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Evyopuoties

Apykd Ba nOgho va gvplotnom tov emPBAETovTo Kadnynt) uov, k. Tpaka
Niko yio v auépLotn (VTto)oTnPELEN KaTd TV SLAPKELD TG EKTOVIIONG TG
opovoag epyaotag. Emtiong 0a n0eha va vy aplotom OAovg Toug KoONyNTES
KO OUUQOLTNTEG OV 0TO UETATTTUYLOKO TTpdypappa "Puotkn kon Texvohoyikeg
Egopuoyeg”. TEAOg Eva akOun UEYOAUTEPO EVYOPLOTMD OTNV UNTEPC VIO, THV
VITOOTHPLEN TG OMOL AUTA TA YPOVLOL.






Abstract

In the present thesis, we investigate the existence of relations between the Yukawa
and the gauge couplings in the context of the minimal Supersymmetric extension of
the Standard Model. At the beginning we demonstrate the Poincaré group and the
corresponding classification of particles and then introduce Supersymmetry as an ex-
tension of the Poincaré algebra and show how can it be realized in a four-dimension
field theory. We proceed with the introduction of the notions of superspace and
superfields in order to construct in a systematic and manifest way supersymmetric
gauge theories. Since Supersymmetry is not an exact symmetry of nature, some pos-
sible ways of how it can be broken are discussed. Having the machinery we need, we
construct the Minimal Supersymmetric Standard Model (MSSM) and explore some
of its phenomenological implications. The renormalization structure of the model is
considered as well. Finally, the method of reduction of couplings is presented which
is used to relate the unrealated free parameters of a given model and then apply it
in the MSSM itself in order to derive a unification of the gauge and the Yukawa
couplings.






Ilepiinynm

S apoboo epyaoia, epEVVOULE TNV TLOAVOTITO CUOYETLOUOV TWV 0TABEPMV
00CevEng Yukawa ko faOULdOG 0TO TAALOLYL TNG VITEPCUUUETPLKNG ETTEKTOUONG

tov Kabiepmuévou Ipotimov. Apyitkd mapovotalovue tnv onddo Poincaré kot

TNV KOTIYOPLOTTOL 0T TOV OOUATIOMY KoL ELOAYOUIE TNV TTEPCUUUETPLO MG
eMEKTOON TNG GlyePpag Poincaré Kou Selyvoupe Tmg WITOPEL VA, TPOyUOTmOEL

o€ (o TeTpadLdotatn Bewpla TedLov. ZuveylLovUIe ELOAYOVTOG TV EVVOLA TOU
superspace kai TV superfields Tnv 0moio XpNoLHOTOLOVUE CUOTNUOTIKG MOTE VO
KOTAOKEVAOOVUE LOVIELQ 0TO. 0TToLeL 1) Y TTEPOVUUETPLA ELval EkONAY. Emimpoobetwg,
£(Oo0V 1] TTEPOUVUUETPLA SEV ELVAL AKPLRNG CUUUETPLO. TNG PUONG, OLENTMOVTAL
TPOTOL TAPOPLOONG TNG. STV OUVEYELD. KOL E£XOVIOG TO OITAPALTNTO VALKO TOU
ypeLalonoote, Kartaokevatovpe to Erdyloto Yrepovpuetpikd Kabiepouevo
[TpoTurto (MSSM) Ko Oewpolie KAITOLEG (PALVOUEVOLOYLKEG TOU CUVETTELEG KOLOMDG
KOLL TV SOUT ETTAVOKOVOVIKOTTOUNONG 7OV £)et. TELOG tapovotaleTol 1 uebodog
EMATTOONG TV TTOPAUETPMV, 1] OTTOLOL Y PN OLULOTTOLELTAL YLOL VO, CVOYETLOEL POLVOUEVLKCL
a.00VSeTEG EAEVOEPES TAPOUUETPOVG TOV EKAOTOTE LOVIEAOU KOLL ETTELTA EQAPUOLETOL
OTNV TEPLTTWOT TOV MSSM (OTE VOl KATAPEPOVPLLE VO EVOTTOLOOVUE TIG 0TUOEPEG
00CevEng Yukawa kot fabuidag.






LAEOLAYPOUU TS EPYAOLOS

STV UETATTUYLOKT, GUTT, EPYAOLA , EOTLALOVIE OTNV KOTAOKELT) TOV EAAyL0TOU
Yrepovpuetprkot Kabiepmuévov IMpotimov, Kabhg Kot Ty e0PEOT GUOYETLONG
uetaEl Twv otabepmv 0vlevEng Paduidog kol Yukawa.

210 KEQPALowo £va, eLlodryovpe Tig onddeg Lorentz kou Poincaré, Bplokovue tnv
AAYEBPO TWV OUASMY CUTMV KO KOATAOKEVALOVUE TLG TETEPAOUEVTG OAOTAONG
OTILVOPLAKEG OVOTTOPOLOTAOELG KOOMDS KL TLG OTTELPOSLAOTATES OLVOITOPAOTAOELG

TWV LOVOOOUATIOLAKMV KATAOTAOEMV.

310 KEPALOLO dV0, ELOAYOUUE TNV VITEPOUUUETPLO. OITO L0 OULASOOEWPLTLKY)
TPOOCEYYLOT PPLOKOVIOG TV VITEPCUUUETPLKT GAYERPO G ULOL ETTEKTAON TG
onadog Poincaré kai Bplokovtag TG QUaleg avoTapaoTAoELs TG,

210 KEQAAOLO TPLML, KOTAOKEVATOVUE ULat TETPASLACTOTY OEmPlo TESLOV AToTEAOVIEVT]
a7t EVOL OTILVOPLAKO Kait £VaL BaOU®TO TESLO KOl ELOGYOVTOG VITEPOUUUETPLKOVG
UETALOYNUOTLOUOVG TWV TTESLWV OELYVOUUE TNV OVOALOLDTNTO TNG dPAONG KATM

AT TOUG UETAOYNUATLOUOVG GUTOVG. ZTHV GUVEYELD SELYVOUUE TL TPOTOTTOLNOELG
TPETEL VOL YLVOUY (DOTE 1) VITEPOVUUETPLA VO Statnpettal kKou KRavtikd. 'Emerta
ETOVOLOUPAVOUUE TNV LOLA. SLASLKAOLOL YLOL EVOL IOVTELO TO GLITOLO OUTOTEAELTAL

Ao €va. SLaVUOoUOTLKO TTESLO KaL £va QepOVIKO mtedlo. TElog Kavouue, €K

VEOU, TNV SLASLKAOLA QLUTY £XOVTOG MAPBEL VITOPYLY Kol SLAPOPOV ELOMV OMNAETLOPAOELG
KOLL YLVETOL 0VOLPOPA 0TIV EVVOLO. TOV superpotential.

210 KEQAALO TEGOEPW, ELoGryouue TV £VVOLOL TOU SUpErspace mg oL ETTEKTAON

TOV 0VVNOOUG YWPOYXPOVOU UE THV TTPOTONKT AVTLUETATIOEUEVWV GUVTETAYUEVMV
KaBwg KoL v €vvola tou superfield, wg pa YeEViKevon tov edlov, To 0TToLo

gLVOL OUVAPTNON TV OUVTETAYUEVMV TOV superspace. Ermiong detyvovue g
£QOPUOCETAL O SLAPOPLKOG MOYLOIOG GTOV SUPETrspace, BPLOKOVILE TV VATAPAOTOON
TWV YEVVITOPOV TG VITEPCUUUETPLOG UE SLOPOPLKOVG TEAEOTEG KL OTL T VITEPCUUUETPLAL,
OUOLOOTIKG, EKONAMVETOL WG UETAOEDN OTOV YMDPO CVTOV. XPNOLUOTOLDVTOG

TOL EPYOLELOL CUTAL TTAPOVOLALOVUE TG KATUOKEVALOVTOL VITEPOVUUETPLKES OEWPLEG
BabuLdag, 1600 0TV afeMoV 000 KoL OTNV (1] ABEALAVI TEPLITTMON KO 0LpoD
dMOOVUE KATTOL BAOLK OTOLYELS. OAOKANPWONG 0€ HeTafANTEG Grassmann QTLOYOVUE
VITEPOVUUETPLKEG OPATELG,

To KEQPALOLO TEVTE , AVAPEPETOL OTO OTLAOLUO TNG VITEPUOVUETPLOG. APYLKAL



TOPOVOLATOVUE KATTOLES LOLOTNTEG TTOV TIPETTEL VO, EXEL 1] KATAOTAON TOU KEVOU

0€ VITEPOVUUETPLKEG Bempleg ko amodetkviouue to Oempnua Goldstone. Ztnv
OVVEYELOL UEAETAUE VO LOVTELTL YLOL TO VOOPUNTO OTTACLUO TG VTTEPCUUUETPLOG

KOL GpOU ETTLYELPNUATOAOYLOOUUE OTL SEV UTOPOUV Vo BPolv EQaApUOYH 0TO
vrtepouppetptko Kabiepwuévo Ipdturmo, avagmepoue TO TmgG UWTOPOUUE VOL EYOVUE
PNTO OITAOLO XWPLS, OUMG, VO ETNPEATEL TNV KAM] CUUTEPLPOPD. TTOV EYOVV
TETOLEG DEWplEC.

210 Ke@QaAoo £EL, £Y0VTaG, TAEOV, OML TO EPYOLEL 0TIV SLAOEDT Lag Bplokovue

T0 cOUOTLOLAKO TTEPLeOuevo tov Eddytoto Yrepovuuetpikot Kabiepmuévou
IMpotimov (MSSM), elodryovue to. ovtolotoryo superfields kol ypagouvue v
Lagrangian Tov LOVTELOV TOGO YLO. T TTEDLOL KO TLG AANAETLO poELg Padutdag

000 K yLaL To superpotential KaOdg Ko Toug Opovg Tov apopovv To pNTO GITLACLUO
TNG VTTEPOVUUETPLAG. STV CUVEYELX VITOAOYLLOUUE TO BaBumTd duvauko g
DemPLAG KO KATAM]YOVTAG OTLG CUVONKEG DOTE VOL £XOVUE 0VOOPUNTO OTTAOLUO

™G NAeKTPAOOEVONG CUIUETPLOG KOL BPLOKOVUE OTL QT TAEOV OTTAEL AOYW

TOV KRaviikomv dtopdmoemv. TENOG VITOLOYLLOVIE TO (PACUO TTOV OPOPA T
media Higgs ka0dg Kat g ovtiotoryeg ovlenEelg Yukawa Tav OUSETEPWV TESLWV

UE TOL COUOTIOL0L TG TPLTNG YEVLAG PEPULOVIMV KOLL SELYVOUUE TTMG SLOLPOPOTTOLOVVTOL
ot oyeon pe to Kabiepougevo IMpotumo.

210 KEQAAO EQTA, Tapovotdlovue To Non-renormalization theorem, £vo onuUavTiKo
DedPN O VLA TLG VTTEPCUUUETPLKEG DEWPLEG, TO OTTOLO VITOSELKVUEL OTL OL OLTTELPLOUOL
TOV TOPAUETPOV TG DEWPLOG TPOEPYOVTOL OITTOKAELOTIKA KOL (IOVO OTTO TLG
0TAOEPES ETOVOKAVOVIKOTTOLONG TWV KUIOTOOUVOPTNOEWYV. AUTO £)EL O AITOTELECUOL
T0 superpotential vo. glvau tree-level exact, kKo €101 VoL TLOEVTOL TEPLOPLOUOL 0TV
HOP@N TWV B-ouvaptnosmy Tmv otadepdv Babuidag oL omoleg Oa elvar ouVOVAOUOG
TOV OVOUOADV SLOOTACEWV. ALVOULE, OKOWY TLG B-OUVAPTNOELS YLOL TG AOLOOTOTEG
TOPOUETPOVG KL TAPOVOLAZOVUE OTL 0T TACLOLO, TOV MSSM, emituyyavetol
£VOTTOLN 0N TOV 0T00EPOV Baduidog.

210 KEQAAO OYTM, eL0AYETOL 1] LEOOOOG EMATTWONG TWV TUPAUETPWV YLO,
ETUVAKOVOVLKOTTOLNOLUEG DEMPLEG KOLL TTEPLYPAPOVTOL KATTOLOL YEVIKA Y ALPOKTHPLOTIKAL.
H ug00dog aut), ¥p1OLUOTTOLELTOL YLOL VO BPLOKOVUE OYE0ELG HETAED TV eEleVBEPWV
TOPOUETPMV TOV HOVIEAOU TTOU ELVOLL AVAALOLMTEG KATW OLTTO THV OULAS 0L ETTOVOKAVOVLKOTTLNON|G.
Me auTtOV TpOTT0, WTOPOVLLE VO GUOYETIOOVUE (POLVOUEVLK( ALOVVOETEG TAPAUETPOVG
KOL OUTO ETUTUYYAVETOL EITE VO, OVOYETLOOVUE OLEG TLG TOPAUETPOVS UETUED
TOUG, 1M UEPOVG avTmV. TENOG YiveTow epapuoyn Thg uebodov ovtng oto MSSM
wote vo. ouvdgoovue TG Yukawa oulelEelg ue tig ovlevEelg fabudag Kat pe
QUTOV TOV TPOTTO VOL ETLTUYOVUE EVOTTOLNOT] CUTWDV.



Introduction and motivation

Standard Model describes three out of four of the fundamental interactions among
elementary particles (electromagnetic, strong and weak). The typical scale of the
model is

and is remarkably tested up to such energies. At high energies, as high as the Planck
scale Mp; gravity becomes comparable with the other forces, and at this point we
need a quantum theory of gravity. Actually, the fact that Mp; /Mgy >> 1 signals
for new physics at a much lower scale. To see this, we consider the Standard Model
Higgs potential

V(H) = 2[H[* + N H[* 2

where ;2 < 0.
Experimentally, the minimum of this potential is

(H) = \/— 122\ ~ 174GeV 3)

which implies that the bare mass of the Higgs particle is m3, = —u? ~ (100GeV?2.
But this mass receives enormous radiative corrections. The coupling of the Higgs
particle with a Standard Model fermion is —\¢H f f and this induces a one-loop
correction to the Higgs mass as

Az~ =NiAGy 4)

The Ay is an ultraviolet momentum cut-off and it should be interpreted as the
energy scale where new physics enters. This cut-off should then be around the 7'eV’
scale in order to protect the Higgs mass from receiving high corrections and thus
Standard Model would be seen as an effective theory valid at energies £ < A ~ TeV
No matter what new physics shows up at high energy, the natural mass of the Higgs
field would always be of O(A) (the UV- cut-off of the theory) which is generally
the Planck scale. Thus we would need a huge fine-tuning to stabilize the mass at
~ 100GeV. This is known as the Hierarchy problem: the experimental value of the
Higgs mass is unnaturally smaller the its theoritical predicted.



A way out of this lies in the fact that the scalar couplings provide one-loop correction
with an opposite sign with respect to the fermions. Thus supposed that their exist
a new scalar S with Higgs coupling —\g| H |2|S ?, then the correction to the Higgs
mass would be

Therefore, if the new physics is such that each quark and lepton of the Standard
Model were accompanied by two complex scalars such that Ag = |\, ]2, then all A2
contributions would automatically cancel and the Higgs mass would be stabilized at
its tree-level value.

A naturally way to have such cancelation is by imposing a symmetry that protects the
mass m?% and relates the boson with fermions. Such symmetry is called Supersymmetry.
Thus the first to do is to incomporate supersymmetry into the Standard Model. How-
ever, known fermions and bosons cannot be partner of each other and so we must ex-
tend the Standard model by double each particle and form the Minimal Supersymetric
StandardM odel, where all particles will be accompanied with their supersymmet-
ric partners (sparticles). This model, has over 100 free parameters and thus make
it less predictive. It is ,thus, of interest, to develop a machinery in order to reduce
the number of the free paramaters and thus render the model more predictive. The
so called reduction of couplings method will also help us to relate the gauge and the
Yukawa couplings and thus achieve the Gauge- Yukawa unification which is a natural
extention of the gauge coupling unification in Grand Unified Theories.
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Chapter 1

Lorentz and Poincaré Groups

1.1 Lorentz Group
The Laws of Physics must be invariant under the Lorentz transformations
ot = A a¥ (1.1)
which leave the quadratic form
2? = a'z, = n,ats” = (2°)° — (2)° (1.2)

invariant.
Hence the Lorentz transformations satisfy the condition

nuuAZLA: = Tpr (1.3)

where 7),,,, is the metric tensor used to lower indices and its inverse n*” is used to
raise indices.Here we adopt the convention

N = diag(+1, -1, -1, —1)
Taking the determinant and the 00-th component of the relation [1.3] we find
(det A)? =1 (1.4)

and A
(A%)? =14 (A, i=1,2,3

hence
(A%)? > 1 (1.5)

10



CHAPTER 1. LORENTZ AND POINCARE GROUPS

The above constraint distinguishes the so-called orthochronous Lorentz transforma-
tions with A%, > 1 from non-orthochronous with A%, < 1.
The matrices (A*,) form the Lorentz Group:

L =0(1,3;R) = {A € GL(4,R)|A"nA = n}
We are particularly interested in the so called proper orthochronous Lorentz Group:

L = SO(1,3;R) = {A € O(1,3;R)|detA = +1,A% > +1} (1.6)

which does not contain time or space reflections.
Close to the identity, a Lorentz transformation can be written as

A =61 4+ Wt (1.7)
and form relation [1.3] we can see that

Uua(f;“p + wup)(&'/a + WVU) = Tpo
= Mo + Wpoo + Wop = Mpo
= Wpoe = —Wo)p (1.8)

where we have discard terms of O(w?). Thus an element of the group has 6 inde-
pendent parameters.

1.2 Poincaré Group

The Lorentz group along with spacetime translations
ot — ot = 2t + ot (1.9)

forms the Poincaré Group (£?) which have 10 independent parameters. The group
also called inhomogenous Lorentz group (/.SO(1, 3))
If we consider two consecutive Poincaré transformations

ZE/ = A117+()[1

2" = N’ + ay

we find
.CE” = AQ(Alxl + Oél) + oy = AQAll' + A2a1 + Q9 (110)

So, writting (A, «) for an element of & we get the composotion rule:

(Ag, 042) O (Al, 041) = (AgAl, AgOél —|— Ozg) (111)

11



CHAPTER 1. LORENTZ AND POINCARE GROUPS

The identinty element od the group is (14x4,0) and the inverse of (A, «) is the
element (A1, —A~'a) such that

(A,a)o (A, —Aa)= (A", —Aa)o (A a) = (AA!, —AAa +a)
— (Lia, 0) (1.12)

The elements of the group can be represented by unitary operators acting on a Hilbert
space

(A,a) = U(A, ) (1.13)
such that
U(AQ,O{Q)U(Al,O[l) = U(AgAl,AQOZl +Oéz) (114)
U A a)=UA"T —Ata) (1.15)
Infinitesimally we can write
U ) =1+ %wngpg — iy, P" (1.16)

where M*?, P* are generators of the Lorentz transformations and spacetime trans-
lations respectively in the corresponding representation.

Next we want to find how the generators transform under a Lorentz transformation.
First we consider:

U N A0 U(N,a"U(A,0) = U (A, 0)UNA, )
=U(A 1 0)UNA, &)
=U(A'NA AL ) (1.17)

where we have used the relations [1.14],[1.15].
For an infinitesimall U (A’ o’), the Left-hand side of equation [1.17] is written:

U=Y(A, 0)U (N, " \U(A,0) = U"H(A, 0)|1 + %w,{WMW —ia/,P*|U(A, 0)

=1+ 2wWU YA, 0)M*™U(A,0) — ia, U~ (A, 0)P*U(A, 0) (1.18)

while the Right-hand side

UANAA ) =1+ = (A—1 'N) e MP” —i(A™1a),P?

