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Stiffened Panels subjected to Uniform Pressure Loads:

Theoretical and Numerical Modeling Strategies

by
Efstathios L. Platypodis

Abstract

Stiffened panels are main structural components that are used in hulls of ships and in
particular in double bottom, side shell and upper deck. The strength analysis of
stiffened panels that are subjected to uniform pressure loads is accomplished
examining both the secondary stresses, that are induced considering the stiffener with
the attached plate as a beam, and the tertiary stresses, that are induced considering the

bending of the plate between the stiffeners.

The present thesis focuses on the study of the secondary stresses under uniform
pressure loads. The Euler-Bernoulli beam theory underestimates the stress field due to
the shear lag phenomenon. Both theoretical and numerical models, with finite element
analysis, are examined in order to deduce about the safest strategy to examine this

phenomenon.

Moreover, the effect of the transverse stiffeners to the secondary stresses of
longitudinal stiffeners at cross-stiffened panels is examined. For real ship scantlings,
the boundary conditions, which the transverse stiffeners create, are determined. For
this reason, a table is provided which relates the type of support, that the transverse
stiffeners can be modeled, with other variables of a stiffened panel.
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1. Introduction and objectives

1.1 Stiffened panels in ship structures

A ship is subjected to longitudinal, transverse and local strength loads. The
longitudinal strength loads concern the overall strength of the hull of the ship. These
loads are the bending moment, the shear force and the torsional moment acting on the
hull girder. Because of the slender shape of the ship, from the point view of global

deformation, we can consider that it behaves like a beam.

Weight Buoyancy

-~ Bending Moment

Figure 1.1: Longitudinal strength loads

The transverse strength loads act on transverse members and cause structural
distortion of a cross section. These loads include the hydrostatic pressure on the outer
shell, the weight of cargo load working on the bottom structure and the water ballast
pressure. These loads are not always equal to each other at every point. As a result,
the transverse members are distorted. It is considered that the distortion due to

longitudinal loads does not affect the deformation of the transverse section.

Cargo

Hydro-static pressure

Figure 1.2: Transverse strength loads
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The local strength loads affect the local strength members such as shell panels,

stiffeners and connecting constructions between stiffeners.

The procedure of structural strength evaluation includes 3 significant modes for
the structural designers: yielding, buckling and fatigue. Yielding is the failure mode
that once the load exceeds a certain critical value, the elongation increases rapidly.
Buckling is the failure mode that in case of a structure under compression load, the
structure may be deflected when the load reaches a critical value. Fatigue is the failure
mode that the structure may be fractured by small loads when the loads are provided
repeatedly to the structure. In this diploma thesis, the problems that are examined,
evaluate the yielding failure mode.

In order to construct a ship, panels are welded. Plates are slender construction
elements and have small resistance to bending moment due to the small thickness in
comparison with the other two dimensions. Specifically, the ratio between the width
and the thickness of the plate is the following: b/t > 25 . In order to increase the
bending stiffness of the plates, stiffeners are welded parallel to one or two dimensions
of the panel. This procedure results to the formation of panels with smaller
dimensions (from Lg x 31to s x 1) as shown in the Figure 1.3 .

Longitudinal girder Stiffened pane\ Stiffener
;\ Plate X\ ’
-
- ~
- -~
L N 2>
Transverse girder < » S8
~ ~
~ - ~
-~ ~
~ Y L
~ -
’ S Lz Z
~ ~ % - -
~ P
1 -~
N
NN 4
e N
»
~ ~ < -

Figure 1.3: From L x 31tos x 1
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As a result, the requirements of the regulations of the classification, for the
bending of the plates, are satisfied. The optimized solution, regarding the weight of
the panel, requires the use of longitudinal and transverse girders with large cross
sections and long distances Lg or 1 . The construction elements between two
longitudinal and two transverse girders and are supported by stiffeners of small cross
section are called stiffened panels. The diploma thesis deals with topics of stiffened
panels under uniform pressure loads studying the bending of stiffeners along with the

attached plate.

The hull structure consists of stiffened panels; bottom construction, side shell
construction and upper deck construction for a variety of types of ships, such as
tankers and bulk carriers. Typical cross sections of stiffeners in shipbuilding industry

are depicted in Figure 1.4.

TEE

Built Up TEE Section

Figure 1.4: Typical cross sections of stiffeners

The double bottom consists of grillage beams of | profile between of them,
stiffened panels are found, as shown in Figure 1.5. The girders, which extend along
the longitudinal axis of the ship, constitute the web and the flanges are the attached
plates which are found in inner and outer bottom. The inner bottom (upper flange) is
subjected to the weight of the transferred cargoes and the outer bottom (bottom
flange) to hydrostatic and hydrodynamic pressure. The difference of these pressure
loads is transferred to the girders as shear forces. As a result, curvature is appeared to
the double bottom.
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Figure 1.5: Uniform pressure subjected to the stiffened panels of inner bottom

The floors, which extend across the width of the ship, reinforce the double
bottom to the transverse direction. The stiffened panels, between girders and floors,
are subjected to vertical pressure loads. In order to evaluate the strength of the
stiffened panels, the stresses are categorized to secondary and tertiary. The secondary
stresses are calculated considering the stiffeners along with the attached plate as a
beam. Applying the theory of bending of beams, we can take a good estimation. The
tertiary stresses are calculated considering the bending of the plate between the

stiffeners.

i
\LII'1TI

Figure 1.6: Stiffened panels for a bulk carrier
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1.2 Aims and scope of work

This diploma thesis deals with topics concerning the secondary stresses of
stiffened panels under uniform pressure loads and has two main objectives. The first
is to assess bending of one-way stiffened panels due to uniform pressure by
theoretical and numerical methods. For stiffened panels, due to the shear lag
phenomenon which is described in the following chapters, the theory of bending
underestimates the stresses. The scope is to be examined both theoretical and
numerical modeling strategies to evaluate the stresses of the stiffeners with the
attached plate of each method. The theoretical modeling strategies consider the shear
lag phenomenon and at the end the most safe and conservative method is suggested.
For numerical modeling strategies, the commercial software of Finite Element
Analysis, Abaqus, is used, in order to examine the appropriate element for analysis of
secondary stresses. The second objective is to simplify bending of cross-stiffened
panels by downsizing the problem to bending in one direction and hence using Euler’s
bending theory. The scope is to study the secondary stresses of the longitudinal
stiffeners between of the transverse stiffeners with aim to find a relation for the
boundary conditions across the transverse stiffeners that are applied to longitudinal
stiffeners. Calculating the stresses and the boundary conditions in each case, it is
feasible to assess the design variables, namely the thickness of the plate and the

dimensions of the stiffeners.

Inner Bottom Longitudinal

I

Centre Girder 0 n<

00
2210

Bottom Side Girder
Longitudinal

Figure 1.7: One-way stiffened panel in double bottom
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2. Theoretical background
2.1 Theory of stiffened panels — 1D stiffening

This subchapter discusses topics of strength of stiffened panels that are
subjected to vertical loads examining the bending of stiffeners along with the attached
width of the plate. Considering the periodicity of the geometry and the stress field, the
stiffened panel can be examined to a beam of equivalent cross section (see Figure 2.1)
to apply the theory of the bending of beams. The distribution of axial stresses,
according to the bending theory, can be calculated according to the formula:

0,(z) = — —s (2.1)

This relation, from Euler-Bernoulli theory of the bending of beams, ignores the
warping of cross section due to the shear stresses. The warping has as a result the
increase of the real distribution of axial stresses. This mechanical behavior is the basis
for shear lag phenomenon. Numerical simulations and experimental measurements
conclude that the real distribution of axial stresses is non linear along the width of
attached plate due to shear lag effect.

Figure 2.1: Reduction from stiffened panels to a beam of equivalent cross section.
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2.1.1 Beam theory

When analyzing beams, it is necessary to distinguish between pure bending and
non uniform bending. Pure bending is defined a flexure of a beam under a constant
bending moment that occurs under the presence of force couple. Therefore, pure
bending occurs only in regions of a beam where the shear force is zero. On the other
hand, non uniform bending that occurs due to presence of concentrated or distributed
loads is defined as the flexure in the presence of shear forces, which means that the

bending moment is not constant as we move along the axis of the beam.

In pure bending, the resulting strains and stresses in the beam are directly
related to the curvature of the deflection curve, with radius of curve p (see Figure 2.2)
and vary linearly with distance from the neutral surface regardless of the shape of the
stress-strain curve of material. The neutral axis passes through the centroid of the
cross sectional area when the material follows Hooke’s law and there is no axial force
acting on the cross section. The axial stresses remain constant along the x-axis and
vary only with the height of cross section. The maximum tensile and compressive
bending stresses acting at any given cross section occur at points located farthest from

the neutral axis.

Figure 2.2: Pure bending of a beam
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In non uniform bending, under the presence of vertical loads, the beams (the
stiffeners along with the attached width of plate) are used to receive these vertical
loads (see Figure 2.3). Examining the static equilibrium of a section Ax of the beam
(ZF, = 0), the relation that results between the shear force V and the distribution of

the vertical load w, is:

dv

Integrating the equation (2.2) between A and B, it results that:
XB
VB_VA:_ f w dx (23)

Examining the equilibrium of moment (XM = 0), the relation that results between the
bending moment M and the shear force V, is:

M _ \Y 2.4
dx (2.4)
Integrating the equation (2.4) between A and B, it results that:

XB
MB_MA:_ f Vdx (25)

XA

-
r

w(x)

T T

w._u e

Figure 2.3: Beam under the presence of vertical loads
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Figure 2.4: Stress field due to shear force and bending moment

(1

Examining an infinitesimal element with dimensions dxds (see Figure 2.4), we
conclude that the static equilibrium of forces (XF = 0) prerequisites the presence of

shear stress field t4,. The equation of equilibrium of stresses is:

doy O0tgy
ox + ds

=0 (2.6)
The equilibrium of moments (XM = 0) prerequisites the presence of shear stresses
T, that are equal with t,, and tangent to vertical side ds. It results that:

doy 0q
0x +£ B

0 (2.7)

where g = 14, t and is called shear flow. It is considered that the distribution of shear
stresses along the thickness of the element remain constant. Substituting the axial

stress g, with the formula that is given by the theory of pure bending, it results that:
y Z

Applying the equation (2.4) to (2.8), it results that:

dq V
—=—t 2.9
Js Iy z (2.9)

Integrating the equation (2.9), it results that:

S
|4
Qs — Qo = —j tzds (2.10)
I ,
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Alternatively:

_Ve

A
177

(2.11)
y

where Q = fOS tzds is the first moment of inertia of the cross section. With the

equation (2.11), we can calculate the distribution of shear stress to the cross section
because of the zeroing of the shear stress at free edges of the cross section. In Figure
2.5, it is observed that the location of maximum shear flow is along the web gq,, , that
ascertains that the web is the structural element of a cross section which receive the

vertical loads. The attached width of the plate and the flange develop shear flow g,

and q. However, the web has the biggest contribution to receive the shear stresses.

4

Figure 2.5: Distribution of shear flow along the cross section

2.1.2 Shear lag

According to the analysis that was described, it can be concluded that the beams
that are subjected to vertical loads develop both bending moment and shear stresses.
Examining discrete structures, where the width of flange is small, the effect of shear
stresses can be neglected. However, in case that we examine the strength of stiffened

panels, considering equivalent with prismatic beam, the effect of shear stresses cannot
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be neglected as the shear lag phenomenon can result to material failure.
The increase of the equidistant s between the stiffeners, can result to an equivalent
cross section with big attached width of plate. As a result, the flange has more
contribution to the receipt of shear stresses 7,,, . The non uniform shear stress field
results to the warping of the attached plate (see Figure 2.6). The shear stresses 7 lead
to the development of shear strains y. This results to the change of the angle of an

infinitesimal element and to the elongation e of the fibers of flanges. The prerequisite
for the elongation of the fibers, due to planar shear, is that Z—; # 0 . The non uniform

elongation e is added to the uniform elongation u, due to pure bending.

