜉𝑁

𝑝
𝑖 (𝜉)

)︂
·𝑀 𝑞

𝑗 (𝜂) · 𝐿𝑟
𝑘(𝜁) ·𝑊 (𝜉, 𝜂, 𝜁)

𝑊 2(𝜉, 𝜂, 𝜁)
−(︂

𝜕
𝜕𝜉𝑊 (𝜉, 𝜂, 𝜁)

)︂
·𝑁𝑝

𝑖 (𝜉) ·𝑀
𝑞
𝑗 (𝜂) · 𝐿𝑟

𝑘(𝜁)

𝑊 2(𝜉, 𝜂, 𝜁)
· 𝑤𝑖𝑗𝑘

(1.40)

𝜕

𝜕𝜂
𝑅𝑝,𝑞,𝑟

𝑖,𝑗,𝑘 (𝜉, 𝜂, 𝜁) =

𝑁𝑝
𝑖 (𝜉) ·

(︂
𝑑
𝑑𝜂𝑀

𝑞
𝑗 (𝜂)

)︂
· 𝐿𝑟

𝑘(𝜁) ·𝑊 (𝜉, 𝜂, 𝜁)

𝑊 2(𝜉, 𝜂, 𝜁)
−(︂

𝜕
𝜕𝜂𝑊 (𝜉, 𝜂, 𝜁)

)︂
·𝑁𝑝

𝑖 (𝜉) ·𝑀
𝑞
𝑗 (𝜂) · 𝐿𝑟

𝑘(𝜁)

𝑊 2(𝜉, 𝜂, 𝜁)
· 𝑤𝑖𝑗𝑘

(1.41)
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𝜕

𝜕𝜁
𝑅𝑝,𝑞,𝑟

𝑖,𝑗,𝑘 (𝜉, 𝜂, 𝜁) =

𝑁𝑝
𝑖 (𝜉) ·𝑀

𝑞
𝑗 (𝜂) ·

(︂
𝑑
𝑑𝜁𝐿

𝑟
𝑘(𝜁)

)︂
·𝑊 (𝜉, 𝜂, 𝜁)

𝑊 2(𝜉, 𝜂, 𝜁)
−(︂

𝜕
𝜕𝜁𝑊 (𝜉, 𝜂, 𝜁)

)︂
·𝑁𝑝

𝑖 (𝜉) ·𝑀
𝑞
𝑗 (𝜂) · 𝐿𝑟

𝑘(𝜁)

𝑊 2(𝜉, 𝜂, 𝜁)
· 𝑤𝑖𝑗𝑘

(1.42)

For the sake of plenitude of the thesis the second derivatives of two-dimensional

NURBS shape functions are also provided, since they are utilized in Isogeometric

Analysis formulations in the following chapter.

𝜕2

𝜕𝜉2
𝑅𝑝,𝑞

𝑖,𝑗 (𝜉, 𝜂) =

(︃
𝑑2

𝑑𝜉2
𝑁𝑝

𝑖 (𝜉)

𝑊 (𝜉, 𝜂)
− 2

𝑑
𝑑𝜉𝑁

𝑝
𝑖 (𝜉) ·

𝜕
𝜕𝜉𝑊 (𝜉, 𝜂)

𝑊 2(𝜉, 𝜂)
−

𝑁𝑝
𝑖 (𝜉) ·

𝜕2

𝜕𝜉2
𝑊 (𝜉, 𝜂)

𝑊 2(𝜉, 𝜂)
+ 2

𝑁𝑝
𝑖 (𝜉) ·

(︁
𝜕
𝜕𝜉𝑊 (𝜉, 𝜂)

)︁2
𝑊 3(𝜉, 𝜂)

)︃
·𝑀 𝑞

𝑗 (𝜂) · 𝑤𝑖𝑗

(1.43)

𝜕2

𝜕𝜂2
𝑅𝑝,𝑞

𝑖,𝑗 (𝜉, 𝜂) = 𝑁𝑝
𝑖 (𝜉) ·

(︃
𝑑2

𝑑𝜂2
𝑀 𝑞

𝑗 (𝜂)

𝑊 (𝜉, 𝜂)
− 2

𝑑
𝑑𝜂𝑀

𝑞
𝑗 (𝜂) ·

𝜕
𝜕𝜂𝑊 (𝜉, 𝜂)

𝑊 2(𝜉, 𝜂)
−

𝑀 𝑞
𝑗 (𝜂) ·

𝜕2

𝜕𝜂2
𝑊 (𝜉, 𝜂)

𝑊 2(𝜉, 𝜂)
+ 2

𝑀 𝑞
𝑗 (𝜂) ·

(︁
𝜕
𝜕𝜂𝑊 (𝜉, 𝜂)

)︁2
𝑊 3(𝜉, 𝜂)

)︃
· 𝑤𝑖𝑗

(1.44)
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𝜕2

𝜕𝜉𝜕𝜂
𝑅𝑝,𝑞

𝑖,𝑗 (𝜉, 𝜂) =

(︃
𝑑
𝑑𝜉𝑁

𝑝
𝑖 (𝜉)

𝑑
𝑑𝜂𝑀

𝑞
𝑗 (𝜂)

𝑊 (𝜉, 𝜂)
−

𝑑
𝑑𝜉𝑁

𝑝
𝑖 (𝜉)𝑀

𝑞
𝑗 (𝜂)

𝜕
𝜕𝜂𝑊 (𝜉, 𝜂)

𝑊 2(𝜉, 𝜂)
−

𝑁𝑝
𝑖 (𝜉)

𝑑
𝑑𝜂𝑀

𝑞
𝑗 (𝜂)

𝜕
𝜕𝜉𝑊 (𝜉, 𝜂)

𝑊 2(𝜉, 𝜂)
−

𝑁𝑝
𝑖 (𝜉)𝑀

𝑞
𝑗 (𝜂)

𝜕2

𝜕𝜉𝜕𝜂𝑊 (𝜉, 𝜂)

𝑊 2(𝜉, 𝜂)

+ 2
𝑁𝑝

𝑖 (𝜉)𝑀
𝑞
𝑗 (𝜂)

𝜕
𝜕𝜉𝑊 (𝜉, 𝜂) 𝜕

𝜕𝜂𝑊 (𝜉𝜂)

𝑊 2(𝜉, 𝜂)

)︃
· 𝑤𝑖𝑗

(1.45)

where

𝜕2

𝜕𝜉2
𝑊 (𝜉, 𝜂) =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

(︂
𝑑2

𝑑𝜉2
𝑁𝑝

𝑖 (𝜉)

)︂
·𝑀 𝑞

𝑗 (𝜂) · 𝑤𝑖𝑗 (1.46)

𝜕2

𝜕𝜂2
𝑊 (𝜉, 𝜂) =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑁𝑝
𝑖 (𝜉) ·

(︂
𝑑2

𝑑𝜂2
𝑀 𝑞

𝑗 (𝜂)

)︂
· 𝑤𝑖𝑗 (1.47)

𝜕2

𝜕𝜉𝜕𝜂
𝑊 (𝜉, 𝜂) =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

(︂
𝑑

𝑑𝜉
𝑁𝑝

𝑖 (𝜉)

)︂
·
(︂

𝑑

𝑑𝜂
𝑀 𝑞

𝑗 (𝜂)

)︂
· 𝑤𝑖𝑗 (1.48)

1.5.3 NURBS Geometries

NURBS geometries are created by utilizing NURBS shape function R in combination

with weighted Control Points P, in similar way to B-Spline entities. The following

equations provide the formulas for the creation of NURBS curves, surfaces and volumes.

𝐶(𝜉) =
𝑛∑︁

𝑖=1

𝑅𝑝
𝑖 (𝜉) · 𝑃𝑖 (1.49)

𝑆(𝜉, 𝜂) =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑅𝑝,𝑞
𝑖,𝑗 (𝜉, 𝜂) · 𝑃𝑖𝑗 (1.50)

𝑉 (𝜉, 𝜂, 𝜁) =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑙∑︁
𝑘=1

𝑅𝑝,𝑞,𝑟
𝑖,𝑗,𝑘 (𝜉, 𝜂, 𝜁) · 𝑃𝑖𝑗𝑘 (1.51)
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(a) Curve (b) Surface

(c) Solid

Figure 1.11: Nurbs entities

1.5.4 NURBS Patches

During the design of a complex structure, several issues arise with the ability of B-Spline

and NURBS design technologies to describe them. The most common issue is that the

whole geometry cannot be described with the use of a single line, rectangle or cuboid

in parameter space. To circumvent this, a multitude of such parameter spaces have to

be combined in order to design efficiently and accurately the desired geometry. Each

independent geometry defined only by a single parameter space is called a Patch. Since

each of the individual NURBS patches have different attributes, it is uncommon for their

common edges to coincide. As a result, their properties have to be revised in order for

the patches to be conforming.

Figure 1.12a provides an example of a complicated geometry designed with 18 separate

patches. Figure 1.12b illustrates the same patches merged into a single entity. In this

case, special care was taken for the coinciding edges to have the same polynomial degree

and Knot Value Vector in order to achieve a seamless interconnection. Unfortunately, in

most cases, even this treatment is not sufficient to ensure a watertight connection, thus

a new design technology had to be introduced.
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(a) Separate patch geometries (b) Single merged entity

Figure 1.12: Nurbs conforming patches before and after merging into a single CAD entity.

1.6 T-Splines

NURBS is an established CAD technology that has been extensively researched by the

computational geometry industry and is widely used by designers. Yet, this design

technology is accompanied by several drawbacks, the most profound of which is that

they achieve only 𝐶0 across patch boundaries. In case two NURBS patches do not share

a common boundary curve, even the aforementioned 𝐶0 is not attainable thus making

the coupling laborious as several knot insertions to a Knot Value Vector of the common

edge are required to render them compatible. The knot insertion operation in a two- or

higher-dimensional patch is a procedure that propagates throughout the domain. This

results to an addition of a series of Control Points adding a significant burden to the

geometrical modeling procedure. In order to circumvent these deficiencies, T-Splines

technology was introduced [170, 169, 168] to enable local refinement and water-tight

connection of patches.

1.6.1 T-Spline spaces

In contrast to B-Splines and NURBS shape functions that are defined based on global

Knot Value Vectors, T-Splines introduce a local Knot Value Vectors for each shape

function, which are inferred from a global structure, thus rendering them independent of

each other. In contrast to B-Splines and NURBS where parameter space was utilized
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Figure 1.13: Example of a T-Spline object.

for the calculation of shape functions and index space was auxiliary, this order is now

reversed.

Index space - T-mesh

For two-dimensional entities, the Index space is represented as a rectangular tiling of R2,

that permits vertices with multitude converging edges not equal to four. These vertices

are named T-junction due to their shape. In contrast to NURBS, the Index space plays a

major role in T-Splines as all basic variables, such as Knot Value Vectors and parametric

Control Points, needed for the computation of the shape functions are calculated here.

Note that lines in the T-mesh correspond to knot indices. Given a T-mesh, a polynomial

degree for each parametric direction is then selected.

Figure 1.14 provides an example of such a T-mesh. it is apparent that the tensor

product nature of B-Splines and NURBS, is no longer present in T-Splines and as a

result the calculation of the shape functions is no longer based on a global Knot Value

Vector for each axis. On the contrary, local Knot Value Vectors are derived from the

T-mesh layout. Similarly, the parametric positions of the Control Points called Anchors

are found indirectly as the center of the equivalent basis function support.

Parameter space

Similar to NURBS, the parameter space of T-Splines is created by collapsing spans

of each parametric direction with zero distance. As a result,the T-mesh structure of
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Figure 1.14: T-mesh of a T-Spline. Positions of the Control Points are depicted in red circles.

the index space is retained, yet some knot lines are merged. The final layout of the

T-junctions appearing in the parameter space, provides the final Knots of the T-Spline.

Figure 1.15 provides an example of the T-Spline parameter space configuration. In

addition to the Anchors positions found in the Index space, the Parameter space also

displays the positions of the Knots at each remaining T-junction vertex of the parametric

domain.

1.6.2 Anchor-Control Point

In order to define the support of each shape function and the local knot vector accordingly,

the parametric positions of the Control Points called Anchors must be defined. As

illustrated in Figure 1.16, anchors lie on different positions of the T-mesh, depending

on the polynomial degree chosen for each parametric axis. In case of odd polynomials

degree for axes, Anchors lie on the vertices defined by the T-mesh. When both odd and

even degrees are present, Anchors lie on the center of horizontal or vertical line segment.

Finally, when even degree are chosen for all axes, Anchors lie on the center of rectangles.
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Figure 1.15: Parameter space of a T-Spline. Anchor are depicted in red circles and T-junctions as
yellow rectangles.

(a) Even degree for both axes (b) Even degree for 𝜉 and odd degree for 𝜂

(c) Odd degree for 𝜉 and even degree for 𝜂 (d) Odd degree for both axes

Figure 1.16: Examples of Anchor positions for odd/even degrees.
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1.6.3 Local Knot Vectors

Generally, every Anchor contains information about the local Knot Value Vectors of

each shape function as they are directly related. In order to acquire the local Knot Value

Vector p+2 value have to be computed. Similar to the definition of Anchor positions,

special cases for odd/even polynomial degrees must be taken into account.

In case of odd polynomial degree for both axes and given an Anchor 𝑠𝑎 = (𝜉𝑎, 𝜂𝑎) that

lies on a vertex of the T-mesh, the local Knot Value Vector for axis 𝜉, Ξ𝑎 is computed

from the following procedure. Initially, the length of the Knot Value Vector is defined

as p+2, which is an odd number as the polynomial degree p is also odd. The middle

position of the vector is occupied by the Anchor’s parametric coordinate 𝜉𝑎. In order to

fill the first half of the Knot Value Vector, a horizontal line to the left of the Anchor is

drawn. The first (p+1)/2 vertical lines or T-mesh vertices encountered fill in the empty

positions of the first half of the vector. Similarly, a horizontal line to the right provides

the final (p+1)/2 values of the vector. Note that some anchors may lie closer to the

border of the T-mesh than others. As a result, during the Knot Value Vector calculation

procedure, a border may be reached before the required (p+1)/2 values are completed.

In this case, the standard procedure is to repeat the border Knot Value as many times

needed in order to complete the remaining positions of the vector. The same procedure

is conducted for the computation of the local Knot Value Vector 𝐻𝑎 of the parametric

direction 𝜂. The middle position of the vector is occupied by the Anchor ordinate 𝜂𝑎,

while the rest of the positions are completed by moving upwards or downwards until

(p+1)/2 vertices or horizontal lines are encountered.

The procedure is similar in case of even degrees.Initially, the number of values of the

local Knot Value Vector Ξ𝑎 are computed as (p+2) which is an even number. Since

the total number of indices is even, the Anchor coordinates are not taken into account

for the computation of the local Knot Value vector. On the contrary, the leftwards

and rightwards movements for (p/2+1) values for axis 𝜉 and equivalently upwards and

downwards for axis 𝜂 are sufficient for the completion of the local Knot Value vectors.

In Figure 1.17 examples of the computed Knot Value Vectors are illustrated

(a) Even degree in both axes:

Top right anchor: Ξ𝑎 = {4, 6, 7, 7} and 𝐻𝑎 = {2, 3, 7, 7}

(b) Odd degree for axis 𝜉 and even for axis 𝜂:
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Top right anchor: Ξ𝑎 = {1, 2, 6, 7} and 𝐻𝑎 = {3, 4, 5, 6, 7}

(c) Even degree for axis 𝜉 and odd for axis 𝜂:

Bottom right anchor: Ξ𝑎 = {2, 5, 6, 7, 7} and 𝐻𝑎 = {1, 1, 3, 7}

(d) Odd degree in both axes:

Top left anchor: Ξ𝑎 = {1, 1, 2, 4, 6} and 𝐻𝑎 = {4, 5, 6, 7, 7}

(a) Biquadratic (b) p=2, q=3

(c) p=3, q=2 (d) Bicubic

Figure 1.17: Examples of local Knot Value Vectors for odd/even degrees. Green horizontal and
vertical lines illustrate the Knot value vectors of each Anchor.
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1.6.4 Linear Independence-Analysis suitable T-mesh

It is mathematically proven that T-meshes in general do not produce linear independent

T-Spline basis functions. Yet under specific constrains a non-suitable T-mesh can be

converted to define an independent base of basis functions.

As [170] defines, analysis suitable is a T-mesh whose extended mesh is analysis suitable.

The extended T-mesh is defined by extending T-junctions in both directions. For instance,

if a T-junction is created by removing the horizontal left line of a cross junction, then

the main extension appears on the vanished side until the first line segment or junction

is encountered. The other extension has direction opposite to the previous one.

Figure 1.18: Analysis non-suitable T-mesh.

Figure 1.18 provides an example of a typical. Nevertheless, this T-mesh cannot

be considered analysis suitable. Figure 1.19a illustrates the extended T-mesh of the

previous analysis non-suitable topology. Yellow circles define the T-junctions that need

to extended in order to verify the suitability of the mesh. Black dashed lines define

the primary extension of the T-junction, while red dashed lines the secondary direction.

It is apparent that numerous extension of the T-junctions intersect with each other.

These intersections are depicted in Figure 1.19 as green triangles. If such intersections

exist, then the T-mesh is considered non analysis suitable. Fortunately, with a simple
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refinement of the T-mesh it is plausible to convert the T-mesh to an analysis suitable

one which creates linearly independent basis functions.

(a) Extended T-mesh. (b) Extended T-mesh with intersections.

Figure 1.19: Extended T-mesh configuration utilized to define the analysis suitability of a T-mesh.
Yellow circles define the T-junctions that need to be extended, Black and red lines the extension and

green triangles the intersection of the extended T-mesh.

An analysis non-suitable T-mesh can be transformed into an analysis suitable one

with the aid of the Anchors’ local Knot Value vectors. Specifically, iterating through

each Anchor, the local Knot Value vectors define a support per direction. The tensor

product of the unidirectional supports creates a multi-dimensional domain of influence

for every Anchor. The envelope of this domain of influence generates Knot lines that

are not present in the real mesh. These non-existing lines of the T-mesh are called

continuity reduction lines and serve as a partition of the domain into elements that

are 𝐶∞ continuous. On the verge of these lines, the continuity is limited due to the

connection different polynomials. The resulting mesh which is produced as a combination

of the initial T-mesh with the addition of the continuity reduction lines produces an

analysis suitable configuration.

1.6.5 T-Spline basis functions

Given a T-mesh and degrees p, q for both parametric axes 𝜉 and 𝜂, Ω ⊆ R2 is the index

domain that encloses every index a, such that 𝑠𝑎 is an Anchor. With the aid of the An-
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chor’s local Knot Value Vectors Ξ𝑎 = {𝜉1, 𝜉2, ..., 𝜉𝑝+1, 𝜉𝑝+2}, 𝐻𝑎 = {𝜂1, 𝜂2, ..., 𝜂𝑝+1, 𝜂𝑝+2},
the univariate functions for each axis is defined recursively as follows:

𝑁𝑖,0(𝜉) =

⎧⎨⎩0, 𝑖𝑓 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(1.52)

based on the formerly evaluated constant functions, piecewise functions of greater

degree are evaluated with the assumption that 0
0

.
= 0

𝑁𝑖,𝑝(𝜉) =
𝜉 − 𝜉𝑖

𝜉𝑖+𝑝 − 𝜉𝑖
·𝑁𝑖,𝑝−1(𝜉) +

𝜉𝑖+𝑝+1 − 𝜉

𝜉𝑖+𝑝 − 𝜉𝑖
·𝑁𝑖+1,𝑝−1(𝜉) (1.53)

1.6.6 T-Spline basis function properties

According to [170], T-Spline basis functions posses the following properties:

1. Local Support

𝑁𝑝
𝑖 (𝜉) = 0 ∀𝜉 /∈ [𝜉𝑖, 𝜉𝑖+𝑝+1] (1.54)

2. Non-negativity

𝑁𝑝
𝑖 (𝜉) ≥ 0 ∀𝜉, 𝑖, 𝑝 (1.55)

3. Partition of unity

𝑛∑︁
𝑖=1

𝑁𝑝
𝑖 (𝜉) = 1 ∀𝜉, 𝑝 (1.56)

4. 𝐶𝑝−𝑚 continuity across Knots with multiplicity m.

The property is retained from the extension of NURBS to T-Splines. Given a

local Knot Value vector of an Anchor, the equivalent T-Spline basis function has

𝐶𝑝−𝑚 continuity. This means that this specific basis function can produce p-m

continuous derivatives. Continuity less than 𝐶0 is not acceptable for internal

Knots, meaning that a certain Knot Value can be repeated in the context of a

local Knot Value vector at most p times. Note that as continuity decreases, basis
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function become steeper. In addition, since the tensor product property of NURBS

is no longer present abrupt changes of continuity can occur that depend on the

layout of the T-mesh in the index space.

(a) Index space. (b) Parameter space.

(c) Variable continuity shape functions.

Figure 1.20: 𝐶𝑝−𝑚 continuity knot lines with multiplicity m.

1.6.7 T-Spline shape functions

Given the local Knot Value Vectors of an anchor for all axes, 𝜉, 𝜂, 𝜁 and the equivalent

polynomial degrees p,q,r, the univariate T-Spline basis functions 𝑁𝑝
𝑖 (𝜉),𝑀

𝑞
𝑗 (𝜂), 𝐿

𝑟
𝑘(𝜁)

are generated. Using these functions, their rational T-Spline shape function counterparts

can be obtained by
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𝑇 𝑝
𝑖 (𝜉) =

𝑁𝑝
𝑖 (𝜉) · 𝑤𝑖

𝑊 (𝜉)
=

𝑁𝑝
𝑖 (𝜉) · 𝑤𝑖∑︀𝑛

𝑖′=1𝑁
′𝑝
𝑖 (𝜉) · 𝑤𝑖

(1.57)

Inductively for 2D and 3D cases:

𝑇 𝑝,𝑞
𝑖,𝑗 (𝜉, 𝜂) =

𝑁𝑝
𝑖 (𝜉) ·𝑀

𝑞
𝑗 (𝜂) · 𝑤𝑖𝑗

𝑊 (𝜉, 𝜂)
=

𝑁𝑝
𝑖 (𝜉) ·𝑀

𝑞
𝑗 (𝜂) · 𝑤𝑖𝑗∑︀𝑛

𝑖′=1

∑︀𝑚
𝑗′=1𝑁

′𝑝
𝑖 (𝜉) ·𝑀 ′𝑞

𝑗 (𝜂) · 𝑤𝑖𝑗

(1.58)

𝑇 𝑝,𝑞,𝑟
𝑖,𝑗,𝑘 (𝜉, 𝜂, 𝜁) =

𝑁𝑝
𝑖 (𝜉) ·𝑀

𝑞
𝑗 (𝜂) · 𝐿𝑟

𝑘(𝜁) · 𝑤𝑖𝑗𝑘

𝑊 (𝜉, 𝜂, 𝜁)

=
𝑁𝑝

𝑖 (𝜉) ·𝑀
𝑞
𝑗 (𝜂) · 𝐿𝑟

𝑘(𝜁) · 𝑤𝑖𝑗𝑘∑︀𝑛
𝑖′=1

∑︀𝑚
𝑗′=1

∑︀𝑙
𝑘′=1𝑁

′𝑝
𝑖 (𝜉) ·𝑀 ′𝑞

𝑗 (𝜂) · 𝐿′𝑟
𝑘 (𝜁) · 𝑤𝑖𝑗𝑘

(1.59)

1.6.8 T-Spline geometries

T-Spline surfaces

𝑆(𝜉, 𝜂) =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑇 𝑝,𝑞
𝑖,𝑗 (𝜉, 𝜂)

{︀
𝑃𝑖,𝑗

}︀
(1𝑥3)

=

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑁𝑝
𝑖 (𝜉) ·𝑀

𝑞
𝑗 (𝜂)

{︀
𝑃𝑖,𝑗

}︀
(1𝑥3)

(1.60)

T-Spline solids

𝑉 (𝜉, 𝜂, 𝜁) =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑙∑︁
𝑘=1

𝑇 𝑝,𝑞,𝑟
𝑖,𝑗,𝑘 (𝜉, 𝜂, 𝜁)

{︀
𝑃𝑖,𝑗,𝑘

}︀
(1𝑥3)

=

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑙∑︁
𝑘=1

𝑁𝑝
𝑖 (𝜉) ·𝑀

𝑞
𝑗 (𝜂) · 𝐿

𝑟
𝑘(𝜁)

{︀
𝑃𝑖,𝑗,𝑘

}︀
(1𝑥3)

(1.61)

1.6.9 Bézier extraction

As already mentioned in Section 1.4, there is an immediate connection between B-Splines

and their predecessor CAD technology, Bézier curves. Specifically, a B-Spline curve can

be split into multiple Bézier sections, interconnected with 𝐶2 continuity. In a similar

fashion, this subsection discusses the decomposition of NURBS and T-Splines into simple

Bézier entities that will be utilized in the following chapters.
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NURBS Bézier extraction

The Bézier extraction process described analytically in [34] is summarized here. The main

purpose of the Bézier extraction is to enable the representation of a highly continuous

advanced Splines into multiple piecewise 𝐶0 Bézier pieces. This decomposition in case

of NURBS shape functions is achieved with h-refinement and specifically by repeating

all internal Knot Values until their multiplicity is raised to p, p being the polynomial

degree.

The Knot insertion procedure of Isogeometric h-refinement work as follows. Given

a Knot Value vector Ξ = {𝜉1, 𝜉2, ..., 𝜉𝑛+𝑝+1} and 𝜉𝑘 a Knot Value to be inserted in one

of the internal spans of the Knot Value Vector, n+1 new Control Points have to be

computed.

𝑃𝐴 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑃1, 𝐴 = 1,

𝑎𝐴𝑃𝐴 + (1− 𝑎𝐴)𝑃𝐴−1, 1 < 𝐴 < 𝑚,

𝑃𝑛, 𝐴 = 𝑚

(1.62)

where

𝑎𝐴 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 1 ≤ 𝐴 ≤ 𝑘 − 𝑝,

𝜉𝑘−𝜉𝐴
𝜉𝐴+𝑝−𝜉𝐴

, 𝑘 − 𝑝+ 1 ≤ 𝐴 ≤ 𝑘,

0, 𝐴 ≥ 𝑘 + 1

(1.63)

Calculation of the new Control Points with the aid of eqs. 1.62, 1.63 preserves both the

continuity of the curve as well as its shape, while the continuity of the shape functions is

reduced by one for every single Knot insertion. For example given a Knot Value vector

Ξ = {0, 0, 0, 1, 2, 3, 3, 3}, by raising the multiplicity of the internal Knot Values to p

this will be transformed to Ξ′ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 3}. The process described in the

later equations for a single Knot insertion can be generalized for multiple simultaneous

insertions and eq. 1.62 is transformed to

𝑃 𝑗+1 = (𝐶𝑗)𝑇𝑃 𝑗 (1.64)

where
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𝐶𝑗 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1 1− 𝑎2 0 . . . 0

0 𝑎2 1− 𝑎3 0 . . . 0

0 0 𝑎3 1− 𝑎4 0 . . . 0
...

0 . . . 0 𝑎(𝑛+𝑗−1) 1− 𝑎(𝑛+𝑗)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(1.65)

[34] proves that eq. 1.65 is the Bézier extraction operator that maps B-Splines and

NURBS shape functions to the equivalent Bézier polynomials.

T-Splines Bézier extraction

The process described in the previous subsection can generalized for T-Spline shape

functions. The main difference of the procedure according to [167] is that a global Bézier

extraction procedure is no longer present. This occurs due to abolishment of the tensor

product structure of NURBS. As a result, the extraction operator must be computed

in a function-by-function basis. The extraction operator of a single Bézier element is

generated row-by-row from the shape functions that affect it. In addition, since global

Knot Value Vectors no longer exist, the extraction operator is based on each of the

univariate local Knot Value vectors calculated for each Anchor.

A significant difference with NURBS is the introduction of the extended Knot Value

vector. The extended Knot Value vector transforms an arbitrary local Knot Value vector

into an open one. This is achieved by repeating the initial and final values until the

multiplicity is p+1. Then the extraction operation is performed at the extended local

Knot Value vector. Finally, in case of multivariate Bézier extractions, the operator C

of a T-Spline element is produced in a tensor product fashion based on the univariate

operators produced for each one of the parametric directions.

In both cases of NURBS and T-Spline shape functions, after the computation of the

equivalent extraction operator the transformation between advanced shape functions

and Bézier is performed by

𝑁(𝜉) = 𝐶 ·𝐵(𝜉) (1.66)

For the bivariate case, the extraction operator 𝐶𝐴 is computed by

𝐶𝐴 = 𝐶𝜉 ⊗ 𝐶𝜂 (1.67)
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and for the trivariate case

𝐶𝐴 = 𝐶𝜉 ⊗ 𝐶𝜂 ⊗ 𝐶𝜁 (1.68)

where ⊗ is the Kronecker product of the univariate matrices.
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2
Isogeometric Analysis

2.1 Introduction

Parallel to the development of CAD technologies, the scientific area of CAE has rapidly

evolved. In the early stage of their development, manual blueprints were shared between

designers and computational scientists, who had imminent interactions towards the

optimization of the product’s design and mechanical performance. Since the dawn of

personal computers, ever more complex geometries had to be reproduced, while engineers

were assigned with the burden of translating these geometries into analysis-suitable

input for the intricate computational mechanics software. This lead to a deviation of

the development paths of CAD and CAE, due to the different requirements for either

efficient representation of arbitrary geometries or highly accurate analyses of engineering

structures. This separate development generated a mismatch between the actual and the

analysis geometry, as the tools developed by popular computational mechanics processes,

such as the FEM, can only approximate the structure’s geometry.

This inherent approximation often leads to erroneous results in geometry sensitive

analyses. For example, shell buckling or contact mechanics applications, cannot be

accurately reproduced without precise geometry descriptions. In addition, adaptive

refinement techniques cannot be efficiently implemented, since they require a direct

connection of the approximate design with the exact geometrical representation, which
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is nonexistent. Similarly, the shape optimization of structures faces the bottleneck of

to and from CAD mapping and re-meshing procedures. All these deficiencies of the

mappings between CAD and CAE technologies, have raised the need for a single pipeline

that treats geometrical and analysis models as a single entity. IGA was introduced by

Hughes as design-through-analysis procedure that unifies the until then diverging CAD

and CAE industries.

IGA shares many similarities with its predecessor, the FEM method. Specifically,

according to [5], both are isoparametric implementations of the Galerkin method and

share similar code flow, while many properties such as the partition of unity and

bandwidth of the resulting matrices is preserved. On the contrary, several aspect that

the average FEA practitioner is accustomed to are now invalidated. Specifically, the

exact geometry is utilized in IGA, fact that significantly aids the analysis procedure.

Unfortunately, Control Points that describe the geometry do not interpolate it, which

in contrast to FEM nodes, does not provide a direct interpretation of the results, but

only when combined with the shape functions. The purpose of this chapter is to clarify

these differences, between IGA and FEM methods and introduce the basic quantities

and processes needed for the analysis of boundary value problems with the aid of IGA.

2.2 Continuum mechanics

All applications of this thesis are based on the PDE of linear elasticity, thus this is the

basic subject that will be analyzed in this chapter. All model quantities such as the

elements and the integration rules presented can be readily applied in any other PDEs

taking into account the proper modification for the assembly of the resulting matrices.

The derivation of the linear systems of linear elasticity PDE are summarized here. The

detailed procedure can be found in [4].

Starting with the strong form of the Linear Elasticity PDE, where Ω is the boundary

value problem domain, the Dirichlet and Neumann boundary conditions imposed on the

Γ𝐷𝑖 and Γ𝑁𝑖 parts of the domain equivalently, are presented in eq.2.1 b,c.

𝜎𝑖𝑗,𝑗 + 𝑓𝑖 = 0 𝑖𝑛 Ω (2.1a)

𝑢𝑖 = 𝑔𝑖 𝑜𝑛 Γ𝐷𝑖 (2.1b)

𝜎𝑖𝑗𝑛𝑗 = ℎ𝑖 𝑜𝑛 Γ𝑁𝑖 (2.1c)
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To retrieve the weak form of the PDE, eq.2.1a is multiplied by weighting function and

integrated by parts.

∫︁
Ω
𝑤(𝑖, 𝑗)𝜎𝑖𝑗𝑑Ω =

∫︁
Ω
𝑤𝑖𝑓𝑖 +

𝑑∑︁
𝑖=1

(︃∫︁
Γ𝑁𝑖

𝑤𝑖ℎ𝑖𝑑Γ

)︃
(2.2)

Note that in both eqs. 2.1 and 2.2 the term 𝜎𝑖𝑗 represents the stress tensor given by

the Hooke’s law

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜖𝑘𝑙 (2.3)

where 𝜖𝑖𝑗 is the strain vector, calculated as a gradient of the displacement 𝑢 and 𝑐𝑖𝑗𝑘𝑙

is the equivalent constitutive tensor. Eq. 2.2 can be alternatively written as

𝛼(w,u) = 𝐿(w) (2.4a)

𝛼(w,u) =

∫︁
Ω
𝑤(𝑖, 𝑗)𝜎𝑖𝑗𝑑Ω (2.4b)

𝐿(w) =

∫︁
Ω
𝑤𝑖𝑓𝑖 +

𝑑∑︁
𝑖=1

(︃∫︁
Γ𝑁𝑖

𝑤𝑖ℎ𝑖𝑑Γ

)︃
(2.4c)

The first term of 2.4a provides the matrix of the linear system equation and the second

term represents the external force vector.