— 1+ %(A‘ ) e, A, M7 — i(AY) ol PP

p

= 1+ 2w, A A7 MP7 i AV, PP (1.19)

12



CHAPTER 1. LORENTZ AND POINCARE GROUPS

Thus we obtain
U~ (A, 0)M*™ U(A,0) = A* AV, M (1.20)
U~'(A,0)P*U(A,0) = A* PP (1.21)

Equations [1.20],[1.21] state that M/*” trasforms as a tensor under Lorentz transfor-
mations while P* transforms as 4-vector.

Now we consider infinitesimal Lorentz transformation, thus the Left-hand side be-
comes:

U A, 0)M*™U(A,0) = UA, 0)M*™U(A,0)
_ [1 _ ;wpUM/W:| MM {1 + ;wpaMW]
— M 4 %wpa (27, M| (1.22)
and the Right-hand side:

AP AT MP7 = (00, 4 wh) (8, + W, ) MP
= MM 4 1/ wep MP” + 1Pty MM

=M™ + ;{77“ “wop M 40 M7 4110wy MP7 4 11y, M7 |
— MM 4 ;wpo [nupMmf — MY — YT MM n”PMW} (1.23)
Hence
[ M Mpo} _ _i(nup MYe — 1 MYP — /P MM 4 ® Mup) (1.24)
Following the same proccedure, we deduce from equation [1.21]:
[M/U/7 pp] - (nuppv _ n’/ﬂpﬂ) (1.25)

and also
[PM,P”] =0 (1.26)

Equations [1.24]-[1.26] are the Poincaré algebra.
We can identify

P={P',P? P%}
J= {M23 WEL Ml?}
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which are the momentum, the angular momentum and the boost 3-vector respec-
tively. Computing the commutators we find that

i, Jj] = e

i, K| = i€ K

K, Kj| = —ieindi

i, Py| = e P

] =[] = [1,1] =0

K, P| = iH0,;

:Ki,H] — P, (1.27)

where i, j,k = 1,2, 3, € is the totally antisymmetric tensor with €;53 = 1 and
P° = H the Hamiltonian operator. We note that the boost 3-vector is not con-
served.That is why we do not use the eigenvalues of this operator to label physical
states.

1.3 Representations of the Lorentz Group

In Egs. [1.27], we recognise the SU(2) algebra, which in this case is a subalgebra
as it is embedded in a bigger one. We aslo notice that boost generators transform as
3-vectors.

Looking for a way to simplify the algebra we are studying, we define:

1
JE = i(Jl- + i K;) (1.28)
hence
75| = ey (1.29)
and
7] =0 (1.30)

Thus, we managed to decompose the Lorentz algebra into two independent subal-
gebras and we write
so(1,3) = su(2) & su(2) (1.31)

The decomposition of the algebra, implies that we can construct all the represen-
ations of the Lorentz group in terms of the representations of SU(2). Each irre-
ducible representation of SU(2) is characterized by a half-integer j and act on a

14



CHAPTER 1. LORENTZ AND POINCARE GROUPS

vector space of dimension (2j + 1).It follows that the irreducible representations of
the Lorentz group are characterized by two half-integers ;. , 7 which are the eigen-
values of the two casimir operators J*, J~ of the two su(2)'s. The dimensions of
the representations is given by dim(j.,j-) = (2j+ + 1)(2j- + 1). The following
table describes the main finite-dimensional representations of the Lorentz group:

Representation Dimension Type

0,0) 1 scalar
(1/2,0) 2 left-handed spinor
(0,1/2) 2 right-handed spinor

(1/2,1/2) 4 vector

1.4 Spinorial representation

The (1/2,0) representation acts on a two-dimension, complex object

_ (1
U= ( %) (1.32)

which we call left-handed Weyl spinor and under Lorentz tranformations, it trans-
forms as

Yo — U, = M(A) g (1.33)

where M is a 2 X 2 complex matrix, belonging to the representation (1/2,0).
From the Equations [1.29], [1.30] we can see that complex conjugation swaps the two
su(2) algebras and that the representations (1,/2,0), (0, 1/2) are complex conjugate
to each other. So we adopt the notation

(W) =¥} (1.34)

The dotted spinor is a right-handed Weyl spinor which belong to (0, 1/2) represen-
tation and transform as

ok = vl = M (M) Sy (1.35)

Now we want to write the matrices M, M™* explicitly. A finite element of the Lorentz
group is written

UA) = exp(;wuyJ””) = exp[; (w21J21 + Wi+ wapJ? + wOiJOi)} (1.36)
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introducing the definitions 6; = el-jkwj kand n; = wy; we write
U(A) = eap(i6:]' + in K" (1.37)

Now, we know that Pauli matrices obey the relations in equation [1.30]. After rescal-
ing we have

o; O . Ok
{2, 2]} = e (1.38)
Then we can set J; = %, J;” = 0 for the (1/2,0) representation and J;" = %,

J; = 0 for the (0,1/2) representation. For the boosts we also have: K; = %o, for
(1/2,0) and K; = —%0; for (0,1/2) representation.
Thus the matrices M /2,9), M 0,1/2) can be written as

1
Miy2,0) = €2

Mgja) = €2+ (1.39)
Introducing the matrices
ot = f[a“ "], " = 3[5# "] (1.40)
4 ) Y 4 Y *
where A A
ot =(1,0"), o"=(1,—0") (1.41)

we can see that these matrices obey the commutation relations [1.21] and also
ot = (") (1.42)
we can writte the M matrices as

M(l/Z,O) _ e%wuuouu
Moy = ezm” (1.43)

In order to contstruct invariant products of spinors we have to introduce the anti-
symmetric two-index tensor

o &b . 0 1
6526'8:20'2:<_1 0)
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which are used to raise and lower spinor indices as

wa = €a'31/16, wa - Eaﬁwﬁ
and ‘ . B

Yo = 5597, U = ey
Equation|1.44] imply

ey, = oy eaﬁ‘eM = (1.45)

«

Now we can show that for the matrices in equation [1.43] hold the relations

P (My20)5 e = (M)50)%

P (M) ess = (Mign)% (1.46)
We have
0 1 M11 M12 0 —1 o M22 _M21 _ 17T
(-1 0) <M21 MQQ) (1 o) - <—M12 M, ) =M (147)
The last equality holds because for any invertible 2 x 2 matrix with det(M) = 1 is
true that M~ = adj(M).

Following the same procedure we prove the second part of equation[1.46].
Now we want to find the transformation law of ¢)®. Thus we have

U = (M) = €as (M) €70y
= €y, = 05 (M) ey

= wn/ — (M—1T>nowo (148)
So, the ¥* transform as
wa/ — (M_IT)aﬁl/)/B (149)
same relation holds for 1/1%:
Pie = (MIT)epf (1.50)

We can make invariant products of spinors:

U= 0 = (M) (M) X0 = (M) (M) 0 X
=370 x0 = U (1.51)

17
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similary

W =l = ply (1.52)
Whenever we consider expressions involving more than one spinor we have to re-
member that spinors anticommute.Hence the scalar products are defined as

VX =10 = €PYsxa = —€Pxaths = xaVs = X Vs = x1p (1.53)

and

¢TXT = @DLXM — EQB@DWXTQ — _%BXT%DTB — Eﬁdxqu/]Tﬁ — XTQ@N/B — XWJT
(1.54)
Note that undotted indices are always contracted form upper left to lower right, while
dotted indices are always contracted from lower left to upper right. However this rule
does not apply when raising or lowering indices whith the e-tensor.
The four o, matrices naturally have dotted and undoted indices, thus we have

(0")aa = (1, O'i)aév

(3")% = ePeF(gh) 1y = (1, —0")%@ (1.55)

thus the products involving spinors and o matrices are
Yo'yt = grot 10 ity = glot Py, (1.56)

Now looking at equations [1.34], [1.35], [1.44] we can see that if ¢}, € (1/2,0) then
ioc*ps € (0,1/2). Then, we can define the operation of charge cinjugation on Weyl
spinors as

Vi, = io*yj, (1.57)
So, charge conjugation tranforms al Left-handed Weyl spinor into a right-handed
one. Similary we define

Vi = —io" Vg (1.58)
Iterating the tranformation twice we get the identity
(15)° = (ic*y})° = —io*(io* Y} )* =1 (1.59)

1.5 Dirac and Majorana Spinors

Dirac spinors can be constructed using a left and a right-handed Weyl spinors:

()

18
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Dirac spinors transform as

M 0 Yr,
U U= (1/2,0) 1.61
- ( M(o,l/z) XR ( )

Thus, a Dirac spinor has four complex degrees of freadom and belongs to a reducible
representation of the Lorentz group:

U e (1/2,0)@(0,1/2) (1.62)
the charge conjugated is
c _i0—2¢7%
v = ( io2yt (1.63)

The Majorana spinor is a Dirac spinor in which ¢/;, and ¢z are not independent but

rather 1r = io?3,
_ wL _ wa
Yar = (uﬁwz) B (W) (164

Thus it has the same number of deagres of freadon as the Weyl spinor and also it is
self-conjugate
U, = Uy (1.65)

1.6 Representation of the Poincaré group on one-particle
states

In the previous section, we constructed the finite-dimensional Lorentz representa-
tions, but this representations are not unitary. Now we will construct representations
using as a basis the Hilbert space of one-particle states |p*, s), where s labels all
other quantum numbers. Since the momentum p* is an continuous and unbound
variable, these representations will be infinite-dimensional. A theorem by E. Wigner
[16] states that on this Hilbert space any symmetry transformation can be repre-
sented by unitary operator. Thus these infinite-dimensional representations will be
unitary. The representations are labeled by the eigenvalues of the Casimir operators.
For the operator P? = P, P we have

[P#,Pﬂ =0 (1.66)
and
(M, P2 = [M™, P?| P, + PPn,, [ M", P*]

= —i(n""P" — 0P P*) PP — iP’n, (" P” — 0"’ P)
=0 (1.67)
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Thus P? is a Casimir operator of the Poincaré group.
Now we construct the so-called Pauli-Lubanski vector

1
W, = §€wpchVMpo (1.68)
For this quantity we can see that

1
WP = 2 €y P MP? PV M7 P

- (PYPrMP” — P [ M, P])

2
1 : :
= S PP MO 4 Sypg " PP P? = S€ppon PP
—0 (1.69)
Computing the commutators| P, W, |,[M,,, W,],
we have:
1 oT
[P W] = Seupar [P PPM7]
1 oT
= Seuporin P’ [P7, M|
,i g T T loa
= ieypofnu’YPpO/’ TP — n P )
= 5 (€ P"PT = €0uPPP7) = 0 (1.70)
We define

t 4 loa
I = gew,ng“ M?P

where is a Lorentz invariant quantity:
[M* 1] =0 (1.71)

Next we notice that
W = [1, Pﬂ] (1.72)

In order to see this, we compute
Z’ (07
1, P = g€ase (M M0, P

i

€apns (MP [ MY P!] + [ M, PH| M)

8
1

= o (Caman™ MOPP’ — capoanf MOPY 4 45 MO P 4 /'3, PYM)
1

- Z(EﬂaﬁéMGﬂP‘S + €t g POM™) (1.73)
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from equation [1.25] we can write
M P’ = PP M —i(n* PP — ) (1.74)
the second term when contracting with ¢/, ;5 vanishes. Thus we end up
1, P = ;e"aﬁéP&M’” = W (1.75)
For the commutator [M* TW*] we have
(M we] = [M# (1P|
=L, (PP, M| — [P (M, 1]
_ [_]7 i P — nvppu)}
- i1 - 1.7
= i(n" W — W) (1.76)

Thus W* transforms as a Lorentz vector.
For the squared W2 = W, W* we have

(M W) = e | MPY W[ WP W WP
= i) (n’“W” - n”“W“)W" +iW, (WW” - n””W“)
- z‘(W”W“ — WYWH + WHEWY — W”W“) —0 (1.77)

and also
[P w2 =0 (1.78)

which follows from the equation [1.72]. Thus W? is the second Casimir operator.
The details for the full representation theory of the Poincaré garoup can be found in
Refs [4],[7]. Here, we shall demostrate the main results.

The unitary infinite-dimentional representations can be split into two main cases:

e Massive representations

The states are labelled by the eigenvalue of P? = P,P* = m? > 0 and the eigen-
value of W2,

In the rest frame where P* = (m, 0) the zero-component of IV, vanishes and the
spatial components are

1 , _
W; = §€i0jkP0M]k - %Eijijk (1.79)
defining
1 A
S; = 5el-j,ﬂMﬂc (1.80)
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which is the spin operator we have
W; =mS; (1.81)

and ‘ .
W? = —W,W'=—m?25? (1.82)

thus the eigenvalues of 1¥? are —m?s(s + 1) where s denotes the spin and assumes
values s = 0,1/2,1---.

Hence these representations are labelled by mass and spin and correspond to particles
of rest mass m and spin s. Moreover, since the s3 spin projection can take values
from —s to +s, massive particles fall into multiplets of dimension (2s + 1).

e Massless representations

In this case P2 = W? = 0, but we can choose a frame in which P* = (P°,0,0, P,
In this frame will also hold W* = (W?° 0,0, W) , then from equation [1.69], we
deduce that in any Lorentz frame :

WH = hP" (1.83)
From equation [1.83] we have
we S.P . .

and so the contant of proportionality is the Helicity operator () which take values
A=+s=0+1/2,£1---.
Hence these representations correspond to massless particles with helicity .
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Chapter 2

The Supersymmetry Algebra

2.1 N =1 Supersymmetry

In the 1960s S. Coleman and J. Mandula proved a no-go theorem that showed that in
four-dimension quantum field theories with an internal symmetry group G, the only
way to incoporate the group G transforamtions with Poincaré transformations is a
trivial tensor product of the two groups [1].

PG (2.1)

and so the commutators of the Poincaré generators and the generators of the internal
symmetry group must vanish.

Subsequently, Haag, Lopuszanski and Sohnius proved that a possible extention of
the Poincaré algebra involves the addition of new fermionic generators Q" Q:r-j [2]

Q;, € (1/2,0)
Qi € (0,1/2) (2.2)

and thus they transform as left-handed spinor, and right-handed spinor respectively
under Lorentz algebraand i = 1,2, --- V.

From now on, we shall focus on the N/ = 1 case, therefore the i-index can be
dropped.

We begin by examining the algebra, which is obtained by adding one (), and one
QL generator to the Poincaré algebra.

Since these generators have no explicit spacetime dependence, they are invariant
under spacetime translations

e—iauP“QaeiaMP“ — Qa

e~ Qleln ™ = Ql (2.3)
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CHAPTER 2. THE SUPERSYMMETRY ALGEBRA

After expanding and keeping terms to the first order in c, we find

0.7 =0

QL P =0 (2.4)

Since Q),,Q 4+ transform as spinors under Lorentz group, we have

eféwuuM“”Qae%wwMW _ (Uul,)aﬁQﬁ

e B M Qleren M — (507) Q) (2.5)

Working again to the first order we find

(Qa, M| = (0") Qs

QL. v = @) [Q} (2.6)

Now we want to find te anticommutation relations of QQ,QIX such that the generators
{P*, M" Qa, QL} form a closed algebra.
For the anticommutator of (), (), we make the ansatz

{Qa, Q%) = k(o) MM 2.7)

since the left-hand side commutes with P* and the right-hand side does not, the only
consistent choice would be £ = 0.

Hence
{Qa:Qs} =0 (2.8)
The same argument holds for QT, thus
T otl =
{Ql.Ql} =0 (2.9)

The index structure of the anticommutator of Q, QT implies the ansatz

{Qa, QL) = (") P
Since there is no way of fixing ¢ we set t = 2 and thus we obtain

{Qa, QL} = 2(0") 4P, (2.10)
The relations [2.4], [2.6], [2.8], [2.10] form the N = 1 Superymmetry (SUSY) algebra.
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2.2 Representations of SUSY algebra

In the previous section, we found what relations are obeyed by the generators of the
algebra. Now we want to examine the multiplet in which the particles fall.
Firts we notice that an immidiate result which follows from the relations [2.4] and
[2.6] is

Qo P =0 @.11)
and

[Qa. W?] £ 0 (2.12)

Hence the generator () shifts the spin and so we expect that particles belonging in the
same supersymmetric multiplet (supermultiplet) to be degenerate in mass but have
different spins. We can show that in a supermultiplet the fermionic and bosonic
deegres of freedom are equal.

For this, we consider the operator (—1)"/ such that

(=D |B) = |B) (=1)" |F) = = |F)

where | B),
we have

F’) is a bosonic and fermionic state respectively. Since @ shifts the spin,

(=D™Q =-Q(-1)" (2.13)
For states such that P, # 0 we have

Tr((-1)" Ry :;5adTr[(_1)nf}ggdPu

=T (1)) (Quk + QLQ.) (2.14)
=T (1) Qu@h — (1) Qa2 (2.15)
0 (2.16)

where the trace is over all such states. Thus summing on any finite dimensional
representation with non zero energy we have

Trl(-1)"] =0 (2.17)

which implies that there is an equal number of bosonic and fermionic states. Now
to find the supermulipltes, we will consider the massless case.

In this case we have the frame where P, = (£,0,0, E).

Thus from equation[2.10] we have

[Qu, QL) = 2E(0° + 0%),5 = 4E (é 8) (2.18)
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thus the only non zero generators are (1, (); which satisfy

{@1.Ql} =4E (2.19)
now we can define ;
1 + Qi

= , = 2.20

“E5vE Y TavE (220)

which obey the relations
{a,a} ={al,a'} =0

{a,al} =1 (2.21)

an so can act as creation and annihilation operators respectively.
For a state with helicity A we have

T3P A = X pt, ) (2.22)

So, from equation [2.6] we have

o07] = Yo 0] = 041 - (e

1 1
and similary
1
[oﬁ : Jﬂ = —ioﬂ (2.24)

Hence starting from a state |p*, \) which has helicity ), the state « |p*, A) has he-
licity

Ta(lp, A)) = <aJ3 - o J?’D PN = (A _ ;>a PN (225)

and similary the state o' [p#, \) has helicity A + 3.
Thus to build the representations we start with the state with the lowest helicity

) = 1", A)

such that
al2) =0 (2.26)

and then act with . By the virtue of the relations [2.21]
afal Q) =0 (2.27)
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Thus the whole multiplet consists of the states
P, ) P, A +1/2)
If we add and the CPT-conjugate, we have
p*, £A) P, £(A +1/2))

The massless supermultiplets are summarized in the following table:

Supermultiplet Helicity CPT-conjugate helicity Particle
Chiral 172 -1/2 Quark, lepton, Higgsino
0 0 Squark, slepton,Higgs
Vector 1 -1 Gauge boson
172 -172 Gaugino

27



Chapter 3

Supersymmetric Field Theories

3.1 Free field teory

Up until now we have considered with more abstract group structure of the super-
symmetry. Now we want to examine its realization in four dimensiona field theory.
The first to do this was J. Wess and B. Zumino [3].

We have seen that a supermultiplet contains equal number of bosonic and fermionic
degrees of freedom. Hence the simplest possibillity in constructing a supersymmet-
ric theory, is that the Lagrangian consist of a chiral supermultiplet, that is a Weyl
fermion and a complex scalar field. The simplest supersymmetric theory is a free
theory with action

S = /d4x($scalar + gfermion) (31)
where
Zecalar = 6u¢au¢* (32)
and
gfermion = ubT&#a/ﬂ/J (3.3)

A supersymmetric transformation should turn the boson field ¢ into something in-
volving the fermion field 1),,. The simplest possibility is

5 = e, 5¢* = elyf (3.4)

where €“ is an anti-commuting two-component Weyl spinor,an infinitesimal object
that parametrize the SUSY transformation. Here, we are dealing whith global Su-
persymmetry and that means 0,,e* = 0.

