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Abstract

Cavitation in marine technology is a complex phenomenon and can hinder the
performance and life of marine technology and the ship. Accurate prediction of
cavitation and its control is an active endeavor within the engineering community.
The purpose of this thesis is to implement a numerical modeling of partial cav-
itation on two-dimensional hydrofoils. It builds on established methods for this
purpose and proposes slight modifications of the modeling to allow minimum user
input. The modeling is based on a Boundary Element Method, programmed by
the author in Fortran with the help of supervising professors. The method and
its accompanied code are included in the text and can be used for extensions of
the method. Results of the method agree well with the results by similar BEM
methods. These results suggest that boundary element methods are still a very
useful tool for modern naval architects and marine engineers, in order to design
and operate more efficient propulsors.
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Chapter 1

Introduction

Cavitation is important in connection with various engineering applications and
devices. These include pumps, propellers, turbines and hydrofoil wings to name
a few. Cavitation occurs when a fluid’s pressure drops below the vapour pressure
while it’s temperature remains constant. This vapour pressure is dependent on the
fluid’s temperature. In the case of marine applications, this temperature is usually
the temperature of the seawater, but may be higher or lower for fluids circulating
within the piping systems of a ship( e.g fresh water). The cavity forming within
a volume of water is not separated from the water, as a bubbly volume is created
within the fluid volume, figure 1.1. The collapse of vapour bubbles, once reaching

Figure 1.1: Sheet cavitation, taken from https://cavity.caee.utexas.edu

areas of higher pressure, can cause erosion damage to machinery and radiate noise.
The physics of bubble dynamics in an incompressible fluid have been investigated
by many researchers and the most popular model today is the one by Rayleigh-
Plesset:

R
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+
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where pv is the vapour pressure, p0 the pressure at infinity, ρ the density of the
fluid, νL is the kinematic viscosity of the surrounding liquid, γ is the surface
tension of the bubble-liquid interfaceand R the radius of the bubble.

Cavitation inception is best described by the nondimensional cavitation num-
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ber:

σ =
p0 − pv
1

2
ρV∞

This parameter can be used to achieve similarity between different cavitating
conditions. Cavitation can be categorized into the following types:

1. Sheet cavitation: starting close to the leading edge of the blade, a fixed
cavity attached to the foil suction side is formed and is generally stable in
character

2. Supercavitation: the cavity formed extends beyond the chord length of the
body

3. Cloud cavitation: a mist of bubbles is formed, usually as a result of strongly
developed sheet cavities which are separated from the blade.

4. Bubble cavitation: distinct bubbles of different sizes are formed usually in
the midchord region of a blade

5. Propeller specific cavitation: hub vortex which is produced by the combina-
tion of vortices of the blade root and tip vortex which is attached to the tip
of the blade

Scope of the present work

The scope of the present thesis is to develop a boundary element method for
simulating fixed-length partial cavitation around 2d hydrofoils. It is based on
the work of Spyros Kinnas & Neal Fine in the early 1990s. In this respect, panel
methods for fully wet flow are treated and presented first and the partial cavitation
problem is built on these panel methods. Certain assumptions, in addition to those
made by the founders of the method were made, as a pure reproduction of the
method didn’t produce the expected results, or required cumbersome calibration.
Also, such a reproduction is of little use.

1.0.1 Literature review

A short review of the published literature is first presented, with a special focus
on results related to marine applications
Attempts to numerically predict cavitation were made very early in the history of
fluid dynamics. The hodograph technique introduced by Helmholtz, Kirchoff and
Levi-Civita was the first non-linear theory applied to cavitating flows [1]. With
this method, the cavity is treated as a free streamline with constant pressure. The
hodograph technique was difficult to use with arbitrary body geometries, and thus
its use was very limited to certain cases.

5



Linear method

Tulin introduced in 1953[2] the linearized cavity theory for slender bodies. The
goal of this theory is to calculate the extent of the cavity by assuming a thin
foil geometry, and imposing a distribution of singularities along the length of
the body and cavity. The strength of singularities satisfies a set of boundary
conditions derived from neglecting second-order effects. Results from subsequent
non-linear theories showed the limitations of the linear theory. Linear cavity theory
overpredicts the extent of cavitation and results in an increasing cavity thickness
with increasing foil thickness, contrary to non-linear cavity theories.

Panel methods

The first successful non-linear method for modeling partially cavitating flows was
developed by Uhlman in 1987[3]. He formulated a velocity-based boundary ele-
ment method, by applying a set of linear boundary conditions for the fluid velocity
on the hydrofoil and cavity. The foil and cavity are discretized into straight panels
and each panel has a constant strength vortex, closely following the method by
Hess & Smith [4]. Since the cavity shape is part of the unknowns, an iterative
scheme is applied, in which the cavity shape is initially assumed and is then up-
dated based on a flow-tangency boundary condition on the cavity. The cavity is
assumed to reattach to the foil by a line perpendicular to the foil surface. The
results obtained were significantly different from the results of the linear theory,
correctly predicting the trend of the cavity thickness by increasing foil thickness.
Lemmonier & Rowe[5] applied a similar method, in which the surface singularity
elements bear source elements as well, apart from the vorticity distribution of
Uhlman’s method. They also imposed a smooth transition of the flow velocity from
the cavity to the foil, contrary to the end-plate model of Uhlman. The system of
equations resulting from the discretization of the boundary conditions is closed by
requiring least-square minimization of the source and vortex distribution gradient.
The method was applied to a hydrofoil, a rounded body and an axisymmetrical
body with the cavity on the trailing wake.
Rowe & Blottiaux[6] carried out an evaluation of different partial cavitation clo-
sure models (closed, open with constant wake thickness and open with varying
wake thickness) by applying the method of Lemmonier & Rowe and extending it
to an open model. Open models showed satisfactory capturing of the pressure
distribution in the cavity wake and agreement with experimental results for large
angles of attack.
Peallat & Pellone[7] proposed a method in which a closure condition of the cavity
is not necessary and the shape is obtained by an iterative process. They, too,
used the method of Lemmonier & Rowe (Panel method minimization process) for
calculating the flow characteristics and used results of the method for predicting
the cavity shape and length for a given cavitation number. Results were in good
agreement with experiments regarding the relationship between cavity length and
cavitation number.
Boundary elements methods in which the boundary conditions are expressed in
terms of the flow velocity potential were introduced by Kinnas & Fine[8], [9] and
shortly later by Kim & Lee[10]. The method by Kinnas & Fine is the basis
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of the present study and a detailed description of the method will be given in
following chapters. The two methods differ in the cavity termination modeling
and the cavity shape iterative scheme. Kim & Lee employed a termination wall
model and the cavity shape is corrected after each iteration using a thin wing
theory approximation. Extensions of the non-linear BEM to 3D cavitating flows, of
hydrofoils or propellers were immediate. A short list of related papers is presented
in Chapter 9 of [1].
Dang & Kuiper [11] extended the method of Kinnas & Fine with a reentrant jet
model by adding an extra boundary condition on the jet cross section, requiring the
normal velocity to be equal to the fluid velocity on the cavity boundary. Though
the method is numerical, it showed that the re-entrant jet thickness is always a
certain percentage of the maximum cavity thickness (around 8% to 10%). Results
were compared and agreed well with the results of Uhlman’s method.
Dang[12] developed a non-linear method for partial sheet cavity flows, in which
the cavity surface evolution follows the Eulerian formulation and a Bernoulli in-
tegration of Euler’s equation is used to update the potential at the cavity surface.
The reentrant jet model is reused from previous works.
Viscosity effects play an important role in the cavity detachment point and the
cavity wake. BEM of Kinnas& Fine were enhanced by coupling of the method
with a boundary layer solver(Brewer & Kinnas [13]). The method is described
shortly in [1]. In this way, viscosity effects can be captured with good accuracy
and with less computation cost compared to a RANS solver.
Krisnaswamy et al (2000)[14] also applied the reentrant jet model in combination
with the potential-based method of Kinnas & Fine. By first acquiring the fixed
cavity length solution, the jet height is calculated by the continuity and momentum
balance of the fluid volume upstream of the jet. This calculated height is then used
to iteratively update the cavity shape. The jet boundary surface remains constant
chordwise by introducing a source singularity to counteract the mass flux of the
jet. They combined the above method with the method of Brewer & Kinnas
to account for viscosity effects and achieve better agreement with experimental
results.
A similar reentrant jet model, but without the source employed in Krisnaswamy
et al, was applied by Uhlman[15] for simulating the cavity produced by a bluff
axisymmetric body. Higher-order panel methods have been formulated for the
problem by various of the above researchers, but not applied for comparison with
low-order methods.

BEM has been succesful in prediciting sheet cavitation of small angles of attack.
However, the detachment and closure of the sheet cavity, which strongly influence
the sheet cavity dynamics is not easily captured. Furthermore, it is difficult to
extend these methods to more complex physical phenomena such as the shedding
of the sheet cavity and tip vortex cavitation. For this reason finite element methods
have gained popularity in recent years.

3D Methods(FEM, RANS)

Kubota et al. [16] developed a model for cavitating flows, which is based on
Reynolds-averaged Navier Stokes equations (RANS). The cavity is treated as a
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compressible viscous fluid with varying density. The model is formulated with
a coupling of the RANS equations and Rayleigh’s equation for bubble dynamics
and solved by a finite-difference method. This enabled the study of unsteady
effects in cavitation, mainly the shedding of cavitation clouds by separation of the
attached cavity from the foil. This model rests on the assumption of hydrodynamic
equilibrium and constant bubble number density.

This assumption was lifted by Chen and Heister(1996)[17], thus extending
the model of Kubota et al for the case of variable bubble number density by
deriving a new constitutive equation for bubble dynamics. The model was applied
for axisymmetric headforms and captured unsteady effects and surface pressures
satisfactorily.
Kunz et al[18] developed a cavitation model based on multi-phase Navier- Stokes,
accounting and solving separately for the liquid and vapor as well as a non- con-
densable gas field (e.g atmospheric air entrained in the flow field of missiles), mass
transfer between liquid and vapor and unsteady effects. The k-ε model was used
for turbulence. The method was validated for axisymmetric bodies and a super
cavitating fin on the interface of liquid and air.
M. Deshpande, J. Feng, and C. Merkle[19] formulated a solver based on Euler
equations for simulating 2d cavity flows. The cavity is treated - similarly to
potential methods- as a constant pressure volume. The motivation for this work
was to apply a computationally efficient method for cavity flow in more complex
geometry, such as cascade hydrofoils, or time-dependent problems.
O. Coutier-Delgosha et al simulated in 2003 [20] the unsteady behaviour of cavi-
tating flows by applying the RANS equations for the mixture of liquid and vapor.
A barotropic state law was employed as a cavitation model. Agreement with ex-
perimental results was achieved with a modified k-ε turbulence model and the
results showed a strong dependence of the cavitating flow dynamic behavior on
the turbulence model.
Merkle et al. (1998)[21] introduced an additional equation for the vapor (or liq-
uid) volume fraction including source terms for evaporation and condensation (i.e.
bubble growth and collapse). Kunz et al., 2000[18], Schnerr and Sauer, 2001[22]
used similar techniques with different source terms.
Singhal et al developed in 2002[23] a new cavitation model, which they called
Full Cavitation Model. The name is derived from the inclusion of the major
first-order effects affecting the low pressure regions in cavitating flows. They
adopted a modified form of the Rayleigh-Plesset equation for bubble dynamics,
by adding two empirical constants derived from experimental data covering a wide
range of flow conditions. The model has been implemented in modern commercial
CFD codes(e.g. CFD-ACE+ and ANSYS Fluent) and has been validated against
experimental results in various cases of interest( e.g. hydrofoils).
ANSYS Fluent also incorporates the cavitation model developed by Zwart et al[24]
which adopts a first-order form of the Rayleigh-Plesset equation and separate
empirical corrections for the condensation and vaporization phase change of the
fluid, similar to the full cavitation model. Turbulence is treated with the k-ε or
SST models.
A comparison of cavitation models is exposed in Coutier & Delgosha [25]. Main
difference of these models is within the formulation of the mass fluxes between
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vapor and liquid. In the process of benchmarking various cavitation models pub-
lished earlier, the researchers observed main discrepancies of these models with
experimental results in the wake of the cavity, where condensation takes place.
Within the framework of of the 2003 symposium on cavitation, workshop Models
and CFD Tools for Computation of Cavitating Flows, Kunz et al[26] simulated
the test hydrofoil geometry with unsteady RANS and detached Eddy simulation(
DES). DES exhibits certain advantages in flows where separation occurs, as in the
case of cavitating flow over hydrofoils. The main disadvantage of the method is
the statistically unstationary time history of integrated coefficients (lift and drag).
A comprehensive and analytical comparison between the cavitation models of
Singhal et al, Zwart et al and Kunz et al was carried out by Morgut et al and
published in 2011[27]. Results suggest that these models predict accurately sheet
cavitation on hydrofoils if proper calibration of empirical coefficients is carried out.
In this respect, they developed an optimization strategy for this calibration.
In 2011 researchers at Nanjing University of Science & Technology [28]applied
a parallel algorithm implementing the one-equation LES turbulence model and
Schnerr-Sauer cavitation model on a NACA hydrofoil.
A similar method was applied by E. Roohi et al in 2013[29] on a Clark-Y hydrofoil.
They combined LES and VOF for the turbulence and flow modeling and either the
Sauer or the Kunz model for cavitation. A qualitative agreement with predicted
cloud cavity shapes from experiments was observed. When the LES model was
substituted with the standard k-εmodel results for cloud cavitation dynamics were
inaccurate, due to failure of correct prediction of the re-entrant jet and vapour
shedding. .
Ji et al applied in 2015[30] the LES model with Schnerr and Sauer cavitation
model, resulting in good agreement with experimental results and observations
regarding the vortex structure around the cavitating hydrofoil.
Recently (published in 2017) Chahine et al[31] used an Euler–Lagrange model,
which accounts for the bubble dynamics in microscale and the large cavity dy-
namics in macroscale, as well as volumes of transition between these two scales.
This model works without employing empirical mass exchange models that are
non-physical and need to be calibrated. Thus, it is physically more consistent for
representing the processes of sheet and cloud cavitation but it is computationally
more expensive compared to other cavitation models.

Various attempts to improve and extend above methods have been made in
recent years. Nohmi et al [32]deactivated the cavitation model at the estimated
laminar boundary layer zone of the studied hydrofoil, assuming cavity growth on
the transition to turbulent zone, in order to achieve more accurate lift coefficients
at large angles of attack.

