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Abstract

In the present thesis, we investigate the existence of relations between the Yukawa
and the gauge couplings in the context of the minimal Supersymmetric extension of
the Standard Model. At the beginning we demonstrate the Poincaré group and the
corresponding classification of particles and then introduce Supersymmetry as an ex-
tension of the Poincaré algebra and show how can it be realized in a four-dimension
field theory. We proceed with the introduction of the notions of superspace and
superfields in order to construct in a systematic and manifest way supersymmetric
gauge theories. Since Supersymmetry is not an exact symmetry of nature, some pos-
sible ways of how it can be broken are discussed. Having the machinery we need, we
construct the Minimal Supersymmetric Standard Model (MSSM) and explore some
of its phenomenological implications. The renormalization structure of the model is
considered as well. Finally, the method of reduction of couplings is presented which
is used to relate the unrealated free parameters of a given model and then apply it
in the MSSM itself in order to derive a unification of the gauge and the Yukawa
couplings.





Περίληψη

Στην παρούσα εργασία, ερευνούμε την πιθανότητα συσχετισμού των σταθερών
σύζευξης Υukawa και βαθμίδας στα πλαίσια της υπερσυμμετρικής επέκτασης
του Καθιερωμένου Προτύπου. Αρχικά παρουσιάζουμε την ομάδα Poincaré και
την κατηγοριοποιήση των σωματιδίων και εισάγουμε την Υπερσυμμετρία ως
επέκταση της άλγεβρας Poincaré και δείχνουμε πως μπορεί να πραγματωθεί
σε μια τετραδιάστατη θεωρία πεδίου. Συνεχίζουμε εισάγοντας την έννοια του
superspace και των superfields την οποία χρησιμοποιούμε συστηματικά ώστε να
κατασκευάσουμε μοντέλα στα οποία ηΥπερσυμμετρία είναι έκδηλη. Επιπροσθέτως,
εφόσον η Υπερσυμμετρία δεν είναι ακριβής συμμετρία της φύσης, συζητώνται
τρόποι παραβίασής της. Στην συνέχεια και έχοντας το απαραίτητο υλικό που
χρειαζόμαστε, κατασκευάζουμε το Ελάχιστο Υπερσυμμετρικό Καθιερωμένο
Πρότυπο (MSSM) και θεωρούμε κάποιες φαινομενολογικές του συνεπείες καθώς
και την δομή επανακανονικοποίησης που έχει. Tέλος παρουσιάζεται η μέθοδος
ελάττωσης τωνπαραμέτρων, η οποία χρησιμοποιείται για να συσχετίσει φαινομενικά
ασύνδετες ελεύθερες παραμέτρους του εκάστοτε μοντέλου και έπειτα εφαρμόζεται
στην περίπτωση τουMSSMώστε να καταφέρουρμε να ενοποιήσουμε τις σταθερές
σύζευξης Yukawa και βαθμίδας.
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Σχεδιάγραμμα της εργασίας

Στην μεταπτυχιακή, αυτή, εργασία , εστιάζουμε στην κατασκευή του Ελάχιστου
ΥπερσυμμετρικούΚαθιερωμένουΠροτύπου, καθώς και την εύρεση συσχέτισης
μεταξύ των σταθερών σύζευξης βαθμίδας και Yukawa.
Στο κεφάλαιο ένα, εισάγουμε τις ομάδες Lorentz και Poincaré, βρίσκουμε την
άλγεβρα των ομάδωναυτών και κατασκευάζουμε τις πεπερασμένης δάστασης
σπινοριακές αναπαραστάσεις καθώς και τις απειροδιάστατες αναπαραστάσεις
των μονοσωματιδιακών καταστάσεων.
Στο κεφάλαιο δύο, εισάγουμε την υπερσυμμετρία από μια ομαδοθεωριτική
προσέγγιση βρίσκοντας την υπερσυμμετρική άλγεβρα ως μια επέκταση της
ομάδας Poincaré και βρίσκοντας τις άμαζες αναπαραστάσεις της.
Στοκεφάλαιο τρία, κατασκευάζουμε μια τετραδιάστατη θεωρία πεδίου αποτελούμενη
από ένα σπινοριακό και ένα βαθμωτό πεδίο και εισάγοντας υπερσυμμετρικούς
μετασχηματισμούς των πεδίων δείχνουμε την αναλλοιώτητα της δράσης κάτω
από τους μετασχηματισμούς αυτούς. Στην συνέχεια δείχνουμε τι τροποποιήσεις
πρέπει να γίνουν ώστε η υπερσυμμετρία να διατηρείται και κβαντικά. Έπειτα
επαναλαμβάνουμε την ίδια διαδικασία για ένα μοντέλο το αποίο αποτελείται
από ένα διανυσματικό πεδίο και ένα φερμιονικό πεδίο. Τέλος κάνουμε, εκ
νέου, την διαδικασία αυτή έχοντας λάβει υπόψιν και διαφόρων ειδώναλληλεπιδράσεις
και γίνεται αναφορά στην έννοια του superpotential.
Στο κεφάλαιο τέσσερα, Εισάγουμε την έννοια του superspace ως μια επέκταση
του σύνηθους χωροχρόνου με την προσθήκηαντιμετατιθέμενων συντεταγμένων
καθώς και την έννοια του superfield, ως μια γενίκευση του πεδίου, το οποίο
είναι συνάρτηση των συντεταγμένων του superspace. Επίσης δείχνουμε πώς
εφαρμόζεται ο διαφορικός λογισμός στον superspace, βρίσκουμε την αναπαράσταση
των γεννητόρων της υπερσυμμετρίας με διαφορικούς τελεστές και ότι η υπερσυμμετρία,
ουσιαστικά, εκδηλώνεται ως μετάθεση στον χώρο αυτόν. Χρησιμοποιώντας
τα εργαλεία αυτάπαρουσιάζουμε πως κατασκευάζονται υπερσυμμετρικές θεωρίες
βαθμίδας, τόσο στην αβελιανή όσο και στην μη αβελιανή περίπτωση και αφού
δώσουμε κάποια βασικά στοιχεία ολοκλήρωσης σε μεταβλητέςGrassmannφτιάχουμε
υπερσυμμετρικές δράσεις.
Το κεφάλαιο πέντε , αναφέρεται στο σπάσιμο της υπερυσυμετρίας. Αρχικά
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παρουσιάζουμε κάποιες ιδιότητες που πρέπει να έχει η κατάσταση του κενού
σε υπερσυμμετρικές θεωρίες και αποδεικνύουμε το θεώρημα Goldstone. Στην
συνέχεια μελετάμε δυο μοντέλα για το αυθόρμητο σπάσιμο της υπερσυμμετρίας
και αφού επιχειρηματολογίσουμε ότι δεν μπορούν να βρούν εφαρμογή στο
υπερσυμμετρικόΚαθιερωμένοΠρότυπο, αναφέρουμε το πως μπορούμε να έχουμε
ρητό σπάσιμο χωρίς, όμως, να επηρεάζει την καλή συμπεριφορά που έχουν
τέτοιες θεωρίες.
Στοκεφάλαιο έξι, έχοντας, πλέον, όλα τα εργαλεία στην διάθεσή μας βρίσκουμε
το σωματιδιακό περιεχόμενο του Ελάχιστα Υπερσυμμετρικού Καθιερωμένου
Προτύπου (MSSM), εισάγουμε τα αντοίστοιχα superfields και γράφουμε την
Lagrangian του μοντέλου τόσο για τα πεδία και τις αλληλεπιδράσεις βαθμίδας
όσο και για το superpotential καθώς και τους όρους που αφορούν το ρητό σπάσιμο
της υπερσυμμετρίας. Στην συνέχεια υπολογίζουμε το βαθμωτό δυναμικό της
θεωρίας και καταλήγοντας στις συνθήκες ώστε να έχουμε αυθόρμητο σπάσιμο
της ηλεκτρασθενούς συμμετρίας και βρίσκουμε ότι αυτή πλέον σπάει λόγω
των κβαντικών διορθώσεων. Τέλος υπολογίζουμε το φάσμα που αφορά τα
πεδίαHiggs καθώς και τις αντίστοιχες συζεύξειςYukawa των ουδέτερωνπεδίων
με τα σωματίδια της τρίτης γενιάς φερμιονίων και δείχνουμε πως διαφοροποιούνται
σε σχέση με το Καθιερωμένο Πρότυπο.
Στοκεφάλαιο εφτά, παρουσιάζουμε τοΝon-renormalization theorem, ένα σημαντικό
θεώρημα για τις υπερσυμμετρικές θεωρίες, το οποίο υποδεικνύει ότι οι απειρισμοί
των παραμέτρων της θεωρίας προέρχονται αποκλειστικά και μόνο από τις
σταθερές επανακανονικοποίσης των κυματοσυναρτήσεων. Αυτό έχει ως αποτέλεσμα
το superpotential να είναι tree-level exact, και έτσι να τίθενται περιορισμοί στην
μορφή των β-συναρτήσεων των σταθερών βαθμίδας οι οποίες θα είναι συνδυασμός
των ανώμαλων διαστάσεων. Δίνουμε, ακόμη τις β-συναρτήσεις για τις αδιάστατες
παραμέτρους και παρουσιάζουμε ότι στα πλαίσια του MSSM, επιτυγχάνεται
ενοποίηση των σταθερών βαθμίδας.
Στο κεφάλαιο οχτώ, εισάγεται η μέθοδος ελάττωσης των παραμέτρων για
επανακανονικοποιήσιμες θεωρίες και περιγράφονται κάποια γενικά χαρακτηριστικά.
Η μέθοδος αυτή, χρησιμοποιείται για να βρίσκουμε σχέσεις μεταξύ των ελεύθερων
παραμέτρων του μοντέλου που είναι αναλλοίωτες κάτωαπό την ομάδα επανακανονικοπίησης.
Με αυτόν τρόπο, μπορούμε να συσχετίσουμε φαινομενικά ασύνδετες παραμέτρους
και αυτό επιτυγχάνεται είτε να συσχετίσουμε όλες τις παραμέτρους μεταξύ
τους, η μέρους αυτών. Τέλος γίνεται εφαρμογή της μεθόδου αυτής στο MSSM
ώστε να συνδέσουμε τις Yukawa συζεύξεις με τις συζεύξεις βαθμίδας και με
αυτόν τον τρόπο να επιτύχουμε ενοποίηση αυτών.
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Introduction and motivation

Standard Model describes three out of four of the fundamental interactions among
elementary particles (electromagnetic, strong and weak). The typical scale of the
model is

MEW ∼ 250GeV (1)
and is remarkably tested up to such energies. At high energies, as high as the Planck
scaleMP L gravity becomes comparable with the other forces, and at this point we
need a quantum theory of gravity. Actually, the fact thatMP L/MEW >> 1 signals
for new physics at a much lower scale. To see this, we consider the Standard Model
Higgs potential

V (H) = 2|H|2 + λ|H|4 (2)
where µ2 < 0.
Experimentally, the minimum of this potential is

⟨H⟩ =
√

−µ2/2λ ∼ 174GeV (3)

which implies that the bare mass of the Higgs particle ism2
H = −µ2 ∼ (100GeV 2.

But this mass receives enormous radiative corrections. The coupling of the Higgs
particle with a Standard Model fermion is −λfHff̄ and this induces a one-loop
correction to the Higgs mass as

∆m2
H

∼ −λ2
fΛ2

UV (4)

The ΛUV is an ultraviolet momentum cut-off and it should be interpreted as the
energy scale where new physics enters. This cut-off should then be around the TeV
scale in order to protect the Higgs mass from receiving high corrections and thus
StandardModel would be seen as an effective theory valid at energiesE < Λ ∼ TeV
No matter what new physics shows up at high energy, the natural mass of the Higgs
field would always be of O(Λ) (the UV- cut-off of the theory) which is generally
the Planck scale. Thus we would need a huge fine-tuning to stabilize the mass at
∼ 100GeV. This is known as the Hierarchy problem: the experimental value of the
Higgs mass is unnaturally smaller the its theoritical predicted.
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Away out of this lies in the fact that the scalar couplings provide one-loop correction
with an opposite sign with respect to the fermions. Thus supposed that their exist
a new scalar S with Higgs coupling −λS|H|2|S|2, then the correction to the Higgs
mass would be

∆M2
H

∼ λSΛ2 (5)
Therefore, if the new physics is such that each quark and lepton of the Standard
Model were accompanied by two complex scalars such that λS = |λf |2, then all Λ2

contributions would automatically cancel and the Higgs mass would be stabilized at
its tree-level value.
A naturally way to have such cancelation is by imposing a symmetry that protects the
massm2

H and relates the bosonwith fermions. Such symmetry is called Supersymmetry.
Thus the first to do is to incomporate supersymmetry into the StandardModel. How-
ever, known fermions and bosons cannot be partner of each other and so wemust ex-
tend the Standardmodel by double each particle and form theMinimal Supersymetric
StandardModel, where all particles will be accompanied with their supersymmet-
ric partners (sparticles). This model, has over 100 free parameters and thus make
it less predictive. It is ,thus, of interest, to develop a machinery in order to reduce
the number of the free paramaters and thus render the model more predictive. The
so called reduction of couplings method will also help us to relate the gauge and the
Yukawa couplings and thus achieve theGauge-Yukawa unificationwhich is a natural
extention of the gauge coupling unification in Grand Unified Theories.
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Chapter 1

Lorentz and Poincaré Groups

1.1 Lorentz Group
The Laws of Physics must be invariant under the Lorentz transformations

xµ′ = Λµ
νx

ν (1.1)

which leave the quadratic form

x2 = xµxµ = ηµνx
µxν = (x0)2 − (x⃗)2 (1.2)

invariant.
Hence the Lorentz transformations satisfy the condition

ηµνΛµ
ρΛν

τ = ηρτ (1.3)

where ηµν is the metric tensor used to lower indices and its inverse ηµν is used to
raise indices.Here we adopt the convention

ηµν = diag(+1,−1,−1,−1)

Taking the determinant and the 00-th component of the relation [1.3] we find

(det Λ)2 = 1 (1.4)

and
(Λ0

0)2 = 1 + (Λi
0)2, i = 1, 2, 3

hence
(Λ0

0)2 ≥ 1 (1.5)
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CHAPTER 1. LORENTZ AND POINCARÉ GROUPS

The above constraint distinguishes the so-called orthochronous Lorentz transforma-
tions with Λ0

0 ≥ 1 from non-orthochronous with Λ0
0 ≤ 1.

The matrices (Λµ
ν) form the Lorentz Group:

L = O(1, 3;R) = {Λ ∈ GL(4,R)|Λ⊤ηΛ = η}

We are particularly interested in the so called proper orthochronous Lorentz Group:

L↑
+ = SO(1, 3;R) ≡ {Λ ∈ O(1, 3;R)|detΛ = +1,Λ0

0 ≥ +1} (1.6)
which does not contain time or space reflections.
Close to the identity, a Lorentz transformation can be written as

Λµ
ν = δµ

ν + ωµ
ν (1.7)

and form relation [1.3] we can see that

ηµσ(δµ
ρ + ωµ

ρ)(δν
σ + ων

σ) = ηρσ

⇒ ηρσ + ωρσ + ωσρ = ηρσ

⇒ ωρσ = −ωσρ (1.8)

where we have discard terms of O(ω2). Thus an element of the group has 6 inde-
pendent parameters.

1.2 Poincaré Group
The Lorentz group along with spacetime translations

xµ → xµ′ = xµ + αµ (1.9)

forms the Poincaré Group (P) which have 10 independent parameters. The group
also called inhomogenous Lorentz group (ISO(1, 3))
If we consider two consecutive Poincaré transformations

x′ = Λ1x+ α1

x′′ = Λ2x
′ + α2

we find
x′′ = Λ2(Λ1x

′ + α1) + α2 = Λ2Λ1x+ Λ2α1 + α2 (1.10)
So, writting (Λ, α) for an element of P we get the composotion rule:

(Λ2, α2) ◦ (Λ1, α1) = (Λ2Λ1,Λ2α1 + α2) (1.11)
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CHAPTER 1. LORENTZ AND POINCARÉ GROUPS

The identinty element od the group is (14×4, 0) and the inverse of (Λ, α) is the
element (Λ−1,−Λ−1α) such that

(Λ, α) ◦ (Λ−1,−Λ−1α) = (Λ−1,−Λ−1α) ◦ (Λ, α) = (ΛΛ−1,−ΛΛ−1α + α)
= (14×4, 0) (1.12)

The elements of the group can be represented by unitary operators acting on aHilbert
space

(Λ, α) → U(Λ, α) (1.13)
such that

U(Λ2, α2)U(Λ1, α1) = U(Λ2Λ1,Λ2α1 + α2) (1.14)

U−1(Λ, α) = U(Λ−1,−Λ−1α) (1.15)
Infinitesimally we can write

U(Λ, α) = 1 + i

2
ωρσM

ρσ − iαµP
µ (1.16)

whereMρσ, P µ are generators of the Lorentz transformations and spacetime trans-
lations respectively in the corresponding representation.
Next we want to find how the generators transform under a Lorentz transformation.
First we consider:

U−1(Λ, 0)U(Λ′, α′)U(Λ, 0) = U−1(Λ, 0)U(Λ′Λ, α′)
= U(Λ−1, 0)U(Λ′Λ, α′)
= U(Λ−1Λ′Λ,Λ−1, α′) (1.17)

where we have used the relations [1.14],[1.15].
For an infinitesimall U(Λ′, α′), the Left-hand side of equation [1.17] is written:

U−1(Λ, 0)U(Λ′, α′)U(Λ, 0) = U−1(Λ, 0)
[
1 + i

2
ω′

µνM
µν − iα′

µP
µ
]
U(Λ, 0)

= 1 + i

2
ω′

µνU
−1(Λ, 0)MµνU(Λ, 0) − iα′

µU
−1(Λ, 0)P µU(Λ, 0) (1.18)

while the Right-hand side

U(Λ−1Λ′Λ,Λ−1, α′) = 1 + i

2
(Λ−1ω′Λ)ρσM

ρσ − i(Λ−1α′)ρP
ρ

= 1 + i

2
(Λ−1) µ

ρ ω
′
µνΛν

σM
ρσ − i(Λ−1) µ

ρ α
′
µP

ρ

= 1 + i

2
ω′

µνΛµ
ρΛν

σM
ρσ + iα′

µΛµ
ρP

ρ (1.19)
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CHAPTER 1. LORENTZ AND POINCARÉ GROUPS

Thus we obtain
U−1(Λ, 0)MµνU(Λ, 0) = Λµ

ρΛν
σM

ρσ (1.20)

U−1(Λ, 0)P µU(Λ, 0) = Λµ
ρP

ρ (1.21)
Equations [1.20],[1.21] state thatMµν trasforms as a tensor under Lorentz transfor-
mations while P µ transforms as 4-vector.
Now we consider infinitesimal Lorentz transformation, thus the Left-hand side be-
comes:

U−1(Λ, 0)MµνU(Λ, 0) = U(Λ−1, 0)MµνU(Λ, 0)

=
[
1 − i

2
ωρσM

µν
]
Mµν

[
1 + i

2
ωρσM

µν
]

= Mµν + i

2
ωρσ

[
Mρσ,Mµν

]
(1.22)

and the Right-hand side:

Λµ
ρΛν

σM
ρσ = (δµ

ρ + ωµ
ρ)(δν

σ + ων
σ)Mρσ

= Mµν + ηµσωσρM
ρν + ηνρωρσM

µσ

= Mµν + 1
2
[
ηµσωσρM

ρν + ηµρωρσM
σν + ηνρωρσM

µσ + ηνσωσρM
µσ
]

= Mµν + 1
2
ωρσ

[
ηµρMσν − ηµσMρν − ηνσMµρ + ηνρMµσ

]
(1.23)

Hence[
Mµν ,Mρσ

]
= −i

(
ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ

)
(1.24)

Following the same proccedure, we deduce from equation [1.21]:[
Mµν , P ρ

]
= −i

(
ηµρP ν − ηνρP µ

)
(1.25)

and also [
P µ, P ν

]
= 0 (1.26)

Equations [1.24]-[1.26] are the Poincaré algebra.
We can identify

P⃗ = {P 1, P 2, P 3}
J⃗ = {M23,M31,M12}
K⃗ = {M01,M02,M03}

13
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which are the momentum, the angular momentum and the boost 3-vector respec-
tively. Computing the commutators we find that[

Ji, Jj

]
= iϵijkJk[

Ji, Kj

]
= iϵijkKk[

Ki, Kj

]
= −iϵijkJk[

Ji, Pj

]
= iϵijkPk[

Ji, H
]

=
[
Pi, H

]
=
[
H,H

]
= 0[

Ki, Pj

]
= iHδij[

Ki, H
]

= iPi (1.27)

where i, j, k = 1, 2, 3, ϵijk is the totally antisymmetric tensor with ϵ123 = 1 and
P 0 ≡ H the Hamiltonian operator. We note that the boost 3-vector is not con-
served.That is why we do not use the eigenvalues of this operator to label physical
states.

1.3 Representations of the Lorentz Group
In Eqs. [1.27], we recognise the SU(2) algebra, which in this case is a subalgebra
as it is embedded in a bigger one. We aslo notice that boost generators transform as
3-vectors.
Looking for a way to simplify the algebra we are studying, we define:

J±
i = 1

2
(Ji ± iKi) (1.28)

hence [
J+

i , J
+
j

]
= iϵijkJ

+
k[

J−
i , J

−
j

]
= iϵijkJ

−
k (1.29)

and [
J+

i , J
−
j

]
= 0 (1.30)

Thus, we managed to decompose the Lorentz algebra into two independent subal-
gebras and we write

so(1, 3) = su(2) ⊕ su(2) (1.31)
The decomposition of the algebra, implies that we can construct all the represen-
ations of the Lorentz group in terms of the representations of SU(2). Each irre-
ducible representation of SU(2) is characterized by a half-integer j and act on a

14



CHAPTER 1. LORENTZ AND POINCARÉ GROUPS

vector space of dimension (2j + 1).It follows that the irreducible representations of
the Lorentz group are characterized by two half-integers j+, j− which are the eigen-
values of the two casimir operators J+, J− of the two su(2)'s. The dimensions of
the representations is given by dim(j+, j−) = (2j+ + 1)(2j− + 1). The following
table describes the main finite-dimensional representations of the Lorentz group:

Representation Dimension Type
(0,0) 1 scalar
(1/2,0) 2 left-handed spinor
(0,1/2) 2 right-handed spinor
(1/2,1/2) 4 vector

1.4 Spinorial representation
The (1/2, 0) representation acts on a two-dimension, complex object

Ψ =
(
ψ1
ψ2

)
(1.32)

which we call left-handed Weyl spinor and under Lorentz tranformations, it trans-
forms as

ψα → ψ′
α = M(Λ) β

α ψβ (1.33)
where M is a 2 × 2 complex matrix, belonging to the representation (1/2, 0).
From the Equations [1.29], [1.30]we can see that complex conjugation swaps the two
su(2) algebras and that the representations (1/2, 0), (0, 1/2) are complex conjugate
to each other. So we adopt the notation

(ψα)⋆ ≡ ψ†
α̇ (1.34)

The dotted spinor is a right-handed Weyl spinor which belong to (0, 1/2) represen-
tation and transform as

ψ†
α̇ → ψ†

α̇
′ = M⋆(Λ) β̇

α̇ ψβ̇ (1.35)

Nowwewant to write thematricesM,M⋆ explicitly. A finite element of the Lorentz
group is written

U(Λ) = exp
( i

2
ωµνJ

µν
)

= exp
[ i
2
(
ω21J

21 + ω31
31 + ω32J

32 + ω0iJ
0i
)]

(1.36)

15
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introducing the definitions θi = ϵijkω
jk and ηi = ω0i we write

U(Λ) = exp
(
iθiJ

i + iηiK
i
)

(1.37)

Now, we know that Pauli matrices obey the relations in equation [1.30]. After rescal-
ing we have [

σi

2
,
σj

2

]
= iϵijk

σk

2
(1.38)

Then we can set J−
i = σi

2 , J
+
i = 0 for the (1/2, 0) representation and J+

i = σi

2 ,
J−

i = 0 for the (0, 1/2) representation. For the boosts we also have: Ki = i
2σi for

(1/2, 0) andKi = − i
2σi for (0, 1/2) representation.