Since the dimensions of the fields are

[¥] = (mass)*?, 9] = (mass)
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then

€] = (mass)™/?

The variation of the scalar Lagrangian according to the transformations [3.4] is

0L scatar = 5(0"¢*) s + 067590
= 0" 0 + ' 0"10,, 0 (3.5)

The change in ), must involve the boson field ¢. Looking at the dimensions, we
have

0he = —i(0"€") 00,0, ol = i(ea™)50,0" (3.6)
and the variation in fermion Lagragian is
6$fermion = Z(5¢T)5M¢ + Z¢T6M5¢
= —ec"5"0,40,0" + YﬁT&”J“eT@,ﬂ,jqb
= +e'19,0"p + epd, 0" ¢ (3.7)

where we have used the fact that
d"0,0"0, = 0,0"
which follows from the identinty
(6"0" + 6"0")’, = 2w s°, (3.8)
Now we notice that
Oy(€0” 50, 0" — epO¢" — 19 p) = e0” 50, 8" — €05 V0,0, — €D, O S"
_ Ewaﬂau(b* _ ET@ﬂwTaM(ﬁ _ GTwTauau(b

The first two terms cancel each other (ignoring the surface term), and also the third
and fifth terms cancel exactly the variation of the scalar Lagrangian in equation [3.5].
Thus we can write

6L fermion = €O 0tb + 1010, — B, (c0” 5D, 0" — e d'¢" — i 9"g)
(3.9)

Hence
08 = [ A'2(6L ermion + 0 Lscator) = 0 (3.10)

and the action reamains invariant under supersymmetric transformations.
But we are not finished in showing that the theory is supersymmetric. We must
also show that the commutator of two succesive supersymmetric transformations
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parametrized by two different spinors €, €5 is another transformation.
We have

(6251 — (5152)(b = (52(61’¢> — (51 (Eglp) = 61(—?:O'M€£a#¢) — 62(—2'0”61(9;@)
— i(e10" €l + €20M€)) D, (3.11)
and
(6261 — 0102)th0 = Ga(—i(0"€])aDu) — 1 (—i(0"€h)a0,0))
= —i(0"€}) 00,020 + i(0"€}) 00,016
= —i(0"e])aOulex)) + (0" e})aOu(e11))

= —i(a“el)a@@“w +i(o" eg)aelaﬂw (3.12)
now using the spinor identity
Xa(&n) = —&alnx) — 1a(x8) (3.13)
for y = o€, & = e, = 0,1 and the identity
oty = —xa"ét (3.14)

the first term of equation [3.12] is written

—i(0"€))qe20,1) = —@[ €20 (0ot t) — au¢a<0#6162>1|
= —i[eza(d&’%/}) — 8,1@/)@(620“6;)}

while the second term becomes

i(a“eg)aq@uw = i{ela(%&%) — @ﬂ/}a(ela“eg)}
and so we obtain

(0201 — 0102)0e = ( — 610“62 + 620“61) Ot + Z€1a€2(7 RO — zemelo ko
(3.15)

The last two terms vanish only on-shell (¢#0,7> = 0) and the other terms are the
same as in the scalar case. The reason for this, is that, off-shell, the spinor has four
degrees of freedom (two complex) while the scalar has only two. Thus supersymme-
try is a symmetry only when classical equations of motion are satisfied. If we want
supersymmetry to hold quantum mechanicaly, we must insert a complex scalar field
F with no kinetic-term:

gau:ciliary =FF (316)

30



CHAPTER 3. SUPERSYMMETRIC FIELD THEORIES

Such fields are called auxiliary , the have dimension [F] = (mass)?, unlike ordinary
scalar fields and the eqquations of motion are

F=F"=0 (3.17)

We let F' to transform as a multiplet of the equations of motion for 1) under SUSY
transformations:

§F = —ie' 10,1, SF* = id,*ote (3.18)

SO
6L pumitiary = —i€ 70,1 +i0,9* Gt e (3.19)

now we shall add an extra term to the transformation law for ¢ in [3.6]
0he = —i(0"€) 08,0 + € F, Sl = i(eo™)50,0" + L F* (3.20)
with these modifications we have
(0201 — 0102) e = i — €10"eh + €20M€] ) Db + i€1a€35"01) — i2n€] 6V D,1)
- ielaeT(}“@#w + iemeI&“@“w
= z( — 610'M€£ + QJ“ED@MEQ (3.21)
Hence, our Lagrangian
L = Licalar + Lfermion + Lousitiary (3.22)
is invariant under SUSY transformations and for each field we have

(8201 — 0105) X = z( — erotel + eza“ei)aux, X = ¢, 0%, F F*
(3.23)
The last relation tell us that the commutator of two supersymmetry transformation
gives us back the derivative of the original field. In the Heisenber picture of quan-
tum mechanics i0,, is the generator of tranlations P ,so equation [3.23] implies the
supersymmetry algebra in equation [2.10].

3.2 Interaction of Chiral Supermultiplets

In the previous section we studied a simple supersymetric free theory. The next step
1s to add interactions.
We begin with a Lagrangian for a collection of chiral supermultiplets, labeled by an
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index 7. Each multiplet contains a complex scalar ¢;, a left-handed Weyl spinor 1);
and a non-propagating complex auxialry field F;. The free Lagrangian is

Lpree = M6, ¢; = inhT'a"); + F*F, (3.24)

The convention, here, is that fields carry lower indices while their conjugates carry
raised indices. We have seen that this Lagrangian is inavariant under SUSY trans-
formations [3.4], [3.18], [3.20].

The most general renormalizable Lagrangian (in the power counting sense) is

1 . . .
Lt = (- G Wiy + WE, + TIFF) + ce. = U (3.25)

where W4 W 2% U are polynomials in the fileds ¢;,¢** with degrees 1,2,0,4 re-
spectively. We must require that .Z},,; is invariant under SUSY transformation by
itself. This automatically implies that the terms U,z*/ must vanish since their su-
persymmetric interactions cannot be canceled by any other term in the Lagrangian
since they will involve terms like €); multiplied by either ¢; or F;.

Thus we are left with

L = (- fW”%zﬁ] +WE) +cc. (3.26)

and we note that W% in symmetric under i < j.
Next we examine the part of the variation of the Lagrangian under SUSY transfor-
mations which contains four spinors

1oWu 16w
0L 4—spinor 1 5 5¢k 6¢sz¢j 2 5¢* 6¢kw wj] tec
16w 16W
= [— 2 o0n (evw) (Wih;) — 2 50 (EWD(%%‘)} +ce. (3.27)
the identinty
Xa(€n) = =£a(én) — N0 (XE) (3.28)
implies that
() (ihg) + (ei) (W590r) + () (Wihy) = 0 (3.29)

then this contribution vanishes if and only if %~ is totally symmetric in 7, j, k. But
there are no such identinty for (ef) %) (wz%) Slnce this term cannot cancel by any
other term, then it must be absent. Thus W cannot contain any ¢** field, so it must
be an holomorphic function in the complex fields ¢y.
So we can write

W4 = MY 4y gy, (3.30)
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where M is the symmetric mass-matrix for fermion fields and y* is a Yukawa
coupling of a scalar ¢, and two fermions 1);, ¢;. It is also convenient to write

g 0w
W = (3.31)
06i06;
where i 1
W = SMYig; + 2y 6idon (3.32)

called the Superpotential. This is not the ordinary scalar potential,but it is, instead
an holomorphic function of the fields phi; which are treated as complex variables.
Next we will examine the part of §.Z that contains derivatives.

5.2, = ( - ;Wijauwiwj 4 W%SFi) Y e
= (iW90,0 00"’ +iW'dpioe’) + c.c. (3.33)
where we used the symmetry of ¢ <+ j and the identity
STU“X — _X5M£T

next we observe that s
s
and the fact that 0. will be a total derivative if

oW1
= 5o, = MY+ gy o (3.34)

So the most general, non-gauge interactions for chiral supermultiplets are determined
by a single holomorphic function of complex scalar fields, the Superpotential W .
We can now, integrate out the auxiliary fields, using the classical equations of motion.
The part of the Lagrangian that contain these fields is

Wi

L DOFF"+W'F,+ W/ F*
leading to the equations of motion
F,=—-W*, F* = —W, (3.35)

So the auxiliary fields are expressed algebraically in terms of the scalar fields. After
integrating them out we obtain

L= 0" ¢F 0,0 + it — ;(wiwiwj + W;M%p“) —W'Wr  (3.36)

J
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The scalar potential of the theory is
V(p,¢*) = WEWr = F* [,
* PR 1 in, % *] Ik 1 * o Jkn xt 1i'n*
= My MY ¢*¢; + §M Y @i 0 + iMmy]k " bidn + 1Y T Yrin
(3.37)
which is automatically bounded from below. Finding the equations of motion
0" = M{ M+ (- )
5 Oyths = Myt + ()
G0t 0T = M, + (--+) (3.38)
where +(- - - ) represents non-linear terms. Multiplying with 0#0,,,0%0,, both sides
the above equations, wee can eliminate v/ in terms of 1" and vice verca. Thus we

obtain ‘ ' ' '
MO, = M, M"p;, OO, It = M MM (3.39)

Hence the fermions and the bosons satisfy the same wave equation wi th exactly the
same squared-mass matrix

(v2), = aar

3.3 Lagrangians for gauge supermultiplets

We will start with a free theory containing a gauge supermultiplet. The propagating
degrees of freedom are a massless gauge boson field A}, and a two component Weyl
fermion, the gaugino, \%. First for simplicity we will consider the abelian U (1) case.
The free Lagrangian is

1 1
L == FuwF" + iINGRON + 5D2 (3.40)

where
F,=0,A,-0A,

and the auxiliary field D satisfies
D =D~

due to the fact that the fermion and the gauge boson have four and three degrees of
freedom off-shell respectively. We will show that the Lagrangian is unvariant under
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the SUSY transformations

SA" = el 4+ Ngte

o\ = ;0“6”6FW + €D

ST = —;eTﬁl’auFW +€D

0D = —i(e'6"9,\ - 9\ 5"e) (3.41)
The variations of the kinetic term of the gauge boson is

1 1 1
5( - 4FWF“”> = JOF, F" — 1 6P

_ _; (F#aﬂmv _ F,Wa”(SA“)
— Fe'a"0"\ — F,,0"\15"¢ (3.42)
The varation of the fermionic part is
S(iINTGHO,N) = i0ATGH O, + iNTGHD, 0N (3.43)
the first term is
i h I\ = z( - ;ea”o—ﬂﬂw 4 z‘eTD> GO (3.44)
Forgettiny the €' D term for now, we have
Liv up =
56 a’o"F,,c"0,\
interchanging p <+ v and make use of antisymmetry of [, we have
lET(FVU’”F a?O,\ = —1€T5'MUV5PF dHA
9 p9 Up 5 nvYp
using the identinty
GhaVaP = nt'aP — ntPGY + ntPat — ic'P gy (3.45)
we get
1 T=p v =p _ 1 T (v 5P Bp v VP _ g vpd =
—5€'0a"s Flo,\ = —5€ (n of —ntfa? +n"Pat —ie ag)Fu,,(?p)\

the first term in the right-hand side vanishes due to the symmetry of " and antisym-
metry of F},, in interchanging 1. <+ v. Also the last term vanishes beacause F),, 0,
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is symmetric under the interchanging of i <+ p while ¢#*° is antisymmetric. Thus
we are left with

1 1 1
—§ET5“0”5”FW8,;)\ = §6T77“”5”FW6,,)\ - §ET77””5“FW(9P>\
= Fe'd"0"\ (3.46)

where in the last equality we interchanged ;o <+ v amd make use the antisymmetry
of F},,. We notice that this term cancels exactly the first term in the varation of
gauge kinetic term in equation [3.42].

Now working with the second term of equation [3.43] we have

iXTG18,6) = il509, (;aﬂzf”eFW 4 eD) (3.47)

forgetting the e D term and following the same proccedure as before we end up with

ixt apap(;a“a”eFW> = F,,0"\5"e (3.48)

This term cancels ecactly the second term of equation [3.42].
Recalling the terms in [3.44] involving the auxiliary fields, we have

ieD5? O\ + iN'50eD = ieD3* O\ — i0,\'6"eD (3.49)
The variation of the auxiliary part of the Lagrangian is

1

1
§5D2 = —(0D)D + 5D(w) = —ieDG"O,\ + i0,\'67eD

1
2
which cancels exactly the terms in equation [3.49].

Thus we have shown that the Lagrangian is invariant under SUSY transformations.
If we were to include gauge interactions, then the Lagrangian would be

&= —iFWFW +iAG DA + ;DQ (3.50)
where the covariant derivative is
D, =0,+1gA, (3.51)
and the transformations of the fields would become
SAM = elgh\ + Nate
o\ = ;U“U”EFW +eD
SAT = —;ETUVJHFW +¢€D

0D = —i(ef6" DX — DyATo"e) (3.52)
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The above transformations are sufficient for the Larangian [3.50] to be invariant
under Supersymmetry.
The generalization to non abelian case is straightforward. The Lagrangian is

1 1
L= FL T+ iA*g" DA + ;DD (3.53)
where
F, =, AL —0,A% + g fabCAgA;
and

Dy =0, +gf™A,

The gauge transorfmation of the vector supermultiplet is

A2 5 A% 4 9, A" + gf e ALA°
)\a N )\a + gfabcAbAc

where A is an infinitesimal gauge transformation an the index a runs over the adjoint
representation of the gauge group. Thus we see that the gaugino A® belong to the
same representation with the gauge boson A7

The SUSY transformations are

1
SAMT = — —(elgh\* + )\T”5“e)
7l
SN = L ghG eFY, D
2v2 V2
oAt = —%ETé'VO'uF:V +€'D
{

oD = - (J&#Dw - DMXF“WG) (3.54)

Under these transformation, the Lagrangian is ineeded invariant.

Wa are, of course, able to include both gauge and chiral supermultiplets and inter-
actions in the Lagrangian. But before we do this, we are going to build a formalism
that is more elegant and help us construct Lagrangians that are manifestly supersym-
metric. That is the notion of Superspace and Superfield.
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Superspace and Superfields

4.1 Supersymmetry in superspace

We can extend ordinary spacetime by introducing four more complex coordinates

6°, 0., a,a=1,2

which are Grassmann coordinates, thus obey the anticommutations relations

{0°,0°} = {0,0,} = {6°,0,} = 0

4.1)

This enhanced space is called superspace and any point in this space have coordinates

X = (2,04, 0L).
We can define derivatives with respect to the Grassmann coordinates:

) p 0

200 2= g

0, =
so that _ .

0,0° =65, oletP =6
then it follows

0
8(165 = %(65797) — 65752 — 6[304 — _eaﬁ

0 .
Tl _
Qﬁﬂ = %(65787T> = _EdB

the derivatives with respect to Grassmann coordinates obey the chain-rule

aa(fg) = (aaf)g + (_1>€(f)f(aag)
OL(fg) = (0Lf)g + (—1)*D f(0lg)
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where

(4.6)

o 0 if fis a Grassmann even
| 1 if fisaGrassmann odd

thus we also have

0a(00) = 0,(0°05) = 0 (€p,0°07) = €5,(5207 — 0°6)) = €007 + €03’ = 20,

aL(0'0") = 26, 4.7)
we can also define the derivatives
0 0
=— ol=_—— 4.8
aea 9 6% ael ( )
thus _
e G L e (4.9)

In order to define translations in superspace, we shall generalize the translation op-
erator ¢ to the supertranslation operator

G(x,0,0") = eliePHi0Q+01QT) (4.10)
The composition of two supertranslations is also a supertranslation:
G(z,0,0M)G(a, &, = G2, 0, 0") (4.11)
using the Baker-Hausdorf formula
eAeB = eAtBH3lA B+~ 4.12)
we have
G(2',0,0") = exp {ixP +iaP +i0Q + itQ + i01QT + T QT
+ ; {imP +i0Q + 0'Q1 iaP +isQ + i Q] + - - } (4.13)

for the commutator, we have
izP +i00 + 0'Qt iaP + itQ + igTQT} . [mp, mp] + [mp, @'gQ]
+ :z'xP, igTQq + {w@,zap}
+ :iGQ,ifQ] + [fiGQ,z{TQT}
+ }’9*@*,@5@} + [@9*@*,1'5@*}

+ oot mp] (4.14)
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the only non-vansishing commutators are

[w@, zf*@*] = —0Q¢'Q" +£1Q10Q = —°Qul QY + ¢1QM0°Q.,
= 6°¢QaQ" + 0°¢L Q" Q.
= QafTB{Qa, Q;}
= 0°¢"20% P = 200" P, (4.15)

and

{iQTQT,ng] — {ig@,i@*@*] — 200t P, (4.16)

the other terms vanish by the virue of equations [2.4], [2.8], [2.9]. So we have

G(2,0,0") = exp {izP + iaP +i0Q + i6Q + i0'Q" + ig'Qt + 60¢' P, — £00" P, |
(4.17)

thus we can identify that under a SUSY transformation, the superspace coordinates
become

0—0+¢
of — of 4 ¢
T — x4 a+i(Ea"0" — horeh) (4.18)

We can now extend the field operator
O(z) = e " (0)e™” (4.19)
to the Superfield operator
S(x,0,0") = G(x,0,0")5(0,0,0)0G*(x, 0,07 (4.20)
Hence, it follows

G(y, 0,008 (x,0,0NG(y,0,00)5(x, 6,07
= S(y+x+i(Eo”0" — ot € + 6,65 + 0 (4.21)

The Left-hand side , after Taylor expanding, becomes

G(y,0,0M)S(x,0,0NG ' (y,0,0") =

14+ i(yP +6Q + eTQT)} 5[1 —i(yP + 00 + QTQT)]
= S(y,0,0") +iy[P. S| + [€Q. S| + [¢!, 5]
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while the Right-hand side is written

Sy + 2z +i(£a"0" — Ootel), €+ 0,61 +01) = S(x,0,07) + [y“ + (€0 — 00r€N) (0,8

+£99,8 + €lotvs
and we can identify
P S| = 0,8
|Qa, S| = i€ (00 + i(0"60M)a) S
QL. S| = —i(9L — i(60™)s )& S (4.22)
and we can introduce the differential operators
P, = —id,
Qo = —i0y + (0701,
QL —idl — (00")4 (4.23)

which are the SUSY generators in the superspace representation.
Thus the action of an infnitesimal SUSY transformations on a superfiled is given by

5.5(x,0,07) = i(eQ + Q) S (x, 0,07 (4.24)

And hence, supersymmetry can be realized as a translation in superspace.

