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Modelling of structures using the Isogeometric Method

ABSTRACT

Isogeometric Analysis was proposed as an alternative spatial discretization method,
that addresses the need for an integrated pipeline of Computer Aided Design and Com-
puter Aided Engineering industries, towards the development of efficient and reliable
structures. To this end, CAD shape functions ranging from Bézier to T-Splines are
utilized, that allow the exact geometrical representation of arbitrarily complex geome-
tries, while at the same time rendering the mesh generation procedure of other spatial
discretization techniques such as FEM obsolete. Due to the high smoothness of the
shape functions over conventional approaches, IGA has showcased significant advantages
in various computational mechanics fields such as structural dynamics, fluid mechanics
and optimization problems. In addition, the description of intricate geometries with
highly continuous shape functions, enables IGA to be effectively used for shell theories
such as Kirchhoff-Love thin shells, that required special treatment in the case of FEM.
The latter resulted in the introduction of various shell formulations, for miscellaneous
materials. Unfortunately, the strongest asset of isogeometric methods, which is the
increased interelement continuity of the shape functions, constitutes at the same time its
greatest weakness. Despite resulting in a smooth variation of the analysis characteristics
and enhanced accuracy, a significant computational burden is added to the formation
and solution of the resulting linear systems due to their increased bandwidth and reduced
sparsity patterns. This rendering the introduction of efficient solution schemes a necessity
for the establishment of isogeometric methods.

To this end, this dissertation introduces a family of methods, to address the efficient
implementation of solution schemes for the purpose of isogeometric Galerkin and colloca-
tion methods. Specifically, for the case of isogeometric Galerkin method, an appropriate
modification of the overlapping nature of NURBS shape functions is introduced, in
the form of truncated shape functions. This modification generates a non-overlapping
equivalent of the initial model that retains the same geometry, yet has reduced accuracy.
As a result,with the aid of IETI domain decomposition method, applied to the inter-
face among adjacent subdomains, the non-overlapping model can serve as an efficient
preconditioner for the PCG iterative method. In a similar fashion, a non-overlapping
decomposition of the non-symmetric matrices derived from isogeometric collocation
methods is proposed, that allows the development of a GMRES preconditioner based on
P-FETI-DP domain decomposition method. Finally, in order to unify all existing thin
shell isogeometric formulations, a framework is proposed that examines isogeometric



shells under the prism of semi-concurrent multiscale analysis. To this end, a nested
IGA-FEM analysis scheme is introduced, where macroscale shell modeling is performed
with isogeometric Kirchhoff-Love shell elements, while Representative Volume Elements
are discretized with solid finite elements. The required plane-stress constitutive law is
then extracted from a homogenization process, thus leading to the introduction of a
framework that can efficiently address composite materials of arbitrary microstructural
topology.
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Koiptog ox0m6¢ 1wV unohoylo Xy Yedodwy eivol PEAETT Xal 1) EQUNVELL TWYV QUOLXMY
QUVOUEVLY Péow TNg uadnuatixic Toug poviehonolong. H dadixacio auth ouyvd odnyet
OTN UETAPEACT] EVOS (GUOLXOL PUVOUEVOL OE GRPOUG UEPIXMY DIAPopXDY EELIOWOEWY, 1 Ahom
TwV onolwy avalnteltal and godnpatixolg xo emto thdoves. H ebpeorn avalutindic Aong oc
aUTS Tot TPOBARUATY BEV ELVOL TAVTA EQPLXTY] YEYOVOS TOU 00HYNOE TOUC EMOTHUOVES OTNV O-
VATTUE Y UTOAOYLO TIXWY UeVODwY. Mia and Tic TAéov Bladedopéveg UTOAOYLO TixéC UeVddoUg
elvon outh| v Ienepacuéveoy Lrtotyelwv, n onola Stoxpitonolel Tov Qopéa xot TPOGQEREL
Qo TpooeY Yo T Abom T1g Stapopxnic e&lowang o€ éva tenepaogévo TAHYOC GNUEIWY TOU.
Kébwe ouwe 1 ToAumAoxOTHTa TV PopEny Tpog emiAuoT auddvet, dnpiovpyeltal 1 ovayxy

WAC 0 TEVOTERNE OUVDEOTC NG AVAALOTNS UE T1) O)EDINOT TOU TEOCOUOLBUATOC.

H oyedioon ye ) BoRdeia unoroyioth (Computer Aided Design) eivou 1o emotnuovixd
nedio mou €yel wg Pacixd atdyo TN Sleuxdiuvon g Sadtxaciag dnuoveYlac AETTOUERGOY
oyedlwV, EXUETAMAEVOUEVT TNV TEYVOROYIXY TPG0D0 TV UTOAOYISTOY. Mo amd Tic TpdTES
OUVEIOQOREC 0E auTd To avTxelyevo mpotdinxe and Tov Ferguson coav wo e&éhin tov
TOANWVUILXGY xopuruAoy. Ot xopndieg Ferguson anoteholv wia edixt| xotnyopios tohuw-
VUIXGV XaunuAoY Teitou Badupol, ot onoleg unokoyilovton dedouévne tne Yéong xou tng
EQATTOUEVNS TNG XouTOANG, O0To apyixd xar tehxd tng onuelo. H yevixevon tng npdto-
ong authc Yo onotodNRoTE TOALWVLULXG Padud, odriynoe oty dnuoupyio TV XoUTUAGDY
Hermite, 6nou yio tov 10 unoloytopd piog xaundine oduod (2k + 1), yenowroobvo k
Tiég oe xde dxpo tne. Iapd tne cagr Toug wodnuaTiXy AVaTaEdo TAGT], Ol TOAUWVUIIXES
U mOAES ey xataheipinxay voplc and ) oyediao T xoWoTNTA Aol deV VEWEOUVTAL TRo-
xTXES YL Toug oxomolg Tng oyediaong. To yeyovog autd autd ogelietar oty padnuotixy
PUON TWV VPO TAUEVELY aAyopluwy Yia TOV UTOAOYIOWS TOug, ot onolol ennpedlovTat o1-
HOVTIXE OO GQANLATA ATOXOTNG, EOXA O UXPUIES TWES TWV TOAUWVUIXDY CUVTEAEG TOV.
Me oxoné va auBAGYOUV TO THATAVE UEIOVEX TN TV TOAUMYUIXOY XAUTUAGY, TeoTddn-
xav ot xaunOiec Bézier, ot onolec Yewpolvtar 16000VaUES UE TIC TOAUGVUUIXEC XopTOAES

oAAG avTipeTwnilouvy o yetovexthpata Toug. ITAedy 1o oyfipa tne xaunOAng e€aptdtar povo
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and ta onueio ehéyyou (control points), to onola eivon onueia oTov xapTEGLAVS THIOOEO TUTO
xweo. H alhayn auth ot diadixacio oyedlaong tng npoadidet dueso Quond vonua, eve ot
petaBoréc otny xopmiAn vlomololvTo euxoldtepa. Emnpboveta, o aprduds twv onpeiny
ehéyyou i TN Snutovpyia wac xopniing Bézier ouvdéeton dueca ye Tov TOALLYLUIXG TNG
Bodpd xou odnyel ot dnwovpyio XoPTUAGY Ue aLENUEVN opahoTNTa. AucTuY®OS, AUTH TO
TAEOVEXTIUA TwV Xounuh@v Bézier, anotehel tautdypova xou 10 UeYaAdTERO UEIOVEXTNUA
T0Ug, XOC N CLVEYOUEVY alENoT TOu TOALWYLULIXOL Baduol dnuovpyel actdleles TV
ahyopliuwy, eV 1) enippor) xdde onuelou EAEYYOU O OAOXANEO TO WHXOS TNG XUUTUANG, Bu-
oyoueévet TNV TunpaTixy adhhary ) . Lo 1o Adyo autd, eworjydnoav ot B-Splines, ot onoleg
amoTEAOUY Uiol YEVIXEUOT TV xaunuhey Bézier evoc nopapyetpinol Siao THUATOC o€ TEpLo-
ootepa. H enéxtaon aut aneuniéxel Tov aptdud 1oV onueiwy eAEYYOU and TOV TOAUWVLUL-
%6 Badud tne xaumOANC xan Biver TN SuvatéTTA 6TOUG OYEBUO TEC VoL EAEYEOUY UEPOVOUEVA
TwAuata TS xopmiAng, eved 1 etoaywyh xépfov (knots) enttpénel andtopec ahhayéc ot
ouvvéyewa g vewpetplag. Iap” dha autd, 1 aduvauio tne teyvohoyiag twv B-Splines va
AVATUPAC THOEL TO GUVOLO TV XWVIXMY TOUDY, OO YNOE GTNY OVAYXY] OVATTUENS oS VES
teyvohoyiag oyediaong mou Yo Abver 1o ouyxexpuévo mpofBinua. ‘Etol dnwovpyhinxay ot
NURBS. H Swgpopd toug ye v mponyoluevy teyvoloyia twv B-Splines, éyxeitoan otny
eloaywyt wog Tuhe Bdpoug oe xdde onueio ehéyyou g xopmiing. Me tov tpéno autd,
Snovpyeita Wwa poPold and tov ybpo R gtov RY, émou d ot dastdosic e yewpe-
Tplag, TOU EMTEENEL TNV UVIUTAPAGC TACT, TOAUTAOXOTEPWY TYESIY XAl XWVIX®DY Top®y. Ot
reproptopol Twv NURBS epgavilovta oe yewuetpleg avotépny dlasToewy, OTwe oL emt-
PAVEIES Xt O OY X0t XS 1) AVATOREC TACT) WI0G YEMUETRIUC OTOV TUPAUETEIXO TNG Y WEO,
TEENEL VA AVTIOTOLYEL ot €va eudlypaupo TAUd, opUoy®VIo 1) XUPBOEES oYU, YEYOVOS
Tou Teptopllel TIg BUVATOTNTES AVATAPAo TAoNG EEUPETIXNG TOALTAOXWY YewueTpidv. H mio
TpdaQaTy TEYVoloYio YewUeTEC oyedlaong mou dnuoupyRinxe, ivon o T-Splines, ot
OTOIEC XATAPYOVY TNV OVIUTAPAGC TACT, TOU TUQUUETEIXOU YWEOU TNG YEWUETPING ¢ ToVU-

OTUXG YIVOUEVA LOVODLAC TATWY aZovwy 6mwe ouvéBave ota NURBS, emtpénovtag €tot
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YEWUETEIXT ATEUOVIOT] EEAPETIXG TOADTAOXWY YEWUETELOV Xl YIX TEWTY POPd TNV TORLXY

TOXVWoY) ToL BixThoU TN YEWUETPloC.

Hoapdhhnha pe v avéntun e teyvohoyiog oyedacpol pe unokoyioti (CAD), ava-
Oy ONXE 1) EMO TNUOVIXY TERLOY T TNG AVIAVOTC QOopEwY unyavixol ye uvtoloyioth (CAE).
H Snuiovpyld YEWUETELOY CUVEYOS AUEAVOUEVNS TOAUTAOXOTNTAS ONO TOUG OYEBLIO TES,
onuioupyel To emnpbdoleto Bdpog 0TOUC UNYOVIXOUS, TNG UETATPOTMAS NG YEWUETPIXAC
TAnpogoplag ot dedopéva xatdAANAa yiar Tor hoyiopxd avdiuorng. Autd To ydopo UETa-
&0 oyedlaong xou avdiuorg, dnuolpynoe oTodtaxd o aUEUVOUEVT anoOXMON UETAED TWV
ovo teyvoroyioy. H Iooyewpetpinr; Avdluon mpotdldnxe we wo ey voloyio ywetxic dlo-
xpitomolnong, 1 ool avtiwetoniler ™Y avdyxn Yio wa xowr eEEMEN TV TEYVOAOYLOY
oyediaong xar avaAuUoNG QOREMY, PE 6xX0T6 Vo aufBAlvel To TpoBAAuaTa YeRong TEOcEYY!-
O TS YEWUETPlOC XaTd THY avdhucy. AuTd To EMTUYYAVEL PE TN YENOT TWV GUVHPTHOEWY
oyedlaong cav xowy Bdon xot Y TV avdiuor v popény. H iooyewpetpiny) avdiuon
eupaviCel TOMESC OpOLOTNTES YE TNV TpoXdToYo TeYVoroYia Tng, To Ilenepaopéva Lrtotyela,
xS %ot oL Buo ANOTENOVY tooTUpUUETEIXES LhoTotoels Tng wedodou Galerkin xar dio-
TNO0Y TUPOUOLN POT) TOL XMBLXA X IBIOTATES, OTWS TO £0POC DLy WVIOL TWV TURYOUEVKY
UNTeO®V. Ao wo GAAY onTIXR, TOAAES TTUYES TNS LEVOBOL TWV TENEPACUEVLDY G TOLYEIWY
nadouy va toybouyv. Tia topdderypa, 1 TeYvn dtaxpitonoinong g Yewuetplag xatapyeitol,
agol Théov ypnoituoToLlElTaL 1) apytxY) YEOUETElO Yiol TV avdALGT), EVE o1 x6uPol, Tou elvar

ot onuelor eAéyyou, BEV avixouy TAEOV XATd XAVOVU TTAVL GTN YEWUETELA.
)

IMo 1o Aéyo autd, Yo 0plotoldy edw ot Bucixéc TogOTNTES OAOXAAPWCTE TOU AVTIGTOLY OV
UE TA LOOTUPAUUETOIXA TETEPUOUEVA GTOtyEld TNG TEYVOorOoYiag FEM. YNny nepintworn 1wy
ouvapThoewy oyfuatog NURBS, to ototyela eivon mopdywya Tou diaviopatog x6uov
(knot vector). Tuyxexpwévo otn povodidotatn nepintwor, to otoyela opilovioan we Ta
U1 Undevixd Stao THUOTA UETAS) BLadoytxmy Dlaxpitedy TIw®Y Tou dtaviouatos xoufeny. ‘Eva
Topdderypor droywptopol evog povodidotatou d&ova oe ototyeta aneixovileton 6To Lyua

1. X1y nepintworn SiodldoTatey 1 TPLOBHoTATWY YEWUETPLOV Td GTOtYEld TPoXUTTOUY OE



QUTHY TNV TERITTWOT WS TO TAVUGTIXG YIVOUEVO PETUEY TWVY OTOLYEIWY TOL €YOLY dNLoUPYEL
yio xde éva omd Toug TapaeTEIX0nE GEoveg &,1,C TOL TURAPETEIXOY YMOEOU TOL Qoptd OTWS

gaiveton oTo Dyrua 2.

1 Element 1 ‘ : ‘ Element 2 A i
] 1
] 1
] 1
- ] 1
] 1
05 ! !
] 1
] 1
] 1
] 1
] 1
) 05 1 15 25

Iyqpa 1: looyewpetpikd otouxelor yLow Lovomapouetpikd d&ova mov opiletal amd to Sidvuopa
képPwv E = {0,0,0,1,2,2,3,3,3}.

3 m - = W o]
[ ] [ ] [ ] @

2* { ] {7 £ N
[ ] L ] [ ] L ]

1 £ i i |

[ ] [ ] L ] L ] L

0 & & {7 {— 0

0 1 2 3 4

Tyfqwee 2: looyewpetpikd otouxeia yia diodidotarto xwplo Tov opiletan amd To didvuoua
képPuv E ={0,0,0,1,2,3,4,4,4} H ={0,0,0,1,2,3,3,3}.
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Tyfpee 3: Aradikacio utoAoyLopol Twv otolxeiwv oAokAfpwong Yo cuvapthoelg oxfLaTog
T — Splines.

Ye avtideon pe v teyvoroyia oyediaong NURBS, otny nepintwon tng teyvoloyiag
T — Splines 1 €0pear TwV G TOLYEIWY OAOXARPWONG EVOL APXETA TLO TOAUTAOXY Lodixacia.
Sexwvd pe TNV e0pecT] TV TUPUUETEIXWY VEoEWY TV oNueiwy eA€Yyou Tou ovopdlovto
anchors, atov ywpeo dextev 1 index. O yhpog avtdg eivan Bonidnuxdeg yweog tne loo-
yvewpeTpxhc Avdiuong,o onolog mapouotdlel Ti¢ TiéS Tou draviouatog xouBwy ot foeg
anoctdoels, aveldptnta av dwdoyixés Twée ouunintouv. Ta anchors tonovetobvia eite
0TO XEVTPO E(TE OTIC UNUESC TV TOAUYWVGY TOU oY NRAT{ovIal 6TO Y®EOo SEIXTAOY, avahoyd
HE TOV TOAUWYLUIXS Badd TV CUVHPTACEWY OYAUATOS. LT OUVEYEI AOYW anouciaug Tou
xordohxol Sraviopatog x6ufwv, utoloyiCovton To Tomixd BraviouaTa X6uBwy xdde onueiou

4 AN ’ e 4 /7
ehéyyou. Tapdderyya TV TomX®V Stavuoudtwy tapovctdletal oto Ny rua 3a. To tavvoti-
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%0 YIWOUEVO QUTWY TWV TOTUXWOY DAVUOUATLY xOuBwy opllel Ty empdvela enpponc xdie
oLUVAPTNONG, OTWC 1) OXIAYPAPNUEVY) ETLPAVELX oL amexoviletor 610 LyhAue 3f . ‘Oneg
EVOIL PAUVERD, 7 EMUPAVEL ETPpOoNS 0pilel Ypoauués oTov YWpo index Tou Bev uTpyay 6TO
apytx6 dixtuo. AuTéC Ol YPUUUES ATOXUAODVTAL YPUUUES UELWUEVTC CLVEYELIS, XaU®OS OTO
bpto Toug opiletan N GUVOEDY) TWV TUNUATWY TOAUWVYLUIXGY GUVIPTAGEWY TNG TEYVOLOYiag
T — Splines. To olvoho auT®V TV Yeauuwy, opilel wa véa diauéplon oc oploywvixd

ywela, Tou yopeou index mou eivon xar to {nrodueva ototyeln OAOXATPWOTS.

Tyfwee 4: EEaywyr diktoov otouxeiwv Bezier amo diktvo T — Splines.

Téco 1 teyvohoyia twv T — Splines éco xou avth) twv NURBS, anoteholy wia Ye-
VIXELUOT] TV oUVIRTHOEWY oyediacpol Bezier. T'a 1o Aoyo autd, TohAéC Qopéc xatd TNy
AVIAUGT QOREWY UE TNV LOOYEWPETEIXY wédodo, emAéyeTon 1 avaywY? TV oTOElwY O-
AOXAPWOTE TOMITAOXWY GUVAPTHCEWY ot cuvupthoelc Bezier. Ou cuvaptioel Bezier
aneixoviCouv tov tuyaio TapaueTExd YWpo 1wy ouvapthioewy NURBS,T — Splines otov
(B0 mopapeteixd yoelo [—1,1] twv nenepacuévev oToryeimy, eV ol cuvapThoes oyfua-
To¢ elvon (Bleg o€ Oha ToL G TOLYEld OAOXATIPWOTS XAl UTopOVY Vo enavayenotonotndoly yia
TOV UTIOAOYLOUO TOU UNTe®ou oTRupdTNTaS TV Qopéwy. XTo oyfua 4 napouctdleton €va
Topdderypo eZaywync ototyelwy Bezier and éva miéyua cuvapthoewny T — Splines.

H avdhuon @opéwv pe tnv tooyewpetpixt| wedodo Galerkin, mou ypnotponolel oav no-
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0OTNTEC ONOUATPWONS TA GTOLYEIN TTOU MEPLYPAPNUAV TEOTYOUUEVKS, EYEl anodetydel mwg
ToPAYEL anoTENEGUATA, UE ONHAVTIXS auénuévr axpiBela avd Badud ehevldeplag, oe oyéon pe
1 uédodo 1wy nencpacpuévey otolyelwy. Autd ogelheton xuplwg oTNY awEnuévr cuvéyela
TWV CUVOPTAOEWY OYNPATOS, 1 OTOld OE GUVOLACUO PE TO UNJEVIOUO TOU YEWHUETEIXOU
o@dhpatog odnyel 68 qUENUEVT OUOAOTNTO TV YARAXTAPIO TIXWY dEVTEPNS TAENS, OTWS Ot
TAGEL X0 TUPAUOPPAOELS. AUCTUYMS, AUTO TO TAEOVEXTNUIL TNG LOOYEWUETEIXNC AVAAUGNC
ouYODEVETA antd EVa AUENUEVO XOGTOS YIX T UOPPWOT] TWV UNTEOMY, 0pol TA ATUTOVUE-
va omueia ohoxAfpwong elvan &N peyéVoug TeplocdTERR OE OYEOT) UE TA TETEQPACUEVA
ototyela. ‘Etol v emotnuoviny xowodtnta, €otpede Ti¢ npoondielec TG OTHY avATTUdn
EVOANAXTIXGY TEOTWY dpldunTiXAc OAOXANPWONE TOU VO EAAYIOTOTOO0V T0 XOGTOS Wop-
YOOGS TV UNTewwy. Auté odfynoe ot yeron g pedodou collocation yio tnv avdhuon
TEOBANUATWY GUVORPLAX®Y TWOY OTa TAAoL TS I00YEWUETEXHC avdivong. H uédodog
collocation yeidvel dpaoTixd Tov aptiud TwVY ATUTOVUEVKDY ONUEILY OAOXATIPWOTS, IOV &-
tvar mhéov {oog pe tov aprtpd onueiny eAéyyou tou gopea. H Bacixr dtagpopd tng uedddou
collocation oe oyéon ye 1 Galerkin, eivar 0Tt amoutelTaL 1) IXAVOTOMGN TNE 1OYUPHS LOp-
@phc g Sgopixrc e&iowong oe meplopopévo mhfdog onueiwy. ‘Etol ol ediohoeg g

Yeuupxng ehac TixdTnTag Tou napouctdlovtal otny eéiowonl,

V- (CV5u)+f=0 inQ (o)
u=g onT'p (18"
(CV°u) - n=h  only (1Y)

umopoly va Ypagoly o wa e€iowor wg e€Xg

/(CVSu):VSwdQ:/f~WdQ+/ h - wdl' (2)
Q Q 'y

X1iv



EVO xat 0TI duo uelddoug collocation xu Galerkin, o 6pog u agopd TNy TAREUSOAT TOU
TEBIOU TWV UETAXIVAGEWY UE YPHOY TWV GUVIPTAGEWY GYHUATOS, oty collocation o 6pog w
aopd Tic cuvapThoels doxiuhc (test functions), ot onoleg emhéyovial Vo avTiXaTasTad oy

and T ouvdptnon Dirac delta.

/[V-(CVSu)—i—f]-wdQ—/ [(CVu)-n—h] wdl =0 (3)
Q

I'n
Metd and avdntuin g teleutaiog oyéong, XATUANYOUUE GTOV UTOAOYIOHO TOU UNTEMOU

oTBapdTnTac TNe collocation Yeow NG oyéong

L(N;(;.)), for1<i<k,
. ) "
n; - CVN;(§;;), fork+1<i<n

X0 TOU avT{oTOLYoU BIaVOoUUTOS EEWTERIXWY Bpdocwy avTioTolya:

—L(ap(&;;)) + (&), for1<i<k

onou ot tehectég L, B ot Sloddotaor eAaoTixdtnta unoloyiloviar wg e€ng:

2 2 2
L A +20) & + s A+ 1) 5255 )
a A 9 At 20) 22 4 2t
(A + 1) g2ay (A +20) gz + g2
B A+ 2,u)nq;8% + /mya% )\nma% + /mya% )
)\ny% + /mxa% A+ 2u)nya% + /mx%

Metd v avTipetdmon tou {NTALITOSC TG AnodoTXAC UOPPOONS TWV UNTEPO®Y G Tifo-
eoTNTag, €val delTERO CATNUO TOU EYEIPETOL APORA TNV ANOBOTIXY ENIAUCT] TWV YRUUUIXWDY
CUCTNUATOY ToU TEOXVTTOUY. X avtideor, ue 11 U€dodo TwV MENEPACUEVLY O TOLYElWY, N

7 /. 14 7 ’ I I4 7 Ié 7/ /.
onola Yetd and molkég dexoetiec €pguvag €yel avanTuEel xatdAAnloug emhiTeS yia xdie
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eldoug mpdPBinua, 1 Iooyewpetpixy Avdhuor eivar pla tpéogaty teyvoloyla, otny onola
7 4 4 4 7 4 4 4 r
xdde TeYVInn xou ahyoprduog mEémel var EQoploc T xar va epeuvnlel and v apyr. ‘Etot
4 4 ’, 2, ?, 4 ’ 7 2,
Toe xUELOTERPX EBT] EMAVTOY YRUUUIX®Y eEI0MOEWY, OTKS Ol AUETOL, Ol ETAVIANTTIXOL XA ddg
xat ol emAUTeS pe Bdon T u€Vodo TwV UToPOREWY TEENEL Vo EAEYY Vo0V Yol TNV ERdpXELd

TOUG. DUYXEXPIMEVAL
Ayecor Emhiteg:

Etvar emihOteg nou Basilovtar xuplwg oe ped6d0ug Taparyovionoinong Tou PnTeou oTi-
Bapdtnrag. O mo YVwo g ahyoplllog TopdyOVIOROoNoNg YLol CURMETELXOVS TiVAXES, OTwg
autol mou mapdyovian amd TN péYodo TwV TEREPUoUEVLY GTOLYElWY N TNV LOOYEOUETEL-
xf) uédodo Galerkin, eivar n noapayovtonoinon Cholesky, 1 onola yetatpénel 10 pnTE®O
oUPuUpOTNTUC OE YIVOUEVO Ve X0l XATe TErywvixol mivoxa. Avtiotoltya, otny neplntw-
OY) UN-OUUPETOIXDV TIVAX®Y, OTWS AUTOl TOU TEOXUTTOUY AN TNV IGOYEMUETEXT HEY0d0
collocation, unopel va egapuootel o akydprdpog noapayovtonomone LU. Ot duecol em-
Aoteg ebvan 1dwiitepa anodotixol oty meEpInTWOY Tou YeetdleTon ENIALGY, CUCTAUATOS UE
mohhamAd Oe€id uérn. Méypr 100 yrhddee Badpoic ehevlepiag Yewpolvion mo anodoti-
x0f, OANG TO PEYURDTERO UEIOVEXTNPO TOUC €lvan 1) UEYIAT, amaiTnoy TOug Ge Uviuy, Tou
TOUC XoHO TA AVATOTEAECUATIXOVS Yid popElc Yeyaing xhipaxac. Katd tnv eqopuoy?, toug
oty looyewyuetpixy Avdiuor napouctdlouvy auEnuévo uTtohoYlo Tixd x00Tog, eutiog TNg
abénong tou ebpoug Saywviou, xadodg xar g alinong Tou TARTOUS TV UN-UNBEVIXGDY

otolyeioy.
Enavainntixol Emidteg:

Acttepn onuoavtixy xatnyopia EMAVTOV elvan ot emavaknrtixol emAdTeEG. XT6Y0¢ TOUG
4 7 4 7 4 4 4 7, Z Z
ebvor va mpooeyyloouv Ty TeAixh) Abon péoo and emavarrdeg. ‘Otav éva cuyxexplpévo
xpitnpto axpifeloc avonomiel, 1ot Yewpolye ott €youne olyxhon otny TEMxXT Abor.
‘Evag and toug 1o yvwotolg alydptduoug ENavoANTTXAC ENTAUOTS CUC TNUATOY UE CUY-
I 4 Z 2, 2 4 Z 2,
peTpixd, YeTixd optouéva untema, eivar o akydprduog Twv npoctalteponoimnuévey culuy oy

dravuopatindv xhicewv (Preconditioned Conjegate Gradient).Avtiototya, otny nepintwon
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UTN-OUUUETEIXOVY YNTEWWY Eival EVPENS DLADEDOUEVOS O ahYOPLILOG YEVIXEUMEVNC EAOYIO TO-
notfong unoroinou (Generalized Minimal Residual). H taydtnta obyxione twv eno-
VOANTTIXGV EMAUTOV e€apTdtan dueca and tov tpoo tadeponomnth mou Yo yenoiponoiniel,
onolog €yel GTOY0 VA EXTIUACEL T1 ADOT) TOU ENOUEVO EMAVUANTTIXOU PUATOC UE o L-
mohoytouxd x6ot0c. H eappoyr| toug otny Isoyewuetpur) Avdhuorn anodetxvietal, 6nwe
XL OTHY TEPITTOON TWV JUECKY EMAUTAYV, Vo EMNEEACETOL GNUAVTIXS artd TNV ALENUEVY CU-
VEYEL DIVOVTUC EWE ol 2P UEYAADTEQOUS YPOVOLS OE GYETT) UE Wit ENEALGT) UE TNV EAGYLOTY)

OUVATY CUVEYELA, OTIOU P O TOAUWVUIIXOS Badudg TwV CUVAPTACEWY OYHUATOS.
Mévodol enthuong ue unogopeic:

Televtala xatnyopia ahyoplduwy exfhuong YeuUX®OY CUG THUATWY TOU UEAETAUNXAY E-
tvar o1 uédodol enthuong pe vrogopeic. Ot ahydprduol autol BaciCoviar otov diaywplonod
eVOC Popéa GE UixpOTERA TUANOTA Tou ovoudlovTtar LuToQopeic. TNV Tep(NTwoY Popéwy
ICOYEWPETPIXNAS AVIAUOTC, Tou €youv oyediaotel ue tny teyvohoyio oyediaong NURBS,
0 opEag elval PUOLXA BlAXEITOTOINUEVOS O EMPEPOUS TPUATa Tou ovoudlovto patches.
H dnuovpyla twv patches xoatd 1 Sidpxeia Tng oyedlaong, ogelheton oty anaitnon ng
teyvohoyiog oyedioone NURBS ta guoixd ywpela mou meprypdepet vo aneixoviloviar 6tov
TUPUUETEIXO YOPO WG EVVUYpauua Tuiuata, optoywvia 1 x0Bot. Exyetalievoyevn to @u-
o6 autd ywelopsd, npotddnxe 1 teyvoloyio IETI, v onolo anotelel wio IGOYEWUETELXN
TpooéyYion TNe Suixfic-tpwToyevols uedddou enthuong popéwy (FETI — DP) yio gopelg
OLUXPITOTOWEVOUC UE TNV tooYEPETEXT uéVodo Galerkin. H yédodog autr| uetatpenet to
OUVOMXO Ypopuxd o0GTNUA, 0TO EVOOGUVOPLAXS TEOBANUA UETAL) TV UTOPOREWY, YEL-
OVoVTag onuovTixd to péyedog tou TeEAxol cuoThuatog mpog enfhuon. Ilapdha autd, n
ouyxexplpévy pédodog mapouatdlel éva onpavtixd yeovéxtnua. H dnwoupyio twv unogo-
p€wv eZopTdTon amd TG AMAUTAGELS TN oYEdlAoNg, UE ATOTENEGUA OL UTOGOPE(S Vo DNuioup-
yolvton pe audalpeto Teomo xou puéyedog. Autd €xel cav anoTéEAEOU, ULol AVICOXATAVOUN

TOU UTOAOYLOTIXOU PORTOU HETAED TWVY UTOPOREWY XATA TNV EQUPUOYT| TN pedodou.

4 14 x 4 2. 14 4 ’ N
Yo mhadoto autrg g Sateifng mpoteivovtar xat vhomotodvTal evaAloxTixol TpdToL Bla-
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YWPLOUOU TOU PopEd 0E LTOQYOEELS, oL auBAlvouy To uetovéxtnua g uevddov IETI. H
T TN evahhaxTixh) ovoudstnxe IETT — P xou anoTeAel hiol ENEXTACT) TNS VQLO TAUEVNS Ue-
V60ou TETI, v omolo ywptlet T avicoueyédn tprpata ot nepioodtepoug unogopeic. Autd
ETTLY YAVETAL UEOW NS UEIWONS TN CUVEYELNS 0ToUS XOUBouc (KNots) TV TUpUUETELXDY
afovwy. ‘Otav 1 ouvéyeta evéc xoufou pewwidel, péow g addnone e TOAAATASTN TS
tou oe OV, 161€ 0 apyinde wopéac umopel va daomactel oTo onpeio Tou xéuPou G duo
unoopelc. Autdg 0 VEog Blaywplopds, €yl Vet enidpaon otny enlhuot evog Qopéa Ue
™ uévodo tne IETI, xaddg analelpel Ty avicoxatavopr Tou unoloyio 1xol goptiou, €t
oAy LVTIS OUwe EUTAEOY xX60T0C AOYL eloaywYhc VEwY x6ufwyv. H debteprn evahhaxtixn
TPOGEYYIOT TOU TEOTAUNKE Yid TO YwELoWd uTogopéwy, eivar 1 uébodog IETT — O. Xty
nepintwon auty dev anouteiton peiwor TG oUVEYEWS 0TOUS xOUBOUS, AAAd TEOXUTTEL o-
16 ToV apyixd Qopéa YewpmVTAS Wiol SleupuPEVY Blempaveid HETAS) TWV VEWY UTOQPOREGY.
Onwg axppoc n IETI — P, étol xau 1 pédodoc IETI — O xatapépvel vo auSAUVEL TO
petovéxtnua tng pedédou TETT. To yewovéxtnua tng ITETT — O eivor 611 audvel onuavti-
%& TO EVBOGUYOELIXG TREOBANUA HETUED TWV UTOPORERY, AUEAVOVTAS CHUAVTIXE TO XOGTOg
eniluong Tou evdoouvoptaxol tpoifuatog. H Sapopd twv dVo pedddwy IETIT — P xou
IETI — O 600y agopd 1o yéyedog Tou EVO0GUVORLaX0U TEoPBAfuaTog ancixovileton oTo

oyfua 5, émou gaiveton 1 onpovTXy dla@opd Yetagd Twv 800 pedodoroyidY.
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Tyxqwee 5: AAAnAeTikoAuTTTOpEVEG Ko N éBOBOL XwpLoU uTtopopéwv

IMapd Tic euvoirée toug WdTNTES, ot uédodor IETT — P o IETI — O, dnuopyoly
VEQ UELOVEXTAPATA, Onwe 1 al&nomn tou peyédoug Tou evBoouvoptaxol TEOBAUATOS, TOU
emBoaplvouy onpavTixd Ty enthuon tou tehixol tpoPifuatos. o 1o Adyo autd elodye-
Ton W axopa pevodoroylo enfluong ue unogopeic, 1 onola cuVBLALEL Tol TAEOVEXTHUITA
wag enavainTixnic wedodou onwe n PCG, pe uedddoug uno@opéwy, 1 onolo ovoudo tnxe
PCG — IETI — N. Zuyxexpiéva, 1 wédodog auty| elodyet éva mpocouolnuo tou €yet
NV Bl yewpetpio xou (Bleg OOTNHTES YE TO apYixs, OANE Ol CUVAPTACES GYNUATOS EYOUY
anoxonel 0Ty DIETLPAVELL UETAEY UTOPOREWY. AUTEC O UOUVEYELEC EYOUY GOV ANOTEAECUA
™ pElpéVn axpifeia Tou Véou mpocopoldyatos. To véo autd npocopolwua dev unopel va
xenotponomlet yia Ty entluot Tou cUVOAX0U Popa, UTOPEL GUWS VoL ATOTEAECEL VOV ATO-
doTind mpootadepononTh Yio it enavaknmtixy) uéodo enfivong dnwe 1, PCG. To oyfua
6 anewoviler ypopixd 11 uedodoloyia aToXOmAS TWY CUVIPTACEWY OYNLATOS, OOV 1) XOX-
XIVT) DIOXEXXOUEVY], Yoouu amoTEAEl évor ToRddELYUo ONUEOY YWEIoWOU TWV GUVIPTHCEWY
Yio dpTio ToAvvLUXS Badud, eved ) mpdotvy avticToy Yia TEPLTTO.

