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Περίληψη 

 

Τα ενισχυμένα ελάσματα είναι βασικά κατασκευαστικά στοιχεία, τα οποία 

χρησιμοποιούνται στην γάστρα του πλοίου και ειδικότερα στην περιοχή του 

διπύθμενου, στα πλευρικά ελάσματα και στο άνω κατάστρωμα. Η μελέτη αντοχής 

των ενισχυμένων ελασμάτων που καταπονούνται από ομοιόμορφα φορτία πίεσης 

επιτυγχάνεται μέσω της ανάλυσης των δευτερευουσών τάσεων-αυτών που 

προκύπτουν από τα ενισχυτικά μαζί με το συνεργαζόμενο έλασμα ως μια δοκό που 

κάμπτεται, και των τριτευουσών, δηλαδή των τάσεων που προκύπτουν από την 

κάμψη του ελάσματος μεταξύ των ενισχυτικών. 

Η παρούσα διπλωματική εργασία εστιάζεται στις δευτερεύουσες τάσεις υπό 

ομοιόμορφα φορτία πίεσης. Η θεωρία κάμψης δοκού των Euler-Bernoulli δίνει 

μικρότερες τιμές για το τασικό πεδίο λόγω του φαινομένου υστέρησης σε διάτμηση. 

Εξετάζονται γι’ αυτόν το λόγο τόσο θεωρητικά όσο και αριθμητικά μοντέλα, με την 

μέθοδο των πεπερασμένων στοιχείων, με σκοπό την τεκμηρίωση και τη διατύπωση 

της πιο ασφαλούς  στρατηγικής για την μοντελοποίηση του εξεταζόμενου 

φαινομένου. 

Επιπλέον, μελετάται η επίδραση των εγκάρσιων ενισχυτικών στις δευτερεύουσες 

τάσεις των διαμήκων ενισχυτικών σε ενισχυμένα ελάσματα και στις δύο 

κατευθύνσεις. Για διαστάσεις ενισχυμένων ελασμάτων που χρησιμοποιούνται στη 

ναυπηγική βιομηχανία, καθορίζονται οι οριακές συνθήκες που επιβάλλουν τα 

εγκάρσια ενισχυτικά στα διαμήκη. Το αποτέλεσμα της παρούσης ερευνητικής 

εργασίας είναι η δημιουργία ενός πίνακα που συσχετίζει το είδος στήριξης που 

επιβάλλουν τα εγκάρσια ενισχυτικά σε σχέση με άλλες παραμέτρους των 

ενισχυμένων ελασμάτων. 

 

 

 

 

 



Stiffened Panels subjected to Uniform Pressure Loads: 

Theoretical and Numerical Modeling Strategies 

by 

Efstathios L. Platypodis 

 

Abstract 

Stiffened panels are main structural components that are used in hulls of ships and in 

particular in double bottom, side shell and upper deck. The strength analysis of 

stiffened panels that are subjected to uniform pressure loads is accomplished 

examining both the secondary stresses, that are induced considering the stiffener with 

the attached plate as a beam, and the tertiary stresses, that are induced considering the 

bending of the plate between the stiffeners. 

The present thesis focuses on the study of the secondary stresses under uniform 

pressure loads. The Euler-Bernoulli beam theory underestimates the stress field due to 

the shear lag phenomenon. Both theoretical and numerical models, with finite element 

analysis, are examined in order to deduce about the safest strategy to examine this 

phenomenon. 

Moreover, the effect of the transverse stiffeners to the secondary stresses of 

longitudinal stiffeners at cross-stiffened panels is examined. For real ship scantlings, 

the boundary conditions, which the transverse stiffeners create, are determined. For 

this reason, a table is provided which relates the type of support, that the transverse 

stiffeners can be modeled, with other variables of a stiffened panel. 
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1.  Introduction and objectives 

1.1 Stiffened panels in ship structures 

A ship is subjected to longitudinal, transverse and local strength loads. The 

longitudinal strength loads concern the overall strength of the hull of the ship. These 

loads are the bending moment, the shear force and the torsional moment acting on the 

hull girder. Because of the slender shape of the ship, from the point view of global 

deformation, we can consider that it behaves like a beam. 

 

 

 

 

 

 

 

The transverse strength loads act on transverse members and cause structural 

distortion of a cross section. These loads include the hydrostatic pressure on the outer 

shell, the weight of cargo load working on the bottom structure and the water ballast 

pressure. These loads are not always equal to each other at every point. As a result, 

the transverse members are distorted. It is considered that the distortion due to 

longitudinal loads does not affect the deformation of the transverse section. 

 

 

 

 

 

 

Figure 1.1: Longitudinal strength loads 

Figure 1.2: Transverse strength loads 
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The local strength loads affect the local strength members such as shell panels, 

stiffeners and connecting constructions between stiffeners. 

The procedure of structural strength evaluation includes 3 significant modes for 

the structural designers: yielding, buckling and fatigue. Yielding is the failure mode 

that once the load exceeds a certain critical value, the elongation increases rapidly. 

Buckling is the failure mode that in case of a structure under compression load, the 

structure may be deflected when the load reaches a critical value. Fatigue is the failure 

mode that the structure may be fractured by small loads when the loads are provided 

repeatedly to the structure. In this diploma thesis, the problems that are examined, 

evaluate the yielding failure mode. 

In order to construct a ship, panels are welded. Plates are slender construction 

elements and have small resistance to bending moment due to the small thickness in 

comparison with the other two dimensions. Specifically, the ratio between the width 

and the thickness of the plate is the following: b t⁄ > 25 . In order to increase the 

bending stiffness of the plates, stiffeners are welded parallel to one or two dimensions 

of the panel. This procedure results to the formation of panels with smaller 

dimensions (from LG × 3l to s × l) as shown in the Figure 1.3 . 

 

 

 

 

 

 

 

 

 

 
Figure 1.3: From  𝐋𝐆 × 𝟑𝐥 to 𝐬 × 𝐥 
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As a result, the requirements of the regulations of the classification, for the 

bending of the plates, are satisfied. The optimized solution, regarding the weight of 

the panel, requires the use of longitudinal and transverse girders with large cross 

sections and long distances LG or l . The construction elements between two 

longitudinal and two transverse girders and are supported by stiffeners of small cross 

section are called stiffened panels. The diploma thesis deals with topics of stiffened 

panels under uniform pressure loads studying the bending of stiffeners along with the 

attached plate. 

The hull structure consists of stiffened panels; bottom construction, side shell 

construction and upper deck construction for a variety of types of ships, such as 

tankers and bulk carriers. Typical cross sections of stiffeners in shipbuilding industry 

are depicted in Figure 1.4. 

 

 

 

 

 

 

 

 

 

The double bottom consists of grillage beams of I profile between of them, 

stiffened panels are found, as shown in Figure 1.5. The girders, which extend along 

the longitudinal axis of the ship, constitute the web and the flanges are the attached 

plates which are found in inner and outer bottom. The inner bottom (upper flange) is 

subjected to the weight of the transferred cargoes and the outer bottom (bottom 

flange) to hydrostatic and hydrodynamic pressure. The difference of these pressure 

loads is transferred to the girders as shear forces. As a result, curvature is appeared to 

the double bottom. 

Figure 1.4: Typical cross sections of stiffeners 
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The floors, which extend across the width of the ship, reinforce the double 

bottom to the transverse direction. The stiffened panels, between girders and floors, 

are subjected to vertical pressure loads. In order to evaluate the strength of the 

stiffened panels, the stresses are categorized to secondary and tertiary. The secondary 

stresses are calculated considering the stiffeners along with the attached plate as a 

beam. Applying the theory of bending of beams, we can take a good estimation. The 

tertiary stresses are calculated considering the bending of the plate between the 

stiffeners. 

 

 

 

 

 

 

 

 

Figure 1.5: Uniform pressure subjected to the stiffened panels of inner bottom 

Figure 1.6: Stiffened panels for a bulk carrier 
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1.2 Aims and scope of work 

This diploma thesis deals with topics concerning the secondary stresses of 

stiffened panels under uniform pressure loads and has two main objectives. The first 

is to assess bending of one-way stiffened panels due to uniform pressure by 

theoretical and numerical methods. For stiffened panels, due to the shear lag 

phenomenon which is described in the following chapters, the theory of bending 

underestimates the stresses. The scope is to be examined both theoretical and 

numerical modeling strategies to evaluate the stresses of the stiffeners with the 

attached plate of each method. The theoretical modeling strategies consider the shear 

lag phenomenon and at the end the most safe and conservative method is suggested. 

For numerical modeling strategies, the commercial software of Finite Element 

Analysis, Abaqus, is used, in order to examine the appropriate element for analysis of 

secondary stresses. The second objective is to simplify bending of cross-stiffened 

panels by downsizing the problem to bending in one direction and hence using Euler’s 

bending theory. The scope is to study the secondary stresses of the longitudinal 

stiffeners between of the transverse stiffeners with aim to find a relation for the 

boundary conditions across the transverse stiffeners that are applied to longitudinal 

stiffeners. Calculating the stresses and the boundary conditions in each case, it is 

feasible to assess the design variables, namely the thickness of the plate and the 

dimensions of the stiffeners. 

 

 

 

 

 

 

 

 

 

Figure 1.7: One-way stiffened panel in double bottom 
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2.  Theoretical background 

2.1 Theory of stiffened panels – 1D stiffening 

This subchapter discusses topics of strength of stiffened panels that are 

subjected to vertical loads examining the bending of stiffeners along with the attached 

width of the plate. Considering the periodicity of the geometry and the stress field, the 

stiffened panel can be examined to a beam of equivalent cross section (see Figure 2.1) 

to apply the theory of the bending of beams. The distribution of axial stresses, 

according to the bending theory, can be calculated according to the formula: 

𝜎𝑥(z) = −
My

Iy
z                                                                                                                      (2.1) 

This relation, from Euler-Bernoulli theory of the bending of beams, ignores the 

warping of cross section due to the shear stresses. The warping has as a result the 

increase of the real distribution of axial stresses. This mechanical behavior is the basis 

for shear lag phenomenon. Numerical simulations and experimental measurements 

conclude that the real distribution of axial stresses is non linear along the width of 

attached plate due to shear lag effect.   

 

 

 

 

 

 

 

Figure 2.1: Reduction from stiffened panels to a beam of equivalent cross section. 
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2.1.1 Beam theory 

When analyzing beams, it is necessary to distinguish between pure bending and 

non uniform bending. Pure bending is defined a flexure of a beam under a constant 

bending moment that occurs under the presence of force couple. Therefore, pure 

bending occurs only in regions of a beam where the shear force is zero. On the other 

hand, non uniform bending that occurs due to presence of concentrated or distributed 

loads is defined as the flexure in the presence of shear forces, which means that the 

bending moment is not constant as we move along the axis of the beam.  

In pure bending, the resulting strains and stresses in the beam are directly 

related to the curvature of the deflection curve, with radius of curve ρ (see Figure 2.2) 

and vary linearly with distance from the neutral surface regardless of the shape of the 

stress-strain curve of material. The neutral axis passes through the centroid of the 

cross sectional area when the material follows Hooke’s law and there is no axial force 

acting on the cross section. The axial stresses remain constant along the x-axis and 

vary only with the height of cross section. The maximum tensile and compressive 

bending stresses acting at any given cross section occur at points located farthest from 

the neutral axis. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Pure bending of a beam  
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In non uniform bending, under the presence of vertical loads, the beams (the 

stiffeners along with the attached width of plate) are used to receive these vertical 

loads (see Figure 2.3). Examining the static equilibrium of a section Δx of the beam 

(𝛴𝐹𝑧 = 0), the relation that results between the shear force V and  the distribution of 

the vertical load  w, is: 

dV

dx
= −w                                                                                                                                (2.2)  

Integrating the equation (2.2) between A and B, it results that: 

VB − VA = − ∫ w dx

xB

xA

                                                                                                          (2.3) 

Examining the equilibrium of moment (𝛴𝑀 = 0), the relation that results between the 

bending moment M and the shear force V, is: 

dM

dx
= V                                                                                                                                    (2.4) 

Integrating the equation (2.4) between A and B, it results that: 

MB −MA = − ∫ V dx

xB

xA

                                                                                                        (2.5) 

 

 

 

 

 

 

 

 

     Figure 2.3: Beam under the presence of vertical loads  
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Examining an infinitesimal element with dimensions dxds (see Figure 2.4), we 

conclude that the static equilibrium of forces (𝛴𝐹 = 0) prerequisites the presence of 

shear stress field 𝜏𝑠𝑥. The equation of equilibrium of stresses is: 

∂σx
∂x

+
∂τsx
∂s

= 0                                                                                                                      (2.6) 

The equilibrium of moments (𝛴𝑀 = 0) prerequisites the presence  of shear stresses 

𝜏𝑥𝑠 that are equal with 𝜏𝑠𝑥 and tangent to vertical side ds. It results that: 

t
∂σx
∂x

+
∂q

∂s
= 0                                                                                                                       (2.7) 

where 𝑞 = 𝜏𝑠𝑥 𝑡  and is called shear flow. It is considered that the distribution of shear 

stresses along the thickness of the element remain constant. Substituting the axial 

stress 𝜎𝑥 with the formula that is given by the theory of pure bending, it results that: 

−t
∂My

∂x
 
z

Iy
+
∂q

∂s
= 0                                                                                                             (2.8) 

Applying the equation (2.4) to (2.8), it results that: 

∂q

∂s
=
V

Iy
 t z                                                                                                                              (2.9) 

Integrating the equation (2.9), it results that: 

𝑞𝑠 − 𝑞𝑜 =
𝑉

𝐼𝑦
∫𝑡𝑧̅𝑑𝑠

𝑠

0

                                                                                                          (2.10) 

 

Figure 2.4: Stress field due to shear force and bending moment 
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Alternatively: 

Δq =
VQ

Iy
                                                                                                                               (2.11) 

where 𝑄 = ∫ 𝑡𝑧̅𝑑𝑠
𝑠

0
 is the first moment of inertia of the cross section. With the 

equation (2.11), we can calculate the distribution of shear stress to the cross section 

because of the zeroing of the shear stress at free edges of the cross section. In Figure 

2.5, it is observed that the location of maximum shear flow is along the web 𝑞𝑤 , that 

ascertains that the web is the structural element of a cross section which receive the 

vertical loads. The attached width of the plate and the flange develop shear flow 𝑞𝑝 

and 𝑞𝑓. However, the web has the biggest contribution to receive the shear stresses. 