4.2 Expansion of the Superfield

Any Superfield can be Taylor expanded in powers of # and 6, where the coefficients
will be functions of 2 and can be interpreted as ordinary fields. Since # and 67 are
anticommuting numbers , the expansion series must terminate after a finite number
of terms. Products of the form

(61)* = (62)* = (61)° + (65)> = 0 (4.25)
whereas products of the form 6,05 do not vanish, but rather
1
6°9° = —ieaﬁee

Qaeg = ;EQBQQ

1
ol — .
0L0% = —Seapte"

. : 1 .
gtegtP = 560“59*9* (4.26)
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Thus a general, complex Superfield can be expanding as

S(x,0,0") = a+06+0'x"+00b+0"0Tc+016"0u, + 070100+ 0001 (T +000701d
4.27)

where a, b, ¢, u,, d are complex bosonic fields and &, x, 7, ( are anticommuting

two-component fermionic fields. The transformation of the Superfield is

5.5(x,0,0") = i(eQ + 'Q") S (x, 6, 61)
= ("0 + €L0™ + ilea”0" + €'570]) S (4.28)
The right-hand side is written
(€200 + ehot + i[ec™0t + €50]) S = €& + 2€0b + 075" eu,, + (en)0'0" + 26001¢T
+2(e0)(0707)d + €' €T + 26707 + el 7 Ou,, + 2(0n)€ 01
+ €1¢T(00) + 2(00)et0td + iea0'(00)610,¢1
+ iea”010,a + iea"01(010,£7) + ieat01000,b
+iea"01075"00,m,, + iea"0100,& + ic'5"00,a
+i'6"000,& + ic'a"0010,x" + i 5067670,c
+ie'a"00'5"00,u, + ie'a"00700,n
= el +€let 4+ 67 {2%6 — (0" qu, — i(a“eT)cﬁua} +61 [26““0 —i(c"€)*Oua + (6”e)duu}
+ (09) [efgf - ;e*aﬁa,g} + (0701 {677 - ;eauauxq + (69)6" {zdefd + ety - i(&“e)‘i@ub]
+ 6T [2dea — eadu, — i(a“e)oﬁuc] 1 (0707)(09) B&una”eT _ ;eaﬂaugﬂ
+ 6750 [EU“CT —elgtn — ;eal’a“&,xq
where the identities in [A] had been used extensively. The left-hand side is

0S = (6a+056+015xT+0065b4-0105c+-015+05u,+0T0T06n+00075¢ 0007015 d)
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and thus, we can obtain the trasformations of the component fields

da = e + €€l

06a = 2640 — ("€ qu, — i(0"€")n0,a

ox' = 2¢'%c + (u, — i0,a

b = eCt — %awaug

oc=en— %EO"MaHXT

Sut = ea”(t — €ty — %6”5“&,5 + %e%“a“@wﬁ
Mo = 260d — i(0"€") 00,0 — %(a”&“e)aauuy

6CT% = 2¢%d — i(5"€*0,b + %(5”0“5)6‘8#%,

od = —%56“8#77 — %60“@@

4.3 Chiral Covariant Derivatives

It is clear that for any Superfield:
0e(00S) # 0a(9eS)

(4.29)

(4.30)

and so 0,5 is not a Superfield. We would like to find a derivative that trasform

covariantly uder SUSY transformations.
We define the chiral-covariant derivative

Dy = 0o — i(0"01)00,

and
D* = —Dy = 9* +i(076")°0,

We can define the anti-chiral covariant derivative through
(DoS)* = DsS*
Now we can compute
{Qa:Ds} = {100 — (6"0")a0,, 05 — i(0"0")50, = 0
due to the fact that

9,0, = 0,05} = {0 8} = {60, 05) = 0
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in the same way, we obtain

{QL.Ds} = {Qu. Dy} = {QL.Ds} =0 (4.36)
now we compute
D4 0| S = [Da,ieQ + ie' Q]
= | D, i€Q| S + Do, ic'Q'] S
= (= i"DaQs — i°QsDa ) S + ( — ic; DaQ™ — icl Q1D ) S
= —ie’{Da, Qs }S — z’e;eﬂd{Da, QL}=0 (4.37)

Hence
Da(éeS) = 5€(DQS) (4.38)

and so D,,.S transforms covariantly under SUSY.
We also have

{Da, D} = {00 — i(0"01)a0,, —0), + i(05%)0, |

:MO+ {0ai(00%);0, }

0
+ { _ Z’(O-MQT)aal“ _a;} + { _ i(d“@f » . JV)B&,}
= i0" .0, + 030,
~ 2i0",0, (4.39)

4.4 Chiral Superfields

We have seen that a general Superfield ®(z, 6, 07) contains various boson and fermion
fields.If we want to describe only the chiral superpultiplet, we must impose a cos-
traint. The Superfield, on which we have impose the constraint,

Dy® =0 (4.40)

is called Left-Chiral Superfield. The complex conjugate is called Right-Chiral Superfield

and satisfies
D, P =0 4.41)

In order to solve equation [4.40] we define the variable
Yt = 2" + 0510 (4.42)
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and move to a new set of coordinates on the superspace
y', 6, 6l (4.43)
In the new coordianates, the derivatives are
0 dy’ 0 )
Ol Ok oy - oy
g 06’8 9 oy* 0 0

= = ot 9t 4.44
96° — 00° 0% " oga ogr a6 T Ted? G (444)
and the chiral covariant derivatives become
0 0
D, = — — 2i(c"0"),—
gga 2" )eg o
0 0
DY = ——— +2i(0T5")* —
a0, + 2i(0'a*) oy
i O
a6},
_ 0
Dd - — N 445
o0t (4.45)
Now the constraint in equation [4.40] implies that
O =d(y*,0) (4.46)

Thus the Chiral Superfield is not a function of §7 and can be expanded in power
series

® = ¢(y) + V20U(y) + 00F (y) (4.47)

where v/2 is a matter of convention.
In the same way the complex conjugate is expanded

® = ¢*(y") + V20'0T (") + 010" P (y) (4.48)

where
Y =1 — 640 (4.49)
Acoordig to equation [4.47], the chiral superfield is consist of a complex scalar ¢, a
two-component fermion v and an auxiliary field /', so itdescribes a chiral supermul-
tiplet indeed. Rewritting the component fields in the original coordinates, we must

expand in the powers of 6, 6.
So we have

Bly) = ol +i6"8") = 6(r) + i60010,6 — 10601610,
1

V20¢(x + i00"01) = V20(x) %
00F (x + ifo"0") = HOF (x) (4.50)

000150,
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where we have used the identinties
1 1
0070”0 = 577’“’99@@, 0208 = —5(99)6(1'8

and the fact that
00050, =0

Hence the chiral superfield is written

®(x,0,0") = ¢+ i00"670,¢ — ieee*e*auaw + V20 — \%eeewauw L OOF
4.51)

and the complex conjugate

1 1
d*(2,6,0") = qs*—zeT&“eauqs*—Zeee*e*auaww\/%W—ﬁmmeaﬂamuewp*

(4.52)
comparing with the general Superfield ([4.27]) we can identify the components
a = ¢(z)
X = V2Y(x)
x'=0
b= F(z)
T _L s e’
(== 50" 0)
u, = 10,0
1
d - —Zaua“gb
and obtain the transformation law of these fields from equation [4.29]
de = €
Sethg = —i(o“eT)oﬁu + €0+ F
b = —i€e' 10,1 (4.53)

which are exactly what we found in equations [3.4], [3.18], [3.20].

4.5 Vector Superfield

Now we want to describe the vector supermultiplet, and so we must impose a similar
constraint on the geneneral superfield as in the chiral superfield case.The Superfield
which is obtained by imposing the constraint

V=V (4.54)
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is called Vector Superfield.
Equation [4.54] is equivalent to imposing the following constraints on the component
fields

*

a=a*, Y =€, c=0, u, = uy, (T=nf, d=d* (4.55)

we can define the fields

2’ L
No = )‘a - 5(01 MST>0£
u, = A,
1

d —
2

1
D + Z@ﬁ“a (4.56)
and so the Vector Superfield can be expanded in powers of 6,07
V@ﬁﬁU:a+ﬁ§+mé+ﬂ%+ﬂ@%ﬂ+NW&%+ﬂmw<A—;w&gv
’ 1 1
1 0661 (A* - ;&Maug> 1 0691 (20 + 4auaﬂa> 4.57)

From equation [4.29] we can read off the transformations for the component fields

da = €€ + €'él

66a = 2640 — (%€ 0(A, +i0,0)
§b=€'¢h — ieTﬁ“aﬂg

0A, =1ied"E — i€l OMET + et N1 — elgh A

e = €aD + %(a“&”)a(E?MAV —9,4,)
6D = —iea” I\ — iel 510, \ (4.58)

It is clear that a superfield cannot be both chiral and vector. However if ® is a chiral
superfield, then & + &*, dP*, i(P* — P) are vector superfields.
A vector superfield, that is used to present a gauge supermulitplet contains the gauge
boson A,,, the two-component gaugino )\, and the gauge auxiliary field D as compo-
nents. There are also other component fields that they are present in equation [4.57],
a real scalar a, a two-compontent fermion £ and a complex scalar b. These field can
be eliminate using apropriate transformations.
Suppose that the vector superfield V' describes a U (1) gauge symmetry, and consider
the transformation

V>V 4+i(Qr—-Q) (4.59)
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where €2 is a chiral superfield.
The above transformation is called supergauge transformation. Then the component
fields transform as

a— a+i(¢* — )

ba = o — 1V2a

b—b—1iF

Au — Au +a,u(¢+ Cb*)

Ao = Ao

D— D (4.60)

The above relations show that the supergauge transformation provide the vector bo-
son with the usual U (1) gauge transformation with parameter 2Re(¢).

One has, now, the freedom to choose a particular gauge, called the Wess-Zumino Gauge,
where a, £,, b all vanish. This is achieved by the particular choise

a=—2Im(¢)
goz = i\/§¢a
b=1iF (4.61)

and so the unwanted field has been supergauged away.

Note that we did nto require anything for Re(¢). This freedom in Re(¢) is the ordi-
nary U(1) gauge freedom that is still present in the Wess-Zumino gauge. Hence the
vector superfied is given by

1
Viv Zgauge = 01GH0A, + 0T0TON + 000T\T + 5999*9*0 (4.62)

4.6 Lagrangians in Superspace
We are now turning to the dynamical issue of how to construct manifestly super-

symmetric actions.
First we introduce the integration over the anticommuting Grassmann variables. We

define
/ 6 = / ot = 0, / 0do — / otdot =1 (4.63)

and to integrate over superspace, we define
1
d’0 = _Zeaﬁdeadeﬁ

1 ..
20t = —Zeaﬁdegdeg (4.64)
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Thus the integration of a general superfield picks out the relevant coefficient of the
0 and 0197, In particular

/ 20S(x,0,0") = b(x) + 07CT + 070 d(x)
/ 42015 (x, 0,01 = c(x) + On(x) + 00d(x)
/ 20420"S(x,0,0") = d(z) (4.65)
The Dirac delta functions are
d2DO-0)=0-0)0-0), D0 -0 =" -0 (0o -0 (4.66)
so that
/ d206@ (6)S(x,60,01) = S(x,0,0") = a(z) + 61 + 6 c(z)
/ 42615 (61)S (x, 0,6) = S(x,6,0) = a(x) + 0¢(x) + 60b()
/ d*0d*0'6(0)6®) (0") = S(x,0,0") = S(x,0,0) = d(z) (4.67)
Also the integrals of total derivatives with respect to the Grassmann variables vanish
/dQQ— anything) =0

/d2¢9T anythmg) =0 (4.68)

A key observation for constructing supersymmetric actions is that the integral of any
superfield over all is automatically invariant:

0A=0 (4.69)

for

A= / dz / 2204205 (x, 0, 0") (4.70)

This follows from the fact taht the integration over all Grassmann coordinates pick
out the 0010T component of the superfiled which transform as a total spacetime
derivative and so vanishes upon integration.Hence the action must have contributions
of the form of equation [4.70]. Demanding, also, the reality of the action then S must
be some real vector superfield V.

The Lagrangian is obtained by integrating over the Grassmann coordinates

11
Vie6,60 = /d29d2mv<x 0.00) = 3D+ ;0,0" = [V]p  (@471)

GGOTGT
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which is reffered to as a D-term contribution to the Lagrangian.
Another type of contribution to the action cames from the 66 coefficient of the chiral
field, which is also transform as a total spactime derivative:

? = / 2042076 (91D = F = [], 4.72)

This is called F-term contribution. In general, this term is complex, so we also have
to include its complex conjugate

[@]p +c.c= / d*6d267 [52 (67 + 6 (6)3"] 4.73)

It is usefull to note that the F-term component of a chiral superfield is the same in
the (z*,0,6") and (y*, 0, 01) coordinates in the sense that in both cases one simply
isolate the #6 component.

Now we observe that

DD(00) = DD, (06) = —0%0.(00) = —0%(20,) = —20%0,
= —2(0", + 0%0,) = —4
= D,D*(670") = DD(66") (4.74)

and also
s@ 0" = (67" (4.75)

we can write
1 _ 1 __

Vlp = —= [ d020'vD(0T07) = —= [ d?04%66® ("YDDV + (surface terms
2 4

| —
=3 DDV + surface terms (4.76)

4.7 Chiral Superfields Interactions

We can now consider the products of chiral superfields
DD = @M + V200,06 + V20101 + 006 F; + 010Tp, FF
+ 975“0[@@5* L Pj — i¢jau¢*i B @Z)Ti&u@/}j]
+ 500015 (40,0 = 0,30") + V2000V,
+ 5001 (0,05 — 007 0;) + V201010 1
*i 1 x4 1 4 Y 1 x4
+ 000101 (F* Fy 4+ 0"6" 0,0, — 1070" 0,0, — £6,0" 0,0

4 %@/ﬁi&uamj i %zpjaﬂauw) 4.77)
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which for ¢ = j is a vector superfield and all the fields are functions of (z*) .
Taking the 0076 component we have

[O* D] = / POD*D = 00,6 + eI + F*F 4.78)

where we have omited the surface terms. The above equation is the massless free
Lagrangian for a chiral supermultiplet .

In order to obtain the superpotential inetractions and masses we consider the prod-
ucts

;D) = ¢ip; + V20(1id; + 1) + 00(d:F; + 5 F; — tahy) (4.79)

and

;0B = ih;dn + V20(Vibjdr + ik + Urid;)

+ 00(4i0; Fi + 0ipi Ey + 00k F; — i) — Vithdj — Vjtbid;)
(4.80)

where this time the fields are funtions of y*. In general, any holomprphic function
of chiral superfields is also chiral superfield. In this way we can form the complete
Lagrangian

L = [0%®,]p + ([W(®;)]F + c.c.) (4.81)

where W (®,) is the superpotential, an holomorhic function of chiral superfields (but
not of anti-chiral), treated as complex variables. Choosing the superpotential to be
of the form

1. 1
W(®:) = M, + @2, (4.82)

we retrieve the result of equation [3.32] after expanding in component fields and
integrating out the auxiliary fields, keeping only the scalar fields. It is worth noting
that the F; fields are given by

e _OW(®)

: 5. (4.83)

0=61=0

4.8 Lagrangians for Abelian Gauge Theories

In the previous section, we considered only whith interactions involving scalars and
spinors. Now we will also include and gauge interaction.

Suppose we have a U (1) gauge symmetry, then the vector superfield V' will contain
the gauge boson A,,.

We will define the anticommuting superfields

W, = —iDDDaV (4.84)
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and 1
Wi = —ZDDﬁdV (4.85)

These are chiral and anti-chiral respectively, by construction and they serve as su-
perfield generalizations of the abelian field strengh tensor. These objects are gauge
invariant. To see this, we perform a supergauge transformation

W, =W, — imapa[v Li(QF — Q)
Wy — iDDDaﬂ* + iDDDaQ (4.86)
the third term vanish because 2* is anti-chiral and thus satisfies
D=0 (4.87)
Making use if the fact taht €2 is chiral and satisfies
Ds2 =0 (4.88)
we can write

W, —>iDDDaQ + iDBDaDBQ
=W, + ieﬁ‘ﬁeﬁ.sﬁpﬂ)a&) + iDBDaDBQ
= Wat {D'D;D. + {D'D.D0
=W, + iDB{DB,Da}Q
— W, — ii(aﬂ)aﬁ-ap%
— W, (4.89)

To find how the component fields fit into 1V, we must write the vector superfield in
the Wess-Zumino gauge ([4.62]) and rewrite the component fields in the coordinates

Yy =zt — 0510 (4.90)
using the identity
1
Ot 0T0o 0T = 577‘“’«9«99*9T (4.91)
and the fact that
00050, =0 (4.92)
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we find
1
V(y",0,0") = 61610 A, + 6T6T0N + 0001 A\T + 5909@* (D - z'@#A“) (4.93)
using the chiral covariant derivatives in equation [4.45] we find
DoV = — (0" A, ) + 00N — i(60)(0707) (07 O\ o + 20.(616T) (D - ;OMA">
+ 2i(0”0"),00"070, A, (4.94)
the last term can be written

2i(c” 01001010, A, = —2i(c"0"),015"00, A,
= —2iez50,01a01547%0,0, A,
= —iege*a, 59, A, (01610,
= iegsedt0t 5900, A, (67610
=i(0"5"), 0,A,010705 (4.95)

SO

DoV = — (010" A) o + 20,00 + 070N, — i(06)(0107) (57D, \)a

01016 D + i(0"5") 20,A, — i6°0,A")04 (4.96)
using the relation
(o) = ;{— oo + (053] (4.97)
which follows directly from
(o"")5 + (0¥5™) = 2n 6] (4.98)
and .
(o) = %[0, 0"] (4.99)

we can write the last term

[i(a“&”)f@“/ll, — iégﬁﬂA“] =2(c"") 0, A,
=o"0,A, —o"0,A,
=o"0,A, — 00, A,
=o0,"A, —0"0,A,

— oM F,, (4.100)
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thus
DoV = — (070" AL) o + 20,0\ + 0107\, — i(00)(0707) (67O, \T)a
01011265 D + o F,,, )05 (4.101)
and applying —1DD = —i@g@m we obtain

11—
Waly,0,0") = —EDDDQV = A\o +2D0, + (a“”)wa,Gg — i@ﬁ(a“@uﬂ)a
(4.102)
and in a similar way
Wiy, 0,67) = N +2D6% — e 55" 1) F,, +i010T(9,00")s  (4.103)
where
Yy = 2" + 010 (4.104)
Although we compute W, ,Wj-y in the Wess-Zumino gauge, it must be true in general,
since they are supergauge invariant.
Computing W*W,, we have
W W, =A% 4+ 2D(N0) + Ao? OF,, — i(00) A" O, AT + 2D(\0) + 4D*(60)
+2d(05°70) F,y — i(00) A"\ + 2D OF,,,
+ (0" 70,(0°7) 205 F i F o (4.105)

the last term can be written as

P (0) 70,(077) 05 Fyu Fypa = ¥ (0") 7 (077) 36,05 Fr o
1

= 5(99)601/8(UMV)/37675(UPU)0?FMVFPU
= 000 (0) Jeas(07) F e
_ _;(99)55(0“”) J(0™) 2 Fy
- _;(99) Tr [0 0% | Fyu Fy (4.106)
using the identity

1 7
pv po| _ ~ ([ pup, Vo __ . po, VP " _pvpo
Tr [0 }_2(7; n"" — Py )+2e (4.107)
and the fact that
Bc*’0 =0 (4.108)
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we obtain

1
WW,, =22 + 200" 0F,,, + (00) |4D? — 2i\o" I\ — 3

+4D(\) (4.109)

and thus
] :

(WWa] = D+ 2ir0" 9,01 — " Fus - ie‘“’f’”FWFpg 4.110)

and similarly
. 1 '
WIWIE =XT2 12X 661 Fy,, + (610;)| D — 2i0, A"\l = ZFIF, + %G“VPUFWFPU
+ 2Dt 4.111)

and

WIWie] = D? — 2ig, A0 A! — SF F + %EMVWFM,,FPU 4.112)
This time the fields on the right hand side of equations [4.110], [4.112] are funtions

of z*.
Now we can write the action for the gauge supermultiplet

A= / d4xd48i (W WL62(67) + WIWTes2(0) |

| 1 |
- / - Wew,| + Swiwte
1 P

F

1 1
- / d'25D? = L Fu P + 2A0 9,0 = A0 XT) (4.113)
integrating by parts and eliminate the total dervative, we end up with
4 1 2 Sy T = 1 "
A= /d 2|5D% + NG 9N~ {F P (4.114)

This is the action for a pure supersymmetric Abelian Gauge theory. The field D(z)
is the auxiliary field which can be integrated out using the classical equations of
motion. The massless fermionic partner \(x) of the massless gauge field A,,(z) is
called gaugino of photino in the case of Electromagnetism, thus the fermion field
now becomes part of the gauge field as opposed to the non-supersymmetric theories
which was considered as a matter field. And, lastly, the action is manifestly invariant
under both supersymmetry and gauge transformations.
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Noticing that the D — term component of V' is inavriant under both supersymmetry
and supergauge transformations, we could also include a term of the form

Ly = —2k[V]p = —kD (4.115)

which is called Fayet-Iliopoulos term. Such a term will play a role in the spontenuous
supersymmetry breaking.