Thus the matrices M(1/2,0), M(0,1/2) can be written as

M(1/2,0) = e
1
2 (iθ⃗−

−→
β )·σ⃗

M(0,1/2) = e
1
2 (iθ⃗+β⃗)·−→σ (1.39)

Introducing the matrices

σµν = i

4
[
σµ, σν ], σ̄µν = i

4
[
σ̄µ, σν ] (1.40)

where
σµ = (1, σi), σ̄µ = (1,−σi) (1.41)

we can see that these matrices obey the commutation relations [1.21] and also

σµν = (σ̄µν)† (1.42)

we can writte the M matrices as

M(1/2,0) = e
1
2 ωµνσµν

M(0,1/2) = e
1
2 ωµν σ̄µν (1.43)

In order to contstruct invariant products of spinors we have to introduce the anti-
symmetric two-index tensor

ϵαβ = ϵα̇β̇ = iσ2 =
(

0 1
−1 0

)

ϵαβ = ϵα̇β̇ = −iσ2 =
(

0 −1
1 0

)
(1.44)
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which are used to raise and lower spinor indices as

ψα = ϵαβψβ, ψα = ϵαβψ
β

and
ψα̇ = ϵα̇β̇ψ

β̇, ψα̇ = ϵα̇β̇ψβ̇

Equation[1.44] imply

ϵαβϵβγ = δα
γ ϵα̇β̇ϵ

β̇γ̇ = δγ̇
α̇ (1.45)

Now we can show that for the matrices in equation [1.43] hold the relations

ϵαβ(M(1/2,0)) γ
β ϵγδ = (M−1T

(1/2,0))
α
δ

ϵα̇β̇(M(0,1/2)) γ̇

β̇
ϵγ̇δ̇ = (M−1T

(0,1/2))
α̇
δ̇ (1.46)

We have(
0 1

−1 0

)(
M11 M12
M21 M22

)(
0 −1
1 0

)
=
(
M22 −M21

−M12 M11

)
= M−1T

(1/2,0) (1.47)

The last equality holds because for any invertible 2 × 2 matrix with det(M) = 1 is
true thatM−1 = adj(M).
Following the same procedure we prove the second part of equation[1.46].
Now we want to find the transformation law of ψα. Thus we have

ψ′
α = (M) β

α ψβ = ϵαδ(M−1T )δ
σϵ

σβψβ

⇒ ϵκαψ′
α = δκ

δ (M−1T )δ
σϵ

σβψβ

⇒ ψκ′ = (M−1T )κ
σψ

σ (1.48)

So, the ψα transform as
ψα′ = (M−1T )α

βψ
β (1.49)

same relation holds for ψ†α̇:

ψ†α̇′ = (M−1T )α̇
β̇ψ

†β̇ (1.50)

We can make invariant products of spinors:

ψ′χ′ ≡ ψα′χ′
α = (M−1T )α

βψ
β(M) σ

α χσ = (M−1)α
β(M) σ

α ψ
βχσ

= δ σ
β ψβχσ = ψχ (1.51)
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similary
ψ†′χ†′ ≡ ψ†

α̇
′χ†α̇′ = ψ†χ† (1.52)

Whenever we consider expressions involving more than one spinor we have to re-
member that spinors anticommute.Hence the scalar products are defined as

ψχ ≡ ψαχα = ϵαβψβχα = −ϵαβχαψβ = ϵβαχαψβ = χβψβ = χψ (1.53)

and

ψ†χ† ≡ ψ†
α̇χ

†α̇ = ϵα̇β̇ψ
†β̇χ†α̇ = −ϵα̇β̇χ

†α̇ψ†β̇ = ϵβ̇α̇χ
†α̇ψ†β̇ = χ†α̇ψ

†β̇ = χ†ψ†

(1.54)
Note that undotted indices are always contracted form upper left to lower right, while
dotted indices are always contracted from lower left to upper right.However this rule
does not apply when raising or lowering indices whith the ϵ-tensor.
The four σµ matrices naturally have dotted and undoted indices, thus we have

(σµ)αα̇ = (1, σi)αα̇

(σ̄µ)α̇α = ϵα̇β̇ϵαβ(σµ)ββ̇ = (1,−σi)α̇α (1.55)
thus the products involving spinors and σ matrices are

ψσµχ† = ψασµ

αβ̇
†β ψ†σ̄µχ = ψ†

α̇σ
µα̇βχβ (1.56)

Now looking at equations [1.34], [1.35], [1.44] we can see that if ψL ∈ (1/2, 0) then
iσ2ψ⋆

L ∈ (0, 1/2). Then, we can define the operation of charge cinjugation on Weyl
spinors as

ψc
L = iσ2ψ⋆

L (1.57)
So, charge conjugation tranforms al Left-handed Weyl spinor into a right-handed
one. Similary we define

ψc
R = −iσ2ψ⋆

R (1.58)
Iterating the tranformation twice we get the identity

(ψc
L)c = (iσ2ψ⋆

L)c = −iσ2(iσ2ψ⋆
L)⋆ = ψL (1.59)

1.5 Dirac and Majorana Spinors
Dirac spinors can be constructed using a left and a right-handed Weyl spinors:

Ψ =
(
ψL

χR

)
=
(
ψα

χ†α̇

)
(1.60)
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Dirac spinors transform as

Ψ → Ψ =
(

M(1/2,0) 0
M(0,1/2)

)(
ψL

χR

)
(1.61)

Thus, a Dirac spinor has four complex degrees of freadom and belongs to a reducible
representation of the Lorentz group:

Ψ ∈ (1/2, 0) ⊕ (0, 1/2) (1.62)

the charge conjugated is
Ψc =

(
−iσ2ψ⋆

R

iσ2χ⋆
L

)
(1.63)

The Majorana spinor is a Dirac spinor in which ψL and ψR are not independent but
rather ψR = iσ2ψ⋆

L,
ΨM =

(
ψL

iσ2ψ⋆
L

)
=
(
ψα

ψ†α̇

)
(1.64)

Thus it has the same number of deagres of freadon as the Weyl spinor and also it is
self-conjugate

Ψc
M = ΨM (1.65)

1.6 Representation of the Poincaré group on one-particle
states

In the previous section, we constructed the finite-dimensional Lorentz representa-
tions, but this representations are not unitary. Now we will construct representations
using as a basis the Hilbert space of one-particle states |pµ, s⟩, where s labels all
other quantum numbers. Since the momentum pµ is an continuous and unbound
variable, these representations will be infinite-dimensional.A theorem by E. Wigner
[16] states that on this Hilbert space any symmetry transformation can be repre-
sented by unitary operator. Thus these infinite-dimensional representations will be
unitary. The representations are labeled by the eigenvalues of the Casimir operators.
For the operator P 2 = PµP

µ we have[
P µ, P 2

]
= 0 (1.66)

and [
Mµν , P 2

]
=
[
Mµν , P ρ

]
Pρ + P ρηκρ

[
Mµν , P κ

]
= −i(ηµρP ν − ηνρP µ)P ρ − iP ρηκρ(ηµρP ν − ηνρP κ)
= 0 (1.67)
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Thus P 2 is a Casimir operator of the Poincaré group.
Now we construct the so-called Pauli-Lubanski vector

Wµ = 1
2
ϵµνρσP

νMρσ (1.68)

For this quantity we can see that

WµP
µ = 1

2
ϵµνρσP

νMρσP νMρσP µ

= 1
2
ϵµνρσ

(
P νP µMρσ − P ν

[
Mρσ, P µ

])
= 1

2
ϵµνρσP

νP µMρσ + i

2
ϵµνρση

σµP νP ρ − i

2
ϵµνρση

ρµP νP σ

= 0 (1.69)

Computing the commutators[Pµ,Wν ],[Mµν ,Wρ],
we have: [

Pµ,Wν

]
= 1

2
ϵνρστ

[
Pµ, P

ρMστ
]

= 1
2
ϵνρστηµγP

ρ
[
P γ,Mστ

]
= i

2
ϵνρστηµγP

ρ
(
ησγP τ − ητγP σ

)
= i

2
(
ϵνρµτP

ρP τ − ϵνρσµP
ρP σ

)
= 0 (1.70)

We define
I ≡ i

8
ϵµνρσM

µνMρσ

where is a Lorentz invariant quantity:

[Mµν , I] = 0 (1.71)

Next we notice that
W µ =

[
I, P µ

]
(1.72)

In order to see this, we compute[
I, P µ

]
= i

8
ϵαβγδ

[
MαβMγδ, P µ

]
= i

8
ϵαβγδ

(
Mαβ

[
Mγδ, P µ

]
+
[
Mαβ, P µ

]
Mγδ

)
= 1

8
(
ϵαβγδη

γµMαβP δ − ϵαβγδη
δµMαβP γ + ϵµ

αβδM
αβP δ + ϵ µ

α βδP
αMγδ

)
= 1

4
(
ϵµ

αβδM
αβP δ + ϵµ

αβδP
αMγδ

)
(1.73)
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from equation [1.25] we can write

MαβP δ = P δMαβ − i
(
ηαδP β − ηβδP α

)
(1.74)

the second term when contracting with ϵµ
αβδ vanishes. Thus we end up[

I, P µ
]

= 1
2
ϵµ

αβδP
αMγδ = W µ (1.75)

For the commutator [Mµν ,W ρ] we have[
Mµν ,W ρ

]
=
[
Mµν , [I, P ρ]

]
= −

[
I, [P ρ,Mµν ]

]
−
[
P rho, [Mµν , I]

]
= −

[
I, i(ηµρP ν − ηνρP µ)

]
= −i

(
ηµρ

[
I, P µ

]
− ην

[
I, P µ

])
= i

(
ηµρW ν − ηνρW µ

)
(1.76)

ThusW µ transforms as a Lorentz vector.
For the squaredW 2 = WµW

µ we have[
Mµν ,W 2

]
= ηρκ

[
Mµν ,W κ

]
W ρ +W µν

ρ ,W ρ
]

= iηρκ

(
ηµκW ν − ηνκW µ

)
W ρ + iWρ

(
ηµρW ν − ηνρW µ

)
= i

(
W νW µ −W νW µ +W µW ν −W νW µ

)
= 0 (1.77)

and also [
P µ,W 2

]
= 0 (1.78)

which follows from the equation [1.72]. ThusW 2 is the second Casimir operator.
The details for the full representation theory of the Poincaré garoup can be found in
Refs [4],[7].Here, we shall demostrate the main results.
The unitary infinite-dimentional representations can be split into two main cases:
• Massive representations
The states are labelled by the eigenvalue of P 2 = PµP

µ = m2 > 0 and the eigen-
value ofW 2.
In the rest frame where P µ = (m, 0) the zero-component of Wµ vanishes and the
spatial components are

Wi = 1
2
ϵi0jkP

0M jk = m

2
ϵijkM

jk (1.79)

defining
Si = 1

2
ϵijkM

jk (1.80)

21



CHAPTER 1. LORENTZ AND POINCARÉ GROUPS

which is the spin operator we have

Wi = mSi (1.81)

and
W 2 = −WiW

i = −m2S⃗2 (1.82)
thus the eigenvalues ofW 2 are −m2s(s+ 1) where s denotes the spin and assumes
values s = 0, 1/2, 1 · · · .
Hence these representations are labelled bymass and spin and correspond to particles
of rest mass m and spin s. Moreover, since the s3 spin projection can take values
from −s to +s, massive particles fall into multiplets of dimension (2s+ 1).
• Massless representations
In this caseP 2 = W 2 = 0, but we can choose a frame in whichP µ = (P 0, 0, 0, P 0).
In this frame will also hold W µ = (W 0, 0, 0,W 0) , then from equation [1.69], we
deduce that in any Lorentz frame :

W µ = hP µ (1.83)

From equation [1.83] we have

h = W 0

P 0 = S⃗ · P⃗
P 0 = S⃗ · P̂ (1.84)

and so the contant of proportionality is the Helicity operator (h) which take values
λ = ±s = 0 ± 1/2,±1 · · · .
Hence these representations correspond to massless particles with helicity λ.
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Chapter 2

The Supersymmetry Algebra

2.1 N = 1 Supersymmetry
In the 1960s S. Coleman and J. Mandula proved a no-go theorem that showed that in
four-dimension quantum field theories with an internal symmetry group G, the only
way to incoporate the group G transforamtions with Poincaré transformations is a
trivial tensor product of the two groups [1].

P ⊗G (2.1)

and so the commutators of the Poincaré generators and the generators of the internal
symmetry group must vanish.
Subsequently, Haag, Lopuszanski and Sohnius proved that a possible extention of
the Poincaré algebra involves the addition of new fermionic generators Qi

α, Q†i
α̇ [2]

Qi
α ∈ (1/2, 0)

Q†i
α̇ ∈ (0, 1/2) (2.2)

and thus they transform as left-handed spinor, and right-handed spinor respectively
under Lorentz algebra and i = 1, 2, · · · N .
From now on, we shall focus on the N = 1 case, therefore the i-index can be
dropped.
We begin by examining the algebra, which is obtained by adding one Qα and one
Q†

α̇ generator to the Poincaré algebra.
Since these generators have no explicit spacetime dependence, they are invariant
under spacetime translations

e−iαµP µ

Qαe
iαµP µ = Qα

e−iαµP µ

Q†
α̇e

iαµP µ = Q†
α̇ (2.3)
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After expanding and keeping terms to the first order in αµ we find[
Qα, P

µ
]

= 0

[
Q†

α̇, P
µ
]

= 0 (2.4)
Since Qα,Qα̇† transform as spinors under Lorentz group, we have

e− i
2 ωµνMµν

Qαe
i
2 ωµνMµν = (σµν) β

α Qβ

e− i
2 ωµνMµν

Q†
α̇e

i
2 ωµνMµν = (σ̄µν) β̇

α̇ Q
†
β̇

(2.5)
Working again to the first order we find[

Qα,M
µν
]

= (σµν) β
α Qβ

[
Q†

α̇,M
µ
]

= (σ̄µν) β̇
α̇ Q

†
β̇

(2.6)

Now we want to find te anticommutation relations ofQα,Q†
α̇ such that the generators

{P µ,Mµν , Qα, Q
†
α̇} form a closed algebra.

For the anticommutator of Q,Q, we make the ansatz{
Qα, Q

β
}

= k(σµν)β
αM

µν (2.7)

since the left-hand side commutes with P µ and the right-hand side does not, the only
consistent choice would be k = 0.
Hence {

Qα, Qβ

}
= 0 (2.8)

The same argument holds for Q†, thus{
Q†

α̇, Q
†
β̇

}
= 0 (2.9)

The index structure of the anticommutator of Q,Q† implies the ansatz{
Qα, Q

†
β̇

}
= t(σµ)αβ̇Pµ

Since there is no way of fixing t we set t = 2 and thus we obtain{
Qα, Q

†
β̇

}
= 2(σµ)αβ̇Pµ (2.10)

The relations [2.4], [2.6], [2.8], [2.10] form theN = 1 Superymmetry (SUSY) algebra.
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2.2 Representations of SUSY algebra
In the previous section, we found what relations are obeyed by the generators of the
algebra. Now we want to examine the multiplet in which the particles fall.
Firts we notice that an immidiate result which follows from the relations [2.4] and
[2.6] is [

Qα, P
2
]

= 0 (2.11)
and [

Qα,W
2
]

̸= 0 (2.12)
Hence the generatorQ shifts the spin and so we expect that particles belonging in the
same supersymmetric multiplet (supermultiplet) to be degenerate in mass but have
different spins. We can show that in a supermultiplet the fermionic and bosonic
deegres of freedom are equal.
For this, we consider the operator (−1)nf such that

(−1)nf |B⟩ = |B⟩ (−1)nf |F ⟩ = − |F ⟩

where |B⟩, |F ⟩ is a bosonic and fermionic state respectively. SinceQ shifts the spin,
we have

(−1)nfQ = −Q(−1)nf (2.13)
For states such that P0 ̸= 0 we have

Tr
[
(−1)nfP0

]
=1

2
δαα̇Tr

[
(−1)nf

]
σµ

αα̇Pµ

=1
4
δαα̇Tr

[
(−1)nf

](
QαQ

†
α̇ +Q†

α̇Qα

)
(2.14)

=1
4
δαα̇Tr

[
(−1)nfQαQ

†
α̇ − (−1)nfQαQ

†
α̇

]
(2.15)

=0 (2.16)

where the trace is over all such states. Thus summing on any finite dimensional
representation with non zero energy we have

Tr
[
(−1)nf

]
= 0 (2.17)

which implies that there is an equal number of bosonic and fermionic states. Now
to find the supermulipltes, we will consider the massless case.
In this case we have the frame where Pµ = (E, 0, 0, E).
Thus from equation[2.10] we have

{
Qα, Q

†
β̇

}
= 2E(σ0 + σ3)αβ̇ = 4E

(
1 0
0 0

)
(2.18)
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thus the only non zero generators are Q1, Q1̇ which satisfy{
Q1, Q

†
1̇

}
= 4E (2.19)

now we can define
α ≡ Q1

2
√
E
, α† ≡

Q†
1̇

2
√
E

(2.20)

which obey the relations
{α, α} = {α†, α†} = 0

{α, α†} = 1 (2.21)
an so can act as creation and annihilation operators respectively.
For a state with helicity λ we have

J3 |pµ, λ⟩ = λ |pµ, λ⟩ (2.22)

So, from equation [2.6] we have
[
α, J3

]
= 1

2

[
α,M12 −M21

]
= (σ12)1

1Q1 − (σ21)1
1Q1

= 1
2

(σ3)11α = 1
2
α (2.23)

and similary [
α†, J3

]
= −1

2
α† (2.24)

Hence starting from a state |pµ, λ⟩ which has helicity λ, the state α |pµ, λ⟩ has he-
licity

J3α(|pµ, λ⟩) =
(
αJ3 −

[
α, J3

])
|pµ, λ⟩ =

(
λ− 1

2

)
α |pµ, λ⟩ (2.25)

and similary the state α† |pµ, λ⟩ has helicity λ+ 1
2 .

Thus to build the representations we start with the state with the lowest helicity

|Ω⟩ ≡ |pµ, λ⟩

such that
α |Ω⟩ = 0 (2.26)

and then act with α†. By the virtue of the relations [2.21]

α†α† |Ω⟩ = 0 (2.27)
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Thus the whole multiplet consists of the states

|pµ, λ⟩ , |pµ, λ+ 1/2⟩

If we add and the CPT-conjugate, we have

|pµ,±λ⟩ , |pµ,±(λ+ 1/2)⟩

The massless supermultiplets are summarized in the following table:

Supermultiplet Helicity CPT-conjugate helicity Particle
Chiral 1/2 -1/2 Quark, lepton, Higgsino

0 0 Squark, slepton,Higgs
Vector 1 -1 Gauge boson

1/2 -1/2 Gaugino
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Chapter 3

Supersymmetric Field Theories

3.1 Free field teory
Up until now we have considered with more abstract group structure of the super-
symmetry. Now we want to examine its realization in four dimensiona field theory.
The first to do this was J. Wess and B. Zumino [3].
We have seen that a supermultiplet contains equal number of bosonic and fermionic
degrees of freedom. Hence the simplest possibillity in constructing a supersymmet-
ric theory, is that the Lagrangian consist of a chiral supermultiplet, that is a Weyl
fermion and a complex scalar field. The simplest supersymmetric theory is a free
theory with action

S =
∫
d4x(Lscalar + Lfermion) (3.1)

where
Lscalar = ∂µϕ∂µϕ

⋆ (3.2)
and

Lfermion = iψ†σ̄µ∂µψ (3.3)
A supersymmetric transformation should turn the boson field ϕ into something in-
volving the fermion field ψα. The simplest possibility is

δϕ = ϵψ, δϕ⋆ = ϵ†ψ† (3.4)

where ϵα is an anti-commuting two-component Weyl spinor,an infinitesimal object
that parametrize the SUSY transformation. Here, we are dealing whith global Su-
persymmetry and that means ∂µϵ

α = 0.
Since the dimensions of the fields are

[ψ] = (mass)3/2, [ϕ] = (mass)
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then
[ϵ] = (mass)−1/2

The variation of the scalar Lagrangian according to the transformations [3.4] is

δLscalar = δ
(
∂µϕ⋆

)
∂µϕ+ ∂µϕ⋆δ

(
∂µϕ

)
= ϵ∂µϕ⋆∂µψ + ϵ†∂µψ†∂µϕ (3.5)

The change in ψα must involve the boson field ϕ. Looking at the dimensions, we
have

δψα = −i(σµϵ†)α∂µϕ, δψ†
α̇ = i(ϵσµ)α̇∂µϕ

⋆ (3.6)
and the variation in fermion Lagragian is

δLfermion = i(δψ†)σ̄µψ + iψ†σ̄µδψ

= −ϵσµσ̄ν∂νψ∂µϕ
⋆ + ψ†σ̄νσµϵ†∂µ∂νϕ

= +ϵ†ψ†∂µ∂
µϕ+ ϵψ∂µ∂

µϕ⋆ (3.7)

where we have used the fact that

σ̄µ∂µσ
ν∂ν = ∂µ∂

µ

which follows from the identinty

(σ̄µσν + σ̄νσµ)β̇
α̇ = 2ηµνδβ̇

α̇ (3.8)

Now we notice that

∂µ(ϵσν σ̄µψ∂νϕ
⋆ − ϵψ∂µϕ⋆ − ϵ†ψ†∂µϕ) = ϵσν σ̄µψ∂νϕ

⋆ − ϵσν σ̄µψ∂µ∂νϕ− ϵ∂µψ∂
µϕ⋆

− ϵψ∂µ∂
µϕ⋆ − ϵ†∂µψ

†∂µϕ− ϵ†ψ†∂µ∂
µϕ

The first two terms cancel each other (ignoring the surface term), and also the third
and fifth terms cancel exactly the variation of the scalar Lagrangian in equation [3.5].
Thus we can write

δLfermion = ϵ∂µϕ⋆∂µψ + ϵ†∂µψ†∂µϕ− ∂µ(ϵσν σ̄µψ∂νϕ
⋆ − ϵψ∂µϕ⋆ − ϵ†ψ†∂µϕ)

(3.9)
Hence

δS =
∫
d4x(δLfermion + δLscalar) = 0 (3.10)

and the action reamains invariant under supersymmetric transformations.
But we are not finished in showing that the theory is supersymmetric. We must
also show that the commutator of two succesive supersymmetric transformations
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parametrized by two different spinors ϵ1, ϵ2 is another transformation.
We have

(δ2δ1 − δ1δ2)ϕ = δ2(ϵ1ψ) − δ1(ϵ2ψ) = ϵ1(−iσµϵ†
2∂µϕ) − ϵ2(−iσµϵ†

1∂µϕ)
= i(ϵ1σ

µϵ†
2 + ϵ2σ

µϵ†
1)∂µϕ (3.11)

and

(δ2δ1 − δ1δ2)ψα = δ2(−i(σµϵ†
1)α∂µϕ) − δ1(−i(σµϵ†

2)α∂µϕ)
= −i(σµϵ†

1)α∂µδ2ϕ+ i(σµϵ†
2)α∂µδ1ϕ

= −i(σµϵ†
1)α∂µ(ϵ2ψ) + i(σµϵ†

2)α∂µ(ϵ1ψ)
= −i(σµϵ†

1)αϵ2∂µψ + i(σµϵ†
2)αϵ1∂µψ (3.12)

now using the spinor identity

χα(ξη) = −ξα(ηχ) − ηα(χξ) (3.13)

for χ = σµϵ†
1, ξ = ϵ2, η = ∂µψ and the identity

ξ†σµχ = −χσ̄µξ† (3.14)

the first term of equation [3.12] is written

−i(σµϵ†
1)αϵ2∂µψ = −i

[
− ϵ2α(∂µψσ

µ
1

†) − ∂µψα(σµϵ†
1ϵ2)

]
= −i

[
ϵ2α(ϵ†

1σ̄
µψ) − ∂µψα(ϵ2σ

µϵ†
1)
]

while the second term becomes

i(σµϵ†
2)αϵ1∂µψ = i

[
ϵ1α(ϵ†

2σ̄
µψ) − ∂µψα(ϵ1σ

µϵ†
2)
]

and so we obtain

(δ2δ1 − δ1δ2)ψα = i
(

− ϵ1σ
µϵ†

2 + ϵ2σ
µϵ†

1

)
∂µψα + iϵ1αϵ

†
2σ̄

µ∂µψ − iϵ2αϵ
†
1σ̄

µ∂µψ

(3.15)

The last two terms vanish only on-shell (σ̄µ∂µψ = 0) and the other terms are the
same as in the scalar case. The reason for this, is that, off-shell, the spinor has four
degrees of freedom (two complex) while the scalar has only two. Thus supersymme-
try is a symmetry only when classical equations of motion are satisfied. If we want
supersymmetry to hold quantum mechanicaly, we must insert a complex scalar field
F with no kinetic-term:

Lauxiliary = F ⋆F (3.16)
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Such fields are called auxiliary , the have dimension [F ] = (mass)2, unlike ordinary
scalar fields and the eqquations of motion are

F = F ⋆ = 0 (3.17)

We let F to transform as a multiplet of the equations of motion for ψ under SUSY
transformations:

δF = −iϵ†σ̄µ∂µψ, δF ⋆ = i∂µψ
⋆σ̄µϵ (3.18)

so
δLauxiliary = −iϵ†σ̄µ∂µψ + i∂µψ

⋆σ̄µϵ (3.19)
now we shall add an extra term to the transformation law for ψ in [3.6]

δψα = −i(σµϵ†)α∂µϕ+ ϵαF, δψ†
α̇ = i(ϵσµ)α̇∂µϕ

⋆ + ϵ†
α̇F

⋆ (3.20)

with these modifications we have

(δ2δ1 − δ1δ2)ψα = i
(

− ϵ1σ
µϵ†

2 + ϵ2σ
µϵ†

1

)
∂µψα + iϵ1αϵ

†
2σ̄

µ∂µψ − iϵ2αϵ
†
1σ̄

µ∂µψ

− iϵ1αϵ
†σ̄µ∂µψ + iϵ2αϵ

†
1σ̄

µ∂µψ

= i
(

− ϵ1σ
µϵ†

2 + ϵ2σ
µϵ†

1

)
∂µψα (3.21)

Hence, our Lagrangian

L = Lscalar + Lfermion + Lauxiliary (3.22)

is invariant under SUSY transformations and for each field we have

(δ2δ1 − δ1δ2)X = i
(

− ϵ1σ
µϵ†

2 + ϵ2σ
µϵ†

1

)
∂µX, X = ϕ, ϕ⋆, ψ, ψ†, F, F ⋆

(3.23)
The last relation tell us that the commutator of two supersymmetry transformation
gives us back the derivative of the original field. In the Heisenber picture of quan-
tum mechanics i∂µ is the generator of tranlations P µ ,so equation [3.23] implies the
supersymmetry algebra in equation [2.10].