 

 

 

 

 

 

 

 

 

 

 

2.1.2 Shear lag 

According to the analysis that was described, it can be concluded that the beams 

that are subjected to vertical loads develop both bending moment and shear stresses. 

Examining discrete structures, where the width of flange is small, the effect of shear 

stresses can be neglected. However, in case that we examine the strength of stiffened 

panels, considering equivalent with prismatic beam, the effect of shear stresses cannot 

Figure 2.5: Distribution of shear flow along the cross section 
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be neglected as the shear lag phenomenon can result to material failure.                      

The increase of the equidistant s between the stiffeners, can result to an equivalent 

cross section with big attached width of plate. As a result, the flange has more 

contribution to the receipt of shear stresses 𝜏𝑥𝑦 . The non uniform shear stress field 

results to the warping of the attached plate (see Figure 2.6). The shear stresses τ lead 

to the development of shear strains γ. This results to the change of the angle of an 

infinitesimal element and to the elongation e of the fibers of flanges. The prerequisite 

for the elongation of the fibers, due to planar shear, is that   
𝜕𝜏

𝜕𝑥
≠ 0 . The non uniform 

elongation e is added to the uniform elongation u, due to pure bending. 

                         

 

 

 

 

 

 

 

 

 

 

 

 

 

As a result, the real distribution of the stresses in the flange is non linear (see Figure 

2.7). The shear lag phenomenon occurs to thin-walled cross sections that receive both 

shear stresses and axial stresses due to the bending. The shear lag phenomenon occurs 

Figure 2.6: Depiction of the stress field that is developed to the attached plate 
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even to the cross section of the ship (see Figure 2.8), but it can be neglected for most 

of the ships where L/B > 5 (where L the length and B the width of the ship). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The plate effectiveness, regardless of the reason of the non uniform distribution, 

is characterized by a parameter 𝑏𝑒 which is a width over which the maximum 

membrane stress at the intersection of the flange and web is considered to occur 

uniformly. Thus the total stress carried in effective width being the same as that 

applied by the actual non uniform distribution across the flange. The effective width 

𝑏𝑒 can be evaluated by: 

be =
∫ 𝜎𝑥dy
b/2

−b/2

𝜎𝑥 𝑚𝑎𝑥
= b

𝜎𝑥𝑎𝑣
𝜎𝑥 𝑚𝑎𝑥

                                                                                            (2.12) 

Figure 2.7: Real distribution of axial stresses to thin-walled cross sections  

 

Figure 2.8: Real distribution of axial stresses to the bottom of a ship  
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where 𝜎𝑥 = non uniform membrane stress, 𝜎𝑥𝑎𝑣 = average stress, 𝜎𝑥 𝑚𝑎𝑥 = maximum 

membrane stress at plate/web junctions. 

2.1.3 Analytical solution of Paik 

An analytical formulation of the effective width for a plate-beam combination 

under shear lag is now derived. To compute the stress distribution, the classical theory 

of elasticity can be applied. For two dimensional problems, the relation between 

strains and displacements is given by: 

εx =
∂u

∂x
 , εy =

∂v

∂x
 ,         𝛾x𝑦 =

∂u

∂y
+
∂v

∂x
                                                             (2.13)   

where εx , εy is the normal strain in the x and y direction, 𝛾x𝑦 the shear strain and u, v 

the displacements in the x and y direction. 

The relationship between stresses and strains for two dimensional problems is given 

by: 

𝜀𝑥 =
1

𝛦
(𝜎𝑥 − 𝜈𝜎𝑦) , 𝜀𝑦 =

1

𝛦
(𝜎𝑦 − 𝜈𝜎𝑥) , 𝛾𝑥𝑦 =

2(1 + 𝜈)

𝛦
𝜏𝑥𝑦                 (2.14) 

where 𝜏x𝑦 the shear stress and ν the Poisson’s ratio. 

The stress distribution of two dimensional problems can be obtained by solving the 

following compatibility equation: 

∂4F

𝜕𝑥4
+ 2

∂4F

𝜕𝑥2𝜕𝑦2
+
∂4F

𝜕𝑦4
= 0                                                                                            (2.15) 

where F is Airy’s stress function which satisfies that: 

𝜎𝑥 =
∂2F

𝜕𝑦2
 , 𝜎𝑦 =

∂2F

𝜕𝑥2
 , 𝜏𝑥𝑦 = −

∂2F

𝜕𝑥𝜕𝑦
                                                          (2.16) 

In order to calculate the non uniform stress in the attached plating, it is assumed that 

the plate lateral deflection is proportional to sin(
2𝜋𝑥

𝜔
) where ω is the deflection wave 

length depending on the rigidities of the stiffener and the type of load application. For 

stiffeners that are used in marine structures, we take ω = L. In this case, the 
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longitudinal axial displacement u along the plate/web intersection, namely for 𝑦 =

±𝑏/2  (see Figure 2.9), can be calculated as follows: 

𝑢 = 𝑢0 cos
2𝜋𝑥

𝜔
                                                                                                                   (2.17) 

where u0 is the amplitude of axial displacement function. 

 

 

 

 

 

 

 

 

 

The axial strain 𝜀𝑥 at 𝑦 = ±𝑏/2  can be calculated as follows: 

𝜀𝑥|𝑦=±𝑏/2  = 
𝜕u

∂x
|
𝑦=±𝑏/2

= 𝜀0 sin
2𝜋𝑥

𝜔
      𝑤ℎ𝑒𝑟𝑒  𝜀0 = 𝑢0(

2𝜋

𝜔
)                            (2.18)  

The stress function F, to satisfy the equation (2.15) can be expressed as follows: 

𝐹 = 𝑓(𝑦) sin
2𝜋𝑥

𝜔
                                                                                                               (2.19) 

where    

𝑓(𝑦) = 𝐶1
2𝜋𝑦

𝜔
sinh

2𝜋𝑦

𝜔
+ 𝐶2 cosh

2𝜋𝑦

𝜔
                                                                      (2.20) 

with 𝐶1, 𝐶2 to be constants which are determined by the boundary conditions. 

While equation (2.18) can be one boundary condition, the other one is provided so 

that the symmetric condition must be attained along the center line of the attached 

plating between two adjacent stiffeners, which is given by: 

Figure 2.9:  Effective width of the attached plating in a stiffened panel 
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𝜕v

∂x
|
𝑦=0

= 0                                                                                                                           (2.21) 

By substituting equation (2.16) into equation (2.14) the axial stress 𝜀𝑥 can be 

expressed as follows: 

𝜀𝑥 =
1

𝛦
(
∂2F

𝜕𝑦2
− ν

∂2F

𝜕𝑥2
)                                                                                                     (2.22) 

By substituting equation (2.19) into equation (2.22) and considering equation (2.18), 

the first boundary condition can be expressed as follows: 

d2f(y)

dy2
+ νω2f(y) = Eε0   at y = ±

b

2
                                                                            (2.23) 

Using equation (2.13), the second boundary condition can be rewritten as follows: 

𝜕𝛾𝑥𝑦

𝜕𝑥
=
∂2u

𝜕𝑥𝜕𝑦
+
∂2v

𝜕𝑥2
=
∂2u

𝜕𝑥𝜕𝑦
=
𝜕𝜀𝑥
𝜕𝑦

   at 𝑦 = 0                                                           (2.24) 

Substituting equations (2.13), (2.14), (2.16), (2.19) into equation (2.24), the second 

boundary condition becomes as follows: 

d3f(y)

dy3
− (2 + ν)ω2

df(y)

dy
= 0   at y = 0                                                                    (2.25)   

By substituting f(y), equation (2.19), into equation (2.23) and (2.25), we get that: 

𝐶1 = 𝐸𝜀0 (
𝜔

2𝜋
)
2

[(
3 − 𝜈

2
) sinh

2𝜋𝑏

𝜔
− (1 + 𝜈)

𝜋𝑏

𝜔
]
−1

sinh
𝜋𝑏

𝜔
 

𝐶2 = 𝐸𝜀0 (
𝜔

2𝜋
)
2

[(
3 − 𝜈

2
) sinh

2𝜋𝑏

𝜔
− (1 + 𝜈)

𝜋𝑏

𝜔
]
−1

[(
1 − 𝜈

1 + 𝜈
) sinh

𝜋𝑏

𝜔
−
𝜋𝑏

𝜔
cosh

𝜋𝑏

𝜔
] 

 

The membrane stress 𝜎𝑥 can now be expressed as follows: 

𝜎𝑥 = (
2𝜋

𝜔
)
2

[𝐶1
2𝜋𝑦

𝜔
sinh

2𝜋𝑦

𝜔
+ (2𝐶1 + 𝐶2) cosh

2𝜋𝑦

𝜔
] sin

2𝜋𝑥

𝜔
                           (2.26) 
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By substituting equation (2.26) into equation (2.12), the effective width 𝑏𝑒 can be 

calculated as follows: 

be =
4𝜔 (sinh

𝜋𝑏
𝜔 )

2

π(1 + ν) [(3 − ν) sinh
2π𝑏
ω − 2(1 + ν)

π𝑏
𝜔 ]

                                                     (2.27) 

Equation (2.27) can be approximated as follows: 

be
b
=  {

1.0             for b/𝜔 ≤ 0.18

0.18L b⁄    for b/𝜔 ≤ 0.18
                                                                                  (2.28) 

 

The wave length ω may approximately be taken as ω=L for the attached plating 

between two stiffener transverse frames. In Figure 2.10 is depicted the variation of 

effective width from equations (2.27) and (2.28) versus the ratio of stiffener spacing 

to the beam span when ω=L. It is seen that the normalized effective width 

significantly decreases as the breadth of the attached plating becomes wider or the 

span length becomes longer. 

 

 

 

 

 

 

 

  

  

 

  
       Figure 2.10:  Variation of the effective width versus the ratio of stiffener spacing 

to the beam span when ω=L. 
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2.1.4 Analytical solution of Schade 

In Figure 2.11 an alternative curve of calculation of effective width 𝑏𝑒 is given. The 

parameters of calculation are the type of cross section, the point of interest along the 

beam, the boundary conditions, the linear distribution of the load, the relations of the 

dimensions of the cross section, the ratio of width of flange to length of the beam and 

the ratio of width attached plating to distance  𝐿0 of points along the beam, that the 

bending moment is zero. In case of the beam that are simply supported,  𝐿0 equates to 

the length of the beam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Finite element analysis 

This subchapter discusses topics of finite element method for beams, shells and 

solids. In the finite element method, a structure is discretized into structural parts 

Figure 2.11: Shade curves 
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called finite elements. The points where the finite elements are interconnected are 

known as nodes and the process in specifying the nodes is known as modeling. The 

whole collection of elements is termed mesh. Each node is associated to nodal forces 

and nodal displacements. A system of equilibrium equations between nodal forces and 

displacements can be formulated in matrix form for the whole structure, that is: 

{F} = [K]{U}                                                                                                                        (2.29) 

The first step to obtain nodal displacements and forces with the finite element method 

is the determination of the global stiffness matrix [K]. This can be achieved with one 

of the following methodologies and principles:  

a. Equilibrium 

b. Total Potential Energy Principle 

c. Principle of Virtual Work 

d. Galerkin Weighted Residual 

The concept of equilibrium method is to satisfy equilibrium for each element and for 

the system as a whole and it will be applied for beam elements. Energy methods can 

are used to design systems with a large number of degrees of freedom. The total 

potential energy principle applies only to linear elastic materials and it will be applied 

for shell and solid elements. The principle of virtual work and Galerkin weighted 

residual applies to any material behavior.  