HMapayetpinéc DEpeUVATELC TROYUATOTOUNXAY, YIo VO ATOTIUACOLY TNV ATOTEAECUITL-

x0TNTa TS TEoTeEVOUEVNS Yedodov PCG — IETI — N, 1600 yid BlaOpeTIXOUEC TOAUWVU-

XiX



ol Boadpole 6co xar yia moxiheg daxpitonotfoel gopéwy. To anoteréopoata €detlay
WXEY ETLEEOT TWV TUPATAVE YoRUXTNEIO TIXWY GToV apldud enavalhPewy Tou anottodvTo
yioo T oUYxAon g pedodou. Tautdypova, €yive olyxplon TG TEOTEWVOUEVNS UEYOB0L Ye
ToU¢ 800 evahhaxTixo0g TpoOToUE ywpelogol ot unogopelc, IETT — P xou IETT—0. Ot go-
pelc mou pehethRdnxay xupaivovton and 100 yhiddeg Baduolc ehevdepiog éwe 1 exatoppipto
xat apriud urogopéwy and 9 ewg 4.800. Tao anoteréopata g clyxpiong napouatdlovio
Yeapixd oTo oyfua 7 xou delyvouv v emitdyuvon g uetddow PCG — IETI — N oc
oyéon pe 1ic IETI — P xou IETI — O. 'Onwg qolvetar xot and 10 oYHUAL, 1] TEOTEIVOUEVT
uédodog mapovatdlet wo emtdyuvorn 1, 7z o oyéon ue v IETI-O %ot 2, 3z oc obyxplon
we v IETI — P, pe aunuixy| tdon xaddg o aprdpog tov Bodudy eheudeplac YeyoahOVeL.
Ta nponyolueva anoteréopata xahototy tny uébodo PCG — ITETT — N, davixy Yo Ty
eTAUOY YRUUUXOY CUCTNUATWY TOU TEOXVTTOUY amd TNV I0oYEWUETEIXY uédodo pe Ve-
oenon Galerkin, xadog enttpénet 1oV TuyYaio YWEIOKO TOU POPEA OE LTOYOPRELS, EROUEVKS
XATAPEPVEL VO EEACPARIGEL TNV OUOLOUOPPT] XATAVOUT| TOU UTOAOYLOTIXOU (opTiou Yetadl
TWV UTOYOPEWY X0l GUVETOS GUUGOVA Xt YE Ta aptiunTixd anOTEAEGUATA TPOCHEREL id
onuavtixy Bektiwon 1600 o€ 6poug enavarPewy 660 xou LTOAOYLOTIXOD YEdVOU OE oYEom

He umdpyouoes Yevodoug eniAuoTg.
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Tyxqwee 6: Meiwon ouvéxelog ouvapthoswv oXHLATOC e OKOTLO TO XWPLOLO @opéal og un
AAANAETUKAAUTITOREVOUG UTLOPOPEIC.
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Tyqpa 7: Bedtiwon emdmong pebddoc PCG — IETT — N oe oxéon pe ponyovpeves uebédovc.
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H perétn yia tny enfhuct cuo TNUATWY UE UTOQOPELC EMEXTEIVETAUL OTN GUVEYELX TN OLo-
TEBAC xou OTNV TEPIMTWON UN-CUUPETPIXMY GUOTNRATWY Tou TNyalouy amd v pédodo
collocation. Ildpa t0 petwUévo Tng x60T0¢ XATY TN PACT, LOPGLOTE TOY UNTEGWY, 1) u€vo-
do¢ collocation petatonilel oNUAVTIXNG XOPPATL TOU UTOAOYLOTIXOU XOOGTOUS GTNY ENIAUGY
TV TOPUYOUEVOY YROUUIXOY CUC TNUATOY xoee Ta nteda eivon un oupuetpxd. H undp-
yovoa BiAoypapla EMXEVIPOVETOL GTY) dNUIOVEYIN ATOTEAEOUATIXWY TPOC THIELOTOM TGOV
Yoo THY emitdyuvon g wedddov GMRES. Yto mhaicto autd, 1 povadr cupfoln pe
™ YeNon utogopéwy, arodidetan otny Onuiovpyia evog mpootadepornoimnty e TN uévodo
overlapping additive Schwarz (OAS). Ilupd tr euvoixée duvatdtntéc g, 1 pédodog
oUTY| ToEOVCLALEL EVal OTUAYTIXG UELOVEXTNUA, TOV Elval TO aLENUEVO €Vp0g TG LwVNG dAAN-
AemuxdAudng petal 1y uto@opéwy. To edpog autd PNOPEL Vo YIVEL ATAYOPEUTIXA YEYANO
otV TepinTwon audnuévou toluwvuutxol Baduol tewy cuvapTicewy oyuatog, emPBapivo-

VToG €TOL ONUAVTIXG TO ATOTOUUEVO UTOAOYIO TIXO XOGTOS Yiol TNV entAuoT,.

Yo mhalowa authg tng datpiBhc pehethdnxoay 1660 mpwtoyevels oo Buixég uédodol
enfhuong pe vnogopelc e o1dyo va avTipeTOTIoouY Ta petovexthAuata e OAS xan va e
odyouv éva amoteheopatixdtepo npootadeponont Yot pédodo GMRES. O mpwtoye-
veic pédodot 6nwe yia napddetypa 1 xGpto ouvoptaxy wébodoc (Primal Substructuring Method),
€l0dyouy €va evDoouVopIaxd TEOBANUA HETAHED TWV UTOPOREWY , TOU OTOOU Ol Y VWO TES
ToGOTNTES eV Ol PETAXIVAOELS TwV GuVoplax®y xoufov. Avtideta, otig duirée uedddou,
Ol GYVWOTEC TOCOTNHTES TOU EVDOoUVOpPLaxo) TEofAfuatog eivan ta Suixd Yeyeldn tov ye-
TaXtVATE®Y, ONAadT| ot duvduels ahinienidpaong petalt Twv evdoouvoplaxdy xopPwy. Ta
VoL YIVEL EQIXTY 1] XPNOT) TWV VPO TAUEVWY UEVOBWY ETIAUOTE UE UTOPORELC TTou Elval Y V-
otéc and 1 péYodo TV MENEPUOPEVWY O TOlYElwY, TEEMEL apyixd va dnutovpyeldel éva
U1 AAANAETUIXAAUTTOUEVO TPOTOUOIWUA, HECK TNG XATIOYNONS TNG AAANAETXAALYTC TwV
ouvapThoewy oyfuatoc. ‘Evo mopdderyya pelwong tng ouvéyelag HeToll TV UTOPOREWY

aneovi{eton oto Myrua 8.
Me dedopévrn TNy avwtépw DIAUERIoT TOU QOpEd OE U1 IAANAETUXUAUTTOUEVOUS UTOQOPE-
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Tyqpa 8: Meiwon adnAeTikdAvdng petald uogopéwv.

ic, N avalftnomn g xatadAnhotepn uedddou npoctateponoimong Eexivnoe e Ty uévodo
IETI, tou anotehel TV 10oyewpeTpiny dtatinwon e pedodov FETI — DP. Ta anote-
Mopata tng vhormoinomng authg oy eapaiuéva, xadog peptxol popeic ouvéxhvay oe Addog
AOoM ot o€ AAAES TIEQITTAOGELS BEV HTay duvath| 1) oUYXAET Tou ahyoplduou. H cuunepipopd
auTh) propet va epunveutel e€etdlovtag T pnyavixy avahoyia evoc bpou Tou untehou o Tio-
POTNTAC. LUYXEXPWEVY, GTNY TERINTOOY CUUUETOIXOV UNTE®®Y 6 TBUpOTNTAS, OTWS GTNY
wwoyewuetph| u€dodo Galerkin, o 6pog K;j; exppedlet tr dOvayue mou mpenet va aoxniel oto
Badud ehevdeplog i Tpoxeyévou va avantuyVel povadiata peTatémion otov xouBo j. XNy
TEPINTOOT GUOC UN-CUUMETEIXOY UNTeOeY 6Tee ot pédodo collocation, autyh 1 punyavixn
avaroyia madet va toyler xadde ol YEoUUES TOU UNTEe®ou o TBUPOTNTIS, AVTITPOCWREVOUY
onueior ohoxhfipwong g pedodou, eve ot oTHAES Toug Paduoie eheudepiog Twv xOuPwy ue
anotéleopa Vo Taouy vo uploTovton xon Tar duUixd peyEédn mou avTinpocemelovTL ANd TI

duvduels aAAnienidpaorc.
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INo 1o Aoyo autd, n pédodoc FETT — DP Yewpiinxe avanoteAeopatixy, xot 1) dlepe-
Oynom ouveylotnxe pe Tic npwtoyeveic uevddoug. H PSM eetdotnne mpddtn, Ue emituyn
anoteréopata. H epapuoyr) tng oav npootadeponomtic e GMRES yw v enthuon
Tou xatohxol mpoPAfuatog, uelwoe dpaotixd Tig emavohiers. Kddwe dpwe 1o péyedog
T0U £VO0aUVOpPLaX0l TROBAAUATOC auEdver, auEdVouY TAUTOYPOVO Xol Ol AVTIG TOLYES ETOVO-
Mbeg yia Ty enfhvon tou. ['ia 1o Aéyo autéd eetactnne 1 uévodogc P — FETI — DP
¢ npootadeponomtic e xadohxic GMRES. TIépa and 1o xadohxd evdoouvoptaxd
TedBAnua 1 wévodoc auth etodyel xou 1o adpd (coarse) mpdPfinua, To onolo YENOWOTOLE-
fron v TRV emTdyLYVON TNC AUOYNG TOU EVBOGUVORLIXOY TEOBAAUATOC. Luyxexpuéva, ot
xoufol Tou adpol TPOPBAAUATOC EMAEYOVTOL WG T ONUElN EAEYYOU TOU AVAXOUV OE TEPLO-
06TEPOUG and BUO UTOQORELS V) OE 2 UTOYOPRELS AAAS Elvar TauTOYEOVA Xal onpeia EAEY)you
T0U GUVHPOL Tou Qopéa. H Biadixacio ywpeiopol Tou opéa ot LTOPOPE(S xou 1) EMAOYY TV

7 7 ’ 4 4 4 /
£VDOCUYOPLIXAY XAl YWVIAX®Y XOUBwv Tou adpol Tpofiruatog areixoviletor 6to Ly fua 9.

Ta cuyxpiuxd andtehéopota g yenorne tou tpoctadeponomth P — FETI — DP oe
oyéon Pe TIC UNdEYouceS evahhaxTixég nopovsidalovtan oto Ly 10. And tnyv emoxonn-
OY) TV ONOTEAEOUATWY elvan Qovepd OTL 1) TpoTeEOUEYY uélodog Tpos Taveponoinong Tou
xadohxot npoffuatog ye tn wedodo P— FETIT — DP, npocgépel onuavtixy| yeiwon 1éco
AVAPORIXY PE TOV UptUO ETAVOATPEWY GGO X UE TOV GUVORXO ATOUTOUUEVO YPOVO Yol TNV

en{Auoy TOU CUCTAUATOC.

‘Eyovtag avTiletwriost emMTuy KOS TNV ENTAUGT TRoBANUATGY GUVEYOLE UECOU TOU Blaxpt-
TonolovTan eite ye TN weYodo Galerkin eite pe tn uédodo collocation, To teheutaio TuAua
™S SLTEIPBNG EMXEVTPWVETU 0T UEAETT) TOAOTAOXWY XATACKEVRDY YE DOMIXE LOOYEWUETOL-
%3 otoryelo xehbpoug. Me dedopévo 6Tl 1) IOOYEWUETEIXT avdAUGT) Unopel va Teprypddetl pe
UNOEVIXO YEWUETEIXO GPIAUA 000BHTOTE TOAUTAOXES YEWUETPlES, VEwpPElTal tBavIXY| 0TV
TEPIMTWOT AVIAUCTIC AETTOTOLY WV XATAOKEVWY OTOU Ol UPYIXES YEWUETPIXES ATENELEG UTO-
POUY VOl EMNPEACOUY GNUAVTIXG TNV TEAXY unyovixy andxplon Tou gopéa. Ot AENTOTOLYES

XUTUOXEVES OTA TAXUOLA TV UTOAOYIO TGOV UeVOdWY TEpLY pdpovTtal ouyvd and duo Vew-

XXiv



(o 1 4 [ 21

[®] Interface control points

A Corner control points

Tyfpoe 9: Evdoouvoprokd kol adpd mpdPAnue tng pebddov P — FETI — DP.

Preconditioner Preconditioner
—— One-level OAS —— One-level OAS
1500 Hf == Two-level OAS == Two-level OAS
«+ PSM Diagonal «+s+ PSM Diagonal
—. P-FETI-DP —. P-FETI-DP
2 B 1000 |~
£ 1000 — w E
° ~ -
o £
g - 5
500 —
i 100 |~
o L Lol 1 ol
100 1000
Number of Subdomains (N) Number of Subdomains (N)

Tyqpa 10: Y Oykpion emdbdocwv peBddwv emidvone opéwv SiokprtoToinuévay pe collocation.

oleg, ouyxexptuéva v Kirchhoff-Love yio Aentédtorya xehbgn xou v Reisner-Midlin yia
xehbgn pe yeydho ndyog. llapdho mou oL TEPIGOOTEPES HATAGKEVES AVIXOLY GTNY TEMOTN

xatnyopld, ol Teploplopol GUVEYELNS TN UEVODOU TENEQUCUEVWY G TOLYEIWY, XaHEpwaay TNV
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Vewpte Reisner-Midlin otny mhetovétnra twv hoyiopxdy. Ot avEnuévn ouvéyeia and CY
oe CP~! qou elodyetar oty YewueTple TWY QOpéwY UE TNV 10OYEWPETPLCH avdluoT, ent-
2 4 4 7 2, 7 ’ ?,
TEémEL TAEOV Wial JUECT] UAOTIOINGT OE XMOLXA TNE TEYVOAOYING TV AETTOTOLY MY XEAUGOY.
[t 70 AOYO auTd, Xdl OV ETEXTACT] TWV UPLO TAUEVWY VEWPLOY AETTOV XEAUQGY YLoL dlo-
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Pop ) Y pror Y ne Toug, 1 Hrop t
OTOLOBHTOTE LALXG hofdvovTag umodn T wxpodour Tou P€ow Uiog avIAUOTS TOAAATAGDY

e
HAUAHWY.
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€Y 0LV WA UAXPOBOUY| TOU AVATUPIOTATAL PE OTOLYEId XEADPOUS, EVE 1) WXEODOUY) TOU Elval
éva o0vieto LAIXS Tou umopel va tepLéyet Tuyaio eyxieiopata ¥ xevd. Autéc ol eTepoyEvieg
NS Uixpodounc Yewpolvtal Un avTIANTTES OE UAXPOCXOTUXES DO TAOELS, OUMS YLol VoL Angiet
UTOYM 7 ETLEEOT TOUG OTIC XATACTATIXES EEIOWOELS, TEOTEIVETA EVA EUPOAEVHEVO TY U
Iooyewyetpixry Avdhvong - Ilencpaouévoy Ntoyelwy 10 omolo meplypd@eton oynUoTLXd

otny ewovo 11.
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Tyqwoee 11: Epgwdeupévn dradikooio LooyeweTplkic avEaAVOTG-TIETEPAOEVWVY OTOLXEIWY Yo
TOV UTLOAOYLOWO KALTOLOTOTIKOV oXéoewVv e TN Boffetat avdAuonc TOAATAGY KALLEK®Y.

Yuyxexpuéva 0to TenTo Bhua Tne dtadixactag, yivetoaw oyediaon xat Saxpitonolinoy tou
poxpopovtéhou ue ototyeior xehlbgoug pe T Ypnon ouvapthioewy oyfpatog 1 — Splines.
Ané 1o npocoyoiwpa autéd egdyovion T avtiotorya o totyela Bezier, ta onola aroteholyv
Bdon yia tov unohoyiopd tou untenou ouBupdtnrag. I xdde onuelo ohoxhApwong Tng
péong empdvetag Tou xeAbgoug, oplletan éva TARlog onueiny ohoxApwone xotd To Tdyog
e dratophc. Kde éva and autd ta onpela opilel wo {dvn UAIXOU TOU TORULOPGHOVETIL
oe ouvifxeg eninedng éviaons. Auty| 1) O TEWUATOTOMNUEVT, AVATUPIO TAOT) EMLTEENEL ENioTC
NV poviehonolnoy g UETABANTOTNTAS TOU UAIXOU 6TO Tdyog ¢ datourc. XTto deltepo
BrAua Tng Sradixactiag, ot xatac Tatixés oyéoelc Tou Uhixol e&dyovtar ot xdde onueio olo-
ANHPWONE TN UEONG EMLPAVELNG PECW TNG UTONOYLOTIXNS OUOYEVOTOIMONG Tou. Xe xdie
onueio ohoxhfpwong g dtatourc, opiletar €Vag TRIOBIAC TATOG AVTITPOCWTREVTIXOS OYXOG,
OLOXPITOTOIAUEVOG UE TETEPUOUEV O TOLyYEld TEIOBLIOTATAC EAAC TIXOTNTAS, GTOV OO0 €V-

coyat@dvovta tuyaio eyxhelopata. To eyxhelopata autd unopodv va tpocoyolwioly ue
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DOUXS TEMEQACUEVA G TOLYElD, OTWE SxTuGPATA, doxol xat xeN)@r. Xe nepintwon Tuyaiog
HOPGHC OYXOUETPIXMY EYUAEITUATWY, AUTE UTopolV va diaxpltomotnoly xat Vo TpoGoUoLw-
Yolv ue Tplodido Tata Tenepaouéva o Totyela auVEY0Ug UECOU, OTWS GUIVETOL XAl GTNY EXOVAL

12

IZB) Cavity

st Matrix

2D Section

y (XpYaZa)

Cavity

Matrix

Tyfpoe 12: Mopadelyportol XopaKTNPLOTIKOV OYKWV

310V AVTITPOCWTELTIXG OYXO0 Tou Anéyel ando oy, { and T PEaT) EMGAVELN TNS OLATOUNC,
emBdihovian 10odlvopeg Yetatonioelg mou urnohoyilovTon pe Bdor Tig €VIog eMTESOU ToPa-
HOPPOOELL TOU JOXPOCKOTIXOU TROCOUOIMUATOS 0T0 ouyxexpiuévo onpeio. Me tov tpémo
auté opiletar T0 TEOBANUN GUYOPLIXGY TIWAY TOU AVTITPOCKTEVTIX0D dyxou. Xta mAaioid
NG TRPOTEWVOUEVNS D1adXas ag VEWPOUUE YRUUUXT] ATOXQIOT] TOU AVTITPOCWTEUTIXOU 6YXOU,
OANG M) EMEXTACT, O UN-YPOPUXES YEWPETPIES UTopel Vo e@apuoaTel dueca ywpelc allayég

oty dadixaotia.
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4 8

Tyqpa 13: EmBolr cuvoplak®dv cuvBNKk®Y XopakTnpLloTikod 6YKOU ECK ELKOVLKOU oToLXelou
¢ héong eTpdivelac.

Y10 oyfipa 13, anewoviletar ypapuxd 1 emBoAY TV UETATOTICEWY OTOV AVTITPOCWTEVTIXG
OYXO0. BUYXEXPUIEVA, Ol HOUXPOOXOTIXES TUPUULOPPWOELS €y UeTappdloviar o€ emBaANOUE-

veg petatonioeic oto eixovixd ototyeio ABCD tou oyfuatoc 13 péow tne oyéong 8.

= e X (8)

Me dedopéveg TI¢ €VTOC EMNEDOU UETAXIVACELS TOU EXOVIXOU oTotyelou, yivetar emiBolr
4 4 4 ’, 7 7, 2,

TWV YETAXWVACEWY TV eVIOE emnEdou Boducdv eheuteplog, TwV TASUPIXGOY ETLPAVEIDY TOU

AVTITPOCWTELTIXOL Gyxou. Avtideta, ot extog emtnédou PBaduol ehevdepiog Tou popéa etvar

ehebepol va mopapoppwioly, ue eEalpeor Tou xataxdpupoug Paduolc eheudeplog TwV

onuelwy 3,4,7 ye oxond TNV anopuY TUYOV XVHCEWY OTEREOY COUAUTOS. X TN CUVEYELD, UE

Yerion Tou Tunou
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Introduction

0.1 MOTIVATION

Until the early 20" century, scientists and mathematicians tried to interpret the be-
havior of natural phenomena by introducing mathematical models that replaced their
fundamental physics. In most cases, this required the transformation of an engineering
system in terms of partial differential equations. At first, it was plausible for scientists
to find an analytical solution that satisfied the boundary values problems at hand,
yet the ever rising need to describe more complex natural systems, quickly eliminated
the possibility of attaining an exact solution field that satisfies the problem. Instead,
techniques to approximate the exact solution were devised. One of the most widespread
methods for approximating the partial differential equation (PDE), the Finite Element
Method (FEM), was born in the field of aeronautics. It wasn’t until 1944, when John
Argyris, faced the problem of reliably simulating inclined geometry wings, that the FEM
method was born. After experimenting with all known methods with unsatisfactory
results, he coined the use of the first triangular finite element and its implementation
in the first electromechanical computers and published the ”Energy theorems” book
where he first registers the method. In the years to come, many scientists such as
Clough, Turner and Martin calculated the stiffness matrices of various elements, with

Zienkiewicz being the first to publish a book on the field. In alignment with the evolution
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of computers, a large number of publications followed, that allowed engineers to become
acquainted to the method and subsequently apply it to numerous aspects of their re-
spective scientific fields. Even though the evolution of computational methods, with the
spearhead being FEM was rapid, some significant deficiencies remained. For instance,
exact representation of complicated geometries remains an open issue as even higher
order finite elements can only reduce the geometrical error. This inherent approximation
leads to erroneous results in geometry sensitive analyses such as shell buckling. In a
similar manner, adaptive refinement techniques cannot be efficiently implemented, since
in case of non-trivial geometries the immediate connection with the Computer Aided
Design (CAD) representation is not existent. All the above deficiencies of the existing
Computer Aided Engineering (CAE) methods, have raised the need for a common

development pipeline with CAD.

Computer Aided Design is defined as the drafting procedure utilizing computers. Its
main goal is to aid designers to produce accurate blueprints in a less laborious procedure.
One of the earliest works in the field of design was proposed by Ferguson in 1964 [74].
This work introduced Ferguson curves, which are a specific category of third degree power
basis curves calculated with known positions and gradients of the curve at its starting
and ending points. The generalization of Ferguson curves for arbitrary polynomial degree
yields Hermite curves [L’Hermite|, where a (2k + 1) degree curve is evaluated by utilizing
k values at its starting and ending points. Despite their straightforward mathematical
representation, power basis curves were early deprecated by designers as they were
considered impractical for design purposes. This is attributed to the algebraic nature of
the existing algorithms which are prone to round-off errors, along with the accompanying
coefficients that convey only little information regarding the geometry of the curve. To
this end, Bézier curves were introduced by Pierre Bézier [111, 37, 42, 75, 81, 72, 88], as
a design tool for the bodywork of cars. They are considered equivalent with polynomial
curves, yet remedy some of their disadvantages. The shape of the Bézier curve now
depends only on Control Points, which are Cartesian points that control the curves
shape, while allowing for a more natural design process and manipulation of the curve.
In addition, the augmented polynomial degree is tightly coupled to number of points
used for the representation of the curve, fact that automatically leads to smoother curves.
Unfortunately, this property of Bézier curves is at the same time their greatest merit, as
well as their major drawback, as the increased polynomial degree, leads to instability of

the algorithms. B-Splines were introduced [162, 54, 58, 149, 59] as a generalization of one
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span Bézier curves into multiple intervals. They disengage the number of shape function
of the curve from the polynomial degree, thus enabling local shape function support. In
addition to the partial control of the curves, abrupt changes of the curves’ geometry is
now allowed due to the introduction of the Knots which divide the curve into piece-wise
polynomial segments. Yet, the constantly increasing need of designers to reproduce ever
more complex shapes, rendered B-Splines insufficient as they cannot accurately represent
all conic sections. To this end, Non-Uniform Rational B-Splines (NURBS) technology
were introduced [180, 175, 142, 143], that incorporate a weight for each of the curve
control points. This extensions introduces a projection that allows for the accurate
description of more elaborate geometries. The limitation of NURBS arises due to the fact
that surface or solid geometries cannot be efficiently represented as the physical geometry
must be mapped into a linear, rectangular or cuboid domain in parameter space. As a
result, the burden is sifted to designer to partition the geometrical domain into NURBS
suitable parts. Each of these individual geometries defines a single parameter space
called Patch, that can have different attributes with its adjacent pieces thus rendering it
uncommon for their edges to coincide. T-Splines technology was recently introduced
[170, 169, 168] to remedy the deficiencies of NURBS. Specifically, T-Splines abolish the
tensor product parameter space structure of former technologies. This makes attainable
the water-tight connection between patches, while being the first technology that enables

true local refinement of the geometry.

Isogeometric Analysis (IGA) was introduced in [89] by T.J.R. Hughes in order to
address the need of a common development pipeline between CAD and CAE industries
in order to overcome geometry approximation issues that arise in analysis. The main
idea behind the method is the utilization of the underlying geometry mesh as a basis
for analysis. This concept renders the process of meshing the geometry obsolete, thus
minimizing the time needed for an analysis suitable discretization. These favorable
properties of IGA render it more efficient in various computational mechanics fields, such
as optimization problems [181, 122, 148, 147, 171, 136]. Due to the high smoothness of
CAD shape functions, the method has showcased significant advantages over conventional
approaches in fluid mechanics applications [79, 133, 21, 22, 23, 135, 134] as well, while
its utilization in structural dynamics applications [53, 65, 90, 30, 91] rendered favorable
results over its FEM alternatives. These initial works, were mainly focused on continuum
mechanics applications by utilizing the discretization of bivariate or trivariate domains

with CAD shape functions, such as NURBS and T-Splines later on. Apart from planar



and solid geometries, IGA is considered ideal for the analysis of shell structures, due to
its ability to accurately describe complex geometries. Shell theories are derived from a
dimensionality reduction of structures, for which one of the dimensions is significantly
smaller than the rest. In case of shells, the redacted dimension regards the thickness of the
structure. As a result, shell theories transform the three-dimensional elasticity equation,
into two dimensional domains, represented only by the midsurface of the structure. Two
major shell theory branches exist based on the thickness of the shell’s section. In case of
thick shells, transverse shear deformation is taken into account and thus Reissner-Midlin
theory is used, while for thin shells Kirchhoff-Love theory is more suitable. Even though
most industrial products belong to the thin shell case, its computational limitations
when formulated in the FEM framework, made Reissner-Midlin theory dominant in most
commercial FEM codes. This is attributed to the prerequisite of Kirchhoff-Love shells
for a minimum C! continuity between adjacent elements, which classical FEM cannot
efficiently provide, thus resulting to non-conforming meshes. Special care must be taken
for thin shell theory to be applicable in the context of FEM such as non-local formulations,
nodal enforcement of C'! continuity or even penalty method applied to selected material
points. The main benefit of IGA in this field is that the higher interelement continuity of
the utilized shape functions, enables a straightforward implementation of Kirchhoff-Love
shells. Specifically, the first isogeometric Kirchhoff-Love formulation was introduced in
[99], which introduced a geometrically non-linear, rotation-free element. Having [99]
as a basis, many material formulation where then coupled with it. For instance, [100]
extended the latter formulation to large strains and compressible and incompressible
hyperelastic non-linear material laws. Progressive damage models of composite laminates
in the frameowrk of isogeometric thin shells were explored in [61], while biological
membranes were investigated in [174]. In a similar fashion, the first plasticity models
applied to Kirchhoff-Love shells appeared in [7] and composite laminate materials
coupled with gradient enhanced damage models in [144]. Apart from the application of
different material in the Kirchhoff-Love theory, significant contributions were performed
in combining shells with different shape functions such as T-Splines in [39, 117, 40]
or rational triangular Bezier splines in [186]. Finally, different aspects of Kirchhoff-
Love shells were explored in a multitude of contributions, ranging from the coupling of
non-conforming Kirchhoff-Love shell patches [85, 82, 163], to membrane locking effects

addressed with mixed formulations.

All the aforementioned contributions, have their roots on the fact that a remarkable
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accuracy per degree of freedom is introduced along with IGA, which is mainly attributed
to the increased interelement continuity of the shape functions. Unfortunately, this
augmented accuracy comes at a compelling cost for the assembly of the resulting stiffness
matrices in case of Galerkin discretizations [92, 15].To this end, the efforts of the scientific
community have been shifted towards the development of computational effortless
alternatives. This process lead to the development of isogeometric collocation methods
[18, 11], which require the evaluation of a single integration point per shape function for
the computation of the stiffness matrix, thus alleviating the computational cost for the
assembly. Since its introduction a plethora of contributions studied the enforcement of
Dirichlet [44] and Neumann [60] boundary conditions, while at same time delving into the
method’s convergence and integration properties [160, 113, 66, 131]. The majority of the
published manuscripts explored the coupling of isogeometric collocation with structural
elements. Specifically, scientific areas such as Beams [28, 124, 125, 126, 20, 98] and Rods
[14, 17, 182, 183, 129] were extensively explored, as isogeometric collocation methods
were proven extremely capable at alleviating locking effects [29, 14]. In a similar fashion
new formulation for surface structural elements that utilize isogeometric collocation
methods for their integration were proposed, such as plate [150, 97, 139, 128] and shell
structural elements [31, 16, 101, 128]. In addition, due to their favorable properties,
isogeometric collocation methods are utilized for the modelling of computationally
demanding computational mechanics fields such as Phase-Field modelling [80, 159] and

dynamic applications [62, 30, 65].

As mentioned in the latest paragraphs, the strongest asset of isogeometric methods is
the increased interelement continuity of the utilized shape functions. In case of CAD,
this results in smooth and accurate representation of curves, while for computational
methods it provides smooth variation of the analysis characteristics. This property,
despite providing enhanced accuracy, adds a significant computational burden to the
solution of the resulting linear systems due to their reduced sparsity patterns. As a
result, efficient solution schemes for large-scale isogeometric applications are a necessity
for the establishment of IGA. In case of isogeometric Galerkin discretizations, various
methods have been proposed in order to address the solution of the resulting linear
systems. Initial publications were focused on assessing the relationship between solution
cost and degrees of freedom (dof) in case of IGA. Continuities ranging from minimum
CY of FEM to full CP~! continuity of IGA were studied in [51] to provide a theoretical

relationship between solution cost and polynomial order for the case of direct solvers, while
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MUMPS [8] and PARDISO [158] solvers provided the equivalent solution times. This
research was afterwards extended to iterative solvers, where the PCG solution algorithm
was employed with various preconditioners, such as diagonal Jacobi [140], Successive
Symmetric Over-Relaxation (SSOR) [45] and incomplete Cholesky factorizations [95]
in order to assess their computational cost in case of highly continuous isogeometric
discretizations. These investigations made the need for efficient solution schemes for
IGA even more profound, hence the scientific community redirected its efforts to the
development of efficient and scalable domain decomposition solvers. The first attempt in
this direction was performed by [55] where overlapping additive Schwarz preconditioners
were exploited for the solution of isogeometric elliptic problems. The latter work was
extended in [179] by providing Schwarz preconditioners in both primal and mixed
formulations for the case of the linear elasticity PDE. Balancing Domain Decomposition
by Constraints (BDDC) preconditioner for isogeometric scalar elliptic problems was
investigated in [27], which in [57] was paired with a novel scaling method. Isogeometric
Tearing and Interconnecting (IETI) was also introduced [106] as an isogeometric variant
of the well-known Finite Element Tearing Interconnecting Dual-Primal (FETI-DP)
method. In a similar fashion, isogeometric mortar methods were investigated in [35, 36],

in order to address the coupling of non-conforming subdomains.

Similar research initiatives addressed the solution of the linear systems emerging
from isogeometric collocation method, which despite alleviating the computational
cost for the formation of the resulting matrices, shift the burden to the solution of
their non-symmetric linear systems whose condition number grows rapidly in cases
of mesh refinement or augmented polynomial degree. To address this issue, several
methods have been proposed. In [25] overlapping Schwarz preconditioners accelerated
with GMRES [156] iterative method was studied. In this research, the non-symmetric
matrix was decomposed into a set of overlapping submatrices, while a coarse problem
was introduced based on an interpolation operator between the reference domain and
the tensor product structure generated from the univariate common points among
subdomains. The solution of nanolithography problems was investigated in [114], where
a multi-frontal solver was implemented for Graphic Processing Units (GPU) for the case
of one-dimensional isogeometric collocation. Finally, optimal multilevel preconditioners
accelerated by GMRES were investigated in [47], for collocation discretizations deriving

from second order elliptic problems.

The current research aims to address the efficient implementation of isogeometric
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methods in real-scale mechanical applicaions. Specifically, [173] proposes a family of
algorithms for the purposes of IGA, that exploit the advantages of iterative solution
schemes when combined with Domain Decomposition Methods (DDM), in the context
of isogeometric Galerkin discretizations. By introducing an appropriate modification to
the overlapping nature of NURBS shape functions, a robust and scalable preconditioner
is developed that minimizes the computational cost for the solution of large-scale
isogeometric problems. In this work, the PCG iterative solver is combined with the IETI
domain decomposition method, that showcases a considerable improvement compared
to existing solution techniques in case of positive definite symmetric linear systems,
while at the same time ensuring properly load balanced subdomains partitioning. In a
similar fashion, [178] introduces a non-overlapping decomposition of the non-symmetric
matrices deriving from isogeometric collocation methods. This allows development of a
preconditioner based on P-FETI-DP domain decomposition method. Thus, a two-level
algorithm is generated based on GMRES iterative method. The preconditioner utilizes
static condensation to minimize the global problem to the an interface problem among
adjacent subdomains. The interface problem which is also a non-symmetric matrix, is
then preconditioner by the first iteration of the FETI-DP method, which translates to
a coarse problem defined by the common degrees among more than two subdomains.
Numerical results indicate an enhanced performance of the proposed solution scheme,
compared to the most competitive alternative, the overlapping additive Schwarz method.
Finally, in terms of modelling of real-life structures, [177] extends existing isogeometric
thin shell formulations, to incorporate constitutive laws generated by stochastic multiscale
analyses. The integration of the constitutive law is performed through the thickness
of the shell, where an arbitrary Representative Volume Element (RVE) defines the
microstructural topology of the composite material under consideration. Numerical
results demonstrate the applicability of the proposed formulation in both benchmark and
real-scale numerical examples, thus rendering this formulation ideal for the simulation of

shell structures in combination with composite materials.

0.2 OUTLINE

This thesis is organized in 6 chapters as follows:
Chapter 1 presents the basic concepts of CAD shape functions, which lay foundations
for the establishments of Isogeometric Analysis method. With starting point being
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the polynomial curves and their equivalent shape functions, this Chapter analyzes the
historical evolution of geometrical representations, browsing through Bézier curves,
B-Splines, NURBS and T-Splines and the reasons that lead to the establishment and

equivalent deprecation of each individual methodology.

Chapter 2 introduces the Isogeometric Analysis method. In analogy to Finite Elements,
the transformation of the mesh-less geometrical representation of CAD objects, into
analysis related entities such as elements and integration points is presented. Elemental
quantities in each shape function category are addressed explicitly, while their application
on the linear elasticity PDE is examined for continuum mechanics, structural shell
elements and the strong form of the PDE via the utilization of the isogeometric collocation
method.

Chapter 3 provides the basic concepts of solution schemes utilized for the efficient
solution of the linear systems deriving from isogeometric analysis. Two major categories
of iterative and domain decomposition solution schemes are studied, thus introducing
the concepts of robust and efficient solution methods for tackling both symmetric and
non-symmetric linear systems. Specifically, for the case of iterative solvers, PCG and
GMRES algorithms are studied, while the isogeometric equivalents of FETI-DP, PSM
and P-FETI-DP method are elaborated.

Chapter 4 addresses the solution of symmetric positive definite linear systems de-
riving from the isogeometric Galerkin method for the case of B-Splines and NURBS
discretizations. The increased interlement continuity that accompanies isogeometric
analysis, along with the augmented shape function polynomial degrees, lead to a severe
deterioration of the solution performance of the resulting linear systems. By proposing
an appropriate non-overlapping decomposition of the domain into subdomains, a scalable
and robust domain decomposition preconditioner emerges, that accelerates the PCG
method. Numerical results showcase the efficacy of the proposed solution scheme that
enables the subdivisioning of a model in an arbitrary fashion that ensures properly load
balanced subdomains, while offering a substantial computational improvement compared
to existing methods.

Chapter 5 addresses the solution of non-symmetric linear systems arising from the
integration of the computational domain using the isogeometric collocation method.
Additional to the increased population and bandwidth of the resulting matrices, in-
troduces with the isogeometric Galerkin method, collocation significantly burdens the

computational cost for the solution of the resulting linear systems due to their non-
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symmetric nature. To this end, a family of primal non-overlapping domain decomposition
solution schemes are studied in this chapter in order to provide a scalable and robust
preconditioner that accelerates the iterative GMRES method.

Chapter 6 examines the performance of isogeometric shells under the prism of semi-
concurrent multiscale material modelling. Specifically, existing isogeometric thin shell
formulations, employing Kirchhoff-Love shell theory, are extended to incorporate detailed
modelling of advanced composites. A nested IGA-FEM multiscale analysis scheme is
proposed, in which IGA is used for the discretization of the macroscopic level and
FEM for the discretization of the corresponding RVE. As a result, the plane stress
material required for the integration of the shell stiffness is derived via a computational
homogenization procedure, thus taking into account the material microstructural topology.
Numerical results, showcase the effect of detailed material modelling to the overall
mechanical performance of the shell structure, as well as the applicability of the proposed
formulation to real life applications.

Finally, Chapter 7 provides the conclusions drawn from this research and presents a

summary of the contributions.
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Computer Aided Design

1.1 INTRODUCTION

Until the early 20th century, designers were creating blueprints by hand utilizing flexible
wooden or metal stripes to design any curves needed. The design process required
extensive effort as any manipulation or correction to the design might lead to a re-
iteration of the whole blueprint. Smooth polynomial lines (Splines) were introduced in
1960s with Bézier curves, which were simultaneously developed by Paul de Casteljau
and Pierre Bézier and used for the design of automobiles. B-Splines and NURBS were
introduced in the 1980s and were extensively developed and used in the industry. Recently,
the design technology of T-Splines was proposed by Sederberg as a generalization of
NURBS that can accommodate arbitrarily complex geometries. The mathematical
breakthroughs of the design technology as well as the rapid evolution of the personal
computer led to the evolution of Computer Aided Design (CAD) which replaces the

manual drafting process and thus minimizes the required effort.