3.2 Interaction of Chiral Supermultiplets
In the previous section we studied a simple supersymetric free theory. The next step
is to add interactions.
We begin with a Lagrangian for a collection of chiral supermultiplets, labeled by an
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index i. Each multiplet contains a complex scalar ϕi, a left-handed Weyl spinor ψi

and a non-propagating complex auxialry field Fi. The free Lagrangian is

Lfree = ∂µϕ⋆i∂µϕi = iψ†iσ̄µψi + F ⋆iFi (3.24)

The convention, here, is that fields carry lower indices while their conjugates carry
raised indices. We have seen that this Lagrangian is inavariant under SUSY trans-
formations [3.4], [3.18], [3.20].
The most general renormalizable Lagrangian (in the power counting sense) is

Lint =
(

− 1
2
W ijψiψj +W iFi + xijFiFj

)
+ c.c.− U (3.25)

where W ij ,W i,xij ,U are polynomials in the fileds ϕi,ϕ⋆i with degrees 1,2,0,4 re-
spectively. We must require that Lint is invariant under SUSY transformation by
itself. This automatically implies that the terms U ,xij must vanish since their su-
persymmetric interactions cannot be canceled by any other term in the Lagrangian
since they will involve terms like ϵψi multiplied by either ϕi or Fi.
Thus we are left with

Lint =
(

− 1
2
W ijψiψj +W iFi

)
+ c.c. (3.26)

and we note thatW ij in symmetric under i ↔ j.
Next we examine the part of the variation of the Lagrangian under SUSY transfor-
mations which contains four spinors

δL
∣∣∣
4−spinor

=
[

− 1
2
δW ij

δϕk

δϕkψiψj − 1
2
δW ij

δϕ⋆
k

δϕ⋆
kψiψj

]
+ c.c.

=
[

− 1
2
δW ij

δϕk

(ϵψk)(ψiψj) − 1
2
δW ij

δϕ⋆
k

(ϵ†ψ†
k)(ψiψj)

]
+ c.c. (3.27)

the identinty
χα(ξη) = −ξα(ξη) − ηα(χξ) (3.28)

implies that

(ϵψk)(ψiψj) + (ϵψi)(ψjψk) + (ϵψj)(ψiψk) = 0 (3.29)

then this contribution vanishes if and only if δW ij

δϕk
is totally symmetric in i, j, k. But

there are no such identinty for (ϵ†ψ†k)(ψiψj). Since this term cannot cancel by any
other term, then it must be absent. ThusW ij cannot contain any ϕ⋆k field, so it must
be an holomorphic function in the complex fields ϕk.
So we can write

W ij = M ij + yijϕk (3.30)
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where M ij is the symmetric mass-matrix for fermion fields and yij is a Yukawa
coupling of a scalar ϕk and two fermions ψi, ψj . It is also convenient to write

W ij = δ2W

δϕiδϕj

(3.31)

where
W = 1

2
M ijϕiϕj + 1

6
yijkϕiϕjϕk (3.32)

called the Superpotential. This is not the ordinary scalar potential,but it is, instead
an holomorphic function of the fields phii which are treated as complex variables.
Next we will examine the part of δL that contains derivatives.

δL
∣∣∣
∂

=
(

− 1
2
W ij∂µψiψj +W iδFi

)
+ c.c.

=
(
iW ij∂µϕjψiσ

µϵ† + iW i∂µψiσ
µϵ†
)

+ c.c. (3.33)

where we used the symmetry of i ↔ j and the identity

ξ†σµχ = −χσ̄µξ†

next we observe that
W ij∂µϕj = ∂µ

(
δW

δϕi

)
and the fact that δL will be a total derivative if

W i = δW

δϕi

= M ijϕj + 1
2
yijkϕjϕk (3.34)

So themost general, non-gauge interactions for chiral supermultiplets are determined
by a single holomorphic function of complex scalar fields, the Superpotential W .
We can now, integrate out the auxiliary fields, using the classical equations ofmotion.
The part of the Lagrangian that contain these fields is

L ⊃ FiF
⋆i +W iFi +W ⋆

i F
⋆i

leading to the equations of motion

Fi = −W ⋆i, F ⋆i = −Wi (3.35)

So the auxiliary fields are expressed algebraically in terms of the scalar fields. After
integrating them out we obtain

L = ∂µϕ⋆i∂µϕi + iψ†iσ̄µψi − 1
2

(
W ijψiψj +W ⋆

ijψ
†iψ†j

)
−W iW ⋆

i (3.36)
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The scalar potential of the theory is

V (ϕ, ϕ⋆) = W kW ⋆
k = F ⋆kFk

= M⋆
ikM

kjϕ⋆iϕj + 1
2
M iny⋆

jknϕiϕ
⋆jϕ⋆k + 1

2
M⋆

iny
jknϕ⋆iϕjϕk + 1

4
yijny⋆

klnϕiϕjϕ
⋆kϕ⋆l ≥ 0

(3.37)

which is automatically bounded from below. Finding the equations of motion

∂µ∂µϕi = M⋆
ikM

kjϕj + (· · · )
iσ̄µ∂µψi = M⋆

ijψ
†j + (· · · )

iσµ∂µψ
†i = M ijψj + (· · · ) (3.38)

where +(· · · ) represents non-linear terms. Multiplying with σµ∂µ,σ̄µ∂µ both sides
the above equations, wee can eliminate ψ in terms of ψ† and vice verca. Thus we
obtain

∂µ∂µψi = M⋆
ikM

kjψj, ∂µ∂µψ
j† = ψ†iM⋆

ikM
kj (3.39)

Hence the fermions and the bosons satisfy the same wave equation wi th exactly the
same squared-mass matrix (

M2
) j

i
= M⋆

ikM
kj

3.3 Lagrangians for gauge supermultiplets
We will start with a free theory containing a gauge supermultiplet. The propagating
degrees of freedom are a massless gauge boson field Aa

µ and a two component Weyl
fermion, the gaugino, λa

α. First for simplicity we will consider the abelianU(1) case.
The free Lagrangian is

L = −1
4
FµνF

µν + iλ†σ̄µ∂µλ+ 1
2
D2 (3.40)

where
Fµν = ∂µAν − ∂νAµ

and the auxiliary field D satisfies

D = D⋆

due to the fact that the fermion and the gauge boson have four and three degrees of
freedom off-shell respectively. We will show that the Lagrangian is unvariant under
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the SUSY transformations

δAµ = ϵ†σ̄µλ+ λ†σ̄µϵ

δλ = i

2
σµσ̄νϵFµν + ϵD

δλ† = − i

2
ϵ†σ̄νσµFµν + ϵ†D

δD = −i
(
ϵ†σ̄µ∂µλ− ∂µλ

†σ̄µϵ
)

(3.41)

The variations of the kinetic term of the gauge boson is

δ
(

− 1
4
FµνF

µν
)

= 1
4
δFµνF

µν − 1
4
FµνδF

µν

= −1
2

(
Fµ∂

µδAν − Fµν∂
νδAµ

)
− Fµνϵ

†σ̄ν∂µλ− Fµν∂
µλ†σ̄νϵ (3.42)

The varation of the fermionic part is

δ(iλ†σ̄µ∂µλ) = iδλ†σ̄µ∂µλ+ iλ†σ̄µ∂µδλ (3.43)

the first term is

iδλ†σµ∂µλ = i
(

− i

2
ϵσ̄νσµFµν + iϵ†D

)
σ̄ρ∂ρλ (3.44)

Forgettinγ the ϵ†D term for now, we have
1
2
ϵ†σ̄νσµFµν σ̄

ρ∂ρλ

interchanging µ ↔ ν and make use of antisymmetry of Fµν we have

1
2
ϵ†σ̄νσµFµν σ̄

ρ∂ρλ = −1
2
ϵ†σ̄µσν σ̄ρFµν∂ρλ

using the identinty

σ̄µσν σ̄ρ = ηµν σ̄ρ − ηµρσ̄ν + ηνρσ̄µ − iϵµνρδσ̄δ (3.45)

we get

−1
2
ϵ†σ̄µσν σ̄ρFµν∂ρλ = −1

2
ϵ†
(
ηµν σ̄ρ − ηµρσ̄ν + ηνρσ̄µ − iϵµνρδσ̄δ

)
Fµν∂ρλ

the first term in the right-hand side vanishes due to the symmetry of ηµ and antisym-
metry of Fµν in interchanging µ ↔ ν. Also the last term vanishes beacause Fµν∂ρλ
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is symmetric under the interchanging of µ ↔ ρ while ϵµνρδ is antisymmetric. Thus
we are left with

−1
2
ϵ†σ̄µσν σ̄ρFµν∂ρλ = 1

2
ϵ†ηµρσ̄νFµν∂ρλ− 1

2
ϵ†ηνρσ̄µFµν∂ρλ

= Fµνϵ
†σ̄ν∂µλ (3.46)

where in the last equality we interchanged µ ↔ ν amd make use the antisymmetry
of Fµν . We notice that this term cancels exactly the first term in the varation of
gauge kinetic term in equation [3.42].
Now working with the second term of equation [3.43] we have

iλ†σ̄µ∂µδλ = iλ†σ̄ρ∂ρ

(
i

2
σµσ̄νϵFµν + ϵD

)
(3.47)

forgetting the ϵD term and following the same proccedure as before we end up with

iλ†σ̄ρ∂ρ

(
i

2
σµσ̄νϵFµν

)
= Fµν∂

µλ†σ̄νϵ (3.48)

This term cancels ecactly the second term of equation [3.42].
Recalling the terms in [3.44] involving the auxiliary fields, we have

iϵDσ̄ρ∂ρλ+ iλ†σ̄ρ
ρϵD = iϵDσ̄ρ∂ρλ− i∂ρλ

†σ̄ρϵD (3.49)

The variation of the auxiliary part of the Lagrangian is
1
2
δD2 = 1

2
(δD)D + 1

2
D(δD) = −iϵDσ̄ρ∂ρλ+ i∂ρλ

†σ̄ρϵD

which cancels exactly the terms in equation [3.49].
Thus we have shown that the Lagrangian is invariant under SUSY transformations.
If we were to include gauge interactions, then the Lagrangian would be

L = −1
4
FµνF

µν + iλ†σ̄µDµλ+ 1
2
D2 (3.50)

where the covariant derivative is

Dµ = ∂µ + igAµ (3.51)

and the transformations of the fields would become
δAµ = ϵ†σ̄µλ+ λ†σ̄µϵ

δλ = i

2
σµσ̄νϵFµν + ϵD

δλ† = − i

2
ϵ†σ̄νσµFµν + ϵ†D

δD = −i
(
ϵ†σ̄µDµλ−Dµλ

†σ̄µϵ
)

(3.52)
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The above transformations are sufficient for the Larangian [3.50] to be invariant
under Supersymmetry.
The generalization to non abelian case is straightforward. The Lagrangian is

L = −1
4
F a

µνF
µνa + iλ†aσ̄µDµλ

a + 1
2
DaDa (3.53)

where
F a

µν =µ A
a
ν − ∂νA

a
µ + gfabcAa

µA
c
ν

and
Dµ = ∂µ + gfabcAb

µ

The gauge transorfmation of the vector supermultiplet is

Aa
µ → Aa

µ + ∂µΛa + gfabcAb
µΛc

λa → λa + gfabcλbΛc

where Λ is an infinitesimal gauge transformation an the index a runs over the adjoint
representation of the gauge group. Thus we see that the gaugino λa belong to the
same representation with the gauge boson Aa

µ.
The SUSY transformations are

δAµa = − 1√
2

(
ϵ†σ̄µλa + λ†aσ̄µϵ

)
δλa = i

2
√

2
σµσ̄νϵF a

µν + 1√
2
ϵD

δλ†a = − i

2
ϵ†σ̄νσµF a

µν + ϵ†D

δDa = − i√
2

(
ϵ†σ̄µDµλ

a −Dµλ
†aσ̄µϵ

)
(3.54)

Under these transformation, the Lagrangian is ineeded invariant.
Wa are, of course, able to include both gauge and chiral supermultiplets and inter-
actions in the Lagrangian. But before we do this, we are going to build a formalism
that is more elegant and help us construct Lagrangians that are manifestly supersym-
metric. That is the notion of Superspace and Superfield.
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Superspace and Superfields

4.1 Supersymmetry in superspace
We can extend ordinary spacetime by introducing four more complex coordinates

θα, θ†
α̇, α, α̇ = 1, 2

which are Grassmann coordinates, thus obey the anticommutations relations

{θα, θβ} = {θα̇, θβ̇} = {θα, θβ̇} = 0 (4.1)

This enhanced space is called superspace and any point in this space have coordinates
X = (xµ, θα, θ

†
α̇).

We can define derivatives with respect to the Grassmann coordinates:

∂α ≡ ∂

∂θα
, ∂†

α̇ ≡ ∂

∂θ†α̇
(4.2)

so that
∂αθ

β = δβ
α, ∂†

α̇θ
†β̇ = δβ̇

α̇ (4.3)
then it follows

∂αθβ = ∂

∂θα
(ϵβγθ

γ) = ϵβγδ
γ
α = ϵβα = −ϵαβ

∂†
α̇θ

†
β̇

= ∂

∂θα̇
(ϵβ̇γ̇θ

γ̇†) = −ϵα̇β̇ (4.4)

the derivatives with respect to Grassmann coordinates obey the chain-rule

∂α(fg) = (∂αf)g + (−1)ε(f)f(∂αg)
∂†

α̇(fg) = (∂†
α̇f)g + (−1)ε(f)f(∂†

α̇g) (4.5)
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where
ε =

{
0 if f is a Grassmann even
1 if f is a Grassmann odd (4.6)

thus we also have

∂α(θθ) = ∂α(θβθβ) = ∂α(ϵβγθ
βθγ) = ϵβγ(δβ

αθ
γ − θβδγ

α) = ϵαγθ
γ + ϵαβθ

β = 2θα

∂†
α̇(θ†θ†) = 2θ†

β̇
(4.7)

we can also define the derivatives

∂α ≡ ∂

∂θα

, ∂†
α̇ ≡ ∂

∂θ†
α̇

(4.8)

thus
∂α = −ϵαβ∂β, ∂†α̇ = −ϵα̇β̇∂†

β̇
(4.9)

In order to define translations in superspace, we shall generalize the translation op-
erator eixP to the supertranslation operator

G(x, θ, θ†) = e(ixP +iθQ+iθ†Q†) (4.10)

The composition of two supertranslations is also a supertranslation:

G(x, θ, θ†)G(α, ξ, ξ†) = G(x′, θ′, θ†′) (4.11)

using the Baker-Hausdorf formula

eAeB = eA+B+ 1
2 [A,B]+··· (4.12)

we have

G(x′, θ′, θ†′) = exp
{
ixP + iαP + iθQ+ iξQ+ iθ†Q† + iξ†Q†

+ 1
2

[
ixP + iθQ+ θ†Q†, iαP + iξQ+ iξ†Q†

]
+ · · ·

}
(4.13)

for the commutator, we have[
ixP + iθQ+ θ†Q†, iαP + iξQ+ iξ†Q†

]
=
[
ixP, iαP

]
+
[
ixP, iξQ

]
+
[
ixP, iξ†Q†

]
+
[
iθQ, iαP

]
+
[
iθQ, iξQ

]
+
[
iθQ, iξ†Q†

]
+
[
iθ†Q†, iξQ

]
+
[
iθ†Q†, iξ†Q†

]
+
[
θ†Q†, iαP

]
(4.14)
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the only non-vansishing commutators are[
iθQ, iξ†Q†

]
= −θQξ†Q† + ξ†Q†θQ = −θαQαξ

†
β̇
Q†β̇ + ξ†

β̇
Q†β̇θαQα

= θαξ†
β̇
QαQ

†β̇ + θαξ†
β̇
Q†β̇Qα

= θαξ†β̇
{
Qα, Q

†
β̇

}
= θαξ†β̇2σµ

αβ̇
Pµ = 2θσµξ†Pµ (4.15)

and [
iθ†Q†, iξQ

]
= −

[
iξQ, iθ†Q†

]
= −2θσµξ†Pµ (4.16)

the other terms vanish by the virue of equations [2.4], [2.8], [2.9]. So we have

G(x′, θ′, θ†′) = exp
{
ixP + iαP + iθQ+ iξQ+ iθ†Q† + iξ†Q† + θσµξ†Pµ − ξσµθ†Pµ

}
(4.17)

thus we can identify that under a SUSY transformation, the superspace coordinates
become

θ → θ + ξ

θ† → θ† + ξ†

x → x+ α + i(ξσµθ† − θσµξ†) (4.18)

We can now extend the field operator

Φ(x) = e−ixP Φ(0)eixP (4.19)

to the Superfield operator

S(x, θ, θ†) = G(x, θ, θ†)S(0, 0, 0)G−1(x, θ, θ†) (4.20)

Hence, it follows

G(y, θ, θ†)S(x, θ, θ†)G−1(y, θ, θ†)S(x, θ, θ†)
= S(y + x+ i(ξσµθ† − θσµξ†), ξ + θ, ξ† + θ†) (4.21)

The Left-hand side , after Taylor expanding, becomes

G(y, θ, θ†)S(x, θ, θ†)G−1(y, θ, θ†) =
[
1 + i(yP + θQ+ θ†Q†)

]
S
[
1 − i(yP + θQ+ θ†Q†)

]
= S(y, θ, θ†) + iy

[
P µ, S

]
+
[
ξQ, S

]
+
[
ξ†, S

]
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while the Right-hand side is written

S(y + x+ i(ξσµθ† − θσµξ†), ξ + θ, ξ† + θ†) = S(x, θ, θ†) +
[
yµ + i(ξσµθ† − θσµξ†)

]
∂µS

+ ξα∂αS + ξ†
α̇∂

†α̇S

and we can identify [
Pµ, S

]
= −∂µS[

Qα, S
]

= iξα
(
∂α + i(σµθ†)α

)
S[

Q†
α̇, S

]
= −i

(
∂†

α̇ − i(θσµ)α̇

)
ξ†α̇S (4.22)

and we can introduce the differential operators
P̂µ = −i∂µ

Q̂α = −i∂α + (σµθ†)α

Q̂†
α̇ − i∂†

α̇ − (θσµ)α̇ (4.23)
which are the SUSY generators in the superspace representation.
Thus the action of an infnitesimal SUSY transformations on a superfiled is given by

δϵS(x, θ, θ†) = i(ϵQ̂+ ϵ†Q̂†)S(x, θ, θ†) (4.24)
And hence, supersymmetry can be realized as a translation in superspace.

4.2 Expansion of the Superfield
Any Superfield can be Taylor expanded in powers of θ and θ†, where the coefficients
will be functions of x and can be interpreted as ordinary fields. Since θ and θ† are
anticommuting numbers , the expansion series must terminate after a finite number
of terms. Products of the form

(θ1)2 = (θ2)2 = (θ1̇)2 + (θ2̇)2 = 0 (4.25)
whereas products of the form θαθβ do not vanish, but rather

θαθβ = −1
2
ϵαβθθ

θαθβ = 1
2
ϵαβθθ

θ†
α̇θ

†
β̇

= −1
2
ϵα̇β̇θ

†θ†

θ†α̇θ†β̇ = 1
2
ϵα̇β̇θ†θ† (4.26)
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Thus a general, complex Superfield can be expanding as

S(x, θ, θ†) = a+ θξ+ θ†χ† + θθb+ θ†θ†c+ θ†σ̄µθuµ + θ†θ†θη+ θθθ†ζ† + θθθ†θ†d
(4.27)

where a, b, c, uµ, d are complex bosonic fields and ξ, χ, η, ζ are anticommuting
two-component fermionic fields. The transformation of the Superfield is

δϵS(x, θ, θ†) = i(ϵQ̂+ ϵ†Q̂†)S(x, θ, θ†)
=
(
ϵα∂α + ϵ†

α̇∂
†α̇ + i[ϵσµθ† + ϵ†σ̄µθ]

)
S (4.28)

The right-hand side is written(
ϵα∂α + ϵ†

α̇∂
†α̇ + i[ϵσµθ† + ϵ†σ̄µθ]

)
S = ϵξ + 2ϵθb+ θ†σ̄µϵuµ + (ϵη)θ†θ† + 2ϵθθ†ζ†

+ 2(ϵθ)(θ†θ†)d+ ϵ†ξ† + 2ϵ†θ†c+ ϵ†σ̄µθuµ + 2(θη)ϵ†θ†

+ ϵ†ζ†(θθ) + 2(θθ)ϵ†θ†d+ iϵσµθ†(θθ)θ†∂µζ
†

+ iϵσµθ†∂µa+ iϵσµθ†(θ†∂µξ
†) + iϵσµθ†θθ∂µb

+ iϵσµθ†θ†σ̄νθ∂µην + iϵσµθ†θ∂µξ + iϵ†σ̄µθ∂µa

+ iϵ†σ̄µθθ∂µξ + iϵ†σ̄µθθ†∂µχ
† + iϵ†σ̄µθθ†θ†∂µc

+ iϵ†σ̄µθθ†σ̄νθ∂µuν + iϵ†σµθθ†θ∂µη

= ϵξ + ϵ†ξ† + θα
[
2ϵαb− (σµϵ†)αuµ − i(σµϵ†)α∂µa

]
+ θ†

α̇

[
2ϵ†α̇c− i(σ̄µϵ)α̇∂µa+ (σ̄µϵ)α̇uµ

]
+ (θθ)

[
ϵ†ζ† − i

2
ϵ†σ̄µ∂µξ

]
+ (θ†θ†)

[
ϵη − i

2
ϵσµ∂µχ

†
]

+ (θθ)θ†
α̇

[
2dϵ†α̇ + i

2
ϵ†α̇∂µuµ − i(σ̄µϵ)α̇∂µb

]
+ θ†θ†θα

[
2dϵα − i

2
ϵα∂

µuµ − i(σµϵ)α∂µc
]

+ (θ†θ†)(θθ)
[
i

2
∂µησ

µϵ† − i

2
ϵσµ∂µζ

†
]

+ θ†σ̄µθ
[
ϵσµζ† − ϵ†σ̄µη − i

2
ϵσν σ̄µ∂νχ

†
]

where the identities in [A] had been used extensively. The left-hand side is

δS = (δa+θδξ+θ†δχ†+θθδb+θ†θ†δc+θ†σ̄µθδuµ+θ†θ†θδη+θθθ†δζ†+θθθ†θ†δd)
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and thus, we can obtain the trasformations of the component fields

δa = ϵξ + ϵ†ξ†

δξα = 2ϵαb− (σµϵ†)αuµ − i(σµϵ†)α∂µa

δχ†α̇ = 2ϵ†α̇c+ (uµ − i∂µa

δb = ϵζ† − i

2
ϵ†σ̄µ∂µξ

δc = ϵη − i

2
ϵσµ∂µχ

†

δuµ = ϵσµζ† − ϵ†σ̄µη − i

2
ϵν σ̄µ∂νξ + i

2
ϵ†σ̄νσµ∂νχ

†

δηα = 2ϵαd− i(σµϵ†)α∂µc− i

2
(σν σ̄µϵ)α∂µuν

δζ†α̇ = 2ϵα̇d− i(σ̄µϵα̇∂µb+ i

2
(σ̄νσµϵ†)α̇∂µuν

δd = − i

2
ϵ†σ̄µ∂µη − i

2
ϵσµ∂µζ

† (4.29)

4.3 Chiral Covariant Derivatives
It is clear that for any Superfield:

δϵ(∂αS) ̸= ∂α(δϵS) (4.30)

and so ∂αS is not a Superfield. We would like to find a derivative that trasform
covariantly uder SUSY transformations.
We define the chiral-covariant derivative

Dα = ∂α − i(σµθ†)α∂µ (4.31)

and
Dα = −ϵαβDβ = ∂α + i(θ†σ̄µ)α∂µ (4.32)

We can define the anti-chiral covariant derivative through

(DαS)⋆ ≡ D̄α̇S
⋆ (4.33)

Now we can compute{
Qα,Dβ

}
=
{
i∂α − (σµθ†)α∂µ, ∂β − i(σµθ†)β∂ν = 0 (4.34)

due to the fact that

[∂µ, ∂ν ] = {∂α, ∂β} = {∂α, ∂µ} = {θα, θβ} = 0 (4.35)
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in the same way, we obtain{
Q†

α̇,Dβ

}
=
{
Qα, D̄β̇

}
=
{
Q†

α̇, D̄β̇

}
= 0 (4.36)

now we compute[
Dα, δϵ

]
S =

[
Dα, iϵQ+ iϵ†Q†

]
=
[
Dα, iϵQ

]
S +

[
Dα, iϵ

†Q†
]
S

=
(

− iϵβDαQβ − iϵβQβDα

)
S +

(
− iϵ†

β̇
DαQ

†β̇ − iϵ†
β̇
Q†β̇Dα

)
S

= −iϵβ
{
Dα, Qβ

}
S − iϵ†

β̇
ϵβ̇α̇

{
Dα, Q

†
α̇

}
= 0 (4.37)

Hence
Dα(δϵS) = δϵ(DαS) (4.38)

and so DαS transforms covariantly under SUSY.
We also have{

Dα, D̄β̇

}
=
{
∂α − i(σµθ†)α∂µ,−θ†

β̇
+ i(θσν)β̇∂ν

}
= ������:0{

∂α,−∂†
β̇

}
+
{
∂α, i(θσν)β̇∂ν

}

+
{

− i(σµθ†)α∂µ,−∂†
β̇

}
+

��������������:0{
− i(σµθ†

α∂µ, i(θσν)β̇∂ν

}
= iσµ

αβ̇
∂µ + iσν

αβ̇∂ν

= 2iσµ

αβ̇
∂µ (4.39)

4.4 Chiral Superfields
Wehave seen that a general SuperfieldΦ(x, θ, θ†) contains various boson and fermion
fields.If we want to describe only the chiral superpultiplet, we must impose a cos-
traint. The Superfield, on which we have impose the constraint,

D̄α̇Φ = 0 (4.40)

is calledLeft-Chiral Superfield. The complex conjugate is calledRight-Chiral Superfield
and satisfies

DαΦ⋆ = 0 (4.41)
In order to solve equation [4.40] we define the variable

yµ = xµ + iθ†σ̄µθ (4.42)
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and move to a new set of coordinates on the superspace
yµ, θα, θ†

α̇ (4.43)
In the new coordianates, the derivatives are

∂

∂xµ
= ∂yν

∂xµ

∂

∂yµ
= ∂

∂yµ

∂

∂θα
= ∂θ

′β

∂θα

∂

∂θ′β
+ ∂yµ

∂θα

∂

∂yµ
= ∂

∂θα
+ iσµ

αα̇θ
†α̇ ∂

∂yµ
(4.44)

and the chiral covariant derivatives become

Dα = ∂

∂θα
− 2i(σµθ†)α

∂

∂yµ

Dα = − ∂

∂θα

+ 2i(θ†σ̄µ)α ∂

∂yµ

D̄α̇ = ∂

∂θ†
α̇

D̄α̇ = − ∂

∂θ†α̇
(4.45)

Now the constraint in equation [4.40] implies that
Φ = Φ(yµ, θ) (4.46)

Thus the Chiral Superfield is not a function of θ† and can be expanded in power
series

Φ = ϕ(y) +
√

2θψ(y) + θθF (y) (4.47)
where

√
2 is a matter of convention.