Direct Numerical Simulations of cavitating flows to develop better CFD models
were carried out by Tryggvason et al[33] recently.

Xing et al[34] proposed a viscous vorticity equation model and compared it to
commonly used RANS models. The method applied a 2d hydrofoil predicted larger
cavity than RANS for low cavitation numbers, and thus needs improvements.
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Experiments

Sheet and cloud cavitation were first studied extensively by Knapp(1955)[35]. One
of the earliest experimental works in cavitation related to naval architecture was
the work of T. Ito who investigated unsteady cavitation of Marine propellers in
1966[36]. A large number of experimental works have concentrated on understand-
ing the mechanism and dynamics of cloud cavitation (Kawanami et al, 1997[37],
de Lange & de Bruin, 1997 [38], T.M. Pham et al, 1999[39], Callenaere et al
2001[40], Laberteaux & Ceccio 2001[41]). These works identified the formation of
a reentrant jet on the cavity closure that facilitates cloud cavitation. Leroux et
al(2005)[42] found that the pressure wave resulting from the cloud collapse affects
the frequency of cloud shedding. Coutier-Delgosha et al (2007)[43] attempted to
shed light on the structure and flow inside the sheet cavity by applying x-ray den-
sitometry and thus identified that modeling of the cavity at the macroscopic scale
is needed to capture the phenomenon more accurately.

Dular et al[44] validated experimentally (and numerically) the hypothesis made
by de Lange and de Bruin that the reentrant jet has a spanwise component if the
closure line of the cavity is inclined. Foeth, van Terwisga & van Doorne (2008)
[45] verified the above effect of the cavity topology.

Young et al (2013)[46] caried out experiments which showed that unsteady
sheet/cloud cavitation substantially increases turbulent velocity fluctuations in
the cavitating region around the foil and in the wake.

Ganesh et al, 2016[47], observed that in low cavitation numbers cloud shedding
is caused by the propagation of a bubbly shock in the separated cavity flow.
Experimental results by Pelz et al (2017)[48] carried out in a convergent–divergent
nozzle showed the existence of a critical Reynolds number, dependent on the body
roughness and cavitation number, beyond which sheet cavitation becomes un-
steady and cloud cavitation is observed.

Propeller cavitation

In the present section we present a short outline of numerical methods for modeling
cavitating flow in Marine propellers. The practical design of marine propellers is
still carried out up to this day by use of the well known Burill diagram, which gives
an estimate of propeller cavitation extent with minimum input from the designer.
While it is useful at a preliminary design stage, this method is not accurate for
modern applications. A large number of tools have been developed to predict
propeller cavitation.
Stern & Vorus[49] developed a partially non-linear method in which the problem
of a cavitating marine propeller is separated into a static part and a dynamic one.
The static part accounts for the instantaneous cavity fixed relative to the propeller
as it translates through the nonuniform wake field. The dynamic part accounts
for the evolution of the cavity, and is solved by a lifting surface method. Unsteady
motion of the propeller can be accounted for in the model.
Panel methods were readily extended to marine propellers. The works of the
team led by Kinnas were successful in analysis of propeller sheet cavitation( Fine
& Kinnas, 1992[50], Mueller & Kinnas 1999[51]) as well as design of cavitating
propeller blades(Griffin & Kinnas 1998[52]). Further enhancements of the method
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were investigated subsequently. Prediction of tip vortex cavitation with BEM
needs special treatment as outlined in Lee & Kinnas 2004[53]. BEM analaysis
of supercavitating and surface-piercing propellers was carried out by Young &
Kinnas 2003[46]. Cavitating waterjet propulsor cavitation study was also carried
out by Kinnas & Lee 2007[54]. Results in the above numerical methods were in
good agreement with experiments.
Vaz[55] et al developed a nonlinear method for cavitating propellers in which
remeshing implemented in previous panel methods is not needed and thus achieves
fast convergence. The method was validated against analytical and experimental
results. The method underpredicted the cavity extent for low propeller loading.
The phd thesis of Vaz[56] includes a short listing of numerical works on cavitating
propellers(up to its publication time, 2005)
Rhee et al 2005[57] were among the first who studied propeller cavitation with
a RANS solver, by implementing one of the many cavitation models formulated
earlier for finite element modeling of cavitating flows. The method agreed with
experimental results, but issues were identified at low propeller loading and extent
of tip vortex cavitation.
Sun & Kinnas[58] coupled the panel method by the Kinnas group with a vis-
cous boundary layer analysis method based on the strip theory assumption. The
method was applied for open, ducted, and water-jet propulsors and showed closer
agreement with experimental results compared to the inviscid BEM.

Bensow & Bark 2010 [59] applied a LES of the cavitating flow on a propeller
coupled with a two-phase cavitation model. The model predicted the mechanisms
of practical importance which lead to undesired effects(e.g blade erosion and noise).

Ji et al[60] developed a Partially-Averaged Navier–Stokes (PANS) computa-
tional model, with the k-ε turbulence model and a mass transfer cavitation model
to simulate cavitating flow around a marine propeller in a nonuniform wake.
The PANS method captured the cavity volume pulsation better than the RANS
method, but accuracy depends on the PANS model input coefficients.

The group led by Chahine extended their multiscale two phase model to sim-
ulate propeller cavitation[61].
Du & Kinnas[62] have presented a coupled numerical optimization technique with
a panel method or a vortex vattice method to design cavitating propellers in non-
uniform inflows. The resulting propeller design is more efficient than the lifting
line-based optimal.
Yilmaz et al[63] used a LES model on commercial software STAR-CCM+ to pre-
dict tip vortex cavitation, while utilizing a mesh adaptive refinement strategy to
include the effect of both the hull wake and the rudder. The method is still un-
der development as desired accuracy has not been achieved. Shin & Andersen[64]
applied a similar technique for the same problem, by employing DES and mesh
refinement, but the model couldn’t capture the full tip vortex cavity up to the
rudder trailing edge.

The above finite element methods are only indicative of the significant amount
of numerical works which were published in the years following the first attempt.
A detailed review can be found in the proceedings of the 26th and 27th ITTC
conference. In these works, a variety of FEM setups were investigated regarding
governing equations(RANS, DES, RANS/BEM) turbulent modeling(k-ε, SST k-
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ω, LES), cavitation modeling(models described previously), meshing(structured,
unstructured, adaptive refinement). Without entering into details on the dif-
ferences and pros/cons of all these alternative, we can sum up that RANS and
coupled RANS/BEM methods capture well sheet cavitation of marine propellers.
Regarding turbulent modeling, most researchers prefer the SST k-ω model. For
more complex cavitation phenomena, such as tip vortex cavitation, cloud and
bubble cavitation, more advanced methods are needed (e.g LES, DES, Euleri-
an/Lagrangian).

Control of propeller cavitation and prediction of its effects

Building on the well established methods of previous years, a shift in atten-
tion has been observed in recent years related to measures to control cavita-
tion(Park et al[65]), improve propulsor cavitation performance(Kehr et al[66]), ac-
curate prediction of unwanted effects, particularly noise radiation(Ando et al[67],
Sakamoto et al[68], Fu & Li[69], Belibassakis & Politis[70], Bosschers[71], Lidtke
et al[72]), hull pressure fluctuation(Su et al[73], Hur et al[74], Shiraishi et al[75],
Kim & Kinnas[76], Kao[77], Kanemaru et al[78],Berger et al[79]) and erosion
potential(Jin-Keun Choi et al 2015[80], Melissaris et al[81]).
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Chapter 2

Two-dimensional Potential Flow

Boundary element methods although computational in their nature have a solid
theoretical foundation. This foundation was laid down in the works of early re-
searchers including Euler, Lagrange and Laplace to name some of the most impor-
tant. This foundation consists of the dynamics of inviscid fluids. All fluids have a
viscosity, so inviscid fluids are only ideal and a simplification of the reality. It was
this assumption (or the ignorance of viscosity) that facilitated the first general
equations describing fluid dynamics, that is Euler equations.

2.1 Fundamental equations of inviscid fluid dynam-
ics

If one assumes that the external force field consists only of the gravitational force
ρg which acts vertically downward, the Euler equations can then be written:

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

1

ρ
Fi, i = 1, 2, 3 (2.1.0.1)

in which:
V = (u1, u2, u3) is the fluid velocity,
p is the local pressure,
t is time, (x1, x2, x3) is the coordinate system
ρ is the fluid density and
F = (F1, F2, F3) = (0,−ρg, 0) is the external force field due to gravity.
Use of indicial notation is being made in the above equation.
The fluid must also satisfy the continuity equation:

divV =
∑

∂ui/∂xi = 0 (2.1.0.2)

Gravity is a conservative force and since our fluid is ideal, one easily becomes
predisposed that the velocity vector field is a conservative field. This is proven
using Kelvin’s theorem of the conservation of circulation. First, the circulation
must be defined as the intergral around any closed contour C in the fluid.

Γ =

∫
C

uidxi
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The theorem states that if conservative forces act on a moving ideal fluid, the
circulation is constant for any closed material contour moving with fluid. A proof
of Kelvin’s Theorem can be found in [82] . If we, then, assume that the fluid
started from rest, the circulation will remain constantly zero. Thus, so far we
have established that

Γ =

∫
C

Vdx = 0 (2.1.0.3)

A vector field which satisfies this equation is called a conservative vector field and
vector calclulus gives us important tools for such fields. According to[Marsden &
Tromba], we will have:

i) ∇×V = 0.

ii) V is the gradient of some scalar function φ; that is V = ∇φ.

The first of these properties is the vorticity of the fluid, showing that the flow
will be irrotational. The second property defines the velocity potential which is a
scalar. Using the velocity potential in the continuity equation, it follows that:∑ ∂

∂xi

∂φ

∂xi
=
∑ ∂2φ

∂xi∂xi
= ∇2φ = 0 (2.1.0.4)

This is the governing partial differential equation for the velocity potential of
the fluid, and the well known Laplace equation.

2.2 Integral equation of potential flow
So far we have outlined the basic equations governing general potential flows, in
the form of partial differential equations. Boundary conditions must be imposed
on these equations to acquire a solution. Postponing the discussion of specific
boundary conditions to subsequent chapters, we can, nevertheless, define the ge-
ometric boundaries of the problem. We are interested in two dimensional flows,
so our fluid volume is first reduced to an area. The equations in the preceeding
section remain valid with the only difference being the omission of the third com-
ponent, where applicable. More specifically, if we denote by V the entire fluid
area, its geometric boundary consists of:

• a body of outer surface SB immersed in the fluid.

• the outer boundary far from the immersed body S∞.

• the wake of the body SW .
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Figure 2.1: Geometry of the problem[83]

The above figure illustrates the notation used for the geometrical boundaries. The
unit vector normal to the boundaries denoted by n is directed exterior to the fluid
area.
The divergence theorem states that for a vector q within an area V of boundary
S:∫
S

n · q dS =

∫
V

∇ · q dV

We can apply this theorem to the vector φ∇φS − φS∇φ, where φ is the velocity
potential and φS = 1

2π
ln r, in which r is the distance of a random point P in the

field from an assumed reference :∫
S

n̂ · (φ∇φs − φs∇φ) dS =

∫
V

(
φ∇2φs − φs∇2φ

)
dV. (2.2.0.1)

The function φS is a solution of the Laplace equation, based on the following
calculation made in polar coordinates:

∆φS =
1

r

∂

∂r

(
r
∂φS
∂r

)
+

1

r2
∂2φS
∂θ2

=
∂2φS
∂r2

+
1

r

∂φS
∂r

+
1

r2
∂2φS
∂θ2

=
1

2π

(
− 1

r2
+

1

r
· 1

r

)
= 0

Since φ is the velocity potential, it also satisfies the Laplace equation, so the right
hand side integral in (2.2.0.1) vanishes and we have:∫
S

n̂ · (φ∇φs − φs∇φ) dS = 0. (2.2.0.2)

When the point P is within the region, the above integral becomes singular as
r → 0 and the region close to the point must be excluded from the calculation.
This is done by adding to the region’s boundary a circle of radius ε centered on
point P . In this way, point P is outside the region and equation 2.2.0.2 remains
valid for the remaining region. We can thus write:∫
S+circle ε

n̂ · (φ∇φs − φs∇φ) dS = 0. (2.2.0.3)
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To calculate the integral over the circle we introduce a polar coordinate system at
P and since the vector n points inside the small circle, n = −er, n ·∇φ = −∂φ/∂r
and n · ∇φS = −2π/r. Equation 2.2.0.3 now becomes

−
∫

circle ε

(
φ

1

r
− ln r

∂φ

∂r

)
dS +

∫
S

(φ∇ ln r − ln r∇φ) · ndS = 0 (2.2.0.4)

At the limit ε → 0, φ will approach φP and ∂φ
∂r
→ 0. The circumference of the

small circle around P is 2πε and 2.2.0.4 is equivalent to:

2πφP =

∫
S

(φ∇ ln r − ln r∇φ) · n dS

or

φP =

∫
S

(φ∇φS − φS∇φ) · n dS (2.2.0.5)

With this formula, one can calculate the solution of Laplace’s equation φ at any
point P in V , in terms of the values of φ and ∇φ · n on the boundary of V .