 

2.2.1 Beams 

Beams can undertake tensile or compressive forces, transverse forces and 

bending moments. So, beam experience axial deformation, transverse deformations 

and rotations associated with bending moments and shear forces. In order to examine 

a slender structural member as a beam, there is the prerequisite that the length is much 

greater than the width and the height of the cross section. According to Euler-

Bernoulli theory, the length between the supports must be at least ten times greater 

than the other two dimensions. 
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The beam element stiffness equation is derived using the method of equilibrium and 

bending theory based on Euler-Bernoulli assumptions. The assumptions are the 

followings: 

a. The plane sections initially normal to the longitudinal axis of the beam 

remain plane and normal to the deflected axis after bending. 

b. The deformed beam angles are small. 

c. The deflections are small compare to the height of the beam. 

Initially, we will consider a beam with two degrees of freedom per node that is the 

transverse displacement v1 and rotation  θ1 for the first node and transverse 

displacement v2 and rotation  θ2 for the second node (see Figure 2.12). Because the 

beam has four degrees of freedom, the element stiffness matrix will be 4x4. 

 

 

 

 

 

 

 

 

The formulation of stiffness matrix according to equilibrium method is now derived. 

The moment m at a cross section can be calculated as follows: 

m = −EI
d2v

dx2
                                                                                                                       (2.30) 

The equilibrium condition for vertical forces gives that: 

f1 = f2                                                                                                                                    (2.31) 

The equilibrium condition for moments gives that: 

m1 = m2 + f2 L                                                                                                                  (2.32) 

Figure 2.12: Beam with four degrees of freedom 
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m(x) = m1 − f1x                                                                                                                (2.33) 

By substituting equation (2.30) into (2.33), we get that: 

d2v

dx2
= −

1

EI
(m1 − f1x)                                                                                                     (2.34) 

Integrating the equation (2.34) two times, we get that : 

dv

dx
= −

m1x

EI
+
f1x

2

2EI
+ θ1                                                                                                 (2.35) 

v = −
m1x

2

2EI
+
f1x

3

6EI
+ θ1x + v1                                                                                      (2.36) 

By substituting  x = L into equations (2.35) and (2.36), we get that: 

dv

dx
|
x=L

= −
m1x

EI
+
f1x

2

2EI
+ θ1 = θ2                                                                               (2.37) 

v|x=L = −
m1L

2

2EI
+
f1L

3

6EI
+ θ1x + v1 = v2                                                                    (2.38) 

Solving equations (2.37) and (2.38), f1 and m1 can be calculated as follows: 

f1 = f2 =
12EI

L3
[(θ2 − θ1)

L

2
− (v2 − v1)]                                                                   (2.39) 

m1 =
6EI

L2
[(θ2 + 2θ1)

L

3
− (v2 − v1)]                                                                          (2.40) 

By substituting equation (2.40) into equation (2.33) we get that: 

m2 =
6EI

L2
[−(2θ2 + θ1)

L

3
+ (v2 − v1)]                                                                       (2.41) 

The equation (2.29) can now be written as follows: 

{

f1
m1

f2
m2

} =
EI

L3
[

12 6L −12 6L
6L 4L2 −6L 2L2

−12
6L

−6L
2L2

12
−6L

−6L
4L2

] {

v1
θ1
v2
θ2

}                                                       (2.42)      
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According to Timoshenko beam theory, the cross section is not perpendicular to 

the bending line. The model takes into account shear deformation. The relation 

between forces and displacements can be expressed as follows: 

{

f1
m1

f2
m2

} =
EI

L3
[

12    6L −12              6L
6L (4 + Φ)L2  −6L (2 − Φ)L2

−12
6L

−6L
(2 − Φ)L2

  12
−6L

          −6L
(4 + Φ)L2

] {

v1
θ1
v2
θ2

}                                     (2.43) 

where Φ = 12EI GASL
2⁄   and  AS is the shear coefficient of the cross section. 

Considering a beam with three degrees of freedom per node that is axial and 

transverse displacement and rotation, the element as a whole has six degrees of 

freedom and the stiffness matrix will be 6x6 (see Figure 2.13). 

 

 

  

 

 

 

 

The relationship between axial forces and displacements is: 

fx1 = −
EA

L
(u2 − u1)                                                                                                         (2.44) 

fx2 =
EA

L
(u2 − u1)                                                                                                             (2.45) 

The equation (2.29) can now be written as follows: 

{
 
 

 
 
fx1
fy1
m1

fx2
fy2
m2}
 
 

 
 

=
EI

L3

[
 
 
 
 
 
𝑠2 0 0   −s2     0        0
0 12 6L      0  −12      6L
0
−s2

0
0

6L
0
−12
6L

4L2

0
−6L
2L2

   0 −6L       2L2

  s2

0
0

0
12
−6L

    0
 −6L
   4L2 ]

 
 
 
 
 

 

{
 
 

 
 
u1
v1
θ1
u2
v2
θ2}
 
 

 
 

                                (2.46)            

Figure 2.13: Beam with six degree of freedoms 
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where s = √AL I⁄  

The relations between of the local system x-y and the global coordinate system 

X-Y will now be given. 

 

 

 

 

 

 

 

 

 

Nodal displacement in the local system can be expressed with respect to 

displacements in global system as given by: 

{
 
 

 
 
δ1
δ2
δ3
δ4
δ5
δ6}
 
 

 
 

= [
[r] 0

0 [r]
]

{
 
 

 
 
Δ1
Δ2
Δ3
Δ4
Δ5
Δ6}
 
 

 
 

                                                                                                 (2.47) 

where   [r] = [
cos θ sin θ 0
− sin θ cos θ 0
0 0 1

]  

The relationship between the nodal forces can be expressed as follows: 

{
 
 

 
 
f1
f2
f3
f4
f5
f6}
 
 

 
 

= [
[r] 0

0 [r]
]

{
 
 

 
 
F1
F2
F3
F4
F5
F6}
 
 

 
 

                                                                                                   (2.48) 

The element stiffness matrix [K] expressed in the global coordinate system X-Y is 

related to [k], as follows: 

Figure 2.14: Inclined beam element 
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[K] = [R]T[k][R]                                                                                                                 (2.49) 

where [R] = [
[r] 0

0 [r]
] 

 

2.2.2 Plates and Shells 

The main difference between plates and shells, which both are two dimensional 

structures, is the shape of their mid-surface. The mid-surface of plates is plane, while 

the mid-surface of shells is curved. The deformations of these two elements are 

expressed with reference to their mid-surface. Plates and shell structures are 

categorized to thin and thick. A plate is considered thin, if its thickness is fifteen times 

smaller than the shortest span length. The criterion for shell structures is the ratio of 

their thickness over the radius of curvature. 

For finite element analysis, these elements should be connected to each other 

only at their nodal points. A suitable number of nodal points and proper shape 

functions can satisfy continuity requirements. The displacement distribution should 

also maintain internal or interelement compatibility and continuity of nodal 

displacements. 

The method of total potential energy is now derived. Considering a structural 

system subjected to external loads, the internal forces produce work called strain 

energy and the external forces produce work called load potential. The strain energy 

W can be expressed as follows: 

W =
1

2
∫{σ}T{ε}dV                                                                                                           (2.50) 

The load potential  Ω is given by: 

Ω = −∫{Τ}T{u}dA                                                                                                           (2.51) 

where {Τ} are the external loads applied on the boundary surface. 

The total potential energy U of the system is given by: 
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U = W+ Ω                                                                                                                           (2.52) 

The structural system is in equilibrium when the total potential energy is minimum, 

namely: 

∂U

∂u
= 0                                                                                                                                   (2.53) 

where u(x) can be calculated by the summation of shape functions  Ni(x) multiplied 

by the nodal displacements ui, namely: 

u(x) =∑Ni(x)ui
i

                                                                                                            (2.54) 

For the linear case of axial deformation, the relation between strain and displacement 

can be expressed as follows: 

{ε} = [B]{u} =∑
∂Ni
∂x
 {u}

i

                                                                                             (2.55) 

The relation between stress and strain is given by: 

{σ} = [C]{ε}                                                                                                                         (2.56) 

where the matrix [C] contains the elastic constants. By substituting equations (2.52), 

(2.55) and (2.56) into equation (2.53), we get that: 

∫[B]T[C][B]{u}dV − ∫{T}T[N]dA = 0                                                                        (2.57) 

 

Thus, the expressions for the stiffness matrix [k] and the force vector {f} are: 

[k] = ∫[B]T[C][B]dV                                                                                                       (2.58) 

{f} = ∫{T}T[N]dA                                                                                                             (2.59) 
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The behavior of thin plates is based on the classical theory on plate bending of 

Kirchhoff. The assumptions of the theory are the following: 

1. Deflections are small compared to plate thickness. 

2. Slopes of the deflected mid-surface are small. 

3. Mid-surface remains unstrained for bending. 

4. Plane sections initially normal to mid-surface remain plain and normal 

to the deflected surface. 

5. Transverse shear strains are negligible. 

6. Stresses normal to mid-surface are negligible. 

 

Considering a plate subjected to a distributed load pz, due to the assumptions of plate 

bending theory, the stress-strain relations are given by: 

σx =
E

1 − ν2
(εx + νεy)                                                                                                     (2.60) 

σy =
E

1 − ν2
(εy + νεyx)                                                                                                   (2.61) 

τxy = G γxy                                                                                                                          (2.62) 

The relation between strain, curvature and displacement is given by: 

εx = −zκx = −z
∂2w

∂x2
                                                                                                        (2.63) 

εy = −zκy = −z
∂2w

∂y2
                                                                                                        (2.64) 

γx𝑦 = −2 z κxy = −2 z
∂2w

∂x∂y
                                                                                         (2.65) 

Using the method of potential energy, the load potential can now be expressed as 

follows: 

Ω = −∫{Τ}T{u}dA = Ω = −∫pz w dA                                                                    (2.66) 
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The strain energy can be written: 

W =
1

2
∫{σx σy τxy} {

εx
εy
 γxy

} dV =
1

2
∫{κ}𝑇[C]{κ}dA                                           (2.67) 

Where the matrix [C] and {κ} are given by: 

[C] =
Et3

12(1 − ν2)
[

1   ν 0
ν   1 0

0   0    
1

2
(1 − ν)

]   and   {κ} = {

−κx
−κ𝑦
−2κxy

} 

The curvature-displacement can be expressed as follows: 

{κ} = [B]w =

[
 
 
 
 
 
 −

∂2

∂x2

−
∂2

∂y2

−2
∂2

∂x ∂y]
 
 
 
 
 
 

w                                                                                             (2.68) 

 

 

 

 

 

 

A plate element has three degrees of freedom per node, the transverse deflection w 

and the rotations θx and θy about x and y axes. For a plate with four nodes, as 

depicted in Figure 2.15, the deformed shape can be approximated as follows: 

w(x, y) =∑Ni(x, y)ui
i

= [N]{u}                                                                                (2.69) 

where the nodal displacements ui are: 

Figure 2.15: Nodal displacements and slopes for plate elements 
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{u}T = {w1 θ1x θ1y w2 θ2x θ2y w3 θ3x θ3y w4 θ4x θ4y}    (2.70) 

The simplest type of plate element is three triangular element. The polynomial 

approximation for w is: 

w(x, y) =  c1   + c2x + c3y + c4x
2 + c5xy + c6y

2  + c7y
3                          

+ c8(x
2y + xy2) + c9y

3                                                                        (2.71) 

The displacement distribution of the three node triangular plate element is a complete  

polynomial. However, the continuity requirements are violated across the element 

boundaries. 

The four node rectangular plate element has twelve degrees of freedom. The 

polynomial approximation for w is: 

w(x, y) = c1    + c2x + c3y + c4x
2 + c5xy + c6y

2  + c7x
3 + c8x

2y + c9y
2x + c10y

3

+ c11x
3y + c12y

3x                                                                                  (2.72) 

The displacement distribution of the four node rectangular plate element is not a 

complete polynomial and continuity requirements are violated. 

The four node rectangular plate element of sixteen degrees of freedom, is an 

improved version, as it meets the convergence criteria and the continuity 

requirements. The extra degree of freedom per node is 
∂2w

∂x∂y
. The polynomial 

approximation can be written as follows: 

w(x, y) = c1    + c2x + c3y + c4x
2 + c5xy + c6y

2  + c7x
3 + c8x

2y + c9y
2x + c10y

3

+ c11x
3y + c12x

2y2 + c13y
3x + c14x

3y2 + c15x
2y3 + c16x

3y3  (2.73) 

 

The behavior of thick plates is based on Mindlin plate theory. According to this 

theory shear strains γx𝑧 and γy𝑧 are not ignored. The assumptions 4 and 5 of 

Kirchhoff theory are not valid. The relation between stress and strain include the out-

of-plane shear strain γx𝑧 and γy𝑧 and can be expressed as follows: 

τxz = G γxz                                                                                                                           (2.74) 
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τyz = G γyz                                                                                                                           (2.75) 

The relation between strain and displacement is expressed by: 

εx = −z
∂θx
∂x

= −zκx                                                                                                          (2.76) 

εy = −z
∂θy

∂y
= −zκy                                                                                                         (2.77) 

γxy = −z(
∂θx
∂y

+
∂θy

∂x
) = −zκxy                                                                                    (2.78) 

γxz = −θy +
∂w

∂x
                                                                                                                 (2.79) 

γyz = −θx +
∂w

∂y
                                                                                                                 (2.80) 

For the equation (2.67), [C] and {κ} can be calculated as follows: 

[C] =
Et3

12(1 − ν2)

[
 
 
 
 
1 ν 0 0 0
ν 1 0 0 0
0
0
0

0
0
0

β 0 0
0 β 0
0 0 β]

 
 
 
 

 where β =
1 − ν

ν
 ,   {κ} =

{
 
 

 
 
−κx
−κy
−κxy
−γx𝑧
−γyz}

 
 

 
 

 

 

The shell analysis is based on a combination of membrane-flexure theory. 