In this chapter, the evolution path of CAD from polynomial curves to advanced Splines
is presented. The aim of this review is to introduce the basic principles of CAD shape
functions, curves, surfaces and volumes that will be utilized throughout the rest of the

manuscript, as well as the reasons that lead to their establishment.
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1.2 POLYNOMIAL CURVES

The fundamental representations of curves and surfaces, in geometrical modeling, are
performed with the aid of implicit and parametric equations. The implicit equation of a

curve in the Cartesian plane XY is given by an equation of the form:

f(z,y) =0 (1.1)

Equation 1.1 describes the relationship between the x and y coordinates of every point

that lies on the curve. An example of a ellipse described with an implicit equation forms

isf(x,y)zg—z—k%j—lzo.

Figure 1.1: Ellipse

In contrast to the implicit case, the parametric form provides a separate equation for

each of the coordinates of the curve points as functions of an independent parameter.

Ct) = (z(t),y(t)) to<t<t (1.2)

With the aid of the parametric form, the equation of the ellipse can be written as
follows:

z(t) = a- cos(t)

(1.3)
y(t) = b- sin(t) 0<t<2rm

Comparing these two equation forms, it is apparent that the implicit form cannot

provide directly points that belong to the curve while it is highly depended on the

14



coordinate system. As a result, the transformation to alternative coordinate systems is
quite cumbersome. On the contrary, in the parametric form, any point of the curve can
be imminently derived from the equations, even if the equations describe a closed or a
multiple valued curve. The basic disadvantage of the parametric form is that it is not
straightforward to determine whether a random point belongs to the curve. All free form
curves presented in this chapter are based on the parametric representation of curves.
One of the most common types of parametric curves are power basis functions, where
the curve equation is a sum over powers of a parameter u, multiplied by equivalent poly-
nomial coefficients a;. The general equation form that provides the power representation

of curves is:

Clu) = Za - (1.4)

1.2.1 FERGUSON CURVES

Ferguson curves were proposed by Ferguson in 1964 [74] to aid the design of aircraft
surfaces. Ferguson curves are a specific category of third degree power basis curves. A

simple third degree power basis curve is defined as

Cu)=ap+ai-ut+ay-u’>+az-uv> 0<u<l (1.5)

3

In the case of Ferguson curves, functions 1, u, u?,u® are replaced the Hermite polyno-

mials as follows:

1 —3u? + 2u®)

3u? — 2u®)

1 s replaced with (
u is replaced with (
(1.6)
u? is replaced with (u — 2u® + u®)
(

u® is replaced with (—u? + u®)

For this choice of polynomial functions the polynomial coefficients known and are the
positions and derivatives of the curve at its initial and final point. Specifically, ag = C(0),
a; = C(1) and as = C’(0) az = C'(1) equivalently. As result eq. 1.5 with the aid of 1.6

becomes:
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C(u) =(1 — 3u® +2u?) - C(0) + (3u® — 2u®) - C(1)+ .
(u—2u? +u?) - C'(0) + (—u? +u®) - C'(1) ()

The basic deficiency of a Ferguson curve is that is represented only by two points and
as a result a multitude of n-1 Ferguson curves are needed to interpolate n points. In
order to merge consecutive Ferguson curves, compatibility of the positions, derivatives
as well as C? continuity are required. This translates the solution of a system with n-2
equations in order to determine the internal derivative values for internal points. A
generalization of the Ferguson curves for arbitrary degree is attained by Hermite curves,
where a (2k+1) degree curve is defined by utilizing k derivatives at the start and end

point of the curve.

The power representation of curves was abandoned early as it was considered imprac-
tical by designers due to their significant disadvantages. The most important one is that
they are considered unnatural for interactive shape design, as the polynomial coefficients
a; convey little information about the geometry of curve. In addition, most algorithms for
the evaluation of polynomial curves have an algebraic background rather than geometric
one, while they are prone to round-off errors when the polynomial coefficients vary

greatly in size.

1.3 BEZIER CURVES

Bézier curves were introduced by Pierre Bézier in the 1960s [111] as a design tool for the
bodywork of cars. They are considered mathematically equivalent with polynomial curve
forms as they use polynomials for the coordinate functions. A thorough investigation of
Bézier curves theory can be found in [37, 42, 75, 81, 72, 88].

Bézier curves remedy the disadvantages of power basis polynomials. The shape of
curve depends only on the Control Points of the curve, thus allowing a more natural
design process and manipulation of the curve. At the same time, the number of points
used for the definition of a Bézier curve n is tight coupled to its polynomial degree
p (p=n-1). This leads to smoother curves as higher continuity is achieved due to the

increase of the polynomial degree. The general form of a Bézier curve is given by:
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C(u) =) Bin(wP 0<u<l (1.8)
where B; ,, are the Bernstein polynomials given by:

Bin = D(n,i)u’(1 —u)"™" (1.9)
and D(n, i) the binomial coefficients.

n!

D(n,1) = 5=

(1.10)

Figure 1.2 gives an example of the Bernstein polynomials used for various polynomial
degrees. As noted, there is an immediate connection between the polynomial degree of the
curve and the number of shape function or equivalent Control Points. For instance, for
degree p = 2, a multitude of three Bernstein polynomials are required for the evaluation
of the curve. In addition, by examining the form of the Bernstein polynomials the
following properties are apparent. The shape functions are defined in the span [0, 1] and
the shape functions are symmetric across x=0.5 axis, their values are non-negative and
they abide to the partition of unity property.

Figure 1.3 illustrates an example of a cubic Bézier curve, where some principal
properties are illustrated. Initially, the curve is interpolatory to the first and last Control
Points and tangential to the Control Polygon, depicted with green line segments, at the
edges of the curve. Since Bernstein polynomials are symmetric across the middle of the
parametric domain, this property is also transferred to the curve and thus an inversion
of the curve’s Control Points does not affect the shape of the curve. A manipulation
of a Control Point affects the entirety of the curve, as all Bernstein polynomials span
throughout the parametric domain, while the most affect area of the curve is near the
maximum value of the equivalent Bernstein shape function affected.

The major drawback of Bézier curves is the immediate link between polynomial degree
and the number of Control Points. Specifically, since p+1 Control Points are required
for the definition of the Bézier curve, p being the polynomial degree, it is apparent that
an increase of the polynomial degree raises the number of Control Point and affects the

stability of the algorithms. In addition to this, as Figure 1.2 illustrates, shape functions

*Created with Geogebra
tCreated with Desmos
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Figure 1.2: Bernstein polynomials for various polynomial degrees.*

span throughout the parametric domain. This severely affects the geometric modeling

process as even minor alterations of the Control Points affects entirety of the curve.

1.4 B-SPLINES

B-Splines were introduced in [162] as a generalization of one span Bézier shape functions
into multiple consecutive intervals. They are considered an extension of Bézier curves
that were developed to alleviate their deficiencies. Specifically they introduced the local
support of shape functions, thus allowing partial control of the curves, while abrupt
changes of the curve continuity are allowed with Knots.

Since B-Splines are considered a superset of Bézier curves, there is an immediate
transformation between the two types. Specifically, each B-Spline curve can be split
into a multitude of Bézier sections that are connected with C? continuity, while the new
Control Points of each Bézier curve section are calculated with the aid of the existing

B-Spline Control Points. Vice versa, a set of Bézier curves can be joined together to
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Figure 1.3: Bézier curve of polynomial degree p=3, created with 4 Control Points’

form a single B-Spline curve. The prerequisites for this merge are for the Bézier curves
to have the same polynomial degree and C? continuity between them, while the B-Spline

Control Points are calculated from the existing Control Points of the Bézier curves.

1.4.1 KNOT VALUE VECTOR

A knot value vector is defined as a sequence of non-diminishing numbers. It is a
generalization of the parent element [-1, 1] that defines the parameter space in both
isoparametric Finite and Bézier elements. At this point, it is important to distinguish
between the terms Knot Value Vector and Knot Vector that will be used for the definitions

from now on.

Knot Value Vector: Non decreasing sequence of parametric coordinates that define

the parametric space.
Knot Vector: The subset of unique values contained in the Knot Value Vector.

An example to clarify the difference between the two vectors is provided below for

polynomial degree equal to 3.
Knot Value Vector: ==1{0,0,0,0,1,2,3,4,4,4,4}
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Knot Vector: = ={0,1,2,3,4}

In the example of the Knot Value Vector, the initial and the final values are repeated
p+1 times, where p is the polynomial degree of the shape functions. This repetition
indicates the edges of the parametric domain. The Knot Value Vectors that posseses this
property are called Open Knot Value Vectors. Another category of Knot Value Vectors
are the Uniform Knot Value Vectors. The latter are defined as an ascending sequence of
equidistant parametric values. Even though the definition of an Open Uniform Knot
Value Vector seems to be a contradicting term based on the latter two definitions, in
scientific literature this terms is used to describe the internal values of the sequence,

excluding the initial and final values along with their multiplicity.

1.4.2 DB-SPLINE SPACES

The definition of B-Spline entities and their NURBS generalizations is based on three

spaces.

e Cartesian space
e Parameter space

e Index space

The Cartesian space is the best perceivable space among the three, as curves, surfaces
and solid entities are represented in it. On the other hand, Parameter and Index space
are based on the parametric nature of B-Spline objects and thus will be explained in

detail in the following subsections.

PARAMETER SPACE

Parameter space is the space that defines the parametric domain of an isogeometric
entity. Complex Cartesian geometries such as curves, surfaces or solids are transformed
into line segments, rectangles and cuboids respectively. The parametric axes &, n, ¢ are
defined with the aid of the equivalent Knot Vectors per parametric direction. Specifically,
given a Knot Vector Z' it’s minimum and maximum values represent the edges of the

domain while internal values define the Knots. In case of B-Splines entities of higher
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dimensions, univariate Knots are extended throughout the rest of the parametric domain

for all remaining axes and form knot lines, according to the full tensor product property.

Figure 1.4: Parameter space defined by the Knot Value vector Z = {0,0,0,1,2,3,4,5,5,5}. Blue
circle indicate the Knots, while orange rhombi the parametric positions of the Control Points.

INDEX SPACE

Index space is an auxiliary space of the B-Spline design technology. It is mainly utilized
to represent the values of the Knot Value Vector in equidistant positions, regardless of
their multiplicity. It mainly serves as a tool to determine the support of shape functions
and the parametric coordinates of the Control Points as the middle of the shape function

support.

@ @ + @ * L 4 * @ @ L 4 + @ * @ 4
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Figure 1.5: Index space defined by the Knot Value vector = = {0,0,0,1,2,3,4,5,5,5}. Blue circle
indicate the Knots, while orange rhombi the parametric positions of the Control Points.

1.4.3 CONTROL POINTS

In computer aided design, Control Points are defined as the Cartesian points that
determine the shape of the geometry. They were initially introduced in Bézier curves,
where a multitude of p+1 Cartesian points are required to define it, p being the
polynomial degree. From this set of Cartesian points, the initial and the final one are
interpolatory to the curve. As for the remaining ones it is not necessary for them to lie

on the geometry.
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Figure 1.6: Quadratic B-Spline curve with Knot Value Vector Z = {0,0,0,0.25,0.5,0.75,1,1,1}. *

Figure 1.6 provides an example of a quadratic B-Spline curve, generated based on
the Knot Value Vector = = {0,0,0,0.25,0.5,0.75,1,1,1}. A multitude of 7 cyan circles
representing the Control Points are needed to define the curve. The Control Points are
interconnected with a yellow polygonal line representing the Control polygon of the curve.
As already stated at the initial point Py and final point Py the curve is interpolatory
and tangential to the Control polygon. In addition, 5 blue dots that lie on the curve
represent the Cartesian positions of the Knots Z' = {0,0.25,0.5,0.75, 1} that define the
discretization of the curve into piecewise polynomial parts.

Similar to Bézier curves, B-Splines are also defined by a set of Control Points. Assuming
a B-Spline curve of degree p, defined by an Open Uniform Knot Value Vector that contains
k values, the necessary number of Control Points to create it are n=~k-p-1. There is an
one-to-one equivalence between Control Points and the shape functions of the curve in
both B-Spline and Bézier curves. In addition, by utilizing the Greville abscissae, the

parameteric coordinates of the Control Points can be computed

CP _ Z£:1 §i+1

¢ . (1.11)

fCreated with UTCS-BSpline Demo
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Figure 1.7: Quadratic B-Spline shape function with Knot Value Vector = = {0,0,0, 1,2, 2,3, 3, 3}.
Points that lie on the parametric axis £ show the parametric coordinates of the Control Points. Color
equivalence maps shape function with respective Control Point. §

Figure 1.7 illustrates the equivalence between shape functions and Control Points in
the parametric space. The number shape function defined by the Knot Value vector
£=1{0,0,0,1,2,2,3,3,3} isn=k—p—1=9—2—1 = 6, where k is the number of Knot
Value and p the polynomial degree. Utilizing eq. 1.11 the parametric coordinates of
the Control Points are derived which are [0,0.5,1.5,2,2.5, 3]. Both shape functions and
Control Points are color coded to showcase their one-to-one equivalence, while as it can
be observed the parametric position of each control point coincides with the maximum

value of its equivalent shape function.

1.4.4 B-SPLINE SHAPE FUNCTIONS

Given a Knot Value Vector = = {{1,&2, ..., &, ...; ntpr1} with n+p+1 values, where p
is the polynomial degree of the curve and n the number of Control Points that define
its geometry, the shape function are computed recursively, with the aid of Cox-de Boor

recursive formula [54, 58] starting with piecewise constant shape functions

0, if & <E&<&it1
Nio(§) = (1.12)
1, otherwise

§Created with Desmos
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based on the formerly evaluated constant functions, piecewise functions of higher

degree are evaluated with the assumption that % =0

Nip-1(§) + Sipr1 =6 Nit1p-1(§) (1.13)

Nip() = S Sivp — &

I '

1.4.5 MULTI-VARIATE B-SPLINES

B-Spline shape functions abide to a full tensor product nature. This means that for the
evaluation of multivariate B-Splines a multitude of univariate shape functions can be
combined. In addition, all properties of univariate B-Splines are retained in multivariate
cases.

Two-dimensional B-Splines Rﬁ ’]‘-1(5 ,m) are calculated as a tensor product of two uni-

variate shape functions NP () and M ](-1(17) of parametric axes £ and 7 equivalently.

RYH(&m) = N7 (&) - M (n) (1.14)

Similarly, three-dimensional B-Splines are calculated as a tensor of three univariate

shape functions N?(§) , M ;-1(17) and L7 (¢) of parametric axes &, n and ¢ equivalently.
Ry (&m, €)= NP (€) - M (n) - Li.(C) (1.15)

1.4.6 B-SPLINE SHAPE FUNCTION PROPERTIES

According to [143], B-Spline shape functions possess the following properties.

1. Local Support

Local support is a result of the Cox-de Boor recursive algorithm and means that
shape functions are non-zero in certain knot spans of the parameter space. In

mathematical notation this is expressed by

sz(f) =0 VE ¢ (&, Civpti] (1.16)

Specifically, observing Cox-de Boor recursive algorithm, it is apparent that for the

definition of a univariate shape function of degree p, two consecutive functions of
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degree p-1 are needed. In a similar fashion, the definition of two consecutive func-
tions of p-1 polynomial degree, requires three functions of degree p-2. Inductively,
p+1 constant functions are needed for the evaluation of a shape function of degree
p. Since each constant function has support of one knot span, the support of shape
function of degree p is the union of all constant B-Splines it depends on, hence
p+1 consecutive knot span. This dependency of higher degree shape functions
from lower degree ones is depicted in Figure 1.8, where it can be seen that four
constant shape functions, namely N9 (&), N{(€), NY(£), NQ(¢) are required for the
definition of the support of the third degree shape function N3 (&).

N5'(§)

S Ty

Ng (@)

S

N7 (©)

Ng ()

Figure 1.8: Shape functions of lower degree required for the creation of N3 (&)

2. Non-negativity
N7 (€) =0 (1.17)

3. Partition of unity

SN =1 (118)

i=1



4.

0.8
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CP~™™ continuity across Knots with multiplicity m.

This property is a product of the Cox-de Boor recursive formula along with the
multiplicity of the Knots. Specifically, given a Knot Value Vector that defines the
parametric space of a B-Spline curve, the equivalent Knot Vector can be extracted.
The multiplicity m of a knot, is the number of times this value appears in the
Knot Value Vector. If the multiplicity of a knot is greater than one, then the shape
function has CP~™ continuity, which means that at this point the shape functions
has p-m continuous derivatives. The minimum continuity observed in case of an
Open Uniform Knot Value vectors is m=p+1 for the initial and the final Knots,
p being the polynomial degree. This translates to C?~™ = C~! continuity that
indicates the edges of the parametric domain. In case of internal Knots, continuity
less than C? is not acceptable. As a result, knot values can be repeated at most p

times. Note that as continuity decreases, shape functions tend to become steeper.

VX

Figure 1.9: B-Spline shape functions continuity across a parametric domain defined by the Knot

Value Vector = = {0,0,0,0,0,1,2,2,3,3,3,4,4,4,4,5,5,5,5,5}

Figure 1.9 provides an example of B-Spline shape functions with varying continuity
at each knot. The initial and final knot are repeated p+1 times thus indicating
the ends of the parametric domain. Internal Knots are displayed with continuity

ranging from C? to C° depending on the multiplicity of the equivalent knot value.
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The dependency of the shape function smoothness on the knot multiplicity is also
apparent in this figure, as the higher the multiplicity the lower the smoothness of

the function, with C° being the extreme case where kinks appear.

These properties of B-Spline shape function were extensively discussed in [162, 54, 58,
149, 59].

1.4.7 B-SPLINE DERIVATIVES

Apart from the shape function that are utilized for the generation of the curve geometry,
their derivatives are also widely used in computational geometry and computational
mechanics applications. As a result, this subsection will provide the basic of B-Spline
derivatives that serves as a basis for advanced spline technologies that will be presented
in the following sections. Similar to B-Spline basis functions, B-Spline first derivative is

obtained from the following recursive formula:

i P b p—1 _ b el
dﬁNZ €)= Eivp— & ) Sitpr1 — &it1 Nix1 (©) (1.19)

this equation can be generalized for the k" derivative as follows:

k
d—Nf(ﬁ) Z arj - NPLF(€) (1.20)

where the terms ay ; are given by:

app =1

ak—1,0
Sitp—tr1 — &
k-1, — Qk—1,5—1

ak.0 =

(1.21)

ak,j = forj=1,..,k—1

Citptri—k+1 — &
—ak-1,k-1

apfp = ——————
Eitpr1 — itk

In case of multivariate B-Splines, their partial derivatives are obtained by applying

the quotient rule.
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8 d NP q
st = (V@) o)

SR = V7@ () (1.22)

Derivatives of trivariate shape functions can be obtained in a similar manner.

9 pq, d q r

SR €m0 = (GN1© ) M) £4(0)

SR €00 = N - (o0 ) - i) (1.23)
Se R €00 = N1©) - i) - (2150

1.4.8 B-SPLINE GEOMETRIES

As already described for Bézier curves, B-Splines geometries can be created by combining
B-Spline shape functions with their corresponding Control Points. As a result, curves,
surfaces and solid parametric geometries can be generated using the detailed processes

described below.

B-SPLINE CURVES

A p" degree B-Spline curve is defined by

S HGIRINE ZNP WPY, & <E€< nip (1.24)

(1zn) (nz3) i=1 (123)

where {Pl} are the Control Points’ Cartesian coordinates of the curve and {N P(e }

the pt" degree B-Spline basis functions defined by the open Knot Value vector = =
{517 €27 ey §n+p+1}
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B-SPLINE SURFACES

A B-Spline surface is obtained by taking a bidirectional net of Control Points, two Knot
Value vectors = and H with respective polynomial degrees p, q and the tensor products

of the univariate B-Spline functions:

ZZR 577{13,3} ZZN” m{P;} (1.25)

i=1 j=1 i=1 j=1 (123)

B-SPLINE SOLIDS

In the same fashion, a B-Spline volume is obtained by taking a three-dimensional net of
Control Points, three Knot Value Vectors, =, H, Z, with respective polynomial degrees

P, g, r and the products of the univariate B-Spline functions:

l

ZRf]ql: é‘ 777 {P’j’k}

k=1 (123)

3

I
NE

(l‘,y, )_ (5 n, C)

@
I
—
<.
I
—

(1.26)

3
=l

I
Ms

NP( )M {P,]k}

1k (1z3)

Il
—

=17

B-SPLINE GEOMETRY PROPERTIES
B-Spline geometries abide to the following properties:
1. B-Spline curves are a generalization of Bézier curves.
2. B-Splines are piecewise polynomial curves.
3. Each basis function corresponds to a certain Control Point.

4. The first and the last Control Point as well as internal Control Points corresponding

to C° continuous basis functions are interpolatory to the curve.
5. Moving a Control Point only affects part of the curve.

6. The Control Polygon is a piecewise linear approximation of the curve.
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7. Any transformation applied to the curve can be applied directly at the Control

Points.

1.5 NURBS

Existing CAD technologies such as Bézier and B-Spline curves allowed designers to
create complex geometries while having the ability to locally control the geometry. Yet,
the constantly increasing need of designers to accurately reproduce even more complex
shapes rendered these technologies unable to cope with the demands. Even though
linear or parabolic curves are precisely described by B-Splines, other conic sections such
as circle, ellipse or hyperbole are only approximated. To remedy this drawback, Non
Uniform Rational B-Splines were introduced [180, 175, 142]. The rational curves that
NURBS are based on, are introduced with the incorporation of a weight for each of
the Control Points that define the geometry. This transforms the non-homogeneous
coordinate space (X,Y,Z) of Bézier and B-Splines curves to a homogeneous coordinate

space (X,Y,Z,W) thus introducing a projection.

w

Figure 1.10: Projection of a non-rational B-Spline curve to the W=1 plane to create a Rational
B-Spline. 1

ISource: Wikimedia Commons
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Figure 1.10 provides an example of the projection of a curve from R3 to R2. Specifically,
a non-rational 3D curve C" (¢) is defined with 3D Control Points P = {XW YW ZW},
The rational curve is calculated by projecting both the non-rational curve and the
projective Control Points onto the plane W=1, thus producing the equivalent NURBS
curve C(¢) and the 2D Control Points. The coordinate Z"W of the projective Control
Points define the weights w; of the resulting NURBS curve, while the 2D Control Points

coordinates are defined by

Xy

This concept can be generalized for any geometries of arbitrary dimensions. Thus, in

(1.27)

order to create an d-dimensional Rational B-Spline, a (d+1) non-rational equivalent is

required, hence defining the projection R — R4,

1.5.1 NURDBS SHAPE FUNCTIONS

In a similar fashion to B-Splines, in order to compute the shape functions of a NURBS
curve, a Knot Value Vector and the polynomial degree are needed along with the weights
w; of the Control Points.
NP (€) - wi
RP(&) = 0 —— 1.28
where NP () are the equivalent p'" degree B-Spline shape functions. The denominator

is called weighting function W () and is defined as:

W) =Y NI(&w; (1.29)
=0

As a generalization of B-Splines, NURBS maintain all of their properties, most
significant among them, the full tensor product nature. As a result, NURBS shape
functions of higher dimensions are calculated as tensor products of univariate NURBS

functions. Specifically, for the two-dimensional case

N7 (€) - M (n) - wij

RPI(En) =
J Sy Sy (N2 M) - wiry )

(1.30)
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and the equivalent weighting function:

Wigm =D > { N - M) - wiy } (1.31)

i'=1j'=1

Similarly, the tensor product is expanded for the three-dimensional case.

NY(€) - Mj(n) - Li(C) - wijk

RIS (€. C) = (1.32)
1,9,k A5 n m r
S Sy Shomy {NE(E) - MY (n) - Ly - wirgne |
the weighting function is now defined as:
n m l
WEn )= > > { V) Mim) - Ly - wigo | (1.33)

i'=1j'=1k'=1

1.5.2 NURBS SHAPE FUNCTION DERIVATIVES

By application of the quotient rule to eqs.1.28-1.33 the derivatives of the NURBS shape

functions are calculated. For the 1D case, the first derivatives are obtained by

J (J‘éW(é)) W) - (C;'QW@)) - NP(€)
dngf(g) = W({)Q (1'34)
where
e =S (Lare) - w
O =3 () w (1.35)
For two-dimensional shape functions:
o (#w@) e wien - (ewien) o M
o ea (&1) = W(E,n)? Y
(1.36)
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0 [ d

S W(gn) = CNP(E) ) M) - wyg (1.38)
e > Z.leZ:;(d& > s

o ~So v (e Wi

€ = 33N (-0t - s (1.39)

Equivalently, first derivatives of three-dimensional shape functions are evaluated as

follows:

9 (J‘éNf(é“)) M () - LE(C) - W(E1,€)
SR (6,m,0) = : .
o8 W2(£7,0)
(&W(&U,C)> L NP(E) - M(n) - Li() (1.40)
) N2(©) - (#MI0) - L©) Wien.©
7Rf7q}:(§7777 C) = 5 _
on W2(£,7,€)
(a‘?,W(fm, C)) L NP(€) - MI(n) - Li(C) (1.41)
W2(¢,n,¢) gk
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o O M) (£100) Wm0
ac Rigi (&m0 = PO _
(wien0) -5t 2410 (142

W2(E,7,C) Tk

For the sake of plenitude of the thesis the second derivatives of two-dimensional
NURBS shape functions are also provided, since they are utilized in Isogeometric

Analysis formulations in the following chapter.

P e [ANPE©) NP FW(E)
a@Riﬂ“’")‘(W(g,n) P wrew
VIO oW ien) | NI©) - (&) ity
W2(¢,m) W3(€,m) A
o2 M) M) ZW(E )
WR%I(&??):N?(&)'(d;V(S,n) -2 WQ(Sa,nn) -
M (n) 8,,2w<5,n>+2Mf(n>-(£7w<§,n>) LG
W2(¢,n) W3(€,n) Y
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with weighted Control Points P, in similar way to B-Spline entities.

€D ) W2(&,m)
M@%M() W(En)  NP(E)M (n) gl W (€, m)
W@) W2(E, )
LNIEOMIMEWEmaWEnY
W2(¢,n) o

where

gz 0=323 (Ge) o v

i=1 j=1

8 Zn:iN ( f(ﬁ)) - Wi

=1 j=1

5 WiEm) ii (jgsz ) : ((;Mf(n)) Wi

=1 j=1

1.5.3 NURBS GEOMETRIES

(&) =) _RI()-P
=1
=> D Rif&n P

i=1 j=1

n

V(£n,¢) = ZZ%%M,WM
k=1

=1 j=1

35

(1.45)

(1.46)

(1.47)

(1.48)

NURBS geometries are created by utilizing NURBS shape function R in combination
The following

equations provide the formulas for the creation of NURBS curves, surfaces and volumes.

(1.49)

(1.50)

(1.51)



o

(a) Curve (b) Surface

(c) Solid

Figure 1.11: Nurbs entities

1.5.4 NURBS PATCHES

During the design of a complex structure, several issues arise with the ability of B-Spline
and NURBS design technologies to describe them. The most common issue is that the
whole geometry cannot be described with the use of a single line, rectangle or cuboid
in parameter space. To circumvent this, a multitude of such parameter spaces have to
be combined in order to design efficiently and accurately the desired geometry. Each
independent geometry defined only by a single parameter space is called a Patch. Since
each of the individual NURBS patches have different attributes, it is uncommon for their
common edges to coincide. As a result, their properties have to be revised in order for

the patches to be conforming.

Figure 1.12a provides an example of a complicated geometry designed with 18 separate
patches. Figure 1.12b illustrates the same patches merged into a single entity. In this
case, special care was taken for the coinciding edges to have the same polynomial degree
and Knot Value Vector in order to achieve a seamless interconnection. Unfortunately, in
most cases, even this treatment is not sufficient to ensure a watertight connection, thus

a new design technology had to be introduced.

36



b

(a) Separate patch geometries (b) Single merged entity

Figure 1.12: Nurbs conforming patches before and after merging into a single CAD entity.

1.6 T-SPLINES

NURBS is an established CAD technology that has been extensively researched by the
computational geometry industry and is widely used by designers. Yet, this design
technology is accompanied by several drawbacks, the most profound of which is that
they achieve only C° across patch boundaries. In case two NURBS patches do not share
a common boundary curve, even the aforementioned C? is not attainable thus making
the coupling laborious as several knot insertions to a Knot Value Vector of the common
edge are required to render them compatible. The knot insertion operation in a two- or
higher-dimensional patch is a procedure that propagates throughout the domain. This
results to an addition of a series of Control Points adding a significant burden to the
geometrical modeling procedure. In order to circumvent these deficiencies, T-Splines
technology was introduced [170, 169, 168] to enable local refinement and water-tight

connection of patches.

1.6.1 T-SPLINE SPACES

In contrast to B-Splines and NURBS shape functions that are defined based on global
Knot Value Vectors, T-Splines introduce a local Knot Value Vectors for each shape
function, which are inferred from a global structure, thus rendering them independent of

each other. In contrast to B-Splines and NURBS where parameter space was utilized
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Figure 1.13: Example of a T-Spline object.

for the calculation of shape functions and index space was auxiliary, this order is now

reversed.

INDEX SPACE - T-MESH

For two-dimensional entities, the Index space is represented as a rectangular tiling of R?,
that permits vertices with multitude converging edges not equal to four. These vertices
are named T-junction due to their shape. In contrast to NURBS, the Index space plays a
major role in T-Splines as all basic variables, such as Knot Value Vectors and parametric
Control Points, needed for the computation of the shape functions are calculated here.
Note that lines in the T-mesh correspond to knot indices. Given a T-mesh, a polynomial
degree for each parametric direction is then selected.

Figure 1.14 provides an example of such a T-mesh. it is apparent that the tensor
product nature of B-Splines and NURBS, is no longer present in T-Splines and as a
result the calculation of the shape functions is no longer based on a global Knot Value
Vector for each axis. On the contrary, local Knot Value Vectors are derived from the
T-mesh layout. Similarly, the parametric positions of the Control Points called Anchors

are found indirectly as the center of the equivalent basis function support.

PARAMETER SPACE

Similar to NURBS, the parameter space of T-Splines is created by collapsing spans

of each parametric direction with zero distance. As a result,the T-mesh structure of
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Figure 1.14: T-mesh of a T-Spline. Positions of the Control Points are depicted in red circles.

the index space is retained, yet some knot lines are merged. The final layout of the

T-junctions appearing in the parameter space, provides the final Knots of the T-Spline.

Figure 1.15 provides an example of the T-Spline parameter space configuration. In
addition to the Anchors positions found in the Index space, the Parameter space also
displays the positions of the Knots at each remaining T-junction vertex of the parametric

domalin.

1.6.2 ANCHOR-CONTROL POINT

In order to define the support of each shape function and the local knot vector accordingly,
the parametric positions of the Control Points called Anchors must be defined. As
illustrated in Figure 1.16, anchors lie on different positions of the T-mesh, depending
on the polynomial degree chosen for each parametric axis. In case of odd polynomials
degree for axes, Anchors lie on the vertices defined by the T-mesh. When both odd and
even degrees are present, Anchors lie on the center of horizontal or vertical line segment.

Finally, when even degree are chosen for all axes, Anchors lie on the center of rectangles.
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Figure 1.15: Parameter space of a T-Spline. Anchor are depicted in red circles and T-junctions as
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(d) Odd degree for both axes

Figure 1.16: Examples of Anchor positions for odd/even degrees.




1.6.3 LocAL KNOT VECTORS

Generally, every Anchor contains information about the local Knot Value Vectors of
each shape function as they are directly related. In order to acquire the local Knot Value
Vector p+2 value have to be computed. Similar to the definition of Anchor positions,
special cases for odd/even polynomial degrees must be taken into account.

In case of odd polynomial degree for both axes and given an Anchor s, = (&4, 7,) that
lies on a vertex of the T-mesh, the local Knot Value Vector for axis &, =, is computed
from the following procedure. Initially, the length of the Knot Value Vector is defined
as p+2, which is an odd number as the polynomial degree p is also odd. The middle
position of the vector is occupied by the Anchor’s parametric coordinate &,. In order to
fill the first half of the Knot Value Vector, a horizontal line to the left of the Anchor is
drawn. The first (p+1)/2 vertical lines or T-mesh vertices encountered fill in the empty
positions of the first half of the vector. Similarly, a horizontal line to the right provides
the final (p+1)/2 values of the vector. Note that some anchors may lie closer to the
border of the T-mesh than others. As a result, during the Knot Value Vector calculation
procedure, a border may be reached before the required (p+1)/2 values are completed.
In this case, the standard procedure is to repeat the border Knot Value as many times
needed in order to complete the remaining positions of the vector. The same procedure
is conducted for the computation of the local Knot Value Vector H, of the parametric
direction 7. The middle position of the vector is occupied by the Anchor ordinate 7,,
while the rest of the positions are completed by moving upwards or downwards until
(p+1)/2 vertices or horizontal lines are encountered.

The procedure is similar in case of even degrees.Initially, the number of values of the
local Knot Value Vector Z, are computed as (p+2) which is an even number. Since
the total number of indices is even, the Anchor coordinates are not taken into account
for the computation of the local Knot Value vector. On the contrary, the leftwards
and rightwards movements for (p/2+1) values for axis £ and equivalently upwards and
downwards for axis 7 are sufficient for the completion of the local Knot Value vectors.

In Figure 1.17 examples of the computed Knot Value Vectors are illustrated

(a) Even degree in both axes:

Top right anchor: E, = {4,6,7,7} and H, = {2,3,7,7}
(b) Odd degree for axis & and even for axis 7:

41



Top right anchor: Z, = {1,2,6,7} and H, = {3,4,5,6,7}

(c) Even degree for axis £ and odd for axis n:

Bottom right anchor: Z, = {2,5,6,7,7} and H, = {1,1,3,7}

(d) Odd degree in both axes:

Top left anchor: =, = {1,1,2,4,6} and H, = {4,5,6,7,7}

7 - 7
6 6
5 ' 5
|
4 4 »
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[ 3
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1 2 3 4 5 [ 7 1 2 3 4 5 5 T
(a) Biquadratic (b) p=2, q=3
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4t ol _
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1 2 3 4 5 6

(c) p=3, q=2 (d) Bicubic

Figure 1.17: Examples of local Knot Value Vectors for odd/even degrees. Green horizontal and
vertical lines illustrate the Knot value vectors of each Anchor.
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1.6.4 LINEAR INDEPENDENCE-ANALYSIS SUITABLE T-MESH

It is mathematically proven that T-meshes in general do not produce linear independent
T-Spline basis functions. Yet under specific constrains a non-suitable T-mesh can be
converted to define an independent base of basis functions.

As [170] defines, analysis suitable is a T-mesh whose extended mesh is analysis suitable.
The extended T-mesh is defined by extending T-junctions in both directions. For instance,
if a T-junction is created by removing the horizontal left line of a cross junction, then
the main extension appears on the vanished side until the first line segment or junction

is encountered. The other extension has direction opposite to the previous one.

1 1
1 2 3 4 5 6 7

Figure 1.18: Analysis non-suitable T-mesh.

Figure 1.18 provides an example of a typical. Nevertheless, this T-mesh cannot
be considered analysis suitable. Figure 1.19a illustrates the extended T-mesh of the
previous analysis non-suitable topology. Yellow circles define the T-junctions that need
to extended in order to verify the suitability of the mesh. Black dashed lines define
the primary extension of the T-junction, while red dashed lines the secondary direction.
It is apparent that numerous extension of the T-junctions intersect with each other.
These intersections are depicted in Figure 1.19 as green triangles. If such intersections

exist, then the T-mesh is considered non analysis suitable. Fortunately, with a simple
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refinement of the T-mesh it is plausible to convert the T-mesh to an analysis suitable

one which creates linearly independent basis functions.
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(a) Extended T-mesh. (b) Extended T-mesh with intersections.

Figure 1.19: Extended T-mesh configuration utilized to define the analysis suitability of a T-mesh.
Yellow circles define the T-junctions that need to be extended, Black and red lines the extension and
green triangles the intersection of the extended T-mesh.

An analysis non-suitable T-mesh can be transformed into an analysis suitable one
with the aid of the Anchors’ local Knot Value vectors. Specifically, iterating through
each Anchor, the local Knot Value vectors define a support per direction. The tensor
product of the unidirectional supports creates a multi-dimensional domain of influence
for every Anchor. The envelope of this domain of influence generates Knot lines that
are not present in the real mesh. These non-existing lines of the T-mesh are called
continuity reduction lines and serve as a partition of the domain into elements that
are C*° continuous. On the verge of these lines, the continuity is limited due to the
connection different polynomials. The resulting mesh which is produced as a combination
of the initial T-mesh with the addition of the continuity reduction lines produces an

analysis suitable configuration.