The scalar function φS = 1
2π

ln r is the velocity potential of a point source
element. The function n ·∇φS is the velocity potential of a doublet. At this point
we will conclude the section with a variation of the above formula that will be
used in the following chapters. We can separate the boundary far from the body,
S∞, and if the flow at infinity is approximated by a constant stream with speed
V∞ and with angle of attack α relative to the body reference axis, then on S∞,

φ ≈ V∞(x cosα + y sinα)

When the point P is far from the body, the effect of the body and its wake are
negligible, so we can write

φP = V∞ (xP cosα + yP sinα) +

∫
SB+SW

(φ∇φS − φS∇φ) · n dS (2.2.0.6)

2.3 Bernoulli’s equation
An explicit formula for the pressure can be output from Euler’s equations. First
we assume the flow is steady in relation to time. In this case Euler’s become:(using
indicial notation, ref [82])

uj
∂ui
∂xj

= − ∂

∂xi
(p/ρ+ gx2)

We then multiply both sides by the velocity components ui and summing over i
gives

uiuj
∂ui
∂xj

= −ui
∂

∂xi
(p/ρ+ gx2)
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The left hand side of the equation can be written as

1

2
uj

∂

∂xj
uiui =

1

2
ui

∂

∂xi
ujuj,

where we interchanged the two indices to agree with the partial derivative of the
right hand side. Returning to the modified Euler’s equations we get

ui
∂

∂xi

(
p/ρ+

1

2
ujuj + gx2

)
= 0 (2.3.0.1)

The differential operator ui ∂
∂xi

is the well known material derivative in steady flow.
The quantity in the parentheses is constant along any streamline:

p+
1

2
ρV 2 + ρgx2 = const. (2.3.0.2)

This is the Bernoulli equation for steady flow. This formula is very useful to
calclulate the pressure coefficient of a point on the flow field. Suppose we take the
second point of the streamline in infinity and neglecting the hydrostatic pressure
component ρgx2 we will have:

p+
1

2
ρV 2 = p∞ +

1

2
ρV 2
∞ =⇒ cp =

p− p∞
1

2
ρV 2
∞

= 1− V 2

V 2
∞

(2.3.0.3)

Furthermore, the distribution of the pressure coefficient on the body boundary
facilitates the calculation of the lifting force and its moment(let r be the distance
of the element ds from the leading edge of the body):

F =

∫
S

p · n ds =
1

2
ρV 2
∞

∫
S

cp · n ds+ p∞

∫
S

n ds =
1

2
ρV 2
∞

∫
S

cp · n ds

M =

∫
S

p · (r× n) ds =
1

2
ρV 2
∞

∫
S

cp · (r× n) ds

(2.3.0.4)
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Chapter 3

Non-cavitating flow BEM

In the previous chapter, the foundations of the boundary element method were
outlined without mention to specific applications. In this chapter, we make use of
the general equations of the previous chapter to calculate the flow characteristics
around hydrofoils when they are fully wet(i.e. without cavitation).

3.0.1 Mathematical formulation of the non-cavitating flow

The purpose of this subsection is to restate the governing equations for two di-
mensional potential flow when applied to non-cavitating flow.

Boundary conditions

Different types of fluid motions result according to the conditions imposed on fluid
region boundaries. These conditions are physical in their nature, so, part of the
modeling is to translate them to mathematical relations. The studied bodies have
a fixed and rigid boundary. This means that there will be no flow through this
boundary. This is the no entrance or flow tangency boundary condition. Adhering
to notation of the previous chapter this boundary condition means that on SB:

nV = n∇φ = 0. (3.0.1.1)

This is a kinematic boundary condition and although very simple provides the basis
for solving numerically the boundary problem. The second boundary condition
is related to the statement made at the end of section 2.2. That is we require
from the solution φ to approximate the flow at infinity velocity potential. This is
practically equivalent to require that the perturbation potential diminish far from
the body. The perturbation potential is the part of the total potential φ due to
the disturbance the body imposes on the fluid. If we denote it with Φ, then we
require that:

lim
r→∞
∇Φ = 0 (3.0.1.2)

If a solution to the problem is constructed by using a distribution of singularities
like sources and doublets on the body boundary, this condition is automatically
met, so it doesn’t add any further restriction.
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Finally, the Kutta condition is applied on the body’s trailing edge. This condition
requires that the flow at the trailing edge is smooth and tangent to the bisector
of the trailing edge angle. This will occur if the velocity potential is finite at
the trailing edge. The physical reasoning of the Kutta condition is that when
the body reaches the steady state condition, any vortex generated during initial
accelerating(usually called free vortex) will be dissipated in viscous diffusion. So
the flow will be irrotational in the surrounding fluid, but the body will have a
net circulation about it(what is usually called bound vortex). As noted in the
previous chapter, the wake of the body is modeled with a separate boundary SC .
This is necessary in order to include a discontinuity of the potential φ across this
boundary. This discontinuity is related to the bound vortex explained previously.
A consequence of the Kutta condition is the requirement that the wake is modeled
with a doublet of constant strength in its entire length. This strength is just the
so called potential jump, which is the difference in doublet strength of the two
adjacent panels on the two sides of the wake. The details of this statement can be
found in [83], and omitted here for brevity.

Integral equation for non-cavitating flow

As shown in the previous chapter there is an integral equation for the velocity
potential function on the surface of a body within an area of fluid:

φP = V∞(xP cosα + yP sinα) +

∫
SB+SC

[(n . ∇φ)φs − φ(n . ∇φs)]dS (3.0.1.3)

Now, the surface integral portion of this equation can be simplified further
by making a few observations. Firstly, the flow tangency boundary condition
establishes that, on the surface of the body SB,nV = n∇φ = 0. Consequently,
the first term of the surface integral will be zero for the portion of the integral
that includes SB.

Furthermore, the portion of the first term of the integral that includes SC can
also be eliminated using the following rationale. The velocity component tangen-
tial to SC can be discontinuous in certain situations (a trailing vortex sheet, for
example). However, the component of velocity normal to SC is continuous. Since
the unit normals on both sides of SC have directly opposite directions, their con-
tributions cancel out exactly, thus eliminating the whole first part of the integral
in 3.0.1.3 leaving us with

φP = V∞(xP cosα + yP sinα)−
∫
SB+SC

φ(n . ∇φs)dS (3.0.1.4)

Now, the potential φ itself can be discontinuous across SC (and indeed it is in
all cases of lifting flows). Using the concept of the potential jump across SC defined
as:

4φ = φ+ − φ−

we can rewrite our expression for φP as follows

φP = V∞(xP cosα + yP sinα)−
∫
SB
φ(n · ∇φs)dS −

∫
SC
4φ(n · ∇φs)dS
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As shown in the Figure below, φ+ Is the value of the potential on the side of
SC for which n goes into the fluid, while φ− Is the value of the potential on the
other side. It is, of course, understood that the integral is now carried out over a
single side of SC.

Figure 3.1: Potential Jump across connecting surface Sc

Finally we are left with an equation that can be used in practice for a variety
of potential-based panel methods:

φP = V∞(xP cosα + yP sinα)−
∫
SB
φ(n · ∇φs)dS −4φ

∫
SC

n · ∇φsdS (3.0.1.5)

3.0.2 Numerical formulation & results

Notice, once more, that equation 3.0.1.5 is an integral equation for φ on SB which
can be solved either analytically (difficult) or numerically. In other words, for the
numerical solution of Equation 3.0.1.5, we will discretize the surface of the con-
figuration into a series of panels [1, . . . , N ], we will assume a particular variation
of the potential φ on each panel (constant, linear, quadratic sources and/or dou-
blets) and parametrize this variation with a series of coefficients (the unknowns of
our equations). We will obtain a number of independent equations equal to the
number of unknowns by allowing the point P and its associated potential φP to
approach points on the surface of the body SB where the values of the potential
are known according to the chosen parameterization. Again, this will result in
a set of simultaneous linear equations Ax = b which can be easily solved using
standard procedures.

As a reminder, the setup of panels and nodes, together with their numbering
for a typical airfoil analysis problem can be found in figure 3.2 below (taken from
[83]).
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Figure 3.2: Panels on Airfoil

In the solution of the non-cavitating flow problem we used the NACA 4412
hydrofoil. This series of foils has an analytic geometric description, thus making
easier the generation of the geometry for the numerical solution. The panel edge
points were placed according to cosine spacing in the foil’s chord length, in order
to have a higher concentration of panels in areas of high pressure gradients (that
is, the leading and trailing edges).

Constant-Potential Method

This method is also known as the two-dimensional version of Morino and Kuo.
In its simplest incarnation, we choose the potential to be constant on each panel
of the configuration, but the values of these constants are allowed to differ from
panel to panel. That is:

φ = φj

on panel j. That is equivalent to a distribution of doublets with constant strength
on each panel. According to the Kutta condition, 4φ = φN − φ1.
Therefore, we have N unknowns (the values of the potential on each panel), and
we need N independent equations to solve for these unknowns. These equations
can be obtained by evaluating Equation (3.0.1.5) at the midpoint of each panel.
Defining

xi =
1

2
(xi + xi+1)

yi =
1

2
(yi + yi+1)

we have

φi = V∞(xi cosα + yi sinα)−
N∑
j=1

φj

∫
panelj

n · ∇φsdS − (φN − φ1)

∫
SC

n · ∇φsdS

(3.0.2.1)

The integrals in this equation need to be evaluated and they are most easily
performed in a coordinate system aligned with the panel that is contributing to
the potential. Let (x∗, y∗) be the coordinates of the midpoint of panel i on a
coordinate system fixed on panel j such as the one in figure 3.3.

21



Figure 3.3: Local panel-fixed coordinates

The value of n · ∇φs at (ξ, 0) is the y∗ component of the velocity due to a
source of unit-strength at (x∗, y∗). We can thus obtain

n ·∇φs
∣∣∣
ξ,0

= n ·∇
(

1

2π
ln
√

(x∗ − ξ)2 + y∗2
)∣∣∣

ξ,0
= − 1

2π
· y∗

(x∗ − ξ)2 + y∗2
(3.0.2.2)

and equation (3.0.2.1) can be written

φi =V∞(xi cosα + yi sinα) +
N∑
j=1

φj

∫ lj

0

y∗

(x∗ − ξ)2 + y∗2
dξ

+ (φN − φ1)

∫ +∞

0

y∗

(x∗ − ξ)2 + y∗2
dξ

(3.0.2.3)

On the panel j,∫ lj

0

y∗

(x∗ − ξ)2 + y∗2
dξ = tan−1

y∗

x∗ − ξ

∣∣∣ξ=lj
ξ=0

= βij , (3.0.2.4)

where βij is the angle subtended at (x∗, y∗) by the jth panel. In the case of the
wake panel we have,∫ +∞

0

y∗

(x∗ − ξ)2 + y∗2
dξ = tan−1

y∗

x∗ − ξ

∣∣∣ξ=+∞

ξ=0
= − tan−1

y∗

x∗
= tan−1

yi
xi − c

,

on the global coordinates. After all integrations are carried out, one arrives at an
equation like

N∑
j=1

Aijφj = bi ,

for i = 1, . . . , N with

bi = −V∞(xi cosα + yi sinα)

Aij =


1
2π
βi1 − δi1 − 1

2π
βiN+1 if j = 1

1
2π
βiN − δiN + 1

2π
βiN+1 if j = N

1
2π
βij − δij otherwise
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where δij is the Kronecker delta and βiN+1 = tan−1 yi
xi−c . Finally, the velocity can

be calculated in a variety of ways. The simplest of all is to compute the velocity

at the nodes of the discretization by using Vi =
φi − φi−1

d
, where d is the distance

of the midpoints of the i, i− 1 panels.

Figure 3.4: Elements of calculation

The various elements of this calculation are defined in Figure 3.4. Finally,
with the velocities already calculated, one can continue as usual and compute the
pressure distribution using Bernoulli’s equation, whose result can then be used to
integrate the forces on the body. The pressure field resulting from the calculation
for an 8 deg angle of attack can be seen in figure 3.5. Having calculated the dis-
tribution of doublets, field values of the velocity were obtained by making use of
the formulas for the induced velocity due to a constant strength doublet found in
[84]. Figure 3.6 is a comparison of the calculated results with the experimental
values found in [85]. The assumption for zero viscosity in the boundary element
method is the main factor for the deviation of numerical values from the experi-
ment. Nevertheless, we see that the BEM is an effective method in predicting the
pressure field at a minimum computational cost.
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Figure 3.5: Constant strength doublet method field pressures, α = 8◦
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3.0.3 Linear-Potential Method

In the linear potential method the potential is assumed to vary linearly over each
panel according to:

φ = φj +
ξ

lj
(φj+1 − φj) (3.0.3.1)

on panel j, where ξ is the distance from the jth node on the jth panel, and φj is
the value of φ at the jth node. The Kutta condition consequence must now be
modified into:

4φ = φN+1 − φ1

where φ1 and φN+1 are the potentials on the lower and upper sides, respectively,
of the trailing edge. Using equation 3.0.2.2 for n̂ · ∇φs, and the integral equation
for the non-cavitating flow, we thus obtain:

φP = V∞(xP cosα + yP sinα) +
1

2π

N∑
j=1

∫
panel j

φ
y∗

(x∗ − ξ)2 + y∗2
dξ

+
1

2π
(φN+1 − φ1)

∫ ∞
0

y∗

(x∗ − ξ)2 + y∗2
dξ

(3.0.3.2)

in which (x∗, y∗) are the coordinates of point P . On introducing the value of φ
on the jth panel, we obtain integrals similar to (3.0.2.4) for the steady part of the
potential, while the linear part is reduced to:∫ lj

0

y∗ξ

(x∗ − ξ)2 + y∗2
dξ =

1

2
y∗ ln

[
(ξ − x∗)2 + y∗2

]
+ x∗ tan−1

ξ − x∗

y∗

∣∣∣lj
0

=

=
1

2
y∗ ln

[
(lj − x∗)2 + y∗2

]
+ x∗ tan−1

lj − x∗

y∗
−

− 1

2
y∗ ln

(
x∗2 + y∗2

)
− x∗ tan−1

−x∗

y∗
=

= y∗ ln
rPj+1

rPj
+ x∗βPj

(3.0.3.3)

in which βPj is the angle subtended at point P by the jth panel (or by the
connecting surface Sc when j = N + 1), and rPj is the distance from P to the jth
node. So we have the equation:

φP =V∞(xP cosα + yP sinα)+

+
1

2π

N∑
j=1

{[
φj +

x∗

lj
(φj+i − φj)

]
βPj +

y∗

lj
(φj+1 − φj) ln

rPj+1

rPj

}
+

1

2π
(φN+1 − φ1)βPN+1

(3.0.3.4)

Equation (3.0.3.4) can be turned into a set of linear equations for the N + 1
values of φ by letting P become the ith node, i = 1, 2, 3...N + 1. However,if we
replace the subscript P by i in equation 3.0.3.4, we will get singular log values and
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indeterminate angle βij when j = i or i − 1. For this reason, equation (3.0.3.4)
is treated differently. The singularity vanishes if, in each application of equation
(3.0.3.4) on the node i, we zero out βij and ln rij. These deletions must then be
compensated by adding in the right hand side of equation (3.0.3.4) the quantity

1

2π
φi(βii−1 + βii)

while

βii−1 + βii = tan−1
(yi − yi+1)(xi − xi−1)− (xi − xi+1)(yi − yi−1)
(xi − xi+1)(xi − xi−1) + (yi − yi+1)(yi − yi−1)

, (3.0.3.5)

is the angle subtended at the ith node by the (i − 1)th and the (i + 1)th nodes.
The details of this calculation can be found in [83] and omitted here for brevity.
The details of the calculation for the trailing edge are included for completeness,
since they weren’t found in some reference.