𝐾 = 𝛼(w,u) (2.5a)

𝐹 = 𝐿(w) (2.5b)

In matrix notation, eq.2.4a can be written as

𝐾 · 𝑢 = 𝐹 (2.6)

where the term 𝑢 represents the solution vector of the resulting linear system and

ensures the compatibility between 𝑤, 𝑢 terms of eq. 2.4.
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In the discretized form, terms 𝑢,𝑤 are approximated by

𝑢 =
∑︁

𝑁𝐴𝑑𝑖𝐴 · ei (2.7a)

𝑤 =
∑︁

𝑁𝐵𝑐𝑖𝐴 · ei (2.7b)

The term ei represents the unit basis vectors of R3, that serve to break down the

displacement vector to it’s Cartesian axes components. The assembly of the stiffness

matrix in the linear elasticity case can be performed in a similar manner to the FEM

method, by iterating through the elements of the discretized domain. The following

subsections will examine the exact procedure utilized for the derivation of the elements

in IGA, considering both NURBS and T-Spline discretizations.

2.2.1 NURBS based isogeometric analysis

For the purposes of this thesis, two types of shape functions are examined, the first

of which is NURBS. In order to integrate the stiffness matrix of the linear elasticity

case, described in eq.2.5, the integration entities have to be defined. As defined in

Chapter 1, the basic entity of a NURBS based geometry is the Patch. Each Patch

has similar attributes to the parent element of the FEM method. Sepcifically, the

whole geometric entity of a single Patch is mapped to only one parametric domain,

utilizing the same isoparametric concept of FEM. On the contrary, even simpler entities,

called isogeometric elements, can be considered as integration domains, based on the

tensor product structure of NURBS. Both Patch and element structures can be used

for integration, yet for the purposes of this manuscript the latter case is utilized, as it

resembles the decomposition of a structure into independent entities of FEM.

Elements

Taking into account the definition of a Knot Vector given in Chapter 1, the elements in

the univariate case are defined as the non-zero spans, formed by its consecutive values.
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Figure 2.1: Elemental decomposition of an one-dimensional NURBS parameter space with Knot
Value Vector Ξ = {0, 0, 0, 1, 2, 2, 3, 3, 3}.

Figure 2.1, provides an example of the decomposition of an one-dimensional parametric

NURBS domain into elements. Given the parametric domain defined by the Knot Value

Vector Ξ = {0, 0, 0, 1, 2, 2, 3, 3, 3}, the equivalent Knot Vector can be extracted which

corresponds to Ξ′ = {0, 1, 2, 3}. As apparent, the four consecutive values of the Knot

Vector, generate three non-trivial spans. These spans are the definition of one-dimensional

elements in Isogeometric Analysis. In case of higher dimensional entities, the tensor

product structure of NURBS is utilized.

Figure 2.2: Elemental decomposition of an one-dimensional NURBS parameter space with Knot
Value Vectors Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 4} and 𝐻 = {0, 0, 0, 1, 2, 3, 3, 3}.

An example of the two-dimensional elemental structure of a NURBS plane is given

in Figure 2.2. Given the Knot Value Vectors Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 4} and 𝐻 =

{0, 0, 0, 1, 2, 3, 3, 3}, the equivalent Knot Vectors Ξ′ = {0, 1, 2, 3, 4} and 𝐻 ′ = {0, 1, 2, 3}
are computed. Each of the rectangular tiles appearing in the illustration of Figure 2.2
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are created by a tensor product combination of one-dimensional knot spans. As expected

from 4 spans on axis 𝜉 and 3 one axis 𝜂, a total of 12 isogeometric NURBS elements are

created. Blue rectangles represent the two dimensional Knots of the parametric domain,

while orange circles depict the parametric positions of the Control Points.

In a similar fashion, three-dimensional elements can be derived for the analysis of

trivariate Boundary Value Problem (BVP)s.

Mesh Refinement

A vital process of computational methods, that is significantly simplified with the devel-

opment of IGA, is mesh refinement. Mesh refinement’s scope is to enhance the minimum

viable mesh required for the design of a structure, in order to provide a fine enough

discretization, that can efficiently and accurately analyze the model under consideration.

IGA extends the already existing processes of h-refinement and p-refinement of FEM

and renames them as Knot Value Insertion and Degree Elevation equivalently, while

simultaneously introducing k-refinement which is a combination of the aforementioned

methods.

Knot Value Insertion refinement procedure, creates a finer mesh by adding new

Knot Values in the Knot Value Vector. Boundary Knot Values cannot be inserted at

the edges of the domain, as continuity is already at a minimum 𝐶−1 and thus must

remain unaltered. By adding internal Knot Values, either more integration elements are

generated, or the multitude of an existing Knot Value is increased. The total multiplicity

of internal Knot Values cannot exceed the polynomial degree p, thus resulting to a

minimum 𝐶0 continuity. Due to the augmentation of the initial Knot Value Vector Ξ

with new values and the requirement that the curve remains unaltered the following

formula holds

𝐶(Ξ) =
𝑛∑︁

𝑖=1

{𝑁𝑝
𝑖 (𝜉) ·𝑋𝑖} =

𝑚∑︁
𝑗=1

{𝑁𝑝
𝑗 (𝜉) ·𝑋𝑗} (2.8)

where overline in eq.2.8 denotes the new configuration. Note that the number of

Control Points changes between the initial and the final configuration. The multitude

of new Control Points equals the number of Knot Values inserted. A transformation

between the two Control Points networks can be obtained via
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{𝑋}
(𝑚𝑥1)

= [𝑇 𝑝]
(𝑚𝑥𝑛)

· {𝑋}
(𝑛𝑥1)

(2.9)

where the transformation matrix [𝑇 𝑝] is formed recursively as

𝑇 0
𝑖,𝑗 =

⎧⎨⎩1, 𝜉𝑖 ∈ [𝜉𝑗 , 𝜉𝑗+1]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2.10a)

𝑇 𝑞
𝑖,𝑗 =

𝜉𝑖+𝑞 − 𝜉𝑗

𝜉𝑗+𝑞 − 𝜉
· 𝑇 𝑞−1

𝑖,𝑗 +
𝜉𝑗+𝑞+1 − 𝜉𝑖+𝑞

𝜉 − 𝑗 + 𝑞 + 1− 𝜉𝑗+1
· 𝑇 𝑞−1

𝑖,𝑗+1, 𝑞 = 1, 2, ..., 𝑝 (2.10b)

The second mesh refinement technique of isogeometric analysis, Degree Elevation,

raises the polynomial degree of the shape functions to 𝑝 from initial 𝑝. Since the curve

with all of its properties must remain unaltered, the multiplicity of all Knot Values

is increased by 𝑝− 𝑝 in order to retain initial continuity of the geometry at the Knot

positions. The new Control Points of the curve will be evaluated with the aid of the

transformation matrix defined by eq. 2.10. The resulting Control Points will be utilized

for the evaluation of the new curve functions [𝑁 ]
(𝑚𝑥𝑚)

thus

{𝑋}
(𝑚𝑥1)

=

(︂
[𝑁 ]

(𝑚𝑥𝑚)

𝑇
)︂−1

· [𝑁 ]𝑇

(𝑚𝑥𝑛)

· {𝑋} (2.11)

where the transformation matrix equals

[𝑇 ]
(𝑚𝑥𝑛)

=

(︂
[𝑁 ]

(𝑚𝑥𝑚)

𝑇
)︂−1

· [𝑁 ]𝑇

(𝑚𝑥𝑛)

(2.12)

In case the term

(︂
[𝑁 ]

(𝑚𝑥𝑚)

𝑇
)︂−1

is not reversible, a new set of Control Points must be

evaluated.

The final refinement method introduced with IGA is k-refinement. The purpose of

k-refinement is to increase the continuity at the introduced Knot Values, as the latter h-

and p-refinement methods, either reduce or retain the existing continuity. To achieve this,

both p- and h-refinements are performed consecutively. Initially, p-refinement increases

the polynomials degree of the shape functions, while retaining the existing continuity at

the Knots. In a second step, h-refinement introduces new Knots with continuity raised
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to 𝐶𝑝−1 where 𝑝 is the new augmented polynomial degree.

Note that all former refinement techniques are applicable at B-Spline entities. In

case of NURBS, the same procedures cannot be directly applied to the homogeneous

coordinates {𝑋𝑖, 𝑌𝑖, 𝑍𝑖,𝑊𝑖}, rather to the projective Control Point coordinates that

incorporate the weight information to the rest of the Cartesian position data.

Stiffness Matrix - Integration

As mentioned in Section 2.2, the entities over which integration is performed are either

Patches that represent the entirety of the parametric domain, or elements whose ex-

traction was previously described. For the purposes of this thesis, the latter option is

employed, to maintain the analogy of FEM and IGA computational methods.

The matrices produced by eq. 2.5a are integrated over the isogeometric elements,

taking into account the Gauss quadrature. Recall that elements based on the definition

given in the latter section, are domains where shape functions can be represented by

piecewise polynomials. It has been proven that for multivariate elements, p+1 Gauss

Points per axis are required, where p is the polynomial degree of the shape functions.

The integration points coordinates for each axes are obtained on the parent element

[−1, 1], as the roots of the Legendre polynomials in this domain. The next step is to

transform their coordinates 𝜉𝑅 and weights 𝑤𝑅
𝜉 from the reference knot span [−1, 1] to

the desired knot span [𝜉𝑖, 𝜉𝑖+1].

𝜉 =
(𝜉𝑖+1 − 𝜉𝑖) · 𝜉𝑅 + (𝜉𝑖+1+𝜉𝑖)

2
(2.13a)

𝑤𝑅
𝐺𝑃 =

(𝜉𝑖+1 − 𝜉𝑖)

2
· 𝑤𝑅

𝜉 (2.13b)

The same formula holds for the evaluation of Gauss Points and their equivalent weights

for all parametric directions. The multivariate Gauss Points are derived by applying

the tensor product rule to univariate Gauss Points for each of the multiple parametric

direction.
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n 𝜉𝑖 𝑤𝑖

1 0 2

2 -0.57735 1

0.57735 1

3 -0.77459 0.55555

0 0.88888

0.77459 0.55555

4 -0.86113 0.34785

-0.33998 0.65214

0.33998 0.65214

0.86113 0.34785

5 -0.90617 0.23692

-0.33998 0.47862

0 0.56888

0.33998 0.47862

0.90617 0.23692

Table 2.1: Univariate Gauss point coordinates and weights in the parent domain [−1, 1].

One-dimensional stiffness matrix

In the single dimension case, the strain of each point is calculated as a gradient of the

deformation by

{𝜖}
(1𝑥1)

= 𝜖𝑥 =
𝜕𝑢

𝜕𝑥
(2.14)

Note that gradient is calculated with respect to position of a point in the physical space.

Yet, the Gauss Points are located at the parameter space and thus a transformation

between the two spaces must be defined. This transformation is the Jacobian one and

remains the same with the FEM equivalent as both are based on the same isoparametric

concept. Specifically the following relationship holds,[︃
𝜕𝜑

𝜕𝜉

]︃
= [𝐽 ] ·

[︃
𝜕𝜑

𝜕𝑥

]︃
(2.15)
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where [𝐽 ] is the Jacobian matrix. In the discretized domain, the Jacobian matrix is

evaluated with the aid of the shape functions as follows:

[𝐽(𝜉)] = [𝑅1,𝜉(𝜉) 𝑅2,𝜉(𝜉) ...𝑅𝑛,𝜉(𝜉)]
(1𝑥𝑛)

· [𝑋1 𝑋2 ...𝑋𝑛]
𝑇

(1𝑥𝑛)

(2.16)

where 𝑅𝑖,𝜉 denotes the first derivative of the shape functions per axis 𝜉. In both FEM

and IGA the inverse transformation of eq. 2.15 is performed and thus the matrix [𝐽 ]−1 is

needed. As a result, special care must be taken for the Jacobian matrix to be reversible

by eliminating points of singularity and ensuring that the directions of parameter and

physical space coincide.

The next step is to calculate the deformation matrix [𝐵], which is utilized to compute

the strains at any arbitrary point of the domain based on the nodal quantities of the

discretization. This matrix is split into two parts, [𝐵1] and [𝐵2]. Matrix [𝐵1] transfers

the strains of the element from parameter to physical space and matrix [𝐵2] transfers

the nodal displacements of the elements to the strains at the parameter space. In case

of one-dimensional problems they are calculated by

[𝐵1(𝜉)]
(1𝑥1)

=

[︃
1

𝐽11

]︃
(2.17a)

[𝐵2(𝜉)]
(1𝑥𝑛)

= [𝑅1,𝜉(𝜉) 𝑅2,𝜉(𝜉) ...𝑅𝑛,𝜉(𝜉)] (2.17b)

Matrix [𝐵] is calculated as a product of the submatrices [𝐵1], [𝐵2] as

[𝐵(𝜉)]
(1𝑥𝑛)

= [𝐵1(𝜉)]
(1𝑥1)

· [𝐵2(𝜉)]
(1𝑥𝑛)

(2.18)

As a result, the stiffness matrix for one-dimensional isogeometric elements is evaluated

as

[𝐾]
(𝑛𝑥𝑛)

=

∫︁ 𝜉𝑛+𝑝+1

𝜉0

[𝐵(𝜉)]𝑇

(𝑛𝑥1)

· 𝐸 · [𝐵(𝜉)]𝑇

(1𝑥𝑛)

·𝐴 · 𝑑𝑒𝑡[𝐽 ]𝑑𝜉 (2.19)

where terms 𝜉0 and 𝜉𝑛+𝑝+1 denote the boundaries of the parametric domain and A

the section’s area of the one-dimensional model and E the Young’s modulus of elasticity.

The integral presented in eq. 2.19 is never calculated analytically. Instead a numerical
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integration is performed, taking into account the Gauss Points evaluated at each separate

parametric integral. This transforms eq. 2.19 to:

[𝐾]
(𝑛𝑥𝑛)

=
𝑛𝐺𝑃∑︁
𝑖=1

{︃
[𝐵(𝜉𝑖)]

𝑇

(𝑛𝑥1)

· 𝐸 · [𝐵(𝜉𝑖)]
𝑇

(1𝑥𝑛)

·𝐴 · 𝑑𝑒𝑡[𝐽 ] · 𝑤𝐺𝑃
𝑖 𝑑𝜉

}︃
(2.20)

where 𝑤𝐺𝑃
𝑖 is the equivalent weight of each independent Gauss Point.

Two-dimensional stiffness matrix

The aforementioned procedure for the univariate stiffness matrix can be extended to

multidimensional cases. Specifically, in the two-dimensional case, the strain vector at

each physical is defined based on the directional displacements u, v as

{𝜖}
(3𝑥1)

=

⎡⎢⎣ 𝜖𝑥

𝜖𝑦

𝛾𝑥𝑦

⎤⎥⎦ =

⎡⎢⎣
𝜕𝑢
𝜕𝑥
𝜕𝑣
𝜕𝑦

𝜕𝑢
𝜕𝑦 + 𝜕𝑣

𝜕𝑥

⎤⎥⎦ (2.21)

In a similar fashion to the one-dimensional case, the Jacobian transformation is

required to transfer information between the parameter and the physical space.[︃
𝜕𝜑
𝜕𝜉
𝜕𝜑
𝜕𝜂

]︃
=

[︃
𝜕𝑥
𝜕𝜉

𝜕𝑥
𝜕𝜉

𝜕𝑦
𝜕𝜂

𝜕𝑦
𝜕𝜉

]︃
·

[︃
𝜕𝜑
𝜕𝑥
𝜕𝜑
𝜕𝑦

]︃
=⇒

[︃
𝜕𝜑
𝜕𝜉
𝜕𝜑
𝜕𝜂

]︃
= [𝐽 ]

(2𝑥2)

·

[︃
𝜕𝜑
𝜕𝑥
𝜕𝜑
𝜕𝑦

]︃
(2.22)

or equivalently, the inverse transformation to transition from parameter to physical

space [︃
𝜕𝜑
𝜕𝑥
𝜕𝜑
𝜕𝑦

]︃
= [𝐽 ]

(2𝑥2)

−1 ·

[︃
𝜕𝜑
𝜕𝜉
𝜕𝜑
𝜕𝜂

]︃
(2.23)

Taking advantage of the discretized notation, the Jacobian transformation at each

parametric point is calculated as

[𝐽 ]
(2𝑥2)

=

[︃
𝑅1,𝜉(𝜉, 𝜂) 𝑅2,𝜉(𝜉, 𝜂) ... 𝑅𝑁,𝜉(𝜉, 𝜂)

𝑅1,𝜂(𝜉, 𝜂) 𝑅2,𝜂(𝜉, 𝜂) ... 𝑅𝑁,𝜂(𝜉, 𝜂)

]︃
·

⎡⎢⎢⎢⎢⎣
𝑋1 𝑌1

𝑋2 𝑌2

... ...

𝑋𝑛 𝑌𝑁

⎤⎥⎥⎥⎥⎦ (2.24)
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The deformation matrix [𝐵] in the two-dimensional case is also computed as a product

of the submatrices [𝐵1] and [𝐵2], where [𝐵1]

[𝐵1(𝜉, 𝜂)]
(3𝑥4)

=
1

𝑑𝑒𝑡[𝐽 ]
·

⎡⎢⎣ 𝐽22 −𝐽12 0 0

0 0 −𝐽21 𝐽11

−𝐽21 𝐽11 𝐽22 −𝐽12

⎤⎥⎦ (2.25)

and [𝐵2]:

[𝐵2(𝜉, 𝜂)]
(4𝑥2𝑁)

=
1

𝑑𝑒𝑡[𝐽 ]
·

⎡⎢⎢⎢⎢⎣
𝑅1,𝜉 0 𝑅2,𝜉 0 ... 𝑅𝑁,𝜉 0

𝑅1,𝜂 0 𝑅2,𝜂 0 ... 𝑅𝑁,𝜂 0

0 𝑅1,𝜉 0 𝑅2,𝜉 0 ... 𝑅𝑁,𝜉

0 𝑅1,𝜂 0 𝑅2,𝜂 0 ... 𝑅𝑁,𝜂

⎤⎥⎥⎥⎥⎦ (2.26)

In order to evaluate the bivariate stiffness matrix, integration is required

[𝐾]
(2𝑁𝑥2𝑁)

=

∫︁ 𝜉𝑛+𝑝+1

𝜉0

∫︁ 𝜂𝑚+𝑞+1

𝜂0

[𝐵(𝜉, 𝜂)]
(2𝑁𝑥3)

𝑇 · [𝐸]
(3𝑥3)

· [𝐵(𝜉, 𝜂)]
(3𝑥2𝑁)

· 𝑡 · 𝑑𝑒𝑡[𝐽 ]𝑑𝜂𝑑𝜉 (2.27)

By applying numerical quadrature, eq. 2.27 is transformed to:

[𝐾]
(2𝑁𝑥2𝑁)

=

𝐺𝑃𝜉∑︁
𝑖=1

𝐺𝑃𝜂∑︁
𝑗=1

[𝐵(𝜉𝑖, 𝜂𝑗)]
(2𝑁𝑥3)

𝑇 · [𝐸]
(3𝑥3)

· [𝐵(𝜉𝑖, 𝜂𝑗)]
(3𝑥2𝑁)

· 𝑡 · 𝑑𝑒𝑡[𝐽 ] · 𝑤𝐺𝑃𝜉

𝑖 · 𝑤𝐺𝑃𝜉

𝑖 (2.28)

where t is the thickness of the bivariate domain at each integration point.

Three-dimensional stiffness matrix

A similar process is followed in the trivariate continuum mechanics case, where the strain

field is calculated as the directional gradient of the displacements u, v, w
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{𝜖}
(6𝑥1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜖𝑥

𝜖𝑦

𝜖𝑧

𝛾𝑥𝑦

𝛾𝑦𝑧

𝛾𝑧𝑥

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑢
𝜕𝑥
𝜕𝑣
𝜕𝑦
𝜕𝑤
𝜕𝑧

𝜕𝑢
𝜕𝑦 + 𝜕𝑣

𝜕𝑥
𝜕𝑣
𝜕𝑧 + 𝜕𝑤

𝜕𝑦
𝜕𝑤
𝜕𝑥 + 𝜕𝑢

𝜕𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.29)

Once more, for the definition of the Jacobian matrix we have

⎡⎢⎣
𝜕𝜑
𝜕𝜉
𝜕𝜑
𝜕𝜂
𝜕𝜑
𝜕𝜁

⎤⎥⎦ =

⎡⎢⎣
𝜕𝑥
𝜕𝜉

𝜕𝑦
𝜕𝜉

𝜕𝑧
𝜕𝜉

𝜕𝑥
𝜕𝜂

𝜕𝑦
𝜕𝜂

𝜕𝑧
𝜕𝜂

𝜕𝑥
𝜕𝜁

𝜕𝑦
𝜕𝜁

𝜕𝑧
𝜕𝜁

⎤⎥⎦ ·

⎡⎢⎣
𝜕𝜑
𝜕𝑥
𝜕𝜑
𝜕𝑦
𝜕𝜑
𝜕𝑧

⎤⎥⎦ =⇒

⎡⎢⎣
𝜕𝜑
𝜕𝜉
𝜕𝜑
𝜕𝜂
𝜕𝜑
𝜕𝜁

⎤⎥⎦ = [𝐽 ]
(3𝑥3)

·

⎡⎢⎣
𝜕𝜑
𝜕𝑥
𝜕𝜑
𝜕𝑦
𝜕𝜑
𝜕𝑧

⎤⎥⎦ (2.30)

and the inverse Jacobian as well:

⎡⎢⎣
𝜕𝜑
𝜕𝑥
𝜕𝜑
𝜕𝑦
𝜕𝜑
𝜕𝑧

⎤⎥⎦ = [𝐽 ]
(3𝑥3)

−1 ·

⎡⎢⎣
𝜕𝜑
𝜕𝜉
𝜕𝜑
𝜕𝜂
𝜕𝜑
𝜕𝜁

⎤⎥⎦ (2.31)

For auxiliary purposes, the terms of the computed inverse Jacobian matrix are named

as follows

[𝐽 ]
(3𝑥3)

−1

⎡⎢⎣𝐽
*
11 𝐽*

12 𝐽*
13

𝐽*
21 𝐽*

22 𝐽*
23

𝐽*
31 𝐽*

32 𝐽*
33

⎤⎥⎦ (2.32)

in order to faciliate an immediate formula representation of the deformation matrix

part [𝐵1].

[𝐵1(𝜉, 𝜂, 𝜁)]
(6𝑥9)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐽*
11 𝐽*

12 𝐽*
13 0 0 0 0 0 0

0 0 0 𝐽*
21 𝐽*

22 𝐽*
23 0 0 0

0 0 0 0 0 0 𝐽*
31 𝐽*

32 𝐽*
33

𝐽*
21 𝐽*

22 𝐽*
23 𝐽*

11 𝐽*
12 𝐽*

13 0 0 0

0 0 0 𝐽*
31 𝐽*

32 𝐽*
33 𝐽*

21 𝐽*
22 𝐽*

23

𝐽*
31 𝐽*

32 𝐽*
33 0 0 0 𝐽*

11 𝐽*
12 𝐽*

13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.33)

Equivalently based on the shape function derivatives, the second subpart of the
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deformation matrix [𝐵2] is calculated as follows:

[𝐵2(𝜉, 𝜂, 𝜁)]
(9𝑥3𝑁)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑅1,𝜉 0 0 ... ... ... 𝑅𝑁,𝜉 0 0

𝑅1,𝜂 0 0 ... ... ... 𝑅𝑁,𝜂 0 0

𝑅1,𝜁 0 0 ... ... ... 𝑅𝑁,𝜁 0 0

0 𝑅1,𝜉 0 ... ... ... 0 𝑅𝑁,𝜉 0

0 𝑅1,𝜂 0 ... ... ... 0 𝑅𝑁,𝜂 0

0 𝑅1,𝜁 0 ... ... ... 0 𝑅𝑁,𝜁 0

0 0 𝑅1,𝜉 ... ... ... 0 0 𝑅𝑁,𝜉

0 0 𝑅1,𝜂 ... ... ... 0 0 𝑅𝑁,𝜂

0 0 𝑅1,𝜁 ... ... ... 0 0 𝑅𝑁,𝜁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.34)

and the equivalent deformation matrix for 3D elasticity is derived as a product of the

former two matrices:

[𝐵(𝜉, 𝜂, 𝜁)]
(6𝑥3𝑁)

= [𝐵1(𝜉, 𝜂, 𝜁)]
(6𝑥9)

· [𝐵(𝜉, 𝜂, 𝜁)]
(9𝑥3𝑁)

(2.35)

The corresponding stiffness matrix is integrated as follows:

[𝐾]
(3𝑁𝑥3𝑁)

=

∫︁ 𝜉𝑛+𝑝+1

𝜉0

∫︁ 𝜂𝑚+𝑞+1

𝜂0

∫︁ 𝜁𝑙+𝑟+1

𝜁0

[𝐵(𝜉, 𝜂, 𝜁)]
(3𝑁𝑥6)

𝑇 · [𝐸]
(6𝑥6)

· [𝐵(𝜉, 𝜂, 𝜁)]
(6𝑥3𝑁)

·𝑑𝑒𝑡[𝐽 ]𝑑𝜉𝑑𝜂𝑑𝜁 (2.36)

Finally, by applying numerical integration we obtain:

[𝐾]
(3𝑁𝑥3𝑁)

=

𝐺𝑃𝑥𝑖∑︁
𝑖=1

𝐺𝑃𝜂∑︁
𝑗=1

𝐺𝑃𝜁∑︁
𝑘=1

[𝐵(𝜉𝑖, 𝜂𝑗 , 𝜁𝑘)]
(3𝑁𝑥6)

𝑇 · [𝐸]
(6𝑥6)

· [𝐵(𝜉𝑖, 𝜂𝑗 , 𝜁𝑘)]
(6𝑥3𝑁)

· 𝑑𝑒𝑡[𝐽 ] · 𝑤𝐺𝑃𝜉

𝑖 · 𝑤𝐺𝑃𝜂

𝑗 · 𝑤𝐺𝑃𝜁

𝑘

(2.37)

2.2.2 T-Spline based isogeometric analysis

As already mentioned in the previous chapter, due the linear independence limitations

imposed by the shape functions, the T-mesh differs from the integration mesh in case

of T-Spline geometries. In this section the generation of the final integration mesh for

T-Spline entities will be discussed.
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Elements

The integration mesh is a product of the initial T-mesh configuration and the supports

of the Anchors. An example of a T-mesh structure is given in Figure 2.3. Two Anchors,

positioned at (𝜉𝑎, 𝜂𝑎) = (5, 2.5) and (𝜉𝑏, 𝜂𝑏) = (6.5, 5) are depicted with red circles, while

their equivalent Knot Value Vectors are shown as green lines.

Figure 2.3: T-mesh configuration. Anchors depicted in red circles, with their equivalent Knot Value
Vectors depicted with green lines.

The support of each Anchor is defined as the tensor product domain generated based

on it’s local Knot Value Vectors. An example of this influence domain is shown as a

shaded area in Figure 2.4. It is apparent that the defined area creates lines that do not

exist in the initial T-mesh layout. An example of such a line is shown in Figure 2.4 as

dark red line. By iterating through all Anchors, this procedure returns as a product

these additional lines of the whole T-mesh configuration. They are named continuity

reduction lines, as they divide the Index space into elements, where shape functions are

𝐶∞ continuous. On the verge of these lines, continuity is limited due to the connection

of different piecewise polynomial functions.

These continuity reduction lines form the final integration mesh, on which integration

will be performed after the placement of Gauss Points. An example of the final T-mesh

configuration containing all continuity reduction lines is illustrated in 2.5.
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Figure 2.4: T-mesh configuration. Anchor with parametric coordinates (5, 2.5), defines the shaded
influence domain. Continuity reduction line is illustrated with bold red line.

Figure 2.5: T-mesh configuration. Continuity reduction lines generated for the entire mesh are
shown as red dashed lines.

Mesh Refinement

T-Splines are the first CAD technology that enables true local refinement of the topology.

The insertion of T-junctions enables the refinement to take place on an element level.
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Faces subdivision is the most common refinement strategy. The main process is to divide

one of the elements into four new ones. In addition, T-Splines allow the insertion of

single Control Points in places where geometry needs special local handling.

An example of a face subdivision procedure for the refinement of T-Splines spaces is

provided in Figure 2.6. Note that Figure 2.6a resembles a common NURBS mesh. The

representation of NURBS tensor product spaces, is allowed within T-Splines technology

as it’s theory renders it a superset of NURBS. Figure 2.6b, illustrates the subdivision

of the bottom left face of the T-Spline index space, into four subfaces. As apparent,

T-junctions enable the subdivision of a single geometrical entity, thus enabling true local

refinement. The Knot lines inserted in Figure 2.6b, do not propagate throughout the

parametric domain as in the case of NURBS, thus minimizing the number of introduced

Control Points needed, to attain the same level of local control of the geometry. Detailed

processes and algorithms for the refinement of isogeometric T-Spline spaces can be found

in [166].

(a) Initial T-mesh configuration. (b) Refined T-mesh configuration.

Figure 2.6: The initial T-mesh configuration is refined by subdividing a face into four independent
ones.*

T-Splines Bézier extraction

Throughout this thesis, whenever T-Spline geometries were utilized, the process of Bézier

extraction is employed, as it offers an immediate integration with the existing in-house

*Created with Rhinoceros
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FEM code. A T-Spline plugin for Rhino was utilized �, that extracted geometric data

according to process described in [165].

Figure 2.7b provides an example of the extracted Bézier elements layout, based on

the initial Index Space configuration of Figure 2.7a. As described in Chapter 1, the

Bézier extraction operator for T-Spline element is calculated in a function-by-function

basis, due to the intricate pattern of shape function that affect it. The mapping between

elemental T-Spline shape functions and Bézier element shape functions is the following

N𝑒(𝜉) = C𝑒B(𝜉) (2.38)

(a) T-mesh configuration. (b) Bézier elements layout.

Figure 2.7: T-mesh configuration and extracted Bézier elements.�

Rational T-Spline shape functions of an element are calculated using the following

formula

R𝑒(𝜉) =
W𝑒N𝑒(𝜉)

(w𝑒)𝑇N𝑒(𝜉)
(2.39)

where R𝑒(𝜉) is the vector of T-Spline shape functions, w𝑒 a vector containing the

weights of the elemental Control Points and W𝑒 the diagonal matrix created from w𝑒.

With the aid of eq.2.38, eq.2.39 is transformed to

�Autodesk T-Spline plugin for Rhino.
�Created with Rhinoceros
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R𝑒(𝜉) =
W𝑒C𝑒B(𝜉)

(w𝑒)𝑇N𝑒B(𝜉)
(2.40)

In order to integrate the Linear elasticity PDE with T-Splines shape functions, the same

process of NURBS is repeated. Starting from the strong form of the PDE, multiplying by

a set of trial functions and integrating by parts, the weak form of the PDE is obtained.

𝛼(w,u) = 𝐿(w) (2.41a)

𝛼(w,u) =

∫︁
Ω
𝑤(𝑖, 𝑗)𝜎𝑖𝑗𝑑Ω (2.41b)

𝐿(w) =

∫︁
Ω
𝑤𝑖𝑓𝑖 +

𝑑∑︁
𝑖=1

(︃∫︁
Γ𝑁𝑖

𝑤𝑖ℎ𝑖𝑑Γ

)︃
(2.41c)

As analytically described for NURBS, the computation of the stiffness matrix requires

a mapping from physical to parametric coordinates and vice versa. This mapping is based

on the derivatives of the shape functions. Since only shape functions are computed in a

different manner compared to NURBS, only the Bézier extracted T-Spline derivatives

will be provided here. For this purpose, eq.2.40 is rewritten as

R𝑒(𝜉) = W𝑒C𝑒 B(𝜉)

𝑊 𝑒(𝜉)
(2.42)

where

𝑊 𝑒(𝜉) = (w𝑒)𝑇N𝑒B(𝜉) (2.43)

Thus, the derivatives of T-Spline shape functions R𝑒 with respect to the local para-

metric axes 𝜉, 𝜂 are calculated as follows:

𝜕R𝑒(𝜉, 𝜂)

𝜕𝜉
= W𝑒C𝑒 𝜕

𝜕𝜉

(︂
B(𝜉, 𝜂)

𝑊 𝑒(𝜉)

)︂
= W𝑒C𝑒

(︂
1

𝑊 𝑒(𝜉, 𝜂)

𝜕B(𝜉, 𝜂)

𝜕𝜉
− 𝜕𝑊 𝑒(𝜉, 𝜂)

𝜕𝜉

B(𝜉, 𝜂)

𝑊 𝑒(𝜉, 𝜂)2

)︂
(2.44a)

𝜕R𝑒(𝜉, 𝜂)

𝜕𝜂
= W𝑒C𝑒 𝜕

𝜕𝜂

(︂
B(𝜉, 𝜂)

𝑊 𝑒(𝜉)

)︂
= W𝑒C𝑒

(︂
1

𝑊 𝑒(𝜉, 𝜂)

𝜕B(𝜉, 𝜂)

𝜕𝜂
− 𝜕𝑊 𝑒(𝜉, 𝜂)

𝜕𝜂

B(𝜉, 𝜂)

𝑊 𝑒(𝜉, 𝜂)2

)︂
(2.44b)
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2.3 Structural elements

Despite most FEM and IGA element formulations are produced from the discretization

of PDEs, there is a wider category of elements that are generated based on simplifications

of the general PDE used for continua. These simplifications are usually derived from

the dimensionality of the structure, its special boundary conditions, or its allowed

deformation state. For instance, shells structures are considered a special continuum

case, since one of the three dimensions of the structure is significantly smaller than the

rest, specifically the thickness. As a result, the three-dimensional differential equation

that governs this structure can be expressed in terms of only the mid-thickness or

alternatively, middle surface of the structure.