According to the membrane theory, a shell structure experiences only axial and shear 

stresses. Transverse shear stresses and bending moments are ignored. A shell element 

has five degrees of freedom per node, as shown in Figure 2.16. The behavior of thin 

shells is based to classical theory of bending, while the behavior of thick shell is based 

on Mindlin theory. 

 

 

 

Figure 2.16: Nodal displacements and slopes for shell elements 
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2.2.3 Solids 

General three dimensions structures require the use of solid finite elements. 

Solid elements are used to determine a three dimensional stress-strain state. Some of 

the most representative solid elements are 4-node tetrahedron, 5-node pyramid and 8-

node hexahedron (see Figure 2.17). Each node of solid elements, has three degrees of 

freedom, u, v and 𝑤 displacements. 

 

 

 

 

 

The concept of isoparametric elements is used to calculate the shape functions. 

Considering a solid element with eight nodes and dimensions 2a, 2b and 2c, the 

coordinates of a local system placed at the centroid of the element (𝑥0, 𝑦0, 𝑧0) are 

given by: 

ξ =
x − x0
a

, η =
y − y0
b

, ζ =
z − z0
c

                                                               (2.81) 

The displacement functions can be expressed by: 

u(ξ, η, ζ) = c1 + c2ξ + c3η + c4ζ + c5ξη + c6ηζ + c7ξζ + c8ξηζ                           (2.82) 

v(ξ, η, ζ) = c9 + c10ξ + c11η + c12ζ + c13ξη + c14ηζ + c15ξζ + c16ξηζ               (2.83) 

w(ξ, η, ζ) = c17 + c18ξ + c19η + c20ζ + c21ξη + c22ηζ + c23ξζ + c24ξηζ           (2.84) 

The shape function Ni is given by: 

Ni =
1

8
(1 − ξiξ)(1 − ηiη)(1 − ζiζ)                                                                                 (2.85)

Figure 2.17: Representative solid elements 
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 The displacement functions can be expressed in terms of shape functions and nodal 

coordinates as follows: 

{
u
v
w
} = [

N1 0 0 N2 0 0 … N8 0 0

0 N1 0 0 N2 0 … 0 N8 0

0 0 N1 0 0 N2 … 0 0 N8

]

{
 
 

 
 
u1
v1
w1
⋮
u8
v8
w8}
 
 

 
 

                                  (2.86) 

For the solid element, the equivalent nodal force vector {f} may be the summation of 

body forces {f} b and surface forces {f} s : 

{f} = {f} b + {f} s                                                                                                                (2.87)   

{f} b = ∫{

Wx

Wy

Wz

}

T

[N]dV , {f} S = ∫{

px
py
pz
}

T

[N]dA                                              (2.88)  

where px, py and pz is the distributed load which is applied to the surface and Wx, Wy 

and Wz are the components of the body force. 
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3.  Stress analysis of stiffened panels 

3.1 Analytical calculation 

An alternative analytical solution for the stress distribution for a plate-beam 

combination is now derived (in this chapter it will be referred as analytical solution 

1). The field of shear stresses in a cross section, can be calculated as follows: 

τ(s) =
q(s)

tel
                                                                                                                            (3.1) 

where q(s) is the distribution of shear flow and tel the thickness of the element 

(flange or web). The relation between shear stresses and strains is given by: 

τ(s) = G γ(s)                                                                                                                         (3.2) 

where G is the shear modulus. As depicted in Figure 3.1, the shear strain can be 

expressed as follows: 

γ(s) =
∂e

∂s
                                                                                                                                (3.3) 

By substituting equation (3.2) into equation (3.3) and integrating over the variable s, 

we get that: 

e =
1

G
∫τ(s)ds                                                                                                                      (3.4) 

 

  

Figure 3.1:  Geometric definition of shear strain 



 

Chapter 3: Stress analysis of stiffened panels                                                              37 

 

The axial strain 𝜀𝑠 can be defined as: 

𝜀𝑠 =
∂e

∂x
                                                                                                                                    (3.5) 

Applying Hooke’s law (𝜎 = 𝛦𝜀) and substituting equation (3.4) into equation (3.5), 

we get that: 

σs(s) =
E

G

∂

∂x
(∫τ(s)ds)                                                                                                    (3.6) 

Substituting equation (3.1) into (3.6), we get that: 

σs(s) =
E

G

∂V

∂x
(∫

Q

Iytel
ds)                                                                                                  (3.7) 

Considering that 𝐺 = 𝐸 2(1 − 𝜈)⁄  σs can be expressed as follows: 

𝜎𝑠(𝑠) =
2(1 − 𝜈)𝑤

𝐼𝑦
∫
𝑄

𝑡𝑒𝑙
𝑑𝑠                                                                                              (3.8) 

Τhe equation (3.8) describes the axial stress field which is developed due to shear lag 

and is added to axial stress field due to pure bending. Ηowever, the addition of these 

two stress fields, does not result to a field that achieves equilibrium of forces and 

moments. In order to consider shear lag phenomenon and achieve static equilibrium, 

we need to subtract a uniform axial stress field 𝜎𝑠
𝐴𝑥𝑖𝑎𝑙 and a linear axial stress field  

𝜎𝑠
𝐵𝑒𝑛𝑑𝑖𝑛𝑔. These axial stresses can be expressed as follows: 

σs
Axial =

∫σsdA

A
=
2(1 − ν)w

IyA
∫∫

Q

tel
ds dA                                                               (3.9) 

σs
Bending =

∫σs z dA

Iy
=
2(1 − ν) w z

IyIy
∫∫

Q

tel
ds z dA                                             (3.10) 

 

The real stress field can be calculated as follows: 

𝜎𝑟𝑒𝑎𝑙 = 𝜎𝑏 + 𝜎𝑠 − σs
Axial − σs

Bending                                                                           (3.11) 
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Figure 3.2: Components of axial stress field 

Figure 3.3: Real distribution of axial stress field due to shear lag  
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3.2 Numerical implementation of analytical solutions 

Initially, for a one-way stiffened panel, with L = 3650mm , that is subjected to 

uniform pressure load, with p = 0.1 MPa and the boundary conditions to be fixed 

supports, the stress field will be calculated with different theoretical modeling 

strategies. It is noted that the representative repetitive section can be considered the 

effective cross section of a beam. For the calculations, the Poisson’s ratio is ν = 0.3. 

 

 

 

 

 

 

 

 

 

 

 

The dimensions of the cross section are the following: 

• Web height: wh = 300mm 

• Web thickness: wt = 15mm 

• Top width: tfw = 200mm 

• Top thickness: tft = 18mm 

• Bottom width: bfw = 800mm 

• Bottom thickness: bft = 20mm 

Figure 3.5: Beam subjected to uniform loads 

Figure 3.4: One-way stiffened panel with repetitive section 
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According to the analytical solution 1, the real stress distribution will now be 

calculated using the equation (3.11) (for x = L 2⁄ ).  For fixed supports, the bending 

moment along the beam can be expressed as follows: 

M(
L

2
) =

wL2

24
     

Bending stress σb: 

σb = 
Mz

I
=  
𝑤𝐿2𝑧

24𝐼
 

w = p ∗ bfw = 80 MPa∗ mm 

Top Flange (C-D) → σb = 29.98 MPa  

Bottom Flange (A-B) → σb = −10.48MPa  

Axial stress σ𝑠: 

σs =
2(1−ν)w

I
∫
Q

tel
ds            

Above neutral axis: 

 For 0 ≤ s ≤ 241.47 : 

σs =
2(1 − ν)w

I
∫ (

18 ∗ 200 ∗ 241.47

15
) + 0.5(241.47 − s)(241.47 + s)ds

S

0

 

Figure 3.6: Cross section of the beam 
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For s=241.47 (C) → σs = 5.64 MPa 

For 241.47≤ s ≤ 341.47 : 

𝜎𝑠 = 5.64 + 
2(1 − ν)w

I
∫ (341.47 − s) ∗ 241.47 ds 
S

241.47

 

for s=341.47 (D) → 𝜎𝑠 = 6 MPa 

Below neutral axis: 

For 0 ≤ s ≤ 77.53 : 

σs =
2(1 − ν)w

I
∫ (

20 ∗ 800 ∗ 77.53

15
) + 0.5(77.53 − s)(77.53 + s)ds

S

0

 

for s=77.53 (B) → σs = −1.98 MPa 

For 77.53≤ s ≤ 477.53 : 

σs = 1.982 + 
2(1 − ν)w

I
∫ (477.53 − s) ∗ 77.53 ds 
S

77.53

 

for  s=477.53 (A) → 𝜎𝑠 = −3.85 MPa 

 

Axial stress σs
Axial : 

σs
Axial =

2(1 − ν)w

IA
∬

Q

tel
dsdA  

Above neutral axis : 

𝐴 =
2(1 − ν)w

IA
[∫ 15 (∫ (

18 ∗ 200 ∗ 241.47

15
)

241.47

0

241.47

0

+ 0.5(241.47 − s)(241.47 + s)ds) ds

+ 2∫ 18(∫ (341.47 − s) ∗ 241.47 ds
341.47

241.47

)ds
341.47

241.47

] 
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Below neutral axis : 

B =
2(1 − ν)w

IA
[∫ 15(∫ (

20 ∗ 800 ∗ 77.53

15
)

241.47

0

77.53

0

+ 0.5(77.53 − s)(77.53 + s)ds) ds

+ 2∫ 20(∫ (477.53 − s) ∗ 77.53 ds
477.53

77.53

)ds
477.53

77.53

] 

σs
Axial = A + B = 2.24 MPa 

 

Bending stress σs
Bending : 

σs
Bending =

2(1 − ν)wz

I2
∬

Q

tel
dszdA 

σs
Bending =

2(1 − ν)wz

I2
[∫ 15 s (∫ (

18 ∗ 200 ∗ 241.47

15
)

241.47

0

241.47

0

+ 0.5(241.47 − s)(241.47 + s)ds) ds

+ 2∫ 18 ∗ 241.47 (∫ (341.47 − s) ∗ 241.47 ds
341.47

241.47

)ds
341.47

241.47

+∫ 15 s (∫ (
20 ∗ 800 ∗ 77.53

15
)

241.47

0

77.53

0

+ 0.5(77.53 − s)(77.53 + s)ds) ds

+ 2∫ 20 ∗ 77.53 (∫ (477.53 − s) ∗ 77.53 ds
477.53

77.53

)ds
477.53

77.53

] 

 

Top Flange (C-D) → σb = 3.51 MPa  

Bottom Flange (A-B) → σb = −1.23 MPa 
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In the following tables, the stresses from the analytical solution 1 and from Schade are 

presented. It is also presented the relative percentage change considering as reference 

the stresses from the Euler bending theory. 

Cross section σreal [MPa] 

(from the analytical solution 1) 

σreal − σEuler
σEuler

100% 

A -10.09 -3% 

B -11.87 13.2% 

C 30.02 0.1% 

D 29.72 -0.8% 

Table 3.1: Stresses according to the analytical solution 1 

 

Cross section σreal [MPa] 

(from Schade) 

σreal − σEuler
σEuler

100% 

A -12.39 18.2% 

B -12.39 18.2% 

C 30.33 1.1% 

D 30.33 1.1% 

Table 3.2: Stresses according to the analytical solution of Schade 

 

3.3 Application of stiffness method 

In order to compare the direct stiffness method with the analytical solutions, a 

code in Matlab was written. The user can choose between Euler and Timoshenko 

beam and the total number of the elements of the beam. Each element has two degrees 

of freedom per node that is the transverse displacement v1 and rotation  θ1 for the first 

node and transverse displacement v2 and rotation  θ2 for the second node. The 

stiffness matrix is calculated by the equations (2.42) and (2.43). The Timoshenko 

shear coefficient is 0.44 and the modulus of elasticity E=207 GPa. In order to succeed 

convergence of the stresses, at least 25 elements must be used. The stress is given by 

σ = −Εz
∂2w

∂x2
  where the deflection of each element can be calculated as follows: 



 

Chapter 3: Stress analysis of stiffened panels                                                              44 

 

w(x) =  v1 [1 − 3 (
x

L
)
2

+ 2 (
x

L
)
3

] + θ1 [
x

L
− 2 (

x

L
)
2

+ 2(
x

L
)
3

] L + 

                + v2 [3 (
x

L
)
2

− 2(
x

L
)
3

] + θ2 [− (
x

L
)
2

+ (
x

L
)
3

] L 

 

In the following tables the stresses for Euler and Timoshenko beam from the 

application of direct stiffness method are presented, with the relative percentage 

change for each case. 