Let us consider in detail, therefore, the effect on equation 3.0.3.4 of letting
the point P approach the trailing edge node. the troublesome terms of equation
(3.0.3.4) are those for which j = i or i− 1. Thus we write it:

φ1 =
1

2π

[
φ1 +

x∗1
l1

(φ2 − φ1)

]
β11 +

1

2π

y∗1
l1

(φ2 − φ1) ln
r12
r11

+
1

2π

[
φN +

x∗N
lN

(φN+1 − φN)

]
β1N +

1

2π

y∗N
lN

(φN+1 − φN) ln
r1N+1

r1N
+

+
1

2π
(φN+1 − φ1)β1N+1 + regular terms

(3.0.3.6)

while x∗1, y∗1, y∗N → 0, x∗N → lN . With the help of Fig. 3.7 we have

Figure 3.7: Trailing edge influence coefficient

φ1 →
1

2π
φ1β11 +

1

2π
(φN + φN+1 − φN)β1N +

1

2π
(φN+1 − φ1)β1N+1 + r.t.

→ 1

2π
φ1(π − δ) +

1

2π
φN+1(π − β) +

1

2π
(φN+1 − φ1)β1N+1 + r.t.

→ − 1

2π
(φ1δ + φN+1β) +

1

2
(φ1 + φN+1) +

1

2π
(φN+1 − φ1)β1N+1 + r.t

(3.0.3.7)
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and β1N+1 → −π, so if we move φ1 on the right hand side we get

0 = − 1

2π
(φ1δ + φN+1β) + regular terms (3.0.3.8)

Having identified and then removed a real problem with the use of equation
3.0.3.4, equations 3.0.3.4 are insufficient to determine the N+1 unknowns φi. Only
N equations of the form of 3.0.3.4 are independent, since nodes i and N + 1 (the
two sides of the trailing edge) yield the same result. The set of equations can be
completed if we implement an explicit Kutta condition, appart from its consequence
regarding the wake panel.The Kutta condition is equivalent to requiring that the
tangential velocities at the midpoints of the two trailing-edge panels are equal:

φN+1 − φN
lN

=
φ1 − φ2

l1

To setup the algorithm for the computations the following procedure was used.
The coordinates of the control point P (x∗i , y

∗
i ) on the coordinate system of panel

j are:

x∗ = (xi − xj) cos θj + (yi − yj) sin θj

y∗ = −(xi − xj) sin θj + (yi − yj) cos θj

The linear-potential equations can be put in the form of a linear system [A][φ] =
[b]. First we set:

A
(1)
ij =

1

2π

[(
1− x∗

lj

)
βij −

y∗

lj
ln
rij+1

rij

]
A

(2)
ij+1 =

1

2π

(
x∗

lj
βij +

y∗

lj
ln
rij+1

rij

)
for i, j = 1, ...N , j 6= i, i−1 and equal to 0 for j = i or i−1, or when i = 1 and j =
N(the trailing edge).
Then we set for i = 1, ..., N :

Aij =



− δ

2π
when i = 1, j = 1

− β

2π
when i = 1, j = N + 1

A
(1)
i1 + 0− 1

2π
βiN+1 when i 6= 1, j = 1

0 + A
(2)
iN+1 +

1

2π
βiN+1 when i 6= 1, j = N + 1

A
(1)
ij + A

(2)
ij + δij

(
−1 +

1

2π
|βii−1 + βii|

)
when i 6= 1, j = 2, ..., N

where δij is the Kronecker delta. For i = N+1 we have the Kutta condition which
translates to:

AN+1,1 = lN , AN+1,2 = −lN , AN+1,N = l1, AN+1,N+1 = −l1
To derive the velocity and pressure fields we differentiate equation 3.0.3.1, the
formula for the assumed linear variation of the potential along the panel, and take
the result as the tangential velocity at the panel midpoint (xi, yi) :
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Vt(xi, yi) ≈
φi+1 − φi

li

It should be noticed that the absolute value of the angle βii−1 + βii was
used in the calculation of the linear system coefficients, in order to avoid
negative values of the angle.

Regarding the calculation of field point velocities and pressures, formulas for
the induced velocity of linear strength doublets were taken, again, from [84]. It
should be noted that a somewhat singular behaviour was observed for the points
close to the foil. The closest points were placed at a distance 1/300 · chord above
and below the foil ordinates. This behaviour can be seen in figure 3.8. The pressure
field close to the foil elements and the velocity vectors “blow up” near the panel
edges (200 panels in total), having a pattern similar to the velocity field created
by a point doublet pointing along the foil boundary. A possible explanation for
this is related to the flow tangency condition and the spacing of the panels. That
is, the flow tangency condition is imposed on the panel midpoints, while the grid
of the field point values has 150 equally spaced points for the entire chord of the
foil. The spacing of panels follows, on the contrary, the cosine spacing and the
produced grid is more dense in the areas of the leading and trailing edges. In
other words the distribution of doublets is "smoother" close to the leading edge,
and this allows the velocity vectors to better fulfill the flow tangency condition in
this area. A relatively dense grid (e.g. 800 panels) is required to produce smooth
velocity vectors and pressure values for the entire length of the foil, similar to 3.5
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Figure 3.8: Velocity vectors close to the foil

28



3.0.4 Constant source and dipole method

Previous methods involved the use of doublets only to solve the potential flow
around a hydrofoil. in this section we will present a method in which both source
and doublet elements are distributed on the body surface and wake. The no
entry condition on the body surface will now give predefined values to the source
elements strength. Due to same condition, source elements vanished in previous
methods. Equation ?? is equivalent to

φP =

∫
SB+SC

[(n . ∇φ)φs − φ(n . ∇φs)]dS , (3.0.4.1)

where φ is the perturbation potential, which is the velocity potential due to the
hydrofoil only. The flow tangency boundary condition requires that on the surface
of the body, ∂φ

∂n
= n̂ · ∇φ = −n̂ ·V∞. The normal component of ∇φ is continuous

along the surface SC . the unit normals are equal and opposite on the two sides of
SC , so

∫
SC

[(n . ∇φ)φsdS = 0. Using the concept of the potential jump across SC
defined earlier we can write

φP =

∫
SB

[(n . ∇φ)φs − φ(n . ∇φs)]dS −
∫
SC
4φ(n · ∇φs)dS (3.0.4.2)

The influence coefficients of doublet elements have been calculated in the con-
stant potential method section. Using the same nomenclature, we have the source
element influence coefficient:

Sij =

∫
panel j

φsdS =
1

2π

∫ lj

0

ln rijdS =
1

2π

∫ lj

0

ln
[
(x∗ − t)2 + y∗2

]1/2
dt (3.0.4.3)

= − 1

2π

∫ x∗−lj

x∗
ln
(
X2 + y∗2

)1/2
dX

= − 1

4π

[
X ln (X2 + y∗2)− 2X + 2y∗ arctan

X

y∗

]X=x∗−lj

X=x∗

= − 1

4π
{(x∗ − lj) ln [(x∗ − lj)2 + y∗2]− x∗ ln (x∗2 + y∗2) + 2lj − 2y∗βij}

Also define
(
∂φ
∂n

)
j

= V∞

(
cosα

yj+1−yj
lj
− sinα

xj+1−xj
lj

)
.

Keeping the same nomenclature with subsection 3.0.2, we can the write the linear
system in the following form:

Aijφj + Sij

(
∂φ

∂n

)
j

= 0 (3.0.4.4)

and solve for the unknown φj. The obtained results were similar to the two
previous methods.

3.0.5 Comparison of methods and grid independence

In the following, we make a basic comparison of the three methods presented
above with regard to field results and rate of convergence with increasing number of
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panels. We also establish the grid independence of results obtained. Te comparison
is made for the NACA 4412 foil, with an 8◦ angle of attack. We observed that the
constant source and dipole method gives better field results for a small number
of panels. More specifically, a comparison of this method with the linear dipole
method can be seen in figure 3.9, in which the same area of the foil is plotted and
the number of panels is 200 in both cases. As can be seen, the constant source
dipole method results in flow velocities very near tangent to the foil surface, in
the vicinity of the boundary. In figure 3.10 the lift coefficient is plotted against
the number of panels used in the BEM. Firstly, we observe the independency of
results from the size of the panel grid. We, also, see that dipole methods converge
faster with an increasing number of panels.
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Figure 3.9: Comparison of methods in field values close to the foil
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Chapter 4

Partial cavitation BEM modelling

In the modelling of the flow around a partially cavitating foil, it is assumed that
the fluid is inviscid and incompressible and that the resulting flow is irrotational.
In the following, a shift towards the use of the perturbation potential is made
and for this reason it will be denoted with lowercase φ, interchanging it with the
uppercase Φ notation of chapter 2. Thus, the total velocity flow field q can be
expressed in terms of either the total potential, Φ, or the perturbation potential,
φ, as follows

q = ∇Φ = U∞ +∇φ. (4.0.0.1)

The total and perturbation potentials are related as follows

φ = Φ(x, y)− Φin(x, y) ,

where the inflow velocity potential Φin corresponds to the uniform inflow:

Φin(x, y) = U∞(x cosα + y sinα) .

The perturbation potential φ will satisfy Laplace’s equation in the domain outside
the hydrofoil and the cavity

∇2φ = 0.

In addition to the above, φ must comply with the following boundary conditions:
Kinematic boundary condition: The flow must be tangent to the wetted blade
and cavity surface, which is equivalent to:

∂φ

∂n
= −U∞ · n

where n is the unit normal to the blade surface.
Dynamic boundary condition on the cavity: The pressure must be constant
on the cavity surface. Using Bernoulli’s equation and based on the definition of the
cavitation number σ = p∞−pv

ρ
2
U2
∞
, the magnitude of the total velocity on the cavity

surface, qc, is found to be constant:

qc = U∞
√

1 + σ.
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Kutta condition: ∇φ finite at the trailing edge.
Condition at infinity: ∇φ→ 0 at infinity.
Cavity termination model: A termination model is applied at the end of the
cavity. A pressure recovery termination model is employed, by which the velocity
(i.e. pressure) follows a prescribed algebraic law in the transition zone between T
and L.

qtr = U∞
√

1 + σ(1− f (sf)) ,

where f(sf ) is defined as follows:

f(sf ) =

{
0 if sf < sT ,

A(
sf−sT
sL−sT

)ν if sT ≤ sf ≤ sL,
(4.0.0.2)

where sf is the arc-length of the foil measured beneath the cavity, measured
from the cavity leading edge, and A(0 < A < 1) and ν(ν > 0) are constants.
In the formulation outlined in [9], these constants are taken arbitrary. In the
present study, we observed that these constants cannot be completely
arbritrary. As will be shown in the results below, the value of A affects,
as expected, the value of the flow velocity just before and after termina-
tion point L. Furthermore, it was found that a smooth transition of the
flow velocity from the cavity to the wet surface is achieved by adding
it as an extra boundary condition. More specifically, we require that the
flow velocity just before point L equals the velocity just after L. In mathematical
language:

lim
x→L−

∇φ = lim
x→L+

∇φ (4.0.0.3)

We will name this condition as cavity wake boundary condition for easier refer-
ence in the following. The pressure law termination model, enhanced with this
boundary condition, ensures that computed pressure will smoothly decrease from
the cavity to the wet surface, which is more consistent with reality.

In addition to the above boundary conditions, we assume that the cavity height
becomes zero at its trailing edge:

h(sL) = 0.

Based on Green’s theorem, the perturbation potential, φP , at any point P on
the flow field away from the body is given by

2πφP =

∫
S

(
−φ∂ ln r

∂n
+
∂φ

∂n
ln r

)
ds−

∫
W

∆φW
∂ ln r

∂n
ds (4.0.0.4)

where r is the distance from the surface element ds, on the combined foil/cavity
surface S, to the point P , and 4φW is the potential jump in the wake.
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Figure 4.1: Geometry of partial-cavitating hydrofoil

4.1 Numerical Formulation
The formulation outlined above is the basis for the application of boundary element
methods (BEM) to obtain a numerical solution to the problem. It can be used
to develop a potential-based (i.e. based on Green’s identity for the perturbation
potential) BEM for the nonlinear analysis of the flow around partially hydrofoils.
In the following, we describe such a BEM for partial cavitation with a fixed cavity
length.

4.1.1 Cavity Shape for fixed Cavity Length

The perturbation potential φP at a point on the foil or the cavity satisfies Green’s
formula 4.0.0.4. The kinematic boundary condition is used to calculate the value
of ∂φ/∂n in the wet part of the foil . The velocity on the cavity including the
transition zone is given by the following algebraic law:

∂φ

∂sc
+
∂Φin

∂sc
= qc(1− f(sf )) (4.1.1.1)

where sc (cf. Figure 4.1) is the arclength of the cavity. Integrating 4.1.1.1 we have
the following formula for φ on the cavity:

φ(sc) = φ(0)− Φin(sc) + Φin(0) + qc

∫ sc

0

(1− f(sf ))dsc (4.1.1.2)

The cavity surface, and thus sc is determined by implementing the model
iteratively. In the first iteration, the cavity panels coincide with the foil surface
underneath the cavity. At each successive iteration, the vertices of the cavity
panels are updated by calculating the cavity height at each point. The cavity
height hc is normal to the present iteration cavity surface and will be nonzero
until the kinematic boundary condition is be satisfied. It can be shown that the
following relationship is valid up to first order in hc [8]:

qc(1− f(sf ))
dhc
dsc

=
∂φ

∂n
+
∂Φin

∂n
. (4.1.1.3)
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Combining 4.1.1.3 with the zero cavity height requirement at its trailing edge gives
the cavity closure condition:∫ scL

0

∂φ

∂n

dsc
1− f(sf )

= −
∫ scL

0

∂Φin

∂n

dsc
1− f(sf )

,

where scL is the total arclength of the cavity surface. The incremental cavity
thickness can be computed by numerically integrating 4.1.1.3 with the calculated
values of ∂φ/∂n. The shape of the cavity surface and the new cavity arc length,
sc, can then be calculated and used subsequently by the following equation:

hc =

∫ scL

0

1

qc(1− f(sf ))

(
∂φ

∂n
+
∂Φin

∂n

)
dsc. (4.1.1.4)

The value of φ(0) in 4.1.1.2 is the value of the perturbation potential at the cavity
detachment point, D, as shown in Figure 4.1.

The above described method will be now presented in more detail.
We need to build a numerical method to solve the integral equation 4.0.0.4

subject to the kinematic and dynamic boundary conditions. The cavity and the
foil are discretized into N straight panels. Nc of these panels make the cavity
while the remaining Nw = N −Nc panels make the wetted part of the foil.