T
B .
UwTTiTT
Ax lel+ll
[T
SEESEEEOEEEEEEE
be

Figure 2.6: Depiction of the stress field that is developed to the attached plate

As a result, the real distribution of the stresses in the flange is non linear (see Figure
2.7). The shear lag phenomenon occurs to thin-walled cross sections that receive both

shear stresses and axial stresses due to the bending. The shear lag phenomenon occurs
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even to the cross section of the ship (see Figure 2.8), but it can be neglected for most
of the ships where L/B > 5 (where L the length and B the width of the ship).

Figure 2.7: Real distribution of axial stresses to thin-walled cross sections

Qmax

€

Figure 2.8: Real distribution of axial stresses to the bottom of a ship

The plate effectiveness, regardless of the reason of the non uniform distribution,
is characterized by a parameter b, which is a width over which the maximum
membrane stress at the intersection of the flange and web is considered to occur
uniformly. Thus the total stress carried in effective width being the same as that
applied by the actual non uniform distribution across the flange. The effective width
b, can be evaluated by:

b/2
f—b/z

o, dy
A . (2.12)

Ux max O-x max

be =
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where ag,, = non uniform membrane stress, g,,, = average Stress, gy ;mqa = Maximum

membrane stress at plate/web junctions.
2.1.3 Analytical solution of Paik

An analytical formulation of the effective width for a plate-beam combination
under shear lag is now derived. To compute the stress distribution, the classical theory
of elasticity can be applied. For two dimensional problems, the relation between

strains and displacements is given by:

B Ju B ov Ju OJv

EX_&J Sy_&i )/Xy=a_y+& (213)

where &, , €, is the normal strain in the x and y direction, vy, the shear strain and u, v

the displacements in the x and y direction.

The relationship between stresses and strains for two dimensional problems is given

by:

1 1 2(1+v)
& = z (ax — vay) , g = E (O'y - vax) , Yey = Trxy (2.14)

where T, the shear stress and v the Poisson’s ratio.

The stress distribution of two dimensional problems can be obtained by solving the

following compatibility equation:

64F+2 0*F +64F
dx* dx?dy? o0y*

=0 (2.15)

where F is Airy’s stress function which satisfies that:

92F 9F 92F
=5 Yam =g (2.16)

In order to calculate the non uniform stress in the attached plating, it is assumed that
the plate lateral deflection is proportional to sin(zwﬂ) where o is the deflection wave

length depending on the rigidities of the stiffener and the type of load application. For

stiffeners that are used in marine structures, we take o =L. In this case, the
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longitudinal axial displacement u along the plate/web intersection, namely for y =

+b/2 (see Figure 2.9), can be calculated as follows:

2mx
U =1u, cosT (2.17)

where u, is the amplitude of axial displacement function.

=X |

(T,
W PN

Figure 2.9: Effective width of the attached plating in a stiffened panel

The axial strain ¢, at y = +b/2 can be calculated as follows:

du _ 2mx 21
Exly=tp/2 = P i = g sin—- where g, = uo(;) (2.18)

The stress function F, to satisfy the equation (2.15) can be expressed as follows:

2mx
where
2y 2y 2wy
= (;——sinh——+C h—— 2.20
fO) = €;—=sinh ===+ (; cosh— (2:20)

with €y, C, to be constants which are determined by the boundary conditions.

While equation (2.18) can be one boundary condition, the other one is provided so
that the symmetric condition must be attained along the center line of the attached

plating between two adjacent stiffeners, which is given by:
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ov

ol = 0 (2.21)

By substituting equation (2.16) into equation (2.14) the axial stress &, can be

expressed as follows:

_1(0F  O%F .
=g \ayz Vox? (222)

By substituting equation (2.19) into equation (2.22) and considering equation (2.18),

the first boundary condition can be expressed as follows:

d?*f(y)
dy?

N| T

+ vw?f(y) = Eg, aty =+ (2.23)

Using equation (2.13), the second boundary condition can be rewritten as follows:

0yxy _ 0%u 62V _ 0%u _ Og, v =0 294
dx  dxdy T ox “oxay oy YT (224)

Substituting equations (2.13), (2.14), (2.16), (2.19) into equation (2.24), the second
boundary condition becomes as follows:
d*f(y) , df(y)

ay? - 2+vw d—y=0 aty =0 (2.25)

By substituting f(y), equation (2.19), into equation (2.23) and (2.25), we get that:

C —E (w)2[<3—1/) ) h2nb 14 b1t hnb
1 =Eg, sin ” ( v)w sin >

2m 2
wN\?[/3—V -V nb mb b
C2=Eso(§) [( > )smh——(1+v)—] [( )sm ——;coshz

The membrane stress g, can now be expressed as follows:

21\ 21 2mx
Oy = (Z) [C Tysmh— + (2C, + C)y) cosh—y SIHT (2.26)
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By substituting equation (2.26) into equation (2.12), the effective width b, can be

calculated as follows:

2

4w (sinh %b)
Pe = (1 +v) [ - v)sinh 22— 2(1 +v) 2 @27
W w
Equation (2.27) can be approximated as follows:
be 1.0 forb/w < 0.18
b {0.18L/b for b/w < 0.18 (2.28)

The wave length @ may approximately be taken as w=L for the attached plating
between two stiffener transverse frames. In Figure 2.10 is depicted the variation of
effective width from equations (2.27) and (2.28) versus the ratio of stiffener spacing
to the beam span when w=L. It is seen that the normalized effective width
significantly decreases as the breadth of the attached plating becomes wider or the

span length becomes longer.

™ __— Equation 2.27

0.8 "
y
\'\.
LY
“'\.
W,
Y

A

"
Equation 2.28 =

Effective flange width, b/b

0.2 ——

0.0 -
| f |

Figure 2.10: Variation of the effective width versus the ratio of stiffener spacing
to the beam span when o=L.
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2.1.4 Analytical solution of Schade

In Figure 2.11 an alternative curve of calculation of effective width b, is given. The
parameters of calculation are the type of cross section, the point of interest along the
beam, the boundary conditions, the linear distribution of the load, the relations of the
dimensions of the cross section, the ratio of width of flange to length of the beam and
the ratio of width attached plating to distance L, of points along the beam, that the
bending moment is zero. In case of the beam that are simply supported, L, equates to

the length of the beam.

UNIFORM LOAD POINT L LOAD _
IEEE TR RN + LD—LENGTH BETWEEM
. ) ! ] POINTS OF ZERO
L P BENDING MOMENT
e o -
10 I Lo — | f—to—r] > _
' QOMNE CURVE VALID / |
FORALL = f’____,.—-

||
§=1 T
0.8 FOR SHORT BEAMS k/‘ |
hF‘ I: LCI - b :I ﬂ’v I __.--""--J'____._-—-'-'----._-—
- be =+ Lo / | S=10—
0.6 // - —
' s S=100|__—1
/ SHAPE COEFFICIENT S

i

0.4 SYMMETRIC :
OPEN BOX BEAM 4 1UTLI - WEB BOX BEAM SHIFFENEDLATING
BOX BEAM it . Ag = STIFFENER AREA
/ ¥ 1

o |4 L B ] o ey
!

——
RS

"/ |l—n +_.| [ -] CENTROID OF STIFFENER
g As bt
_n bt = I:'l— S=Ei S:(1&—QE)_
S=2 G $=30 dty Is Ae
0 I | I
Lo
b

Figure 2.11: Shade curves

2.2 Finite element analysis

This subchapter discusses topics of finite element method for beams, shells and

solids. In the finite element method, a structure is discretized into structural parts



Chapter 2: Theoretical background 23

called finite elements. The points where the finite elements are interconnected are
known as nodes and the process in specifying the nodes is known as modeling. The
whole collection of elements is termed mesh. Each node is associated to nodal forces
and nodal displacements. A system of equilibrium equations between nodal forces and

displacements can be formulated in matrix form for the whole structure, that is:

{F} = [K]{U} (2.29)
The first step to obtain nodal displacements and forces with the finite element method

is the determination of the global stiffness matrix [K]. This can be achieved with one

of the following methodologies and principles:

Equilibrium

o o

Total Potential Energy Principle

o

Principle of Virtual Work
Galerkin Weighted Residual

o

The concept of equilibrium method is to satisfy equilibrium for each element and for
the system as a whole and it will be applied for beam elements. Energy methods can
are used to design systems with a large number of degrees of freedom. The total
potential energy principle applies only to linear elastic materials and it will be applied
for shell and solid elements. The principle of virtual work and Galerkin weighted

residual applies to any material behavior.

2.2.1 Beams

Beams can undertake tensile or compressive forces, transverse forces and
bending moments. So, beam experience axial deformation, transverse deformations
and rotations associated with bending moments and shear forces. In order to examine
a slender structural member as a beam, there is the prerequisite that the length is much
greater than the width and the height of the cross section. According to Euler-
Bernoulli theory, the length between the supports must be at least ten times greater

than the other two dimensions.
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The beam element stiffness equation is derived using the method of equilibrium and
bending theory based on Euler-Bernoulli assumptions. The assumptions are the
followings:

a. The plane sections initially normal to the longitudinal axis of the beam
remain plane and normal to the deflected axis after bending.
b. The deformed beam angles are small.

c. The deflections are small compare to the height of the beam.

Initially, we will consider a beam with two degrees of freedom per node that is the
transverse displacement v; and rotation 6, for the first node and transverse
displacement v, and rotation 6, for the second node (see Figure 2.12). Because the

beam has four degrees of freedom, the element stiffness matrix will be 4x4.

8, m, 8, m,
A N

vi B AER Y

Figure 2.12: Beam with four degrees of freedom

The formulation of stiffness matrix according to equilibrium method is now derived.

The moment m at a cross section can be calculated as follows:

d?v

The equilibrium condition for vertical forces gives that:
f, =1, (2.31)
The equilibrium condition for moments gives that:

n’l1 = m2 + fz L (232)
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m(x) = m; — fix (2.33)
By substituting equation (2.30) into (2.33), we get that:

d?v 1
@ = — ﬁ (m1 - le) (234)

Integrating the equation (2.34) two times, we get that :

v _ le+f1X2+e 2.35
dx~ EI  2E ! (2.35)

~ m1><2_|_f1x3_|_e N 236
VT T8 TRl TN (2.36)

By substituting x = L into equations (2.35) and (2.36), we get that:

v le+f1X2+e =0 2.37

dxly., ~ EI ~ 2El = ' 2 (237)
m,L? f13

V|X=L = — ZEI + m + 91X + V1 = V2 (238)

Solving equations (2.37) and (2.38), f; and m; can be calculated as follows:

. 12EI L
f=f = |0, = 05— (va = vy)] (239
6EI L
mq = F [(62 + 261)§ - (Vz - Vl)] (240)

By substituting equation (2.40) into equation (2.33) we get that:

6EI

m, = [—(ze2 +0,) ; + (v, — vl)] (2.41)

The equation (2.29) can now be written as follows:

fy 12 6L —12 6L] (V1
mg( E 6L 412 —6L 212])61
f, ( 13|-12 —-6L 12 —6L||V2
m, 6L 212 —6L 412]\6;

(2.42)

<



Chapter 2: Theoretical background 26

According to Timoshenko beam theory, the cross section is not perpendicular to
the bending line. The model takes into account shear deformation. The relation
between forces and displacements can be expressed as follows:

fy 12 6L -12 6L 71 vy
m; ( _EIf 6L (4+®)12 —6L (2—-®)L*|]6, (2.43)
f, 13]-12 —6L 12 —6L [ ) V2 '
m, 6L (2—-®)* —6L (4+P)L2[\6;

where ® = 12EI/GAgL? and Ag is the shear coefficient of the cross section.

Considering a beam with three degrees of freedom per node that is axial and
transverse displacement and rotation, the element as a whole has six degrees of

freedom and the stiffness matrix will be 6x6 (see Figure 2.13).

B, m, B, m,

(.
p— —p\. x

uy £ u, o

-virf

yi V2 =fy2

Figure 2.13: Beam with six degree of freedoms

The relationship between axial forces and displacements is:

EA
fy1 = — N (uz —uy) (2.44)
EA
fx2 = T (uz —uy) (2.45)

The equation (2.29) can now be written as follows:

(fx1) [ 52 0 0 —s2 0 01 (W

fy1 0 12 6L 0 -12 6L | [V

my | _E| 0 6L 412 0 -—6L 212| J 01

1 £, k] IRCI 0 2 0 o 11w, (2.46)
fyo 0 -12 —-6L 0 12 —6L| [V2

\m,/ L0 6L 212 o0 —6L 4121 \b;
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where s = /AL/I

The relations between of the local system x-y and the global coordinate system

X-Y will now be given.