In the same way the complex conjugate is expanded
Φ = ϕ⋆(y⋆) +

√
2θ†ψ†(y⋆) + θ†θ†F ⋆(y⋆) (4.48)

where
y⋆ = x− iθ†σ̄µθ (4.49)

Acoordig to equation [4.47], the chiral superfield is consist of a complex scalar ϕ, a
two-component fermion ψ and an auxiliary field F , so itdescribes a chiral supermul-
tiplet indeed. Rewritting the component fields in the original coordinates, we must
expand in the powers of θ, θ†.
So we have

ϕ(y) = ϕ(x+ iθσµθ†) = ϕ(x) + iθσµθ†∂µϕ− 1
4
θθθ†θ†∂µ∂

µϕ

√
2θϕ(x+ iθσµθ†) =

√
2θψ(x) − i√

2
θθθ†σ̄µ∂µψ

θθF (x+ iθσµθ†) = θθF (x) (4.50)
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where we have used the identinties

θσµθ†θσνθ† = 1
2
ηµνθθθ†θ†, θαθβ = −1

2
(θθ)ϵαβ

and the fact that
θαθβθγ = 0

Hence the chiral superfield is written

Φ(x, θ, θ†) = ϕ+ iθσµθ†∂µϕ− 1
4
θθθ†θ†∂µ∂

µϕ+
√

2θψ − i√
2
θθθ†σ̄µ∂µψ + θθF

(4.51)
and the complex conjugate

Φ⋆(x, θ, θ†) = ϕ⋆−iθ†σ̄µθ∂µϕ
⋆−1

4
θθθ†θ†∂µ∂

µϕ⋆+
√

2θ†ψ†− 1√
2
θ†θ†θσµ∂µψ

†+θ†θ†F ⋆

(4.52)
comparing with the general Superfield ([4.27]) we can identify the components

a = ϕ(x)
χ =

√
2ψ(x)

χ† = 0
b = F (x)

ζ† = − i√
2

(σ̄µ∂µψ)α̇

uµ = i∂µϕ

d = −1
4
∂µ∂

µϕ

and obtain the transformation law of these fields from equation [4.29]

δϵ = ϵψ

δϵψα = −i(σµϵ†)α∂µ + ϵα + F

δϵ = −iϵ†σ̄µ∂µψ (4.53)
which are exactly what we found in equations [3.4], [3.18], [3.20].

4.5 Vector Superfield
Now we want to describe the vector supermultiplet, and so we must impose a similar
constraint on the geneneral superfield as in the chiral superfield case.The Superfield
which is obtained by imposing the constraint

V = V ⋆ (4.54)
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is called Vector Superfield.
Equation [4.54] is equivalent to imposing the following constraints on the component
fields

a = a⋆, χ† = ξ†, c = b⋆, uµ = u⋆
µ, ζ† = η†, d = d⋆ (4.55)

we can define the fields

ηα = λα − i

2
(σµ∂µξ

†)α

uµ = Aµ

d = 1
2
D + 1

4
∂µ∂

µa (4.56)

and so the Vector Superfield can be expanded in powers of θ,θ†

V (x, θ, θ†) = a+ θξ + θ†ξ† + θθb+ θ†θ†b⋆ + θ†σ̄µθAµ + θ†θ†θ
(
λ− i

2
σµ∂µξ

†
)

+ θθθ†
(
λ† − i

2
σ̄µ∂µξ

)
+ θθθ†θ†

(1
2
D + 1

4
∂µ∂

µa
)

(4.57)

From equation [4.29] we can read off the transformations for the component fields

δa = ϵξ + ϵ†ξ†

δξα = 2ϵαb− (σµϵ†)α(Aµ + i∂µa)
δb = ϵ†ζ† − iϵ†σ̄µ∂µξ

δAµ = iϵ∂µξ − iϵ†∂µξ† + ϵσµλ† − ϵ†σ̄µλ

δλα = ϵαD + i

2
(σµσ̄ν)α(∂µAν − ∂νAµ)

δD = −iϵσµ∂µλ
† − iϵ†σ̄µ∂µλ (4.58)

It is clear that a superfield cannot be both chiral and vector. However if Φ is a chiral
superfield, then Φ + Φ⋆, ΦΦ⋆, i(Φ⋆ − Φ) are vector superfields.
A vector superfield, that is used to present a gauge supermulitplet contains the gauge
bosonAµ, the two-component gaugino λα and the gauge auxiliary fieldD as compo-
nents. There are also other component fields that they are present in equation [4.57],
a real scalar a, a two-compontent fermion ξ and a complex scalar b. These field can
be eliminate using apropriate transformations.
Suppose that the vector superfield V describes aU(1) gauge symmetry, and consider
the transformation

V → V + i(Ω⋆ − Ω) (4.59)
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where Ω is a chiral superfield.
The above transformation is called supergauge transformation. Then the component
fields transform as

a → a+ i(ϕ⋆ − ϕ)
ξα → ξα − i

√
2ψα

b → b− iF

Aµ → Aµ + ∂µ(ϕ+ ϕ⋆)
λα → λα

D → D (4.60)

The above relations show that the supergauge transformation provide the vector bo-
son with the usual U(1) gauge transformation with parameter 2Re(ϕ).
One has, now, the freedom to choose a particular gauge, called theWess-Zumino Gauge,
where a, ξα, b all vanish. This is achieved by the particular choise

a = −2Im(ϕ)
ξα = i

√
2ψα

b = iF (4.61)

and so the unwanted field has been supergauged away.
Note that we did nto require anything for Re(ϕ). This freedom in Re(ϕ) is the ordi-
nary U(1) gauge freedom that is still present in the Wess-Zumino gauge. Hence the
vector superfied is given by

VW Zgauge = θ†σ̄µθAµ + θ†θ†θλ+ θθθ†λ† + 1
2
θθθ†θ†D (4.62)

4.6 Lagrangians in Superspace
We are now turning to the dynamical issue of how to construct manifestly super-
symmetric actions.
First we introduce the integration over the anticommuting Grassmann variables. We
define ∫

dθ =
∫
dθ† = 0,

∫
θdθ =

∫
θ†dθ† = 1 (4.63)

and to integrate over superspace, we define

d2θ ≡ −1
4
ϵαβdθ

αdθβ

d2θ† ≡ −1
4
ϵα̇β̇dθ†

α̇dθ
†
β̇

(4.64)
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Thus the integration of a general superfield picks out the relevant coefficient of the
θθ and θ†θ†. In particular∫

d2θS(x, θ, θ†) = b(x) + θ†ζ† + θ†θ†d(x)∫
d2θ†S(x, θ, θ†) = c(x) + θη(x) + θθd(x)∫
d2θd2θ†S(x, θ, θ†) = d(x) (4.65)

The Dirac delta functions are

δ(2)(θ − θ′) = (θ − θ′)(θ − θ′), δ(2)(θ† − θ′†) = (θ† − θ′†)(θ† − θ′†) (4.66)

so that ∫
d2θδ(2)(θ)S(x, θ, θ†) = S(x, 0, θ†) = a(x) + θ† + θ†θ†c(x)∫
d2θ†δ(2)(θ†)S(x, θ, θ†) = S(x, θ, 0) = a(x) + θξ(x) + θθb(x)∫
d2θd2θ†δ(2)(θ)δ(2)(θ†) = S(x, θ, θ†) = S(x, 0, 0) = d(x) (4.67)

Also the integrals of total derivatives with respect to the Grassmann variables vanish∫
d2θ

∂

∂θα
(anything) = 0∫

d2θ† ∂

∂θ†
α̇

(anything) = 0 (4.68)

A key observation for constructing supersymmetric actions is that the integral of any
superfield over all is automatically invariant:

δϵA = 0 (4.69)

for
A =

∫
d4x

∫
d2θd2θ†S(x, θ, θ†) (4.70)

This follows from the fact taht the integration over all Grassmann coordinates pick
out the θθθ†θ† component of the superfiled which transform as a total spacetime
derivative and so vanishes upon integration.Hence the actionmust have contributions
of the form of equation [4.70]. Demanding, also, the reality of the action thenSmust
be some real vector superfield V .
The Lagrangian is obtained by integrating over the Grassmann coordinates

V (x, θ, θ†)
∣∣∣
θθθ†θ†

=
∫
d2θd2θ†V (x, θ, θ†) = 1

2
D + 1

4
∂µ∂

µa ≡ [V ]D (4.71)
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which is reffered to as a D-term contribution to the Lagrangian.
Another type of contribution to the action cames from the θθ coefficient of the chiral
field, which is also transform as a total spactime derivative:

Φ
∣∣∣
θθ

=
∫
d2θd2θ†δ(2)(θ†)Φ = F ≡ [Φ]F (4.72)

This is called F-term contribution. In general, this term is complex, so we also have
to include its complex conjugate

[Φ]F + c.c =
∫
d2θd2θ†

[
δ(2)(θ†)Φ + δ(2)(θ)Φ⋆

]
(4.73)

It is usefull to note that the F-term component of a chiral superfield is the same in
the (xµ, θ, θ†) and (yµ, θ, θ†) coordinates in the sense that in both cases one simply
isolate the θθ component.
Now we observe that

DD(θθ) ≡ DαDα(θθ) = −∂α∂α(θθ) = −∂α(2θα) = −2∂αθα

= −2(∂1θ1 + ∂2θ2) = −4
= D̄α̇D̄α̇(θ†θ†) ≡ DD(θ†θ†) (4.74)

and also
δ(2)(θ†) = (θ†θ†) (4.75)

we can write

[V ]D = −1
2

∫
d2θd2θ†VD(θ†θ†) = −1

4

∫
d2θd2θ†δ(2)(θ†)DDV + (surface terms)

= −1
4

[DDV ]F + surface terms (4.76)

4.7 Chiral Superfields Interactions
We can now consider the products of chiral superfields

Φ⋆iΦj = ϕ⋆iϕj +
√

2θψjϕ
⋆i +

√
2θ†ψ†iϕj + θθϕ⋆iFj + θ†θ†ϕjF

⋆i

+ θ†σ̄µθ[iϕ⋆∂µϕj − iϕj∂µϕ
⋆i − ψ†iσ̄µψj]

+ i√
2
θθθ†σ̄µ(ψj∂µϕ

⋆i − ∂µψjϕ
⋆i) +

√
2θθθ†ψ†iFj

+ i√
2
θ†θ†σµ(ψ†i∂µϕj − ∂µψ

†iϕj) +
√

2θ†θ†θψjF
⋆i

+ θθθ†θ†(F ⋆iFj + 1
2
∂µϕ⋆i∂µϕj − 1

4
ϕ⋆i∂µ∂µϕj − 1

4
ϕj∂

µ∂µϕ
⋆i

+ i

2
ψ†iσ̄µ∂µψj + i

2
ψjσ

µ∂µψ
†i) (4.77)
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which for i = j is a vector superfield and all the fields are functions of (xµ) .
Taking the θθθ†θ† component we have

[Φ⋆Φ]D =
∫
d2θΦ⋆Φ = ∂µ⋆∂µϕ+ iψ†σ̄µ∂µψ + F ⋆F (4.78)

where we have omited the surface terms. The above equation is the massless free
Lagrangian for a chiral supermultiplet .
In order to obtain the superpotential inetractions and masses we consider the prod-
ucts

ΦiΦj = ϕiϕj +
√

2θ(ψiϕj + ψjϕi) + θθ(ϕiFj + ϕjFi − ψiψj) (4.79)

and

ΦiΦjΦk = ϕiϕjϕk +
√

2θ(ψiϕjϕk + ψjϕiϕk + ψkϕiϕj)
+ θθ(ϕiϕjFk + ϕiϕkFj + ϕjϕkFi − ψiψjϕk − ψiψkϕj − ψjψkϕi)

(4.80)
where this time the fields are funtions of yµ. In general, any holomprphic function
of chiral superfields is also chiral superfield. In this way we can form the complete
Lagrangian

L = [Φ⋆iΦi]D + ([W (Φi)]F + c.c.) (4.81)
whereW (Φi) is the superpotential, an holomorhic function of chiral superfields (but
not of anti-chiral), treated as complex variables. Choosing the superpotential to be
of the form

W (Φi) = 1
2
M ijΦiΦj + 1

6
ΦiΦjΦk (4.82)

we retrieve the result of equation [3.32] after expanding in component fields and
integrating out the auxiliary fields, keeping only the scalar fields. It is worth noting
that the Fi fields are given by

F ⋆
i = −∂W (Φ)

∂Φi

∣∣∣∣∣
θ=θ†=0

(4.83)

4.8 Lagrangians for Abelian Gauge Theories
In the previous section, we considered only whith interactions involving scalars and
spinors. Now we will also include and gauge interaction.
Suppose we have a U(1) gauge symmetry, then the vector superfield V will contain
the gauge boson Aµ.
We will define the anticommuting superfields

Wα = −1
4

DDDαV (4.84)
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and
W†

α̇ = −1
4

DDDα̇V (4.85)

These are chiral and anti-chiral respectively, by construction and they serve as su-
perfield generalizations of the abelian field strengh tensor. These objects are gauge
invariant. To see this, we perform a supergauge transformation

Wα →Wα − 1
4

DDDα[V + i(Ω⋆ − Ω)]

Wα − 1
4

DDDαΩ⋆ + i

4
DDDαΩ (4.86)

the third term vanish because Ω⋆ is anti-chiral and thus satisfies

DαΩ⋆ = 0 (4.87)

Making use if the fact taht Ω is chiral and satisfies

Dα̇Ω = 0 (4.88)

we can write

Wα → i

4
DDDαΩ + i

4
Dβ̇DαDβ̇Ω

= Wα + i

4
ϵβ̇γ̇ϵ

β̇δ̇Dγ̇Dδ̇DαΩ + i

4
Dβ̇DαDβ̇Ω

= Wα + i

4
Dβ̇Dβ̇Dα + i

4
Dβ̇DαDβ̇Ω

= Wα + i

4
Dβ̇
{
Dβ̇,Dα

}
Ω

= Wα − 2i
4

(σµ)αβ̇∂µDβ̇Ω

= Wα (4.89)

To find how the component fields fit into Wα we must write the vector superfield in
theWess-Zumino gauge ([4.62]) and rewrite the component fields in the coordinates

yµ = xµ − iθ†σ̄µθ (4.90)
using the identity

θσµθ†θσνθ† = 1
2
ηµνθθθ†θ† (4.91)

and the fact that
θαθβθγ = 0 (4.92)
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we find

V (yµ, θ, θ†) = θ†σ̄µθAµ + θ†θ†θλ+ θθθ†λ† + 1
2
θθθ†θ†

(
D − i∂µA

µ
)

(4.93)

using the chiral covariant derivatives in equation [4.45] we find

DαV = − (σµ∂µAµ)α + θαθ
†λ† − i(θθ)(θ†θ†)(σν∂νλ

†)α + 2θα(θ†θ†)
(
D − i

2
∂µA

µ
)

+ 2i(σνθ†)αθσ
µθ†∂νAµ (4.94)

the last term can be written

2i(σνθ†)αθσ
µθ†∂νAµ = −2i(σνθ†)αθ

†σ̄µθ∂νAµ

= −2iϵβ̇δ̇σ
ν
αα̇θ

†α̇θ†δ̇σ̄µββ̇θβ∂νAµ

= −iϵβ̇δ̇ϵ
α̇δ̇σν

αα̇σ̄
µβ̇β̇∂νAµ(θ†θ†)θβ

= iϵβ̇δ̇ϵ
δ̇α̇σν

αα̇σ̄
µβ̇β̇∂νAµ(θ†θ†)θβ

= i(σµσ̄ν) β
α ∂µAνθ

†θ†θβ (4.95)

so

DαV = − (σµ∂µAµ)α + 2θαθ
†λ† + θ†θ†λα − i(θθ)(θ†θ†)(σν∂νλ

†)α

θ†θ†[δβ
αD + i(σµσ̄ν) β

α ∂µAν − iδβ
α∂µA

µ]θβ (4.96)

using the relation
(σµν)β

α = i

2
[

− δβ
αη

µν + (σµσ̄ν)β
α

]
(4.97)

which follows directly from

(σµσ̄ν)β
α + (σν σ̄µ)β

α = 2ηµνδβ
α (4.98)

and
(σµν)α

β = i

4
[
σµ, σν

]β
α

(4.99)

we can write the last term

[i(σµσ̄ν) β
α ∂µAν − iδβ

α∂µA
µ] =2(σµν)α∂µAν

= σµν∂µAν − σµν∂µAν

= σµν∂µAν − σνµ∂νAµ

= σµν
µ Aν − σµν∂νAµ

= σµνFµν (4.100)
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thus

DαV = − (σµ∂µAµ)α + 2θαθ
†λ† + θ†θ†λα − i(θθ)(θ†θ†)(σν∂νλ

†)α

θ†θ†[2δβ
αD + σµνFµν ]θβ (4.101)

and applying −1
4DD = −1

4∂
†
α̇∂

†α̇ we obtain

Wα(yµ, θ, θ†) = −1
4

DDDαV = λα + 2Dθα + (σµν) β
α Fµνθβ − iθθ(σµ∂µλ

†)α

(4.102)
and in a similar way

W†
α̇(yµ⋆, θ, θ†) = λ†

α̇ + 2Dθ†
α̇ − ϵα̇β̇(σ̄µνθ†)β̇Fµν + iθ†θ†(∂µλσ

µ)α̇ (4.103)

where
yµ⋆ = xµ + iθ†σ̄µθ (4.104)

Although we computeWα,W†
α̇ in theWess-Zumino gauge, it must be true in general,

since they are supergauge invariant.
Computing WαWα we have

WαWα =λ2 + 2D(λθ) + λσρσθFρσ − i(θθ)λσµ∂µλ
† + 2D(λθ) + 4D2(θθ)

+ 2d(θσρσθ)Fρσ − i(θθ)λσµ∂µλ
† + 2DθσµνθFµν

+ ϵαβ(σµν) γ
β θγ(σρσ) δ

α θδFµνFρσ (4.105)

the last term can be written as

ϵαβ(σµν) γ
β θγ(σρσ) δ

α θδFµνFρσ = ϵαβ(σµν) γ
β (σρσ) δ

α θγθδFµνFρσ

= 1
2

(θθ)ϵαβ(σµν) γ
β ϵγδ(σρσ) δ

αFµνFρσ

= 1
2

(θθ)ϵαβ(σµν) γ
β ϵαδ(σρσ) δ

γ FµνFρσ

= −1
2

(θθ)δβ
δ (σµν) γ

β (σρσ) δ
αFµνFρσ

= −1
2

(θθ) Tr
[
σµνσρσ

]
FµνFρσ (4.106)

using the identity

Tr
[
σµνσρσ

]
= 1

2
(
ηµρηνσ − ηρσηνρ

)
+ i

2
ϵµνρσ (4.107)

and the fact that
θσµνθ = 0 (4.108)
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we obtain

WαWα =λ2 + 2λσµνθFµν + (θθ)
[
4D2 − 2iλσµ∂µλ

† − 1
2
FµνF

µν − i

4
ϵµνρσFµνFρσ

]
+ 4D(λθ) (4.109)

and thus[
WαWα

]
F

= D2 + 2iλσµ∂µλ
† − 1

2
F µνFµν − i

4
ϵµνρσFµνFρσ (4.110)

and similarly

W†
α̇W†α̇ =λ†2 + 2λ†σµνθ†Fµν + (θ†θ†)

[
D2 − 2i∂µλσ

µλ† − 1
2
F µνFµν + i

2
ϵµνρσFµνFρσ

]
+ 2Dλ†θ† (4.111)

and [
W†

α̇W†α̇
]

F
= D2 − 2i∂µλσ

µλ† − 1
2
F µνFµν + i

2
ϵµνρσFµνFρσ (4.112)

This time the fields on the right hand side of equations [4.110], [4.112] are funtions
of xµ.
Now we can write the action for the gauge supermultiplet

A =
∫
d4xd4θ

1
4
[
WαWαδ

2(θ†) + W†
α̇W†α̇δ2(θ)

]
=
∫
d4x

1
4

WαWα

∣∣∣∣
F

+ 1
4

W†
α̇W†α̇

∣∣∣∣
F

=
∫
d4x

1
2
D2 − 1

4
FµνF

µν + 2i(λσµ∂µλ
† − ∂µλσ

µλ†) (4.113)

integrating by parts and eliminate the total dervative, we end up with

A =
∫
d4x

[1
2
D2 + iλ†σ̄µ∂µλ− 1

4
FµνF

µν
]

(4.114)

This is the action for a pure supersymmetric Abelian Gauge theory. The field D(x)
is the auxiliary field which can be integrated out using the classical equations of
motion. The massless fermionic partner λ(x) of the massless gauge field Aµ(x) is
called gaugino of photino in the case of Electromagnetism, thus the fermion field
now becomes part of the gauge field as opposed to the non-supersymmetric theories
which was considered as a matter field. And, lastly, the action is manifestly invariant
under both supersymmetry and gauge transformations.
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Noticing that theD− term component of V is inavriant under both supersymmetry
and supergauge transformations, we could also include a term of the form

LF I = −2κ[V ]D = −κD (4.115)
which is called Fayet-Iliopoulos term. Such a term will play a role in the spontenuous
supersymmetry breaking.
Next we consider the coupling of the abelian gauge field to a set of chiral superfields
Φi, carrying U(1) charges qi. The supergauge transformations are parametrized by
a non-dynamical chiral field Ω

Φi → e2igqiΩΦi

Φ⋆i → e−2igqiΩ⋆Φ⋆i (4.116)
where g is the gauge coupling.
The kinetic term which follows from the superfieldΦ⋆iΦi is not supergauge invariant

Φ⋆iΦi → e2igqi(Ω−Ω⋆)Φ⋆iΦi (4.117)
Thus we modify the kinetic term in the Lagrangian to[

Φ⋆ie2gqiV Φi

]
D

(4.118)

and the gauge transformation of the exponential ([4.59]) cancels exactly that of equa-
tion [4.117].
Expanding the exponential, we have

e2gqiV = 1 + 2gqiV + g2q2
i V

2 + g3q3
i V

3 + · · · (4.119)
In the Wess-Zumino gauge we have

V 2 = θ†σ̄µθA[µθ
†σ̄µAµ = 1

2
θθθ†θ†AµA

µ (4.120)

and so the terms V n, n ≥ 3 vanish.
Thus we have

e2gqiV = 1 + 2gqi(θ†σ̄µθAµ + θ†θ†θλ+ θθθ†λ† + 1
2
θθθ†θ†D) + θθθ†θ†AµA

µ

(4.121)
Computing the θθθ†θ† coefficient of the Φ⋆ie2gqiV Φi we obtain[
Φ⋆ie2gqiV Φi

]
D

= ∂µϕ⋆i∂µϕi + iψ†iσ̄µψi + F ⋆iFi + 2igqiη
µνϕ⋆iAµ∂νϕi

+ gqiη
µνAν∂µϕ

⋆iϕi − gqiψ
†iσ̄µψiAµ −

√
2gqiϕ

⋆i(λψ)i −
√

2gqi(ψ†λ†iϕi

+ gqiDϕ
⋆iϕi + g2q2

iAµA
µϕ⋆iϕi

= ∇µϕ
⋆i∇µϕi + iϕ†σ̄µ∇µψ −

√
2gqi(ϕ⋆iψiλ+ λ†ψ†iϕi) + gqiϕ

⋆iϕ⋆D

+ F ⋆iFi (4.122)
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where ∇µ is the gauge-covariant derivative

∇µϕi = ∂µϕi + igqiAµϕi

∇µϕ
⋆i = ∂µϕ

⋆i − igqiAµϕ
⋆i

∇µψi = ∂µψi + igqiAµψi (4.123)

and, thus the Lagrangian for the gauge interaction is

L =
[
Φ⋆ie2gqiV Φi

]
D

+
(

1
4

WαWα

∣∣∣∣
F

+ c.c.