The continuous source and dipole distributions on each panel are approximated
by constant strength elements. We then have N unknown dipole strengths, N
unknown source strengths and the unknown qc, making a total of 2N+1 unknowns.
Equation 4.0.0.4 is applied at the midpoints of the panels. The Kutta condition
is numerically equivalent to the Morino condition:

4φW = φ+
TE − φ

−
TE ,

where φ+
TE and φ−TE are the potentials at the upper and lower trailing-edge panels

respectively. Equation 4.0.0.4 can be written in discritized form:

2πφi =
N∑
j=1

∫
Sj

[
−φj

∂ ln rij
∂n

+

(
∂φ

∂n

)
j

ln rij

]
ds−

∫
W

∆φW
∂ ln riw
∂n

ds , (4.1.1.5)

where i = 1, .., N panels, rij is the distance of panel i from panel j(or the wake
in case of riw), Sj the surface of panel j and φj,

(
∂φ
∂n

)
j
the constant doublet and

source strengths of j-panel, respectively.
We then apply equation 4.1.1.2 on the Nc cavity surface panels to get:

φj = φnD − Φin(~xj) + Φin(~xnD) + qc

j∑
k=1

(1− f(sf,k))∆sc,k , (4.1.1.6)

where:

- nD is the number of the panel of the cavity detachment point, with position
~xnD ,
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- ~xj is the position of the cavity panel j under consideration,

- the summation on the last term is taken over the cavity panels upstream of
panel j and

- f(sf,k), ∆sc,k are the termination model function value and cavity panel
length of cavity panel k, respectively(k starting from 1 on first cavity panel).

The unknown φ(nD) is expressed via a cubic lagrange extrapolation in terms of
the unknown potentials on the wetted panels in front of the cavity.
On the Nw fully wetted panels the kinematic boundary condition can be written
as:(
∂φ

∂n

)
j

= −~nj · ∇Φin|~x=~xj (4.1.1.7)

where n̂j is the unit normal to panel j and ∇Φin|~x=~xj is the inflow velocity at
panel j. By substituting the above equations on the discritized governing equation
we will get a linear system with unknowns the Nc

(
∂φ
∂n

)
j
, the Nw φj and qc. For

the following we denote:

- Dij = 1
2π

∫
Sj

(
− ∂
∂n

ln rij
)
dS the unit doublet influence coefficient on panel i

- Sij = 1
2π

∫
Sj

ln rijdS the unit source influence coefficient on panel i,

- Diw the influence coefficient of a unit doublet along the wake and

- δij the kronecker delta.

Then

φi=
N∑
j=1

φjDij+
N∑
j=1

(
∂φ

∂n

)
j

Sij + ∆φwDiw

⇒
N∑
j=1

φj (Dij − δij) +
N∑
j=1

(
∂φ

∂n

)
j

Sij + ∆φwDiw = 0

The linear system can be simplified by applying the Kutta condition ∆φw =
φN − φ1.

N∑
j=1

φj (Dij,w − δij) +
N∑
j=1

(
∂φ

∂n

)
j

Sij = 0

where Dij,w = Dij +Diw(δNj−δ1j). The above equation provides N equations. Up
to this point we also have Nc equations from equation 4.1.1.6 and Nw equations
from 4.1.1.7 making a total of N +Nc +Nw = 2N equations.

To solve the linear system we need one more equation, which is produced by
the cavity closure condition:∑

j∈Nc

(
∂φ

∂n

)
j

∆sc,k
1− f(sf,k)

= −
∑
j∈Nc

~nj · ∇Φin|~x=~xj
∆sc,k

1− f(sf,k)
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The cavity shape after each iteration is calculated by numerical integration of
equation 4.1.1.4. Once the height of the cavity hc,j is established for each cavity
panel, coordinates of cavity nodes are updated by the following transformation(k
the number of iteration):

x
(k+1)
j = x

(k)
j − hc,j sin θ

(k)
j

y
(k+1)
j = y

(k)
j + hc,j cos θ

(k)
j

The influence coefficients have been calculated in previous sections, so they
will be presented here only for completeness. If the collocation point i has (x∗, y∗)
coordinates with respect to the coordinate system aligned with panel j of length lj,
with the origin on node j, we have the following influence coefficients for constant
strength source and doublet elements:

Dij =
1

2π

∫
Sj

(
− ∂

∂n
ln rij

)
dS =

βij
2π

Sij =
1

2π

∫
Sj

ln rijdS

= − 1

4π
{(x∗ − lj) ln [(x∗ − lj)2 + y∗2]− x∗ ln (x∗2 + y∗2) + 2lj − 2y∗βij}

Diw = βiw =
1

2π
arctan

y

c− x
,

where βij is the angle subtended by panel j from collocation point (x∗, y∗) and c
the chord of the foil. When the collocation point i is on the midpoint of panel
j the coefficients become Dii = 0.5 and Sii = 1

2π
lj

(
ln

lj
2
− lj

)
. The cavity wake

boundary condition is used to calculate the coefficient A in an iterative method.
We first assume a value for A0 and use it as input to the numerical model. The
linear system presented above is solved and we then calculate the value of the
functions g(A0) = |∇φL−1−∇φL| and g′(A0) = dg

dA
(A0). The derivative function is

easily calculated by a finite difference method. Having calculated these functions,
we can apply a Newton Raphson method to solve for A the equation:

g(A) = |∇φL−1 −∇φL| = 0

Then, A will converge to the value of the iteration:

An+1 = An −
g(An)

g′(An)

4.2 Application of model & results

4.2.1 Geometry of hydrofoil section

The above modeling has been applied to the two dimensional NACA 16006 hy-
drofoil section, for which there is extensive literature on the subject matter. The
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geometry of this section was based on the offset data from the book "Theory of
wing sections" from Abbott and Doenhoff[86]. It must be noted that the section
has been modified in the trailing edge. The thickness of the trailing edge has been
reduced to zero from the original finite one. This modification is necessary to
apply the pressure type Kutta condition. Application of the pressure type Kutta
condition on the finite thickness trailing edge causes the solution to greatly diverge
close to the trailing edge.

Since the available data points of the section geometry are few, we first ap-
plied a cubic spline interpolation to produce an adequate number of panels for the
method. The resulting geometry had changes in the sign of the curvature, nega-
tively affecting the smoothness of the solution. This was rectified by best-fitting a
polynomial function using a weighted least-squares numerical method. The shape
of the wake panel is considered to be a straight line connecting the trailing edge
with infinity.

Panel boundaries were spaced by means of cosine spacing from foil trailing
edge to longitudinal position of cavity trailing edge and from cavity trailing edge
to foil leading edge.

4.2.2 Background of cavity wake boundary condition

The need for an additional boundary condition arised when the model was applied
for a 3◦ angle of attack and constant paramaters of the cavity termination model:

• A = 0.5, ν = 1 and λ = 0.1.

• The cavity detachment point is at the foil’s leading edge and the length of
the cavity is 0.5c.

The pressure coefficient distribution in this case can be seen in figure 4.2. The
resulting solution in this case produces a steep velocity gradient after the cavity
trailing edge and the calculated cavity heights are reduced to negative values
close to the cavity trailing edge. This, of course, is not physically possible. This
breakdown is more evident when plotting the tangent to the foil flow velocity.
According to figure 4.2 and figure 4.3, we observed that, while varying A, the
flow velocity remains constant in the greatest part of the wet foil and the cavity.
Significant difference can be observed only in the region from point T to point
L and in a short length after the cavity closure. After having a closer look, one
can deduce that limx→L−∇φ is inversely proportional to A, while limx→L+ ∇φ
seems to diverge asymptotically either to 0 or to +∞ in the the opposite direction
compared to the left side limit. This means that there should be a value of A for
which these two limits will be very close. The convergence of the iterative method
outlined earlier confirms this statement.
The treatment of A as a variable better agrees with the method outlined in [Kinnas
& Fine, 1990], in which the velocity at the end of the cavity qL is included in the
cavity termination model, but is calculated as an extrapolation of the velocity in
the wet part of the foil downstream of the cavity.
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Figure 4.2: Pressure coefficient after first iteration for NACA 16006 and 3◦ angle
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in the cavity transition length and its wake

4.2.3 Background for a restriction on ν parameter

As shown in equation (4.0.0.2), the cavity termination model has a parameter ν.
This parameter affects the shape of the cavity. Testing of the model showed that
when ν < 1 the produced cavity shape displays a steep curvature gradient at a
specific point, resembling to an edge. This happens from the first iteration for
the cavity shape and becomes more pronounce with subsequent iterations. Figure
confirms the above. The resulting cavity shape after a few iterations can be seen
in figure 4.5. For this reason, the model was applied with values for ν > 1.

4.2.4 Input data of the model

The model has been tested for various angles of attack, different geometries and
lengths of the cavity. The parameters of the cavity termination model areA0 = 0.5,
ν = 2 and λ = 0.1. The cavity detachment point is at the foil’s leading edge. The
foil consists of 100 straight panels.

4.2.5 Results

In this subsection, results for a NACA 16006 foil, 4◦ angle of attack and length of
cavity 0.5c are presented. More results are attached in the appendix of the thesis.
The pressure coefficient distribution after 3 iterations of the method is shown in
figure 4.8. The cavity shape after the first iteration and the converged cavity
shape are shown figure 4.6. From figure 4.7, one can verify the convergence of
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Figure 4.5: Cavity shape in first three iterations, with ν = 1.

the cavitation number with increasing number of iterations. We observe that the
cavitation number is very close to the converging value from the third iteration.
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Figure 4.6: Cavity shape after first and third iteration for NACA 16006 and 4◦
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The model has been tested for grid independency. In the 4◦ case, results
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Figure 4.7: Convergence of the cavitation number with increasing number of iter-
ations

do not change significantly with increasing number of panels, as can be seen in
the following table comparing the calculated cavitation number after the sixth
iteration in increasing density of the panels. The converging trend of the cavitation
number with increasing number of panels can be seen also in figure 4.9.

# of panels cavitation number
100 0.92719
150 0.91997
200 0.91600
250 0.91241
300 0.91157
350 0.91177
400 0.91142
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Figure 4.10: Field values of the pressure coefficient for NACA 16006 and 4◦ angle
of attack

Comparison with published results

The results obtained are compared with published results from other researchers.
Since the present method follows the method by Kinnas & Fine, a benchmarking
is neccessary. In figure 4.11, the calculated pressure coefficient is compared to the
published results in [8], for the NACA 16006 foil, 4◦ angle of attack and length of
cavity lc/c = 0.5. A comparison of the same configuration is made with results
from [10]. It must be noted that Lee et al. adopt a velocity-based boundary
element method and the cavity termination model is the end-plate Riabouchinsky
model. This termination model requires that the thickness of the cavity vanishes
abruptly at the end of the cavity, forming a boundary resembling an end-plate.
In order to get comparable results in this case, the present method was used with
very small length of transition zone, with λ = 0.03 .
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Figure 4.11: Comparison of results with Kinnas & Fine
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Chapter 5

Conclusions and suggestions for
future work

In the present thesis a boundary element method for determining the cavitation
number and cavity shape of a two-dimensional hydrofoil with a given cavity length
is presented. The method is based on the work of Kinnas & Fine, and modified on
the cavity closure model. While maintaining the linearity of system of equations
for the boundary problem, an iterative scheme for the cavity’s velocity at its
trailing edge is implemented by enforcing a cavity wake boundary condition, thus
minimizing the required input from the user. The method is validated against
published results of similar methods.
Also the present thesis can be used as a reference for programming low-order panel
methods, as the discretization of relevant equations has been exposed with detail.
Some suggestions for future work can be drawn from the work of other researchers,
as the problem has been treated extensively:

• the treatment of the fixed cavitation number problem, in which the cavity
shape and length are calculated

• the implementation of a different cavity termination model, such as the re-
entrant jet model

• the inclusion of viscosity effects by coupling of the method with a RANS
solver or boundary layer solver. Viscosity effects play an important role in
cavity detachment and in the cavity wake.

• extension of the method to three-dimensional hydrofoils and marine pro-
pellers for prediction of sheet cavitation

• investigation and extension of the method for unsteady movement(e.g heav-
ing) of the hydrofoil within the fluid domain
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Appendix A

FORTRAN Code Listing and usage
instructions

! Last change: Antonis Kritikos, 19, January 2021
! ****************************************************************
! * PROGRAM Caviation cvt *
! * MORINO PANEL METHOD FOR SINGLE-ELEMENT LIFTING *
! * AIRFOIL IN TWO DIMENSIONAL PARTIALLY CAVITATING INCOMPRESSIBLE FLOW *
! * *
! ****************************************************************
include "nrtype.f90"
include "mod_naca_geometry.f90"
include "nr.f90"

include "nrutil.f90"

include "ludcmp.f90"
include "lubksb.f90"
include "lfit.f90"
include "gaussj.f90"
include "covsrt.f90"

program source_dipole_cavitation
use naca_geometry
use nrtype
use nr, ONLY: spline,splint,ludcmp,lubksb,lfit
!use nrutil
implicit none
real(sp)::ld,lc,af,ni,lamda,d,qc,sl,st
real(sp),dimension(4):: la
real(sp),allocatable, dimension(:):: dli,vtang
INTEGER(I4B), allocatable, DIMENSION(:):: indx
integer:: nlower,nupper, naca_m,naca_p,naca_t,ninterp,m,ii,iter
integer:: npanels,nnodes, neqs,nc,nw,ncav,pointA,pointT,pointL,nwet
real(sp):: angle_of_attack,vinf,chord, cosalf,sinalf,chisq
real(sp),allocatable,dimension(:):: sf,fsf
!
real(sp),allocatable,dimension(:)::x,y,costhe,sinthe,cp,q,dist,sr
real(sp),allocatable,dimension(:,:):: f_log,f_b,covar ! auxiliary data
real(sp),allocatable,dimension(:,:):: a2,a1,D1,Dstar,S ! linear system coefficients
real(sp),allocatable,DIMENSION(:):: xp,yp,xcav,ycav,dsc,coscav,sincav,b,b2,xa,ya,sig,ac,acav,sigc
logical(lgt), allocatable,dimension(:):: maska
logical(lgt):: flagA
!
OPEN(5,FILE= 'in_bem')
OPEN(6,FILE= 'out_bem')
open(17, file= 'sigma-conv.dat')
!pi = 4.*ATAN(1.)
!
WRITE(*,10)
WRITE(6,10)
10 FORMAT(//&
'===========================program cvt ============================='/ &
' Morino potential panel method for single element lifting airfoil in '/ &
' two dimensional partially cavitating incompressible flow. '/ &
' Automatic data generation for NACA 4 digit series is included. '/ &
' Reference: J.Moran, Introduction to Theoretical and Computational Aerodynamics'/ &
' Notes: '/ &
' Input data are written in file: in_bem, ingeom '/ &
' Output data are written in file: out_bem '/ &
' Also: out_geom.dat: section geometrical data, out_pres.dat: pressure results '/ &
' Data for TECPLOT are created in file: tecplot_geometry_and_pressures.dat '/ &
'==============================================================================='/)
!
m=6
ALLOCATE(ac(m),maska(m),covar(m,m),acav(m))
maska(1:m) =.true.
CALL read_input ! read panel number and NACA data
ALLOCATE(x(nnodes),y(nnodes), costhe(npanels),sinthe(npanels),xcav(ncav+1),ycav(ncav+1),dsc(ncav))
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allocate(coscav(ncav),sincav(ncav),dist(npanels))
allocate(sf(ncav),fsf(ncav))
CALL create_boundary_element_geometry
neqs = 2*npanels+1
write(6,*) 'pointL,pointA,pointT,ncav', pointL,pointA,pointT,ncav
ALLOCATE(f_log(npanels,npanels),f_b(npanels,npanels+1),a2(neqs,neqs),b(neqs),a1(neqs,neqs))
allocate(D1(npanels,npanels),Dstar(npanels,npanels),S(npanels,npanels),indx(neqs),b2(neqs))
ALLOCATE(xp(npanels),yp(npanels),cp(nnodes),q(2*npanels),sr(npanels))
allocate(dli(npanels),vtang(npanels))
!