0, T 8 f,, B

8\ f, 85 X
ey

Figure 2.14: Inclined beam element

Nodal displacement in the local system can be expressed with respect to
displacements in global system as given by:

(81) (A1)
82 AZ
83| _ [lr] O] Ag
or=lo mliag (247)
\5¢/ \Ag/

cosO sin@ O
where [r] =|—sin® cos® 0
0 0 1

The relationship between the nodal forces can be expressed as follows:

(1) (F1

f, F,

f3( _[[x] O ] F,

9 f, > = [0 (r] . F, > (2.48)
f5 F5

\f¢/ \F/

The element stiffness matrix [K] expressed in the global coordinate system X-Y is
related to [K], as follows:
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[K] = [R]"[K][R] (2.49)

2.2.2 Plates and Shells

The main difference between plates and shells, which both are two dimensional
structures, is the shape of their mid-surface. The mid-surface of plates is plane, while
the mid-surface of shells is curved. The deformations of these two elements are
expressed with reference to their mid-surface. Plates and shell structures are
categorized to thin and thick. A plate is considered thin, if its thickness is fifteen times
smaller than the shortest span length. The criterion for shell structures is the ratio of

their thickness over the radius of curvature.

For finite element analysis, these elements should be connected to each other
only at their nodal points. A suitable number of nodal points and proper shape
functions can satisfy continuity requirements. The displacement distribution should
also maintain internal or interelement compatibility and continuity of nodal

displacements.

The method of total potential energy is now derived. Considering a structural
system subjected to external loads, the internal forces produce work called strain
energy and the external forces produce work called load potential. The strain energy

W can be expressed as follows:
1
W= > ] {c}T{e}dV (2.50)
The load potential Q is given by:
0=-— f (T)T{u}dA (2.51)

where {T} are the external loads applied on the boundary surface.

The total potential energy U of the system is given by:
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U=W+0Q (2.52)

The structural system is in equilibrium when the total potential energy is minimum,

namely:
au
P 0 (2.53)

where u(x) can be calculated by the summation of shape functions N;(x) multiplied

by the nodal displacements u;, namely:
u(x) = Z N; (x)u; (2.54)

For the linear case of axial deformation, the relation between strain and displacement

can be expressed as follows:

oN;
{e} =[Blu} = p ——{u} (2.55)

i
The relation between stress and strain is given by:

{0} = [Cl{e} (2.56)

where the matrix [C] contains the elastic constants. By substituting equations (2.52),
(2.55) and (2.56) into equation (2.53), we get that:

f [B]7[C][B]{u}dV — f {T)T[N]dA = 0 (2.57)

Thus, the expressions for the stiffness matrix [k]| and the force vector {f} are:

K] = j [B]"[C][B]dV (258)

= f (T)"[N]dA (2.59)
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The behavior of thin plates is based on the classical theory on plate bending of

Kirchhoff. The assumptions of the theory are the following:

1. Deflections are small compared to plate thickness.

2. Slopes of the deflected mid-surface are small.

3. Mid-surface remains unstrained for bending.

4. Plane sections initially normal to mid-surface remain plain and normal

to the deflected surface.

o

Transverse shear strains are negligible.

6. Stresses normal to mid-surface are negligible.

Considering a plate subjected to a distributed load p,, due to the assumptions of plate

bending theory, the stress-strain relations are given by:

E
Ox = T2 (ex + vey) (2.60)
E
Oy = m (Sy + vsyx) (2.61)
Txy = GYxy (2.62)

The relation between strain, curvature and displacement is given by:

0’w
Ex = —TZKy = —Zm (263)
0’w
&y = —ZKy = —Za—y2 (2.64)
d*w
Yxy = —2ZKgy = —2 zaX 3y (2.65)

Using the method of potential energy, the load potential can now be expressed as
follows:

Q=- j{T}T{u}dA =0=- f p, wdA (2.66)
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The strain energy can be written:
SX

wes f{cx oy Tl &y lav =2 f{K}T[C]{K}dA (2.67)
"2 oo vzy T2 '

Where the matrix [C] and {x} are given by:

1 v 0 —K

Et3 V) 1 _ x

[C] = ———= 1 and {x} = Ky

2a-vV|, , ) o
S1=v) xy

The curvature-displacement can be expressed as follows:

{K=Blw=| —o=5 |w (2.68)

Figure 2.15: Nodal displacements and slopes for plate elements

A plate element has three degrees of freedom per node, the transverse deflection w

and the rotations 0, and 8, about x and y axes. For a plate with four nodes, as

depicted in Figure 2.15, the deformed shape can be approximated as follows:

wixy) = ) NG y)u = [NI{u} (2.69)

where the nodal displacements u; are:
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{u}T = {Wl elX 91y W, GZX ezy W3 63X e3y Wy e4-X e4y} (270)

The simplest type of plate element is three triangular element. The polynomial

approximation for w is:

W Y) = ¢+ X+ Gy + ¢ + cxy + ey + 7y
+ cg(x%y + xy?) + coy3 (2.71)
The displacement distribution of the three node triangular plate element is a complete

polynomial. However, the continuity requirements are violated across the element

boundaries.

The four node rectangular plate element has twelve degrees of freedom. The

polynomial approximation for w is:

w(x,y) =¢; 4 X + 3y + CuX? + csXy + cgy? + %3 + cgX?y + Co¥?X + g0y
+ C11X3y + C12y3X (272)

The displacement distribution of the four node rectangular plate element is not a

complete polynomial and continuity requirements are violated.

The four node rectangular plate element of sixteen degrees of freedom, is an
improved version, as it meets the convergence criteria and the continuity
requirements. The extra degree of freedom per node is %. The polynomial
approximation can be written as follows:

W(X,y) =¢; + X + 3y + CaX? + Xy + cg¥? + ;X3 + cgx?y + coy?X + cq0y 3
+ €11X3y + €12X2y?% 4 €1373X + €14x3y? + ¢15X%y3 + ¢16x3y3 (2.73)

The behavior of thick plates is based on Mindlin plate theory. According to this
theory shear strains y,, and yy, are not ignored. The assumptions 4 and 5 of

Kirchhoff theory are not valid. The relation between stress and strain include the out-

of-plane shear strain y,, and y,, and can be expressed as follows:

Txz = G Yxz (2'74)
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Tyz = Gy, (2.75)

The relation between strain and displacement is expressed by:

& = —Z 9 = —7K (2.76)
X aX X
gy = —z% = —ZK (2.77)
y ay y
06, 09,
Yxy = —Z ay + E = TZKygy (2.78)
ow
Yxz = =0y + M (2.79)
ow
Yyz = —0x + a_y (2.80)

For the equation (2.67), [C] and {k} can be calculated as follows:

[1 v 0 0 0'| —Kx

Et3 v 1 0 0 0 1—v —Ky

[C] = TICERY 0 0 B O Ofwherep= , {k}={"Kxy
A=vIlo 0 0 B 0 v ~Yxz

0 0 0 0B —VYyz

The shell analysis is based on a combination of membrane-flexure theory.
According to the membrane theory, a shell structure experiences only axial and shear
stresses. Transverse shear stresses and bending moments are ignored. A shell element
has five degrees of freedom per node, as shown in Figure 2.16. The behavior of thin
shells is based to classical theory of bending, while the behavior of thick shell is based
on Mindlin theory.

Figure 2.16: Nodal displacements and slopes for shell elements
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2.2.3 Solids

General three dimensions structures require the use of solid finite elements.
Solid elements are used to determine a three dimensional stress-strain state. Some of
the most representative solid elements are 4-node tetrahedron, 5-node pyramid and 8-
node hexahedron (see Figure 2.17). Each node of solid elements, has three degrees of

freedom, u, v and w displacements.

Figure 2.17: Representative solid elements

The concept of isoparametric elements is used to calculate the shape functions.
Considering a solid element with eight nodes and dimensions 2a,2band 2c, the

coordinates of a local system placed at the centroid of the element (x,,y,,2z,) are

given by:

_X—Xp _Y— Yo _ 171
&= "= (= (2.81)
The displacement functions can be expressed by:
u@n, O = c1 + 28 + 3N + cu 0+ cs8n + NG + 780+ cg&nd (2.82)
v(§M,0) = Co + €108 + 11N + €120 + 138N + €1uNT + 4580+ ¢168NT (2.83)

w(EM, Q) = c17 + 18§ + C1oN + €200 + 218N + c22NT + 2380 + 24800 (2.84)

The shape function N; is given by:

Ni=-(1-&HA-nmA -4 (2.85)
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The displacement functions can be expressed in terms of shape functions and nodal

coordinates as follows:

(U1
Vi
uy, [N;j 0 0 N, 0 0 .. Ng 0 O]]w,
w 0 0 N, 0 0 N, .. 0 0 Ngff[ls
Vg
\Wg/

For the solid element, the equivalent nodal force vector {f} may be the summation of

body forces {f} , and surface forces {f} ; :

{f} ={f}p +{f}5 (2.87)
VAR Px)T

{f}p = f Wy [NJdV, {f}s= f {py} [N]dA (2.88)
W, o8

where py, py and p, is the distributed load which is applied to the surface and W, W,

and W, are the components of the body force.
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3. Stress analysis of stiffened panels
3.1 Analytical calculation

An alternative analytical solution for the stress distribution for a plate-beam
combination is now derived (in this chapter it will be referred as analytical solution

1). The field of shear stresses in a cross section, can be calculated as follows:

q(s)

tel

(s) =

(3.1)

where q(s) is the distribution of shear flow and t.; the thickness of the element

(flange or web). The relation between shear stresses and strains is given by:

(s) = Gy(s) (3.2)

where G is the shear modulus. As depicted in Figure 3.1, the shear strain can be

expressed as follows:

de
Y(s) = = (33)

By substituting equation (3.2) into equation (3.3) and integrating over the variable s,

we get that:
de

1
e = af t(s)ds (3.4)

ds

[
L

Figure 3.1: Geometric definition of shear strain
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The axial strain &, can be defined as:

de
& = —

~ (3.5)

Applying Hooke’s law (g = E€) and substituting equation (3.4) into equation (3.5),
we get that:

os(s) = —i(f t(s)ds) (3.6)

Substituting equation (3.1) into (3.6), we get that:

EdV Q
os(s) = G 9 < Lt ds) (3.7)

Considering that G = E/2(1 — v) o, can be expressed as follows:

o(s) = 2L=Vw Qo (3.8)

I ter

The equation (3.8) describes the axial stress field which is developed due to shear lag
and is added to axial stress field due to pure bending. However, the addition of these
two stress fields, does not result to a field that achieves equilibrium of forces and
moments. In order to consider shear lag phenomenon and achieve static equilibrium,
we need to subtract a uniform axial stress field o,4*@! and a linear axial stress field

o Bending These axial stresses can be expressed as follows:

Axial _ [osdA _ 2(1 - v)wffg
Os A T, ds dA (3.9

A

Bending _ J 0s2dA _ 2(1 —V)sz

Og I

f—dsz dA (3.10)
y

The real stress field can be calculated as follows:

Axial

Oreal = Op T 05 — Og - o.sBending (3.11)



ed pan

Chapter 3: Stress an

INIHNEEe

[T

.

[

LTI &

of axial stress field

Figure 3.2: Components

al distribution of axial stress field due to shear lag



Chapter 3: Stress analysis of stiffened panels 39

3.2 Numerical implementation of analytical solutions

Initially, for a one-way stiffened panel, with L. = 3650mm , that is subjected to
uniform pressure load, with p = 0.1 MPa and the boundary conditions to be fixed
supports, the stress field will be calculated with different theoretical modeling
strategies. It is noted that the representative repetitive section can be considered the

effective cross section of a beam. For the calculations, the Poisson’s ratio isv = 0.3.