)

= iλ†σ̄µ∂µλ− 1
4
FµνF

µν + ∇µϕ
⋆i∇µϕi + iϕ†σ̄µ∇µψ −

√
2gqi(ϕ⋆iψiλ+ λ†ψ†iϕi)

+ F ⋆iFi + 1
2
D2 (4.124)

Using the equations of motion to eliminate the field D we have
∂L

∂D
= 0

⇒D = −gqiϕ
⋆iϕi (4.125)

and the scalar potential is

V (ϕi, ϕ
⋆i) = F ⋆iFi + 1

2
D2 (4.126)

4.9 Lagrangians for Non-Abelian Gauge theories
We now consider a general gauge symmetry realized on chiral superfieldsΦi belong-
ing to the representation R of the gauge group with generators T a. Then the chiral
superfields transform as

Φi →
(
e2igaΩaT a

) j

i
Φj, Φ⋆i → Φ⋆j

(
e−2igaΩaT a

) i

j
(4.127)

where ga are the gauge couplings and the chrial superfields Ωa are the supergauge
transformation parameters. For each generator, there is a vector superfield V a,
which contains the gauge boson and the gaugino. The supergauge invariant term
in the Lagrangian is

L =
[
Φ⋆i

(
e2gaT aV a

) j

i
Φj

]
D

(4.128)

we define the matrix-valued vector and gauge parameter superfields as

V j
i = 2ga(T a) j

i V
a

Ω j
i = 2ga(T a) j

i Ωa (4.129)

57



CHAPTER 4. SUPERSPACE AND SUPERFIELDS

and so

Φi → (eiΩ) j
i Φj

Φ⋆i → Φ⋆j(e−iΩ†) i
j (4.130)

and
L =

[
Φ⋆i

(
eV
) j

i
Φj

]
D

(4.131)

For this to be supergauge invariant, the gauge transformation rule for the vector
superfields must be

eV → eiΩ†
eV e−iΩ (4.132)

using the Baker-Hausdorf formula

eXeY = eZ , Z = X+Y +1
2

[X,Y ]+ 1
12

[X, [X,Y ]]− 1
12

[[Y, [X, Y ]]+· · · (4.133)

we have

eiΩ†
eV e−iΩ =exp

{
V − iΩ + iΩ† − i

2
[V,Ω] − 1

12
[Ω, [Ω, V ]] − i

12
[V, [V,Ω]]

+ i

2
[Ω†, V − iΩ − i

2
[V,Ω] − 1

12
[Ω, [Ω, V ]] − i

12
[V, [V,Ω]]] + · · ·

}
= exp

{
V + i(Ω† − Ω) − i

2
[V,Ω] + i

2
[Ω†, V ] + i

12
[V, [Ω†, V ]]

− i

12
[V, [V,Ω]] + i

12
[Ω, [Ω,Ω]] − 1

12
[Ω, [Ω, V ]] + · · ·

}
(4.134)

computing the commutators

− i

2
[V,Ω] = − i

2
[2gaV

aTa, 2gaΩbTb]

= −2gaV
aΩb[Ta, Tb] = 2gaV

bΩcfabcTa

i

2
[Ω†, V ] = 2ga

aV
bΩcfabcTa (4.135)

− i

12
[V, [V,Ω]] = 8ig3

a

12
V bV dΩefabcf cdeTa

i

12
[V, [Ω†, V ]] = −8ig3

a

12
V bV dΩ⋆efabcf cdeTa (4.136)

and keeping only the linear terms we obtain

exp
[
2gaV

aTa

]
→ exp

[
2gaV

aTa + 2gaTai(Ω⋆a − Ωa) + 2g2
aV

bfabcTa(Ω⋆c − Ωc)

− −8ig3
a

12
V bV dfabcf cdeTa(Ω⋆e − Ωe)

]
(4.137)
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which leads to

V a → V a + i(Ω⋆a − Ωa) + gaf
abcV b(Ω⋆c − Ωc) − i

3
g2

af
abcf cdeV bV d(Ω⋆e − Ωe)

(4.138)

Due to the fact that the second term is independent of V a, we can do a supergauge
transformation to the Wess-Zumino gauge

(V a)W Zgauge = θ†σ̄µθAa
µ + θ†θ†θλa + θθθ†λ†a + 1

2
θθθ†θ†Da (4.139)

and thus [
Φ⋆i

(
eV
) j

i
Φj

]
D

=∇µϕ
⋆i∇µϕi + iψ†iσ̄µ∇µψi

−
√

2ga(ϕ⋆T aψ)λa −
√

2λ†a(ψ†T aϕ)
+ ga(ϕ⋆T aϕ)Da + F ⋆iFi (4.140)

where ∇µ is the gauge-covariant derivative

∇µϕi = ∂µϕi + igAa
µ(T aϕ)i

∇µϕ
⋆i = ∂µϕ

⋆i − igAa
µ(ϕ⋆T a)i

∇µψi = ∂µψi + igAa
µ(T aψ)i (4.141)

We can define the non-Abelian spinor field strength chiral superfield as

Wα = −1
4

DDe−V Dαe
V (4.142)
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This object transforms as

W ′
α = − 1

4
DDe−V ′Dαe

V ′

= − 1
4

DD
[(
eiΩe−V e−iΩ†

)
Dα

(
eiΩ†

e−V e−iΩ
)]

= − 1
4
eiΩDD

[
e−V e−iΩ†Dα

(
eiΩ†

eV e−Ω
)]

= − 1
4
eiΩDD

[
e−V e−iΩ†

eiΩ†Dα

(
eV e−iΩ

)]

= − 1
4
eiΩDD

[
e−V Dα

(
eV e−iΩ

)]

= − 1
4
eiΩDD

[
e−V Dα

(
e−V

)
e−iΩ + Dα

(
e−iΩ

)]

= − 1
4
eiΩDD

(
e−V Dαe

V
)
e−iΩ − 1

4
eiΩDDDα

(
e−iΩ

)
=eiΩWαe

−iΩ − 1
4
eiΩDDDα

(
e−iΩ

)
− 1

4
eiΩDDαD

(
e−iΩ

)
=eiΩWαe

−iΩ − 1
4
eiΩD

{
Dα,Dβ̇

}
e−iΩ

=eiΩWαe
−iΩ + i

2
eiΩ∂µσ

µ
αα̇Dα̇

e−iΩ

=eiΩWαe
−iΩ (4.143)

where we have used the fact that

Dα̇Ω = DαΩ† = 0 (4.144)

Epanding the exponential

e−V Dαe
V = Dα + 1

2
[
V,DαV

]
+ 1

6
[
V,
[
V,DαV

]]
· · · (4.145)

where only the first two terms contribute in the Wess-Zumino gauge.
Writting also

Wα = 2gT aWa
α (4.146)

and thus recover an adjoint representation for the chiral superfields, leads to

Wa
α = −1

4
DD

(
Dα(V a)W Z + igaf

abc(V b)W ZDα(V c)W Z + · · ·
)

(4.147)

and thus in the Wess-Zumino gauge we obtain (in a similar way to the abelian case)

Wa
α(yµ, θ, θ†) = λa

α +Daθα − (σµνθ)αF
a
µν + iθθ(σµ∇µλ

†a)α (4.148)
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where

F a
µν = ∂Aa

ν − ∂νA
a
µ − gaf

abcAb
µA

c
ν

∇µλ
†a = ∂µλ

†a − gaf
abcAb

µλ
†c

The transformation law in equation [4.143] implies that

Tr
[
WαWα

]
= WαWa

α (4.149)

is invariant under supergauge trasformations. We can , now, obtaining the F-term of
the spinor product
[
WαaWa

α

]
F

= DaDa + 2iλaσµ∇µλ
†a − 1

2
F µνaF a

µν − i

4
ϵµνρσF a

µνF
a
ρσ (4.150)

and similarily
[
W†a

α̇ W†α̇a
]

F
= DaDa − 2i∇µλ

aσµλ†a − 1
2
F µνaF a

µν + i

2
ϵµνρσF a

µνF
a
ρσ (4.151)

Thus the kinetic part of the Lagrangian, along with the gauge field self-interactions
is

L = 1
4kg2

a

Tr
[
WαWα + W†

α̇W†α̇
]

F
= 1

4

[
WαWa

α + W†a
α̇ W†α̇a

]
F

(4.152)

where k = T (R) of the corresponding gauge group and usualy is defined T (R) =
1/2) in the fundumentak representation .
Finally the scalar potential in this case is a generalization of equation [4.126]:

V (ϕi, ϕ
⋆i) = F ⋆iFi + 1

2
DaDa ≥ 0 (4.153)

where Da-fields are given by Da = −gaϕ
⋆T aϕ as a generalization of equation

[4.126] and a indices are being summed.
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Chapter 5

Supersymmetry breaking

Supersymmetric partners would be degenerate in mass had supersymmetry been an
exact symmerty of nature. But, since sparticles have not yet been observed, then
supersymmetry must be broken. This can bee achieved in in two ways: i) spon-
taneously in which case the vacuum of the theory does not remain symmetric and
massless Goldestone particles appear; ii) explicitly in which case a small part of the
Lagrangian breaks the symmetry while the remaining larger part is still symmetric.
We will explore both cases.

5.1 Spontaneous supersymmetry breaking
The supersymmetry algebra imposes some constraints on the energy of the vacuum{

Qα, Q
†
β̇

}
= 2(σµ)αβ̇Pµ

⇒(σ̄ν)β̇α
{
Qα, Q

†
β̇

}
= 2(σµ)αβ̇(σ̄ν)β̇αPµ

⇒P µ = 1
4

(σ̄µ)β̇α
{
Qα, Q

†
β̇

}
(5.1)

where we have used the relation

Tr[σµσ̄ν ] = 2ηµν (5.2)

For P 0 ≡ H

H = 1
4
[
Q1Q

†
1̇ +Q†

1̇Q1 +Q2Q
†
2̇ +Q†

2̇Q2
]

(5.3)

thus for any state |ψ⟩ we have

⟨ψ|H |ψ⟩ = 1
4
[
⟨ψ|Q1Q

†
1̇ |ψ⟩ + ⟨ψ|Q†

1̇Q1 +Q2Q
†
2̇ |ψ⟩ + ⟨ψ|Q†

2̇Q2 |ψ⟩
]
(5.4)
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inserting a complete set o states and since Q†
α̇ is the hermitian conjugate of Qα we

have
⟨ψ|H |ψ⟩ = 1

4

2∑
α=1

∑
n

|⟨ψ|Qα |n⟩|2 +
∣∣∣⟨ψ|Q†

α̇ |n⟩
∣∣∣2 ≥ 0 (5.5)

The vacuum is supersymmetric if it remains invariant under supersymmetric trans-
formation

i(ϵQ+ ϵ†Q†) |Ω⟩ = 0

⇒

Qα |Ω⟩ = 0
Q†

α̇ |Ω⟩ = 0
(5.6)

which from equation [5.3] such a vacuum must have zero energy. If we consider
the potential V (ϕ) of a theory , then the vacuum corresponds to a minimum of the
potential. For this state to be supersymmetric must correspond to the minimum
of V (ϕ) with zero value. Supersymmetry is spontaneously broken if the minimum
has a positive value. The condition for a theory to exhibit a spontaneously broken
symmetry is that the generator of the symmetry transformation does not annihilate
the vacuum

Q |Ω⟩ ̸= 0 (5.7)
An equivalent statematent is that some field operators acquire a non-zero vacuum
expectation value (VEV)

⟨Ω|ϕ |Ω⟩ ̸= 0 (5.8)
If this is the case, then the particle spectrum of the theory will contain masseless
particles (Goldstone theorem [19]).
To see this, suppose there is a conserved current jµ(x) :

∂µj
µ = 0, with the charge Q =

∫
d3xj0(x) (5.9)

Then for any operator, calculated in the spacetime space point x′ = (t′, x⃗′) we have∫
V
d3x[∂µj(x), O(x′)] = 0

⇒ d

dt

∫
V
d3x[∂µj(x), O(x′)] +

∫
S
dS⃗∇⃗[j(x), O(x′)] = 0 (5.10)

For large spacetime seperations, the surface itegral vanishes. So
d

dt
[Q(t), O(x′)] = 0 (5.11)

the above commutator, being some combination of other fields has a non-vanishing
VEV

⟨Ω| [Q(t), O(x′)] |Ω⟩ = u ̸= 0 (5.12)
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and thus
d

dt
⟨Ω| [Q(t), O(x′)] |Ω⟩ = 0

⇒ d

dt

∫
d3x

[
⟨Ω| j0(x)O(x′) |Ω⟩ − ⟨Ω|O(x′)j0(x) |Ω⟩

]
= 0 (5.13)

inserting a complete set of momentum eigenstates |pn⟩ we have
d

dt

∫
d3xn

[
⟨Ω| j0(x) |pn⟩ ⟨pn|O(x′) |Ω⟩ − ⟨Ω|O(x′) |pn⟩ ⟨pn| j0(x) |Ω⟩

]
= 0
(5.14)

using translation invariance

⟨Ω| j(x) |pn⟩ = ⟨Ω| e−iP xj(0)eiP x |pn⟩ = ⟨Ω| j(0) |pn⟩ eipnx

⟨Ω|O(x′) |pn⟩ = ⟨Ω| e−iP x′
O(0)eiP x′ |pn⟩ = ⟨Ω|O(0) |pn⟩ eipnx′ (5.15)

we get
d

dt

∫
d3x

∑
n

[
⟨Ω| j0(0) |pn⟩ ⟨pn|O(0) |Ω⟩ e−ipn(x−x′)

− ⟨Ω|O(x′) |pn⟩ ⟨pn| j0(x) |Ω⟩ eipn(x−x′)
]

= 0 (5.16)

differentiate with respect to time and calculating the integral we obtain∑
n

(2π)3δ(3)(p⃗n)(−iE)
[

⟨Ω| j0(0) |pn⟩ ⟨pn|O(0) |Ω⟩ e−iEn(t−t′)

− ⟨Ω|O(0) |pn⟩ ⟨pn| j0(x) |Ω⟩ eiEn(t−t′)
]

= 0 (5.17)

The only possibility for the above relation to vanish is that if there exist some states
|pn⟩ such that

En → 0, as p⃗n → 0 (5.18)
with E2

n = m2
n + p⃗2

n.
Such states are massless and they are called Goldstone modes with the property

⟨Ω| j0(0) |pn⟩ ≠ 0 (5.19)

Since ⟨Ω| j0(0) |pn⟩ ̸= 0 is a Lorentz invariant quantity, then under a Lorentz trans-
formation we have

⟨Ω| j0(0) |pn⟩ = ⟨Ω|U †(Uj0(0)U †)U |pn⟩ (5.20)

and hence, the operator j0(0) must transform into the same representation of the
Lorentz group as the state |pn⟩. Thus if j0(0) is a spinor current (as the supercurrent)
then these states are spinor states (Goldstino).
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5.1.1 Vacuum expectation values in supersymmetric theories
We have seen that the spontaneous breakdown of continious summetry arises when
an operator acquires a non-zero VEV. We want to examine the possibility of a field
to acquire a VEV in a supersymmetric theory.
First we consider a chiral superfield with its components ϕ, ψα, F . The SUSY trans-
formation of the components fields, tell us that δF , δϕ cannot have a non-vanishing
VEV, since ψα it would violate Lorentz invariance and ∂µϕ would spoil the vanish-
ing four-momentum of the vacuum. Thus the only possibility is δψα to acquire a
non-zero VEV, through the auxiliary field F . So the condition

⟨Ω|F |Ω⟩ ̸= 0 (5.21)

will lead to a spontaneous breakdown of supersymmetry. This type of SUSY break-
ing is called F-term breaking.
Applying the same logic to a vector superfield and its components Aµ, λα, D, we
can deduce that the only possibility is

⟨Ω|D |Ω⟩ ̸= 0 (5.22)

which is called D-term breaking or Fayet-Iliopoulos mechanism. In the next sections
we demonstrate both possibilities.

5.1.2 O' Raifeartaigh Model
A field theory which exhibits supersymmetry breaking by an F-term must admit a
solution Fi ̸= 0 to the equations of motion. As pointed out by O'Raifeartaigh, one
needs at least three chiral superfieldsΦ1, Φ2, Φ3 and the superpotential of the model
is

W (Φi) = mΦ2Φ3 + λΦ1(Φ2
3 − µ2) (5.23)

the F-term of the superpotential is

W
∣∣∣
F

=mϕ2F3 +mϕ3F2 −mψ2ψ3 + λϕ1ϕ3F3 + λϕ1ϕ3F3 + λϕ1ϕ3F3

+ λϕ3ϕ3F1 − λψ1ψ3ϕ3 − λψ1ψ3ψ3 − λψ3ψ3ϕ1 − µ2λF1 + (c.c)
(5.24)

The equations of motion for the Fi's are

F ⋆
1 = −λ(ϕ2

3 − µ2)
F ⋆

2 = mϕ3

F ⋆
3 = −mϕ2 − 2λϕ1ϕ3 (5.25)
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There is no set of solutions that can make all Fi vanish simultaneously and so su-
persymmetry is breaks down. The scalar potential after inegrating out the auxiliary
fields is

V (ϕ) =
∑

i

|Fi|2 =
∣∣∣λ(ϕ2

3 − µ2)
∣∣∣2 + |mϕ3|2 + |mϕ2 + λϕ1ϕ3|2 (5.26)

Now we want to find the field configuration of ϕ1, ϕ2, ϕ3 that monimizes the poten-
tial. We see that for any configutation of ϕ3 it is always possible to have the last term
of the potential equal to zero. Thus we need only to minimize the first two terms
which depend only on ϕ3.
Writting

ϕ3 = 1√
2

(A+ iB) (5.27)

the first two terms become∣∣∣λ(ϕ2
3 − µ2)

∣∣∣2 + |mϕ3|2 =
(
m2

2
− µ2λ2

)
A2 +

(
m2

2
+ µ2λ2

)
B2 + λ

4
(A2 +B2)2 + λ2µ4

(5.28)

for µ2 < m2/2λ2, the minimum of the potential is Vmin = µ4λ2 and occurs at
A = B = 0 which implies that the VEV of ϕ2, ϕ3 are ⟨ϕ2⟩ = ⟨ϕ3⟩ = 0 with ⟨ϕ1⟩
undetermined. The fact that we can change ⟨ϕ1⟩ and still remain at the minimum,
means that the potential has a flat direction along ⟨ϕ1⟩ .
The fermion masses come from the term ([3.36])

Lfermion = −1
2
∂2W (ϕi)
∂ϕi∂ϕj

ψiψj + h.c. (5.29)

where
∂2W (ϕi)
∂ϕi∂ϕj

is evaluated at the VEVs of ϕ1, ϕ2, ϕ3.
After calculate the differentials we find0 0 0

0 0 m
0 m 2λ⟨ϕ1⟩

 ≡ Mij (5.30)

and thus
Lfermion = −mψ2ψ3 − λ⟨ϕ1⟩ψ3ψ3 + h.c. (5.31)

we can set ⟨ϕ1⟩ = 0 and combine ψ2, ψ3 into a single Dirac fermion

ΨD =
(
ψ2

ψ†
3

)
(5.32)
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and so
Lfermion = −mΨ̄DΨD (5.33)

with
Ψ̄ = Ψ†

(
0 1
1 0

)
=
(
ψ3 ψ†

2

)
(5.34)

Thus we have one massive Dirac spinor of mass m and one massless Weyl spinor
ψ1 which is the Goldstino. It is worth noted that the Goldstino is the fermion that
belong to the same multiplet as the auxiliary field which get a non-zero VEV (in this
case F1).
For the masses of scalars, we look to the quadratic terms of the potential, after
shifting the fields with respect to their VEVs. So we have

−Lscalar =
∣∣∣λ(ϕ2

3 − µ2)
∣∣∣2 + |mϕ3|2 + |mϕ2 + λϕ1ϕ3|2

− λ2|ϕ3|4 − λ2µ2ϕ⋆2
3 − λ2µ4 +m2|ϕ3|2 +m2|ϕ2|2

+ ϕ2ϕ
⋆
1ϕ

⋆
3 +mλϕ1ϕ3ϕ

⋆
2 + λ|ϕ1|2|ϕ3| (5.35)

and the quadratic part is

−Lscalar = −λ2µ2(ϕ2
3 + ϕ⋆2

3 ) +m2(|ϕ3|2 + |ϕ2|2) (5.36)

writing
ϕ3 = 1√

2
(A+ iB) (5.37)

we have

−Lscalar = 1
2
(
m2 − 2λ2µ2

)
A2 + 1

2
(
m2 + 2λ2µ2

)
B2 +m2ϕ2ϕ

⋆
2 (5.38)

So the bosonic spectrum constists of a massless scalar field ϕ1, a complex scalar
of mass |m| and the real scalars A, B with masses mA =

√
m2 − 2λ2µ2, mB =√

m2 + 2λ2µ2 respectively.
Defining |⟨Ω|F |Ω⟩| = |λµ2| = Λ2 as the supersymmetry breaking scale we have
mA =

√
m2 − 2λΛ2,mB =

√
m2 + 2λΛ2.

Thus in the limit Λ → 0 where supersymmetry is not broken, the complex ϕ3 has
a mass m . When supersymmetry breaking occurs, it splits in two real scalars with
squared massesm± 2λΛ2.

5.1.3 Fayet-Iliopoulos mechanism
The simplest model that exhibits D-term breaking is a U(1) supersymmetric gauge
theory whith a chiral superfield of charge q and a Fayet-Iliopoulos term

LF I = 2ηV |D = ηD
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The scalar potential is
V = 1

2
|F |2 + 1

2
D2 (5.39)

The auxiliary field can D can acquire a non-zero VEV

|⟨Ω|D |Ω⟩| = Λ2 (5.40)

assuming, further, that |⟨Ω|F |Ω⟩| = 0 and we have a pure D-term breaking and
the minimum of the potential will be

Vmin = 1
2

Λ4 > 0 (5.41)

as required for the spontaneous supersymmetry breakdown. The equation of motion
for the D field is

D = −η − q|ϕ|2 (5.42)
and the potential become

V = 1
2

(η + q|ϕ|2)2 (5.43)

If the sign ηq is negative, the minimization of V does not require a non-zero ⟨ϕ⟩,
and so U(1) would suffer a spontaneous breakdown. Hence, we will choose ηq > 0
and so the minimum of the potential requires ⟨ϕ⟩ = 0 with

Vmin = 1
2
η2 (5.44)

and thus supersymmetry breaks down while the U(1) remains intact. Lookin at thet
quadratic terms of the potential we find that the field ϕ becomes massive with mass
m = √

ηq whike its fermion superpartner remains massless and is the Goldstino.

5.2 Explicit supersymmetry breaking
In the Minimal Supersymmetric Standard Model none of the above models is viable
since there exist neither a linear term in order to have an F-term breaking nor a guge
singlet auxiliary field Da in order to have a D-term breaking. Therefore we will
include terms that violate supersymmetry.
So we can write

L = LSUSY + LSSB (5.45)
The supersymmetry breaking terms must be 'small' compared to the supersymmetric
part of the Lagragian. In fact, in order for supersymmetry to maintain a solution to
the hierarchy problem these terms must be soft [27]. This means that every field
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operator must have dimension less than four. The most general soft supersymmetry
breaking gauge invariant terms are

Lsoft = −ϕ⋆
i (m2)ijϕj −

( 1
3!
Aijkϕiϕjϕk + 1

2
Bijϕiϕj + h.c

)
− 1

2
(Mλaλa + h.c.)