 

Cross section σreal [MPa] 

from stiffness method for 

Euler beam 

σreal − σEuler
σEuler

100% 

A -10.83 3.3% 

B -10.83 3.3% 

C 30.99 3.3% 

D 30.99 3.3% 

Table 3.3: Stresses from direct stiffness method for Euler beam 

 

Cross section σreal [MPa] 

from stiffness method for 

Timoshenko beam 

σreal − σEuler
σEuler

100% 

A -10.07 -3.9% 

B -10.07 -3.9% 

C 28.81 -3.9% 

D 28.81 -3.9% 

Table 3.4: Stresses from direct stiffness method for Timoshenko beam 
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3.4 Modeling in commercial FE software 

A description of the elements that were used in Abaqus, will now be given. 

Beam elements 

Timoshenko beams B31 and B32 were used. These beams allow for transverse shear 

deformation. Abaqus assumes that the transverse shear behavior of Timoshenko 

beams is linear elastic with fixed modulus and thus independent of the response of the 

beam section to axial stretch and bending. B31 is a 2-node linear beam and B32 a 3-

node quadrative beam with 6 active degrees of freedom per node. The default stress 

output points, if a beam section is integrated during analysis, are 1, 5, 9 and 13 as 

depicted in Figure (3.8). 

 

 

 

 

 

 

 

 

 

 

 

Shell elements 

Conventional shells S4 and S8R were used. These shell elements descretize a body by 

defining the geometry at a reference surface. S4 is a 4-node general-purpose shell and 

S8R an 8-node doubly curved thick shell with reduced integration with 6 active 

Figure 3.7: B31 & B32 elements 

Figure3.8: Cross section of I profile 
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degrees of freedom per node. Reduced integration usually provides more accurate 

results and significantly reduces running time. 

 

 

 

 

  

Solid elements 

Three dimensional solid elements C3D8 and C3D20R were used. C3D8 is an 8-node 

linear brick element and C3D20R a 20-node quadratic brick with reduced integration. 

Each of them has 3 degrees of freedom per node. Reduced integration uses a lower-

order integration to form the element stiffness. C3D20R has 8 integration points. 

 

 

 

 

 

 

Initially, a beam was created, that consisted of 25 B31 elements. The stresses, 

for x = L 2⁄  , at the cross section were presented in the following table: 

Cross section σreal [MPa] 

from Abaqus 

σreal − σEuler
σEuler

100% 

A -9.67 -7.7% 

B -9.67 -7.7% 

C 30.13 0.5% 

D 30.13 0.5% 

Table 3.5: Stresses from Abaqus with B31 elements 

Figure 3.9: S4 & S8R elements 

Figure 3.10: C3D8 & C3D20R elements 
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In Figure 3.11, the comparison of the stress field for the path A-B-C-D is depicted. 

The stresses are devided by the maximum stress from the analytical solution 1. For 

the bottom flange, analytical solution of Schade gives the maximum stresses. For the 

top flange, the Euler beam with the direct stiffness method, has the maximum stresses. 

The results of the commercial software converge with the direct stiffness method with 

Timoshenko beam, as B31 is a Timoshenko beam. 

As detailed below, a stiffened panel in one direction was modeled, with length 

L = 3650 mm , width B = 3200 mm and thickness t = 20 mm. The plate is fixed 

circumferential. The uniform pressure, the modulus of elasticity and the dimensions 

of the stiffeners are the same as the previous case. The models were created with 

C3D8, C3D20R, S4, S8R, S4&B31 and S8R&B32 elements. The aim was to compare 

the results of Abaqus with the analytical solution 1 in order to choose the appropriate 

element for the calculation of secondary stresses. Each element was modeled with 20, 

50 and 100 mm size of mesh. In the below figures, the comparison of the stresses is 

depicted for the cross section (A-B-C-D) of the second stiffener for x = L 2⁄  and x =

0 for 100 mm size of mesh. 

Figure 3.11: Comparison of the stress field for the beam 



 

Chapter 3: Stress analysis of stiffened panels                                                              48 

 

Shells: S4 and S8R 

In the following figures, the distribution of the stresses with direction parallel to the 

length of the stiffeners for S4 and S8R elements is depicted. In figure 3.14 and 3.15 

the stresses of these elements are compared with the analytical solution 1 along the 

path (A-B-C-D) of the cross section for x = L 2⁄  and for x = 0 with 100 mm size of 

mesh. The stresses are normalized as they are divided by the maximum stress if 

analytical solution 1. It is clarified that the calculated stresses concern the 

intermediate longitudinal stiffener. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.12: Stress field for S4 element 

Figure 3.13: Stress field for S8R element 
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Figure 3.14: Normalized stress for shell elements for 𝒙 = 𝑳 𝟐⁄  

Figure 3.15: Normalized stress for shell elements for 𝒙 = 𝟎 
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From the comparison with the analytical solution 1, it can be concluded that for shell 

elements, only the stresses of web and flange approximate the theoretical results. 

Moreover, on the boundaries the above elements overestimate the stresses. 

 

Solids: C3D8 and C3D20R 

The following figures depict the stresses parallel to the longitudinal stiffeners for solid 

elements for the cross section (A-B-C-D) of the intermediate stiffener. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.16: Stress field for C3D8 element 

Figure 3.17: Stress field for C3D20R element 
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Figure 3.18: Normalized stress for solid elements for 𝒙 = 𝑳 𝟐⁄  

Figure 3.19:  Normalized stress for solid elements for 𝒙 = 𝟎 
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From the above solid elements, C3D8 is more appropriate for the calculation of the 

secondary stresses, even though the stresses are underestimated on the boundary 

conditions. 

 

Shells with beams:S4&B31 and S8R&B32 

The results for a model with plate as shell element and longitudinal stiffeners as beam 

elements are presented in the following figures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: Stress field for S4 & B31 elements 

Figure 3.21: Stress field for S8R & B32 elements 
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Figure 3.22: Normalized stress for shell & beam elements for 𝒙 = 𝑳 𝟐⁄  

Figure 3.23: Normalized stress for shell & beam elements for 𝒙 = 𝟎 
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From figure 3.22 and 3.23, it can be concluded that both B31 and B32 elements 

approximate to the analytical solution 1. However, they underestimate the stresses in 

the flange because they are 1-D elements and the effect of the shear lag phenomenon 

cannot be calculated. 

In the following diagrams, the results of the stresses along the flange (C-D) for 

different size of mesh for C3D8, B31 and B32 elements are depicted. The stresses are 

divided by the maximum stress of the analytical solution 1 (C) and concern the 

intermediate longitudinal stiffener. As depicted in the following figures, reducing the 

mesh size from 100 to 20 mm for C3D8 element, the numerical calculations converge 

to the theoretical. However, on the boundary conditions, with fine mesh the stresses 

fluctuate along the flange. As regards beam elements, both for B31 and B32 element, 

from coarse to fine size of mesh the deviance of stresses is reduced between the 

numerical and theoretical results. For the other elements that mentioned before, it was 

not observed any remarkable change concerning the size of mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 3.24: Comparison of mesh size for C3D8 element for 𝒙 = 𝑳 𝟐⁄  
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Figure 3.25: Comparison of mesh size for C3D8 element for 𝒙 = 𝟎 

Figure 3.26: Comparison of mesh size for B31 element for 𝒙 = 𝑳 𝟐⁄  
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Figure 3.27: Comparison of mesh size for B31 element for 𝒙 = 𝟎 

Figure 3.28: Comparison of mesh size for B32 element for 𝒙 = 𝑳 𝟐⁄  
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From the above diagrams we can observe that the C3D8 element is suitable to 

examine the secondary stresses, and by reducing the size of mesh, the results 

converge to the analytical solution. However, this element is not appropriate to 

examine the tertiary stresses, namely the stresses that are developed due to the 

bending of the plate between of the stiffeners. Shell elements seem to be appropriate, 

for analysis of secondary stresses, only to the web and to the top flange. It is clear that 

the plate is polluted by tertiary stresses. Moreover, the beam elements give a good 

approach compared with the analytical solution, but because they are 1-D elements 

the shear lag phenomenon is not considered and the stresses are underestimated. 

However, they are the only elements that give a good approach at the boundaries and 

with a fine mesh, the results converge with the analytical solution. 

 

3.5 Application to real ship scantlings 

At this point, stiffeners with the attached plate from ships scantling will be 

examined, in order to compare the variation of the effective width versus the ratio of 

Figure 3.29: Comparison of mesh size for B32 element for 𝒙 = 𝟎 
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stiffener spacing to the beam span from analytical solutions of  Shade, Paik, Miller 

and CSR. There will be examined T, L and flat bar profiles.  

For T and L profiles, the dimensions are the following: 

Width of 

plate [mm] 

Thickness of 

plate [mm] 

Height of 

web [mm] 

Thickness of 

web [mm] 

Width of 

flange [mm] 

Thickness of 

flange [mm] 

800 20 300 15 200 18 

600 12 200 10 50 10 

750 20 280 14 90 14 

900 28 340 15 110 15 

650 12 240 12 70 12 

700 15 300 15 100 15 

800 18 380 17 130 17 

900 25 425 18 150 18 

760 16 350 15 150 15 

830 19 430 18 150 18 

                                 Table 3.1: Dimensions of T and L profiles  

For flat bar profiles, the dimensions are the following: 

Width of plate 

[mm] 

Thickness of plate 

[mm] 

Height of web 

[mm] 

Thickness of web 

[mm] 

800 20 300 15 

600 12 200 10 

750 20 280 14 

900 28 340 15 

650 12 240 12 

700 15 300 15 

800 18 380 17 

900 25 425 18 

760 16 350 15 

830 19 430 18 

                                Table 3.2: Dimensions of flat bar profiles  
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The above profiles are from a range of stiffeners that are used in bulk carriers and 

tankers. Firstly, for the above profiles, the results of the analytical solution 1 were 

pictured in the below figure. With the method of least squares, which is a standard 

approach in regression analysis, the envelope of the lines can be described by the 

following 4th degree polynomial equations: 

• For the lower line:  

y = −0.21x4 + 0.87x3 − 1.1x2 + 0.038x + 1  

with residual ‖𝑟‖ = √∑|𝑟𝑘|2 = 0.002 

where |𝑟𝑘| the difference between the value of the analytical solution 1 and the 4th 

polynomial degree for each point 

• For the upper line: 

y = −0.31x4 + 0.93x3 − 0.89x2 + 0.026x + 1 

with ‖𝑟‖ = √∑|𝑟𝑘|2 = 0.001 

      It is clarified that y = be b⁄  and x = b L⁄ . 

 

 

 

 

 

 

 

 

 

Figure 3.30: Analytical solution 1 for ship scantlings 
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In the following diagrams, the residuals of the 4th degree polynomial are presented for 

the lower and upper line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.31: Residuals of the 4th degree polynomial for the lower line 

Figure 3.32: Residuals of the 4th degree polynomial for the upper line 
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It is noted that the equation of CSR is the following: 

be = b ∗ min

[
 
 
 
 
 

1.12

1 +
1.75

(
L

b√3
)
1.8

, 1

]
 
 
 
 
 

   for 
L

b√3
≥ 1 

be = 0.407
L

√3
                                   for 

L

b√3
 < 1 

 

In the below figures, the comparison of the different methods is pictured for each 

profile separately. In each case, the solid lines represent the solution 1 and the 

envelope of these lines is described by the following 4th degree polynomial equations: 

For T profile the envelope of lines of analytical solution 1 is the following: 

• For the lower line:  

y = −0.21x4 + 0.87x3 − 1.1x2 + 0.038x + 1 

with residual ‖𝑟‖ = √∑|𝑟𝑘|2 = 0.002 

• For the upper line: 

y = −0.32x4 + x3 − x2 + 0.032x + 1 

      with residual ‖𝑟‖ = √∑|𝑟𝑘|2 = 0.001 

 

For L profile the envelope of lines of analytical solution 1 is the following: 

• For the lower line:  

y = −0.32x4 + 1.1x3 − 1.2x2 + 0.04x + 1 

with residual ‖𝑟‖ = √∑|𝑟𝑘|2 = 0.001 
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• For the upper line: 

y = −0.33x4 + x3 − x2 + 0.031x + 1 

      with residual ‖𝑟‖ = √∑|𝑟𝑘|2 = 0.002 

 

For Flat-bar profile the envelope of lines of analytical solution 1 is the following: 

• For the lower line:  

y = −0.37x4 + 1.1x3 − 1.1x2 + 0.033x + 1 

with residual ‖𝑟‖ = √∑|𝑟𝑘|2 = 0.001 

• For the upper line: 

y = −0.31x4 + 0.93x3 − 0.89x2 + 0.026x + 1 

      with residual ‖𝑟‖ = √∑|𝑟𝑘|2 = 0.001 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.33: Effective width according to analytical solution 1, Paik, Schade and CSR of T profile  
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Figure 3.34: Effective width according to analytical solution 1, Paik, Schade and CSR of L profile 

Figure 3.35: Effective width according to analytical solution 1, Paik, Schade and CSR of Flat-bar profile 
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In conclusion, for simply supported conditions, the method of Paik gives the smallest 

values of the ratio be b⁄  in comparison with the other three methods, which means 

that is the safest and the most conservative method for the stresses of the attached 

plate of T, L and flat bar profiles. 
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4. Stress analysis of cross-stiffened panels 

4.1 From 2D to 1D: Analytical calculations-Assumptions 

At shipbuilding industry, the cross-stiffened panels are found mainly in 

passenger and RORO ships. This chapter deals with a modeling strategy for cross-

stiffened panels which are subjected to uniform pressure loads and concerns the 

analysis of the secondary stresses of the longitudinal stiffeners. 