1.6.5 T-SPLINE BASIS FUNCTIONS

Given a T-mesh and degrees p, q for both parametric axes ¢ and 7, @ C R? is the index

domain that encloses every index a, such that s, is an Anchor. With the aid of the An-
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chor’s local Knot Value Vectors 2, = {£1,&2, ..., &1, Epra}s Ha = {m1,m2, s Mpt1, Mp+2 1
the univariate functions for each axis is defined recursively as follows:

Nio(€) = 0, if&<E<&in (152)

1, otherwise
based on the formerly evaluated constant functions, piecewise functions of greater

degree are evaluated with the assumption that % =0

§—&

= . M.N
Sitp — &i

Nip(§) ey — & Nirlo-1

Nip-1(§) + (€) (1.53)

1.6.6 T-SPLINE BASIS FUNCTION PROPERTIES

According to [170], T-Spline basis functions posses the following properties:

1. Local Support

N (€ =0 VE & &, Citp+1] (1.54)
2. Non-negativity
NP(€) >0 V&i,p (1.55)
3. Partition of unity
YN =1 VEp (1.56)
i=1

4. CP~™ continuity across Knots with multiplicity m.

The property is retained from the extension of NURBS to T-Splines. Given a
local Knot Value vector of an Anchor, the equivalent T-Spline basis function has
CP~™™ continuity. This means that this specific basis function can produce p-m
continuous derivatives. Continuity less than C° is not acceptable for internal
Knots, meaning that a certain Knot Value can be repeated in the context of a

local Knot Value vector at most p times. Note that as continuity decreases, basis
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function become steeper. In addition, since the tensor product property of NURBS

is no longer present abrupt changes of continuity can occur that depend on the

layout of the T-mesh in the index space.
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Figure 1.20: CP~™ continuity knot lines with multiplicity m.

1.6.7 T-SPLINE SHAPE FUNCTIONS

Given the local Knot Value Vectors of an anchor for all axes, £, 7, and the equivalent
polynomial degrees p,q,r, the univariate T-Spline basis functions N’ (¢), M;-] (n), Li.(¢)
are generated. Using these functions, their rational T-Spline shape function counterparts

can be obtained by
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b NP(© -wi NP -w,
B e TS e -

Inductively for 2D and 3D cases:

NP M) wiy NP M) wy
W& n) D1 25‘7:1 N (€) - Mﬁq(n) " Wij

TP m) =

N7 (&) - Mi(n) - Ly(€) - wijk
P‘Ia — 7
z]k(§7 aC) W({,H,C>
_ Nf(f)‘Mf(ﬁ) 'LZ(C)'wz'jk
i St Yo N - M () - LT (O) - i

1.6.8 T-SPLINE GEOMETRIES

T-SPLINE SURFACES

W=3"3 1) Py} = SN M (P}

i=1 j=1 i=1 j=1 (123)
T-SPLINE SOLIDS
m l
fﬁC ZZZ zp]q;g énC :]k}
i=1 j=1 k=1 (1z3)
n o m l
:ZZZNZP(Q‘ {Pdk}
i=1 j=1 k=1 (123)

1.6.9 BEZIER EXTRACTION

(1.57)

(1.58)

(1.59)

(1.60)

(1.61)

As already mentioned in Section 1.4, there is an immediate connection between B-Splines

and their predecessor CAD technology, Bézier curves. Specifically, a B-Spline curve can

be split into multiple Bézier sections, interconnected with C? continuity. In a similar

fashion, this subsection discusses the decomposition of NURBS and T-Splines into simple

Bézier entities that will be utilized in the following chapters.
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NURBS BEZIER EXTRACTION

The Bézier extraction process described analytically in [34] is summarized here. The main
purpose of the Bézier extraction is to enable the representation of a highly continuous
advanced Splines into multiple piecewise C? Bézier pieces. This decomposition in case
of NURBS shape functions is achieved with h-refinement and specifically by repeating
all internal Knot Values until their multiplicity is raised to p, p being the polynomial

degree.

The Knot insertion procedure of Isogeometric h-refinement work as follows. Given
a Knot Value vector Z = {£1, &2, ..., éntpt1} and & a Knot Value to be inserted in one

of the internal spans of the Knot Value Vector, n+1 new Control Points have to be

computed.
Pl? A - 9
pA: asPa+ (1 —aa)Pa_1, 1< A<m, (1.62)
Py, A=m
where
17 1 S A S k - Db
an = k-ptl<A<k, (1.63)
0, A>k+1

Calculation of the new Control Points with the aid of eqs. 1.62, 1.63 preserves both the
continuity of the curve as well as its shape, while the continuity of the shape functions is
reduced by one for every single Knot insertion. For example given a Knot Value vector
= =0,0,0,1,2,3,3,3}, by raising the multiplicity of the internal Knot Values to p
this will be transformed to =’ = {0,0,0,1,1,2,2,3,3,3}. The process described in the
later equations for a single Knot insertion can be generalized for multiple simultaneous

insertions and eq. 1.62 is transformed to

Pitl = ()T pi (1.64)
where
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-al 1-— as 0 e 0 |
0 ao 1—as 0 . 0
ci=10 0 a3 l—ay O . 0 (1.65)
L 0 ces 0 a(nJrj,l) 1-— a(nﬂ-)_

[34] proves that eq. 1.65 is the Bézier extraction operator that maps B-Splines and
NURBS shape functions to the equivalent Bézier polynomials.

T-SPLINES BEZIER EXTRACTION

The process described in the previous subsection can generalized for T-Spline shape
functions. The main difference of the procedure according to [167] is that a global Bézier
extraction procedure is no longer present. This occurs due to abolishment of the tensor
product structure of NURBS. As a result, the extraction operator must be computed
in a function-by-function basis. The extraction operator of a single Bézier element is
generated row-by-row from the shape functions that affect it. In addition, since global
Knot Value Vectors no longer exist, the extraction operator is based on each of the
univariate local Knot Value vectors calculated for each Anchor.

A significant difference with NURBS is the introduction of the extended Knot Value
vector. The extended Knot Value vector transforms an arbitrary local Knot Value vector
into an open one. This is achieved by repeating the initial and final values until the
multiplicity is p+1. Then the extraction operation is performed at the extended local
Knot Value vector. Finally, in case of multivariate Bézier extractions, the operator C
of a T-Spline element is produced in a tensor product fashion based on the univariate
operators produced for each one of the parametric directions.

In both cases of NURBS and T-Spline shape functions, after the computation of the
equivalent extraction operator the transformation between advanced shape functions

and Bézier is performed by

N(§) =C-B() (1.66)

For the bivariate case, the extraction operator C'4 is computed by
Cy= Cg@cn (1.67)
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and for the trivariate case

Ca=C:t®C,®Ce (1.68)

where ® is the Kronecker product of the univariate matrices.
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Isogeometric Analysis

2.1 INTRODUCTION

Parallel to the development of CAD technologies, the scientific area of CAE has rapidly
evolved. In the early stage of their development, manual blueprints were shared between
designers and computational scientists, who had imminent interactions towards the
optimization of the product’s design and mechanical performance. Since the dawn of
personal computers, ever more complex geometries had to be reproduced, while engineers
were assigned with the burden of translating these geometries into analysis-suitable
input for the intricate computational mechanics software. This lead to a deviation of
the development paths of CAD and CAE, due to the different requirements for either
efficient representation of arbitrary geometries or highly accurate analyses of engineering
structures. This separate development generated a mismatch between the actual and the
analysis geometry, as the tools developed by popular computational mechanics processes,
such as the FEM, can only approximate the structure’s geometry.

This inherent approximation often leads to erroneous results in geometry sensitive
analyses. For example, shell buckling or contact mechanics applications, cannot be
accurately reproduced without precise geometry descriptions. In addition, adaptive
refinement techniques cannot be efficiently implemented, since they require a direct

connection of the approximate design with the exact geometrical representation, which
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is nonexistent. Similarly, the shape optimization of structures faces the bottleneck of
to and from CAD mapping and re-meshing procedures. All these deficiencies of the
mappings between CAD and CAE technologies, have raised the need for a single pipeline
that treats geometrical and analysis models as a single entity. IGA was introduced by
Hughes as design-through-analysis procedure that unifies the until then diverging CAD
and CAE industries.

IGA shares many similarities with its predecessor, the FEM method. Specifically,
according to [5], both are isoparametric implementations of the Galerkin method and
share similar code flow, while many properties such as the partition of unity and
bandwidth of the resulting matrices is preserved. On the contrary, several aspect that
the average FEA practitioner is accustomed to are now invalidated. Specifically, the
exact geometry is utilized in IGA, fact that significantly aids the analysis procedure.
Unfortunately, Control Points that describe the geometry do not interpolate it, which
in contrast to FEM nodes, does not provide a direct interpretation of the results, but
only when combined with the shape functions. The purpose of this chapter is to clarify
these differences, between IGA and FEM methods and introduce the basic quantities
and processes needed for the analysis of boundary value problems with the aid of IGA.

2.2 CONTINUUM MECHANICS

All applications of this thesis are based on the PDE of linear elasticity, thus this is the
basic subject that will be analyzed in this chapter. All model quantities such as the
elements and the integration rules presented can be readily applied in any other PDEs
taking into account the proper modification for the assembly of the resulting matrices.
The derivation of the linear systems of linear elasticity PDE are summarized here. The
detailed procedure can be found in [4].

Starting with the strong form of the Linear Elasticity PDE, where 2 is the boundary
value problem domain, the Dirichlet and Neumann boundary conditions imposed on the

I'p, and 'y, parts of the domain equivalently, are presented in eq.2.1 b,c.

oij;+fi=0 inQ (2.1a)
u;=g¢; onlp, (2.1b)
aijnj = h,’ on FNi (2.1C)
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To retrieve the weak form of the PDE, eq.2.1a is multiplied by weighting function and
integrated by parts.

[wti o= [ s g ( /FM wihidr) 22)

Note that in both egs. 2.1 and 2.2 the term o;; represents the stress tensor given by
the Hooke’s law

Oij = Cijki€kl (2.3)

where ¢;; is the strain vector, calculated as a gradient of the displacement u and c¢;j1;

is the equivalent constitutive tensor. Eq. 2.2 can be alternatively written as

a(w,u) = L(w) (2.4a)

a(w,u) = /Qw(i,j)aide (2.4b)
d

The first term of 2.4a provides the matrix of the linear system equation and the second

term represents the external force vector.

In matrix notation, eq.2.4a can be written as

K-u=F (2.6)

where the term u represents the solution vector of the resulting linear system and

ensures the compatibility between w, u terms of eq. 2.4.
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In the discretized form, terms w, w are approximated by

u=> Nadis - e (2.7a)
w = ZNBCM - € (2.7b)

The term e; represents the unit basis vectors of R3, that serve to break down the
displacement vector to it’s Cartesian axes components. The assembly of the stiffness
matrix in the linear elasticity case can be performed in a similar manner to the FEM
method, by iterating through the elements of the discretized domain. The following
subsections will examine the exact procedure utilized for the derivation of the elements
in IGA, considering both NURBS and T-Spline discretizations.

2.2.1 NURBS BASED ISOGEOMETRIC ANALYSIS

For the purposes of this thesis, two types of shape functions are examined, the first
of which is NURBS. In order to integrate the stiffness matrix of the linear elasticity
case, described in eq.2.5, the integration entities have to be defined. As defined in
Chapter 1, the basic entity of a NURBS based geometry is the Patch. Each Patch
has similar attributes to the parent element of the FEM method. Sepcifically, the
whole geometric entity of a single Patch is mapped to only one parametric domain,
utilizing the same isoparametric concept of FEM. On the contrary, even simpler entities,
called isogeometric elements, can be considered as integration domains, based on the
tensor product structure of NURBS. Both Patch and element structures can be used
for integration, yet for the purposes of this manuscript the latter case is utilized, as it

resembles the decomposition of a structure into independent entities of FEM.

ELEMENTS

Taking into account the definition of a Knot Vector given in Chapter 1, the elements in

the univariate case are defined as the non-zero spans, formed by its consecutive values.
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Figure 2.1: Elemental decomposition of an one-dimensional NURBS parameter space with Knot
Value Vector = = {0,0,0,1,2,2,3,3,3}.

Figure 2.1, provides an example of the decomposition of an one-dimensional parametric
NURBS domain into elements. Given the parametric domain defined by the Knot Value
Vector = = {0,0,0,1,2,2,3,3,3}, the equivalent Knot Vector can be extracted which
corresponds to = = {0,1,2,3}. As apparent, the four consecutive values of the Knot
Vector, generate three non-trivial spans. These spans are the definition of one-dimensional
elements in Isogeometric Analysis. In case of higher dimensional entities, the tensor
product structure of NURBS is utilized.

3 i i i
° ° ° °
2 i i i
° ° ° °
1 e L g |
° ° ° °
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0 1 2 3 4

Figure 2.2: Elemental decomposition of an one-dimensional NURBS parameter space with Knot
Value Vectors = = {0,0,0,1,2,3,4,4,4} and H = {0,0,0,1,2,3,3,3}.

An example of the two-dimensional elemental structure of a NURBS plane is given
in Figure 2.2. Given the Knot Value Vectors £ = {0,0,0,1,2,3,4,4,4} and H =
{0,0,0,1,2,3,3,3}, the equivalent Knot Vectors &' = {0,1,2,3,4} and H' = {0, 1, 2, 3}

are computed. Each of the rectangular tiles appearing in the illustration of Figure 2.2
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are created by a tensor product combination of one-dimensional knot spans. As expected
from 4 spans on axis ¢ and 3 one axis 7, a total of 12 isogeometric NURBS elements are
created. Blue rectangles represent the two dimensional Knots of the parametric domain,
while orange circles depict the parametric positions of the Control Points.

In a similar fashion, three-dimensional elements can be derived for the analysis of
trivariate Boundary Value Problem (BVP)s.

MESH REFINEMENT

A vital process of computational methods, that is significantly simplified with the devel-
opment of IGA, is mesh refinement. Mesh refinement’s scope is to enhance the minimum
viable mesh required for the design of a structure, in order to provide a fine enough
discretization, that can efficiently and accurately analyze the model under consideration.
IGA extends the already existing processes of h-refinement and p-refinement of FEM
and renames them as Knot Value Insertion and Degree Elevation equivalently, while
simultaneously introducing k-refinement which is a combination of the aforementioned
methods.

Knot Value Insertion refinement procedure, creates a finer mesh by adding new
Knot Values in the Knot Value Vector. Boundary Knot Values cannot be inserted at
the edges of the domain, as continuity is already at a minimum C~! and thus must
remain unaltered. By adding internal Knot Values, either more integration elements are
generated, or the multitude of an existing Knot Value is increased. The total multiplicity
of internal Knot Values cannot exceed the polynomial degree p, thus resulting to a
minimum C° continuity. Due to the augmentation of the initial Knot Value Vector =
with new values and the requirement that the curve remains unaltered the following

formula holds

C(E) =D ANF(©) - Xi} =) {N}(©)-X;} (2.8)
i=1 j=1

where overline in eq.2.8 denotes the new configuration. Note that the number of
Control Points changes between the initial and the final configuration. The multitude
of new Control Points equals the number of Knot Values inserted. A transformation

between the two Control Points networks can be obtained via
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{X} = [17] - {X} (2.9)

(maxl) (mzn) (nzl)

where the transformation matrix [T?] is formed recursively as

17 gz € [Ejangrl]

0, otherwise

(2.10a)

“ §J+q £ W E—jHq+l—gp WY

g=1,2,...,p (2.10b)

The second mesh refinement technique of isogeometric analysis, Degree Elevation,
raises the polynomial degree of the shape functions to p from initial p. Since the curve
with all of its properties must remain unaltered, the multiplicity of all Knot Values
is increased by p — p in order to retain initial continuity of the geometry at the Knot
positions. The new Control Points of the curve will be evaluated with the aid of the
transformation matrix defined by eq. 2.10. The resulting Control Points will be utilized

for the evaluation of the new curve functions [N] thus

(mam)
—1
T
= (W) 0T (2.11)
where the transformation matrix equals
m = (W) (212)
(mazn) (mam) (mamn)

-1

In case the term ( [N] T> is not reversible, a new set of Control Points must be
(maxm)

evaluated.

The final refinement method introduced with IGA is k-refinement. The purpose of
k-refinement is to increase the continuity at the introduced Knot Values, as the latter h-
and p-refinement methods, either reduce or retain the existing continuity. To achieve this,
both p- and h-refinements are performed consecutively. Initially, p-refinement increases
the polynomials degree of the shape functions, while retaining the existing continuity at

the Knots. In a second step, h-refinement introduces new Knots with continuity raised
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to CP~! where p is the new augmented polynomial degree.

Note that all former refinement techniques are applicable at B-Spline entities. In
case of NURBS, the same procedures cannot be directly applied to the homogeneous
coordinates {X;,Y;, Z;, W;}, rather to the projective Control Point coordinates that

incorporate the weight information to the rest of the Cartesian position data.

STIFFNESS MATRIX - INTEGRATION

As mentioned in Section 2.2, the entities over which integration is performed are either
Patches that represent the entirety of the parametric domain, or elements whose ex-
traction was previously described. For the purposes of this thesis, the latter option is

employed, to maintain the analogy of FEM and IGA computational methods.

The matrices produced by eq. 2.5a are integrated over the isogeometric elements,
taking into account the Gauss quadrature. Recall that elements based on the definition
given in the latter section, are domains where shape functions can be represented by
piecewise polynomials. It has been proven that for multivariate elements, p+1 Gauss

Points per axis are required, where p is the polynomial degree of the shape functions.

The integration points coordinates for each axes are obtained on the parent element
[—1, 1], as the roots of the Legendre polynomials in this domain. The next step is to
transform their coordinates ¢f* and weights w? from the reference knot span [—1,1] to

the desired knot span [&;, §;+1].

(€ir1 — &) - €7+ (Giv14e,)
2

whp = (5“2_6) cwft (2.13b)

€= (2.13a)

The same formula holds for the evaluation of Gauss Points and their equivalent weights
for all parametric directions. The multivariate Gauss Points are derived by applying
the tensor product rule to univariate Gauss Points for each of the multiple parametric

direction.
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n &i w;

1 0 2
2 -0.57735 1
0.57735 1
3 -0.77459 0.55555
0 0.88388
0.77459 0.55555
4 -0.86113 0.34785
-0.33998 0.65214
0.33998 0.65214
0.86113 0.34785
5 -0.90617 0.23692
-0.33998 0.47862
0 0.56888
0.33998 0.47862

0.90617 0.23692

Table 2.1: Univariate Gauss point coordinates and weights in the parent domain [—1, 1].

ONE-DIMENSIONAL STIFFNESS MATRIX

In the single dimension case, the strain of each point is calculated as a gradient of the

deformation by

ou
S 2.14

Note that gradient is calculated with respect to position of a point in the physical space.
Yet, the Gauss Points are located at the parameter space and thus a transformation
between the two spaces must be defined. This transformation is the Jacobian one and
remains the same with the FEM equivalent as both are based on the same isoparametric

concept. Specifically the following relationship holds,

¢ ¢
[85] =1[J]- [&v] (2.15)
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where [J] is the Jacobian matrix. In the discretized domain, the Jacobian matrix is

evaluated with the aid of the shape functions as follows:

[J(&)] = [R1¢(§) R2(,§(€)) R g(§)] - [Xa )% --).Xn]T (2.16)

where R; ¢ denotes the first derivative of the shape functions per axis {. In both FEM
and IGA the inverse transformation of eq. 2.15 is performed and thus the matrix [J]~! is
needed. As a result, special care must be taken for the Jacobian matrix to be reversible
by eliminating points of singularity and ensuring that the directions of parameter and
physical space coincide.

The next step is to calculate the deformation matrix [B], which is utilized to compute
the strains at any arbitrary point of the domain based on the nodal quantities of the
discretization. This matrix is split into two parts, [B1] and [Bs]|. Matrix [Bj] transfers
the strains of the element from parameter to physical space and matrix [Bs] transfers
the nodal displacements of the elements to the strains at the parameter space. In case

of one-dimensional problems they are calculated by

1
B1(6)] = [J] (2.17a)

[Ba2(§)] = [R1,e(§) Rag(§) - B g(8)] (2.17D)

(1zn)

Matrix [B] is calculated as a product of the submatrices [Bj], [Bz] as

[B(&)] = [B1(§)] - [B2()] (2.18)

(1zn) (121) (1zn)

As a result, the stiffness matrix for one-dimensional isogeometric elements is evaluated

as

Entp+1
K] = / B E-[BE)]" - A- det|J)de (2.19)
(nan) 0 (nzl) (1zn)

where terms &y and &, 4,41 denote the boundaries of the parametric domain and A
the section’s area of the one-dimensional model and E the Young’s modulus of elasticity.

The integral presented in eq. 2.19 is never calculated analytically. Instead a numerical
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integration is performed, taking into account the Gauss Points evaluated at each separate

parametric integral. This transforms eq. 2.19 to:

nGP
(K] = {[B(&)]T B [B(&)]" - A det[J] 'wfpdf} (2.20)
(nzn) i=1 (nxl) (1zn)
where wiG P is the equivalent weight of each independent Gauss Point.

TWO-DIMENSIONAL STIFFNESS MATRIX

The aforementioned procedure for the univariate stiffness matrix can be extended to
multidimensional cases. Specifically, in the two-dimensional case, the strain vector at

each physical is defined based on the directional displacements u, v as

du
€x oz
d=|e|=| & (2.21)
3zl
(a1 Yy %Z + %

In a similar fashion to the one-dimensional case, the Jacobian transformation is

required to transfer information between the parameter and the physical space.

99 oz Oz 99 % 99
0 _ |0 2] I5) _ 0
on on  O€ oy on (222) dy

or equivalently, the inverse transformation to transition from parameter to physical

99 ¢
[gg] = [t [gg] (2.23)

Jy (222) on

space

Taking advantage of the discretized notation, the Jacobian transformation at each

parametric point is calculated as

X1 Y
(222) Rlﬂ](§7 77) RQ,W(§7 77) RN,n(é, 77)
X, Yy
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The deformation matrix [B] in the two-dimensional case is also computed as a product
of the submatrices [Bi] and [Bz], where [B;]

[B1(&,m)] = ST 0 0 —Jau Ju (2.25)

- det]J]
B —Jor Juu Jao —Ji2
and [Ba]:
Ri¢ 0 Ry ¢ 0 . Ry 0
1 R 0 R 0 ... R 0
[B2(&,m)] = S 2 N (2.26)

(422N) det[J] 0 Rl,g 0 R27§ 0 RN’g
0 Riy 0 Ry, 0 .. R,

In order to evaluate the bivariate stiffness matrix, integration is required

Entpt+l  [Tm+g+1
K] = / / BEn) - [E] - [BE.n)] t-detlTdnde  (2.27)

(2Nz2N) o 70 (2Nz3) (323)  (3z2N)

By applying numerical quadrature, eq. 2.27 is transformed to:

GPg GPy
GP, GP,
(K] =Y > (B n))" - [E] - [B(&,ny)] - t-det[J]-w; " - w;” (2.28)
(2Nz2N) 527 j=1  (2N=3) (3z3) (3z2N)

where t is the thickness of the bivariate domain at each integration point.

THREE-DIMENSIONAL STIFFNESS MATRIX

A similar process is followed in the trivariate continuum mechanics case, where the strain

field is calculated as the directional gradient of the displacements u, v, w
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_ - -
€2 o
v
€y dy
€ ow
_ z _ 0z
{e} = =l o (2.29)
(61) Vxy dy oz
v ow
Yyz 92 + By
_'sz_ _% + %_

Once more, for the definition of the Jacobian matrix we have

001 ror oy 921 [0 2 20
b5 _ |ox oy 0| |96 50 o

— Y —
ar| = |on on on| || = |a| = VG (2.30)
90 oz oy oz| |00 a9 | (=3 |88
ac ac  aC  oc 9z aC BP

and the inverse Jacobian as well:

99 99
||
go| = (g1 | % (2.31)
¢ (323) 8¢
0z ¢

For auxiliary purposes, the terms of the computed inverse Jacobian matrix are named

as follows

1 Ji Ji2 Jis

[ E (2:32)
T * * *
J31 J32 J33

in order to faciliate an immediate formula representation of the deformation matrix
part [Bi].

gy Jh, Jis 00 0 0 0 0]
0 0 0 J3 J39 J33 0 0 0
0 0 0 0 0 0 Jy JHn Ji

[Bl(fam C)] B . . . . . 31 32 33
(69) Jou Jy Jaz Ji Jip Jiz 0 0 0

0 0 0 Jy Jn Ji Jo Jn JIxn

i J Jiz 00 0 0 Jy Jy Ji3)

(2.33)

Equivalently based on the shape function derivatives, the second subpart of the
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deformation matrix [Bsg] is calculated as follows:

(Rie O 0 Rye 0 0
Ry, 0 0 Ry, 0 0
Ric 0 0 Rye 0 0
0 Rie 0 0 Rye O
[B2(&:m,¢)] | 0 Riy O 0 Ry, O (2.34)

(3N) 0 R O 0 Rne O

0 0 R1,§ 0 0 RN,§

0 0 Ry 0 0 Ry

| 0 0 R 0 0 Ry

and the equivalent deformation matrix for 3D elasticity is derived as a product of the

former two matrices:

[B(&,m, Q)] = [B1(&,m, )] - [B(&, 7, )] (2.35)

(6z3N) (6x9) (923N)

The corresponding stiffness matrix is integrated as follows:

Entp+1 mtq+1  [Clrt1
K= [ T e O BB, O deddeandc (236)

(3Nz3N) &o 0 ¢o (3Nz6) (6z6)  (6z3N)

Finally, by applying numerical integration we obtain:

GPzzGP"]GPC

=3 SN B T B (B, o)) - detT] - w T wf T w T

3Nx3N i=1 j=1 k=1 (3Nz6) (626) (623N)
(2.37)

2.2.2 T-SPLINE BASED ISOGEOMETRIC ANALYSIS

As already mentioned in the previous chapter, due the linear independence limitations
imposed by the shape functions, the T-mesh differs from the integration mesh in case
of T-Spline geometries. In this section the generation of the final integration mesh for

T-Spline entities will be discussed.
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ELEMENTS

The integration mesh is a product of the initial T-mesh configuration and the supports
of the Anchors. An example of a T-mesh structure is given in Figure 2.3. Two Anchors,
positioned at (£q,74) = (5,2.5) and (&, m) = (6.5,5) are depicted with red circles, while

their equivalent Knot Value Vectors are shown as green lines.

‘I 1 1
1 2 3 4 5 6 7

Figure 2.3: T-mesh configuration. Anchors depicted in red circles, with their equivalent Knot Value
Vectors depicted with green lines.

The support of each Anchor is defined as the tensor product domain generated based
on it’s local Knot Value Vectors. An example of this influence domain is shown as a
shaded area in Figure 2.4. It is apparent that the defined area creates lines that do not
exist in the initial T-mesh layout. An example of such a line is shown in Figure 2.4 as
dark red line. By iterating through all Anchors, this procedure returns as a product
these additional lines of the whole T-mesh configuration. They are named continuity
reduction lines, as they divide the Index space into elements, where shape functions are
C° continuous. On the verge of these lines, continuity is limited due to the connection
of different piecewise polynomial functions.

These continuity reduction lines form the final integration mesh, on which integration
will be performed after the placement of Gauss Points. An example of the final T-mesh

configuration containing all continuity reduction lines is illustrated in 2.5.
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1 2 3 4 5 6 7

Figure 2.4: T-mesh configuration. Anchor with parametric coordinates (5, 2.5), defines the shaded
influence domain. Continuity reduction line is illustrated with bold red line.

|
{
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\
|
\
4

1 2 3 5 6 7

Figure 2.5: T-mesh configuration. Continuity reduction lines generated for the entire mesh are
shown as red dashed lines.

MESH REFINEMENT

T-Splines are the first CAD technology that enables true local refinement of the topology.

The insertion of T-junctions enables the refinement to take place on an element level.
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Faces subdivision is the most common refinement strategy. The main process is to divide
one of the elements into four new ones. In addition, T-Splines allow the insertion of
single Control Points in places where geometry needs special local handling.

An example of a face subdivision procedure for the refinement of T-Splines spaces is
provided in Figure 2.6. Note that Figure 2.6a resembles a common NURBS mesh. The
representation of NURBS tensor product spaces, is allowed within T-Splines technology
as it’s theory renders it a superset of NURBS. Figure 2.6b, illustrates the subdivision
of the bottom left face of the T-Spline index space, into four subfaces. As apparent,
T-junctions enable the subdivision of a single geometrical entity, thus enabling true local
refinement. The Knot lines inserted in Figure 2.6b, do not propagate throughout the
parametric domain as in the case of NURBS, thus minimizing the number of introduced
Control Points needed, to attain the same level of local control of the geometry. Detailed
processes and algorithms for the refinement of isogeometric T-Spline spaces can be found
in [166].

(a) Initial T-mesh configuration. (b) Refined T-mesh configuration.

Figure 2.6: The initial T-mesh configuration is refined by subdividing a face into four independent
ones.*

T-SPLINES BEZIER EXTRACTION

Throughout this thesis, whenever T-Spline geometries were utilized, the process of Bézier

extraction is employed, as it offers an immediate integration with the existing in-house

*Created with Rhinoceros
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FEM code. A T-Spline plugin for Rhino was utilized ¥, that extracted geometric data
according to process described in [165].

Figure 2.7b provides an example of the extracted Bézier elements layout, based on
the initial Index Space configuration of Figure 2.7a. As described in Chapter 1, the
Bézier extraction operator for T-Spline element is calculated in a function-by-function
basis, due to the intricate pattern of shape function that affect it. The mapping between

elemental T-Spline shape functions and Bézier element shape functions is the following

N°(§) = C*B(¢) (2.38)

(a) T-mesh configuration. (b) Bézier elements layout.

Figure 2.7: T-mesh configuration and extracted Bézier elements.?

Rational T-Spline shape functions of an element are calculated using the following

formula

WN ()

(W) TN(E) (2.39)

R*(§) =

where R¢(€) is the vector of T-Spline shape functions, w® a vector containing the
weights of the elemental Control Points and W€ the diagonal matrix created from w¢.
With the aid of eq.2.38, eq.2.39 is transformed to

t Autodesk T-Spline plugin for Rhino.
fCreated with Rhinoceros
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WeC*B(¢)

R*(¢) = (WO TNB(€) (2.40)

In order to integrate the Linear elasticity PDE with T-Splines shape functions, the same
process of NURBS is repeated. Starting from the strong form of the PDE, multiplying by
a set of trial functions and integrating by parts, the weak form of the PDE is obtained.

a(w,u) = L(w) (2.41a)

a(w,u) = /Qw(i,j)aijdﬁ (2.41Db)
d

As analytically described for NURBS, the computation of the stiffness matrix requires
a mapping from physical to parametric coordinates and vice versa. This mapping is based
on the derivatives of the shape functions. Since only shape functions are computed in a
different manner compared to NURBS, only the Bézier extracted T-Spline derivatives

will be provided here. For this purpose, eq.2.40 is rewritten as

e _ € e B((S)
R¢(¢) = W°C We(e) (2.42)
where
We(&) = (w9 NB(¢) (2.43)

Thus, the derivatives of T-Spline shape functions R® with respect to the local para-

metric axes &, 7 are calculated as follows:

IR®(&;m) _W6066<B(§,n)> _ Wece< 1 0B(&n)  OWe(n)
We

o o0&\ We(€) &m) 0¢ o0& We 57 2

244a)

OR(§,m)  xrepme O <B(€ﬂ7)>_ e ( 1 9B(,n) aWe(fn >
TSN _ ywege L - WeC

on on \ We(§) we(&,n) on on n)?

2.44b)
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2.3 STRUCTURAL ELEMENTS

Despite most FEM and IGA element formulations are produced from the discretization
of PDEs, there is a wider category of elements that are generated based on simplifications
of the general PDE used for continua. These simplifications are usually derived from
the dimensionality of the structure, its special boundary conditions, or its allowed
deformation state. For instance, shells structures are considered a special continuum
case, since one of the three dimensions of the structure is significantly smaller than the
rest, specifically the thickness. As a result, the three-dimensional differential equation
that governs this structure can be expressed in terms of only the mid-thickness or
alternatively, middle surface of the structure.

Various theories have been developed in order to accurately model the response of shell
in the field of computational mechanics, most profound among which are Reissner-Midlin
and Kirchhoff-Love shell theories. Reissner-Midlin is mainly utilized for the modelling of
thick shells in order to take into account transverse shear deformation, while Kirchhoff-
Love theory disregards them. Even though most engineering structures belong to the thin
shell part of the theory, continuity limitations imposed by Kirchhoff-Love shells made
Reissner-Midlin theory dominant in most commercial and academic FEM codes. The
underlying reason is that a minimum C? continuity required in case of Kirchhoff-Love
shells cannot be obtained in a straightforward manner by FEM, as finite elements are
connected with C° continuity and thus lead to a requirement for non-local formulations
or penalty-like constraints at the nodes to enforce it. IGA with its enhanced continuity
shape functions, allows for a straightforward implementation of Kirchhoff-Love shells.
This subsection will discuss the basic of linear small deformation Kirchhoff-Love shell

that will be utilized later on in this thesis.

2.3.1 DIFFERENTIAL GEOMETRY OF SURFACES

A brief introduction to the differential geometry of surfaces will be provided, that
serves as a basis for the Kirchhoff-Love shell formulation. Based on the midsurface
representation of the shell, each point that lies on the surface can be identified by its

position vector X,,iq4.
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Xmid = Tmid€1 + Ymid€2 + Zmid€3 (2.45)

As eq.2.45 shows, the position vector of every midsurface point is generated by linear
combination of the Cartesian unit vectors e; and position ordinates {x,y, z}, one for

each Cartesian axis. Any point x; that lies ¢ thickness distance from the midsurface is
given by

% (2.46)

Figure 2.8: Initial and deformed configuration of a shell.

where as is the normal covariant vector. Given the position of a midsurface point x,
the tangential covariant base vectors are defined

0x
In eq.2.47, 0; denotes the contravariant axes, while the term (), i expresses the gradient

of the vector per contravariant axis 6;. Covariant and contravariant vectors at every
midsurface point are related with the following expression

a;
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g g = 55 (2.48)
where 5{ is the Kronecker delta function. Based on the former, the third normal
covariant base vector is defined as

a; X ag

ag (2.49)

 lar x ag

The covariant metric coefficients g3 are computed as dot products of the covariant

base vectors

aaB = aq - A3 (2.50)

and finally, the curvature tensor coefficients bz, that provide the curvature properties

of the surface are defined as

bog = an,3 - a3 (2.51)

2.3.2 KIRCHHOFF-LOVE SHELL

The Kirchhoff-Love shell formulation is considered an extension of Euler-Bernoulli beam
theory, where the shell kinematics are described by the position of the shell’s midsurface.
The main assumptions taken into account for the derivation of Kirchhoff-Love theory
are that straight lines, normal to the midsurface remain straight and normal to the
midsurface in the deformed configuration , while thickness remains unchanged.

The equation that regulates the deformation of any shell midsurface point is obtained
as the difference between that position of the point in the current and the reference
configuration. Based on the illustration provided in Figure 2.8, this translates to:

0
U = Xmid — Xmid

(2.52)

The kinematic variables of the shell are described in terms of the quantities introduced
for the differential geometry of the surfaces. Specifically, by utilizing eq. 2.50, 2.51
and neglecting the quadratic terms of the displacement gradients, the strain tensor

components are computed as follows:
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—_

€af = f(ag S U, +ag : u,a) (2'53)

\)

Equivalently, the bending strains are calculated by

1
Kap = 5(&2 ’ Aa?ﬂﬁ —|—CL% ANCE T T 'ag75 tu,p ‘ag,a ) (254)

where a2 denotes the shell tangent vector at the reference configuration, while the
normal vector derivatives in the reference configuration are calculated using the reference

Jacobian matrix 5° as

ag,a = (jo)fl(a?,a ><a8 + a(l) X ag,a) (2.55a)

Aa37a = (jo)_l(uala Xag + uoal Xagaa +a(1)aa XU,y2 —|—CL? X u270¢) (255b)

By combining egs. 2.55a and 2.55b the total in-plane strain at a point that lies

distance ¢ from the midsurface can be calculated.

626 = e%d + (Kap (2.56)

The stiffness matrix of the shell is derived by applying the principle of virtual work,

which can be written as

W = / o:dedV = / f-oudV (2.57)
\%4 1%

where du is the virtual displacement. The equation of virtual work can be further

elaborated as:

/ o:0edV = / (n:de+m:dk)dA (2.58)
\% A
where the stress resultant components of the forces n and moments m are calculated
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via through thickness integration as

5
Nap = / o®Pd¢ (2.59a)

|=

[N .

Map = /_ o®Bede (2.59b)

h
2

In a similar fashion, the constitutive matrices at each midsurface integration point are
obtained by the thickness integration of constitutive matrices corresponding to equivalent

thickness integration points.