Various theories have been developed in order to accurately model the response of shell

in the field of computational mechanics, most profound among which are Reissner-Midlin

and Kirchhoff-Love shell theories. Reissner-Midlin is mainly utilized for the modelling of

thick shells in order to take into account transverse shear deformation, while Kirchhoff-

Love theory disregards them. Even though most engineering structures belong to the thin

shell part of the theory, continuity limitations imposed by Kirchhoff-Love shells made

Reissner-Midlin theory dominant in most commercial and academic FEM codes. The

underlying reason is that a minimum 𝐶2 continuity required in case of Kirchhoff-Love

shells cannot be obtained in a straightforward manner by FEM, as finite elements are

connected with 𝐶0 continuity and thus lead to a requirement for non-local formulations

or penalty-like constraints at the nodes to enforce it. IGA with its enhanced continuity

shape functions, allows for a straightforward implementation of Kirchhoff-Love shells.

This subsection will discuss the basic of linear small deformation Kirchhoff-Love shell

that will be utilized later on in this thesis.

2.3.1 Differential geometry of surfaces

A brief introduction to the differential geometry of surfaces will be provided, that

serves as a basis for the Kirchhoff-Love shell formulation. Based on the midsurface

representation of the shell, each point that lies on the surface can be identified by its

position vector x𝑚𝑖𝑑.
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x𝑚𝑖𝑑 = 𝑥𝑚𝑖𝑑e1 + 𝑦𝑚𝑖𝑑e2 + 𝑧𝑚𝑖𝑑e3 (2.45)

As eq.2.45 shows, the position vector of every midsurface point is generated by linear

combination of the Cartesian unit vectors e𝑖 and position ordinates {𝑥, 𝑦, 𝑧}, one for

each Cartesian axis. Any point x𝑡 that lies 𝜁 thickness distance from the midsurface is

given by

x𝑡 = x𝑚𝑖𝑑 + 𝜁a3, − 𝑡

2
≤ 𝜁 ≤ 𝑡

2
(2.46)

Figure 2.8: Initial and deformed configuration of a shell.

where 𝑎3 is the normal covariant vector. Given the position of a midsurface point x,

the tangential covariant base vectors are defined

a𝑖 =
𝜕x

𝜕𝜃𝑖
= x,𝑖 (2.47)

In eq.2.47, 𝜃𝑖 denotes the contravariant axes, while the term ( ), 𝑖 expresses the gradient

of the vector per contravariant axis 𝜃𝑖. Covariant and contravariant vectors at every

midsurface point are related with the following expression
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g𝑖 · g𝑗 = 𝛿𝑗𝑖 (2.48)

where 𝛿𝑗𝑖 is the Kronecker delta function. Based on the former, the third normal

covariant base vector is defined as

a3 =
a1 × a2

‖a1 × a2‖
(2.49)

The covariant metric coefficients 𝑔𝛼𝛽 are computed as dot products of the covariant

base vectors

𝑎𝛼𝛽 = a𝛼 · a𝛽 (2.50)

and finally, the curvature tensor coefficients 𝑏𝛼𝛽 , that provide the curvature properties

of the surface are defined as

𝑏𝛼𝛽 = a𝛼,𝛽 · a3 (2.51)

2.3.2 Kirchhoff-Love shell

The Kirchhoff-Love shell formulation is considered an extension of Euler-Bernoulli beam

theory, where the shell kinematics are described by the position of the shell’s midsurface.

The main assumptions taken into account for the derivation of Kirchhoff-Love theory

are that straight lines, normal to the midsurface remain straight and normal to the

midsurface in the deformed configuration , while thickness remains unchanged.

The equation that regulates the deformation of any shell midsurface point is obtained

as the difference between that position of the point in the current and the reference

configuration. Based on the illustration provided in Figure 2.8, this translates to:

u = x𝑚𝑖𝑑 − x0
𝑚𝑖𝑑 (2.52)

The kinematic variables of the shell are described in terms of the quantities introduced

for the differential geometry of the surfaces. Specifically, by utilizing eq. 2.50, 2.51

and neglecting the quadratic terms of the displacement gradients, the strain tensor

components are computed as follows:
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𝜖𝛼𝛽 =
1

2
(𝑎0𝛼 · 𝑢,𝛽 +𝑎0𝛽 · 𝑢,𝛼 ) (2.53)

Equivalently, the bending strains are calculated by

𝜅𝛼𝛽 =
1

2
(𝑎0𝛼 ·Δ𝑎3,𝛽 +𝑎0𝛽 ·Δ𝑎3,𝛼+𝑢,𝛼 ·𝑎03,𝛽 +𝑢,𝛽 ·𝑎03,𝛼 ) (2.54)

where 𝑎0𝛼 denotes the shell tangent vector at the reference configuration, while the

normal vector derivatives in the reference configuration are calculated using the reference

Jacobian matrix 𝑗0 as

𝑎03,𝛼= (𝑗0)−1(𝑎01,𝛼×𝑎02 + 𝑎01 × 𝑎02,𝛼 ) (2.55a)

Δ𝑎3,𝛼= (𝑗0)−1(𝑢,1𝛼×𝑎02 + 𝑢0,1×𝑎02,𝛼+𝑎01,𝛼×𝑢,2+𝑎01 × 𝑢2,𝛼 ) (2.55b)

By combining eqs. 2.55a and 2.55b the total in-plane strain at a point that lies

distance 𝜁 from the midsurface can be calculated.

𝜖𝜁𝛼𝛽 = 𝜖𝑚𝑖𝑑
𝛼𝛽 + 𝜁𝜅𝛼𝛽 (2.56)

The stiffness matrix of the shell is derived by applying the principle of virtual work,

which can be written as

𝑊 =

∫︁
𝑉
𝜎 : 𝛿𝜖𝑑𝑉 =

∫︁
𝑉
𝑓 · 𝛿𝑢𝑑𝑉 (2.57)

where 𝛿𝑢 is the virtual displacement. The equation of virtual work can be further

elaborated as:

∫︁
𝑉
𝜎 : 𝛿𝜖𝑑𝑉 =

∫︁
𝐴
(n : 𝛿𝜖+m : 𝛿𝜅)𝑑𝐴 (2.58)

where the stress resultant components of the forces n and moments m are calculated
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via through thickness integration as

𝑛𝛼𝛽 =

∫︁ ℎ
2

−ℎ
2

𝜎𝛼𝛽𝑑𝜁 (2.59a)

𝑚𝛼𝛽 =

∫︁ ℎ
2

−ℎ
2

𝜎𝛼𝛽𝜁𝑑𝜁 (2.59b)

In a similar fashion, the constitutive matrices at each midsurface integration point are

obtained by the thickness integration of constitutive matrices corresponding to equivalent

thickness integration points.

𝐶𝐴 =

∫︁ ℎ
2

−ℎ
2

𝐶𝑑𝜁 (2.60a)

𝐶𝐵 =

∫︁ ℎ
2

−ℎ
2

𝐶𝜁𝑑𝜁 (2.60b)

𝐶𝐷 =

∫︁ ℎ
2

−ℎ
2

𝐶𝜁2𝑑𝜁 (2.60c)

and the gradients of the membrane forces and bending moments are computed by

𝑑𝑛𝛼𝛽 = 𝐶𝛼𝛽𝛾𝛿
𝐴 𝑑𝜖𝛾𝛿 + 𝐶𝛼𝛽𝛾𝛿

𝐵 𝑑𝜅𝛾𝛿 (2.61a)

𝑑𝑚𝛼𝛽 = 𝐶𝛼𝛽𝛾𝛿
𝐵 𝑑𝜖𝛾𝛿 + 𝐶𝛼𝛽𝛾𝛿

𝐷 𝑑𝜅𝛾𝛿 (2.61b)

Since equilibrium must be met for any variation of the displacement matrices 𝛿𝑢𝑟, the

following equation holds for the variation of the principle of virtual work:

𝛿𝑊 =
𝜕𝑊

𝜕𝑢𝑟
𝛿𝑢𝑟 = 0 (2.62)
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Based on eq. 2.62 the internal and external nodal forces can be extracted:

𝐹 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝑟 =

∫︁
𝐴
(n :

𝜕𝜖

𝜕𝑢𝑟
+m :

𝜕𝜅

𝜕𝑢𝑟
)𝑑𝐴 (2.63a)

𝐹 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙
𝑟 =

∫︁
𝐴
𝑓 · 𝜕𝑢

𝜕𝑢𝑟
𝑑𝐴 (2.63b)

Subsequently, the stiffness matrix is obtained by

𝐾𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝑟𝑠 =

∫︁
𝐴
(
𝜕n

𝜕𝑢𝑠
:
𝜕𝜖

𝜕𝑢𝑟
+

𝜕m

𝜕𝑢𝑠
:
𝜕𝜅

𝜕𝑢𝑟
) (2.64)

By substituting eq. 2.61, eq.2.64 can be further elaborated as:

𝐾𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝑟𝑠 =

∫︁
𝐴

(︂
(𝐶𝐴 :

𝜕𝜖

𝜕𝑢𝑠
+ 𝐶𝐵 :

𝜕𝜅

𝜕𝑢𝑠
) :

𝜕𝜖

𝜕𝑢𝑟
+ (𝐶𝐵 :

𝜕𝜖

𝜕𝑢𝑠
+ 𝐶𝐷 :

𝜕𝜅

𝜕𝑢𝑠
) :

𝜕𝜅

𝜕𝑢𝑟

)︂
𝑑𝐴

(2.65)

2.4 Isogeometric collocation

The analysis of linear elasticity PDEs with the isogeometric Galerkin method has proven

to provide results with significantly increased accuracy per degree of freedom compared

to its FEM counterparts. This is mainly attributed to the increased continuity of the

shape functions, that inevitably lead to minimized error and increased smoothness of

second order quantities such as stresses and strain. Unfortunately, this increased accuracy

comes at a great cost for the assembly of the resulting matrices, since the equivalent

integration points of IGA can be orders magnitude more compared to FEM. As a result,

great efforts are made by the scientific community to employ alternative integration

schemes, in order to minimize this computational burden.

To this end, the well known collocation methods are examined, as a strong form

alternative to the weak formulation and integration of PDEs introduced by Galerkin,

that minimizes the multitude of integration points required. Thus, this section will

provide a brief summary of isogeometric NURBS-based collocation methods for the

analysis of linear elasticity PDEs. According to [151], given a structure represented by a

domain Ω ⊂ R𝑑, where d the dimensionality of the structure, which is subjected to body
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forces f and the boundary Γ of the domain is divided into a portion Γ𝐷 with prescribed

displacements g and a portion Γ𝑁 with prescribed tractions h, the strong form of the

linear elasticity equation is defined as

∇ · (𝐶∇𝑆u) + f = 0 𝑖𝑛 Ω (2.66a)

u = g 𝑜𝑛 Γ𝐷 (2.66b)

(𝐶∇𝑆u) · n = h 𝑜𝑛 Γ𝑁 (2.66c)

In eq.2.66, the terms ∇,∇𝑆 are the standard and symmetric nable operators equiva-

lently, C the elasticity tensor and n the outward normal vector at the boundary of the

domain. In its variational form eq. 2.66 can be written as:∫︁
Ω
(𝐶∇𝑆u) : ∇𝑆w𝑑Ω =

∫︁
Ω
f ·w𝑑Ω+

∫︁
Γ𝑁

ℎ ·w𝑑Γ (2.67)

where w are the test functions. Integrating eq.2.67 by parts produces∫︁
Ω
[∇ · (𝐶∇𝑆u) + f ] ·w𝑑Ω−

∫︁
Γ𝑁

[(𝐶∇𝑆u) · n− h] ·w𝑑Γ = 0 (2.68)

It is already known from the weak Galerkin formulation that the displacement field u

is approximated with the aid of the shape functions by

u =

𝑛∑︁
𝑖=1

𝑅𝑖𝑢𝑖 (2.69)

where 𝑢𝑖 are the unknown displacement variables. In case of collocation, the test

function w is selected to be the Dirac delta function at each independent. The total

number of Collocation Points is selected to be equal to the number of Control Points that

define the geometry. The positions of the collocation points in the parametric domain

can be defined by various formulas, the most common among which is by the Greville

abscissae

𝜉𝑖 =

∑︀𝑝
𝑘=1 𝜉𝑖+1

𝑝
(2.70)

Eq. 2.70 provides the univariate Collocation Points, for each one of the parametric
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directions of the NURBS domain. An example of bivariate Collocation points is depicted

in Figure 2.9.

Figure 2.9: Parametric positions of Collocation Points in a two-dimensional domain. Blue rectangles
represent the Knots while orange circles the Collocation points positions at the Greville absissae.

The method used to enforce boundary conditions in the collocation method is two-fold.

In case of Dirichlet boundaries, no special treatment is required as the test functions

utilized in the variational form of the linear elasticity PDE have a prerequisite that at

the boundary the strong form of the Dirichlet conditions is satisfied.

On the other hand, in order to enforce Neumann boundary conditions a set of Dirac

delta functions at the boundary collocation points have to be chosen. Here, it is important

to make a distinction between the resulting equations at the interior Collocation points

of the domain and the boundary ones. For the interior points 𝜉𝑖𝑗 the equation that

governs them is defined by

[∇ · (𝐶∇𝑆u) + f ](𝜉𝑖𝑗) = 0 𝜉𝑖𝑗 ⊂ Ω (2.71)

Equivalently, for the collocation points on the Neumann boundary, a distinction must

be made among the edge collocation points and the corner ones due to the coexistence

of different outwards normal vector in the second case. Specifically, for the edge case we

have
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[(𝐶∇𝑆u) · n− h](𝜉𝑖𝑗) = 0 𝜉𝑖𝑗 ⊂ 𝑒𝑑𝑔𝑒 ⊂ Γ𝑁 (2.72)

and for the corner case equivalently,

[(𝐶∇𝑆u) · n′ − h′](𝜉𝑖𝑗) + [(𝐶∇𝑆u) · n′′ − h′′](𝜉𝑖𝑗) = 0 𝜉𝑖𝑗 : 𝑐𝑜𝑟𝑛𝑒𝑟 ⊂ Γ𝑁 (2.73)

where n′,n′′. According to [161], from the former variational equations for the case of

linear elasticity, the stiffness matrix K at each collocation point 𝜉𝑖𝑗 is defined by:

𝐾𝑖𝑗 =

⎧⎨⎩𝐿(𝑁𝑗(𝜉𝑖𝑗)), 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑘,

n𝑖 · 𝐶∇𝑁𝑗(𝜉𝑖𝑗), 𝑓𝑜𝑟 𝑘 + 1 ≤ 𝑖 ≤ 𝑛
(2.74)

and the load vector F equivalently:

𝐹𝑖 =

⎧⎨⎩−𝐿(𝑢̃𝐷(𝜉𝑖𝑗)) + 𝑓(𝜉𝑖𝑗), 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑘

−n𝑖 · 𝐶∇𝑢𝐷(𝜉𝑖𝑗)𝑖 + ℎ(𝜉𝑖𝑗), 𝑓𝑜𝑟 𝑘 + 1 ≤ 𝑖 ≤ 𝑛
(2.75)

In eqs. 2.74, 2.75, 𝑛 represents the total number of Control Points, while k the

number of collocation points in the interior of the domain, letting n-k be the multitude

of collocation points on the boundary. Note that in the case of linear elasticity the

operator 𝐿 of eqs. 2.74, 2.75, is defined by

𝐿u+ f = 0 =⇒ ∇ · (𝐶∇𝑆u) + f = 0 𝑖𝑛 Ω (2.76)

And in a similar manner the operator B can be defined for the application of Neumann

boundary conditions as

𝐵u = h =⇒ (𝐶∇𝑆u) · n = h 𝑖𝑛 Γ𝑁 (2.77)

In the following subsections, the cases of two-dimensional and three-dimensional

stiffness matrices and load vectors will be briefly summarized.
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2.4.1 Stiffness matrix 2D

In a similar fashion to the IGA Galerkin approach, for the extraction of the stiffness

matrix, a mapping is required for the transformation of parametric quantities to the

Cartesian space. Due to the isoparametric concept that also holds in case of IGA

collocation methods, the Jacobian transformation is employed.

[𝐽 ]
(2𝑥2)

=

[︃
𝑅1,𝜉(𝜉, 𝜂) 𝑅2,𝜉(𝜉, 𝜂) ... 𝑅𝑁,𝜉(𝜉, 𝜂)

𝑅1,𝜂(𝜉, 𝜂) 𝑅2,𝜂(𝜉, 𝜂) ... 𝑅𝑁,𝜂(𝜉, 𝜂)

]︃
·

⎡⎢⎢⎢⎢⎣
𝑋1 𝑌1

𝑋2 𝑌2

... ...

𝑋𝑛 𝑌𝑁

⎤⎥⎥⎥⎥⎦ (2.78)

In collocation methods apart from first derivatives, second derivatives must also be

transformed to the physical space thus raising the need for the Hessian transformation

matrix, as well as the square derivatives of 𝐽2 of the Jacobian transformation.

[𝐻]
(3𝑥2)

=

⎡⎢⎣𝑅1,𝜉𝜉(𝜉, 𝜂) 𝑅2,𝜉𝜉(𝜉, 𝜂) ... 𝑅𝑁,𝜉𝜉(𝜉, 𝜂)

𝑅1,𝜂𝜂(𝜉, 𝜂) 𝑅2,𝜂𝜂(𝜉, 𝜂) ... 𝑅𝑁,𝜂𝜂(𝜉, 𝜂)

𝑅1,𝜉𝜂(𝜉, 𝜂) 𝑅2,𝜉𝜂(𝜉, 𝜂) ... 𝑅𝑁,𝜉𝜂(𝜉, 𝜂)

⎤⎥⎦ ·

⎡⎢⎢⎢⎢⎣
𝑋1 𝑌1

𝑋2 𝑌2

... ...

𝑋𝑛 𝑌𝑁

⎤⎥⎥⎥⎥⎦ (2.79)

[𝐽2]
(3𝑥3)

=

⎡⎢⎣ 𝐽2
11 𝐽11𝐽12 𝐽2

12

2𝐽11𝐽21 𝐽11𝐽22 + 𝐽12𝐽21 2𝐽12𝐽22

𝐽2
21 𝐽21𝐽22 𝐽2

22

⎤⎥⎦ (2.80)

Given eqs.2.78, 2.79 and 2.80 the transformation from parameter to physical space is

realized by

𝐽2R𝑥𝑥 = R𝜉𝜉 −𝐻𝑇R𝑥 (2.81)

where R𝑥𝑥,R𝜉𝜉,R𝑥 represent the vectors of second derivatives in physical and para-

metric coordinates, and the vector of first derivatives in physical space respectively.

Having computed the transformations and given the Lamè constants of elasticity 𝜆 and

𝜇, where based on Young’s modulus of elasticity 𝐸 and Poisson’s ration 𝜈 they are
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calculated as

𝜆 =
𝜈𝐸

(1 + 𝜈)(1− 2𝜈)
(2.82a)

𝜇 =
𝐸

2(1 + 𝜈)
(2.82b)

and the operators of eqs.2.76 and 2.77 can written in matrix form as:

𝐿 =

(︃
(𝜆+ 2𝜇) 𝜕2

𝜕𝑥2 + 𝜇 𝜕2

𝜕𝑦2
(𝜆+ 𝜇) 𝜕2

𝜕𝑥𝜕𝑦

(𝜆+ 𝜇) 𝜕2

𝜕𝑥𝜕𝑦 (𝜆+ 2𝜇) 𝜕2

𝜕𝑦2
+ 𝜇 𝜕2

𝜕𝑥2

)︃
(2.83)

𝐵 =

(︃
(𝜆+ 2𝜇)𝑛𝑥

𝜕
𝜕𝑥 + 𝜇𝑛𝑦

𝜕
𝜕𝑦 𝜆𝑛𝑥

𝜕
𝜕𝑦 + 𝜇𝑛𝑦

𝜕
𝜕𝑥

𝜆𝑛𝑦
𝜕
𝜕𝑥 + 𝜇𝑛𝑥

𝜕
𝜕𝑦 (𝜆+ 2𝜇)𝑛𝑦

𝜕
𝜕𝑦 + 𝜇𝑛𝑥

𝜕
𝜕𝑥

)︃
(2.84)

where 𝑛𝑥, 𝑛𝑦 are the direction cosines of the outward normal vector n.

2.4.2 Stiffness matrix 3D

Once again for the three-dimensional collocation case, the need arises to define the

Jacobian transformation from parameter to physical space.

⎡⎢⎣
𝜕𝜑
𝜕𝜉
𝜕𝜑
𝜕𝜂
𝜕𝜑
𝜕𝜁

⎤⎥⎦ = [𝐽 ]
(3𝑥3)

·

⎡⎢⎣
𝜕𝜑
𝜕𝑥
𝜕𝜑
𝜕𝑦
𝜕𝜑
𝜕𝑧

⎤⎥⎦ (2.85)

Analogously to the two-dimensional case, second derivatives must be transformed

between physical and parameter space and thus the Hessian matrix and square derivatives

matrix are computed as
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[𝐻]
(6𝑥3)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑅1,𝜉𝜉(𝜉, 𝜂, 𝜁) 𝑅2,𝜉𝜉(𝜉, 𝜂, 𝜁) ... 𝑅𝑁,𝜉𝜉(𝜉, 𝜂, 𝜁)

𝑅1,𝜂𝜂(𝜉, 𝜂, 𝜁) 𝑅2,𝜂𝜂(𝜉, 𝜂, 𝜁) ... 𝑅𝑁,𝜂𝜂(𝜉, 𝜂, 𝜁)

𝑅1,𝜁𝜁(𝜉, 𝜂, 𝜁) 𝑅2,𝜁𝜁(𝜉, 𝜂, 𝜁) ... 𝑅𝑁,𝜁𝜁(𝜉, 𝜂, 𝜁)

𝑅1,𝜉𝜂(𝜉, 𝜂, 𝜁) 𝑅2,𝜉𝜂(𝜉, 𝜂, 𝜁) ... 𝑅𝑁,𝜉𝜂(𝜉, 𝜂, 𝜁)

𝑅1,𝜉𝜁(𝜉, 𝜂, 𝜁) 𝑅2,𝜉𝜁(𝜉, 𝜂, 𝜁) ... 𝑅𝑁,𝜉𝜁(𝜉, 𝜂, 𝜁)

𝑅1,𝜂𝜁(𝜉, 𝜂, 𝜁) 𝑅2,𝜂𝜁(𝜉, 𝜂, 𝜁) ... 𝑅𝑁,𝜂𝜁(𝜉, 𝜂, 𝜁)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎣
𝑋1 𝑌1 𝑍1

𝑋2 𝑌2 𝑍2

... ... ...

𝑋𝑛 𝑌𝑁 𝑍𝑁

⎤⎥⎥⎥⎥⎦ (2.86)

[𝐽2]
(6𝑥6)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐽2
11 𝐽2

12 𝐽2
13 2𝐽11𝐽12 2𝐽11𝐽13 2𝐽12𝐽13

𝐽2
21 𝐽2

22 𝐽2
23 2𝐽21𝐽22 2𝐽21𝐽23 2𝐽22𝐽23

𝐽2
31 𝐽2

32 𝐽2
33 2𝐽31𝐽32 2𝐽31𝐽33 2𝐽32𝐽33

𝐽11𝐽21 𝐽12𝐽22 𝐽13𝐽23 (𝐽11𝐽22 + 𝐽21𝐽12) (𝐽11𝐽23 + 𝐽21𝐽13) (𝐽12𝐽23 + 𝐽22𝐽13)

𝐽11𝐽31 𝐽12𝐽32 𝐽13𝐽33 (𝐽11𝐽32 + 𝐽31𝐽12) (𝐽11𝐽33 + 𝐽31𝐽13) (𝐽12𝐽33 + 𝐽32𝐽13)

𝐽21𝐽31 𝐽22𝐽32 𝐽23𝐽33 (𝐽21𝐽32 + 𝐽31𝐽22) (𝐽21𝐽33 + 𝐽31𝐽23) (𝐽22𝐽23 + 𝐽32𝐽23)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.87)

Matrices [H] and [𝐽2] are then used in the transformations bellow

𝐽R𝑥 = R𝜉 (2.88a)

𝐽2R𝑥𝑥 = R𝜉𝜉 −𝐻𝑇R𝑥 (2.88b)

Finally, the operators L and B defined for the computation of the Collocation matrices

in the three-dimensional case are defined as follows:

𝐿 =

⎛⎜⎜⎝
(𝜆+ 2𝜇) 𝜕2

𝜕𝑥2 + 𝜇 𝜕2

𝜕𝑦2
+ 𝜇 𝜕2

𝜕𝑧2
(𝜆+ 𝜇) 𝜕2

𝜕𝑥𝜕𝑦 (𝜆+ 𝜇) 𝜕2

𝜕𝑥𝜕𝑧

(𝜆+ 𝜇) 𝜕2

𝜕𝑥𝜕𝑦 (𝜆+ 2𝜇) 𝜕2

𝜕𝑦2
+ 𝜇 𝜕2

𝜕𝑥2 + 𝜇 𝜕2

𝜕𝑧2
(𝜆+ 𝜇) 𝜕2

𝜕𝑦𝜕𝑧

(𝜆+ 𝜇) 𝜕2

𝜕𝑥𝜕𝑧 (𝜆+ 𝜇) 𝜕2

𝜕𝑦𝜕𝑧 (𝜆+ 2𝜇) 𝜕2

𝜕𝑧2
+ 𝜇 𝜕2

𝜕𝑥2 + 𝜇 𝜕2

𝜕𝑦2

⎞⎟⎟⎠
(2.89)
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𝐵 =

⎛⎜⎝(𝜆+ 2𝜇)𝑛𝑥
𝜕
𝜕𝑥 + 𝜇𝑛𝑦

𝜕
𝜕𝑦 + 𝜇𝑛𝑧

𝜕
𝜕𝑧 𝜆𝑛𝑥

𝜕
𝜕𝑦 + 𝜇𝑛𝑦

𝜕
𝜕𝑥

𝜆𝑛𝑦
𝜕
𝜕𝑥 + 𝜇𝑛𝑥

𝜕
𝜕𝑦 (𝜆+ 2𝜇)𝑛𝑦

𝜕
𝜕𝑦 + 𝜇𝑛𝑥

𝜕
𝜕𝑥 + 𝜇𝑛𝑧

𝜕
𝜕𝑧

𝜆𝑛𝑧
𝜕
𝜕𝑥 + 𝜇𝑛𝑥

𝜕
𝜕𝑧 𝜆𝑛𝑧

𝜕
𝜕𝑦 + 𝜇𝑛𝑦

𝜕
𝜕𝑧

𝜆𝑛𝑥
𝜕
𝜕𝑧 + 𝜇𝑛𝑧

𝜕
𝜕𝑥

𝜆𝑛𝑦
𝜕
𝜕𝑧 + 𝜇𝑛𝑧

𝜕
𝜕𝑦

(𝜆+ 2𝜇)𝑛𝑧
𝜕
𝜕𝑧 + 𝜇𝑛𝑥

𝜕
𝜕𝑥 + 𝜇𝑛𝑦

𝜕
𝜕𝑦

⎞⎟⎠
(2.90)
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3
Isogeometric solution methods

3.1 Introduction

IGA method was developed with the aim of eliminating the geometry approximation

introduced by FEM and providing a tighter integration with CAD models. The strongest

asset of IGA is the increased polynomial degree of the shape functions, that is accom-

panied with higher interelement continuity. In case of the CAD counterpart of IGA,

this translates to smooth and accurate representation of curves, while for the CAE

case, it results into smoother variation of the analysis characteristics such as stresses or

strains. This property, however desired it may be regarding the accuracy of the results,

it significantly increases the computational cost for the assembly and the solution of

the produced linear systems. The increased shape function support results in increased

bandwidth and population of the stiffness matrices. As a result, efficient and scalable

solution methods are considered open issue towards the establishment of IGA.

A variety of methods have been proposed for addressing the solution of the resulting

IGA system of equations. A relationship between solution cost and degrees od freedom

is presented in [51], by examining different levels of continuity from 𝐶0 of FEM to full

continuity 𝐶𝑝−1 of IGA. Similar research has been conducted for iterative solvers [49]

and specifically with the preconditioned conjugate gradient method, for which vari-

ous preconditioners, like diagonal-Jacobi, successive-symmetric over-relaxation (SSOR)
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and incomplete Cholesky factorizations were examined [141, 46, 96] to improve the

computational cost for the solution of highly continuous IGA discretizations.

Similarly, DDM solution methods were investigated with the first [55] introducing

overlapping additive Schwarz preconditioners for IGA. IETI method was proposed in

[106] as an isogeometric variant of the Finite Element Tearing Interconnecting Dual-

Primal method. Primal and mixed Schwarz preconditioner for linear elasticity systems

were introduced in [179], while [27] studied the BDDC preconditioners for isogeometric

scalar elliptic problems.

This chapter, will briefly discuss two categories of solution methods that are utilized

latter in this manuscript. Specifically, iterative and domain decomposition solution

schemes are described, with PCG and GMRES being the iterative algorithms described

and FETI-DP and P-FETI-DP the domain decomposition ones. The reason for the

exploration of two different algorithms in each category is that Chapters 4 and 5, address

the solution of the isogeometric Galerkin and Collocation methods equivalently, that

result into symmetric and non-symmetric stiffness matrices,hence making imperative the

need for different algorithms.

3.2 Iterative

The first major category of solution methods considered for the estimation solution

arising from structural mechanics problems is iterative solvers. They utilize an initial

starting point and approximate the final solution via consecutive iterations. When a

certain criterion is met, such as the error tolerance, the iterative method is considered

to have converged to the final solution of the linear system. Unfortunately, the efficiency

severely depends on the choice of preconditioning technique used. In this subsection, the

PCG and GMRES methods will be briefly discussed, as they will be utilized later in the

manuscript for the solution of symmetric and non-symmetric linear systems deriving

from the isogeometric Galerkin or Collocation method equivalently. Their description is

kept as concise as possible as they are considered standard textbook material.

3.2.1 PCG

PCG is considered to be one of the most widely used iterative solvers for the solution of

symmetric positive definite systems, such as the ones deriving from isogeometric Galerkin

processes [154, 49]. Specifically, a linear system of the form:
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A · x = b (3.1)

where A is a symmetric positive definite matrix and let x0 be the initial guess solution

vector, which in most cases is chosen as the zero vector, the solution x𝑘 of the k-th

iteration, the solution of the next iterative step is estimated by

x𝑘+1 := x𝑘 + 𝛼𝑘p𝑘 (3.2)

where p𝑘 defined in eq. 3.2 are the direction vectors pointing at the steepest possible

gradient at the point x𝑘 and 𝛼𝑘 a scalar cooeficient. These consecutive direction vectors

p𝑘,p𝑘+1 must satisfy the following orthogonality principle

p𝑇
𝑖 Ap𝑗 = 0, ∀ 𝑖 ̸= 𝑗 (3.3)

Similar to the solution vectors, the direction vectors are updated in each iteration

based on their value in the previous iteration step

p𝑘+1 := r𝑘 + 𝛽𝑘p𝑘 (3.4)

The term r𝑘 of eq. 3.4 defines the residual vector and is calculated as r𝑘 = f −Ax𝑘,

while 𝛽𝑘 is another scalar coefficient. The preconditioned version of the conjugate

gradient method examined here, introduced one additional vector z𝑘, which represents

the preconditioned residual forces vector and is calculated by

z𝑘+1 = A
−1

𝑟𝑘 (3.5)
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Algorithm 1: PCG algorithm
Data: Linear system matrix: A,

Right hand side: b,

Initial solution guess: x0,

Preconditioner matrix 𝑀̃

Result: solution vector: x𝑘+1

r0 := b−Ax0;

z0 := 𝑀̃−1r0;

p0 := z0;

k=0;

while (convergence is not met) do

𝛼𝑘 :=
r𝑇𝑘 z𝑘

p𝑇
𝑘 Ap𝑘

;

x𝑘+1 := x𝑘 + 𝛼𝑘p𝑘;

if r𝑘+1 is not sufficiently small then

z𝑘+1 := Ãr𝑘+1;

𝛽𝑘 :=
z𝑇𝑘+1r𝑘+1

z𝑇𝑘 r𝑘
;

p𝑘+1 := z𝑘+1 + 𝛽𝑘p𝑘;

k=k+1;

else

exit loop ;

end

end

The choice of the preconditioning matrix Ã is significant for the efficiency of the

method. Choosing the preconditioner to be the equal to the matrix A, would result

in the PCG converging in a single iteration, however the computational cost would be

inexpedient. Thus, the preconditioner matrix is chosen to be sufficiently close to the

initial matrix A, yet easily reversible in order to minimize the resulting computational

cost per required iteration. The algorithm of PCG method according to [154] is given

finally provided in Algorithm 1.
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3.2.2 GMRES

GMRES is an iterative solution method that belong to the Krylov subspace family of

methods and extends the conjugate gradient solution scheme, for the solution of linear

systems that are governed by non-symmetric matrices [154]. In a similar fashion to the

PCG method that was previously analyzed, GMRES utilizes of orthogonal vectors, which

due to the non-symmetric nature of the matrices must be stored for the computation of

the next one. In detail, the orthogonal base of the residual vectors is Arnoldi process

given by Alg. 2.