 

 

 

 

 

 

 

 

 

 

 

For stiffened panels in one direction, on the boundaries where the longitudinal and 

transverse girders are found,  it is considered that the support is simple or fixed due to 

the stiffness of the girder. It is clarified that for the simple support the deflection and 

the moment is zero and the slope has a non zero value in comparison with the fixed 

support where the deflection and the slope is zero and the moment has a non zero 

value. The scope of this chapter is to estimate the boundary conditions that the 

transverse stiffeners impose to the longitudinal stiffeners. The bending of the 

longitudinal stiffeners is examined along with the attached plate. For the 

determination of the boundary conditions, only the secondary stresses are examined. 

The idea is that the secondary stresses of the stiffeners are related with one 

coefficient, which in the following pages will be referred as k, depending on the 

boundary conditions. Thus, calculating the secondary stresses of a longitudinal 

Figure 4.1: Cross-stiffened panels 
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stiffener between two transverse stiffeners with a commercial software of finite 

element analysis, we will be able to correlate the coefficient k with the type of 

support. The coefficient k will now be defined for simple and fixed supports. 

 

Simply supported beam: 

 

 

 

 

 

 

Let consider a simply supported beam with length a and width b. From the 

equilibrium equation  ΣFy = 0 we get that the reaction forces at supports are qa 2⁄ . 

Thus, the shear force Q and the bending moment M are the following: 

Q(x) =
qa

2
− qx                                                                                                                     (4.1) 

M(x) = ∫ Q(ξ)dξ

x

0

=
qa

2
x −

q

2
x2                                                                                      (4.2) 

The maximum bending moment is at x = a 2⁄  because at this position dM dx⁄ = 0. 

By substituting x = a 2⁄  into equation (4.2) we get that : 

Mmax =
qa2

8
                                                                                                                           (4.3) 

 

In the following figure, the first distribution depicts the bending moment and the 

second depicts the shear force along a simply supported beam. 

 

 

Figure 4.2: Simply supported beam 
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Considering that q = p ∗ b the maximum stress can be expressed as follows: 

σmax =
Mmax

I
zmax =

pa2bzmax
8I

                                                                                       (4.4) 

 

Fixed supported beam: 

 

 

 

 

 

 

 

 

 

Let consider a simply supported beam with length a and width b. From the 

equilibrium equations  ΣFy = 0 and ΣM = 0 we get that the reaction forces at 

supports are qa 2⁄  and the reaction moments MF. Thus, the bending moment can be 

expressed as follows: 

M(x) = −
qx2

2
+
qax

2
− MF                                                                                                 (4.5) 

Figure 4.4: Fixed supported beam 

Figure 4.3: Bending moment and shear force distribution of simply supported beams 
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From the elastic curve equation, we get that: 

d2w(x)

dx2
= −

M(x)

EI
                                                                                                                (4.6) 

where w(x) is the deflection of the beam. The boundary conditions are the following: 

• w|x=0 = 0                                                                                                                  (4.7) 

• w|x=a = 0                                                                                                                  (4.8) 

• 
dw

dx
|
x=0

= 0                                                                                                                (4.9) 

• 
dw

dx
|
x=a

= 0                                                                                                              (4.10) 

By substituting equations (4.7)-(4.10) into equation (4.6) we that: 

MF =
qa2

12
                                                                                                                             (4.11) 

Thus, the bending moment can be expressed as: 

M(x) = −
qx2

2
+
qax

2
−
qa2

12
                                                                                             (4.12) 

The maximum bending moment is at x = 0 with value: 

Mmax =
qa2

12
                                                                                                                         (4.13) 

In the following figure, the first distribution depicts the bending moment and the 

second depicts the shear force along a fixed supported beam. 

 

 

 

 

 

 

Figure 4.5: Bending moment and shear force distribution of fixed supported beams 
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The maximum stress can now be expressed as follows: 

σmax =
Mmax

I
zmax =

pa2bzmax
12I

                                                                                     (4.14) 

From the equation (4.4) and (4.14) we get that the formula of the maximum stress is: 

σmax =
pa2bzmax

kI
                                                                                                               (4.15) 

with k to be equal with 8 for simply supported beam and 12 for fixed supported beam. 

In order to visualize this, let consider a beam with torsional springs as supports, as 

depicted in the following figure. When 𝑘 = 8  then the spring stiffness is zero and 

when 𝑘 = 12  then the spring stiffness is infinite. 

 

 

 

 

Thus, designing a model with cross-stiffened panel in the finite element analysis 

software, the stresses can be computed and by substituting them to the equation (4.15) 

the coefficient k can be calculated. The parameters of the model are the pressure load, 

the number of the longitudinal and transverse stiffeners, the distance a of the 

transverse stiffeners (which is the length of the longitudinal stiffeners), the distance b 

between the longitudinal stiffeners (which is the width of the attached plate of the 

longitudinal stiffeners), the thickness 𝑡𝑒𝑙 of the plate and the dimensions of 

longitudinal and transverse stiffeners. It is clarified that the moment of inertia of 

equation (4.15) concerns the longitudinal stiffener along with the attached plate. Our 

scope is to find the relation between the inertia moment of transverse stiffeners and 

the coefficient k. In order to succeed reliable results, we need to run the model for a 

range of the parameters that were mentioned previously. The choice of the values of 

the parameters and the number that the model will be run, will be determined from the 

central composite design, that is analyzed below. 

 

Figure 4.6: Beam with torsional springs as supports 
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4.2 Design of experiment and test matrix 

Central composite design is appropriate for calibrating full quadratic models. It 

consists of a full factorial design with a central point and additional axial points at a 

specific distance from its centre. There are three types of central composite design: 

circumscribed, inscribed and faced. For our case, we will use the faced design. 

 

  

 

 

 

 

 

 

 

 

 For our case, the range of the values of the variables will be determined 

from the range of the values that are used to real ship scantlings. The variables of the 

problem are the following: 

• X1: The distance between two consecutive longitudinal stiffeners 

• X2: The distance between two consecutive transverse stiffeners 

• X3: The thickness of the plate 

• X4: The profile of the cross section of the longitudinal stiffeners 

Considering that n represents the number of the variables, the total number of design 

points is equal to 2n + 2n + 1 = 25. The range of the values for the variable X1 is 

from 600 to 900 mm, for the variable X2 from 1800 to 5400 mm and for the variable 

X3 from 12 to 28 mm. For the variable X4 the following T profiles are examined: 

(200x10 + 50x10), (280x14 + 90x14) and (340x15 + 110x15). The test matrix of the 

four variables is the following: 

Figure 4.7: Central Composite Faced 
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X1 X2 X3 X4 

−1 −1 −1 −1 

−1 −1 −1 +1 

−1 −1 +1 −1 

−1 −1 +1 +1 

−1 +1 −1 −1 

−1 +1 −1 +1 

−1 +1 +1 −1 

−1 +1 +1 +1 

+1 −1 −1 −1 

+1 −1 −1 +1 

+1 −1 +1 −1 

+1 −1 +1 +1 

+1 +1 −1 −1 

+1 +1 −1 +1 

+1 +1 +1 −1 

+1 +1 +1 +1 

−1 0 0 0 

+1 0 0 0 

0 −1 0 0 

0 +1 0 0 

0 0 −1 0 

0 0 +1 0 

0 0 0 −1 

0 0 0 +1 

0 0 0 0 

                               Table 4.1: Test matrix of central composite faced 

 

Applying the above test matrix to the range of the variables that was described 

previously, the values of each experiment are the following: 
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X1[mm] X2[mm] X3[mm] X4[mm ×mm] 

600 1800 12 200 × 10 + 50 × 10 

600 1800 12 340 × 15 + 110 × 15 

600 1800 28 200 × 10 + 50 × 10 

600 1800 28 340 × 15 + 110 × 15 

600 5400 12 200 × 10 + 50 × 10 

600 5400 12 340 × 15 + 110 × 15 

600 5400 28 200 × 10 + 50 × 10 

600 5400 28 340 × 15 + 110 × 15 

900 1800 12 200 × 10 + 50 × 10 

900 1800 12 340 × 15 + 110 × 15 

900 1800 28 200 × 10 + 50 × 10 

900 1800 28 340 × 15 + 110 × 15 

900 5400 12 200 × 10 + 50 × 10 

900 5400 12 340 × 15 + 110 × 15 

900 5400 28 200 × 10 + 50 × 10 

900 5400 28 340 × 15 + 110 × 15 

600 3600 20 280 × 14 + 90 × 14 

900 3600 20 280 × 14 + 90 × 14 

750 1800 20 280 × 14 + 90 × 14 

750 5400 20 280 × 14 + 90 × 14 

750 3600 12 280 × 14 + 90 × 14 

750 3600 28 280 × 14 + 90 × 14 

750 3600 20 200 × 10 + 50 × 10 

750 3600 20 340 × 15 + 110 × 15 

750 3600 20 280 × 14 + 90 × 14 

                           Table 4.2: The values of the variable for the model 

 

For each of the above 25 cases the stresses, thus the coefficient k, will be calculated 

for five different cross sections of transverse stiffeners in order to find a relation 

between the second moment of inertia of transverse stiffeners and the coefficient k. 
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Namely, for the longitudinal stiffeners with T profile and dimensions 

200 × 10 + 50 × 10, the stresses will be calculated for the following transverse 

stiffeners of T profile [mm ×mm]: 

• 200 × 10 + 50 × 10 

• 270 × 13 + 85 × 13 

• 330 × 15 + 110 × 15 

• 375 × 16 + 130 × 16 

• 425 × 18 + 150 × 18 

For the longitudinal stiffeners with 280 × 14 + 90 × 14 dimensions and T profile, 

the stresses will be calculated for the following transverse stiffeners of T 

profile [mm ×mm]: 

• 280 × 14 + 90 × 14 

• 320 × 15 + 105 × 15 

• 360 × 16 + 120 × 16 

• 390 × 17 + 140 × 17 

• 425 × 18 + 150 × 18 

For the longitudinal stiffeners with 340 × 15 + 110 × 15 dimensions and T profile, 

the stresses will be calculated for the following transverse stiffeners of T 

profile [mm ×mm]: 

• 340 × 15 + 110 × 15 

• 360 × 16 + 120 × 16 

• 380 × 17 + 130 × 17 

• 400 × 17 + 140 × 17 

• 425 × 18 + 150 × 18 

 

The dimensions of the transverse stiffeners were chosen considering that the second 

moment of inertia of longitudinal stiffeners is smaller than the second moment of 

inertia of transverse stiffeners. It is clarified that the above transverse stiffeners have 

different second moment of inertia. 
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For each case, all structural elements comply with the applicable slenderness and 

proportion requirements according to CSR. Specifically, the net thickness satisfies the 

following criteria: 

tp ≥
b

C
√
ReH
235

                                                                                                                       (4.16) 

where 𝑏 is the breadth of the plate, 𝑅𝑒𝐻 is the specified minimum yield stress of the 

material and for all the structural elements is considered 235 𝑁 𝑚𝑚2⁄  and 𝐶 = 100.  

 

 

 

 

 

 

The net thickness of stiffener web plate satisfies the following criterion: 

tw ≥
hW
Cw

√
ReH
235

                                                                                                                   (4.17) 

The net thickness of flange satisfies the following criterion: 

tf ≥
bf−out
Cf

√
ReH
235

                                                                                                                (4.18) 

The total flange breath satisfies the following criterion: 

bf ≥ 0.25hW                                                                                                                        (4.19) 

where 𝐶𝑊 = 75 and 𝐶𝑓 = 12 are slenderness coefficients. As depicted in figure 4.8 

hW is the depth of stiffener web and bf−out is the maximum distance from mid 

thickness of the web to the flange edge. 

Figure 4.8: T bar profile of stiffeners 
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The minimum value of the net moment of inertia of the stiffener with the effective 

width of attached plate is given by: 

Ist ≥ Cl
2Aeff

ReH
235

                                                                                                                (4.20) 

where 𝐴𝑒𝑓𝑓 is the net sectional area of stiffener including attached plate and C ,the 

slenderness coefficient, is 1.43 for longitudinal stiffeners and 0.72 for transverse 

stiffeners. 

4.3 Modeling in commercial Finite Element software 

For each model in the finite element software, four transverse stiffeners with 

distance equal to a (X2 variable) and three longitudinal stiffeners with distance equal 

to b (X1 variable) will be used. The plate is fixed supported. The value of the pressure 

is equal to 0.1 MPa, of the modulus of elasticity equal to 207 GPa and of the 

Poisson’s ratio equal to 0.3. The mesh size is 50 mm. The plate was modeled with S4 

shell elements and the stiffeners with B31 beam elements. The longitudinal stiffener 

that was examined, was in the middle of X-Y plane in order to have minimization of 

the effect of the boundary conditions. It is clarified that for each case, the maximum 

stress S11along the longitudinal stiffener between the two transverse stiffeners, with 

the stress to be parallel with the direction of longitudinal stiffeners, will be substituted 

into equation (4.15). 