Next we consider the coupling of the abelian gauge field to a set of chiral superfields
®,;, carrying U (1) charges ¢;. The supergauge transformations are parametrized by
a non-dynamical chiral field €2

(I)i — GQiQQiQCDi
D* sy o290 i (4.116)

where g is the gauge coupling.
The kinetic term which follows from the superfield ®*'®; is not supergauge invariant

PP, — 299 PriP, (4.117)
Thus we modify the kinetic term in the Lagrangian to
@*ieQ%V@i] (4.118)
D

and the gauge transformation of the exponential ([4.59]) cancels exactly that of equa-
tion [4.117].
Expanding the exponential, we have

e = 1429V + PGV + S ¢V + - (4.119)
In the Wess-Zumino gauge we have
1
V2 =0'Gr0A 0" A, = 5990*0TAMA“ (4.120)

and so the terms V", n > 3 vanish.
Thus we have

1
eV =1+ 29¢;(0T5"0A,, + 07010\ + 00T AT + 5eee’me) + 000797 A, A"
4.121)
Computing the 00076" coefficient of the ®*'e29%" &, we obtain

|:¢)*ZGngiV(I)i

= "¢ 0,0 + iV T" Y + FXFy + 2igqm™ ™ A0, ¢

D
+ 94" A, 0,0 b — g5 YAy — V294 (M); — V29a,(0TA T gy
+ 96 D¢" di + g7 AL AT T
= V"V, + 010" V,1) — V290:(0 A + AT ) + 94,6 6,D
+FF, (4.122)
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where V , is the gauge-covariant derivative
v,ugbi = u¢i + Zg%Augbz
quf)” — 8u¢ﬂ . Z.ng‘AMQSﬂ
Vi = 0,0 + 19q; Auib; (4.123)

and, thus the Lagrangian for the gauge interaction is

, 1
L= |2V P, | + (WaWa + c.c.)
D 4 F
— iAo A 1F )ls i N7 ot V2 *ah A 4+ Aot
=N TTOuA = + V0"V +i¢' 0"V b — V294 (97 A + AT ¢y)
A 1
+ FYF, + 5D2 (4.124)

Using the equations of motion to eliminate the field D we have
0L

— =0
oD '
=D = —gq;p™ ¢ (4.125)
and the scalar potential is
. ) 1
V(9i,¢") = FFi + 5D* (4.126)

4.9 Lagrangians for Non-Abelian Gauge theories

We now consider a general gauge symmetry realized on chiral superfields ®; belong-
ing to the representation R of the gauge group with generators 7*. Then the chiral
superfields transform as

o, — (GQiQGQETG)ij(I)j7 Oy P (G—QigaQ“Ta)ji 4.127)

where g, are the gauge couplings and the chrial superfields €2* are the supergauge
transformation parameters. For each generator, there is a vector superfield V¢,
which contains the gauge boson and the gaugino. The supergauge invariant term
in the Lagrangian is

L= [qw‘ (e2gaT“V“) J cpj} (4.128)
3 D

we define the matrix-valued vector and gauge parameter superfields as
V7 = 2ga(17)/ V"
Q7 = 2¢,(T%)/Q° (4.129)
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and so
¢; — (‘fm)z‘jq)j
OH — (e (4.130)
and .
&= [qw' (e") ,J@j] (4.131)
i D

For this to be supergauge invariant, the gauge transformation rule for the vector
superfields must be
eV — eV i (4.132)

using the Baker-Hausdorf formula

eXe¥ =e? 7 = X+Y+;[X Y]+ 112 X, [X, Y]]—112[[Y (X, Y]]+ -+ (4.133)
we have
eV e —exp{V —iQ +iQ" — i[V Q) — 112[9, [, V]] — 12[V [V, Q]
#5100 =0 = SVl = 50 V] - )+
:awﬁwwmtwn—ﬂmm+;mtm 1ﬂvmfw]
1 ) 1
— VAVl + 519,900 = S V] + - | @134

computing the commutators

= SV, = =220,V "0, 20,213
= —29, VT, Ty = 29,V "Q° f**T,

%[QT, V] = 2g8VEQe fer;, (4.135)
i 8Z a e raoc prcae

— SV V.0l = STeviviar pe g,

» T 8292 by rdyxe pabc rcde

12[v (QF, V] = - =e vV e T, (4.136)

and keeping only the linear terms we obtain
exp {QQCLV“TQ] — exp {2gaV“Ta + 20, Toi (0 — Q%) + 262V fobeT (O — Q°)

—8292 by/d rabc pede *e e
— oty e pete (¢ — 1) (4.137)

58



CHAPTER 4. SUPERSPACE AND SUPERFIELDS

which leads to

Ve sy 4 Z—(Q*a . Qa) + gafabcvb(Q*c . QC) o %ggfab(:fcdevbvd(g*e o Qe)

(4.138)

Due to the fact that the second term is independent of V', we can do a supergauge

transformation to the Wess-Zumino gauge
(VYW zgauge = 0750 A% + 010G + 000TAT* + ;eemema
and thus
()] =907+ 1076

— V2ga (T P)N* — V2T (T ¢)
_'_ ga(¢*Ta¢)Da + F*ZE

where V , is the gauge-covariant derivative

Vi = 0u¢i +igAL(T"¢);
Vu¢*i = au¢*i - igAZ(¢*Ta)i
V;ﬂﬂz’ - ,uqu)i + ZgAZ(Taw)Z

We can define the non-Abelian spinor field strength chiral superfield as

1
W, = —ZDDe‘VDaeV
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This object transforms as
17 ! /
W, =— ZDDe—V D,e"
l—< iQ -V _—iQt iQf -V _—iQ
:—ZDDeee D,le" e e
1 oo . o
=_ ZeZQDD [e—ve—sza <em eve_Qﬂ
1 mi_ -V _—iQt _iQf V_—iQ
:—Ze DDle Ve e Da<ee )

e ,
=— Ze’QDD e VD, (eve_mﬂ

1 [ , .
= — Ze’QDD e VD, (e_v> e 4D, (e_m)]
1 o S B 4
=~ ¢9DD <evDaev) e — e"DDD, (eﬂ)
. . 1 . 1 e .
—e" W, e — zemDDDa <6m> — ZemDDaD (em>
. . 1 A _ .
_ i -2 i i
=e""W,e 46 D{Da,Dﬁ}e

. P —a
=" W, e ™ 4+ 56198“05@ e

=W, e~ (4.143)
where we have used the fact that
DN=D,0M =0 (4.144)
Epanding the exponential
1 1
7V V — f— — e
¢ Dae’ = Da+ 5 V. DV + ; V. [V.DaV]]| (4.145)

where only the first two terms contribute in the Wess-Zumino gauge.
Writting also
Wo = 29T W5 (4.146)

and thus recover an adjoint representation for the chiral superfields, leads to

1 . aoc C
Ws = —ZDD(DQ(V‘I)WZ +igaf b (Vb)WZDa(V wz + - ) (4.147)
and thus in the Wess-Zumino gauge we obtain (in a similar way to the abelian case)

W2y, 0,01) = A2 + D% — (0" 0) o F2, +i00(c"V,AIY)  (4.148)
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where
a a a abc Ab Apc
Fi, = 0A4] — 0,A], — gu A A,
VA" = 9,A1¢ — g, f2¢ AD \T¢
The transformation law in equation [4.143] implies that
Tr[WoW,| = wows (4.149)

1s invariant under supergauge trasformations. We can , now, obtaining the F-term of
the spinor product

, .
(WeeWs] = DD 4 20N oMV - S e Lemwpopa pa (4150

2 nv 4 Hv= po

and similarily

a aa a na . a a 1 va a i vpo 1a a
(Wiowtée] = DD — 2iV, Aot AT — G E, e F, (4151)

Thus the kinetic part of the Lagrangian, along with the gauge field self-interactions
is

Z

Tr W w, + W] = - [Wawg Lwiwiee]  (4.152)

- Akg? F

where k = T'(R) of the corresponding gauge group and usualy is defined T'(R) =

1/2) in the fundumentak representation .
Finally the scalar potential in this case is a generalization of equation [4.126]:

. A 1
Vs, ¢™) = F*F; + §D“D“ >0 (4.153)

where D“-fields are given by D* = —g,¢*T "¢ as a generalization of equation
[4.126] and « indices are being summed.
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Chapter 5

Supersymmetry breaking

Supersymmetric partners would be degenerate in mass had supersymmetry been an
exact symmerty of nature. But, since sparticles have not yet been observed, then
supersymmetry must be broken. This can bee achieved in in two ways: 1) spon-
taneously in which case the vacuum of the theory does not remain symmetric and
massless Goldestone particles appear; ii) explicitly in which case a small part of the
Lagrangian breaks the symmetry while the remaining larger part is still symmetric.
We will explore both cases.

5.1 Spontaneous supersymmetry breaking
The supersymmetry algebra imposes some constraints on the energy of the vacuum

{Qa, QL) = 2(0")15 P

=(6")"{Qu, QL } = 2(0"),4(6") P,
1

=P = (") {Qu. Q% (5.1)
where we have used the relation
Tr[o"5"] = 2™ (5.2)
For P° = H .
H = 1|@i0] + Q1O + Q2L + QL@ (5.3)

thus for any state |¢)) we have
(1) = 1 01 @@ 1) + (1 Q1Q1 + Qo @} 0) + (6 Q)@ 1) | 5)
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inserting a complete set o states and since Qg is the hermitian conjugate of (), we
have
(V| H [v)) = zzwwm + |l @ )| > (5.5)
a=1 n
The vacuum is supersymmetric if it remains invariant under supersymmetric trans-
formation

i(€Q + QN Q) = 0
{Qa 2) =0
=

QLI =0 >

which from equation [5.3] such a vacuum must have zero energy. If we consider
the potential V' (¢) of a theory , then the vacuum corresponds to a minimum of the
potential. For this state to be supersymmetric must correspond to the minimum
of V' (¢) with zero value. Supersymmetry is spontaneously broken if the minimum
has a positive value. The condition for a theory to exhibit a spontaneously broken
symmetry is that the generator of the symmetry transformation does not annihilate
the vacuum
QQ) #0 (5.7)
An equivalent statematent is that some field operators acquire a non-zero vacuum
expectation value (VEV)
(2 612) # 0 (5.8)
If this is the case, then the particle spectrum of the theory will contain masseless

particles (Goldstone theorem [19]).
To see this, suppose there is a conserved current j*(x) :

03" =0,  withthe charge () = /d3xj0(x) (5.9)
Then for any operator, calculated in the spacetime space point 2’ = (¢/, 7 ) we have

/ d*z[0,j(x),0(z")] = 0

dt/ Pr[d,j(x / dSV[j(2),0(") =0  (5.10)
For large spacetime seperations, the surface itegral vanishes. So
d
Q1.0 =0 (5.11)

the above commutator, being some combination of other fields has a non-vanishing
VEV

(QQE), O] =u#0 (5.12)
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and thus
9 (9l [@(), 0] 12) = 0
;‘i/ &z (0] /*(@)0(') |2) — (2O (=) I ] =0 (5.13)

inserting a complete set of momentum eigenstates |p,,) we have

jt / 2, [ (1 5°(x) [pa) (pa] O(2') 1) = (Q O(2') [pn) (pal i°(2) 1) | =
(5.14)

using translation invariance
(Q1(2) [pa) = (Q e7(0)e™ [pn) = (2] 5(0) [pn) €™
(Q10@") [pa) = (@ e 00)e™ [pu) = (Q O(0) [pn) €™ (5.15)

we get

dt/di”xz (Q205°00) |pn) (pn] O(0) |€2) €=+

— (O [pn) (pal () |2) €™ =] =0 (5.16)

differentiate with respect to time and calculating the integral we obtain

(25 (35, (i) [ (2 7°(0) [pn) (pa] O(0) Q) &)
—{Q[0(0) [pa) (pal () |) ] =0 (5.17)

The only possibility for the above relation to vanish is that if there exist some states
|pn) such that
E,—0, as p,—0 (5.18)

with E2 = m? + 2.
Such states are massless and they are called Goldstone modes with the property

(€ 5°(0) |pn) #0 (5.19)

Since (2] 7°(0) |p,) # 0 is a Lorentz invariant quantity, then under a Lorentz trans-
formation we have

(€1 5°0) [pn) = (AUNUF0)UNU |pn) (5.20)

and hence, the operator j°(0) must transform into the same representation of the
Lorentz group as the state |p,,). Thus if 7°(0) is a spinor current (as the supercurrent)
then these states are spinor states (Goldstino).
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5.1.1 Vacuum expectation values in supersymmetric theories

We have seen that the spontaneous breakdown of continious summetry arises when
an operator acquires a non-zero VEV. We want to examine the possibility of a field
to acquire a VEV in a supersymmetric theory.

First we consider a chiral superfield with its components ¢, 1, F'. The SUSY trans-
formation of the components fields, tell us that 6 F', ¢ cannot have a non-vanishing
VEV, since 1), it would violate Lorentz invariance and 0,,¢ would spoil the vanish-
ing four-momentum of the vacuum. Thus the only possibility is ), to acquire a
non-zero VEV, through the auxiliary field F'. So the condition

(QIF[Q) #0 (5.21)

will lead to a spontaneous breakdown of supersymmetry. This type of SUSY break-
ing is called F-term breaking.

Applying the same logic to a vector superfield and its components A,, A\, D, we
can deduce that the only possibility is

(Q|D Q) #0 (5.22)

which is called D-term breaking or Fayet-Iliopoulos mechanism. In the next sections
we demonstrate both possibilities.

5.1.2 O' Raifeartaigh Model

A field theory which exhibits supersymmetry breaking by an F-term must admit a
solution F; # 0 to the equations of motion. As pointed out by O'Raifeartaigh, one
needs at least three chiral superfields @, ®,, 3 and the superpotential of the model

1S
W(®;) = mPy®yz + APy (5 — p?) (5.23)

the F-term of the superpotential is

W‘F =m@o b3 + mpsFy — maths + Ap193Fs + Ap193F5 + Ap193 L3
+ A3 F1 — Ap1ipsdhs — Mp1ihsihs — Mpsihsdy — PP AFy + (c.c)

(5.24)
The equations of motion for the F;'s are
Ff = =X(¢5 — 1*)
Fy =ma;
F; = —moy — 2\P1¢3 (5.25)
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There is no set of solutions that can make all £} vanish simultaneously and so su-
persymmetry is breaks down. The scalar potential after inegrating out the auxiliary
fields is

V(9) = S IEP = N — )| + [mosl + [mes + Adnas|*  (5.26)

Now we want to find the field configuration of ¢, ¢o, ¢35 that monimizes the poten-
tial. We see that for any configutation of ¢s it is always possible to have the last term
of the potential equal to zero. Thus we need only to minimize the first two terms
which depend only on ¢5.

Writting .

s ﬂ(A +iB) (5.27)

the first two terms become

A

Z(A2 + B*)? + X%t

(5.28)

2 2
NG —12)| + Imoy? = (”; - u2)\2>A2 4 (”; + ,ﬂv) B+

for u? < m?/2)?, the minimum of the potential is V}.;, = p*\? and occurs at
A = B = 0 which implies that the VEV of ¢, ¢3 are (¢p2) = (¢3) = 0 with (¢1)
undetermined. The fact that we can change (¢;) and still remain at the minimum,
means that the potential has a flat direction along (¢1) .
The fermion masses come from the term ([3.36])

10°W (1)

"%fermion = _§le¢] + h.c. (529)

where
W (¢;)
0900,
is evaluated at the VEVs of ¢4, ¢9, ¢3.
After calculate the differentials we find

0 0 0
0 0 m = Mij (5-30)
and thus
Lermion = —mbaths — X(d1)Ys13 + h.c. (5.31)
we can set (¢) = 0 and combine )5, 13 into a single Dirac fermion
Uy = (%) (5.32)
V3
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and so -
gfe'rmion = _m\I}D\IID (533)

with

g—ygt (01 :@ ¢T) (5.34)

1 0 3 2 .

Thus we have one massive Dirac spinor of mass m and one massless Weyl spinor
11 which is the Goldstino. It is worth noted that the Goldstino is the fermion that
belong to the same multiplet as the auxiliary field which get a non-zero VEV (in this
case F}).

For the masses of scalars, we look to the quadratic terms of the potential, after
shifting the fields with respect to their VEVs. So we have

2
—Lacatar =\ N5 = 11°)|” + [mas|” + [ms + s
— Ngs|* = NP5 — Nt +m?|gs|* + m?|gof”

+ 620105 +mAd1036% + N1 || 4s] (5.35)
and the quadratic part is
~Lrcatar = =N p2(65 + 65%) +m?(|¢s]” + |¢2]") (5.36)
writing
3 = \}Q(A +iB) (5.37)
we have

1 1
~Lrcatar = 5 (m* = 22207 A% + 2 (m® + 2X%0%) B+ mPp05 (538)

So the bosonic spectrum constists of a massless scalar field ¢;, a complex scalar
of mass |m| and the real scalars A, B with masses m4 = /m? — 2\2u?, mp =

vm? + 2\?? respectively.

Defining |(Q| F'|Q)| = |[M\u?| = A? as the supersymmetry breaking scale we have
ma = vVm? — 2\A2, mp = vVm? + 2)\A2

Thus in the limit A — 0 where supersymmetry is not broken, the complex ¢3 has
a mass m . When supersymmetry breaking occurs, it splits in two real scalars with
squared masses m £ 2\A2.

5.1.3 Fayet-Iliopoulos mechanism

The simplest model that exhibits D-term breaking is a U(1) supersymmetric gauge
theory whith a chiral superfield of charge ¢ and a Fayet-Iliopoulos term

gp[ = 27]‘/‘[) = 77D
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The scalar potential is
1,2 1
V =_|F|"+-D? 5.39
SIFP+5 (539
The auxiliary field can D can acquire a non-zero VEV

Q] DIQ)| = A (5.40)

assuming, further, that [(Q2| F'|Q2)| = 0 and we have a pure D-term breaking and
the minimum of the potential will be

1
Vinin = 5A4 >0 (5.41)

as required for the spontaneous supersymmetry breakdown. The equation of motion
for the D field is
D = —n—ql¢” (5.42)

and the potential become

1
V=0 +alél’)’ (5.43)

If the sign 7q is negative, the minimization of V' does not require a non-zero (¢),
and so U (1) would suffer a spontaneous breakdown. Hence, we will choose ng > 0
and so the minimum of the potential requires (¢) = 0 with

1
Vinin = 51" (5.44)

and thus supersymmetry breaks down while the U (1) remains intact. Lookin at thet
quadratic terms of the potential we find that the field ¢ becomes massive with mass
m = ,/1q whike its fermion superpartner remains massless and is the Goldstino.

5.2 Explicit supersymmetry breaking

In the Minimal Supersymmetric Standard Model none of the above models is viable
since there exist neither a linear term in order to have an F-term breaking nor a guge
singlet auxiliary field D® in order to have a D-term breaking. Therefore we will
include terms that violate supersymmetry.
So we can write

2L = ZLsysy + Lssp (5.45)

The supersymmetry breaking terms must be 'small' compared to the supersymmetric
part of the Lagragian. In fact, in order for supersymmetry to maintain a solution to
the hierarchy problem these terms must be soft [27]. This means that every field
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operator must have dimension less than four. The most general soft supersymmetry
breaking gauge invariant terms are

1

* 1 - 1 aya
Loy = =7 (m?)ij¢; — (gAijkaj% + 5 Bijdid) + hc) - 5 (MA®A" + h.c.)