Figure 3.4: One-way stiffened panel with repetitive section

Figure 3.5: Beam subjected to uniform loads

The dimensions of the cross section are the following:

e Web height: wh = 300mm

e Web thickness: wt = 15mm
e Top width: tfw = 200mm

e Top thickness: tft = 18mm

e Bottom width: bfw = 800mm

e Bottom thickness: bft = 20mm
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\ | 4

N.A

Figure 3.6: Cross section of the beam

According to the analytical solution 1, the real stress distribution will now be
calculated using the equation (3.11) (for x = L/2). For fixed supports, the bending

moment along the beam can be expressed as follows:

M(L) _wL2
2] 24

Bending stress oy,:

_ Mz wl?z
% = 7T up

w = p * bfw = 80 MPa*x mm

Top Flange (C-D) - o, = 29.98 MPa
Bottom Flange (A-B) - o, = —10.48MPa
Axial stress og:

— 2(1—IV)ngdS

S
tel

Above neutral axis:

For0<s<241.47:

Oy > + 0.5(241.47 — s)(241.47 + s)ds

21— v)wfs (18 * 200 * 241.47
- I 0 15
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For s=241.47 (C) - o5 = 5.64 MPa
For 241.47<s<34147 :

2(1=v)w S
o, =564+ ——— (341.47 —s) * 241.47 ds

I 241.47
for s=341.47 (D) — o, = 6 MPa
Below neutral axis:

For0<s<77.53:

Os

21— V)WJ‘S (20 * 800 * 77.53
B I o 15

) + 0.5(77.53 —s)(77.53 + s)ds
for s=77.53 (B) — 0, = —1.98 MPa
For 77.53<s <477.53:

2(1 —v)w (S

o, = 1.982 +
I 77.53

(477.53 — s) * 77.53 ds

for s=477.53 (A) — o, = —3.85 MPa

Axial stress g Axial .
. 2(1 —v)w
o Axial = —( ) f f gdsdA
1A tal

Above neutral axis :

2(1 — V)w [ (24147 24147 18 % 200 * 241.47
a== () )
1A . .

15

+ 0.5(241.47 — s)(241.47 + s)ds) ds

341.47 341.47
+2 f 18 (f (341.47 — 5) * 241.47 ds) dsl
241.47 2

41.47
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Below neutral axis :

2(1 =v)w] 7753 24147 120 % 800 * 77.53
s 2 ([ )
1A 0 0 15

+ 0.5(77.53 —s)(77.53 + s)ds) ds

477.53 477.53
+ 2f 20 (f (477.53 —s) x77.53 ds) dsl
77.53 7

7.53

o A%l = A + B = 2.24 MPa

Bending stress o Bending .

o Bending — 2d - vwz ff 2dssz
s 12 tel

Bendi 2(1 —v)wz fz‘“"” fz‘“"” 18 % 200 * 241.47
o ending _ 15 s ( )
s I2 0 0 15

+ 0.5(241.47 — 5)(241.47 + s)ds) ds

341.47 341.47
+ zf 18 * 241.47 <f (341.47 — s) * 241.47 ds> ds
241.47 2

41.47

77.53 24147 90 % 800 * 77.53
+f 15s f ( )
o 0 15

+ 0.5(77.53 —s)(77.53 + s)ds) ds

477.53 477.53
+ ZJ 20 % 77.53 <J (477.53 —s) *x 77.53 dS) dsl
7 7

7.53 7.53

Top Flange (C-D) - o, = 3.51 MPa

Bottom Flange (A-B) - o, = —1.23 MPa

42
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In the following tables, the stresses from the analytical solution 1 and from Schade are
presented. It is also presented the relative percentage change considering as reference

the stresses from the Euler bending theory.

Cross section Oreal [MP2] Oreal — OBuler 1 gy,
(from the analytical solution 1) OEuler
A -10.09 3%
B -11.87 13.2%
C 30.02 01%
D 29.72 208%

Table 3.1: Stresses according to the analytical solution 1

Cross section Oreal [MPQ] Oreal — OBuler 4 0,
(from Schade) OBuler
A -12.39 18.2%
B 1239 18.2%
c 30.33 1.1%
D 30.33 1.1%

Table 3.2: Stresses according to the analytical solution of Schade

3.3 Application of stiffness method

In order to compare the direct stiffness method with the analytical solutions, a
code in Matlab was written. The user can choose between Euler and Timoshenko
beam and the total number of the elements of the beam. Each element has two degrees
of freedom per node that is the transverse displacement v, and rotation 6, for the first
node and transverse displacement v, and rotation 6, for the second node. The
stiffness matrix is calculated by the equations (2.42) and (2.43). The Timoshenko
shear coefficient is 0.44 and the modulus of elasticity E=207 GPa. In order to succeed

convergence of the stresses, at least 25 elements must be used. The stress is given by

92 .
o= —Eza—x‘;v where the deflection of each element can be calculated as follows:
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2

weo = v [1-3() +2() ] +e[i-2 () +2(3) L+
v [30) -2@) [+ Q) + @) ]
In the following tables the stresses for Euler and Timoshenko beam from the

application of direct stiffness method are presented, with the relative percentage

change for each case.

Cross section Oreal [MP3] Oreal — OFuler 1 010
from stiffness method for OFuler
Euler beam
A -10.83 33%
B -10.83 33%
c 30.99 33%
D 30.99 33%

Table 3.3: Stresses from direct stiffness method for Euler beam

Cross section Oreal [Mpa] M 100%

from stiffness method for OEuler

Timoshenko beam

A -10.07 -3.9%
B -10.07 -3.9%
C 28.81 -3.9%
D 28.81 -3.9%

Table 3.4; Stresses from direct stiffness method for Timoshenko beam
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3.4 Modeling in commercial FE software
A description of the elements that were used in Abaqus, will now be given.

Beam elements

Timoshenko beams B31 and B32 were used. These beams allow for transverse shear
deformation. Abaqus assumes that the transverse shear behavior of Timoshenko
beams is linear elastic with fixed modulus and thus independent of the response of the
beam section to axial stretch and bending. B31 is a 2-node linear beam and B32 a 3-
node quadrative beam with 6 active degrees of freedom per node. The default stress
output points, if a beam section is integrated during analysis, are 1, 5, 9 and 13 as

depicted in Figure (3.8).

2
2 P a
1 1

2 - node element 3 - node quadratic element

Figure 3.7: B31 & B32 elements

- |-
=

L]

L ]

. 2

(I E—

Figure3.8: Cross section of | profile

Shell elements

Conventional shells S4 and S8R were used. These shell elements descretize a body by
defining the geometry at a reference surface. S4 is a 4-node general-purpose shell and

S8R an 8-node doubly curved thick shell with reduced integration with 6 active
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degrees of freedom per node. Reduced integration usually provides more accurate

results and significantly reduces running time.

3
4
x3 4%
1 2%
1 2
d-node full B-node reduced

Figure 3.9: S4 & S8R elements

Solid elements

Three dimensional solid elements C3D8 and C3D20R were used. C3D8 is an 8-node
linear brick element and C3D20R a 20-node quadratic brick with reduced integration.
Each of them has 3 degrees of freedom per node. Reduced integration uses a lower-

order integration to form the element stiffness. C3D20R has 8 integration points.

- 8 15 7
8 7 |
| 16 |
! | L
. s R 5
5 . 6 _ 19
| 20*
] I
: IT' ! ® 18
TS P 3 | S T SR O
12 ¢ 10
1 2 .
1 9 2

Figure 3.10: C3D8 & C3D20R elements

Initially, a beam was created, that consisted of 25 B31 elements. The stresses,

forx = L/2, at the cross section were presented in the following table:

Cross section Oreal [MPa] Oreal — OEuler 4 040,
from Abagus OEuler
A -9.67 -1.7%
B -9.67 -1.7%
C 30.13 0.5%
D 30.13 0.5%

Table 3.5: Stresses from Abaqus with B31 elements
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Analytical solution of Schade
Direct stiffness method - Euler beam
Direct stiffness method - Timoshenko beam

Commercial software
Analytical solution 1

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8
Normalized distance along path

Figure 3.11: Comparison of the stress field for the beam

In Figure 3.11, the comparison of the stress field for the path A-B-C-D is depicted.
The stresses are devided by the maximum stress from the analytical solution 1. For
the bottom flange, analytical solution of Schade gives the maximum stresses. For the
top flange, the Euler beam with the direct stiffness method, has the maximum stresses.
The results of the commercial software converge with the direct stiffness method with

Timoshenko beam, as B31 is a Timoshenko beam.

As detailed below, a stiffened panel in one direction was modeled, with length
L = 3650 mm , width B = 3200 mm and thickness t = 20 mm. The plate is fixed
circumferential. The uniform pressure, the modulus of elasticity and the dimensions
of the stiffeners are the same as the previous case. The models were created with
C3D8, C3D20R, S4, S8R, S4&B31 and S8R&B32 elements. The aim was to compare
the results of Abaqus with the analytical solution 1 in order to choose the appropriate
element for the calculation of secondary stresses. Each element was modeled with 20,
50 and 100 mm size of mesh. In the below figures, the comparison of the stresses is
depicted for the cross section (A-B-C-D) of the second stiffener for x = L/2 and x =

0 for 100 mm size of mesh.
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Shells: S4 and S8R

In the following figures, the distribution of the stresses with direction parallel to the
length of the stiffeners for S4 and S8R elements is depicted. In figure 3.14 and 3.15
the stresses of these elements are compared with the analytical solution 1 along the
path (A-B-C-D) of the cross section for x = L/2 and for x = 0 with 100 mm size of
mesh. The stresses are normalized as they are divided by the maximum stress if

analytical solution 1. It is clarified that the calculated stresses concern the

intermediate longitudinal stiffener.

s, 511
SMEG, (fraction = -1.0)
SPOS, (fraction = 1.0)
(Avg: 75%)
+5.124e+01
+4.109e+01
+3.093e+01
+2.078e+01
+1.062e+01
+4.691e-01
-9.686e+00
-1.984e+01
-2.999e+01
-4.015%e+01
-5.030e+01
-6.046e4+01
-7.061e+01

Figure 3.12: Stress field for S4 element

s, 511
SMEG, (fraction = -1.00%
SPOS, (fraction = 1.0)
(Avg: 75%)
+7.251e+01
+5.887e+01
+4.522e+01
+32.158e+01
+1.793e+01
+4,289e+00
-9.355e+00
-2.300e+01
-3.664e+01
-5.029e+01
-6.393e+01
-7.758e+01
-9,122e+01

Figure 3.13: Stress field for S8R element
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—8— 54
—&— SBR
— — = Analytical solution 1

01 0.2 0.3 04 0.5 06 07 0.8 09 1
MNormalized stress along path

Figure 3.14: Normalized stress for shell elements for x = L/2

—8— 54
—&— S8R
— — — Analytical solution 1

0.1 0.2 03 04 0.5 06 07 0.8 09 1
Normalized distance along path

Figure 3.15: Normalized stress for shell elements for x = 0
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From the comparison with the analytical solution 1, it can be concluded that for shell
elements, only the stresses of web and flange approximate the theoretical results.

Moreover, on the boundaries the above elements overestimate the stresses.

Solids: C3D8 and C3D20R

The following figures depict the stresses parallel to the longitudinal stiffeners for solid

elements for the cross section (A-B-C-D) of the intermediate stiffener.

5, 533

Cavg: 5%
+3.194e+01
+2.423e+01
+1.651e+01
+8.797e+00
+1.083e+00
-5.631e+00
-1.434e+01
-2.206e+01
-2.977e+01
-3.749e+01
-4.520e+01
-5.292e+01
-6.063e+01

5, 533

(Avg: 759%)
+7.519e+01
+6,.045e+01
+4.571e+01
+3.0982+01
+1.624e+01
+1.504e+00
-1.323e+01
-2.797e+01
-4, 270e+01
-5.744e+01
-7.218e+01
-8.691e+01
-1.016e+02

Figure 3.17: Stress field for C3D20R element
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—&8— 308
—&— C3D20R
— — — Analytical solution 1

—_———— e —

_OBD 0.1 02 03 04 05 06 07 08 09 1
Mormalized distance along path
Figure 3.18: Normalized stress for solid elements for x = L/2
2 P

—8—C3D8
—&— C3D20R
— — — Analytical solution 1

0 0.1 02 0.3 04 05 06 0.7 08 09 1
Normalized distance along path

Figure 3.19: Normalized stress for solid elements forx = 0
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From the above solid elements, C3D8 is more appropriate for the calculation of the
secondary stresses, even though the stresses are underestimated on the boundary

conditions.