(5.46)

where ϕi is the scalar component of the superfield Φi. Furthermore, λa, λ† are two
component gaugino fields, M is the mass of the gaugino Majorana mass term and
(m2)ij is hermitian matrix. The A, B have mass dimensions one and two respec-
tively.
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Chapter 6

The Minimal Supersymmetric
Standard Model

Having laid down the foundations of supersymmetry, we can now construct the su-
persymmetric extention of the Standard Model, ie. the Minimal Supersymmetric
Standard Model (MSSM)

6.1 Standard Model at a glance
To begin, we will briefly review the basic ingridients of the Standard Model which
is a gauge theory with symmetry group SU(3)c ⊗ SU(2)L ⊗ U(1)Y with C,L, Y
reffering to color, left chirality and hypercharge respectively. The hypercharge is
related to the electromagnetic charge and the weak isospin by

Y = 2(Q− T3) (6.1)

The electroweak gauge trasformation of the left and right chiral fermion fields are

fL → e−igY aY (x)Y/2e−ig2a⃗2(x)τ⃗/2fL

fR → e−igY aY (x)Y/2fR (6.2)

where fL/R = 1
2(1 ∓ γ5)fL/R and gY , aY (x), a⃗2(x) are the U(1)Y and SU(2)L

gauge couplings and gauge parameters respectively and τ⃗ are the Pauli matrices.
The color gauge transformations of quark (q) and lepton (l) fields are

qL,R → e−igsaa
s (x)λa/2qL,R

lL,R → lL,R (6.3)

where gs, a
a
s(x) are the SU(3)C gauge coupling and gauge parameters and λa are

the Gell-Mann matrices.
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We summarize the transoformation properties of the matter and gauge fields in the
following table

Fields SU(3)c ⊗ SU(2)L ⊗ U(1)Y

quantum numbers

liL (1,2,-1)
eiR (1,1, -2)
qiL (3,2, 1/3)
uiR (3,1, 4/3)
diR (3,1, -2/3)
ga

µ (8,1, 0)
W⃗µ (1,3, 0)
Bµ (1,1, 0)

where i = 1, 2, 3 is the generation index and hence

l1L =
(
νe

e−

)
L

, l2L =
(
νµ

µ−

)
L

, l1L =
(
ντ

τ−

)
L

e1R = e−
R, e2R = µ−

R, e3R = τ−
R

q1L =
(
u
d

)
L

, q2L =
(
c
s

)
L

, q3L =
(
t
b

)
L

u1R = uR, u2R = cR, u3R = tR

d1R = dR, d2R = sR, d3R = bR (6.4)

All the gauge fields are exact massless in the limit of exact electroweak symmetry.
At the weak scale the SU(2)L ⊗ U(1)Y symmetry gets broken down to U(1)EM .
This symmetry break down is driven by an SU(2)L doublet of scalar fields

Φ =
(
ϕ+

ϕ0

)
(6.5)

assigned with Y = +1. This doublet obtains an non-zero VEV

⟨Φ⟩ = 1√
2

(
0
v

)
(6.6)
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which arise from the minimization of the Higgs potential V (Φ).
The masses of the physicalW±, Z boson are related to the VEV v

MW = 1
2
g2v

MZ = 1
2
v
√
g2

Y + g2
2 (6.7)

while the photon γ remains massless and the VEV is related to the Fermi constant

v = (
√

2GF )− 1
2 (6.8)

The mass eigenstatesW±, Zµ, Aµ are related to the gauge eigenstates as

W µ± = 1√
2

(W µ
1 ∓ iW µ

2 )

Zµ = −sinθWB
µ + cosθWW

µ
3

Aµ = cosθWB
µ + sinθWW

µ
3 (6.9)

where θW is the Weinberg angle which satisfies the relation

e = g2sinθW = gY cosθW (6.10)

The masses of leptons are generated through Yukawa couplings with the Higgs

LL = −Y e
ijliLϕejR + h.c. (6.11)

Due to the fact that the neutrino is massless, the matrices Y e⋆
ij are real and diagonal

in the generation space and the masses are given by

[me]ij = 1√
2
Y e

ijv = meiδij (6.12)

In the quark case the Yukawa interactions are

Lq = −Y d
ijqiLϕdjR − Y u

ij qiLϕ
cujR + h.c. (6.13)

for the "down-type" (djR) and "up-type" (ujR) right chiral fermion and

Φc = iτ2Φ⋆ =
(
ϕ0⋆

−ϕ−

)
(6.14)

is the charge conjugated Higgs doublet with VEV

⟨Φc⟩ = 1√
2

(
v
0

)
(6.15)
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The mass matrices are

[md]ij = 1√
2
Y d

ijv, [mu]ij = 1√
2
Y u

ij v (6.16)

These matrices can be brought in real diagonal form by a biunitary transformation.
So we can transform the flavor eigenstates left, right u− and d− quark fields to the
corresponding mass eigenstates by UuL , UuR , UdL , UdR and the matrices become
(UuL †muU

uR)ij = [mu
(D)]ij = mui

δij (UdL †mdU
dR)ij = [md

(D)]ij = mdi
δij

(6.17)
where mu

(D),md
(D) are the physical, real, diagonal mass matrices for thr up- and

down-type quarks respectively.

6.2 Superfields of the MSSM
We will now introduce a chiral superfield for every Standard Model chiral fermion.
The superfields will contain these chiral fermions, the auxiliary fields and also the
scalars superpartners. Such scalars will be denoted with a "tilde", thus for example,
for the first generation of leptons, we have the scalars

l̃1L =
(
ν̃e

ẽ−

)
L

, ẽ1R = ẽR (6.18)

which we call left sneutrino, left selectron and right selectron respectively.
Since the superpotential is analytic in left chiral superfields then we are obliged to use
only left handed fermions. Thus we will use the charge conjugates of the SU(2)L

singlet right handed fermion fields. So for every right handed fermion field we will
consider the left handed antifermion field, which will be denoted by f c

R. Thus for
example the field e+

L = (e−
R)c is a left handed antielectron and thus have opposite

quantum numbers. As a consequence,their scalar superpartners are the complex
conjugate of the superpartners of the right handed fermions f̃ ⋆

R with quantum num-
bers of the conjugate representation.
Hence for the first generation of (s)leptons we introduce the left chiral lepton doublet
superfield (L1) and the left chiral antilepton singlet superfield E1 :

L1 =
(

Lνe

Le

)
, E1 (6.19)

which contain the fields l1L, l̃1L, e
c
1R = ec

R, ẽ
⋆
1R = ẽ⋆

R. In the same manner, for the
first generation of (s)quarks we introduce the left chiral quark doublet superfield Q1
and the left chiral antilepton singlet superfields U1,D1 :

Q1 =
(

Qu

Qd

)
, U1, D1 (6.20)
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which contain the fields q1L, q̃1L, u
c
1R = uc

R, d
c
1R = dc

R, ũ
⋆
1R = ũ⋆

R, d̃
⋆
1R = d̃⋆

R.
Repeating the same procedure for the second and the third generation we have the
left chiral superfields

L2 =
(

Lνµ

Lµ

)
, E2; Q2 =

(
Qc

Qs

)
, U2, D2 (6.21)

which contain the fields l2L, l̃2L, e
c
2R = µc

R, ẽ
⋆
2R = µ̃⋆

R, q2L, q̃2L, u
c
2R = cc

R, d
c
2R =

sc
R, ũ

⋆
2R = c̃⋆

R, d̃
⋆
2R = s̃⋆

R and

L3 =
(

Lντ

Lτ

)
, E3; Q3 =

(
Qt

Qb

)
, U3, D3 (6.22)

which contain the fields l3L, l̃3L, e
c
3R = τ c

R, ẽ
⋆
3R = τ̃ ⋆

R, q3L, q̃3L, u
c
3R = tcR, d

c
3R =

bc
R, ũ

⋆
3R = t̃⋆R, d̃

⋆
3R = b̃⋆

R.
In the gauge sector, we will introduce one vector superfield for every gauge group.
Thus we have the vectr superfields V Y , V⃗ W , V a

g corresponding to the gauge groups
U(1)Y , SU(2)L, SU(3)C respectively and apart from the auxiliary fields, contain the
fields Bµ, W⃗µ, g

a
µ along with their corresponding Majorana gaugino fields λ̃0,

˜⃗
λ, g̃a.

Every gaugino field, like its superpartner transforms in th adjoint representation of
the gauge group and also the left and right chiral components of each field are charge
conjugate to each other: (λ̃L)c = λ̃R.
Now we turn to the Higgs sector. In the Standard Model, it was made possible to
generate the masses of the fermions with the use of only one SU(2)L doublet field
Φ with YΦ = +1 and whith its corresponding charge conjugated Higgs field Φc

with YΦc = −1. In a supersymmetric theory sucha a term is not allowed due to
the fact that the superpotential is an analytic function of left chiral fields and hence
interaction terms that derived from the same superpotential cannot contain both Φ
and Φc. Thus we will need two Higgs doublets with Y = −1 and Y = 1 in order to
generate the masses of fermions. We will denote these doublets as

Hd =
(
H0

d

H−
d

)
, Hu =

(
H+

u

H0
u

)
(6.23)

the down- and up-type respectively. The VEVs arises from the minimization of the
Higgs potential V (Hu, Hd) and given by

⟨Hd⟩ = 1√
2

(
vd

0

)
, ⟨Hu⟩ = 1√

2

(
0
vu

)
(6.24)

Hence we will introduce the left chiral superfields doublets

Hd =
(

H0
d

H−
d

)
, Hu =

(
H+

u

H0
u

)
(6.25)
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which have Y = −1, Y = +1 respectively and apart from the scalar fields of equa-
tion [6.23] and the auxialiary fields, they also contain and the corresponding doublets
of fermionic superpartners

H̃d =
(
H̃0

d

H̃d
−

)
, H̃u =

(
H̃+

u

H̃0
u

)
(6.26)

These fields are two compontent spinorial fields in the (1/2, 0) representation and
they are called higgsino fields. In the following table we summarize the superfield
content of the MSSM

Superfields Component SU(3)c ⊗ SU(2)L ⊗ U(1)Y Name

Fields quantum numbers
Li liL (1,2,-1) Lepton

l̃iL Slepton
Ei ec

iR (1,1, 2) left-handed antilepton
ẽ⋆

iR left-handed antislepton
Qi qiL (3,2, 1/3) Quark

q̃iL Squark
Ui uc

iR (3,1, -4/3) left-handed up antiquark
ũ⋆

iR left-handed up antisquark
Di dc

iR (3,1, +2/3) left-handed down antiquark
d̃⋆

iR left-handed down antisquark
Va ga

µ (8,1, 0) Gluon
g̃a

µ Gluino
ṼW W⃗µ (1,3, 0) W-bosons

˜⃗
λ Wino

VY Bµ (1,1, 0) Gauge-boson
λ̃0 Bino

Hu Hu (1,2, +1) Higgs field
H̃u Higgsino

Hd Hd (1,2, -1) Higgs field
H̃d Higgsino
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A question that arises at this point is whether we have been economical with the
number of superfields or not. The fact that the components of a superfield must carry
the same quantum numbers, can convince anyone that the above is indeed a minimal
set. Furthermore the fact that we used two Higgs superfeild doublets (Hd, Hu) is
necessary for the anomaly cancelation and thus the self-consistency of the theory.
The anomalies may arise from triangle diagrams with three external gauge bosons
fermions running the loop. In the Standard Model the anomaly that arise from such
diagramms with three Bµ gauge bosons as external fields (U(1)Y anomaly ) vanish
if and only if Tr[Y 3] = 0. For the field content of the Standard Model we have

Tr
[
Y 3
]

SM
= 3(2Y 3

q −Y 3
u −Y 3

d ) + (2Y 3
l −Y 3

e ) = 3
( 2

27
− 64

27
+ 8

27

)
− 2 + 8 = 0

(6.27)
where Yq, Yu, Yd, Yl, Ye are the hypercharges of the quark doublet , up, down quark
singlets, lepton doublet, electron singlet respectively. In the MSSM, if we had one
Higgs doublet then the Higgsinos contribution to this anomaly factor would be

Tr
[
Y 3
]

= Tr
[
Y 3
]

SM
+ 2 (6.28)

and resultin in gauge anomaly. Thus to cancel this factor we must add a second Higg
doublet with opposite hypercharge.

6.3 Supersymmetric part of the MSSM
We now, want to contstruct the Lagrangian for the Minimal Supersymmetric Stan-
dard Model. This Lagrangian can be decomposed the the purely supersymmetric
part and the soft braking part

LMSSM = LSUSY + LSOF T (6.29)

The superymmetric part can be written as

LSUSY = Lgauge + Lmatter + LHiggs (6.30)

Thwe gauge part is written in terms of the field strength spinorial superfields Wa
gα,

W⃗W α, WY α constructed from V a
g , V⃗W , V

Y respectively according to the equations
[4.84], [4.142].

Lgauge = 1
4

∫
d4θ

(
WaαWa

α + W⃗α
W · W⃗W α + Wα

Y WY α + h.c.
)

(6.31)
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where the color index a is summed.
The matter part can be written as a generalization of equation [4.128]

Lmatter =
∫
d4θ

(
L†

ie
(g2V⃗ W ·τ⃗+gY V Y Y )L + Ē†

ie
gY V Y Y Ēi + Ū†

ie
(gsV a

g λ̄a+gyV Y Y )Ūi

+ D̄†
ie

(gsV a
g λ̄a+gyV Y Y )D̄i + Q†

ie
(gsV a

g λa+g2V⃗ W ·τ⃗+gyV Y Y )Qi

)
(6.32)

where τ⃗ are the Pauli matrices and λa, λ̄a are the Gell-Mann matrices and their
complex conjugate acting in the color triplet 3 and antitriplet 3 respectively.
Finally the Higgs part is written

LHiggs =
2∑

p=u,d

∫
d4θ

(
H†

pe
(g2V⃗ W ·τ⃗+gyV Y Y )Hp +WMSSMδ

2(θ†) +W †
MSSMδ

2(θ)
)

(6.33)
and the MSSM superpotential is given by

WMSSM = µHd · Hu − Y e
ijHd · LiĒj − Y d

ijHu · QiD̄j − Y u
ij Qi · HdŪj (6.34)

Here we adopted the notation A ·B = eabA
aBb for the SU(2) invariant product of

two (super)field doublet representations in the generation space and the minus signs
are chosen so that we remain consistent with the Yukawa interactions in equation
[6.11], [6.13] . The first term of equation [6.34] has dimensions of mass and the other
terms are generalizations of the Yukawa couplings. We can compute the auxiliary
fields F from equation
The F field corresponding to the β- component superfield of the superfield doublet
Hd is given by ([4.83])

F ⋆β
Hd

= − ∂W

∂Hdβ

∣∣∣∣
θ=θ†=0

(6.35)

the relevant of the superpotential is

µϵαβHα
d Hβ

u − Y e
ijϵαβHα

d Lβ
i Ēj − Y e

ijϵαβHα
d Qβ

i D̄j

=µϵαβϵ
αγHdγHβ

u − Y e
ijϵαβϵ

αγHγ
dLβ

i Ēj − Y e
ijϵαβϵ

αγHγ
dQβ

i D̄j

differentiate with respect to Hdδ, we get

µϵαβϵ
αγδα

γ Hβ
u − Y e

ijϵαβϵ
αγδα

γ Lβ
i Ēj − Y e

ijϵαβϵ
αγδα

γ Qβ
i D̄j

=µHβ
u − Y e

ijL
β
i Ēj − Y e

ijQ
β
i D̄j

from the equation [4.80], taking the θ = θ† = 0 we obtain

F ⋆β
Hd

= −µHβ
d + Y e

ije
⋆
j l̃

β
iL + Y d

ijd
⋆
jRq̃iL
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In the same manner, we compute all the auxiliary fields F .

F ⋆β
Hd

= −µHβ
u + Y e

ije
⋆
j l̃

β
iL + Y d

ijd
⋆
jRq̃iL

F ⋆β
Hu

= −µHβ
d + Y u

iju
⋆
jRq̃iL

F ⋆β
Li

= −Y e
ijH

β
d ẽ

⋆
jR

F ⋆
Ēi

= Y e
jiHd · l̃⋆jL

F ⋆β
Qia

= −Y d
ijH

β
d d̃

⋆
Rja + Y u

ijH
β
u ũ

⋆
jRa

F ⋆
D̄ia

= Y d
ijHd · q̃jLa

F ⋆
Ūia

= Y u
ji q̃jLa ·Hu (6.36)

where a is the color index.
The D fields can be calculated from equation [4.126] and they are given by

DY = − 1
2
gy

(
H†

uHu −H†
dHd + 1

3
q̃†

iLq̃iL − 4
3
ũiRũ

†
iR

+ 2
3
d̃iRd̃

†
iR − L̃†

iLL̃iL + 2ẽiRẽ
⋆
iR

)

D⃗ = − 1
2
g2
(
H†

uτ⃗Hu + h†
dτ⃗Hd + 1

3
q̃†

iLτ⃗ q̃iL + L̃†
iLτ⃗ L̃iL

)

Da = −1
2
gs

(
q̃†

iLλ
aq̃iL + ũ†

iRλ
aũiR + d̃†

iRλ
ad̃iR

)
where we have used the hemircity of the Gell-Mann matrices.
Finally,the MSSM scalar potential is given by

VSUSY = F ⋆
kFk + 1

2
[
(DY )2 + D⃗2 +DaDa

]
(6.37)

where k reffering to the type of superfields and also any internal index, and also
repeated indices are summed.

6.4 Soft breaking terms
As we have already mentioned, spontaneous breaking of supersymmetry cannot be
incoporated in the Minimal Supersymmetric Standard Model, as such would lead to
an unaccaptable particle spectrum. So, we are forced to include soft breaking terms
that are parametrizing our ignorance on the nature of the supersymmetry breaking.
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These terms must also be singlets under the full gauge group of the theory. All the
types of terms introducing in the equation [5.46] are possible. Thus we can write

−LSOF T =q̃⋆
iL(M2

q̃ )ij q̃jL + ũ⋆
iR(M2

ũ)ijũjR + d̃⋆
iR(M2

d̃ )ij d̃jR + L̃⋆
iL(M2

L̃)ijL̃jL

+ ẽ⋆
ie(M2

ẽ )ij ẽjR +
[
Hd · L̃iL(Y eAe)ij ẽ

⋆
jR +Hd · q̃iL(Y dAd)ij d̃

⋆
jR

+ q̃iL ·Hu(Y uAu)ijũ
⋆
jR + h.c.

]
+m2

d|H|2d +m2
u|H|2u

+ (BµHd ·Hu + h.c.) + 1
2

(M1B̃PLB̃ +M⋆
1 B̃PRB̃)

+ 1
2

(M2
˜⃗
WPL

˜⃗
W +M⋆

2
˜⃗
WPR

˜⃗
W ) + 1

2
(M3g̃

aPLg̃
a +M⋆

3 g̃
aPRg̃

a)

≡ VSOF T + VGAUGINO (6.38)

where PL,R = 1
2(1 ∓γ5) are operators that project left/right chirality. M1,2,3 are the

complex gaugino Majorana mass pararameters and md,u are the real Higgs scalar
mass parameters. The squared left squark massM2

q̃ , the squared right quark masses
M2

ũ ,M
2
ũ along with those for left and right sleptonsM2

L̃
,M2

ẽ are 3×3 hermitian ma-
trices in the generation space. The coefficients Y eAe, Y uAu, Y dAd are the trilinear
terms coefficients of equation [5.46] which are written as a product of the super-
potential couplings times a paparameter A which has dimensions of mass. These
coefficients are in general 3 × 3 complex matrices. In the sanme way we have scaled
the bilinear coefficient of equation [5.46] using the parameter B which also have
dimension of mass. If we allow all the paramaters that are introduced to be com-
plex, then we woul be dealing whith aproximately one hundred and twenty real free
parameters while in Standard Model we had only nineteen. Thus in order to make
the theory more predictive, it is imperative that we reduce the number of these pa-
rameters.

6.5 Higgs potential in MSSM
The MSSM scalar potential is given by

V = VSUSY + VSOF T (6.39)

The terms that iclude only the Higgs fields are

V ⊃ (−g2H
†
k

τ⃗

2
Hk

)2
+
(

− g2H
†
k

Y

2
Hk

)2
+ |µ|2H†

kHk +m2
u|Hu|2 +m2

d|Hd|2 + (BµHu ·Hd + h.c.)

≡ VH (6.40)
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where k reffers only to Higgs sector and take values k = u, d. The first two term are
witten

g2
2
4
(
H†

k τ⃗Hk

)
+ g2

Y

4
(
H†

kY Hk

)
=

g2
2
4

[(
H†

uτ⃗Hu +H†
d τ⃗Hd

)(
H†

uτ⃗Hu +H†
d τ⃗Hd

)]
+ g2

Y

4

[(
H†

uY Hu +H†
dY Hd

)(
H†

uY Hu +H†
dY Hd

)]
The first term can be writtes as

H†
uτ⃗HuH

†
uτ⃗Hu

= H†
uaHubH

†
dcHde(τ⃗abτ⃗ce)

= 2
(
H†

uaHdaH
†
dbHub

)
−H†

uaHuaH
†
dcHdc

= 2
[(
H+†

u H0
d +H0†

u H
−
d

)(
H0†

d H
+
u +H−†

d H0
u

)]
−
(∣∣∣H+

u

∣∣∣2 +
∣∣∣H0

u

∣∣∣2)(∣∣∣H0
d

∣∣∣2 +
∣∣∣H−

d

∣∣∣2)
where we have used the identity τ⃗ab · τ⃗ce = 2δaeδbc − δcd. Working the other terms
in a similar way , we obetain for the first two terms of VH

g2
2
4

{[(∣∣∣H+
u

∣∣∣2 +
∣∣∣H0

u

∣∣∣2)−
(∣∣∣H0

d

∣∣∣2 +
∣∣∣H−

d

∣∣∣2)]2
+ 4

(
H0†

d H
+
u +H−†

d H0
u

)(
H+†

u H0
d +H0†

u H
−
d

)}
+ g2

Y

4

[(∣∣∣H+
u

∣∣∣2 +
∣∣∣H0

u

∣∣∣2)−
(∣∣∣H0

d

∣∣∣2 +
∣∣∣H−

d

∣∣∣2)]2

The other terms of VH are written

|µ|2H†
kHk +m2

u|Hu|2 +m2
d|Hd|2 + (BµHu ·Hd + h.c.)

= |µ|2
(∣∣∣H+

u

∣∣∣2 +
∣∣∣H0

u

∣∣∣2)+ |µ|2
(∣∣∣H0

d

∣∣∣2 +
∣∣∣H−

d

∣∣∣2)+m2
u

(∣∣∣H+
u

∣∣∣2 +
∣∣∣H0

u

∣∣∣2)+m2
d

(∣∣∣H0
d

∣∣∣2 +
∣∣∣H−

d

∣∣∣2)
+
[
µB

(
H+

u H
−
d −H0

uH
0
d

)
+ h.c.

]
Putting all the terms together, we finally obtain

VH =g
2
Y + g2

2
8

(∣∣∣H+
u

∣∣∣2 +
∣∣∣H0

u

∣∣∣2 −
∣∣∣H0

d

∣∣∣2 −
∣∣∣H−

d

∣∣∣2)2
+ g2

Y

2
∣∣∣H0†

d H
+
u +H−†

d H0
u

∣∣∣2
+
(

|µ|2 +m2
u

)(∣∣∣H+
u

∣∣∣2 +
∣∣∣H0

u

∣∣∣2)+
(

|µ|2 +m2
d

)(∣∣∣H0
d

∣∣∣2 +
∣∣∣H−

d

∣∣∣2)
+
[
µB

(
H+

u H
−
d −H0

uH
0
d

)
+ h.c.

]
(6.41)
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6.6 Electroweak breaking in MSSM
Having found the Higgs potential, we now, want to find the conditions under which,
this potential can have a non-trivial minimum which break the lectroweak symmetry
down to electromagnetism. To simplify the algebra, we can reduce a possible VEVof
one component of eitherHu orHd by peforming an SU(2)L transformation (unitary
gaige). Thus we can chooseH+ = 0 in the minimum of the potential and we obtain

∂VH

∂H+
u

∣∣∣∣∣∣
H+

u =0

= 0

⇒H−
d

(
µB + g2

Y

2
H0

d
†H0†

u

)
= 0

⇒

H
−
d = 0

µB + g2
Y

2 H
0
d

†H0†
u = 0

(6.42)

The last equation implies that the µB-term of the potential becomes

µB
(
H+

u H
−
d −H0

uH
0
d

)
+ (µB)†

(
H−†

d H+†
u −H0†

d H
0†
u

)
= g2

Y

2
∣∣∣H0

d

∣∣∣2∣∣∣H0
u

∣∣∣2
where it is evaluated atH+

u = 0. This relation os positive defined and so unfavorable
to symmetry breaking. Had accepted the conditon H−

d = 0 instead, then again
neither of H+

u or H−
d would have acquire a VEV and thus electroweak symmetry

would have remained unbroken.
We now concentrate on the part of the potential that contain only the neutral fields
and ignore the charge components.

V0 =
(

|µ|2 +m2
u

)∣∣∣H0
u

∣∣∣2 +
(

|µ|2 +m2
d

)
−
∣∣∣H0

d

∣∣∣2 −
(
µBH0

uH
0
d + h.c.