(5.46)
where ¢; is the scalar component of the superfield ®;. Furthermore, A%, AT are two
component gaugino fields, M is the mass of the gaugino Majorana mass term and

(m?);; is hermitian matrix. The A, B have mass dimensions one and two respec-
tively.
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Chapter 6

The Minimal Supersymmetric
Standard Model

Having laid down the foundations of supersymmetry, we can now construct the su-
persymmetric extention of the Standard Model, ie. the Minimal Supersymmetric
Standard Model (MSSM)

6.1 Standard Model at a glance

To begin, we will briefly review the basic ingridients of the Standard Model which
is a gauge theory with symmetry group SU(3). ® SU(2), ® U(1)y with C, L, Y
reffering to color, left chirality and hypercharge respectively. The hypercharge is
related to the electromagnetic charge and the weak isospin by

Y =2(Q - Ty) (6.1)
The electroweak gauge trasformation of the left and right chiral fermion fields are
[, — ety @Y/2,—ig202(@)7/2
fr— efigyay(z)Y/QfR (6.2)

where f1/r = (1 F 75)f1/r and gy, ay (), ds(z) are the U(1)y and SU(2),
gauge couplings and gauge parameters respectively and 7 are the Pauli matrices.
The color gauge transformations of quark (¢) and lepton ({) fields are

QL,R — e_igsa:(m)/\a/QqL’R
lL,R — lL,R (63)

where g;, a?(z) are the SU(3)¢ gauge coupling and gauge parameters and \* are
the Gell-Mann matrices.
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We summarize the transoformation properties of the matter and gauge fields in the
following table

Fields SU@3).®@SU(2), @ U(1)y
quantum numbers
lir (1,2,-1)
EiR (1,1,-2)
q;L (3,2, 1/3)
UiR (3,1,4/3)
dir (3,1, -2/3)
9 (8,1,0)
W, (1,3,0)
B, (1,1,0)

where ¢ = 1, 2, 3 is the generation index and hence

L= ("), b= (" ,z=”1>
o= () =) = (),

€1R = €R, €2R = [y, €3R = TR

= (3), 0= (3), o= ()
1L — ) 2L — ) 3L —
dL SL bL

U1R = UR, Ugr = CR, Usr = lp
dir = dg, dar = Sg, d3r =0br (6.4)
All the gauge fields are exact massless in the limit of exact electroweak symmetry.

At the weak scale the SU(2), ® U(1)y symmetry gets broken down to U(1)gas.
This symmetry break down is driven by an SU(2),, doublet of scalar fields

+
o = (io) (6.5)
assigned with Y = +1. This doublet obtains an non-zero VEV
I (0
o) = — 6.6
@ =5 () 66)
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which arise from the minimization of the Higgs potential V().
The masses of the physical W=, Z boson are related to the VEV v

1
My, = 592V

1
My = 50\/ 9% + 93 (6.7)

while the photon v remains massless and the VEV is related to the Fermi constant

v=(V2Gp)~2 (6.8)
The mass eigenstates W=, Z,,, A, are related to the gauge eigenstates as
1 .
W = E(Wf F iWy)
ZM = —sinby B* + cosOy W
A, = cosby B* + sinfy W (6.9)

where 60y is the Weinberg angle which satisfies the relation

e = gasinby = gy coslyy (6.10)
The masses of leptons are generated through Yukawa couplings with the Higgs

Z = —YZ-lengSejR + h.c. (6.11)

Due to the fact that the neutrino is massless, the matrices Y;j* are real and diagonal
in the generation space and the masses are given by

1
(mel;; = 7

In the quark case the Yukawa interactions are

YZ-EU = meiéij (612)

Ly = —YiGirddir — Y\ Gro ujr + h.c. (6.13)

for the "down-type" (d;r) and "up-type" (u;r) right chiral fermion and

¢0*
@C —_= @7‘2@* —= _ (6.14)
—¢
is the charge conjugated Higgs doublet with VEV
1 (v
o) = — 6.15
@)= (0] .15
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The mass matrices are

1 d 1 U
(mgl;; = ﬁﬁjv, myl;; = ﬁyijv (6.16)
These matrices can be brought in real diagonal form by a biunitary transformation.
So we can transform the flavor eigenstates left, right u— and d— quark fields to the

corresponding mass eigenstates by U%L, U“®, U % and the matrices become

(U m,UR);; = [my ] = my, b (U TmaU™);; = [ma ™)y =m0,
(6.17)
where m,,(?), mq(P) are the physical, real, diagonal mass matrices for thr up- and
down-type quarks respectively.

(D)

6.2 Superfields of the MSSM

We will now introduce a chiral superfield for every Standard Model chiral fermion.
The superfields will contain these chiral fermions, the auxiliary fields and also the
scalars superpartners. Such scalars will be denoted with a "tilde", thus for example,
for the first generation of leptons, we have the scalars

i = (éyf> , 1R = €R (6.18)
L

which we call left sneutrino, left selectron and right selectron respectively.

Since the superpotential is analytic in left chiral superfields then we are obliged to use
only left handed fermions. Thus we will use the charge conjugates of the SU(2);,
singlet right handed fermion fields. So for every right handed fermion field we will
consider the left handed antifermion field, which will be denoted by f5. Thus for
example the field ef = (ez)¢ is a left handed antielectron and thus have opposite
quantum numbers. As a consequence,their scalar superpartners are the complex
conjugate of the superpartners of the right handed fermions fj; with quantum num-
bers of the conjugate representation.

Hence for the first generation of (s)leptons we introduce the left chiral lepton doublet
superfield (L) and the left chiral antilepton singlet superfield E; :

Ll == <I]:VF> 5 El (619)

which contain the fields l17,[,1, ¢ = €%, & 5 = €%. In the same manner, for the
first generation of (s)quarks we introduce the left chiral quark doublet superfield Q;
and the left chiral antilepton singlet superfields Uy, D, :

Q= (82) , U, D, (6.20)
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which contain the fields ¢11, g1, u{p = u%, diy = dg, W = U, dig = di.
Repeating the same procedure for the second and the third generation we have the
left chiral superfields

L, = (LL> By Q= (80>, U, D, (621)
I s

which contain the fields loy, lor, €55 = 1%, €5r = VR, @21, (oL, Usp = Ch, dSp =

c K — &% * — ox
8%, Usp = Ck, d5p = 87 and

L.\ & Q) = &
L; = |, Es; = , Uz, D 6.22
3 (LT ) 3 Qs (Qb) 3 3 (6.22)
which contain the fields 3, lsg, €5p = T, 64p = Th 31, (a1, Usp = 1%, dSp =
bR, U3 = tg, dip = bk

In the gauge sector, we will introduce one vector superfield for every gauge group.
Thus we have the vectr superfields VY, VW V' corresponding to the gauge groups
U(1)y, SU(2)1, SU(3)c respectively and apart from the auxiliary fields, contain the

fields B, Wu, g, along with their corresponding Majorana gaugino fields No, X , g%
Every gaugino field, like its superpartner transforms in th adjoint representation of
the gauge group and also the left and right chiral components of each field are charge
conjugate to each other: (\;) = Ag.

Now we turn to the Higgs sector. In the Standard Model, it was made possible to
generate the masses of the fermions with the use of only one SU(2),, doublet field
® with Yo = +1 and whith its corresponding charge conjugated Higgs field ®¢
with Ygc = —1. In a supersymmetric theory sucha a term is not allowed due to
the fact that the superpotential is an analytic function of left chiral fields and hence
interaction terms that derived from the same superpotential cannot contain both ¢
and ®°. Thus we will need two Higgs doublets with Y = —1 and Y = 1 in order to
generate the masses of fermions. We will denote these doublets as

_ (Ha _ (Ha
e (). - (%) 025
the down- and up-type respectively. The VEVs arises from the minimization of the
Higgs potential V (H,,, H;) and given by

(Hg) = ;5 (%d> , (Hy) = Jli (f) (6.24)

Hence we will introduce the left chiral superfields doublets

0 +
H, = (Ej) CH, = (Iflo) (6.25)
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which have Y = —1,Y = +1 respectively and apart from the scalar fields of equa-
tion [6.23] and the auxialiary fields, they also contain and the corresponding doublets
of fermionic superpartners

(8 (i
w=la) o (i)
These fields are two compontent spinorial fields in the (1/2,0) representation and
they are called higgsino fields. In the following table we summarize the superfield

(6.26)

content of the MSSM
Super fields | Component | SU(3). @ SU(2), @ U(1)y Name
Fields quantum numbers
L, lir, (1,2,-1) Lepton
lir Slepton
E, S (1,1,2) left-handed antilepton
€*ir left-handed antislepton
Q; 4L (3,2, 1/3) Quark
qgiL Squark
U; ulp (3.1, -4/3) left-handed up antiquark
SR left-handed up antisquark
D, dép (3.1, +2/3) left-handed down antiquark
ci*,- R left-handed down antisquark
Ve gz (8,1,0) Gluon
7 Gluino
VW Wu (1,3,0) W-bosons
i Wino
VY B, (1,1, 0) Gauge-boson
:\0 Bino
H, H, (1,2, +1) Higgs field
7., Higgsino
H, H, (1,2, -1) Higgs field
H, Higgsino
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A question that arises at this point is whether we have been economical with the
number of superfields or not. The fact that the components of a superfield must carry
the same quantum numbers, can convince anyone that the above is indeed a minimal
set. Furthermore the fact that we used two Higgs superfeild doublets (H;, H,) is
necessary for the anomaly cancelation and thus the self-consistency of the theory.
The anomalies may arise from triangle diagrams with three external gauge bosons
fermions running the loop. In the Standard Model the anomaly that arise from such
diagramms with three B, gauge bosons as external fields (U(1)y anomaly ) vanish
if and only if Tr[Y®] = 0. For the field content of the Standard Model we have

2 64 8
27—27+27> —24+8=0
(6.27)
where Y, Y,,, Yy, Y, Y, are the hypercharges of the quark doublet , up, down quark
singlets, lepton doublet, electron singlet respectively. In the MSSM, if we had one
Higgs doublet then the Higgsinos contribution to this anomaly factor would be

T[Y?] =32 - Y- Y3+ (2% - Y?) = 3(

M

[y =Tr [Y?’]SM 12 (6.28)

and resultin in gauge anomaly. Thus to cancel this factor we must add a second Higg
doublet with opposite hypercharge.

6.3 Supersymmetric part of the MSSM

We now, want to contstruct the Lagrangian for the Minimal Supersymmetric Stan-
dard Model. This Lagrangian can be decomposed the the purely supersymmetric
part and the soft braking part

Lyssu = ZLsusy + Lsorr (6.29)
The superymmetric part can be written as
gSUSY = ggauge + gmatter + gHiggs (630)

Thwe gauge part is written in terms of the field strength spinorial superfields W¢,

ga
Wi e, Wy, constructed from V;]“, Viv, V¥ respectively according to the equations
[4.84], [4.142].

| L
Lyouge = / 2OWVWE + Wi Wiva + WiWyo +he)  (63D)
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where the color index a is summed.
The matter part can be written as a generalization of equation [4.128]

Lratter = / d*0 (Lje(gszﬂgyv"y)L + EzegvaYEi + ﬂze(gngGS\“-ngVYY)fji
# DIl D, 4 Qe e Q) (6.32)

where 7 are the Pauli matrices and \% \® are the Gell-Mann matrices and their
complex conjugate acting in the color triplet 3 and antitriplet 3 respectively.
Finally the Higgs part is written

LHiggs = Z /d4 (HT (V™ P40, VYY) H, + Wirssard® (GT)+WMSSM62<9)>
p=u,d

(6.33)
and the MSSM superpotential is given by

Wssu = pHg - Hy — YH, - LiE; — Y;'?Hu - Q;D; —YyQ; - HyU; (6.34)

Here we adopted the notation A - B = e, A*B® for the SU(2) invariant product of
two (super)field doublet representations in the generation space and the minus signs
are chosen so that we remain consistent with the Yukawa interactions in equation
[6.11], [6.13] . The first term of equation [6.34] has dimensions of mass and the other
terms are generalizations of the Yukawa couplings. We can compute the auxiliary
fields F' from equation

The F field corresponding to the 5- component superfield of the superfield doublet
H, is given by ([4.83])

ow

Ff =-
Ha OH s lo—0t—0

(6.35)

the relevant of the superpotential is

peasHIHY — Yo sHILE; — Yie,sH3Q/D;
=llEngE 'YHdWH — Yieap emHVLBE Yiea eaVHngf)j

differentiate with respect to H s, we get

peas€™ 0HY — Yiease® 6°LIE; — Yieape™ 02 QD
=uH — YL'E; - YSQ/D;

% )

from the equation [4.80], taking the § = 7 = (0 we obtain

Y = —pH] + Vel + Vidipii

Z]]
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In the same manner, we compute all the auxiliary fields F'.

Fyp, = —pH + Vel + Yidipdic

Fﬁi = —pH] + Y0 i

FYP = -YeH[

Fy =YiH, Uy

Fy = —YdH*Bd}W + Y H g,

FE) _Y Hd {jLa

Fg. =YL Hy (6.36)

where a is the color index.
The D fields can be calculated from equation [4.126] and they are given by

1

1
DY =~ g, (H{H, — H{Hy+

*(ZTLQ}‘L —

S ot
—U; RU;
3 iR

3

L } S IR
D=~ (Hi7H, + hi7H, + gqjﬂqm + Li, 7L )

]. . a~ ~ a -~ T aj
D% = —Egs (quL)\ q;1, + UIR)\ U;R + deA le)

where we have used the hemircity of the Gell-Mann matrices.
Finally,the MSSM scalar potential is given by

Vsusy = FiFy + = [(DY) + D%+ D“Da} (6.37)

where £ reffering to the type of superfields and also any internal index, and also
repeated indices are summed.

6.4 Soft breaking terms

As we have already mentioned, spontaneous breaking of supersymmetry cannot be
incoporated in the Minimal Supersymmetric Standard Model, as such would lead to
an unaccaptable particle spectrum. So, we are forced to include soft breaking terms
that are parametrizing our ignorance on the nature of the supersymmetry breaking.
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These terms must also be singlets under the full gauge group of the theory. All the
types of terms introducing in the equation [5.46] are possible. Thus we can write

—Lsorr =G (M})ijdiL + Wr(Mg)ijiir + dig(M3)idir + Ly (M3) i Lis
+ &, (M?2)ijér + {Hd Lt (YA®) &g + Ha - G (YA ydig
1 L

+ ;(MQWPLW + MyW PrW) + ;(Mgg‘lPLga + M3 §°Prg®)

= Vsorr + Veavaino (6.38)
where P, p = %(1 F 75) are operators that project left/right chirality. M, 5 3 are the
complex gaugino Majorana mass pararameters and mg,, are the real Higgs scalar
mass parameters. The squared left squark mass M. [72, the squared right quark masses
M3, M along with those for left and right sleptons M/?, MZ are 3 x 3 hermitian ma-
trices in the generation space. The coefficients Y¢A¢, Y* A" Y9 A? are the trilinear
terms coefficients of equation [5.46] which are written as a product of the super-
potential couplings times a paparameter A which has dimensions of mass. These
coeflicients are in general 3 X 3 complex matrices. In the sanme way we have scaled
the bilinear coefficient of equation [5.46] using the parameter B which also have
dimension of mass. If we allow all the paramaters that are introduced to be com-
plex, then we woul be dealing whith aproximately one hundred and twenty real free
parameters while in Standard Model we had only nineteen. Thus in order to make
the theory more predictive, it is imperative that we reduce the number of these pa-
rameters.

6.5 Higgs potential in MSSM

The MSSM scalar potential is given by
V = Vsusy + Vsorr (6.39)

The terms that iclude only the Higgs fields are

7—-’ 2 Y 2
Vo (guHIL ) + (= gaHI Hy) o+ P HLH, 2 Hof? + mil ol + (B, - Ha+ hee)
=Vy (6.40)
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where k reffers only to Higgs sector and take values & = u, d. The first two term are
witten

93 t 9%/ t
4(HkFHk> 4 4(HkYHk> _

2 2
L\(HirH, + HleH,) (HiPH, + H7H)| + &

(HgYHu + HQYHd) (HgYHu + H;YHd)]
The first term can be writtes as

HI7H,HI7H,
= HiaHungcHde (ﬁlbﬁe)
=2 (Hijda Hj,bHub> — H! H,H Hy

=2

(HJTHG? + HSTHd) (HC‘;TH; + HdTH‘u)ﬂ - (\H;]Q + |

2 0l2 12
Hy| + [H

where we have used the identity 7, - T.e = 2040pc — 0cq. Working the other terms

in a similar way , we obetain for the first two terms of Vy

2
(e

+f{f (| + [

2+‘H3

2
2) - <]H3’2 + \deﬂ + 4(1113*15@+ + HdTHS) (HJTHQ + HSTHd)}

) = (sl + )]

The other terms of V; are written

[l H i+ mi | Ho |+ mig| Hal” + (BpH, - Hy+ hc.)
2 2 2
= P (|12 )+ o (5] [z ) + 2

+ [uB (H;Hd- — HgHg) + h.c.

" |me e[ 4 |

2) + m?l(]Hgf + \Hd—m

Putting all the terms together, we finally obtain

Vir =SS (i e - e ")
(1l + 2 ) (| + |HE) = (hl? 4 ) (|18 + |

+ [p,B (H;Hd— - Hgﬂg) + h.c} (6.41)

2+]H3
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6.6 Electroweak breaking in MSSM

Having found the Higgs potential, we now, want to find the conditions under which,
this potential can have a non-trivial minimum which break the lectroweak symmetry
down to electromagnetism. To simplify the algebra, we can reduce a possible VEV of
one component of either H,, or H,; by peforming an SU(2), transformation (unitary
gaige). Thus we can choose H ™ = 0 in the minimum of the potential and we obtain

oV

OHf =0

H=0
2
=Hy (1B + %YHC?THST) =0
H; =0
= 5 (6.42)
pB+ L HYTHY =0
The last equation implies that the ;1 3-term of the potential becomes
(11— )+ ) (1~ )

- Fle

where it is evaluated at H,” = 0. This relation os positive defined and so unfavorable
to symmetry breaking. Had accepted the conditon /; = 0 instead, then again
neither of H;" or H; would have acquire a VEV and thus electroweak symmetry
would have remained unbroken.

We now concentrate on the part of the potential that contain only the neutral fields
and ignore the charge components.

2 2
Vo = (Iuf? + 2 ) |1 + (Iuf? + m2) = 118" = (B HOHS + hc.)
2 2 2
-+ 2 2
+ & 2 . <!H3] — | HY) ) (6.43)

It is worth noting, at this point, that the quartic term in the above potential is not a
free parameter - unlike in the Standard Model - but is fixed by the gauge couplings.
Now we turn to the ;B -term. This term is the only one that depends on the phases
of the fields. Therefore we can absorb any phase of ub in a redefinition of H,, or H,.
Thus we can take 1B to be real and positive. It is clear that the potential requires
H? HY to be real and positive and so it implies that the VEVs (H?), ( HJ) must have
opposite phases. Since ,, , H; have opposite weak hypercharges, we can perform
a U(1)y gauge transformation to make both VEVs real and positive.
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In order for the MSSM scalar potential to be viable, must be bounded from below. In
a purely supersymmetric theory, the potential is automatically non-negative but now
since we have introduce SUYSY-breaking terms, this is not the case. The quartic
interaction will stabilize the potential fir abritarily large values of HY, HY. However
for the cofinguration of the fields such that |H)| = |HY|, the quartic contribution
vanish identically and the potential becomes

Vo= (20l +m? + m3 — 2uB)|HY (6.44)
Such directions in field configutation space are called D-flat directions, because
along them, the part of the scalar potential coming from D-term vanishes.
In order for this potential to be bounded from below , we require

2ul* +m? +m2 > 2uB (6.45)

,LL|2 + m? cannot be both negative

The above requirement implies that |z|* + m2,
simultaneously.