Shells with beams:S4&B31 and SBR&B32

The results for a model with plate as shell element and longitudinal stiffeners as beam

elements are presented in the following figures.

s, 11

Multiple section points

(&vg: 75%)
+5.182e+01
+4.251e+01
+3.320e+01
+2,389e+01
+1.458e+01
+5.269e+00
-4.042e+00
-1.335e+01
-2.266e+01
-3.197e+01
-4,12%9e+01
-5.060e+01
-5.991e+01

5, 511

Multiple section points

{&vg: 75%)
+7.322e+01
+6.215e+01
+5.108e+01
+4.002e+01
+2.895e+01
+1.788e+01
+6.816e+00
-4,251e+00
-1.532e+01
-2.638e+01
-3.745e+01
-4,852e+01
-5.958e+01

Figure 3.21: Stress field for S8R & B32 elements
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—8— 5S4 &B31
—&— S8R & B3z
— — — Analytical solution 1

o 0.1 02 03 04 05 06 07 08 09 1
Mormalized distance along path
Figure 3.22: Normalized stress for shell & beam elements for x = L/2
—EB— 54 & B3 y / ________
—&=— SBR & B32
— — — Analytical solution 1 s
| ]
0.1 02 03 04 0.5 06 07 08 09 1

Normalized distance along path

Figure 3.23: Normalized stress for shell & beam elements for x = 0
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From figure 3.22 and 3.23, it can be concluded that both B31 and B32 elements
approximate to the analytical solution 1. However, they underestimate the stresses in
the flange because they are 1-D elements and the effect of the shear lag phenomenon

cannot be calculated.

In the following diagrams, the results of the stresses along the flange (C-D) for
different size of mesh for C3D8, B31 and B32 elements are depicted. The stresses are
divided by the maximum stress of the analytical solution 1 (C) and concern the
intermediate longitudinal stiffener. As depicted in the following figures, reducing the
mesh size from 100 to 20 mm for C3D8 element, the numerical calculations converge
to the theoretical. However, on the boundary conditions, with fine mesh the stresses
fluctuate along the flange. As regards beam elements, both for B31 and B32 element,
from coarse to fine size of mesh the deviance of stresses is reduced between the
numerical and theoretical results. For the other elements that mentioned before, it was

not observed any remarkable change concerning the size of mesh.

C3Ds8

—&— Mesh 100

—&— Mesh 50

—&— Mesh 20

— — — Analytical solution 1

0.1 02 03 0.4 0.5 0.6 0.7 08
Mormalized stress along path

Figure 3.24: Comparison of mesh size for C3D8 element for x = L/2
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c3Ds

—&— Mesh 100

—H&— Mesh 50

—8— Mesh 20

— — — Analytical solution 1

0 01 0z 03 04 05 06 07 08 09 1
Normalized distance along path
Figure 3.25: Comparison of mesh size for C3D8 element for x = 0
B3
11
Mesh 100
1.08 — Mesh 50
Mesh 20
— — — Analytical solution 1
1.06 —
1.04 —
1.02 =
‘=== ===-———- L ____________
0.98 =
0.96 [~
0.94 [~
092
0.9 | | | | | | | | | J
0 01 02 0.3 04 05 06 0.7 0.8 09 1

MNormalized distance along path

Figure 3.26: Comparison of mesh size for B31 element for x = L/2
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B31
111
Mesh 100
1.08 - Mesh 50
Mesh 20
— — — Analytical solution 1
1.06
1.04 —
g 1.02 -
W
p=l
i e e e
N T T e e el _____.
£
2 o8
0.96 [—
0.94 —
0.92
0.9 | | | | | | | | | J
0 01 02 03 04 05 06 07 08 09 1
Mormalized distance along path
Figure 3.27: Comparison of mesh size for B31 element for x = 0
B32
11
Mesh 100
108 - Mesh 50
Mes 20
— — — Analytical solution 1
1.06 [~
1.04 [~
1.02 =
1= __= LI ____
0.98 —
0.96 —
0.94
092~
0.9 | | | | | | | | | J
0 0.1 0.2 0.3 04 05 06 07 0.8 09 1

Normalized distance along path

Figure 3.28: Comparison of mesh size for B32 element for x = L/2
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B32

11—
Mesh 100
1.081— Mesh 50
Mesh 20
— — — Analytical solution 1
1.06 [—
1.04 [~
1.02 —
1= - - —_— - __ o o
0.98
0.96 [—
0.94 —
0.92 —
09 | | | | | | | | | J
0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mormalized distance along path

Figure 3.29: Comparison of mesh size for B32 element for x = 0

From the above diagrams we can observe that the C3D8 element is suitable to
examine the secondary stresses, and by reducing the size of mesh, the results
converge to the analytical solution. However, this element is not appropriate to
examine the tertiary stresses, namely the stresses that are developed due to the
bending of the plate between of the stiffeners. Shell elements seem to be appropriate,
for analysis of secondary stresses, only to the web and to the top flange. It is clear that
the plate is polluted by tertiary stresses. Moreover, the beam elements give a good
approach compared with the analytical solution, but because they are 1-D elements
the shear lag phenomenon is not considered and the stresses are underestimated.
However, they are the only elements that give a good approach at the boundaries and

with a fine mesh, the results converge with the analytical solution.

3.5 Application to real ship scantlings

At this point, stiffeners with the attached plate from ships scantling will be

examined, in order to compare the variation of the effective width versus the ratio of
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stiffener spacing to the beam span from analytical solutions of Shade, Paik, Miller

and CSR. There will be examined T, L and flat bar profiles.

For T and L profiles, the dimensions are the following:

Width  of | Thickness of | Height of | Thickness of | Width ~ of | Thickness of
plate [mm] | plate [mm] web [mm] | web [mm] flange [mm] | flange [mm]
800 20 300 15 200 18
600 12 200 10 50 10
750 20 280 14 90 14
900 28 340 15 110 15
650 12 240 12 70 12
700 15 300 15 100 15
800 18 380 17 130 17
900 25 425 18 150 18
760 16 350 15 150 15
830 19 430 18 150 18

Table 3.1: Dimensions of T and L profiles

For flat bar profiles, the dimensions are the following:

Width of plate Thickness of plate Height of web Thickness of web
[mm] [mm] [mm] [mm]
800 20 300 15
600 12 200 10
750 20 280 14
900 28 340 15
650 12 240 12
700 15 300 15
800 18 380 17
900 25 425 18
760 16 350 15
830 19 430 18

Table 3.2: Dimensions of flat bar profiles
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The above profiles are from a range of stiffeners that are used in bulk carriers and
tankers. Firstly, for the above profiles, the results of the analytical solution 1 were
pictured in the below figure. With the method of least squares, which is a standard
approach in regression analysis, the envelope of the lines can be described by the

following 4™ degree polynomial equations:
e For the lower line:
y = —0.21x* + 0.87x3 — 1.1x%2 + 0.038x + 1
with residual ||7|| = /2| |? = 0.002

where || the difference between the value of the analytical solution 1 and the 4%

polynomial degree for each point

e For the upper line:

y = —0.31x* 4+ 0.93x3 — 0.89x2 + 0.026x + 1
with ||7|| = /X[ |? = 0.001

It is clarified that y = b./b and x = b/L.

T -L -Flat bar profiles

0.1 0.2 0.3 0.4 0.5 06 07 0.8
b/L

Figure 3.30: Analytical solution 1 for ship scantlings
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In the following diagrams, the residuals of the 4™ degree polynomial are presented for

the lower and upper line.

residuals
0.01

0.008 [~
0.006 [~

0.004 —

0.002

-0.002

-0.004 —

-0.008 [~

| | | | | | | | | J
1] 01 0z 03 04 05 06 07 08 09 1

0.0

Figure 3.31: Residuals of the 4™ degree polynomial for the lower line

%1073 residuals

[ 4th degree

| | | | | | | | | J
] 01 0.2 03 04 05 06 o7 08 09 1

Figure 3.32: Residuals of the 4™ degree polynomial for the upper line
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It is noted that the equation of CSR is the following:

be=b*min%,1 forL21
1+—rg bv3
&v3)
b, = 0.407L for L <1
V3 b3

In the below figures, the comparison of the different methods is pictured for each
profile separately. In each case, the solid lines represent the solution 1 and the
envelope of these lines is described by the following 4™ degree polynomial equations:

For T profile the envelope of lines of analytical solution 1 is the following:
e For the lower line:
y = —0.21x* + 0.87x3 — 1.1x? + 0.038x + 1
with residual ||7|| = /X |r|? = 0.002
e For the upper line:
y = —0.32x* +x3 —x2 +0.032x + 1

with residual ||7|| = /X |r|? = 0.001

For L profile the envelope of lines of analytical solution 1 is the following:
e For the lower line:

y = —0.32x* + 1.1x3 — 1.2x% + 0.04x + 1

with residual ||7|| = /X |r|? = 0.001
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e For the upper line:

y =—0.33x*+x3—x? +0.031x + 1

with residual ||7|| = v/ X|r%|? = 0.002

For Flat-bar profile the envelope of lines of analytical solution 1 is the following:
e For the lower line:
y=—-037x*+ 1.1x3 — 1.1x2 + 0.033x + 1
with residual ||7|| = /X |r]? = 0.001
e For the upper line:

y = —0.31x* + 0.93x3 — 0.89x% + 0.026x + 1

with residual ||7|| = /X |r]? = 0.001

T profile
B e —— —— Analytical solution 1
= ’ .
Y . =
. ~
., ~

B ~ ~

™ . -~
B ~ Schade

. ~
Paik ~. T~
~_ ~o_
~—o
| | | | | | | | |

] 01 02 0.3 04 0.5 0.6 0.7 0.8 09

biL

Figure 3.33: Effective width according to analytical solution 1, Paik, Schade and CSR of T profile
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L profile
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Figure 3.34: Effective width according to analytical solution 1, Paik, Schade and CSR of L profile
Flat-bar profile
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Figure 3.35: Effective width according to analytical solution 1, Paik, Schade and CSR of Flat-bar profile
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In conclusion, for simply supported conditions, the method of Paik gives the smallest
values of the ratio b./b in comparison with the other three methods, which means
that is the safest and the most conservative method for the stresses of the attached

plate of T, L and flat bar profiles.



Chapter 4: Stress analysis of cross-stiffened panels 65

4. Stress analysis of cross-stiffened panels
4.1 From 2D to 1D: Analytical calculations-Assumptions

At shipbuilding industry, the cross-stiffened panels are found mainly in
passenger and RORO ships. This chapter deals with a modeling strategy for cross-
stiffened panels which are subjected to uniform pressure loads and concerns the
analysis of the secondary stresses of the longitudinal stiffeners.

Figure 4.1: Cross-stiffened panels

For stiffened panels in one direction, on the boundaries where the longitudinal and
transverse girders are found, it is considered that the support is simple or fixed due to
the stiffness of the girder. It is clarified that for the simple support the deflection and
the moment is zero and the slope has a non zero value in comparison with the fixed
support where the deflection and the slope is zero and the moment has a non zero
value. The scope of this chapter is to estimate the boundary conditions that the
transverse stiffeners impose to the longitudinal stiffeners. The bending of the
longitudinal stiffeners is examined along with the attached plate. For the
determination of the boundary conditions, only the secondary stresses are examined.
The idea is that the secondary stresses of the stiffeners are related with one
coefficient, which in the following pages will be referred as k, depending on the

boundary conditions. Thus, calculating the secondary stresses of a longitudinal
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stiffener between two transverse stiffeners with a commercial software of finite
element analysis, we will be able to correlate the coefficient k with the type of

support. The coefficient k will now be defined for simple and fixed supports.

Simply supported beam:

H

Figure 4.2: Simply supported beam

Let consider a simply supported beam with length a and width b. From the
equilibrium equation XF, = 0 we get that the reaction forces at supports are qa/2.

Thus, the shear force Q and the bending moment M are the following:
qa
QM) ==~ ax (4.1)

MG) = | Q@de = 3x - 3x (42)
0

The maximum bending moment is at x = a/2 because at this position dM/dx = 0.