Algorithm 2: Arnoldi algorithm

Data: Unit vector v1

for j=1,2,..,m do
for i=1,2,..j do

ℎ𝑖,𝑗 = (Av𝑗,v𝑖);
end

w𝑗 = Av𝑗 −
∑︀𝑗

𝑖=1 ℎ𝑖,𝑗v𝑖;
ℎ𝑗+1,𝑗 = ‖w𝑗‖2;
if ℎ𝑗+1,𝑗 = 0 then

exit loop
end
v𝑗+1 =

w𝑗

ℎ𝑗+1,𝑗

end

In Alg. 2, the quantities ℎ𝑖,𝑗 create the Hessenberg matrix and thus based on the

Arnoldi process, the GMRES algorithm is formed in Alg. As a result, the approximate

solution of the i-th iteration is calculated based on a combination of the vectors generated

by the Arnoldi process and the equivalent solutions vectors of previous iterations as

follows

x𝑖 = x𝑖−1 +

𝑚∑︁
𝑗=1

𝛽𝑗v𝑗 (3.6)
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Algorithm 3: GMRES algorithm

Data: Matrix A
Right hand side b
Initial solution guess x0

r0 = b−Ax0;
𝛽 := ‖r0‖2;
v1 :=

r0
𝛽

;

for j=1,2,..,m do
w𝑗 := Av𝑗;
for i=1,...,j do

ℎ𝑖,𝑗 := (w𝑗,v𝑖);
w𝑗 := w𝑗 − ℎ𝑖,𝑗v𝑖;

end
ℎ𝑗+1,𝑗 = ‖w𝑗‖2 if ℎ𝑗+1,𝑗 = 0 then

m:=j ;
exit all loops;

end

v𝑗+1
w𝑗

ℎ𝑗+1,𝑗

;

end

Compute the Hessenberg matrix H𝑚 =;

y𝑚 = 𝑚𝑖𝑛(
⃦⃦
𝛽𝑒1 −H𝑚y

⃦⃦
2
) ;

x𝑚 = x0 +V𝑚y𝑚

3.3 Domain Decomposition

3.3.1 PSM

Primal Substructuring Method (PSM) is considered to be a fundamental method for the

solution of computational mechanics problems with subdomains [71, 33]. The underlying

idea on which the method is based on, is initially the segmentation of a domain into

subdomains, followed by a static condensation of the internal boundary degrees of

freedom of a subdomain to the common boundary degrees of freedom between adjacent

subdomains.

Specifically, for each one of the subdomains, a partitioning is performed that separates

the dof into boundary, denoted as (b) and internal, denoted as ( i). Boundary dof are
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defined by those degrees that belong to more than one subdomains. In terms of the

subdomain stiffness matrix and forces vector this translates to:

K𝑠 =

[︃
𝐾𝑠

𝑖𝑖 𝐾𝑠
𝑖𝑏

𝐾𝑠
𝑏𝑖 𝐾𝑠

𝑏𝑏

]︃
(3.7a)

f 𝑠 =

[︃
𝑓 𝑠
𝑖

𝑓 𝑠
𝑏

]︃
(3.7b)

by applying eq. 3.7 to the equilibrium equation K · u = f , where the internal dofs are

numbered first followed by the boundary dof, it can be written as follows:⎡⎢⎢⎢⎢⎢⎣
K

(1)
𝑖𝑖 0 0 K

(1)
𝑖𝑏

0
. . . 0

...

0 0 K
(𝑁𝑠)
𝑖𝑖 K

(𝑁𝑠)
𝑖𝑏

K
(1)
𝑏𝑖 ... K

(𝑁𝑠)
𝑏𝑖 Kbb

⎤⎥⎥⎥⎥⎥⎦ ·

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u
(1)
𝑖
...

u
(𝑁𝑠)
𝑖

u𝑏

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f
(1)
𝑖
...

f
(𝑁𝑠)
𝑖

f𝑏

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.8)

In eq.3.8 the terms that refer to the boundary problem of PSM, such as Kbb,bf and

f𝑏 are as the sum of contribution of the boundary dofs, mapped to their equivalent global

boundary dofs of the PSM problem.

The goal of PSM is to reduce the multitude of the dofs of the initial system only to

the boundary dofs of the between the subdomains. This transforms the initial linear

system K · u = f to

S · u𝑏 = f̂𝑏 (3.9)

where the matrix S is the Schur complement of the initial stiffness matrix K to

the boundary dof between the subdomain. Matrix S can be assembled by adding the

contributions of each of the subdomain matrices as follows:

S =

𝑁𝑠∑︁
𝑠=1

S
𝑠

(3.10)

where S is the contribution of the subdomain matrix to the boundary problem Schur

complement, and 𝑁𝑠 the number of subdomains.
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S
𝑠
= (L𝑠

𝑏)
𝑇S𝑠L𝑠

𝑏 (3.11)

In eq.5.15, the matrix L𝑏 is an unsigned Boolean matrix that maps the local boundary

dof of the subdomain to the global boundary dof of the problem, while the matrix S𝑠 is

calculated by:

S𝑠 = K𝑠
𝑏𝑏 − (K𝑠

𝑖𝑏)
𝑇 (K𝑠

𝑖𝑖)
−1K𝑠

𝑖𝑏 (3.12)

The same procedure is applied for the subdomain forces, where the right hand side of

eq. 5.13 can be expanded as

f̂𝑏 = f𝑏 −
𝑁𝑠∑︁
𝑠=1

(L𝑠
𝑏)

𝑇 (K𝑠
𝑖𝑏)

𝑇 (K𝑠
𝑖𝑖)

−1f 𝑠𝑖 (3.13)

3.3.2 P-FETI-DP

P-FETI-DP method constitutes an enhancement of the aforementioned PSM method,

as it introduces a preconditioner 𝐴−1 to the boundary linear system of eq. 5.13, that is

based on the coarse problem of the FETI-DP method. Its expression is given by:

Ã−1 = (L̃𝑒
𝑝𝑟)

𝑇 (K𝑒
𝑟𝑟)

−1L̃𝑒
𝑝𝑟+

(︀
𝑏N𝑏𝑐 − (L̃𝑒

𝑝𝑟)
𝑇 (K𝑒

𝑟𝑟)
−1K𝑒

𝑟𝑐𝐿
𝑒
𝑐

)︀
(K*

𝑐𝑐)
−1(︀

− (L𝑒
𝑐)

𝑇K𝑒
𝑐𝑟(K

𝑒
𝑟𝑟)

−1L̃𝑒
𝑝𝑟 +𝑏𝑐 N𝑏

)︀ (3.14)

In order to accurately describe the mapping matrices introduced by this preconditioner,

a brief description of the partitionings appearing in FETI-DP method are provided.

Figure 3.1 provides an example of a bicubic domain. Knot value vectors Ξ =

{0, 0, 0, 0, 1, 2, 2, 2, 2} and 𝐻 = {0, 0, 0, 0, 1, 2, 2, 2, 2} are utilized for the initial parame-

terization of the domain, which produces two isogeometric nurbs elements per direction

as illustrated in Figure 3.1a. A multitude of 𝑛 = 𝑚−𝑝−1 = 9−3−1 = 5 Control Points

are defined per parametric direction, resulting to a total of 25 Control Points for the

two-dimensional domain. In the latter expression, 𝑛 represents the number of Control

Points, 𝑚 the number of values existing in the knot value vector and p the polynomial

degree. The positions of the Control Points on the parametric domain are shown as blue

circles, while the Knots that define the element boundaries are derived from the distinct
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(a) Initial Domain (b) Partitioned domain

(c) Boundary - Internal node partitioning (d) Corner - Remainder node partitioning

Figure 3.1: P-FETI-DP node partitioning

values of the knot value vectors and are depicted with yellow squares in Figure 3.1a.

Figure 3.1b shows a partitioning of the parametric domain into subdomains. Note that

the subdivisioning is performed in a Control Point basis, not a element basis in order to

achieve as uniform distribution among the subdomains as possible. Specifically, each
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parametric axis is split into two subdomains, considering only a single Control Point

as their common interface. The tensor product result of this univariate subdivisioning,

produces the partitioned domain, depicted as shaded areas in Figure 3.1b. At the

common edges between the produced subdomains, Control Points produce an interface,

that is the boundary problem of the PSM method. As already explained by eq. 3.7, this

interface between the subdomains leads to a separation of the degrees of freedom into

boundary and internal ones. This separation is schematically illustrated in Figure 3.1c,

where nodes that belong to the interface problem of PSM are highlighted with the red

rectangles. All remaining nodes belong to the internal nodes category.

Another partitioning arises from the coarse problem of FETI-DP method and is based

on the definition of corner nodes. Specifically, corner nodes are defined as the nodes

that either belong to the interface between more than two subdomains and lie on the

interior of definition domain Ω, or belong to the interface between two subdomain and

lie on the boundary 𝜕Ω of the domain Ω. This definition introduces a new partitioning

of the subdomain nodes to corner and remainder ones. In terms of the local subdomain

stiffness matrix and forces vector, this translates to :

K𝑠 =

[︃
𝐾𝑠

𝑟𝑟 𝐾𝑠
𝑟𝑐

𝐾𝑠
𝑐𝑟 𝐾𝑠

𝑐𝑐

]︃
(3.15a)

f 𝑠 =

[︃
𝑓 𝑠
𝑟

𝑓 𝑠
𝑐

]︃
(3.15b)

This definition is illustrated in Figure 3.1d, where corner nodes are depicted as green

triangles. As it can be observed only a single Control Point belongs to the case of interior

points with multitude of converging subdomains greater than two. All other corner

nodes belong to the the domain boundary case, with number of converging nodes equal

to two. Having defined all required partitionings, the constituents of the eq. 5.31 can

now be defined. Starting from left to right all unknown terms of the preconditioner are

explained in detail. L̃𝑒
𝑝𝑟 matrix is used to map the remainder dofs of the discretized

domain and the boundary problem of the PSM method. Its expression is given by

L̃𝑒
𝑝𝑟 = 𝑟N

𝑒
𝑏L

𝑒
𝑝𝑏 (3.16)
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The purpose of matrix 𝑟N
𝑒
𝑏 as its subscripts indicate, is the compatibility of matrix

dimensions. When subdivided into subdomains it can be written with the following

block diagonal expression

𝑟N
𝑒
𝑏 =

⎡⎢⎢⎣𝑟N
(1)
𝑏

. . .

𝑟N
(𝑁𝑠)
𝑏

⎤⎥⎥⎦ (3.17)

Each of the subdomain contributions 𝑟N
(𝑁𝑠)
𝑏 is a Boolean matrix that maps the

remainder dofs of the subdomain s to the boundary dofs the same subdomain. The

matrix L𝑒
𝑝𝑏 of eq. 5.32 can be similarly written

L𝑒
𝑝𝑏 =

⎡⎢⎢⎣
L
(1)
𝑝𝑏
...

L
(𝑁𝑠)
𝑝𝑏

⎤⎥⎥⎦ (3.18)

where for each subdomain the matrix L
(𝑠)
𝑝𝑏 is computed as

L
(𝑠)
𝑝𝑏 = L𝑠

𝑏W (3.19)

In eq. 5.35, the matrix L𝑠
𝑏 is a Boolean matrix that maps local boundary dofs of the

subdomain to the global boundary dofs of the PSM problem. Additionall, the matrix W

is a diagonal matrix, with terms equal to the inverse multiplicity of the boundary dofs.

The term multiplicity for the case of boundary dofs, refers to the number of subdomains

this dof belongs to. Moving to the next undefined terms K𝑒
𝑟𝑟,K

𝑒
𝑟𝑐, these constitute block

diagonal matrices generates from the partitioning of the subdomain matrices to corner

and remainder dofs as per eq. 3.15a.

K𝑒
𝑟𝑟 =

⎡⎢⎢⎣
K

(1)
𝑟𝑟

. . .

K
(𝑁𝑠)
𝑟𝑟

⎤⎥⎥⎦ (3.20a)

K𝑒
𝑟𝑐 =

⎡⎢⎢⎣
K

(1)
𝑟𝑐

. . .

K
(𝑁𝑠)
𝑟𝑐

⎤⎥⎥⎦ (3.20b)
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while the K*
𝑐𝑐 matrix is derived as the Schur complement of the remainder dofs of

each subdomain, to its boundary corner ones and consequently its mapping to the global

boundary dofs of the corner problem define by FETI-DP. The matrix 𝑏N𝑏𝑐 of eq. 5.31, is

another Boolean mapping matrix, that links the boundary dofs of the PSM problem, to

the corner dofs of the FETI-DP method. Finally, the matrix L𝑐 is written in subdomain

form as

L𝑒
𝑐 =

⎡⎢⎢⎣
L
(1)
𝑐

...

L
(𝑁𝑠)
𝑐

⎤⎥⎥⎦ (3.21)

and defines an unsigned Boolean matrix that links the local corner dof of each

subdomain to the equivalent corner dof of the coarse problem. Note that for all the

Boolean matrices involved in this process no matrix vector multiplications are required,

rather the utilization of the proper submatrix.

3.3.3 FETI-DP

FETI-DP method, belongs to the category of dual DDM methods, that chooses as

a solution quantity for the boundary problem, the traction forces developed between

subdomains.

Similar to the aforementioned DDM methods, FETI-DP is based on the partitioning

of subdomain matrices based on their geometrical or interface properties with adjacent

subdomain. Thus, given a subdomain s, and its stiffness matrix K𝑠, displacement vector

u𝑠 and force vector f 𝑠, it can be partitioned as follows:

K𝑠 =

[︃
K𝑠

𝑖𝑖 K𝑠
𝑖𝑏

(K𝑠
𝑖𝑏)

𝑇 K𝑠
𝑏𝑏

]︃
(3.22a)

u𝑠 =

{︃
u𝑠
𝑖

u𝑠
𝑏

}︃
(3.22b)

f 𝑠 =

{︃
f 𝑠𝑖
f 𝑠𝑏

}︃
(3.22c)
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The subscripts b and i of eq. 3.22, denote the boundary and internal dofs of the

subdomain equivalently. The boundary dofs in analogy to the PSM method, are the

degrees of freedom that are shared among multiple subdomains, while internal dof,

belong solely to a single subdomain. A further partitioning of the boundary dof, results

into the following expression for the boundary displacement terms:

u𝑠
𝑏 =

{︃
u𝑠
𝑏𝑟

u𝑠
𝑏𝑐

}︃
(3.23)

Again the subscripts c and r, denote the partitioning of the boundary degrees of

freedom into corner and remainder ones. Corner nodes and dof, are those that belong

to either of the following two categories. The first category includes nodes that lie on

the crosspoints between subdomains and as a result this point belong to more than two

subdomains. On the other hand, the second category takes into account nodes that lie

of the boundary of the domain and at the same time belong to an interface between

adjacent subdomains. Given two adjacent subdomains 𝑠1 and 𝑠2, the expression that

defines their displacement compatibility is given by

u
(𝑠1)
𝑏 − u

(𝑠2)
𝑏 = 0 (3.24)

Eq. 3.24 can be extended to include the compatitbility equations for all subdomains

𝑁𝑠∑︁
𝑠=1

B𝑠u𝑠 = 0 (3.25)

where B𝑠 is a signed Boolean matrix with values (+1,−1, 0) that maps the local

subdomain boundary degrees of freedom, to the global boundary dofs of the problem. Eq.

3.25 represents the compatibility equation for all subdomains of the structure which is

enforced by introducing Lagrange multipliers, while at the same time, the displacement

compatibility at the corner nodes is ensured.

To this end, the stiffness matrix K𝑠, the displacement vector u𝑠 and force vector f 𝑠 of
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an arbitrary subdomain s, can be further partitioned as follows:

K𝑠 =

[︃
K𝑠

𝑟𝑟 K𝑠
𝑟𝑐

(K𝑠
𝑟𝑐)

𝑇 K𝑠
𝑐𝑐

]︃
(3.26a)

u𝑠 =

{︃
u𝑠
𝑟

u𝑠
𝑏𝑐

}︃
(3.26b)

f 𝑠 =

{︃
f 𝑠𝑟
f 𝑠𝑏𝑐

}︃
(3.26c)

where the remainder dof include the internal nodes of the subdomain and the boundary

nodes that do not belong to the corner category. As a result, the stiffness matrix can be

further elaborated as

K𝑠 =

⎡⎢⎣ K𝑠
𝑖𝑖 K𝑠

𝑖𝑏𝑟 K𝑠
𝑖𝑐

(K𝑠
𝑖𝑏𝑟)

𝑇 K𝑠
𝑏𝑟𝑏𝑟 K𝑠

𝑏𝑟𝑐

(K𝑠
𝑖𝑐)

𝑇 (K𝑠
𝑏𝑟𝑐)

𝑇 K𝑠
𝑐𝑐

⎤⎥⎦ (3.27)

Additionally to the global displacement vector, the corner dof displacement vector is

introduced.

u𝑐 =

⎧⎪⎪⎨⎪⎪⎩
u
(1)
𝑐

...

u
(𝑁𝑠)
𝑐

⎫⎪⎪⎬⎪⎪⎭ (3.28)

In a similar fashion to eq. 3.25, another compatibility equation is added

𝑁𝑠∑︁
𝑠=1

B𝑠
𝑟u

𝑠
𝑟 = 0 (3.29)

where B𝑠
𝑟 is a signed matrix with values (1,−1, 0) that maps the remainder dofs of the

subdomain to to the global boundary remainder dofs. In addition, for each subdomain,

a new Boolena mapping matrix L𝑠
𝑐 is introduced which connects the local corner dofs of

a subdomain to the global corner dofs as follows

L𝑠
𝑐u𝑐 = u𝑠

𝑏𝑐 (3.30)
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Taking into account all the above equation, the final linear system to be solved takes

the following form:

[︃
K𝑒 (B𝑒)𝑇

B𝑒 0

]︃{︃
u𝑒

𝜆

}︃
=

{︃
f 𝑒

0

}︃
(3.31)

where the matrix K𝑒 is a block diagonal matrix that contains the local subdomain

stiffness matrices, while matrix B𝑒 is derived based on the compatibility of the remainder

dofs of eq. 3.29

B𝑒 =
[︁[︁
B

(1)
𝑟 0

]︁
...

[︁
B

(𝑁𝑠)
𝑟 0

]︁]︁
(3.32)

With the aid of eqs. 3.26,3.29,3.30,3.31 the equilibrium equation for the remainder

dof is obtained.

K𝑠
𝑟𝑟u

𝑠
𝑟 +K𝑠

𝑟𝑐L
𝑠
𝑐u𝑐 = f 𝑠𝑟 − (B𝑠

𝑟)
𝑇𝜆 (3.33)

The additional equilibrium equation for the displacements at the corner dof is expressed

as:

𝑁𝑠∑︁
𝑠=1

(L𝑠
𝑐)

𝑇 (K𝑠
𝑟𝑐)

𝑇u𝑠
𝑟 +

𝑁𝑠∑︁
𝑠=1

(L𝑠
𝑐)

𝑇K𝑠
𝑐𝑐L

𝑠
𝑐u𝑐 = +

𝑁𝑠∑︁
𝑠=1

(L𝑠
𝑐)

𝑇 f 𝑠𝑏𝑐 = f𝑐 (3.34)

where the matrix K𝑐𝑐 is computed by

K𝑐𝑐 =

𝑁𝑠∑︁
𝑠=1

(L𝑠
𝑐)

𝑇K𝑠
𝑐𝑐L

𝑠
𝑐 (3.35)

Assuming that selection of corner dof is adequate, so that given their values all

subdomains are considered sufficiently supported and thus the matrix K𝑠
𝑟𝑟 is reversible,

so eq. 3.33 can be written as:

u𝑟 = (K𝑠
𝑟𝑟)

−1[f 𝑠𝑟 − (B𝑠
𝑟)

𝑇𝜆−K𝑠
𝑟𝑐L

𝑠
𝑐u𝑐] (3.36)
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Replacing the latter to eq. 3.29 we obtain:

𝑁𝑠∑︁
𝑠=1

B𝑠
𝑟(K

𝑠
𝑟𝑟)

−1[f 𝑠𝑟 − (B𝑠
𝑟)

𝑇𝜆−K𝑠
𝑟𝑐L

𝑠
𝑐u𝑐] = 0 (3.37a)

𝑁𝑠∑︁
𝑠=1

B𝑠
𝑟(K

𝑠
𝑟𝑟)

−1f 𝑠𝑟 −
𝑁𝑠∑︁
𝑠=1

B𝑠
𝑟(K

𝑠
𝑟𝑟)

−1(B𝑠
𝑟)

𝑇𝜆−
𝑁𝑠∑︁
𝑠=1

B𝑠
𝑟(K

𝑠
𝑟𝑟)

−1K𝑠
𝑟𝑐L

𝑠
𝑐u𝑐 = 0 (3.37b)

For the sake of simplification, the following terms of eq. 3.37 are defined as

d𝑟 =

𝑁𝑠∑︁
𝑠=1

B𝑠
𝑟(K

𝑠
𝑟𝑟)

−1f 𝑠𝑟 (3.38a)

F𝐼𝑟𝑟 =

𝑁𝑠∑︁
𝑠=1

B𝑠
𝑟(K

𝑠
𝑟𝑟)

−1(B𝑠
𝑟)

𝑇 (3.38b)

F𝐼𝑟𝑐 =

𝑁𝑠∑︁
𝑠=1

B𝑠
𝑟(K

𝑠
𝑟𝑟)

−1K𝑠
𝑟𝑐 (3.38c)

which translate eq. 3.37 to

F𝐼𝑟𝑟𝜆+ F𝐼𝑟𝑐u𝑐 = d𝑟 (3.39)

In a similar fashion, replacing eq. 3.36 to eq. 3.34 the following expression is derived

𝑁𝑠∑︁
𝑠=1

(L𝑠
𝑐)

𝑇 (K𝑠
𝑟𝑐)

𝑇 (K𝑠
𝑟𝑟)

−1[f 𝑠𝑟 − (B𝑠
𝑟)

𝑇𝜆−K𝑠
𝑟𝑐L

𝑠
𝑐u𝑐] +K𝑐𝑐u𝑐 = f𝑐 (3.40)

which by defining

K*
𝑐𝑐 = K𝑐𝑐 −

𝑁𝑠∑︁
𝑠=1

(L𝑠
𝑐)

𝑇 (K𝑠
𝑟𝑐)

𝑇 (K𝑠
𝑟𝑟)

−1K𝑠
𝑟𝑐L

𝑠
𝑐 (3.41a)

f*𝑐 = f𝑐 −
𝑁𝑠∑︁
𝑠=1

(L𝑠
𝑐)

𝑇 (K𝑠
𝑟𝑐)

𝑇 (K𝑠
𝑟𝑟)

−1f 𝑠𝑟 (3.41b)
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turns into

(F𝐼𝑟𝑐)
𝑇𝜆−K*

𝑐𝑐u𝑐 = −f*𝑐 (3.42)

The eqs.3.39, 3.42 represent a dual-primal linear system, as its unknown quantities

are both the Lagrange multipliers, as well as displacements of the corner dofs[︃
F𝐼𝑟𝑟 F𝐼𝑟𝑐

(F𝐼𝑟𝑟)
𝑇 −K*

𝑐𝑐

]︃{︃
𝜆

u𝑐

}︃
=

{︃
d𝑟

−f*𝑐

}︃
(3.43)

The second hypothesis of FETI-DP method is introduced in this step regarding the

corner displacements u𝑐, which assumes that that if the subdomains are connected only

to the corner nodes, then these connections suffice to transfer the loads applied to the

strucure to its external supports. This results to the matrix K*
𝑐𝑐 being reversible, thus

from the second equation of the linear system in eq.3.43, the displacement is of the

corner dof is obtained as

u𝑐 = (K*
𝑐𝑐)

−1[f*𝑐 + (F𝐼𝑟𝑐)
𝑇𝜆] (3.44)

By replacing eq. 3.44 to the first equation of the linear system in eq.3.43 the final

equation of FETI-DP method is produced

[F𝐼𝑟𝑟 + F𝐼𝑟𝑐(K
*
𝑐𝑐)

−1(F𝐼𝑟𝑐)
𝑇 ]𝜆 = d𝑟 − F𝐼𝑟𝑐(K

*
𝑐𝑐)

−1f*𝑐 (3.45)
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4
Non-overlapping domain decomposition

solution schemes for structural mechanics

isogeometric analysis

4.1 Introduction

This Chapter focuses on the development of a family of solution algorithms for the

purposes of isogeometric Galerkin methods that exploit the advantages of an iterative

solution scheme, namely PCG coupled with domain decomposition methods. Specifically,

by introducing an appropriate modification to the NURBS shape function overlapping

nature, a non-overlapping equivalent of the initial domain is introduced, that possess the

same geometrical features with the initial one, yet has artificially induced discontinuities

in the form of truncated shape functions. This allows the development of a robust and

scalable preconditioner that minimizes the computational cost in both sequential as well

as high-performance parallel computing environments. In this work, the PCG iterative

solver is coupled with the IETI domain decomposition method, in order to investigate

the numerical characteristics of the proposed method.

101



4.2 Existing solution techniques

Due to the capabilities introduced by the IGA, along with the CAD tools, it has gained

a wide acceptance by the scientific community. This rapid evolution creates the need for

efficient computational methods for solving complex problems. In both FEM and IGA

methods the resulting algebraic equation linear system has the form:

𝐾 · 𝑢 = 𝑓 (4.1)

where K is the stiffness matrix, f is the external load vector and u the vector of

unknown displacements. The computational effort required for the solution of eq. 4.1

highly depends on the size and the sparsity pattern of the stiffness matrix. In the case of

IGA, shape functions of higher continuity that enable exact geometrical representation,

reduce the sparsity and increase the computational cost for the solution. Specifically, the

overlapping of shape functions through several IGA elements leads to denser matrices

and higher interelement continuity, while the utilization of higher polynomial degrees

leads to a more computational demanding solution procedure compared to FEM for the

same dof.

This characteristic feature of IGA may hinder its capability of addressing large-scale

problems unless cost-effective solution methods are developed to address the inherent

features of IGA. Both direct and iterative solution schemes have been utilized for

the efficient treatment of large-scale IGA problems, but their computational efficiency

suffers as continuity increases [50]. At the same time, DDM were proposed for coupled

subdomains [153, 9, 83, 35] and were implemented for the solution of IGA simulated

problems [56, 24, 27, 57, 26, 86, 43]. Furthermore, IETI [106, 86] was among the first

attempts to implement DDM for IGA problems. This method, is based on the well-

established FETI-DP solver [69, 102, 120, 63, 104] which combines both primal and

dual DDM formulations. In IETI, the subdivision in subdomains coincides with the

non-overlapping patterns of patches of the model. This makes the number and the size

of subdomains geometry-dependent, severely impairing load balancing and scalability in

paralle architectures.
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4.2.1 The IETI method

IETI was introduced in [106] as an extension to the FETI family of methods [63, 70,

185, 138]. It utilizes the exact geometrical representation of IGA with the advanced

subdomain coupling and solution capabilities of FETI methods. Specifically, the NURBS

representation of a structure is naturally subdivided into patches, to accurately describe

abrupt changes of geometry. The boundary between these patches describes the interface

problem of IETI where each patch coincides with a subdomain and thus constitutes a

local problem to be solved in parallel.

The stiffness matrix 𝐾𝑠, force vector 𝑓𝑠 and displacement vector 𝑢𝑠 of each patch (𝑠)

can be partitioned as follows:

𝐾𝑠 =

[︃
𝐾𝑠

𝑖𝑖 𝐾𝑠
𝑖𝑏

𝐾𝑠
𝑏𝑖 𝐾𝑠

𝑏𝑏

]︃
(4.2a)

𝑓 𝑠 =

[︃
𝑓𝑠
𝑖

𝑓𝑠
𝑏

]︃
(4.2b)

𝑢𝑠 =

[︃
𝑢𝑠𝑖
𝑢𝑠𝑏

]︃
(4.2c)

with the (𝑖) subscript denoting the internal dof and the (𝑏) subscript denoting the

boundary dof.

In order to impose continuity between patches, the following equation is introduced:

𝑁𝑠∑︁
𝑠=1

𝐵𝑠𝑢𝑠 = 0 (4.3)

with 𝑁𝑠 being the number of patches and 𝐵𝑠 being a signed Boolean matrix. The 𝑢𝑠𝑏
vector is further partitioned as:

𝑢𝑠𝑏 =

[︃
𝑢𝑠𝑏𝑟
𝑢𝑠𝑏𝑐

]︃
(4.4)

with the subscript (𝑐) denoting corner nodes which are usually defined as nodes

belonging to more than two patches. Subsequently, 𝐾𝑠, 𝑢𝑠 and 𝑓𝑠 can be partitioned as
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follows:

𝐾𝑠 =

[︃
𝐾𝑠

𝑟𝑟 𝐾𝑠
𝑟𝑐

𝐾𝑠
𝑐𝑟 𝐾𝑠

𝑐𝑐

]︃
(4.5a)

𝑓𝑠 =

[︃
𝑓𝑠
𝑟

𝑓𝑠
𝑏𝑐

]︃
(4.5b)

𝑢𝑠 =

[︃
𝑢𝑠𝑟
𝑢𝑠𝑏𝑐

]︃
(4.5c)

where

𝑓𝑠
𝑟 =

[︃
𝑓𝑠
𝑖

𝑓𝑠
𝑏𝑟

]︃
(4.6a)

𝑢𝑠𝑟 =

[︃
𝑢𝑠𝑖
𝑢𝑠𝑏𝑟

]︃
(4.6b)

and subscript (𝑟) denoting all dof that do not belong to a corner node. Considering

this repartitioning, the continuity between patches can be re-written as:

𝑁𝑠∑︁
𝑠=1

𝐵𝑠
𝑟𝑢

𝑠
𝑟 = 0 (4.7)

with 𝐵𝑠
𝑟 being the signed Boolean matrix 𝐵𝑠, pertaining to the (𝑟) dof. Moreover,

the following global vector of corner dof is introduced

𝑢𝑐 =
[︁
𝑢1𝑐 ... 𝑢𝑗𝑐 ... 𝑢𝑁𝑐

𝑐

]︁𝑇
(4.8)

with 𝑢𝑗𝑐 denoting all of the displacement dof attached to the j-th global node that

is also a corner node of the mesh decomposition and 𝑁𝑐 denoting the total number of

corner nodes.

In order to connect 𝑢𝑐 with 𝑢𝑠𝑏𝑐, the following equation is introduced:

𝐵𝑠
𝑐𝑢𝑐 = 𝑢𝑠𝑏𝑐 (4.9)
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with 𝐵𝑠
𝑐 being an unsigned Boolena matrix.

Considering all the above equations, the patch equilibrium is expressed as:

𝐾𝑠
𝑟𝑟𝑈

𝑠
𝑟 +𝐾𝑠

𝑟𝑐𝐵
𝑠
𝑐𝑢𝑐 = 𝑓 𝑠

𝑟 −𝐵𝑠
𝑟
𝑇𝜆 (4.10a)

𝑁𝑠∑︁
𝑠=1

𝐵𝑠
𝑐
𝑇𝐾𝑠

𝑟𝑐
𝑇𝑢𝑠𝑟 +

𝑁𝑠∑︁
𝑠=1

𝐵𝑠
𝑐
𝑇𝐾𝑠

𝑐𝑐𝑢𝑐 =

𝑁𝑠∑︁
𝑠=1

𝐵𝑠
𝑐
𝑇 𝑓𝑠

𝑏𝑐 = 𝑓𝑐 (4.10b)

with 𝜆 being the traction forces between each Patch.

From the above relations, it follows that

𝑢𝑠𝑟 = 𝐾𝑠
𝑟𝑟

−1(𝑓𝑠
𝑟 −𝐵𝑠

𝑟
𝑇𝜆−𝐾𝑠

𝑟𝑐𝐵
𝑠
𝑐𝑢𝑐) (4.11)

which, when substituted to eq. 5.23, the following system of equations arises[︃
𝐹𝐼𝑟𝑟 𝐹𝐼𝑟𝑐

𝐹𝐼𝑟𝑐
𝑇 −𝐾*

𝑐𝑐

]︃[︃
𝜆

𝑢𝑐

]︃
=

[︃
𝑑𝑟

𝑓*
𝑐

]︃
(4.12)

where:

𝐹𝐼𝑟𝑟 =

𝑁𝑠∑︁
𝑖=1

𝐵𝑠
𝑟𝐾

𝑠
𝑟𝑟

−1𝐵𝑠
𝑟
𝑇 (4.13a)

𝐹𝐼𝑟𝑐 =

𝑁𝑠∑︁
𝑖=1

𝐵𝑠
𝑟𝐾

𝑠
𝑟𝑟

−1𝐾𝑠
𝑟𝑐𝐵

𝑠
𝑐 (4.13b)

𝐾𝑐𝑐 =

𝑁𝑠∑︁
𝑖=1

𝐵𝑠
𝑐
𝑇𝐾𝑠

𝑐𝑐𝐵
𝑠
𝑐 (4.13c)

𝐾*
𝑐𝑐 = 𝐾𝑐𝑐 −

𝑁𝑠∑︁
𝑖=1

(𝐾𝑠
𝑟𝑐𝐵

𝑠
𝑐 )

𝑇𝐾𝑠
𝑟𝑟

−1(𝐾𝑠
𝑟𝑐𝐵

𝑠
𝑐 ) (4.13d)

𝑑𝑟 =

𝑁𝑠∑︁
𝑖=1

𝐵𝑠
𝑟𝐾

𝑠
𝑟𝑟

−1𝑓𝑠
𝑟 (4.13e)

𝑓*
𝑐 = 𝑓𝑐 −

𝑁𝑠∑︁
𝑖=1

(𝐾𝑠
𝑟𝑐𝐵

𝑠
𝑐 )

𝑇𝐾𝑠
𝑟𝑟

−1𝑓𝑠
𝑟 (4.13f)

105



By eliminating 𝑢𝑐 from the baove equations, the following interface problem needs to

be solved:

(𝐹𝐼𝑟𝑟 + 𝐹𝐼𝑟𝑐𝐾
*
𝑐𝑐
−1𝐹 𝑇

𝐼𝑟𝑐)𝜆 = 𝑑𝑟 − 𝐹𝐼𝑟𝑐𝐾
*
𝑐𝑐
−1𝑓*

𝑐 (4.14)

The solution of eq.5.30 is usually performed with an iterative solution algorithm and

for the case of structural mechanics where positive definite matrices occur, the PCG

algorithm is used.