In the case that they are both positive then H? = H$ = 0 will be a stable minimum
of the potential and the electroweak symmetry breaking will not occur. Hence the
condition for H? = H} = 0 not to be a minimum (extremum generally) of the
potential is to be a saddle point. Thus we require the determinant

9%V 9%V
OIHQIOIHY]  9|HO|o|HO
WO ol o] 3] <0 (6.46)

0 9“Vy
aTiglois aAglolAT | | mg—rg—o

so we find
3+95 2 2
(2Apl” %) + S5 (SIHC — [HYF) =208 — (g3 + 67 ) |H| | H)
2 2 2 2
—2uB — (g3 + g% ) | HO||HY| (21l +m3) + 252 (3| HY|* — |HYJ)
(6.47)
which is evaluated at H? = HJ = 0. Thus we obtain
(Il +m2) (In* +m3) < (uB)? (6.48)

which is automatically satisfied if either ||* + m?2 or |u|* + m? is negative. This
constraint, though, does not hold at the GUT scale where || + m2 = |u|” + m2.
Thus the breaking of electroweak summetry does not take place in MSSM at GUT
scale. However, this statement is valid only at the GUT scale. After renormaliza-
tion, the parameters become 'running' rarameters whose energy scale dependence is
governed by the Renormalization Group equations (RGEs).
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At energies of O(elextroweak scale), one of the Higgs parameters can be nega-
tive triggering the electroweak symmetry breaking. Thus, contrary to the Standard
Model, where one has to choose the negative sign of the Higgs mass squared 'by
hand', in the MSSM the effect of spontaneous electroweak symmetry breaking is
triggered by radiative corrections.

Thus we have the phenomenon of radiative electroweak breaking.

Having now established the conditions required for the potential to have a non triv-
ial minimum, we proceed to write down the equations that determined the VEVs
of |H?| and |H,0|. Writting (HY) = v, and (H)) = v4 we impose the stationary
conditions

OV
0| Hy|

v,
I

=0 (6.49)

g0

|HY|=0
and find
(I + m2)o, = nBoa — (63 + 0 ( — )

(\,ul2 + mfl) vg= pBu, + i(g% + 932/) (ui — Uf,)vd (6.50)

Now we want to find the masses of the W=, Z° bosons. The relevant part of the
electroweak sector in the Lagrangian is

T 1
XMSSM D) <quu> (V“Hu> + (qud> (V”Hd> (6.51)
where the covariant derivative is

V,=0,+ igggﬁ/u + ig?YYBH (6.52)

After shifting the fields with respect to their VEVs

H,=v,+n
Hy=vs+x (6.53)
we find
L To= gy L T gy 0
(O Vy + 77) (@L — 192§WH — ZQBu> (3“ + 192§W# + ZQBH> <Uu N 77)
L Too N% L To= 9y 5\ [va+ X
+ (Ud + X 0) <3u — 192§WM + ZZB“> (8“ + 292§W“ — ZQBI> ( 0 )
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keeping only the quartic terms in the gauge fields

2( 92 1 . 12 923 9y ﬂ(I/Vl —iW2)>

2 (2 (w1 aw?) - Lw +B) 2 \Wu =1V,
<2( " ) 2 # 27" (—Q;W,f’%—gQYBM

%Wﬁ%%ﬂ)

g2 1 . 2 92 3 gy
+v§< W iw?) - 2w —BH)<
p (W) =5 ~gw) - 5,

2

defining
1 .
Wi =W, F iw?) (6.54)

we can identify

2
2 —u_ 927 9 2 _
MZW W = E(UU +op )W
2
2 _ Y2/ 2 2
=Mjy, =3 (v2+03) (6.55)

For the mass of the neutral gauge bosons we have
2 _ 3
93 929v\ (W
(Wi B.) <—929Y 95 ) (Bg“>
2 _ 3
92 Gogv \ (W
(Wi B) (—gzgy 9 ) (Bg”>

After diagonalizing the mass-matrix, we find that the eigenvalues are g5 + g%, 0 and
the normalized eigenvectors

5

5

"p‘&.@w "J;‘zﬁ@w

g 92W3# - gYB#’ AH — g2W3/~L + gYBlJ (656)
V95 + 9% N
Thus we find
1 v+ 02 g2 +g2 0\ [(z+
- wry 2w "d w I 2 Yy
QMZ i ( 4 (Z A ) 0 0/ \A#
and so we can identify
2 Ug + 1)3 2 2 2
Mj == —(g3 +g¢). Mi=0 (6.57)
Thus we can see that the combination
1 [2ME Nz
(024 03)* = ( 2W> '~ 174GV (6.58)
g3
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is fixed by experiment.
We can now define the parameter

tan g = 2 (6.59)
Vq

The phase freedom to define v,,, v, as positive, restricts this parameter to the range
s
0<pB< 5 (6.60)

and so the equations [6.50] become

(I +m2)o, = uBus — (6 + ) (% — 23

il
2 o\ pld [ Lro oy T2
= (|uf* +m2)= nB -+ 1(92 +9v) GRS
Y4
o (luf? + m2)= pBoot § + Mz L= tan
m?2)= pB co
a W)= H 2 1+tan®p
2, o M3
:>(|u\ —|—mu): uB cot  + — cos 23 (6.61)
and similarly
2, o My
(!u! + md): puBtan 3 — = cos 203 (6.62)

6.7 Tree-level Higgs masses in MSSM

In contrary to the Standard Model, the MSSM contains-as we saw- two Higgs dou-
blets, therefore eight real scalar degrees of freedom. When the electroweak symme-
try is boken, three of them are becoming the longitudinal modes of Z°, W massive
vector bosons.The remainings consist of five massive Higgs eigenstates.

To find the mass eigenstates, we will first consider the neutral fields [mH?, ImH).
Then, thne relevant part of the potential is

Vo O (Il +m2) (ImHS)? + (|uf* + m3) (ImHY)? + 2b(ImHS)*(ImHY)?

95 + 9y 0\2 0\2 0\2 0y2]2
+= (ReHY)? + (ImHY)* — (ReHY)* — (ImH})?| (6.63)
where B = b.The squarred mass matrix is given by
1 ( STttt STmaTom
[Mz]ij _ 5 Blml-égigmHu 8Img%3£de (664)
OImHY9ImH)  dImH0ImHY)
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evaluated at | HO| = ugq,| HY| = u,. Using the realtions [6.61], [6.62] we find

[Mgli; = (bcztﬁ bth) (6.65)
The eigenvalues of this matrix are
M =0, A= Siil;ﬂ (6.66)
and the normalized eigenvectors
GO = V2[sinf(ImH?) — cosf(ImHY))
A® = \/2[cosB(ImH®) + sinS(ImHY)], (6.67)

respectively.
The first eigenstate is massless and becomes the longitudinal mode of Z° while the
massive eigenstate have squared mass

, 2

= 6.68
stn2p ( )
Now we move to the charged fields H;", H "1 The squared mass matrix is
02y . 02y .
+ ot + -
[MEd],; = | Ml O OM, (6.69)
o YomT  omyoH, "
and is evaluated at H? = v,, H} = vy, H = H; = 0.
Thus we find . ,
s beot 20 4 fTdlw
[Mcilij = ( v Bg—%:uvf ! 29%) (6.70)
b+ 5 btcmﬁ + 9
The eigenvalues are
A =0, Xo=md +mo (6.71)
and the normalized eigenvectors are
GF = sinBH; — cosSH, !
H* = cosfH; + sinSH, " (6.72)

The pmassless eigenstate G become the longitudinal mode of W7 and the eigen-
state H* have squared mass

mis = mi, +mio (6.73)

'We have defined H = Hd_T
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We, now consider the fields H', H;. Following exactly the same procedure as
above, we find that the mass eigenstates are

G = (G
H™ = (H)! (6.74)
with squared masses
mz- =0
2 _ 2 2
M- = My + Mo (6.75)

respectively. The massless state, again, becomes the longitudinal mode of W ™. Fi-
nally, we consider the neutral fields ReH? — v,, ReH} — vg. The squared mass
matrix is

M2, m%esin®B +m% cos? B —(mao + m%)sinf cos 3 6.76)
03\ =(mao + m%)sinfBcos B m?ocos’ + m%sin? 3 '
The eigenvalues are
1
Ao = 2{m?40 +my F \/(mio +m%)? — 4miom%005225} (6.77)
and the normalized eigenvectors
h? = ﬂ{cosa(ReHS — U“) — sina(ReHg — Udﬂ
V2 V2
H = \/5{00504 (ReHO — Uu) + sina <R€HO — Ud)] 6.78
These are the CP-even neutral Higgs with squared masses
o _ 1) 2 2 212 _ Am2.m2cos?
Mho = 5 Ma0 +my — \/(on +m3)? — 4m%om3cos?2f
1
Mo = 2{ %0 +m% + \/(mio +m%)? — 4m?40m22005225} (6.79)

To find the relations that are satisfied by the angle o, we write the matrix in equation
[6.76] in the form

A+ Be —As ) (6.80)

1
2 P
[Mgli; = 2 ( —As A— Bce
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where A = (m%, + m3), B = (m%0 — m%), ¢ = cos2f3, s = sin2[3 so for the

masses in [6.79] we have
Mo = (A C)
m?qo — 5(14 + C)

where C' = [A? — (A% — B?)c?)!/?

The fact that the state k" is eigenstate of the mass-matrix, we have

cosx

A+ Be —As cosar\
( —As A-— Bc) (sz’na) =(A-0) <sz’na

and so
(C'— Bc)cosa = —sAsina
(—C + Bce)sina = sAcosa
=(C' — Bc)cosasina = —sAsin’a
(—C + Be)sinacosa = sAcos*a

Substracting the above relations we get

) As m2, +m2%) .
sin 2a = —? = —M Sln2/8
HO h0

adding them, instead, we get

o590 — B _ _(mie —m7)
C = "t — )

26
The range 0 < /5 < 7/2 restricts the value of « to the interval

—T
T <0
g ==

(6.81)

(6.82)

(6.83)

(6.84)

(6.85)

(6.86)

(6.87)

6.8 Tree-level couplings of neutral Higgs bosons to

SM particles

To proceed in finding the couplings of the neutral Higgs boson to the Standard Model
particles we first notice that the relations [6.12], [6.16] using the relations [6.55],
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[6.59] become

92
Ve — 2 ()b
K ﬂMWcosﬁ(m )iii
yd— 92 e
K \/§MW cos 8 (ma) I
Y4 = L(mu)ljéij (6.88)

Y \/2My cos 8

where we have moved to the mass-diagonal basis. Also we can invert the fields in
equations [6.67], [6.76] to find

1
ReHS = {vu + (cos ah® + sin aH0>]

V2
1
ReHg = {vd + \/§<— sin ah® —I—CosaHON

1
ImH? = 7 <COS BGY + sin 5A0>

1
ImH) = —| — cos BG° + sin BA" 6.89
Since the top-, bottom-quarks and the tau-lepton are the heaviest partincle in SM, it
is usefull to make the third family approximation, that is, we consider only the third
family components are important:

00 0 00 0 00 0
Vi~ |00 0], Yi~|00 0], Y5~ [0 0 0 (6.90)
00 u 00 w 00 y

and so the superpotential in [6.34] is written (keeping only the Yukawa terms)

Wirssu = —YiHS e L{E; — Y H%€,5Q/D; — Y1QPensH U
~ — Y HGeasLiEs — Y H€,5Q5Ds — YiQ5easHy U (6.91)

writting only the fermionic components of the matter Superfields we have
N[0 1)\ (v . N[O 1 tr)\ e
Wasssu == yr (H} H;) (—1 0) <TLL> mh—w (Hi H;) (—1 0) — 0 (bi> Un
0 1\ [(HI\ .
i 0) (_1 O) (H> t

= —yT(TLTEHS —vrTRHY ) — (tLtRHO — bt%H+) —yp(brbGHy — tbHy )
(6.92)

89



CHAPTER 6. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL

Thus, the Yukawa term of the superpotential concerning the coupling of the top-
quark with the neutral Higgs boson is

— Yt tSHY + hec.

=~y lm;i (Reﬂg 4 umHg) +tlet (Reﬂg _ i[mHg)]
writting onle the coupling with the Re H? field, we have

1

c et 0 . 0

t tR+t tR)<Uu+(COSOéh —FSIHO&H)
ytl(L L \/§

1

=— Uy (tLtﬁz + tTLtﬁzT) Vy + —= < cos ah® + sin aHO) (6.93)
V2

The first term is a Dirac mass term of the top-quark:

. (tLt; + t}t;*) - (6.94)

where we have the Dirac spinor
tr
v, = ( cT) (6.95)
%

my = YUy (6.96)

and

the tree-level top-quark mass.
The second term in equation [6.92] is the tree-level coupling ¢t — Re H?:

- ﬁit\h (cosaho + sz’naH0>

V2
g2

— —7@\1@(

coso 1o 4 smozHO) (6.97)
ZmW

sin 3 sin 3
The corresponding coupling in the SM would be

92y
mw

L2, U, Hg (6.98)

where Hg), is the Standard Model Higgs boson. Thus equation [6.98] shows how
coupling is modified in the MSSM.
Analogous relations hold for bottom-quark and the tau-lepton respectively:

gamy =

(6.99)

Sina o cosa HO)

Vol ( cos 3 cos f3

2mW

90



CHAPTER 6. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL

and )
gom, SN

2mW

TR po 4 0% H°) (6.100)

cos f3 cos 3
Finally, the coupling ¢t — A° is given by

my gamy

T A A0 = U,y 0, A° 6.101
Z\/ﬁvu(LR LR)COSB ZQWLW cos BWy5 W, ( )
and in a similar way, we find
i P2 o B0y T, A (6.102)
2mW
and m B
2 o B, s W, A (6.103)
2mW

The form of the couplings in equations [6.103] and [6.98] justifies that the states
H°, h° are C' P-even while the state A° is C'P-odd.

It is interesting to note that in the limit of large m 40, from the relation [6.85], we
have that

sin2a ~ —sin2f = a~ f — /2 (6.104)
which implies

sin v >~ —cosf3

cosa ~ sin 8 (6.105)

Then from the relations [6.98], [6.99] that the couplings of h° is the same with those
of the SM Higgs while the couplings of H° are the same as those of A°. On the other
hand, for small m 40 and large tan 3, the couplings ¢ — h° are suppressed compared
to the b — h° couplings, while the H° couplings become independent of £3.
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Chapter 7

Renormalization Group Equations
for MSSM

7.1 Non-Renormalization theorem

The most attractive feature of supersymmetric theories is the better ultraviolet be-
havior than that of any other ordinary field theory. This behavior is the result of a
powerfull Non-Renormalization theorem for N' = 1 supersymmetry. In [25] is given
a proof of the theorem using the supergraph techniques in perturbation theory, and
it is beyond the scope of this thesis.

In the above reference is demonstrated that the loop corrections to the effective ac-
tion of a supersymmetric theory of chiral superfields can be expressed as an integral
over the full superspace

r— Z/d4xid49Gn(azl, )P By (7.1)

where G, are translationally invariant functions on Minkowski spacetime and the
F;'s are local functions of the possible external superfields @, ®*, 1 and their (anti)chiral
covariant derivatives.

Equation [7.1] implies that D-terms are renormalized but F-terms are not renormal-
ized. Moreover, if F'-terms are absent at tree-level, then they are not generated by
radiative corrections and thus, there are no loop corrections to the tree-level super-
potetial.

We note that the non-renormalization of the tree level superpotential is a conse-
quence of the fact that the integral of a product of chiral superfields over all su-
perpace is zero due to the equations [4.64]. In [23] can be found a more intuitive
understanding of the non-renormalization theorem based on the symmetry and holo-
morphy of the superpotential.
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7.2 One loop 5— , v— functions

Non-renormalization of the superpotential have imortant consequences in the form
of the renormalization group equations, which we, briefly, demonstrate.
Suppose we have a gauge theory and the superpotential of the form

1 1
W(®) = §m®2 + qu>3 (7.2)

The fact that is unrenormalized means

W(®g) = W(®)

;»1 <I>2+1 o3 — cI>2+1 P3 (7.3)
-m = =_-m = .
o MRER T YRTR T 5 37

where the renormalized and the bare quantities are related as

EVAR
V =72/
m= Z,mgr
Y= Zyyr (7.4)

Then equation [7.3] implies the relations

Z,73% =1
TmZ =1
Z, 7% =1 (7.5)

Hence, there are only two independent renormalization constants: 7, Zy .
Therefore, the non-renormalization theorem does not assert that the parameters of
the superpotential are not renormalized, but rather that the renormalization of these
parameters are governed by the wave function renormalization constants.

For a more general case where the index ¢ runs over the number of ®;'s, superpo-
tential become

1 1
W(e) = §mijq)iq)j + ayijkcbiq)jq)k (7.6)

relations [7.4],[7.5] generalized to
@i — (Z1/2)ii’cI)Ri’
Mij = (Zm)ijirj MRirjr

Yijk = (Zy)ijki’j’k’yRi’j/j’k (7.7)
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and [6]
1
(Zy)ijki’j’k’(21/2)i’i”(Z1/2)j’j”(Zl/2)k’k” = 6(5 //5 //(Skk// —|— (permutathnS))
1
(Zun)ij g (ZY)ain(Z12) i = 5 (Bin g + Bigndn) (7:8)

The one-loop anomalous dimensions and the gauge coupling 5-function are [5],[6],[24]:

(2 1 {2
’Y](l) 392 ly kly]kl - 49 Zcz
3
o= [T - 302<G>] 19

where Cs(R;) is the quadratic Casimir for a representation R;, Cs(G) is the quadratic
Casimir for the adjoint representation and 7'(R) is given by tr[T*T"] = T(R)§*°
while 7' are the generators of the gauge group in the appropriate representation.
Hence the -functions for the superpotential parameters, by the virtue of the non-
renormalization theorem are [5], [6]

9 )
B(m)i; = M%(mR)zj = i Mairjr 4y

8 il 4 ’
B)ijr = u@(yz%)ij = % Yirsk + ] Yigk + VR Yigke (7.10)

where 44 is an arbitary renormalization scale. It is worth noting that from the relations
[7.10], we can see that in the supersymmetric theories the Yukawa /3-functions can
be computed only from the two point functions as opposed to the generally non-
supersymmetric cases.

7.3 The running of the Gauge and Yukawa couplings
in MSSM

For the supermultiplets in the MSSM, the RGEs for the gauge couplings at one loop
order are[5],[24], [26]

d
167285 = 1672 dgt3 = —3g
,d
16726, = 1672 thQ =g
dg 33
16728, = 167r2§ =+ (7.11)
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60: i T s T |4 T ) T N T v T . T ¥ T

%46 8 10 12 14 16 18
Log,,(Q/GeV)

Figure 7.1: Renormalization group equations of the inverse gauge couplings o; * (1)
in the SM (dashed lines) and the MSSM (solid lines). Taken from [5].

and for Yukawa couplings (in the third family approximation)

16773y, = 1672 = 692 + 1 — g% — 303 — =9t
dys, 16 7
1673, = 167°—= =y {67;2 Y YT 505 =305 - 159?}
2 _ 2 dyr 2 2 s 9,
1673, = 167 s Y- [4ys + 3y, — 395 — 591 (7.12)

where t = In(u/M) and M is an arbitary energy scale and the indices 1, 2, 3 refer
to the gauge groups SU(3)c, SU(2), U(1)y ' respectively.