By substituting x = a/2 into equation (4.2) we get that :

(4.3)

In the following figure, the first distribution depicts the bending moment and the

second depicts the shear force along a simply supported beam.
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Figure 4.3: Bending moment and shear force distribution of simply supported beams

Considering that g = p * b the maximum stress can be expressed as follows:

Mmax _ pazbzmax (4.4)

Omax — szax = 3]

Fixed supported beam:

Figure 4.4: Fixed supported beam

Let consider a simply supported beam with length a and width b. From the
equilibrium equations XF, =0 and M = Owe get that the reaction forces at
supports are ga/2 and the reaction moments Mg. Thus, the bending moment can be

expressed as follows:

gx? gax
M(X) = _T-I_T_ MF (45)
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From the elastic curve equation, we get that:

d*wx) = M)

dx2 ~  EI (4.6)

where w(Xx) is the deflection of the beam. The boundary conditions are the following:

* Wk o=0 (4.7)

e Wl =0 (4.8)
dw _

© wl_ =0 (4.9)
dw

© ol =0 (4.10)

By substituting equations (4.7)-(4.10) into equation (4.6) we that:

Mg = 92" 4.11
Thus, the bending moment can be expressed as:
2 2
gx“ (gax qa

ME)=——+——— 4.12

) R T (4.12)
The maximum bending moment is at x = 0 with value:

qa’

Mmax = H (4"13)

In the following figure, the first distribution depicts the bending moment and the
second depicts the shear force along a fixed supported beam.

qa” qa’

12\\ 12

Figure 4.5: Bending moment and shear force distribution of fixed supported beams
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The maximum stress can now be expressed as follows:

M pa’bz
Omax — %Zmax = Tm (4-14)

From the equation (4.4) and (4.14) we get that the formula of the maximum stress is:

a’bz
Omax = (4.15)

with k to be equal with 8 for simply supported beam and 12 for fixed supported beam.
In order to visualize this, let consider a beam with torsional springs as supports, as
depicted in the following figure. When k = 8 then the spring stiffness is zero and

when k = 12 then the spring stiffness is infinite.

e e

Figure 4.6: Beam with torsional springs as supports

Thus, designing a model with cross-stiffened panel in the finite element analysis
software, the stresses can be computed and by substituting them to the equation (4.15)
the coefficient k can be calculated. The parameters of the model are the pressure load,
the number of the longitudinal and transverse stiffeners, the distance a of the
transverse stiffeners (which is the length of the longitudinal stiffeners), the distance b
between the longitudinal stiffeners (which is the width of the attached plate of the
longitudinal stiffeners), the thickness t.,; of the plate and the dimensions of
longitudinal and transverse stiffeners. It is clarified that the moment of inertia of
equation (4.15) concerns the longitudinal stiffener along with the attached plate. Our
scope is to find the relation between the inertia moment of transverse stiffeners and
the coefficient k. In order to succeed reliable results, we need to run the model for a
range of the parameters that were mentioned previously. The choice of the values of
the parameters and the number that the model will be run, will be determined from the
central composite design, that is analyzed below.
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4.2 Design of experiment and test matrix

Central composite design is appropriate for calibrating full quadratic models. It
consists of a full factorial design with a central point and additional axial points at a
specific distance from its centre. There are three types of central composite design:

circumscribed, inscribed and faced. For our case, we will use the faced design.

15
1
= e I
05 5
0 i
-‘ e
-05 e
1
e PR
-15
1\\/\/
0
-1 1

Figure 4.7: Central Composite Faced

For our case, the range of the values of the variables will be determined
from the range of the values that are used to real ship scantlings. The variables of the

problem are the following:

e X,: The distance between two consecutive longitudinal stiffeners
e X,: The distance between two consecutive transverse stiffeners
e X;: The thickness of the plate

e X,: The profile of the cross section of the longitudinal stiffeners

Considering that n represents the number of the variables, the total number of design
points is equal to 2™ + 2n + 1 = 25. The range of the values for the variable X; is
from 600 to 900 mm, for the variable X, from 1800 to 5400 mm and for the variable
X5 from 12 to 28 mm. For the variable X, the following T profiles are examined:
(200x10 + 50x10), (280x14 + 90x14) and (340x15 + 110x15). The test matrix of the

four variables is the following:



Chapter 4: Stress analysis of cross-stiffened panels

71

X, X, X; X,
—1 —1 -1 -1
—1 —1 -1 +1
—1 —1 +1 -1
—1 —1 +1 +1
—1 +1 -1 -1
—1 +1 -1 +1
—1 +1 +1 -1
—1 +1 +1 +1
+1 —1 -1 -1
+1 —1 -1 +1
+1 —1 +1 -1
+1 —1 +1 +1
+1 +1 -1 -1
+1 +1 -1 +1
+1 +1 +1 -1
+1 +1 +1 +1
—1 0 0 0
+1 0 0 0
0 —1 0 0
0 +1 0 0
0 0 —1 0
0 0 +1 0
0 0 0 -1
0 0 0 +1
0 0 0 0

Table 4.1: Test matrix of central composite faced

Applying the above test matrix to the range of the variables that was described

previously, the values of each experiment are the following:
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X1[mm] X, [mm] X3[mm] X4[mm X mm]
600 1800 12 200 x 10+ 50x 10
600 1800 12 340 x 15+ 110 x 15
600 1800 28 200 x 10+ 50x 10
600 1800 28 340 x 15+ 110 x 15
600 5400 12 200 x 10+ 50x 10
600 5400 12 340 x 15+ 110 x 15
600 5400 28 200 x 10+ 50x 10
600 5400 28 340 x 15+ 110 x 15
900 1800 12 200 x 10+ 50 x 10
900 1800 12 340 x 15+ 110 x 15
900 1800 28 200 x 10+ 50 x 10
900 1800 28 340 x 15+ 110 x 15
900 5400 12 200 x 10+ 50 x 10
900 5400 12 340 x 15+ 110 x 15
900 5400 28 200 x 10+ 50 x 10
900 5400 28 340 x 15+ 110 x 15
600 3600 20 280 x 14 + 90 x 14
900 3600 20 280 x 14 + 90 x 14
750 1800 20 280 x 14 + 90 x 14
750 5400 20 280 x 14 + 90 x 14
750 3600 12 280 x 14 + 90 x 14
750 3600 28 280 x 14 + 90 x 14
750 3600 20 200 x 10+ 50 x 10
750 3600 20 340 x 15+ 110 x 15
750 3600 20 280 x 14 + 90 x 14

Table 4.2: The values of the variable for the model

For each of the above 25 cases the stresses, thus the coefficient k, will be calculated

for five different cross sections of transverse stiffeners in order to find a relation

between the second moment of inertia of transverse stiffeners and the coefficient k.
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Namely, for the longitudinal stiffeners with T profile and dimensions
200 x 10 + 50 x 10, the stresses will be calculated for the following transverse

stiffeners of T profile [mm X mm)]:

e 200x10+50x10
e 270x13+85x13
e 330x15+110x 15
e 375Xx16+130x 16
e 425x18+150x 18

For the longitudinal stiffeners with 280 x 14 + 90 x 14 dimensions and T profile,
the stresses will be calculated for the following transverse stiffeners of T

profile [mm X mml]:

e 280x14+90x 14

e 320x 15+ 105x 15
e 360x16+120x 16
e 390x17+ 140 x 17
e 425x18+150x 18

For the longitudinal stiffeners with 340 x 15 + 110 x 15 dimensions and T profile,
the stresses will be calculated for the following transverse stiffeners of T

profile [mm X mml]:

e 340x15+110x 15
e 360x16+ 120X 16
e 380x17+130x 17
e 400x17+ 140 x 17
e 425x18+150x 18

The dimensions of the transverse stiffeners were chosen considering that the second
moment of inertia of longitudinal stiffeners is smaller than the second moment of
inertia of transverse stiffeners. It is clarified that the above transverse stiffeners have

different second moment of inertia.
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For each case, all structural elements comply with the applicable slenderness and
proportion requirements according to CSR. Specifically, the net thickness satisfies the

following criteria:

b [Ren

C,235

tp = (4.16)

where b is the breadth of the plate, R,y is the specified minimum yield stress of the
material and for all the structural elements is considered 235 N /mm? and C = 100.
bf—u:-ut

—
—

E

L

L d
s I

Figure 4.8: T bar profile of stiffeners

The net thickness of stiffener web plate satisfies the following criterion:

hW ReH

= 4.1
tw = Cw +| 235 (4:17)
The net thickness of flange satisfies the following criterion:
bf—out ReH

> 4.1
Y="c " 235 (4.18)
The total flange breath satisfies the following criterion:
bg = 0.25hyy (4.19)

where Cy, =75 and Cy = 12 are slenderness coefficients. As depicted in figure 4.8

hyy is the depth of stiffener web and b¢_,,: IS the maximum distance from mid

thickness of the web to the flange edge.
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The minimum value of the net moment of inertia of the stiffener with the effective

width of attached plate is given by:

ReH

(4.20)

where Asf is the net sectional area of stiffener including attached plate and C ,the
slenderness coefficient, is 1.43 for longitudinal stiffeners and 0.72 for transverse

stiffeners.
4.3 Modeling in commercial Finite Element software

For each model in the finite element software, four transverse stiffeners with
distance equal to a (X, variable) and three longitudinal stiffeners with distance equal
to b (X, variable) will be used. The plate is fixed supported. The value of the pressure
is equal to 0.1 MPa, of the modulus of elasticity equal to 207 GPa and of the
Poisson’s ratio equal to 0.3. The mesh size is 50 mm. The plate was modeled with S4
shell elements and the stiffeners with B31 beam elements. The longitudinal stiffener
that was examined, was in the middle of X-Y plane in order to have minimization of
the effect of the boundary conditions. It is clarified that for each case, the maximum
stress S;;along the longitudinal stiffener between the two transverse stiffeners, with
the stress to be parallel with the direction of longitudinal stiffeners, will be substituted
into equation (4.15).

.

Figure 4.9: Boundary conditions for cross-stiffened panel in Abaqus
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Figure 4.10: Stresses with direction parallel to the length of the plate
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Figure 4.11: Cut view at the middle length of the plate

In figure 4.9, it is depicted the pressure loads and the boundary conditions and with
annotations the beam and shell elements. In figures 4.10 and 4.11 it is depicted the
distribution of the stress with direction parallel to the undeformed longitudinal
stiffeners. The longitudinal stiffener that was examined, is the intermediate that is
depicted in cut view in figure 4.11. In the following diagrams the distribution of beam

stress and the magnitude of deflection are presented.
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Figure 4.12: Beam stress of longitudinal and transverse stiffeners
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Figure 4.13: Magnitude of the deflection

4.4 Application to real ship scantlings — Results

Below, for each case the mean and standard deviation of k are presented. The
analytical results for each are found in the appendix. Given that for each case, the
value of k is calculated for five different values of second moment of inertia of
transverse stiffeners, the mean (1) and the standard deviation (o) are given by the

following formulas:

_2iXi

. (4.21)
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o= ZL(Xi B H)z
B N
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(4.22)

where X; the values of k for each case, and N = 5 the number of the values.

Case Mean (p) Standard deviation (o)
1 12.57 0.32
2 13.73 0.69
3 14.16 0.74
4 15.56 0.85
5 11.8 0.03
6 8.88 0.05
7 18.95 1.33
8 12.91 0.11
9 13.06 0.52
10 11.19 1.31
11 15.09 0.56
12 12.33 1.64
13 11.76 0.06
14 11.46 0.08
15 14.26 0.97
16 11.94 0.04
17 11.93 0.02
18 11.92 0.03
19 14.53 0.92
20 11.8 0.02
21 11.59 0.1
22 12.31 0.08
23 12.28 0.13
24 11.75 0.02
25 11.89 0.04

Table 4.3: Mean and standard deviation of k for each case
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For all the cases, the value of k is not smaller than 8. Thus, we can consider that
for longitudinal stiffeners with values of second moment of inertia from 1.1 x 107 to
8.8 x 107 mm* and for transverse stiffeners with values from 1.1 x 107 to 21.3 X
10’mm*, the most safe and conservative value for the coefficient k is 8. It can also be
considered that the increase of the second moment of inertia of transverse stiffeners
for each case does not affect the value of the coefficient. In the following figure, the
values of the 125 points are depicted. The Y axis refers to the second moment of

inertia of transverse stiffeners.