4.2.2 Handling the interface problem: Multi-patch (IETI-P) and

Overlapping IETI (IETI-O)

As described in the previous section, the boundary between the patches of an IGA

model describes the interface problem of IETI, with each patch defining a subdomain.

Usually, these patches occur in IGA when designing the model and are introduced in

order to accurately describe the geometrical characteristics of the model. However,

such patches can also be introduced by the designer, in an arbitrary fashion, without

disrupting the aforementioned geometrical characteristics. In this work, a multi-patch

IETI variant called IETI-P, is considered where the model to be solved is altered with the

introduction of additional patches that serve the purpose of defining IETI subdomains.

Such introduction can have a positive impact on the IETI’s mesh dependent load

balancing and scalability, at the expense of introducing more dof.

An alternative approach for the definition of subdomains it the IETI-O variant by

applying the overlapping approach as first described in [130], for the case of element-free

Galerkin simulation methods, and later in [27, 57] for the BDDC where the resulting

interface is referred to as ”fat interface”. Specifically, a physical domain subdivision

is performed along Control Points instead of relying to the existing patches. Due to

the continuity characteristics of the shape functions, the interface problem (Figure

4.1b) in case of two overlapping subdomains is larger when compared to the interface

problem of two patchesin IETI (Figure 4.1a). However, as in the case of IETI-P, this

consideration alleviates the problem of path dependency encountered in IETI. The

difference of overlapping terms of the stiffness matrix is visualized in Figure 4.1 for a 2D

domain. The gray area depicts the elements associated to the interface dofs.

Both IETI-O and IETI-P share the same characteristics, pertaining to their mathe-
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matical properties as well as their numerical and parallel scalability, with IETI [106].

This stems from the fact that these IETI variants differ only, either in the magnitude of

the interface problem or in the way the domain is divided into subdomains. properties

and characteristics of IETI have been throughly investigated in [106, 27, 57, 69, 102, 77].

(a) IETI-P (b) IETI-O

Figure 4.1: Global stiffness matrix graphs of a 2D domain for p=2 and the interface of two
subdomains.

4.3 PCG-IETI-N

Despite its favorite features, IETI has some drawbacks that decrease its efficiency,

with the most important one being the dependency between partitioning and structure

geometry. Specifically, IETI relies on patches already present in the model to define the

subdomains of the structure, making partitioning geometry-dependent and thus severely

impairing both load balancing and scalability, especially in fine grain high-performance

computing environments. The proposed alternative versions of IETI-P and IETI-O

overcome the problem of patch dependency, by either introducing new patches or be

extending the interface problem. This comes at the expense of increasing the overlapping

domains, since a multitude of new Control points are introduced, and the resulting

interface problem can become prohibitively large as shape function continuity increases.
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In order to alleviate the aforementioned mesh dependency of partitioning without

the associated drawbacks, a solution methodology for structural mechanics problems is

proposed thta combines the advantages of both PCG [154] and DDM. In addition to the

original model with stiffness matrix K, the proposed algorithm introduces another model

with stiffness matrix 𝐾𝑝, referred to as the ”non-overlapping model”. The procedure

for building 𝐾𝑝 will be described in the next section. The non-overlapping model has

identical properties and geometry to the original model, but its shape functions have

been truncated at the boundaries of the subdomains. These discontinuities result in

non-overlapping subdomains, but at the same time reduce the accuracy of the original

model.

Matrices K and 𝐾𝑝 have the same size and due to their similarity, they are connected

with the following relation:

𝐾 = 𝐾𝑝 +Δ𝐾 (4.15)

where Δ𝐾 is a sparse matrix with the size of K and 𝐾𝑝, with terms only near the

interface where continuity has been reduced. By substituting eq. 4.15 to eq. 4.1, the

linear system at hand can be written as:

(𝐾𝑝 +Δ𝐾)𝑢 = 𝑓 (4.16)

Following the rationale of incomplete Cholesky preconditionings[73], Δ𝐾 can be

considered as the error matrix E contributing to the small terms in the lower triangular

matrix produced by the Cholesky factorization, which can be ignored of they do not

satisfy a specified magnitude criterion. In the proposed method, the preconditioning

matrix 𝐾𝑝𝑟𝑒𝑐 of the iterative method used (i.e.:the PCG method[154] in this work)

becomes the stiffness matrix 𝐾𝑝 of the non-overlapping model. This means that for each

iteration, a linear system involving the non-overlapping model needs to be solved , in

order to evaluate the preconditioned residual vector 𝑧𝑗+1 = 𝐾𝑝𝑟𝑒𝑐
−1𝑟𝑗+1.

The solution of the equation, 𝐾𝑢 = 𝑓 , where the evaluation of the preconditioned

residual at each iteration is performed with IETI, with 𝐾𝑝𝑟𝑒𝑐 = 𝐾𝑝, constitutes the

PCG-IETI non-overlapping (PCG-IETI-N) method. In particular, the residual vector

𝑟𝑗+1, becomes the load vector ofr IETI which is split into 𝑁𝑠 parts, with 𝑁𝑠 being the

number of non-overlapping subdomains. The load vector of each subdomain is equal to
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𝐿𝑠𝑟𝑗+1 = 𝑓 𝑠 (4.17)

with 𝐿𝑠 being an unsigned Boolean matrix. By partitioning the non-overlapping

subdomain quantities as follows

𝐾𝑠 =

[︃
𝐾𝑠

𝑝𝑟𝑟 𝐾𝑠
𝑝𝑟𝑐

𝐾𝑠
𝑝𝑟𝑐

𝑇 𝐾𝑠
𝑝𝑐𝑐

]︃
(4.18a)

𝑢𝑠 =

[︃
𝑢𝑠𝑟
𝑢𝑠𝑏𝑐

]︃
(4.18b)

𝑓𝑠 =

[︃
𝑓𝑠
𝑟

𝑓𝑠
𝑏𝑐

]︃
(4.18c)

the problem of eq. 5.30 is solved with respect to 𝜆. Following the computation of 𝜆,

vector 𝑢𝑐 is evaluated from the second eq.5.26 as follows:

𝑢𝑐 = 𝐾*
𝑐𝑐
−1(𝐹𝐼𝑟𝑐

𝑇𝜆− 𝑓*
𝑐 ) (4.19)

Then, vector 𝑧𝑗+1 is computed for each subdomain as:

𝑧𝑠𝑗+1 = 𝐾𝑠
𝑝𝑟𝑟

−1(𝑓 𝑠
𝑟 −𝐵𝑠

𝑟
𝑇 )𝜆−𝐾𝑠

𝑝𝑟𝑐𝐵
𝑠
𝑐𝑢𝑐 (4.20)

and global vector 𝑧𝑗+1, by

𝑧𝑗+1 =

𝑁𝑠∑︁
𝑠=1

𝑊 𝑠𝐿𝑠𝑧𝑠𝑗+1 (4.21)

where 𝑊 𝑠 being a scaling diagonal subdomain matrix that accounts for eventual

subdomain heterogeneities [152].

The repeated solutions required for the evaluation of the preconditioned residual

vector 𝑧𝑗+1 are treated as problems with multiple right-hand sides, as described in

[77, 172, 73, 41], further enhancing the convergence properties of PCG-IETI-N.
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4.4 Building the non-overlapping stiffness matrix

In order to further explain the process of constructing the non-overlapping model and

its stiffness matrix, a brief overview of Gauss integration and shape function evaluation,

as performed in IGA, is provided in the following subsections. Advanced quadrature

techniques for IGA are presented in [16, 12, 6, 123, 38, 132, 94, 67].

4.4.1 Gauss integration

According to [93], in order to accurately integrate a piecewise polynomial of degree p, 𝑝+1
1

and 𝑝+2
2 , Gauss Points are required for odd and even degrees, respectively. Numerical

integration is performed for the evaluation of the stiffness matrix [176], which is an

integral of the form

𝐾 =

∫︁
Ω
𝐵𝑇𝐸𝐵𝑑Ω (4.22)

with E being the constitutive matrix and B the deformation matrix which is evalu-

ated from the derivatives of the shape functions. In the one-dimensional case and for

polynomial degree p of the shape functions, the differentiation produces a (p-1) degree

polynomial. As a result, the stiffness matrix of eq.4.22 is a polynomial of maximum

degree (𝑝− 1) + (𝑝− 1) = 2𝑝− 2 which is an even number. The minimum number of

Gauss Points for integrating an even degree polynomials is equal to:

(2𝑝− 2) + 2

2
=

2𝑝

2
= 𝑝 (4.23)

In an analogous fashion, the minimum number of Gauss Points can be derived for

2D and 3D cases. The maximum polynomial degree, needed to accurately compute the

shape function partial derivatives used in the deformation matrix, is p. eq.4.22 is a

polynomial of maximum degree 2p which is an even number and the minimum number

of integration points are computed as:

2𝑝+ 2

2
= 𝑝+ 1 (4.24)

Figure 4.2a illustrates an example of a 2D domain, modeled with biquadratic shape

functions. According to the above discussion, the minimum number of integration points

are (p+1)=3 for both parametric directions.
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It is also important to notice another property that stems from the definition of B-

Spline shape functions; according to [143], each control point is associated to one shape

function and their support is equal to (p+1) knot spans. This property is illustrated

in Figure 4.2b where the affected area of the indicated control point is shown shaded,

while the connectivity of the control point is indicated in Figure 4.2c. Furthermore, each

knot span contains (p+1) non-zero shape functions of degree p. In two dimensions, each

element that is created from tensor product knot spans, contains (𝑝+ 1)× (𝑞 + 1) shape

functions for polynomials degrees p and q that affect an element. Following the same

rationale, in three dimensions, (𝑝+1)× (𝑞+1)× (𝑟+1) shape functions for polynomials

degrees p,q and r affect and element. Inductively, since each Gauss Point belongs to

an element, its numerical value is affected by the control points associated with this

particular element, as illustrated in Figure 4.3.

(a) The parametric space of a 2D domain: Circles indicate control points, squares indicate knots and
x-symbols indicate integration points

(b) Control point - shape function support (c) Element - control point connectivity

Figure 4.2: A 2D domain modeled with 6x10 control points and biquadratic shape functions (p=2)..
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4.4.2 Shape function truncation

Following the presentation of the control point support, a shape function support

truncation process will be described. For this purpose, an implementation that truncates

the support of shape function along predefined boundaries in the parameter space will

be examined.

Let Ω be a one-dimensional NURBS patch, which is required to be split at a certain

position 𝜉𝑡 of parametric axis Ξ. This procedure will remodel that initial domain into

two subdomains, namely Ω𝑠1 and Ω𝑠2 . Each subdomain contains a set of shape functions

𝑅𝑠1 and 𝑅𝑠2 for which:

𝑅𝑠1 ∩𝑅𝑠2 ̸= 0 (4.25)

Figure 4.3: 2D domain for p=q=2. N control points (p+1) x (q+1)=9 have non-zero influence to
the circled Gauss point.

To these sets of functions, a truncation function 𝑇 (𝜉𝑡) will be applied which will

modify them by reducing the subdomain common support to a single shape function.

Since the application of the truncation function will eliminate the contribution of the

shape function sets beyond position 𝜉𝑡, the truncation functions is chosen to be expressed

with the aid of the Heaviside function, which is defined as follows:

𝐻(𝜉) =

⎧⎨⎩0, 𝑓𝑜𝑟 𝜉 < 0

1, 𝑓𝑜𝑟 𝜉 ≥ 0
(4.26)
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As a result, each of the subdomains’ shape function sets 𝑅𝑠1 , 𝑅𝑠2 are truncated as

follows:

𝑅*
𝑠1 = 𝑅𝑠1 [1−𝐻(𝜉 − 𝜉𝑡)] = 𝑅𝑠1𝑇𝐿(𝜉𝑡) (4.27a)

𝑅*
𝑠2 = 𝑅𝑠2𝐻(𝜉 − 𝜉𝑡) = 𝑅𝑠2𝑇𝑅(𝜉𝑡) (4.27b)

An immediate outcome of the above is that, for the subdivision of the initial domain

into a multitude of subdomains, each intermediary subdomain can be described as

follows:

𝑅*
𝑠𝑖 = 𝑅𝑠𝑖𝑇𝐿(𝜉

𝑎
𝑡 )𝑇𝑅(𝜉

𝑏
𝑡 ) (4.28)

with 𝜉𝑎𝑡 , 𝜉
𝑏
𝑡 being the equivalent truncation positions. Since 𝑇𝐿(0) and 𝑇𝑅(1) do not

affect the contribution of the shape functions, eq. 4.28 can be generalized for the

description of the first and last subdomains with knot value vector equal to Ξ = [𝜉1 =

0, ..., 𝜉𝑛+𝑝+1 = 1]. Moreover, eq. 4.28 can be expanded for more dimensions with the

introduction of similar functions for each of the corresponding parametric directions.

In order to examine the properties of shape functions, both even and odd polynomials

degrees are examined for the 2D domain of Figure 4.4a. The subdivision of the domain

into two subdomains by the knot line as indicated in Figure 4.4a is considered for

p=3, the penetration of the shape functions of the left subdomain to the right one and

vice-verca are depicted in Figure 4.4b and 4.4c. The graph of the non-zero tems of its

stiffness matrix is demonstrated in Figure 4.5a, while Figure 4.5b depicts the shared dof

between the two subdomains before the truncation of the p=3 shape functions.

The parameterization with p=3 corresponds to 6x11 control points. Figure 4.6 shows

the domains of influence of the truncated shape functions for the two subdomains of the

2D domain example. The expansion of the shape functions is spatially limited to the

knot line, leaving the area beyond the knot line unaffected. Since, for the case of odd

polynomial degrees, the control points lie on knot lines where truncation is performed,

this results in shared dof between the subdomains, thus retaining the minimum continuity

of the domain after the shape function truncation.

For the biqubic polynomial degree case the global stiffness matrix shown in 4.5a, is

transformed to the graph of Figure 4.7.
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(a) Knot-line boundary.

(b) Domains of influence for shape functions of first subdomain.

(c) Domains of influence for shape functions of second subdomain.

Figure 4.4: 2D domain with bicubic shape functions subdivided into two subdomains by the red
dash line. Shape functions depicted are identical across the dashed line due to tensor product

property of NURBS.
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For the case of even polynomial degrees, the control points lie on the center of elements,

as shown in Figure 4.8 for p=2, and the truncated shape functions terminate at the

boundary knot line. For this case, the sparsity patterns of the full continuity and reduced

continuity stiffness matrices are depicted in Figure 4.9. It can be seen in Figure 4.9b

that the two subdomains do not interact since there are no common control points at

the boundary knot line.

(a) Global stiffness matrix graph of the 2D
domain for p=3.

(b) Overlapping boundary terms of the two
subdomains.

Figure 4.5: Stiffness matrix of the 2D domain of Figure 4.4.

In order to alleviate this shortcoming, the subdomain boundaries are defined by

control point lines, and not by knot point lines, as shown in Figure 4.12. Thus, choosing

a control point line as the boundary between two subdomains, the compatibility along

the new boundary is restored as shown in Figure 4.10. For an one-dimensional with knot

value vector equal to Ξ = [𝜉0, 𝜉1, ..., 𝜉𝑛+𝑝+1], the Greville absissae as described in [161]

can be used for the evaluation of the parametric position of the control points which

also serve as the possible positions for domain subdivision. Specifically, the parametric

coordinates are given by:

𝜉𝑖 =

∑︀𝑝
𝑘=1 𝜉𝑖+𝑘

𝑝
(4.29)
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(a) First subdomain.

(b) Second subdomain.

Figure 4.6: Truncated shape functions along the subdomain boundary knot line for bicubic
polynomial degree. Knots coincide with controls points on the element vertices.

4.4.3 Benchmark test

In order to evaluate the numerical scalability of the PCG-IETI-N method, two benchmark

examples are considered. The first one relates to the numerical scalability of the method,

examining the number of iterations related to both the mesh size and the subdomain

size, considering a cubic mesh with continuity p=3. The initial guess of the method is

the zero vector and iteration count is considered for convergence with tolerance 10−6.

The number of iterations required for each case are depicted in Table 4.1.

The second relates to how numerical scalability is influenced by the continuity pa-

rameter p in terms of iterations needed for convergence, a parametric study of a 3D

cantilever with dof in the range of 3K was considered with shape function polynomial
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Figure 4.7: Stiffness matrix graph of 2D domain for p=3 with artificially reduced continuity.

degrees ranging from p=2 to p=5, subdivided into 4 and 16 subdomains. As in the

previous test, the initial guess of the method is the zero vector and iteration count is

considered for convergence with tolerance 10−6. The number of iterations required and

respective condition numbers are depicted in Tables 4.2, 4.3.
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(a) First subdomain.

(b) Second subdomain.

Figure 4.8: Truncated shape functions along a knot line for p=2.

(a) Full continuity. (b) Artificially reduced continuity.

Figure 4.9: Stiffness matrix graphs of a 2D domain for p=2.
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N 1/h=8 1/h=16 1/h=32

2× 2 10 11 13

4× 4 11 11 15

8× 8 - 13 17

4× 4 - - 17

Table 4.1: Iteration metrics considering mesh (1/h) and subdomain size (N) for a cubic sample for
p=3

p Unpreconditioned
System

Diagonal Cholesky

k2 It. k2 It. k2 It.

2 19221 207 22632 192 3902 35

3 25223 234 35824 188 2318 25

4 33449 271 55348 191 2548 21

5 42722 399 77509 234 2081 18

Table 4.2: Iteration and condition number metrics for the case of various PCG preconditioners with
p ranging from 2 to 5 for the 3D cantilever example.

The results show a similar behavior of both the condition number and iterations with

IETI [27, 43]. This is an indication that the process described has a minor effect on the

numerical scalability of the DDM used which for this case is IETI.

The PCG method was also used for the solution of the 3D contilever example for

p=2 and p=3 in the range of 10K dof, using the PCG-D and PCG-IC methods which

correspond to the diagonal and the incomplete Cholesky factorization preconditioners.

The incomplete Cholesky preconditioner by position is implemented with 𝐾 = 𝐿̃𝐿̃𝑇 +𝐸,

in which the sparsity pattern of the lower triangular part of K is retained in 𝐿̃ [32]. The

iteration required for convergence are shown in Table 4.4 and the convergence history in

Figure 4.11.

In both cases, PCG-IETI-N required less iterations than the incomplete Cholesky

preconditioner, which is considered a strong precondioner for the examined test case,

with the addittional advantage of being amenable to parallelization. In the following

section, a set of large IGA models are used for further investigating the performance of

the methods discussed.
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Figure 4.10: Stiffness matrix graph for truncated shape functions along the boundary of the control
point line for p=2.

(a) 3D cantilever convergence of PCG schemes
for p=2.

(b) 3D cantilever convergence of PCG schemes
for p=3.

Figure 4.11: Convergence history of 3D cantilever for various quadratic and cubic polynomial
degrees.
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p 4 Subdomains
Non-Overlapping

16 Subdomains
Non-Overlapping

k2 It. k2 It.

2 2011 14 5756 15

3 263 10 804 11

4 3204 24 8615 27

5 4124 19 7717 21

Table 4.3: Iteration and condition number metrics for the case of 4 and 16 subdomains with p
ranging from 2 to 5 for the 3D cantilever example.

p=2 p=3

PCG-D 123 255

PCG-IC 39 29

PCG-IETI-N 21 18

Table 4.4: Iteration metrics PCG-D, PCG-IC and PCG-IETI-N methods for the 3D cantilever
example.

4.5 Numerical tests

In this section two numerical examples have been chosen to demonstrate the performance

of the methods in three dimensional elasticity problems using the in house open-source

code MSolve developed in the framework of ERC grant Master [MSo].

Model range from 100K to 1000K dof, enabling the assesment of the methods in a

large-scale context. The influence of the number of subdomains on the performance of

the methods is also considered by performing a parametric study in the range of 9 to

4800 subdomains for the numerical examples considered. For the case of PCG-IETI-N,

these subdomains are defined by constructing a non-overlapping model with truncated

shape functions as described in the presious section. For the case of IETI, both IETI-P

and IETI-O are considered. The computing platform is an Intel Core i7 X980 with 6

cores.

4.5.1 Crossed beams example

The first model is a crossed beams model comprised of approximately 100K dofs and is

depicted in Figure 4.13

All control points of the bottom and left faces of the crossed beams are clamped
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(a) Control Point line (green dotted line) - Knot line (red dashed line).

(b) Subdomain subdivisioning at a control point line

Figure 4.12: Truncated shape functions along a control point for p=2.

constraining the base displacements. Loads of magnitude 100 KN, are applied to

interpolatory control points of the two edges as illustrated in the figure. The material

used for the linear elastic analysis has a Young’s modulus E of 105 KPa and Poisson’s

ration of 0.3.

Tables 4.5, 4.6 give the convergence behavior of the methods with respect to the

number of iterations, the size of the subdomains and the equivalent interface problem. For

the case of PCG-IETI-N, both preconditioning step iterations and the global iterations

are depicted.

The computing time measured in seconds is provided in Table 4.7 for both sequential

and parallel execution, where for the latter, all 6 cores were utilized. As for the case of

the pipe model, the PCG-IETI-N outperforms all other methods considered in terms of
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Figure 4.13: Crossed beams with 32.175 control points.

execution time in both sequential and parallel execution modes.

Figure 4.14 demonstrates the parallel execution time for all methods where there is

an optimal combination of the size of the local problems and the size of the interface

problem. It can be observed, however, that the performance of the PCG-IETI-N is less

dependent on the number of subdomains.

Subdomains IETI-P IETI-O

Number Size(dof) Iter Interface(dof) Iter. Interface(dof)

9=9x1x1 11925 14 5220 15 20620

36=18x2x1 4185 15 19665 17 42345

104=26x2x2 1963 18 37323 20 63549

Table 4.5: Iterations subdomain metrics of IETI-P and IETI-O methods for the crossed beams
model.

4.5.2 Pipe example

In order to assess the performance of the methods in a a larger-scale context, a second

model is considered as shown in Figure 4.15
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Figure 4.14: Performance of the various IETI methods in terms of parallel execution time for the
crossed beams model.

Subdomains PCG-IETI-N

Number Size(dof) Iter Prec. iter. Interface(dof)

9=9x1x1 11925 14 10 7920

36=18x2x1 4185 17 12 30240

104=26x2x2 1963 20 14 47190

Table 4.6: Iterations subdomain metrics of the PCG-IETI-N method for the crossed beams model.

The pipe model was created with three dimensional NURBS using the NURBS Toolbox

[M] and consist of 57 control points per parametric axis 𝜉 that creates the circumference

of the circle, 9 per parametric axis 𝜂 that creates the radius of the annulus and 306 per

parametric axis 𝜁 that gives height to the pipe. The degree of NURBS shape functions

is considered to be consistent in all parametric directions and is equal to p=2. The base

of the pipe is clamped by constraining the displacements of the corresponding control

points. Concentrated loads are at the control points, interpolatory to the geometry on

the top of the pipe with magnitude of 100 KN, introducing both bending and torsional

strain to the structure. The material used for the linear elastic analysis is identical with

the previous model and has a Young’s Modulus E of 105 KPa and Poisson’s ratio 0.3.

Tables 4.8, 4.9 give the performance of the solution methods considered for the pipe

model of approximately 500K dof in terms of number of iterations, equivalent subdomain

124



Subdomains IETI-P IETI-O PCG-IETI-N

Time Time Time Time Time Time

seq. par. seq. par. seq. par.

9 5.677 1.061 5.297 1.019 4.072 0.754

36 4.989 0.891 5.625 0.996 3.883 0.705

104 7.729 1.445 6.14 1.181 4.137 0.766

Table 4.7: Performance metrics of the various IETI methods for the crossed beam model.

size and interface problem. For the case of PCG-IETI-N, the preconditioned iterations

are also displayed which correspond to the toal number of iterations needed for the

estimation of the preconditioned residual.

Subdomains IETI-P IETI-O

Number Size(dof) Iter Interface(dof) Iter. Interface(dof)

100=25x4x1 5670 15 61399 16 88939

100=25x4x1 847 16 244135 17 306211

2400=75x16x2 519 18 338004 19 368875

Table 4.8: Iterations subdomain metrics of IETI-P and IETI-O methods for the crossed beams
model.

Subdomains PCG-IETI-N

Number Size(dof) Iter Prec. iter. Interface(dof)

100=25x4x1 5670 15 10 67069

100=25x4x1 847 17 10 195751

2400=75x16x2 519 20 12 244183

Table 4.9: Iterations subdomain metrics of the PCG-IETI-N method for the crossed beams model.

Table 4.10 presents the performance of the method in terms of the required computing

time in sequential as well as in parallel computing environments. It is evident by

this table that the PCG-IETI-N outperforms all other methods considered in terms

of execution time in both sequential and parallel implementations. Execution time is

measured in seconds, for both sequential and parallel execution, where for the latter, all

6 cores were utilized. Moreover, while the numerical scalability of PCG-IETI-N is in line

with the numerical scalability of the other two methods, it outperforms them in terms

of parallel scalabilty. Figure 4.16 depicts the parallel execution time for all methods.
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Figure 4.15: Pipe cylinder with coarse discretization.

The curves depict the usual behavior of wall clock time when dealing with DDM, where

there is an optimal balance between the size of the local problems and the size of the

interface problem.

Subdomains IETI-P IETI-O PCG-IETI-N

Time Time Time Time Time Time

seq. par. seq. par. seq. par.

100 37.25 6.77 36.91 6.71 26.84 4.97

1200 34.92 6.24 34.65 6.42 21.23 3.93

2400 50.71 9.48 35.94 6.78 23.27 4.22

Table 4.10: Performance metrics of the various IETI methods for the pipe model of 500K dof.

The execution time of the various IETI methods on a paralle environment, with

respect to the number of subdomains, are graphically represented in Figure 4.16. It is

worth noting that there is a significant increase in execution time of IETI-P and to a

lesser extends to IETI-O with respect to the number of subdomains. This is attributed

in both cases to larger interface problem to be solved by the IETI algorithm.
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Figure 4.16: Parallel performance of the various IETI methods in terms of the number of
subdomains for the pipe model.

To evaluate further the numerical scalability properties of the proposed solution

schemes for even larger models, a finer discretization of the previous model is performed,

reaching a total 1M dof and 4800 subdomains. Table 4.11 provides a comparison between

the computational times of the previous model for the cases of 500K and 1M dof,

considering the maximum number of subdomains for each case.

127



Figure 4.17: Computational improvement of PCG-IETI-N with respect to IETI-O and IETI-P for
different model sizes.

Size(dof) Subdomains IETI-P IETI-O PCG-IETI-N

Time Time Time Time Time Time

seq. par. seq. par. seq. par.

500 K 2400 50.71 9.48 35.94 6.78 23.27 4.22

1 M 4800 116.01 21.82 84.52 16.51 49.48 9.06

Table 4.11: Performance metrics of the various IETI methods for 500K and 1M pipe models.

Figure 4.17 presents a graphical representation of the speedup ratios of the numerical

results for the PCG-IETI-N compared to the IETI-P and IETI-O respectively. The

ascending trend in the computational efficiency of the PCG-IETI-N when compared to

IETI-P and IETI-O becomes more evident in thsi figure. As the models get larger in

scale the computational predominance of the proposed solution scheme becomes more

pronounced, providing a speedup of more than 2.3x and 1.7x, compared to IETI-P and

IETI-O, respectively.
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5
Domain Decomposition Solution Schemes

for Isogeometric Collocation Methods

5.1 Introduction

This Chapter focuses on the development of a family of solution algorithms for the

purposes of isogeometric collocation methods, that exploit the advantages of an iterative

solution scheme, name the GMRES coupled with domain decomposition methods. By

introducing an appropriate decomposition of the NURBS overlapping nature, non-

overlapping decomposition of the initial domain is performed, that allows the utilization

of established DDM methods. Both primal and dual alternatives are examined for the

preconditioner of GMRES method, with P-FETI-DP being the most suitable one to

serve as a robust and scalable preconditioner.

5.2 Isogeometric methods

5.2.1 Galerkin vs Collocation

The analysis of linear elasticity PDEs with the isogeometric Galerkin method has been

proven to provide results with significantly increased accuracy per degree of freedom
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compared to its FEM counterparts. This is mainly attributed to the increased conti-

nuity of the shape functions, that consequently lead to minimized errors and increased

smoothness of second order characteristics such as stresses and strains. Unfortunately,

this comes at an increased cost for the assembly of the resulting matrices. As a result, a

number of studies has been conducted for implementation of alternative more efficient

integration schemes, such as the isogeometric collocation method [19, 13]. A comparison

between isogeometric Galerkin and collocation methods was conducted in [161] where

collocation was proven to be significantly more efficient than the corresponding Galerkin

implementation in terms of the computation of the resulting stiffness matrix.

Specifically, for each collocation point, the cost of its contribution to the stiffness

matrix is of magnitude 𝑂(𝑝𝑑), where p is the polynomial degree and d the dimensionality

of the problem. This cost is mainly attributed to the requirement for evaluation of shape

functions second derivatives at each collocation integration point, due to the increased

continuity requirements of the collocation discretizations. On the contrary, Galerkin

method requires 𝑂(𝑝2𝑑) computational effort for the stiffness contribution at each Gauss

integration point. Apart from the reduced cost per collocation point, collocation method

requires the evaluation of only a single collocation point per shape function, while fully

integrated isogeometric Galerkin methods require (𝑝+ 1)𝑑 Gauss point evaluations per

isogeometric element, thus dramatically increasing the stiffness matrix computation cost.

An example of the number of Gauss and collocation points needed for the computation

of the stiffness matrix, in each case respectively, is illustrated in Figure 5.1. Namely, for

the bicubic domain depicted in Fig. 5.1a of the IGA Galerkin method, a multitude of 16

Gauss Points per isogeometric element are needed leading to a total of 64 Gauss Points

for all four isogeometric elements. On the contrary, the same domain discretized with

the isogeometric collocation method (Fig. 5.1b) requires only 25 collocation integration

points, thus significantly reducing the computational burden for the assembly. However,

the accuracy deficit of the isogeometric collocation method can be more than two orders

of magnitude, for a minimum polynomial degree p=3 and grows more profound as the

polynomial degree rises.

Despite this markedly advantage of collocation over Galerkin IGA methods, they have

shortcomings that need to be addressed. In order for the collocation methods to match

the accuracy of the Galerkin methods, they have to resort to excessively refined meshes

or to higher polynomial degrees that exponentially the number of dof, thus leading to

larger non-symmetric matrices. Furthermore, the condition number of the collocation
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stiffness matrices grows rapidly in case of mesh refinement or polynomial degree elevation

[25]. A comparison of the resulting stiffness matrices for Galerkin and collocation for

a square domain for the same accuracy is depicted in Figure 5.2. In case of Galerkin,

the domain is discretized with 13 control points per parametric axis. In order to attain

the same level of accuracy, the domain must be discretized with 63x63 control points in

case of collocation discretization. This leads to 338 dof in the Galerkin case and 7938

dof in the collocation case, indicating the increased computational effort required for

the solution of the equivalent collocation systems. This deficiency makes imperative

the introduction of efficient and robust solution techniques for addressing the problem

of solving isogeometric non-symmetric linear systems associated with the collocation

methods.

(a) Galerkin (b) Collocation

Figure 5.1: Integration points needed for the computation of the stiffness matrix of 2x2
isogeometric Galerkin and collocation discretizations.
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(a) Galerkin (b) Collocation

Figure 5.2: Stiffness matrix sparsity patterns for isogeometric Galerkin and collocation
discretizations for accuracy 10−2.

5.3 Existing solution techniques

The non-symmetric nature of the resulting matrices with high condition numbers, creates

the need for efficient computational methods to address the solution of complex and

large-scale problems. The resulting linear systems of isogeometric collocation, described

in the previous section, can be represented in a matrix form as

K · u = F (5.1)

where K is the stiffness matrix, F is the external load vector and u the displacement

vector. The computational effort needed for the solution of eq. (5.1), depends highly on

the size, the ellipticity and the sparsity pattern of the stiffness matrix. Specifically,the

number of non-zero entries per row, for a vector field with k unknown quantities per

node, are 𝑂(𝑘 · 𝑝𝑑) [161], for both isogeometric collocation and finite elements, while for

132



isogeometric Galerkin is 𝑂((𝑘 · 2𝑝)𝑑), where p is the shape function polynomial degree

and d the dimensionality of the problem. In case of IGA, the CAD shape functions

utilized for the exact geometrical representation of the geometry, leads to a reduced

sparsity patterns due to their increased interelement continuity, while high polynomial

degrees increase the expected bandwidth of the matrices. All the above, in conjunction

to the non-symmetric nature of matrices, lead to a computationally demanding solution

procedure.