Ca= [ Cd¢ (2.60a)
%2

Cp= [ CGCd¢ (2.60b)
%2

Cp = Cccldc (2.60c)

and the gradients of the membrane forces and bending moments are computed by

dn® = CY 0 des + CP 1 drkns (2.61a)
dm®® = C%de s + CHP 0 drys (2.61b)

Since equilibrium must be met for any variation of the displacement matrices du,., the

following equation holds for the variation of the principle of virtual work:

ow
= — = 2. 2
ow o, dur =0 (2.62)
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Based on eq. 2.62 the internal and external nodal forces can be extracted:

Fﬁnternal _ A(n . aa; +m: 88; )dA (2633)
Frexternal — /Af . 885 dA (2.63b)

Subsequently, the stiffness matrix is obtained by

: on  Oe om Ok
Kmternal _ / . . 2.64
s A((?us Ou, + Oug 8ur) (2.64)

By substituting eq. 2.61, eq.2.64 can be further elaborated as:

Kinternal — / ((CA 2 ey
A

Ok Oe Oe Ok Ok
Oug Oug ) a4

)TUT—F(CBTUS—’_ODTUS)GUT

(2.65)

2.4 ISOGEOMETRIC COLLOCATION

The analysis of linear elasticity PDEs with the isogeometric Galerkin method has proven
to provide results with significantly increased accuracy per degree of freedom compared
to its FEM counterparts. This is mainly attributed to the increased continuity of the
shape functions, that inevitably lead to minimized error and increased smoothness of
second order quantities such as stresses and strain. Unfortunately, this increased accuracy
comes at a great cost for the assembly of the resulting matrices, since the equivalent
integration points of IGA can be orders magnitude more compared to FEM. As a result,
great efforts are made by the scientific community to employ alternative integration
schemes, in order to minimize this computational burden.

To this end, the well known collocation methods are examined, as a strong form
alternative to the weak formulation and integration of PDEs introduced by Galerkin,
that minimizes the multitude of integration points required. Thus, this section will
provide a brief summary of isogeometric NURBS-based collocation methods for the
analysis of linear elasticity PDEs. According to [151], given a structure represented by a

domain Q C R%, where d the dimensionality of the structure, which is subjected to body
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forces f and the boundary I' of the domain is divided into a portion I'p with prescribed
displacements g and a portion I'y with prescribed tractions h, the strong form of the

linear elasticity equation is defined as

V- (CV5u)+f=0 inQ (2.66a)
u=g onTp (2.66b)
(CV°u)-n=h  onTly (2.66¢)

In eq.2.66, the terms V, V® are the standard and symmetric nable operators equiva-
lently, C the elasticity tensor and n the outward normal vector at the boundary of the

domain. In its variational form eq. 2.66 can be written as:

/(Cvsu):vswdQ:/f-wdQ+/ h - wdl' (2.67)
Q Q I'n

where w are the test functions. Integrating eq.2.67 by parts produces

/ V- (OVSu) + £] - w2 — / (CV54) -0 — h] - wdl =0 (2.68)
Q INY;

It is already known from the weak Galerkin formulation that the displacement field u

is approximated with the aid of the shape functions by

u=> R (2.69)
=1

where u; are the unknown displacement variables. In case of collocation, the test
function w is selected to be the Dirac delta function at each independent. The total
number of Collocation Points is selected to be equal to the number of Control Points that
define the geometry. The positions of the collocation points in the parametric domain
can be defined by various formulas, the most common among which is by the Greville

abscissae

_ Zzzl §i+1
p

Eq. 2.70 provides the univariate Collocation Points, for each one of the parametric

& (2.70)
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directions of the NURBS domain. An example of bivariate Collocation points is depicted

in Figure 2.9.

3@ {5 = = |
[ ] [ ] [ ] [ ]

2* » » { {]
® [ ] [ ] ®

1 - {7 i |

L ] [ ] ® ® L

0 B - s - 00— a

0 1 2 3 4

Figure 2.9: Parametric positions of Collocation Points in a two-dimensional domain. Blue rectangles
represent the Knots while orange circles the Collocation points positions at the Greville absissae.

The method used to enforce boundary conditions in the collocation method is two-fold.
In case of Dirichlet boundaries, no special treatment is required as the test functions
utilized in the variational form of the linear elasticity PDE have a prerequisite that at
the boundary the strong form of the Dirichlet conditions is satisfied.

On the other hand, in order to enforce Neumann boundary conditions a set of Dirac
delta functions at the boundary collocation points have to be chosen. Here, it is important
to make a distinction between the resulting equations at the interior Collocation points
of the domain and the boundary ones. For the interior points Eij the equation that
governs them is defined by

[V (CVu) +1](§;) =0 &;CQ (2.71)

Equivalently, for the collocation points on the Neumann boundary, a distinction must
be made among the edge collocation points and the corner ones due to the coexistence
of different outwards normal vector in the second case. Specifically, for the edge case we

have
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[(CV®u) -n — h] (EU) =0 §ij Cedge CTy (2.72)

and for the corner case equivalently,

[(CV®u) -n’ —h’] (&) + [(CV°u) -n” —h"] (&) =0 &jcorner CTy  (2.73)

where n’, n”. According to [161], from the former variational equations for the case of

linear elasticity, the stiffness matrix K at each collocation point Eij is defined by:

L(N;(E,.)), 1<i<k,
Kij _ ( J(Ezg)) B for 1< < (274)
n; - CVN;(§;;), fork+1<i<n
and the load vector F equivalently:
—L(ap(&;;)) + f(&:.), 1<i<k
Fi: (UD(é.]))i f(fj) B fO?” S1> (275)
—1n; - CVup(&;;)i + h(&;5), fork+1<i<n

In eqs. 2.74, 2.75, n represents the total number of Control Points, while k the
number of collocation points in the interior of the domain, letting n-k be the multitude
of collocation points on the boundary. Note that in the case of linear elasticity the
operator L of eqs. 2.74, 2.75, is defined by

Iu+f=0=V-(CV°u)+f=0 inQ (2.76)

And in a similar manner the operator B can be defined for the application of Neumann

boundary conditions as

Bu=h=— (CV°u)-n=h inTy (2.77)

In the following subsections, the cases of two-dimensional and three-dimensional

stiffness matrices and load vectors will be briefly summarized.
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2.4.1 STIFFNESS MATRIX 2D

In a similar fashion to the IGA Galerkin approach, for the extraction of the stiffness
matrix, a mapping is required for the transformation of parametric quantities to the
Cartesian space. Due to the isoparametric concept that also holds in case of IGA

collocation methods, the Jacobian transformation is employed.

X1 n
] = Rig(&m) Rae(€&m) - Rne&m)| | X2 Yo (2.78)
(222) Rl,n(£777) RZ,U(&T’) RNm(f,?])

X, Yy

In collocation methods apart from first derivatives, second derivatives must also be
transformed to the physical space thus raising the need for the Hessian transformation

matrix, as well as the square derivatives of Js of the Jacobian transformation.

X1 Y
Rl,ff (57 T]) RQ,EE (55 77) RN,{E (57 77) X2 Y2
([fQ]) = |Rim(&m) Roym(§,mn) o Rngn(§n)| - (2.79)
Rl,én (57 77) R2,£77 (57 77) RN,&W (ga 77) Xn YN
Tt Ji1J12 Ity
[JQ] = [2J11J21 J11J92 + Jiodo1 21999 (2.80)
(329) J31 Jo1J22 I3

Given eqs.2.78, 2.79 and 2.80 the transformation from parameter to physical space is

realized by

JoR,z =Ree — H'R, (2.81)

where R,x, R¢e, R, represent the vectors of second derivatives in physical and para-
metric coordinates, and the vector of first derivatives in physical space respectively.
Having computed the transformations and given the Lameé constants of elasticity A and

1, where based on Young’s modulus of elasticity F and Poisson’s ration v they are
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calculated as

vE
\ = 2.82
1+ v)(1—20) (282a)
FE
- 2.82b
F=50 1) (2.82b)
and the operators of eqs.2.76 and 2.77 can written in matrix form as:
P q
o 92 9?2
_ (A+2u) 5 "’;NW (A + “27695831 i (2.83)
(A + 1) 5255 A +20) 5 + i
o) 0 o] el
p— [P 2mnagg Himygy Aagy o piny g (2.84)
)\nya% + /mxa% A+ 2u)nya% + unxa%

where n,,n, are the direction cosines of the outward normal vector n.

2.4.2 STIFFNESS MATRIX 3D

Once again for the three-dimensional collocation case, the need arises to define the

Jacobian transformation from parameter to physical space.

99 99
z %
9| = 7] - |9 (2.85)
8¢ (323) 99
ac Dz

Analogously to the two-dimensional case, second derivatives must be transformed
between physical and parameter space and thus the Hessian matrix and square derivatives

matrix are computed as
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Riee(§,m:¢)  Roge(€,m,C) Ry ec(€,m,€)
R1,m7(§ 1,¢) RQJ?U(& 7,¢) RN,m](f 7,¢) .S CEVA]
R R ... R X Yo Z
H) - 1¢¢c(&m.¢) Racc(€m, Q) Nec(&5m,6) 2 Y2 B2 54
(623) Riey(&,m,¢) Roen(§,m,¢) ... Rnen(€,n,Q)
Riec(€,m,¢) Roec(€&,m,¢) .. Rnec&n Q)| |Xn YN Zn
| Rinc(€m,0) Rope(€m,0) Rnpe(€m,¢)
[ g2 J2, T3 201112 201113 9T diz ]
J3 J3, J3, 2J21J22 2J21J23 2J22J23

[J2] =
©6z6) |Juidan JizJae Jizdas  (Jundoe + Jndiz)  (Jundes + Jardiz)  (Ji2das + J2ad1s)

Jindsr Jiadse  Jigdss  (Jiidse + Jsidi2)  (Jidss 4+ Jaidis)  (Jizdss + J32J13)
| Jo1d31 Jandsy Jaszdss (Jo1J32 + J31J22)  (J21J33 + Js1J23)  (Jaadaz + J32J23)_

(2.87)

Matrices [H] and [J3] are then used in the transformations bellow
JR, = R¢ (2.882)
JoRyy = Ree — H'R,, (2.88b)

Finally, the operators L and B defined for the computation of the Collocation matrices

in the three-dimensional case are defined as follows:

2 2
(A+ 2#) dxz + Mdy + /i@87 ()‘ + 1) agay (A + M) 81'8z
2
L= (A+ U) azay (A+ 2#) ay2 + Haxz + M% (A + M) ayaz
2
(A+ H) 9202 (A+ N) ayaz (A+ 2#) 322 + Mam2 + M(%Q
(2.89)
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(A +2p)n, 2 + /,mya% + pn £ )\nza% + pny 2
Any 2 + unxa% A+ 2,u)nya% + png 2 + pn. 2
)\nZ% + ;mx% )‘”Za% + ;my% (2.90)
)\nm% + /‘nz%
)\ny% + unza%

(A + 2#)”2% + Nnm(% + Mny{%
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[sogeometric solution methods

3.1 INTRODUCTION

IGA method was developed with the aim of eliminating the geometry approximation
introduced by FEM and providing a tighter integration with CAD models. The strongest
asset of IGA is the increased polynomial degree of the shape functions, that is accom-
panied with higher interelement continuity. In case of the CAD counterpart of IGA,
this translates to smooth and accurate representation of curves, while for the CAE
case, it results into smoother variation of the analysis characteristics such as stresses or
strains. This property, however desired it may be regarding the accuracy of the results,
it significantly increases the computational cost for the assembly and the solution of
the produced linear systems. The increased shape function support results in increased
bandwidth and population of the stiffness matrices. As a result, efficient and scalable
solution methods are considered open issue towards the establishment of IGA.

A variety of methods have been proposed for addressing the solution of the resulting
IGA system of equations. A relationship between solution cost and degrees od freedom
is presented in [51], by examining different levels of continuity from C° of FEM to full
continuity CP~! of IGA. Similar research has been conducted for iterative solvers [49]
and specifically with the preconditioned conjugate gradient method, for which vari-

ous preconditioners, like diagonal-Jacobi, successive-symmetric over-relaxation (SSOR)
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and incomplete Cholesky factorizations were examined [141, 46, 96] to improve the
computational cost for the solution of highly continuous IGA discretizations.

Similarly, DDM solution methods were investigated with the first [55] introducing
overlapping additive Schwarz preconditioners for IGA. IETI method was proposed in
[106] as an isogeometric variant of the Finite Element Tearing Interconnecting Dual-
Primal method. Primal and mixed Schwarz preconditioner for linear elasticity systems
were introduced in [179], while [27] studied the BDDC preconditioners for isogeometric
scalar elliptic problems.

This chapter, will briefly discuss two categories of solution methods that are utilized
latter in this manuscript. Specifically, iterative and domain decomposition solution
schemes are described, with PCG and GMRES being the iterative algorithms described
and FETI-DP and P-FETI-DP the domain decomposition ones. The reason for the
exploration of two different algorithms in each category is that Chapters 4 and 5, address
the solution of the isogeometric Galerkin and Collocation methods equivalently, that
result into symmetric and non-symmetric stiffness matrices,hence making imperative the

need for different algorithms.

3.2 ITERATIVE

The first major category of solution methods considered for the estimation solution
arising from structural mechanics problems is iterative solvers. They utilize an initial
starting point and approximate the final solution via consecutive iterations. When a
certain criterion is met, such as the error tolerance, the iterative method is considered
to have converged to the final solution of the linear system. Unfortunately, the efficiency
severely depends on the choice of preconditioning technique used. In this subsection, the
PCG and GMRES methods will be briefly discussed, as they will be utilized later in the
manuscript for the solution of symmetric and non-symmetric linear systems deriving
from the isogeometric Galerkin or Collocation method equivalently. Their description is

kept as concise as possible as they are considered standard textbook material.

3.2.1 PCG

PCG is considered to be one of the most widely used iterative solvers for the solution of
symmetric positive definite systems, such as the ones deriving from isogeometric Galerkin

processes [154, 49]. Specifically, a linear system of the form:
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A-x=b (3.1)

where A is a symmetric positive definite matrix and let xg be the initial guess solution
vector, which in most cases is chosen as the zero vector, the solution xj of the k-th

iteration, the solution of the next iterative step is estimated by

Xk+1 = X + apPE (3.2)

where p defined in eq. 3.2 are the direction vectors pointing at the steepest possible
gradient at the point x; and ap a scalar cooeficient. These consecutive direction vectors

Pk, Pr+1 must satisfy the following orthogonality principle

plAp; =0, Vi#j (3.3)

Similar to the solution vectors, the direction vectors are updated in each iteration

based on their value in the previous iteration step

Pr+1 = Tk + BpPk (3.4)

The term ry of eq. 3.4 defines the residual vector and is calculated as rp = f — Axy,
while B is another scalar coefficient. The preconditioned version of the conjugate
gradient method examined here, introduced one additional vector zj, which represents

the preconditioned residual forces vector and is calculated by

Zp+1 = A Tk (3.5)



Algorithm 1: PCG algorithm

Data: Linear system matrix: A,
Right hand side: b,

Initial solution guess: xg,

Preconditioner matrix M
Result: solution vector: xxi1

rog .= b — AXQ;

Zy = Mﬁlro;
Po = Zo;
k=0;
while (convergence is not met) do
ik
pi Api’
Xk+1 i= Xg + QgPk;
if ri 1 is not sufficiently small then

Qp =

Zpt1 = Argiq;
By = Zip 1Tkl
k -— Zgrk )
Pkt1 = Zk41 + BkPrk;
k=k+1;
else
exit loop ;
end

end

The choice of the preconditioning matrix A is significant for the efficiency of the
method. Choosing the preconditioner to be the equal to the matrix A, would result
in the PCG converging in a single iteration, however the computational cost would be
inexpedient. Thus, the preconditioner matrix is chosen to be sufficiently close to the
initial matrix A, yet easily reversible in order to minimize the resulting computational
cost per required iteration. The algorithm of PCG method according to [154] is given
finally provided in Algorithm 1.
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3.2.2 GMRES

GMRES is an iterative solution method that belong to the Krylov subspace family of
methods and extends the conjugate gradient solution scheme, for the solution of linear
systems that are governed by non-symmetric matrices [154]. In a similar fashion to the
PCG method that was previously analyzed, GMRES utilizes of orthogonal vectors, which
due to the non-symmetric nature of the matrices must be stored for the computation of
the next one. In detail, the orthogonal base of the residual vectors is Arnoldi process

given by Alg. 2.

Algorithm 2: Arnoldi algorithm
Data: Unit vector v;
for j=1,2,..,m do

for 1=1,2,..5 do
‘ hi,j = (AVj,V,L');
end
wj = Av; — > hijvi;
hjq1; = HWng;
if hj+1,j = 0 then
| exit loop
end
Vj+1 - hjvijl,j
end

In Alg. 2, the quantities h; ; create the Hessenberg matrix and thus based on the
Arnoldi process, the GMRES algorithm is formed in Alg. As a result, the approximate
solution of the i-th iteration is calculated based on a combination of the vectors generated
by the Arnoldi process and the equivalent solutions vectors of previous iterations as

follows

X; = Xi-1+ Z Bjvi (3.6)

Jj=1
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Algorithm 3: GMRES algorithm
Data: Matrix A
Right hand side b
Initial solution guess xg

rg = b — AXO;
8= ol
To
Vii= 3
p
for j=1,2,..,m do
Wj = AV],
for 1=1,...,7 do
hij = (W, vi);
Wj = Wj — h@jVﬁ
end
hiv15 = [Willy if hji1; =0 then
m:=j ;
exit all loops;
end
v Wi .
+1 )
T hiy
end

Compute the Hessenberg matrix H,, =;

Ym = min(||Ber — Hpy||,) ;
Xm =X0+ VinVm

3.3 DOMAIN DECOMPOSITION

3.3.1 PSM

Primal Substructuring Method (PSM) is considered to be a fundamental method for the
solution of computational mechanics problems with subdomains [71, 33]. The underlying
idea on which the method is based on, is initially the segmentation of a domain into
subdomains, followed by a static condensation of the internal boundary degrees of
freedom of a subdomain to the common boundary degrees of freedom between adjacent
subdomains.

Specifically, for each one of the subdomains, a partitioning is performed that separates

the dof into boundary, denoted as (b) and internal, denoted as (i). Boundary dof are
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defined by those degrees that belong to more than one subdomains. In terms of the

subdomain stiffness matrix and forces vector this translates to:

i R (3.7a)
K Ky,
5 = f"s (3.7b)
o

by applying eq. 3.7 to the equilibrium equation K - u = f, where the internal dofs are

numbered first followed by the boundary dof, it can be written as follows:

KD 0o o KY] (uW £
0 . 0 : :
VN 0 S (35)
0 o KM KM Ju™ £V
_KIS:) e Kl(;ivs) Kbb ] up fb

In eq.3.8 the terms that refer to the boundary problem of PSM, such as Ky, bf and
f, are as the sum of contribution of the boundary dofs, mapped to their equivalent global
boundary dofs of the PSM problem.

The goal of PSM is to reduce the multitude of the dofs of the initial system only to
the boundary dofs of the between the subdomains. This transforms the initial linear
system K-u="f to

S. up — fb (39)

where the matrix S is the Schur complement of the initial stiffness matrix K to
the boundary dof between the subdomain. Matrix S can be assembled by adding the

contributions of each of the subdomain matrices as follows:

N
s=>'§ (3.10)
s=1

where S is the contribution of the subdomain matrix to the boundary problem Schur

complement, and Ny the number of subdomains.
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S® = (L)Ts°L; (3.11)

In eq.5.15, the matrix L; is an unsigned Boolean matrix that maps the local boundary
dof of the subdomain to the global boundary dof of the problem, while the matrix S¢ is
calculated by:

S* =K, — (K3)" (K}) 'K, (3.12)

The same procedure is applied for the subdomain forces, where the right hand side of

eq. 5.13 can be expanded as

N,
f, = f,— > (Lj)" (K3) " (K;) £ (3.13)
s=1

3.3.2 P-FETI-DP

P-FETI-DP method constitutes an enhancement of the aforementioned PSM method,
as it introduces a preconditioner A~! to the boundary linear system of eq. 5.13, that is

based on the coarse problem of the FETI-DP method. Its expression is given by:

A= (L5 (KT,) T Ly, (5N — (L) T (KF) T KELE) (KE) ™

rc—c

— (L€ TKe Ke —lile N (314)
( ( c) cr( rr) pr tbe b)

In order to accurately describe the mapping matrices introduced by this preconditioner,
a brief description of the partitionings appearing in FETI-DP method are provided.

Figure 3.1 provides an example of a bicubic domain. Knot value vectors = =
{0,0,0,0,1,2,2,2,2} and H = {0,0,0,0,1,2,2,2,2} are utilized for the initial parame-
terization of the domain, which produces two isogeometric nurbs elements per direction
as illustrated in Figure 3.1a. A multitude of n =m—p—1=9—-3—1 =5 Control Points
are defined per parametric direction, resulting to a total of 25 Control Points for the
two-dimensional domain. In the latter expression, n represents the number of Control
Points, m the number of values existing in the knot value vector and p the polynomial
degree. The positions of the Control Points on the parametric domain are shown as blue

circles, while the Knots that define the element boundaries are derived from the distinct
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Figure 3.1: P-FETI-DP node partitioning

values of the knot value vectors and are depicted with yellow squares in Figure 3.1a.
Figure 3.1b shows a partitioning of the parametric domain into subdomains. Note that
the subdivisioning is performed in a Control Point basis, not a element basis in order to

achieve as uniform distribution among the subdomains as possible. Specifically, each
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parametric axis is split into two subdomains, considering only a single Control Point
as their common interface. The tensor product result of this univariate subdivisioning,
produces the partitioned domain, depicted as shaded areas in Figure 3.1b. At the
common edges between the produced subdomains, Control Points produce an interface,
that is the boundary problem of the PSM method. As already explained by eq. 3.7, this
interface between the subdomains leads to a separation of the degrees of freedom into
boundary and internal ones. This separation is schematically illustrated in Figure 3.1c,
where nodes that belong to the interface problem of PSM are highlighted with the red

rectangles. All remaining nodes belong to the internal nodes category.

Another partitioning arises from the coarse problem of FETI-DP method and is based
on the definition of corner nodes. Specifically, corner nodes are defined as the nodes
that either belong to the interface between more than two subdomains and lie on the
interior of definition domain 2, or belong to the interface between two subdomain and
lie on the boundary 02 of the domain €). This definition introduces a new partitioning
of the subdomain nodes to corner and remainder ones. In terms of the local subdomain

stiffness matrix and forces vector, this translates to :

K, K,
K® = (3.15a)
Ke K.
£5 = f’; (3.15b)
e

This definition is illustrated in Figure 3.1d, where corner nodes are depicted as green
triangles. As it can be observed only a single Control Point belongs to the case of interior
points with multitude of converging subdomains greater than two. All other corner
nodes belong to the the domain boundary case, with number of converging nodes equal
to two. Having defined all required partitionings, the constituents of the eq. 5.31 can
now be defined. Starting from left to right all unknown terms of the preconditioner are
explained in detail. igr matrix is used to map the remainder dofs of the discretized

domain and the boundary problem of the PSM method. Its expression is given by

L¢, =, NjLS, (3.16)

pr — T
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The purpose of matrix ,Nj as its subscripts indicate, is the compatibility of matrix
dimensions. When subdivided into subdomains it can be written with the following

block diagonal expression

N§ = - (3.17)
NG

Each of the subdomain contributions TNI(]NS) is a Boolean matrix that maps the

remainder dofs of the subdomain s to the boundary dofs the same subdomain. The
matrix L;b of eq. 5.32 can be similarly written

1)

L,

o= (3.18)

N
Lo

where for each subdomain the matrix L;‘Z) is computed as

LY = L;w (3.19)

In eq. 5.35, the matrix L} is a Boolean matrix that maps local boundary dofs of the
subdomain to the global boundary dofs of the PSM problem. Additionall, the matrix W
is a diagonal matrix, with terms equal to the inverse multiplicity of the boundary dofs.
The term multiplicity for the case of boundary dofs, refers to the number of subdomains
this dof belongs to. Moving to the next undefined terms K¢, , K¢ , these constitute block

diagonal matrices generates from the partitioning of the subdomain matrices to corner

and remainder dofs as per eq. 3.15a.

K\,
K¢, = (3.20a)
K

Ko
K¢, = (3.20b)
Ko |
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while the K7, matrix is derived as the Schur complement of the remainder dofs of
each subdomain, to its boundary corner ones and consequently its mapping to the global
boundary dofs of the corner problem define by FETT-DP. The matrix ;N of eq. 5.31, is
another Boolean mapping matrix, that links the boundary dofs of the PSM problem, to
the corner dofs of the FETT-DP method. Finally, the matrix L, is written in subdomain

form as

Lt
L = : (3.21)

L)
and defines an unsigned Boolean matrix that links the local corner dof of each
subdomain to the equivalent corner dof of the coarse problem. Note that for all the
Boolean matrices involved in this process no matrix vector multiplications are required,

rather the utilization of the proper submatrix.

3.3.3 FETI-DP

FETI-DP method, belongs to the category of dual DDM methods, that chooses as
a solution quantity for the boundary problem, the traction forces developed between
subdomains.

Similar to the aforementioned DDM methods, FETI-DP is based on the partitioning
of subdomain matrices based on their geometrical or interface properties with adjacent
subdomain. Thus, given a subdomain s, and its stiffness matrix K?*, displacement vector

u® and force vector f*, it can be partitioned as follows:

K*® = [ ” “’] (3.22a)

w = {ul} (3.22b)
uy
fs

£5 = { 1 } (3.22¢)
f;
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The subscripts b and ¢ of eq. 3.22, denote the boundary and internal dofs of the
subdomain equivalently. The boundary dofs in analogy to the PSM method, are the
degrees of freedom that are shared among multiple subdomains, while internal dof,
belong solely to a single subdomain. A further partitioning of the boundary dof, results

into the following expression for the boundary displacement terms:

S
w = {“{j} (3.23)
Uy,

Again the subscripts ¢ and r, denote the partitioning of the boundary degrees of
freedom into corner and remainder ones. Corner nodes and dof, are those that belong
to either of the following two categories. The first category includes nodes that lie on
the crosspoints between subdomains and as a result this point belong to more than two
subdomains. On the other hand, the second category takes into account nodes that lie
of the boundary of the domain and at the same time belong to an interface between
adjacent subdomains. Given two adjacent subdomains s; and so, the expression that

defines their displacement compatibility is given by

ul*) —u*? — 0 (3.24)

Eq. 3.24 can be extended to include the compatitbility equations for all subdomains

N,
> Bu’ =0 (3.25)
s=1

where B® is a signed Boolean matrix with values (4+1,—1,0) that maps the local
subdomain boundary degrees of freedom, to the global boundary dofs of the problem. Eq.
3.25 represents the compatibility equation for all subdomains of the structure which is
enforced by introducing Lagrange multipliers, while at the same time, the displacement

compatibility at the corner nodes is ensured.
To this end, the stiffness matrix K?, the displacement vector u® and force vector f* of
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an arbitrary subdomain s, can be further partitioned as follows:

K K
K° = [(K;';T K] (3.26a)

S
w = {us’” } (3.26b)
Uy

fS
£5 = { r } (3.26¢)
fie

where the remainder dof include the internal nodes of the subdomain and the boundary
nodes that do not belong to the corner category. As a result, the stiffness matrix can be

further elaborated as

Kii Ko, Ki
K* = (beT)T Kgrbr Kzrc (327)
(K" (Kpo)' K
Additionally to the global displacement vector, the corner dof displacement vector is
introduced.
ul!)
u, = : (3.28)
uﬁNs)

In a similar fashion to eq. 3.25, another compatibility equation is added

Ns
Y Biuj =0 (3.29)
s=1

where B} is a signed matrix with values (1, —1,0) that maps the remainder dofs of the
subdomain to to the global boundary remainder dofs. In addition, for each subdomain,
a new Boolena mapping matrix L} is introduced which connects the local corner dofs of

a subdomain to the global corner dofs as follows

Liu. = uj, (3.30)
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Taking into account all the above equation, the final linear system to be solved takes

NG R

where the matrix K€ is a block diagonal matrix that contains the local subdomain

the following form:

Ke (Be)T
B¢ 0

stiffness matrices, while matrix B¢ is derived based on the compatibility of the remainder
dofs of eq. 3.29

B =[[B" o .. [B™ o (3.32)
With the aid of egs. 3.26,3.29,3.30,3.31 the equilibrium equation for the remainder

dof is obtained.

KSud + Ké Liu, = 5 — (B$)T) (3.33)

rTrr rcTcC

The additional equilibrium equation for the displacements at the corner dof is expressed

as:

N Ng N
S @HTK:) s + > (U)K Liue =+ > (LY)Tf, =f. (3.34)
s=1 s=1 s=1
where the matrix K . is computed by
Ns
Ko =y (L) KL (3.35)
s=1

Assuming that selection of corner dof is adequate, so that given their values all
subdomains are considered sufficiently supported and thus the matrix K7, is reversible,

so eq. 3.33 can be written as:

u, = (K3,)7HE — (BT - K} Liu] (3.36)

rc—c—C
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Replacing the latter to eq. 3.29 we obtain:

TCC

iBi(K;)—l £5 — (B)TA — K8 Léu] =0 (3.37a)

N, N, N,
SUBIK:) U - YU BIK,) T (B)A - Y BIKS,) K Liu, =0 (3.37b)

rc—c

For the sake of simplification, the following terms of eq. 3.37 are defined as

N,
d, = Z B}(K,) 't (3.382)
F; = ZBS K:) (BT (3.38b)
F;, = Z B3 (KS,) K5, (3.38¢)
which translate eq. 3.37 to
F[m)\ + F[T,cuc =d, (3.39)

In a similar fashion, replacing eq. 3.36 to eq. 3.34 the following expression is derived

N
> LHTK) T (K)TE — (BY)'A - K} Liud + Keeue = £ (3.40)
s=1
which by defining
N
K;, =Ko — ) (L) (K})" (K;,) KL (3.41a)
s=1
N
£ =1f— ) (L)T(K)(K,) 'L (3.41D)
s=1

98



turns into

(Fr,.)" A —Kju, = —f; (3.42)

The eqs.3.39, 3.42 represent a dual-primal linear system, as its unknown quantities

are both the Lagrange multipliers, as well as displacements of the corner dofs

{i} _ {d;:} (3.43)

The second hypothesis of FETI-DP method is introduced in this step regarding the

corner displacements u., which assumes that that if the subdomains are connected only

Fr. Fr.
(FITT )T 7ch

to the corner nodes, then these connections suffice to transfer the loads applied to the
strucure to its external supports. This results to the matrix K. being reversible, thus
from the second equation of the linear system in eq.3.43, the displacement is of the

corner dof is obtained as

ue = (Ki) 7HE + (Fr)" Al (3.44)

By replacing eq. 3.44 to the first equation of the linear system in eq.3.43 the final
equation of FETI-DP method is produced

[Fr,, +Fr, (K) T (Fr,) ]\ =d, — Fr, (KZ) 7'} (3.45)
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Non-overlapping domain decomposition
solution schemes for structural mechanics

isogeometric analysis

4.1 INTRODUCTION

This Chapter focuses on the development of a family of solution algorithms for the
purposes of isogeometric Galerkin methods that exploit the advantages of an iterative
solution scheme, namely PCG coupled with domain decomposition methods. Specifically,
by introducing an appropriate modification to the NURBS shape function overlapping
nature, a non-overlapping equivalent of the initial domain is introduced, that possess the
same geometrical features with the initial one, yet has artificially induced discontinuities
in the form of truncated shape functions. This allows the development of a robust and
scalable preconditioner that minimizes the computational cost in both sequential as well
as high-performance parallel computing environments. In this work, the PCG iterative
solver is coupled with the IETI domain decomposition method, in order to investigate

the numerical characteristics of the proposed method.
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4.2 EXISTING SOLUTION TECHNIQUES

Due to the capabilities introduced by the IGA, along with the CAD tools, it has gained
a wide acceptance by the scientific community. This rapid evolution creates the need for
efficient computational methods for solving complex problems. In both FEM and IGA

methods the resulting algebraic equation linear system has the form:

K-u=f (4.1)

where K is the stiffness matrix, f is the external load vector and u the vector of
unknown displacements. The computational effort required for the solution of eq. 4.1
highly depends on the size and the sparsity pattern of the stiffness matrix. In the case of
IGA, shape functions of higher continuity that enable exact geometrical representation,
reduce the sparsity and increase the computational cost for the solution. Specifically, the
overlapping of shape functions through several IGA elements leads to denser matrices
and higher interelement continuity, while the utilization of higher polynomial degrees
leads to a more computational demanding solution procedure compared to FEM for the

same dof.

This characteristic feature of IGA may hinder its capability of addressing large-scale
problems unless cost-effective solution methods are developed to address the inherent
features of IGA. Both direct and iterative solution schemes have been utilized for
the efficient treatment of large-scale IGA problems, but their computational efficiency
suffers as continuity increases [50]. At the same time, DDM were proposed for coupled
subdomains [153, 9, 83, 35] and were implemented for the solution of IGA simulated
problems [56, 24, 27, 57, 26, 86, 43]. Furthermore, IETI [106, 86] was among the first
attempts to implement DDM for IGA problems. This method, is based on the well-
established FETI-DP solver [69, 102, 120, 63, 104] which combines both primal and
dual DDM formulations. In IETI, the subdivision in subdomains coincides with the
non-overlapping patterns of patches of the model. This makes the number and the size
of subdomains geometry-dependent, severely impairing load balancing and scalability in

paralle architectures.
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4.2.1 THE IETI METHOD

IETT was introduced in [106] as an extension to the FETI family of methods [63, 70,
185, 138]. It utilizes the exact geometrical representation of IGA with the advanced
subdomain coupling and solution capabilities of FETI methods. Specifically, the NURBS
representation of a structure is naturally subdivided into patches, to accurately describe
abrupt changes of geometry. The boundary between these patches describes the interface
problem of IETI where each patch coincides with a subdomain and thus constitutes a
local problem to be solved in parallel.

The stiffness matrix K*, force vector f° and displacement vector u® of each patch (s)

can be partitioned as follows:

K® = [K be] (4.2a)
Ky Ky
fs
s = | 4.2b
= |4 (420
u = [ui] (4.2¢)
Up

with the (i) subscript denoting the internal dof and the (b) subscript denoting the
boundary dof.

In order to impose continuity between patches, the following equation is introduced:

Ns
Y Bt =0 (4.3)
s=1

with Ny being the number of patches and B® being a signed Boolean matrix. The uy

vector is further partitioned as:
us
uj = [ ZT] (4.4)
Upe
with the subscript (¢) denoting corner nodes which are usually defined as nodes

belonging to more than two patches. Subsequently, K* u® and f* can be partitioned as
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follows:

Ky, K3
K’ = (4.5a)
Ke KC.
r-[f] "
be
ut = [“] (4.5¢)
Upe

where

fo= [ : ] (4.6a)

ut = [“ ] (4.6b)

and subscript (r) denoting all dof that do not belong to a corner node. Considering

this repartitioning, the continuity between patches can be re-written as:

N

> Biui=0 (4.7)

s=1
with Bf being the signed Boolean matrix B, pertaining to the (r) dof. Moreover,

the following global vector of corner dof is introduced

. T
ue = |ul ..ouwl o .. ué\fc} (4.8)

with u’ denoting all of the displacement dof attached to the j-th global node that
is also a corner node of the mesh decomposition and N, denoting the total number of
corner nodes.

In order to connect u. with uj_, the following equation is introduced:
Biu, = uj, (4.9)
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with B? being an unsigned Boolena matrix.

Considering all the above equations, the patch equilibrium is expressed as:

K3 US4+ K3 BSu, = f5 — BST\ (4.10a)
Ns Ns NS
Z BiTK: up + Z Bi"Ku. = Z B fp = fe (4.10b)
s=1 s=1 s=1

with A being the traction forces between each Patch.

From the above relations, it follows that

ud = K3 NS — BST\ — K2 BSu,) (4.11)

rr rc—c

which, when substituted to eq. 5.23, the following system of equations arises

F F A d
| el = (112
FIrc _ch Ue fc
where:
N
F,, =Y BIK;,'B" (4.13a)
1=1
Ns
Fr,, =) BIK} 'K}.B; (4.13b)
=1
Ns
K=Y B:'K;B: (4.13c)
=1
N,
K}, = Kee — Y (K7.BY) K~ (K;.BY) (4.13d)
=1
N,
d, =Y BIK:,'f: (4.13¢)
=1
Ny
fo=fo= Y (KpB) K5 (4.13f)
=1
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By eliminating u. from the baove equations, the following interface problem needs to

be solved:

(FITT + FIrcchilF}I;c))\ = dr - FITCKgcilf: (414)

The solution of eq.5.30 is usually performed with an iterative solution algorithm and
for the case of structural mechanics where positive definite matrices occur, the PCG

algorithm is used.

4.2.2 HANDLING THE INTERFACE PROBLEM: MULTI-PATCH (IETI-P) AND
OVERLAPPING IETI (IETI-O)

As described in the previous section, the boundary between the patches of an IGA
model describes the interface problem of IETI, with each patch defining a subdomain.
Usually, these patches occur in IGA when designing the model and are introduced in
order to accurately describe the geometrical characteristics of the model. However,
such patches can also be introduced by the designer, in an arbitrary fashion, without
disrupting the aforementioned geometrical characteristics. In this work, a multi-patch
IETI variant called IETI-P, is considered where the model to be solved is altered with the
introduction of additional patches that serve the purpose of defining IETI subdomains.
Such introduction can have a positive impact on the IETI’s mesh dependent load
balancing and scalability, at the expense of introducing more dof.

An alternative approach for the definition of subdomains it the IETI-O variant by
applying the overlapping approach as first described in [130], for the case of element-free
Galerkin simulation methods, and later in [27, 57] for the BDDC where the resulting
interface is referred to as ”"fat interface”. Specifically, a physical domain subdivision
is performed along Control Points instead of relying to the existing patches. Due to
the continuity characteristics of the shape functions, the interface problem (Figure
4.1b) in case of two overlapping subdomains is larger when compared to the interface
problem of two patchesin IETT (Figure 4.1a). However, as in the case of IETI-P, this
consideration alleviates the problem of path dependency encountered in IETI. The
difference of overlapping terms of the stiffness matrix is visualized in Figure 4.1 for a 2D
domain. The gray area depicts the elements associated to the interface dofs.