 

 

 

 

 

 

 

 

 

  
Figure 4.9: Boundary conditions for cross-stiffened panel in Abaqus 
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In figure 4.9, it is depicted the pressure loads and the boundary conditions and with 

annotations the beam and shell elements. In figures 4.10 and 4.11 it is depicted the 

distribution of the stress with direction parallel to the undeformed longitudinal 

stiffeners. The longitudinal stiffener that was examined, is the intermediate that is 

depicted in cut view in figure 4.11. In the following diagrams the distribution of beam 

stress and the magnitude of deflection are presented. 

Figure 4.10: Stresses with direction parallel to the length of the plate 

Figure 4.11: Cut view at the middle length of the plate 
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4.4 Application to real ship scantlings – Results 

Below, for each case the mean and standard deviation of k are presented. The 

analytical results for each are found in the appendix. Given that for each case, the 

value of k is calculated for five different values of second moment of inertia of 

transverse stiffeners, the mean (μ) and the standard deviation (σ) are given by the 

following formulas: 

μ =
∑ Χ𝑖i

N
                                                                                                                              (4.21) 

Figure 4.12: Beam stress of longitudinal and transverse stiffeners 

Figure 4.13: Magnitude of the deflection 
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σ = √
∑ (Xi − μ)2ι

Ν
                                                                                                              (4.22) 

where Χ𝑖 the values of k for each case, and 𝑁 = 5 the number of the values. 

Case Mean (μ) Standard deviation (σ) 

1 12.57 0.32 

2 13.73 0.69 

3 14.16 0.74 

4 15.56 0.85 

5 11.8 0.03 

6 8.88 0.05 

7 18.95 1.33 

8 12.91 0.11 

9 13.06 0.52 

10 11.19 1.31 

11 15.09 0.56 

12 12.33 1.64 

13 11.76 0.06 

14 11.46 0.08 

15 14.26 0.97 

16 11.94 0.04 

17 11.93 0.02 

18 11.92 0.03 

19 14.53 0.92 

20 11.8 0.02 

21 11.59 0.1 

22 12.31 0.08 

23 12.28 0.13 

24 11.75 0.02 

25 11.89 0.04 

Table 4.3: Mean and standard deviation of k for each case 
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For all the cases, the value of k is not smaller than 8. Thus, we can consider that 

for longitudinal stiffeners with values of second moment of inertia from 1.1 × 107 to 

8.8 × 107 mm4 and for transverse stiffeners with values from 1.1 × 107 to 21.3 ×

107mm4, the most safe and conservative value for the coefficient k is 8. It can also be 

considered that the increase of the second moment of inertia of transverse stiffeners 

for each case does not affect the value of the coefficient. In the following figure, the 

values of the 125 points are depicted. The Y axis refers to the second moment of 

inertia of transverse stiffeners. 

 

 

 

 

 

 

 

 

 

 

 

 

In the following figures, the histogram and the probability distribution of values of k 

are presented. The probability distribution can be approximated by the probability 

density function of t location-scale distribution with the following formula: 

fX(x) =
Γ (
ν + 1
2 )

σ√νπΓ (
ν
2)
[
ν + (

x − μ
σ )

2

ν
]

−(ν+1)

                                                                    (4.23) 

Figure 4.14: Results for k in relation with second moment of inertia of transverse stiffeners 
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where μ is the location parameter and is equal to 12.16, σ is the scale parameter and is 

equal to 0.77, ν is the shape parameter and is equal to 1.36 and Γ(∙) is the gamma 

function and its formula is given by: 

Γ(x) = ∫ e−ttx−1dt
∞

0

                                                                                                         (4.24) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Histogram for the values of k 

Figure 4.16: The t location-scale distribution for the values of k 
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In the following figure, the box  plot for the values of k is depicted. It is shown that in 

most cases the effect of the second moment of inertia of transverse stiffeners is 

negligible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the following table, the values of k are given in relation with 3 variables. The 

variable in the third column is the second moment of inertia of longitudinal stiffeners 

along with the attached plate. The effect of the second moment of inertia of transverse 

stiffeners is considered negligible from 1.1 × 107 to 21.3 × 107mm4. For variables 

within the limits that were mentioned before, coefficient k can be calculated using 

trilinear interpolation. 

 

Figure 4.17: Box plot for the values of k  
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X1 X2 I k 

600 1800 4.1 12.34 

600 1800 25.62 12.92 

600 1800 5.18 13.73 

600 1800 33.85 14.5 

600 5400 4.1 11.78 

600 5400 25.62 8.82 

600 5400 5.18 17.84 

600 5400 33.85 12.77 

900 1800 4.39 12.29 

900 1800 28.85 9.11 

900 1800 5.42 14.65 

900 1800 36.54 9.93 

900 5400 4.39 11.67 

900 5400 28.85 11.37 

900 5400 5.42 13.49 

900 5400 36.54 11.89 

600 3600 17.15 11.91 

900 3600 18.56 11.88 

750 1800 17.96 13.63 

750 5400 17.96 11.78 

750 3600 15.49 11.44 

750 3600 19.72 12.24 

750 3600 4.84 12.21 

750 3600 32.12 11.73 

750 3600 17.96 11.84 

                             Table 4.4: The value of k in relation with 𝐗𝟏, 𝐗𝟐 and I 
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5.  Generic conclusions 

For stiffened panels that are subjected to uniform pressure loads, the Euler-

Bernoulli beam theory underestimate the secondary stresses due to the shear lag 

phenomenon. Analytical solutions of Paik, Schade and Miller considering this 

phenomenon provide a method to calculate the secondary stresses. The most safe and 

conservative is the solution of Paik for T, L and Flat-bar profiles. Direct stiffness 

method also underestimates the stress field either using Euler or Timoshenko beam. 

For the modeling of a stiffened panel in a finite element software solid elements give 

a stress field with small deviances from the analytical solutions for the secondary 

stresses, apart from the boundaries, and reducing the mesh size the numerical results 

converge to the theoretical elements. Beam elements are 1-D elements which also 

underestimate the stress field. Shell elements are not suggested for secondary stress 

analysis. 

For a cross-stiffened panel, given that the dimensions of the panel concern ship 

scantlings, the longitudinal stiffeners can be considered as simply supported between 

two transverse stiffeners. Moreover, the second moment of inertia of transverse 

stiffeners has small effect to the secondary stress field of the longitudinal stiffeners 

and as a result the type of support is not related with the second moment of inertia of 

transverse stiffeners.  
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Appendix A 

Code of Direct Stiffness Method 

 

 

                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E=207000; 
v=0.3; 
L=3650; 
I=371068740.80221; 
F=292000; 
AS=17593; 
G=E/(2*(v+1)); 
eulertim=input('Euler or Timoshenko? Press 0 for Euler , 1 for Timoshenko') 
if eulertim==0 
 FTIM=0; 
elseif eulertim==1 
 FTIM=12*E*I/(G*AS*(L^2)); 
end  
l=0; 
danaf=2; 
d=input('dwste arithmo dokariwn')  
L=L/d; 
K=(E*I/(L^3))*[12,6*L,-12,6*L;6*L,(4+FTIM)*(L^2),-6*L,(2-FTIM)*(L^2);-12,-6*L,12,-

6*L;6*L,(2-FTIM)*(L^2),-6*L,(4+FTIM)*(L^2)];  
while danaf~=d 
     danaf=danaf+1; 
     l=l+2; 
end  
for i=5:1:6+l 
            for j=5:1:6+l 
                K(i,j)=0; 
            end 
end 
for i=1:1:6+l 
            for j=1:1:6+l 
                A(i,j)=0; 

                 
            end 
end 
for i=1:1:6+l 
            for j=1:1:6+l 
                if (i<=4) && (j<=4) 
                    A(i+2,j+2)=K(i,j); 

               
                end 
            end 
end 
S=K+A; 
if d~=2 
    for c=1:1:(d-2) 
        K=A; 
        for i=1:1:6+l 
            for j=1:1:6+l 
                A(i,j)=0; 
            end 
        end 
        for i=1:1:6+l 
            for j=1:1:6+l 
                if (i<=(4+l)) && (i>=(4-l)) && (j<=(4+l)) && (j>=(4-l)) 
                     A(i+2,j+2)=K(i,j); 
                end 
            end 
        end 
        S=S+A; 
    end 

     
end 
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MHTRWOAKAMPSIAS=S;  
for ii=1:1:(6+l) 
    if mod(ii,2)==0 
        C(ii)=0; 
    else 
        C(ii)=(F/(d-1)); 
    end 
end 
C(1)=0; 
C(2)=0; 
C(5+l)=0; 
C(6+l)=0; 
EXDUNAMEIS=C'; 
MIKROSPINAKAS=S; 
MIKROSPINAKAS(1,:)=0; 
MIKROSPINAKAS(1,1)=1; 
MIKROSPINAKAS(2,:)=0; 
MIKROSPINAKAS(2,2)=1; 
MIKROSPINAKAS(5+l,:)=0; 
MIKROSPINAKAS(5+l,5+l)=1; 
MIKROSPINAKAS(6+l,:)=0; 
MIKROSPINAKAS(6+l,6+l)=1;          
ANTISTROFOS=inv(MIKROSPINAKAS); 
METATOPISEIS=ANTISTROFOS*EXDUNAMEIS 
SYNOLIKESDYNAMEIS=MHTRWOAKAMPSIAS*METATOPISEIS; 
ADIDRASEIS=SYNOLIKESDYNAMEIS-EXDUNAMEIS;  
w=1; 
for i=1:2:(l+3) 
    tasi(w)=77.527*E*( (-1*METATOPISEIS(i+1)/L)  + (1*METATOPISEIS(i+3)/L)); 
    w=w+1; 
end 
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Code for the calculation of 𝐛𝐞 for T profiles 

                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%analytiki sxesi apo Paik 
k=1; 
for z=0:10^(-3):1 
    if z<=0.1 
        w(k)=1; 
        j(k)=z; 
        k=k+1; 
    else 
        w(k)=(4*sinh(pi.*z).*sinh(pi.*z))./(pi*1.3*(2.7*sinh(2*pi.*z)-2.6*pi.*z).*z); 
        j(k)=z; 
        k=k+1; 
    end 
end 
hold on 
plot(j,w,'--') 
%telos paik 

 
grid on 
tfw=150; 
tft=18; 
wh=430; 
wt=15; 
bfw=830; 
bft=19; 
A=(tfw*tft)+(wh*wt)+(bfw*bft); 
zbot=((bfw*bft*bft/2)+(wh*wt*(bft+wh/2))+(tft*tfw*(bft+wh+tft/2)))/A; 
ztop=(wh+bft+tft)-zbot; 
zsbot=zbot-(bft/2); 
zstop=ztop-(tft/2); 
I=((1/12)*bfw*bft^3)+(bft*bfw*(bft/2-zbot)^2)+((1/12)*wt*wh^3)+(wt*wh*((bft+wh/2)-

zbot)^2)+((1/12)*tfw*tft^3)+(tft*tfw*((bft+wh+tft/2)-zbot)^2); 
d=1; 
for ii=0.01:0.01:1 
%synthhkes edrasis 
L=bfw/ii; 
%ypologismos sb 
sb=(0.1*bfw*(L^2)*zbot)/(8*I); 

  
%ypologismos ss 
fun=@(x)(bft*bfw*zsbot/wt)+0.5.*(zsbot-x).*(zsbot+x); 
q=integral(fun,0,zsbot); 
ss=((2*0.7*0.1*bfw)/I)*q; 

 
%ypologismos ssaxial 
%1os oros 
fun=@(x) (tft*tfw*zstop/wt)+0.5.*(zstop-x).*(zstop+x); 
q=integral(fun,0,zstop); 
q1= wt*q*(zstop); 
%2os oros 
fun=@(x) zstop.*(zstop+(tfw/2)-x); 
q=integral(fun,zstop,zstop+(tfw/2)); 
q2=2*tft*q*(tfw/2); 
%3os oros 
fun=@(x) (bft*bfw*zsbot/wt)+0.5.*(zsbot-x).*(zsbot+x); 
q=integral(fun,0,zsbot); 
q3=wt*q*zsbot; 
%4os oros 
fun=@(x) zsbot.*(zsbot+(bfw/2)-x); 
q=integral(fun,zsbot,zsbot+(bfw/2)); 
q4=2*bft*q*(bfw/2); 
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%prosthesi twn tessarwn orwn 
ssax=(q1+q2+q3+q4)*(1.4*0.1*bfw/(I*A)); 