This deficit of isogeometric collocation, significantly hinders its capability to address

complex large-scale problems, unless efficient solution techniques capable of alleviating

the solution computational cost are proposed. In this context, multi-frontal parallel

direct solver was proposed in [116], for the solution of one-dimensional nanolithography

collocation problem. Optimal multilevel preconditioners for isogeometric collocation

methods were introduced in [48], where a Bramble-Pasciak-Xu and multigrid V-cycle

accelerated GMRES is proposed for the solution of collocation resulted systems of

equations. The use of the overlapping Schwarz preconditioners in [25] is the first

attempts to introduce domain decomposition methods in isogeometric collocation. It is

based on an algebraic decomposition of the stiffness matrix K into subdomain matrices

that share multiple rows of control points per parametric direction. At the same time,

a coarse problem is introduced based on an p-th degree interpolation, where p is the

polynomial degree of the shape functions corresponding to selected collocation points of

the domain.

5.3.1 Direct Solvers

The most widely applied methods for the solution of non-symmetric problems are direct

solvers. They are based on a factorization of the stiffness matrix, with the most common

factorization methods being the LU factorization [145].

K = L ·U (5.2)

where L and U are a lower and an upper triangular matrix. After factorization of the

stiffness matrix, the solution is obtained with a forward and backward substitution

with the aid of L and U matrices, with minimal cost. This renders LU factorization

ideal in case of problems with multiple right hands sides, yet factorization cost and

memory requirements of the method are its main limitations. Despite, the reduced
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bandwidth form of isogeometric collocation matrices compared to Galerkin methods,

its non-symmetric nature significantly increases the required memory allocation. This

shortcoming, in connection to the parallelization difficulties involved in fine grain parallel

computer implementations, renders direct solvers not efficient for the solution of large

scale problems. A parallel implementation of a direct multi-frontal solver for the

univariate case is proposed in [115].

5.3.2 Iterative Solvers

One of most widespread iterative methods for non-symmetric linear systems is the

GMRES method [155]. In line with all iterative methods, the convergence of the GMRES

method can be significantly improved by introducing an appropriate preconditioner.

Preconditioners should abide by the rule to enhance the approximation of the solution at

each iteration step with the minimum computational cost. The main focus of all proposed

collocation iterative solution schemes is the introduction of an efficient preconditioner for

accelerating the convergence of the GMRES method. While its algorithmic description

is considered standard textbook material, it is provided below since it will be utilized in

this work as solver of the global non-symmetric equation system.

5.3.3 Overlapping Schwarz preconditioner

A brief introduction to the overlapping Schwarz method will be provided based on [25],

as it will serve as a comparison basis for the method proposed in the next section.

Specifically, in the univariate case, given a knot value vector 𝜉 = {𝜉1 = 0, ..., 𝜉𝑛+𝑝+1 = 1},
where 𝑛 is the number of control points and 𝑝 is the polynomial degree, a subset of knot

values 𝜉𝑠𝑖 are selected, that partition the domain into similar span intervals. This subset

can be written in a vector as

Ξ𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = {𝜉𝑠1 = 0, ..., 𝜉𝑠𝑖 , ..., 𝜉
𝑠
𝑁+1 = 1} (5.3)

As apparent by eq. (5.3), the selection of these knot values, splits the univariate domain

into N consecutive spans 𝑆𝑖 = {𝜉𝑠𝑘, 𝜉𝑠𝑘+1}, whose union is the initial reference interval.

Note that the initial and final values of the domain 𝜉𝑠1, 𝜉
𝑠
𝑁+1 are the boundary of the ref-

erence interval, while all internal values define the interface among adjacent subdomains.
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Algorithm 4: GMRES preconditioned algorithm

Data: Matrix K
Right hand side f
Initial solution guess u0

r0 = K−1
𝑝𝑟𝑒𝑐(f −Ku0);

𝛽 := ‖r0‖2;
v1 :=

r0
𝛽

;

for j=1,2,..,m do
w𝑗 := K−1

𝑝𝑟𝑒𝑐Kv𝑗;

for i=1,...,j do
ℎ𝑖,𝑗 := (w𝑗,v𝑖);
w𝑗 := w𝑗 − ℎ𝑖,𝑗v𝑖;

end
ℎ𝑗+1,𝑗 = ‖w𝑗‖2 if ℎ𝑗+1,𝑗 = 0 then

m:=j ;
exit all loops;

end

v𝑗+1
w𝑗

ℎ𝑗+1,𝑗

;

end

Compute the Hessenberg matrix H𝑚;

y𝑚 = 𝑚𝑖𝑛(
⃦⃦
𝛽𝑒1 −H𝑚y

⃦⃦
2
) ;

u𝑚 = u0 +V𝑚y𝑚

For each one of the interface knot values 𝜉𝑠𝑘 between two adjacent subdomains, a shape

function 𝑛𝑘 is selected, whose support intersects both subdomains.

Since the decomposition needs to be overlapping, a non-negative integer value 𝑚

defines the shared shape functions between the subdomains such that

𝐴𝑘 = {𝑛𝑘 −𝑚 ≤ 𝑖 ≤ 𝑛𝑘+1 +𝑚}, 𝑘 = 1, 2, ..𝑁 (5.4)

Note that eq. (5.4) has two boundary cases for the initial and final subdomain, since the

integer 𝑖 of eq. (5.4) takes values that belong within the multitude of shape function of

the univariate reference domain, i.e. 𝑖 ∈ {1, ..., 𝑛}. As eq. (5.4) implies, 2𝑚+ 1 shape

functions are shared between adjacent subdomain, thus the minimum number is given
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for 𝑚 = 0 and is equal to 1 shared shape function. The extention to multiple dimensions

is derived in a straightforward manner by employing tensor products. Specifically, in the

two-dimensional case, the subdomains are defined as

𝑆𝑖 = {𝜉𝑠𝑘, 𝜉𝑠𝑘+1} (5.5a)

𝑆𝑗 = {𝜂𝑠𝑙 , 𝜂𝑠𝑙+1} (5.5b)

𝑆𝑖𝑗 = 𝑆𝑖 × 𝑆𝑗 (5.5c)

In a similar fashion the function indices that affect each subdomain in the bivariate case

can be derived, by extending eq. (5.4) as

𝐴𝑘𝑙 = {𝑛𝑘 −𝑚 ≤ 𝑖 ≤ 𝑛𝑘+1 +𝑚, 𝑠𝑙 −𝑚 ≤ 𝑗 ≤ 𝑠𝑙+1 +𝑚} (5.6)

where 𝑘 ∈ {1, 2, ..., 𝑁} and 𝑙 ∈ {1, 2, ...,𝑀}. The extension to the three-dimensional

case can be produced is a similar manner.

Based on eq. (5.6) and taking into account the degrees of freedom corresponding at

each control point, a mapping matrix L𝑠
𝑖 can be defined. This mapping matrix provides

the connection between the global degrees of freedom and those included only in the

overlapping subdomain partitioning, as defined by eq. (5.5). It is an unsigned Boolean

matrix whose rows denote the degrees of freedom of the subdomain, while the columns

represent the degrees of freedom of the whole domain. By applying these mapping

matrices on the global stiffness matrix K of eq. (5.1), the matrices of each of the

overlapping subdomains can be derived as follows:

K𝑘𝑙 = L𝑠
𝑘𝑙
𝑇KL𝑠

𝑘𝑙 (5.7)

Based on eq. (5.7) suffices for the extraction of the one-level overlapping additive Schwarz

preconditioner is provided by:

K(1)
𝑝𝑟𝑒𝑐 =

𝑁∑︁
𝑘=1

𝑀∑︁
𝑙=1

L𝑠
𝑘𝑙K𝑘𝑙

−1L𝑠
𝑘𝑙
𝑇 (5.8)

The preconditioner of eq. (5.8) can be further enhanced by introducing a coarse problem

to it. In an analogy to the domain subdivision, the extraction of the coarse problem
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for the overlapping Schwarz preconditioner will be performed in a univariate domain

which will then be expanded to higher dimensions. As before, a selection of knot values

is performed from the knot value vector of the reference domain, in a way that the

distance between consecutive distinct knot values are at a distance equal to the span of

the subdomains. This leads to the generation of a coarse knot vector of the form

Ξ𝑐 = {𝜉𝑐1, ..., 𝜉𝑐𝑁𝑐+𝑝+1} (5.9)

Using the tensor product property, eq. (5.9) is extended to determine the multidimen-

sional domain that will serve as the coarse problem of the overlapping Schwarz method.

According to [25], multiple procedures can be followed for the formation of the coarse

space matrices, yet the one followed here is by utilizing the interpolation operator L0

from the coarse space to the reference space of the structure. As a result, the coarse

space matrix is derived as follows:

K0 = L0
𝑇KL0 (5.10)

thus extending the preconditioner of eq. (5.8) to

K(2)
𝑝𝑟𝑒𝑐 = R0K0

−1L𝑇
0 +

𝑁∑︁
𝑘=1

𝑀∑︁
𝑙=1

L𝑠
𝑘𝑙K𝑘𝑙

−1L𝑠
𝑘𝑙
𝑇 (5.11)
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(a) Overlapping interface
(b) Overlapping subdomain interface of

the stiffness matrix

Figure 5.3: Overlapping Additive Schwarz 2x1 domain partitioning of a 4x4 collocation discretized
domain

Figure 5.3, provides an example of a 2x1 domain partitioning of a 4x4 discretized

domain for the overlapping additive Schwarz method. According to [25], 2𝑚+ 1 shape

functions are shared among adjacent subdomains, with 𝑚 = 0 being the non-overlapping

case. In case of 𝑚 = 1, then 2𝑚 + 1 = 3 shape functions are shared at the common

subdomain interface, as depicted in Figure 5.3a. Specifically, the domain is partitioned in

middle of axis X, as indicated by the dashed line. Since, three overlapping control point

columns are required, apart from the column defined by the dashed line, the two adjacent

columns form the interface problem. The control points that belong to the interface

problem denoted with circles in Figure 5.3a. This translates to a major part of the final

stiffness matrix being shared among subdomains, with this situation deteriorating as the

overlapping index 𝑚 grows. The effect of the common interface on the stiffness matrix

is depicted in Figure 5.3b.

5.4 GMRES and Non-overlapping Domain Decomposition Methods

Despite its favorite features, overlapping additive Schwarz (OAS) method has some draw-

backs that decrease its efficiency, with the most notable one the size of the overlapping

submatrices, as well as the definition of the underlying coarse problem. Specifically,

OAS relies on an overlapping decomposition of the initial domain, fact that leads to a
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significantly increased computational cost for the solution of the equivalent subdomain

problems in each preconditioning step. These interface problems can become prohibitively

large for increased polynomial degrees as interelement continuity increases.

In addition, based on its definition, the extraction of the coarse problem matrices

relies heavily on an interpolation operator between the reference and the coarse problem

domains. In [25] various polynomial degrees for the interpolation between the coarse and

reference domain were examined, from linear interpolation to 𝑝𝑡ℎ degree interpolation, p

being the polynomial degree of the shape functions of the reference domain. In terms

of performance, the 𝑝𝑡ℎ degree interpolation case was proven to be the most effective

and thus it chosen for thee evaluation of the interpolation operator in the numerical

comparison performed in this work. Note that, in contrast to L𝑠
𝑘𝑙 operators that perform

only a mapping, L0 interpolation operator requires a matrix vector multiplication for

coarse problem contributions, adding an overhead to the solution procedure.

In order to alleviate the aforementioned deficiencies of the OAS method, an alternative

solution methodology is proposed that combines both GMRES and non-overlapping

primal and dual domain decomposition methods. In addition to the original model

with stiffness matrix K, the proposed algorithm introduces another stiffness matrix K𝑝,

referred to as the ”non-overlapping matrix”. Matrices K and K𝑝 have the same size and

are connected as follows:

K = K𝑝 +ΔK (5.12)

In the proposed method, the preconditioning matrix K𝑝𝑟𝑒𝑐 of the iterative GMRES

method becomes the K𝑝 matrix of the non-overlapping model. This means that for

each iteration, a linear system involving the non-overlapping stiffness matrix needs to be

solved in order to evaluate the preconditioned quantity w𝑗 = K−1
𝑝𝑟𝑒𝑐v𝑗 of algorithm 4.

Figure 5.5, illustrates the major difference between the overlapping Schwarz method

compared the non-overlapping alternative. Figures 5.4 a,b depict the interface problem,

in case of a non-overlapping (Figure 5.4a) and a non-overlapping (Figure 5.4b). In

the first case, 7 control points compose the subdomain interface, while in the second

case 21. The effect of the increased interface problem to the matrix decomposition is

provided in Figures 5.5a,b. As expected the interface problem in the non-overlapping

case is significantly reduced. Specifically, in case of the OAS method, each preconditiong

step of GMRES method is evaluated by superposition of the solution obtained by each
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(a) Interface control point of non-overlapping
2x1 domain decomposition.

(b) Interface control points of overlapping 2x1
domain decomposition.

Figure 5.4: Overlapping vs Non-overlapping domain partitioning effect on the interface problem.

(a) (b)

Figure 5.5: Interface stiffness elements for (a) Non-overlapping and (b) Overlapping decompositions.

one of the subdomain matrices. This leads to the solution of the interface dof for

each subdomain. On the contrary, the non-overlapping domain decomposition methods

requires a single evaluation of the Schur complement of the stiffness matrix to the
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interface problem, where the preconditioning step is now evaluated. The benefits of

the proposed alternatives are profound, as the introduced errors depend only on the

neglected terms of the non-overlapping decomposition, while the solution of the interface

problem required for the evaluation of the preconditioning step is significantly smaller

and thus less computationally intensive than the solution of all subdomain matrices

required in OAS.

5.4.1 PSM

PSM [71, 33], emanating from the method of substructures [146] is considered to be

the standard DDM method. This method subdivides the domain into subdmomains

and after elimination of internal degrees of freedom of each subdomain the resulting

equations refer to the interface problem among subdomains. The goal of PSM is to

reduce the multitude of the dofs of the initial system only to the boundary dof between

the subdomains. This transforms the initial linear system K · u = f to

S · u𝑏 = f̂𝑏 (5.13)

where the matrix S is the Schur complement of the initial stiffness matrix K to the

interface dof between the subdomain. Matrix S can be assembled by adding the

contributions of each of the subdomain matrices as follows:

S =

𝑁𝑠∑︁
𝑠=1

S
𝑠

(5.14)

where S is the contribution of the subdomain matrix to the boundary problem Schur

complement, and 𝑁𝑠 the number of subdomains:

S
𝑠
= (L𝑠

𝑏)
𝑇S𝑠L𝑠

𝑏 (5.15)

In eq. (5.15), the matrix L𝑏 is an unsigned Boolean matrix that maps the local boundary

dof of the subdomain to the global boundary dof of the problem, while the matrix S𝑠 is

calculated by:

S𝑠 = K𝑠
𝑏𝑏 − (K𝑠

𝑖𝑏)
𝑇 (K𝑠

𝑖𝑖)
−1K𝑠

𝑖𝑏 (5.16)
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The same procedure is applied for the subdomain forces, where the right hand side of eq.

(5.13) can be expanded as

f̂𝑏 = f𝑏 −
𝑁𝑠∑︁
𝑠=1

(L𝑠
𝑏)

𝑇 (K𝑠
𝑖𝑏)

𝑇 (K𝑠
𝑖𝑖)

−1f 𝑠𝑖 (5.17)

Figure 5.6: Non-overlapping decomposition of a unit square domain with PSM method.

Figure 5.6, schematically illustrates the PSM domain decomposition method. Specif-

ically, for a unit square domain partitioned into 4x4 isogeometric elements and 2x2

subdomains. The interface problem consists of 13 control points. All dof of the initial

domain (Figure 5.6a) are condensed to the interface dof and subsequently the interface

problem is solved, as described by the PSM procedure above.

5.4.2 FETI-DP

FETI-DP [68, 103, 121, 64, 105] is a well established domain decomposition solver for

the case of FEM that utilizes both primal PSM and dual FETI, DDM formulations. Its

performance in IGA was studied in [107] and was extended to discontinuous Galerkin

problems in [87].
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(a) Lagrange multipliers (b) Coarse problem displacements

Figure 5.7: Non-overlapping decomposition of a unit square domain with FETI-DP method.

Figure 5.7 illustrated schematically displacements and traction forces acting on the

interface of FETI-DP. Specifically, the initial domain of Figure 5.6a, is discretized with

4x4 isogeometric elements,and is partitioned into 2x2 subdomains. In contrast to PSM

method, the unknown values are no longer the displacements of the interface problem,

but their dual quantities the traction forces of the interface nodes. The traction forces

are the Lagrange multipliers, illustrated in Figure 5.7a, which are necessary to enforce

continuity between the subdomains. In order to accelerate the propagation of information

among the subdomains, the displacements of the coarse problem are taken into account

as well. The coarse problem is formed by the nodes that belong to more than two

subdomains aswell as by the nodes of the boundary belonging to two subdomains in

the 2D case. An example of the coarse problem displacements of FETI-DP is shown in

Figure 5.7b. The unknown quantities at the corner nodes are their displacements.

The algorithmic stages of the method are briefly described below. The stiffness matrix

𝐾𝑠, force vector 𝑓𝑠 and displacement vector 𝑢𝑠 of each patch (𝑠) can be partitioned as
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follows:

𝐾𝑠 =

[︃
𝐾𝑠

𝑖𝑖 𝐾𝑠
𝑖𝑏

𝐾𝑠
𝑏𝑖 𝐾𝑠

𝑏𝑏

]︃
(5.18a)

𝑓 𝑠 =

[︃
𝑓𝑠
𝑖

𝑓𝑠
𝑏

]︃
(5.18b)

𝑢𝑠 =

[︃
𝑢𝑠𝑖
𝑢𝑠𝑏

]︃
(5.18c)

with subscript (𝑖) denoting the internal dof and (𝑏) the boundary dof.

In order to impose continuity between subdomains, the following equation is intro-

duced:

𝑁𝑠∑︁
𝑠=1

𝐵𝑠𝑢𝑠 = 0 (5.19)

with 𝑁𝑠 being the number of subdomains and 𝐵𝑠 being a signed Boolean matrix. The

𝑢𝑠𝑏 vector is further partitioned as:

𝑢𝑠𝑏 =

[︃
𝑢𝑠𝑏𝑟
𝑢𝑠𝑏𝑐

]︃
(5.20)

with the subscript (𝑐) denoting the coarse problem nodes or ”corner” nodes. Subsequently,

𝐾𝑠, 𝑢𝑠 and 𝑓 𝑠 can be partitioned as follows:

𝐾𝑠 =

[︃
𝐾𝑠

𝑟𝑟 𝐾𝑠
𝑟𝑐

𝐾𝑠
𝑐𝑟 𝐾𝑠

𝑐𝑐

]︃
(5.21a)

𝑓𝑠 =

[︃
𝑓𝑠
𝑟

𝑓𝑠
𝑏𝑐

]︃
(5.21b)

𝑢𝑠 =

[︃
𝑢𝑠𝑟
𝑢𝑠𝑏𝑐

]︃
(5.21c)
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where

𝑓𝑠
𝑟 =

[︃
𝑓𝑠
𝑖

𝑓𝑠
𝑏𝑟

]︃
(5.22a)

𝑢𝑠𝑟 =

[︃
𝑢𝑠𝑖
𝑢𝑠𝑏𝑟

]︃
(5.22b)

and subscript (𝑟) denoting all dof that do not belong to a corner node.

Considering this repartitioning, the continuity between patches can be re-written as:

𝑁𝑠∑︁
𝑠=1

𝐵𝑠
𝑟𝑢

𝑠
𝑟 = 0 (5.23)

with 𝐵𝑠
𝑟 being the signed Boolean matrix 𝐵𝑠, pertaining to the (𝑟) dof. Moreover, the

following global vector of corner dof is introduced

𝑢𝑐 =
[︁
𝑢1𝑐 ... 𝑢𝑗𝑐 ... 𝑢𝑁𝑐

𝑐

]︁𝑇
(5.24)

with 𝑢𝑗𝑐 denoting all displacement dof attached to the j-th global node that is also a

corner node of the mesh decomposition and 𝑁𝑐 denoting the total number of corner

nodes.

In order to connect 𝑢𝑐 with 𝑢𝑠𝑏𝑐, the following equation is introduced:

𝐿𝑠
𝑐𝑢𝑐 = 𝑢𝑠𝑏𝑐 (5.25)

with 𝐵𝑠
𝑐 being an unsigned Boolean matrix.

Considering all the above equations, the patch equilibrium condition is expressed as:

𝐾𝑠
𝑟𝑟𝑈

𝑠
𝑟 +𝐾𝑠

𝑟𝑐𝐿
𝑠
𝑐𝑢𝑐 = 𝑓𝑠

𝑟 −𝐵𝑠
𝑟
𝑇𝜆 (5.26a)

𝑁𝑠∑︁
𝑠=1

𝐿𝑠
𝑐
𝑇𝐾𝑠

𝑟𝑐
𝑇𝑢𝑠𝑟 +

𝑁𝑠∑︁
𝑠=1

𝐿𝑠
𝑐
𝑇𝐾𝑠

𝑐𝑐𝑢𝑐 =

𝑁𝑠∑︁
𝑠=1

𝐿𝑠
𝑐
𝑇 𝑓𝑠

𝑏𝑐 = 𝑓𝑐 (5.26b)

with 𝜆 being the traction forces between each patch.
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From the above relations, it follows that

𝑢𝑠𝑟 = (𝐾𝑠
𝑟𝑟)

−1(𝑓𝑠
𝑟 −𝐵𝑠

𝑟
𝑇𝜆−𝐾𝑠

𝑟𝑐𝐿
𝑠
𝑐𝑢𝑐) (5.27)

which, when substituted to eq. (5.23), the following system of equations arises

[︃
𝐹𝐼𝑟𝑟 𝐹𝐼𝑟𝑐

𝐹𝐼𝑟𝑐
𝑇 −𝐾*

𝑐𝑐

]︃[︃
𝜆

𝑢𝑐

]︃
=

[︃
𝑑𝑟

𝑓*
𝑐

]︃
(5.28)

where:

𝐹𝐼𝑟𝑟 =

𝑁𝑠∑︁
𝑖=1

𝐵𝑠
𝑟𝐾

𝑠
𝑟𝑟

−1𝐵𝑠
𝑟
𝑇 (5.29a)

𝐹𝐼𝑟𝑐 =

𝑁𝑠∑︁
𝑖=1

𝐵𝑠
𝑟𝐾

𝑠
𝑟𝑟

−1𝐾𝑠
𝑟𝑐𝐵

𝑠
𝑐 (5.29b)

𝐾𝑐𝑐 =

𝑁𝑠∑︁
𝑖=1

𝐵𝑠
𝑐
𝑇𝐾𝑠

𝑐𝑐𝐵
𝑠
𝑐 (5.29c)

𝐾*
𝑐𝑐 = 𝐾𝑐𝑐 −

𝑁𝑠∑︁
𝑖=1

(𝐾𝑠
𝑟𝑐𝐵

𝑠
𝑐 )

𝑇𝐾𝑠
𝑟𝑟

−1(𝐾𝑠
𝑟𝑐𝐵

𝑠
𝑐 ) (5.29d)

𝑑𝑟 =

𝑁𝑠∑︁
𝑖=1

𝐵𝑠
𝑟𝐾

𝑠
𝑟𝑟

−1𝑓𝑠
𝑟 (5.29e)

𝑓*
𝑐 = 𝑓𝑐 −

𝑁𝑠∑︁
𝑖=1

(𝐾𝑠
𝑟𝑐𝐵

𝑠
𝑐 )

𝑇𝐾𝑠
𝑟𝑟

−1𝑓𝑠
𝑟 (5.29f)

By eliminating 𝑢𝑐 from the baove equations, the following interface problem needs to be

solved:

(𝐹𝐼𝑟𝑟 + 𝐹𝐼𝑟𝑐𝐾
*
𝑐𝑐
−1𝐹 𝑇

𝐼𝑟𝑐)𝜆 = 𝑑𝑟 − 𝐹𝐼𝑟𝑐𝐾
*
𝑐𝑐
−1𝑓*

𝑐 (5.30)

The solution of eq. (5.30) is usually performed with an iterative solution algorithm and

for the case of isogeometric collocation method where non-symmetric matrices occur

with, the GMRES algorithm has been used.
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5.4.3 P-FETI-DP

P-FETI-DP [76] method constitutes an enhancement of the aforementioned PSM method,

as it introduces a preconditioner 𝐴−1 to the interface system of eq. (5.13), that is based

on the coarse problem of the FETI-DP method. Its expression is given by:

Ã−1 = (L̃𝑒
𝑝𝑟)

𝑇 (K𝑒
𝑟𝑟)

−1L̃𝑒
𝑝𝑟+

(︀
𝑏N𝑏𝑐 − (L̃𝑒

𝑝𝑟)
𝑇 (K𝑒

𝑟𝑟)
−1K𝑒

𝑟𝑐𝐿
𝑒
𝑐

)︀
(K*

𝑐𝑐)
−1(︀

− (L𝑒
𝑐)

𝑇K𝑒
𝑐𝑟(K

𝑒
𝑟𝑟)

−1L̃𝑒
𝑝𝑟 +𝑏𝑐 N𝑏

)︀ (5.31)

Starting from left to right all components of the preconditioner are explained below: L̃𝑒
𝑝𝑟

matrix is used to map the remainder dof of the discretized domain and the boundary

problem of the PSM method. Its expression is given by

L̃𝑒
𝑝𝑟 = 𝑟N

𝑒
𝑏L

𝑒
𝑝𝑏 (5.32)

The purpose of matrix 𝑟N
𝑒
𝑏 as its subscripts indicate the compatibility of matrix dimen-

sions. When subdivided into subdomains it can be written with the following block

diagonal expression

𝑟N
𝑒
𝑏 =

⎡⎢⎢⎣𝑟N
(1)
𝑏

. . .

𝑟N
(𝑁𝑠)
𝑏

⎤⎥⎥⎦ (5.33)

Each of the subdomain contributions 𝑟N
(𝑁𝑠)
𝑏 is a Boolean matrix that maps the remainder

dof of the subdomain (s) to the boundary dof the same subdomain. The matrix L𝑒
𝑝𝑏 of

eq. (5.32) can be similarly written

L𝑒
𝑝𝑏 =

⎡⎢⎢⎣
L
(1)
𝑝𝑏
...

L
(𝑁𝑠)
𝑝𝑏

⎤⎥⎥⎦ (5.34)

while for each subdomain the matrix L
(𝑠)
𝑝𝑏 is computed as

L
(𝑠)
𝑝𝑏 = L𝑠

𝑏W (5.35)
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Figure 5.8: P-FETI-DP domain partitioning

In eq. (5.35), the matrix L𝑠
𝑏 is a Boolean matrix that maps local boundary dofs of the

subdomain to the interface dof of the PSM problem. Additionall, the matrix W is a

diagonal matrix, with terms equal to the inverse multiplicity of the interface dof. The

term multiplicity for the case of interface dof, refers to the number of subdomains this

dof belongs to. Moving to matrices K𝑒
𝑟𝑟,K

𝑒
𝑟𝑐, these constitute block diagonal matrices

generated from the partitioning of the subdomain matrices to corner and remainder dof

as per eq. (5.21d).

K𝑒
𝑟𝑟 =

⎡⎢⎢⎣
K

(1)
𝑟𝑟

. . .

K
(𝑁𝑠)
𝑟𝑟

⎤⎥⎥⎦ (5.36a)

K𝑒
𝑟𝑐 =

⎡⎢⎢⎣
K

(1)
𝑟𝑐

. . .

K
(𝑁𝑠)
𝑟𝑐

⎤⎥⎥⎦ (5.36b)

while the K*
𝑐𝑐 matrix is denoted as the Schur complement of the remainder dof of each
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subdomain, to its boundary corner ones and consequently its mapping to the global

boundary dof of the corner problem defined by FETI-DP. The matrix 𝑏𝑁𝑏𝑐 of eq. (5.31),

is also Boolean mapping matrix, that links the boundary dof of the PSM problem, to

the corner dof of the FETI-DP method. Finally, the matrix L𝑐 is written in subdomain

form as

L𝑒
𝑐 =

⎡⎢⎢⎣
L
(1)
𝑐

...

L
(𝑁𝑠)
𝑐

⎤⎥⎥⎦ (5.37)

and defines an unsigned Boolean matrix that links the local corner dof of each subdomain

to the equivalent corner dof of the coarse problem. Note that for all Boolean matrices

involved in this process, no matrix vector multiplications are required to be performed,

rather than the utilization of the proper submatrix.

Figure 5.8, illustrates schematically the P-FETI-DP method. Specifically, for a unit

square domain discretized with 4x4 isogeometric elements and 7x7 control points, a

2x2 decomposition is performed. The interface problem control points are indicates

with squares. All internal dof of the subdomains are condensed to the interface dof,

as described by the PSM procedure. In order to accelerate the solution of the PSM

interface problem of eq.(5.13), a preconditioner is crated based on the coarse problem of

FETI-DP method operated on the interface control points. This strategy allows for a

faster convergence of the interface problem, of the multitude of subdomain or the size of

the interface problem.

5.4.4 Primal and dual non overlapping domain decomposition pre-

conditioners for IGA collocation methods

For assessing the performance of non-overlapping domain decomposition-based precondi-

tioners for the solution of IGA problems, we considered both primal and dual variants.

Primal variants, such as the PSM method described above, introduce a subdomain

interface problem, whose unknown quantities match the unknown field of the PDE. In

the case of linear elasticity, this means that the unknowns of the interface quantities are

the displacements of the interface nodes among adjacent subdomains. On the contrary,

dual methods, create an interface problem, whose unknown quantities are the duals of the
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displacements, which are the subdomain interaction forces of the interface nodes. In the

literature, often these dual quantities that represent the interaction forces are denoted

as Lagrange multipliers, due to the mathematical theory used for their development.

While both the aforementioned variants worked as expected for the Galerkin IGA

implementation, the dual variants were problematic when stiffness matrices were com-

posed using the collocation procedure. In particular, all the dual DD variants examined

produced erroneous results while some of them failed to converge. This behavior can be

explained by examining the mechanical interpretation of these two family of solution

methods. Dual variants perform iterations on the Lagrange multiplier vector 𝜆, as

opposed to the interface displacements of the primal ones. For Galerkin-composed

stiffness matrices, each matrix component 𝐾𝑖𝑗 represents the force required to be ex-

erted on the degree of freedom 𝑖 to cause a unit displacement for degree of freedom 𝑗.

For elasticity problems as considered in this work, the opposite also applies according

to Betti’s law which means that a unit displacement applied in degree of freedom 𝑗

will result in this unit force reaction in degree of freedom 𝑖. This leads to a physical

explanation of symmetric nature of the Galerkin-composed stiffness matrices. However,

collocation-composed matrices are not symmetric and this mechanical interpretation

does not apply. As a result, if the same process considered for the formulation of dual

domain decomposition methods for Galerkin-composed stiffness matrices is applied for

collocation-composed matrices, the resulting solver fails.

5.4.5 Stiffness matrix-based non-overlapping preconditioner

Following the presentation of the P-FETI-DP method, this section will provide the

process of constructing the non-overlapping decomposition of the reference domain, as

well as the resulting stiffness matrix which will be used as the preconditioner to the

GMRES method. In the univariate case, given an axis defined by the knot value vector

Ξ = {𝜉1 = 0, ..., 𝜉𝑛+𝑝+1}, where p being the polynomial degree and n the number of

control points, a subset of the control points are selected as the interface entities between

adjacent subdomains.

𝑆𝑘 = {𝑖 ∈ N : 𝑔𝑚 ≤ 𝑖 ≤ 𝑔𝑚+1}, ∀ 𝑘 ∈ {1, ..., 𝑁} (5.38)

where N is the number of subdomains. The indices of these control points 𝑔𝑚 ∈ {1, 𝑛}
are selected so that each subdomain partitioning 𝑆𝑘 contains a similar multitude of
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control points. Following to the introduction of the interface control points, a diagonal

weighting matrix W is introduced. Its order being the number of degrees of freedom of

the univariate domain, while its values equal to the inverse number of subdomains each

degree of freedom belongs to.

The aforementioned univariate partitioning can be extended in the bivariate case as a

tensor product of the univariate decomposed axes. This results to equations analogous

to eq. (5.38) which can be expressed as follows:

𝑆𝑘𝑙 = {(𝑖, 𝑗),∈ N2 : 𝑔𝑚 ≤ 𝑖 ≤ 𝑔𝑚+1, ℎ𝑚 ≤ 𝑗 ≤ 𝑗𝑚+1} (5.39)

where 𝑘 ∈ {1, 𝑁} and 𝑙 ∈ {1,𝑀}, N,M being the number of subdomains per parametric

direction. The weighting matrix W is also computed by the inverse multiplicity of

the subdomains each dof belongs to. The extension to the trivariate case is also

straightforward. As a result, the subdomain stiffness matrices are calculated by

K𝑘𝑙 = L𝑤KL𝑇
𝑤 (5.40)

where L𝑤 being a scaling matrix given by

L𝑤 = L𝑠W (5.41)

and the matrix L𝑠 maps the dof of the subdomain to the dof of the global domain.

Based on the coarse points definition provided for the FETI-DP method, their definition

can be generalized for the case of isogeometric analysis. For a two-dimensional domain,

coarse problem control points are defined as those points whose multitude of converging

subdomains, in the non-overlapping subdomain decomposition, either equals to four or

equal to two for those belonging to the boundary edges of the bivariate domain.
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(a)

(b)

Figure 5.9: (a) Overlapping (b) non-overlapping domain partitionings

The domain decomposition process, described above differs from the partitioning

of FEM.Specifically, in the context of finite elements, the subdomain partitioning was
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performed by requiring all subdomain to have similar number of elements. Especially,

when the domain was discretized with the same element types, the equal element number

among subdomains guaranteed an equal distribution of the degrees of freedom and

ultimately load balancing. On the other hand, in case of IGA, the domain partitioning

is performed according to the multitude of control points each subdomain contains. It is

apparent that this partitioning does split the domain into equally spaced areas due to the

nature of isogeometric shape functions, yet ensures properly load balanced subdomains

in terms of their matrix size.