DO ii=1,iter
flagA=.false.
DO

call find_linear_system_coefficients
call ludcmp(a2(1:neqs,1:neqs),indx,d) !LU decomposition
call lubksb(a2,indx,b) ! solution of the linear system
call find_foil_velocities_and_pressures
call ANR
IF (flagA) EXIT

ENDDO
call cavshape
write(17,*) ii,-cp(pointA+1)
ENDDO

call find_forces_and_moments

allocate(sigc(ncav+1))
sigc=1.
call lfit(xcav,ycav,sigc,acav,maska,covar,chisq,fff)
call tecplot_geometry_and_pressures
!
call tecplot_field_point_velocities_and_pressures

write(*,*) af
WRITE(*,*) ' <program Cavitation_BEM>, OK'

!------------------------------
CONTAINS
!------------------------------
!
!
!------------------------------

subroutine read_input
use nrtype
use nr, ONLY: spline
! read input data and calculate parameters for subroutine body
! set parameters of body shape and panel distribution
! input
! nupper no.of panels on upper surface
! naca
read(5,*) nlower,nupper ! nlower,nupper no.of panels on lower and upper foil surface
read(5,*) angle_of_attack ! input angle of attack in degrees
read(5,*) vinf ! velocity at infinity (m/s)
read(5,*) chord ! input foil chord in (m)
read(5,*) naca_m,naca_p,naca_t ! naca series hydrofoil number, example: 4 4 12 (for NACA 4412)
read(5,*) ld,lc,lamda,af,ni
read(5,*) iter
write(*,11) nlower,nupper,angle_of_attack,vinf,naca_m,naca_p,naca_t,chord
write(6,11) nlower,nupper,angle_of_attack,vinf,naca_m,naca_p,naca_t,chord
11 format( ' ============================================='/ &

' no. of panels on lower surface nlower = ',i5/ &
' no. of panels on upper surface nupper = ',i5/ &
' angle_of_attack (deg) = ',f7.2/ &
' velocity at infinity (m/s) = ',f7.2/ &
' naca series hydrofoil number, NACA = ',2i1,i2/ &
' chord (m) = ',f7.3/ &
' ============================================='/)

!
npanels = nlower+nupper
nnodes = npanels+1
ncav=floor((lc-ld)*npanels/2.)
nwet=npanels-ncav
write(*,12) npanels,nnodes
write(6,12) npanels,nnodes,ncav
12 format( ' ============================================='/ &

' total number of panels = ',i5/ &
' total number of nodes = ',i5/ &
' total number of cavity points=',i5 &
' ============================================='/)

!
cosalf =cos(angle_of_attack*pi/180.)
sinalf =sin(angle_of_attack*pi/180.)
call naca1(ninterp,xa,ya,sig)
! allocate(y2(ninterp)) ! if user prefers spline geometry
! call spline(xa,ya,yp1,ypn,y2)
call lfit(xa,ya,sig,ac,maska,covar,chisq,fff)

!
WRITE(*,*) ' <read_input>, OK'
endsubroutine read_input
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!------------------------------
subroutine create_boundary_element_geometry

!use nrtype
use nr, ONLY: splint
integer:: npoints,nstart,n1,n2,j
integer:: nsurf,i,n,nside !nu=n points used for every face
real(sp):: sign,sc,fract1,dx,dy,fract2,xmid,xmid1,ymid,ymid1,ds
! set coordinates of body nodes, start with lower surface
npoints = nlower
nc=floor((lc-ld)*npoints)
nw=npoints-nc

sign =-1.0
nstart = 0
! loop on lower and upper foil nodes
do nsurf=1,2
do n=1,npoints
IF (nsurf==1) THEN
n1=n
n2=n-nw
else
n1=n
n2=n-nc
ENDIF

fract1 = float(n1-1)/float(nc)
fract2 = float(n2-1)/float(nc)
! fract = float(n-1)/float(npoints)
! if(nsurf==1) sc = 0.5*(1.+cos(pi*fract))
! if(nsurf==2) sc = 0.5*(1.-cos(pi*fract))
IF (((n<=nw).and.(nsurf==1)).or.((n<=nc).and.(nsurf==2))) THEN
nside=1
else
nside=0
ENDIF
IF(nsurf==1) sc = (0.5*(1-lc)*(1.+cos(pi*float(n1-1)/float(nw)))+lc)*nside+ &
& + 0.5*lc*(1.+cos(pi*float(n2-1)/float(nc)))*(1-nside)
IF(nsurf==2) sc = (0.5*(1-lc)*(1.-cos(pi*float(n2-1)/float(nw)))+lc)*(1-nside)+ &
& + 0.5*lc*(1.-cos(pi*float(n1-1)/float(nc)))*nside
i = nstart+n
! [calculate coordinates of node i using iso-cosine chord spacing
! between leading edge-cavity detachment-trailing edge for both faces]
IF (naca_t>0.) THEN

CALL naca_coordinates(naca_m,naca_p,naca_t,chord,sc,sign, x(i),y(i))
else
x(i)=sc
call comp(x(i),y(i),ac,fff,sign)

ENDIF
enddo

! end loop on nodes on lower face, upper face next:
npoints = nupper
sign = 1.0
nstart = nlower
enddo
! end loop on foil nodes
x(nnodes)=x(1) ! nodes should define a closed contour
y(nnodes)=y(1)
! ------------set slopes of panels, loop on panels-----------------
DO i=1,npanels
dx=x(i+1)-x(i)
dy=y(i+1)-y(i)
dist(i) = sqrt(dx*dx+dy*dy)
sinthe(i)=dy/dist(i)
costhe(i)=dx/dist(i)
ENDDO
! write results:
OPEN(14,FILE='out_geom.dat')
OPEN(12,FILE='out_geom_cav.dat')
!write(*,10)
!write(14,10)
10 format(' body shape, nodal points'/' i',4x,'x',9x,'y')
DO i=1,nnodes
write(14,11) x(i),y(i)
write(*,11) x(i),y(i)
ENDDO
CLOSE(14)
11 format(2f10.6)
!=================================================================
!======== SOS definition of "boundary" points==============!!!!
!=================================================================
n=npanels
pointA = 0.5*n+floor(ld*n*0.5)+1
pointT = 0.5*n+floor((1-lamda)*lc*n*0.5)
pointL=0.5*n+floor(lc*n*0.5)+1
j=1
DO i=pointA,pointL
xcav(j) = x(i)
ycav(j) = y(i)

j=j+1
ENDDO
DO j=1,ncav
dx=xcav(j+1)-xcav(j)
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dy=ycav(j+1)-ycav(j)
xmid=.5*(xcav(j)+xcav(j+1))
ymid=.5*(ycav(j)+ycav(j+1))
IF (j==1) THEN
xmid1=xcav(1)
ymid1=ycav(1)
ELSE
xmid1=.5*(xcav(j-1)+xcav(j))
ymid1=.5*(ycav(j-1)+ycav(j))
ENDIF

dsc(j) = sqrt((xmid1-xmid)*(xmid1-xmid)+(ymid1-ymid)*(ymid1-ymid))
ds = sqrt(dx*dx+dy*dy)
coscav(j)=dx/ds
sincav(j)=dy/ds
WRITE(12,*) xcav(j),ycav(j),dsc(j)
ENDDO

WRITE(*,*) ' <create_boundary_element_geometry>, OK'
ENDSUBROUTINE create_boundary_element_geometry

subroutine find_linear_system_coefficients
integer:: i,j,j1,k,nd
! internals:
real(sp):: xcp,ycp,dxj,dyj,dxj1,dyj1
real(sp):: x2t,y2t,dx,dz,th,X1,X2,Z,Z2,R1,R2,th1,th2
real(sp):: inv2pi,sum1,rhs
real(sp):: xcavcp,ycavcp

real(sp),dimension(4):: t
real(sp), allocatable, dimension(:):: F,dpin,f1
logical(lgt):: flag1
real(sp):: s0,s1,s2,t1,t2

allocate(F(ncav),dpin(ncav),f1(npanels))
! calculate coefficients of the linear system
a2 = 0. ! initialize coefficients
b = 0.
b2=0.
fsf = 0.
sf=0.
flag1=.true.
nd=pointA
!

inv2pi = 1./(pi)
OPEN(25, file='linear coeff.dat')
open(27, file='fsf.dat')
write(27,*) ii

10 format(2i5,f10.6)

!= lagrange interpolation for phi(0), taken from Neal Fine phd

t(1)=0.
DO i=2,4
t(i)=t(i-1)+0.5*(dist(pointA-6+i)+dist(pointA-5+i))
ENDDO
s0=t(4)+0.5*dist(pointA-1)
s1=t(4)
s2=t(3)

t1=(s2-2*s0)/(s2*s2-3*s0*s0)
t2=1/(s2**3-3*s0**2*s2)
r2=s1/s2*(s1**2-3*s0**2)/(s2**2-3*s0**2)
r1=s2*r2*(s2-2*s0)-s1**2+2*s0*s1
la(1)=s0**2/r1*(1-2*s0*t1)
la(2)=-s0**2/r1*(2*s0*r1*t2-2*s0*t1*r2+r2)
la(3)=1+s0**2/r1*(2*r1*t2*s0+2*t1*s0*(1-r2)+r2-1)
la(4)=2*s0 **3*(t1/r1*(s1-s2*r2)+s2*t2)-s0**2/r1*(s1-s2*r2)+s0

! compute cavity length of each point and cavity termination function f

sf(1)=dsc(1)
DO j1=2,ncav
xcavcp = 0.5*(xcav(j1)+xcav(j1+1))
!ycavcp = 0.5*(ycav(j1)+ycav(j1+1))
sf(j1)=sf(j1-1)+dsc(j1)

IF ((xcavcp>=lc-lamda).and.flag1) THEN
st=sf(j1)
flag1=.false.
ENDIF
ENDDO

sl=sf(ncav)+0.5*dist(pointA+ncav-1)

DO j1=1,ncav
IF (sf(j1)>=st) THEN
fsf(j1)=af*((sf(j1)-st)/(sl-st))**ni

ENDIF
write(27,*) xcav(j1), dsc(j1),sf(j1),sl,st,fsf(j1)
ENDDO
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! Fj, delta phi j definition
DO j=1,ncav
sum1=0.
xcavcp = 0.5*(xcav(j)+xcav(j+1))
ycavcp = 0.5*(ycav(j)+ycav(j+1))

DO k=1,j
sum1 = sum1+(1-fsf(k))*dsc(k)
ENDDO
F(j)=sum1
dpin(j)=vinf*((xcavcp-x(pointA))*cosalf+(ycavcp-y(pointA))*sinalf)
write(25,*) xcav(j),F(j),dpin(j)
ENDDO

!=================\ INFLUENCE COEFFICIENTS \==============
DO i=1,npanels
xcp =.5*(x(i)+x(i+1)) ! control point position
ycp =.5*(y(i)+y(i+1))
rhs=0.
f_b(i,npanels+1) = atan(ycp,(x(1)-xcp))*inv2pi

sum1=0.

DO j=1,npanels
dxj =xcp-x(j)
dyj =ycp-y(j)
dxj1 =xcp-x(j+1)
dyj1 =ycp-y(j+1)
x2t = x(j+1)-x(j)
dx = x2t
y2t = y(j+1)-y(j)
dz = y2t
th = atan(dz,dx)

X1= dxj*cos(th)+dyj*sin(th)
Z = -dxj*sin(th)+dyj*cos(th)
X2= x2t*cos(th)+y2t*sin(th)
Z2=0.

R1=SQRT(X1*X1+Z*Z)
R2=SQRT((X1-X2)**2+Z*Z)

th1=atan(Z,X1)
th2=atan(Z,X1-X2)

IF(i/=j) THEN
f_b(i,j) = atan2(dyj1*dxj-dxj1*dyj,dxj1*dxj+dyj1*dyj)*inv2pi
ELSE
f_b(i,j) = -0.5*2
ENDIF

IF(j==1) THEN
D1(i,j) = f_b(i,j)-f_b(i,npanels+1)
ELSE IF(j==npanels) THEN
D1(i,j) = f_b(i,j)+f_b(i,npanels+1)
ELSE
D1(i,j) = f_b(i,j)

END IF

!source influence coefficient
IF (j==i) THEN
!S(i,j) = 2*X1*log(R1)*inv2pi !
S(i,j) = (dist(j)*log(dist(j)/2)-dist(j))*inv2pi
ELSE
S(i,j) = inv2pi*(X1*log(R1)-(X1-X2)*log(R2)-X2+Z*(th2-th1)) !
ENDIF
a2(i,j)=D1(i,j)
a2(i,j+npanels)=S(i,j)

ENDDO
ENDDO

! ===============\ KINEMATIC BC & DYNAMIC BC\==============
DO i=npanels+1,2*npanels
j=i-npanels
IF ((j<pointA).or.(j>=pointL)) THEN
a2(i,i)=1.
b(i)=vinf*(cosalf*sinthe(j)-sinalf*costhe(j))
ELSE
DO k=1,3

a2(i,nd-k)= la(k)
ENDDO

j1=j-pointA+1 !
a2(i,j)=-1.
a2(i,2*npanels+1)=F(j1)+la(4) !
b(i)=dpin(j1) !