Both IETI-O and IETI-P share the same characteristics, pertaining to their mathe-
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matical properties as well as their numerical and parallel scalability, with IETT [106].
This stems from the fact that these IETI variants differ only, either in the magnitude of
the interface problem or in the way the domain is divided into subdomains. properties
and characteristics of IETT have been throughly investigated in [106, 27, 57, 69, 102, 77].
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60+ 60l

80 80

100f 100f

120k . : ‘ - . 120% ! o ! :
0 20 40 60 80 100 120 0 20 40 60 80 100 120
nz = 4030 nz = 4222
(a) IETI-P (b) IETI-O
Figure 4.1: Global stiffness matrix graphs of a 2D domain for p=2 and the interface of two
subdomains.

4.3 PCG-IETI-N

Despite its favorite features, IETI has some drawbacks that decrease its efficiency,
with the most important one being the dependency between partitioning and structure
geometry. Specifically, IETT relies on patches already present in the model to define the
subdomains of the structure, making partitioning geometry-dependent and thus severely
impairing both load balancing and scalability, especially in fine grain high-performance
computing environments. The proposed alternative versions of IETI-P and IETI-O
overcome the problem of patch dependency, by either introducing new patches or be
extending the interface problem. This comes at the expense of increasing the overlapping
domains, since a multitude of new Control points are introduced, and the resulting

interface problem can become prohibitively large as shape function continuity increases.
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In order to alleviate the aforementioned mesh dependency of partitioning without
the associated drawbacks, a solution methodology for structural mechanics problems is
proposed thta combines the advantages of both PCG [154] and DDM. In addition to the
original model with stiffness matrix K, the proposed algorithm introduces another model
with stiffness matrix K, referred to as the "non-overlapping model”. The procedure
for building K, will be described in the next section. The non-overlapping model has
identical properties and geometry to the original model, but its shape functions have
been truncated at the boundaries of the subdomains. These discontinuities result in
non-overlapping subdomains, but at the same time reduce the accuracy of the original

model.

Matrices K and K, have the same size and due to their similarity, they are connected

with the following relation:

K = K, + AK (4.15)

where AK is a sparse matrix with the size of K and K,, with terms only near the
interface where continuity has been reduced. By substituting eq. 4.15 to eq. 4.1, the

linear system at hand can be written as:

(Kp+ AK)u = f (4.16)

Following the rationale of incomplete Cholesky preconditionings[73], AK can be
considered as the error matrix E contributing to the small terms in the lower triangular
matrix produced by the Cholesky factorization, which can be ignored of they do not
satisfy a specified magnitude criterion. In the proposed method, the preconditioning
matrix Kpre. of the iterative method used (i.e.:the PCG method[154] in this work)
becomes the stiffness matrix K, of the non-overlapping model. This means that for each
iteration, a linear system involving the non-overlapping model needs to be solved , in
order to evaluate the preconditioned residual vector zj;1 = Kpre[lrﬂl.

The solution of the equation, Ku = f, where the evaluation of the preconditioned
residual at each iteration is performed with IETI, with K,,... = K, constitutes the
PCG-IETT non-overlapping (PCG-IETI-N) method. In particular, the residual vector
rj+1, becomes the load vector ofr IETT which is split into Ny parts, with /Ny being the

number of non-overlapping subdomains. The load vector of each subdomain is equal to
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LSTj+1 = fs (417)

with L® being an unsigned Boolean matrix. By partitioning the non-overlapping

subdomain quantities as follows

K3 K3
K= [KSP"T Kp] (4.18a)
Pre Pce
S
us = [u;”] (4.18b)
ch
S
oo [fz] (4.18¢)

the problem of eq. 5.30 is solved with respect to A. Following the computation of A,

vector u, is evaluated from the second eq.5.26 as follows:

ue = KX7NEL T = ) (4.19)

cc

Then, vector z;11 is computed for each subdomain as:

2= K5 TNf - BN~ K3 Biuc (4.20)

and global vector z;1, by

Ns
Zj+1 == ZWS Sz;_H (421)
s=1

where W¥ being a scaling diagonal subdomain matrix that accounts for eventual

subdomain heterogeneities [152].

The repeated solutions required for the evaluation of the preconditioned residual
vector zj41 are treated as problems with multiple right-hand sides, as described in
[77, 172, 73, 41], further enhancing the convergence properties of PCG-IETI-N.
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4.4 BUILDING THE NON-OVERLAPPING STIFFNESS MATRIX

In order to further explain the process of constructing the non-overlapping model and
its stiffness matrix, a brief overview of Gauss integration and shape function evaluation,
as performed in IGA, is provided in the following subsections. Advanced quadrature
techniques for IGA are presented in [16, 12, 6, 123, 38, 132, 94, 67].

4.4.1 GAUSS INTEGRATION

According to [93], in order to accurately integrate a piecewise polynomial of degree p, #

and ¥7 Gauss Points are required for odd and even degrees, respectively. Numerical
integration is performed for the evaluation of the stiffness matrix [176], which is an

integral of the form

Kei/EﬂEBM) (4.22)
Q

with E being the constitutive matrix and B the deformation matrix which is evalu-
ated from the derivatives of the shape functions. In the one-dimensional case and for
polynomial degree p of the shape functions, the differentiation produces a (p-1) degree
polynomial. As a result, the stiffness matrix of eq.4.22 is a polynomial of maximum
degree (p — 1) + (p — 1) = 2p — 2 which is an even number. The minimum number of
Gauss Points for integrating an even degree polynomials is equal to:
2p—-2)+2 2p
=g =P (4.23)
In an analogous fashion, the minimum number of Gauss Points can be derived for
2D and 3D cases. The maximum polynomial degree, needed to accurately compute the
shape function partial derivatives used in the deformation matrix, is p. eq.4.22 is a
polynomial of maximum degree 2p which is an even number and the minimum number

of integration points are computed as:

2p+2
5 =

Figure 4.2a illustrates an example of a 2D domain, modeled with biquadratic shape

p+1 (4.24)

functions. According to the above discussion, the minimum number of integration points

are (p+1)=3 for both parametric directions.
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It is also important to notice another property that stems from the definition of B-
Spline shape functions; according to [143], each control point is associated to one shape
function and their support is equal to (p+1) knot spans. This property is illustrated
in Figure 4.2b where the affected area of the indicated control point is shown shaded,
while the connectivity of the control point is indicated in Figure 4.2c. Furthermore, each
knot span contains (p+1) non-zero shape functions of degree p. In two dimensions, each
element that is created from tensor product knot spans, contains (p 4+ 1) x (¢ + 1) shape
functions for polynomials degrees p and q that affect an element. Following the same
rationale, in three dimensions, (p+ 1) x (¢ + 1) x (r + 1) shape functions for polynomials
degrees p,q and r affect and element. Inductively, since each Gauss Point belongs to
an element, its numerical value is affected by the control points associated with this

particular element, as illustrated in Figure 4.3.
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(a) The parametric space of a 2D domain: Circles indicate control points, squares indicate knots and
x-symbols indicate integration points
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Figure 4.2: A 2D domain modeled with 6x10 control points and biquadratic shape functions (p=2)..

111



4.4.2 SHAPE FUNCTION TRUNCATION

Following the presentation of the control point support, a shape function support
truncation process will be described. For this purpose, an implementation that truncates
the support of shape function along predefined boundaries in the parameter space will
be examined.

Let 2 be a one-dimensional NURBS patch, which is required to be split at a certain
position & of parametric axis =. This procedure will remodel that initial domain into
two subdomains, namely (2, and €),. Each subdomain contains a set of shape functions
R, and Ry, for which:

Ry, N Ry, #0 (4.25)

L 1
X , X[ X , X[ X ! ><"><
o7 & % f % & x | % & x f %
% X e I X X A X X X
DG X X X X X X X X
X & x | x & e | & x | x
X X X L X SRR X s L. ¢
X X T [ 6 oo (5 X x [ X
X & x f x & x| % & x | x
3¢ X x A x e 5 P A’
X i X % = o R = X
X & x | x & * 0 &
x ‘ x I > ‘ 3¢ B 5

] 2 3

Figure 4.3: 2D domain for p=q=2. N control points (p+1) x (q+1)=9 have non-zero influence to
the circled Gauss point.

To these sets of functions, a truncation function 7'(§;) will be applied which will
modify them by reducing the subdomain common support to a single shape function.
Since the application of the truncation function will eliminate the contribution of the
shape function sets beyond position &, the truncation functions is chosen to be expressed

with the aid of the Heaviside function, which is defined as follows:

H(¢) = O Jores<o (4.26)
1, for £>0
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As a result, each of the subdomains’ shape function sets R, , Rs, are truncated as

follows:

R, = R\ [1 — H(§ = &)] = R, TL(&) (4.27a)
R:Q = RSQH(§ - ft) = RSQTR(gt) (4.27b)

An immediate outcome of the above is that, for the subdivision of the initial domain
into a multitude of subdomains, each intermediary subdomain can be described as

follows:

R = RyTL(E)TR(ED) (4.28)

with £, £ being the equivalent truncation positions. Since 77,(0) and Tx(1) do not
affect the contribution of the shape functions, eq. 4.28 can be generalized for the
description of the first and last subdomains with knot value vector equal to 2 = [{; =
0,....&n+p+1 = 1]. Moreover, eq. 4.28 can be expanded for more dimensions with the
introduction of similar functions for each of the corresponding parametric directions.

In order to examine the properties of shape functions, both even and odd polynomials
degrees are examined for the 2D domain of Figure 4.4a. The subdivision of the domain
into two subdomains by the knot line as indicated in Figure 4.4a is considered for
p=3, the penetration of the shape functions of the left subdomain to the right one and
vice-verca are depicted in Figure 4.4b and 4.4c. The graph of the non-zero tems of its
stiffness matrix is demonstrated in Figure 4.5a, while Figure 4.5b depicts the shared dof
between the two subdomains before the truncation of the p=3 shape functions.

The parameterization with p=3 corresponds to 6x11 control points. Figure 4.6 shows
the domains of influence of the truncated shape functions for the two subdomains of the
2D domain example. The expansion of the shape functions is spatially limited to the
knot line, leaving the area beyond the knot line unaffected. Since, for the case of odd
polynomial degrees, the control points lie on knot lines where truncation is performed,
this results in shared dof between the subdomains, thus retaining the minimum continuity
of the domain after the shape function truncation.

For the biqubic polynomial degree case the global stiffness matrix shown in 4.5a, is

transformed to the graph of Figure 4.7.
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Figure 4.4: 2D domain with bicubic shape functions subdivided into two subdomains by the red
dash line. Shape functions depicted are identical across the dashed line due to tensor product
property of NURBS.
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For the case of even polynomial degrees, the control points lie on the center of elements,
as shown in Figure 4.8 for p=2, and the truncated shape functions terminate at the
boundary knot line. For this case, the sparsity patterns of the full continuity and reduced
continuity stiffness matrices are depicted in Figure 4.9. It can be seen in Figure 4.9b
that the two subdomains do not interact since there are no common control points at

the boundary knot line.
0 ‘ , .

80 100 120

80

1001

120

0 20 40 60 80 100 120

20 40 60

0
(a) Global stiffness matrix graph of the 2D (b) Overlapping boundary terms of the two
domain for p=3. subdomains.

Figure 4.5: Stiffness matrix of the 2D domain of Figure 4.4.

In order to alleviate this shortcoming, the subdomain boundaries are defined by
control point lines, and not by knot point lines, as shown in Figure 4.12. Thus, choosing
a control point line as the boundary between two subdomains, the compatibility along
the new boundary is restored as shown in Figure 4.10. For an one-dimensional with knot
value vector equal to = = [£p, &1, ..., Entpt1], the Greville absissae as described in [161]
can be used for the evaluation of the parametric position of the control points which
also serve as the possible positions for domain subdivision. Specifically, the parametric

coordinates are given by:

_ b1 Citk
p

& (4.29)
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Figure 4.6: Truncated shape functions along the subdomain boundary knot line for bicubic
polynomial degree. Knots coincide with controls points on the element vertices.
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(b) Second subdomain.

4.4.3 BENCHMARK TEST

In order to evaluate the numerical scalability of the PCG-IETI-N method, two benchmark
examples are considered. The first one relates to the numerical scalability of the method,
examining the number of iterations related to both the mesh size and the subdomain
size, considering a cubic mesh with continuity p=3. The initial guess of the method is
the zero vector and iteration count is considered for convergence with tolerance 1075,

The number of iterations required for each case are depicted in Table 4.1.

The second relates to how numerical scalability is influenced by the continuity pa-
rameter p in terms of iterations needed for convergence, a parametric study of a 3D

cantilever with dof in the range of 3K was considered with shape function polynomial
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Figure 4.7: Stiffness matrix graph of 2D domain for p=3 with artificially reduced continuity.

degrees ranging from p=2 to p=>5, subdivided into 4 and 16 subdomains. As in the
previous test, the initial guess of the method is the zero vector and iteration count is
considered for convergence with tolerance 1076, The number of iterations required and

respective condition numbers are depicted in Tables 4.2, 4.3.
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Figure 4.8: Truncated shape functions along a knot line for p=2.
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(a) Full continuity. (b) Artificially reduced continuity.

Figure 4.9: Stiffness matrix graphs of a 2D domain for p=2.
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N 1/h=8 1/h=16 1/h=32

2x2 10 11 13

4 x4 11 11 15

8 X8 - 13 17

4 x4 - - 17

Table 4.1: Iteration metrics considering mesh (1/h) and subdomain size (N) for a cubic sample for
p=3

p Unpreconditioned  Diagonal Cholesky

System

k2 It. k2 It. k2 It.
2 19221 207 22632 192 3902 35
3 25223 234 35824 188 2318 25
4 33449 271 55348 191 2548 21
) 42722 399 77509 234 2081 18

Table 4.2: lteration and condition number metrics for the case of various PCG preconditioners with
p ranging from 2 to 5 for the 3D cantilever example.

The results show a similar behavior of both the condition number and iterations with
IETT [27, 43]. This is an indication that the process described has a minor effect on the
numerical scalability of the DDM used which for this case is IETI.

The PCG method was also used for the solution of the 3D contilever example for
p=2 and p=3 in the range of 10K dof, using the PCG-D and PCG-IC methods which
correspond to the diagonal and the incomplete Cholesky factorization preconditioners.
The incomplete Cholesky preconditioner by position is implemented with K = LLT + E,
in which the sparsity pattern of the lower triangular part of K is retained in L [32]. The
iteration required for convergence are shown in Table 4.4 and the convergence history in
Figure 4.11.

In both cases, PCG-IETI-N required less iterations than the incomplete Cholesky
preconditioner, which is considered a strong precondioner for the examined test case,
with the addittional advantage of being amenable to parallelization. In the following
section, a set of large IGA models are used for further investigating the performance of

the methods discussed.
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Figure 4.10: Stiffness matrix graph for truncated shape functions along the boundary of the control
point line for p=2.
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(a) 3D cantilever convergence of PCG schemes (b) 3D cantilever convergence of PCG schemes
for p=2. for p=3.

Figure 4.11: Convergence history of 3D cantilever for various quadratic and cubic polynomial
degrees.
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p 4 Subdomains 16 Subdomains

Non-Overlapping Non-Overlapping
k2 It. k2 It.

2 2011 14 5756 15

3 263 10 804 11

4 3204 24 8615 27

5 4124 19 7717 21

Table 4.3: Iteration and condition number metrics for the case of 4 and 16 subdomains with p
ranging from 2 to 5 for the 3D cantilever example.

p=2 p=3
PCG-D 123 255
PCG-IC 39 29
PCG-IETI-N 21 18

Table 4.4: Iteration metrics PCG-D, PCG-IC and PCG-IETI-N methods for the 3D cantilever
example.

4.5 NUMERICAL TESTS

In this section two numerical examples have been chosen to demonstrate the performance
of the methods in three dimensional elasticity problems using the in house open-source
code MSolve developed in the framework of ERC grant Master [MSo].

Model range from 100K to 1000K dof, enabling the assesment of the methods in a
large-scale context. The influence of the number of subdomains on the performance of
the methods is also considered by performing a parametric study in the range of 9 to
4800 subdomains for the numerical examples considered. For the case of PCG-IETI-N,
these subdomains are defined by constructing a non-overlapping model with truncated
shape functions as described in the presious section. For the case of IETI, both IETI-P
and IETI-O are considered. The computing platform is an Intel Core i7 X980 with 6

cores.

4.5.1 CROSSED BEAMS EXAMPLE

The first model is a crossed beams model comprised of approximately 100K dofs and is
depicted in Figure 4.13

All control points of the bottom and left faces of the crossed beams are clamped
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Figure 4.12: Truncated shape functions along a control point for p=2.

constraining the base displacements. Loads of magnitude 100 KN, are applied to
interpolatory control points of the two edges as illustrated in the figure. The material
used for the linear elastic analysis has a Young’s modulus E of 10° KPa and Poisson’s
ration of 0.3.

Tables 4.5, 4.6 give the convergence behavior of the methods with respect to the
number of iterations, the size of the subdomains and the equivalent interface problem. For
the case of PCG-IETI-N, both preconditioning step iterations and the global iterations
are depicted.

The computing time measured in seconds is provided in Table 4.7 for both sequential
and parallel execution, where for the latter, all 6 cores were utilized. As for the case of

the pipe model, the PCG-IETI-N outperforms all other methods considered in terms of
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Figure 4.13: Crossed beams with 32.175 control points.

execution time in both sequential and parallel execution modes.

Figure 4.14 demonstrates the parallel execution time for all methods where there is
an optimal combination of the size of the local problems and the size of the interface

problem. It can be observed, however, that the performance of the PCG-IETI-N is less

dependent on the number of subdomains.

Subdomains IETI-P IETI-O

Number Size(dof) Tter Interface(dof) Iter. Interface(dof)
9=9x1x1 11925 14 5220 15 20620
36=18x2x1 4185 15 19665 17 42345
104=26x2x2 1963 18 37323 20 63549

Table 4.5: Iterations subdomain metrics of IETI-P and IETI-O methods for the crossed beams

4.5.2 PIPE EXAMPLE

In order to assess the performance of the methods in a a larger-scale context, a second

model.

model is considered as shown in Figure 4.15
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Figure 4.14: Performance of the various IETI methods in terms of parallel execution time for the
crossed beams model.

Subdomains PCG-IETI-N

Number Size(dof) Tter Prec. iter. Interface(dof)
9=0x1x1 11925 14 10 7920
36=18x2x1 4185 17 12 30240
104=26x2x2 1963 20 14 47190

Table 4.6: Iterations subdomain metrics of the PCG-IETI-N method for the crossed beams model.

The pipe model was created with three dimensional NURBS using the NURBS Toolbox
[M] and consist of 57 control points per parametric axis £ that creates the circumference
of the circle, 9 per parametric axis n that creates the radius of the annulus and 306 per
parametric axis ¢ that gives height to the pipe. The degree of NURBS shape functions
is considered to be consistent in all parametric directions and is equal to p=2. The base
of the pipe is clamped by constraining the displacements of the corresponding control
points. Concentrated loads are at the control points, interpolatory to the geometry on
the top of the pipe with magnitude of 100 KN, introducing both bending and torsional
strain to the structure. The material used for the linear elastic analysis is identical with
the previous model and has a Young’s Modulus E of 10° KPa and Poisson’s ratio 0.3.

Tables 4.8, 4.9 give the performance of the solution methods considered for the pipe

model of approximately 500K dof in terms of number of iterations, equivalent subdomain
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Subdomains  IETI-P IETI-O PCG-IETI-N

Time Time Time Time Time Time

seq. par. seq. par. seq. par.
9 5.677 1.061 5.297 1.019 4.072 0.754
36 4.989 0.891 5.625 0.996 3.883 0.705
104 7.729 1.445 6.14 1.181 4.137 0.766

Table 4.7: Performance metrics of the various |[ETI methods for the crossed beam model.

size and interface problem. For the case of PCG-IETI-N, the preconditioned iterations
are also displayed which correspond to the toal number of iterations needed for the

estimation of the preconditioned residual.

Subdomains IETI-P IETI-O

Number Size(dof) Iter Interface(dof) Iter. Interface(dof)
100=25x4x1 5670 15 61399 16 83939
100=25x4x1 847 16 244135 17 306211
2400="T5x16x2 519 18 338004 19 368875

Table 4.8: lterations subdomain metrics of IETI-P and IETI-O methods for the crossed beams

model.
Subdomains PCG-IETI-N
Number Size(dof) Iter Prec. iter. Interface(dof)
100=25x4x1 5670 15 10 67069
100=25x4x1 847 17 10 195751
2400="75x16x2 519 20 12 244183

Table 4.9: Iterations subdomain metrics of the PCG-IETI-N method for the crossed beams model.

Table 4.10 presents the performance of the method in terms of the required computing
time in sequential as well as in parallel computing environments. It is evident by
this table that the PCG-IETI-N outperforms all other methods considered in terms
of execution time in both sequential and parallel implementations. Execution time is
measured in seconds, for both sequential and parallel execution, where for the latter, all
6 cores were utilized. Moreover, while the numerical scalability of PCG-IETI-N is in line
with the numerical scalability of the other two methods, it outperforms them in terms

of parallel scalabilty. Figure 4.16 depicts the parallel execution time for all methods.
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Figure 4.15: Pipe cylinder with coarse discretization.

The curves depict the usual behavior of wall clock time when dealing with DDM, where
there is an optimal balance between the size of the local problems and the size of the

interface problem.

Subdomains  IETI-P IETI-O PCG-IETI-N
Time Time Time Time Time Time
seq. par. seq. par. seq. par.

100 37.25 6.77 36.91 6.71 26.84 4.97

1200 34.92 6.24 34.65 6.42 21.23 3.93

2400 50.71 9.48 35.94 6.78 23.27 4.22

Table 4.10: Performance metrics of the various IETI methods for the pipe model of 500K dof.

The execution time of the various IETI methods on a paralle environment, with
respect to the number of subdomains, are graphically represented in Figure 4.16. It is
worth noting that there is a significant increase in execution time of IETI-P and to a
lesser extends to IETI-O with respect to the number of subdomains. This is attributed

in both cases to larger interface problem to be solved by the IETI algorithm.
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Figure 4.16: Parallel performance of the various IETI methods in terms of the number of
subdomains for the pipe model.

To evaluate further the numerical scalability properties of the proposed solution
schemes for even larger models, a finer discretization of the previous model is performed,
reaching a total 1M dof and 4800 subdomains. Table 4.11 provides a comparison between
the computational times of the previous model for the cases of 500K and 1M dof,

considering the maximum number of subdomains for each case.
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Figure 4.17: Computational improvement of PCG-IETI-N with respect to IETI-O and IETI-P for
different model sizes.

Size(dof) Subdomains IETI-P IETI-O PCG-IETI-N
Time Time Time Time Time Time
seq. par. seq. par. seq. par.

500 K 2400 50.71 9.48 35.94 6.78 23.27 4.22

1M 4800 116.01 21.82 84.52 16.51 49.48 9.06

Table 4.11: Performance metrics of the various IETI methods for 500K and 1M pipe models.

Figure 4.17 presents a graphical representation of the speedup ratios of the numerical
results for the PCG-IETI-N compared to the IETI-P and IETI-O respectively. The
ascending trend in the computational efficiency of the PCG-IETI-N when compared to
IETI-P and IETI-O becomes more evident in thsi figure. As the models get larger in
scale the computational predominance of the proposed solution scheme becomes more
pronounced, providing a speedup of more than 2.3x and 1.7x, compared to IETI-P and
IETI-O, respectively.
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Domain Decomposition Solution Schemes

for Isogeometric Collocation Methods

5.1 INTRODUCTION

This Chapter focuses on the development of a family of solution algorithms for the
purposes of isogeometric collocation methods, that exploit the advantages of an iterative
solution scheme, name the GMRES coupled with domain decomposition methods. By
introducing an appropriate decomposition of the NURBS overlapping nature, non-
overlapping decomposition of the initial domain is performed, that allows the utilization
of established DDM methods. Both primal and dual alternatives are examined for the
preconditioner of GMRES method, with P-FETI-DP being the most suitable one to

serve as a robust and scalable preconditioner.

5.2 ISOGEOMETRIC METHODS

5.2.1 GALERKIN VS COLLOCATION

The analysis of linear elasticity PDEs with the isogeometric Galerkin method has been

proven to provide results with significantly increased accuracy per degree of freedom

129



compared to its FEM counterparts. This is mainly attributed to the increased conti-
nuity of the shape functions, that consequently lead to minimized errors and increased
smoothness of second order characteristics such as stresses and strains. Unfortunately,
this comes at an increased cost for the assembly of the resulting matrices. As a result, a
number of studies has been conducted for implementation of alternative more efficient
integration schemes, such as the isogeometric collocation method [19, 13]. A comparison
between isogeometric Galerkin and collocation methods was conducted in [161] where
collocation was proven to be significantly more efficient than the corresponding Galerkin

implementation in terms of the computation of the resulting stiffness matrix.

Specifically, for each collocation point, the cost of its contribution to the stiffness
matrix is of magnitude O(p?), where p is the polynomial degree and d the dimensionality
of the problem. This cost is mainly attributed to the requirement for evaluation of shape
functions second derivatives at each collocation integration point, due to the increased
continuity requirements of the collocation discretizations. On the contrary, Galerkin
method requires O(p??) computational effort for the stiffness contribution at each Gauss
integration point. Apart from the reduced cost per collocation point, collocation method
requires the evaluation of only a single collocation point per shape function, while fully
integrated isogeometric Galerkin methods require (p + 1)? Gauss point evaluations per

isogeometric element, thus dramatically increasing the stiffness matrix computation cost.

An example of the number of Gauss and collocation points needed for the computation
of the stiffness matrix, in each case respectively, is illustrated in Figure 5.1. Namely, for
the bicubic domain depicted in Fig. 5.1a of the IGA Galerkin method, a multitude of 16
Gauss Points per isogeometric element are needed leading to a total of 64 Gauss Points
for all four isogeometric elements. On the contrary, the same domain discretized with
the isogeometric collocation method (Fig. 5.1b) requires only 25 collocation integration
points, thus significantly reducing the computational burden for the assembly. However,
the accuracy deficit of the isogeometric collocation method can be more than two orders
of magnitude, for a minimum polynomial degree p=3 and grows more profound as the
polynomial degree rises.

Despite this markedly advantage of collocation over Galerkin IGA methods, they have
shortcomings that need to be addressed. In order for the collocation methods to match
the accuracy of the Galerkin methods, they have to resort to excessively refined meshes
or to higher polynomial degrees that exponentially the number of dof, thus leading to

larger non-symmetric matrices. Furthermore, the condition number of the collocation
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stiffness matrices grows rapidly in case of mesh refinement or polynomial degree elevation
[25]. A comparison of the resulting stiffness matrices for Galerkin and collocation for
a square domain for the same accuracy is depicted in Figure 5.2. In case of Galerkin,
the domain is discretized with 13 control points per parametric axis. In order to attain
the same level of accuracy, the domain must be discretized with 63x63 control points in
case of collocation discretization. This leads to 338 dof in the Galerkin case and 7938
dof in the collocation case, indicating the increased computational effort required for
the solution of the equivalent collocation systems. This deficiency makes imperative
the introduction of efficient and robust solution techniques for addressing the problem
of solving isogeometric non-symmetric linear systems associated with the collocation
methods.

= = =) A 4] tof to]
* * K * K * K
P x % x xPTx x £ x0 [e] (o] ] [o
* *x * K * X * *
* X * * K * Kk
—o * ° [¢—Het to} fol—1e]
* *X * * K * *x
* K * * K * K
gxX & X kex k KXo [§ [q [ O o
* X * K * K * K
® Control point ® Control point
J  Gauss integration point |:| Collocation integration point
(a) Galerkin (b) Collocation

Figure 5.1: Integration points needed for the computation of the stiffness matrix of 2x2
isogeometric Galerkin and collocation discretizations.
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Figure 5.2: Stiffness matrix sparsity patterns for isogeometric Galerkin and collocation
discretizations for accuracy 1072,

5.3 EXISTING SOLUTION TECHNIQUES

The non-symmetric nature of the resulting matrices with high condition numbers, creates
the need for efficient computational methods to address the solution of complex and
large-scale problems. The resulting linear systems of isogeometric collocation, described

in the previous section, can be represented in a matrix form as

K-u=F (5.1)

where K is the stiffness matrix, F is the external load vector and u the displacement
vector. The computational effort needed for the solution of eq. (5.1), depends highly on
the size, the ellipticity and the sparsity pattern of the stiffness matrix. Specifically,the
number of non-zero entries per row, for a vector field with & unknown quantities per

node, are O(k - p?) [161], for both isogeometric collocation and finite elements, while for
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isogeometric Galerkin is O((k - 2p)?), where p is the shape function polynomial degree
and d the dimensionality of the problem. In case of IGA, the CAD shape functions
utilized for the exact geometrical representation of the geometry, leads to a reduced
sparsity patterns due to their increased interelement continuity, while high polynomial
degrees increase the expected bandwidth of the matrices. All the above, in conjunction
to the non-symmetric nature of matrices, lead to a computationally demanding solution
procedure.

This deficit of isogeometric collocation, significantly hinders its capability to address
complex large-scale problems, unless efficient solution techniques capable of alleviating
the solution computational cost are proposed. In this context, multi-frontal parallel
direct solver was proposed in [116], for the solution of one-dimensional nanolithography
collocation problem. Optimal multilevel preconditioners for isogeometric collocation
methods were introduced in [48], where a Bramble-Pasciak-Xu and multigrid V-cycle
accelerated GMRES is proposed for the solution of collocation resulted systems of
equations. The use of the overlapping Schwarz preconditioners in [25] is the first
attempts to introduce domain decomposition methods in isogeometric collocation. It is
based on an algebraic decomposition of the stiffness matrix K into subdomain matrices
that share multiple rows of control points per parametric direction. At the same time,
a coarse problem is introduced based on an p-th degree interpolation, where p is the
polynomial degree of the shape functions corresponding to selected collocation points of

the domain.

5.3.1 DIRECT SOLVERS

The most widely applied methods for the solution of non-symmetric problems are direct
solvers. They are based on a factorization of the stiffness matrix, with the most common

factorization methods being the LU factorization [145].

K=L-U (5.2)

where L and U are a lower and an upper triangular matrix. After factorization of the
stiffness matrix, the solution is obtained with a forward and backward substitution
with the aid of L and U matrices, with minimal cost. This renders LU factorization
ideal in case of problems with multiple right hands sides, yet factorization cost and

memory requirements of the method are its main limitations. Despite, the reduced
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bandwidth form of isogeometric collocation matrices compared to Galerkin methods,
its non-symmetric nature significantly increases the required memory allocation. This
shortcoming, in connection to the parallelization difficulties involved in fine grain parallel
computer implementations, renders direct solvers not efficient for the solution of large
scale problems. A parallel implementation of a direct multi-frontal solver for the

univariate case is proposed in [115].

5.3.2 ITERATIVE SOLVERS

One of most widespread iterative methods for non-symmetric linear systems is the
GMRES method [155]. In line with all iterative methods, the convergence of the GMRES
method can be significantly improved by introducing an appropriate preconditioner.
Preconditioners should abide by the rule to enhance the approximation of the solution at
each iteration step with the minimum computational cost. The main focus of all proposed
collocation iterative solution schemes is the introduction of an efficient preconditioner for
accelerating the convergence of the GMRES method. While its algorithmic description
is considered standard textbook material, it is provided below since it will be utilized in

this work as solver of the global non-symmetric equation system.

5.3.3 OVERLAPPING SCHWARZ PRECONDITIONER

A brief introduction to the overlapping Schwarz method will be provided based on [25],
as it will serve as a comparison basis for the method proposed in the next section.

Specifically, in the univariate case, given a knot value vector £ = {&; =0, ..., {pqpy1 = 1},
where n is the number of control points and p is the polynomial degree, a subset of knot
values & are selected, that partition the domain into similar span intervals. This subset

can be written in a vector as

ginterface — fe8 =0, &8, .. &y = 1} (5.3)

As apparent by eq. (5.3), the selection of these knot values, splits the univariate domain
into N consecutive spans S; = {&},§},}, whose union is the initial reference interval.
Note that the initial and final values of the domain 7, &3, | are the boundary of the ref-

erence interval, while all internal values define the interface among adjacent subdomains.
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Algorithm 4: GMRES preconditioned algorithm
Data: Matrix K
Right hand side f
Initial solution guess uy
Tp = K;rlec(f - KUO);
B = [Irolly;
o T0 )
1- 6 )
for j=1,2,..,m do
w; =K, Kvj;
for i=1,...,5 do
hi,j = (Wj,VZ');
W, = WwW; — h@jVﬁ
end
hjtrg = [Iwjlly if hji1; =0 then
m:=j ;
exit all loops;

end
Wy
Vj+1h—’
j+1,5

end
Compute the Hessenberg matrix H,,;

Y = min(||Ber — Hyy|[,) ;
U, = Up + VmYm

For each one of the interface knot values ¢} between two adjacent subdomains, a shape
function ny is selected, whose support intersects both subdomains.

Since the decomposition needs to be overlapping, a non-negative integer value m

defines the shared shape functions between the subdomains such that

A ={np —m < i <ngy1 +m}, k=1,2,..N (5.4)

Note that eq. (5.4) has two boundary cases for the initial and final subdomain, since the
integer i of eq. (5.4) takes values that belong within the multitude of shape function of
the univariate reference domain, i.e. 7 € {1,...,n}. As eq. (5.4) implies, 2m + 1 shape

functions are shared between adjacent subdomain, thus the minimum number is given

135



for m = 0 and is equal to 1 shared shape function. The extention to multiple dimensions
is derived in a straightforward manner by employing tensor products. Specifically, in the

two-dimensional case, the subdomains are defined as

Si = {& &t (5.5a)
Sy =A{n i} (5.5b)
Sij = SZ X Sj (5.50)

In a similar fashion the function indices that affect each subdomain in the bivariate case

can be derived, by extending eq. (5.4) as

A ={nk —m <i<ngpr+m, sp—m < j < s +m} (5.6)

where k € {1,2,...., N} and | € {1,2,..., M}. The extension to the three-dimensional
case can be produced is a similar manner.

Based on eq. (5.6) and taking into account the degrees of freedom corresponding at
each control point, a mapping matrix L; can be defined. This mapping matrix provides
the connection between the global degrees of freedom and those included only in the
overlapping subdomain partitioning, as defined by eq. (5.5). It is an unsigned Boolean
matrix whose rows denote the degrees of freedom of the subdomain, while the columns
represent the degrees of freedom of the whole domain. By applying these mapping
matrices on the global stiffness matrix K of eq. (5.1), the matrices of each of the

overlapping subdomains can be derived as follows:

Ky = Lj; KL}, (5.7)

Based on eq. (5.7) suffices for the extraction of the one-level overlapping additive Schwarz

preconditioner is provided by:

N M
D LyKu 'Lyt (5.8)

k=11=1

1
K

The preconditioner of eq. (5.8) can be further enhanced by introducing a coarse problem

to it. In an analogy to the domain subdivision, the extraction of the coarse problem
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for the overlapping Schwarz preconditioner will be performed in a univariate domain
which will then be expanded to higher dimensions. As before, a selection of knot values
is performed from the knot value vector of the reference domain, in a way that the
distance between consecutive distinct knot values are at a distance equal to the span of

the subdomains. This leads to the generation of a coarse knot vector of the form

Ef = {gfa eeey g]c\/'c—i-p-i-l} (59)

Using the tensor product property, eq. (5.9) is extended to determine the multidimen-
sional domain that will serve as the coarse problem of the overlapping Schwarz method.
According to [25], multiple procedures can be followed for the formation of the coarse
space matrices, yet the one followed here is by utilizing the interpolation operator Ly
from the coarse space to the reference space of the structure. As a result, the coarse

space matrix is derived as follows:

Ko = Lo KL (5.10)

thus extending the preconditioner of eq. (5.8) to

N M
K@, =RoKo 'L + > ) LiKu 'Ly (5.11)
k=1 1=1
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Figure 5.3: Overlapping Additive Schwarz 2x1 domain partitioning of a 4x4 collocation discretized
domain

Figure 5.3, provides an example of a 2x1 domain partitioning of a 4x4 discretized
domain for the overlapping additive Schwarz method. According to [25], 2m + 1 shape
functions are shared among adjacent subdomains, with m = 0 being the non-overlapping
case. In case of m = 1, then 2m + 1 = 3 shape functions are shared at the common
subdomain interface, as depicted in Figure 5.3a. Specifically, the domain is partitioned in
middle of axis X, as indicated by the dashed line. Since, three overlapping control point
columns are required, apart from the column defined by the dashed line, the two adjacent
columns form the interface problem. The control points that belong to the interface
problem denoted with circles in Figure 5.3a. This translates to a major part of the final
stiffness matrix being shared among subdomains, with this situation deteriorating as the
overlapping index m grows. The effect of the common interface on the stiffness matrix

is depicted in Figure 5.3b.