Another difference among the two methods is that the partitioning of IGA requires an

averaging of the matrices at the interface dof. The reason for this is that each integration

quantity such as the element contributes to matrices areas outside its definition domain

and thus the stiffness of a control point cannot be divided into its elemental contribution

in a straight forward manner. This averaging process is further explained in Figure 5.9, by

partitioning axis X into two subdomains, each one containing a multitude of four control

points along this axis. The final control point column of the first subdomain (Figure 5.9a)

and first column of the second subdomain (Figure 5.9b) create the interface problem.

As can observed, by retaining the existing interelement continuity among subdomain

would result in shape functions penetrating neighbouring subdomains. This property

of isogeometric shape functions is no longer desired as this would to increase influence

among subdomains. To alleviate this, any such influence is truncated as depicted in

Figures 5.9c,d. In terms of stiffness matrix, this translated to the decomposition of

Figure 5.10, where the gray area illustrates the interface among subdomains. Since

the interface matrix are belong to two adjacent subdomains, an averaging is performed

that splits the interface contribution to two equal parts, assigning each to one to the

corresponding subdomain.
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Figure 5.10: Non-overlapping decomposition of a collocation stiffness matrix generated for a unit
square domain with 7x7 control points and polynomial degree p=4.

Apart from the averaging performed at the interface among adjacent subdomains,

Figure 5.10 showcases the truncated terms that are ignored during the creation of the

preconditioner via the non-overlapping decomposition. Specifically, as can be observed,

stiffness matrix terms that do not belong to regions defined by the domain partitioning are

disregarded. This allows the non-overlapping decomposition to retain a minimal interface

problem among adjacent subdomains, thus allowing the computationally efficient solution

of the respective preconditioner.

5.5 Numerical results

In this section, several numerical tests are performed in order to test the convergence

properties of the P-FETI-DP preconditioner accelerated with GMRES, when utilized

for the solution of the linear systems deriving from linear elasticity PDEs. The reference

domain utilized for the numerical examples is a unit square, with homogeneous Dirichlet

boundary conditions aplied to all degrees of freedom of its left edge and vertical load of
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100 KN applied to upper right interpolatory control point of the domain.

The domain is discretized by utilizing isogeometric NURBS shape functions, with

parameters h denoting the mesh size, polynomial degree of the shape functions p,

subdivided into N subdomains per parametric direction. The Young’s modulus is 100

MPa and Poisson’s ratio 𝜈 = 0.3. The reference linear systems are solved with the aid

of the GMRES iterative method, with zero initial guess and a normalized displacement

convergence criterion of 10−6.

Figure 5.11: Unit square domain utilized for the scalability tests of the numerical tests.

5.5.1 Preconditioned GMRES performance metrics

In this subsection, a comparison of the performance, in terms of both iterations as well

as CPU times in sequential execution environment, is performed between the proposed

preconditioner method and its strongest competitor, the overlapping Schwarz method

[25]. Numerical tests were performed in large-scale models, with dof ranging from 102K

to 103K dof and subdomains numbers in the span between 16 and 1024. For all numerical

tests, a convergence accuracy of 10−6 is considered for both the convergence of GMRES

global problem as well as the interface problem in the case of the proposed method.

The computing platform used is an Intel Core i7 X980 with 24Gb RAM memory. In

all cases, for the solution of the resulting linear system, equivalent preconditioners are

studied. Specifically, both one-level preconditioners, such as the the PSM-D method and
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OAS with out coarse problem are provided, as well as 2-level preconditioners like the

P-FETI-DP method and 2-level OAS.

The first comparison is performed for the case of approximately 130K dof model.

Table 5.1, as well as Figures 5.12a,b present all the data pertaining to the aforementioned

model. Figure 5.12a schematically illustrates the iterations behavior with an increasing

number of subdomains. As it can be observed, both one level preconditioner alternatives

present incremental rise of the number of iteration needed for convergence, with the

PSM-D method requiring significantly more iterations compared all other methods with

the P-FETI-DP method to require the least number of iterations to converge to the

desired accuracy.

256x256 OAS 1-level OAS 2-level PSM-D P-FETI-DP

N Interface Coarse Gmres Time Gmres Time Gmres Prec Time Gmres Prec Time

dof dof it. seq. (s) it. seq. (s) it. it. seq. (s) it. it. seq. (s)

4x4 3060 36 129 32.71 81 19.29 1 297 14.32 1 26 7.59

8x8 7084 140 188 47.12 102 21.41 1 454 10.35 1 34 4.14

16x16 14940 540 280 102.56 126 25.45 2 690 27.7 2 33 4.33

32x32 29884 2108 442 355.33 149 30.07 2 964 132.37 2 31 10.62

Table 5.1: Performance metrics for the solution 100K dof problem with various preconditioners to
the GMRES method.

In terms of wall-clock time metrics, the situation is reversed among the PSM-D and

OAS 1-level methods. Specifically, a 2.28x speedup is noted for the minimum case of 16

subdomains, which slowly rises to 2.36x in the case of 1024 subdomains. This speedup

of PSM-D method is attributed to the nature of the non-overlapping preconditioner

proposed, as the solution of the global problem is transformed to the solution of the

interface problem among adjacent subdomains, which is orders of magnitude smaller

than the original problem, as can be seen in Table 5.1.

In a similar fashion, P-FETI-DP method outperforms the OAS 2-level alternative.

The biggest speedup of P-FETI-DP method is observed for a multitude of 64 subdomains

and is 5.17x faster than the equivalent OAS 2-level alternative. Note that P-FETI-DP

wall-clock time metric are affected by the multitude of subdomains, as a descending

path is followed by an ascending one. The reason for this is that the method requires to

strike a balance between the size of subdomain problems and the corresponding coarse

problem, so that a small interface problem is maintained, while the coarse problem is

large enough to provide an effective preconditioner. This behavior was expected, as it has

been observed in previous publications regarding non-overlapping domain decomposition
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methods [76, 173].

A similar behavior to the 100K dof case, is observed for the 500K test case. In terms

of iteration count, the PSM-D preconditioner performs poorly, while P-FETI-DP method

outperforms all other preconditioners as depicted in Figure 5.13a. In terms of wall-clock

time, both PSM-D and OAS 1-level preconditioners exhibit an incremental rise of the

wall-clock time with number of subdomains, with the first being up to 2.6x times faster.

The same observation holds for the two-level methods. An inspection of the results

of Table 5.2 and Figure 5.13b, yield the same descending, ascending behavior of the

P-FETI-DP preconditioner. The highest speedup provided by P-FETI-DP, is observed

for 256 non-overlapping subdomains and is 8.9x times faster than its OAS counterpart.

Note that, for the comparison to be fair among the two-level methods, the overlapping

between subdomains in the OAS case, is kept at a minimum of one overlapping shape

function.

512x512 OAS 1-level OAS 2-level PSM-D P-FETI-DP

N Interface Coarse Gmres Time Gmres Time Gmres Prec Time Gmres Prec Time

dof dof it. seq. (s) it. seq. (s) it. it. seq. (s) it. it. seq. (s)

4x4 6132 36 179 282.45 92 130.09 1 426 192.38 1 27 93.09

8x8 14252 140 265 265.02 120 136.96 2 645 94.4 2 36 37.37

16x16 30300 540 393 760.62 157 215.55 2 983 157.31 2 36 24.26

32x32 61628 2108 550 1965.27 176 246.33 3 1361 758.54 3 33 45.25

Table 5.2: Performance metrics for the solution 500K dof problem with various preconditioners to
the GMRES method.

Finally, for the 1000K dof case, the former observations are validated. In overall, the

same behavior regarding the iteration metrics is observed for all preconditioner cases,

with two-level methods significatly outperforming the computational cost of one-level

methods and P-FETI-DP being the most computationally efficient. Regarding the

wall-clock execution time, P-FETI-DP achieves a 5.7x times speedup compared to the

OAS 2-level method, hence proving its efficiency in isogeometric collocation problems of

various scales.

Note that the parallelization of the aforementioned preconditioners is not bound by

the number of subdomains. This means that the number of cores that can be utilized

can exceed the total number of subdomains, as apart from the utilization of one core

per subdomain for the matrix vector operations of eq. (5.16), the undelying solution of

𝐾𝑖𝑖 with the subdomain vectors can be further parallelized with block direct or iterative

solvers that spawn the solution of the internal problems across multiple cores [76]. Thus,
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768x768 OAS 1-level OAS 2-level PSM-D P-FETI-DP

N Interface Coarse Gmres Time Gmres Time Gmres Prec Time Gmres Prec Time

dof dof it. seq. (s) it. seq. (s) it. it. seq. (s) it. it. seq. (s)

4x4 9204 36 218 977.81 113 336.25 1 523 756.97 2 28 358.93

8x8 21420 140 323 1270.14 149 373.24 2 794 542.42 2 38 163.65

16x16 45660 540 478 1892.42 233 410.23 2 1207 467.72 3 37 72.026

32x32 93372 2108 669 4655.56 257 447.22 3 1670 1729.4 3 35 102.81

Table 5.3: Performance metrics for the solution 1000K dof problem with various preconditioners to
the GMRES method.

the speedup of the P-FETI-DP preconditioner, compared to its overlapping competitors,

can be retained even in fine grain parallel computing environments. Note that the current

approach for the solution of the subdomain internal problems, in both P-FETI-DP and

OAS preconditioners, is by an LU factorization of the respective matrices.

5.5.2 P-FETI-DP scalability in N

In this section, the scalability of the proposed method is studied. GMRES iterations

required for the convergence of the global and equivalent interface problems are reported

in Table 5.4. For a unit square domain, different mesh partitionings are considered

ranging from 1/ℎ = 8 elements to 1/ℎ = 128 elements for each direction. These meshes

are the subdivided into N subdomains with multitude ranging from 4 to 1024. As it

can be observed, the non-overlapping model serves as excellent preconditioner for the

solution of the global linear system. Iteration count for the global GMRES are minimal,

which is attributed to the minimization of the discarded stiffness matrix values. An

in-depth investigation of the polynomial degree influence on iteration count is provided

in a later section.

GMRES with P-FETI-DP preconditioner (p=3)

1/h=8 1/h=16 1/h=32 1/h=64 1/h=128

N GMRES Interface GMRES Interface GMRES Interface GMRES Interface GMRES Interface

it. it. it. it. it. it. it. it. it. it.

2x2 1 7 1 8 1 9 1 9 1 10

4x4 - - 1 9 2 10 2 11 2 12

8x8 - - - - 1 9 2 11 2 11

16x16 - - - - - - 3 10 2 10

32x32 - - - - - - - - 2 9

Table 5.4: Iteration metrics

Table 5.4 examines the scalability of the PSM method when preconditioned with the first

step of the coarse problem of the FETI-DP which is briefly described as the P-FETI-DP
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method. As it can be observed, iteration count for the solution of the global problem is

kept at a minimum due to the non-overlapping model of the interface problem introduced,

while the iteration count for the solution of the interface problem remains unaffected

by the mesh partitiong 1/ℎ as well as by the number of subdomains 𝑁 . This renders

the P-FETI-DP method an ideal candidate for the solution of linear systems deriving

from isogeometric collocation methods. For all numerical tests of Table 5.4 the required

preconditioner accuracy was set to 10−6 for both global and interface GMRES solutions.

5.5.3 P-FETI-DP robustness with respect to preconditioner accu-

racy

This numerical investigation, addresses the influence of interface problem preconditioner

accuracy to the overall performance of the proposed iterative method. Table 5.5 shows

the effect of the accuracy of the interface for various subdomain partitionings ranging

from 4 to 1024 subdomains In agreement to the iteration count presented in Table

5.4, the minimal number of external iterations required for the solution of the global

problem seems to be unaffected by the relaxation of the solution accuracy of the interface

problem.

In case of the P-FETI-DP method, the decrease of the preconditioner accuracy reduces

the number of required iterations by half, while resulting to a minimal effect on the total

iterations of the global problem.

GMRES with P-FETI-DP preconditioner (1/h=150)

N Subd. Interface GMRES Prec. GMRES Prec. GMRES Prec. GMRES Prec.

dofs dofs it. it.10−6 it. it.10−5 it. it.10−4 it. it.10−3

2x2 11026 596 1 10 2 9 2 7 2 6

4x4 2594 1776 1 12 2 10 2 8 3 5

8x8 612 4088 2 12 2 9 2 8 2 5

16x16 171 7980 2 10 2 7 2 6 2 5

Table 5.5: Iteration metrics investigation of the preconditioner accuracy effect of the P-FETI-DP
method.

5.5.4 P-FETI-DP dependence on p

In order to study the effect of polynomial degree on the efficiency of the method,

a numerical investigation was performed for the domain with 1/ℎ = 64 mesh size,
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subdivided into 16 non-overlapping subdomains. Table 5.6, provides the total iterations

count needed for the solution of the domain defined, by utilizing as a preconditioner both

aforementioned methods PSM-D and P-FETI-DP. As expected, all methods provide an

effective and robust preconditioner regarding the iteration count of the global problem,

utilizing GMRES. The augmentation of the polynomial degree has a minor effect of the

total number of global problem iterations. For polynomial degree 𝑝 = 4 to 𝑝 = 7 an

increase of only 10 external iterations is observed, while for all chosen interface problem

preconditioners, the total number of iterations required for attaining a 10−6 remain

unaffected by the polynomial degree increase. This can be attributed to the fact that the

introduced non-overlapping model abolishes the augmented interelement continuity. The

truncated terms of the initial stiffness matrix only affect the external GMRES iterations,

due to the deviation of the truncated model compared to initial one that becomes more

pronounced as matrix bandwidth and interelement continuity increase along with the

polynomial degree.

h=1/64, N =4x4

PSM Unprec. PSM-D P-FETI-DP

p GMRES Interface GMRES Interface GMRES Interface

it. it. it. it. it. it.

4 28 42 28 25 28 5

5 32 40 32 21 32 5

6 38 38 38 21 38 5

7 41 41 41 22 41 5

Table 5.6: Effect of polynomial degree of the shape function to the total iteration count.

5.5.5 P-FETI-DP robustness with respect to ill-conditioning

In this section, the effect of ill-conditioning to the proposed preconditioner is studied.

Table 5.7, presents the iterations metrics of a unit square domain with different mesh

partitionings ranging from 1/ℎ = 16 to 1/ℎ = 128 and three cases of Poisson’s ratio,

namely 0.3,0.45 and 0.4995. As it can be observed, the non-overlapping model that is used

for preconditioning the solution, is unaffected by the increase of the ill-conditioning of the

resulting stiffness matrices. On the contrary, interface problem iteration metrics increase

with both Poisson’s ratio with mesh partitioning. The P-FETI-DP preconditioner case

exhibits reduced iteration metrics, that validate the robustness of the proposed method

even in extreme ill-conditing cases.
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GMRES with P-FETI-DP preconditioner (N=4x4)

1/h=16 1/h=32 1/h=64 1/h=128

𝜈 GMRES Interface GMRES Interface GMRES Interface GMRES Interface

it. it. it. it. it. it. it. it.

0.3 1 9 2 10 2 11 2 12

0.45 1 14 2 21 2 26 1 35

0.4995 1 20 1 31 1 41 1 45

Table 5.7: Iteration metrics for unit square domain with various mesh partitionings and Poisson’s
ratio, preconditioned with P-FETI-DP.

GMRES with OAS preconditioner (N=4x4)

1/h=16 1/h=32 1/h=64 1/h=128

𝜈 GMRES it. GMRES it. GMRES it. GMRES it.

0.3 22 27 45 99

0.45 22 29 47 106

0.4995 22 30 47 108

Table 5.8: Iteration metrics for unit square domain with various mesh partitionings and Poisson’s
ratio, preconditioned with P-FETI-DP.

To compare the robustness of the P-FETI-DP with OAS 2-level preconditioner, the

same numerical investigation with repsect to ill-conditioning was performed with respect

to ill conditioning. Table 5.8, show the effect of ill conditioning on the performance of

OAS method. As it can be observed, the increase of the Poisson’s ratio has a minor

effect on the iterations of the global problem. Yet, in contrast to the equivalent metrics

of the P-FETI-DP method, a significant increase of the iteration metrics is observed as

the mesh becomes finer, thus rendering OAS 2-level preconditioner less effective with

increasing mesh.
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(a) Iteration metrics.

(b) Wall-clock time metrics.

Figure 5.12: Iteration and wall-clock time metrics of the different preconditioners with increasing
subdomain partitioning. 100K problem size.
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(a) Iteration metrics.

(b) Wall-clock time metrics.

Figure 5.13: Iteration and wall-clock time metrics of the different preconditioners with increasing
subdomain partitioning. 500K problem size.
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(a) Iteration metrics.

(b) Wall-clock time metrics.

Figure 5.14: Iteration and wall-clock time metrics of the different preconditioners with increasing
subdomain partitioning. 1000K problem size.
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6
Isogeometric Kirchhoff-Love shell

formulation for multiscale material

simulations

6.1 Introduction

Thin lightweight structures are often modeled either with the Kirchhoff-Love theory,

in case of thin shells, or with Reissner-Midlin theory, in case of thick shells. Even

though most product belong to thin or very thin shell category, the computational

limitations of thin shell theory when formulated in the framework of the FEM method,

made Reissner-Midlin theory dominant in most FEM codes. This is attributed to the

prerequisite of Kirchhoff-Love shells for a minimum 𝐶1 continuity between adjacent

elements, which classical FEM could not easily provide, thus resulting to non-conforming

meshes. Special care must be taken for thin shell theory in the context of FEM, by

applying non-local formulations, nodal enforcementof the 𝐶1 continuity, or even penalty

method applied to selected material points. On the other hand, IGA, enables for a

straightforward implementation of Kirchhoff-Love theory, as continuity is raised from

typical 𝐶0 to 𝐶𝑝−1, where p being the polynomial degree of the shape functions used.

This Chapter aims to extend existing isogeometric thin shell formulations to incorpo-
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rate constitutive laws generated by a stochastic mutliscale analysis. A nested IGA-FEM

multiscale analysis scheme is proposed, in which IGA is used for the discretization at the

macroscopic level and standard FEM are used for the discretization of the RVEs assigned

at each integration point of the macrostructure. The discretization of the macroscale

structure is performed with T-Splines, which are favored over NURBS, as they allow the

extraction of arbitrarily complex geometries without a laborious pre-processing stage.

6.2 A two-scale nested IGA-FEM formulation

The models considered in the present work are macroscale models of shell structures

consisted in composite materials that contain arbitray inclusions and cavities. These

heterogeneities are located in the microstructure of the material and are thus unde-

tectable at the macroscale level of the model. As a result, the material is considered

to be homogeneous in the macroscale, while highly disparate in its microstructure. To

determine the influene of the material impurities to its actual constitutive relations, a

nested IGA-FEM solution scheme is proposed, which can be split into three discrete

steps as described in Figure 6.1.

In the first step, IGA discretization of the macroscale model takes place, which

is performed using T-Splines as described in Chapter 1 (Figure 6.1a). The Bezier

extraction of the T-Spline model is automatically performed via a CAD tool and resulting

Bezier elements are utilized for the computation of the stiffness matrix. For each mid-

surface integration position (point 𝐴0 in Figure 6.1b), a multitude of through thickness

integration points (points 𝐴𝑖 in Figure 6.1c) are considered, each one corresponding to

the material zone of a subsection in which plane stress conditions are assumed. This

layered representation of the shell’s section enables the modelling of through thickness

material variability.

In the second step, the material constitutive relations are extracted at each material

integration point via stochastic computational homogenization. For each integration

point 𝐴𝑖, a random 3D RVE is generated as a prismatic mesoscale model describing

the local microstructural topology of the material. Arbitrary volumetric inclusions

comprised of either cavities and/or surface/line inclusions are accurately specified.

Three-dimensional elasticity continuum finite elements are used for the discretization of

the matrix, while inclusions are modeled as structural elements such as shells and beams

embedded in the matrix. The random RVE generator is described in detail in Section
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Figure 6.1: Schematic representation of the nested IGA-FEM flow for the analysis of Kirchhoff-Love
shells (a) IGA discretization (b) Shell element discretization (c) Through-thickness discretization at
midsurface point 𝐴0 of a shell element (d) Random RVE of local microstructural material totpology

at thickness integration point 𝐴𝑖.

6.2.4. For the computational homogenizations, the total macroscopic in-plane strains

𝜖𝑀𝛼𝛽 of equation 2.56 at a distance 𝜁 of the mid-surface, are assigned to the corresponding

section integration material point (i.e. point 𝐴𝑖 in Figure 6.1c) represented by a 3D

RVE of the composite material (localization step of Figure 6.1). The in-plane strains 𝜖𝑀𝛼𝛽
are enforced as equivalent displacements to the 3D RVE, following the transformation

described in Section 6.2.2. This way, an RVE microscale boundary value problem is

formulated which computes averaged equivalent material properties, namely the stress

𝜎𝑀
𝛼𝛽 and the corresponding plane stress consitutitve matrix 𝐶𝑀 and returns them back

to the macroscale Gauss Point 𝐴0.

The final step of the two-scale nested scheme integrates through the thickness of the

shell element and computes the stress resultants at the mid-surface point 𝐴0 of the

macroscopic model as well as their sensitivities. A detailed description of this step is

provided in Section 6.2.3. Note that for the purposes of this work a linear response of

the RVE is assumed. However, the proposed scheme can be readily applied to non-linear
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cases in straightforward manner. The steps of the proposed IGA-FEM scheme are

presented in detail in the following Sections.

6.2.1 Microscale boundary value problem

Neglecting inertia forces, we assume that the RVE in Figure 6.1d deforms in a state of

equilibrium [108]:

∇ · 𝜎 = 0 𝑖𝑛 Ω𝑅𝑉 𝐸 (6.1)

One of the basic assumptions of the proposed formulation is that the total strain of

the macro-continuum equals the volume average of the microscopic strain:

𝜖𝑀 =
1

𝑉𝑅𝑉 𝐸

∫︁
Ω𝑅𝑉 𝐸

𝜖𝑚𝑑𝑉 (6.2)

For the case of thin shells, this classic strain averaging condition is translated to an

in-plane constraint only. Accordingly, in the following equation, a circumflex denotes

restriction of the strain tensor to its in-plane coefficients only that are given be equation

2.56and they refer to the covariant basis of the undeformed configuration.

𝜖𝑀 =
1

𝑉𝑅𝑉 𝐸

∫︁
Ω𝑅𝑉 𝐸

𝜖𝑚𝑑𝑉 (6.3)

This condition is met by imposition of appropriate constraints in the 3D RVE boundary

value problem. Specifically, a virtual plane stress element (element ABCD in Figure

6.2a) is embedded at the mid-surface of the RVE as shown in Figure 6.2. Then, in-plane

dispplacements are equal to

𝑢̂𝑚 = 𝜖𝑀X̂𝑚 (6.4)

are prescribed to all perimeter nodes of the virtual element ABCD, while all peripheral

mesh nodes of the 3D RVE are subjected to the same displacementsas their projection

nodes on the perimeter of the virtual element. More specifically, with reference to Figure

6.2, and edge nodal point 𝐿𝑖𝑛 of the RVE with coordinates 𝑋1, 𝑋2, 𝑋3 is prescribed

with the same 𝑢1 and 𝑢2 displacement values , as dictated by eq. 6.4, with those of the

corresponding vertex node 𝑉𝑖 of the virtual element, i.e. with the node having the same
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(a) Boundary conditions applied to the
microstructure boundary value problem

(b) 𝜖11 deformation mode. (c) 𝜖22 deformation mode. (d) 𝜖12 deformation mode.

(e) RVE 𝜖11 deformation
mode.

(f) RVE 𝜖22 deformation
mode.

(g) RVE 𝜖12 deformation
mode.

Figure 6.2: Microstructure boundary value problem on a 3D RVE.

𝑋1, 𝑋2 coordinates.

𝑢𝑒𝑑𝑔𝑒1 (𝑋1, 𝑋2, 𝑋3) = 𝑢̂𝑣𝑒𝑟𝑡𝑒𝑥1 (𝑋1, 𝑋2) (6.5a)

𝑢𝑒𝑑𝑔𝑒2 (𝑋1, 𝑋2, 𝑋3) = 𝑢̂𝑣𝑒𝑟𝑡𝑒𝑥2 (𝑋1, 𝑋2) (6.5b)
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This way, the in-plane enforcd displacements of the virtual element ABCD, make the

3D RVE to deform in a pattern that is consistent to the plane stress conditions. The

basic 3D deformation modes consistent to plane stress 𝜖𝑀11 , 𝜖
𝑀
22 , 𝜖

𝑀
12 are shown in Figure

6.2b-d. As for the out-of-plane strain coefficients 𝜖𝑀33 , there is no need of imposing it

as a aconstraint, since its value results indirectly from the out-of-plane deformation of

the 3D RVE. As a result, out-of-plane shear strains 𝜖𝑀3𝛼 are automatically set to zero.

Special care is taken to constraint the out-of-plane rigid body motions. This is attained

by constraining the displacements of three nodes of the bottom face, that are parallel to

axis 3. Specifically, with reference to Figure 6.2a, vertical displacements of nodes 3,4,7

of the RVE are constrained. This boundary conditions allows the RVE to deform freely

in the in-plane directions, while at the same time eliminating possible out-of-plane rigid

body motions.

The following strain averaging relation concerning the stress holds [108]:

𝜎̂𝑀 =
1

𝑉𝑅𝑉 𝐸

∫︁
Ω𝑅𝑉 𝐸

𝜎̂𝑚𝑑𝑉 =
1

𝑉𝑅𝑉 𝐸

∫︁
𝜕Ω𝑅𝑉 𝐸

𝑠𝑦𝑚[𝑡⊗ 𝑥]𝑑𝐴 (6.6)

where the divergence theorem has been applied and 𝑡 = 𝜎 · 𝑛 is the field of the

developed tractions on the boundary of the RVE. Out of plane traction 𝑡 are identically

equal to zero, as no constraint is enforced in the direction 1 and the plane stress condition

𝜎𝑀
33 = 0 holds. By combination of eqs. 6.2 and 6.6 and taking into account eq. 6.4,

the 3D macroscopic stress power equals to the volume average of the microscopic stress

power.

𝜎𝑀 : 𝜖 =

∫︁
Ω𝑅𝑉 𝐸

1

𝑉𝑅𝑉 𝐸
𝜎𝑚 : 𝜖𝑚𝑑𝑉 (6.7)

This relation satisfies the Hill-Mandel principle of macro-homogeneity [84]. Thsi way,

the macroscopic energetic conjugate strain and stress measures can be replaced by their

averaged microscopic counterparts in the expression of the principle of virtual work at

the macroscale level.

6.2.2 Enforcing plane stress conditions

A standard finite element solution scheme is employed for the boundary value problem of

Figure 6.2, expressed at the microlevel in eq. 6.2. Upon discretization of the displacement
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field 𝑢𝑚 and after constraining the rigid body moves of the 3D RVE model, the remaining

degrees of freedom are partitioned into two categories, the constrained ones enforced by

eq. 6.4 and the internal nodes that are totally free. The constrained nodes, denoted as

e, include the in-plane displacement degrees of freedom of the peripheral nodes of the

RVE and the internal, denotes as p, are the remainder internal nodes.

𝑢 =

[︃
𝑢𝑒

𝑒𝑝

]︃
(6.8)

The same partitioning applies to the internal nodal forces P and the stiffness matrix

K as well:

𝑓 =

[︃
𝑓𝑒

𝑓𝑝

]︃
(6.9a)

𝐾 =

[︃
𝐾𝑒𝑒 𝐾𝑒𝑝

𝐾𝑝𝑒 𝐾𝑝𝑝

]︃
(6.9b)

For a peripheral node q of the RVE, the in-plane displacement vector 𝑢𝑞 is derived

from the corresponding projection of the RVE on ABCD and is given as:

𝑢𝑞 =
[︁
𝑢1 𝑢2

]︁𝑇
= 𝐷𝑇

𝑞 𝜖 (6.10)

where 𝐷𝑞 and 𝜖𝑇 are given as:

𝐷𝑞 :=
1

2

⎡⎢⎣ 2𝑥1 0

0 2𝑥2

𝑥2𝑥1

⎤⎥⎦ (6.11a)

𝜖𝑇 =
[︁
𝜖𝑀11 𝜖𝑀22 2𝜖𝑀12

]︁
(6.11b)

Assembling a global matrix D associated with all peripheral nodes P, the discretized

form of the constraint eq. 6.4 is given as:
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𝑢𝑒 = 𝐷𝑇 𝜖, 𝐷 = [𝐷1, 𝑑2, ..., 𝐷𝑝] (6.12)

Regarding the reaction forces acting on the internal degrees of freedom ”e”, an

appropriate Lagrange multiplier 𝛿 is applied to enforced eq. 6.12. Then the discretized

boundary value problem takes the form of the following algebraic equations:

𝑓𝑒 = 𝛿 (6.13a)

𝑓𝑝 = 0 (6.13b)

𝑢𝑒 −𝐷𝑇 𝜖 = 0 (6.13c)

Upon solution of the micro-level boundary value problem of Figure 6.2, the macroscopic

stress tensor can be calculated for eq.6.6 that takes the discretized form:

𝜎̂ :=
1

|𝑉 |
𝐷𝛿 (6.14)

For an equilibrium state of the microstructure and for an infinitesimal macroscopic

strain increment Δ𝜖, the corresponding increments of the displacements Δ𝑢𝑒,Δ𝑢𝑝,

Lagrange multiplier Δ𝛿 and the total macroscopic strain Δ𝜎̂, is given as follows:

Δ𝑢𝑒 = 𝐷𝑇Δ𝜖 (6.15a)

Δ𝑢𝑝 = −𝐾𝑝𝑝
−1𝐾𝑝𝑒Δ𝑢𝑒 (6.15b)

Δ𝛿 = 𝐾̃𝑒𝑒𝐷
𝑇Δ𝜖 (6.15c)

Δ𝜎̂ :=
1

|𝑉 |
𝐷Δ𝛿 (6.15d)

where 𝐾̃𝑒𝑒 = 𝐾𝑒𝑒 −𝐾𝑒𝑝𝐾𝑝𝑝
−1𝐾𝑝𝑒. Hence the macroscopic moduli are given as:

𝐶 =
1

|𝑉 |
𝐷𝐾̃𝑒𝑒𝐷

𝑇 (6.16)
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6.2.3 Macroscopic shell stiffness matrix

The macroscopic shell stiffness matrix matrix is derived from the principle of virtual

work which can be written as

𝑊 =

∫︁
𝑉
𝜎𝑀 : 𝛿𝜖𝑀𝑑𝑉 =

∫︁
𝑉
𝑓 · 𝛿𝑢𝑀𝑑𝑉 (6.17)

where the virtual displacement 𝛿𝑢𝑀 is in the macroscopic level. The expression of

internal virtual work at the left hand side is further elaborated as:∫︁
𝑉
𝜎𝑀 : 𝛿𝜖𝑀𝑑𝑉 =

∫︁
𝐴
(n : 𝛿𝜖𝑀 +m : 𝛿𝜅𝑀 )𝑑𝐴 (6.18)

where through thickness integration delivers the macroscopic stress resultants as

𝑛𝛼𝛽 =

∫︁ ℎ
2

−ℎ
2

𝜎𝛼𝛽
𝑀 𝑑𝜁𝑚𝛼𝛽 =

∫︁ ℎ
2

−ℎ
2

𝜎𝛼𝛽
𝑀 𝜁𝑑𝜁 (6.19a)

where 𝛼, 𝛽 take the values 1,2. Similar expressions are used for ”thickness integrated”

material matrices [100]. The moduli at each thickness integration point are obtained

directly from eq.6.16 as:

𝐶𝐴 =

∫︁ ℎ
2

−ℎ
2

𝐶𝑑𝜁 (6.20a)

𝐶𝐵 =

∫︁ ℎ
2

−ℎ
2

𝐶𝜁𝑑𝜁 (6.20b)

𝐶𝐷 =

∫︁ ℎ
2

−ℎ
2

𝐶𝜁2𝑑𝜁 (6.20c)

The differentials of membrane forces and bending moments are computed from:

𝑑𝑛𝛼𝛽 = 𝐶𝛼𝛽𝛾𝛿
𝑀𝐴

𝑑𝜖𝛾𝛿 + 𝐶𝛼𝛽𝛾𝛿
𝑀𝐵

𝑑𝜅𝛾𝛿 (6.21a)

𝑑𝑚𝛼𝛽 = 𝐶𝛼𝛽𝛾𝛿
𝑀𝐵

𝑑𝜖𝛾𝛿 + 𝐶𝛼𝛽𝛾𝛿
𝑀𝐷

𝑑𝜅𝛾𝛿 (6.21b)
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Since equilibrium must be met for any variation of the displacement matrices 𝛿𝑢𝑟 it

can be written that

𝛿𝑊 =
𝜕𝑊

𝜕𝑢𝑟
𝛿𝑢𝑟 = 0 (6.22)

This leads to the following internal and external forces:

𝐹 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝑟 =

∫︁
𝐴
(n :

𝜕𝜖𝑀
𝜕𝑢𝑟

+m :
𝜅𝑀
𝜕𝑢𝑟

)𝑑𝐴 (6.23a)

𝐹 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙
𝑟 =

∫︁
𝐴
𝑓 · 𝜕𝑢

𝜕𝑢𝑟
𝑑𝐴 (6.23b)

Subsequently, the stiffness matrix is obtained as:

𝐾𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝑟𝑠 =

∫︁
𝐴
(
𝜕n

𝜕𝑢𝑠
:
𝜕𝜖𝑀
𝜕𝑢𝑟

+
𝜕m

𝜕𝑢𝑠
:
𝜕𝜅𝑀
𝜕𝑢𝑟

)𝑑𝐴 (6.24)

Substitution of eq.6.21 in eq.6.24 yields the final expression for the shell’s macroscopic

stiffness matrix:

𝐾𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝑟𝑠 =

∫︁
𝐴
(C𝑀𝐴

:
𝜕𝜖𝑀
𝜕𝑢𝑠

+C𝑀𝐵
:
𝜕𝜅𝑀
𝜕𝑢𝑠

) :
𝜕𝜖𝑀
𝜕𝑢𝑟

+(C𝑀𝐵
:
𝜕𝜖𝑀
𝜕𝑢𝑠

+C𝑀𝐷
:
𝜕𝜅𝑀
𝜕𝑢𝑠

) :
𝜕𝜅𝑀
𝜕𝑢𝑟

𝑑𝐴

(6.25)

6.2.4 Random RVE generator

As mentioned above, a stochastic RVE generator is developed to account for material

heterogeneities at the mesoscale level of RVEs. The generator is based on two uncertainty

type, namely the inclusion dispersion and orientation inside the matrix as well as their

spatial variability inside the RVE described with a variable volume fraction parameter

[10].
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RVE with embedded inclusions

Given the RVE dimensions, i.e. length 𝐿𝑚𝑎𝑡𝑟𝑖𝑥, width 𝑊𝑚𝑎𝑡𝑟𝑖𝑥 and height 𝐻𝑚𝑎𝑡𝑟𝑖𝑥 and

the type of inclusions, the RVE generator distributes the inclusions in the matrix either

uniformly in a unidirectional pattern (Figure 6.4), or with random orientations (Figure

6.10). The coordinates of an insertion point (Point A in Figure 6.3a) of an inclusion

are randomly generated inside the matrix assuming a uniform distribution described by

the uncorrelated random variables 𝑋𝐴, uniformly distributed in the range [0, 𝐿𝑚𝑎𝑡𝑟𝑖𝑥],

𝑌𝐴 uniformly distributed in the range [0,𝑊𝑚𝑎𝑡𝑟𝑖𝑥] and 𝑍𝐴, uniformly distributed in the

range [0, 𝐻𝑚𝑎𝑡𝑟𝑖𝑥].