)
+ g2

Y + g2
2

8

(∣∣∣H0
u

∣∣∣2 −
∣∣∣H0

d

∣∣∣2)2
(6.43)

It is worth noting, at this point, that the quartic term in the above potential is not a
free parameter - unlike in the Standard Model - but is fixed by the gauge couplings.
Now we turn to the µB -term. This term is the only one that depends on the phases
of the fields. Therefore we can absorb any phase of µb in a redefinition ofHu orHd.
Thus we can take µB to be real and positive. It is clear that the potential requires
H0

uH
0
d to be real and positive and so it implies that the VEVs ⟨H0

u⟩, ⟨H0
d⟩must have

opposite phases. Since Hu , Hd have opposite weak hypercharges, we can perform
a U(1)Y gauge transformation to make both VEVs real and positive.
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In order for theMSSM scalar potential to be viable, must be bounded from below. In
a purely supersymmetric theory, the potential is automatically non-negative but now
since we have introduce SUYSY-breaking terms, this is not the case. The quartic
interaction will stabilize the potential fir abritarily large values ofH0

d ,H0
d . However

for the cofinguration of the fields such that |H0
d | = |H0

d |, the quartic contribution
vanish identically and the potential becomes

V0 =
(
2|µ|2 +m2

u +m2
d − 2µB)

∣∣∣H0
u

∣∣∣2 (6.44)

Such directions in field configutation space are called D-flat directions, because
along them, the part of the scalar potential coming from D-term vanishes.
In order for this potential to be bounded from below , we require

2|µ|2 +m2
u +m2

d > 2µB (6.45)

The above requirement implies that |µ|2 + m2
u, |µ|2 + m2

d cannot be both negative
simultaneously.
In the case that they are both positive thenH0

u = H0
d = 0 will be a stable minimum

of the potential and the electroweak symmetry breaking will not occur. Hence the
condition for H0

u = H0
d = 0 not to be a minimum (extremum generally) of the

potential is to be a saddle point. Thus we require the determinant∣∣∣∣∣∣∣
∂2V0

∂|H0
u|∂|H0

u|
∂2V0

∂|H0
u|∂|H0

d|
∂2V0

∂|H0
d|∂|H0

u|
∂2V0

∂|H0
d|∂|H0

d|

∣∣∣∣∣∣∣
∣∣∣∣∣∣
H0

u=H0
d

=0

< 0 (6.46)

so we find∣∣∣∣∣∣
(
2|µ|2 +m2

u

)
+ g2

2+g2
Y

2

(
3|H0

u|2 − |H0
d |2
)

−2µB −
(
g2

2 + g2
Y

)
|H0

u||H0
d |

−2µB −
(
g2

2 + g2
Y

)
|H0

u||H0
d |

(
2|µ|2 +m2

d

)
+ g2

2+g2
Y

2

(
3|H0

d |2 − |H0
u|2
)
∣∣∣∣∣∣ < 0

(6.47)

which is evaluated at H0
u = H0

d = 0. Thus we obtain(
|µ|2 +m2

u

)(
|µ|2 +m2

d

)
< (µB)2 (6.48)

which is automatically satisfied if either |µ|2 + m2
u or |µ|2 + m2

d is negative. This
constraint, though, does not hold at the GUT scale where |µ|2 + m2

u = |µ|2 + m2
d.

Thus the breaking of electroweak summetry does not take place in MSSM at GUT
scale. However, this statement is valid only at the GUT scale. After renormaliza-
tion, the parameters become 'running' rarameters whose energy scale dependence is
governed by the Renormalization Group equations (RGEs).
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At energies of O(elextroweak scale), one of the Higgs parameters can be nega-
tive triggering the electroweak symmetry breaking. Thus, contrary to the Standard
Model, where one has to choose the negative sign of the Higgs mass squared 'by
hand', in the MSSM the effect of spontaneous electroweak symmetry breaking is
triggered by radiative corrections.
Thus we have the phenomenon of radiative electroweak breaking.
Having now established the conditions required for the potential to have a non triv-
ial minimum, we proceed to write down the equations that determined the VEVs
of |H0

u| and |Hd0|. Writting ⟨H0
u⟩ = vu and ⟨H0

d⟩ = vd we impose the stationary
conditions

∂V0

∂|H0
u|

∣∣∣∣∣
|H0

u|=0
= ∂V0

∂|H0
d |

∣∣∣∣∣|H0
d|=0

= 0 (6.49)

and find (
|µ|2 +m2

u

)
v

u
= µBvd − 1

4
(
g2

2 + g2
Y

)(
u2

u − v2
d

)
vu(

|µ|2 +m2
d

)
vd= µBvu + 1

4
(
g2

2 + g2
Y

)(
u2

u − v2
d

)
vd (6.50)

Now we want to find the masses of the W±, Z0 bosons. The relevant part of the
electroweak sector in the Lagrangian is

LMSSM ⊃
(

∇µHu

)†(
∇µHu

)
+
(

∇µHd

)†(
∇µHd

)
(6.51)

where the covariant derivative is

∇µ = ∂µ + ig2
τ⃗

2
W⃗µ + i

gY

2
Y Bµ (6.52)

After shifting the fields with respect to their VEVs

Hu = vu + η

Hd = vd + χ (6.53)

we find
(
0 vu + η

)(
∂µ − ig2

τ⃗

2
W⃗µ − i

gY

2
Bµ

)(
∂µ + ig2

τ⃗

2
W⃗ µ + i

gY

2
Bµ

)(
0

vu + η

)

+
(
vd + χ 0

)(
∂µ − ig2

τ⃗

2
W⃗µ + i

gY

2
Bµ

)(
∂µ + ig2

τ⃗

2
W⃗ µ − i

gY

2
Bµ

)(
vd + χ

0

)
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keeping only the quartic terms in the gauge fields

v2
u

(
g2

2
(
W 1

µ + iW 2
µ

)
− g2

2
W 3

µ + gY

2
Bµ

)( g2
2

(
W 1

µ − iW 2
µ

)
−g2

2 W
3
µ + gY

2 Bµ

)

+ v2
d

(
g2

2
(
W 1

µ + iW 2
µ

)
− g2

2
W 3

µ − gY

2
Bµ

)( g2
2

(
W 1

µ − iW 2
µ

)
−g2

2 W
3
µ − gY

2 Bµ

)

defining
W±

µ = 1√
2

(W 1
µ ∓ iW 2

µ

)
(6.54)

we can identify

M2
WW

+
µ W

−µ = g2
2
2
(
v2

u + v2
d

)
W+

µ W
−µ

⇒M2
W = g2

2
2
(
v2

u + v2
d

)
(6.55)

For the mass of the neutral gauge bosons we have

v2
u

4
(
W 3

µ Bµ

)( g2
2 −g2gY

−g2gY g2
Y

)(
W 3µ

B3µ

)
v2

d

4
(
W 3

µ Bµ

)( g2
2 −g2gY

−g2gY g2
Y

)(
W 3µ

B3µ

)

After diagonalizing the mass-matrix, we find that the eigenvalues are g2
2 + g2

Y , 0 and
the normalized eigenvectors

Zµ = g2W
3µ − gYB

µ√
g2

2 + g2
Y

, Aµ = g2W
3µ + gYB

µ√
g2

2 + g2
Y

(6.56)

Thus we find
1
2
MZµZµ =

(
v2

u + v2
d

4

)(
Zµ Aµ

)(g2
2 + g2

Y 0
0 0

)(
Zµ

Aµ

)

and so we can identify

M2
Z = v2

u + v2
d

2
(
g2

2 + g2
Y

)
, M2

A = 0 (6.57)

Thus we can see that the combination
(
v2

u + v2
d

) 1
2 =

(2M2
W

g2
2

) 1
2

≃ 174GeV (6.58)
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is fixed by experiment.
We can now define the parameter

tan β = vu

vd

(6.59)

The phase freedom to define vu, vd as positive, restricts this parameter to the range

0 ≤ β ≤ π

2
(6.60)

and so the equations [6.50] become(
|µ|2 +m2

u

)
v

u
= µBvd − 1

4
(
g2

2 + g2
Y

)(
u2

u − v2
d

)
vu

⇒
(
|µ|2 +m2

u

)
= µB

vd

vu

+ 1
4
(
g2

2 + g2
Y

) u2
d−v2

u

v2
d

v2
d
+v2

u

v2
d

⇒
(
|µ|2 +m2

u

)
= µB cot β + M2

Z

2
1 − tan2 β

1 + tan2 β

⇒
(
|µ|2 +m2

u

)
= µB cot β + M2

Z

2
cos 2β (6.61)

and similarly (
|µ|2 +m2

d

)
= µB tan β − M2

Z

2
cos 2β (6.62)

6.7 Tree-level Higgs masses in MSSM
In contrary to the Standard Model, the MSSM contains-as we saw- two Higgs dou-
blets, therefore eight real scalar degrees of freedom. When the electroweak symme-
try is boken, three of them are becoming the longitudinal modes of Z0,W± massive
vector bosons.The remainings consist of five massive Higgs eigenstates.
To find the mass eigenstates, we will first consider the neutral fields ImH0

u, ImH0
d .

Then, thne relevant part of the potential is

V0 ⊃
(
|µ|2 +m2

u

)
(ImH0

u)2 +
(
|µ|2 +m2

d

)
(ImH0

d)2 + 2b(ImH0
u)2(ImH0

d)2

+
g2

2 + g2
y

8
[
(ReH0

u)2 + (ImH0
u)2 − (ReH0

d)2 − (ImH0
d)2
]2 (6.63)

where µB ≡ b.The squarred mass matrix is given by

[M2]ij = 1
2

 ∂2V0
∂ImH0

u∂ImH0
u

∂2V0
∂ImH0

u∂ImH0
d

∂2V0
∂ImH0

d
∂ImH0

u

∂2V0
∂ImH0

d
∂ImH0

u

 (6.64)
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evaluated at |H0
d | = ud,|H0

u| = uu. Using the realtions [6.61], [6.62] we find

[M2
0]ij =

(
bcotβ b
b btanβ

)
(6.65)

The eigenvalues of this matrix are

λ1 = 0, λ2 = 2b
sin2β

(6.66)

and the normalized eigenvectors

G0 =
√

2[sinβ(ImH0
u) − cosβ(ImH0

d)]
A0 =

√
2[cosβ(ImH0

u) + sinβ(ImH0
d)], (6.67)

respectively.
The first eigenstate is massless and becomes the longitudinal mode of Z0 while the
massive eigenstate have squared mass

m2
A0 = 2b

sin2β
(6.68)

Now we move to the charged fields H+
u , H−†

d ¹ The squared mass matrix is

[Msq
ch]ij =

 ∂2V
∂H+

u ∂H+†
u

∂2V
∂H+

u ∂H−†
d

∂2V
∂H−†

d
∂H+†

u

∂2V
∂H−

d
∂H−†

d

 (6.69)

and is evaluated at H0
u = vu, H0

d = vd, H+
u = H−

d = 0.
Thus we find

[Msq
ch]ij =

bcotβ + g2
2v2

d

2 b+ g2
2vdvu

2
b+ g2

2vuvd

2 btanβ + g2
2v2

u

2

 (6.70)

The eigenvalues are
λ1 = 0, λ2 = m2

W +m2
A0 (6.71)

and the normalized eigenvectors are

G+ = sinβH+
u − cosβH−†

d

H+ = cosβH+
u + sinβH−†

d (6.72)

The pmassless eigenstate G+ become the longitudinal mode ofW+ and the eigen-
state H+ have squared mass

m2
H+ = m2

W +m2
A0 (6.73)

¹We have defined H+
d ≡ H−†

d
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We, now consider the fields H+†
u , H−

d . Following exactly the same procedure as
above, we find that the mass eigenstates are

G− = (G+)†
H− = (H+)† (6.74)

with squared masses

m2
G− = 0

m2
H− = m2

W +m2
A0 (6.75)

respectively. The massless state, again, becomes the longitudinal mode ofW−. Fi-
nally, we consider the neutral fields ReH0

u − vu, ReH0
d − vd. The squared mass

matrix is

[M2
0]ij =

(
m2

A0sin2β +m2
Z cos2 β −(mA0 +m2

Z)sinβ cos β
−(mA0 +m2

Z)sinβ cos β m2
A0cos2β +m2

Z sin2 β

)
(6.76)

The eigenvalues are

λ1,2 = 1
2

{
m2

A0 +m2
Z ∓

√
(m2

A0 +m2
Z)2 − 4m2

A0m2
Zcos

22β
}

(6.77)

and the normalized eigenvectors

h0 =
√

2
[
cosα

(
ReH0

u − vu√
2

)
− sinα

(
ReH0

d − vd√
2

)]
H0 =

√
2
[
cosα

(
ReH0

u − vu√
2

)
+ sinα

(
ReH0

d − vd√
2

)]
(6.78)

These are the CP-even neutral Higgs with squared masses

m2
h0 = 1

2

{
m2

A0 +m2
Z −

√
(m2

A0 +m2
Z)2 − 4m2

A0m2
Zcos

22β
}

m2
H0 = 1

2

{
m2

A0 +m2
Z +

√
(m2

A0 +m2
Z)2 − 4m2

A0m2
Zcos

22β
}

(6.79)

To find the relations that are satisfied by the angle α , we write the matrix in equation
[6.76] in the form

[M2
0]ij = 1

2

(
A+Bc −As

−As A−Bc

)
(6.80)
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where A = (m2
A0 + m2

Z), B = (m2
A0 − m2

Z), c = cos2β, s = sin2β so for the
masses in [6.79] we have

m2
h0 = 1

2
(A− C) (6.81)

m2
H0 = 1

2
(A+ C) (6.82)

where C = [A2 − (A2 −B2)c2]1/2

The fact that the state h0 is eigenstate of the mass-matrix, we have(
A+Bc −As

−As A−Bc

)(
cosα
sinα

)
= (A− C)

(
cosα
sinα

)
(6.83)

and so

(C −Bc)cosα = −sAsinα
(−C +Bc)sinα = sAcosα

⇒(C −Bc)cosα sinα = −sAsin2α

(−C +Bc)sinα cosα = sAcos2α (6.84)

Substracting the above relations we get

sin 2α = −As

C
= − (m2

A0 +m2
Z)

(m2
H0 −m2

h0)
sin 2β (6.85)

adding them, instead, we get

cos 2α = −B

C
= − (m2

A0 −m2
Z)

(m2
H0 −m2

h0)
2β (6.86)

The range 0 ≤ β ≤ π/2 restricts the value of α to the interval

−π
2

≤ α ≤ 0 (6.87)

6.8 Tree-level couplings of neutral Higgs bosons to
SM particles

To proceed in finding the couplings of the neutral Higgs boson to the StandardModel
particles we first notice that the relations [6.12], [6.16] using the relations [6.55],
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[6.59] become

Y e
ij = g2√

2MW cos β
(me)ijδij

Y d
ij = g2√

2MW cos β
(md)ijδij

Y u
ij = g2√

2MW cos β
(mu)ijδij (6.88)

where we have moved to the mass-diagonal basis. Also we can invert the fields in
equations [6.67], [6.76] to find

ReH0
u =

[
vu + 1√

2

(
cosαh0 + sinαH0

)]

ReH0
d =

[
vd + 1√

2

(
− sinαh0 + cosαH0

)]

ImH0
u = 1√

2

(
cos βG0 + sin βA0

)

ImH0
d = 1√

2

(
− cos βG0 + sin βA0

)
(6.89)

Since the top-, bottom-quarks and the tau-lepton are the heaviest partincle in SM, it
is usefull to make the third family approximation, that is, we consider only the third
family components are important:

Y u
ij ≃

0 0 0
0 0 0
0 0 yt

 , Y d
ij ≃

0 0 0
0 0 0
0 0 yb

 , Y e
ij ≃

0 0 0
0 0 0
0 0 yτ

 (6.90)

and so the superpotential in [6.34] is written (keeping only the Yukawa terms)

WMSSM = −Y e
ijHα

d ϵαβLβ
i Ēj − Y d

ijHα
uϵαβQβ

i D̄j − Y u
ij Qα

i ϵαβHβ
dŪj

≃ − Y e
33Hα

d ϵαβLβ
3 Ē3 − Y d

33Hα
uϵαβQβ

3 D̄3 − Y u
33Qα

3 ϵαβHβ
dŪ3 (6.91)

writting only the fermionic components of the matter Superfields we have

WMSSM = − yτ

(
H0

d H−
d

)( 0 1
−1 0

)(
ντL

τL

)
τ c

R − yb

(
H0

d H−
d

)( 0 1
−1 0

)
− yb

(
tL
bL

)
bc

R

− yt

(
tL b

)( 0 1
−1 0

)(
H+

u

H0
u

)
tcR

= −yτ (τLτ
c
RH

0
d − ντRτ

c
RH

−
d ) − yt(tLtcRH0

u − btcRH
+
u ) − yb(bLb

c
RH

−
d − tbc

RH
−
d )

(6.92)
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Thus, the Yukawa term of the superpotential concerning the coupling of the top-
quark with the neutral Higgs boson is

− yttLt
c
RH

0
u + h.c.

= −yt

[
tLt

c
R

(
ReH0

u + iImH0
u

)
+ t†Lt

c
R

†
(
ReH0

u − iImH0
u

)]

writting onle the coupling with the ReH0
u field, we have

− yt

[(
tLt

c
R + t†Lt

c
R

†
)(
vu + 1√

2

(
cosαh0 + sinαH0

)]

= − yt

[(
tLt

c
R + t†Lt

c
R

†
)
vu + 1√

2

(
cosαh0 + sinαH0

)]
(6.93)

The first term is a Dirac mass term of the top-quark:

−ytvu

(
tLt

c
R + t†Lt

c
R

†
)

= −mtΨ̄tΨt (6.94)

where we have the Dirac spinor

Ψt =
(
tL
tc†
R

)
(6.95)

and
mt = ytvu (6.96)

the tree-level top-quark mass.
The second term in equation [6.92] is the tree-level coupling t−ReH0

u:

− yt√
2

Ψ̄tΨt

(
cosαh0 + sinαH0

)
= − g2mt

2mW

Ψ̄tΨt

(cosα
sin β

h0 + sinα

sin β
H0
)

(6.97)

The corresponding coupling in the SM would be

− g2mt

2mW

Ψ̄tΨtHSM (6.98)

where HSM is the Standard Model Higgs boson. Thus equation [6.98] shows how
coupling is modified in the MSSM.
Analogous relations hold for bottom-quark and the tau-lepton respectively:

− g2mb

2mW

Ψ̄bΨb

(
− sinα

cos β
h0 + cosα

cos β
H0
)

(6.99)
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and
−g2mτ

2mW

Ψ̄τ Ψτ

(
− sinα

cos β
h0 + cosα

cos β
H0
)

(6.100)

Finally, the coupling t− A0 is given by

−i mt√
2vu

(
tLt

c
R − t†Lt

c†
R

)
cos βA0 = i

g2mt

2mW

cos βΨ̄tγ5ΨtA
0 (6.101)

and in a similar way, we find

i
g2mb

2mW

tan βΨ̄bγ5ΨbA
0 (6.102)

and
i
g2mτ

2mW

tan βΨ̄τγ5ΨτA
0 (6.103)

The form of the couplings in equations [6.103] and [6.98] justifies that the states
H0, h0 are CP -even while the state A0 is CP -odd.
It is interesting to note that in the limit of large mA0 , from the relation [6.85], we
have that

sin 2α ≃ − sin 2β ⇒ α ≃ β − π/2 (6.104)

which implies

sinα ≃ −cosβ
cosα ≃ sin β (6.105)

Then from the relations [6.98], [6.99] that the couplings of h0 is the same with those
of the SMHiggs while the couplings ofH0 are the same as those ofA0. On the other
hand, for smallmA0 and large tan β, the couplings t− h0 are suppressed compared
to the b− h0 couplings, while the H0 couplings become independent of β.
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Chapter 7

Renormalization Group Equations
for MSSM

7.1 Non-Renormalization theorem
The most attractive feature of supersymmetric theories is the better ultraviolet be-
havior than that of any other ordinary field theory. This behavior is the result of a
powerfull Non-Renormalization theorem forN = 1 supersymmetry. In [25] is given
a proof of the theorem using the supergraph techniques in perturbation theory, and
it is beyond the scope of this thesis.
In the above reference is demonstrated that the loop corrections to the effective ac-
tion of a supersymmetric theory of chiral superfields can be expressed as an integral
over the full superspace

Γ =
∑

n

∫
d4xid

4θGn(x1, · · · , xn)F1 · · ·F2 (7.1)

where Gn are translationally invariant functions on Minkowski spacetime and the
Fi's are local functions of the possible external superfieldsΦ,Φ⋆, V and their (anti)chiral
covariant derivatives.
Equation [7.1] implies thatD-terms are renormalized but F -terms are not renormal-
ized. Moreover, if F -terms are absent at tree-level, then they are not generated by
radiative corrections and thus, there are no loop corrections to the tree-level super-
potetial.
We note that the non-renormalization of the tree level superpotential is a conse-
quence of the fact that the integral of a product of chiral superfields over all su-
perpace is zero due to the equations [4.64]. In [23] can be found a more intuitive
understanding of the non-renormalization theorem based on the symmetry and holo-
morphy of the superpotential.
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7.2 One loop β− , γ− functions
Non-renormalization of the superpotential have imortant consequences in the form
of the renormalization group equations, which we, briefly, demonstrate.
Suppose we have a gauge theory and the superpotential of the form

W (Φ) = 1
2
mΦ2 + 1

3
yΦ3 (7.2)

The fact that is unrenormalized means

W (ΦR) = W (Φ)

⇒1
2
mRΦ2

R + 1
3
yRΦ3

R = 1
2
mΦ2 + 1

3
yΦ3 (7.3)

where the renormalized and the bare quantities are related as

Φ = Z1/2ΦR

V = Z
1/2
V VR

m = ZmmR

y = ZyyR (7.4)

Then equation [7.3] implies the relations

ZyZ
3/2 = 1

ZmZ = 1
ZgZ

1/2
V = 1 (7.5)

Hence, there are only two independent renormalization constants: Z, ZV .
Therefore, the non-renormalization theorem does not assert that the parameters of
the superpotential are not renormalized, but rather that the renormalization of these
parameters are governed by the wave function renormalization constants.
For a more general case where the index i runs over the number of Φi's, superpo-
tential become

W (Φ) = 1
2
mijΦiΦj + 1

3!
yijkΦiΦjΦk (7.6)

relations [7.4],[7.5] generalized to

Φi = (Z1/2)ii′ΦRi′

mij = (Zm)iji′j′mRi′j′

yijk = (Zy)ijki′j′k′yRi′j′j′k (7.7)
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and [6]

(Zy)ijki′j′k′(Z1/2)i′i′′(Z1/2)j′j′′(Z1/2)k′k′′ = 1
6
(
δii′′δjj′′δkk′′ + (permutations)

)
(Zm)iji′j′(Z1/2)i′i′′(Z1/2)j′j′′ = 1

2
(
δii′′δjj′′ + δij′′δji′′

)
(7.8)

The one-loop anomalous dimensions and the gauge couplingβ-function are [5],[6],[24]:

γ
i(1)
j = 1

32π2 [yiklyjkl − 4g2∑
i

C2(Ri)δi
j]

β(1)
g = g3

16π2

[∑
i

T (Ri) − 3C2(G)
]

(7.9)

whereC2(Ri) is the quadratic Casimir for a representationRi,C2(G) is the quadratic
Casimir for the adjoint representation and T (R) is given by tr[TαT β] = T (R)δαβ

while Tα are the generators of the gauge group in the appropriate representation.
Hence the β-functions for the superpotential parameters, by the virtue of the non-
renormalization theorem are [5], [6]

β(m)ij = µ
∂

∂µ
(mR)ij = γi′

i mi′j′ + γj′

i mjj′

β(y)ijk = µ
∂

∂µ
(yR)ij = γi′

i yi′jk + γj′

j yij′k + γk′

k yijk′ (7.10)

where µ is an arbitary renormalization scale. It is worth noting that from the relations
[7.10], we can see that in the supersymmetric theories the Yukawa β-functions can
be computed only from the two point functions as opposed to the generally non-
supersymmetric cases.

7.3 The running of theGauge andYukawa couplings
in MSSM

For the supermultiplets in the MSSM, the RGEs for the gauge couplings at one loop
order are[5],[24], [26]

16π2β3 ≡ 16π2dg3

dt
= −3g3

3

16π2β2 ≡ 16π2dg2

dt
= g3

2

16π2β1 ≡ 16π2dg1

dt
= 33

5
g3

1 (7.11)
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Figure 7.1: Renormalization group equations of the inverse gauge couplings α−1
i (µ)

in the SM (dashed lines) and the MSSM (solid lines). Taken from [5].

and for Yukawa couplings (in the third family approximation)

16π2βyt ≡ 16π2dyt

dt
= yt

[
6y2

t + y2
b − 16

3
g2

3 − 3g2
2 − 13

15
g2

1

]
16π2βyb

≡ 16π2dyb

dt
= yb

[
6y2

b + y2
t + y2

τ − 16
3
g2

3 − 3g2
2 − 7

15
g2

1

]
16π2βyτ ≡ 16π2dyτ

dt
= yτ

[
4y2

τ + 3y2
b − 3g2

2 − 9
5
g2

1

]
(7.12)

where t ≡ ln(µ/M) andM is an arbitary energy scale and the indices 1, 2, 3 refer
to the gauge groups SU(3)C , SU(2)L, U(1)Y ¹ respectively.
Defining

αi = g2
i

2π
(7.13)

Then the equations [7.11] become

dαi

dt
= − bi

2π
αi

⇒dα−1
i

dt
= − bi

2π
(7.14)

where bi is the appropriate coefficient in [7.11]. With this form is evident that the
inverse of the gauge coupling depends linearly on the energy t. Thus taken the ar-
bitrary mass M to be mZ as boundary condition, we can solve the above equation

¹we have used the GUT normalization for the hypercharge generator Y →
√

3
5 Y
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α−1
i (µ) = α−1

i (mZ) − b

2π
ln(µ/mZ) (7.15)

using the experimental values of the gauge couplings inmZ scale (ref)

α−1
3 (mZ) ≃ 9
α−1

2 (mZ) ≃ 29.7
α−1

1 (mZ) ≃ 58.9 (7.16)

The dependence of the inverse of the gauge couplings on the energy scale is shown
in [Fig.7.1] . From this plot is evident that in the case of the Standard Model, the
couplings do not meet a point while in the context MSSM, the unification of the
couplings can be achieved ate energiesMGUT ≃ 1016GeV .
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Chapter 8

Reduction of couplings

8.1 Introduction
As we have already seen the MSSM have a large number of free parameters thus,
render it less predictive. The usual way, of reducing the number of parameters is
by imposing a larger symmetry (such as GUTs), but this colmpicates further the
situation due to the addition of more degrees of freedom. Another way of finding
relations aminge unrelated parameters is the method of reduction of couplings. In
this way we reduce the number of couplings in a given theory by relating either all
or a part of them to a single coupling called the primary coupling. In teh following
we demonstrate the implications of this method.