5.4 GMRES AND NON-OVERLAPPING DOMAIN DECOMPOSITION METHODS

Despite its favorite features, overlapping additive Schwarz (OAS) method has some draw-
backs that decrease its efficiency, with the most notable one the size of the overlapping
submatrices, as well as the definition of the underlying coarse problem. Specifically,

OAS relies on an overlapping decomposition of the initial domain, fact that leads to a
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significantly increased computational cost for the solution of the equivalent subdomain
problems in each preconditioning step. These interface problems can become prohibitively

large for increased polynomial degrees as interelement continuity increases.

In addition, based on its definition, the extraction of the coarse problem matrices
relies heavily on an interpolation operator between the reference and the coarse problem
domains. In [25] various polynomial degrees for the interpolation between the coarse and
reference domain were examined, from linear interpolation to pt* degree interpolation, p
being the polynomial degree of the shape functions of the reference domain. In terms
of performance, the p!* degree interpolation case was proven to be the most effective
and thus it chosen for thee evaluation of the interpolation operator in the numerical
comparison performed in this work. Note that, in contrast to Lj; operators that perform
only a mapping, Lo interpolation operator requires a matrix vector multiplication for

coarse problem contributions, adding an overhead to the solution procedure.

In order to alleviate the aforementioned deficiencies of the OAS method, an alternative
solution methodology is proposed that combines both GMRES and non-overlapping
primal and dual domain decomposition methods. In addition to the original model
with stiffness matrix K, the proposed algorithm introduces another stiffness matrix K,,
referred to as the "non-overlapping matrix”. Matrices K and K, have the same size and

are connected as follows:

K =K, + AK (5.12)

In the proposed method, the preconditioning matrix K. of the iterative GMRES
method becomes the K, matrix of the non-overlapping model. This means that for

each iteration, a linear system involving the non-overlapping stiffness matrix needs to be

solved in order to evaluate the preconditioned quantity w; = K, ..

v; of algorithm 4.

Figure 5.5, illustrates the major difference between the overlapping Schwarz method
compared the non-overlapping alternative. Figures 5.4 a,b depict the interface problem,
in case of a non-overlapping (Figure 5.4a) and a non-overlapping (Figure 5.4b). In
the first case, 7 control points compose the subdomain interface, while in the second
case 21. The effect of the increased interface problem to the matrix decomposition is
provided in Figures 5.5a,b. As expected the interface problem in the non-overlapping
case is significantly reduced. Specifically, in case of the OAS method, each preconditiong

step of GMRES method is evaluated by superposition of the solution obtained by each
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one of the subdomain matrices. This leads to the solution of the interface dof for
each subdomain. On the contrary, the non-overlapping domain decomposition methods

requires a single evaluation of the Schur complement of the stiffness matrix to the
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interface problem, where the preconditioning step is now evaluated. The benefits of
the proposed alternatives are profound, as the introduced errors depend only on the
neglected terms of the non-overlapping decomposition, while the solution of the interface
problem required for the evaluation of the preconditioning step is significantly smaller
and thus less computationally intensive than the solution of all subdomain matrices
required in OAS.

5.4.1 PSM

PSM [71, 33|, emanating from the method of substructures [146] is considered to be
the standard DDM method. This method subdivides the domain into subdmomains
and after elimination of internal degrees of freedom of each subdomain the resulting
equations refer to the interface problem among subdomains. The goal of PSM is to
reduce the multitude of the dofs of the initial system only to the boundary dof between
the subdomains. This transforms the initial linear system K -u = f to

S-u, =1 (5.13)
where the matrix S is the Schur complement of the initial stiffness matrix K to the
interface dof between the subdomain. Matrix S can be assembled by adding the

contributions of each of the subdomain matrices as follows:

Ns
s=>§ (5.14)
s=1

where S is the contribution of the subdomain matrix to the boundary problem Schur

complement, and Ny the number of subdomains:

S° = (L)T's°L; (5.15)

In eq. (5.15), the matrix Lj is an unsigned Boolean matrix that maps the local boundary
dof of the subdomain to the global boundary dof of the problem, while the matrix S¢ is
calculated by:

S* =Kj, — (K5) " (K5) K3, (5.16)
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The same procedure is applied for the subdomain forces, where the right hand side of eq.

(5.13) can be expanded as

N,
f, =, — > (L))" (K3)" (K) £ (5.17)
s=1

Figure 5.6: Non-overlapping decomposition of a unit square domain with PSM method.

Figure 5.6, schematically illustrates the PSM domain decomposition method. Specif-
ically, for a unit square domain partitioned into 4x4 isogeometric elements and 2x2
subdomains. The interface problem consists of 13 control points. All dof of the initial
domain (Figure 5.6a) are condensed to the interface dof and subsequently the interface

problem is solved, as described by the PSM procedure above.

5.4.2 FETI-DP

FETI-DP [68, 103, 121, 64, 105] is a well established domain decomposition solver for
the case of FEM that utilizes both primal PSM and dual FETI, DDM formulations. Its
performance in IGA was studied in [107] and was extended to discontinuous Galerkin

problems in [87].
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Figure 5.7: Non-overlapping decomposition of a unit square domain with FETI-DP method.

Figure 5.7 illustrated schematically displacements and traction forces acting on the
interface of FETI-DP. Specifically, the initial domain of Figure 5.6a, is discretized with
4x4 isogeometric elements,and is partitioned into 2x2 subdomains. In contrast to PSM
method, the unknown values are no longer the displacements of the interface problem,
but their dual quantities the traction forces of the interface nodes. The traction forces
are the Lagrange multipliers, illustrated in Figure 5.7a, which are necessary to enforce
continuity between the subdomains. In order to accelerate the propagation of information
among the subdomains, the displacements of the coarse problem are taken into account
as well. The coarse problem is formed by the nodes that belong to more than two
subdomains aswell as by the nodes of the boundary belonging to two subdomains in
the 2D case. An example of the coarse problem displacements of FETI-DP is shown in

Figure 5.7b. The unknown quantities at the corner nodes are their displacements.

The algorithmic stages of the method are briefly described below. The stiffness matrix

K?#, force vector f* and displacement vector u® of each patch (s) can be partitioned as
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follows:

K® = [ " ;b] (5.18a)
Kbi Kbb

f&= [ ] (5.18b)
ut = [“] (5.18¢)
b

with subscript (i) denoting the internal dof and (b) the boundary dof.

In order to impose continuity between subdomains, the following equation is intro-
duced:

Ns
> B =0 (5.19)
s=1

with N, being the number of subdomains and B*® being a signed Boolean matrix. The

uy, vector is further partitioned as:
uS
uj = [ fj] (5.20)
Upe
with the subscript (¢) denoting the coarse problem nodes or ”corner” nodes. Subsequently,

K? u® and f* can be partitioned as follows:

KS KS
Ke= | e (5.21a)
KCT KCC
oo [ f] (5.210)
— | ,
be
S
w = (5.21c)
U,
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where

1o = [ ] (5.22a)

ul = [ufl (5.22b)

and subscript (r) denoting all dof that do not belong to a corner node.

Considering this repartitioning, the continuity between patches can be re-written as:

N

> Biui=0 (5.23)

s=1
with B? being the signed Boolean matrix B®, pertaining to the (r) dof. Moreover, the

following global vector of corner dof is introduced

. T
ue = |ul ..owlo.. ué\fc} (5.24)

with u denoting all displacement dof attached to the j-th global node that is also a
corner node of the mesh decomposition and N, denoting the total number of corner
nodes.

In order to connect u. with wuj,, the following equation is introduced:

Liue = ug, (5.25)

with B2 being an unsigned Boolean matrix.

Considering all the above equations, the patch equilibrium condition is expressed as:

K3 US + K8 Liu. = f5 — BST\ (5.26a)
Ny N N
Z LiTKﬁcTuf" + Z LiTKcscuC = Z Linlfc = fC (526b)
s=1 s=1 s=1

with A being the traction forces between each patch.
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From the above relations, it follows that

wt = (K5,)7'(f2 = B — K3 Liu,) (5.27)

T‘CC

which, when substituted to eq. (5.23), the following system of equations arises

F F A d
e = (5.28)
Flrc _ch Uc fc
where:
Ny
Fy,, =Y BK;,'B" (5.29a)
F, =Y BIK; 'K} .B; (5.29b)
N,
K=Y B:'K;B: (5.29¢)
Ns
K} = Kee = ) (KB KL THKLBY) (5.29d)
=1
d, = ZBSKS Uy (5.29¢)
Ns
fo=fo= > (KLB)TK: ' f (5.29f)
=1

By eliminating u,. from the baove equations, the following interface problem needs to be

solved:

(FIT"!‘ —"_ F]T‘CK* _1FI ))\ d FIT‘CK* _lfC (5'30)

The solution of eq. (5.30) is usually performed with an iterative solution algorithm and

for the case of isogeometric collocation method where non-symmetric matrices occur
with, the GMRES algorithm has been used.
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5.4.3 P-FETI-DP

P-FETI-DP [76] method constitutes an enhancement of the aforementioned PSM method,
as it introduces a preconditioner A1 to the interface system of eq. (5.13), that is based

on the coarse problem of the FETI-DP method. Its expression is given by:

A= (L5 (KF,) T Ly, (6N — (L) T (K, ) K LE) (K2, ™

rc—c

— (L€ TKe Ke —lile N (531)
( ( c) cr( rr) pr tbe b)

Starting from left to right all components of the preconditioner are explained below: I:Ie,r
matrix is used to map the remainder dof of the discretized domain and the boundary

problem of the PSM method. Its expression is given by

L¢, =,NjLS, (5.32)

The purpose of matrix , N} as its subscripts indicate the compatibility of matrix dimen-
sions. When subdivided into subdomains it can be written with the following block

diagonal expression

N¢ = - (5.33)
AN

Each of the subdomain contributions TN(()NS) is a Boolean matrix that maps the remainder

dof of the subdomain (s) to the boundary dof the same subdomain. The matrix L{; of

eq. (5.32) can be similarly written

(1)
Lpb

(Ns
LG

(s)

while for each subdomain the matrix Lpb

is computed as

LY = Liw (5.35)
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Figure 5.8: P-FETI-DP domain partitioning

In eq. (5.35), the matrix L is a Boolean matrix that maps local boundary dofs of the
subdomain to the interface dof of the PSM problem. Additionall, the matrix W is a
diagonal matrix, with terms equal to the inverse multiplicity of the interface dof. The
term multiplicity for the case of interface dof, refers to the number of subdomains this

dof belongs to. Moving to matrices K¢ ., K¢

e K¢, these constitute block diagonal matrices

generated from the partitioning of the subdomain matrices to corner and remainder dof
as per eq. (5.21d).

K
K¢, = . (5.36a)
(Ns)
Krr
Ko
K¢, = (5.36b)
(Ns)
KT‘C

while the K}, matrix is denoted as the Schur complement of the remainder dof of each
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subdomain, to its boundary corner ones and consequently its mapping to the global
boundary dof of the corner problem defined by FETI-DP. The matrix , Ny of eq. (5.31),
is also Boolean mapping matrix, that links the boundary dof of the PSM problem, to
the corner dof of the FETI-DP method. Finally, the matrix L. is written in subdomain

form as

Le=| : (5.37)

and defines an unsigned Boolean matrix that links the local corner dof of each subdomain
to the equivalent corner dof of the coarse problem. Note that for all Boolean matrices
involved in this process, no matrix vector multiplications are required to be performed,
rather than the utilization of the proper submatrix.

Figure 5.8, illustrates schematically the P-FETI-DP method. Specifically, for a unit
square domain discretized with 4x4 isogeometric elements and 7x7 control points, a
2x2 decomposition is performed. The interface problem control points are indicates
with squares. All internal dof of the subdomains are condensed to the interface dof,
as described by the PSM procedure. In order to accelerate the solution of the PSM
interface problem of eq.(5.13), a preconditioner is crated based on the coarse problem of
FETI-DP method operated on the interface control points. This strategy allows for a
faster convergence of the interface problem, of the multitude of subdomain or the size of

the interface problem.

5.4.4 PRIMAL AND DUAL NON OVERLAPPING DOMAIN DECOMPOSITION PRE-
CONDITIONERS FOR IGA COLLOCATION METHODS

For assessing the performance of non-overlapping domain decomposition-based precondi-
tioners for the solution of IGA problems, we considered both primal and dual variants.
Primal variants, such as the PSM method described above, introduce a subdomain
interface problem, whose unknown quantities match the unknown field of the PDE. In
the case of linear elasticity, this means that the unknowns of the interface quantities are
the displacements of the interface nodes among adjacent subdomains. On the contrary,

dual methods, create an interface problem, whose unknown quantities are the duals of the
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displacements, which are the subdomain interaction forces of the interface nodes. In the
literature, often these dual quantities that represent the interaction forces are denoted
as Lagrange multipliers, due to the mathematical theory used for their development.
While both the aforementioned variants worked as expected for the Galerkin IGA
implementation, the dual variants were problematic when stiffness matrices were com-
posed using the collocation procedure. In particular, all the dual DD variants examined
produced erroneous results while some of them failed to converge. This behavior can be
explained by examining the mechanical interpretation of these two family of solution
methods. Dual variants perform iterations on the Lagrange multiplier vector A, as
opposed to the interface displacements of the primal ones. For Galerkin-composed
stiffness matrices, each matrix component K;; represents the force required to be ex-
erted on the degree of freedom i to cause a unit displacement for degree of freedom j.
For elasticity problems as considered in this work, the opposite also applies according
to Betti’s law which means that a unit displacement applied in degree of freedom j
will result in this unit force reaction in degree of freedom i. This leads to a physical
explanation of symmetric nature of the Galerkin-composed stiffness matrices. However,
collocation-composed matrices are not symmetric and this mechanical interpretation
does not apply. As a result, if the same process considered for the formulation of dual
domain decomposition methods for Galerkin-composed stiffness matrices is applied for

collocation-composed matrices, the resulting solver fails.

5.4.5 STIFFNESS MATRIX-BASED NON-OVERLAPPING PRECONDITIONER

Following the presentation of the P-FETI-DP method, this section will provide the
process of constructing the non-overlapping decomposition of the reference domain, as
well as the resulting stiffness matrix which will be used as the preconditioner to the
GMRES method. In the univariate case, given an axis defined by the knot value vector
=E={& =0,...,&+pt+1}, where p being the polynomial degree and n the number of
control points, a subset of the control points are selected as the interface entities between

adjacent subdomains.

Sk:{iEN:ngiggm—i—l}a Vk:e{l,...,N} (538)

where N is the number of subdomains. The indices of these control points g, € {1,n}

are selected so that each subdomain partitioning S contains a similar multitude of
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control points. Following to the introduction of the interface control points, a diagonal
weighting matrix W is introduced. Its order being the number of degrees of freedom of
the univariate domain, while its values equal to the inverse number of subdomains each

degree of freedom belongs to.

The aforementioned univariate partitioning can be extended in the bivariate case as a
tensor product of the univariate decomposed axes. This results to equations analogous

to eq. (5.38) which can be expressed as follows:

Skl:{(’i,j),ENQ S 9m Siggm+1ahm§j§jm+l} (539)

where k € {1, N} and [ € {1, M}, N,M being the number of subdomains per parametric
direction. The weighting matrix W is also computed by the inverse multiplicity of
the subdomains each dof belongs to. The extension to the trivariate case is also

straightforward. As a result, the subdomain stiffness matrices are calculated by

K;; = L,KLL (5.40)

where L,, being a scaling matrix given by

L, = LW (5.41)

and the matrix Ly maps the dof of the subdomain to the dof of the global domain.
Based on the coarse points definition provided for the FETI-DP method, their definition
can be generalized for the case of isogeometric analysis. For a two-dimensional domain,
coarse problem control points are defined as those points whose multitude of converging
subdomains, in the non-overlapping subdomain decomposition, either equals to four or

equal to two for those belonging to the boundary edges of the bivariate domain.
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Figure 5.9: (a) Overlapping (b) non-overlapping domain partitionings

The domain decomposition process, described above differs from the partitioning

of FEM.Specifically, in the context of finite elements, the subdomain partitioning was
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performed by requiring all subdomain to have similar number of elements. Especially,
when the domain was discretized with the same element types, the equal element number
among subdomains guaranteed an equal distribution of the degrees of freedom and
ultimately load balancing. On the other hand, in case of IGA, the domain partitioning
is performed according to the multitude of control points each subdomain contains. It is
apparent that this partitioning does split the domain into equally spaced areas due to the
nature of isogeometric shape functions, yet ensures properly load balanced subdomains

in terms of their matrix size.

Another difference among the two methods is that the partitioning of IGA requires an
averaging of the matrices at the interface dof. The reason for this is that each integration
quantity such as the element contributes to matrices areas outside its definition domain
and thus the stiffness of a control point cannot be divided into its elemental contribution
in a straight forward manner. This averaging process is further explained in Figure 5.9, by
partitioning axis X into two subdomains, each one containing a multitude of four control
points along this axis. The final control point column of the first subdomain (Figure 5.9a)
and first column of the second subdomain (Figure 5.9b) create the interface problem.
As can observed, by retaining the existing interelement continuity among subdomain
would result in shape functions penetrating neighbouring subdomains. This property
of isogeometric shape functions is no longer desired as this would to increase influence
among subdomains. To alleviate this, any such influence is truncated as depicted in
Figures 5.9¢,d. In terms of stiffness matrix, this translated to the decomposition of
Figure 5.10, where the gray area illustrates the interface among subdomains. Since
the interface matrix are belong to two adjacent subdomains, an averaging is performed
that splits the interface contribution to two equal parts, assigning each to one to the

corresponding subdomain.
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Figure 5.10: Non-overlapping decomposition of a collocation stiffness matrix generated for a unit
square domain with 7x7 control points and polynomial degree p=4.

Apart from the averaging performed at the interface among adjacent subdomains,
Figure 5.10 showcases the truncated terms that are ignored during the creation of the
preconditioner via the non-overlapping decomposition. Specifically, as can be observed,
stiffness matrix terms that do not belong to regions defined by the domain partitioning are
disregarded. This allows the non-overlapping decomposition to retain a minimal interface
problem among adjacent subdomains, thus allowing the computationally efficient solution

of the respective preconditioner.

5.5 NUMERICAL RESULTS

In this section, several numerical tests are performed in order to test the convergence
properties of the P-FETI-DP preconditioner accelerated with GMRES, when utilized
for the solution of the linear systems deriving from linear elasticity PDEs. The reference
domain utilized for the numerical examples is a unit square, with homogeneous Dirichlet

boundary conditions aplied to all degrees of freedom of its left edge and vertical load of
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100 KN applied to upper right interpolatory control point of the domain.

The domain is discretized by utilizing isogeometric NURBS shape functions, with
parameters h denoting the mesh size, polynomial degree of the shape functions p,
subdivided into N subdomains per parametric direction. The Young’s modulus is 100
MPa and Poisson’s ratio v = 0.3. The reference linear systems are solved with the aid
of the GMRES iterative method, with zero initial guess and a normalized displacement

convergence criterion of 1076,

I

p o ® 4 @] )

\ J

[
N= 2x2 Subdomains

Figure 5.11: Unit square domain utilized for the scalability tests of the numerical tests.

5.5.1 PRECONDITIONED GMRES PERFORMANCE METRICS

In this subsection, a comparison of the performance, in terms of both iterations as well
as CPU times in sequential execution environment, is performed between the proposed
preconditioner method and its strongest competitor, the overlapping Schwarz method
[25]. Numerical tests were performed in large-scale models, with dof ranging from 102K
to 103K dof and subdomains numbers in the span between 16 and 1024. For all numerical
tests, a convergence accuracy of 1079 is considered for both the convergence of GMRES
global problem as well as the interface problem in the case of the proposed method.
The computing platform used is an Intel Core i7 X980 with 24Gb RAM memory. In
all cases, for the solution of the resulting linear system, equivalent preconditioners are

studied. Specifically, both one-level preconditioners, such as the the PSM-D method and
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OAS with out coarse problem are provided, as well as 2-level preconditioners like the
P-FETI-DP method and 2-level OAS.

The first comparison is performed for the case of approximately 130K dof model.
Table 5.1, as well as Figures 5.12a,b present all the data pertaining to the aforementioned
model. Figure 5.12a schematically illustrates the iterations behavior with an increasing
number of subdomains. As it can be observed, both one level preconditioner alternatives
present incremental rise of the number of iteration needed for convergence, with the
PSM-D method requiring significantly more iterations compared all other methods with
the P-FETI-DP method to require the least number of iterations to converge to the

desired accuracy.

256x256 OAS 1-level OAS 2-level PSM-D P-FETI-DP

N Interface Coarse Gmres Time Gmres Time Gmres Prec Time Gmres Prec Time
dof dof it. seq. (s) it. seq. (s) it. it. seq. (s) it. it. seq. (s)

4x4 3060 36 129 32.71 81 19.29 1 297 14.32 1 26 7.59

8x8 7084 140 188 47.12 102 21.41 1 454 10.35 1 34 4.14

16x16 14940 540 280 102.56 126 25.45 2 690 27.7 2 33 4.33

32x32 29884 2108 442 355.33 149 30.07 2 964 132.37 2 31 10.62

Table 5.1: Performance metrics for the solution 100K dof problem with various preconditioners to
the GMRES method.

In terms of wall-clock time metrics, the situation is reversed among the PSM-D and
OAS 1-level methods. Specifically, a 2.28x speedup is noted for the minimum case of 16
subdomains, which slowly rises to 2.36x in the case of 1024 subdomains. This speedup
of PSM-D method is attributed to the nature of the non-overlapping preconditioner
proposed, as the solution of the global problem is transformed to the solution of the
interface problem among adjacent subdomains, which is orders of magnitude smaller
than the original problem, as can be seen in Table 5.1.

In a similar fashion, P-FETI-DP method outperforms the OAS 2-level alternative.
The biggest speedup of P-FETI-DP method is observed for a multitude of 64 subdomains
and is 5.17x faster than the equivalent OAS 2-level alternative. Note that P-FETI-DP
wall-clock time metric are affected by the multitude of subdomains, as a descending
path is followed by an ascending one. The reason for this is that the method requires to
strike a balance between the size of subdomain problems and the corresponding coarse
problem, so that a small interface problem is maintained, while the coarse problem is
large enough to provide an effective preconditioner. This behavior was expected, as it has

been observed in previous publications regarding non-overlapping domain decomposition

156



methods [76, 173].

A similar behavior to the 100K dof case, is observed for the 500K test case. In terms
of iteration count, the PSM-D preconditioner performs poorly, while P-FETI-DP method
outperforms all other preconditioners as depicted in Figure 5.13a. In terms of wall-clock
time, both PSM-D and OAS 1-level preconditioners exhibit an incremental rise of the
wall-clock time with number of subdomains, with the first being up to 2.6x times faster.
The same observation holds for the two-level methods. An inspection of the results
of Table 5.2 and Figure 5.13b, yield the same descending, ascending behavior of the
P-FETI-DP preconditioner. The highest speedup provided by P-FETI-DP, is observed
for 256 non-overlapping subdomains and is 8.9x times faster than its OAS counterpart.
Note that, for the comparison to be fair among the two-level methods, the overlapping

between subdomains in the OAS case, is kept at a minimum of one overlapping shape

function.

512x512 OAS 1-level OAS 2-level PSM-D P-FETI-DP

N Interface Coarse Gmres Time Gmres Time Gmres Prec Time Gmres Prec Time
dof dof it. seq. (s) it. seq. (s) it. it. seq. (s) it. it. seq. (s)

4x4 6132 36 179 282.45 92 130.09 1 426 192.38 1 27 93.09

8x8 14252 140 265 265.02 120 136.96 2 645 94.4 2 36 37.37

16x16 30300 540 393 760.62 157 215.55 2 983 157.31 2 36 24.26

32x32 61628 2108 550 1965.27 176 246.33 3 1361 758.54 3 33 45.25

Table 5.2: Performance metrics for the solution 500K dof problem with various preconditioners to
the GMRES method.

Finally, for the 1000K dof case, the former observations are validated. In overall, the
same behavior regarding the iteration metrics is observed for all preconditioner cases,
with two-level methods significatly outperforming the computational cost of one-level
methods and P-FETI-DP being the most computationally efficient. Regarding the
wall-clock execution time, P-FETI-DP achieves a 5.7x times speedup compared to the
OAS 2-level method, hence proving its efficiency in isogeometric collocation problems of
various scales.

Note that the parallelization of the aforementioned preconditioners is not bound by
the number of subdomains. This means that the number of cores that can be utilized
can exceed the total number of subdomains, as apart from the utilization of one core
per subdomain for the matrix vector operations of eq. (5.16), the undelying solution of
K;; with the subdomain vectors can be further parallelized with block direct or iterative

solvers that spawn the solution of the internal problems across multiple cores [76]. Thus,
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768x768 OAS 1-level OAS 2-level PSM-D P-FETI-DP

N Interface Coarse Gmres Time Gmres Time Gmres Prec Time Gmres Prec Time
dof dof it. seq. (s) it. seq. (s) it. it. seq. (s) it. it. seq. (s)

4x4 9204 36 218 977.81 113 336.25 1 523 756.97 2 28 358.93

8x8 21420 140 323 1270.14 149 373.24 2 794 542.42 2 38 163.65

16x16 45660 540 478 1892.42 233 410.23 2 1207 467.72 3 37 72.026

32x32 93372 2108 669 4655.56 257 447.22 3 1670 1729.4 3 35 102.81

Table 5.3: Performance metrics for the solution 1000K dof problem with various preconditioners to
the GMRES method.

the speedup of the P-FETI-DP preconditioner, compared to its overlapping competitors,
can be retained even in fine grain parallel computing environments. Note that the current
approach for the solution of the subdomain internal problems, in both P-FETI-DP and

OAS preconditioners, is by an LU factorization of the respective matrices.

5.5.2 P-FETI-DP SCALABILITY IN N

In this section, the scalability of the proposed method is studied. GMRES iterations
required for the convergence of the global and equivalent interface problems are reported
in Table 5.4. For a unit square domain, different mesh partitionings are considered
ranging from 1/h = 8 elements to 1/h = 128 elements for each direction. These meshes
are the subdivided into N subdomains with multitude ranging from 4 to 1024. As it
can be observed, the non-overlapping model serves as excellent preconditioner for the
solution of the global linear system. Iteration count for the global GMRES are minimal,
which is attributed to the minimization of the discarded stiffness matrix values. An
in-depth investigation of the polynomial degree influence on iteration count is provided

in a later section.

GMRES with P-FETI-DP preconditioner (p=3)

1/h=8 1/h=16 1/h=32 1/h=64 1/h=128

N GMRES Interface GMRES Interface GMRES Interface GMRES Interface GMRES Interface

it. it. it. it. it. it. it. it. it. it.
2x2 1 7 1 8 1 9 1 9 1 10
4x4 1 9 2 10 2 11 2 12
8x8 1 9 2 11 2 11
16x16 - - 3 10 2 10
32x32 - - - - 2 9

Table 5.4: lteration metrics

Table 5.4 examines the scalability of the PSM method when preconditioned with the first
step of the coarse problem of the FETI-DP which is briefly described as the P-FETI-DP
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method. As it can be observed, iteration count for the solution of the global problem is
kept at a minimum due to the non-overlapping model of the interface problem introduced,
while the iteration count for the solution of the interface problem remains unaffected
by the mesh partitiong 1/h as well as by the number of subdomains N. This renders
the P-FETI-DP method an ideal candidate for the solution of linear systems deriving
from isogeometric collocation methods. For all numerical tests of Table 5.4 the required

preconditioner accuracy was set to 1076 for both global and interface GMRES solutions.

5.5.3 P-FETI-DP ROBUSTNESS WITH RESPECT TO PRECONDITIONER ACCU-
RACY

This numerical investigation, addresses the influence of interface problem preconditioner
accuracy to the overall performance of the proposed iterative method. Table 5.5 shows
the effect of the accuracy of the interface for various subdomain partitionings ranging
from 4 to 1024 subdomains In agreement to the iteration count presented in Table
5.4, the minimal number of external iterations required for the solution of the global
problem seems to be unaffected by the relaxation of the solution accuracy of the interface
problem.

In case of the P-FETI-DP method, the decrease of the preconditioner accuracy reduces
the number of required iterations by half, while resulting to a minimal effect on the total

iterations of the global problem.

GMRES with P-FETI-DP preconditioner (1/h=150)

N Subd. Interface GMRES Prec. GMRES Prec. GMRES Prec. GMRES Prec.
dofs dofs it. it.1076 it. it.1075 it. it.1074 it. it.1073
2x2 11026 596 1 10 2 9 2 7 2 6
4x4 2594 1776 1 12 2 10 2 8 3 5
8x8 612 4088 2 12 2 9 2 8 2 5
16x16 171 7980 2 10 2 7 2 6 2 5

Table 5.5: Iteration metrics investigation of the preconditioner accuracy effect of the P-FETI-DP
method.

5.5.4 P-FETI-DP DEPENDENCE ON P

In order to study the effect of polynomial degree on the efficiency of the method,

a numerical investigation was performed for the domain with 1/h = 64 mesh size,
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subdivided into 16 non-overlapping subdomains. Table 5.6, provides the total iterations
count needed for the solution of the domain defined, by utilizing as a preconditioner both
aforementioned methods PSM-D and P-FETI-DP. As expected, all methods provide an
effective and robust preconditioner regarding the iteration count of the global problem,
utilizing GMRES. The augmentation of the polynomial degree has a minor effect of the
total number of global problem iterations. For polynomial degree p =4 to p = 7 an
increase of only 10 external iterations is observed, while for all chosen interface problem
preconditioners, the total number of iterations required for attaining a 1076 remain
unaffected by the polynomial degree increase. This can be attributed to the fact that the
introduced non-overlapping model abolishes the augmented interelement continuity. The
truncated terms of the initial stiffness matrix only affect the external GMRES iterations,
due to the deviation of the truncated model compared to initial one that becomes more
pronounced as matrix bandwidth and interelement continuity increase along with the

polynomial degree.

h=1/64, N =4x4
PSM Unprec. PSM-D P-FETI-DP
p GMRES Interface GMRES Interface GMRES Interface
it. it. it. it. it. it.

4 28 42 28 25 28 5
5 32 40 32 21 32 5
6 38 38 38 21 38 5
7 41 41 41 22 41 5

Table 5.6: Effect of polynomial degree of the shape function to the total iteration count.

5.5.5 P-FETI-DP ROBUSTNESS WITH RESPECT TO ILL-CONDITIONING

In this section, the effect of ill-conditioning to the proposed preconditioner is studied.
Table 5.7, presents the iterations metrics of a unit square domain with different mesh
partitionings ranging from 1/h = 16 to 1/h = 128 and three cases of Poisson’s ratio,
namely 0.3,0.45 and 0.4995. As it can be observed, the non-overlapping model that is used
for preconditioning the solution, is unaffected by the increase of the ill-conditioning of the
resulting stiffness matrices. On the contrary, interface problem iteration metrics increase
with both Poisson’s ratio with mesh partitioning. The P-FETI-DP preconditioner case
exhibits reduced iteration metrics, that validate the robustness of the proposed method

even in extreme ill-conditing cases.
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GMRES with P-FETI-DP preconditioner (N=4x4)

1/h=16 1/h=32 1/h=64 1/h=128
v GMRES Interface GMRES Interface GMRES Interface GMRES Interface
it. it. it. it. it. it. it. it.
0.3 1 9 2 10 11 2 12
0.45 1 14 2 21 26 1 35
0.4995 1 20 1 31 41 1 45

Table 5.7: Iteration metrics for unit square domain with various mesh partitionings and Poisson’s
ratio, preconditioned with P-FETI-DP.

GMRES with OAS preconditioner (N=4x4)

1/h=16 1/h=32 1/h=64 1/h=128
v GMRES it. | GMRESit. | GMRESit. | GMRES it.
0.3 22 27 45 99
0.45 22 29 A7 106
0.4995 22 30 47 108

Table 5.8: Iteration metrics for unit square domain with various mesh partitionings and Poisson's
ratio, preconditioned with P-FETI-DP.

To compare the robustness of the P-FETI-DP with OAS 2-level preconditioner, the
same numerical investigation with repsect to ill-conditioning was performed with respect
to ill conditioning. Table 5.8, show the effect of ill conditioning on the performance of
OAS method. As it can be observed, the increase of the Poisson’s ratio has a minor
effect on the iterations of the global problem. Yet, in contrast to the equivalent metrics
of the P-FETI-DP method, a significant increase of the iteration metrics is observed as
the mesh becomes finer, thus rendering OAS 2-level preconditioner less effective with

increasing mesh.
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[sogeometric Kirchhoft-Love shell
formulation for multiscale material

simulations

6.1 INTRODUCTION

Thin lightweight structures are often modeled either with the Kirchhoff-Love theory,
in case of thin shells, or with Reissner-Midlin theory, in case of thick shells. Even
though most product belong to thin or very thin shell category, the computational
limitations of thin shell theory when formulated in the framework of the FEM method,
made Reissner-Midlin theory dominant in most FEM codes. This is attributed to the
prerequisite of Kirchhoff-Love shells for a minimum C! continuity between adjacent
elements, which classical FEM could not easily provide, thus resulting to non-conforming
meshes. Special care must be taken for thin shell theory in the context of FEM, by
applying non-local formulations, nodal enforcementof the C! continuity, or even penalty
method applied to selected material points. On the other hand, IGA, enables for a
straightforward implementation of Kirchhoff-Love theory, as continuity is raised from
typical C° to CP~!, where p being the polynomial degree of the shape functions used.

This Chapter aims to extend existing isogeometric thin shell formulations to incorpo-
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rate constitutive laws generated by a stochastic mutliscale analysis. A nested IGA-FEM
multiscale analysis scheme is proposed, in which IGA is used for the discretization at the
macroscopic level and standard FEM are used for the discretization of the RVEs assigned
at each integration point of the macrostructure. The discretization of the macroscale
structure is performed with T-Splines, which are favored over NURBS, as they allow the

extraction of arbitrarily complex geometries without a laborious pre-processing stage.

6.2 A TWO-SCALE NESTED IGA-FEM FORMULATION

The models considered in the present work are macroscale models of shell structures
consisted in composite materials that contain arbitray inclusions and cavities. These
heterogeneities are located in the microstructure of the material and are thus unde-
tectable at the macroscale level of the model. As a result, the material is considered
to be homogeneous in the macroscale, while highly disparate in its microstructure. To
determine the influene of the material impurities to its actual constitutive relations, a
nested IGA-FEM solution scheme is proposed, which can be split into three discrete
steps as described in Figure 6.1.

In the first step, IGA discretization of the macroscale model takes place, which
is performed using T-Splines as described in Chapter 1 (Figure 6.1a). The Bezier
extraction of the T-Spline model is automatically performed via a CAD tool and resulting
Bezier elements are utilized for the computation of the stiffness matrix. For each mid-
surface integration position (point Ay in Figure 6.1b), a multitude of through thickness
integration points (points A; in Figure 6.1¢) are considered, each one corresponding to
the material zone of a subsection in which plane stress conditions are assumed. This
layered representation of the shell’s section enables the modelling of through thickness
material variability.

In the second step, the material constitutive relations are extracted at each material
integration point via stochastic computational homogenization. For each integration
point A;, a random 3D RVE is generated as a prismatic mesoscale model describing
the local microstructural topology of the material. Arbitrary volumetric inclusions
comprised of either cavities and/or surface/line inclusions are accurately specified.
Three-dimensional elasticity continuum finite elements are used for the discretization of
the matrix, while inclusions are modeled as structural elements such as shells and beams

embedded in the matrix. The random RVE generator is described in detail in Section
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(b) Shell element

2 Thickness integration pointA;
® Midsurface Gauss pointA,

Midsurface
Gauss Point

(d) RVE

Figure 6.1: Schematic representation of the nested IGA-FEM flow for the analysis of Kirchhoff-Love

shells (a) IGA discretization (b) Shell element discretization (c) Through-thickness discretization at

midsurface point Ag of a shell element (d) Random RVE of local microstructural material totpology
at thickness integration point A;.

6.2.4. For the computational homogenizations, the total macroscopic in-plane strains
e% of equation 2.56 at a distance ( of the mid-surface, are assigned to the corresponding
section integration material point (i.e. point A; in Figure 6.1c¢) represented by a 3D
RVE of the composite material (localization step of Figure 6.1). The in-plane strains eo%
are enforced as equivalent displacements to the 3D RVE, following the transformation
described in Section 6.2.2. This way, an RVE microscale boundary value problem is
formulated which computes averaged equivalent material properties, namely the stress
O'O% and the corresponding plane stress consitutitve matrix Cps and returns them back

to the macroscale Gauss Point Ag.

The final step of the two-scale nested scheme integrates through the thickness of the
shell element and computes the stress resultants at the mid-surface point Ag of the
macroscopic model as well as their sensitivities. A detailed description of this step is
provided in Section 6.2.3. Note that for the purposes of this work a linear response of

the RVE is assumed. However, the proposed scheme can be readily applied to non-linear
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cases in straightforward manner. The steps of the proposed IGA-FEM scheme are

presented in detail in the following Sections.