ENDIF

ENDDO
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!===== cavity closure condition =============
sum1=0.
i=2*npanels+1
DO j=pointA,pointL-1
j1=j-pointA+1
xcp =.5*(xcav(j1)+xcav(j1+1))
ycp =.5*(ycav(j1)+ycav(j1+1))
a2(i,j+npanels)=dsc(j1)/(1.-fsf(j1))
sum1=sum1+vinf*dsc(j1)*(-cosalf*sincav(j1)+sinalf*coscav(j1))/(1.-fsf(j1))
ENDDO
b(i) = -sum1
write(6,*) 'b closure=',b(i)

a1=a2
b2=b
open(8,file='linear-coefficients.dat')
DO i=1,neqs
DO j=1,neqs
WRITE(8,11) i,j,a2(i,j)
ENDDO
ENDDO
11 format(i3,2x,i3,2x,2f12.7)

WRITE(*,*) ' <find_linear_system_coefficients>, OK'
endsubroutine find_linear_system_coefficients

!------------------------------
subroutine find_foil_velocities_and_pressures

! calculate pressure distribution
! locals:
integer:: i
real(sp):: xmid,ymid,xmid1,ymid1

!
! retrieve solution from a-matrix:
OPEN(26, file='solution.dat')
do i=1,npanels
xmid=.5*(x(i)+x(i+1))
ymid=.5*(y(i)+y(i+1))
q(i) = b(i)+vinf*(xmid*cosalf+ymid*sinalf)
sr(i)=b(i+npanels)
write(26,*) xmid,q(i),sr(i)
ENDDO
qc=b(neqs)
write(6,*) 'qc=',qc

! find tangential velocity vtang and cp at midpoint of ith panel
do i=1,npanels-1 ! loop on control points
xmid=.5*(x(i)+x(i+1))
ymid=.5*(y(i)+y(i+1))
xmid1=.5*(x(i+1)+x(i+2))
ymid1=.5*(y(i+1)+y(i+2))
dli(i+1) = sqrt((xmid1-xmid)*(xmid1-xmid)+(ymid1-ymid)*(ymid1-ymid))
vtang(i+1) = (q(i+1)-q(i))
vtang(i+1)= vtang(i+1)/dli(i+1)
cp(i+1) = 1.-vtang(i+1)*vtang(i+1)/(vinf*vinf)
xp(i+1) = x(i+1)
yp(i+1) = y(i+1)
ENDDO
cp(1)=(cp(npanels)+cp(2))/2
cp(nnodes)=cp(1)
vtang(1)=(vtang(npanels)+vtang(2))/2
xp(1)=x(1)
yp(1)=y(1)

!
! write results:
OPEN(15,FILE='out_pres.dat')
write(*,10)
write(15,10)
10 format(' body pressures at control points',/' i_mid',3x,'x',9x,'y',9x,'Cp',9x,'dl',9x,'vt')
DO i=2,npanels-1
write(15,11) i, xp(i),yp(i),-cp(i),dli(i),vtang(i)
!write(*,11) i, xp(i),yp(i),cp(i)
ENDDO
CLOSE(15)
11 format(i3,5x,3(f10.4,2x),f10.8,2x,f10.6)
!
IF(nlower==nupper) THEN
OPEN(15,FILE='out_pres_dif.dat')
write(15,12)
12 format(' chordwise pressure_differences '/' i_mid',3x,'xmid',6x,'(Cp+)-(Cp-)')
DO i=1,nlower
write(15,13) i,(xp(nlower+1-i)+xp(nlower+i))/2 , cp(nlower+1-i)-cp(nlower+i)
ENDDO
CLOSE(15)
13 format(i3,5x,2f10.6)
ENDIF
WRITE(*,*) ' <find_foil_velocities_and_pressures>, OK'
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ENDSUBROUTINE find_foil_velocities_and_pressures

subroutine find_forces_and_moments
! calculate and print cl,cd and cm
! locals:
integer:: i
real(sp):: cfx,cfy,cm,cm_ac,xmid,ymid,dx,dy ,cl,cd,cp1
cfx = 0.
cfy = 0.
cm = 0.
do i=1,npanels
xmid =.5*(x(i)+x(i+1))
ymid =.5*(y(i)+y(i+1))
dx = x(i+1)-x(i)
dy = y(i+1)-y(i)
cp1 = (cp(i)+cp(i+1))/2.
cfx = cfx + cp1*dy
cfy = cfy - cp1*dx
cm = cm + cp1*(dx*xmid-dy*ymid)
ENDDO
cfx = cfx/chord
cfy = cfy/chord
cl = cfy*cosalf-cfx*sinalf
cd = cfx*cosalf+cfy*sinalf
cm = cm/(chord*chord)
cm_ac= cm + 0.25*cfy
write(*,10) angle_of_attack,vinf,chord,cl,cd,cm,cm_ac
write(6,10) angle_of_attack,vinf,chord,cl,cd,cm,cm_ac
10 format(//'========================================================'/ &

' i n t e g r a t e d c o e f f i c i e n t s '/ &
'========================================================'/ &
' alpha = ',f10.3,' degrees'/ &
' vinf = ',f10.3,' m/s'/ &
' chord = ',f10.3,' m'/ &
' Clift = ',f10.5,/ &
' Cdrag = ',f10.5,/ &
' Cmoment_le = ',f10.5,/ &
' Cmoment_ac = ',f10.5,/ &
'========================================================')

!
WRITE(*,*) ' <find_forces_and_moments>, OK'

endsubroutine find_forces_and_moments
!
!
!------------------------------

! find field point velocities and pressure coefficients at control point (xcp,ycp)
subroutine field_point_velocities_and_pressures(xcp,ycp,u,v,cp)

real(sp),INTENT(in):: xcp,ycp
real(sp),INTENT(out):: u,v,cp
! locals:
integer:: j
real(sp):: inv2pi,dz,dx,th
real(sp)::xt,yt,y2t,x2t,X1,X2,Z2,Z,R,R1,R2,ULd,WLd,UXd,Wd,us_star,vs_star,us,vs
real(sp)::dxj,dyj,dxj1,dyj1,f_log,f_b

!
inv2pi = 1./(2*pi)
u = vinf*cosalf
v = vinf*sinalf
DO j=1,npanels ! loop on boundary elements, (xcp,ycp) should be outside body!
!q(j) = b(j)
xt = xcp-x(j)
yt = ycp-y(j)
x2t = x(j+1)-x(j)
dx = x2t
y2t = y(j+1)-y(j)
dz = y2t
th = atan2(dz,dx)
X1= xt*cos(th)+yt*sin(th)
Z = -xt*sin(th)+yt*cos(th)
X2= x2t*cos(th)+y2t*sin(th)
Z2=0
R1=SQRT(X1*X1+Z*Z)
R2=SQRT((X1-X2)*(X1-X2)+Z*Z)
dxj =xcp-x(j)
dyj =ycp-y(j)
dxj1 =xcp-x(j+1)
dyj1 =ycp-y(j+1)
f_log = .5*log((dxj1*dxj1+dyj1*dyj1)/(dxj*dxj+dyj*dyj))*inv2pi
f_b = atan2(dyj1*dxj-dxj1*dyj,dxj1*dxj+dyj1*dyj)*inv2pi
us_star = -f_log
vs_star = f_b
! COMPUTE THE VELOCITY INDUCED AT THE ITH
! COLLOCATION POINT BY THE JTH PANEL
ULd = inv2pi*Z*(1/(R1*R1)-1/(R2*R2))
WLd = -inv2pi*(X1/(R1*R1)-(X1-X2)/(R2*R2))
UXd = ULd*cos(-th)+WLd*sin(-th)
Wd = -ULd*sin(-th)+WLd*cos(-th)
us = us_star*costhe(j)-vs_star*sinthe(j)
vs = us_star*sinthe(j)+vs_star*costhe(j)
!b1 = sr(j)
u = u+q(j)*UXd+us*sr(j)
v = v+q(j)*Wd+vs*sr(j)
ENDDO
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! influence of wake panel
R=SQRT((xcp-x(1))*(xcp-x(1)) +(ycp-y(1))*(ycp-y(1)))
UXd=inv2pi*(ycp/(R*R))
Wd=-inv2pi*(xcp-x(1))/(R*R)
u=u+UXd*(q(npanels)-q(1))
v=v+Wd*(q(npanels)-q(1))

!
cp = 1.-(u*u+v*v)/(vinf*vinf)
endsubroutine field_point_velocities_and_pressures

!===================================================

SUBROUTINE tecplot_geometry_and_pressures
! locals
integer::i
OPEN(20, file='tecplot_geometry_and_pressures.dat')
write(20,10)
10 FORMAT('TITLE = " plot foil geometry, pressure coefficients or q"' )
write(20,11)
11 FORMAT('VARIABLES = "Xmid","Ymid","-Cp","q" ')
WRITE(20,12) npanels
12 FORMAT(' ZONE T=" plot geometry, pressure coefficients or q ", I=',I5,', F=POINT ' )
DO i =1,npanels
WRITE(20,13) x(i), y(i),-cp(i),q(i)
13 FORMAT(4(1x,f12.5))
ENDDO
!
CLOSE(20)
WRITE(*,*) ' <tecplot_geometry_and_pressures>, OK'

ENDSUBROUTINE tecplot_geometry_and_pressures

SUBROUTINE tecplot_field_point_velocities_and_pressures
! locals
integer:: i,j,x_points,y_points_face,y_points_back,x_cav,y_points_cav
real(sp):: x_start,x_end,y_start,y_end,dx,dy, xcp,ycp,u,v,cp
real(sp):: sc,sign, xface,yface, xback,yback,yc
!
x_points = 300
y_points_face = 40
y_points_back = 40
OPEN(21, file='tecplot_field_point_velocities_and_pressures.dat')
write(21,10)
10 FORMAT('TITLE = " plot field point_velocities and pressures"' )
write(21,11)
11 FORMAT('VARIABLES = "Xmid","Ymid","UX","VX","CP" ')
!
x_start = -chord/2.
x_end = 3.*chord/2
y_start = -chord/2.
y_end = chord/2.
!
dx = (x_end-x_start)/(x_points-1)
!
! face grid:
WRITE(21,12) y_points_face,x_points
12 FORMAT(' ZONE T=" face grid ", I=',I5,', J=',I5,', F=POINT ' )
DO i=1,x_points
xcp = x_start+(i-1)*dx
yface = 0.
IF(xcp>0.and.xcp<chord) THEN
sc = xcp/chord
sign = -1.
!CALL naca_coordinates(naca_m,naca_p,naca_t,chord,sc,sign, xface,yface)
call comp(sc,yface,ac,fff,sign)
xface=sc
yface =yface-chord/300. ! avoid coincidence of field points with foil face
xcp =xface
ENDIF
dy = (yface-y_start)/(y_points_face-1)
DO j=1,y_points_face
ycp = y_start+(j-1)*dy
call field_point_velocities_and_pressures(xcp,ycp,u,v,cp)
WRITE(21,15) xcp,ycp,u,v,cp
15 FORMAT(5(1x,f12.5))
ENDDO
ENDDO

! back grid:
WRITE(21,13) y_points_back,x_points
13 FORMAT(' ZONE T=" back grid ", I=',I5,', J=',I5,', F=POINT ' )
DO i=1,x_points
xcp = x_start+(i-1)*dx
yback = 0.
IF(xcp>0.and.xcp<chord) THEN
sc = xcp/chord
sign = 1.
!CALL naca_coordinates(naca_m,naca_p,naca_t,chord,sc,sign, xback,yback)
call comp(sc,yback,ac,fff,sign)
call comp(sc,yc,acav,fff,sign)
IF ((xcp>0).and.(xcp<x(pointL))) THEN
yback=yc
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ENDIF
xback=sc
yback =yback+chord/300. ! avoid coincidence of field points with foil back
xcp =xback
ENDIF
dy = (y_end-yback)/(y_points_back-1)
DO j=1,y_points_back
ycp = yback+(j-1)*dy

call field_point_velocities_and_pressures(xcp,ycp,u,v,cp)
WRITE(21,15) xcp,ycp,u,v,cp
ENDDO
!
ENDDO
!
! cavity
x_start = x(pointA+1)
x_end = x(pointL-1)
y_points_cav=20
x_cav=100
dx = (x_end-x_start)/(x_cav-1)
WRITE(21,14) y_points_cav,x_cav
14 FORMAT(' ZONE T=" cavity grid ", I=',I5,', J=',I5,', F=POINT ' )
DO i=1,x_cav
xcp = x_start+(i-1)*dx
yback = 0.
sc = xcp/chord
sign = 1.
!CALL naca_coordinates(naca_m,naca_p,naca_t,chord,sc,sign, xback,yback)
call comp(sc,yback,ac,fff,sign)
call comp(sc,yc,acav,fff,sign)
xback=sc
yback =yback+chord/300
xcp =xback

dy = (yc-yback)/(y_points_cav-1)
DO j=1,y_points_cav
ycp = yback+(j-1)*dy

call field_point_velocities_and_pressures(xcp,ycp,u,v,cp)
cp=1-(qc/vinf)**2
WRITE(21,15) xcp,ycp,u,v,cp
ENDDO
!
ENDDO

CLOSE(21)
WRITE(*,*) ' <tecplot_field_point_velocities_and_pressures>, OK'

ENDSUBROUTINE tecplot_field_point_velocities_and_pressures

!
!==================================================

FUNCTION kd(i,j)

IMPLICIT NONE
integer:: i,j
integer:: kd
kd=0
IF (i==j) THEN
kd=1
ENDIF

END FUNCTION kd
!==================================================

!==================================================
subroutine cavshape

REAL(sp):: Pin,sum1,dx,dy,xmid,xmid1,ymid,ymid1,ds
real(sp),dimension(ncav):: hc
integer:: j,j1,k

open(27,file='hc.dat')

DO j=1,ncav

sum1=0.
DO k=1,j
Pin=vinf*(-cosalf*sincav(k)+sinalf*coscav(k)) !-vinf*(cosalf*sinthe(i)-sinalf*costhe(i))
sum1 = sum1+(sr(k+pointA-1)+Pin)/(1.-fsf(k))*dsc(k)
ENDDO
hc(j)=sum1/qc
write(27,*) ii, xcav(j),hc(j)
ENDDO

DO j=2,ncav-1
j1=pointA+j-1

x(j1)=x(j1)-(1.-0.5*kd(2,j))*hc(j)*sinthe(j1)
y(j1)=y(j1)+(1.-0.5*kd(2,j))*hc(j)*costhe(j1)
xcav(j)=xcav(j)-(1.-0.5*kd(2,j))*hc(j)*sincav(j)
ycav(j)=ycav(j)+(1.-0.5*kd(2,j))*hc(j)*coscav(j)

63



enddo

DO j=1,ncav
dx=xcav(j+1)-xcav(j)
dy=ycav(j+1)-ycav(j)
xmid=.5*(xcav(j)+xcav(j+1))
ymid=.5*(ycav(j)+ycav(j+1))
IF (j==1) THEN
xmid1=xcav(1)
ymid1=ycav(1)
ELSE
xmid1=.5*(xcav(j-1)+xcav(j))
ymid1=.5*(ycav(j-1)+ycav(j))
ENDIF

dsc(j) = sqrt((xmid1-xmid)*(xmid1-xmid)+(ymid1-ymid)*(ymid1-ymid))
ds = sqrt(dx*dx+dy*dy)
coscav(j)=dx/ds
sincav(j)=dy/ds

j1=pointA+j-1
dist(j1) = ds
sinthe(j1)=dy/dist(j1)
costhe(j1)=dx/dist(j1)
ENDDO

endsubroutine cavshape

SUBROUTINE fff(x,arr)
USE nrtype
IMPLICIT NONE
REAL(SP),INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: arr(:)
!SOS: basis functions should be m in number!!!
arr(1) = x**0.47
arr(2) = x
arr(3) = x**2
arr(4) = x**3
arr(5) = x**4
arr(6) = (1-x)**0.5
!