  
%ypologismos ssbending 
%1os oros 
fun=@(x) (tft*tfw*zstop/wt)+0.5.*(zstop-x).*(zstop+x); 
q=integral(fun,0,zstop); 
fun=@(x) wt*q.*x; 
q1=integral(fun,0,zstop); 
%2os oros 
fun=@(x) zstop.*(zstop+(tfw/2)-x); 
q=integral(fun,zstop,zstop+(tfw/2)); 
q2=2*tft*zstop*q*(tfw/2); 
%3os oros 
fun=@(x) (bft*bfw*zsbot/wt)+0.5.*(zsbot-x).*(zsbot+x); 
q=integral(fun,0,zsbot); 
fun=@(x) wt*q.*x; 
q3=integral(fun,0,zsbot); 
%4os oros 
fun=@(x) zsbot.*(zsbot+(bfw/2)-x); 
q=integral(fun,zsbot,zsbot+(bfw/2)); 
q4=2*bft*zsbot*q*(bfw/2); 
%prosthesi twn tessarwn orwn 
ssb=(q1+q2+q3+q4)*(1.4*0.1*bfw*zbot/(I^2)); 

  
%ypologismos smax 
smax=sb-ss+ssax+ssb; 

 

%oloklirwma gia be 
syms x 
f=zsbot.*(zsbot+(bfw/2)-x); 
fint=-int(f,x,zsbot); 
fintt=smax-(1.4*0.1*bfw/I).*fint; 
olokl=int(fintt,x,[zsbot zsbot+(bfw/2)]);  
be=2*olokl/smax; 
be=double(be); 
a=be/bfw; 
xx(d)=ii; 
y(d)=a; 

 
%arxi csr 
 if L>=(bfw*(3^(0.5))) 
    cc=1.12/(1+(1.75/(L/(bfw*(3^(0.5))))^1.6)); 
    dd=1; 
    ee=min(cc,dd); 
    befcsr=ee*bfw; 

     
 else 
    befcsr=0.2349815596*L; 
 end 
csr(d)=befcsr/bfw; 
%telos csr 

  
d=d+1; 
end 
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plot(xx,y) 
plot(xx,csr,'--') 

  
%shade 
a=[1 1/1.8478 1/2.5 1/3.4348 1/4.5   1/8.2174]; 
b=[0.3869 0.7087 0.8347 0.9087 0.9478   1]; 
aa=1:-10^(-3):(1/8.2174); 
bb=spline(a,b,aa); 
plot(aa,bb,'--') 
%telos shade 
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Appendix B 

Below, the results of each case are presented. For each case, there is a column 

for the dimensions of the transverse stiffeners for which the model was run, for the 

second moment of inertia for the transverse stiffeners (I), for the maximum stress and 

its position to the longitudinal stiffener and for the coefficient k that results from 

equation 4.15. 

 

Case 1 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

200 × 10 + 50 × 10 1.1 × 107 65.64 0 13.21 

270 × 13 + 85 × 13 3.8 × 107 70.24 0 12.34 

330 × 15 + 110 × 15 8.2 × 107 70.1 0 12.37 

375 × 16 + 130 × 16 12.9 × 107 69.72 0 12.43 

425 × 18 + 150 × 18 21.3 × 107 69.23 0 12.52 

 

 

Case 2 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

340 × 15 + 110 × 15 8.8 × 107 12.97 0 14.91 

360 × 16 + 120 × 16 11.3 × 107 13.75 0 14.06 

380 × 17 + 130 × 17 14.3 × 107 14.32 0 13.49 

400 × 17 + 140 × 17 16.7 × 107 14.59 0 13.25 

425 × 18 + 150 × 18 21.3 × 107 14.97 0 12.92 
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Case 3 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

200 × 10 + 50 × 10 1.1 × 107 49.56 0 15.62 

270 × 13 + 85 × 13 3.8 × 107 55.44 0 13.97 

330 × 15 + 110 × 15 8.2 × 107 56.29 0 13.76 

375 × 16 + 130 × 16 12.9 × 107 56.41 0 13.73 

425 × 18 + 150 × 18 21.3 × 107 56.41 0 13.73 

 

Case 4 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

340 × 15 + 110 × 15 8.8 × 107 10.31 a/2 16.93 

360 × 16 + 120 × 16 11.3 × 107 10.86 0 16.06 

380 × 17 + 130 × 17 14.3 × 107 11.39 0 15.31 

400 × 17 + 140 × 17 16.7 × 107 11.65 0 14.98 

425 × 18 + 150 × 18 21.3 × 107 12.03 0 14.5 

 

Case 5 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

200 × 10 + 50 × 10 1.1 × 107 658 0 11.86 

270 × 13 + 85 × 13 3.8 × 107 662.23 0 11.78 

330 × 15 + 110 × 15 8.2 × 107 662.19 0 11.78 

375 × 16 + 130 × 16 12.9 × 107 661.81 0 11.79 

425 × 18 + 150 × 18 21.3 × 107 661.29 0 11.8 
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Case 6 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

340 × 15 + 110 × 15 8.8 × 107 197.3 0 8.82 

360 × 16 + 120 × 16 11.3 × 107 196.42 0 8.86 

380 × 17 + 130 × 17 14.3 × 107 195.62 0 8.89 

400 × 17 + 140 × 17 16.7 × 107 195.05 0 8.92 

425 × 18 + 150 × 18 21.3 × 107 194.29 0 8.95 

 

Case 7 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

200 × 10 + 50 × 10 1.1 × 107 324.46 0 21.48 

270 × 13 + 85 × 13 3.8 × 107 366.26 0 19.03 

330 × 15 + 110 × 15 8.2 × 107 380.07 0 18.34 

375 × 16 + 130 × 16 12.9 × 107 385.74 0 18.07 

425 × 18 + 150 × 18 21.3 × 107 390.67 0 17.84 

 

Case 8 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

340 × 15 + 110 × 15 8.8 × 107 120.07 0 13.08 

360 × 16 + 120 × 16 11.3 × 107 121.09 0 12.97 

380 × 17 + 130 × 17 14.3 × 107 121.92 0 12.88 

400 × 17 + 140 × 17 16.7 × 107 122.32 0 12.84 

425 × 18 + 150 × 18 21.3 × 107 122.96 0 12.77 
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Case 9 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

200 × 10 + 50 × 10 1.1 × 107 103.64 a/2 12.29 

270 × 13 + 85 × 13 3.8 × 107 91.53 0 13.93 

330 × 15 + 110 × 15 8.2 × 107 97.23 0 13.11 

375 × 16 + 130 × 16 12.9 × 107 98.18 0 12.98 

425 × 18 + 150 × 18 21.3 × 107 98.19 0 12.98 

 

Case 10 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

340 × 15 + 110 × 15 8.8 × 107 30.7 a/2 9.11 

360 × 16 + 120 × 16 11.3 × 107 27.05 a/2 10.34 

380 × 17 + 130 × 17 14.3 × 107 24.2 a/2 11.55 

400 × 17 + 140 × 17 16.7 × 107 22.63 a/2 12.35 

425 × 18 + 150 × 18 21.3 × 107 22.13 a/2 12.63 

 

Case 11 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

200 × 10 + 50 × 10 1.1 × 107 76.39 a/2 14.92 

270 × 13 + 85 × 13 3.8 × 107 70.36 0 16.2 

330 × 15 + 110 × 15 8.2 × 107 76.09 0 14.98 

375 × 16 + 130 × 16 12.9 × 107 77.32 0 14.74 

425 × 18 + 150 × 18 21.3 × 107 77.81 0 14.65 
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Case 12 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

340 × 15 + 110 × 15 8.8 × 107 25.79 a/2 9.93 

360 × 16 + 120 × 16 11.3 × 107 22.79 a/2 11.24 

380 × 17 + 130 × 17 14.3 × 107 20.47 a/2 12.51 

400 × 17 + 140 × 17 16.7 × 107 19.2 a/2 13.34 

425 × 18 + 150 × 18 21.3 × 107 17.48 a/2 14.65 

 

Case 13 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

200 × 10 + 50 × 10 1.1 × 107 983.32 0 11.67 

270 × 13 + 85 × 13 3.8 × 107 978.64 0 11.72 

330 × 15 + 110 × 15 8.2 × 107 974.52 0 11.77 

375 × 16 + 130 × 16 12.9 × 107 972.18 0 11.79 

425 × 18 + 150 × 18 21.3 × 107 969.89 0 11.83 

 

Case 14 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

340 × 15 + 110 × 15 8.8 × 107 221.58 0 11.37 

360 × 16 + 120 × 16 11.3 × 107 220.53 0 11.41 

380 × 17 + 130 × 17 14.3 × 107 219.55 0 11.46 

400 × 17 + 140 × 17 16.7 × 107 218.86 0 11.49 

425 × 18 + 150 × 18 21.3 × 107 217.19 0 11.59 
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Case 15 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

200 × 10 + 50 × 10 1.1 × 107 635.93 0 16.13 

270 × 13 + 85 × 13 3.8 × 107 719.59 0 14.26 

330 × 15 + 110 × 15 8.2 × 107 744.07 0 13.79 

375 × 16 + 130 × 16 12.9 × 107 753.3 0 13.62 

425 × 18 + 150 × 18 21.3 × 107 760.57 0 13.49 

 

Case 16 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

340 × 15 + 110 × 15 8.8 × 107 192 0 12.01 

360 × 16 + 120 × 16 11.3 × 107 192.79 0 11.96 

380 × 17 + 130 × 17 14.3 × 107 193.32 0 11.93 

400 × 17 + 140 × 17 16.7 × 107 193.54 0 11.91 

425 × 18 + 150 × 18 21.3 × 107 193.82 0 11.89 

 

Case 17 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

280 × 14 + 90 × 14 4.6 × 107 94.43 0 11.91 

320 × 15 + 105 × 15 7.4 × 107 94.43 0 11.91 

360 × 16 + 120 × 16 11.3 × 107 94.29 0 11.93 

390 × 17 + 140 × 17 15.7 × 107 94.15 0 11.94 

425 × 18 + 150 × 18 21.3 × 107 93.00 0 11.96 
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Case 18 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

280 × 14 + 90 × 14 4.6 × 107 138.42 0 11.92 

320 × 15 + 105 × 15 7.4 × 107 138.88 0 11.88 

360 × 16 + 120 × 16 11.3 × 107 138.62 0 11.89 

390 × 17 + 140 × 17 15.7 × 107 138.22 0 11.93 

425 × 18 + 150 × 18 21.3 × 107 137.76 0 11.97 

 

Case 19 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

280 × 14 + 90 × 14 4.6 × 107 24.72 a/2 14.03 

320 × 15 + 105 × 15 7.4 × 107 21.38 0 16.22 

360 × 16 + 120 × 16 11.3 × 107 23.54 0 14.73 

390 × 17 + 140 × 17 15.7 × 107 24.73 0 14.03 

425 × 18 + 150 × 18 21.3 × 107 25.45 0 13.63 

 

Case 20 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

280 × 14 + 90 × 14 4.6 × 107 263.62 0 11.84 

320 × 15 + 105 × 15 7.4 × 107 264.47 0 11.8 

360 × 16 + 120 × 16 11.3 × 107 264.73 0 11.79 

390 × 17 + 140 × 17 15.7 × 107 264.79 0 11.78 

425 × 18 + 150 × 18 21.3 × 107 264.74 0 11.79 
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Case 21 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

280 × 14 + 90 × 14 4.6 × 107 128.14 0 11.44 

320 × 15 + 105 × 15 7.4 × 107 127.23 0 11.52 

360 × 16 + 120 × 16 11.3 × 107 126.29 0 11.6 

390 × 17 + 140 × 17 15.7 × 107 125.56 0 11.67 

425 × 18 + 150 × 18 21.3 × 107 124.89 0 11.73 

 

Case 22 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

280 × 14 + 90 × 14 4.6 × 107 107.01 0 12.46 

320 × 15 + 105 × 15 7.4 × 107 108.13 0 12.33 

360 × 16 + 120 × 16 11.3 × 107 108.63 0 12.27 

390 × 17 + 140 × 17 15.7 × 107 108.83 0 12.25 

425 × 18 + 150 × 18 21.3 × 107 108.89 0 12.24 

 

Case 23 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

200 × 10 + 50 × 10 1.1 × 107 322.73 0 12.54 

270 × 13 + 85 × 13 3.8 × 107 330.59 0 12.24 

330 × 15 + 110 × 15 8.2 × 107 331.4 0 12.21 

375 × 16 + 130 × 16 12.9 × 107 331.37 0 12.21 

425 × 18 + 150 × 18 21.3 × 107 331.17 0 12.22 
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Case 24 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

340 × 15 + 110 × 15 8.8 × 107 76.18 0 11.74 

360 × 16 + 120 × 16 11.3 × 107 76.22 0 11.73 

380 × 17 + 130 × 17 14.3 × 107 76.18 0 11.74 

400 × 17 + 140 × 17 16.7 × 107 76.08 0 11.76 

425 × 18 + 150 × 18 21.3 × 107 75.94 0 11.78 

 

Case 25 

         Dimensions  

[mm ×mm] 

 

         I  

 [mm4] 

 

σmax  

[MPa] 

           

position 

           

          k 

280 × 14 + 90 × 14 4.6 × 107 117.12 0 11.84 

320 × 15 + 105 × 15 7.4 × 107 117.07 0 11.85 

360 × 16 + 120 × 16 11.3 × 107 116.75 0 11.88 

390 × 17 + 140 × 17 15.7 × 107 116.43 0 11.91 

425 × 18 + 150 × 18 21.3 × 107 116.09 0 11.95 

 

 