— — — conservative boundary

second moment of inertia

Figure 4.14: Results for k in relation with second moment of inertia of transverse stiffeners

In the following figures, the histogram and the probability distribution of values of k
are presented. The probability distribution can be approximated by the probability
density function of t location-scale distribution with the following formula:

2 —(V+1)

F(V+1 V_I_(x—u)

fy (%) = (4.23)
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where 4 is the location parameter and is equal to 12.16, o is the scale parameter and is
equal to 0.77, v is the shape parameter and is equal to 1.36 and I'(*) is the gamma
function and its formula is given by:

Irx) = fwe‘ttx‘ldt (4.24)
0
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k

Figure 4.15: Histogram for the values of k
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Figure 4.16: The t location-scale distribution for the values of k
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In the following figure, the box plot for the values of k is depicted. It is shown that in
most cases the effect of the second moment of inertia of transverse stiffeners is

negligible.
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Figure 4.17: Box plot for the values of k

In the following table, the values of k are given in relation with 3 variables. The
variable in the third column is the second moment of inertia of longitudinal stiffeners
along with the attached plate. The effect of the second moment of inertia of transverse
stiffeners is considered negligible from 1.1 x 10”7 to 21.3 x 10’mm®. For variables
within the limits that were mentioned before, coefficient k can be calculated using

trilinear interpolation.



Chapter 4: Stress analysis of cross-stiffened panels

X, X, I k

600 1800 4.1 12.34
600 1800 25.62 12.92
600 1800 5.18 13.73
600 1800 33.85 14.5
600 5400 4.1 11.78
600 5400 25.62 8.82
600 5400 5.18 17.84
600 5400 33.85 12.77
900 1800 439 12.29
900 1800 28.85 9.11
900 1800 5.42 14.65
900 1800 36.54 9.93
900 5400 439 11.67
900 5400 28.85 11.37
900 5400 5.42 13.49
900 5400 36.54 11.89
600 3600 17.15 11.91
900 3600 18.56 11.88
750 1800 17.96 13.63
750 5400 17.96 11.78
750 3600 15.49 11.44
750 3600 19.72 12.24
750 3600 4.84 12.21
750 3600 32.12 11.73
750 3600 17.96 11.84

Table 4.4: The value of k in relation with X, X, and |
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5. Generic conclusions

For stiffened panels that are subjected to uniform pressure loads, the Euler-
Bernoulli beam theory underestimate the secondary stresses due to the shear lag
phenomenon. Analytical solutions of Paik, Schade and Miller considering this
phenomenon provide a method to calculate the secondary stresses. The most safe and
conservative is the solution of Paik for T, L and Flat-bar profiles. Direct stiffness
method also underestimates the stress field either using Euler or Timoshenko beam.
For the modeling of a stiffened panel in a finite element software solid elements give
a stress field with small deviances from the analytical solutions for the secondary
stresses, apart from the boundaries, and reducing the mesh size the numerical results
converge to the theoretical elements. Beam elements are 1-D elements which also
underestimate the stress field. Shell elements are not suggested for secondary stress

analysis.

For a cross-stiffened panel, given that the dimensions of the panel concern ship
scantlings, the longitudinal stiffeners can be considered as simply supported between
two transverse stiffeners. Moreover, the second moment of inertia of transverse
stiffeners has small effect to the secondary stress field of the longitudinal stiffeners
and as a result the type of support is not related with the second moment of inertia of

transverse stiffeners.
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Appendix A

Code of Direct Stiffness Method

E=207000;
v=0.3;
L=3650;
I=371068740.80221;
F=292000;
AS=17593;
G=E/ (2* (v+1));
eulertim=input ('Euler or Timoshenko? Press 0 for Euler , 1 for Timoshenko')
if eulertim==
FTIM=0;
elseif eulertim==
FTIM=12*E*I/ (G*AS* (L"2));
end
1=0;
danaf=2;
d=input ('dwste arithmo dokariwn')
L=L/d;
K=(E*I/(L"3))*[12,6*L,-12,6*L;6*L, (4+FTIM) * (L"2),-6*L, (2-FTIM) * (L"2);-12,-6*L,12, -
6*L; 6*L, (2-FTIM)* (L"2),-6*L, (4+FTIM) * (L"2)];
while danaf~=d
danaf=danaf+1;
1=1+4+2;
end
for 1i=5:1:6+1
for j=5:1:6+1
K(i,3)=0;
end
end
for i=1:1:6+1
for j=1:1:6+1
A(i,3)=0;

end
end
for i=1:1:6+1
for j=1l:1:6+1
if (i<=4) && (j<=4)
A(i+2,3+2)=K(i,]);

end
end
end
S=K+A;
if d~=2
for c=1:1:(d-2)
K=A;
for i=1:1:6+1
for j=1:1:6+1
A(i,j)=0,‘
end
end
for i=1:1:6+1
for j=1:1:6+1
if (i<=(4+1)) && (i>=(4-1)) && (J<=(4+1)) && (j>=(4-1))
A(i+2,3+2)=K(i,]J);
end
end
end
S=S+A;
end

end
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MHTRWOAKAMPSIAS=S;
for ii=1:1:(6+1)
if mod(ii,2)==0

C(ii)=0;
else
C(ii)=(F/(d-1));
end
end
C(1)=0;
C(2)=0;
C(5+1)=0;
C(6+1)=0

EXDUNAMEIS=C';
MIKROSPINAKAS=S;
MIKROSPINAKAS (
MIKROSPINAKAS (
MIKROSPINAKAS (
MIKROSPINAKAS (
(
(
(

14 = 4

:)
(1) =
p )=
2)=

~e

~.

NNP—‘P—‘

MIKROSPINAKAS =
MIKROSPINAKAS (5+1,5+1
MIKROSPINAKAS (6+1, :)=0;
MIKROSPINAKAS (6+1,6+1)=1;
ANTISTROFOS=inv (MIKROSPINAKAS) ;
METATOPISEIS=ANTISTROFOS*EXDUNAMEIS

0
1
0
1
541, 1)=0;
+1)=

lr

SYNOLIKESDYNAMEIS=MHTRWOAKAMPSIAS*METATOPISEIS;

ADIDRASEIS=SYNOLIKESDYNAMEIS-EXDUNAMEIS;
w=1;

for i=1:2:(1+3)
tasi(w)=77.527*E*( (-1*METATOPISEIS (i+1) /L)
w=w+1;

end

+

(1*METATOPISEIS (1i+3) /L)
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Code for the calculation of b, for T profiles

%analytiki sxesi apo Paik

k=1;
for z=0:10"(-3) :1
if z<=0.1
w(k)=1;
J(k)=z;
k=k+1;
else
w(k)=(4*sinh(pi.*z).*sinh(pi.*z)) ./ (pi*1.3*(2.7*sinh(2*pi.*z)-2.6*pi.*z).*z);
j(k)=z;
k=k+1;
end
end
hold on
plot(j,w, '-=")

%$telos paik

grid on

tfw=150;

tft=18;

wh=430;

wt=15;

bfw=830;

bft=19;

A= (tfw*tft)+ (wh*wt) + (bfw*bft) ;

zbot=( (bfw*bft*bft/2)+ (wh*wt* (bft+wh/2))+ (tft*tfw* (bft+wh+tft/2))) /A;
ztop=(wht+bft+tft) -zbot;

zsbot=zbot- (bft/2);

zstop=ztop-(tft/2);

I=((1/12) *bfw*bft"3)+ (bft*bfw* (bft/2-zbot) *2)+ ((1/12) *wt*wh”3) + (wt*wh* ( (bft+wh/2) -
zbot) *2)+ ((1/12) *tfw*tft"3)+ (tft*tfw* ((bft+wh+tft/2)-zbot)*2);

d=1;

for 1i=0.01:0.01:1

$synthhkes edrasis

L=bfw/ii;

$ypologismos sb

sb=(0.1*bfw* (L"2) *zbot) / (8*I);

$ypologismos ss

fun=Q@ (x) (bft*bfw*zsbot/wt)+0.5.* (zsbot-x) .* (zsbot+x) ;
g=integral (fun, 0, zsbot) ;

ss=((2*0.7*0.1*bfw) /1) *q;

$ypologismos ssaxial

%los oros

fun=Q (x) (tft*tfw*zstop/wt)+0.5.* (zstop-x) .* (zstop+x);
g=integral (fun, 0, zstop) ;

gl= wt*g* (zstop) ;

%$20s oros

fun=Q@ (x) zstop.* (zstop+ (tfw/2)-x);
g=integral (fun, zstop, zstop+ (tfw/2)) ;

q2=2*tft*g* (tfw/2) ;

%$30s oros

fun=@Q (x) (bft*bfw*zsbot/wt)+0.5.* (zsbot-x) .* (zsbot+x) ;
g=integral (fun, 0, zsbot) ;

qg3=wt*g*zsbot;

%40s oros

fun=@ (x) zsbot.* (zsbot+ (bfw/2)-x);
g=integral (fun, zsbot, zsbot+ (bfw/2)) ;

g4=2*bft*g* (bfw/2) ;
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$Sprosthesi twn tessarwn orwn
ssax=(ql+g2+qg3+g4) * (1.4*0.1*bfw/ (I*A));

$ypologismos ssbending

$los oros

fun=@ (x) (tft*tfw*zstop/wt)+0.5.* (zstop-x) .* (zstop+x) ;
g=integral (fun, 0, zstop) ;

fun=@ (x) wt*qg.*x;

gl=integral (fun, 0, zstop) ;

$20s 0ros

fun=@ (x) zstop.* (zstop+ (tfw/2)-x);
g=integral (fun, zstop, zstop+ (tfw/2)) ;
q2=2*tft*zstop*qg* (tfw/2) ;

$30s 0ros

fun=0 (x) (bft*bfw*zsbot/wt)+0.5.* (zsbot-x).* (zsbot+x) ;
g=integral (fun, 0, zsbot) ;

fun=@ (x) wt*qg.*x;

g3=integral (fun, 0, zsbot) ;

%40s oros

fun=Q0 (x) zsbot.* (zsbot+ (bfw/2)-x);
g=integral (fun, zsbot, zsbot+ (bfw/2)) ;
q4=2*bft*zsbot*qg* (bfw/2) ;

$prosthesi twn tessarwn orwn
ssb=(gql+g2+g3+g4) * (1.4*0.1*bfw*zbot/ (1"2)) ;

$ypologismos smax
smax=sb-ss+ssax+ssb;

%oloklirwma gia be

Syms x
f=zsbot.* (zsbot+ (bfw/2) -x) ;
fint=-int (f, x, zsbot) ;
fintt=smax-(1.4*0.1*bfw/I).*fint;
olokl=int (fintt, x, [zsbot zsbot+ (bfw/2)1]):;
be=2*0lokl/smax;

be=double (be) ;

a=be/bfw;

xx (d)=1ii;

y(d)=a;

%arxi csr

if L>=(bfw* (37(0.5)))
cc=1.12/(1+(1.75/(L/ (bfw* (37(0.5))))"1.6));
dd=1;
ee=min (cc,dd) ;
befcsr=ee*bfw;

else
befcsr=0.2349815596*L;

end

csr (d)=befcsr/bfw;

%telos csr

d=d+1;
end




Appendix

90

plot (xx,vVy)

plot (xx,csr, '--")
%$shade
a=[1 1/1.8478 1/2.5 1/3.4348 1/4.5

b=[0.3869 0.7087 0.8347 0.9087 0.9478
aa=1:-10"(-3):(1/8.2174);
bb=spline(a,b,aa);

plot(aa,bb, '--")

%$telos shade

1/8.217471;
117
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Appendix B

Below, the results of each case are presented. For each case, there is a column
for the dimensions of the transverse stiffeners for which the model was run, for the
second moment of inertia for the transverse stiffeners (1), for the maximum stress and

its position to the longitudinal stiffener and for the coefficient k that results from

equation 4.15.