ENDSUBROUTINE fff

subroutine ANR
real(sp):: dh, f1,df,fh,err
integer:: n1
n1=pointL
err=1e-6
dh=1e-2
f1=vtang(n1-1)-vtang(n1)
IF (abs(f1)<err) THEN
flagA=.true.
ELSE
af=af+dh
call find_linear_system_coefficients
call ludcmp(a2(1:neqs,1:neqs),indx,d) !LU decomposition
call lubksb(a2,indx,b) ! solution of the linear system
call find_foil_velocities_and_pressures
fh=vtang(n1-1)-vtang(n1)
df=(fh-f1)/dh
af=af-dh-f1/df
ENDIF

endsubroutine

ENDPROGRAM source_dipole_cavitation

!--------------------------------------------------------------------------
! Module: naca_geometry.f90, Author: Gerasimos K. Politis
! Revision date: Thursday, May 24, 2018, 7:21 PM
!--------------------------------------------------------------------------

module naca_geometry
USE nrtype
implicit none
integer:: m
!
private
! public functions:
public:: naca_coordinates,naca1,comp
!integer, parameter :: sp = kind(1.0d0)
!
contains
!
!-------------------
subroutine naca_coordinates(naca_m,naca_p,naca_t,chord,sc,signum, x,y)
integer,intent(in):: naca_m,naca_p,naca_t
real(sp),intent(in):: chord,signum,sc
real(sp),intent(out):: x,y
real(sp):: yc,yt,tantheta,theta
! find foil geometry
IF (naca_m==0) THEN
call naca4s(naca_t, sc, yc,yt)
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x=sc
y=signum*yt
ELSE
call naca4(naca_m,naca_p,naca_t, sc, yc,yt,tantheta)
theta = atan(tantheta)
x = (sc - signum*yt*sin(theta))*chord
y = (yc + signum*yt*cos(theta))*chord
ENDIF
endsubroutine naca_coordinates

!-------------------
! evaluates thickness and camber for naca 4 digit airfoil
subroutine naca4(naca_m,naca_p,naca_t, x, yc,yt,tantheta)
integer,intent(in):: naca_m,naca_p,naca_t
real(sp),intent(in):: x ! s/c
real(sp),intent(out):: yc,yt,tantheta
! internals
real(sp):: m,p,t,fact
!
m = naca_m/100.
p = naca_p/10.
t = naca_t/100.
!
if(x<=p) then
yc = m*(x/p)*(2.-x/p)
tantheta = 2*m*(1.-x/p)/p
else
fact = (x-p)/(1-p)
yc = m*(1.-fact*fact)
tantheta = 2*m*(p-x)/((1-p)*(1-p))
endif
!
yt =5.*t*(.2969*sqrt(x)-x*(.126+x*(0.3516-x*(.2843-x*.1036))))
!yt = 5.*t*(0.2969*sqrt(x)-0.126*x-0.3537*x**2+0.2843*x**3-0.1015*x**4)
if(x<=0..or.x>=1.) then
yt=0.
yc=0.
endif
endsubroutine naca4

subroutine naca4s(naca_t, x, yc,yt)
integer,intent(in):: naca_t
real(sp),intent(in):: x ! s/c
real(sp),intent(out):: yc,yt
! internals
real(sp):: t
!

t = naca_t/100.
!
yt =5.*t*(.2969*sqrt(x)-x*(.126+x*(0.3537-x*(.2843-x*.1015))))
!yt = 5.*t*(0.2969*sqrt(x)-0.126*x-0.3537*x**2+0.2843*x**3-0.1015*x**4)
if(x<=0..or.x>=1.) then
yt=0.
yc=0.
endif
endsubroutine naca4s

!==================================================
SUBROUTINE naca1(n,xa,ya,sig)
integer:: i
integer, intent(inout):: n
real(sp), allocatable, dimension(:):: xa,ya,sig

open(7,file='ingeom.dat')
read(7,*) n
allocate(xa(n),ya(n),sig(n))
DO i=1,n
read(7,*) xa(i),ya(i)
sig(i)=1.

ENDDO
sig(1)=0.01
sig(n)=0.01

! yp1 = (ya(2)-ya(1))/(xa(2)-xa(1))
! ypn = 1.86*(ya(n)-ya(n-1))/(xa(n)-xa(n-1))
! ypn=10e+30
! yp1=ypn

END SUBROUTINE naca1
!==================================================

SUBROUTINE comp(x,y,a,funcs,sign)
REAL(sp), INTENT(IN):: x,sign
REAL(sp), INTENT(IN), DIMENSION(:):: a
REAL(sp), INTENT(OUT):: y
REAL(sp) ff
INTEGER J
INTERFACE

SUBROUTINE funcs(x,arr)
USE nrtype
IMPLICIT NONE
REAL(SP),INTENT(IN) :: x
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REAL(SP), DIMENSION(:), INTENT(OUT) :: arr
ENDSUBROUTINE funcs

ENDINTERFACE
REAL(sp), DIMENSION(size(a)):: arr

ff=0.

CALL funcs(x,arr)
DO J=1,size(a)
ff=ff+a(J)*arr(J)
ENDDO
y=sign*ff

END SUBROUTINE comp

end module naca_geometry

66



The code uses the following subroutines from the book 'Numerical Recipes in
Fortran 90: The Art of Scientific Computing[89] ':

• nrutil

• nr

• nrtype

• lfit

• spline

• splint

• mnewt

• covsrt

• tridag

• lubksb

• ludcmp

• locate

• gaussj

User input is through two files named in_bem and ingeom.dat. File in_bem
must be filled with following values for each line:

LINE1: nlower nupper
LINE2: angle_of_attack
LINE3: vinf
LINE4: chord
LINE5: naca_m naca_p naca_t
LINE6: ld lc lamda af ni
LINE7: iter

The following list explains each of the above values.

nlower: number of panels on the lower face(pressure side) of the foil.

nupper: number of panels on the upper face(suction side) of the foil.

angle_of_attack: angle of attack of foil.

vinf: Velocity of hydrofoil in m/s.

chord: chord length of the hydrofoil in m.

naca_m: max camber % of NACA 4 digit hydrofoil. If not using this series
value must be zero.

naca_p: max camber position % of NACA 4 digit hydrofoil. If not using
this series value must be zero.

naca_t: thickness % of NACA 4 digit hydrofoil. If not using this series
value must be zero.

ld: x/c of cavity detachment point.
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lc: length of cavity over chord.

lamda: length of cavity termination transition zone over chord.

af: parameter A of cavity termination model. Must be 0 < A < 1.

ni: paramater ν of cavity termination model. Must be ν > 0.

iter: number of iterations of the method.

File ingeom.dat is used in order to interpolate a given set of points for an
arbritrary symmetric hydrofoil geometry. It must contain the number of points to
interpolate in the first line and next lines will be the x and y coordinates of the
points. Points should start from the trailing edge and finish on the leading edge.

For the reader’s ease of reference an example of the input files is included below
and the output file in this case, which includes both the updated cavity shape and
pressure distribution on the hydrofoil surface.
File in_bem:

40 40 ! nlower,nupper
4. ! input angle of attack in degrees
1. ! velocity at infinity (m/s)
1. ! input foil chord in (m)
0 0 0 ! not equal 0 if NACA 4 digit series geometry used
0. 0.5 0.1 0.3 2. ! ld,lc,lamda,af,ni
3 !iterations

File ingeom.dat:

17
1.0000 0.00000
0.9500 0.00707
0.9000 0.01259
0.8000 0.02099
0.7000 0.02635
0.6000 0.02917
0.5000 0.03000
0.4000 0.02927
0.3000 0.02709
0.2000 0.02332
0.1500 0.02067
0.1000 0.01729
0.0750 0.01516
0.0500 0.01255
0.0250 0.00903
0.0125 0.00646
0.0000 0.00000

File tecplot_geometry_and_pressures.dat is one of the output files:
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TITLE = " p lo t f o i l geometry , p r e s su r e c o e f f i c i e n t s or q"
VARIABLES = "Xmid" ,"Ymid","−Cp" ,"q"
ZONE T=" p lo t geometry , p r e s su r e c o e f f i c i e n t s or q " , I= 80 , F=POINT

1.00000 −0.00000 −0.28061 0.89238
0.99692 −0.00046 −0.27627 0.88712
0.98776 −0.00179 −0.19447 0.87616
0.97275 −0.00389 −0.13083 0.85946
0.95225 −0.00658 −0.08098 0.83725
0.92678 −0.00966 −0.04212 0.81001
0.89695 −0.01290 −0.01266 0.77841
0.86350 −0.01611 0.00849 0.74327
0.82725 −0.01912 0.02228 0.70556
0.78911 −0.02180 0.02973 0.66628
0.75000 −0.02408 0.03194 0.62650
0.71089 −0.02593 0.03003 0.58726
0.67275 −0.02735 0.02514 0.54958
0.63650 −0.02839 0.01828 0.51441
0.60305 −0.02910 0.01038 0.48260
0.57322 −0.02955 0.00228 0.45491
0.54775 −0.02981 −0.00523 0.43198
0.52725 −0.02993 −0.01151 0.41433
0.51224 −0.02998 −0.01619 0.40234
0.50308 −0.02999 −0.01902 0.39628
0.50000 −0.02999 −0.02023 0.39323
0.49692 −0.02999 −0.02212 0.38718
0.48776 −0.02998 −0.02536 0.37525
0.47275 −0.02993 −0.03042 0.35777
0.45225 −0.02981 −0.03707 0.33521
0.42678 −0.02958 −0.04546 0.30819
0.39695 −0.02919 −0.05621 0.27745
0.36350 −0.02861 −0.06972 0.24384
0.32725 −0.02780 −0.08601 0.20827
0.28911 −0.02674 −0.10510 0.17171
0.25000 −0.02543 −0.12747 0.13515
0.21089 −0.02384 −0.15390 0.09959
0.17275 −0.02199 −0.18561 0.06597
0.13650 −0.01988 −0.22439 0.03522
0.10305 −0.01754 −0.27298 0.00816
0.07322 −0.01499 −0.33576 −0.01448
0.04775 −0.01226 −0.42016 −0.03211
0.02725 −0.00939 −0.53952 −0.04432
0.01224 −0.00640 −0.71992 −0.05092
0.00308 −0.00332 −0.98098 −0.05187
0.00000 0.00000 0.65795 −0.04668
0.00304 0.00455 0.91395 −0.03464
0.01119 0.01314 0.91395 −0.01504
0.02564 0.02146 0.91395 0.01162
0.04574 0.03012 0.91395 0.04518
0.07098 0.03867 0.91395 0.08490
0.10072 0.04672 0.91395 0.12989
0.13422 0.05396 0.91395 0.17911
0.17065 0.06011 0.91395 0.23143
0.20910 0.06494 0.91395 0.28562
0.24862 0.06827 0.91395 0.34044
0.28825 0.07001 0.91395 0.39464
0.32700 0.06924 0.91395 0.44722

69



0.36437 0.06872 0.91395 0.49706
0.39951 0.06585 0.91395 0.54268
0.43015 0.05800 0.72357 0.58072
0.45508 0.04798 0.31569 0.60829
0.47403 0.03844 −0.08830 0.62583
0.48787 0.03173 −0.36759 0.63557
0.49692 0.02999 −0.50174 0.63989
0.50000 0.02999 −0.50174 0.64206
0.50308 0.02999 −0.34756 0.64701
0.51224 0.02998 −0.21044 0.65774
0.52725 0.02993 −0.09313 0.67465
0.54775 0.02981 −0.00435 0.69759
0.57322 0.02955 0.05889 0.72605
0.60305 0.02910 0.10184 0.75927
0.63650 0.02839 0.12922 0.79631
0.67275 0.02735 0.14451 0.83612
0.71089 0.02593 0.14995 0.87758
0.75000 0.02408 0.14678 0.91952
0.78911 0.02180 0.13551 0.96076
0.82725 0.01912 0.11618 1.00018
0.86350 0.01611 0.08863 1.03668
0.89695 0.01290 0.05259 1.06931
0.92678 0.00966 0.00771 1.09725
0.95225 0.00658 −0.04652 1.11987
0.97275 0.00389 −0.11122 1.13676
0.98776 0.00179 −0.18884 1.14775
0.99692 0.00046 −0.28496 1.15298

where Xmid and Ymid (first two columns )are the hydrofoil geometry coordi-
nates, which have been updated in the cavity region to follow the cavity shape.
-Cp (third column) is the minus pressure coefficient and q (fourth column) is
the local fluid velocity potential. From this output file, one can deduce that
the cavitation number in this case is 0.91395. The code also produces the out-
put file tecplot_field_point_velocities_and_pressures.dat which
contains values of the pressure coeeficient and velocity in a field away from the
hydrofoil. Both output files can be directly loaded into TECPLOT software for
results plotting.
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