8.2 Reduction of dimesionless parameters
In order to reduce the number of the free parameters, wemust seek forRenormalization
Group Invariant (RGI) relations of the parameters, that is relations that do not de-
pend explicitly in the renormalization scale µ. Such relations can be expressed in
the form

Φ(g1, · · · , gA) = constant (8.1)
such that

µ
dΦ
dµ

= 0 (8.2)
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Hence the function Φ must satisfy the partial differential equation (PDE)

µ
dΦ
dµ

= 0

⇒µ
dΦ
dµ

∂gα

∂gα

= 0

⇒µ
dgα

dµ

∂Φ
∂gα

= 0

⇒
A∑

α=1
βα

∂Φ
∂gα

≡ −→∇Φ ·
−→
β = 0 (8.3)

where βα is the beta-function of gα.
This PDE is equivalent to a set of ordinary differential equations, the so-called
reduction equations (RE) [28]

βg
dgα

dg
= βα, α = 1, · · · , A− 1 (8.4)

where g and βg are the primary coupling and its beta-function respectively, and the
counting on α does not include g.
This equivalence can be seen as follow:
We consider a model described by n+ 1 dimensionless coupling parameters
λ0, λ1, · · · , λn and a renormalization scale µ. This model is supposed to be invariant
under the renormalization group.Our goal is to write λ1, · · · , λn in terms of the
coupling λ0,so that the model we obtain involves only one coupling parameter λ0 and
it is again invariant under the normalization group.We write each λj as a function of
λ0:

λj = λj(λ0) (8.5)
which is independent of the renormalization scale µ. These functions should be
differentiable in the domain of λ0 and vanish at the weak limit

lim
λ0→0

λj(λ0) = 0 (8.6)

Then for the Green's functions of the original system, we have the Callan-Symanzik
equations: (

µ
∂

∂µ
+
∑
i=0

βi
∂

∂λi

+ γ

)
G(λi; p;µ) = 0 (8.7)

and for the reduced system:(
µ
∂

∂µ
+ β′ ∂

∂λ0
+ γ′

)
G′(λ0, λj(λ0); p;µ) = 0 (8.8)
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The β- and γ-functions depend on the coupling constants and β′,γ′ depend only on
the parameter λ0.The Green's funtions deepend on momenta , coupling constants
and the renormalization scale.G′ is obtained formG substituting the functions [8.5].
Thus we have

∂G′

∂λ0
= ∂G(λ0, λj(λ0))

∂λ0
= ∂G

∂λ0
+

n∑
j=1

∂G

∂λj

dλj

dλ0
(8.9)

So, from equations [8.7] − [8.8] and considering the linear independence of the
Green's funtions, we can identify that:

β′ = β, γ′ = γ, β′ dλj

dλ0
= βj (8.10)

Hence the functions [8.5] must satisfy the system of ODEs:

β′ dλj

dλ0
= βj (8.11)

The above equation forms a necessary and sufficient condition for reducing the orig-
inal system by the functions λj(λ0).
Since (A− 1) independent RGI 'constraints' can be imposed by the Φα's, one could
in principle express all the couplings in terms of a single coupling g. However if
we look at the equations [8.4], their general solutions contains as many integration
constants as the number of equation, therefore the solutions cannot be considerd as
reduced ones.So if want the solutions to be consistent with the condition [ref8.6]
and also preserves renormalizability we must look for power series solution to the
REs:

gα =
∑
n=0

ρ(n+1)
α g2n+1 (8.12)

where n+ 1 counts the number of loops.
The uniqueness of such power series can be decided already at the 1-loop level. In
order to see this, we assume that the β-functions have the form

βα = 1
16π2

 ∑
b,c,d̸=g

β(1)bcd
α gbgcgd +

∑
b̸=g

β(1)b
α gb

+ · · · , (8.13)

βg = 1
16π2β

(1)
g g3 + · · ·

where · · · stands for higher order terms and β(1)bcd
α are symmetric in a, b, c.The

above assumption for the β-functions covers a wide range of models.
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Then we insert the power series [8.12] into equations [8.4] and we obtain:

∑
b,c,d̸=g

β(1)bcd
α

(∑
n=0

ρ
(n+1)
b g2n+1

)(∑
n=0

ρ(n+1)
c g2n+1

)(∑
n=0

ρ
(n+1)
d g2n+1

)
+
∑
b̸=g

g2β(1)d
α

(∑
n=0

ρ
(n+1)
d g2n+1

)
=
∑
n=0

β(1)
g (2n+ 1)ρ(n+1)

α g2n+1

⇒
∑

b,c,d̸=g

β(1)bcd
α

(
ρ

(1)
b g +

∑
n=1

ρ
(n+1)
b g2n+1

)(
ρ(1)

c g +
∑
n=1

ρ(n+1)
c g2n+1

)

×
(
ρ

(1)
d g +

∑
n=1

ρ
(n+1)
d g2n+1

)
+
∑
b̸=g

g2β(1)d
α

(
ρ

(1)
d g +

∑
n=1

ρ
(n+1)
d g2n+1

)

= β(1)
g ρ(1)

α g3 +
∑
n=1

β(1)
g (2n+ 1)ρ(n+1)

α g2n+1

⇒
∑

b,c,d̸=g

β(1)bcd
α ρ

(1)
b ρ(1)

c ρ
(1)
d g3 +

∑
d ̸=g

β(1)b
α ρ

(1)
d g3 +

∑
n=1

∑
d ̸=g

β(1)d
α ρ

(n+1)
d g2n+1+

∑
b,c,d̸=g

β(1)bcd
α

(
ρ

(1)
b ρ(1)

c g2 ∑
n=1

ρ
(n+1)
d g2n+1 + ρ

(1)
d ρ(1)

c g2 ∑
n=1

ρ
(n+1)
b g2n+1 + ρ

(1)
b ρ

(1)
d g2 ∑

n=1
ρ(n+1)

c g2n+1
)

+ (higher order terms)

= β(1)
g ρ(1)

α g3 +
∑
n=1

β(1)
g (2n+ 1)ρ(n+1)

α g2n+1

(8.14)

Collecting the terms of O(g3) and of O(g2n+3) we get:∑
b,c,d̸=g

β(1)bcd
α ρ

(1)
b ρ(1)

c ρ
(1)
d +

∑
d ̸=g

β(1)d
α ρ

(1)
d − β(1)

g ρ(1)
α = 0 (8.15)

and ∑
d ̸=g

M(n)d
αρ

(n+1)
d = 0 (8.16)

where
M(n)d

α = 3
∑

b,c,̸=g

β(1)bcd
α ρ

(1)
b ρ(1)

c + β(1)d
α − (2n+ 1)β(1)

g δd
α (8.17)

Therefore if there exist ρ(1)
α 's as solutions of equation [8.15] then we can determine

all the ρ(n+1)
α 's with n ≥ 1 if detM(n)d

α ̸= 0 for all n ≥ 0.
Thus the system is described only by the primary coupling g.
The possibility of the coupling unification described above is very attractice as the
completely reduced theory contains only one free parameter,but it can be unrealistic.
Therefore, we would,usualy, like to impose fewer RGI constraints, thus leading to
the notion of partial reduction.
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CHAPTER 8. REDUCTION OF COUPLINGS

8.3 Partial Reduction
The idea of the reduction of couplings is closely related with supersymmetry, so
in the following we will consider an N = 1 globally supersymmetric gauge the-
ory based on a simple group G with gauge coupling constant g. The anomalous
dimensions and the β-unction of theory are given by equations [7.9]. The Yukawa
couplings yijk can be arranged in such a way that they are covered by a single index
i :

yijk ≡ gi (8.18)
with i = 1, · · ·n. It is convinient to define

α = g2

4π
, αi = g2

i

4π
(8.19)

Hence, the evolution of the parameter in perturbation theory obey the equations

β = dα

dt
= −β(1)α2 + · · ·

βi = dαi

dt
= −β(1)

i αiα +
∑
j,k

β
(1)
i,jkαjαk + · · ·

(8.20)

where β(1)
i are the coefficients at the one loop order , β(1)

i,jk = β
(1)
i,kj and · · · denotes

the contributions from higher orders.
As we have seen for reducing the number of parameters we look for power solutions
in terms of the gauge coupling α that keep formally perturbative renormalizability.
In order to investigate the asympotic properties we define [29]:

α̃i = αi

α
+ O(αr) (8.21)

and so
dαi

dt
= d(αα̃i)

dt
= α̃i

dα

dt
+ α

dα̃i

dt

⇒βi = α̃iβ + α
dα̃i

dt

⇒βi

β
α̃ii + α

dt

da

dα̃i

dt

⇒α
dα̃i

dα
= −α̃i + βi

β
(8.22)
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then from equations [8.20], we get:

α
dα̃i

dα
= −α̃i + βi

β

=

−1 + β
(1)
i

β(1)

 α̃i −
∑
j,k

β
(1)
i,jkα̃jα̃k +

∑
r=2

(
α

π

)r−1
β̃

(r)
i (α̃) (8.23)

where β̃(r)
i are power series of α̃'s and can be computed from the r-th-loop β-

functions. Assuming that
α → 0 , as t → ∞ (8.24)

which requires that β(1) > 0 we look for power solutions to the equations [8.23] that
satisfy

α̃i → ρi , as α → 0 (8.25)
with 0 < ρi < ∞.
If such a solution exists then the assumption [8.24] is self-consistent and the re-
duced system is asymptotically free to all orders in perturbation theory.We, will
then examine the various cases that might appear in the reduction of couplings of
an asymptoyic free theory:
(i) Trivial reduction.
In this case ρi = 0, (i = 1, · · ·n) and the leading order behavior of α̃i is given by:

α̃i = ciα
δi + · · · , δi > 0 (8.26)

where · · · represents terms that decrease faster than αδi as α → 0and ci are arbitrary
positive constants.
Substituting this ansatz into equation [8.23] and assuming that higher order terms in
α, α̃i can be neglected, we find:

α
d(ciα

δi)
dα

=

−1 + β
(1)
i

β(1)

αδi

⇒δi = −1 + β
(1)
i

β(1) (8.27)

so that β(1)
i > β(1) has to be neccessarily satisfied.

In this case we regard α̃i as small perturbations to the undisturbed system which is
defined by setting α̃ to zero.
(ii) Non trivial reduction.
In this case, we are looking for power series solution of equations 8.23] in the form

α̃i = ρi +
∑
r=2

ρ
(r)
i αr−1, ρi > 0, i = 1, · · · , n (8.28)
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substituting this ansatz we get
∑
r=2

ρ
(r)
i (r − 1)αr−1 = −ρi + β

(1)
i

β(1)ρi −
∑
r=2

ρ
(r)
i αr−1 + β

(1)
i

β(1)

∑
r=2

ρ
(r)
i αr−1

−
∑
j,k

β
(1)
i,jk

β(1)

(
ρjρk + ρj

∑
r=2

ρ
(r)
k αr−1 + ρk

∑
r=2

ρ
(r)
j αr−1 + (higher order terms)

)

= −ρi + β
(1)
i

β(1)ρi −
∑
r=2

ρ
(r)
i αr−1 + β

(1)
i

β(1)

∑
r=2

ρ
(r)
i αr−1

−
∑
j,k

β
(1)
i,jk

β(1)

(
ρjρk + 2ρk

∑
r=2

ρ
(r)
j αr−1 + (higher order terms)

)
(8.29)

Collecting the terms of O(0) we obtain−1 + β
(1)
i

β(1)

 ρi −
∑
j,k

β
(1)
i,jk

β(1) ρjρk = 0 (8.30)

and collecting the terms of O(r)

M(r)ijρ
(r+1)
i = 0, r = 1, · · · , n. (8.31)

where
Mij(r) =

r + 1 − β
(1)
i

β(1)

 δij + 2
∑
j,k

β
(1)
i,jk

β(1) ρk. (8.32)

Thus all the expansion coefficients ρr
i 's can be uniquely determined if detM(r)ij ̸=

0 for all r = 1, · · · , n.
If [8.28] is the solution of [8.23] and β(1) > 0 then the system is asymptotically
free and contains only one independent parameter, the primary coupling g. We also
notice that the solutions ρi is a fixed point of evolution equations [8.23] in the one-
loop approximation.
(iii) Partial reduction.
A partially reduced system is a system in which only a part of coupling constants are
reduced and exhibits a 'mixture' of the above cases. In this case we assume that the
fixed points have the form

ρi = 0, i = 1, · · · ,m
ρi > 0, i = m+ 1, · · · , n

(8.33)

then we search for power series solutions of the form

α̃i = ρi +
∑
r=2

ρ
(r)
i αr−1, i = m+ 1, · · · , n (8.34)
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The small perturbations caused by nonvanishing α̃i with i ≤ m enter in such a way
that the reduced couplings α̃i with i ≥ m becomes functions of α as well as of α̃i,
i ≤ m.

8.4 Reduced MSSM
We can now employ the above method in the case of MSSM [30]. We want to
reduce the top, bottom Yukawa couplings yt, yb in the favour of the strong coupling
3. Thus we assume a perturbative expantion of the Yukawa couplings in powers of
the strong coupling stastifying the reduction equations

βt,b = βg3

dyt,b

dg3
(8.35)

We define
αt,b =

y2
t,b

2π
, i = t, b (8.36)

and assume that in the lowest order the Yukawa couplings are related with the stong
coupling

αi = G2
iα3 i = t, b (8.37)

while we treat the other couplings as corrections. Using the RGEs in equations
[7.11], [7.12]and working with the ratios of couplings

ρi = αi

α3
(8.38)

we have

βt = 1
2π
G2

tα3
(
6G2

t +G2
b − 16

3
− 3ρ2 − 13

5
ρ1
)

βt = 1
2π
G2

bα3
(
6G2

b +G2
t + ρτ − 16

3
− 3ρ2 − 7

15
ρ1
)

(8.39)

while the left-hand side of the above equations is

βαt = − 3
2π
G2

tα
2
3

βαt = − 3
2π
G2

bα
2
3 (8.40)

where
ρt,b = G2

t,b (8.41)
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solving the above equations we obtain

G2
t = 1

3
+ 71

525
ρ1 + 3

7
ρ2 + 1

55
ρτ

G2
b = 1

3
+ 29

525
ρ1 + 3

7
ρ2 − 6

35
ρτ (8.42)

To obtain the above relations for G2
t,b we have assumed that if we fix the scale the

dependence of ρt,b on renormalization scale is negligible even if we include the cor-
rections that comes from the other couplings, ie.

dρt,b

dg3
≈ 0 + small corrections (8.43)

Such an assumption sets a boundary condition at the GUT scale. In this way we
have found a relation between the top- and bottom- quark Yukawa coupling with
the strong coupling that holds at the GUT scale, or in other words we have achieved
Gauge-Yukawa Unification. With these boundary conditions one can run the RGEs
down to the electroweak scale and have a prediction for the top and bottom quark
masses. This analysis can be also applied to the softly supersymmetry breaking sec-
tor where we have dimentionfull parameters since the reduction of couplings is a
renormalization scheme independent procedure [31]. Hence, the principle of re-
duction of couplings is very usefull tool in order to make the model more predictive.
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Appendix A

Τwo-component spinor notation

In this appendix, some identities identities concering the sigma matrices, two com-
ponent spinors and the Grassmann coordinates are presented. For the sigmamatrices
σµ, σ̄µ we have the identities

(σµ)αβ̇(σµ)γδ̇ = 2ϵαγϵβ̇δ̇ (A.1)
(σ̄µ)α̇β(σ̄µ)γ̇δ = 2ϵβγϵα̇γ̇ (A.2)
(σ̄µ)α̇β(σ̄µ)γ̇δ = 2ϵα̇γ̇ϵβ̇δ̇ (A.3)
(σµ)αβ̇(σ̄µ)γδ̇ = 2δδ

αδ
γ̇

β̇
(A.4)

(σµσ̄ν + σν σ̄µ)β
α = 2ηµνδβ

α (A.5)
(σ̄µσν + σ̄νσµ)β̇

α̇ = 2ηµνδβ̇
α̇ (A.6)

σµσ̄νσρσ̄νσµ = 2(ηµνσρ + ηνρσµ − ηµρσν) (A.7)
σ̄µσν σ̄ρ + σ̄ρσν σ̄µ = 2(ηµν σ̄ρ + ηνρσ̄µ − ηµρσ̄ν) (A.8)
Tr[σµσ̄νσρσ̄κ = 2(ηµνηρκ + ηµκηνρ − ηµρηνκ − iϵµνρκ) (A.9)

The two-component Weyl spinors are of Grassmann nature and thus they anticom-
mute among themselves.
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Thus for ξ, χWeyl spinors and θα, θ†α̇ we have the Fierz identities

ξσµχ = −χ†σ̄µξ (A.10)
ξσµνχ = −χσµνξ (A.11)
ξ†σµνχ† = −χ†σ̄µνξ† (A.12)

θαθβ = −1
2
ϵαβθθ (A.13)

θαθβ = 1
2
ϵαβθθ (A.14)

θ†
α̇θ

†
β̇

= −1
2
ϵα̇β̇θ

†θ† (A.15)

θ†α̇θ†β̇ = −1
2
ϵα̇β̇θ†θ† (A.16)

(θξ)(θχ) = −1
2

(ξχ)(θθ) (A.17)

(θ†ξ†)(θ†χ†) = −1
2

(ξ†χ†)(θ†θ†) (A.18)

(ξη)(χ†ψ†) = 1
2
ξσµχ†ησµψ

† (A.19)

(ξ†η†)(χψ) = 1
2
ξ†σ̄µχη†σµψ (A.20)

θσµθ†θσνθ† = 1
2
ηµν(θθ)(θ†θ†) (A.21)

(σµθ†)αθσ
νθ† = θ†θ†

(1
2
ηµνθα − i(σµνθ)α

)
(A.22)

(θσµ)α̇θ
†σ̄νθ = −θθ

(1
2
θ†

α̇η
µν + i(θ†σ̄µν)α̇

)
(A.23)

We note that a consequence of [A.12] is θσµνθ = θ†σ̄µνθ† = 0.
A Dirac four-component spinor, in the Weyl representaion is

ΨD =
(
χα

ξ†α̇

)
(A.24)

For the gamma matrices in the same reprsentation we have

γµ =
(

0 σµ

σ̄µ 0

)
, γ5 =

(
−I 0
0 I

)
(A.25)

where σµ = (I, σi), σ̄µ = (I,−σi), with σi the Pauli matrices and I is the 2 × 2
unit matrix. The charge conjugation operator is

C = iγ2γ0 =
(

−iσ2 0
0 iσ2

)
(A.26)
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and for the conjugate Ψ̄D is

Ψ̄D = Ψ†
Dγ

0 =
(
ξα χ†

α̇

)(0 I
I 0

)
=
(
ξα χ†

α̇

)
(A.27)

Thus we have the bilinear products

Ψ̄DΨD = χ†ξ† + ξχ (A.28)
Ψ̄Dγ5ΨD = χ†ξ† − ξχ (A.29)
Ψ̄Dγ

µΨD = χ†σ̄µχ+ ξσµξ† (A.30)
Ψ̄Dγ

µγ5ΨD = ξσξ† − χ†σ̄µξ (A.31)

A Majorana spinor in the Weyl representation is

ΨM =
(
λα

λ†α̇

)
(A.32)

In the same manner we have te bilinear products

Ψ̄MΨM = λ†λ† + λλ (A.33)
Ψ̄Mγ5ΨM = λ†λ† − λλ (A.34)
Ψ̄Mγ

µΨM = λ†σ̄µλ+ λσµλ† (A.35)
Ψ̄Mγ

µγ5ΨM = λσµ − λ†σ̄µλ (A.36)
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Computation of β, γ functions

Accordin to [21], the β− function for a G1 ⊗ G2 supersymmetric gauge theory is
given by

16π2β1 = g3
1a1, a1 = T (R1)d(R2) − 3C2(G1) (B.1)

Fermions trasnform in theR1(R2) representation with respect toG1(G2) and bosons
n the S1(S2) with respect to G1(G2).
C2(R) is the quadratic Casimir of the representationR, whileC2(G) is the quadratic
Casimir of the adjoint representation. The following relations hold

RaRa = C2(R)I (B.2)
Tr[RaRb] = T (R)δab (B.3)
C2(R)d(R) = T (R)r (B.4)

where Ra is the matrix representation of the generators of the group, d(R) the di-
mension of the representation and r the number of generators. For an SU(N) group
we have

C2(G) = N (B.5)

T (R) = 1
2
(by convention) (B.6)

and for a U(1)

C2(G) = 0 (B.7)
C2(R) = T (R) = Y 2 (B.8)

where the Y is properly normalized.
For the field content of MSSM and its SU(3) ⊗ S(2) ⊗ U(1) gauge structure we
have:
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For G1 ≡ SU(3), then quarks transform as a triplet (3) while the rest of transform
as singlets (1) thus

T (3) = 1
2

(B.9)

T (1) = 0 (B.10)

hence

a3 =T (R1)d(R2) − 3C2(G1)

=
(1

2
· 2 · 1 + 1

2
· 1 · 1

)
ng − 3 · 3

= 2ng − 9 (B.11)

where ng is the number of fermion generations
ForG1 ≡ SU(2) the left-handed fermions and the Higgs fields transform as doublet
(2) under SU(2) while the other as singlets. Hence

a2 =T (R1)d(R2) − 3C2(G1)

=
(1

2
· 3 · 1 + 1

2
· 1 · 1

)
ng +

(1
2

· 1 · 1
)
nh − 3 · 2

=2ng + 1
2
nh − 6 (8.12)

where nh is the number of Higgs doublets.
For G1 ≡ U(1) we have

a1 =T (R1)d(R2)

= 3
4 · 5

(1
9

· 3 · 2 + 6
9

· 3 · 1 + 4
9

· 3 · 1 + 1 · 1 · 2 + 4 · 1 · 1
)
ng +

(
1 · 2 · 1

)
nh

=2ng + 3
10
nh (8.13)

where we have used the normalization
√

3
5Y = 2(Q − T3) For ng = 3 and nh = 2

we obtain

a1 = 33
5

a2 = 1
a3 = −3 (8.14)

For the β−function of the Yukawa coupings Yijk we have [5]

βYijk
= dYijk

dt
= Yijlγ

l
k + Yiklγ

l
j + Yjjlγ

l
i (8.15)
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where Y ijk are real and symmetric in all indices ant the anomalous dimensions are

γi
j = 1

16π2

[1
2
Y jklYjkl − 2g2C2(Ri)δj

i

]
(8.16)

For the top-quark Yukawa β-function we have

βqtHu = Yqtlγ
l
Hu

+ YqlHuγ
l
t + YltHuγ

l
q (8.17)

were q is the third generation quark doublet and t the singlet. Thus we have

βqtHu =Yqtlγ
l
Hu

+ YqlHuγ
l
t + YltHuγ

l
q

= Yqtl

16π2

[1
2
Y lijYHuij − 2g2

aC2(RHu)δl
Hu

]
+ YqlHu

16π2

[1
2
Y lijYtij − 2g2

aC2(Rt)δl
t

]
+ YltHu

16π2

[1
2
Y lijYqij − 2g2

aC2(Rq)δl
q

]
=YqtHu

16π2

[1
2
Y HuijYHuij − 3

10
g2

1 − 3
2
g2

2

]
+ YqtHu

16π2

[1
2
Y tijYtij − 8

15
g2

1 − 8
3
g2

3

]
+ YqtHu

16π2

[1
2
Y qijYqij − 1

30
g2

1 − 3
2
g2

2 − 8
3
g2

3

]
=YqtHu

16π2

[1
2

· 2 · 3 · YHuqt − 3
10
g2

1 − 3
2
g2

2

]
+ YqtHu

16π2

[1
2

· 2 · 2 · YHuqq − 8
15
g2

1 − 8
3
g2

3

]
+ YqtHu

16π2

[1
2

· 2 ·
(
YHuqt + YHdqb

)
− 1

30
g2

1 − 3
2
g2

2 − 8
3
g2

3

]
(8.18)

Hence for YqtHu ≡ yt and YqbHd
≡ ytb we obtain

βyt ≡ dyt

dt
= 1

16π2yt

[
6y2

t + y2
b − 16

3
g2

3 − 3g2
2 − 13

15
g2

1

]
(8.19)

In a similar way, we can find βyb
and βyτ .
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