Case 1
Dimensions I Omax
[mm X mm] [mm*] [MPa] position k
200 x 10 +50 x 10 1.1 x 107 65.64 0 13.21
270 x 13 + 85 x 13 3.8 x 107 70.24 0 12.34
330 x 15+ 110 x 15 8.2 x 107 70.1 0 12.37
375x 16+ 130 x 16 | 12.9 x 107 69.72 0 12.43
425 x 18 +150 x 18 | 21.3 x 107 69.23 0 12.52
Case 2
Dimensions | Omax
[mm X mm] [mm*] [MPa] position K
340 x 15+ 110 x 15 8.8 x 107 12.97 0 14.91
360 x 16 + 120 x 16 | 11.3 x 107 13.75 0 14.06
380 X 17 + 130 x 17 | 14.3 x 107 14.32 0 13.49
400 X 17 + 140 x 17 | 16.7 x 107 14.59 0 13.25
425 x 18+ 150 x 18 | 21.3 x 107 14.97 0 12.92
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Case 3
Dimensions | Omax
[mm X mm] [mm*] [MPa] position k
200 x 10 +50 x 10 1.1 x 107 49.56 0 15.62
270 x 13 +85 x 13 3.8 x 107 55.44 0 13.97
330 x 15+ 110 x 15 8.2 x 107 56.29 0 13.76
375x 16 + 130 x 16 | 12.9 x 107 56.41 0 13.73
425x 18+ 150 x 18 | 21.3 x 107 56.41 0 13.73
Case 4
Dimensions [ Omax
[mm X mm] [mm*] [MPa] position k
340 x 15+ 110 x 15 8.8 x 107 10.31 a/2 16.93
360 x 16 + 120 x 16 | 11.3 x 107 10.86 0 16.06
380 x 17 + 130 x 17 | 14.3 x 107 11.39 0 15.31
400 X 17 + 140 x 17 | 16.7 x 107 11.65 0 14.98
425x 18+ 150 x 18 | 21.3 x 107 12.03 0 14.5
Case 5
Dimensions [ Omax
[mm X mm] [mm*] [MPa] position k
200 x 10+ 50 x 10 1.1 x 107 658 0 11.86
270 x 13 +85 x 13 3.8 x 107 662.23 0 11.78
330 x 15+ 110 x 15 8.2 x 107 662.19 0 11.78
375x 16 + 130 x 16 | 12.9 x 107 661.81 0 11.79
425x 18+ 150%x 18 | 21.3 x 107 661.29 0 11.8
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Case 6

Dimensions | Omax

[mm X mm] [mm*] [MPa] position k
340 x 15+ 110 x 15 8.8 x 107 197.3 0 8.82
360 X 16 + 120 x 16 | 11.3 x 107 196.42 0 8.86
380 X 17 + 130 x 17 | 14.3 x 107 195.62 0 8.89
400 X 17 + 140 x 17 | 16.7 x 107 195.05 0 8.92
425 x 18+ 150 x 18 | 21.3 x 107 194.29 0 8.95
Case 7

Dimensions I Omax

[mm X mm] [mm*] [MPa] position k

200 x 10 +50 x 10 1.1 x 107 324.46 0 21.48
270 x 13 + 85 x 13 3.8 x 107 366.26 0 19.03

330 x 15+ 110 x 15 8.2 x 107 380.07 0 18.34
375x 16+ 130 x 16 | 12.9 x 107 385.74 0 18.07
425 x 18+ 150 x 18 | 21.3 x 107 390.67 0 17.84
Case 8

Dimensions [ Omax

[mm X mm] [mm*] [MPa] position k
340 x 15+ 110 x 15 8.8 x 107 120.07 0 13.08
360 x 16 + 120 x 16 | 11.3 x 107 121.09 0 12.97
380 x 17+ 130 x 17 | 14.3 x 107 121.92 0 12.88
400 X 17 + 140 x 17 | 16.7 X 107 122.32 0 12.84
425 x 18+ 150 x 18 | 21.3 x 107 122.96 0 12.77
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Case 9
Dimensions | Omax
[mm X mm] [mm*] [MPa] position k
200 x 10 +50 x 10 1.1 x 107 103.64 a/2 12.29
270 x 13 +85 x 13 3.8 x 107 91.53 0 13.93
330 x 15+ 110 x 15 8.2 x 107 97.23 0 13.11
375x 16 + 130 x 16 | 12.9 x 107 98.18 0 12.98
425x 18+ 150 x 18 | 21.3 x 107 98.19 0 12.98
Case 10
Dimensions [ Omax
[mm X mm] [mm*] [MPa] position k
340 x 15+ 110 x 15 8.8 x 107 30.7 a/2 9.11
360 x 16 + 120 x 16 | 11.3 x 107 27.05 a/2 10.34
380 x 17 + 130 x 17 | 14.3 x 107 24.2 a/2 11.55
400 X 17 + 140 x 17 | 16.7 x 107 22.63 a/2 12.35
425x 18+ 150 x 18 | 21.3 x 107 22.13 a/2 12.63
Case 11
Dimensions [ Omax
[mm X mm] [mm*] [MPa] position k
200 x 10+ 50 x 10 1.1 x 107 76.39 a/2 14.92
270 x 13 +85 x 13 3.8 x 107 70.36 0 16.2
330 x 15+ 110 x 15 8.2 x 107 76.09 0 14.98
375x 16 + 130 x 16 | 12.9 x 107 77.32 0 14.74
425x 18+ 150%x 18 | 21.3 x 107 77.81 0 14.65
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Case 12

Dimensions | Omax

[mm X mm] [mm*] [MPa] position k
340 x 15+ 110 x 15 8.8 x 107 25.79 a/2 9.93
360 X 16 + 120 x 16 | 11.3 x 107 22.79 a/2 11.24
380 X 17 + 130 x 17 | 14.3 x 107 20.47 a/2 12.51
400 X 17 + 140 x 17 | 16.7 x 107 19.2 a/2 13.34
425 x 18+ 150 x 18 | 21.3 x 107 17.48 a/2 14.65
Case 13

Dimensions I Omax

[mm X mm] [mm*] [MPa] position k

200 x 10 +50 x 10 1.1 x 107 983.32 0 11.67
270 x 13 + 85 x 13 3.8 x 107 978.64 0 11.72

330 x 15+ 110 x 15 8.2 x 107 974.52 0 11.77
375x 16+ 130 x 16 | 12.9 x 107 972.18 0 11.79
425 x 18+ 150 x 18 | 21.3 x 107 969.89 0 11.83
Case 14

Dimensions [ Omax

[mm X mm] [mm*] [MPa] position k
340 x 15+ 110 x 15 8.8 x 107 221.58 0 11.37
360 x 16 + 120 x 16 | 11.3 x 107 220.53 0 11.41
380 x 17+ 130 x 17 | 14.3 x 107 219.55 0 11.46
400 X 17 + 140 x 17 | 16.7 X 107 218.86 0 11.49
425 x 18+ 150 x 18 | 21.3 x 107 217.19 0 11.59
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Case 15
Dimensions | Omax
[mm X mm] [mm*] [MPa] position k
200 x 10 +50 x 10 1.1 x 107 635.93 0 16.13
270 x 13 +85 x 13 3.8 x 107 719.59 0 14.26
330 x 15+ 110 x 15 8.2 x 107 744.07 0 13.79
375x 16 + 130 x 16 | 12.9 x 107 753.3 0 13.62
425x 18+ 150 x 18 | 21.3 x 107 760.57 0 13.49
Case 16
Dimensions [ Omax
[mm X mm] [mm*] [MPa] position k
340 x 15+ 110 x 15 8.8 x 107 192 0 12.01
360 x 16 + 120 x 16 | 11.3 x 107 192.79 0 11.96
380 x 17 + 130 x 17 | 14.3 x 107 193.32 0 11.93
400 X 17 + 140 x 17 | 16.7 x 107 193.54 0 11.91
425x 18+ 150 x 18 | 21.3 x 107 193.82 0 11.89
Case 17
Dimensions [ Omax
[mm X mm] [mm*] [MPa] position k
280 x 14 +90 x 14 4.6 x 107 94.43 0 11.91
320 x 15+ 105 x 15 7.4 x 107 94.43 0 11.91
360 x 16 + 120 x 16 | 11.3 x 107 94.29 0 11.93
390 x 17 + 140 x 17 | 15.7 x 107 94.15 0 11.94
425x 18+ 150%x 18 | 21.3 x 107 93.00 0 11.96
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Case 18
Dimensions | Omax
[mm X mm] [mm*] [MPa] position k
280 x 14 +90 x 14 4.6 x 107 138.42 0 11.92
320 x 15+ 105 x 15 7.4 x 107 138.88 0 11.88
360 X 16 + 120 x 16 | 11.3 x 107 138.62 0 11.89
390 x 17 + 140 x 17 | 15.7 x 107 138.22 0 11.93
425x 18+ 150 x 18 | 21.3 x 107 137.76 0 11.97
Case 19
Dimensions [ Omax
[mm X mm] [mm*] [MPa] position k
280 x 14 +90 x 14 4.6 x 107 24.72 a/2 14.03
320 x 15+ 105 x 15 7.4 x 107 21.38 0 16.22
360 x 16 + 120 x 16 | 11.3 x 107 23.54 0 14.73
390 x 17 + 140 x 17 | 15.7 x 107 24.73 0 14.03
425x 18+ 150 x 18 | 21.3 x 107 25.45 0 13.63
Case 20
Dimensions [ Omax
[mm X mm] [mm*] [MPa] position k
280 x 14 +90 x 14 4.6 x 107 263.62 0 11.84
320 x 15+ 105 x 15 7.4 x 107 264.47 0 11.8
360 x 16 + 120 x 16 | 11.3 x 107 264.73 0 11.79
390 x 17 + 140 x 17 | 15.7 x 107 264.79 0 11.78
425x 18+ 150%x 18 | 21.3 x 107 264.74 0 11.79
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Case 21
Dimensions | Omax
[mm X mm] [mm*] [MPa] position k
280 x 14 + 90 x 14 4.6 x 107 128.14 0 11.44
320 x 15+ 105 x 15 7.4 x 107 127.23 0 11.52
360 X 16 + 120 x 16 | 11.3 x 107 126.29 0 11.6
390 x 17 + 140 x 17 | 15.7 x 107 125.56 0 11.67
425 x 18+ 150 x 18 | 21.3 x 107 124.89 0 11.73
Case 22
Dimensions I Omax
[mm X mm] [mm*] [MPa] position k
280 x 14 + 90 x 14 4.6 x 107 107.01 0 12.46
320 x 15+ 105 x 15 7.4 x 107 108.13 0 12.33
360 x 16 + 120 x 16 | 11.3 x 107 108.63 0 12.27
390 x 17 + 140 x 17 | 15.7 x 107 108.83 0 12.25
425 x 18+ 150 x 18 | 21.3 x 107 108.89 0 12.24
Case 23
Dimensions [ Omax
[mm X mm] [mm*] [MPa] position k
200 x 10 +50 x 10 1.1 x 107 322.73 0 12.54
270 x 13+ 85 x 13 3.8 x 107 330.59 0 12.24
330 x 15+ 110 x 15 8.2 x 107 331.4 0 12.21
375X 16+ 130 x 16 | 12.9 x 107 331.37 0 12.21
425 x 18+ 150 x 18 | 21.3 x 107 331.17 0 12.22
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Case 24

Dimensions | Omax

[mm X mm] [mm*] [MPa] position k
340 x 15+ 110 x 15 8.8 x 107 76.18 0 11.74
360 X 16 + 120 x 16 | 11.3 x 107 76.22 0 11.73
380 x 17+ 130 x 17 | 14.3 x 107 76.18 0 11.74
400 X 17 + 140 x 17 | 16.7 x 107 76.08 0 11.76
425 x 18+ 150 x 18 | 21.3 x 107 75.94 0 11.78
Case 25

Dimensions I Omax

[mm X mm] [mm*] [MPa] position k

280 X 14 +90 x 14 4.6 x 107 117.12 0 11.84

320 x 15+ 105 x 15 7.4 x 107 117.07 0 11.85
360 x 16 + 120 x 16 | 11.3 x 107 116.75 0 11.88
390 x 17 + 140 x 17 | 15.7 x 107 116.43 0 11.91
425 x 18+ 150 x 18 | 21.3 x 107 116.09 0 11.95