Defining
g2
;=== 7.13
i = o (7.13)
Then the equations [7.11] become
dOéi bl
= ——q;
dt 2m
do;! b;
A 7.14
dt 2m (7.14)

where b; is the appropriate coefficient in [7.11]. With this form is evident that the
inverse of the gauge coupling depends linearly on the energy ¢. Thus taken the ar-
bitrary mass M to be my as boundary condition, we can solve the above equation

!we have used the GUT normalization for the hypercharge generator Y — \/g Y
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07 (1) = 7 (mz) — 5 -In(p/m>) 7.15)

using the experimental values of the gauge couplings in m z scale (ref)

(7.16)

The dependence of the inverse of the gauge couplings on the energy scale is shown
in [Fig.7.1] . From this plot is evident that in the case of the Standard Model, the
couplings do not meet a point while in the context MSSM, the unification of the
couplings can be achieved ate energies Mgy ~ 101GeV .
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Chapter 8

Reduction of couplings

8.1 Introduction

As we have already seen the MSSM have a large number of free parameters thus,
render it less predictive. The usual way, of reducing the number of parameters is
by imposing a larger symmetry (such as GUTs), but this colmpicates further the
situation due to the addition of more degrees of freedom. Another way of finding
relations aminge unrelated parameters is the method of reduction of couplings. In
this way we reduce the number of couplings in a given theory by relating either all
or a part of them to a single coupling called the primary coupling. In teh following
we demonstrate the implications of this method.

8.2 Reduction of dimesionless parameters

In order to reduce the number of the free parameters, we must seek for Renormalization
Group Invariant (RGI) relations of the parameters, that is relations that do not de-
pend explicitly in the renormalization scale . Such relations can be expressed in
the form

®(g1,- -+ ,94) = constant (8.1)

such that b
W= =0 8.2)

dp
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Hence the function ¢ must satisfy the partial differential equation (PDE)

A 0P
$25Q®E€¢.E:o (8.3)
a=1 «

where [, is the beta-function of ¢,.
This PDE is equivalent to a set of ordinary differential equations, the so-called
reduction equations (RE) [28]

dga
6979:5&7 (1:1,"',14—1 (84)

where g and 3, are the primary coupling and its beta-function respectively, and the
counting on « does not include g.
This equivalence can be seen as follow:
We consider a model described by n + 1 dimensionless coupling parameters
Ao, A1, -+, A, and a renormalization scale . This model is supposed to be invariant
under the renormalization group.Our goal is to write Ay, --- , A, in terms of the
coupling \g,so that the model we obtain involves only one coupling parameter )y and
it is again invariant under the normalization group.We write each \; as a function of
)\QI

A = Aj(Ao) (8.5)

which is independent of the renormalization scale ;. These functions should be
differentiable in the domain of \y and vanish at the weak limit

Ao—0

Then for the Green's functions of the original system, we have the Callan-Symanzik
equations:

0 0
(Hau + ;@T& + ’Y) G(Aispip) =0 (8.7)
and for the reduced system:
9y 0 ) @00 A o)) = 0 (8.8)
Iua/,b a)\o Py 0y g 0 7p?/‘1’ - .
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The - and ~y-functions depend on the coupling constants and 5’,7" depend only on
the parameter \g.The Green's funtions deepend on momenta , coupling constants
and the renormalization scale.G" is obtained form G substituting the functions [8.5].
Thus we have

9G'  AG(ho, N\(N)  9G  IN9G d

= = 8.9
o o Do | 2= DN dho 59
So, from equations [8.7] — [8.8] and considering the linear independence of the
Green's funtions, we can identify that:
dA;
=8, =7 B-t=5 (8.10)
dXo
Hence the functions [8.5] must satisfy the system of ODEs:
dA;
1279 3, 8.11

The above equation forms a necessary and sufficient condition for reducing the orig-
inal system by the functions \; (o).

Since (A — 1) independent RGI 'constraints' can be imposed by the ®,,'s, one could
in principle express all the couplings in terms of a single coupling g. However if
we look at the equations [8.4], their general solutions contains as many integration
constants as the number of equation, therefore the solutions cannot be considerd as
reduced ones.So if want the solutions to be consistent with the condition [re f8.6]
and also preserves renormalizability we must look for power series solution to the
REs:

G0 = Z p((xn-l-l)an-i-l (812)
n=0

where n + 1 counts the number of loops.
The uniqueness of such power series can be decided already at the 1-loop level. In
order to see this, we assume that the 5-functions have the form

1
Ba = 153 ( > ﬁs>bcdgbgcgd+25s>bgb) teee, o B13)
T \be.dtg b#g
— M3 ...
By = @ﬁg g’ +
where - - - stands for higher order terms and B&l)de are symmetric in a, b, c.The

above assumption for the S-functions covers a wide range of models.
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Then we insert the power series [8.12] into equations [8.4] and we obtain:

Z ﬁg)bcd <Z pl(,n+1)g2"+1> (Z p£n+1)92n+1> (Z pl(in+1)92n+1>

b,c,d#g n=0 n=0 n=0
= Z B(l)bcd <p(1)g + Z pbn+1 2n+1> <p£l)g + Zp((:nJrl)anJrl)
b,c,d#g n=1
1 n n n+1 n
x (pé g+ e “) +y g° B (pél)g +> g “)
n=1 b#g n=1
— 551)08)93 + Z 651) (2n + 1)p((ln+1)92n+1
n=1
1 n+1) 2n
= 3 pked D oM g3 N g8 g3 S S g ) ety
b,c,d#g d#g n=1 d#g

c n n n 1 n n n
3 ﬁé”bd(p“)pc g Zp gty Mg pr 2t 4y pthg Zp< g “)
b,c,d#g

+ (higher order terms)
_ 5;1)p&1)93 i Z 55(71)(271 + 1)pgn+1)92n+1

n=1
(8.14)
Collecting the terms of O(g?) and of O(g*""?) we get:
> B0 oMl + 37 By = B =0 (8.15)
bedAg dg
and
S M(n)dpi =0 (8.16)
d#g
where
ed (1
M(n)t =3 3 gbedplhpM 4 gd (97 4 1)3N 64 (8.17)
b,c,#g

Therefore if there exist p{!)'s as solutions of equation [8.15] then we can determine
all the p("+1)'s with n > 1 if det M (n)? # 0 for all n > 0.

Thus the system is described only by the primary coupling g.

The possibility of the coupling unification described above is very attractice as the
completely reduced theory contains only one free parameter,but it can be unrealistic.
Therefore, we would,usualy, like to impose fewer RGI constraints, thus leading to

the notion of partial reduction.
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8.3 Partial Reduction

The idea of the reduction of couplings is closely related with supersymmetry, so
in the following we will consider an N' = 1 globally supersymmetric gauge the-
ory based on a simple group G with gauge coupling constant g. The anomalous
dimensions and the S-unction of theory are given by equations [7.9]. The Yukawa
couplings y; ;1 can be arranged in such a way that they are covered by a single index
i:

Yijk = Gi (8.18)
withz = 1, - - - n. It is convinient to define
2 2
g 9i
. =2t 8.19
T YT 4 8.19)

Hence, the evolution of the parameter in perturbation theory obey the equations

5:2(;[:_5(1)0‘2*”'
doy; (8.20)
Bi = T —ﬁfl)aia + Zﬁi(;)kozjozk + -
4k

where ﬂi(l) are the coeflicients at the one loop order , ﬁg)k = 6;1,3]- and - - - denotes
the contributions from higher orders.

As we have seen for reducing the number of parameters we look for power solutions
in terms of the gauge coupling « that keep formally perturbative renormalizability.
In order to investigate the asympotic properties we define [29]:

& = % + O 8.21)
and so
do;  d(ady) ~‘da N day;
dt dt Yot T
:>Bz V4 aﬁ ddz
g da dt
do — _  f
= T = a; + E (8.22)
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then from equations [8.20], we get:

da — _  f
Oéda— Oéz‘i‘g

(1) r—1
_ (— gfm)ai—z s+ X ) @ 623
gk

where Bi(r) are power series of a's and can be computed from the r-th-loop -
functions. Assuming that
a— 0 ,as t — o0 (8.24)

which requires that 3! > 0 we look for power solutions to the equations [8.23] that
satisfy
a; — pi ,as a— 0 (8.25)

with 0 < p; < 0.

If such a solution exists then the assumption [8.24] is self-consistent and the re-
duced system is asymptotically free to all orders in perturbation theory.We, will
then examine the various cases that might appear in the reduction of couplings of
an asymptoyic free theory:

(1) Trivial reduction.

In this case p; = 0, (i = 1, ---n) and the leading order behavior of &; is given by:

& =ca% 4, 6, >0 (8.26)

where - - - represents terms that decrease faster than o’ as v — Oand c; are arbitrary
positive constants.

Substituting this ansatz into equation [8.23] and assuming that higher order terms in
«, &; can be neglected, we find:

d(c;a®) AN
o = (_1+5(1) o

do

B
B3

so that 51»(1) > B has to be neccessarily satisfied.

In this case we regard &; as small perturbations to the undisturbed system which is
defined by setting & to zero.

(i) Non trivial reduction.

In this case, we are looking for power series solution of equations 8.23] in the form

(8.27)

—pz+Zp<’“) >0, =1 n (8.28)
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substituting this ansatz we get

(r) ! gy o) o1 B () -1
Yopil(r=1a" = —p; + 11)/%‘ =2+ 61(1) dopla
r=2 r=2 r=2

50

Z ”k (pjpk +pi > pg)a”’l + > py)o/"l + (higher order terms))
7,k r=2

r=2
51(1) Bz-( Y (r) r—
- Z o @ Zz pi
ﬁ(l)
— Z 5Z(j;€ (pjpk: + 2py Z p] Y+ (higher order terms))
ik
(8.29)
Collecting the terms of O(0) we obtain
1)
51(1) B@ ik
(— 30 Pi — zk: 5(]) pipk =0 (8.30)
j7
and collecting the terms of O(r)
M) =0, r=1,--- ,n. (8.31)
where
g Bk
M;;(r) = 50 dij + 2 zj{)k (8.32)

Thus all the expansion coefficients p]'s can be uniquely determined if det M (r);; #
Oforallr=1,---,n.

If [8.28] is the solution of [8.23] and 3"} > 0 then the system is asymptotically
free and contains only one independent parameter, the primary coupling g. We also
notice that the solutions p; is a fixed point of evolution equations [8.23] in the one-
loop approximation.

(ii1) Partial reduction.

A partially reduced system is a system in which only a part of coupling constants are
reduced and exhibits a 'mixture' of the above cases. In this case we assume that the
fixed points have the form

pizoai:]-?"'am

, (8.33)
pi>07 Z:m+17"' T
then we search for power series solutions of the form
—m+2ﬁ”rﬂiZM+L~nn (8.34)
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The small perturbations caused by nonvanishing &; with ¢ < m enter in such a way
that the reduced couplings &; with ¢ > m becomes functions of « as well as of &;,
1 < m.

8.4 Reduced MSSM

We can now employ the above method in the case of MSSM [30]. We want to
reduce the top, bottom Yukawa couplings ¥, v, in the favour of the strong coupling
3. Thus we assume a perturbative expantion of the Yukawa couplings in powers of
the strong coupling stastifying the reduction equations

dyt,b
Bip = Bys g (8.35)
We define
yt2b
oy ===, 1 =1,b (8.36)
27

and assume that in the lowest order the Yukawa couplings are related with the stong
coupling
o =Glag i =1t,b (8.37)

while we treat the other couplings as corrections. Using the RGEs in equations
[7.11], [7.12]and working with the ratios of couplings

pi= (8.38)
as
we have
1 16 13
1, 9 9 16 7
B = 5-Gioa(6GE + GF 4 pr — 5 = 32— 1z1) (8.39)
while the left-hand side of the above equations is
3
ﬁoét = _%G?ag
3
By = —%Giag (8.40)
where
piy = Gi, (8.41)
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solving the above equations we obtain

t =3 525P1 7P2 55PT
1 29 3 6
24 = — 0y — — 42
Gy 3 T EgpP1 T e T 5P (8.42)

To obtain the above relations for G?,b we have assumed that if we fix the scale the
dependence of p;; on renormalization scale is negligible even if we include the cor-
rections that comes from the other couplings, ie.

dpt,b
dgs

~ 0 + small corrections (8.43)

Such an assumption sets a boundary condition at the GUT scale. In this way we
have found a relation between the top- and bottom- quark Yukawa coupling with
the strong coupling that holds at the GUT scale, or in other words we have achieved
Gauge-Yukawa Unification. With these boundary conditions one can run the RGEs
down to the electroweak scale and have a prediction for the top and bottom quark
masses. This analysis can be also applied to the softly supersymmetry breaking sec-
tor where we have dimentionfull parameters since the reduction of couplings is a
renormalization scheme independent procedure [31]. Hence, the principle of re-
duction of couplings is very usefull tool in order to make the model more predictive.
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Appendix A

Two-component spinor notation

In this appendix, some identities identities concering the sigma matrices, two com-
ponent spinors and the Grassmann coordinates are presented. For the sigma matrices
o, ot we have the identities

(0")ap(0u) 15 = 2€ar€45 (A.1)
(6%)*%(5,)10 = 2677 (A2)
(5u)a6(5u)7é — 907 B0 (A.3)
(0")a5(@)7° = 2003} (A4)
(o+G” + o¥a")? = 268 (A.5)
(6"0" +5"0")s = 25, (A.6)
ota’ola’ ot =2 of + nPot — ntPa?) (A.7)
00" + 600" = 20" + "ot — ") (A8)
Tr[o-“a-”gp&” = 2(77!”77% + pHEpP — Pt — ie“”p“) (A.9)

The two-component Weyl spinors are of Grassmann nature and thus they anticom-
mute among themselves.
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Thus for &, x Weyl spinors and 6,,, 7% we have the Fierz identities

oty = —x'ak¢
§oM'x = —xo"¢
STO—MV T _XT5/W£T
1
0°0° = ——e*09
2

1
0,195 = 560[@90
1
Tl — _ 2. ptpf
046} = —5eapt'0

gtagts — _;EdBQTQT

(9)(0x) = —5(€)(09)
G = —5 (€ E'e)
(Emx'y’) = ;écf“x*nmﬁ

(€ (x8) = € xnl 0,0

00101007 0" = ;W(ee)(e*m)

(0"61), 00761 — 9*9*(2#“’@, _ z’(a“”e)a>
(60)4075"0 —99@9&#” + i(@Ta’“’)a)

We note that a consequence of [A.12] is O/ 0 = §T5* 0T = 0.
A Dirac four-component spinor, in the Weyl representaion is

()

For the gamma matrices in the same reprsentation we have

. (0 o* (-1 0
T=er 0) T o T

(A.10)
(A.11)
(A.12)

(A.13)
(A.14)
(A.15)
(A.16)
(A.17)
(A.18)
(A.19)
(A.20)
(A21)
(A.22)

(A.23)

(A.24)

(A.25)

where o# = (I,0"), " = (I, —c"), with ¢* the Pauli matrices and [ is the 2 X 2

unit matrix. The charge conjugation operator is

) —io? 0
C = 7”7270 = < 0 2)

10
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and for the conjugate W, is

Bo=vh' = (e (] o) = ) @

Thus we have the bilinear products

UpWp = x4+ &x (A.28)
UpysWp = x'eh — &x (A.29)
Upy"Up = x'oty + Eo¢! (A.30)
Upyys¥p = ol — xlo¢ (A31)

A Majorana Spinor il’l the VV eyl representation iS

In the same manner we have te bilinear products

U Wpr = AT+ 0 (A.33)
UarvsUar = ATAT — AN (A.34)
Uy U a = Aah\ + Aot AT (A.35)
Ty s W = Aot — ATaHA (A.36)
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Computation of 3, v functions

Accordin to [21], the S— function for a G; ® G5 supersymmetric gauge theory is
given by
].677'251 == gfal, a; = T(Rl)d<R2) - 302(G1) (Bl)

Fermions trasnform in the R, (R») representation with respect to G; (G2 ) and bosons
n the S;(.S2) with respect to G1(G5).

C5(R) is the quadratic Casimir of the representation R, while C(G) is the quadratic
Casimir of the adjoint representation. The following relations hold

RR* = Cy(R)I (B.2)
Tr[R*R’] = T(R)0" (B.3)
Cy(R)d(R) = T(R)r (B.4)

where R is the matrix representation of the generators of the group, d(R) the di-
mension of the representation and r the number of generators. For an SU () group
we have

Co(G) =N (B.5)
T(R) = ; (by convention) (B.6)
and fora U(1)
Ca(G) =0 (B.7)
Cy(R) =T(R) =Y? (B.8)

where the Y is properly normalized.
For the field content of MSSM and its SU(3) ® S(2) ® U(1) gauge structure we
have:
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For G; = SU(3), then quarks transform as a triplet (3) while the rest of transform
as singlets (1) thus

7(3) = (B.9)
T(1)=0 (B.10)
hence
as :T(Rl)d<R2> — 302(G1)
_(1 2-1 ! 1-1 3-3
(Lo laa)y-a
=2ny,—9 (B.11)

where n, is the number of fermion generations
For Gy = SU(2) the left-handed fermions and the Higgs fields transform as doublet
(2) under SU (2) while the other as singlets. Hence

a9 :T(R1>d<R2) — 3CQ(G1)

1 1 1
—<2-3-1—0—2-1-1)ng+<2-1-1>nh—3-2

1
=2n, + S, — 6 (8.12)

where 7y, is the number of Higgs doublets.
For G; = U(1) we have

aq :T(Rl)d(Rg)

3 /1 6 4

% (23942 314023 141-1-244-1-1 1.92.1

4~5<9 9 *9 * + )ng+< )”’”‘
3

“on,+ S, (8.13)

where we have used the normalization \/gY = 2(Q — T3) For n, = 3 and n;, = 2
we obtain

33
a; = =
as =1
az = —3 (8.14)

For the —function of the Yukawa coupings Y;;; we have [5]

dYijk
Bripe = =3¢

= Yk + Yt + Vil (8.15)
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where Y'¥* are real and symmetric in all indices ant the anomalous dimensions are

1 71

= 2Y3“Ykl — 29%Cy(R;)d! (8.16)

7 =
For the top-quark Yukawa (-function we have

Baerr, = Yoy, + Yau Vi + Yier, v, (8.17)
were ¢ is the third generation quark doublet and ¢ the singlet. Thus we have

Bttt =Yau Vi, + Yam i + Yun, v,
q

You 11 4
:16?71-2 |:2Yl ]YHHZ] - 2.ga02<RHu)6lqu:|
Y, 1 .
e, g
Y; 1
L ——
thH 1 Hyij 2 3 ]
Lt | Dy tigy, 22 0
1672 {2}/ Huij = 7091 T 5%
Yoo, (1o 8
+ {g; [QY”YW 9% 393 }
Yoer, [1s 0 1 3,
62 [QYMYC’” 3091~ 39 393}
thH {1 3 2 3 2]
= 2-3-Y —
1672 |2 Hugt = 7991~ 592
YcJtH 1 8 2 8 2]
w2 9.9y, 22 2.
* 16m2 [2 Huag — 1591 = 395
Yoo [1 1, 3, 8
1(g7T2 [2 2 (YHuqt + Yqub) = %9% - 593 — 3932,]
(8.18)
Hence for Yy, = y: and Yy, = yu We obtain
dy, 1 16 13
B = = O+ G -3 - e B19)

In a similar way, we can find 3,, and 3, .
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