To define the orientation of the inclusions, an additional point is inserted (Point B in

Figure 6.3a) defining an additional orientation random variable, namely the Euler angler

𝜑, which for the purposes of this work is also assumed uniformly distributed in [0, 2𝜋].

This angle, together with a fixed length parameter completely define the coordinates of

insertion point B.

The spatial variability of the Volume Fraction (VF) is taken into account by assigning

a different RVE at each integration point of the domain. Specifically, a multitude

of RVEs with varying VFs are constructed and randomly distributed throughout the

macroscopic domain. The spatial varability of the VF used for the construction of the

RVEs at different domain locations is modeled using random fields and simulated via

series expansion of the Karhunen-Loève method [78]

𝑤(x, 𝜃) =
∞∑︁
𝑛=0

√︀
𝜆𝑛𝜉𝑛(𝜃)𝑓𝑛(x) (6.26)

where 𝜉𝑛(𝜃) is a set of uncorrelated Gaussian random variables and 𝜆𝑛 and 𝑓𝑛(x) are

the eigenvalues and eigenvectors of the autocorrelation functions, respectively.

Both the matrix and the inclusions are discretized independently, i.e. without common

nodes. For the purposes of the numerical examples, solid finite elements are used for the

discretization of the RVE matrix, while the inclusions in the form of carbon nanotubes

are discretized with two-noded beam elements. The contribution of each inclusion to the

stiffness of the RVE is calculated via the embedded element technique (Figure 6.3a), in

which the discretized inclusion degrees of freedom are kinematically constrained to the

degrees of freedom of the surrounding matrix. This compatibility between the matrix

and the inclusions degrees of freedom, is demonstrated in the three-dimensional case, by
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utilizing a single spatial beam elements, representing a CNT, embedded in an n-noded

continuum finite element. The degrees of freedom of the CNT element are given by

𝑈𝑏𝑒𝑎𝑚 = {𝑢𝑏1, 𝑢𝑏2, 𝑢𝑏3, ..., 𝑢𝑏12} (6.27)

and the equivalent degrees of freeedom of the continuum finite element by:

𝑈𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 = {𝑢𝑐1, 𝑢𝑐2, 𝑢𝑐3, ..., 𝑢𝑐3𝑛} (6.28)

The kinematic relation between the inclusion degrees of freedom and those of the solid

finite element can be expressed as:

𝑈𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 = [𝑇𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑]𝑈𝑚𝑎𝑡𝑟𝑖𝑥 (6.29)

where T is a compatibility matrix that contains the shape function values at each of

the inclusion nodes, and is given by

[𝑇𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑] =

[︃
T

(1)
𝐴 T

(2)
𝐴 ... T

(𝑛)
𝐴

T
(1)
𝐵 T

(2)
𝐵 ... T

(𝑛)
𝐵

]︃
(6.30)

where A, B denote the initial and final node of the beam element according to Figure

6.3a. T
(𝑗)
𝐾 is a matrix that transforms the translational and rotational degrees of freedom

of a beam element to the translational degrees of freedom of the matrix element, as

follows:

T
(𝑗)
𝐾 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁𝑗(𝜉𝐾 , 𝜂𝐾 , 𝜁𝐾) 0 0

0 𝑁𝑗(𝜉𝐾 , 𝜂𝐾 , 𝜁𝐾) 0

0 0 𝑁𝑗(𝜉𝐾 , 𝜂𝐾 , 𝜁𝐾)

0 −1
2
𝜕𝑁𝑗(𝜉𝐾 ,𝜂𝐾 ,𝜁𝐾)

𝜕𝑧 −1
2
𝜕𝑁𝑗(𝜉𝐾 ,𝜂𝐾 ,𝜁𝐾)

𝜕𝑦

−1
2
𝜕𝑁𝑗(𝜉𝐾 ,𝜂𝐾 ,𝜁𝐾)

𝜕𝑧 0 −1
2
𝜕𝑁𝑗(𝜉𝐾 ,𝜂𝐾 ,𝜁𝐾)

𝜕𝑥

−1
2
𝜕𝑁𝑗(𝜉𝐾 ,𝜂𝐾 ,𝜁𝐾)

𝜕𝑦 −1
2
𝜕𝑁𝑗(𝜉𝐾 ,𝜂𝐾 ,𝜁𝐾)

𝜕𝑥 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.31)

The terms
𝜕𝑁𝑗

𝜕𝑥 ,
𝜕𝑁𝑗

𝜕𝑦 ,
𝜕𝑁𝑗

𝜕𝑧 represent the shape function derivatives, evaluated at the

coordinates 𝜉𝐾 , 𝜂𝐾 , 𝜁𝐾 of the beam node at the local coordinate system of the solid

element. As a result, the stiffness contribution of the inclusion to the matrix is given as

follows:
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(a) Schematic representation of the arbitrary
inclusions discretized with beam elements,

embedded in a 3D matrix, discretized with solid
continuum finite elements.

(b) Schematic representation of metamaterial
microstructure in 2D and 3D and its

decomposition into 3D RVEs.

Figure 6.3: Examples of 3D RVEs.

𝐾𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 = 𝑇 𝑇
𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 ·𝐾𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 · 𝑇𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 (6.32)

The final stiffness matrix of the RVE is calculated as the sum of the contributions of

the continuum finite elements and the equivalent contributions of the beam elements

transformed to the nodal degrees of freedom of their host elements with the aid of eq.

6.32. The use of the embedded FEM technique [127] allows for the use of relatively coarse

and simple meshes, with respect to a standard FEM discretization. A standard FEM

discretization would require fully conforming meshes in the matrix-inclusion interphases

that would lead to complicated and laborious preprocessing of the RVE FEM models.

This is avoided in the present work with the use of the embedded FEM technique. As

a result, the proposed discretization procedure reduces significantly the computational

cost for the solution of the RVE.
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Metamaterial RVEs

Another typical material microstructure used in advanced composites is the metamaterial

illustrated in Figure 6.3b. A metamaterial is created as a combination of a matrix with

volumetric inclusions of different material properties or cavities. The volumetric nature

of these inclusions does not allow their modelling as beams or shell elements. As a result,

both the matrix and the inclusion are discretized with 3D continuum finite elements,

ensuring that the mesh at the boundary between them is conforming. This might lead to

increased RVE mesh size compared to the embedded inclusions presented in the previous

section., yet it is inevitable in case of complex inclusion geometries. Since these materials

do not exist in nature and are manufactured, they are commonly placed in a periodic

lattice as Figure 6.3b illustrates. A single periodic portion of the lattice is extracted

(Figure 6.3b) and serves as the RVE geometry to be used throughout the model. The

stochasticity for this RVE case is introduced as the variability of the material properties

of the matrix or the incorporated inclusions. Similar to the embedded inclusions case,

the spatial variability of the material properties is dictated by the Karhunen-Loève

method as provided in eq. 6.26.

6.3 Numerical results

This section provides benchmark examples that demonstrate the merits of the proposed

computational methodology. The first example verifies the accuracy of the imposed

plane stress conditions as described in Section6.2.2, followed by two real-scale examples

that demonstrate the applicability of the proposed approach of integrating isogeometric

T-Splines discretization of Kirchhoff-Love shells with stochastic multiscale analysis of

composite materials. The second benchmark example illustrates the performance of the

proposed methodology applied to a cylindrical shell composed of a metamaterial, while

the third example deals with the analysis of a real-scale car bumper made of polymer

reinforced with stochastically distributed Carbon Nanotube (CNT) inclusions.

All modules of isogeometric analysis, multiscale analysis and stochastic analysis were

developed and integrated in the open-source computational mechanics software platform

MSolve [MSo] with HPC capcabilities.
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6.3.1 Verification of homogenization procedure for plane stress

conditions

This benchmark test is used as a proof of concept of the proposed computational

procedure described in Section 6.2.2 for extracting the plane stress constitutitve law from

the analysis of a three-dimensional microstructure. For a Young’s modulus E=4GPa and

Poisson’s ratio 𝜈 = 0.4, the theoretic isotropic plane stress elasticity matrix is calculated

as:

C =
𝐸

1− 𝜈2

⎡⎢⎣1 𝜈 0

𝜈 1 0

0 0 1− 𝜈

⎤⎥⎦ =

⎡⎢⎣4.762 1.905 0

1.905 4.762 0

0 0 1.429

⎤⎥⎦ (6.33)

The same material properties are used for the computation of the constitutive matrix

C′ via the homogenization procedure implementing the plane stress extraction described

in Section 6.2.2. To this purpose, a cubic RVE of 100nm edge is considered, and

discretized with a mesh 10x10x10 hexahedral finite elements. The difference ΔC between

this calculation and the theoretic matrix of eq. 6.33 is computed at:

ΔC = C−C′ =

⎡⎢⎣ 0.0 −9.992𝐸 − 15 −9.60𝐸 − 16

−9.992𝐸 − 15 0.0 −2.20𝐸 − 16

−7.08𝐸 − 16 −3.37𝐸 − 16 0.0

⎤⎥⎦ (6.34)

The comparison of the constitutive matrix components in eq. 6.34 illustrates the

accuracy of the proposed plane stress constraint procedure. It can be seen that the non-

zero values of both matrices coincide, while the zero terms of the isotropic plane stress

elastiity matrix are computed close to zero within the computer accuracy. This indicates

that the extraction of the constitutive matrix from the homogenization procedure

described in Section 6.2.2 provides accurate results compared to the analytical formula

of plane stress costitutive matrix.

To test the performance of the proposed procedure for an anisotropic material, two

composite RVE cases are examined with a matrix of the same material as before reinforced

with CNTs of different volume fractions. The CNTs are modelled as embedded beam

elements assuming fully bonded interfacial conditions [137], with properties listed in Table

6.1. The finite element model is created using the random RVE generator described in

Section 6.2.4 for 200 and 800 emdedded CNTs respectively. A unidirectional orientation
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EBE proporties for CNT(8,8)

CNT diameter 1.06 nm

CNT thickness 0.34 nm

Bending inertia X,Y 100.18 𝑛𝑚4

Torsional constant 68.77 𝑛𝑚4

Young’s Modulus 4 GPa

Poisson’s ratio 0.4

Table 6.1: CNT Properties.

of CNTs is considered with the principal direction being the axis X, as illustrated in

Figure 6.4

Figure 6.4: Representative volume elements with embedded CNTs a) 2.5% embedded CNTs volume
fraction b)10% embedded CNTs volume fraction.

The length of the CNTs is considered to be 100 nm while its position in the YZ plane

is given by two uncorrelated uniform variables fro coordinates 𝑌𝐴 and 𝑍𝐴, as described

in Section 6.2.4.
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C𝑅𝑉 𝐸𝑎 =

⎡⎢⎣ 18.328 1.905 −9.09𝐸 − 18

1.905 4.762 5.80𝐸 − 16

4.57𝐸 − 16 −5.01𝐸 − 16 1.429

⎤⎥⎦ (6.35a)

C𝑅𝑉 𝐸𝑏
=

⎡⎢⎣ 58.554 1.905 6.47𝐸 − 16

1.905 4.762 −3.18𝐸 − 17

9.68𝐸 − 17 1.15𝐸 − 15 1.429

⎤⎥⎦ (6.35b)

The computed constitutive matrices for the two RVE case are preseneted in eq. 6.35.

In comparison with the constitutive matrix of eq. 6.33, the reinforced RVE matrices

provide a notable increase of stiffness in the X direction. Specifically, the principal

component of axis X for the RVE reinforced with 2.5% VF of CNTs, is increased by

385% compared to the isotropic case, while for the 10% VF case an increase of 1230%

is observed, thus making apparent the contribution of the reinforcing material in its

mechanical performance. In both case, the zero terms of the isotropic elasticity matrix

are close to zero within computer accuracy and thus the extracted constitutive matrices

are in agreement with the plane stress matrix.

6.3.2 Cylindrical shell

The second example is the benchmark example of the cylindrical shell shown in Figure

6.5a. Its cross-section is a circular arc of 25 meters with its angle being 40𝑜. The

thickness of the shell is 0.25m and the total length of the structure is 50 m. The shell is

subjected to a gravitational load of magnitude 𝑓0 = 90𝑁/𝑚2 per unit surface [119, 164].

The boundary conditions of the structure are the following: translational degrees of

freedom per axis X and Z are constrained in edge AB and CD.

The material considered in this example is the metamaterial of Figure 6.5b with

periodic void. A unit cell of 100x100x100 nm with a void of 50x50x50nm is used to

construct the 3D RVE for this case. The modulus of elasticity of the RVE material

is considered to be a random variable assumed to follow the lognormal distribution

with mean value E=4 GPa and standard deviation 0.5 GPa. Two spatial correlation

cases were considered. In the first case, a through thickness variation of the modulus of

elasticity was considered in addition to the surface variability. The modulus of elasticity
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(a) Geometry of the shell example.

(b) Geometry of
the metamaterial
used as an RVE

Figure 6.5: Geometries of the cylindrical shell example.

in this case is described as a white noise random field, according to eq. 6.26.

20.000 Monte Carlo simulations of the stochastic cylindrical shell are performed for each

spatial variability case. Figure 6.6a, displays the histogram of the vertical displacements

of monitor node in the middle of the edge BC for the first spatial variability case. As can

be seen, the results follow a near-to normal distribution, with mean value of -0.038762m

and a standard deviation of 1.3428e-04m. In the white noise spatial variability case the

histogram of displacements versus probability is displayed in Figure 6.6b, where the

mean value of the results is -0.0791m and their standard deviation 0.0233m.

Inspection of these results immediately indicates the importance of the multiscale

modelling proposed in this study. Considering a constant material for the macroscale

model, gives a standard deviation of the displacements equivalent to 30%, i.e. COV=0.3

of the resulting mean value, while in the white noise case the COV reduces to 0.18. In

addition, the shapes of the distributions differ significantly with the first (Figure 6.6a)

being near to Gaussian and the second being near to lognormal, thus in alignment to
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Figure 6.6: Histograms for the vertical displacements of monitor Control Point C.

the input random variables.

6.3.3 Car composite bumper example

The next example is a real-scale model of a car bumper illustrated in Figure 6.7. The

model is retrieved from [Tur]. Utilizing T-Spline plugin for Rhino [165],the CAD surface

is transformed to T-Splines surface. By extracting a Bezier mesh, an analysis of the

bumper is performed in MSolve platform [MSo]. Details of the bumper boundary

conditions and 6.7a and Table 6.2, respectively. A front view of the bumper is given in

Figure 6.7. The right edge of the bumper is considered clamped, while loading of 100

KN is applied at the Control Points of the left edge. The deformed bumper configuration

is given in Figure 6.7b for an isotropic material with E=4 GPa modulus of elasticity and

Poisson’s ratio 𝜈 = 0.4.

Assuming that the bumper is made of a polymer matrix reinforced with CNTs, the

multiscale analysis described in the previous section is applied. In this context, a

cubic RVE with dimensions of 100x100x100 nm is constructed using the RVE generator

of Section 6.2.4. The RVE is comprised of a poly-ether-ether-ketone (PEEK) [109]

matrix with Young’s modulus E=4 GPa and Poisson’s ratio 𝜈 = 0.4. The matrix is

reinforced with (8,8) armchair CNTs that are modelled as beam elements [137](Figure

6.8) embedded in the surrounding matrix assuming fully bonded interfacial conditions,

as described in Section 6.2.4.

Both matrix and CNTs are considered linear elastic. The matrix is discretized

with 1000 hexahedral elements, while the CNTs are modelled utilizing Equivalent
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(a) Car bumper boundary conditions.

(b) Car bumper deformed configuration for unreinforced polymer
material.

Figure 6.7: Histograms for the vertical displacements of monitor Control Point C.

Beam Elements (EBE). The EBEs are extracted from detailed Molecular Structural

Mechanics (MSM) models of the CNTs [137]. As shown in Figure 6.8, a CNT portion is

modelled as a space frame lattice according to the MSM formulation and then projected

to an equivalent surrogate beam model with much lower degrees of freedom. The full

CNT is then modeleed as a series of EBE elements. Table 6.1 presents the mechanical

properties of the EBEs that are extracted with the MSM approach for a CNT (8,8). A

detailed description of this surrogate modelling procedure can be found in [137, 157].

Since nanotubes are in theory indefinately long cylinders organized in hexagonal lattice

form, the notation (m,n) serves to define the atoms positioning on the circumference of

the nanotube. In literature, the term (m,m) refers to armchair type nanotubes, whose

paths are defined by two consecutive 60𝑜 left turns, followed by two 60𝑜 right turns

repeated every four steps. Figure 6.9 provides an example of a graphene sheet that will

serve as the cylindrical development of a CNT. The vectors 𝑐1, 𝑐2 depicted are considered

the unit vectors based on a unit cell hexagon of the lattice. By combining m unit cells

along 𝑐1 direction and n along 𝑐2 direction a (m,n) type nanotube is generated.
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Model

Control Points 23312

Bezier Elements 24664

Degrees of freedom 69936

Table 6.2: Details of the T-Spline model discretization.

Figure 6.8: Schematic CNT representation a) MSM model of the CNT b) Beam element with
equivalent propoerties to the detailed CNT model

A sensitivity analysis is initially performed to determine the sensitivity of the bumpers

response to the CNTs VF. To this purpose, 10 RVEs are constructed with varying

VFs in the range between 2.5-10%. The RVE matrix geometry is considered constant

throughout the structure, while the CNTs are placed unidirectionally parallel to the X

axis of the mesoscale model (see Figure 6.4) in the first subcase and randomly oriented

in the second subcase (see Figure 6.10). The longitudinal direction coincides with 𝑎1

local element axis as shown in Figure 6.1. Their position in the YZ plane is determined

by the random RVE generator as described in section 6.2.4, with the coordinates 𝑌𝐴 and

𝑍𝐴 modeled with two uniformly distributed and uncorrelated random variables as

𝑌𝐴 ∼ 𝑈(0, 100𝑛𝑚) (6.36a)

𝑍𝐴 ∼ 𝑈(0, 100𝑛𝑚) (6.36b)

Figure 6.11, presents the results of the aforementioned sensititvity analysis. The

horizontal axis represents the VF of the inclusions, while the vertical provides a measure

of the stiffness increase of the structure expressed as a normalized displacement. This

displacement is defined as the ratio of the maximum bumper displacement of the CNT

reinforced bumper to the maximum displacement for the unreinforced bumper, at the

same monitoring degree of freedom:
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Figure 6.9: Graphene sheet honeycomb structure.

𝑈(%) =
𝑈𝐶𝑁𝑇𝑚𝑎𝑥

𝑈𝑀𝑎𝑡𝑟𝑖𝑥𝑚𝑎𝑥

(6.37)

As observed in Figure 6.37, the minimum volume fraction of 2.5% results in a maximum

displacement U 0.55, that is approximately 55% of the corresponding displacement of

the bumper with neat PEEK material. This reduction can reach a maximum U=30% in

the case of 10% CNT volume fraction randomly dispersed in the matrix, revealing a70%

stiffness increase of the bumper. In addition, it can be observed that the variation of

U as a function of the weight fraction is nonlinear reaching towards a plateau beyond

which the increase of stiffness for weight fractions larger than 10% becomes negligible.

Inspection of the curves for longitudinal and randomly oriented CNTs presented in Figure

6.11, immediately emphasizes the importance of the proposed material microstructure

modelling in revealing the sensitivity of the macroscale response to microstructural

parameters. A significant stiffness increase is observed for the case of longitudinal

CNTs. For example, for a stiffness increase of 50% with respect to the unreinforced

material illustrated with a dashed line in Figure 6.11, a 3% VF of longitudinal CNTs

is required, while the same increase is achieved with a 7% VF of randomly oriented

CNTs This indicates that the CNT inclusions of a polymer matrix can be reduced up to

57% while meeting the desired stiffness requirements. In a similar fashion, for a given

CNT VF of 4.3%, a 58% stiffness increase is observed for the case of longitudinal CNTs
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(a) Volume fraction 3.5% (b) Volume fraction 6%

Figure 6.10: Randomly distributed CNTs.

compared to 40% in case of the random oriented CNTs, as indicated by the dotted lines

of Figure 6.11. This translates to a 31% deviation between the two cases, showcasing

the importance of the detailed microstructure modelling. As a result, it is observed that

the proposed nested IGA-FEM scheme, can quantitatively assess the influence of the

material micrstructure to the final structural response, while at the same time providing

crucial insight for the design of advanced composite materials.

The random RVE generator is utilized next, to introduce spatial and through thickness

variability to the RVEs. Four cases for the reinforcement of the bumper are examined.

In the first two cases, unidirectional CNTs are assummed parallel to the axis X of

the mesoscale model(Figure 6.4), uniformly distributed inside the matrix according

to eq. 6.36. For the latter two cases, the embedded CNTs have random orientations

(Figure 6.10) given by eq. 6.26. In both cases, a Gaussian band limited white noise is

assumed for the generation of a 3D random field, with two VF subcases of 3.5% and 6%

respectively and a coefficient of variation of 1%. Table6.3, contains the results generated

by 2.500 Monte Carlo simulations for each of the cases described above, while Figure 6.12

presents their respective histograms.Comparing unidirectional and randomly oriented
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Figure 6.11: Impact of CNT volume fraction to the maximum deflection of the car bumper

CNTs for their two equivalent volume fraction cases, it can be observed that the random

orientation of the CNTs has more impact on the performance of the bumper as indicated

by the maximum displacement ratio which is significantly lower for the case of randomly

oriented CNTs. Specifically, for the 3.5% volume fraction the mean ratio of 50% stiffness

augmentation for the aligned CNTs is reduced to 35% for the randomly oriented and

similarly for the 6% volume fraction case, the 60% stiffness increase is reduced to 46%. In

both cases the impact of random orientation gives a compelling 25-30% reduced stiffness

compared to the corresponding unidirectional positioning of the inclusions. From Figure

6.11 it can be seen that the stiffness of the nanocomposites exhibits a significant increase

for CNT volume fractions ranging between 2.5-9%. In addition, the rate of the stiffness

increase is slowing down for higher CNT volume fraction exhibiting a plateau behavior

in which the stiffness increase becomes insignificant.

As in the previous example, inspection of the results immediately indicates the

importance of the detailed multiscale modelling proposed in this study. As indicated in

the examples considered, the modelling of the micromechanics can severely affect the

constitutive response of the material, therefore the accurate description of the materials

microstructure, as addressed by the proposed approach, becomes crucial. The inclusion’s
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% Reduction Lognitudinal Lognitudinal Random
orientation

Random
orientation

CNTs 3.5%
VF

CNTs 6%
VF

CNTs 3.5%
VF

CNTs 6%
VF

Mean value 50.98% 60.53% 35.16% 46.44%

Standard
Deviation

7.36% 3.55% 7.58% 7.04%

Table 6.3: Results for two volume fraction cases, for longitudinal and randomly oriented CNTs

volume fraction effect on the final material performance follows a non-linear law (Figure

6.11), while the randomness of the inclusion directionality can reduce the overall material

performance up to 30%. The sensitivity of material and structural performance to

the parameters assumed for the micromechanics modelling emphasizes the necessity of

utilizing approaches like the one proposed in this work, for the accurate modeling of

shell composites.

6.3.4 Parallel computer implementation

Since both the nested IGA-FEM semi-concurrent multiscale analysis and the Monte

Carlo simulations require extensive computational workload, the developed code is

parallelized with the aid the High performance computing (HPC) oriented platform

MSolve[MSo] which implements the Task Parallel Library (TPL)[110] and MPI.NET

[Mpi] ,which are the equivalents to the OpenMP[52] and MPI[White] frameworks for the

C# programming language. The parallelization procedure is illustrated schematically

in Figure 6.13 and is performed in two phases. Phase 1 includes the generation of the

random RVE geometries, of multitude n for each macroscale model and the off-line

computation of their equivalent properties. In this phase each computing node of the

MPI environment is assigned to a number of RVE geometries. This number is equal

to the independent integration points of the macroscale model. Then, finite element

analyses are performed independently for each RVE utilizing the cores of the computing

node in a shared memory computing environment. As a result, a collection of constitutive

responses, linked to a specific RVE is created in each MPI node.
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(a) Unidirectional CNTs with 3.5% mean
volume fraction

(b) Unidirectional CNTs with 6% mean volume
fraction

(c) Random oriented CNTs with 3.5% mean
volume fraction

(d) Random oriented CNTs with 6% mean
volume fraction

Figure 6.12: Histogram for the displacement reduction vs its probability of occurence.

Figure 6.13: Schematic representation of parallelization strategy
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Following the generation of the required multitude of RVEs, a second parallelization

phase (Phase 2) is implemented for the Monte Carlo simulations of m macroscale models.

In this Phase a different mesoscale RVE model is assigned to each of the thickness

integration points for each macroscale model generated by MCS and the corresponding

constitutive matrix is retrieved from the formerly generated collection without additional

calculation. The FEM analyses of the macroscale models are also independent and are

performed in an embarrassingly parallel way as well. Specifically, each MPI computing

node is assigned to macroscale models in which their corresponding RVEs are already

computed in the node. As a result, there is no need for communication between the

nodes to retrieve RVE data, thus maximizing the parallelization performance.

Analysis
time

Degrees of
freedom

Monte
Carlo

Sequential
time

Parallel
(6 cores)

Parallel
(36 cores)

Simulations time time

Cylindrical
shell

1.083 20.000 363min 64min 11min

Bumper 69.936 2.500 6.325min 1.351min 226min

Table 6.4: Comparison of sequential and parallel stochastic analysis times.

Table 6.4 shows the discretized degrees of freedom of the macroscale level shell models,

the number of Monte Carlo simulations and the corresponding computing times required

for examples 2 and 3 in both sequential and parallel computing implementations. The

CPU used in in the single CPU case is an i7-980x with 6 cores. Specifically, the sequential

time of 363 minutes is reduced to 96 minutes resulting in a speedup of 5.67 times, in

the case of 20.000 Monte Carlo simulations of the cylindrical shell. Similarly, for 2.500

simulations of the CNT reinforced bumper, the sequential time is 6.325 minutes is reduced

in the parallel implementation to 2.027 minutes resulting in a 4.68 times speedup. It

is observed that for the bumper model the speedup is reduced compared to the linear

speed up of the cylindrical shell example. This is attributed to the increased memory

requirements of the bumper model, that do not allow for the full utilization of the CPU

cores. In order to study the scalability of the proposed parallel implementation, both

examples are computed on a cluster consisting of 6 computing nodes, containing a 6

core i7-980x processor each. For the cylindrical shell test case, the sequential time of

363 minutes is further reduced to 11 minutes thus achieving a 33 times faster execution.
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Similarly, for the car bumper case, the sequential time of 6.325 minutes is reduced to

226 minutes achieving a 28 times faster execution of the MCS simulations. It is observed

that in both the single node and multi-node cases the parallelization scheme yields a

close to linear speedup and thus significantly reduces the required execution time to

tractable computational timeframes.
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7
Summary - Innovation of thesis

This thesis presented a numerical framework that addresses the efficient implementation

of isogeometric method in real-scale mechanical applications. With the main focus

being on the introduction of efficient solution schemes, existing state-of-the-art solution

schemes were investigated and efficient alternatives were introduced that alleviate the

computational cost for the solution of the resulting linear systems in both symmetric

and non-symmetric cases.

Specifically, a family of solution algorithms was proposed for the purposes of isogeomet-

ric Galerkin methods that exploit the advantages of an iterative solution scheme coupled

with domain decomposition methods. Due to the enhanced continuity introduced by

CAD shape functions, a considerable increase in the bandwidth and population of the

resulting matrices is observed. This introduced a significant computational overhead

to existing DDM. Especially, in the case of isogeometric tearing and interconnecting

method (IETI), its main deficit is that the subdivisioning is geometry dependent, thus

producing patches of irregular shape and size. Hence, IETI is rendered inefficient in

terms of performance, as load balancing is impaired due to the irregularities of the

patches. To address these shortcomings, two IETI variants are examined in this work,

namely multi-patch IETI, called IETI-P and overlapping IETI, called IETI-O and a

non-overlapping version PCG-IETI-N, where in all cases subdivisioning is independent of

the patch structure, thus enabling large-scale computations. IETI-P version is basically
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the IETI method, with the introduction of an appropriate number of patches that

ensure proper load balancing of the resulting subdomains. IETI-O on the other hand

proposes a way to subdivide the model, without requiring the subdomains to match

the patches, at the expense of up 40% larger interface problems. This has a negative

effect on the solution performance, yet exhibits improved performance when compared

to IETI-P. Finally, the PCG-IETI-N method, exploits a non-overlapping decomposition

of the domain in order to introduce a strong and scalable preconditioner for the PCG

iterative solution scheme. This is attained by introducing a proper non-overlapping

decomposition of the domain in the form of truncated shape functions. The process of

shape function truncation introduces a non-overlapping version of the model, that has

identical geometry and features yet properly induced discontinuities. For the solution

of the interface problem among the non-overlapping subdomains, the IETI method is

utilized. Numerical results indicate improvements in terms of both CPU time as well as

iterations, rendering PCG-IETI-N method up to 2,4 times faster compared to its IETI

counterpart. These improvements are expected to be more pronounced as the model

gets larger.

In a similar fashion, the solution of linear systems stemming from isogeometric

collocation problems is addressed. Existing solution schemes are limited to overlapping

implementations of DDM that automatically rendered the solution inefficient due to the

increased interface problem. At the same time, dual domain decomposition schemes such

as IETI method cannot be applied to isogeometric collocations methods, as the duality

of the unknown fields is no longer valid due to the non-symmetric nature of the resulting

matrices. In order to alleviate the aforementioned deficiencies, a non-overlapping domain

decomposition method was introduced as an efficient and scalable preconditioner to

the GMRES solver. This was achieved by a partitioning of the initial stiffness matrix

into multiple subdomains. Compared to its overlapping competitors and namely the

overlapping Additive Schwarz method, the proposed solution scheme indicated superior

performance in terms of both iteration count and CPU time with an up to 5x times

faster execution being attained.

Finally, the efficient implementation of isogeometric shells structures is addressed under

the prism of semi-concurrent multiscale material modelling. Existing isogeometric thin

shell formulations, employing Kirchhoff-Love shell theory, are extended to incorporate

detailed modelling of advanced composites. A nested IGA-FEM multiscale analysis

scheme is proposed, in which IGA is used for the discretization of the macroscopic level
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and FEM for the discretization of the corresponding RVE. As a result, the plane stress

material required for the integration of the shell stiffness is derived via a computational

homogenization procedure, thus taking into account the microstructural material topology.

Numerical results, showcase the effect of detailed material modeling to the overall

mechanical performance of the shell structure, as well as the applicability of the proposed

formulation to real life applications
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[73] Feng, Y., Owen, D., & Perić, D. (1995). A block conjugate gradient method

applied to linear systems with multiple right-hand sides. Computer Methods in

Applied Mechanics and Engineering, 127(1), 203 – 215.

[74] Ferguson, J. (1964). Multivariable curve interpolation. J. ACM, 11(2), 221–228.

[75] Forrest, A. (1990). Interactive interpolation and approximation by bézier polyno-
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