6.2.1 MICROSCALE BOUNDARY VALUE PROBLEM

Neglecting inertia forces, we assume that the RVE in Figure 6.1d deforms in a state of
equilibrium [108]:
V-oc=0 n QrvE (6.1)

One of the basic assumptions of the proposed formulation is that the total strain of

the macro-continuum equals the volume average of the microscopic strain:

1
eEM = / emdV (6.2)
VRVE Japy s

For the case of thin shells, this classic strain averaging condition is translated to an
in-plane constraint only. Accordingly, in the following equation, a circumflex denotes
restriction of the strain tensor to its in-plane coefficients only that are given be equation

2.56and they refer to the covariant basis of the undeformed configuration.

1
en = / emdV (6.3)
VRvE Japys

This condition is met by imposition of appropriate constraints in the 3D RVE boundary

value problem. Specifically, a virtual plane stress element (element ABCD in Figure
6.2a) is embedded at the mid-surface of the RVE as shown in Figure 6.2. Then, in-plane

dispplacements are equal to

G = €1 Xom (6.4)

are prescribed to all perimeter nodes of the virtual element ABCD, while all peripheral
mesh nodes of the 3D RVE are subjected to the same displacementsas their projection
nodes on the perimeter of the virtual element. More specifically, with reference to Figure
6.2, and edge nodal point L;, of the RVE with coordinates X, Xs, X3 is prescribed
with the same w; and us displacement values , as dictated by eq. 6.4, with those of the

corresponding vertex node V; of the virtual element, i.e. with the node having the same
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4 8

(a) Boundary conditions applied to the
microstructure boundary value problem

A

(d) €12 deformation mode.

2 2

8
(e) RVE €;; deformation (f) RVE €55 deformation (g) RVE €2 deformation
mode. mode. mode.

Figure 6.2: Microstructure boundary value problem on a 3D RVE.
X1, X5 coordinates.
w9 (X1, Xo, X3) = 0377 (X1, Xo) (6.5a)

usM(X 1, Xo, X3) = 4571 (X1, X) (6.5b)
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This way, the in-plane enforcd displacements of the virtual element ABCD, make the
3D RVE to deform in a pattern that is consistent to the plane stress conditions. The
basic 3D deformation modes consistent to plane stress €4, el €M are shown in Figure
6.2b-d. As for the out-of-plane strain coefficients eé\g, there is no need of imposing it
as a aconstraint, since its value results indirectly from the out-of-plane deformation of
the 3D RVE. As a result, out-of-plane shear strains eé\g are automatically set to zero.
Special care is taken to constraint the out-of-plane rigid body motions. This is attained
by constraining the displacements of three nodes of the bottom face, that are parallel to
axis 3. Specifically, with reference to Figure 6.2a, vertical displacements of nodes 3,4,7
of the RVE are constrained. This boundary conditions allows the RVE to deform freely
in the in-plane directions, while at the same time eliminating possible out-of-plane rigid
body motions.

The following strain averaging relation concerning the stress holds [108]:

1 1 ~
oM = / OmdV = / symlt @ z|dA (6.6)
VRVE QrvE VrvE RrvE

where the divergence theorem has been applied and ¢t = o - n is the field of the

developed tractions on the boundary of the RVE. Out of plane traction ¢ are identically
equal to zero, as no constraint is enforced in the direction 1 and the plane stress condition
aé‘gf = 0 holds. By combination of egs. 6.2 and 6.6 and taking into account eq. 6.4,
the 3D macroscopic stress power equals to the volume average of the microscopic stress

power.
. 1 .
oy €= / — O € dV (6.7)
Qrve VRVE

This relation satisfies the Hill-Mandel principle of macro-homogeneity [84]. Thsi way,
the macroscopic energetic conjugate strain and stress measures can be replaced by their
averaged microscopic counterparts in the expression of the principle of virtual work at

the macroscale level.

6.2.2 ENFORCING PLANE STRESS CONDITIONS

A standard finite element solution scheme is employed for the boundary value problem of

Figure 6.2, expressed at the microlevel in eq. 6.2. Upon discretization of the displacement
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field u,, and after constraining the rigid body moves of the 3D RVE model, the remaining
degrees of freedom are partitioned into two categories, the constrained ones enforced by
eq. 6.4 and the internal nodes that are totally free. The constrained nodes, denoted as
e, include the in-plane displacement degrees of freedom of the peripheral nodes of the

RVE and the internal, denotes as p, are the remainder internal nodes.

u = [“] (6.8)

The same partitioning applies to the internal nodal forces P and the stiffness matrix

K as well:

f= [f] (6.92)

K= [K Ke?] (6.9b)

For a peripheral node ¢ of the RVE, the in-plane displacement vector u, is derived

from the corresponding projection of the RVE on ABCD and is given as:

g = [ul uQ]T = Dle (6.10)

where D, and ¢l are given as:

1 21‘1 0
D, := 5 0 2,2 (6.11a)
ToX1
= 2ely] (6.11D)

Assembling a global matrix D associated with all peripheral nodes P, the discretized

form of the constraint eq. 6.4 is given as:
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u. = DTé¢, D =[Dy,da,..., Dy (6.12)

Regarding the reaction forces acting on the internal degrees of freedom ”¢e”, an

appropriate Lagrange multiplier ¢ is applied to enforced eq. 6.12. Then the discretized

boundary value problem takes the form of the following algebraic equations:

fe =0 (6.13&)
fr=0 (6.13b)
ue — DTe=0 (6.13c)

Upon solution of the micro-level boundary value problem of Figure 6.2, the macroscopic

stress tensor can be calculated for eq.6.6 that takes the discretized form:

1
6:=—D¢ (6.14)

V]
For an equilibrium state of the microstructure and for an infinitesimal macroscopic
strain increment A€, the corresponding increments of the displacements Au., Auy,

Lagrange multiplier Ad and the total macroscopic strain Ag, is given as follows:

Au, = DT Aé (6.15a)
Auy, = — Ky ' KpeAu, (6.15b)
A = K..DTAé (6.15¢)

1
A6 := —DAJ (6.15d)

V]

S _1 . . . .
where K. = Kee — Kep Ky, K. Hence the macroscopic moduli are given as:

1 ~
C = mDKeeDT (6.16)
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6.2.3 MACROSCOPIC SHELL STIFFNESS MATRIX

The macroscopic shell stiffness matrix matrix is derived from the principle of virtual

work which can be written as

W:/ JM:(SeMdV:/ [ oupdV (6.17)
1 v

where the virtual displacement du ;s is in the macroscopic level. The expression of

internal virtual work at the left hand side is further elaborated as:

/ on :0epdV = / (n:dep +m: dkpy)dA (6.18)
v A

where through thickness integration delivers the macroscopic stress resultants as

h h
s = / C P demes = / * o%Pcde (6.19a)

h
2

[Ny

where «, 8 take the values 1,2. Similar expressions are used for ”thickness integrated”

material matrices [100]. The moduli at each thickness integration point are obtained

directly from eq.6.16 as:

h

Ca= [ CdC (6.20a)
%2

Cp= [ C¢d¢ (6.20b)
ﬂ2

Cp = C¢d¢ (6.20c)

The differentials of membrane forces and bending moments are computed from:

dn®? = CJO\‘/[AV‘Sdewg + Cj'\‘/‘,ﬁB'yad/iM; (6.21a)
dmaﬁ — C]?JIBB’Y(sdE'YJ _|_ C]O\ZBDPY(;dH'y& (621b)
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Since equilibrium must be met for any variation of the displacement matrices du, it

can be written that

ow

This leads to the following internal and external forces:

F;’nternal — /A(n . aaeuM +m: gi\f )dA (623&)
Freacternal — /Af . gs dA (623b)

Subsequently, the stiffness matrix is obtained as:

. on Oey Om  Okuy
Kznte'rnal — / . . dA .24
rs Bus B T oy ou (624

Substitution of eq.6.21 in eq.6.24 yields the final expression for the shell’s macroscopic

stiffness matrix:

, Oe Ok Oe Oe Ok Ok M
F'znternal o . M . M | M . M X My |
" N /A(CMA " Ou, +Cuy Ou, ): ou, HCo Ou +Cp Ou, ) ou, da
(6.25)

6.2.4 RANDOM RVE GENERATOR

As mentioned above, a stochastic RVE generator is developed to account for material
heterogeneities at the mesoscale level of RVEs. The generator is based on two uncertainty
type, namely the inclusion dispersion and orientation inside the matrix as well as their
spatial variability inside the RVE described with a variable volume fraction parameter
[10].
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RVE wWITH EMBEDDED INCLUSIONS

Given the RVE dimensions, i.e. length Ly,qtriz, width Wiatrie and height Ho,geri: and
the type of inclusions, the RVE generator distributes the inclusions in the matrix either
uniformly in a unidirectional pattern (Figure 6.4), or with random orientations (Figure
6.10). The coordinates of an insertion point (Point A in Figure 6.3a) of an inclusion
are randomly generated inside the matrix assuming a uniform distribution described by
the uncorrelated random variables X 4, uniformly distributed in the range [0, Linatriz],
Y4 uniformly distributed in the range [0, Winairiz] and Zy4, uniformly distributed in the
range [0, Hpatriz]-

To define the orientation of the inclusions, an additional point is inserted (Point B in
Figure 6.3a) defining an additional orientation random variable, namely the Euler angler
¢, which for the purposes of this work is also assumed uniformly distributed in [0, 27].
This angle, together with a fixed length parameter completely define the coordinates of
insertion point B.

The spatial variability of the Volume Fraction (VF) is taken into account by assigning
a different RVE at each integration point of the domain. Specifically, a multitude
of RVEs with varying VFs are constructed and randomly distributed throughout the
macroscopic domain. The spatial varability of the VF used for the construction of the
RVEs at different domain locations is modeled using random fields and simulated via

series expansion of the Karhunen-Loéve method [78]

w(x,0) = > V/An&n(0) fn(x) (6.26)
n=0

where &,(0) is a set of uncorrelated Gaussian random variables and \,, and f,(x) are
the eigenvalues and eigenvectors of the autocorrelation functions, respectively.

Both the matrix and the inclusions are discretized independently, i.e. without common
nodes. For the purposes of the numerical examples, solid finite elements are used for the
discretization of the RVE matrix, while the inclusions in the form of carbon nanotubes
are discretized with two-noded beam elements. The contribution of each inclusion to the
stiffness of the RVE is calculated via the embedded element technique (Figure 6.3a), in
which the discretized inclusion degrees of freedom are kinematically constrained to the
degrees of freedom of the surrounding matrix. This compatibility between the matrix

and the inclusions degrees of freedom, is demonstrated in the three-dimensional case, by
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utilizing a single spatial beam elements, representing a CN'T, embedded in an n-noded

continuum finite element. The degrees of freedom of the CNT element are given by

Ubeam = {u?augaugv "'au?2} (627)

and the equivalent degrees of freeedom of the continuum finite element by:

Ucontinuum = {uf, u§7 U?),, L3) Ugn} (628)

The kinematic relation between the inclusion degrees of freedom and those of the solid

finite element can be expressed as:

Uinclusion = [Tembedded]Umatrim (629)

where T is a compatibility matrix that contains the shape function values at each of

the inclusion nodes, and is given by

(1) () (n)

T T .. T

[Tembedded] = Al A2 IjL (630)
™o T2 . 1

where A, B denote the initial and final node of the beam element according to Figure
6.3a. T%) is a matrix that transforms the translational and rotational degrees of freedom
of a beam element to the translational degrees of freedom of the matrix element, as

follows:

[ N (Exc, i, Crc) 0 0
TI% = 0 _19N;(ExmxCr) 1 90N;(Ex i .Cr) (6.31)
2 0z 2 oy
19N (Ex K Cr) 0 19N (€K Cr)
2 0z 2 ox
_10N;(Exmi k) 1 0N;(Ex MK (k) 0
L 2 oy 2 ox J

ON; ON; ON; . o
The terms 037]7 da—y], daZ] represent the shape function derivatives, evaluated at the

coordinates £x,ni,(x of the beam node at the local coordinate system of the solid
element. As a result, the stiffness contribution of the inclusion to the matrix is given as

follows:
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(a) Schematic representation of the arbitrary

inclusions discretized with beam elements, (b) Schematic representation of metamaterial
embedded in a 3D matrix, discretized with solid microstructure in 2D and 3D and its
continuum finite elements. decomposition into 3D RVEs.

Figure 6.3: Examples of 3D RVEs.

T
K embedded = Tembedded : Kinclusion : Tembedded (632)

The final stiffness matrix of the RVE is calculated as the sum of the contributions of

the continuum finite elements and the equivalent contributions of the beam elements

transformed to the nodal degrees of freedom of their host elements with the aid of eq.

6.32. The use of the embedded FEM technique [127] allows for the use of relatively coarse
and simple meshes, with respect to a standard FEM discretization. A standard FEM

discretization would require fully conforming meshes in the matrix-inclusion interphases

that would lead to complicated and laborious preprocessing of the RVE FEM models.

This is avoided in the present work with the use of the embedded FEM technique. As
a result, the proposed discretization procedure reduces significantly the computational
cost for the solution of the RVE.
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METAMATERIAL RVES

Another typical material microstructure used in advanced composites is the metamaterial
illustrated in Figure 6.3b. A metamaterial is created as a combination of a matrix with
volumetric inclusions of different material properties or cavities. The volumetric nature
of these inclusions does not allow their modelling as beams or shell elements. As a result,
both the matrix and the inclusion are discretized with 3D continuum finite elements,
ensuring that the mesh at the boundary between them is conforming. This might lead to
increased RVE mesh size compared to the embedded inclusions presented in the previous
section., yet it is inevitable in case of complex inclusion geometries. Since these materials
do not exist in nature and are manufactured, they are commonly placed in a periodic
lattice as Figure 6.3b illustrates. A single periodic portion of the lattice is extracted
(Figure 6.3b) and serves as the RVE geometry to be used throughout the model. The
stochasticity for this RVE case is introduced as the variability of the material properties
of the matrix or the incorporated inclusions. Similar to the embedded inclusions case,
the spatial variability of the material properties is dictated by the Karhunen-Loeve

method as provided in eq. 6.26.

6.3 NUMERICAL RESULTS

This section provides benchmark examples that demonstrate the merits of the proposed
computational methodology. The first example verifies the accuracy of the imposed
plane stress conditions as described in Section6.2.2, followed by two real-scale examples
that demonstrate the applicability of the proposed approach of integrating isogeometric
T-Splines discretization of Kirchhoff-Love shells with stochastic multiscale analysis of
composite materials. The second benchmark example illustrates the performance of the
proposed methodology applied to a cylindrical shell composed of a metamaterial, while
the third example deals with the analysis of a real-scale car bumper made of polymer

reinforced with stochastically distributed Carbon Nanotube (CNT) inclusions.

All modules of isogeometric analysis, multiscale analysis and stochastic analysis were
developed and integrated in the open-source computational mechanics software platform
MSolve [MSo| with HPC capcabilities.
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6.3.1 VERIFICATION OF HOMOGENIZATION PROCEDURE FOR PLANE STRESS
CONDITIONS

This benchmark test is used as a proof of concept of the proposed computational
procedure described in Section 6.2.2 for extracting the plane stress constitutitve law from
the analysis of a three-dimensional microstructure. For a Young’s modulus E=4GPa and
Poisson’s ratio v = 0.4, the theoretic isotropic plane stress elasticity matrix is calculated

as:

1 v 0 4762 1.905 0
E
C=c—|v 1 0 |=]|1905 4762 0 (6.33)
00 1—v 0 0  1.429

The same material properties are used for the computation of the constitutive matrix
C’ via the homogenization procedure implementing the plane stress extraction described
in Section 6.2.2. To this purpose, a cubic RVE of 100nm edge is considered, and
discretized with a mesh 10x10x10 hexahedral finite elements. The difference AC between

this calculation and the theoretic matrix of eq. 6.33 is computed at:

0.0 —9.992F — 15 —9.60F — 16
AC=C-C'= [-9.992F — 15 0.0 —2.20F — 16 (6.34)
~7.08E —16 —3.37E — 16 0.0

The comparison of the constitutive matrix components in eq. 6.34 illustrates the
accuracy of the proposed plane stress constraint procedure. It can be seen that the non-
zero values of both matrices coincide, while the zero terms of the isotropic plane stress
elastiity matrix are computed close to zero within the computer accuracy. This indicates
that the extraction of the constitutive matrix from the homogenization procedure
described in Section 6.2.2 provides accurate results compared to the analytical formula
of plane stress costitutive matrix.

To test the performance of the proposed procedure for an anisotropic material, two
composite RVE cases are examined with a matrix of the same material as before reinforced
with CNTs of different volume fractions. The CNTs are modelled as embedded beam
elements assuming fully bonded interfacial conditions [137], with properties listed in Table
6.1. The finite element model is created using the random RVE generator described in
Section 6.2.4 for 200 and 800 emdedded CNTs respectively. A unidirectional orientation
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EBE proporties for CNT(8,8)

CNT diameter 1.06 nm
CNT thickness 0.34 nm
Bending inertia X,Y 100.18 nm?*
Torsional constant 68.77 nm*
Young’s Modulus 4 GPa
Poisson’s ratio 0.4

Table 6.1: CNT Properties.

of CNTs is considered with the principal direction being the axis X, as illustrated in
Figure 6.4

-

X

Figure 6.4: Representative volume elements with embedded CNTs a) 2.5% embedded CNTs volume
fraction b)10% embedded CNTs volume fraction.

The length of the CNTs is considered to be 100 nm while its position in the YZ plane
is given by two uncorrelated uniform variables fro coordinates Y4 and Z 4, as described
in Section 6.2.4.
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18.328 1.905 —9.09F — 18

Crve, = | 1.905 4.762 5.80E — 16 (6.35a)
A57TE — 16 —5.01F — 16 1.429
58.554 1.905 6.47E — 16
Crve, = | 1905 4762  —3.18E —17 (6.35b)

9.68E —17 1.15E —15 1.429

The computed constitutive matrices for the two RVE case are preseneted in eq. 6.35.
In comparison with the constitutive matrix of eq. 6.33, the reinforced RVE matrices
provide a notable increase of stiffness in the X direction. Specifically, the principal
component of axis X for the RVE reinforced with 2.5% VF of CNTs, is increased by
385% compared to the isotropic case, while for the 10% VT case an increase of 1230%
is observed, thus making apparent the contribution of the reinforcing material in its
mechanical performance. In both case, the zero terms of the isotropic elasticity matrix
are close to zero within computer accuracy and thus the extracted constitutive matrices

are in agreement with the plane stress matrix.

6.3.2 CYLINDRICAL SHELL

The second example is the benchmark example of the cylindrical shell shown in Figure
6.5a. Its cross-section is a circular arc of 25 meters with its angle being 40°. The
thickness of the shell is 0.25m and the total length of the structure is 50 m. The shell is
subjected to a gravitational load of magnitude fo = 90N/m? per unit surface [119, 164].
The boundary conditions of the structure are the following: translational degrees of
freedom per axis X and Z are constrained in edge AB and CD.

The material considered in this example is the metamaterial of Figure 6.5b with
periodic void. A unit cell of 100x100x100 nm with a void of 50x50x50nm is used to
construct the 3D RVE for this case. The modulus of elasticity of the RVE material
is considered to be a random variable assumed to follow the lognormal distribution
with mean value E=4 GPa and standard deviation 0.5 GPa. Two spatial correlation
cases were considered. In the first case, a through thickness variation of the modulus of

elasticity was considered in addition to the surface variability. The modulus of elasticity
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(b) Geometry of
the metamaterial
(a) Geometry of the shell example. used as an RVE

Figure 6.5: Geometries of the cylindrical shell example.

in this case is described as a white noise random field, according to eq. 6.26.

20.000 Monte Carlo simulations of the stochastic cylindrical shell are performed for each
spatial variability case. Figure 6.6a, displays the histogram of the vertical displacements
of monitor node in the middle of the edge BC for the first spatial variability case. As can
be seen, the results follow a near-to normal distribution, with mean value of -0.038762m
and a standard deviation of 1.3428e-04m. In the white noise spatial variability case the
histogram of displacements versus probability is displayed in Figure 6.6b, where the

mean value of the results is -0.0791m and their standard deviation 0.0233m.

Inspection of these results immediately indicates the importance of the multiscale
modelling proposed in this study. Considering a constant material for the macroscale
model, gives a standard deviation of the displacements equivalent to 30%, i.e. COV=0.3
of the resulting mean value, while in the white noise case the COV reduces to 0.18. In
addition, the shapes of the distributions differ significantly with the first (Figure 6.6a)

being near to Gaussian and the second being near to lognormal, thus in alignment to
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Figure 6.6: Histograms for the vertical displacements of monitor Control Point C.

the input random variables.

6.3.3 CAR COMPOSITE BUMPER EXAMPLE

The next example is a real-scale model of a car bumper illustrated in Figure 6.7. The
model is retrieved from [Tur]. Utilizing T-Spline plugin for Rhino [165],the CAD surface
is transformed to T-Splines surface. By extracting a Bezier mesh, an analysis of the
bumper is performed in MSolve platform [MSo]. Details of the bumper boundary
conditions and 6.7a and Table 6.2, respectively. A front view of the bumper is given in
Figure 6.7. The right edge of the bumper is considered clamped, while loading of 100
KN is applied at the Control Points of the left edge. The deformed bumper configuration
is given in Figure 6.7b for an isotropic material with E=4 GPa modulus of elasticity and
Poisson’s ratio v = 0.4.

Assuming that the bumper is made of a polymer matrix reinforced with CNTs, the
multiscale analysis described in the previous section is applied. In this context, a
cubic RVE with dimensions of 100x100x100 nm is constructed using the RVE generator
of Section 6.2.4. The RVE is comprised of a poly-ether-ether-ketone (PEEK) [109]
matrix with Young’s modulus E=4 GPa and Poisson’s ratio v = 0.4. The matrix is
reinforced with (8,8) armchair CNTs that are modelled as beam elements [137](Figure
6.8) embedded in the surrounding matrix assuming fully bonded interfacial conditions,
as described in Section 6.2.4.

Both matrix and CNTs are considered linear elastic. The matrix is discretized

with 1000 hexahedral elements, while the CNTs are modelled utilizing Equivalent
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(a) Car bumper boundary conditions.

(b) Car bumper deformed configuration for unreinforced polymer
material.

Figure 6.7: Histograms for the vertical displacements of monitor Control Point C.

Beam Elements (EBE). The EBEs are extracted from detailed Molecular Structural
Mechanics (MSM) models of the CNTs [137]. As shown in Figure 6.8, a CNT portion is
modelled as a space frame lattice according to the MSM formulation and then projected
to an equivalent surrogate beam model with much lower degrees of freedom. The full
CNT is then modeleed as a series of EBE elements. Table 6.1 presents the mechanical
properties of the EBEs that are extracted with the MSM approach for a CNT (8,8). A

detailed description of this surrogate modelling procedure can be found in [137, 157].

Since nanotubes are in theory indefinately long cylinders organized in hexagonal lattice
form, the notation (m,n) serves to define the atoms positioning on the circumference of
the nanotube. In literature, the term (m,m) refers to armchair type nanotubes, whose
paths are defined by two consecutive 60° left turns, followed by two 60° right turns
repeated every four steps. Figure 6.9 provides an example of a graphene sheet that will
serve as the cylindrical development of a CNT. The vectors ¢y, co depicted are considered
the unit vectors based on a unit cell hexagon of the lattice. By combining m unit cells

along ¢y direction and n along co direction a (m,n) type nanotube is generated.
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Model

Control Points 23312
Bezier Elements 24664
Degrees of freedom 69936

Table 6.2: Details of the T-Spline model discretization.

Figure 6.8: Schematic CNT representation a) MSM model of the CNT b) Beam element with
equivalent propoerties to the detailed CNT model

A sensitivity analysis is initially performed to determine the sensitivity of the bumpers
response to the CNTs VF. To this purpose, 10 RVEs are constructed with varying
VF's in the range between 2.5-10%. The RVE matrix geometry is considered constant
throughout the structure, while the CNTs are placed unidirectionally parallel to the X
axis of the mesoscale model (see Figure 6.4) in the first subcase and randomly oriented
in the second subcase (see Figure 6.10). The longitudinal direction coincides with a;
local element axis as shown in Figure 6.1. Their position in the YZ plane is determined
by the random RVE generator as described in section 6.2.4, with the coordinates Y4 and

Z 4 modeled with two uniformly distributed and uncorrelated random variables as

Y4 ~ U(0,100nm) (6.36a)
Z4 ~ U(0,100nm) (6.36b)

Figure 6.11, presents the results of the aforementioned sensititvity analysis. The
horizontal axis represents the VF of the inclusions, while the vertical provides a measure
of the stiffness increase of the structure expressed as a normalized displacement. This
displacement is defined as the ratio of the maximum bumper displacement of the CNT
reinforced bumper to the maximum displacement for the unreinforced bumper, at the

same monitoring degree of freedom:
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Figure 6.9: Graphene sheet honeycomb structure.

U (%) = —CNTmas_ (6.37)
UMatrizmas

As observed in Figure 6.37, the minimum volume fraction of 2.5% results in a maximum
displacement U 0.55, that is approximately 55% of the corresponding displacement of
the bumper with neat PEEK material. This reduction can reach a maximum U=30% in
the case of 10% CNT volume fraction randomly dispersed in the matrix, revealing a70%
stiffness increase of the bumper. In addition, it can be observed that the variation of
U as a function of the weight fraction is nonlinear reaching towards a plateau beyond
which the increase of stiffness for weight fractions larger than 10% becomes negligible.
Inspection of the curves for longitudinal and randomly oriented CNT's presented in Figure
6.11, immediately emphasizes the importance of the proposed material microstructure
modelling in revealing the sensitivity of the macroscale response to microstructural
parameters. A significant stiffness increase is observed for the case of longitudinal
CNTs. For example, for a stiffness increase of 50% with respect to the unreinforced
material illustrated with a dashed line in Figure 6.11, a 3% VF of longitudinal CNTs
is required, while the same increase is achieved with a 7% VF of randomly oriented
CNTs This indicates that the CNT inclusions of a polymer matrix can be reduced up to
57% while meeting the desired stiffness requirements. In a similar fashion, for a given
CNT VF of 4.3%, a 58% stiffness increase is observed for the case of longitudinal CNTs
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Figure 6.10: Randomly distributed CNTs.

compared to 40% in case of the random oriented CNTSs, as indicated by the dotted lines
of Figure 6.11. This translates to a 31% deviation between the two cases, showcasing
the importance of the detailed microstructure modelling. As a result, it is observed that
the proposed nested IGA-FEM scheme, can quantitatively assess the influence of the
material micrstructure to the final structural response, while at the same time providing

crucial insight for the design of advanced composite materials.

The random RVE generator is utilized next, to introduce spatial and through thickness
variability to the RVEs. Four cases for the reinforcement of the bumper are examined.
In the first two cases, unidirectional CNTs are assummed parallel to the axis X of
the mesoscale model(Figure 6.4), uniformly distributed inside the matrix according
to eq. 6.36. For the latter two cases, the embedded CNTs have random orientations
(Figure 6.10) given by eq. 6.26. In both cases, a Gaussian band limited white noise is
assumed for the generation of a 3D random field, with two VF subcases of 3.5% and 6%
respectively and a coefficient of variation of 1%. Table6.3, contains the results generated
by 2.500 Monte Carlo simulations for each of the cases described above, while Figure 6.12

presents their respective histograms.Comparing unidirectional and randomly oriented
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Figure 6.11: Impact of CNT volume fraction to the maximum deflection of the car bumper

CNTs for their two equivalent volume fraction cases, it can be observed that the random
orientation of the CNTs has more impact on the performance of the bumper as indicated
by the maximum displacement ratio which is significantly lower for the case of randomly
oriented CNTs. Specifically, for the 3.5% volume fraction the mean ratio of 50% stiffness
augmentation for the aligned CNTs is reduced to 35% for the randomly oriented and
similarly for the 6% volume fraction case, the 60% stiffness increase is reduced to 46%. In
both cases the impact of random orientation gives a compelling 25-30% reduced stiffness
compared to the corresponding unidirectional positioning of the inclusions. From Figure
6.11 it can be seen that the stiffness of the nanocomposites exhibits a significant increase
for CNT volume fractions ranging between 2.5-9%. In addition, the rate of the stiffness
increase is slowing down for higher CNT volume fraction exhibiting a plateau behavior
in which the stiffness increase becomes insignificant.

As in the previous example, inspection of the results immediately indicates the
importance of the detailed multiscale modelling proposed in this study. As indicated in
the examples considered, the modelling of the micromechanics can severely affect the
constitutive response of the material, therefore the accurate description of the materials

microstructure, as addressed by the proposed approach, becomes crucial. The inclusion’s
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% Reduction Lognitudinal =~ Lognitudinal =~ Random Random
orientation orientation
CNTs 3.5% CNTs 6% CNTs 3.5% CNTs 6%
VF VF VF VF
Mean value 50.98% 60.53% 35.16% 46.44%
Standard 7.36% 3.55% 7.58% 7.04%
Deviation

Table 6.3: Results for two volume fraction cases, for longitudinal and randomly oriented CNTs

volume fraction effect on the final material performance follows a non-linear law (Figure
6.11), while the randomness of the inclusion directionality can reduce the overall material
performance up to 30%. The sensitivity of material and structural performance to
the parameters assumed for the micromechanics modelling emphasizes the necessity of
utilizing approaches like the one proposed in this work, for the accurate modeling of

shell composites.

6.3.4 PARALLEL COMPUTER IMPLEMENTATION

Since both the nested IGA-FEM semi-concurrent multiscale analysis and the Monte
Carlo simulations require extensive computational workload, the developed code is
parallelized with the aid the High performance computing (HPC) oriented platform
MSolve[MSo] which implements the Task Parallel Library (TPL)[110] and MPLNET
[Mpi] ,which are the equivalents to the OpenMP[52] and MPI[White| frameworks for the
C# programming language. The parallelization procedure is illustrated schematically
in Figure 6.13 and is performed in two phases. Phase 1 includes the generation of the
random RVE geometries, of multitude n for each macroscale model and the off-line
computation of their equivalent properties. In this phase each computing node of the
MPI environment is assigned to a number of RVE geometries. This number is equal
to the independent integration points of the macroscale model. Then, finite element
analyses are performed independently for each RVE utilizing the cores of the computing
node in a shared memory computing environment. As a result, a collection of constitutive

responses, linked to a specific RVE is created in each MPI node.

189



0.

Probability

o
o
o

Probability

15

=4

03 035 04 045 05 055 06 065 07 075 08
Displacement (%)

(a) Unidirectional CNTs with 3.5% mean
volume fraction

0.18

0.14

0.12

4
o

e
(=3
=3

e
=3
(=]

=}
=)
=

0.02

04 045 05 055 06 065 07 075 08 085 09
Displacement (%)

(c) Random oriented CNTs with 3.5% mean
volume fraction

Probability

0.3 0.35 0.5 0.55

04 045
Displacement (%)

(b) Unidirectional CNTs with 6% mean volume

Probability

fraction

0
035 04 045 05 055 06 065 07 075 08 085
Displacement (%)

(d) Random oriented CNTs with 6% mean

volume fraction

Figure 6.12: Histogram for the displacement reduction vs its probability of occurence.

Core #1

Core #N_

Macro
CO re #1 model
1




Following the generation of the required multitude of RVEs, a second parallelization
phase (Phase 2) is implemented for the Monte Carlo simulations of m macroscale models.
In this Phase a different mesoscale RVE model is assigned to each of the thickness
integration points for each macroscale model generated by MCS and the corresponding
constitutive matrix is retrieved from the formerly generated collection without additional
calculation. The FEM analyses of the macroscale models are also independent and are
performed in an embarrassingly parallel way as well. Specifically, each MPI computing
node is assigned to macroscale models in which their corresponding RVEs are already
computed in the node. As a result, there is no need for communication between the

nodes to retrieve RVE data, thus maximizing the parallelization performance.

Analysis Degrees of Monte Sequential ~ Parallel Parallel

time freedom Carlo time (6 cores) (36 cores)
Simulations time time

Cylindrical 1.083 20.000 363min 64min 11min

shell

Bumper 69.936 2.500 6.325min 1.351min 226min

Table 6.4: Comparison of sequential and parallel stochastic analysis times.

Table 6.4 shows the discretized degrees of freedom of the macroscale level shell models,
the number of Monte Carlo simulations and the corresponding computing times required
for examples 2 and 3 in both sequential and parallel computing implementations. The
CPU used in in the single CPU case is an i7-980x with 6 cores. Specifically, the sequential
time of 363 minutes is reduced to 96 minutes resulting in a speedup of 5.67 times, in
the case of 20.000 Monte Carlo simulations of the cylindrical shell. Similarly, for 2.500
simulations of the CNT reinforced bumper, the sequential time is 6.325 minutes is reduced
in the parallel implementation to 2.027 minutes resulting in a 4.68 times speedup. It
is observed that for the bumper model the speedup is reduced compared to the linear
speed up of the cylindrical shell example. This is attributed to the increased memory
requirements of the bumper model, that do not allow for the full utilization of the CPU
cores. In order to study the scalability of the proposed parallel implementation, both
examples are computed on a cluster consisting of 6 computing nodes, containing a 6
core i7-980x processor each. For the cylindrical shell test case, the sequential time of

363 minutes is further reduced to 11 minutes thus achieving a 33 times faster execution.
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Similarly, for the car bumper case, the sequential time of 6.325 minutes is reduced to
226 minutes achieving a 28 times faster execution of the MCS simulations. It is observed
that in both the single node and multi-node cases the parallelization scheme yields a
close to linear speedup and thus significantly reduces the required execution time to

tractable computational timeframes.
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Summary - Innovation of thesis

This thesis presented a numerical framework that addresses the efficient implementation
of isogeometric method in real-scale mechanical applications. With the main focus
being on the introduction of efficient solution schemes, existing state-of-the-art solution
schemes were investigated and efficient alternatives were introduced that alleviate the
computational cost for the solution of the resulting linear systems in both symmetric
and non-symmetric cases.

Specifically, a family of solution algorithms was proposed for the purposes of isogeomet-
ric Galerkin methods that exploit the advantages of an iterative solution scheme coupled
with domain decomposition methods. Due to the enhanced continuity introduced by
CAD shape functions, a considerable increase in the bandwidth and population of the
resulting matrices is observed. This introduced a significant computational overhead
to existing DDM. Especially, in the case of isogeometric tearing and interconnecting
method (IETT), its main deficit is that the subdivisioning is geometry dependent, thus
producing patches of irregular shape and size. Hence, IETI is rendered inefficient in
terms of performance, as load balancing is impaired due to the irregularities of the
patches. To address these shortcomings, two IETI variants are examined in this work,
namely multi-patch IETI, called IETI-P and overlapping IETI, called IETI-O and a
non-overlapping version PCG-IETI-N, where in all cases subdivisioning is independent of

the patch structure, thus enabling large-scale computations. IETI-P version is basically
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the IETI method, with the introduction of an appropriate number of patches that
ensure proper load balancing of the resulting subdomains. IETI-O on the other hand
proposes a way to subdivide the model, without requiring the subdomains to match
the patches, at the expense of up 40% larger interface problems. This has a negative
effect on the solution performance, yet exhibits improved performance when compared
to IETI-P. Finally, the PCG-IETI-N method, exploits a non-overlapping decomposition
of the domain in order to introduce a strong and scalable preconditioner for the PCG
iterative solution scheme. This is attained by introducing a proper non-overlapping
decomposition of the domain in the form of truncated shape functions. The process of
shape function truncation introduces a non-overlapping version of the model, that has
identical geometry and features yet properly induced discontinuities. For the solution
of the interface problem among the non-overlapping subdomains, the IETI method is
utilized. Numerical results indicate improvements in terms of both CPU time as well as
iterations, rendering PCG-IETI-N method up to 2,4 times faster compared to its IETI
counterpart. These improvements are expected to be more pronounced as the model

gets larger.

In a similar fashion, the solution of linear systems stemming from isogeometric
collocation problems is addressed. Existing solution schemes are limited to overlapping
implementations of DDM that automatically rendered the solution inefficient due to the
increased interface problem. At the same time, dual domain decomposition schemes such
as IETT method cannot be applied to isogeometric collocations methods, as the duality
of the unknown fields is no longer valid due to the non-symmetric nature of the resulting
matrices. In order to alleviate the aforementioned deficiencies, a non-overlapping domain
decomposition method was introduced as an efficient and scalable preconditioner to
the GMRES solver. This was achieved by a partitioning of the initial stiffness matrix
into multiple subdomains. Compared to its overlapping competitors and namely the
overlapping Additive Schwarz method, the proposed solution scheme indicated superior
performance in terms of both iteration count and CPU time with an up to 5x times

faster execution being attained.

Finally, the efficient implementation of isogeometric shells structures is addressed under
the prism of semi-concurrent multiscale material modelling. Existing isogeometric thin
shell formulations, employing Kirchhoff-Love shell theory, are extended to incorporate
detailed modelling of advanced composites. A nested IGA-FEM multiscale analysis

scheme is proposed, in which IGA is used for the discretization of the macroscopic level
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and FEM for the discretization of the corresponding RVE. As a result, the plane stress
material required for the integration of the shell stiffness is derived via a computational
homogenization procedure, thus taking into account the microstructural material topology.
Numerical results, showcase the effect of detailed material modeling to the overall
mechanical performance of the shell structure, as well as the applicability of the proposed

formulation to real life applications
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